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Politécnico di Milano (Italy)

• Sabine Schnabel

Wageningen University and Research (The Netherlands)

• Cécile Proust-Lima
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Preface

The International Workshop on Statistical Modelling (IWSM) is a reference
workshop in promoting statistical modelling, applications of Statistics for
researchers, academics and industrialist in a broad sense. Unfortunately,
the global COVID-19 pandemic has not allowed holding the 35th edition
of the IWSM in Bilbao in July 2020. Despite the situation and following
the spirit of the Workshop and the Statistical Modelling Society, we are
delighted to bring you the proceedings book of extended abstracts.

First, we would like to thank all the authors for their scientific contributions
and congratulate them for the high quality of the extended abstracts. To
keep the spirit of the IWSM, we have compiled them into two parts: Part
I with those extended abstracts selected for oral presentations and Part II
for poster presentations. A total number of 135 extended abstracts were
submitted, with 62 extended abstracts chosen for oral presentation and 73
for poster presentation. From those, a total of 97 authors have given their
consent for their extended abstracts to be included in the proceedings.

The proceedings could not have been possible without the great work of the
scientific committee who have evaluated and scored all extended abstracts.
We are aware that the work of selecting the extended abstracts for oral or
posters presentations is always arduous, and we would like to thank each
of the members of the Scientific Committee for their incredible work!

A deep thanks to the Executive Committee of the Statistical Modelling
Society for their support and the organisers of the IWSM 2021 in Natal
in Brazil for deferring their edition and allowing us to organise the IWSM
next year in Bilbao.

Also, we would like to thank Maŕıa Durbán, Montserrat Fuentes, Yudi
Pawitan, Virginie Rondeau, Stijn Vansteelandt and Virgilio Gómez-Rubio
for having accepted (twice!) our invitation to participate in the workshop.
We are looking forward to having you next year.

Last but not least, we thank the editorial work by Itziar Irigoien and
Joaqúın Mart́ınez-Minaya as well as the whole local organising commit-
tee for their full support in the decision to cancel the workshop and their
willingness to accompany us in 2021.

We hope to see you in Bilbao in 2021. Save the date: July 18–23, 2021!

Dae-Jin Lee and Maŕıa Xosé (Coté) Rodŕıguez Álvarez
Bilbao, July 2020
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Pérez et al.: Spatio-temporal and hierarchical modelling of high-
throughput phenotypic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
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Hidden Markov models for multi-scale time
series: an application to stock market data

Timo Adam1,2 and Lennart Oelschlger2

1 University of St Andrews, St Andrews, UK
2 Bielefeld University, Bielefeld, Germany

E-mail for correspondence: ta59@st-andrews.ac.uk

Abstract: Over the last decades, hidden Markov models have emerged as a ver-
satile class of statistical models for time series where the observed variables are
driven by latent states. While conventional hidden Markov models are restricted
to modeling single-scale data, economic variables are often observed at different
temporal resolutions: an economy’s gross domestic product, for instance, is typi-
cally observed on a yearly, quarterly, or monthly basis, whereas stock prices are
available daily or at even finer temporal resolutions. In this paper, we propose
hierarchical hidden Markov models to incorporate such multi-scale data into a
joint model, where we illustrate the suggested approach using 16 years of monthly
trade volumes and daily log-returns of the Goldman Sachs stock.

Keywords: Hidden Markov models; Multi-scale data; Stock markets; Time series
modeling; Temporal resolution.

1 Introduction

Hidden Markov models (HMMs) constitute a versatile class of statistical
models for time series where the observed variables are driven by latent
states (Zucchini et al., 2016). While the observations can be multivariate,
basic HMMs have the limitation that all variables need to be observed at the
same temporal resolution. Specifically in economic applications, however,
corresponding variables are often observed at different time scales, ranging
from yearly data such as economic indices to high-frequency stock market
data. Incorporating multiple such variables, with differing sampling rates,
into a joint model may help to draw a more comprehensive picture of
stock market dynamics, in particular by explicitly distinguishing short-term
and long-term variation in volatility. In this paper, we propose hierarchical

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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· · · St−1 St St+1 · · ·

Yt−1 Yt Yt+1

S′t,t ′S′t,t ′−1 S′t,t ′+1

Y′t,t ′−1 Y′t,t ′ Y′t,t ′+1

· · · · · ·· · · · · ·

· · · · · · observed

hid-
den

observed

FIGURE 4.2: Dependence structure of an hierarchical HMM. In contrast to the multi-
variate HMM introduced in SECTION 4.2.1, here the observations are driven by multiple,
connected state processes, each of which operates at the time scale at which the corre-
sponding variables were observed.

of N possible HMMs, each of which is determined by its own parameter vector, which is

denoted by θ ′(i), i = 1, . . . ,N. Specifically, each fine-scale HMM has its own N′×N′ t.p.m.

Γ′(i) = (γ ′k,l
(i)), with elements

γ ′k,l
(i) = Pr(S′t,t ′+1 = l|S′t,t ′ = k,St = i),

k, l = 1, . . . ,N′, and initial distribution vector δ ′(i) = (δ ′(i)
k ), with elements

δ ′(i)
k = Pr(S′t,1 = k|St = i),

k = 1, . . . ,N′. The state of the coarse-scale state process that is active at time t, St = i, thus

selects one of N possible state-dependent distributions for the observations at the coarse

scale as well as one of N possible HMMs that generates the fine-scale observations during

the t-th sampling of the coarse-scale state process.

Assuming conditional independence across variables, the state-dependent p.d.f. (or, in

the discrete case, p.m.f.) of the fine-scale observations can be written as

fY′
(
y′t,t ′;θ ′(i,l))=

P′

∏
k=1

fY′
(
y′k,t,t ′;θ ′(i,l)), (4.2)

i = 1, . . . ,N, l = 1, . . . ,N′, with fY′(y′k,t,t ′;θ ′(i,l)) denoting the density (or, in the discrete

case, probability) of the k-th fine-scale variable being observed at time t ′ during the t-

th sampling of the coarse-scale state-dependent process. The dependence structure of an

FIGURE 1. Dependence structure of an hierarchical HMM.

HMMs, which originate from the field of machine learning (Fine et al., 1998)
and have later been applied in ecology (Leos-Barajas et al., 2017; Adam
et al., 2017; Adam et al., 2019), to incorporate such multi-scale data into
a joint model. The suggested approach is illustrated by jointly modeling
16 years of monthly trade volumes and daily log-returns of the Goldman
Sachs stock.

2 Model formulation and likelihood evaluation

A basic HMM comprises two stochastic processes: a hidden state process
{St}t=1,...,T and an observed state-dependent process {Yt}t=1,...,T . The
state process is typically modeled as a discrete-time, N -state Markov chain
with initial distribution δ = (δi), δi = Pr(S1 = i), and transition proba-
bility matrix (t.p.m.) Γ = (γi,j), γi,j = Pr(St+1 = j|St = i). The state at
time t, St = i, selects one of N possible distributions, which are denoted
by f(yt|St = i), that generates the outcome of the state-dependent process
(cf. Zucchini et al., 2016).
By exploiting this relatively simple dependence structure, the likelihood
can be written as a matrix product,

LHMM(θ|y1, . . . , yT ) = δP(y1)

T∏

t=2

ΓP(yt)1, (1)

where P(yt) = diag
(
f(yt|St = 1), . . . , f(yt|St = N)

)
and 1 denotes a

column vector of ones (cf. Zucchini et al., 2016).
Hierarchical HMMs extend the model structure outlined above in that they
distinguish between processes operating at different time scales (cf. Figure
1 for an illustration of the model structure): the coarse-scale state at time
t, St = i, selects among N possible distributions for the coarse-scale obser-
vations, which are denoted by yt (e.g. the trade volume observed for month



Adam and Oelschlger 4

t), and N possible HMMs (each of which has its own t.p.m. Γ′i) for the
fine-scale observations, which are denoted by y′t (e.g. all daily log-returns
observed during month t). The likelihood then follows as

LHHMM(θ|y1, . . . , yT ,y
′
1, . . . ,y

′
T ) = δP(y1,y

′
1)

T∏

t=2

ΓP(yt,y
′
t)1, (2)

where P(yt,y
′
t) = diag

(
f(yt|St = 1)LHMM(θ|y′t, St = 1), . . . , f(yt|St =

N)LHMM(θ|y′t, St = N)
)
. Estimation of the model parameters is typically

carried out by numerical likelihood maximization (cf. Adam et al., 2019).

3 Application to stock market data

To investigate stock market dynamics at different time scales, we jointly
model 16 years of monthly trade volumes and daily log-returns of the Gold-
man Sachs stock. The data cover 4,026 working days (192 months) between
January 1, 2004, and December 31, 2019. For the trade volumes, we as-
sumed gamma distributions, while for the log-returns, scaled t-distributions
(as preferred over Normal distributions by Akaike’s information criterion)
were considered.
The estimated state-dependent distributions of monthly trade volumes,
displayed in the top left panel of Figure 2, reveal three different market
regimes: while coarse-scale states 1 and 2 capture low and moderate trade
volumes (inactive and moderately active market), respectively, state 3 re-
lates to high trade volumes (active market).
The t.p.m. associated with the coarse-scale state process was estimated as

Γ̂ =




0.984 0.016 0.000
0.043 0.900 0.057
0.000 0.282 0.718


 ,

which implies the stationary distribution (0.687, 0.261, 0.053), indicating
that about 69 %, 26 %, and 5 % of the monthly trade volumes were gener-
ated in coarse-scale states 1, 2, and 3, respectively. Notably, in 2007, when
a sudden increase in interest rates for inter-bank credits marked the begin-
ning of the global financial crisis, the decoded time series displayed in the
top right panel of Figure 2 reveals a switch from coarse-scale state 1 (inac-
tive market) to 2 (moderately active market). In September 2008 (when the
Lehman Brothers collapse marked the peak of the global financial crisis),
we observe a switch from coarse-scale state 2 to 3 (active market).
The estimated state-dependent distributions of daily log-returns are dis-
played in the middle panel of Figure 2: depending on the coarse-scale state
that is active in month t, the log-returns’ volatility is determined by the
fine-scale HMM associated with the two distributions displayed in either
the left, the middle, or the right panel, respectively.
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FIGURE 2. Estimated state-dependent distributions and decoded time series of
monthly trade volumes, daily log-returns, and closing prices of the Goldman Sachs
stock. Dashed lines in the top-right and the bottom panel indicate important
events associated with the global financial crisis.

The t.p.m.s associated with the fine-scale state processes were estimated
as

Γ̂′1 =

(
0.993 0.007
0.034 0.966

)
, Γ̂′2 =

(
0.993 0.007
0.024 0.976

)
, Γ̂′3 =

(
0.915 0.085
0.029 0.971

)
,

which imply the stationary distributions (0.823, 0.177), (0.779, 0.221), and
(0.255, 0.745). According to the fitted model, when coarse-scale state 1
(inactive market) is active (about 67 % of the time) then the marginal dis-
tribution of the log-returns under the fitted model has standard deviation
0.013. When coarse-scale state 3 (active market) is active (about 5 % of
the time), then the log-returns’ volatility is about five times higher: the
corresponding marginal distribution has standard deviation 0.065.
Quantile-quantile-plots and sample autocorrelation functions (ACFs) of or-
dinary normal pseudo-residuals for monthly trade volumes and daily log-
returns are displayed in Figure 3. While, in principle, more flexible state-
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FIGURE 3. Quantile-quantile-plots (left panel) and sample ACFs (right panel)
of normal ordinary pseudo-residuals for monthly trade volumes (top panel) and
daily log-returns (bottom panel). Overall, the plots indicate some minor lack of
fit with regard to the marginal distribution of the trade volumes and the serial
correlation in the trade volumes’ series.

dependent distributions (especially for the trade volumes) could be used
to improve the model fit (cf. Langrock et al., 2018), we consider the good-
ness of fit to be satisfactory and trade some minor lack of fit against a
more complex model formulation, which facilitates the interpretation of
the fitted model.

4 Conclusions

The results presented in this paper indicate that coarse-scale market dy-
namics strongly affect the stochastic properties of other processes operat-
ing at finer time scales. By explicitly modeling such multi-scale processes,
hierarchical HMMs may help to draw a more comprehensive picture of
stock market dynamics, to more accurately quantify risks conditional on
the coarse-scale market regime, and ultimately to improve our understand-
ing of the market agents’ behavior.
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Abstract: Nonparametric estimators for multivariate conditional copulas as well
as for a multivariate conditional Kendall’s tau are proposed in a random design
context. We also propose a flexible Wald type statistic based on Kendall’s tau
estimator to test for the influence of a conditioning variable outcome in the joint
distribution between two or more variables. Asymptotic properties of the estima-
tors are derived together with a simulation study, and a data-driven smoothing
parameter selection is also provided. A second simulation study presents different
models to check the size and power of the test and runs comparisons with previous
proposals when appropriate. For the empirical illustration, we study the relation-
ship between some indicators from the European Regional competitiveness index
(RCI). We find interesting results, such as weaker links between innovation and
higher education in regions with lower institutional quality. Analyzing this kind
of comovements is very useful for regulatory purposes to measure the impact of
economic policies.

Keywords: Conditional copula; Nonparametric estimation; Multivariate depen-
dence; Kendall’s tau.

1 Introduction

Since the last financial crisis, economic growth has been an important con-
cern all over the world. Particularly, the European Commission constructs
the RCI index as an indicator of economic progress every three years since
2010. This index comprises more than 70 indicators that enable measuring
the ability of the regions to offer an attractive and sustainable environment
for firms and residents to live and work and they are grouped into 11 pil-
lars to help to identify the strengths and weaknesses of each region. In this

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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context, we analyze the relationship of indicators related to the efficiency
and the innovation of a region. Additionally, since institutional quality is a
factor that can disturb the economic growth, we find interesting to study
if the indicators dependence structure is affected by the quality level.
We estimate the conditional joint dependence with nonparametric condi-
tional copulas, which is a flexible way of modeling the dependence struc-
ture and better that elliptic distributions when variables are not normal
(Embrechts et al., 2002). We consider a random design context, suitable
for many economic applications, and derive the asymptotic results for the
multivariate conditional copula estimator.
As an overall measure of conditional dependence, we use a multivariate
rank correlation measure beyond the linear correlation: The conditional
Kendall’s tau. We take as a reference the multivariate Kendalls tau pro-
posed by Joe (1990) beyond the average pairwise tau (Kendall and Smith,
1940) to extend it to the conditional case and we derive the main asymp-
totic results. A bandwidth selection algorithm for Kendall’s tau estimator
and a simulation study to check for its robustness are also provided.
Moreover, we want to test for the structure of conditional dependence ac-
cording to Kendall’s tau. Tests for unconditional multivariate independence
are well known in the literature, but we are interested in testing for general
restrictions in the conditional rank correlation. Related works introduce
tests of the so-called simplifying assumption, which assumes that the con-
ditional copula coincides with the partial copula. Moreover, Gijbels et al.
(2017) propose tests based on Kendall’ tau and compare their performance
with some tests based on conditional copulas. Nevertheless, our objective is
to test for a broader type of restrictions that include conditional indepen-
dence or constant dependence but also constant conditional dependence,
linear restrictions between different Kendall’s taus, and equality of condi-
tional Kendall’s tau between different samples. Results from a simulation
study show that our proposal performs well in many different scenarios,
such as mixtures of copulas as joint distributions, and entails a low com-
putational cost.
The results in the application show that the dependence between pillars
such as higher education and innovation increases as the institutional qual-
ity improves. Actually, this relationship is strong and significantly affected
by low quality levels. Thus, the results support that the institutions quality
perception has a clear significant effect on regional competitiveness factors.
It seems that in regions with low institutional quality, the investment in
efficiency does not have the expected results on improving the innovative
capability of the region.

2 Multivariate conditional copulas

Let Y = {Yj}pj=1 be a set of p variables. To estimate the dependence
structure we propose a nonparametric estimator for the multivariate copula
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conditional on Z = z defined as

Ĉz(u) =

n∑

i=1

wi(z, h)I{Y1i ≤ F̂−1
1z (u1), ..., Ypi ≤ F̂−1

pz (up)}, (1)

where Yji sets for a generic sample value i of the variable Yj , {wi(z, h)} is
a sequence of weights, and h > 0 is the bandwidth that decreases to zero
as the sample size increases. I{·} is the indicator function and F̂jz(y) =∑n
i=1 wi(z, h)I{Yji ≤ y} denotes the nonparametric conditional estimator

of the j-marginal distribution. It is noteworthy that this nonparametric
estimator does not have a smoothing role as is usual in regressions. In fact,
when the bandwidth h gets large enough, Ĉz approaches the empirical
distribution function, which is not smooth.
To measure the degree of dependence, we estimate Kendall’s tau coefficient,
which measures the monotonicity instead of linearity. We extend the ver-
sion proposed by Joe (1990) for multivariate Kendall’s tau to conditional
copulas as τz = (2p−1 − 1)−1

(
2p
∫
Ip
Cz(u)dCz(u)− 1

)
and we define the

corresponding nonparametric estimator to be

τ̂z=
1

2p−1−1

( 2p

1−∑n
i,j=1wi(z, h)2

n∑

i,j=1

wi(z, h)wj(z, h)I{Yi<Yj}−1
)
.

The following theorem establishes the asymptotic results of the proposed
estimators in a random design context.

Theorem. Consider the usual assumptions in nonparametric estimation
and h = o(n−1/5). Then, when n→∞,

i) (nh)
1/2
(
Ĉz(u)− Cz(u)

)
d−→ CLz ,

where CLz is a Gaussian variable with zero mean and asymptotic variance
σ2(CLz ) = dkf(z)−1Cz(u)

(
1− Cz(u)

)
. Moreover, if Gz is a Gaussian vari-

able given by

Gz =
2p

2p−1 − 1

(∫

Ip
Cz(u)dCLz (u) +

∫

Ip
CLz (u)dCz(u)

)
,

ii) (nh)
1/2

(τ̂z − τz) d−→ Gz,

where the asymptotic variance of τ̂z is given by σ2(Gz).
Moreover, we propose a method to select the bandwidth for the nonpara-
metric conditional Kendall’s tau estimator based on minimizing its mean
squared error and we conduct a simulation study to analyze the perfor-
mance of the conditional rank correlation in the bivariate context for a
linear and a non-linear model. The results show that the bandwidth selec-
tion works well for large sample sizes and variables coming from a linear
model but the results are still better bias-variance balanced for non-linear
models. Moreover, the results remark the importance of the accuracy in
the parameter selection when analyzing the dependence between variables.
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2.1 Testing for restrictions in conditional dependence

We propose a test for a null hypothesis that can be expressed as

H0 : R τz = r, (2)

where τz is an m order column vector of estimated Kendall’s tau, R is a
q×m order matrix and r a q order column vector with q being the number
of linear restrictions to be tested. The alternative is Ha : R τz 6= r. We
define the statistic

Jn = (R τ̂z − r)′(RVτ̂zR
′)−1(R τ̂z − r),

where Vτ̂z denotes the variance and covariance matrix of τ̂z. Taking into
account the asymptotic results in the Theorem above, Jn has an asymptotic
χ2 distribution with q degrees of freedom under H0.
The null hypothesis in expression (2) accounts for many possible situa-
tions. In particular, it enables tests to be run for conditionally constant
dependence in a random design context. In this particular case, we use
a permutation procedure to estimate Vτ̂z . Another application of the Jn
statistic is to test linear restrictions across different samples, as equal con-
ditional dependence structure. In this case, the permutation procedure has
been adapted into an appropriate resampling procedure.
To show the performance of the test we run a second simulation study and
we consider several cases to calculate size and power under different sample
sizes. We also compare the results with the proposal made by Gijbels et al.
(2017) for situations where their test can be directly applied. The results
show that the statistics perform well for different kinds of restriction, even
when quite complex joint distributions are considered. Moreover, it is easy
to compute.

3 Empirical application

We apply the previous methodology to detect whether institutional quality
helps to increase the relationship between pillars as it does between higher
education and innovation. As suggested in previous studies (see e.g. Lucas
(1988) and Maradana et al. (2017)), higher education and innovation are
directly related to economic growth. In this sense, we are interested in
analyzing if the low institutional quality hinders transfers between higher
education and innovation results.
Motivated by this, we study the relationship between higher education and
innovation, conditional on the institutional quality (INST) level with 2019
regional data from the European Commission. For the sake of illustration
and to provide further empirical results, we also consider the dependence
between the Efficiency and Innovation groups and between higher educa-
tion and the other pillars in the Efficiency (Labor market efficiency, L and
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Market size, M) and Innovation groups (Business sophistication, BS and
Technological Readiness, TR).
In particular, we are interested in four different hypotheses. i) Is there
concordance between movements in higher education and innovation? ii)Is
the concordance between higher education and innovation fully explained

by institutional quality? (H
(2)
0 : τij|z = 0) iii) Does institutional quality

explain part of the concordance between higher education and innovation?

(H
(3)
0 : τij|z = τij). iv) Does the concordance between higher education

and innovation depend on the level of quality of institutions? In this case

H
(4)
0 : τij|zk = τij|zl is tested. A rejection would provide evidence of a

relationship that varies according to institutional quality, which is espe-
cially interesting since it provides a starting point for studying how insti-
tutional quality affects relationships between pillars making them stronger
or weaker. Analyzing this kind of conditional comovements is very useful
for policy makers intending to control the impact of their interventions.
First, we remark that there is a significant unconditional relationship be-
tween the pillars, as expected.

TABLE 1. Kendall’s tau coefficients based on 2019 data.

τ τq0.05
τq0.15

τq0.5 τq0.85
τq0.95

H
(2)
0 H

(3)
0 H

(4)
0

Eff.-Inn. 0.678 0.097 0.623 0.484 0.204 0.733 *** *** ***
HE-L 0.447 0.036 0.248 0.448 0.054 0.357 *** *** *
HE-M 0.197 -0.039 -0.053 -0.294 -0.009 -0.108 ***
HE-TR 0.405 0.077 0.215 0.382 0.052 -0.093 ** *** *
HE-BS 0.308 0.253 0.073 -0.056 0.154 -0.154 ***
HE-I 0.528 0.091 0.307 0.406 0.456 0.530 *** *** **
HE-L-M 0.363 0.025 0.155 0.020 0.151 0.029 ***
TR-BS-I 0.518 0.366 0.517 0.245 0.255 0.069 *** *** **
HE-L-M-
TR-BS-I

0.387 0.112 0.225 0.171 0.025 0.118 *** ***

Table 1 contains the estimated Kendall’s tau coefficients and summarizes
tests results. The results are quite interesting and encourage further study.
The joint relationship between pairs such as innovation and higher edu-
cation is only partially explained by the quality of institutions. Moreover,
there is evidence in favor of a joint dependence that increases with the
quality of institutions. This may be an interesting starting point for study-
ing whether there is a causal link between institutional quality and the
ability of regions to transfer human capital to innovation results. For the
other pillars, the results are different. Actually, no conditional dependence
is found between HE and BS and for the relationship between HE and TR,
INST provides a further contribution for regions with medium institutional
quality, which might be linked with specific regions.
For multivariate relationships, there is a low dependence with a constant
quality effect between the Efficiency pillars. However, the Innovation group
pillars are significantly affected by the institutional quality and show a
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higher dependence on lower quality levels. As the results in the last row of
Table 1 show, there is no significant effect on the six pillars relationship.
Regardless of whether or not conditional dependence is constant, the qual-
ity perception effect can vary from one period to another. To test for the
consistency of the quality effect over a three-year period we compare the
behavior patterns with RCI index data for 2016. The test reveals that in
general there are no significant changes in the dependency between pillars
from 2016 to 2019 conditional on the quality of institutions.
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1 Discrete Subdistribution Hazard Model

Assume that the interest is in the analysis of the observation time to the
occurrence of one out of J competing events measured on a discrete time
scale t = 1, 2, . . . , k. Let Ti be the event time and Ci the censoring time
of individual i with covariate vector xi = (xi1, . . . , xip)

>, i = 1, . . . , n. For

right-censored data, the observation time is defined by T̃i = min(Ti, Ci).
It is further assumed that Ti and Ci are independent random variables
and that Ci is non-informative for Ti. A key quantity to describe com-
peting risks data is the discrete cumulative incidence function, which is
defined by Fj(t|xi) := P (Ti ≤ t, εi = j|xi), where the event type is rep-
resented by the random variable εi ∈ {1, . . . , J}. In the following, w.l.o.g.,
the event of interest and its cumulative incidence function are defined by
εi = 1 and F1(t|xi), respectively. The function F1 is bounded between 0
and F1(k|xi) = P (εi = 1|xi) ≤ 1.
A popular modeling approach for the cumulative incidence function is the
proportional subdistribution hazard model (Fine and Gray, 1999), which
has been extended to the discrete-time case by Berger et al. (2018). The

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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discrete subdistribution hazard model links F1(t|xi) to the subdistribution
time

ϑi :=

{
Ti, if εi = 1

∞, if εi 6= 1 .

By definition, ϑi measures the time to the occurrence of the type 1 event.
Specifically, it assumes that the type 1 event will never be the first event to
be observed once a competing event has occurred (Fine and Gray, 1999),
implying that there is no finite event time for the occurrence of a type 1
event if εi 6= 1. Accordingly, the discrete subdistribution hazard, which is
defined by

λ1(t|xi) :=P (Ti = t, εi = 1|(Ti ≥ t) ∪ (Ti ≤ t− 1, εi 6= 1),xi)

=P (ϑi = t|ϑi ≥ t,xi), t = 1, . . . , k ,

represents the discrete hazard function of the subdistribution time ϑi. With
a little algebra it can be shown that the subdistribution hazard λ1(t|xi)
is linked to F1(t|xi) by F1(t|xi) = 1 −∏t

s=1 (1− λ1(s|xi)) = 1 − S1(t|xi),
where S1(t|xi) = P (ϑi > t|xi) is the discrete survival function for a type 1
event. Consequently, there is a one-to-one relationship between λ1(t|xi)
and F1(t|xi). Thus, the effects of the covariates on λ1(t|xi) have a direct
interpretation in terms of the cumulative incidence of a type 1 event. A
parametric model for λ1(t|xi) is given by

λ1(t|xi) = h(γ0t + x>i γ), t = 1, . . . , k − 1 , (1)

where h(·) is a strictly montone increasing distribution function. The pre-
dictor function in (1) is composed of the baseline coefficients γ01, . . . , γ0,k−1

and the regression coefficients γ ∈ Rp. Estimates of the model parame-
ters in (1) can be derived from a weighted maximum likelihood estimation
scheme (Berger et al., 2018) with binary outcome values

(yi1, . . . , yi,T̃i , . . . , yi,k−1) =

{
(0, . . . , 0, 1, 0, . . . , 0), if ∆iεi = 1 ,

(0, . . . , 0, 0, 0, . . . , 0), if ∆iεi 6= 1 ,
(2)

indicating if a type 1 event occurred at t or not (∆i := I(Ti ≤ Ci)). The
maximization of the weighted log-likelihood is based on an estimate of the
censoring survival function Ĝ(t) = P̂ (Ci > t) and on a vector of weights

wit :=
Ĝ(t− 1)

Ĝ(min(T̃i, t)− 1)
·
(

I(t ≤ T̃i) + I(T̃i ≤ t− 1,∆iεi > 1)
)
, (3)

that equals estimates of the individual-specific conditional probabilities of
being (still) at risk for a type 1 event at time t.
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2 Recursive Partitioning for Discrete Subdistribution
Hazards

The model in Equation (1) assumes that the predictor is a linear func-
tion of the covariates. When unknown interactions between covariates are
present, an alternative strategy is to apply recursive partitioning methods
or trees. Following the tree-based method by Schmid et al. (2016), which
was designed for discrete hazard models with one single type of event, we
propose a discrete subdistribution hazard model of the form

λ1(t|xi) = f1(t,xi) , (4)

where the function f1(·) is determined by a Classification and Regression
Tree (CART) with binary outcome (Breiman et al., 1984). For tree building,
the covariates x1, . . . , xp as well as the time t (coded as an ordinal variable)
are considered as candidates for splitting.
When a tree has been constructed, the result is a set of Q terminal nodes
that are represented by a set of binary outcome values yi1, . . . , yi,k−1 and
corresponding weights wi1, . . . , wi,k−1. Note that because the time t is a
candidate splitting variable, each terminal node of the tree corresponds to
a subset defined by the covariates and to a time interval Tq = [aq, bq], with
1 ≤ aq ≤ bq ≤ k. Therefore, we propose to estimate the subdistribution
hazards in each terminal node by

λ̂1q =
1∑

i,t∈q
wit

∑

i,t∈q
yit wit , q = 1, . . . , Q ,

where the weights wit are computed from Equation (3). Concerning the
splitting criterion, the classical CART approach is based on impurity mea-
sures. Consider, for instance, the Gini impurity in one node m defined by

GI(m) = 2 λ̂1m (1− λ̂1m) .

Then, in each step of the tree-building algorithm, one chooses the split
(among all covariates and split points) that minimizes the weighted sum of
the Gini impurities in the children nodes. An important tuning parameter
of CART is the tree size, which can be optimized using pruning techniques.
Controlling the tree size prevents the resulting subdistribution hazard es-
timates from having a too large variance (which is inversely related to
the terminal node size). Consequently, we propose to consider the mini-
mum number of observations that must exist in a node in order to perform
further splits as the main parameter for pruning. This parameter can be
optimized by either cross-validation of the log-likelihood or by information
criteria such as AIC and BIC.
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FIGURE 1. Analysis of the AMD data. Tree obtained from fitting the proposed
model with log-likelihood based pruning. The numbers at the terminal nodes
refer to the estimated subdistribution hazards for GA.

3 Age-Related Macular Degeneration

For illustration, we analyzed the database of the MODIAMD (Molecu-
lar Diagnostics of Age-related Macular Degeneration) study, which is an
ongoing non-interventional study in patients at high risk for developing
late-stage age-related macular degeneration (AMD, Steinberg et al., 2016).
AMD either manifests by geographic atrophy (GA) or by choroidal neovas-
cularization (CNV). GA is an advanced stage of AMD with irreversible loss
of photoreceptors and severe loss of vision. Therefore, it is of high interest
to develop intervention strategies for high-risk patients.
In total, 98 Patients were enrolled between November 2010 and September
2011 at the Department of Ophthalmology, University of Bonn, Germany.
All patients were monitored at the time of their inclusion in the study
(baseline visit) and subsequently monitored by annual study visits. For
our analysis, the data up to and including the fifth annual study visit was
available (t = 1, . . . , 5). Exclusion of one patient with missing values in the
analyzed risk factors resulted in an analysis data set of size n = 97. On
completion of the fifth visit, 16 study eyes had developed GA, 25 study eyes
had developed CNV, 26 patients were still in the study while 30 patients
were censored (i.e., had dropped out at earlier visits). The risk factors incor-
porated in our analysis were age (years), visual acuity (snellen; measured
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by the Snellen chart), drusen volume (mm3), the presence of the natural
crystalline lens, smoking, the presence of refractile drusen (ref drusen), and
the disease status of the fellow eye (fellow ; healthy, CNV or GA).
Figure 1 visualizes the result when fitting the proposed tree-based subdis-
tribution hazard model (4) for GA. There is a particularly high risk for the

development of GA for patients with GA in the fellow eye (λ̂GA = 0.357).
Without GA in the fellow eye, the risk is high for patients with a large
drusen volume (> 0.48 mm3, λ̂GA = 0.267), but considerably lower for
patients with a smaller drusen volume (≤ 0.48 mm3).

Acknowledgments: We thank the MODIAMD Study Investigators for
providing us with the data.
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Abstract: We develop a variational approximation method to deal with sparse
estimation of high–dimensional graphical vector autoregressive models. The pur-
pose of the project is two–fold. First, we exploit the product density factorisation
of the joint variational density that leads to the mean field paradigm, as well
as, the representation of the problem as a sequence of auxiliary regressions that
rely on the Cholesky factorisation of the precision matrix. A Normal–double–
Gamma prior is imposed to shrink toward zero both the autoregression and the
precision parameters. The second contribution concerns the solution of the lack–
of–identification problem that relies on the employed Cholesky factorisation. We
propose to approximate the marginal likelihood of each model permutation by
the variational model evidence (ELBO) and to exploit it to get MaP estimates of
the model parameters. To explore the space of permutations, when the dimension
of the model is large, we develop a new parallel collapsed simulated annealing
algorithm (PCSA).

Keywords: Vector autoregressive models; sparsity; variational inference.

1 Introduction

Approximate methods for statistical inference on the parameters of mathe-
matical and statistical models are becoming a relevant issue as model com-
plexity increases. Although variational methods are not confined within
the Bayesian framework, the problem of approximating the posterior dis-
tribution is relevant and deterministic variational approximations represent
viable alternatives to the widely employed simulation–based methods to al-
leviate the computational burden in high dimensional settings. Moreover,
in many situations the marginal likelihood is either not available in closed–
form or its computation is time–consuming, preventing the possibility to

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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evaluate and assess the proposed models and estimates using goodness–of–
fit procedures. Previous considerations motivate the relevance of approxi-
mate inferential techniques to perform Bayesian analysis especially when
high–dimensional data or complex models are considered (see, e.g., Robert
and Casella 2011). Variational approximations (Ormerod and Wand, 2010)
is a body of deterministic techniques for making approximate inference that
tackle the problem of optimising a functional over a class of functions in or-
der to minimise a given divergence between a target distribution and a given
proposal. They certainly exploit their potentials to provide approximate in-
ference in a likelihood–based context, but they are widely employed within
the Bayesian paradigm, where they are also known as variational Bayes
methods, (VB). As deterministic alternatives to stochastic approximation
methods, such as MCMC methods, they can successfully be employed when
the dimension of the problem is large or even in more involved situations
where either the data or the model display complex dependence structures.
Their major advantages over deterministic approximations rely on the pos-
sibility of arbitrarily increasing their accuracy at the expense of computa-
tional time. Unlike stochastic methods, deterministic variational algorithms
are based on analytical approximation of the target distribution. As a con-
sequence, these methods have limited approximation accuracy, but they
offer a relevant gain in terms of computational cost. This paper is devoted
to introduce new variational–based inferential procedures and algorithms
for estimating high–dimensional vector autoregressive process (VAR) of di-
mension d. We further assume that d� n, where n denotes the number of
observations, thereby leading to a problem that only admits either sparse
or regularised solutions (Rothman et al., 2010). Appropriate prior should
be imposed on the elements of the precision matrix to shrink their elements
down to zero, thereby enforcing the invertibility of the matrix. We consider
the Normal–Gamma prior recently introduced by Griffin and Brown (2010)
as an alternative to the Bayesian–Lasso prior of Park and Casella (2008), in
a regression context. As for the Bayesian–Lasso, the Normal–Gamma prior
of Griffin and Brown (2010) penalises each parameter independently and it
is highly inappropriate for the estimation of large–dimensional data. There-
fore, the Normal–double–Gamma prior is adapted to the estimation of the
precision matrix by adding a common latent factor that jointly penalises
towards multiple directions, as in Bitto and Frühwirth-Schnatter (2019).
To overcome the lack–of–identification problem, we develop a new parallel
collapsed simulated annealing algorithm that maximises the ELBO over
the space of permutations. The rest of this paper is organised as follows.
Section 2 introduces the model while main applications are discussed in
Section 3. Although the proposed methodology is quite general and can be
applied in several contexts where appropriate dynamic models are needed,
from biology to economics, in this paper, we consider the evolution of fi-
nancial contagions using international stock indexes, and the analysis of
functional magnetic resonance imaging (fMRI) data.
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2 Model specification and inference

Let Yt = (Y1,t, Y2,t, . . . , Yd,t)
ᵀ

a multivariate random variable, we define
the VAR(1) process as the realisation of the following stochastic difference
equation

Yt = φ0 + ΦYt−1 + ut, for t = 2, 3, . . . , (1)

where φ0 is a d–dimensional vector of intercepts, Φ is a d× d matrix con-
taining the autoregressive parameters and ut ∼ Nd

(
0,Ω−1

)
for t = 1, 2, . . .

is a sequence of uncorrelated innovation terms such that ut−k ⊥ ut−j for
k 6= j and k, j = ±1,±2, . . . and cross–covariance matrix equal to Ω−1,
with Ω ∈ Sd++ being a positive and definite positive matrix. Exploiting the
modified Cholesky factorization of the precision matrix Ω = LTVL, we can
write the process in equation (1) as a VAR(1) with orthogonal innovations:

LYt = m+ LΦVt−1 + εt, for t = 2, 3, . . . , (2)

where εt ∼ Nd(0,V
−1), V−1 = diag {1/νj , j = 1, 2, . . . , d}, m = Lφ0 and

L lower–unitriangular. Leveraging the unit triangular matrix factorisation
B = Id − L, allows to rewrite the process in (2) as:

Yt = m+ BYt + (Id −B)ΦYt−1 + εt, for t = 2, 3, . . . , (3)

which is a function of the vector of parameters ϑ = (νT,mT,βT,φT)
T

with

ν = (ν1, . . . , νd) ∈ Rd+, m = (m1, . . . ,md) ∈ Rd, φ = vec(ΦT) ∈ Rd2

and

β = (β2, . . . ,βd)
ᵀ ∈ Rd(d−1)/2, where βj for j = 2, . . . , d identifies the

j–th row of B below the main diagonal. (3) represents the main ingredient
of the Mean–Field variational Bayes (MFVB) algorithm here proposed.
The fully Bayesian approach to the inference here adopted, requires the
specification of a prior distribution for all the parameters involved in (3).
We assume a Gamma distribution for νj and a Normal distribution for mj ,
with j = 1, . . . , d, while, following Bitto and Frühwirth–Schnatter (2019),
a Normal–double–Gamma prior is imposed to the elements of β and for φ.
Therefore, we impose joint shrinkage for βj by assuming:

βj,k|τj,k ∼ N(0, τj,k), τj,k|ηj , λj ∼ Ga

(
ηj ,

ηjλj
2

)
,

λj ∼ Ga(e1, e2), ηj ∼ Exp(e3),

where k = 1, . . . , j − 1 and e1, e2 and e3 are fixed hyperparameters. For
each row of Φ we instead assume:

φj,s ∼ N(0, υj,s), υj,s|ξj,m, κj,m ∼ Ga

(
ξj,m,

ξj,mκj,m
2

)
,

κj,m ∼ Ga(h1, h2), ξj,m ∼ Exp(h3),
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where s = 1, . . . , d, while m = 1 and m = 2 indicates whether we are consid-
ering an element on the diagonal (hence s = j) or off–diagonal respectively
and h1, h2 and h3 are fixed hyperparameters. The idea is to distinguish the
amount of shrinkage induced on the diagonal and off–diagonal elements of
Φ. The most relevant issue in developing the MFVB algorithm consists to
define the factorisation of the variational density q(ϑ) which plays a central
role in this approximation scheme. Here, we factorise q(ϑ) as follows:

q(ϑ) = q(φ)q(υ,κ, ξ)q(ν,β, τ ,λ,η) (4)

q(υ,κ, ξ) =

d∏

j=1

[
d∏

s=1

q(υj,s)

2∏

m=1

q(κj,m)q(ξj,m)

]
(5)

q(ν,β, τ ,λ,η) = q(ν1)

d∏

j=2

[
q(νj)q(βj)

(
j−1∏

k=1

q(τj,k)

)
q(λj)q(ηj)

]
, (6)

where υj,s, κj,m, ξj,m, τj,k, λj , ηj are the latent factors. One of the major
novelties of the proposed variational approach relies on the factorisation
of the variational distribution. Indeed, as emerges in (4), a joint distri-
bution is imposed on the vector φ accounting for the dependence among
all the elements of Φ. Under the factorisation in (4)–(6) the MFVB al-
gorithm is provided and all the inferential procedures are avaiable for ϑ
within a Bayesian framework. Given the variational densities computed for
β and ν, it is possible to exploit the factorization Ω = LTVL to recover
an approximation for the posterior distribution of Ω through simulation
from q(β) and q(ν). It is worth noting that the MFVB approach strongly
relies on the representation of the VAR process provided in (3) which is,
in turn, obtained by exploiting the modified Cholesky factorisation. This
approach works well if there is a relatively clear ordering for the Cholesky
decomposition, but such strong assumptions are unlikely to hold in many
situations. Therefore, the provided MFVB algorithm suffers from the lack–
of–identification problem that originates the non–invariance of the complete
likelihood of model in (3) under permutation of the ordering of variables
{Yj , j = 1, 2, . . . , d}. We deal with the lack–of–identification issue by pro-
viding a new parallel collapsed simulated annealing (PCSA) algorithm that
leverages the marginal likelihood approximation provided by the ELBO as
byproduct of the MFVB. The PCSA is a fast algorithm for optimisation
of the non–smooth objective function provided by the ELBO that explores
the non–convex space of permutations of the indexes {1, 2, . . . , d}.

3 Applications

3.1 International Stock Indexes data

In this section we present an application to financial data. We consider
the time series of stock indexes returns for d = 37 countries observed for
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T = 189 months. The estimated conditional dependence graph is provided
in Figure 1 (left) where vertexes belonging to the same continent are plotted
with the same colour, while Figure 1 (right) displays the estimated partial
correlations. The main finding is a stronger correlation among neighbour-
ing countries: as we can see in Figure 1 we are able to identify two main
clusters of countries which correspond to Europe (in blue) and Asia (in yel-
low) and we can notice a sort of block structure of the partial correlation
matrix highlighted by red boxes which group together European and Asian
countries. However, there are also cross–continent partial correlations: the
most evident one concerns the role of USA which seems to be very central
in the network with strong connections with some European countries.
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FIGURE 1. Conditional dependence graph (left) and partial correlation matrix
(right).

3.2 fMRI data

In this section we consider d = 68 time series of length T = 404 of fMRI
data recorded in particular brain locations according to Desikan atlas. The
data are the same used in Gasperoni and Luati (2018). The aim of the
analysis is to estimate how the connectivity of the brain’s areas changes in
different patients affected by different dysfunctions. Results are depicted in
Figure 2 where the patient on the left side is healthy, while the one on the
right side has a clinical history of alcohol, cannabis and cocaine abuse. It
is possible to notice a different pattern and strength of connections accord-
ing to different characteristics of the subject. We compute the weighted
degree index (WDI) as a measure of importance of each area. This index is
computed as the sum of the weights of its edges:

WDIi =
∑

j 6=i

R̂i,j , (7)

where R̂ is the estimated partial correlation matrix which generates the
conditional independence graph. The importance indexes are aggregated
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by lobe and cerebral hemisphere. Our results suggest that drugs and al-
cohol abuse causes a reduction in brain connectivity especially in right
frontal (orange points) and right parietal (violet points). Our findings are
in accordance with previous studies in neurological science.

FIGURE 2. Conditionally dependence graph estimated on two patients with dif-
ferent dysfunctions. Greyscale indicates whether the connection is week or strong
and different nodes colour refers to different lobes.
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1 Motivation

We aim at modelling the causal effect of a treatment on two response
variables, the change in both female and male employment rates between
1996 and 2001, using a boosted instrumental variable distributional re-
gression approach. The data consists of socio-demographic information on
communities located in the KwaZulu-Natal province of South Africa. Each
observation is uniquely located in one of ten different districts, suggesting
a spatial structure in the data. Additional covariates include demographic
control characteristics of each community, such as poverty rate, household
density, as well as geographic information like average land inclination,
and distance to the nearest road and town. Table 1 displays the preemi-
nent variables in our analysis. A key issue of determining the causal effect
of electrification on employment is the selection bias that occurs at the time
of assigning an electricity project to an observational unit. Due to political
patronage, communities were not randomly targeted for electrification, i.e.

This paper was published as a part of the proceedings of the 35th Inter-
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the treatment is endogenous due to unobserved confounders. Hence, any
direct estimation of the treatment effect on the responses will yield biased
results.

TABLE 1. Summary statistics for the main variables.

Variable Description Mean S.D.

∆p female emp Diff. share of female employment -0.00 0.07
∆p male emp Diff. share of male employment -0.04 0.09
Eskom Electricity project (Yes=1, No=0) 0.20 0.40
Gradient Mean land gradient / inclination 10.10 4.89

Number of communities N = 1816. Number of districts G = 10.

In order to draw causal inferences from a treatment (Eskom) that exhibits
selection bias, we employ Instrumental Variable (IV) methods. An IV or
instrument is a regressor that fulfils three key assumptions: (i) It is inde-
pendent of the unobserved confounders. (ii) It has explanatory power on
the endogenous covariate. (iii) It only affects the outcome through the en-
dogenous regressor. Our instrument is given by the average land inclination
(Gradient) of a community. The idea behind this particular IV is the fact
that a higher land inclination will result in higher costs for an electricity
project. Communities that had a lower propensity to receive electricity, but
at the same time had a very small or no land inclination (or vice versa)
could potentially offset the selection bias. This setting was originally anal-
ysed in Dinkelman (2011) using classical IV techniques, which consist of a
two-step estimation using ordinary least-squares. We can set up two equa-
tions to represent the analysed scenario:

Eskomi = β
[1]
0 + f [1](Gradienti) +

p∑

j=1

f
[1]
j (xij) + υi , (1)

∆p gender empi = β
[2]
0 + Eskomiβ

[2]
1 +

p∑

j=1

f
[2]
j (xij) + εi , (2)

where Equation (1) is the treatment equation, and Equation (2) is the out-
come equation for either females or males. The superscripts denote the first
and second estimation step. We define the Average Marginal Effect (AME)
on a distributional quantity θi of the outcome Yi given some covariates
X = xi as

AMEθ =
1

n

n∑

i=1

(
θi(Yi|d = 1, X = xi)− θi(Yi|d = 0, X = xi)

)
,

where θ̂i denotes the distributional quantity, e.g. the outcome’s standard
deviation. The indicator d is the status of the treatment variable, i.e. d = 1
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for receiving treatment, or d = 0 otherwise. Based on Equations (1) and
(2), two obstacles arise. One is the choice of a suitable modelling approach
with enough flexibility that accommodates the functional form between
covariates, treatment, and outcomes, i.e. how should the functions fj(·)
be modelled. The second is the assignment or selection of which regres-
sors impact different characteristics of treatment and outcomes, i.e. which
covariates should enter the model. The first obstacle was addressed in
Briseño Sanchez et al. (2019), where IV estimation was combined with
the high flexibility of the Generalized Additive Models for Location, Scale
and Shape (GAMLSS; Stasinopoulos et al., 2018) framework, resulting in
the Two-Stage GAMLSS (2SGAMLSS) estimator, hereon referred to as
causal distributional regression. However, the second issue remains unad-
dressed. Although highly flexible, causal distributional regression is prone
to overfitting due to the lack of an automated variable selection mecha-
nism, i.e. there is no straightforward manner of assigning a specific subset
of covariates and their respective representation to any of the response dis-
tribution parameters. In order to carry out data-driven variable selection
in high-dimensional regression models we turn to component-wise gradient
boosting (CGB).

2 Boosting causal distributional regression

Let yi be a sample of i = 1, . . . , n responses that are conditionally indepen-
dent, conditioned on vectors xi collecting j = 1, . . . , p covariates. The re-
sponses are assumed to follow a distribution that consists of k = 1, . . . ,K
parameters ϑk,i, i.e.

yi ∼ f(yi|ϑ1,i, . . . , ϑK,i).

In the GAMLSS framework, we can model each distribution parameter ϑk,i
by relating it to a structured additive predictor ηk,i via a link function gk(·):

ϑk,i = g−1
k (ηk,i) ⇔ gk(ϑk,i) = ηk,i = βk0 +

∑

j∈Lk

fk,j(xij) ,

where Lk ⊆ {1, . . . , p} indicates that each distribution parameter can be
modelled by a subset of the covariates in the data. The functions fj(·) can
feature different specifications to accommodate e.g. linear, non-linear or
spatial functional forms of the considered regressors. This high flexibility of
the GAMLSS framework comes at the cost of increased model complexity,
as well as the possibility of inducing bias into the model via an inappropriate
set of covariates in the predictor of the k-th distribution parameter. CGB
allows for a regularised regression framework that retains the flexibility
of the GAMLSS approach, but allows us address the inquiry of variable
selection for causal distributional regression. Within the CGB famework
a univariate regression function (base-learner) bk,j(x•j , θθθkj) is specified for
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each considered covariate x•j = (x1j , . . . , xnj)
T and depends on a vector

of unknown parameters θθθkj . The index k again emphasizes that the base-
learner belongs to the k-th predictor. Each base learner can be specified
in order to accommodate a suitable functional form of the regressor. The
employed gamboostLSS algorithm (Mayr et al., 2014) can be sketched as
follows:

(1) Set the boosting iteration counter m = 0, initialize the predictors

η̂
[m]
k,i with offset values, e.g. using intercept-only models. Increase m

by one.

For each distribution parameter k = 1, . . . ,K proceed as follows:

(2) Compute the partial derivative of the log-likelihood w.r.t. ηk: ∂`(yi,ϑ)
∂ηk

.

Plug-in the current estimates ϑ̂
[m−1]
i = (g−1

k (η̂
[m−1]
k,i ))k=1,...,K . Then

set

u
[m−1]
k,i =

∂`(yi,ϑ)

∂ηk

∣∣∣∣
ϑ=ϑ̂

[m−1]
i

, i = 1, . . . , n.

(3) Fit each of the Lk base-learners in the k-th predictor to the gradient

vector u
[m−1]
k and select the base-learner j∗ that fits best the gradient

vector according to the residual sum of squares. Update the additive
predictor

η̂
[m−1]
k = η̂

[m−1]
k + ν · bk,j∗(·) ,

where ν is a (weak) learning rate (0 < ν � 1).

(4) Set η̂
[m]
k = η̂

[m−1]
k and increase m by one.

The algorithm then iterates between steps (2)-(4) until an mstop is reached.
Using this algorithm for causal distributional regression, the treatment and
outcome equations are boosted in order to obtain a parsimonious, regu-
larised causal model. An optimal value for mstop is determined via cross-
validation for the treatment and outcome equation, respectively.

3 Empirical results and discussion

We assume a Bernoulli distribution for the treatment, and a logistic distri-
bution for both outcomes. The logistic distribution depends on a location
ϑ1 and scale ϑ2 parameter; it is a leptokurtic distribution that accom-
modates this particular property of both responses. The expectation of a
logistically-distributed random variable is given by the parameter ϑ1 (i.e.
we employ the identity link function), whereas the variance is given by
ϑ2

2π
2/3 (i.e. we use a log-link function for the scale parameter). Estimation

of the treatment equation via CGB suggests a downward sloping, non-linear
effect of Gradient on the expectation of Eskom as shown in Figure 1 (a).
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TABLE 2. Estimated regression coefficients, AME on the mean and standard
deviation (s.d.), as well as optimal stopping iterations.

Response β̂ϑ1
Eskom β̂ϑ2

Eskom ÂMEmean ÂMEs.d.

Male −0.021 −0.123 −0.021 −0.005

Treatment equation mstop (ϑEskom1 ): 3725.
Male outcome equation mstop (ϑMale1 , ϑMale2 ): (195, 1241).

Such a curve was also observed in Briseño Sanchez et al. (2019) where es-
timation was carried out via penalized Maximum Likelihood (ML). This
is a remarkable result, since the treatment equation model recovers es-
sentially the same functional form of Gradient on the treatment and is
more parsimonious compared to ML estimation. Figure 1 (b) displays the
spatial heterogeneity in the estimated probability of receiving an Eskom

project. The north-eastern districts of KwaZulu-Natal exhibit the lowest
predicted probability of receiving the treatment compared to the rest of
the province’s districts. The optimal boosting iterations of the treatment
and male outcome equation were obtained using 25-fold bootstrap. Results
for the female response are not listed because here the Eskom treatment was
not selected by CGB. Table 2 lists the boosted coefficients for the location
(ϑ1) and scale (ϑ2) parameters, as well as the AME on the expectation
and s.d. of the male response. Note that we decided to report the AME on
the s.d. due to the scale of the response variables, otherwise the variance
would have been numerically quite small. Due to the identity link function
employed on the location parameter ϑ1, the AME on the mean and β̂ϑ1

coincide. These estimates of the male outcome equation indicate that the
treatment induces a reduction in male employment rates of 2.1% on average
cet. par., across the communities of KwaZulu-Natal. The Eskom treatment
has a multiplicative effect on ϑ2 of exp(−0.123) = 0.88 on average cet. par.,
i.e. a reduction of the outcome’s variance. The AME on the s.d. of the male
outcome suggests that not only the expected employment rates decreased,
but also the observed employment rates are now closer to the mean male
employment rate across communities, i.e. male employment rates become
more homogeneous. Figure 1 (c) displays the AME on the mean, whereas
Figure 1 (d) shows the AME on the standard deviation (s.d.). Male em-
ployment rates of communities located on the southern districts become
more homogeneous (s.d. of outcome is reduced) compared to those in the
northern districts. We would like to point out that the optimal stopping
iteration suggests once again that the CGB model is a more parsimonious
version of the ML models previously mentioned. These results indicate that
data-driven variable selection can be beneficial in causal distributional re-
gression models via CGB, since the specification of covariate effects is not
trivial and could lead to biased treatment effect estimates.
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FIGURE 1. Smooth effect of Gradient on Eskom (a). Probability of receiving an
Eskom project per district (b). AME on mean (c) and standard deviation (s.d.)
(d) of the male response.
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Abstract: The occurrence of events is mostly modelled by the hazard, and usu-
ally one considers only one preferred time scale. Other time scale(s) that may
influence the event of interest are incorporated as a (time-varying) covariate(s).
Here we propose an approach to estimate the hazard as a smooth bivariate func-
tion over two time scales using P -splines. We illustrate the model by analyzing
the transition from cohabitation to marriage where the age of the individual and
the duration of the cohabitation are relevant. Data come from the German Family
Panel (pairfam) and we demonstrate that considering the two time scales jointly
provides additional insights about the transition from cohabitation to marriage.

Keywords: Time scales; Multidimensional hazard; P -splines; Cohabitation;
Marriage.

1 Introduction

Survival analysis models the time until the occurrence of an event of in-
terest. In many applications, time-to-event data can be measured along
several time scales. Clinical examples include the time since disease onset
and the time since treatment. Two time scales are also naturally present
in the social sciences when modelling the life course. For example, in the
transition from cohabitation to marriage age certainty has an important
role, but previous research has also pointed out the role of the duration of
the cohabitation for the event (marriage).
Usually, time-to-event data are described by means of hazard models. Most
popular methods for the estimation of such models, like Cox’s proportional
hazards model, require the choice of a single time scale and the inclusion of

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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potential other time scale(s) as covariates. However, through the assump-
tion of proportional hazards the possible interplay between different time
scales is limited in such an approach. If understanding the joint role of
several time dimensions is of interest a different approach is needed.
Here we propose to model the hazard of an event as a bivariate function
of two time scales, avoiding the need to choose one preferred time axis.
This bivariate hazard is assumed to be smooth and we choose to estimate
it by a P -spline approach. Such a smooth hazard surface can capture the
interplay between the two time dimensions in a flexible way.
We will present an application of the model to study transitions from co-
habitation to marriage by age and by duration of the cohabitation, using
data from the German Family Panel (pairfam).

2 Smoothing the hazard over two time scales

We denote with t and s the two time scales. The hazard of an event at (t, s)
is denoted by λ(t, s), with the log-hazard defined as η(t, s) = log[λ(t, s)].
A common approach for a flexible hazard model is to assume that it is
piecewise constant. The support of the hazard is divided into a grid of cells,
mostly rectangles, and for each cell the total exposure and the number of
events are calculated. Standard MLE of the hazard is obtained by dividing
the number of events by the total exposure time in each cell.
The same estimates are obtained if we view the number of events E(t, s)
in each cell as a realization of a Poisson variable with expected value
µ(t, s) = R(t, s)λ(t, s) that is, E(t, s) ∼ Pois(µ(t, s)). Here (t, s) denotes
the coordinates of a cell (usually represented by its center) and R(t, s)
denotes the total at-risk time in the cell.
With a fine grid, we obtain a very flexible hazard, but at the price of
an erratic behaviour where fewer individuals are observed. To obtain a
smooth surface we use a combination of B-splines bases and difference
penalties on the estimated coefficients, known as P -splines. P -splines have
been efficiently used to smooth hazards in two dimensions by Currie et al.
(2004). Here we will extend this approach to the case of hazards with two
time scales.
In most applications the two time scales t and s move at the same speed. So
if individual i enters at (ti, si) and exits after ∆ time units, the exit point
(t̆i, s̆i) is given by t̆i = ti + ∆ and s̆i = si + ∆. In this way, individuals
move along diagonal lines with slope 1 in a Lexis diagram (Keiding, 1990).
Consequently, possible combinations of t and s are restricted to the positive
half-plane where s < t. (For example, the duration of a cohabitation s
always is shorter than the age t of the individual.)
In order to overcome this restriction we propose to transform the data into
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new points (u, s) by:

(
u
s

)
=

(
t− s
s

)
=

(
1 −1
0 1

)(
t
s

)
. (1)

The transformed data points are now scattered over the whole positive
plane, where u ≥ 0 and s ≥ 0. (In the example, if t is age and s is the
duration of the cohabitation, then u = t− s denotes the age at entry into
cohabitation.)
The transformed (u, s)-plane is split into a large grid of small squares, by
dividing the u-axis into J intervals and the s-axis into K intervals. Then
we compute the J×K matrix of exposure times R and the event matrix E.
We denote with Bu and Bs the two B-spline matrices built over the u- and
s-axis with cu and cs columns, respectively. The bi-dimensional regressor
matrix is obtained as the tensor product of these two B-spline matrices:

B = Bs ⊗Bu (2)

with dimension JK × cucs. Correspondingly, the vector of coefficients for
the B-spline basis is denoted by α = (α1, . . . , αcucs) whose elements need
to be estimated from the data.
A penalty matrix P is introduced to tune the amount of smoothing. We
denote by Iu and Is the identity matrices of dimension cu and cs, respec-
tively, and by Du and Ds differences matrices of order d along the rows (u)
and and columns (s). A common choice is a second or a third order penalty.
The penalty matrix has two terms, one for the row coefficients and one for
the columns, and it is constructed as:

P = ρu(Is ⊗DT

uDu) + ρs(D
T

sDs ⊗ Iu), (3)

where ρu and ρs are the smoothing parameters. To choose the optimal
values of the smoothing parameters AIC is minimized. For this the values
of ρu and ρs are varied over a grid of combinations, on log10-scale, and the
model is estimated repeatedly for each combination of values. The optimal
smoothing parameters ρ̂u and ρ̂s are the ones which minimize the AIC of
the model.

3 Application: Marriage after cohabitation

We use data from the first ten waves of the German Family Panel (pairfam),
release 10.0, to study the hazard of marriage after having cohabited. The
two time dimensions are the age of the individual (t) and the duration of
cohabitation (s). Therefore u (the transformed time scale) is the age at
which the individual started cohabiting.
Germany is an interesting case study because marriage is very prevalent
but attitudes toward marriage differ significantly between West and East
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FIGURE 1. Smooth hazard of marrying after a cohabitation by age and duration
of the cohabitation.

Germany. We, therefore, estimate the smooth hazard for West and East
German men and women separately.
Figure 1 presents the estimated hazards of marriage after cohabiting for
West and East German men, plotted in the original plane and only for
the observed ages and durations. The hazard of marrying after a period of
cohabitation not only shows different levels in East and West Germany, but
also quite different age-duration patterns. Also, the interplay between age
and duration of cohabitation is rather complex, which would be difficult to
capture unless both time dimensions are considered simultaneously.
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Abstract: Describing the effect of climatic and spatial factors on the geographic
distribution of the plant pathogenic bacterium Xylella fastidiosa has been the
main aim since the moment that it was discovered its presence in Alicante (Spain).
This work started with the analysis of the presence/absence data of the pathogen
using Bayesian hierarchical models through the integrated nested Laplace approx-
imation methodology and the stochastic partial differential equation approach.
Spatial models usually assume stationarity, however, this may be not applicable
when physical barriers are present in the study area. Taking into account the
irregularities of the terrain and what this may entail in the spread of the dis-
ease, higher altitude areas have been considered as possible barriers in the area
of interest. The results show that the spatial effect had a strong effect in the
model and also that there was no great influence of the barriers due to their
reduced extension. Future work will be focused in using these barriers models
with theoretical phytosanitary barriers.
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1 Introduction

Species distribution models (SDMs) are useful tools to establish which con-
ditions are potentially suitable for the expansion of populations, to evaluate
the associations of biotic and abiotic factors with the geographic extent of
the species, as well as to predict the species distribution in space and time.
These types of models can be developed through different methodologies.
However, in many cases, they ignore the spatial dependence which usually

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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exists among the geographical locations of the observations. This can lead
to an overestimation of the parameters and to establish erroneus relation-
ships between observations and covariates. Spatial Bayesian hierarchical
models allow the inclusion of spatial autocorrelation.
Spatial models are usually based on the fact that the spatial correlation
between observations only depends on the Euclidean distance between lo-
cations, i.e. that assumes that is stationary and isotropic. Nevertheless,
this assumption may lead to a bias in the prediction of species distribution
when there are dispersal barriers in the study area (Bakka et al., 2019,
Mart́ınez-Minaya et al., 2019).
Xylella fastidiosa was detected in 2017 in Alicante (Spain), affecting mainly
almond trees, although it has also been detected in other plant species. The
first interest in this study was to analyze the effects of climatic and spatial
factors on the distribution of the pathogen. But taking into account that
the study region had a variable topography, with areas at sea level and
mountains over than 1500 m of altitude, the areas with the highest altitude
were considered as physical barriers.

2 Data and modeling

Data were considered as continuous locations that occur within a defined
spatial domain (geostatistical data). Presence/absence data of X. fastidiosa
from the official surveys in 2018 in Alicante were analyzed using a Bayesian
hierarchical model through the Integrated Nested Laplace Approximation
methodology (Rue et al., 2009). The spatial effect was included using the
Matérn covariance function, approximated as a solution to a stochastic
partial differential equation (Lindgren et al., 2011).
The mean of the response variable Yi was linked to a structural predictor
which included the effect of covariates and spatial effect in an additive way:

g(πi) = β0 +
M∑

m=1

βmxmi + u(si),

where β0 is the intercept, βm are the coefficients of the covariates xm, πi
is the probability of presence at location i, and ui represents the spatial
random effect.
Following Bakka et al. (2019), taking into account a non-stationary process,
in the areas with barriers the correlation was eliminated by introducing a
different Matérn field, with the same variance (σ) but a range (r) close
to zero. Thus, u(s) is the solution to a system of stochastic differential
equations that includes the normal area with the area of the barriers. In
this case, the areas with highest altitude were established as barriers (above
1065 m).
Climatic variables for Alicante were obtained from the WorldClim v.2
database (Fick and Hijmans, 2017). Due to the high linear correlation found
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among the climatic variables, a selection of variables was made prior to the
modeling process, where the collinearity was evaluated by means of the
variance inflation factor (VIF). Once the climatic variables to be included
in the model were pre-selected and taking into account the spatial effect,
a model selection was made based on two criteria: the Watanabe Akaike
information criterion (WAIC) (Watanabe, 2010), which indicates the good-
ness of fit of the model; and the logarithmic conditional predictive ordinate
(LCPO) (Roos and Held, 2011), which evaluates the predictive capacity.

3 Results and discussion

Based on the linear correlation and the value of the VIF, the pre-selected
climatic variables were: mean diurnal range (bio2 ), mean temperature of
wettest quarter (bio8 ) and precipitation of wettest month (bio13 ). The
combination of these three climatic covariates and the spatial effect resulted
in 16 models to evaluate. According to WAIC and LCPO criteria, the one
that included the covariate bio13 and the spatial effect was selected as the
best model.
The probability that the posterior distribution of the parameter for bio13
was less than zero was 0.94, therefore, it was considered relevant in the
model. The effect of this covariate on the model would imply that areas
with higher precipitation in the wettest month would have lower probability
of the presence of X. fastidiosa.
Figure 1 shows the mean and standard deviation of the predictive posterior
distribution. Athough the covariate bio13 was considered relevant in the
model, a strong influence of the spatial component in the model was ob-
served. In this way, the highest probability of the presence of X. fastidiosa
was found in those areas where the spatial effect had higher values.
Due to the small extent of the barriers considered in the study area of X.
fastidiosa, they did not have a major impact on the spatial component,
nevertheless, it was observed a smoothing effect around the areas with
higher altitude. In the study of species distributions, the elements that are
barriers for dispersal cannot be ignored, since it would be wrongly assumed
that the species can be found in areas where it would be actually impossible
to be present.
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Abstract: An important problem in Statistics is the study of longitudinal data
taking into account the effect of explanatory variables such as treatments and
time and, at the same time, incorporate into the model the time dependence
between observations on the same individual. The latter is specially relevant in
the case of having nonstationary correlation, as well as nonconstant variance
for the different time point at which measurements are taken. Antedependence
(AD) models constitute a well known commonly used set of models that can ac-
commodate this behavior. In this paper, a new Bayesian approach for analyzing
longitudinal data within the context of antedependence models is proposed. This
innovative approach takes into account the possibility of having nonstationary
correlations and variances, and proposes a robust and computationally efficient
estimation method for this type of data. We consider the joint modelling of the
mean and covariance structures for the general AD model, estimating their pa-
rameters in a longitudinal data context. Our Bayesian approach is based on a
generalization of the Gibbs sampling and Metropolis-Hastings by blocks algo-
rithm, properly adapted to the AD models longitudinal data settings. Finally, we
illustrate the proposed methodology by analyzing the race dataset.

Keywords: Antedependence models; Bayesian methods; Mean-covariance mod-
elling; Nonstationary correlation.

1 Introduction

Continuous longitudinal data consist of repeated measurements on the
same subject over time. These measurements are typically correlated and
there have been several proposals in the literature to handle stationary or
nonstationary correlations and variances, as well as balanced or unbalanced
longitudinal data. A general fixed effects regression model for longitudinal

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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data can be defined by assuming that the response variable Yi can be
explained with the model given by Yi = Xiβ + εi, i = 1, . . . ,m, where
Yi = (Yi1, . . . , Yini)

T is the ni × 1 vector of responses for subject i, Xi is
the ni × q design matrix of rank q, which includes the covariates for the
i-th subject; εi is the ni × 1 vector of errors, assumed to follow a multi-
variate normal distribution with mean 0, and variance-covariance matrix
Σi(θ) = σ2V0i, whereas θ = (θ1, . . . , θk)T and β = (β1, . . . , βq)

T are k and
q-dimensional vectors of unknown parameters for the variance-covariance
and mean model, respectively. Here, ni represents the number of observa-
tions available for the i-th subject. If ni = n, ∀i, we have a balanced data
set. In addition, m represents the number of individuals in the study, which
are assumed to be independent from one another.
Fitting longitudinal models can be carried out by using maximum likelihood
estimation methods, such as the Newton Raphson, the EM algorithms, re-
stricted maximum likelihood or alternative Bayesian methodological pro-
posals. A Bayesian proposal with no specific variance-covariance structure
assumes a multivariate normal prior distribution for the mean regression
parameters and a Wishart prior distribution for the covariance structure.
A second approach assumes regression structures in both the mean and the
variance-covariance matrix of normal variables. This approach is based on
the modelling proposal which uses the Cholesky’s matrix decomposition.
In this paper we propose a Bayesian method for the joint estimation of
the mean and covariance parameters in the regression longitudinal models
settings under the normality assumption, and also allowing for the spec-
ification of several different variance-covariance structures. Our proposals
start by considering variance-covariance models with stationary correla-
tions and homogeneous variances, as is the case in the CS, AR(1) and
ARMA(1,1) models, so that they are then generalized to consider nonsta-
tionary correlations and heterogeneous variances, such as is the case in the
structured antedependence model of order one, or SAD(1) model. That is,
we extend the previous proposal to consider parametric more parsimonious
variance-covariance models that have been shown to be more useful in lon-
gitudinal data settings than those of the unstructured AD model previously
considered therein. In order to illustrate the performance of the proposed
methodology, it was applied to fit longitudinal models with structured AD
of order one, SAD(1), covariance structures to the 100-km race dataset.

1.1 Bayesian estimation proposals

In longitudinal models, if Y = (Y1,Y2, . . . ,Ym)T denotes the vector
of responses for all of the m individuals in the study, having a design
matrix X = (XT

1 , X
T
2 , . . . , X

T
m)T , we have that Y = Xβ + ε, where

ε = (ε1, . . . , εm)T is a vector of random errors associated to the correspond-
ing component in the responses vector Y , so that the εi’s are assumed to
be independent from each other, ε ∼MVN with mean 0 and block diago-
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nal variance-covariance Σ(θ) with diagonal components Σ1(θ), . . . ,Σm(θ).
Thus, under mean and variance-covariance model assumptions, apart from
a constant term, the likelihood function is given by:

L(β,θ|Y ) ∝
m∏

i=1

|Σi(θ)|− 1
2 exp

{
−1

2

[
(Y −Xβ)TΣ−1

i (θ)(Y −Xβ)
]}

,

where the Σi(θ)′s are assumed to follow: (1) a compound symmetry (CS),
equicovariance or equicorrelation model, with θ = (σ2, ρ)T , Var(Yij) = σ2,
j = 1, . . . , ni, and Cor(Yij , Yil) = ρ; (2) a first order autoregressive re-
gression structure AR(1) model, with θ = (σ2, ρ)T , Var(Yij) = σ2 and
Cor(Yij , Yil) = ρ|tij−til|, j 6= l; (3) an autorregressive with moving average
ARMA(1,1) model, with θ = (σ2, ρ, φ)T , Var(Yij) = σ2, Cor(Yij , Yil) = φ
if |tij − til| = 1, and Cor(Yij , Yil) = φρ|tij−til|−1 if |tij − til| > 1;
and (4) a structured antedependence (SAD) model, where the compo-
nents of θ = (σ2,ρT , λ,ψ)T are given by Cor(Yij , Yi,j−k) = ρj,j−k =

ρ
f(tij ,λk)−f(ti,j−k,λk)
k , j = s + 1, . . . , n, k = 1, . . . , s, and σ2

j = σ2G(tij ,ψ),

j = 1, . . . , n, whit f(tij , λk) = (tλkij − 1)/λk, if λk 6= 0 and f(tij , λk) =
log(tij), if λk = 0.
Thus, assuming independent prior distributions for β and θ, the poste-
rior parameter distribution is given by π(θ) ∝ L(β, θ|Y )p(β)p(θ), where
p(β) is the prior distribution of β, assumed to be a multivariate nor-
mal distribution, and p(θ) the prior distribution of θ, defined accord-
ing to the variance-covariance structure. Then, samples of β are ob-
tained from their posterior conditional distribution, a multivariate nor-
mal distribution. For θ, assuming prior independence between their pa-
rameters components and that λk = λ, for all k, the following prior dis-
tribution were assumed: p(ϕ) ≡ Gamma(g0/2, g0σ

2
0/2), where ϕ = 1/σ2;

p(λ) = U(−a, a); p(ρ) ≡ Beta(a, b), and a multivariate prior normal distri-
bution p(ψ) ≡MVN(ψ0,K0) for ψ = (ψ0, ψ1, . . . , ψr)

T , in order to build
a normal kernel transition function. Thus, samples of ϕ can be obtained
from their full conditional posterior distribution, which is a gamma distri-
bution. Samples of ρ, λ and ψ are obtained from the posterior conditional
distributions by applying the Metropolis Hastings algorithms, defining ap-
propriate kernels transition function. That is, appropriate kernel transition
functions should be defined in order to attain a reasonable efficiency for
the proposed algorithm. As for φ and λ, a kernel transition function, such
as the one assumed for ρ and given in equation (1), is also assumed.

q(ρ(∗)|ρ(k)) =

{
ρ(∗) ∼ U(0, 2ρ(k)) ρ(k) ≤ 0.5

ρ(∗) ∼ U(2ρ(k) − 1, 1) ρ(k) > 0.5
(1)

For ψ, we assume a kernel transition function given by the observational

model obtained from Ỹj = 1
m−1

∑m
i=1

(
Yij − Ȳj

)2
, where Ȳj = 1

m

∑m
i=1 Yij ,
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and by assuming, without loss of generality, that ni = n, and that the
working observational model

w̃j = log(Ỹj) = ψ0 + ψ1X1j + · · ·+ ψpXpj + εj (2)

follows a normal distribution, where εj ∈ N(0, σ2), with σ2 known, and

such that X̃j = (1, X1j , . . . , Xpj) and X̃ = (X̃T
1 , . . . , X̃

T
n )T . Thus, the

kernel transition function for q(ψ) is obtained from the combination of the
normal prior distribution and the observational model in (2). That is,

πq(ψ) ≡ N(µψ,Kψ), (3)

where µψ = Kψ(K−1
0 ψ0 + X̃T Σ̃−1W̃ ), with Σ̃ = diag(σ2), W̃ =

(w̃1, . . . , w̃n)T and Kψ = (K−1
0 + X̃T Σ̃−1X̃)−1.

2 Application: 100-Km Race Data

The 100-Km Race Data correspond to each of the partial times in minutes
for each of the 80 competitors in each of the 10-kilometer sections of a
100-km race in the United Kingdom in 1984. The objective is to find a
parsimonious model describing in the best possible way how competitor’s
performance on each 10-km section and performance on previous sections.
Based on shape of the data set we assume a cubic in time mean regression
model Yij = β0 + β1tij + β2t

2
ij + β3t

3
ij + εij , i = 1, . . . , 80, and, based

on the sample correlation and variance values for this dataset, variances
increase as the race progresses, and correlations are nonstationary, so that
we propose the use of a variance-covariance structure having an SAD(1)
model given by:

ρj,j−k = ρf(tij ,λ)−f(ti,j−k,λ), j = s+ 1, . . . , n; k = 1, . . . , s (4)

σ2
j = exp (ψ0 + ψ1tij + ψ2t

2
ij), j = 1, . . . , n, (5)

where f(tij , λ) = (tλij − 1)/λ, if λ 6= 0 and f(tij , λ) = log(tij), if λ = 0.
The proposed Bayesian method shows a good performance, showing a small
transient period and parameter estimates that agree with the dataset be-
havior. The AIC, DIC and BIC values are small for the proposed model
compared with those obtained in previous analysis. Results include the re-
gression parameter estimated mean values under the Bayesian proposal,
together with their respective standard deviations, and including median
values, as well as estimates obtained by restricted maximum Likelihood
methods (REML). Table 1 presents the posterior mean parameter esti-
mates, obtained under the Bayesian proposal for the Type 3 - SAD variance-
covariance structure, together with their respective standard deviations
within parentheses, including median values, and parameter estimates un-
der REML-methods for the 100-km race dataset. In the Bayesian proposal
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for the Type 3 - SAD model, there is a slight difference with the one as-
sumed in previous analysis (i.e., those applying the REML methods), where
the proposed variance function is σ2

j = σ2(1+ψ1tij+ψ2t
2
ij), j = 1, . . . , 10.

TABLE 1. Mean parameter estimates for the Type 3 - SAD model.

Parameter Mean Median REML-estimates

β0 44.585 (1.632) 44.573 43.428
β1 -2.410 (2.102) -2.421 1.354
β2 1.327 (0.752) 1.326 0.253
β3 -0.097 (0.072) -0.097 -0.017

Table 2 includes the estimated values for the variance-covariance parame-
ters under the Bayesian proposal, together with their respective standard
deviations, and including median values, as well as estimates obtained by
restricted maximum Likelihood methods (REML), when available, where
standard deviations for the variance-covariance parameters were not pro-
vided. In any case and in order to be able to compare the estimated vari-
ances at each split time, we also include their REML-estimates for the
variance parameters: σ̂2 = 16.952, ψ̂1 = 0.590, and ψ̂2 = 0.450.

TABLE 2. Variance parameter estimates for the Type 3 - SAD model.

Parameter Mean Median REML-estimates

ρ 0.918 (0.031) 0.924 0.929
λ 1.680 (0.261) 1.684 1.600
ψ0 2.771 (0.308) 2.767 –
ψ1 0.677 (2.128) 0.683 –
ψ2 -0.034 (0.021) -0.034 –

3 Conclusions

We have proposed alternative Bayesian longitudinal models for fitting com-
pound symmetry, autoregressive of order one, autoregressive with moving
averages, as well as structured antedependence models for nonstationary in
variance and/or correlation longitudinal data settings. In this paper, we as-
sume flexible prior distributions, specific methods to obtain samples of the
conditional posterior distribution are proposed. The usefulness of the pro-
posed method was illustrated with the analysis of the 100-km race dataset,
and results were compared to those obtained by restricted maximum like-
lihood methods. Results suggested that the proposed methods behave well
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under very general conditions, and estimated values were similar to those
obtained by classic methods. However, classic methods require specific pro-
gramming, whereas the proposed Bayesian methods can be easily adjusted
to the data sets under study by using very flexible and easy programming,
as well as general available software, such as R.
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Abstract: The recent abundance of wearable technology has led to a sharp rise
in the availability of multivariate data streams. However, many functional data
analysis (FDA) methods require such data to be measured regularly without
missingness, with data being collected at the same fixed times for all individuals.
In order to deal with irregular, concurrent, functional data including missing
values, we developed the Bayesian model for function-on-function regression. This
method is tested in a simulation study and applied to concurrently measured
glucose (every 5 minutes for 1 week) and electrocardiogram (ECG) data (every
10 minutes for 1 week) in a cohort of n = 17 type 1 diabetics. The Bayesian
model outperformed other models when the underlying relationship is complex
and non-linear.

Keywords: Functional concurrent regression; Functional data analysis; Bayesian
Models

1 Introduction

Functional data analysis (FDA)(Ramsay and Silverman 2006) assumes
that the observed data (e.g. recorded over time for an individual) are
a stochastic process and that the data can be represented as functions.
Methods for FDA include functional principal components analysis (Yao
et al. 2011), functional correlation and functional regression models
(Goldsmith and Schwartz 2017) among others. In the early years of
FDA, application focussed on data measured on a dense and regular
grid. However, many data are collected irregularly over time with each
subject having a different number of samples and different sampling
points. Years ago, such data had few replicates and were analysed using
longitudinal data techniques such as linear mixed models (Laird and
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Ware 1982). With developments in sensor technology, functional data
(e.g. from wearable devices) can have thousands of replicates measured
per individual and sampling points which differ from person to person.
These data maybe highly non-linear, and hence FDA techniques are best
placed to maximize their value. In this paper, we focus on modelling
the concurrent relationship between functional variables, where both the
response and predictor variables are functional and measured on the same
domain (i.e. the functional concurrent model or FCM).

The frequentist methods readily available to fit FCM to irregular data with
missingness use only complete cases (Leroux et al. 2018). Other methods
considered for such data are not available in software. Bayesian models
can use all the data available in such cases. However, models considered
so far in the Bayesian framework only fit data collected on a regular grid
(Crainiceanu and Goldsmith 2010). In this paper we develop and test a
Bayesian model that can fit FCM to irregular data including missing values.

2 Methods

2.1 Functional Concurrent model (FCM)

We consider both functional responses and covariates which are irregularly
and sparsely measured. When both response and predictor are functions,
the function-on-function model regression model is popular. A special type
of function-on-function regression is the functional concurrent regression
model which estimates the concurrent relationship between the response
and predictors dynamically across the same domain t. The observed data
are (Yij , Xij) which denote the ith individual’s measurement at time j. The
model with one covariate is given by the formula (Leroux et al. (2018))

Yi(t) = f0(t) +Xi(t)f1(t) + bi(t) + εi(t) (1)

where Yi(t) is the response at time i for the response and f0(t) is the con-
stant function, X(t) is the functional predictor at at time j, bi(t) are subject
specific deviations from the intercept function and ε(t) are independent ran-
dom errors. Ivanescu et al. (2018), Febrero-Bande et al.(2012) and Ramsay
and Silverman (2006) developed models to fit the FCM. These models can
fit sparse data measured on a regular grid or irregular data on a dense
grid. For irregular and sparse data, Leroux et al. (2018) developed the fcr
package. A concurrent relationship can also be estimated by the additive
model using the mgcv R package. In the Bayesian framework, Goldsmith et
al. (2017) developed an R package (vbvs.concurrent package) for variable
selection in the FCM model which can estimate the parameter function.
However, the fcr, mgcv, and vbvs.concurrent packages use complete cases
only. In addition, the vbvs.concurrent does not produce inferences.
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2.2 Bayesian Functional Concurrent Model

The functional parameters, fi(t) in Model 1 were expressed in terms of
basis functions. Let B(t) = {B1(t), · · · , Bc(t)}′ be a sequence of basis
functions evaluated at t, where c is the number of basis functions. Then
let fi(t) = B(t)′Θ where Θ = (θ1, · · · , θc)′ is the vector of coefficients.
The subject specific deviations are also modelled using basis functions
bi(t) =

∑c
i=1 uikBk(t) where, ui = (ui1, · · · , uic)′. Let yi = (Yi1, · · · , Yimi)′

and Xi = (Xi1, · · · , Ximi)
′, Bi = [B(ti1), · · · ,B(timi)]

′ and

Zi = [Bi, diag(X1,i)Bi, · · · , diag(Xp,i)Bi].

With this notation, the model can be expressed as a mixed model

yi = Z′iΘ + u′iBi

which can be fitted using Bayesian methods or any other software, and
Bayesian methods can easily be applied. The parameter functions were then
estimated separately as fi(t) = B(t)′Θ.The model was fitted in R using the
R2jags package. The response was assumed to be normally distributed. The
design matrix Z was obtained from the data and the smoothness on Θ was
imposed using the first order random walk. Subject specific ui was assumed
to follow normal with covariance Γ. Specifically; Yij ∼ N(XΘ, σ2), θi ∼
N(θi−1, 10000), i = 2, · · · , c, and ui ∼ N(0,Γ). The parameter functions
were obtained as fj(t) =

∑c
i=1 θiBi, j = 0, 1, these were set as stochastic

nodes in the model.

2.3 Simulation study

A simulation study was performed to compare the Bayesian model with
the fcr, vbvs.concurrent and mgcv models to determine which performs
best when there are sparse and irregular data. The Bayesian model was
fitted using the R2jags package and convergence was checked using trace
and history plots. The model simulated was

Yi(t) = f0(t) + f1(t)Wi(t) + εi(t)

with Wi(t) = Xi(t) + δi(t), X(t) = 4cos(10t − 0.1) + 1.5sin(10t −
0.6) + 2cos(20t − 0.6),f0(t) = 0.75t − exp(−6t) (to mimic glucose trend
in our application below), εi ∼ N(0, σ2

ε ) and δi(t) ∼ N(0, σδI). Four
functions were considered for f1(t);1. Linear: 12t − 6,, 2. Exponential:
1/(1+exp(5−10t)), 3. Polynomial: 1.5t−2t2 +1.6t3−2t5 and 4. Sinusoidal:
0.2− cos(t(1.5t− π)) + 1.2 exp(−8t2).
Sparsity was induced to the data with (i) 10% missing completely at ran-
dom - MCAR for all individuals and (ii) a 10% missing middle chunk of
data for half of the population. Sample size was set to n = 100, with
ni = 100 sampling points and error variance ε = 1. All the models were
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fitted using equal basis splines for easier comparability since all the models
are spline based. Models were fitted in R v3.6 to 100 datasets and compar-
isons were made using squared deviation,

∫
(fp(t)− f̂p(t))2dt, p = 1, 2, 3, 4.

The smaller the deviation, the better the model.

2.4 Application

In order to determine the relationship between extracellular glucose and
heart functioning, n = 17 type 1 diabetes patients were recruited in a
prospective observational study. They were fitted the continuous glucose
monitor (CGM) which measured glucose in mmol/L every 5 minutes, and
also wore a vest with sensors to measure ECG data every 10 minutes (in
particular QT interval - see Figure 1). There were missing ECG data due
to renewal of sensor gel or, for instance, to take a bath. The functional
response variable of interest was the QTc (corrected QT) interval from
the ECG vest and the functional predictor was glucose from the glucome-
ter(mmol/L).

FIGURE 1. ECG tracing for one heart-beat

3 Results

3.1 Simulation study

The different models were fitted on 100 datasets for the two missingness
scenarios. Boxplots for the 100 squared deviations for each function are
shown in Figure 2. We can see that the Bayesian model provides stable
estimates regardless of function and type of missingness, and gives the
best approximation of the true function compared to other models. The
time taken to run 100 observations model was 9.95, 44.56, 10.56 and 32.95
seconds using the mgcv, fcr, vbvs.concurrent R packages and Bayesian
respectively. It can be seen that the Bayesian model is not as fast as the
variational Bayes and mgcv but it’s quicker than the fcr approach.
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FIGURE 2. Boxplots for different missingness proportions for the four models

3.2 Application

The Bayesian FCM was fitted for the ECG-glucose data and the parameter
function is shown in Figure 3. The plot provides evidence for a dynamic
relationship over time. The fitted model finds a positive relationship be-
tween glucose and QTc at several times during the study. In these periods,
as glucose increases, mean QTc also increases. This may be useful in the
care of diabetes patients, although more work is required to investigate this
complex dynamic relationship.

4 Conclusion

We have developed a novel Bayesian functional concurrent model which
can be applied to sparse, irregular data. Our approach is competitive with
other models regardless of the shape of the relationship between functional
predictors and responses. It can deal with missing data as it uses all the
available data and can impute missing observations along the way. In ad-
dition, it provides straightforward inferences through confidence bands. It
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FIGURE 3. Parameter function for the effect of glucose on QTC

can be extended to include more covariates, both functional and scalar.
However, there are a wide variety of functions for the relationship between
functional variables which were not considered here. The Bayesian model
takes more time to fit in comparison with some other models, but if better
performance is valued, it should be used. In conclusion, we have seen that
the novel Bayesian functional concurrent model outperforms other estab-
lished models in the scenarios we have attempted.
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Abstract: This is a companion paper to the paper we presented at IWSM 34 in
2019 on the modelling of human mortality. Many such models are not identifiable
so parameter constraints are often used to obtain parameter estimates that are
then used for forecasting. In the 2019 paper we considered the invariance of the
central forecasts of the force of mortality with respect to the choice of constraints
when an ARIMA model is used to forecast parameter estimates. In the present
paper we consider the standard errors of these forecasts and show that these too
are invariant when an ARIMA model is used. We illustrate our results with the
same Portuguese data.
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1 Introduction

The forecasting of human mortality is a central problem for the providers
of pensions, annuities and other financial products which depend on the
future duration of a human life. The usual approach is to build a model
which depends on an individuals age, the current year and their date of
birth. However, dependencies among these three determinants mean that
most such models are not identifiable. As a consequence the forecasting of
particular parameter estimates subject to an arbitrary set of constraints is
problematic. In our earlier paper we showed that, while parameter estimates
are not identifiable, forecast values are identifiable when an ARIMA model
is used to forecast. In the present paper we extend these invariance results
to the standard errors of the forecasts.
We use Portuguese mortality data downloaded from the Human Mortality
Database on December 18, 2018. We have the number of deaths dx,y and
the corresponding central exposed to risk ex,y for ages 50 to 90 and years
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1970 to 2015. For simplicity we will index the ages by xa = (1, ..., na)T,
the years by xy = (1, ..., ny)T and the years of birth by xc = (1, ..., nc)

T

where nc = na + ny − 1 is the number of distinct cohorts. We suppose
that the number of deaths at age x in year y follows a Poisson distribution
P (ex,yλx,y) where λx,y is the force of mortality at age x in year y.

2 Method

We consider a generalized linear model or GLM with model matrix X,
n × p, n > p, rank p − q, q ≥ 1, and vector of parameters θ. Since X is
not of full rank θ is not identifiable. However, there exists a matrix H,
q × p, with rank q such that Hθ = 0. Now, subject to the condition that
Hθ = 0, we do have a unique estimate of θ. We refer to H as a constraints
matrix and we note that H is not unique.
Currie (2013) gave the following formula for the variance of the parameter

estimates, θ̂, in a constrained GLM with model matrix X and constraints
matrix H. We define ∆ = XTW̃X +HTH then Var(θ̂) is given by

Ψ = ∆−1 −∆−1HT(H∆−1HT)−1H∆−1 (1)

and the variance matrix of the fitted values Hθ̂ follows as XΨXT. We
show that not only is XΨXT invariant with respect to the choice of H
but so also are the standard errors of the central forecasts.

3 Example

We consider the age-period-cohort or APC model:

log λi,j = αi + κj + γna−i+j , i = 1, ..., na, j = 1, ..., ny, (2)

where i is the age at death, j is the year of death and na− i+ j is the year
of birth. Let α = (α1, ..., αna)T,κ = (κ1, ..., κny )T,γ = (γ1, ..., γnc)

T and
θ = (αT,κT,γT)T. We illustrate invariance with three constraint systems:
a standard one found in the literature, a random one and one equivalent
to Rs method of fitting a rank deficient regression model.
Currie (2019) showed that the parameter estimates α̂, κ̂ and γ̂ under the
different constraint systems were strikingly different. Figure 1 shows that
the same is true for their corresponding variances. However, XΨXT, the
variance matrix of the fitted values, is invariant with respect to the choice of
constraint system. In particular, the invariant variances of the fitted values
in the final year, 2015, are shown in the lower right panel. We denote these
variances by VA and we use VA in the construction of the invariant standard
errors of the forecasts of mortality.
To illustrate the forecasting of mortality we consider a ten year forecast.
The upper left panel of Figure 2 is divided into three regions. Region A is
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FIGURE 1. Variances of α̂ (top left), κ̂ (top right) and γ̂ (bottom left) in the
APC model under three sets of constraints; invariant variances VA of fitted values
in the final year, 2015, (bottom right).

the data region, in region B the forecast error depends on VA and the fore-
cast error for κ, while in region C the forecast error depends additionally
of the forecast error for γ. The resulting invariant forecast standard errors
are shown in Figure 2.

4 Conclusions

We showed (Currie, to appear) that two constraint systems lead to identical
fitted and forecast values of mortality. In the present paper we show that
this result extends to their standard errors.
Our results have important financial consequences. Forecasts of mortality
for policyholders in their fifties are necessarily for thirty, forty or even fifty
years ahead. Perversely, these ages are exactly those for which estimates
and forecasts of mortality are their least reliable; lower right panel in Figure
2. Actuaries routinely drop the cohort parameters from a model where the
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FIGURE 2. Top left: three regions; forecasts with 95% confidence intervals at age
55 (top right) and age 60 (bottom left); bottom right: invariant standard errors
of forecast in final forecast year, 2025.

number of cells with such parameters is small, say fewer than four. The
assumption here is that it is better to forecast such cohort parameters than
to estimate them. We will use our results on standard errors to examine
this assumption in future work.
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Guimarães, Portugal, 95 – 100.

Currie, I.D. (to appear). Constraints, the identifiability problem and the
forecasting of mortality. Annals of Actuarial Science.



Improved statistical emulation for a
soft-tissue cardiac mechanical model

David Dalton1, Dirk Husmeier1

1 Department of Mathematics and Statistics, University of Glasgow, UK

E-mail for correspondence: d.dalton.1@research.gla.ac.uk
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1 Introduction

The Holzapfel-Ogden (HO) model (Holzapfel and Ogden, 2009) is a sys-
tem of coupled partial differential equations that define the stretch-strain
dependence of the inner tissue of the LV, known as the endocardium. The
model depends on various material parameters, for example those which
are related to the stiffness of the cardiac fibres. Interest is in determin-
ing these parameters for their potential to aid in the diagnosis of cardiac
defects, however they can only be directly measured in-vivo by invasive pro-
cedures. An alternative, non-invasive approach to inferring the parameters
which has potential for use in clinical decision support is to use magnetic
resonance imaging (MRI). This is done by taking MRI scans of a subject’s
LV at end diastole, to determine the myocardium responses that are mod-
elled by the HO law. The material properties can then be estimated as those
values which minimise the discrepancy between the observed myocardium
response, and the response predicted by the model. The diagnostic value
of this approach has been shown in previous work (Gao et al. 2017). The
problem, however, is that the HO cardio-mechanical equations describing
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the kinematics of the heart have no closed form solutions. Instead, numer-
ical procedures based on finite element discretisation are required, which
typically take on the order of 15 minutes per evaluation on a high per-
formance computer. Since solving for the material properties by iterative
optimisation methods may require hundreds or thousands of such evalua-
tions, the approach is rendered unsuitable as a real-time clinical decision
support tool.
A number of methods exists which can be used to overcome this problem,
one of which is statistical emulation.

2 Statistical Emulation

Statistical emulation involves approximating a computationally expensive
model, referred to as a simulator, with a much cheaper surrogate model,
known as an emulator. This is done by first choosing a set of points to
cover the input region of interest, and then running the simulator f from
each point. This creates a dataset of input-output pairs

D = {(xi, f(xi))Ni=1} (1)

on which the surrogate model f̂ is trained. While the creation of a dataset
in this manner for the HO law is extremely computationally expensive, all
simulations can be done in advance of clinical deployment. In clinic, f̂ can be
used in place of f in the parameter optimisation routine, allowing estimates
to be obtained in real time. The inputs required for the HO model are a LV
geometry, H, and a four dimensional parameter vector θ = (θ1, θ2, θ3, θ4)T,
which we are interested in inferring. In this study, we considered a fixed
LV geometry, and then used a Sobol sequence (Fang et al., 2006) to gen-
erate 10, 100 parameter configurations within the physiologically realistic
boundaries (0.1, 5)4. The simulator was then run from each point, and 25
outputs were extracted: circumferential strains at K = 24 regions along
the endocardial surface, and the LV volume, all measured at end-diastole.
Having created the dataset, the approach for constructing the emulator
f̂ must be considered. Gaussian process regression is a Bayesian non-
parametric approach that is commonly used for emulation (Kennedy and
O’Hagan, 2001). A Gaussian process (GP) is a stochastic process where
any finite collection of random variables from the process are Gaussian dis-
tributed. GPs can be used for regression to define a prior directly over a
space of functions

f(x) ∼ GP(m(x), k(x,x′)) (2)

where the GP is completely specified by its mean function m(x) and co-
variance function k(x,x′). Given a finite set of known training points and
unknown test points, the GP marginalises to a multivariate Gaussian dis-
tribution, with mean and covariance found by evaluation of m and k at
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the given points. Standard rules for conditional Gaussian distributions can
then be used to find the posterior distribution of the test points, given the
training points. For further details, the reader is directed to (Rasmussen
and Williams, 2006).
One drawback of the GP modelling framework is that training and pre-
diction times grow with the size of the dataset under consideration. Local
Gaussian process regression (Gramacy and Apley, 2015) is an approach
which can alleviate this complexity. With local GPs, a prediction is made
at a given point using a GP trained on only the k nearest neighbours of
the point in the training data. Initial work on the HO simulation data we
analyse in this paper demonstrated the effectiveness of an emulator com-
prised of 25 independent local GPs, one for each dimension of the simulator
output (Davies et al., 2019). The problem with the local GP approach in
our application context is that, as we adjust the input parameter values
during the optimisation routine, the local neighbourhood will also change.
This in turn means that the emulator will need to be refit at each iter-
ation. Further work however has shown that a multivariate-output local
GP emulator trained on the nearest neighbours of a test point in output
space can accurately model the HO law (Noe et al., 2019). The advantage
of considering neighbours in output space is that this neighbourhood does
not change during the parameter optimisation, meaning that the emulator
only has to be fit once for each test point.
Given the above results, in this paper we consider an emulator made up
of 25 independent local GPs trained on k = 200 neighbours in output
space. The GPs were fit with linear mean functions and with squared ex-
ponential kernel function, where the length scales for each input dimension
were allowed to vary. This is known as an ARD (Automatic Relevance De-
termination) prior in the Machine Learning community (Rasmussen and
Williams, 2006). Although the data under consideration is deterministic, a
small nugget term (10−6) was added for reasons of numerical stability.

3 Maximum Likelihood Parameter Inference

Our objective is to find the optimal parameter estimates which minimise
the loss between measured data, and the values predicted by the em-
ulator. In what follows, we denote the measured quantities, after non-
dimensionalisation, by

y = (y0, y1, . . . , yK)T (3)

where y0 is the non-dimensionalised LV volume, and y1, . . . , y24 are the
non-dimensionalised circumferential strains.
The corresponding outputs from the GP emulator, which depend on the
cardio-mechanic parameters θ and the LV geometry, H, are denoted:

f̂(θ,H) =
(

f̂0(θ,H), f̂1(θ,H), . . . , f̂K(θ,H)
)T

(4)
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In previous work, described in Section 2, the cardio-mechanic parameters
θ for a given LV geometry H were estimated by minimizing the L2 norm
of the difference between y and f̂:

E(θ,H) = ||y− f̂(θ,H)||2 =

K∑

i=0

(
yi − f̂i(θ,H)

)2

(5)

where each output f̂i(θ,H) was set to the corresponding posterior GP mean
µi(θ,H). Under the assumption that the measurement noise is iid additive
Gaussian with variance σ2

m:

y = f̂(θ,H) + ε; ε ∼ N (0, σ2
mI) (6)

we obtain the log likelihood, conditional on the emulator output f̂(θ,H):

log p
(
y|̂f(θ,H)

)
=
−1

2σ2
m

K∑

i=0

(
yi − f̂i(θ,H)

)2

− K + 1

2
log(2πσ2

m) (7)

Maximizing this conditional likelihood with respect to θ, for a given LV
geometry H, is equivalent to minimizing the original objective function
(5), where again the emulator outputs are set to the posterior GP mean
values. However, a disadvantage of this approach is that the uncertainty
of the emulator, naturally predicted by the GP variance, is not taken into
consideration. To rectify this, we can compute the marginal likelihood by
integrating over the emulator outputs

p(y|θ,H, σ2
m) =

∫
p(y|̂f, σ2

m)p(̂f|θ,H)df̂ =

K∏

i=0

∫
p(yi |̂fi, σ2

m)p(̂fi|θ,H)df̂i

(8)
where conditional independence between the outputs has been assumed.
The two probability distributions under the integral are given by

p(yi |̂fi, σ2
m) = N (yi |̂fi, σ2

m)

p(̂fi|θ,H) = N
(

f̂i|µi(θ,H), σ2
i (θ,H)

)
(9)

where µi(θ,H) is the mean of the ith GP emulator, and σ2
i (θ,H) is its

variance. The integral in (8) is a therefore a standard Gaussian integral
with closed-form solution

p
(
y|θ,H, σ2

m

)
=

K∏

i=0

N
(
yi|µi(θ,H), σ2

m + σ2
i (θ,H)

)
(10)

which gives

log p(y|θ,H, σ2
m) = −1

2

K∑

i=0





(
yi − µi(θ,H)

)2

[σ2
m + σ2

i (θ,H)]
+ log

(
2π[σ2

m + σ2
i (θ,H)]

)




(11)
as a better objective function to optimise.
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4 Results and Discussion

In the absence of large quantities of real patient data, we instead reserved
the final 100 points of our simulated dataset as an independent test set on
which to quantify the difference in parameter estimation accuracy when
emulation uncertainty is accounted for. Using local GP emulators trained
on the remaining simulation data, we used iterative optimisation methods
to estimate each of the independent test parameter values with loss func-
tions (5) and (11) respectively. By then evaluating the mean squared error
(MSE) between the known true values and the estimated values, we ob-
tain a list of 100 errors for each loss function. The median of these lists is
displayed in Table 1, alongside the first and third quartiles.

TABLE 1. Test Set MSE (Parameter Space)

Emulator Loss Function 1st Quartile Median 3rd Quartile

Local GP Equation (5) 9.2× 10−8 3.1× 10−7 3.1× 10−6

Local GP Equation (11) 7.1× 10−8 3.0× 10−7 2.0× 10−6

The results in Table 1 quantify the improvement in parameter estimation
accuracy that can be achieved by accounting for emulation uncertainty.
The gain in performance is slight, which may be due to the prediction
variance for each output dimension being quite similar. Of note is that
our parameter estimation accuracy has improved by more than one order
of magnitude over the best results from the literature, particularly as a
consequence of a decreased nugget term. This accuracy is visualised in
Figure 1, which plots the 100 out of sample test parameter values, broken
down into each dimension respectively, versus the corresponding values
predicted when using loss function (11). We see extremely good agreement
between the true and predicted values across the entire parameter space.
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FIGURE 1. Plot of the true test set parameter values versus those predicted
by the local GP emulator using loss function (11), when broken down into each
dimension respectively. Points lying on the red lines of unit slope indicate perfect
prediction accuracy.

The limitation of the analysis presented here is that we have performed
emulation for a fixed, known LV geometry H. To be of clinical use however,
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the emulator must be able to account for the unique LV geometry of a given
patient. Therefore, the construction of emulators that can account for LV
geometry variations will be the remit of further work.
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Abstract: The ternary diagram is a popular tool for displaying compositions
with three components. When one or two components are close to zero, it is
hard to judge the display. The TrioScale diagram is an effective alternative, using
log-ratios. Unfortunately, it cannot handle zeros, which is a serious drawback
when studying count data. A variant of PRIDE is proposed to adjust the counts,
guaranteeing positive numbers.
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1 Introduction

The ternary diagram is a popular and effective way to display triples of
fractions. Figure 1 shows an example, for concentrations of three metals
(Manganese, Rubidium and Strontium) in moss (data set moss in the R
package StatDA). The underlying principle is that for any point in an isosce-
les triangle the sum of the lengths of the perpendiculars on the sides is
constant.
If a part of the fractions is close to 0 or 1, the dots gets pushed to the
sides, or into a corner, making the ternary plot hard to interpret, as can be
seen in Figure 1. An alternative diagram, called TrioScale (de Rooij and
Eilers, 2013), does not have this problem, as is shown in the right panel.
The axes now have a different meaning: they represent logs of ratios, like
log(Sr/Rb) for the horizontal axis. The coordinates in the new diagram are
easy to compute: x = log(p2/p1) and y = [2 log(p3/p1) − x]/

√
3. Notice

that they are based on log-ratios and that the sum of the proportions can
be arbitrary.
Unlike the ternary plot, the TrioScale diagram has no bounds. The axes can
be moved to parallel positions to create room for the data points. The log-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
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ratios for any point in the diagram can be read by perpendicular projection
on the axes.
Logs of ratios are preferable for statistical modelling of compositional data
(van den Boogaart and Tolosana-Delgado, 2013). de Rooij and Eilers (2013)
showed that, on the transformed scales, linear relationships between log-
ratios form straight lines. In contrast, in a ternary diagram they show
strong curvatures.
The point cloud in the TrioScale plot in Figure 2 suggests a bivariate normal
distribution as a decent approximation. This is certainly not the case in
the ternary diagram. Also the domain is bounded in the latter, which is
not the case in the TrioScale plot.
However, count data can create problems. With zeros in one or more frac-
tions it is not possible to compute log-ratios. This is a nuisance when an-
alyzing small counts. A simple, but inelegant, solution is to add a small
number (like 0.5) to each count. Instead, I propose to use the PRIDE
model (Perperoglou and Eilers, 2010) to replace zeros by positive numbers,
as will be explained in the next section.
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Ternary

FIGURE 1. Concentrations of three metals (Manganese, Rubidium and Stron-
tium) in moss, displayed in a ternary diagram. The axes indicate fractions.

2 PRIDE

PRIDE stands for Penalized Random Individual Deviance Effects. Let y
be an n−vector of observed counts and let X be an n by m design matrix.
In a log-linear model for for the expected values, µ, a random effect is
introduced for each individual observation:

log(µi) =
∑

j

xijβj + γi or logµ = [X In]

[
β
γ

]
= [X In]θ = Bθ,
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FIGURE 2. Concentrations of three metals (Manganese, Rubidium and Stron-
tium) in moss, displayed in a TrioScale diagram. The axes indicate log-ratios of
fractions.

where β contains the regression coefficients and γ the individual random
effects. To estimate β and γ, the penalized deviance

D = 2
∑

i

yi log(yi/µi) + λ
∑

i

γ2
i + κ

∑

j

β2
j ,

is minimized. The second penalty is introduced to avoid problems when
X is collinear; κ is a small number (like 10−6). The penalized likelihood
equations are B′(y − µ) = Pθ, where P is a diagonal matrix with blocks
κIm and λIn on the diagonal. The resulting linearized equations, that have
to be solved iteratively, are

(B′M̃B + P )θ = B′(y − µ̃+ M̃Bθ̃),

where a tilde indicates the current approximation and M = diag(µ). To
determine the value of the penalty parameter λ, I use AIC. It combines
the (unpenalized) deviance and the effective model dimension, which is
computed (at convergence) as trace(G), with

G = (B′M̂B + P )−1B′M̂B

PRIDE was designed to improve estimation of the regression parameters
(and especially their standard errors) when over-dispersion makes a model
with only β and the Poisson assumption unrealistic. My goal here is differ-
ent: after estimating the model I replace the observed y, containing zeros,
with µ̂. All elements of µ̂ are positive and thus suitable for presentation
with TrioScale.
The recipe is as follows. Let the data be given in a matrix Y = [yij ] with
m columns and n rows. Fit the model log µij = ηij = αi + βj + γij , so that
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FIGURE 3. Ternary diagram of the proportions of time spent by pigs in three
locations in a stable (HB: half in straw bed; HF: half in feeder; HP: half in dunging
passage). The circles represent the raw proportions, the dots their adjusted values.

θ′ = [α′ β′ γ′]′. The minimum of AIC is searched for on a grid for log λ.
To fit the model, Y is converted to the vector y, and the design matrix
X = [X1|X2|Ip] is constructed, where X1 = em⊗ In, X2 = Im⊗ en, eq is a
vector of ones of length q, Iq is and identity matrix of size q, and p = mn.
With many observations, the number of equations, n+m+mn, gets large.
The system is very sparse, so it can be solved quickly with sparse matrix
software. That does not help much with the computation of (the trace of)
G. However, Perperoglou and Eilers (2010) presented a very efficient al-
gorithm that exploits structure of the equations in (2). They consists of
blocks, with the largest block diagonal with dimensions mn by mn. There
is no need to store it explicitly as a matrix: a vector of the diagonal ele-
ments is enough. By rearranging the equations, computation time becomes
essentially proportional to mn. Hence there is no practical limit to the size
of the data set that can be handled.

3 An application

The R package zCompositions contains the data set Pigs. At 97 instants,
5 minutes apart, the locations of 29 sows in a stable were observed. Six
locations were considered: straw bed (BED), half in the straw bed (HB),
dunging passage (PASSAGE), half in the dunging passage (HP), feeder
(FEEDER) and half in the feeder (HF). The triples (HB, HP, HF), are
interesting, because they show low counts and many zeros. I first apply
PRIDE to the complete matrix with all six locations and then select the
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FIGURE 4. TrioScale diagram of the adjusted proportions of time spent by pigs
in three locations in a stable (HB: half in straw bed; HF: half in feeder; HP: half
in dunging passage).

triple (HB, HP, HF) for display. The AIC profile is shown in Figure 5. It
shows a clear minimum around λ = 0.8.
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FIGURE 5. AIC profile for the Pigs data.
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4 Discussion

The proposed model will always generate positive replacements for zeros,
removing the main obstacle for using TrioScale with counts. It also changes
the values of the non-zero observations. This is not common in recipes for
compositional data, which usually correct only the zeros. The Bayesian
algorithm in the package zCompositions (Martin-Fernadez et al., 2015) is
an example. I think that it is reasonable to adjust all observations. Why
modify only the zeros and keep the other numbers untouched?
An interpretation of the model is that we shrink towards the independence
model logµij = αi + βj . In principle shrinking towards more complicated
models is possible, if we have enough prior information. Covariates can also
be included, when relevant.
Adjusting counts with PRIDE can be used in more places. It will work on
any table with zeroes, as long as all row sums and all column sums are
not zero. There is a rich literature on correction of zeros in outcomes of
clinical trials with small observations. I proposed a bivariate display of log-
odds (Eilers, 2007) that cannot handle exact zeros. It will be interesting to
investigate the prior use of PRIDE there.
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Abstract: In standard competing risks studies, every unit or subject is exposed
to different risks at the same time, but its actual failure or death is attributed
to exactly one of them which is then called the cause of failure. In general, the
goal of these studies is to distinguish between the following three alternatives:
(1) the risks are equal, (2) the risks are not equal, and (3) the risks are lin-
early ordered. We concentrate on modelling proposals in competing risk studies
and develop empirical likelihood (EL) based tests for testing the hypothesis that
the cumulative incidence functions (CIF) corresponding to k-competing risks are
equal against the alternative that they are not equal or that they are linearly
ordered. The proposed test statistics are functionals of localized empirical likeli-
hood statistics. Their asymptotic null distributions are distribution-free and have
a simple representation in terms of a standard Brownian motion or a standard
Brownian bridge. The tests we propose here are extended to the case of right-
censored survival data via multiple imputation. In order to assess the usefulness
of the proposed tests, and to illustrate the theoretical results for their asymp-
totic distributions, we include a simulation study and also discuss an example
involving survival times of mice exposed to radiation.

Keywords: Competing risks; Cumulative incidence functions; Empirical likeli-
hood, Hypotheses testing.

1 Introduction

In standard competing risks studies, every unit or subject is exposed to
different risks at the same time, but its actual failure or death is attributed
to exactly one of them which is then called the cause of failure. In general,

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the goal of these studies is to distinguish between the following three alter-
natives: (1) the risks are equal, (2) the risks are not equal, and (3) the risks
are linearly ordered. This is established on the basis of the observed data
which is a random sample from (T, δ), where T is the lifetime and δ is the
cause of death. As an example, when comparing brands of a component
from different suppliers, the components may be tested in series. In such a
setting, the components are functioning in the same environment and their
times to failure are generally dependent. When this is the case, the sys-
tem will fail as soon as one of the components fails. Consequently, we only
observe the lifetime of the system and its cause of failure. The procedures
we develop here, within the context of modelling proposals in competing
risk studies will allow us to test whether these components are of the same
quality against the alternatives that they are either: (a) of different qual-
ity, or (b) one is superior to the others. A key role in such comparisons
is played by the cumulative incidence function (CIF). We assume that we
have k risks in which case the possible values of δ are 1, . . . , k The CIF
corresponding to the j-th risk is a subdistribution function whose value at
time t is the probability of failure or death by time t from risk j:

Fj(t) = P [T ≤ t, δ = j], j = 1, . . . , k, (1)

with F (t) =
∑
j Fj(t) being the distribution function (DF) of T , which we

assume throughout to be continuous with survival function S. The cause
specific hazard rate due to cause j is defined by

λj = lim
∆t→0

1

∆t
P [t ≤ T ≤ t+ ∆t, δ = j|T ≥ t], j = 1, . . . , k,

with the overall hazard rate λ =
∑
j λj . Comparison of competing risks

based on their CIFs has been considered before in the literature. For the
case of k = 2, several tests are available in the literature. In the contin-
uous case, Aly et al. (1994) and El Barmi et al. (2004) used very closely
related Kolmogorov-Smirnov type statistics to test H0 : F1 = F2 against
H1 : F1 ≤ F2, whereas El Barmi and Kochar (2002) developed a likelihood
ratio test for the same problem for the discrete or grouped data situation.
Extensions of these tests to the k-sample case have been considered in El
Barmi and Mukerjee (2006) and El Barmi et al. (2006), for the general
and the discrete/grouped data case, respectively. In this paper we provide
alternative tests based on the empirical likelihood approach. The test de-
veloped in El Barmi and Mukerjee (2006) is the only test designed for the
k-sample case in the general case. Recently El Barmi and El Bermi (2015)
developed an EL approach to test H0 against H1. Clearly when H0 is true,
the time and the cause of failure are independent. On the other hand, the
hypothesis of ordered CIFs, H1, is equivalent to

H1 : P [δ = 1|T ≤ t] ≤ P [δ = 2|T ≤ t], ∀t ≥ 0
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We extend the results in El Barmi and El Bermi (2015) to the k-risks case
by developing an EL based tests in the uncensored case for testing H0

against H2 −H0 and H0 versus H1 −H0, where

H0 : F1 = F2 = · · · = Fk, (2)

H1 : F1 ≤ F2 ≤ · · · ≤ Fk, (3)

and H2 imposes no constraints on Fj , j = 1, . . . , k. As already stated, when
H0 is true, the time and the cause of failure are independent. Moreover,
the hypothesis os ordered CIFs, H1 is equivalent to

H1 : P [δ = j|T ≤ t] ≤ P [δ = j + 1|T ≤ t], ∀t ≥ 0, j = 1, 2, . . . , k − 1.

In this form, H1 states that, given that a unit has failed by time t, the
conditional probability of its failing from cause j + 1 is uniformly greater
than that from cause j.
Our objective is to develop a novel EL approach to the important prob-
lem of nonparametrically testing H0 against H2 and H0 against H1 based
on a competing risks data modelling approach among the k CIFs. The
proposed tests is computationally efficient to implement and could be
used with massive data sets because they do not rely on the bootstrap
or any other simulation technique, and they reduce to a local test for
an ordering of binomial probabilities, which only requires a single sweep
through the pooled data. The proposed test statistics are functionals of
localized empirical likelihood statistics and their asymptotic null distri-
butions are distribution-free and have a simple representation. In order
to implement the test, we need to obtain he critical values of the corre-
sponding test statistic, where its finite sample as well as its asymptotic
null distributions are not tractable but the latter is distribution free. The
approximate critical values can be obtained by simulating 10000 data sets.
The i-th dataset, {(Tij , δij), j = 1, 2, . . . , 100} is a sample of size 100,
where Tij = X1ij ∧ X2ij ∧ . . . ∧ Xkij , and δij = `, if Tij = X`ij . Here
X1ij , X2ij , . . . , Xkij are independent exponential random variables with
mean one. The R program used to compute these approximate critical
values is available from the authors upon request.
The proposed tests are also extended to the case of right-censored survival
data via multiple imputation. Consider first the situation of Type I censor-
ing in which we assume that all the units enter at baseline and are followed
for a set time-period, say [0, τ ]. At the end of the follow-up period, the
remaining subjects at risk are right-censored. The right-censored subjects
can be viewed as failing in some (unknown) random order after the end
of follow-up period. In addition, only the order in which they fail and the
cause of failure affect the complete-data test statistics S01 and S02, which
would be available if all times and the causes of failure were observed. Our
proposal is to simply average S01 and S02 over all possible permutations of
these unobserved failure times. An average based on Monte Carlo sampling
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could be used to reduce the computational cost when the censoring rate
is large. The null distribution is unchanged. A similar idea can be used to
handle the case of random right-censoring as follows. First, let us note that
the Kaplan-Meier estimator, Ŝ (Kaplan and Meier, 1958), can be plugged-
in to provide an estimate of the residual survival function e(s) = S(s)/S(t),
for s > t, provided that S(t) > 0. If we specify τ > 0 such that Ŝ(τ) > 0,
we have that, for any right-censored observation at t < τ , the estimated
residual survival function is well-defined. Simulating from this estimated
residual survival distribution produces a new “uncensored” observation if
it falls in [t; τ), and, otherwise, a Type I censored observation. Either way,
its probability of failing from risk j is 1/k. Any observation (censored or
non-censored) at s > τ becomes right-censored at τ. In this way, we re-
duce the problem to the Type I censored case discussed above. Clearly, it
would be important to set the value of τ as large as possible to be able to
minimize the amount of extraneous right-censoring at τ . In practice, this
could be achieved by setting it slightly to the left of the largest uncen-
sored observation. In the sequel, when using this proposed procedure, we
average the complete-data test statistics S01 and S02 over 1000 “simulated
complete” data samples. The theoretical justification for motivating the
proposed imputation procedure can be derived by using a result of Akritas
(1986, Theorem 2.2) on bootstrapping the Kaplan-Meier estimator.

2 Application and discussion

To illustrate the theoretical results, we discuss an example involving sur-
vival times of mice exposed to radiation. We analyze a set of mortality
data kindly provided by Dr. H.E. Walburg, Jr. of the Oak Ridge National
Laboratory and reported by Hoel (1972). The data were obtained from a
laboratory experiment and consisted of the survival times of 82 male mice
who were exposed to radiation at an age between 5 and 6 weeks, and that
were kept in a germ-free environment. After autopsy, the cause of death
was attributed to one of three causes: reticulum cell sarcoma (blue: 3),
other causes (red: 2) and thymic lymphoma (black: 1) (see Figure 1). Our
proposed test results in a value providing an estimated p-value between
0.01 and 0.02, leading to the rejection of the hypothesis that the CIFs are
equal, which implies that risks are not the same (see Figure 1). Ordered
alternative of interest based on medical recommendations and specific hy-
pothesis of interest were also considered and tested for. Our proposed test
is an asymptotically distribution-free empirical likelihood ratio type tests
for testing the null hypotheses that k cumulative incidence functions cor-
responding to competing risks are equal against the alternative that they
are not equal, and against the alternative that they are linearly ordered.
We also provide approximate critical values for these tests and studied its
behavior in both a simulation study and a real dataset application. In ad-
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dition, we also discuss a new approach that can be used to extend our test
to the right censored data situations.
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FIGURE 1. CIFs for radiation mice data (Hoel, 1972).

3 Concluding remarks

In this paper, we have developed an asymptotically distribution-free em-
pirical likelihood ratio type tests for testing the null hypotheses that k
cumulative incidence functions corresponding to competing risks are equal
against the alternative that they are not equal and against the alternative
that they are linearly ordered. We have also provided approximate critical
values for these tests and, in order to illustrate our results, we have ana-
lyzed a dataset that has been previously analyzed within these settings. In
addition, we have also discussed a new approach that can use to extend
our test to the right censored data situations.
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mouse movement trajectories.
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1 Introduction

Functional data is a relatively new branch of statistics devoted to the study
of curves, surfaces, images, etc., which has experienced rapid development
in recent years. Improvements are continually emerging to answer real-
world functional data questions from many scientific disciplines.
This paper aims to improve difficulty prediction through mouse movement
trajectories gathered from respondents in a web survey, where several ques-
tions were manipulated to create different scenarios of difficulty. In survey
research, difficulty in understanding and responding to survey questions
in the way researchers intended is one of the most frequent sources of er-
ror that impedes the collection of robust and reliable data (Kreuter 2013).

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Therefore, to efficiently identify difficulty in surveys, robust and precise
methods are vital to minimize measurement errors from respondents’ data.
To do so, this paper introduces a new model for multivariate functional data
classification that uses novel semi-metrics to assess dissimilarities between
trajectories.
The remainder of this paper is as follows. Section 2 describes the model,
and Section 3 gives some preliminary results of the application.

2 The model

Consider the learning sample (xi, yi) for i = 1, . . . , n where y1, . . . , yn are
values of a categorical random variable Y with classes L = {1, . . . , l}. Con-
sider also that x1, . . . ,xn are realizations over t ∈ T ⊂ R of independent
and identically distributed copies of a multivariate functional random vari-
able X ∈ F , where F is an appropriate space of d-dimensional functions.
Hence, x(t) ∈ Rd for each t with d ≥ 2. Assume that x(a) is the a-th deriva-
tive of x that exists and is square-integrable in F . However, in real-world
data, functions are evaluated over a finite grid where time is discretely
observed, and that grid may differ between observed functions.
Suppose the following classification problem: a new observation x∗ with
unknown class membership y∗ is given, and thus we want to infer it from
the learning sample where predictors are multivariate functions.

2.1 Semi-metrics in the multivariate functional framework

Semi-metrics were proposed to measure distances and capture specific char-
acteristics of functions. Formally, let D(x,x∗) be the semi-metric between
the functions x and x∗ fulfilling:

D(x,x∗) ≥ 0

D(x,x) = 0

D(x,x∗) ≤ D(x, x̃) +D(x̃,x∗),

∀x,x∗, x̃ ∈ F . However, they are different from metrics in thatD(x,x∗) = 0
does not always imply that x = x∗. In addition, they can also be computed
on the functions’ derivatives x(a).
In the literature, several such semi-metrics have been proposed, notably
by Ferraty and Vieu (2006), Fuchs et al. (2015) and Fuchs et al. (2017).
However, these have been limited to the univariate functional case. There-
fore, this work extends these semi-metrics to the multivariate case, and
additionally, considers other distances such as the Frchet, Hausdorff, and
Needleman-Wunsch distances, and also application-specific semi-metrics.
Table 1 serves as an example of some of the semi-metrics studied in this
work.
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TABLE 1. Example of semi-metrics extended to functions from T ∈ (0, 1) to Rd.

D(x,x∗)

Manhattan
d∑

k=1

∫

T
| x(k)(t)− x∗(k)(t) |dt

Euclidean (
d∑

k=1

∫

T

(
x(k)(t)− x∗(k)(t)

)2
dt

) 1
2

mean (
d∑

k=1

(
1

|T|

∫

T
x(k)(t)dt− 1

|T|

∫

T
x∗(k)(t)dt

)2
) 1

2

globMax (
d∑

k=1

(
max
t∈T

(
x(k)(t)

)
−max

t∈T

(
x∗(k)(t)

))2
) 1

2

globMin (
d∑

k=1

(
min
t∈T

(
x(k)(t)

)
−min

t∈T

(
x∗(k)(t)

))2
) 1

2

dynamic time
warp (dtw)

(
d∑

k=1

∫

T

(
x(k)(t) ◦ γ∗ − x∗(k)(t)

)2
dt

) 1
2

γ∗ = argmin
γ∈Γ

=
(∑d

k=1

∫
T
(
x(k)(t) ◦ γ − x∗(k)(t)

)2
dt
) 1

2

◦ denotes the composition operator and Γ denotes the set
of all warping functions

Hausdorff

max



sup
t∈T

inf
t′∈T



(

d∑

k=1

∫

T

(
x(k)(t)− x∗(k)(t

′
)
)2

dt

) 1
2


 ,

sup
t′∈T

inf
t∈T



(

d∑

k=1

∫

T

(
x(k)(t)− x∗(k)(t

′
)
)2

dt

) 1
2







Frchet

inf
α,β

max
t∈T



(

d∑

k=1

∫

T

(
x(k)(α(t))− x∗(k)(β(t))

)2
dt

) 1
2




where α, β are continuous non-decreasing functions
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2.2 Ensemble

Following Ferraty and Vieu (2006), Fuchs et al. (2015) and Fuchs et al.
(2017), classification models such as the functional k-nearest neighbour
(FkNN) and non-parametric functional kernel estimator (NPFKE) can be
used to predict the class membership of x∗ according to the proximity to
x1, . . . ,xn. The idea of FkNN is to order the semi-metric values, and then
predict the class membership of x∗ with the most frequent category of the k
closest functions. However, NPFKE weights the probabilities of class mem-
berships of x1, . . . ,xn to predict the probabilities of the class membership

of x∗. The weights are given by K(D(xi,x∗)/h)∑n
i=1 K(D(xi,x∗)/h) ,where K(·) and h are

the kernel function (e.g., gaussian or uniform kernels) and bandwidth pa-
rameter, respectively. Notice that these weights are assigned in accordance
with the similarity between x∗ and x1, . . . ,xn.
In this paper, the linear combination and the stacked-based ensembles
of FkNN and NPFKE are extended to the multivariate functional case
through new and appropriate semi-metrics. In the case of the stacked-based
ensemble, random forest, boosting, and neural network with one hidden
layer are considered super-learners candidates.

3 Application

The data analyzed in this work are based on a web survey where several
questions were manipulated to create two scenarios of difficulty. One of
these questions was related to the type of employment, for which easy
and difficult versions with respectively concise and complex language were
created and randomly assigned between respondents (n = 551). As they
responded to the question, participants’ mouse movements were collected
in pairs of x- and y-coordinates which were time-normalized and considered
as bivariate functional predictors.
Table 2 gives some preliminary accuracies of FkNN and NPFKE with
semi-metrics in Table 1, application-specific semi-metrics and some pre-
liminary ensembles; for example, the Euclidean distance between flips,
hovers, and response times (RT). In survey research, x-flips, y-flips, and
hovers are respectively, the number of directional changes in the horizontal
direction, vertical direction, and periods without movement. In addition,
a personalization method was considered to incorporate the respondents’
baseline behavior into the model.To do so, mouse movements from five non-
manipulated questions were added to the semi-metrics with smaller weights
to incorporate the baseline behavior of the participants in these measures
of similarity.
Sub-sampling cross-validation was used with 100 repetitions and weights of
70% and 30% in the training and testing sets, respectively. For the NPFKE,
the normal kernel function was considered, and the weights for personal-
ization were 0.5 and 0.1 for the target and baseline variables, respectively.
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Since different semi-metrics capture different features of the trajectories,
an ensemble will be considered next by combining several non-personalized
and personalized semi-metrics to improve the accuracies in Table 2.

TABLE 2. Preliminary accuracies with FkNN and NPFKE models and semi–
metrics either in Table 1 or application-specific semi-metrics.

model semi-metric unpersonalized personalized
a=0 a = 1 a=2 a=0 a = 1 a=2

FkNN Manhattan 0.567 0.536 0.554 0.564 0.539 0.546
Euclidean 0.556 0.531 0.550 0.556 0.522 0.537

mean 0.561 0.536 0.523 0.549 0.514 0.523
globMax 0.593 0.543 0.530 0.601 0.545 0.521
globMin 0.556 0.560 0.531 0.542 0.578 0.545

dtw 0.546 0.526 0.528 - - -
Hausdorff 0.581 0.559 0.512 - - -

Frchet 0.562 - - - - -
flips 0.530 - - - - -

hovers 0.525 - - - - -
RT 0.514 - - - - -

NPFKE Manhattan 0.581 0.530 0.530 0.573 0.529 0.530
Euclidean 0.569 0.528 0.534 0.562 0.528 0.530

mean 0.563 0.531 0.527 0.559 0.531 0.529
globMax 0.603 0.527 0.526 0.594 0.530 0.526
globMin 0.548 0.551 0.531 0.527 0.567 0.540

flips 0.526 - - - - -
hovers 0.528 - - - - -

RT 0.528 - - - - -
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Abstract: The generalized linear mixed model (GLMM) is one of the most fre-
quently used techniques to analyze clustered non-Gaussian data. Commonly, the
GLMM is fitted by maximizing the marginal (log-)likelihood, i.e., integrating
out the random effects. However, this whole maximisation may require a con-
siderable amount of computing resources. Although computationally manageable
with medium to large data, it can be too time-consuming or computationally
intractable with very large clusters and/or with a large number of clusters. To
overcome this, a fast two-stage estimator for correlated non-Gaussian data is pre-
sented. It is rooted in the pseudo-likelihood split-sample methodology. Based on
simulations, it shows good statistical properties, and it is computationally much
faster than full maximum likelihood. The approach is illustrated using a large
dataset belonging to a network of Belgian general practices.

Keywords: Generalized linear mixed model; Hierarchical data; Random effects;
Split-sample

1 Introduction

The analysis of clustered non-Gaussian data is commonly done within
the generalized linear mixed model (GLMM) framework. In the GLMM
methodology, we assume that, conditionally on normally distributed ran-
dom effects, the outcomes are independent and their distribution belongs to
the exponential family, encompassing models for a wide range of outcomes
types, such as binary, count, and time-to-event. The main idea of including
these random effects is to address correlation and some variability due to
clustering.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Let Yij be the jth outcome measured for cluster i, with i = 1, . . . , N and
j = 1, . . . , ni. The GLMM assumes that, conditionally on a q-dimensional
vector of random effects bi ∼ N(0, D), the outcomes Yij are independent
with a density that belongs to the exponential family, that is:

f(yij |bi) = exp
{
φ−1 [yijθij − ψ (θij)] + c (yij , ψ)

}
, (1)

where θij and φ are called natural and scale parameter, respectively;
ψ (·) and c (·, ·) are known functions. Here, the conditional mean µij is
modeled by a known link function, µij = h

(
x′ijβ + z′ijbi

)
, where Xi =

(xi1, . . . ,xini) and Zi = (zi1, . . . ,zini) are (ni × p) and (ni × q) matrices
of covariates; and β is an unknown p-dimensional vector of fixed-effects
coefficients.
Even though (1) is expressed in this hierarchical form, it is customarily
fitted by maximizing the marginal (log-)likelihood, i.e.,

L (β, D, φ) =

N∏

i=1

∫ ni∏

j=1

fij (yij |bi) f(bi|D)dbi. (2)

As it can be seen from (2), maximization of the likelihood involves N inte-
grals over the q-dimensional random effects bi. Except from the Gaussian
case, the derivation of the marginal joint distribution can be complicated,
or even not possible in analytical form. Therefore, the marginalization is
done numerically, at the cost of requiring more computing resource.
To facilitate the estimation procedure with large datasets, Molenberghs et
al (2011) proposed the split-sample methodology. Here, the sample is par-
titioned into K sub-samples, which are analyzed separately and afterwards
the results are combined to obtain overall inferences. For clustered data, the
most efficient partitioning consists of sub-samples with equally distributed
clusters, i.e., clusters with the same design matrices (Molenberghs et al,
2018). However, this constraint is very restrictive in many cases, and we
may end up in the most extreme case, all sub-samples with a single cluster,
leading to the so-called cluster-by-cluster (CbC) estimator.
The paper is organized as follows. In Section 2, we propose the CbC es-
timator for a GLMM. The main findings of extensive simulations and a
real data analysis are briefly showed in Section 3 and 4, respectively. Fi-
nally, Section 5 is reserved for concluding remarks. More details of the CbC
estimator can be found in Flórez et al (2019a, 2019b, 2020).

2 Cluster-by-cluster estimator

The cluster-by-cluster (CbC) estimator follows the same two steps of the
split-sample methodology. For simplicity, we will assume that Xi = Zi.
Nevertheless, the general expression requires some further but straightfor-
ward algebra.
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Given the conditional independence assumption, in the first stage, we can
fit a generalized linear model (GLM) within each cluster. Evidently, it
requires that Zi is full column rank within each cluster, allowing estimation
of (β̂1, . . . , β̂N ).
In the second stage, a global estimator of β is obtained by weighted av-
eraging the sets of estimates of each cluster. Then, the estimator and its
variance are:

β̃ =

N∑

i=1

Aiβ̂, and V
(
β̃
)

=

N∑

i=1

AiV
(
β̂
)
ATi ,

respectively. For the weighting matrices (Ai), we opt for an approximation
of the so-called optimal weights (Molenberghs et al, 2018).
The variance matrix of the random effects (D) measures the variabil-
ity between clusters, and consequently, it cannot be estimated using a
single cluster. Hence, a method-of-moments approach is proposed. It is
based on the sum of the cross-product of the difference between the
cluster-specific estimates (β̂i) and the global estimate (β̃), i.e., Sb =
∑N
i=1

(
β̂i − β̃

)(
β̂i − β̃

)T
.

Then, the estimator is found by equating Sb to its expected value and

solving for D. Since E
(
b̃i

)
≈ 0,

E
(
b̃i

)
≈

N∑

i=1

(I −Ai)V
(
β̂i

)
(I −Ai)T +

∑

k 6=i

AjV
(
β̂j

)
ATj , (3)

where V
(
β̂i

)
≈ D + V

(
β̂i|bi

)
. Depending on the type of outcome,

V
(
β̂i|bi

)
can be found analytically or approximated using Taylor series

expansions.
Given that (3) is non-linear, an iterative procedure, e.g., Newton-Raphson,
is needed to find the solution of D. Furthermore, an expression for the
variance of D̃ can be found using the delta method.

3 Simulation

For the data-generating model we consider the following model:

Yij |bi ∼ Bern.

[
πij =

exp(ηij)

1 + exp(ηij)

]
, and Yij |bi ∼ Pois. [λij = exp (ηij)] ,

where ηij = β0+b0i+ziβ1+xij(β2+b1i)+zixijβ3, xij is continuous covariate
ranging in [0, 1], zi is a binary covariate, and (b0i, b1i)

′ ∼ N(0,D).
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We set β = (β0, β1, β2, β3)′ = (1, 0.1,−2,−1)′ and D = (d11, d12, d22) =
(2,−0.5, 0.5), for the logistic model. On the other hand, for Poisson model,
β = (1.5,−0.1,−0.5,−0.2)′ and D = (0.4,−0.2, 0.6).
For the simulations, we fixed the number of clusters (N) and the cluster
size (ni) is generated by ni ∼ N

[
µn, (0.25µn)2

]
(rounded to the nearest

integer). For the logistic model, N = 100 and µn = {100, 200, 500}. For the
Poisson model, N = 50 µn = {50, 100, 200}.
For each scenario, 1000 datasets were generated and analyzed using the
CbC estimator and the MLE based on adaptive quadrature. The compari-
son between both estimators is done by the relative bias (RB) and efficiency
(RE), separately for each parameter. The later is defined as the ratio of the
mean square error ratio of the CbC estimator over the MLE.
To evaluate the computational performance for large data, we set N = 500
and vary µn = {500, 1000, 2000}. Here, we generated 25 datasets.

TABLE 1. Relative bias (in percentage) and efficiency of the CbC estimator for
each parameter of the logistic and Poisson model with random slope.

Logistic model Poisson model
Relative bias(%) Relative bias(%) Relative bias(%) Relative bias(%)

µn µn µn µn
Parm 100 200 500 100 200 500 50 100 200 50 100 200
β0 3.8 1.7 0.8 1.12 1.04 1.02 0.1 -0.2 0.2 1.01 1.01 1.00
β1 30.8 17.5 1.0 1.09 1.04 1.02 2.7 12.9 5.0 1.00 1.02 1.00
β2 4.0 2.0 0.9 1.53 1.19 1.08 1.5 -0.2 2.0 1.01 1.00 1.00
β3 5.5 3.4 0.7 1.34 1.14 1.06 1.8 -1.2 -6.4 1.01 1.00 1.01
d11 6.6 3.5 0.9 1.57 1.34 1.17 3.4 0.7 0.7 1.16 1.07 1.05
d12 20.3 9.3 2.0 1.95 1.59 1.22 5.1 2.8 1.9 1.13 1.11 1.09
d22 42.2 16.3 5.9 3.50 1.93 1.28 6.6 3.6 0.4 1.19 1.12 1.03

Table 1 exhibits the relative bias and efficiency of the CbC estimator for
each parameter of the logistic and Poisson model with random effects in all
scenarios. For the Poisson model, the estimator of the fixed effects is prac-
tically unbiased and as efficient as the MLE. For the variance components,
it is asymptotically efficient. For the logistic model, it provides somewhat
biased estimates for all parameters, especially for the variance components.
However, as in the Poisson case, the bias and the efficiency loss decrease
with µn but at a slower rate.
Table 2 displays the median computation time, in seconds, of the CbC
estimator and full MLE for the logistic and Poisson models with random
effects. As expected, the CbC estimator is faster than the MLE for the
three types of outcomes, with a larger computing time for the binary case.

4 Data analysis

The CbC estimator is implemented using different datasets from the Intego-
project, a large database of continuous recording of patient information in a
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TABLE 2. Median computation time (in seconds) for the cluster-by-cluster (CbC)
estimator and the maximum likelihood estimator (MLE), in parenthesis the me-
dian ratio, for the logistic and Poisson models with random slopes.

Logistic model Poisson model
Estimator µn = 500 µn = 1000 µn = 2000 µn = 500 µn = 1000 µn = 2000

CbC 22.16(11.5) 35.13(14.5) 82.49(21) 3.05(27.8) 8.05(44.3) 8.78(102.3)
MLE 254.39(1) 508.72(1) 1735.22(1) 84.67(1) 356.23(1) 898(1)

network of Belgian general practices. The samples contain information from
around 49 practices spread throughout Flanders, Belgium. The number of
patients per practice ranges between 389 and 9676. Furthermore, there are
missing data in the data (particularly in the variables used as covariates).
Therefore, before fitting the GLMM, multiple imputation procedure was
performed (drawing 20 multiply imputed datasets).
Here, we model the outcome hypertension in the Intego database from 2015.
Let Yij be the outcome (absent/present) for patient j in practice i. The
model is:

Yij |bi ∼Bernoulli (πij) ,

logit (πij) =β0 + bi + ageijβ1 + genderijβ2 + BMIijβ3+

diabetesijβ4 + cholesterolijβ4,

(4)

where genderij and diabetesij are indicator variables. Genderij = 1 if the
jth patient at practice i is male, genderij = 0 otherwise; diabetesij = 1
if the jth patient at practice i has diabetes, diabetesij = 0 otherwise.
Furthermore, we assume bi ∼ N(0, d).
Table 3 displays the estimates and standard errors of the parameters of
the model (4) by the CbC estimator and MLE. Both estimators provide
somewhat similar estimates and standard errors for the fixed effects. Re-
garding the variance of the random intercept, the CbC estimate, and its
standard error, is slightly larger than the ones observed with the MLE.
Based on the Wald test, all covariates have a significant effect. Regarding
gender, the probability of suffering hypertension is 11% higher in men than
in women. Age, BMI, diabetes, and systolic and diastolic blood pressure
are also considered risk factors. Furthermore, fitting the CbC estimator
for each multiply imputed dataset needed around 3 seconds. On the other
hand, the MLE took more than 50 times as long.

5 Concluding remarks

Given the statistical and computational properties, we suggest that the
CbC estimator is an attractive alternative to fit a GLMM with several
large-size clusters. Although large clusters is not common in a longitudinal
study, this can be encountered in another hierarchical settings, such as
meta-analyses.
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TABLE 3. Intego data - binary case. Parameter estimates for the logistic model
after with random intercept multiple imputation by the cluster-by-cluster (CbC)
estimator and maximum likelihood estimator (MLE).

CbC MLE
Effect Parm Est S.E. Est S.E.
Intercept β0 -2.4 0.1 -2.304 0.0790
Age β1 0.06 0.0007 0.057 0.0007
Gender β2 -0.112 0.0225 -0.109 0.0220
BMI β3 0.066 0.0039 0.066 0.0037
Diabetes β4 0.854 0.0296 0.837 0.0285
Cholesterol β5 -0.003 0.0004 -0.003 0.0004
Systolic β6 0.022 0.0012 0.022 0.0012
Diastolic β7 0.018 0.0024 0.018 0.0023
Var rand. eff d 0.308 0.0602 0.286 0.0134

Although the estimator still has attractive properties with medium cluster-
sizes, its implementation can be problematic, especially during the first
stage. With few observations or several zeros in a cluster (in the binary or
Poisson cases), the GLM estimator may diverge or converge to a spurious
solution, leading to unstable overall estimates. Therefore, we suggest per-
forming a sensitivity analysis by excluding any problematic clusters and
evaluating the overall estimates. Furthermore, the addition of weights in
the estimator of D reduces the influence of small and unstable clusters.
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1 Introduction and motivation

Tranninger (2018) tried to estimate the size of a dice snake population along
the river Mur in Graz (Austria). The work was motivated by a resettlement
project of the population due to the development of a water power plant
in the vicinity of the living ground of the dice snakes. The major question
was: how many dice snakes are there? In the year 2014 in which there
were 31 capture occasions between April and September, snakes were found
under artificial hiding places and photos of their undersides were taken.
These photos then allowed to uniquely identify each animal repeatedly.
Hence, the count X informs about the number of identifications of each
animal. However, there is the well-known complication (Böhning et al.,
2018; McCrea and Morgan, 2015) that any population unit with Xi = 0
would not be observed leading to a reduced observed sample. The empirical
distribution of X is provided in Table 1. The objective now is to estimate
the size N of such an elusive target population. However, we have that
f0 = N − n is unknown. The frequency f0 is also labelled as the dark or
hidden figure and its estimate is the prime interest here.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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TABLE 1. Frequency distribution of count X of repeated snake identifications.

x 0 1 2 3 4 5 · · · observed size

fx − f1 f2 f3 f4 f5 · · · n = f1 + f2 + · · ·
snake sightings − 59 8 1 1 1 n = 70

2 Modelling

For predicting f0 some sort of modelling is unavoidable as the nonpara-
metric estimates fx (0 < x) carry no information for f0. Hence, we need

a model for Pθ(X = x) = px(θ) so that an estimate θ̂ can be found. This

leads to fitted probabilities px(θ̂) for 0 ≤ x. In particular, we can use the
Horvitz-Thompson-type estimator for estimating f0, i.e.

f̂0 = n
p0(θ̂)

1− p0(θ̂)
, (1)

from which, ultimately, the population size estimator N̂ = n + f̂0 follows.
For valid inference, the valid specification of the model px(θ) is crucial.
Since we see a large number of counts of ones, the singletons, we are con-
cerned about one-inflation, a situation where more counts of ones occur
than compatible with the baseline model p1(θ) as this can lead to a highly
inflated estimate of f0. To accommodate one-inflation we need to include
it into the model as

p′x(θ) =

{
(1− α) + αp+

x (θ), x = 1

αp+
x (θ), x 6= 1 ,

(2)

where p+
x (θ) = px(θ)/(1− p0(θ)) is a zero-truncated base distribution.

The modelling is greatly simplified using the general result in Böhning and
van der Heijden (2019). Consider an arbitrary inflation point xI and an
arbitrary count pmf px(θ) with associated xI -inflation as

p′x(θ) =

{
(1− α) + αpx(θ), x = xI

αpx(θ), x 6= xI ,

where α ∈ [0, 1]. The associated log-likelihood

logL(θ, α|x) = fxI log[1−α+αpxI (θ)]+
∑

x6=xxI

fx log px(θ)+(n−fxI ) logα ,

is maximized in

α̂ =
1− fxI/n
1− pxI (θ)

(3)
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for fixed θ: Thus, the xxI -inflated profile log-likelihood function

logL(θ, α̂|x) = fxI log(fxI/n) + (n− fxI ) log(1− fxI/n)

+
∑

x 6=xxI

fx log

(
px(θ)

1− pxI (θ)

)

equals the xxI -truncated log-likelihood

∑

x 6=xxI

fx log

(
px(θ)

1− pxI (θ)

)

plus a term that is independent of θ. This implies that xxI -inflation models
can be simply fitted by xxI -truncated models.
Accounting for one-inflation (xI = 1) and utilizing the above result we
restrict inference on the zero–one-truncated pmf

p++
x (θ) =

px(θ)

1− p0(θ)− p1(θ)
, x = 2, 3, . . . , (4)

which then provides the one–inflated, zero–truncated density.

3 Horvitz-Thompson estimation

The Horvitz-Thompson estimator (1) has the property E(f̂0) = Np0(θ),
if there is no inflation. A modification is needed here as n contains the
one-inflated part. This leads to

f̂0 = (n− f1)
p0(θ̂)

1− p0(θ̂)− p1(θ̂)
, (5)

which is again unbiased for Np0(θ) and, ultimately, we can define the mod-

ified Horvitz-Thompson estimator N̂ = n+ f̂0, which is unbiased for N , if
the base distribution is correctly specified.
Table 2 contains the estimated population size under a geometric base
model. This model choice does much better than the Poisson and also bet-
ter, in some sense, than the negative binomial base model.The conventional
estimator (cHTE) uses the zero-truncated geometric distribution whereas
the modified estimator (mHTE) uses the zero-one-truncated geometric as
described above.

4 Marginal (unconditional) likelihood

So far we maximized the conditional (zero-truncated) likelihood of the ob-
served counts. Now we discuss the general sampling mechanism that gen-
erated the data. Let m be the largest number of sightings, then the joint
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TABLE 2. Population size estimates under a zero-one-truncated model (mHTE)
and a zero-truncated geometric model (cHTE).

N̂
n mHTE cHTE
70 127 358

marginal pmf of the sample is a multinomial model defined on the counts
0, 1, . . . ,m from a population of size N . Since we only observe counts of
1, . . . ,m, the conditional model is the zero-truncated multinomial for the n
observed counts. This conditioning process is described by a binomial vari-
able that splits the population into an observed (of size n) and unobserved
part (of size N − n = f0). Together we have

multinom(p0(θ), . . . , pm(θ)|N) = multinom
( p1(θ)

1− p0(θ)
, . . . ,

pm(θ)

1− p0(θ)

∣∣∣n
)

×binom(1− p0(θ)|N) ,

or equivalently

N !

f0!f1! · · · fm!

m∏

x=0

px(θ)fx =
n!

f1! · · · fm!

m∏

x=1

( px(θ)

1− p0(θ)

)fx

× N !

f0!n!
p0(θ)f0(1− p0(θ))n ,

which proofs the validity of the factorization.
Since f1, . . . , fm are fixed given the observed counts, the relevant part of
the marginal likelihood is

L(f0, θ|f1, . . . , fm) =
N !

f0!

m∏

x=0

px(θ)fx .

Thus, we maximize the marginal log-likelihood function

`(f0, θ|f1, . . . , fm) =

m∑

x=0

fx log px(θ) + log(N !/f0!) .

For a given value of f0, the θ-score function is

∂

∂θ
`(f0, θ|·) =

m∑

x=0

fx
dpx(θ)/dθ

px(θ)
.

If we specify the base model to be geometric, i.e. px(θ) = θ(1− θ)x, then

dpx(θ)/dθ

px(θ)
=

(1− θ)− xθ
θ(1− θ)
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FIGURE 1. Marginal profile log-likelihood functions under a geometric model
(left) and under a one-inflated geometric model (right).

and the marginal maximum likelihood estimator becomes

θ̂ =

(
1 +

1

N

m∑

x=1

xfx

)−1

.

This estimator depends on the value of N and thus on the unknown f0. We
propose to evaluate the marginal profile log-likelihood `(f0, θ̂|·) for a grid

of f0 values to find the maximizer f̂0. This is shown in Figure 1.
Since f̂0 = 286 with 90% profile confidence interval (175, 476) for f0, the
total size of the population is estimated to be 356 snakes, which seems to
be a plausible number. This marginal estimate can now be compared to
the conditional estimate N̂c = 358 given in Table 2.
Under an arbitrary one-inflated count model the conditional log-
likelihood function is

f1 log(1− α+ αp1(θ)) +
∑

x 6=1

fx log
px(θ)

1− p1(θ)
, x = 0, 2, . . . ,m .

Adding the respective binomial part finally gives its marginal version as

`(f0, θ, α|f1, . . . , fm) = f1 log(1−α+αp1(θ))+
∑

x 6=1

fx log
px(θ)

1− p1(θ)
+log(N !/f0!) .

Since α̂ defined in (3) for xI = 1 maximizes the conditional as also the
marginal likelihood, we define the marginal profile log-likelihood as

`(f0, θ, α̂|f1, . . . , fm) = f1 log(f1/N) + (N − f1) log(1− f1/N)

+
∑

x 6=1

fx log
px(θ)

1− p1(θ)
+ log(N !/f0!) .

Under the geometric one-inflated situation the relevant term depending on
θ becomes
∑

x 6=1

fx log
px(θ)

1− p1(θ)
= log

θ

1− θ(1− θ)
∑

x 6=1

fx + log(1− θ)
∑

x 6=1

fxx
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where x = 0, 2, . . . ,m. With

N(−1) =
∑

x 6=1

fx and S(−1) =
∑

x 6=1

fxx =

m∑

x=2

fxx

the above marginal profile log-likelihood simplifies to

`(f0, θ, α̂|f1, . . . , fm) = N(−1)

(
log(1− f1/N) + log

θ

1− θ(1− θ)

)

+f1 log(f1/N) + S(−1) log(1− θ) + log(N !/f0!)

with corresponding θ-score function

∂

∂θ
`(f0, θ, α̂|f1, . . . , fm) = N(−1)

(1

θ
+

1− 2θ

1− θ(1− θ)
)
− S(−1)

1

1− θ .

Since N(−1) is a sum over all frequencies except f1, this score function
actually depends on both, θ and the unobserved f0. Thus, it is natural
to find the maximizer of the marginal profile log-likelihood using again a
grid of f0 values and maximize the corresponding likelihood function in θ
conditional on each f0 value which is shown in Figure 1.
The estimate f̂0 = 45 maximizes the profile likelihood. Therefore, the re-
spective population size estimate N̂ = 115 is rather small but compares
well with the conditional estimate N̂ = 127 in Table 2. A perhaps disad-
vantageous result is the fairly wide 90% profile confidence interval (10, 231),
reflecting the enormous variance of the estimator in this application.
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Abstract: Accurate diagnosis of disease is of great importance in clinical practice
and medical research. Before a diagnostic test is routinely used in practice its abil-
ity to discriminate between diseased and nondiseased states must be rigorously
assessed. Further, its performance may depend on covariates (e.g., age and/or
gender). This motivates us to propose the covariate-specific overlap coefficient,
which will help to determine the optimal populations where to perform the tests
on. We assume a location-scale regression model for the test outcomes in each
group, relying on an additive formulation based on Penalised splines, while the
regression error follows a Dirichlet process mixture of normal distributions. Our
approach is illustrated through an application concerning diagnosis of diabetes.

Keywords: Diagnostic test; Dirichlet process mixtures; Overlap coefficient; Pe-
nalised splines.

1 Introduction

Disease diagnosis is a fundamental task in clinical practice and medical re-
search. The ability of a diagnostic test to distinguish diseased from nondis-
eased individuals must be thoroughly evaluated before the test can be
widely used in practice. Furthermore, in many situations the behaviour
of the test may be influenced by external covariates.
The overlap coefficient (OVL), defined as the proportion of overlap area
between two density functions, has been proposed as a summary measure
of diagnostic accuracy. An OVL value of zero means that the distributions
do not overlap at all (perfect diagnostic accuracy), whereas a value of one
means that the distributions are identical and thus, the test is useless from

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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a diagnostic viewpoint. Let YD̄ and YD be two independent continuous
random variables representing the test outcomes from the nondiseased and
diseased group, with covariate vectorsXD̄ andXD, and conditional density
functions given by fD̄(· | XD̄ = xD̄) and fD(· | XD = xD), respectively.
Given a covariates value x, the covariate-specific overlap coefficient (cOVL)
is defined as

OVL(x) =

∫ ∞

−∞
min {fD̄(y |XD̄ = x), fD(y |XD = x)} dy. (1)

The goal of this work is to propose a flexible Bayesian method to estimate
the cOVL, so that it can be used for many populations and large number of
diseases. Further, by working under a Bayesian context, point and interval
estimates are obtained into a single integrated framework.

2 Methods

Let {(yD̄i,xTD̄i)}
nD̄
i=1 and {(yDj ,xTDj)}nDj=1 be independent random samples

of size nD̄ and nD from the nondiseased and diseased population, respec-
tively. Further, let xD̄i = (xD̄i,1, . . . , xD̄i,p)

T and xDj = (xDj,1, . . . , xDj,p)
T

be two p–dimensional covariate vectors, for i = 1, . . . , nD̄ and j =
1, . . . , nD. For the sake of simplicity, we will assume that all the covari-
ates are continuous and affect both the location and scale of each group.
However, our modelling approach can easily incorporate categorical covari-
ates as well as interactions between continuous and categorical covariates
for both components. In what follows, we will describe our modelling pro-
cedure only with the diseased population as the same one is applicable to
the nondiseased group. We will assume a location-scale regression model
for the test outcomes where the error follows a Dirichlet process mixture of
normal distributions. Such setting induces the following conditional density
for the test outcomes in the diseased group

f(yDi |XD = xDi) =

∫
φ(yDi | ηD(xDi) + µ, sD(xDi)σ

2)dGD(µ, σ2),

where φ(· | µ, σ2) is the density function of the normal distribution with
mean µ and variance σ2, and GD follows a Dirichlet process with precision
parameter αD > 0 and baseline distribution G∗D(µ, σ2). For conjugacy rea-
sons and to ensure identifiability, we set G∗D(µ, σ2) = N(µ | 0, b2µ)IG(σ2 |
aσ2 , bσ2). Moreover, to allow us to easily simulate from the posterior dis-
tribution, we will employ a truncated stick-breaking construction for GD,
therefore

f(yDi |XD = xDi) =

LD∑

l=1

ωDlφ(yDi | ηD(xDi) + µDl, sD(xDi)σ
2
Dl),
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where (µDl, σ
2
Dl)

iid∼ G∗D, and the weights are such that ωD1 = vD1, ωDl =
vDl

∏
t<l(1−vDt), for l = 2, . . . , LD; the inputs v’s are distributed according

to a beta distribution, i.e., vD1, . . . , vDLD−1
iid∼ Beta(1, αD) and vDLD = 1.

Regarding the specification of the predictors ηD and sD, we model the mean
and variance as an additive combination of smooth functions (Kobayashi
and Ogasawara, 2016), that is,

ηD(xDi) = hD1(xDi,1) + · · ·+ hDp(xDi,p),

sD(xDi) = exp {gD1(xDi,1) + · · ·+ gDp(xDi,p)} ,
where each smooth function is approximated by a cubic B-splines basis. For
example, for hDj and j = 1, . . . , p, let xDj,min = ξDj,0 < · · · < ξDj,mj =
xDj,max be equally spaced knots. Thus, we can write hDj as a linear com-
bination of Rj = mj + 3 B-splines basis functions BhDj,r, that is,

hDj(xDi,j) =

Rj∑

r=1

BhDj,r(xDi,j)βDj,r = Bh
Dj(xDi,j)βDj ,

where βDj = (βDj,1, . . . , βDj,Rj )
T is the corresponding vector of coeffi-

cients. Similarly, gDj can be approximated using Bg
Dj(xDi,j)δDj . It is well-

known that the position and number of knots can have a large influence
on the fitted functions. To overcome this problem we will use penalised
splines (P-splines), where the penalty is based on differences of adjacent B-
splines coefficients as described in (Eilers and Marx, 1996). We will follow
the Bayesian P-splines approach proposed by Lang and Brezger (2004),
where second-order random walk priors are assumed for all coefficients.
More precisely, for βDj

βDj,r = 2βDj,r−1 − βDj,r−2 + uDj,r, r = 3, . . . , Rj , j = 1, . . . , p,

where uDj,r
iid∼ N(0, τ2

Dj). The random walk variance τ2
Dj controls the

smoothness of the fitted functions. For δDj , the prior variance is denoted
by ψ2

Dj . Note that to ensure identifiability, all functions hDj and gDj , are
centred around zero. To complete our model specification, let

αD ∼ Γ(aα, bα), τ−2
Dj ∼ Γ(aτ2 , bτ2), and ψ−2

Dj ∼ Γ(aψ2 , bψ2),

where Γ(a, b) stands for a gamma distribution with shape a and rate b.
Because explicit full conditionals are available, we implemented a Gibbs
sampler to simulate from the posterior distribution. Finally, to get an esti-
mate of the cOVL, the integral involved in (1) is approximated numerically
(trapezoidal rule).

3 Application

We applied our method to data from a population based survey of diabetes
in Cairo, Egypt. The data comprises measurements on 88 subjects with



Garrido et al. 94

0.00

0.25

0.50

0.75

1.00

30 40 50 60 70 80
Age

O
V

L

Age−specific overlap coefficient

FIGURE 1. Posterior mean and 95% credible bands for the age-specific OVL.

diabetes and 198 non diabetic. Our primary goal is to evaluate the effect
of age in the accuracy of glucose as a biomarker of diabetes.
In Figure 1, we depict the estimated age-specific coefficient of overlap,
where we can see that it increases with age, thus meaning that the ac-
curacy of the glucose levels as a marker of diabetes decreases with age.
Figure 2 shows the estimated posterior (mean) mean functions for the non-
diabetic (left) and diabetic (right) group. And finally, Figure 3 displays the
conditional histograms and densities at ages of 41 and 60 (left and right
panels, respectively) for the non diabetic (top row) and diabetic (bottom
row) group. These values correspond to the first and third quartiles of the
covariate age, respectively.
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FIGURE 2. Mean function: posterior mean and 95% pointwise credible bands
for the non diabetic (top left) and diabetic (top right) group.
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1 Introduction

Currently, various interpretable machine learning (IML) methods exist, in-
cluding traditional methods like the permutation feature importance as
described by Breiman (2001), but also more recent methods like the usage
of anchors (see, e.g., Ribeiro et al., 2018). The latter is used to find specific
features and their respective feature values that determine the prediction of
an observation, while the other features could be randomly altered without
affecting the prediction too much.
Our proposed method works similar to the anchor method, but has a com-
pletely different purpose and interpretation. Its aim is to find neighboring
classes in a fitted classification model by using small manipulations of met-
ric features of interest and observing the changes of the predictions. Hence,
instead of trying to find features and the respective feature values that de-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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termine a prediction, we try to find those features changing the prediction
when slightly manipulated, and then to interpret those changes.

2 Methodology

In the following, we will set the mathematical background for our new IML
method. The aim is to slightly increase or decrease the value of metric
features of interest and observe the changes in the predicted classes.
Suppose f̂(x) is a final model fitted for a classification task with K differ-
ent classes, K ≥ 2, and let L be the set of all the features used for this
classification with a specific set-size p = |L|. Then, π̂f̂ ,k(xi) denotes the es-

timated probability by the model f̂(·) for observation i with feature vector
xi to belong to a specific class k ∈ {1, . . . ,K}. Next, we determine

k∗
f̂
(xi) = argmaxk{π̂f̂ ,k(xi)} ,

i.e. k∗
f̂
(xi) is the class with the highest probability as estimated by the

model f̂(·) for the observation xi (from here on index f̂ is dropped for
better readability, as we will now always refer to the same fitted model).
Next, we choose a subset M ⊆ L containing the features of interest. Mostly
the size of set M is 1. Now, x̃i represents the feature-vector for observation
i, whose features from M each were manipulated componentwisely by a
small amount. The manipulation is done by increasing or decreasing the
quantile-function of the subset M containing the features of interest. For
this purpose, a small value ql is added componentwisely to F̂l(·), which de-
notes the empirical cumulative distribution function (ecdf) for all features
l = 1, ..., p (see Figure 1), with

ql =

{
ul, for l ∈M and ul ∈ [−1, 1]
0, else .

To prevent extrapolation in the quantile function F̂−1
l (α), α is chosen from

the interval [0, 1]. Now, we define for all l = 1, ..., p componentwisely:

F̂l(x̃i,l) = max{min{F̂l(xi,l) + ql, 1}, 0}
=⇒ x̃i,l = F̂−1

l (max{min{F̂l(xi,l) + ql, 1}, 0}).

The modifying values ql for each l ∈ M are set by the user. Note that the
inverse of the ecdf F̂−1

l does not necessarily exist, as F̂l is not necessarily
continuous. Hence, we have to define

F̂−1
l (α) = inf{x : F̂l(x) ≥ α}.

Now, x̃i is the new manipulated observation, which has the same values as
xi for those covariates from L\M , but different values for the features from
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FIGURE 1. How to determine x̃ for a specific feature.

M , which were increased or decreased componentwisely by the values that
corresponded to manipulations by the amount ql of the respective ecdf.
Finally, for observation i, i = 1, ..., n and q = (q1, ..., qp)

T, corresponding to
the chosen M ⊆ L and modifications u1, . . . , up, let Cq(xi) define the pair
of the original and the (potentially) new class prediction resulting from this
manipulation, i.e.

Cq(xi) = (k∗(xi), k
∗(x̃i))

= (ŷi,old, ŷi,new).

We obtain ŷi,old = ŷi,new, if the predicted class has not changed by
manipulating xi,M , and ŷi,old 6= ŷi,new otherwise.
The results could now be given in form of a migration matrix for all ob-
servations i = 1, ..., n, where the rows indicate the predicted classes of an
observation before the manipulation of xi,M and the columns indicate its
predicted classes after the manipulation. The trace of this migration matrix
counts the number of observations that have not changed classes despite
the manipulation. The off-diagonal elements aggregate the number of ob-
servations that have changed their predicted class from the class indicated
by the respective row to the predicted class indicated by the respective
column. A general example of a migration matrix can be found in Table 1.

TABLE 1. Exemplary migration matrix for two classes.

Aafter Bafter

Abefore nA→A nA→B
Bbefore nB→A nB→B

The off-diagonal elements of Table 1 can be interpreted as follows:

• if nA→B > 0, an area in the feature space is found, where class B is
classified to be next to class A via the manipulation of the feature
subset M
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• if nA→B = 0, no area is found, where class B is classified to be next
to class A via the manipulation of the feature subset M - but it could
still exist! (the used manipulation might have been too weak or too
strong)

Of course, nB→A can be interpreted analogously. These migration matrices
can then be visualized by using chordgraphs as shown in the application
example below.
To guarantee that the method yields good interpretability, certain rules
should be followed: (i) This method is built to find closely neighboring
classes within the feature space. By using a too strong manipulation a
class could be skipped and no direct neighborhood is found. To prove or
disprove that a direct neighborhood between two classes exists, the com-
plete feature space would have to be filled with infinitely many data points
and manipulations with infinitely small steps would have to be performed.
(ii) If we define the preference order

A � B :=
class A is directly (or generally) next to class B in
the direction of the manipulation,

then due to the possibility of a very complex partitioning of the feature
space one could have

A � B ∧B � C 6⇒ A � C.

This expresses that the results of this method can not be interpreted tran-
sitively.

3 Application on the Iris Data

Next, we illustrate our method on the iris flowers dataset, an easy to
understand standard example from classification (see Anderson, 1936, or
Fisher, 1936). For the sake of simplicity, we fit a simple classification tree
based on just two of the original four features, namely Petal.Length

and Petal.Width. Figure 2 (left) displays the feature space partition-
ing by the fitted tree. It turns out that the class virginica is mod-
eled “above” the class versicolor with respect to Petal.Width. When
slightly increasing the Petal.Width, this neighborhood is found by the
method as shown in the corresponding chordgraph in Figure 2 (right),
where nversicolor→virginica = 3 is indicated by the lightgrey strang of chords
starting at the class versicolor and ending in the class virginica.
As this example contains only two features, the classification model can be
visualized in a 2-dimensional way as shown in Figure 2 (left). This means,
it is easy to compare the neighborly indication by the cordgraph with the
underlying model. If one would include more features for the classification
task, graphical visualization would get rather complex and difficult. These
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FIGURE 2. Feature space partitioning by a classification tree for the iris dataset
(left); chordgraph for increasing Petal.Width with qpetal.width = +0.02 (right).

difficulties already arise when a single additional feature is added to the
model and the corresponding partitioning of the feature space is visualized
in a 3-dimensional graph. However, the proposed method overcomes these
limitations. For a classification task an arbitrary amount of features can
be used and the method would still indicate neighborly modeled classes
as determined by the underlying model, even for high-dimensional feature
spaces.
The original iris dataset contains two additional features, namely the
Sepal.Length and Sepal.Width. When adding these features to the model,
the complete partitioning of the feature space can not be displayed in a 2-
dimensional way, but would require a 4-dimensional visualization. However,
the proposed method could still show neighborly modeled classes in this
4-dimensional feature space in regard of specific manipulations.
Another benefit of the proposed method is that it is not restricted to a spe-
cific type of classification model. In the present example a simple classifica-
tion tree was used, whose splits could be looked at directly and neighborly
modeled classes could be determined by an experienced user. When using
more complex models, e.g. a random forest, then it is hard to determine
neighborhoods of the predicted classes just by directly looking at the mul-
tiple trees. The method proposed here, however, overcomes this limitation
and is able to determine neighborly modeled classes even if the classifi-
cation task in the present example would have been done with a highly
complex model (or even with a black-box model).

4 Discussion

For classification models the method proposed here can help to determine
neighborly modeled classes with regard to specific features of interest.
When applying this method to a specific classification task, it is neither
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limited to a specific amount of features, nor to a specific amount of classes
of the target, and it is not bound to a specific set of classification models.
As the chordgraph is a visualization tool to show relations between multi-
ple classes and even can indicate the direction of the relation, it is a very
good graphical tool to present the results of the proposed method. All in
all, this method provides an alternative to improve interpretability of very
complex models, which is the true benefit of this method. Thus, it qualifies
as an interpretable machine learning method and adds some more variety
to this field.
As of right now, the here proposed method can be directly used to deter-
mine neighborhoods between classes modeled by classification models with
regard to specific manipulations of some features of interest. But there
are a few edge cases, which demand further research, e.g. how the method
handles multiple observations with equal values of a feature of interest.
Multiple solutions are currently being worked on for a fair treatment of all
observations in these cases. Another point is a comparable treatment of
positive and negative choices of q. As of right now, even the tiniest positive
manipulation would lead to a shift of all the values of a feature of interest,
but a very tiny negative manipulation would not lead to a shift of even a
single value of the same feature of interest. We currently work on a solution
to this, which will be presented soon.
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Abstract: For cumulative link models, we propose a new estimation approach
aiming at median bias reduction (Kenne Pagui et al., 2017). Such approach is
based on an adjustment of the score function. The method does not require finite-
ness of the maximum likelihood estimate and is effective in preventing boundary
estimates. The resulting estimator is componentwise third-order median unbiased
in the continuous case and equivariant under componentwise monotone reparam-
eterizations. Simulation studies and an application compare the proposed method
with maximum likelihood and mean bias reduction.
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1 Introduction

Ordinal responses are very common in many contexts, especially in the
social sciences, in medical disciplines and in business analysis. Cumulative
link models, proposed by McCullagh (1980), see also Agresti (2010), are
the most popular tool to handle ordinal data. The reason relies on the use
of a single regression parameter for all response levels, making the effects
simple to interpret. For these models, maximum likelihood (ML) is the
estimation method of choice. However, with small samples or sparse data,
the asymptotic approximation for the distribution of the ML estimator may
poorly reflect the exact sampling distribution that may be centered away
from the true parameter value. Another problem with ML estimation lies
in boundary estimates, which can arise with positive probability in models
for ordinal data.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Kosmidis (2014) developed mean bias reduction (meanBR) for cumulative
link models following Firth (1993), whose adjusted score does not require
finiteness of the ML estimate. An alternative modification of the score
equation is proposed in Kenne Pagui et al. (2017), aiming at median bias
reduction (medianBR). Like meanBR, medianBR estimation does not re-
quire finiteness of the ML estimate and is effective in preventing bound-
ary estimates. The medianBR estimator is componentwise third-order me-
dian unbiased in the continuous case and equivariant under componentwise
monotone reparameterizations. Here we develop medianBR for cumulative
link models following the simplified algebraic form of the adjustment term
in Kenne Pagui et al. (2019). We show, through simulation studies and an
application, that the new method outperforms ML and is competitive with
meanBR.

2 Cumulative link models

Let Yi be the ordinal outcome, with c categories, for subject i, i = 1, . . . , n.
Let pij be the probability to observe category j, j = 1, . . . , c−1, for subject

i, and Pr(Yi ≤ j) =
∑j
k=1 pik the cumulative probability. With xi a p-

dimensional row vector of covariates, cumulative link models assume

g{Pr(Yi ≤ j|xi)} = αj + xiβ, j = 1, . . . , c− 1,

where g(·) is a given link function and βT = (β1, . . . , βp) is the regression
parameter vector. Therefore, the effects of xi, expressed through β, are
the same for each j = 1, . . . , c − 1. The intercept parameters αj satisfy
−∞ = α0 ≤ α1 ≤ . . . ≤ αc−1 ≤ αc = +∞, so that Pr(Yi ≤ j|xi) is
increasing in j for each fixed xi. A problem with ML estimation lies in
boundary estimates, that is estimates of β with infinite components, and/or
consecutive intercept estimates having the same value.

3 Median bias reduction

For a general parametric model with p-dimensional parameter θ and log-
likelihood `(θ), based on a sample of size n, let Ur = Ur(θ) = ∂`(θ)/∂θr
be the r-th component of the score function U(θ), r = 1, . . . , p. Let
j(θ) = −∂2`(θ)/∂θ∂θT be the observed information and i(θ) = Eθ{j(θ)}
the expected information, which we assume to be of order O(n). The me-
dianBR estimator, θ̃, is obtained as solution of the estimating equation
Ũ(θ) = 0, based on the adjusted score (Kenne Pagui et al., 2019)

Ũ(θ) = U(θ) + Ã(θ),

with Ã(θ) = A∗(θ) − i(θ)F (θ). The vector A∗(θ) has components
A∗r = 1

2 tr{i(θ)−1(Pr + Qr)}, with Pr = Eθ{U(θ)U(θ)TUr} and Qr =
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Eθ{−j(θ)Ur}, r = 1, . . . , p. The vector F (θ) has components Fr =
[i(θ)−1]Tr F̃r, where F̃r has elements F̃r,t = tr[hr{(1/3)Pt + (1/2)Qt}], r, t =
1, . . . , p, with the matrix hr obtained as hr = {[i(θ)−1]r[i(θ)

−1]Tr }/irr(θ),
r = 1, . . . , p. Above, we denoted by [i(θ)−1]r the r-th column of i(θ)−1 and
by irr(θ) the (r, r) element of i(θ)−1.
In general, the equation Ũ(θ) = 0 needs to be solved numerically using a
Fisher scoring-type algorithm.
In the continuous case, each component of θ̃, θ̃r, r = 1, . . . , p, is median
unbiased with error of order O(n−3/2), i.e. Prθ(θ̃r ≤ θr) = 1

2 + O(n−3/2) ,

compared with O(n−1/2) of ML estimator. Moreover, the asymptotic dis-
tribution of θ̃ is the same as that of the ML and the meanBR estimators,
that is Np(θ, i(θ)−1).

4 Simulation results

Through simulation studies, we compared medianBR with ML and
meanBR, in terms of empirical probability of underestimation (PU%),
estimated relative bias (RB%) and empirical coverage of the 95% Wald-
type confidence interval (WALD%). We consider different sample sizes,
n = 50, 100, 200 and the logit link function. We generate the covariate
x1 from a standard Normal, x2 and x3 from Bernoulli distributions with
probabilities 0.5 and 0.8 respectively, and x4 from a Poisson with mean 2.5.
Assuming that the response has three categories, we fit the model

logit{Pr(Yi ≤ j|xi)} = αj +

4∑

k=1

xikβk, j = 1, 2; i = 1, . . . , n,

considering 10,000 replications, with covariates fixed at the observed value
and true parameter θ0 = (−1, 2, 1,−1, 1,−1). Figure 1 shows the numerical
results for the regression parameters. We found 2.82% and 0.08% simulated
samples with ML boundary estimates, for n = 50 and n = 100, respec-
tively. Instead, meanBR and medianBR estimates are always finite. The
new method proves to be remarkably accurate in achieving median center-
ing and it shows a lower estimated mean bias than ML, as well as a good
empirical coverage for confidence intervals. Unreported simulation results
shown similar behaviors considering probit and complementary log-log link
functions.

5 An application

We consider the wine dataset analyzed in Christensen (2019), based on
Randall (1989), concerning a factorial experiment for investigating the ef-
fects of two factors on the bitterness of wine, evaluated according to five
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FIGURE 1. Simulation results of regression parameters, β = (β1, β2, β3, β4), for
ML (black square), meanBR (blue triangle) and medianBR (red circle) estima-
tors. For ML, RB% and WALD% are conditional upon finiteness of the estimates.

ordered categories. The two factors are temperature at the time of crash-
ing the grapes (x1) and contact between juice and skin (x2), each of them
with two levels. For each of the four treatment conditions, two bottles
were assessed by a panel of nine judges, giving n = 72 observations in all.
We consider, as in Christensen (2019, Section 4.8), the outcomes obtained
combining the three central categories and we fit the model

logit{Pr(Yi ≤ j|xi)} = αj + xi1β1 + xi2β2, j = 1, 2; i = 1, . . . , 72.

Table 1 shows the ML, meanBR and medianBR estimates. Both meanBR
and medianBR approaches are effective in preventing boundary estimates.
Table 2 shows simulation results for the regression parameters with 10,000
replications, covariates fixed at the observed value and true parameter
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θ0 = (−1, 4,−2,−1). Whereas ML boundary estimates occurr in 9.79%
of simulated samples, meanBR and medianBR estimates are always finite.
It appears that the medianBR estimator is preferable in terms of PU%,
outperforms ML in terms of RB% and shows a good empirical coverage for
confidence intervals.

TABLE 1. ML, meanBR and medianBR estimates (s.e).

Method α1 α2 β1 β2

ML -1.32 (0.53) +∞ (+∞) −∞ (+∞) -1.31 (0.71)
meanBR -1.25 (0.51) 5.48 (1.48) -3.43 (1.42) -1.19 (0.67)
medianBR -1.29 (0.52) 6.46 (2.32) -4.48 (2.29) -1.24 (0.68)

TABLE 2. Simulation results of regression coefficients β = (β1, β2). For ML, RB%
and WALD% are conditional upon finiteness of the estimates.

Parameter β1 Parameter β2

Method PU% RB% WALD% PU% RB% WALD%

ML 55.08 1.80 96.92 53.20 8.20 96.50
meanBR 43.91 -0.65 95.88 48.10 0.50 96.60
medianBR 49.71 8.95 96.48 50.35 4.90 96.28
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Abstract: Boosting techniques from the field of statistical learning have grown to
be a popular tool for estimating and selecting predictor effects in various regres-
sion models and can roughly be separated in two general approaches, namely gra-
dient boosting and likelihood-based boosting. An extensive framework has been
proposed in order to fit generalised mixed models based on boosting, however
for the case of cluster-constant covariates likelihood-based boosting approaches
tend to mischoose variables in the selection step leading to wrong estimates. We
propose an improved boosting algorithm for linear mixed models, where the ran-
dom effects are properly weighted, disentangled from the fixed effects updating
scheme and corrected for correlations with cluster-constant covariates in order
to improve quality of estimates and in addition reduce the computational effort.
The method outperforms current state-of-the-art approaches from boosting and
maximum likelihood inference.

Keywords: Statistical learning; Variable selection; Likelihood boosting; Predic-
tion analysis.

1 Introduction

An extensive framework has been proposed in [2, 3] in order to fit var-
ious mixed models with likelihood-based boosting techniques [1] and is
included in the R package GMMBoost. However, algorithms like bGLMM from
the GMMBoost package tend to struggle with cluster-constant covariates, e.g.
baseline covariates like gender or treatment group in longitudinal studies.
As shown in Figure 1, this malfunction already occurs in a very basic data
example with the popular Orthodont dataset available in the nlme pack-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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FIGURE 1. Comparison between random intercept estimates by lme and bGLMM.

age. A basic linear mixed model with random intercepts returns the two
coefficient estimates β̂l

sex = −2.32 by lme and β̂b
sex = 0.00 by bGLMM for the

effect of the cluster-constant covariate gender. The reason for this differ-
ence becomes clear when looking at the random intercepts, where bGLMM

tends to compensate the missing effect for gender by assigning every female
subject a random intercept lowered by 2.32.
We propose an updated algorithm with various changes in order to solve
this identifiability issue and hence avoid the phenomenon of random inter-
cepts growing too quickly. The major improvements include undocking the
random effects update from the fixed effects boosting scheme and intro-
ducing a correction step for the random effects estimation to avoid possible
correlations with observed covariates.

2 Methods

2.1 Model

We consider the linear mixed model

y = β01 +Xβ +Zγ + ε

with design matrices X and Z for fixed and random effects, variance-
covariance-matrix Q for the random components and model error ε with
variance σ2. In order to perform likelihood inference, we formulate the
penalized log-likelihood

`pen(β,γ, σ2,Q) =

n∑

i=1

log f(yi|β,γ, σ2)− 1

2

n∑

i=1

γTi Q
−1γi,
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which is going to be maximized simultaneously for the effect estimates and
random components by likelihood-based boosting.

2.2 Boosting Modifications

Amongst smaller modifications like weakening the random effects update
and using smaller starting values for random components, we incorporate
two major improvements into the algorithm.
Separate random effects update. A first update for the random effects
γ is obtained by calculating

sran(γ) =
∂`pen(γ)

∂γ
, Fran(γ) = −E

[
∂2`pen(γ)

∂γ∂γT

]

and weakly updating

γ̃[m] = γ̂[m−1] + νFran(γ)−1sran(γ).

The disentanglement of the random effects update from the fixed effects
updating scheme guarantees a fair comparison of the single fixed effects,
where the random effects do not play a crucial role. In addition the Fisher
matrix

Fran(γ) = diag(F1, . . . ,Fn), Fi = σ−2ZTi Zi +Q−1

now has block-diagonal form making the inversion much easier and thus
strongly reducing the computational effort.
Random effects correction. An additional correction is needed in order
to solve the identifiability problem. Hence, instead of using the unaltered

random intercept estimate γ̃
[m]
•1 , we proceed with the orthogonalised esti-

mates
γ̂

[m]
•1 = γ̃

[m]
•1 − (X̃T

c X̃c)−1X̃T
c γ̃

[m]
•1 ,

which result from counting out the orthogonal projections of γ̃
[m]
•1 onto

the subspace generated by the cluster-constant covariates X̃c. This ensures

that the resulting estimates γ̂
[m]
•1 are uncorrelated with any cluster-constant

covariates.

3 Data Examples

The new algorithm proved to perform well as shown by an extensive sim-
ulation study. In the following it is also evaluated based on two real world
applications. The first one focuses solely on the novel estimation procedure
regarding the random effects, the second showcases variable selection and
shrinkage properties of the algorithm.
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3.1 Orthodont Data

Applied to the Orthodont data mentioned in the beginning, the modified
algorithm (boostLMM) yields the coefficient estimates for the covariates age
and gender as well as the random intercepts varianceQ depicted in Table 1.
It is evident that boostLMM solves the random effects issues occurring with

TABLE 1. Estimates for the Orthodont dataset.
β̂0 β̂sex β̂age Q̂

lme 17.71 -2.32 0.66 3.27
boostLMM 17.71 -2.32 0.66 3.11
bGLMM 16.82 0.00 0.65 5.41

bGLMM. Both the maximum likelihood approach in lme as well as boostLMM
return matching estimates for fixed and random effects without any shift,
which can be seen in Figure 2.
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FIGURE 2. Comparison between random intercept estimates by lme and
boostLMM.

3.2 Primary Biliary Cirrhosis

The popular primary biliary cirrhosis (PBC) dataset from 1994 tracks the
change of the serum bilirubin level for a total of 312 PBC patients ran-
domized into a treatment and a placebo group and additionally contains
baseline covariates as well as follow-up measurements of several biomark-
ers. The serum bilirubin level, here modelled as the response variable, is
considered a strong indicator for disease progression, hence an appropriate
quantification of the impact of the given covariates on the serum bilirubin
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level will lead to an adequate prediction model for the health status of
PBC patients. Using boosting to carry out this quantification will optimize
the prediction properties. Based on 10-fold cross validation, boostLMM de-
termined m∗ = 93 as the best performing number of iterations yielding
the corresponding coefficient paths displayed in Figure 3. The algorithm
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FIGURE 3. Coefficient paths for the PBC dataset generated by boostLMM.

stopped before six of the 13 covariates got selected into the model and thus
their coefficient estimates are set to zero. The remaining effect estimates
experienced various amounts of shrinkage in comparison to the maximum
likelihood solution which prevents overfitting and hence offers an improved
quality of prediction.

4 Conclusion

The updated algorithm is due to its minor and major tweaks capable of
dealing with cluster-constant covariates in linear mixed models by pre-
venting the random effects from taking up too much space. In addition, it
preserves the well-known advantages of boosting techniques in general by
offering variable selection and a good functionality even in high dimensional
setups. As a very important side effect the computational effort receives a
tremendous decrease making the algorithm more applicable to real world
scenarios.
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Abstract: Poverty is a multidimensional concept often comprising a monetary
outcome and other welfare dimensions such as education, subjective well-being
or health, that are measured on an ordinal scale. In applied research, multidi-
mensional poverty is ubiquitously assessed by studying each poverty dimension
independently in univariate regression models or by combining several poverty di-
mensions into a scalar index. This inhibits a thorough analysis of the potentially
varying interdependence between the poverty dimensions. We propose a multi-
variate copula generalized additive model for location, scale and shape (copula
GAMLSS or distributional copula model) to tackle this challenge and we demon-
strate its power by studying two important poverty dimensions: income and ed-
ucation. Since the level of education is often measured on an ordinal scale and
income is continuous, we extend the bivariate copula GAMLSS to the case of
mixed ordered-continuous outcomes. The new model is integrated into the GJRM

package in R and applied to data from Indonesia.
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1 Introduction

Although poverty is widely regarded a multidimensional phenomenon and
poverty measures moving beyond a single monetary dimension – such as
the Multidimensional Poverty Index (MPI) – have emerged, little progress
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has been made on analysing poverty as a multidimensional concept. To
study poverty at the micro level, univariate linear regression models are
the standard tool but require either studying each poverty dimension sep-
arately in different equations, or using as response variable an index that
subsumes all dimensions in a single number. Both approaches neglect the
interdependence between poverty dimensions and ignore that the depen-
dence itself should be part of the analysis. To overcome such limitations
multivariate regression can be used to tackle multidimensionality in poverty
analyses. The relationship between two or more outcomes can be modeled
using copulas which have been proven to be useful and flexible tools in this
regard.
A second issue in poverty analysis concerns distributional aspects. Espe-
cially for inequality and vulnerability analyses, it is important that poverty
studies move beyond the simple mean effects. Generalized additive models
for location, scale, and shape (GAMLSS, Rigby and Stasinopoulos, 2005)
are able to capture the effects of covariates on the whole conditional dis-
tribution of a single poverty dimension.
Both issues of multidimensionality and distributional aspects can be ad-
dressed with a combination of GAMLSS and multivariate copula models,
also referred to as copula GAMLSS. The advantage of embedding copula
regression into GAMLSS is that each parameter of the marginals and the
copula association parameter can be modeled to depend flexibly on covari-
ates. This allows us to measure the strength of the dependence, which has
been the focus of previous literature on interrelated poverty dimensions,
and to analyse which factors related to household location and compo-
sition drive this dependence. This latter aspect has not been previously
considered in poverty studies.

2 Model definition

A bivariate cumulative distribution function can be written as

F1,2(r, y2) = C(F1(r), F2(y2)) ∈ [0, 1], (1)

where in our case Y1 is a categorical variable with categories r. The variable
Y2 is assumed to be continuous. In the case study of Section 3, response
Y2 will represent the income and Y1 the highest level of education attained
by each individual surveyed. The copula function is C : [0, 1]2 −→ [0, 1],
with F1(r) := P(Y1 � r) and F2(y2) := P(Y2 ≤ y2) being the marginal
distributions. To ensure that the copula function is uniquely determined, we
represent the ordinal variable Y1 as a coarse version of a latent continuous
variable and define a cumulative link model

P(Y1 � r) = P(Y ∗1 ≤ θr) = P(ε1 ≤ θr − x′1β1) := F ∗1 (θr − x>1 β1︸ ︷︷ ︸
:=η1r

), (2)
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where Y ∗1 denotes an unobserved (or latent) continuous variable that drives
the decision for the observed categories, θr is a cut point on the latent con-
tinuum related to the level r of Y1. We observe category r if the latent
variable is between the cutoffs θr−1 and θr. The predictor η1r is associ-
ated with the ordinal categorical response. Later the predictor η1r will be
replaced with a generalized additive form. Equation (1) can be written as

F12(r, y2) = F ∗12(η1r, y2) = C(F1(r), F2(y2)) = C(F ∗1 (η1r), F2(y2)). (3)

The bivariate copula model is embedded into the distributional regression
framework (or GAMLSS) to model flexibly both the dependence parame-
ter and the marginal distributions. To this end, the response vector yi =
(y∗1i, y2i)

′, i = 1, . . . , n, is assumed to follow a parametric distribution where
potentially all parameters, except of the cut-points, are related to a regres-
sion predictor and consequently to covariates. We write the joint conditional
density as f∗12(ϑ1i, . . . , ϑKi|νi), where the vector νi collects any covariates
associated to the parameters ϑki, k = 1, . . . ,K of density f∗12. Accord-
ingly, the distributional parameter vector ϑi = (θ∗1 , . . . , θ

∗
R, ϑ1i, . . . , ϑKi)

′

includes transformed cut-points {θ∗r}, the location parameter of the first
marginal distribution, all other distributional parameters related to the
second marginal distribution, and the copula parameter γi. Subscript i at-
tached to parameters is made explicit to stress their potential dependence
on individual-level covariates. For the ordinal response, logit and probit
link functions can be applied and the scale parameter for density f1 is set
to one. in order to achieve identification as for a probit/logit model.
In the spirit of the GAMLSS approach, each distributional element in the
parameter vector is related to an additive predictor via

ϑki = hk(ηϑki ) and ηϑki = gk(ϑki), (4)

where ηϑki is the predictor belonging to distributional parameter ϑki, and
hk = g−1

k is a response function mapping the real line into the domain of
ϑki.
For the ordinal equation, η1ri in equation (2) can now be represented as
ηµ1

ri = θr − ηµ1

i , where ηµ1

i is a predictor as in (4). The predictor ηϑki takes
on the additive form

ηϑki =

Jk∑

j=1

sϑkj (νi),

where functions sϑkj (νi), j = 1, . . . , Jk, can be chosen to model a range of
different effects of (a subset) of explanatory variables νi, such as linear,
spatial, random, or nonlinear effects. Estimation is performed using a trust
region algorithm as in Marra and Radice (2017).
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3 Multidimensional poverty in Indonesia

To analyse the poverty dimensions in a bivariate copula model with a focus
on a household’s location, we rely on the most recent wave (IFLS 5) of the
Indonesian Family Life Survey (IFLS). We fit a lognormal distribution for
the continuous marginal as indicated by QQ plots, a logit model for the first
marginal and a Gaussian copula to connect both marginals as supported by
AIC and BIC. The predictors of the models ηµ1

educ, η
µ2

inc, η
σ2 , ηγ are related

to several household covariates and a spatial effect on the province level.

Model evaluation: To check the final bivariate model, we use a mul-
tivariate generalization of the quantile residuals that was proposed by
Kalliovirta (2008). Multivariate quantile residuals for two continuous re-
sponses are defined as

q̂i =

(
q̂1i

q̂2i

)
=

(
Φ−1(F̂1(y1i))

Φ−1(F̂2|1(y2i|y1i)),

)

where F̂2|1 is the (estimated) conditional CDF of Y2 given Y1. In our case,
the first marginal is discrete such that we resort to randomized quantile
residuals, where uniformly distributed random variables on the interval
corresponding to cumulative probabilities are plugged into Φ−1(·). If the
model is correctly specified, then q̂ approximately follows a bivariate stan-
dard normal distribution. The contour plot for the bivariate model in Fig-
ure 1 (left) shows the density of the quantile residuals q̂ by means of a
multivariate kernel density estimator. This estimated density is compared
to the density of the standard normal distribution. The contour lines of
both densities are close to each other indicating a good fit of the bivariate
copula model. In Figure 1 (right), the sum of the squared elements of the
multivariate quantile residuals are considered. That is, q̂′iq̂i = q̂2

1i + q̂2
2i,

where q̂i is the multivariate quantile residual for the i-th individual and
q̂′iq̂i

a∼ χ2(2) which is assessed in the QQ-plot.

Dependence for urban and rural households: To compare the de-
pendence structure across different locations (urban/rural), we create an
example of typical individual whose characteristics, other than the one un-
der consideration, are set to their mean value or to their most frequent
observation. The only exception is the education of the household head
which is set to the second most frequent observation. This is the covariates’
combination that we call an “example individual” henceforward. Figure 2
shows that the dependence is stronger for individuals in urban households
compared to rural households. One reason might be that average education
levels are lower in rural areas (x-axis) while at the same time high paid job
opportunities are restricted in a rural environment, resulting in more equal
incomes compared to an urban environment.

Dependence structure across provinces: Figure 3 shows the average
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FIGURE 1. Left: Contour plot of multivariate quantile residuals. The red lines
indicate the density of the quantile residuals estimated by a multivariate kernel
density estimator. The blue circles are the contour lines of the density of the
standard normal distribution with radius 1, 2 and 3. Right: QQ-plot depicting
the sum of the squared elements of the multivariate quantile residuals with 95%
reference bands.
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FIGURE 2. Contour plots for an example individual in an urban or rural house-
hold in the province of Jawa Timur. Contour plots for (education, income)’ and
a Gaussian copula. Contour lines of densities are at levels from 0.00000005 to
0.00000025 . The vertical straight lines represents the cut off values for the ed-
ucation categories, horizontal straight lines are the consumption average, and
dashed horizontal line are at two standard deviations around this average.
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of Kendall’s τ over all individuals across in a particular province. The
Kalimantan Selatan (South Borneo) is the province with the lowest average
of Kendall’s τ with a value of 0.045 and Kepulauan Riau (Riau Islands,
northwest of Borneo) has a value of 0.150 which is the highest average value
that also indicates spatial heterogeneity in the strength of the dependence.
The provinces of Sumatra seem to have higher dependence between income
and education than provinces in Borneo or Sulawesi. Interestingly, for Java
and its neighbouring smaller islands on the east, the dependence seem to
decrease from west to east.

0.0468 0.1467

Average  per province

Sumatera Utara

Sumatra

Borneo
Sulawesi

Jakarta Raya

Java

Jawa Timur Bali
Lombok

Sumbawa

Nusa Tenggara Barat

FIGURE 3. Kendall’s τ for each individual averaged within provinces.

Joint probabilities: We calculate the probability for the example indi-
vidual of being poor in both the education and income dimensions. We find
that the probability for being poor in both dimensions is 2 times higher for
the example individual in a rural household compared to the same individ-
ual in an urban household. Compared to Jawa Timur, the joint probabilities
of Jakarta Raya, Nusa Tenggara Barat, and Sumatera Utara are about 8
times, 6 times, and 4 times higher, respectively.
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Abstract: There have been impressive methodological advancements in the
mathematical modelling of cardio-physiological processes. The majority of recent
articles have focused on the forward problem: developing flexible mathematical
models and robust numerical simulation procedures to match characteristics of
physiological target data, and the inverse problem: inferring model parameters
from cardiac physiological data with reliable uncertainty quantification. However,
when connecting mathematical model predictions to the clinical decision process,
new challenges arise. This paper briefly discusses the complications that poten-
tially result from closed-loop effects, and the model extensions that are required
to reduce the ensuing bias.

Keywords: Closed-loop effect, physiological model, pulmonary hypertension

1 Introduction and illustration

Consider a random variable X ∈ R that represents the value of a clini-
cal disease indicator. Based on some adequate clinical data, which for the
purpose of the following discussion do not need to be made specific, we
monitor its posterior distribution p(x) and the risk of the clinical indicator
exceeding some tolerance threshold

P (X > τ) =

∫ ∞

τ

p(x)dx (1)

If this risk exceeds some critical value α, P (X > τ) > α, medical treat-
ment, for instance in the form of medication, is provided. While potentially
only aiming at a symptomatic relief, this treatment is assumed to interfere
with the patient’s physiology or pathophysiology and affect the clinical
disease indicator. Let Y ∈ Y denote a random variable that represents the

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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value of the disease indicator upon medical intervention, and let f describe
the effect of the treatment: y = f(x). This treatment effect implies a
transformation of the probability distribution of the disease indicator:

py(y) =

∫ ∞

−∞
δ
(
y − f(x)

)
px(x)dx (2)

where δ(.) is the Dirac delta function. The consequence is a potential pre-
diction bias:

P (Y > τ) =

∫ ∞

τ

p(y)dy 6= P (X > τ) = α (3)

which needs to be accounted for in the clinical decision process. As a simple
illustration, assume the posterior distribution of the clinical indicator prior
to the medical intervention is normal, px(x) = N(x|µ, σ2), with mean
µ = 0 and variance σ2 = 1, and that the effect of the medical treatment is
a shift of the clinical indicator by ψ ∈ R+:

f(x) =
[
x if x ≤ τ
x− ψ if x > τ

(4)

We obtain p(y) by inserting (4) into (2) and making use of the following
feature of the Dirac delta function:

δ
(
y − f(x)

)
=
∑

i

1

|f ′(xi)|
δ(x− xi) (5)

where {xi} are the roots of y − f(x) = 0. Inserting (4) and (5) into (2)
gives:

py(y) =

[
px(y) if y < τ − ψ
px(y) + px(y + ψ) if τ − ψ ≤ y ≤ τ
px(y + ψ) if y > τ

(6)

The apparent probability of the disease indicator to exceed the critical
threshold τ will therefore be evaluated as

P (Y > τ) =

∫ ∞

τ

py(y)dy =

∫ ∞

τ

px(y+ψ)dy =

∫ ∞

τ+ψ

N(y|0, 1)dy = G(τ+ψ)

where G = 1−G and G(.) is the normal cumulative distribution function,
whereas the actual probability is

P (X > τ) =

∫ ∞

τ

px(x)dy =

∫ ∞

τ

N(y|0, 1)dy = G(τ) (7)

Since G(.) is strictly monotonously decreasing, G(τ + ψ) < G(τ), the ap-
parent probability is biased and systematically underestimates the risk of
exceeding the critical threshold τ : P (Y > τ) < P (X > τ). Hence, by ignor-
ing the effect of the treatment on the clinical indicator variable, any clinical
decision support system based on this indicator variable will systematically
underestimate the patient’s state of risk.
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FIGURE 1. Schematic representation of our physiological model of pulmonary
hypertension and how it is affected by closed-loop effects following a clinical
intervention. See the main text for details.

2 Physiological application: pulmonary hypertension

Pulmonary hypertension, i.e. high blood pressure in the lungs, is a ma-
jor risk factor for a variety of medical conditions, including inadequate
coronary perfusion, stroke and heart failure. Pulmonary blood pressure
can differ substantially from blood pressure in the rest of the body (the so-
called systemic circuit) and, as opposed to the latter, can only be measured
invasively. Standard techniques, which are based on right-heart catheter-
ization, can have significant side effects, including internal bleeding and
partial collapse of the lungs.
Recent advances in physiological modelling allow the pulmonary blood
pressure to be predicted from the vasculature geometry and blood flow
times series (Qureshi et al.), which can be measured non-invasively with
computed tomography (CT) and ultrasound, respectively. The biophysical
model depends on various boundary conditions and physiological parame-
ters, most notably the blood vessel stiffness, which can be estimated with
computational inference procedures (Paun et al.).
Figure 1 provides a schematic illustration. Given the geometry of the vas-
culature, most notably the blood vessel diameters (measured with CT),
the blood flow (measured with ultrasound) and various boundary condi-
tions (obtained from statistical inference, see Qureshi et al.), the model
allows the prediction of the pulmonary blood pressure and the blood vessel
stiffness (with the statistical inference techniques described in Paun et al.).
In a clinical application, the prediction of high pulmonary blood pressure
above a critical threshold will trigger the administration of vasodilators,
whose effect is the increase of the vessel diameter. However, as illustrated
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TABLE 1. Closed-loop effect and its correction in the biophysical modelling of
pulmonary hypertension. Systolic blood flow can be measured with ultrasound;
the initial geometry of the vasculature, including the diastolic diameter of the
main pulmonary artery (MPA), is available from an initial CT scan. The bio-
physical model allows the prediction of the pulmonary systolic blood pressure
(column 1) and the vessel stiffness (columns 2-3) with the statistical inference
procedure described in (Paun et al.). The table shows the relative blood vessel
stiffness estimation error (median and 95% posterior credible interval) without
(column 2) and with a correction for the closed-loop effect that results from
medical interventions triggered by model predictions (column 3). Since this is a
simulation study (Qureshi et al.), the true vessel stiffness is known. Computa-
tional Bayesian inference was carried out with the MCMC scheme described in
Paun et al.

Peak blood pressure Relative error without Relative error with
exceeding threshold closed-loop correction closed-loop correction

25 % 1.51% (1.04%,1.97%) -2.0e-03% (-0.37%,0.37%)
50 % 2.52% (2.15%,2.90%) -1.4e-03% (-0.47%,0.46%)
75 % 61.5% (60.5%,62.4%) -0.26% (-7.78%,6.49%)

in Figure 1, this causes a closed-loop effect, whereby the prediction from the
model causes an action that alters the conditions under which the original
prediction was obtained.

3 Simulation study

Our simulations are based on the pulmonary circulation model described
in Qureshi et al. The blood vessel geometry of the larger blood vessels has
been obtained from a CT scan in a healthy mouse, the effect of the small
terminal blood vessels is approximated with electronic circuit (so-called
Windkessel) elements consisting of two resistances and a capacitance. This
gives three parameters that define downstream boundary conditions of the
partial differential equations (PDEs) describing the blood flow through the
pulmonary circuit. We also assume that the blood flow at the main pul-
monary artery (MPA) is measured (noninvasively with ultrasound), which
provides the upstream boundary condition for the PDEs. Following Qureshi
et al. and Paun et al., we assume the same stiffness parameter in all blood
vessels, which adds one further parameter to the physiological model. We
further assume that the blood flows in the two daughter vessels of the MPA
are measured (with ultrasound). Our data used for inference are the time
courses of the blood flows through three blood vessels. The parameters to
be inferred are the vessel stiffness and three Windkessel parameters. Once
these parameters have been estimated, the blood pressure in the MPA can
be predicted. A graphical illustration is provided in Figure 2 .
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Measured
blood flow

FIGURE 2. Left panel: 3D smoothed segmented network from a micro-CT im-
age of a healthy mouse lung. Right panel: Directional graph of the same network.
Blood flow waveforms are taken from ultrasound measurements at the main pul-
monary artery (MPA) and two daughter vessels. At the outlet of each terminal
vessel, three-element Windkessel elements with two resistors and a capacitor are
attached as boundary conditions to mimic the effect of the microvasculature fur-
ther downstream.

To simulate the effect of clinical interventions, we monitor the blood pres-
sure in the MPA, and provide an in-silico vasodilator whenever the pressure
exceeds a critical threshold. Since this is a proof-of-concept study, we use
data from mice rather than humans, and set as an arbitrary threshold
the peak pressure found in the hypoxic control mice used in the study
of Qureshi et al. We simulate the effect of the vasodilator by increasing
the diastolic trough diameter of all blood vessels by the same percentage
amount, whose value is determined by the requirement that upon medi-
cal intervention, the peak blood pressure in the MPA must not exceed the
critical value by more than 5%. This bandwidth defines the uncertainty
that remains when explicitly including the closed-loop effect caused by the
medical intervention in the model. We compare that with naive parameter
inference that does not include any correction for the medical intervention,
and assumes the diastolic blood vessel diameter to be fixed. We quantify
the effect of ignoring the feedback loop with the percentage estimation error
of the vessel stiffness.
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4 Results

The results can be found in Table 1. They demonstrate that ignoring the
closed-loop effect leads to a systematic bias in the estimation of the blood
vessel stiffness, which is a critical risk indicator for vessel wall rupture,
stroke and right-ventricle heart failure (Chen et al). Allowing for the med-
ical intervention and including the ensuing feedback loop in the statistical
inference corrects this bias and leads to a substantially improved estimation
of the stiffness parameter.

5 Conclusions

Quantitative physiological models have great potential for improved and
automated clinical decision support. However, it is important to correct for
closed-loop effects in model calibration. Using a mathematical toy problem
and a realistic fluid dynamics simulation of the pulmonary blood circula-
tion system, we have shown that failing to allow for the effect of medical
interventions – and not explicitly including them in the model – can lead
to a systematic prediction bias. Our future work will focus on improved
statistical inference when data on the effect of medical interventions are
noisy and/or partially missing.
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Abstract: With the increase in the production of genome-wide association stud-
ies (GWAS), the analysis of such data sets with thousands of potential predictive
single nucleotide-polymorphisms (SNPs) has become crucial in biomedical re-
search. Here we propose a new method to identify SNPs related with a disease in
case-control studies. The method provides two ordered lists of SNPs (with causal
or protective alleles) that provide a useful tool to help the researcher to decide
where to focus attention in a first stage.
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1 Introduction

A typical GWAS data set may contain thousands of potential predictive
single nucleotide-polymorphisms (SNPs) and the aim is to identify genes
involved in human disease, by searching for SNP variants that occur more
frequently in people with a particular phenotype than in people without
this phenotype. GWAS analysis typically assume an underlying genetic
model of association for each SNP (e.g., dominant, recessive, or additive),
being the single additive model the one typically selected. In this case, each
SNP is represented as the corresponding number of minor alleles (0, 1, or
2). Many methods for SNP identification use univariate tests which involve
regressing each SNP separately on a given trait, adjusted for possible co-
variate variables and assessing the significance after correction for multiple
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comparisons with a lost of sensitivity. As analyzing SNPs one at a time can
neglect information about the joint distribution, multi-association analysis
may be more suitable (Balding, 2006). Other possibilities involve grouping
of SNPs over a moving window and look for associations of groups with the
diseases, but the selection of the window is very subjective (Wu et al., 2010)
or to consider stochastic search algorithms (Dobra and Massam, 2010). In
the context of GWAS data the presence of population substructure can
result in spurious associations. Usually, the first ten principal components
(PC) are considered as covariate variables, assuming that these PCs cap-
ture information of the latent population substructure (Price et al., 2010).

2 Method

Let Y be a categorical variable indicating the presence (encoded as 1) or
absence (encoded as 0) of the disease of interest. Let X = (xyij) be an n×p
data matrix containing the genotypes for the jth SNP (j = 1, . . . , p) on
the ith (i = 1, . . . , n) individual, with n = n1 + n2 (n1 is the number of
cases and n2 the number of controls), being y equal to 1 or 0 for cases
and controls, respectively. We consider the single additive model as the
underlying genetic model of association. In this case, each SNP tested in
the case-control study and with alleles A and a generates three genotypes
(AA, Aa, aa) and is represented as the corresponding number of minor
alleles (0, 1, or 2). The model assumes that a SNP will be related to the
disease if the number of values equal to 1 or 2 is greater in the case group
than in the control group; that is, having one or two copies of the a allele
will increase the probability of presenting the disease. Let D = (dij) be the
Manhattan distance matrix between all the individuals. For each individual
xyi = (xyi1, . . . , x

y
ip)

T in the case or control group (i = 1, . . . , n), we consider

its 10-nearest neighbors among the n1 cases (NN1(xyi ) = {x1
i1
, . . . ,x1

i10
})

or among the n2 controls (NN0(xyi ) = {x0
i1
, . . . ,x0

i10
}), based on the D

distance matrix. The method associates each SNP j with a value ij1 obtained

from variable Ij1 where

Ij1 =
1

10n1

n1∑

i=1

10∑

k=1

B(pjik)− 1

10n2

n2∑

i=1

10∑

k=1

B(qjik),

with B(pjik) a Bernoulli distribution taking value 1 with probability pjik
if the i case takes values 1 or 2 and its k neighbor control takes value 0
on the jth SNP; otherwise, it takes the value 0 with probability 1 − pjik.

B(qjik) follows a Bernoulli distribution taking value 1 with probability qjik
if the i control takes values 1 or 2, and its k neighbor control takes value
0 on the jth SNP; otherwise, it takes the value 0 with probability 1− qjik.
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Proposition: Consider case i and its NN0(x1
i ) neighbours. Let pi be the

probability of observing values 1 or 2 in SNP j for case i and let wj be the
probability that the jth SNP is related with the disease. Then,

pjik = wjpi(1− p) + (1− wj)Qj and qjik = wjp(1− p) + (1− wj)Qj ,

with p the probability of observing values 1 or 2 by chance, and
Qj the probability of the event {case/control i takes values 1 or 2 and
its k neighbor control takes value 0 | SNP j is not related with the disease}.

Proposition: SNPs that favor the presence of the disease have positive and
large Ij1 values.

The decreasing ordered list with the ij1 values provides a tool for a genetic
study to focus the attention on SNPs with potentially casual alleles. As
the distribution followed by I1 with the ij1 values is unknown in order
to determine a threshold for the SNPs selection, it is necessary to obtain
the associated bootstrap distribution or to adjust to a convenient Normal
distribution if possible. Similarly, the method associates each SNP j with
a value Ij2 with

Ij2 =
1

10n2

n2∑

i=1

10∑

k=1

B(pjik)− 1

10n1

n1∑

i=1

10∑

k=1

B(qjik),

where now B(pjik) follows a Bernoulli distribution taking value 1 with prob-

ability pjik if the i control takes values 1 or 2 and its k neighbor case takes
value 0 on the jth SNP; otherwise, it takes the value 0 with probability
1 − pjik. B(qjik) follows a Bernoulli distribution taking value 1 with prob-

ability qjik if the i case takes values 1 or 2, and its k neighbor case takes
value 0 on the jth SNP; otherwise, it takes the value 0 with probability
1 − qjik. In a similar way, SNPs with a corresponding ij2 value that is big
and positive are those potentially conferring protection against the disease.

3 Simulate data

The simulated case-control data set simuCC included in the genMOSS R
package, contains 6000 SNPs, 1000 cases and 1000 controls. Two SNPs,
rs4491689 and rs6869003, and a random environmental factor were associ-
ated with the disease. Our method identified these two SNPs as the first and
second SNPs in the ranked list of SNPs favoring the disease, in agreement
with the fact that they are the disease predisposing SNPs.
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4 Application to a real data set

A real case-control data set, previously used in attention-
deficit/hyperactivity disorder (ADHD; Snchez-Mora et al., 2015),
including 418 cases, 428 controls and 155802 SNPs covering the whole
genome was analyzed. We split the sample 20 times at random into train
(90%) and test (10%) data. Taking SNPs that favor the presence of ADHD
allows a highly reliable assignation of cases and controls, reaching correct
classification percentages over 90% with only 200 SNPs (Table 1). The top
finding is SNP rs739465 in the VAV2 gene, encoding an angiogenic protein
and previously associated with multiple sclerosis. Other findings point at
the NF1 gene, encoding neurofibromin 1 and causal for neurofibromatosis
but also associated with risk-taking behavior, alcohol consumption or
anxiety, and at RBFOX1, encoding a splicing factor and found associated
with depression and also highlighted in a recent GWAS meta-analysis of 8
psychiatric disorders, including ADHD.

TABLE 1. AUC and percentage of correct classification of subjects into the case
(ADHD) or control groups in the train-test situation, under different α values
that correspond to different numbers of SNPs. Mean and standard deviation (in
brackets) are indicated.

α Number SNPs AUC Correct classification (%)

0.0001 22.00 (3.21) 0.78 (0.02) 71.87 (1.91)
0.0005 100.63 (7.91) 0.89 (0.01) 85.53 (1.47)
0.001 192.37 (11.16) 0.94 (0.01) 91.33 (0.91)
0.0025 457.65 (14.65) 0.98 (0.01) 97.10 (0.48)
0.005 894.26 (19.12) 0.98 (0.01) 99.02 (0.26)
0.01 1740.21 (21.15) 0.99 (0.003) 99.78 (0.15)
0.025 4220.26 (43.70) 0.99 (0.001) 99.92 (0.07)
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Abstract: Regression models describing the joint distribution of multivariate
response variables conditional on covariate information have become an impor-
tant aspect of contemporary regression analysis. However, a limitation of such
models is that they often rely on rather simplistic assumptions, e.g. a constant
dependence structure that is not allowed to vary with the covariates or the re-
striction to linear dependence between the responses only. We propose a general
framework for multivariate conditional transformation models that overcomes
such limitations and describes the full joint distribution in a tractable and inter-
pretable yet flexible way. Among the particular merits of the framework are that
it can be embedded into likelihood-based inference (including results on asymp-
totic normality) and allows the dependence structure to vary with the covariates.
In addition, the framework scales well beyond bivariate response situations.
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1 Basic Model Setup

We start by discussing transformation models developed for the analysis of
the joint multivariate distribution of a J-dimensional, absolutely continu-
ous random vector Y = (Y1, . . . , YJ)> ∈ RJ with density fY (y) without
conditioning on covariates. The key component of multivariate transforma-
tion models then is an unknown, bijective, strictly monotonically increasing
transformation function h : RJ → RJ . This function maps the vector Y ,
whose distribution is unknown and shall be estimated from data, to a set of
J independent and identically distributed, absolutely continuous random
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variables Zj ∼ PZ , j = 1, . . . , J with an a priori defined distribution PZ (in
the following the standard normal distribution), such that

h(Y ) = (h1(Y ), . . . , hJ(Y ))> = (Z1, . . . , ZJ)> = Z ∈ RJ .

The density of Y implied by the transformation model is then

fY (y) =




J∏

j=1

φ0,1(hj(y))


 ·
∣∣∣∣
∂h(y)

∂y

∣∣∣∣

and, upon a suitable parameterisation of the transformation function, this
enables maximum likelihood inference. However, in this generality, the
model is cumbersome in terms of both interpretation and tractability. Thus,
in the following, we introduce simplified parameterisations of h that lead
to interpretable models.

2 Models with Recursive Structure

In a first step, we impose a triangular structure on the transformation
function h by assuming

hj(y) = hj(y1, . . . , yJ) = hj(y1, . . . , yj)

i.e. the jth component of the transformation function depends only on the
first j elements of its argument y. In a second step, we assume that the
triangulary structured transformation functions are linear combinations of
marginal transformation functions h̃j : R→ R, i.e.

hj(Y1, . . . , Yj) = λj1h̃1(Y1) + . . .+ λjj h̃j(Yj)

where each h̃j increases strictly monotonically and λjj > 0 for all j =
1, . . . , J to ensure the bijectivity of h. Because the last coefficient, λjj , can-

not be separated from the marginal transformation function h̃j(Yj), we use
the restriction λjj ≡ 1. Thus, the parameterisation of the transformation
function h finally reads

hj(Y1, . . . , Yj) = λj1h̃1(Y1) + . . .+ λj,j−1h̃j−1(Yj−1) + h̃j(Yj)

and the model-based density function for Y is

fY (y) =

J∏

j=1

φ0,1

(
λj1h̃1(Y1) + . . .+ λj,j−1h̃j−1(Yj−1) + h̃j(Yj)

) ∂h̃j(Yj)
∂Yj

.

Summarising the model’s specifications, our multivariate transformation
model is characterised by a set of marginal transformations h̃j(Yj), j =
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1, . . . , J , each applying to only a single component of the vector Y , and by
a lower triangular (J × J) matrix of transformation coefficients

Λ =




1 0
λ21 1
λ31 λ32 1

...
...

. . .

λJ1 λJ2 . . . λJ,J−1 1



.

Under the standard normal reference distribution PZ = N(0, 1), the coef-
ficients in Λ characterise the dependence structure via a Gaussian copula
while the marginal transformation functions h̃j allow the generation of ar-
bitrary marginal distributions for the components of Y .

3 Conditional Transformation Models

By extending the unconditional transformation function, we define the J
components of a multivariate conditional transformation function given
covariates X as

hj(y |X) =

j−1∑

=1

λj(X)h̃(Y |X) + h̃j(Yj |X)

where λj(X) and h̃j(Yj | X) are expressed in terms of suitable basis
function expansions, e.g. based on Bernstein polynomials that facilitate
the consideration of the monotonicity constraints. For the marginal (with
respect to the response Yj) conditional (given covariatesX) transformation
functions, this leads to a parameterisation

h̃j(Yj |X) = cj(Yj ,x)>ϑj

where the basis functions cj(Yj ,x), in general, depend on both element Yj
of the response and the covariates x.

4 Simulation Study

In this section, we provide empirical evidence on the performance of our
MCTMs via simulations. We simulated R = 100 data sets of size n =
1, 000, following a method similar to that used in the parametric bootstrap
procedure:

1. Covariate values x were simulated as i.i.d. variables, where x ∼
U [−0.9, 0.9].
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2. The latent variables z̃ir ∈ R2 were generated as

z̃ir = Λ−1
i zir, i = 1, . . . , n; r = 1, . . . , R

with

zir ∼ N(0, I2) and Λi =

(
1 0
x2
ir 1

)
,

such that

Cov(z̃i1, z̃i2|xi) ≡ Σi(xi) =

(
1 −x2

i

−x2
i 1 + x4

i

)
.

3. From the latent variables, the observed responses were computed as

yir = [F−1
1 {Φ0,1(z̃ir,1)}, F−1

2 {Φ0,σ2
i2

(z̃ir,2)}]>,

where σ2
i2 = 1 + x4

i and F1 and F2 are the CDFs of two Dagum
distributions with parameters a1 = exp(2), b1 = exp(1), p1 = exp(1.3)
and a2 = exp(1.8), b2 = exp(0), p2 = exp(0.9), respectively. Note that
the CDF of an unconditional Dagum distribution reads as

F (y) =

(
1 +

(y
b

)−a)−p
, for y > 0 a > 0, b > 0, p > 0.

This model specification is equivalent to a Gaussian copula model with
Dagum marginals, but note that, by its construction, the first margin is
independent of the covariate x, while the scale of the second margin varies
as a function of x. More precisely, the scale parameter b is affected by x
while the shape parameters a, p remain constant.
As competitors for MCTMs, we considered Bayesian structured additive
distributional regression models as implemented in the software package
BayesX and vector generalised additive models as implemented in the corre-
sponding R add-on package VGAM. For VGAM and BayesX, we employed
the true specification, i.e. a Gaussian copula with correlation parameter

ρ(xi) =
−λ(xi)√
1 + λ(xi)2

and Dagum marginals, in which the paramater b2 of the second marginal
depended on x but the first marginal as well as the parameters a2 and p2

did not. Both the predictor for b2 and the correlation parameter ρ of the
Gaussian copula were specified using cubic B-splines with 20 inner knots
on an equidistant grid in the range of x with a second-order random walk
prior; the other parameters of the margins were estimated as constants.
Because VGAM does not allow for simultaneous estimation of the margins
and the dependence structure, we first estimated the Dagum marginals with
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FIGURE 1. RMSE for λ̂(x) from MCTM (left), VGAM (middle) and BayesX
(right).

constant parameters a1, b1, p1, a2, p2 and covariate-dependent parameters
b2. The copula predictor was then estimated with plugged-in estimates of
the margins, using cubic B-splines with 18 inner knots. For the multivariate
transformation models (denoted as MCTM), we employed Bernstein poly-
nomials of order eight (in y) and order three (in x), as in our application.
Although BayesX and VGAM employed the correct model specification
in terms of the parametric distribution assumption for the marginal dis-
tributions and the correlation parameter, the performance of MCTM was
highly competitive in terms of the RMSE (Figure 1) without the require-
ment to either estimate the marginal distributions in a first step and plug
the empirical copula data in to obtain the dependence structure (as for
VGAM) or specifying parametric marginal distributions (as for BayesX).
Both requirements are restrictive in practice since typically it is impossi-
ble to pick the ‘correct’ parametric distribution that exactly matches the
marginal distributions of the underlying random variables.

5 Application: Trivariate Conditional Transformation
Models for Undernutrition in India

To demonstrate practical aspects of multivariate conditional transforma-
tion models, we present a trivariate analysis of undernutrition in India.
Overall, the available data set comprised 24,316 observations, after pre-
processing of the data. We used three indicators, stunting, wasting and
underweight, as the trivariate response vector, where stunting refers to
stunted growth, measured as an insufficient height of a child with respect
to his or her age, while wasting and underweight refer to insufficient weight
for height and insufficient weight for age respectively. Hence stunting is an
indicator of chronic undernutrition, wasting reflects acute undernutrition
and underweight reflects both. Our aim is to model the joint distribution



Kneib et al. 136

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ystunting

F
(y

st
un

tin
g|

ag
e)

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ywasting

F
(y

w
as

tin
g|

ag
e)

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yunderweight

F
(y

un
de

rw
ei

gh
t|a

ge
)

cage=36 cage=0

FIGURE 2. Estimated CDFs (top row) and rank correlation coefficients (bottom
row) given age of the child. For the rank correlation coefficient, the maximum like-
lihood estimates are shown as solid black line and the 95% bootstrap confidence
intervals as dashed black lines.

of stunting, wasting and underweight conditional on the age of the child.
Figure 2 (top row) depicts the estimated marginal conditional CDFs Fj(Yj |
age), with the different colours indicating the ages of the children. Clearly,
the shapes of the margins differ for the three indicators and change with the
increasing age of the children. A shift to the left in the margins representing
older ages indicates a higher risk of lower undernutrition scores. All of
the distributions, but especially those of wasting, are asymmetric, as with
increasing age the lower tails can be seen to vary less strongly than the
upper tails.
Figure 2 (bottom row) depicts the conditional rank correlations ρS between
stunting, wasting and underweight as functions of age along with the point
and interval estimates obtained from 1, 000 parametrically drawn boot-
strap samples. Interestingly, the correlation between stunting and wasting
is initially negative for young children and then approaches zero with the
increasing age of the children.
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Abstract: Multivariate Conditional Transformation Models (MCTMs) were re-
cently proposed as a new multivariate regression technique. MCTMs characterize
jointly the covariates effects on the marginal distributions of the responses and
their correlations. Flexibility, in both the responses and covariates effects are
achieved using Bernstein polynomial basis. Based on MCTMs, in this paper per-
centile curves are constructed for each response. Simulation studies indicated the
good performance of these estimated condtional percentiles. Finally, MCTMs per-
centile curves were obtained for three diabetes markers (fasting plasma glucose,
glycated hemoglobin and fructosamine) condtionally on age.
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1 Introduction

Diabetes diagnosis and control are mainly based on two tests: fasting
plasma glucose (FPG) and glycated hemoglobin (HbA1c) concentrations.
However, conditions that determine alterations in hemoglobin metabolism
(anemia or kidney disease) can interfere with the reliability of HbA1c mea-
surements. On the other hand, FPG is highly dependent on food ingestion
and sample storage. Fructosamine (Fr), another glycated protein, is fre-
quently used as an alternative glycemic marker. Nevertheless, its transla-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).



Lado-Baleato et al. 138

tion into average glucose levels is not as clear as for HbA1c and discordances
are often encountered between Fr and HbA1c results. In addition, agree-
ment among these glycemic markers may be affected by common factors
like the age of individuals.
Studying simultaneously these three glycemic markers concentrations de-
pending on age, may improve the diagnosis and treatment of diabetes. In
a previous work (Espasand́ın-Domı́nguez et al (2019)) bivariate copula re-
gression models were applied to identify factors that might affect the HbA1c
and Fr distributions and explain discordant results between both tests. In
this paper the FPG was included as an additional response variable thus
extending this work to the trivariate case. To this aim, Multivariate Condi-
tional Transformation Models (MCTMs; Klein et al, 2020) were considered.
These models characterize the covariates effects on the Cumulative Distri-
bution Functions (CDF) of each response and on their correlations. Also,
MCTMs allow us to obtain percentile curves for each biomarker facilitating
the interpretability to the practitioners.
The rest of the paper is structured as follows, the structure of MCTMs is
briefly explained in Section 2 and the percentile curves are obtained. In
Section 3 a simulation study is carried out to evaluate the percentile curves
performance. The results of our clinical study are presented in Section 4
and finally the paper ends with some conclusions.

2 MCTM percentile curves

The Multivariate Conditional Transforamtion Models (MCTM) are based
on the transformation of the original variable into a reference distribu-
tion (usually N(0,1)) applying an unknown, bijective and strictly mono-
tonically increasing transformation function. In the trivariate case, given
Y = (Y1, Y2, Y3), the transformation function h : R3 → R3 maps the vector
Y to a set of independent and identically distributed random variables.
That is:

h(Y ) = (h1(Y1)), h2(Y2), h3(Y3))T = (Z1, Z2, Z3)T = Z ∈ R3

Finally, the variable Y dependence structure is characterised by a lower
triangular (3× 3) matrix

Λ =




1 0 0
λ21 1 0
λ31 λ32 1




defined by the coefficients λ21, λ31 and λ32 measuring the correlation be-
tween (Y1, Y2), (Y1, Y3) and (Y2, Y3) respectively.
In the conditional case, given the covariates vector x the multivariate trans-
formation function is given by h̃(y|x) =

∑j−1
=1 λj(x)h̃(y|x) + h̃j(yj |x).
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Where h̃j(yj |x) and λi(x) are expressed in terms of basis functions expan-
sions as:

h̃j(yj |x) = cj(yj ,x)Tϑj = aj(yj)
Tϑj,1 − b(x)Tϑj,2

λj = αj + b(x)Tγj

where a and b are a polynomial Bernstein basis and (αj, ϑji, γj) para-
metric coefficients whose estimation and inference is based on the model
log-likelihood. The inference of some quantities, as the responses correla-
tions, is achieved using parametric bootstrap (see Klein et al (2020) for
details).
In MCTM the conditional CDF for each response P (Y ≤ y|x) is given
by F (Yj |X = x) = Φ0,σ2

j
(h̃j(yj |x)) = FZ(aj(yj)

Tϑj,1 − b(x)Tϑj,2). In

order to make this model more interpretable the following percentile curves
QY (τ) = F−1(Yj |X = x) with τ ∈ (0, 1) may be obtained.

3 Simulation study

In this section we evaluate the percentile curves estimation. In the sim-
ulation set-up three continuous outcomes following a Dagum distribution
were considered. The Dagum scale parameters were made dependent on
one single covariate x ∈ [−1, 1] as b1 = x3, b2 = x and b3 = x2. The
trivariate response dependence structure was made dependent on x, using
the correlation matrix given in Klein et al 2020 (section 5). The evaluation
was done in 250 replicates considering three sample sizes (500, 1000, 5000)
and three τ values (0.05, 0.50 and 0.95).
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FIGURE 1. Estimation of the percentile curves for τ = 0.05, 0.50, 0.95 and
n = 500.

As can be seen in Figure 1, the estimated percentile curves (in grey) are
very close to the theoretical ones (in red) for each marginal and τ . As
shown in Table 1, based on the root mean square error, the percentile
curves estimation error decreases with sample size for the three response
variables being higher for τ = 0.05 and τ = 0.95.
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TABLE 1. Root mean square error (RMSE) for the percentile curves estimation.
The RMSE was obtained in 200 equally spaced points of the percentile curves as
1

250

∑250
i=1

1
200

∑200
k=1

√
(ŷτik − yτk)2.

Y1 : x3 Y2 : x Y3 : x2

τ = 0.05 τ = 0.50 τ = 0.95 τ = 0.05 τ = 0.50 τ = 0.95 τ = 0.05 τ = 0.50 τ = 0.95
500 0.0019 0.0013 0.0045 0.0028 0.0010 0.0037 0.0042 0.0014 0.0046

2000 0.0018 0.0007 0.0028 0.0024 0.0006 0.0015 0.0036 0.0007 0.0020
5000 0.0018 0.0007 0.0025 0.0022 0.0006 0.0011 0.0035 0.0005 0.0015

4 Multivariate regression modelling of glycemic
markers

Using a sample of 1516 adults collected in the A-Estrada Glycation and
Inflamation study (see Espasandn et al, 2019 for details) a MCTM trivariate
regression model for the FPG, HbA1c and Fr concentrations depending on
age was fitted. The marginal conditional transformation functions were
parametrised as

h̃(yj |age) = aj(yj)
Tϑj,1 − b(age)ϑj,2 for j ∈ (FPG,HbA1c, Fr)

and the responses dependence structure as

λj(age) = b(age)Tγij
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FIGURE 2. Percentile curves for FPG (fasting plasma glucose), glycated
hemoglobin (HbA1c) and fructosamine (Fr) concentrations.

Figure 2 depicts the percentile curves for each glycemic markers with differ-
ent colour indicating several τ value. The FPG, HbA1c and Fr concentra-
tions increase with age and this increase is more pronounced for the upper
percentile. Finally, as can be seen in Figure 3, the Fr and FPG association,
as well as the Fr and HbA1c one, is higher in the older patients. While
FPG and HbA1c show the higher association degree but it is not depend
on age.



Lado-Baleato et al. 141

20 40 60 80

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
Glucose and HbA1c

Age, years

ρ
2
1
(a

g
e
)

20 40 60 80

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8

Glucose and Fructosamine

Age, years

ρ
1
3
(a

g
e
)

20 40 60 80

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8

HbA1c and Fructosamine

Age, years

ρ
2
3
(a

g
e
)

FIGURE 3. Age effect on the responses correlations along with the 95% pointwise
confidence interval using 1000 bootstrap replicates.

5 Discussion and future work

In this work we demonstrate the usefulness of MCTMs in a real biomedical
problem in diabetes research. These models allow for a joint estimation of
the covariates effects on the distribution of the responses and their correla-
tions. In this work, MCTMs percentile curves were proposed in order to get
a more interpretable model output. MCTMs allowed us to model jointly,
for the first time, the age effect on the concentrations of three glycemic
markers, offering a better understanding these diabetes markers measure-
ments.
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Gude, F. (2019). Assessing the relationship between markers of
glycemic control through flexible copula regression models Statistics
in Medicine, 38, 5161 – 5181.

Klein N., Hothorn T. and Kneib T. (2020) Multivariate Con-
ditional Transformation Models Arxiv preprint,
doi:https://arxiv.org/abs/1906.03151.



Multivariate distributional regression forests
for probabilistic nowcasting of wind profiles

Moritz N. Lang1,2, Georg J. Mayr2, Lisa Schlosser1, Thorsten
Simon1,2, Reto Stauffer1,3, Achim Zeileis1

1 Department of Statistics, Universität Innsbruck, Innsbruck, Austria
2 Department of Atmospheric and Cryospheric Science, Universität Innsbruck,

Innsbruck, Austria
3 Digital Science Center, Universität Innsbruck, Innsbruck, Austria

E-mail for correspondence: Moritz.Lang@uibk.ac.at

Abstract: This study presents statistical methods to probabilistically predict
wind profiles along the approach path of an airport for one hour in advance.
Accurate nowcasts of wind profiles increase safety and facilitate optimal air traf-
fic management by timely re-routing of landing aircraft when wind direction
shifts. Distributional regression trees and forests are enhanced to predict vertical
wind profiles employing a multivariate normal distribution. To gain probabilistic
forecasts for both wind speed and wind direction, the components of the two-
dimensional Cartesian wind vector are modeled simultaneously for several height
levels of a measurement tower. The resulting tree-based models can capture non-
linear effects and interactions, and automatically select the relevant covariates
that are associated with changes in any of the parameters of the (possibly) high-
dimensional multivariate normal distribution employed. Extending the multivari-
ate distributional regression trees to multivariate distributional regression forests
can further improve the predictive performance by regularizing and smoothing
the covariate effects.

Keywords: Distributional Trees; Random Forest; Multivariate Normal Distri-
bution; Wind Profiles; Probabilistic Forecasting

1 Motivation

Statistical forecasting of numerical weather quantities has so far focused
mainly on near-surface variables such as temperature, wind, and precipita-
tion, presumably because most people are directly affected there. Accord-
ingly, distributional regression trees and forests have already been success-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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fully applied for probabilistic rain and wind direction forecasting by ac-
counting for appropriate univariate response distributions (Schlosser et al.,
2019; Lang et al., 2020). The nowcasting task of providing vertical wind
profiles for aviation forecasters and air traffic control serves as a practical
real-case application to extend univariate distributional regression trees
and forest to multivariate response distributions.

2 Multivariate trees and forests

Distributional regression trees (Schlosser et al., 2019) fuse distributional
modeling with regression trees based on the unbiased recursive partition-
ing algorithms MOB (Zeileis et al., 2008) or CTree (Hothorn et al., 2006).
The basic idea is to recursively partition the covariate space into (approx-
imately) homogeneous subgroups, so that a single distributional model is
sufficient to be fitted to the response in each resulting subgroup. To capture
the dependence on covariates, the association between the model’s scores
and each available covariate is assessed using either a parameter instability
test (MOB) or a permutation test (CTree). After selecting the covariate
with the highest significant association as split variable (i.e., lowest signif-
icant p-value, if any), the corresponding split point is chosen within the
selected covariate either by optimizing the log-likelihood (MOB) or by us-
ing a two-sample test statistic (CTree) over all possible partitions. A nat-
ural extension of (distributional) regression trees is to build ensembles or
forests of such trees which can further improve the predictive performance
by regularizing and stabilizing the model (Breiman, 2001).
In comparison to preceding studies using distributional regression trees and
forests, this study employs distributional trees and forests for probabilis-
tic forecasting of a multivariate response distribution. Drawing on related
work for tree models of psychometric networks (Jones et al., 2019), a p-
dimensional multivariate normal distribution is employed in the leaves of
the trees; however, the introduced methodology is conceptually transfer-
able to any multivariate distribution. Based on the mean vector µ and
variance-covariance matrix Σ, the density for a single p-dimensional obser-
vation vector yi is given by

fMVN(yi;µ,Σ) =
1√

(2π)p|Σ|
exp

(
− 1

2
(yi − µ)>Σ−1(yi − µ)

)
.

In the subsequent notation we collect all parameters in a single parameter
vector θ of length k = p+p+p(p−1)/2. Thus, this comprises the p means
from µ and the p variances and p(p− 1)/2 correlations, respectively, from
which the covariance Σ can be constructed.
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FIGURE 1. Fitted distributional regression tree based on the multivariate normal
distribution for the u and v wind components at five different height levels for a
measurement tower at Karlsruhe. In each terminal node, the location parameters
of the wind vectors at all height levels are shown as colored points and gray
arrows. The unit of the Cartesian coordinate system is in meter per second.
The covariates employed are numerical high-resolution forecasts (hres), as well
as 1-hourly lagged observations (obs) for wind speed (ff) and both wind vector
components (u or v), all reported at different height levels (160 m, 100 m, 200 m).
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FIGURE 2. Derived wind direction and wind speed prediction at different height
levels for a multivariate distributional tree and forest, as well as for an univariate
distributional tree estimated per wind component and height level separately.

The maximum likelihood estimator θ̂ is obtained by maximizing the sum of
the corresponding log-likelihood contributions `(θ; yi) = log(fMVN(yi;θ))
based on the n observations in a given sample. The corresponding scores
s(θ,yi) = (∂θ1`(θ; yi), . . . , ∂θk`(θ; yi)) can be employed as a general good-
ness-of-fit measure. Hence, evaluating the scores at the individual observa-
tions and parameter estimates s(θ̂,yi) yields an n× k matrix that assesses
how well each distribution parameter estimate θ̂ fits one individual observa-
tion vector yi. If the scores change systematically along available covariates,
the parameter instabilities are incorporated into the model by maximizing
a partitioned likelihood. This procedure is repeated recursively until there
are no significant parameter instabilities or until another stopping criterion
is met (e.g., subgroup size or tree depth).

3 Nowcasting of wind profiles

To study the performance of the novel multivariate trees and forests,
1 h predictions of vertical wind profiles for 12 UTC are issued for a mea-
suring tower in Karlsruhe. The response has p = 10 dimensions, consisting
of zonal (u) and meridional (v) wind components at five different height
levels (40 m, 60 m, 80 m, 160 m, 200 m). Numerical weather forecasts and
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FIGURE 3. Out-of-sample predictive performance in terms of the logarithmic
score based on the full predictive multivariate normal distribution for 1 h forecasts
of the wind speed components at five different height levels of the measurement
tower. In addition, the averaged performance over all dates is shown in red.

1-hourly lagged observations of various meteorological wind quantities are
used as splitting variables, as well as derived quantities such as tempo-
ral means, minima, and maxima, or temporal and spatial differences. The
terminal nodes of the tree in Fig. 1 depict the location parameters for
the wind vectors at the different heights. Splits in the lagged observed u
and v components (at 200 m) broadly distinguish four different regimes of
wind directions: south-west (nodes 3, 4), south (nodes 8, 9), south-east
(node 10), and north east (nodes 13, 14, 15). Within each regime splits in
either lagged observed or predicted wind speed (ff), distinguishes low vs.
high wind speeds in the same (or rather similar) directions.
To validate the estimated scale and correlation of the multivariate trees,
these are compared to multivariate forests, as well as to a univariate dis-
tributional regression forest, employing the normal distribution, estimated
for each wind component and height level separately. In the latter no corre-
lation is assumed between the wind components at a single height level and
between different levels. For a characteristic sample case, all three models
capture the observed wind speed and direction comparably well (Fig. 2).
The performance of the models, in terms of the logarithmic score, is as-
sessed employing a yearly based four-fold cross-validation using daily data
from 2014 to 2017 (Fig. 3). The box-and-whiskers show that the multivari-
ate models outperform the univariate one, which seems to be too restric-
tive by the assumption of no correlation. Further, the multivariate forest
is slightly superior to the multivariate tree by regularizing and smoothing
the covariate effects.
The results show that the multivariate trees and forests are able to model
all aspects contained in the univariate model, and further extend them by
representing the correlation structure between the wind components at a
single height level, as well as between the different levels. By fitting a single
multivariate model for both wind components and all height levels, the
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profile remains consistent and vertically coherent which allows to provide
not only deterministic but rather probabilistic forecasts.

Computational details: The R package disttree implementing the pro-
posed multivariate distributional regression trees and forests is available at
https://R-Forge.R-project.org/projects/partykit/.

Acknowledgments: This project was partly funded by the Austrian Re-
search Promotion Agency (FFG, grant no. 858537) and by the Austrian
Science Fund (FWF, grant no. P31836).
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Abstract: Spatio-temporal health data is now routinely available. Often when
time augments space, the focus is on modeling global spatio-temporal effects.
However, temporal effects are often localized spatially and so it could be impor-
tant to disaggregate these effects. This leads to spatial clustering of temporal
effects. Often this disaggregation is approached via latent mixture component
models. Extending this approach to multiple disease incidence is the focus of this
presentation. The specific example that is explored, and motivates the detailed
modeling, is incidence of mild cognitive impairment (MCI) and Alzheimers dis-
ease (AD). MCI is considered a pre-cursor of AD and so there is a temporal latent
link between these outcomes. Our models address latent component mixtures for
each disease but also coupled components shared between diseases. A case study
in annual county level incidence in South Carolina is presented.

Keywords: Bayesian; Multivariate; spatio-temporal; Machine learning; AD-MCI
modeling.

1 Background and Introduction

Alzheimer’s disease (AD) is a serious neurological disorder with adverse
effects on patient cognition and physical health. Moreover, compared to
other leading causes of death, mortality related to AD has increased in
recent years; from 2000 to 2015, AD has shown a 123% increase in mortality
in the US. Methods which are able to elucidate the role of precursors or
promoters on AD risk, and in particular the geographic variation in AD risk,
will therefore be instrumental in characterizing AD risk at the aggregate
patient level. To this end, we consider in this study the evaluation of novel
Bayesian hierarchical models for disease mapping which will improve our
ability to characterize AD risk. In particular, we consider an application

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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of our novel models to spatiotemporal AD count data arising from the
counties of South Carolina, as well as to simulated data. Mild congnitive
impairment (MCI) is regarded as a precursor of AD and its spatial incidence
distribution can also be modeled. The link between MCI and AD may be
important in assessing progression and establishing trends in risk in both
diseases.

2 Disease Mapping models

In modeling counts of a disease collected over space and time, we can use
a BHM, wherein we often assume a Poisson model for the observed disease
counts yij at the first level of the model hierarchy:

yij ∼ Pois(eijθij) i = 1, ..., n; j = 1, ...., J

where eij denotes the expected count of the disease and θij the unknown
relative risk parameter of the disease for the area at the j th measurement
occasion.
We then model the unknown relative risk parameter, θij , at the second
level of the model hierarchy by decomposing the logarithm of the unknown
relative risk parameter into the sum of spatial random effects, vi, ui, tempo-
ral random effects, γj , and space-time interaction terms, ψij (Knorr-Held,
2000; Lawson, 2018). That is,

log(θij) = α0 + vi + ui + γj + ψij

where α0 is an intercept term representing the baseline contribution to the
log relative risk parameter over all areas and measurement occasions.

2.1 Space-time mixture (STM) models

The classic Knorr-held model (ST BHM) is limited in that it assumes
‘global’ temporal random effects, γj . That is, while the ST BHM provides
estimates of the underlying smoothed spatial and temporal variation in
disease risk, it does not account for the possibility that subsets of the areas
may demonstrate homogenous temporal profiles in disease risk (Lawson et
al , 2010; Napier et al , 2019). We therefore desire a model which allows for
‘disaggregation’ of these global random effects – thus allowing us to classify
areas to descriptive latent temporal trends in disease risk.

2.2 Proposed Modeling Paradigm

We assume that both MCI and AD can be decomposed into temporal latent
components with a spatial signature. Hence we have

{
yMCI
ij ∼ Pois(eMCI

ij θMCI
ij )

yADij ∼ Pois(eADij θADij )
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and models for log(θADij ) and log(θMCI
ij ). Different models can be assumed

that link the diseases.
In general, the latent structure is decomposed as follows:

log(θij) = α+ v + u+

L∑

l=1

Λijl + ψij

with
∑L
l=1 Λijl =

∑L
l=1 ωilχlj where χlj is the l th stochastic latent trend

and ωil is a weight associating the trend to the i th area. Originally
the components were assigned random walk prior distributions so that
χlj ∼ N(χl,j−1, τ

−1
χ ). The weights can have a range of prior specifica-

tions, subject to 0 < ωil < 1, and
∑L
l=1 ωil = 1. Commonly the weights

are assumed to have a Dirichlet - singular multinomial prior distribution

whereby ωi
L×1
∼ Mult

(
1, pi
L×1

)
where pil =

p∗il
L∑
l=1

p∗il

and p∗il ∼ Gamma(1, 1),

but other alternatives exist (Lawson et al , 2010). Subsequently, user de-
fined parametric latent trend components fl(j| γl

qlx1
), where ql are a set of

regression parameters, have been used to aid identification and minimise
label switching (Napier et al, 2019).

AD-MCI modeling We utilise a non parametric non-linear measure of
association (maximum information coefficient: MIC) (Reshef et al, 2011;
Reshef et al 2016) to assess the degree of association between the AD and
MCI risk within our models for the log risk. Hence,

log(θMCI
ij ) = αMCI

0 + φMCI
i +

L∑

l=1

ΛMCI
ijl + ψMCI

ij

log(θADij ) = αAD0 + φADi + sign(ρi)I{MICi > δ}AMCI
ijl

+ [1− I{MICi > δ}]BADijl + ψADij

where AMCI
ijl =

LMCI∑
l=1

ΛMCI
ijl and BADijl =

LAD∑
l=1

ΛADijl . Also ρi =

corr(θ̂i
MCI

J×1
, θ̂i

AD

J×1
), the Pearson correlation of the relative risks. This is used

to provide a direction for the MIC. The MICi = MIC(θ̂i
MCI

J×1
, θ̂i

AD

J×1
), for

a given region, is a time invariant non-parametric (potentially non-linear)
measure of association. This formulation allows there to be inclusion of links
to MCI components, for the AD risk, if the association is strong enough.
Variants of these models have also been examined with different association
patterns. Baer et al (2020) discuss these variants and also estimation is-
sues (such as label switching, MCMC implementation, and identification).
Nimble was used throughout for sampler construction and model fitting.
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2.3 Results

Data from the SC Revenue and Fiscal Affairs (RFA) all-payers health data
system is available for SC counties for the years 2007-2011. Both MCI
incident counts and AD incident counts are available for ER visits. Figure
1 displays the SIRs for these data. Mapping of the MIC values displays the
differential association depending on δ. The latent profiles found for AD
and MCI are different, in that AD shows a cluster of increasing temporal
risk and fluctuating MCI risk with lower temporal change. A variety of
diagnostic plots based on the real data and simulations will be presented.

FIGURE 1. Standardised Incidence Ratios for AD and MCI for 2007-2011 for SC
counties

Figure 2 displays the posterior mean temporal classes found for MCI and
AD under the three different models with different trend assumptions.
Model details can be found in Baer et al (2020).

Acknowledgments: Special Thanks to the NIH TL1 program at MUSC
for supporting the research of DB.
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Abstract: We provide a gradient boosting approach to estimate functional ad-
ditive regression models with probability density functions as response variables
and scalar covariates. To respect the special properties of densities, we formu-
late the regression model in a Bayes Hilbert space. This allows for a variety of
applications, in particular for mixed densities, which have positive probability
masses at some points of an interval. We illustrate how to handle this challenge
by means of a motivating data set from the German Socio-Economic Panel Study
(SOEP). In this application, we analyze the distribution of the woman’s share in
a couple’s total labor income, which has positive probability masses at zero and
one, using covariate effects for year, federal state, and age of the youngest child.

Keywords: Functional Regression; Gradient Boosting; Bayes Hilbert Spaces;
Mixed Density Regression.

1 Introduction

We consider a special case of function-on-scalar regression (e.g., Brock-
haus et al., 2015), namely density-on-scalar regression, where the responses
are probability density functions and the covariates are scalar. Probability
density functions have the special properties of being nonnegative and inte-
grating to one, which are not preserved by the usual vector space structure
of functions. Instead, we consider densities as elements of Bayes Hilbert
spaces (Egozcue et al., 2006) and formulate our regression model using the
respective operations. For estimation, we present a gradient boosting al-
gorithm, which performs variable selection and allows for regularization,
as well as for a large number of covariate effects, which can be modularly

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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and flexibly specified building on the model-based boosting framework of
Bühlmann and Hothorn (2007). We use our approach to analyze the distri-
bution of the woman’s share in a couple’s total labor income in Germany
over the years and in dependence of different covariates. While these den-
sities are defined on [0, 1], they have positive probability mass at values 0
and 1, corresponding to one partner without labor income. This leads to a
mixed reference measure, consisting of the Dirac measure at the boundary
values and the Lebesgue measure in between.
An earlier approach by Talská et al. (2018) used Bayes Hilbert spaces for
density-on-scalar regression, applying the centered log-ratio transforma-
tion to simplify estimation. They considered only linear regression models
and only for densities defined on a finite interval and Lebesgue integrals.
Other approaches to handle densities in regression often include different
transformation approaches (e.g., Han et al., 2019), but only allow modeling
and estimation on the transformed level without embedding the densities
themselves in a vector space structure.
In Section 2, we provide a brief summary of Bayes Hilbert spaces. In Sec-
tion 3, we present our approach for density-on-scalar regression. Section 4
contains the application of our methods for a mixed reference measure to
the SOEP data.

2 Bayes Hilbert spaces

Bayes Hilbert spaces were first introduced for probability density func-
tions defined on a finite interval by Egozcue et al. (2006), motivated by
the approach of Aitchison (1986) for compositional data. We use the ex-
tension of Boogaart et al. (2014) to Bayes Hilbert spaces on finite mea-
sure spaces. Consider a measurable space (T ,A) and a finite measure µ
on it. Let M(µ) = M(T ,A, µ) be the set of measures with the same
null sets as µ. We identify each measure ν ∈ M(µ) with its Radon-
Nikodym derivative with respect to µ, denoted by fν . Proportionality
defines an equivalence relation on the set {fν | ν ∈ M(µ)}. The corre-
sponding set of equivalence classes is called Bayes space (with reference
measure µ), denoted by B(µ) = B(T ,A, µ). For the sake of readability
we refrain from using squared brackets to denote the equivalence classes
and simply write fν ∈ B(µ). If an equivalence class contains densities
with finite integral, we choose the respective probability density as rep-
resentative. Finally, the Bayes Hilbert space (with reference measure µ)

is B2(µ) = B2(T ,A, µ) := {fν ∈ B(µ) |
∫
T (log fν)

2
dµ < ∞}. It is a

vector space with addition fν1 ⊕ fν2 := fν1 · fν2 , fν1 , fν2 ∈ B2(µ) and
scalar multiplication α � fν := (fν)α, α ∈ R, fν ∈ B2(µ). The addi-
tive neutral element 0B2(µ) is the equivalence class of constant functions,

the additive inverse element of fν ∈ B2(µ) is 	fν := 1
fν

, and the mul-

tiplicative neutral element is 1 ∈ R. Furthermore, B2(µ) is a Hilbert
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space with the inner product 〈fν1
, fν2
〉B2(µ) :=

∫
T clr[fν1

] ·clr[fν2
] dµ. Here,

clr[fν ] := log fν − 1
µ(T ) ·

∫
T log fν dµ is the centered log-ratio (clr) transfor-

mation. It is an isometric isomorphism, mapping functions from B2(µ) to
L2

0(µ) = L2
0(T ,A, µ) := {f̃ ∈ L2(T ,A, µ) |

∫
T f̃ dµ = 0}, which is a closed

subspace of L2(µ). The inner product induces a norm on B2(µ) given by
‖fν‖B2(µ) :=

√
〈fν , fν〉B2(µ).

3 Density-on-scalar regression

Let B2(µ) = B2(T ,A, µ) be a Bayes Hilbert space and (yi,xi) ∈ B2(µ)×
RK , K ∈ N, i = 1, . . . , N, N ∈ N, be data pairs. Motivated by structured
additive regression models for function-on-scalar regression presented by
Brockhaus et al. (2015), we consider the model

yi = h(xi)⊕ εi =

J⊕

j=1

hj(xi)⊕ εi,

where εi ∈ B2(µ) are functional error terms with E(εi) = 0B2(µ) and
hj(xi) ∈ B2(µ), j = 1, . . . , J, J ∈ N are partial effects of a subset of xi,
e.g., linear or smooth effects of one covariate, linear or smooth interaction
effects of several covariates or group-specific effects. Each effect is described
by a basis representation, which is the Kronecker product of two marginal
bases – one in direction of the covariates, e.g., B-splines for smooth ef-
fects or the observations themselves for linear effects, and one over T , e.g.,
transformed B-splines if µ = λ is the Lebesgue measure. A Ridge-type
penalty term can be included for regularization. A suitable penalty matrix
can be obtained from appropriate penalty matrices for the marginal bases
(Brockhaus et al., 2015), e.g., the identity matrix (corresponding to a Ridge
penalty) for linear effects or difference penalties for B-splines. Given these
basis representations, we estimate the functions using a gradient boosting
algorithm, where the empirical risk 1

N

∑N
i=1 ‖yi	h(xi)‖2B2(µ) is minimized

step-wise along the steepest gradient descent (with respect to the Fréchet
differential). We show that this is equivalent to a minimization of the L2-
distance for the corresponding clr transformed model and base our algo-
rithm on an extension of the one presented for functional data in Brockhaus
et al. (2015), which was modified for functional data from Bühlmann and
Hothorn (2007). Estimating the clr transformed model with this algorithm
requires an additional integration to zero constraint and an extension to
arbitrary finite measures. For mixed measures, we handle this using an
orthogonal decomposition into continuous and discrete components.

4 Application

We apply our method to a data set generated from the German Socio-
Economic Panel Study (SOEP) to analyze the distribution of the woman’s
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share in a couple’s total gross labor income in Germany. Based on 154,924
individually observed couples living together in one household, where at
least one partner has a labor income, we estimate 552 response densities of
the woman’s income share s – one for each combination of covariate val-
ues. The covariates are the region (one out of six) where a couple is living,
old new indicating whether the region contains old or new federal states,
the child group, based on the age of the couple’s youngest minor child liv-
ing in its household (0 – 6/7 – 18/none), and the year of the observation,
ranging from 1984 to 2016. ‘New’ federal states are the ones, which be-
longed to the German Democratic Republic (East Germany) after World
War II and are only observed from 1991. The response densities of the
share, which have to be estimated, are defined on [0, 1] and have positive
probability mass at values 0 and 1, corresponding to one partner without
labor income. One exemplary barplot to confirm this statement is shown in
Figure 1. The outmost bars for s = 0 and s = 1 have width zero, the ones

s: income share earned by the woman

fr
eq

ue
nc

y

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 1. Barplot of share frequency for region north-east and child group 1
(0 – 6 years) in 2013.

in between have width 0.01. Thus, we consider the densities as elements
of the Bayes Hilbert space B2(µ) = B

(
[0, 1],B[0,1], µ

)
, where B[0,1] is the

Borel σ-algebra restricted on the interval [0, 1] and the reference measure
is µ := δ0 + λ + δ1. Here, δx denotes the Dirac measure at x ∈ {0, 1} and
λ the Lebesgue measure (on B[0,1]). For the response densities, we obtain
the boundary values as the relative frequencies for s = 0 or s = 1. The
density values in between are estimated using kernel density estimation
and multiplying it by the relative frequency for s ∈ (0, 1).
We estimate a model with an intercept, group-specific intercepts for the
categorical covariates old new, region, and child group, a smooth effect
of the year and several interaction effects. The region effects are centered
around the corresponding old new effect for identifiability. The estimated
effects can be interpreted in different ways, e.g., similar to log odds ratios,
corresponding to differences on clr transformed level, or by examining ce-
teris paribus predictions on density level. We illustrate some results of our
analysis in this way in Figures 2 and 3. Horizontal dashes at 0 and 1 cor-
respond to the proportions of couples with no or all labor income earned
by the woman, respectively. Note that all regions containing old and all
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regions containing new federal states each show a strong similarity. Thus,
we didn’t include the effects for the regions in the discussion and focus on
the coarser spatial effect old new instead.
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FIGURE 2. Predicted densities for old (left) and new (right) federal states.

Figure 2 shows the predictions for old vs. new federal states over the years.
Both parts of Germany show a decrease of women without labor income,
i.e., s = 0, over time. In contrast, for s = 1 corresponding to women who
are the sole earner there is a (clearly weaker) increase overall. However,
for the new federal states the maximal value is reached in the early 2000s
with a slight decrease afterwards. The level of expected density values at
s = 0 is smaller for the new federal states than for old federal states (and
slightly larger for s = 1). This might derive from the socialist form of gov-
ernment in the German Democratic Republic, where it was more common
that women were working compared to the Federal Republic of Germany.
For dual-earner households, i.e., s ∈ (0, 1), we find considerably different
distributions in the two parts of Germany. For old federal states, the main
part of probability mass is spread in the area of small shares of the couple’s
labor income (ca. 0.1 – 0.5) with local maxima reached at about 0.1 or 0.35
depending on the year. In contrast, for new federal states, the predicted
densities are closer to symmetric with all of them reaching their maximum
at about 0.45. Regarding the development over the years, we see an increase
for all s ∈ (0, 1) for the old federal states, while the new federal states only
show an increase for small and large shares (s < 0.3 or s > 0.5) and tend
to decrease for intermediate shares.
In Figure 3, the predicted densities for the three child groups are illustrated.
Unsurprisingly, the expected proportion of women without labor income is
a lot higher for couples whose youngest child is at most six years old com-
pared to couples with older or without children while the proportion of
women being the sole earner is the highest for couples without minor chil-
dren. For s ∈ (0, 1) the shapes of the expected densities for child groups 1
and 2 are similar to each other – with the density values for child group 2
being about 1.6 times the respective values for child group 1 – and to the
predicted densities for old federal states, see Figure 2. Overall, we expect
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FIGURE 3. Predicted densities for the three child groups.

more dual-earner couples in child group 2 than in child group 1. The shape
of the expected density for child group 3 is more alike the densities for new
federal states. I.e., for couples without (minor) children the main part of
the probability mass is shifted towards higher income shares compared to
couples with minor children.
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Abstract: Circular data, i.e., data consisting of observations on the unit cir-
cle, can be found across many areas of science, for instance meteorology (wind
directions), biology (animal movement directions), or medicine. The special na-
ture of such data means that conventional methods for non-periodic data are
no longer valid. As a consequence the analysis of such data is more challenging
and the literature scarcer. In this paper, we introduce a spatial model for circu-
lar data that allows for non-stationarity in the mean and covariance structure
of random fields. For this, we use the computationally efficient stochastic par-
tial differential equation approach. Moreover, we develop tunable hyper-priors,
inspired by the penalized complexity prior framework, that shrink the model to-
wards a base model with stationary covariance function. The performance of the
proposed model is analyzed in detail in a simulation study, with a strong focus
on the properties of hyper-priors considered. Finally, we evaluate the ability of
our approach to estimate wind-directions during a wind storm in Germany.

Keywords: circular data; Markov chain Monte Carlo; penalized complexity pri-
ors; stochastic partial differential equations; wind direction.

1 Introduction

Environmental and geophysical processes, such as surface winds or waves,
are characterized by spatial variability. However, these data is of a periodic
nature and, due to the circular geometry of the sample space, it requires
reassessing typical spatial models for non-periodic data. Statistical litera-
ture on circular data spans as far as the 1970’s, but it was only in the early
2010’s that spatial modelling of circular data really took off. Jona-Lasinio,

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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et al. (2012) anticipated structured spatial dependence in such data types
and brought typical distributions for circular data, such as the wrapped
Gaussian distribution, to the realm of spatial statistics. Nonetheless, circu-
lar data models are still behind on the latest advances in spatial statistics.
In this paper, we try to cover part of this gap and propose a computation-
ally efficient model for spatial circular data, that allows for non-stationary
in mean and covariance structure of the responses. In what follows, we will
first shortly introduce our spatial model, and meet paths along the way
and introduce the basic concepts on how to wrap data on the unit circle,
thus entering the circular data domain. We present the main simulation
results in Section 4. In Section 5 we will apply our model to studying wind
direction during a wind storm in Germany. To conclude, we discuss the
main findings of the paper.

2 The model

Let s denote a spatial index variable representing the location of a obser-
vation Y (s) within a spatial domain S ⊂ R2. Let Z(s) be a total of B
spatially indexed covariates where, for convenience, Z(s) includes a 1, and
has an associated coefficient vector β = (β0, ..., βB)′. Then, we obtain

Y (s) = Z(s)′β + γ(s) + ε(s),

where γ(s) is a zero-mean GRF and ε(s) is a i.i.d. non-spatial error.
As GRFs are vulnerable to “the big n problem”, a issue that renders the
resulting model inappropriate for large datasets or for more complex spatial
dependence structures, we instead use a recent approach in spatial statistics
that replaces the GRF by an empirical equivalent Gaussian Markov random
field (GMRF) during computations. This way, we exploit the sparseness of
the precision Q of the GMRF. Hence, we take the best of two words: the
good theoretical properties of GRFs and the good computational properties
of GMRFs. The link between the two is achieved via the SPDE (Lindgren
et al., 2011),

(κ2 −∆)αν/2(τ γ(s)) =W(s), s ∈ R2, αν = ν + 1, ν > 0,

where ∆ is the Laplacian, W is a Gaussian spatial white noise innovation
process, τ > 0 is a precision parameter and κ > 0 controls the spatial
range. The solution γ(s) of the resulting SPDE is a stationary GRF with
Matérn covariance function. Under the finite element representation used
to solve the SPDE, we get γ ∼ N(0,Q(τ, κ)−1).
In the SPDE-approach, non-stationarity in the covariance of the GRF can
be attained by allowing the parameters of the SPDE to be spatially varying
functions. Here, we consider

log(τ) = θτ0 and log(κ(s)) = θκ0 + Zκ(s)′θκz ,
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where θκ = (θκ0 ,θ
κ
z )′ and θτ0 are the model’s hyper-parameters, and Zκ

is a matrix of the relevant covariates inducing the spatial dependence. As
κ affects both the marginal variance and range of the GRF, with this
parameterization we make both non-stationary. The parameters θκ0 and
θτ0 represent the stationary covariance specification of the model and have
proper uniform priors. We choose a Gaussian prior N(0, ξ2I) for Zκ(s)′θκz ,
where the prior for ξ2 is constructed such that it penalizes non-stationarity
in the covariance function; i.e., it shrinks towards the stationarity GRF
case (see Section 3).
Finally, we need to bring the model into the circular data domain. The
wrapped Gaussian distribution for circular data takes the linear variable,
Y (s) ∈ R, for all s ∈ S, and wraps it around the unit circle. The result is a
circular, or wrapped, variable X(s) ∈ [0, 2π); i.e, X(s) = Y (s) mod 2π ∈
[0, 2π). This can be re-written as Y (s) = γ(s) = X(s) + 2πK(s), where the
winding number, K(s) ∈ Z, measures the number of “turns” around the
unit circle. This strategy allows one to adopt popular distributions for non-
periodic data and simply wrap them around the unit circle. Consequently, if
we assume Y (s) has a Gaussian distribution, X(s) has a wrapped Gaussian
distribution.

3 The penalized complexity prior

We follow a Bayesian approach and develop a penalized complexity (PC)
prior for the hyper-parameters θκz of the model (Simpson et al. (2017)). In
this setting, we define a model with stationary covariance as the base model.
Hence, the prior will favor a stationary GRF unless the data indicates
otherwise.
Consider a flat prior for θτ0 and θκ0 and let θκz ∼ N(0, ξ2I). One can show
that if the base model is such that ξ2 → 0 and the prior is constructed
according the PC-prior principles, then ξ2 has a Weibull prior with shape
1
2 and scale λ, i.e., ξ2 ∼Weibull(1

2 , λ) (Klein and Kneib, 2016). We choose
λ using a user-defined approach based on the probability statement

P (maxs∈S | Zκ(s)′θκz |≤ c) ≥ 1− α,

i.e., we model the probability that the maximum norm of the non-stationary
effect is smaller than a pre-specified level and determine the distribution
of the maximum based on simulations from the prior p(Zκ(sm)′θκz |ξ2).
By design, the choice of c and α is an ad-hoc, problem specific, choice.
Nonetheless, on practical terms, it is possible to restrict the values κ can
take. Namely, as long as the minimum range of the non-stationary compo-
nent is large enough; i.e., it really reflects spatial dependence, it should be
possible to derive such a general bound. We investigate this in Section 4.
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FIGURE 1. Posterior mean of θκz for data generated with stationary covariance
function, i.e, true value is zero.

4 Simulation Study

Consider standardized covariates, Z and Zκ, and S ⊆ [0, 1]× [0, 1]. During
simulations, we identified two important scenarios where a PC-prior out-
performs typical priors used for variance parameters, e.g., inverse gamma
prior with scale and shape in {0.001, 0.01}, or uniform priors. Namely:

1. A PC-prior prevents overfitting: this is clear in Figure 1, where
we generate data with a stationary covariance function.

2. A PC-prior improves estimation for complex spatial depen-
dence structures: the PC-prior, in general, reaches both the low-
est root mean squared error (RMSE) for the posterior mean of the
centered GRF and lower dispersion. This is particularly evident for
scenarios with non-stationary behavior in the covariance function at
the boundary of the domain.

When it comes to selecting c and α, the combination of α = 0.01 with a
c up to twice as large as the true maximum performs reasonably well. A
general bound c = 2 works well for α = 0.01. A more generalized approach
could comprise a rescaling of c = 2 to new domain dimensions, keeping
α = 0.01. This gives us some flexibility when setting up PC-priors on a real
dataset for which we do not know c. We use this in Section 5.

5 German wind direction data

In Germany, wind direction is characterized by predominant westerly
winds, coming from the Atlantic Ocean and entering Germany through
France. On the eastern side, wind is generated in the Caucasus, entering
Germany through Poland and the Czech Republic. Both winds collide in
the northern tip of Germany. The wrapped Gaussian distribution is uni-
modal and, consequently, we need to avoid situations in which over a large
region, at a given time, a storm is rotating or two different weather systems
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TABLE 1. CRPS for the two models considered.

Model ν = 1 ν = 1.5

full stationary 0.204 0.240
full non-stationary 0.064 0.069

are meeting. Given this, we select data from the wind storm of September
30, 2019, which is characterized by predominantly eastern winds.
Model performance is evaluated using the circular continuous ranked prob-
ability score:

CRPScirc(P,X) = E{αCRPS(x,X)} − 1

2
E{αCRPS(x, x∗)},

where αCRPS represents the cosine distance, P is a forecast distribution
on the circle, x and x∗ are independent copies of a circular random vari-
able with distribution P and X is the verifying direction. The results are
expressed in units of angular distance, with a maximum allowed of π.
In our analysis, we consider the following covariates, Zκ and Z: maximum
wind speed, altitude, average air temperature at 5 meters height, average
air pressure at 10 meters height, longitude, latitude, an indicator for being
at the northern German tip (state of Schleswig-Holstein) and an indicator
for being close to the French border.
For the analysis, we randomly select a holdout set of data consisting of
20% of the locations and use the remaining 80% as training data. Here, we
present the results for two models:

1. Full stationary: Z = Zκ = 0.

2. Full non-stationary: Z includes all covariates and Zκ includes all
but the indicator variables.

Results show that the full non-stationary wrapped Gaussian spatial re-
sponse model can approximate the true wind directions quite closely. This
can be confirmed in Figure 2, for the test data considered. Additionally, we
tested the results for ν ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75}. In Table 1 we show
the CRPS for the best performing models. The CRPS values attained are
quite low.

6 Discussion

The developed model improves results over ordinary stationary GRF meth-
ods for modeling spatially wind direction data. Such interpolation proper-
ties for wind direction could serve as an input for other modeling tasks
in the analysis of climate variables, which, in combination with the use of
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FIGURE 2. True and estimated mean wind directions for ν = 1 for the test data.

sparse spatial precision matrices, would have great potential in the gen-
eration of efficient models for large scale datasets for meteorological data.
The mere use of a reasonable number of interpretable covariates with un-
derstandable physical properties makes the model more intuitive and ap-
plicable by a broad range of researchers, in a wide spectrum of areas.
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Sina Mews1, Marius Ötting1, Houda Yaqine1, Roland
Langrock1

1 Bielefeld University, Germany

E-mail for correspondence: sina.mews@uni-bielefeld.de

Abstract: We investigate the hot hand phenomenon in basketball using data
on 110,513 free throws. As these occur at unevenly spaced time points within
a game, we formulate a continuous-time state-space model to relate the actual
throwing performance to the latent underlying form of a player. Our results reveal
serial correlation in the latent throwing success probability, thus supporting the
existence of a hot hand effect.
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1 Introduction

The existence of a hot hand effect, according to which sports athletes may
temporarily enter a state during which they perform better than on average,
is a much-debated topic among sports commentators, fans, and journalists.
In the academic literature, the hot hand has gained great interest since the
seminal paper by Gilovich et al. (1985), in which the hot hand effect was dis-
missed as a cognitive illusion. Driven by the increased accessibility of large
sports data sets, there is an ever-growing body of research investigating
the existence of the hot hand effect, yet the evidence remains inconclusive
(see Bar-Eli et al., 2006, for a review). Moreover, there is no universally
accepted definition as to what exactly constitutes a hot hand effect: while
some people regard it as serial correlation in outcomes (see, e.g., Miller and
Sanjurjo, 2018), others consider it as serial correlation in success probabil-
ities (see, e.g., tting et al., 2020). The latter definition translates into a
latent (state) process underlying the observed performance — intuitively

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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speaking, a measure for a player’s “hotness” — which can be elevated with-
out the player necessarily making every shot. As shots, or similar events in
sports with game clocks, usually occur at points that are unevenly spaced
in time, modelling such events requires a continuous-time approach. We
thus develop a state-space model in continuous time to investigate the hot
hand effect for free throws in basketball.

2 Data

We extracted data on more than 9,000 basketball games in the NBA for
all seasons and playoffs between October 2013 and June 2019 from https:

//www.basketball-reference.com/. For our analysis, we only consider
data on free throw attempts as these constitute highly standardised set-
tings without any interaction between players, which is usually hard to
account for when modelling field goals in basketball. In our analysis, we
include all players who took at least 2,000 free throws in the period consid-
ered, totalling in 110,513 free throws from 44 players. There is considerable
heterogeneity in the players’ throwing success, with the corresponding em-
pirical proportions for making a free throw ranging from 45.1% to 90.6%.
As free throws occur irregularly within a basketball game, the information
on whether an attempt was successful needs to be supplemented by its time
t, corresponding to the time already played in minutes. For each player p
in his n-th game, we thus observe an irregular sequence of binary variables
{xp,nt }t≥0, with

xp,nt =

{
1 if free throw attempt at time t is successful;

0 otherwise.

Therefore, the sequential data we model looks as follows:

xp,nt : 1 1 1 0 1 1 1 1
t: 8.55 8.55 10.33 10.33 19.64 24.97 24.97 24.97

These example data, from one match played by James Harden, illustrate
that free throw attempts often appear in clusters of 2 or 3 attempts at the
same time (depending on the foul), followed by a time period without any
free throws. Therefore, it is important to take into account the different
lengths of the time intervals between consecutive attempts, which is why
we formulate our model in continuous time.

3 Model formulation and estimation

Following the idea that the observed throwing success depends on a player’s
current (latent) form, we model the observed free throw attempts xp,nt using
a state-space model formulation with a binary response. The associated

https://www.basketball-reference.com/
https://www.basketball-reference.com/
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predictor on the logit scale comprises information on the player’s average
throwing success as well as his current state sp,nt — additional explanatory
variables can easily be added (see below). Dropping the superscripts p and
n for notational simplicity, we hence have

xt ∼ Bern(πt), logit(πt) = αp + st, (1)

where αp is a player-specific intercept and st is the underlying latent
state, which can be interpreted as the player’s current form (or “hotness”).
The stochastic process {st}t≥0, which is formulated in continuous time to
address the temporal irregularity of the observation times, ought to be
continuous-valued to allow for gradual changes in a player’s form, and sta-
tionary such that in the long run it returns to the average form. The natural
candidate for a corresponding stationary, continuous-time and continuous-
valued stochastic process is the Ornstein-Uhlenbeck (OU) process,

dst = −βstdt+ σdWt,

where β > 0 is the drift parameter indicating the strength of reversion to
the long-term mean 0, σ > 0 controls the strength of fluctuations, and Wt

denotes the Wiener process. Since we model the hot hand effect as a serial
correlation in success probabilities, our main parameter of interest is the
drift parameter β governing the speed of reversion (to the average form).
The smaller β, the longer it takes for the OU process to return to its mean
and thus the higher the serial correlation.
As the model’s likelihood involves intractable integration over all possible
realisations of the continuous-valued st, at each observation time, we ap-
proximate the integral by finely discretising the state space. This approxi-
mation can be seen as a reframing of the model as a continuous-time hidden
Markov model with a large but finite number of states, enabling us to ap-
ply the corresponding efficient algorithms. In particular, we use the forward
algorithm to calculate the likelihood, making use of the limiting distribu-
tion as well as the conditional distribution of the OU process to compute
the initial state probabilities as well as the state transition probabilities.
The model parameters are then estimated by numerically maximising the
(approximate) joint likelihood over all games and all players.

4 Preliminary results

To investigate any potential hot hand effect for sequences of free throws, we
fit two models to the data. First, we consider a benchmark model (Model 1 )
without any hot hand effect, i.e. a model without the underlying state pro-
cess st in Equation (1) and as such, without any serial dependence. The
second model (Model 2 ) includes the underlying state process as described
in Section 3. Besides the player-specific intercepts, in both models we con-
trol for additional covariates in the linear predictor in Equation (1) which
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may affect the players’ throwing success (namely the current score differ-
ence, a home vs. away dummy, a dummy indicating whether the free throw
occurred in the last 30 seconds of the quarter, and dummies indicating if
it was the second or third throw in a row).
Model 2, i.e. the formulation including a potential hot hand effect, is clearly
favoured over Model 1 (∆BIC = 41.97). The estimated parameters of the

OU process for Model 2 are β̂ = 0.042 (95% CI [0.016; 0.109]) and σ̂ = 0.101

(95% CI [0.055; 0.185]), respectively. The estimated drift parameter β̂ is
fairly small, indicating serial correlation of the state process over time, and
thus providing evidence for a hot hand effect. This is highlighted also by
simulated state trajectories based on the fitted model (Figure 1).
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FIGURE 1. Simulation of possible state trajectories for the length of an NBA
game based on the estimated parameters of the OU process. The red dashed
line indicates the intercept (here: the median throwing success over all players),
around which the processes fluctuate. The right y-axis shows the success proba-
bilities resulting from the current state (left y-axis).
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ARMA models; public health.

1 Introduction

There is a growing interest in the last years to deal with data that is only
partially registered or underreported in the time series literature (Fernndez-
Fontelo et al. (2016)). This phenomenon is very common in many fields, and
has been previously explored by different approaches in epidemiology, social
and biomedical research among many other contexts. Many approaches to
deal with underreported data have been suggested with a growing level of
sophistication from the usage of multiplication factors to spatio-temporal
modelling.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model definition and properties

Consider an unobservable process with an AutoRegressive Moving Average
(ARMA) structure defined by

Xt = α1Xt−1 + . . .+ αpXt−p + θ1εt−1 + . . .+
+θqεt−q + εt,

(1)

where εt is a white noise process with εt ∼ N(µε, σ
2
ε ). In our setting, this

process cannot be directly observed, and all we can see is a part of it,
expressed as

Yt =

{
Xt with probability 1− ω
q ·Xt with probability ω

(2)

The interpretation of the parameters in Eq. (2) is straightforward: q is the
intensity of misreporting (if 0 < q < 1 the observed process Yt would be un-
derreported while if q > 1 the observed process Yt would be overreported).
The parameter ω can be interpreted as the frequency of misreporting (pro-
portion of misreported observations).
If the unobserved process Xt follows an ARMA(p, q) model as defined in
Eq. (1), the observed process has mean E(Yt) = µε

1−α1−...−αp ·(1− ω + q · ω)

and variance V(Yt) =
((

σ2
ε ·(1+θ2

1+...+θ2
q)

1−α2
1−...−α2

p

)
+

µ2
ε

(1−α1−...−αp)2

)
· (1 + ω · (q2 −

1)) − µ2
ε

(1−α1−...−αp)2 · (1 − ω + q · ω)2. The autocorrelation function of the

observed process can be written in terms of the properties of the hidden
process Xt as

ρY (k) =

= V (Xt)·ρX(k)·(1−ω+q·ω)2

(V (Xt)+E(Xt)2)·(1+ω·(q2−1))−E(Xt)2·(1−ω+q·ω)2 =

= c(α1, . . . , αp, θ1, . . . , θq, µε, σ
2
ε , ω, q) · ρX(k),

(3)

where ρX is the autocorrelation function of the unobserved process Xt.
The likelihood function of the observed process Yt is not directly obtainable
but the parameters of the model can be estimated by means of an iterative
algorithm based on its marginal distribution, using R packages mixtools
(Benaglia et al. (2009)) and forecast (Hyndman et al. (2008)). The main
steps are described in detail below:

(i) Following Eq. (2), the observed process Yt can be written as Yt =
(1−Zt) ·Xt+q ·Zt ·Xt, where Zt is an indicator of the underreported
observations, following a Bernoulli distribution with probability of
success ω (Zt ∼ Bern(ω)), its marginal distribution is a mixture of
two normal random variables N

(
µ, σ2

)
and N

(
q · µ, q2 · σ2

)
respec-

tively, where µ = µε
1−α1−...−αp and σ2 =

σ2
ε ·(1+θ2

1+...+θ2
r)

1−α2
1−...−α2

p
. This fact

can be used to obtain initial estimates for q and ω. Using the E-M
algorithm (specifically on the E-step), the package mixtools calculates
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the posterior probabilities (conditional on the data and the obtained
estimates) of each observation to come from one of these two normals.

(ii) Using the indicator Ẑt obtained in the previous step, the series is di-
vided in two: One including the underreported observations (treating
the non-underreported values as missing data) and another with the
non underreported observations (treating the underreported values
as missing data). An ARIMA model is fitted to each of these two
series and a new q̂ is obtained by dividing the fitted means.

(iii) A mixture of two normals is fitted to the observed series Yt with mean
and standard deviation fixed to the corresponding values obtained
from the previous step, and a new ω is estimated.

(iv) Steps (ii) and (iii) are repeated until the quadratic distance between
two consecutive iterations (q̂i − q̂i−1)2 + (ω̂i − ω̂i−1)2 +

∑
j(α̂ji −

α̂ji−1
)2+,+

∑
k(θ̂ki − θ̂ki−1

)2 is below a fixed tolerance level.

(v) Once the parameter estimates are stable according to the previous
criterion, the underlying process Xt is reconstructed as X̂t = (1−Ẑt)·
Yt + 1

q̂ · Ẑt · Yt, and an ARIMA model is fitted to the reconstructed

process to obtain α̂j , j = 1, . . . , p, θ̂k, k = 1, . . . , r and σ̂ε
2.

To account for potential trends or seasonal behaviour, covariates can be
included in the described estimation process. Additionally, a parametric
bootstrap procedure with 1000 replicates is used to estimate standard errors
and build confidence intervals based on the percentiles of the distribution
of the estimates.

3 Results

3.1 Simulation study

A thorough simulation study has been conducted to ensure that the model
behaves as expected in several situations, including AR(1), MA(1) and
ARMA(1, 1) structures for the hidden process Xt with values for the pa-
rameters α, θ, q and ω ranging from 0.1 to 0.9 for each parameter. For each
autocorrelation structure and parameters combination, a random sample
of size n = 1000 has been generated using the function arima.sim from R
package forecast. Absolute average bias is similar regardless of the sample
size, while average interval lengths (AIL) are higher and interval cover-
ages are poorer (around 75% for n = 50) for lower sample sizes as could
be expected. The average absolute bias, interval coverage and 95% confi-
dence interval length are reported in Table 1. These values are averaged
over all combinations of parameters. Additionally, standard AR(1), MA(1)
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TABLE 1. Model performance measures (average absolute bias, average interval
length and average coverage) summary based on a simulation study.

Structure Parameter Bias AIL Coverage (%)

AR(1)
α̂ 0.003 0.099 94.92%
q̂ < 10−3 < 10−3 95.47%
ω̂ -0.001 0.052 92.46%

Standard
AR(1)

α̂ 0.501 0.124 0.69%

MA(1)
θ̂ < 10−3 0.117 94.38%
q̂ < 10−3 < 10−3 94.38%
ω̂ < 10−3 0.052 93.28%

Standard
MA(1)

θ̂ 0.502 0.124 1.10%

ARMA(1, 1)

α̂ 0.002 0.165 96.02%

θ̂ 0.007 0.210 96.56%
q̂ < 10−3 0.002 94.56%
ω̂ < 10−3 0.059 93.22%

Standard
ARMA(1, 1)

α̂ 0.456 3.558 59.08%

θ̂ 0.579 3.496 56.00%

and ARMA(1, 1) models were fitted to the same simulated series without
accounting for their underreporting structure.
It is clear from Table 1 that ignoring the underreported nature of data
(labeled as Standard models in the table) leads to highly biased estimates
with extremely low coverage rates, even with larger average interval lengths.
This is especially relevant when the intensity or frequency of underreported
observations is high.

3.2 COVID-19 incidence in the region of Heilongjiang

SARS-CoV-2 is a betacoronavirus that affects the lower respiratory tract
and often manifests as pneumonia in humans which was identified as the
causative agent of an unprecedented outbreak of pneumonia in Wuhan
City, Hubei province in China starting in December 2019. Considering that
many cases run without developing symptoms beyond those of MERS-CoV,
SARS-CoV or pneumonia due to other causes, it is reasonable to assume
that the incidence of this disease has been underregistered, especially at
the beginning of the outbreak (Zhao et al. (2009)).
Heilongjiang is a province in north-east China. Although in general the
behavior of this kind of diseases is far from being stationary, this province
is far enough from the focus in Hubei province (south central China) so the
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incidence is much lower and less explosive, and in the study period of time
(2020/01/22-2020/02/26) it can be considered stationary, as can be seen
in Figure 2, which shows registered and estimated evolution of COVID-19
incidence within the considered period of time.
A disease with a similar behavior (MERS-CoV) was modeled as an
ARMA(3, 1) in Alkhamis et al. (2019), so we checked this model and sim-
ilar ones. However, in our case the best performing model was an MA(1)
(AIC of -151.31 against -148.82 for the ARMA(3, 1)), consistently with the
residuals profile shown in Figure 1, obtained from fitting an MA(1) model
to the most likely process Xt reconstructed as described before.

FIGURE 1. Residuals analysis of the residuals from an MA(1) model.

By means of the described estimation method, it can be seen that the
estimated model for the hidden process is Xt = 0.481 · εt−1 + εt, being the
observed process Yt,

Yt =

{
Xt with probability 0.507

0.195 ·Xt with probability 0.493
(4)

The estimated parameters are reported in Table 2.

Parameter Bootstrap mean Bootstrap SE

θ̂ 0.481 0.179
ω̂ 0.493 0.168
q̂ 0.195 0.089

TABLE 2. Bootstrap means and standard errors of the proposed model.

Acknowledgments: David Moriña acknowledges financial support from
the Spanish Ministry of Economy and Competitiveness, through the Maŕıa
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Abstract: We propose a modelling framework for dealing with a large amount of
covariates in hidden Markov models (HMMs) by considering a LASSO penalty.
This modelling framework is, for example, useful in sports for analysing a poten-
tial hot hand effect, as several existing studies on the hot hand consider HMMs.
However, with most studies analysing data from basketball or baseball, there
are several confounding factors which have to be taken into account, leading to
a potential large number of covariates. Hence, in those settings regularisation
methods are suitable to allow for implicit variable selection. As a case study we
investigate a potential “hot shoe” effect among penalty-takers.

Keywords: hidden Markov model; LASSO; hot hand; sports analytics; football.

1 Introduction

An often discussed phenomenon in different sports is the “hot hand”, mean-
ing that players may enter a state where they experience extraordinary
success. This phenomenon is also discussed in the media, where commen-
tators and journalists — e.g. in football — commonly refer to players as
being “on fire” when they score in consecutive matches. Academic research
on the hot hand started by Gilovich et al. (1985). In their seminal paper,
they analysed basketball free-throw data and found no evidence for the hot
hand, arguing that people tend to belief in the hot hand due to memory
bias.
More recent studies challenge the findings of Gilovich et al. (1985), often by
analysing data from basketball or baseball with regard to a hot hand effect.
In addition, these studies often consider hidden Markov models (HMMs),
which constitute a natural modelling approach for the hot hand as they ac-
commodate the idea that players potentially may enter a state where they

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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experience extraordinary success. However, when modelling a potential hot
hand effect, there is hardly any sport where no potential confounding fac-
tors exist, such as weather conditions in baseball or the performance of
opponents in basketball. Accounting for those factors leads to a large num-
ber of covariates, and often multicollinearity issues occur, making model
fitting and interpretation of parameters difficult. To tackle these problems
and to obtain sparse and interpretable models, we propose to conduct vari-
able selection in HMMs by considering a LASSO penalisation approach
(see Tibshirani, 1996).
The performance of LASSO-HMMs is first investigated in a simulation
study. As a case study, we investigate a potential “hot shoe” effect of
penalty takers in the German Bundesliga (n = 3, 482 penalties). Figure
1 shows all penalties taken by Bayern Munich’s attacker Gerd Müller, indi-
cating that there are periods (e.g. between 1975 and 1976) where he scored
several penalties in a row, but also periods (e.g. around 1971) where he
missed a few consecutive penalties.

●●● ●●●● ●●●●● ●●●●● ● ● ●●●●● ●●●●●●●●●●●●● ●●●●● ● ●●●●●●●●● ●●●●●●●●● ●●
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FIGURE 1. Penalty history over time of the player Gerd Müller for the time
period from 1964 until 1979 (successful penalties in yellow, failures in black).

2 Methods

In HMMs, the observations yt are assumed to be driven by an underlying
state process st, in a sense that the yt are generated by one of N distribu-
tions according to the Markov chain. In our application, the state process
st serves for the underlying varying form of a player. State switching is
modelled by the transition probability matrix (t.p.m.) Γ = (γij), with
γij = Pr(st = j|st−1 = i), i, j = 1, . . . , N . We further allow for additional
covariates at time t, xt = (x1t, . . . , xKt)

T, each of which assumed to have
the same effect in each state, whereas the intercept is assumed to vary
across the states, leading to the following linear state-dependent predictor:

η
(st)
t = β

(st)
0 + β1x1t + . . .+ βkxKt .

For our response variable yt, indicating whether the penalty attempt t

was successful or not, we assume yt ∼ Bern(π
(st)
t ) and link π

(st)
t to our

state-dependent linear predictor η
(st)
t using the logit link function, i.e.

logit(π
(st)
t ) = η

(st)
t . Defining an N × N diagonal matrix P (yt) with i–

th diagonal element being equal to Pr(yt|st = i), and assuming that the
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initial distribution δ of a player is equal to the stationary distribution, i.e.
the solution to Γδ = δ subject to

∑N
i=1 δi = 1, the likelihood for a single

player p is given by

Lp(ααα) = δP(yp1)ΓP(yp2) . . .ΓP(ypTp)1 ,

with vector ααα = (γ11, γ12, . . . , γ1N , . . . , γNN , β
(1)
0 , . . . , β

(N)
0 , β1, . . . , βk)T

collecting all unknown parameters, and column vector 1 = (1, . . . , 1)T ∈ RN
(see Zucchini et al., 2016). To obtain the likelihood for the complete data
set, i.e. for multiple players, we assume independence between the obser-
vations of different players (here: p = 310), so that the likelihood is given
by the product of the individual likelihoods:

L(ααα) =

310∏

p=1

Lp(ααα) =

310∏

p=1

δP(yp1)ΓP(yp2) . . .ΓP(ypTp)1 .

Parameter estimation is done by maximising the likelihood numerically us-
ing nlm() in R. However, considering a large amount of covariates leads to
a rather complex model, which is hard to interpret and, in addition, mul-
ticollinearity issues might occur. Hence, we propose to employ a penalised
likelihood approach based on a LASSO penalty.
The basic idea is to maximise a penalised version of the log-likelihood
`(α) = log (L(α)). More precisely, one maximises the penalised log-
likelihood

`pen(α) = log (L(α))− λ
K∑

k=1

|βk| , (1)

where λ represents a tuning parameter, which controls the strength of the
penalisation. To fully incorporate the LASSO penalty in our setting, the
non-differentiable L1 norm |βk| in (1) is approximated as suggested by
Oelker and Tutz (2017). Specifically, |βk| is approximated by

√
(βk + c)2,

where c is a small positive number (say c = 10−5). Practically, a coefficient

is then selected if |β̂k| ≥ 0.001. The optimal value for the tuning parameter
λ is chosen by model selection criteria such as AIC and BIC. To estimate
the required effective degrees of freedom, we consider all parameters in the
model which are unequal to zero, i.e. all entries of the t.p.m., all state-
dependent intercepts, and all selected βj ’s.

3 Simulation study

We consider a simulation scenario similar to our real-data application, with
a Bernoulli-distributed response variable, an underlying 2-state Markov
chain and 50 covariates, 47 of which being noise covariates:

yt ∼ Bern(π
(st)
t ), with
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logit(π
(st)
t ) = η

(st)
t = β

(st)
0 + 0.5 · x1t + 0.7 · x2t − 0.8 · x3t +

47∑

j=4

0 · xjt .

We further set β
(1)
0 = logit(0.75) and β

(2)
0 = logit(0.35). The performance

of three different fitting schemes is investigated, namely HMMs without
penalisation (i.e. λ = 0) and the LASSO-HMM with λ selected by AIC and
BIC, respectively. The fitting schemes are compared by the mean squared
error (MSE) of the βj (see Figure 2). The results of the simulation study
suggest that, in terms of MSE, the LASSO-HMM with λ selected by BIC
performs worst, with the MSE being higher than for the HMM without
penalisation. The LASSO-HMM with λ selected by AIC outperforms the
other fitting schemes considered in terms of MSE.
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FIGURE 2. Boxplots of the MSE obtained in 100 simulation runs. “AIC” and
“BIC” denote the LASSO-HMM fitting schemes with λ chosen by AIC/BIC.
“MLE” denotes unpenalised HMM.

4 Application

As the LASSO-HMM with λ selected by the AIC showed the most promis-
ing results in the simulations, we focus on the results obtained by this
fitting scheme. For modelling the hot shoe, we account for several factors
potentially affecting the outcome of a penalty kick, namely a dummy indi-
cating whether the match was played at home, the matchday, the minute
of play the penalty was taken, the experience of both the penalty taker and
the goalkeeper (quantified by the number of years the player played for
a professional team), and the current match score difference. In addition,
to account for player-specific abilities, we include dummy variables for all
penalty takers and goalkeepers. This results in 656 covariates in total.
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The parameter estimates obtained (on the logit scale) indicate that the
baseline level for scoring a penalty is higher in the model’s state 1 than

in state 2 (β̂
(1)
0 = 1.422 > −14.50 = β̂

(2)
0 ), thus indicating evidence for a

hot shoe effect. State 1, hence, can be interpreted as a hot state, whereas
state 2 refers to a cold state. In addition, with the t.p.m. estimated as

Γ̂ =

(
0.978 0.022
0.680 0.320

)
,

there is high persistence in state 1, i.e. in the hot state. However, when
being in state 2 (cold state) switching to state 1 is most likely. Addition-
ally, the model is slightly favoured by the AIC over a 1-state model, i.e.
a standard logit model without a potential hot shoe effect (AIChotshoe =
3664, AIC1-state-model = 3670). The coefficient paths of our model are shown
in Figure 3. Out of the 656 covariates included in our model, only a single
covariate is selected according to the AIC, namely the ability of Jean-
Marie Pfaff with β̂Pfaff = −0.0015. The negative effect indicates that the
odds for scoring a penalty decrease if Jean-Marie Pfaff is the goalkeeper
of the opposing team — in fact he saved remarkable 9 out of 14 penalty
kicks during his career in the Bundesliga. To further illustrate our variable
selection approach, Figure 3 additionally highlights the covariates which
would be selected next, namely the abilities of Gnther Herrmann (outfield
player) and Rudolf Kargus (goalkeeper). As several existing studies provide
evidence for a home advantage in football, we also highlight in Figure 3 the
corresponding coefficient path of the dummy variable indicating whether a
match was played at home (but note that it is also not selected here). For
more detailed results of the application see Ötting and Groll (2019).

5 Outlook

Further research could focus on additional penalties to conduct variable
selection within HMMs, such as the ridge penalty or the elastic net. In
the case of multicollinearity, especially the elastic net may show a supe-
rior performance compared to the LASSO. Moreover, modifications of the
standard LASSO such as the relaxed-LASSO could be considered.

Acknowledgments: We want to thank the group of researchers B. Born-
kamp, A. Fritsch, L. Geppert, P. Gnändinger, K. Ickstadt, and O. Kuss for
providing the German Bundesliga penalty data set.
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Abstract: We study the problem of intervention effects generating various types
of outliers in a first order integer valued autoregressive model with Poisson inno-
vations. We concentrate on outliers which enter the dynamics and can be seen as
effects of extraordinary events. We consider three different scenarios, namely the
detection of an intervention effect of a known type at a known time, the detection
of an intervention effect of unknown type at a known time and the detection of
an intervention effect when the type and the time are both unknown. We develop
F -tests and score tests for the first scenario. For the second and third scenarios
we rely on the maximum of the different F -type or score statistics. The usefulness
of the proposed approach is illustrated using simulated examples.

Keywords: Counts; Time series; Innovation outlier; Level shift; Transient shift.

1 Introduction

Time series of counts are observed in a broad variety of applications includ-
ing economics, finance, epidemiology and meteorology, among others. Inte-
ger valued autoregressive (INAR) models have been introduced by McKen-
zie (1985) and Al-Osh and Alzaid (1987) and are widely used nowadays
for this kind of data. We concentrate on the first order INAR model with
Poisson innovations, denoted briefly as Poisson INAR(1),

Yt = α ◦ Yt−1 + et, t ∈ N, (1)

where ◦ denotes the binomial thinning operator and (et) is an arrival pro-
cess consisting of a sequence of independent identically distributed Poisson
variables with parameter λ.
Detection of unusual events is important in any modeling framework but
to the best of our knowledge it has not been investigated thoroughly in

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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the INAR framework, see e.g. Silva and Pereira (2015) and the references
therein. We concentrate on outliers which enter the dynamics and can be
seen as effects of extraordinary events. We aim at the detection of different
types of effects including innovation outliers, transient shifts and level shifts
at possibly unknown time points. More precisely, we extend model (1) as
follows:

Yt = α ◦ Yt−1 + et +

J∑

j=1

Ut,j , t ∈ N, (2)

where J is the number of intervention effects and (Ut,j : t ∈ N), j = 1, . . . , J
are independent random variables denoting the effects of the different in-
terventions on all time points. We assume Ut,j ≡ 0 for t = 0, . . . , τj − 1,

and Ut,j ∼ Pois(κjδ
t−τj
j ) for t = τj , τj + 1, . . ., with τj and κj denoting

respectively the time point and size of the j-th intervention and δj ∈ [0, 1]
controlling the effect of the intervention on the future of the time series
after time τj . For δj = 1 we get a permanent level shift starting at time τj ,
for δj = 0 we get an innovation outlier, i.e., a single effect at time τj which
spreads into the future according to the dynamics of the data generating
process, and for δj ∈ (0, 1) we get a transient shift which decays with rate
δj . The effect of each type of intervention on a realization of a stationary
Poisson INAR(1) process is illustrated in Figure 1.

2 Test statistics

If the number of interventions J , the time points τj of their occurrence
and the types δj of the interventions j = 1, . . . , J are known, then the
conditional mean E(Yt|Yt−1) in our intervention model is linear in the re-
maining parameters α, λ and κj , j = 1, . . . , J , leading to simple formulae
for the conditional least squares (CLS) or conditional maximum likelihood
estimates (CML). In the following, we define the F -statistic based on the
residual sum of squares minimized by the CLS approach and the score test
statistic based on maximization of the conditional log-likelihood function.

2.1 The F -statistic

The CLS estimates minimize the objective function,

RSS(J) =

n∑

t=2


yt − λ− αyt−1 −

J∑

j=1

κjδ
t−τj
j I(t ≥ τj)




2

,

and can be calculated using simple explicit formulae and software for ordi-
nary least squares estimation in linear models. The residual sum of squares
can also be used when we want to decide whether a certain type of in-
tervention effect is present at a given time point. A common measure for
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FIGURE 1. Effects of different types of outliers of size κ = 20 at time point
τ = 100 on a realization of a Poisson INAR(1) process generated with α = 0.3,
λ = 5 and n = 200. The black and red lines correspond to the clean and contam-
inated processes respectively, where contamination is due to (a) an innovation
outlier, (b) a transient shift with δ = 0.8 and (c) a level shift.

the goodness of fit of a linear model is the coefficient of determination.
In case of Gaussian linear models one often prefers the F -type statistic

F = RSS(0)−RSS(1)
RSS(1)/(n−4) since it is F -distributed with 1 and n − 4 degrees of

freedom in Gaussian linear models if the simpler model without the addi-
tional (intervention) effect is correct. In our case, n−4 will usually be large
so that such an F -distribution is close to the χ2

1-distribution.

2.2 The score test statistic

The conditional log-likelihood function corresponding to model (2) is given
by `(θ) =

∑n
t=2 logP (Yt = yt|Yt−1 = yt−1), where θ = (α, λ, κ1, . . . , κJ)T .

Provided that the solution of the score function U(θ) = ∂`(θ)
∂θ = 0 exists,

it yields the CML estimate θ̂ of θ. The availability of the score function

U(θ) and conditional information matrix I(θ) = Cov
(
∂`(θ)
∂θ

∣∣∣Yt−1

)
allows

us to define the score test statistic

S = UT (α̃, λ̃, 0)I−1(α̃, λ̃, 0)UT (α̃, λ̃, 0), (3)
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for testing the presence of a single intervention effect (J = 1) of known type
and time of occurrence, i.e. testing the null hypothesis H0 : κ = 0 against
the alternative H1 : κ 6= 0. In (3), UT (α̃, λ̃, 0) and I(α̃, λ̃, 0) are the score
function and conditional information matrix evaluated at the maximum
likelihood estimators (α̃, λ̃, 0) computed under the null hypothesis of a clean
INAR(1) process. Under H0, (2) reduces to a stationary Poisson INAR(1)
process. For such a process and under certain regularity conditions that are
satisfied by the Poisson law, the conditional maximum likelihood estimates

are consistent and asymptotically normal, i.e.
√
n(θ̂ − θ)

d−→ N(0, I−1(θ)).
Therefore, under H0 and as n → ∞, the score statistic (3) converges to a
χ2

1-distribution and derivation of critical values for an asymptotic test of the
null hypothesis of no intervention against the alternative of an intervention
of certain type δ at known time τ is straightforward: we reject the null
hypothesis at a given significance level a if the value of S is larger than the
(1− a)-quantile of the χ2

1-distribution.

3 Some empirical results

Empirical rejection rates were obtained by analyzing 5000 time series of
the same length n ∈ {100, 200} for each of different INAR(1) models with
α ∈ {0.3, 0.6, 0.9} and λ ∈ {2, 5}. Simulation results indicated that the
score statistics perform better than the F -type statistics in detecting tran-
sient shifts (δ = 0.8) and permanent level shifts (δ = 1), especially when
the INAR(1) process is characterized by strong autocorrelation (α = 0.9).
However, the F -type statistics achieve rejection rates closer to the targeted
ones when the objective is to detect an innovation outlier (δ = 0). The
performance of both tests is little affected by the time τ of the occurrence
of the intervention.
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Sk lodowska–Curie grant agreement no. 699980.
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Abstract: Traditional disease mapping models are based on relating the ob-
served number of disease cases per spatially discrete area to an expected number
of cases for that area. Expected numbers are calculated by internal standardisa-
tion, which requires both accurate population numbers and disease rates per age
group. Confidentiality issues or the absence of high-quality information about
the characteristics of a population-at-risk can hamper those calculations. Based
on methods in point process analysis, we propose the use of a case-control ap-
proach in the context of lattice data, in which an unrelated spatially unstructured
disease is used as a control disease. We apply our methods to a Belgian study
of mesothelioma risk, where pancreatic cancer serves as the control disease. The
analysis results are in close agreement with those coming from traditional disease
mapping models based on internally standardised expected counts.

Keywords: BYM model; Case-control study; Disease mapping; Mesothelioma;
Standardization.

1 Introduction

The classical hierarchical models for disease mapping make use of data
including the population at risk or a local number of cases ”expected” under

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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some null model of disease transmission. Due to medical confidentiality, it
is often difficult to obtain accurate and detailed population data (Beale
et al. 2008). Census data can be used to reflect the population data of a
specific region. However, countries census areas can be large or population
data are not available for some countries.
The objective of this paper is to propose a disease mapping method, where
a control disease is used as a proxy for the population at risk, extending
the case-control methods for point-pattern data towards lattice data. In
this study, interest is in mesothelioma cancer, while pancreatic cancer is
used as control disease.

2 Methodology

2.1 Classical Disease Mapping Method

The response Y = (Y1, Y2, ..., Yn) represents the observed number of dis-
ease cases per areal unit throughout the study period. A Poisson model is
commonly assumed to estimate the disease risk per area:

Yi ∼ Poisson(Eiθi), i = 1, ..., n, (1)

where Ei represents the expected number of disease cases in area i and θi
expresses the disease risk for the ith area.
The expected number of cases is defined as (Waller and Gotway, 2004):

EIi =
∑

g

Yg
Ng

Ni,g =
∑

g

rgNi,g (2)

where rg is the age-specific incidence rate in the standard population. This
ratio is multiplied by Ni,g representing the population size of municipality
i in age group g.

2.2 Disease Mapping with Control Disease

An approach commonly used in the context of point-pattern data is to
compare the location of disease cases with that of a set of carefully selected
controls for the population at risk (Kelsall and Diggle, 1998). We extend
this idea to the disease mapping context.
Only the aggregated number of cases for the disease of interest (Y =
(Y1, Y2, ..., Yn)) and the number of cases for the control disease (Z =
(Z1, Z2, ..., Zn)) are available. The expected number of cases for the dis-
ease of interest can be represented by

ECi =
Zi∑N
j=1 Zj




N∑

j=1

Yj


 = rZi Y· (3)
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where rZi is the rate of the control disease in area i and Y· is the total
number of cases of the disease of interest.
Any disease utilized as a control disease will introduce uncertainty in the
model, as it represents a sample from the population data. The calculated
expected values will have a lot of uncertainty if only a small number (or
no) cases of the control disease are present.
To account for the uncertainty in the estimation of the expected number
ECi we assume that the control disease follows a multinomial distribution

(Z1, ..., ZN ) ∼Multinomial(Z·, (r
Z
1 , ..., r

Z
N )),

where Z· represents the total number of controls. We make use of the
multinomial-Poisson transformation developed by Baker (1994):

Zi ∼ Poisson(λi) (4)

λi ∼ Gamma(0.5, 0.05),

rZi =
λi∑N
j=1 λj

,

where the number of control cases Zi in municipality i follows a Poisson
distribution with mean λi. The resulting expected value is denoted as EC2

i .
A conditional autoregressive convolution model proposed by Besag et al.
(1991) was used to analyse and compare the three methods presented above.

3 Data analysis

Residential information about all mesothelioma and pancreatic cancer pa-
tients diagnosed between 2004 and 2015 is available (Belgian Cancer Reg-
istry) as well as information about the population distribution in all areas
during the period 2009-2015.
All methods show a cluster of municipalities in the Central Northern part
of Flanders, and in the Central Eastern part of the country (Figure 1).
However, on the center panel some areas with increased risk are more dis-
persed over the country, as compared to the classical method. The right
hand side panel results show much less variability as compared to the to
the model in which the expected number is considered to be a fixed value
(center panel). By incorporating more variability for the expected values,
a smoothed map is observed for the new method (right panel), leading to
a more accurate approximation of the Poisson convolution model results.

4 Conclusion

In this paper, we have proposed a method similar to methods used in point-
pattern data (Diggle et al. 2000), in which the incidence of the disease of
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FIGURE 1. Map of the relative risks and excess risk for the Poisson Convolu-
tion model. Left panel: using indirect standardized number; Center panel: using
control-disease’s standardized number; Right panel: using control-disease’s stan-
dardized number accounting for uncertainty.

interest is compared to the incidence of a control disease, in the context of
lattice data. Allowing for extra variability through the use of a distribu-
tion for the expected values, leads to a control-disease approach used for
a Poisson convolution model which had similar results with the classical
methodology.
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Abstract: Hidden semi-Markov models (HSMMs) generalise hidden Markov
models by explicitly modelling the time spent in a state, the so-called dwell-time
distribution, using some distribution on the positive integers, e.g. the (shifted)
Poisson or the negative binomial. In this paper, we propose a penalised maxi-
mum likelihood approach for fitting HSMMs without the need to specify a dis-
tributional assumption for the state dwell times. The feasibility and potential
usefulness of the approach is illustrated using muskox animal movement data.
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1 Introduction

Hidden Markov models (HMMs) are flexible time series models for observa-
tions driven by an underlying latent state sequence. For mathematical con-
venience, the state sequence is usually assumed to be a first-order Markov
chain. This, however, implies that the state dwell time, i.e. the number of
consecutive time points spent in a given state, follows a geometric distri-
bution. Hidden semi-Markov models (HSMMs) overcome this limitation by
allowing for an arbitrary dwell-time distribution. Within HSMMs, the dwell
times are then usually modelled using standard parametric distributions,
e.g. the Poisson or the negative binomial, which corresponds to a restric-
tive assumption on the shape of the dwell-time distribution, and hence on
the way the state process evolves over time. To avoid such restrictive as-
sumptions, we develop a fully data-driven penalised maximum likelihood

This paper was published as a part of the proceedings of the 35th Inter-
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approach for estimating HSMMs without prior specification of the class of
distributions used for the state dwell times.

2 HSMMs with flexible dwell-time distributions

An HSMM is a doubly stochastic process comprising a latent N -state
semi-Markov process {St}Tt=1 and an observed state-dependent process
{Xt}Tt=1. At each time point, Xt is assumed to be generated by one out
of N distributions fi(xt), i = 1, . . . , N , as selected by the current state
St. Given the states, the observations are assumed to be conditionally
independent of each other and past states. The underlying semi-Markov
chain is characterised by two components: (i) whenever the chain enters
a new state i at some time point, a draw from a dwell-time distribution
on {1, 2, . . .}, defined by its probability mass function di, determines the
number of consecutive time points the chain spends in that state; (ii)
state switches are determined by the conditional transition probabilities
ωij = Pr(St = j|St−1 = i, St 6= i), summarised in the N × N ma-
trix Ω. Thus, an HSMM is completely specified by the vector θ compris-
ing the parameters defining di and fi(xt), for i = 1, . . . , N , and ωij , for
i, j = 1, . . . , N , i 6= j. In case that all state dwell times are geometrically
distributed, the HSMM reduces to the special case of an HMM.
Letting di(r) denote the probability of a dwell time of length r in state
i, we assign a parameter πir to each individual probability di(r) for
r ∈ {1, 2, . . . , Ri}, where the upper boundary Ri needs to be chosen large
enough to capture the main support of the dwell-time distribution. To fur-
ther allow for dwell times r > Ri, a geometric tail is added:

di(r) =





πir if 0 < r ≤ Ri;

πiRi

(
1−

∑Ri
r=1 πir

1−
∑Ri−1
r=1 πir

)r−Ri
if r > Ri,

with 0 < πir < 1 and
∑Ri
r=1 πir < 1. Using a state space expansion and

a suitable block structure in the resulting enlarged transition probability
matrix, this HSMM can be represented exactly as an HMM (Langrock and
Zucchini, 2001, Zucchini et al., 2016), with the resulting state space of di-

mension
∑N
i=1Ri. This trick renders the computational machinery available

for HMMs applicable also to HSMMs, including numerical maximisation of
the log-likelihood `(θ|x1, . . . , xt), which is evaluated using the forward algo-
rithm. To avoid overfitting with respect to the probability mass functions,
we enforce smoothness by penalising the squared third-order differences
∆3πir of adjacent state dwell-time probability parameters:

θ̂ = argmax
θ

`(θ|x1, . . . , xT )−
N∑

i=1

λi

Ri∑

r=4

(∆3πir)
2.
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FIGURE 1. Estimated state-dependent gamma distributions for the 3-state
HSMM, weighted according to the proportion of time the states are active.

The smoothing parameters λi control the balance between goodness-of-fit
and smoothness of the di(r) functions, and can be chosen for each state
individually. For a data-driven selection of λi, cross-validation can be used.

3 Case study: modelling muskox movement

We illustrate our approach using T = 1440 hourly observed step lengths
of a muskox in Greenland. Based on previous work that found the main
behavioural modes to be resting, foraging and relocating (Pohle et al., 2017,
Beumer et al., 2020), we fit 3–state HSMMs with state-dependent gamma
distributions. The parameters are estimated by numerically maximising
the penalised log-likelihood using the optimisation routine nlm in R. For
simplicity, we use the same smoothing parameter λ for each state, testing
λ = 0, 10, 1000, while fixing R1 = R2 = R3 = 10.
Figure 1 displays the estimated state-dependent gamma distributions (for
λ = 1000), which can reasonably be interpreted as corresponding roughly
to resting (state 1), foraging (state 2) and relocating (state 3). The esti-
mated dwell-time probability mass functions are displayed in Figure 2, for
states 1-3 and the different values considered for λ. Irrespective of the choice
of λ, the dwell-time distributions of the latent state process clearly differ
from a geometric distribution, which suggests that a basic HMM would
not correctly represent the dynamics in the state process. The necessity of
penalisation becomes clear for example in view of d̂3(r), the dwell-time dis-
tribution estimated for state 3: when increasing λ the distribution becomes
smoother, and in particular the gaps in the probability mass function, as
obtained when not penalising (λ = 0; top right panel in Figure 2), are filled
due to the enforced smoothness.
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FIGURE 2. Estimated dwell-time probability mass functions for the 3-state
HSMM, for states 1-3 and the different λ’s considered.

4 Conclusions

As the state process is unobserved, it is often unclear how to select a model
that appropriately reflects the underlying state dynamics. Our proposed
penalisation estimation approach can be used as an exploratory tool to
investigate the unknown shapes of the states’ dwell-time distributions. The
method can either be used for direct modelling purposes, or as a basis for
subsequent modelling choices, for example in order to decide whether an
HMM would be appropriate for the data at hand, or what distributional
assumption may be adequate within a conventional HSMM.
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Abstract: Reference fetal growth curves play an important role in identifying fe-
tal growth restriction, macrosomia and other fetal malformations. This is verified
based on percentiles of some biometric measurements at a specific gestational age
using obstetric ultrasound. As an example, the diagnosis of microcephaly is based
on a biparietal diameter smaller than the 10th percentile based on the reference
curve. In practice, each biometric measurement reference curve is constructed
independently of other measurements, even if they are correlated and some in-
formation about dependencies among them might be lost. Here we use these
measurements to define growth curves modelling jointly more than one measure-
ment. We consider structured additive quantile regression models for multiple-
output response variables, where we are able to specify a nonlinear effect of time.
We define a Markov Chain Monte Carlo (MCMC) procedure for model estima-
tion, using ideas previously discussed in the literature. We examine four different
ultrasound measurements and we show how one can retrieve more information
when modelling these response variables jointly instead of individually. We illus-
trate the method with data from pregnancies from the University Hospital of the
University of São Paulo (HU / USP) in the city of São Paulo, Brazil.

Keywords: Bayesian quantile regression; Multiple-output response variable;
Growth curves.

1 Growth curves and Bayesian quantile regression
models

A proper assessment of fetal growth is important to identify irregular
growth that is related to fetal malformations and/or disease of the mother.

This paper was published as a part of the proceedings of the 35th Inter-
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This evaluation is usually made observing references growth curves which
are build exactly for these purposes, where percentiles of a biometric mea-
surement, for instance fetal biparietal diameter, is estimated for a spe-
cific population. The fetus biometric measures are obtained from ultra-
sonographic examinations measured throughout the pregnancy. Fujita et
al. (2020) used four different measures to estimate the weight of the fe-
tus during the pregnancy and then considered a mixed model to obtain
growth curves taking into consideration other covariates to control for the
heterogeneity in the data.
A possible strategy one can use to estimate these conditional percentiles,
or more broadly conditional quantiles, of these measures is connected to
quantile regression models. In these models one can write the conditional
quantiles as

QY (τ |X = x) = fτ (z) + x
′
βτ ,

where fτ is a nonlinear function related to covariate z and x
′
βτ is the

typical linear quantile regression part. This nonlinear function could be
used to estimate the time effect, for instance. One approach for multiple-
output response variables was proposed by Hallin et al. (2010).

FIGURE 1. First two plots show examples of the separation by the τth directional
quantile hyperplane, when τ = 0.2 and the direction is denoted by the red arrow.
The last plot show the quantile region obtained given the estimated models in 99
directions.

In Figure 1, we have the representation of a bivariate response variable
where both components are uniformly distributed between -1 and 1. The
proposal by Hallin et al. (2010) is based on directions represented by the
red arrows, where the directional multiple-output quantile regression model
divides the spaces in two halfspaces, as in the black and blue points. By con-
struction, this hyperplane observes two subgradient conditions, though we
focus here only on the first. This condition is related to quantile regression
models, as the probability of the response variable belonging to the space
represented by the black points is equal to τ . For instance, in this example
where τ = 0.2 one would expect 20% of the points to be denoted as black
for all directions. If one defines multiple directions in this two-dimensional
example and checks the intersection of all the blue points, we arrive at the
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quantile region of the last plot in Figure 1. Given the importance of the
chosen directions for our model, we discuss different methods for defining
these in the next subsection. Regarding the quantile regions shown, we con-
sider those to build our growth curves in the next section. See Hallin et
al. (2010) and Santos and Kneib (2020) to check on how to estimate these
hyperplanes using a frequentist and Bayesian approach, respectively.

1.1 Defining the directions

In Figure 2 we show the result of defining 512 directions based on two dif-
ferent ideas. The first one considered by Santos and Kneib (2020) splits the
intervals [-1, 1] in equidistant points, that depend on how many directions
one wants to estimate. For instance, if we define 8 marginal points then we
arrive at 83 = 512 models, because we consider all possible combinations
of points, definining vectors in [−1, 1]3. Each vector is then divided by its
norm, so we have unit vectors for directions. The result using this method
is shown in black points in the left of Figure 2.

FIGURE 2. Different directions chosen for estimation given marginal quantities
for each dimension: (left) equidistant points marginally; (middle) standard nor-
mally distributed in each marginal; (middle) standard normally distributed in
two marginal, while Y2 is exponentially distributed with mean 1.

The second method takes into account the marginal quantiles to define
points in the interval [-1, 1]. The quantiles (q1, q2, . . . , qp) are calculated for
each dimension, where q1 is the minimum and qp is the maximum, while
p is the number of marginal points. These quantiles are then scaled into
the interval [-1, 1] and the same rules applied to the previous idea are used
in order to define these new directions. In Figure 2 we illustrate two cases
with this method in blue dots. The middle plot shows the case when each
marginal has a standard normal distribution and the plot in the right shows
when one of the marginal a standard exponential distribution, while the
others are still normally distributed. This approach is closely connected to
the idea of selecting knots when estimating nonlinear functions.
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2 Application to gestational data

Here we consider the data used in Fujita et al. (2020), where there are
1445 ultrasonographic examinations of 434 pregnancies at 12-42 gestational
weeks, where the babies were born between July 1, 2014 and December 31,
2017, at the University Hospital of University of São Paulo, Brazil.
We consider the biometric measurements: femur length (F), head circum-
ference (HC), abdominal circumference (AC), biparietal diameter (BPD).
We use as covariates the gestational age, fetal sex and mother’s height and
mother’s body mass index. For each direction of interest, the nonlinear
effect of gestational age was modelled with cubic p-splines functions with
20 equidistant knots. All results were obtained with chain size of 110,000
samples, after discarding the first 10,000 draws and recording every 100th
value. For this two dimensional example, we used 99 directions to calculate
the quantile regions.
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FIGURE 3. Left side: quantile contours for the combination of two measure-
ments, FEMUR and HC for female fetuses on the top, with AC and BPD for
male fetuses on the bottom, τ = 0.05; Right side: quantile contour for τ = 0.05,
for female fetuses, 37 weeks of gestational age, while the red lines represent the
marginal conditional quantiles (τ = 0.05, 0.95) for the same variables, but con-
sidering a linear function on age.

Initially, we investigated all possible
(

4
2

)
models using these measurements.

On the left side of Figure 3, one can check the quantile contours for two
cases, “F-HC” and “AC-BPD”, where it is noticeable the nonlinear vari-
ation given gestational age. We plot the values for the quantile contours
for values between 12 and 40 weeks of pregnancy, in intervals of 1 week.
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The jumps seem to be bigger in the beginning of the pregnancy, while the
variance appear to be larger closer to 40 weeks of pregnancy. There are also
differences in the shape of the plots when we compare the plots in the top
and in the bottom. This shows how it is important to take into considera-
tion all the different types of correlation between the measurements.
On the right side of Figure 3, we have the quantile contour for one specific
age, 37 weeks, a female fetus, for measures of BPD and AC. We also plot
the marginal conditional quantiles based on a quantile regression model,
with covariates age and fetal sex, for τ = {0.05, 0.95}, with a linear func-
tion on age. It is easy to see how the quantile contour is able to capture
the correlation between the measurements way more naturally. This result
motivates the investigation of how these contours could be used to check for
fetal growth restrictions, instead of estimating the weight based on those
measurements and then assessing some form of conditional model, as in
Fujita et al. (2020).
We are also able to obtain model estimates when considering the four mea-
surements altogether as the response variable. For this case, for the di-
rections we use the method defined in Section 1.1 that take into account
marginal quantiles of each dimension, with 5 marginal points. Though we
are unable to visualize the quantile regions as in Santos and Kneib (2020),
given this four dimensional problem, we can still check which observations
are inside or outside these regions. Then we can summarize some of this
information to showcase interesting conclusions about this model.
For instance, if one observes the right side plot in Figure 3 there are a few
observations, which would not be deemed to have an atypical value, given
their gestational age and the fact that the fetal sex is female. Neverthe-
less, when examining its joint distribution of BPD and AC, then we would
identify these observations being outside the quantile region.
A similar experiment can be done after marking all observation that are
outside the quantile region in the four dimensional case. After that we can
compare their respective conditional position, given its fetal sex and gesta-
tional age, for instance. We could also add mother’s height and body mass
index, that were also considered in the model, but for the sake of simplicity
these are left out initially. For this illustration, we group gestational age
in four approximately equally sized groups, based on its respective quan-
tiles. Then for each combination of gestational age group and fetal sex,
we order each measurement placing all observations in one of 5 groups,
{0−20%, . . . , 80%−100%}. In Figure 4 we can compare then the informa-
tion for observations placed outside the quantile region.
We can check that the regions where we find more observations outside the
quantile region are both extremes, which is not surprising. Though lower
values for each measurement are more likely to be classified in this way.
Similarly to what we had seen using the two dimensional quantile region,
here there are also points more center located in one of the dimensions, but
still outside the quantile region.
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FIGURE 4. Conditional bivariate densities given fetal sex and gestational age
groups for observations classified as being outside the quantile region for τ = 0.05.
Brightness levels for each tile represents its respective density, where higher
brightness is related to a higher density.

3 Final remarks

In this paper we used Bayesian quantile regression models for multiple-
output response variables to define fetal growth curves. We show how these
models can better capture the correlation between the measurements in the
fetus, instead of considering the conditional quantiles marginally for each
measurement. One important advantage of this method is that we are able
to study the variation of all these measurements without the need to assume
a probability distribution in this four dimensionsal setting.

References

Fujita, M.M., Francisco, R.P.V., Rodrigues, A.S., Zugaib, M. (2020).
Longitudinal study of individually adjusted fetal growth. Interna-
tional Journal of Gynecology and Obstetrics, 148, 35 – 40.
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1 Introduction

The cumulative model and the adjacent-categories model are popular mod-
els for univariate ordinal responses. In the following, we present the adja-
cent categories model for univariate and multivariate ordinal response as
the basis for the newly proposed model that allows to account for response
styles. For the sake of brevity we abstain from presenting the cumulative
model and the corresponding extensions. Also, we restrict our presentation
in Section 2 to the more common situation of an odd number of categories
in the response variables.
The adjacent-categories model has the form

P (Yi = r + 1|Yi ∈ {r, r + 1},xi) = F (γ0r + xTi γ),

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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where F (.) is a distribution function. For the logistic distribution function
one obtains

log

(
P (Yi = r + 1)

P (Yi = r)

)
= γ0r + xTi γ. (1)

Random effects models aim at explicitly modeling the heterogeneity of
clustered responses. A cluster can be any statistical unit for which repeated
measurements are available. In our applications a cluster typically refers to
a person and repeated measurements refer to responses on a set of items.
For such clustered data let the ordinal response Yit ∈ {1, . . . , k} denote
measurement t in cluster i, i = 1, . . . , n, t = 1, . . . , Ti. The simplest random
effects model is a model that includes random intercepts only. Extending
model (1) the inclusion of random intercepts gives

log

(
P (Yit = r + 1)

P (Yit = r)

)
= γ0r + xTitγ + bi

for the adjacent categories model where bi ∼ N(0, σ2) represents a random
intercept for person i.

2 Accounting for Response Styles

In the adjacent categories model, the intercepts γ0t1 . . . γ0t,k−1 can be seen
as threshold parameters. The threshold parameters determine the basic
preference for specific categories. This property will be used in the follow-
ing to model the subject-specific tendencies to choose specific categories.
The main idea of the newly proposed model is to increase or decrease the
distance between thresholds for specific persons with a centering at the
middle category. In the predictor ηitr = γ0tr + xTitγ + bi for the t−th vari-
able we propose to replace the threshold γ0tr by γ0tr + (k/2 − r)ai where
ai is a subject-specific parameter. It is seen that the difference between
adjacent linear predictors gives ηitr − ηit,r−1 = γ0tr − γ0t,r−1 − ai, i.e., the
difference between adjacent predictors changes by ai. If ai is positive the
difference decreases, if it is negative the difference increases.
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FIGURE 1. Probabilities of single categories (for an example with k = 5) de-
pending on different values of response style parameter ai.

Figure 1 illustrates how different values of the parameter ai affect the prob-
abilities of the single response categories. Positive values of ai increase the
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probabilities of the middle categories while negative values increase the
probabilities of the extreme categories. For illustration let us consider the
case k = 5 where one obtains the following thresholds

The effect of explanatory variables is included by extending the response
style effect ai to the response style term ai + zTi α. Then, in the adjacent
categories representation one obtains

ηitr = γ0tr + (k/2− r)(ai + zTi α) + xTi γ + bi.

From a psychometric point of view the model can be seen as a generaliza-
tion of the extended partial credit model proposed by Tutz, Schauberger
and Berger (2018). In our proposal, their model is extended by covariate
location effects xTi γ and covariate response style effects zTi α. The variables
xi and zi can be distinct, overlapping, or identical.
The model contains two random effects, the subject-specific intercept bi
and the subject-specific response style effect ai where a bivariate normal
distribution (bi, ai) ∼ N(0,Σ) is assumed. The diagonals of the matrix
Σ contain the variance of the random intercepts σ2

b and of the response
style parameters σ2

a, the off diagonals are the covariances covba between
intercepts and the response style.

3 Application to pre-election data

The method is applied to data from the German Longitudinal Election
Study (GLES) (Roteutscher et al., 2017). The participants were asked:
“How afraid are you due to the ...”

1. refugee crisis?

2. global climate change?

3. international terrorism?

4. globalization?

5. political developments in Turkey?

6. use of nuclear energy?

The answers were measured on Likert scales from 1 (not afraid at all) to
7 (very afraid). As explanatory variables in the model we used Abitur (1:
Abitur/A levels; 0: else), Age, EastWest (1: East Germany/former GDR;
0: West Germany/former FRG), Gender (1: female; 0: male) and Unem-
ployment (1: currently unemployed; 0: else). In order to make the effect
sizes easier to compare all variables were standardized before the respec-
tive analyses.
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FIGURE 2. (Exponential) effects of explanatory variables in GLES data and
95% confidence intervals for location effects γ and response style effects α.

Figure 2 gives a visualization of the estimated effects and confidence inter-
vals. It shows the exponentials of the covariate effects both for the location
effects γ (abscissa) and the response style effects α (ordinate) together with
the respective 95% confidence intervals.
The location effects for Abitur, Age and Gender and the response style
effects for Age and Abitur are significant. According to these estimates,
the overall level of political fears is increased with increasing age and for
women in comparison to men while people with Abitur tend to have a lower
level of fears than other respondents. On the other hand, with growing age
people have an increasing tendency toward extreme categories while people
with Abitur show a (slight) tendency towards middle categories.
The random effects components are seen from the estimated (co-)variance
matrix

Σ̂ =

(
0.166 −0.002
−0.002 0.077

)
. (2)

There appears to be no strong correlation between the random location
effects and the random response style effects.
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Abstract: In this article we consider so called geometric networks. Typical ex-
amples are road networks or other infrastructure networks. We observe network
based point processes and our task is to estimate the intensity (or density) of the
processes. Available routines that tackle this problem are commonly based on
kernel smoothing methods. However, kernel based estimation in general exhibits
some drawbacks such as suffering from boundary effects and the locality of the
smoother. In an Euclidean space, the disadvantages of kernel methods can be
overcome by using penalized spline smoothing. We here extend penalized spline
smoothing towards smooth intensity estimation on geometric networks and ap-
ply the approach to both, simulated and real world data. The results show that
penalized spline based intensity estimation outperforms kernel based methods.
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1 Introduction

Okabe et al. (2009) introduced equal-split (dis-)continuous kernel density
estimation on geometric networks, which was the first approach that re-
spects the network geometry around the network’s vertices. The idea is
to split the mass of the kernel functions equally across all other segments
that depart from a vertex when approaching this vertex from one side. The
estimation procedure, including automatic bandwidth selection, is imple-
mented in the R package spatstat (Baddeley et al, 2015). If the data is
located on an Euclidean space, Eilers and Marx (1996) propose to estimate
the density by making use of penalized splines. In this article we perform in-
tensity estimation on geometric networks by extending the penalized spline
approach to work on geometric networks and compare the results with a
kernel based method.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Notation and Problem

Let V = {v1, . . . ,vW } be a set of vectors, which we denote as vertices,
with vi ∈ Rq for i = 1, . . . ,W and E = {e1, . . . , eM} be a set of line
segments em for m = 1, . . . ,M with each em ⊂ Rq being the connection
between two vertices vi and vj . Furthermore, deg(v) denotes the count of
segments which have an endpoint equal to a vertex v. For simplicity of
notation, we generally assume that em is a straight line such that em =
{vi + (1 − t)vj | 0 ≤ t ≤ 1} with length dm = |em| = ||vi − vj ||2, where
|| · || denotes the Euclidean distance. We now define the geometric network

L through the set of line segments E by L =
⋃M
m=1 em ⊂ Rq. The lengths

dm imply a metric dL : L × L → [0,∞) on L and with [z1; z2] ⊂ L or
with (z1; z2) ⊂ L we denote the path between z1 and z2. Let now X be
a stochastic point process on the geometric network L with continuous
intensity ϕX : L→ [0,∞). The expected number of points in a set K ⊂ L
is then defined through

∫
K
ϕX (z)dz =

∑M
m=1

∫
K⊂em ϕX (z)d |mz, where

d |mz denotes integration with respect to em. Our aim is to estimate the
intensity of the point process X on L given that we observe realizations
x1, . . . ,xn of this process.

3 Methodology

In this section we show how to extend the penalized spline estimation
approach of Eilers and Marx (1996) to allow for intensity estimation on
geometric networks. For simplicity of presentation, we restrict ourselves to
linear B-spline bases. Such a basis on a geometric network can be con-
structed straightforwardly from the well-known one-dimensional setting.

3.1 Linear B-splines on a Network

On every line em, which has endpoints vi and vj , we specify an equidistant
sequence of Im knots vi = τm,1, . . . , τm,Im = vj with τm,k ∈ em for k =
1, . . . , Im, where dL(τm,k, τm,k−1) = δm. We choose the δm to be rather
small and about the same size and construct Jm = Im − 2 ≥ 1 linear
B-splines Bm,1, . . . , Bm,Jm , which are defined by

Bm,k(z) =
dL(z,τm,k)

δm
I[τm,k,τm,k+1)(z) +

dL(τm,k+2,z)
δm

I[τm,k+1,τm,k+2)(z) (1)

for z ∈ L,m = 1, . . . ,M and k = 1, . . . , Jm. Furthermore, we construct
a single B-spline around each vertex vi ∈ V . Therefore, we numerate the
deg(vi) segments which have an endpoint equal to vi with e1, . . . , edeg(vi).
Again, without loss of generality, let τm1,1

= vi, . . . , τdeg(vi),1 = vi. Then,
we define the vertex specific B-spline B(i) for vertex vi by

B(i)(z) =

deg(vi)∑

k=1

[
1− dL(vi, z)

δk

)
I[vi;τk,2)(z). (2)
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for z ∈ L and i = 1, . . . ,W . Hence, a linear B-spline basis on L consists
of the B-splines defined by (1) and (2) and has dimension J = |B| =∑M
m=1 Jm+|V |. For simplicity of presentation, we index from now on the B-

spline Basis by 1, . . . , J and by construction, it holds that
∑J
j=1Bj(z) = 1

for z ∈ L as in the one-dimensional setting.

3.2 Intensity Estimation on a Network

On our geometric network L, we specify a bin width hm on every segment
em and then divide em into Nm = dm

hm
bins of the same length such that

L is partitioned into N =
∑M
m=1

dm
hm

bins in total. Let zm,k denote the
midpoints of these bins and assume that data on n independently observed
points xi, i = 1, . . . , n, of the point process L have been observed. We
define with ym,k ∈ N0 the number of observations which are contained in
the k-th bin of the m-th segment and assume a Poisson distribution for

the counts ym,k such that we have ym,k | zm,k ind∼ Poi(λm,k), where λm,k is
approximated through λm,k = ϕX (zm,k) · hm = exp (νX (zm,k) + log hm) .
We can consider log hm as offset and aim to estimate νX (z) as continuous
log-intensity for z ∈ L. Therefore, we replace νX (z) through the B-spline

basis representation νX (z) =
∑J
j=1Bj(z)γj , where γ = (γ1, . . . , γJ)> is the

vector of coefficients that needs to be estimated from the data. Imposing
a penalty on the resulting Poisson likelihood leads to the penalized log-
likelihood (constant terms are ignored)

`P(γ; ρ) =
∑M
m=1

∑Nm
k=1

[
ym,k

∑J
j=1Bj(zm,k)γj − exp

(∑J
j=1Bj(zm,k) + log hm

)]
− ρPr(γ),

where Pr(γ) is a penalty which is defined in the next section and ρ is
the smoothing parameter, which we estimate by exploiting the generalized
Fellner-Schall method (Wood and Fasiolo, 2017).

3.3 Penalties on a Network

We can view the B-splines on L itself as a network graph LB which
is defined through a J × J adjacency matrix A, where A(i, j) = 1, if
supp(Bi) ∩ supp(Bj) 6= ∅ and else A(i, j) = 0. Furthermore, SA denotes
the J × J shortest path matrix of LB . Now, let D1 = {(i, j) | SA(i, j) =
1, 1 ≤ i < j ≤ J}. According to Eilers and Marx (1996) we penalize neigh-
boring coefficients. A first order penalty is then defined by

P1(γ) =
∑

D1

(γi − γj)2 = γ>K1γ, (3)

where K1 ∈ ZJ×J defines the resulting quadratic form according to the
pairwise differences in (3). Penalties of order r ≥ 2 can be defined in a
similar way via the shortest path matrix SA.



Schneble and Kauermann 207

  
  

Simple Network with 
 n = 100 Random Points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

  Penalized Spline Estimate, n = 100

28
30

32
34

36
38

40

  Kernel Based Estimate, n = 100

28
30

32
34

36
38

40

FIGURE 1. Network with n = 100 uniform random points (left panel), penalized
spline intensity estimate (left panel) and kernel intensity estimate (right panel).
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FIGURE 2. Mean and standard deviation of penalized spline based and kernel
based ISE for n = 5, 10, 20, 50, 100, 200, 500, 1000 on a log-log-scale, where ϕXn

is defined according to a uniform intensity on L.

4 Simulation Study

We independently simulate n random points according to a specified in-
tensity function ϕXn on a small network L, which is shown in Figure 1,
and estimate the intensity of the simulated point process with penalized
spline smoothing. This is opposed to a kernel based intensity estimate with
automatic bandwidth selection as implemented in the spatstat package.
To begin with, we specify a uniform intensity on L, i.e. ϕXn(z) = n/|L| for
all z ∈ L. For n = 100 an exemplary simulated point process on L is shown
in the left panel of Figure 1. The middle (right) panel shows the intensity
estimate when exploiting the penalized spline (kernel based) approach. For
the former method, we use δ = 0.05, h = 0.01 with a first-order penalty. The
penalty on the log-likelihood of the model affects γ̂1 ≈ · · · ≈ γ̂P . Therefore,
when using the penalized spline method we here estimate nearly a constant
intensity.
We extend the above setting with multiple simulations per sample size
and set δ = 0.05, h = 0.01, r = 1. We also use several values of n
to assess consistency. To do so we simulate S = 1000 networks for
n = 5, 10, 20, 50, 100, 200, 500, 1000 and quantify the estimation error of
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FIGURE 3. Mean (bottom left panel) and standard deviation (bot-
tom right panel) of penalized spline based and kernel based ISE for
n = 5, 10, 20, 50, 100, 200, 500, 1000 with true intensity (4) on a log-log-scale.

the s-th simulation through

ISEn(s) =
1

n2

∫

L

(ϕXn(z)− ϕ̂Xn(z; s))
2
dz,

where ϕ̂Xn(·; s) denotes the estimate of ϕXn based on the s-th sample.
That is, we quantify the estimation error through the integrated squared
error (ISE) between the true density fX (z) = ϕXn(z)/n = 1/|L| and the

estimated density f̂X (z) = ϕ̂Xn(z)/n. The resulting means ISEn over all
S = 1000 simulations and the corresponding standard deviations σ̂(ISEn)
for penalized spline and kernel based estimation are shown in Figure 2.
We can clearly see that the penalized spline approach performs distinctly
superior to the kernel based approach in terms of ISE. For the penalized
spline approach we see that the mean and the standard deviation of ISEn
decrease nearly linearly on a log-log-scale with the number of random points
n.
In order to investigate the performance of penalized spline based intensity
estimation also for non-uniform intensities, we consider now the intensity
function

ϕXn(z) =
√
y exp(−xy) · n

C
(4)

on the network from above. Here, z = (x, y)> is the plane-coordinate rep-
resentation of a point z ∈ L with 0 ≤ x, y ≤ 1 and C ≈ 1.558 is the
normalization constant such that

∫
L
ϕXndz = n. In the bottom row of Fig-

ure 3 we oppose the means (bottom left panel) and standard deviations
(bottom right panel) of S = 1000 ISE samples for both, penalized spline
and kernel based intensity estimation using the same parameter setting
as in the uniform case from above. We can see that also here the penal-
ized spline method is distinctly superior to the kernel based approach in
terms of ISE. Furthermore, the decrease of the mean ISE is still linear on
a log-log-scale but the relationship is not as strong as in the uniform case.
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FIGURE 4. Chicago crime network (left panel), penalized spline intensity esti-
mate (left panel) and kernel intensity estimate (right panel).

5 Application – Crimes in a District of Chicago

As application with real data we consider the Chicago crimes network which
is also implemented in the spatstat package and elaborated in detail in
Baddeley et. al (2015). The top panel of Figure 4 shows the location of
116 crimes recorded over a two-week period in 2002 in a district of Chicago
(neglecting the kind of crime). The lower panels of Figure 4 show the es-
timates resulting from the data using a penalized spline based approach
(left panel) or a kernel based estimation (right panel). We find that the
high-intensity regions are similarly located for both methods. However, the
peaks of the kernel intensity estimate are more explicit and the intensity
fitted with the penalized spline approach is more smooth. When consider-
ing the few events in the southern area of the map extract, a peak occurs
in the kernel intensity estimate which is not visible in the spline approach.
Taking the performance of the kernel density estimates as shown in the
simulated data above into account, it seems plausible to consider crime
events to be uniformly distributed over the southern part of the network,
that is, the peaky behavior of the kernel methods seems misleading.
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Abstract: Estimation of distributional regression models using datasets beyond
106 observations is a difficult task. We propose a novel optimizer which is based
on the ideas of stochastic gradient descent and can easily deal with large data sets.
Moreover, the algorithm performs automatic variable and smoothing parameter
selection and its performance is in most cases superior or at least equal to other
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the R package bamlss. We illustrate the usefulness of the approach by imple-
menting a state-of-the-art prediction model for lightning occurrence and counts
in complex terrain.
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1 Introduction

Fitting distributional regression models of high complexity to large data
n > 106 is computationally challenging. Moreover, in many applications
solving the problem also requires automatic selection of variables. Ret-
rospective lightning analysis is a problem of this kind. For a region of
300 000 km2 in Europe we face n ≈ 4× 106 observations and p ≈ 80 covari-
ates, each of which should be modelled as smooth term.
For this purpose we propose the novel batchwise backfitting optimizer which
is based on the stochastic gradient descent algorithm (Sakrison, 1965) and
approximates the regression coefficients stochastically. The computation of
the gradients of the log-likelihood in each iteration is only based on a batch
of observations. In contrast, within a Newton-Raphson type algorithm the
gradients are computed on the full data in each iteration. This design prin-
ciple makes the batchwise backfitting optimizer computationally simple and
thus scaleable. Toulis and Airoldi (2015) provide background of estimation
algorithms based on stochastic approximations.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Batchwise backfitting

This section follows the notation introduced in Umlauf et al. (2018). A stan-
dard approach to fit the posterior mode of a distributional regression model
is to apply a backfitting algorithm that updates the regression coefficients
iteratively,

β
[t+1]
jk = (X>jkWkkXjk + Gjk(τjk))−1X>jkWkk(zk − η[t+1]

k,−j ),

with working observations zk = η
[t]
k + W−1

kk uk, working weights W−1
kk and

score vector uk, derived from derivates of the log-likelihood w.r.t. ηj .
Now, instead of using all observations of the data, we only use a randomly
chosen subset denoted by the subindex [s] in one updating step

β
[t+1]
jk = (1− ν) · β[t]

jk + (1)

ν · (X>[s],jkW[s],kkX[s],jk + Gjk(τjk))−1X>[s],jkW[s],kk(z[s],k − η[t+1]
[s],k,−j)

= (1− ν) · β[t]
jk + ν · βjk,[s]

and introduce a step length control parameter ν (or learning rate) specify-

ing the amount of which β
[t+1]
jk is updated. This iteration mimics a classical

second order stochastic gradient descent algorithm since

β
[t+1]
jk = β

[t]
jk + ν · (βjk,[s] − β[t]

jk) = β
[t]
jk + ν · δ[t]

jk (2)

where the difference δ
[t]
jk between parameter updates from iteration t and

batch [s] is composed from first and second order derivative information
with

δ
[t]
jk = βjk,[s] − β[t]

jk

=

[
β

[t]
jk −H[s],kk

(
β

[t]
jk

)−1

s[s]

(
β

[t]
jk

)]
− β[t]

jk

= −H[s],kk

(
β

[t]
jk

)−1

s[s]

(
β

[t]
jk

)

Hence, in each iteration the update step length is adaptive, because of the

curvature information provided in δ
[t]
jk.

The working weights W[s],kk, the working responses z[s],k and the predic-

tors η[s],k are computed based on the current states β[t]. For one batch [s],
the algorithm subsequently cycles over all parameters of the response distri-
bution and all model terms in the typical backfitting manner, i.e., the pre-
dictors η[s],k are updated instantly. After all model terms fjk(X[s],jk;βjk)
are updated the algorithm proceeds with the next batch. Hence, the batch-
wise backfitting algorithm updates in a memory efficient manner from batch
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to batch either until all observations were included once, or the algorithm
runs through the data a prespecified number of epochs.
The smoothness of model terms fjk(·) is controlled by the smoothing pa-
rameters (variances) τjk. In the proposed implementation these param-
eters are either estimated according to an information criterion like the
AIC, which is computed on an out-of-sample batch [s̃], or by using slice
sampling under the information criterion. If ν = 1, the algorithm can be

interpreted as a resampling method and each update β
[t+1]
jk is a sample

of the regression coefficients. In this case, convergence is achieved similar
to MCMC algorithms, i.e., if the iterations start fluctuating around a cer-
tain level. The final estimate β̂ is then computed by taking the means or
medians of the chains.
Moreover, equation (2) can also be utilized to enforce complete variable
selection in a boosting type algorithm, if only the model term with the
best improvement in the out-of-sample log-likelihood is updated.
In addition to commonly used penalties Gjk(τjk), complete model term
selection can also be incorporated by an additional lasso type penalty for
coefficients βjk (Groll et al., 2019).
Convergence of the algorithm is controlled in two ways: (1) by the step
length control parameter ν, and (2) by the working weights, working re-
sponses and predictors, which are computed based on all previous batches.
This means by setting, e.g., ν = 1/2, the algorithm will converge after
visiting m batches [s]. If ν = 1, the algorithm can be interpreted as a

resampling algorithm and each update β
[t+1]
jk is so to say a “sample”. In

this case, convergence is achieved similar to MCMC algorithms, i.e., if the
iterations start fluctuating around a certain level. The final estimate β̂ is
then computed by taking the means or medians of the chains.
If reasonably good starting values are chosen the algorithm will converge
in any case, as can be seen by changes of the expected bias at iteration t

E(β[t] − β?) = E(ν · β[s] + (1− ν) · β(t−1) − β?)
b[t] = E(ν · β[s] + β(t−1) − ν · β(t−1) − β?)

= E(β(t−1) − β?) + ν · E(β[s] − β(t−1))

= b[t−1] − ν · E(β(t−1) − β[s]).

Hence, the improvements of the algorithm will be large in the beginning.
The closer β(t−1) is to the true parameters β? the smaller will be the
improvements in the expected bias from iteration to iteration.
A simple way to find good starting values for complex models is to first
estimate a model with only intercept parameters using the boosting-type
flavor of the batchwise backfitting algorithm. This can be done quite quickly
even with huge amounts of data.
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3 Retrospective lightning analysis

FIGURE 1. Left panel: Log-likelihood contributions of model terms, the contri-
butions of the term sqrt cape are highlighted. Right panel: Paths of the regres-
sion coefficients of the term sqrt cape.

Lightning and associated atmospheric processes affect many scientific ar-
eas as well as industry and everyday life. Thus a consistent and long-term
(several decades) data describing the occurrence and intensity of lightning
events would be of great interest. However, observational networks that de-
tect lightning discharges homogeneously in space and time are in the order
of only a decade. For instance, lightning detection data with such properties
over Austria and surrounding (ALDIS; Schulz et al., 2005) are available for
the period after 2010. On the other hand atmospheric re-analyses (ERA5;
Copernicus Climate Change Service, 2017) model the state of the atmo-
sphere for several decades retrospectively, but they neither model lightning
occurrence nor counts explicitly.
With a statistical model—linking lightning detection data and atmospheric
re-analyses—one could (retrospectively) predict lightning for the time be-
fore 2010 and thus analyse lightning events in the past for which no ob-
servations are available. To train the model we employ ALDIS and ERA5
data, respectively, with n ≈ 4 × 106 observations and p ≈ 80 covariates
each of which entering the model as univariate smooth term. Lightning
discharges are counted on a grid with mesh size of 32 km × 32 km ×
1 h. The covariates are derived from ERA5 single level and pressure level
output.
We employ the proposed batchwise backfitting algorithm to model lighting
over Austria. One potential distribution for this type of data is a discrete
generalized Pareto. 1 000 batches, each of size 4 000, are drawn from the
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data. A step length control of ν = 0.01 allows only slight updates of the
coefficients from step to step. In each iteration only the best fitting term is
updated. Further, the smoothing parameters in each iteration are selected
using the AIC on an out-of-sample batch.
During the iterative fitting procedure the log-likelihood contributions of the
different terms are tracked (Fig. 1, left). These depict patterns compareable
to results known from gradient boosting that would evaluate the gradients
on the whole data. In each iteration a single term is updated increasing
its contribution. The coefficient paths—shown for the exemplary term of
sqrt cape (Fig. 1, right)—reveal a slight update of the estimates in each
step. These results indicate stability of the algorithm.

FIGURE 2. Sample application for the 32 km × 32 km grid box containing the
orographic peak Gaisberg (47◦ 48′ 20′′N, 13◦ 6′ 45′′ E) for two dates 2012-06-20
(left, in-sample) and 2016-06-25 (right, out-of-sample). Contours show the proba-
bility of exceedance. Circles show the observed flash counts. Filled circles indicate
counts greater than zero.

The final model can, for instance, be used study the evolution of single
events along the diurnal cycle (Fig. 2). Probabilities that lightning counts
exceed thresholds of 0, 10, 100, and 200 are derived from the predicted
distributions. The observed counts exhibit intense lightning events. Further,
applications such as investigating the spatial propagation are possible.

Computational details: The R package bamlss, implementing i.a. the
proposed batchwise backfitting optimizer bbfit(), is available at
https://CRAN.R-project.org/package=bamlss.
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from ALDIS for data support. Thorsten Simon acknowledges the support
of the Austrian Science Fund (FWF): Project number P 31836.
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Abstract: We provide methods and algorithms to approximate the elastic dis-
tance between irregularly and sparsely sampled curves and to fit smooth elastic
means for collections of such curves. Moreover, we illustrate both methods by ap-
plying them to a dataset comprising GPS tracks, where we first cluster the tracks
based on the elastic distance between them and then estimate elastic means for
each cluster.
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1 Analysis of functional data modulo
re-parametrisation

We are interested in studying statistical properties of collections of observed
curves, for example the outline of objects or movement patterns of subjects.
Although these curves are modelled as functions β : [0, 1]→ Rd, only their
image represents the curve. This means the analysis should be independent
of the parametrisation. To deal with this invariance, Srivastava et al. (2011)
proposed a distance on the quotient space of absolutely continuous curves
modulo parametrisation.
For two absolutely continuous curves β1 and β2, this elastic metric is de-
fined as the minimal L2-distance between the corresponding square-root-
velocity (SRV) functions after alignment: For monotonically increasing,
onto and differentiable warping functions γ : [0, 1]→ [0, 1] define

d(β1,β2) = inf
γ
‖q1 − (q2 ◦ γ) ·

√
γ̇‖L2

, (1)

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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with SRV transformations q1 and q2 of β1 and β2 defined via

qi(t) =





β̇i(t)√
‖β̇i(t)‖

if βi(t) 6= 0

0 if βi(t) = 0
for i = 1, 2.

Thus, (q2 ◦ γ) · √γ̇ is the SRV transformation of β2 ◦ γ. A solution to the
variational problem (1) is usually approximated using a dynamic program-
ming algorithm (for instance in Srivastava et al. (2011)). This works well
in the case of densely observed curves.
Nevertheless, in real-world applications, we usually observe curves only
at a finite (and often small) number of discrete points, where even the
number of points might differ between curves. We present an algorithm
to approximate the elastic distance (1) when at least one of the curves is
discretely observed via interpreting them as polygons with constant speed
parametrisation between its corners. This enables us to apply distance-
based methods like clustering and classification. Moreover, we use spline
functions to compute a smooth representative of the Frchet mean with
respect to (1) for a collection of observed curves.
We demonstrate both methods on a dataset comprising GPS waypoints
tracked on Tempelhof Field, a recreation area in Berlin (see Figure 1). The
dataset consists of 55 paths with 15 to 45 waypoints each. Clustering and
smooth mean estimation allows us to find new paths on Tempelhof field
not yet included in OpenStreetMap.
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FIGURE 1. Left: GPS paths tracked on Tempelhof Field and plotted on Open-
StreetMap. Right: longitude and latitude over relative time.

We are solely interested in analysing the paths the subjects walked on,
not the trajectories over time. Separately looking at longitude and latitude
over time suggests that the individuals had quite different walking patterns,
namely did not move with constant speed. This implies a classical functional
analysis of the trajectories is not suitable to study the paths used by the
test subjects.
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2 Methods

Both methods presented rely on treating unobserved curves β with SRV
transformation q as polygons parametrised with constant speed between
the observed corners β(s1), . . . ,β(sm). In this case, the problem of find-
ing an optimal re-parametrisation β ◦ γ of β to another curve with SRV
transformation p can be simplified (similar as in Lahiri et al. (2015)). More
precisely, we can show that instead of solving the minimisation problem (1)
over the function space of all suitable warping functions γ, we only need to
solve a maximisation problem over a subset of Rm−1, the new parametri-
sations t1 = γ−1(s1), . . . , tm = γ−1(sm) at the corners of the observed
polygon.
Since β is assumed to be a polygon with constant speed parametrisation
between its corners, its SRV transformation q is piecewise constant with
q|[sj ,sj+1] = qj ∈ Rd for all j = 1, . . . ,m. We consider

Maximise

m−1∑

j=0

√
(sj+1 − sj)

∫ tj+1

tj

〈p(t),qj〉2+ dt (2)

w.r.t 0 = t0 ≤ t1 ≤ · · · ≤ tm = 1.

Thereby, p can be the SRV function of any absolutely continuous curve
with ‖p‖∞ <∞ and 〈·, ·〉+ denotes the positive part of the d-dimensional
scalar product.
The way we handle the remaining optimisation problem depends on
whether the second curve with SRV transformation p is a model-based
smooth curve or the SRV transform of an observed polygon as well. In the
following, we describe algorithms for both cases and show how a smooth
mean for a sample of curves can be computed.

2.1 Elastic distance for two observed curves

For two SRV curves p and q that are piecewise constant, for instance the
SRV transformations of observed polygons, we can even derive a closed
form solution to the maximisation problem (2) with respect to the new
parametrisation tj ∈ R at each of the corners β(sj). With this, we propose
a coordinate wise maximisation procedure, where we iterate between two
steps:

(i) Update all tj with j ∈ {1, . . . ,m− 1} odd.

(ii) Update all tj with j ∈ {1, . . . ,m− 1} even.

Parallel computation is possible, since the update for the odd (or even)
indices does not depend on the other odd (even) indices. We can show that

every accumulation point of the resulting sequence {(t(k)
j )j=1,...,m−1, k ∈ N}

is a local maximiser. Moreover, it can easily be adapted for closed shapes
by updating t0 ∈ [tm−1 − 1, t1] and setting tm = t0 + 1.
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2.2 Smooth means for samples of curves

Similar to approaches in functional data analysis we like to model char-
acteristics of a distribution of curves using differentiable basis represen-
tations. We suggest considering piecewise linear SRV curves. This implies
differentiable curves. Moreover we can show that such curves with piece-
wise linear square-root-velocity transformation have unique representatives
modulo re-parametrisation.
With this in mind, we can use the space of linear spline SRV curves with
fixed knots as a model space for the mean of a sample of curves with respect
to the elastic metric. Precisely, we compute a smooth approximation of the
Frchet mean, a generalisation of the sample mean for metric spaces. Here,
the Frchet mean is a minimiser of the sum of quadratic elastic distances.
Hence, for a set of observed SRV curves {qi | i = 1, . . . , n}, we consider the
following minimisation problem

Minimise

n∑

i=1

inf
γi

∥∥∥p− (qi ◦ γi)
√
γ̇i

∥∥∥
2

L2

(3)

w.r.t p : [0, 1]→ Rd piecewise linear and continuous.

To tackle this nested optimisation problem we propose to alternate between
the outer minimisation over the current linear SRV mean function p and
the inner minimisation over the warping functions γi. More precisely, we
alternate the following steps:

(i) For a given spline curve p update the optimal re-parametrisations
γi of the observed curves qi, i = 1, . . . n. To do so we assume βi
is a parametrised polygon with observed values at its corners and
constant speed between them. Hence we assume a piecewise constant
SRV transformation qi of βi for all i = 1, . . . , n. This means we are
left with minimisation problem (2) which we tackle using a gradient
descent method.

(ii) Update the least-squares estimates for the coefficients of the spline
curve p for a given set of parametrisations γi via minimising the sum
of squared L2-distances

n∑

i=1

∥∥∥p− (qi ◦ γi)
√
γ̇i

∥∥∥
2

L2

=

n∑

i=1

∫ 1

0

∥∥∥p(t)− (qi ◦ γi(t))
√
γ̇i(t)

∥∥∥
2

dt

In practice we need to replace the integrals by discrete approxima-
tions.

This algorithm can be adapted for closed shapes as well. Here we add a cost
function penalising openness with increasing weight to the loss function in
step (ii). See Figure 2 for an example on a toy dataset of heart shapes.
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FIGURE 2. Five iterations of the algorithm for closed curves.

3 Data example: Clustering and modelling smooth
means of GPS-tracks

From the GPS data described in section 1, we recover the paths the in-
dividuals walked on while tracking their trajectories. This is done in two
steps. First, the tracks are clustered using average linkage based on the
elastic distance (as described in 2.1) and the elbow criteria for stopping.
Afterwards we compute a smooth elastic Frchet mean for each of the four
largest clusters (as described in 2.2).
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FIGURE 3. Left: The observed trajectories as elements of the four largest clusters.
Right: Longitude and latitude for the trajectories of the four largest clusters.

The clustering result displayed on the top left part of Figure 3 is visually
satisfying. Looking again at longitude and latitude separately clearly indi-
cates that clustering based on the usual Euclidean distance would lead to
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worse results. In particular, elements of the first and third largest clusters
might be classified differently using a non-elastic distance.
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FIGURE 4. Left: Smooth means modelled as linear SRV curves with 9 inner
knots for the four largest clusters. Right: The new paths (in blue) of the four
largest clusters added to the existing OpenStreetMap.

After the classification step, we compute a smooth mean curve for each
of the four largest clusters. The mean curves displayed in Figure 4 have
been obtained using linear SRV spline curves with nine inner knots. They
seem to describe the observed tracks well, although the number of estimated
spline coefficients and therefore model parameters is low (22 coefficients per
curve compared to at least 30 per observation). Thus, we obtain a smooth
mean curve for irregularly sampled curves based on the elastic distance
that captures the data well and allows dimensionality reduction.
One application of the procedure outlined above could be to identify new
paths not yet included in an existing map. The smooth mean curves could
be added to an OpenStreetMap, for instance, where we only add parts of
our estimated means that are notable different from already existing paths.
An example of the resulting map is displayed in Figure 4.
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Abstract: The monitoring of sport activities through the use of smart–devices
is assuming an increasing importance in several disciplines. In this context, data
are collected as a sequence of activities, where each activity is represented by a
partially–observed multivariate time series characterized by complex dependence
structures. We propose a Bayesian matrix–variate dynamic mixture model for
clustering trajectories of a large panel N of P–variate time series. The matrix
state space formulation allows to consider for both longitudinal and cross sec-
tional dependence, accounting also for missing values and other anomalies that
characterize this kind of data. A fully conjugate approach is adopted, and the
relative Gibbs sampler to sample from the full posterior distribution is available.
Computational achievements can be obtained by performing Kalman recursions
on a reduced form of the vectorized model, and simulating cluster allocations in
one step, by using a MH within Gibbs algorithm. In the empirical application we
analyze the running activities of one athlete.

Keywords: Bayesian dynamic clustering; matrix–variate; performance analysis.

1 Introduction

The monitoring of sport activities as well as the analysis of sport events
is a topic of increasing interest in several disciplines such as biology,
medicine, statistics and quantitative methods, engineering, material sci-
ence and mathematics. The reason for such interest relies on the primary
need to improve the knowledge and individualise the design of training ac-
tivities and exercise programs to maximise the improvements, and avoid
over–training, which may lead to impaired health, and typically under–
performance (see, e.g., Cardinale and Varley, 2017). Nowadays, the use of

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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GPS–enabled tracking devices and heart rate monitors is common in sev-
eral sporting disciplines, such as running, swimming, and cycling. In this
context, data are collected as a sequence of N activities, where each activ-
ity is represented by a high frequency multivariate time series collecting P
different variables, such as, GPS position, altitude, speed, and heart rate.
Over the past years, the scientific interest of researchers has been catalysed
toward the use of training data to monitor sport activities, and different
solutions to many relevant problems have been proposed. Cardinale and
Varley (2017), for example, pose their attention on recent technological ad-
vancements on the use of wearable technologies to quantify and monitor
training load, which is relevant in sport sciences since it allows to opti-
mise the training programmes, avoiding the risks related to overtraining
and overreaching. They distinguish between data regarding internal and
external load. In the first case they refer to data related to more physi-
ological aspects, such as the heart rate responses to stimulation imposed
by training activities. In the second case they refer to data related to the
work completed by the athletes, measured independently of their internal
characteristics, such as speed and duration. They then focus on validity
and reliability of the usage of such data, highlighting the importance of
analysing them individually, for each athlete. Many approaches to predict
the performance of athletes are based on the original work published by
Calvert et al. (1976). For example, Kolossa et al. (2017) propose the use
of the so-called fitness-fatigue model for performance estimation, leverag-
ing the Kalman filter algorithm. The model requires as input variable the
training load and provides as output the performance, being dependent on
the initial performance, the training load (which has to be estimated, some-
how), and two unobserved variables, called fitness and fatigue. Although
this approach considers the training process as a sequence of activities, it
does not exploit the potential of the ever growing amount of data collected
by athletes. A valuable contribution in this field was provided by Frick and
Kosmidis (2017), who developed an R package aiming to fill the gap be-
tween the routine collection of data from sport devices and their analyses
using the R statistical software. The package provides several user-friendly
utilities for importing, managing, and analysing tracking data. Although
the relevance of their contribution, the methods they propose do not ac-
count for the real-time usage of these data. Specifically, we think that
providing feedback information on the effects of training results to be more
effective if the feedback comes while the activity is performed, in order
to make well-time decisions on it. For this reason we propose a Bayesian
matrix–variate clustering model useful for classifying online the trajecto-
ries of multivariate time series, accounting also for missing values and other
anomalies that characterize this kind of data. In this field, clustering tra-
jectories allows to identify groups of activities which require similar effort,
which is useful for understanding how one athlete is behaving during the
activity.
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2 The model

Let Yt be the P ×N matrix of observations storing, in the n–th column,
the P–dimensional vector of observations for the n–th activity at time
t, for n = 1, . . . , N , and t = 1, . . . , T . We assume that the N activities
can be clustered into G different groups, and that the activities belonging
to the same group share the trends for all the measured variables. More
specifically, we assume that Yt can be described by the following state
space model

Yt = Rt + ZAtS
T + Υt, Υt ∼MNP,N (0,ΣR ⊗ΣC) (1)

At+1 = TAt + Ξt, Ξt ∼MNQ,G(0,ΨR ⊗ΨC) (2)

for some starting value A1. In the above equations, the matrices Z and
T are non-stochastic, Rt is a known matrix, At is a Q × G dimensional
matrix that stores by columns the latent states of each group, S is a N ×G
selection matrix, independent of the time, such that its n–th row is Sn =[
I(Sn = 1) I(Sn = 2) · · · I(Sn = G)

]
, where I(·) denotes the indicator

function, and Υt and Ξt follow a matrix–variate Normal distribution with
row–column decomposable covariance matrices (Gupta and Nagar, 1999).
It is worth noticing that in the matrix–variate state space formulation of
the model in equations (1)–(2), the time series dependence of the observed
variables Yt is accounted for by the matrix autoregressive process described
by the state equation (2), the matrices ΣR and ΣC capture the cross–
sectional dependence between variables and activities, respectively, while
ΨR, ΨC capture the cross–sectional dependence within states and between
groups. Therefore, the state space formulation accounts for all the complex
sources of dependence structures among the observed variables. Moreover,
conditional on the clustering variable S and the model parameters, standard
routines for state space models (Durbin and Koopman, 2012) can be applied
to the vectorised representation of the model yt = vec(Yt). Based on the
idea of Jungbacker and Koopman (2008), effective performance gains can
be achieved without loss of information by collapsing the observations using
the transformation yLt = ALyt, with AL = (Sᵀ(ΣC)−1)⊗ (ΣR)−1, where
we have assumed that Z is full row–rank. We notice that ΣR ⊗ ΣC =
(cΣR) ⊗ (ΣC/c), as well as ΨR ⊗ΨC = (cΨR) ⊗ (ΨC/c), which implies
that different combinations of the parameters lead to the same likelihood.
It is sufficient to require σR11 = 1 and ψR11 = 1 to achieve identifiability.
Many different conjugate solutions have been proposed in literature for
dealing with prior specification with these identifiability constraints. A fully
conjugate approach can be adopted by considering

ΣR =

[
1 γσ

T

γσ Φσ + γσγ
T
σ

]
ΨR =

[
1 γψ

T

γψ Φψ + γψγ
T

ψ,

]
(3)

where γσ and γψ are multivariate normal, and Φσ and Φψ are inverse
Wishart random variables. In the Gibbs sampler, the elements are updated
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separately, conditional of each others. If N is large, the step in which clus-
ter allocation are updated results to be infeasible, since N × G Kalman
filter recursions have to be run. The selection matrix S can be updated
entirely in one step, by following the methods proposed by Titsias and
Yau (2017) and Zanella (2020). As an alternative, we propose to con-
sider a Metropolis-Hasting step. Let S(it−1) be the selection matrix at
iteration it − 1. At iteration it, the proposed matrix S? with n–th row
S?n =

[
I(S?n = 1) · · · I(S?n = G)

]
is built by drawing N independent

rows such that

Pr(S?n = k | S(it−1)
n ) =

eβI(S
(it−1)
n =k)

∑G
g=1 e

βI(S
(it−1)
n =g)

, (4)

for k = 1, . . . , G, n = 1, . . . , N , and β tuning parameter. It is worth notic-
ing that the existing approaches can be combined together, in order to get
a greater flexibility in the prior specification, as well as alternative identi-
fiability constraint can be taken into account to better manage the com-
putational costs. We refer to Wang and West (2009) and McCulloch et al.
(2000) for further details and alternative specifications. Furthermore, the
model can be easily extended for considering the effect on the measurement
of time-dependent and activity-specific covariates.

3 Application

In the application we cluster a sequence of N = 90 running activities 600
seconds long into G = 3 groups based on the variables Heart Rate (in
beats per minute), Speed (in meter per seconds), and Cadence (in steps
per minute) collected by one athlete in the period between 2017-07-20 and
2018-09-24. For each activity, the variable Altitude (in meter) for each sec-
ond is measured. We consider its first difference as time dependent and
activity specific covariate, and assume that variation in Altitude has a
group-specific and additive effect on the responses, by considering in equa-
tion (1) the term Rt = BSᵀXt. In this notation, Xt = diag(X1t, . . . , XNt)
is a matrix, storing in the diagonal the variation in altitude at time t of
the N activities, and B is a P × G matrix, storing in the g–th column,
a P -dimensional vector of additive effects on Heart Rate, Speed, and Ca-
dence of variation in Altitude for activities belonging to the group g. In
this way, the cluster allocation of one activity is a personalized and rele-
vant summary which considers both internal and external load information
(see, e.g., Cardinale and Varley, 2017). In Figure 1 and Figure 2 we present
the results. Specifically, in Figure 1 the posterior mean of the signals (i.e.,
Θt = ZAt) are represented with a thicker line, while in the background the
activities are colored according to their cluster obtained by MAP. As we
can see, the signals of the blue group appear to be different for all the vari-
ables, differently from the other groups that are characterized by a similar
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FIGURE 1. Posterior median of signals Θt = ZAt for the variables considered
in the analysis. In the background the activities are colored according to their
cluster, obtained by MAP.
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FIGURE 2. Posterior densities of coefficients in B. These plots show the effect
on the variable Heart Rate (bpm), Speed (m/s), and Cadence (spm) of 1 positive
meter variation in Altitude (m/s) for the different groups, respectively.

behavior for the variables Speed and Cadence. These groups essentially dif-
fer for the behavior of the variable Heart Rate. By assuming that the effort
of one activity can be described by behavior of Heart Rate over time, pink
cluster require less effort than the green one, as well as the green cluster
require less effort than the blue one. In this sense, we can affirm that ac-
tivities in pink cluster are better then activities in green cluster, since they
are characterized by similar behavior with respect to the variable Speed
and Cadence, but they require less effort over time. The groups identified
by the model differ also with respect to B. Figure 2 shows the posterior
density of the coefficients stored in B. The plots show the effect on Heart
Rate, Speed, and Cadence of 1 positive meter variation in Altitude (m/s)
for the three groups, respectively. The effects are positive for the variable
Heart Rate, and negative for the other variables. A positive variation in
Altitude increases the Heart Rate, i.e., the activity require more effort, al-
though both Cadence and Speed decrease instantaneously. Moreover, by
looking at the absolute values of the effects in Figure 2, we notice that the
Heart Rate behiavior of blue group activities is less sensible to variation
in Altitude with respect to the other groups, differently from the variable
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Speed and Cadence for which the absolute values are generally larger. We
highlight the role of example of this application. Further developments will
consider also lagged effects of variation in Altitude, as well as the presence
of other covariates (such as, for example, Temperature) that might impact
on Yt.
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Abstract: We present a simple but flexible modelling framework for simulation
of rainfall time series at multiple sites. Coupled hidden Markov latent states
capture spatio-temporal dependence in rainfall occurrence, while multivariate
random effects capture correlation in intensity. The model is set in the Bayesian
hierarchical framework for thorough quantification of parametric and predictive
uncertainty, and for ease of implementation. We apply the model to three sites of
varying distance, to illustrate flexibility in capturing different levels of correlation.
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1 Introduction

Statistical rainfall models play a key role in environmental risk assessment.
Probabilistic modelling of rainfall is, however, challenging due to high-levels
of natural variability and a complex spatio-temporal dependency structure.
Hidden Markov models (HMMs) simplify this endeavour by characterising
the distribution of rainfall occurrence and intensity rt at time step t =
1, . . . , n as a mixture of a finite, ideally small, number of latent states, so
that p(rt) =

∑Z
j=1 1(zt = j)p(rt|zt).

In the simplest case, Z = 2 states can be taken to represent “dry” periods
of zero or very little rainfall (zt = 1) and “wet” periods of predominantly
non-zero rainfall (zt = 2). The persistence of these states is defined by a
first-order Markov model, including an initial state probability vector P0

and a transition matrix P, such that p(zt = i | zt−1 = j) = Pi,j .
To characterise temporal structure in the occurrence and intensity of rain-
fall at multiple sites, we might desire one latent quantity z(s) for each site
s = 1, . . . , S. However, assuming these are independent across sites means

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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that model simulations are unlikely to exhibit realistic between-site corre-
lation in occurrence and intensity. Coupled HMMs introduce dependence

between the latent chains, by assuming the probabilistic model for z
(s)
t de-

pends on at least z
(−s)
t−1 and potentially on z

(−s)
t as well. This can be achieved

in a number of ways, for example by expanding the transition matrix P to
higher dimensions, but here we focus on one very flexible approach which

specifies a full joint distribution for zt = (z
(1)
t , . . . , z

(S)
t ).

Suppose we have S = 3 sites and one HMM quantity z
(s)
t = 1, 2 for each. At

time t there are ZS = 8 possible combinations of the three latent quantities,
so we can define a new quantity z′t = 1, . . . , ZS to represent each of these
combinations, as illustrated in Table 1. This is then modelled as a hidden
Markov quantity, where the associated P0 and P are to be estimated.

TABLE 1. A coupled hidden Markov model with two states and three sites.

z′t 1 2 3 4 5 6 7 8

Site 1 z
(1)
t 1 2 1 2 1 2 1 2

Site 2 z
(2)
t 1 1 2 2 1 1 2 2

Site 3 z
(3)
t 1 1 1 1 2 2 2 2

2 Model for Daily Rainfall

We apply this approach to 2019 daily rainfall data at three sites, illustrated
in Figure 1. To investigate the flexibility of the model in capturing differ-
ent levels of correlation between sites, two of the sites, Teignmouth and
Camborne, are both located very close together, while the third site, East
Kilbride, is located much further away, deep in the frozen wastelands of the
North. As exhibited by the scatter plots, correlation in rainfall occurrence
and intensity are considerably stronger between the two closer sites.
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FIGURE 1. Left: Map showing the locations of the three rainfall sites. Right:
Scatter plots showing 2019 daily rainfall observations at the three sites (mm).

HMMs for rainfall can be roughly separated into three components: 1)
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a latent state model (which we have already identified); 2) a probabilis-
tic model for rainfall occurrence, conditional on the latent state; and
3) a probabilistic model for rainfall intensity, conditional on both rain-
fall occurrence and the latent state. The probability of rainfall occur-
rence can generally be treated as a parameter to be estimated in some
zero-inflated or hurdle model, which can vary with time and location
(as in Stoner and Economou, 2020). For simplicity, we specify here that

P (r
(s)
t > 0 | z(s)

t = 1) < 0.001 and P (r
(s)
t > 0 | z(s)

t = 2) > 0.999, such
that the latent state drives the occurrence of rainfall almost entirely. For

3), we adopt a Gamma(µ
(s)
t , σ(s)) model, parametrised in terms of a mean

parameter µ and standard-deviation parameter σ. To capture structured

between-site heterogeneity and seasonal variability, the model for µ
(s)
t com-

bines a site-specific intercept with a site-specific spline of time of year:

log(µ
(s)
t ) = α(s) +

K∑

k=1

β
(s)
k x

(k)
t + φ

(s)
t . (1)

To capture between-site correlation in rainfall intensity, we also include the

random effect φt = (φ
(1)
t , φ

(2)
t , φ

(3)
t ) ∼ Normal(0,Σ). The model is formu-

lated in the Bayesian hierarchical framework, with weakly informative prior
distributions for all parameters and implemented using NIMBLE, a fast and
comprehensive package for flexible MCMC in R. We define the unobserved
latent states z′t as unobserved categorical quantities to be sampled.

3 Results

We assess model fit using posterior predictive checking, where for each
MCMC sample we simulate a new set of random effects φ̃ and then a set of
rainfall values r̃. From these “replicate” rainfall values we can then calculate
summary statistics which describe important characteristics of the data. By
computing these statistics from the original data r and comparing them to
their respective replicate distributions, we assess whether they could have
plausibly arisen from our model. This method is particularly appropriate
for models intended to simulate new data, as we can investigate whether
simulations display similar properties to the original data.
Here we focus on the model’s ability to capture between-site correlation in
occurrence and intensity. First we check the correlation in occurrence by

computing the between-site Pearson correlation of o
(s)
t = 1(r

(s)
t > 0). The

posterior distributions of this statistic are shown for each site pair in the
top-left of Figure 2. Secondly we check the overall between-site Pearson

correlation of the rainfall values r
(s)
t , shown in the bottom-left of Figure 2.

The model appears to slightly underestimate the correlation in occurrence
across all three pairs but appears to capture the overall correlation quite
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well. Notably, in both cases the distributions reflect the same ordering of
strength of correlation as displayed by the data.
We can also check the set of probabilities of site i and site j both exceeding

l, p(r
(i)
t > l, rt(j) > l), for varing l, as illustrated in Figure 2.(right). The

model appears to capture the joint exceedance probabilities well for values
less than 3mm (around 70% of the data) and for high values (e.g. >9mm). It
does however underestimate the joint probabilities in-between (e.g. 5mm).
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FIGURE 2. Replicate distributions of between-site Pearson correlations of rain-
fall occurrence (top-left), overall Pearson correlations (bottom-left) and joint ex-
ceedance probabilities (right). Points and lines show corresponding data values.

4 Conclusion

We presented a simple modelling framework for rainfall at multiple sites,
where spatio-temporal dependence in rainfall occurrence is driven by a
coupled hidden Markov model, and between-site dependence in rainfall in-
tensity is driven by a Multivariate-Normal random effect. The model was
sufficiently flexible to capture the different levels of correlation observed
between the closer pair and the two more distant pairs. The model even
captured the stronger correlation seen between Camborne and East Kil-
bride compared to the weaker correlation seen between Teignmouth and
East Kilbride, which may be related to proximity to the Atlantic ocean.
These statistics were not captured perfectly, but in most cases the abso-
lute error was small, suggesting adaptation of the relatively simple model
presented here, e.g. by introducing temporal non-homogeneity to the tran-
sition matrix, could well result in a capable model for rainfall at multiple
sites.
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Abstract: We present an approach for enhanced variable selection for distribu-
tional regression via component-wise boosting. Boosting is an alternative method
for fitting regression models and is applicable for high-dimensional data problems.
Furthermore, the algorithm leads to data-driven variable selection. In practice,
however, the algorithm still tends to select too many variables in some situa-
tions including false positives. This occurs particularly for low-dimensional data
(p < n) in which case we observe a slow overfitting behavior. Due to the slow
overfitting, the stopping iteration gets larger and more variables get included in
the model. Many of the false positives are incorporated with a small coefficient
and therefore have a small impact, but lead to a larger model with difficult inter-
pretation. We try to overcome this issue by giving the algorithm the chance to
de-select those variables. We consider the impact on variable selection and pre-
diction and additionally compare the new approach to the One Standard Error
Rule.

Keywords: Beta Regression; Variable Selection; Model-Based Boosting;
GAMLSS.

1 Introduction

Beta regression is an alternative approach to model bounded outcome vari-
ables, as in this case the classical Gaussian regression may lead to biased
results and requires variable transformations (Ferrari and Cribari-Neto,
2004). The beta distribution is characterized by the expected value µ and

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the precision parameter φ. In context of distributional beta regression,
which refers to a generalized additive model for location scale and shape
(GAMLSS), we model µ and additionally φ in terms of several explanatory
variables.
Here, we consider a component-wise gradient boosting algorithm with the
great advantage of being able to process high-dimensional data problems
with p > n. Furthermore, boosting leads to a data-driven variable selection
which is controlled by the main tuning parameter: the number of boosting
iterations mstop. In each iteration only the best performing variable is se-
lected and a base-learner that was once included in the model can not be
de-selected. Different types of base learners can be used for each variable,
reflecting the type of influence of the variable on the model. In the easiest
case the base learners are simple linear models.

2 Enhanced variable selection

We address this issue with an approach that aims at eliminating those vari-
ables with a small impact and directly enforce the sparsity of the model.
The general idea is to apply standard boosting which implicates early stop-
ping and variable selection. We determine the variables with a minor im-
portance for the model and de-select those components. Then we boost
again with only the selected variables that survived. In our approach we
consider the risk reduction as a measure for variable importance for every
coefficient and de-select those variables with a small risk reduction. The
selection is based on the likelihood for a variable in relation to the total
difference. We de-select component j if

mstop∑

k=1

I(j = j∗[k])(r[k−1] − r[k]) < τ
r[0] − r[mstop]

∑p
j=1 I(β̂j 6= 0)

with the indicator function I and a threshold τ ≥ 0. Furthermore, r[k−1]−
r[k] represents the risk reduction and j∗[k] denotes the updated variable
index in iteration k. β̂ is the estimated regression coefficient vector after
mstop boosting iterations.
An alternative approach is the One Standard Error Rule (oSE) which leads
to an earlier stopping to obtain sparser models. The smaller mstop the fewer
variables are included in the model, because only one variable is updated in
each iteration. This concept has already been used in context of penalized
regression and regression trees and the aim here is to choose a smaller
stopping iteration that is still within the range of one standard error of the
risk for the optimal iteration (Breiman et al., 1984).
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TABLE 1. Mean (sd) number of variables for the parameters µ and φ.

Model µ φ

boosted model 26.55 (6.97) 14.47 (5.74)
de-selected (τ = 0.5) 12.87 (2.54) 6.23 (2.08)
de-selected (τ = 1) 7.49 (2.54) 3.64 (1.65)
de-selected (τ = 1.5) 4.12 (2.09) 2.30 (1.22)
oSE 7.92 (2.63) 2.78 (1.53)

3 Quality of life of chronic kidney disease patients

To illustrate the effect of the enhanced variable selection we consider the
German Chronic Kidney Disease Study (GCKG). This is an ongoing co-
hort study with 3522 observations with stage III chronic disease and 54
explanatory variables. We want to select the most informative variables for
the quality of life of chronic kidney disease patients (Mayr et al., 2018).
For the analysis we use the R add-on package betaboost. For categori-
cal variables we apply categorical effects and for continuous variables we
incorporate spline effects as base learners. For the analysis we draw 500
bootstrap replicates and, on each sample, we fitted a beta regression model
without and with enhanced variable selection for different threshold pa-
rameters τ . Additionally we consider the oSE for comparison.
Table 1 displays the mean (standard deviation) number of selected variables
for µ and φ for the different models. We used three different values for the
threshold parameter. One can observe that more variables are included
for the expected value than for the precision parameter. Furthermore, the
models with enhanced variable selection already show a significant decrease
of selected variables for small threshold parameters. In comparison to the
model with enhanced variable selection for τ = 1.5 the oSE leads to larger
models.
If one considers in this context the negative log-likelihood on test-data (out-
of-bag observations) in Figure 1 then the oSE performs worse in relation
to the other models. The smallest negative log-likelihood is obtained by
the classical boosting model. As expected, the more variables are removed
from the model, the worse the prediction accuracy. However, already for a
small threshold parameter of τ = 0.5 we can reduce the number of variables
by more 50% without drastically decreasing the prediction accuracy of the
resulting model.

4 Conclusions

The presented new approach for enhanced variable selection is a way to
obtain sparser models with simpler interpretation. The prediction accu-
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FIGURE 1. Negative log-likelihood of the different models on test-data.

racy usually does not improve but can lead to comparable accuracy with
less predictors. In practice one needs to specify or optimize (e.g. via cross-
validation) the additional parameter τ . We compared our approach with
the One Standard Error Rule which does not only tackle the sparsity issue
but also leads to additional shrinkage. The oSE can create smaller models
and prevent the risk of overfitting, but it might also remove informative
variables from the model that were selected late. This has a negative influ-
ence on the prediction accuracy.
In this data example we obtained sparser models with the enhanced variable
selection and the oSE, but we even have a better accuracy for the enhanced
variable selection for all considered threshold parameters than with the
oSE.
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Abstract: We propose a latent linear mixed model to analyze multivariate lon-
gitudinal data of multiple ordinal variables, which are manifestations of fewer
continuous latent variables. We focus on the latent level where the effects of
observed covariates on the latent variables are of interest. We incorporate serial
correlation into the variance component rather than assuming independent resid-
uals. We show that misleading inference may be drawn when misspecifying the
variance component. We apply our proposed model to examine the treatment
effect on patients with the amyotrophic lateral sclerosis (ALS) disease. The re-
sult shows that the treatment can slow down the decline of cervical and lumbar
functions.

Keywords: Linear mixed model; Ornstein-Uhlenbeck process; Serial correlation.

1 Introduction

In many multivariate longitudinal data analyses, the observed outcomes
are considered to be manifestations of one or more underlying latent char-
acteristics. Interest is then often in the effect of covariates (e.g. treatment)
on the latent characteristics.
The progression of the disease ALS as a result of changes in latent neuro-
logical characteristics is an example. After being affected by the disease,
patients gradually lose their ability of performing daily activities. This de-
cline in ability is supposed to be related to impairments at three neuro-
logical regions of the central nervous system: bulbar region of the brain,
cervical portion, and lumbar portion of the spinal cord (Wijesekera and

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Nigel Leigh, 2009). Wang and Luo (2017) fit a random intercept model
with independent residuals to examine the treatment effect on the latent
neurological functions. The model makes a strong and probably unrealistic
assumption, i.e., the correlations between latent repeated measurements is
constant, regardless of time interval. However, Tran et al (2020) show that,
for each neurological function, the correlation between any two (latent)
measurements is a decreasing function of time interval.
Therefore, we propose a latent linear mixed model that takes serial corre-
lation into consideration. Our model consists of two integrated components
for two connected levels: (i) a polytomous item response theory (IRT) model
is used to link the responses to the latent variables (LVs), and (ii) a lin-
ear mixed model (LMM) is used to connect continuous longitudinal LVs
to observed covariates. Our extension incorporates an Ornstein-Uhlenbeck
(OU) process (e.g. Tran et al, 2020) into the variance component of the
LMM by decomposing the variance component into random effects, serial
correlation, and independent residuals.

2 Model specification

Suppose that K variables (items) on N individuals are recorded repeatedly
over time. Let Yijk be the observed response for the kth item of the ith

individual at time tij where i = 1, ..., N , j = 1, ..., ni, k = 1, ...,K with ni
the number of occasions for individual i. The observed items are assumed
to manifest R LVs, ξij = (ξij1, ..., ξijr, ..., ξijR)

T
, linked together as follows:

h(P (Yijk ≤ m)) = θkm − λTk ξij + aik,

where h(.) is a link function (typically a logit or probit), m (0 ≤ m ≤ ck−2)
is some score of item k with ck the number of categories, and θkm and λk
are item-specific cut-point and factor loading parameters, respectively. The
cut-points {θkm} are non-decreasing in m. The R-vector λk contains the
factor loadings of the kth variable on the LVs. Denote by Λ, a K×R matrix
with λTk as the kth row, the factor loading matrix. Finally, aik ∼ N(0, σ2

ak)
is the random effect for item k of individual i. The incorporation of aik is
to take local dependence into account (Tran et al, 2019).
For the LVs, we start with the following LMM:

ξijr = β(r)Txij + b
(r)T
i zij + εijr (1)

for the rth latent variable with β(r) and b
(r)
i a p- and q-vector representing

fixed and random effects, respectively. Further, xij and zij are a p- and
q-vector of covariates, respectively. Joining over r in (1), we obtain:

ξij = Bxij +Bizij + εij , (2)

where B is a R×p matrix with rth row equal to β(r)T , Bi is a R× q matrix

with rth row equal to b
(r)T
i , εij = (εij1, ..., εijr, ..., εijR)

T
, and vec(BTi ) ∼
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N(0, D), where vec(M) turns matrix M into a vector and D is a Rq ×
Rq covariance matrix. Denote by εi the partitioned niR-vector consisting
of stacked εij vectors. To allow serial correlation, we decompose εij as
εij = εij(1) + εij(2), where εij(1) arises from an OU process and εij(2) are
independent residuals. Further, Ω2 := Cov(εij(2)) is diagonal.
The OU process is then specified for εij(1):

εi1(1) = δi1 ∼ N(0,Ω1), εij(1) = e−Γdijεi,j−1,(1) + δij (∀j > 1)

with δij ∼ N(0,Ω1 − e−ΓdijΩ1e
−ΓT dij ),

where dij = tij−ti,j−1 and eM = I+
∑+∞
j=1

Mj

j! denotes the matrix exponen-

tial where M is a square matrix with M j = M× ...×M (j times). Further-
more, Ω1 and Γ are two R×R matrices, satisfying the following conditions:
the real part of each eigenvalue of Γ is positive, ΓΩ1 +Ω1ΓT is a covariance
matrix, and, Ω1 is a covariance matrix (Tran et al, 2020). The specification
above implies a mean structure, i.e., ξij ∼ N(µij ,Ω1 + Ω2) where µij =
Bxij +Bizij , and a dynamic structure for ξij , i.e.,

ξi,j | ξi,j−1 ∼N(µi,j + e−Γdij (ξi,j−1 − µi,j−1),

Ω1 − e−ΓdijΩ1e
−ΓT dij + Ω2 + e−ΓdijΩ2e

−ΓT dij ).

For identification, intercepts are not incorporated in B in (2) and the vari-
ances in Ω1 are fixed at 1.

3 Application to the ALS dataset

The ALS Functional Rating Scale (ALSFRS) was developed to monitor
disease progression by measuring those symptoms. The original ALSFRS
contains ten items falling into four categories: bulbar (speech, salivation,
and swallowing), fine motor (handwriting, cutting, and dressing), and gross
motor (turning, walking, and climbing) function, and respiratory disability.
Later, the respiratory category of ALSFRS was revised, replacing the single
item by three new items.
A dataset of 300 subjects with 2911 observations was used for analysis.
We considered nine items of three categories: bulbar, fine motor, and gross
motor function, and Λ took the following form:

(
λ11 λ21 λ31 0 0 0 0 0 0
0 0 0 λ42 λ52 λ62 0 0 0
0 0 0 0 0 0 λ73 λ83 λ93

)T
.

A number of models were fitted with the Stan software package. We started
with model M1, analyzed in Wang and Luo (2017) where it only includes
the random intercepts and independent residuals at the latent level. Time
and treatment time interaction were included as covariates. We kept the
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same mean structure and then fitted several extensions: M2 with local
dependence, M3 with serial correlation, and M4 (our proposal) with these
two components. Finally, we fitted M5 to check whether we can remove
independent residuals in M4 and fitted M6 to see whether adding random
slopes into M3 can represent the serial correlations.
Watanabe’s information criterion (WAIC) for six models are 39818.2,
29826.5, 35841.6, 26903.0, 26898.6, and 27810.9, respectively. Comparing
M1 to M2, the result asserts the incorporation of the local dependence com-
ponent. Comparing M1 to M3, the result suggests that a serial correlation
structure exists. Comparing M2 to M4, incorporation of a serial correlation
component is still necessary for a model where local dependence is already
included. Comparing M4 to M5, we might remove the independent resid-
uals when the serial correlation is included. Finally, M5 fitted better than
M6, i.e. the random effects cannot represent the serial correlations. Hence,
inference was made based on M5.
The treatment effect on the evolution of the neurological functions are
different across the models: no significant effects (M1 and M6), a significant
effect on lumbar function (M2 and M3), and significant effects on cervical
and lumbar functions (M4 and M5). Estimated values (not shown) for the
treatment effect on the neurological functions under M5 show that the
treatment significantly slows down the progression of cervical and lumbar
functions by 0.11 and 0.12 unit per six months, respectively.

4 Discussion

By incorporating an OU process to model serial correlation, our proposal
can be considered as a combination of Wang and Luo (2017) and Tran et al
(2020) where it addresses both the mean and dynamic structures. As seen
in Section 3, our proposal corrects for misleading inference that we may
make when ignoring the serial correlation structure.
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Abstract: We propose a versatile joint regression framework for count responses.
The method is implemented in the R add-on package GJRM and allows for mod-
elling linear and non-linear dependence through the use of several copulae. Mo-
tivated by a football application, an extension is proposed, which forces the re-
gression coefficients of the marginal (linear) predictors to be equal via suitable
penalisation. We investigate the method’s empirical performance in both a sim-
ulation study and on FIFA World Cup data.
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1 Introduction

There are many data situations where bivariate (or even multivariate)
counts are the end point of interest and a priori assuming independence
between such variables may be questionable. In particular, in many team
sports such as football, handball or ice hockey, one usually jointly observes
the number of goals of both competing teams. These are certainly asso-
ciated as the final scores are the outcome of many single game situations
where the players of both teams are involved in.
In the present work, we present a flexible generalised joint regression frame-
work for count responses. The dependence between the outcomes is mod-
elled via means of copulae. Motivated by our case study, we also provide an
extension of the method which enforces the linear regression coefficients of
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the marginal predictors to be equal by introducing a penalty. This is partic-
ularly useful for modelling team sports data where the predictors of both
competing teams are usually based on the same set of covariates whose
effects are often assumed to be equal (e.g., Groll et al., 2018). The un-
derlying method is incorporated in the R package GJRM (Generalized Joint
Regression Modelling, Marra and Radice, 2019b).
For this purpose, we extend the modelling framework of Marra and Radice
(2017). The proposed method’s empirical performance will be evaluated in
both a simulation study and an application to FIFA World Cup data.
For a more detailed version of this paper see van der Wurp et al. (2020).

2 Model structure and estimation approach

Let bivariate count data realisations yi = (yi1, yi2)T, i = 1, . . . , n, be given,
together with certain covariates whose effects should be accounted for. We
assume that the joint cumulative distribution function (cdf) F (·, ·) of the
corresponding discrete outcome variables Y1, Y2 ∈ N0 can be expressed as

P (Y1 ≤ y1, Y2 ≤ y2) = Cθ (P (Y1 ≤ y1), P (Y2 ≤ y2)) = Cθ(F1(y1), F2(y2)) ,

where F1(·) and F2(·) are the marginal cdfs of Y1 and Y2, The bivariate cop-
ula function Cθ : (0, 1)2 → (0, 1) (which is independent from the marginals)
with copula parameter θ determines the dependence structure. GJRM covers
several different copulae, see Marra and Radice (2019a).
Next, we link the parameters of the two marginal distributions as well as of
the copula parameter θ with sets of covariates of sizes p1, p2 and pθ, respec-
tively. Moreover, let the corresponding covariate vectors be denoted by x(1),
x(2) and x(θ), including intercepts and/or dummy variables for categorical
predictors. Exemplarily, for two Poisson margins with rate parameters λ1

and λ2 and a single-parameter copula function, we may have

log(λ1) = η1 = β
(1)
0 + x

(1)
1 β

(1)
1 + . . .+ x(1)

p1
β(1)
p1

= (x(1))Tβ(1) ,

log(λ2) = η2 = β
(2)
0 + x

(2)
1 β

(2)
1 + . . .+ x(2)

p2
β(2)
p2

= (x(2))Tβ(2) , (1)

g(θ) = ηθ = β
(θ)
0 + x

(θ)
1θ β

(θ)
1θ + . . .+ x(θ)

pθ
β(θ)
pθ

= (x(θ))Tβ(θ) ,

where β(1),β(2) and β(θ) are p1-, p2- and pθ-dimensional vectors of re-
gression effects, respectively. Finally, g(·) is a link function whose choice
depends on the employed copula (see Marra and Radice, 2019a). We would
like to stress that the equations in (1) represent a substantial simplifica-
tion of the possibilities allowed for in the proposed modelling framework.
In particular, our implementation allows to include non-linear functions of
continuous covariates, smooth interactions between continuous and/or dis-
crete variables and spatial effects, to name but a few. For this purpose, the
penalised regression spline approach was adopted and the reader is referred
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to, e.g., Marra and Radice (2017) for some examples. Due to the specific
type of penalisation employed in this paper (see the next section), in this
work we focus on linear effects. Simultaneous estimation of all parame-
ters is based on maximising the model’s log-likelihood `(β) with respect to
β := ((β(1))T, (β(2))T, (β(θ))T)T. The fitting algorithm is based on an iter-
ative trust region algorithm. The GJRM infrastructure allows to incorporate
any quadratic penalty of the form 1

2β
TSβ , where S is a penalty matrix.

3 A penalty approach for football data

The models used later on in Section 4 and 5 are based on F (y1, y2|ϑ) =
C (F1(y1|λ1), F2(y2|λ2); θ) , with marginals Y1 ∼ Poi(λ1), Y2 ∼ Poi(λ2)
modelling the number of goals scored by team j ∈ {1, 2}. The expected
number of goals for team j in a match i is given by

λij = exp
(
β

(j)
0 + xi1β

(j)
1 + . . .+ xipβ

(j)
p

)
,

with i = 1, . . . , n, j = 1, 2 . Although inclusion of covariate information into
θ is possible in GJRM, for simplicity, in the following the copula parameter θ

is specified as function of an intercept β
(θ)
0 only. This way, we additionally

achieve explicit comparability of dependence strengths in terms of Kendall’s
τ among different copula functions.
In contrast to the setting of the equations in (1), in football it is sensi-
ble to consider the same set of covariates for both competing teams (i.e.,
p1 = p2 =: p). Specifically, assuming covariates that are ordered such that

x
(1)
ir and x

(2)
ir , r = 1, . . . , p, correspond to the same regressors, we would like

to achieve β
(1)
r = β

(2)
r ∀r. Without this restriction, being first- or second-

named team could affect the estimation of β
(j)
r and thus make the inter-

pretation of the coefficients questionable, as stressed in Groll et al. (2018).
To obtain (virtually) equal coefficients for both margins, we propose to use
the following penalised version of the log-likelihood `(β), i.e.

`p(β) = `(β)− 1

2
ξ

p∑

r=0

wj

(
β(1)
r − β(2)

r

)2

, (2)

where the ridge-type penalty acts on the differences of the pairs of coeffi-
cients corresponding to the same covariates, with suitably chosen weights
wj and penalty parameter ξ. This penalty can be easily incorporated in
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GJRM via a suitably designed penalty matrix S, which is equal to

S = ξ ·


wT wT 0

.

.

.
.
.
.

.

.

.

wT wT 0
0 . . . 0

 ◦



1 0 . . . 0 −1 0 . . . 0 0
0 1 . . . 0 0 −1 . . . 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.
0 0 . . . 1 0 0 . . . −1 0
−1 0 . . . 0 1 0 . . . 0 0
0 −1 . . . 0 0 1 . . . 0 0

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.
0 0 . . . −1 0 0 . . . 1 0
0 0 0 0 0 0 0 0 0


, (3)

where ‘◦’ denotes the Hadamard matrix product and ξ is a tuning
parameter controlling the strength of the penalty. The weights w =
(w0, w1, . . . , wp)

T depend on the current fit β̂[k] from iteration k of the
algorithm. In order to shrink all paired differences jointly to zero, we use

wj =
∣∣∣β̂(1)
j − β̂

(2)
j

∣∣∣, suppressing the iteration index for notational conve-

nience.

4 Simulation Study

A first simulation study with covariates x1, . . . , x6 ∼ U [0, 1] for n = 250 bi-
variate observations was carried out. For each observation, λi1 and λi2 were

specified via λij = exp(β
(j)
0 +x

(j)
i (β(j))T), where x

(1)
i = (xi1, xi2, xi3)T and

x
(2)
i = (xi4, xi5, xi6)T. Each pair of outcomes (yi1, yi2) is sampled from a

given copula with marginal Poisson parameters λi1 and λi2. For each cop-
ula, the respective θ is determined by fixed values of Kendall’s τ . We define
two different sets of coefficients, i.e. β(1) 6= β(2), and create 100 datasets
with aforementioned associations from different copula classes. The penal-
isation approach from Section 3 is not yet applied. Mean squared errors
(MSEs) for the regression coefficients are used as goodness-of-fit measure.
Setups with different dependency strengths were checked. As expected, the
fits based on the correct copula class always yield best results (see Figure 1).
In a second simulation study, we investigate our specific penalty structure.
We therefore chose coefficients β(1) and β(2) that are equal in both mar-
gins. Only the true respective copula classes were used to fit the models.
Figure 2 compares the perfomance of fits with our new penalty from Sec-
tion 3 and without. It turns out that the proposed penalisation approach is
essentially useful if the true coefficients can be assumed to be equal, which
is specifically realistic in competitive setups such as sports competitions.

5 Application to FIFA World Cup data

We now apply our method to FIFA World Cup data from 2002 to 2018.
The basic data set was described in detail in Groll et al. (2019). Using
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FIGURE 1. Results for MSE of the regression coefficients for different true cop-
ulae with each copula parameter θ derived from τ = 0.7.
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FIGURE 2. Results for the MSE of the regression coefficients obtained using the
penalised (left boxes) and unpenalised (right boxes) estimation approaches for a
set of different copulae and associations; τ = 0.25 for copula N, F, G0, C0, J0
and τ = −0.25 for copulae N, F, C90.

the fitted model we obtain probabilities for each result (y1, y2), from which
probabilities for the three-way-results win, draw, loss can be deduced. A
cross-validation-type strategy over the five tournaments is applied to com-
pare the predictive performance of copula classes available in GJRM using
different measures, i.e. MSE on the number of goals, the averaged likeli-
hood, classification rate, and rank probability score (RPS), all on three-
way-outcomes. An excerpt of the results can be found in Table 1. The F
(Frank) and FGM (Farlie-Gumbel-Morgenstern) copula classes were found
to deliver the best fits considering the ranked results. With copula parame-
ters leading to Kendall’s τ̂ values of about 0.1, both models indicate a weak
positive correlation structure, which is compatible to current literature.
The penalised approach lead to substantially better results regarding all
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TABLE 1. Results of selected measures for model fits based on different copulae
obtained using the penalised and unpenalised approaches.

RPS likelihood class. rate MSE
Copula pen unpen pen unpen pen unpen pen unpen

N 0.196 0.210 0.403 0.395 0.522 0.506 1.421 1.490
...

...
...

...
...

...
...

...
...

F 0.196 0.210 0.405 0.396 0.512 0.494 1.421 1.487
FGM 0.196 0.210 0.404 0.396 0.512 0.491 1.420 1.486
indep 0.198 0.211 0.398 0.390 0.531 0.509 1.419 1.486

chosen measures and all copula classes. Hence, the assumption of equal
coefficients seems to be justified and our penalty useful in this context.
Future research will address several extensions. Firstly, the penalty dis-
cussed here could be extended to the context of more complex predictor
structures (allowing, e.g., for non-linear effects via P-splines). Moreover, we
believe that the method’s predictive performance can be further improved
by penalising covariate effects via LASSO-type penalties or via boosting.
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1 Introduction

Identification and estimation of treatment effects is an important issue in
many fields, e.g. to evaluate the effectiveness of social programs, govern-
ment policies or medical interventions. As each subject is observed either
under control conditions or under treatment, the outcome difference which
would allow straightforward estimation of treatment effects is not available
for any particular subject. Additionally, for data from observational stud-
ies, endogeneity of treatment selection can cause unobserved confounding
and bias of treatment effects estimates if not adequately accounted for.
Bayesian approaches to inference on treatment effects rely on specifying a
joint model of treatment selection and the two potential outcomes (under
control conditions and under treatment), of which only one is observed for
each subject. To estimate the effect of a binary treatment on a continuous

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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outcome observed over subsequent time periods two models, the switch-
ing regression model (Chib and Jacobi, 2007) and the shared factor model
(Carneiro et. al., 2003), have been suggested so far. Both approaches rely
on a binary regression model for selection into treatment and two mul-
tivariate regression models for the outcome sequences under control and
under treatment. They differ, however, with respect to the modeling of the
dependence across these regression models: whereas Carneiro et al. (2003)
model the association between treatment selection and both potential out-
come sequences via shared latent factors, Chib and Jacobi (2007) specify
only two marginal models for selection into treatment and one sequence
of potential outcomes, under treatment and control respectively, but leave
the joint distribution of the two potential outcomes sequences unspecified.
Jacobi et.al. (2016) show for simulated data that both models can lead
to biased treatment effects estimates if the assumptions on the correlation
structure of treatment selection and the two potential outcomes sequences
of the model used for data analysis are violated for the data generating
process.
We propose a novel, flexible model that allows to separate longitudinal
association of the outcomes sequences from association due to endogeneity
of treatment selection and investigate its performance on simulated data.
We employ the proposed model to re-analyse the effects of a long maternity
leave on earnings of Austrian mothers previously analysed in Jacobi et.al.
(2016).

2 Model specification

To specify a joint model for selection into treatment and the potential
outcomes under control conditions and under treatment at time point t =
1, . . . , T , we denote by xi the binary treatment status of subject i = 1, . . . , n
and by y0,it and y1,it the potential outcomes of this subject under control
(xi = 0) and under treatment (xi = 1) respectively.
Treatment selection is allowed to differ with covariates via a probit model
for xi, which can be specified in terms of a latent Gaussian random variable
x∗i as

x∗i = v′iα+ εxi, (1)

xi = I{x∗i>0}, (2)

where εxi has a Normal distribution with mean 0, vi denotes a vector of
covariates and α their effect on treatment selection.
The selection model given in equations (1) and (2) is combined with a
model for the potential outcomes at time points t = 1, . . . , T ,

y0,it = µt + w′itγ + ε0,it, (3)

y1,it = (µt + κt) + w′it(γ + θ) + ε1,it, (4)
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where the structural mean of the potential outcomes can depend on co-
variates wit with effects γ and γ + θ under control and under treatment
conditions, respectively. For a subject with wit = 0 the expected outcome
at time point t is µt and µt + κt, respectively and εj,it denotes the error
term under control (j = 0) and treatment conditions (j = 1).
We are interested in the average longitudinal treatment effect for a subject
with covariate values W = (w1, . . . ,wT )′, which is given as

ATET (W) = E(y1,i − y0,i|W) = κ+ Wθ,

where yj,i = (yj,i1, . . . , yj,iT ), j = 0, 1 are the potential outcome vec-
tors and κ = (κ1, . . . , κT )′. Unbiased estimation of ATET (W) is straight-
forward based on unbiased estimates for κ and θ, which, however, re-
quire correct specification of the dependence structure of the error terms
εi = (εxi, ε0i, ε1i), where εji = (εj,i1, . . . , εj,iT ), j = 0, 1.
Hence we propose a flexible model for the association of treatment selection
and the potential outcomes sequences. In the spirit of the bifactor model
introduced by Holzinger and Swineford (1937) we assume that all depen-
dencies in the error vector εi are captured by three subject specific latent
factors. The common factor fci shared by the error terms of the latent
utility x∗i and both potential outcome vectors y0,i and y1,i accounts for
unobserved confounding. Further two outcome specific factors f0,i and f1,i

capture the additional longitudinal association in the outcome vectors that
cannot be attributed to unobserved confounders. The joint model for the
error terms is thus specified as

εxi = λxfci + εxi, εxi ∼ N (0, 1), (5)

ε0i = λ0fci + ζ0f0i + ε0i, ε0,it ∼ N (0, σ2
0t), (6)

ε1i = λ1fci + ζ1f1i + ε1i, ε1,it ∼ N (0, σ2
1t), (7)

where the factors are assumed to be independent standard Normals. Hence,
the factor loadings λx, λj and ζj , j = 0, 1 determine the joint variance-
covariance matrix of all error terms.
This model avoids drawbacks of both the shared factor and the switching
regression model. As correlation across panel outcomes is not attributed
solely to the general factor it is more flexible than the shared factor model,
which is recovered as the special case where ζj = 0 for j = 0, 1. Without an
assumption on the joint distribution of the specific factors f0i and f1i the
model is a switching regression model with the advantage that conditional
on the latent factors the errors of latent utility and each potential outcome
are independent.

3 Simulation Study

To illustrate the flexibility of the proposed bifactor model we analyse two
data sets from Jacobi et.al (2016), which were simulated from the shared
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factor model (SF) and the switching regression model (SR) respectively.

FIGURE 1. True and estimated insample average treatment effects with 95%-
posterior intervals for data simulated from the shared factor model (left) and the
switching regression model (right).

The average treatment effects ATEt over all simulated subjects was esti-
mated as

ÂTEt = κ̂t +
1

n

n∑

i=1

w′itθ̂

via these two models as well as the bifactor model (BF).
Figure 1 shows for t = 1, . . . , 4 the true average treatment effect and the
estimated average treatment effect under each model with the 95%- pos-
terior intervals. These intervals do not include the true average treatment
effect at all time points if data generated from the SF model are analysed
with the SR model or data generated from the SR model are analysed with
the SF model. In contrast the proposed bifactor model always performs
similar as the data generating model.

4 Analysing Earnings Effects of Maternity Leave

We apply the bifactor model to re-analyse the effects of a long maternity
leave on earnings of Austrian mothers after their return to the labor market
using the same data as Jacobi et. al. (2016). The analysis is based on data
from the Austrian Social Security Data Base (ASSD), which is an admin-
istrative data set of the universe of Austrian employees providing detailed
information on employment and maternity leave spells as well as demo-
graphic information on mothers (Zweimüller et. al., 2009), and a second
data set collected as basis for wage taxes.
To exploit a change in the parental leave policy in Austria in July 2000
which extended the payment of parental leave benefits from 18 to 30 months
Jacobi et.al. (2016) used data for mothers who gave birth to their last
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child from June 1998 til July 2002. Figure 2 illustrates that the majority of
mothers returned to the labour market within 18 months before this policy
change whereas afterwards most mothers took a longer maternity leave of
more than 18 months. Jacobi et.al. (2016) defined treatment as a maternity

FIGURE 2. Empirical cdf of the duration of maternity leave after child birth

leave longer than 18 months and analysed the treatment effect on earnings
for those mothers who returned to the labour market immediately after
the maternity leave with the shared factor model as well as the switching
regression model. We use the same specification for the mean of the latent
utility and the potential outcomes, defined as the log income, as in their
analysis, but model the joint distribution of the errors εi by the bifactor
model.
Figure 3 shows the estimated average treatment effect over all mothers in
the sample for the first 6 years after return to the labour market from the
three models. In all models a long maternity leave results in considerably
lower earnings in the first panel period with the gap decreasing over time.

However, the evolvement of ÂTEt is slightly different for the three models:
it is still negative in panel period 6 for the shared factor, positive for the
switching regression model and practically zero for the bifactor model.

5 Conclusion

Inference on treatment effects for longitudinally observed outcomes can be
biased when the model used for data analyses implies restrictions on the
association between selection into treatment and the potential outcomes
sequences as well as within the potential outcomes sequences which are
violated for the data to be analysed. The proposed bifactor model explicitly
models these associations by latent factors and is more flexible than the
models used so far and hence allows better inference on dynamic treatment
effects.
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FIGURE 3. Estimated average treatment effects and 95% HPD - intervals of
a long maternity leave. Analysis with the shared factor model (SF, left), the
switching regression model (SR, middle) and the bifactor model (BF, right).
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1 Introduction

When performing small area estimation (SAE), the geographical distribu-
tion of diseases is the main subject of interest. These studies are often per-
formed in a complex survey setting. Recently, efforts have been made to in-
corporate the survey design in the spatial estimation process (Mercer et al.
(2014), Watjou et al. (2017)). However, this was usually done in a univari-
ate framework. Since some diseases can share common risk factors, a mul-
tivariate spatial model can account for this correlation structure between
the diseases. Many contributions have already been made in the context of
bivariate spatial modelling. Dabney and Wakefield (2005) presented a com-
prehensive comparison between univariate and bivariate disease mapping
models and considered the benefits and issues when performing the latter.
Crainiceanu, Diggle and Rowlingson (2008) presented bivariate binomial
geostatistical model in order to map the prevalence of Loa loa. Knorr-Held
and Best (2001) proposed a spatial shared component model, separating the
underlying risk surfaces for each disease using a shared and disease-specific

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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component. Several authors have proposed methodology which includes the
complex survey design when working with general multivariate models. As-
parouhov and Muthen (2005) demonstrated how the pseudo maximum like-
lihood could be extended to multistage stratified cluster sampling designs.
In this study, we extend this approach taking into account geographical
associations. We investigate the joint geographical distributions of asthma
and chronic obstructive pulmonary disease (COPD) using the 2013 Florida
Behavioral Risk Factor Surveillance System (BRFSS) health survey. The
primary objective is to develop a joint bivariate spatial model, taking into
account the effect of the complex design of the BRFSS survey.

2 Methodology

Let Yik,l be the binary health outcome of disease l for an individual i in
county k (i = 1,...,Nk, k = 1,...,K, l = 1,2), where Nk is the population
size in county k. We want to estimate the true county-specific prevalence

for disease l: Pk,l =
∑Nk

i=1 Yik,l. Each health outcome is accompanied by a
survey weight wik, which is independent of disease l. The survey weights
were recalibrated to account for post-stratification at the area level and
normalized to sum up to the observed sample size.

2.1 Model 1: Univariate models

Congdon and Lloyd (2010) described a weighted likelihood which could be
employed in a spatial setting. Binary health outcomes yik,l are weighted by
the normalized weights w̃∗ik. This model is also called the pseudo-likelihood
model. Mercer et al. (2014) remarked that this model could be written as
a hierarchical model:

ỹk,1|Pk,1 ∼ Binomial(mk, Pk,1)

ỹk,2|Pk,2 ∼ Binomial(mk, Pk,2)

logit(Pk,1) = β0,1 + uk,1 + vk,1

logit(Pk,2) = β0,2 + uk,2 + vk,2,

ỹk,l =
∑mk
i=1 yik,lw̃

∗
ik, uk,l is the spatially correlated random effect which

follows an ICAR(0, σ2
u,l)-distribution and vk,l is the spatially uncorrelated

random effect which follows a N(0, σ2
v,l)-distribution. For the precision pa-

rameters σ−2
u,l and σ−2

v,l , a Gamma(0.5,0.008) prior distribution was assigned.

2.2 Model 2: Joint model

The univariate models do not account for the underlying correlation be-
tween the risk surfaces in the estimation process. We present a weighted
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correlated random effects model which can take this correlation into ac-
count as follows:

ỹk,1|Pk,1 ∼ Binomial(mk, Pk,1)

ỹk,2|Pk,2 ∼ Binomial(mk, Pk,2)

logit(Pk) = β0 + uk + vk,

where Pk =

(
Pk,1
Pk,2

)
, β0 =

(
β0,1

β0,2

)
and uk and vk are bivariately correlated

ICAR and normal random effects respectively. The same prior distribution
for the precision parameters was used as in section 2.2. The parameters
ρu and ρv are the correlation coefficients for the spatially correlated and
uncorrelated effect respectively.
The performance of both models was compared by means of the Deviance
Information Criterion (DIC) (Spiegelhalter et al. (2002))

[0.05,0.1) [0.1,0.12) [0.12,0.14) [0.14,0.16) [0.16,0.18) [0.18,0.2) [0.2,0.25]

FIGURE 1. Map of estimated prevalences for asthma (left column) and COPD
(right column) using the univariate models (top row) and the weighted correlated
random effect model (bottom row).
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3 Results

Figure 1 shows the geographic distribution for the prevalences of asthma
and COPD for both the univariate and weighted correlated random effects
model. While the results for both models seem similar, Model 2 performs
slightly better in terms of DIC (1240.926) compared to Model 1 (1244.645).

4 Conclusion

We propose a joint spatial model which include the design weights of the
BRFSS study in order to take the complex survey design into account
in the estimation process. This weighted correlated random effects model
performs better than the univariate models in terms of DIC. The former
model has the added benefit that it can take the correlation between the
two diseases into account.
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Abstract: We introduce a new prior hierarchy that allows shrinking of smooth
spline-based functional effects towards a predefined vector space of parametric
functions. Instead of shrinking each spline coefficient towards zero, we adapt
the horseshoe prior to control the deviation from the predefined vector space.
Furthermore, the prior presented regularizes the wiggliness of the estimated effect.
In this paper, we start with an application to energy consumption in Germany,
then introduce the technical details and describe the prior’s desirable shrinkage
properties. We conclude with a simulation study to assess the validity of our
approach.
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1 Energy consumption in Germany over one day

Suppose the total energy consumption in Germany over one day needs to
be estimated. The most naive approach might be a linear model based on
a trigonometric polynomial of order Ω, i.e.

E[y|x] = β0 +

Ω∑

ω=1

[
βω cos

(
ω

2π

24
x

)
+ β̃ω sin

(
ω

2π

24
x

)]
, (1)

where x ∈ [0, 24) denotes the hour of the day. Another approach is the use
of regression splines, as they can flexibly adapt to the data. The latter may
have the disadvantage that the spline solution diverges from the parametric
solution even though the parametric solution is preferred based on theo-
retical considerations, and the spline solution fits the data only negligibly
better.
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In this paper, we present a prior for the spline coefficients that shrinks the
implied function towards a predefined functional subspace, i.e., the trigono-
metric polynomial from above. Before we introduce the technical details,
we demonstrate our method through a case study aiming at estimating the
total energy consumption in Germany over one day.
For that, we use data freely available at http://smard.de and choose
eight weekdays (only Mondays and Tuesdays) and eight weekend days from
November 2018. The data is preprocess by rescaling and subtracting the
daily mean. Then we specify the parameters in our prior such that it shrinks
towards the polynomial from above with Ω = 4. In addition, we fit the
parametric approach from Equation (1) and a Bayesian P-Spline (Lang
and Brezger, 2004).
A plot of the data together with the estimated functions is displayed in Fig-
ure 1. We observe that the proposed prior adopts to the data by shrinking
the estimated effect to the parametric function for the weekend days and
leave it basically untouched for the weekdays, i.e.; the estimated function
of the new prior is similar to the P-Spline solution. This gets also reflected
in the shrinkage coefficient κ that is almost one for the weekend, thus
full shrinkage is observed. Weekend days can be modeled with the chosen
trigonometric polygon while more flexibility is needed for weekdays. Our
prior seems to negotiate well between both situations.
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FIGURE 1. Plots of the total energy consumption in Germany for eight weekdays
and eight weekend days in November 2018 (gray lines). Estimated posterior mean
using the parametric approach (red), a Bayesian P-spline approach (blue) and
the presented approach (black).

2 Introducing the prior

For i = 1, . . . , n, consider the non-parametric regression problem

yi = f(xi) + εi
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with iid error term εi ∼ N(0, σ2), smooth function f , and continuous covari-
ate xi. A common approach for its estimation is to transform it into a semi-
parametric estimation problem by assuming that f can be approximated
via a linear combination of k basis function evaluated for the covariate and
denoted Bj(x). More precisely,

f(x) =

k∑

j=1

Bj(x)βj = B(x)′β

with B(x) = (B1(x), . . . ,Bk(x))′ and β = (β1, . . . , βk)′. Thus, only a finite
number of parameters need to be estimated that usually have no valid in-
terpretation by themselves. In the following, let Z denote the n× k matrix
of basis functions evaluated at the observed covariates x1, . . . , xn. In this
work, we employ equally spaced B-Splines of third order.
A constant or linear effect is usually the target of regularization or effect
selection approaches in the context of regression splines (Lang and Brezger,
2004, Klein et al., 2019).
With the proposed prior we pursue three goals:

• Instead of shrinking towards a constant or linear effect, a user-defined
functional subspace is the target. Similar to Shin et al. (2019), this
so-called null space N is spanned by the columns of S, i.e., [1,x,x2].

• The shrinkage is adaptive, i.e., a strong signal is left untouched.

• To ensure high flexibility the prior allows for a large number of basis
functions but prevents highly oscillating and overfitting estimation.

We achieve these objectives by reusing the half Cauchy distribution (de-
noted C+) from the horseshoe prior (Carvalho et al., 2010) for the scale
parameters to compile the following hierarchy:

β|λ, τ2, σ2 ∼ Nprec(0,Q) with Q = σ−2λ−2Z ′P1Z + τ−2K

λ|ξ ∼ C+(0, ξ) ξ ∼ C+(0, ξ0)

τ |ν ∼ C+(0, ν) with ν s.t. lim
λ→∞

Pr

(
max
x∈D
|f ′′(x)| < c

∣∣∣∣λ
)

= 1− α

where P1 is the projection matrix with kernel equal to N and K is an ap-
propriate penalty matrix based on a second-order random walk (for details
visit Lang and Brezger, 2004). Furthermore, the probability statement in
the hierarchy is used to determine the prior on the variance of the ran-
dom walk. Over the domain of the covariates, the second order derivative
should be, in absolute terms, smaller than the prespecified threshold c with
probability 1− α.
Nprec(0,Q) denotes a potentially improper multivariate Normal distribu-
tion with mean 0 and precision matrix Q. Within the precision matrix Q,
the first summand ensures that small effects are shrunk towards the null
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space while the second term regulates the wiggliness of the estimate, which
is especially important for otherwise unpenalized estimates.
In the following, we assume that the hyper-parameter ν or its identifying
factors c and α are chosen such that they give the estimated function
enough flexibility to imitate the parametric estimate within the null space,
and thus do not affect the shrinkage properties. This gets reflected in taking
τ2 to the infinite limit when investigating the shrinkage properties.
Even though the prior is not proper, one can show that the posterior
is proper and that the estimated functional effect is, in expectation, a
weighted average between the spline solution and the parametric solution
with weight or shrinkage parameter κ = (1 + λ2)−1

lim
τ2→∞

E(Zβ|y, λ, τ2) = ((1− κ)PZ + κP0)y

where PZ = Z(Z ′Z)−1Z ′ and P0 = S(S′S)−1S′.
As the literature suggests (Klein et al., 2019), we study the marginal prior
density of the spline coefficients. We find an infinite peak for β such that
Zβ is in the null space and we follow from a numerical approximation that
the prior has heavy tails. Both properties are in particular beneficial for a
shrinkage prior as they imply strong shrinkage for effects close to the null
space and Bayesian robustness for strong signals.
To allow for more user-control over the shrinkage, the parameter ξ can
be fixed. Furthermore, the prior can easily be extended to cover multiple
additive functional effects with the common global shrinkage parameter ξ.

3 Simulation study

We assess the validity of our approach in a simulation study. For that, we
generate 100 observations of one covariate xi equally spaced in the interval
[−2π, 2π] and the response given by

yi = (1 + 10 sin(xi) + x+ .64x2)/20 + εi

with independent normal errors εi with variance σ2. To feature different
signal-to-noise ratios (SNRs), we repeat the study with σ set to 0.75 and
2.5. We fit models comprising the proposed prior with null spaces spanned
by [1,x] and [1,x,x2], [1, sin(x)] and [1,x,x2, sin(x)]. The operations on
the covariates are defined element-wise and the last null space is referred
to as complex in the following. Each scenario is replicated 100 times and
the main results are summarized in Figure 2.
From the histogram of the shrinkage parameter, we can deduce that the
prior is mostly able to decide between signal and no signal as most values
of κ are either close to 0 or 1. Furthermore, we can see that in the high
noise scenario the prior forces the estimate to be on average very close
to the parametric solution and thus to be in or close to the null space.
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This is especially true in both SNR scenarios for the complex null space
which includes the data generating function. In the low-noise scenario, the
estimate is mainly able to capture the true function with some difficulties
with the quadratic null space.
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FIGURE 2. Summarized results of the simulation study. The left plot shows the
data generating function (red line), data of one iteration (gray points), the mean
of the parametric estimates (blue line), and the mean of the posterior mean
of the estimated effect (black line) together with its 90% point-wise quantiles.
Histograms of the shrinkage parameter κ are displayed on the right. Both plots
breakdown the different variances and various null spaces.

References

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). Functional
Horseshoe Priors for Subspace Shrinkage. Biometrika, 97(2),
465 – 480.

Klein, N., Carlan, M., Kneib, T., Lang, S., and Wagner, H. (2019).
Bayesian Effect Selection in Structured Additive Distributional
Regression Models. arXiv:1902.10446 [stat.ME].

Lang, S., and Brezger, A. (2004). Bayesian P-Splines. Journal of Compu-
tational and Graphical Statistics, 13(1), 183 – 212.

Shin, M., Bhattachrya, A., and Johnson, V. E. (2019). Functional Horse-
shoe Priors for Subspace Shrinkage. Journal of the American Statis-
tical Association, DOI: 10.1080/01621459.2019.1654875.



Part II

264



Statistical Modelling of Habitat Selection

Shaykhah Aldossari1, Jason Matthiopoulos2 and Dirk
Husmeier1

1 School of Mathematics & Statistics, University of Glasgow, Scotland, UK
2 Institute of Biodiversity, Animal Health and Comparative Medicine, University

of Glasgow, Scotland, UK

E-mail for correspondence: s.aldossari.1@research.gla.ac.uk

Abstract: To understand the impact of habitat destruction or modification on
biodiversity there is increasing demand on predictive models that reliably forecast
future changes in species distributions. In the present paper, we build on an
existing model, the Generalized Functional Response, whose predictions about
habitat preferences and species distribution are robust to changes in habitat
availability. We improve upon this model in two distinct ways by using Gaussian
mixtures to approximate habitat availability and Gaussian basis functions to
describe habitat preferences. The proposed model is found to improve descriptive
and predictive performance when applied to realistic simulated data and real
species abundance data.
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1 Introduction

The need to understand the ecological impact of land management, build-
ing construction and urban expansion on biodiversity is driving demand
for new statistical models that can reliably forecast future changes in an-
imal population distribution. Conventional approaches in ecological mod-
elling aim to draw inferences about the importance and direction of the
relationship between habitat preference h(x) and environmental covariates
x = (x1, . . . , xI) :

h(x) = exp

(
I∑

i=1

βixi

)
(1)
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for fixed coefficients βi ∈ R. This can works well if the habitat availability
does not change. However, Matthiopoulos et al. (2011) discuss the limita-
tions of this approach, and argue that it is essential to model the change
in animal’s habitat selection as well, by allowing the coefficients to vary
as functions of habitat availability. Their derivation leads to the following
expression for the habitat selection coefficients:

βi = E
(
γi(x)

)
+ εi =

∫
γi(x)f(x)dx + εi (2)

where f(x) is a probability density function for habitat availability where
each point x in environmental space represents a habitat, εi represents
measurement or observation noise, and γi(x) is a polynomial function in
environmental covariate x which describes how the selection coefficient β
adapts to changes in habitat availability f(x) (introducing an integer order
parameter Mj):

γi(x) =

I∑

j=1

Mj∑

m=0

δ
(m)
i,j x

m
j (3)

2 Methological Innovation

Matthiopoulos et al. (2011) demonstrate that modelling habitat selection
in this way leads to a significant improvement in models of species distri-
butions over the conventional model based on (1). However, the model still
suffers from the following limitations: (1) The degree of nonlinear complex-
ity and smoothness is restricted in advance: the functions have only Mj

non-zero derivatives. (2) A complex function with a high degree of non-
trivial differentiability requires a large number of parameters. (3) While
the degree of smoothness is allowed to vary with respect to the choice of
environmental variable, it is assumed to be global with respect to its entire
range. (4) The expectation value in (2) is approximated by an empirical
observed frequency, as the habitat availability is not explicitly modelled.
The objective of the present paper is to propose a new statistical model
that addresses these limitations. We start by replacing the polynomial with
the following basis function approach:

γi(x) =
∑

j

Mj∑

m=0

δ
(m)
i,j φ(xj ,θj,m) =

∑

j

M∑

m=0

δ
(m)
i,j φ(xj ,θj,m) (4)

where φ is a basis function (e.g. splines, wavelets, basis functions of a
reproducing kernel Hilbert space etc.) with parameters θj,m, chosen to
represent known functional characteristics. Note that on the right-hand
side we have simplified the notation by defining M = max{Mj}, given
that we have the freedom to set δi,j = 0. Next, we follow Matthiopoulos
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et al. (2015) and model the probability distribution f(x) with a Gaussian
mixture model:

f(x) =
∑

k

πkN(x|µk,Ck) (5)

Inserting this into (2) and making use of (4) gives:

βi = γi,0 +

∫
γi(x)f(x)dx + εi

= γi,0 +

∫ 
∑

j

∑

m

δ
(m)
i,j φ(xj ,θj,m)



[∑

k

πkN(x|µk,Ck)

]
dx + εi

= γi,0 +
∑

j

∑

m

∑

k

δ
(m)
i,j πk

[∫
φ(xj ,θj,m)N(x|µk,Ck)dx

]
+ εi (6)

If we choose an RBF basis function for φ(xj ,θj,m):

φ(xj ,θj,m) = exp

(
−1

2

(xj − ξj,m)2

σ2
j,m

)
(7)

with parameter vector θj,m = (ξj,m, σj,m), then the integral

ψ(θj,m,µk,Ck) =

∫
φ(xj ,θj,m)N(x|µk,Ck)dx (8)

has a closed-form solution (see e.g. Bishop, Section 2.3) and we get:

βi = γi,0 +
∑

j

∑

m

∑

k

δ
(m)
i,j πkψ(θj,m,µk,Ck) + εi (9)

TABLE 1. Comparison of the proposed method with the approach of
Matthiopoulos et al. (2011) on simulated habitat data. Smaller values indicate
better performance.

Method AIC BIC RMSE

Matthiopoulos et al. (2011) 907217.4 907860.4 3.97
Method proposed here 907206 907818.2 3.94

3 Empirical Evaluation

We evaluate the performance of the proposed model on the simulated data
described in Matthiopoulos et al. (2011). The simulation was an individual-
based model of the dependence of species abundance on two habitat vari-
ables: food and cover (the converse of predation risk).
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TABLE 2. Comparison of the proposed method with the approach of
Matthiopoulos et al. (2011) on the sparrow population data from Matthiopoulos
et al. (2018).

Method AIC BIC RMSE

Matthiopoulos (2011) 1696.024 1902.209 23.52
Method proposed here 1683.656 1889.841 11.44

We set the polynomial order for the model in Matthiopoulos et al. (2011)
and the number of basis functions in the model proposed here equal to 10
based on model selection scores. We evaluate the predictive performance in
terms of root mean square error (RMSE) on out-of sample test data that
have not been used for parameter estimation, and compare the accuracy
of the model proposed in Matthiopoulos et al. (2011) with our proposed
model. The results are shown in Table 1 and suggest that a noticable im-
provement in terms of model selection scores (AIC, BIC) and out-of-sample
(RMSE) over the state-of-the-art Generalized Function Response (GFR)
model can be achieved.

4 Real-World Application

We have applied our model to the sparrow population data described in
Matthiopoulos et al. (2018). This habitat use model consists of three habi-
tat variables (the percentage of grass, bush and roof in each cell). The best
polynomial order for the model in Matthiopoulos et al. (2011) and the num-
ber of basis functions in the model proposed here is 3 based on the model
selection scores. The results of model selection scores and the evaluation
of predictive performance on out-of-sample test data are shown in Table 2.
Our model outperforms the GFR in Matthiopoulos et al. (2011), with an
improvement of the model selection scores and out-of-sample RMSE.

5 Conclusions

We have modelled habitat preference with a flexible approach that extends
the model proposed in Matthiopoulos et al. (2011) in two distinct ways, by
using Gaussian mixtures to approximate habitat availability and Gaussian
basis functions to describe habitat preferences. We have tested the new
model on both simulated data and real survey data, using the sparrow
population data from Matthiopoulos et al. (2018). Our results suggest that
a noticeable improvement can be obtained in terms of AIC, BIC and RMSE.
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Abstract: We dissect transcriptional heterogenity from RNA sequencing counts
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1 Stochastic Profiling

Gene expression of cells is determined by their amount of mRNA. With
the rapid development of technologies, the widely used microarray mea-
surements (determining relative, continuous amounts of mRNA, Kurimoto
2006) are being replaced by sequencing methods (counting discrete num-
bers of mRNA molecules, Sandberg 2014). While bulk measurements as-
sess the overall gene expression of millions of cells, single-cell measure-
ments inform on a much finer resolution. Since gene expression is not only
heterogeneous between individuals and cell types, but also within tissues,
single-cell data appears to be best-suited to fully identify heterogeneity.
However, single-cell data is more cost-intensive and prone to technical
noise than measurements of pools. The joint measurement of small pools
of cells is a suitable trade-off between the bulk and single-cell approach.
Stochastic profiling deconvolutes joint measurements of small pools of cells
into parametric mixtures of single-cell distributions. Tailored to continu-
ous microarray data, Bajikar et al. (2014) develop and apply the method
using lognormal and exponential distribution models. Amrhein & Fuchs
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(2020) describe modelling, inference and R implementation in detail. Re-
cent technological advances make small-pool sequencing possible, resulting
in discrete small-pool mRNA counts (Singh et al., 2019). It is necessary to
develop the stochastic profiling algorithm further to apply it to novel data.

2 Statistical Convolution Model

We aim to deconvolute gene expression measurements Y1, . . . , YK
of K pools of n cells with independent latent single-cell expression
Xi1, . . . , Xin such that Yi =

∑n
j=1Xij . This corresponds to the model in

Amrhein & Fuchs (2020) but with discrete single-cell distributions. We em-
ploy a common choice for single-cell mRNA counts, the negative binomial
(NB) distribution (Kharchenko et al. 2014; Amrhein et al. 2019). The prob-
ability mass function (PMF) of X ∼ NB(α, p) with α ∈ R+ and p ∈ [0, 1]
is

fNB(x;α, p) =
Γ(α+ x)

Γ(α)x!
pα(1− p)x for x ∈ N0. (1)

Assume that each single cell stems from one of T populations with proba-
bilities θ1, . . . , θT (which sum up to one), and within each population j the

gene expression is modelled by NB(αj , pj). Then, the PMF fn(y; ~θ, ~α, ~p) of
the cumulative measurement Y = y of a pool of n cells reads

n∑

`1=0

n−`1∑

`2=0

· · ·
n−`1−···−`T−2∑

`T−1=0

(
n

`1, . . . , `T

)
θ`11 . . . θ`TT f(`1,...,`T )(y; ~α, ~p), (2)

where f(`1,...,`T ) is the PMF of a deterministic mixture of 0 ≤ `j ≤ n cells of
type j for each j = 1, . . . , T and `T = n−`1− . . .−`T−1 (Amrhein & Fuchs
2020). Hence, f(`1,...,`T ) describes the convolution Y ∗ = X∗1 + . . .+X∗n of n
independent random variables X∗i ∼ NB(αi, pi) with PMF (Furman, 2007)

fn-NB(y∗; ~α, ~p) = R

∞∑

k=0

δkfNB(y∗;α+ k, pmax) for y∗ ∈ N0, (3)

where α = α1 + · · ·+αn, pmax = maxj{pj}, R =
∏n
j=1

(
(1−pj)pmax

(1−pmax)pj

)αj
and

δk+1 = 1
k+1

∑k+1
i=1

∑n
j=1 αj

(
1− (1−pmax)pj

(1−pj)pmax

)i
δk+1−i. We cut the infinite

sum in (3) where the following summand equals zero. Computation of the
PMF can be simplified further: Within each population j, the distribution
parameters αj and pj are identical such that the sum of the `j random
variables follows the NB(`jαj , pj) distribution. Consequently, f(`1,...,`T ) is
the convolution of at maximum T NBs (exactly T -fold if all `j > 0).
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3 Implementation of Bayesian parameter estimation

We infer the parameters ~θ, ~α and ~p from n-cell measurements using the
Hamiltonian Monte Carlo (HMC)-based No-U-Turn sampler (NUTS, Hoff-
man & Gelman 2014), implemented in the programming language Stan
through its interface RStan (Stan Development Team 2019). All code is
provided at https://github.com/fuchslab/mcmcNB_Stan. In contrast to
the original HMC, NUTS does not require the specification of the number
of steps L. In addition, the RStan implementation tunes the step size ε in
an automated manner. There remained the implementation of our model-
specific likelihood function based on Equation (2).
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FIGURE 1. Parameter traces and densities of the posteriors of the NUTS chains.
The algorithm uses parameters β = p/(1− p).

NUTS requires calculating the gradient of the log-posterior density. For
this purpose, Stan uses auto-differentiation and creates a so-called expres-
sion tree to evaluate all required gradients of the likelihood. As described
above, Equation (3) contains an infinite sum that must be approximated.
Since the expression graph is built only once at the beginning, the number
of summands cannot vary for each iteration; this would affect the size of
the expression tree. One way out is to always approximate the sum by a
constant very high number of summands, e. g. 10,000. An alternative solu-
tion is to implement different versions with different constant numbers of
summands (e. g. 1, 5, 10, 50, 100, 500, 1,000, 5,000 and 10,000). Then one
expression tree can be built with several subtrees (in this case: nine), and
in each iteration it is checked whether more summands are needed and thus
which subtree to use. Figure 1 shows results from this alternative version 2.
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4 Results and Conclusion

We apply the algorithm to a synthetic dataset with 1,000 2-cell samples
of two populations and frequencies ~θ = (20%, 80%) and negative binomial
parameters ~α = (20, 70) and ~p = (0.1, 0.4). Figure 1 indicates that our algo-
rithm is able to capture the true parameter values. However, more excessive
confirmatory simulation studies are required. These are time-consuming as
the expression tree is huge and thus each gradient calculation extensive.
Modifying the implementation is ongoing work with the aim to approxi-
mate formula (3) more efficiently and decrease evaluation time.
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Abstract: Dating is a key element for archaeologists. We propose a Bayesian
approach to provide chronology to sites that have neither radiocarbon dating nor
clear stratigraphy and whose only information comes from bifacial flint arrow-
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1 Introduction

Dating is a key element for archaeologists because they need a time scale to
locate the information collected from the excavations and field work in or-
der to build, albeit with uncertainty, our most remote past. Archaeological
scientists generally use stratigraphic expert information and dating tech-
niques for examining the age of the relevant artifacts. Bayesian inference is
commonly used in archaeology as a tool to construct robust chronological
models based on information from scientific data as well as expert knowl-
edge (e.g. stratigraphy) (Buck et al., 1996).
Radiocarbon dating is one of the most popular techniques for obtaining
data due to its presence in any being that has lived on Earth. However, it is
not always possible in all studies to collect organic material and obtain that
type of data or to have good stratigraphic references. In this context, we
propose a Bayesian approach to provide chronology to some archaeological

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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sites that do not have radiocarbon dates and show unprecise stratigraphic
relationships.
We propose an automatic Bayesian procedure, very popular in text classi-
fication (Wang et al., 2003), based on predictive probability distributions,
for classifying the period to which an undated site belongs based on the
type and number of arrows found in it. This proposal takes into account
on the Dirichlet-multinomial inferential process for learning about the pro-
portion of different types of arrowheads in each chronological period and
the concept of posterior predictive distribution for a new undated site. This
procedure is applied to date a set of sites located in the east of the Iberian
Peninsula during the IVth and IIIrd millennium cal. BC. During this time,
bifacial flint arrowheads appear and spread. Archaeological research sug-
gests that the shape of these arrowheads could be related with specific
period and/or geographical social units spatially defined.

2 Bayes classifier

The prediction of the period to which an undated site belongs based on
information about the number and type of arrows that have been collected
at this site includes two different phases.

2.1 Dirichlet-multinomial inferential process

Let Yij be the random variable that describes the number of type j ar-
rowheads, of the total ni collected, in the sites belonging to period i,
i = 1, . . . , I, and consider Yi = (Yi1, Yi2, . . . , YiJ)′.
A probabilistic model for Yi | θi is the multinomial distribution, Mn(θi, ni),
where θi = (θi1, θi2, . . . , θiJ)′ is a probability vector and θij is the proba-
bility that an arrowheads of period i is of type j.
We assume a Perks prior distribution (Armero et al., 2018) for θi. The sub-
sequent posterior posterior distribution is the Dirichlet (Dir) distribution

π(θi | Di) = Dir(αi1 = yi1 + (1/J), . . . , αiJ = yiJ + (1/J))

where yij is number of arrowheads of type j in the period i and Di =
{yi1, . . . , yiJ}. The marginal posterior distribution for each probability θij
ia beta distribution Be(αij , αi+ − αij), with αi+ =

∑J
j=1 αij .

2.2 Classification process

After learning about the distribution of the number of arrowheads types
in each site, we have to assign a period m∗ to a new site with a given
number and type of arrowsheads recorded. We consider a new undated
site s∗ in which we found a total of n∗ arrowheads distributed by type
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according to y∗ = (y∗1 , . . . , y
∗
J). The relevant scientific question is now about

the probability that this site belongs to each of the different time periods
considered. Following Bayes’ theorem:

P (m∗ = mi | y∗,D) ∝ P (y∗ | m∗ = mi,D)P (m∗ = mi | D)

where D = ∪Di, (y∗ | m∗ = mi,D) follows a Dirichlet-multinomial dis-
tribution DiMn(n∗,αi) with n∗ =

∑
y∗j , and P (m∗ = mi | D) can be

estimated as the proportion of sites in the sample for each of the periods
under consideration.

3 East of the Iberian Peninsula sites during the IVth
and IIIrd millennium cal. BC.

Five chronological periods in the east of the Iberian Peninsula sites during
the IVth and IIIrd millennium cal. BC. were studied. They include ar-
rowheads data from several archaeological contexts, Niuet, Jovades 1 and
Jovades 2 from period 1, Quintaret, Jovades 3, Jovades 4, and Niuet 2 from
period 2, Migdia 1, Beniteixir , La Vital 1 , Randero 1, Niuet 3, Niuet 4,
and Diablets from period 3, Migdia 2, Missena 1, and La Vital 2 from
period 4, and Arenal costa, Missena 2, and La Vital 3 from period 5.
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The Figure above shows the posterior marginal distribution of the abun-
dance of the different types of arrowheads in each of the five chronological
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periods considered. Type 1 and 2 arrowheads are most abundant in peri-
ods 1 and 2, with an increase in type 1 compared to type 2 arrowheads
in the second period. During period 3, type 4 and type 7 arrowheads are
more abundant. The latter are clearly the most used in period 4, which
become less used in period 5 when type 6 arrowheads appears with more
probability.
The posterior probability that a new site belongs to each of the periods
considered was estimated as 0.15 for periods 1, 4 and 5, 0.20 for period 2,
and 0.35 for period 3.
The following table presents the posterior predictive distribution of the
period to which a series of new undated sites belong, whose only available
information is based on the number and type of arrows found collected.

Site Period 1 Period 2 Period 3 Period 4 Period 5

Rambla C. 0.0001 0.0000 0.0004 0.9339 0.0654
Ereta I 0.7804 0.2196 0.0000 0.0000 0.0000
Ereta II 0.5019 0.4901 0.0000 0.0075 0.0005
Ereta III 0.0694 0.0912 0.8330 0.0060 0.0004
Ereta IV 0.0021 0.0098 0.6358 0.3504 0.0019

The results obtained present a great agreement with the expert information
of the archaeologists of the project, so it is a proposal that can be very useful
in archaeological research.
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Abstract: Sparse regression is an efficient statistical modelling technique which
is of major relevance for high dimensional problems. There are several ways of
achieving sparse regression, the well-known lasso being one of them. However,
lasso variable selection may not be consistent in selecting the true sparse model.
Zou (2006) proposed an adaptive form of the lasso which overcomes this issue, and
showed that data driven weights on the penalty term will result in a consistent
variable selection procedure. Weights can be informed by a prior execution of
least squares or ridge regression. Using a power parameter on the weights, we
carry out a sensitivity analysis for this parameter, and derive novel error bounds
for the Adaptive lasso.
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1 Introduction

Let X = (X1, · · · , Xp) with Xj = (X1j , . . . Xnj)
T for 1 ≤ j ≤ p, and Y =

(Y1, . . . , Yn)T. We can characterise their relation in the linear regression
setting

Y = Xβ + ε, (1)

where β = (β1, · · · , βp)T is a vector of regression coefficients and ε ∼
N (0, σ2In), with In denoting the n-dimensional identity matrix. We assume
X and Y to be scaled to mean 0.
The least squares method is the conventional way to estimate these regres-
sion coefficients. However, in high dimension (i.e p > n), the least squares
method, which involves inversion of XTX, cannot be used. Several estima-
tors have been proposed which solve the issue by introducing bias in the
estimation process. Tikhonov (1963) introduced `2 penalised regression or
Ridge regression. The `2 penalty achieves a stable solution through the

This paper was published as a part of the proceedings of the 35th Inter-
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2020. The copyright remains with the author(s). Permission to reproduce or ex-
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Basu et al. 279

eigen value decay method, which, however, fails to be sparse which is a
desirable property in high dimensional statistics. Tibshirani (1996) intro-
duced the lasso or least absolute shrinkage and selection operator, which
attains sparsity through a `1 penalty. Zou (2006) proposed an adaptive form
of lasso based on data-driven weights in the penalty term that satisfies de-
sired asymptotic properties for high-dimensional problems as suggested by
Fan and Li (2001). We exploit the framework given by Zou (2006) to in-
vestigate and understand the sensitivity of the adaptive lasso. For this we
apply a two-step approach. We employ least squares or ridge estimates,
say β̂j , and a parameter γ to initialise the weights of type 1/|β̂j |γ which
are then embedded in the penalty term. The effect of the parameter γ is
then investigated, theoretically, through error bounds, and experimentally,
through a sensitivity analysis.

2 Adaptive Lasso

Let us consider the linear model (1) which can be written in alternative
form as

E[Y | X] = Xβ = β1X1 + · · ·+ βpXp. (2)

Note that XTX is guaranteed to be positive semi-definite but not necessar-
ily positive definite, even for p < n. We make the following two assumptions
on the design X:

(A1) E[XTε | X] = 0

(A2) limn→∞
1
nXTX = Σ exists, where Σ is positive definite.

Let β̂ = (β̂1, · · · , β̂p)T be any root-n consistent estimator of β. Then the
adaptive lasso estimates are given by

β̂alasso(λ, γ) = arg min
β


1

2
‖Y −Xβ‖22 + λ

p∑

j=1

wj(γ)|βj |


 (3)

where

wj(γ) = |β̂j |−γ , for γ > 0. (4)

We generally use least squares estimates or ridge estimates as weights since
these are root-n consistent.

3 Main Result

Let β̂alasso(λ, γ) be the adaptive lasso estimates with respect to the param-
eters λ and γ and Σn = 1

nXTX. Let β∗ be the true regression coefficients.
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Theorem: For any root-n consistent estimate β̂ = (β̂1, · · · , β̂p), we have
the following error bounds:

∥∥∥β̂alasso(λ, γ)− β∗
∥∥∥

2

2
≤ σ2

n

∥∥Σ−1
n

∥∥+
λ2p

n2

∥∥Σ−1
n

∥∥2
min

1≤j≤p
|β̂j |−2γ (5)

∥∥∥Y −Xβ̂alasso(λ, γ)
∥∥∥

2

2
≤ λ2p

n

∥∥Σ−1
n

∥∥ min
1≤j≤p

|β̂j |−2γ (6)

We see that the error bounds increase with increasing λ (increased bias
from regularisation) but tend to decrease with increasing γ.

4 Simulation Study

We simulate the predictors from a standard normal distribution such that,
Xij ∼ N(0, 1) for j = 1, · · · , 20 and i = 1, · · · , n. We assign the regression
coefficients to be (β1, · · · , β6) = (5, 3, 1,−1,−3,−5) and βj = 0 for j > 6.
We consider standard normal noise to construct the response vector yi =∑6
j=1Xijβj + εi where, εi ∼ N(0, 1) for i = 1, · · · , n. The experiment is

repeated for n = 100, 500, 1000.
We analyse the sensitivity of the model for 0 ≤ γ ≤ 1 (γ = 0 yields regular
lasso estimates). We use least squares estimates for the choice of weights.
In Table 1, we compare prediction accuracy of different lasso variants, and
also display the number of active co-variates, p∗. In the first row we give
the results of the adaptive lasso for γ = 1. We specify λ through cross-
validation. In the next three rows we show results for varying γ and fixed
λ. In Figure 1, we show the coefficient path and RMSE curve evaluated
over γ for 100 observations. From Figure 1 we see that as the value of γ
increases, the bias and RMSE decrease which is plausible in the light of
Theorem 1. However, we also notice that it overfits and selects six extra
variables as important. In the last row we show results from the lasso.

5 Conclusion

We have presented a sensitivity analysis for the adaptive lasso with respect
to γ, and obtained novel bounds for the lasso estimates. We have shown
through simulation that the bias due to regularisation with λ can be re-
duced for larger values of γ, however, especially for small sample sizes, at
the potential expense of overfitting and selection of some non-important
variables in the model.

Acknowledgments: This work is funded by the European Commissions
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FIGURE 1. Coefficient path and fitting accuracy w.r.t. γ (λ = 1) for n = 100.

TABLE 1. Comparison of prediction accuracy (RMSE) between different meth-
ods.

n = 100 n = 500 n = 1000

RMSE p∗ RMSE p∗ RMSE p∗

Adaptive Lasso

γ = 1, λ by CV 0.94 6 1.02 6 0.99 6
γ = 0.1, λ = 1 2.20 5 2.02 6 1.94 6
γ = 0.5, λ = 1 0.97 6 1.05 6 1.02 6
γ = 1, λ = 1 0.81 12 0.99 6 0.97 6

Lasso, λ by CV 0.93 10 1.03 6 1.00 6
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Abstract: We consider a multivariate model with independent marginals as a
benchmark for a generic multivariate model where the marginals are not indepen-
dent. The Penalised Complexity (PC) prior takes natural place in such a context,
as we can include in the simpler model an extra-component taking into account
for dependence. In this paper, the additional component is represented by the
parameter of the Gaussian copula density function. We show that the PC prior
for a generic copula parameter can be derived regardless of the parameters of the
marginal densities. Then, we propose a hierarchical PC prior for the Gaussian
copula model.

Keywords: PC prior; Gaussian copula; Intrinsic prior; Hierarchical PC prior.

1 Introduction

In many statistical models it is natural to have a nested structure. Consider
a model of a given complexity, one way to obtain a richer and more flexible
model is to include an extra-component so that the simpler model would be
nested in the more complex one. We may think, for instance, of a situation
where we want to model the joint distribution of several random variables
through a copula function. In the case of dependence among variables, the
joint density can be expressed as the product of the marginal distributions
times a copula function, on the contrary, the joint density boils down to
the only product of the marginals when the latter are independent. We
derive the PC prior for the correlation parameter of the Gaussian copula by
exploiting the following result on the Kullback-Leibler divergence (KLD).

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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Notice that the KLD is used to measure the distance between the two
models. For a review of the principles behind the construction of a Penalised
Complexity prior, see Simpson et al. (2017).

2 Method

We consider as a base model a certain multivariate density where the
marginal densities are independent. Then, we could render this model more
flexible by allowing a copula function to account for dependence, on the
basis of the Sklar’s representation. The flexible model is

M1 = {fX;φ(x;φ),x ∈ Rk, φ ∈ Rq}, (1)

where, according to the Sklar’s theorem, the joint density can be written

fX;φ(x;φ) =

k∏

j=1

fj(xj ; θj)cψ(F1(x1; θ1), . . . , Fk(xk; θk);ψ), (2)

and φ = {θ1, θ2, . . . , θk, ψ}.
Furthermore, let

M0 : X ∼ f0(x;ϕ) = fX;ϕ(x;ϕ) =

k∏

j=1

fj(xj ; θj) (3)

be the base model, where f0 is the density of X in the case in which there
is independence among the marginals, namely, when the value of ψ returns
the independence copula. Here, ϕ = {θ1, θ2, . . . , θk, ψ = ψ0}. Then, the
theorem below follows

Theorem 1 (Invariance wrt marginals) Let X ∼ fX(x1, . . . , xk) be a
random vector with density fX (we assume it is absolutely continuous with
respect to the Lebesgue measure). Furthermore, let Y be a random vector

with distribution fY(y1, . . . , yk) =
∏k
j=1 fj(yj) where fj is the marginal

density of Xj and Yj, then

KLD(fX‖fY) =

∫

[0,1]k
c(u1, . . . , uk;ψ) log c(u1, . . . , uk;ψ)du1 . . . duk, (4)

where c(u1, . . . , uk) represents the copula function associated with the den-
sity of X and Uj ∼ Unif (0, 1), j = 1, . . . , k.

The theorem above states that the distance between a generic multivariate
density and the one with independent marginals can be expressed as the
distance between the copula density function and the independence cop-
ula. This result allows us to derive the PC prior for the copula parameter
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regardless of the parameters of the marginals. Notice also that it applies
to any copula function and any dimension. Nevertheless, apart from the
case of equicorrelation, for multidimensional elliptical copulas we need to
define a multivariate PC prior. Suppose now to have only two marginal
distributions, on the basis of Theorem 1 we can write

KLD(fX;φ‖fX;ϕ) =

∫

U

∫

V
c(u, v; ρ) log c(u, v; ρ)dudv, (5)

where c is the density function of a bivariate Gaussian copula with param-
eter ρ. Then, KLD(ρ) = − 1

2 log(1− ρ2), and the prior is easily obtained

πPC(ρ) =
θ

2
exp
(
−θ
√
− log(1− ρ2)

) |ρ|
(1− ρ2)

√
− log(1− ρ2)

. (6)

The latter prior is proper, clearly symmetric as it depends on ρ only through
the square and the absolute value, and has any odd moment equal to zero.
Simpson et al. (2017) proposed to use a probability statement on a tail
event to select the parameter θ. This latter plays a key role as it regulates
the shrinkage of the prior towards the base model, so a wrong choice of this
parameter may be misleading, especially in Bayesian hypothesis testing.
From an objective point of view, we calculate the intrinsic prior for the rate
parameter θ and then we specify the hyperparameter of such an intrinsic
prior distribution by maximizing the variance of the hierarchical PC prior
for ρ where the intrinsic prior is put on θ. The procedure to derive the
intrinsic prior is borrowed from Pérez and Berger (2002) as it coincides
with the expected-posterior prior.
We use πN (θ) = 1

θ as an improper starting distribution, then the intrinsic
prior is given by

πI(θ) =

∫ 1

−1

π(θ|ρ`)f(ρ`|H0)dρ`, (7)

where f(ρ`|θ0) is the PC prior in (6) calculated in θ0, say the null hypoth-

esis, and π(θ|ρ`) = πN (θ)f(ρ`|θ)
mN (ρ`)

, where in turn ρ` represents the training

sample. If there is no subset of ρ` for which 0 < mN (ρ`) < ∞, then ρ`
is called minimal training sample. Berger and Pericchi (1996) showed that
often it will simply be a sample of size max(dim(θ)). So, we need just an ob-
servation to convert the improper starting distribution into a proper prior.
Therefore

πI(θ) =
θ0

(θ + θ0)2
(8)

will be proper. We set the hyperparameter θ0 in an objective manner. In
particular, we numerically maximize the variance with respect to θ0, i.e.

max
θ0

∫ 1

−1

∫ ∞

0

ρ2πPC(ρ|θ)πI(θ|θ0)dθdρ. (9)

The maximizer is θ0 = 0.491525 as it renders the prior as flat as possible.
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3 Simulation study and real data

We check out the frequentist performance of our hierarchical PC prior via
a simulation study. For each true ρ∗ (−0.95,−0.5, 0, 0.05, 0.5, 0.95, 0.999)
and for each fixed sample size (n = 5, 30, 100, 1000) we have generated
200 independent samples from the Gaussian copula and for each of them
we have calculated the posterior mean, the 95% credible interval and the
Bayes factor. We use the Jeffreys’ prior as competitor for inference, while
for Bayesian hypothesis test we use the Arc-sine prior, since it is proper.
As one can expect, for ρ = 0, our hierarchical PC prior is superior to the
Jeffreys’ prior in terms of MSE; this is because of the little spike at the
base model induced by the hierarchical approach. However, for intermediate
correlations, there seems to be a bias-variance trade-off; the Jeffreys’ prior
looks less biased but less efficient, whilst the PC prior seems to be more
biased but more efficient. To compare overall values of ρ∗, we also compute
an overall MSE, and the latter is basically in favour of our prior.
We use Bayes factor to select among models. Theorem 1 allows us to write

B01 =
cρ(u, v; ρ)|ρ=0∫

cρ(u, v; ρ)πPC(ρ|θ0 = 0.491525)dρ
. (10)

We compute the frequency of times that B01 ≤ 0.5. It turns out to be
basically smaller for the PC prior compared to the Arc-sine prior when the
true model is the base model, whilst it is larger when the true ρ deviates
far away from the independence model, especially for small sample sizes.
Finally, we analyze the danube data set which contains ranks of base flow
observations for two stations situated at Scharding (Austria) on the Inn
river and at Nagymaros (Hungary) on the Danube. The data have been
pre-processed to remove any time trend. Specifically, a linear time series
model with 12 seasonal components is fitted. Then residuals are extracted.
The correlation between time series is computed over the residuals, other-
wise we would carry back correlation within the series. The results of the
Bayesian test are in line with the ones of the frequentist test, providing
strong evidence for ρ 6= 0.
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Abstract: True fixed-effects stochastic frontier models are employed in panel
data settings to separate time-invariant heterogeneity from efficiency effects.
These models have some desirable properties, but the estimation of their struc-
tural parameters is hindered by the incidental parameter problem, which may be
severe for settings with a large number of short panels. Some consistent estimators
have been recently proposed in the econometric literature, but they are rather
involved and overly complex to implement. Here we propose an alternative esti-
mator, which has optimality properties while being computationally simple. The
proposal results from the application of the equivariance property of maximum
likelihood estimation in group families, and it provides a consistent estimator re-
gardless of the size of the panel. The solution covers a broad range of stochastic
terms, and it does not require any simulation. The TMB R package for automatic
differentiation is employed to obtain a scalable implementation.
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1 Introduction

Stochastic frontier models are widely used for the study of economic effi-
ciency, and the generalisation of stochastic frontier models to panel data
framework had a central role in the econometric literature of the last
decades. In particular, the specification of the individual effects entering
the model characterised the discussion, and both random and fixed effects
approaches have been largely studied. In the last 15 years the literature
focused on the fixed-effect approach, mostly for reasons of specification
robustness. The true fixed-effect model, first proposed by Greene (2005),
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provides a flexible fixed-effects resolution for panel data stochastic frontiers.
The model is

yit = αi + x>itβ − uit + εit , (1)

where αi are panel-specific fixed parameters and uit time-varying ineffi-
ciency terms. Here i = 1, . . . , n is the index for panel and t = 1, . . . , T
is the index for time. Note that in the specification (1) efficiency is sepa-
rated from panel heterogeneity, and specification robustness derives from
the fixed-effects formulation for panel-specific terms. The two random com-
ponents uit and εit can assume a variety of specifications, including het-
eroscedasticity and dynamic models for uit for the case of longer panels.
The fixed-effects approach is generally affected by the incidental parameter
problem; see Bartolucci et al. (2016) for a review. This concerns the joint
maximum likelihood estimation (MLE) of the model parameters (θ, α),
where θ = (β, σ) are the structural parameters and α = (α1, . . . , αn) the
panel-specific intercepts. Here σ collects the parameters of the distribution
of uit and εit, which are crucial for efficiency evaluation. In short, the MLE
of α is consistent only for T → ∞, and for finite T the resulting bias is
transmitted to the MLE of σ. The problem gets worse when n increases for
fixed panel size T , and the efficiency evaluation can be heavily affected for
settings with many short panels.
To overcome the nuisance parameters issue, Chen et al. (2014) proposed
a Marginal Maximum Likelihood Estimator (MMLE) for θ. The MMLE
is
√
n-consistent as the α are removed by considering a marginal likeli-

hood, akin to the classical within-group estimation approach for fixed-
effects panel data models. The MMLE solves the incidental parameter
problem entirely, but it is feasible only for normal εit and truncated nor-
mal inefficiencies uit. More general proposals can be found in Belotti and
Ilardi (2018). They defined the Marginal Maximum Simulated Likelihood
Estimator (MMSLE) and the Pairwise Difference Estimator (PDE). Both
these two approaches are defined for exponential or half-normal distributed
uit. The MMSLE overcomes some of the computational difficulties of the
MMLE by the use of simulation. It can handle some form of heteroscedastic-
ity, but not dynamic models for the inefficiency. The PDE is an ad-hoc

√
n-

consistent estimator. It can handle heteroscedasticity and dynamic models
for the inefficiency in the truncated normal case.

2 Our proposal

The MMLE/MMSLE and PDE estimators are useful solutions for many
settings. Yet the structure of the true fixed-effects model allows for a sim-
pler, fully efficient and more general estimation method. The theory of
inference in composite group families (Pace and Salvan, 1997, Chapter 7)
readily gives that the integrated likelihood with flat weight function for α
gives a marginal likelihood for θ = (β, σ).
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A general marginal likelihood for θ can be defined as

LM (β, σ) =

n∏

i=1

∫ ∞

−∞
Li(αi, β, σ)dαi (2)

where Li(β, σ, αi) is the likelihood function for the i-th panel corresponding
to the model assumed for the data yi1, . . . , yiT of the i-th panel. Formally,
the results reported in Pace and Salvan (1997) are valid for independent
observations, but the extension to dynamic efficiency is straightforward.
The fact that the incidental panel-specific parameters αi are location pa-
rameters implies that LM (β, σ) has much better properties than the usual
integrated likelihood with uniform prior. In fact, Arellano and Bonhomme
(2009) showed that in general such integrated likelihood leads to a finite
sample bias for the resulting estimator of θ of order O(T−1). Here the
asymptotic bias disappears for n → ∞ for fixed T , since the maximiser
θ̂M of LM (β, σ) is

√
n-consistent. Furthermore, being based on a marginal

likelihood, the estimator is fully efficient.
The proposed method overcomes all the limitations of both
MMLE/MMSLE and PDE, as it is both fully general and fully efficient.
Obtaining the estimator requires the approximation of one-dimensional
integrals, a standard task for which many methods exist. It should be
noted that as both the distribution of uit and of εit are continuous, the
integrand function is always smooth and the required integration simpler
than that needed for random-intercepts models for discrete panel data, a
rather standard task.
A possible method for obtaining θ̂M is the approximation of the one-
dimensional integrals with respect to αi employing the first-order Laplace’s
approximation. This is rather simple, but it would introduce a O(T−1) er-
ror which accumulates across panels. A better resolution is obtaining by
the approximation of the integrals in (2) by an accurate adaptive Gauss-
Hermite approach (Liu and Pierce, 1994), reducing the approximation error
for the computation of the integrals in (2) to a negligible size.

3 Preliminary results

On the computational side, a streamlined approach has been obtained via
the R package Template Model Builder (TMB) for automatic differentia-
tion (Kristensen et al., 2016), which operates via C++ templates.

Some simulation studies are ongoing for studying the performances of θ̂M .
The preliminary results seem to confirm the good properties of the methods.
To give a flavour about the results, we include here some illustrative results
for one of the settings considered by Belotti and Ilardi (2018). In particular,
we take half-normally distributed uit and normal errors. This is an impor-
tant benchmark, since the estimator from the integrated likelihood should
agree with the MMLE of Chen et al. (2014). Indeed, we implemented both
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TABLE 1. Some simulation results with half-normal inefficiencies.

θ θ̂L θ̂M
Bias (MSE) Bias (MSE) Bias (MSE) Bias (MSE)
n = 100 n = 250 n = 100 n = 250

β 0.004 (0.008) 0.001 (0.004) 0.004 (0.008) 0.001 (0.004)
σu -0.184 (0.198) -0.148 (0.114) -0.133 (0.191) -0.089 (0.101)
σε 0.015 (0.011) 0.024 ( 0.006) -0.002 (0.012) 0.006 (0.006)

these two methods, and the two sets of estimates agree with very high
accuracy. Here we take a single covariate xit and generate its values and
those of all the model parameters following Belotti and Ilardi (2018, case
σu = σε), to which we refer for a more comprehensive description. Table 3

summarizes the results for θ̂M from (2) for 1000 simulated samples, with
n = 100 and n = 250, with T fixed at 5. For a comparison, we also re-
port the estimator θ̂L that approximates (2) using the first-order Laplace

approximation. The superiority of θ̂M seems apparent.
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Abstract: Gaussian graphical models (GGMs) are probabilistic graphical models
based on partial correlation. A GGM consists of a network of nodes (representing
the random variables) connected by edges (their partial correlation). To infer a
GGM, the inverse of the covariance matrix (the precision matrix) is required. The
main challenge is that when the number of variables is larger than the sample size,
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consist in regularizing the estimator of the covariance matrix to make it invertible
(and well conditioned); however, the effect of the shrinkage on the final network
topology has not been studied so far.
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1 Introduction

Gaussian graphical models (GGMs) are un-directed graphical models
represented by a matrix of partial correlations. They are a popular tool
to infer regulatory networks from quantitative molecular profiles (e.g.
gene-expression data). In a GGM each random variable is a node and an
edge is placed between node-pairs according to their partial correlation.
Partial correlations measure the linear dependence between a pair of
random variables after adjusting for the contribution from all the others.
The resulting GGM structure encodes full conditional correlations in
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the form of a network (i.e. a matrix of pair-wise partial correlations).
The inference of the partial correlations demands the estimation of the
inverse of the covariance matrix. Therefore the covariance estimator needs
to be invertible and well-conditioned. The sample covariance estimator
Ĉsm with p variables and n samples is not invertible if n� p; a common
scenario in systems biology; usually referred to as a “high dimensional
problem”, or “small n, large p”. Shrinkage is a method to regularize
the covariance estimator, where the resulting “shrunk” estimator is well
conditioned, and invertible. This “shrunk” covariance estimator can
be further used to compute the “shrunk” partial correlations. In this
work, we study the role of the shrinkage on the network topology. We will
show that is possible to de-regularize or “un-shrink” the partial correlation.

2 Shrinkage based Gaussian graphical models

Partial correlations are a measure of full-conditional linear dependence be-
tween two variables (where the effects coming from all other variables are
adjusted). Gaussian graphical models (GGMs)are represented with a ma-
trix P where the entry ij is the partial correlation between the variables
i and j. P can be found from the covariance matrix C, and/or from its
inverse C−1 via

Pij = −
C−1

ij√
C−1

ii C−1
jj

(1)

In principle, C can be estimated from the data; however, the sample covari-
ance estimator Ĉsm is ill-conditioned (or non-invertible) when n ≤ p. In
particular, the LW- covariance Ĉ[λ] is a (convex) linear combination of Ĉsm

with a target estimator T (e.g. a diagonal matrix)(Ledoit and Wolf(2004)).
The ”shrunk” estimator takes the form Ĉ[λ] = λT + (1 − λ)Ĉsm. The
shrinkage λ is in the interval (0, 1), and is usually fixed according to an
optimization criteria. In this way, the inverse of Ĉ[λ] is used in Equation
1 to estimate ”shrunk” partial correlations P[λ](Schäfer and Strimmer
(2005.)).
However, from Equation 1 we see that λ has a non-linear effect on the
resulting partial correlation (through the matrix inversion and square
roots). Consequently, GGMs inferred with different shrinkages e.g. from
different experimental conditions can not be compared. Therefore, the
shrinkage effect needs to be first removed from the partial correlation.

In this way, we define the “un-shrunk” partial correlation P[0] as the limit
of P[λ] when λ approaches to zero. Symbolically,

lim
λ→0

P
[λ]
ij = P

[0]
ij (2)
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To ensure that P[λ] is a continuous function of λ we recall the following
theorems. First, the inverse of a matrix can be written in term of
determinants. Second, that determinants are polynomial (in this case are
polynomial of 1−λ). Third, that determinants, quotients and square roots
are continuous functions (for positive arguments and provided that the
denominator is not zero). Therefore, P[λ] is a continuous function of λ.
We show that it is a bounded function as well; any term 1/λ will cancel
in the quotient. The limit when λ → 0 is well-defined, and the shrinkage
distortion can be removed obtaining the “un-shrunk” partial correlation.
In the following sections, we approximate P[0] via a polynomial model
fitted in the range 0.1 ≤ λ ≤ 1, and extrapolating the model to λ = 0.
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FIGURE 1. The “shrunk” and “un-shrunk” partial correlation. In black: the pos-
itives edges (non-zero partial correlations). In blue: the average of the ”shrunk”
method. In red: the average of the new “un-shrunk” method. Error bars repre-
sent 2 standard errors. Panels c, d) Edge-wise and log10 p-value comparison for
E. coli dataset. The panels are segmented into four regions using a threshold of
| pcorr |= 0.1 or p-values = 0.05.

3 Results

In this section, we simulate a network structure and Gaussian random
data (p = 100, and n = 40, 70). Figure 1 shows the average partial
correlations (over 25 simulations) obtained from simulated data with each
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model. We observe that the “un-shrunk” model leads to better results.
Subsequently, we use both methods to model gene interactions from
microarray expression data. The data comes from a study of Escherichia
coli after IPTG induction of the recombinant protein SOD (p = 102,
n =9). As the ground truth is unknown, we compare the results with
scatter plots for the partial correlations and for their p-values (Bernal
et al.(2019)). Points scattering away from the diagonal line reflect that
the edges have different order. In particular, the upper left and lower
right quadrants display the edges that are significant exclusively in one
of the methods. We observe different network structure with additional
connection from the new method.

4 Discussion and Conclusions

We show that the partial correlation can be de-regularized (or “un-
shrunk”), and that the numerical instabilities (that originally required the
shrinkage) can be avoided. Our “un-shrunk” method is consistently closer
to the population value compared to “shrunk” result (see Figure 1). This
makes the “un-shrunk” estimator superior in terms of interpretability and
cross comparison of networks. For the E. coli dataset, the strongest partial
correlations (in both networks) were lacA-lacZ, lacY-lacZ, and lacA-lacY,
all related to the lac operon (that was induced by IPTG in the experi-
ment). Additionally, the new ”un-shrunk” model retrieves 34 significant
partial correlations (p-values ≤ 0.05) that were not found with the tradi-
tional approach.

Acknowledgments: We want to acknowledge the Data Science and Sys-
tem Complexity Center (DSSC) of the University of Groningen.
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Abstract: Gaussian graphical models (GGMs) are network models where ran-
dom variables are represented by nodes and their pair-wise partial correlation by
edges. The inference of a GGM demands the estimation of the precision matrix
(i.e. the inverse of the covariance matrix); however, this becomes problematic
when the number of variables is larger than the sample size. Covariance estima-
tors based on shrinkage (a type of regularization) overcome these pitfalls and
result in a ’shrunk’ version of the GGM. Traditionally, shrinkage is justified at
model level (as a regularized covariance). In this work, we re-interpret the shrink-
age from a data level perspective (as a regularized data). Our result allows the
propagation of uncertainty from the data into the GGM structure.
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1 Introduction

Gaussian graphical models (GGMs) are network models consisting of nodes
(the random variables) inter-wired by edges (their pair-wise partial corre-
lations). Partial correlations measure the correlation between pairs of full
conditional variables. The estimation (inference) of a GGM structure re-
quires the inverse of the covariance matrix (i.e. the precision matrix), how-
ever, when the number of variables is larger than the sample size the sample
covariance estimator is ill conditioned (or not invertible). Other covariance
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estimators based on shrinkage have proven to be useful in this case. They
consist of a regularized estimator that is invertible at the expenses of in-
troducing some bias (due to the bias-variance trade-off). Typically, the
interpretation of the shrinkage has been in terms of the covariance matrix,
however, this justification is half way divorced from the data (the main
subject of study). In this work, we present the shrinkage from a data level
perspective and study how the data uncertainty propagates through the
analysis.

2 Methods

Gaussian graphical models (GGMs) are represented with a matrix of partial
correlations P. The element ij of P is the partial correlation between the
variables i and j, and it is given by

Pij = − Ωij√
ΩiiΩjj

(1)

where Ω = C−1. In principle, C is unknown but can be estimated from
the data e.g. by means of the sample covariance Ĉsm,

Ĉsm =
1

n− 1
Dt D (2)

with D being the (centered) data matrix with p variables (columns) and
n samples (rows). P can be estimated indirectly using the inverse Ĉsm in
Equation 1, however, when n is less or equal p, Ĉsm becomes ill-conditioned
or non-invertible. A well-conditioned alternative is the LW-covariance Ĉ[λ]

(Ledoit and Wolf (2004)) Ĉ[λ] which consists of a (convex) linear combina-
tion of Ĉsm and a target T as,

Ĉ[λ] = (1− λ)Ĉsm + λT (3)

where the shrinkage λ ∈ (0, 1) is fixed according to an optimization criterion
(Ledoit and Wolf (2004)). The inverse of Ĉ[λ] can replace Ω in Equation 1 to
obtain a ’shrunk’ partial correlation P[λ] (Schäfer and Strimmer (2004)). In
this study we will assume that all variables in D were centered (substracting
their sample averages) and that they have the same variance σ2.

3 Results

3.1 ‘Shrunk’ data

To re-interpret the shrinkage at data level we turn our attention to C and
its eigenvalues α, and to their estimates Ĉsm and α̂. Using Equation 3 we
get that
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α̂i
[λ] = (1− λ)α̂i + λσ̂2 (4)

where α̂i
[λ] is i-th eigenvalue of Ĉ[λ], and σ̂2 are the variances of Ĉsm. Using

the Singular value decomposition (SVD),

Ĉ[λ] = (U diag(±
√
α̂[λ]) Vt)

t

(U diag(±
√
α̂[λ]) Vt) (5)

with the matrices U and V are the (left and right) singular vectors of Ĉsm,

and diag(±
√
α̂[λ]) is the diagonal matrix of singular values (the square

root of the eigenvalues). Comparing Equation 2 to Equation 5 we find the
’shrunk’ data D[λ] as,

D[λ] = U diag(±
√

(n− 1)α̂[λ]) Vt (6)

where n is known while U, V, and the α̂i
[λ] can be computed from the SVD

of D (without ± sign ambiguity).

3.2 ’Shrunk’ residuals

Correlations result from the standardized covariance matrix C, while par-
tial correlation from the standardized Ω = C−1. In this sense, Ω encodes
the covariances between full conditioned random variables. Resembling
Equation 2 we can write that,

Ω̂[λ] =
1

k

(
Res[λ]

)t (
Res[λ]

)
(7)

where Res[λ] is the (centered) matrix of residuals, and k their degrees of

freedom. To find Res[λ] we can use the SVD of Ω̂[λ]. For this, we recall two
facts between a matrix and its inverse: (i) that they share the same set of
eigenvectors, and (ii) that their eigenvalues are reciprocals. Then,

Ω̂[λ] = (U diag(±
√

1

α̂[λ]
) Vt)

t

(U diag(±
√

1

α̂[λ]
) Vt) (8)

comparing Equation 7 to Equation 8 we find the ’shrunk’ residuals,

Res[λ] = U diag(±
√

k

α̂[λ]
) Vt (9)

3.3 Propagation of uncertainty

Often the measurement of data would include some level of technical (or
external) variablity ε which is usually modeled as an additive iid N(0, σε

2I).
In contrast to sampling variability, ε does not decreases with larger sample
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sizes. Linearity of the covariance implies that cov[Xi + εi,Xj + εj] is equal to
cov[Xi,Xj] for i 6= j, and equal to cov[Xi,Xj] + σε

2I otherwise. Therefore,

Cε = C + σε
2I ⇒Cε~u = (α+ σε

2)~u (10)

In principle, Ĉsm is an un-biased estimator of C. Now, the presence of
ε turns Ĉsm into an estimator of Cε. The uncertainty coming from the
collected measurements in D propagates to the (partial) correlation by

replacing α̂ with α̂+ σ̂2
ε in Equations 5-9.

4 Discussion and Conclusions

In real application data is limited which can make the sample covariance
ill-conditioned. Shrinkage (regularization) approaches overcomes this, how-
ever, it’s interpretation has been limited at the model level (as a modifi-
cation of the covariance). While valid, it is half way divorced from the
data (the original subject of study). In this work, we used SVD to show
that shrinking the covariance is equivalent to transforming the data into a
’shrunk’ data. With this result, shrinkage based (partial) correlations can
be interpreted as classical (partial) correlations estimated from a ’shrunk’
data. Equations 6 and 9 illustrate the shrinkage role from a data-driven
perspective. Additionally, we showed how uncertainty in the data measure-
ments propagate through the analysis. Among the limitations in our study
we have that (i) the assumption of equal variances in the data, that (ii) the
SVD is not unique, e.g. for degenerate (repeated) singular values their sin-
gular vectors can be permuted, and that (iii) many data sets can produce
the same sample covariance matrix.

Acknowledgments: We want to acknowledge the Data Science and Sys-
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Abstract: Spatial proximity between researchers may lead to more frequent or
more intense collaboration than between scientists who work at large distance
from each other. We aim to investigate the impact of proximity within research
institutions on the implementation of interdisciplinary collaborations. Our data
contains publications and building distances from two research institutions, the
Helmholtz Zentrum Mnchen and Bielefeld University. Defining collaboration as
the number of joint publications, we use exploratory and network analyses to
answer the question if researchers are more likely to work together if they are
at small distance to each other. The methodological focus lies on accounting for
the dependency structure in network data. Outcomes of this study may inform
about how to target the promotion of interdisciplinary research.

Keywords: Collaboration networks; Spatial proximity; QAP; Hurdle model.

1 Introduction

Research at Bielefeld University has been self-characterized by its guiding
principle of interdisciplinarity. The special structure of its main building
allows researchers from different faculties to meet each other without go-
ing outside. The spatial design clearly differs at the Hemholtz Zentrum
Mnchen, a research center for environment and health: Although many
institutes are united on one main campus, they are distributed over indi-
vidual buildings. Here, too, interdisciplinary research plays an important
role. Based on this observation and inspired by the work of Claudel et al.
(2017), we aim to assess the role of building and campus structures for in-
terdisciplinary research: How does spatial proximity between two scientists

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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influence their collaboration? We measure the strength of interdisciplinary
collaboration by the number of joint publications between two researchers
from two different faculties or departments.

2 Data Collection and Preprocessing

We consider open data from the publication databases Web of Science, Sco-
pus and Pubmed for Helmholtz Zentrum M’́unchen and Bielefeld University.
This source enables us to easily extend our analyses to other research insti-
tutions, in contrast to data from local libraries which use non-uniform data
formats. We use the R package bibliometrix (Aria and Cuccurullo, 2017)
to merge the data from the three databases. The final data set contains the
title, abstract, authors, detailed affiliations, publication year, document
type and journal of each publication. Because of ambiguous writings of
the affiliations (including departments and working groups), we use cluster
analysis and string matching to assign the authors to their main faculties
and institutes. Since GPS-based measurement of spatial distances was im-
possible inside the Bielefeld university building, we assessed the distance
between institutions as the number of steps on foot and also considered
the effort to use stairs and lifts. To be consistent, we applied the same
procedure at the campus of the Helmholtz Zentrum Mnchen.

3 Methods

We analyze publication and distance data descriptively and by forming
collaboration networks of author pairs. Here, each author is one node, and
two authors are connected if they have at least one joint publication. In
addition, we use regression models to describe the effect of distance on the
number of publications. This poses some challenges: Firstly, there is row-
and columnwise auto-correlation due to the network structure, and the ob-
servations cannot be seen as independent. Second, there is a natural excess
of zeros in the publication data since every author can only collaborate
with a small fraction of all other authors.
We account for these issues as follows: The quadratic assignment proce-
dure (QAP; Krackhardt, 1987) accounts for autocorrelation and adjusts
error terms in binary networks where the interest lies in the existence or
non-existence of an edge. QAP is typically combined with logistic regres-
sion (e. g. Broekel and Hartog, 2011). Here, we link it to a hurdle model
(Mullahy, 1986; Zeileis et al., 2008) to analyse whether two authors pub-
lish together and if so, how many joint publications they have. Our hurdle
model mixes a binomial distribution for the zeros with a Poisson distribu-
tion (restricted to positive numbers) for the non-zero counts.
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4 Results

For space restrictions, we exemplarily present results for publication data
from the year 2015. Figure 1 shows for both considered institutions em-
pirical cumulative distribution functions of all possible distances between
each pair of researchers, independently of whether they published together
or not (grey), and the distances of author pairs which actually published
together (blue). We would expect both curves to describe the same dis-
tribution if there was no effect of spatial distance on the number of joint
publications. The Kolmogorov-Smirnov test yields for both Munich and
Bielefeld a p-value of less than 2 · 10−16, implying that the null hypothesis
that the samples are drawn from the same distribution can be rejected at
5% level.
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FIGURE 1. Empirical cumulative distribution functions of spatial distances.
Left: Helmholtz Zentrum Mnchen, right: Bielefeld University

Estimates of the hurdle model for the year 2015 show a small negative ef-
fect of distance on the number of joint publications for Helmholtz Zentrum
Mnchen when considering between-institute distances smaller than 1000m
(zero part: -0.0012, count part: -0.0005). Thus, both the probability of ac-
tive collaboration and the number of interdisciplinary publications decrease
with increasing distance. According to the QAP results, both coefficients
are significant at 5% level with a p-value close to zero (zero part) and 0.023
(count part). For distances smaller than 6000m, the coefficients are -0.0002
for the zero and -0.0001 for the count component (QAP p-values: close to
zero and 0.002). For Bielefeld University, we obtain coefficients 0.0010 for
the zero and 0.0004 for the count part. The QAP p-values are 0.032 and
0.220, i. e. there is a small positive significant effect at 5% significance level
for the zero part, indicating that more distant authors are more likely to
collaborate, independently of the number of publications.



Busen and Fuchs 301

5 Discussion

We suspect that spatial distance may generally have an effect on inter-
disciplinary collaboration. This is supported by our results for Helmholtz
Zentrum M’́unchen. At Bielefeld University, interdisciplinarity is facilitated
by, amongst others, the special structure of the main building, where all
faculties are located under one roof. Given these conditions, spatial distance
matters less. Interpretation of associations has to consider the possibility
of spurious correlations: While it may be that close spatial proximity leads
to more intensive collaboration, it may also well be that office space has
been assigned in close proximity because of well-known scientific links be-
tween two research fields. The risk of wrong conclusions can be reduced
by including additional data on work across research fields. Having exam-
ined the interdisciplinary publication behaviour at one university and one
research center, there remain comparisons to other institutions as well as
the inclusion of several other influencing factors such as scientific focus,
teaching assignment, budget and internationality, to mention just a few.
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and Economics at Bielefeld University for project funding.
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Abstract: European sardine is experiencing an overfishing around the world.
The dynamics of the industrial and artisanal fishing in the Mediterranean Sea
from 1970 to 2014 by country was assessed by means of Bayesian joint longitudi-
nal modelling that uses the random effects to generate an association structure
between both longitudinal measures. Model selection was based on Bayes factors
approximated through the harmonic mean.
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1 Introduction

European sardine (Sardina pilchardus) is one of the most commercial
species showing high over-exploitation rates over the last years in the
Mediterranean Sea. Mediterranean fisheries are highly diverse and geo-
graphically varied due not only to the existence of different marine environ-
ments, but also because of different socio-economic situations and fisheries
status.
We consider data of European sardine landings from 1970 to 2014 from
both the artisanal and the industrial fisheries which are defined in terms
of small-scale and large-scale commercial fisheries, respectively. Data are
recorded by country (Albania, Algeria, Bosnia and Herzegovina, Croatia,
France, Greece, Italy, Montenegro, Morocco, Slovenia, Spain and Turkey)
and come from Sea Around Us (www.seaaroundus.org), a research initiative
at the University of British Columbia.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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Top plot of the next figure shows the dynamics of the industrial amount
of fish caught, in logarithmic scale, from 1970 to 2014 in all the Mediter-
ranean countries included in the study. Bottom plot presents the dynamics
of artisanal fishing.
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2 Bayesian joint modelling

Let Y
(I)
it and Y

(A)
it be the amount of sardine caught by industrial and

artisanal methods in the country i during year t, respectively. Calendar
time is the time scale and t = 0 is the first year of the study (i.e. 1970).
We assume a Bayesian shared-parameter approach to jointly model both
processes that uses the random effects to generate an association structure
between both longitudinal measures. The joint distribution of the longitu-

dinal fishing vectors, Y
(I)
i = (Y

(I)
i0 , . . . , Y

(I)
iT ) and Y

(A)
i = (Y

(A)
i0 , . . . , Y

(A)
iT ),

parameters and hyperparameters θ, and random effects bi for country i is:

f(y
(I)
i ,y

(A)
i ,θ, bi) = f(y

(I)
i ,y

(A)
i |θ, bi)f(bi|θ)π(θ)

= f(y
(I)
i |θ, b

(I)
i )f(y

(A)
i |θ, b

(A)
i )f(bi|θ)π(θ).

We propose two specific models for f(y
(I)
i |θ, b

(I)
i ) and f(y

(A)
i |θ, b

(A)
i )

within the framework of mixed linear models. The random effects vec-
tor for country i can be divided in two subvectors, bi = (b

(I)
i , b

(A)
i ) cor-

responding to industrial and artisanal fishing, respectively. In addition,
we impose a structure of association between the random effects associ-

ated to the industrial and artisanal fishing, f(b
(I)
0i , b

(A)
0i |Σ0) = N(0,Σ0) and
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f(b
(I)
1i , b

(A)
1i |Σ1) = N(0,Σ1), with variance - covariance matrices given by

Σ0 =

(
σ

(I)
0

2
ρ0σ

(I)
0 σ

(A)
0

ρ0σ
(I)
0 σ

(A)
0 σ

(A)
0

2

)
, Σ1 =

(
σ

(I)
1

2
ρ1σ

(I)
1 σ

(A)
1

ρ1σ
(I)
1 σ

(A)
1 σ

(A)
1

2

)
.

Both models can be expressed in terms of a conditional normal density of
the subsequent longitudinal model given parameters, hyperparameters and

random effects, f(y
(I)
i |θ, bi) = N(µ

(I)
i , σ2I), f(y

(A)
i |θ, bi) = N(µ

(A)
i , σ2I).

The two models differ in the conditional mean by the inclusion in one of
them of an autoregressive term as it can be seen in Table 1.

TABLE 1. Conditional mean of the amount of sardine caught by industrial and
artisanal methods in the country i during year t specified by each of the proposed
models.

Model µ
(I)
it µ

(A)
it

M1 β
(I)
0 + b

(I)
0i + b

(I)
1i t β

(A)
0 + b

(A)
0i + b

(A)
1i t

M2 β
(I)
0 + b

(I)
0i + b

(I)
1i t+ ρ(I)w

(I)
i,t−1 β

(A)
0 + b

(A)
0i + b

(A)
1i t+ ρ(A)w

(A)
i,t−1

Coefficients β
(I)
0 and β

(A)
0 are the regression industrial and artisanal fishing

intercept, respectively. The autoregressive term in model M2 for industrial

and artisanal fishing in country i is w
(I)
i,t−1 = y

(I)
i,t−1−(β

(I)
0 +b

(I)
0i +b

(I)
1i (t−1))

and w
(A)
i,t−1 = y

(A)
i,t−1 − (β

(A)
0 + b

(A)
0i + b

(A)
1i (t− 1)) (Weiss, 2005).

To fully specify the Bayesian model we elicit a prior distribution for all the
uncertainties in the model. We assume a noninformative prior scenario with
prior independence: normal distributions for the regression coefficients and
uniform distributions for all standard deviation parameters. The prior for

the autoregressive parameters is U(−1, 1) to induce the stationarity of w
(I)
it

and w
(A)
it , as well as for the correlation parameters ρ0 and ρ1.

3 Posterior inferences

The posterior distribution for both models was approximated via JAGS
software (Plummer, 2003) through Markov chain Monte Carlo simulation.
Table 2 summarizes the approximate posterior distribution for the models
of our study.
Results indicate that the random effects associated with each country play
an important role in every model. Although the deviation of the random

trends σ
(∗)
1 has a small value, little variations on the trend produce big

changes over time. Since the response variable is the logarithm of the
tonnes, the random effects on the trend associated with each country play
an important role in these models. On the other hand, the inclusion of the
autoregressive term seems to absorb a large part of the variability explained
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TABLE 2. Summary of the approximate sample from the posterior distribution
for models M1 and M2.

M1 M2
mean sd mean sd

β
(I)
0 8.731 0.875 8.243 0.793

β
(A)
0 5.651 1.208 5.707 1.155
ρ0 0.673 0.258 0.695 0.259
ρ1 0.900 0.097 0.763 0.253

ρ(I) - - 0.806 0.042

ρ(A) - - 0.916 0.035

σ
(I)
0 2.648 0.786 2.526 0.745

σ
(A)
0 3.823 1.014 3.632 1.046

σ
(I)
1 0.051 0.013 0.045 0.013

σ
(A)
1 0.052 0.012 0.037 0.015
σ 0.565 0.014 0.349 0.008

by the rest of the random effects and consequently, random effects become
less relevant.As a first approach to model comparison, we have computed the marginal
likelihood for each model by means of the harmonic mean (Newton and
Raftery, 1994). The values obtained for models M1 and M2 in logarithmic
scale are −817.74 and −523.27, respectively. The subsequent Bayes factors
provide a decisive evidence in favour of the joint autoregressive model.
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1 Introduction

It is a common assumption in the context of Optimal Experimental De-
sign that the response variable follows a homoscedastic normal distribution.
There are, however, other studies that assume different probability distri-
butions based on prior experience or additional information. Nonetheless,
the available references that set out a general framework for this theory for
any probability distribution of the response variable are very few (Atkinson
et al., 2014), and the effect on the optimal design of the probability dis-
tribution under consideration has not been previously studied. This work
analyzes that effect.
The model of interest for the experimenter can be expressed generally as

y = g−1(η(x; θ)) + ε, (1)

where y is the response variable that is assumed to follow a probability
distribution with density function d(y; ρ), where ρ is the vector of param-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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eters of the distribution, η(x; θ) is the regression function (not necessarily
linear in the parameters), x is the explicative variable, and θ the vector of
unknown parameters that must be estimated. Finally, g is the link function
relating the mathematical expectation of the probability distribution to the
regression function, and ε is the error term.

2 Optimal experimental design

An approximate design is a probability measure ξ over the design space X :

ξ =

{
x1 . . . xq
w1 . . . wq

}
∈ Ξ, xi ∈ X ,

q∑

i=1

wi = 1,

where ξ(xi) = wi and Ξ represents the set of all approximate designs.
The elemental information matrix (EIM), introduced by Atkinson et al.
(2014), is defined as

ν(η(x; θ)) = −E
[
∂2 log d(y; η(x; θ))

∂η(x; θ)2

]
. (2)

It gathers information about the probability distribution given by d(y; ρ).
The relation between the parameters, ρ, of the probability distribution and
the model η(x; θ) is determined by the linking function, g, seen in (1).
The single-point information matrix in x ∈ X is given by

I(x; θ) = −E
[
∂2 log d(y; η(x; θ))

∂θi∂θj

]
= ν(η(x; θ))fT (x; θ)f(x; θ),

where fT (x; θ) = ∂η(x; θ)/∂θ. And the Fisher information matrix (FIM) is
defined for the approximate design with probability measure ξ as

M(ξ; θ) =

∫

X
I(x; θ)ξ(x)dx.

By definition, the inverse of the FIM is asymptotically proportional to the
variance and co-variance matrix of estimators of the parameters of the
model θ to be estimated.
Optimization criteria play an important role in the theory of Optimal Ex-
perimental Design, as they allow functions of the FIM to be determined that
optimize this matrix in different ways. This study uses the D-optimization
criterion, whose aim is to minimize the volume of the confidence ellipsoid
of the estimators of the model parameters, θ̂. This criterion is given by

ΦD(M(ξ; θ)) = log |M−1(ξ; θ)|.
The D-efficiency of a design allows the goodness of any design ξ to be
compared to the D-optimal ξ∗ design,

effD(ξ|ξ∗) =

( |M(ξ; θ)|
|M(ξ∗; θ)|

)1/m

. (3)
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3 Theoretical results

This paper looks at two probability distributions of the response vari-
able: Gamma and Normal. For the Gamma distribution, Var[y] = E[y]2/α.
Therefore a heteroscedastic Normal distribution with a variance structure
which allows it to be compared to the Gamma distributions is considered:

Var[y] = kE[y]2r, (4)

where k ∈ R+ and r ∈ R are constants and E[y] = η(x; θ). Thus, if the
parameter α of the Gamma distribution, Γ(α, β), is constant, a similar vari-
ance structure to the heteroscedastic Normal distribution is achieved with
k = 1/α and r = 1. On the other hand, the case r = 0 corresponds to the
homoscedastic Normal distribution. Using (2) the EIM of the heteroscedas-
tic Normal distribution with variance given by (4) is

ν(η(x; θ); r, k) =
2r2

η(x; θ)2
+

1

kη(x; θ)2r
.

Theorem 1. Let η(x; θ) > 0 be the function of some regression model, for
some optimization criterion Φ based on the FIM, then the Φ-optimal de-
signs for the heteroscedastic Normal distribution with r = 1 in the variance
defined in (4) and for the Gamma distribution with constant α coincide.
Also, the Φ-optimal design obtained is independent of α and k.
Theorem 2. Let η(x; θ) = θ0 + θ1x + θ2x

2 > 0 be the function of a
quadratic linear regression model, where x is defined as a design space
X = [xl, xu]. If the response variable follows a Gamma distribution with

constant parameter α, the D-optimal design is ξ∗Γ =

{
xl x2 xu

1/3 1/3 1/3

}
,

where x2 ∈ (xl, xu) is a solution of the quadratic equation

(θ1 + θ2(xl +xu))x2
2− (2θ2xlxu− 2θ0)x2− (θ0(xl +xu) + θ1xlxu) = 0. (5)

4 Practical application of the 4-parameter Hill model

The well-known Hill model widely used in the literature to describe depen-
dence between the concentration of a substance and a variety of biochemi-
cal, physiological or pharmacological responses. In the context of Optimal
Experimental Design, this model was studied by several authors. Khinkis et
al. (2003) look at the 4-parameter Hill model, where the response variable
is the effect of a number of drugs which inhibit the growth of tumor cells,
without completely eliminating them. These authors calculate D-optimal
designs for the different types of drug, assuming that the response variable
follows a normal heteroscedastic distribution with the variance structure
given by (4). For brevity we omit here detailed results. But our analy-
sis shows a different behavior of the efficiency of the designs obtained by
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assuming the heteroscedastic normal distribution, when the relationship
between the mean and the variance changes, that is when r varies, with
respect to the designs obtained for the Gamma distribution. These results
allow to identify those cases in which it is important to give special atten-
tion to the assumed probability distribution.
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1 Introduction & Background

There remain environmental challenges which can only acccurately be as-
sessed by process-based modelling. An example of this is monitoring the
environmental impacts of aquaculture, where the difficulty and cost of col-
lecting data over large areas make modelling the more effective approach.
Such modelling approaches are computationally intensive and do not ac-
count for uncertainty. Therefore, sensitivity and uncertainty analyses of
these models provide approaches to quantify uncertainty in model responses
and attribute them to variations in the model parameters. NewDEPOMOD
is a development of DEPOMOD (Cromey et al. 2002) that was created to
estimate and predict the transportation of waste particles from fish farm
cages to the seabed. NewDEPOMOD produces a number of scalar outputs
as well as a map of the impacted area. Scalar outputs such as the Total
Area Impacted, 99th Percentile and Mass balance will be considered as a
starting point for the sensitivity analysis, before extending this to consider
the shape of the impact as the response.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Sensitivity Analysis

A sensitivity analysis can be used to address uncertainties within a model to
increase confidence in the predictions (Saltelli et al. 2000). Given a process-
based model that maps the n inputs, x = [x1, . . . , xn], to the output, y,
using the function, f ,

y = f(x) = f(x1, . . . , xn).

A sensitivity analysis considers how variations in the output, y can be
associated with variations in the inputs, x = [x1, . . . , xn]. Saltelli et al.
(2000) described a typical sensitivity analysis workflow: 1) Determine the
questions relating to the model that should be answered and identify the
inputs required, 2) Establish suitable ranges of variation for each input, 3)
Identify an appropriate design to generate the input matrix, 4) Complete
model runs to create the required outputs, and 5) Analyse the effect of
each input on the output. Traditionally, a sensitivity analysis is applied to
a model with a scalar output, but in this work we extend this to develop
a sensitvity analysis approach that uses area and shape as the response
which will be illustrated using output from NewDEPOMOD.

2.1 Sensitivity Analysis for Scalar Outputs

The scalar outputs for NewDEPOMOD, mentioned previously, were con-
sidered as the outputs of the sensitivity analysis. In collaboriation with the
Scottish Environment Agency (SEPA), a set of inputs were identified as
being of most importance, which included Critical Shear Stress for Ero-
sion and Settling Velocity of Faeces. Suitable ranges for the inputs were
established using the literature, where possible, and the experience and
knowledge of SEPA in cases where no literature was available. A correlated
Latin Hypercube Sampling (LHS) was used to account for the relation-
ships between inputs and capture the sample space effectively. It relies on
a restricted pairing procedure (Iman & Conover 1982), where a target cor-
relation matrix, C∗, is identified at the outset. Following this, an initial
LHS, L, is calculated with sample correlation, T. A Cholesky Decomposi-
tion of T and using other variance reduction techniques, allows a matrix,
S, to be found such that the correlated LHS is given as follows:

L∗B = LST

where the correlated LHS, L∗B has a sample correlation matrix MB, ap-
proximately equal to C∗. The input matrix allowed 10,000 model runs to be
completed in order to calculate the scalar summaries and determine the im-
pact of uncertainties in the inputs. Random forests were used as a ranking
method as they are able to deal with non-linear relationships, interactions
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TABLE 1. Top 3 ranked inputs using Total Area Impacted as the output.

Inputs Importance Value

Settling Velocity of Faeces 127.24
Critical Shear Stress for Erosion 75.99
Rate of Erosion 50.81

between inputs and also the interpretability of the results. Table 1 shows
the 3 highest ranked inputs for the scalar output, Total Area Impacted.
The random forest model identified Settling Velocity of Faeces as having
the biggest impact on the Total Area Impacted, which was expected as this
determines the time particles spend settling from the cages to the seabed.

2.2 Sensitivity Analysis of the Shape of the Impact

As NewDEPOMOD produces a map of the predicted shape and size of the
impacted area on the seabed, it was important to extend the traditional
sensitivity analysis of scalar outputs and consider the influence of uncer-
tainty in the inputs on the predicted shape and size. A landmark approach
(Dryden & Mardia 2016) was used to identify the main shape of the impact
(example seen in Figure 1), by considering transects from the farm.
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FIGURE 1. Plot illustrating the landmarks calculated to analyse shape.

Landmarks were calculated for each map of the predicted impact using this
approach, before using a Generalised Procrustes Analysis (GPA) approach
to identify variations in the shapes. GPA is defined as the translation,
rescaling and rotation of the shape configurations (X1, X2, . . . , Xn) relative
to each other, to minimize a total sum of squares (Dryden & Mardia 2016):

G(X1, X2, . . . , Xn) =

n∑

i=1

‖ (βiXiΓi + 1kγ
T

i )− µ ‖2

with respect to βi,Γi, γi, for i = 1, . . . , n and µ, subject to an overall
size constraint that is chosen. βi > 0 refers to a scale parameter, Γi is a



Currie et al. 313

rotation matrix, γi is a location vector and µ is the population mean shape.
A Principal Components Analysis was then applied to the landmarks data
to identify the areas of variability in the shapes.

TABLE 2. Table of the Principal Component percentages.

Principal Component % of Variability Captured

PC 1 59.0%
PC 2 22.0%
PC 3 7.5%
Total 88.5%

Table 2 shows the variability described by the first 3 principal components
(PCs). Settling Velocity of Sediment and Release Height were identified,
with the 3 inputs from Table 1, as having an influence on the variations
described by the first 3 PCs.

3 Conclusion

Traditional sensitivity analysis methods were extended to multivariate re-
sponse models and applied to NewDEPOMOD to identify parameters that
influenced the variation in the shape of the impacted area on the seabed.
Further work aims to develop a spatio-temporal emulator of NewDEPO-
MOD to allow predictions to be made without the computational cost.

Acknowledgments: Special thanks to EPSRC (Award Ref: 1953182) and
SEPA for funding the PhD and Andrew Berkeley (formerly SEPA) for his
support in the completion of this work.
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Abstract: This paper proposes the use of Integrated Nested Laplace Approxi-
mation (Rue et al., 2009) to describe the spatial displacement of earthquake data.
Specifying a hiechical structure of the data and parameters, an inhomogeneuos
Log-Gaussian Cox Processes model is applied for describing seismic events oc-
curred in Greece, an area of seismic hazard. In this way, the dependence of the
spatial point process on external covariates can be taken into account, as well
as the interaction among points, through the estimation of the parameters of
the covariance of the Gaussian Random Field, with a computationally efficient
approach.
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1 Introduction

Usually, Bayesian inference for spatial and spatio-temporal data refers to
Markov Chain Monte Carlo algorithm. Unfortunately, for such models, this
can be computationally demanding, given the complexity of the spatio-
temporal models, the dataset and the parametric space dimensions. The
Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009) ap-
proach has been developed as a computationally efficient alternative to
MCMC. Furthermore, INLA can be combined with the Stochastic Par-
tial Differential Equation (SPDE) approach proposed by Lindgren et al.
(2011) in order to implement spatial and spatio-temporal models for point-
reference data. In this paper, after a brief overview of spatial point pattern
analysis with INLA in section 2, we provide an application on spatial seis-
mic data, fitting an inhomogeneous Log-Gaussian Cox Process in section
3, followed by the Conclusions.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Spatial point pattern analysis with INLA

INLA is designed for Latent Gaussian Models, a very wide and flexible class
of models ranging from (generalized) linear mixed to spatial and spatio-
temporal models. In these models the distribution of the response variable
y=(y1, . . . , yn) is assumed to belong to the exponential family, in which
the linear predictor ηi can include terms on covariates and different types
of random effects in an additive way. The vector of all these latent effects
is denoted by θ and, its distribution follows a Gaussian Markov Random
Field (GMRF), with zero mean and precision matrix Q(ψ2), where ψ2 is
the vector of hyperparameters. In addition, the distribution of y depends
on some vector of hyperparameters ψ1, to which are assigned priors, not
necessarily Gaussian. The vector of the hyperparameters is denoted by
ψ=(ψ1,ψ2).
The main goal is to obtain the marginal distributions for the elements of
the latent fields p(θ|y) and the hyperparameters p(ψ|y), and use these to
compute posterior summary statistics. This is achieved by exploiting the
computational properties of the GMRF and the Laplace approximation
for multidimensional integration, assuming the observed variables y to be
independent given θ and ψ. More details can be found in Rue et al. (2009)
and Blangiardo et al. (2013).
In the case of geostatistical data, θ is assumed to follow a multivariate
Normal distribution with mean µ and spatially structured covariance ma-
trix Σ, whose generic elements is Σij = Cov(θi, θj) = σ2

CC(∆ij) where
C(∆ij) = 1

Γ(ν)2ν−1 (κ∆ij)
νKν(κ∆ij) is the isotropic Matérn spatial covari-

ance function (Cressie, 1992) depending on the Euclidean distance between
the locations ∆ij = ‖si − sj‖. The parameter Kν denotes the modified
Bessel function of second kind and order ν > 0, which measures the degree
of smoothness of the process and is usually kept fixed. Conversely, κ > 0 is

a scaling parameter related to the range r, through r =
√

8ν
κ , with r corre-

sponding to the distance at which the spatial correlation is close to 0.1 for
each ν. Other models are possible for the spatial covariance function but
in this paper we only focus on the Matrn model, since it is required for the
SPDE approach that we consider in the application. Indeed, when dealing
with point-reference data, this approach is particularly computationally ef-
fective, as it consists in representing a continuous spatial process (e.g. a
GF) with the Matérn covariance as a discretely indexed spatial random
process (e.g. a GMRF). We refer to Lindgren et al. (2011) for a complete
description.

3 Spatial Log-Guassian Cox Process for seismic data

In this section, an application to a spatial dataset is provided, specifying a
Log-Gaussian Cox Process with inhomogeneous intensity λ(s). We consider
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FIGURE 1. Earthquakes occurred in Ithaki, Kefalonia and Zakynthos between
2005 and 2014. The plate boundary is in red while the faults are blue.

mean sd 0.025quant 0.5quant 0.975quant mode

r 0.61 0.15 0.38 0.59 0.97 0.55
σ2 1.60 0.30 1.11 1.57 2.28 1.50

β0 2.60 1.09 0.23 2.66 4.58 2.79
β1 0.09 3.38 -6.52 0.06 6.81 0.03
β2 5.88 2.85 0.52 5.79 11.72 5.62
β3 -9.56 11.65 -32.76 -9.47 13.06 -9.27

TABLE 1. Summary statistics of the distributions of the parameters and hyper-
parameters of the model (1)

the SPDE model, as developed in Simpson et al. (2016). The 149 analysed
seismic events are mainly clustered in the Western area of Kefalonia is-
land and South to the Zakynthos island (Figure 1). The spatial covariates
considered in the analysis are the Distance from the faults (Df ) and the
Distance from the plate boundary (Dpb). The proposed model is specified
as follows:

yi|λ ∼ exp|D|−Λ
∏

λ(si)

log λ(si) = β0 + β1Df + β2Dpb + β3DfDpb + u(si) (1)

u|σ2, r ∼ GRF (0,Σ(σ2, r))

where latent field is represented by θ = [β,u]T and the hyperparameters
are ψ = [σ2, r]T , as ν is set equal to 1. The SPDE approach for point
pattern analysis defines the model at the nodes of the mesh, so this is built
on the entire domain extent, with the largest allowed triangle edge length
equal to 0.1 for the interior edges and 0.4 for the exterior. PC-priors, de-
rived as in Fuglstad et al. (2018), are considered for r and σ2. Summary
statistics of the parameters and hyperparameters of the model (1) are re-
ported in table 1. We notice how the negative sign of the interaction term
parameter β3 suggests what we expected, that is, moving away from a seis-
mic source the probability of the occurrence of an earthquake decreases.
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Furthermore, such values of r and σ prove that λ(s) changes rapidly over
the study window, around its mean, that is to say, the clustered structure
of the point pattern is correctly identified by the model parameters. These
results are close to those obtained fitting a LGCP model with the same
inhomogeneous intensity, through the local Palm likelihood maximization,
in D’Angelo et al. (2020). Nevertheless, in the latter approach, as the pa-
rameters are allowed to vary spatially, it is also possible to identify the
most inhomogeneous areas.

4 Conclusions
In this paper we briefly explored the potentialities of INLA, in modelling
spatial seismic data, proposing an inhomogeneous LGCP model to describe
a Greek seismic spatial point pattern, and obtaining similar results as the
local frequentist approach. As combining the INLA and SPDE approaches
it is possible to implement both spatial and spatio-temporal models for
point-reference data, future analyses might take into account the tempo-
ral component of the analysed process, and therefore the spatio-temporal
structure that typically characterizes the complex seismic phenomenon.
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Abstract: In this work, using kernel convolution of order based dependent
Dirichlet process (Griffin and Steel (2006)) we construct a nonstationary, nonsep-
arable, nonparametric space-time process, which, as we show, satisfies desirable
properties, and includes the stationary, separable, parametric processes as special
cases.
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1 Introduction

Recent years have witnessed considerable amount of research on spatial
and spatio-temporal modeling. It is common practice to assume that the
underlying spatial or spatio-temporal process is stationary and isotropic
Gaussian process, as it facilitates prediction. In particular, the geostatistical
method of kriging assumes a Gaussian process structure for the unknown
spatial or spatio-temporal field and focuses on calculating the optimal lin-
ear predictor of the field. When performing kriging, researchers generally
assume a stationary, often isotropic, covariance function. The covariance
of responses at any two locations is assumed to be a function of the sep-
aration vector or of the distance between locations, but not a function of
the actual locations. The standard kriging approach allows one to flexi-
bly estimate a smooth spatial field, with no pre-specified parametric form.
However, these approaches have several drawbacks. The most important is

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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that the true covariance structure may not be stationary. This is because
there may be local influences affecting the correlation structure of the ran-
dom process. For instance, orographic effects influence the atmospheric
transport of pollutants, and result in a correlation structure that depends
on different spatial locations. Griffin and Steel, 2006 (henceforth, GS) pro-
posed the novel order-based dependent Dirichlet processes (ODDP). They
introduced a framework for nonparametric modeling with dependence on
continuous covariates. Dependence is induced through relevant weights uti-
lizing similarities in the covariate information.a simple analytical expression
for the correlation function of the distributions, which ensures that if two
points are similar in the covariate space they will get higher correlation
compared to the points that are not. Furthermore when the distance be-
tween two points is large enough in the covariate space, the correlation
approaches zero. In spatial/spatio-temporal context, it translates into the
fact that when two observations are widely separated in space/space-time,
the model based correlations tend to zero. But the ODDP process suffers
from the limitation of being stationary. Preserving all the desirable proper-
ties of the correlation function of ODDP, we attempt to incorporate further
flexibility in our spatial/temporal/spatio-temporal model in terms of non-
stationarity and nonseparability through our proposed kernel convolution
based methodology.

2 Kernel Convolution of ODDP

We consider the following model for the data Y = {y1, . . . , yn} at loca-
tions/times {xi = (s′i, ti)

′; i = 1, . . . , n}:

yi = f(xi) + εi, (1)

where εi
iid∼ N(0, σ2), for unknown σ2. We represent the spatio-temporal

process f(x) as a convolution of ODDPGx with a smoothing kernelK(x, ·):

f(x) =

∫
K(x,θ)dGx(θ) =

∞∑

i=1

K(x,θπi(x))pi(x) ∀x ∈ D ⊆ Rd, (2)

d (≥ 1) being the dimension of x.

Before deriving the covariance structure of f(·), we define the necessary
notation following GS. Let

T (x1,x2) = {k : there exists i, j such that πi(x1 = πj(x2) = k}.

For k ∈ T (x1,x2), we further define Alk = {πj(x1) : j < i where πi(x1) =
k}, Sk = A1k∩A2k and S′k = A1k∪A2k−Sk. Then, the following theorem,
provides an expression for the covariance structure of f(·).
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Theorem 1 If
∫
|K(x,θ)|dG0(θ) < ∞ and∫

|K(x1,θ)K(x2,θ)|dG0(θ) < ∞, then for a fixed ordering at x1

and x2,

Cov(f(x1), f(x2)) =CovG0(K(x1,θ),K(x1,θ))

× 2

(α+ 1)(α+ 2)

∑

k∈T (x1,x2)

(
α

α+ 2

)#Sk ( α

α+ 1

)#S′k

,

(3)

where

CovG0
(K(x1,θ),K(x2,θ)) =

∫
K(x1,θ)K(x2,θ)dG0(θ)

− EG0
(K(x1,θ)EG0

(K(x2,θ). (4)

3 Computation of the Model

Since our model entails an infinite random series, for Bayesian model fitting
purpose we must either truncate the series or more appropriately consider
a random number of summands, which renders the model dimension a ran-
dom variable. We attack the variable dimensionality problem using Trans-
dimensional Transformation based Markov Chain Monte Carlo algorithm.

4 Application

We have used our method, to analyse two separate real data sets, one spatial
real data and one spatio-temporal data. In spatial real data we consider an-
nual indexes of ozone values for 76 locations in the US. For spatio-temporal
data analysis, airborne particulate matter (PM) for 180 time points and 50
locations. We have ensured the nonstationarity property of the data using
a newly developed test for detecting stationarity in spatial/spatio-temporal
data.

5 Conclusion

Although for the current work we restricted ourselves to spatio-temporal
applications only, our model is readily applicable in the functional data
context. In fact, in the context of nonparametric function estimation, a
new class of prior distributions can be introduced through our proposed
model.
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FIGURE 1. Real spatial data analysis: Surface plot of the posterior medians
(middle) along with the lower and the upper 95% credible intervals associated
with the leave-one-out posterior predictive densities The observed data points
are indicated by *.

FIGURE 2. Real spatio-temporal data analysis: The top panel shows Posterior
predictive distributions summarized by the median (middle line) and the 95%
credible intervals as a function of t for one randomly chosen spatial locations. The
bottom panel exhibits the surface plot of posterior median values at 50 locations,
averaged over all month specific predictions from 1988-2002. The observed data
points are denoted by *.
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Abstract: In the distillation processes it is very important to know precisely the
relationship between temperature and vapor pressure. The vapor pressures not
only depend on the temperature but vary enormously for different substances.
The study of optimal designs for the estimation of the parameters of Antoine
equation, according to the I-optimality criterion is shown. It is particularly in-
teresting for this model due to the importance of prediction on boundary regions
of the space of the design, which usually correspond to the proximity of state
change points.
Genetic algorithms are one of the several nature-inspired algorithms, mainly used
for the calculation of optimal solutions to problems that are hard to solve through
direct algorithms. A genetic algorithm that find optimizes the designs presented
in this work has been developed.

Keywords: Optimal Design; I-optimality; Heuristics; Genetic Algorithms

1 Introduction

The Antoine’s equation is a hyperbolic equation, from a class of semi-
empirical correlations describing the relation between vapor pressure, P ,
and temperature, T , for pure components (Wisniak, 2001). The statistical
model can be written as:

P = η(T, θ) + ε = 10A−
B

C+T + ε; var(P ) = σ2; T ∈ [Tmin, Tmax].

Along this work, optimal designs will be obtained for the particular
case of water in the range of temperatures X = (1◦C, 100◦C). Ini-

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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tial best guesses of the parameters A, B and C, will be needed: θ0 =
(8.07131, 1730.63, 233.426)t (Dortmund Databank, 2020).
For this work approximate designs will be used. Approximate designs con-
sist on a set of points, Ti, and the proportion of observations, ωi, that
should be taken on each of the points which don’t have to be necessarily a
ratio of an integer. It is obvious that the weights must be positive, and ver-
ify
∑
i ωi = 1. An approximate design, ξ, can also be seen as a probability

measure over the design space,

ξ =

(
T1 T2 ... Tm
ω1 ω2 ... ωm

)
.

The Information Matrix for this design is then calculated as:

M(ξ) =

m∑

i=1

ωi · f(Ti)f
t(Ti); where f(Ti) =

∂η(T, θ)

∂θ

and, if not singular, its inverse is proportional to the variance-covariance
matrix of the unknown parameters (Fedorov and Leonov, 2014).

2 I-optimization

There is a wide array of criteria on which designs can be evaluated, depend-
ing on the desired properties of the design. In this section the criterion of
I-optimality, in which this work focuses, is explained.
I-optimality seeks designs that minimize the average variance of prediction
over a region of interest, R, which could be outside the space design. It
takes the first expression, which can be then rewritten as:

I(ξ) =

∫
R f

t(T )M−1f(T )dT∫
R dT

=
Tr[M−1B]∫
R dT

, with B =

∫

R
f(T )f t(T )dT.

Here, only M(ξ) depends on the design, with B being the moment matrix
of the model over the interest region, R.
I-optimality is a linear function of the elements of M−1(ξ) and the Equiv-
alence Theorem states that a design ξ? is I-optimal if:

f t(T )M−1(ξ?)BM−1(ξ?)f(T )− Tr[M−1(ξ?)B] ≤ 0 ∀T ∈ X . (1)

The equality is reached on the support points of the design (Goos et al.,
2016).

2.1 Algorithms for I-optimal designs

The problem of finding optimal designs for non-linear models is often hard
or untractable to take on analitically. With that consideration, much effort
has been put on numerical methods to find optimal designs.
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For this work, a version of the Wynn-Fedorov algorithm and a genetic
algorithm have been implemented.
The Wynn-Fedorov algorithm has been adapted for I-optimality, with a few
commonly added heuristics. This algorithm consist on sequentially choosing
points to add to the design that maximizes the expression of the Equiva-
lence Theorem (1), with a certain weight decreasing on each iteration (Goos
et al., 2016).
Since this algorithm usually has a slow convergence rate, the use of a genetic
algorithm was considered. A genetic algorithm is a search metaheuristic
that is inspired by the theory of natural evolution. This kind of algorithm
reflects the process of natural selection where the fittest individuals are
selected for reproduction in order to produce offspring for the next gener-
ation.
The genetic algorithm starts by generating and evaluating (according to
the objective function, I(ξ)) an initial population of random designs. The
upper bound for the number of points can be set to 7, due to Caratheodorys
Theorem, which states that an optimal design can be found with at most
k(k + 1)/2 + 1, with k the number of unknown parameters. In each gen-
eration, the population is randomly combined in pairs, and a crossover
operator is applied to each pair, in order to generate two offspring solu-
tions by mixing random points and weights. Then, a series of small random
mutations are carried on in each offspring, iteratively improving them by
modifying some points and weights. Then, for the next population, the best
two individuals from each pair of parents and their respective two offspring
solutions are chosen. The stopping condition of the genetic algorithm is a
certain number of generations without improving the best design found so
far, or when the optimal design is reached (via the Equivalence Theorem).
During the whole process, the best individual is stored, and its criterion
function is stored as a benchmark. If after a certain number of iterations
there is no improvement, the algorithm stops, and the optimality of the
design is verified via the Equivalence Theorem.

3 Results

In I-optimality the region of interest for the prediction must be chosen,
and a certain probability distribution over that region assumed. For this
particular model, the chosen region of interest is around the change of state
temperature, Tmax = 100◦C. As for the probability distribution, two dif-
ferent options have been tested: the uniform distribution and a symmetric
triangular distribution, which emphasises the interest on the central part
of the region.
For the uniform distribution, the designs of Table 1 have been calculated.
While for the triangular distribution, the designs of Table 2 have been
calculated.
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TABLE 1. I-optimal design for uniform distribution

R x1 ω1 x2 ω2 x3 ω3

98-102 34.8217 0.0448625 86.5664 0.134595 100. 0.820542
90-110 33.6143 0.170485 84.6011 0.333001 100. 0.496514
80-120 33.2688 0.262212 83.9214 0.377867 100. 0.359921
60-140 33.0619 0.351941 83.8008 0.382857 100. 0.265203
40-160 33.0224 0.397804 83.8096 0.374876 100. 0.227319

TABLE 2. I-optimal design for triangular distribution

R x1 ω1 x2 ω2 x3 ω3

98-102 35.021 0.0328981 86.7807 0.101693 100. 0.865409
90-110 33.9156 0.136586 85.0865 0.295118 100. 0.568297
80-120 33.4647 0.228313 84.1820 0.362912 100. 0.408775
60-140 33.148 0.329009 83.8345 0.382853 100. 0.288138
40-160 33.0636 0.380855 83.8119 0.377867 100. 0.241278

These designs are useful as a starting point for choosing designing industry-
level experiments. Moreover, they serve as a benchmark, as the efficiency
of industry design can be tested against theirs.
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Abstract: Nonlinear mixed effects models are statistical models containing both
fixed and random effects. They are particularly useful in settings where repeated
measurements are made on the same statistical units (longitudinal data), or where
measurements are made on clusters of related statistical units. Observations in
the same unit/cluster cannot be considered independent and mixed effects mod-
els constitute a convenient tool for modeling unit/cluster dependence. Nonlinear
mixed effects models are commonly used in longitudinal data analysis since they
can cope with missing observations and unbalanced data, and take into account
individual variations from a common pattern. A commonly encountered compli-
cation in the analysis of longitudinal data is the variable length of follow-up due
to interval censoring. This can be further exacerbated by the possible depen-
dency between the time-to-event data and the longitudinal measurements. This
paper proposes a combination of a nonlinear mixed effects model for the longi-
tudinal measurements and a parametric model for the time-to-event data. The
dependency is handled via latent variables, which are naturally incorporated. Es-
timation procedures based on the Stochastic Aproximation of the EM algorithm
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1 Joint model formulation

Joint models can be used as a class of statistical methods for modeling
longitudinal data and time-to-event (TTE) data together. In a biometrics
setting, we often have, for a set of patients, time-to-event data of interest,
for instance, the loss of the fetus during pregnancy. One may be interested
in modeling the process inducing the event using, for example, a suitable
selected (time-dependent or not) hazard function to describe the instanta-
neous chance of an event occurrence. Simultaneously, for each patient, we
may be able to measure a longitudinal outcome and model its progression.
It is common that a given longitudinal biomarker has a real influence on
the TTE process. Mbogning et al. (2015) proposed a nonlinear mixed ef-
fects framework to jointly model longitudinal and repeated TTE data using
a parametric mixed effects hazard model for the repeated event times, so
that the link between both types of data, longitudinal and TTE data, is the
conditional expectation of the longitudinal observation given the random
effects or, more simply, function of the predicted longitudinal biomarker. In
this work, we follow the idea in Mbogning et al. (2015), but we handle the
dependency in the longitudinal and TTE data via latent variables, which
are naturally incorporated (i.e., only some random individual effects are
included in the survival model). Moreover, we consider a nonlinear mixed
model for the longitudinal data and a parametric model to explain the
TTE data, where both parts share a common parameter. In the case of the
TTE data, the recorded observations are the times at which events occur.
Here, we consider that the event can be interval censored. In addition, we
assume that the responses under study are repeatedly measured for each
of the m units over a period of time. For the i-th unit, i = 1, . . . ,m, ob-
servation times are restricted to a unit-specific time interval [0, Ti]; that is,
observation times are interval censored in a time interval. For the longitu-
dinal part, let yij be the response for the i-th unit at time tij . We consider
the longitudinal data arising from a nonlinear mixed effects model with
unit-specific random effects. More specifically,

yij = f(tij ,Ψi) + εij , i = 1, · · · ,m, j = 1, . . . , ni, with (1)

Ψi = Ψpop + βzi + ηi,

where Ψpop are population parameters, β is a set of coefficients, zi a vector
of individual covariates, the ηi’s are the random effects, with ηi ∼ Nd(0,Γ),
εij ∼ N (0, σ2), and ηi and εij are independent. For the TTE part, we
need to concentrate on the specification of the survival, S(t), and the
hazard, h(t), functions. Under our population approach, these functions
are subject-specific functions and we will use parametric models for the
TTE analysis (i.e., they depend on subject-specific parameters, Ψi), so
that S(t,Ψi) = P (Ti > t; Ψi) and hi(t) = h(Ψi, t). We will use the Weibull
model defined for individual i, which shares individual parameters with
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Model (1), so that hi(t) = γ × Ψi ×
(
tβw−1

)
, where Ψi is a subject-

specific effect for the i-th individual. We propose the use of a stochas-
tic approximation version of the EM algorithm (SAEM) (Delyon et al.,
1999) via the Monolix software to obtain maximum likelihood estimates
of θ = (γ, βw, β,Ψpop, σ

2,Γ). Moreover, if the simulation step cannot be
directly performed, we propose to combine the SAEM algorithm with a
Markov Chain Monte Carlo (MCMC) procedure (Kuhn and Lavielle, 2004).

2 Application: the pregnant women dataset

Data were collected during a clinical trial in a privately assisted reproduc-
tion center in Santiago, Chile. The data set consists of repeated measures
of β-HCG concentration levels taken over a period of two years on 173
different pregnant women divided in two groups: (i) pregnancies with a
normal development that came to term without important complications
(124 individuals); and (ii) a group of abnormal pregnancies with serious
anomalies that ended up with the loss of the fetus (49 individuals). Mea-
surements were recorded at different times for each woman during the first
trimester of pregnancy (first 80 days). It is well known that the β-HCG
concentration levels in the two groups follow different patterns. The event
here is the time of occurrence of the loss of the fetus in the abnormal group,
which occurs within 10 days after the last measurement. We propose to fit
this joint model to all longitudinal data (normal and abnormal groups), us-
ing the Weibull model defined above for the abnormal group via a random
effect, ai, so that the joint model defined in equations (2)-(3) is labelled as
model M1:

yij =
ai

1 + exp
{
− (tij−bi)

ci

} + εij , i = 1, . . . , n, j = 1, · · · , ni, (2)

hi?(t) = γ × ai? ×
(
tβw−1

)
, (3)

where i? indicates that individuals belong to the abnormal group, εij ∼
N(0, σ2) and ai ∼ N(apop, σ

2
a), bi ∼ N(bpop, σ

2
b ), ci ∼ N(cpop, σ

2
c ). For the

abnormal group, we know that the event occurs in a period of time not
exceeding 10 days after the last measurement, so the unknown event time
for individual is in the interval [li ≤ Ti ≤ li + 10], where li is the last mea-
surement time for the i-th woman in the abnormal group. The parameter
vector is then θ = (γ, apop, bpop, cpop, σ

2, σ2
a, σ

2
b , σ

2
c ). Here, random effects

φi = (ai, bi, ci) are treated as missing data. We propose to use a Stochastic
Approximation of the EM algorithm (Delyon et al., 1999) using the Mono-
lix software to obtain the maximum likelihood estimate of θ. Additionally,
we also consider a second model which includes the variable group in pa-
rameter ai. For this purpose, let (zi) be a sequence of latent variables such
that zi = 0 if the i-th woman belongs to the normal group, and zi = 1
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otherwise. The statistical model for the individual parameter ai is given by
equation (4) in the joint models (2) and (3), which we label as modelM2.

ai = apop + βa × zi + ηi, ηi ∼ N (0, σ2
a). (4)

Finally, following Mbogning et al. (2015), we propose a third model which
relates the predicted longitudinal biomaker, here the predicted concentra-
tion of β-HCG hormone levels in the the hazard function as:

hi?(t) = γ × Cci?(t)×
(
tβw−1

)
, (5)

where Cci?(t) is the predicted β-HCG concentration for individual i?, be-
longing to the abnormal group, at time t. The specification in the joint
models (2) and (5) will be labelled as model M3. Table 1 shows the esti-
mated parameters and the BIC and AIC values obtained with the SAEM
algorithm for the three models described above. We observe that the best
model, based on these criteria, is model M2. Additionally, we could com-
pute the predicted interval for the Kaplan Meier estimator, which can be
obtained by Monte Carlo simulation via Monolix in Model M2.

TABLE 1. Estimated parameters obtained using the SAEM algorithm-Monolix.

Parameters Model M1 Model M2 Model M3

apop 4.58 (.0487) 4.79 (.0523) 4.59 (.0537)
βa - -0.759 (.0916) -
bpop 15.88 (.557) 15.7 (.594) 15.69 (.581)
cpop 7.2 (.469) 7.42 (.544) 7.41 (.609)
γ 1.1e−6 (2.48e−6) 1.32e−6 (1.12e−6) 5.9e−6 (6.39e−7)
βw 3.5 (.602) 3.46 (.226) 3.07 (.0814)
σ 0.262 (.0178) 0.249 (.0206) 0.437 (.0403)
σa 0.437 (.0391) 0.323 (.0391) 4.54 (.488)
σb 4.47 (.485) 4.14 (.86) 0.405 (.203)
σc 0.893 (.276) 1.67 (.807) 0.275 (.0193)

BIC 741.34 671.81 742.52
AIC 706.33 633.65 707.52

References

Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a
stochastic approximation version of the EM algorithm. Ann. Stat.,
27, 94 – 128.

Mbogning, C., Bleakley, K. and Lavielle, M. . (2015). Joint modeling of
longitudinal and repeated time-to-event data using nonlinear mixed-
effects models and the SAEM algorithm. Journal of Statistical Com-
putation and Simulation, 85(8), 1512 – 1528.



A multivariate geometric distribution for
lifetimes of n-components series systems

Ricardo Puziol de Oliveira1, Jorge Alberto Achcar1

1 University of São Paulo, Brazil

E-mail for correspondence: rpuziol.oliveira@gmail.com

Abstract: System reliability studies usually assume independent lifetimes for the
components in the estimation of the reliability of the system. This assumption in
general is not reasonable in many engineering applications, since it is possible the
presence of some dependence structure among the lifetimes of the components
which could affect the evaluation of the reliability of the system. In the present
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1 Introduction

In the analysis of the reliability of component systems, an analyst first de-
scribes the overall design of the system in the form of a functional block
diagram of reliability. In this way, a series system is a component config-
uration usually assumed in engineering studies such that if any one of the
system components fails, the entire system fails. Associated to each sys-
tem component there is a response given by a random variable that could
be binary (fail/no fail) or denoted by its lifetime (a positive value). For
a n-component series system with lifetimes associated to each component
denoted respectively by Tj (j = 1, . . . , n), the reliability function of the
system at a fixed time t, under independence assumption, is given by,

R(t) = P(min(T1, . . . , Tn) > t) = R1(t) . . .Rn(t) (1)

However, since in many practical situations in reliability engineering studies
the lifetimes Tj (j = 1, . . . , n) are usually correlated which could affect

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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the estimation of the reliability of the system (see, for example, Singh
and Billinton, 1977; Blanchard et al., 1990; Aggarwal, 2012), the reliability
function of the system at a fixed time t, under dependence assumption, is
given by,

R(t) = P(T1 > t1, . . . , Tn > tn) = R1,...,n(t1, . . . , tn), (2)

where R1,...,n(t1, . . . , tn) denotes a multivariate reliability function for the
lifetimes Tj (j = 1, . . . , n).
The main goal of this paper is to introduce a multivariate geometric distri-
bution in the estimation of the reliability of series system under a Bayesian
approach assuming the multivariate n-component series system lifetime
data and the dependence structure. The obtained inference results for the
reliability of the system are compared to the usual approaches not consid-
ering the dependence structure.

2 Derivation of the Multivariate Geometric
Distribution

In this study, the defining properties of the multivariate geometric distribu-
tion are based on models in which a two-component system fails according
to the occurrences of fatal shocks to each one of the components or for all
of the components. The first approach related to this idea introduced in
the literature was proposed by Marshall and Olkin (1967) from where the
authors introduced a multivariate exponential distribution.
Suppose that the components of a two-component system fail after receiv-
ing an overall fatal shock. Independent Poisson processes U1(t, θ1), U2(t, θ2),
U12(t, θ12) govern the occurrence of fatal shocks. Events in the process
U1(t, θ1) are fatal shocks transmitted to component 1, events in the pro-
cess U2(t, θ2) are fatal shocks transmitted to component 2, and events in the
process U12(t, θ12) are fatal shocks transmitted equally and independently
to both components. Therefore if X = min(U1, U12) and Y = min(U2, U12)
denote, respectively, the lifetimes of the first and second components. In
this case, the probability of the system is working until an overall failure
is given by,

P(X > x, Y > y) = θx1θ
y
2θ

max(x,y)
12 (3)

The probability given by (3) is known in the literature as the Basu-Dhar
bivariate geometric distribution introduced by Basu and Dhar (1995). In-
ferences and some computational aspects for this distribution under a
Bayesian approach in the presence of censoring and covariates are intro-
duced by Achcar et al. (2016); de Oliveira and Achcar (2018). An imple-
mentation of this distribution in R software is given by the package BivGeo
introduced by Oliveira and Achcar, 2019. Similar arguments produce the
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n-dimensional geometric distribution given by,

P(X1 > x1, . . . , Xn > xn) =

n∏

i=1

θxii ·
n∏

i=1<j

θ
max(xi,xj)
ij . . . ·

× θ
max(x1,x2,...,xn)
12...n , (4)

where 0 < θi < 1, i = 1, . . . , n and 0 < θij , . . . , θ12...n ≤ 1, i = 1, . . . , n; j =
2, . . . , n; i < j.

3 A numerical simulated data analysis

As an example of statistical analysis for the series systems, in this section it
is presented the Bayesian Monte Carlo estimators (use of MCMC methods)
for the reliability function R(t) for 2-components; 3-components and 4-
components series systems. The obtained results are summarized in Figure
1 in which it is presented the plots of the estimated reliability functions
and the 95% credible intervals for the reliability functions assuming the
MVG distribution. Based on this simulated dataset, the reliability function
for the system can also be estimated. For the specified time, t = 1, the
true reliability value is obtained R(1) = 0.7695 (2-components), R(1) =
0.6063 (3-components) and R(1) = 0.4184 (4-components). The estimated
Bayesian estimators based on the simulated Gibbs samples for R(1) are
presented in Table 2 for each sample size assuming the MVG model and
assuming the independence structure.

TABLE 1. Bayes estimators for R(1) for each simulated dataset for each series
system under dependence and independence assumption.

Dependence Assumption Independence Assumption
Sample 2-comp. 3-comp. 4-comp. Sample 2-comp. 3-comp. 4-comp.

20 0.7319 0.5076 0.2912 20 0.7008 0.4387 0.2026
50 0.7822 0.5707 0.3466 50 0.7410 0.4813 0.1762
100 0.7776 0.5450 0.3748 100 0.7413 0.4597 0.2236
150 0.7652 0.5841 0.3960 150 0.7237 0.4700 0.2132
300 0.7687 0.5994 0.4161 300 0.7281 0.4927 0.2227

4 Conclusion

In this study, it is possible to conclude based on the illustrated simulated
data application that the use of MVG distribution lead to more accurate
results assuming the dependence structure than the approach assuming
independence structure with univariate geometric distributions for the sys-
tem lifetimes.
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FIGURE 1. Empirical reliability function, mean estimate and 95% credible in-
tervals for the reliability function of the MVG model assuming the multivariate
lifetimes of each considered series system (top to bottom: 2-components→ 4-com-
ponents) for each sample size (left to right: n = 20→ 300).
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Abstract: Linear regression splines are useful tools to describe departures from
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eters choice on the estimation of the correct number of knots.

Keywords: Linear regression splines; Free-knots; SSVS.

1 Problem and methods

Generalized linear models (GLM) are flexible tools to describe a linear rela-
tionship between the response, transformed by the link function, and some
continuous covariates in the linear predictor. In many real applications,
data show that this linearity assumption might be too restrictive or unable
to describe the real connection among the variables. We may take as an
example some epidemiological studies where the dose-response relationship
highlights a saturation effect at high dose levels resulting into a change
in the effect of one (or more) covariate included in the model. Assuming
that the underlying relationship between the outcome and one continu-
ous predictor can be well approximated by a piece-wise linear function, we
can relax the linearity assumption modeling the continuous covariate by a
spline function of degree one, that is

η = Zα+ f(x),

where η represents the linear predictor, Z is the matrix of covariates that
enter linearly in the model, α is the vector of regression coefficients, x
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is a continuous covariate, and f : R → R is a suitable linear piece-wise
polynomial with joint points called knots (Ruppert et al., 2003).
In some problems, the number and location of the knots may have an
important and meaningful interpretation, turning their estimation into one
of the main objectives of the analysis. However, considering locations and
number of knots as parameters adds several layers of complexity to the
estimation problem. Moreover, without adding a penalization term, the
spline function may lead to extremely different estimates depending on the
choice of these two quantities.
We focus on those situations in which it is reasonable to assume a limited
number of change points and we choose the truncated linear basis functions
to represent the spline f , that is

f(x) = β0 + β1x+

K∑

i=1

γi(x− ki)+,

where β0, β1 and γi for i = 1, . . . ,K are the spline coefficients, K is the
number of knots, ki is the location of the ith knot, and (x − ki)+ is the
truncated linear function. This representation allows us to have a direct
interpretation of the knot locations as change points of the slope.
Regression and spline coefficients, and knot location parameters can be si-
multaneously estimated using Monte Carlo Markov Chains (MCMC) meth-
ods (Carpenter et al., 2017; Di Credico, 2018). Estimation of the number
of knots represents a more challenging problem since it is directly linked
with the dimension of the parameter space.
We analyze the two step procedure proposed by Di Credico (2018) to es-
timate the number and location of knots, focusing on the first step, that
is, the selection of the number of knots. Briefly, a variation of the Stochas-
tic Search Variable Selection (SSVS) approach by George and McCulloch
(1995) is used to select the right number of knots in a possibly over-
parametrized model. Since each knot location parameter ki is uniquely
linked to a spline coefficient γi, the variable selection is performed adopt-
ing spike and slab prior distributions on the coefficients γi

γi ∼ λiN(0, σsl) + (1− λi)N(0, σsp), i = 1, . . . ,K

where λi ∈ (0, 1), is the mixing proportion of the mixture distribution,
σsl > 0 and σsp > 0 are the standard deviations respectively of the slab
and of the spike mixture components. The choice of the values for σsl and
σsp needs to be carefully evaluated paying attention to the scale of the data
and the link function.
The choice of the prior distribution for the parameter λi is a critical point
of the methodology. Instead of a standard Bernoulli distribution, we specify
a Beta distribution on the mixing proportion parameters

λi ∼ Beta(ai, bi), i = 1, . . . ,K



Di Credico et al. 336

where ai ∈ (0, 1) and bi ≥ ai. The main advantage of a continuous prior
distribution is the improvement of the mixing of the MCMC sampler due
to the less restrictive geometry of the posterior distribution space to be
explored (Rinta-aho and Sillanpää, 2019). When ai = bi, the smaller their
value, the higher the concentration of the density function of λi on 0 and
1. While, the higher the value of bi, the higher the concentration of the
density function on 0. Di Credico et al. (2018) showed an improvement of
the algorithm performances when each hyperparameter bi is modeled as a
function of the knot location ki, and ai = 0.5,∀i. Since the abuntant knots
are pushed towards the boundary of the predictor range, the function on bi
moves towards 0 the distributions of the λi associated to those knots. Rinta-
aho and Sillanpää (2019) proposed to specify b = 1 − a, choosing to set
a ∼ Unif(0, 1). We decided to compare the previously tested approaches
with the one proposed by Rinta-aho and Sillanpää (2019), and try to include
in the prior distribution on λi the information about the knot location.
Prior distributions for the regression parameters α and the spline parame-
ters β0 and β1 are defined as weakly informative. Prior distributions on the
knot location parameters k are defined as Uniform on the predictor range,
subject to ordering constraint to ensure identifiability. The final number of
knots is selected examining the posterior distribution of the mixing pro-
portion parameter λi together with the posterior distributions of the knot
locations (Di Credico, 2018). Analysis were performed using the software
R (R Core Team, 2016) and Stan (Stan Development Team, 2017).

2 Results and conclusions

Using synthetic data from a linear, logistic and Poisson regression with two
true knots, we tested the impact of several definitions of prior distributions
on the mixing proportion parameters λ, fixing the number of estimated
knots to 2, 5 and 10.
As expected, when the density of the prior distributions is very highly con-
centrated, e.g. a ≤ 0.1 or b ≤ 0.1, we experienced performance degradation
of the algorithm. Diagnostic tools reported divergences of the algorithm
(Carpenter et al., 2017), and poor mixing of the chains, that easily got
stuck on specific areas of the posterior distribution. Comparing the two
specifications of the hyperparameter: b = 1− a and b ≥ a; gives very sim-
ilar results in terms of the marginal posterior distributions of the knot lo-
cations ki. Whereas, in the latter case, the marginal posterior distributions
of λi give clearer indications about the choice of the number of knots. In
both specifications, using the knot locations in the definition of b facilitates
the interpretation of simulation results in selecting the number of knots.
Moreover, the algorithm is faster and diagnostic statistics suggest better
quality of the simulations if compared with the ones obtained without the
knot location function on b.
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Future steps involve the study of the connection between the Beta density
prior distribution defined on λ and the choice of a scale mixture of Nor-
mal distributions. The role of the variances of the spike and slab mixture
components will be also explored.
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1 Introduction

At the turn of the 19th century, Agriculture Societies were active, farming
experiences were discussed at meetings or published, good practices cir-
culated. This was the case in Great-Britain under the steering of Arthur
Young (1741 - 1820) and sir John Sinclair (1754 - 1835), to name the most
popular. It was also the case on the Continent. However, these experiments
do not lend themselves to modern statistical treatment as pioneered by
sir Ronald A. Fisher in the early 20th century: in most instances it is im-
possible to extract from the publications a data set in the format which
statisticians are familiar to.
A publication of the French Franois Cretté de Palluel (1741 - 1798) pro-
vides a known exception: the aim, design, data and results of the experiment
which he conducted near Paris are reported in an exceptional tabular for-
mat (Palluel, 1788). Frequently referred in agricultural statistics papers, the
introduction of a Latin-square design has somewhat obliterated Palluel’s
primary objective which was to characterize growth curves conditioned on
breeds and feeds (in the context of censored observations).
The aim of this poster presentation is to recall the effectiveness of Palluel’s
presentation of the data in tabular form, to exhibit graphical representa-
tions of his data, discuss preliminary exploratory analyses, but mostly to
ask for advice on the type of parametric growth curves suitable for handling
such data.
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2 Motivation of the experiment

On 31 July 1788, Palluel gave a talk at the Société royale d’agriculture
seated in Paris on the design and result of an experiment he had conducted
on sheep feeds in barn fattening. The talk was immediately published (Pal-
luel, 1788) and republished (in English) in Arthur Young’s Annals of Agri-
culture (1790). The practical motivation for Palluel was the profit that
could be generated by barn fattening of sheep when the price of meat was
high. But when the price of cereals is high, less costly feeds have to be expe-
rienced and proposed. Palluel’s interests proved to be premonitory: France
had a disastrous harvest of cereals in the summer 1788 with a cataclysmic
hailstorm which hit France on Sunday, 13 July, destroying the crops on
about 100, 000 hectares. Additionally, winter 1788-1789 was very severe.

3 The experiment

In Palluel’s experiment 4 sheep breeds (̂Ile de France or local, Beauce,
Champagne, Picardy) were fed on 4 feeds (Potatoes, Cereals, Turnips,
Beets) during 4 months at most. (Like the French agronomist Antoine
Parmentier (1737-1813), Palluel advocated potatoes in all possible forms
to a reluctant French population.) Sheep were killed after one, two, three,
or four months of fattening. At the end of each month, the weights and
carcass compositions of the slaughtered sheep were recorded, as well as the
weights of all remaining sheep. Thus Palluel had information on the overall
weight growth of sheep for any given breed, feed (his primary objective)
and duration. He had also some information on the structural aspects of
the observed growth. Palluel wanted to conduct the experiment in such a
way that all breeds, feeds, fattening durations were represented. To reduce
the 64 sheep which the experiment called for on an a priori basis, Palluel
cleverly designed a 1

4 replicate of a 43 factorial, or a 4 × 4 Latin-Square
(Susan Wilson, 2009, p. 8).

TABLE 1. At the end of each month, weight and composition of the carcass is
observed on 4 units representing the 4 different breeds and the 4 different feeds,
but never in the same association.

Period 1 Period 2 Period 3 Period 4
Breed Feed Breed Feed Breed Feed Breed Feed

1 1 1 2 1 3 1 4
2 2 2 3 2 4 2 1
3 3 3 4 3 1 3 2
4 4 4 1 4 2 4 3
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4 Data

Palluel’s data set is given in the form of two tables (Tableau 1 and Tableau 2)
which occupy each a full page in landscape orientation and are not repro-
duced here for lack of space. The rows are the sheep which are referenced
by a number; the columns are the measured weights. Tableau 2 reports
the initial weights and the weights at killing (2 columns), and the associ-
ated compositional weights of the carcass (9 columns) for each sheep at its
killing; rows corresponds to the 16 combination of feed and breed. Tableau 1
consists in the column concatenation of three sub-tables: 1) weights at ini-
tial date, at intermediate dates, and at killing (5 columns); 2) monthly
incremental weights (4 columns); 3) total weight increments (1 column).
The 16 rows are ordered by feed and, within feed, by breed. Some cells are
structurally empty due to a planned duration of fattening shorter than 4
months.
Interestingly, Palluel inserted in Tableau 1 4 lines which report the sum over
each breed of the monthly weight increments. The concatenation of these 4
statistics forms a 4 × 4 two-way table (feed × duration of fattening)seems
to have guided Palluel’s conclusions. Similar two-way tables could have
been formed: breed × duration of fattening, feed × breed. This suggests to
construct a square table analogous to a Burt table giving in this context
the sums of the response (here monthly weight increment) for all two-way
cross classifications of the factors. (As in Burt tables diagonal blocks are
diagonal, with terms formed from the corresponding one-way classification.)
This is shown below in Table 2 (upper triangular part).

5 Analyses

5.1 Linear modelling

A linear modelling approach is an obvious strategy in this context. The
response is either weights or monthly incremental weights until slaughtering
and the cofactors are feed, breed and duration. Various forms of serial
dependence for the error term can be tested. Interactions are also an issue.

5.2 Exploratory analysis of two-way interactions

When investing two-way interactions in contingency tables, multiple cor-
respondence analysis (MCA) is a useful practice. Its core is to derive a
significant low rank approximation to the Burt matrix of counts which
highlights the structure of two-way interactions. Is such an approach con-
ceivable in this context? Following the Palluel’s intuition, two Burt clones
can be now constructed as reported here in Table 2: one for the sums (or
averages) of the response and one for the counts of observations leading to
theses sums (averages). These have to be combined in analyses mimicking
MCA to be discussed.
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5.3 Reduced rank multiplicative interactions

It is nowadays standard to introduce reduced rank multiplicative interac-
tions in a hierarchy of linear models. This could be done in GLIM long
ago (generalised bilinear models) and is easily performed now with the ex-
cellent R gnm package developed by Heather Turner and David Firth (as
consulted in 2020).

TABLE 2. The upper triangular part, by symmetrization, gives the Burt clone
for the sums of monthly weight increments. The lower triangular part, by sym-
metrization, gives the Burt clone for the counts of associated responses; the counts
are given in parenthesis to emphasize their different meaning. The diagonal gives
the diagonal terms for both clones. All statistics typed in bold characters were
introduced by Palluel. Some typographic errors have been corrected.

Feed Feed Feed Feed Breed Breed Breed Breed Weight Weight Weight Weight
increment increment increment increment

Potatoes Turnips Beets Cereals local Beauce Champagne Picardy 1 month 2 months 3 months 4 months

Potatoes 70.00 (10) 10.00 24.25 14.75 21.00 50.50 13.25 4.25 2.00
Turnips 67.50 (10) 18.00 15.00 16.00 18.50 58.50 7.00 1.50 0.50
Beets 71.50 (10) 22.00 15.25 13.25 21.00 48.00 17.50 4.00 2.00
Cereals 92.5 (10) 32.00 22.50 22.00 16.00 59.00 18.50 11.00 4.00

local (1) (2) (3) (4) 82.00 (10) 55.25 12.75 10.00 4.00
Beauce (4) (1) (2) (3) 77.00 (10) 47.50 20.25 7.25 2.00
Champagne (3) (4) (1) (2) 66.00 (10) 52.25 10.25 3.00 0.50
Picardy (2) (3) (4) (1) 76.50 (10) 61.00 13.00 0.50 2.00

1 month (4) (4) (4) (4) (4) (4) (4) (4) 216.00 (16)
2 months (3) (3) (3) (3) (3) (3) (3) (3) 56.25 (12)
3 months (2) (2) (2) (2) (2) (2) (2) (2) 20.75 (8)
4 months (1) (1) (1) (1) (1) (1) (1) (1) 8.50 (4)

6 Discussion

Still, a smarter approach to Palluel’s data would be to find a family of
parametric growth curves which could take into account the structure of
the cofactors and the censoring. I need help in that matter.
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Abstract: The goal of this paper is to estimate and compare the effects of
potential covariates on mothers’ yearly earnings in the first and the sixth year
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yearly salary as a function of covariates, we analyze the data with a Bayesian
distributional regression model where the response variable is assumed to follow
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mothers with zero income as well as the Gamma-specific parameters in terms of
covariates.
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1 Introduction

In Austria many mothers delay returning to the labor market after the
period in which they get maternity leave benefits. Thus, a non-negligible
proportion of mothers has no (or very low) earnings even years after their
last child-birth. To analyze effects of covariates on earnings of mothers
we do not restrict the analysis to mothers with positive income but use a
Bayesian distribution regression model that allows to model zero as well as
non-zero earnings. We use the zero-adjusted Gamma distribution (ZAGA)
which is a mixture of a point mass at zero to model the proportion of
mothers with no earnings and a Gamma distribution to model earnings
of employed mothers and allow all three parameters of the ZAGA, the
weight of the point mass at zero as well as the parameters of the Gamma
distribution, to vary with covariates.
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2 Data

Our analysis is based on the yearly earnings of n = 30107 mothers, who
gave birth to their last child within a 2-year period starting from July 2000
when a fundamental extension of the maternity leave benefits from 18 to
30 months became effective in Austria. To investigate the development of
mothers’ earnings over time we will analyze the incomes in the first as well
as in the sixth full year after the maximum maternity leave period of 30
months. Zero earnings are observed for mothers who are not employed in
the respective years. Additionally, we define earnings which are below the
inflation-adjusted minimum yearly wage as zero. As potential covariates
we have information on the type of employment (indicator for being a blue
collar worker) and earnings of the mother in the year before birth, as well
as the age and additionally for mothers who are employed after the child
birth whether they returned to the same employer, worked part or full time
and started working before or after the job protection period of 24 months.

3 Bayesian distributional regression

In Bayesian distributional regression the data y are modeled as realizations
of a K-parametric distribution D

yi|xi ∼ D(θ1(xi), ..., θK(xi)) (1)

with parameters θk, k = 1, ..., K. In order to connect the covariates to a
parameter a monotonic, twice differentiable link function hk(·) is applied
that guarantees to preserve the domain restriction of a parameter. Further,
as in additive models the linear predictor is assumed to consist of a sum of
unspecified functions fθk,j(·), j = 1, ..., J , which allow to model the effects
of the covariates X as linear, non-linear, spatial or as random effects, i.e.

hk(θk(xi)) = ηθk,i = fθk,1(xi;βθk,1) + ...+ fθk,J(xi;βθk,J) (2)

where βθk = (βθk,1, ..., βθk,J) are the regression parameters whose structure
depend on the type of covariate(s) and prior assumptions about fθk,j(·).

4 Zero-adjusted Gamma Distribution

The zero-adjusted Gamma distribution (ZAGA) is a mixture of a point
mass at zero and a Gamma distribution. Its pdf is defined as

f(y|µ, σ, ν) =

{
ν if y = 0

(1− ν) 1
(µσ2)1/σ2Γ(1/σ2)

y1/σ2−1 exp(− y
µσ2 ) if y > 0

(3)

with 0 ≤ ν ≤ 1 and µ > 0, σ > 0. The advantage of the alterna-
tive parametrization of the Gamma component is that the expected value
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E[y|y > 0] = µ and the skewness γ[y|y > 0] = 2σ are linear functions of the
parameters µ and σ which allows to interpret the corresponding regression
effects as effects on the conditional expectation and skewness. Generally,
the ZAGA is a suitable choice as its point mass at zero allows to model the
proportion of unemployed mothers and its continuous component accom-
modates the right skewness of the earnings. For the parameter ν a logit link
is applied and analogously to GLMs, a loglinear link function is used for
the parameter µ as well as for σ to guarantee restriction to their domain.

5 Results

To model mothers’ yearly earnings after the maternity benefit period we
use only her age, the reference earnings and the employment type before
birth as covariates for ν, whereas all six covariates are considered to model
µ and σ. To allow for possible non-linear dependencies, the reference wage
and the age are modeled with penalized splines.
To estimate the model parameters we employ MCMC methods with stan-
dard prior distributions as implemented in the R function bamlss(). Results
are based on 18000 MCMC draws after a burnin of 2000 and an additional
thinning of 40. Table 1 reports estimates of the posterior means of the ex-
ponentiated effects of the categorical covariates as well as the 2.5 % and
97.5% quantiles of their posterior distributions. For ν the reported esti-
mates are multiplicative effects on the odds ratio of being unemployed and
for µ multiplicative effects on the expected mean salary for employed moth-
ers. Further, as the skewness is a linear function of σ, the estimated effects
on σ can also be interpreted as multiplicative effects on the skewness of the
wage distribution.

Covariates Year 1 Year 6
ν µ σ ν µ σ

Blue Collar exp(β) 1.277 0.847 0.926 1.249 0.785 0.914
[1.207, 1.354] [0.837, 0.858] [0.905, 0.946] [1.154, 1.332] [0.775, 0.794] [0.896, 0.933]

Same Employer exp(β) 0.995 0.877 0.975 0.899
[0.976,1.014 ] [0.850, 0.901] [0.959, 0.993] [0.877, 0.924]

< 24 Months exp(β) 0.695 1.576 0.759 1.335
[0.683, 0.707 ] [1.517, 1.641] [0.745, 0.774] [1.282, 1.391]

Part time exp(β) 0.785 0.850 0.731 0.849
[0.776, 0.794 ] [0.834, 0.867] [0.722, 0.739] [0.834, 0.864]

TABLE 1. Exponentiated effects of the categorical covariates on the parameters

In the first full year after the maternity benefit period the odds of being
unemployed is 1.277 times higher for blue compared to white collar workers.
Working part-time, being a blue-collar worker before birth and returning to
work before 24 months decreases the expected mean salary substantially;
σ and hence the skewness is smaller for blue collar workers and mothers
working part-time but considerably larger for mothers who were returning
to work early. Effects are similar in year 6 with some exceptions: the effect
of being a blue collar worker on the expected income is smaller in year 6
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than in year 1 which means the earning gap between blue and white collar
workers has increased; also the effect of an early return to the labor market
on the mean has increased, but its effect on the skewness has decreased. To
visualize the effects of the reference wage and the age the exponentiated
non-linear effects (centered at the mean of the corresponding covariate) are
displayed in Figure 1.

FIGURE 1. Exponentiated effects of the reference wage and the age on the
parameters

The odds ratio of being unemployed decreases with the reference wage but
this effect is much less pronounced in year 6 than in year 1. There is no
effect of the age on the odds ratio of being unemployed in year 1, and a
slightly increased odds for older mothers in year 6. The expected mean
earnings increase with the reference wage whereas the effect of the age is
negligible in both years. Also the effects on the skewness are similar in both
years: It is higher for low and high reference wages and increases with age.
Finally, we conclude that modeling yearly earnings of mothers with a
Bayesian distributional regression model allows for a more detailed insight
on the effects of covariates.
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Abstract:
We consider a survey on animal ethics and sustainability consisting of various
Likert-type items. Although this kind of (ordinal) data often occurs in the social
sciences, in case of principal components analysis (PCA) those data are either
treated as numeric implying linear relationships between the variables at hand,
or nonlinear PCA is applied where the obtained coefficients are sometimes hard
to interpret. We therefore revisit penalized nonlinear PCA for ordinal variables as
an intermediate between the mentioned methods used so far. The new approach
offers both better interpretability as well as better performance on validation
data.
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1 Introduction

At IWSM 2013, Gertheiss and Kiers presented the idea of penalized non-
linear principal components anaylsis (PCA) as an intermediate between
standard, linear PCA, simply using the levels of ordinal variables as numer-
ical input, and optimal scaling as, e.g., described by Linting et al. (2007).
In short, the general aim of PCA is to reduce the observed variables to
a number of uncorrelated linear combinations - called principal compo-
nents - while explaining as much of the variability in the original data
as possible. The extended nonlinear approach respects the scale level of
ordinal variables through the process of optimal quantification. The ob-
jective is achieved by assigning numerical values to the ordered levels via
nonlinear transformations - the quantifications. However, the found quan-
tifications often result in overfitting the (training) data, which worsens
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the performance and generalization to new data. In addition, the obtained
quantifications are sometimes erratic and thus hard to interpret. Therefore,
Gertheiss and Kiers (2013) introduced an additional penalty term penal-
izing nonlinearity in the coefficients. As an intermediate between standard
linear PCA and fully nonlinear PCA, the proposed approach offers both
better interpretability of the nonlinear transformation as well as better per-
formance on validation data.
The general idea is as follows: Nonlinear PCA minimizes the criterion
L(Φ, Y, A) =

∑
j

∑
i(φij−

∑
r yirarj)

2 as a function of matrices A, Y and Φ,
with (Φ)ij = φij = ϕj(xij) and i = 1, ..., n; see Linting et al. (2007). A and
Y correspond to loadings and respective PC scores when using the trans-
formed variables, r = 1, ...,m and m corresponds to the number of PCs
to be extracted. Scaling function ϕj , j = 1, ..., p, can also be represented
by the vector θj = (θj1, ..., θjkj )

T where θjl is the value that is assigned
to category l of the jth variable, kj denotes the highest level of variable
j. With linear scaling function ϕj(xij), the approach is equivalent to usual
PCA using the group labels 1, 2, ..., kj . So for a trade-off between the latter
approach and optimal scaling in its pure form, deviations from linearity are
penalized when fitting ϕj . More precisely, a second-order difference penalty
is used in terms of

J(θ) =

p∑

j=1

kj−1∑

l=2

(θj,l+1 − 2θjl + θj,l−1)2.

2 Application: Animal Ethics

We consider a survey conducted by the Department of Animal Sciences,
University of G’́ottingen. The data set consists of 2000 observations of 33
ordinally scaled variables addressing sustainability indicators with regard
to animal welfare, human health, and environmental issues. Each state-
ment of agreement is measured on a five-point Likert scale with: 1 strongly
agree, 2 agree, 3 undecided, 4 disagree, 5 strongly disagree. We perform the
proposed method initially with m = 6 resulting from the scree test after
also comparing to the corresponding plots for m = 5 and m = 7. Figure 1
illustrates the estimated coefficients of selected variables for different values
of the penalty parameter λ. The black lines refer to unpenalized nonlinear
PCA (i.e., λ = 0), the red dashed lines refer to λ = 1, and the green dotted
lines to λ = 10. It is noticable that with an increasing penalty parameter
quantifications become increasingly linear, with the latter being equivalent
to standard linear PCA using just the class labels. For the variable “Drive
less car” in Figure 1 (right) the impact of the penalty can be seen notica-
bly with regularization towards linearity. On the other hand, it is observed
(Figure 1, left) that also non-monotonic effects can be discovered, which is
a clear benefit of nonlinear PCA over usual (linear) PCA in general. When
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using the method proposed, coefficients θj are smoother than for unpenal-
ized nonlinear PCA, which is convincing, as wiggly coefficients are hard to
interpret. In addition, the possibility of incorporating constraints enforcing
monotonicity is provided, as this assumption is reasonable for some prac-
tical applications.
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FIGURE 1. Category quantifications for λ = 0 (solid black), λ = 1 (dashed red),
λ = 10 (dotted green).

To obtain an optimal amount of shrinkage, the smoothing parameter λ was
determined based on fivefold cross-validation (the optimal smoothing pa-
rameter is indicated as a dashed line in Figure 2). Based on this procedure,
the performance of the quantification rule is measured by the proportion
of variance that is explained by the first m = 6 principal components.
The proportion of variance explained as a function of λ is demonstrated
in Figure 2 on a logarithmic scale for both the training sample as well
as the validation sample. Cross-validation shows that results of nonlinear
PCA can be improved by using the suggested penalized fitting algorithm.
Although penalized scaling functions are less complex, and thus easier to
interpret, performance does not deteriorate on both training and validation
data up to a certain lambda value.
To obtain the final scaling rule, however, a distinct λ-value needs to be cho-
sen. For that purpose, cross-validation results as given in Figure 2 (right)
can be used. For the sustainability data, we would use λ ≈ 1, where the
proportion of variance explained on the test data reaches its maximal value.

3 Concluding remarks

In this article, we revisited an extension of nonlinear principal components
analysis for ordinal data with two crucial benefits over both, the linear
and the fully nonlinear version: The ability of discovering and handling
nonlinear and even non-monotonic relationships between variables along
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FIGURE 2. Mean proportion of variance explained by the first 6 principal com-
ponents; left: training sample, right: validation sample.

with respecting the ordinal scale of the data, while avoiding overfitting as
well as offering better interpretability of the estimated coefficients. Our
preliminary results on real (and simulated) data suggest that penalized
nonlinear PCA is a promising and convincing framework for dimension
reduction of ordinally scaled data sets.
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1 Method and setting

The extension of the class of cumulative models by introducing a component
of uncertainty to improve the fitting and the interpretation of response
process on ordinal scale has been recently proposed by Tutz et al. (2017).
This new type of model combines, via a mixture, the standard cumulative
model with a component gathering the uncertainty in the rating process.
The mixture has been denoted as the cup model that is a Combination of
a discrete Uniform distribution and a Preference component.
Formally, let Y = (Y1, Y2, . . . , Yn)T be a random sample generated by an
ordinal random variable on the support {1, . . . ,m}, where m is a known
integer. We interpret Yi as the rating/preference expressed by the i-th
subject about a specific item. For each i-th subject, we collect information
(yi,xi), for i = 1, 2, . . . , n, where yi is the observed value of the rating and

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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xi is a row vector of the matrixX including a suitable set of covariates. The
stochastic and systematic components of a cup model for j = 1, 2, . . . ,m
and i = 1, 2, . . . , n are




Pr (Yi = j | xi) = πi [F (αj − xiβ)− F (αj−1 − xiβ)] + (1− πi) pUj ;

πi =
exp(ziγ)

1 + exp(ziγ)
,

where F (·) is the inverse of a suitable link function and zi is a row vector
of the matrix of covariates Z. The vector zi may have some elements in
common with xi, that is some covariates can play a rule in both parts of
the model. We refer to I = (y,X,Z) = ||Ii||i=1,...,n as the information set,
where y = (y1, y2, . . . , yn)T . Here β = (β1, . . . , βp)

T and γ = (γ1, . . . , γq)
T

are the vectors of regression coefficients and −∞ = α0 < α1 < . . . <
αm−1 < αm = +∞ are the thresholds of the latent variable Y ∗ surrounding
the observed discretized Y . The logistic link function is commonly used,
yielding

logit [Pr(Yi ≤ j|xi)] = F−1 (Pr (Yi ≤ j|xi))
= αj − xiβ , i = 1, 2, . . . , n. (1)

From equation (1), we obtain

log

[
Pr (Yi ≤ j|xi)
Pr (Yi > j|xi)

]
= αj − xiβ .

The systematic part of the model saves the traditional definition of a pre-
dictor -as in cumulative models- but considers as well parameters πi -as in
the family of cub models, see Piccolo (2003)- to weight for the uncertainty
component.
Model (1) implies a constant relationship between the cumulative prob-
ability and the covariates. For given xi, the logit is altered only by the
intercepts αj which are different for each category j = 1, 2, . . . ,m − 1.
This is known in the literature as the proportional odds model. The names
derives form the fact that log-odds ratio for two sets of explanatory vari-
ables depends only on the distance between them. Alternatively, in the cup
family several different models as adjacent categories or continuation ratio
models may be considered.
Tutz et al. (2017) emphasize the ability of this class of models to capture
multimodality and empirical overdispersion with a better fitting than cu-
mulative and cub models which are traditionally used in the ordinal data
context. They also underline the added value of considering the uncertainty
part in the process of analysis. A recent extension replaces the Uniform
distribution by a more flexible one which is centered in the middle of the
response categories. The resulting model allows to distinguish between a
tendency to middle categories and a tendency to extreme categories by
taking into account different response styles (Tutz and Schneider, 2019).
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2 Bayesian Inference

In a Bayesian perspective suitable prior distributions should be assigned on
the parameters of interest. We assign independent normal priors on each

element of the vector β (βk
i.i.d.∼ N (0, σ2

B), for any k = 1, . . . , p) and each

entry of the vector γ (γk
i.i.d.∼ N (0, σ2

G), for any k = 1, . . . , q). In order to
maintain the stochastic ordering of the intercepts we let α1 ∼ N (0, σ2

A)
and

(αj |αj−1) ∼ N (0, σ2
A)I(Tj−1,∞),

for j = 2, . . . ,m − 1, where I(Tj−1,∞) signifies that the distribution is
truncated in the region (Tj−1,∞) (i.e. it is a lower-truncated normal dis-
tribution) with Tj−1 = ααj−1

. As an alternative to the previous approach
one can use doubly-truncated normal priors (Congdon, 2005) or an ordered
Uniform distribution (Ishwaran, 2000). A more sophisticated approach can
be obtained re-parameterising the model mapping the constrained param-
eters α to a set of unconstrained variables ξ, on which we can assign a
suitable prior distribution (see for example Fahrmeier and Tutz, 1994; Al-
bert and Chib, 1997).
We assume that α, β and γ parameters are a priori independent. The prior
distributions P(β) and P(γ) are defined in (−∞,∞) whereas

P(α) = P(α1)

m−1∏

j=2

P(αj |αj−1);

thus P(αj |αj−1) is defined in the range (αj−1,∞) for j = 2, . . . ,m− 1 (see
Congdon, 2005, among others). This ensures stochastic ordering for any
values of α.
Given a sample of n respondents, the posterior distribution of the param-
eters of the model is given by

P
(
(α, β, γ)|I

)
∝ L(α, βγ; I)P(α)P(β)P(γ) (2)

where L
(
(α, βγ); I

)
is the likelihood function (see Tutz et al. 2017) and

P(α),P(β) and P(γ) are the prior distributions described above.
Since the posterior distribution is not in a standard form we rely on an
MCMC sampler. Once a starting value of the parameter vector has been
provided we iteratively sample from the joint posterior distribution by
means of a three step Metropolis-Hasting algorithm (update α, udate β,
update γ); see Iannario and Tarantola (2020) for the details.
Normal random walk proposal distributions for each βk are chosen

q(β
(t)
k → β

(t+1)
k ) : βt+1

k |βtk ∼ N (βtk, σ
2
PB),

where σ2
PB is the proposal variance. Same consideration for γk where ran-

dom walk proposal distributions are selected

q(γ
(t)
k → γ

(t+1)
k ) : γt+1

k |γtk ∼ N (γtk, σ
2
PG),
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where σ2
PG is the related proposal variance.

For the intercepts, αj , truncated uniform random-walk proposals are

picked, such that q(α
(t)
k → α

(t+1)
k ) : α

(t+1)
j |α(t) yields





U
(
α

(t)
j − τα,min

[
α

(t)
j + τα, α

(t)
j+1

])
; if j = 1,

U
(
max

[
α

(t)
j − τα, α

(t)
j−1],min[α

(t)
j + τα, α

(t)
j+1

])
; if j = 2, . . . ,m− 2,

U
(
max

[
α

(t)
j − τα, α

(t)
j−1

]
, α

(t)
j + τα

)
; if j = m.

where τα > 0 controls the size of the maximum unconstrained move away
from the current value at each iteration.
An illustrative example includes a cup model of mental health prob-
lems and depressive symptoms in later life (SHARE data available at
http://www.share-project.org/home0.html). It represents a challenging ap-
plication of the CUP model and underlines the potentiality of the Bayesian
approach.
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1 Introduction

The social benefits derived from fishing activity are associated to increasing
collateral damages. One of these damages are the discards. Discards refer
to the organisms of both commercial and non-commercial value that are
caught during commercial fishing operations and returned to the sea, often
dead or dying (Feekings et al., 2012).
Despite being reintroduced in the trophic chain as food for other species,
discards may compromise the multi-species balance of ecosystems by alter-
ing the different fish stock sizes or modifying the features of the environ-
ment when they decompose (Clucas, 1997). Ethically, discards can be seen
as wasted products that could be consumed or used otherwise (Blanco et
al., 2007, Diamond and Beukers-Stewart, 2011).

This paper was published as a part of the proceedings of the 35th Inter-
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This analysis aims to contribute to the elaboration of effective international
initiatives targetting the minimization of discards by providing a basic idea
on the socioeconomic, technical and biological factors underlying this type
of catches at a global level.

2 Methodology and data

Initially, GAMs (Hastie and Tibshirani, 1990) are used to observe how so-
cioeconomic and technological variables (the relative value of discards, the
gear composition of the fishing fleet, the harvested areas, the fish demand,
the alternatives to fish production and the economic size of the countries)
determine the level of countries’ discards. The mgcv package (Wood, 2017)
in R (R Core Team, 2017) is used for its estimation, assuming a Gaussian
family and an identity link function.
Once the unexplained trend in discards is obtained, the analysis uses an
Ordinary Least Square regression to estimate the impact of biological and
anthropogenic variables (anomalies in the global Sea Surface Temperature,
anomalies in the global ocean heat and the lagged global catches) on the
evolution of discards.
Data on the catches of countries is taken from the Sea Around Us project
(Pauly et al., 2015). Information on the aquaculture production, the fish
consumption and exports is provided by the FAO (2019a, 2019b and 2019c).
The Gross Domestic Product of countries in constant 2010 US dollars is
extracted from the World Bank (2019). The EPA (2019 a and b) is the
source for the anomalies in sea surface temperature and the ocean heat.

3 Results

TABLE 1. Determinants of discards.

Dependent variable: Discards Estimate Std. Error T-value P-value
Intercept 140468.0598 20967.2320 6.6994 < 0.0001
Relative value of discards -13779.4028 2389.8734 -5.7657 < 0.0001
Fish exports -0.0283 0.0038 -7.3706 < 0.0001
Percentage of landings from EEZ -763.4189 207.1190 -3.6859 0.0002
Landings group1 0.0468 0.0029 16.1823 < 0.0001
Landings group2 0.3627 0.0052 69.2179 < 0.0001
Landings group3 0.3051 0.0545 5.6010 < 0.0001
Landings group4 -1.9062 1.1507 -1.6566 0.0977
Fish consumption -0.0579 0.0013 -43.0788 < 0.0001
Aquaculture -0.0009 0.0001 -7.6204 < 0.0001

Table 1 and Figure 1 present the estimation of the GAM. In order to
interpret the impact of each variable, it is assumed that the remaining fac-
tors remain constant (ceteris paribus). The negative sign in the coefficient
of the relative value reflects the economic incentives of fishermen to land
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FIGURE 1. GDP and time effects on discards

more profitable catches. The negative signs of exports, consumption and
aquaculture highlight the importance of the fish demand in reducing the
discards of countries. Supporting the theory in the tragedy of the com-
mons, harvesting in coastal waters is associated with the production of
lower amounts of discards as implied by the negative sign of the percentage
of landings coming from EEZ. Being composed by the gears producing the
largest discards, the effect on discards of increasing the landings from the
second group (bottom and pelagic trawls, dredge and long distance small
scale) is the largest one. The effect of GDP on discards changes depending
on its level. The evolution of year indicates that there have been global
factors contributing to the evolution of discards from 1962 to 2013. The
impact of these factors has varied over the period analyzed.

TABLE 2. Determinants of the trend in discards.

Dependent variable: Trend in discards Estimate Std. Error P-value
Intercept 3.5635e+ 04 2.1109e+ 04 0.0946
SST anomaly −4.3872e+ 04 1.5411e+ 04 0.0054
Heat anomaly 5.0873e+ 03 6.4884e+ 02 6.165e− 12
Lagged catches −4.6241e− 04 2.0856e− 04 0.02897

Table 2 shows the influence of the variables included in the OLS regres-
sion on the evolution of discards. In order to interpret the impact of each
variable, it is assumed that the remaining factors remain constant. The
response of the discards trend to changes in the temperature of waters de-
pends on the depth. While anomalies in the ocean heat produce variations
of the same sign in the discards trend, anomalies in the sea surface tem-
perature cause variations of the opposite sign. The negative sign of lagged
catches reflects that larger exploitation may diminish the future size of fish
stock, decreasing the possibilities to high grade or even reducing the fishing
activity.
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1 Introduction

Goodness-of-fit techniques are important to test the validity of paramet-
ric models and to provide indications that the modeling assumptions are
reasonable. As an example, consider the accelerated failure time model:

Y = log(T ) = µ+ β′X + σW, (1)

where T is a possibly right-censored survival time, β and X are the pa-
rameter and covariate vectors, σ is the scale parameter, and W is the error
term distribution, which is determined by the parametric choice for T . For
example, if T follows a Weibull distribution, W is the standard Gumbel
distribution. The validity of the model-based inference relies on this para-
metric assumption.
To check the parametric assumption in (1) based on a sample (yi =
log(ti),xi), i = 1, . . . , n, the following residuals can be used:

ri =
(
yi − (µ̂+ β̂′xi)

)/
σ̂.

Residuals ri are right-censored whenever ti is right-censored. While meth-
ods are well developed for complete data, research for right-censored data
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is still ongoing and, in both cases, integrated tools to check the goodness of
fit of model (1) are needed. The R package GofCens, which is developed by
the authors and will soon be available on CRAN, provides a large variety
of goodness-of-fit methods for complete and right-censored data.

2 Goodness-of-fit methods

2.1 Graphical tools

Both probability and cumulative hazard plots are useful tools to check if a
certain distribution is an appropriate choice for the data at hand.
The Probability-Probability plot (P-P plot) depicts the empirical distri-

bution, F̂ (t), which is obtained with the Kaplan-Meier estimator if data
are right-censored, versus the theoretical cumulative distribution function
(cdf), F̂0(t). If the data come from the chosen distribution, the points of
the resulting graph are expected to lie on the identity line.
The Stabilised Probability plot (SP plot), which is a transformation of the
P-P plot, stabilises the variance of the plotted points. If F0 = F and the
parameters of F0 are known, F̂0(t) corresponds to the cdf of a uniform order
statistic, and the arcsin transformation stabilises its variance. If the data
come from distribution F0, the SP plot will resemble the identity line.
The Quartile-Quartile plot (Q-Q plot) represents the sample quantiles ver-

sus the theoretical ones, that is, it plots t versus F̂−1
0 (F̂ (t)). Hence, if F0

fits the data well, the resulting plot will be a straight line.
A drawback of the Q-Q plot is that the plotted points are not evenly spread.
Waller and Turnbull (1992) proposed the Empirically Rescaled plot (EP

plot), which plots F̂u(t) against F̂u(F̂−1
0 (F̂ (t))), where F̂u is the empirical

cdf of the points corresponding to the uncensored observations. Again, if
F0 fits the data well, the ER plot will resemble the identity line.
Like probability plots, cumulative hazard plots can be used to assess the
goodness of fit of a distribution. These plots are based on a transformation
of the cumulative hazard function, A(Λ(t)), that is linear in either t or
log(t). Complete and right-censored data are used to compute the Nelson-
Aalen estimator of Λ(t), but A(Λ̂(t)) versus either t or log(t) is plotted only
with the values of the uncensored observations. If the data come from the
distribution under study, the points are expected to lie on a straight line.

2.2 Statistical tests

No general asymptotic optimality theory exists for this very difficult prob-
lem (Lehmann and Romano (2005)); in fact, any test can achieve high
asymptotic power or perform uniformly well against local or contiguous al-
ternatives when the family of possible alternatives is large (Janssen (2000)).
Kolmogorov-Smirnov and chi-squared goodness-of-fit tests encompass the
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most used analytical tests. However, due to the lack of good power of these
tests, graphical techniques should be used together with these tests.
Goodness-of-fit tests have been developed for complete data and are based
either on the empirical distribution function or on chi-squared-type tests.
Preliminary extensions to account for right-censored data were proposed
by Barr and Davidson (1973), who modified Kolmogorov-Smirnov statistics
for censored or truncated data. Koziol and Green (1976) developed Cramér-
von Mises-type statistics based on the product-limit empirical distribution
function when the data are subject to random censorship.

3 The R package GofCens

The R package GofCens provides functions for 10 different laws (normal,
logistic, Gumbel, lognormal, log-logistic, Weibull, exponential, beta, ex-
ponential power, and exponentiated Weibull) that perform the following
goodness-of-fit methods:

• Probability and quantile plots: function probPlot.

• Cumulative hazard plots: function cumHazPlot.

• Kolmogorov-Smirnov test: function KScens.

• Kolmogorov-Smirnov, Cramér-von Mises, and Anderson Darling
tests: function gofcens.

All functions can be used with complete and right-censored data, and pro-
vide the parameter estimates of all distributions. For this purpose, the
package takes advantage of the fitdistcens function of the fitdistrplus
package (Delignette-Muller and Dutang (2015)).
An example of the function KScens with right-censored survival times of
patients who had suffered a myocardial infarction is shown in the following
output. The data are from the Worcester Heart Attack Study (available at
ftp://ftp.wiley.com/public/sci tech med/survival).

> KScens(whas500$lenfol,whas500$fstat,"weibull")$test

KS p.value

1.41197 0.03599

> KScens(whas500$lenfol,whas500$fstat, "loglogistic")$test

KS p.value

1.58043 0.01318

> KScens(whas500$lenfol,whas500$fstat, "gumbel")$test

KS p.value

37.61688 0.00000

Among the three distributions compared —Weibull, loglogistic, and Gum-
bel distribution—, the Weibull law seems the most reasonable model given
that the value of the test statistic (KS) is the smallest.
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To confirm that the Weibull distribution is a good parametric choice, we
apply the probPlot function, which draws four probability plots. According
to these plots shown in Figure 1, this distribution, indeed, seems to be a
good choice.
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FIGURE 1. Probability plots drawn with function probPlot.
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Abstract: Sepsis is one of the leading causes of death in the hospitals and it
is of great importance to diagnose sepsis as early as possible. In this work we
investigate the early diagnosis of sepsis using the approach of survival analysis.
In particular, we described ‘sepsis’ and ‘nonsepsis’ as two competing events and
modeled the disease progression using a multi-state model.
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1 Introduction

Sepsis is a life-threatening condition that occurs when the body overreacts
to an infection and will cause tissue damage, organ failure, or death. Early
detection and antibiotic treatment of sepsis are critical for improving out-
comes for patients with sepsis. Therefore there exists a need to detect and
treat sepsis as early as possible.
It is common to treat the sepsis early detection problem as a classification
problem and solve it using the machine learning techniques. In works by
Morrill et al. (2019) and Chang et al. (2019), complicated feature engineer-
ing methods were proposed and established classification algorithms were
directly applied. But these techniques lack the explanabilty.
In this work we solved the classification of ‘sepsis’ and ‘nonsepsis’ using
survival analysis. More details about the relationship between the classi-
fication problem and the survival analysis was discussed by Ripley and
Ripley (2001). We modeled the the two events ‘diagnosed to be sepsis’ and
‘diagnosed to be nonsepsis’ as two competing events. In particular, we used
a multi-state model to describe the disease progression of a patient from
entering the hospital to the time the events occurs.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Data

The dataset used in this study are the clinical data of ICU patients from
two hospitals, with observations of 20,336 and 20,000 patients. The dataset
is available from the Physionet Challenge 2019.
Observations of each patient i are denoted by [Xi1, . . . , Xi,t, . . . , Xi,Ti , Zi],
where Zi ∈ R6×1 represents the demographic variables of the patient, and
Xi,t ∈ R34×1, t = 1, 2, 3, . . . , Ti represents the time-varying covariates mea-
sured hourly. Moreover, for each patient, there is a vector of label Y indi-
cates the onset of sepsis at each hour.

3 Problem Description

The aim of this study is to develop a method which could: identify the
risk of sepsis for a patient at each hour t, 0 < t < Ti; and make a (0 or
1) prediction of the label yi,t at each hour based on its historical data
[Xi,1, . . . , Xi,t, Zi].
In order to measure the performance of the prediction models in terms of
both the accuracy and the capacity of early diagnose, a normalized utility
score was proposed in the Pysionet Challenge:

Unormalized =
Utotal − Unoprediction
Uoptimal − Unoprediction

(1)

Utotal =

N∑

i=1

Ti∑

t=1

U(i, t) (2)

For non-septic patients, the reward for the true negative prediction is 0
and the penalty for the false positive is 0.05. For the septic patients, sepsis
prediction 12 hours before the onset of sepsis is slightly penalized, but
the nonsepsis prediction after the onset of sepsis is increasingly penalized.
Figure 1 shows an example of the utility function of a septic patient.

4 Multi-state model for sepsis early diagnose

In survival analysis, typically the censoring is assumed to be non-
informative. However in our problem the censoring is informative because
patients dropped out once they were diagnosed to be non-septic. To tackle
this problem, we proposed to model the diagnosis of ‘sepsis’ and ‘nonsepsis’
as two competing events. Furthermore, it is natural to model the competing
risks using the multi-state model, as discussed by Andersen et al. (2002).
In our multi-state model we defined three states (displayed in Figure 2):
State 1 - under risk; State 2 - onset of sepsis; State 3 - diagnosed to be
non-septic/dropout. Transitions are permitted are from State 1 to State 2,
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FIGURE 1. Utility Functions for a septic patient with the onset time of sepsis
tsepsis = 48 hrs, adopted from Reyna et al. (2019).

and State 1 to State 3. The model can be described using the transition
probabilities prs(ti, tj), which is the probability that an individual moves
from the state r to state s within the time interval (ti, tj).
For the prediction, according to the definition of the utility score above, it
is clear that the reward of the prediction depends on whether a patient is
a septic patient or not, furthermore it is related to the onset time of the
sepsis. Therefore it is natural to introduce a time-varying loss. We proposed
that we can make predictions which minimize the expected total loss:

E[L|H(t)] =
∞∑

tsep=t+1
L+[P1,2(0, tsep)− P1,2(0, tsep − 1)]

+
t∑

tsep=1
L

(t)
− (tsep)[P1,2(0, tsep)− P1,2(0, tsep − 1)] (3)

WhereHi(t) = [Xi,1, . . . , Xi,t, Zi] represents the observations of the patient
i until time t. tsep is the time that the onset of sepsis appears. For simplicity
the utility score function is used as the loss function. L+ represents the false
positive loss, and Lt−(tsep) represent the true negative loss at time t, if the
sepsis onset time is tsep. P1,2(0, tsep) is the transition probability from state
1 to state 2 during the time interval (0, tsep)
In the multi-state model, in order to incorporate the effects of covariates,
the transition intensity function from the state r to state s is defined as

qrs = q(0)
rs exp(βTrsX(t) + αTrsZ + γrst) (4)

and the contribution to the log-likelihood of each patient i between the
time interval tj , tj+1 is therefore

logLi,j = (tj+1 − tj)qS(tj)S(tj) + log qS(tj)S(tj+1)1{s(tj)6=s(tj+1)} (5)
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FIGURE 2. Transitions in the three-state model for the sepsis early diagnosis.

The parameters of this model is estimated by maximizing the likelihood
function using the ‘msm’ package in R. For the predicting, since time-
varying covariates were used, we assume that the transition intensities are
piecewise constant and estimate the transition probability for each patient
using the function provided in the ‘msm’ package.
However when estimating the transition probabilities Prs(ti, tj) for the time
intervals while the observations H(t) are not yet available, i.e t < tj , the
above estimating function is not applicable. For the further work, we plan
to extend the current model by incorporating the modeling of the time-
varying covariates to improve the accuracy of the early diagnosis.
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Abstract: Previous research had identified factors affecting people’s decisions
to dump household waste, illegally, in forests. This information helped redesign
signage aiming to deter dumping. The main question was: Where should signage
be placed? From the perspective of state forest managers: What kinds of locations
in the state forest are more ‘dumpable’ and tend to attract more illegal dumping
than others? This study was one of the first to address the environmental con-
text of dumping within a forest, which aggregates the psychological context of
motivations of many individuals. Due to this novelty, we used expert elicitation
techniques to formulate a conceptual model, which guided design of field data
collection, both before and after introducing signage into the forest. Importantly,
this also engaged a range of stakeholders with the project aims. Signage loca-
tions were pre-determined by regulators and forresters. Information from three
phases of surveillance in the forest was analysed using a ‘multimethod’ statis-
tical approach, starting with models more familiar to stakeholders: examining
main effects via regression with smoothing splines; and high-order interactions
via regression trees. Model-based clustering via Bayesian mixture models per-
mitted insight directly relevant to the research questions, and found that: highly
dumpable sites occurred both in close or far proximity to waste collection sites
with varying profiles describing seclusion. Overall findings across model kinds
confirmed that the ‘nudging’ sign motifs were most effective whilst evidence was
conflicting regarding effectiveness of didactic signage.

Keywords: Mixture model; regression; multimethod; surveillance; Illegal dump-
ing.
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1 Introduction

This project was motivated by the desire, by regulators and other stake-
holders, to reduce illegal dumping of household waste in forests. Previous
research (e.g. Marteau et al., 2011) into the motivations for dumping led
to creation and community testing of several sign motifs, each designed
to reduce dumping in forests in different ways: highest community pref-
erence (Owl motif); a didactic message with strong instructions (Stamp
motif), ‘nudging’ messages noting surveillance (Camera, Report motifs),
and aspirational messages encouraging protection of wildlife habitat (Fire
and Home motifs). The challenge here was to evaluate how these new signs
performed, which required intensive surveillance of the forest before and
after sign installation.
The case study location was the Beerburrum Forest area, a pine planta-
tion near the towns of Woodford, Beerburrum, Beerwah, Landsborough,
and Caboolture. The property is operated by HQ Plantations (HQP) un-
der a 99 year lease from Queensland Government. The area has numerous
stakeholders and users. The research questions were:

RQ1 How do experts (with knowledge of illegal dumping in this forest)
characterise sites where illegal dumping occurs?

RQ2 How does statistical analysis of field data describe site dumpability?

RQ3 Do signage interventions reduce illegal dumping?

Expert elicitation identified factors (RQ1) crucial for designing the field
sampling protocol, to survey incidence of dumping before and after intro-
duction of signage. Statistical models evaluated the effect of interventions
(RQ3), whilst adjusting for site characteristics (RQ2) in different ways.

2 Conceptual model, via Expert elicitation

Expert elicitation was conducted in 2–3 hour sessions with different stake-
holders: regulators in State Government; forresters in Beerburrum Forest
area; city council officers involved in managing household waste; Queens-
land Police officers; recreational users of the forest. They were asked to
brainstorm factors relating to dumpability of sites in Beerburrum, rank
these factors, then characterise one or two key profiles of dumpable sites.
This information was encoded in several waves. The final conceptual model
is shown here.

3 Methods and Materials

Based on expert input, variables identified for data collection included: lo-
cation; dumped material (type, scatter or freshness); proximity to waste
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FIGURE 1. Detailed conceptual model: factors affecting site dumpability elicited
from stakeholders with expertise on illegal dumping in Beerburrum Forest area.

collection (‘tips’) or to forest edge; vegetation type and horizontal visibil-
ity; soil type (not discussed here). Surveillance of the forest was conducted
via vehicle on road sections, first at baseline, then in two phases after intro-
ducing signage, throughout 2 sectors of the park. Locations and numbers
of 6 signage motifs in this pilot experiment were dictated by operational
constraints, but distributed proportionally in 9 areas of the forest, always
containing the community-preferred Owl design as a reference motif. Each
signage motif had low replication, particularly in regard to combinations
of site-specific environmental predictors. Thus a multimethod approach to
modelling was used to examine effects of site characteristics and interven-
tions on site-changes, so that different ‘templates’ (models) could describe
effects in different ways. Analysis started with models familiar to stake-
holders: examining main effects via regression with smoothing splines; and
high-order interactions via regression trees. Imbalanced design made it dif-
ficult to interpret main effects or interactions. Model-based clustering via
Bayesian infinite mixture models permitted insight relevant to research
questions. We used Profile Regression in the PReMiuM package in R, suit-
able for categorical and continuous covariates (Liverani et al., 2015).

4 Results

Intensive spatial analysis was required to encode transects of search effort
and note locations of dumpsites, leading to estimates of rates of dumping
by road section. Changes experienced by road sections over a two-month
period mostly ranged from 0 to 2 dumpsites per km (dpk), with some
sites experiencing larger changes of approx. 5dpk. Overall evidence from
modelling suggested that signs were plausibly slightly effective in general,
reducing dumping by 0.3 dumpsites per km. Interpretation of the two sim-
pler models (regression and regression trees) was far from straightforward
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TABLE 1. Profiles of changes in rate of dumping (after 2mth) across dumpsites.
Dumpsites were allocated with highest post. prob. via mixture model to one of
fourteen profiles, with 2-mth change in rate of dumping as the response, sign type
as the intervention, and all other variables defining clusters. Results shown for 4
profiles with highest dumprates, noting (no.) of sites, and posterior modes.

Cl Dumped material Proximity to Vege-
# No. Type Scatter Fresh Tip Edge Visibility tation

326 Biggest increase in rate of dumping

16 10 ↓Not H
15 26 VL
14 35 ↑Yes L VH
13 255 ↑Yes L VL VL ↑Pine

↑Grass

due to the imbalance of design; Bayesian mixture model results provided a
useful alternative (Table 1).
Evidence regarding the most didactic Stamp design was conflicting: either
found least (model-based clustering) or more effective (regression trees).
Thus further studies are required with more nuanced design to control for
important interactions. However the Camera and Report signs designed to
nudge behaviours (Marteau et al., 2011) were consistently found more effec-
tive (flexible regressions, model-based clustering). Also the Home and Fire
signs encouraging positive behaviours to protect wildlife were not found ef-
fective for protecting areas deep in the forest (regression tree). These com-
parisons were made possible due to the use of the Owl motif as a reference
sign motif. Altogether this evidence suggests that signs may be effective,
further work is required with more targeted experimental design informed
by these results.

Acknowledgments: Special thanks to members of the Illegal Dumping
unit in QEHP. This project was funded by a Research Contract through
Griffith Enterprise, funded by QEHP.
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Abstract: Improving document relevance in Information Retrieval has been re-
cently the focus of many research projects and papers. Such investigations and
developments are very helpful and essential for everyday private and commercial
decisions making process. The main parts of this improvement are the scoring
models such as BM25 and the evaluation of the performance of these techniques
such as the rank-based models, e.g. MAP, NDCG and RBP. Here we are focusing
on the semantic enrichment of the documents using specialised dictionary that
will improve the score and rank of the search results. This enrichment is analysed
and presented using TREC data and utilizing Lucene full-text search library.
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1 Introduction

One of the important stages of the Information retrieval (IR) process is
indexing, where documents are analysed and indexed to be prepared for
searching process. Relevance plays an essential role to determine the match-
ing level and the order of the documents retrieved to satisfy user’s query.
Traditional relevance process is based on keyword searching and this can be
enriched and further supported with semantic-based searching using syn-
onym and specialised/custom thesauri. While the two approaches still use
individual keywords or terms in the indexing and searching processes, the
keyword-based attempts to match word for word, while the semantic-based
will try to match a keyword against a set of keywords that are semantically
related. The latter is achieved using a thesaurus. In this paper, we will
discuss our findings using semantic-based searching using domain-specific
thesaurus.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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In section 2, we briefly explain the scoring, ranking, and the evaluation
model. In section 3, we describe a methodology we used in this research
and we provide a brief description about the NASA thesaurus we used
as a specialty thesaurus used for synonym expansion during indexing. An
analysis and evaluation of the test results are discussed in section 4. We
summarize and provide directions for future research in section 5.

2 Scoring, Ranking and Evaluation Models

We use Lucene (Apache Software Foundation) search engine to evaluate sta-
tistical information models with different indexing configurations. Lucene
uses a scoring function to determine how relevant a document is to a given
user’s query. Lucene allows us to use one of several implementations of these
scoring models. Our intent is figuring out how accurate, i.e. relevant, the
retrieved documents (d) are to the user’s information need (q). It is impor-
tant to determine the contribution of the term, i.e. word, to the document.
This is calculated by using language models based on a given d. Most of
the models are based on the maximum likelihood estimate of the relative
counts. However, we will only present one model here, i.e. best Match fam-
ily (BM25) by Jones et al. (2000), since this is the scoring model we used
for evaluation as implemented by Lucene:

f(q, d) =
∑

w∈q
⋂
d

c(w, q)
(k + 1)c(w, d)

c(w, d) + k(1− b+ b |d|avdl )
log

M + 1

df(w)
(1)

where b ∈ [0, 1] is part of the normalizer term 1 − b + b |d|avdl ; avdl denotes
average document length.
Various evaluation models are used and all are score/rank based functions.
We used all these three evaluation models but here we will focus on Rank-
Biased Precision (RBP) Moffat and Zobel (2008)as it is the most recent,
suitable and effective precision evaluation model:

RBPq = (1− p)
N∑

i=1

rip
i−1 (2)

where ri is the ith relevance judgement, i is the ith document rank (with 1
as the highest document rank), N is the number of documents and p ∈ [0, 1]
is the probability function parameter.

3 Semantic Enrichment

In a previous work, Matawie and Hasso (2018), we have described the
methodology we used to generate the results discussed in this paper. Briefly,
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it consists of using elasticsearch to index TREC aviation data set NASA
(2012).
To improve relevancy of the result sets returned by search engine, we used
several other parameters that influence how the indexed documents are
textually analyzed, stored, and returned during searching.
Finally, We used the Rank-biased Precision (RBP) mentioned above, as an
evaluation criterion to measure the quality across recall levels among all
algorithms, i.e. relevant and non-relevant as judged by human experts (in
this paper assumed to be 0.8).
The use of thesaurus in search engine expands the search engine capabil-
ity from term-centric to meaning-centric. The inclusion of thesaurus, which
clusters words around concepts, in the search engine allows returning docu-
ments that are similar in meaning. In our previous work used a generic En-
glish language-based thesaurus, e.g. WordNet (2010). The generic language-
based thesauri may have limited impact on searching highly specialized
documents on subjects like aviation and medical texts. In the current re-
search, we have used NASA Thesaurus (2012). It contains the authorized
NASA subject terms used to index and retrieve materials in the NASA
Technical Reports.
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FIGURE 1. RBP averages of 225 Queries with and without enhancement (Orange
and blue lines respectively, xt9-xt9cs). Title of the documents not included (xt9)

4 Analysis and Evaluation

We set out to examine the effect of using domain-specific thesaurus, i.e.
NASA Thesaurus, on the relevancy of the retrieved documents during
search. In general, augmenting the search engine with synonym expansion
capability should improve the relevance of the retrieved documents.
Our test results, however, didn’t improve the relevancy of the retrieved
results as illustrated in Figures 1. In fact, it made it slightly worse. This is
because, we believe, is a result of not using highly specialized thesaurus. We
resorted to using it because it was the most accessible resource at this time.
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Surely, it includes terms applicable to avionics, the subject covered in our
TREC document set, and other terms from other engineering and scientific
disciplines. The nature of synonym expansion process is that documents
are enriched with a set of terms that may act as a noise and render a
document as being irrelevant. As a result, the BM25 ranking function will
penalize such documents because of artificially inflated document noise. In
the absence of highly specialized thesaurus and as part of our continuing
research, we are looking at a methodology that generates a corpus-specific
thesaurus to be used as a source for synonym expansion capability of the
search engine.

5 Conclusion

We have developed a methodology that comprises a testing platform us-
ing Elasticsearch engine to generate and evaluate the test results using
Rank-biased Precision (RBP) evaluation model. We can configure the Elas-
ticsearch engine using different analyzers, different lemmatizers, different
thesauri for synonym expansion, and different ranking functions on the
TREC aviation data set. When applied on the TREC aviation data set, we
obtained different test results. The relevance of each returned search results
was analyzed and compared using RBP evaluation criteria. This way, we
can tell which search engine configurations gives us the closest match to
the human experts evaluation criteria. In this paper, we evaluated a config-
uration based on the NASA thesaurus, i.e. specialized, that we adapted to
work in Elasticsearch engine. We compared the results with similar configu-
ration but with English-language thesaurus, i.e. generic. This is an ongoing
research, more analysis and relevance modelling enhancement approaches
will be included in the final version of this paper.
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the overdispersion present in the data may be caused partially from the spatial
dependence that exists among the spatial units. Therefore, regression structures
are specified both for the conditional mean and for the dispersion parameter,
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1 Introduction

When working with count data, it is common to use generalized linear
models (GLM) to fit the distribution of the response variable. However, re-
gression models for count data often present overdispersion, a phenomenon
that arises when the real variance of the data is larger than the one specified
in the model. This could cause the standard errors to be underestimated,
resulting in an incorrect inferential process. One of the main causes for
overdispersion is the possible existing correlation between the values of
the response variable for the different units, which is very common in the
presence of spatial data. Consequently, the spatial dependence that may
exist among the different locations must be taken into account in order to

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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produce reliable inference processes from the estimations. We have fitted
spatial generalized conditional overdispersion models, originally proposed
by Cepeda-Cuervo et al. (2018). In these models, regression structures are
specified both for the conditional mean and for the overdispersion param-
eter. The spatial dependence present in the data is captured by including
a spatial lag in both regression structures. In this way, the researcher can
have information about the type of spatial association that is present in
the data. To show the usefulness of the aforementioned models, we apply
them to a dataset including infant mortality rates from different regions of
Colombia, as well as a number of variables that we will use as covariates.

2 Spatial generalized conditional overdispersion
models

The most common approach for modelling overdispersion is to include an
additional dispersion parameter in the GLM. In generalized overdispersion
models for count data, regression structures are specified both for the condi-
tional mean and for the overdispersion parameter. However, these models
do not provide information about the strength of the spatial association
present in the data. Spatial conditional overdispersion models were pro-
posed by Cepeda-Cuervo et al. (2018) in order to be able to estimate this
effect. This effect is modelled by proposing the use of the spatial weights
matrix to compute the spatial lag of the variable under study, which is
included in the model with a parameter that estimates the intensity of the
spatial association. The spatial structure of the neighborhood is defined by
the weights matrix W = [wij ], with elements wij given by the weights that
reflect the intensity of the dependence between regions i and j. In gen-
eral, wij = 1/ni, if region j belongs to the neighborhood of region i, with
ni being the number of first or second order adjacent regions for region
i; and wij = 0 otherwise. The spatial conditional overdispersion regres-
sion model assumes that the spatial variable under study, Yi, i = 1, . . . , n,
conditioned on the values of all of its neighbor, but not including the i-th
region itself (i.e., Y∼i), has a overdispersed conditional distribution denoted
by f(yi|y∼i), i = 1, . . . , n, where the conditional mean and the dispersion
parameter follow given regression structures that, besides some covariates
affecting the response variable, also include spatial lags of the variable un-
der study. The conditional overdispersion density function follows either
a Poisson or a binomial distribution, leading to the (generalized) spatial
conditional Poisson, negative binomial, normal Poisson, binomial, beta bi-
nomial and binomial normal regression models, respectively.
Let us consider the Poisson normal model for overdispersed count data, in
which the overdispersion is included in the model with the use of a normally
distributed random effect term in the mean model. In this way,

g(λi) = xT

i β + νi, (1)
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where g(.) is usually the logarithm function, xi is the q × 1 vector of ex-
planatory variables for the i-th observation, β is a q× 1 vector of unknown
regression parameters, and νi ∼ N(0, τ). In this model, (Yi|νi), i = 1, . . . , n,
follows a Poisson distribution with mean λi = E(Yi|νi). In the spatial con-
ditional normal Poisson model, if Yi, i = 1, . . . , n, represent area count
data from different regions or areas, a portion of the existing overdisper-
sion can be explained by the neighborhood spatial structure assumed by
the researcher, so this model assumes that (Yi|Y∼i, νi) follows a Poisson
distribution with mean λi = E(Yi|Y∼i, νi), and

g(λi) = xT

i β + ρWiy + νi, (2)

with ρ being the parameter explaining the first order spatial association
in the mean model, Wi is the i-th row of the n × n weight matrix W,
and y is the n × 1 vector of the observed values of the response variable
under study. Finally, in the generalized spatial conditional normal Poisson
model, the conditional mean µi and the variance terms in the random effect
distribution, σ2

i ’s, follow regression structures given by

log(µi) = xT

i β + ρWiy + νi and log(σ2
i ) = zT

i γ + ηWiy, (3)

where zi is the qφ × 1 vector of explanatory variables for the i-th observa-
tion, γ is a qφ × 1 vector of unknown regression parameters, and η is the
parameter explaining the first order spatial association in the dispersion
model.

3 Application

The dataset considered here has been obtained from the National Statis-
tics Department of Colombia and corresponds to 32 departments (regions).
Some of the variables available for each one of the geographical units are:
infant mortality rate, which is the number of children under one year of age
who died per 1000 born alive in 2005 (i.e., variable IMR), the percentage
of the population that had basic services not being satisfactorily attended
to for the year 2005 (i.e., variable NBI) and the resources (in thousands)
provided for academic achievement or education and integral attention for
young children per household in the year 2005 (i.e., variable Rec), among
others. For the prior distributions, we assume independent normal distri-
bution, N(0, 105), for all of the regression parameters. In the specific appli-
cation considered here, after 10000 iterations and a burn in period of 2000
samples, the chains showed strong signs of convergence. The best fitting
model for this data was the generalized spatial conditional normal Poisson
model with DIC and BIC values of 200.1 and 187.8, respectively, and mean
and variance regression models given by:

log(µi) = β0 + β1Reci + νi, νi ∼ N(0, σ2
i ) (4)

log(σ2
i ) = γ + ηNBIi + ρWiy, (5)
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with the corresponding estimates reported in Table 1.

TABLE 1. Parameter estimates, together with their standard deviations for the
generalized spatial conditional normal Poisson model fitted to the infant mortality
data

β0 β1 γ η ρ

Estimate 3.003 −1.294× 10−03 −12.679 0.112 0.203
SD 0.105 9.306× 10−04 4.265 4.267× 10−02 9.877× 10−02

4 Conclusions

We have reviewed generalized spatial conditional overdispersion models for
count data and applied them to the study of infant mortality rates in the
departments of Colombia. They have provided a good fit and were able to
explain the overdispersion and spatial association present in the data. From
our study, for the Poisson case, we can conclude that the proposed models
fit better than other models that are not taking into account the overdisper-
sion or the well known intrinsic conditional autoregressive (ICAR) models.
More specifically, for the infant mortality rates data, the best fitting model
was the generalized spatial conditional normal Poisson model.
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1 Università di Palermo, Italy

E-mail for correspondence: vito.muggeo@unipa.it

Abstract: This paper provides some issues, known but somewhat little stressed,
on using the conventional covariance or correlation matrix when performing the
simple PCA. The paper also proposes a new simple alternative by providing some
evidence, via real-data analysis and some simulation experiments, supporting the
proposal.

Keywords: eigendecomposition, multivariate analysis.

1 Introduction

Principal Component Analysis (PCA) is probably one of the most old,
known and widespread statistical tool of multivariate analysis across disci-
plines. PCA backdates to Pearson (1901) and Hotelling (1933) in the early
twentieth century, and nowadays several authoritative books are available
for graduate students and researchers working in different areas. An ex-
haustive listing of all textbooks discussing PCA is a tough task and prac-
tically unfeasible. We just refer to Jolliffe (2002) for a comprehensive and
modern introduction and some extensions. While several and challenging
extensions of PCA have been discussed, this note just aims at providing
some thoughts and comments about computing the principal components
in the simple case. We underline some issues which characterize the usual
approaches to PCA and then we propose a new one which is based on a
relatively little used variability measure which does not appear to have ever
been discussed.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Methodology of PCA

The settings are the following: data refer to p numerical variables observed
on n units: Let x1, . . . xj , . . . , xp the n-dimensional vectors arranged in the
n × p data matrix X. Let var(X) = S = [sjk] the covariance matrix
wherein sjj = s2

j = var(Xj) and sjk = cov(Xj , Xk). PCA aims to find the
‘best’ linear combination of observed variables; ‘best’ refers to capability to
account for the whole variability in data as much as possible such that the
found component has marginal variability larger than the single Xs. More
formally, let y = Xa the linear transformation of theXs where the unknown
a = (a1, . . . , ap) are found by maximizing var(Xa) = aTSa. Identifiability
constraints, such that aTa = 1, have to be added to make the problem well
determined. The unique solution comes from the eigendecomposition of S,
such that a is an eigenvector with corresponding eigenvalue λ = var(Xa).
The p eigenvectors are sorted according to the eigenvalues λx1 ≥ λx2 ≥ . . . ≥
λxp leading to the p uncorrelated principal components yx1 = Xa1, y

x
2 =

Xa2, . . . , y
x
p = Xap. If X does not include redundant columns, i.e. variables

with no variability or expressed as linear combination of others, S has full
rank, and λxj > 0 for each j.
Altogether the p principal components explain the whole variability, some-
times referred as inertia, as expressed by trace(S) =

∑
j s

2
j , but typically

just a few components are retained to account for most of the whole vari-
ability: the cumulative portion of variance explained by the first k, say, prin-
cipal components

∑k
j λj/trace(S) is employed to assess how many principal

components could be kept. Retaining few components with ‘good’ portion
of explained variability, no less than 70% or 80% probably, is usually con-
sidered successful for PCA.
In practice, phenomena under investigations are very complex with rele-
vant variables Xj observed on different scales or different units of mea-
sure. While eigendecomposition of S can be still carried out, the additive
expressions for the principal components (

∑
j ajXj) themselves and the

total variance (
∑
j s

2
j ) get weird and difficult to admit from a substan-

tive viewpoint, since these involve quantities on different units of measure.
The usual recommendation reported in all textbooks is to consider the
standardized variables zij = (xij − x̄j)/sj being x̄j the covariate mean
and sj the standard deviation. Hence, given the standardized data matrix
Z = [zij ], one performs eigendecomposition of the corresponding covari-
ance matrix var(Z) = cor(X) = R = [rjk] to get eigenvectors bj and
eigenvalues λzj which, in turn, lead to components yzj = Zbj having vari-
ances var(yzj ) = λzj . Using the correlation matrix R = [rjk] allows to get
dimensionless quantities which can be summed fairly.
While the canonical standardization ‘z’ allows to include variables on dif-
ferent scales straightforwardly, we guess the price to be paid is high: infor-
mation about the marginal variability is destroyed, since each standardized
variable has unit variance.
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Actually we need a transformation making unitless the variables, while pre-
serving information on the whole variability in data, namely covariabilities
and marginal variances as well. The proposed transformation fulfilling the
aforementioned points is

uij =
xij
|x̄j |
− sgn(x̄j) j = 1, 2, . . . , p. (1)

The transformed variables Uj have zero means with corresponding covari-
ance matrix V = [vjk] such that

var(Uj) = vj =
s2
j

|x̄j |2
and cov(Uj , Uk) = vjk =

sij
|x̄j x̄k|

. (2)

Namely the elements on the main diagonal are the coefficients of variations
(cv) of the original Xj and the off-diagonal elements can be called ‘coef-
ficients of covariation’. Curiosly, while the cv is well known in explorative
analysis as a measure of unitless variability, the corresponding ‘covariabil-
ity’ does not appear to have been discussed. Similarly to the matrix of
variance-covariance, we could name V the matrix of variation-covariation
coefficients, or more simply the covariation matrix.
Our proposal is to run PCA via eigendecomposition of the matrix V lead-
ing to eigenvectors cj and eigenvalues λuj . Hence the resulting principal
components are yuj = Ucj where U is the data matrix obtained via trans-
formation (1), and var(yuj ) = λuj . Of course λuj /

∑
j λ

u
j is the portion of

total variance explained by yuj . The intuition behind (1) is that all in-
formation about variability in data is exploited: correlation is preserved,
but unlike the traditional standardization z, the likely different marginal
variabilities are also involved in the determination of the principal com-
ponents and corresponding variance. As a conseguence, we conjecture the
first principal components based on V will capture larger portions of the
whole variability of data.

3 Empirical evidence

To gain empirical evidence about using the covariation rather than the
correlation, some simulation experiments were run: we generate n obser-
vations from p multinormal variables with means ranging in (−10, 10),
marginal standard deviations in (1, 50) and two kinds of correlation ma-
trix: Uniform (ρjk = ρ) and Toeplitz ρjk = ρ|j−k|. Five values for
ρ = {0.1, 0.2, 0.5, 0.7, 0.9}, three values for p = {5, 10, 25} and three sample
sizes n = {30, 50, 100} leading to 90 scenarios, overall. We contrast per-
formance of PCA based on matrices R and V via the differences between
portions of total variance explained by the first principal components re-
ported in Figure 1. Patterns are rather clear and easy to interpret: PCA
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FIGURE 1. Differences between PCA based on V and R. The boxplots refer to
differences of relative variances explained by PC1 (light grey box) and PC1+PC2
(dark grey box). Positive value indicate that PCA based on V is able to explain
larger portions of relative inertia.

using the proposed scaling (1) is always able to explain higher portions
of total variability than the conventional standardization, especially when
only the first principal component is kept. While sample size does not mat-
ter as expected, outperformance gets higher when the number of involved
variables increases and correlations lessen. When covariability in data is
scarce, i.e. low correlation coefficients, the marginal variabilities get con-
siderable and they matter in determining principal components able to
‘grab’ most of whole variability in data. When the correlation structure is
strong, differences alleviate.
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Abstract: Multivariate Gaussian regression has applications in many fields, but
is made difficult by the high model complexity and positive-definite requirement
on the estimated covariance. We implement multivariate Gaussian regression
through a Cholesky-based reparameterization of the covariance matrix. The dis-
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nonlinear variations in mean and covariance. The reparameterization is compared
to reference methods for estimating a fixed covariance. An application for weather
prediction (surface temperature) illustrates the flexibility of the approach.
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1 Cholesky-based multivariate Gaussian regression

Multivariate modeling has a wide range of applications from longitudinal
analyses of biomarker data to postprocessing of numerical weather predic-
tions. Employing multivariate Gaussian distributions in the framework of
distributional regression allows one to specify very flexible models. For the
bivariate Gaussian case, the correlation may be modeled directly (e.g. Klein
et al. 2015), but for higher dimensions two main difficulties occur: (i) high
complexity resulting from the large number of distributional parameters
and (ii) ensuring a positive definite covariance. To tackle the latter issue,
we factorize the covariance by the Cholesky decomposition (Pourahmadi
2011). To deal with its high complexity, we regularize the Cholesky-based
multivariate Gaussian regression models (Umlauf et. al 2018).
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The Cholesky decomposition of a positive definite symmetric matrix Σ has
the form

Σ = LLT and Σ−1 = L−1TL−1, (1)

and is unique if the main diagonal of the lower triangular L is positive. The
log-likelihood of a multivariate Gaussian distribution for the k-dimensional
observation vector y can then be written in terms of µ and L−1 by

`(µ,L−1|y) = −k
2

log(2π) + log(|L−1|)− 1

2
(y−µ)T(L−1)TL−1(y−µ). (2)

We designate the nontrivial elements of L−1T by λij , with i ≤ j, and link
all distributional parameters to additive models:

µi = ηµ,i, log(λii) = ηλ,ii, and λij = ηλ,ij for i < j. (3)

The reparameterization is available as a family for the R package bamlss
(Umlauf et. al 2018) that implements optimizers for regularized estimation.

2 Simulation study

We test the proposed regression method with data simulated from a known
multivariate Gaussian distribution of dimension 10. The distribution has
zero mean, heteroscedastic marginal variances Σii = i and a first order
autoregressive correlation matrix with ρ = 0.5.
Two different model setups are used to estimate the true distributional
parameters from 50 simulated y and the process is repeated 1000 times. In
Model 1, all ηi (see Eq. 3) are modeled as intercepts only. Model 2 is the
same as Model 1 except that off-diagonal entries of L−1 (i.e. λij , i 6= j) are
regularized with a ridge penalty.
The estimates’ representations of the true covariance and precision is eval-
uated using the spectral norm of the corresponding matrix differences, and
compared to three reference methods for covariance estimation: (i) the sam-
ple covariance, (ii) a shrinkage covariance estimate and (iii) the graphical
lasso (glasso).
The unregularized Model 1 has similar performance to the sample covari-
ance; the regularized Model 2 performs better than both the shrinkage
estimate and glasso (Fig. 1). For estimating a stationary covariance struc-
ture, the proposed multivariate distributional regression approach performs
well despite the number of distributional parameters (65) exceeding the
number of simulated vectors used for estimation (50). The true strength
of the method, though, lies in the flexible manner in which distributional
parameters can be modeled on covariates.
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FIGURE 1. Spectral norm of differences between the estimated and true covari-
ance (left) and precision matrices (right). Boxplots represent 1000 simulations.
Smaller values indicate that the estimated covariance (precision) matrices are
closer to the truth.

3 Multivariate forecasting of surface temperatures

The goal of numerical weather prediction is forecasting future atmospheric
states from current observations using governing physical equations. The
resulting predictions are postprocessed by statistical methods to improve
their skill. For forecasting the temporal evolution of surface tempera-
ture over several future (lead) times, the error correlation between lead
times must be considered. Our proposed method accomplishes this task
with a multivariate approach by postprocessing the predictions (GEFS re-
forecasts, Hamill 2013) for several lead times simultaneously.
To illustrate, we model 00 UTC surface temperature at Innsbruck, Austria,
for 8 lead times (+8 d, +9 d, . . . , +15 d) with an 8-dimensional Gaussian
distribution. Seasonal variations in both predictive skill and error correla-
tions are permitted by letting Cholesky factor entries depend on the day
of the year (yday) and mean parameters have a linear dependency on the
corresponding forecasts ensi, but with seasonally varying coefficients:

µi = (β0,i + f0,i(yday)) + (β1,i + f1,i(yday)) · ensi
log(λii) = β0,ii + fii(yday)

λij = β0,ij + fij(yday),

(4)

where f are nonlinear cyclical functions of yday.
Five years of data were used to estimate the model parameters and reveal
pronounced seasonal cycles in the effects of the µ models (Fig. 2). Each of
the modeled λij are also allowed to have such seasonal dependencies, which
are significant for i = j and also for several λij with lag 1 (i.e. j = i + 1).
At higher lags, the seasonal effects become insignificant.

Seasonally varying Cholesky factor estimates (L̂−1) result in distinct Σ̂ for

every yday. Taking Σ̂ for January 1 and July 1, we see that not only are vari-
ances in winter nearly twice as large as in summer, the errors are also more
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FIGURE 2. Left column: Estimated mean-model effects for β0,i + f0,i(yday) in
Eq. 4 (top) and β1,i + f1,i(yday) (bottom). Center column: Correlation ma-
trix (top) and marginal variances (bottom) calculated from the Cholesky factor
estimated for January 1. Right column: Correlation and variances for July 1.

strongly correlated (Fig. 2). This is the benefit of the proposed multivariate
Gaussian regression method: flexible mean and covariance estimation, while
ensuring positive-definiteness and enabling data-driven regularization.
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1 Introduction

Stellar clusters are natural laboratories where astrophysical theories can
be tested. These stellar systems are formed after the collapse of a giant
molecular cloud due to its own gravitational potential and possibly some
external perturbation. The collapse stops once the dense cores ignite into
stars, and the radiation pressure of their light expels the gas and dusts of
their cocoons.
Due to their common origin, the stars in these stellar systems share, up
to a certain extent, their chemical composition, age, velocity, and distance
relative to the observer. The homogeneity of their properties together with
their relatively large size of their populations, which range from hundreds
up to thousands, make them easily identifiable from the rest of the hetero-
geneous Galactic population.
The Bayesian hierarchical formalism (see Gelman and Hill 2006, and refer-
ences there in) allows the simultaneous inference of individual and popula-

This paper was published as a part of the proceedings of the 35th Inter-
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tract any parts of this abstract should be requested from the author(s).



Olivares et al. 387

tion parameters by mimicking the hierarchy present in the data. In addi-
tion, they can minimize the impact of the prior when the parameters of the
later are incorporated into the model and inferred from the data as well.
Here, we present three examples of Bayesian hierarchical models (hereafter
BHM) designed to infer the luminosity (i.e. a proxy for the mass), spatial,
and distance distributions of stellar clusters in the solar neighbourhood.

2 Luminosity distribution

In Olivares et al. (2018b), we created a BHM to simultaneously disentangle
the cluster population form that of the Galactic field, and to derive a para-
metric representation of the distribution of stellar luminosities. The prior
distribution is established based on previously known cluster members. The
likelihood takes into account the heteroscedastic uncertainties and missing
value sources of data sets with hundreds of thousands of stars. Due to its
high computational cost, its implementation uses graphical processor units.
The inference process is carried out in two steps. First, a swarm-intelligence
approach (Particle Swarm Optimizer, Blackwell & Bentley 2002) is used to
obtain a maximum-a-posteriori solution. Then, an affine invariant Markov
Chain Monte Carlo method (Foreman-Mackey et al. 2013) is used to sample
the posterior distribution of the model parameters.

3 Spatial distribution

In Olivares et al. (2018a), we constructed a BHM to infer the spatial distri-
bution of stellar clusters (its projection in the plane of the sky and perpen-
dicular to the line of sight). A set of common statistical and astrophysical
distributions are used to describe the sky position of the stars. The param-
eters of these distributions are inferred using a Nested Sampling approach
(Skilling 2006). The advantage of the latter is that it delivers, in addition
to samples from the posterior distribution of the parameters, the Bayesian
evidence of the model. This evidence provides a solid foundation to select
between competing models (Trotta et al. 2006).

4 Distance distribution

In Olivares et al. (2020), we constructed a BHM to simultaneously infer
individual distances to stars, and the population parameters of the cluster,
like its location, scale size, and some extra parameters. The probabilistic
graphical model associated with this BHM is shown in Fig. 1. In this model,
a prior distribution for the distance is proposed from a set of common
statistical and astrophysical families. The measurements of the stars are
Gaussian distributed but not independent; they are spatially correlated.
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FIGURE 1. Probabilistic graphical model used to infer the distance distribution
in stellar clusters. The model shows parameters at the two levels of the hierarchy:
stars and cluster. Circular nodes represent inferred values while rectangular ones
represent given values.

Thus the likelihood is a multivariate Gaussian distribution. The model is
implemented in a probabilistic programming language (PyMC3, Salvatier
et al. 2016) that performs automatic differentiation thus enabling the use of
the Hamiltonian Monte Carlo sampler (Duane et al. 1987). The advantage
of the latter is that the thousands of model parameters can be inferred in
a few minutes using a personal computer.

5 Conclusions

The Bayesian hierarchical formalism combined with comprehensive data
modelling and computationally intensive approaches, like the use graphical
processors and automatic-differentiation algorithms, enables researchers to:
i) compare and reject competing hypothesis, and ii) elicit the information
hidden in the overwhelming flood of data of today surveys. The work shown
here is an example of the success that can be expected from the exchange
of methods and techniques provided by interdisciplinary collaborations, in
this particular case between astronomers and mathematicians.
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Abstract: In aging research, the change of cognitive function over time is of
interest. We construct a bivariate shared random-effects joint model to investigate
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the level of cognitive function. We apply a bivariate binomial distribution in the
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The joint models are applied to the English Longitudinal Study of Ageing (ELSA)
data.

Keywords: Joint model; Bivariate binomial distribution; Cognitive function.

1 Introduction

In aging research, it is important to investigate the changes in individual
cognitive function. Cognitive function is the individual’s ability to process
information, which mainly contains learning and problem-solving ability.
Scientists provide advice on whether old people need care by analyzing the
relationship between cognitive function decline and aging (Van den Hout
and Muniz-Terrera, 2016). Normally, the data related to cognitive function
are longitudinal data. The most common causes of dropout are dementia
and death in this type of data, which can be treated as an event of interest
in corresponding survival analysis. Therefore, the cognitive-related data
can be analyzed using the joint model. Moreover, scientists sometimes use
more than one test to investigate cognitive ability in one study. Since all of
the responses are important to such research, it is necessary to construct a
multivariate model.
The bivariate longitudinal model and the survival model are joint by shar-
ing a random effect, and we assume that these two models are independent
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given the random effect. Since the cognitive function is usually measured by
non-negative integers, the bivariate extension of the binomial distribution
proposed by Altham and Hankin (2012) is used for the longitudinal model.
The Weibull hazard and the Gompertz hazard are used for the survival
models. We apply the models to analyze the English Longitudinal Study
of Ageing (ELSA) data. The data are related to verbal learning and recall.
Individuals are required to learn ten words and recall these words at two
different time points (immediate and later), but within the same interview;
see Van den Hout and Muniz-Terrera (2018).

2 Models

This section introduces the bivariate binomial distribution used for the lon-
gitudinal model and the Weibull, Gompertz hazard models for the survival
part. After that, the marginal likelihood function is presented. For what
follows, assume that the random effect is b.

2.1 Longitudinal model

We assume that the longitudinal responses for two scores are y(1) and y(2)

at any time (or age) t. The bivariate binomial distribution is used to analyze
the responses (Altham and Hankin, 2012):

p(Y1 = y(1), Y2 = y(2)) =
g(Y1 = y(1))g(Y2 = y(2))φy

(1)y(2)

C

g
(
Yj = y(j)

)
=

(
m

y(j)

)
py

(j)

Yj
(1− pYj )(m−y(j))θ

y(j)(m−y(j))
Yj

,

where 0 < pY1 , pY2 < 1, θYj , φ > 0, and

C =

m∑

y(1)=0

m∑

y(2)=0

g(Y1 = y(1))g(Y2 = y(2))φy
(1)y(2)

.

The probabilities pYj are linked to time using a logistic regression model:

pYj =
exp(η

(j)
0 + η

(j)
1 t+ b(j))

1 + exp(η
(j)
0 + η

(j)
1 t+ b(j))

.

2.2 Survival model

The event of interest is death. The Weibull hazard model and the Gompertz
model are used to construct the survival part of the joint model:

Weibull : h(tlast) = exp
(
β + α(η

(j)
0 + b(j))

)
τt

(τ−1)
last (1)

Gompertz : h(tlast) = exp
(
β + α(η

(j)
0 + b(j)) + γtlast

)
, (2)
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where τ, γ > 0, tlast is the last recorded age for the corresponding indi-
vidual. Equations (1) and (2) assume that the random intercept in the

longitudinal model would impact the risk of death via αj(η
(j)
0 + b(j)).

2.3 Marginal likelihood function given left truncation

Left truncation, also called delayed entry, occurs when individuals have
been at risk before entering the study (Wienke, 2010). In aging research,
since the event of interest is death, individuals can be included in the data
only if they have not experienced the event before they enter the study.
If we do not deal with the left truncation, the estimation is based on the
assumption that individuals were not at risk of dying before the start of
the study. Therefore, the left truncation needs to be taken into account in
the model estimation.
For individual i, i = 1, . . . , N , the corresponding longitudinal responses are

yi = (y
(1)
i ,y

(2)
i ),

(
y

(j)
i = (y

(j)
i1 , . . . , y

(j)
ini

)
)

at age ti = (ti1, . . . , tini), where

j = 1, 2 is the jth method of measuring cognitive function, ni is the number
of observations for each individual. Let ω represent all the parameters in the
joint model except the random effects, ti1 for baseline age. The likelihood
contribution of individual i conditionally on truncation time ti1 is:

Li(ω|yi, ti, T ≥ ti1) = p(yi, ti|T ≥ ti1,ω) =
p(yi, ti|ω)

p(T ≥ ti1|ω)
, (3)

where p(T ≥ ti1|ω) is the survivor function evaluated at ti1. For the shared
random-effects model, the denominator in (3) can be written as:

p(T ≥ ti1|ω) =

∫
p(T ≥ ti1|bi,ω)p(bi|ω)dbi.

Assuming the independence between responses given the random effect, so
that the marginal likelihood function is:

p(yi, ti|ω) =

∫
p (yi|ti, bi) p (tlast i|bi, δi) p (bi) dbi,

= log

N∑

i=1

∫ [ ni∏

k=1

f(y
(1)
ik , y

(2)
ik |tik, bji)

]
f (tlast i|bi, δi) f (bi) dbi,

where tlast i = tini is the last recorded age. Parameter δi = 0 means alive
at the last observation and δi = 1 means death. Distribution p (yi|ti, bi)
represents the longitudinal model and p (tlast i|bi, δi) is the survival model:

p (tlast i|bi, δi) = h (tlast i|bi)δi P (T ≥ tlast i).

We define the random effect bi ∈ Rp by bi ∼ N(0,
∑

), where
∑

is a p× p
covariance matrix.
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3 Application

We apply the model to analyze the ELSA data. The bivariate responses
are the number of immediately recalled words ‘y(1)’ and the number of
later recalled words ‘y(2)’. We code the marginal log-likelihood function in
R. The corresponding parameters are estimated using the optim function
with the Nelder-Mead algorithm.

Hazard distribution −2LL AIC α

Weibull: j = 1 29286.58 29312.58 -1.216

Gompertz: j = 1 28972.61 28998.61 -1.608

Weibull: j = 2 29281.87 29307.87 -1.822

Gompertz: j = 1 29010.75 29036.75 -1.013

TABLE 1. AIC and estimated αs for shared random-effects models, where j refers
to immediately recall and later recall

The AIC values for joint models with Gompertz hazard model are smaller
than joint models with Weibull hazard model, when they share the same

random intercept η
(j)
0 + b(j). The estimation of αs follows our expectation:

the risk of death will be relatively low if individuals have a good cognitive
function at the baseline age.
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Abstract: We present a full spatio-temporal and hierarchical data modelling
approach for the analysis of high-throughput phenotypic data. We use the re-
cently proposed SpATS approach as the base model, and extend it to the spatio-
temporal case, also considering a three-level hierarchical data model (plants
nested in genotypes, nested in populations). We illustrate our approach using
data from a high-throughput phenotypic platform.
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1 Introduction

Plant breeding programmes aim to improve food production and to en-
hance nutrition through genetic improvement. Recent technological devel-
opments have improved data acquisition through high-throughput pheno-
typic platforms. With these platforms, researchers have now access to large
and detailed datasets on multiple traits (phenotypes) for many plants and
genotypes, long time-series of repeated measurements, under different en-
vironmental and management conditions, to cite a few.
In this work, we aim to model the longitudinal evolution of the genetic
effect on a given phenotype, while correcting for the environmental effects.
In particular, we generalise the two-stage modelling strategy presented in
Pérez et al. (2019) to a full and one-stage spatio-temporal approach. We use
the spatial SpATS model (Rodŕıguez-Álvarez et al., 2018) as the base model
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and extend it to the spatio-temporal case, considering a three-level hierar-
chical data structure (plants nested in genotypes, nested in populations).
We use (tensor-products of) cubic B-splines and second order penalties (P-
splines, Eilers and Marx, 1996), and their representation as mixed-effect
models. Our approach tackles a great computational challenge due to the
large amount of observations and the large number of parameters to be
estimated. To speed up computation, we take the advantage of the array
structure of the data through Generalised Linear Array Models (GLAM,
Currie et al. 2006). Also, the computational time is further improved by
exploiting the sparse structure of the matrices involved in the model.

2 Spatio-temporal Data Modelling Approach

Let yi(t) denote the observed phenotype of interest of the i-th plant at time
t, which is modelled as follows,

yi(t) = fp(i)(t) + fg(i)(t) + fi(t)︸ ︷︷ ︸
3-level longitudinal effects

+ fr(i)(t) + fc(i)(t) + f(r(i), c(i), t)
︸ ︷︷ ︸

Spatio-temporal effects

+εi(t),

where fp(i)(·) models the evolution over time of the p-th population, fg(i)(·)
and fi(·) are random processes associated with genotype g and plant
i, respectively; fr(i)(·) and fc(i)(·) are random processes associated with
row r and column c, respectively, and f(·, ·, ·) is a spatio-temporal three-
dimensional surface defined over the row and column positions (r and c),
and time t. Finally, εi(·) is a white noise measurement error with variance
σ2. Each univariate function (fp(i)(t), fg(i)(t), fi(t), fr(i)(t), and fc(i)(t))
is modelled using cubic B-spline basis functions, and f(r(i), c(i), t) us-
ing the tensor product of marginal cubic B-spline bases. Smoothness is
achieved by imposing a second-order difference penalty on the regression
coefficients. We use the connection between P-splines and mixed models
through the parametrisation proposed by Lee and Durban (2011). Here,
the smooth functions are sums of linear and non-linear components, and
smoothing parameters are “replaced” by variance components. For fg(i)(·),
fi(·), fr(i)(·) and fc(i)(·) we penalise (assume random) the linear compo-
nent (intercept + slope). Note that it implies that we have one variance
component per population, and three variance components for genotypes,
plants, rows and columns (associated, respectively, with the intercept, the
slope and non-linear effect). Finally, the smoothness of the spatio-temporal
surface is controlled by three variance components (for row, column and
time).

3 Application to the PhenoArch Platform

The data analysed here corresponds to an experiment conducted in the
PhenoArch platform (Cabrera-Bosquet et al., 2016). The data set consists
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of 35 leaf area measurements on 1680 plants of 180 genotypes from 4 popu-
lations of maize (1680× 35 = 58800 observations, including missing data).
For the results shown here, B-spline bases of dimension 11 were used to
model fp(i)(t), fg(i)(t), fi(t), fr(i)(t), and fc(i)(t), and of dimension 8 for
each marginal of f(r(i), c(i), t). This configuration yielded a total of 21877
regression coefficients (both fixed and random), and 20 variance compo-
nents. Model estimation took approximately 70 minutes. Computations
were performed in (64-bit) R 3.6.3, and a 2.40GHz × 4 Intelr CoreTM i7
processor computer with 15.6GB of RAM and Ubuntu 16.04 LTS OS.
Figure 1 shows the estimated genotypic deviations (the main level of deci-
sion for these experiments) for five genotypes per population selected for
illustration. We compare the results with (1) the estimated genotypic de-
viations obtained with the two-stage approach by Pérez et al. (2019), and
(2) the genotypic BLUPs obtained from the SpATS analysis of each mea-
surement time separately. In order to characterise the genotypes, the first
and second-order derivatives of the (estimated) plant trajectories were ob-
tained and some features extracted (as in Hurtado et al., 2012). Figure 2
shows the maximum growth rate and acceleration rate of the leaf area for
all genotypes in one population.
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FIGURE 1. Estimated genotypic deviations f̂g(i)(t) for five genotypes per
population (as illustration). The blue lines correspond to the results using pro-
posal presented here, the green lines to the results using to the two-stage ap-
proach, and the gray lines are the genotypic BLUPs obtained from SpATS.
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FIGURE 2. Genotypic characterization from the first and second derivatives
curves of the plant trajectories for the genotypes in one population (as illustra-
tion). Figure (a): box-plot of the maximum growth rates of the leaf area, extracted
from the first-order derivative curves, for the plants of each genotype. Figure (b):
box-plot of the maximum acceleration rates of the leaf area, extracted from the
second-order derivative curves, for the plants of each genotype. Genotypes are
ordered according the median value for the respective feature.
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Abstract: Single and repetitive sampling plans represent conventional methods
used in inspection the quality of lots or batches of products. Truncated repet-
itive inspection presented in this paper allows the practitioners to significantly
reduce the required sampling effort from the lot. In this scheme, the lots can
be reinspected, at most, a prefixed number of times when their acceptance or
rejection cannot be concluded from the original inspection. We develop the de-
sign of truncated repetitive sampling plans based on defect count data and using
expected sampling risks. The Poisson distribution is assumed for the number of
defects found in the sample and a gamma prior model on the unknown defect rate
is considered. The optimal truncated repetitive sampling plans are obtained by
solving several nonlinear programming problems. The results show that optimal
truncated plans are better than the conventional single and repetitive schemes in
reducing the average sample number of the inspection.

Keywords: Quality control; Expected producer and consumer risks; Poisson
distribution; Gamma prior distribution

1 Introduction

This work presents the design of a truncated repetitive sampling plan for lot
acceptance when defect counts are Poisson distributed and a prior model
on the defect rate is considered; see Pérez-González et al. (2020). In this
scheme, that was introduced by Pérez-González et al. (2019), the lots that
are not accepted or rejected can be reinspected, at most, a certain num-
ber of times that is defined as the truncation parameter of the inspection
scheme. The gamma distribution is used to include previous data about the
unknown defect rate into the decision process of the inspection. Truncated

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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inspection plans outperforms the single sampling plans as well as the stan-
dard repetitive plans proposed by Sherman (1965) in terms of the average
sample number (ASN) and allow us to save inspection costs.

2 Truncated repetitive inspection plans

Consider that the quality variable of interest in a manufacturing process
of a particular product is the number of defects C of an item. Assuming
that C follows a Poisson distribution with unknown defect rate per unit
λ > 0, the producer considers that lots are satisfactory if λ ≤ λ0, where λ0

is the acceptable defect rate, whereas the inadmisible lots for the consumer
correspond to λ ≥ λ1, where λ1 (> λ0) is the rejectable defect rate.
Given the integer decision limits r and s, where 0 ≤ r ≤ s, the truncated
repetitive sampling plan (n, r, s, t) may be described as follows

• Step 1. Initialize the number of the inspection sampling stage k = 1.

• Step 2. Select the kth random sample of n independent units from
the lot or batch and compute the total number Dk =

∑n
j=1 Cjk,

where Cjk is the number of nonconformities of the jth item in this
kth sample, with j = 1, .., n.

• Step 3. If k < t, then the lot is accepted when Dk ≤ r and rejected
when Dk > s. Otherwise, a decision cannot be made and Step 2 is
repeated with k = k + 1 if k < t. If k = t, then the lot is accepted
when Dt ≤ r and rejected, otherwise.

The operating characteristic (OC) function for a truncated repetitive plan
(n, r, s, t) is denoted by At(λ) ≡ At(λ;n, r, s) for any defect rate λ > 0
as the probability of lot acceptance. Likewise, the ASN function is de-
fined as the expected number of sample units that are inspected per
batch until reaching the decision of lot acceptance or rejection. This
function for the truncated repetitive plan (n, r, s, t) will be denoted by
ASNt(λ) ≡ ASNt(λ;n, r, s) for λ > 0.
We also assume a gamma prior distribution of λ with parameters a (shape)
and b (scale). Then, the prior density function (pdf) is denoted as h(λ) ≡
h(·; a, b), for λ > 0, whereas the prior cumulative distribution function (cdf)
is H(λ) ≡ H(·; a, b).

2.1 Expected sampling risks

When the prior information about the incoming defect rate is assumed, the
use of expected risks can be considered in designing acceptance sampling
plans. Given a truncated repetitive plan (n, r, s, t), the expected producer’s
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risk (EPR) is defined as the probability of rejecting a satisfactory lot and
is given by

EPR(λ0;n, r, s, t) = Eh[1−At(λ;n, r, s) | λ ≤ λ0]

=

∫ λ0

0

{1−At(λ;n, r, s)}h(λ)dλ/H(λ0),

whereas the expected consumer’s risk (ECR) is the probability of accepting
a lot that is unsatisfactory and can be expressed as

ECR(λ1;n, r, s, t) = Eh[At(λ;n, r, s) | λ ≥ λ1]

=

∫ ∞

λ1

At(λ;n, r, s)h(λ)dλ/{1−H(λ1)}.

3 Optimal designs of truncated repetitive plans

Sampling inspection plans must protect to manufacturers against rejecting
good lots as well as to customers against accepting bad lots. Therefore,
the maximum expected producer’s and consumer’s risks at the acceptable
and rejectable defect rates, λ0 and λ1, need to be specified. The best t-
truncated repetitive sampling plan (n, r, s, t) can be determined by solving
the constrained optimization problem

Minimize E[ASNt(λ;n, r, s)]
Subject to EPR(λ0;n, r, s, t) ≤ α0,

ECR(λ1;n, r, s, t) ≤ α1,
n, t ∈ N, r, s ∈ N0,
0 ≤ r ≤ s,

(1)

where EASN denotes the sampling inspection effort of the truncated repet-
itive plan that can be defined as

EASNt ≡ EASNt(n, r, s) = E[ASNt(λ;n, r, s)]
=
∫∞

0
ASNt(λ;n, r, s)h(λ)dλ.

(2)

Table 1 shows, for selected values of λ0, λ1 and t, the best t-truncated
repetitive sampling plans with EASN given by Nt = E[ASNt(λ;nt, rt, st)]
when the prior mean is given by µλ = λ0, λ1 and the variance is σ2

λ =
(λ1−λ0)2. The single and standard repetitive plans are also computed and
presented in the table for comparison. We observe that the EASN reduces
when t increases although we can appreciate that there are truncated plans
for t ≤ 6 with lower EASN than the standard repetitive plans.

4 Conclusion

According to previous results, the expected sampling risks of the truncated
plans provide the practitioners more precise estimates of the current pro-
ducer’s and consumer’s risks. Likewise, the required number of lot reinspec-
tions are quite small and the proposed plans can be more appropriate for
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TABLE 1. Single (t = 1), t-truncated and standard (t =∞) repetitive plans with
minimum EASN when α0 = 0.05, α1 = 0.10 and λ follows a gamma distribution
with mean µλ = λ0, λ1 and σ2

λ = (λ1 − λ0)2.

µλ = λ0 µλ = λ1

λ0 λ1 t nt rt st EASNt nt rt st EASNt

0.2 0.3 1 55 13 13 55.00 70 18 18 70.00
3 32 6 9 41.34 42 9 12 54.11
6 22 3 7 39.37 26 4 9 54.95
∞ 29 5 8 40.25 33 6 10 53.56

0.4 0.5 1 103 46 46 103.00 117 54 54 117.00
3 58 23 29 77.96 65 27 33 88.88
6 42 15 22 72.92 46 17 25 88.80
∞ 40 14 21 72.91 44 16 24 89.71

0.6 0.7 1 154 100 100 154.00 164 109 109 164.00
3 82 49 58 112.77 84 51 62 129.13
6 65 37 47 109.11 70 41 52 126.75
∞ 41 20 33 132.55 41 20 34 161.39

testing expensive and high quality products, whereas single and repetitive
schemes always increase the economical and time costs.

Acknowledgments: This work has been partially supported by the Span-
ish Ministerio de Ciencia e Innovación (MICINN) under the grant PID2019-
110442GB-I00.

References
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Abstract: Hidden Markov models provide a rich class of stochastic models that
are very useful in hydrological studies. This paper describes a class of hidden
Markov models that incorporate covariates in their state distributions to model
daily rainfall time series. Greater emphasis is placed on finding a model that
can reproduce the second-order properties of the observed rainfall sequences. We
present the construction of the likelihood function incorporating time-dependent
atmospheric covariates in rainfall distributions. The performance of the model is
assessed using daily rainfall data from Leicester, East Midlands region of England.
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1 Introduction

Long term precipitation data is a key input variable in hydrological studies
that aim to understand environmental and ecological systems and quantify
uncertainty. Stochastic models enable us to study the characteristics of
the rainfall process and to generate long sequence of precipitation. Hidden
Markov model (HMM) contributes to the development of a rich class of
stochastic models that are useful in environmental applications. The HMMs
have been used in rainfall modelling by many authors, following earlier work
by Zucchini and Guttorp (1991). Hughes et al. (1999) considered a non-
homogeneous HMM to model precipitation occurrences. Ramesh and Onof
(2014) explored ways of introducing additional dependence in HMMs to
model regional rainfall. In this paper, we describe a class of HMMs that
incorporate atmospheric covariates in their state distributions to model
daily rainfall time series.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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1.1 Model Formulation

Let {X(t)} be an irreducible finite state Markov chain with states space
S = {1, 2, . . . ,m}. Suppose that y1, y2, . . . , yn is the observed sequence of
daily rainfall volumes at a location. The distribution of rainfall on any
given day is dependent on the state of the underlying Markov chain on
that day. Let fj (j = 1, 2, ..,m) be the distributions of daily rainfall Y (t)
corresponding to state j of the Markov chain. The HMM is characterized
by its transition probability matrix (Λm×m) and the diagonal matrix F
of state distributions. In our application, we use a 3-state Markov chain
(m = 3) with no rainfall in state 1, moderate and heavy rain in states
2 and 3, respectively. In addition, based on empirical evidence, the state
distributions fj in the two rainy states (j = 2, 3) are taken as exponential
with parameter, λj . This is the standard HMM with exponential state
distributions. In an attempt to allow the local climate variables to influence
the daily rainfall, we incorporate atmospheric covariates in our model and
express the exponential rate parameter λj , as a function of the covariates.
We used three time varying covariates in this application and they are
temperature (U), sea level pressure (V ) and relative humidity (W ). The
parameters of the rainfall distribution in state j at time t is defined as

λtj = eβ0j+β1Ut+β2Vt+β3Wt (1)

where j = 2, ...,m are the rainy states of the Markov chain.
To allow the model to capture the dependence relationship more strongly,
we use the moving average of the covariates. Hence, the parameters of
the state dependent distributions are taken to be functions of a three-day

moving average of the covariates. We define a new variable U
(3)
t at time t

as the moving average of Ut over the past three days as given below

U
(3)
t = (Ut−2 + Ut−1 + Ut)/3. (2)

The moving averages V
(3)
t and W

(3)
t are defined similarly. The state depen-

dent distribution parameter for state j at time t is now defined as

λtj = eβ0j+β1U
(3)
t +β2V

(3)
t +β3W

(3)
t . (3)

Let π be the stationary distribution of the Markov chain, 1 be a unit vector
of ones and Zt be a vector containing the 3-day moving averages of U, V
and W. The likelihood function of this model with covariates is given by

L(y1, y2, , yn|Λ, F, z1, z2, .., zn) = π

n∏

t=1

[ΛF (yt|zt)]1′. (4)

The state distribution matrix F in the above equation is defined as

F (yt|zt)m×m = Diag(f1(yt|zt), f2(yt|zt), ...., fm(yt|zt)) (5)
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where fj(yt|zt) is the state dependent density function dependent on the
three-day moving average of covariates. The parameter estimates of the
likelihood function (4) are obtained by employing the maximum likelihood
estimation using standard routines in R studio.

1.2 Data Analysis

The proposed exponential HMMs are fitted to the winter season daily rain-
fall data of length 36 years from Leicester, England. A three state tradi-
tional hidden Markov model is used as the baseline model (M1), which
is then compared with the models incorporating a combination of atmo-
spheric covariates. We studied eight different models using one, two or all
three covariates with an emphasis on reproducing the empirical statistics
as closely as possible. Almost every covariate model outperformed the base-
line model M1 and captured the second-order properties well with an odd
few exceptions. We present the results of the best two models along with
that of the reference model M1. Table 1 gives a summary of results for the
three models. The model M2 incorporates sea level pressure in the state
distributions and M3 incorporates all three covariates. The values of the
negative loglikelihood, AIC and BIC for the three models are displayed.
The results show that the model M3 performs better than the models M1
and M2.

TABLE 1. Summary of likelihood based results for the three models.

Model M1 M2 M3

Covariates None SLP TEM, SLP, HUM
Negative loglikelihood 6091.80 6083.755 6068.241
AIC 12199.7 12185.51 12158.48
BIC 12211.8 12199.12 12175.11

Figure 1 displays the results of the simulation study undertaken to assess
the performance of the models. Simulation intervals (in blue), based on
100 replications, and the empirical statistics (red crosses) are displayed.
The plots show that the mean and variance of the process are accurately
reproduced by all three models. Models M2 and M3 have notable improve-
ment over M1, in capturing the autocorrelation of the process. The wet
spell distribution plot (top right) is seen to accurately trace the empirical
distribution with a slight variation around the duration of 5 to 10 days.

2 Conclusions

The results obtained in our analysis show that the model incorporating all
three covariates outperformed the other models studied in modelling daily
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FIGURE 1. Results of simulation study. Simulated intervals are in blue and em-
pirical statistics are in red. Top panels: mean, variance and wet spell distribution.
Bottom panel: Autocorrelations at lag 1, lag 2 and lag 3.

rainfall time series. The simulation study provides further evidence for the
model performance. Models incorporating atmospheric covarites capture
the dependence structure present in the daily rainfall data better than
the basic model. Our future work intends to explore models incorporating
covariates in the Markov chain parameters of HMM.
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Abstract: Spatial clustering is an important component of spatial data analysis
which aims to identify the number of clusters and their boundaries. Applications
include epidemiology, criminology and many others. In this study, we focus on
identifying homogeneous clusters in binary data, which indicate the presence or
absence of a certain plant species observed over a two-dimensional lattice. To
solve this clustering problem, we propose to combine the Cross Entropy method
with Voronoi tessellation to estimate the boundaries of such domains. Our results
illustrate that the proposed algorithm is effective in identifying homogeneous
clusters in spatial binary data.
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1 Introduction

Spatial clustering is one of the main techniques for spatial data mining and
analysis. Spatial clustering aims to partition spatial data into a series of
meaningful subclasses, called spatial clusters, such that data points in the
same cluster are near to each other, but far from those in different clus-
ters. Currently, spatial clustering is widely applied in the field of spatial
data analysis, such as spatial epidemiology, land use detection, crime hot-
spot analysis, population genetics, ecology and many other fields. In the
last decade, many clustering algorithms have been developed, ranging from
hierarchical methods such as bottom-up (or agglomerative) methods and
top-down (or divisive) methods, to optimization methods such as the k-
means algorithm. In this study we propose to apply multiple change-point
detection methodology, commonly used to detect changes and their loca-
tions in time series data, to spatial clustering problems. We focus on binary

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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data, which are commonly involved in various areas such as economics, so-
cial sciences, image analysis and epidemiology. Also, such data frequently
occur in environmental and ecological research, for instance indicating the
presence of an invasive plant species, or when the data happen to fall into
one of two categories, say, two types of soil. To solve this clustering prob-
lem, we present an effective algorithm based on the Cross Entropy method,
an evolutionary stochastic optimization technique, and Voronoi tesselation,
to identify homogeneous clusters and their boundaries.

2 Model

There are several methods for modeling spatially correlated presence or ab-
sence data. Among them, the autologistic model [Besag, 1972] is a popular
tool. Letting Z be the random field of interest, where Zi ∈ {0, 1} represents
the observation at the ith lattice point for i = 1, . . . , n, the full conditional
distributions for this model are given by

ln
P (Zi = 1)

P (Zi = 0)
= XiXiXiβββ +

∑

j 6=i

ηijZj ,

where XiXiXi is the ith row of the design matrix, βββ are the regression parame-
ters, and η = {ηij} are dependence parameters such that ηij 6= 0 iff Zi and
Zj are lattice neighbors. The summation is the autocovariate, which models
the dependence between Zi and the remainder of the field, denoted Z−i. In
this study we consider only models for which ηij = η1{i∼j} (where 1{i∼j}
denotes the indicator function and ∼ denotes the neighbour relation). We
assume pairwise-only dependencies. The joint distribution is given by

π(Z | θθθ) = c(θθθ)−1 exp
(∑

i

ZiXiXiXiβββ +
η

2

∑

i,j

1{i∼j}ZiZj

)
,

where θθθ = (βββ
′
, η)

′
and c(θθθ) is an intractale normalizing function which

makes computation challenging for both ML and Bayesian inference. For
more details, see [Hughes, 2011].

3 Methodology

In this study we use Voronoi tessleation, which partitions a plane into
polygons based on proximity to a given set of points. It has been extensively
used in clustering algorithms, especially to define neighbors in point pattern
analysis. In this study we obtain the Voronoi tesselation for a given set
of cluster points (which represents the number of clusters to be obtained).
Each polygon is considered as a cluster. The data points or members in each
cluster or polygon are “similar” in some sense and cross-cluster members
are “dissimilar” in a corresponding sense.
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The clustering problem can be considered as a combinatorial optimiza-
tion problem. The CE method [Rubinstein and Kroese, 2004] is a leading
evolutionary computing technique using a stochastic framework to solve
both estimation and optimization problems. It has also been a successful
methodology in multiple change-point problems; for example, see [Evans et
al, 2011] and [Priyadarshana and Sofronov, 2015]. We use the CE method to
estimate the locations of cluster points. In this study we use the “CEoptim”
[Benham et al, 2015] and “deldir” [Turner, 2020] R packages for calcula-
tions.

4 Results and Conclusion

In this section, we discuss a general example with artificially generated
data to illustrate the usefulness of the proposed algorithm. We generate a
30× 30 matrix of independent Bernoulli random variables with four homo-
geneous clusters with the parameters (0.3,0.8,0.7,0.3). At this stage, we fix
the number of clusters and apply our method to the above example to find
exactly four clusters. Figure 1 shows the true profile of the data and the
obtained clusters from the proposed CE algorithm.

FIGURE 1. Clusters as determined by the CE algorithm.

Figure 2 represents the parameter values for the true profile (left) and the
obtained clusters from the proposed CE algorithm (right). The obtained
clusters are in excellent agreement with the true profile; the proposed CE
algorithm produced only a very small difference between the estimate and
the true distribution. We conclude that our algorithm can perform well in
identifying homogeneous clusters in spatial binary data.
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FIGURE 2. (L) true profile and (R) clusters as determined by the CE algorithm.
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Abstract: In most scientific disciplines models are proposed in order to describe
different phenomena. In these models, the behavior of one or more variables is
observed, trying to link these responses with other factors or covariates that may
(at least partially) explain the former ones. An usual assumption for these obser-
vations is that they are independent, and many procedures have been developed
for all kind of studies when assuming uncorrelated observations. However, it is
clear that this assumption cannot be maintained for many real problems; several
covariance structures can arise, and even appear combined, increasing the com-
plexity of the models. Different situations will be examined, and some solutions
for obtaining the ’best’ designs for estimation of the parameters will be proposed
employing optimal experimental design techniques.

Keywords: Covariance matrix; Multiresponse Models; Optimal Design of Ex-
periments.

1 Covariance Structure and Optimal Design of
Experiments

Let us initially assume the one-response linear model y = f(x)Tβ + u ,
where β is the parameter vector of size m, u is the error term, and f(x) =
(f1(x), . . . , fm(x))T , with the fi(x) linearly independent in the experimen-
tal domain X . An exact design ξ is a collection of points {x1, . . . , xn} of the
independent variable, which represents the experimental conditions, with
xi in X . In matrix notation it can be expressed as

Y = Xβ + u ,

where Y = {y1, . . . , yn}T is the observations vector, U = {u1, . . . , un}T
the error terms, and X = (f(x1), . . . , f(xn))T the design matrix. For nor-
mally distributed random errors u ≡ N (0, σ2) the Least Squares Estimators
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(LSE) of the model parameters coincide with the Maximum Likelihood Es-

timators and are given by β̂ = (XTX)−1XTY, with V ar(β̂) = σ2(XTX)−1

and XTX known as the Information Matrix of the design ξ. But when a co-
variance structure is present the Generalized Least Squares (GLS) approach

should be used. In this case the GLSE are β̂ = (XTΣ−1X)−1XTΣ−1Y,

where Σ = V ar(Y), and V ar(β̂) = (XTΣ−1X)−1 . Now the information
matrix of ξ will be

M(ξ) = XTΣ−1X .

The standard method to obtain optimal designs requires to know the ana-
lytical expression of the model and to compute the derivatives with respect
to the parameters in order to work with the linearized model. When no
analytical expression of the model can be obtained, some methods for com-
puting these derivatives can be employed, as described in Rodŕıguez-Dı́az
and Sánchez-León (2014).
When dealing with correlated observations the size of the design, n, should
be fixed in advance. In many experiments it has no sense to take more than
one observation to the same experimental unit at the same design point x,
thus in the following it will be assumed that xi 6= xj for all i, j. Usu-
ally, the aim is to find the points {x1, x2, ...} where to take observations
in order to get the best estimates of the parameters of the model, that
is, the estimation with minimum variance, providing an optimal design for
the model. The inverse of the information matrix is proportional to the co-
variance matrix (the generalized variance) of the parameter estimators) of
the model; therefore the aim is usually to minimize (a convex function of)
M−1(ξ). However, there is not an only way of minimizing a matrix, giving
rise to different criterion functions. A particular criterion function should
be chosen depending on the objectives of the practitioners, for instance
getting the best estimators of the parameters (one, some of them or all
of them), or minimizing the variance of the predicted response. The most
used criterion is D-optimality, which focuses on the determinant of the in-
formation matrix. A design ξ is D-optimal if maximizes this determinant,
what is equivalent to minimize that of the covariance matrix. A-optimality
pays attention to the trace of the covariance matrix, thus an A-optimal
design minimizes the average of the variances of the estimators of model
parameters. When the information matrix depends on unknown parame-
ters, nominal values are needed for them and thus the obtained designs
will be locally optimal, that is, they are good for (or close) those nominal
values used in the computation. Fedorov and Hackel (1992), Pukelsheim
(1986) or Atkinson et al. (2007) are classic references on optimal design of
experiments.
In many studies, different kind of responses (say k of them) are measured,
getting into the field of multiresponse models. These models have been
studied from the point of view of optimality from different perspectives,
considering in general correlation between different variables observed on
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the same point, say y(x) = (y1(x), . . . , yk(x))T (that from now on will be
denoted as one sample), but always assuming that the measures taken at
different points, y(x) and y(x′), were independent. However, this assump-
tion may be unrealistic in some situations; for instance when the interest is
in analyzing the evolution of a set of characteristics (variables) observed in
a specific experimental unit at different time moments it seems clear that,
apart from a static or intra covariance structure between differen type of
observations taken at the same time, a longitudinal or inter correlation
between the same type of measures obtained at different times should be
taken into account (Rodŕıguez-Dı́az and Sánchez-León, 2019a, 2019b).

2 Observing multiple subjects

To date, the double covariance structure has been considered only for stud-
ies carried out over one experimental unit, for which several variables were
measured at different times (Rodŕıguez-Dı́az and Sánchez-León, 2019a,
2019b). In the present work the design variable will be time as well, but
now N subjects are supposed to be observed at different temporal points
t1, . . . , tn, which will be the design ξ. The design points ti can denote any
convenient temporal unit. It will be assumed that for each ti in ξ the values
of several characteristics Y1, . . . , Yk will be obtained for all of the subjects,
and the aim will be to choose the ’best’ design, the one giving the great-
est information about the models describing the evolution of the response
variables.
The same covariance structure can be assumed for every subject. Further-
more, it is quite usual to assume as well that the N subjects are indepen-
dent. Two scenarios will be considered:

1. Different models of the variables for each subject (N k models)

2. The model of each variable is valid for all the subjects (k models)

With the above assumptions, some results will be obtained for Models (1)
and (2):

• The D-optimal designs for the individual models of each variable in
each subject are as well D-optimal for Model 1

• For this model, the parameters of the individual models can be es-
timated independently and do not depend on the intracovariance.
However, the variance of the set of the parameter estimators for each
subject do depend on it

• The D-optimal designs for the individual models of each variable in
each subject are as well D-optimal for Model 2



Rodŕıguez-Dı́az 413

• For Model 2 the estimation of the parameters of each response are
the average of the corresponding estimations for each subject, and do
not depend on the intracovariance, but their covariance matrix does
depend on it
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Abstract: We present a Bayesian approach for modelling quantities which are
complex non-linear functions of other well modeled quantities. We apply our
approach to model the body-mass index of infants. Our method benefits from
recycling model fits to get posterior samples of the function, and use this for
inferential purposes.
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1 Introduction

We are often required to model complex (non-linear) functions of other
quantities which are by themselves easy to model. For example height and
weight of infants are easily modelled by growth curves, but BMI is a non-
linear and a non-increasing function of age. A typical frequentist approach
is to use the delta method to get error bounds for BMI using weight and
height. However the delta method underestimates the standard error of
the constructed function when the underlying quantities are not normally
distributed (LePage and Billard, 1992), and it requires large sample sizes
(Oehlert, 1992). We provide a Bayesian approach to address this problem.
This involves first using a joint model for the multiple responses, and then
drawing posterior predictive samples for the quantity we are interested in,
and constructing credible intervals for inferential purposes.

2 Motivation: Modelling BMI using growth curves

It was of interest to evaluate potential differences in growth between
formula-fed and breastfed infants, particularly BMI development. We will
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focus on a subset of 80 subjects with two levels of demographic grouping
(G1 and G2) and two levels of treatment (Formula and Breastfed). Weight
and height measurements were taken at different time points till 2 years. A
low sample size was intentionally chosen to demonstrate the applicability
of our proposed method in a small data situation.
For modelling height and weight of infants several commonly used growth
curve models exist, and each of these models have a particular age range
where they perform best (Chirwa et al, 2014). Multilevel modelling is used
to account for the individual level effects.
BMI has a deterministic relationship with weight and height, thus a joint
bi-variate growth model for weight and height will allow us to construct a
model for BMI. Due to the complex nonlinear relationship between BMI,
weight, and height, it is not straightforward to get error estimates for BMI
from a bi-variate weight and height model using standard frequentist tech-
niques. A Bayesian joint model allows us to easily get posterior samples for
BMI, construct credible intervals, and study the effect of interventions.

3 Modelling BMI from a joint weight-height model

We can write a bi-variate joint model as (y1i, y2i)
T ∼ BV N(µi,Σe), where

µi = (βT
1 x1i + zT

1iu1, β
T
2 x2i + zT

2iu2)T . Here β1 and β2 are the fixed effects
for the two responses, and z1i and z2i are the corresponding random ef-
fects, with (z1i, z2i)

T ∼ MVN(0,Σu). The benefit of this joint model in
a Bayesian framework is that we can easily get credible intervals for any
derived quantity at individual levels e.g. gi = f(y1i, y2i) using a posterior
predictive approach. Moreover by creating pseudo observations and aver-
aging over the different population subgroups will allow us to easily obtain
marginal effects of the different treatments on the different subgroups as
well as credible intervals to judge the efficacy of the different treatments.
We have chosen the first order Berkey-Reed model (Berkey and Reed, 1987)
to model the height and weight, as it has been shown to perform reasonably
well during the ages 0 to 2 years. Along with the fixed effects corresponding
to the intercept, time, log(time) and 1/time, we also add the corresponding
random effects to account for individual differences. In order to control for
demographic grouping we added fixed effects for the groups G1 and G2,
as well as interactions between the group variables and time, log(time)
and 1/time. The starting time for formula feeding varies in the non breast
fed group, and children are breast fed till then. This is accounted for in
the model by having fixed effects for the Formula-Group interactions with
time, log(time) and 1/time beginning at treatment start time. This leads
to a large model, with 28 fixed effects and 8 random effects.
The main challenge faced was the large model size. We needed to estimate
36 parameters for the random effects covariance matrix, as well as 3 for the
error covariance matrix in addition to the 28 fixed effects. This leads to com-
putational instability specially with small sample sizes. To overcome this
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we used shrinkage priors. Shrinkage priors can be thought of as a Bayesian
counterpart of penalized regression which can be used to avoid computa-
tional instabilities and over fitting in case of large number of predictors. We
used Horseshoe priors (Carvalho et al, 2010). on the fixed effects and LKJ
prior (Lewandowski et al, 2009) on the random effects correlation matrix,
which leads to better performance (regarding convergence and model fit)
in the case of low sample sizes.

4 Results

FormulaBreastfed

FIGURE 1. Marginal evolution plots for weight, height and BMI.

The joint random effects growth curve model does an excellent job of pre-
dicting individual trajectories for weight height and BMI. Figure 1 shows
the marginal evolution plots for weight, height, and BMI for the two dif-
ferent subgroups and the two treatment levels as well as the associated
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probability bounds. This allows us to draw conclusions on the efficacy of
various treatments for different subgroups. We notice that for subgroup G1
there is no significant difference between the two treatment levels. On the
other hand in subgroup G2 the treatments have a significant effect on the
marginal profile of weight and BMI. We can see that the breastfed group
has lower weight and BMI than the formula group.

5 Conclusion

In this article we have shown how we can use a Bayesian approach to sim-
plify the modelling of variables which are functions of other well-modeled
variables. We used existing well developed growth curve models for height
and weight, combined them into a bivariate joint growth curve model, and
used it to model the derived quantity BMI. This approach can be used
for other derived quantities also. The benefit of using a Bayesian approach
is using posterior predictive distributions, we can easily get individual as
well as marginal predictions (and error bounds) for the derived quantities,
without any extra modelling effort. The major challenge faced with this
approach is computational instability due large number of parameters in
the joint model (especially when dealing with mixed effects models with a
large number of random effects). We explored the use of shrinkage priors to
reduce the computational instability caused by large number of variables
in the joint model. In this study we intentionally chose a small sample size
to show the possibility of using this approach to fit a large joint model even
to small data sets.
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Abstract: High-resolution soil maps are important for land use planning, agri-
culture crop production, forest management, hydrological analysis and environ-
mental protection. In this work, we consider the analysis of soil texture samples in
the Basque Country (i.e. the relative proportions of sand, silt, or clay in soil) and
use covariate information to predict a high-resolution soil map. We propose the
use of geo-additive models for modelling and predicting the spatial distribution
of soil texture in a Bayesian framework for compositional data.

Keywords: spatial soil mapping; soil texture; compositional data; additive-log
ratio transformation; Dirichlet regression

1 Motivation

Understanding the spatial distribution and variability of soil texture is es-
sential for land use planning and other activities related to agricultural
management and environmental protection (e.g.: prevent soil degradation,
preserve soil functions and remediate degraded soil). This work is moti-
vated by the “Land Use and Cover Area frame Statistical survey” (LU-
CAS) project aimed at the collecting harmonised data about the state of
land use/cover over the extent of European Union. The work by Ballabio et
al. (2016) mapped soil properties at a continental scale over the geographi-
cal extent of Europe. In this work, we are interested in mapping soil texture
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distribution at a finer scale, based on 6736 soil samples (at 30 cm depth)
surveyed in the Basque Country between 2009-2018. In addition to the soil
texture samples, we considered the covariates information at a finer scale
such as climatic variables (e.g. average precipitation, min/max tempera-
ture), the DEM (digital elevation model) and categorical information such
as the geological information (e.g. lithology), or the land usage (pastures,
extensive crops, vineyards, etc.).

Soil texture data are usually considered as compositional data (i.e. as rel-
ative proportion of different particles smaller than 2mm of sand (0.05-
0.2 mm), silt (0.002-0.05 mm) and clay (0-0.002 mm), so the sum of the
three components always equals 100) and hence considering each one of
the textures separately would result in inconsistent results, like sum values
above 100. Aitchison (1986) suggested that compositional variables should
be transformed into log ratios. Given a vector of compositional data of
D elements x = (x1, x2, ..., xD)′, such that xd > 0 and

∑D
d xd = 1 for

d = 1, ..., D. The additive log-ratio (ALR) transformation, defines a new
vector y = ALR(x) = (ln(x1/xD), ..., ln(xD−1/xD))′, where xD is the last
component playing the role of the common divisor and y ∈ RD−1. The
drawback of ALR is that the components are treated asymmetrically and
the interpretation of the results, may depend on the choice of the common
divisor.

2 Bayesian Spatial Dirichlet regression

An alternative to the Aitchison approximation to model compositional data
is to assume that the response variable follows a Dirichlet distribution.
The Dirichlet distribution is the generalization of the widely known beta
distribution, and it is defined by the following probability density:

p(y | α) =
1

B(α)

D∏

d=1

yαd−1
d , (1)

being α = (α1, . . . , αD) the vector of shape parameters for each category,

αd > 0 ∀d, yd ∈ (0, 1),
∑D
d=1 yd = 1, and B(α) is the multinomial beta

function, which serves as the normalizing constant. The sum of all α’s,
i.e. α0 =

∑D
d=1 αd, is usually interpreted as a precision parameter. The

beta distribution is the particular case when D = 2. Hence, let y ∼ D(α)
denote a Dirichlet-distributed random variable. The expected values are
E(yd) = αd/α0, the variances are Var(yd) = [αd(α0−αd)]/[α2

0(α0 + 1)] and
the covariances are Cov(yd, yd′) = (−αdαd′)/[α2

0(α0 + 1)].

Let ηdi be the linear predictor for the ith observation in the dth category.
Note that in the case of the Dirichlet regression, the logarithm of the shape
parameters is employed as a linear predictor. A general formulation for the
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geo-additive model has the form:

ηdi = x′iβ + f(si) +

J∑

j=1

fj(zi) (2)

where x′iβ are the linear effects (e.g.: land usage, lythology), f(si) is the
spatial component of the geographical coordinates si (longitude and lat-
itude) and fj(νi) are non-linear terms (e.g.: elevation, average precipita-
tion, and min/max temperature). For the model in Eq. (2), we consider a
Bayesian approach using Markov chain Monte Carlo simulation techniques
to get the posterior distributions of the parameters of interest, and the
predictions. In particular, we used the implementation in the R package
bamlss (Umlauf et al., 2019) where f(si) and

∑J
j=1 fj(zi) are modelled by

tensor product smooths and additive terms of penalized splines (Eilers et
al., 2015).

3 Application

We compared two approaches using bamlss as an unified framework: i) the
Dirichlet geo-additive model (DGM) in Eq. (2) and ii) the model formu-
lation in Eq. (2) with a multivariate normal geo-additive model (MGM)
based on the additive log-ratio transformation by Aitchison (1986) for the
D − 1 elements of the soil texture data (i.e. D = 3) playing with the com-
mon divisors (this leads to 3 different bivariate response models, i.e. xD
= {sand, silt, clay}). Figure 1 shows the predicted soil texture map in the
Basque Country at a fine-scale using the soil texture classification by the
USDA (United States Department of Agriculture, see Soil Survey Staff,
1993), the map is the predicted mean obtained from the Dirichlet model
(predicted maps based on the multivariate normal geo-additive models gave
similar results and are not shown).

In terms of model comparisons, we considered goodness-of-fit measures to
assess the adequacy of the fitted models. While Aitchinson (1986) suggested
working with log-ratios of the compositional data to be able to apply the
traditional multivariate techniques, for the Dirichlet model, we need a mea-
sure to evaluate the explained variation of our model as the usual R2, is
not an accurate measure for compositional data. Hijazi (2015) proposed
R2-type measures based on model likelihoods, total variability and sums
of squares. These measures were computed for the proposed Dirichlet and
Multivariate normal geo-additive models providing similar performances.

4 Conclusions

In this work, we have compared different models for the analysis of com-
positional soil texture data. We considered the bamlss methodology as a
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Soil texture predicted map USDA texture triangle

FIGURE 1. Predicted soil texture map (left) with USDA classification of soil
textures (right).

unified framework for prediction in a Bayesian geo-additive framework due
to the flexibility in incorporating linear and non-linear effects using pe-
nalized splines. The predicted maps at a fine-scale provide valuable maps
for water management, hydrology, and particularly for the agricultural and
forestry sectors in the Basque Country.
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Abstract: In this work, we propose a semi-latent class random changepoint
mixed model that allows the estimation of the time of differentiation between
cognitive decline of future demented and normal subjects from a nested-case-
control study. Cases are assumed to have a random changepoint trajectory while
controls can have either a linear trajectory or a random changepoint trajectory
where the class membership follows a logistic model. The log-likelihood of the
model is derived and can be optimized using a Levenberg-Marquardt algorithm
with Gaussian quadrature for numerical integration. The model is estimated on
the Paquid cohort of elderly with very long follow-up (25 years) to estimate the
delay between the beginning of the decline of a test of verbal fluency and the
onset of dementia.

Keywords: Dementia; Mixed model; Random changepoint.

1 Introduction

Dementia is a syndrome that affects the cognitive abilities of a subject.
The pre-diagnosis phase last around fifteen years and during this phase the
cognitive decline trajectories are non-linear and heterogeneous (Amieva et
al, 2014). Longitudinal data is available in cohorts where the cognitive
decline is measured by collecting psychometric scores over time.
To study the cognitive decline in the pre-diagnosis phase of dementia, ran-
dom changepoint mixed model have been proposed in the literature (van
den Hout et al., 2011). By fitting a smooth linear-linear trajectory and
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including random effects, they model both the non-linearity and hetero-
geneity of cognitive decline.
When looking retrospectively at cases only and using time to dementia as
the timescale, the estimated mean changepoint is the mean delay between
the acceleration of cognitive decline and dementia diagnosis. However, with
such model, the estimated changepoint tend to identify a late acceleration
of cognitive decline, happening only a few years before diagnosis (Segalas
et al., 2020). One might rather be more interested in the time at which the
cognitive decline trajectory of a demented subject begins to differ from the
cognitive decline trajectory of a non-demented subject.
For this objective, cases and non-cases need to be modeled together. We
propose to model cognitive evolution using a two-class model with a linear
trend for one class and the same linear trend up to a certain date where
the decline accelerates for a second class. From this date and up to the
diagnosis, trajectories are nonlinear with, possibly, a late acceleration just
before diagnosis. In such a model, the changepoint would identify the mean
time at which, case trajectory begins to differ from linear cognitive decline
in normal ageing.

2 The semi-latent class random changepoint model

We consider a nested case-control study where incident cases of dementia
diagnosed during the follow-up of a cohort are matched to controls accord-
ing to a priori defined characteristics with the condition that controls are
observed and free of dementia at the visit of diagnosis of the matching
case. The delay for a control is the delay to diagnosis of the matching case.
We note δi the case indicator, 1 for cases and 0 for controls. We denote
Yi(tij) the value of marker Y for subject i at time tij with i = 1, . . . , N
and j = 1, . . . , ni. The two-class model is written

Yi(tij) = β0i + β1itij + ciβ2if(tij − τi, η) + εij (1)

where ci is an indicator that equals 1 for subjects with a random change-
point trajectory and 0 otherwise, f is a function based on I-spline that
represents the difference from the linear trajectory after the time of differ-
entiation τi and depends upon parameters η. We assume that βki = βk+bki
where bi = (b0i, b1i, b2i)

T ∼ N (0, B) with B a positive matrix and that
τi = µτ + στ τ̃i where τ̃i ∼ N (0, 1) is independent from bi. The residual
errors εi are assumed to follow a centered Gaussian distribution with di-
agonal variance matrix σεIni and are assumed independent from all the
random effects.
In this model, tij denotes the delay as defined is our nested case-control
study design. β0 is the mean value of the marker for subjects in the linear
class at the time of the case diagnosis, β1 is the mean slope of the cognitive
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decline during the normal cognitive ageing phase. For subjects whose tra-
jectory presents a random changepoint, f models smoothly the difference
between this normal cognitive ageing and a pathological cognitive decline
while β2 measures its mean intensity.
In the nested case-control design, some subjects are controls because they
are free of dementia at a certain date even though they might develop
dementia at a later visit. Therefore, we can not realistically assume that
all controls are on the linear class and we chose to model the probability
for a control of being in the changepoint class by a logistic model

πi = P(ci = 1|Xi, δi) =

(
exp(η>Xi)

1 + exp(η>Xi)

)1−δi

that can depend upon some covariates Xi.

3 Estimation

The log-likelihood of model (1) is written

`N (Y ; θ) = `0N0
(Y ; θ) + `1N1

(Y ; θ) (2)

where θ is the vector of all parameters from the model, Y the complete
data from the nested case-control study, N0 and N1 denotes respectively
the number of controls and cases such as N = N1 +N2 and where

`0N0
(Y ; θ) =

N0∑

i=1

log[(1− πi)f(Yi|ci = 0, θ) + πif(Yi|ci = 1, θ)],

`1N1
(Y ; θ) =

N1∑

i=1

log f(Yi|ci = 1; θ)

are the contributions of the controls and the cases respectively to the log-
likelihood. f(Yi|ci = 0, θ) is the individual contribution of a subject to the
likelihood of the linear class and follows a multivariate Gaussian density
with mean 0 and variance Z0iB0Z

T
0i+σ

2
εIni where Z0i is a ni×2 matrix with

rows (1, tij)j=1,...,ni and B0 a 2×2 definite positive matrix, variance of the
random effects (b0i, b1i)

T. f(Yi|ci = 1, θ) =
∫
f(Yi|ci = 1, τ̃i; θ)f(τ̃i)dτ̃i is

the individual contribution of a subject to the likelihood of the changepoint
class as defined by the random changepoint model (1).
The complete log-likelihood (2) can then be estimated using Gauss quadra-
ture for the numerical integration and Levenberg-Marquardt algorithm
(Marquardt, 1963) for the optimization procedure. The estimation pro-
cedure will be validated in a simulation study.
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4 Application

The method will be applied to data from the french cohort Paquid (Leten-
neur et al., 2014). Our objective is to evaluate the time of differentiation
between cognitive trajectories of future demented and normal subjects as
measured by the Isaacs Set Test which assess verbal fluency.
We built a nested case-control study from the 901 incident cases of dementia
from Paquid. For each of these cases, we matched one control with the same
age (±2 years), same educational level, same sex and with the condition
that the control has to be observed non demented at the visit of diagnosis
of the case.
We estimated for the Isaacs Set Test a simplified model where ci = δi,
i.e. that assumes a linear trajectory for all controls and a changepoint
trajectory for all cases. The mean estimated time of differentiation between
cases and controls was estimated at around −11.1 years before diagnosis
with a 95% confidence interval of [−12.5;−9.7]. We will compare these
estimates to those of the semi-latent class model (1).
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Abstract: A new marginal rate model for gap times between recurrent events
is proposed, which is derived from a non-homogeneous Poisson process (NHPP).
Since the distribution of the gap times often requires flexible shapes of the rate
function, the approach taken here is to model the baseline log-cumulative rate
function as a restricted cubic spline function of log time. Moreover, a proportion
of subjects that will never experience any recurrence is incorporated. The pro-
posed model allows covariates in both the latency and incidence components. An
application to a real data set is also provided for illustrative purposes.
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1 Introduction

Recurrent events data arise frequently in medical studies where each subject
may experience a particular event repeatedly over time. In this work, we fol-
low the approach of Zhao and Zhou (2012) to model the gap times between
recurrent events, considering that the recurrence process is derived from a
NHPP for which the gap times are generally not independent. However, we
assume a completely parametric baseline rate function in which the covari-
ates have a multiplicative effect. The main challenge here is to select the
most appropriate baseline form. Motivated by Royston and Parmar (2002),
we propose to use restricted cubic splines to capture, in a flexible way, how
the rate evolves over time.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 Model formulation

Suppose that there are n independent subjects in study and that each one
can experience a maximum of Ki (i = 1, . . . , n) recurrences of an event.
For the ith subject, let Tik be the calendar time related with the kth event
(k = 1, . . . ,Ki) and Yik = Tik − Ti,k−1 be the gap time between two
consecutive events, where 0 ≡ Ti0 < Ti1 < . . . < TiKi . Based on Zhao
and Zhou (2012), the recurrence process is assumed to be a NHPP with
independent increments. Then, we consider a multiplicative model in which
the marginal rate function of the recurrence process is given by

h(y|ti,k−1, zik) = h0(y + ti,k−1) exp(β′zik), (1)

where h0(·) > 0 is a baseline rate function, zik is the covariate vector of
subject i and β is the corresponding regression coefficients vector. Following
the approach of Royston and Parmar (2002), we propose to model the
log-cumulative baseline rate function as a restricted cubic spline function
of log time, which provides analytically tractable expressions. From (1), the
cumulative rate function of the recurrence process is

H(y|ti,k−1,zik) =
[

exp
(

logH0(y + ti,k−1)
)
− exp

(
logH0(ti,k−1)

)]
exp(β′zik)

=
[

exp
(
s
(

log(y + ti,k−1);γ
))
− exp

(
s
(

log ti,k−1;γ
))]

exp(β′zik),

where logH0(y + ti,k−1) = log
∫ y

0
h0(u + ti,k−1)du is the log-cumulative

baseline rate function. For pre-specified m distinct internal knots r1 <
. . . < rm with rmin < r1 and rmax > rm boundary knots, the restricted
cubic spline function of x = log t may be written as

s(x;γ) = γ0 + γ1x+ γ2vl(x) + . . .+ γm+1vm(x),

where γ = (γ0, γ1, . . . , γm+1)′ is the parameters vector, vl(x) is the lth
basis function. The complexity of the curve is regulated by the number of
degrees of freedom (d.f.), given by d.f.= m+1. Conventionally, when d.f.= 1
it means that no internal knots are specified, and so s(x;γ) = γ0 + γ1x.
This particular case gives rise to the Weibull marginal rate model. In turn,
when γ1 = 1 it leads to the classical HPP that has constant rate.
In some scenarios, it might exist a tangible proportion of the population
under study that becomes recurrence free. Let Yi1 denote the first gap
time for the ith subject in the population. Therefore, we can observe two
cases: i) if Ki > 1, subject i experiences at least one recurrence, so he is
a recurrent subject; and ii) if Ki = 1, subject i may either be a recurrent
subject with probability π or a zero-recurrence subject with probability
1− π. Then, Yi1 has a survival function given by

P (Yi1 > y) = 1− π + πP (Yi1 > y|Ti0 = 0),

where P (Yi1 > y|Ti0 = 0) is the (proper) survival function of the first
gap time. A natural extension is to assume that covariates influence the
proportion of recurrent subjects via a logistic regression model.
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The inferential procedure is based on the maximum likelihood method,
assuming a non-informative right-censoring mechanism. For each subject i,
we define δi = I(Ki > 1) and K∗i = max(Ki−1, 1). The likelihood function
is expressed as

L =

n∏
i=1

{
πi

K∗i∏
k=1

f(y|ti,k−1,zik)

}δi{
1− πi + πiP (Yi1 > y|Ti0 = 0)

}1−δi
,

where f(y|ti,k−1, zik) is the probability density function. The computation-
al implementation of the maximum likelihood method was performed in R

software (R Core Team, 2020), using the usual optimization procedures.

3 An application to re-hospitalization data

A data set on re-hospitalization of patients diagnosed with colorectal cancer
is analysed. The data are the gap times (in days) of successive re-hospitali-
zations of 403 patients after removing their tumours. There is a total of
861 re-hospitalizations, ranging from 1 to 22, with mean 2.3 and median
1.0. About 199 patients (49.4%) had no recurrence at all. Some covariates
in the data set are: chemotherapy; gender; Dukes’ stage; and Charlson
comorbidity index. The data are available in the R library frailtypack.
To choose the proper number of d.f., in the models without covariates and
zero-recurrence proportion, we use the Akaike (AIC) and Bayesian (BIC)
information criteria. So, models with 1 to 4 d.f. were fitted. The AIC values
(6883.1, 6871.3, 6872.4 and 6872.9) and BIC values (6892.6, 6885.5, 6891.4
and 6896.7) indicate that 2 d.f. is the most adequate choice. Then, the
proposed model was applied and the results are summarized in Table 1.
In our model, the reference group consists of male patients who did not
receive chemotherapy, with Dukes’ stage A−B and Charlson index 0. For
this group, the zero-recurrence proportion is 1− (1/{1 + exp(−0.180)}) =
0.455. The chemotherapy coefficient estimates are negative in both compo-
nents, with a non-significant effect on the time to readmission. In the rate

TABLE 1. Parameter estimates of the flexible marginal rate with zero-recurrence
proportion for the re-hospitalization data.

Rate component (latency) Logistic component (incidence)

Parameters Estimate SE p-value Parameters Estimate SE p-value

γ0 −5.868 0.642
γ1 1.019 0.170
γ2 0.001 0.005 Intercept 0.180 0.268 0.500
Chemo −0.048 0.115 0.677 Chemo −0.341 0.266 0.200
Gender (female) −0.444 0.111 <0.001 Gender (female) −0.163 0.248 0.511
Dukes’ stage Dukes’ stage

C 0.198 0.126 0.116 C 0.329 0.261 0.207
D 0.641 0.147 <0.001 D 1.979 0.593 <0.001

Charlson index
1− 2 0.357 0.208 0.087
≥ 3 0.528 0.117 <0.001

Male: reference for gender; A−B: reference for Dukes’ stage; 0: reference for Charlson index.
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component, recurrent females have a significantly lower risk of readmission
compared with recurrent males. The other two important risk factors are
the Dukes’ stage D and Charlson index ≥ 3. In the logistic component,
only the Dukes’ stage D has a significantly increasing effect, which means
that patients in this stage have a lower chance of being recurrence free.

4 Concluding remarks

In this paper, we propose a new flexible parametric model derived from a
NHPP to analyse gap times between recurrent events. The model is formu-
lated considering each gap time conditional on the prior recurrence time, in
such a way that the relationship between successive gap times is no longer
a problem. Furthermore, it is characterized by a fully parametric baseline
rate function, based on restricted cubic splines. The proposed model also
incorporates a proportion of zero-recurrence subjects to conveniently take
into account the existence of subjects that will never experience any re-
currence. Although it is not shown here, the Cox-Snell residual plots were
used to informally evaluate the models goodness-of-fit, allowing to confirm
that the assumptions underlying the final model are plausible to analyse
the re-hospitalization data.
Finally, we aim to extend our model in order to deal with the unobserved
heterogeneity across subjects, including a random effect term and thus
obtaining a frailty model.
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Abstract: The topic of joint modeling of longitudinal and survival data has re-
ceived remarkable attention in recent years. In cancer studies for example, these
models can be used to assess the impact that a longitudinal marker has on the
time to death or relapse. Analyzes of such studies, in which individuals may
experience several events, can be successfully performed by multi-state models.
The goal of this work is to introduce feasible estimation methods for the tran-
sition probabilities conditionally on covariates observed with repeated measures
through the use of the landmark methodology and the adaptation of existing
methods for joint modeling of longitudinal and survival data. Results of the sim-
ulation studies confirm the superiority of the proposed estimator when compared
to methods that do not take in consideration the effect of the covariate on the
estimated transition probabilities or do not assume all the existence of repeated
measures (Breslow estimator).

Keywords: Joint modeling, Markov assumption, Multi-state models, Transition
probabilities.

1 Introduction

Multi-state model is a model for a time continuous stochastic process which
can be used to describe complex event history data with several events
(Meira-Machado and Sestelo, 2019). In medical science studies beyond the
times-to-event a main goal is to identify the impact of a set of repeated
measures as a time-dependent covariate on the transition among states. In
order to produce valid inferences in these cases a joint modeling analysis
of longitudinal and multiple survival outcomes are required (Rizopoulos,
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2012). The final model is built using two sub-models; a longitudinal sub-
model (such as a linear mixed effects model) and a time-to-event sub-model
(such as a proportional hazards model) for each transition intensity which
are linked through an association structure quantifying the relationship
between the outcomes of interest. The background concepts related to the
extension of the joint modeling to multi-state models can be found in Ferrer
et al (2016). The aim of this paper is propose a feasible estimation method
for the transition probabilities conditionally on covariates observed with
repeated measures. To this end we will use the subsampling approach, also
termed as landmarking, proposed by de Uña-Álvarez and Meira-Machado
(2015), combined with methods proposed by Rizopoulos (2012). The land-
mark methods considers subsamples of individuals of the data that belong
in a given state at a pre-specified time point and gives rise to consistent
estimators regardless the Markov assumption.

1.1 Joint multi-state model specification

The joint modeling approach for multi-state models can be described by a
linear mixed effect model and a survival sub-model for each transition. The
longitudinal sub-model follows the gaussian assumptions and the observed
measure Yij at time tij is given by Yij = Xi (tij)

T
β+Zi (tij)

T
bi+εij , where

Xi (tij) and Zi (tij) represent the vectors of time-dependent covariates of
the individual and bi is the vector of random effects with bi ∼ N(0,Σ). The
β parameter is a fixed vector and εi ∼ N

(
0, σ2Ini

)
where ni is the number

of longitudinal measures by individual (Ferrer, 2016).
The time-to-event outcome at time t from state h to state k, with h, k ∈ S
the finite state space, is modeled by a proportional hazards sub-model
which takes the following form λihk(t|bi)=λhk,0(t) exp{XSThk,iγhk+Whk,i(bi,t)ηhk},
where λhk,0 (.) is a parametric baseline intensity (with weibull, exponen-
tial or piecewise constant distributions, for instance). The baseline covari-
ates are denoted by wi with coefficients γhk. The multivariate function
Whk,i (bi, t) defines the dependence structure between the longitudinal and
multi-state process and represents the true and unobserved value of the
longitudinal outcome for patient i at time t. The association between the
longitudinal and the times-to-event for each transition is given by ηhk.

1.2 Estimation and Dynamic predictions of the transition
probabilities

In this study the maximum likelihood estimation for joint models will be
used to estimate the parameters of the joint multi-state model under the
landmark approach described in Uña-Álvarez and Meira-Machado (2015).
The maximization of the log-likelihood function will be done using an EM
algorithm coupled with a quasi-Newton algorithm in case of slow conver-
gence. As referred above the aim of this paper is to estimate the condi-
tional transition probabilities phj(s, t | Y ) where Y denotes a covariate
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with longitudinal measures (as tumor markers measured at different mo-
ments) ỹi (v) = {yi (u) , 0 ≤ u ≤ v}. For each individual the transition
probability is estimated and is assumed that the patient has survived up
to the last time point s (Rizopoulos, 2012)

2 Simulation study

The longitudinal and multi-state data were generated through a joint mod-
eling with 1000 replicates with 400 individuals given by Yij = β0 + β1 ×
tij+bi0 +bi1×tij+εij and λihk (t|bi) = λhk,0 (t) exp{γhk+Whk,i (bi, t) ηhk},
where h ∈ {0, 1}, k ∈ {0, 1, 2} and bi ∼ N

(
(0, 0)

T
,

(
20 0.2
0.2 0.02

))
. The

longitudinal times, initially were the same for each individual, given by
tij = 0.33, 0.66, · · · , 16.50 and the εi ∼ N (0, 18). The parametric baseline
intensities were obtained from exponential distributions with rate param-
eters 3, 1.7 and 0.5. We took the value 2 for the γhk and for ηhk we took
the values -0.7, -0.7 and -0.6 for the transitions 0 → 1, 0 → 2 and 1 → 2,
respectively. The vector of true transition times, T ∗i =

(
T ∗i,01, T

∗
i,02, T

∗
i,12

)
,

were generated following the procedures described in Beyersmann et al.
(2011). By comparing T ∗i and Ci, the vector of times Ti = min(T ∗i , Ci),
where Ci denotes the censoring times, which characterizes the multi-state
process, was deduced. The longitudinal measurements, generated from the
linear mixed sub-model, were truncated at Ti1 the first observed time of
the multi-state process.

2.1 Results

The transition probabilities for the Landmark approach (LM), Breslow’s
method (BRES) and Joint Modeling-Landmark estimator (JMLM) were ob-
tained through Monte Carlo simulation with 1000 replicas with 400 indi-
viduals. For each replica, eight individuals were retained with the purpose
to identify the influence of the longitudinal marker on the estimation of
the transition probabilities (decreasing, constant, increasing and random
values of the marker). The results reveal the JMLM estimator has a better
performance for all p00(8, t | Y ) independently of the longitudinal marker
trend. In fact the boxplots of BRES and LM estimators show a systematic
bias and consequently appear to be inadequate to identify the evolution of
the repeated marker of the individuals (Figure 1). The variability of the
JMLM estimates increase as the difference between t and s = 8 is greater but
even though the proposed JMLM still produces estimates with less bias in
accordance with the ratio between the mean square errors (MSEs) for the
transition probabilities p̂00 (8, t) and p̂11 (8, t) with t = {10, 12, 14, 16, 18}.
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Figure 1: Boxplots of the M = 1000 estimates of the transition probabilities.

By comparing the values of p00(8, 12 | Y ) and p00(8, 18 | Y ), between indi-
vidual 1 and individual 2, we may conclude that a increasing trend on the
longitudinal marker means higher true value. From the results is also possi-
ble to observe the ability of the JMLM to reflect the evolution of the longitu-
dinal measures of the marker. In fact, for instance, considering p̂00 (8, 12),
for individual 2 with an increasing trend of the longitudinal marker, as the
Breslow estimator takes into account the higher value the transition prob-
abilities decrease comparing to the LM estimator. However the effect of the
previous repeated measures have as consequence the increase of the JMLM

estimation, following the true values.

3 Conclusions

Results obtained from simulation studies and in the real data application
confirmed the good performance of the JMLM estimator, providing accurate
estimated transition probabilities. The proposed method also demonstrated
to have more sensibility to reflect the evolution of the longitudinal measures
when comparing to the Breslow’s based method which only makes use of a
single value of the covariate.
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Abstract: We investigate robust loss functions in statistical boosting, which is
particularly suitable for high-dimensional data situations. To achieve robustness
against outliers in the outcome variable we consider different robust losses. The
stepwise boosting algorithm implicitly reweights the residuals in each iteration
with the gradient of the loss function. For composite losses, e.g. the Huber and
Bisquare loss, there is a cut-off value to choose. For this purpose, a fixed quantile
for the amount of outliers is used that adapts this value in each iteration to
the size of this residuals. As an application we investigate the performance of the
boosting methods for various amounts of outliers in a high-dimensional riboflavin
data set.
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1 Introduction

Modern tools for data analysis are becoming more frequently confronted
with large and complex data sets. Real data sets often contain outliers or
are corrupted in some way. For the case of linear regression we propose a
robust and data-adapted use of statistical boosting. The boosting algorithm
uses ideas from machine learning and iteratively updates the estimated
coefficients for a model using a component-wise gradient method of steepest
decent (for a non-technical introduction of boosting see Mayr and Hofner,
2018). An empirical risk function is minimized and the algorithm is stopped
after finitely many iterations. In each iteration, the residuals of the current
fit to the outcome are re-evaluated by the gradient of the loss function.
Also, the choice of the stopping iteration is an important tuning parameter
for the predictive performance (Hofner et al., 2012).
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Additionally, the design of the algorithm leads to automatic variable se-
lection that can be particularly helpful for high-dimensional data sets. We
want to take advantage of the modular structure of the algorithm and test
different robust loss functions with respect to outlier corrupted data.
For composite loss functions we present a quantile-based approach, which
adapts the cut-off value in each iteration to the given fit and can also be
adapted to the corruptness of the data. This quantile valuation is already
used for TreeBoost (Friedman, 2001) in M-regression.
We consider the Huber and Bisquare loss in this context in Section 2,
and evaluate their robustness in a high-dimensional data application for
biomarkers in Section 3.

2 Methods

To fit a linear regression model for p parameters and given observations
((x1, y1), . . . (xn, y1)), we can estimate the regression coefficient vector βββ =
(β0, . . . , βp) for p explanatory variables by minimizing the empirical risk
function R :=

∑n
i=1 ρ(yi − f(xi)) with f(xi) := βββxT

i and loss function ρ.

Starting with an offset value estimate f̂ [0], the further iteration m is it-
eratively calculated by evaluating the negative gradient − ∂ρ

∂f of ρ at the
current residuals such that we get the negative gradient vector of the m-th
iteration:

u[m] :=

(
− ∂

∂f
ρ
(
yi − f̂ [m−1](xi)

))

i=1,...,n

We update the current fit by f̂ [m] = f̂ [m−1] +νu[m] with fixed learning rate
0 < ν ≤ 1 as long as m reaches the stopping iteration mstop.
The weighting of the residuals by the loss function has a major influence on
the regression model. Typical mean regression has for example the L2 loss
ρ(x) = x2, but this loss function is very sensitive to outliers in the data, so
that more robust approaches can be helpful.
A much noted loss has been investigated by Huber (Huber, 1964) as a
convex mixture between the L2 and the L1 loss (absolute value):

ρH(x) :=

{
x2

2 , |x| ≤ k
k(|x| − k

2 ), |x| > k

Tukey’s Bisquare loss is commonly used as an example of a non-convex,
smooth and robust weighting given by

ρB(x) :=

{
1− (1− (xk )2)3, |x| ≤ k
1, |x| > k.

For such loss functions (see Figure 1) the choice of the cut point k deter-
mines how the residuals are reweighted in each iteration. If we would choose



Speller et al. 436

−2 −1 0 1 2

0.0

0.5

1.0

1.5

2.0
L1

L2

Huber k=1
Bisquare k=1

FIGURE 1. The L1, L2, Huber and Bisquare losses with cut-off value k = 1.

a constant k for all iterations, then, due to the approximation of the fit to
the desired solution, from a specific iteration on, almost all residuals would
be evaluated only with the inner weights of the loss function. If k is initially
chosen too large, it could even happen that in no iteration the more robust,
outer part of the loss function takes effect.
To ensure weighting in each iteration m for all observations in the sense of
the loss function, we use a nonparametric quantile-based cut-off value

k[m] := quantileτ

(
|yi − f̂ [m−1](xi)|, i = 1, . . . , n

)
,

which applies in every step the same fraction τ of observations with the
inner and 1− τ with the outer weight.
If outcome data are corrupted by a certain amount ε, we can directly
incorporate this in our model, whereby we use the direct translation for
Tukey’s Bisquare loss (τ = 1 − ε). For the Huber loss we choose τ based
on an efficiency criterion depending on ε (Huber, 1981).

3 Riboflavin analysis

The open access, high dimensional data set with riboflavin production as
continuous response variable contains n = 71 observations with p = 4088
gene expressions as covariates. In 100 runs, 50 observations were randomly
selected as training data set and a fixed percentage (ε = 0, 6, 10, 20%) of
them was replaced by outliers. In more detail, four standard deviations of
the response variable were randomly added or subtracted to the original
response. For optimal stopping a 25-fold bootstrap approach was used that
automatically determines mstop. In each run we evaluated the performance
of the model fits for the different loss functions on the remaining unmod-
ified, independent test data through the mean squared error of prediction
(MSEP).
As expected, in Figure 2 it can be observed that the MSEP for higher
amounts of outliers increases for all considered loss functions. The L2 loss
shows an increasingly sensitive behaviour for larger amounts of outliers. In
contrast, the robust losses are adaptive to stronger contamination of the
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analysed data by outliers. Especially the Bisquare loss shows a favourable
predictive performance for higher amounts of corrupted data.
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FIGURE 2. The MSEP for different amounts (ε = 0, 6, 10, 20%) of outliers for
the L2 and quantile-based Huber and Bisquare losses.

4 Conclusion

With appropriate prior knowledge regarding the amount of outliers in the
outcome distribution, boosting with the quantile-based Huber and Bisquare
losses performs quite robust in our riboflavin analysis in comparison to the
conventional L2 loss. In addition to methods for outlier detection, the sen-
sitivity of the choice of the quantile has to be tested in further investiga-
tions. In the optimal case a robust analysis can be guaranteed even if the
researcher has no prior knowledge about the expected amount of corrupted
data.
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Abstract: We propose flexible missing data (“amputation”) models based on
beta distributed missing probabilities, which are particularly suited for investi-
gating different missing mechanisms. In the proposed models the marginal distri-
bution of these probabilities can be directly specified so that deviations from the
“missing completely at random” (MCAR) mechanism can be controlled. We illus-
trate the flexibility of the models when applied on a diabetes data set, where the
results of a Bayesian multiple imputation method and a complete case analysis
are compared with respect to the analysis of the full data set.
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1 Introduction

The appropriate analysis of data with missing values is crucial, particularly
in biomedical applications where several participants may drop out early
from a clinical study. Recent works have compared the performance of mul-
tiple imputation (MI) techniques with a complete case analysis (CCA) and
investigated how the results are affected by the proportion of missing cases
(Madley-Dowd et al., 2019) and the type of missing mechanism (Hughes
et al., 2019), distinguishing between data missing completely at random
(MCAR), missing at random (MAR) and missing not at random (MNAR).
Another important factor that may not have received much attention is the
severity of MAR or MNAR deviations from the MCAR case, for which both
MI and CCA yield unbiased results. With common “amputation” methods
for generating missing data based on logistic regression it is very difficult
to control the marginal distributions of the missing probabilities, which
determine how large the MAR or MNAR mechanisms depart from MCAR.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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In this work we propose flexible amputation models for generating missing
data, where the marginal distributions of missing probabilities can be ar-
bitrarily specified and fully controlled by the researcher. As an important
example we consider beta distributed missing probabilities. In contrast to
alternative models based on logistic regression, model parameters do not
need to be adapted using numerical methods in order to achieve the desired
missing rate. Furthermore, the proposed models do not assume any partic-
ular distribution for the variables on which the missingness depends and
are also well-suited for skewed and non-normally distributed variables. We
illustrate the flexibility of the proposed models and compare them to logis-
tic regression models used in the function ampute (Schouten et al., 2018) of
the R-package mice (van Buuren and Groothuis-Oudshoorn, 2011). Based
on a completely observed diabetes data set we generate missing values ac-
cording to the different amputation models and evaluate the results of MI
and CCA in relation to the analysis of the full data set.

2 Missing data models

We consider missing data models where the probability π(Y ) of missingness
depends on a random variable Y . This includes the case of MAR, where
another variable X is missing with probability π(Y ) depending on Y , and
the case of MNAR, where Y itself is missing with probability π(Y ). Let
FY denote the cumulative distribution function (cdf) of Y . Here we assume
that FY is continuous, but the methodology can be extended to the discrete
case. Let G denote the cdf of the targeted distribution for the missing
probabilities π(Y ) and let G−1 denote its quantile function. We propose
the following missing data models, which are generalizations of previously
considered logistic regression models (e.g. Schouten et al., 2018):

right: π(Y ) = G−1(FY (Y )) tail: π(Y ) = G−1(2 |FY (Y )− 0.5|)
left: π(Y ) = G−1(1− FY (Y )) mid: π(Y ) = G−1(1− 2 |FY (Y )− 0.5|)

These four models differ in the way the missing probability π(Y ) depends
on Y . For the model right, π(Y ) increases in Y , while for the model left,
π(Y ) decreases in Y . For the model tail, π(Y ) first decreases in Y up to the
median of the distribution of Y and then increases in Y again, implying that
missing probabilities are largest in the tails of the distribution. Similarly,
the model mid yields the largest missing probabilities around the median
of the distribution of Y . Note that FY (Y ), 1 − FY (Y ), 2 |FY (Y ) − 0.5|
and 1− 2 |FY (Y )− 0.5| all follow a uniform distribution U(0, 1). Thus, by
the inverse transform method for each model we have π(Y ) ∼ G, i.e. the
distribution of missing probabilities is given by G and the mean of G equals
the expected number of missing cases.
The distribution G can be arbitrarily specified. Here, we specifically employ
a beta distribution π(Y ) ∼ Beta(µ, τ) with mean µ ∈ (0, 1) and precision
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FIGURE 1. Models right and tail with µ = 0.5, τ ∈ {0.1, 1, 10, 1000} and
corresponding logistic regression models from ampute for Y ∼ N(0, 1).

parameter τ > 0 controlling the variance via Var(π(Y )) = µ(1−µ)
τ+1 . Figure 1

illustrates models right and tail with µ = 0.5 and different choices of τ for
normally distributed Y ∼ N(0, 1). The mean µ specifies the average number
of missing cases, while τ controls how strong the missingness depends on
the variable Y : if τ is small, the variance of π(Y ) is large and thus the
missingness strongly depends on Y . The limiting case τ →∞ corresponds
to MCAR, where π(Y ) ≡ µ does not depend on Y .
The cdf FY of Y is often explicitly known in simulation studies where
Y is generated according to a chosen distribution. However, in real data
applications the “true” cdf FY is typically not available and has to be
estimated based on a finite sample. If y1, . . . , yn is the observed sample of
Y , we use (a shifted version of) the empirical cdf of Y in order to estimate
FY , i.e. F̂Yn (t) = 1

n

∑n
i=1 1{yi ≤ t} − 1

2n , for t ∈ R.

3 Diabetes data example

As an illustrative example we consider the publicly available diabetes data
(Efron et al., 2004) which consists of ten baseline variables X1, . . . , X10 and
a numeric outcome Y measuring disease progression after one year for n =
442 diabetes patients. In a linear regression model Y = β0 +

∑10
j=1 βjXj + ε

we focus on estimating the effect β3 of body mass index (BMI) at baseline
(X3) on the outcome Y . The least squares estimated effect based on the full

data set is given by β̂3 = 5.60 with (4.19; 7.01) as 95% confidence interval.
We evaluate MI and CCA in relation to the full data analysis by simulating
10, 000 missing data sets based on the model tail with beta distributed
missing probabilities with missing rate µ = 0.15 and varying precision τ
and based on the corresponding logistic model from ampute. The Bayesian
normal model of mice is used for MI with m = 5 imputations.
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TABLE 1. Results of CCA and MI for diabetes data with MAR in BMI (X3)
depending on Y and MNAR in Y . Amputation is based on model tail with missing
rate µ = 0.15 and varying precision τ as well as on corresponding ampute model.

τ = 0.1 τ = 1 τ = 10 τ = 1000 ampute

MAR X3 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

CCA -1.60 1.61 -1.42 1.44 -0.56 0.67 -0.05 0.32 -0.42 0.55
MI -0.47 0.53 -0.50 0.61 -0.18 0.40 -0.02 0.31 -0.15 0.38

MNAR Y Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

CCA -1.60 1.61 -1.42 1.44 -0.56 0.67 -0.05 0.32 -0.42 0.55
MI -1.60 1.61 -1.42 1.45 -0.56 0.68 -0.05 0.35 -0.42 0.57

Table 1 shows the results in terms of bias and root mean squared error
(RMSE) for estimating β3 in relation to β̂3 from the full data analysis.
In case of MAR in X3 depending on Y , absolute bias and RMSE tend to
be larger for small τ . MI yields lower absolute bias than CCA in case of
MAR, but interestingly there is still some bias for small τ . Possible reasons
for this may be misspecifications of the analysis model for Y and of the
imputation model for X3. In case of MNAR in Y , both CCA and MI yield
similar and increasingly biased results for smaller values of τ . Note that
the case τ = 1000 is similar to MCAR where CCA and MI are unbiased.
Although results for the function ampute hint in the same directions, the
induced missing mechanism is rather “close” to MCAR in this case, so
that general effects of missingness may be underestimated. Furthermore,
missing probabilities from ampute are relatively small in the left tale of
the right-skewed distribution of Y , while the proposed models provide full
control of the missing probabilities even for skewed variables.
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1 Introduction

Self-reflexive age stereotypes can cause heavy effects on the health of an
aging person, see e.g., Stewart et al. (2012). Since activating said stereo-
types in experimental settings has shown to be difficult, see e.g., Rivers
and Sherman (2018), we incorporated virtual reality in our own study to
create a strongly immersive environment, see Vahle and Tomasik (2020)
for details. Corresponding data were gathered in the following way: n = 72
students (age 20-35) were randomly assigned with either a younger (i.e.,
age-congruent control condition) or an older (i.e., age-incongruent experi-
mental condition) virtual avatar asked to perform simple movement tasks
such as raising their arms or inspecting their hands. During these perfor-
mances that lasted a total time of 8.17 minutes, three-dimensional coor-
dinates and rotations of three points in space (head and two hands) were
tracked (referred to as channels from now on) with a resolution of 10Hz

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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(i.e., we have a total number of time points of 4970). Figure 1 shows an
exemplary course of the experiment for head movements.
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FIGURE 1. Example of head movement patterns in three axes.

To reduce dimensionality and identify the main directions of variability, we
used principal component analysis (PCA). An example finding is given in
Figure 2. As we can see, densities of first PC scores of the head’s y-rotation

Density of PC 1 (91.8% explained variance)

D
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−200 −100 0 100
Scores

age−congruent
age−incongruent

FIGURE 2. Densities of first PC scores for y-rotation of the head.

differ in modality. Such preliminary findings indicate discrepancies between
different groups of the experiment. Our ambition now is to determine tech-
niques to separate these groups distinctly and give predictions about group
affiliation. We use supervised learning with neural networks as they have
proven to deliver promising results for human activity recognition tasks,
see e.g., Herath et al. (2017).

2 Methodology and Model Description

2.1 Feedforward Neural Network (FFN)

A feedforward neural network F θ : Rd → (0, 1)2 with two hidden layers
is defined as a composition of affine functions and non-linear activation
functions, i.e.

F θ = ψ ◦ aθ3 ◦ σq2 ◦ aθ2 ◦ σq1 ◦ aθ1
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where d denotes the input dimension and q1, q2 the number of neurons in
the hidden layers which are characterized by the affine functions

aθ1 : Rd → Rq1 , aθ2 : Rq1 → Rq2 , aθ3 : Rq2 → R2

defined by
aθi (x) := Aix+ bi, i = 1, 2, 3,

whose components A1 ∈ Rq1×d, A2 ∈ Rq1×q2 , A3 ∈ Rq2×2 (the weight
matrices), b1 ∈ Rq1 , b2 ∈ Rq2 , b3 ∈ R2 (the bias vectors) compose the
parameter θ ∈ R2+(1+d+q2)q1+3q2 . For the activation functions, we define
σj : Rj → Rj , j ∈ {q1, q2} and ψ : R2 → {y ∈ R2|y1, y2 ≥ 0, y1 + y2 = 1} as
ReLU and softmax function, respectively, i.e. σj(x1, . . . , xj) = (x+

1 , . . . , x
+
j )

and ψ(x)j = exj/(ex1 + ex2), j = 1, 2. In our application, we use FFN for
an input consisting of basic features (mean, standard deviation, minimum
and maximum of three-axes-positions and rotations, resulting in a total of
24 input variables for each body part) drawn from the whole courses of
the experiment. All weights and biases are initialized via a Xavier uniform
initializer.

2.2 Convolutional Neural Network (CNN)

In our setting, convolutional layers perform one-dimensional discrete con-
volution for each channel c ∈ C separately leading to an output of

(K ∗ S)(i) =
∑

c∈C

∑

1≤u≤F

K(u, c)S(i+ u, c), 1 ≤ i ≤ m− F + 1,

for a kernel K ∈ RF×|C| with filter length F ∈ N, and a time segment S ∈
Rm×|C|. A bias vector may be added to the result as well as an activation
function may be applied afterward. This procedure can be repeated for
several filters resulting in an output O ∈ R(m−F+1)×nF where nF denotes
the number of filters. In a next step, we use max-pooling which slides
a window of size FM over the data and summarizes them by taking the
maximum eventuating in an output of the form

M(i, j) = max
k=FM ·(i−1),...,FM ·i−1

|O(k, j)|

for 1 ≤ i ≤ (m − F + 1)/FM , 1 ≤ j ≤ nF . In our case, we use CNN to
classify not the whole course of the experiment itself, but only parts of
it. Therefore, we insert time segments consisting of m = 70 time points
respecting all six channels (i.e., C = {1, . . . , 6}). We build our network
by inducing one convolutional layer with nF1

= 70 kernels of filter length
F1 = 35 and constant bias. Max-pooling with a window size of FM = 3 and
another convolutional layer with nF2 = 70 kernels of filter length F2 = 2 are
instantiated subsequently. All kernels are initialized by a truncated normal
distribution. The output is then flattened and inserted into a feedforward
layer with 100 neurons and tanh-activation. Eventually, the softmax func-
tion is applied.
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3 Results

For classification (age-congruent control group vs. age- incongruent exper-
imental group), we construct neural networks as described above using
Tensorflow 2.0. For both FFN and CNN, sparse categorical crossentropy
is minimized using an Adam-Optimizer. For comparison, a logit model (see
classif.glm method in the R package fda.usc) is also applied to basic fea-
ture input (abbr. logitBF). Furthermore, we applied the above CNN (abbr.
CNN1) again as well as the logit model (abbr. logit1) on time segments
allowing just one channel (y-rotation) for 70 time points per segment. All
runs have been executed for the head, left and right hand separately. Train-
ing of models was conducted 100 times on randomly chosen 80 % of the
input data before evaluating the classification accuracy on the remaining
data. Results can be abstracted from Table 1.

TABLE 1. Classification accuracy for different models in percent.

Part of Body FFN CNN6 CNN1 logitBF logit1

Head 92 99.7 81.32 61.2 72.96
Right Hand 75 98 55.5 45.73 53.78
Left Hand 84 97 49.87 45.8 53.29

As we see, classification based on basic features works significantly better
using FFN compared to using the logit model. When it comes to prediction
based on direct inserting of time passages, our CNN provides great accuracy
given that all channels are considered. Both the CNN and the logit model,
however, have problems classifying the data correctly if just one channel is
used, especially when inserting hand movement patterns.
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Abstract: Several model comparison techniques exist to select a best model from
a set of candidate models. This study explores the performance of model compar-
ison statistics among several Bayesian software packages that are often used for
spatially discrete disease modelling: the deviance information criterion (DIC), the
Watanabe-Akaike information criterion (WAIC) and the log marginal predictive
likelihood (LMPL). We focus on the software packages CARBayes, OpenBUGS,
NIMBLE and Stan, in which we fit Poisson models to disease incidence outcomes
with intrinsic conditional autoregressive, convolution conditional autoregressive
and log-normal error terms. From data studies, we learn important disparities in
model selection. Based on these conclusions, we provide recommendations on the
optimal use of model comparison statistics for all kind of applications.
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1 Introduction

Most comparisons between Bayesian software tools focus on parameter esti-
mation and prediction (Vranckx et al. 2019). Model selection, which aims at
appointing a representative model from a set of candidate models, given the
data, is usually not considered. Bayesian model selection itself is a widely
debated topic. Many approaches have been proposed over time, such as the
deviance information criterion (DIC), the Watanabe-Akaike information
criterion (WAIC) and the log marginal predictive likelihood (LMPL).
The focus of this manuscript is to explore the available model selection
tools in different Bayesian software packages for spatial disease mapping,
together with their practical advantages and disadvantages. It is not our
intention to compare the model selection criteria, but to look at the stability
of these criteria.

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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2 General methodology

2.1 Models

Disease mapping is used to estimate an unknown relative disease risk Rk
for an area k of a spatially discrete study region. For each area k, we have
the number of (newly diagnosed) disease or mortality cases (Yk) and the
expected number of cases (Ek). The general model formulation is

Yk|Ek, Rk ∼ Poisson(EkRk), k ∈ {1, ..., n}, (1)

ln(Rk) = µ+ xT
k β + φk ,

where β denote the regression parameters and µ the intercept term.
Depending on the prior distribution of the random effects φ, different mod-
els can be constructed. When no spatially structured association is as-
sumed, a Poisson-lognormal model can be used. On the other hand, spatial
models induce spatial association in the model. Popular spatial models are
the intrinsic and convolution models (both Besag et al. 1991).

2.2 Model comparison techniques

Several tools are available to select the best model from a set of models. A
commonly used model comparison statistic is the DIC (Spiegelhalter et al.
2002). The DIC balances between goodness of fit and model complexity.
As a goodness-of-fit measure, it uses the posterior mean of the deviance
(Eθ|y(D)). The deviance D is defined as −2 log p(y | θ) , where log p(y | θ)
is the log-likelihood of the data y given the parameter θ. To compensate
for the complexity of the model, the pDIC is calculated as

pDIC = Eθ|y(D)−D(Eθ|yθ) . (2)

The DIC is then defined as

DIC = Eθ|y(D) + pDIC . (3)

More recently, Watanabe (2010) introduced the WAIC. WAIC uses a mea-
sure for accurate predictions, which is also compensated with a so-called
effective number of parameters due to the double use of the data. It is
defined as

WAIC = −2 lppd + 2 pWAIC (4)

where lppd =
∑n
k=1 log p(yk | y) is the log of the joint posterior predictive

distribution for all units k = 1, ..., n and pWAIC =
∑n
k=1 varθ|y [log p(yk | θ)]

is the penalization term.
Other model selection techniques are based on cross-validation, which aim
to investigate prediction accuracy. Leave-one-out cross validation takes a
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single observation from the data for validating and uses the other data
points for fitting. Based on this idea, the conditional predictive ordinate
(CPOk) for one unit k can be defined as

CPOk = p(yk | y−k) (5)

where y−k represents the data without observation yk. As overall mea-
sure for model selection, the LMPL (Geisser and Eddy 1979) can be used,
defined as

LMPL =

n∑

k=1

log(cpok) . (6)

The model with the lowest DIC, the lowest WAIC and the highest LMPL
is preferred. However, there is no general threshold value to give a positive
support to a model.

3 Data analysis

3.1 Data description

The data analysis is based on the asthma dataset of Georgia (USA) publicly
available from the OASIS online system of the Georgia Division of Pub-
lic Health (https://oasis.state.ga.us/). It represents the counts of newly
diagnosed asthma cases in 2005.

3.2 Results

Table 1 shows that the model comparison estimates calculated by the soft-
ware packages differ considerably among the different software packages.
CARBayes prefers the intrinsic model, while R2OpenBUGS the convolu-
tion model.
Using a unifying calculation method, Figure 1 shows the trace plot of the
DIC for the intrinsic model and the packages CARBayes, R2OpenBUGS.
For CARBayes, model comparison statistics often do not converge at all
due to a large difference in estimates between different MCMC chains.
Therefore, care is needed in model choice based on these results.

4 Conclusion

Looking at the estimates resulting from the different software packages,
we noticed that using different packages with their own specific calculation
method, can lead to different model preference. This difference is partially
due to different calculation method. Therefore, users of different software
packages should be aware that model comparison statistics are not compa-
rable over the different packages. However, when using the same calculation
method, differences can still occur due to among other things software spe-
cific posterior samples. Moreover, convergence of the parameters does not
necessarily mean convergence of the model comparison statistics.
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TABLE 1. A summary of the model comparison statistics resulting from CAR-
Bayes and R20penBUGS after 20 000 iterations and a burn-in of 10 000.

CARBayes R2OpenBUGS
DIC pDIC DIC pDIC

Intrinsic 1234.749 153.048 1006 -10.08
Convolution 1386.896 206.600 931 -83.94
Poisson-lognormal 1280.178 169.513 1156 135.6
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FIGURE 1. Trace plots of the DIC for the intrinsic model and for CARBayes,
R2OpenBUGS. On the x-axis, the number of iterations are indicated. The dif-
ferent colors indicates different MCMC chains. The vertical lines indicates the
needed burn-in for convergence of the parameters and sufficient iterations to cal-
culate the parameter estimates.
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Abstract: Examination of age, period and cohort effects is a crucial aspect in
many long-term studies. In this work, we extend a holistic APC analysis frame-
work by introducing innovative visualization techniques facilitating the intuitive
interpretation of complex temporal structures. Our concepts are motivated by
the representation of age, period and cohort in Lexis diagrams. We introduce
ridgeline matrices, a two-dimensional extension of ridgeline plots, to commonly
visualize distributions for age groups, periods and cohorts. The established APC
concept of generalized additive models is used to circumvent the identification
problem by fitting a bivariate tensorproduct spline between age and period. We
outline our concepts by analyzing altering travel distances of German tourists.
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1 Introduction

Analyzing temporal developments in specific population groups is a com-
mon goal in social sciences. Based on long-term panel or repeated cross-
sectional data time-related effects are separated into age, period and cohort
effects where a cohort usually represents individuals with common birth
years. The estimation of such APC (age-period-cohort) models is faced with
an identification problem as each component can be expressed as a linear
combination of the others, e.g. age = period−cohort. Over the last decades
different approaches for dealing with this identification problem have been

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
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developed including constrained generalized linear, Bayesian hierarchical
and spline-based models (see Yang and Land, 2013, for an overview of APC
methodology). Our focus is on semiparametric spline-based models where
an interaction surface between age and period represents all three types
of effects. We extend this holistic framework by (a) introducing the ridge-
line matrix as a descriptive visualization tool and by (b) refining graphical
representations of estimated effect structures.

2 Data

Our study is based on an annual representative cross-sectional survey
among yearly approximately 7 500 people in Germany (FUR, 2019). Survey
data are available from 1971 to 2018 and comprise travel behavior in the
(short-term) past and the main dimensions of travel decision making along
with socio-demographic information about travelers.
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FIGURE 1. Travel distance curve of German tourists in 2018 on log10 scale

We analyze travel distances as one of the key aspects of destination choice
(Yang et al., 2018). Age and cohort of a traveler and the travel period are
used as proxies for internal and external effects, respectively. Figure 1 ex-
amplarily shows a travel distance curve, i.e. the distribution of distances
for travels in 2018 on a logarithmic scale. In the modeling process, distance
categories are examined rather than raw distances since the latter are to
some extent arbitrary as exact travel destinations are mostly unknown.

3 Methods

The key idea of our framework relies on Lexis diagrams, i.e. two-dimensional
diagrams common in medical APC applications where age groups, periods
and cohorts are usually depicted along the x-axis, the y-axis and diagonals,
respectively (see e.g. Carstensen, 2007). We introduce ridgeline matrices
as a novel technique for descriptively visualizing APC structures. Ridge-
line matrices are a two-dimensional extension of ridgeline plots (Wilke,
2018), an established tool to display densities against a secondary variable,
and comprise a layout with age groups along the horizontal and periods
along the vertical axis. Accordingly, diagonals represent specific cohorts.
Our modeling approach is based on generalized additive regression mod-
els with penalized splines (see Wood, 2017) and builds upon the work of
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Clements et al. (2005) who considered a bivariate tensorproduct spline be-
tween age and period for APC modeling. The resulting model addresses
the identification problem by implicitly regarding the cohort effect as a
statistical interaction between age and period, represented by the diagonal
of the estimated tensorproduct surface. For exponential family responses
with expected value µ and link function g(·) we use the model structure

g(µ) = β0 + f(agei, periodi), i = 1, . . . , n

where β0 denotes the intercept and f(·, ·) is a tensorproduct of the two
marginal spline bases. Graphical visualization of effect structures is based
on heatmaps of the estimated surface and the extraction of individual ef-
fects for age, period and cohort from the fitted model. Additional to the
estimation of temporal structures, the modeling framework allows for an
integration of additional covariates on individual or aggregated level.

4 Results

Figure 2 exemplarily shows a ridgeline matrix visualizing travel distance
curves for travelers aged 20, 30 and 40 over five decades. It illustrates that
younger age groups, newer periods and later-born cohorts are associated
with longer travel distances.
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FIGURE 2. Ridgeline matrix depicting the development of travel distances (dis-
played on log10 scale) for travelers aged 20, 30 and 40. Cohorts born between
1951 to 1960 and 1971 to 1980 are highlighted blue and green, respectively.

Each threshold between distance categories is modeled individually leading
to four additive logistic regression models. Figure 3 displays the estimated
mean APC effects for all thresholds. The overall age effects show a distinct
bimodal pattern with a maximum among 20 to 35 year-olds and a lower
peak within the age group of 45 to 55. Period and cohort effects reveal an
increasing chance for longer distances across all thresholds. The elaboration
of further visualizations of the estimated surface and model uncertainties is
currently underway. Model performance was evaluated based on the AUC
criterion. All models reached values between 0.62 and 0.68 on test data.
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FIGURE 3. Exponentiated mean age (left), period (middle) and cohort (right)
effects for all modeled thresholds on log10 scale.

5 Conclusion

The presented APC framework comprises an intuitive spline-based model-
ing approach and innovative multidimensional visualizations. In the end, it
will offer guidance on visualization techniques for both general description
and evaluation of model estimates and uncertainties. We showcased our
concepts with an application in tourism research. However, it can easily be
adapted to similar research settings in other fields.
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Abstract: Quality-adjusted life-years (QALYs) are a summary measure used
to evaluate the effectiveness of medical treatments in terms of both quality and
length of life. One method used to estimate QALYs is the area under the time-
utility curve (AUC). However, this approach may induce bias, due to its inability
to capture the dependency between the quality of life measures and the survival
time. A simulation study is conducted to assess the bias induced when estimating
QALYs using the AUC method, using data including censored individuals and
missing responses.
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1 Introduction

In order to inform healthcare resource decisions, the financial cost and the
health outcomes associated with any given treatment must be evaluated.
The health outcomes used in economic analyses should incorporate the
impact of the treatment on both the length of life and health-related quality
of life (HQoL). The quality-adjusted life-year (QALY) is one such summary
measure; one QALY is equivalent to one year of life in perfect health.
Instruments such as the EQ-5D questionnaire (EuroQol Group, 1990) can
be used to obtain utility values for HQoL states. Utility values indicate the
desirability of the state and are usually between 0 = Death and 1 = Perfect
health. QALYs are calculated as the length of life weighted by the relevant
longitudinal utility scores.
An area under the curve (AUC) method can be used to estimate QALYs,
where linear interpolation of the longitudinal HQoL data points is used
to establish the health utility over time, and the value 0 is taken after
the time of death. However, summary measures such as the AUC may

This paper was published as a part of the proceedings of the 35th Inter-
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result in biased estimates, especially in the presence of missing data (Bell
et al., 2014). The AUC method does not take into account the dependence
between the HQoL observations and the survival process, which may be
one cause of bias.
We aim to determine under which circumstances the AUC approach for
estimating QALYs can be biased. Building upon the work conducted by
Bell et al. (2014), we also consider the effect of the method used to es-
timate HQoL at the time of death on the bias of the QALY estimate. A
simulation study is conducted in which the longitudinal HQoL data trends,
the presence of censoring, and the missing data patterns are varied.

2 Simulation Study

2.1 Methodology

Firstly, dependent longitudinal HQoL and survival data are generated for
each subject. For each set of parameters chosen, 1000 replicates are drawn.
The data is generated for n = 100 total subjects per iteration, with longitu-
dinal response times denoted by tij , where i = 1, . . . , n and j = 0, 1, . . . , 10
are the subject and time indices, respectively.
The longitudinal response for subject i at time j is generated such that

Yij = (β0 + ν0i) + (β1 + ν1i)t+ εij , (1)

where ν are subject-specific random effects, and εij ∼ N(0, 0.012) are in-
dependent error terms. The intercept, β0 = 0.8, remains constant for the
longitudinal data patterns studied. The fixed effect coefficient of time, β1, is
selected from the set {−0.05, 0}. The random effects are taken to be either
random intercept (RI), with ν0i ∼ N(0, σ2

1), or random intercept and ran-
dom slope (RIRS), with νi ∼ MVN(0,Σ). The standard deviations of the
random intercept and random slope are given by σ1 = 0.05 and σ2 = 0.01,
respectively, with correlation parameter defined as ρ = 0.2. In order to
reflect the structure of HQoL data, longitudinal data points are truncated
at a maximum of 1.
The hazard function for subject i is given by

hi(t ; xi, νi) = h0(t) exp(γ1(β0 + ν0i) + γ2(β1 + ν1i)t) , (2)

where γ determines the degrees of association between the longitudinal
and survival processes. This model is based upon the general methodology
introduced by Wulfsohn and Tsiatis (1997). The baseline hazard function,
h0(t), is taken to follow that of a Weibull(1.2, 12) distribution. The associa-
tion parameters are equal, with γ1 = γ2 = 0.2. Survival times are truncated
at t = 10.
Censoring of the survival times is also considered. For scenarios including
censoring, 50% of subjects have a censored survival time, C, with C ∼
Uniform(0, 10).
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The impact of missing HQoL data is also considered. Missingness of a
given response is generated using a Bernoulli(0.2) distribution, leading to
a missing completely at random (MCAR) response pattern. Imputation
through last observation carried forward (LOCF), and no imputation are
considered to handle missing responses.
We estimate the QALYs gained through use of the methods developed by
Glasziou et al. (1998). The mean QALY restricted to time L is defined as

QALYL =

∫ L

0

P (t)Q(t) dt ,

where P (t) is the proportion of subjects alive at time t, and Q(t) is the
mean HQoL of those subjects at time t. The function P (t) is estimated
using the Kaplan-Meier estimator; Q(t) is estimated through interpolation
of the HQoL for each individual i, which are then combined to yield a mean
function for the entire group.
A longitudinal response is thus required at all observation times, and dis-
tinct censoring and survival times for all individuals, in order to estimate
Q(t). For those individuals who experienced the event, three methods are
considered to estimate the HQoL at their recorded survival time: LOCF,
extrapolation based on a linear regression model, and linear interpolation
between the last observation and 0, as this is the value taken after death.
Each censored subject requires a response at time t = 10; this response was
estimated for the individual using either LOCF, or extrapolation based on
a linear mixed effects model. From this point, responses could be linearly
interpolated for each subject at all times necessary.

2.2 Study Results

In order to deduce the best form of the QALY estimator for each model,
the study was completed using four scenarios of increasing complexity. The
scenarios are denoted as follows: R used complete data with no censoring,
RC used complete data including censored individuals, RM used MCAR
data with no censoring, and RCM used MCAR data including censoring.
The bias and mean squared error (MSE) for the best RI and RIRS mod-
els in each scenario are shown in Table 1. Both LOCF and extrapolation
are appropriate choices to estimate responses at death times in scenario
R; interpolation to 0 is significantly inferior in all scenarios. In scenario
RC, models can use any combination of LOCF and extrapolation to esti-
mate responses at death times and t = 10 for censored subjects without a
significant impact on the level of bias induced. When MCAR data are con-
sidered, in scenarios RM and RCM, no imputation produces significantly
superior results to imputation of the missing data through LOCF. Conclu-
sions are the same for both RI and RIRS methods throughout, although
when MCAR data is considered, RI models are likely to underestimate,
and RIRS models likely to overestimate, QALYs, respectively.
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Method Model
RI RIRS

Bias (SD) MSE Bias (SD) MSE

R LOCF -0.047 (0.253) 0.066 -0.008 (0.194) 0.038
Ext. -0.049 (0.253) 0.066 -0.014 (0.194) 0.038

RC LOCF/LOCF -0.041 (0.282) 0.081 -0.021 (0.206) 0.043
LOCF/Ext. -0.041 (0.282) 0.081 -0.025 (0.206) 0.043
Ext./LOCF -0.043 (0.282) 0.081 -0.027 (0.207) 0.043
Ext./Ext. -0.043 (0.282) 0.081 -0.031 (0.207) 0.044

RM LOCF -0.047 (0.253) 0.066 0.032 (0.195) 0.039
Ext. -0.050 (0.253) 0.066 0.024 (0.196) 0.039

RCM LOCF/LOCF -0.041 (0.282) 0.081 0.023 (0.208) 0.044
LOCF/Ext. -0.041 (0.282) 0.081 0.006 (0.208) 0.043
Ext./LOCF -0.044 (0.283) 0.082 0.015 (0.209) 0.044
Ext./Ext. -0.043 (0.283) 0.082 0.001 (0.209) 0.044

TABLE 1. The model error for each of the best models of the simulation study.
The methods, LOCF and extrapolation (ext.), are described in Subsection 2.1,
and are given in order of death, censoring (if applicable).

3 Discussion and Future Work

Several extensions to the current simulation study have been considered.
Inclusion of simulated covariates in the longitudinal and the survival models
is one such proposal. More complex HQoL patterns, such as those which
change gradient over time, would also be an appropriate development for
the study. Another consideration is to include missing at random (MAR) or
missing not at random (MNAR) missing data patterns for the longitudinal
responses. Finally, in order to better extrapolate responses at t = 10 for
censored subjects, a possibility would be to use the best linear unbiased
predictor (BLUP) to make use of the subject’s own random effects.
One approach proposed as an alternative to AUC for the estimation of
QALYs is the use of joint longitudinal-survival modeling (Rizopoulos,
2012). By fitting a joint model to the longitudinal and survival data, the
QALYs can be estimated by integrating the fitted model over the survival
times. Li et al. (2013) have proposed a joint model, which makes use of a
‘reverse’ time scale, applying it to HQoL data in order to estimate QALYs.
In our future work, we aim to investigate the potential benefits of using joint
modeling approaches, rather than the AUC method, to estimate QALYs
from dependent longitudinal HQoL and survival data.
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1 Introduction

Understanding how species distributions are affected by environmental
changes is of major interest in many ecological studies. However, describing
such processes is no easy task due to the sources of uncertainty that occur
at different spatial and temporal scales and that are induced by imperfect
detectability.
We propose a two-stage statistical modelling framework for analysing how
environmental metrics describing freshwater connectivity interact with
land-use change to affect species distributions, while accounting for im-
perfect detectability of the species. Specifically, we look at UK dragonfly
species richness, since their species presence records are only partially ob-
served due to imperfect detection.
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2 Data sets

Data were provided by Hydroscape (web: hydroscapeblog.wordpress.com),
a project investigating how anthropogenic stressors and connectivity in-
teract to influence biodiversity and ecosystem function in UK freshwaters.
Dragonfly occupancy records (for over 4000 × 1km grid cells, matched
to lakes) from 2000 to 2016 were taken for 41 non-invasive species from
the National Biodiversity Network, Biological Records Centre and British
Dragonfly Society repositories. Species-specific covariates that may affect
species detection probability were taken from Powney et al. (2014). An-
thropogenic stressors (% agricultural and urban land use) and connectivity
metrics (e.g. perimeter, number of lakes, river length) were calculated on
7 spatial scales surrounding each lake to capture the impact of different
types of connectivity on freshwater ecosystems (Taylor et al., in prep.).

3 Statistical Methods

Species richness (the total number of species occupying a grid cell) can be
underestimated when the probability of detecting the different species is
less than 1. The species occupancy is potentially affected by many envi-
ronmental variables over nested spatial scales. We take a 2-stage approach,
estimating detectability in stage 1 and identifying and modelling the effects
of the covariates on the adjusted species richness in stage 2.

3.1 Stage 1: estimating occupancy, accounting for detectability

First, we analysed the observed occupancy of dragonfly species in each grid
cell by fitting a species-specific multispecies occupancy model (eqn. 1) using
the species-specific covariates from equation 2 (Kéry and Royle, 2008).

zij ∼ Bernoulli(ψi) State process
∑

Kj

yij·|zij ∼ Binomial(Kj , pizij) Aggregated observa-
tion process

logit(ψi) ∼ N(µψi , σ
2
ψi); logit(pi) ∼ N(µpi , σ

2
pi) Species heterogeneity

model
(1)

µpi =α0 +

M∑

m=1

αm(mth species-specific parameter)i (2)

where yij· is the number of times species i was detected in grid cell j across
K visits, pi is the detection probability for the ith species, zij is the latent
variable for true species occupancy and ψi is the occupancy probability.
Grid cell-level species richness is computed as a derived quantity of the
predicted occupancy, as Sj =

∑
i zij . Noninformative priors were specified

to run the Gibbs sampler in R through JAGS.
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3.2 Stage 2: understanding the effects of the covariates on
species richness

Second, we evaluated the effect of grid cell-level covariates on species rich-
ness, using two sub-steps:
(a) Random forests (Strobl et al., 2009; accounting for high correlations
and differing scales) to identify the explanatory variables that are “impor-
tant” to the response, with a reduced set selected using prediction MSE.
(b) The reduced set of potential explanatory variables are considered in
a generalised additive model (GAM), allowing for smooth, nonlinear
relationships, with interactions modelled using tensor products. Stage 1 un-
certainties are included through inverse-variance weighting, via the gamm
function in the mgcv package in R.

4 Results

The dragonfly occupancy and detection probabilities varied widely within
the community, as shown in Figure 1. The estimated detection probability
is below 50% for most species, showing the importance of accounting for
uncertainty in observed species occupancy.
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FIGURE 1. Estimated species occupancy and detection probabilites with number
of sites each of the species is estimated to be present.

For stage 2, we provide an example for moderate alkalinity, deep lakes. Ran-
dom forests identified the 6 most relevant potential explanatory variables
to dragonfly richness from a dataset of 144 potential explanatory variables.
Of these, two variables represented the same parameter (% agriculture)
at two spatial scales. Only the most important of these two variables was
retained. The 5 remaining potential explanatory variables were considered
in a quasipoisson-response GAM, incorporating the inverse of the stage 1
prediction variance as weights. Figure 2 shows the smooths for the result-
ing model. Log(catchment mean rainfall) has a positive coefficient (1.18).
Square root of 500m buffer Strahler 2 length per ha is a connectivity vari-
able with a generally positive effect, but logit(% agriculture in catchment)
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FIGURE 2. Fitted smooths for moderate alkalinity, deep lakes.

interacts with a connectivity variable (square root of catchment lake count
per ha), suggesting that the effects of connectivity on dragonfly species rich-
ness vary with increasing stress caused by nearby agriculture. The model
explains approximately 28% of variance in estimated species richness, ap-
pearing to be a moderately good fit to the data.

5 Discussion and conclusions

This two-stage approach presents a computationally efficient method for
dimension reduction of the nested spatial covariate space to model species
richness in the presence of imperfect detection.
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López-Fidalgo, J, 322
Lado-Baleato, O, 137
Lang, MN, 142
Langohr, K, 358
Langrock, R, 165, 189
Lavielle, M, 326
Lawson, AB, 148
Lee, D-J, 418
Lesaffre, E, 238, 414
Liseo, B, 282
Liu, X, 362
Low-Choy, S, 366

Maier, E-M, 153
Mamouris, P, 79
Marques, I, 159
Marra, G, 114, 242
Mart́ınez Minaya, J, 418
Matawie, KM, 370
Matthiopoulo, J, 265
Mattia, S, 222
Mauro, B, 222
Mayr, A, 233, 434, 438
Mayr, GJ, 142, 382
Meira-Machado, L, 430
Mews, S, 165
Meza, C, 326
Miller, C, 310, 459
Millet, EJ, 394
Molenberghs, G, 79, 238
Morales Otero, M, 374
Moraux, E, 386
Moriña, D, 169
Muggeo, VMR, 378
Muller, L, 438
Muschinski, T, 382

Nackaerts, K, 185
Nemery, B, 185
Neyens, T, 185, 446



AUTHOR INDEX 465
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Rodŕıguez-Dı́az, JM, 410
Rodrigues, A, 194
Roy, B, 414
Rua del Barrio, M, 418

Salvan, A, 102
Sanchez-Mora, C, 126
Santos, B, 194
Sarro, LM, 386
Schauberger, G, 96, 200
Schlosser, L, 142
Schmid, M, 14
Schmude, J, 450
Schneble, M, 204

Scott, M, 310, 459
Segalas, C, 422
Simon, T, 142, 210
Simpkin, AJ, 45
Sofronov, G, 406
Soler, M, 126
Sousa-Ferreira, I, 426
Soutinho, G, 430
Speller, J, 434
Spezia, L, 302
Staerk, C, 434, 438
Staerk,C, 233
Stauffer, R, 142
Steyer, L, 216
Stocker, A, 153, 216
Stoner, O, 228
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