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A B S T R A C T

This study assesses the reductions in air pollution emissions and subsequent beneficial health effects from dif-
ferent global mitigation pathways consistent with the 2 °C stabilization objective of the Paris Agreement. We use
an integrated modelling framework, demonstrating the need for models with an appropriate level of technology
detail for an accurate co-benefit assessment. The framework combines an integrated assessment model (GCAM)
with an air quality model (TM5-FASST) to obtain estimates of premature mortality and then assesses their
economic cost. The results show that significant co-benefits can be found for a range of technological options,
such as introducing a limitation on bioenergy, carbon capture and storage (CCS) or nuclear power. Cumulative
premature mortality may be reduced by 17–23% by 2020–2050 compared to the baseline, depending on the
scenarios. However, the ratio of health co-benefits to mitigation costs varies substantially, ranging from 1.45
when a bioenergy limitation is set to 2.19 when all technologies are available. As for regional disaggregation,
some regions, such as India and China, obtain far greater co-benefits than others.

1. Introduction

Air pollution is currently the 5th biggest risk to health, being re-
sponsible for about one in every nine deaths annually (Forouzanfar
et al., 2016; World Health Organization, 2016). According to World
Health Organization (hereinafter WHO), air pollution is the cause of 7.2
million premature mortalities, of which ambient air pollution is re-
sponsible for 3–4 million (World Health Organization, 2016). However,
recent literature estimates that this amount could be even larger
(Lelieveld et al., 2019a). The most harmful pollutants in terms of health
impacts are fine particulate matter (PM2.5) and Ozone (O3) (Brauer
et al., 2016).

One of the main sources of air pollution is the combustion of fossil
fuels, which is also the main source of greenhouse gas (GHG) emissions.
This means that climate change and air pollution are two interrelated
environmental risks, and many polices aimed at limiting GHG emissions
reduce air pollution, generating health co-benefits (Lelieveld et al.,

2019b; Scovronick et al., 2019; Thompson et al., 2014). Similarly, po-
licies focusing on reducing air pollutants can also reduce GHG emis-
sions, although GHG emission increases can also occur.

There is a growing interest within the research and policy com-
munities in quantifying the mitigation costs and health co-benefits of
climate policy. These depend on many factors such as the global tem-
perature target and associated emissions reduction, the temporal allo-
cation of the carbon budget (when reductions are made), the spatial
distribution of the global mitigation effort (who makes the reductions),
and the technological pathway associated with the reduction of emis-
sions (how the reductions are made). In this regard, West et al. (2013)
examined the global co-benefits of GHG mitigation by comparing a
baseline with a decarbonization scenario where radiative forcing is
limited to 4.5 W/m2 by the end of the century (“Representative Con-
centration Pathway”, RCP4.5). They showed that the monetized co-
benefit exceeds the mitigation cost, and they locate the largest net
benefits in South and East Asia, specifically India and China. Similar
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results can be found in Markandya et al., (2018), where the authors
demonstrated that global health co-benefits outweigh the mitigation
cost for both Paris Agreement climate objectives following different
“burden sharing” criteria (2 °C and 1.5 °C stabilization). These results
were also confirmed in a recent study (Vandyck et al., 2018), where a
range of co-benefits was explored. They concluded that health co-ben-
efits are greater than the mitigation costs, the difference being parti-
cularly large in the two regions mentioned above. Another study
(Shindell et al., 2018) focused on the location of and variation in these
co-benefits depending on the availability of negative-emission-tech-
nologies for a decarbonization scenario (RCP2.6); however, in this
paper the assumptions on the air pollutant reductions are overly sim-
plified as shown in this work. Additionally, a recent paper found that
significant co-benefits could also occur in developed countries, such as
USA (Ou et al., 2018). These results are later compared with the out-
comes obtained in this work in order to identify potential similarities or
discrepancies (see Discussion). Finally, there are several articles that
review and classify co-benefits studies, showing a large increase in the
number of studies over recent years (Chang et al., 2017; Deng et al.,
2017; Gao et al., 2018).

While there exist several studies, which assess the potential health
co-benefits associated with different decarbonization futures, the di-
vergences in co-benefit estimations due to different technological de-
ployments have not been analyzed in the literature. This study applies
an integrated modelling framework to estimate global and regional
health co-benefits, mitigation costs, and possible trade-offs of different
technological deployments for achieving the 2 °C target of the Paris
Agreement. The technology scenarios are based on the IPCC’s Fifth
Assessment Report (Anderson and Peters, 2016) and assume different
levels of deployment and use of some critical mitigation technologies
such as bioenergy, nuclear power, and carbon capture and storage
(CCS). For each scenario we assess the emission pathways for GHGs
(CO2, CH4, N2O, halocarbons) and air pollutants, with the associated
GHG mitigation costs and health co-benefits.

In the modelling framework applied in this study an integrated
model of energy, land, and emissions (Global Change Assessment
Model, GCAM) is used to generate GHG and air pollutant emissions for
each set of pathways examined. The air pollutant emissions are then
used in an air quality model (TM5-FASST model), which provides PM2.5

and O3 concentration levels and estimates health impacts in terms of
premature mortality. Finally, the Value of Statistical Life (VSL) ap-
proach, based on data from the OECD, is used to monetize these im-
pacts, incorporating into the analysis some additional estimates of
morbidity costs (Lindhjem et al., 2012; OECD, 2014, 2016). The main

innovation of this study is the global modelling of technology-based
mitigation scenarios, coupled with an air quality model, in order to
obtain health co-benefits under different energy supply pathways.

2. Materials and methods

2.1. Methodology

The study presents an integrated modelling framework which se-
quentially connects the Global Change Assessment Model (GCAM)
(version 4.3), the Fast Scenario Screening Tool (TM5-FASST) and an
economic valuation approach which computes monetized health co-
benefits of mitigation. A combined use of these models and methods
enables an integrated assessment of health impacts of different sce-
narios and quantify the impact of different technological deployment
pathways on air-pollution co-benefits. Due to differences between the
models used in this framework, we developed an automated procedure
to connect the models used. First, where necessary, e.g. OC, emission
units are changed to those expected by TM5-FASST. Second, the
emissions obtained from GCAM are downscaled to country level before
re-aggregating them to the regions used in TM5-FASST (see
Supplementary Data).

The combined use of the tools presented in the integrated modelling
framework allows the modeler to control all the features of each sce-
nario such as socioeconomic narratives, energy and land use char-
acteristics, regional emission reduction efforts and future technological
pathways. The detailed design of these scenarios makes it possible to
explore health co-benefits of future pathways that could not be ana-
lyzed by taking future emission trajectories from published databases or
model ensembles, which facilitates new research as presented herein.
Fig. 1 shows the structure of the integrated modelling framework and
further details can be found in a previous study (Markandya et al.,
2018).

GCAM is an integrated assessment model developed by the Joint
Global Change Research Institute that connects different modules
(economy, energy, land use, emissions, and climate), and operates in 5-
year time steps from 1990 to 2100. It is divided into 32 geopolitical
regions and includes the capability to incorporate carbon taxes, carbon
trading, regulations, and accelerated deployment of energy technology.
The model also reports the mitigation costs calculated as the area below
the marginal abatement curve for GHG reduction, but it does not affect
to GDP, which is exogenously defined. There are representative studies
regarding GCAM details and applications (Brenkert et al., 2003; Calvin
et al., 2014; Clarke et al., 2008; Wise et al., 2009) with on-line

Fig. 1. Summary of the developed integrated modelling framework.
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documentation also available (http://jgcri.github.io/gcam-doc/).
Focusing on the emissions module, GCAM tracks the GHG and air-

pollutants emissions from energy and land-use systems. It covers the
major pollutant species, namely black carbon (BC) and organic carbon
(OC), nitrous oxides (NOx), sulfur dioxide (SO2), carbon monoxide
(CO), ammonia (NH3), and non-methane volatile organic compounds
(NMVOC). In particular, the sum of BC and OC is an approximation of
primary PM2.5 emissions (Kanakidou et al., 2005). Most of the pollu-
tants are calibrated based on data from the Emissions Database for
Global Atmospheric Research (EDGAR, Janssens-Maenhout et al.,
2019), except for BC and OC, where additional studies are used (Bond
et al., 2007; Lamarque et al., 2010). All these gases are the main pre-
cursors for both atmospheric PM2.5 and O3. Several studies make use of
the GCAM emissions module (Shi et al., 2017; Smith et al., 2005; Smith
and Wigley, 2006; Wang et al., 2016).

The TM5-FASST scenario screening tool is a global air quality source
receptor model developed by the European Commission’s Joint
Research Centre that enables users to analyze different scenarios or
emission pathways and their effects in terms of human health impacts
and damage to ecosystems. The model uses parametrizations of me-
teorology and atmospheric chemistry drawn from more complex
models and estimates the concentrations of PM2.5 and O3 in a receptor
(gridded cell or region) driven by the emissions of different precursors
in different sources (i.e. as reported by GCAM). Thus, it covers effects
from not only primary but also secondary pollutants. For O3 exposure
the model uses the 6mDMA1 metric (Jerrett et al., 2009).

In terms of health impacts assessment, TM5-FASST calculates pre-
mature mortality attributable to PM2.5 based on the integrated ex-
posure-response functions (IER) from Burnett et al. (2014). It includes 5
causes of death, namely ischemic heart disease (IHD), chronic ob-
structive pulmonary disease (COPD), stroke, lung cancer (LC), and
acute lower respiratory infection (ALRI). For premature mortality re-
lated to O3 exposure, the model uses exposure-response functions from
Jerrett et al. (2009). Even though recent studies have updated the
parameters for estimating mortalities attributable to O3 (Turner et al.,
2016), they are not included in the version of the model used.

The model defines, for each cause of death, a theoretical minimum
concentration below which there is considered to be no health impact
(hereinafter Zcf). In the default TM5-FASST version, for PM2.5 ex-
posures, Zcf values are 7.58 μg/m3 for COPD, 6.91 μg/m3 for LC,
6.79 μg/m3 for ALRI, 8.80 μg/m3 for Stroke and 6.86 μg/m3 for IHD.
These values are consistent with the literature and are used for the
calculations in this study. However, literature has defined different Zcf
levels that would have a direct effect on health co-benefit estimation.
Burnett et al. (2014) define the Zcf as a uniform distribution, Zcf ~ U
[5.8, 8.8]. Similarly, another study sets the Zcf at 7.3 µg/m3 for all
causes of death (Lelieveld et al., 2015). However, these values can be
considered relatively high compared to the Global Burden of Disease
study, which defines the lower bound (2.4 µg/m3), median (4.15 µg/
m3), and upper bound (5.9 µg/m3) Zcf values (Forouzanfar et al.,
2016). Since Zcf is a relevant driver for calculation of health co-bene-
fits, this study includes a sensitivity analysis for this variable (see re-
sults). For O3 exposure the Zcf value chosen is 33.3 ppbv (Jerrett et al.,
2009).

Cause-specific mortalities are calculated at region level, based on
the population-attributable fraction approach (Murray et al., 2003).
Base mortality rates for each cause are taken from WHO, (2011), and
population projections from the SSP database (Samir and Lutz, 2017),
which is equal to the socioeconomic data used both in GCAM and in the
economic assessment in this paper. Specifically, some of the causes of
death apply only to adults (> 30 years) (IHD, stroke, COPD, LC) and
ALRI applies only to infants (< 5 years). In order to estimate the pro-
portion of adults and infants we adjust these population projections
based on historical shares from the United Nations Population Division
(2015) revision. Although population levels change over time following
SSP2 assumptions, the population structure is constant during the

analyzed time horizon, which is a limitation as it does not capture the
effects of population aging over time. More technical features of TM5-
FASST model are described in Van Dingenen et al., (2018).

To monetize the physical health impacts calculated with TM5-
FASST, this study uses the Value of Statistical Life (VSL). VSL is based
on the willingness to pay (WTP) approach, defined as the monetary
value of a relatively small change in mortality risk reduction (Narain
and Sall, 2016). Since it is a survey-based method with limited data
across different countries and this is a global study, the authors adjusted
the current VSL value for OECD countries, to further regions based on
an adaptation of the “unit transfer value” method, described by the
following equation:

⎜ ⎟= ∗ ⎛
⎝

⎞
⎠

∗ +VSL VSL
Y

Y
Y(1 %Δ )c t OECD

c

OECD

b
b

, ,2005
,2005

,2005 (1)

where VSLc t, is the VSL for country c in year t; VSLOECD,2005 is the base
value; Y is the GDP per capita; b is the income elasticity of the VSL and

Y%Δ is the annual income growth rate. Results for OECD countries
result in a consistent range of base values ranging from US$2005 1.8 to
4.5 million (OECD, 2014). These lower and upper bounds are in-
corporated in the sensitivity analysis performed (see results), with the
default value used taken to be the median of this range. The VSL income
elasticity used in this paper is 0.8, as proposed by the OECD.

When regional VSLs are calculated, the associated morbidity costs
are included as an additional cost. Morbidity costs include a wide range
of effects covering direct market costs related to the health system and
other indirect implications such as disability and opportunity costs.
Searl et al. (2016) lists some reference endpoints to create a core set of
effects to be covered when estimating the cost of morbidity. Due to the
lack of methodologies for assessing such costs, this study follows the
OECD’s guidelines (OECD, 2014), where morbidity costs are taken to be
10% of the estimated mortality damages. By default, the study uses the
median value of the range of VSL, but for the sensitivity analysis the
VSL lower and upper bounds are used.

Finally, avoided premature mortalities are monetized into health
benefits following this equation:

= ∗ − ∗HB PD VSL PD VSL( ) ( )scen i Ref i i scen i i, , , (2)

where HBscen i, is the health co-benefit for each scenario and region (i),
PD is the estimate obtained for premature deaths and VSLi the VSL
value calculated for region i. Consequently, the global co-benefit is
obtained by adding up all these regional co-benefits. Details of how the
models are connected, calculations of regional VSLs, and further in-
formation can be found in Markandya et al. (2018).

2.2. Scenarios

The scenarios in this study have two main components: a general
socioeconomic storyline represented by the Shared Socioeconomic
Pathways work (SSP) and the technological pathways represented by
different technology options for achieving the 2 °C target defined in the
Paris Agreement. For the distribution of mitigation across regions, this
study adopts a “least cost” approach with a global carbon price on
energy and industrial CO2 emissions.

In terms of socioeconomic storylines the authors chose the SSP2
narrative, considered as representative of “the middle of the road”
(O’Neill et al., 2014). This storyline makes several assumptions, such as
central projections for population growth, gradually lower energy and
material intensity, continued use of fossil fuels with an increasing share
of renewables as their costs fall, and a gradual decrease in inter-regional
inequalities. To implement this scenario, the authors used the SSP2 set-
up scenario in the GCAM 4.3 release, which has since been updated
recently in the GCAM 5.1 release. Further information on how to in-
corporate SSP narratives into integrated assessment models can be
found in different studies (Rao et al., 2017; Riahi et al., 2016).
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Moreover, online documentation provides a detailed description of the
SSP implementation in GCAM (https://github.com/JGCRI/gcam-doc/
blob/gh-pages/ssp.md).

All the GCAM scenarios, with or without a climate policy, have
implicit emission controls for different air pollutants. This implies that
emissions would also decrease over time in the baseline scenario.
Indeed, the applied GCAM implementation of the SSP scenarios in-
corporates region, sector, and fuel-specific pollutant emission factor
pathways. Their temporal evolution and sectorial information is de-
tailed Rao et al., (2017). The SSP implementation in the version of
GCAM used in this work uses these same emission factors but has a
slightly different future energy trajectory. The resulting differences in
global air pollutant emissions in the SSP2 case between the version used
here and the SSP2 release range from 5% (NOx) to −6% (SO2) in 2050
(Markandya et al., 2018).

For the definition of the different technological deployments, the
study follows the IPCC 5th Assessment Report (IPCC, 2014). The study
defines four pathways in the energy supply sector for achieving a 2 °C
target based on different levels of deployment of several technology
groups considered critical for achieving low emission targets (i.e.
bioenergy, carbon capture and storage, and nuclear power). Literature
has extensively analyzed the potential side-effects of different non-CO2

emitting energy sources (Luderer et al., 2019). Concretely, a substantial
increase in bioenergy has implications for agricultural land, which
might be countered by policies to limit on the amount of cropland used
for dedicated bioenergy crops. Additionally, changes in air pollutant
emissions (e.g. OC) and land use change GHG emissions and potential
water scarcity are also directly related with the expansion of bioenergy
technologies (Harper et al., 2018; Pulighe et al., 2019). In addition, CCS
technologies have not yet been implemented at a large scale, as there
are several technical (storage and leakages) and financial risks and
uncertainties (Leung et al., 2014; Stigson et al., 2012). Therefore, it is
useful to consider scenarios where CCS is not widely deployed. Ac-
cording to the IPCC, deployment of nuclear energy also presents re-
levant risk and barriers, such as operational risks, adverse public opi-
nion or uranium mining risks (IPCC, 2014). In that report, the IPCC also
generated a scenario with maximum of 20% global electricity genera-
tion from solar and wind power annually (“Limited Solar/Wind”).
However, this study does not consider that scenario for the analysis as
the decrease on costs of those technologies over recent years has made
them fully competitive and their share has been continuously increasing
in the electricity mix (IRENA, 2016, 2019). The scenarios considered
here are summarized in the Table 1 with more detailed scenario de-
scriptions in the supplementary information (hereafter SI).

3. Results

This section presents the characteristics and associated impacts of
the different technological pathways in terms of the energy and

electricity mix, emission pathways, PM2.5 concentrations, premature
mortality, mitigation costs, and health co-benefits for 18 world regions
up to 2050. Additional results are reported in the SI.

3.1. Energy and electricity mix

Each technological pathway results in a different structure of the
energy system. Fig. 2 summarizes the energy and electricity mix for
2050 under the different technological assumptions:

In the baseline scenario, fossil fuels (without CCS) account for 83%
of the energy mix in 2050, followed by bioenergy (no CCS), renewable
energy and nuclear power, which account for 9%, 4% and 2% of the
mix respectively in that scenario. A similar structure can be seen in the
electricity system, which accounts for between 20 and 24% of final
energy consumption by 2050. There, fossil fuels with no carbon capture
and storage account for around 70%, while other technologies such as
renewables (19%), nuclear (9%), and bioenergy (2%) play a smaller
part.

In the 2 °C scenarios, global energy demand decreases from 6% to
16% by 2050 compared to the baseline scenario, depending on the
technological pathway. In terms of technological changes, the main
difference is in the use of fossil fuels, with and without CCS, with the
share of those FF being reduced drastically, in the range of 38–46%,
depending on the technological pathway. The global expansion of re-
newable energy sources demonstrates their importance for achieving
the temperature target in all the scenarios presented. Focusing on the
electricity mix, they more than double their share from 19% (baseline)
to 44% in the nuclear phase-out scenario by 2050. The largest incre-
ments occur in wind and solar technologies, increasing from 6 and 3%
of total electricity in the baseline to 17–23% and 10–12% in the policy
scenarios, respectively. Additionally, total electricity consumption sig-
nificantly increases in the policy scenarios (up to 20%, when bioenergy
is limited), which makes the relative share of renewables relatively
even more important.

As expected, the deployment of other technologies such as bioe-
nergy, CCS, and nuclear power is directly related to the scenario ana-
lyzed, but they are always significantly more important than in the
baseline scenario. Moreover, depending on the technological pathway,
they could account for large proportions of the total energy mix: CCS
technologies make up around 20% in the bio-limited scenario, biomass
(no CCS) up to 13% in the Low CCS scenario, and nuclear power around
8% in the scenario with the bioenergy limitation. The technological
pathways have significant implications at a regional level. For example,
the global limitation of bioenergy (100 EJ/yr, see above) substantially
decreases the biomass consumption in each region, compared to the
“All Available” scenario (on average, around −48%). These differences
range from −33% in Brazil to −76% in South Korea. Detailed in-
formation about current and future regional energy electricity mix, and
regional biomass consumption can be found in the Supplementary Data.

3.2. GHG and air pollutant emissions

Variations in energy and electricity mix result in different emission
pathways for each scenario, since the emission factors for pollutants are
not the same across the technologies. Consequently, even though the
stabilization target is equal, there are differences in emission levels.
Fig. 3 shows some of these differences in the cumulative (2020–2050)
CO2 reductions in each of the regions defined and Fig. 4 shows the
projections for the main air pollutants.

Regarding the spatial distribution, Fig. 3 shows that the biggest
reduction in cumulative fossil CO2 emissions is found in China (around
28% of the total reduction), followed by India (15–16%) and the USA
(10–11%). To achieve the target, the model follows a “least cost” ap-
proach, so there are larger reductions in those regions where it is more
feasible and cost effective to decrease emissions. Large CO2 emissions,
along with potential to accomplish cost-effective emission reductions,

Table 1
Scenarios. All the scenarios, except the baseline, are constrained to achieve the
2 °C temperature stabilization target of the Paris Agreement by applying a long-
term temperature stabilization target (2 °C). However, each results in different
patterns of technological deployment.

Scenario Description

Baseline No climate policy
All available All technologies available, no explicit limits
Bioenergy limitation Maximum global bioenergy consumption of 100 EJ/yr.
Low CCS Low availability of CCS technologies
Nuclear Phase-out Phase-out of current nuclear power plants and no

installation of new ones

Note that in all cases resource limits, such as fossil fuel resources, wind po-
tential, regional carbon sequestration capacities, and land-productivity, are in
place.
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result in China and India having the largest cumulative CO2 reductions
in these scenarios.

These results show that the time path of CO2 emissions can be quite
different from one scenario to another. When bioenergy is limited,
emissions decrease more rapidly, as the possibility of having net ne-
gative emissions in future periods will depend entirely on the avail-
ability of biomass-related technologies (see the SI). So, while in the
other policy scenarios cumulative CO2 emissions decrease by around
40% by 2050 compared to the baseline, in the Bioenergy limitation
scenario the reduction is 55%.

It is important to note that the stabilization targets, in order to be
aligned with the temperature target of the Paris Agreement, are set for
2100, but we are focusing on results in 2050. While all the scenarios
achieve the 2 °C stabilization target set by 2100, cumulative emissions
of different pollutant species up to 2050 differ, as each technological

pathway also shifts abatement over time, both globally and regionally,
closely related to the availability of negative-emission-technologies.

3.3. PM2.5 concentrations

As explained in Section 2, the gases tracked are the main precursors
for the formation of both PM2.5 and O3 (Klimont et al., 2017; Turner
et al., 2016). Thus, their spatial distribution is directly driven by re-
gional emissions from GCAM. Since PM2.5 is the most hazardous ele-
ment in terms of damage to health, Fig. 5 compares worldwide con-
centration levels in 2050 for the baseline and one of the mitigation
scenarios. For this comparison we have chosen the Bioenergy limitation
scenario, as it has the most notable reductions. The spatial distribution
of both PM2.5 and O3 concentrations for all the scenarios (relative to the
reference) can be found in the SI.

Fig. 2. 2050 global energy and electricity mix per scenario (%). Note that FF refers to fossil fuels; CCS to carbon capture and storage; BECCS to Bioenergy with Carbon
Capture and Storage (BECCS) and CHP to combined heat and power.
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Fig. 3. Cumulative reduction in fossil CO2 (2020–2050) emissions per region and scenario. Note that Croatia is included in “Other Europe”, so results are shown for
EU-27 instead of EU-28.

Fig. 4. Projection for main air pollutants per period and scenario. Index = 2010.
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Fig. 5 shows that the largest reductions are achieved in India and
China. As mentioned, the “least cost” approach results in these regions
showing the largest reductions.

3.4. Health impacts: premature mortality

Once the regional concentration levels are calculated, they are
converted into health impacts in terms of premature mortality using the
TM5-FASST model. Fig. 6 shows the premature deaths attributable to
air pollution per scenario for different time horizons.

Fig. 6 shows the premature mortality in the medium (2030) and
long term (2050). When no climate policy is set, premature deaths in-
crease continuously. Specifically, they reach almost 4 million in 2050,

compared to 3.2 million in 2030. These results are attributable to a
combination of changing air pollutant concentrations, implicit air pol-
lution controls and generally increasing population levels. Concretely,
world population increases around 10% from 2030 to 2050. This in-
crease directly affects air pollution driven premature mortality, with
more population exposed to air pollution. In China, population de-
creases 8.5% from 2030 to 2050, that indicates that a relatively small
fraction of the avoided mortality would be attributable to socio-
economic drivers there. On the other hand, population increases in
India around 13% from 2030 to 2050. Therefore, a decrease in air
pollutant emissions would be the driver for any decrease in premature
mortality there, compensating for positive population growth and
subsequent increase in exposure. The projected premature mortality

Fig. 5. Difference in PM2.5 concentrations between Baseline and Bioenergy Limitation scenario for 2050 (log(µg/m3)).

Fig. 6. Worldwide premature mortality attributable to ambient air pollution per scenario and period (million).
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decreases and stabilizes across the 2 °C scenarios, with the values de-
termined by the technological deployment pathway chosen. Because of
an overall increase in population, the stabilization of premature mor-
talities across the mitigation scenarios, therefore, means a decrease of
PM2.5 exposure, driven by a relatively larger emission reduction.
Compared to the baseline, reductions in premature mortality amount to
12–19%, and 27–32% in the medium (2030) and long term (2050)
respectively, depending on the scenario. In cumulative terms
(2020–2050), mortality falls by around 16–17% when a stabilization
target is applied. Moreover, when a bioenergy limitation is established
the effect increases to 23% as the GHG and air pollutant emission re-
ductions are larger than in the other 2 °C scenarios (see Fig. 4). As
expected, taking into consideration the spatial concentration levels, the
highest numbers of avoided deaths are in India and China. Some ad-
ditional results such as cumulative (2020–2050) deaths and their spa-
tial distribution are presented in the SI.

3.5. Health co-benefits vs mitigation costs

The monetary valuation of health co-benefits is determined fol-
lowing the VSL approach. In this framework, Fig. 7 shows cumulative
(2020–2050) health co-benefits per scenario, using a 3% discount rate,
which is in the middle of the range used in the literature to discount
climate impacts (Nordhaus, 1994; Stern, 2006). A previous study has
demonstrated changing this rate does not significantly change the main
conclusions (Markandya et al., 2018).

Two key messages can be derived from this figure: First, globally,
health co-benefits outweigh mitigation costs in almost all cases, irre-
spective of what technological deployments, limitations, or VSL values
are assumed. Second, there is a significant divergence when there is a
limit to bioenergy. The Bioenergy Limitation scenario has the highest
co-benefit, as its net present value (NPV) is US$ 50 trillion, while the
co-benefits in other mitigation scenarios are in the range of US$ 36–37

trillion. However, there is also a significant difference in the cost side:
in the scenario with the bioenergy limitation the cost is US$ 34 trillion,
almost double the costs of the other mitigation scenarios (US$ 16–20
trillion).

In order to address the uncertainty in these calculations, a sensi-
tivity analysis has been performed to assess the extent to which results
depend on the two key inputs of the analysis: theoretical minimum
concentration below which there is considered to be no health impact
(Zcf) for PM2.5, and the VSL. By combining these elements, the lowest
co-benefits are found using the lowest VSL and the highest Zcf. By
contrast, the highest co-benefits are defined by combining the upper
bound of the VSL and the lowest Zcf. We consider 0 µg/m3 as the lowest
Zcf, since some studies suggest that significant damage could be ob-
tained from exposures that are under the current GBD thresholds (Di
et al., 2017). The Supplementary Data presents a more detailed sensi-
tivity analysis, by applying different combinations and showing the
individual effects of these two variables. The cost-effectiveness of each
scenario is calculated as the health co-benefit divided by the cost and
can be seen in Fig. 8.

Health co-benefits outweigh mitigation costs by very different pro-
portions depending on the technological deployment, ranging from
1.45 (Bioenergy limitation) to around 2.19 (all available scenario).
With no limitation on any particular technology, global health co-
benefits would be twice as great as the cost of the policy for achieving
the 2 °C target. As shown in Fig. 7, even though the bioenergy limited
scenario presents higher co-benefits, it has also significantly larger
mitigation cost.

We also examine the regional disaggregation of the costs and co-
benefits, with Fig. 9 showing the co-benefit to cost ratio for 18 regions.
Regarding burden sharing, we have applied a single global CO2 market,
so the reductions are undertaken where they are cheapest.

The figure shows that there are major differences around the world.
Even though values are different between scenarios, some regional

Fig. 7. Cumulative (2020–2050) health co-
benefits and mitigation costs per scenario
(US$ trillion). The uncertainty bars re-
present the consistent lower and upper
bounds, combining the “theoretical
minimum concentration below which there
is considered to be no health impact” (Zcf)
and VSL values. The discount rate used is
3%.
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patterns can be identified. First, there are some regions where the co-
benefits are significantly greater than the mitigation costs, particularly
for India and China. These two countries have ratios of 3.75–5.17 and
1.95–3.15 respectively. Between them they account for 33–37% and

37–38% of global co-benefits while bearing around 14 and 24% of
global mitigation costs, respectively. Factors such as economic devel-
opment stage, high population densities and current high concentration
levels mean that all the mitigation strategies considered produce high

Fig. 8. Ratio of health co-benefit to mitigation cost per scenario (health co-benefit/mitigation cost). The uncertainty bars represent the consistent lower and upper
bounds, combining Zcf and VSL values. The discount rate used is 3%.

Fig. 9. Ratio of cumulative (2020–2050) health co-benefit to mitigation cost per scenario (health co-benefit/mitigation cost). The discount rate used is 3%.
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co-benefits in these regions.
We find that other regions such as Europe, Russia or Asia (all except

for Indonesia), also have health co-benefits that are larger than miti-
gation costs, even though they have different national characteristics.
These results can be explained by the ease and relative cheapness with
which they can implement low carbon strategies, present-day air pol-
lution levels, and the assumed improvements in pollution controls in
the baseline scenario.

Finally, there are other countries and regions where health co-
benefits are not larger than mitigation costs, even though co-benefits
sometimes are still relatively large. These regions include Canada,
Australia, South America and the USA, where there are low population
densities and, in some cases, where significant air pollution policies
have already been implemented. However, we note that the health co-
benefits need to be taken into consideration for policy design in these
regions as well. Detailed information on the cumulative health co-
benefits, mitigation costs, and ratios per region and scenario can be
found in the SI.

4. Discussion

This study demonstrates that health co-benefits exceed the mitiga-
tion costs across different scenarios for energy supply technologies. This
is consistent with conclusions from studies that analyze different
emission targets (Scovronick et al., 2019), individual sectors (Cai et al.,
2018) or individual regions (Xie et al., 2016). We show that effects of
climate policies on air pollutant emissions, and therefore co-benefits,
vary substantially by region and pollutant species. This means it is es-
sential to capture these dynamics by developing a detailed integrated
methodology that fully captures the evolution of the key technologies.
We have found that emission reductions of each species would have its
own behavior over time, not necessarily following CO2, as has been
assumed in some previous work (Shindell et al., 2018). This is shown in
the SI (Figs. S14 and S15).

The largest co-benefits are concentrated in China and India. We
note, however, that recent studies (Zheng et al., 2018) show that air
pollutant emissions in China could be smaller than was initially ex-
pected due to the effective implementation of clean air policies in re-
cent years. This would decrease pollutants in the baseline scenario and,
therefore, the required effort to avoid pollutants in every policy sce-
nario would also be reduced. Consequently, the calculated co-benefit
for this region may be smaller than estimated here. While these newer
emission factors were not included in the SSP assumptions used in this
study, the SI includes an additional calculation estimating results for
China with these recent policies applied, which clearly underlines the
importance of these assumptions. We focus this comparison on SO2

because it varies the most when updating the EFs, and as it is the most
influential pollutant for the formation of secondary PM2.5. Given the
magnitude of the estimated co-benefits in this region, further research
ought to focus on baseline emission trends in China (and India) in order
to explore in higher detail their health co-benefits potential.

In addition, we also compare our results for USA co-benefits in 2050
with those presented in Ou et al. (2018) in order to compare results for
a developed country. In that study the co-benefits range from US$
200–350 billion, while in this they are estimated here at between US$
41 and US$ 75 billion. However, in Ou et al (2018), the authors use a
different methodology and different emission assumptions. For emis-
sions, they apply a PM2.5 emission factor directly instead of using BC
and OC emission factors, which results in future (2050) PM2.5 levels
that differ between the two studies by a factor of 2 in the baseline
scenarios. Moreover, to calculate health impacts they derive the mor-
tality impact per ton of PM2.5 from literature and multiply the unitary-
damage by the units of PM2.5 avoided. This comparison illustrates that
assumptions for emissions projections and methods used for estimating
health impacts can impact co-benefit estimates.

The methodology applied here has some limitations. First, we

identify that co-benefits estimates depend significantly on baseline
scenario assumptions. Some critical aspects such as population struc-
ture and projections have a direct effect on the results (Xie et al., 2018).
For clarity, this study uses publicly available socioeconomic data (Samir
and Lutz, 2017). Further research should focus on exploring the im-
plications of a dynamic population structure in order to capture the
effects of population aging. Moreover, we note that GHG mitigation
here was based on a global, least cost allocation (a situation where
there is a single global CO2 market). Although this measure gives an
optimal or cost-effective set of results, it is difficult to apply in the real
world. Alternative GHG mitigation policies are likely to have higher or
lower air pollution co-benefits relative to mitigation costs. In order to
assess the importance of the structure of the climate policy, we have
compared the results obtained for Europe with a previous study using
the same models used here (Markandya et al., 2018). That study does
not follow the “least cost” approach for the allocation of the mitigation
effort and the results are significantly different. This demonstrates that
policy design would also have large impact on health co-benefit esti-
mation. The comparison of the results of the two studies for Europe can
be found in the SI (Fig. S8).

In terms of population exposure and health impacts, the present
integrating modelling framework uses annual mean PM2.5 as exposure
metric for fine particulate matter. This is well-aligned with the re-
commendations by WHO (2013), as well as the methodology used in
the Global Burden of Disease assessments. Our modelled PM2.5 contains
both primary (BC, POM) and secondary (SO4, NO3, NH4) components.
However, other primary emitted PM2.5 such as fly ash, re-suspended
road dust, abrasive emissions from vehicles or primary sulfate are not
considered. Therefore, the resulting impacts are conservative estimates.
Health impacts from exposure to other pollutants (e.g. NO2 or SO2) are
currently not being evaluated in TM5-FASST. Some evidence suggests
that NO2 exposure generates the second highest impact on health after
PM2.5 (U.S. EPA, 2016). However, at the present time, difficulty in
modelling NO2 exposure and determining the extent of overlap between
the PM2.5 and NO2 functions introduces too high uncertainties
(Holland, 2017). We do however acknowledge that omitting NO2 (gas)
impacts leads to an underestimation of impacts attributable to NOx
emissions. Further, potential changes in exposure to secondary organic
aerosol are also not included. Additionally, exposure response functions
for estimating health impacts attributable to PM2.5 and O3 are based on
evidence from countries in North America and Europe. Due to the lack
of data, we apply those functions to other countries in the world for
estimating the potential health co-benefits. This is a limitation that
should be explored. Finally, we have identified that the method for
monetizing health co-benefits directly affects the results. Different as-
sumptions, such as the approach for expanding VSL-OECD values to
different regions or the selection of the income elasticity of the VSL,
impact the calculations of monetized co-benefits (see methodology). In
particular, some studies suggest that the income elasticity for the VSL
should be modified based on the regional average income levels
(Masterman and Viscusi, 2018; Viscusi and Masterman, 2017). Given
the importance of this variable (see SI), further research ought to focus
on exploring different monetization approaches.

5. Conclusions

In the context of climate change mitigation, the most innovative
finding of this paper is that no matter which technological strategy is
chosen or, equivalently, which technology constraints turn out to be
binding in the future, global health co-benefits outweigh global miti-
gation costs up to 2050. Each scenario shows significant differences in
the energy or electricity mixes or in GHG and air pollutant emissions.
Therefore, in cumulative terms (2020–2050), the central ratio of health
co-benefits to mitigation costs has a dependence on technological
pathway. The bioenergy limitation scenario shows the lowest ratio (1.5)
of co-benefits to policy costs, while for the other technology scenarios,
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the ratio averages 2.0. When bioenergy is limited, the absolute health
co-benefits are larger than in the rest of the 2 °C scenarios (additional
33%, compared with the All available). However, the mitigation cost of
achieving the target with this technological limitation more than dou-
bles compared to the other scenarios, making the bioenergy limitation
the least cost-effective case. A sensitivity analysis shows the results are
robust to the assumed “safe concentration level (Zcf)” and VSL. India
and China stand to have the highest co-benefits, and their cumulative
health co-benefit to mitigation cost ratios range from 3.75 to 5.17
(India) and 1.95–3.15 (China) in the bioenergy limitation and all
available scenarios respectively. It is worth noting that India shows
larger cumulative net benefits, but China is the country that benefits
most in the mid-term. In other regions such as Europe or Russia we also
find that health co-benefits could also outweigh mitigation costs. In
some parts of the world, such as Canada, Australia, and the USA,
countries with more land surface and lower population density, esti-
mated health co-benefits are not enough to compensate mitigation
costs. However, they still can amount to a large portion of mitigation
costs, so it is important to include co-benefits in policy design in those
countries as well.

The temperature stabilization objectives defined in the Paris
Agreement require a transformation of the energy system, largely
completed by 2040 (Iyer et al., 2015). Each technological deployment
for achieving the climate goals will entail a wide set of ancillary co-
benefits and adverse effects (Luderer et al., 2019). These side effects
include air pollutant and land use change GHG emissions, O3-related
agricultural damages, water pollution or ecosystem damages. More-
over, technological futures will directly affect different Sustainable
Development Goals. In this context, this study demonstrates the possi-
bility of exceeding mitigation costs with health co-benefits for different
possible future technological pathways. Additionally, it identifies which
technological pathways would be the most cost effective in terms of
health co-benefits, what is an important implication for stakeholders
and policy-makers. It has been shown that co-benefits can provide an
incentive for decarbonization (Bain et al., 2016), so these results might
encourage countries to undertake mitigation actions, especially in cases
such as China and India.
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