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Abstract 16 

The two main methods used to estimate raw material embodied in 17 

imports are life cycle assessment (LCA) and multi-regional input-18 

output (MRIO) models. The key advantage of LCA is its higher 19 

product resolution but it relies on global or regional averages, which 20 

could bias results. Our outcomes suggest that this obstacle could be 21 

avoided for primary goods if domestic process data are collected, since 22 

the necessary raw materials are mostly extracted from the environment 23 

of the direct trade partner. Conversely, for many other products, 24 
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intermediate inputs are produced following a wide range of blueprints 25 

and cross multiple borders, which makes it challenging to determine 26 

how and where raw materials needed for their production originate. 27 

For these products, a method to combine the superior coverage of 28 

MRIO with the product resolution of LCA is evaluated here, using 29 

imports to Finland as a study case. The analysis provides insights on 30 

how to identify critical supply chains and illustrates a relatively 31 

simple, replicable solution that can be used in other regions or 32 

environmental accounts. Nevertheless, the existing resolution of 33 

MRIO models and dissimilarities in classifications between the two 34 

tools could constitute a new source of errors if not properly handled. 35 

 36 
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1. Introduction 39 

In analyses of the metabolism of socioeconomic systems, all materials 40 

required by the economy are ideally taken into account on the basis of 41 

mass conservation. To this end, a set of indicators has been developed 42 

within the framework of material flow accounting (MFA), so that present 43 

and past trends can be analysed and policy targets for a more sustainable 44 

future can be set (e.g. OECD, 2011; UNEP, 2011; European Commission, 45 

2011). Standard practice in MFA suggests that all raw material extracted 46 

within the boundaries of the system called ‘domestic extraction’ (DE) and 47 

material flows associated with trade need to be accounted for 48 

(EUROSTAT, 2013; OECD, 2008). Accounting for DE is relatively 49 

straightforward, using official statistics, while there are two distinct ways 50 

of incorporating the material flows of traded products in MFA that can 51 

give different results regarding the raw material requirements of a given 52 

system. On one hand, indicators such as direct material input and domestic 53 

material consumption consider only mass of imports and exports (‘direct’ 54 

imports and exports, using MFA terminology). In particular, the direct 55 

material input is obtained by adding together the direct imports to the DE, 56 

whereas the domestic material consumption is direct material input minus 57 

direct exports. On the other hand, broader-scope indicators, such as raw 58 

material input and raw material consumption, are based on the concept of 59 

‘raw material equivalents’ (RME) of imports and exports, which refer to 60 

all raw material extracted and used for production of traded products. Thus 61 

in the RME approach, all upstream raw materials involved in the 62 

production of imports and exports are considered, regardless of the mass 63 

that finally crosses the border. Indicators based on direct imports and 64 
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exports are easier to calculate, but it is acknowledged that they are not able 65 

to capture appropriately the existence of dislocation of material-intensive 66 

industries and, consequently, burden shifting of raw material extraction 67 

among countries. Moreover, evidence of increasing dependence on non-68 

domestic raw material in most rich economies highlights the urgency of 69 

including RME-based indicators in resource efficiency policies (Giljum et 70 

al., 2015a; Wiedmann et al., 2015). Accordingly, the RME approach 71 

appears preferable for assessing the material basis of socioeconomic 72 

systems. 73 

However, estimation of RME is challenging because, in contrast to the 74 

survey estimation of direct flows, it requires modelling technology of 75 

industries and countries involved in complex supply chains (from 76 

extraction to final production) using diverse data sources and strong 77 

assumptions, which can have a marked impact on the outcomes. Two 78 

broad methods can be distinguished in RME calculations: Life cycle 79 

assessment (LCA) and input-output (IO) models. LCA adopts a bottom-80 

up perspective, modelling coefficients of RME for particular products 81 

employing process data collected using technical information on (ideally) 82 

all upstream production processes in the supply chain. These coefficients 83 

are usually first estimated for representative individual products and later 84 

adapted or employed for all trade products. In contrast, IO models adopt a 85 

top-down approach whereby coefficients of RME are modelled at macro 86 

level for broad product groups or industries. This is done by linking 87 

physical data about biomass harvested by agriculture and forestry and 88 

minerals extracted by mining companies with monetary data about 89 

transactions among economic sectors and final consumers, so that raw 90 
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materials flows can be tracked along supply chains. The most promising 91 

IO models are multi-regional IO (MRIO) models, which have the highest 92 

geographical coverage, since world economies are interconnected via 93 

trade and domestic transactions. Furthermore, there is increasing interest 94 

in combining approaches in order to take advantage of their main features, 95 

in the so-called hybrid or life cycle assessment input-output (LCA-IO) 96 

approach.  97 

In this paper, we focus on the issue of the (limited) regional coverage 98 

of LCA compared with MRIO models. We begin by assuming that existing 99 

LCA-based approaches oversimplify the diversity in technology in 100 

exporting regions, which has the potential to bias results (Dittrich et al., 101 

2012), since they are often based on global or regional averages. To this 102 

end, we first explore the extent to which including specific process data 103 

from exporting nations can improve accuracy, especially for products 104 

originating from long, complex supply chains. We then introduce and 105 

assess a method making use of the higher degree of detail in the bottom-106 

up perspective and also expanding the system boundaries to full coverage 107 

of the world using MRIO.  108 

 109 

2. Life cycle assessment vs. multi-regional input-output models in 110 

estimation of raw material equivalents  111 

Material flow accounting has become one of the key tools in industrial 112 

ecology and ecological economics since its development by Ayres and 113 

Kneese (1969), as reviewed by Ayres and Ayres (1998), Daniels and 114 

Moore (2002), Daniels (2002) and Fischer-Kowalski et al. (2011). Since 115 

the early days of MFA, the relevance of the RME concept has been 116 
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acknowledged and significant efforts supported by international policy 117 

bodies are underway to improve the estimation methods. Below, use of 118 

LCA, MRIO and mixed models in RME estimation is compared, focusing 119 

on methodological differences relevant for the present analysis. 120 

In the LCA-based approach (also process-based or coefficient 121 

approach), RME coefficients (also ‘cradle-to-product’ or life cycle 122 

inventory coefficients) are estimated based on process data for individual 123 

products. This approach considers all exchanges between social and 124 

natural spheres that occur during the product life cycle, as summarised by 125 

the general expression: 126 

 𝐫 = 𝛂′𝐍𝐦 ( 1 ) 

where lower case letters are vertical vectors, ′ denotes transposition, 𝐫 is 127 

RME of imports, 𝛂 is a vector of process-based coefficients expressed in 128 

kg of RME per kg or euro imported, 𝐍 is an aggregation matrix with 129 

dimensions number of coefficients by number of imported products with 130 

elements 1 and 0 appropriately placed, and 𝐦 is the vector of imports. In 131 

the literature, RME estimated in this way are also termed ‘ecological 132 

rucksack’ (Dittrich et al., 2012).  133 

Input-output models were introduced to describe technological 134 

dependencies between industries and product flows within the economy 135 

(Leontief, 1936). An essential feature of these models is the ‘Leontief 136 

inverse’, which consists of direct and indirect inputs required per unit of 137 

final demand of each economic sector or product group. To analyse 138 

environmental burden flows, information regarding how much raw 139 

material is extracted per euro of economic output is included, so 140 
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biophysical requirements by industry and final user can be obtained. The 141 

MRIO model is summarised by the general expression: 142 

 𝐫 = 𝐞′𝐋𝐍𝐦 = 𝐩′𝐍𝐦 ( 2 ) 

where 𝐋 = (𝐈 − 𝐀)−𝟏 is the Leontief inverse (𝐈 being the identity matrix 143 

and 𝐀 the matrix of technical coefficients) and 𝐞′ is the vector of sectoral 144 

coefficients of material input (for further details of IO modelling, see 145 

Miller and Blair, 2009; European Comission et al., 2014). Elements of the 146 

row vector 𝐩 represent the raw material multipliers or RME coefficients. 147 

Therefore, assuming that in both cases the imports are the same, 148 

differences in RME estimates across methods should derive from 149 

differences between components 𝛂 and 𝐩. The pros and cons of each 150 

method have been explored previously and it has been concluded that both 151 

have their advantages and drawbacks and that there is currently no optimal 152 

method (Eisenmenger et al., 2016; Lutter et al., 2016; Schoer et al., 2013). 153 

In the context of the present study, a key shortcoming of LCA-based 154 

coefficients is that they are estimated most commonly as representative 155 

regional or world averages (which might refer to a particular moment in 156 

time or an average), whereas MRIO models can capture more conveniently 157 

differences in resource use between countries (Wiedmann et al., 2011). 158 

That is to say, it can be assumed that multipliers 𝐩 in MRIO models 159 

represent divergences in technology between nations. Another advantage 160 

is that MRIO models can track back RME to the countries of origin and 161 

material dependencies between two specific countries can be assessed 162 

considering the extractions in their territories. However, MRIO models 163 

can be strongly affected by sector or country resolution. These aggregation 164 
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errors may appear depending on how products/countries are grouped in 165 

the model because averaged inputs need to be considered, which could 166 

cause distortions that are passed on via the Leontief inverse to multipliers 167 

(de Koning et al., 2015; Piñero et al., 2015). Disaggregation of official or 168 

basic data could be performed to alleviate this problem, but at the expense 169 

of higher uncertainty. In addition, more country resolution does not 170 

necessarily mean more accurate outcomes, particularly if based on poor 171 

underlying data (Schoer et al., 2013). In contrast, the main advantage of 172 

LCA is its high resolution and product coverage (Dittrich et al., 2012), 173 

since calculations can be as detailed as the highest product resolution 174 

offered by customs statistics offices (or in other words, matrix 𝐍 in 175 

equation 1 can be suppressed if 𝛂 is sufficiently detailed). However, this 176 

does not mean that process-based coefficients are free from aggregation 177 

problems, it being common practice to work with aggregated data 178 

(Majeau-Bettez et al., 2011). Furthermore, due to time and resource 179 

constraints and to make the model operative, aggregation is frequently 180 

applied in RME estimation based on LCA, which involves certain 181 

uncertainties as a result of the use of averages for heterogeneous product 182 

groups (e.g. the same coefficient may be employed for all types of 183 

imported printers, whether a small device intended for home use or 184 

professional printing equipment). Moreover, these aggregation problems 185 

persist even at the most disaggregated levels of custom statistics (Dittrich 186 

et al., 2012) (e.g. because there are multiple models even within the group 187 

of printers for home use, with predictably different raw material basis).  188 

Other shortcomings of LCA are that it can be severely affected by 189 

boundary setting for the system, e.g. truncation errors can arise as a result 190 
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of excluding high-order upstream production stages (Lenzen, 2000). In 191 

addition, fewer data are available for finished products or services than for 192 

raw materials and semi-manufactured goods, because the former involve 193 

much complex supply chains and material composition mixes (Dittrich et 194 

al., 2012). This extra degree of complexity in downstream production 195 

stages is also acknowledged in studies focusing on particular materials, 196 

such as aluminium (Cullen and Allwood, 2013), copper (Graedel et al., 197 

2002) or iron (Wang et al., 2007). In contrast, in MRIO models an 198 

approximation to such complexity in composition mixes is achieved and 199 

the cut-off error is minimised by multiplier estimation itself. 200 

Both LCA (Dittrich et al., 2012) and MRIO models (Arto et al., 2012; 201 

Bruckner et al., 2012; Giljum et al., 2015a; Tukker et al., 2014; Wiedmann 202 

et al., 2015) have been used to estimate RME embodied in trade products. 203 

Although possible, combinations between high geographical coverage 204 

MRIO models and process-based coefficients have not been developed so 205 

far in MFA studies. However, some mixed models combining features of 206 

national or EU IO models and LCA data already exist, for example for the 207 

European Union (Schoer et al., 2012b), Czech Republic (Kovanda et al., 208 

2010), Austria (Schaffartzik et al., 2014) and Italy (Marra Campanale and 209 

Femia, 2013). These mixed or hybrid models are described in the early 210 

works of Moriguchi et al. (1993), Joshi (2000), Treloar (1997), Suh et al. 211 

(2004), Suh (2004) and Suh and Heijungs (2007). In the remainder of this 212 

paper such models are referred to using the acronym LCA-IO, because the 213 

term hybrid is also applied to mixed units (physical and monetary) in IO 214 

models. In the literature, mixed model approaches are also referred as LCI-215 

IO or LC-IO, from life cycle inventory or life cycle, respectively. 216 
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All approaches model the same reality (i.e. upstream raw material 217 

requirements of traded products) and hence the results should be similar. 218 

In reality, there are a number of methodological differences which might 219 

explain differences in the outcomes. To date, only a few studies have 220 

compared existing methods. An evaluation of a LCA-IO method and a 221 

MRIO model focusing on the EU found that discrepancies at more 222 

aggregated levels remain within 5-10% for RME of imports, although they 223 

are significantly higher for broad groups of materials (Schoer et al., 2013). 224 

This gap is reduced when further steps are taken to attenuate 225 

methodological differences. Another comparison between three MRIO 226 

models and one LCA-IO method found that RME of trade products deviate 227 

markedly across models, especially when considering disaggregated 228 

material groups (Giljum et al., 2015b). In addition, strong deviations 229 

between economic sectors or product groups have been reported, whereby 230 

the more disaggregated the comparison, the higher the discrepancies. 231 

However, differences not only arise between LCA and MRIO models, but 232 

also depending on the MRIO databases employed for RME estimation. For 233 

instance, Giljum et al. (2017) report notable differences comparing three 234 

popular MRIO databases, although for many countries these discrepancies 235 

are reduced within a low range at more aggregated levels. Furthermore, 236 

using Austria as a case study, six methods have been compared and 237 

discrepancies of around 30-40% in aggregated RME-based indicators have 238 

been observed (Eisenmenger et al., 2016). In that study, the sign of the 239 

physical trade balance (RME of imports minus RME of exports) changed 240 

for some raw material categories depending on the approach, which 241 

implies some vagueness about whether Austria plays the role of net 242 
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importer or net exporter of environmental loads in the international arena. 243 

Although the studies by Schoer et al. (2013) and Giljum et al. (2015) 244 

highlight that deviations at more aggregated level are manageable and that 245 

uncertainty does not compromise current policy applications of RME-246 

based estimates, dissimilarities reported for some countries correspond 247 

with the results for Austria and call for a more profound understanding of 248 

existing methodological differences.  249 

Overall, there are a number of other differences (such as monetary 250 

versus mass units, time window in the functional unit, how capital stocks 251 

are modelled etc.) that can explain discrepancies in outcomes and which 252 

should also be considered in the choice of approach. In order to improve 253 

estimation of RME, in this study we attempted to incorporate the superior 254 

coverage of supply chains by MRIO models into more detailed LCA-based 255 

approaches. Due to the differences between these two tools and the 256 

particularities of the models and databases employed, many obstacles had 257 

to be overcome, using rough assumptions in some cases and ad-hoc 258 

correspondences between products and materials in others. In this manner, 259 

the benefits and risks of combining LCA and MRIO methods for RME 260 

estimation in a systematic manner were analysed.   261 

 262 

3. Material & Methods 263 

Three models were used in the analysis: the Envimat Imports model, 264 

the Eurostat RME tool and the Exiobase MRIO model. The Envimat 265 

Imports model (Koskela et al., 2013, 2011; Seppälä et al., 2011) was 266 

chosen to represent the LCA approach, since RME of all imported goods 267 

are modelled using process-based coefficients and only services are 268 
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estimated using the IO technique. The Eurostat RME tool (Eurostat, 2015; 269 

Schoer et al., 2012a) was selected because is the most popular LCA-IO 270 

model for RME estimation. Although different MRIO models exist, with 271 

different product and country coverage (Tukker and Dietzenbacher, 2013), 272 

in this study Exiobase was chosen because of its high detail in extractive 273 

sectors and its focus on the EU (Tukker et al., 2014; Wood et al., 2015). 274 

Main features of each of these models are explained in the subsection 275 

Model specifications. Full product and material classifications, 276 

correspondence tables, model specifications and complementary 277 

mathematical descriptions and results are available in Supporting 278 

Information. 279 

The results are described in two sections. Section 4.1 (Raw material 280 

flows in international supply chains) examines the question of how much 281 

domestic raw material extraction occurs in direct trade partners compared 282 

with extraction in third countries. For the sake of replicability, this analysis 283 

was performed using only Exiobase data (for the year 2007). Section 4.2 284 

(Country-specific information from the Exiobase MRIO model in LCA-285 

based approaches) attempts to refine original RME coefficients from the 286 

Envimat (LCA) and Eurostat (LCA-IO) models by accounting for 287 

country/regional variations in the embodiments. Finland was chosen as a 288 

study case for this purpose and 2010 data as the base, because those are 289 

the most recent IO data available for Finland. Further explanations and 290 

mathematical details are presented in the subsection The Method.  291 

At this point, two issues regarding MFA principles require 292 

clarification. First, in this study only the ‘Used’ fraction of raw material 293 

extraction is considered, i.e. only materials entering the economy via 294 



13 
 

prices are studied. Other materials removed but not bought or sold, such 295 

as mining overburden or fishing by-catch (‘Unused’ raw materials), are 296 

excluded. The reason is to keep calculations simple, since the method 297 

developed would be similar in both cases. Second, estimation of RME of 298 

imports for a country depends on whether or not intermediate imports for 299 

production of exporting products are included in the calculations. If the 300 

goal is to measure environmental pressure exerted by a given domestic 301 

final demand, then these loads are usually reallocated to those end-user 302 

countries receiving those exports (this approach is applied e.g. by Giljum 303 

et al. (2015b) and in the cited studies using MRIO models). However, in 304 

the present study, all imports as recorded by customs offices were 305 

included, because making a distinction would involve extra effort and 306 

probably detract from the focus of the analysis.  307 

 308 

3.1. Model specifications 309 

In the Envimat Imports model (hereafter ‘Envimat’), basic data in 310 

physical and monetary units are obtained mostly from foreign trade 311 

statistics compiled at combined nomenclature (CN) eight-digit product 312 

resolution and then converted to the Envimat classification system for 313 

products (ETTL), which distinguishes around 490 goods and is derived 314 

from the classification of products by activity (CPA) 2008. In addition, a 315 

hierarchical classification of 85 types of raw materials is made in the 316 

Envimat resource classification. Furthermore, process-based coefficients 317 

are calculated for goods on a mass basis, i.e. kg RME per kg of goods 318 

imported, while for services kg RME per euro imported is used. Most of 319 

these coefficients represent world average values, although in some cases 320 
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they refer to European averages or to particular countries (e.g. natural gas 321 

from Russia). Basic data are mainly retrieved from the life cycle inventory 322 

database Ecoinvent version 3.0 (Wernet et al., 2016) and, for some 323 

products, a direct correspondence with data available in Ecoinvent and 324 

ETTL products can be drawn. For other products input data from technical 325 

and academic literature is used to build streamlined LCA systems (full 326 

description in Supporting Information). 327 

The Eurostat RME tool (Eurostat, thereafter) comprises 166 product 328 

groups and 52 raw material categories, since standard MFA classification 329 

is further disaggregated for metals, through the so-called ‘metal model’. 330 

Basic calculation was carried out using an IO table for the EU27 region, 331 

in which monetary flows of fossil fuels, metal concentrates and base 332 

metals are replaced by physical flows (fossil raw materials in oil 333 

equivalent tons and metals in tons). In addition, for some raw materials 334 

and basic products (metals, oil and gas), LCA data is utilised. For other 335 

imported products, manufacturing and services, the so-called ‘domestic 336 

technology assumption’ is followed, i.e. the technology for import 337 

production was assumed to be the same as in the importer region (EU27 338 

in this case). The model is based on CPA 2002 and coefficients represent 339 

EU import average values.  340 

Exiobase is a MRIO database that includes data for 200 products and 341 

48 countries or world regions, more precisely 27 EU countries, 16 non-EU 342 

countries and five regions. Single countries considered (43) cover 90% of 343 

global gross domestic product (GDP). In short, the database harmonises 344 

official IO tables and material extraction data using auxiliary information 345 

from international agencies, such as the Food and Agriculture 346 
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Organization (FAO) and International Energy Agency (IEA). The product 347 

classification uses the CPA 2002 scheme with high resolution for 348 

extractive products (33 product groups) and data currently available are 349 

for the years 2000 and 2007. Publicly available data are in various formats, 350 

but for this study ‘product by product’ tables were chosen for two reasons: 351 

i) errors dependent on the version chosen are reported to be small (Marin 352 

et al., 2012) and ii) the product by product approach gives easier 353 

correspondence between models and trade data. 354 

Lastly, it should be stressed that the emphasis in this study was on 355 

goods and therefore services were excluded from the calculations, so a 356 

fixed amount of RME associated with imported services was included in 357 

all models. The reason is twofold: i) customs data for services are more 358 

incomplete and ii) services are less relevant than goods as raw material 359 

extraction drivers. For instance, in 2010, imported services reached almost 360 

17 050 million euros according to IO data from Statistics Finland, whereas 361 

imported services included in customs data were a mere 182 million euros. 362 

Unfortunately, the former data do not specify country of origin of service 363 

companies. In addition, it has been pointed out that services only 364 

accounted for 3.4% of total RME embodied in Finnish imports in 2005 365 

(Seppälä et al., 2011). 366 

 367 

3.2. The Method 368 

Raw materials extracted and used for production of same type of 369 

product differ between countries, i.e. producing a watch in Switzerland 370 

and in China differs in raw material terms, since technology and 371 

production blueprints vary from country to country (in the Supporting 372 
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Information, dispersion statistics for multipliers of the full Exiobase are 373 

presented). Customs statistics usually report where goods are dispatched, 374 

so assuming that those traded products are entirely or mostly produced in 375 

the dispatching country, which is typically the case of primary products, 376 

allows RME coefficients to be estimated based on process data including 377 

technology particularities of those countries. In the Envimat and Eurostat 378 

models, this approach is followed for some products. However, production 379 

of more sophisticated products often takes place in more than one country, 380 

so raw material extraction might happen in country A, further processing 381 

in countries B and C, and final export to Finland by country D. Therefore, 382 

to study the fraction of RME of imports from a particular product and 383 

country that has been extracted domestically or elsewhere, multipliers of 384 

full Exiobase were aggregated according to this criterion. 385 

As mentioned previously, there is extensive literature on combining 386 

LCA and IO approaches. Such studies have, at their core, the definition of 387 

system boundaries, consideration of possible miscounting or double 388 

counting and the importance of sectoral, regional and time frame details, 389 

depending on the object of the study. In the present study, a method for 390 

including MRIO information from Exiobase in the Envimat and Eurostat 391 

models was developed. The method is based on a correction matrix 𝐂 392 

dimension number of countries by number of products, the elements of 393 

which are the ratio between full Exiobase multipliers and those from an 394 

averaged Exiobase version that describes world or EU average values, re-395 

arranged in country by product form. Thus 𝑐𝑖𝑗 informs for product 𝑗 about 396 

deviations of country 𝑖 in relation to the regional average under 397 
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consideration (i.e. if 𝑐𝑖𝑗 > 1, RME for product 𝑗 coming from country 𝑖 398 

are above average, while if 𝑐𝑖𝑗 < 1, the opposite occurs). Using algebra, 399 

matrix 𝐂 can be estimated as: 400 

 𝐂 = 𝐏𝐩̂𝐀
−𝟏

 ( 3 ) 

where 𝐏 is a multiplier matrix whose elements are disposed in country by 401 

product form (i.e. 𝑝𝑖𝑗 is the RME coefficient for product 𝑗 from country 𝑖) 402 

and 𝐩̂𝐀 indicates the diagonal matrix of 𝐩𝐀, which is the vector describing 403 

average multipliers for products. 404 

Matrix 𝐖, which describes coefficients corrected including MRIO 405 

information in country by product form, can then be calculated as:  406 

 𝐖 = 𝐂𝛂̂ ( 4 ) 

where 𝑤𝑖𝑗 describes the ‘MRIO-refined’ RME coefficient for product 𝑗 407 

imported from country 𝑖. 408 

After refining original RME coefficients, RME embodied in imports 409 

can be estimated considering technological differences among countries: 410 

if matrix 𝐌 is an imports matrix re-arranged in country by product form, 411 

then matrix 𝐑∗ can be obtained using the Hadamard product denoted by ∘ 412 

as: 413 

𝐑∗ = 𝐖 ∘ 𝐌 ( 5 ) 

where 𝑟𝑖𝑗
∗  informs about RME embodied in imports of product 𝑗 from 414 

country 𝑖.  415 

Finally, to obtain RME after correction by product 𝐫𝐩
∗, 𝐑∗ can be pre-416 

multiplied by a row vector of ones, i.e. 𝐫𝐩
∗ = 𝐢′𝐑∗. Similarly, raw material 417 

embodied after correction by country 𝐫𝐜
∗ can be calculated following 𝐫𝐜

∗ =418 

𝐑∗𝐢.  419 
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Hereafter, the MRIO-corrected versions of the Envimat and Eurostat 420 

models are referred to as ‘Envimat-MRIO’ and ‘Eurostat-MRIO’, 421 

respectively. For the Envimat-MRIO version, refinements refer mainly to 422 

global averages, although EU values are also employed for some products. 423 

Conversely, country-specific coefficients are not corrected. For the 424 

Eurostat-MRIO version, EU averages are mostly utilised, except for 425 

minerals and fossil fuels, for which world averages are used. Both 426 

corrections are based on values from Exiobase for 2007, and therefore it 427 

is assumed that variations between countries within a particular year are 428 

not greatly affected by price changes.  429 

In addition, RME of imports using original versions of Envimat and 430 

Eurostat are presented. The calculation is straightforward: imports from 431 

customs statistics in CN eight-digit resolution in mass (Envimat) or mixed 432 

units (Eurostat) are appropriately converted using correspondence tables 433 

and multiplied by a set of RME coefficients.  434 

 435 

4. Results & Discussion 436 

In this section, we first present results for countries with the lowest and 437 

highest domestic (vs. foreign) extraction, and their shares by product 438 

group and by type of extraction. These results provide insights and rules 439 

for types of extraction and justify the integration performed in the 440 

Envimat-MRIO and Eurostat-MRIO models for some products and 441 

countries. 442 

 443 

4.1 Raw material flows in international supply chains 444 
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Tables 1 and 2 list exporting countries with the lowest and the highest 445 

percentage domestic extraction, respectively, per euro imported to Finland 446 

in 2007 (aggregated regions excluded). As Table 1 shows, small countries 447 

with high population/GDP density tend to have low domestic extraction in 448 

their exports. On the other hand, countries endowed with significant 449 

amounts of natural resources (usually also large in area and population 450 

size) show high domestic extraction. An interesting exception is Denmark, 451 

for which a high score was obtained. This score is better explained by 452 

Figure 1, in which percentage domestic extraction in RME and country 453 

falls into broad groups of raw materials (biomass, metals, fossil fuels and 454 

other minerals). The dot size indicates RME by country in absolute values 455 

for 2007. The x-axis follows the Exiobase ordering of countries, with the 456 

EU countries displayed from left to centre and other economies to the 457 

right. It can be seen that the high domestic extraction of Denmark is due 458 

to other mineral products exported to Finland, broken or crushed stones 459 

and chalk mainly, as reflected in publicly available custom statistics. 460 

Overall, Figure 1 informs modellers about when to use LCA based on 461 

national data or MRIO combined models in RME estimation. It can be 462 

observed that, in general, EU countries have low domestic extraction of 463 

metals and fossil fuels in their exports (with the exception of Sweden for 464 

metals and Estonia for fossil fuels). Therefore, in these cases, modelling 465 

RME via LCA would involve an extra degree of complexity, particularly 466 

for some key trade partners such as Germany and Belgium. In contrast, for 467 

other products, most of the raw materials come from the direct partner. In 468 

addition to Sweden and Estonia, this is the case for Russia for fossil fuels, 469 

for China, India and Spain for other minerals and for Brazil for biomass 470 
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embodied in agricultural and forestry products. Therefore, it could be 471 

argued that, for these countries, performing a LCA based on national data 472 

would potentially improve RME estimates with less effort than in previous 473 

examples.  474 

 475 

Tables 1 and 2.  476 

Figure 1. 477 

 478 

Table 3 depicts the percentage of domestic extraction by industry 479 

embodied in imports. It can be seen that extractive sectors (agriculture, 480 

forestry and mining), along with electricity and food production, show 481 

high domestic extraction per euro imported in direct partner countries. The 482 

relative importance of the extractive sector means that, overall, almost 483 

73% of all raw materials embodied in Finnish imports in 2007 were 484 

extracted from the environment of direct trade partners. Regarding 485 

manufacturing, there are a wide range of domestic extraction forms, 486 

although most sectors have an approximately equal share. Accordingly, if 487 

only sectors C1 to C10 are considered, total DE in direct partners drops to 488 

53%. In Figure 2, the percentage of domestic extraction in RME by 489 

industry is plotted by raw material type. As can be seen from the diagram, 490 

the domestic share of metals seems lowest for most products (between 8% 491 

and 42%), while other minerals and biomass show a wider dispersion of 492 

shares across products. Moreover, considering their volume and low 493 

domestic extraction share, LCA modelling of products belonging to C7 494 

(Basic metals and fabricated metal products) seems particularly 495 

problematic.  496 
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Both pieces of information, on industry and country of origin, help 497 

modellers in identifying possible sources of bias and also open the way for 498 

improvement of MFA indicators, since it is clear that for large countries 499 

with highly developed extractive profiles, the LCA-based approach has 500 

the potential to refine the calculations. Furthermore, similar procedures 501 

can be applied for simple supply chains, i.e. for those trading schemes 502 

involving a reduced number of countries and industries. To that end, our 503 

combined approach could be complemented with existing techniques, 504 

such as production layer decomposition (see e.g. Giljum et al. (2016), 505 

where the underlying logic is equivalent to that applied in this study) or 506 

structural path analysis (see e.g. Lenzen, 2007), which could bring more 507 

detail, regarding the importing countries and sectors across the whole 508 

supply chains. On the other hand, the existence of highly complex supply 509 

chains and process data constraints at country level for many products 510 

exemplifies the limitations of process-based approaches and the 511 

importance of integrating precision from LCA with global coverage from 512 

MRIO, as described in the following section. 513 

 514 

Tables 3 and 4.  515 

Figure 2. 516 

 517 

4.2 Country-specific information from the Exiobase MRIO model 518 

in LCA-based approaches 519 

In Figure 3, the original Envimat and Eurostat models are compared 520 

with the versions extended with MRIO information. Direct imports 521 

obtained from official statistics are also shown, as a dashed line. Total 522 
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direct imports were 57.1 Mt, while raw materials embodied in Finnish 523 

imports amounted to 233.9 Mt (original Envimat), 268.7 Mt (Envimat-524 

MRIO), 144.2 Mt (original Eurostat) or 212.9 Mt (Eurostat-MRIO). The 525 

significant differences between direct imports and RME estimates support 526 

the idea that the latter concept is important, particularly for metals and 527 

other minerals and, to a lesser extent, for fossil fuels. However, it is worth 528 

mentioning that these global estimates sometimes mask other differences 529 

that are less evident in aggregations. Moreover, there are marked 530 

differences in RME figures depending on the method chosen, calling for a 531 

deeper understanding on this matter, as mentioned in previous studies. 532 

Tables showing most important differences between coefficients by 533 

product group and country (see Supporting Information) were used for 534 

describing the deviations in the following. 535 

 536 

Figure 3. 537 

 538 

In Figure 4, the comparison between original Envimat and Envimat-539 

MRIO is disaggregated for broad groups of products. It can be seen that 540 

the two most important deviations at this level arise in metals and other 541 

minerals. For metals, the almost non-existent difference between both 542 

models shown in Figure 3 is revealed to be an offset effect: Envimat-543 

MRIO tends to increase material embodied in extractive products but 544 

decrease that in metal products (Sector C7 in Figure 4). In Table 4, changes 545 

in multipliers and the most important deviations for metals and other 546 

minerals between the two model versions are shown. As can be seen, 547 

increases in extractive products occur mainly in ‘Iron ores’ and ‘Copper 548 
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ores and concentrates’, whose coefficients notably increase in Envimat-549 

MRIO. Regarding iron ores, 97.7% of exports to Finland in 2010 were 550 

from its neighbour Sweden. In the Supporting Information, the ratio of DE 551 

per euro imported is shown for all countries and products (based on 2007 552 

data). For iron ores from Sweden, 99% of raw materials required were 553 

extracted from the Swedish environment and in that case process-based 554 

estimation based on national figures would clearly be advisable. In the 555 

case of copper, 49.2% of imports to Finland in 2010 came from Peru and 556 

Chile, both categorised in Exiobase as ‘Rest of America and Caribbean’. 557 

In this case too, almost 100% of materials were extracted domestically and 558 

a LCA-based estimation considering Peruvian and Chilean technological 559 

particularities would be desirable. The reason why the increases described 560 

are offset at the macro level can be seen in Table 4. Because Envimat has 561 

higher resolution, refinements of metal products in Table 4 were 562 

performed using multipliers for three corresponding Exiobase products: 563 

‘Basic iron and steel and of ferro-alloys and first products thereof’, ‘Other 564 

non-ferrous metal products’ and ‘Copper products’. In the Supporting 565 

Information, it can be seen that percentages of metal DE for these three 566 

products can vary significantly between countries. Focusing on key 567 

Finnish trade partners in Table 4, for basic iron and steel products 568 

Exiobase delivers 1% metal DE for German products, whereas it increases 569 

to 47% for Swedish products. For copper and other non-ferrous metal 570 

products, the percentage of metal DE embodied varies from almost 0% for 571 

Spanish nickel products to almost 100% for Russian, Brazilian and ‘Rest 572 

of Africa’ products. Considering that Spanish nickel mining and the 573 

content of iron from German mines in basic iron and steel products are 574 



24 
 

both negligible, performing a process-based estimation would involve 575 

substantial extra effort. Nevertheless, since their mineral intermediate 576 

inputs coming from third countries can be followed using MRIO, the 577 

method developed in this study could be utilised. In contrast, for copper 578 

products coming from Russia, nickel products from Brazil and cobalt 579 

products from the Democratic Republic of Congo (which is the other main 580 

non-ferrous metal product coming from Africa), LCA-based data 581 

estimation would be desirable. For Swedish iron and steel products, an 582 

intermediate solution might be best. 583 

For other minerals, it is revealed in Figure 4 that the increases in the 584 

MRIO version occur mainly in the sectors mining and quarrying and C5 585 

(Other chemical products). The rise in mining is because of ‘Clays and 586 

kaolin’ products, mostly coming from India and the United Kingdom. 587 

Consulting publicly available disaggregated customs data reveals that the 588 

reason for the high score for India is from exports to Finland of ‘Bentonite’ 589 

(6.1 million kg imported in 2010). Including MRIO information greatly 590 

increases the original coefficient for clays and kaolin for India (see Table 591 

4), explained by existing high analogous differences between world 592 

average and Indian values using Exiobase. This enormous difference could 593 

be an error in Exiobase original data and might be related to the difficulties 594 

in data gathering in India reported by the database’s developers (Giljum et 595 

al., 2014). However, it serves to illustrate how the existence of outliers or 596 

unexpectedly high values can cause errors in the refined method proposed 597 

in this study. In addition, Finland imports a high volume of kaolin (927.6 598 

million kg in 2010), as an input for the paper industry, from three 599 

countries: UK (36%), US (33%) and Brazil (29%). The Envimat original 600 
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coefficient for clays and kaolin increases to 37.6 kg/kg for the UK in 601 

Envimat-MRIO, while it increases only slightly or decreases for the other 602 

two key trade partners, which leads to a significant RME allocation to 603 

imports from the UK (-12140.4 Mkg bias). These examples exemplify the 604 

two possible causes of re-allocation in the method proposed: high 605 

multiplier dissimilarities between original and MRIO versions (India), and 606 

less significant variations for substantial import flows (UK). Lastly, most 607 

notable deviations in other chemical products occur in imports from 608 

Norway of ‘Other inorganic basic chemicals’ and ‘Peptones, modelling 609 

pastes, activated carbon, finishing agents, pickling preparations etc.’ (see 610 

Table 4). The increase in both cases is caused by the differences between 611 

multipliers in Exiobase for ‘Chemicals not elsewhere classified (nec.)) and 612 

salt DE comparing Norway and world-average values. For other inorganic 613 

basic chemicals, customs data show that two products are mainly 614 

responsible for this increase: ‘Calcium carbonate’ and ‘Sodium hydroxide 615 

(caustic soda)’. Total imports of calcium carbonate to Finland in 2010 616 

were 674.9 million kg, of which 99.3% came from Norway, whereas 617 

imports of caustic soda were 149.7 million kg, of which 19.8% came from 618 

Norway. Although alternative routes exist, calcium carbonate is mainly 619 

produced from lime and carbon dioxide (European Commission, 2007). 620 

Therefore including MRIO country-specific information could bias 621 

allocation of salt DE, rather than refining outcomes. In contrast, caustic 622 

soda is mostly produced by electrolysis from sodium chloride solution 623 

with mercury, and it is clear that importing caustic soda implies significant 624 

amounts of salt embodied, which is also one of the main contributors to 625 

the overall environmental burden of the production process (Hong et al., 626 
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2014). Similar considerations apply to the second group of products, 627 

which mainly refer to finishing agents for the paper industry imported 628 

from Norway. 629 

 630 

Figure 4. 631 

Table 4. 632 

  633 

For the Eurostat models, including MRIO information from Exiobase 634 

also caused significant deviations in extractive and metal manufacturing 635 

products. However, in this case, both estimates were higher in the 636 

Eurostat-MRIO model. This situation is mainly explained by the 637 

significant growth taking place in metal embodied in imports of ‘Other 638 

non-ferrous metal products’ as can be observed in Table 5, which shows 639 

the main deviations between original Eurostat and Eurostat-MRIO. This 640 

happens because the correction is based on an EU average, whereas for 641 

Envimat-MRIO a global average is used. This outcome shows that average 642 

EU RME embodied per kg imported are significantly lower than global 643 

and African values. However, two related issues need to be considered: i) 644 

this refers to an ‘Other’ products category, where many diverse products 645 

are included, and ii) it belongs to a ‘Rest of’ MRIO category. Other notable 646 

increases in metal products occur in ‘Basic iron and steel products’ from 647 

Russia and other partners. Thus, in comparison with the outcomes from 648 

Envimat-MRIO, these results suggest that, if global values are used 649 

(Envimat), RME tend to be overestimated, whereas if EU averages are 650 

employed (Eurostat), they seem to be underestimated. 651 
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For other minerals, more than 50% of the higher quantities obtained 652 

with Eurostat-MRIO compared with the original Eurostat model are due 653 

to ‘Ceramic products and other non-metallic mineral products’ coming 654 

from the United States (C6: Other non-metallic mineral products) in 655 

Figure 4). According to customs statistics, this is mostly due to ‘Carbon 656 

fibres and articles of carbon fibres, for non-electrical purposes’. However, 657 

the refinement was performed considering multiplier dissimilarities for 658 

disaggregated non-metallic DE of Exiobase’s ‘Other non-metallic mineral 659 

products’, in particular differences in DE of ‘Building stones’, which is 660 

three orders of magnitude above the average for US multipliers according 661 

to Exiobase. Therefore, it seems clear that product aggregation into a 662 

single ‘Other non-metallic mineral products’ category, in combination 663 

with the above-average building stones intensity in US multipliers, cause 664 

inaccurate re-allocation of raw materials in Eurostat-MRIO. A high 665 

domestic share of raw material extraction of other minerals for this product 666 

in the US (around 80%, see Supporting Information) suggests that a 667 

process-based estimation considering domestic particularities would be a 668 

better choice. 669 

In biomass flows, deviations are caused by increases in biomass 670 

embodied in ‘Animal and vegetable oils and fats’, along with ‘Fruit, nuts, 671 

beverage and spice crops’ (see Table 5). The increase for the former refers 672 

mainly to imported palm crude oil from Malaysia, which comprised about 673 

385 million kg in 2010, to which an extra load of raw material is allocated 674 

based on multiplier differences for Exiobase’s ‘Products of vegetable oils 675 

and fats’. However, since agricultural products typically involve shorter 676 

supply chains (98% of biomass is domestically harvested for this product 677 
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in the Rest of Asia and Pacific region, see Supporting Information), 678 

process data could be used to cross-check this outcome. A similar situation 679 

arises for fruits, nuts etc. from Brazil and other Latin American countries. 680 

Finally, for fossil fuels, the increase observed is mainly because 681 

including MRIO information raises RME embodied for products coming 682 

from Russia, in particular for ‘Petroleum oils and oils obtained from 683 

bituminous minerals’ (explaining the growth observed in mining and 684 

quarrying in Figure 5), and ‘Other basic chemicals’ and ‘Fertilizers and 685 

nitrogen compounds’ (explaining the increase in other chemical products 686 

in Figure 5). Therefore, in this case, the correction proposed increases the 687 

raw material requirements of more fossil fuel-intensive Russian exports of 688 

the petrochemical industry. 689 

 690 

Figure 5. 691 

Table 5. 692 

 693 

5. Conclusions 694 

This study examined the theoretical connection between life cycle 695 

assessment (LCA) and input-output (IO) methods. Although there has 696 

been more than a decade of key development and application of these 697 

tools, there is still a need to provide simple and effective rules for 698 

improving the estimation of raw material equivalents (RME) embodied 699 

in imports. In particular, this study examined domestic (vs. foreign) 700 

extraction contents for countries and products, developed in order to help 701 

modellers overcome limitations imposed by the use of averages in LCA-702 

based approaches. One of the conclusions that can be drawn is that 703 
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domestic process-based data are preferable for primary mining and 704 

biomass products and for manufacturing products, which rely heavily on 705 

natural resources from the domestic environments of direct trade 706 

partners. This involves mixing physical and monetary flows and 707 

coupling bottom-up with top-down methods. It also requires access to 708 

detailed custom and LCA data for key trade partners and the 709 

development of correspondences between product, country and material 710 

classifications.  711 

For products involved in longer trade chains, or for which domestic 712 

LCA data are not available, a refined method providing a systematic way 713 

of analysing the embodied contents of RME based on multi-regional IO 714 

(MRIO) was developed. The results suggest that comparisons between 715 

original (based on regional averages) and MRIO-refined models could 716 

give valuable insights into iteratively correcting possible errors or biases. 717 

However, there are also methodological limitations, due to different 718 

products or raw material classifications and aggregation into 719 

miscellaneous products or material groups (such as ‘Other’, ‘nec.’ or 720 

‘Rest of’ categories) that need to be handled carefully when applying our 721 

method. Moreover, the products and regions that serve as reference in 722 

MRIO models need to be chosen with care and should be the closest in 723 

coverage to the original process-based coefficient being split. Depending 724 

on data and resource availability, our approach is equally applicable to 725 

more distant tiers of the supply chain (e.g. trade partners of direct trade 726 

partners) and could be combined with existing IO tools for assessing 727 

chain length and complexity. 728 
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Our method may be applicable in the study of exports to any other 729 

country and, since the multipliers used for corrections are of a very 730 

general nature, they are suitable to other regions or product specific 731 

studies. For this reason, basic data for the refinements are offered for all 732 

countries (except Finland) in the Supporting Information. Similar 733 

comparisons have previously been made between top-down and bottom-734 

up approaches for other environmental accounting tasks, e.g. for water 735 

flows in Feng et al. (2011) and for ecological footprint in Weinzettel et 736 

al. (2014). Thus the methodological developments presented here are 737 

also of interest outside the material flow accounting community. 738 

However, more work is needed to explain the differences between 739 

current databases and models and to support future developments that 740 

make use of the detailed product resolutions from LCA and the higher 741 

coverage of supply chains in MRIO models. 742 

 743 

Acknowledgments 744 

We are grateful to the anonymous reviewer for helpful comments. 745 

Pablo Piñero acknowledges the University of Oulu Graduate School and 746 

the AURORA Doctoral Programme for financial support for this 747 

research. The authors also thank Tuomas Mattila and Mari Heikkinen for 748 

their work in improving the Envimat model. 749 

 750 

References 751 

Arto, I., Genty, A., Rueda-Cantuche, J.M., Villanueva, A., Andreoni, V., 752 

2012. Global Resources Use and Pollution, Volume 1 / Production, 753 

Consumption and Trade (1995-2008). Seville. doi:10.2791/94365 754 



31 
 

Ayres, R.U., Ayres, L.W., 1998. Accounting for resources, 1. Edwar 755 

Elgar, Cheltenham. 756 

Ayres, R.U., Kneese, A. V., 1969. Production, Consumption, and 757 

Externalities. Am. Econ. Assoc. 59, 282–297. 758 

Bruckner, M., Giljum, S., Lutz, C., Wiebe, K.S., 2012. Materials 759 

embodied in international trade – Global material extraction and 760 

consumption between 1995 and 2005. Glob. Environ. Chang. 22, 761 

568–576. doi:10.1016/j.gloenvcha.2012.03.011 762 

Cullen, J.M., Allwood, J.M., 2013. Mapping the global flow of 763 

aluminum: from liquid aluminum to end-use goods. Environ. Sci. 764 

Technol. 47, 3057–64. doi:10.1021/es304256s 765 

Daniels, P.L., 2002. Approaches for Quantifying the Metabolism of 766 

Physical Economies: A Comparative Survey: Part II: Review of 767 

Individual Approaches. J. Ind. Ecol. 6, 65–88. 768 

doi:10.1162/108819802320971641 769 

Daniels, P.L., Moore, S., 2002. Approaches for Quantifying the 770 

Metabolism of Physical Economies Part I: Methodological 771 

Overview. J. Ind. Ecol. 5, 69–93. doi:10.1162/10881980160084042 772 

de Koning, A., Bruckner, M., Lutter, S., Wood, R., Stadler, K., Tukker, 773 

A., 2015. Effect of aggregation and disaggregation on embodied 774 

material use of products in input–output analysis. Ecol. Econ. 116, 775 

289–299. doi:10.1016/j.ecolecon.2015.05.008 776 

Dittrich, M., Bringezu, S., Schütz, H., 2012. The physical dimension of 777 

international trade, part 2: Indirect global resource flows between 778 

1962 and 2005. Ecol. Econ. 79, 32–43. 779 

doi:10.1016/j.ecolecon.2012.04.014 780 



32 
 

Eisenmenger, N., Wiedenhofer, D., Schaffartzik, A., Giljum, S., 781 

Bruckner, M., Schandl, H., Wiedmann, T.O., Lenzen, M., Tukker, 782 

A., de Koning, A., 2016. Consumption-based material flow 783 

indicators — Comparing six ways of calculating the Austrian raw 784 

material consumption providing six results. Ecol. Econ. 128, 177–785 

186. doi:10.1016/j.ecolecon.2016.03.010 786 

European Commission, 2011. Roadmap to a Resource Efficient Europe. 787 

European Commission, Brussels. 788 

European Commission, 2007. Best Available Techniques for the 789 

Manufacture of Large Volume Inorganic Chemicals - Solids and 790 

Others industry. 791 

European Commission, Food and Agriculture Organization of the United 792 

Nations, Organisation for Economic Co-operation and 793 

Development, United Nations, World Bank, 2014. System of 794 

Environmental-Economic Accounting 2012. Applications and 795 

Extensions. White cover publication, pre-edited text subject to 796 

official editing. 797 

Eurostat, 2015. Handbook for estimating Raw Material Equivalents of 798 

imports and exports and RME-based indicators on country level – 799 

based on Eurostat’s EU RME model. 800 

Eurostat, 2013. Economy-wide Material Flow Accounts (EW-MFA) 801 

Compilation Guide 2013. 802 

Feng, K., Chapagain, A., Suh, S., Pfister, S., Hubacek, K., 2011. 803 

Comparison of Bottom-Up and Top-Down Approaches To 804 

Calculating the Water Footprints of Nations. Econ. Syst. Res. 23, 805 

371–385. doi:10.1080/09535314.2011.638276 806 



33 
 

Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., 807 

Bringezu, S., Moriguchi, Y., Schütz, H., Schandl, H., Weisz, H., 808 

2011. Methodology and Indicators of Economy-wide Material Flow 809 

Accounting. J. Ind. Ecol. 15, 855–876. doi:10.1111/j.1530-810 

9290.2011.00366.x 811 

Giljum, S., Bruckner, M., Martinez, A., 2015a. Material footprint 812 

assessment in a global input-output framework. J. Ind. Ecol. 19, 813 

792–804. doi:10.1111/jiec.12214 814 

Giljum, S., Lutter, S., Bruckner, M., Wieland, H., Eisenmenger, N., 815 

Wiedenhofer, D., Schandl, H., 2017. Empirical assessment of the 816 

OECD Inter-Country Input-Output database to calculate demand-817 

based material flows. Paris. 818 

Giljum, S., Lutter, S., Lieber, M., Schütz, H., 2014. Report Work 819 

Package 8 – Task 2 : Case study report on “resources” (D 8.2). 820 

Giljum, S., Lutter, S., Wieland, H., Eisenmenger, N., Wiedenhofer, D., 821 

Schaffartzik, A., Schandl, H., West, J., 2015b. An empirical 822 

assessment comparing input-output-based and hybrid 823 

methodologies to measure demand-based material flows. Paris. 824 

Giljum, S., Wieland, H., Lutter, S., Bruckner, M., Wood, R., Tukker, A., 825 

Stadler, K., 2016. Identifying priority areas for European resource 826 

policies: a MRIO-based material footprint assessment. J. Econ. 827 

Struct. 5, 17. doi:10.1186/s40008-016-0048-5 828 

Graedel, T.E., Bertram, M., Fuse, K., Gordon, R.B., Lifset, R., 829 

Rechberger, H., Spatari, S., 2002. The contemporary European 830 

copper cycle: The characterization of technological copper cycles. 831 

Ecol. Econ. 42, 9–26. doi:10.1016/S0921-8009(02)00101-5 832 



34 
 

Hong, J., Chen, W., Wang, Y., Xu, C., Xu, X., 2014. Life cycle 833 

assessment of caustic soda production: A case study in China. J. 834 

Clean. Prod. 66, 113–120. doi:10.1016/j.jclepro.2013.10.009 835 

Joshi, S., 2000. Product Environmental Life-Cycle Assessment Using 836 

Input-Output Techniques. J. Ind. Ecol. 3, 95–120. 837 

doi:0.1162/108819899569449 838 

Koskela, S., Mattila, T., Antikainen, R., Mäenpää, I., 2013. Identifying 839 

Key Sectors and Measures for a Transition towards a Low Resource 840 

Economy. Resources 2, 151–166. doi:10.3390/resources2030151 841 

Koskela, S., Mäenpää, I., Seppälä, J., Mattila, T., Korhonen, M.-R., 842 

2011. EE-IO modeling of the environmental impacts of Finnish 843 

imports using different data sources. Ecol. Econ. 70, 2341–2349. 844 

doi:10.1016/j.ecolecon.2011.07.012 845 

Kovanda, J., Weinzettel, J., Hák, T., 2010. Material Flow Indicators in 846 

the Czech Republic in Light of the Accession to the European 847 

Union. J. Ind. Ecol. 14, 650–665. doi:10.1111/j.1530-848 

9290.2010.00253.x 849 

Lenzen, M., 2007. Structural path analysis of ecosystem networks. Ecol. 850 

Modell. 200, 334–342. doi:10.1016/j.ecolmodel.2006.07.041 851 

Lenzen, M., 2000. Errors in Conventional and Input-Output—based Life-852 

Cycle Inventories. J. Ind. Ecol. 4, 127–148. 853 

doi:10.1162/10881980052541981 854 

Leontief, W., 1936. Quantitative Input and Output Relations in the 855 

Economic Systems of the United States. Rev. Econ. Stat. 18, 105–856 

125. 857 

Lutter, S., Giljum, S., Bruckner, M., 2016. A review and comparative 858 



35 
 

assessment of existing approaches to calculate material footprint. 859 

Ecol. Econ. 127, 1–10. doi:10.1016/j.ecolecon.2016.03.012 860 

Majeau-Bettez, G., Strømman, A.H., Hertwich, E.G., 2011. Evaluation of 861 

process- and input-output-based life cycle inventory data with 862 

regard to truncation and aggregation issues. Environ. Sci. Technol. 863 

45, 10170–7. doi:10.1021/es201308x 864 

Marin, G., Mazzanti, M., Montini, A., 2012. Linking NAMEA and Input 865 

output for “consumption vs. production perspective” analyses. Ecol. 866 

Econ. 74, 71–84. doi:10.1016/j.ecolecon.2011.11.005 867 

Marra Campanale, R., Femia, A., 2013. An Environmentally Ineffective 868 

Way to Increase Resource Productivity: Evidence from the Italian 869 

Case on Transferring the Burden Abroad. Resources 2, 608–627. 870 

doi:10.3390/resources2040608 871 

Miller, R.E., Blair, P.D., 2009. Input–Output Analysis: Foundations and 872 

extensions, Second. ed. Cambridge University Press, Cambridge. 873 

Moriguchi, Y., Kondo, Y., Shimizu, H., 1993. Analyzing the life cycle 874 

impact of cars: The case of CO2. Ind. Environ. 1–2, 42–45. 875 

Organisation for Economic Co-operation and Development (OECD), 876 

2011. Towards Green Growth: Monitoring Progress. OECD 877 

Indicators. Paris. doi:10.1787/9789264111318-en 878 

Organisation for Economic Co-operation and Development (OECD), 879 

2008. Measuring material flow and resource productivity. Volume 880 

I. The OECD guide. 881 

Piñero, P., Heikkinen, M., Mäenpää, I., Pongrácz, E., 2015. Sector 882 

aggregation bias in environmentally extended input output 883 

modeling of raw material flows in Finland. Ecol. Econ. 119, 217–884 



36 
 

229. doi:10.1016/j.ecolecon.2015.09.002 885 

Schaffartzik, A., Eisenmenger, N., Krausmann, F., Weisz, H., 2014. 886 

Consumption-based Material Flow Accounting: Austrian Trade and 887 

Consumption in Raw Material Equivalents 1995-2007. J. Ind. Ecol. 888 

18, 102–112. 889 

Schoer, K., Giegrich, J., Kovanda, J., Lauwigi, C., Liebich, A., Buyny, 890 

S., Matthias, J., 2012a. Conversion of European Product Flows into 891 

Raw Material Equivalents. 892 

Schoer, K., Weinzettel, J., Kovanda, J., Giegrich, J., Lauwigi, C., 2012b. 893 

Raw material consumption of the European Union - Concept, 894 

Calculation Method, and Results. Environ. Sci. Technol. 46, 8903–895 

9. doi:10.1021/es300434c 896 

Schoer, K., Wood, R., Arto, I., Weinzettel, J., 2013. Estimating raw 897 

material equivalents on a macro-level: comparison of multi-898 

regional input-output analysis and hybrid LCI-IO. Environ. Sci. 899 

Technol. 47, 14282–9. doi:10.1021/es404166f 900 

Seppälä, J., Mäenpää, I., Koskela, S., Mattila, T., Nissinen, A., 901 

Katajajuuri, J.M., Härmä, T., Korhonen, M.R., Saarinen, M., 902 

Virtanen, Y., 2011. An assessment of greenhouse gas emissions and 903 

material flows caused by the Finnish economy using the 904 

ENVIMAT model. J. Clean. Prod. 19, 1833–1841. 905 

doi:10.1016/j.jclepro.2011.04.021 906 

Suh, S., 2004. Functions, commodities and environmental impacts in an 907 

ecological economic model. Ecol. Econ. 48, 451–467. 908 

doi:10.1016/j.ecolecon.2003.10.013 909 

Suh, S., Heijungs, R., 2007. Power series expansion and structural 910 



37 
 

analysis for life cycle assessment. Int. J. Life Cycle Assess. 12, 911 

381–390. doi:10.1007/s11367-007-8360-9 912 

Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G., 913 

Jolliet, O., Klann, U., Krewitt, W., Moriguchi, Y., Munksgaard, J., 914 

Norris, G., 2004. System Boundary Selection in Life-Cycle 915 

Inventories Using Hybrid Approaches. Environ. Sci. Technol. 38, 916 

657–664. doi:10.1021/es0263745 917 

Treloar, G.J., 1997. Extracting embodied energy paths from input-output 918 

tables: towards an input-output-based hybrid energy analysis 919 

method. Econ. Syst. Res. 9, 375–391. 920 

doi:10.1080/09535319700000032 921 

Tukker, A., Bulavskaya, T., Giljum, S., Koning, A. De, Lutter, S., Simas, 922 

M., Stadler, K., Wood, R., 2014. The Global Resource Footprint of 923 

Nations. Carbon, water, land and materials embodied in trade and 924 

final consumption calculated with EXIOBASE 2.1. 925 

Leiden/Delft/Vienna/Trondheim. 926 

Tukker, A., Dietzenbacher, E., 2013. Global Multiregional Input–Output 927 

Frameworks: an Introduction and Outlook Global Multiregional 928 

Input–Output. Econ. Syst. Res. 25, 1–19. 929 

doi:10.1080/09535314.2012.761179 930 

UNEP, 2011. Towards a Green Economy: Pathways to Sustainable 931 

Development and Poverty Eradication. doi:10.1063/1.3159605 932 

Wang, T., Müller, D.B., Graedel, T.E., 2007. Forging the Anthropogenic 933 

Iron Cycle. Environ. Sci. Technol. 41, 5120–5129. 934 

doi:10.1021/es062761t 935 

Weinzettel, J., Steen-Olsen, K., Hertwich, E.G., Borucke, M., Galli, A., 936 



38 
 

2014. Ecological footprint of nations: Comparison of process 937 

analysis, and standard and hybrid multiregional input-output 938 

analysis. Ecol. Econ. 101, 115–126. 939 

doi:10.1016/j.ecolecon.2014.02.020 940 

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., 941 

Weidema, B., 2016. The ecoinvent database version 3 (part I): 942 

overview and methodology. Int. J. Life Cycle Assess. 21, 1218–943 

1230. doi:10.1007/s11367-016-1087-8 944 

Wiedmann, T., Wilting, H.C., Lenzen, M., Lutter, S., Palm, V., 2011. 945 

Quo Vadis MRIO? Methodological, data and institutional 946 

requirements for multi-region input-output analysis. Ecol. Econ. 70, 947 

1937–1945. doi:10.1016/j.ecolecon.2011.06.014 948 

Wiedmann, T.O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., 949 

Kanemoto, K., 2015. The material footprint of nations. Proc. Natl. 950 

Acad. Sci. U. S. A. 112, 6271–6276. doi:10.1073/pnas.1220362110 951 

Wood, R., Stadler, K., Bulavskaya, T., Lutter, S., Giljum, S., de Koning, 952 

A., Kuenen, J., Schütz, H., Acosta-Fernández, J., Usubiaga, A., 953 

Simas, M., Ivanova, O., Weinzettel, J., Schmidt, J.H., Merciai, S., 954 

Tukker, A., 2015. Global Sustainability Accounting—Developing 955 

EXIOBASE for Multi-Regional Footprint Analysis. Sustainability 956 

7, 138–163. doi:10.3390/su7010138 957 

 958 




