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Abstract

In the machine learning field the performance of a classifier is usually measured in terms
of prediction error. In most real-world problems, the error can not be exactly calculated and
it must be estimated. Therefore, it is important to choose an appropriate estimator of the
error.

This paper analyzes the statistical properties (bias and variance) of the k-fold cross-
validation classification error estimator (k-cv). Our main contribution is a novel theoretical
decomposition of the variance of the k-cv considering its sources of variance: sensitivity to
changes in the training set and sensitivity to changes in the folds. The paper also compares
the bias and variance of the estimator for different values of k. The empirical study has
been performed in artificial domains because they allow the exact computation of the implied
quantities and we can specify rigorously the conditions of experimentation. The empirical
study has been performed for two different classifiers (naive Bayes and nearest neighbor),
different number of folds (2,5,10,n) and sample sizes, and training sets coming from assorted
probability distributions.



1 Introduction

Generally, a classifier is induced from a training data using a classifier learning algorithm. Each
classifier has an associated prediction error (true error). But usually the true error is unknown
(it can not be calculated) and it must be estimated from data (estimated error). An estimator
of the error of a classifier is a random variable £ and its quality is usually measured by means
of its bias and variance. There are several estimators of the classification error, from the simple
Resubstitution (10) and Hold-out (22) to the more complex Bootstrap (12) and Bolstered (3).
One of these techniques, and probably the most popular, is k-fold cross-validation (k-cv) (21). In
k-cv the dataset is divided into k folds, a classifier is learnt using k& — 1 folds and an error value
is calculated by testing the classifier in the left fold. Finally, the k-cv estimation of the error is
the average value of the errors committed in each fold. Thus, the k-cv error estimator depends
on two factors: the training set and the partition.

This paper presents a statistical analysis of the k-cv error estimator focusing on its bias and
variance. Briefly, we can define the bias as a measure of the goodness-of-fit of the estimator and
the variance as the estimator variability. If our objective is the error estimation itself, we should
choose the less biased classifier but if our objetive is to compare several classifiers, in addition, we
should choose the error estimator with the smallest variance.

There are many publications about k-cv but not many of them have considered the influence
in the estimation of the different number of folds. Breiman and Spector (7) carried out a feature
subset selection experiment in which they compare k-cv for various k£ and they recommend 10-cv
for model selection although 5-cv also works well for model selection and evaluation. Zhang (29)
showed that cross-validation will select too many features for any k value. Kohavi (16) made the
most complete study on the matter. He found that there is a trade-off between the bias and the
variance of the estimator depending on the number of folds and showed that k-cv with moderate
k values reduces the variance while increasing the bias and, alternatively, higher k values increases
the variance while decreasing the bias. He also found that repeated cross-validation stabilizes the
estimate for small values of k. However, Kohavi used real data sets for the experiments so it was
impossible for him to know the real error rates.

We propose a novel theoretical decomposition for the variance of k-cv error estimator. The
decomposition divides the variance into an irreducible part (independent from the estimator used)
and the reducible part (estimator dependent). Then the reducible part is divided taking into
account the two sources of variance: sensitivity to changes in the training set and sensitivity to
changes in the folds. We also compare the bias and variance of the k-cv estimator for different
values of k using the Friedman plus Nemenyi hypothesis tests (8). The study has been performed
on artificial domains because they allow the exact computation of the implied quantities and we
can specify rigorously the conditions of experimentation.

The rest of the paper is organized as follows. In Section 2 we briefly explain how to estimate
the error using k-cv. Section 3 shows the decomposition of the variance. In Section 4 we explain
the experimental process and the working out of the experiment. In Section 5 we present the
summary of results emphasizing the bias and variance behavior, especially its decomposition.
Finally, our conclusions are presented.

2 Error estimation with k-fold cross-validation

2.1 Notation and definitions

A usual approach to supervised classification consists of creating a classifier from training data
in order to predict the value (the label) of a class attribute C' € {1,...,7.} given the predictive



attributes (the feature vector) X = (X1, ..., X4) of an unseen unlabeled instance, @ = (z1, ..., z4).
This work is focused on discrete domains X; € {1,...,7;}. We suppose that (X, C) is a random
vector with a joint feature-label probability distribution p(zx, c).

A classifier 1 is a function that maps X into C":
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A classifier is learned from a training set S, = {(z™), M), ..., (2™, ™)} with a classifier induc-
tion algorithm A(-), A(S,). Note that the training set S,, can be considered a random variable
which depends on the feature-label random variable (X, C). Given an induction algorithm A(-),
which is assumed to be a deterministic function of the training set, the classifier obtained from a
training set is denoted as 1 = A(Sy,).

In the remainder of this paper we will introduce some definitions for a given induction al-
gorithm A(-), and for the sake of brevity we will omit it from the notation. In the performed
experimentation (see Section 4) the induction algorithm used should be clear from the context.

The prediction error of a classifier ¢ is the probability of wrong classification of unlabeled
instances  and is denoted as €(v):

() = p(h(X) # C) = Ez[l — p(¢(z)|z)] (1)

The prediction error random variable will be denoted as ¢ and it is distributed according to
p(e =10a) =3 5, |c(A(5,))=a P(Sn). Sometimes it is called conditional error (4) because the classifier
is trained in a particular data set S,, with n instances. We can also define the expected error
of a classifier trained with sample sets of size n (Eg, [e(v)]) as the Ezxpected Prediction Error
(unconditional error (4)).

The minimum theoretical prediction error is given by the Bayes classifier, 1)p, which is defined
as:

¥p(x) = argmaz.{p(clz)} = cp(z)

We define the Bayes error as the prediction error of the Bayes classifier:

e(¥p) = Eo[l —plep(@)le)] = Y (1 - p(cs(@)l2)) - p(x)

x

Note that this value is the highest lower bound of the error of every classifier. It is important to
note that Bayes error does not depend on training data or sample size, since the Bayes classifier
depends only on the feature-label probability distribution of the domain.

Nevertheless, in most real world problems, the feature-label probability distribution is un-
known. So both the Bayes classifier and the highest lower bound of the prediction error are
unknown. Moreover, the prediction error of a classifier ¢ is also unknown (can not be computed)
and, thus, it must be estimated. Two of the most popular prediction error estimators are the
k-fold cross-validation and m times k-fold cross-validation (introduced in the next Section). In
order to analyze the estimated error, it is necessary to consider the concepts of bias and variance
of the estimator used. Let € be the real error of the classifier and € the estimation of the error.
The bias of an error estimator is defined as the real error value minus the expected estimated
error value (¢ — E[£]). An estimator is said to be unbiased if it has zero bias. The variance of
an error estimator is the variance of the error estimate (E[(é — E[£])?]). For example, in Figure 1
we have two estimators, £; with a high bias and low variance, and €, with low bias but a higher
variance. Intuitively, the bias measures the average precision of the error estimation while the
variance measures the variability of the estimations of the error.
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Figure 1: Bias and variance of an estimator

2.2 k-fold cross-validation

In k-cv a data set S, is partitioned into k folds of similar size P = { P4, ..., Py} when possible. Let
T; = S, \ P, be the complement data set of P;. Then, the algorithm A(-) induces a classifier from
T;, ¥; = A(T;), and estimates its prediction error with P;. The k-cv prediction error estimator of
¥ = A(S,) is defined as follows (21):

k
3 1(c (2)

=1 (x,c)€S

1 (S, P) =
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where 1(i,7) = 1 iff i = j and zero otherwise. So the k-cv error estimator is the average of the
errors committed by the classifiers 1); in their corresponding partitions P;. The estimated error
can be considered a random variable which depends on the training set .S,, and the partition P.
The k-cv proccess is graphically represented in Figure 2.

Generally, an estimator is a randomized error estimator if there are internal factors that affect
its outcome. On the other hand, if the error estimator is a deterministic function, it is a non-
randomized error estimator and its variance due to internal factors is zero. For example k-cv with
k < n is a randomized error estimator because it depends on the partition P used, and k-cv with
k = n is deterministic because there is only one possible partition of the data.

A k-cv error estimator is an unbiased estimator of the error € on data sets of n — n/k size (2),
but it is biased for € on data sets of size n because only a subset of the instances with size n —n/k
is used for training. This is called the surrogate problem (5). Intuitively, this characteristic will
cause k-cv to be a pessimistic estimator. On the other hand,as regards the variance, it is known
that there is no unbiased estimator of the variance Var[éx(Sy, P)] of k-cv (1).

The repeated m times k-cv (m-k-cv) consists of estimating the error as the average of m k-cv
estimations with different random partitions P = {P(1) ... P(™)}.

m

1
m(Sn, P) = — (S, PY)
bun(S0P) = Y

=1

~
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Figure 2: k-fold cross validation error estimator

It is supposed that the repeated version stabilizes the error estimation and so it reduces the
variance of the k-cv estimator, especially for small samples (16).

As can be deduced from the previous definitions, when a classifier induction algorithm A(-)
is fixed, the k-cv and m-k-cv estimators have two sources of variance (when k& < n). One comes
from the training sets S, used for the training-test process and the other comes from the partition
P (or partitions P) of S,, because it affects the internal training-test partitions. So the k-cv and
m-k-cv estimators are sensitive to changes in both the training set and the partitions. But, what
part of the total variance depends on the estimator used and what part is independent? How are
the different sources of variance defined and how are they related with the total variance? What
is their relative importance for determining the total variance? So as to answer these interesting
questions, the next section provides a novel decomposition of the variance.

3 Decomposition of the Variance of the k-cv estimator

In order to analyze the behavior of the variance of the cross-validation, we use the following
random variables. All of these variables are defined given a classifier induction algorithm A(-)
wich is omitted from the expressions. The true prediction error random variable, €, measures
the prediction error of a classifier induced with A(-), and it follows the distribution p(e = a) =
25, |c(A(Sn))=a P(Sn) (see Eq. 1). The estimated error random variable £;,, measures the estimated
prediction error of a classifier induced with A(-) by means of the k-cv procedure and it follows
the distribution p(éx = a) = Y g pjey(s.,P)—a P(Sn, P) (see Eq. 2). Note that p(Sn,P) =
(S, )p(P) due to the independence of S,, and P. The deviation of the error random variable, dy,
measures the deviation A (Sy, P) = €(Sy,) — éx(Sn, P) and follows the distribution p(d; = a) =

ZSmP\Ak(Sn,P):a p(Sn, P).



The estimated error €}, can be written as £, = € — d;. Thus, its variance can be decomposed
into three terms:

Var|ér] = Var[e] + Var[dx] — 2Cov]e, ] (3)

If we assume the independence between £ and Jg, the variance of £; can be decomposed into
two terms because Covle,d;] = 0 (this is not a strong assumption as in the domains used for
the experimentation the covariance is a small fraction of the total variance, less than 5% in most
cases):

Var|ér] ~ Var[e] + Var[dg] (4)

Now we can study the variance of the estimation as the variance of the real error (with respect to
Sp) plus the variance of the deviation of the error. The variance of the real error € depends only
on the training set used and it is independent from the estimator. We call it irreducible variance
because it is common to all the estimators. So, in order to study the properties of the k-cv and
m-k-cv estimators it is desirable to subtract it from the total variance, Var[éy]—Var[e] = Var[dy].
The variance of d; is the variance of the precision of the estimation. It is the part of the total
variance associated with the estimator used and we call it reducible variance. It depends on both
the training set S and the partition P used.

The variance of 0, can be decomposed exactly into two terms (see Appendix) taking into
account its sources of the variance:

Var[dg) =TS+ PS (5)

where T'S and PS are the variances due to changes in the training set and to changes in the
partitions respectively. Note that the variance can be understood as a sensitivity measure. The
definition of both terms is as follows:

TS = 1/2(Vars[Ep[6]] + Ep[Vars[de]) (6)
PS =1/2(Varp[Es[04]] + Es[Varp[x]]) (7)

All the terms in P (Ep and Varp) can be interpreted as follows: without loss of generality, we

2Covle, 6k [
[ PS

Var[dx]

Var [é k] TS

Varle]

Figure 3: Variance decomposition

can assume a complete order in the probability space (X, C'), so given a training set S,,, it can be



considered ordered. Now we can understand a partition P as a permutation of 7 1’s, & 2’s,.. .,
k’s. Therefore, given a partition P, it is possible to consider expectation or variance values over
this partition as it univocally describes a partition for each .S,,.

A representation of the overall decomposition can be seen in Figure 3.

4 Experimental study

In this section we empirically study the statistical properties of the k-cv estimator (bias and
variance) and we analyze the variance using the decomposition proposed in the previous section.
First we present the artificial domains (Subsection 4.1) and the classifiers (Subsection 4.2) that
we have used and subsequently, the empirical process (Subsection 4.3) and the obtained results
(Subsection 4.4).

4.1 Artificial domains

We use artificial data sets because it allows us to calculate the real error rate instead of using the
empirical one. For this purpose, we sample the data sets from artificial feature-label probability
distributions represented as Bayesian networks (24). We use K -dependence Bayesian classifier (K-
DB) (25) structures that allow each predictive variable X; to have a maximum of K dependencies
with other predictive variables, with the exception of dependences with variable C. A particular
kind of K-DB is found when K = 0 (naive Bayes (19; 23)) and K = 1 (forest augmented
naive Bayes, FAN (20)). We use K-DB structures because it allows us to specify the number
of dependencies between the attributes and so we can control the complexity of the probability
distribution. The chosen K values are {0,1,2,3}. (see figure 4)

(c) 2-DB (d) 3-DB

Figure 4: K-DB



4.2 Naive Bayes and K-NN classifiers

The experimentation includes the study of the k-cv estimator for two different classifiers: naive
Bayes (NB) (19; 23) and nearest neighbor (NN) (9). We have decided to use these classifiers due
to their opposite nature from the point of view of the number of parameters required for each
model. The bias and variance of the k-cv estimator should change depending on the classifier
used due to its particular sensitivity to changes in the training set. The sensitivity of a classifier
is usually related with the number of parameters that it needs: the sensitivity increases as the
number of parameters increases. After introducing both paradigms, we briefly analyze the number
of parameters required by them in order to establish their relative sensitivities.

The NB classifier can be considered as a Bayesian network with a special graph topology.
It assumes that the predictor variables are conditionally independent given the class, being the
class the only parent of each predictor variable. In order to obtain the a posteriory probability
distribution of the class given the predictors, p(c|x), it uses the Bayes rule:

plelz) = 2e2) o p(e, )

The factorization of the joint probability is very simple because of its independence assumption:

plelz) = p(e) [Ty plilc)

Generally, NB classifies a new case x using the a posteriori distribution together with the
winner-takes-all rule:

c¢* = argmaz {p(clx)} = argmaz.{p(c,z)}

The NB classifier requires r — 1 + Zle(ri — 1) - r parameters, where r is the cardinality
of the class variable, r; is the cardinality of the predictive variable X; and d is the number of
predictive attributes. The low number of parameters needed by NB is due to the strong conditional
independence of each pair of predictive variables given the class variable. It should be noted that
the number of parameters needed is independent of the number of instances n in the training set.

The NN classifier is based on a distance measure. In order to classify a new instance, it
computes the distances to every case in the training set and, then, it selects the class which
belongs to the nearest case. The NN classifier requires n - d parameters so, considering that in our
experiments n >> d, the number of parameters of NN is higher than the number of parameters of
NB. NN is known as a lazy classifier because it does not construct a model of the data from the
training set and it needs to store all the available data (if a case condenses or selection technique
is not performed).

It is generally accepted that the error estimation of a classifier has higher variance and lower
bias as the number of required parameters increases, or equivalently, as the sensitivity to the
changes in the training sets increases (11).

4.3 The empirical process

We consider domains with 10 predictive attributes and 1 class attribute. The predictive attributes
are binary and the class attribute cardinality ranges from 2 to 5. In order to obtain assorted
distributions with different dependencies and complexity degrees the following procedure (shown
in Figure 5) has been carried out. For each K and class cardinality we generate 10 random
distributions encoded with the previously described Bayesian networks. Then, for each generated
Bayesian classifier, we sample 10 data sets of each sample size. The selected sample sizes are 1%,
5%, 10% and 25% of the total size of the probability space.

The data sets generated are 6400 (4 different K values, 4 different class cardinalities, 10
distributions for each class cardinality and K value, 4 different sample sizes and 10 sets sampled



Probability
Distributions

Sample Sets

Error [real][2cv |[5cv |[10cv][ ncv ]

Figure 5: Experimental design.

from each distribution and sample size). For each dataset and each classifier (NB and NN) we
estimate 10 times the PFEy(S,, P) for 10 different random data partitions P, and 10 times the
PE(;,=10),1(Sn, P) for 10 different sets of partitions P. The considered % values for the cross-
validation are k = {2,5,10,n}. We use the k-cv error estimator provided by the WEKA library
(28). The random generated Bayesian networks have been obtained using the BNGenerator
software (14). This software first generates a directed acyclic graph with N nodes uniformly
distributed in the space of graphs under cosideration and then, for the generated graph, the
conditional probability distributions. The structure is constructed by means of a Markov Chain
Monte Carlo (MCMC) method and the probabilities are sampled from a Dirichlet distribution

(13).
Varp[Es[0x]] @Vty‘s [Ep[d]]

S1 S1o

By

<= PE(S;) — PEx(S:, F;)

Py

Es[Varp[tsk]]@ Ep[Vars[6:]]

Figure 6: Computation of the implied quantities.

Another point of interest is how we compute T'S and PS. In Figure 6 we show the computation



of these quantities.

4.4 Experimental results

This section has been divided into three paragraphs. First, in order to measure the influence of the
different sources of variance of the k-cv error estimator, we empirically analyze the decomposition
of the variance given in Eq. 3. Then, we study the behavior of the bias and the variance of
k-cv for different k values and sample sizes using the Friedman plus Nemenyi statistical test (8).
Finally, we make a brief comparison of the NB and NN classifiers using the Wilcoxon test (8).

Decomposition of the variance We begin the variance analysis starting out from the de-
composition of the variance of the deviation of the error §; (Eq. 5). In Figures 9, 10, 11 and
12 we present the results of the proposed decomposition (see Figure 3). Each bar of the figures
represents the total variance of the estimator, the lowest part of the bar (the darkest one) is the
variance of the true error e (irreducible variance), the rest of the bar (reducible variance) is the
variance of the deviation of the error, 6 (Eq. 5), and is divided into two terms, the variance due
to changes in the partitions, partition sensitivity PS (Eq. 7), and the variance due to changes in
the training set, training sensitivity T'S (Eq. 6). Note that PS is zero for k = n.
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Figure 7: Nemenyi tests of Variance on k-cv

CD CD

1 i i i 1 it i 1
k=n Lk=2 k=n \; k=2
k=10 k=5 k=10 k=5
(a) Sample size 1% (b) Sample Size 5%
cD cD
1 i i ] 1 i i 1
k=n__| ‘ ‘ L« k=n | ‘ ‘ L«
k=10 k=5 k=10 k=5
(c) Sample Size 10% (d) Sample Size 25%

Figure 8: Nemenyi tests of Variance on repeated k-cv

The training sensitivity 7'S dominates the total variance because it is clearly bigger than the
partition sensitivity PS. In no-repeated k-cv the training sensitivity 7S is 2-4 times bigger with
k = 2, 4-9 times bigger with £ = 5 and 5-12 times bigger with £ = 10. In repeated k-cv the
differences are even greater, the training sensitivity 7°S is 11-33 times bigger with £ = 2, 21-80
times bigger with k = 5 and 28-143 times bigger with k = 10.

10
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Figure 9: Variance Decomposition on k-cv with NB.

In the analysis of the decomposition for different values of k, the partition sensitivity PS
decreases with higher values of k. Moreover, in the case of no-repeated, the differences between
the values of the total variance (k = 2,5,10) are mainly due to PS (as the values of T'S are
very similar). Training sensitivity 7'S does not have a clear behavior in no-repeated k-cv, but
in repeated k-cv it increases with higher k values. Finally, it is important to note that the ratio
between PS and T'S seems to be independent of the size of the training set (this relation seems
to be kept for each k).

Comparison of bias and variance for different k values In addition to the previous anal-
ysis, we have also compared the bias and the total variance of the estimators for the different
values of k. In order to do that, we have carried out statistical tests, a paired Friedman test plus
the Nemenyi post-hoc test when the null hypothesis is rejected (8) based on 320 paired estimated
errors (2 classifiers, 4 K values, 4 class cardinalities, 10 distributions for each cardinality and K
value). The significance of this test is 0,01 (see Figures 7, 8, 17 and 18). Each point of this figures
represents the bias or variance of the classifier as the average over the 400 data sets of each sample
size. There are more specific figures considering different K-DBs and different class cardinality in
the appendix.

11
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Figure 10: Variance Decomposition on k-cv with NN.
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Figure 12: Variance Decomposition on repeated k-cv with NN.
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Figure 14: Bias on repeated k-cv

The first evidence is that in all cases the variance of the estimator decreases with the sample
size (4) (see Figures 15 and 16). Besides, the variance of the estimator is lower on repeated k-cv
than in no-repeated k-cv.

But there are differences among repeated and no-repeated k-cv if we focus on the variance for
different k-values. In no-repeated there are no significative differences between different number
of folds because the total variance for different k values is very similar (see Figure 7). Repeated
k-cv stabilizes the variance in such a way that significative differences appear (see Figure 8) and
a k ranking from lowest to highest variance arises: k = 2,5,10, n.

On the other hand, if we focus on the bias we realize that & = 2 has the larger bias for both
classifiers (NB and NN) because we use only n/2 samples for learning. There is no significative
difference between the bias for the remaining studied k& values but they all are significatively
less biased than k = 2 except for sample size of 1% (See figure 7). The bias is nearly zero for all
sample sizes, specially for sample size > 5%. k = 2 is significatively the most biased k value except

15
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Figure 18: Nemenyi tests of Bias on repeated k-cv

for no-repeated k-cv on small samples. The remaining k values show no significative differences
among them (see Figures 17 and 18). 2-cv has the largest bias for both classifiers (NB and NN)
because we use only n/2 samples for learning. Anyway, the bias is nearly zero for all sample sizes,
specially for sample sizes higher than 5%.

1% 5% 10% 25%
k=9 Bias 00,00246 | o0,00226 | x0,00007 | *0,00006
Variance | 00,00195 | %0,00046 | x0,00093 | x0,00757
k=5 Bias 00,00025 | 00,00317 | o0,00282 | o0,00426
Variance | x0,00128 | x0,00266 | %x0,00813 | x0,00814
k=10 Bias 00,00061 | ©0,00326 | o0,00321 | o0,00487
Variance | 00,00052 | x0,00292 | «0,00049 | x0,00795
k—n Bias 00,00106 | ©0,00329 | o0,00333 | o0,00504
Variance | 00,00521 | %0,00120 | «0,00048 | %0, 00049

*>0,0lca = NB< NN
0>0,0la = NN < NB

Table 1: Wilcoxon test at a < 0,01 between NB and NN classifiers and the difference

Comparison of NB and NN Finally we have also compared the classifiers. The comparison
among classifiers (NB and NN) has been performed using the paired Wilcoxon signed-rank (8) test
and we have obtained statistically significative results at o < 0,01. Table 1 shows the p-values of
the statistical tests and the differences between both classifiers. The variance of NB is lower than
in NN (especially in no-repeated k-cv) and NN is less biased than NB due to the differences in
the number of parameters (11).

5 Conclusions

This paper proposes a novel decomposition of the variance of the k-fold cross-validation for pre-
diction error estimation. The variance is decomposed into two independent terms (see Eq. 4),
the irreducible variance Var(e) and the reducible variance Var(dy). The irreducible variance is
independent from the value of k and the partitions P used and only depends on the training set.
Then, the reducible variance is decomposed into two terms (see Eq. 5) taking into account its
sources: the variance due to changes in the training set T'S (training sensitivity, see Eq. 6) and
due to changes in the partition PS (partition sensitivity, see Equation 7).
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Furthermore, the paper empirically studies the statistical properties (bias and variance) of
the k-fold cross-validation for error estimation (and its repeated version). The empirical study is
divided into three parts: (i) decomposition of the variance, (ii) comparison of bias and variance
of the estimator for different & values and training set sizes n and, (iii) comparison of bias and
variance of the estimator for different induction algorithms, naive Bayes and nearest neighbor.

In the first study (i) we can conclude that training sensitivity 7S is much bigger than partition
sensitivity PS. PS decreases with higher values of k. T'S does not have a clear behavior in no-
repeated k-cv, but in repeated k-cv T'S increases with higher k£ values. The ratio between PS and
TS seems to be kept for different k values. We have observed that the repeated version reduces P.S
to a small fraction of the total variance. In the second study (ii), we have not found significative
differences between the variance of no-repeated k-cv when the number of folds changes. On
the other hand, for 10 times repeated k-cv estimator, a ranking on the variance appears with
significative differences between all k values (from lowest to highest variance: k& = 2,5,10,n).
Focusing on the bias, it seems that for k-cv (and its repeated version), k = 2 is the most biased
estimator. Anyway, the bias is close to zero for different training set sizes, especially for sample
sizes higher than 5%. In the third study (iii), we realize that NN is less biased than NB but with
more variance due to the differences in the number of parameters.
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A Exact decomposition of the variance

In this Section we demonstrate the exact decomposition of the variance of a random variable, Z,
which depends on two random independent variables, X and Y.

Theorem Given two independent random variables, X and Y, and a third random variable,
Z, which depends on X and Y, we have that:

VaTX,y[Z] = 1/2(Ex[va7“y [Z]] + Va?“y[EX [Z]])
+ 1/2(Ey[Varx|[Z]] + Varx[Ey[Z]]) (8)
proof: By definition of the variance of Z we have that
Vaer[Z] = EX7y[Z2] — EX,y[Z]Q (9)
We can rewrite this definition by adding and subtracting the term Ex[Ey[Z]?] as follows
VarxylZ] = FExy[Z%| - Ex[Ey[Z)*]
+Ex[By[Z]%) — Exy[2)
= Ex[By[Z’] - Ey[Z)’]
+Ex[BEy[Z)%) — Ex|By[Z]]?
= Ex[Vary|Z]]|+ Varx|Ey[Z]] (10)

Following the same procedure with the term Ey [Ex[Z]?] we obtain the following equality:

Varx y|Z] = Ey[Varx[Z]] + Vary[Ex[Z]] (11)
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Using Eq. 10 and Eq. 11 and regrouping the terms we prove the theorem

Varxyl|Z] = 1/2(Varxy|Z]+ Varxy[Z])
= 1/2(Ey[Varx[Z]] + Vary[Ex[Z]]
+Ex[Vary[Z]] + Varx[Ey[Z]])
= 1/2(Ey[Varx|Z]| + Varx[Ey|[Z]])
+1/2(Ex[Vary|[Z]| + Vary|Ex|[Z]])

We have decomposed the variance of Z into two additive terms which represent the sources
of variance due to variables X and Y respectively (see the two terms of Eq. 9). We call
1/2(Ey[Varx[Z]|+Varx[Ey|Z]]) the sensitivity of Z with respect to X , and 1/2(Ex[Vary[Z]]+
Vary[Ex[Z]]) the sensitivity of Z with respect to Y. This property of the variance allows us to
decompose the variance of the estimated prediction error random variable, é;, into the sensitivity
to changes in the permutation and the sensitivity to changes in the training set.
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Figure 19: Prediction Error bias
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Figure 23: Prediction Error bias
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Figure 55: Prediction Error bias
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