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Abstract: We introduce a very general class of generalized non-expansive maps. This new class of
maps properly includes the class of Suzuki non-expansive maps, Reich–Suzuki type non-expansive
maps, and generalized α-non-expansive maps. We establish some basic properties and demiclosed
principle for this class of maps. After this, we establish existence and convergence results for this
class of maps in the context of uniformly convex Banach spaces and compare several well known
iterative algorithms.
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1. Introduction

Let X be a Banach space, E be a nonempty subset of X and P : E→ E be a selfmap. An element
z ∈ E is called a fixed point of P if z = P(z). From now on, we will denote the set of all fixed points of
P by the notation F(P). The map P is called non-expansive if ||P(a)− P(b)|| ≤ ||a− b|| for all a, b ∈ E
and it is called quasi-non-expansive if ||P(z)− P(a)|| ≤ ||z− a|| for all a ∈ E and z ∈ F(P). In 1965,
Kirk [1], Browder [2], and Gohde [3] independently proved that every non-expansive map has a fixed
point if E is closed bounded convex and X is uniformly convex. Fixed point theory of non-expansive
and generalized non-expansive maps in an appropriate domain is an important research area on its
own and has applications in image recovery and signal processing (see, e.g., [4–8] and references
cited therein).

In 2008, Suzuki [9] suggested a weaker notion of non-expansive maps as follows:

Definition 1. [9] A selfmap P on a subset E of a Banach space is said to satisfy condition (C) (or said to be
Suzuki non-expansive) if for each two elements a, b ∈ E,

1
2
||a− P(a)|| ≤ ||a− b|| ⇒ ||P(a)− P(b)|| ≤ ||a− b||.

Remark 1. It is clear that every non-expansive map is Suzuki non-expansive. However, an example in [9]
shows that there exists maps which are Suzuki non-expansive but not non-expansive.

In 2011, Aoyama and Kohsaka [10] proposed the class of α-non-expansive maps as follows:
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Definition 2. [10] A selfmap P on a subset E of a Banach space is said to be α-non-expansive if one can find a
real number α ∈ [0, 1) such that for each two elements a, b ∈ E,

||P(a)− P(b)||2 ≤ α||a− P(b)||2 + α||b− P(a)||2 + (1− 2α)||a− b||2.

In 2017, Pant and Shukla [11] proposed the class of generalized α-non-expansive maps as follows:

Definition 3. [11] A selfmap P on a subset E of a Banach space is said to be generalized α-non-expansive if one
can find a real number α ∈ [0, 1) such that for each two elements a, b ∈ E,

1
2
||a− P(a)|| ≤ ||a− b|| ⇒

||P(a)− P(b)|| ≤ α||b− P(a)||+ α||a− P(b)||+ (1− 2α)||a− b||.

Remark 2. It is clear that every Suzuki non-expansive map is generalized 0-non-expansive. However, an
example in [11] shows that there exist maps which are generalized α-non-expansive but not Suzuki non-expansive.

In 2019, Pant and Pandey [12] proposed the class of Reich–Suzuki type non-expansive maps
as follows:

Definition 4. [12] A selfmap P on a subset E of a Banach space is said to be β-Reich–Suzuki type non-expansive
if one can find a real number β ∈ [0, 1) such that for each two elements a, b ∈ E,

1
2
||a− P(a)|| ≤ ||a− b|| ⇒

||P(a)− P(b)|| ≤ β||a− P(a)||+ β||b− P(b)||+ (1− 2β)||a− b||.

Remark 3. It is clear that every Suzuki non-expansive map is 0-Reich–Suzuki type non-expansive. However an
example in [12] shows that there exists maps which are β-Reich–Suzuki type non-expansive but not
Suzuki non-expansive.

Motivated by the above definitions, in this paper, we introduce a new class of generalized
non-expansive maps which is properly larger than the the class of Suzuki non-expansive maps,
generalized α-non-expansive maps and Reich–Suzuki type non-expansive maps. We also establish
some basic results for this class. In this way, we improve and extend many well known corresponding
results of the metric fixed point theory.

2. Preliminaries

A Banach space X is called uniformly convex [13] if, for any real number ε ∈ [0, 1), one can find
a real number δ ∈ (0, ∞) such that, ||a+b||

2 ≤ (1− δ), whenever ||a|| ≤ 1, ||b|| ≤ 1 and ||a− b|| ≥ ε

for each a, b ∈ E. X is called strict convex if, for any a, b ∈ X satisfying ||a|| = ||b|| = 1 and a 6= b,
it follows that ||a + b|| < 2.

A Banach space X is said to satisfy Opial condition [14], if, for every weakly convergent sequence
{an} ⊆ X with weak limit say w ∈ X, it follows that

lim inf
m→∞

||am − w|| < lim inf
m→∞

||am − w′|| for all w′ ∈ X− {w}.

Let E be a nonempty subset of a Banach space X and {am} a bounded sequence in X. For each
a ∈ E, define:

• asymptotic radius of {am} at a by Ar(a, {am}) := lim supm→∞ ||a− am||;
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• asymptotic radius of {am} relative to E by Ar(E, {am}) = inf{Ar(a, {am}) : a ∈ E};
• asymptotic center of {am} relative to E by Ac(E, {am}) = {a ∈ E : Ar(a, {am}) = Ar(E, {am})}.

When the space X is uniformly convex [13], then the set Ac(E, {am}) is always singleton.
Notice also that the set Ac(E, {am}) is convex as well as nonempty provided that E is weakly compact
convex (see, e.g., [15,16]).

The following result is a characterization of uniform convexity, which can be found in [17].

Lemma 1. Let X be a uniformly convex Banach space and 0 < s ≤ km ≤ t < 1 for every m ≥ 1.
If {ym} and {zm} are two sequences in X such that lim supm→∞ ||ym|| ≤ γ, lim supm→∞ ||zm|| ≤ γ and
limm→∞ ||kmym + (1− km)zm|| = γ for some γ ≥ 0, then limm→∞ ||ym − zm|| = 0.

3. Generalized (α, β)-Non-Expansive Mappings

Inspired by above and [18], we suggest a two parametric class of nonlinear maps.

Definition 5. A selfmap P on a subset E of a Banach space is said to be generalized (α, β)-non-expansive if
there exists real numbers α, β ∈ R+ satisfying α + β < 1 such that, for all a, b ∈ E,

1
2
||a− P(a)|| ≤ ||a− b|| ⇒ ||P(a)− P(b)|| ≤ α||a− P(b)||+ α||b− P(a)||+ β||a− P(a)||

+β||b− P(b)||+ (1− 2α− 2β)||a− b||.

The following proposition gives many examples of generalized (α, β)-non-expansive maps.

Proposition 1. Let P be a selfmap on a subset E of a Banach space. Then, the following hold:

(i) If P is Suzuki non-expansive, then P is generalized (0, 0)-non-expansive.
(ii) If P is generalized α-non-expansive, then P is generalized (α, 0)-non-expansive.

(iii) If P is β-Reich–Suzuki type non-expansive, then P is generalized (0, β)-non-expansive.

We prove a key lemma.

Lemma 2. Let P be a selfmap on a subset E of a Banach space. If P is generalized (α, β)-non-expansive with a
fixed point z, then P is quasi-non-expansive.

Proof. Let z ∈ F(P). Since 1
2 ||z− P(z)|| = 0 ≤ ||a− z||, we have

||z− P(a)|| = ||P(z)− P(a)||
≤ α||a− P(z)||+ α||z− P(a)||+ β||z− P(z)||+ β||a− P(a)||+ (1− 2α− 2β)||a− z||
= α||a− z||+ α||z− P(a)||+ β||a− P(a)||+ (1− 2α− 2β)||a− z||
≤ α||a− z||+ α||z− P(a)||+ β(||a− z||+ ||z− P(a)||) + (1− 2α− 2β)||a− z||
= α||z− P(a)||+ β||z− P(a)||+ (1− α− β)||a− z||.

It follows that
(1− α− β)||z− P(a)|| ≤ (1− α− β)||z− a||.

Since (1− α− β) > 0, we obtain our desired result.

From Lemma 2, we obtain the following.

Lemma 3. Let P be a selmap on a subset E of a Banach space X. If P is generalized (α, β)-non-expansive,
then the set F(P) is closed. Moreover, F(P) is convex provided that E is convex and X is strictly convex.
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We now prove the following facts.

Lemma 4. Let P be a selfmap on a subset E of a Banach space. If P is generalized (α, β)-non-expansive, then for
each a, b ∈ E:

(i) ||P(a)− P2(a)|| ≤ ||a− P(a)||.
(ii) Either 1

2 ||a− P(a)|| ≤ ||a− b|| or 1
2 ||P(a)− P2(a)|| ≤ ||P(a)− b||.

(iii) Either ||P(a)− P(b)|| ≤ α||a− P(b)||+ α||b− P(a)||+ β||a− P(a)||+ β||b− P(b)||+ (1− 2α−
2β)||a− b|| or ||P2(a)− P(b)|| ≤ α||P(a)− P(b)||+ α||b− P2(a)||+ β||P(a)− P2(a)||+ β||b−
P(b)||+ (1− 2α− 2β)||P(a)− b||.

Proof. Since 1
2 ||a− P(a)|| ≤ ||a− P(a)||, we have

||P(a)− P2(a)|| ≤ α||a− P2(a)||+ α||P(a)− P(a)||+ β||a− P(a)||+ β||P(a)− P2(a)||+ (1−
2α− 2β)||a− P(a)||

= α||a− P2(a)||+ β||a− P(a)||+ β||P(a)− P2(a)||+ (1− 2α− 2β)||a− P(a)||
≤ α(||a− P(a)||+ ||P(a)− P2(a)||) + β||a− P(a)||+ β||P(a)− P2(a)||+ (1− 2α

−2β)||a− P(a)||.

It follows that
(1− α− β)||P(a)− P2(a)|| ≤ (1− α− β)||a− P(a)||.

Since (1− α− β) > 0, we obtain our desired result.
Now, to establish (ii), we assume the contrary, that is,

1
2
||a− P(a)|| > ||a− b|| and

1
2
||P(a)− P2(a)|| > ||P(a)− b||.

Using (i),

||a− P(a)|| ≤ ||a− b||+ ||b− P(a)||

<
1
2
||a− P(a)||+ 1

2
||P(a)− P2(a)||

= ||a− P(a)||,

this contradiction proves (ii). The condition (iii) directly follows from (ii).

Lemma 5. Let P be a selfmap on a subset E of a Banach space. If P is generalized (α, β)-non-expansive, then
for all a, b ∈ E, we have ||a− P(b)|| ≤

(
3+α+β
1−α−β

)
||a− P(a)||+ ||a− b||.

Proof. By Lemma 4(iii), for all a, b ∈ E, either

||P(a)− P(b)|| ≤ α||(a)− P(b)||+ α||b− P(a)||+ β||a− P(a)||+ β||b− P(b)||
+(1− 2α− 2β)||a− b||,

or

||P2(a)− P(b)|| ≤ α||P(a)− P(b)||+ α||b− P2(a)||+ β||P(a)− P2(a)||+ β||b
−P(a)||+ (1− 2α− 2β)||P(a)− b||
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holds. In the first case, we have

||a− P(b)|| ≤ ||a− P(a)||+ ||P(a)− P(b)||
≤ ||a− P(a)||+ α||a− P(b)||+ α||b− P(a)||+ β||a− P(a)||+ β||b
−P(b)||+ (1− 2α− 2β)||a− b||

≤ ||a− P(a)||+ α||a− P(b)||+ α(||b− a||+ ||a− P(a)||) + β||a−
P(a)||+ β(||b− a||+ ||a− P(b)||) + (1− 2α− 2β)||a− b||.

It follows that

||a− P(b)|| ≤
(

1 + α + β

1− α− β

)
||a− P(a)||+ ||a− b||.

In the second case (also using (i)),

||a− P(b)|| ≤ ||a− P(a)||+ ||P(a)− P2(a)||+ ||P2(a)− P(b)||
≤ 2||a− P(a)||+ ||P2(a)− P(b)||
≤ 2||a− P(a)||+ α||P(a)− P(b)||+ α||b− P2(a)||+ β||P(a)−

P2(a)||+ β||b− P(b)||+ (1− 2α− 2β)||P(a)− b||
≤ 2||a− P(a)||+ α(||P(a)− a||+ ||a− P(b)||) + α(||b− P(a)||

+||P(a)− P2(a)||) + β||P(a)− P2(a)||+ β(||b− P(a)||+ ||P(a)

−a||+ ||a− P(b)||) + (1− 2α− 2β)(||P(a)− b||)
≤ 2||a− P(a)||+ α(||P(a)− a||+ ||a− P(b)||) + α(||b− P(a)||+
||a− P(a)||) + β||a− P(a)||+ β(||b− P(a)||+ ||P(b)− a||+ ||
a− P(b)||) + (1− 2α− 2β)(||P(a)− b||).

Thus,

(1− α− β)||a− P(b)|| ≤ (2 + α + β)||a− P(a)||+ α(||b− P(a)||+ ||a− P(a

)||) + β(||b− P(a)||+ ||P(a)− a||) + (1− 2α− 2β)

(||P(a)− b||)
= (2 + α + β)||a− P(a)||+ α||a− P(a)||+ β||P(a)−

a||+ (1− α− β)(||P(a)− b||)
≤ (2 + α + β)||a− P(a)||+ α||a− P(a)||+ β||P(a)−

a||+ (1− α− β)(||P(a)− a||+ ||a− b||).

It follows that

(1− α− β)||a− P(b)|| ≤ (3 + α + β)||a− P(a)||+ (1− α− β)(||a− b||).

Since (1− α− β) > 0, we have

||a− P(b)|| ≤
(

3 + α + β

1− α− β

)
||a− P(a)||+ ||a− b||.

Hence, we have obtained the required result in both the cases.

We finish this section by proving the demiclosed principle.
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Lemma 6. Let P be a selfmap on a subset E of a Banach space having Opial’s property. If P is generalized
(α, β)-non-expansive, then the following holds:

{am} ⊆ E, am ⇀ w, ||am − P(am)|| → 0 =⇒ P(w) = w.

Proof. From Lemma 5, we have

||am − P(w)|| ≤
(

3 + α + β

1− α− β

)
||am − P(am)||+ ||am − w||.

It follows that
lim inf

m→∞
||am − P(w)|| ≤ lim inf

m→∞
||am − w||.

By Opial’s property, we must have P(w) = w. Hence, the conclusions can be reached.

4. Convergence Theorems in Uniformly Convex Banach Spaces

In this section, we prove some weak and strong convergence results for the newly introduced
class of maps in the context of uniformly convex Banach spaces. From now on, the letter X will
stand for the uniformly convex Banach space. Now, it is our purpose to prove some weak and strong
convergence for the newly introduced class of maps through a faster iterative algorithm. Let P be
a selfmap on a closed convex subset E of X and µm, ξm, $m ∈ (0, 1) for all m ≥ 1. The well known
Mann [19], Ishikawa [20], S [21], Noor [22], Abbas [8], Thakur [23], and K [24] iterative algorithms read
as follows: {

a1 = a ∈ E,
am+1 = (1− µm)am + µmP(am),

(1)


a1 = a ∈ E,
bm = (1− ξm)am + ξmP(am),
am+1 = (1− µm)am + µmP(bm),

(2)


a1 = a ∈ E,
cm = (1− $m)am + $mP(am),
bm = (1− ξm)am + ξmP(cm),
am+1 = (1− µm)am + µmP(bm),

(3)


a1 = a ∈ E,
bm = (1− ξm)am + ξmP(am),
am+1 = (1− µm)P(am) + µmP(bm),

(4)


a1 = a ∈ E,
cm = (1− $m)am + $mP(am),
bm = (1− ξm)P(am) + ξmP(bm),
am+1 = (1− µm)P(bm) + µmP(cm),

(5)


a1 = a ∈ E,
cm = (1− ξm)am + ξmP(am),
bm = P ((1− µm)am + µmcm) ,
am+1 = P(bm),

(6)
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and 
a1 = a ∈ E,
cm = (1− ξn)am + ξmP(am),
bm = P((1− µm)P(am) + µmP(cm)),
am+1 = P(bm).

(7)

In [21], Agarwal et al. proved that the iterative algorithm (4) is better than the Mann iterative algorithm
(1) for contraction maps. In addition, in [8], Abbas and Nazir proved that the iterative algorihm (5)
is better than the iterative algorihms (1)–(4) for non-expansive maps. Moreover, in [23], Thakur et al.
proved that the iterative algorithm (6) is better than the iterative algorithms (1)–(5) for Suzuki maps.
Very recently, in [24], Hussian et al. proved that the iterative algorithm (7) is better than all of the
iterative algorithms (1)–(6) for Suzuki maps.

In this article, we present some weak and strong convergence results using K iterative algorithm
for the class of genralized (α, β)-non-expansive maps. Similar results for the algorithms (1)–(6) can be
proved on the same line of proofs.

Lemma 7. Let P be selfmap on a closed convex subset E of X. If P is a generalized (α, β)-non-expansive with
F(P) 6= ∅ and {am} is a sequence generated by the algorithm (7), then limm→∞ ||am − z|| exists for each
z ∈ F(P).

Proof. Let z ∈ F(P). By Lemma 2, we have

||cm − z|| = ||(1− ξm)am + ξmP(am)− z||
≤ (1− ξm)||am − z||+ ξm||P(am)− z||
≤ (1− ξm)||am − z||+ ξm||am − z||
= ||am − z||,

which implies that

||am+1 − z|| = ||P(bm)− z|| ≤ ||bm − z||
= ||P((1− µm)P(am) + µmP(cm))− z||
≤ ||(1− µm)P(am) + µmP(cm)− z||
≤ (1− µm)||P(am)− z||+ µm||P(cm)− z||
≤ (1− µm)||am − z||+ µm||cm − z||
≤ (1− µm)||am − z||+ µm||am − z||
= ||am − z||.

Thus, {||am − z||} is bounded below and nonincreasing, which implies that limm→∞ ||am − z|| exists
for each z ∈ F(P).

Now, we give the necessary and sufficient condition for the existence of a fixed point of self
generalized (α, β)-non-expansive map on a closed convex subset E of X.

Theorem 1. Let P be a selfmap on a closed convex subset E of X. If P is a generalized (α, β)-non-expansive
and {am} is a sequence generated by the algorithm (7), then F(P) 6= ∅ if and only if {am} is bounded and
limm→∞ ||P(am)− am|| = 0.

Proof. Suppose that F(P) 6= ∅ and z ∈ F(P). Then, by Lemma 7, limm→∞ ||am − z|| exists and {am} is
bounded. Put

lim
m→∞

||am − z|| = γ. (8)
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By the proof of Lemma 7 together with (8), we have

lim sup
m→∞

||cm − z|| ≤ lim sup
m→∞

||am − z|| = γ. (9)

By Lemma 2, we have
lim sup

m→∞
||P(am)− z|| ≤ lim sup

m→∞
||am − z|| = γ. (10)

Again, by the proof of Lemma 7, we have

||am+1 − z|| ≤ (1− µm)||am − z||+ µm||cm − z||.

It follows that

||am+1 − z|| − ||am − z|| ≤ ||am+1 − z|| − ||am − z||
µm

≤ ||cm − z|| − ||am − z||.

Thus, we can get ||am+1 − z|| ≤ ||cm − z||. Therefore,

γ ≤ lim inf
m→∞

||cm − z||. (11)

From (9) and (11), we have
γ = lim

m→∞
||cm − z||. (12)

From (12), we have

γ = lim
m→∞

||cm − z|| = lim
m→∞

||(1− ξm)(am − z) + ξm(P(am)− z)||.

Since 0 < ξm < 1 for all m ≥ 1, by Lemma 1, we have

lim
m→∞

||P(am)− am|| = 0.

Conversely, we assume that {am} is bounded and limm→∞ ||P(am)− am|| = 0. Let z ∈ Ac(E, {am}).
By Lemma 5, we have

Ar(P(z), {am}) = lim sup
m→∞

||am − P(z)||

≤
(

3 + α + β

1− α− β

)
lim sup

m→∞
||P(am)− am||+ lim sup

m→∞
||am − z||

= lim sup
m→∞

||am − z||

= Ar(z, {am}).

It follows that P(z) ∈ Ac(E, {am}). Since X is uniformly convex, we have Ac(E, {am}) consists of a
unique element. Thus, we have P(z) = z.

The following result is based on the compactness of the domain.

Theorem 2. Let P be a selfmap on compact convex subset E of X. Let P be a generalized (α, β)-non-expansive
with F(P) 6= ∅, then {am} generated by the algorithm (7) converges strongly to an element of F(P).

Proof. By Theorem 1, limm→∞ ||P(am)− am|| = 0. By compactness assumption, one can find a strongly
convergent subsequence namely {amk} of {am} such that amk −→ s for some s ∈ E. By Lemma 5,
we have

||amk − P(s)|| ≤
(

3 + α + β

1− α− β

)
||amk − P(amk )||+ ||amk − s|| −→ 0.
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Since in Banach spaces, convergent sequence has a unique limit, we have P(s) = s. By Lemma 7,
limm→∞ ||am − s|| exists. Hence, s is the strong limit of {am}.

We state the following result without the proof because its proof is elementary.

Theorem 3. Let P be a selfmap on a closed convex subset E of X. Let P be a generalized (α, β)-non-expansive
and {am} is a sequence generated by the algorithm (7). If F(P) 6= ∅ and lim infm→∞ dist(am, F(P)) = 0,
then {am} converges strongly to an element of F(P).

The next result is based on Condition I.

Definition 6. [25] A selfmap P on a subset E of a Banach space is said to satisfy condition I if there is a
nondecreasing function h : R+ → R+ with the property h(0) = 0 and h(u) > 0 for all u ∈ (0, ∞) such that
||a− P(a)|| ≥ h(dist(a, F(P))) for all a ∈ E.

Theorem 4. Let P be a selfmap on a closed convex subset E of X. Let P be generalized (α, β)-non-expansive
with F(P) 6= ∅. If P satisfies condition I, then {am} generated by the algorithm (7) converges strongly to an
element of F(P).

Proof. From Theorem 1, it follows that

lim inf
m→∞

||P(am)− am|| = 0. (13)

Since T satisfies condition I, we have

||am − P(am)|| ≥ h(dist(am, F(P))).

From (13), we get
lim inf

m→∞
h((dist(am, F(P))) = 0.

Since the function h : R+ → R+ is nondecreasing with the property h(0) = 0 and h(u) > 0 for each
u ∈ (0, ∞), we have

lim inf
m→∞

dist(am, F(P)) = 0.

The conclusion follows from Theorem 3.

The following result is based on the Opial condition.

Theorem 5. Let P be a selfmap on a closed convex subset E of X having Opial property. If P is generalized
(α, β)-non-expansive with F(P) 6= ∅, then, {am} generated by the algorithm (7) converges weakly to an element
of F(P).

Proof. By Theorem 1, {am} is bounded and limm→∞ ||P(am)− am|| = 0. Since X is uniformly convex,
X is reflexive. Hence, one can find a weakly convergent subsequence {amj} of {am} with weak limit
say v1 ∈ E. By Lemma 6, we have v1 ∈ F(P). It is sufficient to show that v1 is the weak limit {am}.
If v1 is not the weak limit of {am}, then one can find another weakly convergent subsequence {amk}
of {am} with a weak limit, say v2 ∈ E and v2 6= v1. Again, by Lemma 6, v2 ∈ F(P). By Lemma 7 and
Opial condition, we have

lim
m→∞

||am − v1|| = lim
j→∞
||amj − v1|| < lim

j→∞
||amj − v2||

= lim
m→∞

||am − v2|| = lim
k→∞
||amk − v2||

< lim
k→∞
||amk − v1|| = lim

m→∞
||am − v1||.
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This is a contradiction. Hence, the conclusions can be reached.

5. Example

The following example shows that there exist maps which are generalized (α, β)-non-expansive
but neither generalized α non-expansive nor β-Reich–Suzuki type.

Example 1. Define P : R+ → R+ by P(a) = a
2 if 1

2 < a < ∞ and P(a) = 0 when 0 ≤ a ≤ 1
2 . We shall

prove that P is generalized ( 1
4 , 1

4 )-non-expansive.

We shall divide the proof into three cases.

(i) If 0 ≤ a, b ≤ 1
2 , then we have

1
4
|a− P(b)|+ 1

4
|b− P(a)|+ 1

4
|a− P(a)|+ 1

4
|b− P(b)| ≥ 0 = |P(a)− P(b)|.

(ii) If 1
2 < a, b < ∞, then we have

1
4
|a− P(b)|+ 1

4
|b− P(a)|+ 1

4
|a− P(a)|+ 1

4
|b− P(b)| =

1
4
|a− b

2
|+ 1

4
|b− a

2
|

+
1
4
|a− a

2
|+ 1

4
|b− b

2
|

≥ 1
4
|3a

2
− 3b

2
|+ 1

4
| a
2
− b

2
|

≥ 1
4
|4a

2
− 4b

2
|

=
1
2
|a− b|

= |P(a)− P(b)|.

(iii) If 1
2 < a < ∞ and 0 ≤ b ≤ 1

2 , then we have

1
4
|a− P(b)|+ 1

4
|b− P(a)|+ 1

4
|a− P(a)|+ 1

4
|b− P(b)| =

1
4
|a|+ 1

4
|b− a

2
|+ 1

4
|a−

a
2
|+ 1

4
|b|

=
1
4
|a|+ 1

4
|b− a

2
|+ 1

4
| a
2
|+ 1

4
|b|

≥ 1
4
|4a

2
| = 1

2
|a| = |P(a)− P(b)|.

Hence, P is generalized ( 1
4 , 1

4 )-non-expansive. However, for a = 1
2 and b = 4

5 , we have 1
2 |a−

P(a)| < |a− b|. However,

(i). |P(a)− P(b)| > |a− b|.

(ii). |P(a)− P(b)| > 1
4 |a− P(b)|+ 1

4 |b− P(a)|+ (1− 2( 1
4 ))|a− b|.

(iii). |P(a)− P(b)| > 1
4 |a− P(a)|+ 1

4 |b− P(b)|+ (1− 2( 1
4 ))|a− b|.

Hence, P is neither generalized 1
4 -non-expansive nor 1

4 -Reich–Suzuki type. We obtained the
influence of initial point for the K iterative algorithm (7) by µm = 0.90, ξm = 0.65, $m = 0.90 in the
below table.

Remark 4. In Tables 1 and 2, the items in bold show that the K iterative algorithm (7) converges faster than
other algorithms for the class of generalized (α, β)-non-expansive maps.
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Table 1. Influence of initial points for various iterative algorithms.

Number of Iterations Required to Obtain Fixed Point.

Initial Points Mann Ishikawa Noor S Abbas Thakur K

5 32 31 30 4 3 2 2
150 40 36 35 7 5 4 3
500 43 38 36 9 6 5 4

1000 45 39 37 9 6 6 4
5000 48 42 39 11 8 7 5
10000 50 43 40 12 8 7 6

Table 2. Influence of parameters: comparison of various iterative algorithms.

Iterations Initial Points
10 102 103 104 105 106

For µm = m
(m+1)

10
9

, ξm = 1
(m+3)

2
3

, $m = m
(3m+1)

Mann 39 45 51 58 64 70
Ishikawa 37 43 49 55 60 67
Noor 37 42 48 54 60 66
S 5 8 11 14 17 21
Abbas 4 6 9 11 13 16
Thakur 3 5 6 8 9 11
K 2 3 4 5 6 7

for µm = m
(m+7)

17
14

, ξm = m
(m+2) , $m = m−

1
3

Mann 95 107 120 133 146 159
Ishikawa 89 97 105 113 121 130
Noor 88 96 103 111 119 126
S 6 8 11 14 17 19
Abbas 3 5 6 8 10 11
Thakur 3 5 6 8 9 11
K 2 3 4 5 7 8

for µm = 1− ( 1
5m+3 )

1
2 , ξm = m−3, $m = 1− 1

(2m+5)

Mann 23 26 30 33 37 40
Ishikawa 22 25 29 32 36 40
Noor 22 25 29 32 36 39
S 5 8 12 15 18 22
Abbas 3 5 7 8 10 12
Thakur 3 4 6 8 9 11
K 2 3 4 5 6 8

for µm = 2m
(9m+8) , ξm = 1− 1

(m+7)2 , $m = 1− 6m
(7m+3)4

Mann 166 185 205 224 244 265
Ishikawa 155 168 181 194 206 219
Noor 153 164 174 185 196 206
S 5 8 11 14 17 20
Abbas 3 5 6 8 9 11
Thakur 3 5 6 8 9 11
K 2 3 4 5 6 8

for µm = m
(m+5) , ξm = m

(36m2+1)
1
2

, $m =
(

2m
(4m+5)

) 1
2

Mann 32 35 39 42 45 49
Ishikawa 31 34 37 40 44 47
Noor 31 34 37 40 43 46
S 6 9 12 15 19 22
Abbas 4 5 7 9 11 13
Thakur 3 5 6 8 10 11
K 2 3 4 6 7 8
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6. Conclusions

In this article, we have presented a new wider class of generalized non-expansive maps, namely,
the class of generalized (α, β)-non-expansive maps. We have also established fundamental properties of
these maps in Banach spaces. We have proved that K iterative algorithm of Hussain et al. [24] converges
faster to a fixed point of a map in this class. Since the class of generalized (α, β)-non-expansive
maps properly includes the classes of non-expansive, Suzuki non-expansive, Reich–Suzuki type
non-expansive, and generalized α-non-expansive maps, our results extend the corresponding work
proved and discussed in [1–3,8,11,23,24,26–28].
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