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Abstract

Background

Several spectral-domain optical coherence tomography studies (OCT) reported a decrease
on the macular region of the retina in Parkinson’s disease. Yet, the implication of retinal
thinning with visual disability is still unclear.

Methods

Macular scans acquired from patients with Parkinson’s disease (n = 100) and a control
group (n = 248) were used to train several supervised classification models. The goal was
to determine the most relevant retinal layers and regions for diagnosis, for which univari-
ate and multivariate filter and wrapper feature selection methods were used. In addition,
we evaluated the classification ability of the patient group to assess the applicability of
OCT measurements as a biomarker of the disease.

Results

The classification performance results based on mean thickness values of the retinal layers
demonstrate high accuracy, precision and recall scores. Furthermore, an improvement of
performance is seen including lower cardinality feature subsets, namely, the values the
ganglion-cell inner-plexiform layer within the outer macular region, together with the
total thickness value of the whole retina.

Conclusion

Several state-of-the-art supervised learning techniques support the hypothesis of retinal
thinning as a valid biomarker of the disease, in particular of the ganglion-cell inner-
plexiform layer.
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1. CHAPTER

Introduction

1.1 Introduction to the problem

Diagnosis of Parkison’s disease at present

One of the greatest challenges facing those who treat Parkinson’s disease (PD) is the
capacity to obtain an early diagnosis of the condition. PD is a neurodegenerative disorder
caused by a pathological dopaminergic deficiency in the basal ganglia of the brain. The
sooner the disease is detected, the earlier therapeutic measures can be put in place to delay
the progression of neuronal loss.

At present, the diagnosis is still based in a clinical evaluation and there is still no par-
ticular test for the detection of the disease, only diagnostic standards which reflect the
disease condition. The most widely used standards are the Parkinson’s UK Brain Bank or
the International Parkinson and Movement Disorder Society criteria, which are specially
relevant to begin treatment at early stages.

Meanwhile, a combination of several diagnostic tests are used for this purpose. For in-
stance, the motor score provided by the Unified Parkinson Disease Rating Scale (UPDRS)
is a good predictor of Lewy body-associated neuronal loss in the substantia nigra.

Evidence of importance of variables included in this work

Physical manifestations are yet not the only clue to detect PD. Several biomarker re-
searches are trying to become more aware with the symptoms that precede motor mani-
festations, called the prodomal symptoms. Wollner and Yahr provided the first evidence of

1
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visual system involvement in PD as a reduction in amplitude shown in the electroretino-
gram [Bodis Wollner and Yahr, 1978]. Visual dysfunction and quantification of retinal
thinning in PD has been on wards reported. First to mention, many studies investigate
visual processing deficits in PD, such as visual discrimination, visual categorisation and
visuospatial orientation skills [Bodis-Wollner, 2013]. Secondly, retinal thinning has been
reported since using different measurement optical coherence tomography instruments
(OCT) to quantify the retinal thicknesses. These results suggest potential applicability of
OCT as a biomarker in PD.

Approach to this problem

In this work several state-of-the-art supervised learning machine learning techniques are
applied on retinal thickness data, acquired from a hundred PD patients, to target the hy-
pothesis of retinal thinning as a potential biomarker of the disease. Moreover, an addi-
tional goal was to better understand the specificity of retinal degeneration to the disease
progression.

1.2 Objectives

In this study, we raise two questions.

• To which extend are the measurements of retinal thickness values a valid biomarker
of PD? Several supervised classification models are trained on numerical data,
corresponding to thicknesses measured by means of a really common imaging
technique used mainly in ophthalmology, called Optical Coherence Tomography
(OCT). The retinal thicknesses correspond to measurements of the back of the eye
(funduscopic images), and yield different parameters according to which layer of
the retina they come from, or which region, as the variables used in this work are
the result of the average thickness in different sections of the retina.

• Which are the most relevant retinal layers and regions in the early diagnosis of
Parkinson’s disease? This question is addressed from the relevancy point of view.
Several feature selection techniques are applied to the data set to output subsets of
the most relevant features, e.g. the ones more correlated to the class, which at the
same time do not contain redundant information. For this purpose, multivariate filter
and wrapper methods are studied using different score metrics. Moreover, rankings
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of the most important features are built from a univariate approach to consider the
top-k features and the consistency of the results in terms of stability.

1.3 State of the art and related work

Machine learning in clinical research

The purpose of machine learning is to automatically discover patterns, trends and hidden
relationships in large amounts of data. Databases in clinical research, similarly to any
other field, magnify and powerful analytic tools become indispensable. Machine learning
algorithms use statistical techniques that allow computers to extract useful information
from a collection of data, construct classifiers which can find complex relationships in the
data and validate hypothesis.

Types of medical problems

Diagnosis and prognosis. Clinical research relies in data science techniques to provide
solutions in the diagnosis, prognosis, monitoring or quality control processes. Diagnosis
procedures use medical signs and symptoms to determine a disease affection. For in-
stance, authors in [Cao et al., 2014] developed a classifier to detect pulmonary nodules
in computer tomography images for early-stage lung cancer diagnosis. Prognosis instead
aims to predict the likely or expected development of a disease, including whether the
signs or symptoms will improve or worsen or stabilise over time and at which pace 1. In
such scenarios, like the one of this work, the search for so-called biomarkers becomes
fundamental.

Biomarkers refer to a broad subcategory of medical signs – that is, objective indications of
medical state observed from outside the patient – which can be measured accurately and
reproducibly [Strimbu and Tavel, 2010]. Biomarkers that have been well characterized
and repeatedly shown to correctly predict relevant clinical outcomes across a variety of
treatments and populations and such biological measures have become the primary focus
in clinical trials. The goal in this work is to integrate machine learning in combination
with feature selection to focus on identifying features that can predict a disease versus a
control state. This basis has been highly powerful in bioinformatics, for instance, to find
biomarkers in various cancer diseases applying these techniques in molecular profiles of
tumor sample data [Kourou et al., 2015]. Biometric measures have also been claimed to

1https://en.wikipedia.org/wiki/Prognosis
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be robust and reliable biomarkers, for instance the measurements acquired by an ECG
signal [Pelc et al., 2019]. In the case of measurements from the eyes, specially the ones
acquired using the optical coherence technique, less research has been conducted but
many publications suggest the importance of the retina due to its close connection with
the brain [Chrysou et al., 2019].

Data science provides clinical researches with a variety of models which can predict future
behaviors. More specifically, to solve predictive problems (e.g. supervised classification
and regression problems), generally known in Artificial Intelligence environments as su-
pervised learning problems. However, data acquisition in this domain is usually restricted
by the high cost of clinical trials, or the rareness of the illnesses under examination. These
two facts are examples of why the following limitations in the next paragraph need con-
sideration.

Main issues facing clinical researches

To draw conclusions from wide datasets, those characterised by a large number of fea-
tures (high dimensionality) and small number of instances – common in many domains
including the clinical research – feature selection will ultimately offer a subset of the
original features, a trained classifier model and an estimate of the classification accuracy.
[Kuncheva and Rodríguez, 2018] remarked the need to include feature selection tech-
niques as part of the learning process, to eliminate overly optimistic classification results
due to a "peeking" effect caused by using the dataset twice: for selecting the best subset
and evaluating performance.

Another really common issue in the medical domain when using machine learning meth-
ods to test hypotheses emerges from imbalanced distribution among problem classes. The
accuracy reached with the given learning problem is also different for each class. To ac-
count for this fact, special consideration should be given to the preprocessing step.

Review on data level pre-processing methods

The main stages involved in any learning process include the selection of goals, the pre-
processing of the data (selection, preparation, transformation and/or reduction of the fea-
ture data set), the construction of the model and the analysis of the results.

[Fernández et al., 2018] conducted an extensive research on the main approaches to deal
with classification learning from imbalanced data in multiple domains, including engi-
neering, business management, security, bioinformatics and medicine. Their work dis-
cerned approaches from the data preprocessing-level (resampling and Synthetic Minority
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Oversampling Technique) and from the algorithm-level (cost-sensititive methods and al-
gorithm modifications such as ensemble methods). Data sampling methods modify the
training instances to produce a more balanced distribution that yields less biased results
towards the minority class (the positive class). This can be performed eliminating in-
stances from the majority class (undersampling), replicating instances from the minority
class (oversampling) or with a combination of both approaches.

Regarding undersampling, some represantive works in this area include Wilson’s edited
nearest neighbor (ENN) rule [Guan et al., 2009], in which noisy instances from the train-
ing set are removed until all remaining instances have a majority of their neighbors with
the same class and which has been further developed in posterior publications to im-
prove performance. However, these techniques may disregard relevant data and be detri-
mental to the induction process. Therefore, more sophisticated methods have been de-
veloped and used, such as the Synthetic Minority Oversampling Technique (SMOTE)
[Chawla et al., 2002], which created new minority class examples by interpolating several
minority class instances that lie together for oversampling the training set. The main draw-
back of oversampling methods, concretely of SMOTE techniques, according to firstly
claimed by the authors in [Puntumapon and Waiyamai, 2012] is that, even if the synthetic
data are less specific to the original data, the over-generalization problem may occur. New
data is generated merging two minority data and, as a result, decision regions are larger,
i.e. new data closer to the decision boundary is generated. Over-generalization occurs
when synthetic data is generated into the majority class region, leading to misclassifica-
tion of the non-minority class into the minority class.

Review on feature selection techniques

Modern biomedical data require feature selection methods that can be applied to large
scale feature spaces (biomedical measurements), function in noisy contexts, detect com-
plex patterns of association, be flexibly adapted to various problem domains (e.g. gene
expression, and clinical data) and be computationally feasible. In this context, to find the
minimum number of features that can be representative in a classification problem can
lead to more efficient and less biased results, avoiding overfitting.

Dimensionality reduction has been long to make classification more efficient and less
error-prone. Many feature selection strategies have been proposed over the years, gen-
erally falling into one of the three categories: (1) filter methods, (2) wrapper methods,
or (3) embedded methods. Filter methods work within an attribute selection independent
scheme, as there exists no relation between the selection process and the learning scheme
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and the output is a rank of the features more correlated to the class, and less feature in-
terdependent in the case of multivariate filters. The second two are part of an attribute
selection specific scheme, as the algorithms are linked to the learning process and yield
subsets of the best features. FS has been proved to be indispensable in any process learn-
ing from data, and across different disciplines [Jovic et al., 2015]. This is the case in this
study, as the data size was limited. Many FS techniques were tested to avoid the problem
of overfitting, i.e. a problem emerging when a combination of features that discriminates
purely by chance the class variable due to an over-proportion of the number of features in
respect to the number of instances can occur.
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Dataset description

2.1 Participants and Study Design

Recruitment and diagnostic categories

The data set is part of a cross-sectional study of patients with Lewy Body Diseases
(LBDs), which encompass a spectrum of disorders pathologically characterized by the
widespread deposition of Lewy bodies in the central nervous system. 100 patients were
recruited for evaluation, including idiopathic’s Parkinson’s Disesase (iPD, n = 78), De-
mentia with Lewy Bodies (DLB, n = 7) and certain genetic variants of Parkinson’s Dis-
ease (PD), such as the E46K mutation in the α-synuclein gene (E46K-SNCA, n = 8), the
Parkin gene (PARK2, n= 4) and the Leucine-Rich Repeat Kinase 2 gene (LRRK2, n= 3),
and 248 controls. E46K-SNCA is recognized as the most pathogenic mutation inducing
PD [Zarranz JJ, 2004].

Participants were recruited through the Department of Neurology at Cruces University
Hospital and the Biscay PD Association (ASPARBI). All subjects were participants from
another study which counted with 37 controls [Murueta-Goyena et al., 2019]. The rest of
the control participants were included meeting the same criteria as in that previous study,
to have extra OCT scans.

Medical protocol

Controls were selected to approximately match E46K-SNCA carriers in age and sex. Only
controls with a maximum of minus/plus 6.00 dioptres (±D) were recruited for this study.

7



8 Dataset description

Patients with iPD fulfilled Parkinson’s UK Brain Bank criteria for the diagnosis of proba-
ble Dementia with Lewy Bodies (DLB) by 2016 revised criteria for the clinical diagnosis
of DLB. All patients were studied in an on-medication condition to complete all study
assessments.

The study protocol was approved by the regional Basque Clinical Research Ethics Com-
mittee. All participants gave written informed consent prior to their participation in the
study, in accordance with the tenets of the Declaration of Helsinki.

2.2 Clinical Evaluation

Before presenting the nature of the variables used in this study, it is important to evaluate
the phenotype of the patient class. For this purpose, the following demographic variables
and clinical tests were recorded. The average values and standard deviation of each vari-
able mentioned on the following are presented in Table 2.1.

Clinical evaluation

Age and sex were recorded for all participants, and disease duration and age of dis-
ease onset of patients. Two neurologists experienced in the field of movement disor-
ders recorded Hoehn & Yahr Scale score (HY), Unified Parkinson’s Disease Rating Scale
scores (UPDRS): part I (UPDRSI)-mentation, behaviour and mood, part II (UPDRSII)-
activities of daily living, part III (UPDRSIII)-motor examination and part IV (UPDRSIV)-
complications of therapy; Levodopa Equivalent Daily Dose (LEDD) and the Montreal
Cognitive Assessment scale (MoCa).

All these rating scales aim to assess the symptoms of the condition and quality of life of
the patients. Table 2.1 shows the mean and standard deviation values outlined above of all
controls and patients, as well as for each diagnostic category group.

Demographics

The age of disease onset is expressed as a decimal number in years. Disease duration is
also expressed in years, calculated from the difference between the evaluation (ev) and
diagnosis (diag) dates in day units divided by 365:

DDev/MMev/YYev−DDdiag/MMdiag/YYdiag

365
(2.1)
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Variables, units Control All patients iPD DLB E46K-SNCA PARK2 LRRK2

n 248 100 78 7 8 4 3
Age, years 55.73 (11.8) 61.63 (11.02) 62.68 (8.92) 75.11 (6.48) 48.44 (11.78) 49.9 (14.2) 53.8 (9.1)
Males, n (%) 97 (39.11) 66 (66) 51 (65.38) 5 (71.43) 5 (62.5) 3 (75) 2 (66.67)
Disease duration, years NA 6.13 (4.61) 5.83 (4.11) 8.47 (5.6) 6.63 (4.79) 8(8.72) 5.07 (3.77)
Age of disease onset, years NA 55.78 (10.66) 56.78 (8.52) 66.67 (9.32) 43 (9.48) 41.82 (18.88) 48.7 (5.41)
LEDD, mg/day NA 580.26 (388.13) 598.87 (375.45) 539 (322.11) 460.19 (558.93) 380 (190.96) 713 (292.29)
UPDRSI total score NA 2.23 (1.99) 2 (1.73) 5.17 (2.03) 3.29(2.6) 1 (0.82) 1 (0.82)
UPDRSII total score NA 11.28 (6.29) 10.91 (5.62) 16.33 (5.93) 10.43 (9.93) 11 (4.97) 13 (8.29)
UPDRSIII total score NA 25.94 (11.09) 25.76 (9.57) 36.67 (13.68) 19.57 (17.9) 23.33 (8.22) 26.33 (7.32)
UPDRSIV total score NA 3.73 (3.75) 3.79 (3.8) 2.5(2.57) 3.43 (3.96) 3 (2.83) 6 (3.74)
Hoehn & Yahr score NA 2 (0.0-4.0) 2 (1.0-4.0) 2.75(2.0-3.0) 1.5 (0.0-3.0) 2 (1.0-3.0) 2 (2.0-2.5)
MoCA total score 27.02 (3.04) 23.61 (4.58) 24.06 (3.51) 16.86(7.2) 23.88 (6.51) 25.75 (2.95) 24 (3.56)

Table 2.1: Demographics and PD characteristics for each diagnostic category.
Results are displayed as the average value (standard deviation) except for sex and Hoehn & Yahr
score, which are shown as number of males (% of males) and as median (range), respectively.
iPD, idiopathic Parkinson’s disease; DLB, dementia with Lewy bodies; E46K-SNCA, patients
with E46K mutation in α-synuclein (SNCA) gene; PARK2, patients with mutation in parkin gene;
LRRK2, patients with mutation in leucine-rich repeat kinase 2 gene; LEDD, Levodopa Equiva-
lent Daily Dose; UPDRS, Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive
Assessment; NA, nonapplicable.

Neurological Assessment

The Unified Parkinson’s Disease Rating Scale (UPDRS) 1 contains elements of several
scales to monitor the course of Parkinson’s and the degree of disability. Some of the
elements evaluated in part I are: intellectual impairment, thought disorder, motivation/ini-
tiative or depression. The second part covers speech, salivation, walking, falling, hand-
writing, among others. The motor evaluation in the part II includes action tremor, rigidity,
finger taps, hand movements, posture, gait and postural stability. Finally, the last part
encompasses complications of therapy such as dyskinesia, anorexia or sleep disturbance.

Hoehn & Yahr Scale score (HY) [Hoehn and Yahr, 1967] evaluates the progression of
Parkinson’s symptoms and the level of disability through eight possible conditions. Each
condition indicates: no signs of disease (Stage 0), unilateral symptoms (Stage 1), uni-
lateral symptoms involving also neck and spine (Stage 1.5), bilateral symptoms without
impairment of balance (Stage 2), mild bilateral symptoms but can maintain balance if
pulled from behind (Stage 2.5), balance impairment but mild to moderate - physically in-
dependent (Stage 3), severe disability but with ability to walk or stand unassisted (Stage
4), and need of a wheelchair if unassisted (Stage 5).

Levodopa is nowadays an effective and well-tolerated dopamine replacement to treat
Parkinson’s disease. The Levodopa Equivalent Daily Dose (LEDD) gives an estimate of
the total amount of levodopa in mg that results out of the contribution of each drug taken

1https://es.wikipedia.org/wiki/Unified_Parkinson%27s_Disease_Rating_Scale
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daily by the patient.

Cognitive Assessment

Montreal Cognitive Assessment scale (MoCa) 2 was developed in 2005 to assess the de-
gree of affectation on an individual’s cognitive function [Z.S. Nasreddine, 2005]. It eval-
uates five different cognitive domains: memory, visuospatial skills, executive function,
attention/concentration/working memory, language and orientation. The maximum possi-
ble score is 30, and scores over 26 are considered normal.

2.3 Brief retina anatomical description

Retina anatomy

The main concepts of the retina anatomy are introduced in this section. The retina is the
innermost layer of tissue of the eye, which converts the light into chemical and nervous
signals, transported to the visual cortex by way of the optic nerve, see Fig. 2.1.

The fovea, marked in the figure, is the specialized region of the human retina that drives
the majority of the visual functions and whose variation in shape is related to alterations
of the retinal layers [Provis et al., 2005]. It is in the fovea where the highest density of
photoreceptors and neural machinery is located, and from which the connection to the
primary visual cortex of the brain through the optical nerve is enabled. The points sur-
rounding the foveal depression form the macular ridge and, within, the slope that rises
more abruptly conform what is known as the foveal edge. Most studies did not observe
a decrease of the center of the foveal pit, but of these surroundings, which constitute the
macular region [Chrysou et al., 2019].

The retina is a multilayered tissue depending on different cell types. Looking into the
eye from the outside, these layers comprise the peripapillary retinal nerve fiber layer
(mRNFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nu-
clear layer (INL) and several outer retinal layers, including outer plexiform (OPL) and
outer nuclear (ONL) layers and the photoreceptor layer (phot). The values of thickness of
each layer and the sum of all of them, which corresponds to the total retina thickess, are
shown in Fig. 2.4 (B).

Clinical applications

2https://en.wikipedia.org/wiki/Montreal_Cognitive_Assessment
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Figure 2.1: Anatomy of the eye.
Location of the retina, fovea and optical nerve. Image source: Wikipedia entry on "The structures
of the eye labeled".

The retinal ganglion cell (GC) has been investigated for many purposes, as it is the out-
put neuron of the retina that sends its axon to the brain via the optic nerve. The death
and disappearance of GC is especially apparent in the macula, where many GCs are
concentrated and where the ganglion cell layer (GCL) is many cell bodies thick. Its
thickness becomes relevant, for instance, for reducing variance for glaucoma diagnosis
[Knighton et al., 2012], to provide an insight of the development of the foveal pit mor-
phology [Springer AD, 2005] or has been proven to have a strong relationship with the
foveal avascular zone (FAZ) [Dubis et al., 2012], the region sorrounding the fovea with-
out retinal blood vessels whose reduction of size has been related with the outspring of
several diseases, such as retinopathies (i.e. capillary dropout) in diabetic patients. A recent
meta-analysis from 77 studies, totalling 1916 Parkinson’s disease patients and 2006 con-
trols, showed significant thinning of the inner retinal layers, resembling changes found in
glaucoma and other neurodegenerative diseases like Alzheimer’s [Chrysou et al., 2019].

Besides, as the adjacent inner plexiform layer (IPL) becomes often indistinct, their com-
bination (GCIPL) serves as a surrogate for GCL in many clinical purposes. Further inves-
tigation of the thickness in this layer becomes of interest, because previous work suggest
that in patients with PD it can predict disease severity [Tian et al., 2011, Bodis-Wollner et al., 2014,
Jiménez et al., 2014, Garcia-Martin E, 2014, Chrysou et al., 2019, Murueta-Goyena et al., 2019].

All in all, thickness maps can determine the size and shape of the foveal depression and
the surrounding macular ridge, two important factors with potential clinical application,
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for instance, as potential biomarkers of Parkinson’s disease.

Related technology

Spectral-domain Optical Coherence Tomography (OCT) has become the main technique
used nowadays to provide an insight of the retinal anatomy, due to being a non-invasive
technique that is inexpensive and widely available and only takes up to a few minutes
per eye. OCT is an optical signal acquisition and processing method that quantifies dif-
ferences in optical properties of different layers of the retina. OCT depth information is
obtained by a spectrometer and analyzed by a Fast Fourier Transformation. First, scans
of the entire area can be obtained by acquiring successive adjacent B-scans and second,
real-time image enhancement is used to reduce the signal to noise ratio (SNR) and im-
prove the definition of a single image by averaging multiple images. This is possible, as
the examination is performed simultaneously in various axes, allowing 3D reconstruction
[Medical Advisory Secretariat, 2009].

Furthermore, OCT allows for intra-retinal layer segmentation, which is fundamental in
the research of the retina as biomarker for PD. Quantifying the layers of the retina raises
the hope of developing an in vivo marker for the disease. Nevertheless, as most imaging
studies do, OCT yields masses of data, so the definition of where (region of interest)
and what (layer of interest) to focus on must be considered to determine whether retinal
thinning parallels disease progression [Hajee et al., 2009].

2.4 OCT Acquisition, Segmentation, and Processing

Data acquisition protocol

Macular volumetric images were obtained using the Spectralis Spectral-Domain OCT-
System (Heidelberg Engineering, Heidelberg, Germany).

All macular scans were centered on the fovea. The output consisted of 25 single horizontal
axial scans covering a 20 ◦ × 20 ◦ area (see blue squared region in Fig. 2.2 (B)), with 512
A-scans per B-scan. Each B-scan is acquired as the the average of 49 frames (automatic
real-time tracking: 49). Fig. 2.2 (A) shows a B-scan, which consists of a set of, in this
case, 512 vertical A-scans.

Data segmentation

The software of the system allows to automatically export the thickness values for each
one of the seven layers segmented: RNFL, GCL, IPL, INL, OPL, ONL, Phot. It also
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exports the total thickness values of the retina (Retina). Thicknesses are calculated for
each A-scan, as the distance length from the upper part of the image to the corresponding
layer, measured in µm.

Figure 2.2: Horizontal B-scan with labeled layers on the right-hand side. Every B-scan consists
of a set of vertical lines (A-scans) (A). A funduscopic image with lines overlaid representing the
locations of every B-scan within a volume (B).
The red line corresponds to the B-scan in (A). Image source: [Lang et al., 2013].

All acquisitions were obtained by the same experienced operator, and the built-in tracking
system was used to compensate for eye movements.

All OCT images fulfilled quality control criteria from OSCAR-IB consensus, accounting
for Obvious problems (O), poor Signal strength (S), Centration of scan (C), Algorithm
failure (A), Retinal pathology other than PDrelated (R), Illumination (I) and Beam place-
ment (B) [Tewarie et al., 2012].

Data Processing

The raw thickness values in each region of the Early Treatment Diabetic Retinopathy
Study grid (ETDRS, shown in Fig. 2.3) were used to compute thicknesses in different
discs and rings, to enrich the measurements from the anatomical point of view. The vari-
ables included in the study are explained in section 2.5. Their values were computed by
means of a weighted average value for that region. For example, the average thickness
value of a ring in the 1-to 3-mm area region would be the result of the sum of S3,N3, I3
and T 3 divided by 4-according to the figure- whereas the 1-mm disc would be directly the
value of C1.

2.5 Variable Description

The built-in software of the Spectralis OCT equipment (HRA Spectralis Viewing Mod-
ule version 6.0.9.0) automatically segmented macular layers, as previously mentioned.
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Figure 2.3: Early Treatment Diabetic Retinopathy Study (ETDRS) grids provided by the Spec-
tralis OCT.
Circle diameters 1-, 3-, 6-mm of the central (C1), superior (S3, S6), temporal (T3, T6), inferior
(I3, I6) and nasal (N3, N6) sectors. The optical nerve can be partly appreciated the right-hand side
of the funduscopic image. Image source: [Li et al., 2017].

The thickness measures used in the final data set were calculated as result of different
combinations of regions for each one of the layers, as illustrated in Figure 2.4 (C).

Regions

In total, values of thickness of five layers and the sum of all, corresponding to the total
retina thickness, were computed as the average value of both eyes in the different discs and
rings: 6-, 3- and 1-mm discs and 1-to 3-mm, 3-to 6-mm rings. All result from the average
thickness values of those regions, which are more representative from the anatomical
sense [Murueta-Goyena et al., 2019] than those automatically exported by the device.

Layers

It is important to note that two of the seven layers exported automatically were added to
their adjacent layer, to add precision to the segmentation, which is often difficult for those
cases in which two layers become indistinct. It the case of the GC and IPL (GCIPL) and
OPL and ONL (OPONL) layers. Consequently, on the following, thickness values of the
mRNFL, GCIPL, INL, OPONL and phot will be mentioned, labelled as mRNFL, GCIPL,
INL, OPL-ONL and IS/OS-RPE-BM in Figure 2.4 (B), respectively.

Fig. 2.4 (A) shows the ETDRS grid overlaid on the funduscopic image, to get a better
representation of the location of each region on the eye.

Metric protocol

Following Advised Protocol for OCT Study Terminology and Elements (APOSTEL) rec-
ommendations [Cruz-Herranz et al., 2016] the measurements of both eyes were averaged
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Figure 2.4: Funduscopic image with superimposed foveola-centered 1-,3-,6-mm diameter discs
and 1-to 3-mm, 3-to 6-mm rings from the ETDRS grids provided by the Spectralis OCT (A).
Layer segmentation of a 6-mm long horizontal B-scan through the foveola (B). Macular regions
used for calculating mean layer thicknesses of both eyes (C).
mRNFL, retinal nerve fiber layer, GCIPL, ganglion cell-inner plexiform layer, INL, inner nu-
clear layer, OPLONL, outer plexiform-outer nuclear layer,IS/OS-RPE-BM, inner edge of the junc-
tion between photoreceptor inner and outer segments-retinal pigment epithelium. Image source:
[Murueta-Goyena et al., 2019].

to account for inter-eye within-patient dependencies unless any pathological condition af-
fected one of the eyes, in which case only the healthy eye was included in the analysis. In
this study, this was the case of 3 patients and 5 controls.





3. CHAPTER

Methods - Data analysis

3.1 Preliminary exploratory analyses

3.1.1 Outlier detection

Box plot approach

The first step of the exploratory analysis consisted on the detection and removal of poten-
tial outliers. An outlier is a data point that differs significantly from the other data points
and should thus be removed. The simplest way to visualize the distribution of a data set
is by means of a box plot. This graph displays five statistics: the minimum, first quartile
(Q1), median, third quartile (Q3) and maximum values of each variable in the data set.

Box plot statistics

A quartile, as its name implies, is a type of quantile that divides all the data points into
four equal parts, so that 25 % of the data points lie under the Q1 value, and 75 % under the
Q3. The inter-quartile range (IQR) is graphically represented in this plot as the length of
the box, as each end corresponds to Q1 and Q3, respectively. Consequently, the distance
in-between each end gives the IQR, which represents in a graphical manner the range of
variation of the data.

For its part, the median, shown as a line that falls within the box, corresponds to the
middle value of the corresponding ordered data, which represents the value in which the
data set is halved in the 50 % highest and lowest values.

17
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Finally, an additional line outside the box starting from each of its ends is drawn to the
maximum and minimum values.

Outlier detection rule

A detection of outliers criterion was proposed by [Tukey, 1977], based on the box plot
concepts presented in the paragraph above. The proposed method consisted on a simple
calculation defined by the IQR, namely the definition of outliers as the points 1.5 times
the IQR on the upper and lower boundaries of the boxplot. The data was divided into
four boundaries, defined as the two inner and two outer fences by the author. The limiting
values of the inner fences were 1.5 times the IQR under/above the first/third quartiles,
respectively. A similar logic applied for the outer fences, this case 3 times the IQR above
or under Q1 and Q3.

The points outside the inner fences but inside the outer fences are considered mild outliers,
while data outside the outer fences extreme outliers [Dawson, 2011], as shown in Eq. 3.1.
The robustness of boxplot test outlier detection method (known as 3σ -rule) has been
analyzed in many studies as, for instance, in [Lehmann, 2013, Andrea, 2013].

mild outliers ={xi ≤ Q1−1.5× IQR ∨ xi ≥ Q3+1.5× IQR} ∧

{xi ≥ Q1−3× IQR ∨ xi ≤ Q3+3× IQR}

extreme outliers ={xi ≤ Q1−3× IQR ∨ xi ≥ Q3+3× IQR}

(3.1)

for xi ∈ X each sample point of the feature X in a d-dimensional feature set.

Only mild outliers were found on this data set by applying the above mentioned rules.
Only 8 outliers in controls and 3 in patients were found with the application of the 3σ -rule,
and their values were imputed with the median value. This fact suggests that it consists
on data with normal distribution (bell-curve-shaped data).

The box plots for the thickness values in all six layers and regions of the retina is shown
in the Appendix section, concretely in Fig. A.1.

3.1.2 Study of the statistical distribution: Normality test

Histogram approach

Some methods applied in the next steps make assumptions on the distribution of the data
set, more precisely, a normal distribution is assumed in parametric approaches to make
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inferences on the data. The most straight-forward approach to assess whether the data is
normally distributed is by looking at its histogram, to get an intuition on how close to a
Gaussian distribution it is. The histogram represents the frequency, that is, the number of
samples that fall in each non-overlapping consecutive interval that divides the range of
values of the data.

The histograms of each variable conditioned to each class group were visualized, to detect
any striking non-Gaussian distribution. However, that was not the case for this data set,
as shown in Figures A.2 and A.3 for patient and control data, respectively. In general, all
distributions resembled to a bell-shaped distribution.

Statistical normality test

In addition to this first approach, a classic statistical test to measure the goodness-of-fit of
a distribution’s departure from normality has been used: the D’Agostino’s K2 test. Two
statistics are used to test normality: skewness (s, Eq. 3.2) and kurtosis (k, Eq. 3.3). The
first measures how asymmetric the distribution is: a value of s lower than -1 or greater
than 1 indicates a highly skewed distribution, lower values show moderately skewed dis-
tributions or symmetric, if s lies between±0.5. Kurtosis measures the degree of extremity
of deviations (or outliers) and its metric values are analogous to those of skewness.

s =
1
n ∑

n
i=1 (xi−µ)3(

1
n ∑

n
i=1 (xi−µ)2

)3/2 (3.2)

k =
1
n ∑

n
i=1 (xi−µ)4(

1
n ∑

n
i=1 (xi−µ)2

)2 −3 (3.3)

s skewness and k kurtosis of a random variable X with n samples.

The D’Agostino’s K2 normality test combines these to measures, in such a way the Z-
statistic takes s and k into account: Z = s2 + k2). P-values under 0.05 indicate extreme
values of Z, suggesting that the random variable X is not normally distributed. This was
the case of 5 variables in controls and 1 in the patients, as presented in Table 3.1.

Similarly, the results of the normality test for the remaining variables are shown in Table
A.2 (control data) and A.1 (patient data).
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Layer Region Z-statistic P-value

Patients

GCIPL 1 mm 6.779 0.034

Controls

GCIPL 1 mm 9.143 0.01
1 mm 6.51 0.039

1 3 mm 8.961 0.011INL
3 mm 9.645 0.008

mRNFL 3 6 mm 6.307 0.043

Table 3.1: Variables without a normal distribution, according to D’Agostino and Pearson’s om-
nibus test of normality [D’Agostino, 1971].
Table values presented by layer and region showing Z− statistic and associated p− value of the
normality test.

3.1.3 Study of feature correlations

Correlations and redundancy implications

The final consideration in this preliminary exploratory analysis of the data was to find the
degree of correlation between features, as high values of correlated features may indicate
the existence of redundant features, which may deteriorate the predictive performance of
the learning algorithm.

Features that are highly correlated may result redundant, in the case that both have the
same or really similar number of positive and negative examples [Appice et al., 2004].

Mitigation approaches

One way to deal with this unnecessary added level of complexity to the classification prob-
lem could be the elimination of those features (feature reduction), as several algorithms
based in pairwise comparison of the features (REDUCE algorithm [Lavrač et al., 1999,
Appice et al., 2004] ) or on detection of such features using greedy accuracy-based heuris-
tics (GREEDY3 and GROVE algorithms) or decision trees (FRINGE algorithm) do.

Nonetheless, the most widely investigated approach is the one which aims to find the
most relevant (feature selection) but at the same time non-redundant set of features (i.e.
multivariate feature selection). This is the main topic of Section 3.2. Some of the methods
for feature selection take into account the feature dependencies, but also prioritize the
correlation with the class when selecting the most relevant predictors.
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Pearson correlation

The most common approach to measure the linear correlation between two variables is the
Pearson correlation coefficient (ρX1,X2). Features that are highly positive or negative cor-
related have closer values to ±1, respectively. Totally uncorrelated features in turn would
give correlation values closer to zero. Eq. 3.4 shows the formula to compute pairwise
correlation values for two predictors {X1,X2}.

ρX1,X2 =
E [(X1−µ1)(X2−µ2)]

σ1σ2
(3.4)

where µi = E[Xi] is the expected mean value of the Xi variable and σi the standard devi-
ation of Xi.

The feature-feature correlations of the data set were analyzed with the Pearson correlation
coefficient. In Figure 3.1, the features with higher correlation values are clustered together.
The correlation values are represented in this figure as the square size. As expected, the
variables from the same layer but different region have a higher correlation than with
those from other layers and appear clustered together.

(a) Control data (b) Patient data

Figure 3.1: Correlation plot based on Pearson correlation values of control (a) and patient (b) data.
rnfl, retinal nerve fiber layer; phot, photoreceptor layer; OPONL, outer plexiform-outer nuclear
layer; INL, inner nuclear layer; GCIPL, ganglion cell-inner plexiform layer; {6-,3-,1-mm}, 6-,3-
,1-mm discs; {1_3mm, 3_6mm}, 1-to 3-mm and 3-to 6-mm rings.

A correlation plot similar to the one in Figure 3.1 but with explicit Pearson correlation
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values is shown the Appendix, in Figure A.4.

3.2 Feature selection

Introduction to the problem

The general definition of feature selection (FS) in machine learning (ML), or variable
selection, is the process of selecting a subset of the most relevant features prior to the
model construction.

The objective of such a selection is three-fold: improving the prediction performance of
the ML model, providing faster and more cost-effective predictors, and grating a better
understanding of the underlying process that generated the data [Guyon, 2003].

A formal definition to the above-stated problem: let D be the feature set with a large
number of features X1,X2, ...,Xd where d is the number of features. FS is defined as the
process of selecting the k most discriminatory features out of the d-dimensional feature
space, such that d ≥ k [Haindl, 2006].

Areas of application

FS has become the focus of many disciplines which rely on large datasets for training ML
models, including biomarker discovery or microarray gene expression data classification
problems in bioinformatics, image processing or text mining with high-dimensional fea-
ture spaces.

Motivation of its application in this study

In this project, the application of these techniques was fundamental to avoid the problem
of model overfitting. Overfitting may occur due to fitting a model which is too complex
for the data used in training, which will then not generalize to unseen data and will, conse-
quently, yield poor validation results. The risk of overfitting is greater with small sample
sizes. In addition to this reason, a higher number of features exacerbates the problem of
overfitting, as the probability of finding a combination of features that discriminates the
class variable purely by chance is higher.

The number of features in this dataset was not extremely high, compared with the ones
used in the above mentioned disciplines. Nevertheless, it is relevant given the limited
sample size of the data. The work in [Jovic et al., 2015], reviewed several FS techniques
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applied to different disciplines and proved that feature selection is essential in any process
learning from data.

Methods

Feature selection can be used in supervised and unsupervised learning tasks. When it
comes to labelled instances, many approaches exist and are useful. The methods here used
are presented following the taxonomy of the feature selection techniques review within
the domain of bioinformatics introduced by the authors in [Saeys et al., 2007]. Depending
on how the features are combined to construct the classification model, these methods are
organized into three categories: filter methods, wrapper methods and embedded methods.
The first two are used in this work.

3.2.1 Filter methods

Filter methods select features based on measures that are independent of the employed
data modeling algorithm. That is to say, it consists of techniques that rely only on the
properties inherent to the data.

There are different classes of filter methods, not only dependent on the task (classification,
regression or clustering), but also on how the best features are found. The latter involves
univariate or multivariate filters. Univariate filters evaluate and usually rank every single
feature independently, while multivariate filters evaluate an entire feature subset.

Univariate Filters

The principle is as follows. Based on the score of each feature independently obtained
from a metric of interest, a ranking of the best features is built. From it, the ones with
lower scores may be removed. This is the principle of the K-Best Feature Selection.

In this project, the following metrics have been applied to the data:

1. Unsupervised filters:

• Variance-threshold filter(σ2). This method is built upon the variance of each
variable, by removing the ones under a certain threshold value. This way, the
”quasi-constant features", i.e. features with many similar values in all their
instances, are considered irrelevant prior to constructing the model.

σ
2 = E[(X−µ)2] (3.5)
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The variance of a random variable X is the expected value of the squared
deviation from the mean of X, µ = E[X ].

2. Supervised filters:

• Parametric approaches

– Welch’s T-test (t). The score is based on a two-sided T-test to determine
if the (expected) average values of two independently sampled popula-
tions are different under the null hypothesis. The test is insensitive to the
equality of variances, as opposite to the original definition of the Stu-
dent’s t-test, which is only robust in the presence of unequal variances
with comparable sample sizes [Markowski and Markowski, 1990].

t =
µ1−µ2√

σ2
1

N1
+

σ2
2

N2

(3.6)

where µ j is the mean value of each distribution, σ j the standard deviation
and N j the sample size of each distribution, j ∈ {1,2}.

– ANOVA Analysis of Variance (F − ratio). One-way ANOVA uses the
F-distribution to test if two or more groups are significantly different by
comparing variances, similarly to the t-test which compares the difference

between the mean of two populations. ANOVA tests for the variation

between the means of two (or more) groups and within the mean of the
groups.
The advantage of this method appears only when comparing more than
two groups simultaneously, as running multiple t-tests increases the Type
I error probability [Kao and Green, 2008]. While the t-test would require
a lot of pair comparisons, the method used in ANOVA finds an overall
difference between three or more means by using a single test that com-
pares all the groups simultaneously, the f-statistic. Nonetheless, only two
groups are considered in this study, so both are equivalent. In fact, the
F-ratio in such case equals the square of the t-statistic.
In Eq. 3.7 the F-ratio is calculated for a one-way ANOVA based on the
sum of the squared deviations of observations from the mean: Sum of

Squares (SS), such that for a sample i-th from the j-th group (xi j), its
SS = ∑

(
xi j−µ

)2.

F− ratio =
MSB

MSW
(3.7)
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It is calculated from the Mean Square (MS) of the SS within (MSW ) and
between (MSB) groups. The MS refers to the average squared deviation of
observations from the grand mean, i.e. the mean of the entire population,
and it is obtained by dividing SS by the degree of freedom of the popula-
tion (d f ). For instance, MSB = SSB/d fB. The d f of a population of size n

is n−1, because those are the number of observations required to obtain
the grand mean.

• Non-parametric approaches:

– Mann-Whitney U test or Wilcoxon-Mann-Whitney test. The features are
ranked according to the statistic value test on two continuous and ordinal
distributions with unpaired samples.

U1 = R1−
n1 (n1 +1)

2
(3.8)

The null hypothesis tests the probability of a randomly drawn observation
(X1) from one group to be larger than a randomly drawn observation from
the other (X2) [Hodges and Lehmann, 1963]. A numeric rank is assigned
to all the observations of one set, beginning with one for the smallest
value and a midpoint value to handle ties. The value of the U-statistic
(U1) is shown in Eq. 3.8, where n1 is the sample size and R1 the sum of
the ranks in sample one. The same would apply for the second set (U2).

– RelieF algorithm (W). This algorithm is based on the capability of the
attributes to differ between instances that are close (low distance between
their values), assuming no conditional independency of the attributes with
the class [Urbanowicz et al., 2018].
Given a d-dimensional feature space, the algorithm assigns a weight (W
for feature Xk; W [Xk]) to the attributes by taking into account the distance
with the k closest instances from the same class (near Hit, H j) and the
closest from the other class (near Miss, M j), as shown in Eq. 3.9.

W [Xk] =W [Xk]−
diff(Xk,si,H j)

(m∗ k)
+

diff(Xk,si,M j)

(m∗ k)
(3.9)

k ∈ {1,2, ...,d}, i ∈ {1,2, ...,m}, j ∈ {1,2, ...,n}, ∀i 6= j.
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For continuous variables the feature score vector W is updated based on
the feature value differences observed between m randomly selected in-
stances (si) out of the n total number of samples (m≤ n) and their k neigh-
boring instances, which are either from the same class (hits H j) or the
other (misses M j).
Features (Xk) that have different value between the randomly selected in-
stance si and their miss neighbors M j are considered informative, while
a different value with their hit neighbors H j gives evidence to the con-
trary. The equation 3.10 gives a numeric score which accounts with the
aforementioned logic.

diff(Xk,xi,x j) =

∣∣value(Xk,xi)−value
(
Xk,x j

)∣∣
max(Xk)−min(Xk)

(3.10)

for a feature (Xk) in the d-dimensional feature space, the distance between
the instance si value in that feature (xi) with either its hit or miss neighbor
(x j).
In short, the weight values for each feature X are updated with the dis-
tance values (diff(Xk,xi,x j)), computed by means of the Euclidean dis-
tance of the samples of a randomly selected feature instance with its clos-
est hit and miss neighbors.

Finally, this last two presented methods required the discretization of the data.
These methods work on categorical data, so each feature Xi was discretized
into three equal-size buckets following the quantile criteria, e.g terciles. By
using this method based on the frequency, it assures that no empty bins, but
bins with same or similar number of samples, are formed.

– Chi-square test (X2). The chi-squared distribution is used to test whether
a statistically significant difference between the expected and observed
frequencies of a categorical variable exists [Cochran, 1952]. That is, the
discrepancy between the observed (Oi) and theoretical frequencies (Ei)
3.11, known as goodness of fit.
If the null hypothesis is true, the observations follow a chi-squared distri-
bution in their limit distribution and their frequencies do not differ signif-
icantly.

X2 = ∑
(Oi−Ei)

2

Ei
(3.11)
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The expected frequency Oi is calculated upon the probability of that class
to fall into that class (pi), such that for n samples, Oi = n∗ pi.

– Mutual Information (MI). In information theory, the mutual information
between two random variables, e.g. the features X and the class variable
Y , quantifies the amount of information obtained about one random vari-
able through the other.
The amount of information is given by the entropy, which is a measure of
the uncertainty of a random variable. The more uncertain its value is, the
more information it gives [Shannon, 1948].
Although continuous data is also supported to compute the entropy in
scikit-learn package, by using a metric based on the distance of k nearest
neighbors of a sample point si in Y to calculate the MI with the number of
neighbors in X that fall in that area and are from that same class in respect
to the number of neighbors from all the possible classes within that area
[Ross, 2014].
However, as the data was previously discretized analogous to the chi-
squared method, the MI was computed from the contingency table, as
shown in Eq. 3.12.

MI(X ;Y ) =
|X |

∑
i=1

|Y |

∑
c=1

P(Xi,Yc) log
P(Xi,Yc)

P(Xi)P(Yc)

=
|X |

∑
i=1

|Y |

∑
c=1

|Xi∩Yc|
n

log
n|Xi∩Yc|
|Xi||Yc|

(3.12)

where |X | is the number of levels of the variable X and |Xi| the number of
samples that fall into each level. Same applies for the Y variable.
As a result, the MI measures the degree of dependency between the vari-
ables with the class, so the rank of features is built based on a higher value
of MI.

Multivariate Filters

Introduction

Multivariate filter methods seek to integrate also dependencies between the features into
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the feature selection process and search for, instead of a ranking of features, the best
feature subset.

To generate it, several strategies have been proposed in the literature known as search
methods, due to the fact that the search for the best subsets yields a NP-hard combina-
torial problem, so conventional numerical methods are unfeasable. Search methods are
generally divided into three categories: exponential algorithms, sequential algorithms and
randomized algorithms. Additionally, a metric score needs to be defined, in order to eval-
uate each feature combination.

As a final remark, these algorithms return thus a suboptimal solution, which allows to
give an approximation of the best feature subset without checking the goodness of fit of
all the possible subsets.

Method: Correlation-based Feature Selection (MeritS)

A selection of this type was conducted following the method proposed already by the
authors in [Hall, 1999]: the Correlation-based Feature Selection (CFS). The algorithm is
based on taking into account the usefulness of individual features for predicting the class
label (as univariate filters do), but also the level of intercorrelation among them.

Metric score

To evaluate the worth of the subset (S), CFS uses a correlation based heuristic called
merit:

MeritS =
krXY√

k+ k(k−1)rXX
(3.13)

The MeritS of a feature subset S of k features, is the metric shown in Eq. 3.13, where rXY

is the mean feature-class correlation and rXX the average feature inter-correlation.

Feature correlations are estimated based on the information theory via the Information
Gain (IG), which measures the amount of information by which the entropy of Y de-
creases provided X, as the method that the authors in [Zhao and Morstatter, 2010] pro-
posed. More specifically, CFS calculates the feature-class and feature-feature correlations
using symmetrical uncertainty (SU) (Eq. 3.14), to mitigate the bias in favor of features
with more values that occurs if only using the information gain.

SU(X ,Y ) = 2
[

IG(X |Y )
H(X)+H(Y )

]
, (3.14)

where IG(X |Y ) = H(Y )−H(Y |X) = H(X)−H(X |Y ) is the information gain of a feature
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X given the class labels Y and H(X),H(Y ) are the entropy of the variables [Shannon, 1948].

Search method and stopping criterion

Finally, CFS explores the search space using the Best First search with a stopping crite-
rion of five consecutive fully expanded non-improving subsets. The idea is to introduce
the maximum relevant feature while avoiding the re-introduction of redundancy by re-
calculating the SU of each feature.

3.2.2 Wrapper methods

Method and metric score

Wrapper methods address the problem of feature selection as a search problem, in which
the output of the selection is not a ranking of features, but a feature subset. Subsets of
different combinations of features are prepared, evaluated and compared to other combi-
nations.

The metric score used to compare them is given by a metric of performance given by
the predictive model. Despite the many metrics available to measure classification perfor-
mance [Hand, 2012], this work focused on evaluating the performance based on a clas-
sification accuracy criteria, i.e. how well the classifier assigned objects to their correct
classes.

Limitations

Hence, in contrast to filter methods, the selection is not independent from the data model-
ing algorithm, which has some negative implications. The most critical: being computa-
tionally more costly and having a higher risk of overfitting. However, it is not only because
it accounts feature dependencies as multivariate filters do, but also because it considers
the interaction between the feature subset and the model selection, why this method adds
so much value to solving the problem of feature selection [Saeys et al., 2007].

Search methods

Regarding the search methods used to find the feature subsets, this work focused primarily
in sequential algorithms, but not only. It also considered the solutions provided by an
exhaustive search to find feature subsets, whose complexity grows exponentially with the
number of features k considered in the subsets. Due to its complexity, which makes it
unfeasable in terms of computational time, the dimensionality of the feature subsets were
constrained to only two or three features (bounded exhaustive method).
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For the case of sequential algorithms, greedy search methods seem to be particularly
computationally advantageous and robust against overfitting. The sequential forward and
backward greedy search methods are considered in this work.

The following algorithms are implemented in the mlextend Package [Raschka, 2018].

1. Sequential

• Greedy forward feature selection (SFS). The algorithm starts from an empty
feature subset and adds one new feature at each iteration, the one that yields
the highest performance score upon addition. At each iteration ki, one new
feature is included in the subset and the performance score is saved, regardless
of it being higher or lower than in the previous iteration ki−1.

It is important to note here, that the maximum number of features to include in
the search process is fixed by the user, so the number of features that produces
the best subset can selected out of all the classification scores at the end of the
search process.

• Greedy backward feature selection (SBS). The process here is the reverse as
in the one above. The algorithm starts with a subset including all features, and
removes at each iteration the feature that yields the best performance improve-
ment upon its removal.

Similarly to the SFS selector, the best feature subset, if any, is selected at the
end based on the highest performance score achieved during the whole search
process.

2. Bounded exhaustive

• Exhaustive feature selection at K dimensionality (EFS). Exhaustive search
methods implicate the evaluation of all the possible combinations of features.
The complexity of this problem grows exponentially, such that the complexty
of an exhaustive search with n features:

Oki(n) =
n!

ki!(n− ki)!
(3.15)

for each feature subset with dimension ki, i ∈ {1,2, ...,k}.
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Due to the number of features in this dataset, the approach is unfeasable.
Nevertheless, the problem was solved for feature subsets with dimensions re-
stricted to two (O2(30) = 435) and three features (O3(30) = 4060).

3.2.3 Limitations

Bias in ML models

Feature selection is an essential part of the machine learning process, as important as
any other step, like model selection. Therefore, some considerations about the algorithms
used for this task should be mentioned. As it is not commonly the case that the problem
implicates a low number of features for which classical solving methods may apply, a
metaheuristic approach is generally the best possible option to solve this NP-hard prob-
lem.

Filter methods

On the one hand, different methods give different type of results. Although the properties
of the features give relevant information that should be accounted for in order to make
inferences on the data, the dependencies between them play also a substantial role, so
the search of a feature subset appears as the main goal. Multivariate filters and wrapper
methods give this kind of solution to the problem. In addition to that, multivariate filters
produce a subset of features that are not tuned to a specific model, so even if the result
is more general, these feature sets give lower prediction performance than wrappers do
[Zhang et al., 2013].

Wrapper methods

On the other hand, wrappers are much slower than filter methods, so they require fast
modelling algorithms such as Naïve Bayes or Support-Vector Machines (SVM). Addi-
tionally, these methods could be biased towards the modeling algorithm on which they
were evaluated. To obtain a reliable estimate of the generalization error, an independent
validation sample is required. Feature selection should be performed within the model
selection process, as otherwise it would introduce bias and result in an overfitting of the
training data [Kuncheva and Rodríguez, 2018]. The result would be seen as an outperfor-
mance compared to the other ML models, but only because the same training data was
also used to choose the best subset based on that specific model, giving unreliable results
in validation.
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Stability of selected features (IC)

Another limitation of the method is that we do not have the real value of accuracy, but
only an approximation on the training data to add or remove features from the subset. The
size of the data set limits the number of possible data shuffling turns, so it is not possible
to obtain an estimate of the accuracy with unequivocal variance.

Factors of stability

The result is a degree of variability between the subsets that calls for attention. The consis-
tency between pairs of subsets can be measured in terms of the length of the intersection
of the subsets (monotonicity), by using a stability index with a value bounded by con-
stants that are independent of the total number of features (d) and the cardinality (k) of
the subsets (limits) and that is constant for independently drawn subsets (correction for

chance) [Saeys et al., 2007].

Index metric

Considering the cardinality of the interesection of the subsets as r = |Si ∩ S j| ≤ k for
subsets S of k features drawn from a d-dimensional feature space, such an index is shown
in Eq. 3.16 ( Equation (2) in [Saeys et al., 2007]).

IC(Si,S j) =
r− k2

d

k− k2

d

=
rd− k2

k(d− k)
(3.16)

{i, j} ∈ {1,2, ...,m}∧∀i 6= j, m is the total number of subsets S considered.

In Eq. 3.17 this index is introduced in a score to measure stability between a set of m sub-
sets of k features (S = S1,S2, ...,Sm). It consists indeed on the average of all the pairwise
consistency indices between two feature subsets of k features selected out of the d total
number of features.

IS(S(k)) =
2

m(m−1)

m−1

∑
i=1

m

∑
j=i+1

IC
(
Si(k),S j(k)

)
(3.17)

where IC(Si,S j) the consistency index between the two subsets from the m subsets S of k

features, {i, j} ∈ {1,2, ...,m}∧∀i 6= j.

Applications
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This metric is really interesting to choose the final sequence of features. Then, if the
stability is high (IS ≥ 0.5), a rank of features (S∗rank) based on performance as the score
metric appears to be better than choosing the subset with the minimum error (S∗minE)
found during training. One way proposed by [Kuncheva, 2017] to build S∗rank consists on
assigning weights to the features based on their position in the different subsets (so that
the first feature is the one in the first position), ordering them in ascending order according
to the sum of their values in all subsets and validating the rank on the testing set.

This approach may be of interest, on the one hand, to find consistency between the feature
subsets obtained in different training-folds of the validation procedure. On the other hand,
to find consistency between the different subsets extracted from different feature selection
methods.

Stability concepts are applied in this study to gain deeper insight of the feature subsets
when applying univariate filters for feature selection. In the results section, the maximum
subset intersect between all folds (SiMax) and its cadinality (r), the number of features
that first yield best performance on each cross-validation fold (kbest) together with the
total number of folds with that kbest number (s) and the selected final subset (Sbest) are
reported. Note that the ∑si = 10, i={1,...,z}, where z is the total possible values that kbest

can take in each 10-fold cross-validation.

To select this one final subset Sbest , two options apply:

• S∗rank is reported. There is enough consistency in the number of features with the
highest performance between all the folds, i.e. coherence in kbest .

Consistency is considered only if two conditions are fulfilled: (a) there exists a
maximum subset intersect SiMax sufficiently large (r ≥ kbest ) and (b) there exists
enough accordance between the folds, i.e. coherence in s (kbest yields S∗rank ⇐⇒
skbest > 6).

Then, and only then, a subset S∗rank that is generated from the first kbest features of
SiMax, is the one reported.

• S∗minE is reported. The feature subsets generated on the cross-validation are not
consistent.

Such cases only occur in one of the following alternatives: (a) there are more than
2 possible number of features with best performance, i.e. more than two possible
values of kbest ; (b) kbest can take only two possible values but there exists a tie



34 Methods - Data analysis

between them (s = 5), (c) the coherence between folds is lower than kbest number
of features with best performance (r < kbest).

If stability is low, selecting the best individual run is more useful [Kuncheva, 2017].
Therefore, the subset(s) from the fold with highest performance are reported, that
is, S∗minE .

These tables allow to report features that play a role in the different filter feature selection
methods, the level of accordance of each filter in the cross-validation and a procedure
to select the best feature subsets. However, dealing with tides when selecting the optimal
feature number in each fold appears as the main limitation. Selecting the first number with
best performance was the strategy used in this work. Hence, the complementary figures of
mean score values and standard deviation are fundamental in order to draw conclusions
of the method and its results.

3.3 Supervised classification

Introduction

The problem addressed in this work is a binary classification problem, in which the goal
is to find the features that are more discriminant to discern between controls and patients
and learn a supervised learning model to accurately discriminate the problem phenotype.

The feature selection methods presented in Section 3.2 are also part of the machine learn-
ing classification task. It was only due to their extension and protagonism in the project
that these are reported in an independent section. Accordingly, this section aims to present
the classifiers used in this work’s experiments and a short insight of their main principles,
as well as their integration with the feature selection step and the validation of perfor-
mance of the resulting system.

3.3.1 Dealing with imbalanced data

Before the aforementioned is presented, a brief introduction and motivation to the use of
oversampling techniques in this work. Accuracy is used as a standard performance eval-
uation metric in many classification problems. However, this metric gives same weight to
all misclassification errors, whereas in this work, the false positive rate has more clinical
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relevance than the contrary, i.e. incorrectly assigning a healthy subject to the patient group
(false negative rate).

Another aspect to take into account in feature selection techniques is that the selection of
the most relevant variables are based on the given score metric. For instance, information
gain does not give more relevance to a certain class, but it is computed for each sample
of each class. As the authors in [Chawla et al., 2002] claimed, in an imbalanced data set
where the sample of the minority class is less than half of the one from the majority class,
most of the features will be associated with the negative class.

To tackle this bias problem, two main approaches have been proposed in the literature.
On the one hand, undersampling techniques approach the problem by reducing/deleting
instances from the majority class. On the other hand, oversampling techniques duplicate
examples from the minority class until a more balanced distribution is reached.

This work used the second mentioned type of techniques, as undersampling may reduce
the classification ability due to the elimination of data rich on information of the major-
ity class [He and Ma, 2013]. Precisely, the SMOTE oversampling technique presented by
authors in [Chawla et al., 2002] was selected to create a balanced dataset. Whereas ran-
dom oversampling may increase the likelihood of overfitting and decrease the classifier
performance [Fernández et al., 2018] – since it makes exact copies of the minority class
– SMOTE creates synthetic training data by interpolation of several minority class in-
stances that lie together. To do so, the algorithm generates new samples for N randomly
selected instances of the minority class by interpolation, i.e. computing first the distance
(di f ) with one of its k neighbors selected at random and secondly adding a gap selected
between 0 and 1 times the distance to the value of that Ni selected instance to create the
corresponding synthetic sample (syntheticNi). This interpolation mechanism is shown in
Eq. 3.18:

di f = Ni− random(k)

gap = random(0,1)

syntheticNi = Ni +gap∗di f

(3.18)

for each one of the i randomly selected samples of the minority class (N) and its corre-
sponding k neighbor instances, to generate i synthetic new samples of the minority class
in the training set (syntheticNi).



36 Methods - Data analysis

In this work, the number of neighbors was set as default (k = 5) and to equalized the
number of samples was the resampling strategy of the SMOTE technique.

3.3.2 Learning algorithms

Four classification algorithms were considered for supervised classification in order to
compare the results of the pipeline presented in Sections 3.1 and 3.2 when different mod-
els are used. In this work, the values of the parameters of the classification algorithms
were fixed by default, as the work did not lay focus on the hyperparameter optimization
or tuning of the model, but on the properties of the data.

The cornerstone of the algorithms used for this work are hereby presented:

• K-Nearest Neighbors Classifier (KNN). The class membership is assigned to the
most common class among its k nearest neighbors, that is, the ones with lowest
Euclidean distance, as it was the case of continuous variables. The features of this
work had numeric values, so the Euclidean distance was selected although other
metrics may apply for this method.

A limitation of the KNN method is that it is instance-based learning or non-generalizing
learning. This means that it does not construct a model, but works only on the stored
training data. To overcome the effect of ”majority voting" that occurs in skewed sit-
uations, different approaches have been proposed to give weights to increase the
importance of the closest neighbors [Dudani, 1976] and reduce, additionally, the
effect of outliers, which affect negatively to Dudani’s distance-weighted algorithm
in the case where an outlier is closer to the test element than the training data of that
same class, what adds bias to the prediction [Gou et al., 2012].

In this work, a uniformly weighted KNN classifier - k = 5 neighbors - was selected,
to prevent giving higher weights to neighbors which belong to highly correlated
features and have, therefore, similar distance values with the element to add a class
membership. An uneven number of neighbors is preferred, to avoid tides occurring
as the neighbors are equally weighted.

• Naïve Bayes Classifier (NB). The classification relies on the maximum-likehood
criterion to construct a Bayes probability model as the classifier (Eq. 3.19) and the
maximum a posteriori rule (MAP) as the decision rule (Eq. 3.20), which selects the
most probable hypothesis when assigning a class label to a given instance.
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This classifier is naïve, because it assumes that all features are mutually independent
given the class variable-phenotype when building the joint probability model. The
chain rule is used to determine the conditional distribution over the class variable
during the model construction. The estimation of the probability of an instance to be
in a class is based on its the relative frequency estimated in the training set, which
makes the classifier computationally fast compared to more sophisticated methods
but its probability outputs to have low reliability [Zhang, 2004].

The Naive Bayes classifier rule corresponds to the Bayes probability model, and is
shown in Eq. 3.19. In this equation, only the numerator is of interest (joint proba-
bility model), as the denominator does not depend on the class and is constant.

p(Y |X1, . . . ,Xd) =
p(Y )p(X1, . . . ,Xd|Y )

p(X1, . . . ,Xd)
(3.19)

Finally, the decision rule of the model (MAP) is presented in Eq. 3.20:

classify(x1, . . . ,xd) = argmax
c

p(Y = y)
d

∏
i=1

p(Xi = xi|Y = y) (3.20)

• Decision Tree Classifier (Decission Tree). The predictive model, called classifica-
tion tree, draws conclusions from the feature observations of a target variable, repre-
sented in the branches, to the class label, represented in the leaves. The branches are
the conjunction of features that lead to those class labels. To construct this structure,
a set of splitting rules of the whole set based on the features is used in a recursive
manner (recursive partitioning). The data set is split until the subset has the same
target variable for all its instances, or when splitting no longer adds value to the
precitions [Shalev-Shwartz, 2014].

The decision rules are inferred from the data, so the result is an observable white
box model. The deeper the tree, the more complex decisions and the fitter the model
is. To measure the quality of a split, the Gini impurity was used, although the en-
tropy for the information gain is also supported in scikit-learn library. Gini impurity
measures the level of miss-classification of a randomly chosen instance to be incor-
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rectly labeled according to the distribution of labels in the subset.

IG(p) =
X

∑
i=1

pi ∑
k 6=i

pk; ∑
k 6=i

pk = 1− pi (3.21)

where IG is the Gini impurity for a sate of items X , pi the fraction of items labeled
with class i and pk the probability of a mistake in categorizing that item.

• Support-Vector Machine Classifier (SVM). The SVM model represents the n in-
stances of each feature X as points in a higher-dimensional space where a segrega-
tion by class can be easier. To separate them as wide as possible, the SVM defines a
maximum-margin hyperplane, that servers as the classification decision boundary.

The search of a classification boundary by adding new dimensions can be compu-
tationally terribly expensive, so instead of working with feature vectors, SVM uses
the dot products between them, to define a linear or nonlinear kernel function that
separates them. In the resulting high dimensional space, the dot products of pairs
of input data can be computed easily in terms of the variables in the original space
[Press, 2007].

The features in the high dimensional space x are mapped to the points in the orig-
inal space xi using combinations with αi parameters and the kernel function. The
function of the hyperplane is defined by the set of points whose dot product with a
vector in that space is minimal. Such a transformation is shown in Eq. 3.22 for the
case of features that are linearly separable-the decision boundary is lineal.

∑
i

αik (xi,x) = constant (3.22)

The high-dimensional hyperplane constitutes the decision boundary, such that new
features are assigned class labels depending on the region where they fall into.

3.3.3 Validation pipeline

Introduction of validation methods

Validation methods consist on the generalization of the prediction, i.e. out-of-sample per-
formance prediction. But they also cover the model selection: to determine the number
of significant variables, to guide and halt the search of competitive variable subsets, tune
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or set by default the hyperparameters of the model and, only then, evaluate the final per-
formance of the system. For the last purpose, a set of the data must be reserved as an
independent set test and the rest of the tasks be carried on the data for training.

Validation method

In this work, a 10-fold cross validation was used to provide an estimate of the model
performance, particularly the ones described in Section 3.3.2. A cross-validation is a re-
sampling procedure that consists on randomly dividing the dataset in k groups or folds
and to treat each one of them one time as the validation set. The validation set is the one
used to evaluate the performance of the classifier, once it has been trained with the other
k−1 folds.

Cross-validation parameters

The choice of k=10 in the cross-validation was based on a bias-variance trade-off. It has
been proven empirically that test error rate estimates when using 10-fold cross-validation
suffer neither from excessively high bias nor high variance [Gareth James, 2014]. Bias is
higher the more difference exists between the training set and the re-sampling subsets.
Higher k values yield smaller test sets, but the training set resembles more the whole data
set, so that bias diminishes. However, validation results across smaller test sets also varies
more in those cases.

The goal is choosing a k such that the training and testing sets are statistically representa-
tive of the broader dataset.

Report of validation result

The results are summarized as the mean ± standard deviation accuracy scores (accuracy,
Eq. 3.23) of each fold of the cross-validation. Validation based on a cross-validation grants
more robust results and less biased and optimistic than the ones provided by a simple
train/test split [Cawley and Talbot, 2010]. Therefore, for each classification system re-
ported, the performance is assessed through an average of the results in each fold.

accuracy =
T P+T N

n
(3.23)

where T P and T N represent the number of correctly classified instances, i.e. true posi-
tives and true negatives, respectively. n represents the all the classified instances, from the
positive and negative classes.
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Classification score metrics

The problem of misclassification with unbalanced data is that not all classification errors
have the same relevance given a certain problem. For instance, in the case of clinical data
where Parkinson’s disease instances are regarded as the positive class, the importance of
incorrectly assigning a patient to the healthy group – called a false negative – is much
more harmful, more expensive, than conversely, i.e. incorrectly assigning a control to the
patient group (false positives).

For this reason, two more statistics from the confusion matrix, the recall and precision
scores, were computed in the wrapper feature selection. Recall has been widely used in
information retrieval, as it represents the ability of the classifier to correctly assign the
labels of all the instances from the positive class. Finally, precision penalises the false
positive rate to test the reliability of the detection system to correctly assign the positive
class labels.

recall =
T P

T P+FN

precision =
T P

T P+FP

(3.24)

where T P,FP,FN refer to the true positive, false positive and false negative rate respec-
tively.

Recall is specially valuable when one class is more relevant and there are few samples of
that class. Similarly, precision is very useful if a false positive classification is particularly
costly. However, these metrics tend to neglect the evaluation of the prediction ability on
the other class. To account for the bias towards the majority class or to the class consid-
ered in the recall and precision metrics, [Santafe et al., 2015] described a combination of
these metrics to obtain a trade-off between the classification ability on both classes. These
metrics are referred as balanced scores and consist on the operations shown in Eq. 3.25.

The arithmetic and geometric mean were used in this work to combine the recall scores
estimated from the majority and the minority classes. In addition to the recall estimated
from the majority and minority classes, the former metrics were applied to evaluate the
classification ability of the original dataset and the one with equal proportion in training
generated by the SMOTE technique introduced in Section 3.3.1.
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recall_A_mean =
recallma j + recallmin

2
recall_G_mean =

√
recallma j ∗ recallmin

(3.25)

where recall_A_mean and recall_G_mean are the arithmetic and geometric means, re-
spectively, of the recall score calculated on the majority (recallma j) and minority (recallmin)
classes.





4. CHAPTER

Results

4.1 Feature selection

The aim of this section is to evaluate the information, relevancy and redundancy of the
variables in the data set using the methods introduced in Section 3.2 for feature selection.

The results of the 10-fold cross-validation consist of several performance scores reported
with its mean (µ) and standard deviation (σ ) values. On each experiment, four different
classifiers were used.

A quick remark on the notations and parameters of the problem: d = 30 refers to the
dimensionality of the search problem, i.e. dimension of the feature space; m = 10 is the
total number of subsets acquired from the ten cross-validation folds. The feature subset
cardinality is restricted to 6 features (k = 6) for all m subsets.

Regarding the values reported on Tables 4.1 and 4.2: SiMax is the subset of features with
maximum intersection from all the feature subsets of the cross-validation and r refers to
its cardinality, i.e. the size of the subset intersect. kbest is the feature number that first

reached the highest performance score on each fold of the cross-validation. Namely, the
lowest value of k with the highest performance score on each fold was examined, as in
some folds the highest score was repeated for several k values. s is the number of folds
with each possible kbest number of features. Finally, a best final subset of features Sbest is
selected according to the criteria presented in Section 3.2.3.

43
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(a) ANOVA, Analysis of Variance (b) Chi-squared

(c) MI, Mutual Information (d) Relief Algorithm

Figure 4.1: Feature selection: univariate filter accuracy scores.
Parametric methods: ANOVA (Analysis of Variance) (a). Non-parametric methods: Chi-Squared
(b), MI (Mutual Information) (c) and Relief algorithm (d). k, number of features (X-axis); acc
(µ ±σ ), accuracy cross-validation scores reported with µ – mean – and σ – standard deviation
– values (Y-axis); KNN, K-Nearest Neighbors Classifier; GaussianNB, Naïve Bayes Classifier;
SVM, Support-Vector Machine classifier.
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4.1.1 Univariate Filter Feature Selection

The honestly cross-validated accuracy results of the four univariate filter methods intro-
duced in Section 3.2.1 are shown in Figure 4.1.

The experimental results follow a quite similar tendency for the case of chi-squared (b)
and MI (c) filters. The average accuracy classification scores for all scenarios are gener-
ally high, that is, over 0.9 except some cases when using the KNN and SVM classifiers.
The KNN classifier’s accuracy dropped when selecting features subsets of more than two
features with the chi-squared and ANOVA univariate filters. On the other hand, a similar
but less dramatic downward trend occurs to the SVM using the Relief algorithm to se-
lect feature subsets of more than 5 features. Nevertheless, its tendency in the long-term is
unknown, as feature subsets over 6 features are not shown, whereas an accuracy over 0.9
was never reached again by the KNN classifier when selecting more than two features.

ANOVA and Relief filters yield the best performance results for all the classifiers, but the
accuracy in the former showed a decrease with higher number of features if Naïve Bayes
or SVM classifiers were used. In all, the results for all methods using ANOVA and Relief
filters rounded 0.95, whereas chi2 and MI did generally not reach 0.925 accuracy values.

Another relevant fact of univariate filter selection is that the top 4 features from the ranks
resulting in the four methods were consistent, i.e. with high stability in the resulting fea-
ture subsets, when applied in the whole dataset, as shown in Figure A.5.

More information with regard to the features selected by the filter methods are reported
in Table 4.1.

• SiMax. The ANOVA, chi2 and Relief methods show more consistency on the ranked
features across the cross-validation folds, with almost or complete accordance on
the rank order. On the contrary, there is low (i.e. r = 2) or no consistency when
applying the MI filter.

• kbest .The variability of the feature number that first reached the highest performance
score on each fold, i.e. kbest , depends on the classifier and the filter metric used. In
all univariate filter methods, great variability exists when using the Decision Tree
classifier. Otherwise, total agreement in all folds of the kbest number rarely occurs
(e.g. k = 1, s = 10), only in the NB classifier using chi2 and in SVM using ANOVA
and Relief metrics. In such cases, it only occurred with only one feature subsets,
namely the GCIPL layer in the 3-to 6-mm ring.
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Filter,
d=30,
m=10,
k=6

r SiMax (subset intersect) kbest (first best k),
s (sum across fold)

final
sequence
criterion

Sbest
(final subset)

ANOVA

KNN 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl_1 mm

k = 1, s = 4
k = 2, s = 4
k = 3, s = 2

S∗minE GCIPL 3 6 mm

NB 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl_1 mm

k = 1, s = 9
k = 4, s = 1 S∗rank GCIPL 3 6 mm

DecTree 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl_1 mm

k = 1, s = 3
k = 2, s = 3
k = 3, s = 2
k = 4, s = 1
k = 5, s = 1

S∗minE

GCIPL 3 6 mm

GCIPL 3 6 mm,
GCIPL 6 mm

SVM 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl_1 mm

k = 1, s = 10 S∗rank GCIPL 3 6 mm

chi2

KNN 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl 1 mm

k = 1, s = 9
k = 6, s = 1 S∗rank GCIPL 3 6 mm

NB 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl 1 mm

k = 1, s = 10 S∗rank GCIPL 3 6 mm

DecTree 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl 1 mm

k = 1, s = 4
k = 3, s = 1
k = 4, s = 1
k = 5, s = 3
k = 6, s = 1

S∗minE GCIPL 3 6 mm

SVM 5
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
rnfl 1 mm

k = 1, s = 5
k = 5, s = 5 S∗minE GCIPL 3 6 mm

MI

KNN 2 GCIPL 3 6 mm, GCIPL 6 mm
k = 1, s = 9
k = 6, s = 1 S∗rank GCIPL 3 6 mm

NB 0
k = 1, s = 9
k = 2, s = 1 S∗minE

GCIPL 6 mm

GCIPL 3 6 mm

DecTree 2 GCIPL 3 6 mm, GCIPL 6 mm

k = 1, s = 7
k = 3, s = 1
k = 4, s = 1
k = 5, s = 1

S∗minE GCIPL 3 6 mm

SVM 0

k = 1, s = 5
k = 2, s = 1
k = 5, s = 2
k = 6, s = 2

S∗minE
GCIPL 6 mm,
GCIPL 3 6 mm
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Relief

KNN 6
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm,GCIPL 3 mm,
retina 1 3 mm, retina 3 mm

k = 1, s = 2
k = 2, s = 4
k = 3, s = 2
k = 5, s = 2

S∗minE

GCIPL 3 6 mm

GCIPL 3 6 mm,
GCIPL 6 mm

GCIPL 3 6 mm,
GCIPL 6 mm,
GCIPL 1 3 mm,
GCIPL 3 mm,
retina 1 3 mm

NB 6
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
retina 1 3 mm, retina 3 mm

k = 1, s = 9
k = 4, s = 1 S∗rank GCIPL 3 6 mm

DecTree 6
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
retina 1 3 mm, retina 3 mm

k = 1, s = 2
k = 2, s = 3
k = 3, s = 1
k = 4, s = 2
k = 5, s = 1
k = 6, s = 1

S∗minE

GCIPL 3 6

GCIPL 3 6 mm,
GCIPL 6 mm

GCIPL 3 6 mm,
GCIPL 6 mm,
GCIPL 1 3 mm

SVM 6
GCIPL 3 6 mm, GCIPL 6 mm,
GCIPL 1 3 mm, GCIPL 3 mm,
retina 1 3 mm, retina 3 mm

k = 1, s = 10 S∗rank GCIPL 3 6 mm

Table 4.1: Univariate filters FS.
ANOVA, Analysis of Variance; chi2, Chi-square; MI, Mutual Information; d, feature space dimen-
sion ; m, total number of subsets in cross-validation; k, maximum feature subset size; r, maximum
size subset intersect across cros-validation folds; SiMax, features in the maximum intersect sub-
set; kbest , number of features with best performance score; s, sum of folds with each kbest ; Sbest ,
selected final subset; S∗rank, consistency selection criterion; S∗minE , criterion for unconsistency re-
sults; KNN, K-Nearest Neighbors Classifier; NB, Naïve Bayes Classifier; DecTree, Decision Tree;
SVM, Support-Vector Machine; GCIPL, ganglion cell-inner plexiform layer;rnfl, retinal nerve
fiber layer; retina, total thickness value of retinal layers.
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The degree of variability of kbest affects on the selection of a Sbest subset. Never-
theless, the selected features show few differences across univariate filter metrics as
well as across cross-validation folds, both criteria resulted in similar results.

• As a result, one finding common in all comparisons – despite some alterations in the
ranking order – is that the outer regions of the GCIPL region are the most relevant
to discriminate between the patient and control groups (3-to 6-mm ring and the 6
mm disc).

4.1.2 Multivariate Filter Feature Selection

(a) Random seed using KNN classifier (b) Classifier algorithms

Figure 4.2: Feature selection: multivariate filter accuracy scores.
Experimental runs: random seed generator (a) and classifier algorithm (b) comparisons. k, number
of features (X-axis); Acc (µ±σ ), accuracy cross-validation scores reported with µ – mean – and σ

– standard deviation – values (Y-axis); KNN, K-Nearest Neighbors Classifier; GaussianNB, Naïve
Bayes Classifier; SVM, Support-Vector Machine classifier.

Similar to the experimental runs using univariate filter methods, four different classifiers
were used to evaluate performance in classification with multivariate feature selection.
Additionally, to account for another potential source of variability, the experiment was
run using different random seeds to create the folds in the cross-validation. This parameter
was set constant in the rest of comparisons (seed = 1313).
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CFS
d=30, m=10, k=6 r

SiMax
(subset intersect)

kbest (optimal feature number),
s (sum across fold)

final sequence
criterion S_best (final subset)

KNN 0

k = 2, s = 3
k = 3, s = 5
k = 4, s = 1
k = 5, s = 1

S*_minE

GCIPL 3 6 mm, GCIPL 6 mm

GCIPL 3 6 mm, GCIPL 6 mm,
retina 6 mm

GCIPL 3 6 mm, GCIPL 6 mm,
retina 1 3 mm,
retina 3 6 mm

NB 0
k = 1, s = 9
k = 2, s=1 S*_minE

GCIPL 3 6 mm

GCIPL 6 mm

DecTree 0

k = 2, s = 2
k = 3, s = 4
k = 4, s = 1
k = 5, s = 3

S*_minE

GCIPL 6 mm, GCIPL 3 6 mm

GCIPL 6 mm, GCIPL 3 6 mm,
retina 6 mm

GCIPL 6 mm, GCIPL 3 6 mm,
retina 3 6 mm

GCIPL 6 mm, GCIPL 3 6 mm,
retina 6 mm, retina 3 6 mm

GCIPL 6 mm, GCIPL 3 6 mm,
GCIPL 3 mm, retina 1 3 mm,
retina 6mm

SVM 0
k = 1, s = 5
k = 2, s = 3
k = 3, s = 2

S*_minE

GCIPL 6 mm

GCIPL 6 mm, GCIPL 3 6 mm,
retina 6 mm

Table 4.2: Multivariate filter FS: CFS.
CFS, Correlation-based Feature Selection; d, feature space dimension ; m, total number of sub-
sets in cross-validation; k, maximum feature subset size; r, maximum size subset intersect across
cros-validation folds; SiMax, features in the maximum intersect subset; kbest , number of features
with best performance score; s, sum of folds with each kbest ; Sbest , selected final subset; S∗rank, con-
sistency selection criterion; S∗minE , criterion for unconsistency results; KNN, K-Nearest Neighbors
Classifier; NB, Naïve Bayes Classifier; DecTree, Decision Tree; SVM, Support-Vector Machine;
GCIPL, ganglion cell-inner plexiform layer; retina, total thickness value of retinal layers.

The following conclusion can be drawn:

• Fig. 4.2 (a), random seed generator comparison. Although the accuracy scores are
not the same, trends remain similar when folds are generated with different random
seeds, in comparison with the differences that appear between alternative classifi-
cation algorithms, as shown in (b).

• Fig. 4.2 (b), classifier algorithm comparison. The highest classification scores are
reached when using KNN and Naïve Bayes classifiers. The CFS multivariate filter
shows the greatest variability in the ranking order of subsets among all the filter
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methods presented in this work, as the rank order differs across folds and, thus,
no subset interesect could be determined from this filter method (see SiMax in Ta-
ble 4.2). Therefore, all the subsets that reached highest performance scores were
reported as Sbest , according to the SminE criteria presented in Section 3.2.3.

• Table 4.2 suggests the feature number has less impact on the classification perfor-
mance, as the highest scores were obtained with different k values and the selection
of a kbest was not possible.

Nevertheless, the final feature subsets are consistent with previous results: outer
regions of the GCIPL layer are selected. Additionally, whole retina thickness and
GCIPL in the outer and inner regions – in KNN and Decision Tree classifiers – also
yield the highest scores, whereas NB and SVC showed lower feature number.

4.1.3 Wrapper Feature Selection

Greedy Search: Sequential forward/backward selection

The results obtained using the wrapper feature selection methods presented in Section
3.2.2 are shown in Figure 4.3.

Three performance score metrics are used, in order to gain deeper insight of the classifi-
cation within the patient class: (a) accuracy, (b) recall and (c) precision. The last two are
included due to the importance of the patient group, which is a minority group in the data
set, so the global results in terms of accuracy can be misleading.

KNN and Decision Tree classifiers yield significantly higher scores than the other two
in all three metrics and in both sequential forward (SFS) and backward (SBS) selection.
Furthermore, the results using SVM in sequential backward selection do not reach 0.8
(see Fig. 4.3 (c)). Nevertheless, the values of all the metrics are quite high, i.e. within
[0.8, 1] range, and generally over 0.9 in all comparisons.

As expected, differences between accuracy and recall-precision values were found. Recall
had lower mean and higher standard deviation values than the global accuracy scores in
all four classifiers. A similar decrease of performance occurs in precision when using
Decision Tree and Naïve Bayes classifiers.

Intuitively, precision is the ability of the classifier to correctly assign the positive labels,
and recall is the ability of the classifier to find all the positive samples. From the figures,
both abilities appear to constrained.



4.1 Feature selection 51

Greedy search Wrapper FS results

(a) Accuracy

(b) Recall scores
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(c) Precision

Figure 4.3: Feature selection: wrapper greedy search.
Performance plots Sequential forward/backward selection performance plots of: (a) accuracy, (b)
recall and (d) precision. SFS, sequential k, number of features (X-axis); Acc, accuracy; µ , mean
value; σ , standard deviation; KNN, K-Nearest Neighbors Classifier; GaussianNB, Naïve Bayes
Classifier; SVM, Support-Vector Machine classifier.
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Bounded Exhaustive feature selection: k = 2,3

Feature subsets k = 2

(a) k = 2

Exhaustive feature selection evaluates the performance of all possible combinations of
features. Due to the dimensionality of the problem, mean and standard deviation accuracy
scores were calculated for all the possible combinations of feature subsets constrained to
two or three features.

As the number of possible combinations is certainly large, only the 15 subsets with highest
scores were selected and presented in Figure 4.4 for subsets of k = 2 (a) and k = 3 (b)
features. In the figures, it can be observed that the mean values across feature subsets of
2 features show greater variability than those of 3 features in all classifiers.
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Feature subsets k = 3

(b) k = 3

Figure 4.4: Feature selection: bounded exhaustive search.
Wrapper FS using bounded exhaustive feature seleciton with k = 2 (a) and k = 3 (b), left and right
figures in each subfigure, respectively. k, number of features (X-axis); recall (µ±σ ), recall cross-
validation scores reported with µ – mean – and σ – standard deviation – values (Y-axis); KNN,
K-Nearest Neighbors Classifier; GaussianNB, Naïve Bayes Classifier; SVM, Support-Vector Ma-
chine classifier.
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KNN and Decision Tree classifiers provide the results with highest mean values and lower
standard variation. With two features (Fig. 4.4 (a)), three subsets yield accuracy over 0.98
only with KNN and Decision Tree classifiers. The corresponding subsets match in both
classifiers and are: 3-to 6-mm ring in GCIPL and retina, 6 mm disc in GCIPL and retina,
and GCIPL 3 6 mm and retina 6 mm subsets.

Once again, the method is consistent with the results of the filter feature selection meth-
ods, i.e. outer regions of GCIPL layer and retina are the most informative and relevant in
this classification problem.

4.2 Dealing with imbalanced data

The purpose of this section is to evaluate the classification ability of retinal thinning ac-
counting for the bias towards the minority class that occurs due to the difference of sample
size between the two classes.

In this context, two scenarios are presented in Tables 4.3 and 4.4: the 10-fold cross-
validation scores of the original data set (referred as ORIGINAL in the tables) and the data
set with equal proportion between both class in the train set generated with the SMOTE
algorithm. Additionally, the results are reported with several metrics. Recall and precision
scores, due to the relevance of the patient class, as well as the arithmetic and geometric
mean of recalls to obtain a trade-off of the classification ability of both classes. The former
are presented in Section 4.2.1 and 4.2.2, respectively.

4.2.1 Imbalanced score metrics

The results of the 10-fold cross-validation using exposed four classifiers are presented
on Table 4.3. Regarding the statistics computed from the confusion matrix given the two
possible scenarios, it can be concluded that:

• All metrics yield higher mean score values in the data set with equal proportion of
both classes in training than the original dataset in the KNN and SVM classifiers.

• Furthermore, recall and precision scores are the ones of best improvement. From
the table, it can be noticed that the minority class is specially affected in the SVM
classifier. Due to the lack of incorrectly or correctly labelled samples in the test
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sample, it resulted in a zero value across all folds in the cross validation, which will
be referred in the following as the “zero division” problem. It can be seen that after
applying the SMOTE technique, the results of this classifier are similar to the ones
of the other three classifier algorithms. The same situation applies to the precision
score when using KNN classifier.

• Finally, from the highest values which are highlighted in the tables, the KNN is the
one with best performance and, in the SMOTE data set, in unison across all shown
scores.

ORIGINAL accuracy recall precision
KNN 0.9767 ± 0.0176 0.9181 ± 0.0657 1 ± 0
NB 0.904 ± 0.049 0.8804 ± 0.0931 0.8108 ± 0.1037
DecTree 0.9736 ± 0.0334 0.9479 ± 0.1011 0.9578 ± 0.0685
SVM 0.7094 ± 0.0479 0 ± 0 0 ± 0

SMOTE accuracy recall precision
KNN 0.9883 ± 0.0143 0.9764 ± 0.0473 0.9823 ± 0.0358
NB 0.8924 ± 0.0471 0.8672 ± 0.0989 0.7876 ± 0.0956
DecTree 0.9708 ± 0.0473 0.9444 ± 0.1139 0.9453 ± 0.0854
SVM 0.9186 ± 0.0451 0.9006 ± 0.1045 0.8453 ± 0.1092

Table 4.3: Classification non-balanced scores: accuracy; recall and precision of the minority class
(patient group).
10-fold cross-validation scores obtained in the dataset with original class proportions (ORIGI-
NAL) and in an equal proportion of training set (SMOTE) data sets. KNN, K-Nearest Neighbors
Classifier; GaussianNB, Naïve Bayes Classifier; SVM, Support-Vector Machine classifier.

4.2.2 Balanced score metrics

The score metrics used in Table 4.4 are referred as balanced classification metrics, because
they incorporate the classification ability of both classes. As a result, the metrics are less
biased to disproportions between classes.

• Similar to the results in the previous table, the scores of all metrics are improved in
the data set with equal training proportion among classes.

• Moreover, imbalance affects differently to each classification algorithm. The “zero
division” problem has greater impact on the SVM classifier before SMOTE because
then, the data is not representative enough of the minority group during training.
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• Decision Tree yields the highest performance scores for the balanced classification
scores. In the data set with equal training proportion, it is the KNN once again the
classifier with best performance.

• A final remark, which is common in the non-balanced metrics of Table 4.3, is that
even when there is no “zero proportion” problem in the SVM classifier, its scores
are significantly lower than those of the other three classifiers. This leads to the idea
of the SVM as not optimal for this problem in particular.

ORIGINAL recall_maj recall_min recall_A_mean recall_G_mean

KNN 1 ± 0 0.9181 ± 0.0657 0.9591 ± 0.0329 0.9576 ± 0.0346

NB 0.9135 ± 0.0527 0.8804 ± 0.0931 0.8969 ± 0.0598 0.8955 ± 0.061

DecTree 0.9843 ± 0.0263 0.9479 ± 0.1011 0.9661 ± 0.0526 0.9643 ± 0.069

SVM 1 ± 0 0 ± 0 0.5 ± 0 0 ± 0

SMOTE recall_maj recall_min recall_A_mean recall_G_mean

KNN 0.9916 ± 0.0169 0.9764 ± 0.0473 0.9840 ± 0.0231 0.9836 ± 0.0238

NB 0.9010 ± 0.0508 0.8672 ± 0.0989 0.8841 ± 0.0576 0.8822 ± 0.0587

DecTree 0.9803 ± 0.0317 0.9444 ± 0.1139 0.9624 ± 0.0671 0.9607 ± 0.0706

SVM 0.9248 ± 0.0584 0.9006 ± 0.1045 0.9127 ± 0.0571 0.9103 ± 0.0589

Table 4.4: Classification balanced scores: majority/minority recall, arithmetic/geometric recall
mean.
10-fold cross-validation scores obtained in the dataset with original class proportions (ORIGI-
NAL) and in an equal proportion of training set (SMOTE) data sets. KNN, K-Nearest Neighbors
Classifier; GaussianNB, Naïve Bayes Classifier; SVM, Support-Vector Machine classifier.

4.3 Dealing with effect of age

Previous research of retinal thinning revealed the impact of age in macular degeneration.
Lower thickness values are expected only due to the mere fact of growing older. Therefore,
this additional variable is important when evaluating the prediction ability of the retina.

Several classification scores were computed including and excluding the age variable.
Furthermore, the original data set and the one generated with the SMOTE technique were
used for comparison. The results are shown in Fig. 4.5.
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The scores were acquired from partitions of different size within a train/test split scheme,
that is, using a proportion of the data for training the model and testing on the remain-
ing part. The plots were computed starting with 0.5 of the sample used for training and
the other 0.5 for testing, with increments of 0.025, i.e. in total 20 experimental runs for
each score are shown on each figure. The classification algorithm selected was the KNN
classifier.

On the one hand, the imbalance effect is evaluated. For this purpose, the original data
set (red/blue) is compared with the SMOTE data set (green/yellow). Accuracy and re-
call of the minority group improved when SMOTE is applied, whereas a slight drop in
precision and notable in recall of the majority group are observed. Consequently, the im-
balance effect is notably better accounted for with the arithmetic and geometric mean of
the results from the two classes, which are shown in (c), as the gap between the original
and the SMOTE data sets is wider than the global results shown in (a) (the blue/red and
green/yellow lines respectively).

On the other hand, the classification including age is examined. In this scenario, the re-
sults within the two possible data sets including and excluding the age are compared, i.e.
red/green with respect to blue/yellow. First, it is true that the differences when including
the age in the classification ability are not strong and fluctuate throughout the train/test
proportions. Overall, the classification ability decreases when age is included in both data
sets.

(a) Accuracy and Precision
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(b) Minority/majority class recall

(c) Arithmetic/geometric mean recall

Figure 4.5: Train/test split classification results.
Dealing with effect of imbalance and inclusion of age. Use of the K-Nearest Neighbors classi-
fier, different proportion size (Train/test size) and scores: accuracy and precision (a), recall of the
minority/majority classes (b) and arithmetic/geometric mean recall values (c). µ , mean value.
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Discussion

5.1 Preliminary analysis of the data

This work aim to evaluate the classification ability of 30 variables of the retina extracted
using a commonly used imaging technique in ophthalmology, i.e. OCT, and the relevance
of which variables better discriminate patients suffering Parkinson’s Disease from healthy
control data.

For this purpose, supervised learning techniques have been applied to the data set. Yet,
the first step consisted of an exploratory analysis of the data set, which already revealed
some patterns of interest.

Firstly, box-plots were used to search for potential outliers according to the 3σ − rule,
which were imputed with the median value. Outliers were found mainly in control data,
within the 1-mm disc region. These plots also revealed the data distribution conditioned to
each class group, shown in Fig. A.1. From them, one can easily notice greater differences
among classes on the GCIPL layer with respect to the rest retinal layers, being the greatest
a 20−µm gap between median values in the outer regions of this layer.

Secondly, all variables showed to follow a normal distribution when looking to the his-
tograms of each class group. Only for five variables the null hypothesis of D’Angostino
and Pearson’s normality test were discarded: 1-mm and 3-mm discs and 1-to 3-mm ring
in INL layer and 3-to 6-mm ring in rnfl in controls; and the last, 1-mm disc in GCIPL,
in both control and patient data. Consequently, these variables could not be included in
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ANOVA filter feature selection, which is a parametric statistical test.

Finally, variables were grouped together according to higher Pearson correlation values
(correlation plot of Fig. 3.1) and therefor, the ones from a same retinal layer were grouped.
Moreover, correlation values can be examined in Fig. A.4 for control and patient data. In
the latter, some variables within the same layer showed intra-layer correlation values over
0.95. The total thickness value of the retina showed the greatest inter-layer correlation
and mainly with GCIPL, rounding 0.8 values. The INL and the OPONL layers followed,
with correlation values around 0.65. Next, values around 0.4 were found with the rn f l

layer and finally, low correlation with the photorreceptor layer, i.e. around 0.1. Similarly,
the same order of correlation with total retinal thickness applied in controls, although two
main differences were found: in GCIPL and photorreceptor layers. The correlation of the
former were lower than the ones of patients, i.e. roughly 0.75. On the other hand, the
photorreceptor layer was more correlated with the retina, that is, in the same degree as the
r f nl layer, with values close to 0.4.

5.2 Classification analyses

On the other hand, the goal of the analysis was to determine the features which carry
more information and relevancy on testing the hypothesis of retinal thinning as a potential
biomarker of Parkinson’s disease, and to evaluate to which extend this hypothesis is true.
For this purpose, retinal measurements of a hundred patients suffering Parkinson’s disease
and 248 healthy controls were compared using several supervised learning techniques. In
this section, factual support to the questions addressed at the beginning of this work is
provided.

To which extend can retinal thickness values be a valid biomarker of the disease?

There is proof in this work that retinal thinning allows to discriminate patients with
Parkinson’s disease from healthy controls. Supervised classification with four different
classification algorithms revealed high honestly cross-validated accuracy scores, i.e. over
0.8, in all conducted experiments. The classification ability of these measurements was
also examined in terms of precision and recall, due to the clinical relevancy of the patient
group. However, this last two metrics encountered a problem caused by the lower propor-
tion of positive samples in the data set, which generated 0 score values. In scikit learn it
is referred as the “zero division” problem, and this was the motivation to use oversam-
pling techniques, in particular SMOTE, to deal with imbalanced data. After SMOTE was
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applied, the were again high performance scores, specially in KNN and Decision Tree
classifiers, with values over 0.9 (see Tables 4.3 and 4.4). Finally, the trade-off of perfor-
mance of both classes was computed through the mean of recall values estimated from
each class group, to obtain the arithmetic and geometric mean. These metrics, which are
balanced score metrics, were again high in all the classification algorithms.

Which are the most relevant layers and regions in the early diagnosis of the disease?

Measurements extracted from the GCIPL layer were evidently the ones with more rele-
vance and information in the prediction of the disease, as concluded from the results of
several feature selection techniques. The results acquired on the face of feature selection
were higher than those including the whole data set (see Figures 4.1 and 4.2). Moreover,
some interesting facts were discovered by looking into the subsets that reached the high-
est scores on each cross-validation fold. The outer regions of GCIPL layer, namely the
3-to 6-mm ring and the 6-mm disc, were selected by all univariate and multivariate filter
methods. Multivariate filters also selected the whole retina thickness in the same regions.
This nuance of the multivariate subsets with the univariate filter ranks can be expected
and explained, due to the high correlation with the GCIPL layer with the whole retina
thickness.

On the other hand, there was no evidence of a given feature subset cardinality to yield bet-
ter performance, which can be given the high inter-feature correlation of some of the most
relevant features. Consequently, the highest performance score was frequently reached
within each validation fold for several feature numbers. For this reason, the subsets with
minimal feature number are the ones presented on Tables 4.1 and 4.2, which are based on
searching the minimal feature number which yield the highest performance score on each
fold, and afterwards comparing the consistency across cross-validation folds to select the
best subset. Two options applied to select the best subset: the intersection across folds if
there was enough consistency, or returning all the subsets that reached the highest score
in the cross-validation. Namely, sometimes there was no intersect between subsets of the
cross-validation folds and the highest performance value was reached several times with
different cross-validation fold subsets.

Low variability of performance given the number of features selected was observed in
sequential forward/backward selection results of the wrapper, as shown in Fig. 4.3. Accu-
racy, precision and recall scores showed no significant differences when k, feature subset
number, was respectively increased/reduced. The only exception was the Naïve Bayes
classifier, in which the performance dropped with higher k number and thus, a greater
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probability of feature redundancy. The performance was still very high for all shown
scores. Besides, subsets consisting on GCIPL and retina in the outer regions reached
the highest accuracy among all possible combinations of subsets with two features in
presented four classification algorithms when bounded exhaustive feature selection was
applied. In three feature combinations, no subsets within the 15 selected best subsets out-
performed the others notably, only in KNN and Decision Tree classifiers. In such cases,
the subsets consisted again of GCIPL and retina in the outer ring, with addition of the
OPONL layer. These conclusions are drawn from the bounded exhaustive search shown
in Fig. 4.4.

All in all, supervised learning methods respond to the two questions raised at the begin-
ning of this work to some extend. The retinal thinning, specially of some layer and regions,
has the ability to perform a rather accurate discrimination of patients with Parkinson’s dis-
ease. From the presented classification algorithms, the KNN classifier showed the highest
performance, while the SVM obtained the lowest, in this particular classification prob-
lem. The presented results aid for a better understanding of the relevance of the retina
for the diagnosis of Parkinson’s disease. It was indeed possible through the assessment of
the classification ability of a data set consisting of measurements from all retinal layers
and regions presented in Section 2.5 (shown in Fig. 2.4), while accounting with the high
inter-feature correlations, as well of the performance of some selected features to produce
more accurate results.
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Conclusions and future work

This work addresses a complex problem, on the face of a disease with different phenotypes
and no defined protocol for its early diagnosis. [Bodis Wollner and Yahr, 1978] claimed
evidence of visual dysfunction in Parkinson’s disease already in 1978, and ever since
related research involved in the anatomy of the retina has been conducted. To this date
and year, OCT is the imaging technique most widely used to acquire measurements of
the retina. This work used OCT to compute up to 30 variables which represent the mean
thickness values in µm of five retinal layers, in different ring and disc regions of the back
of the eye, i.e. funduscopic images.

Several state-of-the-art techniques are used for this binary supervised learning problem.
Their findings help to consolidate the hypothesis of retinal thinning caused by the disease,
which as a result can be a valid biomarker of the disease, in particular of the GCIPL
layer, i.e. ganglion-cell inner-plexiform layer. The results not only discriminate the patient
group with high accuracy, precision and recall scores, but also show an improvement of
classification performance when feature subsets with lower cardinality are used, including
only GCIPL and total retina thickness values in the outer region of the eye.

This work offers a study of hidden patterns of data recorded from the retina of a consider-
able number of subjects and using a variety of methods. The latter mainly include feature
selection and oversampling techniques and evaluation of performance with different met-
rics which account for imbalance. Nonetheless, there exist some limitations in this work
which are worthwhile to consider. The most serious problem is the imbalanced distribu-
tion among problem classes, in which the most relevant group is only one third of the
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majority group, i.e. the control group. More realistic results given this problem were ac-
quired using the SMOTE oversampling technique. However, the over-generalization prob-
lem in this context can occur, leading to misclassification of the majority class into the
minority class caused by the generation of new synthetic samples, which results in lower
performance of the control group. To deal with this problem, extensions of the SMOTE
implementation have been proposed to mitigate the impact of this problem in the clas-
sification performance. For instance, borderline-SMOTE [Han et al., 2005] gives priority
to find the samples which are on the boundaries between classes, i.e. borderline samples,
to oversample those in order to achieve better prediction, as frequently the classification
algorithms are based on learning these boundaries during training. Another possibility is
given by the adaptive synthetic sampling approach (ADASYN) [Haibo He et al., 2008],
which according to the distribution of the data, focus on the minority samples which are
more difficult to learn. Namely, the number of synthetic samples generated from each
minority sample is directly proportional to the number of neighbors of the majority class
within a limit distance. In the line of the previous ideas, new versions of these algorithms
have been implemented to improve performance, such the density-based SMOTE (DB-
SMOTE) [Bunkhumpornpat et al., 2012] or the majority weighted SMOTE (MWMOTE)
[Barua et al., 2014]. These methods would allow to have a deeper insight of the distribu-
tion of the minority group before and after oversampling the training set.

On the other hand, another limiting factor of this study was the high correlation between
features, even though it was accounted for in some degree within the feature selection
algorithms. This fact is yet inherent to the problem itself, as it is not suppose to exist a
clear difference between retinal layers, less between contiguous macular regions.

Finally, it is important to note the impact of the age on retinal thinning. Although the
control group were recruited so as to match the age range of the patients, the effect of this
variable requires to be accounted for within the learning algorithm. This way, it would
only be assessed the classification ability of retinal thinning linked specially to the disease
progression.

In conclusion, although further research is required to validate retinal screening as a di-
agnositc tool in Parkinson’s disease, this work provides factual support to the hypothesis
of retinal thinning as part of the clinical picture in Parkinson’s Disease.
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A. APPENDIX

Appendix

A.1 Complementary figures

A.1.1 Box plot outlier detection method

A.1.2 Histrogram distribution plot

A.1.3 Heatmap with correlation values

A.1.4 Univariate filter rank - whole dataset
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Figure A.1: Box plot diagram of each variable conditioned to each class group.
Retina ALL, total thickness value of the retina; mRNFL, retinal nerve fiber layer, GCIPL, ganglion
cell-inner plexiform layer; INL, inner nuclear layer; OPL-HF-ONL, outter plexiform-outer nuclear
layer; ELM-BM, photoreceptor layer. Thickness within 1-, 3- and 6-mm diameter macular discs
and in concentric parafoveal (1-to 3-mm) and perifoveal (3-to 6-mm) rings.



Appendix 71

Figure A.2: Histogram distribution of each variable in control data.
Retina ALL, total thickness value of the retina; mRNFL, retinal nerve fiber layer, GCIPL, ganglion
cell-inner plexiform layer; INL, inner nuclear layer; OPL-HF-ONL, outter plexiform-outer nuclear
layer; ELM-BM, photoreceptor layer. Thickness within 1-, 3- and 6-mm diameter macular discs
and in concentric parafoveal (1-to 3-mm) and perifoveal (3-to 6-mm).
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Figure A.3: Histogram distribution of each variable in patient data.
Retina ALL, total thickness value of the retina; mRNFL, retinal nerve fiber layer, GCIPL, ganglion
cell-inner plexiform layer; INL, inner nuclear layer; OPL-HF-ONL, outter plexiform-outer nuclear
layer; ELM-BM, photoreceptor layer. Thickness within 1-, 3- and 6-mm diameter macular discs
and in concentric parafoveal (1-to 3-mm) and perifoveal (3-to 6-mm).
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(a) Control data

(b) Patient data

Figure A.4: Heat map with explicit Pearson correlation values in control (a) and patient (b) data.
Retina, total thickness value of the retina; mRNFL, retinal nerve fiber layer, GCIPL, ganglion
cell-inner plexiform layer; INL, inner nuclear layer; OPL-HF-ONL, outter plexiform-outer nuclear
layer; ELM-BM, photoreceptor layer; {6-,3-,1-mm}, 6-,3-,1-mm discs; {1_3mm, 3_6mm}, 1-to
3-mm and 3-to 6-mm rings.
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(a) ANOVA, Analysis of Variance (b) Chi-squared

(c) MI, Mutual Information (d) Relief Algorithm

Figure A.5: Feature selection: univariate filter ranking scores on the whole dataset.
Parametric methods: ANOVA (Analysis of Variance) (a). Non-parametric methods: Chi-Squared
(b), MI (Mutual Information) (c) and relief algorithm (d). Retina, total thickness value of the
retina; rnfl, retinal nerve fiber layer, GCIPL, ganglion cell-inner plexiform layer; INL, inner nu-
clear layer; OPONL, outter plexiform-outer nuclear layer; phot, photoreceptor layer; ; KNN, K-
Nearest Neighbors Classifier; GaussianNB, Naïve Bayes Classifier; SVM, Support-Vector Ma-
chine classifier.
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A.2 Complementary tables

A.2.1 D’Angostino K2 Normality test

Table A.1: Results of D’Agostino and Pearson’s omnibus test of normality in patient data with
normal distribution.
Nomenclature according to layer and region and showing the values of the Z− statistic and p−
value.

Layer Region
(mm) Z-statistic P-value

Patient

retina

1 1.0236 0.5994
3 2.8660 0.2386

1 3 3.1446 0.2076
3 6 0.6349 0.728

6 0.8642 0.6491

mRNFL

1 5.2543 0.0723
3 0.0202 0.9899

1 3 0.1864 0.911
3 6 0.2027 0.9036

6 0.2505 0.8823

GCIPL

3 0.957 0.6197
1 3 0.5393 0.7636
3 6 1.6189 0.4451

6 0.7904 0.6736

INL

1 4.4293 0.1092
3 2.7866 0.2483

1 3 2.6986 0.2594
3 6 0.3471 0.8407

6 1.0013 0.6062

OPONL

1 0.5512 0.7591
3 1.0406 0.5943

1 3 1.6374 0.441
3 6 0.6189 0.7338

6 0.8204 0.6635

phot

1 0.7553 0.6855
3 1.0305 0.5974

1 3 0.0822 0.9597
3 6 0.0358 0.9822

6 0.542 0.7626
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Table A.2: Results of D’Agostino and Pearson’s omnibus test of normality in control data with
normal distribution.
Nomenclature according to layer and region and showing the values of the Z− statistic and p−
value.

Layer Region Z-statistic P-value

Control

retina

1 0.4872 0.7837
3 0.0291 0.9855

1 3 0.1167 0.9432
3 6 0.4736 0.7891

6 0.3054 0.8583

mRNFL

1 1.8350 0.3995
3 1.2191 0.5436

1 3 1.4457 0.4853
6 5.5124 0.0635

GCIPL

3 1.1601 0.5598
1 3 3.2607 0.1958
3 6 1.8896 0.3888

6 2.3237 0.3129

INL
3 6 2.8592 0.2393

6 2.3554 0.3079

OPONL

1 0.5307 0.7669
3 0.2380 0.8878

1 3 0.7646 0.6823
3 6 0.1428 0.9311

6 0.0176 0.9912

phot

1 2.5990 0.2726
3 1.2521 0.5346

1 3 1.2511 0.5349
3 6 2.8119 0.2451

6 2.2331 0.3274
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