ESCUELA DE JAZZ Y MÚSICA EXPERIMENTAL
EN EL PUERTO VIEJO DE ALGORTA

IÑIGO BASTERRECHEA ESPIGA / AULA D

ETSÁ SAN SEBASTIÁN / TFM / JUNIO 2020

LIBRO II / DESARROLLO TÉCNICO
ÍNDICE

1 MEMORIA DESCRIPITIVA
 1.1 Entorno 4
 1.2 Propuesta urbanística 5
 1.3 Intervención 6
 1.4 Prestaciones del edificio 8
 *Planos de arquitectura

Normativa de aplicación directa en el proyecto:
 Decreto 68/2000 12
 CTE DB SUA 17
 CTE DB SI 24
 *Planos

2 MEMORIA ESTRUCTURAL
 2.1 Descripción general 34
 2.2 Normativa aplicable 39
 2.3 Estructura de hormigón armado 41
 2.4 Estructura mixta del auditorio de Jazz 54
 *Planos

3 MEMORIA CONSTRUCTIVA
 3.1 Estudios preliminares del terreno 63
 3.2 Sustentación del edificio 63
 3.3 Sistema estructural 65
 3.4 Sistema envolvente 66
 3.5 Sistema de compartimentación 71
 3.6 Sistema de acabados 71
 3.7 Sistema de servicios 72
 3.8 CTE DB HE y cálculo de condensaciones 73
 3.9 Planos de acabados y carpintería
 *Planos

4 MEMORIA DE INSTALACIONES
 4.1 Agua fría y ACS 85
 4.2 Saneamiento y evacuación de aguas 86
 4.3 Instalación eléctrica 91
 4.4 Ventilación y climatización 92
 *Planos
1 MEMORIA DESCRIPTIVA
1 MEMORIA DESCRIPTIVA

El proyecto que se realiza en este trabajo se trata de una escuela de Jazz y Música Experimental y un Centro de Investigación Musical en la explanada del Puerto Viejo de Algorta, en Getxo. La propuesta, entre otros usos también incluye las oficinas del festival de Jazz.

Se puede realizar un único edificio o dividirlo en partes. Se pretende crear un centro de estudios para el aprendizaje del jazz y un lugar para estudios de música experimental. El centro tiene dos partes que se complementan: la escuela de jazz y la escuela de música experimental. Hay aulas compartidas y salas de conciertos (una dedicada básicamente al jazz y otra pensada en la experimentación musical).

El conjunto cuenta también un centro de investigación musicológica (recuperación instrumentos, partituras, sonidos, melodías; Folk, jazz, etc.) con espacio para varios investigadores, taller de restauración/reconstrucción instrumentos, etc. Desde un principio este uso se considera estrictamente ligado a la formación del entorno musical.

La sede del festival de Jazz de Getxo, con oficinas y almacenes también se ubicará en una zona con acceso directo e independiente al público. El aparcamiento se organiza bajo rasante, sustituyendo al actual que coloniza la parcela de forma muy poco hábil. Se plantean unas pautas para el diseño de la totalidad del ámbito (de unos 15.000 m²), cibiéndose este trabajo al desarrollo del edificio como tal, entendiendo la profundización del entorno como una cuestión proyectual.

1.1 Entorno

Nos encontramos en una de las dos orillas del estuario del río Nervión-Ibáizabal, podría decirse que en la menos antropizada de las dos. La dicotomía entre ambas orillas tiene un origen histórico tan potente que hoy en día perduran ambas dos fieles a su esencia. Mientras que una posee todo el tejido industrial, la otra disfruta de una cantidad generosa de sendas, jardines y, pese a estar también irremediablemente ocupada, aún sirve de espacio público junto al mar.

Uno puede pasear prácticamente sin interrupción por todo el borde del río desde antes de Bilbao hasta que llega a la parcela en cuestión. Aquí se encuentra con el elemento que da sentido a este lugar, un acantilado que corta el paseo para convertirlo en una suerte de rocas erosionadas por los embates del mar, y un paseo lleno de curiosidades que se desvanece con las olas.

En esta parcela confluyen una serie de elementos que tienen un origen común: es un suelo ganado al mar. Lo que era un paseo sinuoso, sensiblemente adaptado al litoral, ahora se convierte en un muro de piedra rigurosamente recto, de no más de 60cm de altura y 257 metros de largo.

El origen de este muro no es otro que el de proteger del mar al pequeño puerto pesquero que al menos mantiene su valor paisajístico. Este muro encerraba entonces un embalse que pronto se rellenó con el material excavado de las edificaciones construidas en el desarrollo del área de los años 50 y 60 que se encuentran a unos 40 metros de altura sobre el acantilado.

Es entonces cuando se conforma una parcela, fácilmente ajardinable de unos 15.000 m² como regalo para el pueblo. Después de haberse construido una piscina que más tarde se demolió junto con el chalet que la acompañaba, la parcela se convirtió parcialmente en un aparcamiento para paseantes y la gente que se reúne todavía hoy en los bares del antiguo poblado de pescadores que trepa sobre el acantilado y que con un repintado en blanco le da
un aspecto alejado de la arquitectura del entorno. Es de interés la sucesión de muros de piedra que acompañan la pendiente con escaleras que van en varias direcciones, pero no parecen llevar a ningún lado, y que resultan perfectas para poder sentarse a tomar un aperitivo mientras atardece en el noroeste.

Ahora este lugar es un reclamo para la gente, y se nos ofrece diseñar una escuela de música en este sitio. Una escuela para dos géneros musicales relativamente jóvenes antiguos a la vez, como el ámbito de proyecto.

Tratar de entorno natural un lugar que mira a la industria sería poco coherente, pero es innegable que está rodeado de elementos naturales. Las estrategias y la idea de proyecto quedan reflejadas en el primer libro de este proyecto, por lo que aquí se comenzará desde el desarrollo de la propuesta:

1.2 Propuesta urbanística:

El PGOU de Getxo contempla el ámbito completo como parte del Sistema General de Equipamientos y servicios urbanos, por lo que en principio el propio plan no presenta obstáculos a que se ocupe la parcela. No obstante, el muro de más de doscientos metros mencionado antes, se pretende preservar como parte del paseo.

La depuradora de la red de saneamiento de la zona se encuentra entre el puerto y la parcela, por lo que se tendrá en cuenta a la hora de diseñar la red que acomete al edificio.

En primer lugar, se pretende diluir el embudo que supone la entrada actual a la parcela entre vehículos y personas que confluyen desde varias direcciones. Por ello se plantea una pasarela que cierre el puerto, y pueda servir para mantener en paralelo el paseo y el acceso de vehículos de transporte que acometerán el edificio prácticamente a diario.

Además, la entrada al aparcamiento bajo rasante del edificio se mantendrá lo más alejada posible de este embudo, teniendo la posibilidad de anticiparla a la llegada del ámbito.

De esta forma sólo los vehículos autorizados para carga y descarga de material podrán acceder el edificio sobre rasante.
1.3 Intervención

Propuesta conceptual:
Las viviendas situadas encima del acantilado aun estando muy próximas, no se consideran como variable en este proyecto. Se trata de un tejido perteneciente a Algorta y está acompañado del antiguo barrio de pescadores cuyo trazado está aún más definido y no precisa encontrarse con los usos desarrollados en la cota de la explanada. No obstante, se propone una comunicación directa con el parque que salva las dos cotas que actualmente cuenta con un ascensor. Se decide reubicar este ascensor formando un puente que sirva de pórtico bajo el que entre sólo vehículos autorizados al espacio servidor que bordeará el edificio entre el muro y éste.

Es por ello que la composición del proyecto no busca encontrar relaciones con los edificios sobre el acantilado, llegando en su caso a contrastar notablemente con ambos tejiados.

Se decide configurar un volumen heterogéneo en sí mismo pero exento del entorno, ya que se entiende que cualquier arquitectura colocada aquí tiene que entenderse desde un punto de vista urbano más que de mimetización con la naturaleza. El edificio define sus bordes y su relación distante con el entorno, doblando y enfatizando las virtudes de esta parcela. Se entiende también como un telón de fondo del paseo.

Parece un error también robarle a la ciudad un terreno tan interesante para una función que, pese a no ser ajena al lugar, (se dan conciertos a menudo en la explanada), hace que el edificio se convierta en un intruso. Por ello se decide devolver el suelo que ocupa el edificio en la cubierta de forma que el paisaje pueda verse desde una cota lo suficientemente alta como para ganar en perspectiva y ofrecer perspectivas nuevas a un solar sentenciado por la planedad. Eso sí, esta nueva topografía tendrá los obstáculos que convierten a cualquier espacio libre en interesante, donde se generen lugares de sol y lugares de sombra, de intemperie y de cubrición, de mostrarse al viento o protegerse de él. En definitiva, el edificio se servirá también de esa cubierta para entrelazar lucernarios, escenarios y accesos desde el interior.

Propuesta formal:
Se busca encontrar un puente entre una escuela de música y la arquitectura a través de la geometría. Para ello se le busca un sentido a los dos géneros musicales que se van a impartir, estudiar e interpretar en el edificio. También aparece la necesidad de incorporar dos equipamientos de una escala superior a la docente y son los audiorios. Estos, lejos de ser mimetizados dentro del programa, buscan articular el edificio, junto con una pieza paralela que permita que el final del mismo, el paseo tenga un alzado en el que recordarse como urbano antes de llegar a la naturaleza más potente en su encuentro con el mar.

Tras buscar relaciones entre el mundo de la geometría y la música, se encuentran dos similes que pueden servir para configurar dos piezas tan importantes como los auditorios.

Por un lado, el Jazz es un género timido, perseguido, de orígenes humildes y originalmente interpretado en locales bohemos y sombríos, siempre de dudosa legalidad. En este sentido se relaciona a esta música con un volumen estereotómico entendiendo el espacio para el jazz como un vacío encontrado dentro de un lleno. Como si fuera la trastienda de otro local más glamuroso. Por ello se busca un volumen rotundo y enterrado, que se asome tórridamente mediante lucernarios que mantengan la luz muy controlada, siempre con esa presencia lúgubre de la que le jazz no se quiere desprender.

Por otro lado, la música experimental se muestra sin complejos y sin rumbo concreto, tomando herramientas del resto de géneros musicales convencionales para romper moldes y ofrecer algo nuevo e inómodo, que despierte curiosidad y emociones que la música tradicional, encasillada en normas no es capaz de alcanzar. Extrapolando esta idea a la geometría, uno se topa con las analogías n-dimensionales, en las que se toman herramientas de la geometría euclidiana para llegar a formas inexplicables con las normas de las matemáticas convencionales. Se necesitan sucesivas dimensiones para poder explicar sus ideas. Por tanto, la música experimental podría entenderse como la geometría tetradimensional. Ésta, por su parte, es ampliamente representada por su mínima esencia, el hiperpúlpico o teseracto, cuya traducción a la tridimensionalidad sería un cubo escondido dentro de otro cubo. Esta geometría, junto con una espacialidad y una disposición del público y del intérprete diferente a la convencional, puede servir como lugar para esta música.
En conclusión, se busca la compaginación de tres volúmenes principales, un cilindro enterrando, un cubo doble emergente y un paralelepípedo paralelo al mar. Todo ello unido por una plataforma que pretenda devolverle el suelo robado al lugar.

Pictograma en planta de la propuesta

Propuesta arquitectónica:

Sin dejar de lado la cuestión proyectual, se toman ciertos datos en cuenta a clima, disposición de la parcela y programa para tratar de enfocar bien el punto de partida sobre el diseño del edificio:

Para ello, se consultan registros y diferentes programas para saber con más exactitud las exigencias y posibilidades del ámbito, en primer lugar, se corrobora que llevar el edificio al final de la parcela es la decisión correcta para aprovechar el soleamiento y protegerse del viento predominante del noroeste.

Éstos son algunos de los datos extraídos del software Climate Consultant para la obtención de medidas pasivas para la eficiencia energética del edificio:

Gráfica psicrométrica:

Podemos llegar a un 99% de confort en el interior tomando 5 de las 16 estrategias propuestas por el programa. Éstas aseguran el confort especialmente en invierno mediante la producción de calor, mientras que en verano el edificio podría enfriarse de forma considerable utilizando medidas pasivas. Bloqueando la incisión solar y favoreciendo la ventilación natural del edificio se obtendrían resultados considerables, a los que habría que sumar la ventilación forzada.

Se profundizará en este aspecto en lo que respecta a la memoria constructiva y de instalaciones, pero el programa nos anticipa que las cargas térmicas en invierno serán mayores que en verano.

El recorrido solar nos muestra que en verano el sol comenzará a incidir sobre el edificio a partir de las 10:11 de la mañana para terminar escondiéndose detrás del acantilado por el Noroeste sobre las 20:00.
1.4 Prestaciones del edificio. Consideraciones:

1.4.1 Restauración del edificio.

Consideraciones:
- Sistema de celosía empleado.
Normativa de aplicación en este proyecto:

<table>
<thead>
<tr>
<th>Tema</th>
<th>Normativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguridad de utilización y accesibilidad</td>
<td>CTE DB SUA-Decreto 68/2000</td>
</tr>
<tr>
<td></td>
<td>RD 1314/1997 sobre ascensores</td>
</tr>
<tr>
<td>Protección contra incendios</td>
<td>CTE DB SI-Real Decreto 842/2013</td>
</tr>
<tr>
<td></td>
<td>Real Decreto 1942/1993</td>
</tr>
<tr>
<td></td>
<td>Reglamento de Instalaciones Contra Incendios</td>
</tr>
<tr>
<td>Protección contra el ruido</td>
<td>CTE DB-HR-Real Decreto 486/1997</td>
</tr>
<tr>
<td>Climatización y ventilación</td>
<td>CTE DB-HE2-RISE</td>
</tr>
<tr>
<td></td>
<td>Real Decreto 486/1997</td>
</tr>
<tr>
<td>Producción de calor</td>
<td>CTE DB-HE-CTE DB HS1</td>
</tr>
<tr>
<td>Agua fría y ACS</td>
<td>CTE DB-HS4</td>
</tr>
<tr>
<td>Residuos</td>
<td>CTE DB-HS2</td>
</tr>
<tr>
<td>Saneamiento y evacuación de aguas</td>
<td>CTE DB-HS1-CTE DB-HS5</td>
</tr>
<tr>
<td>Iluminación</td>
<td>CTE DB-HE3-CTE DB-SUA 4</td>
</tr>
<tr>
<td></td>
<td>CTE DB-SUA-UNE-12464</td>
</tr>
<tr>
<td>Electricidad</td>
<td>CTE DB-HE-CTE DB-SUA-REBT</td>
</tr>
<tr>
<td></td>
<td>ITC-BT-10-Real Decreto 482/2002</td>
</tr>
</tbody>
</table>
NORMATIVA DE APLICACIÓN DIRECTA EN EL PROYECTO:

DECRETO 68/2000 DEL 11 DE ABRIL SOBRE ACCESIBILIDAD (GV)
CTE DB SUA
CTE DB SI
DECRETO 68/2000 DEL 11 DE ABRIL SOBRE ACCESIBILIDAD (GV)

ANEXO III

AMBITO DE APLICACIÓN: Diseño de planes y redacción y ejecución de proyectos de EDIFICACIÓN. El presente Anexo será de aplicación a los edificios de titularidad pública o privada, edificaciones de nueva planta incluidas las subterráneas, excepto las viviendas unifamiliares.

Artículo 1: Objeto.
Condiciones técnicas de accesibilidad de los edificios, de titularidad pública o privada, para garantizar su uso y disfrute por las personas en los términos indicados en el Artículo 1 de la Ley 20/1997, de 4 de diciembre. Los edificios o instalaciones de USO DOCENTE Y PÚBLICA CONCURRENCIA, en sus áreas abiertas al público, aunque tengan reservado el derecho de admisión, serán accesibles en sus accesos con la vía pública y dispondrán de una zona de atención al público y de un aseo accesible a personas en silla de ruedas.

Artículo 3: Espacios exteriores
Los espacios libres exteriores de la edificación cumplirán las condiciones establecidas en el Anexo II, sobre Condiciones Técnicas de Accesibilidad del Entorno Urbano.

Artículo 4: Acceso al interior del edificio
Se garantiza la accesibilidad al interior de todos los edificios que componen la Escuela de Jazz y Música Experimental. La escuela, auditorios, servicios y sede del festival en su conjunto. La rasante y acceso al edificio se ejecuta a la misma cota que la calle por lo que no existen barreras arquitectónicas al acceso del edificio. Por otra parte, al contar con una cubierta transitable de uso público, el acceso a la misma se resuelve mediante ascensores de uso continuado y público además de las escaleras.

4.1 Puertas de acceso exteriores
1.- A ambos lados de la puerta existirá un espacio libre horizontal, no barrido por las hojas de la puerta, que permita inscribir un círculo libre de obstáculos de 1,80 m. de diámetro. Las puertas de entrada inscriben con holgura un círculo de 1,80 m.

2.- El ángulo de apertura no será inferior a 90° aunque se utilicen topes. El ángulo de apertura no será inferior a 90°

3.- La anchura mínima del hueco de paso será de 0,90 m., ampliándose a 1,20 m. en caso de puertas de apertura automática.

El paso es de 0,90 como mínimo m por cada puerta de entrada

4.- Cuando se utilicen puertas de dos hojas, la que habitualmente se abra dejará un paso libre de una anchura de 0, 90 m.

5.- En los supuestos de aquellas puertas que deban de disponer de los muelles y dispositivos de cerramiento automático se instalarán de forma que la resistencia máxima para la apertura de la puerta no supere los 30N.

Se cumplirá lo requerido por la norma.

6.- Cuando existan puertas cortavientos se mantendrán las condiciones anteriores.

Se cumplirá lo requerido por la norma.

4.1.1.1 Salidas de emergencia
En las salidas de emergencia, las puertas dispondrán de aperturas de doble barra, situadas respecto del nivel del suelo a 0, 90 m. la superior y a 0,20 m., la inferior, esta será con forma plana. Se accionarán por simple presión.

Se cumplirá lo requerido por la norma.

4.1.1.2 Puertas de apertura automática
Cuando se instalen puertas de apertura automática, su tiempo programado de apertura será el adecuado para el paso de personas con movilidad reducida que en ningún caso superará la velocidad de 0,5 m/s, e irán provistos de mecanismos de menoración de velocidad, además deberán estar provistos de dispositivos sensibles mediante la incorporación de cédulas de barrido vertical que abarque el hueco de la puerta para impedir el cierre automático de las mismas mientras su umbral esté ocupado por una persona y/o los elementos de que se asista como ayuda en la deambulación y de dispositivos sensibles que las abran automáticamente en caso de agravamiento, así como de un mecanismo manual de parada del sistema de apertura y cierre.

Se cumplirá lo requerido por la norma.

4.1.1.3 Puertas acristaladas
Las puertas de cristal se ejecutarán de vidrio de seguridad, disponiendo de un zócalo protector de 0,40 m. de altura y de dos bandas señalizadoras horizontales de 20 cm. de anchura y de marcado contraste cromático con el resto de la puerta y el fondo del vestíbulo, colocadas a una distancia desde sus bordes inferiores al suelo de 1,50 y 0,90 m. respectivamente.

La puerta escogida cumple con los requerimientos indicados y se colocarán las bandas pertinentes. Al estar situadas en u parametro también acristalado se destacarán para evitar cualquier problema de localización visual.

4.2 Vestíbulos
- Se diseñarán con formas regulares, evitándose pilares o columnas innecesarias y de dimensiones tales que pueda como mínimo inscribirse un círculo libre de obstáculos, como muebles o barrido de puertas de 1,80 m. de diámetro en general y de 1,50 m. en edificios de viviendas.

El vestíbulo cumple holgadamente las características señaladas.
- Se procurará que la iluminación sea permanente, sin sombras y con intensidad suficiente, mínimo 300 lux, evitando los efectos de deslumbramiento producidos en el tránsito entre el exterior y el interior.

 Se cumplirá lo requerido por la norma.

- Se diseñarán y ejecutarán teniendo en cuenta un buen contraste cromático entre suelos y paredes.

 Se cumplirá lo requerido por la norma, teniendo en cuenta la naturaleza del proyecto.

- Los pavimentos serán duros, antideslizantes en seco y en mojado, continuos y planos.

 Se cumplirá lo requerido por la norma, teniendo en cuenta la naturaleza del proyecto.

- Los interruptores serán fácilmente localizables, con buen contraste cromático con el paramento donde estén instalados, dotados de un piloto luminoso para su identificación visual y de diseño tal que permita su accionamiento a personas con problemas de manipulación. Se instalarán a una altura entre 0,90 y 1,20 m. del suelo.

 Los interruptores se instalarán a una altura de 1,10m aprox.

 Se cumplirá lo requerido por la norma.

Artículo 5: Comunicaciones interiores

5.2 Comunicación horizontal:

5.2.1 Pasillos

1.- Su anchura mínima libre de paso será en pasillos principales de edificios en general de 1,80 m.

 Todos los pasillos cuentan con un ancho mayor de 1.80m

2.- Los pasillos secundarios de los edificios en general incluido los aparcamientos, así como en pasillos de acceso a instalaciones, almacenes, serán de 1,20m. de anchura mínima libre de paso, disponiéndose de superficies de encuentro y giro de 1,50m x1,50m.

 Todos los pasillos cuentan con un ancho mayor de 1,20m y disponen de una zona de giro mínima de 150x150cm. Al tener en todos los casos anchos mayores a 1,50m, no se requiere la separación máxima entre giros de 1,80m

3.- Cuando sea necesario colocar elementos de mobiliario en los pasillos, corredores o similares, estarán situados todos en el mismo lado.

 Se cumplirá lo requerido por la norma.

4.- Los pasillos estarán debidamente iluminados según lo establecido en el Anejo IV, sobre Accesibilidad en la Comunicación.

 Se cumplirá lo requerido por la norma.

5.2.2 Puertas

1.- Las puertas del interior del edificio se ajustarán a lo descrito en este anejo en el punto 4.1.1, puertas de acceso exteriores, admitiéndose diámetros de giro de 1,20 m. en el lado de pasillos con esa anchura, cumpliendo además que los picaportes y tiradores no sobresaldrán.

 Se cumplirá lo requerido por la norma

2.- Se procurará el contraste cromático entre puertas y paredes según características del Anejo IV, sobre Accesibilidad en la Comunicación.

 Se cumplirá lo requerido por la norma.

5.2.3 Ventanas.

Cuando en las comunicaciones horizontales se sitúen ventanas sea cual fuere su sistema de apertura cumplirán las especificaciones que se establecen a continuación:

- Todos los mecanismos y cierre de ventanas se situarán a una altura de entre 0,80 y 1,10m., sin obstáculos que dificulten su alcance.

 Se cumplirá lo requerido por la norma.

- La apertura de las ventanas no invadirá el pasillo en una altura inferior a 2,20 m., en elementos comunes de edificios de viviendas o edificios de uso público. (ver figura n.º 5)

 Se cumplirá lo requerido por la norma.

5.3 Comunicaciones verticales

5.3.1 Escaleras

- No podrán construirse peldaños aislados

 El edificio no dispone de peldaños aislados

- La altura libre de paso mínima bajo las escaleras será de 2,20 m.

 La altura libre de paso mínima supera en todo caso los 2.20m

- Las escaleras estarán dotadas de contrahuella y carecerán de bocel.

 En la mayoría de los casos, sobre todo en las escaleras de emergencia se contará con contrahuella y se prescindirá de bocel. En el caso de escaleras más escultóricas como la del atrio de la escuela se carecerá de contrahuella, pero siempre cumpliendo con todos los requerimientos de seguridad ante deslizamiento.

- Están prohibidos los solape de escalones.

 El edificio no dispone de solapes de escalones

- El intradós del tramo más bajo de la escalera se ha de cerrar hasta una altura mínima de 2,20 m.

 Todos los huecos bajo escalera quedan protegidos mediante barandilla o murete de una altura superior a 1,00m
- Todas las escaleras se dotarán de pasamanos a ambos lados, si superan 1,20 m. de anchura y en todo el recorrido posible de los rellanos y de las mesetas intermedias. Las características del pasamanos serán las indicadas en el punto 5.3.3 siguiente. Cuando la anchura de la escalera supere los 2,40 m. se dispondrán, además, pasamanos intermedios.

 En todo caso se cumplen los requerimientos de barandillas

- Se dispondrá de señalización táctil en los accesos a las escaleras con las características establecidas en el Anexo IV, sobre Accesibilidad en la Comunicación.

 En todo caso se cumplen los requerimientos de escaleras en materia de comunicación.

- Las escaleras estarán debidamente iluminadas según lo establecido en el Anexo IV, sobre accesibilidad en la Comunicación.

 En todo caso se cumplen los requerimientos de escaleras en materia de comunicación

5.3.2 Rampas

El edificio no cuenta con ninguna rampa peatonal

5.3.3 Pasamanos

- La fijación será firme por la parte inferior, con una separación mínima de 4 cm. respecto a cualquier otro elemento en la horizontal y desde la superficie superior del pasamanos a cualquier obstáculo sobre la vertical, será de 10 cm.

 Se cumplirá lo requerido por la norma.

- El diseño será anatómico con una forma que permita adaptarse a la mano, recomendándose una sección circular equivalente entre 4 y 5 cm. de diámetro.

 Se cumplirá lo requerido por la norma.

- Los pasamanos serán dobles y continuos se colocarán a una altura de 100 ± 5 cm. el superior y de 70 ± 5 cm. el inferior.

 Se cumplirá lo requerido por la norma.

- Los pasamanos se prolongarán 45 cm. en los extremos de escaleras y rampas, como indicación de percepción manual que advierta del comienzo y final de los mismos, siempre que no invadan itinerarios, ni superficies de giro o encuentro. En estos casos el pasamanos deberá cubrir como mínimo el largo de la escalera.

 Se cumplirá lo requerido por la norma.

- Estarán rematados de forma que eviten los enganches.

 Se cumplirá lo requerido por la norma.

- Su color será contrastado con el resto de los elementos de rampas y escaleras.

 Se cumplirá lo requerido por la norma.
5.3.4 Ascensores

1.- La instalación de los ascensores destinados a personas y objetos, en toda edificación o en los espacios libres, deberá cumplir con su normativa específica en la materia. A este respecto será de aplicación el RD 1314/1997 que traspone la directiva 95/16/CE sobre ascensores y las normas europeas armonizadas de la serie EN-81, especialmente la referente a la accesibilidad de las personas discapacitadas. Deberá observarse, además lo especificado en el presente apartado.

Los ascensores y montacargas de aplicación en el edificio cumplirán con lo dictado en el RD 1314/1997 y en las normas europeas armonizadas EN-81

Los caracteres que informen de la existencia del ascensor (pictogramas, macro tipos, rótulos, etc.) deberán cumplir las especificaciones establecidas en el apartado de Sistemas de Señalización del Anejo IV, sobre Accesibilidad en la Comunicación.

Los ascensores accesibles se señalarán mediante SIA. Asimismo, contarán con indicación en Braille y arábigo en el número de planta en la jamba derecha en sentido salida de la cabina.

Se cumplirá lo requerido por la norma

Artículo 6: Dependencias

6.3 Salas de pública concurrencia. Auditorios.

1.- La accesibilidad a las salas de pública concurrencia como aulas, salas de espectáculos y de reuniones en general y otras de análoga naturaleza, con disposición de asientos, deberá ser garantizada mediante la observancia de los parámetros recogidos en el presente anejo y en el Anejo II, de Condiciones Técnicas sobre Accesibilidad en el entorno urbano.

2.- Se garantizará el acceso de manera autónoma al estrado o escenario.

El acceso a los auditorios es autónomo

3.- En dichas dependencias, se dispondrán cerca de los lugares de acceso a la sala y paso, asientos y espacios reservados y debidamente señalizados para personas con movilidad reducida, como mínimo por cada 100 o fracción 2 espacios para personas en silla de ruedas y 2 asientos para personas usuarias de ayudas en la deambulación.

Tanto el auditorio de Jazz como el de música experimental cuentan con plazas reservadas para personas con movilidad reducida. En el caso del primero éstas se sitúan en la cota más alta del mismo, mientras que, en el segundo, dichos usuarios se colocan a la altura del escenario a que acceden mediante un ascensor. Ambos auditorios cumplen holgadamente la reserva mínima de plazas, siendo en el primero de 7 sobre 200 y en el segundo de hasta 30 sobre 150.

4.- Las dimensiones mínimas de dichos espacios reservados serán de 1,40 m. por 1,10 m. libre de obstáculos para facilitar la maniobrabilidad de las sillas de ruedas.

Las dimensiones cumplen holgadamente los requerimientos al ser el ancho entre espacios reservados de 1,30m

5.- Se garantizará el no deslizamiento de la silla.
instalado incorpore el secado de los diversos elementos y sobre todo el del pavimento de manera que no permanezcan humedades o restos de agua que puedan derivar en patinazos, resbalones y caídas de las personas. En los sumideros de rejilla la luz máxima de ranura será de 1 cm.

5) La grifería será ergonómica, tipo mono mando de palanca larga con posibilidad de regular la temperatura e instalada a una altura de 0,90 m. El surtidor de agua en la ducha será manejable para personas con problemas en la manipulación, no fijo y regulable en altura sobre barra vertical, situada a un lateral del asiento. Las tuberías de agua caliente estarán protegidas con material aislante térmico. Se instalará demás válvula reguladora de temperatura para evitar las quemaduras a personas sin sensibilidad térmica.

6) Las duchas se instalarán sin resalte alguno, a nivel del pavimento, con las pendientes adecuadas para evitar el embalsamiento de agua. Si se complementa con bañera se tendrá en cuenta lo siguiente:
- Al lado de la bañera existirá un espacio libre de 1,80 m. de diámetro para permitir el giro de una silla de ruedas.
- Se instalarán barras colocadas en diagonal o verticalmente abarcando una altura de 0,70 a 1 m. de altura medidos desde el suelo de la bañera.
- Los mandos de la grifería se instalarán centrados en el lado longitudinal de la bañera.
- El borde superior de la bañera estará situado como máximo a 0,45 m. del pavimento.
- Se dispondrá de algún tipo de ayuda técnica para hacer las transferencias de entrada y salida a la bañera.

7) Los armarios se colocarán a una altura libre sobre el suelo de 0,35 m. para permitir el acercamiento de las personas en sillas de ruedas no sobrepasando una altura de 1,10 m. sobre el suelo y disponiendo en su interior de una barra para la percha situada entre 0,80 y 1,10 m. también medidos desde el suelo.

Artículo 8: Mobiliario

8.1 Condiciones generales

1.- El mobiliario que se coloque en las dependencias e instalaciones de uso público deberá cumplir lo especificado en este Anejo.

2.- El mobiliario destinado a la utilización reservada a las personas con movilidad reducida deberá cumplir los parámetros recogidos en el Anejo I, sobre Parámetros Antropométricos.

3.- Dicho mobiliario se situará siempre que sea posible alineado en el mismo lado, teniendo en cuenta:
- Que los pasos principales entre mobiliario serán de 1,80 m.
- Todo el mobiliario deberá tener los bordes o esquinas romos.
- El mobiliario tendrá un diseño tal que pueda ser utilizado por personas usuarias de sillas de ruedas y se colocará de forma que no presente dificultades o peligro para las personas usuarias de bastones de movilidad o con problemas de visión. Todo el mobiliario deberá situarse de forma que sea fácilmente localizable disponiendo de buena iluminación y fácilmente detectable mediante la utilización de un bastón de movilidad.

- En las zonas de espera con asientos, estos se dispondrán de forma regular, fuera de las zonas de tránsito dejando un pasillo libre que las comunique fácilmente con los accesos y las diferentes instalaciones del edificio. Si es necesario disponerlos en filas, la distancia mínima entre ellas será de 0,90 m. En estas zonas al menos un asiento estará situado a 45 cm. del suelo y dispondrá de reposabrazos abatible situado a una altura de 20 cm. medido desde el asiento.

8.2 Mostradores y ventanillas

1.- Los mostradores y ventanillas de atención al público, estarán a una altura máxima de 1,10 m. y contarán con un tramo de 1,20 m. de longitud mínima, a una altura de 0,80 m. y un hueco en su parte inferior libre de obstáculos de 0,70 m. de alto y 0,50 m. de profundidad.

2.- La intensidad de luz en la zona de mostrador del usuario será como mínimo 500 lux.

8.7 Información y señalización

1.- Los indicadores de información y señalización que se coloquen dentro del edificio se ubicarán de forma que resulten accesibles y puedan ser leídos por una persona sentada y en su caso por personas con problemas de visión.

2.- Se situarán de forma que no interfieran los itinerarios peatonales y/o el uso del mobiliario e instalaciones del edificio.

3.- Cuando no se instalen adosados en los paramentos y se sitúen por debajo de 2,20 m. se proyectarán hasta el suelo en toda la mayor proyección en planta, sabiendo diseñarse con aristas redondeadas.

4.- Serán fácilmente localizables y estarán iluminados uniformemente con elevado nivel luminoso, el resto de características se ajustarán a las condiciones establecidas en el Anejo IV, sobre Accesibilidad en la comunicación.
9.5 Las dimensiones mínimas de las plazas reservadas serán de 6,00 m. de largo por 3,60 m. de anchura en el caso de aparcamiento en línea y de 5,00 m. de largo por 3,60 m. de anchura en el caso de aparcamiento en batería.

CUMPLIMIENTO DEL CTE DB SUA

El objetivo del requisito básico “Seguridad de utilización y accesibilidad” consiste en reducir a límites aceptables el riesgo de que los usuarios sufran daños inmediatos en el uso previsto de los edificios, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento, así como en facilitar el acceso y la utilización no discriminatoria, independiente y segura de los mismos a las personas con discapacidad.

SUA 1: Seguridad frente al riesgo de caídas

1 Resbaladicia de los suelos

En el interior del edificio se contará como norma general con suelos de clase 1, mientras que en escaleras y zonas húmedas se contará con suelos de clase 3. Dicha clasificación se obtiene mediante la tabla 1.2 de dicho documento, donde, además, en su tabla 1.1 dichas clases suponen una resbaladicia (Rd) entre 15 y 35 para la clase 1 y mayor de 45 para la clase 3. El valor de resistencia al deslizamiento Rd es el valor PTV obtenido mediante el ensayo del péndulo descrito en la norma UNE 41901:2017 EX. La muestra seleccionada será representativa de las condiciones más desfavorables de resbaladicia.

2 Discontinuidades en el pavimento

Excepto en zonas de uso restringido o exteriores, el suelo no tendrá juntas que presenten un resalto mayor de 4 mm, los elementos salientes del nivel de pavimento no sobresaldrán más de 12 mm. El suelo no presenta perforaciones o huecos en los que pueda introducirse una esfera de 1,5 cm de diámetro (las juntas entre las maderas son de 2 mm). No se dispone de escalón aislado o dos consecutivos en ningún punto del proyecto. No hay diferencia de cota entre el nivel de la calle y el del interior de la planta baja.

3 Desniveles

3.1 Protección de desniveles:

Se disponen barreras de protección en los desniveles, huecos y aberturas, etc con una diferencia de cota mayor que 55cm.

3.2 Características de las barreras de protección

Todas las barreras de protección planteadas en el proyecto serán mayores que 1,10m independientemente de la altura que salven como norma general, cumpliendo con los requisitos de altura marcados en este capítulo. Las barreras de protección tendrán una resistencia y una rigidez suficiente para resistir la fuerza horizontal establecida en el apartado 3.2.1 del Documento Básico SE-AE. Todas las barreras que se plantean en el proyecto cumplen con las características constructivas requeridas, dado que ninguna de las mismas es escalable en ninguna franja y todas ellas cumplen con la condición de no permitir el paso de una esfera de 10 cm de diámetro en toda la franja vertical. Al tratarse de un cerramiento de barandilla en la mayoría de casos formado por la celosía auto portante de barras de acero de 12mm, se considera holgadamente resistente.
3.2.4 Barreras situadas delante de una fila de asientos fijos

"La altura de las barreras de protección situadas delante de una fila de asientos fijos podrá reducirse hasta 70 cm si la barrera de protección incorpora un elemento horizontal de 50 cm de anchura, como mínimo, situado a una altura de 50 cm, como mínimo. En ese caso, la barrera de protección será capaz de resistir una fuerza horizontal en el borde superior de 3 kN/m y simultáneamente con ella, una fuerza vertical uniforme de 1,0 kN/m, como mínimo, aplicada en el borde exterior (véase figura 3.3)."

En el caso del auditorio de Jazz, la barandilla tiene > de 90cm de altura.

4 Escaleras y rampas

4.1 Escaleras de uso restringido

Las escaleras de uso restringido propuestas en el proyecto cuentan con un ancho mayor al mínimo de 80cm, siendo éstas a su vez compatibles con el CTE DB SI, por lo que su ancho supera holgadamente el mínimo que establece esta norma. A su vez, la relación entre huella y contrahuella está dentro de la norma ya que se utiliza una huella de 29cm y tabica de 17cm para todo el edificio como norma general, exceptuando la escalera principal de acceso a la plataforma, cuyas dimensiones, pese a cumplir con la norma, resultan más complejas. No existen mesetas con escalones a 45º, y aunque sí que existan escaleras con escalones sin tabica, cumplen con las condiciones de superposición de 2.5 cm de las huellas (29+2.5).

Además, todas las escaleras cuentan con la protección pertinente en su lado abierto.

4.2 Escaleras de uso general

Todas las escaleras del proyecto se desarrollan en tramos rectos. La huella menor de todo el proyecto es de 28 cm (+2,5 cm superpuesto). La contrahuella mayor de todas las escaleras de uso general no llega a los 18 cm y en todo caso se cumple el condicionante geométrico S4 cm ≤ 2C + H ≤ 70 cm, siendo C la contrahuella y H la huella.

Los peldaños sin tabica se disponen únicamente en puntos en los que el recorrido de evacuación es descendente. No existen tramos de escaleras con menos de 3 escalones.

Dado que se dispone de ascensor en todos los des niveles del proyecto, los tramos de las escaleras cumplen con la condición de no salvar alturas mayores a 3,20 m.

Las mesetas en ningún caso son menores a 1m.

En todos los tramos de escaleras se garantizará una regularidad que evite saltos de contrahuella de ±1 cm. La anchura útil de todas las escaleras de uso general mínima es de 100 cm, cumpliendo, del mismo modo con los criterios exigidos en el apartado 4 de la Sección SI 3 del DB-SI. Al desarrollar las escaleras en tramos rectos, las mesetas cumplen con los criterios de ancho mínimo igual al de los tramos inclinados. En las zonas de uso público se marcará con una franja visual y táctil, tal y como se exige el arranque de los tramos, integrado en el propio pavimento de acabado. En todas las escaleras se dispone de pasamanos, al menos en el lado abierto y la altura del mismo estará siempre comprendida, según los criterios de diseño de los espacios a 105 ±-5cm.
4.3 Rampas
En este apartado el Decreto 68/2000 del 11 de Julio en materia de accesibilidad del Gobierno vasco resulta más restrictivo, por lo que se tomará el mismo para los parámetros en materia de rampas.

5 Limpieza de acristalamientos
Toda la superficie vidriada del Sur y Suroeste posee por la parte exterior una pasarela de mantenimiento entre la celosía y el cerramiento en ambas plantas, por lo que se garantiza su limpieza por el exterior de forma segura. En el resto de cerramientos del edificio, las ventanas nunca quedan a una altura mayor que 6m por lo que su mantenimiento puede efectuarse desde el interior sin suponer mayor peligro.

SUA 2: Seguridad frente a riesgo de impacto o de atrapamiento

1 Impacto
1.1 Impacto con elementos fijos
La altura libre, así como la cabezada mínima en la totalidad del proyecto es superior a 2,20m. Los umbrales de puerta mínimos son de 2,10m. En las fachadas no sobresalen elementos fijos a una altura menor de 2,20m, ni hay elementos sobresalientes en las zonas de circulación.

1.2 Impacto con elementos practicables
Se cumple que en las zonas de circulación el barrido de las puertas que abren a la misma no invade el ancho de los pasillos menores de 2.5m, siendo ello debido a que son correderas. Por otra parte, sabiendo que: “Tampoco es aplicable a aquellos recintos, puertas y pasillos para los que, aunque no sean de uso restringido ni de ocupación nula, se justifique suficientemente que el riesgo de impacto en la apertura es mínimo.”, se considera irrelevante el peligro de impacto en ciertas zonas del edificio donde la apertura sí invade el ancho.

En ningún caso los pasillos de menos de 2.50m son interrumpidos por el abatimiento de una puerta.

1.3 Impacto con elementos frágiles
Los vidrios existentes en las áreas con riesgo de impacto que se indican en el punto 2 siguiente de las superficies acristaladas que no dispongan de una barrera de protección conforme al apartado 3.2 de SUA 1, tendrán una clasificación de prestaciones X(Y)Z determinada según la norma UNE-EN 12600:2003 cuyos parámetros cumplan lo que se establece en la tabla 1.1. Se excluyen de dicha condición los vidrios cuya mayor dimensión no exceda de 30 cm.

2 Atrapamiento
Con el fin de limitar el riesgo de atrapamiento producido por una puerta corredera de accionamiento manual, incluidos sus mecanismos de apertura y cierre, la distancia a hasta el objeto fijo más próximo será 20 cm, como mínimo.

La apertura de las puertas correderas contempla la medida mínima en cuanto a atrapamiento.

SUA 3: Seguridad frente al riesgo de aprisionamiento en recintos

1 Aprisionamiento
Se cumplirá con lo dispuesto en los siguientes puntos de esta normativa.
1 Cuando las puertas de un recinto tengan dispositivo para su bloqueo desde el interior y las personas puedan quedar accidentalmente atrapadas dentro del mismo, existirá algún sistema de desbloqueo de las puertas desde el exterior del recinto. Excepto en el caso de los baños o los aseos de viviendas, dichos recintos tendrán iluminación controlada desde su interior.

2 En zonas de uso público, los aseos accesibles y cabinas de vestuarios accesibles dispondrán de un dispositivo en el interior fácilmente accesible, mediante el cual se transmita una llamada de asistencia perceptible desde un punto de control y que permita al usuario verificar que su llamada ha sido recibida, o perceptible desde un paso frecuente de personas.

3 La fuerza de apertura de las puertas de salida será de 140 N, como máximo, excepto en las situadas en itinerarios accesibles, en las que se aplicará lo establecido en la definición de los mismos en el anexo A Terminología (como máximo 25 N, en general, 65 N cuando sean resistentes al fuego).

4 Para determinar la fuerza de maniobra de apertura y cierre de las puertas de maniobra manual batientes/pivotantes y deslizantes equipadas con pestillos de media vuelta y destinadas a ser utilizadas por peatones (excluidas puertas con sistema de cierre automático y puertas equipadas con herrajes especiales, como por ejemplo los dispositivos de salida de emergencia) se empleará el método de ensayo especificado en la norma UNE-EN 12046-2:2000.

SUA 4 Seguridad frente al riesgo causado por iluminación inadecuada

1 Alumbrado en zonas de circulación

La normativa hace alusión a los siguientes requerimientos:

“En cada zona se dispondrá una instalación de alumbrado capaz de proporcionar, una iluminancia mínima de 20 lux en zonas exteriores y de 100 lux en zonas interiores, excepto aparcamientos interiores en donde será de 50 lux, medida a nivel del suelo. El factor de uniformidad media será del 40% como mínimo.”

Se cumplirá con dichos requerimientos.

“En las zonas de los establecimientos de uso Público Concurrencia en las que la actividad se desarrolle con un nivel bajo de iluminación, como es el caso de los cines, teatros, auditorios, discotecas, etc., se dispondrá una iluminación de balizamiento en las rampas y en cada uno de los peldaños de las escaleras. El objetivo de la iluminación de balizamiento no es “iluminar” una superficie como en el caso del alumbrado de emergencia, sino servir de referencia al señalar que en esa posición existe un escalón o una rampa. En este sentido, los pilotos de balizamiento existentes en el mercado cumplen con esta condición. El CTE no establece un nivel de iluminación de estos pilotos, sino la exigencia de que se dispongan.”

Se dispondrán de los mismos.

2. Alumbrado de emergencia

Se cumple todo lo dictado en los siguientes requerimientos:

“Los edificios dispondrán de un alumbrado de emergencia que, en caso de fallo del alumbrado normal, suministre la iluminación necesaria para facilitar la visibilidad a los usuarios de manera que puedan abandonar el edificio, evite las situaciones de pánico y permita la visión de las señales indicativas de las salidas y la situación de los equipos y medios de protección existentes Contarán con alumbrado de emergencia las zonas y los elementos siguientes:

a) Todo recinto cuya ocupación sea mayor que 100 personas; (auditorios)

b) Los recorridos desde todo origen de evacuación hasta el espacio exterior seguro y hasta las zonas de refugio, incluidas las propias zonas de refugio, según definiciones en el Anexo A de DB SI;

c) Los aparcamientos cerrados o cubiertos cuya superficie construida exceda de 100 m2, incluidos los pasillos y las escaleras que conduzcan hasta el exterior o hasta las zonas generales del edificio;

d) Los locales que alberguen equipos generales de las instalaciones de protección contra incendios y los de riesgo especial, indicados en DB-SI 1;

e) Los aseos generales de planta en edificios de uso público;

f) Los lugares en los que se ubiquen cuadros de distribución o de accionamiento de la instalación de alumbrado de las zonas antes citadas;

g) Las señales de seguridad;

h) Los itinerarios accesibles.”

El edificio cuenta con alumbrado de emergencia en los auditorios, vestíbulos pasillos y almacenes de más de 100m². Las luminarias cumplirán las condiciones necesarias y se dispondrán en las escaleras y cambios de dirección. Se situarán como mínimo a 2m de altura por encima del nivel del suelo, así como en los recorridos de evacuación sobre las puertas de los mismos.

La instalación es fija y está provista de su propia fuente de energía, la cual entrará en funcionamiento automáticamente al producirse un fallo en la alimentación en la instalación corriente. Se considera como fallo de alimentación el descenso de la tensión de alimentación por debajo del 70% de su valor nominal. El alumbrado de emergencia de las vías de evacuación alcanza al menos el 50% del nivel de iluminación requerido al cabo de los 5s y el 100% a los 60s. La instalación cumplirá las condiciones de servicio que se indican a continuación, durante una hora, como mínimo, a partir del instante en que tenga lugar el fallo:

a) En las vías de evacuación cuya anchura no exceda de 2 m, la iluminancia horizontal en el suelo debe ser, como mínimo, 1 lux a lo largo del eje central y 0,5 lux en la banda central que comprende al menos la mitad de la anchura de la vía. Las vías de evacuación con anchura superior a 2 m pueden ser tratadas como varias bandas de 2 m de anchura, como máximo.

b) En los puntos en los que están situados los equipos de seguridad, las instalaciones de protección contra incendios de utilización manual y los cuadros de distribución del alumbrado, la iluminancia horizontal es de 5 lux, como mínimo.

c) A lo largo de la línea central de una vía de evacuación, la relación entre la iluminancia máxima y la mínima no debe ser mayor que 40:1. d) Los niveles de iluminación establecidos se obtienen considerando nulo el factor de reflexión sobre paredes y techos y contemplando
un factor de mantenimiento que engloba la reducción del rendimiento luminoso debido a la suciedad de las luminarias y al envejecimiento de las lámparas.

e) Con el fin de identificar los colores de seguridad de las señales, el valor mínimo del índice de rendimiento cromático Ra de las lámparas será 40.

La iluminación de las señales de evacuación indicativas de las salidas y de las señales indicativas de los medios manuales de protección contra incendios y de los primeros auxilios, cumplirán los siguientes requisitos:

a) La luminancia de cualquier área de color de seguridad de la señal debe ser al menos de 2 cd/m² en todas las direcciones de visión importantes;

b) La relación de la luminancia máxima a la mínima dentro del color blanco o de seguridad no debe ser mayor de 10:1, debiéndose evitar variaciones importantes entre puntos adyacentes;

c) La relación entre la luminancia Lblanco y la luminancia Lcolor >10, no será menor que 5:1 ni mayor que 15:1.

d) Las señales de seguridad deben estar iluminadas al menos al 50% de la iluminancia requerida, al cabo de 5 s, y al 100% al cabo de 60s.

SUA 5 Seguridad frente al riesgo causado por situaciones de alta ocupación

Las condiciones establecidas en esta Sección son de aplicación a los graderíos de estadios, pabellones polideportivos, centros de reunión, otros edificios de uso cultural, etc. previstos para más de 3000 espectadores de pie. En todo lo relativo a las condiciones de evacuación se es también de aplicación la Sección SI 3 del Documento Básico DB-SI.

Es por ello que este apartado no es de aplicación en este proyecto, ya que las ocupaciones máximas de los auditores son de 200 y 150 personas respectivamente. Aún así, se limitará el riesgo derivado de situaciones con alta ocupación facilitando la circulación de las personas y la sectorización con elementos de protección y contención en previsión del riesgo de aplastamiento.

SUA 6 Seguridad frente al riesgo de ahogamiento

Esta exigencia básica no es de aplicación en el presente proyecto.

SUA 7 Seguridad frente al riesgo causado por vehículos en movimiento

Se limitará el riesgo causado por vehículos en movimiento atendiendo a los tipos de pavimento y la señalización y protección de las zonas de circulación rodada y de las personas.

1 Ámbito de aplicación

El ámbito de zona de aparcamiento del proyecto es de aplicación según lo dispuesto.

2 Características constructivas:

Se dispone de una franja de incorporación de 5 metros de largo con una pendiente no superior al 5%. La rampa es de uso exclusivo para vehículos.

3 Protección de recorridos peatonales:

En plantas de Aparcamiento con capacidad mayor que 200 vehículos o con superficie mayor que 5000 m2, los itinerarios peatonales de zonas de uso público se identificarán mediante pavimento diferenciado con pinturas o relieve, o bien dotando a dichas zonas de un nivel más elevado. Cuando dicho desnivel exceda de 55 cm, se protegerá conforme a lo que se establece en el apartado 3.2 de la sección SUA 1. En este caso se resolverá con un pavimento diferenciado.

4 Señalización:

Se señalará tanto la velocidad de circulación, como los sentidos de circulación. Asimismo, se marcarán los gálibos máximos de los vehículos de carga y descarga de la lavandería y la cocina por encargo, y las zonas de maniobra de estos vehículos. También se dispondrán en los accesos de los vehículos dispositivos que alerten a los conductores de la presencia de peatones. Del mismo modo, se dispondrá una señal lumínosa, para los peatones con el fin de señalar la utilización de los accesos por parte de los vehículos, como sistema complementario.

SUA 8 Seguridad frente al riesgo causado por la acción del rayo

Se limitará el riesgo de electrocución y de incendio causado por la acción del rayo, mediante instalaciones adecuadas de protección contra el rayo. Será necesaria la instalación de un sistema de protección contra el rayo, cuando la frecuencia esperada de impactos (Nₑ) sea mayor que el riesgo admisible (Nₑ). La frecuencia esperada de impactos, Ne, puede determinarse mediante la expresión:

\[Nₑ = Nₑ Aₑ Cₑ 10^{-6} \text{ [nº impactos/año]} \]

Donde:

- \(Nₑ \) es la densidad de impactos sobre el terreno = 5.00
- \(Aₑ \) es la superficie de captura equivalente del edificio aislado en m², que es la delimitada por una línea trazada a una distancia 3H de cada uno de los puntos del perímetro del edificio, siendo
H la altura del edificio en el punto del perímetro considerado. De donde obtenemos un área de 18.049 m².

Por tanto, al no existir edificios dentro del perímetro 3H, se considera como aislado y su C₁ resultaría ser 1.

El riesgo admisible, Na, puede determinarse mediante la expresión:

\[N_a = \frac{5,5}{C_2C_3C_4} \times 10^{-3} \]

siendo:

C₂ coeficiente en función del tipo de construcción, conforme a la tabla 1.2;
C₃ coeficiente en función del contenido del edificio, conforme a la tabla 1.3;
C₄ coeficiente en función del uso del edificio, conforme a la tabla 1.4;
C₅ coeficiente en función de la necesidad de continuidad en las actividades que se desarrollan en el edificio, conforme a la tabla 1.5.

Obtenemos los siguientes resultados:
\[N_e = 0.924 \text{ impactos/año} \]
\[N_a = 0.018 \]
\[N_e > N_a \]

Por tanto, será necesaria la instalación de un sistema protección contra el rayo.

La eficacia de la misma queda medida según la siguiente fórmula:

\[E = 1 - \frac{N_e}{N_a} \]

Donde obtenemos que E = 0.98.

De este modo, teniendo en cuenta la tabla 2.1, se deduce que el nivel de protección de los elementos de la instalación debe ser 1.

SUA 9: Accesibilidad

Con el fin de facilitar el acceso y la utilización no discriminatoria, independiente y segura de los edificios a las personas con discapacidad se cumplirán las condiciones funcionales y de dotación de elementos accesibles que se establecen a continuación.

1 Condiciones de accesibilidad

1.1 Condiciones funcionales

1.1.1 Accesibilidad entre plantas del edificio
“Los edificios de otros usos en los que haya que salvar más de dos plantas desde alguna entrada principal accesible al edificio hasta alguna planta que no sea de ocupación nula, o cuando en total existan más de 200 m² de superficie útil (ver definición en el anexo SI A del DB SI) excluida la superficie de zonas de ocupación nula en plantas sin entrada accesible al edificio, dispondrán de ascensor accesible o rampa accesible que comunique las plantas que no sean de ocupación nula con las de entrada accesible al edificio.”

El edificio por completo queda conectado por ascensores, incluyendo sótano y la cubierta transitable mediante dos ascensores. Uno en el brazo porticado que da al sur, y el otro desde la entrada al edificio.

1.1.2 Accesibilidad en las plantas del edificio

“Los edificios de otros usos dispondrán de un itinerario accesible que comunique, en cada planta, el acceso accesible a ella (entrada principal accesible al edificio, ascensor accesible, rampa accesible) con las zonas de uso público, con todo origen de evacuación (ver definición en el anexo SI A del DB SI) de las zonas de uso privado exceptuando las zonas de ocupación nula, y con los elementos accesibles, tales como plazas de aparcamiento accesibles, servicios higiénicos accesibles, plazas reservadas en salones de actos y en zonas de espera con asientos fijos, alojamientos accesibles, pun-tos de atención accesibles, etc.”

El edificio cumple con los requerimientos necesarios para hacer accesibles las plantas del edificio.

1.2 Dotación de elementos accesibles

1.2.3 Plazas de aparcamiento accesibles: Se contará con una plaza accesible por cada 33 plazas corrientes como mínimo, tal y como dice la norma. En el proyecto se cuenta con una plaza accesible por cada 30 plazas de aparcamiento corrientes.

1.2.4 Plazas reservadas

“Las plazas con asientos fijos para el público, tales como auditorios, cines, salones de actos, espectáculos, etc., dispondrán de la siguiente reserva de plazas:

a) Una plaza reservada para usuarios de silla de ruedas por cada 100 plazas o fracción.

b) En espacios con más de 50 asientos fijos y en los que la actividad tenga una componente auditiva, una plaza reservada para personas con discapacidad auditiva por cada 50 plazas o fracción.”

En los auditorios la reserva de plazas queda holgadamente cubierta tal y como se ha redactado en la justificación del Decreto 68/2000 del 11 de julio en materia de accesibilidad del Gobierno Vasco. Al ser más restrictiva, se ha optado por justificar aquella.

1.2.6 Servicios higiénicos accesibles.

Al ser más restrictivo, se ha optado por justificar el Decreto 68/2000 del 11 de julio en materia de accesibilidad del Gobierno Vasco.

2 Condiciones y características de la información y señalización para la accesibilidad

1 Dotación

Todos los elementos accesibles (entradas, itinerarios, ascensores, aseos, plazas de aparcamiento, ...) se señalan de forma adecuada, conforme al apartado 2.2 de este capítulo.

ANEJOS

Al ser más restrictivo, se ha optado por justificar el Decreto 68/2000 del 11 de julio en materia de accesibilidad del Gobierno Vasco. No obstante, en las siguientes dos materias se ha justificado mediante la presente normativa:

A.4 Punto de atención accesible:

Su plano de trabajo tiene una anchura de 0,80 m, como mínimo, está situado a una altura de 0,85 m, como máximo, y tiene un espacio libre inferior de 70 x 80 x 50 cm.

A.3 Aseos accesibles:

Los aseos accesibles cumplen con lo siguiente:

Espacio para giro de diámetro Ø 1,50 m libre de obstáculos. Puertas que cumplen las condiciones del itinerario accesible. Son abatibles hacia el exterior o correderas. Lavabo con espacio libre inferior mínimo de 70 (altura) x 50 (profundidad) cm. Sin pedestal. Altura de la cara superior ≤ 85 cm.
CUMPLIMIENTO DEL CTE DB SI

El objetivo del requisito básico “Seguridad en caso de incendio” consiste en reducir a límites aceptables el riesgo de que los usuarios de un edificio sufran daños derivados de un incendio de origen accidental, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento. El Documento Básico DB-SI especifica parámetros objetivos y procedimientos cuyo cumplimiento asegura la satisfacción de las exigencias básicas y la superación de los niveles mínimos de calidad propios del requisito básico de seguridad en caso de incendio, excepto en el caso de los edificios, establecimientos y zonas de uso industrial.

SI 1: Propagación interior

1 Compartimentación en sectores de incendio

Los edificios se deben compartimentar en sectores de incendio según las condiciones que se establecen en la tabla 1.1 de esta Sección.

Las superficies máximas indicadas en dicha tabla para los sectores de incendio pueden duplicarse cuando estén protegidos con una instalación automática de extinción.

A efectos del cómputo de la superficie de un sector de incendio, se considera que los locales independientes que estén contenidos en dicho sector no forman parte del mismo.

La resistencia al fuego de los elementos separadores de los sectores de incendio debe satisfacer las condiciones que se establecen en la tabla 1.2 de esta Sección.

A efectos de la presente justificación, se tienen en cuenta los siguientes usos del edificio a la hora de sectorizar: Pública concurrencia para los dos auditorios y sus servicios en sótano, planta baja y planta primera; Uso docente para la escuela en sus dos volúmenes, que se desarrolla en planta baja y primera. Por último, el aparcamiento en planta de sótano formará un sector por sí mismo.

Dichos usos se introducen en las tablas 1.2 del presente documento para obtener la resistencia al fuego de paredes, techos y puertas que delimiten entre sectores de incendio. Por ello obtenemos que:

- Bajo rasante: EI 120 para cualquier cerramiento entre sectores de incendio
- Sobre rasante: EI 90 para todos los cerramientos, ya que, aunque exista un uso docente (EI 60) dentro del edificio, colinda en todo momento con sectores de pública concurrencia.

Se decide colocar por norma general puertas EI 120 entre sectores bajo rasante, puertas EI 90 para las dos primeras plantas bajo rasante, y puertas EI 120 para las plantas superiores a la cubierta en el caso del auditorio de música experimental.

Las Puertas de paso entre sectores de incendio se calculan en base a la siguiente fórmula: EI = t·C5 siendo t la mitad del tiempo de resistencia al fuego requerido a la pared en la que se encuentre, o bien la cuarta parte cuando el paso se realice a través de un vestíbulo de independencia y de dos puertas C5. Las resistencias al fuego de las puertas de paso quedan reflejadas en los planos de planta anexos a este texto.

2 Locales y zonas de riesgo especial

Los locales y zonas de riesgo especial integrados en los edificios se clasifican conforme los grados de riesgo alto, medio y bajo según los criterios que se establecen en la tabla 2.1. Los locales y las zonas así clasificados deben cumplir las condiciones que se establecen en la tabla 2.2.

La sala de calderas, las salas de máquinas de instalaciones de climatización (según Reglamento de Instalaciones Térmicas en los edificios, RITE, aprobado por RD 1027/2007, de 20 de julio, BOE 2007/08/29), los locales de contadores de electricidad, así como los centros de transformación suponen en este caso locales de riesgo especial bajo, por lo que la resistencia al fuego de los elementos compartimentadores se rigen en base a la tabla 2.2 de este apartado y queden representados sobre plano.

Los almacenes de ambos auditorios se clasifican como locales de riesgo medio al contener cada uno un volumen menor a los 400m³. Por otro lado, los almacenes de residuos se encuentran entre los 15 y 30 m³, por lo que son considerados también locales de riesgo medio. En el caso de los camerinos, que ocupan una superficie de 36m² cada uno (ya que quedan excluidas las zonas de aseo), resultan como locales de riesgo bajo y los vestuarios para trabajadores quedan excluidos de esta clasificación por no contar con la superficie mínima de 20 m² para su consideración como local de riesgo especial.

Por último, también las salas de maquinaria de ascensores se consideran locales de riesgo bajo.

La siguiente tabla 2.2 recoge las condiciones de resistencia al fuego y recorridos de evacuación que deben cumplir los locales de riesgo especial. Dichos requerimientos quedan registrados en los planos adjuntos a este texto.
3 Espacios ocultos. Paso de instalaciones a través de elementos de compartimentación de incendios

La compartimentación contra incendios de los espacios ocupables debe tener continuidad en los espacios ocultos, tales como patínillos, cámaras falsos techos, suelos elevados etc. Salvo cuando éstos estén compartimentados respecto de los primeros al menos con la misma resistencia al fuego, pudiendo producirse ésta a la mitad en los registros para mantenimiento.

La resistencia al fuego requerida a los elementos de compartimentación de incendios se debe mantener en los puntos en los que dichos elementos son atravesados por elementos de las instalaciones, tales como cables, tuberías, conducciones, conductos de ventilación, etc., excluidas las penetraciones cuya sección de paso no exceda de 50 cm².

Por ello se opta por la solución de implementar collarines pasantes para cada lado del muro que atraviesen las instalaciones, cogiendo la resistencia al fuego del sector o local más restrictivo.

4 Reacción al fuego de elementos constructivos, decorativos y de mobiliario

Todos ellos deben cumplir con lo establecido en la siguiente tabla 4.1, mientras que las condiciones de reacción al fuego de los componentes de las instalaciones eléctricas (cables, tubos, bandejas, regletas, armarinos, etc.) se regulan en su reglamentación específica.

En este caso, todos los elementos constructivos o de mobiliario llevarán el marcado CE correspondiente y si en el caso de no obtenerlo, se colocarán elementos que cumplan lo exigido en esta norma.

SI 2: Propagación exterior

1 Medianeras y fachadas

Al no existir ningún edificio colindante ni sectores de incendios que cumplan, este apartado de la normativa sólo es de aplicación en el caso de fachadas entre sectores de incendio diferenciados, y éstos cumplen con los requerimientos geométricos necesarios para evitar la propagación del fuego por el exterior de las fachadas.

Por otra parte, en el caso de los cuartos de instalaciones del sótano, que resultan estar al aire libre pese a estar soterrados, se tienen en cuenta estos requerimientos geométricos para resolver la posible propagación del fuego a través de la fachada exterior. En este caso se opta por realizar un saliente de forjado de forma que el posible fuego. Esta medida no es estrictamente necesaria, pero se cree conveniente dada la situación especial de los cuartos de instalaciones que se encuentran en el sótano.

La clase de reacción al fuego de los sistemas constructivos de fachada que ocupen más del 10% de su superficie será, en función de la altura total de la fachada:
- D-s3,d0 en fachadas de altura hasta 10 m;
- B-s3,d0 en fachadas de altura superior a 18 m.

Dicha clasificación considera la condición de uso final del sistema constructivo incluyendo aquellos materiales que constituyan capas contenidas en el interior de la solución de fachada y que no estén protegidas por una capa que sea EI30 como mínimo.
2 Cubiertas

Con el fin de limitar el riesgo de propagación exterior del incendio por la cubierta, ya sea entre dos edificios colindantes, ya sea en un mismo edificio, esta tendrá una resistencia al fuego REI 60, como mínimo, en una franja de 0,50 m de anchura medida desde el edificio colindante, así como en una franja de 1,00 m de anchura situada sobre el encuentro con la cubierta de todo elemento compartimentador de un sector de incendio o de un local de riesgo especial alto. Como alternativa a la condición anterior puede optarse por prolongar la medianería o el elemento compartimentador 0,60 m por encima del acabado de la cubierta.

En el encuentro entre una cubierta y una fachada que pertenezcan a sectores de incendio o a edificios diferentes, la altura h sobre la cubierta a la que deberá estar cualquier zona de fachada cuya resistencia al fuego no sea al menos EI 60 será la que se indica a continuación, en función de la distancia d de la fachada, en proyección horizontal, a la que esté cualquier zona de la cubierta cuya resistencia al fuego tampoco alcance dicho valor.

En el caso de este edificio, sólo existe este conflicto en el encuentro del volumen del auditorio para música experimental con la cubierta, y dado que éste arranca desde la cota 0, el alejamiento del hueco del ascensor debe ser mayor a 2.50 m. En nuestro caso ese alejamiento es de 3.66m, por lo que este requerimiento se cumple holgadamente.

Por último, los materiales que ocupen más del 10% del revestimiento o acabado exterior de las zonas de cubierta situadas a menos de 5 m de distancia de la proyección vertical de cualquier zona de fachada, del mismo o de otro edificio, cuya resistencia al fuego no sea al menos EI 60, incluida la cara superior de los voladizos cuyo saliente exceda de 1 m, así como los lucernarios, claraboyas y cualquier otro elemento de iluminación o ventilación, pertenecerán a la clase de reacción al fuego BROOF (t1).

En cualquier caso, el edificio se encuentra exento por lo que no existe riesgo de propagación del fuego por la cubierta a edificios colindantes.

SI 3: Evacuación de ocupantes

1 **Compatibilidad con los elementos de evacuación**

El edificio dispondrá de los medios de evacuación necesarios para que los ocupantes puedan abandonarlo o alcanzar un lugar seguro dentro del mismo en condiciones de seguridad.

2 **Cálculo de la ocupación:**

Planta súper

<table>
<thead>
<tr>
<th>Uso general</th>
<th>Superficie útil en m²</th>
<th>Densidad de ocupación (m²/pers)</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorio 1 grados inferiores</td>
<td>256.18</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Local instalaciones 1</td>
<td>232.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulación</td>
<td>108.18</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Almacén 1</td>
<td>101.13</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Almacén 2</td>
<td>68.13</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Camerino 1</td>
<td>44.22</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vestuario</td>
<td>27.85</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Vestíbulo</td>
<td>112.48</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Local instalaciones 2</td>
<td>69.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuarto limpieza</td>
<td>22.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aparcamiento</td>
<td>3946.05</td>
<td>15</td>
<td>263</td>
</tr>
<tr>
<td>Total</td>
<td>4988.82</td>
<td></td>
<td>375</td>
</tr>
</tbody>
</table>

Planta baja

<table>
<thead>
<tr>
<th>Uso general</th>
<th>Superficie útil en m²</th>
<th>Densidad de ocupación (m²/pers)</th>
<th>Ocupación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorio 1 grados superiores</td>
<td>116.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deambulatorio 1</td>
<td>78.87</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Bar auditorio 1</td>
<td>50.74</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Vestíbulo</td>
<td>535.73</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>Aseo movilidad reducida 1</td>
<td>5.28</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aseo movilidad reducida 2</td>
<td>8.58</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aseo 1</td>
<td>22.02</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Aseo 2</td>
<td>18.78</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Acceso Auditorio 2</td>
<td>190.52</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Recepción</td>
<td>19.75</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Servidumbre</td>
<td>44.46</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Sede festival</td>
<td>147.34</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Local instalaciones 3</td>
<td>127.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conserjería</td>
<td>67.64</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Conserjería auxiliar</td>
<td>40.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aseo movilidad reducida 3</td>
<td>6.35</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aseo 3</td>
<td>18.72</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Planta primera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Uso general</td>
<td>Superficie útil en m²</td>
<td>Densidad de ocupación (m²/pers)</td>
<td>Ocupación</td>
</tr>
<tr>
<td>18 Biblioteca + fonoteca</td>
<td>81.49</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>19 Aula teórica 1</td>
<td>57.78</td>
<td>1.5</td>
<td>39</td>
</tr>
<tr>
<td>20 Aula teórica 2</td>
<td>38.93</td>
<td>1.5</td>
<td>26</td>
</tr>
<tr>
<td>21 Aula funciones internas</td>
<td>125.5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>22 Aula grupal 1</td>
<td>94.63</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>23 Aula grupal 2</td>
<td>126.8</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>24 Aula grupal 3</td>
<td>161.94</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>25 Aula experimentación</td>
<td>88.54</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>26 Estudio de grabación</td>
<td>30.25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>27 Cámara anecoica</td>
<td>29.47</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28 Circulación escuela</td>
<td>298.73</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>2632.53</td>
<td>438</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planta primera</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso general</td>
<td>Superficie útil en m²</td>
<td>Densidad de ocupación (m²/pers)</td>
<td>Ocupación</td>
</tr>
<tr>
<td>1 Escenario Auditorio 2</td>
<td>233.71</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2 Servidumbre</td>
<td>55.51</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>3 Camerino 2</td>
<td>43.69</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4 Técnico Sonido Auditorio 1</td>
<td>22.83</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5 Pasarela 1</td>
<td>40.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Pasarela 2</td>
<td>74.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Luther</td>
<td>69.35</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>8 Circulación superior vestíbulo</td>
<td>89.71</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>9 Despacho 1</td>
<td>50.17</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>10 Despacho 2</td>
<td>16.91</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11 Despacho 3</td>
<td>22.08</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>12 Despacho 4</td>
<td>19.96</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13 Despacho principal</td>
<td>41.32</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>14 Espacio común profesores</td>
<td>73.59</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>15 Aseo movilidad reducida 1</td>
<td>6.35</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16 Aseo 1</td>
<td>18.72</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>17 Aula grupal 4</td>
<td>83.03</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>18 Aula piano</td>
<td>62.44</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19 Aula ensayo individual 1</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20 Aula ensayo individual 2</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21 Aula ensayo individual 3</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22 Aula ensayo individual 4</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23 Aula ensayo individual 5</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24 Aula ensayo individual 6</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25 Aula ensayo individual 7</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26 Despacho doctorando 1</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27 Despacho doctorando 2</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28 Despacho doctorando 3</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29 Despacho doctorando 4</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30 Despacho Doctorando 5</td>
<td>26.95</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31 Circulación</td>
<td>204.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1553.46</td>
<td>142</td>
<td></td>
</tr>
</tbody>
</table>
3. Número de salidas y longitud de los recorridos de evacuación.

| Tabla 3.1. Número de salidas de planta y longitud de los recorridos de evacuación |
|----------------------------------|----------------------------------|
| Número de salidas existentes | Planta o recinto que disponen de una única salida de planta o salida de recinto respectivamente |
| Lesiones | No se admite en uso Hospitalario; en las plantas de hospitalización o de tratamiento intensivo, se dispone de salidas de planta o salidas de recinto respectivamente. |
| Lesiones | La ocupación excede de 180 personas, excepto en los casos que se indican a continuación: |
| Lesiones | - 50 personas en el conjunto del edificio, en caso de salida de un edificio de viviendas; |
| Lesiones | - 50 personas en zonas desde las que la evacuación hasta una salida de planta debe salvar una altura mayor que 2 m en sentido ascendente; |
| Lesiones | - 50 alumnos en escuelas infantiles, o de enseñanza primaria o secundaria. |
| Lesiones | La longitud de los recorridos de evacuación hasta una salida de planta no exceda de 25 m, excepto en los casos que se indican a continuación: |
| Lesiones | - 5 m en uso Aparcamiento; |
| Lesiones | - 5 m si se trata de una planta, en el caso de uso de uso de Ascensor de Comunidades de Propietarios o en uso de uso Hospitalario. |
| Lesiones | La altura de evacuación descendente de la planta considerada no excede de 28 m, excepto en uso Residencial, en el caso de que en las escaleras exista una altura de 5 m. |

4. Dimensionado de los medios de evacuación

4.1 Criterios para la asignación de los ocupantes.

Cuando en una zona, en un recinto, en una planta o en el edificio deba existir más de una salida, considerando también como tales los puntos de paso obligado, la distribución de los ocupantes entre ellas a efecto de cálculo debe hacerse suponiendo inutilizada una de ellas, bajo la hipótesis más desfavorable.

A efectos del cálculo de la capacidad de evacuación de las escaleras y la distribución de los ocupantes entre ellas, cuando existan varias, no es preciso suponer inutilizada en su totalidad alguna de las escaleras protegidas, de las especialmente protegidas o de las compartimentadas como los sectores de incendio, existentes. En cambio, cuando deban existir varias escaleras y estas sean no protegidas y no compartimentadas, debe considerarse inutilizada en su totalidad alguna de ellas, bajo la hipótesis más favorable.

En el caso de la parte de la escuela en este edificio, además de contar con las escaleras no protegidas para descender de la primera planta a la baja en caso de incendio, se opta por colocar salidas de evacuación directas al espacio exterior en caso de que alguna de las escaleras no protegidas colapsara. Estas salidas directas al espacio exterior seguro evacúan a las escaleras que a su vez sirven de evacuación para la cubierta transitable.

De todas formas, la justificación de este punto se realiza también a través de la documentación gráfica que apoya este documento.

4.2 Cálculo

El dimensionado de los elementos de evacuación debe realizarse conforme a lo que se indica en la tabla 4.1.

Dicha justificación se realiza mediante la documentación gráfica adjunta al proyecto, pero se anticipa que todos los anchos cumplen holgadamente sólo por el requerimiento del propio edificio de poder transportar cómodamente instrumentos musicales de gran formato. De esta forma se cuenta casi en la totalidad de huecos con puertas de doble hoja de 90cm, siendo el paso a través de estas de 1.80m en todos los casos.

En cuanto a las puertas y pasos, se realiza el cálculo en el caso de ocupación más desfavorable, que en este caso es el de la evacuación de la parte inferior del auditorio de música Jazz, que cuenta con una ocupación de 130 personas que evacúan por la misma escalera:

A ≥ P / 200 ≥ 0,80m → 130 personas/200 = 0,65 -> Mínimo: 0,80m

El dimensionado de todos los pasos y puertas cuentan con puertas de doble hoja de 90cm (total 1.80m) debido a la necesidad de transporte de instrumentos musicales de gran formato a través del edificio, por lo que esta determinación se cumple holgadamente. En cualquier caso, la comprobación queda dibujada en la documentación gráfica adjunta al texto.

Este apartado queda justificado en la documentación gráfica que apoya este texto.
En cuanto a las escaleras y rampas el cálculo que propone el CTE en este documento es el siguiente y utilizaremos el caso más desfavorable, que en este caso es el de la escalera de emergencia de las dos últimas plantas del auditorio de música experimental, que en este caso ofrece una salida directa a la cubierta, considerada espacio exterior seguro.

\[A \geq \frac{P}{200} \geq 1,00 \text{m} > 100 \text{ personas}/200 = 0,5 \text{m} \quad \text{Mínimo: 1,00m} \]

En este caso se cumple ya que el ancho de tramo de la escalera es de 1,13m.

Por otra parte, en cuanto al dimensionado de paso entre asientos en pública concurrencia se describe lo siguiente:

Teniendo en cuenta que todas las filas cuentan con salida en ambos extremos y que cuentan en el peor de los casos con más de 30 asientos, se cumple holgadamente el requerimiento de 50cm de ancho en los pasos mencionados.

Las escaleras protegidas y no protegidas cumplen con los anchos de evacuación holgadamente.
En cualquier caso, se ha intentado encontrar coherencia con los anchos exigidos por el documento SUA de este mismo Documento Básico.

5 Protección de las escaleras

En la tabla 5.1 se indican las condiciones de protección que deben cumplir las escaleras previstas para la evacuación.

<table>
<thead>
<tr>
<th>Uso previsto</th>
<th>Condiciones según tipo de protección de la escalera</th>
<th>No protegida</th>
<th>Protegida*</th>
<th>Especialmente protegida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial Vivienda</td>
<td>h = altura de evacuación de la escalera
P = número de personas a las que sirve en el conjunto de plantas</td>
<td>h ≤ 14 m
P ≤ 100 personas</td>
<td>h ≤ 28 m</td>
<td></td>
</tr>
<tr>
<td>Administrativo, Docente</td>
<td>h ≤ 14 m</td>
<td>h ≤ 28 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercial, Público Conveniencia</td>
<td>h ≤ 10 m</td>
<td>h ≤ 20 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residencial Público</td>
<td>Echa más una</td>
<td>h ≤ 26 m</td>
<td></td>
<td>Se admite en todo caso</td>
</tr>
</tbody>
</table>

En caso de la protección de escaleras, se admite en todo caso que sean dobles, excepto cuando en su mayoría estén familiarizados con la puerta considerada, así como en caso contrario, cuando se trate de puertas con apertura en el sentido de la evacuación conforme al punto 3 siguiente, los de barra horizontal de empuje o de deslizamiento conforme a la norma UNE EN 1125:2009. De esta forma las salidas que se den en espacios de ocupación habitual tendrán una manilla determinada por la norma y el resto lo harán mediante la barra expuesta en la norma.

6 Puertas situadas en recorridos de evacuación

Las puertas previstas como salida de planta o de edificio y las previstas para la evacuación de más de 50 personas serán abatibles con eje de giro vertical y su sistema de cierre, o bien no actuará mientras haya actividad en las zonas a evacuar, o bien consistirá en un dispositivo de fácil y rápida apertura desde el lado del cual provenga dicha evacuación, sin tener que utilizar una llave y sin tener que actuar sobre más de un mecanismo. Las anteriores condiciones no son aplicables cuando se trate de puertas automáticas.

En el caso que acompaña casi la totalidad de las puertas de evacuación son dobles, excepto una que cuenta con un ancho mayor a 90 cm.

En el caso de la evacuación de la antesala en planta baja al auditorio de música experimental, la normativa expone lo siguiente:

“Validez de las puertas para vehículos para la evacuación de personas: Ningún portón para vehículos, ya sea manual o motorizado, es válido por sí mismo como elemento para la evacuación de personas. No obstante, dichos portones pueden contener una puerta peatonal válida para dicha evacuación si, conforme a SUA 2-1.2.3, tienen marcado CE de conformidad con los correspondientes Reglamentos y Directivas Europeas.”

En este caso se ha optado por abrir un hueco peatonal junto a la puerta de entrada al espacio del montacargas, que en este caso es una persiana motorizada.

También se tiene en cuenta el siguiente enunciado: “Se considera que satisfacen el anterior requisito funcional los dispositivos de apertura mediante manilla o pulsador conforme a la norma UNE 179:2009, cuando se trate de la evacuación de zonas ocupadas por personas que en su mayoría estén familiarizados con la puerta considerada, así como en caso contrario, cuando se trate de puertas con apertura en el sentido de la evacuación conforme al punto 3 siguiente, los de barra horizontal de empuje o de deslizamiento conforme a la norma UNE EN 1125:2009.” De esta forma las salidas que se den en espacios de ocupación habitual tendrán una manilla determinada por la norma y el resto lo harán mediante la barra expuesta en la norma.

Dichas puertas abrirán en el sentido de la evacuación siempre que evacúen a más de 100 personas o 50 ocupantes del recinto en el que esté situada. Para este cómputo se ha tenido en cuenta la ocupación estimada en la tabla 4.1 de este documento. Por otro lado, las características de cada puerta quedan definidas tanto en la memoria constructiva como en la documentación gráfica que apoya este proyecto.

Las puertas peatonales automáticas dispondrán de un sistema que en caso de fallo en el suministro eléctrico o en caso de señal de emergencia, cumple las siguientes condiciones, excepto en posición de cerrado seguro. Cumple que, cuando se trate de una puerta corredera o plegable, abra y mantenga la puerta abierta o bien permita su apertura abatible en el sentido de la evacuación mediante simple empuje con una fuerza total que no exceda de 220 N. La opción de apertura abatible no se admite cuando la puerta esté situada en un itinerario accesible según DB SUA.

La fuerza de apertura abatible se considera aplicada de forma estática en el borde de la hoja, perpendicularmente a la misma y a una altura de 1000+10 mm.

Las puertas peatonales automáticas se someterán obligatoriamente a las condiciones de mantenimiento conforme a la norma UNE 85121:2018.

7 Señalización de los medios de evacuación

Se utilizarán las señales de evacuación definidas en la norma UNE 23034:1988 de forma que se pueda proporcionar una forma entendible de guiado durante la evacuación, y dichas disposiciones quedan representadas en la documentación gráfica adjunta a este proyecto.

8 Control del humo de incendio

A11 no tratarse de un aparcamiento abierto, éste debe tener un sistema de control de humo de incendio capaz de garantizar dicho control durante la evacuación de los ocupantes, de forma que ésta pueda llevarse a cabo con seguridad.
La ubicación de dichos sistemas se muestra en la documentación gráfica adjunta.
La señalización de las instalaciones manuales de protección contra incendios debe cumplir lo establecido en el vigente Reglamento de instalaciones de protección contra incendios, aprobado por el Real Decreto 513/2017, de 22 de mayo.

SI 5 Intervención de los bomberos

1 Condiciones de aproximación y entorno

1.1 Aproximación de los edificios

Los viales de aproximación de los vehículos de los bomberos a los espacios de maniobra a los que se refiere el apartado 1.2, deben cumplir las condiciones siguientes:

a) anchura mínima libre 3,5 m;

b) altura mínima libre o gálibo 4,5 m;

c) capacidad portante del vial 20 kN/m².

Se cumplen las tres condiciones, ya que se cuenta con un ancho de mínimo 5.5m, una altura libre mínima de 8m y una capacidad portante mayor a 20kN/m².

El edificio queda totalmente expuesto sin obstáculos circundantes para su rápida intervención por parte de los bomberos.

1.2 Entorno de los edificios

Los edificios con una altura de evacuación descendente mayor que 9 m deben disponer de un espacio de maniobra para los bomberos que cumpla las siguientes condiciones a lo largo de las fachadas en las que estén situados los accesos, o bien al interior del edificio, o bien al espacio abierto interior en el que se encuentren aquellos.

En el caso de este edificio la altura de evacuación de casi la totalidad del edificio es de 8,45m, exceptuando el volumen del auditorio de música experimental, que al tener una altura de evacuación mayor, deberá cumplir con lo exigido por la norma. En este caso, tiene que cumplir y cumplir una separación máxima del vehículo de bomberos de menos de 23m. En este caso, la distancia podría no llegar a los 6 metros, por lo que se entiende que cumple holgadamente.

Desde la cota 8,45m (cubierta transitable) se tiene un acceso directo al interior del auditorio a través de una apertura preparada para ello en la celosía (Ver documentación gráfica).

Se han instalado aperturas de fácil ejecución a lo largo de toda la fachada oculta por la celosía para el acceso de bomberos si fuera necesario. Este sistema cumple todos los requerimientos necesarios para servir de acceso a los bomberos. Véase plano.

SI 6 Resistencia al fuego de la estructura

La estructura mantendrá su resistencia al fuego durante el tiempo necesario para que puedan cumplirse las anteriores exigencias básicas.

La elevación de la temperatura que se produce como consecuencia de un incendio en un edificio afecta a su estructura de dos formas diferentes. Por un lado, los materiales ven afectadas sus pro-piedades, modificándose de forma importante su capacidad mecánica. Por otro, aparecen acciones indirectas como consecuencia de las deformaciones de los elementos, que generalmente dan lugar a tensiones que se suman a las debidas a otras acciones.

Al tratarse de un edificio de hormigón armado, su resistencia al fuego se basa en aumentar el recubrimiento de hormigón armado, cuyo cálculo se realiza en el apartado de cálculo estructural de esta memoria.

Por otro lado, los elementos estructurales de los locales de riesgo especial, siendo en este caso de riesgo bajo y medio, tendrán una resistencia al fuego de R 90 y R 120 respectivamente.

![Tabla C.2: Elementos a considerar](image)
En el caso de los forjados de losa de Hormigón armado sucede lo mismo que con los muros. Debido a la naturaleza del proyecto los forjados poseen una resistencia al fuego muy superior al mínimo exigido. El recubrimiento en este caso será el mismo que en los muros, además de cumplir también la distancia mínima equivalente al eje a.

Además, al tratarse de una cubierta considerada como espacio exterior seguro, los forjados que la soportan deben tener aún más resistencia al fuego, por lo que la estructura ayuda a los requerimientos de esta normativa.

En la documentación gráfica adjunta no se hará mención a los requerimientos de resistencia al fuego de la estructura, debido a que ninguna parte de la estructura de hormigón armado requiere protección ninguna a exceso de la ejecución del hormigón, y si haciendo mención a la resistencia al fuego de los elementos como puertas, tabiques divisores entre sectores, etc.

Por otro lado, en el caso de los auditorios, se trata de estructuras de acero con forjados de chapa colaborante, y su justificación con respecto a la resistencia al fuego se realizará en el documento de cálculo de la estructura de los mismos adjunto a este texto. De todas formas, se optará por una pintura intumescente en ambos casos, ya que la estructura será visible y resulta ser un componente importante en la composición del proyecto.
ESCUELA DE JAZZ Y MÚSICA EXPERIMENTAL EN EL PUERTO DE ALICANTE
MÁSTER DE ARQUITECTURA Y ARTE
 ETSA SAN SEBASTIÁN / TPM / JUNIO 2020
PLANTA TERCERA - CUARTA - QUINTA (G案OCTOR EXPERIMENTAL) - 1:150 - 1:500 - 1:300

si 06
2 MEMORIA ESTRUCTURAL
2.1 DESCRIPCIÓN GENERAL

El objetivo de este capítulo es el de ofrecer una aproximación suficiente al cálculo estructural del edificio, profundizando en los apartados que se consideran más importantes teniendo en cuenta la escala del proyecto. No se trata de un cálculo exhaustivo y optimizado principalmente debido al tiempo que ello supondría, además de la complejidad que un edificio de esta escala conlleva.

Grosso modo este documento se ciñe a calcular una porción de la estructura en hormigón armado para poder extrapolar datos al resto del edificio, alertando de posibles refuerzos o puntos críticos a tener en cuenta en el desarrollo estructural del mismo. Para ello se utilizará un sistema de Predimensionado manual con una obtención de armaduras muy próxima a la real, considerada como suficiente para este ejercicio.

Además, como se verá más adelante, se ahondará en el cálculo de una pieza auditorio que posee una complejidad añadida. Para ello se utilizará el software CYPE3D debido a la complejidad de las reacciones que resultan en el cálculo.

2.1.1 Antecedentes

La parcela sobre la que nos encontramos se trata de un terreno ganado al mar. Parcialmente protegida por el acantilado situado al norte, se entiende como un accidente geológico que forma una ensenada que en los años 50 se protegió con un dique de piedra natural con la intención de proteger el puerto pesquero.

Este dique ofrecía la posibilidad de rellenar lo que hasta los años 60 fue una piscina natural, protegida de los embates del mar. Fue en el desarrollismo de esta década y la masiva urbanización y edificación de los terrenos sobre el acantilado los que convirtieron este vacío en lleno, vertiendo al mismo gran parte de las tierras que se excavaban durante las obras.

Todo ello hace entender la parcela como un artificio que no ofrece a priori un firme cercano a la rasante para poder apoyar el edificio.

No se dispone de un estudio geotécnico de la parcela, pero nos podemos hacer una idea aproximada de la morfología del terreno tras consultar el mapa geológico del país vasco a escala 1:25.000, proporcionado por el Ente Vasco de Energía.

El desarrollo del ejercicio se sustenta en una serie de datos que en muchos casos no son del todo correctos pero que se aproximan a la realidad lo suficiente como para poder calcular elementos y que éstos queden correctamente definidos con un cierto margen de error siempre del lado de la seguridad.
ni cohesión para actuar de firme, por lo que se descarta una cimentación superficial a menos de 7 metros de la rasante.

- Sabiendo el dato anterior y calculando la altura del nivel del mar según mareas, se estima que el nivel freático de la parcela se encuentra a los 7 metros que indica el perfil, ya que esta herramienta no proporciona el perfil del terreno subacuático. Es por ello que se propone una única planta de sótano, con la intención de no modificar dicho perfil y sabiendo las dificultades que conlleva la ejecución de una excavación por debajo del nivel freático estando tan cerca del mar.

- La primera capa de suelo que podríamos contar como firme es la que nos indica el mapa geológico, y se trata de un flysch arenoso probablemente de tipo arenisca, que conociendo la morfología de un flysch cuya disposición en estratos verticales pueden hacer variar la situación del firme, hace plantearse la posibilidad de una cimentación profunda ejecutada mediante pilotes.

- Debido a la naturaleza heterogénea en la estructura ademáes de que hay partes del edificio que no cuentan con sótano, corroboran la decisión de una cimentación profunda, ya que la superficial sin contar con un firme conocido podría causar asientos diferenciales.

En conclusión, se decide optar por una cimentación profunda ejecutada mediante pilotes por fueste, cuyas características se detallarán en el siguiente apartado 2.1.2 Cimentación de este documento.

Por otra parte, la estructura general del ediﬁcio se ejecutará en hormigón armado, en una disposición generalmente muraria que responde a las necesidades de proyecto, y cuyo discurso se apoya en la ejecución de dos auditorios con soluciones excepcionales y opuestas, siendo uno enterrado y otro emergente. Debido a las luces que han de salvar ambos y a su carácter más liviano en contraste dentro del ediﬁcio, se decide optar por soluciones metálicas, cuyo desarrollo se profundizará en los siguientes apartados.

Por último, tal y como viene recogido en la norma sismorresistente NCSE-02, la localización del proyecto se localiza en una zona de muy poca actividad sísmica, concretamente con un valor de aceleración sísmica menor a 0,04m/s² por lo que no es necesaria la consideración de este fenómeno para el cálculo de la estructura.

2.1.2 Cimentación

Teniendo en cuenta la falta de un estudio geotécnico, cata o conocimiento de cimentaciones previas en la parcela en concreto, pero conociendo ciertos datos e interpretándolos, además de la naturaleza estructural del edificio que se plantea muy pesada pese a contar con una altura media de 9m, se decide plantear una cimentación profunda ejecutada mediante pilotes, principalmente por fueste.

La elección del tipo de pilotes por fueste se debe a la morfología del firme. Al tratarse de un flysch, la disposición del terreno en estratos verticales hace que el firme se pueda encontrar
a profundidades muy variables. Dicha decisión se realiza tras consultar el documento “Guía de cimentaciones en obras de carretera” expedido por el Ministerio de Fomento.

Se desconoce la longitud de los pilotes, pero para poder realizar un cálculo estimativo sobre sus dimensiones y armado, se supondrá que tendrán una profundidad media de 9 metros.

Los pilotes irán dispuestos en conjuntos de 2, 4 y excepcionalmente 6 pilotes que irán unidos mediante encepados rígidos que trasladarán las cargas de los muros y pilares con una alternancia entre los mismos de 3.50 m. Debido a que se desconocerán las cargas de cada elemento vertical en concreto, la disposición de los encepados se realiza siguiendo una lógica constructiva que dispone encepados de 2 pilotes en tramos rectos y curvos, mientras que en encuentros angulosos y concentración mayor de cargas se dispondrán encepados de 4 y 6 pilotes.

Al existir sótano en una parte del edificio, los encepados quedarán dispuestos a dos cotas diferentes, unos inmediatamente debajo de la cota 0.00 y otros a una cota aproximada de -5.50m. Las uniones entre encepados próximos que se dispongan a cotas diferentes se realizarán mediante vigas centralizadoras como se muestra en el siguiente dibujo:

2.1.3 Estructura vertical: Muros y pilares

Debido a la naturaleza del proyecto explicada en el primer libro de este proyecto y respondiendo a cuestiones espaciales, materiales y acústicas, se decide construir gran parte del edificio en base a un sistema murario de hormigón armado. Dichos muros adoptan unas geometrías que se alejan de una disposición ortogonal para adoptar formas curvilíneas en algunos casos que van dando forma a los diferentes volúmenes. Esta solución no resulta más compleja a nivel estructural que un sistema ortodoxo en el que los muros se encuentran siempre a 90 grados, ya que las fuerzas se transmiten en vertical a la cimentación en todo momento y las luces entre los mismos, pese a ser variables entre sí, siempre se transmiten directamente desde las losas armadas a los muros.

Excepcionalmente, en el volumen de la escuela que mira al mar, se decide optar por un sistema que permita más flexibilidad en el interior, por lo que el muro se convierte en pilar. En definitiva, se resume en una sucesión de pórticos a 4.15m entre sí que forman un peine que mira al mar. Dichos pórticos, pese a ser de hormigón y estar cimentados mediante pilotes y encepados rígidos, quedan arriostrados mediante un muro de hormigón que los une entre sí y los separa del resto del edificio.

El auditorio de jazz que se explica en los puntos siguientes se apoya también en muros de hormigón de forma circular, mientras que el auditorio de música experimental se obra sobre una ménsula perimetral de hormigón. De ésta emergen los pilares tubulares de acero arriostrados entre sí y apoyados sobre unos enanos de hormigón formando una estructura que funciona como una viga celosía dispuesta en vertical.

2.1.4 Estructura horizontal: Forjados de losa maciza

El sistema que se plantea es el de losa maciza. La elección del mismo se basa una vez más en cuestiones espaciales, materiales y acústicas, pero especialmente debido a las geometrías tan variables sobre las que se apoya.
Se planteó la posibilidad de trabajar con lasos alveolares o prelosas, pero se desechó la idea debido a incompatibilidad con las geometrías de los muros. Obligaría a hacer demasiados cortes en las placas y ello, además de sentenciar las capacidades resistentes de las mismas supondría un gasto excesivo. También se planteó un sistema de forjado reticular, pero una vez más la geometría de los apoyos resultaría demasiado engorrosa.

Finalmente se opta por la losa armada que varía su canto entre 25 y 40cm. Se ha optado por estos dos cantos debido a las diferencias entre las luces que han de salvar, y también porque si se disponen de forma que las caras inferiores queden alineadas, pero exista un cambio de cota entre forjados en su parte superior, ayuda a reducir la cantidad de material a utilizar para la formación de pendientes.

Cambios de canto de losa y aprovechamiento para la formación de pendientes

En el caso de los auditorios, la estructura horizontal se realizará mediante forjados de chapa colaborante apoyados sobre perfiles laminados de acero, que transmitirán en su caso las cargas a los soportes verticales. Se utiliza la chapa colaborante como elemento de arriostrado horizontal para la estructura de acero, con el fin de evitar la rigidización de nudos y no someter a tanta carga a los cables de acero.

Sección de la estructura del auditorio de Jazz arriostrada por el forjado de chapa colaborante

Debido a la magnitud del edificio se ha de disponer de varias juntas de dilatación a un máximo de 40m entre sí, que para evitar tener que duplicar los soportes para independizar ambos forjados se propone mantener los muros en su sitio y realizar el “corte” de la estructura con recuperadores de carga y colocar una junta elástica entre ambos. Este apoyo deberá ser isostático, para evitar transmitir los momentos y recuperar el cortante en ese punto. En definitiva, este sistema permitirá que las estructuras dilaten de modo independiente, ya que entre ambas se sitúa un material elástico, que permitirá movimientos.
Planta de cubiertas y disposición de juntas de dilatación

Se puede apreciar que en la planta de cubiertas, al estar expuesta a la intemperie y a cambios de temperatura más severos, se disponen juntas adicionales en puntos conflictivos

2.2 NORMATIVA APLICABLE

Se han tenido en cuenta las siguientes normativas al diseñar la estructura:

<table>
<thead>
<tr>
<th>CTE</th>
<th>DB SE</th>
<th>Seguridad estructural</th>
<th>Sí</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DB SE AE</td>
<td>Acciones en la edificación</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>DB SE C</td>
<td>Cimentaciones</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>DB SE A</td>
<td>Estructuras en acero</td>
<td>Sí</td>
</tr>
<tr>
<td></td>
<td>DB SE M</td>
<td>Estructuras de madera</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>DB SE F</td>
<td>Estructuras de fábrica</td>
<td>No</td>
</tr>
<tr>
<td>EHE</td>
<td></td>
<td>Instrucción del hormigón estructural</td>
<td>Sí</td>
</tr>
<tr>
<td>NCSE-02</td>
<td></td>
<td>Norma de construcción sismorresistente</td>
<td>Sí</td>
</tr>
</tbody>
</table>

EXIGENCIA BÁSICA SE 1: La resistencia y la estabilidad serán las adecuadas para que no se generen riesgos indebidos, de forma que se mantenga la resistencia y la estabilidad frente a las acciones e influencias previsibles durante las fases de construcción y usos previstos de los edificios, y que un evento extraordinario no produzca consecuencias desproporcionadas respecto a la causa original y se facilite el mantenimiento previsto.

EXIGENCIA BÁSICA SE 2: La aptitud al servicio será conforme con el uso previsto del edificio, de forma que no se produzcan deformaciones inadmisibles, se limite a un nivel aceptable la probabilidad de un comportamiento dinámico inadmisible y no se produzcan degradaciones o anomalías inadmisibles.

1. Análisis estructural y dimensionado:
- Determinación de situaciones de dimensionado
- Establecimiento de las acciones
- Análisis estructural
- Dimensionado

Situaciones de dimensionado:
- Persistentes: Condiciones normales de uso
- Transitorias: Condiciones aplicables durante un tiempo limitado
- Extraordinarias: Condiciones en las que se puede encontrar o estar expuesto el edificio.

Período de servicio: 50 años

Método de comprobación: Estados límite
- Definición de estados límite: Estado más allá del que no se satisfacen los requisitos estructurales.

Resistencia y estabilidad: Estado límite último
- Definición estado límite último: Estado asociado al colapso o a otra forma similar de fallo estructural.
 - Pérdida de equilibrio.
 - Deformación excesiva.
 - Transformación estructura en mecanismo.
 - Rotura de elementos estructurales o sus uniones.
 - Inestabilidad de elementos estructurales.

Aptitud de servicio: Estado Límite de Servicio:
- Definición de estado límite de servicio: Estado más allá del que no se satisfacen los requisitos de servicio establecidos.
 - El nivel de confort y bienestar de los usuarios.
- Correcto funcionamiento del edificio.
- Apariencia de la construcción.

2. Acciones:
Clasificación de las acciones:
- Acción permanente: Acción cuya variación en magnitud con el tiempo es despreciable, o cuya variación es monótona hasta que se alcance un determinado valor límite.
- Acción variable: Acción cuya variación en el tiempo no es monótona ni despreciable respecto al valor medio. (usos, acciones climáticas, ...)
- Acción accidental: acción con una pequeña probabilidad de ocurrencia, generalmente de corta duración y con efectos importantes. (sismo, incendio, impacto, explosión, ...)

Valores característicos de las acciones:
- Los valores de las acciones se recogerán en la justificación del cumplimiento del DB SE-AE.

Datos geométricos de la estructura:
- La definición geométrica de la estructura está indicada en los planos de proyecto.

Características de los materiales:
- Los valores característicos de las propiedades de los materiales se detallarán en la justificación del DB correspondiente o bien en la justificación de la EHE.

3. Verificación de la estabilidad:
\[Ed,dst \leq Ed,stb \]
\[Ed,dst: \text{Valor de cálculo del efecto de las acciones desestabilizadoras.} \]
\[Ed,stb: \text{Valor de cálculo del efecto de las acciones estabilizadoras.} \]

4. Verificación de la resistencia de la estructura:
\[Ed \leq Rd \]
\[Ed: \text{Valor de cálculo del efecto de las acciones.} \]
\[Rd: \text{Valor de cálculo de la resistencia correspondiente.} \]

5. Combinación de acciones:
El valor de cálculo de las acciones correspondientes a una situación persistente o transitoria y los correspondientes coeficientes de seguridad se han obtenido de la fórmula 4.3 y de las tablas 4.1 y 4.2 del presente DB.
El valor de cálculo de las acciones correspondientes a una situación extraordinaria se ha obtenido de la expresión 4.4 del presente DB y los valores de cálculo de las acciones se han considerado 0 o 1 si su acción es favorable o desfavorable respectivamente.

6. Verificación de la aptitud de servicio:
Se considera un comportamiento adecuado en relación con las deformaciones, las vibraciones o el deterioro si se cumple que el efecto de las acciones no alcanza el valor límite admisible establecido para dicho efecto.

Flechas:
- 1/400 en pisos con tabiques ordinarios o pavimentos rígidos con juntas

Desplazamientos horizontales:
- a) desplome total: 1/500 de la altura total del edificio;
- b) desplome local: 1/250 de la altura de la planta, en cualquiera de ellas.

2.2.2 CTE DB SE AE

1. Acciones permanentes (G):
Peso Propio de la estructura:
Corresponde generalmente a los elementos de hormigón armado, calculados a partir de su sección bruta y multiplicados por 25 (peso específico del hormigón armado) en pilares, paredes y vigas. En lasos macizas será el canto h (cm.) x 25 kN/m².

Cargas Muertas:
- Se estiman uniformemente repartidas en la planta. Son elementos tales como el pavimento y la tabiquería (aunque esta última podría considerarse una carga variable, si su posición o presencia varía a lo largo del tiempo).

2. Acciones variables (Q):
Sobrecarga de uso:
Se adoptarán los valores de la tabla 3.1. Los equipos pesados no están cubiertos por los valores indicados. Las fuerzas sobre las barandillas y elementos divisorios...
Acciones climáticas:
- El viento:
 - En general, las estructuras habituales de edificación no son sensibles a los efectos dinámicos del viento y podrán despreciarse estos efectos en edificios cuya esbeltez máxima (relación altura y anchura del edificio) sea menor que 6.
 - La presión dinámica del viento para Getxo es de 0,52 kN/m², correspondiente a un periodo de retorno de 50 años.
- Los coeficientes de presión exterior e interior se encuentran calculados en la hipótesis de cargas.
 - Acción térmica:
 - Los efectos globales de la acción térmica pueden obtenerse a partir de la variación de temperatura media de los elementos estructurales, en general, separadamente para los efectos de verano, dilatación, y de invierno, contracción, a partir de una temperatura de referencia, cuando se construyó el elemento y que puede tomarse con la media anual del emplazamiento o 10°C.
 - Para elementos expuestos a la intemperie, como temperatura mínima se adoptará la extrema del ambiente. Como temperatura máxima en verano se adoptará la extrema del ambiente incrementada en la procedente del efecto de la radiación solar, según la tabla 3.7 (N y E 2º y S y O 30º).
 - La nieve:
 - La carga de nieve para Bilbao a una cota que se puede considerar al nivel del mar es de 0,5 kN/m².
 - Acciones accidentales:
 - Los impactos, las explosiones, el sismo, el fuego.
 - En este documento básico solamente se recogen los impactos de los vehículos en los edificios, por lo que solo representan las acciones sobre las estructuras portantes. Los valores de cálculo de las fuerzas estáticas equivalentes al impacto de vehículos están reflejados en la tabla 4.1.

2.3 Estructura de hormigón armado

En primer lugar, se realiza un predimensionado de la estructura, suficientemente aproximado y del lado de la seguridad como para poder obtener un área de armadura alrededor al real con el que poder tener una comprensión del comportamiento de la estructura mucho más palpable que utilizando un cálculo por elementos finitos con la ayuda de un software.

Al tratarse de una estructura de hormigón armado convencional, sin elementos optimizados ni teniendo en mente el ahorro económico, se cree muy apropiada la utilización de los cálculos del libro “Números gordos en el proyecto de estructuras” de Juan Carlos Arroyo Portero. Resulta una manera muy práctica de resolver dimensionalmente la estructura y con unos resultados asimilables a los de otras estructuras armadas que puedan ser extrapolados con un criterio suficientemente riguroso al resto de la estructura.

Una vez planteada la hipótesis de carga y con los datos obtenidos se procederá a armar la estructura mediante los métodos manuales mostrados en el libro, calculando la armadura de refuerzo necesaria en cada caso.

El pórtico elegido para este apartado es el señalado en el siguiente dibujo. Se trata de un pórtico de dos alturas y dos vanos por planta, que transmiten las cargas a unos encepados de dos pilotos arriostrados entre sí. Se ha decidido utilizar este pórtico como referencia ya que posee la luz máxima del proyecto soportado únicamente por la losa, ya que cuando aparecen luces mayores en el proyecto éstas apoyan sobre vigas de canto, cuyas dimensiones se representan también en la documentación gráfica adjunta. Se considera que los datos obtenidos en este pórtico son extrapolables al resto de la estructura.

2.3.1 Características del hormigón

Debido a que el edificio se encuentra en el borde del mar y por tanto pertenece a un ambiente marino de tipo IIIa (<5km de la costa), y que incluso podría llegar a IIIb por algún posible embate de las olas, se considera oportuna una resistencia del hormigón de 35N/mm². 5N/mm² por encima del mínimo. Con ello, la relación agua/ha de ser de 0,5, con un contenido mínimo de 325 kg/m³ de cemento en la mezcla.

Por ello, siempre del lado de la seguridad, el hormigón escogido contiene las siguientes características:

En cimentación:
- HA-35/B/30/Ilb
 - EHE, art. 30 - Resistencia característica a los 28 días: fck 35 N/mm2
 - EHE, art. 28 Tamaño máximo del árido: 30 mm
 - EHE, art. 8 Tipo de ambiente: agresividad IIb
 - EHE, art. 30 Consistencia del hormigón: Blanda
 - EHE, art. 30 Asiento en el Cono de Abrams: 6 a 9 cm.
 - EHE, art. 30 Sistema de compactación: Vibrado
Para cementos comunes el recubrimiento mínimo en una exposición tipo IIIb es de 30mm, a los que hay que añadirle el margen de recubrimiento que en este caso se decide como 10mm para quedarse del lado de la seguridad. De esta forma se asegura la protección de la armadura en un ambiente tan agresivo.

R_{nom}: 40mm

Resto de elementos portantes:

HA-35/B/15/IIlb

- EHE, art. 30 - Resistencia característica a los 28 días: fck 35 N/mm2
- EHE, art. 28 Tamaño máximo del árido: 15 mm
- EHE, art. 8 Tipo de ambiente: agresividad IIIa
- EHE, art. 30 Consistencia del hormigón: Blanda
- EHE, art. 30 Asiento en el Cono de Abrams: 6 a 9 cm.
- EHE, art. 30 Sistema de compactación: Vibrado
- EHE, art. 88 Nivel de control: Estadístico

Para cementos comunes el recubrimiento mínimo en una exposición tipo IIIb es de 25mm, que por homogeneizar resultados y teniendo en cuenta el espesor de los muros y forjados, se decide que sea de 30mm, a los que hay que añadirle el margen de recubrimiento que en este caso se decide como 10mm para quedarse del lado de la seguridad. De esta forma se asegura la protección de la armadura en un ambiente tan agresivo.

R_{nom}: 40mm

2.3.2 Hipótesis de carga

Se procede a realizar la combinación de las acciones que acometen a la estructura. Para ello se tienen en cuenta las acciones permanentes, las variables, las accidentales y las climáticas. Se han tenido en cuenta los valores recogidos en el "Catálogo de elementos constructivos del CTE", tomando datos de las fichas técnicas de algunos elementos y del cálculo de viento del DB SE AE.

Superficie tributaria: 46.14m².
Esquema de la hipótesis de cargas introducida en Winva en sentido longitudinal

Esquema de la hipótesis de cargas introducida en Winva en sentido transversal
Esbeltez del edificio: H/A

Superficie; un valor negativo indica succión. Su valor se establece en 3.

respecto al viento, y en su caso, de la situación del punto respecto a los bordes de esa superficie; un valor negativo indica succión. Su valor se establece en 3.3.4 y 3.3.5.

Esbeltez del edificio: H/A = 9 m / 11 m = 0.81

c_p = 0.8

c_t = -0.5

Viento

\[
q_v = 0.52 \text{ kN/m}^2 \text{ (Según anexo D)}
\]

Presión:

\[
0.52 \cdot 3 \cdot 0.8 \cdot (4.15 \times 2) \cdot 1.5 = 15.53 \text{ kN}
\]

\[
0.52 \times 2.7 \cdot 0.8 \cdot (4.15 \times 6) \cdot 1.5 = 41.95 \text{ kN}
\]

Succión:

\[
0.52 \cdot 3 \cdot 0.5 \cdot (4.15 \times 2) \cdot 1.5 = 9.71 \text{ kN}
\]

\[
0.52 \cdot 2.7 \cdot 0.8 \cdot (4.15 \times 6) \cdot 1.5 = 26.21 \text{ kN}
\]

2.3.3 Dimensionado losa armada

El dimensionamiento de la armadura se llevará a cabo mediante el el método de pórticos virtuales del libro mencionado, en el que se analiza la flexión simple del elemento, que en este elemento es el más significativo. El proceso de cálculo sirve para la armadura longitudinal o transversal. Hay que repetir el proceso para ambas luces.

Cálculo del pórtico longitudinal AB

El pórtico virtual se divide en dos bandas:

- Banda de pilares: de ancho igual a la mitad del ancho del pórtico
- Banda central: de ancho también igual a la mitad del ancho total, pero dividida en dos partes a ambos lados de la banda de pilares.

Viento

\[q_v = \frac{q_p \cdot \text{ancho} \cdot \text{luz}^2}{8}\]

Momento isostático total:

\[M_i = \frac{(14.15 \text{ kN/m}^2 \cdot 4.15 \cdot 7.35^2)}{8} = 396.54 \text{ kNm}\]
De los que se obtiene como referencia:

- **Momento positivo total**: \(M^+ = 0.5M_0 \)
- **Momento negativo total**: \(M^- = 0.8M_0 \)

Reparto en bandas: Estos momentos \(M^+ \) y \(M^- \) representan todo el ancho del pórtico, pero se reparten en banda de pilares y en banda central. La banda de pilares siempre coge más momento que la banda central. Del momento total, el 75% se va a la banda de pilares y el 40% a la central. Suman más del 100% por incluir un 1.05% del lado de la seguridad.

Momento del cálculo por metro:

En banda de pilares:

\[
M^- = 1.5 \cdot (0.8M_0) \cdot 0.75 \cdot 1/(a/2) = 171.99 \text{ kNm}
\]

\[
M^+ = 1.5 \cdot (0.5M_0) \cdot 0.75 \cdot 1/(a/2) = 107.49 \text{ kNm}
\]

En banda central:

\[
M^- = 1.5 \cdot (0.8M_0) \cdot 0.2 \cdot 1/(a/4) = 91.72 \text{ kNm}
\]

\[
M^+ = 1.5 \cdot (0.5M_0) \cdot 0.2 \cdot 1/(a/4) = 57.32 \text{ kNm}
\]

Diagramas del pórtico longitudinal obtenidos tras realizar los cálculos en WinEv7

Armadura (A_s):

\[
A_s = M_s / (0.8 \cdot h \cdot f_{yd}) \cdot 10
\]

\(f_{yd} = \text{Resistencia de cálculo del acero en N/mm}^2 \)

\(h = \text{canto de la losa en m.} \)

En banda de pilares:

\[
A_s = M^- / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 171.99 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 19.77 \text{ cm}^2/\text{m}
\]

\[
A_s = M^+ / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 107.49 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 12.36 \text{ cm}^2/\text{m}
\]
En banda central:
\[A_s = M_x / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 45.86 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \cdot [x10] = 5.27 \text{ cm}^2/\text{m} \]
\[A_s = M_y / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 28.66 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \cdot [x10] = 3.29 \text{ cm}^2/\text{m} \]

Cálculo del pórtico transversal BE

El pórtico virtual se divide en dos bandas:
- Banda de pilares: de ancho igual a la mitad del ancho del pórtico
- Banda central: de ancho también igual a la mitad del ancho total, pero dividida en dos partes a ambos lados de la banda de pilares.

Momento isostático total:
\[M_o = (q_k \cdot \text{ancho} \cdot \text{luz}^2) / 8 \]
\[q_k = \text{carga total por metro cuadrado} \]
\[\text{ancho: ancho del pórtico en metros} \]
\[\text{luz: luz del vano considerado en metros.} \]
\[M_o = (14.15 \text{kN/m}^2 \cdot 5.15 \cdot 4.15^2) / 8 = 156.88 \text{ kNm} \]

De los que se obtiene como referencia:
- **Momento positivo total:** \(M' = 0.5M_o \)
- **Momento negativo total:** \(M' = 0.8M_o \)

Reparto en bandas: Estos momentos \(M' \) y \(M' \) representan todo el ancho del pórtico, pero se reparten en banda de pilares y en banda central. La banda de pilares siempre coge más momento que la banda central. Del momento total, el 75% se va a la banda de pilares y el 40% a la central. Suman más del 100% por incluir un 1.05% del lado de la seguridad.

Momento del cálculo por metro:

En banda de pilares:
\[M' = (0.8M_o) \cdot 0.75 \cdot 1/(a/2) = 54.83 \text{ kNm} \]
\[M'' = (0.5M_o) \cdot 0.75 \cdot 1/(a/2) = 34.26 \text{ kNm} \]

En banda central:
\[M' = (0.8M_o) \cdot 0.2 \cdot 1/(a/4) = 29.24 \text{ kNm} \]
\[M'' = (0.5M_o) \cdot 0.2 \cdot 1/(a/4) = 18.27 \text{ kNm} \]

Diagramas del pórtico transversal obtenidos tras realizar los cálculos en Winona 7

Armadura (A_s):
\[A_s = M_x / (0.8 \cdot h \cdot f_{yd}) \cdot 10 \]
\[f_{yd} = \text{Resistencia de cálculo del acero en N/mm}^2 \]
En banda de pilares:
\[A_s = M_d / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 54.83 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 6.30 \text{ cm}^2/\text{m} \]
\[A_s = M_d / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 32.26 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 3.70 \text{ cm}^2/\text{m} \]

En banda central:
\[A_s = M_d / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 29.24 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 3.36 \text{ cm}^2/\text{m} \]
\[A_s = M_d / (0.8 \cdot h \cdot f_{yd}) \cdot 10 = 18.27 \text{ kNm} / (0.8 \cdot 0.25 \cdot 500/1.15) \times 10 = 2.10 \text{ cm}^2/\text{m} \]

Partiendo de estos datos se establece lo siguiente:
La armadura básica quedará formada por una malla electrosoldada y prefabricada de ø12mm cada 15cm en sentido longitudinal y transversal, cubriendo toda la losa para cubrir los momentos positivos y negativos máximos.

Después se colocarán los refuerzos necesarios tanto en bandas de pilares como en bandas centrales, siendo necesario únicamente el refuerzo en sentido longitudinal.

Una vez extrapolados los datos al resto de partes del forjado del edificio, sí serán necesarios en algunos casos los refuerzos transversales.

Cuando la losa adquiere un mayor canto de 40cm, la malla de armadura básica crece hasta un diámetro de ø20mm cada 15cm, siendo necesarios también ciertos armados de refuerzo, pero menos que los planteados para la losa de 25cm de canto.

Los refuerzos se disponen de tal forma que siguen la modulación de la armadura básica, facilitando su colocación. El ritmo será en múltiplos de 15cm.

En definitiva, el armado resulta de esta forma:

- Armado de pórticos longitudinales:

 Armadura básica
 Inferior: ø12c15cm
 Superior: ø12c15cm
 Armadura de refuerzo M_d :
 En banda de pilares: ø16c30cm
 En banda central: No se necesita

- Armadura de refuerzo M_d :
 En banda de pilares: ø16c15cm
 En banda central: No se necesita

2.3.4 Dimensionado de pilares y muros

Los pilares y muros se dimensionan teniendo en cuenta los datos obtenidos en Wineva e introduciéndolos en el prontuario del Hormigón Armado de IECA. El cálculo consiste en escoger el pilar más desfavorable de los pórticos calculados y extrapolarlo su armado al resto.

El pilar escogido es el siguiente, representado en ambos pórticos calculados. Es el que recibe más axil, momento y cortante entre los que forman el área calculada:
El pilar tiene una dimensión de 60x25 cm con la dimensión mayor en el sentido de la mayor carga, por lo que el pandeo se reduce considerablemente. El pilar arranca desde el encepeado de dos pilotes en planta baja, y recorre ésta y la planta primera. Es por ello que en el software de IECA se introducen ambos tramos del pilar, resolviendo el armado de éste en sus dos partes.

Para la realización del cálculo de la armadura necesaria para el pilar más desfavorable del pórtico, se debe tener en cuenta el axil y los dos momentos. Se introducen estos valores en el prontuario con una armadura de 5 barras en el sentido longitudinal y 2 barras en el transversal. La geometría y materiales quedan definidos de la siguiente forma:

Se procede al cálculo de armado de los pilares introduciendo el axil del pilar y los momentos que le afectan:

2.3.4.1 Pilares de planta baja:

- $Nd = 799 \text{kN}$
- $Mdx = 109 \text{kN/m}$
- $Mdy = Nd e = 15 \text{kN/m}$

Tas introducir estos datos al prontuario del hormigón de IECA se obtienen los siguientes resultados en cuanto a flexocompresión esviada y por tanto obtención de la armadura longitudinal del pilar:

El factor de seguridad CSCM (coeficiente sobre cargas mayoradas) da valores por encima del mínimo dictado por el EHE (1.20), siendo éste de 2.27. Es por ello que se puede afirmar que el armado cumple. Por tanto, el pilar se arma longitudinalmente en planta baja con $\phi12$ dispuestos en 2 y 5 barras por cara del pilar.
Se armarán los pilares con 5ø12 en cada cara del pilar en planta baja.

En cuanto a la armadura de cortante, se tiene en cuenta que ha de soportar un cortante de 51.20kN, por lo que se tiene en cuenta que los cálculos obliguen a poner una cuantía geométrica mínima, dadas las dimensiones del pilar.

Se introducen los datos de cortante y una hipótesis de estribos de ø8c20cm en dos ramas:

2.3.4.2 Pilar de planta primera:

- $Nd=480\text{kN}$
- $Mdx= 268 \text{kN/m}$
- $Mdy= Nd \cdot e = 44 \text{kN/m}$

También se introducen estos datos al prontuario del hormigón de IECA se obtienen los siguientes resultados en cuanto a flexocompresión esviada y por tanto obtención de la armadura longitudinal del pilar:

Se realiza la comprobación de esta hipótesis con el prontuario, sabiendo que $Vd < Vadm$. En este caso siendo $51.20\text{kN} < 101.3\text{kN}$, por tanto, cumple.

El factor de seguridad CSCM (coeficiente sobre cargas mayoradas) da valores por encima del mínimo dictado por el EHE (1.20), siendo éste de 1.26. Es por ello que se puede afirmar...
que el armado cumple. Por tanto, el pilar se arma longitudinalmente en planta baja con ø20 dispuestos en 2 y 5 barras por cara del pilar.

En este caso ha habido que aumentar el diámetro de la sección del armado porque en la planta primera el pilar tiene mayor momento, llegando a ser de 268 kNm.

Se armarán los pilares con 5ø20 en cada cara del pilar en planta baja

En cuanto a la armadura de cortante, se tiene en cuenta que ha de soportar un cortante de 51.20kN, por lo que se tiene en cuenta que los cálculos obliguen a poner una cuantía geométrica mínima, dadas las dimensiones del pilar.

Se introducen los datos de cortante y una hipótesis de estribos de ø8c20cm en dos ramas, de lo que se obtiene que es insuficiente, teniendo que subir al ø10c20cm en dos ramas.

2.3.4.2 Muro más desfavorable y extrapolable a todo el edificio:

*Se calcula un fragmento de muro tipo de 2m de largo y 30cm de espesor. Los muros dentro del edificio adquieren geometrías diferentes y están sometidos a cargas en varias direcciones, sirviendo éstos de apoyo a forjados en varias plantas, así como espacios a doble altura. Es por ello que se obtiene el caos del muro más desfavorable.

Se introducen estos valores en el prontuario con una armadura de 13 barras en el sentido longitudinal y 2 barras en el transversal. La geometría y materiales quedan definidos de la siguiente forma:

- Nd=1765kN
- Mdx= 643 kN/m
- Mdy= Nd·e = 231 kN/m
Tas introducir estos datos al prontuario del hormigén de IECA se obtienen los siguientes resultados en cuanto a flexocompresión esviada y por tanto obtención de la armadura longitudinal del pilar:

En este caso y en cualquiera de las combinaciones probadas el programa nos indica que ha de armarse con una cuantía geométrica mínima. Tiene sentido ya que el muro en sí está sobredimensionado para las cargas que tiene que soportar, ya que su espesor responde más a cuestión proyectual que a la optimización de la estructura.

Se obtiene una armadura de ø12c15cm, que también se extrapola a la armadura del muro en sentido horizontal ya que el cortante es despreciable.

Finalmente, el muro se armará con una malla electrosoldada de ø12c15cm, pudiendo ser éste reforzado en puntos concretos con zunchos de armaduras de similar sección donde se precise, por ejemplo, en encuentros con forjados de gran peso, en coronaciones sometidas a cierta carga o en juntas de dilatación.

2.3.5 Punzonamiento:

Comprobación a punzonamiento de un pilar que ha de soportar el mayor axil transmitido por la losa maciza. El cálculo se realiza mediante lo propuesto en el libro antes mencionado de Números gordos. Para el cálculo de punzonamiento y saber principalmente si es necesario disponer de esta armadura, son necesarios los siguientes datos:

- Carga total característica del forjado (q_k) = 14.5 kN/m²
- Canto de la losa (h) = 25cm
- Área de influencia del pilar = 21.41 m²
- Escuadría del pilar (axb) = 25x60cm

Esfuerzo de punzonamiento (V_d):

\[V_d = 1.5 \cdot q_k \cdot A \]

Siendo A el área de influencia del pilar:

\[V_d = 1.5 \cdot 14.5 \cdot 21.41 = 465.75 \]

Superficie crítica de punzonamiento:

Es una superficie concéntrica a la utilizada para comprobar el cortante máximo, a una distancia d/2.

\[A_{crítica} = 4d \cdot (a + b + \pi d) \]

\[A_{crítica} = 0.94 \ m^2 \]

Punzonamiento máximo:

La resistencia de las bielas se comprueba en la superficie de intersección entre la losa y el pilar:

\[V_d < 0.3 \cdot f_{cd} \cdot 2d \cdot (a+b) \times 1000 \]

El esfuerzo de punzonamiento debe resistirse con el hormigón Vcu y, si no es suficiente, con armadura. Se debe comparar Vd con el valor de la resistencia de la superficie crítica:

\[V_{cu} = 0.5 \cdot A_{crítica} < [1000] \]

\[V_{cu} = 0.5 \cdot 0.94 \cdot 1000 = 470 \]

Por tanto, si V_d < V_{cu} no se necesita armadura de punzonamiento:

\[V_d = 465.75 < 470 \ (NO \ HACE \ FALTA \ ARMADURA \ DE \ PUNZONAMIENTO) \]
2.3.6 Cimentación

Se propone una cimentación a base de pilotes para transmitir las cargas del edificio al terreno. En general, se disponen en encepados agrupados en 2, 4 y 6 pilotes dependiendo de la carga que éstos vayan a asumir, y distribuidos a lo largo de los muros con una distancia no mayor a los 4 metros. En general se utilizan ritmos de encepados de entre 3 y 4 metros, por lo que los muros en general trabajan como una gran viga.

El cálculo de los encepados varía según el muro que se escoja y como por el momento tenemos calculado el pilar más desfavorable, el cálculo de encepado, pilotes y riostras se realizará en base a éste, siendo los datos extrapolables al resto del proyecto. En definitiva, el 80% de las cargas soportadas por la cimentación poseen valores muy similares, por lo que el método es fiable.

Se utilizan los métodos de cálculo proporcionados en el libro Números gordos antes mencionado, tratándose de un Predimensionado de los mismos suficientemente aproximado al resultado final que es capaz de proporcionar una sección del armado y una dimensión de los elementos capaces de soportar las cargas a las que serán sometidos. De hecho, ese desfase en los resultados con respecto al cálculo real siempre se obtiene del lado de la seguridad.

2.3.6.1 Pilotes:

El Pilote o sistema por pilotaje, es un tipo de cimentación profunda de tipo puntual, que se hinca en el terreno buscando siempre el estrato resistente capaz de soportar las cargas transmitidas. La transmisión de cargas al terreno se realiza por fuste y por punta, aunque para este predimensionado se obvian las características del terreno y por tanto, estos dos tipos de transmisión no intervienen en el cálculo.

Datos necesarios:

- Axil característico del pilar (N_d) = 783.90 kN
- Ø pilote, que se establece en 35cm → A_c=0.096 m²

Número de pilotes:

Se calcula primero la resistencia de un pilote, siendo su expresión:

\[R = A_c \cdot \sigma \]

Siendo \(\sigma = 3000-5000 \) kN/m² para pilotes in situ, por lo que se escoge 5000.

Se escogen pilotes in situ debido a que serán captadores geotérmicos (Pilotes activos), y su ejecución es más sencilla de llevar a cabo in situ. Esta condición no influye en la resistencia del pilote.

\[R = 0.096 \cdot 5000 = 481.05 \text{ kN} \]

Con este dato se obtiene el número de pilotes

\[n = \frac{N_d}{R} \]

\[n = \frac{783.90}{481.05} = 1.63 \implies 2 \text{ pilotes por encepado.} \]

Armado de cada pilote:

\[\text{Axil de cálculo (N_d)} \]

\[N_d = 1.5 \cdot N_c/n \]

\[N_d = 1.5 \cdot 783.90/2 = 587.92 \text{ kN} \]

Armadura \((A_s) \):

\[A_s = \left(N_d - f_{cd} \cdot A_c \right) / f_{cd} / 10 \cdot \text{vol} \]

\[A_s = 16.9 \text{ cm}^2 \text{ por pilote} \]

Sabiendo que cada pilote necesita una sección de armadura de 16.9 m², se obtienen lo siguiente:

10Ø16 por pilote de armadura longitudinal

Armadura transversal:

Por norma general, se puede aproximar la dimensión de ésta a 0.25 veces el diámetro de la armadura longitudinal, por lo que resultará:

Ø6 dispuesta de forma helicoidal con una separación por vuelta de 8cm.

![Sección en planta del pilote (mm)](image)
2.3.6.3 Viga centradora

En este caso se calculará un encepado de dos pilotes, y se extrapolará datos para los encepados de 4 y 6. Los datos necesarios para el cálculo de éstos son:

- Axil característico del pilar (N_e) = 783.90 kN
- Ø pilote, que se establece en 35cm → A_{pl}=0.096 m
- Ø de la armadura longitudinal del pilar = 12mm
- Geometría del encepado: h=40cm, D<50cm, d>25cm (geometría definida en plano)

Armadura:

- Esfuerzo de cálculo

 El axil se reparte a los pilotes según se indica, generando dos compresiones inclinadas y una tracción en la armadura. Planteando el equilibrio de fuerzas resulta:

 $$T_x = 1.5 N_e V/2d$$

 siendo del canto útil h=0.20m, por razones constructivas

 $$T_x = 923.62$$

Armadura principal (A_{wp})

$$A_{wp} = T_x f_{yd} = 1.5 N_e V/2d f_{yd} [x1000] = 2.30 \text{ cm}^2$$

Habría que armarlo por ejemplo con 8Ø6c20, pero sigue quedando muy por debajo de la cuantía mínima de Ø12c15 establecida por el EHE 58.8.2

Por tanto, se arma el encepado con la cuantía geométrica mínima establecida por la norma: 7Ø12c15.

Esta situación se debe a que desde el principio los encepados están sobredimensionados ya que están pensados para acoger en su interior a la sonda de la captación geotérmica de los pilotes.

Por tanto, los encepados de 2 pilotes tendrán una dimensión de 2x1x0.40 m.

Armadoras secundarias:

- Se establecen por tanto las siguientes:
 - Paramento superior: 1/10 de la principal
 - Cercos verticales: $A_{sv} = 4 \%\Omega_{wp}$, siendo $\Omega_{wp} = b \cdot L$
 - Cercos horizontales: $A_{sv} = 4 \%\Omega_{wp}$, siendo $\Omega_{wp} = b \cdot h$

En cuanto a la ejecución, el hormigón de los pilotes debe penetrar en el hormigón del encepado, al menos, 10cm y como máximo 20cm. La armadura del encepado se apoya en los pilotes, por tanto el recubrimiento es, al menos, de 10cm.

2.3.6.2 Encepado

El armado típico transversal es de Ø8c20, por lo que se dispondrá del mismo en cepado a encepado.

Dimensionamiento de una viga centradora en encepado de pilotes. Se calculará el más desfavorable y se extrapolará al resto de vigas centradoras.

Los datos de partida son:

- Axil característico del pilar (N_e) = 783.90 kN
- Excentricidad en la dirección de la viga a considerar (e) = 10cm
- Luz hasta el próximo encepado. V_1=7.32m y V_2=2.97m

La viga centradora recoge el momento propio del pilar y el producido por la excentricidad en la construcción de los pilotes. Se dispone de encepados de dos pilotes uniendo dicho encepado con el adyacente.

Dimensiones de la viga:

- $b > L/20$
- $h > L/12$

Para V_1:

- $b > 0.36 \rightarrow 0.40 \text{ m} (=\text{encepado})$
- $h > 0.61 \rightarrow 0.60 \text{ m}$

Para V_2:

- $b > 0.14 \rightarrow 0.30 \text{ m}$
- $h > 0.25 \rightarrow 0.35 \text{ m}$

Momento de cálculo:

- $M_x = 1.5 N_e e$
- $M_x = 1.5 \cdot 783.90 \cdot 0.1 = 117.58 \text{ kNm} /2 = 58.79 \text{ kNm}$
- $M_{min} = 10/12 \cdot L^2 = 44.28 \text{ kNm}$

Armadura:

- Se dispondrá a lo largo de toda la viga en el paramento superior. Se recomienda, por facilidad de ejecución, disponer la misma armadura en el paramento inferior.
- Se debe anclar la armadura a partir del eje del pilar y no desde la cara de la zapata.

$$A_{pl} = M_x/0.8 \cdot h \cdot f_{yd} [x10] = 3.6 \text{ cm}^2 /m$$

Por lo tanto, se dispone de una armadura longitudinal de 6 Ø10 (3 arriba y 3 abajo)

El armado típico transversal es de Ø8c20, por lo que se dispondrá del mismo en cepado a encepado.
2.4 Estructura mixta del auditorio de Jazz:

Como se ha explicado anteriormente, se decide escoger la estructura de cobertura del auditorio de jazz para la profundización en el cálculo de este proyecto. Se escoge ésta debido a que soporta el peso de la cubierta a través de una luz de 22,24m, siendo esta luz constante a lo largo de todo el espacio ya que posee una forma cilíndrica.

En definitiva, se trata de cómo salvar una luz de más de 22m que soporta el peso de una cubierta pesada y de una sobrecarga de uso de cierta magnitud, de forma que tanto dentro como encima de este cilindro se puedan celebrar dos conciertos simultáneamente.

Teniendo en cuenta el carácter didáctico de este ejercicio por encima del rigor del ejercicio profesional, se explicará brevemente el desarrollo de la idea de diseño para la cubrición de este espacio hasta llegar a una serie de conclusiones que terminan formando el modelo estructural propuesto.

Para la generación de diferentes modelos e hipótesis se ha utilizado esta vez del software CYPE3D en lugar del método de números gordos utilizado para la estructura de hormigón armado, y la decisión se basa en dos razones: La primera es que se cree más adecuado utilizar diferentes métodos de cálculo ya que como se ha dicho antes, se trata de un ejercicio didáctico y poder acometer el cálculo de estructuras desde diferentes metodologías se considera más enriquecedor que tratar de resolver la totalidad del edificio con un único método. La segunda razón es que, al tratarse de una luz mayor y una estructura más compleja, el estudio estructural y su diseño son más perceptibles utilizando un software como éste, en el que se pueden realizar modificaciones de cualquier tipo en el modelo estructural a tiempo real e ir entendiendo mejor cómo funciona el mismo mientras se analizan todas las variables posibles.

2.4.1 Estudios previos

En un principio, el diseño estructural de este auditorio apoyaba el discurso de una de las ideas de proyecto, en el que se pretendía hacer una reminiscencia a las grúas portuarias que marcan profundamente el paisaje de la zona. La intención era utilizar el sistema estructural de una grúa, en este caso una grúa torre, que solucionara la luz de 22m.

Este modelo estructural resultaba atractivo visualmente, pero al ir apareciendo otras exigencias inherentes al edificio, y especialmente al uso que se le va a dar, han ido surgiendo cuestiones que ponen en duda las ideas iniciales. Se trata de un proceso común en el desarrollo de un proyecto, por lo que se decide valorar y poner en valor todas las propuestas de forma que se pueda llegar a una solución final coherente.

La primera propuesta se trataba de un sistema dispuesto radialmente de vigas celosía que utilizaba los dos muros concéntricos del auditorio. El muro interior trabajaría asumiendo el peso de las vigas, mientras que el muro exterior trabajaría a la inversa utilizando su propio peso para atirantar la estructura. El sistema se basaba en el funcionamiento de una grúa torre, en el que se dispone un elemento en voladizo compensado por un contrapeso en el otro extremo. Un sistema de cables apoyados sobre un elemento a compresión sobre la torre ayuda a atirantar la estructura de manera que se reduzca considerablemente la deformación de la estructura debido a la gran luz de 22m entre apoyos. Además, el peso de los lucernarios de hormigón que se posan sobre la cercha ayudarían a compensar las cargas. Extrapolando el sistema a esta estructura, el modelo tenía este aspecto:
En este caso se incluye un anillo a compresión con una doble intención, por un lado, facilitar los encuentros entre las 16 vigas que en caso contrario acometerían en un mismo punto, y por otro lado esa circunferencia sirve de escenario para la cubierta.

Se introducen los datos y las barras en CYPE3D, abstrayendo las vigas dispuestas radialmente en un pórtico 2D más accesible del que podamos extrapolarnos los datos:

Diagrama de reacciones sobre la sección del auditorio.

Esquema de una grúa torre

Modelo primitivo introducido en CYPE3D

Una vez introducido este modelo en el software de cálculo, pese a cumplir todas las comprobaciones de seguridad y de flecha, se obtienen las siguientes conclusiones:

- Las barras que trabajan a tracción entre los dos muros atirantando la viga no tienen el rendimiento esperado, teniendo que tener más espesor del esperado y sin suponer un a reducción de la flecha tal como para justificarse su colocación.
- Las secciones de las barras obtenidas mediante apoyos articulados son demasiado elevadas en proporción a la altura de la viga
- Para poder obtener resultados razonables no es necesario empotrar algunos de los apoyos, lo que supone una dificultad añadida durante la ejecución
- Debido a las barras que cruzan del primer al segundo muro, el comportamiento acústico de la sala se ve perjudicado, al no poder cerrar el elemento quedando cámaras acústicas en los lucernarios.

En definitiva, se rechaza el modelo basado en el funcionamiento atirantado de la viga debido a que no se obtiene un rendimiento suficiente de las barras, suponiendo además una complejidad constructiva añadida al contar con más barras de las necesarias y perforando los muros más de lo necesario.

No obstante, de este modelo se pueden rescatar ciertos conceptos y elementos que resultan interesantes tanto espacial como estructuralmente. Es el caso del anillo a compresión, así como la disposición de diagonales formando vigas tipo Pratt. El funcionamiento de éstas es bueno y tal y como se explica en el apartado siguiente se obtiene un rendimiento de las barras más adecuado que con la solución descartada.

2.4.2 Descripción del sistema

2.4.2.1 Sistema radial de vigas celosía

El sistema propuesto carece de las barras a tracción entre los dos muros concéntricos, apareciendo dos apoyos articulados únicamente sobre el primer muro. Este sistema, además
de eliminar 6 barras por viga, favorece la no transmisión de ruido al exterior del auditorio al eliminarse 16 huecos en el muro.

Sigue tratándose de una viga tipo Pratt e internamente la viga funciona de igual manera, y con este modelo se consigue reducir la sección de las barras logrando vigas más esbeltas y ligeras. El modelo definitivo resulta de la siguiente forma:

Este sistema, tratado en el cálculo como plano, es fácilmente extrapolable a una circunferencia. Se establecen 16 vanos entre vigas y su disposición es la siguiente:

Planta del auditorio con la disposición de la estructura de cubierta una vez realizados los ajustes

Modelo plano de CYPE3D utilizado para extrapolar los datos a la estructura real

Sección de la estructura apoyada sobre el muro interior

2.4.2.2 Forjado de chapa colaborante
Con el fin de arriostrar las 16 vigas y el anillo de compresión, y con la intención también de aligerar el forjado, se utiliza una chapa grecada con conectores que solidarizan el hormigón y la chapa de acero con el sistema de vigas. Para ello se ha utilizado como referencia la chapa MT-60 de la casa HIANSA, en su espesor de 1.2mm.

Este sistema ayuda a reducir considerablemente el pandeo lateral que sufren las cerchas al tener un canto entre 80 y 173cm.

El cálculo del mismo se describe también a continuación.

2.4.2.3 Protección de la estructura frente a incendios:

Mientras que la protección al fuego de la estructura de acero se rige mediante el código técnico, no existe una normativa de aplicación para forjados mixtos de chapa colaborante más que la norma UNE-EN 13381-5:2016, de cuyas disposiciones se extraen datos para justificar el siguiente sistema de protección de la estructura metálica y mixta frente al fuego.

La casa Ignofigaciones Argos ofrece un sistema de lana mineral y perlita que además de ofrecer la resistencia al fuego necesaria, obtiene un rendimiento en cuanto a aislamiento acústico necesario para mejorar el acondicionamiento de la sala.

Perliwool es un mortero proyectado en base seca, compuesto de lana mineral y perlita con cemento como único ligante hidráulico. Este mortero se utiliza principalmente para la protección pasiva contra incendios de elementos estructurales.

Aplicación de Perliwool en acero:

La aplicación del mortero se realiza directamente por proyección neumática, mediante máquina de proyección por vía seca, sobre los elementos a proteger. El soporte deberá estar seco y limpio de grasa, polvo y suciedad. Sólo es necesaria la utilización de promotores o elementos mecánicos para la mejora de adherencia en aquellos casos en que el perfil a proteger tenga una suciedad extrema como grasa, aceites, restos de pintura, y que en consecuencia no se puedan eliminar con facilidad.

La temperatura de aplicación de Perliwool debe estar comprendida entre los 3 y 30 °C. La temperatura del sustrato durante la aplicación debe de ser por lo menos 3 °C sobre el punto de rocío.

2.4.3 Cálculo Estructural

2.4.3.1 Hipótesis de carga

Se procede a realizar la combinación de las acciones que acometen a la estructura. Para ello se tienen en cuenta las acciones permanentes, las variables, las accidentales y las climáticas. Se han tenido en cuenta los valores recogidos en el “Catálogo de elementos constructivos del CTE”, tomando datos de las fichas técnicas de algunos elementos y del cálculo de viento del DB SE AE.

Superficie tributaria total: 372.37m².

Superficie tributaria del área de cálculo: 44.04m².

Cubierta

<table>
<thead>
<tr>
<th>SUPERFICIAL (Kn/m²)</th>
<th>PUNTUAL (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMANENTES</td>
<td></td>
</tr>
<tr>
<td>PP Acabado Adoq</td>
<td>2.1</td>
</tr>
<tr>
<td>PP Cubierta plana</td>
<td>1.5</td>
</tr>
<tr>
<td>PP forjado chapa</td>
<td>4.26</td>
</tr>
<tr>
<td>VARIABLES</td>
<td></td>
</tr>
<tr>
<td>SU total. cubierta</td>
<td>5</td>
</tr>
<tr>
<td>CLIMÁTICAS</td>
<td></td>
</tr>
<tr>
<td>Nieve getxo</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Los datos se introducen al software CYPECAD 3D, a la vez que el modelo finía de la estructura que posee los siguientes componentes:

Debido que al tratarse de una versión educativa no se puede contar con perfiles SHS tubulares para el cálculo, se extrapola con unos perfiles que el software sí reconoce, que son los perfiles UPE. Estos se disponen juntos con las alas soldadas de forma continua formando un tubo de muy similares características, inercias y sección que los perfiles que se quería
utilizar, llegando a un resultado igual. Se podría construir realmente con ambos tipos de perfiles, pero la utilización de 2xUPE requiere muchos más metros de soldadura a tener en cuenta.

2.4.3.2: Materiales utilizados:

<table>
<thead>
<tr>
<th>Material</th>
<th>Designación</th>
<th>E (MPa)</th>
<th>ν</th>
<th>G (MPa)</th>
<th>f_y (MPa)</th>
<th>α_d (m/m°C)</th>
<th>γ (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero laminado</td>
<td>5355</td>
<td>210000.00</td>
<td>0.30</td>
<td>81000.00</td>
<td>355.00</td>
<td>0.0000012</td>
<td>77.01</td>
</tr>
</tbody>
</table>

Notación:
- E: Módulo de elasticidad
- ν: Módulo de Poisson
- G: Módulo de cortadura
- f_y: Límite elástico
- α_d: Coeficiente de dilatación
- γ: Peso específico

En el Anexo a este documento se entregará el listado completo de barras y perfiles, pero la utilización de 2xUPE requiere muchos más metros de soldadura a tener en cuenta.

- 2xUPE 160 para el cordón superior
- 2xUPE 140 para el cordón inferior
- 2xUPE 80 para los montantes de las vigas celosía
- 2xUPE 120 para los cordones superior e inferior en la parte central (extrapolado al anillo de compresión)
- T-80x9 para las diagonales que en su mayoría trabajan a tracción.
- T-100-II para las diagonales de reforzamiento que se colocan para trabajar con compresión
- 2XUPE 200 para simular el muro de hormigón armado. (Piezas prescindibles)

Sus características mecánicas son las siguientes:

<table>
<thead>
<tr>
<th>Características mecánicas</th>
<th>Material</th>
<th>Ref.</th>
<th>Descripción</th>
<th>A (cm²)</th>
<th>Ayy (cm³)</th>
<th>Azz (cm³)</th>
<th>Iyy (cm⁴)</th>
<th>Izz (cm⁴)</th>
<th>It (cm⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero laminado</td>
<td>5355</td>
<td>1</td>
<td>UPE 140, Doble en cajón soldado, (UPE)</td>
<td>36.8</td>
<td>17.55</td>
<td>10.98</td>
<td>1200</td>
<td>847.56</td>
<td>1343.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>UPE 80, Doble en cajón soldado, (UPE)</td>
<td>20.2</td>
<td>10.50</td>
<td>4.75</td>
<td>214.0</td>
<td>255.27</td>
<td>309.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>T-80x9, (T)</td>
<td>13.60</td>
<td>5.40</td>
<td>7.95</td>
<td>73.70</td>
<td>608.74</td>
<td>605.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>UPE 120, Doble en cajón soldado, (UPE)</td>
<td>30.8</td>
<td>14.40</td>
<td>9.56</td>
<td>728.0</td>
<td>608.74</td>
<td>505.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>UPE 160, Doble en cajón soldado, (UPE)</td>
<td>43.4</td>
<td>19.95</td>
<td>13.96</td>
<td>1822.0</td>
<td>1848.98</td>
<td>1890.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>UPE 200, Doble en cajón soldado, (UPE)</td>
<td>58.0</td>
<td>26.4</td>
<td>19.22</td>
<td>3820.0</td>
<td>2090.4</td>
<td>3736.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>T-100x11, (T)</td>
<td>20.9</td>
<td>8.25</td>
<td>12.12</td>
<td>179.0</td>
<td>88.30</td>
<td>9.38</td>
</tr>
</tbody>
</table>

Notación:
- A: Área de la sección transversal
- Ay: Área de cortante de la sección según el eje local "Y"
2.4.3.4: Comprobación E.L.U. de las barras con mayor coeficiente de aprovechamiento.

<table>
<thead>
<tr>
<th>Barra</th>
<th>E.L.U. (mm)</th>
<th>Coeficiente de aprovechamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>N47</td>
<td>1.107</td>
<td>0.361</td>
</tr>
<tr>
<td>N48</td>
<td>1.164</td>
<td>0.39</td>
</tr>
<tr>
<td>N17</td>
<td>0.553</td>
<td>0.17</td>
</tr>
<tr>
<td>N13</td>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Barra</th>
<th>E.L.U. (mm)</th>
<th>Coeficiente de aprovechamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>N30</td>
<td>2.0</td>
<td>0.00</td>
</tr>
<tr>
<td>N32</td>
<td>3.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cumple

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.6</td>
<td>5.1</td>
<td>1.015</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>2.1</td>
<td>1.381</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.9</td>
<td>0.4</td>
<td>0.313</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>3.9</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cumple

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.7</td>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.3</td>
<td>59.5</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CUMPLE

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.8</td>
<td>0.2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.3</td>
<td>59.5</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CUMPLE

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.9</td>
<td>0.4</td>
<td>0.313</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>3.9</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CUMPLE

<table>
<thead>
<tr>
<th>Edad</th>
<th>h (mm)</th>
<th>x (mm)</th>
<th>N.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.6</td>
<td>5.1</td>
<td>1.015</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>2.1</td>
<td>1.381</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.4.3.5 Dimensionado del forjado de chapa colaborante:

El cálculo del forjado se realiza mediante el uso de las tablas de cálculo proporcionadas por la empresa, en este caso Hansas, para la obtención del canto de forjado necesario según el espesor de chapa, las cargas a las que será sometido y la luz que ha de cubrir según se trate de un forjado biapoyado o continuo.

El objetivo al calcular este forjado es no tener que apuntalarlo ya que la chapa queda a más de 12m de altura con respecto a la solera sobre la que apoyaría, y evitando también tener que colocar correas entre las vigas.

No obstante, resulta imposible no tener que apuntalar en la parte del forjado más próxima al muro, pero en este punto la estructura puede aparse aporándose directamente en una ménsula del muro.

Así pues, teniendo una luz de 2.80m en el mayor de los casos y sabiendo que la carga a la que estará sometido el forjado es de 13,94 kN/m². En este caso se escoge la chapa modelo MT-60 con 1,2mm de espesor, que permite el vertido de hormigón sobre la chapa sin tener que apesar la mayor parte de ésta.
El forjado tendrá las siguientes características:

- 13.94 kN/m² = 1394 daN/m²
- Luz= 2.80 m
- H= 18 cm
- Se dispondrá de un mallazo antifisuración de 200x200x8 en la parte superior y de un Ø16 entre cada greca como refuerzo para absorber el momento positivo. Según cálculo no se precisa de refuerzos para el momento negativo.
- Se dispondrán conectores suministrados por la casa HIANSA en cada greca y sobre cada viga, de forma que se solidaricen todas las vigas entre sí a través del forjado.
3 MEMORIA CONSTRUCTIVA
Teniendo en cuenta la naturaleza docente de este proyecto y que no se exige para el mismo una valoración económica ni presupuesto, se entiende desde un primer momento que lo que se busca es una solución coherente en el entorno, con el medio ambiente y lógico desde un punto de vista constructivo.

Esto nos lleva a entender el proyecto como una utopía próxima a la realidad, pero que no tiene en cuenta lo que inevitablemente acaba imperando en la mayoría de los casos en el proceso constructivo: la economía.

Es por ello que en este proyecto y por tanto en este documento, se deja de lado dentro de unos parámetros asumibles, el costo y la ejecución de los elementos, de manera que se pueda llegar a un sistema constructivo, estructural y de instalaciones que ofrezca el máximo siempre sirviendo al proyecto.

Además, en relación con lo dicho en el primer párrafo, éste se trata de un proyecto universitario, por lo que el objetivo del mismo además de mostrar una capacitación profesional tiene el objetivo de ofrecer al alumno un espacio de investigación y por ello a largo de esta memoria, así como en la estructural y de instalaciones, se explicarán los procesos llevados a cabo tras las decisiones tomadas y las correcciones realizadas sobre el proyecto.

En cuanto al desglose de este capítulo de la memoria se realiza una descripción general de los parámetros que determinan las previsiones técnicas a considerar en el proyecto. Entre las cuestiones a tratar están:

1. Estudios preliminares del terreno
2. Sustentación del edificio
3. Sistema estructural
4. Sistema de envolventes
5. Sistema de compartimentación
6. Sistema de acabados
7. Sistema de servicios

3.1 Estudios preliminares del terreno:

Para la definición y selección del tipo de cimentación a realizar, es preciso tener en cuenta una serie de factores que van a resultar determinantes y entre los que se encuentran:

a. Las características geotécnicas del terreno (determinadas en el Estudio Geotécnico cuyo resumen se recoge en el ANEXO I de este documento).

b. Asegurar la eliminación o modificación de trazado de los servicios afectados, aéreos y enterrados, que se hayan localizados e identificados.

c. Estudiar la posible incidencia que la meteorología de la zona y sus factores como el viento, hielo, lluvias, cambios bruscos de temperatura, etc., pueda tener sobre las excavaciones y la planificación de los trabajos.

3.2 Sustentación del edificio

3.2.1 Descripción del sistema

Entrando en los términos constructivos después de la fase proyectual y tras tener en cuenta un esquema general del sistema constructivo, se estudian todas las posibilidades de cimentación a las que se puede acudir teniendo en cuenta las posibilidades del terreno y las cargas y movimientos que va a sufrir el edificio. Para ello se recopilan una serie de datos sobre las características del terreno para poder acometer la opción más adecuada:

La parcela sobre la que nos encontramos se trata de un terreno ganado al mar. Parcialmente protegido por el acantilado situado al norte, se entiende como un accidente geológico que forma una ensenada que en los años 50 se protegió con un dique de piedra natural con la intención de proteger el puerto pesquero.

Este dique ofrecía la posibilidad de rellenar lo que hasta los años 60 fue una piscina natural, protegida de los embates del mar. Fue en el desarrollo de esta década y la masiva urbanización y edificación de los terrenos sobre el acantilado los que convirtieron este vacío en lleno, vertiendo al mismo gran parte de las tierras que se excavaban durante las obras.

Todo ello hace entender la parcela como un artefacto que no ofrece a priori un firme cercano a la rasante para poder apoyar el edificio.

No se dispone de un estudio geotécnico de la parcela, pero nos podemos hacer una idea aproximada de la morfología del terreno tras consultar el mapa geológico del país vasco a escala 1:25.000, proporcionado por el Ente Vasco de Energía, y en éste se categoriza a la parcela con un suelo tipo 22: Arenisicas, microconglomerados y lulitas. Estos tipos de suelo entran dentro de la categoría del Flysch arenoso, por lo que ya nos podemos hacer una idea aproximada del tipo de suelo sobre el que vamos a cimentar. Si obtenemos el perfil geológico actual de la parcela mediante la herramienta proporcionada por el instituto geológico de Euskadi Geo.euskadi.eus, obtenemos lo siguiente:

Montaje extraído de la herramienta Geo.euskadi.eus con una estimación subjetiva del perfil real del terreno (flysch arenoso).
Con los datos que se obtienen se sacan una serie de conclusiones que quedan redactadas en más detalle en el apartado estructural de este documento. Pero, en definitiva, se decide que la opción de pilotaje, que pese a ser la más invasiva y la más costosa con diferencia, es la que resuelve mejor la cimentación aún no conociendo con precisión la situación de un firme que tampoco se puede corroborar si se trata de tal. Es una forma de asegurarse de que pese a ser una cimentación a priori sobredimensionada, trabajará correctamente para transmitir las cargas al edificio, que pese a tener una altura de 9 metros en la mayoría de la planta, se plantea muy pesado.

Además, con el fin de amortizar el costo que supondría la ejecución de tantos pilotes, éstos se plantean como captadores geotérmicos para un sistema de geotermia mediante pilotes activos, en los que se aprovecha la baja fluctuación anual de temperaturas y humedad del firme para traducirla en un ahorro energético considerable para las bombas de calor que producirán el calor/frio en el edificio.

Se entiende que estos pilotes trabajan generalmente por fuste, ya que al tratarse de un Flysch, la disposición del terreno en estratos verticales hace que el firme se pueda encontrar a profundidades muy variables. Dicha decisión se realiza tras consultar el documento “Guía de cimentaciones en obras de carretera” expedido por el Ministerio de Fomento.

Se desconoce la longitud de los pilotes, pero para poder realizar un cálculo estimativo sobre sus dimensiones y armado, se supondrá que tendrán una profundidad media de 9 metros.

Los pilotes irán dispuestos en conjuntos de 2, 4 y excepcionalmente 6 pilotes que irán unidos mediante encepados rígidos que trasladarán las cargas de los muros y pilares con una alternancia entre los mismos de 3.50 m. Debido a que se desconocerán las cargas de cada elemento vertical en concreto, la disposición de los encepados se realiza siguiendo una lógica constructiva que dispone encepados de 2 pilotes en tramos rectos y curvos, mientras que en encuentros angulosos y concentración mayor de cargas se dispondrán encepados de 4 y 6 pilotes.

Al existir sótano en una parte del edificio, los encepados quedarán dispuestos a dos cotas diferentes, unos inmediatamente debajo de la cota 0,00 y otros a una cota aproximada de -5,50 m. Las uniones entre encepados próximos que se dispongan a cotas diferentes se realizarán mediante vigas centralizadoras como se muestra en el siguiente dibujo:

En cualquier caso, los encepados quedarán arriostrados de forma que se eviten desplazamientos entre los mismos, tal y como se muestra en la documentación gráfica adjunta.

3.2.2 Proceso constructivo

En cuanto a la ejecución del sistema, se decide que al haber presencia de agua no es recomendable hacer pilotes excavados sin entubación, por lo tanto, se prevé pilotes de extracción con entubación recuperable. En este caso la entubación se recuperará una vez se haya hormigonado. Este procedimiento se realiza perforando el terreno y colocando una camisa recuperable (entubado) para contener las paredes de la perforación. Para la ejecución de la cimentación deberá realizarse un trabajo previo de acondicionamiento del terreno que consistirá en las siguientes tareas:

1. Desbroce del terreno: comprende los trabajos necesarios para retirar de las zonas previstas para la urbanización: árboles, plantas, tocones, maleza, broza, maderas caídas, escombros, basuras o cualquier otro material existente, hasta una profundidad considerada como media de 50 cm, que en este caso será mayor debido a que el terreno casi por completo es un relleno.

2. Excavación del terreno hasta la cota de profundidad y formación de terraplenados a cielo abierto hasta alcanzar la cota de profundidad del Proyecto. La excavación se realiza en sucesivas franjas horizontales hasta el nivel requerido.

3. Nivelación de la zona de asentamiento de la urbanización

4. Excavación de zanjas y pozos para la instalación de todo tipo de conducciones hasta alcanzar la cota de profundidad del Proyecto. La excavación se realiza en sucesivas franjas horizontales hasta el nivel requerido.

Después de cada una de estas tareas se realizará el replanteo de la cimentación. Una vez hecho el replanteo se procede a realizar la perforación del terreno para la ejecución de los pilotes. La perforación se realizará mediante hélice. Realizada la perforación y colocada la entubación se introduce la armadura formada por una jaula compuesta de armadura longitudinal y transversal.

1. Perforación de pilotes de cimentación por extracción de tierras mediante sistema mecánico y eliminación de residuos de la excavación.

2. Colocación del entubado (camisa recuperable) de los pilotes que se habrá recubierto internamente con un producto que evite la adherencia del hormigón.

3. Formación de capa de hormigón de limpieza y nivelado de fondo de pilotes con vertido de hormigón en masa.

4. Colocación de las armaduras de acero de pilotes, que vendrán prefabricadas.

5. Hormigonado de pilotes con hormigón con aditivo hidrófugo vertido a través de tubo.

7. Demolición de la parte superior de los pilotes para eliminar el hormigón de cabeza del pilote que no reúne las características mecánicas necesarias.
Una vez hormigonado y fraguado todo el pilote se debe demoler la parte que sobresale de la perforación de manera que la armadura longitudinal sobresalga aproximadamente unos 50 cm del pilote para su entrelazado con el encepado. La demolición de la cabeza del pilote se realiza para eliminar la parte de hormigón que se ha podido contaminar con el lodo producido en la perforación. Una vez descabezado el pilote se procede a la ejecución del encepado y las vigas centradoras, de hormigón armado realizadas in situ al igual que los pilotes.

1. Encofrado de encepados y vigas centradoras mediante encofrado recuperable metálico.
2. Colocación de las armaduras de acero de encepados y vigas centradoras, que vendrán prefabricadas.
3. Hormigonado de los encepados y vigas centradoras con hormigón con aditivo hidrofugo vertido.
4. Desencofrado.

Todas las armaduras de los elementos de cimentación serán prefabricadas para agilizar la puesta en obra, y se dispondrán las tuberías y sondas necesarias para la geotermia dentro de los pilotes durante la perforación de los mismos para tenerlos preparados en el momento de la inserción de la armadura en el terreno.

Para la ejecución de los encepados se dejan sobresaliendo los pernos de unión para los pilares de hormigón y el muro de sótano.

Por último, la contención del terreno se llevará a cabo mediante muros de sótano de 30 cm encofrados por ambas caras ya que no existen restricciones en cuanto a la excavación en todo el perímetro del edificio. El desarrollo constructivo del mismo se adjunta en la documentación gráfica.

3.3 Sistema estructural

La estructura portante del edificio está compuesta por muros, pilares, forjados y vigas, aunque en el caso de este edificio el sistema estructural se simplifica para poder carecer de vigas de canto y contar con forjados de losa armada maciza para salvar todas las luces, de forma que no existan interrupciones en los techos. La ejecución de la obra de hormigón será in situ.

Para las soluciones excepcionales dentro del edificio se recurre a otros sistemas estructurales. En concreto, los auditorios poseen estructuras metálicas con forjados mixtos de chapa colaborante.

3.3.1 Descripción del sistema

Debido a la naturaleza del proyecto explicada en el primer libro de este proyecto y respondiendo a cuestiones espaciales, materiales y acústicas, se decide construir gran parte del edificio en base a un sistema murario de hormigón armado. Dichos muros adoptan unas geometrías que se alejan de una disposición ortogonal para adoptar formas curvilíneas en algunos casos que van dando forma a los diferentes volúmenes. Esta solución no resulta más compleja a nivel estructural que un sistema ortodoxo en el que los muros se encuentran siempre a 90 grados, ya que las fuerzas se transmiten en vertical a la cimentación en todo momento y las luces entre los mismos, pese a ser variables entre sí, siempre se transmiten directamente desde las losas armadas a los muros.

Excepcionalmente, en el volumen de la escuela que mira al mar, se decide optar por un sistema que permita mayor flexibilidad en el interior, por lo que el muro se convierte en pilar de 60x25. En definitiva, se resume en una sucesión de pórticos a 4.15m entre sí que forman un peine que mira al mar. Dichos pórticos, pese a ser de hormigón y estar cimentados mediante pilotes y encepados rígidos, quedan arriostrados mediante un muro de hormigón que los une entre sí y los separa del resto del edificio.

El sistema que se plantea para la estructura horizontal es el de losa maciza. La elección del mismo se basa una vez más en cuestiones espaciales, materiales y acústicas, pero especialmente debido a las geometrías tan variables sobre las que se apoya.

Se planteó la posibilidad de trabajar con losas alveolares o prefabricadas, pero se desechó la idea debido a incompatibilidad con las geometrías de los muros. Obligaría a hacer demasiados cortes en las placas y ello, además de sentenciar las capacidades resistentes de las mismas supondría un gasto excesivo. También se planteó un sistema de forjado reticular, pero una vez más la geometría de los apoyos resultaría demasiado engorrosa.

Finalmente se opta por la losa armada que varía su canto entre 25 y 40cm. Se ha optado por estos dos cantos debido a las diferencias entre las luces que han de salvar, y también porque si se disponen de forma que las caras inferiores queden alineadas, pero exista un cambio de cota entre forjados en su parte superior, ayuda a reducir la cantidad de material a utilizar para la formación de pendientes.

La cubierta del auditorio de jazz se sustenta mediante 16 vigas celosía tipo Pratt reforzadas, dispuestas de forma radial y confluente en un anillo de compresión que a su vez da forma al escenario de cubierta. Los apoyos de esta viga sobre los muros serán articulados y éstos se arriostran entre sí mediante el forjado de chapa colaborante que soporta la cubierta.

La estructura del graderío del interior del auditorio se entiende como un mecano que puede ser alterando con el tiempo según las necesidades, además precisa ser hueco para poder conducir las instalaciones de climatización por debajo de éste e impulsar y extraer el aire desde el suelo.

Por otro lado, el auditorio de música experimental se apoya sobre sobre una ménsula perimetral de hormigón. De éstas emergen los pilares SHS de acero laminado arriostrados entre sí formando una estructura que funciona como una viga celosía dispuesta en vertical. El apoyo de los forjados de chapa colaborante que forman las balconadas se realiza mediante unos perfiles HEB atornillados a los montantes.
3.3.2 Proceso constructivo

En primer lugar, teniendo ya ejecutados los muros de sótano y previo replanteo de muros y pilares, se acomete sobre las esperas de la cimentación la colocación de armaduras y la ejecución de encofrados, en este caso con los moldes suministrados por la empresa Reckli. Estos son reutilizables como máximo 100 veces y tienen como objetivo proporcionar al hormigón la textura indicada en la imagen:

![Textura del hormigón](image)

Se tomarán muestras del hormigón para realizar los ensayos pertinentes en materia de resistencia y durabilidad para poder garantizar la calidad del hormigón suministrado.

Posteriormente se procede al vertido de hormigón mediante cubilote o bomba, dependiendo de la zona que se trate. Una vez haya fraguado y entrado en carga el hormigón se disponen los encofrados para la ejecución de los forjados de losa maciza y previamente al vertido de hormigón se colocan las armaduras y se dispone de los zunchos, jácenas y elementos necesarios según proyecto. Se tendrán en cuenta también la disposición de las juntas de dilatación, y la solución de la misma mediante conectores de forjado tipo Schöck Dorn, tal y como se profundiza en el apartado de estructuras de este documento.

Una vez se hayan ejecutado y desencofrados los muros y pilares en contacto con el terreno, se llevará a cabo la construcción de la solera mediante cavitis. Este sistema garantiza un forjado sanitario que mediante una ventilación constante de las cámaras evitará el contacto de la solera con el terreno húmedo y su nivel freático próximo según mareas.

Una vez la ejecución de la estructura en hormigón se haya llevado a cabo, las comprobaciones sean las correctas y se hayan dispuesto las esperas y los enanos necesarios, se procederá al montaje de la estructura metálica.

Previo replanteo y revisado de las medidas de cada perfil se colocarán los perfiles mediante grúa y se soldará y atornillará seguido de los encofrados, en este caso con los moldes suministrados por la empresa Reckli (modelo 2/45 oder) en dimensiones a especificar según muro.

Se podrá trabajar alternadamente en diferentes partes del edificio debido a la superficie que éste abarca en planta, pudiendo realizarse la ejecución de fachadas y acabados en una parte del edificio que ya haya entrado en carga mientras en otra aún se están acometiendo labores de la ejecución de la estructura.

3.4 Sistema envolvente

En este apartado se recoge la definición constructiva de los diferentes subsistemas de la envolvente del edificio, así como la descripción de su comportamiento: Frente a las acciones a la que está sometido (peso propio, viento, etc), frente al fuego, seguridad de uso, evacuación de agua, frente a la humedad, aislamiento acústico y aislamiento térmico.

Los edificios dispondrán de una envolvente de características tales que limite adecuadamente la demanda energética necesaria para alcanzar el bienestar térmico en función del clima de la localidad, del uso del edificio y del régimen de verano y de invierno, así como por sus características de aislamiento e inercia, permeabilidad al aire y exposición a la radiación solar. Así se reduce el riesgo de aparición de humedades de condensación superficiales e intersticiales que puedan perjudicar sus características y tratando adecuadamente los puertos térmicos para limitar las pérdidas o ganancias de calor y evitar problemas higrotérmicos en los mismos. (HEI)

La envolvente del edificio es la separación entre el interior y el entorno exterior. La envolvente del edificio es utilizada para proteger el interior, así como para facilitar su control climático. El diseño de un edificio debe cumplir con cuatro requisitos principales:

1. Integridad estructural
2. Control de humedad
3. Control de temperatura
4. Control de las fronteras de presión de aire

Los componentes físicos de la envolvente son: cimientos, techos, paredes, puertas y ventanas. Teniendo estos aspectos en cuenta, existen dos tipos de envolvente:

- **Envolvente vertical**: Son las fachadas o paramentos verticales que protegen el edificio, también son elementos que en parte a su heterogeneidad tienen puntos o zonas las cubiertas de los edificios sean de la tipología que sean tanto horizontales como inclinadas son elementos de alta exposición como las fachadas y que han de tenerse en cuenta para mejoras de eficiencia energética. Dentro de este tipo también hay algunos elementos a considerar como pasos de instalaciones, juntas de dilatación y puentes térmicos.

- **Envolvente horizontal**: Son los paramentos o componentes horizontales del entorno exterior. La envolvente es el factor que limita el impacto del entorno exterior en el edificio y el entorno exterior. La envolvente es el factor que limita el impacto del entorno exterior en el edificio; la envolvente es la forma de proteger al edificio de los problemas higrotérmicos en los mismos.
Conforme al "Apendice A: Terminología", del DB-HE se establecen las siguientes definiciones:

<table>
<thead>
<tr>
<th>Envolvente edificatoria</th>
<th>Se compone de todos los cerramientos del edificio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envolvente térmica</td>
<td>Se compone de los cerramientos del edificio que separan los recintos habitables del ambiente exterior y las particiones interiores que separan los recintos habitables de los no habitables que a su vez están en contacto con el ambiente exterior.</td>
</tr>
</tbody>
</table>

En el CTE se recoge el siguiente esquema de la envolvente térmica de un edificio esquema que se utilizará para describir los diferentes elementos que conforman la envolvente de un edificio objeto del proyecto. Los elementos aplicables al proyecto son:

- Fachadas (M1)
- Cubiertas en contacto con aire exterior (C1)
- Lucernarios (L)
- Suelos apoyados sobre el terreno (S1)
- Muros en contacto con el terreno (T1)
- Muros/paramentos en contacto con espacios no habitables (M2)

Dado que los siguientes sistemas constructivos se han diseñado teniendo en cuenta los requerimientos en cuanto a protección frente a la humedad del HSI, se dará por justificada dicha parte de la normativa con la siguiente exposición de sistemas.

En las siguientes tablas se recogerán los diferentes tipos de cerramientos según el tipo establecido por el código técnico:

<table>
<thead>
<tr>
<th>FACHADAS</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>En la cara exterior se sitúa el hormigón armado de 30cm, sobre el que se coloca en su cara interior un trasdós de estructura metálica galvanizada y acabado en panel yeso enlucido y acabado en placa de yeso perforada tipo knauf® cleaneo akustik 8/15/20r plus v/n. dimensiones placa 2500x1200. El trasdós se rellena entre rastreles con 12cm de aislamiento de lana de roca tipo isover® acusline 70. [0.034 w/mk] Se colocará una barrera de vapor tipo Danopol 250 en la cara caliente del aislamiento, entre éste y el acabado. "El material de acabado puede variar en función del espacio por tablero de madera laminada de pino.</td>
<td></td>
</tr>
</tbody>
</table>
Por el exterior se dispone una celosía por módulos de altura variable, 21cm de espesor y 70cm de ancho permanente, formada por 3 capas de barras de acero sin corruga, soldadas a plató base y superior. Soldadura previa a galvanizado por módulos enteros. Detalle en próximos planos.

Reduce considerablemente la incisión del sol en orientaciones Sur, Este y Oeste, y sirve para dar una unidad material a otros conjuntos del edificio.

De exterior a interior, se realiza el adherido de la adoquín de piedra caliza blanca tipo Hontoria, densidad 2.140g/cm2, r = 22.57kpa y dimensiones (7x7x9cm) al soporte de hormigón mediante un mortero cola porcelánica con aditivo hidrofugante y adherencia >1 N/mm2 tipo ardex® sk100w por bandas de 1m. El trasdós se reforzó con una espuma densa de poliuretano (5mm) y de acabado textil de polipropileno tipo isover® acusline 70. [0.034 W/mK]

Cubierta tipo Deck en el auditorio de música experimental formada por los siguientes materiales, en orden de colocación:

1. Tablero contrachapado de abedul de 10mm de espesor, cubierto por una espuma densa de poliuretano (5mm) y de acabado textil de color por determinar
2. Aislamiento acústico semiñigrado de lana mineral tipo isover® acustilaine md
3. Doble tablero contrachapado de abedul, densidad 700kg/m3 y espesor 15mm, atornillado a perfiles
4. 12 cm de aislamiento de lana de roca tipo isover® acusline 70. [0.034 W/mK]
5. Lámina impermeabilizante de pvc tipo ardex® sk100w por bandas de 1m.
6. Chapa grecada galvanizada tipo ml-60 de la casa hiansa, de 12mm de espesor, fijada mediante anclaje mecánico a perfil y soldadura para evitar la entrada de agua

5. Membrana de drenado tipo delta® drain
6. Lámina geotextil typar® de polipropileno
7. Arena fina de asiento compactada, grano fino (0-1.25mm)
8. Adoquín de piedra caliza blanca tipo Hontoria, densidad 2.140g/cm2, r = 22.57kpa y dimensiones (7x7x9cm)
Este lucernario se apoya sobre la cám
silicona estructural para vidrio
entre vidrios se realizan en taller con una
Saint Gobain® Planistar One. Las uniones
cámaras rellenas de argón tipo Climalit
extremo norte del área docente, formado
Lucernario sobre aula de ensayo en el
elemento.

Muros en contacto con el terreno

Forjado sanitario para espacios habitables
1. Terreno natural excavado
2. Encachado de grava de
machaqueo e: 15cm
3. Solera previa de hormigón armado
e: 8 cm
4. Elementos Cáviti formación
cámara sanitaria e: 30cm
5. Capa de compresión e: 10cm
6. 12 cm de aislamiento de lana de
toca tipo isover® acusline 70.
(0.034 w/mk)
7. Capa de compresión de 8cm con
armadura de mallazo de #15x15 y
Ø8.

Forjado sanitario para aparcamiento, con
capa de compresión mayor y acabado
fratado pulido
1. Terreno natural excavado
2. Encachado de grava de
machaqueo e: 15cm
3. Solera previa de hormigón armado
e: 8 cm
4. Elementos Cáviti formación
cámara sanitaria e: 30cm
5. Capa de compresión de 15cm con
armadura de mallazo de #15x15 y
Ø8.

Muro de sótano en el que el agua ejerce
poca presión, no se dispondrá de cámara
de aire pero sí de un tubo drenante en su
parte inferior apoyado sobre los
encapados y con una pendiente mayor al
1%. Su composición de exterior a interior
es la siguiente:
1. Lámina geotextil typark® de
polipropileno
2. Membrana de drenado tipo delta®
drain
3. Lámina impermeabilizante de pvc
tipo ardez® sk100w por bandas de
1m.
4. HORMIGON HA-35/B/15/IIIB de
espesor 30cm
5. 8 cm de aislamiento de lana de
toca tipo isover® acusline 70.
(0.034 w/mk)
6. Placa de yesa perforada tipo
knauf® cleanex akustik 6/15/20r
plus v/n. dimensiones placa
2500x1200

C4

Cubierta tradicional no transitable aislada
con acabado en losetas hormigón celular
en el que se disponen los siguientes
materiales, en orden de aplicación:
1. Formación de pendientes con
hormigón celular sin árido y
densidad 300kg/m3, de 10cm de
espesor medio.
2. Barrera de vapor de polietileno de
baja densidad ldpe y 0.2mm de
espesor tipo danopol® 250 (inf.
condensaciones).
3. 12cm de aislamiento de
poliestireno epandido con co2
(0.034W/mk).
4. Lámina impermeabilizante de PVC
tipo ardez® sk100w por bandas de
1m.
5. Membrana de drenado tipo delta®
drain.
6. Lámina geotextil typark® de
polipropileno.
7. Losetas de hormigón celular poroso
tipo Yong de dimensiones
(60x60x3cm).

Dispone de apertura automática mediante
cilindro proporcionado por la empresa
Schuco® para poder producir un tiro de
daire debido a la corriente que cruza el
elemento.

L1

Lucernario en coronación de muros de los
muros sobre la doble piel del auditorio de
Jazz, pensados para introducir en éste una
luz tenue controlada. La carpintería es de
la gama de Schuco® Fenster AWS
90.51 Green y cuenta con
Triple vidrio (6+10+4+10+6) con cámaras
rellenas de argón tipo Climalit Saint
Gobain® Planistar One.
Las uniones entre vidrios se realizan en
taller con una silicona estructural para
vidrio suministrada por Schuco®

Este lucernario se apoya sobre la cabeza
de cuatro muros de hormigón

L2

Lucernario sobre aula de ensayo en el
extremo norte del área docente, formado
por Triple vidrio (6+10+4+10+6) con
cámaras rellenas de argón tipo Climalit
Saint Gobain® Planistar One. Las uniones
entre vidrios se realizan en taller con una
silicona estructural para vidrio
suministrada por Schuco®

Este lucernario se apoya sobre la cabeza
de cuatro muros de hormigón

SUELOS APOYADOS SOBRE EL TERRENO

S1

Muro de sótano en el que el agua ejerce
poca presión, no se dispondrá de cámara
de aire pero sí de un tubo drenante en su
parte inferior apoyado sobre los
encapados y con una pendiente mayor al
1%. Su composición de exterior a interior
es la siguiente:
1. Lámina geotextil typark® de
polipropileno
2. Membrana de drenado tipo delta®
drain
3. Lámina impermeabilizante de pvc
tipo ardez® sk100w por bandas de
1m.
4. HORMIGON HA-35/B/15/IIIB de
espesor 30cm
5. 8 cm de aislamiento de lana de
toca tipo isover® acusline 70.
(0.034 w/mk)
6. Placa de yesa perforada tipo
knauf® cleanex akustik 6/15/20r
plus v/n. dimensiones placa
2500x1200
T2

Muro de sótano en el que el agua ejerce más presión, se dispondrá cámara de aire y un tubo drenante en su parte inferior apoyado sobre los encepados y con una pendiente mayor al 1%. Su composición de exterior a interior es la siguiente:

1. Lámina geotextil typar® de polipropileno
2. Membrana de drenado tipo delta® drain
3. Lámina impermeabilizante de pvc tipo ardex® sk100w por bandadas de 1m.
4. HORMIGÓN HA-35/B/15/IIB de espesor 30cm
5. Cámara de aire 10cm con canal de drenaje tipo ULMA U200K con pendiente del 0.5% conectado a red de recogida de pluviales.
6. Trastejos de bloque de hormigón hueco compacto (390x190x90mm)
7. Pintado o enlucido según zona

T3

Murete en el que el agua ejerce poca presión, no se dispondrá de cámara de aire pero sí de canal de drenaje tipo ULMA U200K con una pendiente mayor al 1% encargada de recoger además las aguas pluviales provenientes de las bajantes. Su composición de exterior a interior es la siguiente:

1. Chapa de acero galvanizado en la parte visible del muro
2. Lámina geotextil typar® de polipropileno
3. Membrana de drenado tipo delta® drain
4. Lámina impermeabilizante de pvc tipo ardex® sk100w por bandadas de 1m.
5. HORMIGÓN HA-35/B/15/IIB de espesor 30cm
6. 8 cm de aislamiento de lana de roca tipo sover® acusline 70. [0.034 w/mk]
7. Madera de pino laminada, de 20mm de espesor y cantos matados o biselados según pieza con acabado en barniz incoloro mate

MUROS CON ESPACIOS NO HABITABLES

1. Lámina impermeabilizante de pvc tipo ardex® sk100w por bandadas de 1m.
2. Membrana de drenado tipo delta® drain
3. HORMIGÓN HA-35/B/15/IIB de espesor 30cm
3.5 Sistema de compartimentación

Se definen en este apartado los elementos de cerramiento y particiones interiores. Los elementos seleccionados cumplirán con las prescripciones del CTE. Se entiende por partición interior, conforme al APENDICE A – Terminología del DB HE 1 el elemento constructivo del edificio que divide su interior en recintos independientes. Estos pueden ser verticales u horizontales. Como norma general los tipos de particiones que se utilizaran para la separación de las estancias serán:

- Particiones acústicas verticales
- Particiones acústicas horizontales
- Particiones genéricas verticales
- Particiones genéricas horizontales

Para esta descripción se cogerán los dos sistemas de particiones verticales más relevantes:

![Particiones acústicas verticales](image1)

Además de estos componentes aislantes, se utiliza una piel adosada al tabique para el acondicionamiento acústico de las salas compuesta por una serie de tablas de madera con el perfil variable ondulado, y entre éstas un entramado de madera, espuma y textil con una pequeña cámara de aire capaces de asimilar todo tipo de frecuencias de onda para evitar su reverberación. El detalle de este elemento se incluye en la documentación gráfica del proyecto.

Forjado entre recintos con requerimientos acústicos diferentes: Se trata de un forjado de losa armada y se utiliza también para la solera de los locales de instalaciones. Con los siguientes componentes, de abajo hacia arriba:

1. Losa de Hormigón HA-35/B/15/IIB de espesor 30cm
2. Capa aislamiento acústico tipo Copropen® 150. Colocación de doble lámina 20mm
3. Capa de compresión de 15cm con armadura de mallazo de #15x15 y Ø8
4. moqueta de PVC continua de trenzado <1mm y tono azul

3.6 Sistema de acabados

En este apartado se indican las características y prescripciones de los acabados de los paramentos a fin de cumplir los requisitos de funcionalidad, seguridad y habitabilidad recogidos en la normativa vigente. Los acabados se han escogido, además de siguiendo las intenciones proyectuales, siguiendo criterios de confort y durabilidad, así como las condiciones de seguridad de utilización determinadas por el documento básico “DB-SUA-1 Seguridad frente al riesgo de caídas”.

HORMIGÓN

El hormigón armado de gran parte del edificio posee al menos una cara visible terminada con una textura otorgada por un molde para encofrado suministrado por la empresa Reckli®. Se trata del modelo oder 2/45 que presenta la siguiente textura con la que se quiere enfatizar en el aspecto rugoso del edificio, en combinación con las celosías metálicas, también verticales:

![Particiones acústicas horizontales](image2)

Se trata de un tabique de triple hoja con aislamiento acústico tipo knauf® acustik y placas interiores silentboard, acabado enlucido y pintado, con placa exterior vernizada.

EL molde empleado tendrá la siguiente textura:

![Texto de imagen](image3)

Se trata de unos moldes de silicona prefabricados que se suministran en piezas de 6x1m máximo, y que según la gama pueden reutilizarse hasta 100 veces.

PAVIMENTOS

Se plantean en general tres tipos de pavimento, según requerimientos del espacio a pavimentar:

- **Hormigón acabado en cuarzo-corindón maestreado y fratasado, con resbaladiciad >2:** para suelos de tránsito general, teniendo en cuenta la necesidad diaria de transportar instrumentos musicales pasados con facilidad, que de optarse por un suelo blando terminaría deteriorándose pronto. Este suelo además
resulta idóneo para la climatización mediante suelo radiante del vestíbulo, ya que distribuye el calor uniformemente a lo largo de su superficie.

- **Moqueta tufting, Vila Rica VR12®** con etiqueta ecológica Green Label Plus, en losas, de baja emisión de COV, sin PVC, 100% reciclable en losetas de 90x30 y tonos azules para estancias con requerimientos acústicos de cualquier tipo, ya que es un tipo de suelo que evita reverberaciones y permite el control del sonido.

- **Baldosa blanca 10x10cm de gresite con rejunteo negro** para zonas de aseo o zonas que puedan tener humedad.

PAREDES Y TECHOS

En general, los acabados acústicos se resuelven con el sistema de acabado acústico TPI descrito en el apartado de compartimentación, pero cuando se trata de espacios corrientes, se utilizará un enlucido de yeso sobre los trasdosados de cartón-yeso, y placas perforadas en espacios como los lucernarios, en los que podrían ocasionarse reverberaciones.

- **Placas perforadas tipo Knauf® Cleaneo**

Se utilizarán zócalos de madera de pino laminada con barniz mate incoloro donde haya revestimientos pintados de blanco y pueda haber roces, es decir, en pasillos, zonas de paso, camerinos y almacenes.

- **Acabado de tablero contrachapado de madera de pino**

Los falsos techos, cuando lo hay, tendrán dos tipos de acabados: Por un lado, en el pasillo de la escuela tendrán un acabado en madera de pino como el del zócalo, y en locales privativos tendrán falsos techos de cielo raso enlucidos y pintados de blanco.

3.7 Sistema de servicios

Se entiende por sistema de servicios el conjunto de servicios externos al edificio necesarios para el correcto funcionamiento de este, tales como: abastecimiento de agua, evacuación de agua, suministro eléctrico, climatización, Sistemas de protección contra incendios y sistema de ventilación.

Todos ellos descritos y justificados en sus apartados correspondientes de la memoria de Instalaciones.
CUMPLIMIENTO DEL CTE DB HE

La justificación de este documento se realiza teniendo en cuenta todos sus apartados, pese a tener que cumplir sólo algunos de ellos.

1. HE 0: Limitación del consumo energético

Para justificar el cumplimiento de las exigencias de esta sección, los documentos de proyecto incluirán la siguiente información sobre el edificio.

1.1 Definición de la localidad y de la zona climática de ubicación:

Se trata de un edificio ubicado en Getxo (Bizkaia), considerado zona climática C1 al estar situado a una altura sobre el nivel del mar de menos de menos de 51m. De hecho, se sitúa a menos de 20m del borde del mar, por lo que puede considerarse que se sitúa en un clima marítimo. El terreno sobre el que se edifica es un terreno ganado al mar, y protegido parcialmente del viento norte por un acantilado de no más de 50m. La pertenencia a dicha zona climática define las solicitudes exteriores para el cálculo de demanda energética, mediante la determinación del clima de referencia asociado, publicado en formato informático (fichero MET) por la Dirección General de Arquitectura, Vivienda y Suelo, del Ministerio de Fomento.

Antes de la entrada en vigor de la revisión del CTE DB HE conforme a las disposiciones transitorias del Real Decreto 732/2019, el documento ha perdido las tablas en las que se hacía referencia a las transmisiones mínimas de los elementos constructivos según su zona climática, por lo que se decide justificar los mismos en el siguiente apartado HE 1 del presente documento.

1.2 Zonificación, nivel de acondicionamiento y agrupaciones por recintos.

Se ha introducido el edificio en 3D dentro del software de CYPEMEP mediante una versión educativa. En el mismo se definen las características térmicas de la envolvente térmica y todos sus componentes, así como la zonificación térmica del edificio y la agrupación de recintos que se lleva a cabo para optimizar el consumo de energía.

Se han tenido en cuenta las medidas pasivas utilizadas a la hora de introducir datos al programa. Si bien se trata de un software limitado en cuanto al manejo de la herramienta 3D, se ha decidido sustituir la celosía de barras verticales de acero por un factor de sombra aplicado a la fachada SO y S y a sus ventanas. El resto de elementos de sombra se han introducido de la manera adecuada.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m²)</td>
<td>(m³)</td>
<td>(l/h)</td>
<td>(kWh/año)</td>
<td>(kWh/año)</td>
<td>(kWh/año)</td>
<td>media</td>
<td>media</td>
<td></td>
</tr>
<tr>
<td>auditorio experimental (Zona habitable, Perfil: Alta, 8 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>581.89</td>
<td>1601.05</td>
<td>1.00</td>
<td>0.80/0.232</td>
<td>14570.3</td>
<td>10927.9</td>
<td>7285.3</td>
<td>20.0</td>
<td>25.0</td>
</tr>
<tr>
<td>auditorio jazz (Zona habitable, Perfil: Alta, 8 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>672.21</td>
<td>2397.28</td>
<td>1.00</td>
<td>0.80/0.229</td>
<td>16821.1</td>
<td>12624.1</td>
<td>8416.1</td>
<td>20.0</td>
<td>25.0</td>
</tr>
<tr>
<td>zona atemporal (Zona habitable, Perfil: Baja, 12 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>850.86</td>
<td>2499.99</td>
<td>1.00</td>
<td>0.80/0.324</td>
<td>6037.7</td>
<td>4528.3</td>
<td>15094.3</td>
<td>20.0</td>
<td>25.0</td>
</tr>
<tr>
<td>no habitables (Zona no habitable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5461.7</td>
<td>13273.8</td>
<td>1.00</td>
<td>2.60</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

donde:

- **S**: Superficie útil interior del recinto, m².
- **V**: Volumen interior neto del recinto, m³.
- **bV**: Factor de ajuste de la temperatura de suministro de ventilación. En caso de disponer de una unidad de recuperación de calor, el factor de ajuste de la temperatura de suministro de ventilación para el caudal de aire procedente de la unidad de recuperación es igual a bV = (1 - f_hru/100), donde f_hru es el rendimiento de la unidad de recuperación y f_hru es la fracción del caudal de aire total que circula a través del recuperador.
- **rem**: Número de renovaciones por hora del aire del recinto.
- **º**: Valor medio del número de renovaciones hora del aire de la zona habitable, incluyendo las infiltraciones calculadas.
- **Q cen.**: Sumatorio de la carga interna sensible debida a la ocupación del recinto a lo largo del año, conforme al perfil anual asignado y a su superficie, kWh/año.
- **Q int.**: Sumatorio de la carga interna sensible debida a los equipos presentes en el recinto a lo largo del año, conforme al perfil anual asignado y a su superficie, kWh/año.
- **Q a.c.**: Sumatorio de la carga interna sensible a la iluminación del recinto a lo largo del año, conforme al perfil anual asignado y a su superficie, kWh/año.
- **T calef.**: Valor medio en los intervalos de operación de la temperatura de consigna de calefacción, °C.
- **T refri.**: Valor medio en los intervalos de operación de la temperatura de consigna de refrigeración, °C.
<table>
<thead>
<tr>
<th>Horario</th>
<th>Laboral</th>
<th>Sábado</th>
<th>Festivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Perfil: Baja, 12 h (uso no residencial)

<table>
<thead>
<tr>
<th>Horario</th>
<th>Laboral</th>
<th>Sábado</th>
<th>Festivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Perfil: Alta, 8 h (uso no residencial)

<table>
<thead>
<tr>
<th>Horario</th>
<th>Laboral</th>
<th>Sábado</th>
<th>Festivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24h</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
1.3 Composición constructiva. Elementos constructivos pesados.

La transmisión de calor al exterior a través de los elementos constructivos pesados que forman la envolvente térmica de las zonas habitables del edificio (-12.4 kWh/(m²·año)) supone el 50.4% de la transmisión térmica total a través de dicha envolvente (-24.6 kWh/(m²·año)).

<table>
<thead>
<tr>
<th>Tipo</th>
<th>S (m²)</th>
<th>c (W/m²K)</th>
<th>U (W/m²K)</th>
<th>\dot{Q}_{tr} (kWh/año)</th>
<th>a (°)</th>
<th>Ø (°)</th>
<th>F_{w} (W/m²K)</th>
<th>F_{w} (kWh/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docente</td>
<td>-30493</td>
<td>-3575.7</td>
<td>2811.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>auditorio experimental</td>
<td>-8854.1</td>
<td>-5778.5</td>
<td>677.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>auditorio jazz</td>
<td>-5635.8</td>
<td>-10647.5</td>
<td>70.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zona atemperada</td>
<td>-11004.8</td>
<td>-3540.3</td>
<td>353.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no habitables</td>
<td>-5067.2</td>
<td>-2342.0</td>
<td>14221.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4 Composición constructiva. Elementos constructivos ligeros.

La transmisión de calor al exterior a través de los elementos constructivos ligeros que forman la envolvente térmica de las zonas habitables del edificio (-7.4 kWh/(m²·año)) supone el 33.2% de la transmisión térmica total a través de dicha envolvente (-22.2 kWh/(m²·año)).

1.5 Composición constructiva. Puentes térmicos.

La transmisión de calor a través de los puentes térmicos incluidos en la envolvente térmica de las zonas habitables del edificio (-3.6 kWh/(m²·año)) supone el 14.6% de la transmisión térmica total a través de dicha envolvente (-24.6 kWh/(m²·año)).

Tomando como referencia únicamente la transmisión térmica a través de los elementos pesados y puentes térmicos de la envolvente habitable del edificio (-16.0 kWh/(m²·año)), el porcentaje debido a los puentes térmicos es el 22.5%.
2.1 Resultados del cálculo de demanda energética:

Porcentaje de ahorro de la demanda energética respecto al edificio de referencia.

En el siguiente cálculo se muestra el porcentaje de ahorro de la demanda energética en calefacción y refrigeración del edificio objeto respecto al edificio de referencia, siendo holgadamente superior al mínimo exigido de 25%.

\[
\%_{AD} = 100 \cdot \left(\frac{D_{G,ref} - D_{G,obj}}{D_{G,ref}} \right) = 100 \cdot \left(\frac{44.7 - 14.3}{44.7} \right) = 68.1 \% \quad \%_{AD,exigido} = 25.0 \%
\]

<table>
<thead>
<tr>
<th>Zonas habitables</th>
<th>S_0 (m²)</th>
<th>Horario de uso, Cn (W/m²)</th>
<th>D_G,ref (kWh/año)</th>
<th>D_G,obj (kWh/año)</th>
<th>%_{AD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficina</td>
<td>12 h, Baja</td>
<td>6.6</td>
<td>44977.6</td>
<td>18.0</td>
<td>54145.5</td>
</tr>
<tr>
<td>Auditorio</td>
<td>8 h, Alta</td>
<td>6.4</td>
<td>5232.1</td>
<td>9.0</td>
<td>3995.4</td>
</tr>
<tr>
<td>Auditorio jazz</td>
<td>8 h, Alta</td>
<td>6.4</td>
<td>4449.9</td>
<td>6.6</td>
<td>5741.5</td>
</tr>
<tr>
<td>Zona atemporal</td>
<td>7 h, Baja</td>
<td>5.4</td>
<td>5098.4</td>
<td>12.9</td>
<td>38719.4</td>
</tr>
</tbody>
</table>

Donde:

- S_0: Superficie útil de la zona habitable, m².
- Cn: Densidad de las fuentes internas. Suma el promedio horario de la carga térmica total debida a las fuentes internas, redefinida sobre la superficie útil, calculada a partir de las cargas nominales en cada hora para cada carga (carga sensible debida a la ocupación, carga debida a iluminación y carga debida a equipos) a lo largo de una semana tipo.
- D_G,ref: Demanda energética conjunta de calefacción y refrigeración del edificio de referencia, calculada como suma ponderada de las demandas de calefacción y refrigeración, según D_G = D_A + 0.7: D_V en item 2.2. (CTE DB HE 1).
- D_G,obj: Demanda energética conjunta de calefacción y refrigeración del edificio objeto, calculada como suma ponderada de las demandas de calefacción y refrigeración, según D_G = D_A + 0.7: D_V en item 2.2. (CTE DB HE 1).

De la extracción de estos datos se obtienen las siguientes conclusiones:

La celosía exterior de elementos verticales colocada en las orientaciones SO y S reduce considerablemente la refrigeración necesaria en los meses de verano, mientras que la apertura de huecos hacia orientaciones Sur y los cerramientos opacos a Norte se traducen en una eficiencia inmediata en cuanto al ahorro energético del edificio.

Todo ello en conjunto con las protecciones solares complementarias como vuelos en la orientación sur y estancias que aprovechan la inercia térmica de los materiales.

Además, teniendo en cuenta el horario de uso interrumpido del edificio, la decisión de colocar aislamiento en la cara interior ayuda a acelerar el proceso de calentamiento y enfriamiento del edificio, reduciendo la demanda.

2.2 Resumen del cálculo de la demanda energética:

La siguiente tabla es un resumen de los resultados obtenidos en el cálculo de la demanda energética de calefacción y refrigeración de cada zona habitable, junto a la demanda total del edificio.
mediante barras más estrechas y de color más oscuro, situadas a la derecha de los valores correspondientes al edificio objeto.

En la siguiente tabla se muestran los valores numéricos correspondientes a la gráfica anterior, del balance energético del edificio completo, como suma de las energías involucradas en el balance energético de cada una de las zonas térmicas que conforman el modelo de cálculo del edificio.

El criterio de signos adoptado consiste en emplear valores positivos para energías aportadas a la zona de cálculo, y negativos para la energía extraída.

<table>
<thead>
<tr>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Año (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{in}</td>
<td>773.5</td>
<td>593.6</td>
<td>1861.0</td>
<td>3665.2</td>
<td>2597.0</td>
<td>2511.0</td>
<td>2895.2</td>
<td>2491.4</td>
<td>2128.3</td>
<td>1876.9</td>
<td>1273.5</td>
<td>1322.9</td>
</tr>
<tr>
<td>Q_{op}</td>
<td>1018.7</td>
<td>8714.4</td>
<td>1956.3</td>
<td>-8525.6</td>
<td>-7108.8</td>
<td>-2753.4</td>
<td>-6559.1</td>
<td>-6727.4</td>
<td>-7032.6</td>
<td>-6812.7</td>
<td>-8472.6</td>
<td>10435.6</td>
</tr>
<tr>
<td>Q_{tr}</td>
<td>2.8</td>
<td>3.6</td>
<td>12.4</td>
<td>12.8</td>
<td>12.7</td>
<td>61.7</td>
<td>192.1</td>
<td>151.9</td>
<td>191.6</td>
<td>51.0</td>
<td>9.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Q_{incidente}</td>
<td>1019.9</td>
<td>-5463.1</td>
<td>-3478.3</td>
<td>-5043.4</td>
<td>-2622.9</td>
<td>-2447.2</td>
<td>-1523.7</td>
<td>-1371.5</td>
<td>-3190.0</td>
<td>-2394.4</td>
<td>-3211.6</td>
<td>-1931.3</td>
</tr>
<tr>
<td>Q_{solar}</td>
<td>5092.8</td>
<td>2675.3</td>
<td>2826.6</td>
<td>2571.0</td>
<td>2178.7</td>
<td>2099.2</td>
<td>1652.6</td>
<td>1584.3</td>
<td>1905.4</td>
<td>2175.5</td>
<td>2679.1</td>
<td>2977.4</td>
</tr>
<tr>
<td>Q_{interior}</td>
<td>5092.8</td>
<td>-2675.3</td>
<td>-2826.6</td>
<td>-2571.0</td>
<td>-2178.7</td>
<td>-2099.2</td>
<td>-1652.6</td>
<td>-1584.3</td>
<td>-1905.4</td>
<td>-2175.5</td>
<td>-2679.1</td>
<td>-2977.4</td>
</tr>
</tbody>
</table>

Balance energético anual del edificio.

- Q_{in}: Transferencia de calor correspondiente a la transmisión térmica a través de elementos pesados en contacto con el exterior, kWh/(m²·año).
- Q_{op}: Transferencia de calor correspondiente a la transmisión térmica a través de elementos ligeros en contacto con el exterior, kWh/(m²·año).
- Q_{tr}: Transferencia de calor correspondiente a la transmisión térmica debida al acoplamiento térmico entre zonas, kWh/(m²·año).
- $Q_{incidente}$: Transferencia de calor correspondiente a la transmisión térmica por ventilación, kWh/(m²·año).
- Q_{solar}: Transferencia de calor correspondiente a la ganancia de calor interna sensible, kWh/(m²·año).
- $Q_{interior}$: Transferencia de calor correspondiente a la ganancia de calor solar, kWh/(m²·año).
- Q_{solar}: Transferencia de calor correspondiente al almacenamiento o cesión de calor por parte de la masa térmica del edificio, kWh/(m²·año).
- Q_{c}: Energía aportada de calefacción, kWh/(m²·año).
- Q_{r}: Energía aportada de refrigeración, kWh/(m²·año).

De estos datos se puede extraer que la demanda de calefacción en invierno es considerablemente mayor que la de refrigeración en verano, y esto se debe principalmente a la protección solar pasiva y a que la mayoría de la superficie del edificio no dispone de una entrada de luz y calor directa, además de estar muy aislado.

Estas conclusiones se estudian más a fondo con los siguientes datos:

2.4 Demanda energética mensual de calefacción y refrigeración:
Atendiendo únicamente a la demanda energética a cubrir por los sistemas de calefacción y refrigeración, las necesidades energéticas y de potencia útil instantánea a lo largo de la simulación anual se muestran en los siguientes gráficos:

2.5 Resultados numéricos del balance energético por zona y mes.

Las conclusiones extraídas de estos datos son principalmente que la mayor demanda energética la produce el área docente, siendo éste el elemento más expuesto del edificio y con mayor superficie acristalada y por tanto mayor transmisión de calor con el exterior.

3. Cálculo de condensaciones:

Se define la composición de los dos principales cerramientos mediante la herramienta de cálculo de condensaciones CYPETHERM HYGRO.

Condiciones higrotérmicas para la realización del cálculo:

<table>
<thead>
<tr>
<th>Condiciones exteriores</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura, θ_e (°C)</td>
<td>8.1</td>
<td>9.2</td>
<td>10.7</td>
<td>12.2</td>
<td>15.5</td>
<td>16.0</td>
<td>19.2</td>
<td>19.2</td>
<td>17.0</td>
<td>16.0</td>
<td>11.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Humedad relativa, φ_e (%)</td>
<td>75</td>
<td>65</td>
<td>60</td>
<td>57</td>
<td>57</td>
<td>47</td>
<td>40</td>
<td>42</td>
<td>50</td>
<td>63</td>
<td>71</td>
<td>74</td>
</tr>
</tbody>
</table>

El diagrama psicrométrico asociado al emplazamiento, con una altura sobre el nivel del mar de 7 m, se muestra a continuación, representando mediante segmentos de recta las transiciones desde cada condición exterior de cálculo a su correspondiente condición interior.
3.1 Cerramiento vertical:

Resumen:

\[f_{ru} = 0.936 \geq f_{ru,min} = 0.379 \]

El elemento constructivo no presenta condensaciones superficiales.

El elemento constructivo no presenta condensaciones intersticiales.

En este elemento ha sido necesario introducir una barrera de vapor en la cara caliente, como una lámina plástica de polietileno de alta densidad HDPE. A continuación se muestra la sección tipo del elemento de fachada que es objeto de estudio, con su cara exterior a la izquierda y su cara interior a la derecha.

![Detalle fachada hormigón](image)

Las características térmicas y las propiedades de difusión del vapor de agua de las capas homogéneas de caras paralelas que conforman el modelo de cálculo del elemento constructivo son las siguientes:

<table>
<thead>
<tr>
<th>R(s)</th>
<th>e (cm)</th>
<th>(\lambda) (W/m·K)</th>
<th>(R) (m²·K/W)</th>
<th>Q</th>
<th>S_e (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hormigón armado d > 2500</td>
<td>30.0</td>
<td>2.500</td>
<td>0.12000</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>XPS Expandido con dióxido de carbono CO2 (0.034 W/[mK])</td>
<td>12.0</td>
<td>0.034</td>
<td>3.52941</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Polietileno alta densidad (HDPE)</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Placa de yeso laminado (PYL) 750 < d < 900</td>
<td>2.0</td>
<td>0.250</td>
<td>0.08000</td>
<td>4</td>
</tr>
</tbody>
</table>

La información de cálculo relativa a los parámetros higrotérmicos del elemento completo, derivada del modelo de capas homogéneas, es la siguiente:

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Uds.</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor total del elemento, (e_1)</td>
<td>cm</td>
<td>44.0</td>
</tr>
<tr>
<td>Resistencia térmica total, (R_1)</td>
<td>m²·K/W</td>
<td>3.8994</td>
</tr>
<tr>
<td>Espesor de aire equivalente total, (S_{1,T})</td>
<td>m</td>
<td>1026.48</td>
</tr>
<tr>
<td>Transmitancia térmica, (U)</td>
<td>W/(m²·K)</td>
<td>0.256</td>
</tr>
<tr>
<td>Factor de resistencia superficial interior, (f_{ru})</td>
<td>--</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Dadas las condiciones higrotérmicas exteriores, así como las interiores, el cálculo de \(f_{ru,min} \) queda como sigue:

<table>
<thead>
<tr>
<th>(\theta_e)</th>
<th>(\varphi_e)</th>
<th>(\theta_i)</th>
<th>(\varphi_i)</th>
<th>(P_l)</th>
<th>(P_{sat} (\theta_{ru}))</th>
<th>(\theta_{ru,min})</th>
<th>(f_{ru,min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°C)</td>
<td>(%)</td>
<td>(°C)</td>
<td>(%)</td>
<td>(Pa)</td>
<td>(Pa)</td>
<td>(Pa)</td>
<td>(%)</td>
</tr>
<tr>
<td>Enero</td>
<td>8.1</td>
<td>75.4</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Febrero</td>
<td>9.2</td>
<td>65.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Marzo</td>
<td>10.7</td>
<td>60.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Abril</td>
<td>12.2</td>
<td>57.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Mayo</td>
<td>15.5</td>
<td>57.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Junio</td>
<td>16.0</td>
<td>47.2</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Julio</td>
<td>19.2</td>
<td>40.2</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Agosto</td>
<td>19.2</td>
<td>42.2</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Septiembre</td>
<td>17.0</td>
<td>50.2</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Octubre</td>
<td>16.0</td>
<td>63.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Noviembre</td>
<td>11.2</td>
<td>71.3</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
<tr>
<td>Diciembre</td>
<td>8.8</td>
<td>74.4</td>
<td>20.0</td>
<td>50.0</td>
<td>1168.48</td>
<td>1460.59</td>
<td>12.6</td>
</tr>
</tbody>
</table>
donde:

\(\theta_e \): Temperatura del aire exterior, °C.

\(\varphi_e \): Humedad relativa del aire exterior, %.

\(\theta_i \): Temperatura del aire interior, °C.

\(\varphi_i \): Humedad relativa del aire interior, aumentada con un coeficiente de seguridad 5%, %.

\(P_i \): Presión de vapor en el ambiente interior, Pa.

\(P_{sat}(\theta_i) \): Presión de saturación del vapor de agua mínima aceptable para la superficie interior, Pa.

\(\theta_{si,mín} \): Mínima temperatura superficial interior aceptable, calculada en base a la presión de saturación mínima aceptable, °C.

\(f_{Rsi,mín} \): Factor de resistencia superficial interior mínimo.

Dado que \(f_{Rsi} = 0.936 > f_{Rsi,mín} = 0.379 \), no se producen condensaciones superficiales en el elemento constructivo.

Cálculo de condensaciones intersticiales:

Se exponen a continuación los resultados alcanzados en el cálculo de las temperaturas y presiones en cada una de las interfases formadas en la unión entre las capas homogéneas que conforman el modelo de cálculo del elemento constructivo.

Cálculo de condensaciones intersticiales en el mes de Enero.

<table>
<thead>
<tr>
<th></th>
<th>(\theta)</th>
<th>(P_{sat})</th>
<th>(P_n)</th>
<th>(\varphi)</th>
<th>(g_c)</th>
<th>(M_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire exterior</td>
<td>8.13</td>
<td>1081.737</td>
<td>815.174</td>
<td>75.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cara exterior</td>
<td>8.25</td>
<td>1090.730</td>
<td>815.174</td>
<td>74.7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 1-2</td>
<td>8.62</td>
<td>1118.107</td>
<td>820.703</td>
<td>73.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 2-3</td>
<td>19.36</td>
<td>2246.064</td>
<td>821.256</td>
<td>36.6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 3-4</td>
<td>19.36</td>
<td>2246.064</td>
<td>1051.610</td>
<td>46.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cara interior</td>
<td>19.60</td>
<td>2280.317</td>
<td>1051.628</td>
<td>46.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aire interior</td>
<td>20.00</td>
<td>2336.951</td>
<td>1051.628</td>
<td>45.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donde:

\(\theta \): Temperatura, °C.

\(P_{sat} \): Presión de saturación del vapor de agua, Pa.

\(P_n \): Presión del vapor de agua, Pa.

\(\varphi \): Humedad relativa, %.

\(g_c \): Densidad de flujo de condensación, g/(m²·mes).

\(M_a \): Contenido acumulativo de humedad por unidad de superficie, g/m².
3.2 Cerramiento horizontal (Cubierta)

Resumen:

\[f_{\text{min}} = 0.938 \geq f_{\text{RESMIN}} = 0.379 \]

El elemento constructivo no presenta condensaciones superficiales.

El elemento constructivo no presenta condensaciones intersticiales.

A continuación se muestra la sección tipo del elemento de cubierta que es objeto de estudio.

Las características térmicas y las propiedades de difusión del vapor de agua de las capas homogéneas de caras paralelas que conforman el modelo de cálculo del elemento constructivo son las siguientes:

<table>
<thead>
<tr>
<th>e (cm)</th>
<th>(\lambda) (W/m·K)</th>
<th>R (m²·K/W)</th>
<th>Q (m)</th>
<th>S (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0</td>
<td>1.700</td>
<td>0.07059</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.170</td>
<td>0.05882</td>
<td>50000</td>
</tr>
<tr>
<td>3</td>
<td>12.0</td>
<td>0.034</td>
<td>3.52941</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>12.0</td>
<td>1.150</td>
<td>0.10435</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>25.0</td>
<td>2.500</td>
<td>0.10000</td>
<td>80</td>
</tr>
</tbody>
</table>

Donde:
- e: Espesor del elemento, cm.
- \(\lambda \): Conductividad térmica del material, W/(m·K).
- R: Resistencia térmica del material, m²·K/W.
- Q: Factor de resistencia a la difusión del vapor de agua del material.
- S: Espesor de aire equivalente del material, m.
- Rsi: Resistencia térmica superficial exterior del elemento, m²·K/W.
- Rsio: Resistencia térmica superficial interior del elemento, m²·K/W.

Cálculo del factor de temperatura superficial interior necesario para evitar la humedad superficial crítica

Con objeto de prevenir los efectos adversos de la humedad superficial crítica, se ha limitado la humedad relativa máxima en la superficie interior a un valor de \(\phi_{\text{crit}} \leq 0.8 \).

Dadas las condiciones higrotérmicas exteriores, así como las interiores, el cálculo de \(f_{\text{min,IT}} \) queda como sigue:

\[
\theta_e \quad \phi_e \quad \theta_i \quad \phi_i \quad P_i \quad P_{\text{sat}} \quad \theta_{\text{lim,IT}} \quad f_{\text{IT,MIN}}
\]

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donde:
- \(\theta_e \): Temperatura del aire exterior, °C.
- \(\phi_e \): Humedad relativa del aire exterior, %.
- \(\theta_i \): Temperatura de la superficie interior, °C.
- \(\phi_i \): Humedad relativa de la superficie interior, %.
- \(P_i \): Presión parcial de vapor del aire interior, Pa.
- \(P_{\text{sat}} \): Presión de vapor saturante del aire, Pa.
- \(\theta_{\text{lim,IT}} \): Temperatura crítica del interior, °C.
- \(f_{\text{IT,MIN}} \): Factor de resistencia superficial interior, m²·K/W.

La información de cálculo relativa a los parámetros higrotérmicos del elemento completo, derivada del modelo de capas homogéneas, es la siguiente:

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Uds.</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor total del elemento, e</td>
<td>cm</td>
<td>62.0</td>
</tr>
</tbody>
</table>

81
Dado que $f_{R} = 0.938 > f_{R\text{min}} = 0.379$, no se producen condensaciones superficiales en el elemento constructivo.

Cálculo de condensaciones intersticiales

Se exponen a continuación los resultados alcanzados en el cálculo de las temperaturas y presiones en cada una de las interfases formadas en la unión entre las capas homogéneas que conforman el modelo de cálculo del elemento constructivo.

Cálculo de condensaciones intersticiales en el mes de Enero.

<table>
<thead>
<tr>
<th></th>
<th>θ ($^\circ$C)</th>
<th>P_{sat} (Pa)</th>
<th>P_{n} (Pa)</th>
<th>φ (%)</th>
<th>g_{c} (g/(m2·mes))</th>
<th>M_{a} (g/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire exterior</td>
<td>8.13</td>
<td>1081.737</td>
<td>815.174</td>
<td>75.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cara exterior</td>
<td>8.25</td>
<td>1090.496</td>
<td>815.174</td>
<td>74.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 1-2</td>
<td>8.46</td>
<td>1106.107</td>
<td>822.947</td>
<td>74.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 2-3</td>
<td>8.63</td>
<td>1119.265</td>
<td>1038.847</td>
<td>92.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 3-4</td>
<td>19.10</td>
<td>2209.553</td>
<td>1039.883</td>
<td>47.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfase 4-5</td>
<td>19.41</td>
<td>2252.530</td>
<td>1042.992</td>
<td>46.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cara interior</td>
<td>19.70</td>
<td>2294.401</td>
<td>1051.628</td>
<td>45.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aire interior</td>
<td>20.00</td>
<td>2336.951</td>
<td>1051.628</td>
<td>45.0</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Donde:

- θ: Temperatura, °C.
- P_{sat}: Presión de saturación del vapor de agua, Pa.
- P_{n}: Presión del vapor de agua, Pa.
- φ: Humedad relativa, %.
- g_{c}: Densidad de flujo de condensación, g/(m2·mes).
- M_{a}: Contenido acumulado de humedad por unidad de superficie, g/m2.

![Gráfico de condensaciones intersticiales en Enero]
3_HE 2: Condiciones de las instalaciones térmicas

Las instalaciones térmicas de las que dispongan los edificios serán apropiadas para lograr el bienestar térmico de sus ocupantes. Esta exigencia se desarrolla actualmente en el vigente Reglamento de Instalaciones Térmicas en los Edificios (RITE), y su aplicación quedará definida en el proyecto del edificio.

4_HE 3: Condiciones de las instalaciones de iluminación

Los edificios dispondrán de instalaciones de iluminación adecuadas a las necesidades de sus usuarios y al a vez eficaces energéticamente disponiendo de un sistema de control que permita ajustar el encendido a la ocupación real de la zona, así como de un sistema de regulación que optimice el aprovechamiento de la luz natural, en las zonas que reúnan unas determinadas condiciones. El valor de eficiencia energética de la instalación (VEEI) de la instalación de iluminación no superará el valor límite (VEEIlímite) establecido en la tabla 3.1-HE3. Se aplicarán los siguientes valores VEE Ilímite:

- Aulas y laboratorios: 3.5
- Administrativo general: 3.0
- Zonas comunes: 4.0
- Almacenes y salas técnicas: 4.0
- Zonas comunes: 4.0
- Bibliotecas: 5.0
- Salones de actos: 8.0
- Aparcamientos: 4.0

La potencia total de lámparas y equipos auxiliares por superficie iluminada (PTOT / STOT) no superará el valor máximo establecido en la Tabla 3.2-HE3.

5_HE 4: Contribución mínima de energía renovable para cubrir la demanda de ACS

Este apartado de la norma no es de aplicación en este proyecto porque el uso de ACS es inferior a 100 l/día según Anejo F como está explicado anteriormente en la justificación del DB HE 0.
4 MEMORIA DE INSTALACIONES
1. AGUA FRÍA Y ACS

El diseño y dimensionado de esta instalación se realizaría de acuerdo a los contenidos fijados en el CTE-DB-HS4, el cual describe los criterios mínimos en cuanto a diseño y calidades de la instalación de agua fría.

En este caso se estudiarán ambos sistemas a la vez, debido principalmente a la sencillez del sistema, por lo que la descripción de componentes se realizará de forma conjunta, así como el diseño del esquema de principio de los mismos.

1.1 Resumen del funcionamiento del sistema

La instalación de fontanería del proyecto tendrá como función abastecer al edificio de la correspondiente red de agua potable. Para ello, se contará con los equipos necesarios para proveer a todos los puntos necesarios de agua con la presión requerida. El suministro de agua vendrá de la red municipal que discurre junto al edificio. Entre la acometida y el circuito de distribución se contará un contador general para el edificio y un grupo de presión que garanticen la distribución y el funcionamiento de la instalación. A este equipo de presión se le acoplará un bypass, con el fin de que las zonas más cercanas no sufran una presión excesiva.

Este conjunto de instalaciones se colocará en el local previsto para ello junto al auditorio de música experimental, pensado para poder abastecer principalmente al núcleo húmedo formado por los camerinos, aseos y vestuario para trabajadores. Desde aquí se derivarán las tuberías que suministrarán de AF y ACS al segundo núcleo húmedo de la zona docente, así como a la pila del taller del luthier y al fregadero del bar del auditorio de Jazz. Dichas conducciones se realizarán a través de falsos techos y ocultas tras los trasdosados de Cartón-yeso. Al tratarse de conducciones de dimensiones reducidas, no hará falta contemplar el uso de collarines pasantes a través de elementos de compartimentación de incendios.

Se contará con un depósito de acumulación para agua fría y un segundo para acumulación de ACS, el cual estará alimentado por las bombas de calor geotérmicas dispuestas en cascada situadas en el mismo local.

1.2 Descripción de los componentes del sistema

La instalación, dentro del grupo de Agua Fría consiste en:

- Acometida desde la red de la compañía distribuidora.
- Contador general.
- Red de distribución desde el contador hasta llave de paso general.
- Grupo de presión.
- Circuito de distribución primario (por el sótano).
- Locales de contadores según zona. Se estima que la actividad pueda depender de dos organismos diferentes, por lo que se dividen los contadores en área docente, área de espectáculos y área de la sede del festival.
- Red de distribución propia de cada área.
- Red interior de distribución a cuartos húmedos de cada área

La acometida la realizará la compañía suministradora desde la red general de distribución pública hasta el contador general, enlazando con suficiente presión. Las ordenanzas de Getxo acerca del asunto marcan que la acometida se derivará desde el punto de la red que la empresa municipal considere más adecuado y más próximo al edificio, y además su trazado debe ser perpendicular a la tubería general. Por lo tanto, se comprobará el estado de las mismas y se utilizará la más conveniente, por localización. Asimismo, se evaluará con el fin de comprobar su estado y modificarla o adecuarla en caso de que esto sea conveniente.

Por otro lado, el agua caliente sanitaria únicamente se utiliza en aseos y en el núcleo húmedo de servicios a los auditorios, por lo que se aprovechará el calor generado por las bombas de calor para la producción de calor en los auditorios para alimentar el depósito intercambiador de ACS y tener una reserva para el consumo. Ducho sistema queda reflejado en la documentación gráfica de climatización, así como en el esquema de principio de ACS.

1.3 Esquema de principio

A continuación se muestran los esquemas de principio de ambas instalaciones:
Purgador desde colector de ida
acumulador
intercambiador de placas
a colector de vuelta

Ver esquema de climatización

Lavabo

Inodoro

Camerino

Ducha
2_SANEAMIENTO Y EVACUACIÓN DE AGUAS

2.1 Resumen

Esta sección se aplica a la instalación de evacuación de aguas residuales y pluviales. La normativa relativa a este tipo de instalaciones se encuentra recogida en el CTE-DB-HSS. Deben verificararse las siguientes condiciones generales:

Deben disponerse cierres hidráulicos en la instalación que impidan el paso del aire contenido en ella a los locales ocupados sin afectar al flujo de residuos.

Las tuberías de la red de evacuación deben tener el trazado más sencillo posible, con unas distancias y pendientes que faciliten la evacuación de los residuos y ser auto limpiables.

Debe evitarse la retención de aguas en su interior.

Los diámetros de las tuberías deben ser los apropiados para transportar los caudales previsibles en condiciones seguras.

Las redes de tuberías deben diseñarse de tal forma que sean accesibles para su mantenimiento y reparación, para lo cual deben disponerse a la vista o alojadas en huecos o patínillos registrables. En caso contrario deben contar con arquetas o registros.

Se dispondrán sistemas de ventilación adecuados que permitan el funcionamiento de los cierres hidráulicos y la evacuación de gases mefíticos.

La instalación no debe utilizarse para la evacuación de otro tipo de residuos que no sean aguas residuales o pluviales.

2.2 Descripción general de la instalación:

En cuanto a las condiciones generales de evacuación del CTE el documento DB-HSS Evacuación de aguas nos indica que los colectores de todo el edificio deben desaguar, preferiblemente por gravedad, en el pozo o arqueta general que constituye el punto de conexión entre la instalación de evacuación y la red de alcantarillado público.

Por ello el trazado de la red se diseña con la disposición de las bajantes necesarias para conseguir una circulación natural por gravedad. Es perfectamente estanca y su sección uniforme a lo largo de toda la bajante. Queda sujeta a los parámetros mediante abrazaderas y protegida de los cambios de temperatura, choques mecánicos y acciones químicas de otros materiales.

En este caso se emplea un sistema separativo para la red de saneamiento. Por un lado, se encuentran las aguas pluviales, provenientes en su mayoría del agua de lluvia recogida en la plataforma de cubierta o patio de manzana. Y por otro lado las aguas residuales, las cuales son aguas contaminadas por diferentes motivos como, por ejemplo, el agua de los inodoros, lavabos, duchas de los vestuarios y camerinos, etc. Para las aguas residuales se dispone una red de evacuación con una ventilación primaria.

Aguas residuales:

Una vez comprobada la situación de la red de saneamiento, se comprueba que existe un ramal de incorporación a la red de saneamiento que desemboca en una arqueta y equipo de bombeo para la derivación a la red general, situada en una cota más alta.
Desde la fase proyectual se han mantenido las áreas húmedas agrupadas de forma compacta, de manera que la conducción de aguas residuales resulta sencilla dentro del edificio. En este plano anterior se describe el esquema de conducción de la instalación.

La ventilación primaria de las bajantes se realiza directamente a cubierta y cumplirá las siguientes exigencias que nos afectan:

- Se considera suficiente como único sistema de ventilación en edificios con menos de 7 plantas, o con menos de 11 si la bajante está sobredimensionada.
- La salida de la ventilación primaria no debe estar situada a menos de 6 m de cualquier toma de aire exterior para climatización o ventilación y debe sobrepasarla en altura. En este edificio las tomas de aire se sitúan a más de 10m de distancia de la ventilación de las bajantes.
- La salida de ventilación debe estar debidamente protegida.
- Al tratarse de una cubierta transitible las bajantes deben ascender una altura mínima de 2 metros para su ventilación, que en este caso quedará protegida por los elementos de celosía que toman cierta recurrencia en el diseño de los espacios exteriores de cubierta.

![Ventilación de bajantes de aguas residuales parcialmente ocultas por celosía E 1:50](image)

La red se efectuará a base de tubos de PVC, con una pendiente mínima de 1% para los colectores colgados y del 2% para los enterrados, y los diámetros establecidos en el plano de saneamiento.

Como norma general, se evitan los cambios bruscos de dirección y pendiente, y los codos de 90º. En los cambios de dirección de más de 45º de desviación se prevé un registro. Las tuberías atravesarán perpendicularly los muros y para ello llevarán pasos muros. Los encuentros de las bajantes con la red horizontal se realizarán mediante arquetas a pie de bajante.

El proceso de dimensionamiento será el de un sistema separativo, en el que se dimensiona la red de aguas residuales por un lado y la red de aguas pluviales por otro, de manera separada e independiente. Para las aguas residuales, utilizaremos el método de adjudicación del número de unidades de desagüe (UD) a cada aparato sanitario en función del uso público o privado que posee cada zona del edificio, siguiendo el DB HS-5.

La tabla 4.1 del HS-5 nos indica los diámetros mínimos de sifón y derivaciones individuales de los aparatos sanitarios. En el caso de las viviendas se emplearán los diámetros relativos a las columnas de uso privado y en el dimensionado de los establecimientos de planta baja las columnas relativas al uso público.

<table>
<thead>
<tr>
<th>Tabla 4.1. UD's correspondientes a los distintos aparatos sanitarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de aparato sanitario</td>
</tr>
<tr>
<td>baño</td>
</tr>
<tr>
<td>ducha</td>
</tr>
<tr>
<td>inodoro</td>
</tr>
<tr>
<td>lavabo</td>
</tr>
<tr>
<td>cocina</td>
</tr>
<tr>
<td>salón de estar</td>
</tr>
<tr>
<td>comedor</td>
</tr>
<tr>
<td>dormitorio</td>
</tr>
<tr>
<td>oficina</td>
</tr>
</tbody>
</table>

La tabla 4.3 indica el diámetro necesario de los ramales entre aparatos sanitarios, dependiendo de las UD y la pendiente del ramal.

![Tabla 4.3 Diámetros de ramales colectores entre aparatos sanitarios y hogares](image)

La tabla 4.4 nos indica el diámetro de las bajantes de residuales en función del número de alturas a las que sirva y el número de UD.

![Tabla 4.4 Diámetro de las bajantes de residuales](image)

Por último, para dimensionar los colectores nos servimos de la tabla 4.5, que nos indica el diámetro de los mismos según la pendiente y el número de UD, siempre teniendo en cuenta que si está enterrado la pendiente mínima es del 2% y si está colgado del 1%.

<table>
<thead>
<tr>
<th>Tabla 4.5 Diámetro de los colectores según el número de UD y el número de alturas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimo número de UD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
Aguas pluviales:

El sistema de recogida de aguas pluviales dista totalmente de las residuales ya que mientras las aguas residuales requieren un tratamiento de las mismas antes del vertido a la red general, las aguas pluviales únicamente se recogen mediante colectores y se permite su vertido al mar. Al fin y al cabo, este agua no recoge más suciedad que la que se encuentra en el suelo, que de una forma u otra termina vertiéndose al mismo sitio. Los puntos en los que se efectuará el vertido al mar quedan representados en la planta de cubiertas adjunta.

Zonas pluviométricas de promedios en función del índice pluviométrico anual (Fuente CTE)

En el caso del dimensionado de la red de evacuación de pluviales que propone el HS-S es en función de la superficie a servir por cada uno de los medios de evacuación de las cubiertas.

La tabla 4.6 nos indica el número de sumideros mínimos a disponer en función de la superficie en proyección horizontal de la cubierta. Extrapolando datos al proyecto, y superando con creces los 500 m² de superficie, se dispondrá 1 sumidero como mínimo por cada 150 m² de cubierta.

La tabla 4.7 nos indica en el caso en el que usemos canalones de sección semicircular, el diámetro mínimo en función de la superficie a recoger y la pendiente que lleve el canalón. También se indica que, si se emplea una sección cuadrangular, habrá que incrementar en un 10% la superficie de la sección. Por supuesto, habrá que tener en cuenta que Getxo se encuentra en un régimen de intensidad pluviométrica 155mm/h. En este caso se emplean canalones de sección cuadrangular con una sección equivalente mayor al canalón de diámetro 240mm y con unas pendientes del 2%, por tanto, se puede concluir que los canalones de cubierta están claramente sobredimensionados, con el fin de actuar del lado de la seguridad.
Detalle de canalón en fachada SO en su encuentro con cleosía. El canalón queda oculto bajo un tramex y tiene una pendiente del 2%. E 1:20

Detalle de canalón sobre auditorio de Jazz. Al tratarse del único sumidero siendo la generación de pendientes concéntrica al mismo, éste se sobredimensiona hasta los 220mm de diámetro. El canalón queda oculto bajo un tramex y tiene una pendiente del 2%. E 1:20

Detalle del encuentro de la cubierta con el volumen del auditorio de música experimental. Se resuelve con un canalón de drenaje que conduce el agua hasta el sumidero más próximo. Queda cubierto por un tramex y la pendiente es del 1.5%. E 1:20
La tabla 4.8 indica los diámetros mínimos de bajantes de pluviales, según la superficie a la que sirva. Haciendo un cálculo sencillo cada bajante sirve a unos 180 m² de cubierta en el caso más desfavorable, teniendo en cuenta que el factor de corrección por el régimen pluviométrico de Getxo es de 1,55, se puede concluir que las bajantes de 120, 160 y 220 mm son más que de sobra para evacuar las pluviales de esta cubierta, quedando 30 mm de diámetro por encima de la prescripción normativa.

Por último, la tabla 4.9 indica los diámetros nominales de los colectores en función de su pendiente. Dado que algunos colectores de pluviales del edificio discurren enterrados bajo la solera, su pendiente mínima será del 2%. Para el colector que reúna todas las pluviales el diámetro es de 250 mm.

2.3 Esquema de principio
A continuación se muestran los esquemas de principio de ambas instalaciones
Detalle de arqueta prefabricada

Detalle de pozo de registro en exterior para red de alcantarillado

Marco y tapa prefabricados de hormigón armado fck=25 MPa, para arquetas de saneamiento.

Arqueta con fondo, registrable, prefabricada de hormigón fck=25 MPa, de 40x40x50 cm de
Hormigón HM-20/B/20/I.

Tapa circular con bloqueo mediante tres pestañas y marco provisto de junta de
Tapa revestida con pintura bituminosa y marco provisto de junta de
junta de goma, según UNE-EN 1917, de 100 a 60 cm de diámetro interior, resistencia a
Cono asimétrico prefabricado de hormigón en masa, con unión rígida machihembrada con
del goma, según UNE-EN 1917, de 100 cm de diámetro interior, resistencia a compresión mayor de
Anillo prefabricado de hormigón en masa, con unión rígida machihembrada con
Malla electrosoldada ME 20x20 Ø 8-8 B 500 T 6x2, UNE-EN 10080.

Pate de polipropileno conformado en U, para pozo, de 330x160 mm, sección transversal de
insonorización de polietileno y dispositivo antirrobo.

UNE-EN 124. Tapa revestida con pintura bituminosa y marco provisto de junta de
3. INSTALACIÓN ELÉCTRICA

3.1 Resumen

Para la redacción de este estudio preliminar sobre la instalación de electricidad se han tenido en cuenta parámetros básicos descritos en el REBT (Reglamento Electrotécnico de Baja Tensión), así como el Real Decreto 482/2002 y ciertas condiciones dictadas en el ITC, a fin de poder hacer una estimación global de la demanda y poder explicar su funcionamiento.

Con el fin de conocer de una forma aproximada la potencia que demanda la totalidad del proyecto de edificación, se realiza un Cálculo de Previsión de Cargas según ITC-BT-10 (REBT). De los cálculos realizados se obtiene que la potencia máxima estará en torno a los 653kW, por lo que se superan ampliamente los 100kW de potencia en los que se exige la colocación de un centro de transformación. Este local ha de cumplir, además los requisitos de de el CTE DB SI ya que se trata de un local con riesgo especial bajo.

Según los planos de instalaciones urbanas publicados por el ayuntamiento de Getxo, la parcela cuenta con una derivación que supone ser de media tensión:

![Plano de red eléctrica urbana del ámbito de actuación](image)

El equipamiento del centro de transformación consiste en la acometida de la red general, el transformador, las celdas y el cuadro de baja tensión. El cuadro de baja tensión dispone del interruptor general y los diferentes interruptores de seguridad y maniobra.

En el mismo local que el centro de transformación se coloca el cuadro general de distribución y medida, del cual derivarán los circuitos propios de cada uso o grupos de usos del edificio. Para cada uso, existirá un cuadro propio. Los recintos con más de una planta contarán con un sub-cuadro por planta. Existirán, asimismo, cuadros propios para la dotación eléctrica de los elementos comunes al edificio, como por ejemplo el aparcamiento, la producción de energía o la ventilación, núcleos verticales de comunicación, etc. Con elementos de maniobra y medida necesarios.

También existirá un cuadro específico de maniobra y medida, para los elementos que funcionan en régimen trifásico, ascensores, etc.

Los cuadros/subcuadros se dispondrán en lugares accesibles solo para el personal y en caso contrario contará con un cierre de seguridad. Estarán provistos de los debidos interruptores diferenciales y magnetotérmicos que protegerán los circuitos de cada uno. Desde estos subcuadros derivarán las redes finales de alumbrado y fuerza. Cada cuadro contará en su interior con los controles de dos circuitos diferenciados, el normal y el de emergencia, el cual se encargará del alumbrado de emergencia y de un suministro mínimo en caso de fallo del principal.

Tal y como se indica en el Esquema de Principio de Climatización, existe un equipo diésel, para el suministro de emergencia, en caso de corte de la red o bajada de tensión de la misma, que suministrará energía a la red de iluminación de emergencia.

En caso de emergencia, también será posible la utilización en un rango de tiempo de los ascensores, gracias al sistema de generación de electricidad y las baterías de los ascensores.

3.2 Esquema de principio

A continuación se muestran los esquemas de principio de ambas instalaciones.
4_VENTILACIÓN Y CLIMATIZACIÓN

4.1 Resumen del sistema

El sistema para la climatización y ventilación del edificio ha sido escogido teniendo en cuenta principalmente los usos dentro del mismo en combinación con su situación geográfica y dentro de la parcela. Al tratarse de un edificio con perfiles de uso y horarios diferentes entre sí, además de recintos con volúmenes, ocupaciones y exigencias muy dispares, se decide dividir la climatización y ventilación del edificio en dos sistemas que pese a utilizar la misma tecnología para la producción de calor, lo realizan independientemente desde dos partes del edificio.

Además, al tratarse entre otras cosas de una escuela de música en la que se utilizarán instrumentos musicales de madera, la humedad relativa y la temperatura han de ser unas concretas. Todo ello sumado a la necesidad de regular la temperatura de cada aula por separado, ya que la temperatura de confort influye en la capacidad de concentración de cada intérprete.

Con estas premisas, se decide contar con una producción de calor conjunta entre un de geotermia por captación horizontal y vertical mediante pilotes activos, ya que de esta forma se aprovecha la ejecución de los pilotes para su aprovechamiento térmico.

La geotermia horizontal se situará en el extremo suroeste de la parcela junto al edificio, en una porción de terreno de 100x12m, mientras que la captación mediante pilotes activos se realizará aprovechando todos los pilotes necesarios hasta obtener la mayor aportación posible de ayuno a las bombas de calor geotécnicas. Estas bombas estarán dispuestas en cascada, en dos grupos dispuestos en ambos extremos del edificio, y sirviendo una de ellas para la zona térmica docente y para el vestíbulo, mientras que la otra servirá para producir el calor necesario para los auditorios y sus servicios.

Esta decisión de separar la producción de calor resulta efectiva por los siguientes motivos:

- Los perfiles de uso de estas zonas térmicas son totalmente dispares, sin poder complementarse ya que una está ligada a un horario de docencia y la otra al horario de ocio de los espectáculos. De poder aprovecharse, sería para transmitir el calor generado por un sistema para al otro, pero no se estima necesario.
- Al disponerse pilotes dispuestos bajo todo el edificio y poseer éste una superficie considerable, si el sistema de captación geotérmica global se divide en dos partes se reducen considerablemente las pérdidas por la longitud de conducción de refrigerante entre los captadores y las bombas.
- Si se proyectara un sistema de captación geotérmica para todo el edificio calculado para satisfacer las demandas de todas sus zonas térmicas, más del 90% del tiempo se dispondría de un sistema altamente sobredimensionado.
- Las demandas de ambos usos (Docente y auditórios) son muy diferentes. Mientras que la escuela tiene una demanda latente que varía levemente a lo largo del día, los auditórios requerirán un pico de calor/frío muy alto en horarios autónomos. Se han dispuestos en diferentes locales de instalaciones en la planta baja y sótano del edificio.

Por otro lado, la climatización se diseña en base a las necesidades de cada recinto y a sus características geométricas, ocupación, etc. En el caso de la parte docente, la climatización se realiza mediante fan coils para poder independizar la gestión de la temperatura en cada aula. La conducción de este sistema agua- aire (tuberías y conductos) se realiza a lo largo del falso techo del pasillo que comunica todas las aulas. Dicho falso techo quedará lo suficientemente aislado acústicamente como para no molestar a las aulas de ensayo.

Para la climatización del vestíbulo de 8m de altura libre se utiliza un suelo radiante como climatizador del espacio. Este sistema de suelo radiante se alimentará de la producción geotérmica de captación horizontal.

En cuanto a los auditorios, éstos se climatizan mediante un sistema todo-aire con recuperador de calor para cada uno.

Por último, los usos como camerinos, vestuario, y oficina para la sede del festival se utilizarán también fan coils para la climatización.

Según el RITE la temperatura de confort se establece entre 21 y 23 °C en invierno y 23 y 25 °C en verano. Y dados los diferentes usos de los locales y las diferencias de demandas de estos locales, cabe destacar que el sistema aire-agua instalado es de cuatro tubos, pudiendo emitir frío en unos locales mientras que en otros emite calor, de forma simultánea.

4.2 Descripción de los equipos:

4.2.1 Geotermia de captación horizontal

Los captadores geotérmicos horizontales se instalan en los primeros metros de profundidad del terreno. La principal ventaja de los captadores de este tipo es su reducido coste de inversión.

En función de las necesidades térmicas y las condiciones de la instalación, los circuitos de captación horizontales se instalan con un paso de tubo de 0.5 a 0.8m para un diámetro de tubería de 32mm. Y paso de tubo de 1.2 a 1.5m para diámetro de tubería de 40mm. El diseño del captador es similar a los circuitos de suelo radiante. Los tramos de suministros y retorno de los circuitos se agrupan en arquetas y/o colectores de distribución antes de conducir todo el caudal a la bomba de calor geotérmica.

Tanto la radiación solar directa como indirecta (viento, lluvia, agua de deshielo) son los factores que más influyen en los sistemas horizontales de captación geotérmica, esto se debe fundamentalmente a la baja profundidad de instalación. Para un buen funcionamiento del sistema la energía almacenada durante el verano en esta franja de terreno debe ser utilizada en invierno. Mantener la humedad del terreno mediante la presencia de: aguas superficiales, agua de lluvia o agua de deshielo; es un factor importante para conseguir mayor capacidad de almacenamiento de energía en el terreno. Igualmente, la presencia constante de humedad también es relevante para aumentar la capacidad de transmisión térmica del subsuelo al captador geotérmico. Además, hay que garantizar la regeneración estacional del terreno, por lo que se tiene que evitar cualquier tipo de construcción encima del captador horizontal.
En el caso del sistema implantado en este edificio reúne las condiciones óptimas para su ejecución, ya que la porción de terreno escogida está situada en una orientación SO y bajo una capa de tierra vegetal con césped.

La captación de este sistema está pensada para abastecer de calor o frío al suelo radiante, ya que la oscilación de temperaturas a las que trabaja la captación horizontal es más pequeña que la necesaria para los aparatos de climatización por aire.

Los circuitos de captación horizontales se tienen que diseñar con materiales que proporcionen una adecuada resistencia mecánica, y también que sean resistentes a fenómenos de propagación de fisuras y grietas que se producen en las paredes exteriores de la tubería. Los captadores geotérmicos Uponor están fabricados en material PEX-a (polietileno reticulado según el método Engel) de alta resistencia mecánica y resistente a la tensofisuración. De acuerdo con la norma alemana DVGW W 400 los captadores geotérmicos Uponor PEX-a pueden ser instalados directamente sobre el terreno excavado, sin ser necesario preparar lecho de arena para su instalación. Además, el propio material excavado se puede usar para cubrir y tapar los circuitos del captador, con el consiguiente ahorro de tiempo y costes.

4.2.2 Cimentación geotérmica activa (Pilotes activos)

Tal y como se expone en el capítulo de Memoria Estructural de este documento, bajo ciertas consideraciones se decide cimentar el edificio parcialmente mediante pilotes activos. A priori supone un sistema exagerado en relación a las dimensiones y cargas del edificio, pero la elección se debe a la composición del terreno y la localización del firme, cuya resistencia también se desconoce. Mediante extracción de datos del mapa geológico del país vasco y la consulta de estudios geotécnicos en suelos similares, se llega a la conclusión de que a unos 7 u 8 metros de profundidad se encuentra el flysch arenoso que conforma el terreno.

Se categoriza a la parcela con un suelo tipo 22: Areniscas, microconglomerados y lulitas. Estos tipos de suelo entran dentro de la categoría del Flysch arenoso, por lo que ya nos podemos hacer una idea aproximada del tipo de suelo sobre el que vamos a cimentar e intercambiar energía. Además, el nivel freático se encuentra también rondando esa profundidad.

Por otro lado, disponer de un nivel freático próximo a la rasante incrementa la capacidad de las sondas para poder intercambiar temperaturas con el subsuelo. Los datos se extraen de la siguiente tabla, sabiendo que pese a ser un terreno formado por flysch, su composición es arenosa:

<table>
<thead>
<tr>
<th>Tipo de suelo</th>
<th>Permeabilidad (m/s)</th>
<th>Conductividad térmica seco (W/mK)</th>
<th>Conductividad térmica saturado (W/mK)</th>
<th>Capacidad térmica volumétrica seca (MJ/m³K)</th>
<th>Capacidad térmica volumétrica saturada (MJ/m³K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areniscas</td>
<td>10⁻⁶ - 10⁻⁷</td>
<td>0.2 - 0.5</td>
<td>1.1 - 1.6</td>
<td>0.3 - 0.4</td>
<td>2.1 - 3.2</td>
</tr>
<tr>
<td>Límites</td>
<td>10⁻⁷ - 10⁻⁸</td>
<td>0.2 - 0.5</td>
<td>1.2 - 2.5</td>
<td>0.6 - 1.0</td>
<td>2.1 - 2.4</td>
</tr>
<tr>
<td>Arenitas</td>
<td>10⁻⁸ - 10⁻⁹</td>
<td>0.3 - 0.4</td>
<td>1.7 - 3.2</td>
<td>1.0 - 1.3</td>
<td>2.2 - 2.4</td>
</tr>
<tr>
<td>Grava</td>
<td>10⁻⁹ - 10⁻¹⁰</td>
<td>0.3 - 0.4</td>
<td>1.8 - 3.3</td>
<td>1.2 - 1.6</td>
<td>2.2 - 2.4</td>
</tr>
</tbody>
</table>

Campos de variación de las principales características de los terrenos más comunes. Fuente: Paud, D. Geothermal energy and heat storage. 2002

En lo que atañe a este documento, se decide realizar una cimentación mediante pilotes activos, generalmente denominada <cimentación geotérmica activa>. Esta tecnología consiste en introducir una sonda y conductos de geotermia dentro del pilote que se ejecuta in situ, de forma que se aprovecha la situación del pilote bajo tierra a cierta profundidad.
para intercambiar calor con el terreno. Este intercambio, teniendo en cuenta la cantidad de pilotes a realizar se traduce en una aportación generosa al sistema de producción de calor/frío.

Sonda geotérmica vertical GEROTHERM®-FLUX

Un sistema de pilotes activos debe utilizarse como almacenamiento alterno, cambiando sistemáticamente el uso de calefacción y refrigeración. Se consigue así una capacidad de extracción específica óptima para la generación tanto de calefacción como de refrigeración. El equilibrio de temperaturas de un sistema de pilotes de energía se puede diseñar de una manera equilibrada para que se mantenga estable en el tiempo. Con un equilibrio térmico prácticamente constante a lo largo de los años se minimiza la interferencia térmica mutua de los pilotes de energía adyacentes.

Según la experiencia con sistemas de pilotes de energía de tamaño medio y grande, el diseño y funcionamiento para cubrir la carga base el más rentable. Para ello se debe planificar y establecer una relación óptima de carga y trabajo durante el dimensionado. El funcionamiento alterno en calefacción y refrigeración es lo que determina principalmente la eficiencia del sistema de pilotes de energía.

Los tubos que forman los circuitos del captador geotérmico integrado en la cimentación tienen que ser resistentes a estrías, muescas y todo tipo de cargas mecánicas que se producen durante el proceso de instalación y posterior hormigonado de la instalación. Además, tenemos que pensar que en estos sistemas la tubería se fija directamente a las armaduras de ferralla con presencia constante de filos metálicos cortantes. De esta manera, se hace imprescindible contar con un material plástico de elevada resistencia mecánica y a su vez que sea resistente a los fenómenos de propagación rápida y lenta de grietas.

En cuanto a la ejecución de pilotes y muros pantallas termo-activos, son obras que requieren un diseño preciso y una exhaustiva planificación con el fin de evitar errores y no retrasar otros trabajos como el hormigonado de las estructuras. Finalmente cabe destacar que los captadores geotérmicos se pueden instalar en varias configuraciones: meandros, bucles paralelos, bucles cruzados o espirales. Los diámetros de tubería más habituales en estos captadores geotérmicos suelen ser 20 ó 25 mm.

Partes de un pilote activo
En definitiva, se utilizarán dos sistemas de captación geotérmica como ejercicio experimental, con una aproximación al cálculo geotérmico que, lejos de una precisión necesaria en la vida real, resultará suficiente para la elaboración de este ejercicio.

E 1:2000. Plano de planta de cubierta en el que se muestra en rojo la superficie sobre la que se ejecuta la geotermia horizontal, y en verde la captación mediante pilotes activos.

4.2.3 Sistema en cascada de bombas de calor de captación geotérmica

Se han elegido dos sistemas para la captación geotérmica: por un lado, la geotermia horizontal, en el que se aprovecha la superficie de terreno que forma parte del paseo entre el edificio y el muro frente al mar, y por otro lado la geotermia vertical mediante pilotes activos.

Para la realización de ambas captaciones geotérmicas se ha escogido un modelo de bomba de calor de la casa Vaillant. Se ha elegido la misma marca para facilitar su interoperación con sistemas automatizados proporcionados por la misma empresa. En concreto, se ha escogido el modelo geoTHERM VWS 300/3 con una potencia nominal de 33kW.

4.2.4 Depósito de inercia

Se emplean para evitar que la caldera se pueda ver afectada por los arranques y paros de la instalación. Y dispondrá en total de 8 depósitos de inercia, uno de calor y otro de frío para cada sistema de bombas de calor.

4.2.5 Depósitos interacumuladores (ACS)

El depósito debe tener tapa, ventilación y aireación. Tendrá sifón para el rebosadero, tendrá sondas para evitar que el llenado supere el nivel máximo del depósito, además de una sonda para impedir el funcionamiento de las bombas con bajo nivel de agua, tendrá vaciado también y se permitirá la renovación del agua para que no se estanque.

Se dispondrá de dos depósitos, uno para la zona docente y otro para la zona de auditorios.

Su capacidad varía según cálculo.
4.2.5 Unidades de tratamiento de Aire (UTA) con recuperador de calor

La unidad de tratamiento de aire, denominada de forma abreviada UTA, es el elemento principal del sistema de climatización y ventilación de un edificio. Una unidad de tratamiento de aire es un equipo o sistema formado por distintos elementos: intercambiadores de calor, ventiladores y filtros. Estos permiten acondicionar el aire a las condiciones requeridas en el interior del edificio.

En el caso de este edificio se instalarán cinco UTAs: tres de ellas servirán como aporte de aire de ventilación para recintos climatizados con fan coils o suelo radiante, y como sistemas todo-aire climatizadores para los auditorios.

Se puede configurar el aparato para mejorar la eficiencia energética de este con un recuperador de calor o con el sistema free cooling.

Se opta por utilizar UTAs de la casa TROX, ya que disponen de un modelo llamado TKM 50 HE que según las necesidades de cada sistema se puede modular su diseño. Están construidas con un bastidor autoportante de perfiles de aluminio extruido pintado con rotura de puente térmico, paneles de 50 mm de espesor fabricados con chapa interior galvanizada de 1 mm de espesor y chapa exterior prelacada de 1 mm. Dichos paneles incluyen rotura de puente térmico entre tapa y fondo. Aislamiento térmico de lana de roca con clasificación de resistencia al fuego clase A1.

Para mejorar la eficiencia, se ha dispuesto por cada UTA un sistema de recuperación de calor. El funcionamiento del mismo se basa en recuperar la energía consumida, que puede llegar a ser del 90%, contenida en el aire de ventilación antes de expulsarlo al exterior.

4.2.6 Fan coil

Es el elemento que permite regular la temperatura de una zona diferente a otra. Independiza la climatización de las estancias. Se podrá dotar a la instalación de tantos grados de independencia como fan coils se instalen.

Al precisarse un nivel sonoro por debajo de los 30dB, se reduce considerablemente la oferta de fan coils de conducto con estas características, y finalmente se escogen también los de la casa Vaillant. Estos poseen un rango de potencia adecuado a las necesidades y un nivel sonoro correcto.
superiores y el frío en las bajas. Y, en tercer lugar, se elige este medio para calefactar, dado que la capa compresora de hormigón que se emplea como material transmisor del calor resulta muy conveniente a la hora de adquirir una mayor masa acústica.

Este sistema se instalará en todo el vestíbulo donde la altura sea mayor a 4m. La distribución del fluido termo-portador se hace desde el acumulador general situado en el local técnico en planta baja, mediante un sistema de dos tubos. Una vez en cada establecimiento este llegará a un local en el que se encuentra el contador calorífico del establecimiento y las válvulas de corte, antirretorno, etc. Necesarias. Se dividirá en circuitos menores a 50m².

Al necesitar unas temperaturas de impulsión del fluido caloportador más bajas en invierno, entre 35 y 45 ºC respecto a los sistemas convencionales hace que la eficiencia energética aumente. Debido a la baja temperatura de distribución, se puede combinar con fuentes de energías renovables a baja temperatura, como es la geotermia en este caso. También, se producen menores pérdidas en las conducciones al trabajar con temperaturas más próximas a la temperatura ambiente. El suelo radiante está compuesto por las siguientes capas:

- Placa aislante 35 mm aproximadamente (puede llegar a 60 mm).
- Tetones de fijación de tubos (puede estar incluido en la placa aislante dependiendo del fabricante).
- Tubos de distribución de 20 mm de diámetro nominal.
- Capa compresora de hormigón armado de 50 mm mínimo.
- Capa de acabado de hormigón pulido 20 mm mínimo.

A priori, debido a la morfología del edificio parecería recomendable realizar gran parte de la climatización mediante suelo radiante, pero hay dos factores que determinan su uso inapropiado para el resto del edificio:

En primer lugar, los instrumentos musicales son muy sensibles a la temperatura, y casi todos los instrumentos se posan en cualquier momento en el suelo. El contacto directo con un suelo radiante puede no sólo desafinar el mismo, sino incluso llegar a deformarlo. Es cierto que los suelos radiantes no alcanzan temperaturas excesivas, pero por una cuestión de prevención se ha decidido instalar un sistema de climatización por aire. La otra razón es que la operabilidad de la temperatura para cada aula en un sistema de suelo radiante lo complejizaría mucho, teniendo en cuenta que en el edificio hay más de 40 aulas con diferentes usos y requerimientos.

4.2.7 Intercambiador de calor

Se encarga de intercambiar la temperatura de dos fluidos que se unen en un serpentín integrado en un sistema de placas. Se utiliza para transferir temperaturas entre fluidos que no pueden interactuar entre sí, como el agua y el glicol o el aire de extracción y aire de impulsión.

4.2.8 Sistema de suelo radiante

Se elige el suelo radiante como método de climatización para el vestíbulo de entrada por tres razones fundamentales. En primer lugar, porque se trata del sistema de climatización con la curva de comportamiento térmico más cercana a la curva ideal del confort. Al calefactar espacios de una altura considerable como en el vestíbulo de entrada, el aire tiende a estratificarse de forma mucho más notoria, concentrándose, de nuevo el calor en las zonas

4.2.9 Difusores rotacionales y rejillas de extracción para el auditorio de Jazz

Para la climatización de este auditorio se diseña un sistema que presente cierta flexibilidad si se decidiera modificar la disposición del auditorio para convertirse a otro uso. Se aprovecha la doble pie del hormigón para conducir el aire mediante conductos rígidos, diversificándose en ramales de conducto flexible en el interior del auditorio bajo las gradas para poder impulsar y extraer aire desde el suelo de cada grada. El la documentación gráfica adjunta se describe el trazado de la instalación y sus detalles debido la geometría de la sala.

Se decide utilizar difusores y rejillas de suelo suministradas por la casa TROX, debido principalmente a su capacidad de configuración en base a las necesidades. También ofrecen un buen rendimiento con bajos niveles sonoros, por lo que resultan especialmente
adecuados para su utilización en el auditorio. También resulta conveniente su utilización debido a la baja velocidad a la que ha de impulsarse el aire.

Rejilla de extracción TROX AF-D

Difusor rotacional de la casa TROX

Disposición de los difusores a través del suelo

4.2.10 Difusores lineales y rejillas de extracción para el auditorio de Música Experimental

En este caso el sistema de impulsión se realiza desde la pared del patinillo por el que discurren las instalaciones, colocando difusores lineales y rejillas de extracción combinadas en un elemento que evita el cortocircuito del flujo de aire. El alcance esperado es de 9m, y aunque la velocidad e impulsión tenga que ser baja, se tratará de mantener un equilibrio entre alcance y ruido.

Se elige el siguiente elemento:

Rejilla de extracción TROX AT
4.3 Exigencias y justificación del RITE

Para llevar a cabo la justificación del Reglamento de Instalaciones Técnicas en edificios se tienen en cuenta parámetros como la ocupación, superficie, volumen, permeabilidad de huecos y calidad del aire entre otros. También se ha consultado la guía IDEA sobre las exigencias del RITE para la comprensión de ciertos apartados de la normativa y su aplicación a las instalaciones del edificio.

Para definir todos los elementos y las especificaciones que tienen que cumplir, se ha utilizado el software CYPEMEP. Algunos datos introducidos al programa han sido manipulados teniendo en cuenta parámetros y características del edificio, difíciles de aplicar al software para evitar un desvío de los datos obtenidos, siempre del lado de la seguridad.

4.3.1 Exigencias sobre la calidad del aire

Sobre la justificación del cumplimiento de la exigencia de calidad del ambiente del apartado 1.4.1 La exigencia de calidad térmica del ambiente se considera satisfecha en el diseño y dimensionamiento de la instalación térmica. Por tanto, todos los parámetros que definen el bienestar térmico se mantienen dentro de los valores establecidos. En la tabla siguiente aparecen los límites que cumplen en la zona ocupada.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Límite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura operativa en verano (°C)</td>
<td>23 ± T ± 25</td>
</tr>
<tr>
<td>Humedad relativa en verano (%)</td>
<td>45 ± HR ± 60</td>
</tr>
<tr>
<td>Temperatura operativa en invierno (°C)</td>
<td>21 ± T ± 23</td>
</tr>
<tr>
<td>Humedad relativa en invierno (%)</td>
<td>40 ± HR ± 50</td>
</tr>
<tr>
<td>Velocidad media admisible con difusión por mezcla (m/s)</td>
<td>V £ 0.14</td>
</tr>
</tbody>
</table>

Los valores de condiciones interiores utilizados en verano son los siguientes:

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Condiciones interiores de diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatura de verano</td>
</tr>
<tr>
<td>Aseo de planta</td>
<td>24</td>
</tr>
<tr>
<td>Auditorios</td>
<td>24</td>
</tr>
<tr>
<td>Aula</td>
<td>24</td>
</tr>
<tr>
<td>Aula de música</td>
<td>24</td>
</tr>
<tr>
<td>Aulas</td>
<td>24</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>24</td>
</tr>
<tr>
<td>Copia de Aulas</td>
<td>24</td>
</tr>
<tr>
<td>Sala polivalente</td>
<td>24</td>
</tr>
<tr>
<td>Taller</td>
<td>24</td>
</tr>
<tr>
<td>Vestuarios</td>
<td>24</td>
</tr>
<tr>
<td>Zona administrativa</td>
<td>24</td>
</tr>
</tbody>
</table>

En función del edificio o local, la categoría de calidad de aire interior (IDA) que se deberá alcanzar será como mínimo la siguiente:

- **IDA 1** (aire de óptima calidad): hospitales, clínicas, laboratorios y guarderías.
- **IDA 2** (aire de buena calidad): oficinas, residencias (locales comunes de hoteles y similares, residencias de ancianos y estudiantes), salas de lectura, museos, salas de tribunales, aulas de enseñanza y asimilables y piscinas.
- **IDA 3** (aire de calidad media): edificios comerciales, cines, teatros, salones de actos, habitaciones de hoteles y similares, restaurantes, cafeterías, bares, salas de fiestas, gimnasios, locales para el deporte (salvo piscinas) y salas de ordenadores.
- **IDA 4** (aire de calidad baja)

El caudal mínimo de aire exterior de ventilación necesario se calcula según el método indirecto de caudal de aire exterior por persona y el método de caudal de aire por unidad de superficie, especificados en la instrucción técnica I.T.1.4.2.3. Se describe a continuación la ventilación diseñada para los recintos utilizados en el proyecto.

Referencia | **Calidad del aire interior**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseo de planta</td>
<td>Fumador (m³/(h·m²))</td>
</tr>
<tr>
<td>Almacén / Archivo</td>
<td>IDA / IDA min. (m³/h)</td>
</tr>
<tr>
<td>Auditorios</td>
<td>IDA 3 NO FUMADOR No</td>
</tr>
<tr>
<td>Aula</td>
<td>IDA 2 No</td>
</tr>
<tr>
<td>Aula de música</td>
<td>IDA 2 No</td>
</tr>
<tr>
<td>Aulas</td>
<td>IDA 2 No</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>IDA 2 No</td>
</tr>
<tr>
<td>Copia de Aulas</td>
<td>Centro de transformación</td>
</tr>
<tr>
<td>Sala polivalente</td>
<td>IDA 3 NO FUMADOR No</td>
</tr>
<tr>
<td>Taller</td>
<td>IDA 1 No</td>
</tr>
<tr>
<td>Vestuarios</td>
<td>IDA 3 NO FUMADOR No</td>
</tr>
<tr>
<td>Zona administrativa</td>
<td>IDA 2 No</td>
</tr>
</tbody>
</table>

Zona de circulación
En cuanto a la filtración de aire, se puede observar que el aire exterior se intercambia con el interior de la instalación ODA 2, aire que es adecuadamente filtrado según el apartado I.T.1.1.4.2. Se ha considerado un nivel de calidad de aire para toda la instalación, de forma que se ha establecido en la tabla 1.4.2.5 para filtros previos y finales. Las clases de filtración son las siguientes:

- **Clase 1 (bajo nivel de contaminación):** aire que procede de locales donde se permite fumar.
- **Clase 2 (medio nivel de contaminación):** aire de locales que producen con más contaminantes que la anterior, pero no hay intercambio con el exterior.
- **Clase 3 (alto nivel de contaminación):** aire que procede de locales con productores de productos químicos, humedades, etc.
- **Clase 4 (alto nivel de contaminación):** aire que contiene sustancias olorosas y contaminantes para el salud, sin concentraciones altas que permitieran el aire interior de la zona ocupada.

Se describe la continuidad de la clasificación de extracción que se ha considerado para cada uno de los recintos de la instalación.

Calidad del aire exterior

- **OA 1**
 - IDA 1: 315.54 a 1000.73
 - IDA 2: 230.86
 - IDA 3: 32.06
 - IDA 4: 32.06

- **OA 2**
 - IDA 1: 315.54 a 1000.73
 - IDA 2: 230.86

Calidad del aire interior

- **OA 1**
 - IDA 1: 315.54 a 1000.73
 - IDA 2: 230.86

- **OA 2**
 - IDA 1: 315.54 a 1000.73

En función del tipo de edificio, el extracción de aire se clasifica en una de las siguientes categorías:

- **AE** (bajo nivel de contaminación): aire que procede de locales en los que las emisiones más importantes de contaminantes proceden de los materiales de construcción y decoración, además de las personas. Está excluido el aire que procede de locales donde se permite fumar.
- **AE 2** (medio nivel de contaminación): aire de locales que producen con más contaminantes que la anterior, pero no está prohibido fumar.
- **AE 3** (alto nivel de contaminación): aire que procede de locales con producción de productos químicos, humedades, etc.
- **AE 4** (mucho alto nivel de contaminación): aire que contiene substancias olorosas y contaminantes para la salud, en concentraciones en las que no permitidas el aire interior en la zona ocupada.

De acuerdo con la continuidad de la clasificación de extracción que se ha considerado para cada uno de los recintos de la instalación.

Referencia

- **Auditorios**
 - AE 1
 - Aula
 - Aula de música
 - Aulas
 - Biblioteca
 - Copia de Aulas
 - Sala polivalente
 - Taller
 - Tutoriales
 - Zona administrativa

- **Administradores**
 - AE 1

- **Proyectos**
 - AE 1

REFRIGERACIÓN

La siguiente tabla muestra el resumen de la carga máxima simultánea total para el conjunto del edificio, y a continuación se realizarán los cálculos sobre un conjunto concreto.

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Planta</th>
<th>Estr. interior (W)</th>
<th>Subtotal (W)</th>
<th>Cargos internos (W)</th>
<th>Cargos externos (W)</th>
<th>Porcentaje (%)</th>
<th>Carga total (W)</th>
<th>Potencia térmica (W)</th>
<th>Máxima (W)</th>
<th>Más (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aula</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Aula de música</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Aulas</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Copia de Aulas</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Sala polivalente</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Taller</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Tutoriales</td>
<td>AE 2</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
<tr>
<td>Zona administrativa</td>
<td>AE 1</td>
<td>3521.7</td>
<td>3521.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3521.7</td>
<td>7541.9</td>
<td>3521.7</td>
<td>4074.2</td>
</tr>
</tbody>
</table>

Total

100
4.3.3 Cálculo de un área acotada

Habiendo calculado las cargas térmicas y demanda energética del edificio, se procede a calcular un área de estudio acotada del edificio con el fin de obtener datos fiables y poder extrapolarlos al resto de zonas. El área de estudio del conjunto total escogida es la zona docente. Ésta reúne las mayores complicaciones para la climatización y ventilación del edificio, ya que dispone de una longitud de casi 100m dividida en más de 40 aulas, cada una con unas exigencias térmicas diferentes. Se conforma de dos plantas (baja y primera), y el local técnico y de instalaciones contemplado para la ubicación de la producción de calor mediante bombas de calor geotérmicas, depósitos, motobombas y UTA se sitúa bajo la escalera pública desde la que se accede a la cubierta.
4.3.3.1 Predimensionado de una instalación de geotermia mediante pilotes activos

Al tratarse de un sistema experimental y de escasa aplicación hoy en día, los datos e información sobre el cálculo pueden resultar insuficientes y con cierto grado de imprecisión, por lo que se ha decidido realizar un Predimensionado teniendo en cuenta datos contrastados sobre ejecución de geotermias mediante captadores horizontales y verticales, entendiendo esta solución propuesta como un intermedio entre ambas en ciertos parámetros. Primero se estudiarán las capacidades térmicas del terreno para demostrar que un sistema de geotermia es viable, y a posteriori se extrapolarán datos para un cálculo aproximado del rendimiento lineal de cada pilote como intercambiador de calor con el terreno.

Método de cálculo:

La metodología de diseño que se utiliza en este proyecto es de la International Ground Source Heat Pump Association (IGSHPA), y es válida para una primera aproximación de diseño de sistemas geotérmicos y la utilizada por RETScreen (Gobierno del Canadá).

El método IGSHPA para el diseño de intercambiadores enterrados está basado en la teoría de la fuente de calor en forma de una línea infinita (Kelvin Line Source Theory) desarrollado por Ingersoll y Plass. Según esta teoría, un intercambiador de calor que cede o toma calor al/del suelo se comporta como una fuente/sumidero de calor con un espesor pequeño y una longitud infinita, y por tanto sólo cede calor en el sentido radial (flujo de calor unidimensional, radial). Es un método de cálculo estático que asume que el sistema funciona durante un tiempo determinado a una carga constante y con el suelo a la temperatura más desfavorable, es decir, el mes de enero para calefacción y el mes de julio para refrigeración, y una temperatura de agua fija. No tiene en cuenta el efecto de acumulación o disipación de calor del terreno. Durante los restantes meses la temperatura del suelo no estará tan fría (en invierno) o tan caliente (en verano), lo que hará que la temperatura del agua sea más moderada y el sistema funcionara con un mayor rendimiento. Se basa en varias metodologías que combinadas nos permiten evaluar la idoneidad de la instalación de una bomba de calor geotérmica.

En primer lugar, se realiza una descripción climatológica del entorno para poder estimar las temperaturas a las que estará el suelo bajo la superficie, con datos extraídos de CYPEMEP teniendo en cuenta su condición de zona climática C1. Aunque para este Predimensionado no vayan a utilizarse todos los datos, sirven como referencia para poder entender con más exactitud el clima al que pertenece la zona.

- Emplazamiento: Getxo
- Latitud (grados): 43.26
- Altitud sobre el nivel del mar: 7.50 m
- Percentil para verano: 5.0 %
- Temperatura seca verano: 26.05 °C
- Temperatura húmeda verano: 21.20 °C
- Temperatura media enero: 9.9 °C
- Temperatura media verano: 20.8 °C
- Oscilación media diaria: 10.7 °C
- Oscilación media anual: 30.5 °C
- Percentil para invierno: 97.5 %
- Temperatura seca en invierno: 1.20 °C
- Humedad relativa en invierno: 90 %
- Velocidad del viento: 5.7 m/s

Descripción geológica del emplazamiento:

Se categoriza a la parcela con un suelo tipo 22: Areniscas, microconglomerados y lutilas. Estos tipos de suelo entran dentro de la categoría del Flysch arenoso, por lo que ya nos podemos hacer una idea aproximada del tipo de suelo sobre el que vamos a cimentar e intercambiar energía. Además, el nivel freático se encuentra también rondando esa profundidad.

Como se ha descrito antes, sobre este firme de tipo Arenisca existe un relleno de gravas de un espesor aproximado de 7.50m que al encontrarse parcialmente por debajo del nivel freático se incrementa la capacidad de las sondas para poder intercambiar temperaturas con el subsuelo. Los datos se extraen de la siguiente tabla:

Campos de variación de las principales características de los terrenos más comunes. Fuente: Paud, D. Geothermal energy and heat storage. 2002
De la tabla anterior se obtienen una Conductividad térmica del terreno de 2.3 W/mK, y la capacidad térmica volumétrica se encuentra entre 1.6 y 2.8 MJ/m³K. Como se desconoce el valor concreto, se estimará un valor medio de 2.3 MJ/m³K. En cuanto a la grava que compone la primera capa del terreno, sus valores se estiman como 1.8 W/mK y 2.4 MJ/m³K.

De la que obtenemos que:

\[
T(z, t) = T_0 - A_0 \cdot e^{-\frac{\alpha z}{365 \cdot \sqrt{z + \alpha}}} \cdot \cos \left(\frac{2 \pi (t - t_0)}{365} \right)
\]

Donde,

- \(T(z, t) \) es la temperatura del terreno en función de la profundidad “z” en metros, y el día del año “t”.
- \(T_0 \) es la temperatura media anual del terreno en °C que corresponde con la temperatura media anual del aire ambiente sobre la superficie del terreno.
- \(A_0 \) corresponde a la máxima diferencia de temperatura anual del aire sobre la superficie del terreno.
- \(\alpha \) es la difusividad térmica del terreno en m²/día, depende del tipo de suelo y el contenido en agua.
- \(r_0 \) es el desfase en días, se refiere al desplazamiento de la temperatura superficial con la profundidad; un valor típico de este parámetro es 3510−6 según el análisis de Kusuda.

El desfase es otro parámetro necesario para los cálculos, está relacionado íntimamente con la difusividad. Definido como el tiempo que tarda a estabilizarse la temperatura del terreno con los cambios de temperatura exteriores, siempre es de 3510−6 días según el análisis de Kusuda. Y como el desfase depende de la difusividad, utilizando la mínima difusividad (bentonita con 0.004 m²/s), la máxima (de la sal con 0.4608 m²/s), siendo su media 0.2324 m²/s), y la difusividad de estudio, se puede realizar una interpolación para aproximar el desfase.

\[
\text{Desfase} = 35\times((0.0756-0.2324)\times(25-35))/(0.4608-0.2324)) = 41.85 \text{ días}
\]

Descripción térmica del suelo del emplazamiento:

El método para diseñar el sondeo geotérmico necesita conocer la temperatura máxima y mínima que tendrá el suelo a la profundidad media en donde se encontrará el sondeo. Además, estas temperaturas, también se utilizan para el balance de las cargas térmicas del edificio hacia o desde el suelo.

Para intercambiadores verticales, como la temperatura prácticamente no varía a partir de los 20 metros hasta los 100 metros, se suele escoger la temperatura media anual del aire ambiente sobre la superficie del terreno, \(T_0 \) (Kavanaugh and Rafferty, 1997). Para poder estimar la temperatura de un suelo homogéneo con propiedades constantes se puede utilizar la expresión descrita por Kusuda y Achenbech.

\[
T(z, t) = T_0 - A_0 \cdot e^{-\frac{\alpha z}{365 \cdot \sqrt{z + \alpha}}} \cdot \cos \left(\frac{2 \pi (t - t_0)}{365} \right)
\]

De la que obtenemos que:

<table>
<thead>
<tr>
<th>Profundidad empotramiento</th>
<th>Conductividad W/mK</th>
<th>Capacidad térmica volumétrica MJ/m³K</th>
<th>Difusividad m²/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAVA</td>
<td>7.50 m</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>FLYSCH ARENOSO</td>
<td>5 m</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Total</td>
<td>12.5m</td>
<td>Media</td>
<td>0.0756</td>
</tr>
</tbody>
</table>
Con todos estos parámetros ya calculados, se calculan todas las temperaturas máximas y mínimas \(T(z)\) a 7.5 y a 12.5m, y se obtienen los siguientes resultados:

Temperatura del terreno a 7.5m de profundidad ENERO:	15.3 °C
Temperatura del terreno a 7.5m de profundidad JULIO:	11.9 °C
Temperatura del terreno a 12.5m de profundidad ENERO:	14.2 °C
Temperatura del terreno a 12.5m de profundidad JULIO:	13.9 °C

De estos datos se puede observar que alrededor de la profundidad de 15m la temperatura queda comprendida entre los 14 °C y los 14.1 °C, por lo que la oscilación de temperatura del terreno tiene una variación mínima a partir de esta profundidad. Si se siguiera excavando, la temperatura del suelo iría creciendo, pero no es el caso de este estudio.

Este cálculo podría continuarse para obtener con precisión la longitud total de pilotaje que necesitariamos para poder alimentar lo suficiente a las bombas de calor geotérmicas, pero se considera que la profundización en este aspecto no es el objetivo de este trabajo y llevaría demasiadas horas su cálculo, por lo que con los datos que se tienen hasta ahora y extrapolándolos a los casos conocidos con cimentaciones horizontales y verticales que se conocen, se conseguirá una aproximación lo suficientemente fidedigna como para poder obtener el dimensionado de las bombas de calor geotérmicas.

Una captación geotérmica horizontal en un terreno de similares características materiales y climatológicas tiene un rendimiento de 20 W/m, mientras que llevándose a cabo una captación profunda a 100m, se obtendría en el mismo suelo un rendimiento de 60W/m. Pudiendo encajar el sistema de pilotes activos entre estos dos rendimientos estimando un rendimiento de 40W/m, se puede llegar a hacer un cálculo del rendimiento que tendría cada pilote.

Suponiendo que la conducción de tuberías a través del pilote se hiciera en paralelo y sabiendo que el diámetro medio entre armaduras del pilote será de 30cm, podemos hacer una estimación de: [12.5m (L pilote) · 6 (Recorridos)= 75m] lineales de tubo sonda a través de cada pilote en una serie de recorridos (ida-vuelta-ida-vuelta-ida-vuelta).

Sabiendo que la potencia necesaria para el edificio completo es la siguiente (Obtenido mediante CYPEMEP):

<table>
<thead>
<tr>
<th>Refrigeración</th>
<th>Potencia por superficie</th>
<th>Potencia total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL</td>
<td>(W/m²)</td>
<td>(W)</td>
</tr>
<tr>
<td>36.2</td>
<td>367227.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calefacción</th>
<th>Potencia por superficie</th>
<th>Potencia total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL</td>
<td>(W/m²)</td>
<td>(W)</td>
</tr>
<tr>
<td>26.6</td>
<td>269815.9</td>
<td></td>
</tr>
</tbody>
</table>

Y que la potencia necesaria para el área de estudio acotada de la zona docente es la siguiente:

<table>
<thead>
<tr>
<th>Refrigeración GLOBAL</th>
<th>Potencia por superficie (W/m²)</th>
<th>Potencia total (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2</td>
<td>367227.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calefacción GLOBAL</th>
<th>Potencia por superficie (W/m²)</th>
<th>Potencia total (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.6</td>
<td>269815.9</td>
<td></td>
</tr>
</tbody>
</table>

De estos datos se puede observar que alrededor de la profundidad de 15m la temperatura queda comprendida entre los 14 °C y los 14.1 °C, por lo que la oscilación de temperatura del terreno tiene una variación mínima a partir de esta profundidad. Si se siguiera excavando, la temperatura del suelo iría creciendo, pero no es el caso de este estudio.

Este cálculo podría continuarse para obtener con precisión la longitud total de pilotaje que necesitariamos para poder alimentar lo suficiente a las bombas de calor geotérmicas, pero se considera que la profundización en este aspecto no es el objetivo de este trabajo y llevaría demasiadas horas su cálculo, por lo que con los datos que se tienen hasta ahora y extrapolándolos a los casos conocidos con cimentaciones horizontales y verticales que se conocen, se conseguirá una aproximación lo suficientemente fidedigna como para poder obtener el dimensionado de las bombas de calor geotérmicas.

Una captación geotérmica horizontal en un terreno de similares características materiales y climatológicas tiene un rendimiento de 20 W/m, mientras que llevándose a cabo una captación profunda a 100m, se obtendría en el mismo suelo un rendimiento de 60W/m. Pudiendo encajar el sistema de pilotes activos entre estos dos rendimientos estimando un rendimiento de 40W/m, se puede llegar a hacer un cálculo del rendimiento que tendría cada pilote.

Suponiendo que la conducción de tuberías a través del pilote se hiciera en paralelo y sabiendo que el diámetro medio entre armaduras del pilote será de 30cm, podemos hacer una estimación de: [12.5m (L pilote) · 6 (Recorridos)= 75m] lineales de tubo sonda a través de cada pilote en una serie de recorridos (ida-vuelta-ida-vuelta-ida-vuelta).

Sabiendo que la potencia necesaria para el edificio completo es la siguiente (Obtenido mediante CYPEMEP):

<table>
<thead>
<tr>
<th>Refrigeración GLOBAL</th>
<th>Potencia por superficie (W/m²)</th>
<th>Potencia total (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2</td>
<td>367227.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calefacción GLOBAL</th>
<th>Potencia por superficie (W/m²)</th>
<th>Potencia total (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.6</td>
<td>269815.9</td>
<td></td>
</tr>
</tbody>
</table>

Se estima que para la carga de refrigeración, y por tanto también para la carga de calefacción al ser menor, se necesita un mínimo de 70.66 pilotes activos para alimentar al equipo de bombas de calor geotérmica en cascada.

Teniendo en cuenta las cargas térmicas del edificio, la potencia solicitada y el rendimiento estimado de los pilotes activos se decide instalar como producción de calor:

Un sistema en cascada de cinco bombas geoTHERM VWS 300/3 de una potencia nominal de 33kW cada una, conectadas a 71 pilotes activos, pensado para satisfacer la demanda térmica de la zona docente. Este sistema alimentará tanto los fan coils como la UTA encargada de ventilar dicha zona.
Gestión del sistema:
El control del sistema de generación es especialmente complejo, ya que debe tener en cuenta un gran número de parámetros, tanto de control como de seguridad y gestionar eficientemente 5 generadores. Por ello, se escoge un cuadro de gestión de cascadas Vaillant CC 300/2S. Este cuadro de gestión es altamente parametrizable y cubre perfectamente las exigencias demandadas.

4.3.3.2 Dimensionado tuberías en contacto con el aire exterior:
El aislamiento de las tuberías se ha realizado según la I.T.1.2.4.2.1 ‘Procedimiento simplificado’. Este método define los espesores de aislamiento según la temperatura del fluido y el diámetro exterior de la tubería sin aislarn. Las tablas 1.2.4.2.1 y 1.2.4.2.2 muestran el aislamiento mínimo para un material con conductividad de referencia a 10 °C de 0.040 W/(m·K). El cálculo de la transmisión de calor en las tuberías se ha realizado según la norma UNE-EN ISO 12241.

4.3.3.3 Tuberías en contacto con aire interior
Se han considerado las condiciones interiores de diseño en los recintos para el cálculo de las pérdidas en las tuberías especificados en la justificación del cumplimiento de la exigencia de calidad del ambiente del apartado 1.4.1.

4.3.3.4 Caudales de impulsión y extracción de la zona docente (área de estudio)

<table>
<thead>
<tr>
<th>Conjunto:</th>
<th>Recinto</th>
<th>Planta</th>
<th>Carga interna sensible (W)</th>
<th>Ventilación (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aula 1</td>
<td>Planta baja</td>
<td>338.67</td>
<td>1325.26</td>
<td></td>
</tr>
<tr>
<td>Aula 2</td>
<td>Planta baja</td>
<td>297.25</td>
<td>857.21</td>
<td></td>
</tr>
<tr>
<td>Biblioteca</td>
<td>Planta baja</td>
<td>451.06</td>
<td>1849.92</td>
<td></td>
</tr>
<tr>
<td>Aula música 1</td>
<td>Planta baja</td>
<td>1089.03</td>
<td>1160.8</td>
<td></td>
</tr>
<tr>
<td>Aula música 2</td>
<td>Planta baja</td>
<td>856.95</td>
<td>2129.55</td>
<td></td>
</tr>
<tr>
<td>Grabación 1</td>
<td>Planta baja</td>
<td>372.55</td>
<td>442.4</td>
<td></td>
</tr>
<tr>
<td>Anecoica</td>
<td>Planta baja</td>
<td>370.46</td>
<td>430.69</td>
<td></td>
</tr>
<tr>
<td>Aula grupos 1</td>
<td>Planta baja</td>
<td>1586.7</td>
<td>1923.52</td>
<td></td>
</tr>
<tr>
<td>Aula grupos 2</td>
<td>Planta baja</td>
<td>1567.33</td>
<td>2408.85</td>
<td></td>
</tr>
<tr>
<td>Aula grupos 3</td>
<td>Planta baja</td>
<td>1033.19</td>
<td>1235.48</td>
<td></td>
</tr>
<tr>
<td>Aula grupo</td>
<td>Planta primera</td>
<td>841.48</td>
<td>765.91</td>
<td></td>
</tr>
<tr>
<td>Aula grupo 2</td>
<td>Planta primera</td>
<td>588.16</td>
<td>585.59</td>
<td></td>
</tr>
<tr>
<td>Aula individual 1</td>
<td>Planta primera</td>
<td>286.15</td>
<td>273.76</td>
<td></td>
</tr>
<tr>
<td>Aula individual 2</td>
<td>Planta primera</td>
<td>289.62</td>
<td>282.4</td>
<td></td>
</tr>
<tr>
<td>Aula individual 3</td>
<td>Planta primera</td>
<td>288.94</td>
<td>280.36</td>
<td></td>
</tr>
<tr>
<td>Aula individual 4</td>
<td>Planta primera</td>
<td>289.81</td>
<td>284.25</td>
<td></td>
</tr>
<tr>
<td>Aula individual 5</td>
<td>Planta primera</td>
<td>291.35</td>
<td>287.14</td>
<td></td>
</tr>
<tr>
<td>Aula individual 6</td>
<td>Planta primera</td>
<td>289.34</td>
<td>281.79</td>
<td></td>
</tr>
<tr>
<td>Aula individual 7</td>
<td>Planta primera</td>
<td>288.54</td>
<td>280.63</td>
<td></td>
</tr>
<tr>
<td>Aula individual 8</td>
<td>Planta primera</td>
<td>289.91</td>
<td>283.98</td>
<td></td>
</tr>
<tr>
<td>Aula individual 9</td>
<td>Planta primera</td>
<td>290.14</td>
<td>284.35</td>
<td></td>
</tr>
<tr>
<td>Aula individual10</td>
<td>Planta primera</td>
<td>288.98</td>
<td>281.25</td>
<td></td>
</tr>
<tr>
<td>Aula individual11</td>
<td>Planta primera</td>
<td>290.38</td>
<td>284.28</td>
<td></td>
</tr>
<tr>
<td>Aula individual12</td>
<td>Planta primera</td>
<td>348.01</td>
<td>280.76</td>
<td></td>
</tr>
<tr>
<td>Circulación</td>
<td>Planta primera</td>
<td>269.569</td>
<td>2756.41</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24012.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las unidades de tratamiento de aire de la serie TKM 50 HE han sido diseñadas para caudales de aire hasta 110,000 m³/h, con toda la gama de secciones habituales de estos equipos, por lo que cumple holgadamente con el caudal necesario.

Podría utilizarse una única UTA para ventilar la zona docente y el vestíbulo, pero se decide mantener la decisión de tener dos unidades separadas debido a los perfiles de uso diferenciados. Además, la calidad de aire interior exigida por el RITE varía, siendo un IDA2 para toda la zona docente y de IDA3 para el vestíbulo.
4.3.3.5 Dimensionado de conductos

El cálculo se ha llevado a cabo mediante tablas de cálculo (Excel adjunto) y el software online provisto por la empresa ISOVER llamado ClimCalc. Se opera de forma sencilla y basta con introducir el caudal que pasa por un tramo de conducto, indicar una velocidad para el aire y obtener así las pérdidas de carga y la sección del conducto.

Se ha escogido el modelo de conducto CLIMAVER APTA, que es el que ofrece mejor aislamiento acústico además de minimizar las pérdidas de carga. Se trata de un conducto formado por paneles rígidos de Lana de Vidrio ISOVER de alta densidad, revestido por la cara exterior con una lámina de aluminio reforzada con papel kraft y malla de vidrio, que actúa como barrera de vapor, y por su cara interior, con un tejido neto de vidrio reforzado de color negro de gran resistencia mecánica.

Los datos introducidos al software son los siguientes, teniendo en cuenta el orden.

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Planta</th>
<th>Carga interna sensible (W)</th>
<th>Ventilación Caudal (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aula 1</td>
<td>Planta baja</td>
<td>338.67</td>
<td>1325.26</td>
</tr>
<tr>
<td>Aula 2</td>
<td>Planta baja</td>
<td>338.67</td>
<td>1325.26</td>
</tr>
<tr>
<td>biblioteca</td>
<td>Planta baja</td>
<td>338.67</td>
<td>1325.26</td>
</tr>
<tr>
<td>Aula música 1</td>
<td>Planta baja</td>
<td>1089.03</td>
<td>1160.8</td>
</tr>
<tr>
<td>Aula música 2</td>
<td>Planta baja</td>
<td>856.95</td>
<td>2129.55</td>
</tr>
<tr>
<td>Grabación</td>
<td>Planta baja</td>
<td>372.55</td>
<td>442.4</td>
</tr>
<tr>
<td>Anecoica</td>
<td>Planta baja</td>
<td>370.46</td>
<td>430.69</td>
</tr>
<tr>
<td>Aula grupos 1</td>
<td>Planta baja</td>
<td>1586.7</td>
<td>1923.52</td>
</tr>
<tr>
<td>Aula grupos 2</td>
<td>Planta baja</td>
<td>1567.33</td>
<td>2408.85</td>
</tr>
<tr>
<td>Aula grupos 3</td>
<td>Planta baja</td>
<td>1033.19</td>
<td>1235.48</td>
</tr>
<tr>
<td>Aula grupo</td>
<td>Planta primera</td>
<td>841.48</td>
<td>765.91</td>
</tr>
<tr>
<td>Aula grupo 2</td>
<td>Planta primera</td>
<td>588.16</td>
<td>585.59</td>
</tr>
<tr>
<td>Aula individual 1</td>
<td>Planta primera</td>
<td>286.15</td>
<td>273.76</td>
</tr>
<tr>
<td>Aula individual 2</td>
<td>Planta primera</td>
<td>289.62</td>
<td>282.4</td>
</tr>
<tr>
<td>Aula individual 3</td>
<td>Planta primera</td>
<td>288.94</td>
<td>280.36</td>
</tr>
<tr>
<td>Aula individual 4</td>
<td>Planta primera</td>
<td>289.81</td>
<td>284.25</td>
</tr>
<tr>
<td>Aula individual 5</td>
<td>Planta primera</td>
<td>291.35</td>
<td>287.14</td>
</tr>
<tr>
<td>Aula individual 6</td>
<td>Planta primera</td>
<td>289.34</td>
<td>281.79</td>
</tr>
<tr>
<td>Aula individual 7</td>
<td>Planta primera</td>
<td>288.54</td>
<td>280.63</td>
</tr>
<tr>
<td>Aula individual 8</td>
<td>Planta primera</td>
<td>289.91</td>
<td>283.98</td>
</tr>
<tr>
<td>Aula individual 9</td>
<td>Planta primera</td>
<td>290.14</td>
<td>284.35</td>
</tr>
<tr>
<td>Aula individual10</td>
<td>Planta primera</td>
<td>288.98</td>
<td>281.25</td>
</tr>
<tr>
<td>Aula individual11</td>
<td>Planta primera</td>
<td>290.38</td>
<td>284.28</td>
</tr>
<tr>
<td>Aula individual12</td>
<td>Planta primera</td>
<td>348.01</td>
<td>280.76</td>
</tr>
<tr>
<td>Circulación</td>
<td>Planta primera</td>
<td>2693.69</td>
<td>2756.41</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>23956.34</td>
<td></td>
</tr>
</tbody>
</table>

Tal y como se indica en la documentación gráfica adjunta, se han tenido en cuenta varios factores, como la jerarquía para poder mantener un orden lógico en los conductos sin que se molesten entre sí, la disposición de Silentblocks en cada soporte de los conductos y los fancoils para minimizar la transmisión de vibraciones y ruido a las salas.

También se ha calculado la instalación con una velocidad del aire menor a 5m/s en todo momento, para poder garantizar el mínimo ruido posible dentro de las aulas de música. No obstante, al tratarse de una instalación de dimensiones considerables, no se ha podido disminuir la velocidad新华网 del circuito.

Por último, La compartimentación contra incendios de los espacios ocupables debe tener continuidad en los espacios ocupados, tales como patinillos, cámaras, falsos techos, suelos elevados, etc., salvo cuando éstos estén compartimentados respecto de los primeros al menos con la misma resistencia al fuego, pudiendo reducirse ésta a la mitad en los registros para mantenimiento. La resistencia al fuego requerida a los elementos de compartimentación de incendios se debe mantener en los puntos en los que dichos elementos son atravesados por elementos de las instalaciones, tales como cables, tuberías, conducciones, conductos de ventilación, etc., excluidas las penetraciones cuya sección de paso no exceda de 50 cm². Para ello se opta por collarines pasantes que aporten una resistencia al menos igual a la del elemento atravesado. Se empleará la resistencia más restrictiva entre sectores de incendios con requerimientos distintos.
UTA CON RECUPERADOR
DE CALOR

INDICACIÓN POR NORMA GENERAL SOBRE LOS CONDUCTOS QUE SE CRUCEN: el CONDUCTO DE RETORNO CRUZARÁ POR DEBAJO DEL DE IMPULSIÓN

VSD35-3-AZ

EN TECHO

conducto desde planta inferior

retorno a planta inferior

leyenda de ventilación y climatización