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tIn the ma
hine learning �eld the performan
e of a 
lassi�er is usually measured in termsof predi
tion error. In most real-world problems, the error 
an not be exa
tly 
al
ulated andit must be estimated. Therefore, it is important to 
hoose an appropriate estimator of theerror.This paper analyzes the statisti
al properties (bias and varian
e) of the k-fold 
ross-validation 
lassi�
ation error estimator (k-
v). Our main 
ontribution is a novel theoreti
alde
omposition of the varian
e of the k-
v 
onsidering its sour
es of varian
e: sensitivity to
hanges in the training set and sensitivity to 
hanges in the folds. The paper also 
omparesthe bias and varian
e of the estimator for di�erent values of k. The empiri
al study hasbeen performed in arti�
ial domains be
ause they allow the exa
t 
omputation of the impliedquantities and we 
an spe
ify rigorously the 
onditions of experimentation. The empiri
alstudy has been performed for two di�erent 
lassi�ers (naive Bayes and nearest neighbor),di�erent number of folds (2,5,10,n) and sample sizes, and training sets 
oming from assortedprobability distributions.

1



1 Introdu
tionGenerally, a 
lassi�er is indu
ed from a training data using a 
lassi�er learning algorithm. Ea
h
lassi�er has an asso
iated predi
tion error (true error). But usually the true error is unknown(it 
an not be 
al
ulated) and it must be estimated from data (estimated error). An estimatorof the error of a 
lassi�er is a random variable ε̂ and its quality is usually measured by meansof its bias and varian
e. There are several estimators of the 
lassi�
ation error, from the simpleResubstitution (10) and Hold-out (22) to the more 
omplex Bootstrap (12) and Bolstered (3).One of these te
hniques, and probably the most popular, is k-fold 
ross-validation (k-
v) (21). In
k-
v the dataset is divided into k folds, a 
lassi�er is learnt using k − 1 folds and an error valueis 
al
ulated by testing the 
lassi�er in the left fold. Finally, the k-
v estimation of the error isthe average value of the errors 
ommitted in ea
h fold. Thus, the k-
v error estimator dependson two fa
tors: the training set and the partition.This paper presents a statisti
al analysis of the k-
v error estimator fo
using on its bias andvarian
e. Brie�y, we 
an de�ne the bias as a measure of the goodness-of-�t of the estimator andthe varian
e as the estimator variability. If our obje
tive is the error estimation itself, we should
hoose the less biased 
lassi�er but if our objetive is to 
ompare several 
lassi�ers, in addition, weshould 
hoose the error estimator with the smallest varian
e.There are many publi
ations about k-
v but not many of them have 
onsidered the in�uen
ein the estimation of the di�erent number of folds. Breiman and Spe
tor (7) 
arried out a featuresubset sele
tion experiment in whi
h they 
ompare k-
v for various k and they re
ommend 10-
vfor model sele
tion although 5-
v also works well for model sele
tion and evaluation. Zhang (29)showed that 
ross-validation will sele
t too many features for any k value. Kohavi (16) made themost 
omplete study on the matter. He found that there is a trade-o� between the bias and thevarian
e of the estimator depending on the number of folds and showed that k-
v with moderate
k values redu
es the varian
e while in
reasing the bias and, alternatively, higher k values in
reasesthe varian
e while de
reasing the bias. He also found that repeated 
ross-validation stabilizes theestimate for small values of k. However, Kohavi used real data sets for the experiments so it wasimpossible for him to know the real error rates.We propose a novel theoreti
al de
omposition for the varian
e of k-
v error estimator. Thede
omposition divides the varian
e into an irredu
ible part (independent from the estimator used)and the redu
ible part (estimator dependent). Then the redu
ible part is divided taking intoa

ount the two sour
es of varian
e: sensitivity to 
hanges in the training set and sensitivity to
hanges in the folds. We also 
ompare the bias and varian
e of the k-
v estimator for di�erentvalues of k using the Friedman plus Nemenyi hypothesis tests (8). The study has been performedon arti�
ial domains be
ause they allow the exa
t 
omputation of the implied quantities and we
an spe
ify rigorously the 
onditions of experimentation.The rest of the paper is organized as follows. In Se
tion 2 we brie�y explain how to estimatethe error using k-
v. Se
tion 3 shows the de
omposition of the varian
e. In Se
tion 4 we explainthe experimental pro
ess and the working out of the experiment. In Se
tion 5 we present thesummary of results emphasizing the bias and varian
e behavior, espe
ially its de
omposition.Finally, our 
on
lusions are presented.2 Error estimation with k-fold 
ross-validation2.1 Notation and de�nitionsA usual approa
h to supervised 
lassi�
ation 
onsists of 
reating a 
lassi�er from training datain order to predi
t the value (the label) of a 
lass attribute C ∈ {1, ..., rc} given the predi
tive2



attributes (the feature ve
tor) X = (X1, ..., Xd) of an unseen unlabeled instan
e, x = (x1, ..., xd).This work is fo
used on dis
rete domains Xi ∈ {1, ..., ri}. We suppose that (X , C) is a randomve
tor with a joint feature-label probability distribution p(x, 
).A 
lassi�er ψ is a fun
tion that maps X into C:
ψ : {1, ..., r1} × ...× {1, ..., rd} → {1, ..., r}

x 7→ cA 
lassi�er is learned from a training set Sn = {(x(1), c(1)), ..., (x(n), c(n))} with a 
lassi�er indu
-tion algorithm A(·), A(Sn). Note that the training set Sn 
an be 
onsidered a random variablewhi
h depends on the feature-label random variable (X , C). Given an indu
tion algorithm A(·),whi
h is assumed to be a deterministi
 fun
tion of the training set, the 
lassi�er obtained from atraining set is denoted as ψ = A(Sn).In the remainder of this paper we will introdu
e some de�nitions for a given indu
tion al-gorithm A(·), and for the sake of brevity we will omit it from the notation. In the performedexperimentation (see Se
tion 4) the indu
tion algorithm used should be 
lear from the 
ontext.The predi
tion error of a 
lassi�er ψ is the probability of wrong 
lassi�
ation of unlabeledinstan
es x and is denoted as ǫ(ψ):
ǫ(ψ) = p(ψ(X) 6= C) = Ex[1 − p(ψ(x)|x)] (1)The predi
tion error random variable will be denoted as ε and it is distributed a

ording to

p(ε = a) =
∑

Sn|ǫ(A(Sn))=a p(Sn). Sometimes it is 
alled 
onditional error (4) be
ause the 
lassi�eris trained in a parti
ular data set Sn with n instan
es. We 
an also de�ne the expe
ted errorof a 
lassi�er trained with sample sets of size n (ESn
[ǫ(ψ)]) as the Expe
ted Predi
tion Error(un
onditional error (4)).The minimum theoreti
al predi
tion error is given by the Bayes 
lassi�er, ψB, whi
h is de�nedas:

ψB(x) = argmaxc{p(
|x)} = cB(x)We de�ne the Bayes error as the predi
tion error of the Bayes 
lassi�er:
ǫ(ψB) = Ex[1 − p(cB(x)|x)] =

∑

x

(1 − p(cB(x)|x)) · p(x)Note that this value is the highest lower bound of the error of every 
lassi�er. It is important tonote that Bayes error does not depend on training data or sample size, sin
e the Bayes 
lassi�erdepends only on the feature-label probability distribution of the domain.Nevertheless, in most real world problems, the feature-label probability distribution is un-known. So both the Bayes 
lassi�er and the highest lower bound of the predi
tion error areunknown. Moreover, the predi
tion error of a 
lassi�er ψ is also unknown (
an not be 
omputed)and, thus, it must be estimated. Two of the most popular predi
tion error estimators are the
k-fold 
ross-validation and m times k-fold 
ross-validation (introdu
ed in the next Se
tion). Inorder to analyze the estimated error, it is ne
essary to 
onsider the 
on
epts of bias and varian
eof the estimator used. Let ε be the real error of the 
lassi�er and ε̂ the estimation of the error.The bias of an error estimator is de�ned as the real error value minus the expe
ted estimatederror value (ε− E[ε̂]). An estimator is said to be unbiased if it has zero bias. The varian
e ofan error estimator is the varian
e of the error estimate (E[(ε̂−E[ε̂])2]). For example, in Figure 1we have two estimators, ε̂1 with a high bias and low varian
e, and ε̂2 with low bias but a highervarian
e. Intuitively, the bias measures the average pre
ision of the error estimation while thevarian
e measures the variability of the estimations of the error.3



Figure 1: Bias and varian
e of an estimator2.2 k-fold 
ross-validationIn k-
v a data set Sn is partitioned into k folds of similar size P = {P1, ..., Pk} when possible. Let
Ti = Sn \Pi be the 
omplement data set of Pi. Then, the algorithm A(·) indu
es a 
lassi�er from
Ti, ψi = A(Ti), and estimates its predi
tion error with Pi. The k-
v predi
tion error estimator of
ψ = A(Sn) is de�ned as follows (21):

ǫ̂k(Sn, P ) =
1

n

k∑

i=1

∑

(x,c)∈S

1(c, ψi(x)) (2)where 1(i, j) = 1 i� i = j and zero otherwise. So the k-
v error estimator is the average of theerrors 
ommitted by the 
lassi�ers ψi in their 
orresponding partitions Pi. The estimated error
an be 
onsidered a random variable whi
h depends on the training set Sn and the partition P .The k-
v pro

ess is graphi
ally represented in Figure 2.Generally, an estimator is a randomized error estimator if there are internal fa
tors that a�e
tits out
ome. On the other hand, if the error estimator is a deterministi
 fun
tion, it is a non-randomized error estimator and its varian
e due to internal fa
tors is zero. For example k-
v with
k < n is a randomized error estimator be
ause it depends on the partition P used, and k-
v with
k = n is deterministi
 be
ause there is only one possible partition of the data.A k-
v error estimator is an unbiased estimator of the error ǫ on data sets of n−n/k size (2),but it is biased for ǫ on data sets of size n be
ause only a subset of the instan
es with size n−n/kis used for training. This is 
alled the surrogate problem (5). Intuitively, this 
hara
teristi
 will
ause k-
v to be a pessimisti
 estimator. On the other hand,as regards the varian
e, it is knownthat there is no unbiased estimator of the varian
e V ar[ǫ̂k(Sn, P )] of k-
v (1).The repeated m times k-
v (m-k-
v) 
onsists of estimating the error as the average of m k-
vestimations with di�erent random partitions P = {P (1), . . . , P (m)}:

ǫ̂k,m(Sn,P ) =
1

m

m∑

i=1

ǫ̂k(Sn, P
(i))4



Figure 2: k-fold 
ross validation error estimatorIt is supposed that the repeated version stabilizes the error estimation and so it redu
es thevarian
e of the k-
v estimator, espe
ially for small samples (16).As 
an be dedu
ed from the previous de�nitions, when a 
lassi�er indu
tion algorithm A(·)is �xed, the k-
v and m-k-
v estimators have two sour
es of varian
e (when k < n). One 
omesfrom the training sets Sn used for the training-test pro
ess and the other 
omes from the partition
P (or partitions P ) of Sn be
ause it a�e
ts the internal training-test partitions. So the k-
v and
m-k-
v estimators are sensitive to 
hanges in both the training set and the partitions. But, whatpart of the total varian
e depends on the estimator used and what part is independent? How arethe di�erent sour
es of varian
e de�ned and how are they related with the total varian
e? Whatis their relative importan
e for determining the total varian
e? So as to answer these interestingquestions, the next se
tion provides a novel de
omposition of the varian
e.3 De
omposition of the Varian
e of the k-
v estimatorIn order to analyze the behavior of the varian
e of the 
ross-validation, we use the followingrandom variables. All of these variables are de�ned given a 
lassi�er indu
tion algorithm A(·)wi
h is omitted from the expressions. The true predi
tion error random variable, ε, measuresthe predi
tion error of a 
lassi�er indu
ed with A(·), and it follows the distribution p(ε = a) =∑

Sn|ǫ(A(Sn))=a p(Sn) (see Eq. 1). The estimated error random variable ε̂k, measures the estimatedpredi
tion error of a 
lassi�er indu
ed with A(·) by means of the k-
v pro
edure and it followsthe distribution p(ε̂k = a) =
∑

Sn,P |ǫ̂k(Sn,P )=a p(Sn, P ) (see Eq. 2). Note that p(Sn, P ) =

p(Sn)p(P ) due to the independen
e of Sn and P . The deviation of the error random variable, δk,measures the deviation ∆k(Sn, P ) = ǫ(Sn) − ǫ̂k(Sn, P ) and follows the distribution p(δk = a) =∑
Sn,P |∆k(Sn,P )=a p(Sn, P ). 5



The estimated error ε̂k 
an be written as ε̂k = ε− δk. Thus, its varian
e 
an be de
omposedinto three terms:
V ar[ε̂k] = V ar[ε] + V ar[δk] − 2Cov[ε, δk] (3)If we assume the independen
e between ε and δk, the varian
e of ε̂k 
an be de
omposed intotwo terms be
ause Cov[ε, δk] = 0 (this is not a strong assumption as in the domains used forthe experimentation the 
ovarian
e is a small fra
tion of the total varian
e, less than 5% in most
ases):

V ar[ε̂k] ≃ V ar[ε] + V ar[δk] (4)Now we 
an study the varian
e of the estimation as the varian
e of the real error (with respe
t to
Sn) plus the varian
e of the deviation of the error. The varian
e of the real error ε depends onlyon the training set used and it is independent from the estimator. We 
all it irredu
ible varian
ebe
ause it is 
ommon to all the estimators. So, in order to study the properties of the k-
v and
m-k-
v estimators it is desirable to subtra
t it from the total varian
e, V ar[ε̂k]−V ar[ε] = V ar[δk].The varian
e of δk is the varian
e of the pre
ision of the estimation. It is the part of the totalvarian
e asso
iated with the estimator used and we 
all it redu
ible varian
e. It depends on boththe training set S and the partition P used.The varian
e of δk 
an be de
omposed exa
tly into two terms (see Appendix) taking intoa

ount its sour
es of the varian
e:

V ar[δk] = TS + PS (5)where TS and PS are the varian
es due to 
hanges in the training set and to 
hanges in thepartitions respe
tively. Note that the varian
e 
an be understood as a sensitivity measure. Thede�nition of both terms is as follows:
TS = 1/2(V arS [EP [δk]] +EP [V arS [δk]]) (6)
PS = 1/2(V arP [ES [δk]] +ES [V arP [δk]]) (7)All the terms in P (EP and V arP ) 
an be interpreted as follows: without loss of generality, we

Figure 3: Varian
e de
omposition
an assume a 
omplete order in the probability spa
e (X, C), so given a training set Sn, it 
an be6




onsidered ordered. Now we 
an understand a partition P as a permutation of n
k
1's, n

k
2's,. . .,n

kk's. Therefore, given a partition P , it is possible to 
onsider expe
tation or varian
e values overthis partition as it univo
ally des
ribes a partition for ea
h Sn.A representation of the overall de
omposition 
an be seen in Figure 3.4 Experimental studyIn this se
tion we empiri
ally study the statisti
al properties of the k-
v estimator (bias andvarian
e) and we analyze the varian
e using the de
omposition proposed in the previous se
tion.First we present the arti�
ial domains (Subse
tion 4.1) and the 
lassi�ers (Subse
tion 4.2) thatwe have used and subsequently, the empiri
al pro
ess (Subse
tion 4.3) and the obtained results(Subse
tion 4.4).4.1 Arti�
ial domainsWe use arti�
ial data sets be
ause it allows us to 
al
ulate the real error rate instead of using theempiri
al one. For this purpose, we sample the data sets from arti�
ial feature-label probabilitydistributions represented as Bayesian networks (24). We useK-dependen
e Bayesian 
lassi�er (K-DB) (25) stru
tures that allow ea
h predi
tive variable Xi to have a maximum of K dependen
ieswith other predi
tive variables, with the ex
eption of dependen
es with variable C. A parti
ularkind of K-DB is found when K = 0 (naive Bayes (19; 23)) and K = 1 (forest augmentednaive Bayes, FAN (20)). We use K-DB stru
tures be
ause it allows us to spe
ify the numberof dependen
ies between the attributes and so we 
an 
ontrol the 
omplexity of the probabilitydistribution. The 
hosen K values are {0, 1, 2, 3}. (see �gure 4)
(a) 0-DB (b) 1-DB
(
) 2-DB (d) 3-DBFigure 4: K-DB7



4.2 Naive Bayes and K-NN 
lassi�ersThe experimentation in
ludes the study of the k-
v estimator for two di�erent 
lassi�ers: naiveBayes (NB) (19; 23) and nearest neighbor (NN) (9). We have de
ided to use these 
lassi�ers dueto their opposite nature from the point of view of the number of parameters required for ea
hmodel. The bias and varian
e of the k-
v estimator should 
hange depending on the 
lassi�erused due to its parti
ular sensitivity to 
hanges in the training set. The sensitivity of a 
lassi�eris usually related with the number of parameters that it needs: the sensitivity in
reases as thenumber of parameters in
reases. After introdu
ing both paradigms, we brie�y analyze the numberof parameters required by them in order to establish their relative sensitivities.The NB 
lassi�er 
an be 
onsidered as a Bayesian network with a spe
ial graph topology.It assumes that the predi
tor variables are 
onditionally independent given the 
lass, being the
lass the only parent of ea
h predi
tor variable. In order to obtain the a posteriory probabilitydistribution of the 
lass given the predi
tors, p(c|x), it uses the Bayes rule:
p(c|x) = p(c,x)

p(x) ∝ p(c,x)The fa
torization of the joint probability is very simple be
ause of its independen
e assumption:
p(c|x) = p(c)

∏n

i=1 p(xi|c)Generally, NB 
lassi�es a new 
ase x using the a posteriori distribution together with thewinner-takes-all rule:
c∗ = argmaxc{p(c|x)} = argmaxc{p(c,x)}The NB 
lassi�er requires r − 1 +

∑d

i=1(ri − 1) · r parameters, where r is the 
ardinalityof the 
lass variable, ri is the 
ardinality of the predi
tive variable Xi and d is the number ofpredi
tive attributes. The low number of parameters needed by NB is due to the strong 
onditionalindependen
e of ea
h pair of predi
tive variables given the 
lass variable. It should be noted thatthe number of parameters needed is independent of the number of instan
es n in the training set.The NN 
lassi�er is based on a distan
e measure. In order to 
lassify a new instan
e, it
omputes the distan
es to every 
ase in the training set and, then, it sele
ts the 
lass whi
hbelongs to the nearest 
ase. The NN 
lassi�er requires n ·d parameters so, 
onsidering that in ourexperiments n >> d, the number of parameters of NN is higher than the number of parameters ofNB. NN is known as a lazy 
lassi�er be
ause it does not 
onstru
t a model of the data from thetraining set and it needs to store all the available data (if a 
ase 
ondenses or sele
tion te
hniqueis not performed).It is generally a

epted that the error estimation of a 
lassi�er has higher varian
e and lowerbias as the number of required parameters in
reases, or equivalently, as the sensitivity to the
hanges in the training sets in
reases (11).4.3 The empiri
al pro
essWe 
onsider domains with 10 predi
tive attributes and 1 
lass attribute. The predi
tive attributesare binary and the 
lass attribute 
ardinality ranges from 2 to 5. In order to obtain assorteddistributions with di�erent dependen
ies and 
omplexity degrees the following pro
edure (shownin Figure 5) has been 
arried out. For ea
h K and 
lass 
ardinality we generate 10 randomdistributions en
oded with the previously des
ribed Bayesian networks. Then, for ea
h generatedBayesian 
lassi�er, we sample 10 data sets of ea
h sample size. The sele
ted sample sizes are 1%,
5%, 10% and 25% of the total size of the probability spa
e.The data sets generated are 6400 (4 di�erent K values, 4 di�erent 
lass 
ardinalities, 10distributions for ea
h 
lass 
ardinality and K value, 4 di�erent sample sizes and 10 sets sampled8



Figure 5: Experimental design.from ea
h distribution and sample size). For ea
h dataset and ea
h 
lassi�er (NB and NN) weestimate 10 times the PEk(Sn, P ) for 10 di�erent random data partitions P , and 10 times the
PE(m=10),k(Sn,P ) for 10 di�erent sets of partitions P . The 
onsidered k values for the 
ross-validation are k = {2, 5, 10, n}. We use the k-
v error estimator provided by the WEKA library(28). The random generated Bayesian networks have been obtained using the BNGeneratorsoftware (14). This software �rst generates a dire
ted a
y
li
 graph with N nodes uniformlydistributed in the spa
e of graphs under 
osideration and then, for the generated graph, the
onditional probability distributions. The stru
ture is 
onstru
ted by means of a Markov ChainMonte Carlo (MCMC) method and the probabilities are sampled from a Diri
hlet distribution(13).

Figure 6: Computation of the implied quantities.Another point of interest is how we 
ompute TS and PS. In Figure 6 we show the 
omputation9



of these quantities.4.4 Experimental resultsThis se
tion has been divided into three paragraphs. First, in order to measure the in�uen
e of thedi�erent sour
es of varian
e of the k-
v error estimator, we empiri
ally analyze the de
ompositionof the varian
e given in Eq. 3. Then, we study the behavior of the bias and the varian
e of
k-
v for di�erent k values and sample sizes using the Friedman plus Nemenyi statisti
al test (8).Finally, we make a brief 
omparison of the NB and NN 
lassi�ers using the Wil
oxon test (8).De
omposition of the varian
e We begin the varian
e analysis starting out from the de-
omposition of the varian
e of the deviation of the error δk (Eq. 5). In Figures 9, 10, 11 and12 we present the results of the proposed de
omposition (see Figure 3). Ea
h bar of the �guresrepresents the total varian
e of the estimator, the lowest part of the bar (the darkest one) is thevarian
e of the true error ǫ (irredu
ible varian
e), the rest of the bar (redu
ible varian
e) is thevarian
e of the deviation of the error, δk (Eq. 5), and is divided into two terms, the varian
e dueto 
hanges in the partitions, partition sensitivity PS (Eq. 7), and the varian
e due to 
hanges inthe training set, training sensitivity TS (Eq. 6). Note that PS is zero for k = n.(a) Sample size 1% (b) Sample Size 5%(
) Sample Size 10% (d) Sample Size 25%Figure 7: Nemenyi tests of Varian
e on k-
v

(a) Sample size 1% (b) Sample Size 5%(
) Sample Size 10% (d) Sample Size 25%Figure 8: Nemenyi tests of Varian
e on repeated k-
vThe training sensitivity TS dominates the total varian
e be
ause it is 
learly bigger than thepartition sensitivity PS. In no-repeated k-
v the training sensitivity TS is 2-4 times bigger with
k = 2, 4-9 times bigger with k = 5 and 5-12 times bigger with k = 10. In repeated k-
v thedi�eren
es are even greater, the training sensitivity TS is 11-33 times bigger with k = 2, 21-80times bigger with k = 5 and 28-143 times bigger with k = 10.10



(a) 1% (b) 5%

(
) 10% (d) 25%Figure 9: Varian
e De
omposition on k-
v with NB.In the analysis of the de
omposition for di�erent values of k, the partition sensitivity PSde
reases with higher values of k. Moreover, in the 
ase of no-repeated, the di�eren
es betweenthe values of the total varian
e (k = 2, 5, 10) are mainly due to PS (as the values of TS arevery similar). Training sensitivity TS does not have a 
lear behavior in no-repeated k-
v, butin repeated k-
v it in
reases with higher k values. Finally, it is important to note that the ratiobetween PS and TS seems to be independent of the size of the training set (this relation seemsto be kept for ea
h k).Comparison of bias and varian
e for di�erent k values In addition to the previous anal-ysis, we have also 
ompared the bias and the total varian
e of the estimators for the di�erentvalues of k. In order to do that, we have 
arried out statisti
al tests, a paired Friedman test plusthe Nemenyi post-ho
 test when the null hypothesis is reje
ted (8) based on 320 paired estimatederrors (2 
lassi�ers, 4 K values, 4 
lass 
ardinalities, 10 distributions for ea
h 
ardinality and Kvalue). The signi�
an
e of this test is 0, 01 (see Figures 7, 8, 17 and 18). Ea
h point of this �guresrepresents the bias or varian
e of the 
lassi�er as the average over the 400 data sets of ea
h samplesize. There are more spe
i�
 �gures 
onsidering di�erent K-DBs and di�erent 
lass 
ardinality inthe appendix. 11



(a) 1% (b) 5%

(
) 10% (d) 25%Figure 10: Varian
e De
omposition on k-
v with NN.
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(a) 1% (b) 5%

(
) 10% (d) 25%Figure 11: Varian
e De
omposition on repeated k-
v with NB.
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(a) 1% (b) 5%

(
) 10% (d) 25%Figure 12: Varian
e De
omposition on repeated k-
v with NN.
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(a) naive Bayes (b) nearest neighborFigure 13: Bias on k-
v

(a) naive Bayes (b) nearest neighborFigure 14: Bias on repeated k-
vThe �rst eviden
e is that in all 
ases the varian
e of the estimator de
reases with the samplesize (4) (see Figures 15 and 16). Besides, the varian
e of the estimator is lower on repeated k-
vthan in no-repeated k-
v.But there are di�eren
es among repeated and no-repeated k-
v if we fo
us on the varian
e fordi�erent k-values. In no-repeated there are no signi�
ative di�eren
es between di�erent numberof folds be
ause the total varian
e for di�erent k values is very similar (see Figure 7). Repeated
k-
v stabilizes the varian
e in su
h a way that signi�
ative di�eren
es appear (see Figure 8) anda k ranking from lowest to highest varian
e arises: k = 2, 5, 10, n.On the other hand, if we fo
us on the bias we realize that k = 2 has the larger bias for both
lassi�ers (NB and NN) be
ause we use only n/2 samples for learning. There is no signi�
ativedi�eren
e between the bias for the remaining studied k values but they all are signi�
ativelyless biased than k = 2 ex
ept for sample size of 1% (See �gure 7). The bias is nearly zero for allsample sizes, spe
ially for sample size > 5%. k = 2 is signi�
atively the most biased k value ex
ept15



(a) naive Bayes (b) nearest neighborFigure 15: Varian
e on k-
v

(a) naive Bayes (b) nearest neighborFigure 16: Varian
e on repeated k-
v
(a) Sample size 1% (b) Sample Size 5%(
) Sample Size 10% (d) Sample Size 25%Figure 17: Nemenyi tests of Bias on k-
v
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(a) Sample size 1% (b) Sample Size 5%(
) Sample Size 10% (d) Sample Size 25%Figure 18: Nemenyi tests of Bias on repeated k-
vfor no-repeated k-
v on small samples. The remaining k values show no signi�
ative di�eren
esamong them (see Figures 17 and 18). 2-
v has the largest bias for both 
lassi�ers (NB and NN)be
ause we use only n/2 samples for learning. Anyway, the bias is nearly zero for all sample sizes,spe
ially for sample sizes higher than 5%.1% 5% 10% 25%
k = 2

Bias ◦0, 00246 ◦0, 00226 ⋆0, 00007 ⋆0, 00006Varian
e ◦0, 00195 ⋆0, 00046 ⋆0, 00093 ⋆0, 00757

k = 5
Bias ◦0, 00025 ◦0, 00317 ◦0, 00282 ◦0, 00426Varian
e ⋆0, 00128 ⋆0, 00266 ⋆0, 00813 ⋆0, 00814

k = 10
Bias ◦0, 00061 ◦0, 00326 ◦0, 00321 ◦0, 00487Varian
e ◦0, 00052 ⋆0, 00292 ⋆0, 00049 ⋆0, 00795

k = n
Bias ◦0, 00106 ◦0, 00329 ◦0, 00333 ◦0, 00504Varian
e ◦0, 00521 ⋆0, 00120 ⋆0, 00048 ⋆0, 00049

⋆ > 0, 01α→ NB < NN
◦ > 0, 01α→ NN < NBTable 1: Wil
oxon test at α < 0, 01 between NB and NN 
lassi�ers and the di�eren
eComparison of NB and NN Finally we have also 
ompared the 
lassi�ers. The 
omparisonamong 
lassi�ers (NB and NN) has been performed using the paired Wil
oxon signed-rank (8) testand we have obtained statisti
ally signi�
ative results at α < 0, 01. Table 1 shows the p-values ofthe statisti
al tests and the di�eren
es between both 
lassi�ers. The varian
e of NB is lower thanin NN (espe
ially in no-repeated k-
v) and NN is less biased than NB due to the di�eren
es inthe number of parameters (11).5 Con
lusionsThis paper proposes a novel de
omposition of the varian
e of the k-fold 
ross-validation for pre-di
tion error estimation. The varian
e is de
omposed into two independent terms (see Eq. 4),the irredu
ible varian
e V ar(ε) and the redu
ible varian
e V ar(δk). The irredu
ible varian
e isindependent from the value of k and the partitions P used and only depends on the training set.Then, the redu
ible varian
e is de
omposed into two terms (see Eq. 5) taking into a

ount itssour
es: the varian
e due to 
hanges in the training set TS (training sensitivity, see Eq. 6) anddue to 
hanges in the partition PS (partition sensitivity, see Equation 7).17



Furthermore, the paper empiri
ally studies the statisti
al properties (bias and varian
e) ofthe k-fold 
ross-validation for error estimation (and its repeated version). The empiri
al study isdivided into three parts: (i) de
omposition of the varian
e, (ii) 
omparison of bias and varian
eof the estimator for di�erent k values and training set sizes n and, (iii) 
omparison of bias andvarian
e of the estimator for di�erent indu
tion algorithms, naive Bayes and nearest neighbor.In the �rst study (i) we 
an 
on
lude that training sensitivity TS is mu
h bigger than partitionsensitivity PS. PS de
reases with higher values of k. TS does not have a 
lear behavior in no-repeated k-
v, but in repeated k-
v TS in
reases with higher k values. The ratio between PS and
TS seems to be kept for di�erent k values. We have observed that the repeated version redu
es PSto a small fra
tion of the total varian
e. In the se
ond study (ii), we have not found signi�
ativedi�eren
es between the varian
e of no-repeated k-
v when the number of folds 
hanges. Onthe other hand, for 10 times repeated k-
v estimator, a ranking on the varian
e appears withsigni�
ative di�eren
es between all k values (from lowest to highest varian
e: k = 2, 5, 10, n).Fo
using on the bias, it seems that for k-
v (and its repeated version), k = 2 is the most biasedestimator. Anyway, the bias is 
lose to zero for di�erent training set sizes, espe
ially for samplesizes higher than 5%. In the third study (iii), we realize that NN is less biased than NB but withmore varian
e due to the di�eren
es in the number of parameters.6 A
knowledgmentThis work has been partially supported by the Saiotek and Resear
h Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2008-06815-C02-01 and Consolider Ingenio 2010 -CSD2007-00018 proje
ts (Spanish Ministry of S
ien
e and Innovation) and COMBIOMED net-work in 
omputational biomedi
ine (Carlos III Health Institute).A Exa
t de
omposition of the varian
eIn this Se
tion we demonstrate the exa
t de
omposition of the varian
e of a random variable, Z,whi
h depends on two random independent variables, X and Y .Theorem Given two independent random variables, X and Y , and a third random variable,
Z, whi
h depends on X and Y , we have that:

V arX,Y [Z] = 1/2(EX [V arY [Z]] + V arY [EX [Z]])

+ 1/2(EY [V arX [Z]] + V arX [EY [Z]]) (8)proof: By de�nition of the varian
e of Z we have that
V arX,Y [Z] = EX,Y [Z2] − EX,Y [Z]2 (9)We 
an rewrite this de�nition by adding and subtra
ting the term EX [EY [Z]2] as follows

V arX,Y [Z] = EX,Y [Z2] − EX [EY [Z]2]

+EX [EY [Z]2]) − EX,Y [Z]2

= EX [EY [Z2] − EY [Z]2]

+EX [EY [Z]2]) − EX [EY [Z]]2

= EX [V arY [Z]] + V arX [EY [Z]] (10)Following the same pro
edure with the term EY [EX [Z]2] we obtain the following equality:
V arX,Y [Z] = EY [V arX [Z]] + V arY [EX [Z]] (11)18



Using Eq. 10 and Eq. 11 and regrouping the terms we prove the theorem
V arX,Y [Z] = 1/2(V arX,Y [Z] + V arX,Y [Z])

= 1/2(EY [V arX [Z]] + V arY [EX [Z]]

+EX [V arY [Z]] + V arX [EY [Z]])

= 1/2(EY [V arX [Z]] + V arX [EY [Z]])

+1/2(EX[V arY [Z]] + V arY [EX [Z]])We have de
omposed the varian
e of Z into two additive terms whi
h represent the sour
esof varian
e due to variables X and Y respe
tively (see the two terms of Eq. 9). We 
all
1/2(EY [V arX [Z]]+V arX [EY [Z]]) the sensitivity of Z with respe
t toX , and 1/2(EX [V arY [Z]]+
V arY [EX [Z]]) the sensitivity of Z with respe
t to Y . This property of the varian
e allows us tode
ompose the varian
e of the estimated predi
tion error random variable, ǫ̂k, into the sensitivityto 
hanges in the permutation and the sensitivity to 
hanges in the training set.
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B Extra �guresB.1 k-
v on naive Bayes 
lassi�er

(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 19: Predi
tion Error bias
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(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 20: Predi
tion Error varian
e
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0-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 21: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 22: Predi
tion Error varian
e
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1-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 23: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 24: Predi
tion Error varian
e
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2-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 25: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 26: Predi
tion Error varian
e
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3-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 27: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 28: Predi
tion Error varian
e
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B.2 m-k-
v on naive Bayes 
lassi�er

(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 29: Predi
tion Error bias
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(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 30: Predi
tion Error varian
e
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0-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 31: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 32: Predi
tion Error varian
e
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1-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 33: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 34: Predi
tion Error varian
e

35



2-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 35: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 36: Predi
tion Error varian
e
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3-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 37: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 38: Predi
tion Error varian
e

39



B.3 k-
v on nearest neighbour 
lassi�er

(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 39: Predi
tion Error bias
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(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 40: Predi
tion Error varian
e
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0-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 41: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 42: Predi
tion Error varian
e
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1-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 43: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 44: Predi
tion Error varian
e
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2-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 45: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 46: Predi
tion Error varian
e
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3-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 47: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 48: Predi
tion Error varian
e
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B.4 m-k-
v on nearest neighbour 
lassi�er

(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 49: Predi
tion Error bias
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(a) 0-DB (b) 1-DB

(
) 2-DB (d) 3-DBFigure 50: Predi
tion Error varian
e
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0-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 51: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 52: Predi
tion Error varian
e
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1-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 53: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 54: Predi
tion Error varian
e
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2-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 55: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 56: Predi
tion Error varian
e
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3-DB Stru
ture

(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 57: Predi
tion Error bias
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(a) |C|=2 (b) |C|=3

(
) |C|=4 (d) |C|=5Figure 58: Predi
tion Error varian
e
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