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Preface

The International Workshop on Statistical Modelling (IWSM) is a reference
workshop in promoting statistical modelling, applications of Statistics for
researchers, academics and industrialist in a broad sense. Unfortunately,
the global COVID-19 pandemic has not allowed holding the 35th edition
of the IWSM in Bilbao in July 2020. Despite the situation and following
the spirit of the Workshop and the Statistical Modelling Society, we are
delighted to bring you the proceedings book of extended abstracts.

First, we would like to thank all the authors for their scientific contributions
and congratulate them for the high quality of the extended abstracts. To
keep the spirit of the IWSM, we have compiled them into two parts: Part
I with those extended abstracts selected for oral presentations and Part 11
for poster presentations. A total number of 135 extended abstracts were
submitted, with 62 extended abstracts chosen for oral presentation and 73
for poster presentation. From those, a total of 97 authors have given their
consent for their extended abstracts to be included in the proceedings.

The proceedings could not have been possible without the great work of the
scientific committee who have evaluated and scored all extended abstracts.
We are aware that the work of selecting the extended abstracts for oral or
posters presentations is always arduous, and we would like to thank each
of the members of the Scientific Committee for their incredible work!

A deep thanks to the Executive Committee of the Statistical Modelling
Society for their support and the organisers of the IWSM 2021 in Natal
in Brazil for deferring their edition and allowing us to organise the IWSM
next year in Bilbao.

Also, we would like to thank Maria Durban, Montserrat Fuentes, Yudi
Pawitan, Virginie Rondeau, Stijn Vansteelandt and Virgilio Gémez-Rubio
for having accepted (twice!) our invitation to participate in the workshop.
We are looking forward to having you next year.

Last but not least, we thank the editorial work by Itziar Irigoien and
Joaquin Martinez-Minaya as well as the whole local organising commit-
tee for their full support in the decision to cancel the workshop and their
willingness to accompany us in 2021.

We hope to see you in Bilbao in 2021. Save the date: July 18-23, 2021!

Dae-Jin Lee and Marfa Xosé (Coté) Rodriguez Alvarez
Bilbao, July 2020



Contents

Part 1

ADAM AND OELSCHLGER: Hidden Markov models for multi-scale
time series: an application to stock market data.................
ASCORBEBEITIA et al.: Multivariate conditional dependence. The ef-
fect of institutional quality on competitiveness indicator relations
BERGER AND SCHMID: Tree-Based Modeling of Discrete Subdistri-
bution Hazards........ ..o
BIANCO et al.: Variational Bayesian inference for sparse high—
dimensional Graphical-VAR models............................
BRISENO SANCHEZ AND GROLL: Modelling the effect of rural elec-
trification on employment via component-wise boosted causal dis-
tributional regression ......... ... i i
CAROLLO et al.: Hazard smoothing along two time scales..........
CENDOYA et al.: Non-stationary spatial model for the distribution of
Xylella fastidiosa in Alicante..............coviiiiiiieiinnan...
CEPEDA-CUERVO AND NUNEZ-ANTON: Bayesian Structured Antede-
pendence Model Proposals for Longitudinal Data ...............
CHARAMBA AND SIMPKIN: Bayesian concurrent functional regression
for sparse data. . .......oviriiii
CURRIE: Invariance and the forecasting of mortality II: Standard er-
0=
DALTON AND HUSMEIER: Improved statistical emulation for a soft-
tissue cardiac mechanical model ............. ... ... ... ... .
EI1LERS: Log-ratio diagrams for compositions with zero counts......
EL BARMI AND NUNEZ-ANTON: Modelling proposals in competing
risk studies: empirical likelihood approaches to compare different

FERNANDEZ-FONTELO ET AL.: A new model for multivariate func-
tional data classification with application to the prediction of dif-
ficulty in web surveys using mouse movement trajectories.......

FLOREZ et al.: A computationally efficient estimator for large clus-
tered non-Gaussian data............. ... i i

FRIEDL AND BOHNING: Capture—recapture in case of one-inflation .

GARRIDO et al.: Inference for the overlap coefficient based on P-
splines and Dirichlet process mixtures ..........................

GERHARZ et al.: Deducing neighborhoods of classes from a fitted
classification model ........ ... ... . i

GIOIA et al.: Median bias reduction in cumulative link models ... ..

=]

HH H H =@ =

B B B

8

=l

=



Contents

GRIESBACH et al.: Addressing cluster-constant covariates in mixed
effects models via likelihood-based boosting techniques..........
HOHBERG et al.: Beyond unidimensional poverty analysis using dis-
tributional copula models for mixed ordered-continuous outcomes
HusMEIER AND PAUN: Closed-loop effects in coupling cardiac phys-
iological models to clinical interventions ........................
IRIGOIEN et al.: Genome-Wide Association Studies: a Distance-Based
APPTOACH . .o o
KNEIB et al.: Multivariate Conditional Transformation Models. . ...
LADO-BALEATO et al.: Percentiles curves based on multivariate con-
ditional transformation models. Application to diabetes.........
LANG et al.: Multivariate distributional regression forests for proba-
bilistic nowcasting of wind profiles.............. ... ... ... .
LAWSON et al.: Multivariate Bayesian latent structure modeling of
spatio-temporal health data ....................................
MAIER ET AL.: Density-on-Scalar Regression Models with an Appli-
cation in Gender Economics ..............ccoiiiiiiiiiiia.,..
MARQUES et al.: Introducing non-stationarity to wrapped Gaussian
spatial responses with an application to wind direction..........
MEWS et al.: Continuous-time modelling of the hot hand effect in
basketball free throws ........ ... ... .

MORINA et al.: New statistical model for misreported data.........

OTTING AND GROLL: Regularisation in hidden Markov models with
an application to football data..................................

PEDELI AND FRIED: Intervention Analysis for INAR(1) Models. ...
PETROF et al.: Disease mapping method comparing the spatial dis-
tribution of a disease with a control disease.....................
POHLE et al.: Flexible estimation of the state dwell-time distribution
in hidden semi-Markov models.........................oiue....
SANTOS et al.: Growth curves for multiple-output response variables
via Bayesian quantile regression models.........................
SCHAUBERGER AND TuUTZz: Multivariate Ordinal Random Effects
Models Including Subject and Group Specific Response Style Ef-

SCHNEBLE AND KAUERMANN: Intensity Estimation on Geometric
Networks with Penalized Splines...................coooiiia..

SIMON AND UMLAUF: Scaleable distributional regression...........
STEYER ET AL.: Elastic analysis of irregularly and sparsely sampled

CUTVES - - et et e e ettt e e e e e e e e e e e e e e et
STIVAL AND BERNARDI: Dynamic Bayesian clustering of sport activ-

STONER AND EconNoMou: A Coupled Hidden Markov Model for
Daily Rainfall at Multiple Sites. ... .

vi

HHE E H B

|42

Lol

LS9

g

200

1204

H B
=

D
§



Contents

STROMER et al.: Enhanced variable selection for distributional re-
e NS 1S) (o) o R
TRAN et al.: Serial correlation structures in latent linear mixed mod-
els for analysis of multivariate longitudinal ordinal responses....
VAN DER WURP et al.: A Generalised Joint Count Data Regression
Framework for Modelling Football Scores.......................
WAGNER et al.: Bayesian modelling of treatment effects on panel
OUBCOIIICS « o o vttt ettt et et et e et e
WATJOU AND FAES: Multivariate spatial models for lattice data in
COMPIEX SUTVEYS « o e vttt ettt e ettt e e e e
WIEMANN AND KNEIB: A horseshoe based prior for shrinkage to-
wards a predefined parametric subspace.........................

Part 11

ALDOSSARI et al.: Statistical Modelling of Habitat Selection .......
AMRHEIN AND FucCHS: Stochastic Profiling of mRNA Counts Using
HM O . o
ARMERO et al.: A Bayesian naive Bayes classifier for dating archae-
ological SItes. .. .ottt
BASU et al.: A Sensitivity Analysis and Error Bounds for the Adap-
BIVE LSS0 « o v v
BATTAGLIESE et al.: Penalised Complexity priors for copula estima-
1731 0
BELLIO AND GRASSETTI: Practical consistent estimation of the struc-
tural parameters of true fixed-effects stochastic frontier models. .
BERNAL et al.: Correction for the shrinkage effect in Gaussian graph-
ical models . ...
BERNAL et al.: Uncertainty propagation in shrinkage-based partial
COTTEIAtIONS . « o .ttt
BUSEN AND FUcCHS: Modelling the impact of spatial proximity on
scientific collaboration networks ............ ... ... .. ... ..
CALVO et al.: Bayesian shared-parameter models for analysing sar-
dine fishing in the Mediterranean Sea...........................
CASERO-ALONSO et al.: Comparison of Experimental Designs for
Normal and Gamma distributions ..............................
CURRIE et al.: Sensitivity analysis approaches to investigate uncer-
tainty in process-based models, with application to aquaculture.
D’ANGELO et al.: Spatial seismic point pattern analysis with Inte-
grated Nested Laplace Approximation ..........................
DaAs AND BHATTACHARYA: Nonstationary, Nonparametric, Nonsep-
arable Bayesian Spatio-Temporal Modeling Using Kernel Convo-
lution of Order Based Dependent Dirichlet Process .............
DE LA CALLE-ARROYO et al.: I-optimal designs for Antoines equa-
tion: A genetic algorithm approach .............. .. .. ... ...

vii

4

HEEBEEBEEERH

Do
>
o

S

DO
R

282

Do Do
< o0

DO
S
s

DD
S



Contents

DE LA CRUZ et al.: Joint analysis of nonlinear longitudinal and time-
to-event data: application to predicting pregnancy outcomes. ...
DE OLIVEIRA AND ACHCAR: A multivariate geometric distribution
for lifetimes of n-components series systems.....................
D1 CRrREDICO et al.: On the selection of number of knots in linear
regression splines with free-knots ............. ... ... ...
FALGUEROLLES: Looking for growth curves in the situation designed
by Frangois Cretté de Palluel (1788)............cooviiiiiin....
FOCKERSPERGER et al.: Modeling Mothers’ yearly earnings after re-
turning from maternity leave with a Bayesian distributional re-
gression model. ... ... ..
HoOsHIYAR: Analyzing Likert-Type Data using Penalized Non-Linear
Principal Components Analysis. ...
IANNARIO AND TARANTOLA: Bayesian Inference for modelling the
Uncertainty by a Mixture Model for rating data ................
INGUANZO et al.: The determinants of discards in fisheries: A country
approach with GAMs methodology ............... ... ... .. ...
LANGOHR et al.: Goodness of fit for complete and right-censored
data. The R package GofCens............c.ooviiiiiiiiii...
Liu AND VAN DE HouT: Early diagnosis of sepsis from clinical data
using the competing risk approach.............. ... ... .. ...
Low-CHOY et al.: Site ‘dumpability’: Where is illegal dumping in
forests, and does signage help reduce it? ........................
MATAWIE AND HASSO: Relevance of Semantic-Enriched in Informa-
tion Retrieval Models........ ... ..o i
MORALES-OTERO AND NUNEZ-ANTON: Bayesian Spatial Condi-
tional Overdispersion Models: Application to infant mortality . ..

MUGGEO: A note on (basic) Principal Components Analysis . .. ....
MUSCHINSKI et al.: Cholesky-based multivariate Gaussian regression

OLIVARES et al.: Bayesian hierarchical modelling of stellar clusters .
PAN AND VAN DEN HouUT: Joint model for bivariate responses using
left-truncated data in aging research................. ... ... ...
PEREZ et al.: Spatio-temporal and hierarchical modelling of high-
throughput phenotypic data.............. ... o ...
PEREZ-GONZALEZ AND FERNANDEZ: Design of truncated repetitive

RAMESH AND RODE: Hidden Markov Models Incorporating Covari-
ates for Daily Rainfall Time Series...............coooiiiiiin
RAVEENDRAN et al.: Spatial Clustering via the Cross Entropy
Method .. ...
RoDRIGUEZ-DiAz: Complex covariance structure: optimal sampling
for an efficient estimation.......... ... .. .. . il

viii

19260l

RE{I

RRE
333

042

REL

000l



Contents

ROY AND LESAFFRE: Bayesian modelling of complex functional forms
RUA DEL BARRIO et al.: Spatial Bayesian geo-additive modelling and
prediction soil texture mapping in the Basque Country .........
SEGALAS AND JACQMIN-GADDA: A semi-latent class model for es-
timating the time of differentiation of cognitive decline between
cases and CONtIolS . ... ...
SoUSA-FERREIRA et al.: A flexible marginal rate model for recurrent
events with a zero-recurrence proportion........................
SOUTINHO et al.: Estimation of the Transition Probabilities condition
on repeated measures in Multi-state models.....................
SPELLER et al.: Robust statistical boosting with quantile-based loss
FUNCEIONS .« .\ttt e
STAERK et al.: Flexible amputation models for investigating missing

VOGEL et al.: Neural network classification of movement patterns in
a virtual reality experiment........... ... ... . L
VRANCKX et al.: The (in)stability of Bayesian model selection criteria
in diSease MaPPING . .. .vvtt e e
WEIGERT et al.: Visualization techniques for semiparametric APC
analysis — Using Generalized Additive Models to examine touristic
travel distances........ ..o
WELSH et al.: Bias induced during the estimation of quality-adjusted
Le-years . oot
WILKIE et al.: Hierarchical species distribution modelling across high
dimensional nested spatial scales................................

ix

442

440l

400

409



Part 1



Hidden Markov models for multi-scale time
series: an application to stock market data

Timo Adam'? and Lennart Oelschlger?

! University of St Andrews, St Andrews, UK
2 Bielefeld University, Bielefeld, Germany

E-mail for correspondence: ta59@st-andrews.ac.uk

Abstract: Over the last decades, hidden Markov models have emerged as a ver-
satile class of statistical models for time series where the observed variables are
driven by latent states. While conventional hidden Markov models are restricted
to modeling single-scale data, economic variables are often observed at different
temporal resolutions: an economy’s gross domestic product, for instance, is typi-
cally observed on a yearly, quarterly, or monthly basis, whereas stock prices are
available daily or at even finer temporal resolutions. In this paper, we propose
hierarchical hidden Markov models to incorporate such multi-scale data into a
joint model, where we illustrate the suggested approach using 16 years of monthly
trade volumes and daily log-returns of the Goldman Sachs stock.

Keywords: Hidden Markov models; Multi-scale data; Stock markets; Time series
modeling; Temporal resolution.

1 Introduction

Hidden Markov models (HMMSs) constitute a versatile class of statistical
models for time series where the observed variables are driven by latent
states (Zucchini et al., 2016). While the observations can be multivariate,
basic HMMs have the limitation that all variables need to be observed at the
same temporal resolution. Specifically in economic applications, however,
corresponding variables are often observed at different time scales, ranging
from yearly data such as economic indices to high-frequency stock market
data. Incorporating multiple such variables, with differing sampling rates,
into a joint model may help to draw a more comprehensive picture of
stock market dynamics, in particular by explicitly distinguishing short-term
and long-term variation in volatility. In this paper, we propose hierarchical

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Dependence structure of an hierarchical HMM.

HMMs, which originate from the field of machine learning (Fine et al., 1998)
and have later been applied in ecology (Leos-Barajas et al., 2017; Adam
et al., 2017; Adam et al., 2019), to incorporate such multi-scale data into
a joint model. The suggested approach is illustrated by jointly modeling
16 years of monthly trade volumes and daily log-returns of the Goldman
Sachs stock.

2 Model formulation and likelihood evaluation

A basic HMM comprises two stochastic processes: a hidden state process
{Si}t=1,.. 7 and an observed state-dependent process {Y;};=1,.. 1. The
state process is typically modeled as a discrete-time, N-state Markov chain
with initial distribution & = (§;), 0; = Pr(S; = 4), and transition proba-
bility matrix (t.p.m.) I' = (vi;), vi,j = Pr(Si+1 = j|St = i). The state at
time t, S; = 1, selects one of N possible distributions, which are denoted
by f(y:|S: = i), that generates the outcome of the state-dependent process
(cf. Zucchini et al., 2016).

By exploiting this relatively simple dependence structure, the likelihood
can be written as a matrix product,

T
EHMM(0|y17"'7yT) = 6P(y1)HFP(yt)la (1)

where P(y;) = diag(f(y:|S: = 1),...,f(w|S: = N)) and 1 denotes a
column vector of ones (cf. Zucchini et al., 2016).

Hierarchical HMMs extend the model structure outlined above in that they
distinguish between processes operating at different time scales (cf. Figure
for an illustration of the model structure): the coarse-scale state at time
t, Sy = i, selects among N possible distributions for the coarse-scale obser-
vations, which are denoted by y; (e.g. the trade volume observed for month
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t), and N possible HMMs (each of which has its own t.p.m. I'}) for the
fine-scale observations, which are denoted by y; (e.g. all daily log-returns
observed during month ¢). The likelihood then follows as

T

‘CHHMM(0|yla s 7yT7y11’ cee 7y’/T) = JP(ylayll) H I‘P(ytay;)]w (2)
t=2

where P(y:,y;) = diag(f(yt|St = DLIMM@Glyt S, = 1),..., f(ye]S: =
N)LHMM gyt G, = N)) Estimation of the model parameters is typically
carried out by numerical likelihood maximization (cf. Adam et al., 2019).

3 Application to stock market data

To investigate stock market dynamics at different time scales, we jointly
model 16 years of monthly trade volumes and daily log-returns of the Gold-
man Sachs stock. The data cover 4,026 working days (192 months) between
January 1, 2004, and December 31, 2019. For the trade volumes, we as-
sumed gamma distributions, while for the log-returns, scaled t-distributions
(as preferred over Normal distributions by Akaike’s information criterion)
were considered.

The estimated state-dependent distributions of monthly trade volumes,
displayed in the top left panel of Figure [2 reveal three different market
regimes: while coarse-scale states 1 and 2 capture low and moderate trade
volumes (inactive and moderately active market), respectively, state 3 re-
lates to high trade volumes (active market).

The t.p.m. associated with the coarse-scale state process was estimated as

. 0.984 0.016 0.000
I'=10.043 0.900 0.057 |,
0.000 0.282 0.718

which implies the stationary distribution (0.687,0.261,0.053), indicating
that about 69 %, 26 %, and 5 % of the monthly trade volumes were gener-
ated in coarse-scale states 1, 2, and 3, respectively. Notably, in 2007, when
a sudden increase in interest rates for inter-bank credits marked the begin-
ning of the global financial crisis, the decoded time series displayed in the
top right panel of Figure [2 reveals a switch from coarse-scale state 1 (inac-
tive market) to 2 (moderately active market). In September 2008 (when the
Lehman Brothers collapse marked the peak of the global financial crisis),
we observe a switch from coarse-scale state 2 to 3 (active market).

The estimated state-dependent distributions of daily log-returns are dis-
played in the middle panel of Figure [2} depending on the coarse-scale state
that is active in month ¢, the log-returns’ volatility is determined by the
fine-scale HMM associated with the two distributions displayed in either
the left, the middle, or the right panel, respectively.
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FIGURE 2. Estimated state-dependent distributions and decoded time series of
monthly trade volumes, daily log-returns, and closing prices of the Goldman Sachs
stock. Dashed lines in the top-right and the bottom panel indicate important
events associated with the global financial crisis.

The t.p.m.s associated with the fine-scale state processes were estimated
as

P 0.993 0.007 - 0.993 0.007 P 0.915 0.085
17 \0.034 0.966)° "2 \0.024 0.976)° 3 \0.029 0.971)°

which imply the stationary distributions (0.823,0.177), (0.779,0.221), and
(0.255,0.745). According to the fitted model, when coarse-scale state 1
(inactive market) is active (about 67 % of the time) then the marginal dis-
tribution of the log-returns under the fitted model has standard deviation
0.013. When coarse-scale state 3 (active market) is active (about 5 % of
the time), then the log-returns’ volatility is about five times higher: the
corresponding marginal distribution has standard deviation 0.065.

Quantile-quantile-plots and sample autocorrelation functions (ACFs) of or-
dinary normal pseudo-residuals for monthly trade volumes and daily log-
returns are displayed in Figure [3] While, in principle, more flexible state-
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FIGURE 3. Quantile-quantile-plots (left panel) and sample ACFs (right panel)
of normal ordinary pseudo-residuals for monthly trade volumes (top panel) and
daily log-returns (bottom panel). Overall, the plots indicate some minor lack of
fit with regard to the marginal distribution of the trade volumes and the serial
correlation in the trade volumes’ series.

dependent distributions (especially for the trade volumes) could be used
to improve the model fit (cf. Langrock et al., 2018), we consider the good-
ness of fit to be satisfactory and trade some minor lack of fit against a
more complex model formulation, which facilitates the interpretation of
the fitted model.

4 Conclusions

The results presented in this paper indicate that coarse-scale market dy-
namics strongly affect the stochastic properties of other processes operat-
ing at finer time scales. By explicitly modeling such multi-scale processes,
hierarchical HMMs may help to draw a more comprehensive picture of
stock market dynamics, to more accurately quantify risks conditional on
the coarse-scale market regime, and ultimately to improve our understand-
ing of the market agents’ behavior.
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Abstract: Nonparametric estimators for multivariate conditional copulas as well
as for a multivariate conditional Kendall’s tau are proposed in a random design
context. We also propose a flexible Wald type statistic based on Kendall’s tau
estimator to test for the influence of a conditioning variable outcome in the joint
distribution between two or more variables. Asymptotic properties of the estima-
tors are derived together with a simulation study, and a data-driven smoothing
parameter selection is also provided. A second simulation study presents different
models to check the size and power of the test and runs comparisons with previous
proposals when appropriate. For the empirical illustration, we study the relation-
ship between some indicators from the European Regional competitiveness index
(RCI). We find interesting results, such as weaker links between innovation and
higher education in regions with lower institutional quality. Analyzing this kind
of comovements is very useful for regulatory purposes to measure the impact of
economic policies.

Keywords: Conditional copula; Nonparametric estimation; Multivariate depen-
dence; Kendall’s tau.

1 Introduction

Since the last financial crisis, economic growth has been an important con-
cern all over the world. Particularly, the European Commission constructs
the RCI index as an indicator of economic progress every three years since
2010. This index comprises more than 70 indicators that enable measuring
the ability of the regions to offer an attractive and sustainable environment
for firms and residents to live and work and they are grouped into 11 pil-
lars to help to identify the strengths and weaknesses of each region. In this

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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context, we analyze the relationship of indicators related to the efficiency
and the innovation of a region. Additionally, since institutional quality is a
factor that can disturb the economic growth, we find interesting to study
if the indicators dependence structure is affected by the quality level.

We estimate the conditional joint dependence with nonparametric condi-
tional copulas, which is a flexible way of modeling the dependence struc-
ture and better that elliptic distributions when variables are not normal
(Embrechts et al., 2002). We consider a random design context, suitable
for many economic applications, and derive the asymptotic results for the
multivariate conditional copula estimator.

As an overall measure of conditional dependence, we use a multivariate
rank correlation measure beyond the linear correlation: The conditional
Kendall’s tau. We take as a reference the multivariate Kendalls tau pro-
posed by Joe (1990) beyond the average pairwise tau (Kendall and Smith,
1940) to extend it to the conditional case and we derive the main asymp-
totic results. A bandwidth selection algorithm for Kendall’s tau estimator
and a simulation study to check for its robustness are also provided.
Moreover, we want to test for the structure of conditional dependence ac-
cording to Kendall’s tau. Tests for unconditional multivariate independence
are well known in the literature, but we are interested in testing for general
restrictions in the conditional rank correlation. Related works introduce
tests of the so-called simplifying assumption, which assumes that the con-
ditional copula coincides with the partial copula. Moreover, Gijbels et al.
(2017) propose tests based on Kendall’ tau and compare their performance
with some tests based on conditional copulas. Nevertheless, our objective is
to test for a broader type of restrictions that include conditional indepen-
dence or constant dependence but also constant conditional dependence,
linear restrictions between different Kendall’s taus, and equality of condi-
tional Kendall’s tau between different samples. Results from a simulation
study show that our proposal performs well in many different scenarios,
such as mixtures of copulas as joint distributions, and entails a low com-
putational cost.

The results in the application show that the dependence between pillars
such as higher education and innovation increases as the institutional qual-
ity improves. Actually, this relationship is strong and significantly affected
by low quality levels. Thus, the results support that the institutions quality
perception has a clear significant effect on regional competitiveness factors.
It seems that in regions with low institutional quality, the investment in
efficiency does not have the expected results on improving the innovative
capability of the region.

2 Multivariate conditional copulas

Let Y = {Y;}/_, be a set of p variables. To estimate the dependence
structure we propose a nonparametric estimator for the multivariate copula
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conditional on Z = z defined as

n
Ca(u) = wi(z, W)I{Yy; < PN (w), . Vi < F ()}, (1)
where Y}; sets for a 1generic sample value ¢ of the variable Y;, {w;(z,h)} is
a sequence of weights, and h > 0 is the bandwidth that decreases to zero
as the sample size increases. I{-} is the indicator function and Fj.(y) =
Soi wi(z, h)I{Y;; <y} denotes the nonparametric conditional estimator
of the j-marginal distribution. It is noteworthy that this nonparametric
estimator does not have a smoothing role as is usual in regressions. In fact,
when the bandwidth h gets large enough, C. approaches the empirical
distribution function, which is not smooth.

To measure the degree of dependence, we estimate Kendall’s tau coeflicient,
which measures the monotonicity instead of linearity. We extend the ver-
sion proposed by Joe (1990) for multivariate Kendall’s tau to conditional
copulas as 7, = (2P71 — 1)~ (27 [}, C.(u)dC.(u) — 1) and we define the
corresponding nonparametric estimator to be

n

1 2p
;o= Y w, (2 WY <Y —1).
Te T g1 (1_22j—1ﬂﬁ(2’,h)2i wilz, hjw; (2, I{Y; <Y} )

The following theorem establishes the asymptotic results of the proposed
estimators in a random design context.

=1

Theorem. Consider the usual assumptions in nonparametric estimation
and h = o(n~'/%). Then, when n — oo,

D) (nh)"? (C’Z(u) . Cz(u)) 4 oL,

where CF is a Gaussian variable with zero mean and asymptotic variance
o?(CE) = dy f(2) 7' C.(u) (1 — C.(u)). Moreover, if G, is a Gaussian vari-
able given by

4
G.= -2 < C.(w)dCE (u) + C’ZL(u)dC’z(u)>,
i1\ /|, .

i) (nh)? (3, — 1) % G,

where the asymptotic variance of 7, is given by o2(G.).

Moreover, we propose a method to select the bandwidth for the nonpara-
metric conditional Kendall’s tau estimator based on minimizing its mean
squared error and we conduct a simulation study to analyze the perfor-
mance of the conditional rank correlation in the bivariate context for a
linear and a non-linear model. The results show that the bandwidth selec-
tion works well for large sample sizes and variables coming from a linear
model but the results are still better bias-variance balanced for non-linear
models. Moreover, the results remark the importance of the accuracy in
the parameter selection when analyzing the dependence between variables.
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2.1 Testing for restrictions in conditional dependence

We propose a test for a null hypothesis that can be expressed as
Hy:Rt.,=r, (2)

where 7, is an m order column vector of estimated Kendall’s tau, R is a
q X m order matrix and r a ¢q order column vector with ¢ being the number
of linear restrictions to be tested. The alternative is H, : RT, # r. We
define the statistic

In=(R% —7)(RV;. R)" (R%. — 1),

where V;, denotes the variance and covariance matrix of 7,. Taking into
account the asymptotic results in the Theorem above, 7,, has an asymptotic
x? distribution with ¢ degrees of freedom under Hy.

The null hypothesis in expression accounts for many possible situa-
tions. In particular, it enables tests to be run for conditionally constant
dependence in a random design context. In this particular case, we use
a permutation procedure to estimate V; . Another application of the 7,
statistic is to test linear restrictions across different samples, as equal con-
ditional dependence structure. In this case, the permutation procedure has
been adapted into an appropriate resampling procedure.

To show the performance of the test we run a second simulation study and
we consider several cases to calculate size and power under different sample
sizes. We also compare the results with the proposal made by Gijbels et al.
(2017) for situations where their test can be directly applied. The results
show that the statistics perform well for different kinds of restriction, even
when quite complex joint distributions are considered. Moreover, it is easy
to compute.

3 Empirical application

We apply the previous methodology to detect whether institutional quality
helps to increase the relationship between pillars as it does between higher
education and innovation. As suggested in previous studies (see e.g. Lucas
(1988) and Maradana et al. (2017)), higher education and innovation are
directly related to economic growth. In this sense, we are interested in
analyzing if the low institutional quality hinders transfers between higher
education and innovation results.

Motivated by this, we study the relationship between higher education and
innovation, conditional on the institutional quality (INST) level with 2019
regional data from the European Commission. For the sake of illustration
and to provide further empirical results, we also consider the dependence
between the Efficiency and Innovation groups and between higher educa-
tion and the other pillars in the Efficiency (Labor market efficiency, L and
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Market size, M) and Innovation groups (Business sophistication, BS and
Technological Readiness, TR).

In particular, we are interested in four different hypotheses. i) Is there
concordance between movements in higher education and innovation? ii)Is
the concordance between higher education and innovation fully explained
by institutional quality? (HéQ) : Tijl. = 0) iii) Does institutional quality
explain part of the concordance between higher education and innovation?
(H(()S) : Tijl= = Tij). ) Does the concordance between higher education
and innovation depend on the level of quality of institutions? In this case
Hé4) D Tijlzs = Tijlz 18 tested. A rejection would provide evidence of a
relationship that varies according to institutional quality, which is espe-
cially interesting since it provides a starting point for studying how insti-
tutional quality affects relationships between pillars making them stronger
or weaker. Analyzing this kind of conditional comovements is very useful
for policy makers intending to control the impact of their interventions.
First, we remark that there is a significant unconditional relationship be-
tween the pillars, as expected.

TABLE 1. Kendall’s tau coefficients based on 2019 data.

T Tag.05 Ta0.15 Tag.5 Tag.85 Tag.95 Hé2) HéS) H(()4)
Eff.-Inn. 0.678 0.097 0.623 0.484 0.204 0.733 Hk HE HEx
HE-L 0.447 0.036 0.248 0.448 0.054 0.357 Hkx Hkx *
HE-M 0.197  -0.039 -0.053  -0.294 -0.009 -0.108 Hkx
HE-TR 0.405 0.077 0.215 0.382 0.052 -0.093 ko HAok *
HE-BS 0.308 0.253 0.073 -0.056 0.154 -0.154 Hok
HE-I 0.528 0.091 0.307 0.406 0.456 0.530 HEx Hkx H*
HE-L-M 0.363 0.025 0.155 0.020 0.151 0.029 Hkx
TR-BS-1 0.518 0.366 0.517 0.245 0.255 0.069 Hook Hoox Hox
HE_L_M_ > *kkk ok k
TR-BS-1 0.387 0.112 0.225 0.171 0.025 0.118

Table [ contains the estimated Kendall’s tau coefficients and summarizes
tests results. The results are quite interesting and encourage further study.
The joint relationship between pairs such as innovation and higher edu-
cation is only partially explained by the quality of institutions. Moreover,
there is evidence in favor of a joint dependence that increases with the
quality of institutions. This may be an interesting starting point for study-
ing whether there is a causal link between institutional quality and the
ability of regions to transfer human capital to innovation results. For the
other pillars, the results are different. Actually, no conditional dependence
is found between HE and BS and for the relationship between HE and TR,
INST provides a further contribution for regions with medium institutional
quality, which might be linked with specific regions.

For multivariate relationships, there is a low dependence with a constant
quality effect between the Efficiency pillars. However, the Innovation group
pillars are significantly affected by the institutional quality and show a
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higher dependence on lower quality levels. As the results in the last row of
Table [1| show, there is no significant effect on the six pillars relationship.
Regardless of whether or not conditional dependence is constant, the qual-
ity perception effect can vary from one period to another. To test for the
consistency of the quality effect over a three-year period we compare the
behavior patterns with RCI index data for 2016. The test reveals that in
general there are no significant changes in the dependency between pillars
from 2016 to 2019 conditional on the quality of institutions.

Acknowledgments: This work is supported by MEC EC02014-51914-
P, BETS-UFI11/46 and MACLAB-IT93-13, BiRTE-IT1336-19 and PIF16
from UPV/EHU. We also thank Thorsten Schmidt and the colleges from
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ments.

References

Embrechts, P., McNeil, A. and Straumann, D. (2002). Correlation and
Dependence in Risk Management: Properties and Pitfalls. In: Risk
Management: Value at Risk and Beyond,Cambridge, M.A.H Demp-
sted (Ed.), pp 176—223.

Gijbels, 1., Veraverbeke, N. and Omelka,M. (2011). Conditional Copulas,
Association Measures and their Applications. Computational Statis-
tics & Data Analysis, 55, 1919—1932.

Gijbels, 1., Veraverbeke, N. and Omelka,M. (2017). Nonparametric Test-
ing for no Covariate Effects in Conditional Copulas. Statistics, 51,
475-5009.

Joe, H. (1990). Multivariate Concordance. Journal Multivariate Analysis,
35, 12-30.

Kendall, M. and Smith, B. (1940). On the Method of Paired Comparisons.
Biometrika, 31, 324 —345.

Lucas, R.E. (1988). On the Mechanics of Economic Development. Journal
of Monetary Economics, 22, 3—42.

Maradana, R.P., Pradhan, R.P., Dash, S., Gaurav, k., Jayakumar, M. and
Chatterjee, D. (2017). Does Innovation Promote Economic Growth?
Evidence from European Countries. Journal of Innovation and
Entrepreneurship, 6, 1—23.



Tree-Based Modeling of Discrete
Subdistribution Hazards

Moritz Berger!, Matthias Schmid!

! University of Bonn / University Hospital Bonn, Germany
E-mail for correspondence: moritz.berger@imbie.uni-bonn.de

Abstract: Subdistribution hazard models are a popular tool for competing risks
analysis. The classical approach in discrete time consists of fitting parametric
models, which focuses on main effects. An alternative tree-based method is pro-
posed that allows for more flexibility, in particular when interactions between the
covariates are present. The method is illustrated by an analysis of age-related
macular degeneration among elderly people.
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1 Discrete Subdistribution Hazard Model

Assume that the interest is in the analysis of the observation time to the
occurrence of one out of J competing events measured on a discrete time
scale t = 1,2,...,k. Let T; be the event time and C; the censoring time
of individual ¢ with covariate vector x; = (z;1,. .. ,xip)—'—, 1=1,...,n. For
right-censored data, the observation time is defined by T; = min(T}, C;).
It is further assumed that T; and C; are independent random variables
and that C; is non-informative for T;. A key quantity to describe com-
peting risks data is the discrete cumulative incidence function, which is
defined by Fj(t|x;) := P(T; < t,¢; = j|x;), where the event type is rep-
resented by the random variable ¢; € {1,...,J}. In the following, w.l.o.g.,
the event of interest and its cumulative incidence function are defined by
e, = 1 and Fi(t|x;), respectively. The function F; is bounded between 0
and Fl(klxz) = P(GZ = 1|Xi) < 1.

A popular modeling approach for the cumulative incidence function is the
proportional subdistribution hazard model (Fine and Gray, 1999), which
has been extended to the discrete-time case by Berger et al. (2018). The

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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discrete subdistribution hazard model links Fj (t|x;) to the subdistribution

time
191_ — Ti; lf €, = 1
oo, if g; # 1.

By definition, ; measures the time to the occurrence of the type 1 event.
Specifically, it assumes that the type 1 event will never be the first event to
be observed once a competing event has occurred (Fine and Gray, 1999),
implying that there is no finite event time for the occurrence of a type 1
event if ¢; # 1. Accordingly, the discrete subdistribution hazard, which is
defined by

/\1(t|Xz) :P(Tzzt,ﬁl:H(Tth)U(Tz St—l,Gz#l),Xl)
:P(ﬁi:twizt,xi), tZl,...,k‘,

represents the discrete hazard function of the subdistribution time ;. With
a little algebra it can be shown that the subdistribution hazard A (¢|x;)
is linked to Fy(t]x;) by Fi(t]x;) =1 —[Tie, (1= A\i(s]x)) = 1 = Si(t|xs),
where Sy (t|x;) = P(¢; > t|x;) is the discrete survival function for a type 1
event. Consequently, there is a one-to-one relationship between A (t|x;)
and Fy(t|x;). Thus, the effects of the covariates on A (t|x;) have a direct
interpretation in terms of the cumulative incidence of a type 1 event. A

parametric model for A (t|x;) is given by
M (tx) = h(yor + %] v), t=1,...,k—1, (1)

where h(-) is a strictly montone increasing distribution function. The pre-
dictor function in is composed of the baseline coefficients o1, ..., 70,k—1
and the regression coefficients v € RP. Estimates of the model parame-
ters in can be derived from a weighted maximum likelihood estimation
scheme (Berger et al., 2018) with binary outcome values

(0,...,0,1,0,...,0), if Aje; =1,

2
(0,...,0,0,0,...,0), if Aje; #1, @

(yilr"ayiyfi:'-- ayi,k—l) = {

indicating if a type 1 event occurred at ¢t or not (A; := I(T; < C;)). The
maximization of the weighted log-likelihood is based on an estimate of the
censoring survival function G(t) = P(C; > t) and on a vector of weights

Gt —1)
G(min(T;,t) — 1)

Wit =

: <I(t <ST)+UT <t—1,Me; > 1)) . 3)

that equals estimates of the individual-specific conditional probabilities of
being (still) at risk for a type 1 event at time ¢.
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2 Recursive Partitioning for Discrete Subdistribution
Hazards

The model in Equation assumes that the predictor is a linear func-
tion of the covariates. When unknown interactions between covariates are
present, an alternative strategy is to apply recursive partitioning methods
or trees. Following the tree-based method by Schmid et al. (2016), which
was designed for discrete hazard models with one single type of event, we
propose a discrete subdistribution hazard model of the form

A1(txi) = f1(t,xq), (4)

where the function f;(-) is determined by a Classification and Regression
Tree (CART) with binary outcome (Breiman et al., 1984). For tree building,
the covariates 1, . .., z, as well as the time ¢ (coded as an ordinal variable)
are considered as candidates for splitting.

When a tree has been constructed, the result is a set of @) terminal nodes
that are represented by a set of binary outcome values y;1,...,¥; x—1 and
corresponding weights w;1, ..., w; ,—1. Note that because the time ¢ is a
candidate splitting variable, each terminal node of the tree corresponds to
a subset defined by the covariates and to a time interval T, = [ag, by], with
1 < ay < by < k. Therefore, we propose to estimate the subdistribution
hazards in each terminal node by

1
Mg = ——— it Wi =1,...
1q Z Wit Z Yit Wit , q ’ aQ;

iteq btcq

where the weights w;; are computed from Equation . Concerning the
splitting criterion, the classical CART approach is based on impurity mea-
sures. Consider, for instance, the Gini impurity in one node m defined by

GI(m) =2 1m (1= Aim)-

Then, in each step of the tree-building algorithm, one chooses the split
(among all covariates and split points) that minimizes the weighted sum of
the Gini impurities in the children nodes. An important tuning parameter
of CART is the tree size, which can be optimized using pruning techniques.
Controlling the tree size prevents the resulting subdistribution hazard es-
timates from having a too large variance (which is inversely related to
the terminal node size). Consequently, we propose to consider the mini-
mum number of observations that must exist in a node in order to perform
further splits as the main parameter for pruning. This parameter can be
optimized by either cross-validation of the log-likelihood or by information
criteria such as AIC and BIC.
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fellow=healthy,CNV fellow=GA

volume<=0.48 volume>0.48

ref_drusen=no ref_drusen=yes

FIGURE 1. Analysis of the AMD data. Tree obtained from fitting the proposed
model with log-likelihood based pruning. The numbers at the terminal nodes
refer to the estimated subdistribution hazards for GA.

3 Age-Related Macular Degeneration

For illustration, we analyzed the database of the MODIAMD (Molecu-
lar Diagnostics of Age-related Macular Degeneration) study, which is an
ongoing non-interventional study in patients at high risk for developing
late-stage age-related macular degeneration (AMD, Steinberg et al., 2016).
AMD either manifests by geographic atrophy (GA) or by choroidal neovas-
cularization (CNV). GA is an advanced stage of AMD with irreversible loss
of photoreceptors and severe loss of vision. Therefore, it is of high interest
to develop intervention strategies for high-risk patients.

In total, 98 Patients were enrolled between November 2010 and September
2011 at the Department of Ophthalmology, University of Bonn, Germany.
All patients were monitored at the time of their inclusion in the study
(baseline visit) and subsequently monitored by annual study visits. For
our analysis, the data up to and including the fifth annual study visit was
available (t = 1,...,5). Exclusion of one patient with missing values in the
analyzed risk factors resulted in an analysis data set of size n = 97. On
completion of the fifth visit, 16 study eyes had developed GA, 25 study eyes
had developed CNV, 26 patients were still in the study while 30 patients
were censored (i.e., had dropped out at earlier visits). The risk factors incor-
porated in our analysis were age (years), visual acuity (snellen; measured
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by the Snellen chart), drusen volume (mm?), the presence of the natural
crystalline lens, smoking, the presence of refractile drusen (ref_drusen), and
the disease status of the fellow eye (fellow; healthy, CNV or GA).

Figure [1]| visualizes the result when fitting the proposed tree-based subdis-
tribution hazard model for GA. There is a particularly high risk for the
development of GA for patients with GA in the fellow eye (}GA = 0.357).
Without GA in the fellow eye, the risk is high for patients with a large
drusen volume (> 0.48mm?3, Ags = 0.267), but considerably lower for
patients with a smaller drusen volume (< 0.48 mm?).

Acknowledgments: We thank the MODIAMD Study Investigators for
providing us with the data.
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Abstract: We develop a variational approximation method to deal with sparse
estimation of high—dimensional graphical vector autoregressive models. The pur-
pose of the project is two—fold. First, we exploit the product density factorisation
of the joint variational density that leads to the mean field paradigm, as well
as, the representation of the problem as a sequence of auxiliary regressions that
rely on the Cholesky factorisation of the precision matrix. A Normal-double—
Gamma prior is imposed to shrink toward zero both the autoregression and the
precision parameters. The second contribution concerns the solution of the lack—
of-identification problem that relies on the employed Cholesky factorisation. We
propose to approximate the marginal likelihood of each model permutation by
the variational model evidence (ELBO) and to exploit it to get MaP estimates of
the model parameters. To explore the space of permutations, when the dimension
of the model is large, we develop a new parallel collapsed simulated annealing
algorithm (PCSA).

Keywords: Vector autoregressive models; sparsity; variational inference.

1 Introduction

Approximate methods for statistical inference on the parameters of mathe-
matical and statistical models are becoming a relevant issue as model com-
plexity increases. Although variational methods are not confined within
the Bayesian framework, the problem of approximating the posterior dis-
tribution is relevant and deterministic variational approximations represent
viable alternatives to the widely employed simulation—-based methods to al-
leviate the computational burden in high dimensional settings. Moreover,
in many situations the marginal likelihood is either not available in closed—
form or its computation is time—consuming, preventing the possibility to

This paper was published as a part of the proceedings of the 35th Inter-
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evaluate and assess the proposed models and estimates using goodness—of—
fit procedures. Previous considerations motivate the relevance of approxi-
mate inferential techniques to perform Bayesian analysis especially when
high—dimensional data or complex models are considered (see, e.g., Robert
and Casella 2011). Variational approximations (Ormerod and Wand, 2010)
is a body of deterministic techniques for making approximate inference that
tackle the problem of optimising a functional over a class of functions in or-
der to minimise a given divergence between a target distribution and a given
proposal. They certainly exploit their potentials to provide approximate in-
ference in a likelihood—based context, but they are widely employed within
the Bayesian paradigm, where they are also known as variational Bayes
methods, (VB). As deterministic alternatives to stochastic approximation
methods, such as MCMC methods, they can successfully be employed when
the dimension of the problem is large or even in more involved situations
where either the data or the model display complex dependence structures.
Their major advantages over deterministic approximations rely on the pos-
sibility of arbitrarily increasing their accuracy at the expense of computa-
tional time. Unlike stochastic methods, deterministic variational algorithms
are based on analytical approximation of the target distribution. As a con-
sequence, these methods have limited approximation accuracy, but they
offer a relevant gain in terms of computational cost. This paper is devoted
to introduce new variational-based inferential procedures and algorithms
for estimating high—dimensional vector autoregressive process (VAR) of di-
mension d. We further assume that d > n, where n denotes the number of
observations, thereby leading to a problem that only admits either sparse
or regularised solutions (Rothman et al., 2010). Appropriate prior should
be imposed on the elements of the precision matrix to shrink their elements
down to zero, thereby enforcing the invertibility of the matrix. We consider
the Normal-Gamma prior recently introduced by Griffin and Brown (2010)
as an alternative to the Bayesian—Lasso prior of Park and Casella (2008), in
a regression context. As for the Bayesian—Lasso, the Normal-Gamma prior
of Griffin and Brown (2010) penalises each parameter independently and it
is highly inappropriate for the estimation of large—dimensional data. There-
fore, the Normal-double-Gamma prior is adapted to the estimation of the
precision matrix by adding a common latent factor that jointly penalises
towards multiple directions, as in Bitto and Frithwirth-Schnatter (2019).
To overcome the lack—of-identification problem, we develop a new parallel
collapsed simulated annealing algorithm that maximises the ELBO over
the space of permutations. The rest of this paper is organised as follows.
Section [2] introduces the model while main applications are discussed in
Section 3] Although the proposed methodology is quite general and can be
applied in several contexts where appropriate dynamic models are needed,
from biology to economics, in this paper, we consider the evolution of fi-
nancial contagions using international stock indexes, and the analysis of
functional magnetic resonance imaging (fMRI) data.
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2 DModel specification and inference

Let Y; = (Y14, Y24,...,Yas)" a multivariate random variable, we define
the VAR(1) process as the realisation of the following stochastic difference
equation

Y, = o+ ®Y,_1 +uy, for t=23,..., (1)

where ¢ is a d-dimensional vector of intercepts, ® is a d x d matrix con-
taining the autoregressive parameters and u; ~ Ny (O, Q’l) fort=1,2,...
is a sequence of uncorrelated innovation terms such that u,_; L u,_; for
kE # jand k,j = £1,+2,... and cross—covariance matrix equal to 71!,
with Q € Si . being a positive and definite positive matrix. Exploiting the
modified Cholesky factorization of the precision matrix 2 = L™VL, we can
write the process in equation as a VAR(1) with orthogonal innovations:

LY; =m+L®V,_| +¢e, for t=2,3,..., (2)

where ; ~ Ng(0, V™), V7! =diag{1/v;, j = 1,2,...,d}, m = L¢, and
L lower—unitriangular. Leveraging the unit triangular matrix factorisation
B =1,; — L, allows to rewrite the process in as:

Yi=m+BY;+ (I;—B)®Y; 1 +e&;, for t=23,..., (3)

which is a function of the vector of parameters 9 = (v*, m™, 8%, ¢*)" with
v=,...,vq) €ERY, m = (m,...,mq) € R% ¢ = vec(®") € R* and
B = (Ba,...,Ba)" € RUID/2 where B; for j = 2,...,d identifies the
j—th row of B below the main diagonal. represents the main ingredient
of the Mean—Field variational Bayes (MFVB) algorithm here proposed.
The fully Bayesian approach to the inference here adopted, requires the
specification of a prior distribution for all the parameters involved in .
We assume a Gamma distribution for v; and a Normal distribution for m;,
with j = 1,...,d, while, following Bitto and Frithwirth—Schnatter (2019),
a Normal-double-Gamma prior is imposed to the elements of 3 and for ¢.
Therefore, we impose joint shrinkage for 3; by assuming:

oy
Biklmjk ~NO, 7 k), Tiklng, Aj ~ Ga <77j, ]2 ]> )
)\j ~ Ga(€1,62), 7]] ~ Exp(eg),
where Kk = 1,...,7 — 1 and ey, e and ez are fixed hyperparameters. For

each row of ® we instead assume:

& mKjim
bj,s ~ N(0,v55),  vj,s|&ms Kjm ~ Ga (@;mv P

2
Kjm ~ Ga(hi,h2), &jm ~ Exp(hs),
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where s = 1,...,d, while m = 1 and m = 2 indicates whether we are consid-
ering an element on the diagonal (hence s = j) or off-diagonal respectively
and hq, ho and hg are fixed hyperparameters. The idea is to distinguish the
amount of shrinkage induced on the diagonal and off-diagonal elements of
®. The most relevant issue in developing the MFVB algorithm consists to
define the factorisation of the variational density (1) which plays a central
role in this approximation scheme. Here, we factorise ¢(1) as follows:

q(9) = q()q(v,k,&)q(v,B,7,X,n) (4)
d d 2
q(v,K,€) = H lH q(vj.s) H q(ﬁj,m)q(ij,m)] (5)
7j=1 Ls=1 m=1

d j—1
gw.B,7.2,m) =qm) [] [q(w)q(ﬁj) (H q(m)) q(Aj)q(nj)] . (6)
k=1

Jj=2

where vj g, Kj,m,&jm, Tjk, Aj,7; are the latent factors. One of the major
novelties of the proposed variational approach relies on the factorisation
of the variational distribution. Indeed, as emerges in , a joint distri-
bution is imposed on the vector ¢ accounting for the dependence among
all the elements of ®. Under the factorisation in 7@ the MFVB al-
gorithm is provided and all the inferential procedures are avaiable for
within a Bayesian framework. Given the variational densities computed for
B and v, it is possible to exploit the factorization £ = L™VL to recover
an approximation for the posterior distribution of € through simulation
from ¢(B) and ¢(v). It is worth noting that the MEVB approach strongly
relies on the representation of the VAR process provided in which is,
in turn, obtained by exploiting the modified Cholesky factorisation. This
approach works well if there is a relatively clear ordering for the Cholesky
decomposition, but such strong assumptions are unlikely to hold in many
situations. Therefore, the provided MFVB algorithm suffers from the lack—
of-identification problem that originates the non—invariance of the complete
likelihood of model in under permutation of the ordering of variables
{Y;,7=1,2,...,d}. We deal with the lack-of-identification issue by pro-
viding a new parallel collapsed simulated annealing (PCSA) algorithm that
leverages the marginal likelihood approximation provided by the ELBO as
byproduct of the MFVB. The PCSA is a fast algorithm for optimisation
of the non—smooth objective function provided by the ELBO that explores
the non—convex space of permutations of the indexes {1,2,...,d}.

3 Applications

3.1 International Stock Indexes data

In this section we present an application to financial data. We consider
the time series of stock indexes returns for d = 37 countries observed for
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T = 189 months. The estimated conditional dependence graph is provided
in Figure (left) where vertexes belonging to the same continent are plotted
with the same colour, while Figure [1] (right) displays the estimated partial
correlations. The main finding is a stronger correlation among neighbour-
ing countries: as we can see in Figure [I| we are able to identify two main
clusters of countries which correspond to Europe (in blue) and Asia (in yel-
low) and we can notice a sort of block structure of the partial correlation
matrix highlighted by red boxes which group together European and Asian
countries. However, there are also cross—continent partial correlations: the
most evident one concerns the role of USA which seems to be very central
in the network with strong connections with some European countries.

FIGURE 1. Conditional dependence graph (left) and partial correlation matrix
(right).

3.2 fMRI data

In this section we consider d = 68 time series of length T" = 404 of fMRI
data recorded in particular brain locations according to Desikan atlas. The
data are the same used in Gasperoni and Luati (2018). The aim of the
analysis is to estimate how the connectivity of the brain’s areas changes in
different patients affected by different dysfunctions. Results are depicted in
Figure [2| where the patient on the left side is healthy, while the one on the
right side has a clinical history of alcohol, cannabis and cocaine abuse. It
is possible to notice a different pattern and strength of connections accord-
ing to different characteristics of the subject. We compute the weighted
degree index (WDI) as a measure of importance of each area. This index is
computed as the sum of the weights of its edges:

WDI; =Y R, ;, (7)
J#i

where R is the estimated partial correlation matrix which generates the
conditional independence graph. The importance indexes are aggregated
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by lobe and cerebral hemisphere. Our results suggest that drugs and al-
cohol abuse causes a reduction in brain connectivity especially in right
frontal (orange points) and right parietal (violet points). Our findings are
in accordance with previous studies in neurological science.

FIGURE 2. Conditionally dependence graph estimated on two patients with dif-
ferent dysfunctions. Greyscale indicates whether the connection is week or strong
and different nodes colour refers to different lobes.
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Abstract: This work is concerned with addressing the issue of variable selection
in high-dimensional distributional regression models employed for causal infe-
rence. We regularise a Two-Stage Generalised Additive Model for Location, Scale,
and Shape (2SGAMLSS) using component-wise gradient boosting in order to
obtain a sparse model to assess the causal effect of rural electrification on female
and male employment rates using socio-demographic data from South Africa.
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1 DMotivation

We aim at modelling the causal effect of a treatment on two response
variables, the change in both female and male employment rates between
1996 and 2001, using a boosted instrumental variable distributional re-
gression approach. The data consists of socio-demographic information on
communities located in the KwaZulu-Natal province of South Africa. Each
observation is uniquely located in one of ten different districts, suggesting
a spatial structure in the data. Additional covariates include demographic
control characteristics of each community, such as poverty rate, household
density, as well as geographic information like average land inclination,
and distance to the nearest road and town. Table [I] displays the preemi-
nent variables in our analysis. A key issue of determining the causal effect
of electrification on employment is the selection bias that occurs at the time
of assigning an electricity project to an observational unit. Due to political
patronage, communities were not randomly targeted for electrification, i.e.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the treatment is endogenous due to unobserved confounders. Hence, any
direct estimation of the treatment effect on the responses will yield biased
results.

TABLE 1. Summary statistics for the main variables.

Variable Description Mean S.D.
Ap_female emp Diff. share of female employment -0.00 0.07
Ap_male_emp Diff. share of male employment -0.04 0.09
Eskom Electricity project (Yes=1, No=0) 0.20 0.40
Gradient Mean land gradient / inclination 10.10 4.89

Number of communities N = 1816. Number of districts G = 10.

In order to draw causal inferences from a treatment (Eskom) that exhibits
selection bias, we employ Instrumental Variable (IV) methods. An IV or
instrument is a regressor that fulfils three key assumptions: (i) It is inde-
pendent of the unobserved confounders. (ii) It has explanatory power on
the endogenous covariate. (iii) It only affects the outcome through the en-
dogenous regressor. Our instrument is given by the average land inclination
(Gradient) of a community. The idea behind this particular IV is the fact
that a higher land inclination will result in higher costs for an electricity
project. Communities that had a lower propensity to receive electricity, but
at the same time had a very small or no land inclination (or vice versa)
could potentially offset the selection bias. This setting was originally anal-
ysed in Dinkelman (2011) using classical IV techniques, which consist of a
two-step estimation using ordinary least-squares. We can set up two equa-
tions to represent the analysed scenario:

P
Eskom; = 5([)1] + fM(Gradient;) + Z fj[l] (i) +vi, (1)
j=1

p
Ap gender enp, = B + Eskom 8 + 3 /¥ (i) + (2)

Jj=1

where Equation is the treatment equation, and Equation is the out-
come equation for either females or males. The superscripts denote the first
and second estimation step. We define the Average Marginal Effect (AME)
on a distributional quantity 6; of the outcome Y; given some covariates
X =uz; as

n

AMEy = L3 (0(¥ild = 1,X = 2) — 0:(¥ild = 0, X = 2,))

i=1

where 6; denotes the distributional quantity, e.g. the outcome’s standard
deviation. The indicator d is the status of the treatment variable, i.e. d = 1
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for receiving treatment, or d = 0 otherwise. Based on Equations and
, two obstacles arise. One is the choice of a suitable modelling approach
with enough flexibility that accommodates the functional form between
covariates, treatment, and outcomes, i.e. how should the functions f;(-)
be modelled. The second is the assignment or selection of which regres-
sors impact different characteristics of treatment and outcomes, i.e. which
covariates should enter the model. The first obstacle was addressed in
Briseno Sanchez et al. (2019), where IV estimation was combined with
the high flexibility of the Generalized Additive Models for Location, Scale
and Shape (GAMLSS; Stasinopoulos et al., 2018) framework, resulting in
the Two-Stage GAMLSS (2SGAMLSS) estimator, hereon referred to as
causal distributional regression. However, the second issue remains unad-
dressed. Although highly flexible, causal distributional regression is prone
to overfitting due to the lack of an automated variable selection mecha-
nism, i.e. there is no straightforward manner of assigning a specific subset
of covariates and their respective representation to any of the response dis-
tribution parameters. In order to carry out data-driven variable selection
in high-dimensional regression models we turn to component-wise gradient

boosting (CGB).

2 Boosting causal distributional regression

Let y; be a sample of i = 1,...,n responses that are conditionally indepen-
dent, conditioned on vectors x; collecting j = 1,...,p covariates. The re-
sponses are assumed to follow a distribution that consists of k = 1,..., K
parameters ¥y, ;, i.e.

yi ~ f(yilV1,4, .-, VK i)

In the GAMLSS framework, we can model each distribution parameter 9y, ;
by relating it to a structured additive predictor 7y, ; via a link function gi(-):

Ori =g (ki) & geWrs) =i = Bro+ Y Frj(@i),
JELy

where L C {1,...,p} indicates that each distribution parameter can be
modelled by a subset of the covariates in the data. The functions f;(-) can
feature different specifications to accommodate e.g. linear, non-linear or
spatial functional forms of the considered regressors. This high flexibility of
the GAMLSS framework comes at the cost of increased model complexity,
as well as the possibility of inducing bias into the model via an inappropriate
set of covariates in the predictor of the k-th distribution parameter. CGB
allows for a regularised regression framework that retains the flexibility
of the GAMLSS approach, but allows us address the inquiry of variable
selection for causal distributional regression. Within the CGB famework
a univariate regression function (base-learner) by ;(Xe;,8%;) is specified for
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each considered covariate xo; = (21;,...,%n;)" and depends on a vector
of unknown parameters ;. The index k again emphasizes that the base-
learner belongs to the k-th predictor. Each base learner can be specified
in order to accommodate a suitable functional form of the regressor. The
employed gamboostLSS algorithm (Mayr et al., 2014) can be sketched as
follows:

(1) Set the boosting iteration counter m = 0, initialize the predictors
ﬁ,[yz] with offset values, e.g. using intercept-only models. Increase m

by one.

For each distribution parameter k = 1,..., K proceed as follows:

00(yi,9)

(2) Compute the partial derivative of the log-likelihood w.r.t. n: pIn

Plug-in the current estimates 1§£m_1] = (g;l(ﬁm_u))k:ly”_x. Then

set a0 3
uL"j.‘”:M L i=1,...,n.
' ok |g_gm—1

i

(3) Fit each of the Ly base-learners in the k-th predictor to the gradient
vector ugcm_l] and select the base-learner j* that fits best the gradient
vector according to the residual sum of squares. Update the additive

predictor
Alm—1 A[m—1
771[@ = nl[c ! v b (),

where v is a (weak) learning rate (0 < v < 1).
(4) Set ﬁLm] = ﬁ,&mfl] and increase m by one.

The algorithm then iterates between steps (2)-(4) until an m,,), is reached.
Using this algorithm for causal distributional regression, the treatment and
outcome equations are boosted in order to obtain a parsimonious, regu-
larised causal model. An optimal value for ms;,p is determined via cross-
validation for the treatment and outcome equation, respectively.

3 Empirical results and discussion

We assume a Bernoulli distribution for the treatment, and a logistic distri-
bution for both outcomes. The logistic distribution depends on a location
¥ and scale ¥ parameter; it is a leptokurtic distribution that accom-
modates this particular property of both responses. The expectation of a
logistically-distributed random variable is given by the parameter 91 (i.e.
we employ the identity link function), whereas the variance is given by
9372 /3 (i.e. we use a log-link function for the scale parameter). Estimation
of the treatment equation via CGB suggests a downward sloping, non-linear
effect of Gradient on the expectation of Eskom as shown in Figure [1] (a).
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TABLE 2. Estimated regression coefficients, AME on the mean and standard
deviation (s.d.), as well as optimal stopping iterations.

Response Bgslkom Agszkom mmean m5~d~
Male —-0.021 —-0.123 —0.021 —0.005

Treatment equation Mgz, (V55°"): 3725.
Male outcome equation mgtop, (952, 9521¢): (195, 1241).

Such a curve was also observed in Brisefio Sanchez et al. (2019) where es-
timation was carried out via penalized Maximum Likelihood (ML). This
is a remarkable result, since the treatment equation model recovers es-
sentially the same functional form of Gradient on the treatment and is
more parsimonious compared to ML estimation. Figure [1| (b) displays the
spatial heterogeneity in the estimated probability of receiving an Eskom
project. The north-eastern districts of KwaZulu-Natal exhibit the lowest
predicted probability of receiving the treatment compared to the rest of
the province’s districts. The optimal boosting iterations of the treatment
and male outcome equation were obtained using 25-fold bootstrap. Results
for the female response are not listed because here the Eskom treatment was
not selected by CGB. Table [2] lists the boosted coefficients for the location
(91) and scale (J2) parameters, as well as the AME on the expectation
and s.d. of the male response. Note that we decided to report the AME on
the s.d. due to the scale of the response variables, otherwise the variance
would have been numerically quite small. Due to the identity link function
employed on the location parameter 91, the AME on the mean and Bﬂl
coincide. These estimates of the male outcome equation indicate that the
treatment induces a reduction in male employment rates of 2.1% on average
cet. par., across the communities of KwaZulu-Natal. The Eskom treatment
has a multiplicative effect on 92 of exp(—0.123) = 0.88 on average cet. par.,
i.e. a reduction of the outcome’s variance. The AME on the s.d. of the male
outcome suggests that not only the expected employment rates decreased,
but also the observed employment rates are now closer to the mean male
employment rate across communities, i.e. male employment rates become
more homogeneous. Figure (1| (c) displays the AME on the mean, whereas
Figure [1| (d) shows the AME on the standard deviation (s.d.). Male em-
ployment rates of communities located on the southern districts become
more homogeneous (s.d. of outcome is reduced) compared to those in the
northern districts. We would like to point out that the optimal stopping
iteration suggests once again that the CGB model is a more parsimonious
version of the ML models previously mentioned. These results indicate that
data-driven variable selection can be beneficial in causal distributional re-
gression models via CGB, since the specification of covariate effects is not
trivial and could lead to biased treatment effect estimates.
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FIGURE 1. Smooth effect of Gradient on Eskom (a). Probability of receiving an
Eskom project per district (b). AME on mean (c) and standard deviation (s.d.)
(d) of the male response.
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Abstract: The occurrence of events is mostly modelled by the hazard, and usu-
ally one considers only one preferred time scale. Other time scale(s) that may
influence the event of interest are incorporated as a (time-varying) covariate(s).
Here we propose an approach to estimate the hazard as a smooth bivariate func-
tion over two time scales using P-splines. We illustrate the model by analyzing
the transition from cohabitation to marriage where the age of the individual and
the duration of the cohabitation are relevant. Data come from the German Family
Panel (pairfam) and we demonstrate that considering the two time scales jointly
provides additional insights about the transition from cohabitation to marriage.

Keywords: Time scales; Multidimensional hazard; P-splines; Cohabitation;
Marriage.

1 Introduction

Survival analysis models the time until the occurrence of an event of in-
terest. In many applications, time-to-event data can be measured along
several time scales. Clinical examples include the time since disease onset
and the time since treatment. Two time scales are also naturally present
in the social sciences when modelling the life course. For example, in the
transition from cohabitation to marriage age certainty has an important
role, but previous research has also pointed out the role of the duration of
the cohabitation for the event (marriage).

Usually, time-to-event data are described by means of hazard models. Most
popular methods for the estimation of such models, like Cox’s proportional
hazards model, require the choice of a single time scale and the inclusion of

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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potential other time scale(s) as covariates. However, through the assump-
tion of proportional hazards the possible interplay between different time
scales is limited in such an approach. If understanding the joint role of
several time dimensions is of interest a different approach is needed.

Here we propose to model the hazard of an event as a bivariate function
of two time scales, avoiding the need to choose one preferred time axis.
This bivariate hazard is assumed to be smooth and we choose to estimate
it by a P-spline approach. Such a smooth hazard surface can capture the
interplay between the two time dimensions in a flexible way.

We will present an application of the model to study transitions from co-
habitation to marriage by age and by duration of the cohabitation, using
data from the German Family Panel (pairfam).

2 Smoothing the hazard over two time scales

We denote with ¢ and s the two time scales. The hazard of an event at (¢, s)
is denoted by A(t,s), with the log-hazard defined as n(t,s) = log[A(t, s)].
A common approach for a flexible hazard model is to assume that it is
piecewise constant. The support of the hazard is divided into a grid of cells,
mostly rectangles, and for each cell the total exposure and the number of
events are calculated. Standard MLE of the hazard is obtained by dividing
the number of events by the total exposure time in each cell.

The same estimates are obtained if we view the number of events E(t, s)
in each cell as a realization of a Poisson variable with expected value
wu(t,s) = R(t,s)A(t,s) that is, E(t,s) ~ Pois(u(t,s)). Here (t,s) denotes
the coordinates of a cell (usually represented by its center) and R(t,s)
denotes the total at-risk time in the cell.

With a fine grid, we obtain a very flexible hazard, but at the price of
an erratic behaviour where fewer individuals are observed. To obtain a
smooth surface we use a combination of B-splines bases and difference
penalties on the estimated coefficients, known as P-splines. P-splines have
been efficiently used to smooth hazards in two dimensions by Currie et al.
(2004). Here we will extend this approach to the case of hazards with two
time scales.

In most applications the two time scales ¢ and s move at the same speed. So
if individual ¢ enters at (¢;,s;) and exits after A time units, the exit point
(tv“s“z) is given by &; = t; + A and §; = s; + A. In this way, individuals
move along diagonal lines with slope 1 in a Lexis diagram (Keiding, 1990).
Consequently, possible combinations of ¢ and s are restricted to the positive
half-plane where s < t. (For example, the duration of a cohabitation s
always is shorter than the age ¢ of the individual.)

In order to overcome this restriction we propose to transform the data into
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()=03=6 1)) o

The transformed data points are now scattered over the whole positive
plane, where © > 0 and s > 0. (In the example, if ¢ is age and s is the
duration of the cohabitation, then © = t — s denotes the age at entry into
cohabitation.)

The transformed (u, s)-plane is split into a large grid of small squares, by
dividing the u-axis into J intervals and the s-axis into K intervals. Then
we compute the J x K matrix of exposure times R and the event matrix E.
We denote with B,, and B, the two B-spline matrices built over the u- and
s-axis with ¢, and cs columns, respectively. The bi-dimensional regressor
matrix is obtained as the tensor product of these two B-spline matrices:

new points (u, s) by:

with dimension JK X c¢,cs. Correspondingly, the vector of coefficients for
the B-spline basis is denoted by a = (a1, ..., ac,c.) whose elements need
to be estimated from the data.

A penalty matrix P is introduced to tune the amount of smoothing. We
denote by I,, and I the identity matrices of dimension ¢, and cg, respec-
tively, and by D,, and Dy differences matrices of order d along the rows (u)
and and columus (s). A common choice is a second or a third order penalty.
The penalty matrix has two terms, one for the row coefficients and one for
the columns, and it is constructed as:

P=p,I;®D,D,)+ p;(D;D; ®1,), (3)

where p, and ps are the smoothing parameters. To choose the optimal
values of the smoothing parameters AIC is minimized. For this the values
of p, and ps are varied over a grid of combinations, on log;,-scale, and the
model is estimated repeatedly for each combination of values. The optimal
smoothing parameters p,, and ps are the ones which minimize the AIC of
the model.

3 Application: Marriage after cohabitation

We use data from the first ten waves of the German Family Panel (pairfam),
release 10.0, to study the hazard of marriage after having cohabited. The
two time dimensions are the age of the individual (¢) and the duration of
cohabitation (s). Therefore u (the transformed time scale) is the age at
which the individual started cohabiting.

Germany is an interesting case study because marriage is very prevalent
but attitudes toward marriage differ significantly between West and East
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FIGURE 1. Smooth hazard of marrying after a cohabitation by age and duration
of the cohabitation.

Germany. We, therefore, estimate the smooth hazard for West and East
German men and women separately.

Figure [I] presents the estimated hazards of marriage after cohabiting for
West and East German men, plotted in the original plane and only for
the observed ages and durations. The hazard of marrying after a period of
cohabitation not only shows different levels in East and West Germany, but
also quite different age-duration patterns. Also, the interplay between age
and duration of cohabitation is rather complex, which would be difficult to
capture unless both time dimensions are considered simultaneously.
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Abstract: Describing the effect of climatic and spatial factors on the geographic
distribution of the plant pathogenic bacterium Xylella fastidiosa has been the
main aim since the moment that it was discovered its presence in Alicante (Spain).
This work started with the analysis of the presence/absence data of the pathogen
using Bayesian hierarchical models through the integrated nested Laplace approx-
imation methodology and the stochastic partial differential equation approach.
Spatial models usually assume stationarity, however, this may be not applicable
when physical barriers are present in the study area. Taking into account the
irregularities of the terrain and what this may entail in the spread of the dis-
ease, higher altitude areas have been considered as possible barriers in the area
of interest. The results show that the spatial effect had a strong effect in the
model and also that there was no great influence of the barriers due to their
reduced extension. Future work will be focused in using these barriers models
with theoretical phytosanitary barriers.

Keywords: Xylella fastidiosa; INLA; SPDE; Barriers.

1 Introduction

Species distribution models (SDMs) are useful tools to establish which con-
ditions are potentially suitable for the expansion of populations, to evaluate
the associations of biotic and abiotic factors with the geographic extent of
the species, as well as to predict the species distribution in space and time.
These types of models can be developed through different methodologies.
However, in many cases, they ignore the spatial dependence which usually
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2020. The copyright remains with the author(s). Permission to reproduce or ex-
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exists among the geographical locations of the observations. This can lead
to an overestimation of the parameters and to establish erroneus relation-
ships between observations and covariates. Spatial Bayesian hierarchical
models allow the inclusion of spatial autocorrelation.

Spatial models are usually based on the fact that the spatial correlation
between observations only depends on the Euclidean distance between lo-
cations, i.e. that assumes that is stationary and isotropic. Nevertheless,
this assumption may lead to a bias in the prediction of species distribution
when there are dispersal barriers in the study area (Bakka et al., 2019,
Martinez-Minaya et al., 2019).

Xylella fastidiosa was detected in 2017 in Alicante (Spain), affecting mainly
almond trees, although it has also been detected in other plant species. The
first interest in this study was to analyze the effects of climatic and spatial
factors on the distribution of the pathogen. But taking into account that
the study region had a variable topography, with areas at sea level and
mountains over than 1500 m of altitude, the areas with the highest altitude
were considered as physical barriers.

2 Data and modeling

Data were considered as continuous locations that occur within a defined
spatial domain (geostatistical data). Presence/absence data of X. fastidiosa
from the official surveys in 2018 in Alicante were analyzed using a Bayesian
hierarchical model through the Integrated Nested Laplace Approximation
methodology (Rue et al., 2009). The spatial effect was included using the
Matérn covariance function, approximated as a solution to a stochastic
partial differential equation (Lindgren et al., 2011).

The mean of the response variable Y; was linked to a structural predictor
which included the effect of covariates and spatial effect in an additive way:

M
g(mi) = Bo+ D Bmmi + u(s:),

m=1

where [y is the intercept, §,, are the coefficients of the covariates x,,, m;
is the probability of presence at location ¢, and wu; represents the spatial
random effect.

Following Bakka et al. (2019), taking into account a non-stationary process,
in the areas with barriers the correlation was eliminated by introducing a
different Matérn field, with the same variance (o) but a range (r) close
to zero. Thus, u(s) is the solution to a system of stochastic differential
equations that includes the normal area with the area of the barriers. In
this case, the areas with highest altitude were established as barriers (above
1065 m).

Climatic variables for Alicante were obtained from the WorldClim v.2
database (Fick and Hijmans, 2017). Due to the high linear correlation found
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among the climatic variables, a selection of variables was made prior to the
modeling process, where the collinearity was evaluated by means of the
variance inflation factor (VIF). Once the climatic variables to be included
in the model were pre-selected and taking into account the spatial effect,
a model selection was made based on two criteria: the Watanabe Akaike
information criterion (WAIC) (Watanabe, 2010), which indicates the good-
ness of fit of the model; and the logarithmic conditional predictive ordinate
(LCPO) (Roos and Held, 2011), which evaluates the predictive capacity.

3 Results and discussion

Based on the linear correlation and the value of the VIF, the pre-selected
climatic variables were: mean diurnal range (bi02), mean temperature of
wettest quarter (bio8) and precipitation of wettest month (bio13). The
combination of these three climatic covariates and the spatial effect resulted
in 16 models to evaluate. According to WAIC and LCPO criteria, the one
that included the covariate bio18 and the spatial effect was selected as the
best model.

The probability that the posterior distribution of the parameter for bio13
was less than zero was 0.94, therefore, it was considered relevant in the
model. The effect of this covariate on the model would imply that areas
with higher precipitation in the wettest month would have lower probability
of the presence of X. fastidiosa.

Figure [[]shows the mean and standard deviation of the predictive posterior
distribution. Athough the covariate bio18 was considered relevant in the
model, a strong influence of the spatial component in the model was ob-
served. In this way, the highest probability of the presence of X. fastidiosa
was found in those areas where the spatial effect had higher values.

Due to the small extent of the barriers considered in the study area of X.
fastidiosa, they did not have a major impact on the spatial component,
nevertheless, it was observed a smoothing effect around the areas with
higher altitude. In the study of species distributions, the elements that are
barriers for dispersal cannot be ignored, since it would be wrongly assumed
that the species can be found in areas where it would be actually impossible
to be present.
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FIGURE 1. Mean (left) and standard deviation (right) of the posterior predictive
distribution of the probability of presence of Xylella fastidiosa.
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Abstract: An important problem in Statistics is the study of longitudinal data
taking into account the effect of explanatory variables such as treatments and
time and, at the same time, incorporate into the model the time dependence
between observations on the same individual. The latter is specially relevant in
the case of having nonstationary correlation, as well as nonconstant variance
for the different time point at which measurements are taken. Antedependence
(AD) models constitute a well known commonly used set of models that can ac-
commodate this behavior. In this paper, a new Bayesian approach for analyzing
longitudinal data within the context of antedependence models is proposed. This
innovative approach takes into account the possibility of having nonstationary
correlations and variances, and proposes a robust and computationally efficient
estimation method for this type of data. We consider the joint modelling of the
mean and covariance structures for the general AD model, estimating their pa-
rameters in a longitudinal data context. Our Bayesian approach is based on a
generalization of the Gibbs sampling and Metropolis-Hastings by blocks algo-
rithm, properly adapted to the AD models longitudinal data settings. Finally, we
illustrate the proposed methodology by analyzing the race dataset.

Keywords: Antedependence models; Bayesian methods; Mean-covariance mod-
elling; Nonstationary correlation.

1 Introduction

Continuous longitudinal data consist of repeated measurements on the
same subject over time. These measurements are typically correlated and
there have been several proposals in the literature to handle stationary or
nonstationary correlations and variances, as well as balanced or unbalanced
longitudinal data. A general fixed effects regression model for longitudinal

This paper was published as a part of the proceedings of the 35th Inter-
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data can be defined by assuming that the response variable Y; can be
explained with the model given by Y; = X;8 +€;, ¢ = 1,...,m, where
Y; = (Yi1,...,Yin,)T is the n; x 1 vector of responses for subject i, X; is
the n; x g design matrix of rank ¢, which includes the covariates for the
i-th subject; €; is the n; x 1 vector of errors, assumed to follow a multi-
variate normal distribution with mean 0, and variance-covariance matrix
3:(0) = 02V, whereas 0 = (61,...,0;)T and B = (B1,...,8,)T are k and
g-dimensional vectors of unknown parameters for the variance-covariance
and mean model, respectively. Here, n; represents the number of observa-
tions available for the i-th subject. If n; = n, Vi, we have a balanced data
set. In addition, m represents the number of individuals in the study, which
are assumed to be independent from one another.

Fitting longitudinal models can be carried out by using maximum likelihood
estimation methods, such as the Newton Raphson, the EM algorithms, re-
stricted maximum likelihood or alternative Bayesian methodological pro-
posals. A Bayesian proposal with no specific variance-covariance structure
assumes a multivariate normal prior distribution for the mean regression
parameters and a Wishart prior distribution for the covariance structure.
A second approach assumes regression structures in both the mean and the
variance-covariance matrix of normal variables. This approach is based on
the modelling proposal which uses the Cholesky’s matrix decomposition.
In this paper we propose a Bayesian method for the joint estimation of
the mean and covariance parameters in the regression longitudinal models
settings under the normality assumption, and also allowing for the spec-
ification of several different variance-covariance structures. Our proposals
start by considering variance-covariance models with stationary correla-
tions and homogeneous variances, as is the case in the CS, AR(1) and
ARMA(1,1) models, so that they are then generalized to consider nonsta-
tionary correlations and heterogeneous variances, such as is the case in the
structured antedependence model of order one, or SAD(1) model. That is,
we extend the previous proposal to consider parametric more parsimonious
variance-covariance models that have been shown to be more useful in lon-
gitudinal data settings than those of the unstructured AD model previously
considered therein. In order to illustrate the performance of the proposed
methodology, it was applied to fit longitudinal models with structured AD
of order one, SAD(1), covariance structures to the 100-km race dataset.

1.1 Bayesian estimation proposals

In longitudinal models, if Y = (Y3,Ya,...,Y:mm)T denotes the vector
of responses for all of the m individuals in the study, having a design
matrix X = (X{,XJ,...,X2)T we have that Y = X3 + €, where
€ = (€1,...,€m)T is a vector of random errors associated to the correspond-
ing component in the responses vector Y, so that the €;’s are assumed to
be independent from each other, € ~ MV N with mean 0 and block diago-
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nal variance-covariance X(0) with diagonal components ¥1(0),. .., %,,(0).
Thus, under mean and variance-covariance model assumptions, apart from
a constant term, the likelihood function is given by:

L(B.01) o T] 20)~F exp { -3 [(v = x8)" 5 0)(¥ - X8 |

i=1

where the 3;(0)'s are assumed to follow: (1) a compound symmetry (CS),
equicovariance or equicorrelation model, with 8 = (02, p)T, Var(Y;;) = o2,
j =1,...,n;, and Cor(Y;;,Yy) = p; (2) a first order autoregressive re-
gression structure AR(1) model, with 8 = (02,p)7, Var(¥;;) = ¢? and
Cor(Y;;,Yu) = plta—tul | 5 £1; (3 ) an autorregressive With moving average
ARMA(1,1) model, Wlth 0 = (02,p,¢)T, Var(Yi;) = o2, Cor(Y;;,Yy) = ¢
if |tij - til| = 1, and Cor(}/ij’}/il) = (bplt” fal-1 lf |tz] - tzl| > 1L
and (4) a structured antedependence (SAD) model, where the compo-
nents of 8 = (02, p?, \,9)T are given by Cor(YZJ,Y k) = Pij—k =
p’{(tnv\k)—f(ti,j—k,/\k)’ j=s+1,....,n,k=1,...,s and 0._ _ O'ZG( i ),
j=1,...,n, whit f(tij, \) = (Ak — 1)/ A, if A # 0 and Fltizs M) =
log(tij), lf )\k =0.

Thus, assuming independent prior distributions for 8 and @, the poste-
rior parameter distribution is given by m(0) o< L(3,0|Y )p(8)p(0), where
p(B) is the prior distribution of 3, assumed to be a multivariate nor-
mal distribution, and p(@) the prior distribution of 6, defined accord-
ing to the variance-covariance structure. Then, samples of 3 are ob-
tained from their posterior conditional distribution, a multivariate nor-
mal distribution. For @, assuming prior independence between their pa-
rameters components and that A\ = A, for all k, the following prior dis-
tribution were assumed: p(p) = Gamma(go/2, goo3/2), where ¢ = 1/0?;
p(A) = U(—a,a); p(p) = Beta(a, b), and a multivariate prior normal distri-
bution p(1p) = MV N(apg, Ko) for ¥ = (1g,91,...,%,)T, in order to build
a normal kernel transition function. Thus, samples of ¢ can be obtained
from their full conditional posterior distribution, which is a gamma distri-
bution. Samples of p, A and 1 are obtained from the posterior conditional
distributions by applying the Metropolis Hastings algorithms, defining ap-
propriate kernels transition function. That is, appropriate kernel transition
functions should be defined in order to attain a reasonable efficiency for
the proposed algorithm. As for ¢ and A, a kernel transition function, such
as the one assumed for p and given in equation , is also assumed.

k k
g(p®p®)) = {P( )~ U(0,2p) p*) <05

1
§ e UEpP —1,1) p® > 05 M)

For 1, we assume a kernel transition function given by the observational
model obtained from Y; = ﬁ Py (Yij - }7j)2, where Y; = ZZ Y5,
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and by assuming, without loss of generality, that n, = n, and that the
working observational model

w; =log(Y;) = o + 11 X1j + - +pXp; + &5 (2)

follows a normal distribution, where €; € IV (0,0?), with o2 known, and
such that X; = (1, Xy;,...,X,;) and X = (X7,..., XT)T. Thus, the
kernel transition function for ¢(t)) is obtained from the combination of the
normal prior distribution and the observational model in . That is,

Ta(w) = N1y, Kyp), (3)

where iy = Ky(Kj'g + XTE7'W), with ¥ = diag(o?), W =
(W1, .., W0,)" and Ky = (K5 '+ XTE71X) 1

2 Application: 100-Km Race Data

The 100-Km Race Data correspond to each of the partial times in minutes
for each of the 80 competitors in each of the 10-kilometer sections of a
100-km race in the United Kingdom in 1984. The objective is to find a
parsimonious model describing in the best possible way how competitor’s
performance on each 10-km section and performance on previous sections.
Based on shape of the data set we assume a cubic in time mean regression
model 3/1']' = ﬂo + ﬂltij + BQtzzj + ﬁgt% + €ij, = 1, .. .,80, and, based
on the sample correlation and variance values for this dataset, variances
increase as the race progresses, and correlations are nonstationary, so that
we propose the use of a variance-covariance structure having an SAD(1)
model given by:

pj,j—k = pf(tij’A)_f(ti’jikJ\), j =S5+ 1, ey k - 17 sy S (4)
0 = exp (o + Uity + Yat), j=1,....m, (5)

where f(t;;,\) = (tf‘J — 1)/ if XA # 0 and f(ti;,A) = log(ti;), if A = 0.
The proposed Bayesian method shows a good performance, showing a small
transient period and parameter estimates that agree with the dataset be-
havior. The AIC, DIC and BIC values are small for the proposed model
compared with those obtained in previous analysis. Results include the re-
gression parameter estimated mean values under the Bayesian proposal,
together with their respective standard deviations, and including median
values, as well as estimates obtained by restricted maximum Likelihood
methods (REML). Table |1] presents the posterior mean parameter esti-
mates, obtained under the Bayesian proposal for the Type 3 - SAD variance-
covariance structure, together with their respective standard deviations
within parentheses, including median values, and parameter estimates un-
der REML-methods for the 100-km race dataset. In the Bayesian proposal
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for the Type 3 - SAD model, there is a slight difference with the one as-

sumed in previous analysis (i.e., those applying the REML methods), where
the proposed variance function is 0]2- = o?(1+91ty; +w2tfj)7 ji=1,...,10.

TABLE 1. Mean parameter estimates for the Type 3 - SAD model.

Parameter Mean Median | REML-estimates
Bo 44.585 (1.632) 44.573 43.428
51 -2.410 (2.102) -2.421 1.354
B2 1.327 (0.752) 1.326 0.253
B3 -0.097 (0. 072) -0.097 -0.017

Table [2] includes the estimated values for the variance-covariance parame-
ters under the Bayesian proposal, together with their respective standard
deviations, and including median values, as well as estimates obtained by
restricted maximum Likelihood methods (REML), when available, where
standard deviations for the variance-covariance parameters were not pro-
vided. In any case and in order to be able to compare the estimated vari-
ances at each split time, we also include their REML-estimates for the
variance parameters: 6% = 16.952, 1&1 = 0.590, and 1/32 = 0.450.

TABLE 2. Variance parameter estimates for the Type 3 - SAD model.

Parameter Mean Median | REML-estimates
p 0.918 (0.031) 0.924 0.929
A 1.680 (0.261) 1.684 1.600
N 2.771 (0.308) 2.767 -
P 0.677 (2.128) 0.683 -
(5 -0.034 (0.021) -0.034 -

3 Conclusions

We have proposed alternative Bayesian longitudinal models for fitting com-
pound symmetry, autoregressive of order one, autoregressive with moving
averages, as well as structured antedependence models for nonstationary in
variance and/or correlation longitudinal data settings. In this paper, we as-
sume flexible prior distributions, specific methods to obtain samples of the
conditional posterior distribution are proposed. The usefulness of the pro-
posed method was illustrated with the analysis of the 100-km race dataset,
and results were compared to those obtained by restricted maximum like-
lihood methods. Results suggested that the proposed methods behave well
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under very general conditions, and estimated values were similar to those
obtained by classic methods. However, classic methods require specific pro-
gramming, whereas the proposed Bayesian methods can be easily adjusted
to the data sets under study by using very flexible and easy programming,
as well as general available software, such as R.
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Abstract: The recent abundance of wearable technology has led to a sharp rise
in the availability of multivariate data streams. However, many functional data
analysis (FDA) methods require such data to be measured regularly without
missingness, with data being collected at the same fixed times for all individuals.
In order to deal with irregular, concurrent, functional data including missing
values, we developed the Bayesian model for function-on-function regression. This
method is tested in a simulation study and applied to concurrently measured
glucose (every 5 minutes for 1 week) and electrocardiogram (ECG) data (every
10 minutes for 1 week) in a cohort of n = 17 type 1 diabetics. The Bayesian
model outperformed other models when the underlying relationship is complex
and non-linear.

Keywords: Functional concurrent regression; Functional data analysis; Bayesian
Models

1 Introduction

Functional data analysis (FDA)(Ramsay and Silverman 2006) assumes
that the observed data (e.g. recorded over time for an individual) are
a stochastic process and that the data can be represented as functions.
Methods for FDA include functional principal components analysis (Yao
et al. 2011), functional correlation and functional regression models
(Goldsmith and Schwartz 2017) among others. In the early years of
FDA, application focussed on data measured on a dense and regular
grid. However, many data are collected irregularly over time with each
subject having a different number of samples and different sampling
points. Years ago, such data had few replicates and were analysed using
longitudinal data techniques such as linear mixed models (Laird and
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Ware 1982). With developments in sensor technology, functional data
(e.g. from wearable devices) can have thousands of replicates measured
per individual and sampling points which differ from person to person.
These data maybe highly non-linear, and hence FDA techniques are best
placed to maximize their value. In this paper, we focus on modelling
the concurrent relationship between functional variables, where both the
response and predictor variables are functional and measured on the same
domain (i.e. the functional concurrent model or FCM).

The frequentist methods readily available to fit FCM to irregular data with
missingness use only complete cases (Leroux et al. 2018). Other methods
considered for such data are not available in software. Bayesian models
can use all the data available in such cases. However, models considered
so far in the Bayesian framework only fit data collected on a regular grid
(Crainiceanu and Goldsmith 2010). In this paper we develop and test a
Bayesian model that can fit FCM to irregular data including missing values.

2 Methods

2.1 Functional Concurrent model (FCM)

We consider both functional responses and covariates which are irregularly
and sparsely measured. When both response and predictor are functions,
the function-on-function model regression model is popular. A special type
of function-on-function regression is the functional concurrent regression
model which estimates the concurrent relationship between the response
and predictors dynamically across the same domain ¢. The observed data
are (Y;;, X;;) which denote the i*" individual’s measurement at time j. The
model with one covariate is given by the formula (Leroux et al. (2018))

Yi(t) = fo(t) + Xi(t) f1(t) + bi(t) + €i(t) (1)

where Y;(t) is the response at time ¢ for the response and fy(t) is the con-
stant function, Xt) is the functional predictor at at time j, b;(t) are subject
specific deviations from the intercept function and €t) are independent ran-
dom errors. Ivanescu et al. (2018), Febrero-Bande et al.(2012) and Ramsay
and Silverman (2006) developed models to fit the FCM. These models can
fit sparse data measured on a regular grid or irregular data on a dense
grid. For irregular and sparse data, Leroux et al. (2018) developed the fcr
package. A concurrent relationship can also be estimated by the additive
model using the mgcv R package. In the Bayesian framework, Goldsmith et
al. (2017) developed an R package (vbvs.concurrent package) for variable
selection in the FCM model which can estimate the parameter function.
However, the fer, mgcev, and vbvs.concurrent packages use complete cases
only. In addition, the vbvs.concurrent does not produce inferences.



Charamba and Simpkin 47

2.2 Bayesian Functional Concurrent Model

The functional parameters, f;(¢) in Model |1| were expressed in terms of
basis functions. Let B(t) = {Bi(t), -, B.(t)}' be a sequence of basis
functions evaluated at ¢, where ¢ is the number of basis functions. Then
let f;(t) = B(t)’© where © = (61, --,0.)" is the vector of coefficients.
The subject specific deviations are also modelled using basis functions
bi(t) = > i, wieBi(t) where, u; = (uin, -+, uic)’. Lety; = (Yir, -+, Yim,)'
and Xi = (Xi17 s 7Ximi)/7 BZ = [B(til), s ,B(timi)]l and

Zi = [BZ, diag(Xl)i)Bi, R ,dzag(Xpﬂ)Bz]
With this notation, the model can be expressed as a mixed model

which can be fitted using Bayesian methods or any other software, and
Bayesian methods can easily be applied. The parameter functions were then
estimated separately as f;(t) = B(t)'©.The model was fitted in R using the
R2jags package. The response was assumed to be normally distributed. The
design matrix Z was obtained from the data and the smoothness on © was
imposed using the first order random walk. Subject specific u; was assumed
to follow normal with covariance I'. Specifically; Y;; ~ N(X0,0?), 6; ~
N(6;-1,10000), ¢ = 2,--- ,¢, and u; ~ N(0,I'). The parameter functions
were obtained as f;(¢t) = >.;_, 6;B;,j = 0,1, these were set as stochastic
nodes in the model.

2.3 Simulation study

A simulation study was performed to compare the Bayesian model with
the fer, vbvs.concurrent and mgcv models to determine which performs
best when there are sparse and irregular data. The Bayesian model was
fitted using the R2jags package and convergence was checked using trace
and history plots. The model simulated was

Yi(t) = fo(t) + f1(&)Wi(t) + ei(t)

with W;(t) = X;(t) + 6:(t), X(t) = 4cos(10t — 0.1) + 1.5sin(10t —
0.6) + 2cos(20t — 0.6),fo(t) = 0.75¢t — exp(—6t) (to mimic glucose trend
in our application below), ¢; ~ N(0,02) and §;(t) ~ N(0,05I). Four
functions were considered for fi(t);1. Linear: 12t — 6,, 2. Exponential:
1/(1+exp(5—10t)), 3. Polynomial: 1.5¢t —2¢2+1.6¢> —2¢> and 4. Sinusoidal:
0.2 — cos(t(1.5t — 7)) + 1.2 exp(—8t?).

Sparsity was induced to the data with (i) 10% missing completely at ran-
dom - MCAR for all individuals and (ii) a 10% missing middle chunk of
data for half of the population. Sample size was set to n = 100, with
n; = 100 sampling points and error variance ¢ = 1. All the models were
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fitted using equal basis splines for easier comparability since all the models
are spline based. Models were fitted in R v3.6 to 100 datasets and compar-
isons were made using squared deviation, [(f,(t) — fp(t))?dt, p =1,2,3,4.
The smaller the deviation, the better the model.

2.4 Application

In order to determine the relationship between extracellular glucose and
heart functioning, n = 17 type 1 diabetes patients were recruited in a
prospective observational study. They were fitted the continuous glucose
monitor (CGM) which measured glucose in mmol/L every 5 minutes, and
also wore a vest with sensors to measure ECG data every 10 minutes (in
particular QT interval - see Figure . There were missing ECG data due
to renewal of sensor gel or, for instance, to take a bath. The functional
response variable of interest was the QTc (corrected QT) interval from
the ECG vest and the functional predictor was glucose from the glucome-
ter(mmol/L).

QRS duration
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FIGURE 1. ECG tracing for one heart-beat

3 Results

3.1 Simulation study

The different models were fitted on 100 datasets for the two missingness
scenarios. Boxplots for the 100 squared deviations for each function are
shown in Figure 2] We can see that the Bayesian model provides stable
estimates regardless of function and type of missingness, and gives the
best approximation of the true function compared to other models. The
time taken to run 100 observations model was 9.95, 44.56, 10.56 and 32.95
seconds using the mgcv, fer, vbvs.concurrent R packages and Bayesian
respectively. It can be seen that the Bayesian model is not as fast as the
variational Bayes and mgcv but it’s quicker than the fer approach.
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FIGURE 2. Boxplots for different missingness proportions for the four models

3.2 Application

The Bayesian FCM was fitted for the ECG-glucose data and the parameter
function is shown in Figure |3] The plot provides evidence for a dynamic
relationship over time. The fitted model finds a positive relationship be-
tween glucose and QTc at several times during the study. In these periods,
as glucose increases, mean QTc also increases. This may be useful in the
care of diabetes patients, although more work is required to investigate this
complex dynamic relationship.

4 Conclusion

We have developed a novel Bayesian functional concurrent model which
can be applied to sparse, irregular data. Our approach is competitive with
other models regardless of the shape of the relationship between functional
predictors and responses. It can deal with missing data as it uses all the
available data and can impute missing observations along the way. In ad-
dition, it provides straightforward inferences through confidence bands. It
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FIGURE 3. Parameter function for the effect of glucose on QTC

can be extended to include more covariates, both functional and scalar.
However, there are a wide variety of functions for the relationship between
functional variables which were not considered here. The Bayesian model
takes more time to fit in comparison with some other models, but if better
performance is valued, it should be used. In conclusion, we have seen that
the novel Bayesian functional concurrent model outperforms other estab-
lished models in the scenarios we have attempted.

Acknowledgments: This research was funded by Science Foundation Ire-
land and the Insight Centre for Data Analytics.
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Invariance and the forecasting of mortality
II: Standard errors
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Abstract: This is a companion paper to the paper we presented at IWSM 34 in
2019 on the modelling of human mortality. Many such models are not identifiable
so parameter constraints are often used to obtain parameter estimates that are
then used for forecasting. In the 2019 paper we considered the invariance of the
central forecasts of the force of mortality with respect to the choice of constraints
when an ARIMA model is used to forecast parameter estimates. In the present
paper we consider the standard errors of these forecasts and show that these too
are invariant when an ARIMA model is used. We illustrate our results with the
same Portuguese data.

Keywords: Forecasting; Identifiability; Invariance; Mortality.

1 Introduction

The forecasting of human mortality is a central problem for the providers
of pensions, annuities and other financial products which depend on the
future duration of a human life. The usual approach is to build a model
which depends on an individuals age, the current year and their date of
birth. However, dependencies among these three determinants mean that
most such models are not identifiable. As a consequence the forecasting of
particular parameter estimates subject to an arbitrary set of constraints is
problematic. In our earlier paper we showed that, while parameter estimates
are not identifiable, forecast values are identifiable when an ARIMA model
is used to forecast. In the present paper we extend these invariance results
to the standard errors of the forecasts.

We use Portuguese mortality data downloaded from the Human Mortality
Database on December 18, 2018. We have the number of deaths d, , and
the corresponding central exposed to risk e, , for ages 50 to 90 and years

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).



Currie 52

1970 to 2015. For simplicity we will index the ages by x, = (1,...,n4)%,
the years by ¢, = (1,...,n,)" and the years of birth by . = (1,...,n.)"
where n, = n, + ny — 1 is the number of distinct cohorts. We suppose
that the number of deaths at age x in year y follows a Poisson distribution
P(ey,yAz,y) where A; , is the force of mortality at age « in year y.

2 Method

We consider a generalized linear model or GLM with model matrix X,
n X p, n>p, rank p—q, ¢ > 1, and vector of parameters 8. Since X is
not of full rank € is not identifiable. However, there exists a matrix H,
q X p, with rank ¢ such that H@ = 0. Now, subject to the condition that
HGO = 0, we do have a unique estimate of 8. We refer to H as a constraints
matriz and we note that H is not unique.

Currie (2013) gave the following formula for the variance of the parameter
estimates, 97 in a constrained GLM with model matrix X and constraints
matrix H. We define A = X"W X + H™H then Var(f) is given by

T=A'-A'H'HA'H") 'HA™! (1)

and the variance matrix of the fitted values HO follows as X ¥ X7T. We
show that not only is X W X7 invariant with respect to the choice of H
but so also are the standard errors of the central forecasts.

3 Example

We consider the age-period-cohort or APC model:
log )‘iJ =Q; + Kj + VYng—itj» t=1,...,nq, j=1,.., Ny, (2)

where i is the age at death, j is the year of death and n, —i+ j is the year
of birth. Let o = (a1, ..., a0, )", & = (K1, 0y 8n,)"s Y = (V15 0y V)" and
0 = (o™, k", 4")". We illustrate invariance with three constraint systems:
a standard one found in the literature, a random one and one equivalent
to Rs method of fitting a rank deficient regression model.

Currie (2019) showed that the parameter estimates &, & and 4 under the
different constraint systems were strikingly different. Figure 1 shows that
the same is true for their corresponding variances. However, X W X", the
variance matrix of the fitted values, is invariant with respect to the choice of
constraint system. In particular, the invariant variances of the fitted values
in the final year, 2015, are shown in the lower right panel. We denote these
variances by V4 and we use V4 in the construction of the invariant standard
errors of the forecasts of mortality.

To illustrate the forecasting of mortality we consider a ten year forecast.
The upper left panel of Figure 2 is divided into three regions. Region A is
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FIGURE 1. Variances of & (top left), & (top right) and 4 (bottom left) in the
APC model under three sets of constraints; invariant variances V4 of fitted values
in the final year, 2015, (bottom right).

the data region, in region B the forecast error depends on V4 and the fore-
cast error for k, while in region C' the forecast error depends additionally
of the forecast error for 4. The resulting invariant forecast standard errors
are shown in Figure 2.

4 Conclusions

We showed (Currie, to appear) that two constraint systems lead to identical
fitted and forecast values of mortality. In the present paper we show that
this result extends to their standard errors.

Our results have important financial consequences. Forecasts of mortality
for policyholders in their fifties are necessarily for thirty, forty or even fifty
years ahead. Perversely, these ages are exactly those for which estimates
and forecasts of mortality are their least reliable; lower right panel in Figure
2. Actuaries routinely drop the cohort parameters from a model where the
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of forecast in final forecast year, 2025.

number of cells with such parameters is small, say fewer than four. The
assumption here is that it is better to forecast such cohort parameters than
to estimate them. We will use our results on standard errors to examine
this assumption in future work.
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Improved statistical emulation for a
soft-tissue cardiac mechanical model
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Abstract: This paper outlines a new approach to emulation based parameter
inference in a cardiac mechanic model of the left ventricle (LV) of the heart that
allows for prediction uncertainty to be accounted for. The emulation is performed
using Gaussian processes, which are designed to build on the results of previous
research in this area. This approach yields more accurate parameter estimates
than previously reported in the literature.
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1 Introduction

The Holzapfel-Ogden (HO) model (Holzapfel and Ogden, 2009) is a sys-
tem of coupled partial differential equations that define the stretch-strain
dependence of the inner tissue of the LV, known as the endocardium. The
model depends on various material parameters, for example those which
are related to the stiffness of the cardiac fibres. Interest is in determin-
ing these parameters for their potential to aid in the diagnosis of cardiac
defects, however they can only be directly measured in-vivo by invasive pro-
cedures. An alternative, non-invasive approach to inferring the parameters
which has potential for use in clinical decision support is to use magnetic
resonance imaging (MRI). This is done by taking MRI scans of a subject’s
LV at end diastole, to determine the myocardium responses that are mod-
elled by the HO law. The material properties can then be estimated as those
values which minimise the discrepancy between the observed myocardium
response, and the response predicted by the model. The diagnostic value
of this approach has been shown in previous work (Gao et al. 2017). The
problem, however, is that the HO cardio-mechanical equations describing

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the kinematics of the heart have no closed form solutions. Instead, numer-
ical procedures based on finite element discretisation are required, which
typically take on the order of 15 minutes per evaluation on a high per-
formance computer. Since solving for the material properties by iterative
optimisation methods may require hundreds or thousands of such evalua-
tions, the approach is rendered unsuitable as a real-time clinical decision
support tool.

A number of methods exists which can be used to overcome this problem,
one of which is statistical emulation.

2 Statistical Emulation

Statistical emulation involves approximating a computationally expensive
model, referred to as a simulator, with a much cheaper surrogate model,
known as an emulator. This is done by first choosing a set of points to
cover the input region of interest, and then running the simulator f from
each point. This creates a dataset of input-output pairs

D = {(x, f(x:))iL1} (1)

on which the surrogate model f is trained. While the creation of a dataset
in this manner for the HO law is extremely computationally expensive, all
simulations can be done in advance of clinical deployment. In clinic, f can be
used in place of f in the parameter optimisation routine, allowing estimates
to be obtained in real time. The inputs required for the HO model are a LV
geometry, H, and a four dimensional parameter vector 8 = (1, 60s,03,04)7,
which we are interested in inferring. In this study, we considered a fixed
LV geometry, and then used a Sobol sequence (Fang et al., 2006) to gen-
erate 10,100 parameter configurations within the physiologically realistic
boundaries (0.1,5)*. The simulator was then run from each point, and 25
outputs were extracted: circumferential strains at K = 24 regions along
the endocardial surface, and the LV volume, all measured at end-diastole.
Having created the dataset, the approach for constructing the emulator
f must be considered. Gaussian process regression is a Bayesian non-
parametric approach that is commonly used for emulation (Kennedy and
O’Hagan, 2001). A Gaussian process (GP) is a stochastic process where
any finite collection of random variables from the process are Gaussian dis-
tributed. GPs can be used for regression to define a prior directly over a
space of functions

f(x) ~ GP(m(x), k(x,x)) (2)

where the GP is completely specified by its mean function m(x) and co-
variance function k(x,x’). Given a finite set of known training points and
unknown test points, the GP marginalises to a multivariate Gaussian dis-
tribution, with mean and covariance found by evaluation of m and k at
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the given points. Standard rules for conditional Gaussian distributions can
then be used to find the posterior distribution of the test points, given the
training points. For further details, the reader is directed to (Rasmussen
and Williams, 2006).

One drawback of the GP modelling framework is that training and pre-
diction times grow with the size of the dataset under consideration. Local
Gaussian process regression (Gramacy and Apley, 2015) is an approach
which can alleviate this complexity. With local GPs, a prediction is made
at a given point using a GP trained on only the k nearest neighbours of
the point in the training data. Initial work on the HO simulation data we
analyse in this paper demonstrated the effectiveness of an emulator com-
prised of 25 independent local GPs, one for each dimension of the simulator
output (Davies et al., 2019). The problem with the local GP approach in
our application context is that, as we adjust the input parameter values
during the optimisation routine, the local neighbourhood will also change.
This in turn means that the emulator will need to be refit at each iter-
ation. Further work however has shown that a multivariate-output local
GP emulator trained on the nearest neighbours of a test point in output
space can accurately model the HO law (Noe et al., 2019). The advantage
of considering neighbours in output space is that this neighbourhood does
not change during the parameter optimisation, meaning that the emulator
only has to be fit once for each test point.

Given the above results, in this paper we consider an emulator made up
of 25 independent local GPs trained on k& = 200 neighbours in output
space. The GPs were fit with linear mean functions and with squared ex-
ponential kernel function, where the length scales for each input dimension
were allowed to vary. This is known as an ARD (Automatic Relevance De-
termination) prior in the Machine Learning community (Rasmussen and
Williams, 2006). Although the data under consideration is deterministic, a
small nugget term (10~°) was added for reasons of numerical stability.

3 Maximum Likelihood Parameter Inference

Our objective is to find the optimal parameter estimates which minimise
the loss between measured data, and the values predicted by the em-
ulator. In what follows, we denote the measured quantities, after non-
dimensionalisation, by

y:(y07y17"'7yK)T (3)

where yo is the non-dimensionalised LV volume, and ¥1,...,y24 are the
non-dimensionalised circumferential strains.

The corresponding outputs from the GP emulator, which depend on the
cardio-mechanic parameters 8 and the LV geometry, H, are denoted:

R . R . T
£(0,H) = (fo(O,H),fl(a,H), o 7fK(9,”H)) (4)
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In previous work, described in Section 2, the cardio-mechanic parameters
0 for a given LV geometry H were estimated by minimizing the L2 norm
of the difference between y and f:

K 2
BO.H) = |y - 0.1 = > (v - (6, 7)) (5)

1=0

where each output fi(O, ‘H) was set to the corresponding posterior GP mean
1:(0,H). Under the assumption that the measurement noise is iid additive

Gaussian with variance o2,

= f(0,H)+e; e~N(0,02]1) (6)
we obtain the log likelihood, conditional on the emulator output £(6,H):

logp(y|f(077-l)) = % EK: (yz - fi(evH))z -
m =0

Maximizing this conditional likelihood with respect to 8, for a given LV
geometry H, is equivalent to minimizing the original objective function
(5), where again the emulator outputs are set to the posterior GP mean
values. However, a disadvantage of this approach is that the uncertainty
of the emulator, naturally predicted by the GP variance, is not taken into
consideration. To rectify this, we can compute the marginal likelihood by
integrating over the emulator outputs

K+l log(2wofn) (7)

p(516.%,0%) = [ p(ylE. 2 p(Ee. H)af = H/ (yilfis o2, (16, H)
1=0
(8)
where conditional independence between the outputs has been assumed.
The two probability distributions under the integral are given by

p(yiﬁiao—?n) = (yl| iy O m)
p(i10.1) = N (Elui(0,7),03(0.%)) (9)
where p;(0,H) is the mean of the i*" GP emulator, and 02(0,H) is its

variance. The integral in is a therefore a standard Gaussmn integral
with closed-form solution

K
p(y10,H,02) = [[N (vilui(0,H), 02, + 0} (6, 1)) (10)
i=0
which gives
K C— (0, H)
oy 1 yi — (0, .
logp(Y|07H70'm) - 2 ; [02’1_’_012(077_[)] +10g (27T[0'm+0'i (077'[)])

(11)

as a better objective function to optimise.
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4 Results and Discussion

In the absence of large quantities of real patient data, we instead reserved
the final 100 points of our simulated dataset as an independent test set on
which to quantify the difference in parameter estimation accuracy when
emulation uncertainty is accounted for. Using local GP emulators trained
on the remaining simulation data, we used iterative optimisation methods
to estimate each of the independent test parameter values with loss func-
tions (5) and (11) respectively. By then evaluating the mean squared error
(MSE) between the known true values and the estimated values, we ob-
tain a list of 100 errors for each loss function. The median of these lists is
displayed in Table 1, alongside the first and third quartiles.

TABLE 1. Test Set MSE (Parameter Space)

Emulator Loss Function 1%% Quartile Median 3" Quartile

Local GP  Equation 92x1078% 3.1x1077 3.1x10°°
1)

Local GP  Equation ( 71x107%  3.0x1077 20x10°¢

The results in Table 1 quantify the improvement in parameter estimation
accuracy that can be achieved by accounting for emulation uncertainty.
The gain in performance is slight, which may be due to the prediction
variance for each output dimension being quite similar. Of note is that
our parameter estimation accuracy has improved by more than one order
of magnitude over the best results from the literature, particularly as a
consequence of a decreased nugget term. This accuracy is visualised in
Figure 1, which plots the 100 out of sample test parameter values, broken
down into each dimension respectively, versus the corresponding values
predicted when using loss function (11). We see extremely good agreement
between the true and predicted values across the entire parameter space.

Jrug Values
Jrug Values
Jrug Values
’I\'uf Vﬁ]ll(is .

1 2 3 4 5 0 1 2 3 45 0o 1 2 15 0
Predicted Values Predicted Values Predicted Values

9 1 92 93 94

0 1 2 3 4 g
Predicted Values

FIGURE 1. Plot of the true test set parameter values versus those predicted
by the local GP emulator using loss function (11), when broken down into each
dimension respectively. Points lying on the red lines of unit slope indicate perfect
prediction accuracy.

The limitation of the analysis presented here is that we have performed
emulation for a fixed, known LV geometry H. To be of clinical use however,
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the emulator must be able to account for the unique LV geometry of a given
patient. Therefore, the construction of emulators that can account for LV
geometry variations will be the remit of further work.
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Abstract: The ternary diagram is a popular tool for displaying compositions
with three components. When one or two components are close to zero, it is
hard to judge the display. The TrioScale diagram is an effective alternative, using
log-ratios. Unfortunately, it cannot handle zeros, which is a serious drawback
when studying count data. A variant of PRIDE is proposed to adjust the counts,
guaranteeing positive numbers.

Keywords: Compositional data, PRIDE, shrinkage, penalties.

1 Introduction

The ternary diagram is a popular and effective way to display triples of
fractions. Figure 1 shows an example, for concentrations of three metals
(Manganese, Rubidium and Strontium) in moss (data set moss in the R
package StatDA). The underlying principle is that for any point in an isosce-
les triangle the sum of the lengths of the perpendiculars on the sides is
constant.

If a part of the fractions is close to 0 or 1, the dots gets pushed to the
sides, or into a corner, making the ternary plot hard to interpret, as can be
seen in Figure 1. An alternative diagram, called TrioScale (de Rooij and
Eilers, 2013), does not have this problem, as is shown in the right panel.
The axes now have a different meaning: they represent logs of ratios, like
log(Sr/Rb) for the horizontal axis. The coordinates in the new diagram are
easy to compute: x = log(pz/p1) and y = [2log(ps/p1) — x]/V/3. Notice
that they are based on log-ratios and that the sum of the proportions can
be arbitrary.

Unlike the ternary plot, the TrioScale diagram has no bounds. The axes can
be moved to parallel positions to create room for the data points. The log-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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ratios for any point in the diagram can be read by perpendicular projection
on the axes.

Logs of ratios are preferable for statistical modelling of compositional data
(van den Boogaart and Tolosana-Delgado, 2013). de Rooij and Eilers (2013)
showed that, on the transformed scales, linear relationships between log-
ratios form straight lines. In contrast, in a ternary diagram they show
strong curvatures.

The point cloud in the TrioScale plot in Figure 2 suggests a bivariate normal
distribution as a decent approximation. This is certainly not the case in
the ternary diagram. Also the domain is bounded in the latter, which is
not the case in the TrioScale plot.

However, count data can create problems. With zeros in one or more frac-
tions it is not possible to compute log-ratios. This is a nuisance when an-
alyzing small counts. A simple, but inelegant, solution is to add a small
number (like 0.5) to each count. Instead, I propose to use the PRIDE
model (Perperoglou and Eilers, 2010) to replace zeros by positive numbers,
as will be explained in the next section.

rernary

0.0

T
Rbg .o 02 0.4 06 08 1.0

FIGURE 1. Concentrations of three metals (Manganese, Rubidium and Stron-
tium) in moss, displayed in a ternary diagram. The axes indicate fractions.

2 PRIDE

PRIDE stands for Penalized Random Individual Deviance Effects. Let y
be an n—vector of observed counts and let X be an n by m design matrix.
In a log-linear model for for the expected values, p, a random effect is
introduced for each individual observation:

log(p;) = injﬁj +5; or logu=[X1I,] [ 5 ] = [X I,,]0 = B9,

J
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IrloScale
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FIGURE 2. Concentrations of three metals (Manganese, Rubidium and Stron-
tium) in moss, displayed in a TrioScale diagram. The axes indicate log-ratios of
fractions.

where 3 contains the regression coefficients and = the individual random
effects. To estimate 8 and -, the penalized deviance

D:2Zyi10g(yi/ﬂi)+)\Z%'2+“ZBJ27
i i J

is minimized. The second penalty is introduced to avoid problems when
X is collinear; x is a small number (like 10~%). The penalized likelihood
equations are B'(y — u) = PO, where P is a diagonal matrix with blocks
kI, and A, on the diagonal. The resulting linearized equations, that have
to be solved iteratively, are

(BMB + P)§ = B'(y — i + MB6),

where a tilde indicates the current approximation and M = diag(p). To
determine the value of the penalty parameter A, I use AIC. It combines
the (unpenalized) deviance and the effective model dimension, which is
computed (at convergence) as trace(G), with

G = (B'MB+P)"'B'MB

PRIDE was designed to improve estimation of the regression parameters
(and especially their standard errors) when over-dispersion makes a model
with only 8 and the Poisson assumption unrealistic. My goal here is differ-
ent: after estimating the model I replace the observed y, containing zeros,
with . All elements of i are positive and thus suitable for presentation
with TrioScale.

The recipe is as follows. Let the data be given in a matrix ¥ = [y;;] with
m columns and n rows. Fit the model log 1t;; = 7;; = a; + B + 75, so that
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Raw and shrunk

FIGURE 3. Ternary diagram of the proportions of time spent by pigs in three
locations in a stable (HB: half in straw bed; HF: half in feeder; HP: half in dunging
passage). The circles represent the raw proportions, the dots their adjusted values.

0" = [o/ 8'+']". The minimum of AIC is searched for on a grid for log .
To fit the model, Y is converted to the vector y, and the design matrix
X = [X1|X3|I,] is constructed, where X1 = €, @ I, Xo = I, ® €y, €4 is a
vector of ones of length ¢, I, is and identity matrix of size ¢, and p = mn.
With many observations, the number of equations, n +m + mn, gets large.
The system is very sparse, so it can be solved quickly with sparse matrix
software. That does not help much with the computation of (the trace of)
G. However, Perperoglou and Eilers (2010) presented a very efficient al-
gorithm that exploits structure of the equations in . They consists of
blocks, with the largest block diagonal with dimensions mn by mn. There
is no need to store it explicitly as a matrix: a vector of the diagonal ele-
ments is enough. By rearranging the equations, computation time becomes
essentially proportional to mn. Hence there is no practical limit to the size
of the data set that can be handled.

3 An application

The R package zCompositions contains the data set Pigs. At 97 instants,
5 minutes apart, the locations of 29 sows in a stable were observed. Six
locations were considered: straw bed (BED), half in the straw bed (HB),
dunging passage (PASSAGE), half in the dunging passage (HP), feeder
(FEEDER) and half in the feeder (HF). The triples (HB, HP, HF), are
interesting, because they show low counts and many zeros. I first apply
PRIDE to the complete matrix with all six locations and then select the
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TrioScale

HF

FIGURE 4. TrioScale diagram of the adjusted proportions of time spent by pigs
in three locations in a stable (HB: half in straw bed; HF: half in feeder; HP: half
in dunging passage).

triple (HB, HP, HF) for display. The AIC profile is shown in Figure 5. It
shows a clear minimum around A = 0.8.
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FIGURE 5. AIC profile for the Pigs data.
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4 Discussion

The proposed model will always generate positive replacements for zeros,
removing the main obstacle for using TrioScale with counts. It also changes
the values of the non-zero observations. This is not common in recipes for
compositional data, which usually correct only the zeros. The Bayesian
algorithm in the package zCompositions (Martin-Fernadez et al., 2015) is
an example. I think that it is reasonable to adjust all observations. Why
modify only the zeros and keep the other numbers untouched?

An interpretation of the model is that we shrink towards the independence
model log 11;; = o; + B;. In principle shrinking towards more complicated
models is possible, if we have enough prior information. Covariates can also
be included, when relevant.

Adjusting counts with PRIDE can be used in more places. It will work on
any table with zeroes, as long as all row sums and all column sums are
not zero. There is a rich literature on correction of zeros in outcomes of
clinical trials with small observations. I proposed a bivariate display of log-
odds (Eilers, 2007) that cannot handle exact zeros. It will be interesting to
investigate the prior use of PRIDE there.
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Abstract: In standard competing risks studies, every unit or subject is exposed
to different risks at the same time, but its actual failure or death is attributed
to exactly one of them which is then called the cause of failure. In general, the
goal of these studies is to distinguish between the following three alternatives:
(1) the risks are equal, (2) the risks are not equal, and (3) the risks are lin-
early ordered. We concentrate on modelling proposals in competing risk studies
and develop empirical likelihood (EL) based tests for testing the hypothesis that
the cumulative incidence functions (CIF) corresponding to k-competing risks are
equal against the alternative that they are not equal or that they are linearly
ordered. The proposed test statistics are functionals of localized empirical likeli-
hood statistics. Their asymptotic null distributions are distribution-free and have
a simple representation in terms of a standard Brownian motion or a standard
Brownian bridge. The tests we propose here are extended to the case of right-
censored survival data via multiple imputation. In order to assess the usefulness
of the proposed tests, and to illustrate the theoretical results for their asymp-
totic distributions, we include a simulation study and also discuss an example
involving survival times of mice exposed to radiation.

Keywords: Competing risks; Cumulative incidence functions; Empirical likeli-
hood, Hypotheses testing.

1 Introduction

In standard competing risks studies, every unit or subject is exposed to
different risks at the same time, but its actual failure or death is attributed
to exactly one of them which is then called the cause of failure. In general,
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the goal of these studies is to distinguish between the following three alter-
natives: (1) the risks are equal, (2) the risks are not equal, and (3) the risks
are linearly ordered. This is established on the basis of the observed data
which is a random sample from (7', 6), where T is the lifetime and ¢ is the
cause of death. As an example, when comparing brands of a component
from different suppliers, the components may be tested in series. In such a
setting, the components are functioning in the same environment and their
times to failure are generally dependent. When this is the case, the sys-
tem will fail as soon as one of the components fails. Consequently, we only
observe the lifetime of the system and its cause of failure. The procedures
we develop here, within the context of modelling proposals in competing
risk studies will allow us to test whether these components are of the same
quality against the alternatives that they are either: (a) of different qual-
ity, or (b) one is superior to the others. A key role in such comparisons
is played by the cumulative incidence function (CIF). We assume that we
have k risks in which case the possible values of § are 1,...,k The CIF
corresponding to the j-th risk is a subdistribution function whose value at
time t is the probability of failure or death by time ¢ from risk j:

Fi(t)y=P[T<t,0=4j], j=1,...,k, (1)
with F'(t) = 3_; F;(t) being the distribution function (DF) of T', which we
assume throughout to be continuous with survival function S. The cause
specific hazard rate due to cause j is defined by

Aj :Alir_r)loAitP[t§T§t+At,5:j|T2t], i=1..k,

with the overall hazard rate A = > j Aj. Comparison of competing risks
based on their CIFs has been considered before in the literature. For the
case of k = 2, several tests are available in the literature. In the contin-
uous case, Aly et al. (1994) and El Barmi et al. (2004) used very closely
related Kolmogorov-Smirnov type statistics to test Hy : F1 = Fb against
H, : Fy < F,, whereas El Barmi and Kochar (2002) developed a likelihood
ratio test for the same problem for the discrete or grouped data situation.
Extensions of these tests to the k-sample case have been considered in El
Barmi and Mukerjee (2006) and El Barmi et al. (2006), for the general
and the discrete/grouped data case, respectively. In this paper we provide
alternative tests based on the empirical likelihood approach. The test de-
veloped in El Barmi and Mukerjee (2006) is the only test designed for the
k-sample case in the general case. Recently El Barmi and El Bermi (2015)
developed an EL approach to test Hy against H;. Clearly when Hj is true,
the time and the cause of failure are independent. On the other hand, the
hypothesis of ordered CIFs, Hy, is equivalent to

H :P[§=1T<t]<P=2T<t, Vt>0
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We extend the results in El Barmi and El Bermi (2015) to the k-risks case
by developing an EL based tests in the uncensored case for testing Hy
against Ho — Hy and Hy versus H; — Hy, where

H()ZFl:FQ:"':Fk, (2)
Hy:Fy < Fy <. < Fy, (3)
and Hj imposes no constraints on £}, j =1,..., k. As already stated, when

Hj is true, the time and the cause of failure are independent. Moreover,
the hypothesis os ordered CIFs, H; is equivalent to

Hi:PS=jT<t]<Pls=j+1T<t, Vt>0j=12 ... k—1.

In this form, H; states that, given that a unit has failed by time ¢, the
conditional probability of its failing from cause j + 1 is uniformly greater
than that from cause j.

Our objective is to develop a novel EL approach to the important prob-
lem of nonparametrically testing Hy against Hy and H, against H; based
on a competing risks data modelling approach among the k CIFs. The
proposed tests is computationally efficient to implement and could be
used with massive data sets because they do not rely on the bootstrap
or any other simulation technique, and they reduce to a local test for
an ordering of binomial probabilities, which only requires a single sweep
through the pooled data. The proposed test statistics are functionals of
localized empirical likelihood statistics and their asymptotic null distri-
butions are distribution-free and have a simple representation. In order
to implement the test, we need to obtain he critical values of the corre-
sponding test statistic, where its finite sample as well as its asymptotic
null distributions are not tractable but the latter is distribution free. The
approximate critical values can be obtained by simulating 10000 data sets.
The i-th dataset, {(T};,0;;),7 = 1,2,...,100} is a sample of size 100,
where Tij S Xlij AN XQij VANRIRAN inja and 61’]’ = E, if Ej = XZij~ Here
X145, X245, ..., Xgi; are independent exponential random variables with
mean one. The R program used to compute these approximate critical
values is available from the authors upon request.

The proposed tests are also extended to the case of right-censored survival
data via multiple imputation. Consider first the situation of Type I censor-
ing in which we assume that all the units enter at baseline and are followed
for a set time-period, say [0,7]. At the end of the follow-up period, the
remaining subjects at risk are right-censored. The right-censored subjects
can be viewed as failing in some (unknown) random order after the end
of follow-up period. In addition, only the order in which they fail and the
cause of failure affect the complete-data test statistics Sp; and Spa, which
would be available if all times and the causes of failure were observed. Our
proposal is to simply average Sp; and Spo over all possible permutations of
these unobserved failure times. An average based on Monte Carlo sampling
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could be used to reduce the computational cost when the censoring rate
is large. The null distribution is unchanged. A similar idea can be used to
handle the case of random right-censoring as follows. First, let us note that
the Kaplan-Meier estimator, S (Kaplan and Meier, 1958), can be plugged-
in to provide an estimate of the residual survival function e(s) = S(s)/S(t),
for s > t, provided that S(¢) > 0. If we specify 7 > 0 such that S(7) > 0,
we have that, for any right-censored observation at t < 7 , the estimated
residual survival function is well-defined. Simulating from this estimated
residual survival distribution produces a new “uncensored” observation if
it falls in [t;7), and, otherwise, a Type I censored observation. Either way,
its probability of failing from risk j is 1/k. Any observation (censored or
non-censored) at s > 7 becomes right-censored at 7. In this way, we re-
duce the problem to the Type I censored case discussed above. Clearly, it
would be important to set the value of 7 as large as possible to be able to
minimize the amount of extraneous right-censoring at 7. In practice, this
could be achieved by setting it slightly to the left of the largest uncen-
sored observation. In the sequel, when using this proposed procedure, we
average the complete-data test statistics Sp; and Spz over 1000 “simulated
complete” data samples. The theoretical justification for motivating the
proposed imputation procedure can be derived by using a result of Akritas
(1986, Theorem 2.2) on bootstrapping the Kaplan-Meier estimator.

2 Application and discussion

To illustrate the theoretical results, we discuss an example involving sur-
vival times of mice exposed to radiation. We analyze a set of mortality
data kindly provided by Dr. H.E. Walburg, Jr. of the Oak Ridge National
Laboratory and reported by Hoel (1972). The data were obtained from a
laboratory experiment and consisted of the survival times of 82 male mice
who were exposed to radiation at an age between 5 and 6 weeks, and that
were kept in a germ-free environment. After autopsy, the cause of death
was attributed to one of three causes: reticulum cell sarcoma (blue: 3),
other causes (red: 2) and thymic lymphoma (black: 1) (see Figure[I]). Our
proposed test results in a value providing an estimated p-value between
0.01 and 0.02, leading to the rejection of the hypothesis that the CIFs are
equal, which implies that risks are not the same (see Figure . Ordered
alternative of interest based on medical recommendations and specific hy-
pothesis of interest were also considered and tested for. Our proposed test
is an asymptotically distribution-free empirical likelihood ratio type tests
for testing the null hypotheses that k£ cumulative incidence functions cor-
responding to competing risks are equal against the alternative that they
are not equal, and against the alternative that they are linearly ordered.
We also provide approximate critical values for these tests and studied its
behavior in both a simulation study and a real dataset application. In ad-
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dition, we also discuss a new approach that can be used to extend our test
to the right censored data situations.

0.4

0.2 0.3

empirial CIF

0.1

0 500 1000 1500 2000 2500 3000

time

FIGURE 1. CIFs for radiation mice data (Hoel, 1972).

3 Concluding remarks

In this paper, we have developed an asymptotically distribution-free em-
pirical likelihood ratio type tests for testing the null hypotheses that k
cumulative incidence functions corresponding to competing risks are equal
against the alternative that they are not equal and against the alternative
that they are linearly ordered. We have also provided approximate critical
values for these tests and, in order to illustrate our results, we have ana-
lyzed a dataset that has been previously analyzed within these settings. In
addition, we have also discussed a new approach that can use to extend
our test to the right censored data situations.
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1 Introduction

Functional data is a relatively new branch of statistics devoted to the study
of curves, surfaces, images, etc., which has experienced rapid development
in recent years. Improvements are continually emerging to answer real-
world functional data questions from many scientific disciplines.

This paper aims to improve difficulty prediction through mouse movement
trajectories gathered from respondents in a web survey, where several ques-
tions were manipulated to create different scenarios of difficulty. In survey
research, difficulty in understanding and responding to survey questions
in the way researchers intended is one of the most frequent sources of er-
ror that impedes the collection of robust and reliable data (Kreuter 2013).

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Therefore, to efficiently identify difficulty in surveys, robust and precise
methods are vital to minimize measurement errors from respondents’ data.
To do so, this paper introduces a new model for multivariate functional data
classification that uses novel semi-metrics to assess dissimilarities between
trajectories.

The remainder of this paper is as follows. Section 2 describes the model,
and Section 3 gives some preliminary results of the application.

2 The model

Consider the learning sample (x;,y;) for i = 1,...,n where yi,...,y, are
values of a categorical random variable Y with classes L = {1,...,[}. Con-
sider also that xi,...,x, are realizations over t € T C R of independent

and identically distributed copies of a multivariate functional random vari-
able X € F, where F is an appropriate space of d-dimensional functions.
Hence, x(t) € R? for each t with d > 2. Assume that x(®) is the a-th deriva-
tive of x that exists and is square-integrable in F . However, in real-world
data, functions are evaluated over a finite grid where time is discretely
observed, and that grid may differ between observed functions.

Suppose the following classification problem: a new observation x, with
unknown class membership y, is given, and thus we want to infer it from
the learning sample where predictors are multivariate functions.

2.1 Semi-metrics in the multivariate functional framework

Semi-metrics were proposed to measure distances and capture specific char-
acteristics of functions. Formally, let D(x,x.) be the semi-metric between
the functions x and x, fulfilling:

D(x,x4) >0
D(x,x) =0
D(x,x.) < D(x,%) + D(X, X.),

VX, X., X € F. However, they are different from metrics in that D(x,x,) =0
does not always imply that x = x,. In addition, they can also be computed
on the functions’ derivatives x(®).

In the literature, several such semi-metrics have been proposed, notably
by Ferraty and Vieu (2006), Fuchs et al. (2015) and Fuchs et al. (2017).
However, these have been limited to the univariate functional case. There-
fore, this work extends these semi-metrics to the multivariate case, and
additionally, considers other distances such as the Frchet, Hausdorff, and
Needleman-Wunsch distances, and also application-specific semi-metrics.
Table 1 serves as an example of some of the semi-metrics studied in this
work.
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TABLE 1. Example of semi-metrics extended to functions from T € (0,1) to R%.
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2.2 Ensemble

Following Ferraty and Vieu (2006), Fuchs et al. (2015) and Fuchs et al.
(2017), classification models such as the functional k-nearest neighbour
(FKNN) and non-parametric functional kernel estimator (NPFKE) can be
used to predict the class membership of x, according to the proximity to
X1,...,Xp,. The idea of FkNN is to order the semi-metric values, and then
predict the class membership of x, with the most frequent category of the k
closest functions. However, NPFKE weights the probabilities of class mem-
berships of x1,...,x, to predict the probabilities of the class membership
of x,. The weights are given by Zli{l(ﬁ(()f;&i:?’g))/h) ,where K(-) and h are

the kernel function (e.g., gaussian or uniform kernels) and bandwidth pa-
rameter, respectively. Notice that these weights are assigned in accordance
with the similarity between x, and x1,...,X,.

In this paper, the linear combination and the stacked-based ensembles
of FKNN and NPFKE are extended to the multivariate functional case
through new and appropriate semi-metrics. In the case of the stacked-based
ensemble, random forest, boosting, and neural network with one hidden
layer are considered super-learners candidates.

3 Application

The data analyzed in this work are based on a web survey where several
questions were manipulated to create two scenarios of difficulty. One of
these questions was related to the type of employment, for which easy
and difficult versions with respectively concise and complex language were
created and randomly assigned between respondents (n = 551). As they
responded to the question, participants’ mouse movements were collected
in pairs of x- and y-coordinates which were time-normalized and considered
as bivariate functional predictors.

Table 2 gives some preliminary accuracies of FKNN and NPFKE with
semi-metrics in Table 1, application-specific semi-metrics and some pre-
liminary ensembles; for example, the Euclidean distance between flips,
hovers, and response times (RT). In survey research, x-flips, y-flips, and
hovers are respectively, the number of directional changes in the horizontal
direction, vertical direction, and periods without movement. In addition,
a personalization method was considered to incorporate the respondents’
baseline behavior into the model.To do so, mouse movements from five non-
manipulated questions were added to the semi-metrics with smaller weights
to incorporate the baseline behavior of the participants in these measures
of similarity.

Sub-sampling cross-validation was used with 100 repetitions and weights of
70% and 30% in the training and testing sets, respectively. For the NPFKE,
the normal kernel function was considered, and the weights for personal-
ization were 0.5 and 0.1 for the target and baseline variables, respectively.
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Since different semi-metrics capture different features of the trajectories,
an ensemble will be considered next by combining several non-personalized
and personalized semi-metrics to improve the accuracies in Table 2.

TABLE 2. Preliminary accuracies with FkNN and NPFKE models and semi—
metrics either in Table 1 or application-specific semi-metrics.

model | semi-metric unpersonalized personalized
a=0 a=1 a=2 a=0 a=1 a=2
FkNN Manhattan | 0.567 0.536 0.554 | 0.564 0.539 0.546
Euclidean | 0.556 0.531 0.550 | 0.556 0.522 0.537
mean | 0.561 0.536 0.523 | 0.549 0.514 0.523
globMax | 0.593 0.543 0.530 | 0.601 0.545 0.521
globMin | 0.556 0.560 0.531 | 0.542 0.578 0.545
dtw | 0.546 0.526 0.528 | - - -
Hausdorff | 0.581 0.559 0.512 | - - -
Frchet | 0.562 - - - - -

flips | 0.530 - - - - _
hovers | 0.525 - - - - _
RT | 0.514 - - - - _

NPFKE | Manhattan | 0.581 0.530 0.530 | 0.573 0.529 0.530
Euclidean | 0.569 0.528 0.534 | 0.562 0.528 0.530
mean | 0.563 0.531 0.527 | 0.559 0.531 0.529
globMax | 0.603 0.527 0.526 | 0.594 0.530 0.526
globMin | 0.548 0.551 0.531 | 0.527 0.567 0.540

flips | 0.526 - - - - -
hovers | 0.528 - - - - _
RT | 0.528 - - - - _
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Abstract: The generalized linear mixed model (GLMM) is one of the most fre-
quently used techniques to analyze clustered non-Gaussian data. Commonly, the
GLMM is fitted by maximizing the marginal (log-)likelihood, i.e., integrating
out the random effects. However, this whole maximisation may require a con-
siderable amount of computing resources. Although computationally manageable
with medium to large data, it can be too time-consuming or computationally
intractable with very large clusters and/or with a large number of clusters. To
overcome this, a fast two-stage estimator for correlated non-Gaussian data is pre-
sented. It is rooted in the pseudo-likelihood split-sample methodology. Based on
simulations, it shows good statistical properties, and it is computationally much
faster than full maximum likelihood. The approach is illustrated using a large
dataset belonging to a network of Belgian general practices.

Keywords: Generalized linear mixed model; Hierarchical data; Random effects;
Split-sample

1 Introduction

The analysis of clustered non-Gaussian data is commonly done within
the generalized linear mixed model (GLMM) framework. In the GLMM
methodology, we assume that, conditionally on normally distributed ran-
dom effects, the outcomes are independent and their distribution belongs to
the exponential family, encompassing models for a wide range of outcomes
types, such as binary, count, and time-to-event. The main idea of including
these random effects is to address correlation and some variability due to
clustering.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Let Y;; be the jth outcome measured for cluster ¢, with i = 1,..., N and
7 =1,...,n;. The GLMM assumes that, conditionally on a g-dimensional
vector of random effects b; ~ N (0, D), the outcomes Y;; are independent
with a density that belongs to the exponential family, that is:

Fis1bi) = exp {¢~" [yi0i5 — ¥ (0i)] + ¢ (vij, ) } 5 (1)

where 6;; and ¢ are called natural and scale parameter, respectively;
¢ (-) and c(-,-) are known functions. Here, the conditional mean p;; is
modeled by a known link function, p;; = h (acgj,@ + zgjbi), where X; =
(i1, ..., Tin,) and Z; = (2i1,..., Zin,) are (n; x p) and (n; x ¢) matrices
of covariates; and 3 is an unknown p-dimensional vector of fixed-effects
coefficients.

Even though is expressed in this hierarchical form, it is customarily
fitted by maximizing the marginal (log-)likelihood, i.e.,

N n;
£(8.0.6) =[] [ T] 5 wslbi) £(5i1 D)o @)

As it can be seen from 7 maximization of the likelihood involves N inte-
grals over the g-dimensional random effects b;. Except from the Gaussian
case, the derivation of the marginal joint distribution can be complicated,
or even not possible in analytical form. Therefore, the marginalization is
done numerically, at the cost of requiring more computing resource.

To facilitate the estimation procedure with large datasets, Molenberghs et
al (2011) proposed the split-sample methodology. Here, the sample is par-
titioned into K sub-samples, which are analyzed separately and afterwards
the results are combined to obtain overall inferences. For clustered data, the
most efficient partitioning consists of sub-samples with equally distributed
clusters, i.e., clusters with the same design matrices (Molenberghs et al,
2018). However, this constraint is very restrictive in many cases, and we
may end up in the most extreme case, all sub-samples with a single cluster,
leading to the so-called cluster-by-cluster (CbC) estimator.

The paper is organized as follows. In Section [2, we propose the CbC es-
timator for a GLMM. The main findings of extensive simulations and a
real data analysis are briefly showed in Section [3] and [4 respectively. Fi-
nally, Section [5]is reserved for concluding remarks. More details of the CbC
estimator can be found in Flérez et al (2019a, 2019b, 2020).

2 Cluster-by-cluster estimator

The cluster-by-cluster (CbC) estimator follows the same two steps of the
split-sample methodology. For simplicity, we will assume that X; = Z;.
Nevertheless, the general expression requires some further but straightfor-
ward algebra.
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Given the conditional independence assumption, in the first stage, we can
fit a generalized linear model (GLM) within each cluster. Evidently, it
requires that Z; is full column rank within each cluster, allowing estimation
of (/817"'7/31\[)'

In the second stage, a global estimator of 3 is obtained by weighted av-
eraging the sets of estimates of each cluster. Then, the estimator and its
variance are:

ZAB, and V (8) = ZAV( 3) AT

respectively. For the weighting matrices (4;), we opt for an approximation
of the so-called optimal weights (Molenberghs et al, 2018).

The variance matrix of the random effects (D) measures the variabil-
ity between clusters, and consequently, it cannot be estimated using a
single cluster. Hence, a method-of-moments approach is proposed. It is
based on the sum of the cross-product of the difference between the
cluster-specific estimates (3;) and the global estimate (3), i.e., Sp =

N /o~ /s T
>, (8:-8) (8:-B)
Then, the estimator is found by equating Sp to its expected value and
solving for D. Since F (bz) ~ 0,

B(5) =~ u-aw (B) - Ay + S av(B) 4l ®

i=1 k#£i

where V (,@Z) ~ D+V (Bz|b1> Depending on the type of outcome,

V (El|bz) can be found analytically or approximated using Taylor series

expansions.

Given that is non-linear, an iterative procedure, e.g., Newton-Raphson,
is needed to find the solution of D. Furthermore, an expression for the
variance of D can be found using the delta method.

3 Simulation

For the data-generating model we consider the following model:

exp(1:5)

——————|, and Yj;|b; ~ Pois. [A\;; = exp (7:;)],
1 + exp(n;;) i g ()

Yij|b; ~ Bern. |m;; =

where 1;; = Bo+boi+2i81+i;(Ba+b1i)+2i2:5 53, ;5 is continuous covariate
ranging in [0, 1], 2; is a binary covariate, and (bo;, b1;)’ ~ N (0, D).
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We set 8 = (8o, 51,82, 83)" = (1,0.1,-2,-1)" and D = (d11,d12,d22) =
(2,—0.5,0.5), for the logistic model. On the other hand, for Poisson model,
8 =(1.5,-0.1,-0.5,—0.2) and D = (0.4,—0.2,0.6).

For the simulations, we fixed the number of clusters (V) and the cluster
size (n;) is generated by n; ~ N [py, (0.251,)?] (rounded to the nearest
integer). For the logistic model, N = 100 and p,, = {100,200, 500}. For the
Poisson model, N = 50 u,, = {50,100, 200}.

For each scenario, 1000 datasets were generated and analyzed using the
CbC estimator and the MLE based on adaptive quadrature. The compari-
son between both estimators is done by the relative bias (RB) and efficiency
(RE), separately for each parameter. The later is defined as the ratio of the
mean square error ratio of the CbC estimator over the MLE.

To evaluate the computational performance for large data, we set N = 500
and vary p, = {500,1000,2000}. Here, we generated 25 datasets.

TABLE 1. Relative bias (in percentage) and efficiency of the CbC estimator for
each parameter of the logistic and Poisson model with random slope.

Logistic model Poisson model
Relative bias(%) Relative bias(%) Relative bias(%) Relative bias(%)
Hn Hn Hn Hn

Parm 100 200 500 100 200 500 50 100 200 50 100 200
Bo 3.8 1.7 08 1.12 1.04 1.02 0.1 -02 02 1.01 1.01 1.00
By 308 175 1.0 1.09 1.04 1.02 2.7 129 5.0 1.00 1.02 1.00
Ba 4.0 20 09 1.53 1.19 1.08 1.5 -02 2.0 1.01 1.00 1.00
B3 5.5 3.4 07 1.34 1.14 1.06 1.8 -1.2 -64 1.01 1.00 1.01
dyy 6.6 3.5 09 1.57 134 117 34 07 07 1.16 1.07 1.05
dia 203 9.3 2.0 1.95 159 1.22 5.1 28 1.9 1.13 1.11 1.09
daa 422 163 5.9 3.50 1.93 1.28 6.6 3.6 0.4 1.19 112 1.03

Table [1] exhibits the relative bias and efficiency of the CbC estimator for
each parameter of the logistic and Poisson model with random effects in all
scenarios. For the Poisson model, the estimator of the fixed effects is prac-
tically unbiased and as efficient as the MLE. For the variance components,
it is asymptotically efficient. For the logistic model, it provides somewhat
biased estimates for all parameters, especially for the variance components.
However, as in the Poisson case, the bias and the efficiency loss decrease
with u, but at a slower rate.

Table [2] displays the median computation time, in seconds, of the CbC
estimator and full MLE for the logistic and Poisson models with random
effects. As expected, the CbC estimator is faster than the MLE for the
three types of outcomes, with a larger computing time for the binary case.

4 Data analysis

The CbC estimator is implemented using different datasets from the Intego-
project, a large database of continuous recording of patient information in a
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TABLE 2. Median computation time (in seconds) for the cluster-by-cluster (CbC)
estimator and the maximum likelihood estimator (MLE), in parenthesis the me-
dian ratio, for the logistic and Poisson models with random slopes.

Logistic model Poisson model
Estimator — p,, = 500 fn, = 1000 p,, = 2000 U =500 py, =1000  p, = 2000
CbC 22.16(11.5) 35.13(14.5) 82.49(21) 3.05(27.8) 8.05(44.3) 8.78(102.3)
MLE 254.39(1) 508.72(1)  1735.22(1) 84.67(1) 356.23(1) 898(1)

network of Belgian general practices. The samples contain information from
around 49 practices spread throughout Flanders, Belgium. The number of
patients per practice ranges between 389 and 9676. Furthermore, there are
missing data in the data (particularly in the variables used as covariates).
Therefore, before fitting the GLMM, multiple imputation procedure was
performed (drawing 20 multiply imputed datasets).

Here, we model the outcome hypertension in the Intego database from 2015.
Let Y;; be the outcome (absent/present) for patient j in practice i. The
model is:

Y;;|b; ~Bernoulli (m;;) ,
logit (mi;) =Bo + bi + age;; 51 + gender,; 55 + BML;; B3+ (4)
diabetesij@; + ChOleSterOlijﬁlla

where gender;; and diabetes;; are indicator variables. Gender;; = 1 if the
jth patient at practice ¢ is male, gender;; = 0 otherwise; diabetes;; = 1
if the jth patient at practice i has diabetes, diabetes;; = 0 otherwise.
Furthermore, we assume b; ~ N(0,d).

Table [3] displays the estimates and standard errors of the parameters of
the model by the CbC estimator and MLE. Both estimators provide
somewhat similar estimates and standard errors for the fixed effects. Re-
garding the variance of the random intercept, the CbC estimate, and its
standard error, is slightly larger than the ones observed with the MLE.
Based on the Wald test, all covariates have a significant effect. Regarding
gender, the probability of suffering hypertension is 11% higher in men than
in women. Age, BMI, diabetes, and systolic and diastolic blood pressure
are also considered risk factors. Furthermore, fitting the CbC estimator
for each multiply imputed dataset needed around 3 seconds. On the other
hand, the MLE took more than 50 times as long.

5 Concluding remarks

Given the statistical and computational properties, we suggest that the
CbC estimator is an attractive alternative to fit a GLMM with several
large-size clusters. Although large clusters is not common in a longitudinal
study, this can be encountered in another hierarchical settings, such as
meta-analyses.
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TABLE 3. Intego data - binary case. Parameter estimates for the logistic model
after with random intercept multiple imputation by the cluster-by-cluster (CbC)
estimator and maximum likelihood estimator (MLE).

CbC MLE

Effect Parm Est S.E. Est S.E.

Intercept Bo -2.4 0.1 -2.304  0.0790
Age By 0.06  0.0007 0.057  0.0007
Gender B2 -0.112  0.0225 -0.109  0.0220
BMI B3 0.066  0.0039 0.066  0.0037
Diabetes Ba 0.854  0.0296 0.837  0.0285
Cholesterol Bs -0.003  0.0004 -0.003  0.0004
Systolic Be 0.022  0.0012 0.022  0.0012
Diastolic B7 0.018  0.0024 0.018  0.0023
Var rand. eff d 0.308  0.0602 0.286 0.0134

Although the estimator still has attractive properties with medium cluster-
sizes, its implementation can be problematic, especially during the first
stage. With few observations or several zeros in a cluster (in the binary or
Poisson cases), the GLM estimator may diverge or converge to a spurious
solution, leading to unstable overall estimates. Therefore, we suggest per-
forming a sensitivity analysis by excluding any problematic clusters and
evaluating the overall estimates. Furthermore, the addition of weights in
the estimator of D reduces the influence of small and unstable clusters.
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Abstract: Estimating the size of a hard-to-count population is a challenging
matter. In particular, when only few observations of the population to be es-
timated are available. The matter gets even more complex when one-inflation
occurs. This situation is illustrated at hand of a real problem: the size of a dice
snake population in Graz (Austria). The paper discusses how one-inflation can
be easily handled in likelihood approaches and also discusses how variances and
confidence intervals can be obtained.
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1 Introduction and motivation

Tranninger (2018) tried to estimate the size of a dice snake population along
the river Mur in Graz (Austria). The work was motivated by a resettlement
project of the population due to the development of a water power plant
in the vicinity of the living ground of the dice snakes. The major question
was: how many dice snakes are there? In the year 2014 in which there
were 31 capture occasions between April and September, snakes were found
under artificial hiding places and photos of their undersides were taken.
These photos then allowed to uniquely identify each animal repeatedly.
Hence, the count X informs about the number of identifications of each
animal. However, there is the well-known complication (B&hning et al.,
2018; McCrea and Morgan, 2015) that any population unit with X; = 0
would not be observed leading to a reduced observed sample. The empirical
distribution of X is provided in Table [I] The objective now is to estimate
the size N of such an elusive target population. However, we have that
fo = N — n is unknown. The frequency fy is also labelled as the dark or
hidden figure and its estimate is the prime interest here.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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TABLE 1. Frequency distribution of count X of repeated snake identifications.

T 0 1 2 3 4 5 .-+  observed size
fz - fh fo fs fa fs - n=fitfot--
snake sightings — 59 &8 1 1 1 n="70

2 Modelling

For predicting fo some sort of modelling is unavoidable as the nonpara-
metric estimates f, (0 < z) carry no information for fy. Hence, we need
a model for Py(X = x) = py(0) so that an estimate 6 can be found. This
leads to fitted probabilities px(é) for 0 < z. In particular, we can use the
Horvitz-Thompson-type estimator for estimating fy, i.e.

fomn 200 (1)
1 —po(6)

from which, ultimately, the population size estimator N=n+ fo follows.
For valid inference, the valid specification of the model p,(6) is crucial.
Since we see a large number of counts of ones, the singletons, we are con-
cerned about one-inflation, a situation where more counts of ones occur
than compatible with the baseline model p;(6) as this can lead to a highly
inflated estimate of fy. To accommodate one-inflation we need to include
it into the model as

P,(0) = (2)

(1-a)+apf(0), z=1
ap;(a), r#1,

where p(0) = p.(0)/(1 — po(#)) is a zero-truncated base distribution.
The modelling is greatly simplified using the general result in Bohning and
van der Heijden (2019). Consider an arbitrary inflation point xz; and an
arbitrary count pmf p,(0) with associated zj-inflation as

, _J (I —=a) +ap.(0), »=ua
(w_{wA% 5451,

where a € [0, 1]. The associated log-likelihood

log L(0, a|x) = fz, log[l —a—+ap,,(0)]+ Z fologpe(0)+(n—fz,)loga,

x;éarwl

is maximized in
1— fo,/n
1-— Da; (0)

d:

(3)
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for fixed 0: Thus, the z,,-inflated profile log-likelihood function

IOgL(eadlx) = flzlog(fml/n)+(n_fwj)log(l_fll/n)
p(0)
» pevoe (722775)

equals the z,,-truncated log-likelihood
pz(0)
falog ()
m; ! 1- Pz, (9)
T

plus a term that is independent of #. This implies that x,,-inflation models
can be simply fitted by z,,-truncated models.

Accounting for one-inflation (x; = 1) and utilizing the above result we
restrict inference on the zero—one-truncated pmf

_ p=(0)
piJr(e) - 1 _po(e) —p1(9) 9

which then provides the one-inflated, zero—truncated density.

r=2,3,..., (4)

3 Horvitz-Thompson estimation

The Horvitz-Thompson estimator has the property E( fo) = Npo(0),
if there is no inflation. A modification is needed here as m contains the
one-inflated part. This leads to

o~ fy po(H)
Jo =1 f)lfpo(é)*pl(é)’ )

which is again unbiased for Npg(6) and, ultimately, we can define the mod-
ified Horvitz- Thompson estimator N=n+ fo, which is unbiased for N, if
the base distribution is correctly specified.

Table [2| contains the estimated population size under a geometric base
model. This model choice does much better than the Poisson and also bet-
ter, in some sense, than the negative binomial base model. The conventional
estimator (cHTE) uses the zero-truncated geometric distribution whereas
the modified estimator (mHTE) uses the zero-one-truncated geometric as
described above.

4 Marginal (unconditional) likelihood

So far we maximized the conditional (zero-truncated) likelihood of the ob-
served counts. Now we discuss the general sampling mechanism that gen-
erated the data. Let m be the largest number of sightings, then the joint
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TABLE 2. Population size estimates under a zero-one-truncated model (mHTE)
and a zero-truncated geometric model (cHTE).

N
n mHTE cHTE
70 127 358

marginal pmf of the sample is a multinomial model defined on the counts
0,1,...,m from a population of size N. Since we only observe counts of
1,...,m, the conditional model is the zero-truncated multinomial for the n
observed counts. This conditioning process is described by a binomial vari-
able that splits the population into an observed (of size n) and unobserved
part (of size N —n = fy). Together we have

p1(6) Pm (0) ‘n>
1—po(6)" """ 1 —po(0)
xbinom(1 — po(8)|N),

multinom(po(0), ..., pm(0)|N) = multinom(

or equivalently

m

fa
ﬁﬂf1 ﬁn l]}”’ - f 'II (1——po )

N!
X fo'n'p0(9>f0(1 _pO(e))n ’

which proofs the validity of the factorization.
Since f1,..., fm are fixed given the observed counts, the relevant part of
the marginal likelihood is

N!' {7
fO' z=0
Thus, we maximize the marginal log-likelihood function
((fo.O1fr, - fm) = D frlogpa(6) + log(N1/fo!) .
x=0

For a given value of fj, the 6-score function is

=0 Pz

If we specify the base model to be geometric, i.e. p,(0) = 6(1 — 0)*, then

dp.(0)/d6 (1 —06) — 28
pz(a) B 0(1 - 0)
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FIGURE 1. Marginal profile log-likelihood functions under a geometric model
(left) and under a one-inflated geometric model (right).

and the marginal maximum likelihood estimator becomes

. 1< -

6= <1+ N;w) .
This estimator depends on the value of N and thus on the unknown fy. We
propose to evaluate the marginal profile log-likelihood £( fo, é| for a grid
of fy values to find the maximizer fo. This is shown in Figure
Since fy = 286 with 90% profile confidence interval (175,476) for fo, the
total size of the population is estimated to be 356 snakes, which seems to
be a plausible number. This marginal estimate can now be compared to
the conditional estimate N, = 358 given in Table

Under an arbitrary one-inflated count model the conditional log-
likelihood function is

r#£l

Adding the respective binomial part finally gives its marginal version as

z=0,2,...,m.

U(fo, 0,0l f1, -, fm) = frlog(1—a+api(0))+)  f.log pz(eza) +log(N!/fo!) -
T#1

Since & defined in for ;7 = 1 maximizes the conditional as also the
marginal likelihood, we define the marginal profile log-likelihood as

((fo,0,0lfr,..., fm) = filog(fi/N)+ (N — fi)log(1 = f1/N)

+3 filog “(929) T log(NY/ fo!).
x#1

Under the geometric one-inflated situation the relevant term depending on
0 becomes

walog Pa( 20) = log Twa—i—logl— Z]%

T#1 .L;él T#1
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where z = 0,2,...,m. With

Ny = Zfz and S = Z for = Z [z
r=2

T#1 z#1

the above marginal profile log-likelihood simplifies to

0
o1 — 9))
+f1log(fi/N) + S(_1)log(1 — ) +log(N!/ fo!)

E(f070>d|f1u"'7fm) = N(fl) (10g(1—f1/N)+10g1

with corresponding 6-score function

1 1-—26

a A —_—
%g(f()agya‘flw-'afm) - N(—l)(5+m)—5(_1)

1
1-6°

Since N(_1) is a sum over all frequencies except fi, this score function
actually depends on both, # and the unobserved fy. Thus, it is natural
to find the maximizer of the marginal profile log-likelihood using again a
grid of fy values and maximize the corresponding likelihood function in 6
conditional on each fy value which is shown in Figure

The estimate fy = 45 maximizes the profile likelihood. Therefore, the re-
spective population size estimate N = 115 is rather small but compares
well with the conditional estimate N = 127 in Table 2l A perhaps disad-
vantageous result is the fairly wide 90% profile confidence interval (10, 231),
reflecting the enormous variance of the estimator in this application.
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Abstract: Accurate diagnosis of disease is of great importance in clinical practice
and medical research. Before a diagnostic test is routinely used in practice its abil-
ity to discriminate between diseased and nondiseased states must be rigorously
assessed. Further, its performance may depend on covariates (e.g., age and/or
gender). This motivates us to propose the covariate-specific overlap coefficient,
which will help to determine the optimal populations where to perform the tests
on. We assume a location-scale regression model for the test outcomes in each
group, relying on an additive formulation based on Penalised splines, while the
regression error follows a Dirichlet process mixture of normal distributions. Our
approach is illustrated through an application concerning diagnosis of diabetes.

Keywords: Diagnostic test; Dirichlet process mixtures; Overlap coefficient; Pe-
nalised splines.

1 Introduction

Disease diagnosis is a fundamental task in clinical practice and medical re-
search. The ability of a diagnostic test to distinguish diseased from nondis-
eased individuals must be thoroughly evaluated before the test can be
widely used in practice. Furthermore, in many situations the behaviour
of the test may be influenced by external covariates.

The overlap coefficient (OVL), defined as the proportion of overlap area
between two density functions, has been proposed as a summary measure
of diagnostic accuracy. An OVL value of zero means that the distributions
do not overlap at all (perfect diagnostic accuracy), whereas a value of one
means that the distributions are identical and thus, the test is useless from

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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a diagnostic viewpoint. Let Y5 and Yp be two independent continuous
random variables representing the test outcomes from the nondiseased and
diseased group, with covariate vectors X 5 and X p, and conditional density
functions given by f5(- | Xp = xp) and fp(- | Xp = p), respectively.
Given a covariates value x, the covariate-specific overlap coefficient (cOVL)
is defined as

VL) = [ min{fply | Xp = o). foly | Xp = @)}y (1)

The goal of this work is to propose a flexible Bayesian method to estimate
the cOVL, so that it can be used for many populations and large number of
diseases. Further, by working under a Bayesian context, point and interval
estimates are obtained into a single integrated framework.

2 Methods

Let {(ypi,5,;)} 12 and {(yp;, mgj)}?gl be independent random samples
of size np and np from the nondiseased and diseased population, respec-

tively. Further, let xp;, = (vp; 1, - - ,xDi7p)T and zp; = (Tpj1,---,Tpjp)T
be two p-dimensional covariate vectors, for ¢ = 1,...,np and j =
1,...,np. For the sake of simplicity, we will assume that all the covari-

ates are continuous and affect both the location and scale of each group.
However, our modelling approach can easily incorporate categorical covari-
ates as well as interactions between continuous and categorical covariates
for both components. In what follows, we will describe our modelling pro-
cedure only with the diseased population as the same one is applicable to
the nondiseased group. We will assume a location-scale regression model
for the test outcomes where the error follows a Dirichlet process mixture of
normal distributions. Such setting induces the following conditional density
for the test outcomes in the diseased group

flypi | Xp =xp;) = /¢(yDz‘ | np(xpi) + 1, sp(xpi)o?)dGp(u, 0?),

where ¢(- | p,0?) is the density function of the normal distribution with
mean p and variance o2, and G p follows a Dirichlet process with precision
parameter ap > 0 and baseline distribution G (u, 0?). For conjugacy rea-
sons and to ensure identifiability, we set G, (1, 0%) = N(u | 0,b7)IG (0 |
a42,bs2). Moreover, to allow us to easily simulate from the posterior dis-
tribution, we will employ a truncated stick-breaking construction for Gp,
therefore

Lp

flypi | Xp =2pi) =Y wpid(ypi | np(xpi) + o1, sp(TDi)ohy),
=1
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where (upi, o%,) id T, and the weights are such that wp; = vp1, wp =
vpt [[«;(1=vpy), for Il = 2,..., Lp; the inputs v’s are distributed according

to a beta distribution, i.e., vp1,...,VpLp—1 id Beta(1l,ap) and vpy, = 1.
Regarding the specification of the predictors np and sp, we model the mean
and variance as an additive combination of smooth functions (Kobayashi
and Ogasawara, 2016), that is,

Np(xpi) = hp1(xpia) + -+ hpp(TDip),
sp(xp;) =exp{gpi(zpi1) + -+ 9pp(TDip)},

where each smooth function is approximated by a cubic B-splines basis. For
example, for hp; and j = 1,...,p, let *pjmin = Epjo < -+ < Epjm; =
Zpjmax be equally spaced knots. Thus, we can write hp; as a linear com-
bination of R; = m; + 3 B-splines basis functions BELW that is,

R;
hpj(@pij) =Y Bbj.(xDi;)Bpjr = Blh;(pi;)Bp;j,
r=1

where Bp; = (Bpj1,--- ,,BDLR].)T is the corresponding vector of coeffi-
cients. Similarly, gp; can be approximated using BY, y (xpi,j)0p;. It is well-
known that the position and number of knots can have a large influence
on the fitted functions. To overcome this problem we will use penalised
splines (P-splines), where the penalty is based on differences of adjacent B-
splines coefficients as described in (Eilers and Marx, 1996). We will follow
the Bayesian P-splines approach proposed by Lang and Brezger (2004),
where second-order random walk priors are assumed for all coefficients.
More precisely, for Bp;

Bpjr = 26pjr—1 — Bpjr—2 +upjr, T=3,...,R;, j=1,...,p,
where up; , s N(O,T,%j). The random walk variance 7'12)]- controls the
smoothness of the fitted functions. For dp;, the prior variance is denoted
by w%j. Note that to ensure identifiability, all functions hp; and gp;, are
centred around zero. To complete our model specification, let

ap ~ I'(aa;ba), TBJQ ~T'(ar2,b:2), and VJJB? ~ F(an»bwz)a

where I'(a,b) stands for a gamma distribution with shape a and rate b.
Because explicit full conditionals are available, we implemented a Gibbs
sampler to simulate from the posterior distribution. Finally, to get an esti-
mate of the cOVL, the integral involved in is approximated numerically
(trapezoidal rule).

3 Application

We applied our method to data from a population based survey of diabetes
in Cairo, Egypt. The data comprises measurements on 88 subjects with
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FIGURE 1. Posterior mean and 95% credible bands for the age-specific OVL.

diabetes and 198 non diabetic. Our primary goal is to evaluate the effect
of age in the accuracy of glucose as a biomarker of diabetes.

In Figure we depict the estimated age-specific coefficient of overlap,
where we can see that it increases with age, thus meaning that the ac-
curacy of the glucose levels as a marker of diabetes decreases with age.
Figure 2| shows the estimated posterior (mean) mean functions for the non-
diabetic (left) and diabetic (right) group. And finally, Figure [3|displays the
conditional histograms and densities at ages of 41 and 60 (left and right
panels, respectively) for the non diabetic (top row) and diabetic (bottom
row) group. These values correspond to the first and third quartiles of the
covariate age, respectively.
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Abstract: For complex statistical or machine learning models, interpretable
machine learning methods can be used to make up for the lack of interpretability.
The method proposed here helps to understand the partitioning of the feature
space into predicted classes in a classification model. Basically, it observes the
changes of the predictions after slight manipulations of specific metric features.
The observed changes can then be interpreted as neighboring classes in the feature
space. An example is shown with the iris classification task.
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1 Introduction

Currently, various interpretable machine learning (IML) methods exist, in-
cluding traditional methods like the permutation feature importance as
described by Breiman (2001), but also more recent methods like the usage
of anchors (see, e.g., Ribeiro et al., 2018). The latter is used to find specific
features and their respective feature values that determine the prediction of
an observation, while the other features could be randomly altered without
affecting the prediction too much.

Our proposed method works similar to the anchor method, but has a com-
pletely different purpose and interpretation. Its aim is to find neighboring
classes in a fitted classification model by using small manipulations of met-
ric features of interest and observing the changes of the predictions. Hence,
instead of trying to find features and the respective feature values that de-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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termine a prediction, we try to find those features changing the prediction
when slightly manipulated, and then to interpret those changes.

2 Methodology

In the following, we will set the mathematical background for our new IML
method. The aim is to slightly increase or decrease the value of metric
features of interest and observe the changes in the predicted classes.

Suppose f (x) is a final model fitted for a classification task with K differ-
ent classes, K > 2, and let L be the set of all the features used for this
classification with a specific set-size p = [L|. Then, 7 ; , (x;) denotes the es-

timated probability by the model f (+) for observation ¢ with feature vector
x; to belong to a specific class k € {1,..., K}. Next, we determine

k;(xz) = argmazy{7; (%)},
ie. k;(xz) is the class with the highest probability as estimated by the

model f (1) for the observation x; (from here on index f is dropped for
better readability, as we will now always refer to the same fitted model).
Next, we choose a subset M C L containing the features of interest. Mostly
the size of set M is 1. Now, X; represents the feature-vector for observation
i, whose features from M each were manipulated componentwisely by a
small amount. The manipulation is done by increasing or decreasing the
quantile-function of the subset M containing the features of interest. For
this purpose, a small value ¢; is added componentwisely to ﬁ'l(), which de-
notes the empirical cumulative distribution function (ecdf) for all features
I = 1,...,p (see Figure 1), with

| w, forleM and u, €[-1,1]
E 0, else.

To prevent extrapolation in the quantile function Ffl (a), a is chosen from
the interval [0, 1]. Now, we define for all I = 1, ...,p componentwisely:

Fy(%i;) = maz{min{Fy(x;;) + q,1},0}
= Xy = F’fl(max{mm{ﬁ‘l(xi,l) +q, 1},0}).

The modifying values ¢; for each [ € M are set by the user. Note that the
inverse of the ecdf Fl_1 does not necessarily exist, as Fj is not necessarily
continuous. Hence, we have to define

F Y a) =inf{z: Fi(z) > a}.

Now, X; is the new manipulated observation, which has the same values as
x; for those covariates from L\ M, but different values for the features from
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FIGURE 1. How to determine x for a specific feature.

M, which were increased or decreased componentwisely by the values that
corresponded to manipulations by the amount g; of the respective ecdf.
Finally, for observation ¢, =1,...,n and q = (¢1, ..., gp)", corresponding to
the chosen M C L and modifications ui, ..., up, let Cq(x;) define the pair
of the original and the (potentially) new class prediction resulting from this
manipulation, i.e.

Cq(xi) = (K" (i), k" (x4))
= (gi,oldy gi,new)~

We obtain §;od = ¥inew, if the predicted class has not changed by
manipulating x; as, and 9; o1d 7 Ui, new Otherwise.

The results could now be given in form of a migration matrix for all ob-
servations ¢ = 1,...,n, where the rows indicate the predicted classes of an
observation before the manipulation of x; ps and the columns indicate its
predicted classes after the manipulation. The trace of this migration matrix
counts the number of observations that have not changed classes despite
the manipulation. The off-diagonal elements aggregate the number of ob-
servations that have changed their predicted class from the class indicated
by the respective row to the predicted class indicated by the respective
column. A general example of a migration matrix can be found in Table

TABLE 1. Exemplary migration matrix for two classes.

Aafter Bafter

Abefo’r‘e nNaA-A NA-B
Bbefore np—A nNp-B

The off-diagonal elements of Table [I] can be interpreted as follows:

e if ny_,p > 0, an area in the feature space is found, where class B is
classified to be next to class A via the manipulation of the feature
subset M
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e if ny_.p =0, no area is found, where class B is classified to be next
to class A via the manipulation of the feature subset M - but it could
still exist! (the used manipulation might have been too weak or too
strong)

Of course, np_, 4 can be interpreted analogously. These migration matrices
can then be visualized by using chordgraphs as shown in the application
example below.

To guarantee that the method yields good interpretability, certain rules
should be followed: (i) This method is built to find closely neighboring
classes within the feature space. By using a too strong manipulation a
class could be skipped and no direct neighborhood is found. To prove or
disprove that a direct neighborhood between two classes exists, the com-
plete feature space would have to be filled with infinitely many data points
and manipulations with infinitely small steps would have to be performed.
(ii) If we define the preference order

class A is directly (or generally) next to class B in

A= B:=
~ the direction of the manipulation,

then due to the possibility of a very complex partitioning of the feature
space one could have

A-BAB>~=C# A>C.

This expresses that the results of this method can not be interpreted tran-
sitively.

3 Application on the Iris Data

Next, we illustrate our method on the iris flowers dataset, an easy to
understand standard example from classification (see Anderson, 1936, or
Fisher, 1936). For the sake of simplicity, we fit a simple classification tree
based on just two of the original four features, namely Petal.Length
and Petal.Width. Figure |2| (left) displays the feature space partition-
ing by the fitted tree. It turns out that the class virginica is mod-
eled “above” the class versicolor with respect to Petal.Width. When
slightly increasing the Petal.Width, this neighborhood is found by the
method as shown in the corresponding chordgraph in Figure [2] (right),
where Nyersicolor—virginica = © is indicated by the lightgrey strang of chords
starting at the class versicolor and ending in the class virginica.

As this example contains only two features, the classification model can be
visualized in a 2-dimensional way as shown in Figure [2| (left). This means,
it is easy to compare the neighborly indication by the cordgraph with the
underlying model. If one would include more features for the classification
task, graphical visualization would get rather complex and difficult. These
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FIGURE 2. Feature space partitioning by a classification tree for the iris dataset
(left); chordgraph for increasing Petal.Width with gpetar.wiath = +0.02 (right).

difficulties already arise when a single additional feature is added to the
model and the corresponding partitioning of the feature space is visualized
in a 3-dimensional graph. However, the proposed method overcomes these
limitations. For a classification task an arbitrary amount of features can
be used and the method would still indicate neighborly modeled classes
as determined by the underlying model, even for high-dimensional feature
spaces.

The original iris dataset contains two additional features, namely the
Sepal.Length and Sepal.Width. When adding these features to the model,
the complete partitioning of the feature space can not be displayed in a 2-
dimensional way, but would require a 4-dimensional visualization. However,
the proposed method could still show neighborly modeled classes in this
4-dimensional feature space in regard of specific manipulations.

Another benefit of the proposed method is that it is not restricted to a spe-
cific type of classification model. In the present example a simple classifica-
tion tree was used, whose splits could be looked at directly and neighborly
modeled classes could be determined by an experienced user. When using
more complex models, e.g. a random forest, then it is hard to determine
neighborhoods of the predicted classes just by directly looking at the mul-
tiple trees. The method proposed here, however, overcomes this limitation
and is able to determine neighborly modeled classes even if the classifi-
cation task in the present example would have been done with a highly
complex model (or even with a black-box model).

4 Discussion

For classification models the method proposed here can help to determine
neighborly modeled classes with regard to specific features of interest.
When applying this method to a specific classification task, it is neither
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limited to a specific amount of features, nor to a specific amount of classes
of the target, and it is not bound to a specific set of classification models.
As the chordgraph is a visualization tool to show relations between multi-
ple classes and even can indicate the direction of the relation, it is a very
good graphical tool to present the results of the proposed method. All in
all, this method provides an alternative to improve interpretability of very
complex models, which is the true benefit of this method. Thus, it qualifies
as an interpretable machine learning method and adds some more variety
to this field.

As of right now, the here proposed method can be directly used to deter-
mine neighborhoods between classes modeled by classification models with
regard to specific manipulations of some features of interest. But there
are a few edge cases, which demand further research, e.g. how the method
handles multiple observations with equal values of a feature of interest.
Multiple solutions are currently being worked on for a fair treatment of all
observations in these cases. Another point is a comparable treatment of
positive and negative choices of ¢q. As of right now, even the tiniest positive
manipulation would lead to a shift of all the values of a feature of interest,
but a very tiny negative manipulation would not lead to a shift of even a
single value of the same feature of interest. We currently work on a solution
to this, which will be presented soon.
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Abstract: For cumulative link models, we propose a new estimation approach
aiming at median bias reduction (Kenne Pagui et al., 2017). Such approach is
based on an adjustment of the score function. The method does not require finite-
ness of the maximum likelihood estimate and is effective in preventing boundary
estimates. The resulting estimator is componentwise third-order median unbiased
in the continuous case and equivariant under componentwise monotone reparam-
eterizations. Simulation studies and an application compare the proposed method
with maximum likelihood and mean bias reduction.
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1 Introduction

Ordinal responses are very common in many contexts, especially in the
social sciences, in medical disciplines and in business analysis. Cumulative
link models, proposed by McCullagh (1980), see also Agresti (2010), are
the most popular tool to handle ordinal data. The reason relies on the use
of a single regression parameter for all response levels, making the effects
simple to interpret. For these models, maximum likelihood (ML) is the
estimation method of choice. However, with small samples or sparse data,
the asymptotic approximation for the distribution of the ML estimator may
poorly reflect the exact sampling distribution that may be centered away
from the true parameter value. Another problem with ML estimation lies
in boundary estimates, which can arise with positive probability in models
for ordinal data.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Kosmidis (2014) developed mean bias reduction (meanBR) for cumulative
link models following Firth (1993), whose adjusted score does not require
finiteness of the ML estimate. An alternative modification of the score
equation is proposed in Kenne Pagui et al. (2017), aiming at median bias
reduction (medianBR). Like meanBR, medianBR estimation does not re-
quire finiteness of the ML estimate and is effective in preventing bound-
ary estimates. The medianBR estimator is componentwise third-order me-
dian unbiased in the continuous case and equivariant under componentwise
monotone reparameterizations. Here we develop medianBR, for cumulative
link models following the simplified algebraic form of the adjustment term
in Kenne Pagui et al. (2019). We show, through simulation studies and an
application, that the new method outperforms ML and is competitive with
meanBR.

2 Cumulative link models

Let Y; be the ordinal outcome, with ¢ categories, for subject 7,7 =1,...,n.
Let p;; be the probability to observe category j, j =1,...,c—1, for subject
i, and Pr(Y; < j) = >_7_, pix the cumulative probability. With x; a p-
dimensional row vector of covariates, cumulative link models assume

g{Pr(}/zSJ‘mz)}:OLJ+m'LBa jil,...,Cfl,

where g(-) is a given link function and 8" = (f1,...,08p) is the regression
parameter vector. Therefore, the effects of x;, expressed through g, are
the same for each j = 1,...,¢ — 1. The intercept parameters c; satisfy
—00 =ap < a1 < ... < a1 < a. = 400, so that Pr(Y; < jl;) is
increasing in j for each fixed ;. A problem with ML estimation lies in
boundary estimates, that is estimates of 8 with infinite components, and /or
consecutive intercept estimates having the same value.

3 Median bias reduction

For a general parametric model with p-dimensional parameter € and log-
likelihood £(f), based on a sample of size n, let U, = U,(0) = 9£(0)/00,
be the r-th component of the score function U(6), » = 1,...,p. Let
j(0) = —024(0)/0000™ be the observed information and i(0) = FEp{;j(0)}
the expected information, which we assume to be of order O(n). The me-
dianBR estimator, 6, is obtained as solution of the estimating equation
U(#) = 0, based on the adjusted score (Kenne Pagui et al., 2019)

U0) =U(0) + A(9),

with A(f) = A*(#) — i(f)F(A). The vector A*(f) has components
Ar = la{i(0)"Y(P, + Q.)}, with P, = E{U®)U(6)"U,} and Q, =
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Eo{—j(O)U,}, r = 1,...,p. The vector F(f) has components F, =
[i(6) )X F,., where F, has elements F,, = tr[h,{(1/3)P, + (1/2)Q.}], r,t =
1,...,p, with the matrix h, obtained as h, = {[i(0)~].[i(6)~1|*}/i""(6),
r=1,...,p. Above, we denoted by [i(§)~1], the r-th column of i(f)~! and
by i""(6) the (r,r) element of i(§) 1.

In general, the equation U(6) = 0 needs to be solved numerically using a
Fisher scoring-type algorithm.

In the continuous case, each component of 9, ér, r=1,...,p, is median
unbiased with error of order O(n=3/2), i.e. Pry(f, < 6,) = 14+0(n3/?),
compared with O(n~1/2) of ML estimator. Moreover, the asymptotic dis-
tribution of 6 is the same as that of the ML and the meanBR estimators,

that is N, (0,i(6)71).

4 Simulation results

Through simulation studies, we compared medianBR with ML and
meanBR, in terms of empirical probability of underestimation (PU%),
estimated relative bias (RB%) and empirical coverage of the 95% Wald-
type confidence interval (WALD%). We consider different sample sizes,
n = 50,100,200 and the logit link function. We generate the covariate
x1 from a standard Normal, o and x3 from Bernoulli distributions with
probabilities 0.5 and 0.8 respectively, and z4 from a Poisson with mean 2.5.
Assuming that the response has three categories, we fit the model

4

logit{Pr(¥; < jl@:)} = oj + > e, J=12%i=1,...,n,
k=1

considering 10,000 replications, with covariates fixed at the observed value
and true parameter 6y = (—1,2,1,—1,1, —1). Figureshows the numerical
results for the regression parameters. We found 2.82% and 0.08% simulated
samples with ML boundary estimates, for n = 50 and n = 100, respec-
tively. Instead, meanBR and medianBR estimates are always finite. The
new method proves to be remarkably accurate in achieving median center-
ing and it shows a lower estimated mean bias than ML, as well as a good
empirical coverage for confidence intervals. Unreported simulation results
shown similar behaviors considering probit and complementary log-log link
functions.

5 An application

We consider the wine dataset analyzed in Christensen (2019), based on
Randall (1989), concerning a factorial experiment for investigating the ef-
fects of two factors on the bitterness of wine, evaluated according to five
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FIGURE 1. Simulation results of regression parameters, 8 = (81, B2, 83, 84), for
ML (black square), meanBR (blue triangle) and medianBR (red circle) estima-
tors. For ML, RB% and WALD% are conditional upon finiteness of the estimates.

ordered categories. The two factors are temperature at the time of crash-
ing the grapes (x1) and contact between juice and skin (x2), each of them
with two levels. For each of the four treatment conditions, two bottles
were assessed by a panel of nine judges, giving n = 72 observations in all.
We consider, as in Christensen (2019, Section 4.8), the outcomes obtained
combining the three central categories and we fit the model

logit{Pr(Yi < j‘ml)} =qQj —|—.13i1ﬂ1 —|—$i2,62, j= 1,2;0=1,...,72.

Table 1| shows the ML, meanBR and medianBR estimates. Both meanBR
and medianBR approaches are effective in preventing boundary estimates.
Table [2| shows simulation results for the regression parameters with 10,000
replications, covariates fixed at the observed value and true parameter
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0y = (—1,4,—2,—1). Whereas ML boundary estimates occurr in 9.79%
of simulated samples, meanBR and medianBR estimates are always finite.
It appears that the medianBR estimator is preferable in terms of PU%,
outperforms ML in terms of RB% and shows a good empirical coverage for
confidence intervals.

TABLE 1. ML, meanBR and medianBR estimates (s.e).

Method a1 9 51 B2

ML -1.32 (0.53) 400 (+00) (+00) -1.31 (0.71)
meanBR  -1.25 (0.51) 5 48 (1.48) -3.43 (1.42) -1.19 (0.67)
medianBR  -1.29 (0.52) 6.46 (2.32) -4.48 (2.29) -1.24 (0.68)

TABLE 2. Simulation results of regression coefficients 8 = (81, 82). For ML, RB%
and WALD% are conditional upon finiteness of the estimates.

Parameter (3, Parameter (35
Method PU% RB% WALD% PU% RB% WALD%
ML 55.08 1.80 96.92 53.20  8.20 96.50
meanBR 43.91 -0.65 95.88 48.10 0.50 96.60
medianBR  49.71  8.95 96.48 50.35 4.90 96.28
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Abstract: Boosting techniques from the field of statistical learning have grown to
be a popular tool for estimating and selecting predictor effects in various regres-
sion models and can roughly be separated in two general approaches, namely gra-
dient boosting and likelihood-based boosting. An extensive framework has been
proposed in order to fit generalised mixed models based on boosting, however
for the case of cluster-constant covariates likelihood-based boosting approaches
tend to mischoose variables in the selection step leading to wrong estimates. We
propose an improved boosting algorithm for linear mixed models, where the ran-
dom effects are properly weighted, disentangled from the fixed effects updating
scheme and corrected for correlations with cluster-constant covariates in order
to improve quality of estimates and in addition reduce the computational effort.
The method outperforms current state-of-the-art approaches from boosting and
maximum likelihood inference.

Keywords: Statistical learning; Variable selection; Likelihood boosting; Predic-
tion analysis.

1 Introduction

An extensive framework has been proposed in [2, 3] in order to fit var-
ious mixed models with likelihood-based boosting techniques [1] and is
included in the R package GMMBoost. However, algorithms like bGLMM from
the GMMBoost package tend to struggle with cluster-constant covariates, e.g.
baseline covariates like gender or treatment group in longitudinal studies.
As shown in Figure[I] this malfunction already occurs in a very basic data
example with the popular Orthodont dataset available in the nlme pack-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Comparison between random intercept estimates by 1me and bGLMM.

age. A basic linear mixed model with random intercepts returns the two

coefficient estimates .., = —2.32 by 1me and B;’ex = 0.00 by bGLMM for the
effect of the cluster-constant covariate gender. The reason for this differ-
ence becomes clear when looking at the random intercepts, where bGLMM
tends to compensate the missing effect for gender by assigning every female
subject a random intercept lowered by 2.32.

We propose an updated algorithm with various changes in order to solve
this identifiability issue and hence avoid the phenomenon of random inter-
cepts growing too quickly. The major improvements include undocking the
random effects update from the fixed effects boosting scheme and intro-
ducing a correction step for the random effects estimation to avoid possible
correlations with observed covariates.

2 Methods

2.1 Model

We consider the linear mixed model
Yy=Ppl+XB+Zvy+e¢

with design matrices X and Z for fixed and random effects, variance-
covariance-matrix @ for the random components and model error € with
variance ¢2. In order to perform likelihood inference, we formulate the
penalized log-likelihood

n 1 n B
C(B,,0%,Q) = D _log f(yilB,v,0%) — 5 > ¥ Q i,
1=1

i=1
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which is going to be maximized simultaneously for the effect estimates and
random components by likelihood-based boosting.

2.2 Boosting Modifications

Amongst smaller modifications like weakening the random effects update
and using smaller starting values for random components, we incorporate
two major improvements into the algorithm.

Separate random effects update. A first update for the random effects
~ is obtained by calculating

_ ot (y)

bl = 2 r))

F. =-FE
) ra‘n(’Y) |: a’yapyT

and weakly updating

,?[m] = ’?[m_l] + VFran(’Y)_lsran('Y)'
The disentanglement of the random effects update from the fixed effects
updating scheme guarantees a fair comparison of the single fixed effects,
where the random effects do not play a crucial role. In addition the Fisher
matrix

Fran('y):diag(Flv'”an)a -FiZU_QZ;TZi"’_Q_l

now has block-diagonal form making the inversion much easier and thus

strongly reducing the computational effort.

Random effects correction. An additional correction is needed in order

to solve the identifiability pr?b]lem. Hence, instead of using the unaltered
m

ol

random intercept estimate 7, ', we proceed with the orthogonalised esti-
mates

yol =30 - (XIX) T XTA,
which result from counting out the orthogonal projections of ’7£T] onto
the subspace generated by the cluster-constant covariates X.. This ensures
that the resulting estimates 'AyiT] are uncorrelated with any cluster-constant

covariates.

3 Data Examples

The new algorithm proved to perform well as shown by an extensive sim-
ulation study. In the following it is also evaluated based on two real world
applications. The first one focuses solely on the novel estimation procedure
regarding the random effects, the second showcases variable selection and
shrinkage properties of the algorithm.
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3.1 Orthodont Data

Applied to the Orthodont data mentioned in the beginning, the modified
algorithm (boostLMM) yields the coefficient estimates for the covariates age
and gender as well as the random intercepts variance Q depicted in Table[T]
It is evident that boostLMM solves the random effects issues occurring with

TABLE 1. Estimates for the Orthodont dataset._

B 0 B sex ﬁ age Q

Ime 17.71 -2.32 0.66 3.27
boostLMM 17.71 -2.32 0.66 3.11
bGLMM 16.82 0.00 0.65 5.41

bGLMM. Both the maximum likelihood approach in 1me as well as boostLMM
return matching estimates for fixed and random effects without any shift,
which can be seen in Figure

X Male x

<O Female <&
= o %

X
5 e
7 W« 2
3 P
o
&
Ime

FIGURE 2. Comparison between random intercept estimates by 1lme and
boostLMM.

3.2 Primary Biliary Cirrhosis

The popular primary biliary cirrhosis (PBC) dataset from 1994 tracks the
change of the serum bilirubin level for a total of 312 PBC patients ran-
domized into a treatment and a placebo group and additionally contains
baseline covariates as well as follow-up measurements of several biomark-
ers. The serum bilirubin level, here modelled as the response variable, is
considered a strong indicator for disease progression, hence an appropriate
quantification of the impact of the given covariates on the serum bilirubin
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level will lead to an adequate prediction model for the health status of
PBC patients. Using boosting to carry out this quantification will optimize
the prediction properties. Based on 10-fold cross validation, boostLMM de-
termined m, = 93 as the best performing number of iterations yielding
the corresponding coefficient paths displayed in Figure [3] The algorithm

25
|

— selected
not selected

1.5

Coefficients
1.0
1

0.0
|

-0.5

0 100 200 300 400 500

Iterations

FIGURE 3. Coefficient paths for the PBC dataset generated by boostLMM.

stopped before six of the 13 covariates got selected into the model and thus
their coefficient estimates are set to zero. The remaining effect estimates
experienced various amounts of shrinkage in comparison to the maximum
likelihood solution which prevents overfitting and hence offers an improved
quality of prediction.

4 Conclusion

The updated algorithm is due to its minor and major tweaks capable of
dealing with cluster-constant covariates in linear mixed models by pre-
venting the random effects from taking up too much space. In addition, it
preserves the well-known advantages of boosting techniques in general by
offering variable selection and a good functionality even in high dimensional
setups. As a very important side effect the computational effort receives a
tremendous decrease making the algorithm more applicable to real world
scenarios.
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Abstract: Poverty is a multidimensional concept often comprising a monetary
outcome and other welfare dimensions such as education, subjective well-being
or health, that are measured on an ordinal scale. In applied research, multidi-
mensional poverty is ubiquitously assessed by studying each poverty dimension
independently in univariate regression models or by combining several poverty di-
mensions into a scalar index. This inhibits a thorough analysis of the potentially
varying interdependence between the poverty dimensions. We propose a multi-
variate copula generalized additive model for location, scale and shape (copula
GAMLSS or distributional copula model) to tackle this challenge and we demon-
strate its power by studying two important poverty dimensions: income and ed-
ucation. Since the level of education is often measured on an ordinal scale and
income is continuous, we extend the bivariate copula GAMLSS to the case of
mixed ordered-continuous outcomes. The new model is integrated into the GIJRM
package in R and applied to data from Indonesia.

Keywords: GAMLSS; copula; poverty

1 Introduction

Although poverty is widely regarded a multidimensional phenomenon and
poverty measures moving beyond a single monetary dimension — such as
the Multidimensional Poverty Index (MPI) — have emerged, little progress

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).

2This paper should not be reported as representing the views of the Single
Resolution Board. The views expressed are those of the authors and do not nec-
essarily reflect those of the Board.
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has been made on analysing poverty as a multidimensional concept. To
study poverty at the micro level, univariate linear regression models are
the standard tool but require either studying each poverty dimension sep-
arately in different equations, or using as response variable an index that
subsumes all dimensions in a single number. Both approaches neglect the
interdependence between poverty dimensions and ignore that the depen-
dence itself should be part of the analysis. To overcome such limitations
multivariate regression can be used to tackle multidimensionality in poverty
analyses. The relationship between two or more outcomes can be modeled
using copulas which have been proven to be useful and flexible tools in this
regard.

A second issue in poverty analysis concerns distributional aspects. Espe-
cially for inequality and vulnerability analyses, it is important that poverty
studies move beyond the simple mean effects. Generalized additive models
for location, scale, and shape (GAMLSS, Rigby and Stasinopoulos, 2005)
are able to capture the effects of covariates on the whole conditional dis-
tribution of a single poverty dimension.

Both issues of multidimensionality and distributional aspects can be ad-
dressed with a combination of GAMLSS and multivariate copula models,
also referred to as copula GAMLSS. The advantage of embedding copula
regression into GAMLSS is that each parameter of the marginals and the
copula association parameter can be modeled to depend flexibly on covari-
ates. This allows us to measure the strength of the dependence, which has
been the focus of previous literature on interrelated poverty dimensions,
and to analyse which factors related to household location and compo-
sition drive this dependence. This latter aspect has not been previously
considered in poverty studies.

2 Model definition
A bivariate cumulative distribution function can be written as

Fio(r,y2) = C(Fi(r), Fa(y2)) € [0,1], (1)

where in our case Y is a categorical variable with categories r. The variable
Y5 is assumed to be continuous. In the case study of Section [3] response
Y5 will represent the income and Y7 the highest level of education attained
by each individual surveyed. The copula function is C : [0,1]*> — [0, 1],
with Fy(r) :== P(Y7 =< r) and F5(y2) := P(Yy < yso) being the marginal
distributions. To ensure that the copula function is uniquely determined, we
represent the ordinal variable Y7 as a coarse version of a latent continuous
variable and define a cumulative link model

P(Y1 =r) =P(Yy" <0,) =P(er <0, —x11) := F{ (0, — XlTlal)v (2)

=n1r
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where Y;* denotes an unobserved (or latent) continuous variable that drives
the decision for the observed categories, 6, is a cut point on the latent con-
tinuum related to the level r of Y;. We observe category r if the latent
variable is between the cutoffs 6,._; and 6,.. The predictor 7y, is associ-
ated with the ordinal categorical response. Later the predictor 7y, will be
replaced with a generalized additive form. Equation can be written as

Fia(r,y2) = Fis(mr,y2) = C(F1(r), Fa(y2)) = C(FY (M), F2(y2)).  (3)

The bivariate copula model is embedded into the distributional regression
framework (or GAMLSS) to model flexibly both the dependence parame-
ter and the marginal distributions. To this end, the response vector y; =
(Y y2:)', i =1,...,n,is assumed to follow a parametric distribution where
potentially all parameters, except of the cut-points, are related to a regres-
sion predictor and consequently to covariates. We write the joint conditional

density as f{5(1i, ..., Oki|v;), where the vector v; collects any covariates
associated to the parameters ¥y, k = 1,..., K of density f;,. Accord-
ingly, the distributional parameter vector ©¥; = (67,...,0%, %14, ..., 0k;)

includes transformed cut-points {67}, the location parameter of the first
marginal distribution, all other distributional parameters related to the
second marginal distribution, and the copula parameter ;. Subscript i at-
tached to parameters is made explicit to stress their potential dependence
on individual-level covariates. For the ordinal response, logit and probit
link functions can be applied and the scale parameter for density f; is set
to one. in order to achieve identification as for a probit/logit model.

In the spirit of the GAMLSS approach, each distributional element in the
parameter vector is related to an additive predictor via

i = h(n”*)  and 7Y% = gr(Vpi), (4)

where 77;-9’“ is the predictor belonging to distributional parameter 9¥;;, and
hip = gk_l is a response function mapping the real line into the domain of
Vs

For the ordinal equation, 7,; in equation can now be represented as
nht =0, — "', where n!" is a predictor as in . The predictor n* takes
on the additive form

Jr
=D s W),
j=1

where functions s?"’ (vi),7 =1,...,Jk, can be chosen to model a range of
different effects of (a subset) of explanatory variables v;, such as linear,
spatial, random, or nonlinear effects. Estimation is performed using a trust
region algorithm as in Marra and Radice (2017).
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3 Multidimensional poverty in Indonesia

To analyse the poverty dimensions in a bivariate copula model with a focus
on a household’s location, we rely on the most recent wave (IFLS 5) of the
Indonesian Family Life Survey (IFLS). We fit a lognormal distribution for
the continuous marginal as indicated by QQ plots, a logit model for the first
marginal and a Gaussian copula to connect both marginals as supported by
AIC and BIC. The predictors of the models 1! . ni2 n72,n7 are related
to several household covariates and a spatial effect on the province level.

Model evaluation: To check the final bivariate model, we use a mul-
tivariate generalization of the quantile residuals that was proposed by
Kalliovirta (2008). Multivariate quantile residuals for two continuous re-
sponses are defined as

G; = <<§1z) _ ( O~ (£ (y1i) )
o \du O (Fyy1 (ya2ilye)),

where Fgu is the (estimated) conditional CDF of Ys given Y;. In our case,
the first marginal is discrete such that we resort to randomized quantile
residuals, where uniformly distributed random variables on the interval
corresponding to cumulative probabilities are plugged into ®~*(-). If the
model is correctly specified, then ¢ approximately follows a bivariate stan-
dard normal distribution. The contour plot for the bivariate model in Fig-
ure [1| (left) shows the density of the quantile residuals ¢ by means of a
multivariate kernel density estimator. This estimated density is compared
to the density of the standard normal distribution. The contour lines of
both densities are close to each other indicating a good fit of the bivariate
copula model. In Figure [1| (right), the sum of the squared elements of the
multivariate quantile residuals are considered. That is, /g, = 42, + ¢3;,
where q; is the multivariate quantile residual for the ¢-th individual and
G.d4; ~ x*(2) which is assessed in the QQ-plot.

Dependence for urban and rural households: To compare the de-
pendence structure across different locations (urban/rural), we create an
example of typical individual whose characteristics, other than the one un-
der consideration, are set to their mean value or to their most frequent
observation. The only exception is the education of the household head
which is set to the second most frequent observation. This is the covariates’
combination that we call an “example individual” henceforward. Figure
shows that the dependence is stronger for individuals in urban households
compared to rural households. One reason might be that average education
levels are lower in rural areas (x-axis) while at the same time high paid job
opportunities are restricted in a rural environment, resulting in more equal
incomes compared to an urban environment.

Dependence structure across provinces: Figure [3] shows the average



Hohberg et al. 118

< .
R
&
N [%]
2 n |
‘E —
I
o o 8‘
(T © 8 B
[=%
&
tl\I . 2 n —
¥ 4 . . o -
T T T T T T T T T T
-4 -2 0 2 4 0 5 10 15 20
CA Theoretical Quantiles

FIGURE 1. Left: Contour plot of multivariate quantile residuals. The red lines
indicate the density of the quantile residuals estimated by a multivariate kernel
density estimator. The blue circles are the contour lines of the density of the
standard normal distribution with radius 1,2 and 3. Right: QQ-plot depicting
the sum of the squared elements of the multivariate quantile residuals with 95%
reference bands.
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FIGURE 2. Contour plots for an example individual in an urban or rural house-
hold in the province of Jawa Timur. Contour plots for (education, income)’ and
a Gaussian copula. Contour lines of densities are at levels from 0.00000005 to
0.00000025 . The vertical straight lines represents the cut off values for the ed-
ucation categories, horizontal straight lines are the consumption average, and
dashed horizontal line are at two standard deviations around this average.



Hohberg et al. 119

of Kendall’'s 7 over all individuals across in a particular province. The
Kalimantan Selatan (South Borneo) is the province with the lowest average
of Kendall’'s 7 with a value of 0.045 and Kepulauan Riau (Riau Islands,
northwest of Borneo) has a value of 0.150 which is the highest average value
that also indicates spatial heterogeneity in the strength of the dependence.
The provinces of Sumatra seem to have higher dependence between income
and education than provinces in Borneo or Sulawesi. Interestingly, for Java
and its neighbouring smaller islands on the east, the dependence seem to
decrease from west to east.

Average 1 per province

Sumatera Utara .

Sumatra

Java Bl DSy b
) ali” | I
Jawa Timur LomboNQ’> - A
| T—— |
0.0468 0.1467  Sumbawa

Nusa Tenggara Barat
FIGURE 3. Kendall’s 7 for each individual averaged within provinces.

Joint probabilities: We calculate the probability for the example indi-
vidual of being poor in both the education and income dimensions. We find
that the probability for being poor in both dimensions is 2 times higher for
the example individual in a rural household compared to the same individ-
ual in an urban household. Compared to Jawa Timur, the joint probabilities
of Jakarta Raya, Nusa Tenggara Barat, and Sumatera Utara are about 8
times, 6 times, and 4 times higher, respectively.

References

Kalliovirta, L. (2008). Quantile residuals for multivariate models, Techni-
cal Report 247, Helsinki Center of Economic Research.

Marra, G. and Radice, R. (2017). Bivariate copula additive models for lo-
cation, scale and shape Computational Statistics & Data Analysis,
112, 99-113.

Rigby, R.A. and Stasinopoulos, D.M. (2005). Generalized Additive Mod-
els for Location, Scale and Shape Journal of the Royal Statistical
Society: Series C (Applied Statistics), 54, 507 —554.



Closed-loop effects in coupling cardiac
physiological models to clinical interventions

Dirk Husmeier' and L. Mihaela Paun!

1 School of Mathematics & Statistics, University of Glasgow, Scotland, UK
E-mail for correspondence: dirk.husmeier@glasgow.ac.uk

Abstract: There have been impressive methodological advancements in the
mathematical modelling of cardio-physiological processes. The majority of recent
articles have focused on the forward problem: developing flexible mathematical
models and robust numerical simulation procedures to match characteristics of
physiological target data, and the inverse problem: inferring model parameters
from cardiac physiological data with reliable uncertainty quantification. However,
when connecting mathematical model predictions to the clinical decision process,
new challenges arise. This paper briefly discusses the complications that poten-
tially result from closed-loop effects, and the model extensions that are required
to reduce the ensuing bias.

Keywords: Closed-loop effect, physiological model, pulmonary hypertension

1 Introduction and illustration

Consider a random variable X € R that represents the value of a clini-
cal disease indicator. Based on some adequate clinical data, which for the
purpose of the following discussion do not need to be made specific, we
monitor its posterior distribution p(z) and the risk of the clinical indicator
exceeding some tolerance threshold

PX>71) = /mp(x)dx (1)

If this risk exceeds some critical value o, P(X > 7) > «, medical treat-
ment, for instance in the form of medication, is provided. While potentially
only aiming at a symptomatic relief, this treatment is assumed to interfere
with the patient’s physiology or pathophysiology and affect the clinical
disease indicator. Let Y € Y denote a random variable that represents the

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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value of the disease indicator upon medical intervention, and let f describe
the effect of the treatment: y = f(x). This treatment effect implies a
transformation of the probability distribution of the disease indicator:

= [ 5y 1)puorts ©)

— 00

where §(.) is the Dirac delta function. The consequence is a potential pre-
diction bias:

Pyvsm = [ T oWy £ P(X>7) = a (3)

which needs to be accounted for in the clinical decision process. As a simple
illustration, assume the posterior distribution of the clinical indicator prior
to the medical intervention is normal, p,(z) = N(z|u,0?), with mean
i = 0 and variance 02 = 1, and that the effect of the medical treatment is
a shift of the clinical indicator by 1 € R™:

T ifx<r

f(x):[z—d) ifz>71 (4)

We obtain p(y) by inserting into and making use of the following
feature of the Dirac delta function:

oy 1) = 3 ot = 5)

where {z;} are the roots of y — f(x) = 0. Inserting and into
gives:

pa:(y) ify<7—_¢
py(y) = [pz(y)+px(y+w) ifr—y<y<r (6)
pz(y + ) ify>r

The apparent probability of the disease indicator to exceed the critical
threshold 7 will therefore be evaluated as

paly+)dy = / N0y =T

PY >71)= /Toopy(y)dy = /T

where G = 1 — G and G(.) is the normal cumulative distribution function,
whereas the actual probability is

P> = [Cp@ay = [ NGy =G0 @)

o0

Since G(.) is strictly monotonously decreasing, G(7 4 1) < G(7), the ap-
parent probability is biased and systematically underestimates the risk of
exceeding the critical threshold 7: P(Y > 7) < P(X > 7). Hence, by ignor-
ing the effect of the treatment on the clinical indicator variable, any clinical
decision support system based on this indicator variable will systematically
underestimate the patient’s state of risk.
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FIGURE 1. Schematic representation of our physiological model of pulmonary
hypertension and how it is affected by closed-loop effects following a clinical
intervention. See the main text for details.

2 Physiological application: pulmonary hypertension

Pulmonary hypertension, i.e. high blood pressure in the lungs, is a ma-
jor risk factor for a variety of medical conditions, including inadequate
coronary perfusion, stroke and heart failure. Pulmonary blood pressure
can differ substantially from blood pressure in the rest of the body (the so-
called systemic circuit) and, as opposed to the latter, can only be measured
invasively. Standard techniques, which are based on right-heart catheter-
ization, can have significant side effects, including internal bleeding and
partial collapse of the lungs.

Recent advances in physiological modelling allow the pulmonary blood
pressure to be predicted from the vasculature geometry and blood flow
times series (Qureshi et al.), which can be measured non-invasively with
computed tomography (CT) and ultrasound, respectively. The biophysical
model depends on various boundary conditions and physiological parame-
ters, most notably the blood vessel stiffness, which can be estimated with
computational inference procedures (Paun et al.).

Figure [1] provides a schematic illustration. Given the geometry of the vas-
culature, most notably the blood vessel diameters (measured with CT),
the blood flow (measured with ultrasound) and various boundary condi-
tions (obtained from statistical inference, see Qureshi et al.), the model
allows the prediction of the pulmonary blood pressure and the blood vessel
stiffness (with the statistical inference techniques described in Paun et al.).
In a clinical application, the prediction of high pulmonary blood pressure
above a critical threshold will trigger the administration of vasodilators,
whose effect is the increase of the vessel diameter. However, as illustrated
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TABLE 1. Closed-loop effect and its correction in the biophysical modelling of
pulmonary hypertension. Systolic blood flow can be measured with ultrasound;
the initial geometry of the vasculature, including the diastolic diameter of the
main pulmonary artery (MPA), is available from an initial CT scan. The bio-
physical model allows the prediction of the pulmonary systolic blood pressure
(column 1) and the vessel stiffness (columns 2-3) with the statistical inference
procedure described in (Paun et al.). The table shows the relative blood vessel
stiffness estimation error (median and 95% posterior credible interval) without
(column 2) and with a correction for the closed-loop effect that results from
medical interventions triggered by model predictions (column 3). Since this is a
simulation study (Qureshi et al.), the true vessel stiffness is known. Computa-
tional Bayesian inference was carried out with the MCMC scheme described in
Paun et al.

Peak blood pressure Relative error without Relative error with

exceeding threshold closed-loop correction closed-loop correction
25 % 1.51% (1.04%,1.97%)  -2.0e-03% (-0.37%,0.37%)
50 % 2.52% (2.15%,2.90%)  -1.4e-03% (-0.47%,0.46%)
75 % 61.5% (60.5%,62.4%) -0.26% (-7.78%,6.49%)

in Figure[l] this causes a closed-loop effect, whereby the prediction from the
model causes an action that alters the conditions under which the original
prediction was obtained.

3 Simulation study

Our simulations are based on the pulmonary circulation model described
in Qureshi et al. The blood vessel geometry of the larger blood vessels has
been obtained from a CT scan in a healthy mouse, the effect of the small
terminal blood vessels is approximated with electronic circuit (so-called
Windkessel) elements consisting of two resistances and a capacitance. This
gives three parameters that define downstream boundary conditions of the
partial differential equations (PDEs) describing the blood flow through the
pulmonary circuit. We also assume that the blood flow at the main pul-
monary artery (MPA) is measured (noninvasively with ultrasound), which
provides the upstream boundary condition for the PDEs. Following Qureshi
et al. and Paun et al., we assume the same stiffness parameter in all blood
vessels, which adds one further parameter to the physiological model. We
further assume that the blood flows in the two daughter vessels of the MPA
are measured (with ultrasound). Our data used for inference are the time
courses of the blood flows through three blood vessels. The parameters to
be inferred are the vessel stiffness and three Windkessel parameters. Once
these parameters have been estimated, the blood pressure in the MPA can
be predicted. A graphical illustration is provided in Figure [2].
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MPA

Measured \

blood flow

FIGURE 2. Left panel: 3D smoothed segmented network from a micro-CT im-
age of a healthy mouse lung. Right panel: Directional graph of the same network.
Blood flow waveforms are taken from ultrasound measurements at the main pul-
monary artery (MPA) and two daughter vessels. At the outlet of each terminal
vessel, three-element Windkessel elements with two resistors and a capacitor are
attached as boundary conditions to mimic the effect of the microvasculature fur-
ther downstream.

To simulate the effect of clinical interventions, we monitor the blood pres-
sure in the MPA, and provide an in-silico vasodilator whenever the pressure
exceeds a critical threshold. Since this is a proof-of-concept study, we use
data from mice rather than humans, and set as an arbitrary threshold
the peak pressure found in the hypoxic control mice used in the study
of Qureshi et al. We simulate the effect of the vasodilator by increasing
the diastolic trough diameter of all blood vessels by the same percentage
amount, whose value is determined by the requirement that upon medi-
cal intervention, the peak blood pressure in the MPA must not exceed the
critical value by more than 5%. This bandwidth defines the uncertainty
that remains when explicitly including the closed-loop effect caused by the
medical intervention in the model. We compare that with naive parameter
inference that does not include any correction for the medical intervention,
and assumes the diastolic blood vessel diameter to be fixed. We quantify
the effect of ignoring the feedback loop with the percentage estimation error
of the vessel stiffness.
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4 Results

The results can be found in Table [1 They demonstrate that ignoring the
closed-loop effect leads to a systematic bias in the estimation of the blood
vessel stiffness, which is a critical risk indicator for vessel wall rupture,
stroke and right-ventricle heart failure (Chen et al). Allowing for the med-
ical intervention and including the ensuing feedback loop in the statistical
inference corrects this bias and leads to a substantially improved estimation
of the stiffness parameter.

5 Conclusions

Quantitative physiological models have great potential for improved and
automated clinical decision support. However, it is important to correct for
closed-loop effects in model calibration. Using a mathematical toy problem
and a realistic fluid dynamics simulation of the pulmonary blood circula-
tion system, we have shown that failing to allow for the effect of medical
interventions — and not explicitly including them in the model — can lead
to a systematic prediction bias. Our future work will focus on improved
statistical inference when data on the effect of medical interventions are
noisy and/or partially missing.
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Abstract: With the increase in the production of genome-wide association stud-
ies (GWAS), the analysis of such data sets with thousands of potential predictive
single nucleotide-polymorphisms (SNPs) has become crucial in biomedical re-
search. Here we propose a new method to identify SNPs related with a disease in
case-control studies. The method provides two ordered lists of SNPs (with causal
or protective alleles) that provide a useful tool to help the researcher to decide
where to focus attention in a first stage.
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association studies; Nearest Neighbors.

1 Introduction

A typical GWAS data set may contain thousands of potential predictive
single nucleotide-polymorphisms (SNPs) and the aim is to identify genes
involved in human disease, by searching for SNP variants that occur more
frequently in people with a particular phenotype than in people without
this phenotype. GWAS analysis typically assume an underlying genetic
model of association for each SNP (e.g., dominant, recessive, or additive),
being the single additive model the one typically selected. In this case, each
SNP is represented as the corresponding number of minor alleles (0, 1, or
2). Many methods for SNP identification use univariate tests which involve
regressing each SNP separately on a given trait, adjusted for possible co-
variate variables and assessing the significance after correction for multiple

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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comparisons with a lost of sensitivity. As analyzing SNPs one at a time can
neglect information about the joint distribution, multi-association analysis
may be more suitable (Balding, 2006). Other possibilities involve grouping
of SNPs over a moving window and look for associations of groups with the
diseases, but the selection of the window is very subjective (Wu et al., 2010)
or to consider stochastic search algorithms (Dobra and Massam, 2010). In
the context of GWAS data the presence of population substructure can
result in spurious associations. Usually, the first ten principal components
(PC) are considered as covariate variables, assuming that these PCs cap-
ture information of the latent population substructure (Price et al., 2010).

2 Method

Let Y be a categorical variable indicating the presence (encoded as 1) or
absence (encoded as 0) of the disease of interest. Let X = (z};) be an n x p
data matrix containing the genotypes for the j** SNP (j = 1,...,p) on
the i'" (i = 1,...,n) individual, with n = n; + ny (n1 is the number of
cases and ns the number of controls), being y equal to 1 or 0 for cases
and controls, respectively. We consider the single additive model as the
underlying genetic model of association. In this case, each SNP tested in
the case-control study and with alleles A and a generates three genotypes
(AA, Aa, aa) and is represented as the corresponding number of minor
alleles (0, 1, or 2). The model assumes that a SNP will be related to the
disease if the number of values equal to 1 or 2 is greater in the case group
than in the control group; that is, having one or two copies of the a allele
will increase the probability of presenting the disease. Let D = (d;;) be the
Manhattan distance matrix between all the individuals. For each individual

x] = (x),...,x],)" in the case or control group (i = 1,...,n), we consider
its 10-nearest neighbors among the n; cases (NNl( N =A{x{,....xi,})
or among the ny controls (NNy(x!) = {x?,...,x? }), based on the D

distance matrix. The method associates each SNP j with a value ¢ 21 obtained
from variable I where

ni na 10

1 )
i 10n1 ZZ plk "~ 10nsy ZZB(‘#}C)’

i=1 k= =1 k=1

with B (ka) a Bernoulli distribution taking value 1 with probability pgk
if the ¢ case takes values 1 or 2 and its k£ neighbor control takes value 0
on the jth SNP; otherwise, it takes the value 0 with probability 1 — pzk

B(q] k) follows a Bernoulli distribution taking value 1 with probability ¢},
if the 4 control takes values 1 or 2, and its & neighbor control takes value
0 on the jth SNP; otherwise, it takes the value 0 with probability 1 — ¢/,



Irigoien et al. 128

Proposition: Consider case i and its N Np(x}) neighbours. Let p; be the
probability of observing values 1 or 2 in SNP j for case 7 and let w; be the
probability that the jth SNP is related with the disease. Then,

Pl = w;pi(1 = p) + (1 — w;)Q? and ¢}, = w;p(1 — p) + (1 — w;)Q’,

with p the probability of observing values 1 or 2 by chance, and
Q7 the probability of the event {case/control i takes values 1 or 2 and
its k neighbor control takes value 0 | SNP j is not related with the disease}.

Proposition: SNPs that favor the presence of the disease have positive and
large I{ values.

The decreasing ordered list with the zjl values provides a tool for a genetic
study to focus the attention on SNPs with potentially casual alleles. As
the distribution followed by I; with the ] values is unknown in order
to determine a threshold for the SNPs selection, it is necessary to obtain
the associated bootstrap distribution or to adjust to a convenient Normal
distribution if possible. Similarly, the method associates each SNP j with
a value I3 with

. 1 > 10 . 1 ni 10 )
I = B(pl) — —— B(q!

where now B (pfk) follows a Bernoulli distribution taking value 1 with prob-
ability p{k if the ¢ control takes values 1 or 2 and its k£ neighbor case takes
value 0 on the jth SNP; otherwise, it takes the value 0 with probability
1 —pl,. B(q],) follows a Bernoulli distribution taking value 1 with prob-
ability qfk if the 7 case takes values 1 or 2, and its k£ neighbor case takes
value 0 on the jth SNP; otherwise, it takes the value 0 with probability
1 — ¢}, In a similar way, SNPs with a corresponding i} value that is big
and positive are those potentially conferring protection against the disease.

3 Simulate data

The simulated case-control data set simuCC included in the genMOSS R
package, contains 6000 SNPs, 1000 cases and 1000 controls. Two SNPs,
rs4491689 and rs6869003, and a random environmental factor were associ-
ated with the disease. Our method identified these two SNPs as the first and
second SNPs in the ranked list of SNPs favoring the disease, in agreement
with the fact that they are the disease predisposing SNPs.
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4 Application to a real data set

A real case-control data set, previously wused in attention-
deficit /hyperactivity disorder (ADHD; Snchez-Mora et al.,, 2015),
including 418 cases, 428 controls and 155802 SNPs covering the whole
genome was analyzed. We split the sample 20 times at random into train
(90%) and test (10%) data. Taking SNPs that favor the presence of ADHD
allows a highly reliable assignation of cases and controls, reaching correct
classification percentages over 90% with only 200 SNPs (Table[1]). The top
finding is SNP rs739465 in the VAV2 gene, encoding an angiogenic protein
and previously associated with multiple sclerosis. Other findings point at
the NF1 gene, encoding neurofibromin 1 and causal for neurofibromatosis
but also associated with risk-taking behavior, alcohol consumption or
anxiety, and at RBFOX1, encoding a splicing factor and found associated
with depression and also highlighted in a recent GWAS meta-analysis of 8
psychiatric disorders, including ADHD.

TABLE 1. AUC and percentage of correct classification of subjects into the case
(ADHD) or control groups in the train-test situation, under different o values
that correspond to different numbers of SNPs. Mean and standard deviation (in
brackets) are indicated.

et Number SNPs AUC Correct classification (%)
0.0001  22.00 (3.21)  0.78 (0.02) 71.87 (1.91)
0.0005  100.63 (7.91) 0.89 (0.01) 85.53 (1.47)
0.001  192.37 (11.16)  0.94 (0.01) 91.33 (0.91)
0.0025  457.65 (14.65) 0.98 (0.01) 97.10 (0.48)
0.005  894.26 (19.12)  0.98 (0.01) 99.02 (0.26)
0.01  1740.21 (21.15) 0.9 (0.003) 99.78 (0.15)
0.025  4220.26 (43.70) 0.9 (0.001) 99.92 (0.07)
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Abstract: Regression models describing the joint distribution of multivariate
response variables conditional on covariate information have become an impor-
tant aspect of contemporary regression analysis. However, a limitation of such
models is that they often rely on rather simplistic assumptions, e.g. a constant
dependence structure that is not allowed to vary with the covariates or the re-
striction to linear dependence between the responses only. We propose a general
framework for multivariate conditional transformation models that overcomes
such limitations and describes the full joint distribution in a tractable and inter-
pretable yet flexible way. Among the particular merits of the framework are that
it can be embedded into likelihood-based inference (including results on asymp-
totic normality) and allows the dependence structure to vary with the covariates.
In addition, the framework scales well beyond bivariate response situations.

Keywords: copulas; multivariate regression; most likely transformations; seem-
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1 Basic Model Setup

We start by discussing transformation models developed for the analysis of
the joint multivariate distribution of a J-dimensional, absolutely continu-
ous random vector Y = (Y1,...,Y;)" € R’ with density fy (y) without
conditioning on covariates. The key component of multivariate transforma-
tion models then is an unknown, bijective, strictly monotonically increasing
transformation function h : R/ — R”. This function maps the vector Y,
whose distribution is unknown and shall be estimated from data, to a set of
J independent and identically distributed, absolutely continuous random

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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variables Z; ~Pz,j =1,...,J with an a priori defined distribution Pz (in
the following the standard normal distribution), such that

R(Y) = (hi(Y),...,hs(Y) = (Z1,...,Z;)" =Z eR’.

The density of Y implied by the transformation model is then
J

) = | [T nastw) | -| %52
j=1

and, upon a suitable parameterisation of the transformation function, this
enables maximum likelihood inference. However, in this generality, the
model is cumbersome in terms of both interpretation and tractability. Thus,
in the following, we introduce simplified parameterisations of i that lead
to interpretable models.

2 Models with Recursive Structure

In a first step, we impose a triangular structure on the transformation
function h by assuming

h](y) = hj(yla"'ay.]) = hj(yla"'vyj)

i.e. the jth component of the transformation function depends only on the
first j elements of its argument y. In a second step, we assume that the
triangulary structured transformation functions are linear combinations of
marginal transformation functions Bj :R—=R,ie.

hi(Yi,. .., Y5) = Njiha (Y1) + ...+ Xjhy (Y5)

where each l~1j increases strictly monotonically and Aj; > 0 for all j =
1,...,J to ensure the bijectivity of h. Because the last coefficient, A;;, can-
not be separated from the marginal transformation function ﬁj (Y;), we use
the restriction A;; = 1. Thus, the parameterisation of the transformation
function A finally reads

hi(Yi,. ., Y5) = Njiha (Y1) + oo+ Xy jo1hj1 (Y1) + b (Y5)
and the model-based density function for Y is

oh; (V)

J
fr @) =] ¢oa (Ajlﬁl(Yl) +o Aghi (Yo + by (Yj)) 5y,
Jj=1 J

Summarising the model’s specifications, our multivariate transformation
model is characterised by a set of marginal transformations h;(Y;), j =
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1,...,J, each applying to only a single component of the vector Y, and by
a lower triangular (J x J) matrix of transformation coefficients

1 0
21 1
A= |31 A2 1

)\Jl )\!]2 )\J7J71 1

Under the standard normal reference distribution Pz = N(0, 1), the coef-
ficients in A characterise the dependence structure via a Gaussian copula
while the marginal transformation functions h; allow the generation of ar-
bitrary marginal distributions for the components of Y.

3 Conditional Transformation Models

By extending the unconditional transformation function, we define the J
components of a multivariate conditional transformation function given
covariates X as

by ] X) = 3" A (X0h(Y) | X) + By (Y, | X)

J=1

where \j,(X) and h;j(Y; | X) are expressed in terms of suitable basis
function expansions, e.g. based on Bernstein polynomials that facilitate
the consideration of the monotonicity constraints. For the marginal (with
respect to the response Y;) conditional (given covariates X') transformation
functions, this leads to a parameterisation

hi(Y; | X) = ¢;(Y;,2) "9,

where the basis functions ¢;(Y}, ), in general, depend on both element Y;
of the response and the covariates .

4 Simulation Study

In this section, we provide empirical evidence on the performance of our
MCTMs via simulations. We simulated R = 100 data sets of size n =
1,000, following a method similar to that used in the parametric bootstrap
procedure:

1. Covariate values x were simulated as i.i.d. variables, where x ~
U[-0.9,0.9].
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2. The latent variables z;. € R? were generated as
Zio=A'zy, i=1,...,n;r=1,....R

with
Zir N(O,Ig) and Az = < ]é O) s

such that

Cov(Zi1, Ziz|zi) = Zi(x;) ( 1 i )
il i2|Ti) = ; i) = .
v el n —z? 1+t

3. From the latent variables, the observed responses were computed as
Yir = I 1P0,1(Zir1) J, Fy "1 P02, (Zir,2 ,
[FTH{®@o,1(Zir1) ) Fy H{®o 02, (Zir2) 1T

where 02, = 1+ 2} and F; and F, are the CDFs of two Dagum
distributions with parameters a; = exp(2),b; = exp(1),p1 = exp(1.3)
and as = exp(1.8), by = exp(0), p2 = exp(0.9), respectively. Note that
the CDF of an unconditional Dagum distribution reads as

AN
F(y):(1+(b) > , fory>0a>0,b>0,p>0.

This model specification is equivalent to a Gaussian copula model with
Dagum marginals, but note that, by its construction, the first margin is
independent of the covariate x, while the scale of the second margin varies
as a function of x. More precisely, the scale parameter b is affected by x
while the shape parameters a, p remain constant.

As competitors for MCTMs, we considered Bayesian structured additive
distributional regression models as implemented in the software package
BayesX and vector generalised additive models as implemented in the corre-
sponding R add-on package VGAM. For VGAM and BayesX, we employed
the true specification, i.e. a Gaussian copula with correlation parameter

plag) = ——2T)
V14 Az;)?

and Dagum marginals, in which the paramater b, of the second marginal
depended on x but the first marginal as well as the parameters as and po
did not. Both the predictor for by and the correlation parameter p of the
Gaussian copula were specified using cubic B-splines with 20 inner knots
on an equidistant grid in the range of x with a second-order random walk
prior; the other parameters of the margins were estimated as constants.

Because VGAM does not allow for simultaneous estimation of the margins
and the dependence structure, we first estimated the Dagum marginals with



Kneib et al. 135

RMSE
wn o °
\—! -
© o
o
9l
< o
L
0
=
L)
o | T
E |
T T T
MCTM VGAM BayesX

FIGURE 1. RMSE for A(z) from MCTM (left), VGAM (middle) and BayesX
(right).

constant parameters aq, by, p1,as,p2 and covariate-dependent parameters
bs. The copula predictor was then estimated with plugged-in estimates of
the margins, using cubic B-splines with 18 inner knots. For the multivariate
transformation models (denoted as MCTM), we employed Bernstein poly-
nomials of order eight (in y) and order three (in z), as in our application.
Although BayesX and VGAM employed the correct model specification
in terms of the parametric distribution assumption for the marginal dis-
tributions and the correlation parameter, the performance of MCTM was
highly competitive in terms of the RMSE (Figure |1)) without the require-
ment to either estimate the marginal distributions in a first step and plug
the empirical copula data in to obtain the dependence structure (as for
VGAM) or specifying parametric marginal distributions (as for BayesX).
Both requirements are restrictive in practice since typically it is impossi-
ble to pick the ‘correct’ parametric distribution that exactly matches the
marginal distributions of the underlying random variables.

5 Application: Trivariate Conditional Transformation
Models for Undernutrition in India

To demonstrate practical aspects of multivariate conditional transforma-
tion models, we present a trivariate analysis of undernutrition in India.
Overall, the available data set comprised 24,316 observations, after pre-
processing of the data. We used three indicators, stunting, wasting and
underweight, as the trivariate response vector, where stunting refers to
stunted growth, measured as an insufficient height of a child with respect
to his or her age, while wasting and underweight refer to insufficient weight
for height and insufficient weight for age respectively. Hence stunting is an
indicator of chronic undernutrition, wasting reflects acute undernutrition
and underweight reflects both. Our aim is to model the joint distribution
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FIGURE 2. Estimated CDFs (top row) and rank correlation coefficients (bottom
row) given age of the child. For the rank correlation coefficient, the maximum like-
lihood estimates are shown as solid black line and the 95% bootstrap confidence
intervals as dashed black lines.

of stunting, wasting and underweight conditional on the age of the child.
Figure[2|(top row) depicts the estimated marginal conditional CDFs F} (Y |
age), with the different colours indicating the ages of the children. Clearly,
the shapes of the margins differ for the three indicators and change with the
increasing age of the children. A shift to the left in the margins representing
older ages indicates a higher risk of lower undernutrition scores. All of
the distributions, but especially those of wasting, are asymmetric, as with
increasing age the lower tails can be seen to vary less strongly than the
upper tails.

Figure (bottom row) depicts the conditional rank correlations p° between
stunting, wasting and underweight as functions of age along with the point
and interval estimates obtained from 1,000 parametrically drawn boot-
strap samples. Interestingly, the correlation between stunting and wasting
is initially negative for young children and then approaches zero with the
increasing age of the children.
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their correlations. Flexibility, in both the responses and covariates effects are
achieved using Bernstein polynomial basis. Based on MCTMs, in this paper per-
centile curves are constructed for each response. Simulation studies indicated the
good performance of these estimated condtional percentiles. Finally, MCTMs per-
centile curves were obtained for three diabetes markers (fasting plasma glucose,
glycated hemoglobin and fructosamine) condtionally on age.

Keywords: Diabetes; Multivariate regression ; Berstein basis; Multivariate
transformation models.

1 Introduction

Diabetes diagnosis and control are mainly based on two tests: fasting
plasma glucose (FPG) and glycated hemoglobin (HbAlc) concentrations.
However, conditions that determine alterations in hemoglobin metabolism
(anemia or kidney disease) can interfere with the reliability of HbAlc mea-
surements. On the other hand, FPG is highly dependent on food ingestion
and sample storage. Fructosamine (Fr), another glycated protein, is fre-
quently used as an alternative glycemic marker. Nevertheless, its transla-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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tion into average glucose levels is not as clear as for HbAlc and discordances
are often encountered between Fr and HbAlc results. In addition, agree-
ment among these glycemic markers may be affected by common factors
like the age of individuals.

Studying simultaneously these three glycemic markers concentrations de-
pending on age, may improve the diagnosis and treatment of diabetes. In
a previous work (Espasandin-Dominguez et al (2019)) bivariate copula re-
gression models were applied to identify factors that might affect the HbAlc
and Fr distributions and explain discordant results between both tests. In
this paper the FPG was included as an additional response variable thus
extending this work to the trivariate case. To this aim, Multivariate Condi-
tional Transformation Models (MCTMs; Klein et al, 2020) were considered.
These models characterize the covariates effects on the Cumulative Distri-
bution Functions (CDF) of each response and on their correlations. Also,
MCTMs allow us to obtain percentile curves for each biomarker facilitating
the interpretability to the practitioners.

The rest of the paper is structured as follows, the structure of MCTMs is
briefly explained in Section 2 and the percentile curves are obtained. In
Section 3 a simulation study is carried out to evaluate the percentile curves
performance. The results of our clinical study are presented in Section 4
and finally the paper ends with some conclusions.

2 MCTM percentile curves

The Multivariate Conditional Transforamtion Models (MCTM) are based
on the transformation of the original variable into a reference distribu-
tion (usually N(0,1)) applying an unknown, bijective and strictly mono-
tonically increasing transformation function. In the trivariate case, given
Y = (Y1, Ys,Y3), the transformation function A : R® — R3 maps the vector
Y to a set of independent and identically distributed random variables.
That is:

h(Y) = (hl(yl>),h2(Y2),h3(Y3))T = (Zl,ZQ, Z3)T =7 c R3

Finally, the variable Y dependence structure is characterised by a lower
triangular (3 x 3) matrix

1 0 0
A=)y 1 0
As1 Az 1

defined by the coefficients As1, A31 and A32 measuring the correlation be-
tween (Y1,Y2), (Y1,Y3) and (Y3, Y3) respectively.
In the conditional case, given the covariates vector & the multivariate trans-

formation function is given by h(y|x) = 5;11 Ny (@) Ry (y,|2) + hy(ys]z).
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Where h;(y;|z) and A;,(x) are expressed in terms of basis functions expan-
sions as:

hj(yile) = cj(ys, @) 95 = a;(y;)" 91 — b(x)"9;2
Ajg = agy + b(w)T')’jJ

where a and b are a polynomial Bernstein basis and (o, 9;;, 7v;,) para-
metric coeflicients whose estimation and inference is based on the model
log-likelihood. The inference of some quantities, as the responses correla-
tions, is achieved using parametric bootstrap (see Klein et al (2020) for
details).

In MCTM the conditional CDF for each response P(Y < yl|x) is given
by F(Y;|X = x) = ®,2(hi(y;l®)) = Fz(a;(y;) 91 — b(x)"9;2). In
order to make this model more interpretable the following percentile curves
Qy (1) = F71(Y;|X = z) with 7 € (0,1) may be obtained.

3 Simulation study

In this section we evaluate the percentile curves estimation. In the sim-
ulation set-up three continuous outcomes following a Dagum distribution
were considered. The Dagum scale parameters were made dependent on
one single covariate x € [—1,1] as by = 2, by = z and b3 = 2. The
trivariate response dependence structure was made dependent on x, using
the correlation matrix given in Klein et al 2020 (section 5). The evaluation
was done in 250 replicates considering three sample sizes (500, 1000, 5000)
and three 7 values (0.05, 0.50 and 0.95).

Percentile curves: first response Percentile curves: second response Percentile curves: third response

2
3

05 10 15 20 25 30 35 40
v:
¥:

10 15 20 25 30 35 40 45

FIGURE 1. Estimation of the percentile curves for 7 = 0.05,0.50,0.95 and
n = 500.

As can be seen in Figure [l the estimated percentile curves (in grey) are
very close to the theoretical ones (in red) for each marginal and 7. As
shown in Table 1, based on the root mean square error, the percentile
curves estimation error decreases with sample size for the three response
variables being higher for 7 = 0.05 and 7 = 0.95.
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TABLE 1. Root mean square error (RMSE) for the percentile curves estimation.
The RMSE was obtained in 200 equally spaced points of the percentile curves as

1 250 1 \200 73
25 i=1 200 2ok=1V (97, — vi)?-

Yy :a® Yo:x Ys @ a2
7=0.05|7=050|7=09 | 7=0.05|7=050|7=095|7=0.05|7=050|7=0.95
500 0.0019 0.0013 0.0045 0.0028 0.0010 0.0037 0.0042 0.0014 0.0046

2000 | 0.0018 0.0007 0.0028 0.0024 0.0006 0.0015 0.0036 0.0007 0.0020
5000 | 0.0018 0.0007 0.0025 0.0022 0.0006 0.0011 0.0035 0.0005 0.0015

4 Multivariate regression modelling of glycemic
markers

Using a sample of 1516 adults collected in the A-Estrada Glycation and
Inflamation study (see Espasandn et al, 2019 for details) a MCTM trivariate
regression model for the FPG, HbAlc and Fr concentrations depending on
age was fitted. The marginal conditional transformation functions were
parametrised as

B(yj|age) = aj(yj)Tﬁj’l — b(age)d; s for j € (FPG, HbAlc, Fr)

and the responses dependence structure as
Aj;(age) = b(age)T’Yij

Fasting Plasma Glucose

600 650 700

HbA1c, %

Fr, micromol/dL

100 150 200 250 00 350 400 450 500 550

© 22 26 3 34 3 42 46 50 54 58 62 65 70 74 78 82 88 %0 1822 26 30 3 38 42 45 50 54 5 62 66 70 74 78 82 8 % 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 72 82 80 %0
Age, years Age, years Age, years

FIGURE 2. Percentile curves for FPG (fasting plasma glucose), glycated
hemoglobin (HbAlc) and fructosamine (Fr) concentrations.

Figure[2] depicts the percentile curves for each glycemic markers with differ-
ent colour indicating several 7 value. The FPG, HbAlc and Fr concentra-
tions increase with age and this increase is more pronounced for the upper
percentile. Finally, as can be seen in Figure 3, the Fr and FPG association,
as well as the Fr and HbAlc one, is higher in the older patients. While
FPG and HbAlc show the higher association degree but it is not depend
on age.
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FIGURE 3. Age effect on the responses correlations along with the 95% pointwise
confidence interval using 1000 bootstrap replicates.

5 Discussion and future work

In this work we demonstrate the usefulness of MCTMs in a real biomedical
problem in diabetes research. These models allow for a joint estimation of
the covariates effects on the distribution of the responses and their correla-
tions. In this work, MCTMs percentile curves were proposed in order to get
a more interpretable model output. MCTMs allowed us to model jointly,
for the first time, the age effect on the concentrations of three glycemic
markers, offering a better understanding these diabetes markers measure-
ments.
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Abstract: This study presents statistical methods to probabilistically predict
wind profiles along the approach path of an airport for one hour in advance.
Accurate nowcasts of wind profiles increase safety and facilitate optimal air traf-
fic management by timely re-routing of landing aircraft when wind direction
shifts. Distributional regression trees and forests are enhanced to predict vertical
wind profiles employing a multivariate normal distribution. To gain probabilistic
forecasts for both wind speed and wind direction, the components of the two-
dimensional Cartesian wind vector are modeled simultaneously for several height
levels of a measurement tower. The resulting tree-based models can capture non-
linear effects and interactions, and automatically select the relevant covariates
that are associated with changes in any of the parameters of the (possibly) high-
dimensional multivariate normal distribution employed. Extending the multivari-
ate distributional regression trees to multivariate distributional regression forests
can further improve the predictive performance by regularizing and smoothing
the covariate effects.

Keywords: Distributional Trees; Random Forest; Multivariate Normal Distri-
bution; Wind Profiles; Probabilistic Forecasting

1 Motivation

Statistical forecasting of numerical weather quantities has so far focused
mainly on near-surface variables such as temperature, wind, and precipita-
tion, presumably because most people are directly affected there. Accord-
ingly, distributional regression trees and forests have already been success-
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fully applied for probabilistic rain and wind direction forecasting by ac-
counting for appropriate univariate response distributions (Schlosser et al.,
2019; Lang et al., 2020). The nowcasting task of providing vertical wind
profiles for aviation forecasters and air traffic control serves as a practical
real-case application to extend univariate distributional regression trees
and forest to multivariate response distributions.

2 Multivariate trees and forests

Distributional regression trees (Schlosser et al., 2019) fuse distributional
modeling with regression trees based on the unbiased recursive partition-
ing algorithms MOB (Zeileis et al., 2008) or CTree (Hothorn et al., 2006).
The basic idea is to recursively partition the covariate space into (approx-
imately) homogeneous subgroups, so that a single distributional model is
sufficient to be fitted to the response in each resulting subgroup. To capture
the dependence on covariates, the association between the model’s scores
and each available covariate is assessed using either a parameter instability
test (MOB) or a permutation test (CTree). After selecting the covariate
with the highest significant association as split variable (i.e., lowest signif-
icant p-value, if any), the corresponding split point is chosen within the
selected covariate either by optimizing the log-likelihood (MOB) or by us-
ing a two-sample test statistic (CTree) over all possible partitions. A nat-
ural extension of (distributional) regression trees is to build ensembles or
forests of such trees which can further improve the predictive performance
by regularizing and stabilizing the model (Breiman, 2001).

In comparison to preceding studies using distributional regression trees and
forests, this study employs distributional trees and forests for probabilis-
tic forecasting of a multivariate response distribution. Drawing on related
work for tree models of psychometric networks (Jones et al., 2019), a p-
dimensional multivariate normal distribution is employed in the leaves of
the trees; however, the introduced methodology is conceptually transfer-
able to any multivariate distribution. Based on the mean vector p and
variance-covariance matrix X, the density for a single p-dimensional obser-
vation vector y; is given by

1 1
Savn(yi p, X) = eXP<— Syi—w)' Sy —p )
P = e Sy ) = i - )
In the subsequent notation we collect all parameters in a single parameter
vector 0 of length k = p+p+p(p—1)/2. Thus, this comprises the p means
from p and the p variances and p(p — 1)/2 correlations, respectively, from
which the covariance 3 can be constructed.
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FIGURE 1. Fitted distributional regression tree based on the multivariate normal
distribution for the u and v wind components at five different height levels for a
measurement tower at Karlsruhe. In each terminal node, the location parameters
of the wind vectors at all height levels are shown as colored points and gray
arrows. The unit of the Cartesian coordinate system is in meter per second.
The covariates employed are numerical high-resolution forecasts (hres), as well
as 1-hourly lagged observations (obs) for wind speed (ff) and both wind vector
components (u or v), all reported at different height levels (160 m, 100 m, 200 m).
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FIGURE 2. Derived wind direction and wind speed prediction at different height
levels for a multivariate distributional tree and forest, as well as for an univariate
distributional tree estimated per wind component and height level separately.

The maximum likelihood estimator  is obtained by maximizing the sum of
the corresponding log-likelihood contributions ¢(0;y;) = log(fmvn(yi; 0))
based on the n observations in a given sample. The corresponding scores
5(0,y:) = (00, £(0;¥:),-..,00,.£(0;y;)) can be employed as a general good-
ness-of-fit measure. Hence, evaluating the scores at the individual observa-
tions and parameter estimates s(é, yi) yields an n X k matrix that assesses
how well each distribution parameter estimate  fits one individual observa-
tion vector y;. If the scores change systematically along available covariates,
the parameter instabilities are incorporated into the model by maximizing
a partitioned likelihood. This procedure is repeated recursively until there
are no significant parameter instabilities or until another stopping criterion
is met (e.g., subgroup size or tree depth).

3 Nowcasting of wind profiles

To study the performance of the novel multivariate trees and forests,
1h predictions of vertical wind profiles for 12 UTC are issued for a mea-
suring tower in Karlsruhe. The response has p = 10 dimensions, consisting
of zonal (u) and meridional (v) wind components at five different height
levels (40m, 60m, 80m, 160m, 200 m). Numerical weather forecasts and
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FIGURE 3. Out-of-sample predictive performance in terms of the logarithmic
score based on the full predictive multivariate normal distribution for 1 h forecasts
of the wind speed components at five different height levels of the measurement
tower. In addition, the averaged performance over all dates is shown in red.

1-hourly lagged observations of various meteorological wind quantities are
used as splitting variables, as well as derived quantities such as tempo-
ral means, minima, and maxima, or temporal and spatial differences. The
terminal nodes of the tree in Fig. [1| depict the location parameters for
the wind vectors at the different heights. Splits in the lagged observed u
and v components (at 200 m) broadly distinguish four different regimes of
wind directions: south-west (nodes 3, 4), south (nodes 8, 9), south-east
(node 10), and north east (nodes 13, 14, 15). Within each regime splits in
either lagged observed or predicted wind speed (ff), distinguishes low vs.
high wind speeds in the same (or rather similar) directions.

To validate the estimated scale and correlation of the multivariate trees,
these are compared to multivariate forests, as well as to a univariate dis-
tributional regression forest, employing the normal distribution, estimated
for each wind component and height level separately. In the latter no corre-
lation is assumed between the wind components at a single height level and
between different levels. For a characteristic sample case, all three models
capture the observed wind speed and direction comparably well (Fig. [2)).
The performance of the models, in terms of the logarithmic score, is as-
sessed employing a yearly based four-fold cross-validation using daily data
from 2014 to 2017 (Fig.|3). The box-and-whiskers show that the multivari-
ate models outperform the univariate one, which seems to be too restric-
tive by the assumption of no correlation. Further, the multivariate forest
is slightly superior to the multivariate tree by regularizing and smoothing
the covariate effects.

The results show that the multivariate trees and forests are able to model
all aspects contained in the univariate model, and further extend them by
representing the correlation structure between the wind components at a
single height level, as well as between the different levels. By fitting a single
multivariate model for both wind components and all height levels, the
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profile remains consistent and vertically coherent which allows to provide
not only deterministic but rather probabilistic forecasts.

Computational details: The R package disttree implementing the pro-
posed multivariate distributional regression trees and forests is available at
https://R-Forge.R-project.org/projects/partykit/.

Acknowledgments: This project was partly funded by the Austrian Re-
search Promotion Agency (FFG, grant no. 858537) and by the Austrian
Science Fund (FWF, grant no. P31836).
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Abstract: Spatio-temporal health data is now routinely available. Often when
time augments space, the focus is on modeling global spatio-temporal effects.
However, temporal effects are often localized spatially and so it could be impor-
tant to disaggregate these effects. This leads to spatial clustering of temporal
effects. Often this disaggregation is approached via latent mixture component
models. Extending this approach to multiple disease incidence is the focus of this
presentation. The specific example that is explored, and motivates the detailed
modeling, is incidence of mild cognitive impairment (MCI) and Alzheimers dis-
ease (AD). MCI is considered a pre-cursor of AD and so there is a temporal latent
link between these outcomes. Our models address latent component mixtures for
each disease but also coupled components shared between diseases. A case study
in annual county level incidence in South Carolina is presented.

Keywords: Bayesian; Multivariate; spatio-temporal; Machine learning; AD-MCI
modeling.

1 Background and Introduction

Alzheimer’s disease (AD) is a serious neurological disorder with adverse
effects on patient cognition and physical health. Moreover, compared to
other leading causes of death, mortality related to AD has increased in
recent years; from 2000 to 2015, AD has shown a 123% increase in mortality
in the US. Methods which are able to elucidate the role of precursors or
promoters on AD risk, and in particular the geographic variation in AD risk,
will therefore be instrumental in characterizing AD risk at the aggregate
patient level. To this end, we consider in this study the evaluation of novel
Bayesian hierarchical models for disease mapping which will improve our
ability to characterize AD risk. In particular, we consider an application

This paper was published as a part of the proceedings of the 35th Inter-
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of our novel models to spatiotemporal AD count data arising from the
counties of South Carolina, as well as to simulated data. Mild congnitive
impairment (MCI) is regarded as a precursor of AD and its spatial incidence
distribution can also be modeled. The link between MCI and AD may be
important in assessing progression and establishing trends in risk in both
diseases.

2 Disease Mapping models

In modeling counts of a disease collected over space and time, we can use
a BHM, wherein we often assume a Poisson model for the observed disease
counts y;; at the first level of the model hierarchy:

Yij ~ Pois(eijﬁij) 1= 1, ey N j = 1, ,J

where e;; denotes the expected count of the disease and 6;; the unknown
relative risk parameter of the disease for the area at the j th measurement
occasion.

We then model the unknown relative risk parameter, 6;;, at the second
level of the model hierarchy by decomposing the logarithm of the unknown
relative risk parameter into the sum of spatial random effects, v;, u;, tempo-
ral random effects, ;, and space-time interaction terms, 1;; (Knorr-Held,
2000; Lawson, 2018). That is,

log(GU) = —+ (7 —+ U; —+ ’)/j —+ 1,[}73

where g is an intercept term representing the baseline contribution to the
log relative risk parameter over all areas and measurement occasions.

2.1 Space-time mixture (STM) models

The classic Knorr-held model (ST BHM) is limited in that it assumes
‘global’ temporal random effects, v;. That is, while the ST BHM provides
estimates of the underlying smoothed spatial and temporal variation in
disease risk, it does not account for the possibility that subsets of the areas
may demonstrate homogenous temporal profiles in disease risk (Lawson et
al , 2010; Napier et al , 2019). We therefore desire a model which allows for
‘disaggregation’ of these global random effects — thus allowing us to classify
areas to descriptive latent temporal trends in disease risk.

2.2 Proposed Modeling Paradigm
We assume that both MCI and AD can be decomposed into temporal latent

components with a spatial signature. Hence we have

{ MCI Poz’s(eMCIHf‘fCI)

Yij )
yéD ~ Pois(ef}ﬁﬁg‘}D)
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and models for log(67”) and log(6}/°7). Different models can be assumed
that link the diseases.
In general, the latent structure is decomposed as follows:

L
log(Hij) =a+v+u-+ Z Aijl + wi]'
=1

with Zlel Aiji = Zlel wizxi; Where x;; is the [ th stochastic latent trend
and w; is a weight associating the trend to the ¢ th area. Originally
the components were assigned random walk prior distributions so that
xij ~ N(xij-1,7¢"). The weights can have a range of prior specifica-

tions, subject to 0 < w; < 1, and Zle wy; = 1. Commonly the weights

are assumed to have a Dirichlet - singular multinomial prior distribution

whereby w; ~ Mult (1, Pi > where p;; = Lp:’ and p}; ~ Gamma(l,1),
Lx1 Lx1 > ph

=1

but other alternatives exist (Lawson et al , 2010). Subsequently, user de-

fined parametric latent trend components f;(j| v ), where ¢; are a set of
qrl
regression parameters, have been used to aid identification and minimise

label switching (Napier et al, 2019).

AD-MCI modeling We utilise a non parametric non-linear measure of
association (maximum information coefficient: MIC) (Reshef et al, 2011;
Reshef et al 2016) to assess the degree of association between the AD and
MCIT risk within our models for the log risk. Hence,

L
log(egfc‘l) — a(J)WCI +¢£\401 + ZA%CI +w£\j40[
=1

log(ﬂf}D) = 0464D + cz)fD + sign(p)) I{MIC; > 5}Af-\f-l01
+ (1= I{MIC; > §}|BAP + 3P

Lycr L

AD
MCI  _ MCI AD  _ AD R
where A% = l; AT and B = l; ALY Also p; =
~MCI ~AD . . . P
corr(; ,0; ), the Pearson correlation of the relative risks. This is used
Jx1 Jx1

~MCI ~AD
to provide a direction for the MIC. The MIC; = MIC(6; ,0; ), for
Jx1 Jx1

a given region, is a time invariant non-parametric (potentially non-linear)
measure of association. This formulation allows there to be inclusion of links
to MCI components, for the AD risk, if the association is strong enough.
Variants of these models have also been examined with different association
patterns. Baer et al (2020) discuss these variants and also estimation is-
sues (such as label switching, MCMC implementation, and identification).
Nimble was used throughout for sampler construction and model fitting.
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2.3 Results

Data from the SC Revenue and Fiscal Affairs (RFA) all-payers health data
system is available for SC counties for the years 2007-2011. Both MCI
incident counts and AD incident counts are available for ER visits. Figure
displays the SIRs for these data. Mapping of the MIC values displays the
differential association depending on ¢. The latent profiles found for AD
and MCI are different, in that AD shows a cluster of increasing temporal
risk and fluctuating MCI risk with lower temporal change. A variety of
diagnostic plots based on the real data and simulations will be presented.

AD and MCI SIRs
South Carolina Counties, 2007-2011

FIGURE 1. Standardised Incidence Ratios for AD and MCI for 2007-2011 for SC
counties

Figure [2| displays the posterior mean temporal classes found for MCI and
AD under the three different models with different trend assumptions.
Model details can be found in Baer et al (2020).
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Abstract: We provide a gradient boosting approach to estimate functional ad-
ditive regression models with probability density functions as response variables
and scalar covariates. To respect the special properties of densities, we formu-
late the regression model in a Bayes Hilbert space. This allows for a variety of
applications, in particular for mixed densities, which have positive probability
masses at some points of an interval. We illustrate how to handle this challenge
by means of a motivating data set from the German Socio-Economic Panel Study
(SOEP). In this application, we analyze the distribution of the woman’s share in
a couple’s total labor income, which has positive probability masses at zero and
one, using covariate effects for year, federal state, and age of the youngest child.

Keywords: Functional Regression; Gradient Boosting; Bayes Hilbert Spaces;
Mixed Density Regression.

1 Introduction

We consider a special case of function-on-scalar regression (e.g., Brock-
haus et al., 2015), namely density-on-scalar regression, where the responses
are probability density functions and the covariates are scalar. Probability
density functions have the special properties of being nonnegative and inte-
grating to one, which are not preserved by the usual vector space structure
of functions. Instead, we consider densities as elements of Bayes Hilbert
spaces (Egozcue et al., 2006) and formulate our regression model using the
respective operations. For estimation, we present a gradient boosting al-
gorithm, which performs variable selection and allows for regularization,
as well as for a large number of covariate effects, which can be modularly
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and flexibly specified building on the model-based boosting framework of
Bithlmann and Hothorn (2007). We use our approach to analyze the distri-
bution of the woman’s share in a couple’s total labor income in Germany
over the years and in dependence of different covariates. While these den-
sities are defined on [0, 1], they have positive probability mass at values 0
and 1, corresponding to one partner without labor income. This leads to a
mixed reference measure, consisting of the Dirac measure at the boundary
values and the Lebesgue measure in between.

An earlier approach by Talskd et al. (2018) used Bayes Hilbert spaces for
density-on-scalar regression, applying the centered log-ratio transforma-
tion to simplify estimation. They considered only linear regression models
and only for densities defined on a finite interval and Lebesgue integrals.
Other approaches to handle densities in regression often include different
transformation approaches (e.g., Han et al., 2019), but only allow modeling
and estimation on the transformed level without embedding the densities
themselves in a vector space structure.

In Section 2, we provide a brief summary of Bayes Hilbert spaces. In Sec-
tion 3, we present our approach for density-on-scalar regression. Section 4
contains the application of our methods for a mixed reference measure to
the SOEP data.

2 Bayes Hilbert spaces

Bayes Hilbert spaces were first introduced for probability density func-
tions defined on a finite interval by Egozcue et al. (2006), motivated by
the approach of Aitchison (1986) for compositional data. We use the ex-
tension of Boogaart et al. (2014) to Bayes Hilbert spaces on finite mea-
sure spaces. Consider a measurable space (7,.4) and a finite measure u
on it. Let M(p) = M(T, A, 1) be the set of measures with the same
null sets as p. We identify each measure v € M(u) with its Radon-
Nikodym derivative with respect to p, denoted by f,. Proportionality
defines an equivalence relation on the set {f, | v € M(u)}. The corre-
sponding set of equivalence classes is called Bayes space (with reference
measure [1), denoted by B(u) = B(T, A, ). For the sake of readability
we refrain from using squared brackets to denote the equivalence classes
and simply write f, € B(u). If an equivalence class contains densities
with finite integral, we choose the respective probability density as rep-
resentative. Finally, the Bayes Hilbert space (with reference measure )
is B*(u) = BT, A, p) := {f, € B(p) | [ (log f,)? dp < oo}, Tt is a
vector space with addition f,, ® fu, = fu, * fuss fors frw € B2(p) and
scalar multiplication a ® f, = (f,)% «a € R,f, € B%(u). The addi-
tive neutral element Op2(,) is the equivalence class of constant functions,
the additive inverse element of f, € B%(u) is ©f, = f%’

tiplicative neutral element is 1 € R. Furthermore, B?(u) is a Hilbert

and the mul-
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space with the inner product (f,,, fu,)B2(n) := [7clr[fu,]-clr[f,,] dp. Here,
clr[fy] :=log f, — ﬁ - J;-1og f, dp is the centered log-ratio (clr) transfor-
mation. It is an isometric isomorphism, mapping functions from B2(p) to
L3(pu) = L3(T, A, ) == {f € L*(T, A,p) | [ fdu =0}, which is a closed
subspace of L?(x). The inner product induces a norm on B2(u) given by

”fu”B?(u) = <fuafV>B2(M .

3 Density-on-scalar regression

Let B?(u) = B?(T, A, 1) be a Bayes Hilbert space and (y;,x;) € B%(u) x
RX, K €N,i=1,...,N, N € N, be data pairs. Motivated by structured
additive regression models for function-on-scalar regression presented by
Brockhaus et al. (2015), we consider the model

yi = h(x;) ®e; = EDh x;) P €4,

where &; € B?*(u) are functional error terms with E(g;) = 0p2(,) and
h;i(x;) € B*(u),j = 1,...,J, J € N are partial effects of a subset of x;,
e.g., linear or smooth effects of one covariate, linear or smooth interaction
effects of several covariates or group-specific effects. Each effect is described
by a basis representation, which is the Kronecker product of two marginal
bases — one in direction of the covariates, e.g., B-splines for smooth ef-
fects or the observations themselves for linear effects, and one over T, e.g.,
transformed B-splines if p = X is the Lebesgue measure. A Ridge-type
penalty term can be included for regularization. A suitable penalty matrix
can be obtained from appropriate penalty matrices for the marginal bases
(Brockhaus et al., 2015), e.g., the identity matrix (corresponding to a Ridge
penalty) for linear effects or difference penalties for B-splines. Given these
basis representations, we estimate the functions using a gradient boosting
algorithm, where the empirical risk 4 Zf\;l llyi © h(x;) ”232(/0 is minimized
step-wise along the steepest gradient descent (with respect to the Fréchet
differential). We show that this is equivalent to a minimization of the L?-
distance for the corresponding clr transformed model and base our algo-
rithm on an extension of the one presented for functional data in Brockhaus
et al. (2015), which was modified for functional data from Biihlmann and
Hothorn (2007). Estimating the clr transformed model with this algorithm
requires an additional integration to zero constraint and an extension to
arbitrary finite measures. For mixed measures, we handle this using an
orthogonal decomposition into continuous and discrete components.

4 Application

We apply our method to a data set generated from the German Socio-
Economic Panel Study (SOEP) to analyze the distribution of the woman’s
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share in a couple’s total gross labor income in Germany. Based on 154,924
individually observed couples living together in one household, where at
least one partner has a labor income, we estimate 552 response densities of
the woman’s income share s — one for each combination of covariate val-
ues. The covariates are the region (one out of six) where a couple is living,
old_new indicating whether the region contains old or new federal states,
the child group, based on the age of the couple’s youngest minor child liv-
ing in its household (0-6/7—18/none), and the year of the observation,
ranging from 1984 to 2016. ‘New’ federal states are the ones, which be-
longed to the German Democratic Republic (East Germany) after World
War II and are only observed from 1991. The response densities of the
share, which have to be estimated, are defined on [0, 1] and have positive
probability mass at values 0 and 1, corresponding to one partner without
labor income. One exemplary barplot to confirm this statement is shown in
Figure [I} The outmost bars for s = 0 and s = 1 have width zero, the ones

frequency
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s: income share earned by the woman

FIGURE 1. Barplot of share frequency for region north-east and child group 1
(0—6 years) in 2013.

in between have width 0.01. Thus, we consider the densities as elements
of the Bayes Hilbert space B?(u) = B ([0, 1], B(o,1], i), where Bg 1) is the
Borel o-algebra restricted on the interval [0, 1] and the reference measure
is p := 0o + A + 01. Here, J, denotes the Dirac measure at x € {0,1} and
A the Lebesgue measure (on By ;7). For the response densities, we obtain
the boundary values as the relative frequencies for s = 0 or s = 1. The
density values in between are estimated using kernel density estimation
and multiplying it by the relative frequency for s € (0, 1).

We estimate a model with an intercept, group-specific intercepts for the
categorical covariates old_new, region, and child group, a smooth effect
of the year and several interaction effects. The region effects are centered
around the corresponding old_new effect for identifiability. The estimated
effects can be interpreted in different ways, e.g., similar to log odds ratios,
corresponding to differences on clr transformed level, or by examining ce-
teris paribus predictions on density level. We illustrate some results of our
analysis in this way in Figures [2| and [3]| Horizontal dashes at 0 and 1 cor-
respond to the proportions of couples with no or all labor income earned
by the woman, respectively. Note that all regions containing old and all
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regions containing new federal states each show a strong similarity. Thus,
we didn’t include the effects for the regions in the discussion and focus on
the coarser spatial effect old_new instead.

Old federal states New federal states

2 2 u
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s: income share earned by the woman
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FIGURE 2. Predicted densities for old (left) and new (right) federal states.

Figure [2| shows the predictions for old vs. new federal states over the years.
Both parts of Germany show a decrease of women without labor income,
i.e., s = 0, over time. In contrast, for s = 1 corresponding to women who
are the sole earner there is a (clearly weaker) increase overall. However,
for the new federal states the maximal value is reached in the early 2000s
with a slight decrease afterwards. The level of expected density values at
s = 0 is smaller for the new federal states than for old federal states (and
slightly larger for s = 1). This might derive from the socialist form of gov-
ernment in the German Democratic Republic, where it was more common
that women were working compared to the Federal Republic of Germany.
For dual-earner households, i.e., s € (0,1), we find considerably different
distributions in the two parts of Germany. For old federal states, the main
part of probability mass is spread in the area of small shares of the couple’s
labor income (ca. 0.1-0.5) with local maxima reached at about 0.1 or 0.35
depending on the year. In contrast, for new federal states, the predicted
densities are closer to symmetric with all of them reaching their maximum
at about 0.45. Regarding the development over the years, we see an increase
for all s € (0,1) for the old federal states, while the new federal states only
show an increase for small and large shares (s < 0.3 or s > 0.5) and tend
to decrease for intermediate shares.

In Figure[3] the predicted densities for the three child groups are illustrated.
Unsurprisingly, the expected proportion of women without labor income is
a lot higher for couples whose youngest child is at most six years old com-
pared to couples with older or without children while the proportion of
women being the sole earner is the highest for couples without minor chil-
dren. For s € (0,1) the shapes of the expected densities for child groups 1
and 2 are similar to each other — with the density values for child group 2
being about 1.6 times the respective values for child group 1 — and to the
predicted densities for old federal states, see Figure 2] Overall, we expect
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FIGURE 3. Predicted densities for the three child groups.

more dual-earner couples in child group 2 than in child group 1. The shape
of the expected density for child group 3 is more alike the densities for new
federal states. Le., for couples without (minor) children the main part of
the probability mass is shifted towards higher income shares compared to
couples with minor children.
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Abstract: Circular data, i.e., data consisting of observations on the unit cir-
cle, can be found across many areas of science, for instance meteorology (wind
directions), biology (animal movement directions), or medicine. The special na-
ture of such data means that conventional methods for non-periodic data are
no longer valid. As a consequence the analysis of such data is more challenging
and the literature scarcer. In this paper, we introduce a spatial model for circu-
lar data that allows for non-stationarity in the mean and covariance structure
of random fields. For this, we use the computationally efficient stochastic par-
tial differential equation approach. Moreover, we develop tunable hyper-priors,
inspired by the penalized complexity prior framework, that shrink the model to-
wards a base model with stationary covariance function. The performance of the
proposed model is analyzed in detail in a simulation study, with a strong focus
on the properties of hyper-priors considered. Finally, we evaluate the ability of
our approach to estimate wind-directions during a wind storm in Germany.

Keywords: circular data; Markov chain Monte Carlo; penalized complexity pri-
ors; stochastic partial differential equations; wind direction.

1 Introduction

Environmental and geophysical processes, such as surface winds or waves,
are characterized by spatial variability. However, these data is of a periodic
nature and, due to the circular geometry of the sample space, it requires
reassessing typical spatial models for non-periodic data. Statistical litera-
ture on circular data spans as far as the 1970’s, but it was only in the early
2010’s that spatial modelling of circular data really took off. Jona-Lasinio,

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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et al. (2012) anticipated structured spatial dependence in such data types
and brought typical distributions for circular data, such as the wrapped
Gaussian distribution, to the realm of spatial statistics. Nonetheless, circu-
lar data models are still behind on the latest advances in spatial statistics.
In this paper, we try to cover part of this gap and propose a computation-
ally efficient model for spatial circular data, that allows for non-stationary
in mean and covariance structure of the responses. In what follows, we will
first shortly introduce our spatial model, and meet paths along the way
and introduce the basic concepts on how to wrap data on the unit circle,
thus entering the circular data domain. We present the main simulation
results in Section[4 In Section [f| we will apply our model to studying wind
direction during a wind storm in Germany. To conclude, we discuss the
main findings of the paper.

2 The model

Let s denote a spatial index variable representing the location of a obser-
vation Y'(s) within a spatial domain & C R% Let Z(s) be a total of B
spatially indexed covariates where, for convenience, Z(s) includes a 1, and
has an associated coefficient vector 3 = (S, ..., 8g)’. Then, we obtain

Y(s)=Z(s)'B+(s) +e(s),

where 7(s) is a zero-mean GRF and (s) is a 4.7.d. non-spatial error.

As GRFs are vulnerable to “the big n problem”, a issue that renders the
resulting model inappropriate for large datasets or for more complex spatial
dependence structures, we instead use a recent approach in spatial statistics
that replaces the GRF by an empirical equivalent Gaussian Markov random
field (GMRF) during computations. This way, we exploit the sparseness of
the precision Q of the GMRF. Hence, we take the best of two words: the
good theoretical properties of GRFs and the good computational properties
of GMRFs. The link between the two is achieved via the SPDE (Lindgren
et al., 2011),

(K2 = A2 (1y(s)) =W(s), se€R® a,=v+1, v>0,

where A is the Laplacian, WV is a Gaussian spatial white noise innovation
process, 7 > 0 is a precision parameter and x > 0 controls the spatial
range. The solution 7(s) of the resulting SPDE is a stationary GRF with
Matérn covariance function. Under the finite element representation used
to solve the SPDE, we get v ~ N(0,Q(r, k)™ 1).

In the SPDE-approach, non-stationarity in the covariance of the GRF can
be attained by allowing the parameters of the SPDE to be spatially varying
functions. Here, we consider

log(T) = 6] and log(x(s)) = 0f + Z"(s)'0%,
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where 6% = (0f,0%) and 6] are the model’s hyper-parameters, and Z"
is a matrix of the relevant covariates inducing the spatial dependence. As
r affects both the marginal variance and range of the GRF, with this
parameterization we make both non-stationary. The parameters 6§ and
0f represent the stationary covariance specification of the model and have
proper uniform priors. We choose a Gaussian prior N (0, £2I) for Z%(s)' 6%,
where the prior for £2 is constructed such that it penalizes non-stationarity
in the covariance function; i.e., it shrinks towards the stationarity GRF
case (see Section [3)).

Finally, we need to bring the model into the circular data domain. The
wrapped Gaussian distribution for circular data takes the linear variable,
Y(s) € R, for all s € S, and wraps it around the unit circle. The result is a
circular, or wrapped, variable X (s) € [0,27); i.e, X(s) = Y (s) mod 27 €
[0, 27). This can be re-written as Y (s) = v(s) = X (s) + 2w K (s), where the
winding number, K(s) € Z, measures the number of “turns” around the
unit circle. This strategy allows one to adopt popular distributions for non-
periodic data and simply wrap them around the unit circle. Consequently, if
we assume Y (s) has a Gaussian distribution, X (s) has a wrapped Gaussian
distribution.

3 The penalized complexity prior

We follow a Bayesian approach and develop a penalized complexity (PC)
prior for the hyper-parameters 8% of the model (Simpson et al. (2017)). In
this setting, we define a model with stationary covariance as the base model.
Hence, the prior will favor a stationary GRF unless the data indicates
otherwise.

Consider a flat prior for ] and 65 and let 8% ~ N(0,&%I). One can show
that if the base model is such that ¢2 — 0 and the prior is constructed
according the PC-prior principles, then £2 has a Weibull prior with shape
1 and scale A, i.e., &% ~ Weibull(3, \) (Klein and Kneib, 2016). We choose

2
A using a user-defined approach based on the probability statement

P (maxges | Z"(s)'05 < ¢) > 1—q,

i.e., we model the probability that the maximum norm of the non-stationary
effect is smaller than a pre-specified level and determine the distribution
of the maximum based on simulations from the prior p(Z"(s,,) 0%[£2).

By design, the choice of ¢ and « is an ad-hoc, problem specific, choice.
Nonetheless, on practical terms, it is possible to restrict the values x can
take. Namely, as long as the minimum range of the non-stationary compo-
nent is large enough; i.e., it really reflects spatial dependence, it should be
possible to derive such a general bound. We investigate this in Section
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FIGURE 1. Posterior mean of 67 for data generated with stationary covariance
function, i.e, true value is zero.

4 Simulation Study

Consider standardized covariates, Z and Z", and S C [0,1] x [0, 1]. During
simulations, we identified two important scenarios where a PC-prior out-
performs typical priors used for variance parameters, e.g., inverse gamma
prior with scale and shape in {0.001,0.01}, or uniform priors. Namely:

1. A PC-prior prevents overfitting: this is clear in Figure |1} where
we generate data with a stationary covariance function.

2. A PC-prior improves estimation for complex spatial depen-
dence structures: the PC-prior, in general, reaches both the low-
est root mean squared error (RMSE) for the posterior mean of the
centered GRF and lower dispersion. This is particularly evident for
scenarios with non-stationary behavior in the covariance function at
the boundary of the domain.

When it comes to selecting ¢ and «, the combination of @ = 0.01 with a
¢ up to twice as large as the true maximum performs reasonably well. A
general bound ¢ = 2 works well for @ = 0.01. A more generalized approach
could comprise a rescaling of ¢ = 2 to new domain dimensions, keeping
a = 0.01. This gives us some flexibility when setting up PC-priors on a real
dataset for which we do not know c¢. We use this in Section

5 German wind direction data

In Germany, wind direction is characterized by predominant westerly
winds, coming from the Atlantic Ocean and entering Germany through
France. On the eastern side, wind is generated in the Caucasus, entering
Germany through Poland and the Czech Republic. Both winds collide in
the northern tip of Germany. The wrapped Gaussian distribution is uni-
modal and, consequently, we need to avoid situations in which over a large
region, at a given time, a storm is rotating or two different weather systems
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TABLE 1. CRPS for the two models considered.

Model v=1 v=1.5
full stationary 0.204 0.240
full non-stationary  0.064 0.069

are meeting. Given this, we select data from the wind storm of September
30, 2019, which is characterized by predominantly eastern winds.

Model performance is evaluated using the circular continuous ranked prob-
ability score:

1
CRPS ire(P, X) = E{acrps(z, X)} — §E{QCRPS(x; ™)},

where acgrps represents the cosine distance, P is a forecast distribution
on the circle, z and z* are independent copies of a circular random vari-
able with distribution P and X is the verifying direction. The results are
expressed in units of angular distance, with a maximum allowed of .

In our analysis, we consider the following covariates, Z, and Z: maximum
wind speed, altitude, average air temperature at 5 meters height, average
air pressure at 10 meters height, longitude, latitude, an indicator for being
at the northern German tip (state of Schleswig-Holstein) and an indicator
for being close to the French border.

For the analysis, we randomly select a holdout set of data consisting of
20% of the locations and use the remaining 80% as training data. Here, we
present the results for two models:

1. Full stationary: Z =7, = 0.

2. Full non-stationary: Z includes all covariates and Z, includes all
but the indicator variables.

Results show that the full non-stationary wrapped Gaussian spatial re-
sponse model can approximate the true wind directions quite closely. This
can be confirmed in Figure[2] for the test data considered. Additionally, we
tested the results for v € {0.5,0.75,1,1.25,1.5,1.75}. In Table we show
the CRPS for the best performing models. The CRPS values attained are
quite low.

6 Discussion

The developed model improves results over ordinary stationary GRF meth-
ods for modeling spatially wind direction data. Such interpolation proper-
ties for wind direction could serve as an input for other modeling tasks
in the analysis of climate variables, which, in combination with the use of
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FIGURE 2. True and estimated mean wind directions for v = 1 for the test data.

sparse spatial precision matrices, would have great potential in the gen-
eration of efficient models for large scale datasets for meteorological data.
The mere use of a reasonable number of interpretable covariates with un-
derstandable physical properties makes the model more intuitive and ap-
plicable by a broad range of researchers, in a wide spectrum of areas.
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Abstract: We investigate the hot hand phenomenon in basketball using data
on 110,513 free throws. As these occur at unevenly spaced time points within
a game, we formulate a continuous-time state-space model to relate the actual
throwing performance to the latent underlying form of a player. Our results reveal
serial correlation in the latent throwing success probability, thus supporting the
existence of a hot hand effect.
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1 Introduction

The existence of a hot hand effect, according to which sports athletes may
temporarily enter a state during which they perform better than on average,
is a much-debated topic among sports commentators, fans, and journalists.
In the academic literature, the hot hand has gained great interest since the
seminal paper by Gilovich et al. (1985), in which the hot hand effect was dis-
missed as a cognitive illusion. Driven by the increased accessibility of large
sports data sets, there is an ever-growing body of research investigating
the existence of the hot hand effect, yet the evidence remains inconclusive
(see Bar-Eli et al., 2006, for a review). Moreover, there is no universally
accepted definition as to what exactly constitutes a hot hand effect: while
some people regard it as serial correlation in outcomes (see, e.g., Miller and
Sanjurjo, 2018), others consider it as serial correlation in success probabil-
ities (see, e.g., tting et al., 2020). The latter definition translates into a
latent (state) process underlying the observed performance — intuitively

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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speaking, a measure for a player’s “hotness” — which can be elevated with-
out the player necessarily making every shot. As shots, or similar events in
sports with game clocks, usually occur at points that are unevenly spaced
in time, modelling such events requires a continuous-time approach. We
thus develop a state-space model in continuous time to investigate the hot
hand effect for free throws in basketball.

2 Data

We extracted data on more than 9,000 basketball games in the NBA for
all seasons and playoffs between October 2013 and June 2019 from https:
//wuw.basketball-reference.com/. For our analysis, we only consider
data on free throw attempts as these constitute highly standardised set-
tings without any interaction between players, which is usually hard to
account for when modelling field goals in basketball. In our analysis, we
include all players who took at least 2,000 free throws in the period consid-
ered, totalling in 110,513 free throws from 44 players. There is considerable
heterogeneity in the players’ throwing success, with the corresponding em-
pirical proportions for making a free throw ranging from 45.1% to 90.6%.
As free throws occur irregularly within a basketball game, the information
on whether an attempt was successful needs to be supplemented by its time
t, corresponding to the time already played in minutes. For each player p
in his n-th game, we thus observe an irregular sequence of binary variables
{a}"" }>0, with

oo 1 if free throw attempt at time ¢ is successful;
€T =
K 0 otherwise.

Therefore, the sequential data we model looks as follows:

b 1 1 1 0 1 1 1 1
t: 8.55 855 1033 10.33 19.64 24.97 2497 2497

These example data, from one match played by James Harden, illustrate
that free throw attempts often appear in clusters of 2 or 3 attempts at the
same time (depending on the foul), followed by a time period without any
free throws. Therefore, it is important to take into account the different
lengths of the time intervals between consecutive attempts, which is why
we formulate our model in continuous time.

3 Model formulation and estimation

Following the idea that the observed throwing success depends on a player’s

current (latent) form, we model the observed free throw attempts z2"" using

a state-space model formulation with a binary response. The associated
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predictor on the logit scale comprises information on the player’s average
throwing success as well as his current state s — additional explanatory
variables can easily be added (see below). Dropping the superscripts p and
n for notational simplicity, we hence have

x¢ ~ Bern(my), logit(m) = oy + s¢, (1)

where o, is a player-specific intercept and s; is the underlying latent
state, which can be interpreted as the player’s current form (or “hotness”).
The stochastic process {s;};>0, which is formulated in continuous time to
address the temporal irregularity of the observation times, ought to be
continuous-valued to allow for gradual changes in a player’s form, and sta-
tionary such that in the long run it returns to the average form. The natural
candidate for a corresponding stationary, continuous-time and continuous-
valued stochastic process is the Ornstein-Uhlenbeck (OU) process,

dsy = —Bsidt + odWy,

where 8 > 0 is the drift parameter indicating the strength of reversion to
the long-term mean 0, ¢ > 0 controls the strength of fluctuations, and W;
denotes the Wiener process. Since we model the hot hand effect as a serial
correlation in success probabilities, our main parameter of interest is the
drift parameter 5 governing the speed of reversion (to the average form).
The smaller 3, the longer it takes for the OU process to return to its mean
and thus the higher the serial correlation.

As the model’s likelihood involves intractable integration over all possible
realisations of the continuous-valued s;, at each observation time, we ap-
proximate the integral by finely discretising the state space. This approxi-
mation can be seen as a reframing of the model as a continuous-time hidden
Markov model with a large but finite number of states, enabling us to ap-
ply the corresponding efficient algorithms. In particular, we use the forward
algorithm to calculate the likelihood, making use of the limiting distribu-
tion as well as the conditional distribution of the OU process to compute
the initial state probabilities as well as the state transition probabilities.
The model parameters are then estimated by numerically maximising the
(approximate) joint likelihood over all games and all players.

4 Preliminary results

To investigate any potential hot hand effect for sequences of free throws, we
fit two models to the data. First, we consider a benchmark model (Model 1)
without any hot hand effect, i.e. a model without the underlying state pro-
cess s; in Equation and as such, without any serial dependence. The
second model (Model 2) includes the underlying state process as described
in Section [3] Besides the player-specific intercepts, in both models we con-
trol for additional covariates in the linear predictor in Equation which
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may affect the players’ throwing success (namely the current score differ-
ence, a home vs. away dummy, a dummy indicating whether the free throw
occurred in the last 30 seconds of the quarter, and dummies indicating if
it was the second or third throw in a row).

Model 2, i.e. the formulation including a potential hot hand effect, is clearly
favoured over Model 1 (ABIC = 41.97). The estimated parameters of the
OU process for Model 2 are 3 = 0.042 (95% CI [0.016;0.109]) and & = 0.101
(95% CI [0.055;0.185]), respectively. The estimated drift parameter j is
fairly small, indicating serial correlation of the state process over time, and
thus providing evidence for a hot hand effect. This is highlighted also by
simulated state trajectories based on the fitted model (Figure [I)).
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FIGURE 1. Simulation of possible state trajectories for the length of an NBA
game based on the estimated parameters of the OU process. The red dashed
line indicates the intercept (here: the median throwing success over all players),
around which the processes fluctuate. The right y-axis shows the success proba-
bilities resulting from the current state (left y-axis).
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1 Introduction

There is a growing interest in the last years to deal with data that is only
partially registered or underreported in the time series literature (Fernndez-
Fontelo et al. (2016)). This phenomenon is very common in many fields, and
has been previously explored by different approaches in epidemiology, social
and biomedical research among many other contexts. Many approaches to
deal with underreported data have been suggested with a growing level of
sophistication from the usage of multiplication factors to spatio-temporal
modelling.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model definition and properties

Consider an unobservable process with an AutoRegressive Moving Average
(ARMA) structure defined by

Xt :alXt,1 + ...+OépXt7p+916t71 +...+ (1)

+9q€t7q + €t,
where ¢ is a white noise process with ¢; ~ N(pe,0?). In our setting, this
process cannot be directly observed, and all we can see is a part of it,
expressed as

(2)

The interpretation of the parameters in Eq. is straightforward: ¢ is the
intensity of misreporting (if 0 < g < 1 the observed process Y; would be un-
derreported while if ¢ > 1 the observed process Y; would be overreported).
The parameter w can be interpreted as the frequency of misreporting (pro-
portion of misreported observations).

If the unobserved process X; follows an ARM A(p,q) model as defined in
Eq. , the observed process has mean E(Y;) = ﬁ l-w+q-w)

. _ (g (03 +..+60) u? 2

and variance V(Y;) = (( R S ) + (1—a1—.’___%)2) (4w (¢®—

1)) — (1—a1—#7)2 (1 —w+ q-w)?. The autocorrelation function of the

T Qp

v, — X; with probability 1 —w
"7 ¢- X, with probability w

observed process can be written in terms of the properties of the hidden
process X; as

py (k) =

V(X4)px (k)-(1-w+q-w)? — (3)
(V(X)+E(X1)?)-(1+w-(¢*—1)) = B(X¢)* (1—wtqw)* ™

:C(Oél,...70[;,,01,...,9(1,/146,0'62,0.),(])'pX(k),

where px is the autocorrelation function of the unobserved process X;.
The likelihood function of the observed process Y; is not directly obtainable
but the parameters of the model can be estimated by means of an iterative
algorithm based on its marginal distribution, using R packages miztools
(Benaglia et al. (2009)) and forecast (Hyndman et al. (2008)). The main
steps are described in detail below:

(i) Following Eq. (2)), the observed process Y; can be written as Y; =
(1-2Z;)-Xe+q- Zy- Xy, where Z; is an indicator of the underreported
observations, following a Bernoulli distribution with probability of
success w (Z; ~ Bern(w)), its marginal distribution is a mixture of
two normal random variables NV (,u, 02) and N (q TN 02) respec-

2. (140%4...+062 .
T He and o2 = <4014 407) O+ +2T). This fact
—Qp—...—Qy lfalf.‘.fap

can be used to obtain initial estimates for ¢ and w. Using the E-M
algorithm (specifically on the E-step), the package miztools calculates

tively, where p =
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the posterior probabilities (conditional on the data and the obtained
estimates) of each observation to come from one of these two normals.

(ii) Using the indicator Z, obtained in the previous step, the series is di-
vided in two: One including the underreported observations (treating
the non-underreported values as missing data) and another with the
non underreported observations (treating the underreported values
as missing data). An ARITM A model is fitted to each of these two
series and a new ¢ is obtained by dividing the fitted means.

(iii) A mixture of two normals is fitted to the observed series Y; with mean
and standard deviation fixed to the corresponding values obtained
from the previous step, and a new w is estimated.

(iv) Steps (ii) and (iii) are repeated until the quadratic distance between
two consecutive iterations (§; — Gi—1)? + (&; — @;—1)% + >o(dy, —
@i )44+ >, (0, — Ok, ,)? is below a fixed tolerance level.

(v) Once the parameter estimates are stable according to the previous
criterion, the underlying process X; is reconstructed as X; = (1-2,)-
Y: + % - Zy - Yy, and an ARIM A model is fitted to the reconstructed

process to obtain &;, j =1,...,p, ék, k=1,...,r and ¢.°%.

To account for potential trends or seasonal behaviour, covariates can be
included in the described estimation process. Additionally, a parametric
bootstrap procedure with 1000 replicates is used to estimate standard errors
and build confidence intervals based on the percentiles of the distribution
of the estimates.

3 Results

3.1 Simulation study

A thorough simulation study has been conducted to ensure that the model
behaves as expected in several situations, including AR(1), M A(1) and
ARMA(1,1) structures for the hidden process X; with values for the pa-
rameters «, 0, ¢ and w ranging from 0.1 to 0.9 for each parameter. For each
autocorrelation structure and parameters combination, a random sample
of size n = 1000 has been generated using the function arima.sim from R
package forecast. Absolute average bias is similar regardless of the sample
size, while average interval lengths (AIL) are higher and interval cover-
ages are poorer (around 75% for n = 50) for lower sample sizes as could
be expected. The average absolute bias, interval coverage and 95% confi-
dence interval length are reported in Table [T These values are averaged
over all combinations of parameters. Additionally, standard AR(1), M A(1)
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TABLE 1. Model performance measures (average absolute bias, average interval
length and average coverage) summary based on a simulation study.

Structure Parameter  Bias AIL Coverage (%)

é 0.003  0.099 94.92%

AR(1) g <1073 <1073 95.47%

o 20.001  0.052 92.46%

Standard & 0.501 0.124 0.69%
AR(1)

0 <1073 0.117 94.38%

MA(1) g <1073 <1073 94.38%

9 <1073 0.052 93.28%

Standard 0 0.502  0.124 1.10%
MA(1)

& 0.002  0.165 96.02%

ARMA(L, 1) 9 0.00773 0.210 96.56%

g <10 0.002 94.56%

9 <1073 0.059 93.22%

Standard é 0.456  3.558 59.08%

ARMA(1,1) 4 0.579  3.496 56.00%

and ARM A(1,1) models were fitted to the same simulated series without
accounting for their underreporting structure.

It is clear from Table |1 that ignoring the underreported nature of data
(labeled as Standard models in the table) leads to highly biased estimates
with extremely low coverage rates, even with larger average interval lengths.
This is especially relevant when the intensity or frequency of underreported
observations is high.

3.2 COVID-19 incidence in the region of Heilongjiang

SARS-CoV-2 is a betacoronavirus that affects the lower respiratory tract
and often manifests as pneumonia in humans which was identified as the
causative agent of an unprecedented outbreak of pneumonia in Wuhan
City, Hubei province in China starting in December 2019. Considering that
many cases run without developing symptoms beyond those of MERS-CoV,
SARS-CoV or pneumonia due to other causes, it is reasonable to assume
that the incidence of this disease has been underregistered, especially at
the beginning of the outbreak (Zhao et al. (2009)).

Heilongjiang is a province in north-east China. Although in general the
behavior of this kind of diseases is far from being stationary, this province
is far enough from the focus in Hubei province (south central China) so the
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incidence is much lower and less explosive, and in the study period of time
(2020/01/22-2020/02/26) it can be considered stationary, as can be seen
in Figure [2| which shows registered and estimated evolution of COVID-19
incidence within the considered period of time.

A disease with a similar behavior (MERS-CoV) was modeled as an
ARM A(3,1) in Alkhamis et al. (2019), so we checked this model and sim-
ilar ones. However, in our case the best performing model was an M A(1)
(AIC of -151.31 against -148.82 for the ARM A(3,1)), consistently with the
residuals profile shown in Figure [l obtained from fitting an M A(1) model
to the most likely process X; reconstructed as described before.

i \|
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FIGURE 1. Residuals analysis of the residuals from an M A(1) model.

By means of the described estimation method, it can be seen that the
estimated model for the hidden process is X; = 0.481 - €;_1 + €, being the
observed process Y7,

(4)

X with probability 0.507
"7 0.195- X, with probability 0.493

The estimated parameters are reported in Table

Parameter Bootstrap mean Bootstrap SE

0 0.481 0.179
@ 0.493 0.168
g 0.195 0.089

TABLE 2. Bootstrap means and standard errors of the proposed model.

Acknowledgments: David Morina acknowledges financial support from
the Spanish Ministry of Economy and Competitiveness, through the Maria



Morina et al. 174

COVID-19 incidence (x 100,000 individuals)

000 002 004 006 008 010 0.12

2020-01-22  2020-01-26  2020-01-30 2020-02-03 2020-02-07 2020-02-11 2020-02-15 20200219  2020-02-23

Time

Registered
Estimated

FIGURE 2. Registered and estimated COVID-19 incidence in the region of Hei-
longjiang in the period 2020/01,/22-2020/02/26.
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Abstract: We propose a modelling framework for dealing with a large amount of
covariates in hidden Markov models (HMMs) by considering a LASSO penalty.
This modelling framework is, for example, useful in sports for analysing a poten-
tial hot hand effect, as several existing studies on the hot hand consider HMMs.
However, with most studies analysing data from basketball or baseball, there
are several confounding factors which have to be taken into account, leading to
a potential large number of covariates. Hence, in those settings regularisation
methods are suitable to allow for implicit variable selection. As a case study we
investigate a potential “hot shoe” effect among penalty-takers.

Keywords: hidden Markov model; LASSO; hot hand; sports analytics; football.

1 Introduction

An often discussed phenomenon in different sports is the “hot hand”, mean-
ing that players may enter a state where they experience extraordinary
success. This phenomenon is also discussed in the media, where commen-
tators and journalists — e.g. in football — commonly refer to players as
being “on fire” when they score in consecutive matches. Academic research
on the hot hand started by Gilovich et al. (1985). In their seminal paper,
they analysed basketball free-throw data and found no evidence for the hot
hand, arguing that people tend to belief in the hot hand due to memory
bias.

More recent studies challenge the findings of Gilovich et al. (1985), often by
analysing data from basketball or baseball with regard to a hot hand effect.
In addition, these studies often consider hidden Markov models (HMMs),
which constitute a natural modelling approach for the hot hand as they ac-
commodate the idea that players potentially may enter a state where they

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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experience extraordinary success. However, when modelling a potential hot
hand effect, there is hardly any sport where no potential confounding fac-
tors exist, such as weather conditions in baseball or the performance of
opponents in basketball. Accounting for those factors leads to a large num-
ber of covariates, and often multicollinearity issues occur, making model
fitting and interpretation of parameters difficult. To tackle these problems
and to obtain sparse and interpretable models, we propose to conduct vari-
able selection in HMMs by considering a LASSO penalisation approach
(see Tibshirani, 1996).

The performance of LASSO-HMMs is first investigated in a simulation
study. As a case study, we investigate a potential “hot shoe” effect of
penalty takers in the German Bundesliga (n = 3,482 penalties). Figure
shows all penalties taken by Bayern Munich’s attacker Gerd Miiller, indi-
cating that there are periods (e.g. between 1975 and 1976) where he scored
several penalties in a row, but also periods (e.g. around 1971) where he
missed a few consecutive penalties.

|
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FIGURE 1. Penalty history over time of the player Gerd Miiller for the time
period from 1964 until 1979 (successful penalties in yellow, failures in black).

2 Methods

In HMMs, the observations y; are assumed to be driven by an underlying
state process s, in a sense that the y; are generated by one of N distribu-
tions according to the Markov chain. In our application, the state process
s¢ serves for the underlying varying form of a player. State switching is
modelled by the transition probability matrix (t.p.m.) I' = (v;;), with
vij = Pr(s¢ = jlsg—1 = 1), 4,7 = 1,..., N. We further allow for additional
covariates at time ¢, @ = (z1,...,TK¢)", each of which assumed to have
the same effect in each state, whereas the intercept is assumed to vary
across the states, leading to the following linear state-dependent predictor:

ngsn _ ﬂ(()st) + Bzt + ...+ BuTre-

For our response variable y;, indicating whether the penalty attempt ¢
was successful or not, we assume y; ~ Bern(wt(st)) and link ﬂt(s”) to our
state-dependent linear predictor nt(st) using the logit link function, i.e.
logit(ﬂ't(st)) = nﬁst). Defining an N x N diagonal matrix P(y;) with i—
th diagonal element being equal to Pr(y:|s; = i), and assuming that the
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initial distribution § of a player is equal to the stationary distribution, i.e.
the solution to I'd = § subject to ZZI\; 6; = 1, the likelihood for a single
player p is given by

L;D(a) = (SP(ypl)FP(yzﬂ) cee FP(ypr)]- )

with vector @ = (711,712, s V1IN, - - - ,”YNN,ﬂ(()l), cee (()N), Biy-ey Br)*
collecting all unknown parameters, and column vector 1 = (1,...,1)" € RV
(see Zucchini et al., 2016). To obtain the likelihood for the complete data
set, i.e. for multiple players, we assume independence between the obser-
vations of different players (here: p = 310), so that the likelihood is given
by the product of the individual likelihoods:

310 310
L(a) = H Ly(a) = H 0P (yp1)TP(yp2) ... TP (ypr,)1.

Parameter estimation is done by maximising the likelihood numerically us-
ing n1m() in R. However, considering a large amount of covariates leads to
a rather complex model, which is hard to interpret and, in addition, mul-
ticollinearity issues might occur. Hence, we propose to employ a penalised
likelihood approach based on a LASSO penalty.

The basic idea is to maximise a penalised version of the log-likelihood

/(a) = log(L(a)). More precisely, one maximises the penalised log-
likelihood
K
Lpen(@) = log (L(e) = A Bl, (1)
k=1

where A represents a tuning parameter, which controls the strength of the
penalisation. To fully incorporate the LASSO penalty in our setting, the
non-differentiable L; norm |fg| in is approximated as suggested by
Oelker and Tutz (2017). Specifically, |5x| is approximated by /(8x + ¢)?,
where c is a small positive number (say ¢ = 107°). Practically, a coefficient
is then selected if \Bk| > 0.001. The optimal value for the tuning parameter
A is chosen by model selection criteria such as AIC and BIC. To estimate
the required effective degrees of freedom, we consider all parameters in the
model which are unequal to zero, i.e. all entries of the t.p.m., all state-
dependent intercepts, and all selected 3;’s.

3 Simulation study

We consider a simulation scenario similar to our real-data application, with
a Bernoulli-distributed response variable, an underlying 2-state Markov
chain and 50 covariates, 47 of which being noise covariates:

Yp ~ Bern(wt(st)), with
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47
logit(ﬁist)) = n,gst) = Bést) 4+05-214 +0.7- 29 — 0.8 - 234 + Z 0-zj¢.
j=4

We further set ﬁél) = logit(0.75) and ﬁéQ) = logit(0.35). The performance
of three different fitting schemes is investigated, namely HMMs without
penalisation (i.e. A = 0) and the LASSO-HMM with A selected by AIC and
BIC, respectively. The fitting schemes are compared by the mean squared
error (MSE) of the 3; (see Figure . The results of the simulation study
suggest that, in terms of MSE, the LASSO-HMM with A selected by BIC
performs worst, with the MSE being higher than for the HMM without
penalisation. The LASSO-HMM with A selected by AIC outperforms the
other fitting schemes considered in terms of MSE.

log(MSE)

Alc BiC MLE

FIGURE 2. Boxplots of the MSE obtained in 100 simulation runs. “AIC” and
“BIC” denote the LASSO-HMM fitting schemes with A chosen by AIC/BIC.
“MLE” denotes unpenalised HMM.

4 Application

As the LASSO-HMM with X selected by the AIC showed the most promis-
ing results in the simulations, we focus on the results obtained by this
fitting scheme. For modelling the hot shoe, we account for several factors
potentially affecting the outcome of a penalty kick, namely a dummy indi-
cating whether the match was played at home, the matchday, the minute
of play the penalty was taken, the experience of both the penalty taker and
the goalkeeper (quantified by the number of years the player played for
a professional team), and the current match score difference. In addition,
to account for player-specific abilities, we include dummy variables for all
penalty takers and goalkeepers. This results in 656 covariates in total.
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The parameter estimates obtained (on the logit scale) indicate that the
baseline level for scoring a penalty is higher in the model’s state 1 than
in state 2 (B,gl) = 1.422 > —14.50 = 552)), thus indicating evidence for a
hot shoe effect. State 1, hence, can be interpreted as a hot state, whereas
state 2 refers to a cold state. In addition, with the t.p.m. estimated as

s (0978 0.022
~ 10680 0.320)°

there is high persistence in state 1, i.e. in the hot state. However, when
being in state 2 (cold state) switching to state 1 is most likely. Addition-
ally, the model is slightly favoured by the AIC over a l-state model, i.e.
a standard logit model without a potential hot shoe effect (AICyotshoe =
3664, AIC1 state-model = 3670). The coefficient paths of our model are shown
in Figure 3] Out of the 656 covariates included in our model, only a single
covariate is selected according to the AIC, namely the ability of Jean-
Marie Pfaff with Bpfaﬂr = —0.0015. The negative effect indicates that the
odds for scoring a penalty decrease if Jean-Marie Pfaff is the goalkeeper
of the opposing team — in fact he saved remarkable 9 out of 14 penalty
kicks during his career in the Bundesliga. To further illustrate our variable
selection approach, Figure |3| additionally highlights the covariates which
would be selected next, namely the abilities of Gnther Herrmann (outfield
player) and Rudolf Kargus (goalkeeper). As several existing studies provide
evidence for a home advantage in football, we also highlight in Figure [3]the
corresponding coefficient path of the dummy variable indicating whether a
match was played at home (but note that it is also not selected here). For
more detailed results of the application see Otting and Groll (2019).

5 Outlook

Further research could focus on additional penalties to conduct variable
selection within HMMSs, such as the ridge penalty or the elastic net. In
the case of multicollinearity, especially the elastic net may show a supe-
rior performance compared to the LASSO. Moreover, modifications of the
standard LASSO such as the relaxed-LASSO could be considered.

Acknowledgments: We want to thank the group of researchers B. Born-
kamp, A. Fritsch, L. Geppert, P. Gnéndinger, K. Ickstadt, and O. Kuss for
providing the German Bundesliga penalty data set.
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Abstract: We study the problem of intervention effects generating various types
of outliers in a first order integer valued autoregressive model with Poisson inno-
vations. We concentrate on outliers which enter the dynamics and can be seen as
effects of extraordinary events. We consider three different scenarios, namely the
detection of an intervention effect of a known type at a known time, the detection
of an intervention effect of unknown type at a known time and the detection of
an intervention effect when the type and the time are both unknown. We develop
F-tests and score tests for the first scenario. For the second and third scenarios
we rely on the maximum of the different F-type or score statistics. The usefulness
of the proposed approach is illustrated using simulated examples.

Keywords: Counts; Time series; Innovation outlier; Level shift; Transient shift.

1 Introduction

Time series of counts are observed in a broad variety of applications includ-
ing economics, finance, epidemiology and meteorology, among others. Inte-
ger valued autoregressive (INAR) models have been introduced by McKen-
zie (1985) and Al-Osh and Alzaid (1987) and are widely used nowadays
for this kind of data. We concentrate on the first order INAR model with
Poisson innovations, denoted briefly as Poisson INAR(1),

Yi=aoY;_1+e, teN, (1)

where o denotes the binomial thinning operator and (e;) is an arrival pro-
cess consisting of a sequence of independent identically distributed Poisson
variables with parameter .

Detection of unusual events is important in any modeling framework but
to the best of our knowledge it has not been investigated thoroughly in

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the INAR framework, see e.g. Silva and Pereira (2015) and the references
therein. We concentrate on outliers which enter the dynamics and can be
seen as effects of extraordinary events. We aim at the detection of different
types of effects including innovation outliers, transient shifts and level shifts
at possibly unknown time points. More precisely, we extend model (1) as

follows:
J

YVi=aoY,1+e+ Y Uy teN, (2)
j=1

where J is the number of intervention effects and (U ; :t € N),j=1,...,J
are independent random variables denoting the effects of the different in-
terventions on all time points. We assume U; ; = 0 fort = 0,...,7; — 1,
and Uy ~ POiS(/ij(S;_TJ) for t = 75,7; +1,..., with 7; and x; denoting
respectively the time point and size of the j-th intervention and ¢; € [0,1]
controlling the effect of the intervention on the future of the time series
after time 7;. For §; = 1 we get a permanent level shift starting at time 7;,
for 0; = 0 we get an innovation outlier, i.e., a single effect at time 7; which
spreads into the future according to the dynamics of the data generating
process, and for §; € (0,1) we get a transient shift which decays with rate
d;. The effect of each type of intervention on a realization of a stationary
Poisson INAR(1) process is illustrated in Figure

2 Test statistics

If the number of interventions J, the time points 7; of their occurrence

and the types J; of the interventions j = 1,...,J are known, then the
conditional mean E(Y;|Y;—1) in our intervention model is linear in the re-
maining parameters o, A and k;, j = 1,...,J, leading to simple formulae

for the conditional least squares (CLS) or conditional maximum likelihood
estimates (CML). In the following, we define the F-statistic based on the
residual sum of squares minimized by the CLS approach and the score test
statistic based on maximization of the conditional log-likelihood function.

2.1 The F-statistic

The CLS estimates minimize the objective function,
2

n J
RSS(J) =Y g —A—ayer — Y w05 "It >17)|
2 j=1

t=

and can be calculated using simple explicit formulae and software for ordi-
nary least squares estimation in linear models. The residual sum of squares
can also be used when we want to decide whether a certain type of in-
tervention effect is present at a given time point. A common measure for
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FIGURE 1. Effects of different types of outliers of size kK = 20 at time point
7 = 100 on a realization of a Poisson INAR(1) process generated with a = 0.3,
A =5 and n = 200. The black and red lines correspond to the clean and contam-
inated processes respectively, where contamination is due to (a) an innovation
outlier, (b) a transient shift with 6 = 0.8 and (c) a level shift.

the goodness of fit of a linear model is the coefficient of determination.

In case of Gaussian linear models one often prefers the F-type statistic
F — BSS(0)-RSS(1)
= TRSS(1)/(n—4)
freedom in Gaussian linear models if the simpler model without the addi-
tional (intervention) effect is correct. In our case, n —4 will usually be large

so that such an F-distribution is close to the x}-distribution.

since it is F-distributed with 1 and n — 4 degrees of

2.2 The score test statistic

The conditional log-likelihood function corresponding to model is given
by £(0) = >, log P(Yy = y|Y;—1 = yi—1), where 0 = (a, \, k1, ... ,65)7
Provided that the solution of the score function U () = % = 0 exists,
it yields the CML estimate 0 of 6. The availability of the score function
U(0) and conditional information matrix Z(0) = Cov (%‘ Yt,l) allows

us to define the score test statistic

S =U"(aX0Z7"(a\,0U"(a,A,0), (3)
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for testing the presence of a single intervention effect (J = 1) of known type
and time of occurrence, i.e. testing the null hypothesis Hy : kK = 0 against
the alternative Hy : £ # 0. In , UT (@, ,0) and Z(&, A, 0) are the score
function and conditional information matrix evaluated at the maximum
likelihood estimators (&, A, 0) computed under the null hypothesis of a clean
INAR(1) process. Under Hy, (2)) reduces to a stationary Poisson INAR(1)
process. For such a process and under certain regularity conditions that are
satisfied by the Poisson law, the conditional maximum likelihood estimates
are consistent and asymptotically normal, i.e. \/7(6 — 6) 4 N(0,Z71(0)).
Therefore, under Hy and as n — oo, the score statistic converges to a
X3-distribution and derivation of critical values for an asymptotic test of the
null hypothesis of no intervention against the alternative of an intervention
of certain type d at known time 7 is straightforward: we reject the null
hypothesis at a given significance level a if the value of S is larger than the
(1 — a)-quantile of the y2-distribution.

3 Some empirical results

Empirical rejection rates were obtained by analyzing 5000 time series of
the same length n € {100,200} for each of different INAR(1) models with
a € {0.3,0.6,0.9} and A € {2,5}. Simulation results indicated that the
score statistics perform better than the F-type statistics in detecting tran-
sient shifts (0 = 0.8) and permanent level shifts (§ = 1), especially when
the INAR(1) process is characterized by strong autocorrelation (o = 0.9).
However, the F-type statistics achieve rejection rates closer to the targeted
ones when the objective is to detect an innovation outlier (6 = 0). The
performance of both tests is little affected by the time 7 of the occurrence
of the intervention.
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Abstract: Traditional disease mapping models are based on relating the ob-
served number of disease cases per spatially discrete area to an expected number
of cases for that area. Expected numbers are calculated by internal standardisa-
tion, which requires both accurate population numbers and disease rates per age
group. Confidentiality issues or the absence of high-quality information about
the characteristics of a population-at-risk can hamper those calculations. Based
on methods in point process analysis, we propose the use of a case-control ap-
proach in the context of lattice data, in which an unrelated spatially unstructured
disease is used as a control disease. We apply our methods to a Belgian study
of mesothelioma risk, where pancreatic cancer serves as the control disease. The
analysis results are in close agreement with those coming from traditional disease
mapping models based on internally standardised expected counts.

Keywords: BYM model; Case-control study; Disease mapping; Mesothelioma;
Standardization.

1 Introduction

The classical hierarchical models for disease mapping make use of data
including the population at risk or a local number of cases ”expected” under

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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some null model of disease transmission. Due to medical confidentiality, it
is often difficult to obtain accurate and detailed population data (Beale
et al. 2008). Census data can be used to reflect the population data of a
specific region. However, countries census areas can be large or population
data are not available for some countries.

The objective of this paper is to propose a disease mapping method, where
a control disease is used as a proxy for the population at risk, extending
the case-control methods for point-pattern data towards lattice data. In
this study, interest is in mesothelioma cancer, while pancreatic cancer is
used as control disease.

2 Methodology

2.1 Classical Disease Mapping Method

The response Y = (Y7,Y5,...,Y,) represents the observed number of dis-
ease cases per areal unit throughout the study period. A Poisson model is
commonly assumed to estimate the disease risk per area:

Y; ~ Poisson(E;0;), i=1,..,n, (1)

where FE; represents the expected number of disease cases in area i and 6;
expresses the disease risk for the i*" area.
The expected number of cases is defined as (Waller and Gotway, 2004):

El = Z ]}\/iNi,g = ZTQNLQ (2)
g g

where 7 is the age-specific incidence rate in the standard population. This
ratio is multiplied by IV; 4 representing the population size of municipality
7 in age group g.

2.2 Disease Mapping with Control Disease

An approach commonly used in the context of point-pattern data is to
compare the location of disease cases with that of a set of carefully selected
controls for the population at risk (Kelsall and Diggle, 1998). We extend
this idea to the disease mapping context.

Only the aggregated number of cases for the disease of interest (Y =
(1,Ys,...,Y,,)) and the number of cases for the control disease (Z =
(Z1,Za, ..., Zy,)) are available. The expected number of cases for the dis-
ease of interest can be represented by

N

Z.
B = —— | Y V| =7V (3)
7 N J 2
E:j:l Zj j=1



Petrof et al. 187

where 77 is the rate of the control disease in area i and Y. is the total
number of cases of the disease of interest.

Any disease utilized as a control disease will introduce uncertainty in the
model, as it represents a sample from the population data. The calculated
expected values will have a lot of uncertainty if only a small number (or
no) cases of the control disease are present.

To account for the uncertainty in the estimation of the expected number
Ef we assume that the control disease follows a multinomial distribution

(Z1,...., Zn) ~ Multinomial(Z., (r?, ...,7%)),

where Z. represents the total number of controls. We make use of the
multinomial-Poisson transformation developed by Baker (1994):

Z; ~ Poisson(\;) (4)
Ai ~ Gamma(0.5,0.05),
i
! = =N
Zj:l Aj

where the number of control cases Z; in municipality 7 follows a Poisson
distribution with mean A;. The resulting expected value is denoted as EZC 2,
A conditional autoregressive convolution model proposed by Besag et al.
(1991) was used to analyse and compare the three methods presented above.

3 Data analysis

Residential information about all mesothelioma and pancreatic cancer pa-
tients diagnosed between 2004 and 2015 is available (Belgian Cancer Reg-
istry) as well as information about the population distribution in all areas
during the period 2009-2015.

All methods show a cluster of municipalities in the Central Northern part
of Flanders, and in the Central Eastern part of the country (Figure .
However, on the center panel some areas with increased risk are more dis-
persed over the country, as compared to the classical method. The right
hand side panel results show much less variability as compared to the to
the model in which the expected number is considered to be a fixed value
(center panel). By incorporating more variability for the expected values,
a smoothed map is observed for the new method (right panel), leading to
a more accurate approximation of the Poisson convolution model results.

4 Conclusion

In this paper, we have proposed a method similar to methods used in point-
pattern data (Diggle et al. 2000), in which the incidence of the disease of
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FIGURE 1. Map of the relative risks and excess risk for the Poisson Convolu-
tion model. Left panel: using indirect standardized number; Center panel: using
control-disease’s standardized number; Right panel: using control-disease’s stan-
dardized number accounting for uncertainty.

interest is compared to the incidence of a control disease, in the context of
lattice data. Allowing for extra variability through the use of a distribu-
tion for the expected values, leads to a control-disease approach used for
a Poisson convolution model which had similar results with the classical
methodology.
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Abstract: Hidden semi-Markov models (HSMMs) generalise hidden Markov
models by explicitly modelling the time spent in a state, the so-called dwell-time
distribution, using some distribution on the positive integers, e.g. the (shifted)
Poisson or the negative binomial. In this paper, we propose a penalised maxi-
mum likelihood approach for fitting HSMMs without the need to specify a dis-
tributional assumption for the state dwell times. The feasibility and potential
usefulness of the approach is illustrated using muskox animal movement data.
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1 Introduction

Hidden Markov models (HMMSs) are flexible time series models for observa-
tions driven by an underlying latent state sequence. For mathematical con-
venience, the state sequence is usually assumed to be a first-order Markov
chain. This, however, implies that the state dwell time, i.e. the number of
consecutive time points spent in a given state, follows a geometric distri-
bution. Hidden semi-Markov models (HSMMs) overcome this limitation by
allowing for an arbitrary dwell-time distribution. Within HSMMs, the dwell
times are then usually modelled using standard parametric distributions,
e.g. the Poisson or the negative binomial, which corresponds to a restric-
tive assumption on the shape of the dwell-time distribution, and hence on
the way the state process evolves over time. To avoid such restrictive as-
sumptions, we develop a fully data-driven penalised maximum likelihood

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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approach for estimating HSMMs without prior specification of the class of
distributions used for the state dwell times.

2 HSMDMs with flexible dwell-time distributions

An HSMM is a doubly stochastic process comprising a latent N-state
semi-Markov process {S;}7_; and an observed state-dependent process
{X¢}L_,. At each time point, X; is assumed to be generated by one out
of N distributions f;(z:), ¢ = 1,..., N, as selected by the current state
St. Given the states, the observations are assumed to be conditionally
independent of each other and past states. The underlying semi-Markov
chain is characterised by two components: (i) whenever the chain enters
a new state i at some time point, a draw from a dwell-time distribution
on {1,2,...}, defined by its probability mass function d;, determines the
number of consecutive time points the chain spends in that state; (ii)
state switches are determined by the conditional transition probabilities
wi; = Pr(Sy = j|Si—1 = 4,5, # i), summarised in the N x N ma-
trix €. Thus, an HSMM is completely specified by the vector 8 compris-
ing the parameters defining d; and f;(z;), for i = 1,..., N, and w,;, for
1,7 =1,...,N, i # j. In case that all state dwell times are geometrically
distributed, the HSMM reduces to the special case of an HMM.

Letting d;(r) denote the probability of a dwell time of length r in state
i, we assign a parameter m; to each individual probability d;(r) for
r € {1,2,...,R;}, where the upper boundary R; needs to be chosen large
enough to capture the main support of the dwell-time distribution. To fur-
ther allow for dwell times r > R;, a geometric tail is added:

T if 0 <r <Ry
d;(r) = Ry \T
Z( ) TiR; < ) DRESETS ) if r > Ri,

R;—1
T SR

with 0 < m;, < 1 and Zf;l m;» < 1. Using a state space expansion and
a suitable block structure in the resulting enlarged transition probability
matrix, this HSMM can be represented exactly as an HMM (Langrock and
Zucchini, 2001, Zucchini et al., 2016), with the resulting state space of di-
mension ZZ]\LI R;. This trick renders the computational machinery available
for HMMs applicable also to HSMMs, including numerical maximisation of
the log-likelihood ¢(0|z1, . .. , ), which is evaluated using the forward algo-
rithm. To avoid overfitting with respect to the probability mass functions,
we enforce smoothness by penalising the squared third-order differences
A3m;,. of adjacent state dwell-time probability parameters:

N R
6 = argmax ((8|xy,...,z7) — Z Ai Z(AgﬂiT)Q.
6 =1 r—4
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FIGURE 1. Estimated state-dependent gamma distributions for the 3-state
HSMM, weighted according to the proportion of time the states are active.

The smoothing parameters \; control the balance between goodness-of-fit
and smoothness of the d;(r) functions, and can be chosen for each state
individually. For a data-driven selection of \;, cross-validation can be used.

3 Case study: modelling muskox movement

We illustrate our approach using 7' = 1440 hourly observed step lengths
of a muskox in Greenland. Based on previous work that found the main
behavioural modes to be resting, foraging and relocating (Pohle et al., 2017,
Beumer et al., 2020), we fit 3-state HSMMs with state-dependent gamma
distributions. The parameters are estimated by numerically maximising
the penalised log-likelihood using the optimisation routine nlm in R. For
simplicity, we use the same smoothing parameter A for each state, testing
A =0,10,1000, while fixing Ry = Ry = R3 = 10.

Figure [1| displays the estimated state-dependent gamma distributions (for
A = 1000), which can reasonably be interpreted as corresponding roughly
to resting (state 1), foraging (state 2) and relocating (state 3). The esti-
mated dwell-time probability mass functions are displayed in Figure [2| for
states 1-3 and the different values considered for A. Irrespective of the choice
of A\, the dwell-time distributions of the latent state process clearly differ
from a geometric distribution, which suggests that a basic HMM would
not correctly represent the dynamics in the state process. The necessity of
penalisation becomes clear for example in view of ds (r), the dwell-time dis-
tribution estimated for state 3: when increasing A the distribution becomes
smoother, and in particular the gaps in the probability mass function, as
obtained when not penalising (A = 0; top right panel in Figure, are filled
due to the enforced smoothness.



Pohle et al. 192

state 1 state 2 state 3
o =) o
o 3] o™
bd >‘o' Z‘O
o = = =
T ) ) g9
< 2o ‘ XS] ‘ ‘ go
8 | ||.|. ..... 8 ||I |.||.... 8 NN
c T T 1 o T 1T 1 <)
0 5 10 15 0 5 10 15 0 5 10 15
dwell time dwell time dwell time
o o o
>~o >\o >O
‘o L) RN
I o4 o o-
" ‘H g ‘ g ‘ H
g7l ‘I... ..... 8 ||‘ | . 3 I|.I| i,
c T T 1 c T T 1 c T T 1
0 5 10 15 0 5 10 15 0 5 10 15
dwell time dwell time dwell time
o o o
5] 5] ™
=] (=) =]
8 =z z £
9! R S0 35
n 8d 8 g
=4l Sl s 3lllll
8 | |I-- ..... 8 || |||-.... 8 || |||I|||
c T T 1 c T T 1 c T T 1
0 5 10 15 0 5 10 15 0 5 10 15
dwell time dwell time dwell time

FIGURE 2. Estimated dwell-time probability mass functions for the 3-state
HSMM, for states 1-3 and the different \’s considered.

4 Conclusions

As the state process is unobserved, it is often unclear how to select a model
that appropriately reflects the underlying state dynamics. Our proposed
penalisation estimation approach can be used as an exploratory tool to
investigate the unknown shapes of the states’ dwell-time distributions. The
method can either be used for direct modelling purposes, or as a basis for
subsequent modelling choices, for example in order to decide whether an
HMM would be appropriate for the data at hand, or what distributional
assumption may be adequate within a conventional HSMM.
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Abstract: Reference fetal growth curves play an important role in identifying fe-
tal growth restriction, macrosomia and other fetal malformations. This is verified
based on percentiles of some biometric measurements at a specific gestational age
using obstetric ultrasound. As an example, the diagnosis of microcephaly is based
on a biparietal diameter smaller than the 10th percentile based on the reference
curve. In practice, each biometric measurement reference curve is constructed
independently of other measurements, even if they are correlated and some in-
formation about dependencies among them might be lost. Here we use these
measurements to define growth curves modelling jointly more than one measure-
ment. We consider structured additive quantile regression models for multiple-
output response variables, where we are able to specify a nonlinear effect of time.
We define a Markov Chain Monte Carlo (MCMC) procedure for model estima-
tion, using ideas previously discussed in the literature. We examine four different
ultrasound measurements and we show how one can retrieve more information
when modelling these response variables jointly instead of individually. We illus-
trate the method with data from pregnancies from the University Hospital of the
University of Sdo Paulo (HU / USP) in the city of Sao Paulo, Brazil.

Keywords: Bayesian quantile regression; Multiple-output response variable;
Growth curves.

1 Growth curves and Bayesian quantile regression
models

A proper assessment of fetal growth is important to identify irregular
growth that is related to fetal malformations and/or disease of the mother.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19-24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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This evaluation is usually made observing references growth curves which
are build exactly for these purposes, where percentiles of a biometric mea-
surement, for instance fetal biparietal diameter, is estimated for a spe-
cific population. The fetus biometric measures are obtained from ultra-
sonographic examinations measured throughout the pregnancy. Fujita et
al. (2020) used four different measures to estimate the weight of the fe-
tus during the pregnancy and then considered a mixed model to obtain
growth curves taking into consideration other covariates to control for the
heterogeneity in the data.
A possible strategy one can use to estimate these conditional percentiles,
or more broadly conditional quantiles, of these measures is connected to
quantile regression models. In these models one can write the conditional
quantiles as )

Qv (t|X =)= f(2) + = B,
where f; is a nonlinear function related to covariate z and x B, is the
typical linear quantile regression part. This nonlinear function could be
used to estimate the time effect, for instance. One approach for multiple-
output response variables was proposed by Hallin et al. (2010).

y2

FIGURE 1. First two plots show examples of the separation by the 7th directional
quantile hyperplane, when 7 = 0.2 and the direction is denoted by the red arrow.
The last plot show the quantile region obtained given the estimated models in 99
directions.

In Figure [, we have the representation of a bivariate response variable
where both components are uniformly distributed between -1 and 1. The
proposal by Hallin et al. (2010) is based on directions represented by the
red arrows, where the directional multiple-output quantile regression model
divides the spaces in two halfspaces, as in the black and blue points. By con-
struction, this hyperplane observes two subgradient conditions, though we
focus here only on the first. This condition is related to quantile regression
models, as the probability of the response variable belonging to the space
represented by the black points is equal to 7. For instance, in this example
where 7 = 0.2 one would expect 20% of the points to be denoted as black
for all directions. If one defines multiple directions in this two-dimensional
example and checks the intersection of all the blue points, we arrive at the
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quantile region of the last plot in Figure [I] Given the importance of the
chosen directions for our model, we discuss different methods for defining
these in the next subsection. Regarding the quantile regions shown, we con-
sider those to build our growth curves in the next section. See Hallin et
al. (2010) and Santos and Kneib (2020) to check on how to estimate these
hyperplanes using a frequentist and Bayesian approach, respectively.

1.1 Defining the directions

In Figure [2] we show the result of defining 512 directions based on two dif-
ferent ideas. The first one considered by Santos and Kneib (2020) splits the
intervals [-1, 1] in equidistant points, that depend on how many directions
one wants to estimate. For instance, if we define 8 marginal points then we
arrive at 8% = 512 models, because we consider all possible combinations
of points, definining vectors in [—1, 1]. Each vector is then divided by its
norm, so we have unit vectors for directions. The result using this method
is shown in black points in the left of Figure

FIGURE 2. Different directions chosen for estimation given marginal quantities
for each dimension: (left) equidistant points marginally; (middle) standard nor-
mally distributed in each marginal; (middle) standard normally distributed in
two marginal, while Y2 is exponentially distributed with mean 1.

The second method takes into account the marginal quantiles to define
points in the interval [-1, 1]. The quantiles (g1, ¢z, - . ., gp) are calculated for
each dimension, where ¢; is the minimum and ¢, is the maximum, while
p is the number of marginal points. These quantiles are then scaled into
the interval [-1, 1] and the same rules applied to the previous idea are used
in order to define these new directions. In Figure [2| we illustrate two cases
with this method in blue dots. The middle plot shows the case when each
marginal has a standard normal distribution and the plot in the right shows
when one of the marginal a standard exponential distribution, while the
others are still normally distributed. This approach is closely connected to
the idea of selecting knots when estimating nonlinear functions.
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2 Application to gestational data

Here we consider the data used in Fujita et al. (2020), where there are
1445 ultrasonographic examinations of 434 pregnancies at 12-42 gestational
weeks, where the babies were born between July 1, 2014 and December 31,
2017, at the University Hospital of University of Sao Paulo, Brazil.

We consider the biometric measurements: femur length (F), head circum-
ference (HC), abdominal circumference (AC), biparietal diameter (BPD).
We use as covariates the gestational age, fetal sex and mother’s height and
mother’s body mass index. For each direction of interest, the nonlinear
effect of gestational age was modelled with cubic p-splines functions with
20 equidistant knots. All results were obtained with chain size of 110,000
samples, after discarding the first 10,000 draws and recording every 100th
value. For this two dimensional example, we used 99 directions to calculate
the quantile regions.

Female Female
Age = 37

Tau =005 Tau = 0.05

age
20

30

20 350

o
Male <

age
40

30

30

20 275

FIGURE 3. Left side: quantile contours for the combination of two measure-
ments, FEMUR and HC for female fetuses on the top, with AC and BPD for
male fetuses on the bottom, 7 = 0.05; Right side: quantile contour for 7 = 0.05,
for female fetuses, 37 weeks of gestational age, while the red lines represent the
marginal conditional quantiles (7 = 0.05,0.95) for the same variables, but con-
sidering a linear function on age.

Initially, we investigated all possible (;1) models using these measurements.
On the left side of Figure [3} one can check the quantile contours for two
cases, “F-HC” and “AC-BPD”, where it is noticeable the nonlinear vari-
ation given gestational age. We plot the values for the quantile contours
for values between 12 and 40 weeks of pregnancy, in intervals of 1 week.
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The jumps seem to be bigger in the beginning of the pregnancy, while the
variance appear to be larger closer to 40 weeks of pregnancy. There are also
differences in the shape of the plots when we compare the plots in the top
and in the bottom. This shows how it is important to take into considera-
tion all the different types of correlation between the measurements.

On the right side of Figure [3] we have the quantile contour for one specific
age, 37 weeks, a female fetus, for measures of BPD and AC. We also plot
the marginal conditional quantiles based on a quantile regression model,
with covariates age and fetal sex, for 7 = {0.05,0.95}, with a linear func-
tion on age. It is easy to see how the quantile contour is able to capture
the correlation between the measurements way more naturally. This result
motivates the investigation of how these contours could be used to check for
fetal growth restrictions, instead of estimating the weight based on those
measurements and then assessing some form of conditional model, as in
Fujita et al. (2020).

We are also able to obtain model estimates when considering the four mea-
surements altogether as the response variable. For this case, for the di-
rections we use the method defined in Section 1.1 that take into account
marginal quantiles of each dimension, with 5 marginal points. Though we
are unable to visualize the quantile regions as in Santos and Kneib (2020),
given this four dimensional problem, we can still check which observations
are inside or outside these regions. Then we can summarize some of this
information to showcase interesting conclusions about this model.

For instance, if one observes the right side plot in Figure [3] there are a few
observations, which would not be deemed to have an atypical value, given
their gestational age and the fact that the fetal sex is female. Neverthe-
less, when examining its joint distribution of BPD and AC, then we would
identify these observations being outside the quantile region.

A similar experiment can be done after marking all observation that are
outside the quantile region in the four dimensional case. After that we can
compare their respective conditional position, given its fetal sex and gesta-
tional age, for instance. We could also add mother’s height and body mass
index, that were also considered in the model, but for the sake of simplicity
these are left out initially. For this illustration, we group gestational age
in four approximately equally sized groups, based on its respective quan-
tiles. Then for each combination of gestational age group and fetal sex,
we order each measurement placing all observations in one of 5 groups,
{0—20%, ...,80% —100%}. In Figure [ we can compare then the informa-
tion for observations placed outside the quantile region.

We can check that the regions where we find more observations outside the
quantile region are both extremes, which is not surprising. Though lower
values for each measurement are more likely to be classified in this way.
Similarly to what we had seen using the two dimensional quantile region,
here there are also points more center located in one of the dimensions, but
still outside the quantile region.
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FIGURE 4. Conditional bivariate densities given fetal sex and gestational age
groups for observations classified as being outside the quantile region for 7 = 0.05.
Brightness levels for each tile represents its respective density, where higher
brightness is related to a higher density.

3 Final remarks

In this paper we used Bayesian quantile regression models for multiple-
output response variables to define fetal growth curves. We show how these
models can better capture the correlation between the measurements in the
fetus, instead of considering the conditional quantiles marginally for each
measurement. One important advantage of this method is that we are able
to study the variation of all these measurements without the need to assume
a probability distribution in this four dimensionsal setting.
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Abstract: Common random effects models for repeated ordinal measurements
account for the heterogeneity in the population by including subject-specific in-
tercepts or variable effects. They do not account for the heterogeneity in answer-
ing tendencies. Extended models are proposed that account for the tendency to
choosing extreme or middle responses where location effects as well as the ten-
dency to extreme or middle responses are modeled as functions of explanatory
variables. An example demonstrates the applicability of the method.
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1 Introduction

The cumulative model and the adjacent-categories model are popular mod-
els for univariate ordinal responses. In the following, we present the adja-
cent categories model for univariate and multivariate ordinal response as
the basis for the newly proposed model that allows to account for response
styles. For the sake of brevity we abstain from presenting the cumulative
model and the corresponding extensions. Also, we restrict our presentation
in Section [2|to the more common situation of an odd number of categories
in the response variables.

The adjacent-categories model has the form

P(Y; =7 +1|Y; € {r,r + 1}, 2:) = F(yo, + xL ),

This paper was published as a part of the proceedings of the 35th Inter-
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2020. The copyright remains with the author(s). Permission to reproduce or ex-
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where F(.) is a distribution function. For the logistic distribution function

one obtains
PY,=r+1)
log | ———
P(Y; =)

Random effects models aim at explicitly modeling the heterogeneity of
clustered responses. A cluster can be any statistical unit for which repeated
measurements are available. In our applications a cluster typically refers to
a person and repeated measurements refer to responses on a set of items.
For such clustered data let the ordinal response Y;; € {1,...,k} denote
measurement ¢ in cluster 4,4 = 1,...,n,t =1,...,T;. The simplest random
effects model is a model that includes random intercepts only. Extending
model the inclusion of random intercepts gives

P(th:T+1)
N < Py =r)

) = Yor + 33?'7- (1)

)—70T+m£7+bi

for the adjacent categories model where b; ~ N(0,0?) represents a random
intercept for person 1.

2 Accounting for Response Styles

In the adjacent categories model, the intercepts yot1 ... Yot,k—1 can be seen
as threshold parameters. The threshold parameters determine the basic
preference for specific categories. This property will be used in the follow-
ing to model the subject-specific tendencies to choose specific categories.
The main idea of the newly proposed model is to increase or decrease the
distance between thresholds for specific persons with a centering at the
middle category. In the predictor ;- = Yot + x4~y + b; for the t—th vari-
able we propose to replace the threshold o by vour + (k/2 — r)a; where
a; is a subject-specific parameter. It is seen that the difference between
adjacent linear predictors gives 9 — Nit,r—1 = Yotr — Yot,r—1 — @i, i.€., the
difference between adjacent predictors changes by a;. If a; is positive the
difference decreases, if it is negative the difference increases.

a=-2 a=-1 a,=0 a=1 a

test] il

12345 12345 12345 12345 12345

1
N

P(Ye=r)
00 02 04 06
00 02 04 06
00 02 04 06
00 02 04 06
00 02 04 06

FIGURE 1. Probabilities of single categories (for an example with & = 5) de-
pending on different values of response style parameter a;.

Figure[l]illustrates how different values of the parameter a; affect the prob-
abilities of the single response categories. Positive values of a; increase the
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probabilities of the middle categories while negative values increase the
probabilities of the extreme categories. For illustration let us consider the
case k = 5 where one obtains the following thresholds

oleolo|o|oe

Yotr1 + 1.5a;  yoro +0.5a; oz — 0.5a;  Yora — 1.5a;

The effect of explanatory variables is included by extending the response
style effect a; to the response style term a; + 2! a. Then, in the adjacent
categories representation one obtains

Nitr = Yorr + (K/2 —7)(a; + ziTa) + a:iT'y + b;.

From a psychometric point of view the model can be seen as a generaliza-
tion of the extended partial credit model proposed by Tutz, Schauberger
and Berger (2018). In our proposal, their model is extended by covariate
location effects ¢! v and covariate response style effects z] av. The variables
x; and z; can be distinct, overlapping, or identical.

The model contains two random effects, the subject-specific intercept b;
and the subject-specific response style effect a; where a bivariate normal
distribution (b;,a;) ~ N(0,X) is assumed. The diagonals of the matrix
3 contain the variance of the random intercepts of and of the response
style parameters o2, the off diagonals are the covariances covy, between
intercepts and the response style.

3 Application to pre-election data

The method is applied to data from the German Longitudinal Election
Study (GLES) (Roteutscher et al., 2017). The participants were asked:
“How afraid are you due to the ...”

1. refugee crisis? 4. globalization?

2. global climate change? 5. political developments in Turkey?

3. international