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Abstract: Global optimization problems are mostly solved using search methods. Therefore,
decreasing the search space can increase the efficiency of their solving. A widely exploited technique
to reduce the search space is symmetry-breaking, which helps impose constraints on breaking
existing symmetries. The present article deals with the airflow control optimization problem in
an oscillating-water-column using the Particle Swarm Optimization (PSO). In an effort to ameliorate
the efficiency of the PSO search, a symmetry-breaking technique has been implemented. The results of
optimization showed that shrinking the search space helped to reduce the search time and ameliorate
the efficiency of the PSO algorithm.

Keywords: airflow control; optimization; oscillating water column (OWC); power generation; stalling
behavior; symmetry-breaking; wave energy; wells turbine

1. Introduction

Natural resources are the best alternative to limited fossil fuel for the European energy market,
especially that EU countries consume one-fifth of the global oil and gas supplies. This leads to the
annual purchase of 350 billion Euros worth of petroleum and gas products from other countries [1].
Nowadays, an upward trend to develop renewable energy projects in European countries has been at
the forefront of European policies in order to reduce fossil fuel consumption [2]. The conclusion of the
Conference of Parties (COP21) has put in place further motivated goals for a 2 ◦C decrease [3], hence the
need for Renewables to take a big part in the future of energy systems and markets. This calls for
the importance of a stable and reliable energy mix development based on all renewable resources [4].
In fact, renewable energy sources are estimated to have provided 33% of total power generation in the
UK and 40% in Germany and Spain in 2018 [5].

Even though Ocean energy is more reliable, predictable, and denser than other Renewables,
Marine Renewable Energy (MRE) still remains underdeveloped and the least tapped energy
industry [6]. The majority of MRE-based industries are up to the present time in the early-phase
of development varying between theory and design, until the demonstration phase [1]. Although
decades of research and development were invested, a mere 529 MW of MRE capacity has been
recorded as operational at the end of 2017 and more than 93% of them are summarized in two main
facilities [7]: Sihwa plant in South Korea with 254 MW [8] and La Rance tidal power station in France
with 240 MW [9]. The main obstacles hindering the development of MRE are geographical installation
that can affect nearby coastal and fishing areas and maritime routes, required and existing electricity
infrastructure, potential environmental impacts, and legal and regulatory framework [7].
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Wave energy is one of the most exploited forms of ocean energy and Wave Energy Converters
(WEC) have seen increasing growth in research and development during the last few decades [10].
In fact, the number of WEC prototypes has increased to almost one thousand inventions [10]. However,
barely two hundred of these devices have achieved the phase of model testing [11]. The same as the
rest of the MRE industry, the WEC industry is still suffering from a high cost in comparison with
the traditional electricity generation [10]. Efforts were invested to improve the efficiency of WECs by
studying and carrying out feasibility in different sites like in [12–14]. Another way was by increasing
the attractiveness of WECs by integrating them in other maritime constructions like breakwater, pier,
or jetty [15]. An example of WEC integrated with a breakwater is the NEREIDA Multiple Oscillating
Water Column (MOWC) installed in the breakwater of Mutriku in Spain [16].

This paper discusses the airflow control of an OWC system based on Wells turbine for wave energy
conversion. The main drawback of Power-Take Off (PTO) systems equipped with Wells turbine is the
power-limitation due to the occurrence of the stall effect [17,18]. In this context, an airflow control,
tuned using Particle Swarm Optimization (PSO), is suggested to govern the air-valve within the plant’s
capture-chamber which can help regulate the airflow speed. To further enhance the effectiveness of the
PSO algorithm, the Symmetry-breaking Constraints (SBC) were introduced to the problem by reducing
the search space.

Symmetry is often used to analyze and simplify complex problems in physics [19] and
chemistry [20]. Symmetry is also used for geometric and structural optimization [21,22], problem
formulation [23], and control system design [24,25]. In recent years, symmetry has been used to
aid optimization problems [26–28]. In optimization theory, symmetries are transformations of the
decision space that do not change the cost or feasible region. In some problems, symmetry can enlarge
the dimension of the search space. Therefore, symmetries have to be taken into account in order to
reduce the search time by visiting symmetric solutions. Many techniques have been developed in
constraint satisfaction problems to rule out symmetry either statically by the inclusion of SBCs [29–31]
or dynamically by altering the search technique to evade symmetric states [32–34].

PID controller tuning is a delicate and complex task when lacking a systematic approach. To solve
the problem design of PID controllers, the optimization theory has been proven to be an effective
method to tune and optimize the controller parameters [35–37]. Numerous optimization algorithms
were investigated and tested with the PID controller in different applications for instance the Particle
Swarm Optimization (PSO) [38,39], the Water Cycle Algorithm (WCA) [36,39], and the Harmony Search
Algorithm (HSA) [37,39]. The PSO Optimization algorithm is an evolutionary computation method
developed by J. Kennedy and R.C. Eberhart since 1995 [40]. This sophisticated algorithm is inspired
from the swarming behavior of biological populations like birds’ flocks and fish schools [40,41].
PSO has received increased attention in many research fields recently such as in electric power
systems [42], in electromagnetic [43], in advanced information technology and networking [44] and
many more.

The remainder of the article has been arranged as follows: Section 2 introduces the modelling
section that describes all elements of the OWC system. Section 3 introduces the stalling behavior and the
problem formulation of the proposed airflow control. Section 4 explains the use of Symmetry-breaking
constraints (SBC) to help reduce the search space. Section 5 presents the PSO algorithm adopted
to optimally tune the parameters the Proportional-Integral-Derivative (PID) controller’s parameters.
Section 6 presents the test and simulations carried out to demonstrate the efficiency of the PSO
algorithm with and without SBCs and then the performance of the proposed PSO-PID airflow control
in extreme wave conditions versus the uncontrolled case. Finally, we finished the article with some
concluding remarks in Section 7.
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2. Model Statement

This section describes the modelling of the different subsystems of the Oscillating Water Column
(OWC) shown in Figure 1, which would be including the mathematical models of the wave input,
capture chamber, Wells turbine, and the Doubly Fed Induction Generator (DFIG).

Figure 1. Sketch of a Oscillating Water Column system and the sea wave [45].

2.1. Wave Surface Dynamics

A monochromatic unidirectional wave has been considered to be input into the implemented
numerical model of the OWC system. There exist numerous wave theories in the literature to express
the surface dynamics of ocean wave like the Cnoidal wave theory, second and higher-order Stokes
theory and Airy linear theory [46,47]. In this paper, the Airy wave theory has been adopted because
it presents the simplest description and it is the most widely used thanks to neglecting turbulence,
friction losses, and other energy losses [47].

The parameters of a wave are detailed in Figure 1, with SWL represents the “Still-Water-Level”,
h called “sea depth” represents the interval from the sea floor to SWL. H marks the interval from
wave trough to wave crest called “wave height”. A measures the distance between SWL and the wave
crest known as "wave amplitude" and λ represents the interval between successive crests known as
“wavelength” [47,48]. Therefore, the surface elevation for a sea wave is given as [49,50]:

z(x, t) = A sin (ωt− kxθ) = H/2 sin (ωt− kxθ) (1)

where ω is the wave frequency, x is the wave horizontal coordinate, θ marks the the angular opening
from the x-axis to waves’ direction, and k represents the wave number linked to ω with relation (2) as
described in [49]:

k tanh(kh) = ω2/g (2)

where g represents the acceleration gravity.
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2.2. Capture Chamber Model

The volume of the air within the Oscillating Water Column’s chamber is defined in [38,48] as:

V(t) = Vc +
wcH

k
sin (klc/2) sin(ωt) (3)

where Vc, wc, and lc represent the chamber’s volume, inner width, and length, respectively.
The volume flow rate in the chamber can be obtained from Equation (3) and defined as [38,48]:

Q(t) = wccH sin
(

klc
2

)
cos(ωt) (4)

with c = w/k.
Once the chamber’s geometry has been taken into account with Equation (4), the airflow velocity

can be described as [38,48]:

vx(t) =
Q(t)

S
=

8Acwc

πD2 sin
(

πlc
cTw

)
cos

(
2π

Tw
t
)

(5)

where Tw is the wave period and D is the duct diameter.

2.3. Wells Turbine Model

The OWC is fitted with a Wells turbine, shown in Figure 2, is a self-rectifying axial-flow
air turbine [50,51]. Self-rectifying air-turbines possess blades with special geometry allowing
a unidirectional rotating motion regardless of the airflow direction [52–54].

Figure 2. Wells turbine and the DFIG-based OWC system [45].

The Wells turbine under study can be mathematically defined by Expressions (6)–(10) given
in [18,55]:

dp = CaK (1/a)
[
v2

x + (rωr)
2
]

(6)

K = ρlbn/2 (7)

Tt = rCtK
[
v2

x + (rωr)
2
]

(8)

φ = vx (rωr)
−1 (9)

Q = avx (10)
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where dp represents the pressure drop, Ca and Ct represent the “power coefficients” and “torque
coefficient”, φ stands for the “flow coefficient”, Tt, K, and r represent the turbine’s torque, constant,
and mean radius, l, b, and n represent the blade’s chord length, height, and number, ωr represents the
“angular velocity”, a stands for the “cross-sectional area”, and ρ represents the air density.

The characteristic curves of the Wells turbine under study are formed by the power coefficient Ca

and the torque coefficient Ct versus the flow coefficient φ are shown in Figure 3.
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Figure 3. Wells turbine’s characteristic curves. (a) power coefficient against flow coefficient; (b) torque
coefficient against flow.

2.4. Doubly Fed Induction Generator Model

In the OWC system under study, the Wells turbine drives a Doubly Fed Induction generator to
deliver electrical power to the grid. In a dq diphase frame, the DFIG generator can be defined with the
Expressions (11)–(16) given in [56,57]. Thus, the voltages of the stator and rotor in the dq frame can be
defined as: 

vds = Rsids +
dψds

dt
−ωsψqs

vqs = Rsiqs +
dψqs

dt
+ ωsψds

(11)


vdr = Rridr +

dψdr
dt
−ωrψqr

vqr = Rriqr +
dψqr

dt
+ ωrψdr

(12)

with Rs, Rr represent the stator and rotor resistances, ωs, ωr represent the stator and rotor angular
velocity, ids, iqs idr and iqr represent the d-q stator and rotor currents.

The flux linkage at the stator and the rotor can be described by:{
ψds = Lssids + Lmidr
ψqs = Lssiqs + Lmiqr

(13){
ψdr = Lrridr + Lmids
ψqr = Lrriqr + Lmiqs

(14)

with Lss, Lrr, and Lm representing the stator, rotor, and magnetizing inductances, respectively.
The generated electromagnetic torque and its interaction with the turbine may be expressed as:

Te =
3
2

p
(
ψdsiqs − ψqsids

)
(15)
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J
p

dωr

dt
= Te − Tt (16)

with p representing the pair pole number and J representing the inertia of the system.

3. Airflow Control Strategy

3.1. Stalling Behavior Problem

The stalling behavior in Wells turbines is a phenomenon which restricts the produced power.
It happens in the event that the airflow speed vx rises; however, the rotational velocity ωr is slow
because the generator is unable to spin quick enough to match the incoming airflow of strong waves.
This behavior is visible in Figure 3b that demonstrates when the flow coefficient φ surpasses a critical
value 0.3. The torque coefficient Ct declines considerably because the rotational speed ωr is unable to
match the airflow velocity vx.

The flow coefficient φ defined in Section 2 (9) relies on the airflow velocity vx. In addition,
as expressed in Section 2 (5), vx relies on both the wave amplitude and period. Indeed, the bigger
the wave amplitude and the smaller the period are, the higher the pneumatic power and the airflow
velocity are as shown in Figure 4.
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Figure 4. Airflow velocity evolution with different wave amplitudes and periods [45].

The stall effect is demonstrated by investigating the uncontrolled OWC system with different
sea states. The first sea condition is waves with a 10 s period and 0.9 m wave amplitude beginning
at 0 s until 22.5 s. The second sea condition is waves with a 10 s period and a 1.2 m wave amplitude
beginning at 22.5 s until 50 s. It may be observed in Figure 5 that during the first case the OWC offers
a flow coefficient below the threshold value 0.3, but, during the second case, it surpasses 0.3.
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Figure 5. Flow coefficient during two different wave conditions [45].
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As a result, the attained turbine torque illustrated in Figure 6 shows no stalling during the first
case and a significant decline at the crest of the second case because of the stall effect which reduces
the obtained torque in terms of average value.
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Figure 6. Turbine torques during two different wave conditions [45].

The Wells turbine’s stalling behavior can be evaded if the flow coefficient is constantly
regulated [39,45]. From Expression (9), the flow coefficient relies on the airflow velocity in the turbine
duct. Thus, adjusting the airflow speed vx will aid with evading the stall effect; therefore, an airflow
control strategy has been suggested.

The implementation of the airflow control puts to use the air valve set within the capture chamber,
and this device can be used to vary the pressure and airflow in the OWC system. The actuator of the
air valve is controlled using a PID controller as explained by the scheme of Figure 7.

Figure 7. Airflow control scheme strategy for OWC plant equipped with Wells turbine [39].

Tuning the PID controller in a complex system such as the OWC often is hard and tedious when
using conventional methods and lacks an appropriate systematic design approach. In order to tune
the PID controller, the use of optimization theory has been suggested as a promising recourse to easily
calculate and optimize all PID gains [35–37].

3.2. Control Problem Formulation

The PID tuning optimization problem for the airflow control scheme’s objective is to compute
the control design parameters xxx∗ =

(
x∗1 , x∗2 , x∗3

)T ∈ R3 that represents the PID controller gains, i.e.,
xxx =

(
Kp, Ki, Kd

)T ∈ R3
+. This is achieved while minimizing the cost function. The Integral of Absolute

Error (IAE) has been adapted as the cost function for this problem [38,39]:

f IAE (xxx) =
∫ +∞

0
|e (xxx, t)| dt (17)
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with e (.) being the error between the reference and the controlled variable, as detailed in Figure 8.
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Figure 8. PSO-based airflow control scheme for the Wells turbine-based OWC plant.

The IAE cost function is minimized by considering some time-domain constraints, associated
with the rise and settling times (tr and ts), the steady-state error Ess, and the overshoot δ (%) criteria of
the closed-loop step response [38,39].

The PID tuning problem formulation for the airflow control has been formulated as a constrained
and nonlinear optimization problem with Expression (18). The tuning problem can be solved by the
PSO algorithm [38,39]: 

minimize f (xxx)

xxx =
(
Kp, Ki, Kd

)T ∈ S ⊆ R3
+

subject to:

g1 (xxx) = Ess − Emax
ss ≤ 0

g2 (xxx) = tr − tmax
r ≤ 0

g3 (xxx) = ts − tmax
s ≤ 0

(18)

Here f : R3 → R represents the cost function, S =
{

xxx ∈ R3
+, xxxlow ≤ xxx ≤ xxxupper

}
stands for the

bounded search space for the control variables, and gi: R3 → R, (i = 1, 2, 3) represent the constraints.
Many methods were proposed solve constraints such as Problem (18). The most often method

relies on the application of penalties to the cost function. Thus, the external static penalty method has
been adopted and may be written as [36,37]:

ϕ (xxx) = f (xxx) +
ncon

∑
j=1

Λj max
[
0, gj (xxx)

]2 (19)

where Λj represents the “scaling penalty parameters” and ncon represents the “number of constraints”.
In literature, for optimization problems, the scaling parameters Λj, utilized by (19), are gradually

increased with each iteration in a linear way for the aim of enforcing the constraints. Generally,
the quality of the computed solutions depends on the values of the scaling parameters. However,
in this study, in order to make the proposed technique simpler, big, and constant scaling penalty
parameters have been taken into consideration [38,39]. From the second part of (19), the objective
function will increase with static penalties. These penalties are proportional to the degree of infeasibility
of the constraints gj [38,39].
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4. Symmetry-Breaking Constraints

Symmetries in combinatorial optimization enlarge the dimensions of the search space; hence,
extra time is invested to visit new solutions that are symmetric to the already visited solutions.
The search time of a combinatorial problem “P” can be reduced by adding new set of constraints “C”,
referred to as Symmetry-Breaking Constraints (SBC), such that some of the symmetric solutions are
eliminated from the search space while preserving at least one solution [58–60].

The method of symmetry-breaking constraints can be used to take advantage of symmetries
in many constrainted optimization problems, by adding constraints that eliminate symmetries and
reduce the search space size. This method uses three types of symmetries [59,60]:

• Variable symmetry where permuting variables are solution invariant defined as:

{xi = vi} ∈ sol(P) ⇔
{

xσ(i) = vi

}
∈ sol(P) (20)

• Value symmetry where permuting solution values are solution invariant defined as:

{xi = vi} ∈ sol(P) ⇔ {xi = σ(vi)} ∈ sol(P) (21)

• Variable/value symmetry where both variables and values permutation is solution invariant
defined as:

{xi = vi} ∈ sol(P) ⇔
{

xσ1(i) = σ2(vi)
}
∈ sol(P) (22)

In the problem of PID tuning optimization, only value symmetries are considered which are
broken by imposing further constraints on the original problem defined by Equation (18). As described
by Equation (21), a value symmetry σ is a bijection on values which conserves solutions. That is,
if {Xi = vi|1 ≤ i ≤ n} is a solution, then {Xi = σ (vi) |1 ≤ i ≤ n} is a solution as well. The lex leader
approach may be applied to break value symmetries [60]. Let ∑ be the set of all value symmetry
permutations, these symmetries are broken by imposing:

[X1, · · ·Xn] ≤lex [σ(X1), · · · σ(Xn)] , ∀σ ∈∑, (23)

where X1 to Xn is any fixed ordering on the variables, n is the number of variables, and σ is a symmetry.

5. Particle Swarm Optimization

The conventional PSO algorithm uses a group of individuals formed of np particles, marked as
x1, x2, . . . , xnp , randomly scattered within an initially bounded search space, in order to find a global
solution for a generic optimization problem like that of Equation (18) [38]. Each particle in the swarm
has a position xxxi

k :=
(

xi,1
k ,xi,2

k ,...,xi,d
k

)T
and a velocity vvvi

k :=
(

vi,1
k ,vi,2

k ,...,vi,d
k

)T
where (i,k)∈[[1,np]]×[[1,kmax]].

At the kth iteration, the position of the ith particle, with xi ∈ Rd , changes depending on the future
position and velocity equations:

xxxi
k+1 = xxxi

k + vvvi
k+1 (24)

vvvi
k+1 = wvvvi

k + c1ri
1,k

(
pppi

k − xxxi
k

)
+ c2ri

2,k

(
pppg

k − xxxi
k

)
(25)

with w standing for the inertia factor, c1 and c2 representing the cognitive and the social scaling factors,
ri

1,k and ri
2,k representing two random numbers uniformly scatted within the range [[0, 1]], and pppi

k and
pppg

k are the best positions previously obtained for the ith particle and the entire population at the kth
iteration [38].
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The exploration and exploitation capabilities of the particle swarm optimization algorithm may
be supplementary enhanced when using a linear evolution mechanism of the inertia factor [38,39],
all while considering the iterations as follows:

wk+1 = wmax − (wmax − wmin) k
/

kmax (26)

with kmax representing the maximum number of iterations and wmax and wmin representing the
maximum and minimum inertia factor typically set to 0.9 and 0.4 [61].

In conclusion, a pseudocode of the PSO algorithm for a minimization problem has been detailed
in Algorithm 1.

Algorithm 1 PSO algorithm
1. Define parameters of PSO algorithm: np, c1, c2, kmax, wmax, wmin.
2. Arbitrarily initialize the swarm particles’ positions xxxi

0 and velocities vvvi
0.

3. Assess this initial population and calculate pppi
0 and pppg

0 .
4. Increment the iteration k and updated the position of every particle of the flock by means of
the update Equations (24)–(26).
5. Assess the associated fitness values ϕi

k = ϕ
(
xi

k
)

(i) if ϕi
k ≤ pbesti

k then pbesti
k = ϕi

k and pppi
k = xxxi

k,
(ii) if ϕi

k ≤ gbestk then gbestk = ϕi
k and pppg

k = xxxi
k.

where pbesti
k represents the best previous fitness of the ith particle and gbestk represents the best

fitness in the whole swarm.
6. If the stopping criterion is met, the program finishes and stops searching with the obtained
solution xxx∗ = arg min

xi
k

{
f
(

xi
k
)

, ∀i, k
}

. Otherwise, go back to step 4.

6. Results and Discussion

The performance evaluation of the suggested optimization for the airflow control in the OWC has
been carried out by numerical simulations using a numerical wave-to-wire model on Matlab/Simulink.
The OWC wave-to-wire model is configured using the parameters of NEREIDA detailed in Table 1.

Table 1. Oscillating Water Column’s parameters from the NEREIDA wave power plant.

Capture Chamber Wells Turbine DFIG Generator

wc = 4.5 m n = 5 Rs = 0.5968 Ω Prated = 18.45 kW
lc = 4.3 m b = 0.21 m Rr = 0.6258 Ω Vsrated = 400 V
ρa =1.19 kg/m3 l = 0.165 m Lss = 0.0003495 H frated = 50 Hz
ρw = 1029 kg/m3 r = 0.375 m Lrr = 0.324 H p = 2

a = 0.4417 m2 Lm = 0.324 H

6.1. Optimization Results

Due to the stochastic and irreproducible nature of PSO algorithms, validating its performance
is supposed to be via statistical analysis on the goodness of the found solutions of several trials.
Thus, the suggested particle swarm optimization algorithm has been simulated 20 times with
a maximum number of iterations kmax=100 and a population size np=30 while running on a CPU Core
i5, 3.30 GHz. Feasible solutions have been obtained in 75% of trials and in acceptable CPU calculation
time. The attained optimization results have been introduced in Table 2, and the results show that,
with the SBCs, the PSO algorithm performs faster and better.
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Table 2. Computational and Optimization Results from 20 Trials of Problem (18).

SBC
Cost Function CPU Time (s)

Worst Mean Best S.D. Worst Mean Best

without 11.7433 8.3576 8.0927 1.6928 7091 6745 6492

with 11.2061 8.3324 8.0243 1.4491 5876 5604 5328

Figure 9 illustrates the box-and-whisker plot of the results of the optimization with and without
SBCs for Problem (18). The figure shows that the median line is lower for the PSO algorithm with SBCs
than that for the PSO algorithm without SBCs, which indicates that the use of SBCs allows for obtaining
better cost function in terms of mean value. Moreover, the box of the algorithm with SBCs is narrower
than that the one of the box of the PSO algorithm without SBCs, which means that the algorithm is able
to converge to the same region of interesting search space when using SBCs. Both indicators increase
the reproductivity of the SBC-based PSO algorithm leading to the optimal solution.
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Figure 9. Box-and-whisker plot of the optimization results with and without SBCs for Problem (18).

The behavior and performance of the PSO algorithm with and without the SBCs is further
observed in the curves of the convergence history shown in Figure 10.

The convergence histories of the best case from optimization trials of Problem (18) using the
PSO with and without SBCs show that the PSO algorithm in both cases converges to the same region
which proves that it is able to find an interesting search space to explore. In addition, the curves show
that with SBCs the algorithm converges to the interesting region in fewer iterations (64 iterations),
whereas without SBCs it takes more iterations to reach the interesting region (91 iterations).

From the convergence curves of Figure 10, it is clear that the PSO algorithm manages to converge
with fewer iterations to the region of interesting search space when using SBC, which explains the
reduced simulation time of Table 2. This is due to the fact that the added symmetry-breaking constraints
help narrow the area of search space and eliminates the need to visit symmetric solutions that have
already been visited with other sets of variables.
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Figure 10. Convergence histories of the PSO algorithm with and without SBCs for Problem (18).

6.2. OWC Performance

For the assessment of the performance of the suggested airflow-control on the OWC system,
the optimized PID controller uses the parameters found of the mean case of the PSO optimization
results. The evaluation will compare the performance of the uncontrolled OWC, the OWC using a
traditionally tuned PID using the well known Ziegler–Nichols method (ZN-PID) and the OWC using
the optimized PID using PSO (PSO-PID).

The flow coefficients of the OWC in the uncontrolled case and with the airflow control using
the traditionally tuned PID (ZN-PID) and the optimized PID (PSO-PID) are illustrated in Figure 11.
The figure shows that in the uncontrolled case the flow coefficient surpasses the threshold value 0.3
which will provoke the stall effect, whereas in both controlled cases the flow coefficients were regulated
below 0.3 thanks to both ZN-PID and PSO-PID controllers. However, when zooming to the curves,
it is observed that the PSO-PID manages to provide a slightly closer flow coefficient to the threshold
value than that of the ZN-PID.
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Figure 11. Flow coefficients of the OWC in uncontrolled and controlled cases.

The obtained turbine torques of the PTO are shown in Figure 12. It may be observed that during
the uncontrolled case the torque has been affected by the stall effect which reduced it in terms of
average value. On the other hand, the airflow control manages to avoid the stall effect and increases
the torques in terms of average values.

The outputs of the OWC system, which are the generated power, are presented in Figure 13.
As a result from the obtained torques of Figure 12, the generated power in the uncontrolled case

is the lowest and the highest power is generated when using the PSO-PID.
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Figure 12. Turbine torque of the OWC. (a) in the uncontrolled case; (b) with ZN-PID, (c) with PSO-PID.
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Figure 13. Generated power of the OWC. (a) in the uncontrolled case; (b) with ZN-PID;
(c) with PSO-PID.

7. Conclusions

The paper deals with the stall effect in the OWC system which is known to occur in Wells turbines
when a certain airflow speed threshold is exceeded. The research work proposes an airflow control
strategy to govern the valve in the air-chamber and avoid the stalling behavior. The PID controller is
configured thanks to the Particle Swarm Optimization algorithm.

The PSO algorithm has been simulated to solve the airflow control problem and search for suitable
control parameters, but, to further enhance its exploration capabilities, the use of symmetry-breaking
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constraints was introduced to shrink the search space by eliminating the symmetric solutions.
The optimization and computational results indicate amelioration of the PSO performance.

The obtained control parameters from the PSO algorithm were used in the performance evaluation
of the suggested airflow control. The operation of the uncontrolled OWC, the OWC using a traditionally
tuned PID with the well known Ziegler–Nichols method (ZN-PID), and the OWC using the optimized
PID with PSO algorithm (PSO-PID) were compared with the same sea conditions. The results show
that the proposed airflow control scheme manages to successfully evade the stall effect in the Wells
turbine. Moreover, the airflow control using the PSO-PID demonstrates a superior performance to that
of the airflow control using the ZN-PID.
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Nomenclature

The following symbols are used in this manuscript:

λ, A, H Wavelength, amplitude, and height (m)
h, z Sea depth and wave surface elevation (m)
Tw, ω Wave period (s) and wave frequency (rad/s)
g Acceleration gravity (m/s2)
dP Pressure drop (Pa)
wc, lc Capture chamber inner width and length (m)
V, Q Capture chamber volume (m3) and flow rate (m3/s)
ρ, vx Atmospheric density (kg/m3) and airflow speed (m/s)
l, b, D Blade chord length, blade span and turbine diameter (m)
n, p, k, K Blade number, pole number, wave number, and turbine constant
Te, Tt Electromagnetic and turbine torques (N·m)
J Turbo-generator inertia (kg·m2)
Ct, Ca, φ Torque, power and flow coefficients
Rs, Rr Stator and rotor resistances (Ω)
Ls, Lr Stator and rotor inductances (H)
is, ir Stator and rotor currents (A)
ψs, ψr Stator and rotor flux (Wb)
ωs, ωr Stator and rotor rotational speed (rad/s)
e Error between the reference variable and measured variable
u Control signal obtained from the PID controller
Kp, Ki, Kd Proportional, integral, and derivative gains of the PID controller
P Optimization problem
xxx∗ Optimal solution for the problem
f Cost function
ϕ Penalty function
Λj Scaling penalty parameter for the jth constraint
ncon Number of constraints
σ Symmetry permutation
∑ Set of symmetry permutations
xxxi

k, vvvi
k Swarm particles positions and velocities

c1, c2 Cognitive and social scaling factors
w Inertia factor
pppi

k, pppg
k Best positions formerly found for the ith particle and the entire swarm at the kth iteration
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