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Resumen

La superconductividad es un fenémeno cudntico a nivel macroscépico que se caracteriza por la
ausencia de resistividad y la expulsién de campos magnéticos externos por debajo de una temperatura
critica. Inicialmente, los superconductores (S) eran considerados como elementos de resistencia cero
en un circuito. Sin embargo, la naturaleza cudntica de este fendmeno permite un nimero aplicaciones
potencialmente mucho mads interesantes, nimero que sigue aumentando hoy en dia. El avance en los
métodos de fabricacién y miniaturizacién de heteroestructuras formadas por superconductores de alta
calidad (S), metales normales (N), partes ferromagnéticas (F), semiconductores, materiales con fuerte
interaccidn espin-6rbita (SOC por sus siglas en inglés) o gases de electrones 2D ha abierto el camino a
estudiar una gran cantidad de efectos debidos a la coherencia de fase y ha hecho de los superconductores
la base para futuras tecnologias emergentes, como la simulacién cudntica, la deteccion cudntica y la

computacién cudntica.

El fundamento tedrico para la explicacion de la superconductividad se basa en la inestabilidad de un
gas de Fermi a que los electrones con energias cercanas a la energia de Fermi se atraigan mediante
una interaccién arbitrariamente débil (teoria BCS). En los llamados superconductores convencionales,
la interaccién electron-fonén es la causante de la atraccién que une los electrones por parejas, conocidas
como pares de Cooper. En estos superconductores, es energéticamente favorable unir electrones con
momento y espin opuesto. Por ello, los pares de Cooper tienen un espin entero y se comportan como
bosones, pudiendo poblar asi el mismo estado cudntico macroscépicamente. La condensacién de los
electrones en pares de Cooper desemboca en la aparicién de una banda de energias prohibidas en el
espectro de excitaciones del superconductor alrededor de la energia de Fermi. La formacién de pares
de Cooper es un concepto general, por lo que existen diversos mecanismos de enlace entre electrones
que se traduzca en la aparicidn de la superconductividad en gran variedad de materiales. Adn no se han
entendido tedricamente todos estos mecanismos, por lo que, hoy en dia, la bisqueda de nuevos tipos de

superconductores sigue en marcha.

En esta tesis investigamos la evolucidn del estado singlete de un material superconductor convencional
debido a campos dependientes del espin a su alrededor. Las correlaciones superconductoras no estan
Unicamente ligadas al superconductor, sino que pueden penetran en materiales metdlicos adyacentes una
profundidad del orden del tamafio tipico de los pares de Cooper (conocida como la longitud de coheren-
cia superconductora), que a su vez depende fuertemente del propio material conductor. En general,
el material no superconductor en contacto con el superconductor adquiere propiedades de este dltimo.
Este efecto se conoce como efecto de proximidad y da lugar a fendémenos de coherencia de fase muy

interesantes.

Una de las manifestaciones destacadas de los efectos de proximidad es el efecto Josephson. El estado
base de un superconductor se describe mediante una funcidon de onda macroscopica, caracterizada por
una fase. El efecto Josephson es la transmision coherente de pares de Cooper entre dos superconductores,
separados por una barrera aislante estrecha o una regién conductora, que difieren en la fase de su propia
funcién de onda macroscopica. Esta diferencia de fase genera una corriente no disipativa sin la necesidad

de aplicar una diferencia de potencial (efecto Josephson de corriente continua).
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La primera parte de la tesis introduce los efectos de proximidad en heteroestructuras superconductor —
metal normal de manera didactica. Repasamos brevemente distintos aspectos de la teoria BCS e intro-
ducimos dos formalismos distintos para describir propiedades de equilibrio y de transporte en sistemas
superconductores no homogéneos, a saber, las ecuaciones Bogoliubov-de Gennes y las funciones de
Green cuasicldsicas. Ambos formalismos van a ser usados a lo largo de la tesis. Dentro del formalismo
de Bogoliubov-de Gennes, explicamos los procesos microscopicos que gobiernan el transporte en het-
eroestructuras N/S, es decir, las reflexiones de Andreev que ocurren en las interficies S/N y los estados
localizados de Andreev que se forman en uniones S/N/S. Asimismo, poniendo como ejemplo los casos
de una interficie S/F y una unién S/F/S, demostramos que un campo dependiente del espin puede al-
terar el efecto de proximidad y las propiedades de transporte de este tipo de sistemas, introduciendo asi
distintas maneras de controlar el transporte. El campo de canje en un material ferromagnético separa
las bandas de energia anteriormente degeneradas en espin y, por consiguiente, el alineamiento de los
espines de manera paralela se vuelve energéticamente favorable. Este efecto compite con el mecanismo
convencional de emparejamiento entre los electrones que prefiere que los espines se encuentren colo-
cados de manera antiparalela. En heteroestructuras S/F, la competicion entre el ferromagnetismo y la
superconductividad conduce a un efecto de proximidad de corto alcance y en uniones S/F/S, en funcién
de la longitud de la unién y de la fuerza del campo de canje, a la inversion de la corriente Josephson

continua maxima,, conocido como transicién 0-7.

A la parte introductoria le siguen los resultados originales surgidos de la investigacién. EI segundo
capitulo de la tesis se centra en la aparicién de estados localizados de Andreev y en el efecto Josephson
en uniones balisticas con superconductores con bandas de espin separadas (SS). Para obtener la sep-
aracion de bandas de espin en peliculas superconductoras se puede, bien aplicar un campo magnético
externo, bien poner en contacto capas de aislantes ferromagnéticos. En este tltimo caso, la interaccion de
canje entre los electrones de conduccién en el superconductor y los momentos magnéticos localizados
en el aislante ferromagnético separa las bandas de espin en la densidad de estados del superconduc-
tor. Utilizar aislantes ferromagnéticos para lograr grandes separaciones evita tener que aplicar campos
magnéticos fuertes, lo cual conlleva una gran ventaja. En uniones SS/N/SS, se puede controlar la ori-
entacién de los campos de canje en cada uno de los superconductores. Tal y como ha sido demostrado,
es posible incrementar la corriente critica en este tipo de uniones aumentando la magnitud de los campos
de canje, cuando dichos campos estan alineados de manera antiparalela. Considerando que la separacion
de las bandas de espin tipicamente se traduce en la destruccién de pares de Cooper, este es un resultado
ciertamente contraintuitivo. La dependencia de los estados de Andreev localizados en funcién de la
diferencia de fase entre los lados superconductores no habia sido estudiada hasta el momento. Por lo
tanto, con el fin de incrementar el conocimiento alrededor de los procesos microscopicos subyacentes,
hemos analizado las propiedades espectrales de este tipo de uniones dentro del formalismo Bogoliubov-

de Gennes.

En una unién balistica corta S/N/S con pardmetros de orden iguales, el tuneleo a través de los estados
de Andreev localizados es la contribucién dominante a la corriente Josephson a baja temperatura. En
las uniones equivalentes SS/N/SS, demostramos que cualquier desviacién de la situacién con campos
de canje iguales en ambos superconductores, se traduce en la desaparicion de los estados de Andreev

localizados para un rango finito de diferencias de fase ¢ definido mediante una fase critica, (., de modo
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que |¢| < .. Este es un fendmeno originado por la asimetria en la estructura de espin de las bandas
prohibidas en los electrodos SS a la izquierda y a la derecha de la unién. Como consecuencia, la corriente
Josephson en el intervalo de diferencias de fase superconductora anteriormente descrito se lleva a cabo
exclusivamente por estados en la parte continua del espectro. El valor de ¢, no depende de la transmisién
de la unién, por lo que es robusto ante imperfecciones. Cuando |¢| < ., la corriente Josephson se
compone por la suma de las contribuciones de los estados de Andreev localizados y aquellos en la
parte continua del espectro. En uniones con perfecta transmision, el tuneleo a través de los estados de
Andreev domina en la corriente, mientras que en uniones con mala transmision la corriente se describe
Unicamente mediante las excitaciones en la parte continua del espectro. Incluso cuando la banda de
estados de Andreev de mayor energia se incorpora a la parte continua del espectro, hay otros estados de
Andreev localizados de menor energia que estdn definidos para todos los valores de . Por lo tanto, el

valor de ¢, decrece cuando la longitud de la unién crece.

Después de cubrir el efecto de proximidad en sistemas balisticos con materiales ferromagnéticos en
detalle, cambiamos el tema para centrarnos en sistemas difusivos. Discutimos la aparicidn de las lla-
madas correlaciones triplete de largo alcance (LRTC por sus siglas en inglés) en materiales con fuerte

ferromagnetismo y cdmo estas afectan al efecto Josephson.

La coexistencia de superconductividad y ferromagnetismo deriva en correlaciones superconductoras del
tipo triplete. En una heteroestructura S/F con un campo de canje homogéneo, los pares de Cooper en
estado singlete que penetran el material ferromagnético se convierten parcialmente en pares del tipo
triplete, cuya proyeccion de espin total con respecto al campo de canje es igual a cero. En un mon-
odominio magnético difusivo, las correlaciones singlete y triplete del condensado decaen a lo largo de
la longitud magnética caracteristica, &, la cual depende de la magnitud del campo de canje. En su-
perconductores convencionales y para magnitudes de campos de canje tipicas, &;, es mucho menor que
la longitud térmica caracteristica de decaimiento, &, de los sistemas sin magnetismo. A su vez, las
componentes del estado triplete con proyecciones de espin finitas, esto es, perpendiculares al campo de
canje, no son afectadas por el efecto de ruptura de pares y su longitud de decaimiento caracteristica es
comparable a &,,. Este tipo de LRTC pueden generarse por la falta de homogeneidad del campo de canje
o debido a la presencia de SOC junto a un campo de canje homogéneo. La prediccion de LRTC en

estructuras hibridas S/F ha ha sido corroborada por medio de diversos trabajos experimentales.

Por el contrario, la generacién de LRTC en sistemas con SOC y campos de canje homogéneos atin no
se ha observado. Recientemente, se han explorado experimentalmente uniones Josephson transversales
con campos magnéticos dentro del plano y materiales con SOC, pero no se ha encontrado ninguna
evidencia de LRTC en la corriente Josephson. En este tipo de uniones S/F/S multicapa la condicién
para que aparezcan LRTC es bastante restrictiva. Por ejemplo, para que un acoplamiento espin-6érbita
del tipo Rashba genere LRTC, la magnetizacién tiene que tener una componente fuera del plano. Este
es un escenario bastante desfavorable, ya que campos de canje de este tipo pueden crear vortices en el

superconductor que compliquen la interpretacion de los resultados experimentales.

Las estructuras laterales son mucho més adecuadas para la observaciéon de LRTC inducidas por SOC,
ya que las corrientes también tienen una componente a lo largo de la interfaz hibrida. En el capitulo 3

repasamos brevemente el efecto de proximidad bajo la influencia de de campos dependientes del espin
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en heteroestructuras difusivas y demostramos que las uniones laterales son la configuracion idénea para
el estudio de corrientes Josephson de largo alcance. Seguidamente, proponemos dos tipos de uniones
realistas, las cuales representan las configuraciones mas favorables para observar la generacién de LRTC.
Calculamos la corriente Josephson en presencia de SOC del tipo Rashba y Dresselhauss, lo cual resulta
en efectos anisotrépicos de relajacion y precesion del espin. La contribucion de estos dos efectos a la
corriente Josephson depende fuertemente en la orientacién de los campos de canje y su coexistencia

conlleva a una variedad de escenarios donde la corriente se invierte.

Consideramos dos geometrias posibles de uniones laterales. La primera de ellas consiste en un puente
ferromagnético que une los electrodos superconductores, mientras que los campos de SOC se originan
mediante capas de metales pesados intercaladas entre los finales S y el puente. En el segundo tipo de
unioén, el campo de canje y el SOC son finitos a lo largo de todo el puente. En una configuracion realista,
el segundo escenario puede realizarse por medio de un puente 2D semiconductor en un campo magnético
externo. Presentamos resultados analiticos de la ecuacién de Usadel linealizada para la corriente Joseph-
son en el primer tipo de uniones. Estos resultados analiticos son complementados por cdlculos numéricos
en ambos tipos de uniones. Tanto los resultados analiticos como los numéricos muestran que se puede
controlar la magnitud y signo de la corriente Josephson mediante la variacién de la direccién del campo
de canje y la magnitud del SOC. Ademas su posible aplicaciéon como valvula de supercorrientes, estos
resultados demuestran que este tipo de uniones laterales pueden ser usadas como detectores del efecto
de proximidad de largo alcance inducido por SOC y campos de canje homogéneos.

Siguiendo estos estudios centrados en el efecto Josephson, nos centramos ahora en otro fenémeno de
equilibrio, a saber, las corrientes de equilibrio de espin (ESC por sus siglas en inglés). Al contrario que
la corriente Josephson, las ESCs no son corrientes de transporte, por lo que no pueden desembocar en
acumulacién de espin en presencia de simetria de inversién temporal. En el capitulo 4 mostramos que
un nanohilo con SOC y simetria de inversién temporal rota por un campo de Zeeman presenta una ESC,

la cual se manifiesta como una polarizacidn de espin no despreciable perpendicular al campo Zeeman.

Desde el principio, el mismo Rashba demostré que cualquier sistema descrito por el hamiltoniano
Rashba estdndar de dos dimensiones permite corrientes de espin incluso en equilibrio termodindmico.
Estas corrientes de espin en equilibrio en materiales con acoplamiento espin-6rbita (SOC por sus siglas
en inglés) han atraido gran atencion. Las corrientes de espin normalmente son detectadas de forma in-
directa, por ejemplo, midiendo el voltaje de la corriente de espin inducida por la acumulacién de espin
fuera del equilibrio con un sensor ferromagnético, o resistencia magnética “spin-Hall”. No obstante, las
ESC no conducen a esa acumulacion de espin y por tanto no pueden ser detectadas por los métodos di-
chos anteriormente. De hecho, las ESC, parecen ser conceptualmente no observables al ser corrientes de
fondo que no se transportan, aunque se han presentado propuestas que las relacionan con el esfuerzo de
torsién mecdanico, el cual si es detectable. Por estas razones, la interpretacion de las ECS es atin objeto de
debate. Ademas, en presencia de SOC, el espin no se conserva de la forma que estamos acostumbrados.
Teoéricamente, esta controversia se puede eliminar tratando el SOC como un campo externo modificado

de tipo SU(2), aunque desde el punto de vista experimental las ESC siguen siendo huidizas.

En el capitulo 4 demostramos una correspondencia entre las ESC en hilos nanométricos con SOC y una

polarizacion transversal del espin inducida en el filo del hilo nanométrico. Al contrario que las ESC, la
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polarizacién del espin puede ser detectada experimentalmente. La correspondencia puede considerarse
universal puesto que se cumple para cualquier sistema unidimensional (o quasi-unidimensional) de var-
ios cuerpos, siempre y cuando la interaccion particula-particula sea independiente del espin. Las ESC
aparecen especificamente cuando se aplica un campo magnético B con un componente perpendicular al
SOC, induciendo una divisiéon Zeeman del campo, h = gup B. Mostramos que estas ESC internas siem-
pre van acompaiadas con una acumulacién de espin en el filo que es transversal tanto al campo Zeeman
como al SOC. Esta acumulacién transversal de espin en equilibrio también puede entenderse como una
redistribucién de la densidad de espin en el sistema como una respuesta a una corriente electromagnética
directa. Por tanto, la medida de la densidad de espin transversal deberia ser una evidencia de las ESC en
hilos nanométricos. Esta acumulacion transversal de espin no se muestra solo en el estado normal, si no
que también cuando el nanohilo tiene una diferencia A de superconductividad en la densidad de los es-
tados inducidos, por ejemplo, por proximidad a un superconductor. Es decir, encontramos una conexién
entre la existencia de ESC y una respuesta paramagnética andmala del superconductor que generaliza la

teoria, ya establecida, de “Knight-shift” en superconductores.

Recientemente los nanohilos semiconductores con acoplamiento espin-6rbita, como InAs y InSb, conec-
tados con superconductores tradicionales han sido explorados de manera intensiva debido mayormente
a la posibilidad de crear modos cero de Majorana y superconductividad topoldgica en estos sistemas.
Tanto las ESC como los modos cero de Majorana, necesitan un componente de campo de Zeeman per-
pendicular al SOC. En el contexto de los fermiones de Majorana, muchos estudios tedricos han hecho
la conexioén entre la polarizacién del espin inducida en el filo del hilo y la transicién topoldgica cuando
h = \/m, siendo p el potencial quimico. En este capitulo demostramos que la polarizacion
transversal del espin en el filo es una propiedad universal de los nanohilos que permiten las ESC y existe
para todos los valores de h, incluidos aquellos muy por debajo de la transicién topologica. Por lo tanto,
su deteccién no puede ser asociada directamente a los modos cero de Majorana, si no a la existencia
de ESC. Especificamente, en funcién del campo Zeeman h, la acumulacién total del espin muestra en
general una cuispide en h = \/m . Cabe destacar que cuando A < p, la acumulacion transversal
de espin muestra ademas un maximo pronunciado en h =~ A y puede ser mucho mayor que la magnitud
de la ctspide cuando h = p. Analizamos en detalle este maximo de la acumulacion de espin y muestra
robustez ante el desorden. Finalmente, presentamos resultados analiticos para la distribucién espacial
del momento magnético inducido como respuesta al campo de Zeeman. Encontramos que la susceptibil-
idad transversal cerca al filo del hilo puede ser mucho mayor que la longitudinal para valores pequefios
de SOC.

Los capitulos previos han estado centrados en heteroestructuras superconductoras, donde el estado nor-
mal de dispersion es cuadratico en momento. Para la parte final de la tesis, nuestro propésito fue estudiar
el efecto de proximidad en heteroestructuras entre superconductores y los recientemente descubiertos,
semimetales Weyl (WSM por sus siglas en inglés). Siendo un tipo de material novedoso y emocio-
nante que muestra una dispersién pseudo-relativista alrededor de los llamados puntos Weyl en la zona
de Brillouin, y estados de superficia inusuales llamados arcos de Fermi, que son una consecuencia de la
estructura topoldgica de la dispersion del interior, del “bulk”. Este estudio inicial de las propiedades de
transporte en la interfaz de WSMs en el estado normal, como una introduccién bdésica al tema, condujo
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al descubrimiento de un interesante efecto de filtrado, el cual es el protagonista del dltimo capitulo de

esta tesis.

La posibilidad de filtrar grados de libertad de mecanica cudntica es la esencia de la computacién. Por
ejemplo, los transistores electronicos estdn basados en la filtracién de carga eléctrica para controlar el
flujo de corriente, mientras que en espintrénica se basa en filtrar la proyeccién del espin hacia arriba
y del espin hacia abajo para codificar informacién. En metales donde las quasi-particulas de baja en-
ergia se comportan como particulas pseudo-relativistas, como el caso de grafeno bidimensional o WSMs
tridimensionales, existe un grado de libertad adicional que puede servir como alternativas para la com-
putacion. En dos dimensiones, las quasi-particulas de Dirac son excitaciones en torno a un especifico
momento conocido como valles, con relaciones de dispersion lineal. Mediante la poblacion selectiva
de uno de los valles, este grado de libertad puede ser usado para codificar informacién, pudiendo ser
llamado valletrénica. En tres dimensiones, las quasi-particulas Weyl son excitaciones en pareja dando
lugar a nodos Weyl en posiciones arbitrarias del espacio momento con quiralidad opuesta. La quiralidad
es un grado de libertad mecanico-cudntico que se refiere a si el momento de la quasi-particula esta apun-
tando en paralelo o anti-paralelo con respecto a su espin. De forma similar al filtro del valle, un filtro
de quiralidad puede ser usado para codificar informacién. En el dltimo capitulo repasamos brevemente
la ecuacién de Dirac y la ecuacién de Weyl que describen masas relativistas y fermiones de espin 1/2
sin masa, respectivamente. Presentamos, ademads, la conexion con realizaciones en materia condensada
mediante la insercién de un c6digo minimo que describe estos dos tipos de quasi-particulas fermionicas.
Proponemos una simple realizacién de un filtro de quiralidad tridimensional. El filtro estd basado en la
interfaz de dos WSMs de diferente quiralidad, WSM; y WSMs, donde los nodos de Weyl de quiralidad
opuesta estan separados en energia y momento en cada lado de la interfaz. La condicidén general para
la transmisién/bloqueo en los nodos con la misma quiralidad es, que las proyecciones de superficies de
Fermi alrededor de nodos en WSM; y WSMj, en el plano de la interfaz tenga una superposicién o no
estén unidos. Los efecto de filtrado propuesto no requiere diferencias en dopado, barreras de potencial
o campos externos. Calculamos la conductancia diferencial a través de la interfaz por la cual puede ser
medido en los experimentos e identificamos el régimen en el cual es posible conseguir la transicion de
una, ninguna o ambas quiralidades. También, un nodo intermedio moderador y el caso de una barrera
geométrica WSM1/WSMs/WSM; han sido investigados, donde mostramos que ambos casos restringen

el régimen del parametro donde aparecen efectos de filtrado.
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Résumeé

La supraconductivité est un phénomene quantique macroscopique caractérisé par 1’annulation de la
résistivité électrique et I’expulsion du champ magnétique en dessous d’une température critique. Initiale-
ment, les supraconducteurs (S) furent considérés comme des éléments de circuits électriques a résistance
nulle. Cependant, la nature quantique de ce phénomene a conduit a des applications radicalement nou-
velles et excitantes. Les progres constants dans la fabrication et la miniaturisation d’hétérostructures
supraconductrices comprenant des éléments métalliques dans 1’état normal (N), des ferromagnétiques
(F), des semi-conducteurs, des matériaux a fort spin orbite, ou encore des gaz d’électrons 2D, ont ou-
vert la voie a I’étude de nombreux effects cohérents de phase et ont placé les supraconducteurs a la
base des technologies émergentes pour le futur comme la détection quantique, la simulation et le calcul

quantiques.

L’origine physique de la supraconductivité réside dans une instabilité du liquide de Fermi électronique
vis a vis d’une attraction méme infinitésimale entre les électrons au voisinage de la surface de Fermi
(théorie BCS). Dans les supraconducteurs dits conventionnels, I’ attraction entre les électrons est véhiculée
par échange de phonons, et force les électrons a se combiner en paires de Cooper. Ces paires de Cooper
combinant des électrons de moment et de spin opposés, forment des quasi-bosons composites de spin
nul et d’impulsion totale nulle, pouvant se condenser dans un état quantique macroscopique unique.
Cette condensation conduit a la formation d’un gap supraconducteur dans le spectre d’excitation du
supraconducteur. Ce concept de formation de paires de Cooper peut étre généralisé a d’autres types de
mécanismes de pairing. Actuellement, certains de ces mécanismes ne sont pas complétement compris et

la recherche de nouveaux types de pairing reste active.

Dans cette these, nous étudions la compétition entre la supraconductivité de type singulet de spin et s-
wave avec les champs d’échange et spin-orbite susceptibles d’influencer différemment les spins opposés
des paires de Cooper. Les corrélations supraconductrices ne sont pas confinées aux seuls matériaux
supraconducteurs, et peuvent pénétrer un conducteur normal sur une échelle spatiale de 1’ordre de la
longueur de cohérence. Cette longueur dépend des caractéristiques du matériau normal. D’une maniere
générale, des conducteurs normaux peuvent ainsi acquérir certaines propriétés supraconductrices par

effet de proximité, donnant lieu a des phénomenes cohérents de phase intéressants.

L’effet Josephson est I’une des manifestations les plus importantes de I’effet de proximité. L’ état fon-
damental d’un supraconducteur est décrit par une fonction d’onde macroscopique caractérisée par une
phase. L’effet Josephson consiste en un supercourant de paires de Cooper s’établissant entre deux supra-
conducteurs dotés de phase distinctes et séparés par une barriere isolante, ou un métal normal. Ce courant
non-dissipatif s’écoule a voltage nul et dépend de la différence de phase entre les deux électrodes supra-
conductrices (effet Josephson DC).
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La premicre partie de ce manuscrit de these est une introduction a I’effet de proximité dans des hétérostructures
entre supraconducteurs et métaux normaux. Apres avoir rappelé bricvement quelques éléments de la
théorie BCS, nous présentons deux formalismes adaptés a 1’étude de propriétés thermodynamiques et de
transport dans les supraconducteurs non homogenes : le formalisme de Bogoliubov-de Gennes (BdG)
et le formalisme des fonctions de Green quasi-classiques. Le formalisme BAG permet de compren-
dre les mécanismes de scattering microscopiques qui gouvernent le transport dans les hétérostructures
N/S. Le principal mécanisme est la réflexion d’ Andreev sur une interface S/N, et la formation d’états
liés d’Andreev dans les jonctions S/N/S. Puis, nous présentons les cas importants d’une interface S/F
et d’une jonction Josephson S/F/S. Dans un ferromagnétique, le champ d’échange favorise I’alignement
des spins dans la méme direction et sépare les bandes de spins opposés. L’interaction d’échange est donc
antagoniste a I’appariement BCS qui favorise 1’antialignement des spins au sein des paires de Cooper
singulet de spin. Dans les hétérostructures S/F, cette compétition entre le ferromagnétisme et la supra-
conductivité conduit a un effet de proximité a tres courte portée, et la possibilité d’une transition zero-pi
dans laquelle le courant critique change de signe en fonction des paramétres champ d’échange et/ou de

longueur du ferromagnétique.

Cette partie introductive est suivie par une série de chapitres consacrés a I’exposition des résultats de

recherche originaux de cette these.

Le second chapitre traite de la formations des états liés d’ Andreev et de I’effet Josephson associé dans
des jonctions ballistiques entre “spin-split” (SS) supraconducteurs dont la densité d’états est fortement
affectée par un champ magnétique extérieur, ou bien des champs d’échange. Ces champs d’échange
peuvent €tre obtenus en mettant en contact des films minces supraconducteurs avec des isolants fer-
romagnétiques. La densité d’état dépendante de spin a pour origine I'interaction d’échange entre les
électrons de conduction et les forts moments magnétiques localisés dans 1’isolant ferromagnétique.
L utilisation d’isolants ferromagnétiques a I’avantage de suppléer a I’application de champs magnétiques
externes, qui devraient étre trés élevés pour obtenir un effet similaire. Nous considérons des jonctions
Josephson SS/N/SS dans lesquels I’ orientation du champ d’échange peut €tre contr6lée individuellement
dans chaque supraconducteur. Nous avons démontré qu’il est possible d’augmenter le courant critique
Josephson en augmentant I’amplitude des champs d’échange, lorsque ceux-ci sont alignés de maniere
antiparallele. Les états liés d’Andreev (ELA) n’avaient pas été étudiés en détail dans ce type de jonc-
tions. Nous avons donc analysé leurs propriétés spectrales, et démontré que pour des champs d’échange
de méme sens, on a généralement la suppression des ELA pour certains intervalles de la différence de
phase supraconductrice. En général, le courant Josephson est porté en partie par les ELA et en partie par

le continuum des états d’énergie au-dessus du gap.

Dans le chapitre 3, nous avons étudié la génération de corrélations triplet de longue portée (CTLP)
dans des ferromagnétiques diffusifs et évalué comment elles affectent I’effet Josephson. En théorie,
ces corrélations triplet a longue portée (CTLP) peuvent étre engendrées par la présence simultanée de
couplage spin-orbite (CSO) et d’un champ d’échange uniforme, mais cela n’a pas encore été confirmé
expérimentalement. Nous proposons des designs de jonctions favorables pour mettre en évidence ces
CTLP, et nous calculons le courant Josephson pour deux types de CSO. Dans une hétérostructure S/F

avec un champ d’échange uniforme, les paires de Cooper singulet peuvent pénétrer le ferromagnétique et
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sont partiellement converties en paires triplet mais ayant une projection du spin total nulle le long de 1’axe
unique défini par le champ d’échange. Dans un monodomaine ferromagnétique diffusif, les corrélations
singulet et triplet du condensat supraconducteur décroissent a 1’échelle de la longueur magnétique, qui
dépend de 1’énergie d’échange. Pour les supraconducteurs conventionnels et les champs d’échange
typiques, cette longueur magnétique est bien plus courte que la longueur thermique caractérisant la
décroissance des corrélations supraconductrices du systéeme non magnétique. En revanche, les com-
posantes triplet avec une projection du spin total non nulle, ne sont pas affectées par I’effet de pair break-
ing du champ d’échange et décroissement lentement sur une échelle spatiale comparable a la longueur
thermique. De telles CTLP peuvent étre générées par des inhomogénéités du champ d’échange, ou bien

par la présence d’un couplage spin-orbite (CSO) dans un champ d’échange homogene.

La présence de CTLP a été vérifiée expérimentalement en utilisant des champs d’échange inhomogenes
dans des hétérostructures S/F. En revanche, la génération de CTLP par le couplage spin-orbite en champ
d’échange uniforme n’a pas encore été mise en évidence expérimentalement. Récemment, des jonctions
Josephson avec un champ magnétique dans le plan et du spin-orbite ont été réalisées expérimentalement
mais le courant Josephson mesuré ne montre pas de signes de CTLP. En effet dans de telles jonctions
S/F/S verticales, la condition pour la formation de CTLP est tres restrictive. En particulier pour qu’un
couplage spin-orbite de type Rashba puisse générer des CTLP I’aimantation uniforme doit posséder
une composante hors du plan. Ceci est un scénario défavorable car un tel champ d’échange peut créer
aussi des vortex dans le supraconducteur ce qui complique I’interprétation des résultats expérimentaux.
Plus souhaitable pour I’observation des CTLP est la géométrie latérale, dans laquelle les courants ont
aussi une composante le long de I'interface entre S et F. Dans ce chapitre 3, nous récapitulons les
bases de I’effet de proximité sous 1’ influence de champ d’échange et de couplage spin-orbite dans
des hétérostructures diffusives. Nous démontrons que les jonctions latérales sont les dispositifs favor-
ables pour I’observation de courants Josephson sur de longues distances. Nous proposons deux types de
jonctions réalistes pour des expériences futures sur la génération de LRTCs, et nous calculons le courant

Josephson correspondant pour deux types de couplage spin-orbite, Rashba et Dresselhaus.

Nous avons traité deux géométries de jonctions. Le premier type de jonctions est constitué d’un pont
ferromagnétique reliant deux électrodes supraconductrices, le fort couplage spin-orbite provenant de
couches de métaux lourds intercalées entre les électrodes S et le pont ferromagnétique. Dans le sec-
ond type de jonctions, le champ d’échange et le couplage spin-orbite coexistent sur toute la longueur du
pont. Ce second scénario peut étre réalisé au moyen d’un pont semi-conducteur 2D placé dans un champ
magnétique externe. Nous présentons des solutions analytiques des équations d’Usadel linéarisées, et
le courant Josephson pour le premier type de jonctions. Ces résultats analytiques sont complétés par
des calculs numériques sur les deux types de géométries de jonctions. L’ensemble des résultats, analy-
tiques et numériques, montrent que I’intensité et le signe du courant Josephson peuvent étre controlés
en changeant le champ d’échange et le couplage spin-orbite. Au dela de I’application possible comme
valves supraconductrices, notre travail montre que les jonctions latérales peuvent étre utilisées comme
détecteurs de I’effet de proximité triplet a longue portée induit par la combinaison d’un couplage spin-

orbite et d’un champ d’échange uniforme.
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Nous avons aussi étudié un autre phénomene d’équilibre, a savoir les courants de spin d’équilibre (CSE).
Dans le chapitre 4, nous montrons qu’un nanofil avec du couplage spin-orbite et brisant 1’invariance par
renversement du temps par un champ Zeeman conduit a un courant d’équilibre bulk qui se manifeste par

une polarisation de spin (transverse au champ Zeeman) aux bords de I’échantillon.

Les courants de spin sont détectés indirectement en mesurant, par exemple, des voltages avec une
électrode ferromagnétique, ou par magnetoresistance de Hall de spin, induite par une accumulation de
spin. En revanche les CSE n’induisent pas d’accumulation de spin et ne peuvent donc pas étre détectées
par ces méthodes. En effet, les CSE n’étant pas des courants de transport semblent inobservables, bien
que certaines propositions théoriques les aient reliés a des couples mécaniques détectables. Pour ces

raisons, I’interprétation des CSE est toujours sujette a débat.

Dans le chapitre 4, nous démontrons la correspondance entre les CSE dans des nanofils avec spin-
orbite et une polarisation de spin transverse plus simple & mesurer sans ambiguité. Cette correspon-
dence est présente pour tout systeme (quasi-) unidimensionel en interaction, a condition que les in-
teractions electron-electron soient indépendantes de spin. Les CSE apparaissent par application d’un
champ magnétique B avec une composante perpendiculaire au spin-orbite, introduisant une levée de
dégénérescence Zeeman h = gupB. Nous montrons que les CSE sont toujours accompagnés par une
accumulation de spin qui est transverse au champ Zeeman et au champ spin-orbite. Cette accumulation
de spin transverse peut étre comprise comme une redistribution de la densité de spin en réponse a un
courant DC. Ainsi la mesure d’une telle densité de spin transverse serait une mise en évidence des CSE
dans le nanofil. Cette accumulation de spin existe non seulement dans I’état normal mais aussi quand
le nanofil est dans I’état supraconducteur (par exemple par proximité avec un supraconducteur). Nous
avons mis en évidence une connexion entre I’existence des CSE et la réponse paramagnétique anor-
male d’un supraconducteur. Les nanofils semi-conducteurs avec spin-orbite, tels que InAs et InSb, en
contact avec des supraconducteurs, ont été explorés trés activement dans les dernieres années, essen-
tiellement comme plateformes possibles pour la création de modes de Majorana et de supraconductivité
topologique. Aussi bien les CSE et les modes de Majorana nécessitent une composante du champ
Zeeman perpendiculaire au spin-orbite. Dans le contexte de la recherche des fermions de Majorana,
plusieurs travaux théoriques ont déja fait le lien entre la polarisation de spin aux bords du fil et la tran-
sition topologique. Dans ce chapitre, nous démontrons que la polarisation de spin transverse aux bords
est une propriété universelle qui existe pour toutes les valeurs du champ d’échange h, y compris trés loin
de la transition topologique. Ainsi la détection de cette polarisation ne sera pas a relier a I’existence de
modes de Majorana, mais a la présence des CSE.

Dans le derniere partie de cette theése, nous avons étudié des propriétés de transport dans des semimétaux
de Weyl (SMW). 1l s’agit d’une nouvelle classe de matériaux qui possedent des quasiparticules a dis-
persion linéaire a proximité de points spéciaux de la zone de Brillouin appelés points de Weyl, ainsi
que des états de surface tres spéciaux appelés arcs de Fermi. Nous avons démontré un effet de filtrage
de chiralité a I’interface entre deux SMW distincts. La possibilité de filtrer un degré de liberté de spin
est au coeur du calcul. Par exemple, les transistors de 1’électronique numérique standard reposent sur
le filtrage de la charge électrique pour controller le courant, tandis que la spintronique exploite le spin

des porteurs de charges pour coder information. Dans les métaux ayant des quasiparticules de Dirac
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ou Weyl a dispersion linéaire, tels que le graphene 2D et les SMWs 3D, il existe d’autres degrés de
libertés qui sont couplés au mouvement des charges et peuvent servir de supports alternatifs au calcul et

a I’électronique du futur.

Dans le graphene, a deux dimensions, les quasiparticules de Dirac existent dans des zones restreintes,
appelées les vallées, autour de deux vecteurs d’ondes bien précis. Ce degré de liberté de vallée peut étre
utilisé pour coder de I’information a condition de pouvoir peupler sélectivement une seule vallée. On

parle alors de valléetronique.

A trois dimension, les quasiparticules de Weyl sont localisées autour de noeuds de Weyl qui apparaissent
par paires de chiralités opposées. La chiralité est un degré de liberté quantique qui indique si I’impulsion
de la quasiparticule pointe dans la méme direction que le spin ou bien dans la direction opposée. Par
analogie avec le filtrage de vallée, un filtre de chiralité pourrait étre utilisé pour coder de I’information,
avec une protection topologique additionnelle. Dans ce dernier chapitre, nous rappelons brieévement les
équations de Dirac et de Weyl qui décrivent les fermions de spin 1/2, respectivement massifs (Dirac) et

de masse nulle (Weyl).

Nous présentons ensuite le modele le plus simple de liaisons fortes qui réalise les fermions de Weyl en
matiere condensée. Utilisant ce modele, nous proposons une réalisation simple d’un filtre de chiralité
tridimensionnel. Le filtre consiste en une interface entre deux différents semimétaux de Weyl, dans
lequels les noeuds de Weyl de chiralités opposées de part et d’autre de I’interface sont séparés en énergie

et en impulsion.

La condition générale de transmission ou de blocage entre noeuds de méme chiralité réside dans la con-
servation de I’impulsion transverse des quasiparticules. Notre proposition de filtre de chiralité n’exige
pas de réglage du dopage, de barrieres de potentiels ou de champs externes. Nous avons calculé
la conductance différentielle a travers une interface qui peut étre mesurée expérimentalement. Nous
avons identifié divers régimes de transport correspondant a la transmission d’aucune chiralité ou d’une
seule chiralité. Bien sir, il existe aussi un régime plus standard ou les deux chiralités peuvent franchir

I’interface.
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General introduction

It has been known for millennia that “The totality is not... a mere heap, but the whole is other than the
sum of the parts.” Aristotle’s famous sentence applies perfectly to the physics of mesoscopic supercon-
ducting heterostructures. Bringing multiple different materials into contact multiplies the possibilities
to manipulate the transport and equilibrium properties in these hybrids. Superconductors are especially
interesting candidates to link with other materials. When brought into contact they form more than just
a mechanical connection with other materials: the superconductivity can leak far beyond the contact
region. In general, this makes it possible to observe superconductivity simultaneously with other in-
teresting phases of condensed matter, but the consequences on the system properties depend strongly
on the type of superconductivity and the altered material. In this thesis we will be concerned mainly
with hybrids of conventional superconductors and materials subject to magnetic and spin-orbit coupling
fields.

Superconductivity is a macroscopic quantum phenomenon characterized by a vanishing resistivity and
the expulsion of external magnetic fields below a critical temperature. In 1911 H. Kamerlingh Onnes
was the first to reach temperatures low enough to experimentally observe superconductivity in a mercury
sample [1]. A phenomenological theoretical description for the electrodynamics of superconductors (S)
has been provided by F. and H. London in 1935 [2] and generalized by Ginzburg and Landau in 1950 [3].
Finally in 1957 a microscopic description was provided by J. Bardeen, L. N. Cooper and J. R. Schri-
effer [4] known as BCS theory. They showed that the normal Fermi gas is unstable under arbitrarily
weak attractive interactions between electrons about the Fermi energy. The attraction between elec-
trons responsible for superconductivity was found to be mediated by electron-phonon interactions. In
this case it is favorable for electrons with opposite momenta and spins to bind into pairs, the so-called
Cooper pairs. This is referred to as s-wave or conventional pairing, as the total angular momentum of
the paired electrons forming the superconducting ground-state is zero. Materials exhibiting this pairing
mechanism are called conventional superconductors. Many elements that display superconductivity, like
Al or Nb, belong to this type. In the 1980’s several new classes of superconductors were discovered, in
particular organic [5], heavy-fermion [6], and copper-oxide superconductors [7], and the search is still
ongoing. In many of these new classes the pairing mechanisms are not fully understood, the pairing
has unconventional symmetry and the critical temperature T, can be much higher then in conventional
superconductors. For conventional superconductors the currently highest experimentally observed 7 is
about 39 K [8]. In contrast, for the high temperature superconductors like the copper-oxide supercon-
ductor YBaCuO, 7. lies at 93 K [9], and the currently highest experimentally measured 7. of 203 K has
been observed in sulfur hydride systems under extremely high pressure [10].
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Although for conventional superconductors, it is necessary to achieve relatively low temperatures to en-
ter the superconducting state, they are an essential part for a range of practical applications. On a big
scale they are used as ideal conductors to create strong magnetic fields, as needed in particle accelerators
or for magnetic resonance imaging. On a small scale, constant advancement in the fabrication and minia-
turization of high quality superconducting heterostructures, involving normal metals (N), ferromagnets
(F), semi-conductors, materials with strong spin-orbit coupling (SOC) or two-dimensional (2D) electron
gases, has opened the path to study many interesting phase coherent effects and has made supercon-
ductors the basis for various future emerging technologies, for example quantum simulation [11] and
quantum computation [12, 13]. Conventional superconductors are used as an essential building block
in nanoscale devices where the quantum nature of the macroscopic superconducting state is exploited,
for example in high precision magnetometers, so-called Superconducting QUantum Interference De-
vices (SQUIDs) [14], high precision current detectors or to realize qubits as building block of quantum
computation, like the Cooper pair box [15], the Transmon [16] or Fluxonium [17]. In general, in such
heterostructures the non superconducting components in contact with the superconductor acquire some
properties of the latter, what is known as the proximity effect. Superconducting correlations are not nec-
essarily bound to the superconductor and penetrate the normal conducting materials on the length scale
of the characteristic size of Cooper pairs, the superconducting coherence length, which itself strongly

depends on the normal conducting material.

One of the most prominent manifestations of the proximity effect is the Josephson effect [18]. The
groundstate of a superconductor is described by a macroscopic quantum wavefunction that will have a
phase in general. In 1962 Brian Josephson predicted that phase coherent tunneling of Cooper pairs be-
tween two superconductors, that are separated by a thin insulating barrier and differ in the phase of their
individual macroscopic wave function, leads to a zero resistance current at zero voltage. This effect is
known as the dc-Josephson effect and is a direct proof of the macroscopic character of the superconduct-
ing ground state. Further Josephson predicted that at applied voltage, the coherent tunneling of Cooper
pairs leads to a quickly alternating current, which is known as the ac-Josephson effect. Both effects

where confirmed experimentally shortly after their discovery [19, 20].

Other phenomena related to the proximity effect have their origin in the spin state of the Cooper pairs.
In a singlet superconductor, as the name suggests, the paired electrons have opposite spin. As a conse-
quence the coherence length can get strongly altered by spin-active fields. A prominent example is the
manipulation of the proximity effect inside a ferromagnet or in a normal conductor under presence of
an external magnetic field. The exchange field in a ferromagnet splits the previously degenerate bands
in energy and consequently a parallel alignment of the spins is energetically favorable. In the case of
an external magnetic field the equivalent situation is played be the Zeeman interaction. Both counter
the conventional pairing mechanism that prefers anti-parallel orientation of the spins, thus in principle
ferromagnetism and superconductivity are two strongly competing phases. Indeed, at S/F interfaces the
proximity effect is strongly suppressed [21]. In the ferromagnet the superconducting correlations decay
on a much shorter length scale and are accompanied by spatial oscillations. The competition between
both phases can be used to control the proximity effect. For example in S/F/S junctions, the oscillations
of the superconducting correlations can cause a reversal of the maximal dc-Josephson current depending
on the junction length and the strength of the exchange field [22-26].
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Another interesting effect is the generation of long ranged triplet correlations in S/F/S heterostructures
with inhomogeneous ferromagnets or multilayered ferromagnets connecting the superconductors [27—
29]. Triplet correlations with spin projections perpendicular to a present exchange field/Zeeman field
are not vulnerable to the spin-splitting and thus decay on a length scale comparable to the one of a
non-magnetic system. Supercurrents carried by such triplet pairs can be in a highly polarized state.
This makes them an ideal candidate for spintronics applications [29, 30], where the precise control and
manipulation of the spin degree of freedom is a highly sought after property for signal transmission,

processing and storage.

Besides the generation of triplet correlations through inhomogeneous ferromagnets there exist theoretical
proposals to use SOC active compounds as a substitute [31, 32]. Of particular importance are SOC fields
of the Rashba [33] and Dresselhaus [34] type. Rashba SOC is present in systems with broken structural
inversion symmetry, e.g. at interfaces, whereas Dresselhaus SOC is present in systems lacking bulk
inversion symmetry, i.e. the crystal structure of the material is not inversion symmetric [35]. Both types
of SOC can be described as a momentum dependent, time-reversal preserving, effective magnetic field
and are equally able to rotate the carrier spin to avoid the short range decay of the superconducting
correlations. They introduce new possibilities of control over the spin degree of freedom, especially in a
one-dimensional/two-dimensional electron gas, where the strength of the Rashba and Dresselhaus SOC

can be tuned by applying a gate voltage [36, 37].

The study of the interplay of SOC, magnetic fields and superconducting correlations is also of great rel-
evance for the realization of Majorana Fermions in condensed matter systems. Majorana Fermions were
first predicted by Ettore Majorana in 1937 [38] as real solutions of the Dirac equation and are elemen-
tary particles that are their own antiparticles. In the context of high energy physics their existence has
not been confirmed, however after many decades Kitaev demonstrated that Majorana Fermions could be
realized as quasiparticle excitations in a solid state system [39]. Due to their non-abelian statistics [40]
Majorana Fermions are considered as potential building block for topological quantum computation [41].
Many different devices have been suggested to host and detect Majorana Fermions [42—44]. A promising
scheme consists of a one-dimensional quantum wire with strong Rashba SOC, e.q. InAs or InSb wires,
proximized by a conventional superconductor and subject to a magnetic field [45]. Experiments in such
systems report a zero-bias conductance peak as signatures of the Majorana Fermions [46, 47]. Alterna-
tive explanations question the unambiguousness of these results [48—50]. Potential alternative signatures
for the presence of Majorana physics are on demand and could be found in the various magneto-electric
effects that rise due to the interplay of the different spin-fields and superconductivity [51-53].

The above mentioned effects were studied under the assumption of a non-relativistic, quadratic dis-
persion for the quasiparticle excitations. At first glance this is not surprising as the typical excitation
energies in condensed matter systems are far below the rest mass of the electron. A relativistic descrip-
tion of the involved physics doesn’t seem necessary. However, in contrast to a free Fermion, in solid
state systems electrons move through a periodic crystal. The symmetries of the crystal impose restric-
tions on the quasiparticle states and can lead to effective low-energy descriptions that correspond to the
Dirac equation [54]. A recently discovered material class that exhibits Dirac physics is Weyl semimetals

(WSM) [55-57]. WSMs are three-dimensional materials, characterized by the appearance of pairwise



linear band crossings. These band crossings are protected by the internal symmetries of the crystal
and are called Weyl nodes. The low-energy physics around the Weyl nodes is described by the Weyl
Hamiltonian and each node is characterized by its chirality, which is the projection of the spin onto the
direction of motion of the quasiparticle. So at each Weyl node the direction of motion of a quasiparticle
is locked to its spin, which can have drastic consequences on the proximity effect between a WSM and
a conventional superconductor. For example at a magnetic WSM/S interface the proximity effect is not
just suppressed but is completely blocked [58]. The chirality represents a currently unused quantum
degree of freedom that can be exploited to encode and transmit information [59—64]. It is therefore de-
sirable to further understand how superconductivity introduces additional options of manipulating this

degree of freedom.

Outline of the thesis

This thesis studies the interplay between spin-active fields and superconducting correlations in various
heterostructures. Each chapter of the main work is dedicated to a different system. Each system creates
effects that have been predicted theoretically - both by this work and previous studies - but not observed

until now.

e Chapter 1 is a brief introduction to the theory of transport in superconducting mesoscopic sys-
tems. We recap basic elements of the BCS theory, the Bogoliubov-de Gennes (BdG) formalism
and the quasi-classical Green’s function formalism, which are extensively used throughout this
thesis. We derive basic properties of bulk superconductors and study basic transport phenomena

in heterostructures involving superconductors with the aid of the scattering formalism.

The chapters that follow form the main part of the thesis and present original research.

e Chapter 2 is devoted to the Andreev bound state formation and the resulting Josephson effect in
ballistic junctions involving spin-split superconductors. In such systems it is possible to increase
the critical Josephson current by increasing the magnitude of the exchange field. This is a rather
counterintuitive result considering the pair breaking nature of the spin-splitting fields. The depen-
dence of the Andreev bound states on the phase difference between the superconducting banks has
not been investigated so far and we analyze the spectral properties of this junction type within the
BdG formalism.

e Chapter 3 turns to diffusive superconducting systems and discusses the generation of long range
triplet correlations (LRTC) in strong ferromagnets through SOC. We propose two types of realistic
Josephson junctions, which represent the most favorable setup to observe this currently unrealized
possibility to generate LRTC and determine the signature of these correlations, a long-ranged

Josephson current.

e Chapter 4 is dedicated to the interplay of superconductivity, Rashba SOC and a homogeneous

exchange field in a 1D wire for a wide range of parameters and regimes. We show a universal

4



correspondence between equilibrium spin currents in the bulk and spin polarization transverse
to the magnetic field at the edges of the wire. Such edge polarization has been suggested by
some authors as a signature of Majorana zero modes. We show that this not true in general and
emphasize the link to hitherto undetected and long debated theoretical concept of equilibrium spin

currents.

Chapter 5 leaves the superconducting regime and studies the ballistic transport through interfaces
between WSMs. The aim of this part of my work was to consider the proximity effect between
WSMs and superconductors. It turned out that interfaces between WSMs are already very exciting
by themselves. In this chapter we propose a way to filter the charge current based on the chirality
of the quasiparticles in such structures, thus exploring the well defined chiral degree of freedom

as a potential candidate for signal processing and computation.






Chapter 1

Mesoscopic superconductivity

This chapter is a brief reminder on the formalisms used in this thesis. The first section introduces the
BCS theory and derives basic results for the bulk properties of conventional superconductors. Based on
the BCS theory two formulations of the latter are deduced that are able to treat transport in supercon-
ducting heterostructures. The Bogoliubov de Gennes (BdG) equation and the Green-Gor’kov equation.
Then we turn to the scattering formalism to present basic transport phenomena in superconducting het-
erostructures on a microscopic level. Finally we derive the quasi-classical transport formalism in the
clean and dirty limit from the Green-Gor’kov equation. This chapter enables the reader to reproduce the

findings in the chapters that follow.

1.1 Elements of BCS theory

We start from the BCS effective Hamiltonian which leads to the formation of Cooper pairs [65]
eff _ + . V(x) T, trapT
Hpes = [ dxVUT(x)h(p)V¥(x) + alxi4 (U io W) (U o W) | (x) (1.1)

where h(p) is some time independent classic Hamiltonian that only depends on the momentum operator
p = —ihVy, V(x) < 0 is an attractive interaction and a function of space in general. The matrices o;

are the Pauli matrices represented by

0 1 0 —i 1 0
(V) (U ) (D) e

and we define o := 1 as the identity. Through-though the thesis we will use the indices (x,y,2) and
(1,2, 3) interchangeably to label the Pauli matrices. For the case we are in a direct product space, where
each subspace is spanned by the Pauli matrices and the identity, the basis of the second subspace will be



1.1. Elements of BCS theory

denoted by 7;. The spinors ¥ and ¥ are

m:(ﬁ) \I/T:(ﬂ ¢I> (1.3)

The operators 1/JL(X), 1o (x) are fermionic creation and annihilation operators at position = where « is

some internal degree of freedom, i.e. the spin. They obey the usual anti-commutation relations

{0460, 0s(y) } = apblx —y),
{wa(x)’ W(Y)} =0. (1.4)

Following Bardeen, Cooper and Schrieffer, who realized that an attractive interaction between electrons
leads to formation of Cooper pairs, we decouple the interaction term by a mean-field approximation
assuming that thermal averages of two creation or annihilation operators can be non-vanishing. This

leads to the following mean field Hamiltonian
Hits = [ axh) Ve — [ dx [AGIU0][00 + A e0] . (1)

where we introduced the superconducting order parameter A(z) = |V (x)| (¢ (x)4(x)). Here (---)
denotes the thermal average of an operator which is defined by

(-+-) =Tr[e ... ]/ Tr[ePH], (1.6)

where Tr denotes the trace of an operator and 8 = 1/kgT. Note that terms corresponding to products
of two thermal averages have been neglected as they only lead to a constant shift of the ground-state
energy. By construction the Hamiltonian (1.5) describes a non-interacting system, where electron and
hole degrees of freedom are coupled. Let us turn to to the bulk excitation spectrum described by this
Hamiltonian. As the system is translational invariant we apply a Fourier transformation to Hamilto-
nian (1.5). For simplicity we assume that the kinetic part is trivial in spin space and quadratic in mo-
mentum h(p) = p2/2m — p with m as the effective mass and i denoting the chemical potential. The

equivalent Hamiltonian in momentum space can be written as [66]

Hﬁ‘és = Z gkCL,aCka + Z [AkCL,TCJLk,i + Altc—k7ick,T] , (1.7)
k,o k

where & = k?/2m — p is the kinetic energy measured from the Fermi energy and we assumed that the

attractive interaction binds electrons/holes of opposite spin and momenta which leads to the gap equation
Ak = —i Z Vk Kk’ <C,k/ 1Ck/ T> . (18)
N o ’ » )

We diagonalize the Hamiltonian by the so-called Bogoliubov transformation [67]. The Bogoliubov

transformation introduces new fermionic operators v,y which are linear combinations of the original
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Ea F
S
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0 kr k0 kr k

FIGURE 1.1: Quasiparticle excitation spectrum for vanishing and finite order parameter and com-
position of the quasiparticles below and above the Fermi energy in a superconductor

electron creation and destruction operators,
— ¥ B |
Tt = UkCk,t — VkCy s
s = Vit +ukel . (1.9)

Demanding that the new operators obey fermionic commutation relations one can show that the coeffi-
cients of the transformation, also referred to as coherence factors, fulfill |uy|? + |vx| = 1. The inverse

transformation reads
Ck,p = UkVk,t T+ Uk’YT,k B
Ctk,¢ = _”lt'Yk,T + Ult’Yik,\L- (1.10)

The Hamiltonian written in terms of the new operators is

Hacs = Bacs + Y Ex ko (1.11)
ko

and the resulting quasiparticle excitation spectrum

k= /&k + A2 (1.12)

The quasiparticles, usually called Bogolons, are superpositions of electron- and hole-like states, which

can be deduced from the amplitude of the coherence factors

fk A—0

|uk| = 1+* O (&), (1.13)
\/>
o = =\ [1- 2 22 6 (-g0), (1.14)
\/>
in combination with the spectrum which are shown in Fig. 1.1. In the limit of vanishing order parameter

the Bogolons are holes for energies below the Fermi energy and electrons above as expected for a normal

9



1.1. Elements of BCS theory

metal. When the order parameter is finite the nature of the Bogolons depends on the energy and ranges
from mostly hole-like far below the Fermi energy to mostly electron like far above the Fermi energy. At
the Fermi energy |ux|? = |vk|? = 1/2, i.e. the excitations are exactly half hole half electron. In contrast
to the normal metal superconductivity opens a gap of magnitude Ay, in the excitation spectrum thus no
quasiparticle excitations are possible below this threshold. This reflects the fact that it costs energy to
break a Cooper pair in the BCS condensate ground state to create two Bogolons. To determine the gap
energy, inserting the Bogoliubov transformation into the definition for Ay leads to

1 A 3
= —— r——tanh | = FEy | . 1.1
Ayg N%:ka B an <2 k> (1.15)

We make some approximations that allow to obtain analytical results. As £ is isotropic it is possible to

convert the sum over k into an integral over energy
1 dk oo
— | d 1.16
N /(%)3 /_OON(£+M>£ (1.16)
k

with N () being the density of states. Assuming that pairing is constant, k independent Vige = Vb,
and active only in a small window (Debye energy) around the Fermi energy, and that the DOS is almost

constant

We

/_ZN({JFM)dazJ\/O/ d¢ (1.17)

—We

where N is the normal state DOS at the Fermi energy and w, is a cut-off energy. The gap equation

becomes

VoNo /“’C A (
- dé ———tanh
2 —We 6 V 52 + AQ

that can be solved numerically (Fig.1.2). For T = 0 analytical solutions are possible. We have

A =

2\/52 +A2> (1.18)

‘/ONO we A . We
Ay = — de ——= = AgArsinh— 1.19
0 > /.. 5\/@ gNoAoArsin Ay’ (1.19)

SO
. 1 We 1
sinh = = Ag=wWe———. (1.20)
NoVo Ay “sinh NOIVO
In the weak coupling limit (MyVp < 1) we obtain the usual zero temperature gap
1

Ay = 2we.e NoVo, (1.21)

and the relation with the critical temperature A3, ~ 1.76. In a similar way one obtains the BCS density

10
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FIGURE 1.2: a) Numerical obtained temperature dependence of the BCS gap. b) Density of states
of a superconductor.

of state (DOS) of a superconductor

No—E— E>A
Ns(E) = i E 0)(E — Eyx) ~ OVEQ_AS ° (1.22)
N
k 0 S E <A

As expected there are no quasiparticle states in the gap and the DOS shows a square root divergence at

the edge of the gap as shown in Fig. 1.2 b).

1.1.1 Bogoliubov - de Gennes equations

To study inhomogeneous superconducting systems on the level of the BCS mean field theory, we need
to formulate the BCS theory in real space. As the BCS Hamiltonian describes non-interacting Bogolons,
it is sufficient to study single-particle excitations. In the following, we construct a Schrodinger like
equation for the eigenstates of the BCS Hamiltonian in the electron-hole basis instead of the Bogolon
operators. This will lead to the Bogoliubov-de Gennes (BdG) Hamiltonian which allows to study the
single particle excitations within the framework of first-quantization in systems with heterojunctions,

interfaces etc. We start from the equation of motion for the electron and hole operators,

i
atCLT = 7 (gkCL,T - Aiciki) )
i ,
Oic_x,| = 7 <—§kc—k,¢ - Akcilw) , (1.23)
and insert the Bogoliubov transformed operators (1.10). Calculating the time-derivative of the Bogolon
operators on the left side

7

{
at'V]LT == hEk%T(,T, vk =+

hEk’Y—k,@ (1.24)

11



1.1. Elements of BCS theory

and gathering terms with 'y;i ) respectively we obtain

ék Ax Uk Uk
=F . 1.25
(Aiz —5)() () (2

The eigenvalues of the matrix on the left hand side are +Fy, thus it has exactly the same positive
excitation spectrum as 7—[]“3“{:5. One can show that its eigenstates are the one of the Bogolon creation and

annihilation operators. Then

A
Hpac (k) = < i‘; e > (1.26)
k

is the desired first quantized form of the ’Hg‘és in k space also called the BAG Hamiltonian. Performing

a Fourier-transformation back to the real space representation of Hpqg gives

Ho(x)  A(x)
Hpdg(x) = , 1.27)
A*(x) —Ho(x)
where Ho(x) = —h%02/2m — u + V (x). The Schrodinger-like equation for the Bogolons is
Hpac(x)¥ (x) = BV (x), (1.28)

and is referred to as the BdG equation. In principle, we can now model different spatial variations of the

gap parameter A(x). On a first glance, what changed is that now the solutions are spinors

o) — P1(x)
W(x) (%(X)) (1.29)

in electron-hole space. However we also need to keep in mind that in an exact calculation, the gap has
to be determined self-consistently. To study many general effects of the superconducting pairing it is

usually sufficient to assume that A(x) is some given function for which self-consistency is fulfilled.

1.1.2 Gor’kov equation

The BCS theory can be translated in the language of Green’s functions. In this section we derive the
equation of motion for the Green’s function of a superconducting system, which is named after Gor’kov
as the Gor’kov equation, who together with Abrikosov was one of the main heads behind this reformu-
lation [68]. Furthermore, Gor’kov was able to show that the phenomenological Ginzburg and Landau

theory [3] follows from the Gor’kov equation for temperatures close to the critical temperature [69].

12
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Let us define the central object of this section, the Green-Gor’kov matrix

G(&1,8) = % <T < \711.(5 ; ) ® ( (&)T [T‘I’(ﬁz)w)]>

_ G(&1,6) F 51752 (130)
—F(&1,&%) G(&, &

where §; = (x;, t;) represents a space-time point and

T
T [w(é‘l)wT(&)} _ P(€)YT(§2) yla <ty (1.31)
N (&)Y(&) ta>t

the time ordering operator for fermionic field operators. The upper two sub-matrices in Eq. (1.30) are

the normal and anomalous Green’s function

T
G (&, &) = zh< < %% T/fﬂﬁ# ) (51,52)>, (1.32)

m% w%%
Y1y — Py
F (&1,62) = zh< ( By~ ) (51,§2>> (1.33)

respectively. As we have seen in the previous sections, the BCS interaction couples electron- and hole-
like states and holes can be viewed as time reversed electrons. The equations of motion for the Green’s
function of a superconductor will necessarily include correlators between states and time reversed states.
It will become handy later to define the time reversal operator for spin-1/2 quasiparticles 7 = ioo/C
with K the complex conjugation operator. The time reversal operator 7 has the property 72 = —1
and T = —7 ~!. The Green-Gor’kov matrix respects particle-hole symmetry where the particle-hole
operator is defined as

P =Koy = ( 0T > (1.34)

T1 0

with P? = 1 and P = P~!. The 7; are the Pauli matrices that span the particle-hole space. Applying
the particle hole transformation onto the Green-Gor’kov matrix gives

TGT-L TFT!

G(£17§2)P = ( _TFT_l TGT_l

) — G(61,&) (1.35)

where TFT—! = F and TGT ! = G have been used. This shows that G and F are the only two
independent components of the Green-Gor’kov matrix.

The equation of motion for the Green-Gor’kov matrix, follows from evaluating the Heisenberg equation
of motion for the field operators ih0y) = [, H| with the Hamiltonian ’HBCS (1.5). The resulting

13



1.2. Basic transport phenomena in mesoscopic systems involving superconductors

equations can be cast into matrix form, the Gor’kov equation:

G, (&)G (4.&) =04 - &) (1.36)

where

Gol(&1) = ihm30y, — € (P1) + A (x1), (1.37)

(e o o 0 AX
£<p)—( ; Th(f)T‘l)’A()_<—A(x)* . ) (1.38)

and A(x) = AV (x)Tr[F ({2 — &1)]. Note that we assumed that the kinetic energy operator only

~—

depends on the momentum operator. For completeness, repeating the procedure for the case when the

derivatives are taken with respect to &> leads to the conjugate equation

G (€,5) (G (&) =6 - &) (1.39)

where
(G (&))" = —ihmsdf, — € (P2) + A (x2) (1.40)

and the daggered partial derivative is acting on expressions to its left hand side. We will need it later to
derive quasi-classical transport equations.

The physical information contained in the BAdG or Gor’kov equations is equivalent. Each of the formu-
lations has its advantages and disadvantages. In contrast to the previous BdG formalism, the solutions
of the Gor’kov equations are two point correlators, i.e. Green’s functions. To study non-homogeneous
systems, like interfaces or junctions the Gor’kov Green’s function is a rather complicated object to deal
with. An advantage of the Green’s function formulation gets obvious when applying diagrammatic

techniques, for example when treating disordered systems.

It is possible to simplify the Gor’kov equations to a equation of motion for functions that only depend
on one spatial variable in the so called quasi-classical limit. In this thesis the Gor’kov equation will
be the starting point to generalize these quasi-classical transport equations to a SU(2) gauge covariant

formulation in order to describe interaction between particles and spin fields.

1.2 Basic transport phenomena in mesoscopic systems involving super-

conductors

In this section we will use the previously introduced Bogoliubov-de Gennes Hamiltonian to discuss
basic scattering phenomena at boundaries between normal and superconducting regions with the aid of

minimal examples. We start with the Andreev reflection as the microscopic explanation for the charge

14
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FIGURE 1.3: a) Excitation spectrum and possible quasiparticle solutions and their propagation
direction on both sides of the interface. b) Electron with sub gap energy can not enter the supercon-
ductor, pairs up with a electron below the Fermi energy to enter the condensate and leaves behind a
hole. c) Paths of the reflected quasiparticles.

transfer at such boundaries and explain how these lead to the formation of Andreev bound states and the
Josephson effect in S/N/S junctions. Finally we explore how these effects are altered under the presence
of a homogeneous exchange field. This section will allow the reader to fully reproduce the findings of

chapter 2.

1.2.1 Andreev reflection and N/S interface - Proximity effect

The Andreev reflection is a process that appears at a N/S interface and is an explanation for the finite
sub-gap charge transport. It also provides insight into the difference between the BCS many particle gap,
and a single particle gap, because a quasiparticle can enter the superconductor with an energy below the

gap, only because of the presence of the many-body condensate.

Let us assume a planar system in the -y plane, with a N/S interface located at z = 0 and translational
invariant in the y direction. We model the order parameter as a step-function A (x) = O(z)A( and a
add ¢-like normal scattering barrier at the interface by setting V' (x) = HJd(x). Let us determine the

possible propagating solutions in the different regions.

In the normal region = < 0 the possible solutions for a given quasiparticle energy F and transverse

[ [

momentum k, are

1
0

0
1

(1.41)

) eizkcxezkyy’ and 1/]}::: — >eizkhxezkyy'
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1.2. Basic transport phenomena in mesoscopic systems involving superconductors

In the superconductor x > 0 we find the solutions

iL ig
+ ue 2 +igex ik + ve'2 +i ik
wqe = ( Lig eFeT ety - and szqh = Lig eFlanT ikyy (1.42)

where

E+Q
T 2E =/E2 - A2, (1.43)

and ¥ = ‘ﬁ—gl is the phase of the order parameter. We parametrize the in-plane Fermi wave vector of
the circular Fermi surface by angle 6, kr = kr(cos 6, sin #). For small excitations about the gap energy
and when the gap is much smaller then the Fermi energy, F', Ay < 1, we can approximate

) FE
ko = kpcos+ — . ky = kpcosf — — 1.44
FCost + hvp cos 6 h o8 hvg cos @ ( )
Q
— kpcosf 4 —— — kpcosf — — . 1.45
de Feost+ hvp cos @’ dh 08 hvr cos 6 (1.45)

which is usually referred to as the Andreev or quasi-classical approximation. From these single particle
solutions we can construct the solution across the interface. For an incoming electron from the normal
region we have two possible solutions that propagate away from the interface on each side of the junction,
by calculating the group velocity of the excitations v, (k) = Ok Fx. The Ansatz in the normal region and

superconducting regions reads

N (@) = T () + rephi () + reetp; (z), (1.46)

Us(x) = teetge(T) + teniby, () (1.47)

respectively. The coefficients r¢p,, Tee, tee, tep are the probability amplitudes for electron-hole-, electron-
electron reflection, electron-hole-, electron-electron transmission respectively and are determined by

boundary conditions for the wave function at the interface

Un(07) =Wg(0T), (1.48)
2mH

Op U (07) = OpWs(07) = =5

(0). (1.49)

A scheme of the Ansatz for the different regions of the junction is shown in Fig. 1.3. Solving the system

of equations resulting from the boundary conditions we find the coefficients [70]

7% +iZ —? , i 7 — A
Tee = ( o ) (u - )7 Teh = _%e—up’ tee = (2271)“6_15

e
v Y v Y

(1.50)

where we used the approximation ke, kp, Ge, qn ~ kp cos 6, and introduced Z = H/(hvp cosf) and
v = (u?+ Z%(u® —v?)). In Fig. 1.4 we plot the probabilities for the different processes resulting from an
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Chapter 1. Mesoscopic superconductivity

electron impinging at the interface at normal incidence, Rap = |rap|%, Tup = |tas|?, where a, b € {e, h}.
The probability for the reflection of a electron into a hole is always present for energies below or slightly
above to the superconducting gap and vanishes at higher energies. Such a process is usually called
Andreev reflection [71] and is responsible for the charge transport across SN interfaces for energies
below the gap energy. One might think that no charge transfer is possible, as quasiparticles with energies
smaller then the gap can not enter the superconductor due to the vanishing DOS. However, A is a many
particle gap representing the tendency for electrons to form Cooper pairs. Inside the superconductor, the
electron-like quasiparticle solution is evanescent, thus its charge must transfer to the other side of the
interface. When penetrating the superconductor, the incoming electron can pair up with a electron below
the Fermi-energy to form a Cooper pair, which gets absorbed by the condensate. During this a hole
excitation is left behind, and leaves into the normal metal as sketched in Fig. 1.3 b). As the electrons can
only enter the condensate in pairs, with each Andreev reflection a total charge of 2e is transferred into the
superconductor. Inspection of the Ansatz shows another peculiarity. Within the Andreev approximation
of small excitation- and gap-energies with respect to E, the reflected hole traces back exactly the
path of the incoming electron (Fig. 1.3 c¢). The Andreev reflection competes with the usual specular
reflection of electrons, as can be seen in Fig. 1.4. For vanishing normal barrier Z = 0, quasiparticles
with energy below the gap get perfectly Andreev reflected. Increasing the barrier strength Z leads to a
strong suppression of the Andreev reflection as the electrons are hindered to enter the superconductor
and thus can not be absorbed by the condensate. Let us now calculate some observables from these

coefficients.

Current and conductance at finite voltage

For small applied bias between a normal and superconductor lead connected by some constriction, for
example a short wire, the current can be related to the reflection and transmission coefficients. Within
the generalized Landauer-Biittiker formalism to superconducting systems introduced by BTK [70], the

current is given by
s = 2Noeor A [ (fo(E = eV) = fo(E)][1 + Run — Rec dE. (1.51)

Here f is the Fermi distribution at equilibrium, N is the normal density of states at the Fermi energy
and A is the cross section of the link between the leads. In the normal metal R.;, = 0 due to absence
of Andreev scattering processes and 1 — Ree = Tee = ﬁ due to conservation of probability current.

Thus the current between normal metals connected by a point contact with a scattering barrier gets

B 2Npe2vp A v

Iny = = —. 1.52
NN 11 22 e (1.52)
For small voltages at T' = 0 it follows that the differential conductance G = g—{/ behave like
G 14+ 22
NS _g -7 (1.53)

GNN (1+2Z2)2‘
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FIGURE 1.4: Reflection and transmission probabilities for different normal barrier strengths Z for
a particle with incidence angle normal to the interface.

The current and the differential conductance are shown in Fig.1.5. For a ballistic link where Z = 0, the
current for Voltages below the gap and the conductance are exactly twice the quantities in the normal
state. This is as expected when only Andreev processes contribute to the charge transfer. Electrons pass
the interface in pairs only. In the tunneling limit, when Z >> 1, the sub gap current and conductance are
strongly reduced due to the suppression of the Andreev reflection. The cusp at the the gap energy stems

from the singularity of the density of states of the superconductor at the gap edge.

1.2.2 Josephson effect and Andreev bound states in S/N/S junctions

In general, the order parameter of the superconducting state is a complex quantity. It will therefore have
a phase which is unobservable due to the nature of measurement within the quantum mechanical frame-
work, where only phase differences between quantum states are of relevance. If two superconductors are
brought into contact separated by a tunnel junction (thin insulating layer) or a weak link (normal metal
constriction), the two subsystems maintain their own phase of the order parameter, let us say ¢y and
pr. The coupling between the two superconductors leads to interference of the phases making the phase
difference an observable quantity. Such a device is called a Josephson junction and was named after

18



Chapter 1. Mesoscopic superconductivity

5] ! — Z-00|
': Z=05
W IT=0 R Z=10

FIGURE 1.5: a) Current and b) differential conductance for different normal barrier strengths Z.

B. D. Josephson, whose striking prediction was that the macroscopic phase difference ¢ = ¢ — pr

drives a zero-voltage supercurrent

J(p) o sinp (1.54)

between the two superconductors [18]. This is called the dc-Josephson effect. He also predicted the

time evolution

2eV

of the phase difference if a voltage V' is applied across the junction, which leads to a quickly alternating

current and is known as the ac-Josephson effect.

In this work we will be only interested in the dc-Josephson effect, and we will now link its appearance
to the solutions of the BAG equation in a clean S/N/S junction. It will allow us to describe a wide range

of Josephson devices including the tunnel junction case studied by Josephson originally.

If no voltage is applied between the two superconductors, an electron in the normal region with energy
below the gap energy, is Andreev reflected as a hole at one interface. It is then Andreev reflected as
an electron at the other interface thus returning to its initial state. This leads to the formation of so
called Andreev bound states as shown schematically in Fig. 1.6. In the case of a clean interface, only
Andreev reflection processes take place and a Cooper pair is emitted into the right superconductor for
every reflection at the right interface. On the other side of the normal region the reverse process takes
place. A Cooper pair is absorbed from the left superconductor for every reflection at the left interface.
This corresponds to a equilibrium supercurrent through the device. Thus, Andreev bound states offer a
microscopic description of the Josephson effect.
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superconductor | normal metal | superconductor

FIGURE 1.6: Andreev bound state in a SNS junction.

Bound state energies

The condition for the formation of an Andreev bound state depicted in Fig. 1.6 can be obtained by
constructing the wave function Wgg(x) across the junction. Wa take the simple case of a single mode
with zero transverse momentum in a junction of length L with the center of the normal region at x = 0.

This corresponds to the Ansatz

pr /2
ve .
thh ] T < —%

ue L2

1 e 0 h

L

Wons(T) = < The T 4o ef'e |zl < & (1.56)
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The solvability condition for the system of equations resulting from the condition of continuity at z =
i% yields
v I3

E 1
E=+—~ (2p$arcsin|A0|+7r<n:i:2>}, ne 7. (1.57)

When the junction is short compared to the coherence length of the superconductor L < &y = hA”—OF the

above equation reduces to the pair of bound state energies
_ ¥
E = +|Ag| cos (5) . (1.58)

In the expressions Eq.(1.57), (1.58) , the normal scattering is not included in the calculation. The case of
vanishing scattering potential is physically not very relevant as it would mean the existence of a bulk su-
perconductor with spatially sharp separated regions of different phases of superconducting condensate.
In realistic systems normal scattering appears for example due to surface roughness of the interface. In-

cluding the scattering potential as previously in Sec. 1.2.1 generalizes the short junction result Eq.(1.58)
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to

14272+ cosep / L9 P
E = :I:A\/ SRy, ==+A4/1 —sin 5T (1.59)

where we expressed the barrier strength Z through the transmission 7 of the barrier, 7 = 1/ (1 + Z?2).
The effect of a finite temperature can be included by assuming the weak-coupling temperature depen-
dence of the gap A = Ag\/1 — (T/T¢)>

Josephson current

Being a equilibrium current, the dependence of the Josephson current on the phase difference can be cal-
culated varying the thermodynamic potential, the free energy F’ of the system, after the phase difference
[65, 66]

. 2e OF

= ——. 1.60
1= h o (1.60)
The total free energy of the system is
1
FIAAT = o /d3r A (1) + Fros[A, A% (1.61)
0
After determining the free Energy Fpog of a superconductor defined through the grand canonical parti-
tion sum Fpcs[A, A*] = —% InTr [e_m@&} we obtain
1 - 2 BE
FIA, A* :/d3rA r 2+Tr[hf)]—— ln<2005h ”) (1.62)
A8 = o [ dPela ) @] -5% 5

where 7 is a index labeling the states of the system. The first two terms are p-independent and will not
contribute to the current. Inserting F'[A, A*] into Eq. (1.60) gives the current phase relationship for the
Josephson current [65, 72]

_ 2 BE,\ 0B, 2e2 [ BE\] ON (E)
j= hnEZ;Atanh< 5 ) 5, 15/, W {2cosh< 5 )] o, (1Y)

The first term corresponds to discrete excitations below the gap, in our case the Andreev bound states.

The second term comes from the continuous spectrum above the gap energy.

As an example we treat the case of a short ballistic junction that hosts a single mode. In that case it can
be shown that the contribution to the current Eq. (1.63) from the continuum states can be neglected [73].

Inserting the positive branch of the bound state energy Eq. (1.59) into Eq. (1.63) gives

A .
j= e—htanh [ﬁA, /1 — 7sin? ‘0] S (1.64)
2 2 2 1 77’81112%
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FIGURE 1.7: a) Andreev bound state energy in a short junction for different barrier transmissivities
T at zero temperature. Josephson current at b) zero temperature and c) at perfect transmission and
varying the temperature.

The Andreev bound state energies and the corresponding Josephson current phase relationships are
shown in Fig. 1.7. At perfect transmission 7 = 1, the ballistic limit, and low temperatures the two
possible Andreev bound states are decoupled and the current shows a saw tooth like dependence on the
phase difference. Allowing for backscattering in the normal region, 0 < 7 < 1, a right moving elec-
tron/hole can be reflected back into a left moving electron/hole which couples the two ballistic Andreev
bound states. As a consequence the Andreev spectrum gaps out at the crossing at ¢ = 7. In the tun-
neling limit, when 7 is small, the current shows the expected sin ¢ behavior as predicted by Josephson.
Close to T, the higher harmonics of the current phase relation are suppressed and the current becomes

sinusoidal.

Quasi-classical Green’s function of a junction and the BdG formalism - Furusaki-Tsukada formula
Calculating the equilibrium charge current from the thermodynamic expression Eq. (1.63) can get a
quite tedious task, for example when sub-gap states and continuum states contribute to the current. The

quasi-classical Green’s function of the junction contains the full spectral information of the system and
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we will introduce it formally in Sec. 1.4. For now we will show that for a ballistic system, the letter can
be constructed by combining direct products of the BdG solutions for the junction [74, 75]. The current
can then be related to components of the Green’s function and expressed through the Andreev reflection
probability amplitudes as shown by Furusaki and Tsukada [76]. This demonstrates the equivalence
of the Green’s function and BdG formulation, and also emphasizes their individual strengths. The BdG
formulation provides a microscopic picture of the individual quasiparticle processes by combining single
particle solutions. On the other hand, once we know the Green’s function of the system, it contains
the whole spectral information of the system and observables can be calculated from it usually in a

straightforward way. We introduce this formalism as we make great use of it in chapter 2.

Let us assume a ballistic structure with a interface between a superconductor for < 0, and a normal
conductor for x > 0, that is perpendicular to the transport direction x. The retarded Green’s function
G"(x,2', E, k”) is interpreted as the probability amplitude for quasiparticles, with energy E and con-
served transverse momentum k|, to propagate from 2’ to z. The Green’s function thus can be constructed
by summing up over all possible single particle propagators, which represents all possible quasiparticle
trajectories. There are two ways to do so. We can sum up probabilities for a quasiparticle to arrive at
x, having started at 2’ in a specific state, or we can sum up probabilities for a quasiparticle starting at
2’ to arrive at x in a specific state. In a bulk these are identical, but due reflections at the interface the
arriving (starting) quasiparticle, can be in a different state from the starting (arriving) quasiparticle. The
first way is valid for ' < x < 0 and the second for x < 2’ < 0. Let us have a look at the particular

example, when an electron is created at 2’ and propagates towards the interface to the point z > z’. The

. T
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ezqex ,
v
uetPL ) uetL S f
Tee et ® elde 7
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reh e’L(Ith ® elqex ,
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7

so this branch G (z, ', E, k||) of the full Green’s function G (x, 2', E, k) is the direct product of the
BdG solution in the left superconductor and the incoming quasiparticle wave function,

three single particle propagators for each path correspond to

ior,
ue .
£l
v

/
x X 0

Glw,a!, Bohy) = O [6(@) + rectie () + rentiy (@) @ [w(a)] (1.65)

For the case when < 2/ < 0 we repeat the construction for a electron-like quasiparticle created at x’

and the possible resulting states at . The different paths correspond to
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and the Ansatz for this Green’ function branch is

G, 2!, k) = O (V@) @ [0 @)] + [reete (@) + rantfy(@)] @ [ @))) . (1.66)

The construction of GJ (x, 2/, k), when starting in a hole state is equivalent. The remaining constants
C, C; of the full Green’s function Ansatz G" (z, ', E, k) = G (2,2, k) +G}, (x, 7', ky|) are then fixed
by the conditions [75, 77]

G’"(a:, SCI, E, k||)|$:a:/+0+ = Gr(a:, CCI, E, k”)’w:x/_(yr, (1.67)
2m

8xGT(ﬂ3, CCI, £, k||)|z::c’+0+ - 3xGT(a;, CCI, E, k||)|x:x’—0+ = 75'3. (1.68)

The full expression reads,

imE
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G (w,.’L’,E,k”):—%X

1 Ly . / u? uvelPr X o uv v2etPL
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de uve¥L v u“e WPLelPL uUv

1 . / ) / v? uvetPL o Uv u2etPL
— | e~ tanle—2'] + ThhelQh($+fC ) ' + rheeZ(th —@ex) ' ‘ ]
qh uverPr u? v2e IPLIPL uUv

(1.69)

The poles of the Green’s function give direct access to the whole spectrum of the Josephson junction: the
discrete Andreev bound states coincide with poles of the Andreev reflection coefficients, while branch
cuts provide the continuum part of the spectrum.

Calculating the equation of motion for the Green’s function and combining it with the equation of con-

tinuity for the charge density we get the current in terms of the retarded Green’s function

j= eh dE lim (8, — 8,) Tr [G" (z, 2", E, ky)] . (1.70)
x’'—x

- 2im
Ky
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Evaluating the trace and conversion to Matsubara frequency space £ — iw,, to include a temperature

dependence for the equilibrium current, we obtain the Furusaki-Tsukada formula [76]

j i eA 'l ZZ (QG(—; Qh) (Teh (@;wn,k”) - The ((P,wn,k”)) , (171)

2h 5 s qn
with ,, = \/m . Formula (1.71) relates the charge current to the Andreev reflection coefficients
for each channel, which are labeled by the transverse momentum k. As usual these are found by
calculating the solutions of the BAG equation across the junction. Thus naturally this formula includes
contributions to the current above and below the gap energy, and can be applied to a wide range of
ballistic junction scenarios. Note that in the last step of the calculation we have evaluated the expression
at the interface x = 0, which is a short-cut and is equivalent to a full self-consistent evaluation of the

current. For details we refer to Furusaki and Tsukadas original work [76].

Josephson effect and different junction types

The size, geometry, the involved materials and of course external parameters like the temperature will
set the conditions for the formation of Andreev bound states and Andreev reflection processes, and thus
the number of modes contributing to the Josephson current. Oversimplifying, what is left to do is to
count the modes in the correct way for each setup. We will now categorize different junction types.
Two classes can be distinguished with regards to the ratio of the length L of the region separating the
superconductors and the coherence length £;. Short junctions for which & > L and long junctions
& < L.

A further distinction is made regarding the ratio of the length of the mean free path [ and &y. The mean
free path is the length of the classical path that a quasiparticle travels without changing its traveling
direction due to scattering at impurities. In a dirty/diffusive junction, scattering is very frequent and
I < & with the diffusive coherence length £y = \/% where D = vp7?/dim is the diffusion constant,
with dim as the dimension of the system and the scattering time 7 = [/vs. In a clean junction [ >> &
and & = MTF. We need to include disorder in our description of the superconducting state in order to
describe dirty systems, which we will do in Sec. 1.4.6. For now we will be mainly concerned with clean
systems and only present some previous results on dirty systems.

Junctions can also be categorized depending on the realization of the coupling between the supercon-
ducting electrodes. In his original work Josephson considered a tunnel junction, where a thin vacuum or
insulating layer separates the superconductors but still allows for exchange of quasiparticles, as shown
in Fig. 1.8 a). It is also possible to connect the two electrodes via a normal conducting constriction,
which is referred to as a weak link. There are many possibilities of weak links like narrow bridges,
wires or point contacts. Weak links can be further characterized by comparing the minimal width W
of the constriction with the Fermi wavelength Ar. When W ~ Ap the contact region hosts only a few
conduction channels. Such system is called a quantum point contact [73, 78]. If W > Ap one speaks

of a classic (point) contact [79].
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tunnel junction weak link

A
N Tw

~

a) L= & b)

FIGURE 1.8: a) Scheme of a tunnel junction, two superconductors (S) are separated by a thin insu-
lating layer (I) and b) Scheme of a Josephson weak link, a constriction made of a normal conductor
(N) of length L and maximal width W connects two Ss.

Short junctions

For wide planar junctions like a tunneling junction, the width of the contact between the two supercon-
ductors is far above the Fermi wavelength. In that case, Josephson found that the current is sinusoidal

and proportional to the normal state conductance

TAG N
2e

Jjlp) = tanh [SAO} sin (. (1.72)

The temperature dependence in the above formula has been determined by Ambegaokar and Baratoft [80].

WTAQO’ where Ry = 1/G is the normal state re-

sistance of the contact. It is determined by size of the gap and characteristics of the normal state which

The critical current j. = max [j(p)] fulfills j.Ry =

reflects once more the fact that the non superconducting barrier is the bottle neck for the Cooper pair

transfer from one side of the junction to the other.

A short and diffusive classic link was treated by Kulik and Omelyanchuk [81] solving the Usadel
Eq. (1.152). The current in that case is given by

TAGN arctanh (sin g) cos L (1.73)

2

j=
e
and shows a increase of the critical current by a factor of 1.32 when compared to the tunnel junction.
The Josephson current in a ballistic classical superconducting point contact was obtained by the same
authors [79] using the Eilenberger Eq. (1.147). In that case the critical current is twice the value of the
tunnel junction at 7" = 0 and the current phase relationship reads
TAGN ®

Jjlp) = . sin§ o € [-m, 7. (1.74)

The case of a quantum point contact has been investigated by Beenakker and van Houten within the BdG
formalism [73]. They found that the current is given by

. GeA B ol . @
j=N N tanh [2Acos2}sm2, (1.75)
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thus it is proportional to number of modes N =~ % where A is the cross-section of the link. At zero
temperature the result of Bennakker and van Houten is equivalent with the one of Kulik Eq. (1.74), what
demonstrates that the classic result holds also in the quantum limit. The current is proportional to the
normal state conductance which itself is related to the number of open conductance channels. However,
varying the width of the junction in the case of a quantum point contact leads to measurable conductance
steps because of the small amount of modes. This behavior has been confirmed in many experiments,

for example on break junctions [82, 83].

The above results can be linked to the one channel result for short junctions Eq.(1.64). For a general
short link between two superconductors the current will be carried by some number of channels with
different transmissions. Thus at 7" = 0 in general

. eA al T; sin (1.76)

J= =T )
2h = \/1— 7isin? (£)

where 7; is the transmission of each channel. In a tunneling junction all the transmissions are small

7; < 1 and we can approximate

j~ GAZTisintp = 2?}; sin (1.77)
and recover the result by Josephson Eq. (1.72). Here we used the relation by Landauer and Biittiker [84],
Gy = Go Y, 7i, where Gy = 2¢?/h, which states that the normal state conductance is the conductance
of each individual channel. The result for a ballistic contact by Bennakker follows by setting 7; = 1
for all channels. As mentioned before, to describe dirty weak links it is necessary to include disorder in
the theory. Nevertheless it is possible to model such constrictions with the formula Eq.(1.76) by using a

ensemble of channels determined by a distribution function [85].

Long junctions

The current in a long ballistic weak link was obtained first by Ishii [75] from the quasi classical Green’s
function of the junction constructed from solutions of the BAdG equation [74], as we showed in the
previous Sec. 1.2.2. The Andreev reflection amplitudes for electron- and hole-like quasiparticle states in

a junction of finite length are given by

A [em’i — ei‘P]
Teh(gp) = The(_so) = (E + Q) iy _ (E — Q) i

(1.78)
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where we ®; = (kf — kf)L is the phase difference between electron- and hole-like quasiparticles in
the i-th conduction channel after passing the junction. Inserting these into the Furusaki-Tsukada for-
mula (1.71), and after analytical continuation F — iw,, and ®;(F — iw,) = zq:)z we obtain the current

o 2€A ZZ . Sing@ . ~ ' (179)

=1 n (2w2 + A?)cosh (<I>Z> + 2w, 2, sinh <<I>Z> + A2 cos p

This versatile expression reduces to all previous ballistic short junction limits. At zero temperature and
L > & it can be approximated

N
, e
DL (1.80)
i=1
h/kp—ky? — o N . ,
where v; = ——_—— is the quasiparticle velocity in transport direction of in the channel i. The

current carried by each channel is inverse proportional to the time that the quasiparticles need to pass
the junction and linearly dependent on the “potential difference” ¢ that drives the supercurrent. This
leads to the characteristic sawtooth shape with jumps at ¢ = (2n + 1)7. For finite temperature and/or
finite back scattering the current phase relationship smears out and one recovers the known sinusoidal

dependence (see Fig. 1.7 b), ¢) comparable to the tunnel junction case [65].

1.3 Heterostructures involving Ferromagnets

Conventional superconductivity and ferromagnetism are two strongly competing phases of matter. Su-
perconductors are ideal diamagnets and actively expel magnetic fields, which is known as the Meillner-
Ochsenfeld effect [86]. Clearly, screening the external magnetic field, so that it vanishes inside the
superconductor must be energetically favorable. Consequently one can infer that at some critical field
strength one can overcome this energetic advantage so that the superconductivity breaks down. Indeed
There are two mechanisms that lead to a breaking of the Cooper pairs in a conventional superconductor,

due to the presence of a magnetic field, namely the paramagnetic- and the orbital pair breaking effect.

The orbital pair breaking effect is a consequence of the opposite momentum of the electrons forming
the Cooper pairs. From a classical point of view, the Lorentz force, resulting from the movement of
the electrons in the magnetic field, points in opposite direction for each of the paired electrons and tears
them apart.

The paramagnetic pair breaking originates in the opposite spin of the paired electrons. In a magnetic
field, the spins of the electrons will try to align with the magnetic field. Increasing the magnetic field, so
that the corresponding Zeeman energy exceeds the binding energy of the Cooper pair, one of the electrons
will flip the spin eventually and the pair will break. Only taking into account the paramagnetic effect,
the critical field of a superconductor has been determined by Clogston and Chandrasekhar [87, 88] and

is given by H, = MA?@ atT' = 0. Above this limit there are two possibilities for the superconductivity
B
to survive. The first is the existence of an attractive interaction between electrons of equal spin, like
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in triplet superconductors [89]. The other possibility proposed in 1964 by Fulde and Ferrel [90] and
independently by Larkin and Ovchinnikov [91] is that, instead of flipping the spin, the Cooper pairs
acquire a finite center-of-mass momentum. Such state would be characterized by a spatially oscillating
order parameter and was named after its discoverers as the FFLO state. For decades there has been no
evidence for the experimental realization of the FFLO state, and only recently experiments on layered

organic superconductors proved its existence [92, 93].

Heterostructures between superconductors and ferromagnets, represent a unique way of probing the
interplay of both phases. The proximity effect is strongly suppressed due to the exchange splitting of
the bands inside the ferromagnet [21], furthermore the exchange field introduces an additional magnetic
length scale in the system which leads to interference effects between quasiparticles with opposite spin.
The latter leads to the reversal of the critical current in a S/F/S junction [22-26]. In the following we
demonstrate these effects in the ballistic systems studied in Sec. 1.2.1 and Sec. 1.2.2, by replacing the
normal region by a ferromagnet. To model the spin splitting of the bands in the ferromagnet, we consider
the Stoner model, in which the motion of conduction electrons inside the ferromagnet can be described
by an effective single-particle Hamiltonian with an exchange interaction. It is included in our theoretical
description by adding the term

Ho=—>_Y cko(o-h), sens (1.81)

k o,

to the Hamiltonian Hgés (1.7), where we defined h = gupH¢x with Hex being the exchange field.
The derivation of the BAG equation for the spin-full case is performed along the same path as shown
in Sec. 1.1.1 making use of a spin-generalized Bogoliubov transformation. In the following we use the

convention

Cko = Z(uk,a,a"yk,a/ + Uik70.7o./’)/ik7g,). (182)

o./

A detailed derivation can be found in App. A.1, where obtain the spin generalized BdG equation

£ A(x) _
(—A*<x> ¢ )( >(X)‘E<

The underlined and doubly underlined characters indicate vectors and matrices in spin space respectively.
We defined £ = Ho(x)1 — ochand u = (u 1,u})T, v = (v 1,v))T. In the case of singlet pairing the

=
=

]
]

) (x). (1.83)

pairing matrix is given by
A(x) = iy A(x). (1.84)

If the order parameter A is zero one obtains the normal single-particle Hamiltonian to describe a fer-
romagnetic region, whereas setting the exchange field h to zero we describe the superconductor. This
allows to model S/F interfaces. If both parameters are finite we describe the case of a spin-split super-

conductor which we cover in more detail in chapter 2.
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1.3.1 Andreev reflection at the S/F interface

First, we study the influence of a finite exchange field in the normal region on the Andreev reflection at a
S/F interface. As we already demonstrated, Andreev reflection processes are the microscopic explanation
for the sub-gap conductivity at interfaces between normal metals and superconductors. During a Andreev
reflection, a incoming electron with spin up is reflected into a hole of opposite spin. In normal metals,
due to the spin degeneracy of the energy levels, no spin effects occur with the Andreev reflection. In a
ferromagnet, the energy band is split. Plane wave solutions describing quasiparticles from the majority-
and minority-spin Fermi surfaces to a given excitation energy, show a miss-match of the quasiparticle
wave vectors, which is proportional to the energy difference 2h of the bands. The corresponding Andreev
reflection process is shown schematically in Fig. 1.9. The situation of reflections between bands of
different spin is similar to a potential step tunneling problem. Consequently the Andreev scattering at
the superconducting gap is imperfect, not retro-reflective and normal specular backscattering takes place
even at a clean S/F interface. Another way to interpret this is that a incoming electron can not enter the
condensate as there is no partner of exactly opposite spin and momentum at a given excitation energy,

which makes the formation of Cooper pairs less effective.

In the following example of a S/F interface we choose the exchange field finite in the left half space
h(xz) = h©(—z) and parallel to the z-axis. In the ferromagnet the two spin species are decoupled and
the BAG Hamiltonian is block diagonal. We do not include a normal scattering barrier as we already
know that it suppresses Andreev reflection. The individual subsystems are

E—h(z) oAz Ug (1) Ug ()
HO’ o\ L) = ~ =F s .85
Yola) ( oA*(zx) —§—oh(x) ) ( Vg () > ( Vg () > (185

2
and labeled by o =71, /= +. The kinetic term is given by £ = —%8% -+ (Zki”) with the chemical

m

potential p, that is assumed to be constant in the system. We define a step function like order parameter
A(x) = AO(z). The solution of the BAG Eq. (1.85) across the interface for a given energy E and
transverse momentum k| obtained as in the previous sections, and leads to the following Ansatz for an

injected spin-up electron in the ferromagnet region:

(

. 1 . 0 )
. @Zke,T‘T 4 Tle ) e*lkem’ﬂ 4 Tlh elkh,ix; <0
U, (2) == (1.86)
tT u eiqe:c + tT v e—iqhx. z>0
ee eh ) )
v u

\

with the coherence factors u, v as in Eq.(1.43). Within the Andreev approximation the wave vectors are

given by

)
kes = \/k:%x + 777'? (E+0oh), kp—o= \/k%x — 22 (E40h), oy = kit (1.87)

h2 hv Fx
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FIGURE 1.9: a) Possible propagating quasiparticle solutions for given excitation energy £ > A and
transverse momentum k| at a S/F interface. The Andreev reflection is not perfectly retroreflective
due to the exchange splitting of the bands in the F. b) Differential conductance for a single channel
FS interface varying the exchange field h = h/p at T = 0.

(nky)”
2m

where we defined the effective Fermi momentum kg, = u — The probability amplitudes for
each process are obtained by solving the resulting system of equations from demanding continuity of
the wave-function and its derivative at z = 0. This gives the following expression for the normal and
Andreev reflection coefficients [21]
(= 1) (g +1)0 — (g 1) (g~ 1) 0
0 (Rer 1) (g + 1) w2 = (1= ko) (1= Kny) 0?7
4ke ruv
T —_— 87T
T, == = = = . (1.89)
P (kep 1) (kny + 1) u? = (1= k) (1= ki) 02

(1.88)

In the above expression we ignored terms of the order % and introduced the normalized wave vectors

7 keo/h,—o / =
ke,a/h,—a = Zeo/ha ~V1xh (1.90)

kF,a:

with h = MCO%. The coefficients in case of an incident electron of opposite spin are obtained from
the ones above by substituting T <+ |. For vanishing exchange field k. + = kj, | = 1 and the normal
reflection amplitude r.. = 0, so clearly the exchange splitting introduces normal reflection to the system.
The probabilities for the Andreev and normal reflection are

]%h —0
Zh == ‘Tgh‘z and Rge = |rge|27 (191)

e,o

respectively. Note that the prefactor of the Andreev reflection probability accounts for the different group
velocities of electron and hole solutions in the ferromagnet. As for the N/S interface we can calculate
the differential conductivity of the interface by using the extension of the BTK formula to the spin-full

case. The differential conductance for a single mode in the case of direct incidence kr, = kp is given
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by [21,94]

OS (eV) = 5 3 (14 R (eV) ~ BL (V) (1.92)

GnyN =

where we have normalized it by the normal state conductance. The conductivity for small bias voltage
and different values of the exchange field is shown in Fig. 1.9 b), and is clearly reduced compared to the

zero field case.

1.3.2 S/F/S junction and current reversal

We will now study the reversal of the critical Josephson current due to the presence of the exchange
field, which is usually called a O-7 transition. The name refers to the change of the ground state of the
system that is found by minimizing the Free energy with respect to the phase difference  between the

superconductors, as previously shown in Sec. 1.2.2.

For the S/N/S junction, the minimum of the Free energy is always at ¢ = 0 and such junction are
called O-junctions. In a S/F/S junction the ferromagnet introduces a difference of the wave vectors
between spin-up and spin-down quasiparticles, corresponding to a new magnetic length scale on which
quasiparticle wave functions from different spin sectors oscillate and interfere. From another point of
view this is the equivalent to oscillations of the pair correlations that penetrate the ferromagnet from the
superconductors. Depending on the length of the junction and the strength of the exchange field these
oscillations can result in a additional 7 phase-shift between the ground state wave functions of the two
superconducting leads. Consequently the global minimum of the Free energy of the system will shift
from O to 7 as function of . According to the thermodynamical relation Eq. (1.60) such a shift will

result in a reversal of the critical current.

Let us go back to the microscopic picture where a Cooper pair from the condensate on one side of
the junction absorbs a incoming hole, simultaneously releasing an electron into the normal region (see
Fig. 1.6). For the bound state formation there are now four distinct possibilities, we can start an electron
or hole in the left, either in a spin up or spin down state. Constructing the wave functions for the possible
bound states, only considering Andreev reflection processes for simplicity (Andreev approximation),

gives the following condition for bound state energies of a SFS junction,

h E
E = i% (;0 =+ arccos m + 7m> —oh; ne€Z. (1.93)
If the exchange field/Zeeman splitting is of the same magnitude as the excitation energy, for a short
junction (d — 0) we can neglect it and we obtain the result for a clean S-N-S junction. If the excitation
energies around the gap energy and A < h, for short junctions when 5% — 0 the term % goes much
faster to zero than % and we can set the lefthand side of Eq.(1.93) to zero. The resulting four branches

of the bound state energies are

ohL 2L
E=+Acos [ 27 where = 2= — 25 (1.94)
2 hvp &
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FIGURE 1.10: Panel a) shows Andreev bound state spectra and panel b) the Josephson current as
function of the phase difference ¢ for different values of junction lengths L with respect to the
magnetic decay length &;,. From left to right the junction changes its ground state from a 0-state
to a w-state. Panel c) shows the contribution of the Andreev bound states to the Free energy of the
system as function of 7 varying ¢ from left to right. All plots are for temperature 7" = 0.

and we introduced the ballistic magnetic decay length &,.

The exchange field in the intermediate region causes a spin dependent phase shift of the bound state
energies by 1 with respect to ¢ as shown in Fig. 1.10 a). Calculating the Josephson current from these

gives

. eA AB w+on . (o+on
] = N zg:tanh[ 5 cos( 5 )] sm< 5 (1.95)

which is depicted in Fig. 1.10 b) for different values of 7. There we also plot the free energy contribution
from the bound states F'pg as function of the phase shift n for different values of ¢. Clearly, the global
minimum of the free energy shifts from ¢ = 0 to ¢ = 7 when 7 approaches 7, which is accompanied
by a reversal of the current phase relationship. Comparing the energy of the O-state with the energy of
the m-state in Fig. 1.10 c) one can deduce that the 7 state is the ground state of the system whenever
m/2 < |n mod 27| < 3/2m, thus in principle we get a repeated switching of the current by increasing
the exchange interaction continuously. We need to keep in mind though that due to introduced approxi-
mations we neglected the normal scattering which is strongly enhanced by increasing the exchange field,

and therefore will lower the critical Josephson current.
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1.4 Quasi-classical theory for superconducting systems

In this section we derive quasi-classic transport like (Boltzman-like) equations for superconducting sys-
tems with linear in momentum spin-orbit coupling fields. We start from the Gor’kov equations and
include spin-orbit coupling by a SU(2) gauge covariant formulation of the latter. In contrast to the
Bogoliubov-de Gennes formalism, the quasi-classical equations can be extended to describe disorder,
however they are not suited to deal with inhomogeneous systems straightaway. We simplify them us-
ing the fact that in conventional superconducting systems, the typical excitation energies are very small
against the Fermi energy, which leads us to the Eilenberger equation. The Eilenberger equation can be
further simplified in the so-called dirty limit, when the mean free path of the system is much smaller
then the coherence length. Collisions between quasiparticles are so frequent that the system appears
to be almost isotropic in momentum space. Thus the Green’s function of the system has only a weak
dependence on the momentum direction, which leads us to the Usadel equation.

1.4.1 Quantum phase space dynamics and Wigner transformation

In classical many-particle physics the Boltzmann equation describes the dynamics of the phase-space
distribution function f(r, p,t). In quantum mechanics, the coordinates r and p are replaced by hermi-
tian operators which have to obey the Heisenberg uncertainty principle and are thus not known exactly
simultanously. To obtain a phase-space like formulation of many body quantum mechanics it is neces-
sary to determine the quantum mechanical correspondent object to the phase-space distribution function.
We will now link the Green’s functions to the so-called Wigner function which is obtained by a mixed
coordinate Fourier transformation. Here, we demonstrate that the Wigner function shows some similar-
ities to a particle density in phase space, which will motivate the Wigner transformation of the Gor’kov

equation in the following sections.

We start from the lesser Green’s function G< (&1, &) = (¢t (x2,12) 1 (x1,11)) which describes the
probability amplitude for a particle to be found at point £; when initially at £;. To change to a momentum
space representation of the Green’s function we have to perform a Fourier transformation for the field
operators, that is defined in the standart way

U (pj,w;) = / dx; / dt e @tP/Ng (x; ). (1.96)
Analogous we define mixed coordinate Fourier transformations within a center of mass coordinate sys-
tem where
r t
X12:X:|:*,t12:T:|:* (197)
’ 2" 2
Applying a Fourier transform with respect to the relative coordinates,
G< (p,w,x,T) = /dr / dtePr/heit < (r,t,x,T) (1.98)
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and defining the Wigner function as
f(p,w,x,T) = —iG™ (p,w,x,T) (1.99)
it follows that

/ / df P, x,T)=—iG<(r=0,t=0,x,T) = (" (x,T) ¢ (x,T)) (1.100)

which is the particle density. Furthermore

/dw/dxfp,wa /dx/dre Pr/AG (pt = 0,x,T)
- /dx/dre‘“pr/h z/ﬂ <x— §,T>w (x+g,T)>
= / dx / dxcae PO (yf (x5, T) 1 (x1,T))
= @' (p,T) v (p, 7)) (1.101)

which is the particle density in momentum space. This suggests the interpretation as phase space distri-
bution. However, the defined quantity can be negative in contrast to the classical phase space distribution
function, thus this analogy is not fully true.

Our goal is to derive a transport-like equation for the quantum analogon of the phase space distribution,
but unlike in the above example, we want to keep the time dependence intact. Therefore we apply the
mixed coordinate Fourier transformation with respect to the relative spatial difference r, which is referred
to as Wigner transformation [95, 96]. As an example, the Wigner transformed lesser Green-Gor’kov
Eq.(1.30) reads

G (p,x,t1,t2) = /dreipf/h(; (r,x,t1,12) . (1.102)

1.4.2 Gradient expansion and quasi-classical transport equation

We now derive the quasi-classical transport equation from an quasi-classical expansion of the Wigner
transformed Green-Gor’kov equation. The Wigner transformed Gor’kov Eq. (1.36) reads (unaltered

variables are not repeated)

ik A
[ith@tl —£ (p — Z28X> + A <x + 2281,)] G (p,x) = (t1,t2). (1.103)
This implies that the Wigner transformation is implying transformation of the operators p — p—ihdx /2

and X — x + ihdp /2 which is called a Bopp-substitution [96]. For the other Gor’kov equation where
the operators act on the second variable we have

G (p,x) [—ith&th —£ (p + i2h3><> + A (x - Z.;@I,)] = d(t1,t2). (1.104)
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1.4. Quasi-classical theory for superconducting systems

We now perform a quasi-classical expansion of the two equations, i.e. an expansion up to first order in
h/(pcx.) with p. and x. as the characteristic momentum and characteristic length scale of the system.
The characteristic momentum of the superconductor is the Fermi momentum pr and the characteris-
tic length scale is the coherence length &y. Therefore the quasi-classical expansion is valid under the

condition

h A
—~—K1 1.105
préo  Er ( )

which is the case in conventional superconductors where the gap energy is usually much smaller then

the Fermi energy. Expanding up to first order yields the following two equations,
, ih ih
(117300, — €+ A]G (, %) + 058 G (P X) + 5 OxA BpG (%) = 3(t1, 1), (1.106)
ih ih
G (p,x) [—ith@L y A] - %axG (P, %) Op€ — %ap(; (P,x) A ~ 8(t1, ). (1.107)
The transport like equation is obtained by subtracting Eqs.(1.106) and (1.107) which gives
. th g
ih (1301, G + 01, GT3) + 5 {0p€,0<G} — [ — A, G| + 5 {0xA,0,G} = 0. (1.108)

This equation together with the sum of Egs. (1.106) and (1.107) are the starting point of quasi-classical
transport theory in superconductors. An convenient and equivalent way to obtain these expressions is by
using the Moyal product [97], also referred to as gradient expansion. We denote the Wigner transform

of some operator convolution as W[A o B] then
WGyt oGl =Gyt (p.x) * G (p,x) (1.109)

where the Moyal product is defined as

X = exp (—;h (90— ajcar,)) . (1.110)

This formula is valid for any product of operators and we will use it in the following section, where we

generalize the obtained transport Eq. (1.108) to include interactions with spin fields.

1.4.3 Gauge covariant Gor’kov equation

In this section we obtain the gauge covariant formulation of the Gor’kov equation with respect to local
U(1) and SU(2) gauge transformations. The corresponding gauge fields can be interpreted as coupling to
electromagnetic and spin-fields respectively. This will allow us to extend the transport formalism from

Sec. 1.4.2 to matter-field interactions.
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The Hamiltonian Hpcs is invariant under local U(1) and SU(2) gauge transformations which are equiv-

alent to a local change of phase by a(x) where z is some spacetime point:

U(z) = e @W(); Ol(z) = e @ wi(g), (1.111)
or a local spin rotation around the axis n(x) by angle 5(z):

U(z) = PP (z); Ul(z) — Ul(x)e mb, (1.112)

The superconducting interaction part Hpcs of the Hamiltonian contains pairs of daggered and undag-
gered operators, thus the U(1) invariance is easy to show. For the SU(2) invariance we assume that the
rotation in spin space can be decomposed into subsequent rotations

einaﬁ — eiolX(B)erY(ﬁ)eiogZ(ﬁ) (11 13)

with some functions X, Y, Z to be determined. With this the terms in Hpcs transform like
(\IfTiO'Q\I/) . (\IJTG'L'GsZ(ﬁ)efiUQY(ﬁ) 6@'01X(ﬁ)io.QeiasZ(ﬁ)eioQY(ﬁ)eich(ﬂ) \I/> _ (\IJTiO'Q\I’) (1.114)

and the gauge invariance is demonstrated.

We will here generically denote gauge transformations as mappings with the unitary operator U (§) in the
case of an Abelian, as well as non-Abelian gauge field. Under a gauge transformation the field operator
transform like W (&) +— U(£)W(€), UI(&) = U(E)TWT(€) and consequently the Green Gor’kov matrix

equation transforms as

(1.115)

G (&1,8) = U(6)G (&1,86) UT(&); with U(¢) = ( U(e) 0 ) '

0 TUE)T

Inserting the gauge transformed Green-Gor’kov matrix into the Gor’kov equation, the differential op-
erators in the Gor’kov equation will also act onto the local transformation U (). In order to make the
Gor’kov equation gauge covariant we need to cancel the additional appearing terms. Therefore we define
the covariant derivative D (§) = 0: — iA(&) introducing a generic gauge field A which has to transform

according to

U(E) = UE)T(E)
A(&) = U©AQU () +iU(£)oU (). (1.116)

Then the covariant derivative transform like ¥ as the name suggest, i.e. DV — UDW¥ whenever ¥ —
Uv.

Following this prescription we obtain the gauge-covariant Gor’kov equation

Gyl(61)G (61,6) =0 (&1 — &) (1.117)
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1.4. Quasi-classical theory for superconducting systems

with the covariantly defined operator
Gy = ihmsDo (€) — € (—ilDy(€)) + A(€) (1.118)

where

A 0 .
Du:8u1< . A ) =0, —iA, (1.119)

with time-like (u = 0 = t) and space-like (1 = x,y, z) covariant operators and we defined the gauge-
potential A,, = (Ag, A) in the Nambu-spin space. For the anticipated quasi-classical transport equation

we also need the Gor’kov equation where the differential operator is acting on o,

G (€1,8) [Gy(&)] =6 (& — &) (1.120)
with

Gy (©)] = —inmsD] (&) - & (—inDl(©)) + A (6). (1121)

Resulting charge and current densities

The gauge covariant reformulation introduces couplings to gauge fields which will alter the conserved
quantities in our system, the charge and current densities which we will now determine. The action .S of

our system is

S, Al = /d@lﬁ [ihT3Do (§) — & (—ihD; (€)) + A(§)] ¥ where 1 = < 711!\1] ) (1.122)

is a spinor in Nambu-Spin space in accordance with the defined basis of the Green-Gor’kov matrix
Eq.(1.30). Note that we sum over repeated indices. Varying the action after the field operators results in
the covariant equation of motion for the field operators, the Gor’kov Eqs. (1.117)- (1.120). The charge
and current densities are obtained varying the action of our system after the new dynamical variables
of the system, the gauge fields. The gauge fields in the covariant derivatives A, appear always with
their time reverse 7.A, T ~1. For each component of the gauge fields there exist only two possibilities
for their behavior under time-reversal TANT_l = +.A,, either they are even or odd. If we deal with a
Abelian U(1) gauge field describing electromagnetism, the space- and time-like components of the field
are even under time reversal. On the other hand for a non-Abelian SU(2) gauge field describing spin
fields, the space and time-like components of the field are odd under time reversal. Other cases will not

be of relevance in the following.

We expand the matrix A, as

Ay = gA " (1.123)
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where ¢ is the charge associated to the corresponding gauge field and v* are matrices that reflect the
degree of freedom for this type of charge. For electromagnetic fields the charge ¢ = —e and has no
internal degree of freedom thus 7 = §%! (we could have defined any index to be “the one” here). For
the SU(2) case we keep g to denote the SU(2) coupling constant and we have v* = o®. With the above

expansion, variation after time like components gives

, S . o 0
a = e T a a =
70 5.AS gY'y*p with v ( 0 TyeT! > (1.124)

Repeating the procedure for the space like components assuming only quadratic terms in the dispersion

2 .
£(p) = 2% gives

— _iimdﬂ <7aDi _ DI’YG) " (1.125)

One can show that these defined densities and current densities fulfill the covariant continuity equa-
tion [98]

D.jo + D;j; = 0. (1.126)

The expectation value of the densities (1.124) and (1.124) can be linked to the components of the Green-
Gor’kov matrix. Taking into account all the possible parity combinations with respect to time reversal
symmetry of the gauge fields, we define

ieh

pe (x,t) = — lim Tr [G(x,x',t,t +07)] (1.127)

x'—x

h2
Ji(x,t) = —er— lim Tr [TgDi(X)G(X,X/,t,t +01) — G(x, %/, t,t + ()+)DZT(X')7'3} (1.128)

m x'—x

as the electric charge density and charge current density and

igh
Pl (x,t) = —% lim Tr [r30°G(x, X/, t,t + 07)] =: s°(r, 1) (1.129)
x'—x
h
jo(x,t) = gf lim Tr |0°D;(x)G(x, %, t,t + 07) — G(x,x',t,t + 0D (x')0*|  (1.130)
m x’'—x

for the spin and spin current densities, where the trace is taken in Nambu and spin space. The observables
now must be expressed in terms of the Wigner transformed Green’s functions. We refer for that to

Refs. [99, 100] and we continue with the derivation of the transport equation.

1.4.4 Gauge covariant quasi-classical equation

In the last section we extended the Gor’kov equation to the case when the charge carriers interact with

electromagnetic or spin fields. In the next step we derive quasi-classical transport equations from these
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1.4. Quasi-classical theory for superconducting systems

gauge-covariant equations. We generalize the Wigner transform to the gauge-covariant Wigner transform

in the case of non-Abelian gauge fields and apply it to the Gor’kov equations.

Gauge covariant Wigner transformation

The gauge covariant Wigner transform has been introduced already quite some time ago in the eighties
in high-energy physics to study quark-gluon plasma [101, 102]. Within the last decade it has been
rediscovered in order to describe spin interactions in normal [99] and superconducting systems [32, 100].
To motivate it we start from the previously introduced Wigner representation (see Eq. (1.98)) of the

Green-Gor’kov matrix

. t
G (p,x,w,T) = /dtdra(wt—m/ﬁ)(; <x + g,x — %,T+ 3T ;) . (1.131)

Equivalently we can rewrite the transformed Green’s function using translation operators
G (p,x,w,T) = / dre’@t=Pr/M/2,t0r+10x) 2 (x x, T, T ¢~ (t0h+rok) /2 (1.132)

where 0;, (9;[ - operators act on the first field operator to the right, left respectively. Under a U(1) or SU(2)
gauge transformations of Eq. (1.131), exponentials will appear at different space-time points and are
not compensated, thus the above Wigner transformed Green’s function does not transform covariantly.
However, the equivalent definition Eq. (1.132) indicates that the covariant transform can be obtained
by substituting the normal derivatives in the translational operators by covariant ones. We define the

covariant generalization of the Wigner representation

G(p,x,w,T) = /drei(Wt_pr/h)e(tDT'HDx)/zG (x,x,T,T) e_(tD;HD’T‘)/Q (1.133)
with D,(j) =0, F iAT“ where the un-/daggered operators act on the first field to their right, left respec-
tively.

The covariant generalization of the Wigner transformation with respect to SU(2) gauge transformations
Eq. (1.102) follows directly from the Eq. (1.133) by only including space-like transformations. Using
the relationship [101]

eDx/29(x) = W (x,x +1/2) U(x +1/2) (1.134)

we can rewrite the definition of the gauge covariant Wigner transform as

G (p,x) = /dreim/hw (x,x n g) G (x n g,x — g) W (x — gx> : (1.135)
where we introduced the parallel transport/Wilson link operator

b

W (b,a) = Pexp (z/a dzA (z)> ~ Pexp <z /01 ds[(b—a) A (s)]> L 1136)
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with P the path ordering operator and the path of the integration z(s) is along the straight line between
endpoints z (s) = a+ (b —a) s, s € [0, 1]. This expression transforms locally covariantly under SU(2)
rotations U (x)

G (p,x)—~ U(x)G (p,x) U (x). (1.137)

thanks to the action of the Wilson link operators that connect the positions of the field operators with the

center of mass coordinates.

Gauge covariant transport like equation

All the components that we used to derive the transport like Eq.(1.108) are now defined covariantly.
From here on we can now follow through the steps as we did for the case of vanishing fields to include
a linear in momentum spin-orbit coupling. We have to change to the generalized Wigner representation
Eq.(1.133) of the gauge covariant Gor’kov equations and then perform a quasi-classical expansion. The

detailed derivation involves lengthy differential geometric proofs as shown in [100-102].

We will here take a short cut by deriving the desired quasi-classical equation in the case of homogeneous
fields as done in in Ref. [32]. Itis easier to follow and can be generalized to the case of non-homogeneous
fields at the end of the calculation. As for the case with no gauge fields we Wigner transform the gauge
covariant Gor’kov Eq.(1.36) and its conjugate in the space coordinates and expand up to first order in
gradients which gives

th

Gy' (p,x) G (p,x) ~ G, 'G — 5 (G '0xG — 0xGy ' 9pG) (1.138)

_ _ ih _ _
G (p.) [Gy' (px)]' ~ G [G7']' = T (3pGox [G5']' - 0xG0, [G5']') . (1139)
The quasi-classical transport equation is obtained by subtracting both equations giving

. A
il (730, G + 9, GT3) + % {p—A,0xG}+ [Tg,Ao + % +A+S, G} =0, (1.140)

where we assumed a spatially constant order parameter A, and used that p, A2 o 1. Note that we also

extended the free propagator by self energy term Y. that will allow us to introduce disorder to the system.

This equation is not gauge covariant as we used the usual Wigner transform. To change to the full
gauge covariant picture, we can use the relation between the gauge covariantly transformed and usual
Green’s function (1.135) which gets drastically simplified in the case of homogeneous fields, as the
Wilson link operators W are then matrix exponentials of the SU(2) gauge fields W (x1,x2) = exp(i/2 -
(x1 —x2) A), thus

G = A®/2GAR/? (1.141)

Here we introduced the gauge covariantly transformed Green’s function G. Substituting this relation

into Eq.(1.140), expanding the shift operators and keeping only terms up to first order in gradients and
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second order in fields Ay, gives the following fully gauge covariant equation [32],

- - b~ =~ . ] oG
h(736t1G+8t2G73)+%piviG+ 73A0+A—|—E,G} ! {T3f0@+ = Fijs o }—0

2ﬁ (9pj
(1.142)

where
Foi = —i[Ao, Ai] , Fij = —i[Ai, Aj (1.143)

are the SU(2) field strength tensors and Vi-=0;—i -, A;] is the covariant derivative.

This equation is true for homogeneous fields, but let us add without proof that the case of spacially
smoothly varying fields can be obtained by inserting the terms that contain space variations in the full
expression of the SU(2) field tensor F,, = 0,4, — 0, A, — i[A,, A,]. We now have an fully gauge
covariant equation where the SOC is included in terms of the covariant derivative and the field tensorf,, .
The covariant derivative is linear in SOC fields and describes the momentum dependent spin precession
due to the latter. The fourth term in Eq.(1.142) involving components of the field strength tensor involves
higher orders in the SOC fields and leads to coupling between spin and charge degrees of freedom and
the spin Hall effect.

1.4.5 Eilenberger equation

The transport equation for G (p) derived in the previous section can be further simplified by recalling
that within the BCS theory, superconductivity only takes place at very low temperatures. Therefore
typical quasiparticle excitation energies are located within a very narrow energy window of the size
kgT, around the Fermi energy where T is the critical temperature of the superconducting phase (in
conventional superconductors T../Tr =~ 10~%). This motivates the definition of the quasiparticle energy

integrated Green’s function or so called &-integrated Green’s function. Let us have a look at the integral

J (Qfgg G (p) which can be approximated in the following way

/(2 D)= [ [ I G~ [N [ G = [ea, [acaem

(1.144)

where £ = vp (p — pr) is the linearized spectrum around the Fermi energy and N is the density of
states at the Fermi level. In the last steps we assumed that the Green’s function is peaked in a small
window around the Fermi momentum. For small momenta we linearize the spectrum and we assume
that the density of states is constant within a small window around the Fermi energy, thus we can pull it

out of the integration. This motivates the definition of the £-integrated Green’s function

ﬂmwzi/@é@m (1.145)
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that now only depends on the Fermi momentum direction n and the center of mass (of course time as
well in general). The prefactor is chosen for convenience in later explicit calculations of g. The equation

of motion for this simplified Green’s function is the generalized Eilenberger equation [103]

. - - . ~ . 1 0g
ih (7—38t1g + 8t2g7'3) +ihvpn; Vg + [7'3./40 + A, g] - % {ni./rij, %
J

} =—[2,g] (1.146)

which is directly obtained by &-integration of Eq.(1.142). The £ integration of the self-energy term
corresponds to the expression on the right hand side. If we assume elastic and isotropic scattering of
randomly distributed non magnetic impurities, within the Born approximation the self energy is given
by ¥ = ih(g)/(27). Here 7 is the scattering time, and (...) is the angular average over quasiparticle

momenta at the Fermi surface.

1.4.6 Usadel equation

We now turn to he diffusive limit of the quasi-classical transport equation, that applies in a dirty super-
conductor. A quasiparticle traveling through a dirty superconductor will frequently scatter of impurities
and change its traveling direction. This frequent scattering into random directions leads to a direction
averaging. For conventional/s-wave superconductors this justifies the assumption that the quasiparticle
propagator will have only a weak direction dependence. We now obtain a closed equation of motion for

the isotropic part of the Green’s function g, the Usadel equation.

We start from the Eilenberger equation in equilibrium [104, 105]

~ . < 1 og h .. .
hopnVig + [0, &) — S {ni}—ij7 6ng} = ——[(8), 8§ (1.147)
j

where = (w,, — iAg) — iA with the Matsubara frequencies w,, = (2n + 1)7.

As stated in Ref. [105], assuming that the scattering time 7 is much smaller than any other characteristic
timescale of our system, for an asymptotic expansion up to O(7?) it is sufficient to include the first two

moments (the s and p-wave part)

g (n) ~ go + ndk (1.148)

with g < go. Taking the angular average of Eq. (1.147), as well as the angular average of Eq. (1.147)
multiplied by n; gives
hope 1y s
— Vigi + [2,90] =0 (1.149)
- . T h
ThupVigo + 7 [, Gi] — S {Fij 95} = 3 (90, Gr] - (1.150)
These equations are solved assuming the normalization condition g2 = 1, and that the fields A,, vanish

at infinity. With these solutions it is possible to express the anisotropic part of the Green’s function §; in
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1.4. Quasi-classical theory for superconducting systems

terms of §o. The detailed derivation can be found in Ref. [105] and we will just present the result

UFT2

g = —TvrgoVido — 2

m {—Fija@jgo} — it%vp [13F0, §o] - (1.151)
Inserting this result into Eq. (1.149) we obtain the Usadel equation [106] in the case of linear in momen-
tum spin fields

T

=DV ((90Vido) + 5 { Fiss Vo } +i7 [7Fi0, Go]) + [(wn — ido) 75 — i, go] =0 (1.152)

2m

where D = v%7/dim is the diffusion coefficient and dim is the dimension on the system.

Linearized Usadel equation

The Usadel Eq. (1.152) is a non-linear differential equation. To simplify analytical calculations, we can
overcome this difficulty by changing to the linearized form of the Usadel equation. The linearization
is valid when either the system temperature is close to the critical temperature, or the proximity effect
is weak. In both cases the amplitude of the anomalous part of the Green’s function is small compared
to the normal part and we can expand Jo = sign(wy, )73 + iT2 f . Within this limit the Usadel equation

becomes
. D (o _ - . .
—sgn(w,)DV= fo — o {vz’}_ija ijo} + {wn — iAo, fo} + 2iAsgn(wy,) = 0. (1.153)

When dealing with heterostructures between superconductors and other materials, we need to know the
boundary conditions for the anomalous Green’s function. The boundary conditions for the field free
case have been determined by Kupriyanov and Lukitchev [107]. In the linearized case and for general
spin-fields reads [31, 32]

~ Tsgn(w ~
Ni |Vifo+ 7sgn(n) Fij, Vifo = —fBcs (1.154)
2m
o
where g is the position of a interface between the bulk superconductor, described by the bulk Green’s
function fgcs, and the non superconducting region. The interface is characterized by the normal vector

N; of its surface and its transparency .

Conclusion

We have introduced the transport formalisms that will be used through though this thesis. Based on
minimal examples we described basic transport phenomena in superconducting hybrid structures, like
the Andreev reflection, Andreev bound state formation and the O-7 transition. This will be of particular
importance in the next chapter where we investigate the Andreev spectra in Josephson junctions where

the superconductors are subject to an intrinsic exchange interaction.
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Chapter 2

Josephson junction with spin-split
superconductors

Superconductors with spin-split density of states have attracted particular interest since the pioneering
works of Tedrow and Merservey, in which Zeeman splitting in superconductors was used to determine
the spin-polarization of ferromagnetic metals [108, 109]. Such spin-splitting can be achieved either
by applying an external magnetic field or in thin superconducting films in contact with ferromagnetic
insulators (FI) at zero field [110, 111]. The spin-split density of states found in superconducting films
originates from the exchange interaction between the conduction electrons of the superconductor and the
large localised magnetic moments of the FI [112]. In order to obtain large spin-splittings, the use of Fls
has the advantage of avoiding the application of high magnetic fields. The spectrum of a conventional
superconductor in this case shows two BCS-like densities of states shifted by the energy 2h, where h
is the effective exchange field induced in the superconductor film. Here we denote them as spin-split

superconductors (SS).

There has been a resurgence of interest in SS because of several theoretical studies proposing them as
absolute spin-valves [113], heat-valves [114] and thermoelectric elements [115-117]. Moreover, su-
perconducting heterostructures with spin-splitting fields have attracted the interest from theorists and
experimentalists in the last years, mainly motivated by the possible detection of Majorana fermions [43,
47, 118] and elaboration of complex S-FI heterostructures [119-121], where S denotes a BCS supercon-

ducting lead.

One striking effect in such structures is the enhancement of the critical Josephson current in a FI-S/I/FI-S
junction by increasing the amplitude of the spin-splitting field [122—124]. Here I denotes an insulating

tunneling barrier. This phenomenon has been demonstrated experimentally in Ref. [125].

In order to understand the supercurrent in ballistic Josephson junctions it is important to analyze the
spectral properties of these weak links [126, 127]. In a short ballistic superconductor-normal metal-

superconductor (S/N/S) junction with equal gaps and at low temperatures, tunneling through Andreev

TThis chapter has been published: “Andreev spectrum of a Josephson junction with spin-splitt superconductors”, B. Bu-
jnowski, D. Bercioux, F. Konschelle, J. Cayssol and E.S. Bergeret, Europhysics Letters 115, 67001 (2016)
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FIGURE 2.1: (a): Schematic diagram of the junction. Two SS electrodes with intrinsic exchange
fields Ay, hr separated by a ballistic weak link. A tunneling probe is situated at x = 0. (b) Sketch of
the effective gaps for spin up/down electron when the left/right exchange fields k. /hg are configured
so that —hg > hy > 0.

bound states (ABSs) is the dominant contribution to the Josephson current [128]. The dependence of
the ABSs on the phase difference between the superconducting banks in SS/I/SS junctions remains

unexplored so far.

In the following we investigate in detail a single-channel Josephson weak link connecting two spin-split
superconducting leads. We focus on the dependence of sub-gap states on the superconducting phase
difference across a ballistic SS/I/SS junction with a tunneling barrier of arbitrary strength. We extend
the results [122—124] by demonstrating that any deviation from the case of equal exchange fields leads
to the complete disappearance of the ABSs in a finite range of the superconducting phase bias ¢ defined
by a critical phase ¢, such that |p| < .. This phenomenon originates in the spin dependent asymmetry
of the gaps in the left and right SS electrodes. As a consequence, within these interval the Josephson
current is carried exclusively by states in the continuous part of the spectrum. The value of ¢. does not

depend on the transmissivity of the junction and hence it is robust against imperfections.

2.1 SS/I/SS junction

We consider a Josephson junction consisting of two bulk SSs connected by a ballistic weak link (see
Fig. 2.1 a)). We model the weak link as a J-function scattering potential with strength U. The corre-
sponding Bogoliubov-de Gennes equation for quasiparticle states with energy F reads

(?O(r) Ar) >\Il(r) — BU(r), 2.1)

where
. h2
Hy(r) = —%vz — pu+Ud(x) — [O(—x)hy + O(x)hg] 5., and (2.2)
A(r) = i6,Ale /20 (—z) + O(x)e'?/?). (2.3)

The temperature dependent gap is modeled by the interpolation formula

A = A(T) = Agtanh(1.74/(T,/T) — 1) (2.4)
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FIGURE 2.2: Top panels (a) - (c) show Andreev bound state energies for (a) non-magnetic case
(black dashed line) and parallel orientation of the exchange fields (hy, = hg = 0.3A), (b) one side
of the junction with zero exchange field (hy = 0.3A, hg = 0) and (c) anti-parallel orientation of
the exchange fields (h, = —hr = 0.3A). The coloured regions correspond to the interval |¢| < ¢c
where there is no formation of Andreev bound states. The panels (d)-(f) show the corresponding
current phase relationships. Where applicable we separated the continuum and bound state contri-
bution to the total current (dashed red and dash-dotted blue lines). All plots are for 7 = 1 and the
current versus phase relationships are calculated at 7'/7,. = 0.01.

, where T, is the critical temperature for superconductivity. In Eq. (2.3), ¢ is the phase difference
between the order parameters of the superconductors, O(z) is the Heaviside step function, and d(x) is
the Dirac delta function. We assume weak exchange fields so that the Clogston-Chandrasekhar criterion,
|hLr| < Ao/ V2, is fulfilled, where A is the BCS gap at zero temperature and zero exchange field[87,
88]. We restrict ourselves to symmetric electrodes (in the absence of exchange fields) with equal gap
magnitudes, chemical potentials and effective masses on both sides of the junction. The only asymmetry
originates from the exchange fields in the left (L), right (R) superconducting leads, which are assumed to
be collinear, though with arbitrary values h;, and hg. In this case the boundstate spectra can be obtained

analytically.

2.1.1 Andreev bound states

We solve Eq. (2.1) separately in the L and R region to construct the wave function across the junction

and determine the Andreev boundstate energies. In the bulk SS we obtain plane-wave solutions with
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2.1. SS/I/SS junction

FIGURE 2.3: Discrete part of the spectrum of a SS/N/SS junction as a function of the phase across
the junction in the anti-parallel configuration (A, = —hg = 0.2) for three different lengths of the
junction: L = 0 dashed-black line, L = 0.3¢ dotted-blue line and L = 0.6¢ solid-red line.

Vi e(n).o(T) = 05 h)peik?(h)” for electron-like (hole-like) quasiparticles with spin o. The spinors are
¢r 4 = (uXe'?”,0,0,08)", (2.52)
o+ = (v§e'?,0,0,uf)", (2.5b)

Z,J/ = (07 _uieﬂﬁu’ via O)Ta (25C)
¢y = (0, —vYe'® uf,0)". (2.5d)

Here we have introduced the coherence factors u% = +/(EY + Q%)/2EY, v\ = /(EY — Q) /2EY,

where Q0% = \/Ev? — A2 and EY = E + oh,, (v = L,R).

We use these piecewise solutions to construct the wave function ansatz for a spin-o electron-like quasi-
particle incident from the left SS with wavevector kZ. In the following we consider a narrow wire
constriction, and provide the corresponding single channel calculations. Therefore, the wave function

ansatz reads:

\IjeyU(r) = 6(_x){wk,e,a + Z [’I"g}? wl%,h,cr’ + T,gea djEk:,e,o“]}
o'=tl

+0@){ VR o+ TR o]} (2.6)
o'=1)

For x < 0, Eq. (2.6) describes the superposition of an incident electron-like quasiparticle with an An-
dreev reflected hole-like quasiparticle with amplitude 777 " and a reflected electron-like quasiparticle with
amplitude 777 ". For z > 0, electron-like and hole-like quasiparticles are transmitted with probability
amplitudes tZ7 "and Loy ", respectively. The ansatz for an incident hole-like spin o quasiparticle Uy, ,(7)
is analogous with probability amplitudes ng/’ rggl etc. We work within the Andreev approximation
by assuming that p > max (E, A, |h,|), so that the electron and hole quasiparticle wavevectors can be

regarded as approximately equal in magnitude, k¢ ~ k? ~ k.

The probability amplitudes in Eq. (2.6) for the various processes are calculated requiring the continuity

of the wave function and a finite jump of the derivative at the interface. In particular the Andreev

48



Chapter 2. Josephson junction with spin-split superconductors

reflection amplitudes [71] read

A (E% cos — EX) + 1A sin pQf d 177 () = 177 (— )
ELER — A2cosp + (1 +222)QLOR ANE The \P) = Ten \=9):

oo

Ten =

Q2.7)

We introduced the dimensionless strength of the scattering potential Z = 2mU /kgh? [70]. The param-

eter Z is related to the transmission 7 of the barrier as 7 = 1/(1 4 Z2).

The the discrete Andreev bound state (ABS) spectrum coincides with the poles of the Andreev reflec-
tion coefficients. We start by analyzing the spectrum of a short junction with a perfect transmission
coefficient (7 = 1), thereby recovering the well-known phase dependence of the ABS energy in a short
S/N/S junction without spin-splitting fields (Fig. 2.2 a), black-dashed line). In the case of parallel ex-
change fields equal in magnitude (h;, = hr) we find a splitting of the ABS energy-phase relationship of

magnitude |y + hgr| between spin-up and spin-down quasiparticles (Fig. 2.2 a), red and blue solid-lines).

By lowering the value of one of the exchange fields while keeping the other fixed, the ABSs disappear
within finite intervals of the phase difference ¢ (Figs. 2.2 b), 2.2 ¢)). Moreover this behaviour is inde-
pendent of the transmission of the barrier. The minimal phase difference . = arccos(1 — |hy, — hg|/A)
for which bound-states exist depends only on the difference between the exchange fields. In short, the

ABSs are found only in the interval ¢ € [p., 2 — ¢ ]. At the same time we observe a reduction of the
gap.

One can provide a physical interpretation for the reduction of the gap and disappearance of ABS for
some phase ranges: For illustration we consider a spin-up quasiparticle with positive energy coming
from the left electrode [c.f. Fig. 2.1 b)], in the parameter regime with Ay, > 0 > hg, |hr| > |hL|.
This quasiparticle encounters a reduced gap in the left SS of magnitude A — hAr and an enhanced gap
of magnitude A — hg in the right SS. If the quasiparticle energy is higher than the energy of the left
gap and lower than the right one, it can be Andreev reflected only at the right SS and ABSs can not be
formed. The process for a spin-down quasiparticle incoming from the right electrode is analogous. The
same picture applies for quasiparticles with energies E' < 0 and can be modified to any case of collinear
orientation of the exchange fields. This scenario is very similar to the case of a junction between two
superconductors with gaps different in magnitude [129], where the existence of the ABSs was shown to
be set by the smaller gap, but was completely spin independent. In the case of SSs leads, the distinct
exchange fields induce the asymmetry between the gaps, which is different for spin up or spin down
quasiparticles (Fig. 2.1 b)).

The above results where obtained for short weak links, i.e. for L < Avg/A, where L is the length of the
normal region separating the two superconducting leads, and vr is the Fermi velocity. We now discuss
whether the previous picture (spin dependent reduced gaps and disappearance of ABS) holds for longer
junctions. For arbitrary lengths of the junction and a fully transparent link (U = 0), the critical phase can
be obtained by analyzing the Bohr-Sommerfeld quantization condition for the SS/N/SS junction, where

we assume no magnetic field in the normal region [65]:

EL E+ohy
QH—UF + ¢ — Z arccos (A) = 2nm, (2.8)
v={L,R}
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2.1. SS/I/SS junction

with n € Z. Note that the spin-splitting of the gaps (being a bulk property of the SS leads) is independent
of the length L. In the short junction limit (L < hvg/A), one recovers the critical phase ¢, = arccos(1—
|hr — hr|/A) introduced earlier. From Eq. (2.8) we can also infer the dependence of the critical phase
on the length L of the weak link: ¢. decreases as the length L is increased, and ¢, — 0, for lengths
exceeding the superconducting coherence length £ = hvp/A (Fig. 2.3). Indeed in the long junction
limit, even if the highest ABS merges into the continuum, there are other ABS (with lower energies)
which are still defined for all values of the phase. Note that the study of ABSs associated with the Bohr-
Sommerfeld quantization condition Eq. (2.8) can be generalized to the case of a spin-active weak link

using the formalism developed in Ref. [130].

2.1.2 Local density of states

Direct insight about states for all phases can also be obtained by calculating the local density of states
(LDOS) of the junction. The LDOS at the tunneling barrier can be related to the (1, 1) component of the
retarded Green’s function Eq. (2.10) [77], using the formula

1
x) = ZpU(E,a:) = — xl/iinx ;Im[ T (z, 2, B)]. (2.9)

The complete Green’s function of the junction can be built from the scattering solutions Eq. (2.6) [74]

E : v oo Aikp(z—z oo 71k T—2x ubvy  viZelvv
(L‘l‘ E .A {|:€he F )+T F( )]X (u(z;Qz—cinV Uz/l/

Ug Vs
v2

lkp|w x| oo —lkp(a:+a:’) uy ufv¥elvv
+ + T Vo Va—ipy v2
ulvle v¥

b [ertlestl yprgin(es)] (052w )] (2.10)

Vo Va—ip
Ug Vg€ TV

where AY = hlgéEQV . It carries the complete information about the system and allows the computation
of the phase dependent local density of states and the Josephson current [128, 131]. The spectrum
of the Josephson junction is directly related to the poles of the Green’s function: the discrete Andreev
bound states coincide with poles of the Andreev reflection coefficients Eq. (2.7), while the branch cuts
of Eq. (2.7) provide the continuum part of the spectrum. In our case, the corresponding spin-resolved

LDOS (2.9) reads

_m 2EY + (197 +r77)A
po(E) = mRe [( 20" : (2.11)

where the atomic scale oscillations of p(E) are assumed to be averaged out [132]. In Fig. 2.4 we show
the LDOS contributions from spin-o quasiparticles in the cases of parallel and anti-parallel orientations

of the exchange fields and perfect transmission 7 = 1.

In the parallel case and ¢ = 0, we obtain (as expected) the spectrum of a bulk SS with the two spin-
split BCS densities of states with coherence peaks at £ = +(A + oh) (Fig. 2.4 a)). For a finite phase
difference between the SSs, spin-split ABSs appear. The peaks corresponding to hole- and electron-like
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Chapter 2. Josephson junction with spin-split superconductors

quasiparticles with spin o are centered around E' = o|h, | (red (blue) lines in the left column in Fig. 2.4)

and merge at this energy when approaching ¢ = 7.

In the anti-parallel case and |¢| < . (see Fig. 2.4 f) and 2.4 g)) the spectrum deviates drastically from
the BCS-like spectrum and no BCS coherent peaks are observed. At the critical value of the phase ¢,
these peaks appear at energies +(A — |h,|). The two peaks corresponding to ABSs merge into a single

peak at o = 7 (Fig. 2.4 j)).

For imperfect transmission (7 < 1) and parallel configuration of the exchange fields (hg = hy = h)
(Fig. 2.5 a) the energy difference between the spin polarized ABSs remains the same as in the 7 = 1 case
In contrast, in the anti-parallel case there is no splitting of the ABSs. In both cases there are avoided
energy crossings at ¢ = 7 due to finite backscattering. Noticeably, neither the spin-splitting nor the

critical phase . are T-dependent.
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FIGURE 2.4: LDOS of the junction p(F) divided by the normal state LDOS po(FE), for paral-
lel (left column) and anti-parallel (right column) orientation of the exchange fields of magnitude
|hr r|/A = 0.3. The phase difference gradually increases from the top panels where ¢ = 0
through .. to the bottom panels with ¢ = 7. All plots are for 7 = 1.0.
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FIGURE 2.5: Andreev bound state energies for (a) non magnetic case (black dashed) and parallel
orientation of the exchange fields (hy = hg = 0.3A), and b)-c) anti-parallel orientation of the
exchange fields (hy = —hg = 0.3A). For panels a),b) 7 = 0.8 and for ¢) 7 = 0.2. The colored
regions correspond to the intervals with no formation of Andreev bound states. Panels d)-f) show the
corresponding current phase relationships separated into the continuum states (red dashed line) and
bound states contribution (blue dash-dotted line) to the total current. All plots are for 7'/T,. = 0.01.

2.1.3 Current-phase relation

To understand how the absence of ABSs influence the Josephson current in the non-parallel case for
|o| < ¢, we numerically evaluate the Josephson current through the junction using the real time rep-
resentation of the Furusaki-Tsukada formula Eq. (1.71) [76, 78] that we introduced in Sec. 1.2.2. It

reads
ieh [ BE 0 0
I= dE tanh | — li — — — | Tr |G" ""E)-G° ""E 2.12
8tm J_ an < 2 )x’alinw(ax 837’) r[ (2,2, E) (2,2, )] (212
Tr[...] is the trace in Nambu-spin space and G"/® is the retarded/advanced Green’s function from
Eq. (2.10).

In the lower panels of Fig. 2.2 current phase relations are shown for different orientations of the exchange
fields and perfect transmission of the barrier (1 = 1). The current phase relations show the well-
known sawtooth shape Fig. 2.2 d)- f). Lowering the transmission, the current phase relationships become
sinusoidal and one recovers the usual current-phase relation of a tunneling junction, see Figs. 2.5 d) - ).
We also verified the enhancement of the critical current with respect to the non-magnetic case by the
presence of anti-parallel exchange fields in the low transmission limit and low temperatures [122, 123]

as shown in Figs. 2.6 a) - b).

The total current is the sum of two contributions: one originating from the ABS (/ags) and the other
from states in the continuous spectrum (/cont). These are shown in the lower panels of Figs. 2.2 and 2.5.
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FIGURE 2.6: Critical current normalized by zero field critical current for anti-parallel orientation of
the exchange fields hy, = —hpr = h as function h for various temperatures 7" and transmissions 7.

In the parallel configuration with identical exchange fields the Josephson current is carried exclusively
by the ABSs. In contrast, if the exchange fields are different both Iags and ¢y contribute to the
current. The vanishing contribution from the discrete spectrum for || < ¢, is compensated by a finite
Tcont (see Figs. 2.2 e) and 2.2 f) for 7 = 1 and in Figs. 2.5 e) and 2.5 f) for 7 < 1). In other words,
current from tunneling through ABSs is only present for ¢ & (—¢¢, p.) and gets reduced by lowering
the transmission of the junction. High enough exchange interactions and low transmission can lead to
a current dominated by contributions from continuum states, as shown in Fig. 2.5 f). This is consistent
with the results of Chtchelkatchev et al. [123] where the critical current is shown to be purely due to the
states of the continuous spectrum in the case of high magnitudes of the anti-parallel exchange fields and

sufficiently low transmissions.

2.1.4 Conclusion

We have presented a detailed study of the spectrum and current-phase relation of a Josephson junction
consisting of a short weak link connecting two superconducting leads with a spin-split density of states.
We have shown that for collinear orientations of the exchange fields, any deviation from the case of equal
fields leads to finite intervals of phases without Andreev bound states. These intervals are independent
of the transmission of the junction and are characterized by a critical phase-difference . = arccos(1 —

|hr — hg|/A) for which ABSs disappear by merging within the continuum.

When the phase difference is in the range |¢| < ., the Josephson current is therefore completely carried
by states in the continuous part of the spectrum. Outside this range the current is a superposition of the
contributions from the ABS and the continuous spectrum. For perfect transmission the current is mainly
due to tunneling through the ABSs (Fig. 2.2 e)), whereas for low transmission the current is totally due
to excitations from the continuous part of the spectrum (Fig. 2.5 f)). Hence changing the transmission

of the junction allows to tune the origin of the current.
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Chapter 3

Josephson triplet junctions with spin-orbit
coupling

This chapter is dedicated to the study of the Josephson current in heterostructures in the diffusive regime
with spin-orbit coupling (SOC) of Rashba and Dresselhaus type, and how to control it via external fields.
In this chapter the units are chosen so that kg = h = 1.

The interplay between superconductivity and ferromagnetism leads to triplet superconducting correla-
tions [27-31, 133, 134]. The simplest setup for the generation of a triplet component is a superconductor
(S)-ferromagnet (F) heterostructure with a homogeneous exchange field (Sec. 1.3). The singlet Copper
pairs can penetrate the ferromagnet, and due to the local exchange field, are partially converted into
triplet pairs with the total spin projection zero with respect to the exchange field. Oscillations of the
triplet correlations in the F region lead to the well understood effect of the reversal of the critical cur-
rent in S/F/S Josephson junctions, a O-7 transition [22-26]. In a diffusive monodomain F, both singlet
and triplet correlations decay on the magnetic length scale &, = m, where h is the magnitude of
the exchange field and D is the diffusion constant. For conventional superconductors and typical ex-
change field strengths, &, is much shorter than the thermal length scale of decay &, ~ \/W ina
non-magnetic system. On the other hand, triplet components with finite spin projection, are not affected
by its pair breaking effect and would decay on a length scale comparable to &,,. Such long-range triplet
components (LRTC) can be generated due to inhomogeneities of the exchange field [27-29] or due to the
presence of SOC under a homogeneous exchange field [31, 32]. The prediction of LRTCs in S/F hybrid
structures has stimulated several experimental work that confirmed their existence [120, 135-144]. The
fabrication of devices exhibiting long-range Josephson currents has become a routine nowadays which

paves the path for new spintronic applications.

On the contrary, the LRTC generation based on the interplay of SOC and exchange fields has not been
observed yet. More recently, transverse vertical heterostructures with in-plane magnetic fields and SOC
materials have been experimentally explored but no evidence for an LRTC was found [145-147]. In
accordance with previous theoretical works [31, 32], in such vertical multilayered S/F/S junctions the
condition for the generation of an LRTC is quite restrictive. For example, in order for a pure Rashba SOC
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to generate the LRTC, the magnetization has to have an out-of-plane component. This is a rather unfa-
vorable scenario as such exchange fields can create vortices in the superconductor and thus complicate

the interpretation of experimental results.

More suitable for the observation of LRTC induced by the SOC are lateral structures, where currents

have also a component flowing in the direction parallel to the hybrid interface [31, 32, 148—150].

The next Sec. 3.1 recapitulates the basics on the proximity effect under influence of spin-fields in dif-
fusive heterostructures. Based on that, we demonstrate that lateral junctions are the favorable setup to
study long ranged Josephson currents due to SOC. The reader familiar with the topic of long ranged
triplet correlations can skip this introductory section. In Sec. 3.2 the Josephson current is determined in

two types of realistic, lateral junctions with the focus on the control of possible O-7 transitions.

3.1 Generation of long range triplet components

3.1.1 Long range proximity effect at diffusive S/F interfaces

We first study the proximity effect at a diffusive S/N and S/F interface lying in the y-z-plane. We
assume that the proximity effect is weak, e.g. the case of an interface with low transparency, in which
the linearized Usadel Eq.(1.153) is valid:

DV2F — 2|wn| f — isign(wn) {}}, f} —iA(@)if = 0. 3.1)

Here D is the diffusion constant, w,, is the Matsubara frequency and h = 6%h% is the exchange field.
Symbols with a * stand for operators in spin space and 6¢ are the Pauli matrices. The Einstein summation
convention is used to sum over repeated indices. The general form of the condensate function in spin

space is

f=fd+ e, 3.2)

where f, is the singlet component and f;* are the triplet components. In our representation the short
(long)-range triplet component corresponds to the component parallel (orthogonal) to the exchange or
Zeeman field. At the interface between the S and the N the anomalous Green’s function obeys the

Kupriyanov-Lukichev boundary condition (1.154)

(Nvid] = st (3.3)

The system is translational invariant in the y and z direction, thus the problem is effectively one dimen-
sional. Deep in the bulk of the superconductor, in the linearized limit, the anomalous Green’s function is
given by fpcs = —iﬁ. In a realistic calculation, the spatial dependence of A(z) has to be determined

n

self consistently. We assume a potential step like gap function A(x) = A(1 — ©(x)). Therefore, in the

56



Chapter 3. Josephson triplet junctions with spin-orbit coupling

normal metal region (x > 0) the solution of Eqs.(3.1) and (3.3) is given by
¢ 7 —KwT ]
f(z) = L fBes e L (3.4)

where k, = \/W, i.e. the bulk solution decays on a length scale &, = 1/k,, that is set by the
temperature of the system since |w,| oc 7. In diffusive systems at very low temperatures, this length
scale can be much larger then the coherence length &y = \/m and the mean free path. This shows
that the proximity effect in diffusive systems is not affected by disorder due to elastic scattering at non-

magnetic impurities.

Homogeneous exchange field

In the presence of the exchange field h the in spin space structure of f becomes relevant. The exchange
field causes a singlet-triplet conversion at the interface. For a time independent and homogeneous ex-
change field pointing along the z-direction, h = hé* the Usadel Eq.(3.1) in the bulk F region reduces
to

agfs - ’f?ufs — 2isign(wn)%ff =0,
D2 fF — k7 — 2isign(wn)% fs=0. (3.5)

The solution in the F region reads

fs _ 1 e—)ﬁx -1 er
()ml)z ()2 e

with A\* = w

. In typical systems, the energy h of the exchange field is much larger
than the thermal energy 7. In that case we can approximate A\* = (i 4 1) /&, thus the superconducting
correlations fs and f7 decay and oscillate on the magnetic length scale &, = \/m in the F region.
The proximity effect is strongly suppressed compared to the case without the exchange field.

Linear domain wall at the interface

Interestingly, the suppression of the proximity effect can be avoided. It follows from Eq.(3.1) that a
triplet component of f which anticommutes with the exchange field, i.e. a component perpendicular
to h, will experience damping on the thermal length scale instead on the magnetic one. This can be
accomplished by introducing a inhomogeneous exchange field, as first discussed in Ref. [27], in the

context of a Bloch domain wall located at the S/F interface.

Let us briefly demonstrate the appearance of a long range component. We assume a superconductor for

z < 0 and for 0 < z < w a linear domain wall of the form

h(z) = h[sin (Qx) 6Y + cos (Qz) 57| . 3.7)
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FIGURE 3.1: a) Geometrical setup used for the numerical study of an interface between a super-
conductor (S) a linear domain wall (DW) of width w/L = 0.2 and a ferromagnet (F) of length L.
The angle between the exchange field and the z-axis is «. In the numerical solution we chose the
exchange field in the homogeneous F' region z > w to point along the z-direction. Towards the S,
the orientation of the exchange field is rotated by a total angle «,, = 7/2. b) Numerically obtained
absolute value of the singlet and triplet components normalized by their bulk value, for the Matsub-
ara frequency w,—o = w7 and exchange field of magnitude h/A = 10. The calculation was done
for T/A = 0.01 and all lengths are in units of £, = \/D/A.

The magnetization rotates around the z-axis with a wave vector (). For z > w we have a homogeneous
ferromagnet with exchange field orientation ﬁ(w) In order to solve the resulting Eq.(3.1) in the do-
main wall region we introduce a SU(2) local gauge transformation U (x) = e~ 29%%" that removes the

coordinate dependence from the domain wall. Inserting
f=u""(=z) fu(x) (3.8)

into the Usadel equation gives the following equation for the transformed Green’s function

2

DO2f +iDQ [5%,35} L B (&If&x . f) — 2, | — isign { h&, f} —0.  (39)

As can be inferred from the second and third term in Eq.(3.9) there exist two distinct mechanisms to
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Chapter 3. Josephson triplet junctions with spin-orbit coupling

generate triplet components of the anomalous Green’s function. The second term linear in () is the
rotation of the spin due to spin precession. The third term proportional to Q2 is the diffusive spin
relaxation. It rescales the thermal decay length, is a tensorial quantity in general and can be anisotropic.
If triplet superconducting correlations penetrate a region with anisotropic spin relaxation, the triplet
component with the lowest decay rate is favored and the total spin will rotate into this direction. Writing

out Eq.(3.9) by components in spin space gives:

D3 fs — 2isign(wn)h fi = 2|wn| fs = 0, (3.10)
DO f — 2wl ff =0, 3.11)
D2} +2DQfF — DQ*fY — 2wn|f} =0, (3.12)
DO2fF —2DQfY — DQ*f7 — 2Jwn|f} — 2isign(wp)hfs = 0. (3.13)

From this one infers that the component fty does not couple to the exchange field. Thus if generated, it

decays on the thermal length scale in the region = > w where ) = 0.

To obtain a analytical solution for Eq.(3.9) in the F-region, we seek for a perturbative solution up to
first order in ) which is justified as long as DQ? < T. In this example the exchange field in the
homogeneous region > w points along the z-axis and rotates towards the S/F interface by an angle a,
as shown in Fig. 3.1 a). In zeroth order in (), the homogeneous case, the solution of the system is given

by Eq.(3.6). The first order correction to f‘ty is determined from
DO = 2lwnlf = +2DQF7, (3.14)

together with the boundary conditions between the S/F and between the domain wall and a semi-infinite

F-region given by

0. +Qff| (0% =0, (3.15)
flw—0%) = f(w+0™), (3.16)
Opf(w—0%) =0, f(w+07). (3.17)

Under the approximation 7' < h and &, < w as well as only a small rotation of the magnetization in
the domain wall Qw < 1 one finds that in the region of the homogenous exchange field x > L

f (@) = sign(wn)iQ€nkwy facse™ . (3.18)

This component is long range as it decays on the thermal length scale. Details of the calculation are
shown in the App. A.4 and an exact solution of the problem can be found in Ref. [27].

The full numerical solution of the system for a finite F region, is shown in Fig. 3.1 b). In the domain
wall region, the triplet components parallel and perpendicular to the homogeneous exchange field in
the F region get generated, and decay on a length scale of the order of &;,. The decay of the triplet
components perpendicular to the z-direction, varies along = due to the rotation of the exchange field. In
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3.1. Generation of long range triplet components

x > w , the component of the anomalous Green’s function perpendicular to the exchange field is f/, and

it decays on a much longer length scale compared to fs and f7 as expected.

3.1.2 Long range triplet components from spin-orbit coupling

The derivation in the previous section reveals another interesting result. As ruled out in Ref. [32], the
gauge transformed Eq. (3.9) can be brought into the form

DV2J, — 2Jwnl|f — isign(wn) {h&Z, f} —0. (3.19)

Here V,- = 9, - —H% [6%, ] is the covariant derivative introduced in Sec. 1.4 in the context of SU(2)
gauge invariant transport Eq. (1.142), and is equivalent to a linear in momentum SOC with the field
component A, = —@Q/26". This shows the gauge equivalence of a linear domain wall in a S/F het-
erostructure and a superconductor with linear in momentum SOC under presence of a homogeneous
exchange field. It follows that heterostructures involving SOC fields are also able to restore the long-
range decay behavior by generating triplet components perpendicular to the exchange field.

We now turn to systems with homogeneous exchange fields and SOC with linear in momentum and

spatially constant SOC. In this case the linearized Usadel Eq. (1.153) reads
DV2F — 2|wn|f — isign(w) {ﬁ, f} —0, (3.20)

with Vi, = 9, — z[flk, ...}, where Ay = %QA% describe the SOC fields. In its linearized form, the
corresponding Kupriyanov-Lukichev boundary conditions generalized for materials with SOC at an S/X
interface (1.154) read :

N [Vid] o = = fecst, (3.21)
Aet¥

Ao

function in the bulk S region with the amplitude of the superconducting order parameter A and its

where X denotes any non-superconductor material and fgcs = is the anomalous Green’s

phase ¢ in the S region. Due to the gauge equivalence it is just the system of equations and boundary
conditions (3.1)-(3.3) we used for the domain wall problem by replacing the normal spatial derivative

by its covariant formulation. Writing out the equations for the components of f gives

D [0} fs] — 2|wnl fo — 2isign(wn) fh* = 0, (3.22)
D 0312 + 20 (00s}) = T 1] = 2leon £ — 2isign(eon) foh* = 0. (3.23)
From these equations we recognize the two distinct mechanisms that generate triplet correlations in sys-
tems with spatially homogenous spin fields. The spin precession, corresponding to the terms proportional

to spin precession tensor C,‘;b = 8“5’)/42, and spin relaxation, corresponding to the terms proportional to
the Dyakonov-Perel (DP) spin relaxation tensor I'*® = Af A0 b — A%AZ.
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FIGURE 3.2: Rotation of the polarization of the triplet components for a) spin precession and
isotropic spin relaxation and b) pure anisotropic spin relaxation (8/a = 1/3) at T = 0.

Let us briefly illustrate the two effects through minimal examples. In our example the triplet components
are polarized in the z-direction in spin space at x = 0, f = f§o* , and we are interested in the spatial
variation of the triplet components in the x-direction. We first focus on the spin precession mechfanism
and choose the SOC fields Aj, = 07, which corresponds to an isotropic SOC, and thus a isotropic spin
relaxation. In this case, the Egs. (3.22), (3.23) read

DO fY — D200y f7 — 2|wn| f! — 2D fY =0, (3.24)
DO2fF + D200, f! — 2 |wn| ff — 2D f7 = 0. (3.25)

This system is easily solved in the case when the thermal energy is much smaller than the spin relaxation
energy, T < Da?, giving

[ (x) = sin (ax) e f7, (3.26)
Ji(x) = cos (ax) e " f5. (3.27)

We see that the precession rotates the polarization around the z-axis in a helical way accompanied by
an isotropic decay. In this example the choice of the x-direction to track the evolution of the initial
polarization is arbitrary as the system is isotropic. The evolution in z-direction is trivial as there CZ* = 0
so there is no rotation of the polarization due to precession. In a realistic situation the polarization rotates

around the direction of the spin inhomogeneity in space.

Now let us turn to the generation of triplet components through spin relaxation. Therefore we need to
the latter to be non-isotropic. Let us choose the SOC fields AY = « and A? = 3 and assume the same
situation as above otherwise. The spin precession terms in the Eqs. (3.22), (3.23) vanish and we are left

to solve the coupled system of equations

D2 — (2|wn| + DB?) f! + DaBfi =0, (3.28)
DO f7 — (2|wn| + Da?) f7 + Daff! =0, (3.29)
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3.1. Generation of long range triplet components

together with the boundary condition f le=0 = f§&* . In the limit of very low temperatures 7' — 0 we

obtain the solution

_af

ft = fg o2 + 62 (1 - e—mr), (330)
62 042 _
Ot <a2+52 TerEt ) (3.31)
where k = y/a?2 + 32. The result shows that the initial z polarization of the correlations turns towards

the direction with the lowest relaxation rate. This is the case as long as the initial polarization has a
component perpendicular to the principle axis of the spin relaxation tensor. The spatial variation of the

absolute value of the polarizations for both cases are shown schematically in Fig. 3.2.

Spin precession and relaxation for Rashba and Dresselhaus SOC - transversal vs lateral structures

The condition for the generation of LRTCs due to spin precession is the existence of a SOC field com-
ponent A}, that does not commute with the exchange field and with a spatial component along the spin
inhomogeneity. Within the gauge covariant formulation this is equivalent to a finite SU(2) field tensor

component
Fioo = OpAo — i [Ak,/lo} £0. (3.32)

This is the SU(2) analogon of the electric field tensor [31, 32] and we will therefore call it the SU(2)
electric field. In the DW problem F}, o was finite due to the spatial variation of the exchange field, while
for the case of a homogeneous exchange field, the SOC field has to have components perpendicular to
the exchange field.

The LRTC generation due to spin relaxation is possible as long as the DP tensor couples the triplet
component with spin parallel to the exchange field to the components of f that are perpendicular to the

exchange field. This corresponds to the condition

[[Ak, [Ak, h” ,h] £ 0. (3.33)

We now explore the dependence of the LRTC generation on the geometry of the heterostructure under
the presence of Rashba and Dresselhaus SOC. We consider two basic arrangements of the interface, a

transversal and lateral heterostructure.

Transversal structure
We start by studying the setup shown in Fig. 3.3 a). For simplicity we assume a interface between a S

and a homogeneous F with finite SOC. In a more realistic setup the individual fields could be arranged

in separate layers of F and SOC materials, similar to the DW problem shown in Fig. 3.1, but replacing
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FIGURE 3.3: Scheme of the considered interface geometries, a) transversal interface and b) lateral
interface.

the DW region by a SOC active layer. The structure chosen to be translational invariant in the y-z plane,
thus the Rashba and Dresselhaus SOC are described by the fields

A, = a)26% — B/25Y, (3.34)
A, = B/26% — a)26Y, (3.35)

where «, (8 are the strengths of the Rashba and Dresselhaus SOC, respectively. As the structure is
inhomogeneous in z-direction, combining the definition of the fields and Eq. (3.32) we see that there is
no generation of triplet components due to spin precession effects (F; o = 0). The remaining possibility

is the generation via spin relaxation. For the above choice of SOC fields the condition (3.33) yields
[(a® + B?) (h"6" + h*6") + 208 (h¥6* + h*6Y) , h*6“] # 0. (3.36)

It follows that if all exchange field components are finite, an LRTC is generated for any choice of a,
(. In a more realistic structure this situation could be achieved by using multiple thin layers (below
the magnetic decay length) with different orientations of the exchange field or by using a intrinsically
inhomogeneous F. However, this again makes the SOC fields obsolete as this case is similar to the DW
problem where we know that spin precession generates LRTCs. Therefore we consider homogeneous

exchange fields in the following.

A finite exchange field component perpendicular to the interface can induce vortices at the interface
which complicates the experimental situation. A more favorable setup is to have a ferromagnet with a
parallel orientation of the exchange field with respect to the interface, h” = 0. In this case the left hand
side of Eq. (3.30) is finite only in the case when both, Dresselhaus and Rashba SOC are finite and if
hY # h*.

Lateral structure

We now consider the case of a lateral structure as shown in Fig. 3.3 b). A superconductor and a thin SOC

active layer are stacked on top of a ferromagnetic bar. The SOC field is finite only in the SOC layer
Aji(z,2) =O0(W +d — 2)0(z — W)O(—x)AL, (3.37)
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3.2. Switchable Josephson current in junctions with spin-orbit coupling

with constant A}. The Rashba and Dresselhaus SOC are defined by the fields

A, = B/20% — /209, (3.38)
A, = /20" — /207, (3.39)

The exchange field has only finite components in the x-y plane,

~

h(z,z) = h*6" + hYO(2)O(W — 2). (3.40)

The structure is translational invariant in the y-direction. We are interested if LRTCs are generated in the
F bar and their evolution along the positive z-direction. Without loss of generality we can assume that
the thickness d of the SOC interlayer and the bridge W is small against the typical length on which f
changes. This reduces the initial two-dimensional problem to an effective one dimensional one. Within
this simplification we have a fully proximized homogeneous F with SOC coupling with an interface at
z = 0 to a plain F. Now calculating the SU(2) electric field in direction of the spin field inhomogeneity,

Fro = (ah”™ + BhY) 6%, (3.41)

shows that in lateral structures LRTCs appear already due to spin precession. Evaluating the condi-

tion (3.36) gives
[(aBh® + a®hY) 6" + (aBhY + B°h") 6Y,h"6"] # 0, (3.42)

which is finite if h,, 8 > 0 or hy, a > 0. Clearly the lateral setup is the less restrictive geometry to
generate potential LRTCs with respect to the choice of SOC and exchange field parameters. Even more
importantly they allow for the interplay of both effects as we will show in the following section in a

rigorous way.

3.2 Switchable Josephson current in junctions with spin-orbit coupling*

Motivated by the previous possibilities regarding the generation of the LRTC, in this section we study
two types of lateral junctions that are good candidates for their detection and offer multiple possibilities
to control the Josephson current through the spin fields. We will refer to those candidates as type 1 and
type 2 junctions. The type 1 junction consists of two superconducting electrodes on top of a ferromag-
netic film, as shown in Fig. 3.4 a). Between the two materials we assume there is an interlayer with a
finite SOC. We refer to this junction as type 1 junction. The type 2 junction, shown in Fig. 3.4 b), consists
of a similar lateral geometry, but the SOC is finite in the bridge region. Whereas type 1 junctions may
correspond to junctions with a heavy metal interlayer, type 2 junctions describe, for example, a lateral
Josephson junction made of a 2D electron gas in the presence of a Zeeman field and SOC. We assume

that in both junctions the distance between the superconductor electrodes is larger than the magnetic

*This section has been submitted in form of an article to Physical Review B: “Switchable Josephson current in junctions
with spin-orbit coupling”, B. Bujnowski, R. Biele and E.S. Bergeret, (2019)
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FIGURE 3.4: Schematic setup for the two junction types considered. a) The junction of type 1
consists of two superconductors with thin layers of a spin orbit coupling active material (SOC) that
sit on top of a ferromagnet (F) bar separating them. The magnetization h is lying in the x — y plane.
b) For the junction of type 2 the SOC material is only present in the bridge region connecting the
two superconductors.

decay length, such that the Josephson current is only carried by LRTC. We proceed as follows. With the
help of an analytical solution for type 1 junctions in the case of small SOC presented in Sec. 3.2.2, we
show that in leading order of the SOC coupling, i.e. only taking into account the spin precession effect,
the junction remains in the O-state independently of the direction of the exchange field. The next leading
order contribution to the current is due to the inhomogeneous spin relaxation with a negative sign, such
that for certain directions of the exchange field the junction can switch to the mw-state. In junctions of
type 1 this only occurs if both, the Rashba and Dresselhaus SOC are finite. In Sec. 3.2.3 we present
numeric calculations of the current for arbitrary SOC strength that confirm these findings. In addition,
the numeric calculations reveal that type 2 junctions allow for 0 — 7 transitions in a wider range of SOC
parameters. Specifically the transition can be induced by a pure Rashba or Dresselhaus SOC by chang-
ing their strengths. This is a new possibility to induce O-7 transition by tuning the Rashba SOC strength,
which is experimentally achievable by gating the SOC active material.

3.2.1 Basic equations for diffusive lateral Josephson junction with SOC

As before, we assume that the proximity effect, i.e. the induced superconducting correlations in the

bridge, is weak and that the system is in the diffusive regime so we describe the spectral properties of the

junction by the linearized Usadel equation generalized to linear in momentum SOC Eq. (3.20). In order

to describe hybrid interfaces between the superconductor and a substrate we use the boundary conditions
(3.21). For the case of an boundary to the vacuum (V) we use the boundary condition

Ni [@- } =0, 3.43

i |Vif XV (3.43)

which corresponds to no charge current flow at the boundary. We are interested in determining the

Josephson current density in the bridge region for the different structures depicted in Fig. 3.4. Including
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the effect of spatially constant spin active fields, it can be expressed as [103]

j=ienNoDT Y Tt { Vi- v f} : (3.44)

where N is the density of states and f = &V f *oY.

We now adapt the basic Eqgs. (3.20) and (3.21) to the specific cases of type 1 and 2 junctions. The
junctions in Fig. 3.4 are translational invariant in the y-direction. We define a step function like order
parameter along the x-direction with amplitude A, and a phase difference of the order parameters
between both superconductors,

Az, 2) = O(z — (W + d))O(|z| — L/2) Aeizsien(®), (3.45)
The SOC fields are finite only in the SOC layers thus for the junction type 1,
Ai(z,2) =0(W +d—2)0(z — W)O(|x| — L/2)Ag, (3.46)
and for the junction type 2 with the SOC in the bridge region (Fig.3.4 b)),
Ai(z,z) = O(W — 2)0(z — W)O(L/2 — |z|)AL (3.47)

with constant A}, in both cases. We restrict ourselves to SOC of the Rashba and Dresselhaus type defined
by the fields (3.38), (3.39). Rashba SOC corresponds to terms proportional to a while Dresselhaus
SOC corresponds to terms proportional to 5. For both junction types the exchange field has only finite

components in the z-y plane and is present in the F-region,

h(z,z) = h(cos96” +sinva?)O(2)0O(W — z), (3.48)

where h = VvV hehe.

To distinguish components that are parallel and perpendicular to the exchange field, i.e. short - and
long-range components, it is convenient to rotate Egs. (3.20) and (3.21) by the unitary transformation

U = e%"3 . After the rotation the exchange field is fixed along the z-axis,
UNUT = hé®. (3.49)

Thus the long-range triplet components are those polarized in y and z direction. Assuming for simplicity,
that the thickness d of the SOC interlayers (if present) and the bridge W is small against the typical length

on which f changes, we can integrate the Usadel equation along the z-direction [32].

Here we illustrate how the z-integration is carried out. Besides the first term in Eq. (3.20) all other

terms do not contain a spatial derivative in the z-direction. Therefore the integration results simply in
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the averaged value of f. Integration of the first term leads to

[ = [T (20 02) 20 [Anand] - A [ 1]))
~ 7y facs + (W + d)O2f — 2id [A:E, awf] —d [Ak, [Ak, f” . (3.50)

In the first step, we have used the translational invariance in y-direction and our choice of the SOC,
which is step-like constant. In the second step, we use the continuity of f in the z-direction and the
boundary condition Eq. (3.21) at the interface at z = W + d as well as the boundary condition with the
vacuum Eq.(3.43). This result holds also for junction type 2 by setting d = 0.

This reduces the initial two dimensional problem to an effective one-dimensional one. The z-integration
causes an averaging of the couplings that differs for the two junction types. We therefore present the

final equations separately for the two types.

Usadel equations for type 1 lateral junction

After performing the z-integration, and the rotation of Eq. (3.20), the resulting system of equations for
the rotated anomalous Green’s function f = U fZ/l fis

£

2

D [02],| = 2lwn|fs — 2isign(wn)hf = — D7 fpcse™SE)%, (3.51)

D [6}2 o 4 202 (ax ftb)} — 2lwn| fo — DT fb = 5, ,2isign(w, )i e, (3.52)
where we introduced the components of the averaged spin precession tensor
G (3.53)
and averaged Dyakonov-Perell (DP) spin relaxation tensor
b — (A;Agda,b - AgAi) e (3.54)

The averaged coupling constants are defined as h® = h*W /(W +d), a = ad/(W +d), B = Bd/(W +d)
and 7 = /(W + d). The spatial dependence of the SOC fields, exchange field and order parameter
in x-direction is not repeated explicitly, and is as in the definition Egs. (3.45), (3.46) and (3.48). In the

rotated system the non vanishing spin-precession tensor elements are

C¥* = —C2* = —acos(v) — Bsin(¥), (3.55)
CV* = —CZ¥ = asin(d9) — [ cos(d). (3.56)
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The non-zero elements of the DP spin relaxation tensor are

L7 (9) = T%(-9) = (& + B° + aBsin(29)) W;r d, (3.57)
%% (9) = T%%(9) + TY(¥9), (3.58)
[*Y(9) = I'V* () = 2a/3 cos (209) W; d (3.59)

The solution of Eqgs. (3.51)-(3.52) and its covariant derivative are continuous at the boundaries x =
+L /2 between the different regions thus:

8mfs‘z:i%+07 = 8xfs|$::t%+0+7 (360)

Ouf? sty = [asz +égbﬁb] 3.61)

x:i% +0% ’

The Eqgs. (3.51), (3.52) together with the boundary conditions (3.60) and (3.61) fully determine the
condensate within the limits of the mentioned approximations. Finally, the current in the bridge region

is given by

j = 4reNoDTY Im [f;axfs — (fiy (0. )] . (3.62)

Wn,

Usadel equations for type 2 lateral junction

For the junction type 2 the SOC coupling and the exchange field are finite over the whole bridge thickness
so there is no averaging of the spin fields. Consequently h* = h, @ = «, § = B and 4 = ~/W. Thus
the z-integrated Usadel equation is like in Eqs. (3.51) and (3.52) where now

Cib = b = 2P AS (3.63)
and the DP spin-relaxation tensor
T =T% = A§ A5, — ALAL. (3.64)

The spatial dependence of the SOC fields is now given by Eq. (3.47). The solution of this system of

equations is continuous and fulfills

amfs‘x:i%_i_(), == axfs|m:i%+0+a (365)

[&f? + Cﬁébﬂ’} nige = Ol e (3.66)

Lio7
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Thus for type 2 junctions, the condensate function is determined from Eqs. (3.51)-(3.52) and Egs. (3.65)-
(3.66). Finally the current through the junction is given by

j=4reNoDTY Im [f;axfs () (0 + (FF) (osz n 5,;?;!)] . (3.67)

3.2.2 The Josephson current in type 1 junctions: analytical solution

We focus on the case when the exchange interaction is the dominant energy scale, Da?, D32, DafB, T <
h. The junction is larger than the magnetic length, &3, and hence the current is solely determined by the

LRTC, fty and ftz. The other two components decay over &, in the F region.

We solve the Egs. (3.51) and (3.52) perturbatively up to second order in the SOC fields .Af. In zeroth
order only the singlet and triplet component parallel to the field, ﬂ”fg, are finite. Their explicit form is
given in App. B, Eq. (A.42). It is determined by

2|wn|
D

027 = T iy = =205 (005 - (3.68)

In first order in the SOC, the component ff appears as a consequence of the precession term. The

component f; appears in second order and satisfies:

2|wn|
D

Oty — Tty = =200 (0. 71) + Tya(9) f. (3.69)
The explicit expressions for these components are given in App. A.5, Egs. (A.49), (A.53). From these
solutions we obtain the current density in the F region. The current density Eq. (3.44) is only due to
the contribution of the long-range components f'f and fty in Eq. (3.67). The maximum value of the

Josephson current, i.e. the critical current j., is obtained at ¢ = 7/2:

Je=17 ((p = %) = TI'BNODTZ | fo2e et (

Wn

(acos? + Fsind)’ 86252 cos® 219) (3.70)

2Ky, K3

where
b . fBCS Sigl’l(wn)il T<h ,'YSign(Wn)gl%
fo = _ZD’YTW ~ _foBCS (3.71)

is the value of ff for zero SOC, in the F region below the superconducting electrodes far from the
interface. The first term on the r.h.s of Eq. (3.70) is the lowest correction in the SOC which stems from
the precession term in Eq. (3.68) which generates the long-range component ftz from rotation of the
short-range ffjo. It is a positive contribution (0-junction) and depends on the direction of the exchange
field. For ¥ = 0 and the considered configuration, it is only finite if the Rashba SOC is nonzero (cf.
with the numerical results shown in Fig. 3.5).

In the second order of the SOC, the contribution to the current is the negative second term in Eq. (3.70),

and it is due to the spin relaxation term I'y, in Eq. (3.69), that leads to a finite fty component. This
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3.2. Switchable Josephson current in junctions with spin-orbit coupling

contribution is only finite if both Rashba and Dresselhaus type of SOC are present. This explains why in
the case of a pure Rashba or Dresselhaus SOC the current does not change sign as a function of J (see
numerical results shown in Fig. 3.5 a-b,d-e).

Thus, the sign and magnitude of the critical current is determined by two competing contributions,
namely spin precession and anisotropic spin-relaxation [32], which in turn depend strongly on the direc-
tion of the applied Zeeman field. For example the contribution due to spin-precession is zero whenever
the SU(2) electric field strength in transport direction F, o (9) = —i [/lz, ﬁ('ﬂ)] vanishes. This confirms
previous theoretical investigations that identified F}, ¢ as the generator of the LRTC [31, 32]. According
to Eq. (3.70), Fro(¥) = 0, for ¥y = arctan <—%> + nm. For this value of ¢ the second negative
term dominates provided that cos 21y # 0, and leads to a change of sign of the critical current, a 0-7

transition.

For either pure Rashba or pure Dresselhaus SOC the dependence of the critical current on 7 is sim-
ply shifted by 7/2 for the same magnitude of the SOC parameter. This can be already inferred from
Eq. (3.20), which is symmetric when interchanging o <+ 3 and x <> y for the coordinate labels in spin

space.

Eq. (3.70) is valid for a symmetric junction, i.e. a junction of type 1 with the same SOC at both elec-
trodes. In the case that the left (L) and right (R) electrodes have different values for the Rashba and
Dresselhaus SOCs ay,/ and B /g it is possible to obtain a change of the critical current sign solely due

to spin precession effects. Namely, the critical current up to first order in the SOC fields reads
- fol? —r B o _
je = meNoDT g ~T e (g, cos¥ + B, sind)(ag cosd 4+ Brsind) . (3.72)
R
Wwn

By inspecting Eq. (3.72), we see that the current reversal appears every-time the SU(2) electric field
strength disappears in the left or right lead .7-"5 éR = 0, as long as ar,Br # arfBr. When all couplings

are finite this takes place at the angles 190L/ R — arctan (— gi; 1’:) + nm. The interval, where the current

is reversed with respect to the symmetric case, is maximized when there is only Rashba SOC in one lead

and only Dresselhaus SOC in the other as then j. o« a5 sin(29).

To summarize this section, for low SOC strength, the current due spin precession effects is the dominant
contribution to the critical current. If the S-electrodes are symmetric and only one type of SOC is
active, the current can be switched on and off by rotating the exchange field in the z-y plane, but no 0-7
transition takes place. A reversal of the current only appears if both SOC types are finite and originates
in a competition between the spin-precession- and the spin-relaxation effects. A current reversal only

due to spin-precession effects can be achieved by choosing leads with different SOC parameters.

3.2.3 Numerical results

In this section we compute numerically the Josephson current for both types of junctions with finite S-
electrodes. The total length of the system is L,y = 2L g + L, where Lg is the length of the S-electrode,
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Chapter 3. Josephson triplet junctions with spin-orbit coupling
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FIGURE 3.5: Numerically results for the critical current j., normalized by the critical current for
vanishing SOC fields j. o, as function of the orientation of an in-plane exchange field parametrized
by the angle ¥ for junction of type 1. Different curves correspond to different values of the SOC
parameters. In all plots we set h = 10A, L = 5&y, T = 0.01A and the thickness of the SOC and F
layer are chosen such that d/W = 1.
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FIGURE 3.6: Numerical results for the critical current critical current j., normalized by the critical
current for vanishing SOC fields j. o, as function of the orientation of an in-plane exchange field
parametrized by the angle 1) for junction of type 2. Different curves correspond to different values
of the SOC parameters. In all plots we set h=10A,L = 5&, T = 0.01A.
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3.2. Switchable Josephson current in junctions with spin-orbit coupling

and is set to Ly, = 10L. The systems of Egs. (3.51), (3.52) is complemented by the boundary condition
Eq. (3.43) at the outer interfaces:

@If‘l‘::tLtot/Q = 0 (373)

The resulting critical current density for the junction type 1 is shown in Fig. 3.5 a) - f) and for junc-
tion type 2 in Fig. 3.6 a) - f). For low SOC strengths and any of the studied SOC types and junction
types, the current vanishes when the SU(2) electric field strength vanishes in accordance with the the-
ory [31]. Indeed, the critical current for both setups and small SOC show qualitatively identical behavior
(Figs. 3.5 a) - ¢), 3.6 a) -¢)), in very good agreement with the analytical result for the junction type 1
(Eq. (3.70). This implies that at the level of spin-precession effects both junctions behave similarly. As
expected, the critical current curves for the case of pure Rashba or Dresselhaus SOC are shifted by 7/2

when comparing curves of corresponding SOC strengths.

When increasing the SOC strength for junction type 1 we observe the competition between the two
LRTC generating mechanisms. Comparing upper and lower panels of Fig. 3.5 we see that the current
changes sign at sufficiently large SOC strengths, only when Rashba and Dresselhaus SOC are finite.
For the special case when o = f3, for exchange field orientation 1} = 7/4 there is no 0-7 transition as
the spin relaxation contribution vanishes and at ¥ # 3/4x both contributions simultaneously, which is
depicted in Fig. 3.5 f).

By further increase of the SOC the numerical results shown in Fig. 3.5 f) differ qualitatively from the
analytic ones: there is a strong increase of the critical current in two negative dips around ¥} = 7 /4. The
two negative dips move closer to ¢ = 7/4 by increasing the SOC strength. Also there is a flattening of
the curve at ¥ = 3/4.

The 0 — 7 transition due to spin precession effect in junction type 1 with asymmetric SO interaction
obtained analytically in the previous section is confirmed by the numerics as shown in Fig. 3.7. In
particular, the points of current reversal as function of ¢J are in agreement with the analytical result,
Eq. (3.72).

The case of large SOC in type 2 junctions is shown in Fig. 3.6 d) - f). We clearly see that O-7 transitions
are possible for any choice of SOC. The case when «, 8 # 0 is qualitatively similar to junction type
1. In contrast, for junction 2, 0 — 7 transitions are possible for pure Rashba or Dresselhaus SOC when
increasing the SOC strength, as shown in Fig. 3.6 ¢), d) and Fig. 3.8. Our results, regarding the current
sign reversal, are similar to the results of Ref. [149], where a one dimensional junction with a pure
Rashba has been studied. Similarly to the one dimensional case, our results for two dimensional SOC,
show that the direction of the current can be inverted by tuning the strength of the Rashba SOC, which
can be done by a voltage gate if the bridge region is a two-dimensional electron gas with asymmetric
quantum well structure in a semiconductor. Such a gate has also been suggested in Ref. [ 148] for creation

of a long ranged spin-triplet helix in a ballistic ferromagnetic Josephson junction.
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3.2.4 Conclusion

In this chapter we introduced in a compact form the mechanisms leading to the generation of LRTCs
in S/F and S/F/SOC hybrid junctions. We then studied the effects of Rashba and Dresselhaus SOC
interaction in two types of diffusive lateral Josephson junctions. In type 1 junctions the bridge linking
the superconducting electrodes is a F and the SOC fields originated from heavy metal interlayers placed
between the S leads and the F bridge. In type 2 junctions the exchange field and SOC fields were
finite over the whole bridge. In a realistic setup, this can be realized by a 2D semiconducting bridge
in an external magnetic field. We presented analytical results of the linearized Usadel equation for
the Josephson current for junction type 1, obtained by a perturbative expansion in the SOC. These
analytical results where complemented by numerical calculations for both junction types. Analytical
and numerical results showed good qualitative agreement and demonstrated that the magnitude and sign

of the Josephson current can be controlled by varying the direction of the exchange field as well as tuning
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3.2. Switchable Josephson current in junctions with spin-orbit coupling

the strengths of the SOC. Besides their relevance for application as supercurrent valves we demonstrated
that these lateral junctions can be used as detectors for the long-range proximity effect induced by SOC
and a homogeneous exchange field.
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Chapter 4

Equilibrium spin-currents and edge spin
accumulation in wires with spin-orbit

coupling

Spin currents have been a subject of intensive investigations in several branches of condensed matter
physics [30, 151-153]. In 2003 Rashba himself demonstrated that any system described by the stan-
dard two-dimensional Rashba Hamiltonian may support spin currents even in thermodynamical equi-
librium [154]. Such equilibrium spin currents (ESC) in materials with spin-orbit coupling (SOC) have
attracted a great deal of attention [152, 155-159] . Howeyver, the interpretation of the ESC in remained
under debate for a while because in the presence of SOC the spin is not conserved in a customary
sense. The theoretical controversy can be removed by treating the SOC as an external SU(2) gauge

field [98, 160], but from the experimental point of view ESC still remain elusive.

In this chapter, we demonstrate a correspondence between ESC in nanowires with SOC and a transverse
spin polarization induced at the edges of the wires as schematically shown in Fig. 4.1. Contrary to
ESC, spin polarization can be experimentally detected. The correspondence we found, is universal in
the sense that it holds for any (quasi) one-dimensional many-body system, provided the particle-particle
interaction is spin-independent. Specifically, ESC appear when a magnetic field B with a component
perpendicular to the SOC is applied, inducing a Zeeman splitting field, h = gup B. We show that this
bulk ESC is always accompanied with an edge spin accumulation that is transverse to both, the Zeeman
field and SOC. Hence, a measurement of the transverse spin density would be an unequivocal evidence
of ESC in nanowires. Interesting, this transverse edge spin accumulation shows up not only in the normal
state [161], but also when the nanowire has a superconducting gap A in its density of states induced,
for example, by the proximity to a superconductor. In other words, we find a connection between the
existence of ESC and an anomalous paramagnetic response of a superconductor that generalizes the
well-established theory of the Knight-shift in superconductors [162—164].

TThis chapter has been submitted in form of an article to Physical Review B: “Correspondence between bulk equilibrium
spin-currents and edge spin accumulation in wires with spin-orbit coupling”, I.V. Tokatly, B. Bujnowski and E.S. Bergeret,
(2019)
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FIGURE 4.1: Schematic view of the system under consideration: A nanowire with spin-orbit cou-
pling in a Zeeman field perpendicular to the substrate. Due to existence of an equilibrium spin
current a transverse-to-the-field component of the magnetization, localized at the edges, is induced.
The orange arrows represent the total induced spin. Its transverse component has opposite sign at
both edges of the wire

Semiconducting nanowires with spin-orbit coupling, as InAs and InSb, contacted to conventional su-
perconductors, have been intensively explored in recent years, mainly due to the possibility of creating
Majorana zero modes and topological superconductivity in these systems [43, 45-47, 51, 52, 165-171].
It is worth noticing that both, the ESC and Majorana zero modes, require a component of the Zeeman
field perpendicular to the SOC. In the context of Majorana fermions, several theoretical works have
made a connection between the spin polarization induced at the edges of the wire and the the topological
transition when h = \/m [51, 172—-174], where p is the chemical potential. In this chapter we
show that the transverse edge spin polarization is a universal property of nanowires supporting ESC and
it exists at all values of h, including those far below the topological transition. Therefore its detection
cannot be associated straightaway to Majorana zero modes [51, 161], but, as we will see, to the existence
of ESC.

Specifically, we show that as a function of the Zeeman field h, the total spin accumulation shows in
general a cusp at h = \/m . Interestingly, when A < p, the transverse spin accumulation shows
in addition a sharp maximum at » ~ A and can be much larger than the magnitude at the cusp when
h = u. We analyze in detail this maximum of the spin accumulation and show its robustness against
disorder. Finally we present analytical results for the spatial distribution of the magnetic moment induced
as a response to the Zeeman field. We find that the transverse susceptibility close to the edge of the wire

can be much larger than the longitudinal one, for small values of the SOC.
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Chapter 4. Equilibrium spin-currents and edge spin accumulation in wires with spin-orbit coupling

4.1 Bulk boundary correspondence

We consider the setup shown Fig. 4.1, where a nanowire is deposited on a substrate. The wire has an
intrinsic SOC which, as usual, is assumed to be linear in momentum and determined by the symmetry
of the structure. In addition, a Zeeman/exchange field A is applied perpendicular to the substrate and
thus to the SOC. Without loss of generality let the wire be oriented along the x-axis, Rashba SOC along

the y axis and a Zeeman field along the z-axis. The many-body Hamiltonian modeling the system reads:

N a2
p 5 L
H = nZl [2;,; +appol, + hop, + Ve(ry, an) | + Hine , (4.1)
where the index n labels the particles, pf = —i@rﬁ with £ = x,y, z are components of the momentum

operator of nth particle, « is the strength of the SOC, V,(r, z) is a confinement potential, r* = (y, 2),

and H,;,,; describes a spin-independent interaction.

The main observables we are interested here are the spin density s = (s%, s, %), and components of
the spin current density j, = (ji, j}:, Jji) By defining the spin current operator in the standard way [98,
152, 155, 157],

0 =5 {2 o) e -} @2)

and using the Hamiltonian (4.1) we obtain the following equation of motion for the spin density [98]
(see Eq.(1.126))
s+ Opjrk +ay Xjo+hzxs=0. 4.3)

Here the third term is the spin-orbit torque, while the last term is the spin torque due to the Zeeman field.

Let us now concentrate on the equilibrium state. The Hamiltonian in (4.1) is real and therefore its
eigenfunctions can be chosen real. This implies that in equilibrium there is no component of the spin
density parallel to the SOC, s¥(r) = 0. Similarly, we find that the system can only support an equilibrium
spin current j} (r) polarized along the y-axis. Therefore in equilibrium the spin-orbit torque vanishes
and the y-component of spin continuity equation (4.3) takes the form

Ok jp(r) + hs®(r) = 0. 4.4
Finally, by integrating this equation over the wire cross-section we simplify it as follows
0 JY(x) + hS*(z) =0, 4.5)

where S(x) is the line spin density along the wire, and J (z) is the ESC flowing through the wire cross-
section. Equation (4.5) shows that ESC in the bulk of the system may exist only if the z-component of
the spin is accumulated at the edges. In other words, Eq. (4.5) establishes a correspondence between the
bulk property of the system, the ESC, and the net spin accumulation transverse to the Zeeman field at
the edge of a finite system. An example of this correspondence has been obtained in Ref. [161] for a
non-interacting finite 1D wire contacted to leads.
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4.2. Spin current of a normal conductor

In a semi-infinite wire, where all particles are confined in the right half-space, the spin accumulation at

the left edge is obtained by integrating Eq.(4.5)

_ oo 1
,W;/ 5% (2) =~ T¥(o0) .6)
-0
This equation is of particular interest: On one hand it connects the ESC on the right hand side, which is
a rather theoretical object [154], with a measurable quantity, the edge spin polarization (left hand side).
On the other hand it provides a direct way to determine the edge spin accumulation by calculating a bulk
property, the ESC, independently of boundary conditions. Clearly, for a finite wire, the transverse spin
accumulation at opposite edges is equal in magnitude but oriented in the opposite direction, as shown
schematically in Fig. 4.1. In the following we will use this relation to compute the transversal spin

accumulation in normal and superconducting wires.

4.2 Spin current of a normal conductor

As a first example we consider a one-channel normal ballistic wire described by the 1D version of

Hamiltonian (4.1) with H;,; = V. = 0 [161]. The spin current can be written as

dk
@_/anmm @7)

™

with the velocity operator 0, = g—g = % + a6¥ and the equilibrium density matrix written in terms of

the projectors on the two eigenstates Ef =¢, + Ey,
. , , 1 akéy + ho”
=S A B, ot = (1 T @)
=% k
where &, = k?/2m — p, Ej, = v/a2k? + h? and f(FE) is the Fermi distribution function. We focus on

the case 7' = 0 and , a, h > 0. Introducing the Fermi momenta for the two spin split bands

kt = \/2m [moz2 +uF \/(ma2 +u)*+h2— /ﬂ] , 4.9)
the current can be expressed as the sum of the contributions from the two bands:
JY=JY" +O(u—h)JVT, (4.10)

where +, — labels the upper, lower band respectively. The two contributions are

ak* 1 |k h? (ak*)? a
JYE = — + o o (ak®)? + h% — gln ( h2) +1+ Eki . (4.11)
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FIGURE 4.2: Transverse spin accumulation as function of the Zeeman field h = gup B for various
values of the SOC strength, akr in the a) normal and b) superconducting case at T = 0.
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FIGURE 4.3: Spin accumulation calculated in the quasi-classical limit as function of the Zeeman
field for various values of akr in the a) ballistic and b) diffusive limit at 7" = 0. In the diffusive
limit we have chosen A7 = 0.1.

Clearly the ESC is finite only if both, the SOC and Zeeman field, are finite. The transverse spin accumu-

lation can be computed by substituting Eq. (4.11) into Eq. (4.6). The result is shown in Fig. 4.2 a). By

increasing h from zero towards y, the spin current increases monotonically. At h = p, k™ = Oand for

larger values of / the upper band does not contribute to the current. This results in a cusp-like maximum

in the spin current, also obtained in Ref. [161] for a normal wire *.

4.3 Spin current for superconducting wire

Now we assume that the wire is placed on top of a superconductor so that it is fully proximized.

*Notice that the expression (4.6) makes a connection between the bulk spin-current and the total transverse spin. The spatial
distribution of the latter has to be computed by solving the full boundary value problem. In a normal wire this was done in

Ref. [161].
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4.3. Spin current for superconducting wire

4.3.1 Ballistic case

We start by examining the case of a clean wire. As customary, the system is described by the Bogoliubov
de Gennes (BdG) Hamiltonian, which can be obtained from Eq. (4.1) after extension to the Nambu-Spin

space:

)
H= <§x —p+ aﬁz&y> T, + hoz + AT, (4.12)
m

where A is the SC order parameter, and 7; are the Pauli matrices in the Nambu space. This Hamiltonian
leads to a four bands spectrum

By = +\/€ + (ak)? + h2 + A + (-1)i2Q , (4.13)

withi =1,2and Q = \/(fg + A?)h? + £2a2k2. In this case the spin current can be written as

dk A
JY = / Yo [Pijg} F(B) (4.14)
21
i==41,42
where P; = [] ki z%EJJ is the projection operator to the eigenstate |n;) of the BAG Hamiltonian and

JY = (%&y + a) T, the spin current operator written in Nambu-spin space. Explicit evaluation of this
expression at 7' = 0 gives:

J}g—%/dk: 1_21-212 [Ez <1+(—1) Q)]

a! k? 1 i
S5 E [ (e g)] - o

i=1,2

It is important to note that this expression is rather general and valid for arbitrary values of the pa-
rameters. The numerical evaluation of the integral can be performed straightforwardly and shows two
prominent features as seen in Fig. 4.2 b). The first one is the same cusp-like local maximum, as in
the normal case, which now appears at h = \/m . This value corresponds to the critical Zeeman
field above which the wire is in the topological phase. It is worth mentioning that this cusp-like feature
is obtained, practically, over the whole range of parameters. Only when y — 0, and ma? > A, the
transverse spin does not show a maximum at h = A and the discontinuity in the slope of S* at h = A
is smoothed out [174]. In this work we are not interested in zero chemical potential limit and focus on

cases when 1 > A, ma?.

The second second prominent feature as seen from Fig. 4.2 b) is the maximum that appears at values of
h < p and that for small enough values of « is located at h ~ A. Interestingly, by lowering « the peak
first gets narrow and simultaneously increases in magnitude exceeding by far the local maximum at the
topological transition. Further decrease of o reduces the height of the peak until the spin current, and

thus the spin accumulation, vanish when oo — 0.
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4.3.2 Quasi-classical limit

Since this maximum in the spin accumulation occurs at values of the fields much smaller than p we
can investigate the behavior of the transverse spin-accumulation at small o within the quasi-classical

approach [175]. The spin current within this approach is given by [103],

imN s
=5 OTWZTI‘@)FJ 7). (4.16)

Here g is the quasi-classical Green’s function that is obtained from the Gor’kov Green’s function by the
¢-integration [175] g = i/7 [ d€G(k,wy), (---) is the average over the Fermi surface, 7' the tempera-
ture, Ny = 1/(27vr) is the 1D density of states at the Fermi level, w,, = (2n + 1)7T are the Matsubara

frequencies and vr, kr denote the Fermi velocity, Fermi momentum respectively.

To obtain the quasi-classical Green’s function we start from the Gor’kov Eq. (1.36). After a Fourier

transformation in time and space (assuming a constant A) these are

[iwn — éx] G(k,wn) + AF(k,w,) =1
[—iwn — &) F(k,w,) — A*G(k,wy,) = 0. (4.17)

where

p =&+ hé, + ake,
& =& — hé. + aké,. (4.18)

and ¢ = k% /2m — p. Solving this algebraic equation for G we find for its components in spin space

G;
G = . . (4.19)
(€= &) (E+&)(E—&)(E+&)
with the linearized dispersions
+& = ii\/(w,% + A2 — a?k% — h2 + 2i\/a2k;2F (W2 + A?) + h2w2
+£ = :Fi\/(w% + A% — a?k2 — h? — 2i\/042/~c% (w2 + A?) 4+ h2w? (4.20)
and
Go = =&} — iwn&l — & — iwn (B + o2k + A? + w2)
Ge =0
G, = —akp ((wn — i)+ akE + B2+ A2>
G, =— (h2 + a2k — A2+ (wy — i{k)Q) . 4.21)
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4.3. Spin current for superconducting wire

To obtain the quasi-classical limit we are left with calculating the integral

gilwn) w/ e ) 61 8) (& )G e

(4.22)

Using the contour consisting of two half circles above and below the real axis with opposite orientation

(Eilenberger contour)

i Gi(&) + Gi(=&) | Gil&) + Gi(=&)
gi(wn) = + . . (4.23)
(wn) 4Im [¢3] ( &1 31
then
iak w2 + A? +iR
gy(wn) = — RF Im (4.24)
\/w2 + A2 — h? — a2k% + 2iR
with R = \/h2w2 + a2(w? + A2).
AtT' — 0 we obtain for the spin current
k 24+ A’ +iR
JY = / o akp (@ + A7 +iR) . (4.25)

T | Ryfw? + A2 h2— a2+ 2iR

From this expression and Eq. (4.6) we compute the dependence S*(h) around h = A, which is shown in
Fig. 4.3 a). As expected, in this range of parameters, the quasi-classical result agrees with the exact cal-
culation (cf. Fig. 4.2 b). In particular, the peak is more pronounced for small values of SOC and washes
out with increasing SOC strength. At h = A and for akrp/A < 1 the integral can be approximated
keeping only leading order terms in (akr)/A

20kp [ A?
JY ~ 2 / dem[ 3]. (4.26)
T 0 V2iR2

With akpr/A < 1 we can approximate R ~ Ay/w? + (akr)?, and the integrand becomes

~ OékFAP(5/4)
JY = =24/ TG (4.27)

For finite temperature the integral converts into a sum over Matsubara frequencies

w2+ A% +iR
Ry/w2 + A —h? — (akp)? + 2iR

JY = akpT Im

n

(4.28)

Following the derivation as for 7' = 0, if h = 1 and a < 1,T" we can approximate the sum so that

A2 1 Osz
Y~ _ / _ /
JJ =~ 2akpT E Im\/z 52 = akpT Ang_o (w%)g/ ~ 3 E |2n 3/2 4.29)
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Chapter 4. Equilibrium spin-currents and edge spin accumulation in wires with spin-orbit coupling

4.3.3 Diffusive limit

So far we have considered a pure ballistic situation. It is however known that s-wave superconductivity
is insensitive against elastic disorder, and therefore one would expect to obtain qualitative similar results
for a disorder superconducting nanowire supporting ESC. Notice that in this case the wire is a multiband
wire described by Hamiltonian Eq. (4.1) which can be considered as a quasi-one dimensional wire when
its lateral dimensions are much shorter than the superconducting coherence length but larger than the
elastic mean free path. In this case the spin current can be written in terms of the isotropic in momentum
quasi-classical Green’s function [105] that we introduced in Eq. (1.148). Here we will denote it by g for

better distinguishability. Then the spin current is given by

D e -
JY = <" NGT wz Tr {aygvxg} , (4.30)
where D = U%T is the diffusion constant in 1D, 7 is the momentum relaxation time, @x = 09, -

—i(ka/2) [6Y,], and Kk, = 2ma is the inverse of the spin precession length. To find § we solve the

Usadel equation for a bulk system [105]

[08.6] = [(@0 — iho2) 7 + Ari. 5] = 0 (431)

N | —

where I'g = [6Y,[6Y, §]] /47w, and 1/7, = Dk?2 is the inverse Dyakonov-Perel spin relaxation time.
The Green’s function has to fulfill the normalization condition § = 1.

The matrix structure of the quasi-classical Green’s functions entering the Usadel equation is § = g73 +
fﬁ and for a Zeeman field in z-direction the matrices g and ]E are diagonal in the spin space with compo-

nents g* and T respectively.

At T = 0 the expression for the equilibrium spin current, Eq. (4.30), reduces to

JY = —akFAT/ d%" (1—grg” —§%);. (4.32)

Substituting in this equation the solution of Eq. (4.31) and after using our correspondence, Eq. (4.6) one
obtains the transverse spin accumulation as shown in Fig. 4.3 b). Thus, also in the diffusive limit we find

a maximum S% at h ~ A for small values of SOC.

In the limit 7" < 1/74 < h ~ A we obtain that, within logarithmic accuracy, the spin current of
Eq. (4.32) is given by

2 ak

TV~ S A r1og (A7) (4.33)

3 7
Thus, in the diffusive case the peak in the spin-current at A = A for small values of the SOC is reduced
by a factor ~ §logd, with 6 = A7,/ % < 1, with respect to the pure ballistic case, c¢f. Eq. (4.27).
This explains the difference between the peak heights in Figs. 4.3 a) - b), for kra = 0.05A. Notice
however that this difference is not that pronounced for larger values of the SOC.
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FIGURE 4.4: Spatial dependence of the mangetization parallel (M) and perpendicular (M) to the
exchange field for a semi-infinite wire at 7' = 0 and different values of SOC.

4.3.4 Spatial distribution of the Magnetization

Previously, we have used the general expression Eq. (4.6) to relate the bulk ESC to the transverse spin-
polarisation, S in a finite wire (see Fig. 4.1). We understand that S* accumulates at the edge and decays
from the edge towards the bulk, but the exact spatial distribution has to be determined in each particular
case. In the normal state the dependence S*(x) was computed numerically in Ref. [161] for a wire
connected to two leads and for values of & of the order of |u|. Here we focus on the superconducting
state in the relevant quasiclassical regime, i < u, for which the Eilenberger equation holds

ivpé)xgi =1 [j:app&y + T3 (iwn + hé’z) + iTQA,g:t] . (4.34)

Here g+ denotes the the Green’s functions for both propagation directions +vr. We assume that the wire
extends over the region x > 0. At the edge, x = 0 no current flows and the boundary condition imposes
that g+ (0) = g—(0). We focus here on the spin susceptibility, i.e. the magnetic linear response of the
system in the presence of a small Zeeman field. In other words we compute the spatial dependence of the
spin in linear order in h. To this end we perform perturbation theory and write the solution of Eq. (4.34)
as g+ (z) = gpcs + 0§+ (z) where ggcs = (wp73 + Ap)/E and E = \/m The spin density, is
then obtained from

3S; = m'TNO% > Tr (367657 (4.35)

Wn

where 6¢° = 0§+ + dg—. Specifically, we obtain

5G° =

2hAgscsTi {&Z akp - (isVka+2E)a (4.36)

E? + (Ozk:p)2 F
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Chapter 4. Equilibrium spin-currents and edge spin accumulation in wires with spin-orbit coupling

The detailed calculation can be found in the App.A.6.

S;,; 9 akp cos(kar) 2Bz
=A WTZ B (b (4.37)

2Ex
45, E + akpsin(kqax)e vF
= A%nT
So T Z B2(E2 + (akp)?) )

(4.38)

Wn

where Sy = hNj is the Pauli paramagnetic term. This is a remarkable result that shows that in a finite
system, besides the longitudinal response S, = 5, — Sp, there is a finite transverse magnetisation M,
accumulated at the edge of the sample which decays toward the bulk over the superconducting coherence
length. At low temperatures, the ratio S, /S, at the edge of the sample, x = 0, is proportional to
A/akp and therefore the transverse magnetisation can be much larger than S, provided app < A.
This result generalises the well-established theory of paramagnetic response of superconducting systems
with intrinsic SOC [164]. The full spatial dependence of S, .(z) is shown in Fig. 4.4.

4.3.5 Conclusion

In summary, we have demonstrated a universal correspondence between equilibrium spin currents and
a transverse spin accumulation in wires with SOC and a perpendicular Zeeman field. Such spin accu-
mulation appears in both normal and superconducting state. In the normal state the total edge spin is
maximized for values of h of the order of the chemical potential ;2. More interestingly, in the supercon-
ducting state the effect can be maximized at values of the SOC and Zeeman energy much smaller than p.
We demonstrated that this effect is robust against disorder and manifest in a hitherto unknown transverse

magnetic susceptibility in finite systems.
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Chapter 5

Weyl semimetal interfaces as chiral valves

The previous chapters focused on superconducting heterostructures, where the normal state dispersion
was quadratic in momentum. Within the last months of my thesis, the aim was to study the prox-
imity effect in heterostructures between superconductors and the recently discovered Weyl semimetals
(WSM) [55-57]. WSMs are a new exciting material class exhibiting a pseudo-relativistic linear disper-
sion around so-called Weyl points in the Brillouin zone and unusual surface states called Fermi arcs,
that are a consequence of the topological structure of the bulk dispersion. As preliminary work I studied
the ballistic transport properties of WSM heterostructures in the normal state. This led to the discov-
ery of an interesting filtering effect that is the topic of this chapter. The extension to interfaces with

superconductors will be the subject of future work.

The possibility of filtering quantum mechanical degrees of freedom is the essence of computation. For
instance, transistor-based electronics relies on the filtering of electric charge to control the flow of
current, while spintronics relies on filtering the spin-up or spin-down projection to encode informa-
tion [176-178]. In metals where the low-energy quasiparticles behave as pseudo-relativistic particles,
such as two-dimensional graphene and three-dimensional WSMs [54], there exist additional degrees of
freedom which can serve as alternatives for computation. In two-dimensions, Dirac quasiparticles are
excitations around specific quasiparticle momenta known as valleys, with linear dispersion relations.
By selectively populating a single valley this degree of freedom may be used to encode information, a

possibility referred to as valleytronics [179, 180].

In three-dimensions, Weyl quasiparticles are excitations with a linear dispersion around pairwise occur-
ing Weyl nodes at arbitrary points in momentum space of opposite chirality. The chirality is a quantum-
mechanical degree of freedom that refers to whether the quasiparticle momentum is pointing parallel or

anti-parallel to its spin. Similarly to the valley filter, a chirality filter may be used to encode information.

This chapter is organized as follows. In Sec. 5.1 we recall the Dirac equation and the Weyl equation
that describe relativistic massive and massless spin 1/2 fermions respectively. Based on this, we make
the connection to solid-state realizations of such fermions and introduce the minimal model describing
these quasiparticles. We then use this model in Sec. 5.2 to study the ballistic transport properties of an

interface between two Weyl semimetals.
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5.1. Dirac materials and Weyl semimetals

5.1 Dirac materials and Weyl semimetals

In 1928 Dirac succeeded in finding a formulation of single particle quantum mechanics in accordance
with special relativity. The theory had to be be Lorentz invariant, thus in such a relativistic wave equation
time and space derivatives had to appear at the same order. Also for the particle density to be positive

definite, the time derivative had to be first order. Dirac wrote the Ansatz (h = c = 1)
0¥ = (ap + pm) V. (5.1)

Here o and 3 are Hermitian operators that are spatially constant and only act on inner degrees of free-
dom. Demanding that the spectrum of the Hamiltonian agrees with the classically know relationship

E? = p? + m? implies that the operators «; and /3 obey the following conditions:

a2=pt =1, (5.2)
{ai, a5} =0, (5.3)
{as, B8} = 0. (5.4

Using these relationships allows to rewrite the Dirac Eq.(5.1) in a way that highlights its covariance.
Multiplying 3 from the left and defining the matrices 7° = 3, 7' = Ba’ and casting them into a four-

vector y* gives
(iv' 0y —m) ¥ = 0. (5.5)
The conditions (5.2)-(5.4) imply that the matrices y* satisfy the Dirac algebra
{97} = 29", (5.6)

where g"¥ = diag(1, —1, —1, —1) is the Minkowski metric tensor. There exist infinitely many represen-
tations for the v* matrices, however it can be shown that the smallest possible representation is in terms
of 4 x 4 matrices [181]. In the following we will use the chiral representation,

0 i N . 0 o'i .
0 ) )
= N :1®Tw, = . =10 X Ty. 5.7
Y (1 0) Y <_Ul 0> y (5.7)

The introduced 7; matrices are the same as the Pauli matrices o but operate in the chiral subspace. In a

4-dimensional representation, the wave function ¥ must be a 4-vector (Dirac spinor)

W = (31, o, 3, 0a) " o= (U, T )T (5.8)
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Chapter 5. Weyl semimetal interfaces as chiral valves

We decomposed the Dirac spinor into ¥~ and W+ which are its projections onto to the two chiral

subspaces. In this chiral basis the Dirac equation reads

(i0; —op) U =m¥™ (5.9)
(i0; + op) ¥~ =mU¥ T, (5.10)

so a finite mass mixes both subspaces.

In the massless limit the two equations decouple into two Weyl equations [182]

S\ (M0 O
s(0)-(ra)(E) e

with the Weyl Hamiltonians H™ = 7op where 7 = =£1. The quasiparticles described by the decoupled
spinors ¥~ and ¥ are Weyl fermions with left-handed and right-handed chirality, respectively. The
chirality is a symmetry of the Hamiltonian (5.11), as can be seen by defining the chirality operator

7P =iy = —1 e (5.12)

It anti-commutes with all the other matrices v* and commutes with the Hamiltonian (5.11). The spinors
(¥—,0,0)" and (0,0, UT)T are eigenstates of v° with eigenvalues +1 which correspond to their left- or
right-handedness. Besides this rather mathematical introduction of the chirality as a conserved quantity
in the massless case, it is the sign of the spin projection along the direction of the momentum of the

particle.

From a particle physics perspective, all fermions are Dirac fermions and Weyl fermions have not been
discovered as elementary particles. However, in solid-state systems, Weyl fermions can exist as low-
energy excitations around certain points in three-dimensional momentum space. Materials exhibiting
such linear band dispersions described by the Weyl Egs. (5.11) are called Weyl semimetals, and the
points in momentum space where these bands cross are called Weyl nodes.

In a solid-state system the realization of a vanishing mass term is rather unrealistic and the Weyl fermions
would gap out as shown in Fig. 5.1 a). Nevertheless there exist ways to protect the linear band crossings,
even in presence of a mass term. One possibility is by imposing additional symmetries. This leads to
the case of a Dirac semi-metal, where two doubly degenerate Dirac cones exist at the same point in
momentum space, but the Weyl fermions remain decoupled. Another possibility is to break one of the
two inherent symmetries of the Dirac and Weyl Hamiltonian, inversion symmetry Z or time-reversal
symmetry 7. This splits the previously degenerate Dirac cones and gives rise to two Weyl nodes that

are separated in energy and momentum space.

The low-energy physics for these cases is encoded in the minimal Hamiltonian

H(k) = ( H;Ek) ’HirEk) ) , (5.13)
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FIGURE 5.1: Dispersions of the minimal model Eq. (5.13) for the different gapless cases. a) Dis-
persion of the Dirac equation in the gapless and massive case. b) Splitting of the Dirac cones due
to time reversal symmetry breaking fields. ¢) Time-reversal and inversion symmetry breaking fields
shift the nodes in momentum and energy space.

where each block
H' (k) =7bp+o.(Tk—b) — pu, (5.14)

describes the dynamics of a Weyl fermion around the node 7 = +1 in k-space, where we set the
Fermi velocity to unity, vp = 1. Further p is the chemical potential and, as in the Dirac Eq. (5.5), the
parameter m describes an eventual coupling between the two Weyl nodes. The terms proportional to the
parameters by and b, correspond to the Z and T breaking fields, respectively. In general, the parameters
are specific to a given WSM, and can be tuned, to some extent, by applying strains or modifying the
internal magnetization of the material. We gather the parameters within a 4-vector notation b, = (bg, b).
The case of interest is when the system is gapless, which is true as long as b0 = —b% + b? > m?.
Then the Weyl node separation in 4-notation reads:

/ m?2

Clearly the terms proportional to b cause Weyl node seperations in momentum space, what is schemat-
ically shown for the massive case in Fig. 5.1 b). The term proportional to by is responsible for shifts of
the Weyl nodes in energy space, as shown in Fig. 5.1 c), and can for example appear due to the presence
of inversion breaking SOC [183].

In Sec.5.2, we mainly investigate the case of completely decoupled Weyl nodes, namely m = 0. Then

the electronic spectrum is given by:
E.(k)=7bp—puL|k—7b], (5.16)

describing conical dispersion around nodes located at k = +b, and are also shifted in energy by 2bg.
The chemical potential ;1 and the energy shift by set the sizes of the Fermi surfaces which consist in
two spheres of radius . = p — Tbhg, centered at 7b. Depending on the relative values of the chemical
potential, energy shift 2by and momentum shift 2b, these Fermi spheres might merge into a single Fermi
surface through a Lifshitz transition. In this work, we avoid such a situation, thereby keeping always

two well-separated Fermi spheres (Fig. 5.2).
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Chapter 5. Weyl semimetal interfaces as chiral valves

5.2 Weyl semimetals and chiraltronics

The controlled population of a single chirality is experimentally challenging. One of the main proposals
in this direction is to design interfaces that, upon varying an external parameter can transmit one, none
or both chiralities. Under specific conditions a barrier between electron and hole doped materials, a
p-n junction, can act as a chirality filter. For example, two Weyl quasiparticles with linear dispersion
relations tilted in a given direction, known as a tilted Weyl cone, allows perfect transmission of a single
chirality at particular incident angles [60]. This is possible since the tilt determines the existence of states
across the barrier that conserve the momentum parallel to the interface; in its absence both chiralities
would be transmitted with equal probability [59]. However, doping metals is experimentally challenging

and therefore p-n junctions composed of WSMs have not been experimentally realized.

An alternative proposal to achieve a chirality filter is to use strain engineering. Mechanical strain acts for
low-energy Weyl quasiparticles as an emergent chirality dependent pseudo-electromagnetic field [184].
Wave packets of different chiralities subject to these fields can trace out different trajectories, enabling
the filter [185]. Although analogues of strain coupling to Weyl dispersions have been achieved in Weyl
acoustic metamaterials [186] and photonic systems [187], the required strain profiles to achieve a chiral-
ity filter in electronic systems is far from being realized. In this work we propose a simpler alternative
to design a three-dimensional chirality filter. The filter is based on interfacing two distinct chiral WSMs,
for which the Weyl nodes are separated in energy and momentum. Due to the difference in Weyl node
separation across the interface, the two chiralities may experience different transmission probabilities.
Depending on the difference of the Weyl node separation on both sides of the interface and the bias
voltage, it is possible to achieve transition of one, none or both chiralities. The filtering does not require
differences in doping [59, 60], potential barriers [61, 62], or external fields [63, 64].

5.2.1 Interface between two Weyl/Dirac materials

We consider a planar interface between two WSMs (WSM{/WSMy), each one being described by a
generic model Eq. (5.13) with its own parameters. The shift parameters are denoted (by 1, by,) (resp.
(bo,r, br)) for the material located in the half-space < 0 (resp. > 0). The general condition for
transmission/blocking at the nodes between same chirality 7 = =+ is that the projections of the Fermi
surfaces around the nodes in WSM; and WSM5 onto the interface plane have to overlap/be disjunct.
This geometric condition is particularly simple in the massless case when the Fermi surfaces are spheres.
Then the sum of the radii of the Fermi spheres, attached to the nodes of a distinct chirality on both sides

of the interface must be bigger/smaller then their Weyl node separation in momentum space, i.e.
g + E — 78| + |pg + E — 78| 2 ‘(bL—bR)”‘. (5.17)

Here a; stands for a vector component parallel to the interface. If the shift between the Weyl nodes is
purely perpendicular to the interface, the projections of the Fermi surface onto the interface plane always
overlap, and the chirality filtering will not work. In the following, we assume a planar interface in the
y-z plane located at z = 0. We introduce b = B + Ab /2, and restrict ourselves to the case of
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5.2. Weyl semimetals and chiraltronics

momentum-space node-shifts purely orthogonal to the transport direction. For simplicity, we take the

difference between the node separations on both sides of the interface along e,, i.e.

Scattering properties for decoupled nodes

We start from the case m = 0, when the Weyl nodes are decoupled and it is possible to obtain analytical
results for the transmission probability of quasiparticles across the interface constructing the scattering
wave functions of the system. In the following, we assume x as the transport direction and an interface
in the y-z plane. A sharp interface is assumed for calculations but the main qualitative result, namely
chirality filtering, pertains for a smooth one (smooth in the x direction). The components of the momenta
parallel to the interface, k| = (k,, k), are good quantum numbers due to the translational invariance
within the y-z plane. For a given excitation energy £ and (k,, k. ), the plane wave solutions traveling in
positive z-direction at the 7 = 4= Weyl node have the form

1 isTqrx ik
= © el

¥(r) ( oS > eI (5.19)

and the ones traveling in the negative —x direction read
P(r) = ! e~ Ltk (5.20)

—sTaTet—sTe" ’ :
where

0 =\ (7)? — (q)? — (¢2)? = k" cos ¢ sin 0", (5.21)
qy = ky — 7by = k" sin?" sin ", (5.22)
q; =k, —1b, = k" cos I, (5.23)

sin 9™
78T 4+cos 97

sign(E + u"). The solutions are parametrized individually for each node by spherical coordinates with

k™ = |E + u"| are the radii of the Fermi spheres, u” = p — 7bg and o = and s7 =

the origin placed at the node point with angles ¢ € (—7/2,7/2), 9" € [0, 7) as shown in Fig. 5.2

From these spinors, we now construct the scattering states across the interface. As an example, the
wave function for a conduction band electron injected from the left (L) Weyl node and transmitted
to the conductance band in the right () Weyl node of the same chirality 7 = + for a given energy
E > —pp, —pr and parallel momentum k| reads forz < 0:

) o+ it
ot eI e'et® 4 pe e 5.24
L(x) N + + az' (eiqatL:‘”“'“"JLr — re_iq;Lm—i%@Z) ’ (5-24)
Qa7 cosp
L L
(5.25)
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and forz > 0:
ik 1 .+
Uh(n) = ———t | g | € (5.26)
afcosgh | YrCTH
R R

Each solution is normalized to carry unit probability flux. Solving the system of equations obtained by
imposing continuity of the scattering wave function across the interface for both nodes, V7 (z = 0) =
U%(x = 0) , we get the probability for transmission between the nodes

4s7 sphagaf cos Pl cos ph
T\2 T\2 T oT AT AT T AT T AT\
(a7)? + (a)? + 2s7spagaf cos (SToT + speR)

T7 = (5.27)
. This expression for the transmission probability holds as long as there exist propagating solutions
on both sides of the interface, i.e. for given energy £ and injection angles ¢7,?7 the momentum
4 r =V (E+ ug)? — (k, — 7by r)? — k2 is a real quantity.

Chiral filtering

We here further illustrate the geometric criterion in reciprocal space given in Eq. (5.17), for reaching
complete chirality filtering, namely the total blocking of a given chirality while the opposite chirality
is (partially) transmitted. This chirality filtering relies on transverse momentum conservation. For the
ballistic regime and the interface described above, the system is invariant by any translation in the y-
z plane. Therefore the components k, and k. of the momenta are good quantum numbers and are
conserved across the interface. Momentum conservation parallel to the interface implies the following
Snell-Descartes type laws :

7 cos] = kpcosvp (5.28)
k7 sin ¢ sint}, = kg sinppsintdp + 7Ab, (5.29)
where the norms of the electron wave vectors k(TR L) and the different angles are defined below.

The norm of the electron wave vector in the material at right (z > 0) is given by :
kn = |E+,U—Tb07R|, (5.30)

for the chirality 7, and a similar equation is obtained, in the left-side material, for k7 by the substitution
bQ7 R — bo} I -

The injection angle on the left the transmission angles are defined by :

k;T
YR = arctan (%) , Up = arccos <k:£ cos 192) (5.31)
z? R

which implies injection angles above which there is no real solution of the above equations and thus no

transmission.
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FIGURE 5.2: a) Projection of the band structure around the nodes as function of k, onto the in-
terface. Full colored hourglass shapes mark the energy windows where transmission is blocked
between nodes of equal chirality. Blue/green shaded regions mark the Energy windows for which
chiral filtering appears. The red shaded region corresponds to a full blockage of transmission. b)
Scheme of the Fermi spheres for finite relative shift in £, direction and same finite shift in energy
by between the nodes on both sides of the interface when all quasiparticle momenta are in the plane
k. = 0. Grey regions mark the states on the spheres that overlap when projected onto the interface
and thus contribute to transport. Colored arrows attached to the center of the spheres are the group
velocity vectors for excitations with a certain momentum component parallel to the interface. c)
Situation when one chirality is blocked. d) A finite mass distorts the spheres to ellipsoids and shifts
them towards the origin.

Ballistic transmission is only possible if there is an outgoing state with the same (k,, k) as the incident
electron. In the following we show that a certain choice of shift parameters b, can lead to energy

windows in which the conductance between nodes of only one chirality is finite.

Therefore, the criterion for the blocking of the fermions with energy E' and chirality 7 can be written as
kil + ki = |E+pp| + |E+ pg| < |Ab|. (5.32)

This means that the mutual shift of the nodes exceeds the sum of the wave vectors k7, and kg, thereby

making impossible the overlap of their projections onto the interface plane.
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This illustrative condition shows that both types of shifts, b; and by, need to be finite and Ab # 0 in
order to achieve chiral filtering for a range of injection energies. The relative shift Ab creates a window
in energy where transmission between nodes of the same chirality vanishes. When by is finite these
windows are shifted relatively to each other allowing for the transmission of one chirality only for a
range of injection energies (see Fig. 5.2 a), b), ¢). If Ab = 0, for any choice of by 1,/r and ], /R the
contributions to transport from one of the node types will only disappear when choosing the injection
energies I/ = — uf R i.e. at the energy of the band crossings.

5.2.2 Conduction through bulk states

In this section, we compute the differential conductance through an interface between two distinct
WSMs, in the geometry WSM/WSM,. The interface is assumed to be sharp in x direction, and in-
variant by translations in the y and z directions. Only the 3D bulk states, written in the previous section,
are considered.

We first treat the case of completely decoupled nodes (m = 0), demonstrate chirality filtering and show
the corresponding experimental signature in differential conductance curves. We close this section by

showing that chirality filtering is robust against a moderate internode coupling (finite m).

Differential conductance

Within the Landauer-Biittiker formalism the current between the leads forming the interface is

e o
T= 1 [ B T ) ((B) - () (5.33)
- mn
where Ty, 1 (E) = |tmn(E)|? is the transmission between channels m in the left lead and n in the

right lead. We assume elastic scattering, thus only modes with the same transverse momentum couple
to each other. The summation over the different channel combinations reduces to a summation over
all transverse modes. When the width of the sample is large against the Fermi wavelength and we
assume that the quasiparticles get ideally reflected at the edges, we can perform a continuum limit of
the summation over transverse modes. We label the channels in terms of the injection angles in the left

WSM. Applying a bias eVg in the left for T = 0, the differential conductance becomes

ol T T T T AT T
Ve :;/dch/dﬂL cos @f sin? 9L GRT™ (eVs), (5.34)
where Gj = M NT(E) = % and we define Gy = G§ + G .
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5.2. Weyl semimetals and chiraltronics
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FIGURE 5.3: Differential conductance for parameter regimes where chiral filtering is visible. From
a) to c) the shift in energy between Weyl nodes of opposite chirality is varied. Blue/green shaded
regions determine the bias window in which transmission is blocked for the +/—-node respectively,
The red shaded region corresponds to full blockage of the transmission. For all plots we set p7, /B =
ur/B=0.1,Ab/B=0.1,m=0andT = 0.

Chiral filtering for decoupled nodes

Let us start with the probably simplest case of equal and positive chemical potentials, the same shift in
energy by on both sides of the interface and a relative shift Ab > 0. Then according to Eq. ( 5.32) we
get no transmission between nodes of chirality + when

|E + u T bo| < Ab/2. (5.35)

The case of equally sized Fermi-spheres around nodes of same chirality is depicted schematically in
Fig. 5.2 b) and ¢). In Fig. 5.2 b) nodes of both chiralities contribute to the transport. The projections
of the Fermi spheres with same chirality onto the interface are marked by the grey shaded regions and
have a finite overlap in the k;-k, plane in momentum space. In Fig. 5.2 c) the shift in momentum
space between the nodes in the right WSM is increased and only quasiparticles with positive chirality

are transmitted.

The evolution of the differential conductance when changing the Weyl node separation in energy relative
to each other on both sides of the interface is shown in Fig. 5.3. When all parameters are chosen positive,
spin filtering appears in bias ranges Ab centered around the points —p =+ bg. If by > % the bias intervals
for which only charge carries of one certain chirality get transmitted are well separated by an interval in
which both chiralities are transmitted as shown in Fig. 5.3 a). When decreasing the shift of the nodes
in energy by relative to the shift in momentum Ab this intermediate interval disappears when by = %
(Fig. 5.3 b). Finally if by < %, the two chiral filtering regions are separated by an interval in which no

transmission is possible (Fig. 5.3 ¢).

Weakly coupled nodes

To investigate the influence of a small internode coupling, we can derive effective Hamiltonians around

the Weyl points. We start by expanding the Hamiltonian around the +-node, thus k = b 4+ q and in a
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Chapter 5. Weyl semimetal interfaces as chiral valves

first attempt assume m, |q|, by < |b,|. Then

HH(q) = bo +oq m _ | Hu Hip (5.36)
m —by — o(q + 2b) Hy Hy ) '

The block Hjo with the dominant parameter b is mainly contributing to the high-energy bands where
the block H is related to the low energy bands. The Green’s function determined by H ' (q) is defined
by

Gi1 Giz G(O)_l Hio o
G = — 1 -1 , (5.37)
G211 G2 Hy GY)

with GE?) = (Hy — €)' From this follows

-1
Gufl = Gg(i) — ngGg;)Hgl, (5.38)
-1
so using GG gol) = H11 — € one finds the projected operator
Gy ' 4e=Hy — HlQGég)sz (5.39)

that is defined in the low energy subspace of the original Hamiltonian. To find an approximate operator

for the low energy physics in this subspace, we make a expansion in |b| ! for Gg;). Up to terms of order

|b|~2 we get

by + ¢ qx qy — 2by qz

Géo) =~ 00— 5 + =50y — O,
402 w2 402

(5.40)

Repeating the procedure for the Weyl node of opposite chirality, we find that the low energy dynamics

of the Weyl fermion in presence of a small internode coupling m is described by the following effective

Hamiltonians:
Hop = (Bbo — p) o0+ (kz0w + k202) + (Bky — 6by) 0y,
Hoe = — (Bbo + ) 00 — v (ku0w + k.0.) — (Bky + 6by) 0y, (5.41)
where 5 = (1 — %), v = (1 + %) and § = ( — %). Thus, the mass introduces a anisotropy
Y Y Y

in the group velocity and rescales the shift parameters b,. The Fermi spheres for a given energy are
ellipsoids where increasing m squeezes the surface in k., k. and stretches it in k, shifting the origin of
the ellipsoid towards the origin. We can again use spherical coordinates to express the now distorted
Fermi spheres individually. Then the expression for 7™ in Eq. (5.27) remains valid. What changes is the

condition for the momentum conservation parallel to the interface, so for a given energy E and injection
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5.2. Weyl semimetals and chiraltronics

finite mass: m/B = 0.3
bo/B = 0.05 bo/B = 0.025
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FIGURE 5.4: Differential conductance for parameter regimes where chiral filtering is visible for
finite mass m/B = 0.3. From a) to c¢) the shift in energy between Weyl nodes of opposite chirality
is varied. Blue/green shaded regions determine the bias window in which transmission is blocked for
the +/—-node respectively. For all plots we set pu,/B = ur/B = 0.1, Ab/B = 0.1, m/B = 0.3
and T = 0.

angles ¢7, U7

Brsin ] sind7kp + 7 (ﬁRdLby,L — BL(SRby,R)

(p}-% = aresin 2 2 ) (542)
ﬁL\/(kE) — (yr/v1)” cos? 9y, (k7)
kT cos 9]
& = arccos (W) 7 (5.43)
FYLk;R

with k7 R = |E + pr,/r — TBL/Rrbo,1/r| must be fulfilled, 7" is now fully determined by the external
parameters. Let us turn to the condition for blocking and transmitting for a certain chirality. As before
transmission is possible if the projection of the Fermi-surfaces on both sides of the junction onto the
interface overlap . This time we deal with the overlap of ellipses that are shifted and stretched along
the k,-axis relatively to each other. Transmission, blocking between nodes of same chirality 7 = =+ is
possible if

HrR+E
Br

by,L0r  byrROR

Br Br |’

_l’_

(5.44)

’,UL + B
— 7bo,L

BL

Tb(),R’ z

respectively. To get a feeling of this rather complicated expression for the blocking Eq. (5.44), let us
examine the limit p;, = pur = p, m, = mr = m, by, = bo,r = bo, bny/R/B ~ 1. Then the above
condition for blocking simplifies to

Ab
|u+E$b0|<5‘2‘. (5.45)

Within this crude approximation the finite mass reduces the energy window in which chiral filtering
appears due to the reduction of the relative shift of the nodes of same chirality in momentum space. The
exact evaluation of the blocking condition (5.44) and the calculated differential conductivity for the same
range of parameters as for the massless case are shown in Fig. 5.4 and indeed the windows of filtering,
marked by shaded green and blue regions, are reduced compared to m = 0. As can be deduced from
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Chapter 5. Weyl semimetal interfaces as chiral valves

finite barrier and decoupled nodes
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FIGURE 5.5: Differential conductance for parameter regimes where chiral filtering is visible for
the case of the WSM1/WSMy/WSM; geometry. From a) to c¢) the length of the WSM, region is
increased. Blue/green shaded regions determine the bias window in which transmission is blocked
for the -+/—-node respectively. For all plots we set by /B = 0.1, /B = pug/B = 0.1, Ab/B =
0.1, m/B=0.0and T = 0.

the blocking conditions this is due to an interplay of stretching the Fermi surfaces for a given energy in
k, and shifting the nodes closer to the origin in momentum space and simultaneously closer in energy

when m is increased.

Finite barrier

Here we consider the geometry of a WSM slab contacted between two distinct WSMs, in the geometry
WSM;/WSMs/WSM;. It consists of two interfaces (like the one considered in the previous section)
separated by a finite length d. In that case, even if we are in a parameter regime, where transmission
of only one chiral species of electrons is possible electrons of the blocked species can penetrate the
barrier due to tunneling. These tunneling currents will be exponentially suppressed with increasing
barrier thickness. Let us consider a WSM slab of width d centered (C) between two WSMs of the same
kind (L = R). In the spirit of Eq. (5.24) the Ansatz for the wave function across the interface, if only

conduction band like electrons propagate reads

KTl Ty peids |
Uh(z) = —— . , . , 5.46
L) = et | ot (enterist peminteiet) | (40
ot gt 7
Uh(z) = ™ c1e't.0” + cpe” 0" (5.47)
r)=¢ .+ .4 o+ .4 .
¢ ol (cle’qﬂc’cxewc — coe lqz’cxe_wC)
ikyr
KTy 1 .
Uh(z) = =t | . "7 (5.48)
Vatcospt | ame¥

The Ansatz is easily modified to the case when dealing with quasiparticles in other bands in any region
of the junction or when we have decaying solutions in the center region. In the case of propagating
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5.3. Conclusion and perspectives

solutions we obtain the transmission

4(a7)? (af)? cos? (¢7) cos? (¢F)

= Ay cos? (dk7,) + Ag sin? (dk,) (5.49)

where
A =4(a")? (ag)? cos® (p7) cos” (p) (5.50)
Ay = ((of)2 + (af)? — 257 sha"al sin (p7) sin (@6))2 ) (5.51)

Results for the differential conductance for the finite barrier are shown in Fig. 5.5. The decaying states
contribute significantly to the transport in the filtering regime when the barrier is not long enough
(Fig. 5.5 a) and thus the bias window where filtering appears is reduced. Increasing the width leads
to interference in the barrier that we see as oscillations of the differential conductance (Fig. 5.5 b, ¢) and
which leads to a lowered differential conductance when compared to the interface case. For very long
barriers the filter quality is restored as the tunneling contribution is exponentially suppressed when the

barrier length increases (Fig. 5.5 c).

5.3 Conclusion and perspectives

continuum model finite slab
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FIGURE 5.6: Projection of the band structures around the Weyl nodes of the leads for a
WSM;/WSMs interface in the blocking regime for a) the continuum model and b) a lattice model
for a finite slab of NV = 200 sites in the z-direction. Blue bands correspond to the left lead and green
bands to the right lead. In both systems the interface is in the y-z plane, x is the transport direction,
the Weyl node separation in y-direction is Ab = 0.1B and ur, = pur = 0.1B. In both systems we
marked the blocking regime and the chiral filtering regimes as predicted by the continuum model.
The blocking regime corresponds to the red shaded region while blue and green shaded regions cor-
respond to the filtering regimes. In the blocking regime for the finite slab geometry only the surface
states are present and would contribute to the charge transport.

We introduced the model for an interface WSM1/WSMj between two distinct WSMs, and we derive the
general criteria to obtain chirality filtering, or even a complete conduction blockade over all chirality
channels. We calculated the differential conductance across the interface which can be measured in
experiments. A regime of complete blocking of the bulk conduction has been identified and the effect
of a moderate internode coupling has been investigated. We then extended the differential conductance
calculations to the barrier geometry WSM;/WSMs/WSM; .
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Chapter 5. Weyl semimetal interfaces as chiral valves

In this chapter we investigated the transport properties of the bulk materials forming the interface. In a
realistic finite system, additional transport channel can open due to the formation of Fermi arcs at the
surfaces of the material. If the system dimensions are large against the Fermi wavelength, the number of
open transport channels in the bulk will generally be much higher then the number of channels due to the
edge states. Thus, if both contribute to the transport, the contribution from the edge states will be masked
by the bulk conductivity. Clearly, in the blocking regime, there is no charge transport due to bulk states.
This bulk blocking regime would provide an ideal set-up to measure the conduction carried solely by
Fermi arcs (see Fig. 5.6). We are currently working on a proposal for realistic material interfaces which

may be suitable to implement the chirality filter and the transport by Fermi arcs only.
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Summary and Conclusion

This thesis studied the interplay between superconducting correlations and spin-active fields for a variety
of hybrid systems. The biggest part of the thesis was dedicated to the Josephson effect under the influence
of magnetic and spin-orbit coupling (SOC) fields. In chapter 2 we investigated the Andreev bound
state formation and the current phase relationship, in a ballistic Josephson junction between spin-split
superconductors. Collinear but asymmetric exchange fields led to a spin dependent asymmetry of the
superconducting gap on both sides of the junction. This resulted in a reduction of the maximal Andreev
bound state energy and the appearance of intervals of the phase difference between the superconductors,
with no formation of Andreev bound states in the short junction limit. In these intervals, the Josephson
current is carried purely by states of the continuous part of the spectrum. Outside this interval the
spectral origin of the current can be tuned between the states of the continuum and the Andreev bound
states by changing the transmissivity of the junction. The predicted spectral and transport properties
due to spin-dependent gap asymmetry are qualitatively similar to those of a previously studied system
which considered asymmetric gap sizes in the superconducting leads. However in the magnetic case the
exchange field magnitude, and thus the gap asymmetry, is limited by the Clogston-Chandrasekar limit
above which the paramagnetic pair breaking effect would cause a break down of superconductivity.

In chapter 3 we reviewed how to circumvent the paramagnetic pair breaking effect in diffusive S/F het-
erostructures and demonstrated how SOC can lead to a rotation of triplet superconducting correlations.
Components that are perpendicular to the orientation of the exchange field are long ranged and decay
on a length scale comparable to a non magnetic system. We proposed two realistic Josephson junctions
to detect the long range triplet correlations (LRTCs) that are generated by SOC. We determined the sig-
nature of these correlations, a long-ranged Josephson current. We found that the Josephson current was
composed of two distinct contributions, originating in spin precession and anisotropic spin relaxation
effects. These strongly depend on the orientation of the exchange field and the strength of the SOC.
Competition between the two contributions leads to a variety of current reversal scenarios which repre-
sent an unequivocal LRTC signature. Furthermore, the possible manipulation of the Josephson current
through external fields demonstrates the applicability of the proposed junctions as current valves and

switches.

Following these studies of the Josephson effect, in chapter 4 we turned to another equilibrium phe-
nomenon, the equilibrium spin currents (ESC). We showed that in a nanowire with SOC breaking the

time-reversal symmetry by a Zeeman field leads to a bulk equilibrium spin current that results in a edge
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spin accumulation transverse to the Zeeman field and the SOC field. This transverse edge spin accu-
mulation appears in the normal state, but also when the nanowire is superconducting itself due to, for
example, the proximity to a superconductor. The described correspondence between ESC and the edge
spin accumulation is of particular relevance to the detection of possible Majorana zero modes in such
systems. Several works proposed a transverse edge spin polarization at the critical value of the exchange
field, where the wire enters the topological phase (h = \/m), as a signature of Majorana zero
modes. We show that the ESC, and therefore the transverse edge spin polarization, is finite for all values
of the exchange field. Besides the previously predicted signature a cusp at the topological transition, we
identify another maximum of the polarization in the quasi-classical parameter regime when h ~ A. It
is robust against disorder and can exceed the maximum at the topological transition by orders of magni-
tudes, especially for small SOC. Therefore a transverse edge polarization is not exclusively related to the
appearance of Majorana zero modes but more importantly is a signature of ESC. Finally we determined
the spatial distribution of the magnetization of a superconducting SOC wire in the quasi-classical regime
and thus directly demonstrated the appearance of a transverse edge polarization in a finite system. In
this work we showed that the theoretical concept of equilibrium spin currents is directly connected to
a physical observable that can be detected using the methods of modern nanotechnology to measure

spin-densities as scanning tunneling microscopy or nuclear magnetic resonance spectroscopy.

In the last part of the thesis we investigated the bulk transport properties of interfaces between Weyl
semimetals (WSM). We proposed a simple realization of a three-dimensional chirality filter based on
interfacing two distinct chiral WSMs, where the Weyl nodes of opposite chirality on each side of the in-
terface are separated in energy and momentum space. We calculated the differential conductance across
the interface and identified the regimes where it is possible to achieve transmission of one, none, or both
chiralities. A moderate internode coupling and a finite length barrier geometry WSM1/WSMy/WSM;
have also been investigated. We found that both cases restrict the parameter regime where the filtering
effect takes place when compared to the interface in the massless case. Initially the project was aiming
to study the influence of superconducting correlations on the transport properties across WSM interfaces

however this has been left for future work.

We are currently investigating realistic materials that exhibit Weyl nodes at similar points in the Brillouin
zone and would act as chirality filter when interfaced. We are also working on a full description of the
conductivity of such interfaces including the contributions from edge transport channels that appear in
finite slab systems. The blocking regime, where there is no transmission of either chirality through the
bulk, is of particular interest as it opens the path to investigate the edge transport individually.
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Appendix A

Appendix

A.1 Spin generalized BdG equation

We start from a more general version of the BCS mean field Hamiltonian that allows arbitrary spin-
pairing states between the electrons,

. 1 *
Hg(’gs = Z §kc;fwcka + B Z Z[Ak,Ot,BCLaCT—k,,B + Ak,aﬁc_kﬁck@]. (A.1)
ko k af

Here we defined the pair potential,

Akas =D (e st )V (KK )apqs (A2)
k! ~,0
where
V(kv k,)a,ﬂ,fyﬁ = <k> Qg _kv B|V|k/> s _k/) 5> (A3)

is the matrix element is given by of an general attractive two-particle interaction. We neglected mean
field terms which only lead to a constant shift of the ground-state energy. Applying the Bogoliubov

transformation,

Ck,o = Z(uk,a,a”}/k,a’ + Uik,g7g/’7Jr_k7o-/)- (A.4)

o./

leads to a Hamiltonian diagonal in the new operators,
H =" Eioy o (A.5)
ko

where we have again omitted constant terms. The new operators obey the fermionic anti-commutation
relations and create the excitations of the system, the so-called Bogolons with dispersion Ey,. What we

are interested in is how an eigenvector of ’Hg‘és can be expressed in the electron-hole basis. Therefore

107



we calculate the equation of motion for the annihilation operator. In order to describe ferromagnetism

we include a Zeeman term 1.81, so we need to compute

i0Ck.0 = [Chors Mg + Hex)- (A.6)
This leads to
. 1
i0sck,0 = EkCk,o — Z(U ~h)ssex g + B Z(Ak,aﬁ — A—k,,@a)cikﬁ- (A7)
B B

Ay s has the same symmetry as a two-fermion wavefunction. Antisymmetry regarding particle ex-
change implies Ax o3 = —A_x 3. We insert the Bogoliubov-transformed operators (A.4) into the
equation of motion (A.7). Calculating the time derivative of the quasiparticle operators on the left side

(104Vk,0 = Ek,oVk,0) and gathering the terms with 7, 711 . respectively we obtain

Eporuk oo = Eklkoo — Zuk,ﬁ,a’(a ‘h)ep + Z Aj o,8VE B0 s (A.8)
B B
EroVkoo = —§ KUkoo! + ka,ﬂ,a'(d -h)7 5 — Z A%y 58Uk B (A9)
B B

Rewriting the equations in a matrix form with respect to o and o’ we obtain the BdG equation:

Ce—he  —hg+ihy, Apk)  Ay(K) Urok Utok
—he —ihy  &Gethe o Ap(k)  Ay(k) Wok | _ g ey | ek
“AL(-k) AL (k) —Ex+he  hy+ihy Vtok Vtok
~AL (k) AT (k) hg—ihy, € —hs ok Vyok

A more compact formulation is

( é(k) é(k) ) ( Uy ) - F (k) ( Usk ) (A.10)
_é*(_k) _g*(k) Yok 7 Yok ,

where underlined and double-underlined characters indicate 2 component vectors and 2 X 2 matrices,
respectively. Using the definition of the Bogoliubov transformation (A.4) one sees that the coefficients
uyk correspond to the probability amplitude for having a electron-like excitation whereas v,y corre-
sponds to a hole-like excitation. The submatrix A (k) describes a potential that couples electron-like and
hole-like states. If the pairing potential is zero one again obtains the normal single-particle Hamiltonian
to describe the F region. Setting the magnetization to zero we can describe the superconductor. The BdG
equation allows us to calculate the four-component quasiparticle wavefunction for a given excitation en-
ergy. For this case is is not necessary to label the solutions by the second spin index o thus we drop it in

further calculations.
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As already stated, the pairing potential has the same symmetry as the a two-fermion wavefunction, which
implies
A(k) = —AT(-k). (A.11)

In the case of singlet pairing the orbital part of the wave function is even, so the pairing matrix has to be
antisymmetric, and multiplied by an even function A(k),

( 0 A(k)

N )zioyA(k). (A.12)

Transforming back into real space assuming a k independent paring matrix leads us to the BdG Eq.(1.83)
used in Sec.(1.3) and chapter 2.

A.2 Linearized Eilenberger equation

Assume that the order parameter A is small compared to the typical excitation energy, in consequence

. 0 . :
g ~ sign(wy, )13 + ( 7 “g ) = sign(wy)7m3 + f. (A.13)
Inserting this approximation in Eq.(1.142), in equilibrium

VE <nV> f+ [m3(wn —ido) —iA, g] — 1 {ni;ﬁj, &f} = —1[3,(3)]. (A.14)

2m on;
and we need to evaluate:
[7'3(("-)71 - ZAO) - iA? Sign(wn)T3 + .ﬂ = [7—3 (wn - Z-AO) 7.ﬂ —1 Sign(wn) [A7 7'3] —1 [Av .ﬂ

[73 (wn —iAop) 7]E] = 2w, T3 f — i3 {Ao, f} —1 [A,g] = i sign(wy,)3A ([A, f] =0).

The right hand side becomes

9. (9] = [73 sign(wn), (F)] + [f, 73 sign(wn)] = 2 sign(wn)7s ((f) — f) -

We obtain the linearized Eilenberger equation which only depends on f

niFij af} __sign(wn)

VR (nzvz) J 4 2wntsf — i3 { Ao, [} + 2i sign(wp)3A — { om  on, =

3 (f = ().
Since f and f are related by time reversal symmetry it is sufficient to extract the equation for f only

VR (nzﬁz) f + 2wnf —1 {.Ao, f} + 25A sign(wn) — % {ni}'ij, af} = —w (f — <f>) .

6nj T
(A.15)

109



A.3 Linearized Usadel equation

We expand f in spherical harmonics f =~ fo+ny fr+. . . and average the linearized Eilenberger equation
over the momentum direction. We will obtain a set of coupled equations to determine the coefficients
fo, fr. Performing the momentum average

(or () £ 207 = ik 1)+ 208 signten) = o { iy 5L =0,

and is easy to see that

(2wnf) = 2wn fo = {wn, fo}
(2iAsign(wy,)) = 2iAsign(wy,)

—i({Ao, f}) = =i {Ao, fo}

and the last term on the right is

2m <{” avf}> T o <{“f %27;@ }> =~ g (i Figfi}) = 0.

The first term needs a closer look, we have

- . - 1 -
<UF (nzvz> f> = <UF (nivif0>> + <UF <nzvz) nkfk> = ﬁvkafk- (A.16)
N—
=0
with dim = 1, 2,3 the dimension of the system. To determine the coefficients fp, fr we multiply

Eq.(A.15) by ng and again average over the momentum direction. We need to calculate
ng | v (n-@-)f—i—Qw f—i{Ao, f} +2iAsi n(w)—L nJ’:ﬁ
k F AR n 05 g n om, 1Y 15 an
sign(w
= (S (- (). (a17)

The right hand side is (f ~ fo + nx fr)

nnfi) = — SEn) (A.18)

SEnn) g (- gy = - SEn)
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and the other terms are

<nk;UF (nz@z) f> = <’nkUF <m@z> f0> + <nka (m%) fk’nk’> = eV fo

=0
(nk {wn — iAo, 1) = (i {wn — iAo, fo}) + (nk {wn — iAo, i fiv }) = {wn — iAo, fi}
=0
(nk2iAA sign(wp)) = 0

<nk {niﬂj, 5?7{]}> = (ng {niFij, fi}) = {Frj, fi}- (A.19)

We obtain the set of coupled equations
d%n@kfk + {wn — iAo, fo} + 2iA sign(wy,) =0 (A.20)
eV fo + {wn — ido, fr} — % {Fkj. fi} = _sgniwn)fk' (A21)

The second equation allows to write f in terms of fy in orders of 7. Up to second order in 7 (inserting

the equation into it self):

~ —7sgn(wn) (UF@kfo + {wn — iAo, —TSgn(wn)UF@kfo})
- 72% {ka 6ij} +0(r%)
= —7sgn(wy ) vgVi fo + T2uE {wn — iAo, @kfo}
2 UF

— 725 { Fiy Vifo} +O(%). (A.22)

The term {wn — iAo, Vi fo} can be written as

{wn — iAo, @kfo} = Vi {wn — iAo, fo} +1 {@k«‘to, fo} (A.23)

where the first term on the right hand side is proportional to 73 [103], and the last term renormalizes the
paramagnetic effects, i.e. it appears in the equation like Ay. So we can neglect the first term and will
neglect the second. Inserting this approximation into the first equation of our set, we obtain the Usadel

equation for fy
=9 D - ~ . .
—sgn(wy)DV*fo — %Vi {.Fij, ijo} + {wn — 1 Ao, fo} + 2iAsgn(wy,) =0
where D = vZr/dim is the diffusion constant. The equation can be further simplified because

2 {fz‘j,@jfo} = {@iﬁj,@jfo} + {fij,@i@jfo}
-—

=0 (Fig=—Fji)
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and so the Usadel equation finally becomes

. D (- .
—sgn(w,)DV? fy — ;fm {Vz']:z’j, ijo} + {wn — iAo, fo} + 2iAsgn(wy,) = 0. (A.24)

A.4 Domain wall - perturbative solution

The solution of the linear domain wall problem up to first order in () is obtained by solving Eqs.(3.14)-

(3.17). In the domain wall the general solution is

fU(z) = Cre™® + Che ™" 4 YieM ™ + Yo @ (A.25)

with Yy /o = —% Alfff:Q and C; to be determined by the boundary conditions. At the S/F interface,

using the condition (3.15) and assuming h > T gives

C1 — Ca = iQsign(wn)&néu fBOS (A.26)

Rotating back the solution in the domain wall into the original frame gives

f(2) = Fu(@)6" + () (6% cos(Qur) + sin(Qa)6") + i (x) (—67 sin(Qx) + cos(Qa)5Y) . (A.27)

If we assume that w >> &, and that the rotation of the field is only small Quw < 1, then f,(w), f7(w)
are very small. Also the part of fty(x) x Y7, Ys is decayed as well. We can approximately match the

rotated homogeneous solution in the domain wall with the rotated homogeneous solution for x > w:

At N (Cre"™® + Coe™ ") (=57 cos(Qx) + sin(Qx)d¥); = < w (A.28)

(Cse ") (=67 cos(Qx) + sin(Qz)a?); = > w.

Using that Qw < 1 as well as the continuity and continuity of the derivative at x = w, together with
Eq.(A.26) leads to the folowing result in the homegenous part of the F region:

[ (x) = isign(w,)Q€néwy fBOSE™ 7. (A.29)
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A.5 Perturbative solution for the triplet junction

Basic equations

After performing the z-integration, the resulting system of differential equations for the transformed
anomalous Green’s function f = U fU/ for || > L/2 is:

D a2 fs} — 2wl fs — 2isign(wn)RFE =

DA fese—Nen@)% (A.30)
D (0277 + 202" (0.77)| = 2wl f — DI J =

2z'sign(wn)fsﬁ _ (A.31)
D 8274 + 20w (ax ff)_ —2wn|fY — DIV =0 (A.32)
D [02f + 202 (ax ftb>_ — 2wn|ff — DD = 0. (A.33)

In the barrier region |z| < L/2 we get

DOy — 2|wn| fs — 2isign(w,)hfE =0 (A.34)
DO?fF — 2|wy|fF — 2isign(wn)hfs = 0 (A.35)
DO2fY — 2Jwn|ff =0 (A.36)
D27 — 2Jwn|f7 = 0. (A.37)

The z-integration causes a averaging of the couplings as described in the main text. The solution of this

system of equations are continous and fullfill

axfs‘:p:i%Jrof - axf5|z::t%+0+ (A.38)

Ouft|ysnyor = [OuFE+ R, L (A39)

_ L
=+5 40+

at the boundaries between the different regions. The spin precesion tensor components Cgb and DP

tensor components I'*? in the rotated system are determined from the transformed fields

2 5T 5Y

As = TC(0) = n(9) 7, (A.40)
2 o) 5Y

Ay = (=) = (=) T (A4D)

with n(19) = @ cos(?) + Bsin(¥9) and ¢ () = —asin(¥)) + B cos(¥). The equations (A.30)-(A.39) fully

determine the junction system within the limits of the approximations mentioned in the main text.
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Zeroth order correction

As in the main text we consider the junction type 1 assuming semi-infinite leads.

Solving the above

system of equations for vanishing SOC gives the following zeroth order solution for the function ff,

f$

tO
“ )\I 2 )\ZL‘ fb L

A _|_ + 2,$<_7

B, )\""z_@ —Atx | B3 A"z _ Bs, A"z
,\+€ € +3=€ e

Atz _ AT - b ig L
Fe )\—Ee Tt fretz x> 5.

+ 2|wn | . 2sgn(wp )h
where A —\/D + i ==5"=,

b b +
A1/2 — /\i# sinh <M>

2
AT —L\T £
Bup= 2 (0 1) e ()
AT —L)\™ £
B (1 1) 2, )

by fb LAE +
AR, = eyl 2l gy <+“P)
2 2
and the bulk solutions for the singlet and triplet x component

b facs  |wnl Ywnl€2
=D ~
Js L) lwn|? + h2 2h focs

b . fBcs sign(wn)h 781gn( >€h
= —iD — ~ —1 .
fo=—iDy=5 wnl? 1 72 fBCs
with & = VD/h.
First order correction
The Ansatz for the solution of Eq.(3.68) reads
ftz,l(x) =
Kief® 4+ ZlLe/\+"’“" + ZEer e, T < —é
Kyelfw® 4 Kge™fe? lz| < %

_ o -
Kye ”wx—ka%e A x—}—Zfe A z x>%
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(A42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)



where

(A2 —k2) (A2 —k2)
(A% — K2) (A% —k2)
Keeping only leading order terms when h > T, max {f“b} and assuming L >> &5 we find
K, sinh(2=12)
Ly @
Ko ~ Lgn(ﬁ) _%6_ 2 67@ (A.52)
K - Ko 2 %e‘ 5 e~ s .
Ky - Sinh(iL”“2+i“")
Second order correction
The Ansatz for the solution of Eq.(3.69) reads
ﬁyz(l’) =
(Ll 4 xY'lL)enwm + Y2L€)\+x + YSLe)\_m + Y4L, T < _%
Laerw® + Lye " |z < & (A.53)
(L4 + ZE}/IR)G_H‘*’Q: + Y'QRe—A+a: + }%Re—)\*a: + Y;lRa > %
with
Y = ¢(0) Ky, (A.54)
(9 ZE + Ty AL/ E
VIR 4 ¢(9) 12+ vty (A.55)
AT —K2)
oAN2¢(9)ZF + Ty ALE
}%L/R::t C( ) 22+ Yyr-i , (A56)
A=(A* = K2)
_ b, Fi%
vl = —ryxjpxeiz?. (A.57)
/{UJ

Considering only leading order terms when h > T', max {I_’“b} consistent with the first order correction

and assuming that L > &, gives for the relevant coefficients inside the bride

R
Ly \ _ 1 e [ Y5} (A.58)
Ls 2 \ s
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A.6 Solution of the Eilenberger equation for a semi-infinite wire

The Eilenberger equation in 1D for the Zeeman field and Rashba SOC oriented as in the main work is

tvp0,gsr =i [£akpd? + 13 (iwy, + hd®) + 0T, G| .

(A.59)

Here ¢4 denotes the the Green’s functions for both propagation directions +vr. We assume that the

wire extends over the region z > 0. This equation has to solved toghether with the boundary contitions

1. Total reflection at x = 0, g+ (0) = g—(0)

2. Boundness at x = +o00

We seek for a perturbative solution of Eq.(A.59) up to first order in h. We make the Ansatz

o) =g + g ()

(A.60)

where §(©) = gom3 + fors is the BCS Green'’s function in Matsubara frequency space, with gy = wy, /E,
fo=A/Eand E = \/w? + A2, §(1(z) is the first order correction in the Zeeman field h. The first

order for correction is obtained from the Eilenberger equation
00 + [£B0 —iasv, 5] = +2mi5*hfo
where we set vp = 1 and & = am. We search for the solution of the form
98 (@) = Us ()3 () U5 (@)
with Uy = exp (:FQ(O)EQ: =+ id&y). Inserting this Ansatz into Eq.(A.59) gives
0:9F = +2h foUL 116°Us = +2h for167U3.
Integrating the equation leads to

T
gi (‘T) = g:l:(o) + 2hf()7'1(3’z/ dx/€$2§(0)EI/621aay;p’
0

2hfo
2(E?% + a?)

With this the solution can be written as

h fo

(DN _ 5 -2
g (7) = g=(O)UL" + 57725

n6* (iday + Eg<0>> (1-U%(x)).

nio (idoy + B®) (UZ? 1)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

where we used that e!?(O)Efg(O) = g(O)e_g(O)Ez due to the normalization condition of the Green’s

function. We need to impose boundedness of the solution. So §(0) has to cancel exponentially growing
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terms in the second term of Eq.(A.6). Keeping only exponentially large terms, at x — oo,

1
U:EQ — 562Em(1 :l: g(o))672la0ym’ (A66)
and
(1) T2 hifo ooy mo(0)) 772
We make the Ansatz §(0) = —EQ—J{%Zn(Eg(O)&Z + abé™), where b has to be determined from the

boundary condition at infinity. From Eq.(A.67) we obtain

1 )
(=b+1)(1+ g(0>)§ezEwe*2mM -0 (A.68)
which is solved by b = §(°). Now we construct the full g") () from Eq.(A.6). Writing Uz ' = uz'A~1,

. _ —i&6 — 5(0
with A~! = ¢7149"® and y3 ! = 0B we get

h fo

= s {&&x A2 [_gm) N 1} uz? 4 Fd&x B O &Z} ﬁ}_ (A69)

The exponentially growing part gets canceled by construction, se we can keep only the decaying part of

uf which is uf = %e_QEg”(l F g(o)). Inserting this in the above equation finally leads to

(1 h.fo - _(0) A h.fo 9z Az, —2i6Yz [ -
gi)(w) = mrar [:Faa"” + Eg(o)az] T+ mae 2Bz o =2ice {g(o) + 1} T (A.70)
The symmetric part of the above Green’s function is
5 3 5 h 5 R o o
5921)($) = gg)(x) —|—g@(:c) = 2E‘2_|_fbd29(0)7—1 [EO’Z + ao%e 2Ex€ z2axay] (A.71)

The corresponding correction to the magnetization is obtained from

1 .
dh; = 7T’iT/1«BN0§ Z Trrso7glH. (A.72)
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