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The stability of “visible” electroweak-type cosmic strings is investigated in an extension of the Standard
Model by a minimal dark sector, consisting of a Uð1Þ gauge field, broken spontaneously by a scalar. The
visible and dark sectors are coupled through a Higgs-portal and a gauge-kinetic mixing term. It is found that
strings whose core is “filled” with a dark scalar condensate exhibit better stability properties than their
analogues in the Standard Model, when the electroweak mixing angle is close to θW ¼ π=2. They become
unstable as one lets θW approach its physical value. The instability mechanism appears to be a W-boson
condensation mechanism found in previous studies on the stability of electroweak strings.
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I. INTRODUCTION

Cosmic strings are expected to form due to spontaneous
symmetry breaking, and have been the subject of vigorous
research ever since their first proposition [1–5]. Since
cosmic strings are relics of the phase transitions in the
early Universe, they may be viewed as a link between high
energy physics and cosmology. They are expected to
contribute to the anisotropy of the cosmic microwave
background [2,4–6] and structure formation [2,7,8]. At a
lower energy scale, electroweak strings may also manifest
themselves observationally by creating a primordial mag-
netic field and play a role in baryogenesis [9]. Cosmic
strings exist generically in spontaneously broken gauge
theories, the prototype being the Abrikosov-Nielsen-
Olesen (ANO) string in the Abelian Higgs model
[10,11]. ANO strings can be embedded in the Glashow-
Salam-Weinberg (GSW) theory [GSW theory, with its
parameters assuming their physical values is the electro-
weak sector of the Standard Model (SM)] [9,12,13].
An important criterion for the relevance of such objects

is their stability. In the electroweak theory, embedded
cosmic Z strings are known to have a domain of stability
[9,12,13]. However, it has been found [9,14–17] that for
physical values of the parameters (more specifically, the
electroweak scale, W, Z and Higgs masses), embedded

ANO string solutions are unstable. The mechanism of the
instability is rather transparent in the θW → π=2 limit
(semilocal model) [18–20], in which the Z boson and
the Higgs doublet decouple from the rest of the electroweak
theory. The “extra” Higgs component condenses into the
false vacuum, and thus the string unwinds, the flux is
pushed away to infinity.
In theories extending the Standard Model, the possibility

arises to “fill up” the core of the string, thus preventing the
formation of condensates therein. In Ref. [21], this pos-
sibility has been considered in the case of the semilocal
model coupled to a dark sector, and a significant enhance-
ment of the stability properties of the string solutions has
been found due to the Higgs-portal coupling [22,23] and to
gauge-kinetic mixing (GKM) [24]. In the present paper, we
shall extend this study to the full GSW model coupled to a
dark sector.
At this point the following mechanisms for the stabili-

zation of electroweak strings should be mentioned: addi-
tional scalar fields bound in the string [25], the interplay of
quantum fluctuations of neutrinos and deformations of the
string [26–30], quantum fluctuations of an additional heavy
fermion doublet coupled to the string [31,32], interaction
with a thermal photon bath [33], and special couplings (of
the dilatonic type) [34].
The model of dark matter we shall consider here is the

unified dark matter model put forward in Refs. [35,36], in
which it is assumed that in the dark sector there are gauge
interactions, the gauge group contains a Uð1Þ factor, which
is broken by a dark Higgs field. The dark and the visible
sectors interact via the Higgs-portal coupling [22,23] and
the GKM [24]. A subset of this model is the scalar phantom
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dark matter [22,23], in which dark matter is scalar, and
there is no dark sector gauge field; in this case the dark
scalar may have a zero vacuum expectation value. The
parameters of the latter model are strongly restricted by
observations [37–39]. In the present paper, we consider the
case of a nonzero dark scalar vacuum expectation value.
For information on experimental constraints on dark matter,
see Ref. [40], and, in particular, for constraints on the GKM
and additional scalar fields, see Refs. [41,42], respectively.
In the model considered, there exist dark string solutions,

i.e., string solutions where the flux is of the dark Uð1Þ
interaction, and the dark scalar has a nonzero winding
[43–51]. Similar solutions in a Uð1Þ ×Uð1Þ theory for
higher windings have been considered in Refs. [52,53], and
an earlier work on string solutions in a portal-type theory is
Ref. [54]. In these works, the strings have a nonzero
winding in the dark sector. Dark strings in these models
are stable, however, their interactions with the visible sector
and their string tension is determined by the (yet unknown)
parameters of the dark sector.
The complementary case, in which the flux is in the

visible sector, and the role of the dark matter is to stabilize
the string, yields a string tension determined by the
electroweak scale, and interactions mostly determined by
the electroweak parameters.
The semilocal limit of the theory is a generalization of

the Witten model [55], and the string solutions considered
in Ref. [21] are embeddings of the solutions previously
found in Refs. [56–59]. (Similar and quite interesting string
solutions were found in a condensed matter setting, in
Refs. [60,61].)
In the present paper, we consider the stability of

electroweak-dark strings. We find that the enhanced sta-
bility due to the Higgs portal and the GKM couplings found
in Ref. [21] in the full GSW theory coupled to a dark sector
only persists to a parameter range of the full theory rather
close to the semilocal limit, there extending the domain of
stability to MH=MZ > 1 (up to MH=MZ ∼ 1.4), in contrast
to electroweak strings. However, this occurs for parameters
disfavored by experiment, when the dark scalar and the
dark Abelian gauge boson are not heavier than their visible
counterparts. We obtain the domain of stability of electro-
weak-dark strings for various parameter combinations, as
well as the dependence of the strength of the instability on
the parameters of the dark sector and the strength of the
couplings between the visible and the dark sectors. Our
analysis builds upon the results of Refs. [17,44].
The plan of the paper is as follows: we summarize the

main characteristics of the model considered in Sec. II,
including the particle content of the model, and the relation
among the parameters and the particle properties, based on
Ref. [44]. Electroweak-dark strings are introduced in
Sec. III, their stability analysis is performed in Sec. IV,
and we conclude in Sec. V. Some details of the calculations
are relegated to Appendix A.

II. THE MODEL CONSIDERED

We shall consider here string solutions in the GSW
model coupled via gauge-kinetic mixing [24] and the
Higgs portal [22,23] to a dark sector. The dark sector shall
be considered in the unified dark matter model of
Refs. [35,36,43]. From the full SM Lagrangian, the terms
corresponding to the field that assume nontrivial values in
the solutions considered are the electroweak (GSW) and
dark sector Abelian gauge terms,

LG ¼ −
1

4
Wa

μνWμνa −
1

4
YμνYμν −

1

4
CμνCμν þ sin ε

2
CμνYμν;

ð1Þ

where W, Y, and C denote the visible sector non-Abelian,
Abelian, and the dark sector gauge field strengths,
expressed with their respective gauge vector potential as
Wa

μν ¼ ∂μWa
ν − ∂νWa

μ þ gεabcWb
μWc

ν, Yμν ¼ ∂μYν − ∂μYν,
and Cμν ¼ ∂μCν − ∂νCμ. The fields Wa

μ, Yμ, and Cμ are
referred to as visible SUð2Þ, Uð1Þ, and dark Uð1Þ gauge
fields. In the gauge field part of the Lagrangian, Eq. (1), ε is
the gauge-kinetic mixing [24,47]. Its sign is chosen in
agreement with Ref. [21] (and opposite to that of Ref. [44]).
Space-time (greek) indices assume values μ; ν ¼ 0;…; 3

whereas the internal [SUð2Þ] indices a, b, c ¼ 1, 2, 3. We
shall consider the metric ðþ;−;−;−Þ and εabc is the Levi-
Cività symbol.
The scalar sector of the theory consists of the electro-

weak and the dark Higgs scalars, coupled to their respective
gauge fields,

LS ¼ DμΦ†DμΦþ D̃μχ
�D̃μχ − V; ð2Þ

where Dμ and D̃μ denote the gauge covariant derivatives,
DμΦ ¼ ð∂μ −

ig
2
Wa

μτ
a − ig0

2
YμÞΦ and D̃μχ ¼ ð∂μ −

iĝ
2
CμÞχ,

† denotes adjoint (transposed complex conjugate) and �
complex conjugate, and τa are the Pauli matrices in internal
(isospin) space. The potential is

V ¼ λ1ðΦ†Φ − η21Þ2 þ λ2ðjχj2 − η22Þ2
þ λ0ðΦ†Φ − η21Þðjχj2 − η22Þ: ð3Þ

The Lagrangians (1) and (2) reflect the symmetries of the
model in a manifest form. On the other hand, the particle
content of the theory is better expressed with the so-called
physical fields, for which, see Sec. II A.

A. Particle content and physical parameters

Let us briefly consider the particle content and the para-
meters of the theory, following the analysis in Ref. [44].
To identify physical degrees of freedom, one needs to

introduce new fields with the transformation
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0
B@

Yμ

W3
μ

Cμ

1
CA ¼ M

0
B@

Aμ

Zμ

Xμ

1
CA; ð4Þ

where the (nonunitary) matrix of the transformation is

M ¼

0
B@

cW −sWcζ sWsζ þ tεcζ
sW cWcζ −cWsζ
0 sζ=cε cζ=cε

1
CA; ð5Þ

where cW ¼ cos θW , sw ¼ sin θW , and where θW is the
Weinberg angle, tan θW ¼ g0=g, cε ¼ cos ε, sε ¼ sin ε,
tε ¼ sε=cε, cζ ¼ cos ζ, and sζ ¼ sin ζ. The angle ζ is
defined by

tan 2ζ ¼ 2 sin θW sin ε cos ε
R2 − 1þ sin2 εð1þ sin2 θWÞ

; ð6Þ

and R ¼ ĝη2=ðḡη1Þ and ḡ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
.

In what follows, we shall denote the middle line of the
matrix M by α⃗, i.e.,

W3
μ ¼ α1Aμ þ α2Zμ þ α3Xμ;

α1 ¼ sw; α2 ¼ cWcζ; α3 ¼ −cWsζ: ð7Þ

In the new variables, the gauge Lagrangian can be recast as

LG ¼ −
1

4
FμνFμν −

1

4
ZμνZμν −

1

4
XμνXμν −

1

4
W̃μνW̃μν

− gW̃3
μνWμ1Wν2 − gW̃1

μνWμ2Wν3 þ gW̃2
μνWμ1Wν3

−
g2

4
ðWa

μWμaÞ2 − g2

2
W3

μWμ3Wa
νWνa

þ g2

4
Wa

μWa
νWμbWνb −

g2

2
W3

μW3
νWμaWνa; ð8Þ

where in Eq. (8) a ¼ 1, 2 and W̃a
μν ¼ ∂μWa

ν − ∂νWa
μ (i.e.,

the linear part of the field strength tensor). Equation (8)
shows that the transformation (4) results in decoupled
kinetic and mass terms for the new vector fields Aμ, Zμ,
and Xμ.
In the scalar sector, the particles correspond to amplitude

fluctuations of the Higgs field assuming a vacuum expect-
ation value (ϕ2) and, similarly, amplitude fluctuations of the
dark scalar χ [44]. Here we convert the formulas of
Ref. [44] to our notations for convenience. The scalar
mass matrix in the basis of the fields h ¼ ffiffiffi

2
p ðjϕ1j − η1Þ

and s ¼ ffiffiffi
2

p ðjχj − η2Þ in the Lagrangian (2) is

�
m2

H 2λ0η1η2
2λ0η1η2 m2

S

�
;

where m2
H ¼ 4λ1η

2
1 and m2

S ¼ 4λ2η
2
2. The physical fields

ϕH, ϕS are rotated at an angle ϕs,

�
h

s

�
¼
�

cos θs sin θs
− sin θs cos θs

��
ϕH

ϕS

�
ð9Þ

and the scalar mixing angle is given as

tan 2θs ¼
4λ0η1η2

4λ2η
2
2 − 4λ1η

2
1

: ð10Þ

The corresponding eigenvalues (squared scalar masses) are

M2
H ¼ m2

H − ðm2
S −m2

HÞ
sin2 θs
cos 2θs

;

M2
S ¼ m2

S þ ðm2
S −m2

HÞ
sin2 θs
cos 2θs

: ð11Þ

For more details, see Ref. [44].
The couplings of the physical fields are calculated in

Ref. [44]; which are reproduced here with the replacement
ε → −ε (for agreement with Ref. [21]):

gAϕþ ¼ e;

gZϕþ ¼ cζ
e
2

�
1

tW
− tW

�
þ sζ

e
2

tε
cW

;

gXϕþ ¼ cζ
e
2

tε
cW

− sζ
e
2

�
1

tW
− tW

�
;

gAH ¼ 0;

gZH ¼ −cζ
e
2

1

sWcW
þ sζ

e
2

tε
cW

;

gXH ¼ cζ
e
2

tε
cW

þ sζ
e
2

1

sWcW
;

gAS ¼ 0;

gZS ¼ sζ
ĝ
2

1

cε
;

gXS ¼ cζ
ĝ
2

1

cε
: ð12Þ

The gauge covariant derivatives of the scalars expressed
with the physical gauge fields and the couplings from
Eq. (12) are

DμΦ ¼
 ð∂μ − igAϕþAμ − igZϕþZμ − igXϕþXμÞϕ1 −

igffiffi
2

p Wþ
μ ϕ2

ð∂μ − igAHAμ − igZHZμ − igXHXμÞϕ2 −
igffiffi
2

p W−
μ ϕ1

!
; ð13Þ
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where W�
μ ¼ 1ffiffi

2
p ðW1

μ ∓ iW2
μÞ, gAH ¼ 0, and

D̃μχ ¼ ð∂μ − igASAμ − igZSZμ − igXSXμÞχ: ð14Þ

Note, that gAS ¼ 0, i.e., the dark scalar is indeed dark.
The vector boson masses are

M2
W ¼ g2η21

2
; M2

Z ¼ 2g2ZHη
2
1 þ 2g2ZSη

2
2;

M2
X ¼ 2g2XHη

2
1 þ 2g2XSη

2
2: ð15Þ

For more details, see Ref. [44].
The g → 0 (θW → π=2) limit is referred to as the semi-

local limit; in particular, that limit of the model is the
semilocal-dark model. In this limit, the non-Abelian gauge
field decouples, and the SUð2Þ symmetry becomes global.

B. Values of model parameters considered

The parameters of the visible sector, the electroweak
parameters, have been determined to a high accuracy [40].
In what follows, for a solution to be considered physical,
setting electroweak parameters (W and Z masses, electric
charge, and Weinberg angle) to their physical value is
considered necessary.
The dark sector gauge MX and scalar MS masses are

experimentally bound to be larger than their visible
sector counterparts to avoid abundant dark decays, unless
the coupling between the visible and dark sectors is
extremely weak. The scalar mixing angle θs is largely
unconstrained as long as the dark sector particles are heavy
enough [35,36].
For observational bounds on the model parameters, see

Ref. [41] for those on the GKM, Ref. [42] for those on the
scalar sector, and Ref. [40] for a review. For our purposes,
it shall be sufficient to know that forMX < 200 GeV, jεj ≲
0.03 (and for a large part of the dark gauge boson mass
range, jεj ≲ 10−3), and that jθsj < π=2. For heavy dark
sector particles, the model is largely unconstrained [44].

C. Rescaling

For simplicity sake, we shall also rescale the coordinates
and the fields as Φ → η1Φ, χ → η1χ and xμ → xμ=ðgZHη1Þ.
All gauge couplings will be rescaled by a factor of gZH,
i.e., one shall perform the replacement η1 → 1, η2 → η2s ¼
η2=η1, gZH → 1, gXH → gXHs ¼ gXH=gZH, etc. We shall
introduce the notation β1;2 ¼ 2λ1;2=g2ZH and β0 ¼ λ0=g2ZH,
the analogues of the Ginzburg-Landau parameter β ¼
MH=MZ in the GSW model. When no confusion is
possible, the subscript “s” shall be dropped.
The rescaled parameters β1;2 and β0 (coefficients of the

quartic terms in the rescaled potential) play somewhat
analogous roles in the radial equations of cylindrically

symmetric strings as the ratio of the scalar and the vector
masses in the Abelian Higgs and semilocal models, and the
ratio of the Higgs and Z-boson masses in the GSW model,
β ¼ MH=MZ, which we shall refer to as the Ginzburg-
Landau parameter. For the coupled electroweak-dark sec-
tor, no such simple relation between the mass ratio and the
rescaled potential parameters is known.

III. ELECTROWEAK-DARK STRINGS

The ANO string [10,11] is a well-known cylindrically
symmetric solution of the Abelian Higgs model, in which
the scalar field has a winding number n, the gauge field has
a nonvanishing radial component, and the resulting string
or flux tube contains n flux quanta.
The ANO string can be embedded in the GSW theory by

assuming that the component of the Higgs field having
nonzero expectation value in the vacuum has a winding,
and the flux is in the Z field. Using cylindrical coordinates
r, ϑ, z, the ansatz

ϕ2 ¼ fðrÞeinϑ; Zϑ ¼ nzðrÞ; ð16Þ

describes a cylindrically symmetric vortex string (or flux
tube) centred on the z axis, with n flux quanta [2,3,9].
The unified dark matter model [35,36] extends the

GSW model with a dark sector, containing a Higgs
field χ and an additional Uð1Þ gauge field. The ansatz
(16) is accordingly extended, preserving cylindrical
symmetry, as

χ ¼ fdðrÞ; Xϑ ¼ nxðrÞ; ð17Þ

where the fields Z and X are the physical fields obtained
from a combination of Y and X.

A. Radial equations of the vortex solutions

Plugging in the ansatz, (16) and (17), into the field
equations yields the radial equations,

1

r
ðrf0Þ0 ¼f

�
n2ð1−z−gXHxÞ2

r2
þβ1ðf2−1Þþβ0ðf2d−η22Þ

�
;

1

r
ðrf0dÞ0 ¼fd

�
n2ðgZSz−gXSxÞ2

r2
þβ2ðf2d−η22Þþβ0ðf2−1Þ

�
;

rðz0=rÞ0 ¼2f2ðzþgXHx−1Þþ2gZSf2dðgZSzþgXSxÞ;
rðx0=rÞ0 ¼2gXHf2ðzþgXHx−1Þþ2gXSf2dðgZSzþgXSxÞ;

ð18Þ

where a prime on the radial functions (but not on the
constant β0) denotes d=dr and r denotes the (rescaled)
radial coordinate. Note that without the dark sector,

PÉTER FORGÁCS and ÁRPÁD LUKÁCS PHYS. REV. D 102, 023009 (2020)

023009-4



one would get the ANO vortex [10,11] embedded in the
Z field.
The energy density of a field configuration within the

ansatz, (16) and (17) is

E ¼ n2

2

��
z0

r

�
2

þ
�
x0

r

�
2
�
þ ðf0Þ2 þ ðf0dÞ2

þ n2ð1 − z − gXHxÞ2f2
r2

þ n2ðgZSz − gXSxÞ2f2d
r2

þ V;

ð19Þ

where V ¼ β1ðf2 − 1Þ2=2þ β2ðf2d − η22Þ2=2þ β0ðf2 − 1Þ×
ðf2d − η22Þ with βi ¼ 2λi=g2ZH and β0 ¼ λ0=g2ZH is the
(rescaled) potential. The energy within a given radius
is EðrÞ ¼ 2π

R
r
0 Erdr.

B. Electroweak, semilocal, and dark strings

In the Abelian Higgs model, ANO strings are topo-
logically stable. Note that for embeddings of ANO
strings to an enlarged model, new instabilities may arise
which excite the additional fields, therefore embedded
ANO vortices, may become unstable. Semilocal strings
given with ansatz (16) in the semilocal model correspond
to embedded ANO strings. Their stability depends now
on the Ginzburg-Landau parameter. For β < 1, the
simplest n ¼ 1 semilocal strings are stable, and become
unstable for β > 1 [9,19,20]. The mechanism of the
instability is that a condensate of the other Higgs
component ϕ1 forms in the core of the string and
eventually dilutes the flux.
In the GSW model, strings within the ansatz (16) are

referred to as electroweak strings or Z strings. Their
stability depends on the parameters of the model. They
are stable for β ¼ MH=MZ < 1 and for values of the
Weinberg angle θW close to π=2; i.e., they are only stable
close to the semilocal limit [14–17]. The mechanism of the
instability is unwinding through the condensation of Higgs
and W bosons in the string core.
In the model outlined above and its semilocal

(θW → π=2) limit, string solutions with winding in the
dark sector have been considered in Refs. [43,49–51].
These strings are topologically stable. Their energy scale is
determined by the scale of the symmetry breaking in the
dark sector, which is presently to a large extent uncon-
strained by measurement.
The scale of strings in the visible sector, within the ansatz

(16) and (17), is the electroweak scale. This is the main
motivation behind the search for mechanisms stabilizing
electroweak strings. Besides, as the mechanism behind
the instability is the formation of condensates in the string
core, the idea arises naturally to look for other fields which
may fill up the core, thus preventing the instability. In

Ref. [21], this idea has been considered in the semilocal
limit of the model considered here, i.e., in the semilocal
model extended with a scalar and another Uð1Þ gauge field
in the dark sector. There, two cases have been considered,
depending on whether only the visible Higgs or both
the visible and the dark scalar field obtain a vacuum
expectation value. Relevant to the dark matter model of
Refs. [35,36] is the latter case. In both cases it has been
found in Ref. [21] that the stabilizing effect is signifi-
cant, semilocal-dark strings may exist for β significantly
above unity.
The semilocal-dark strings of Ref. [21] in the case with

no GKMmay be considered embeddings of string solutions
in nonsymmetric extended Abelian Higgs models consid-
ered in Refs. [57,58]. Also, in the case where only the
visible sector scalar obtains a vacuum expectation value,
semilocal and semilocal-dark strings may coexist, and their
stability is considered separately. The energy of semilocal-
dark strings is lower, and they are stable for a larger set of
parameters.
Here, we consider electroweak-dark strings, i.e., solu-

tions within the ansatz, (16) and (17), within the full GSW
model coupled to a dark sector containing an Uð1Þ gauge
field and a scalar. The resulting radial equations are given in
Sect. III A. The solutions are found using the shooting to a
fitting point method [62], and an example is displayed in
Fig. 1. SM parameters are set to physical values, and dark
sector parameters are set to such values, that they are
heavier than their visible counterparts. In addition to the

FIG. 1. Radial profile functions of an electroweak-dark string.
The visible sector parameters are set to their physical values,
MZ¼80.4GeV,MW ¼91.2GeV,MH ¼125.1GeV, e ¼ 0.3086,
the dark sector parameters are MS ¼ 132.8 GeV, gXS ¼ 0.3086,
and the scalar mixing angle is θs ¼ 0.51. The dark sector charge
of the Higgs is gXϕþ ¼ 0 (no GKM, ε ¼ 0). For these parameter
values, xðrÞ ¼ 0.
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profile functions f, fd, z, and x, the energy within a radius
is shown. (For SM parameter values, see Ref. [40].)

IV. STABILITY ANALYSIS

We analyze the stability of the electroweak-dark strings
by linearizing the field equations around them. The linear
perturbations added to the fields are denoted by

Ψ ¼ ðδAμ; δW�
μ ; δZμ; δXμ; δϕa; δχÞ: ð20Þ

Since the string is electrically neutral, the electromagnetic
field perturbations δAμ decouple and satisfy a free wave
equation, i.e., they play no role in the stability of the string.
The string possesses a global direction in internal space
[ϕ1 ¼ 0 in Eqs. (16) and (17)], which results in further
decouplings. It turns out that there are four decoupled
blocks:

ðiÞΨi ¼ ðδAμÞ; ðiiiÞΨiii ¼ ðδW−
μ ; δϕ�

1Þ;
ðiiÞΨii ¼ ðδWþ

μ ; δϕ1Þ;
ðivÞΨiv ¼ ðδZμ; δXμ; δϕ2; δϕ�

2; δχ; δχ
�Þ; ð21Þ

each block satisfying an equation of the form

DIΨI ¼ 0; I ¼ i;…iv; ð22Þ

where DI is a matrix with differential operators in the
diagonal and coupling terms in the remaining elements. Of
the four blocks, (iii) is the conjugate of (ii) and, therefore,
admits the same (real) eigenvalues.
To ensure that the linearized equations (22) have proper-

ties suitable for our numerical solution procedure, we find
that an appropriate gauge choice for the perturbations is the
background field gauge [17,63], which is defined as

F1 ¼ ∂μδWμþ − igW3
μδWμþ −

igffiffiffi
2

p ϕ�
2δϕ1 ¼ 0;

F2 ¼ ∂μδWμ− þ igW3
μδWμ− þ igffiffiffi

2
p ϕ2δϕ

�
1 ¼ 0;

F3 ¼ ∂μδZμ þ igZHðϕ2δϕ
�
2 − ϕ�

2δϕ2Þ
þ igZSðχδχ� − χ�δχÞ ¼ 0;

F4 ¼ ∂μδXμ þ igXHðϕ2δϕ
�
2 − ϕ�

2δϕ2Þ
þ igXSðχδχ� − χ�δχÞ ¼ 0: ð23Þ

Gauge conditions (23) are imposed by adding the gauge
fixing terms

P
i jFij2=2 to the second order terms of the

Lagrangian. In the fluctuation equations, they cancel the
first order derivative terms, and the time derivatives are
readily isolated [17,63]. (Note, that some gauge degrees of
freedom still remain, satisfying “ghost” equations, which
all have positive eigenvalues.)

We shall now follow the treatment of
Refs. [17,21,57,58,63,64] to bring the perturbation equa-
tions to a form suitable for numerical solutions. For more
details, as well as for the full set of linearized equations, we
refer to Appendix A.
Because of the time- and z-coordinate independence of

the string solution, the corresponding fluctuation equations
of the gauge fields decouple further. The equations of the
temporal and the z components of the gauge fields do not
contribute to the instabilities (see Appendix A for details).
This t, z independence of the background solution can be

further exploited by separating harmonic components of
the perturbations, i.e., assuming a time dependence of the
form ΨI ¼ exp½iðΩt − kzÞ�ΦI , transforming Eq. (22) into

DIΦI ¼ ðΩ2 − k2ÞΦI; ð24Þ

where an eigenvalue Ω2 < 0 signals instability, and DI is a
matrix of differential operators (the spatial part of DI). The
lowest eigenvalue corresponds to k ¼ 0, therefore, in what
follows, this k ¼ 0 is considered.
Because of the cylindrical symmetry of the string,

Eq. (24) can be reduced to ordinary differential equations
by the Fourier transformation in the angular coordinate ϑ,
reducing Eq. (24) to

MI
lΦI

l ¼ Ω2ΦI
l: ð25Þ

The known instabilities of the electroweak strings are in
the sector of the perturbations consisting of the fields Wþ
and δϕ1 (or equivalently W− and δϕ�

1) [2,3,17]. The
remaining sectors are deformations of their counterparts
in the case of ANO strings, and thus not expected to contain
further instabilities (as the corresponding blocks for the
ANO string have large positive eigenvalues).
In sector (ii) Ψii ¼ ðδWþ

μ ; δϕ1Þ. The Fourier transforma-
tion singles out a mode of the form

δϕ1 ¼ s1;lðrÞeilϑeiΩt;
δWþ

þ ¼ iwþ;lðrÞeiðl−1−nÞϑeiΩt;
δWþ

− ¼ −iw−;lðrÞeiðlþ1−nÞϑeiΩt; ð26Þ

where δW�þ ¼ expð−iϑÞðδW�
r − iδW�

ϑ =rÞ, δW�
− ¼ δW��þ ,

i.e., Ψl ¼ ðs1;l; wþ;l; w�
−;lÞ. The matrix operator of

Eq. (25) in this block is

Ml ¼

0
B@

Dl;1 B1þ;l B1−;l

B1þ;l Dþ;l 0

B1−;l 0 D−;l

1
CA; ð27Þ

where
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Dl;1 ¼ −
1

r
d
dr

r
d
dr

þ
�½nðgZϕþzþ gXϕþxÞ − l�2

r2
þ β1ðf2 − 1Þ þ β0ðf2d − η22Þ þ

g2

2
f2
�
;

Dþ;l ¼ −
1

r
d
dr

r
d
dr

þ
�½l − 1 − nð1þ gðα2zþ α3xÞÞ�2

r2
þ g2

2
f2 − 2

gn
r
ðα2z0 þ α3x0Þ

�
;

D−;l ¼ −
1

r
d
dr

r
d
dr

þ
�½lþ 1 − nð1þ gðα2zþ α3xÞÞ�2

r2
þ g2

2
f2 þ 2

gn
r
ðα2z0 þ α3x0Þ

�
; ð28Þ

and

B1þ;l ¼ −g
�
f0 −

nf
r
ð1 − gZHz − gXHxÞ

�
;

B1−;l ¼ g

�
f0 þ nf

r
ð1 − gZHz − gXHxÞ

�
: ð29Þ

The negative eigenvalue for the unit flux n ¼ 1 string
considered here is found in the l ¼ 0 sector.
In Eq. (27) in the semilocal limit, the components

decouple, and for the scalar component, the stability
equation of semilocal strings is recovered. The dark sector
affects the relevant sector of the perturbation equations
through the appearance of the field fd in the scalar, and x in
the W components, and through the deformation of the
background solution in the functions f and z.
The radial equations (25) have been solved with the

shooting to a fitting point method [62], as were the radial
equations of the background vortex, Eq. (18). Our numeri-
cal methods were found to be stable for MS ∼MH.
The details of the calculations in this section are

relegated to Appendix A 1.

A. Domain of stability

As a validation of our code we have reproduced the
domain of the stability of Z strings in the Salam-Weinberg
model (electroweak strings) and compared it to the data of
Ref. [17]. In our model, ε ¼ θs ¼ 0 corresponds to the case
of the electroweak strings (with the dark sector decoupled).
Our method was as follows: we set MZ, MW , and e to

their physical values [40], and initially, MH as well, and
M2

S ¼ M2
H � 2000 GeV2. Then we first lowered MH and

MS keeping MS=MH fixed, and then approached the

semilocal limit, i.e., increased θW towards π=2 while
keeping ḡ, ĝ, ε, and the scalar potential parameters fixed,
until Ω2 ¼ 0 was reached (i.e., as long as there was a
negative eigenvalue).
Our results for the case of no GKM are summarized in

Table I, with data from Ref. [17] added for comparison.1

There is an excellent agreement between our data and that
of Ref. [17].
The stability of electroweak strings is restricted to β1 < 1

(i.e., a Higgs mass smaller than the Z-boson mass) and
close to the semilocal limit, θW → π=2.
In Fig. 2, the effect of the Higgs-portal coupling is

shown. The motivation for this was the results for semi-
local-dark strings in Ref. [21]. We have found that the
Higgs-portal coupling indeed has a stabilizing effect, how-
ever, in the experimentally undesirable parameter range,
when the dark scalar is lighter than the Higgs. In the MS >
MH case, we actually found that adding the dark sector
lowers the (already negative) eigenvalue, and narrows the
domain of stability on, e.g., the MH=MZ—sin2 θW plane.
For an explanation, let us consider the potential for the

perturbation function δϕ1, which is most relevant in the
semilocal limit [see Eq. (28)],

U ¼ β1ðf2 − 1Þ þ β0ðf2d − η22sÞ − gf2=2; ð30Þ
and estimate its value at the origin. Here fð0Þ ¼ 0, and we
approximate the value of fd such that it minimizes the

TABLE I. Some points on the boundary of the domain of stability; for comparison, we also show data read off of
Fig. 1 of Ref. [17]. The other parameters are ε ¼ 0 and θs ¼ 0.75 and 0 (electroweak), and ḡ ¼ 0.7416, η1 ¼
173.4 GeV (physical values), ĝ ¼ 0.6172, η2 ¼ 217.4 GeV.
ffiffiffiffiffi
β1

p
sin2 θW Ref. [17] Electroweak MS=MH ¼ 0.9339 MS=MH ¼ 1.0620

1 1.0 0.9996 0.9995 0.9996
0.9 0.9910 0.9933 0.9933 0.9933
0.8 0.9836 0.9850 0.9849 0.9849
0.7 0.9756 0.9758 0.9758 0.9758
0.6 0.9666 0.9664 0.9664 0.9664
0.5 0.9576 0.9568 0.9568 0.9568
0.4 0.9486 0.9472 0.9472 0.9472

1The data of Ref. [17] has been reconstructed from its
Fig. 1, using the data points in the postscript version of the
figure in the arXiv.org version of the paper, [65], and trans-
forming back to physical quantities from postscript coordinates,
as the original data was not available any more.
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potential V of the theory when f ¼ 0, with f2d ≈ β0=
β2 þ η22s, yielding U ≈ −β1 þ ðβ0Þ2=β2. Expressing this
with μ2S;H ¼ M2

S;H=ð2g2ZHη21Þ yields

Uð0Þ ≈ 2μ2H½μ2Hð1 − cos 2θsÞ − μ2S�
μ2Sð1þ cos 2θsÞ − μ2Hð1 − cos 2θsÞ

: ð31Þ

In the case of MH < MS, and θs close to π=2, this is a
negative contribution.
It is found, that, quite remarkably, if the boundary curve

of the domain of stability is plotted on the
ffiffiffiffiffi
β1

p − sin2θW
plane (Fig. 3), the curves for different values of MS=MH
coincide. We have verified this coincidence numerically for
0.93 ≤ MS=MH ≤ 1.06 and 0 < θs ≤ 0.75. The differences
between the value of

ffiffiffiffiffi
β1

p
corresponding to the onset of

instability between the cases considered is comparable to
the numerical errors. The coincidence does not hold any
more for MS=MH ¼ 0.7852 (closer to MS=MH ¼ 0.5,
where h → SS dark decays would contradict measure-
ments, see Fig. 4). Because of this coincidence, in what
follows, when we consider the effects of other parameters,
and the Higgs and dark scalar masses are close enough, we
shall only plot one curve in this parametrization.
An explanation for the coincidence of the curves in Fig. 3

is that the principal role in the instability is played by W
condensation. This is the case for electroweak strings
(see Refs. [16,17] and Fig. 5). The dark sector part of
the background can be considered a perturbation for the
allowed (small) values of the couplings between the visible
and the dark sector. The allowed value of ε is already rather
small, and β2 appears directly in the equation for the upper
Higgs component, which is suppressed for θW < π=2: at
the semilocal limit, s1ð0Þ=w−ð0Þ ≈ 3 (and wþð0Þ≪w−ð0Þ),
and at physical parameters s1ð0Þ=w−ð0Þ ≈ 0.8, which, in
first order perturbation theory, would account for a sup-
pression of the dark sector effects by a factor of ∼0.07,
which makes plausible both the coincidence of the curves
in Fig. 3 and the suppression of the stabilization effect upon
leaving the semilocal limit.
In Table I, we have collected some numerical data for

reproducibility, and, for comparison, we have added the
data points read off Fig. 1 of Ref. [17].
Another interaction, which is known to have a stabilizing

effect in the semilocal case is the GKM (see Ref. [21],
where it is shown to lower the energy of semilocal-dark
strings). Figure 6 shows the effect of the GKM on the
domain of stability. We have found that at the semilocal
limit, the enhancement in the value of the quartic potential
coefficient β1 corresponding to zero eigenvalue (the upper
edge of the domain of stability) is significant for a large
GKM; however, this is rapidly reduced by tuning θW away
from π=2. Also, experimental bounds do not allow the

FIG. 3. Same as Fig. 2, parametrized with
ffiffiffiffiffi
β1

p
and sin2 θW . FIG. 4. Same as Fig. 3, with a lighter dark scalar.

FIG. 2. The boundary of the domain of stability, for ε ¼ 0,
ḡ ¼ 0.7416, ĝ ¼ 0.6172, η1 ¼ 173.4 GeV, η2 ¼ 217.4 GeV, and
θs ¼ 0.75 compared to that of electroweak strings (θs ¼ 0). The
domain of stability is as indicated on the figure.
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GKM to be large unless the dark gauge boson is heavy. For
values of ε consistent with experiment (Fig. 6 is for a value
of ε that is already at the limit), GKM results merely in an
Oðε2Þ correction.
In Fig. 7, the effect of the mass of the dark gauge boson

is shown. The sensitivity to the dark gauge boson mass is in
contrast to the insensitivity in the case of stabilization by
the scalar potential (i.e., no GKM, Fig. 8).
In Fig. 9, the combined effect of the GKM ε and the

scalar mixing (for both the dark scalar lighter than the

Higgs, and slightly heavier) is considered. The stabilizing
effect is still restricted close to the semilocal limit.

B. The behavior of the eigenvalue

In order to assess the significance of the parameters,
we have chosen a typical point, MW ¼ 80.4 GeV,
MZ ¼ 91.2 GeV, e ¼ 0.3086,MH ¼ 125.1 GeV (physical
values), MX ¼ 94.87 GeV, MS ¼ 132.8 GeV, gXϕþ ¼ 0,
gXS ¼ 0.3086 and θs ¼ 0.75, and obtained the derivatives
of the eigenvalue with respect to the parameters. These are
collected in Table II. We have concluded that the param-
eters with the largest influence are MS and θs.

FIG. 6. The effect of gauge-kinetic mixing on vortex stability.
The starting parameters (MW , MZ, e, MH physical and gXS ¼ e,
M2

S ¼ M2
H þ 2000 GeV2, θs ¼ 0,MX ¼ 94.87 GeV and gXϕþ ¼

−0.001 and -0.0619) yield the parameters ḡ ¼ 0.7416, ĝ ¼
0.6172, ε ¼ 7.37 × 10−5, η1 ¼ 173.9 GeV, η2 ¼ 217.4 GeV
and ḡ ¼ 0.7362, ĝ ¼ 0.6406, ε ¼ 0.0446, η1 ¼ 175.7 GeV,
η2 ¼ 208.6 GeV.

FIG. 7. The effect of different dark gauge boson masses on the
stability in the case of large GKM. The starting parameters are
MW , MZ, e, MH physical, M2

S ¼ M2
H þ 2000 GeV2, θs ¼ 0, and

gXϕþ ¼ 0 (electroweak), respectively, gXϕþ ¼ −0.052 and differ-
ent values of MX.

(a)

FIG. 5. The W and ϕ1 profile functions [w�ðrÞ and sðrÞ, respectively] of the unstable eigenfunction (a) for physical parameters and
(b) close to the semilocal limit. In both cases, θs ¼ 0, gXϕþ ¼ 0, MX ¼ 94.87 GeV, MS ¼ 132.8 GeV.
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We have next varied MS > MH (so that dark Higgs
decays do not exclude the considered parameter values) and
θs, in the range M2

H ≤ M2
S ≤ 2M2

H and 0 ≤ θs ≤ 1.5. We
have found no stable solutions. The eigenvalue seems to
depend most strongly on the parameters M2

S and θs.
In Fig. 10 we present numerical data of the eigenvalue

Ω2 as a function of the two parameters that seem most
relevant (i.e., they parametrize the scalar sector most
directly), MS and θs. Note, that the eigenvalue is always
negative (signalling instability), and becomes more neg-
ative with larger values of the dark scalar mass MS.
In Fig. 11 a typical Ω2 −MS curve is shown for MZ,

MW , e and MH physical, MX ¼ 94.868 GeV, and gXS ¼
e ¼ 0.3086, θs ¼ 0.75, gXϕþ ¼ −0.002, and −0.032. The
eigenvalues are clearly negative and descending as a func-

tion ofMS. Similarly, Fig. 12 shows a typicalΩ2 − θs curve
in the parameter range studied. The curves in Fig. 11 and in
Fig. 12 are cross sections of the surfaces in Fig. 10. In
Fig. 12, we have added an additional curve for MS < MH.
One interesting feature of Fig. 12 is that the eigenvalue has
a minimum forMS > MH (and maximum forMS < MH) at
θs ¼ 0 (and thus also for β0 ¼ 0, λ0 ¼ 0), i.e., for small
values of the GKM its sign is not important.
The data indicate clearly that in the physically relevant

parameter range where the dark gauge boson mass is
MX ≳MZ, the scalar mass is MH=2 < MS < MH, the
scalar mixing angle is jθsj≲ 1, and the dark charge is
gXS ∼ e, no stable solutions exist. In this parameter range,
we have found that a larger dark scalar mass corresponds to
stronger instability. On the other hand, for MS < MH, the
addition of the dark sector (nonzero scalar mixing angle θs,
and, similarly, GKM ε) results in stability properties of

FIG. 9. The combined effects of the GKM and the scalar
mixing; parameters as in Fig. 6, gXϕþ ¼ 0.0619

TABLE II. Derivatives of the eigenvalue of the stability
equation (25) with respect to model parameters at MW ¼
80.4 GeV, MZ ¼ 91.2 GeV, e ¼ 0.3086, MH ¼ 125.1 GeV
(physical values), MX ¼ 94.87GeV, MS ¼ 132.8GeV, gXϕþ ¼ 0,
gXS ¼ 0.3086, and θs ¼ 0.75. Note that −Ω2 is the squared
growth rate corresponding to rescaled time or, equivalently,
jgZHη1Ωj is a growth rate in unscaled time. Here jgZHjη1 ¼
64.49 GeV.

Parameter Derivative

gXϕþ 0 (parabolic maximum)
MX −9.02 × 10−8 GeV−1

gXS 2.77 × 10−5

MS −5.57 × 10−3 GeV−1

θs −9.87 × 10−2

FIG. 10. The eigenvalue of the stability equation (25) as a
function of MS and θs, at MZ, MW , e and MH physical,
MX ¼ 94.87 GeV, and gXS ¼ e ¼ 0.3086, gXϕþ ¼ −0.002 and
−0.032.

FIG. 8. The effect of the dark gauge boson mass in the case of
no GKM, gXϕþ ¼ 0. The starting parameters areMW ,MZ, e,MH

physical, M2
S ¼ M2

H þ 2000 GeV2, θs ¼ 0, and gXϕþ ¼ 0.
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electroweak strings (although still not reaching the physical
parameter values) that are significantly better.
The fact that the stabilizing effects are rather strong in

the semilocal limit, and much weaker for smaller values of
the Weinberg angle, is explained by the nature of the
instability. In the semilocal model, the instability is due to
the possibility of unwinding in the scalar (Φ) sector
[19,20]; however, in the full non-Abelian theory, the
instability also involves the condensation of W bosons
in the string core [14–17] (see also Fig. 5). In the present
model, the dark sector only couples to the Higgs scalar
and the weak hypercharge Uð1Þ fields, and the dark part of
the background vortex does not influence the W fields
other than slightly distorting the visible sector part of the
background.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a study of electro-
weak-dark strings, complementing those of dark strings
in Higgs-portal models [43–46,49,50]. We have demon-
strated the main properties of the equations describing
these strings and their numerical solutions. We have
shown that these strings exists at the well-known scale of
electroweak strings, in contrast to the unknown scale of
dark strings.
We have also examined the stability of the electroweak-

dark strings. Close to the semilocal limit, we have dem-
onstrated that the stabilizing effect of the dark sector found
in the semilocal case in Ref. [21], persists in the electro-
weak-dark case, i.e., the stability of electroweak strings is
enhanced toMH=MZ > 1; however, this happens for values
of the parameters of the model excluded by experimental
bounds: for large gauge-kinetic mixing ε with the light dark
sector Abelian gauge boson (MX ≲MZ) or large scalar
mixing (Higgs-portal coupling) and light dark scalar
MS < MH. For MS > MH, we have considered the param-
eter range experimentally allowed and found instabilities.
Complemented with the fact that in the limit MS → ∞, the
instabilities in the electroweak case are recovered, one can
conclude that in the model considered, there is no stabi-
lization due to the interaction with dark sector fields.
The properties of the eigenfunction of the linearized

equation corresponding to the instability sheds light on the
reasons why the stabilizing effects do not persist to lower
values of the Weinberg angle. For those values, the
components corresponding to the W fields are large, the
mechanism of the instability is W condensation, and
the couplings considered here affect primarily the Higgs
and the Z fields.
In future studies, the analysis may be supplemented by

considering fermionic fields. In the electroweak case, the
topological consequences of fermionic zero modes have
been considered in Refs. [26–30], suggesting that an
interplay of fermionic modes and the deformations corre-
sponding to the unstable modes results in new, stable
electroweak strings. The effect of the Dirac sea has also
been considered for electroweak strings; Ref. [66] finds
instabilities due to light fields, which may be stabilized by
filled fermionic states, whereas Refs. [31,32] find stabili-
zation due to heavy fermions. Another line of research may
be the consideration of models with couplings to the W
fields. It should be emphasized, however, that LEP electro-
weak measurements put stringent bounds on not-too-heavy
fields coupled to the electroweak model.
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FIG. 12. A typical Ω2–θs curves at MZ, MW , e and MH
physical, MX ¼ 94.868 GeV, and gXS ¼ e¼ 0.3086, θs ¼ 0.75,
gXϕþ ¼ −0.002, and −0.032.

FIG. 11. Typical Ω2–MS curves at MZ, MW , e and MH
physical, MX ¼ 94.868 GeV, and gXS ¼ e ¼ 0.3086, θs ¼
0.75, gXϕþ ¼ −0.002, and −0.032.
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APPENDIX A: DETAILS OF THE CALCULATIONS

To obtain the solutions and assess their stability, we start with the field equations derived from the gauge and scalar
Lagrangians (8) and (2),

DμDμΦ ¼ −2λ1ðΦ†Φ − η21ÞΦ − λ0ðχ�χ − η22ÞΦ;

D̃μD̃μχ ¼ −2λ2ðχ�χ − η22Þχ − λ0ðΦ†Φ − η21Þχ;
∂μFμν ¼ Jνel þ Jνel;g − gα1∂μðWμ1Wν2 −Wν1Wμ2Þ;
∂μZμν ¼ JνZ þ JνZ;g − gα2∂μðWμ1Wν2 −Wν1Wμ2Þ;
∂μXμν ¼ JνX þ JνX;g − gα3∂μðWμ1Wν2 −Wν1Wμ2Þ;

∂μWμνa ¼ JνaW þ JνaW;g; ðA1Þ

where Wμνa ¼ W̃μνa þ gεabðWμbWν3 −WνbWμ3Þ, εab is antisymmetric and ε12 ¼ 1, the Abelian currents are given by

Jνel ¼ igAϕ1ððDνΦÞ†1ϕ1 − ϕ�
1ðDνΦÞ1Þ;

Jνel;g ¼ gα1W̃μν1W2
μ − gα1W̃μν2W1

μ þ g2α1Wa
μWμaWν3 − g2α1W3

μWμaWνa;

JνZ ¼ igZϕaððDνΦÞ†aϕa − ϕ�
aðDνΦÞaÞ þ igZSððD̃νχÞ�χ − χ�ðD̃νχÞÞ;

JνZ;g ¼ gα2W̃μν1W2
μ − gα2W̃μν2W1

μ þ g2α2Wa
μWμaWν3 − g2α2W3

μWμaWνa;

JνX ¼ igXϕaððDνΦÞ†aϕa − ϕ�
aðDνΦÞaÞ þ igXSððD̃νχÞ�χ − χ�ðD̃νχÞÞ;

JνX;g ¼ gα3W̃μν1W2
μ − gα3W̃μν2W1

μ þ g2α3Wa
μWμaWν3 − g2α3W3

μWμaWνa; ðA2Þ

and the non-Abelian one as

JνaW ¼ ig
2
ðDνΦ†τaΦ −Φ†τaDνΦÞ;

JνaW;g ¼ −gW̃μν3εabWb
μ − gεabW̃μνbW3

μ

− g2Wb
μWμbWνa þ g2W3

μWμ3Wνa

− g2Wb
μWνbWμa − g2W3νW3

μWμa; ðA3Þ

where τa denote the Pauli matrices. In Eqs. (A2) and (A3),
a ¼ 1, 2, and the notation gZH ¼ gXϕ2

, gXH ¼ gXϕ2
,

gZϕþ ¼ gXϕ1
, and gXϕþ ¼ gXϕ1

is used (see Ref. [44]).

1. Linearized equations

Let us add perturbations to the vortex solution,
Aμ → δAμ, Wa

μ → δWa
μ, Zμ → Zμ þ δZμ, Xμ → Xμ þ δXμ,

ϕa → ϕa þ δϕa, and χ → χ þ δχ. In the analysis of vortex
perturbations, we follow the lines of Refs. [17,63]; see also
Refs. [21,64,67,68].
To obtain simple linear equations, a gauge choice is of

utmost importance. In the Abelian sector, we shall use the
background field gauge of Refs. [63,69], whereas for the
non-Abelian gauge fields, we prescribe the background
field gauge used in Ref. [17]. This gauge choice, shown in
Eq. (23), cancels linear first order derivatives of the gauge
field perturbations, and in this way makes the separation of
time derivatives possible. Note that F2 ¼ F�

1.

Let Ψ ¼ ðδAμ; δWþ
μ ; δW−

μ ; δZμ; δXμ; δϕa; δϕ�
a; δχ; δχ�Þ

denote the components of the linear perturbations added
to the fields.
Because of the background solution possessing a global

direction in internal space (i.e., ϕ1 ¼ 0) in the gauge used
for the ansatz (16) and (17), the equations separate into
decoupled blocks: (i) Aμ, (ii) δWþ

μ and δϕ1, (iii) δW−
μ and

δϕ�
1, and (iv) δZμ, δXμ, δϕ2, δϕ�

2, δχ, and δχ
�, in each block

satisfying an equation of the form

DIΨI ¼ 0; I ¼ i;…; iv; ðA4Þ

where DI is a matrix with differential operators in the
diagonal and coupling terms in the remaining elements.
The field Aμ is completely decoupled, Ψi

μ ¼ δAμ, and

Di ¼ □; ðA5Þ
diagonal in the Lorentz index. As the electromagnetic field
is decoupled, it does not influence the stability of the string.
In what follows, it is not considered further.
In block (ii), the fields are Ψii ¼ ðδWþ

μ ; δϕ1Þ (i.e., Ψii

contains all Lorentz vector components of the δWþ field
and the upper scalar perturbations δϕ1), and the operator
acting on it is

Dii ¼
�Dii;μ

1;1;ν Dii
1;2;ν

Dii;μ
2;1 Dii

2;2

�
; ðA6Þ
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with the matrix elements

Dii;μ
1;1;ν ¼

�
□þ g2

�
1

2
ϕ�
2ϕ2 −W3

ρWρ3

�

− ig∂ρWρ3 − 2igWρ3∂ρ

�
δμν þ 2igW̃3μ

ν ;

Dii
1;2;ν ¼ −2igDνϕ2;

Dii;μ
2;1 ¼ −

ffiffiffi
2

p
igDμϕ2;

Dii
2;2 ¼ ð∂ρ − igZϕþZρ − igXϕþXρÞ2 þ β1ðjϕ2j2 − 1Þ

þ β0ðjχj2 − η22Þ þ
g2

2
jϕ2j2: ðA7Þ

This is the block that is known to yield the negative
eigenvalues corresponding to instabilities in the case of
the electroweak string. Block (iii) is merely the complex
conjugate of block (ii).

In block (iv), Ψiv ¼ ðδZμ; δXμ; δϕ2; δϕ�
2; δχ; δχ

�Þ, and
the operator acting on it is

Div ¼

0
BBBBBBBBBBBB@

Div;μ
1;1;ν Div;μ

1;2;ν Div
1;3;ν Div

1;4;ν Div
1;5;ν Div

1;6;ν

Div;μ
2;1;ν Div;μ

2;2;ν Div
2;3;ν Div

2;4;ν Div
2;5;ν Div

2;6;ν

Div;μ
3;1 Div;μ

3;2 Div
3;3 Div

3;4 Div
3;5 Div

3;6

Div;μ
4;1 Div;μ

4;2 Div
4;3 Div

4;4 Div
4;5 Div

4;6

Div;μ
5;1 Div;μ

5;2 Div
5;3 Div

5;4 Div
5;5 Div

5;6

Div;μ
6;1 Div;μ

6;2 Div
6;3 Div

6;4 Div
6;5 Div

6;6

1
CCCCCCCCCCCCA

;

ðA8Þ

with the matrix elements

Div;μ
1;1;ν ¼ ½□þ 2ðg2ZHϕ�

2ϕ2 þ g2ZSχ
�χÞ�δμν ; Div;μ

3;1 ¼ Div;μ�
4;1 ¼ 2igZHDμϕ2;

Div;μ
1;2;ν ¼ Div;μ

2;1;ν ¼ 2ðgXHjϕ2j2 þ gZSgXSjχj2Þδμν ; Div;μ
3;2 ¼ Div;μ�

4;2 ¼ 2igXHDμϕ2;

Div
1;3;ν ¼ Div�

1;4;ν ¼ −2igZHðDνϕ2Þ�; Div
3;4 ¼ Div�

4;3 ¼ ðβ1 − g2ZH − g2XHÞϕ2
2;

Div
1;5;ν ¼ Div�

1;6;ν ¼ −2igZSðD̃νχÞ�; Div
4;4 ¼ Div�

3;3;

Div;μ
2;2;ν ¼ ½□þ 2ðg2XHϕ�

2ϕ2 þ g2XSχ
�χÞ�δμν ; Div;μ

5;1 ¼ Div;μ�
6;1 ¼ −2igZSD̃μχ;

Div
2;3;ν ¼ Div�

2;4;ν ¼ −2igXHðDνϕ2Þ�; Div;μ
5;2 ¼ Div;μ�

6;2 ¼ −2igXSD̃μχ;

Div
2;5;ν ¼ Div�

2;6;ν ¼ −2igXSðD̃νχÞ�; Div
6;6 ¼ Div�

5;5;

ðA9Þ

and

Div
3;3 ¼ ð∂μ − igZHZμ − igXHXμÞ2 þ β1ð2jϕ2j2 − 1Þ þ β0ðjχj2 − η22Þ þ ðg2ZH þ g2XHÞjϕ2j2;

Div
3;5 ¼ Div

5;3 ¼ Div�
4;6 ¼ Div�

6;4 ¼ ðβ0 þ gZHgZS þ gXHgXSÞϕ2χ
�;

Div
3;6 ¼ Div

6;3 ¼ Div�
4;5 ¼ Div�

5;4 ¼ ðβ0 − gZHgZS − gXHgXSÞϕ2χ
�;

Div
5;5 ¼ ð∂ρ − igZSZρ − igXSXρÞ2 þ β2ð2jχj2 − η22Þ þ β0ðjϕ2j2 − 1Þ þ ðg2ZS þ g2XSÞjχj2: ðA10Þ

Note that in Eq. (A10), in the first bracketed term of Div
4;4, the square represents a contraction over the index ρ.

In order to bring Eq. (A4) to a form tractable numerically, we shall consider the Fourier transform in the coordinated
z and t, and note that Fourier components are decoupled, apart from ones corresponding to k and −k, Ω, and −Ω,

Ψðxi; z; tÞ ¼ Φðx;Ω; kÞ exp½iðΩt − kzÞ�; ðA11Þ

where i ¼ 1, 2, and the components of the Fourier transformed field are Φðx;Ω; kÞ ¼ ðδÃμ; δW̃þ
μ ; δW̃−

μ ; δZ̃μ; δX̃μ;
δϕ̃a; δϕ̃

�
a; δχ̃; δχ̃�Þ, depending on the variables ðr; ϑ;Ω; kÞ.

We also apply a partial wave decomposition in the angular coordinate ϑ to the components of Φðx;Ω; kÞ,

δϕ̃1 ¼ eilϑs1;lðrÞ; δϕ̃�
1 ¼ eilϑs�1;−lðrÞ;

δϕ̃2 ¼ eiðnþlÞϑs2;lðrÞ; δϕ̃�
2 ¼ e−iðn−lÞϑs�2;−lðrÞ;

δχ̃ ¼ eilϑs3;lðrÞ; δχ̃� ¼ eilϑs�3;−lðrÞ;
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δZ̃þ ¼ eiðl−1ÞϑizlðrÞ; δZ̃− ¼ eiðlþ1Þϑð−iÞz�−lðrÞ;
δX̃þ ¼ eiðl−1ÞϑixlðrÞ; δX̃− ¼ eiðlþ1Þϑð−iÞx�−lðrÞ;
δW̃�þ ¼ eiðl−1∓nÞϑiw�;lðrÞ; δW̃�

− ¼ eiðlþ1∓nÞϑð−iÞw�
�;−lðrÞ;

δZ̃3;4 ¼ eilϑz3;4;lðrÞ; δX̃3;4 ¼ eilϑx3;4;lðrÞ;
δW̃þ

3;4 ¼ eilϑw3;4;lðrÞ; δW̃−
3;4 ¼ eilϑw�

3;4;−lðrÞ;

ðA12Þ

where δZ̃þ ¼ expð−iϑÞðδZ̃r − iδZ̃ϑ=rÞ, and analogously
for the other gauge fields. On the radial functions, the
variables Ω and k have been suppressed. In all equations
these appear as Ω2 − k2, and therefore, the lowest eigen-
value corresponds to k ¼ 0; for this reason, k is dropped in
what follows.
In addition to the block structure of the time-dependent

linearized equations (A4), there is a further decoupling
due to the time and z independence of the background
solution, (16) and (17), resulting in a further decoupling
of the z and t (0 and 3) components of the vector fields.
The following blocks decouple and can be solved separately:
(i) δAi (i ¼ 1, 2); (ii) δW�, δϕ1; (iii) δW��, δϕ�

1 [conjugate of
(iii)]; (iv) δZi, δXi, δϕ2, δϕ�

2 δχ, δχ�; (v) δA3; (vi) δA0;
(vii) δZ3, δX3; (viii) δZ0, δX0; (ix) W�

3 ; and (x) W�
0 .

Eigenvectors and eigenvalues in each block can be
considered separately; therefore, we shall write the radial
equations in block I ¼ i;…; x separately, in the form

MI
lΦI

l ¼ Ω2ΦI
l; ðA13Þ

with the block containing the known instabilities of
electroweak strings consisting of Φii

l ¼ ðs1;l; wþ
þ;l; w

þ
−;lÞ.

In this sector, the radial equations (27) are obtained, with
the index I ¼ ii dropped, and this block is considered in
detail in Sec. IV, where its numerical solution is also
discussed. Block (iii) contains the same equations for the
complex conjugates s�1;−l, w

−�
−;−l, w

−�
þ;−l, with the replace-

ment l → −l, as block (ii).
Of the remaining blocks, (i), (v), and (vi) merely

contain the radial Laplacian. Block (iv) contains a defor-
mation of the eigenvalue problem of the ANO string
(or equivalently, that of the semilocal-dark string [21]),
and possesses only positive eigenvalues: Φiv

l ¼ ðs2;l; s�2;−l;
s3;l; s�3;−l; zl; z

�
−l; xl; x

�
−lÞ, and the elements of the corre-

sponding operator Miv
l are

Miv
l;1;1 ¼ −

d2

dr2
−
1

r
d
dr

þ
�½lþ nð1 − z − gXHxÞ�2

r2
þ β1ð2f2 − 1Þ þ β0ðf2d − η22Þ þ ð1þ g2XHÞf2

�
;

Miv
l;3;3 ¼ −

d2

dr2
−
1

r
d
dr

þ
�½l − nðgZSzþ gXSxÞ�2

r2
þ β2ð2f2d − η22Þ þ β0ðf2 − 1Þ þ ðg2ZS þ g2XSÞf2d

�
;

Miv
l;5;5 ¼ −

d2

dr2
−
1

r
d
dr

þ
�ðl − 1Þ2

r2
þ 2ðf2 þ g2ZSf

2
dÞ
�
;

Miv
l;7;7 ¼ −

d2

dr2
−
1

r
d
dr

þ
�ðl − 1Þ2

r2
þ 2ðg2XHf2 þ g2XSf

2
dÞ
�
; ðA14Þ

and

Miv
l;2;2 ¼ Miv

−l;1;1; Miv
l;4;4 ¼ Miv

−l;3;3;

Miv
l;6;6 ¼ Miv

−l;5;5; Miv
l;8;8 ¼ Miv

−l;7;7; ðA15Þ
with the couplings

Miv
l;1;2 ¼ Miv

l;2;1 ¼ ðβ1 − 1 − g2XHÞf2;
Miv

l;1;3 ¼ Miv
l;3;1 ¼ Miv

l;2;4 ¼ Miv
l;4;2 ¼ ðβ0 þ gZS þ gXHgXSÞffd;

Miv
l;1;4 ¼ Miv

l;4;1 ¼ Miv
l;2;3 ¼ Miv

l;3;2 ¼ ðβ0 − gZS − gXHgXSÞffd;

Miv
l;1;5 ¼ Miv

l;5;1 ¼ Miv
l;2;6 ¼ Miv

l;6;2 ¼ −
ffiffiffi
2

p �
f0 −

nf
r
ð1 − z − gXHxÞ

�
;
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Miv
l;1;6 ¼ Miv

l;6;1 ¼ Miv
l;2;5 ¼ Miv

l;5;2 ¼
ffiffiffi
2

p �
f0 þ nf

r
ð1 − z − gXHxÞ

�
;

Miv
l;1;7 ¼ Miv

l;7;1 ¼ Miv
l;2;8 ¼ Miv

l;8;2 ¼ gXSMiv
l;1;5;

Miv
l;1;8 ¼ Miv

l;8;1 ¼ Miv
l;2;7 ¼ Miv

l;7;1 ¼ gXSMiv
l;1;6;

Miv
l;3;4 ¼ Miv

l;4;3 ¼ ðβ2 − g2ZS − g2XSÞf2d;

Miv
l;3;5 ¼ Miv

l;5;3 ¼ Miv
l;4;6 ¼ Miv

l;6;4 ¼ −
ffiffiffi
2

p �
f0d þ

nfd
r

ðgXSzþ gXSxÞ
�
gZS;

Miv
l;3;6 ¼ Miv

l;6;3 ¼ Miv
l;4;5 ¼ Miv

l;5;4 ¼
ffiffiffi
2

p �
f0d −

nfd
r

ðgXSzþ gXSxÞ
�
gZS;

Miv
l;3;7 ¼ Miv

l;7;3 ¼ Miv
l;4;8 ¼ Miv

l;8;4 ¼ −
ffiffiffi
2

p �
f0d þ

nfd
r

ðgXSzþ gXSxÞ
�
gXS;

Miv
l;3;8 ¼ Miv

l;8;3 ¼ Miv
l;4;7 ¼ Miv

l;7;4 ¼
ffiffiffi
2

p �
f0d −

nfd
r

ðgXSzþ gXSxÞ
�
gXS;

Miv
l;5;7 ¼ Miv

l;7;5 ¼ Miv
l;6;8 ¼ Miv

l;8;6 ¼ 2ðgXHf2 þ gZSgXSf2dÞ: ðA16Þ

The equations in blocks (vii) and (viii) are identical. Let
now Φvii

l ¼ ðz3l; x3lÞ, and

Mvii
l;1;1 ¼ −

d2

dr2
−
1

r
d
dr

þ
�
l2

r2
þ 2f2 þ 2g2ZSf

2
dÞ
�
;

Mvii
l;2;2 ¼ −

d2

dr2
−
1

r
d
dr

þ
�
l2

r2
þ 2g2XHf

2 þ 2g2XSf
2
dÞ
�
;

Mvii
l;1;2 ¼ Mvii

l;2;1 ¼ 2ðgXHf2 þ gZSgXSf2dÞ: ðA17Þ

In block (ix), w3;l and w�
3;−l decouple, the equation for

the former is

−
1

r
ðrw0

3;lÞ0 þ
�½l − gnðα2zþ α3xÞ2�

r2
þ g
2
f2
�
w3;l

¼ Ω2w3;l; ðA18Þ

and the equation for w�
3;−l is obtained by the replacement

l → −l, w3;l → w3;−l.

The remaining gauge freedom is characterized by ghost
equations: an infinitesimal gauge transformation substi-
tuted into Eq. (A4). The general form of an infinitesimal
gauge transformation is

δϕ1 ¼ iðgZϕþξZ þ gXϕþξXÞϕ1 þ
ig
2
ξþϕ2;

δϕ2 ¼ iðξZ þ gXHξXÞϕ2 þ
ig
2
ξ−ϕ1;

δχ ¼ iðgZSξZ þ gXSξXÞχ;
δZμ ¼ ∂μξZ;

δXμ ¼ ∂μξX;

δWþ
μ ¼ ∂μξ

þ − igW3
μξ

þ;

δW−
μ ¼ ∂μξ

− þ igW3
μξ

−; ðA19Þ
where the functions ξZ, ξX, and ξ� are generators of the
infinitesimal gauge transformations. The radial ghost equa-
tions for the Fourier coefficients of these functions are as
follows:

−
1

r
ðrξ0ZlÞ0 þ

�
l2

r2
þ 2ðf2 þ g2ZSf

2
dÞ
�
ξZl þ 2ðgXHf2 þ gZSgXSf2dÞξXl ¼ Ω2ξZl;

−
1

r
ðrξ0XlÞ0 þ

�
l2

r2
þ 2ðg2XHf2 þ g2XSf

2
dÞ
�
ξXl þ 2ðgXHf2 þ gZSgXSf2dÞξZl ¼ Ω2ξXl;

−
1

r
ðrξþl 0Þ0 þ

�½l − ngðα2zþ α3xÞ�2
r2

þ g
2
f2
�
ξþl ¼ Ω2ξþl ;

−
1

r
ðrξ−l 0Þ0 þ

�½lþ ngðα2zþ α3xÞ�2
r2

þ g
2
f2
�
ξ−l ¼ Ω2ξ−l ; ðA20Þ

which are all deformations of the ghost equation for ANO, semilocal, or semilocal-dark vortex ghost equations, which all
have relatively large positive eigenvalues [21,57,58,63]; therefore, they are not required for stability analysis.
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