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Abstract 

Numbers and letters are culturally created symbols which are learned through repeated 

training. This experience leads to a functional specialization of the perceptual system of 

our brain. Recent evidence suggests a neural dissociation between these two symbols. 

While previous literature has shown that letters elicit a left lateralized neural response, 

new studies suggest that numbers elicit preferentially a bilateral or right lateralized 

response. However, the time course of the neural patterns that characterize this 

dissociation is still underspecified. In the present study, we investigated with 

magnetoencephalography (MEG) the spatio-temporal dynamics of the neural response 

generated by numbers, letters and perceptually matched false fonts presented visually. 

Twenty-five healthy adults were recorded while participants performed a dot detection 

task. By including two experiments, we were able to study the effects of single characters 

as well as those of strings of characters. The signal analysis was focused on the event 

related fields (ERF) of the MEG signal in the sensors and in the source space. The main 

results of our study showed an early (<200 ms) preferential dissociation between single 

numbers and single letters on occipito-temporal sensors. When comparing strings of 

numbers and pseudowords, they differed also over prefrontal regions of the brain. These 

data offer a new example of acquired category-specific responses in the human brain. 
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Introduction  

Numbers and letters are culturally created symbols that become meaningful only 

after extensive training -- they have no significance to infants or illiterate adults (Dehaene 

& Cohen, 2007; Hamilton et al., 2006). The ability to recognize these constructs involves 

a functional preference of cognitive and perceptual systems and thus, offers a new 

example of acquired category-specific responses in the human brain. 

Neural categorization of visual stimuli elicits a cascade of processes along the first 

hundreds of milliseconds after the presentation of the stimuli (Rossion et al., 2003; 

Tanaka et al., 1999). In the context of word forms, sublexical processing and 

orthographic-to-phonological conversion occur in early latencies after the stimulus onset 

(between 100-200 ms and 200–300 ms, respectively), whereas lexical access and 

semantic retrieval occur in later time-windows (between 300–400 ms and after 400 ms 

respectively) (Grainger and Holcomb 2009; Bann & Herdman, 2016; Hauk et al., 2008). 

Specifically, visual encoding of letter/word forms occurs early around 130 ms from 

stimulus onset preferentially in the left ventral visual stream (McCandliss et al., 

2003; Appelbaum, Liotti, Perez, Fox, & Woldorff, 2009; Schendan, Ganis, & Kutas, 

1998). Differential anatomical and temporal patterns have been observed between single 

and strings of letters in later latencies (James et al., 2005; Park et al., 2012). However, 

further evidence at better temporal and anatomical resolution, and full-coverage methods 

would be valuable. 

Recent evidence shows that the number-related pattern of neural activity dissociates from 

that of letters early during the first encoding levels in occipito-temporal regions of the 

brain (Park et al., 2014; Abboud et al., 2015; for a review see Hannagan et al. 2015). 

However, there is a lack of consistency regarding the hemispheric preference for such a 

dissociation. On the one side, opposite hemispheric recruitment of neurons has been 

evidenced for these two categories (Park et al., 2012). In an EEG study, Park et al., (2014) 

showed that while single numbers elicited increased EEG evoked responses compared to 

single letters on right hemispheric electrodes, the last evoked a similar pattern on left 

hemisphee electrodes. Both dissociations occurred in the time range of the N1 (between 

140-170 ms). By examining also the neural response to strings of characters, the authors 

showed that strings of letters elicited a left lateralized response around 250 ms (in the 

range of the P2) when comparing with strings of numbers. Similar hemispheric lateralized 
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patterns for number and letter processing were observed in a source reconstruction in a 

magnetoencephalography (MEG) study performed by Carreiras et al., (2015). On the 

other hand, recent data shows that, instead of the unique right hemispheric specialization, 

numerals recruit populations of neurons in both hemispheres, bilaterally. In an fMRI 

study, Grotheer et al., (2016) observed a bilateral preferential response for numbers at the 

inferior temporal gyrus (ITG) when comparing with letters, false numbers or everyday 

objects. Similarly, Shum et al. (2013) observed with iEEG (intracranial 

electroencephalography) a region in the right that responded preferentially to numbers. 

Even though the coverage of the electrodes included mainly the right hemisphere, they 

found similar results in the left hemisphere as well. 

Scientific work focused on the neural fingerprints of number processing has 

received less attention. Arabic digits have typically been used as control stimuli when 

studying letter- and word-specific neural activity. Also, to date, the handful of informative 

literature has included fMRI, EEG focusing on a limited number of electrodes, MEG 

restricting the analysis to regions of interest at the source space, and iEEG covering areas 

of the right hemisphere mainly. However, as far as we know, none of these studies have 

investigated the temporal dynamics and anatomical preferences of single and strings of 

numbers with a non-invasive technique which includes a high temporal and spatial 

resolution with MEG (by covering the whole head with 306 sensors ), and including 

sensor and source localization procedures and individual MRIs. Such an approach is 

important since the encoding and dissociation of visually presented stimuli potentially 

occurs on a millisecond scale and involves a variety of regions of the brain.  

The purpose of the present study was to investigate the temporal dynamics and the 

anatomical localization of the dissociation of the neural evoked response to visually 

presented numbers, letters and false-fonts. To do so, we studied (in two experiments) the 

MEG signal in response to single numbers, letters and false fonts (Experiment 1), and 

strings of numbers, pseudowords and strings of false fonts (Experiment 2) in young adults 

during a dot-detection attention task. The task required participants to respond whenever 

a dot was presented (catch trials) among the stimuli. This low-level task was selected 

because it does not require explicit semantic or phonological processing but nevertheless 

ensures attention during the task. This way, participants can apply the same processing 

strategy for both numbers and letters, thus allowing direct comparison of these two 

conditions. This task has been used previously (Dehaene in Science 2010; Carreiras et al., 2015) 
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so that it captures better the natural processing of the stimuli without requiring explicit additional 

processes such as lexical decision or semantic categorization. 

In our analysis, first, we studied the stimulus evoked MEG signal in the sensor space. 

This analysis allowed us to estimate the time-window(s) where dissociations between the 

stimuli occur. Based on the previous evidence reported above and the data reported here, 

we suggest that numbers and letters can dissociate at early latencies during the first time-

windows of the visual encoding (<200 ms after stimulus onset). We also show that single 

items and strings of stimuli can elicit differential neural patterns around 250-300 ms 

(Dehaene, 1995; Park et al., 2014). Second, we computed the source localization of these 

evoked responses and focused the analysis on the time-windows which were the most 

prominent in sensor space. This analysis allows us to estimate the source locations   where 

the dissociation of numbers occurs. 

MATERIALS AND METHODS  

We report how we determined our sample size, all data exclusions, all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations, and all measures in the study. 

Participants. 28 young adults were recruited for the present study (Park et al., 2014; 

Carreiras et al., 2015). From this initial sample, 3 participants were excluded due to a 

technical difficulty during acquisition. The final sample included a total of 25 participants 

(24+/-3 years of age). All of them reported to be native speakers of Spanish, right handed 

and free of neurological disease (criteria for participation established prior to data 

analysis). All participants gave their written informed consent in accordance with 

guidelines approved by the Research Committees of Basque Center on Cognition, Brain 

and Language. No part of the study procedures or analyses was pre-registered prior to the 

research being conducted.  

 

Experimental design 

Two experiments were administered in this study using Psychtoolbox. Both experiments 

included a visual detection tasks (Figure 1) and differed between them only in the stimuli.  
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Figure 1. Visual detection task (left panel). Participants were instructed to attend to the 

stimuli and make a button press whenever a dot was presented. (b) Stimuli used in 

Experiment 1 (single numbers, single letters, single false-fonts and dot-detection) and in 

Experiment 2 (strings of numbers, pseudowords, strings of false-fonts and dot-detection). 

 

Experiment 1. Participants were presented with three types of single stimuli (numbers, 

letters and false fonts). The numbers included digits from 1 to 9, and the letters were A, 

C, D, F, L, P, S, U and V. Following the procedure by Shum et al., (2013), the false fonts 

were created from rearranged numeral and letter stimuli, with the number of pixels, 

angles, and curves kept as similar as possible while ensuring that the stimulus remained 

unrecognizable.  

Experiment 2. The second experiment mimics the first with the difference that it included 

strings of stimuli (strings of numbers, pseudowords and strings of false fonts) instead of 

single-character stimuli. Each string included 5-6 letters, numbers, or false fonts. The 

strings of numbers consisted of combinations of digits between 1-9. Phonotactically legal 

pseudowords were used instead of consonant strings since the first could be clustered in 

a unified readable item, similar to what happens with number strings. The pseudowords 

were the following: ASIMA, BOIRA, DOBECA, DOCHAS, EGALO, MODRO, 

PLETAR, TEPOR, TOLAS.  

For both experiments, the stimuli were presented in the center of the screen in a white 

font (Arial capital letters, covering not more that 1º of visual angle on the screen 

positioned ~ 1 meter far from the participant) on a grey background. Each stimulus was 

repeated 22 times resulting in a total of 198 stimuli per condition. 
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The trial started with a 500 ms baseline followed by the presentation of the stimuli for 

500 ms. After the stimulus offset, an intertrial interval varied between 1000-1500 ms and 

participants were invited to blink during this period. Participants were instructed to attend 

to the stimuli and report with a button press whenever a dot (catch trial) was presented. 

The catch trials were included in both experiments in order to ensure attention during the 

tasks.  For Experiment 1, catch trials consisted of a sole dot, whereas for Experiment 2 

the catch trials consisted of a string of numbers/letters/false fonts (depending on 

condition) and a dot (see Figure 1).  During the entire experiment, participants were 

instructed to make a button press whenever a dot was present as a stimulus. This allowed 

us to ensure that participants were attending to the stimuli. The catch trials involved 10% 

of the total trials and were not included for the MEG signal analysis. Participants with 

accuracy lower than 80% in the catch trials would be excluded from the analysis.  

 

The stimuli within each experiment were presented in random order. Participants were 

instructed to fixate on the center of the screen (fixation cross or stimulus) during the entire 

task. 

Data acquisition  

MEG data was continuously recorded (1000 Hz sample rate, 0.01–330 Hz online filter) 

during the performance of the attentional task using a 306-channel (102 magnetometers 

and 204 planar gradiometers) system (Elekta©, VectorView) placed in a magnetically 

shielded room (Vacuumschmelze GmbH, Hanau, Germany) at the Basque Center on 

Cognition, Brain and Language (Donostia-San Sebastián, Spain).  

Individual head shapes were obtained by using a three-dimensional Fastrak digitizer 

(Polhemus). In addition, four head position indication (HPI) coils were placed in each 

subjects' head: two in the mastoids and two on the forehead. The HPI coils provided 

continuous head position estimation during the recording.  

For source reconstruction, a high-resolution 3D structural MR image (T1-weighted 

MPRAGE sequence) was acquired with a 3T Trio MRI scanner (Siemens, Munich, 

Germany) to the individual participants. Due to technical reasons, we obtained MRI scans 

of 20 participants. For the remaining 5 participants, we used the MNI template MRI 

provided by Fieldtrip (see reference below). 
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Data analysis  

Both experiments were analyzed similarly. Maxfilter software (version 2.2., Elekta 

Neuromag) was used offline to reduce external noise and compensate for head 

movements (temporal extension of the signal space separation method; Taulu and Kajola, 

2005; Taulu and Simola, 2006).  

The data analysis of the MEG signal was performed using the Fieldtrip Matlab toolbox 

for EEG/MEG analysis (Oostenveld et al., 2011; 

http://www.ru.nl/neuroimaging/fieldtrip). The analysis was conducted on the 

gradiometers.  Only epochs free of button responses were included in the analysis. 

Automatic artifact rejection was applied to remove trials containing SQUID jumps and 

muscle activity. Independent component analysis (ICA) was used to visually detect and 

discard eye blinks and electrocardiogram activity from the MEG signal (“runica” 

algorithm implemented in FieldTrip/EEGLAB). The ICA procedure applies a linear 

decomposition to the data after which the data is represented as components. First, these 

components are visually inspected in a trial-by-trial basis and then, the trials affected by 

the artifacts are identified and rejected from the data. This procedure excludes the bad 

components and projects back the signal free of artifacts. The data was band-pass filtered 

between 1 and 35 Hz, demeaned, detrended and segmented between 300 ms before and 

500 ms after the stimulus onset (resulting in epochs of 800 ms). 

Sensor level analysis. The artifact-free signal was baseline corrected (with a 200 ms time-

window prior to stimulus onset) and averaged across trials resulting in an event related 

(ERF) for each sensor, condition and participant. 

Statistical analysis. Paired-sample t-tests (two-tailed) were used to test the null 

hypothesis of no difference between the different conditions (numbers vs. letters, 

numbers vs. false fonts and letters vs. false fonts) in time and sensor locations. In order 

to control for the family-wise error rate in the context of multiple comparisons over time 

points and sensors, a cluster-based nonparametric permutation statistic was performed 

(Maris & Oostenveld, 2007). Accordingly, clusters of channels and time samples with 

significant differences (p < 0.025) were created by temporal and spatial adjacency. A set 

of 1000 permutations was created by randomly assigning condition labels and then t 

values were computed for each permutation. A cluster was considered to have a 

statistically significant effect if the sum of t-values in the original dataset was greater than 
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the 95th percentile (p<0.05) of the distribution of the corresponding values in the 

randomized data. This analysis allowed us to establish the time-window(s) of interest for 

a following post-hoc two-tail paired-sample t-test. The resulting significant time-

window(s) were selected for the analysis at the source space.  

We would like to note that although our findings are based on relatively common analysis 

procedures, recent papers have suggested that the standard statistical practice cannot grant 

conclusions about the experimental question under debate (Button et al. 2013; Gelman & 

Carlin, 2014; Greenland et al. 2016; Wasserstein & Lazar, 2016; Benjamin et al. 2018; 

Lakens et al. 2018; Sassenhagen & Draschkow, 2019). The present results should be taken 

heuristically and the results of our exploratory analyses might be useful for planning 

future pre-registered studies of the same phenomena.  Interested readers are encouraged 

to examine the data provided with this manuscript. 

Source level analysis. Source reconstruction analysis was performed in order to localize 

the source of origin of the effects observed at the sensor level. For that aim, first a single-

shell head model was constructed from the anatomical MRI. A template grid with 3 mm^3 

spacing was constructed using a MNI template brain. Then, single subject grids were 

produced by warping the individual anatomical scans to this template and applying the 

inverse warp to the template grid. This produced source- level data aligned across subjects 

in MNI space.   

Source reconstruction of the MEG signal was performed with Linearly Constrained 

Minimum Variance Beamformer (Zhang and Liu, 2015) following a common filter 

approach. The spatial filter’s coefficients were obtained from the average covariance 

matrix from trials belonging to the three conditions. The resulting spatial filter 

coefficients were then applied to each condition separately. This procedure results in a 

power estimate per source location, time, condition and participant.  

Statistical analysis. The statistical analysis at the source space was focused on the time-

windows and contrasts showing the significant effects at the sensor level. To quantify the 

differences in power between these significant contrasts, paired-sample t-tests (one-

tailed) were used (p<0.05). A cluster-based permutation approach was used in order to 

control for multiple comparisons over grid points (as explained above). The same caution 

about the statistical results applies for the source analysis as above. 
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Effect size. Effect size (Cohen's d) was computed to test the magnitude of the effects 

between the conditions in the sensors and in the source space with the following formula:   

d=(µ2−µ1) / σ 

where µ2 and µ1 are the condition means and σ is the pooled standard deviation of the 2 

conditions. The pooled standard deviation was calculated as follows: 

 
σ = sqrt((sd1^2 + sd2^2)/2) 

 
where sd1 and sd2 are the standard deviations of the means of each condition.  
 
 

In order to offer a complete view of the data, we also depict the means (M), 

standard deviations (SD), effect sizes and correlation values of the three conditions 

(numbers, letters, false-fonts), that result in the significant topographies (sensors) and 

latencies (time-windows) after contrasting the conditions statistically. For example, the 

data “comparison 1: numbers [M=.13-11; SD=.75-12] versus letters [M=.09-11; SD=.69-12], 

time-window: 124-208 ms, effect size: -.54, r=.91”, is calculated by taking the raw-

processed data (the data before calculating the statistics) and selecting the specific sensors 

and time-windows which resulted statistically significant when applying the statistical 

procedure. This procedure offers an overview of the raw-processed data just at the 

significant sensors and time-windows.    

 

Results 

Behavior 

Experiment1. Participants on average responded to the catch trials with a 94±10 percent 

accuracy and with a 495±125 ms delay (M±SD).    

Experiment2. Participants on average responded to the catch trials with a 97±3 percent 

accuracy and responded with a 489±144 ms delay(M±SD). 
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Magnetoencephalography  

Experiment 1. Sensor space 

 

 

Figure2. Experiment1 sensors. a) Raw occipital sensors. Raw event related fields (ERF) 

averaged over the occipital sensors (left and right separately) for visualization purposes 

(dark blue: single numbers; green: single letters; light blue: single false fonts). The black 

triangle indicates the stimulus onset (0 ms). The black rectangle indicates the timing of 

the three significant time windows (124-208 ms, 130-210 ms and 130-210 ms) resulting 

from the t statistics between the conditions (p < 0.01, corrected). b) Statistics. 

Topographies of the distribution of the significant t-statistics at the sensor level (N>L: 

single numbers greater than single letters; N>F: single numbers greater than single false 

fonts; L>F: single letters greater than single false fonts). Dark dots display the significant 

sensors resulting from the paired-sample statistics. The colorbar displays the t-values. 

 

In line with previous literature (Shum et al., 2013; Park et al., 2014), the present 

results show that the visual presentation of single numbers, letters and false fonts elicit a 

neural response which peaks around 160 ms after the stimulus onset on occipital and 

occipito-temporal sensors of the MEG. Numbers elicited the largest values in comparison 

with the rest of the stimuli. Results from the paired-sample t-tests revealed (Fig. 2) 

significant effects between the conditions over early time-windows (p<0.01, corrected). 

When comparing with single letters, numbers elicited significant enhanced power over 

occipito-temporal sensors bilaterally (with higher effect over the right sensors) and over 

left temporal sensors (124-208 ms). Similarly, when comparing with single false fonts, 

numbers showed higher power values over left occipito-temporal sensors, over temporal 
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sensors bilaterally and over central sensors (130-210 ms). When letters were compared 

with false fonts, the first elicited higher power values over left temporal and central 

sensors (130-210 ms). 

The results of Experiment 1 in the sensors space (Figure 2) showed medium and 

large effects. Means (M), standard deviations (SD), effect sizes and correlation values of 

the three conditions (numbers, letters, false-fonts), that result in the significant 

topographies (sensors) and latencies (tw, time-windows) shown above, are depicted as 

follows: comparison 1) numbers [M=.13-11; SD=.75-12] versus letters [M=.09-11 ; SD=.69-

12], tw: 124-208 ms:, effect size: -.54, r=.91; comparison 2) numbers [M=.98-12; SD=.57-

12)] versus false fonts [M=.5-12; SD=.42-12], tw: 130-210 ms, effect size: -.95, r=.84; 

comparison 3) letters [M=.69-12; SD=.47-12] versus false fonts [M=.32-12; SD=.4-12], tw: 

130-210 ms, effect size: -.83, r=.86. 

Experiment 1. Source space 
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Figure3. Experiment1 sources. Cortical distribution of cluster-based statistical 

differences in brain activity between the conditions during the significant time-

windows found at the sensor space. Note that only significant effects are shown. 

 

 

 

Table1. Coordinates of significant sources (MNI). The coordinates of the highest 

statistical values for each of the contrasts are shown.  

Source space analysis was performed over the significant time-windows resulting 

from the sensor analysis. Paired-sample t-tests were computed between the conditions in 

order to test for significant differences between the conditions at the source space. In line 

with the results in sensor space, after selecting the a-priori time-windows of interest, the 

cluster-based permutation test revealed (Figure 3) a significant difference between the 

numbers and letters at the source space. These differences were most pronounced over 

the fusiform gyrus, middle temporal gyrus and auditory cortex of the left hemisphere, 

and over the inferior temporal gyrus and the secondary visual cortex in the right 

hemisphere. When testing for effects between numbers and false fonts, the cluster-based 

permutation test revealed a significant difference which was most pronounced over the 

fusiform and superior temporal gyrus of the left hemisphere. When testing for effects 

between letters with false fonts, the cluster-based permutation test revealed a significant 

difference which was most pronounced over the left inferior prefrontal cortex (and the 

premotor cortex). 

The results of Experiment 1 in the source space (Figure 3) showed medium and 

large effects.  Means (M), standard deviations (SD), effect sizes and correlation values of 

the three conditions (numbers, letters, false-fonts), that result in the significant sources at 

the significant time-windows (tw) in the sensor space are depicted as follows: comparison 

1) numbers [M=2.94; SD.8] versus letters [M=2.37; SD=.6], tw: 124-208 ms, effect size: 

-.8, r=.84; comparison 2) numbers [M=3.22; SD=.8] versus false fonts [M=2.62; SD=.8], 

tw: 130-210 ms, effect size: -.74, r=.35; comparison 3) letters [M=2.26; SD=.75] versus 

false fonts [M=1.6; SD=.38], tw: 130-210 ms, effect size: -1.09, r=.61. 

Contrast Coordinates [x,y,z]
number > letter [-3.9, -4.7,  0.3]
number > falsefont [-5,    -5.3,  -2]
letter > falsefont [-5.5, -1.1, 1.7]
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Experiment 2. Sensor space 

 

 

Figure4. Experiment 2 sensors. a) Raw occipital sensors. Raw event related fields (ERF) 

averaged over the occipital sensors (left and right separately) for visualization purposes 

(dark blue: strings of numbers; green: pseudowords; light blue: strings of false fonts). The 

black triangle indicates the stimulus onset (0 ms). ). The black rectangle indicates the 

timing of the four significant time windows (264-500 ms, 93-191 ms, 180-276 ms, 171-

262 ms) resulting from the t-statistics between the conditions (p<0.01, corrected). b) 

Statistics. Topographies of the distribution of the significant t-statistics at the sensor level 

(N<P: strings of numbers lower than pseudowords; N>F: strings of numbers greater than 

strings of false fonts; N<F: strings of numbers lower than strings of false fonts; P>F: 

pseudowords greater than strings of false fonts). Dark dots display the significant sensors 

resulting from the paired-sample statistics. The colorbar displays the t-values. 

 

In line with a large previous literature (Park et al., 2012; 2014), the present results 

show that the visual presentation of number strings, letters strings and false font strings 

elicit a ERF response which peaks around 160 ms after the stimulus onset occipital and 

occipito-temporal sensors of the MEG. When testing for effects between the conditions, 

the paired-sample t-tests revealed (Fig. 3) significant effects between the conditions over 

early and late time-windows. Number strings elicited a smaller magnitude response than 

pseudowords during a late time-window (264-500 ms). The cluster was more pronounced 

over left temporal and frontal sensors. When testing for effects between numbers strings 
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and false font strings, the cluster based permutation test revealed a positive and a negative 

cluster. During early time-windows (93-191 ms), number strings elicited enhanced power 

values than false font strings. The cluster was more pronounced over frontal, temporal 

and occipital sensors of both hemispheres. During later time-windows (180-276 ms), false 

font strings elicited a larger response than number strings. The cluster was more 

pronounced over temporal and occipital sensors of both hemispheres. The comparison 

between pseudowords and false font strings showed a stronger response for false fonts 

strings during later time-window (171-262 ms). The cluster was more pronounced over 

temporal and occipital sensors of the right hemisphere. 

The results of Experiment 2 in the sensors space (Figure 4) showed medium and 

large effects.  Means (M), standard deviations (SD), effect sizes and correlation values of 

the three conditions (numbers, letters, false-fonts), that result in the significant 

topographies (sensors) and latencies (tw, time-windows) shown above, are depicted as 

follows: comparison 1) numbers [M=.2-12; SD=.34-12] versus letters [M=.61-12; SD=.49-

12], tw: 264-500 ms, effect size: .96, r=.75; comparison 2A) numbers [M=.015-12; SD=.69-

12] versus false fonts [M=.011-12; SD=.5-12], tw: 93-191, effect size: -.75, r=87; 

comparison 2B) numbers [M=.0006-12; SD=.1-12] versus false fonts [M=.011-12; SD=.68-

12], tw: 180-276, effect size: 2.26, r=.13; comparison 3) letters [M=.48-12; SD=.33-12] 

versus false fonts [M=.98-12 ; SD=.52-12], tw: 171-262, effect size: 1.14, r=.79. 
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Experiment 2. Source space 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5. Experiment 2 sources. Cortical distribution of cluster-based statistical 

differences in brain activity between the conditions during the significant time-

windows found at the sensor space. Note that only significant effects are shown. 

  

 

 

Table2. Coordinates of significant sources (MNI). The coordinates of the highest 

statistical values for each of the contrasts are shown.  

 

Contrast Coordinates [x,y,z]
numberstring < pseudoword [-6.1,  -2,   0.1]
numberstring > falsefontstring [-2.4,  4.1,  2.7]
pseudowrod < falsefontstring [6.5,   -1.6,  -1]
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Source space analysis was performed over the significant time-windows from the 

sensor analysis. Paired-sample t-tests were computed between the conditions in order to 

investigate for significant differences between the conditions. In line with the results in 

sensor space, after selecting the time-windows already implicated by the sensor analysis, 

the cluster-based permutation test revealed a significant difference between the number 

strings and the pseudowords. These differences were most pronounced over the temporal 

lobe and the DLPFC (dorsolateral prefrontal cortex) of the left hemisphere. When 

testing for effects between number strings and false font strings, the cluster-based 

permutation test revealed significant difference which was most pronounced over the 

DLPFC and premotor of the left hemisphere and over the DLPFC, and inferior frontal 

gyrus of the right hemisphere. No significant effects were present in source space when 

testing for the greater response of false font strings, compared with number strings, in 

source space (p>0.05). When comparing pseudowords with false font strings, the cluster-

based permutation test revealed a significant effect which was most pronounced over the 

fusiform, and the temporal lobe of the right hemisphere. No significant effects were 

evidenced at the source space when testing for higher power values of pseudowords, 

compared with false font strings, at the source space (p>0.05).  

The results of Experiment 2 in the source space (Figure 5) showed medium and 

large effects. Means (M), standard deviations (SD), effect sizes and correlation values of 

the three conditions (numbers, letters, false-fonts), that result in the significant sources at 

the significant time-windows (tw) in the sensor space are depicted as follows: comparison 

1) numbers (M=1.4; SD=.22) versus letters (M=1.82; SD=.44), tw: 264-500,effect size: 

1.19, r=.38; comparison 2) numbers (M=2.76; SD=.57) versus false fonts (M=2.13; 

SD=.41), tw: 93-191 ms, effect size: -1.24, r=.54; comparison 3) letters (M=2.81; 

SD=.68) versus false fonts (M=3.97; SD=1..43), tw: 171-262 ms, effect size: 1.03, r=.59.  

 

Discussion 

 

In the current study, we investigated the neurophysiological response to visually 

presented numbers in healthy young adults. Our data show that single numbers elicit an 

early (<200 ms) preferential recruitment of neuronal populations over occipito-temporal 

regions bilaterally (Grotheer et al., 2016). Furthermore, while strings of numbers 
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dissociate preferentially from pseudowords at later time-windows (with the higher 

differences shown over the left temporal regions, >260 ms) they dissociate from false-

font strings in earlier time windows (<200 ms, with the higher differences over the 

prefrontal and temporal sensors bilaterally). The approach used in the current study, 

which combines high temporal resolution, a whole-head coverage of the surface of the 

brain and a source localization of the effects, offers further data about how numbers 

dissociate from letters and false-fonts. Together, the present data contribute to the notion 

that the adult human visual system dissociates between these culturally-created symbols 

at the earliest encoding levels (Park et al., 2015).  

Bilateral early preference of numbers. The triple-code-hypothesis (Dehaene, 1995, 1997) 

postulates that numbers are encoded as strings of digits on an internal visuospatial 

scratchpad which involve bilateral OT regions of the ventral visual pathway. In support 

for this, recent evidence shows a preferential response to numbers (compared to 

physically similar stimuli) over these regions (Park, Hebrank, et al., 2012; Roux et al., 

2008). In their iEEG study, Shum et al., (2013) revealed a highly selective response to 

numerals in the right inferior temporal gyrus, anterior to the occipital temporal incisures. 

Although most of the electrodes in their patients were implanted in the right hemisphere, 

they were able to see a similar pattern in the left hemisphere as well. More recently, 

Groetheer et al., (2016) localized a preferential BOLD response for numbers at the 

inferior temporal gyrus. Interestingly, this pattern was present in both hemispheres.   

This evidence agrees with our current results showing a bilateral preference for single 

numbers when comparing with letters and false-fonts (Experiment 1). A possible 

explanation for the bilateral preference during number processing originates from the 

‘biased connectivity’ hypothesis. Under this hypothesis, category-specific visual areas 

emerge at cortical sites that exhibit a higher density of white-matter fiber tracts to and 

from the cortical circuits that are crucial for the target task. In the case of the number form 

area (NFA) primary target circuits would be the bilateral intraparietal sites that encode 

non-symbolic numerical quantities (Hannagan et al., 2015). This hypothesis is based on 

previous data that links connectivity patterns to functional specialization in the symbol 

form areas. A recent study by Abboud et al., (2015) reveals high connectivity patterns 

between the NFA and regions involved in representing quantities such as the intraparietal 

sulcus (IPS). The IPS is involved in the supramodal representation of numbers and is 

activated bilaterally more strongly when processing numbers than when processing letters 
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(Eger et al., 2003) or false-fonts (Woodhead et al., 2011). Together, the bilateral occipito-

temporal preference during number processing could represent a low-level visual 

processing which drives (via structural and/or functional connectivity) the preferred 

activation to the higher order areas. 

Importantly, the effects in Experiment 1 (single stimuli) showed a peak at early latencies 

of the visual encoding (between 124 ms and 210 ms). This time-window could be 

explained by the so-called N1 event-related potential component which is related with the 

visual encoding and discrimination of visual categories (Rossion, Joyce, Cottrell, & Tarr, 

2003; Tanaka, Luu, Weisbrod, & Kiefer, 1999). Supporting our results, Dehaene (1996) 

showed that participants elicited more bilateral N1 activity when engaged in a numerical 

than in a verbal task.  

Together with our results, the most pronounced discrimination (or perceptual 

specialization) of single numbers, letters forms and false-fonts took place over occipito-

temporal regions at the earliest stages of the visual encoding level.  

Our data also showed that the dissociation between number strings and false-fonts took 

place bilaterally early in the visual encoding (93-191 ms) (Experiment 2). Interestingly, 

the dissociation was more pronounced over the PFC bilaterally (temporal, parietal and 

occipital sensors were also highlighted). The PFC is involved in semantic association, as 

shown by Diester et and Niedel (2007). In their study, they trained monkeys to assign 

visual shapes to numerical categories and recorded from single cells in the prefrontal and 

parietal regions of the brain. The resulting data showed that the learned numerical value 

of the visual shapes was encoded by the neurons in the PFC. Furthermore, the data 

allowed them to propose this region as a neuronal precursor for number symbol encoding. 

Consistent with this evidence, the greater recruitment of bilateral PFC regions for 

number-strings may represent the semantic nature of these culturally-learned symbols in 

comparison with the meaningless symbols. In addition, similarly to previous literature on 

word processing (Wheat et al., 2010; Woodhead et al., 2012), the current findings could 

suggest top-down effects from the inferior frontal gyrus to the ventral occipito-temporal 

cortex during number-string processing. 

Contrary to the bilateral preference for numbers, previous literature has shown a right 

lateralization of the brain activity when processing these symbols. In an EEG 

investigation, Park et al., (2014) reported a double dissociation when comparing single 
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stimuli. While numbers activated right sensors more than letters, letters activated left 

sensors more than numbers. The discrepancy between the studies could be caused by the 

different methodological approaches used in the analyses. While we used a cluster-based 

permutation test taking all the sensors into account, Park and collaborators restricted their 

analysis to two preselected temporal-occipital channels. However, similar to our data, the 

topography of the raw data in their study evidences a bilateral pattern for numbers. In a 

similar manner, Carreiras et al. (2015) observed higher ERP responses to number strings 

over right occipito-temporal regions when comparing with consonant strings. In addition 

to the different methodological approaches used, the nature of the stimuli could also 

explain the discrepancies between studies. In a fMRI study, Abboud et al. (2015) used a 

complex numerosity task and showed a preferential activation for number identification 

in the right inferior temporal gyrus. However, the uncorrected results also revealed 

activation of the homologous left gyrus which suggested a possible role of this 

hemisphere on the identification of numerosity. As mentioned before, the neural response 

to numbers has been difficult to identify with fMRI due to a high rate of signal loss in this 

area. To compensate for that, the authors excluded the voxels with the lowest signal 

strength. This procedure may have hindered bilateral effects and contribute to the 

discrepancies between studies. Future studies which combine high temporal and spatial 

resolution techniques together with whole-brain methodological approaches will help to 

clarify these discrepancies. 

Left hemispheric preference for letters and pseudowords.  According to previous 

literature (Dehaene, 1995; Polk et al., 2002; Reinke et al., 2008; Vartiainen et al., 2011; 

Price, 2012), our data (Experiment 1) show left lateralized preference for single letters 

over the left inferior PFC during the first encoding levels (130-210 ms), when comparing 

with single false fonts.  

As part of the language-processing network, the left inferior prefrontal gyrus is 

implicated, through a top-down processing to the ventral occipito-temporal cortex, in the 

integration of general visual form recognition, especially in the processing of visual word 

forms, (Cai et al., 2010; Wheat et al., 2010; Woodhead et al., 2012). Supported by the 

connectivity biased between the left temporal cortex and the left inferior frontal gyrus 

hypothesis (mentioned earlier), the current results could indicate preferential feedback 

mechanisms between these two regions when processing letter forms. Further studies 

which include connectivity measures will evaluate such a hypothesis.   
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As far as we are aware of, the preferential response of the inferior PFC to letters or 

pseudowords (in comparison with false-fonts and numbers, respectively) is a novel result. 

One of the main reasons of its novelty could be that previous investigations focused their 

analyses only on the posterior regions of the brain. For example, Park et al., (2012) 

restricted their analysis to parietal, occipital and temporal regions of interest (ROI) and 

include only strings of stimuli. Park et al., (2014) restricted their analysis to the posterior 

sensors which showed the largest effects, as described before. Groetheer et al., (2016) 

established regions of interest on the right and left number form areas (covering mainly 

the inferior temporal gyrus), and the iEEG study by Shum et al., (2013) was restricted to 

the location of the intracranial electrodes (which covered mostly right temporal and only 

some left temporal regions). However, similar to our results, Carreiras et al., (2015) did 

observe higher ERF amplitudes in the inferior PFC when processing pseudowords than 

when processing consonant strings, suggesting a higher activation of this region for 

higher-pronounceable characters than for less-pronounceable characters. Interestingly, 

the Z-scores shown in their results suggest a potentially preferential neural response for 

pseudowords over the left hemisphere when comparing with strings of numbers (as shown 

in our study).  

In the Experiment 2, pseudowords elicited a left lateralized preference when compared 

with number strings. Interestingly, this dissociation emerged in later time-windows (264-

500 ms) and showed the largest effect over the left temporal cortex, including the fusiform 

gyrus, and the left inferior PFC. The left inferior temporal cortex is shown to be sensitive 

to visual word forms (McCandliss et al., 2003). Furthermore, the preferential recruitment 

of the left fusiform and temporal gyri during word form processing is a robust finding in 

the literature (Cohen et al., 2002; Binder et al., 2006; Baker et al., 2007;) and is consistent 

across orthographies (Dehaene and Cohen, 2011). Park et al., (2012, 2014) have recently 

investigated with fMRI and EEG how the brain dissociates between letters and numbers. 

Similar to our results, their participants also recruited the left fusiform and inferior 

temporal gyri more when processing letters than when processing numbers. 

Importantly, the dissociation between pseudowords and number strings in our study was 

more prominent starting approximately 264 ms. This time-window is coincident with the 

so-called P2 event-related potential component. This ERP component is a positive 

deflection starting approximately 250 ms after stimulus onset and is modulated by the 
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linguistic aspects of the stimuli, such as phonology and semantics (Barber et al., 2004, 

Carreiras et al.,2005; Hauk et al., 2006). During lexical decision tasks, pseudowords elicit 

larger amplitude responses than words in the P2 component (Hauk et al., 2006). During 

semantic tasks, words elicit larger amplitudes than consonant strings (McCandliss et al., 

1997). Based on this, our results showing a difference in the amplitude between 264-500 

ms between pseudowords and number strings but not between single letters and numbers 

could suggest that the visual cortex may be implicitly extracting phonological or semantic 

information when processing word-like stimuli. Park et al., (2014) obtained a similar 

pattern of results and elegantly suggested that such results could be explained by a later 

stage of a hierarchy of local combination detectors (Dehaene et al., 2005). Under this 

hypothesis, combinations of characters (such as pseudowords) may be processed more 

effectively by neurons in the higher levels of the visual-word-form processing, while 

neurons in the lower levels may process single characters. Such a hypothesis should be 

addressed in future investigations.  

Right occipito-temporal preference for false-fonts. It is noteworthy to mention that false-

font strings preferentially recruited right occipito-temporal regions between 171-262 ms 

when comparing with pseudowords (Experiment 2). At a first glance, these results might 

seem somewhat unexpected. However, enhanced activity to non-nameable stimuli such 

as pseudowords has been previously observed (Park et al., 2014; Park, Hebrank, et al., 

2012; Vinckier et al., 2007) over regions of the right hemisphere (Beason-Held et al., 

1998; Haxby et al., 1995).  

As mentioned earlier, the occipito-temporal region is a brain area sensitive to visual word 

forms. It is an area where categories, like words, are first identified and where the 

linguistic aspects of the stimuli commence after to be extracted. This pattern of activity 

seems to suggest that unfamiliar objects require more processing for identification and 

categorization (Appelbaum et al., 2009; Herdman, 2011; Herdman and Takai, 2013). 

Potentially, the localization and latency of the effects could potentially show an inefficient 

(and implicit) extraction of phonological or semantic information from the unknown 

stimuli. On a similar view and consistent with the study by Park, et al. (2012) in which 

they observed a larger fMRI response to false fonts than to letters in a study of 

monozygotic twins, the current results could be explained by an inefficiency in the 

template-matching process for unfamiliar stimuli that propagates through later phases of 

the processing.  
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Conclusion. The results obtained in the current study suggest that the visual cortex (and 

importantly also prefrontal regions) discriminates between numbers, letters and false-

fonts at early stages of the visual encoding. Our data show the importance of combining 

high temporal and spatial resolution techniques in order to fully understand the 

mechanisms underlying such dissociation. Together with previous evidence, our data 

point towards a new example of acquired category-specific responses in the human visual 

system. Future investigations will evaluate the current results and will contribute to the 

knowledge on how experience tunes the visual system for category recognition. 
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