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Abstract

This paper presents an algorithm for the automatic selection of a
minimal subset of tagging single nucleotide polymorphisms (SNPs) us-
ing an estimation of distribution algorithm (EDA). The EDA stochasti-
cally searches the constrained space of possible feasible solutions and takes
advantage of the underlying topological structure defined by the SNP cor-
relations to model the problem interactions. The algorithm is evaluated
across the HapMap reference panel data sets. The introduced algorithm
is effective for the identification of minimal multi-marker SNP sets, which
considerably reduce the dimension of the tagging SNP set in comparison
with single-marker sets. New reduced tagging sets are obtained for all the
HapMap SNP regions considered. We also show that the information ex-
tracted from the interaction graph representing the correlations between
the SNPs can help to improve the efficiency of the optimization algorithm.
keywords: SNPs, tagging SNP selection, multi-marker selection, estima-
tion of distribution algorithms, HapMap.

1 Introduction

Disease-gene association consists of the identification of DNA variations which
are highly associated with a known disease. The task can be accomplished by
statistical genetic variation analysis of single nucleotide polymorphisms (SNPs).
The study of complex disease in association studies may require the analysis of
more than one locus because single locus methods can not be used to identify
complex patterns. They miss the genetic contribution to the disease of the
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interactions between loci [13, 29]. Therefore, the analysis of multiple sites is
required for better disease-gene association studies. Usually, this type of analysis
involves genome wide association studies, where the whole genome is searched
for the identification of genetic associations with observable traits [18, 44, 28].

Nevertheless, genotyping is complicated and very costly when a huge number
of candidate SNPs is considered. A possible remedy for this problem is the
identification of a subset of representative SNPs or tagging SNPs that allows to
reduce the genotyping overhead. In this way, frequency differences between case
and control populations do not need to be measured in all SNPs but only in
the subset of tagging SNPs. To this end, more precise mapping of the patterns
of linkage disequilibrium is needed. Improved haplotype mapping of the human
genome is an important step in this direction [44, 28]. The other requirement is
the conception of efficient procedures for appropriate selection of tagging SNPs.

The problem of choosing tagging SNPs is usually formulated as the objec-
tive of selecting the lowest number of (tagging) SNPs such that the remaining
(tagged) SNPs are ”covered”. Covering is defined by some statistical criterion
(e.g. a high correlation between tagging and tagged SNPs, informativeness mea-
sures, etc.). There are two main variants of this problem: When single marker
SNPs are used, each tagged SNP can be covered by a single tagging SNP. When
multi-marker tags are used, each SNP can be covered by a single SNP or by a
subset of tagging SNPs. Multi-marker tags can significantly outperform tagging
efficiency with respect to single-marker approaches [8]. However, in the general
case, the single and multi-marker SNP tagging problems are NP-complete [2].

Several approaches have been followed for the solution of the minimal tagging
SNP set problem [2, 6, 25, 38]. These approaches have focused on two different
but related questions: (1) To determine ways to find tagging SNPs subsets so as
to maximize a predefined measure of the subset quality [2, 6, 18, 25, 38, 47] (the
search problem) and (2) To find statistical criteria or predictive measures to
evaluate the different candidate sets of tagging SNPs (the evaluation problem)
[2, 46].

In this paper we approach the search for a set of minimal multi-marker SNPs
as an optimization problem. We focus on the problem of devising efficient meth-
ods to search the optimal solutions given a predefined quality measure. To ad-
dress the problem, an estimation of distribution algorithm (EDA) [24, 26, 32, 37]
is employed. EDAs are evolutionary algorithms similar to genetic algorithms
(GAs) [12, 20] but where probabilistic modeling is used instead of genetic opera-
tors. EDAs allow to incorporate in a natural way a priori information about the
problem. This information can dramatically improve the accuracy and efficiency
of the search for optimal solutions. EDAs have been applied with excellent re-
sults to practical problems from several domains, including bioinformatics and
biomedical problems [1, 22].

The paper is organized as follows: In the next section, a number of basic
biological concepts are introduced and the minimal tagging SNP set problem
is presented. Section 3 introduces EDAs, briefly describing their main compo-
nents and reviewing different variants of these algorithms. Section 4 describes
the preprocessing steps required to address the optimization problem under
consideration. The EDA approach to the problem is explained in Section 5.
Section 6 discusses work related to our research. The experimental framework
to evaluate our proposal is presented in Section 7, where the numerical results
are analyzed. The conclusions of the paper and ideas for future work are pre-
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sented in Section 8.

2 Motivation and description of the SNP tag-
ging problem

In the human genome there are about 10 million sites where individuals differ
by a single nucleotide. These sites are called single nucleotide polymorphisms
(SNPs). An allele is an alternative form of a gene or SNP, or another type of
variant. Most SNPs are biallelic, i.e. they appear as having only two possible
nucleotides. A haplotype is a combination of alleles at multiple linked sites on
a single chromosome, all of which are transmitted together. A haplotype block
is a region containing strongly associated SNPs.

A chromosome carrying a particular allele of a given SNP has a high proba-
bility of carrying a particular allele of another SNP close to the first one. Thus,
an allele frequency difference in the second SNP can manifest itself as an allele
frequency difference in the first SNP. The non-random association of alleles at
two or more sites on the same chromosome is called linkage disequilibrium (LD)
and this relationship is often measured by the correlation coefficient r2 between
SNPs. A tagging or tag SNP is a representative SNP with high LD to other
(tagged) SNPs.

Let D be a data set consisting of m haplotypes, h1, . . . , hm, each with n

different SNPs, s1, . . . , sn. The set D can be viewed as an m × n matrix.
Dij denotes the jth SNP in the ith haplotype. For simplicity of presentation,
we assume in our analysis that each of the SNPs is biallelic. Let (A, a) and
(B, b) respectively represent the two possible alleles for two different SNPs.
The correlation coefficient r2 measures the similarity correlation between the
SNPs in D:

r2 =
pABpab − pAbpaB

pApBpapb

(1)

where plk denotes the frequency of observing l and k together in a haplotype
and pl denotes the frequency of l. The r2 can be generalized to groups of SNPs.

We say that SNP si tags SNP sj if their correlation coefficient r2
ij exceeds

some threshold r2
min. We call T ′ a single-marker valid tag of S if T ′ ⊆ S, and

∀sj ∈ S, ∃si ∈ T ′ such that r2
ij ≥ r2

min. Similarly, if ∀sj ∈ S, ∃ST ⊆ T ∗ such

that r2
iT ≥ r2

min, we call T ∗ a multi-marker valid tag of S.
The problem of finding the smallest single-marker tagging set is the problem

of finding the smallest set T ′ ⊆ S that is a valid tag of S. Similarly, the problem
of finding the smallest multi-marker tagging set is the problem of finding the
smallest set T ∗ ⊆ S that is a valid multi-marker cover of S.

In this paper we focus on the second class of problems. We further constrain
the set of multi-marker tagging sets to those where the tagging set of each SNP
is formed by at most two tagging SNPs, i.e. where ∀sj ∈ S, ∃ST ⊆ T ∗, |ST | ∈
{1, 2}.
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3 Estimation of distribution algorithms

The increasingly high computing power achievable from commodity computers
has encouraged the design and implementation of non-trivial algorithms to solve
different kinds of complex optimization problems. Some of these problems can
be solved via an exhaustive search over the solution space, but in most cases
this brute force approach is unaffordable. In these situations, deterministic or
non deterministic heuristic methods, which search inside the space of promising
solutions, are often used. Some heuristic approaches are specifically designed
to find good solutions for a particular problem, but others are presented as a
general framework adaptable to many different situations.

Among this second group are evolutionary algorithms such as GAs [12, 20]
which have been widely used in the last decades. The main characteristic of
these algorithms is that they use techniques inspired by the natural evolution
of the species and find inspiration in concepts such as individuals, populations,
breeding, fitness function, etc.

In the last two decades, GAs have been widely used to solve different prob-
lems, improving in many cases the results obtained by previous approaches.
However, GAs require a large number of parameters (for example, those that
control the creation of new individuals) that need to be correctly tuned in or-
der to obtain good results. In addition, GAs show a poor performance in some
problems (deceptive and separable problems) in which the existing crossover and
mutation operators do not guarantee that better individuals will be obtained
by changing or combining existing ones.

Some authors [20] have pointed out that making use of the relations between
variables can be useful to drive a more ”intelligent” search through the solution
space. This concept, together with the limitations of GAs, motivated the cre-
ation of new algorithms grouped under the name of estimation of distribution
algorithms (EDAs) [24, 26, 32, 37].

In EDAs, there are neither crossover nor mutation operators. Instead, the
new population of individuals is sampled from a probability distribution, which
is estimated from a database that contains the selected individuals from the
current generation. Thus, the interrelations between the different variables that
represent the individuals are explicitly expressed through the joint probabil-
ity distribution associated with the individuals selected at each generation. A
common pseudo-code for all EDAs is described in Algorithm 1.

Algorithm 1: Estimation of distribution algorithm

1 Set t⇐ 0. Generate M points randomly.

2 do {

3 Evaluate the points using the fitness function.

4 Select a set DS
t of N ≤M points according to a selection method.

5 Calculate a probabilistic model of DS
t .

6 Generate M new points sampling from the distribution represented in
the model.

7 t⇐ t + 1

8 } until Termination criteria are met.
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The termination criteria of an EDA can be a maximum number of genera-
tions, a homogeneous population or no improvement after a specified number of
generations. The probabilistic model learnt at step 5 has a significant influence
on the behavior of the EDA from the point of view of complexity and perfor-
mance. EDAs are usually classified into three groups, according to their ability
to capture the dependencies between variables:

• Without dependencies: It is assumed that the n–dimensional joint proba-
bility distribution factorizes as a product of n univariate and independent
probability distributions. Algorithms that use this model are, among oth-
ers, univariate marginal distribution algorithm (UMDA) [32], compact
genetic algorithm (cGA) [15] and population based incremental learning
[3].

• Bivariate dependencies: Only the dependencies between pairs of variables
are taken into account. This way, the process of estimating the joint prob-
ability can still be fast. This group includes: mutual information maxi-
mization for input clustering (MIMIC) [9], bivariate marginal distribution
algorithm (BMDA) [36] and Tree-EDA [41].

• Multiple dependencies: Higher order dependencies between the variables
are considered. In this group we can find algorithms like estimation of
Bayesian networks algorithm (EBNA) [10], estimation of Gaussian net-
works algorithms (EGNAs)[23] and the Bayesian optimization algorithm
(BOA) [35].

For detailed information about the characteristics of these EDAs, and other
algorithms that form part of this family, see [24, 26, 37].

4 Optimization approach: Preprocessing step

The application of EDAs to the minimal tagging set problem requires some
preprocessing steps which are analyzed in this section.

Given a data set D consisting of m haplotypes, first we compute the r2
ij

for each pair of SNPs si and sj . Those SNPs for which the frequency of the
most probable allele is above 0.95 are not considered. Then r2

ijk is computed
for i < j < k in the original order of SNPs in D. Only pairs of SNPs that are in
the sequence at a distance lower than d = 40000 are considered. The resulting
set of all initial pairs and triples is reduced by eliminating those subsets of
SNPs with an r2 below the minimum threshold r2

min = 0.8. These subsets will
be the input of the minimum multi-marker subset search algorithm. They can
also be employed to construct an interaction graph that reflects the structure
of the interactions between tagging and tagged SNPs and which serves as a
convenient representation to illustrate the type of structural information used
by the optimization algorithm.

In the case of single marker SNPs, the interaction graph is constructed by
mapping one vertex to each SNP and an edge in the graph represents that the
r2 between the corresponding SNPs is above the threshold [6]. The structure of
interactions represented by this graph can also be displayed using the adjacency
matrix. Figure 1 left) shows the interaction graph for SNPs in the ENm010.CEU
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Figure 1: Representation of the interactions between the SNPs in the
ENm010.CEU HapMap Encode region. Single tagging SNPs are represented
in the graph. Left) Interaction graph. Right) Adjacency matrix.
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Figure 2: Representation of the interactions between the SNPs in the
ENm010.CEU HapMap Encode region. Single and pairs of tagging SNPs are
represented in the graph. Left) Interaction graph. Right) Adjacency matrix.

HapMap Encode region [44]. The 556 SNPs are positioned in a circle following
the order of the sequence. Figure 1 right) shows the corresponding adjacency
matrix where interactions between proximal SNPs can be also identified.

When multi-marker SNPs are considered, the graph representation is not
straightforward because it might be necessary to distinguish whether a tagged
SNP is covered by a single SNP or by a pair of tagging SNPs. As regards the
analysis that will follow, this distinction is not relevant and therefore, when a
SNP is tagged by a pair, there will be an edge between the tagging SNP and
each of the tagged SNPs. Figure 2 left) shows the interaction graph for SNPs
in the ENm010.CEU HapMap Encode region when single and pairs of tagging
SNPs are represented in the graph. Figure 2 right) shows the corresponding
adjacency matrix.

Notice that there may exist SNPs that are not covered by any single or
pair of tagging SNPs. The existence of SNPs that show almost no linkage
disequilibrium with any other SNPs in the haplotype has been acknowledged
as a feature that illustrates the full complexity of empirical patterns of genetic
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variation [44]. We call these SNPs fixed. In an interaction graph they can be
identified as disconnected nodes.

5 Description of the EDA approach to the SNP
problem

To approach the problem of finding the minimal multi-marker tagging set as an
optimization problem we define the optimization problem representation and
the objective function.

5.1 Problem representation

In our codification of the problem, variable Xi will represent whether the ith
SNP is part of the tagging set (xi = 1), or it is tagged (xi = 0).

The search of a minimal set of tagging SNPs is done in the subset of n′ ≤ n

SNPs which are not fixed. Therefore, the search space has dimension 2n′

. The
final solution comprises all fixed SNPs and those found during the search.

5.2 Fitness function

For implementational reasons, the minimization of the number of tagging SNPs
is transformed in the maximization of Equation (2), where each solution x sat-
isfies that all the non-tagging SNPs are covered by another single or pair of
tagging SNPs.

f(x) = n−
n∑

i=1

xi (2)

5.3 Repairing procedure

It must be taken into account that not all the solutions of the search space
are feasible, in the sense that there are binary vectors that represent situations
in which one or more SNPs could be not covered. To keep the search in the
space of feasible solutions, we implement a repairing procedure that enforces
the solutions feasibility. This procedure is applied during the evaluation step.
It is described in Algorithm 2.

Algorithm 2 starts by checking whether x is a feasible solution. For efficiency
reasons, the check is carried out firstly taking into account the single tagging
SNPs and then the pairs of tagging SNPs. If the set of non-tagged SNPs is not
empty (i.e. the solution is unfeasible), each of the non-tagged SNPs becomes
tagged by transforming some of them to tagging SNPs and xi from 0 to 1.
The repairing procedure is conceived to set as few tagging SNPs as possible. It
finishes when all the SNPs are tagged.

5.4 Tree-based EDA approach

The EDA of choice uses a probabilistic model that captures bivariate dependen-
cies between the variables. This probabilisti model is based on a tree structure
where each variable may depend on at most another variable, which is called
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Algorithm 2: Repairing and evaluation procedure

1 Compute the set Cp of all SNPs not tagged in the current solution by a
single tagging SNP

2 If Cp = ∅ output f(x) and exit

3 do {

4 Choose randomly SNP i from Cp

5 If the set of single tagging SNPs that can potentially tag i is not
empty

6 Randomly select a SNP j that belongs to this set

7 Elseif the set formed by all SNP pairs that potentially tag i, where
one of the two SNPs is already a tagging SNP in the solution, is not
empty

8 Randomly select a pair (j, k) that belongs to this set, where k is
the tagging SNP which is already in the current solution

9 Else
10 Randomly choose a pair of SNPs (j, k) that can tag i

11 Set j or j and k, as tagging SNPs

12 Remove j and all the SNPs tagged by j or by (j, k) from Cp

13 } until Cp = ∅

14 Output f(x), x

the parent. A probability distribution pTree(x) that is conformal with a tree is
defined as:

pTree(x) =

n∏

i=1

p(xi|pa(xi)) (3)

where Pa(Xi) is the parent of Xi in the tree, and p(xi|pa(xi)) = p(xi) when
Pa(Xi) = ∅, i.e. Xi is the root of the tree. The distribution pTree(x) itself will
be called a tree model when no confusion is possible. Probabilistic trees are
represented by acyclic connected graphs.

There are two main reasons behind the choice of this model. The first is effi-
ciency. The computation of the bivariate dependencies needed to compute a tree
is less expensive than the structural learning procedure required to construct
more complex models such as general Bayesian networks [34]. This efficiency
factor is particularly relevant when the number of variables increases. The sec-
ond reason in the choice of the model is that pairwise interactions between
the variables represent an important contribution to the fitness function of the
minimal tagging SNP set problem.

The construction of the tree structure from data implies the detection of the
most important bivariate interactions between the variables. This can be done
applying statistical independence tests [36] or methods based on the analysis of
the mutual information between variables [5]. We follow the second approach
as shown in Algorithm 3.

Initially, the univariate and bivariate probabilities are respectively calculated
for every variable and pair of variables. To determine the marginal probabilities,
we compute, from the set of selected solutions, the frequencies corresponding
to each marginal configuration. In our binary representation, this corresponds
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Algorithm 3: Tree-EDA

1 D0 ← Generate M individuals randomly

2 l = 1
3 do {

4 Ds
l−1 ← Select N ≤M individuals from Dl−1 according to a selection

method
5 Compute the univariate and bivariate marginal frequencies

ps
i (xi|Ds

l−1) and ps
i,j(xi, xj |Ds

l−1) of Ds
l−1

6 Calculate the matrix of mutual information using bivariate and uni-
variate marginals.

7 Calculate the maximum weight spanning tree from the matrix of mu-
tual information.

8 Compute the parameters of the model.

9 Dl ← Sample M individuals (the new population) from the tree and
add elitist solutions.

10 } until A stop criterion is met

to 2 univariate (each variable takes 2 values) and 4 bivariate (the two values
corresponding to the child and the two values for its parent) frequency values,

for n variables and n(n−1)
2 pairs of variables. Frequencies are normalized in

order to obtain the probabilities. From these marginal probabilities, the mutual
information between each pair of variables is computed.

To construct the tree structure, an algorithm introduced in [7], that calcu-
lates the maximum weight spanning tree from the matrix of mutual information
between pairs of variables, is used. We set a threshold on the minimal mutual
information value required to connect two variables. This allows for represent-
ing disconnected trees, i.e. a forest. The idea is to capture in the tree structure
interactions between those pairs of variables that have the strongest dependence
in the data but avoiding the capture of weak dependencies when there are few
interactions in the data.

Probabilistic logic sampling [19] is applied to sample new solutions from the
tree. New solutions are generated sampling, for each tree, firstly the root, and
subsequently each variable conditioned by its parent. The value of a root vari-
able is chosen by randomly selecting one of its two configurations proportionally
to its univariate probability. Similarly, the value of a son in the tree is randomly
selected proportionally to its conditional probability values conditioned on the
value already assigned to its parent.

Finally, the new sampled solutions are combined with the set of best solutions
(elitist solutions) selected from the previous iteration.

5.5 Using the problem structure to increase the EDA ef-
ficiency

It is a common practice in EDAs to use available information about the problem
to improve the efficiency of the learning and sampling steps of the algorithms.
This can be achieved in a variety of ways:

• Using the known structural information to define a factorization of the
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probabilistic model [31, 33].

• Constraining the set of interactions to be included in the probabilistic
model [4, 39].

• Specifying soft constraints to bias the construction of the probabilistic
model [16, 17].

In the problem under consideration, there is information about the correla-
tions between the SNPs that can be incorporated to the model using the second
of the previous approaches.

We define a variant of the tree learning algorithm that constrains the cal-
culation of the mutual information to those pairs of variables corresponding to
SNPs that have some potential type of tagging relationship, given that their
correlation is above the threshold, i.e. they belong to a pair (tagging-tagged) or
to a triple (tagging,tagging,tagged) of SNPs. The assumption is that any other
pairwise relationship between SNPs is not relevant for the search of the optimal
solutions. The variant of Tree-EDA that restricts the interactions represented
by the tree structure to interacting pairs of variables is called Tree-EDAr.

This approach helps to reduce the number of spurious correlations that arise
between variables during the search. Generally, the spurious correlations learned
during the learning step may contribute to deteriorate the accuracy of the mod-
els in the representation of the selected solutions, and negatively influences the
efficiency of the search.

The computational complexity of EDAs is mainly dependent on the com-
plexity of the learning algorithm, but it also depends on the population size
and number of generations needed for convergence, which are both problem-
dependent. The computational complexity of Tree-EDA is quadratic. Never-
theless, the use of problem structure, as with Tree-EDAr, drastically reduces
the time spent to learn the probabilistic model [39, 40].

6 Related work

Minimal tagging SNP selection has been mainly focused on single-marker tag-
ging sets [2, 6, 25, 38]. In multi-marker tagging set, some work has been re-
ported: de Bakker et al. [8] start the search for a multi-marker set from single-
marker tagging set. The search is carried out trying to replace each tag of the
original solution with a specific multi-marker predictor (on the basis of the re-
maining tags) to improve efficiency. Multi-marker sets of up to three tagging
SNPs are allowed. The result of this greedy approach will highly depend on the
closeness of the initial single-marker tagging set to the optimal multi-marker
set. Therefore, the algorithm is likely to get stuck in local optimal solutions.

Choi et al. [6] approach the minimal single-maker tagging SNP selection
problem as an instance of the satisfiability (SAT) problem [42]. The optimal tag-
ging set is obtained by enumerating the solutions to the SAT problem. Prelim-
inary results on the extension of the satisfiability approach to the multi-marker
problem are presented for one region of the HapMap benchmark. Although the
SAT approach allows to obtain optimal solutions for the single-marker tag prob-
lem, the number of SAT clauses exponentially increases for the multi-marker tag
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problem and the satisfiability approach does not seem to be applicable in this
case.

Probabilistic graphical models, and in particular Bayesian networks, have
been previously applied to the tag SNP selection problem [25], haplotype block
partitioning [14] and haplotype phasing [45]. However, to the knowledge of
the authors, they have not been applied to the minimal tagging SNP set selec-
tion problem or other SNP problems within the framework of the optimization
algorithms as the proposal presented in this paper.

EDAs have been extensively applied to solve problems from Bioinformatics
(see [1] for a survey of EDA applications in this domain). In particular, EDAs
based on trees have been used for protein side chain optimization [40] and the
minimization of protein contact potentials [39]. Results presented in [39] support
evidence that the use of a priori information about the problem structure can
notably improve the accuracy and efficiency of the results achieved with EDAs.

7 Experiments

First, we introduce the SNP reference panel and the parameters used by EDAs.
Then, we explain how the experiments were designed. Finally, the numerical
results of the experiments are presented.

7.1 Description of the SNP problem benchmark

To evaluate the introduced algorithms, we used the HapMap reference panel
[44]. As done in a previous work [6], samples over the ENCODE regions are used
for the experiments. These data, from 270 individuals from four populations
(people of European ancestry [CEU], Yoruba of Ibadan, Nigeria [YRI], Han
Chinese [CHB], and Japanese [JPT]) are made up of polymorphisms over 10
genomic regions spanning a total 5 Mb of the sequence. These regions have been
carefully studied and are believed to have complete ascertainment for SNPs with
frequency higher than 5% .

Table 1 shows the details of 40 SNP problem instances used as benchmark
for evaluating the algorithms. In the table, name refers to the HapMap region
and population, n is the total number of SNPs, n′ is the number of SNPs that
are tagged by another SNP or pair of SNPs (the rest of SNPs are fixed since
they can be only self-tagged), nPairs is the number of pairs of SNPs above the
correlation threshold and similarly, Ntriples is the number of triples such that
the correlation of the tagged SNP given a pair of tagging SNPs is above the
correlation threshold.

7.2 Parameters of the algorithms

In order to work, EDAs require the definition of some parameters. The quality
of the results achieved by the algorithms will depend on these settings. We have
used two different sets of parameters and the same settings have been employed
for all instances considered. The population size was set to 5000 and two dif-
ferent number of generations were used (1000 and 5000). Truncation selection
with parameter T = 0.15 was employed. In this selection scheme, the best T ∗N
individuals of the population are selected to construct the probabilistic model.
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We apply a replacement strategy called best elitism in which the selected
population at generation t is incorporated into the population of generation t+1,
keeping the best individuals found so far and avoiding to reevaluate their fitness
function. The algorithm stops when the maximum number of generations is
reached or the selected population has become too homogeneous (no more than
10 different individuals).

Table 1: Details of the SNP problem benchmark
name n n’ nPairs Ntriples

ENm010.CEU 556 502 2716 102222
ENm010.CHB 433 381 3324 113986
ENm010.JPT 441 406 2711 82594
ENm010.Y RI 630 502 1561 61073
ENm013.CEU 745 711 7294 434917
ENm013.CHB 635 594 5907 300812
ENm013.JPT 636 595 6392 326319
ENm013.Y RI 792 726 3524 187551
ENm014.CEU 895 851 7918 510168
ENm014.CHB 643 601 6324 252769
ENm014.JPT 561 512 5232 200461
ENm014.Y RI 951 870 4947 304396
ENr112.CEU 922 873 9215 692640
ENr112.CHB 1015 976 11330 986704
ENr112.JPT 997 955 7870 636485
ENr112.Y RI 1298 1192 5712 527937
ENr113.CEU 1054 1004 14535 1273712
ENr113.CHB 903 864 16384 1169142
ENr113.JPT 829 793 15262 819508
ENr113.Y RI 1135 1026 5478 399548
ENr123.CEU 934 886 6550 531008
ENr123.CHB 881 763 9331 746402
ENr123.JPT 836 687 5746 387718
ENr123.Y RI 904 834 5523 404412
ENr131.CEU 1026 957 7617 673265
ENr131.CHB 1018 920 7290 564586
ENr131.JPT 993 893 7367 555791
ENr131.Y RI 1137 951 5174 426600
ENr213.CEU 648 616 5635 276130
ENr213.CHB 519 494 5354 181975
ENr213.JPT 562 529 5250 220524
ENr213.Y RI 846 722 3979 206050
ENr232.CEU 521 454 4644 166273
ENr232.CHB 596 516 3406 141074
ENr232.JPT 573 496 3188 134840
ENr232.Y RI 724 532 1986 78068
ENr321.CEU 594 550 5082 242850
ENr321.CHB 695 647 6332 365926
ENr321.JPT 682 621 5317 305196
ENr321.Y RI 981 856 3579 236381

7.3 Design of the experiments

The main goal of the experiments was to determine whether the consideration
of pairs of tagging SNPs can improve the results achieved when only single
tagging SNPs are used. Tree-EDA and Tree-EDAr are used to optimize the
objective function that measures the number of tagging SNPs. Since EDAs
are stochastic methods, we conduct for each SNP problem a set of experiments
and extract statistical information from the analysis of these experiments. The
performance of Tree-EDA and Tree-EDAr was evaluated considering the fitness
of the best, average, and worst solutions found in all the experiments. The
maximum number of experiments conducted for each instance was 30.
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Table 2: Results achieved by Tree-EDA with 1000 generations for the selected
instances.

name nruns ubest best nbest mean worst
ENm010.CEU 30 159 123 3 124.33 125
ENm010.CHB 30 99 91 5 92.20 94
ENm010.JPT 30 104 85 18 85.53 87
ENm010.YRI 30 302 255 6 256.37 258
ENm013.CEU 30 114 96 1 99.40 102
ENm013.CHB 30 104 86 2 88.73 91
ENm013.JPT 30 101 89 2 91.37 94
ENm013.YRI 30 235 189 3 191.13 193
ENm014.CEU 30 167 138 2 139.87 142
ENm014.CHB 30 122 103 8 104.10 106
ENm014.JPT 30 121 104 12 104.70 106
ENm014.YRI 30 270 226 5 227.93 231
ENr112.CEU 30 181 139 6 140.53 143
ENr112.CHB 30 165 127 1 130.33 134
ENr112.JPT 30 190 143 2 146.37 149
ENr112.YRI 30 451 323 1 328.30 333
ENr113.CEU 30 183 141 1 143.30 147
ENr113.CHB 30 109 87 1 88.47 89
ENr113.JPT 30 105 85 9 86.17 87
ENr113.YRI 30 367 286 1 290.00 295
ENr123.CEU 30 197 155 1 158.37 161
ENr123.CHB 30 251 228 5 229.43 232
ENr123.JPT 30 289 262 1 263.77 265
ENr123.YRI 30 255 207 1 211.07 215
ENr131.CEU 30 225 173 1 177.23 180
ENr131.CHB 30 271 216 3 218.10 221
ENr131.JPT 30 260 213 3 214.60 216
ENr131.YRI 30 467 386 2 388.00 390
ENr213.CEU 30 128 101 4 102.47 105
ENr213.CHB 30 100 78 3 80.10 82
ENr213.JPT 30 110 86 10 86.73 88
ENr213.YRI 30 328 268 1 271.77 275
ENr232.CEU 30 139 124 6 125.00 126
ENr232.CHB 30 199 165 7 166.73 169
ENr232.JPT 30 194 159 1 161.07 162
ENr232.YRI 30 401 351 6 352.20 354
ENr321.CEU 30 132 106 21 106.33 108
ENr321.CHB 30 159 122 3 123.70 125
ENr321.JPT 30 165 132 2 134.20 136
ENr321.YRI 30 364 288 1 291.50 295
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Table 3: Results achieved by Tree-EDAr with 1000 generations for the selected
instances.

name nruns ubest best nbest mean worst
ENm010.CEU 30 159 123 6 124.13 125
ENm010.CHB 30 99 90 1 91.93 94
ENm010.JPT 30 104 85 18 85.40 86
ENm010.YRI 30 302 254 1 256.07 258
ENm013.CEU 30 114 97 1 99.83 102
ENm013.CHB 30 104 87 3 88.77 91
ENm013.JPT 30 101 89 6 90.80 95
ENm013.YRI 30 235 187 1 190.60 195
ENm014.CEU 30 167 137 2 139.90 143
ENm014.CHB 30 122 103 4 104.77 107
ENm014.JPT 30 121 104 13 104.63 106
ENm014.YRI 30 270 225 2 227.80 232
ENr112.CEU 30 181 138 6 139.97 142
ENr112.CHB 30 165 127 1 129.73 133
ENr112.JPT 30 190 143 1 146.67 150
ENr112.YRI 30 451 321 1 326.33 330
ENr113.CEU 30 183 141 1 142.87 145
ENr113.CHB 30 109 87 4 88.33 89
ENr113.JPT 30 105 85 9 86.33 88
ENr113.YRI 30 367 285 1 289.03 293
ENr123.CEU 30 197 154 1 157.67 162
ENr123.CHB 30 251 228 8 229.47 231
ENr123.JPT 30 289 262 3 263.77 266
ENr123.YRI 30 255 208 2 211.00 214
ENr131.CEU 30 225 174 3 176.63 179
ENr131.CHB 30 271 216 2 218.17 221
ENr131.JPT 30 260 211 1 213.97 217
ENr131.YRI 30 467 385 1 387.80 390
ENr213.CEU 30 128 100 4 101.43 103
ENr213.CHB 30 100 78 8 79.20 81
ENr213.JPT 30 110 86 22 86.30 88
ENr213.YRI 30 328 268 1 271.30 275
ENr232.CEU 30 139 123 1 124.77 126
ENr232.CHB 30 199 165 5 166.37 168
ENr232.JPT 30 194 159 1 160.87 163
ENr232.YRI 30 401 350 1 352.13 354
ENr321.CEU 30 132 106 14 106.57 108
ENr321.CHB 30 159 122 2 123.90 126
ENr321.JPT 30 165 132 2 134.13 137
ENr321.YRI 30 364 287 1 290.70 294
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Figure 3: Reduction in the number of tagging SNPs of the minimal multi-marker
tagging set with respect to the single-marker minimal tagging set. Left) Best
solution obtained by Tree-EDAr. Right) Best solution obtained by Tree-EDA.

7.4 Numerical results

We compared the quality of the solutions obtained by Tree-EDA and Tree-
EDAr using the SNP problem benchmark. Tables 2 and 3 respectively show
the results of Tree-EDA and Tree-EDAr with 1000 generations. The tables
show the number of experiments, out of 30, that were successfully completed
(nruns), the best solution obtained when only a single tagging SNP is allowed
(ubest) as obtained using the SAT tagger [6], the best solution obtained in all
the completed experiments (best), the number of times a solution with this score
has been achieved (nbest), the average (mean) and worst (worst) values of the
solutions found in all the experiments.

An analysis of the tables reveals that the worst solution obtained in all the
experiments by Tree-EDAr and Tree-EDA is always better than the minimal
single-marker tagging set. The reduction in the number of tagging SNPs reaches
30% for some problems. Figure 3 shows the percentage of reduction in the
number of tagging SNPs of the minimal multi-marker tagging set with respect
to the single-marker minimal tagging set.

In terms of the difference between Tree-EDAr and Tree-EDA, the first algo-
rithms achieves a better average of the solutions for 29 of the 40 instances, in
one case both algorithms achieve the same average result, and for 10 instances
Tree-EDA achieves a better performance. Even if the use of a priori problem
information improves the results for most of the instances, this is not always the
case. To investigate the reasons that explain this behavior, and in particular, to
determine when the learned dependencies contribute to a more efficient search,
are relevant issues which we postpone for future research.

We conducted additional experiments to investigate whether the increase
in the number of generations leads to an improvement in the solutions. For
computational reasons, only 15 experiments were conducted for each problem.
Table 4 shows the results of Tree-EDAr with 5000 generations. These results
show that by spending more time in the search the solutions can be further
improved.

15



Table 4: Results achieved by Tree-EDAr with 5000 generations for the selected
instances.

name nruns ubest best nbest mean worst
ENm010.CEU 15 159 122 3 123.27 125
ENm010.CHB 15 99 91 6 91.60 92
ENm010.JPT 15 104 85 11 85.27 86
ENm010.YRI 15 302 254 1 255.53 257
ENm013.CEU 15 114 95 1 98.07 100
ENm013.CHB 15 104 87 2 88.27 90
ENm013.JPT 15 101 88 6 89.00 91
ENm013.YRI 15 235 186 2 188.20 193
ENm014.CEU 15 167 136 1 138.87 142
ENm014.CHB 15 122 103 8 103.67 105
ENm014.JPT 15 121 104 15 104.00 104
ENm014.YRI 15 270 221 1 225.87 229
ENr112.CEU 15 181 137 3 139.00 141
ENr112.CHB 15 165 127 1 129.07 131
ENr112.JPT 15 190 142 2 144.53 147
ENr112.YRI 15 451 318 1 323.80 328
ENr113.CEU 15 183 141 5 142.40 144
ENr113.CHB 15 109 86 3 87.60 89
ENr113.JPT 15 105 85 6 86.20 87
ENr113.YRI 15 367 284 2 287.67 291
ENr123.CEU 15 197 154 2 156.80 160
ENr123.CHB 15 251 227 1 228.47 230
ENr123.JPT 15 289 261 3 262.47 265
ENr123.YRI 15 255 207 1 209.87 212
ENr131.CEU 15 225 171 1 174.20 177
ENr131.CHB 15 271 215 1 218.00 220
ENr131.JPT 15 260 213 7 213.60 215
ENr131.YRI 15 467 385 1 387.13 389
ENr213.CEU 15 128 99 1 100.80 103
ENr213.CHB 15 100 78 7 78.60 80
ENr213.JPT 15 110 86 15 86.00 86
ENr213.YRI 15 328 266 1 269.47 273
ENr232.CEU 15 139 123 5 123.93 125
ENr232.CHB 15 199 163 1 165.00 167
ENr232.JPT 15 194 159 5 159.73 161
ENr232.YRI 15 401 351 7 351.80 353
ENr321.CEU 15 132 106 14 106.07 107
ENr321.CHB 15 159 120 1 122.40 124
ENr321.JPT 15 165 130 2 131.87 134
ENr321.YRI 15 364 288 5 289.93 293

8 Conclusions and future work

We have presented an optimization approach for finding the minimal set of
multi-marker tagging SNPs. The optimization problem has dealt with using
an estimation of distribution algorithm. The obtained solutions considerably
improved those achieved by exact algorithms for the single-marker tagging SNP
problem.

The approach introduced in this paper shares a number of suitable charac-
teristics with other evolutionary algorithms: by using a population of solutions
it allows a better exploration of the search space and avoids getting stuck in
local optima. In addition, the fact of being a stochastic algorithm allows to
obtain different solutions in different runs.

The EDAs we have applied exhibit other particular features that explain
their success for computing the minimal set of multi-marker tagging SNPs: 1)
They can incorporate structural information about the problem into the search.
2) They take advantage of probabilistic modeling of the promising solutions to
efficiently sample the solution space. These features are also advantages over
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traditional GAs and other evolutionary algorithms.
Another virtue of the introduced approach is that it can be adapted to

similar problems with minor modifications. We analyze in detail some of the
possibilities for future work.

8.1 Future work to improve the results of the minimal
tagging problem

8.1.1 Biasing the initial population

The EDAs used in our experiments start from a randomly generated population
of solutions. However, incorporating knowledge about the problem in the start-
ing population can improve the results of the algorithm. Seeding is the process
of constructing the initial solutions according to previous information about the
problem. In our case, seeding can be applied by first ranking SNPs according to
the number of SNPs they can potentially tag [8] and generating then the initial
populations prioritizing solutions that contain SNPs with better ranking.

8.1.2 Use of other probabilistic models

Trees are very convenient models for EDAs because they are able to represent
to some extent the interactions between the variables but with a constrained
complexity. This means that by representing only pairwise variable interactions
they guarantee a balance between the accuracy of the representation and the
efficiency of the model. However, it is an open question to investigate whether
better solutions of the minimum SNP tagging set can be obtained by increasing
the complexity of the models (even at the expense of a higher computational
time). Two direct extensions of EDAs based on trees are: EDAs that use mix-
tures of trees [41] and polytrees [43]. Mixtures of trees can serve to investigate
the effect of a clustering of the solutions in the accuracy of the probabilistic
representation. In terms of complexity, polytrees are an intermediate model be-
tween trees and general Bayesian networks and could also serve to increase the
accuracy of the representation but keeping the complexity of the model feasible.

8.1.3 Combination with local optimization methods

The ”peel back” approach of de Bakker et al. [8], commented in Section 6
can be used as a basis to devise local optimization methods to be combined
with EDAs. The solutions obtained by the EDA can be improved by trying
to remove redundant tagging SNPs by keeping the covering of all tagged SNPs.
The interaction graph could be used to implement this type of local optimization
methods.

8.2 Future work to extend the applications of EDAs to
similar problems

8.2.1 Relaxing the fitness function to consider global strength of
correlations

We have just considered the case of the minimal tagging set. However, it is
possible to include in the fitness function the strength of the r2 correlations.
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To determine the strength of the correlation between the tagging SNP set S

and the tagged SNP sj , the SNP or pair of SNPs in S for which the correlation
value with SNP sj is maximum is taken.

Let r̂ be the average of the correlation values computed for all tagged SNPs.
The maximum value it can take is 1 (perfect correlation). Since the fitness

function we use is the number of tagging SNPs f(x) = n′ −
∑n′

i=1 xi, we can

include the quality of the tagging set by setting f̂(x) = f(x)+ r̂(x) ∗ 0.99. This
function will increase with r̂, but it is guaranteed that a solution whose number
of tagging SNPs is q is always better than a solution with q + 1 tagging SNPs.

We have assumed that r̂ is computed as the maximum of the correlations
between each tagged SNP and its tagging SNPs. However, we can introduce
another way to measure the strength of the correlation based on an average of
the correlations between the tagging set of SNPs and the tagged SNP sj . This
average could be a measure of a consensus evidence between a subset of tagging
SNPs and the tagged SNP. For an optimal solution given this measure, we
can expect that if information for one of the tagging SNPs fails, the remaining
tagging SNPs could still give a good prediction of the failed SNP.

By using a parameter k, we can set a compromise criterion between the
maximum and average criteria. The k-average criterion will be the average of
the correlation between the tagged SNP and the k tagging SNPs with maximum
correlation where k is a parameter of the problem. The maximum criterion is
subsumed by the k-average criterion when we take k = 1.

To summarize, the following are the three strategies that can be used to
measure the strength of correlations and compute r̂.

• Maximum of the correlation between the tagged and its tagging SNPs.

• Average of the correlation between tagged and all its tagging SNPs.

• (k-average) Average of the correlation between the tagged SNP and the
k tagging SNPs with maximum correlation where k is a parameter of the
problem.

8.2.2 Block-free problem formulation

The optimization approach we have followed is based on the existence of hap-
lotype blocks. Although recent results have led to more accurate estimation of
haplotype blocks [44], it does not appear to be possible to unambiguously and
uniquely infer the true block partitioning [2]. These blocks are capturing general
regions of low diversity, but the boundaries between them are not rigourously
defined. In addition, common haplotypes capture most of the genetic variation
across sizable regions, in particular haplotype blocks, but there is substantial
linkage disequilibrium between adjacent blocks [11]. An open question is how to
select a minimum informative subset of SNPs without partitioning the SNPs into
blocks. This is achieved by other algorithms [2]. It is an interesting question to
investigate whether our optimization approach can be applied without requiring
the block partitioning, or by increasing the distance threshold currently imposed
to potential correlations between SNPs. Parallel and distributed EDAs schemes
[27, 30] could be an interesting alternative in this case.
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8.2.3 Formulation as a constrained and/or multiple objective opti-
mization problem

The problem of finding the minimal tagging SNP set can be generalized to
consider which the maximum number of SNPs that can be tagged with k tagging
SNPs is. The minimum k such that all the SNPs are tagged has been the solution
of the problem investigated in this paper. The k tagging SNP problem can be
approached as a problem with constraints, where all solutions are forced to have
exactly k tagging SNPs (i.e. in our codification, binary solutions with exactly
k ones).

Another approach is to redefine it as a multi-objective problem with two
objectives: Minimize k and maximize the number of SNPs tagged. This way, a
solution x with a given value of (k(x),f(x)) will be dominated only by solutions
that tag more SNP with fewer tagging SNPs. The Pareto set approximation will
give an idea of the gain in the number of SNPs tagged as a result of increasing the
number of tagged SNPs. The quality of the SNP correlations could be included
in the objective that measures the number of SNPs tagged, as discussed in
Section 8.2.1. Multi-objective formulations could also be employed to include
the cost of the solutions, given some a priori information about the difficulties
associated to genotyping each SNP. One multi-objective approach to this type
of problem has been proposed in [21].

The Tree-EDA algorithm can be adapted to deal with multi-objective prob-
lems by modifying the selection step to include Pareto-set approximation.
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Optimization via Probabilistic Modeling: From Algorithms to Applications,
Studies in Computational Intelligence, pages 205–222. Springer, 2006.

[5] S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial
optimization: Learning the structure of the search space. In Proceedings
of the 14th International Conference on Machine Learning, pages 30–38.
Morgan Kaufmann, 1997.

19



[6] A. Choi, N. Zaitlen, B. Han, K. Pipatsrisawat, A. Darwiche, and E. Eskin.
Efficient genome wide tagging by reduction to SAT. In Proceedings of the
8th International Workshop Algorithms in Bioinformatics WABI-2008, vol-
ume 5251 of Lectures Notes in Computer Science, pages 135–147. Springer,
2008.

[7] C. K. Chow and C. N. Liu. Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory,
14(3):462–467, 1968.

[8] P. I. W. de Bakker, R. Yelensky, I. Pe’er, S. B. Gabriel, M. J. Daly, and
D. Altshuler. Efficiency and power in genetic association studies. Nature
Genetics, 37:1217–1223, 2005.

[9] J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by esti-
mating probability densities. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing Systems, volume 9,
pages 424–430. The MIT Press, Cambridge, 1997.
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[24] P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Al-
gorithms. A New Tool for Evolutionary Computation. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2002.

[25] P. H. Lee and H. Shatkay. Bntagger: improved tagging SNP selection using
Bayesian networks. Bioinformatics, 22(14):e211–219, 2006.
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bution algorithms. In P. Larrañaga and J. A. Lozano, editors, Estimation of
Distribution Algorithms. A New Tool for Evolutionary Computation, pages
125–142. Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.

[28] T. A. Manolio, L. D. Brooks, and F. S. Collins. A HapMap harvest of
insights into the genetics of common disease. The Journal of Clinical In-
vestigation, 118(5):1590–1605, 2008.

[29] L. E. Mechanic, B. T. Luke, J. E. Goodman, S. Chanock, and C. C. Har-
ris. Polymorphism interaction analysis (PIA): a method for investigating
complex gene-gene interactions. BMC Bioinformatics, 9(146):1790–1797,
2008.

[30] A. Mendiburu, J. Lozano, and J. Miguel-Alonso. Parallel implementation
of EDAs based on probabilistic graphical models. IEEE Transactions on
Evolutionary Computation, 9(4):406–423, 2005.

21



[31] H. Mühlenbein, T. Mahnig, and A. Ochoa. Schemata, distributions and
graphical models in evolutionary optimization. Journal of Heuristics,
5(2):213–247, 1999.

[32] H. Mühlenbein and G. Paaß. From recombination of genes to the estima-
tion of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature - PPSN IV, volume 1141 of Lectures Notes in Computer Science,
pages 178–187, Berlin, 1996. Springer.

[33] A. Ochoa, M. R. Soto, R. Santana, J. Madera, and N. Jorge. The factorized
distribution algorithm and the junction tree: A learning perspective. In
A. Ochoa, M. R. Soto, and R. Santana, editors, Proceedings of the Second
Symposium on Artificial Intelligence (CIMAF-99), pages 368–377, Havana,
Cuba, March 1999.

[34] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo, California, 1988.

[35] M. Pelikan. Hierarchical Bayesian Optimization Algorithm. Toward a New
Generation of Evolutionary Algorithms. Studies in Fuzziness and Soft Com-
puting. Springer, 2005.

[36] M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algo-
rithm. In R. Roy, T. Furuhashi, and P. Chawdhry, editors, Advances in
Soft Computing - Engineering Design and Manufacturing, pages 521–535,
London, 1999. Springer.

[37] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable Optimization
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