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HIGHLIGHTS

GRAPHICAL ABSTRACT

We develop a framework for applying
the global RCP-SSP-SPA scenario frame-
work at sub-national scales.

The framework is applied and tested for
deltas to explore migration and adapta-
tion.

We demonstrated the benefits of a
multi-dimensional approach to capture
different drivers of change.
Highlighted the need to integrate the
best science and stakeholder views.
The concept, methods, processes are
transferrable to other sub-national set-
tings with multi-scale challenges.

An integrated scenario framework for applying the global RCP-SSP-SPA scenario framework at sub-national
scale: A multi-scale and participatory approach. The generic framework (left) is applied and demonstrated
within the DECCMA project to explore migration and adaptation in deltas (right, showing the various scales of
interest and broad workflow).
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To better anticipate potential impacts of climate change, diverse information about the future is required, includ-
ing climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Represen-
tative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy
Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Cli-
mate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales
introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of
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scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an inte-
grated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The
framework has been developed and applied within the DECCMA! project with the purpose of exploring migra-
tion and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Maha-
nadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate
scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic
scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple
scales against which robustness of the human and natural systems within the deltas are tested. In addition, we
consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System
efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation ac-
tions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale
(combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for ad-
dressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments
of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future
changing conditions. The concept, methods, and processes presented are transferable to other sub-national

socio-ecological settings with multi-scale challenges.
Crown Copyright © 2019 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Scenario analysis has long been identified as a strategic management
tool to explore future changes and associated impacts for supporting ad-
aptation decision-making under uncertainty. Scenarios represent co-
herent, internally consistent, and plausible descriptions of possible
trajectories of changing conditions based on ‘if, then’ assertion to de-
velop self-consistent storylines or images of the future (e.g., Moss
etal, 2010; O'Neill et al., 2014). They are generally developed to inves-
tigate the implications of long-term climatic, environmental, and an-
thropogenic futures for designing robust policies in an environment of
interacting-complex systems and uncertainty (e.g., Evans et al., 2004;
Hall et al., 2016; Harrison et al., 2015). Representing scenarios is com-
plex due to multiple dimensions of change. In climate analysis, initially
scenarios focussed strongly on climate change, and little on other factors
(e.g., Hulme et al., 1999). The Special Report on Emission Scenarios of
the Intergovernmental Panel on Climate Change (IPCC) addressed this
deficiency by considering both climate and socio-economic changes
(Arnell et al., 2004; Nakicenovic and Swart, 2000). The Fifth Assessment
Report (IPCC AR5) extends this further to consider climate, socio-
economic, and policy dimensions of change through the new global
RCP-SSP-SPA scenario framework (Representative Concentration Path-
ways; van Vuuren et al,, 2011, Shared Socio-economic Pathways; O'Neill
et al,, 2014, and Shared climate Policy Assumptions; Kriegler et al.,
2014) (see Fig. 1). The framework provides a foundation for an im-
proved integrated assessment of climate change impacts and adaptation
and mitigation needs under a range of climate and socio-economic sce-
narios, and adaptation and mitigation policy assumptions. However, as
more dimensions are added, application becomes more difficult and
there are few full applications of a climate-socio-economic-policy
framework like the RCP-SSP-SPA approach.

Scale poses an additional challenge in climate change assessment.
Coarse resolution (e.g., global, regional, national) scenarios are widely
available, but site-specific and policy-relevant integrated assessments
need information at finer resolution (e.g., local, sub-national). Applying
the global RCP-SSP-SPA scenario framework at sub-national scale re-
quires a multi-scale approach that captures both scientific inputs and
stakeholder views. Combining expert-based and participatory methods
facilitates hybrid top-down and bottom-up approaches for developing
consistent scenarios across the multiple scales of interest, ranging
from global to sub-national and short- to long-term (e.g., van Ruijven

! DECCMA (DEltas, vulnerability and Climate Change: Migration and Adaptation) project is
part of the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA), with
financial support from the UK Government's Department for International Development
(DFID) and the International Development Research Centre (IDRC), Canada. For more in-
formation, visit the project website: http://www.geodata.soton.ac.uk/deccma/.

etal., 2014). This paper presents a conceptual framework, methods, and
processes adopted for applying the global RCP-SSP-SPA scenario frame-
work at a sub-national scale. The examples used here are coastal deltas
as analysed in the DECCMA! project. The paper is structured as follows:
Section 2 presents the concept, methods and development process of
the integrated scenario framework, and describes application and test-
ing of the framework within the DECCMA context. Sections 3 to 5 dis-
cuss the global, regional, and national scale scenario representations of
the various exogenous and endogenous drivers, while Section 6 outlines
the delta-scale scenarios and the participatory process adopted for de-
velopment of alternative adaptation policy trajectories. Finally, the key
messages are discussed and conclusions are drawn in Section 7.

2. Integrated scenario framework: a multi-scale and participatory
approach

Mid- and low-latitude deltas are home for over half a billion people
globally, and they have been identified as one of the most vulnerable
coastal environments (De Souza et al., 2015; Ericson et al., 2006;
Syvitski et al., 2009). They are susceptible to multiple climatic and envi-
ronmental drivers (e.g., sea-level rise, natural subsidence, storm surges,
changes in temperature and precipitation) as well as socio-economic
challenges (e.g., catchment management, human-induced subsidence,
population and GDP growth). These drivers of change also operate at
multiple scales, ranging from local to global and short- to long-term.

RCPs
A

SPAs: Shared climate Policy
Assumptions
(Kricgler etal., 2014)

Pathways
(van Vuuren et af., 2011)

Shared Socio economic
Pathways
(O’Neill et al., 2014)

Representative Concentration

» SSPs

Fig. 1. Simplified schematic of the latest global RCP-SSP-SPA scenario framework of the
IPCC AR5 (adapted from IPCC, 2012).
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Furthermore, deltas and low-elevation coastal zones are known for sig-
nificant urbanisation trends and land use change (e.g., Meyer et al.,
2016) and associated high levels of population mobility mainly due to
economic reasons (e.g., Foresight, 2011). However, in many narratives
of the future of deltas, they may also be the source of large numbers of
environmental refugees forced to leave due to sea-level rise and subsi-
dence (e.g., Ericson et al., 2006; Geisler and Currens, 2017; Milliman
et al., 1989; Myers, 2002; Szabo et al., 2016a). For example, a 1 m sea-
level rise impacts an area in Bangladesh with a present population of
25-30 million people, raising questions about home much migration
this might cause. This highlights the complex challenges deltas face in
terms of both their long-term sustainability as well as the well-being of
their residents and health of ecosystems that support the livelihoods of
large (often poor) populations under uncertain changing conditions
(e.g., Day et al., 2016; Szabo et al., 2016b; Tessler et al., 2016). A holistic
understanding of these challenges and the potential impacts of future cli-
mate and socio-economic changes is central for devising appropriate ad-
aptation policies (e.g., Haasnoot et al., 2012, 2013; Kwakkle et al., 2015).

When analysing the potential implications of sea-level rise and cli-
mate change on migration and adaptation in deltas, it is important to
envisage a coherent future world within which the deltas sit. At one
level, climate change is a global phenomenon, which is the result of
broad global-scale processes associated with collective greenhouse gas
emissions and the earth system's response to this. However, these pro-
cesses both occur within and impact a range of social and economic pro-
cesses such as global food prices, markets, and other economic
boundary conditions. At sub-global scales, deltas sit within the context
of regional catchments and coastal seas and they are influenced by asso-
ciated regional politics as well as national boundaries with particular
socio-economic conditions. Hence, the deltas will be subjected to
these higher/coarser scale changes (exogenous factors), but it is also im-
portant to consider drivers of changes within the deltas themselves (en-
dogenous factors) and ultimately the interaction between these drivers.
Hence, any multi-scale hybrid scenario framework needs to include the
various scales at which the biophysical and socio-economic change
drivers operate (e.g., Biggs et al., 2007; Schweizer and Kurniawan,
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Fig. 2. An integrated scenario framework based on a multi-scale hybrid approach and combining expert-based and participatory methods. Short, medium and long-term are defined
pragmatically and the boundaries are at roughly 30 and 80 years reflecting stakeholders' interest, credibility, and time horizon of climate change analysis.
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2016; Zurek and Henrichs, 2007) in the delta scale scenarios develop-
ment process. In addition, to develop locally-relevant scenarios, a par-
ticipatory process is required to include stakeholders' expertise and
interest (e.g., Allan and Barbour, 2015; Allan et al., 2018; Barbour
et al., 2018; Scolobig and Lilliestam, 2016).

Furthermore, small-scale processes (such as human responses) have
different (often shorter) time scales than larger-scale biophysical pro-
cesses (such as global sea-level rise). Consequently, detailed
stakeholder-led sub-national scale scenarios and policy choices can be
most meaningful for about 30 years (up to 2050). At longer timescales
(e.g., to 2100), only global, e.g., downscaled SSP-based and bio-
physical scenarios (e.g., for regional or national scale assessments) can
be considered with an element of confidence. For a century or more,
only long-term trajectories (e.g., global climate change and sea-level
rise scenarios) can be explored using broad-scale impact indicators/
metrics. This also highlights that scenario assumptions become broader
and simpler with increasing time scale and the associated results be-
come more generalised. As a result, these scale issues suggest the
need for a multi-scale (combined bottom-up and top-down) approach
and participatory (joint expert-stakeholder) methods for developing

A.S. Kebede et al. / Science of the Total Environment 635 (2018) 659-672

appropriate scenarios across scales (both spatial and temporal). These
assumptions lie at the heart of the DECCMA scenario development pro-
cess. Here, we develop an integrated scenario framework to address
these multi-scale scenario needs and challenges (as outlined in Fig. 2).
The framework provides a structure for a systematic representation of
the various exogenous (external) and endogenous (internal) drivers
of change across the multiple scales of interest that need to be taken
into account when assessing climate change at a sub-national scale,
such as deltas.

The generic framework is demonstrated through its application
within the DECCMA context. The main aims of DECCMA are to:
(i) evaluate the effectiveness of adaptation options in deltas, (ii) assess
migration as an adaptation in deltaic environments under a changing
climate, and (iii) deliver policy support on sustainable adaptation in del-
taic areas (Hill et al., this issue). These are explored focusing on three
contrasting coastal deltas in South Asia and West Africa: (i) the Volta
(small-scale) delta (Ghana), (ii) the Mahanadi (medium-scale) delta
(India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) (large-
scale) delta (Bangladesh/India). Fig. 3 shows the location of the study
domains and key characteristics of the three case study deltas.
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Fig. 3. Locations and key characteristics of the case study deltas in West Africa and South Asia.
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The study includes assessment and comparisons of the implications
of future climatic, environmental, and socio-economic changes, within
and across the three deltas, in terms of: (i) the short- to medium-term
(i.e., up to 2050) socio-economic impacts (e.g., on migration, well-
being and livelihoods, etc.), (ii) the long-term (i.e., up to 2100) biophys-
ical changes (e.g., in river flows and nutrient fluxes, fisheries, etc.), and
(iii) simulations of the implications of sea-level rise over a very long-
time period (i.e., beyond 2100) (e.g., area at risk of flooding). This
framework allows us to articulate how we assume the world will
evolve, in addition to the associated sub-national and local changes
within and across the three case study deltas. This allows comparison
with existing climate change, environmental change studies and adap-
tation and migration research and compares future adaptation needs
across the three deltas investigated.

In order to achieve these objectives, the multi-scale hybrid approach
within the context of the proposed integrated scenario framework
(Fig. 2) includes six levels of scenario considerations: (i) global climate
change (e.g., changes in global temperature, precipitation, and sea-level
rise) and socio-economic processes (e.g., changes in global population
and other macro-economic boundaries); (ii) regional catchments
(e.g., changing river flow and water quality issues), (iii) regional coastal
seas (e.g., fisheries), (iv) regional politics (e.g., transboundary issues),
(v) national socio-economics (e.g., population, GDP growth and urban-
isation trends), and (vi) delta-scale scenario conditions (e.g., adaptation

RCPs
(Climate)

West Africa

South Asia

and migration policies). Furthermore, the scenario process includes and
combines expert-based and participatory (stakeholder engagement)
approaches for providing improved specification of the role of scenarios
in the development of alternative adaptation policy trajectories for the
deltas. This is important for the development of appropriate and consis-
tent exogenous and endogenous scenario futures: (i) at the scale of each
delta, and (ii) across all deltas, taking into account the higher scale
boundary conditions (global, regional and national). Fig. 4 outlines ap-
plication of the integrated scenario framework in more detail, highlight-
ing the broad workflow across the multiple scales of interest. The
framework facilitates consistency of the modelling process across the
various scales and sub-components. This is particularly important in fa-
cilitating consistent integration across the biophysical and vulnerability
hotspot modelling and the overall integrated assessment of future mi-
gration and adaptation within and across the three case study deltas
(e.g., Lazar et al., 2015).

The following sections present the key assumptions and procedures
considered for the various scenario components at the global, regional,
national, and sub-national (delta) scales.

3. Global scenarios: RCPs, SSPs and SPAs

At the global scale, the key factors are greenhouse gas emissions
(and hence climate change) and socio-economic factors about the
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Fig. 4. Application of the integrated scenario framework (Fig. 2) in DECCMA, illustrating the various scales of interest and broad workflow.
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Table 1
Global scenarios for selected climate and socio-economic variables.

Global scenarios

Climate scenarios® (relative to 1986-2005 across all 2045-2065 2081-2100

RCPs):

Temperature (°C) 0.4-2.6 0.3-4.8
Sea-level rise (cm) 17-38 26-82
Socio-economic scenarios® (across all SSPs): 2050 2100
Population (billions) 8.5-10 6.9-12.7
Urban share (% of population) 55-78 58-93
GDPppp (trillion US$2005/year) 177-360 278-1014

2 IPCC (2013)
b JIASA (2016) - SSP Database, available at: https://tntcat.iiasa.ac.at/SspDb

world economy. In addition, the climate policy assumptions on the
aims, instruments and limits on implementing mitigation and adapta-
tion measures are key for linking the socio-economic futures with radi-
ative forcings and climate outcomes. Here, we considered selected
scenario combinations taking into account the global climate (RCP),
socio-economic (SSP) and policy (SPA) narratives. The RCPs (Represen-
tative Concentration Pathways) “provide information on possible devel-
opment trajectories for the main forcing agents of climate change” (van
Vuuren et al., 2011). They comprise a set of global climate scenarios ac-
counting for emissions of greenhouse gases and other air pollutants and
changes in land use. They include trajectories for “radiative forcing” of
the global climate system, a measure of the effect on the energy balance
of the system of changes in the composition of atmosphere, such as due
to emissions of greenhouse gases. Radiative forcing is usually expressed
as a change relative to pre-industrial times in net energy flux into the
climate system per unit of area. Each of the four RCPs has a different
forcing at the end of the 21st century and is named according to its forc-
ing level in 2100: RCP2.6 (~490 ppm CO; eq.), RCP4.5 (~650 ppm CO,
eq.), RCP6.0 (~850 ppm CO,, eq.), and RCP8.5 (~1370 ppm CO, eq.). On
the other hand, the SSPs (Shared Socio-economic Pathways) are “refer-
ence pathways describing plausible alternative trends in the evolution
of society and ecosystems over a century timescale, in the absence of cli-
mate change or climate policies” (O'Neill et al., 2014). They outline five
plausible social, economic and technical narratives and alternative de-
velopment pathways that humankind could follow over the next cen-
tury, in terms of, for example, the level of international co-operation,
market freedom, regional equality, and technological development.
They also represent the different levels of challenges to mitigation and
adaptation: SSP1 (Sustainability - low mitigation and adaptation chal-
lenges); SSP2 (Middle of the road - intermediate mitigation and adap-
tation challenges); SSP3 (Fragmentation/regional rivalry - high

mitigation and adaptation challenges); SSP4 (Inequality - high adapta-
tion and low mitigation challenges); and SSP5 (Conventional/fossil-
fuelled development - high mitigation and low adaptation challenges).
Table 1 presents a summary of the global climate and socio-economic
scenarios across the various RCPs and SSPs.

Each paired RCP and SSP scenario combination represents a family of
macro-scale scenarios. However, scenario pathways designed to
achieve a particular radiative forcing level requires consideration of ap-
propriate mitigation and adaptation policies to achieve the specified
emission levels and cope with the resulting climate change (Ebi et al.,
2014). The SPAs (Shared climate Policy Assumptions) represent the
last component (third dimension) of the global scenario framework.
They “capture key policy attributes such as the goals, instruments and
obstacles of mitigation and adaptation measures” (Kriegler et al.,
2014). They play a key role in linking the RCPs and SSPs and provide a
platform for devising common assumptions across a range of studies
to assess the consequences of specified adaptation and/or mitigation
policy approaches. However, the detailed specification and global level
narratives and quantifications of the SPAs are still less developed. Fur-
thermore, the RCPs, SSPs and SPAs are not entirely independent, while
in theory possible, only certain combinations are plausible (Riahi et al.,
2017). For example, only SSP5 (associated with the highest economic
growth) could be fully compatible with RCP8.5 and lead to emission
levels that are consistent with RCP8.5, while RCP2.6 emission levels
could not be attained under an SSP3 world. Similarly, consideration of
the SPAs for linking a particular RCP/SSP combination depends on the
aims, instruments and limits for implementing appropriate mitigation
and adaptation policies under the climate and socio-economic change
scenarios considered. For example, this may depend on regional cooper-
ation and national participation and adaptation needs, and such policy
assumptions need to be developed through a participatory process at
multiple scales. These limitations are recognised and considered within
the integrated framework and the scenario combinations selection pro-
cess adopted within DECCMA as discussed below.

In this study, we focus on the global RCP8.5 scenario in order to con-
sider the strongest climate signal, with the greatest atmospheric green-
house gas concentrations in the late 21st century. This maximises the
sampling of uncertainty in future climate changes and provides a chal-
lenging yet plausible scenario context against which to test the robust-
ness of human and natural systems and climate change adaptation
measures. Furthermore, it was recognised that up to 2050, practically
any RCP (including RCP8.5) can be combined with any SSP, as high di-
vergence of forcings from the different RCPs occur mainly beyond
2050s. However, after 2050 only SSP3 and SSP5 can produce the re-
quired emissions, although SSP2 is close. In DECCMA, three SSP-based

Types of Simulations and Selected Scenarios

Medium-—(~SSP3)
RCP8.5 + Medium (vSSP2)
Medium-+ (~“SSP5)

Socio-economic Simulations
(e.g., migration, well-being
and livelihoods, etc.)

RCP8.5 + SSP5

Biophysical Simulations
(e.g., changing river
flows, fisheries, etc.)

Sea-level rise Simulations

RCP8.5 .
+ (e.g., areas at risk of
Post-2100  coastalflooding)
SLR scenarios .
> Time

Present 2030

2100

Fig. 5. Summary of the DECCMA RCP and SSP scenarios for the different types of simulations over the three respective time horizons (see Nicholls et al., 2017 for further details on the

selection process).
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scenario narratives are identified for up to 2050: Medium (~SSP2),
Medium- (~SSP3) and Medium+ (~SSP5) that are consistent with the
RCP8.5 climate scenario. The Medium- and Medium+- scenarios repre-
sent: low economic growth, high population growth and low level of ur-
banisation; and high economic growth, low population growth and high
level of urbanisation, respectively. These narratives are then used to
downscale the global projections to regional and national levels. The nar-
ratives also inform development of the participatory-based delta-scale
scenarios and adaptation policy trajectories for up to 2050. Beyond
2050, SSP5 is considered, as it is compatible with RCP8.5 and will provide
continuity for pre- and post-2050 analysis. The post-2050 analysis based
on the combination of RCP8.5 and SSP5 forms the focus of the long-term
biophysical assessment, which is more exploratory in nature and does not
include stakeholder-driven scenarios. Fig. 5 presents a summary of the se-
lected RCP and SSP scenario combinations and associated time horizons
considered for assessing different socio-economic and biophysical com-
ponents of the delta systems investigated within DECCMA.
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4. Regional scenarios: catchments, coastal seas and regional politics

We consider three regional catchments: (i) the Volta catchment in
Ghana, (ii) the Mahanadi catchment in India, and (iii) the GBM catch-
ment in India and Bangladesh; and two regional coastal seas: (i) the
Gulf of Guinea and (ii) the Bay of Bengal (which the Mahanadi and
GBM deltas share). The catchments study includes river flow and nutri-
ent modelling for the River Volta system, and catchment water quality
modelling for the Mahanadi and GBM catchments, using the Integrated
Catchment Model, INCA (Whitehead et al., 2015a, 2015b). The coastal
sea study includes oceanographic/fisheries modelling using combined
POLCOMS-ERSEM and fish species-based (SS-DBEM) and size-
spectrum models (Fernandes et al., 2013, 2016, 2017; Mullon et al.,
2016). The primary drivers for these models are the global and regional
climate models. Four Global Climate Models (GCMs) and two Regional
Climate Models (RCMs) are used to generate downscaled climate data
for the study regions (catchments and coastal seas) under the RCP8.5
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Fig. 6. Changes in annual mean temperature and precipitation (relative to 1971-2000 levels) under the RCP8.5 scenario used in this study (the RCP4.5 data is shown for comparison).
Changes shown are for regions around the Volta (—10 to 5°E, 0 to 15°N), Mahanadi (75 to 90°E, 15 to 30°N) and GBM (70 to 100°E, 20 to 35°N) catchments. Note: the scales (in y-

axes) differ between catchments for display purposes.
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Table 2
Catchment scenarios for selected socio-economic variables (as % change relative to 2010;
see Jin et al,, this issue; Whitehead et al., this issue for further details).

Catchments

Volta catchment GBM and Mahanadi

catchments

2050s 2090s 2050s 2090s
Population:
Medium— (~SSP3) 63 67 16 —84
Medium (~SSP2) 92 138 33 29
Medium+ (~SSP5) 129 254 58 108
Intensive agricultural land use:
Medium— (~SSP3) 94 68 4 6
Medium (~SSP2) 78 85 5
Medium+ (~SSP5) 130 175 7 10
STP? effluent discharge (given urban % change):
Medium— (~SSP3) 45 67 16 —84
Medium (~SSP2) 60 138 33 29
Medium+ (~SSP5) 70 150 58 108
Reach irrigation water demand:
Medium— (~SSP3) 94 68 18 18
Medium (~SSP2) 77 85 22 22
Medium+ (~SSP5) 130 75 25 30

2 STP: Sewage treatment plant discharge.

scenario. These are: (i) CORDEX Africa dataset based on the CNRM-CMS5,
CanESM2, and HadGEM2-ES GCMs and the RCA4 RCM, and (ii) PRECIS
South Asia dataset based on the CNRM-CM5, GFDL-CM3 and
HadGEM2-ES GCMs and HadRM3P RCM (Janes and Macadam, 2016;
Macadam, 2017). The GCMs were selected to attempt to span the uncer-
tainty in future changes in the climatic factors (e.g., mean temperature
and rainfall) simulated by the full range of CMIP5 GCMs (see
Macadam et al,, this issue. for more information). Fig. 6 presents the re-
gional climate projections for the three catchments under two RCP sce-
narios downscaled from simulations of 38 CMIP5 GCM (Global Climate
Model) outputs, using Regional Climate Model (RCM) simulations.

At the catchment scale, the downscaled daily precipitation and tem-
perature data for the three catchments are used to drive the INCA model
(Whitehead et al., 2015a, 2015b). The simulations from the catchment
models are then provided for the downstream coastal sea models.
Socio-economic scenarios also affect water quality in that changes to in-
dustry, agriculture and population levels will affect nutrients (N and
P) and these changes in nutrient fluxes are likely to affect coastal sys-
tems (Jin et al., 2015). In addition, the catchments' modelling takes
into account socio-economic scenarios as a means of integrating social
aspects of future changes. The catchment scale socio-economic scenar-
ios are defined based on the three SSP socio-economic development
pathways and scenario narratives that are compatible with the RCP8.5
scenario (as outlined in Fig. 5). There are many factors that affect the

socio-economic conditions and potential futures in the catchments
from a flow and a water quantity perspective. These include: population
change, effluent discharge, water demand for irrigation and public sup-
ply, land use change, atmospheric deposition, and water transfer plans,
which are defined under each scenario (see Jin et al., this issue;
Whitehead et al., this issue). Table 2 summarizes the scenarios of se-
lected socio-economic drivers for the three study catchments.

For the coastal sea modelling, the GCMs provide physical and bio-
geochemical data at the ocean boundary of the sea models, while the
RCMs provide physical data at the air-sea boundary. River flow and nu-
trient data provide an additional input to the regional sea models and
for the Volta, GBM and Mahanadi, these are taken from the INCA catch-
ment model, with the medium SSP scenario used for the nutrients.
Overall, the RCPs are the primary drivers of the regional sea modelling;
SSPs have only a minor effect through river nutrient levels. Table 3 sum-
marizes future projections of the key regional sea climate drivers for the
Gulf of Guinea and Bay of Bengal regions.

For fisheries modelling, total fish productivity is derived from the re-
gional sea models and uses the same scenarios (Blanchard et al,, 2012).
The species-based fisheries model allows considering a further anthro-
pogenic pressure via fishing effort scenarios, focussing on the key spe-
cies that provide the largest marine catches in the two regional coastal
seas (Fernandes et al., 2013, 2016, 2017). The fishing scenarios are con-
sidered based on the concept of Maximum Sustainable Yield (MSY),
which is defined as the highest average theoretical equilibrium catch
that can be continuously taken from a stock under average environmen-
tal conditions (Hilborn and Walters, 1992; Fernandes et al., 2016). The
three scenarios considered for providing fish catch and biomass projec-
tions are:

(i) Sustainable management: effort consistent with average fishing
at MSY level. This is the value that results in maximum catches
while maintaining the population at their productivity peak,

(ii) Business as usual: Fishing mortality consistent with the average
of recent estimates of fishing mortality, and

(iii) Exploitation: Corresponds to a scenario where management is
not a constraint to the fishery. A generalised over-exploitation
scenario of three times MSY is considered for all the species
studied.

Table 4 shows the two scenarios of fishing mortality and the level of
exploitation considered for different fish species in the Gulf of Guinea
and Bay of Bengal regional coastal seas.

5. National scenarios: Ghana, Bangladesh and India

At the national scale, the socio-economic scenarios for the three
countries (Ghana, India, and Bangladesh) are based on the SSP Public

Table 3
Future climate projections of the three deltas and the wider areas of the Gulf of Guinea and Bay of Bengal, change from present-day conditions under the RCP8.5 scenario.
Gulf of Guinea Bay of Bengal
Volta delta Wider area GBM delta Mahanadi delta Wider area
Surface temperature (°C) Mid-century +1.0to +1.7 +1.0to +1.8 +0.9to +4.2 +0.8 to +4.2 +09 to +4.4
End-century +2.5to +3.6 +2.5to +3.6 +2.6 to +6.6 +2.6to +6.3 +2.6to +6.5
Precipitation (%) Mid-century —30to +2 —1to +2 —3to +4 —8to +25 —2to +20
End-Century —25to +40 —4to +13 —45to +2 —25to +4 —10to —2
Maximum wind speed (ms™~')? Mid-century +0.1to +0.2 —0.6to +0.1 —0.3to +0.5 —0.5to +0.4 —0.2to +0.3
End-century +0.3 to +0.6 —0.7 to +0.4 —02to+1.3 Oto+1.3 —0.3to +0.1
Frequency of high wind events (days per decade)” Mid-century +4to +9 —10to +2 —5to +10 —37to +13 —1to +4
End-century +27 to +34 —11to+5 —50to +30 —65 to +55 —6to +5
Sea-level rise (m, relative to 2000 baseline) Mid-century +0.21 to 4+0.36 +0.18 to 4+-0.33
End-century +0.55 to +1.1 +0.49to +1.0

¢ Maximum wind speed is defined as the 98th percentile of the daily mean wind speed.

b High wind events are defined as daily mean wind speed exceeding 8 ms™" for the Gulf of Guinea and 13 ms ™" for the Bay of Bengal.
¢ These are based on thermal expansion and ice melt only, and they do not include local subsidence.
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Table 4

667

Fishing management scenarios for selected species in the Gulf of Guinea and Bay of Bengal regions.

Species Source

Fisheries Scenarios (as a factor of msy)

Business as usual Sustainable management

Brachydeuterus auritus
Ilisha Africana
Tenualosa ilisha
Harpadon nehereus
Rastrelliger kanagurta

Gulf of Guinea

Bay of Bengal

Bannerman et al. (2001)
Francis and Samuel (2010)
Fernandes et al. (2016)
Khan et al. (1992)
Mansor and Abdullah (1995)

143 0.39
134 1.09
1.86 0.61
3.78 0.66
0.73 1.02

Database Version 1.1 (IIASA, 2016). This data provides historic trends
and future projections of the changes in population, urban share (as
% of total population in urban areas), and GDPppp through the 21st
century for each country under the five SSP scenarios (Fig. 7).
Together, these data are used as one of the boundary conditions to
inform the delta-specific scenarios and adaptation policies develop-
ment process. This is facilitated by providing the relevant stake-
holders with a summary of these national level future socio-
economic conditions to provide a context for the deltas under the
selected SSP scenarios.

6. Delta scenarios: adaptation policies and the participatory process
6.1. Scenarios and adaptation policies

At the delta scale, there are endogenous and exogenous environ-
mental and socio-economic change drivers. As discussed above, the cli-
mate, environmental and socio-economic change drivers that operate at
higher/coarser spatial scales (e.g., national, regional, global) represent
the exogenous drivers. They define the boundary conditions for the
delta scale scenario and adaptation policy narratives and trajectories
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Fig. 7. National level historic trends and future projections of population, urbanisation, and GDPppp in Ghana, Bangladesh, and India under the selected three SSP scenarios. Note: the scales

(in y-axes) differ between countries for display purposes.
(Source: IIASA, 2016).
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(see Fig. 4). Global climate change/sea-level rise and markets and food
prices are examples of mainly exogenous pressures, while local
human-induced subsidence (e.g., due to groundwater extraction),
local political economy and socio-economic/ecological conditions are
examples of endogenous drivers.

In this analysis, each case study delta is considered as a distinct
socio-ecological system for which there are endogenous and exogenous
pressures that are identified and defined as scenarios accordingly. Fig. 8
shows examples of delta-level scenario projections of population and
GDP. For population, SSP-based projections are obtained from spatially
explicit data available from Jones and O'Neill (2016). In addition, the
Component Population Projection Method is used to develop medium
delta-scale projections for each case study delta (see Codjoe et al., in
prep. for further information). On the other hand, an expert-based ques-
tionnaire was used in order to obtain expert judgment and visions on
the future economic conditions providing GDP projections and associ-
ated sectoral shares for each delta (see Arto et al., in prep. and
Cazcarro et al., 2018 for further information).

The climate and socio-economic scenarios at the various scales
(outlined above) provide divergent and challenging scenarios contexts
investigated in this study. They are used for testing the robustness of
the human and natural systems within the deltas by considering alter-
native adaptation policies. The overall conceptual framework, scenario
matrix architecture, and the participatory process employed for

development of the alternative adaptation policy options explored are
outlined below (see Fig. 9).

As part of the participatory process, a set of procedures are consid-
ered through which stakeholders and experts collaborate to develop,
test, and/or validate the scenarios and adaptation policy trajectories
for each delta (see Section 6.2). Building on the ESPA Deltas experiences
(see Allan and Barbour, 2015; Nicholls et al., 2016), the main purpose of
the participatory process is to integrate inputs and views of different in-
terested groups as appropriate. The participatory process was facilitated
by a systematic conceptualisation of the links between the global cli-
mate (RCPs) and socio-economic (SSPs) scenario narratives and policy
assumptions (SPAs) for developing appropriate national level adapta-
tion policy trajectories and associated specific interventions for each
delta.

Few studies have systematically considered different high-level ad-
aptation futures consistent with the SPA concept. One successful exam-
ple is Hall et al. (2016) who analysed national infrastructure under a
range of future conditions, including policy trajectories (see also
Hickford et al., 2015) (Table 5). Their four-fold policy approach provides
a high-level expression of policy choices and has been adopted here
(Chapman et al., 2016; Suckall et al., 2018). Drawing on Hall et al.
(2016), four distinct visions of future adaptation choices (Adaptation
Policy Trajectories — APTs) are proposed here. These are considered to
be visionary but realistic in addressing potential future changes.
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Fig. 8. Examples of delta-level scenarios of (a) SSP-based and (b) Cohort-Component based population projections, and (c) projections and (d) compositions of GDP. (The GDP data are
developed based on a participatory process with country economic experts; see Arto et al., in prep. for more detail and maybe subject to revision). Note: the ‘V’, ‘M’, T and ‘B’ stands for

Volta, Mahanadi, and IBD, GBM (Bangladesh) deltas, respectively.
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Each APT is tested by taking into account the higher-scale scenario
boundary conditions, historic trends and baseline conditions (e.g., based
on household survey, adaptation inventory and policy reports analysis
conducted within DECCMA). The four APTs are defined in Table 5 and
compared to the ITRC study (Hall et al., 2016) (see Chapman et al.,
2016; Suckall et al., 2018 for further details). They encourage thinking
of different portfolios of responses, which may include radical change
compared to current practice (especially under System Restructuring).

The narratives and key characteristics of the four APTs are defined
based on a set of broad adaptation categories and description of how
they are projected to evolve over time (between now and 2050)
under each trajectory. To this end, thirteen broad categories are defined
based on three main theoretically-derived adaptation policy compo-
nents as outlined in Fig. 10.

Each APT contains specific national level adaptation interventions
(within the thirteen categories), some of which are delta specific. Exam-
ples (one per category under the three main components) include I.
livelihood diversification, use of climate resilient farming techniques, use
of co-operatives, access to markets, and land re-distribution to the poor;
1. river/coastal management infrastructure, community training in disaster
risk reduction, use of high land during flood time, and relocation of house-
holds; and IIL. use of saline tolerant crops, mangrove forest planting, pro-
moting protecting green spaces, and wildlife conservation in natural
heritage sites. The gains and losses associated with each APT under the
various scenarios can be assessed by focusing on the quantified inter-
ventions for each of the four policy trajectories.

6.2. Participatory process

Arriving at these policy scenarios was based on a four-stage partici-
patory process outlined below:
Stage 1: Narratives of adaptation policy trajectories (Expert-led)

* Preliminary expert-led story-telling to create a narrative for the APTS,
and identification of adaptation interventions relevant to each APT for
the chosen delta. Estimation of provisional trajectories of how these
interventions will progress from baseline to 2050; followed by
modelled projections of these trajectories.

Stage 2: Evaluate and validate (Engaging stakeholders)

« Stakeholder evaluation of modelled outputs of the APTs, along with
the pre-identified adaptation interventions, and their trajectories
under a medium scenario; coupled with comment on which of the
APTs most closely resembles what they anticipate as their existing
policy trajectory (i.e., Business as Usual, BaU, policy) and what tweaks
need to be made to this APT to best align it with what their current
policy vision for the future is. Stakeholder views on policy implemen-
tation and the factors influencing this are also sought.

Stage 3: Revise and remodel (Expert-led)

Project re-modelling of amended APTs in the light of stakeholder com-
ments and modifications to the BaU APT, with preparation of APT/RCP
projections such that a representative spectrum of possibilities can be
made available to stakeholders in stage 4.

Stage 4: Refine and finalise (Re-engage stakeholders)

Stakeholders are presented with the newly revised and re-modelled
results across the ranges of climate and socio-economic scenario un-
certainties, with the opportunity to further adjust the BaU APT. In ad-
dition, stakeholders will give their views on how well society in 2050
is likely to respond to the increased impacts of climate change
projected to occur between 2050 and 2100.

The four stages are discussed in greater detail in Nicholls et al.
(2017).

7. Discussion and conclusions

The study highlights the important role of scenarios in understand-
ing uncertainties in climate change adaptation policy decision-making.
Scenarios provide alternative long-term future outlooks to explore im-
plications of changes in climatic, environmental, and socio-economic
conditions for devising robust policies. Historically, most climate change
studies focussed on climatic drivers only. However, in integrated assess-
ments, climate scenarios need to be coupled with appropriate socio-
economic scenarios (Nakicenovic and Swart, 2000). A number of such
scenarios and frameworks have been developed and applied
recognising these limitations (e.g., Arnell et al., 2004; Carter et al.,
2007; Mahmoud et al., 2009; Moss et al., 2010). This also highlights re-
cent advances in scenario development exercise and techniques
(e.g., Borjeson et al., 2006). Most notable is the latest global RCP-SSP-
SPA scenario framework developed for the IPCC AR5, which integrates
the climate, socio-economic, and policy components. However, full ap-
plication of such global framework at sub-national scales raises two im-
portant challenges in integrated assessment of interacting human-
natural systems under uncertain future changing conditions: (i) added
complexity in capturing the multiple (i.e., climate-socio-economic-pol-
icy) dimensions of change, and (ii) issues of scale. Here, we present an
integrated scenario framework that recognises these challenges based
on a multi-scale (combined top-down and bottom-up approaches)
and participatory (joint expert-stakeholder) scenario methods.

The paper demonstrates application of this global RCP-SSP-SPA sce-
nario framework at sub-national scale using deltas as an example. It pre-
sents the overall scenario framework, methods, and processes adopted
for the development of scenarios across the multiple scales of interest
(from global to delta scales and short- to long-term changes) as devel-
oped and applied within the DECCMA project. DECCMA is analysing
the future of three contrasting deltas across South Asia and West
Africa: (i) the Volta delta (Ghana); (ii) the Mahanadi delta (India);
and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/

Table 5
The four adaptation policy trajectories (APTs) as defined in this study and compared to the
ITRC study (Hall et al., 2016).

Definition of the Four APTs

DECCMA ITRC*

A. Minimum intervention (MI): aims to
minimise costs while protecting
citizens from climate change impacts.

Minimum intervention (MI): takes a
general approach of minimal
intervention, reflecting historical
levels of investment, continue
maintenance and incremental change
in the performance of the current
system.

Capacity expansion (CE): focuses on
planning for the long-term by
increasing investment in
infrastructure capacity.

B. Economic capacity expansion (ECE):
focuses primarily on encouraging
economic growth and utilizing the
increased financial capacity it brings
to protect the economic system from
climate-induced harm.

C. System efficiency enhancement
(SEE): focuses on promoting most
efficient management and technological and policy interventions
exploitation of the current system, to optimise the performance and
looking at ways of distributing labour, efficiency of the current system,
balancing livelihood choices, and best  targeting both supply and demand.
utilizing ecosystem services to
enhance livelihoods and wellbeing
under climate change.

System efficiency (SE): focuses on
deploying the full range of

D. System restructuring (SR): embraces

pre-emptive fundamental change to
the social and physical functioning of
the delta system in response to
serious threats to the delta's current
socio-ecological system.

System restructuring (SR): focuses on
fundamentally restructuring and
redesigning the current mode of
infrastructure service provision,
deploying a combination of targeted
centralisation and decentralisation
approaches.

¢ ITRC: UK Infrastructure Transitions Research Consortium.
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Fig. 10. The three main components and thirteen broad categories of the adaptation policy trajectories (adapted from Suckall et al., 2018).

India). This includes comparisons between these three deltas. The
framework provides improved specification of the role of scenarios to
analyse the future state of adaptation and migration across the case
study deltas. To this end, six discrete levels of scenarios are considered:
(i) global (climate change, e.g., sea-level rise and temperature change;
and socio-economic assumptions, e.g., global food prices and markets);
(ii) regional catchments (e.g., changing river flows), (iii) regional
coastal seas (e.g., fisheries), (iv) regional politics (e.g., transboundary is-
sues), (v) national socio-economic conditions (e.g., population and GDP
growth), and (vi) delta scenarios (e.g., adaptation and migration
policies).

At the global scale, the RCP8.5 climate scenario has been selected as
the main focus in order to consider the strongest climate signal. It max-
imises the sampling of uncertainty in future climate changes and repre-
sents the most challenging scenario against which to test the robustness
of the human and natural systems and adaptation policies in the deltas.
Up to 2050, the RCP8.5 scenario can be combined with any socio-
economic (SSP) scenario, while beyond 2050 only SSP3 and SSP5 have
consistent emissions, although SSP2 is close. In this study, three SSP-
based scenario narratives are identified: (i) Medium (middle of the
road) scenario (~SSP2), (ii) Medium- scenario of low economic and
high population growth, and low level of urbanisation (~SSP3), and
(iii) Medium+ scenario of high economic and low population growth,
and high level of urbanisation (~SSP5) scenarios that are consistent
with the RCP8.5 scenario. For post-2050 analysis, we combine the
RCP8.5 climate and SSP5 socio-economic scenarios, which will provide
consistent temporal continuity (together with the Medium+- scenario).
Based on these global scenario narratives, downscaled climate and
socio-economic scenarios are considered at the regional (catchments
and coastal seas) and national scales based on downscaled RCM simula-
tions (e.g., Macadam et al., this issue) and open source databases
(e.g., national SSP projections from [IASA). At the delta scale, a participa-
tory process is used for the development of four alternative adaptation
policy trajectories, APTs (i. Minimum intervention, ii. Economic capacity
expansion, iii. System efficiency enhancement, and iv. System
restructuring). Using a list of quantified specific adaptation interven-
tions, the gains and losses under each APT are assessed for each delta
taking into account uncertainties of the various future climatic, environ-
mental, and socio-economic scenarios. The study demonstrates the ben-
efits of a multi-dimensional scenario framework to capture the different
drivers of change. It also recognises the need to use the best science and
stakeholder engagement to deliver rigorous scenario development pro-
cesses. Such an approach facilitates the development of appropriate and
consistent endogenous and exogenous scenario futures across the mul-
tiple scales of interest. The lessons are transferable and the approach

could be applied widely to other deltas, other coastal systems, and in
fact to any sub-national problems with multiple drivers and scales.
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