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Abstract

Neuroimaging software methods are complex, making it a near certainty that some imple-

mentations will contain errors. Modern computational techniques (i.e., public code and data

repositories, continuous integration, containerization) enable the reproducibility of the analy-

ses and reduce coding errors, but they do not guarantee the scientific validity of the results.

It is difficult, nay impossible, for researchers to check the accuracy of software by reading

the source code; ground truth test datasets are needed. Computational reproducibility

means providing software so that for the same input anyone obtains the same result, right or

wrong. Computational validity means obtaining the right result for the ground-truth test data.

We describe a framework for validating and sharing software implementations, and we illus-

trate its usage with an example application: population receptive field (pRF) methods for

functional MRI data. The framework is composed of three main components implemented

with containerization methods to guarantee computational reproducibility. In our example

pRF application, those components are: (1) synthesis of fMRI time series from ground-truth

pRF parameters, (2) implementation of four public pRF analysis tools and standardization of

inputs and outputs, and (3) report creation to compare the results with the ground truth

parameters. The framework was useful in identifying realistic conditions that lead to imper-

fect parameter recovery in all four pRF implementations, that would remain undetected

using classic validation methods. We provide means to mitigate these problems in future

experiments. A computational validation framework supports scientific rigor and creativity,

as opposed to the oft-repeated suggestion that investigators rely upon a few agreed upon

packages. We hope that the framework will be helpful to validate other critical neuroimaging

algorithms, as having a validation framework helps (1) developers to build new software, (2)

research scientists to verify the software’s accuracy, and (3) reviewers to evaluate the meth-

ods used in publications and grants.
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Author summary

Computer science provides powerful tools and techniques for implementing and deploy-

ing software. These techniques support software collaboration, reduce coding errors and

enable reproducibility of the analyses. A further question is whether the software estimates

are correct (valid). We describe a framework for validating and sharing software imple-

mentations based on ground-truth testing. As an example, we applied the framework to

four separate applications that implemented population receptive field (pRF) estimates for

functional MRI data. We quantified the validity, and we also documented limitations with

these applications. Finally, we provide ways to mitigate these limitations. Implementing a

software validation framework along with sharing and reproducibility is an important

step for the complex methods used in neuroscience. Validation will help developers to

build new software, researchers verify that the results are valid, and reviewers to evaluate

the precision of methods in publications and grants.

This is a PLOS Computational Biology Methods paper.

Introduction

Neuroimaging software methods are based on complex architectures, thousands of lines of

code, and hundreds of configuration parameters. Consequently, it is a near certainty that some

implementations will contain errors. Modern computational techniques (i.e. public code and

data repositories, continuous integration, containerization) enable the reproducibility of the

analyses and the reduction of coding errors, but do not guarantee the scientific validity of the

results.

Computational reproducibility—enabling anyone to obtain the same result for the same

input data and code—is one important component of scientific reproducibility [1,2]. Compu-

tational generalization means obtaining the same result for the same input data and different

software implementations. Computational validity is the further test as to whether the result is

correct. For reviewers and scientists alike, it is impossible to establish validity by just reading

code.

One expects that any public domain software has been validated in some ways by the devel-

opers, and we are sure that this is true for the software we analyze here. We suggest that it is

important, however, that the specific validation tests be made explicit to the user. There are

many parameters and many experimental conditions in neuroimaging. By making the valida-

tion tests explicit, investigators can have a much better understanding of whether the software

is likely to be valid for their application.

Related literature

Validating neuroimaging software has been approached in several different ways. We can con-

sider MRI phantoms as the first validation system. Phantoms, commonly used in quantitative

MRI software development, provide ground truth data, [3–5].

There have been other validation efforts in diffusion weighted imaging (DWI) as part of

public challenges, such as the Tractometer [6–8], an online tract validation system based on

the HCP dataset [9] and a simulated DWI diffusion generated with the tool Fiberbox (http://

docs.mitk.org/2014.10/org_mitk_views_fiberfoxview.html).
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In addition, investigators have implemented an important part of fMRI validation: software

to synthesize realistic fMRI responses data, some for generic task activations [10–13], others

more specifically targeted, for example in studies of scotomas [14,15], the impact of eye move-

ments [16], or temporal integration [17]. See here for a review of functional MRI simulations

[18].

Types of validation

The term ‘validation’ has been used to describe two different types of analyses. The first type,

empirical validation, analyzes the reliability of measurements across repeated measures. A

high degree of reliability is sometimes thought of as a validation of the method. There are sev-

eral publications studying the reliability of the pRF measurements [19–24]. Using goodness of

fit, test-retest, replication or stimulus and task variation designs, these studies provide impor-

tant insights into reliability of the measurements.

The second type, the one we implement here, is software validation. This type of validation

helps us understand whether the software accurately recovers the ground-truth parameters in

a variety of different conditions. As we explain below, by using the validation framework to

study pRF software, we learned that the array of pRF tools have a large dependency on the

HRF model used in the analysis tool. In typical experimental protocols, the parameter esti-

mates are incorrect unless the empirical HRF matches the HRF used in the tool, a limitation

that is not revealed by empirical validation since a result can be repeatable but wrong. This is

one of several reasons we advocate for developing software validation frameworks for all

important neuroimaging software tools.

The validation framework

Here, we describe a computational framework for validating and sharing software implemen-

tations (Fig 1). The framework is divided into three parts. The x-Synthesize part comprises

methods to produce synthetic test data with known parameters in a defined file format. The

x-Analyze part uses the test data as inputs to the algorithms under test. These algorithms are

incorporated in containers that accept test data inputs and produce output files in a well-

defined format. The x-Report tools compare the outputs with the ground-truth parameters in

the x-Synthesize part. The x-Analyze containers can also analyze experimental rather than syn-

thetic data placed in the input file format. This framework permits the user to compare multi-

ple algorithms in different containers.

We use ‘x’ as a placeholder that is replaced by the name of a specific analysis. The frame-

work and methods can be extended to many neuroimaging tools. In this paper, we

Fig 1. Validation framework overview. The framework is composed of three main components. x-Synthesize: synthesis of neuroimaging data from ground truth

parameters; x-Analyze-TOOL: implementation of analysis tools and standardization of inputs and outputs; x-Report compares the tool outputs the ground truth

parameters. The three components are implemented within containers. Container parameters are specified by JSON text files.

https://doi.org/10.1371/journal.pcbi.1007924.g001
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implemented population receptive field (pRF) methods for functional MRI data. The main

motivation of beginning with pRF methods is the possibility of accurately generating synthetic

data because the pRF is a model. Hence, we can ask how accurately the software recovers the

model parameters. Following the guidelines, the pRF validity framework is composed of three

main components: (1) synthesis of fMRI time series from ground truth pRF parameters, (2)

implementation of four pRF analysis tools and standardization of inputs and outputs, and (3)

tool-independent report creation to compare the results with the ground truth parameters.

The different components are implemented using containerization methods to guarantee

computational reproducibility. All components and testing datasets are publicly available. A

user can run the framework with only Docker and a text editor installed.

Methods

The software we developed comprises two main components: the open-source code repository

(https://github.com/vistalab/prfmodel) and the containers (Docker/Singularity). The contain-

ers we implemented for the population receptive field analysis can be installed with one com-

mand (‘docker pull’). Users who prefer Singularity can convert the containers from Docker to

Singularity (https://github.com/singularityhub/docker2singularity). The input/output of every

element of the framework follows the Brain Imaging Data Structure (BIDS) format [25]. This

means that x-Synthesize will generate synthetic data in BIDS format, and that the output of the

x-Analyze and x-Report will be in BIDS derivatives format.

The following sections describe the three parts of the framework. The case we describe tests

population receptive field (pRF) algorithms: mrVista (https://github.com/vistalab/vistasoft),

AFNI (https://github.com/afni/afni), Popeye (https://github.com/kdesimone/popeye), analy-

zePRF (https://github.com/kendrickkay/analyzePRF). These four are a subset of the public

implementations (https://github.com/vistalab/PRFmodel/wiki/Public-pRF-implementations).

It is our intention for the framework to be applicable to many other analyses.

Synthesize

The prf-Synthesize container generates synthetic BOLD time series data. We use the naming

convention x-Synthesize where ‘x’ is replaced by the algorithm under test. For example, glm-

Synthesize, dti-Synthesize, csd-Synthesize, and so forth. See S1 File for a basic How to use
guide.

The synthetic BOLD signal is created using the forward model that is implicit when search-

ing for pRF parameters. The forward model comprises several components (Fig 2). The stimu-

lus is represented by a sequence of 2D binary images that represent the presence (1) or absence

(0) of contrast at each location. The two-dimensional receptive field (RF) is also represented as

a matrix; the inner product of the stimulus and the RF matrix produces a response time series.

Fig 2. prf-Synthesize: Simulation of ground-truth BOLD data with a forward model. The prf-Synthesize container reads the JSON parameter file to define the RF

parameters, and a NIfTI file to specify the stimulus contrast time series. The noise-free BOLD signal is calculated from the inner product of the stimulus and RF, which

generates a time series. This time series is convolved with the HRF to obtain the noise-free BOLD signal. A parameterized noise model produces a signal that is added to

generate the synthetic BOLD signal. RF: Receptive field; HRF: Hemodynamic response function. BOLD: blood-oxygen-level dependent.

https://doi.org/10.1371/journal.pcbi.1007924.g002
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The time series is convolved with the hemodynamic response function (HRF) to obtain the

noise-free BOLD signal. A noise model produces a signal that is added, generating the synhte-

tic BOLD signal.

Each of these components is controlled by explicit parameters that are available through the

prf-Synthesize interface. The outputs at each stage of the calculation can be visualized and

modified if the user chooses to install the Matlab code (see Supporting Information for

details).

Receptive Field. The population receptive field is represented as a 2D function over the

input image (stimulus). The simplest and most widely used pRF models are implemented in

prf-Synthesize (Fig 2-RF). The Gaussian receptive field has five parameters:

Giðx; y; s1; s2; yÞ ð1Þ

• The center position of the receptive field (x, y).

• The standard deviations (σi) of the two axes of the ellipse

• The angle (θ) of the main axis (larger sigma). (Zero for a circular receptive field, σ1 = σ2)

In addition to the Gaussian, we implemented a Difference of Gaussians (DoG) model. In

this case, there is also a relative amplitude for the center and surround Gaussians

DoG ¼ Gcðx; y; s1; s2; yÞ � aGsðx; y; s1; s2; yÞ ð2Þ

The validation tests in this paper were performed only for the circular, single Gaussian

model (σ1 = σ2,θ = 0). The code is more general and in the future we plan to use this framework

to test other receptive field models (anisotropic, difference-of-Gaussian).

Stimulus. We simulate visual stimuli using the methods described on this web page

(https://kendrickkay.net/analyzePRF/). That code generates a binary stimulus that represents

the locations where there is non-zero stimulus contrast. The default stimulus represents 20 deg

of visual angle and is stored as a (row, col, time) tensor with 101 row and column samples and

200 temporal samples. The stimulus parameters can be adjusted using the entries in the JSON

file that is the input to prf-Synthesize. The default stimulus is a bar that sweeps through the

visual field in multiple directions and includes some blank periods. The default timing param-

eters are set to a 200 sec presentation with a sampling of 1 sec.

Hemodynamic Response Function (HRF). The default HRF is the sum of two Gamma

probability distribution functions,

xða� 1Þexpð� bxÞ ð3Þ

Each Gamma distribution has two parameters, and a third parameter defines the relative

scaling. As we show below, it is quite significant that different tools implement different HRFs,

either in their parameters or in their functional form. We explore the impact of the HRF exten-

sively below.

Noise models and parameter selection strategies. We implemented three types of addi-

tive noise: white noise, physiological noise (cardiac and respiratory) and low frequency drift

noise [10,11,18,26,27]. The level of the white noise is controlled by a single parameter that sets

the amplitude. Respiratory, cardiac and low-frequency noises are each controlled by four

parameters: frequency, amplitude and a jitter value for frequency and amplitude. The jitter

value modifies the frequency and amplitude so that each time the noise model is run the

parameters values are randomized.
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For the analyses below we simulated the BOLD time series at three noise levels (Fig 3). We

selected the noise levels by analyzing the measured BOLD time series from a participant who

viewed 8 repetitions of a large-field on/off contrast stimulus. The BOLD data were sampled

every 1.5 seconds, each cycle comprised 24 seconds (0.042 Hz) and consisted of 22 axial slices

covering the occipital lobe, with 2.5 mm isotropic voxels. The experiment was repeated four

times. Three gray matter voxels were selected and the range of noise levels in these voxels were

used to set the range of noise levels in the simulation (the fMRI data are available at https://osf.

io/3d8rp/).

These three reference voxels were selected using an automated procedure. First, grey matter

voxels were identified whose mean BOLD signal exceeded 75% of the total mean BOLD signal.

Second, from this set we selected voxels with high local coherence values. The coherence at

each voxel was calculated by dividing the amplitude at the stimulus frequency by the mean

amplitude of the frequencies in a window around the stimulus frequency. The amplitude spec-

trum of the BOLD signal of a voxel with high coherence has a local peak at the stimulus fre-

quency, 0.042 Hz. The amplitude at the stimulus frequency in this example is about 10x higher

than the expected noise amplitude. The simple on/off stimulus generates significant responses

in large regions of the occipital lobe. We selected voxels that responded significantly to the

stimulus, at least 80% of the maximum coherence.

Third, the BOLD signal was converted to percent signal change (PSC) by subtracting and

dividing each time series by its mean. We selected the voxels with signal percent change

between 8% and 12%. The contrast was calculated as the mean between the maximum and

minimum values of the time series. Fourth, noise was measured in the surviving voxels as the

difference between the BOLD signal and an 8 cycle sinusoidal fitted to the signal. We selected

3 voxels based on their noise distributions, at 95%, 45% and 10% (Fig 3A) of the voxel with the

smallest noise level. Fig 3B shows the mean value of the 3 selected voxel time series and the cor-

responding fitted sinusoidal. Signal to noise ratio (SNR) was calculated by the ratio of the root

mean squared error of the signal (the fitted sinusoidal) and the noise (time series minus the fit-

ted sinusoidal).

Based on these values, we found three parameter settings that correspond to the low- mid—

and high-noise levels in the prf-Synthesize tool (Fig 4). These parameters can be set by the user

as well. The levels shown in the figure correspond to a single acquisition of the time series. It is

Fig 3. Noise parameter estimation. We analyzed BOLD data collected with an on-off visual contrast stimulus (8 cycles/run, four repetitions). Noise was assessed by

comparing the BOLD time series with a harmonic at the same frequency. A) The probability density functions of the noise values of three voxels with low (green), mid

(blue) and high (red) noise. B) The colored curves are the mean BOLD time-series plotted as percent modulations (mean of the four repetitions). The black curves are

the eight cycle harmonic fit to the data. The noise is the difference between the two. The blue curve is the middle of the noise level found in visual cortex. The other two

curves show low and high noise examples that are often found in real measurements. Low noise: SNR = 6.55dB; mid noise: SNR = -3.03dB; high noise: SNR = -6.68dB.

https://doi.org/10.1371/journal.pcbi.1007924.g003

PLOS COMPUTATIONAL BIOLOGY Validation framework: PRF case

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007924 June 25, 2020 6 / 18

https://osf.io/3d8rp/
https://osf.io/3d8rp/
https://doi.org/10.1371/journal.pcbi.1007924.g003
https://doi.org/10.1371/journal.pcbi.1007924


common practice to average several scans to increase SNR. For example, averaging 3 mid-

noise level time series increases the SNR 2–3 dB.

Implementation: Analyze

The prf-Analyze containers implement the pRF tools. The inputs to the container are defined

using standard file formats and directory organization. The software repository includes a base

container specification so that a pRF tool developer can insert their code and test the imple-

mentation using our test framework. To this point, we have implemented four different prf-

Analyze containers:

1. prf-Analyze-vista: the vistasoft’s pRF Matlab implementation, heavily based on a graphical

user interface.

2. prf-Analyze-afni: AFNI’s command line based C++ pRF implementation.

3. prf-Analyze-aprf: analyzePRF is Kendrick Kay’s PRF Matlab implementation.

4. prf-Analyze-pop: Popeye is a pRF python implementation.

Each container takes the stimulus file and the BOLD time series represented as NIfTI files

and organized using the BIDS file naming convention and directory tree [25]. This is the for-

mat that is generated by prf-Synthesize but could just as well be data from an empirical study.

The prf-Synthesize tools are designed to work with BOLD data following general pre-process-

ing, including: removal of the initial volumes to allow longitudinal magnetization to reach

steady-state; correction of differences in slice acquisition times; correction for spatial distor-

tion; motion correction. See the Supporting Information for more information about the prf-

Validation User’s Guide.

In the course of implementing and validating the containers, we identified a few issues that

needed to be corrected with the original downloads. These issues were reported to the develop-

ers and they have updated the code. We note only the issues that might impact results run

using the versions in use prior to mid 2019. Three main issues were related to specification of

the temporal sampling of the HRF (https://github.com/kdesimone/popeye/pull/64) and the

normalization of input BOLD signals (https://github.com/kdesimone/popeye/pull/62) in

Fig 4. prf-Synthesize BOLD signals calculated for a moving bar retinotopy stimulus. (A) The model calculation of a BOLD signal to a typical moving bar stimulus

under the three noise levels. (B) Noise amplitude spectrum for each of the cases in A. (C) The probability density function of the noise values. The simulations match

the noise distributions in Fig 3A. PSC: percent signal change; f: frequency. Low noise: SNR = 5.29dB; mid noise: SNR = -0.51dB; high noise: SNR = -4.29dB.

https://doi.org/10.1371/journal.pcbi.1007924.g004
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popeye, and an error in the formula of the ellipse in AFNI (https://afni.nimh.nih.gov/pub/dist/

doc/misc/history/afni_hist_BUG_FIX.html). An extension was added to mrVista to enable

using synthetic data comprised of one-dimensional NIfTI data format.

Report

The third component of the framework, prf-Report container, compares the prf-Analyze-tool

outputs with the parameters that specified the ground-truth values used by prf-Synthesize. The

input to prf-Report report is a json file that specifies the location of the ground-truth and ana-

lyzed data files. The prf-Report container reads these files and creates a summary file that

includes the key ground-truth parameters and the corresponding prf-Analyze estimates. The

container also generates summary plots that assess algorithm performance. These plots are

stored in scalable vector graphics (SVG) format and images in portable network graphics

(PNG) format that are readily usable in any report or web-site. See the Supporting Information

for the prf-Validation User’s Guide.

Results

We analyzed the different tools using synthetic data with and without noise. The main conclu-

sions are observable in the noiseless analysis and also valid for the noise case. The main value

of the noise analysis is to illustrate the change in the size of the confidence intervals of the

parameter estimates as noise increases.

Noiseless analysis

Accuracy. As a minimum requirement, we expect that the software will return an accurate

estimate of the parameters when the synthetic signal is (a) noise-free, and (b) generated using

the same assumptions by the analysis, including a matched HRF. Fig 5 compares the four esti-

mates of a circular population RF located at (3,3) deg and with a size of 2 degree radius.

When first downloaded the algorithm parameters and functionalities differ. For example,

some of the algorithms fit both the pRF parameters and the HRF function. Others include a

compressive spatial summation by default. Some of the algorithms permit fitting of more com-

plex pRF shapes (non-circular, difference of Gaussians). Before exploring these additional fea-

tures—and they should be explored—we decided to validate the basic algorithm. The

comparisons in Fig 5 were performed with a base case that all of the tools can analyze: a

Fig 5. prf-Report for noise-free position and size estimation. prf-Synthesize created BOLD signals from a moving bar stimulus and a gaussian RF centered in x = 3

deg, y = 3 deg, with a 1 SD radius of 2 deg. Four prf-Synthesize tools estimated the center and size. In each case the noise-free BOLD signals were calculated using the

same HRF implemented in the tool. All tools estimated parameters using the linear pRF model.

https://doi.org/10.1371/journal.pcbi.1007924.g005
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circular Gaussian pRF, a linear model, and an assumed HRF [28]. This is a simple test that all

the tools can fit, but we emphasize that this was not generally the default settings when the soft-

ware was downloaded.

HRF mismatch. Every prf-Analyze tool assumes a default HRF. The analysis in Fig 5 was

constructed so that the HRF in the prf-Synthesize and prf-Analyze tool matched. For that anal-

ysis, we generated a different synthetic BOLD signal for each tool. In this section, we study the

performance of the tools when the HRF assumption does not match the prf-Synthesize

assumption. We generated BOLD time series using four different HRFs that systematically dif-

fered in their width (Fig 6A). We used prf-Validation for these different synthetic data. There

is a large and systematic bias in the size estimate that depends on the width of the HRF (Fig

6B). There is a correspondence between the width of the HRF used to synthesize the BOLD

signal and the size of calculated pRF: if the width of the HRF used to synthesize is smaller than

the width of the HRF assumed by the tool, then the tool will underestimate the size of the pRF

(and the opposite is true as well). The Boynton HRF [29] was selected for illustration purposes,

because the lack of undershoot made the example clearer, but similar effects were observed

with all HRF shapes. We observed mismatch in eccentricity and polar angle as well, but at

magnitudes of about a tenth of a degree. For this stimulus and the noise-free case, we consider

the HRF effect on polar angle and eccentricity to be negligible.

Noise analysis

We added three levels (low, mid, high) of white, physiological and low drift noise to the origi-

nal noise-free signals, and we synthesized 100 repetitions per each. Each repetition was differ-

ent due to the random nature of the white noise and the jitter introduced to the amplitudes

Fig 6. RF size dependence on the HRF shape (A) Four all-positive HRFs with different widths. (B) The ground-truth

signals encoded a circular pRF centered at (3, 3) deg with a radius (1 SD of the Gaussian) of 2 deg (dashed, blue

circles). The solid colored circles show the estimated pRF calculated with a representative analysis tool (analyzePRF);

all prf-Analyze tools have the same pattern. There is a systematic relationship between the HRF width of the estimated

pRF radius.

https://doi.org/10.1371/journal.pcbi.1007924.g006
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and frequencies. In Fig 7, we show the middle noise case, and illustrate the effect of noise on

the pRF estimates (jitter within each plot) and the effect of the relation between the HRF

assumed in analysis and the HRF used in the synthesis (differences between plots). Here we

selected illustrative center and radius values (x = 3, y = 3, radius = 2deg). We tested other com-

binations of x, y, and radius in supporting Figures B-E. In all cases, we show only the 90% con-

fidence interval of the values, due to the presence of outliers in some of the analysis tools. The

centered dash-dot ellipse represents the spread of the centers. The dashed blue curve is ground

truth.

In fMRI experiments we have no control over HRFs, which differ between people and

across cortical locations. We created a simulation using a range of HRFs for each tool (Fig 8).

The confidence interval of the pRF radius is almost ±2 degrees. This value can change depend-

ing on the size of the ground truth pRF size, but the general pattern is the same.

Fig 7. Noise analysis and HRF dependence. Each column shows the HRF used in pRF-Synthesize to simulate the BOLD time series. The prf-

Synthesize tool created BOLD signals with the typical noise level (mid level, see Fig 4) and a circular RF centered at (3,3) deg and 2 deg radius

(dashed blue circle). Each row corresponds to the pRF-Analyze tool, with its default HRF, that was used to analyze the data. The gray circles show

the central 90% of the estimated RFs. The central ellipsoid includes 90% of the estimated centers (dashed-dot, black). The central black dot shows

the median center location. The HRF used in the synthesis matches the HRF assumed in the analysis in the plots along the diagonal (dashed black

rectangles). Above the diagonal, the synthesis HRF is narrower than the analysis HRF; below the diagonal the opposite is true. For other center and

radius simulations, see supporting Figures B-E.

https://doi.org/10.1371/journal.pcbi.1007924.g007
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HRF dependence

We found that the default HRF assumed in the analysis tool can have a large effect on the size

of the estimated pRF. The effect on eccentricity and polar angle was negligible. This is due in

part to the stimulus design, which included bar sweeps in both directions along several axes

(e.g., left-to-right and right-to-left). If the stimulus were not symmetric (e.g., containing left-

to-right sweeps but not right-to-left), then a mismatch between the HRF assumed by the analy-

sis tool and synthesis tool would have resulted in larger errors in the estimated pRF center

position.

The HRF impact on pRF size estimates raises two main concerns. The most obvious one is

that we cannot compare the absolute size results across tools with different HRF assumptions;

the comparison only makes sense within the same analysis tool. The second and more con-

cerning is that even with the same tool, two participants may have different HRFs, or the same

person may have different HRFs in different locations in the brain [30]. This HRF dependence

has been noted by other investigators who have adopted various means to estimate individual

participant HRFs [24].

There may be many approaches to mitigating the HRF dependence. We describe

approaches here.

Computational mitigation. One approach to reducing the impact of the HRF is to esti-

mate it. There are many ways to approach the HRF estimation. Some investigators allow every

temporal sample to be a free parameter [31,32]. Measuring a subject’s HRF in a separate exper-

iment adopts this approach. Other investigators parameterize the range of HRF possibilities,

using a model with a few parameters (see [30] for a review on alternatives). Some investigators

use independent experiments to estimate the HRF and the pRF; others perform a joint

Fig 8. HRF variation. The synthesized circular pRF was centered at (3,3) deg with a radius of 2 deg. The data were simulated with prf-Synthesize 400 times, and each

time using one of the four prf-Analyze HRFs to synthesize the data. The estimated circular pRFs (gray circles) were calculated using the default HRF implemented in

each tool. Outliers are eliminated by showing only fits within the 90th percentile of the pRF size estimates. The inset shows the probability distribution of the pRF

sizes, where the blue vertical line shows the ground truth (2 deg).

https://doi.org/10.1371/journal.pcbi.1007924.g008

PLOS COMPUTATIONAL BIOLOGY Validation framework: PRF case

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007924 June 25, 2020 11 / 18

https://doi.org/10.1371/journal.pcbi.1007924.g008
https://doi.org/10.1371/journal.pcbi.1007924


estimation. These alternatives recognize the possibility that the HRF is stimulus dependent, in

which case the estimate from an impulse may not generalize to the estimate from the retinoto-

pic data.

Accurately estimating the HRF in every voxel is challenging and vulnerable to noise. Two

of the prf-Analyze tools, mrVista and Popeye, have an option to fit the HRF parameters in

addition to the pRF parameters. Preliminary validation tests suggest that the effectiveness of

the HRF fitting option, although positive, was small. This is a good direction for future

exploration.

Empirical mitigation. A second approach to reducing the impact of the HRF is to change

the stimulus. Slowing the bar sweep across the screen reduces the impact of the HRF on the

estimated pRF size (Fig 9). The three rates shown in the figure are representative of values

found in recently published measurements [33–35]. When the bar sweep is slowest (38 sec),

the HRF mismatch has much less effect on the estimated pRF size. Selecting this approach sub-

stantially increases the amount of time required to obtain the measurements.

Randomizing the position of the bar, rather than sweeping it across the visual field, also

reduces the impact of the HRF on the estimated pRF size (Fig 10A). The benefit of position-

randomization depends on the specific randomization. It may be possible to find a specific

randomized pattern that optimizes the validity of the pRF size estimate for a particular HRF

and pRF size.

Choosing a randomized bar position, rather than a sweep pattern, comes at the cost of a sig-

nificant loss of contrast in the BOLD response (lower signal-to-noise, Fig 10B). For the sweep

Fig 9. Stimulus duration reduces the impact of HRF variation. Slowing the bar movement through the visual field

reduces the HRF mis-match impact. The three rows extend the calculation in Fig 6, using three bar speeds: 18, 28 and

38 sec per sweep. The bar sweeps were slowed by changing the total duration of the stimulus. For the same TR of 1s,

the same 8 bar sweeps are shown to the subject, effectively doubling the sample points between the fastest and slowest

options. The same results were observed when using TR = 2s for the slowest bar sweep. Other details as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1007924.g009
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patterns the bar systematically passes through the pRF of each voxel, driving the response to its

maximum due to temporal summation from the HRF. For the randomized positions, the bar

is positioned over the pRF only briefly, consequently reducing the response contrast. The loss

of response contrast increases the amount of time required to obtain estimates with a particu-

lar confidence interval.

Discussion

Scientists recognize the tension between using established methods and extending these meth-

ods to make new discoveries. Scientists must have confidence in the validity of the methods

which advocates for a conservative approach to software use: select tools that have been widely

tested within the community. But science is also about exploring new ideas and methods

which advocates for a more liberal approach: try new methods that have the potential to

expand our understanding. In practice, most scientists are advocates of both creativity and

caution.

It is this tension that motivates us to work with the validation framework described in this

paper. We find it too confining to follow the oft-repeated suggestion that investigators rely

upon a few agreed upon packages. But if we are to explore, it is essential to use a testing frame-

work that can help (a) developers to test new software, (b) research scientists to verify the soft-

ware’s accuracy and compare different implementations, and (c) reviewers to evaluate the

methods used in publications and grants. A public validation framework, using reproducible

methods and shared ground-truth dataset, is a useful compromise between caution and

Fig 10. Stimulus randomization reduces the impact of HRF variation. (A) Randomizing the bar positions in time

reduces the HRF mis-match impact. This figure extends the calculation in Figs 6 and 9, using 5 different

randomization seeds. Other details as in Fig 6. (B) Noise-free time series corresponding to bar-sweep stimulus (red)

and randomized stimulus (green). The SNR will be lower due to the randomization of the stimuli.

https://doi.org/10.1371/journal.pcbi.1007924.g010
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creativity. In the future we plan to contribute more ground truth datasets and analyses of pRF

tools, and we also hope to add validations of additional neuroimaging tools. We developed the

containers so that they can accommodate other neuroimaging tools. We hope to work with

others to extend the validation framework to validate tools in diffusion-weighted imaging,

quantitative MRI, ECoG measures, resting-state, and anatomical methods.

Next, to illustrate the usage and utility of the framework with a practical example, we dis-

cuss the contributions of our pRF-Validation implementation.

pRF-Validation

The pRF-Validation framework exposed meaningful implementation differences. The differ-

ences that we discovered would lead investigators to report different quantitative parameter

estimates from otherwise equivalent data. This finding illustrates the value of the validation

framework in making meaningful comparisons across labs. We can reduce conflicts that arise

when two labs report differences that arise from the prf-Analyze tool rather than empirical

measurements.

We illustrate the framework with population receptive field (pRF) tools because there are

many: We found 11 public pRF implementations (https://github.com/vistalab/PRFmodel/

wiki/Public-pRF-implementations). It is likely that extending the validation framework to test

the additional prf-Analyze tools will reveal other meaningful differences. We hope that making

the ground truth datasets and the synthesis and analysis containers available to the community

will help software developers who are creating new methods, and researchers to have confi-

dence in their tool choice.

Using pRF-Validation we made several observations that can be used to interpret the litera-

ture and inform future experimental designs. First, we discovered and reported issues in some

implementations. Second, there is a significant dependence of the pRF size estimate on the

HRF, and the HRF model differs significantly between implementations. This should be

accounted for when comparing numerical estimates of pRF size using the different tools. We

found no significant effect on position estimates of the pRF, and we described different

approaches to mitigating the impact of uncertainty about the HRF using both computational

and empirical means.

Center location versus size. We found the median polar angle and eccentricity errors are

little not affected by HRF differences (see Figs 7 and 8). This might be in line with other reports

on center location reliability [19–23].

Mitigation strategies. Validating the software using different types of stimuli clarified

important issues. Randomizing the position of the stimuli is useful for mitigation of the

unwanted effects of HRF variation, but it produces a lower SNR in the response compared to a

stimulus that continuously sweeps through the visual field [23]. If the subject’s HRF can be

accurately estimated—say by an independent measurement—then the continuous sweep may

be preferable. Otherwise, a randomized presentation may be preferred. Further, we learned

that differences between parameter estimates from continuous and randomized presentations

are to be expected based on the software methods and should not be attributed to psychologi-

cal effects such as attention [23,36].

Comparison of models. We only used circular models to illustrate the usage of the soft-

ware validation framework, but the framework can be used to compare circular to elliptical

Gaussians or to Difference of Gaussians [22,24]. We can also ask what kinds of stimuli would

be best-suited for distinguishing different models, similar to work in other computational

domains [37]. We observe that not all packages estimate pRF-s near stimulus edges; this may

not be a measurement issue, it may be a software design issue.
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Outliers

Because pRF models are not linear with respect to their parameters, the solutions are found by

non-linear search algorithms. The algorithms sometimes return non-optimal local minima. It

is not unusual for many of the algorithms we tested to return extreme cases that are outliers.

Some of the algorithms mitigate this problem by placing a bound on the returned estimate.

Other algorithms incorporate resampling, running the search with different starting points

and testing for agreement between the returned parameters.

The simulations included 100 repetitions for the same voxel, with randomized noise. In

these simulations the median result is close to the real solution. We assume that this approxi-

mates what is observed with real data; the median of the results yields the right solution but

that there are outliers. In practice we suggest that repeating the pRF analysis with different

seeds three or four times will approximate the median solution. Alternatively, it is possible to

run the analysis by adding a small amount of noise to every real fMRI time series and report

the median result.

There is another approach which we have not yet seen implemented. In many parts of visual

cortex nearby voxels will have similar pRF parameters. When this is known to be true, it is pos-

sible to increase the effective SNR of the measurements by including an expectation that the

estimates from nearby voxels will be similar.

Guiding experimental design

We are using the tool as a simulator to design new types of stimuli and experiments prior to

data acquisition. For example, here we used the tool as a simulator to identify the two empiri-

cal methods for mitigating the unwanted impact of the unknown HRF. This approach may

also be useful when making a stimulus and experimental design choices. The prf-Synthesize

and prf-Analyze tools are helpful for assessing whether the design will support a meaningful

test of a specific hypothesis.

Limitations

Validation testing provides an opportunity to consider several limitations of the population

receptive field methods. We comment on these first, and then we make some observations

about the validation framework itself.

Noise and HRF stimulus-dependence. We estimated the noise in the BOLD signal from

an on/off experiment. We are not sure that this noise estimate is perfectly matched to the noise

in the retinotopic measurement. This is true for both the signal amplitude and the correlation.

In particular, the time series are synthesized independently. We expect that adjacent voxels in

the BOLD measurements generally have correlated noise. Incorporating this spatial correlation

may be useful. Moreover, we assumed additive noise but there may also be multiplicative

noise, perhaps due to variations in attention or arousal [38]. In the future, it may be useful to

express certain types of noise with respect to the input units, such as eye movements, rather

than output units (% BOLD). As noted earlier, the HRF may be stimulus dependent, it may

vary across the visual cortex, and it may differ significantly between participants.

prf-Analyze parameter selection. We made a best-faith effort to optimize the configura-

tion parameters, sometimes consulting with the authors. Further, in creating the Docker con-

tainers we use a JSON file that enables the user to configure the prf-Analyze tools. There is

room to improve the documentation of the parameters in order to help researchers use the

tools more effectively. The validation framework supports the documentation because users

can vary parameters and explore the consequences.
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Creating containers. Exploring the validation framework is simple for most users: they

need only a text editor and Docker. It would be desirable to make contributions to the valida-

tion framework equally simple. At present contributing a new prf-Analyze tool involves the

following steps. If the pRF tool is implemented in Python, the developer must configure a

Docker container that includes all of the required dependencies. If the tool is implemented in

Matlab, the source code must be compiled and placed in a Docker container that includes the

Matlab run-time environment (we provide this for Matlab 2018b). In both cases, the tool must

read inputs and write outputs according to the BIDS standard. We provide functions for this

purpose (see the prf-Validation Guide).

Conclusion

We developed a software validation framework that is applicable in principle to many neuro-

imaging software tools. By its reliance on containerization techniques and BIDS, the frame-

work is replicable and flexible. Container technology is a flexible industry standard in that

software written in almost any language can be containerized and run on any operating sys-

tem. For example, the pRF methods we analyzed were written in Python, C, and Matlab and

the containers were executed on several operating systems. BIDS is a helpful data-organization

standard for most MRI modalities that gives inputs and outputs of the framework a clear

interpretation.

Considering future development, we note that implementing the synthesis component is

deeply related to creating a model from stimulus to experimental measurement. As we develop

better synthesis tools, we are building a model of the system response. This validation frame-

work, nominally designed to improve software, also advances us towards the fundamental goal

of creating computable models of the experiments.
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27. Thielen J, Güçlü U, Güçlütürk Y, Ambrogioni L, Bosch SE, van Gerven MAJ. DeepRF: Ultrafast popula-

tion receptive field mapping with deep learning. bioRxiv. 2019. p. 732990. https://doi.org/10.1101/

732990

28. Dumoulin SO, Wandell B a. Population receptive field estimates in human visual cortex. Neuroimage.

2008; 39: 647–660. https://doi.org/10.1016/j.neuroimage.2007.09.034 PMID: 17977024

29. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic reso-

nance imaging in human V1. J Neurosci. 1996; 16: 4207–4221. https://doi.org/10.1523/JNEUROSCI.

16-13-04207.1996 PMID: 8753882

30. Lindquist MA, Meng Loh J, Atlas LY, Wager TD. Modeling the hemodynamic response function in fMRI:

efficiency, bias and mis-modeling. Neuroimage. 2009; 45: S187–98. https://doi.org/10.1016/j.

neuroimage.2008.10.065 PMID: 19084070

31. Glover GH. Deconvolution of Impulse Response in Event-Related BOLD fMRI1. Neuroimage. 1999; 9:

416–429. https://doi.org/10.1006/nimg.1998.0419 PMID: 10191170

32. Goutte C, Nielsen FA, Hansen LK. Modeling the haemodynamic response in fMRI using smooth FIR fil-

ters. IEEE Trans Med Imaging. 2000; 19: 1188–1201. https://doi.org/10.1109/42.897811 PMID:

11212367

33. Alvarez I, de Haas B, Clark CA, Rees G, Schwarzkopf DS. Comparing different stimulus configurations

for population receptive field mapping in human fMRI. Front Hum Neurosci. 2015; 9: 96. https://doi.org/

10.3389/fnhum.2015.00096 PMID: 25750620

34. Gomez J, Drain A, Jeska B, Natu VS, Barnett M, Grill-Spector K. Development of population receptive

fields in the lateral visual stream improves spatial coding amid stable structural-functional coupling.

Neuroimage. 2019; 188: 59–69. https://doi.org/10.1016/j.neuroimage.2018.11.056 PMID: 30508682

35. Anderson EJ, Tibber MS, Schwarzkopf DS, Shergill SS, Fernandez-Egea E, Rees G, et al. Visual Popu-

lation Receptive Fields in People with Schizophrenia Have Reduced Inhibitory Surrounds. The Journal

of Neuroscience. 2017. pp. 1546–1556. https://doi.org/10.1523/JNEUROSCI.3620-15.2016 PMID:

28025253

36. Infanti E, Schwarzkopf DS. Mapping sequences can bias population receptive field estimates. Neuro-

image. 2020; 211: 116636. https://doi.org/10.1016/j.neuroimage.2020.116636 PMID: 32070751

37. Wang Z, Simoncelli EP. Maximum differentiation (MAD) competition: a methodology for comparing

computational models of perceptual quantities. J Vis. 2008; 8: 8.1–13.

38. Goris RLT, Movshon JA, Simoncelli EP. Partitioning neuronal variability. Nat Neurosci. 2014; 17: 858–

865. https://doi.org/10.1038/nn.3711 PMID: 24777419

PLOS COMPUTATIONAL BIOLOGY Validation framework: PRF case

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007924 June 25, 2020 18 / 18

https://doi.org/10.1371/journal.pone.0114054
https://doi.org/10.1371/journal.pone.0114054
http://www.ncbi.nlm.nih.gov/pubmed/25463652
https://doi.org/10.1016/j.neuroimage.2016.09.013
http://www.ncbi.nlm.nih.gov/pubmed/27620984
https://doi.org/10.1016/j.neuroimage.2017.09.008
http://www.ncbi.nlm.nih.gov/pubmed/28890416
https://doi.org/10.1038/sdata.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27326542
https://doi.org/10.1016/j.neuroimage.2016.09.008
https://doi.org/10.1016/j.neuroimage.2016.09.008
http://www.ncbi.nlm.nih.gov/pubmed/27612646
https://doi.org/10.1101/732990
https://doi.org/10.1101/732990
https://doi.org/10.1016/j.neuroimage.2007.09.034
http://www.ncbi.nlm.nih.gov/pubmed/17977024
https://doi.org/10.1523/JNEUROSCI.16-13-04207.1996
https://doi.org/10.1523/JNEUROSCI.16-13-04207.1996
http://www.ncbi.nlm.nih.gov/pubmed/8753882
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2008.10.065
http://www.ncbi.nlm.nih.gov/pubmed/19084070
https://doi.org/10.1006/nimg.1998.0419
http://www.ncbi.nlm.nih.gov/pubmed/10191170
https://doi.org/10.1109/42.897811
http://www.ncbi.nlm.nih.gov/pubmed/11212367
https://doi.org/10.3389/fnhum.2015.00096
https://doi.org/10.3389/fnhum.2015.00096
http://www.ncbi.nlm.nih.gov/pubmed/25750620
https://doi.org/10.1016/j.neuroimage.2018.11.056
http://www.ncbi.nlm.nih.gov/pubmed/30508682
https://doi.org/10.1523/JNEUROSCI.3620-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/28025253
https://doi.org/10.1016/j.neuroimage.2020.116636
http://www.ncbi.nlm.nih.gov/pubmed/32070751
https://doi.org/10.1038/nn.3711
http://www.ncbi.nlm.nih.gov/pubmed/24777419
https://doi.org/10.1371/journal.pcbi.1007924

