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The Golgi as an Assembly Line to
the Autophagosome
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Highlights
The Golgi complex regulates production
and delivery of proteins and lipids, and
is a site of lipid metabolism needed for
autophagy, in particular PI(4)P.

ATG9A is the sole transmembrane ATG
protein and has a crucial role in the for-
mation of the autophagosome, one
new role being the delivery of the metab-
olizing enzymes of PI to the nascent
autophagosome.
Autophagy is traditionally depicted as a signaling cascade that culminates in the
formation of an autophagosome that degrades cellular cargo. However, recent
studies have identified myriad pathways and cellular organelles underlying the
autophagy process, be it as signaling platforms or through the contribution of
proteins and lipids. The Golgi complex is recognized as being a central transport
hub in the cell, with a critical role in endocytic trafficking and endoplasmic retic-
ulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an im-
portant site of key autophagy regulators, including the protein autophagy-related
(ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review,
we highlight the central function of this organelle in autophagy as a transport hub
supplying various components of autophagosome formation.
ATG9A trafficking from the Golgi and
recycling endosome is controlled by the
coat adaptor complexes AP1, AP2, and
AP4, and several BAR-domain contain-
ing proteins BIF1, SNX18, and recently
Arfaptin2.

The control of ATG9A delivery to the
forming autophagosome allows in situ
PI(4)P production for the initiation of
phagophore formation.
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Basic Mechanisms of Autophagy
Autophagy is a process whereby cellular material is degraded to procure nutrients or to remove
organelles and proteins [1]. This highly conserved, essential process is mediated by a cohort of
proteins called the ATG proteins, which are conserved from yeast to humans. There are many
different cues that initiate autophagy, but perhaps the best known is amino acid starvation,
which induces autophagy to offset the lack of nutrients. Autophagy can be seen as a complex
pathway of membrane formation and reformation, centered on the de novo creation of a
double-membraned autophagosome, which will fuse with the lysosome so as to degrade its
cargo [1].

Many aspects of autophagosome formation are by now well understood and, in simplified form,
can be viewed as a cascade starting from the mammalian target of rapamycin (mTOR), which ac-
tivates the Unc-51-like kinase 1 (ULK1) complex, followed by phosphatidylinositol 3-phosphate
[PI(3)P] generation at the ER by the phosphatidylinositol 3-kinase catalytic subunit type 3 [PI(3)
KC3] complex I. The generation of PI(3)P at the ER leads to the recruitment of autophagy effectors
to form the omegasome, the earliest autophagic structure, which grows into the phagophore.
One of the effectors that bind PI(3)P is WIPI2B, which has an important role in the lipidation
and membrane association of LC3/GABARAPs (e.g., LC3-II; see Glossary), which are essential
for autophagy and are the most widely usedmarkers of autophagosomes. Once the phagophore
has grown and enclosed its cargo, it closes to form an autophagosome [1,2].

An important player in each step of this process is ATG9A, a transmembrane protein that
cycles between the trans-Golgi network (TGN) and the ATG9 compartment [3]. Curiously,
although essential at all stages for autophagosome formation, ATG9A does not have a defined
function as far as we know [2]. Thus, many questions remain about autophagosomal mem-
brane formation and the role of ATG9A. In particular, because it is the only transmembrane
core autophagy protein, could ATG9A contribute lipids to help form the autophagosome? In
addition, which proteins or lipid species could be trafficked by ATG9A to the expanding
autophagosome?
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Glossary
Adaptor protein (AP) complexes:
family of coat proteins involved in the
assembly of cargos, both luminal and
transmembrane proteins, into vesicles
emerging from membranous
compartments and delivered to different
cellular destinations.
ATG9 compartment: clusters of
tubules and vesicles adjacent to the
nascent phagophores, or pre-
autophagosomal structures (PAS in
yeast), where ATG9 accumulates.
BAR-domain: a dimeric protein
domain, named for the three proteins it
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In this review, we address these questions from the viewpoint of the Golgi complex, focusing on
the role of the Golgi in autophagy. In particular, we discuss the control of autophagosome forma-
tion through the cycling of ATG9A vesicles from the TGN, the role of ATG9A in the contribution of
PI(4)P, a lipid gaining in importance in autophagy, and how this is regulated from a Golgi
perspective.

Basic Biology of the Golgi Complex
The Golgi complex was first discovered in 1898 as an ‘internal reticular apparatus’, and com-
prises a series of interconnected, well-organized, sac-like structures [4]. Comprising three distinct
subcompartments, the cis-Golgi, medial-Golgi, and trans-Golgi, and a fourth compartment, the
TGN (Figure 1), it has been characterized as a trafficking hub of proteins on their way from the
ER to the endosomal system or to the PM to be secreted. The correct trafficking of proteins
was first discovered in (BIN,
Amphiphysin, and Rvs), which is
involved in the membrane curvature of
lipid bilayers.
Clathrin-coated vesicles: clathrin is
an important protein not only in vesicle
formation during endocytosis, but also in
generating vesicles that connect to the
endosomal system.
COPI and COPII vesicles: transport
vesicles coated in COPI or COPII
complex proteins that traffic from the
Golgi to the ER or from the ER towards
the Golgi complex, to shuttle proteins
between the ER and Golgi complex,
respectively.
Endosomal system: collection of
transport vesicles and compartments,
including early endosomes, recycling
endosomes, endosomes, and late
endosomes. This network chiefly
controls proteins cycling between the
Golgi, PM, and lysosomes.
ER exit sites: regions of the ER coated
with COPII, from where COPII vesicles
traffic towards the Golgi.
ER–Golgi contact sites (ERTGoCS):
membrane contact sites between the
ER and Golgi apparatus, where the
principal components are ER-localized
tethering proteins that recruit proteins
able to bind to Golgi membranes.
Golgi/TGN vesicular transport: the
vesicular trafficking process of Golgi
content, membrane, and/or luminal
components. The specific content is
recognized by different protein-bound
vesicle carriers that participate in the
cargo selection and formation of the
vesicles.
LC3/GABARAPs: mammalian ATG8
homologs that are conjugated to the lipid
phosphatidylethanolamine (PE) and bind
the phagophore and autophagosome
membrane. These proteins are
commonly used markers for
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Figure 1. The Golgi Is a Central Trafficking Hub. Overview of the Golgi complex and the trafficking pathway
Endoplasmic reticulum (ER) cargo is sorted and loaded onto coat protein (COP)-II-coated vesicles at ER exit sites to be
trafficked to the ER–Golgi intermediate compartment (ERGIC). If mislocalized, protein cargo will be sorted back to the ER
through COPI-coated vesicles. Proteins can then be further trafficked along the cis-, medial-, and trans-Golgi, finally to be
sorted to the trans-Golgi network (TGN) to be trafficked further into the cell, for example through the endosomal network
Lipid homeostasis is also important in the Golgi, and here we focus on phosphatidylinositol-4-phosphate [PI(4)P] regulation
The medial- and trans-Golgi in particular are enriched for PI(4)P through the action of PI(4)P kinases (PI4KIIIβ and PI4KIIα
being the most prominent). ER–Golgi contact sites (ERTGoCS) are also important in regulating PI4P (see Box 1 in the
main text for more information). Abbreviations: CERT, ceramide transfer protein; ORP9, oxysterol-binding protein-related
protein 9; PKD, protein kinase D; VAPA/B, vesicle-associated membrane protein (VAMP)-associated protein A/B.
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autophagy. They are also required for
the sequestration of cargo to be
degraded.
Selective autophagy: specific
degradation of damaged organelles,
protein aggregates, unwanted cytosolic
components, or pathogens using the
ATG protein machinery, and selective
autophagy adaptors or receptors.
Sorting signals: generally short and
linear amino acid sequences present
within the cytosolic domains of
transmembrane proteins that are
recognized by protein coats and
mediate the sorting of these proteins to
specific cellular destinations.
trans-Golgi network: most distal
compartment of the Golgi complex.

Trends in Biochemical Sciences
An official publication of the INTERNATIONAL UNION OF BIOCHEMISTRY ANDMOLECULAR BIOLOGY
to their destination relies on the tight regulation of retention, selection, and transport via coat pro-
teins, and themaintenance of signaling lipids in the Golgi [5]. Additionally, the Golgi is an important
site for the post-translational modification of these proteins, especially glycosylation, which re-
quires a host of specialized enzymes, such as glycan-modifying proteins [6,7].

Protein-Mediated Trafficking at the Golgi
As stated earlier, one of the prominent roles of theGolgi complex is the trafficking of proteins from the
ER to the endocytic compartments and PM. Newly synthesized proteins destined for the Golgi are
sorted into COPII vesicles at ER exit sites [8,9] and trafficked to the ER-to-Golgi intermediate
compartment (ERGIC; Figure 1). From the ERGIC, which acts as a sorting station, two things can
happen: (i) proteins are transported to the cis-Golgi in an anterograde pathway; or (ii) mislocalized
proteins are recycled back to the ER in a retrograde pathway throughCOPI vesicles [8,10]. Proteins
transported to the cis-Golgi pass through the medial- and trans-Golgi, arriving at the TGN to be
sorted by different coat proteins (see later). These proteins are those destined for the endocytic com-
partment, the lysosome, or PM, where they are incorporated or released into the extracellular space.

Although this review does not focus on intra-Golgi trafficking (that which occurs between the cis-,
medial-, and trans-Golgi), it does focus on trafficking out of the Golgi via the TGN and its impact
on autophagosome formation. The architecture of the Golgi complex itself (ribbon-like versus
Golgi stacks) is dependent upon tethers, including GRIP and coiled-coil domain containing 88
kDa (GCC88), and disruption of this ribbon-shaped architecture by loss of GCC88 leads to aber-
rant nutrient sensing and alteration of autophagy [11]. However, this aspect of Golgi biology will
not be further covered in this review.

A variety of different cargo-containing vesicles form at the Golgi and are targeted to their destination
through the binding of a protein coat. Despite the variety of the coats involved in TGN exit, only
adaptor protein (AP) complexes (Figure 2) have been firmly connected with autophagy so far.
These five AP proteins (AP1–AP5) [12,13] constitute a family of coat proteins that can be incorpo-
rated into either clathrin-coated vesicles (AP1 and AP2), or vesicles partially dependent (in the
case of AP3) or independent (for AP4 and AP5) of clathrin. One of the first pieces of evidence for
a role of TGN vesicular transport towards forming autophagosomes was illustrated by AP1
complex colocalization with LC3-positive structures upon rapamycin treatment, as well as autoph-
agy inhibition in AP1 knockdown cells [14]. Here, we further discuss the role of vesicular exit from
the Golgi in relation to autophagy, and focus on the heterotetrameric AP complexes.

PI(4)P Levels Are Tightly Regulated in the Golgi
Besides proteins, lipids, such as PI(4)P, also have a role in maintaining Golgi cis- versus trans-
asymmetry and in protein trafficking; PI(4)P is also an important lipid for autophagy [15,16].
One of the main roles of PI(4)P in the Golgi, primarily at the TGN, is to recruit and target cytoplas-
mic PI(4)P-binding effector proteins. As an example of its role in Golgi protein sorting, Golgi phos-
phoprotein 3 (GOLPH3) is able to bind PI(4)P at the trans-Golgi and simultaneously interact with
mislocalized Golgi membrane proteins and COPI to sort them for retrograde recycling [17]. Al-
though important, multiple pathways beyond PI(4)P can lead to vesicular transport from the
Golgi (Golgi vesicular transport; e.g., reviewed in [18]).

Besides its role in the formation of vesicles from the trans-Golgi, PI(4)P is also crucial for the for-
mation of ER–Golgi contact sites (ERTGoCS), which constitute an important lipid transfer site
between the ER and the Golgi complex (Figure 1 and Box 1). These contact sites have a role in the
regulation of lipid levels in the Golgi complex, necessary to maintain Golgi asymmetry and effector
protein binding, as explained earlier, and can regulate other lipid-transporting enzymes (Box 1).
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Figure 2. Adaptor Complexes Regulate Autophagy-Related (ATG)-9A Vesicular Trafficking. (A) Overview of ATG9A trafficking between different cellular
membrane compartments coordinated by adaptor protein (AP) complexes. ATG9A vesicles traffic from the Golgi compartment to sites of autophagosome formation
(phagophore) via AP1 and/or AP4 (iv) complexes, which deliver phosphatidylinositol-4-kinase (PI(4)K)-IIIβ. The AP4 complex can also direct ATG9A-positive vesicles to
the ATG9 compartment (i,iv), from where ATG9A vesicles could traffic to the phagophore (ii). In addition, ATG9A interaction with TBC1 domain family member 5
(TBC1D5) can reroute the movement of ATG9A from the plasma membrane to recycling endosomes and autophagosome formation sites in AP2-derived vesicles (iii).
PI(4)KIIα interacts with ATG9A and moves from the Golgi apparatus to autophagosomes via the AP3 complex (v), which might be another mechanism for ATG9A
trafficking around the cell. (B) Schematic view of ATG9A N-terminal-sorting signals and its phosphorylation sites that facilitate binding of AP complexes. Src kinase and
Unc-51-like kinase 1 (ULK1) phosphorylate ATG9 to regulate its trafficking in fed and starvation conditions, respectively.
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Thus, its level is tightly regulated by the interplay between the PI(4) kinases (PI(4)K), most notably
PI(4)KIIIβ, and phosphatases (i.e., SAC1), each of which is regulated by a complex feedback loop
involving other Golgi-localized lipids and proteins (Box 1).

ATG9A Trafficking between the Golgi Complex, Recycling Endosomes, and
Autophagosomes
ATG9A is the only conserved transmembrane ATG protein and, in mammalian cells, resides in
the TGN, recycling endosome, and endosomal compartments (Figure 2Ai) [3,26,27]. During
starvation, ATG9A accumulates in a vesicular compartment called the ATG9 compartment,
from where it can be mobilized to interact with the forming and expanding phagophores
(Figure 2Aii) [26].
Trends in Biochemical Sciences, June 2020, Vol. 45, No. 6 487
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Autophagy depends on the regulation of ATG9A trafficking, which is tightlymodulated by different
protein components. For example, the ULK complex promotes ATG9A trafficking between the
TGN and the ATG9A compartment (Figure 2Ai) [26,28,29] and, similarly, p38α MAP kinase-
interacting protein (p38IP) positively regulates ATG9A trafficking during amino-acid deprivation
[27]. While not entirely clear why, the distribution of ATG9A in the absence of ULK1 appears to
be primarily perinuclear, while perturbation of the p38IP interaction, which activates p38α
MAPK, appears to cause the retention of ATG9A in the endosome [26,27]. Recently, AP com-
plexes and BAR-domain containing proteins have also been implicated in the regulation of
ATG9A trafficking from the TGN and the endosomal compartments to the site of the nascent
autophagosome, as also discussed later and in Figure 2A and Box 2.

ATG9A Trafficking via AP Complexes
ATG9A contains two conserved N-terminal AP sorting signals, a canonical tyrosine-basedmotif

(8YXXØD/E12) and a noncanonical dileucine motif (22E/DxxLL26), which confer binding to AP1, 2,
and 4 complexes (Figure 2B) [30]. Phosphorylation of Tyr8 and Ser14 are essential for autophagy
initiation and regulate AP binding [31]. Tyr8 is phosphorylated by Src kinase, which regulates
ATG9A constitutive trafficking by enhancing its binding to AP1/2 complexes, as well as AP2 ret-
rograde transport from the PM in response to human epidermal growth factor (hEGF) (Figure 2Aiii)
[31]. ULK1 phosphorylation of Ser14 likewise promotes ATG9A binding to AP1/2 complexes, as
well as its movement from the juxtanuclear compartment (TGN) to the ATG9 compartment under
starvation stress. Additionally, both N-terminal sorting motifs are required for the transport of
ATG9A back to the Golgi from recycling endosomes through an AP2 interaction [30]. Further-
more, ATG9A targeting to Salmonella in selective autophagy requires both N-terminal sorting
motifs [30]. Salmonella growth arrest and clearance requires ATG9A for the recruitment of the
PI(3)KC3 complex I and formation of a double membrane structure around the pathogen [32].
Box 1. Overview of PI(4)P Regulation at the Golgi

Enzymes residing in the Golgi have a role not only in maintaining its lipid composition, but also in producing and modifying
lipids to be transported to the endocytic system. Here, we give an overview of the synthesis and regulation of PI(4)P and
some of its effects (Figure I).

In mammalian cells, there are four different PI(4)Ks, of which PI(4)KIIα and PI(4)KIIIβ localize to the Golgi complex. These en-
zymeswork by phosphorylating phosphatidylinositol on the 4 position hydroxyl group of the inositol ring. PI(4)KIIIβ is activated
by protein kinase D (PKD) at the Golgi by phosphorylation at serine 294 [19], while, in turn, PKD is recruited to the Golgi by
binding diacylglycerol (DAG) [20] (Figure IB). By providing a binding site for ceramide transfer protein (CERT), the level of PI(4)P
itself indirectly regulates the supply of ceramide from the ER, which, together with phosphatidylcholine (PC), is converted into
sphingomyelin and DAG by sphingomyelin synthase (SMS) (Figure IB). To complete the feedback loop, CERT is also a sub-
strate for phosphorylation by PKD, which limits its activity [21]. Thus, the increase in ceramide through CERT leads to more
DAG, recruiting PKD, which in turn activates PI(4)KIIIβ and inhibits CERT, leading to an equilibrium (Figure IB).

PI(4)P is also regulated through potential transfer and dephosphorylation at so-called ‘ERTGoCS’. ERTGoCS are medi-
ated by the ER docking proteins vesicle-associated membrane protein (VAMP)-associated protein A and B (VAPA and
B), which can bind different proteins and tether them to the ER [22] (Figure IA). The aforementioned CERT is such a protein,
targeting to the ER through a FFAT motif (two phenylalanines in an acidic tract), which binds VAPA/B, and by a pleckstrin
homology (PH) domain, binding PI(4)P at the Golgi, where it transfers ceramide [23].

Besides CERT, oxysterol-binding protein 1 (OSBP1), and oxysterol-binding protein-related protein (ORP) 9 and 10 can
also bridge the ER and Golgi through a FFAT motif and a PH domain [24,25], where they may mediate the exchange of
Golgi-localized PI(4)P and ER-synthesized phosphatidylserine (Figure IA).

Besides the transfer of lipids, the ER is also able to modulate lipids at the Golgi through SAC1, an ER-resident protein
phosphatase. SAC1 is able to dephosphorylate ER-localized PI(4)P in cis and, through an interaction with phosphatidyl-
four-phosphate-adaptor-protein-1 (FAPP1), is able to dephosphorylate Golgi-localized PI(4)P in trans [24,25] (Figure IA).
Thus, ERTGoCS contact sites are important sites of lipid trafficking and modulation between the ER and the Golgi.
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Figure I. Endoplasmic Reticulum (ER)–Golgi Contact Sites (ERTGoCS) as Hotspots for Lipid Transfer. (A)
Shown here is a schematic of ERTGoCS between the ER and the trans-Golgi network (TGN). vesicle-associated mem-
brane protein (VAMP)-associated protein A and B (VAPA and B) are ER transmembrane proteins that anchor the key
lipid-metabolizing and transport proteins SAC1, oxysterol-binding protein-related protein 9/10 (ORP9/10), oxysterol-bind-
ing protein 1 (OSBP1), and ceramide transfer protein (CERT) to the ER. Each of these proteins is able to bind phos-
phatidylinositol-4-phosphate [PI(4)P] at the TGN through their pleckstrin homology (PH). SAC1 is a phosphatase that
dephosphorylates PI(4)P, either in trans at the TGN by binding to phosphatidyl-four-phosphate-adaptor-protein-1
(FAPP1) or in cis at the ER membrane. ORP9 is proposed to transfer phosphatidylserine (PS) from the ER to the TGN
membrane, supposedly in exchange for PI(4)P through countertransport, as has been reported for other ORPs (ORP5/
8). ORP10 and OSBP1 are required for the structural integrity of contact sites, but not for lipid transfer. CERT is able to
transfer ceramide to the TGN to be further processed. (B) Ceramide is transferred to the Golgi through ceramide transfer
protein (CERT). There, sphingomyelin synthase (SMS) converts phosphatidylcholine and ceramide into sphingomyelin
(SM) and diacylglycerol (DAG). DAG then acts as a binding site for protein kinase D (PKD), which in turn phosphorylates
PI(4)-kinases [PI(4)K], which generate PI(4)P. CERT is able to bind PI(4)P and so transfer ceramide to the Golgi, where it
acts as a substrate for the aforementioned SMS. As another feedback loop, PKD is also able to inhibit CERT, thus fine-
tuning lipid levels at the Golgi.
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Box 2. BAR-Domain Containing Proteins Involved in Autophagy

The BAR domain protein superfamily has been described as being crucial in several membrane-sculpting events [39]. By
virtue of their ability to sense different membrane curvatures, BAR-domain containing proteins tightly orchestrate multiple
intracellular trafficking pathways [10,40]. Three BAR-domain containing proteins have been implicated in autophagy.

Bif-1

Also known as SH3GLB1/endophilin B, Bif-1 belongs to the endophilin protein family characterized by the presence of an
N-terminal N-BAR domain and a C-terminal SH3 domain. Initially discovered as a Bax-binding protein [41], Bif-1 has been
shown to drive membrane curvature and liposome tubulation through the N-BAR domain [42]. In vivo, Bif-1 associates
with the membrane compartment of different intracellular organelles, such as the Golgi complex or mitochondria, and reg-
ulates multiple membrane dynamics events and the formation of vesicles [42,43].

SNX18

Sorting nexin 18 (SNX18) is a member of the sorting nexin protein family characterized by a phox homolog (PX) domain,
responsible for the binding of SNXs to PIs. SNX18 belongs to the PX-BAR protein subfamily and is involved in multiple
membrane remodeling events of the endocytic system [44]. In vitro, SNX18 tubulates liposomes through the PX-BAR do-
main and shows the propensity to bind PI(4,5)P2. In vivo, SNX18 binds dynamin 2 (DNM2) through its SH3 domain and
mediates the formation of AP1-positive carriers, promoting DNM2 GTPase activity [44].

Arfaptins

Initially identified as ARF1-binding proteins [45], arfaptins localize at the TGN through the interaction with ARF-like 1 (Arl1)
[46]; their binding to PI(4)P is driven by an amphipathic helix that precedes the BAR domain [47]. Arfaptins have been de-
scribed as key regulators of several membrane remodeling events. In vitro, arfaptins can tubulate liposomes with different
lipid composition [39]. In vivo, despite Arfaptin1 and Arfaptin2 sharing a homology of ∼80%, they control distinct intracel-
lular trafficking events. Specifically, Arfaptin1 regulates the formation of secretory granules [48], while Arfaptin2 has been
described to regulate both the secretion of metalloproteinases-2 and -7, forming a complex with Arl1, PKD2, and GTP-
bound ARF1 [49], and the function of ATG9A [16]. Furthermore, Arfaptin2 binds Rac1 and regulates the crosstalk between
the Rac1 and Arl1 pathways [50].
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Beyond N-terminal motif interacting proteins, the Rab-guanosine triphosphatase-activating pro-
tein (RabGAP) TBC1D5, the GAP for RAB7A, has been reported to interact with ATG9A and reg-
ulate its retrieval in AP2-clathrin-coated vesicles from the PM to the autophagosome formation
sites (Figure 2Aiii) [33].

Interestingly, despite being expressed 40 times less in HeLa cells (HeLa) compared with AP1 or
AP2 [34], the TGN-localized AP4 complex was recently described to have a key role not only in
themovement of ATG9A vesicles during autophagy (Figure 2Aiv), but also in neuronal deficiencies
[35–38]. AP4 deficiency leads to a form of hereditary spastic paraplegia (HSP) called AP4 defi-
ciency syndrome, in which ATG9A has a central role. Retention of ATG9A within the TGN results
in a decrease of axonal ATG9A, causing a reduction in the formation of autophagosomes along
the axon and, consequently, in the neuronal soma. AP4 and ATG9A interact via the canonical ty-
rosine-basedmotif (8YXXØD/E12) [35]. Depletion of AP4 subunit epsilon (AP4ε KO) causes an ac-
cumulation of ATG9A at the TGN [35,36], which increases the levels of LC3B and the number and
size of autophagosomes [35,36]. These data together suggest that AP4-dependent ATG9A
sorting is a requirement for proper autophagy induction.

Considering themultiple interactions of ATG9Awith different AP complexes described earlier, fur-
ther studies are needed to understand the cellular stimuli andmolecular determinants required for
the specific sorting of ATG9A by each AP complex, as well as the differences between constitu-
tive, steady-state ATG9A trafficking, and starvation or other induced ATG9A trafficking events
mediated by the AP complexes.
490 Trends in Biochemical Sciences, June 2020, Vol. 45, No. 6
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ATG9A Trafficking via BAR-Domain Containing Proteins
In addition to AP complexes regulating ATG9A vesicle trafficking, it is also fine-tuned by different
BAR-domain containing proteins (Box 2 and Figure 3). Bif-1, in conjunction with the UV radiation-
resistance associated (UVRAG)/Beclin1 Vacuolar protein-sorting 34 (Vps34) complex II [51], was
the first BAR-domain containing protein described to activate autophagy and was later reported
to be a key player in the formation of ATG9A vesicles from the Golgi complex [52] and recycling
endosomes [53]. Additionally, SNX18 has been reported as a PX-BAR containing protein involved
in the formation of ATG16L1 and ATG9A-positive vesicles from recycling endosomes [54,55]. Re-
cently, a mass spectrometry (MS) analysis of isolated ATG9A vesicles revealed the presence of
Bif-1 and additional BAR-domain containing proteins Arfaptin 1 and 2 [16]. However, whether
there is interplay between the different BAR-domain containing proteins participating in ATG9A
vesicle trafficking remains an open question.

Bif-1 Regulates the Formation of ATG9A Vesicles from Recycling Endosomes in concert with
Dynamin 2
Interaction of Bif-1 with Beclin1 through UVRAG enhances PI(3)KC3 complex II lipid kinase ac-
tivity, and depletion of Bif-1 or PI(3)KC3 complex II prevents starvation-induced fission of Golgi
membranes and blocks the redistribution of ATG9A from the Golgi to the ATG9 compartment,
thus impairing autophagy [52]. Furthermore, it has been shown that Bif-1 interacts through its
SH3-domain with dynamin 2 (DNM2) to regulate the formation of ATG9A vesicles that originate
from the Rab11-positive recycling endosomes [53] (Figure 3). The N-BAR domain of Bif-1 is
responsible for the formation of ATG9A-positive tubules, while the GTPase activity of DNM2
drives the membrane fission events that lead to the formation of ATG9A-positive vesicles.
Given the close proximity of the Rab11-positive compartment to the TGN, it is reasonable to
assume that a unique pool of ATG9A-positive membranes in the Rab11 compartment is
sorted by Bif-1, while the effect of Bif-1 on the starvation-induced fission of Golgi membranes
might be unrelated to ATG9A vesicle trafficking. However, this hypothesis has yet to be
clarified.

SNX18 Promotes the Formation of ATG9A Vesicles from the Rab11-Positive Compartment via
DNM2
SNX18 was initially linked to autophagy through regulation of ATG16L1 and LC3-II-positive
membranes from the endosomal compartment [54]. On recycling endosomes, SNX18
directly binds LC3 and sorts it together with ATG16L1 to the perinuclear area. Further
work showed that ATG9A and ATG16L1 trafficking from the tubular endosomal compart-
ment to the autophagosome formation sites is dependent on SNX18 binding to DNM2
through its SH3 domain [55] (Figure 3). Loss of SNX18 restricts ATG9A to the juxtanuclear
recycling endosomes, impairing autophagic flux. Intriguingly, SNX18 and Bif-1 share the ca-
pacity to bind DNM2 through the SH3 domain and induce membrane sculpting through the
BAR domain. However, it is still unclear whether SNX18 and Bif-1 can cooperate or compete
in the binding to DNM2 to regulate ATG9A vesicle trafficking from the Rab11-positive
compartment.

Arfaptin2 Controls Initiation of Autophagy through ATG9A Vesicle Trafficking
A stable isotope labeling with amino acid in cell culture (SILAC) MS study of immunoisolated
ATG9A vesicles revealed that Bif-1, Arfaptin1, and Arfaptin2 are specifically enriched on these
vesicles during amino acid starvation [16]. However, Arfaptin2, and not Arfaptin1, regulates the
initiation of autophagy through the trafficking of ATG9A vesicles between the Golgi complex
and the ATG9 compartment (Figure 3). Depletion of Arfaptin2 or disruption of its ability to bind
PI(4)P caused a pronounced dispersal of ATG9A from the juxtanuclear region, together with a
Trends in Biochemical Sciences, June 2020, Vol. 45, No. 6 491
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Figure 3. BAR-Domain Containing Proteins Control Autophagy-Related (ATG)-9A Vesicle Trafficking during
Autophagy. ATG9A traffics between the Golgi complex, recycling endosomes, and the ‘ATG9 compartment’ to
contribute to the formation of the autophagosome. Different BAR-domain containing proteins regulate its trafficking
between the different compartments. ATG9A shuttling between the Golgi and the ‘ATG9 compartment’ is mediated by
Bif-1 in complex with UV radiation-resistance associated (UVRAG), Beclin1, and Arfaptin2, which also controls the correct
delivery of phosphatidylinositol-4-kinase (PI(4)K)-IIIβ to the phagophore through ATG9A vesicles. ATG9A trafficking from
the recycling endosomes to the site of the nascent phagophores is controlled by Sorting nexin 18 (SNX18) and Bif-1
through the GTPase activity of dynamin 2 (DNM2).
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reduced number of ULK1- and WIPI2-positive early autophagic structures, and LC3B-positive
autophagosomes. Importantly, Arfaptin2 has been shown to drive the enrichment and activation
of PI(4)P metabolizing enzymes on ATG9A vesicles [16]. Arfaptin2 also regulates the correct sub-
cellular localization of PI(4)KIIIβ, the activation of the PI(4)KIIIβ by PKD2 phosphorylation at Ser294
[19,49], as well as the proper distribution of PI(4)P from the Golgi complex to the ATG9 compart-
ment and the autophagosome initiation site. Active PI(4)KIIIβ is delivered by ATG9A vesicles to the
autophagosome initiation site (Figure 3). Of note, together with PI(4)KIIIβ, PI(4)KIIα is also pro-
posed to be delivered on ATG9A vesicles by Arfaptin2. However, PI(4)KIIα exclusively regulates
the late stages of autophagy, suggesting that two distinct pools of PI(4)P can spatiotemporally
regulate the different stages of the autophagosome formation.
492 Trends in Biochemical Sciences, June 2020, Vol. 45, No. 6
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Golgi to Autophagosome/Endolysosome Trafficking
PI(4)KIIα, required for thematuration of autophagosomes, is palmitoylated and resides in the TGN
in basal conditions, but relocates to autophagosomes through interaction with GABARAPs
(Figure 2) [15,56]. PI(4)KIIα and PI(4)P generated by this enzyme have been reported to be essen-
tial for autophagosome–lysosome fusion [15,57]. Interestingly, the trafficking of PI(4)KIIα from the
TGN to autophagosomes might be dependent on the AP3 complex because PI(4)KIIα contains a
conserved sorting signal (56ERQPLL61) necessary for its proper localization to endosomes and
lysosomes (Figure 2Av) [58]. Furthermore, PI(4)KIIα was detected in ATG9A vesicles, and inter-
acts with ATG9A under fed and starvation conditions [16]. This suggests that PI(4)KIIα traffics
from the TGN to the autophagosome through AP3-derived ATG9A vesicles to increase PI(4)P
production to promote autophagosome–lysosome fusion; however, ATG9A interaction with
AP3 has not yet been described.

Interestingly, the Golgi is able to have a role in autophagosome and late endosome fusion with
lysosomes independently of vesicular traffic. The medial- and trans-Golgi localized protein Golgi
reassembly stacking protein 55 (GRASP55) is O-GlcNAcylation and involved in the formation of
Golgi stacks (together with GRASP65). However, under glucose deprivation, O-GlcNAcylation
of GRASP55 is reduced, and GRASP55 relocalizes to autophagosomes and lysosomes through
an interaction with LC3-II and LAMP2. This interaction is thought to create a tether between
autophagosomes and lysosomes to induce their fusion [59].

Endolysosomal Pathway and Autophagy
Recycling endosomes and endosomal function are crucial to provide additional membrane
sources for autophagosome formation and maturation. Underlying this crucial function is the
connection between the Golgi complex and endosomes, which supports ATG9A vesicle
trafficking.

Recycling Endosomes, Rab11, and the TRAPPIII Complex Regulate ATG9A Activity
The Rab11 effector, TBC1D14, a member of the Tre-2/Bub2/Cdc16 domain-containing
RabGAPs, has been identified as a regulator of starvation-induced autophagy [60]. Overexpres-
sion of TBC1D14 induces tubulation of ULK1-positive recycling endosomes (REs), which is de-
pendent on active Rab11, preventing their function in the autophagosome formation.
TBC1D14 interacts with the trafficking protein particle III (TRAPPIII) complex through TRAPPC8,
the mammalian ortholog of the yeast-specific autophagy subunit Trs85 [61]. TBC1D14 and
TRAPPIII are required for activation of Rab1, localized to the Golgi complex; disruption of the
TRAPP complex induces ATG9A dispersal. Thus, TRAPPIII, Rab1, and Rab11 are crucial for
proper trafficking between the Golgi and the endosomal compartment, allowing a steady-state
cycling of ATG9A to support the initiation of autophagosome formation. Interestingly, overexpres-
sion of SNX18 (also important for ATG9A trafficking) tubulates Rab11-positive REs [54,55], pro-
moting the formation of ATG16L1 and LC3-II-positive membranes. Both TBC1D14 and SNX18
can shuttle between the REs and the Golgi complex, suggesting that this trafficking pathway,
which may support the delivery of additional Golgi components (lipids or proteins) as well as
ATG9A, is required for autophagosome formation.

Retromer Complex in ATG9A Trafficking and Autophagy
Recycling of membrane proteins and/or receptors from the endosomal network to Golgi or PM
requires the Retromer complex [62–64]. Several regulators of this complex, such as TBC1D5
and the WASP and Scar homolog (WASH) complex, participate in autophagy. During autoph-
agy, TBC1D5 relocates from Retromer and binds to LC3-II on autophagosomes via a LIR motif,
potentially acting as a switch between endocytosis and autophagy [65,66]. Furthermore,
Trends in Biochemical Sciences, June 2020, Vol. 45, No. 6 493



Outstanding Questions
How do ERTGoCS and lipid trafficking
to and from the Golgi affect
autophagy?

Could PI-metabolizing enzymes
regulate distinct stages of autophagy
or recruit specific autophagy
mediators, for example, through the
regulation of different pools of PI(4)P?

What cellular stimuli mediate the
recognition of ATG9A by different
adaptor (AP) complexes for its
trafficking?

Do the BAR-domain containing pro-
teins, Arfaptin2, BIF-1, and SNX18,
cooperate in the regulation of ATG9A
vesicle trafficking?
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TBC1D5 and Retromer can interact with ATG9A and AP2 and influence ATG9A trafficking and
autophagy [33].

Parkinson’s disease can be caused by an autosomal-dominant mutation in VPS35 (a Retromer
subunit) (D620N) [67], which destabilizes the WASH–Retromer interaction and, therefore, leads
to autophagy dysregulation. Interestingly, ATG9A trafficking is also dysregulated in VPS35 mu-
tant cells [68]. However, the role of retromer in ATG9A trafficking is still not clear, because deple-
tion of VPS26 does not affect ATG9A redistribution under starvation, even though they partially
colocalize [3].

Asmentioned earlier, theWASH complex, involved in actin assembly on endosomes [69,70], reg-
ulates Retromer activity. However, the role of WASH in autophagy is still controversial: it has been
reported to be necessary not only for autophagosome formation [68], but also as a negative reg-
ulator [71,72]. WASH knockdown decreases autophagy and alters ATG9A localization, suggest-
ing a possible entrapment of ATG9A in REs due to Retromer dysregulation [68]. WASH has also
been reported to regulate autophagy through control of ubiquitination of both AMBRA1 and
Beclin1 [components of the PI(3)KC3 complex], which are essential for promoting VPS34 PI(3) ki-
nase activity and autophagy [71,72].

Concluding Remarks
The Golgi complex has been long recognized as one of themost diverse organelles because of its
central functions in the cell; it can distil traffic from the ER, moderate ERTGoCS, be a receiver for
endosomal activity, and provide properly modified lysosomal enzymes. These functions are in ad-
dition to its essential role in glycosylation of proteins. Here, we have highlighted the role of the
Golgi in autophagy, in particular, in the regulation of ATG9A localization. One future challenge is
to unpick the well-documented effects on autophagy resulting from the perturbation of Golgi–
endosomal trafficking to uncover direct mechanistic insights. This will provide knowledge to un-
derstand how the Golgi complex controls both proteins and lipids to regulate autophagy and
will no doubt further reinforce the critical role of the Golgi complex (see Outstanding Questions).
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