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Bearing in mind that Metal Organic Frameworks (MOFs) have remarkable CO2 adsorption 

selectivity and Mixed Matrix Membranes (MMMs) have been identified as potential solution for 

advancing the current state of the art of membrane separation technology, this work investigates 

the effect of combining a MOF, with high adsorption properties towards CO2 when compared to 

CH4 (MOF-5), with a blend of poly(ionic liquid)/ionic liquid (PIL/IL) for biogas upgrading. The 

blend system consisted of a pyrrolidinium-based PIL, poly([Pyr11][Tf2N]), and a free 

imidazolium-based IL, [C2mim][BETI]. The MOF-5 was incorporated at different loadings (10, 

20, 30 wt%), and MMMs were prepared by solvent evaporation and characterized by diverse 

techniques (FTIR, SEM, TGA, puncture tests and single gas transport). The results showed that 

the free IL is miscible with the PIL, while MOF-5 particles were uniformly dispersed into the 

PIL/IL matrix. The formed PIL/IL/MOF-5 membranes revealed suitable thermal stability (Tonset up 

to 656 K) for biogas upgrading processes, but a loss of mechanical stability was found after the 

incorporation of MOF-5, and thus more rigid and fragile membranes were obtained. At 30 wt% 

of MOF-5 loading the CO2 permeability increased 133% when compared to that of the pristine 

PIL/IL membrane, mainly due to the adsorption capacity of the MOF, as well as its porous 

structure. The presence of a porous structure may also be the reason why the ideal selectivity 

decreases by 88% for the MMM with the highest loading. It was possible to demonstrate the 

relevance of studying different components within the polymeric matrix in order to assess not 

only thermal, mechanical and chemical properties, but also gas transport response. 

KEYWORDS 
Biogas upgrading, CO2 removal, poly(ionic liquid)s, ionic liquids, metal organic frameworks, 
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1. INTRODUCTION

The rising environmental problems faced by our world has been prompting political debates 

and actions regarding sustainable energy strategies, including the use of bioenergy conversion 

routes for biofuels production as alternative to fossil fuels.1, 2 Biogas is one of the foremost 
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bioenergy that has been attracting much attention since its production, not only results in a 

valuable renewable energy source to substitute natural gas or liquefied petroleum, but also 

reduce the volume of disposed solid wastes.3  

Biogas is a mixture of gases produced from anaerobic digestion of biological wastes, where its 

composition is strongly dependent on the type of process and source.4  Typically, biogas consists 

of 55–65% methane (CH4), 35–40% carbon dioxide (CO2), small amounts of hydrogen sulfide 

(H2S) and water vapor (H2O), and may also contain traces of other gases and volatile organic 

compounds.5 Apart from CH4, the presence of CO2, H2S and other impurities reduce the heating 

value and thus, their removal by upgrading technologies is crucial to improve gas quality. In 

view of the fact that biogas must be composed of more than 95 vol% of CH4, in order to reach 

competitive calorific values and also meet the regulations,6 biogas upgrading deals primarily with 

CO2 removal. 

Among the different gas separation techniques currently available, membrane technology is 

particularly attractive since it offers a number of benefits, namely lower energy consumption, 

small footprint and easily engineered modules.7 Although several membrane-based processes 

have been proposed for biogas upgrading,8-12 they still have not reached the commercial value and 

efficiency of other conventional techniques, such as water scrubbing, pressure swing adsorption, 

or chemical absorption with amines. This is mainly due to the low CO2/CH4 separation efficiency 

of the commercial polymeric membranes, in which the gas transport is based on the solution-

diffusion mechanism and the main challenge remains in the trade-off between permeability and 

selectivity.5 Therefore, the development of membrane materials, combining high CO2 separation 

efficiency is of vital importance to advance membrane-based biogas upgrading processes. 

Over the past two decades, ionic liquids (ILs) and poly(ionic liquid)s (PIL)s have raised great 

interest as highly tuneable materials to improve existing membrane-based CO2 separation 

processes, delivering a wide range of membranes with different chemical structures, 

physical/chemical properties, morphologies and separation performances.13-15 
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Different strategies have been used towards the development of IL-based membranes, such as 

supported ionic liquid membranes (SILMs),16, 17 polymer/IL composite membranes,18, 19 ion gel 

membranes,20-22 or the fabrication of PIL/IL composite membranes.23-25 In particular, the 

incorporation of ILs into PILs is an attractive strategy to obtain membranes with liquid-like gas 

transport properties, while maintaining a good mechanical stability.26 A variety of PIL and IL 

chemical structures has been explored,27-31 and the potential of PIL/IL membranes to outperform 

conventional polymer membranes has been shown, in particular for CO2/N2 and CO2/H2

separations.32-34

With the intent of improving the CO2 separation efficiency, as well as the thermal and 

mechanical properties of PIL/IL composites, three-component mixed matrix membranes 

(MMMs) consisting of PILs, ILs and nanoporous fillers, such as zeolites and MOFs, have also 

been developed. The first example was published in 2010 by Hudiono et al.,35 who prepared a 

MMM, composed of styrene-based imidazolium PIL, free IL [C2mim][Tf2N] and zeolite SAPO-

34 particles, by UV-initiated polymerization. The results demonstrated that the presence of free 

IL improved the interfacial inorganic-organic adhesion. Hudiono et al.36 have also performed a 

more detailed study focused on the effect of varying the contents of both SAPO-34 and free IL, 

providing valuable insights into how this system can be tuned. Later on, Singh et al.37 varied 

other parameters, such as zeolite type, PIL structure and polymer cross-linking density. The 

authors reported an optimized and mechanically robust MMM, composed of 50 wt% 

poly([smim][Tf2N]), 20 wt% IL [C2mim][Tf2N] and 30wt% SAPO-34, outperforming the 2008 

Roberson upper bound limit, with CO2 permeability of 260 Barrer and CO2/CH4 selectivity of 90. 

What is more, Dunn et al.38 showed that the use of curable IL prepolymers, instead of a (IL 

monomer + cross-linker) mixture, to prepare cross-linked PIL/IL/zeolite, afforded MMMs with 

faster gelation times and improved resistance to support penetration when casting on 

ultrafiltration membranes.   

Despite the remarkable features of MOFs for CO2 capture,39 and the knowledge on MOF 

combination with polymers to build MMMs,40 only two studies concerning PIL/IL/MOF 
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membranes have been published in the literature. Hao et al.41 studied MMMs of 

poly([vbim][Tf2N), three different ILs ([C2mim][BF4], [C2mim][Tf2N], [C2mim][B(CN)4]) and ZIF-

8 nanoparticles. These membranes displayed a continuous increase in gas permeability with 

increasing ZIF-8 content, but the CO2/N2 and CO2/CH4 selectivities remained nearly constant. 

Recently, we investigated MMMs comprising poly([Pyr11][Tf2N]), IL [C4mpyr][Tf2N] and three 

different MOFs (ZIF-8, MIL-53(Al) and Cu3(BTC)2).42 Besides simultaneous improvements in 

both CO2 permeability and CO2/H2 selectivity were observed as the MOF content increased, the 

prepared MMMs remarkably surpassed the CO2/H2 upper bound limit. These promising results 

not only revealed an opportunity for further improvements behind pyrrolidinium-based 

PIL/IL/MOF membranes, as varying PIL and IL structures or MOF type, but also encouraged us 

to re-examine the potential of using this design strategy for CO2 removal from other gas streams, 

in particular for biogas upgrading (CO2/CH4 separation). 

In this work, MMMs based on poly([Pyr11][Tf2N]) and [C2mim][BETI] IL were prepared with 

different loadings of MOF-5 (between 10 and 30 wt%) and characterized in terms of their 

thermal and mechanical stability, as well as CO2/CH4 separation performance. It is expected that 

the presence of a highly fluorinated IL, such as [C2mim][BETI], will significantly improve the 

properties of the prepared membranes, particularly in terms of thermal stability and gas transport. 

MOF-5, also known as IRMOF-1, is one of the most widely studied MOFs, for different gas 

separations. Particularly in the case of CO2/CH4 separation, MOF-5 presents an overall higher 

ideal selectivity, compared to other well-known MOFs, such as Cu(BTC), MIL-53, ZIF-8 and 

ZIF-90, according to what has been published in the literature.43-46 Moreover, MOF-5 presents a 

high BET surface area (3000 m2 g-1), leading to a high gas adsorption capacity,43, 47 which makes 

MOF-5 a potential candidate for CO2/CH4 separation applications. 

 

2. EXPERIMENTAL SECTION 

2.1. Materials. The poly[Pyr11][Tf2N] was synthesized by anion metathesis reaction from the 

poly(diallyldimethylammonium) chloride precursor (average Mw 400,000 – 500,000, 20 wt% in 
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water), following an established procedure.29 MOF-5 was synthesized according to a procedure 

described elsewhere.48 Zinc nitrate hydrate (Zn(NO3)2.6H2O, 99.99 wt% pure), terephtalic acid 

(H2BDC, 98 wt% pure), dimethylformamide (DMF, 99.8 wt% pure) and acetone (>99.5 wt% 

pure) were purchased from Sigma Aldrich (Portugal). IoLiTec GmbH (Germany) provided the 1-

ethyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide ([C2mim][BETI], 98 wt% pure). 

The chemical structure of the PIL, IL and MOF are illustrated in Figure 1. CO2 (high purity grade, 

99.998%) and CH4 (>99.99% purity) were supplied by Praxair (Portugal). 

 
Figure 1. Chemical structure of the PIL, IL and MOF used in this work to prepare the PIL/IL and 
PIL/IL/MOF membranes. 
 

2.2. Membranes Preparation. PIL/IL and PIL/IL/MOF membranes, composed by 40 wt% of 

[C2mim][BETI] IL and different MOF-5 loadings (10, 20 and 30 wt%), were prepared by solvent 

evaporation technique. First, 0.6 g of PIL and 0.4 g of IL were dissolved in acetone (6% (w/v)) 

and stirred for 8 h. Separately, the respective amounts of MOF-5 were dispersed in acetone. All 

the prepared MOF solutions were sonicated in an ultrasound bath for 4 h and stirred another 4 h. 

Afterwards, the PIL/IL and MOF solutions were mixed and left stirring overnight. Free-standing 

PIL/IL and PIL/IL/MOF membranes were obtained by casting the prepared solutions into 

poly(tetrafluoroethylene) (PTFE) plates and left for slow solvent evaporation at room 

temperature. The composition of the membranes prepared in this work are described in Table 1.  

 
Table 1. Composition of the prepared PIL/IL and PIL/IL/MOF membranes. 
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Membranes 
PIL 

(60 wt%) 
IL 

(40 wt%) 
MOF-5 

loading (wt%) 

PIL Tf2N / 40 IL BETI Poly([Pyr11][Tf2N]) [C2mim][BETI] 0 

PIL Tf2N / 40 IL BETI / 10 MOF-5 10 

PIL Tf2N / 40 IL BETI / 20 MOF-5 20 

PIL Tf2N / 40 IL BETI / 30 MOF-5 30 

2.3. Fourier Transform Infrared Spectroscopy (FTIR) analysis. In order to evaluate 

possible interactions established between the different components in the MMMs, FTIR spectra 

of the prepared MMMs were acquired using a Perkin Elmer Spectrum spectrometer. All spectra 

were collected in the range of 400 to 4000 cm-1, using 10 scans.  

2.4. Scanning Electron Microscopy (SEM). Cross section images of the prepared MMMs 

were obtained using an analytical scanning electron microscope (FEG-SEM, JEOL7001F, USA 

Inc.), equipped with a field-emission electron source of 15 kV. Membrane samples of 

approximately 0.5x0.5 cm dimensions were coated with a Pd/Au thin layer to induce sample 

charge under the electron beam. 

2.5. Thermal Analysis. Thermogravimetric analyses (TGA) were carried out on a TGA Q50 

analyzer from TA instruments. The samples were heated at a constant rate of 10 K min-1, from 

room temperature to 873 K, under nitrogen atmosphere. The Universal Analysis software was 

used to determine the onset (Tonset) and decomposition (Tdec) temperatures. 

2.6. Mechanical Analysis. The prepared MMMs were evaluated through puncture tests, carried 

out using a TA XT Plus texture analyzer (Stable Micro Systems, UK). Samples of each 

membrane, with 3x3 cm, were punctured through a hole, with a cylindrical probe of 2 mm 

diameter, at ambient temperature. Three replicates were performed, and the mean puncture 

strength is reported. 

2.7. Gas Permeation Experiments. Single gas CO2 and CH4 permeation experiments were 

carried out using a gas permeation setup described in detail elsewhere,49 and the membranes’ 

permeability, as well as ideal CO2/CH4 selectivities were calculated. All the measurements were 

conducted at 303 K. Each experiment started by pressurizing the two-compartment stainless steel 
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cell with CH4 or CO2. Once the pressure was stabilized, a driving force of around 0.7 bar of 

relative pressure between the feed and permeate compartments was established. Two pressure 

transducers (Druck PCDR 910 models 99166 and 991675, UK) were used to control pressure 

variation in each compartment. The single gas permeability through the membrane was 

calculated according to the equation: 

1
β ln

p!""#! − 𝑝!"#$! 
p!""# − p!"#$

= 
1
β ln

∆p!
∆p = P

t
l 

Where pfeed and pperm correspond, respectively, to the pressure in the feed and permeate 

compartments (bar), P is the membranes’ permeability (m2.s-1, where 1 Barrer = 8.3×10-13 m2/s), t 

is the time (s), l is the mean membrane thickness (m) and β symbolizes a geometric parameter 

(m-1), given by: 

β = A 
1

V!""#
+ 

1
V!"#$

 

Where A is the membrane’ area (m2) and Vfeed and Vperm correspond to the volume of the feed and 

permeate compartments (m3), respectively.  

The gas permeability can be directly obtained from the slope when plotting 1/β ln(ΔP0/ΔP) as 

a function of t/l. The ideal gas selectivity of each membrane was calculated by dividing the 

permeabilities of the two different gases, according to: 

α!"!
!"!

=  
P!"!
P!"!

 

3. RESULTS AND DISCUSSION 

3.1. FTIR Analysis. The chemical structure of the prepared PIL/IL/MOF-5 membranes was 

confirmed by FTIR spectroscopy and the obtained spectra are depicted in Figure 2. The FTIR 

spectra of the MOF-5, [C2mim][BETI] IL and PIL NTf2/40 IL BETI membrane are also 

illustrated for comparison purposes.  
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Figure 2. FTIR spectra of the MOF-5, [C2mim][BETI] IL, PIL NTf2/40 IL BETI membrane and MMMs 
with 10, 20 and 30 wt% MOF-5 loading.  

The infra-red patterns obtained for MOF-5 are similar to those previously published in the 

literature.50 The absorption bands located between 1652 and 1503 cm-1 and at around 1390 cm-1 are 

associated to the carboxylic (COO) symmetric and asymmetric stretching, respectively. The 

vibration bands between 750 and 1016 cm-1 are characteristic of terephthalate compounds, which 

are present in the chemical structure of the MOF ligand. Moreover, the absorption peaks at 

around 522 cm-1 and 466 cm-1 are assigned to the Zn-O vibrations of the Zn4O cluster. Regarding 

the PIL Tf2N/40 IL BETI membrane, the small bands detected between 3150 and 2880 cm-1 are 

associated to CH2 stretching vibrations, while the peak observed at 1478 cm-1 is assigned to the 

CH3 bending vibrations originated from the pendant methyl groups of the pyrrolidinium 

polycation. The absorption bands attributed to the  [Tf2N]- counter-anion of the PIL can also be 

seen at 1347, 1170, 1133 and 1053 cm-1.51 The incorporation of the [C2mim][BETI] IL in the 
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PIL/IL membrane can be confirmed by the presence of absorptions peaks at 1084 cm-1 and 975 

cm-1, associated to C-N stretching and C=C bending, respectively. The presence of MOF-5 in the 

PIL/IL matrix can be confirmed by the occurrence of a small absorption peak at around 1652 cm-

1, associated to the MOF-5 structure.  

3.2. Morphology. The SEM cross section images of the PIL/IL membrane and respective 

MMMs comprising 10, 20 and 30 wt% of MOF-5 are shown in Figure 3.  

Figure 3. SEM cross-section images of the membranes: (A) PIL Tf2N/40 IL BETI, (B) PIL Tf2N/40 IL 
BETI/10 MOF-5, (C) PIL Tf2N/40 IL BETI/20 MOF-5 and (D) PIL Tf2N/40 IL BETI/30 MOF-5. 

The MOF-5 particles were successfully incorporated into the PIL/IL composite matrix for all 

the MOF-5 loadings tested. Besides, dense membrane morphologies and uniform dispersion of 

the MOF into the PIL/IL matrix were obtained, since agglomerates or noticeable deformations 

were not detected. Note that, for all the prepared membranes, it is possible to identify some 

randomly distributed holes, which are probably related with the solvent evaporation rate during 
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the membranes’ preparation at room temperature, as high volume of acetone evaporation can 

outflow during polymer precipitation. 

3.3. Thermal Stability. The degradation profiles of the pristine MOF-5, the PIL Tf2N/40 IL 

BETI membrane and the respective MMMs, were assessed by thermogravimetric analysis and 

are represented in Figure 4, while the thermal decomposition values, determined in terms of 

onset (Tonset) and decomposition (Tdec) temperatures, are given in Table 2.  

 
Figure 4. TGA thermograms of the MOF-5, PIL Tf2N/40 IL BETI membrane and MMMs with 10, 20 and 
30 wt% MOF-5 loading. 

MOF-5 presents a first weight loss stage that occurs between 460 – 525 K, which can be 

attributed to the evaporation of DMF and adsorbed water molecules, trapped inside the structure 

during the crystallization period and washing process. The thermal decomposition pattern 

occurred in the range of 500 – 750 K is attributed to the decomposition of the material. These 

observations are in agreement to what has been published in the literature.50 It is also possible to 

observe that all the prepared membranes presented a similar profile up to 500 K. Between 525 – 



 12 

600 K all MMMs present a slight weight loss of around 2 to 4 wt%, that corresponds to the 

evaporation of trapped DMF and water molecules, as observed in the TGA thermogram of the 

pristine MOF-5. 

Table 2. Puncture strength and thermal properties of the MOF-5 and PIL Tf2N/40 IL BETI membrane, as 
well as their MMMs with 10, 20 and 30 wt% MOF-5 loading. 

Sample Puncture 
strength (MPa) Tonset (K) a Tdec (K) b 

MOF-5 n.d.c 518 748 

PIL Tf2N / 40 IL BETI 0.41 ± 0.00 672 693 

PIL Tf2N / 40 IL BETI / 10 MOF-5 0.22 ± 0.13 646 675 

PIL Tf2N / 40 IL BETI / 20 MOF-5 0.21 ± 0.01 656 685 

PIL Tf2N / 40 IL BETI / 30 MOF-5 0.18 ± 0.00 651 680 
a Tonset (onset temperature) defined as the temperature at which the baseline slope changes during the heating.  
b Tdec (decomposition temperature) defined as the temperature at 50% weight loss. 
c not determined.  

 

Looking at Table 2, it can be seen that the Tonset slightly decreased from 672 K for the PIL 

Tf2N/40 IL BETI membrane to 646 K upon the incorporation of MOF-5. Above these values of 

Tonset, all the membranes shown a pattern of continuous weight loss, resulting in complete 

degradation of the materials (Figure 4). The same behavior described for Tonset was also observed in 

the Tdec of the studied membranes, that decreased from 693 K (PIL/IL membrane) to 675 K once 

10 wt% of MOF-5 was incorporated. Nevertheless, and despite the decreases obtained in both 

Tonset  and Tdec, the thermal stability of the prepared MMMs are not significantly affected when 

increasing MOF-5 loading (from 10 to 30 wt%) (Table 2). Also worth mentioning is that PILs 

and ILs bearing fluorinated anions, namely [Tf2N]– and [BETI]– anions, are well known for their 

high thermal stabilities.52 Therefore, and even after the addition of a material having lower 

thermal stability, such as MOF-5, it can be concluded that the thermal properties of the prepared 

MMMs membranes were not significantly different from those of the PIL/IL membrane. Similar 

results have been previously observed for MOF-based MMMs,53, 54 in particular for PIL/IL/MOF 
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membranes, when MIL-53 (Al), Cu3(BTC)2 and ZIF-8 were incorporated into the PIL Tf2N/40 IL 

[Pyr14][Tf2N].42 Overall, and considering that the temperature of biogas streams ranges between 

298 and 308 K,13 it can be concluded that the prepared membranes fit in terms of thermal stability 

to be used for the biogas upgrading process.  

3.4. Mechanical Properties. The results obtained from the mechanical properties study, in 

terms of the membranes’ puncture strength, are summarized in Table 2. The PIL/IL/MOF 

membranes display lower values of puncture strength than that of the PIL Tf2N/40 IL BETI. 

Actually, the puncture strength of the prepared membranes decreases as increasing MOF-5 

concentration, ranging from 0.41 MPa for the former PIL/IL membrane to 0.18 MPa for the 

MMMs with the highest MOF loading (30 wt%). These results reveal that the addition of MOF-5 

particles probably decreases polymer chain mobility and thus, the membrane’ structure becomes 

more rigid and fragile. This behavior has also been observed by different authors for other MOF-

based MMMs.42, 46, 53, 55  

3.5. CO2/CH4 Separation Performance. The CO2 single gas permeabilities of the prepared 

PIL/IL and PIL/IL/MOF membranes, as a function of the MOF-5 loading, are presented in Table 

3. The obtained results showed that, as the MOF-5 concentration increases, CO2 permeability also 

increases, from 146 Barrer for the PIL Tf2N/40 IL BETI membrane to 340 Barrer for the 

PIL/IL/MOF membrane with the highest loading. It is likely that this improvement is due to a 

greater diffusion of the gas molecules across the membrane, as the incorporation of MOF 

particles provides an extra porous network for gas transport.43 This result may also indicate a 

good interaction between the MOF particles and the polymeric matrix. 

Table 3. Evolution of CO2 of PIL/IL membranes’ permeability as a function MOF-5 loading. 

MOF-5 loading (%) P CO2 (Barrera) α (CO2/CH4) 

0 146.1 ± 7.3 14.5 ± 1.0 

10 261.4 ± 13.1 7.9 ± 0.6 

20 281.9 ± 14.1 14.8 ± 1.0 
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30 339.8 ± 16.9 1.8 ± 0.1 
 
 

Figure 5 displays the well-known CO2/CH4 Robeson upper bound limit,56 where the CO2/CH4 

ideal selectivity is represented as a function of the CO2 pure gas permeability. This representation 

allows to evaluate the overall performance of the prepared membranes in comparison to what has 

been published in the literature. It can be observed that, even though all experimental points fall 

bellow the upper bound limit, there is an increase in the CO2 permeability for the MMMs, 

comparatively to the PIL/IL membrane. On the other hand, except for the PIL Tf2N/40 IL 

BETI/20 MOF-5 membrane, whose selectivity is similar to the PIL/IL membrane, the 

incorporation of MOF-5 resulted in a noticeable decrease in selectivity. This can be explained by 

the fact that the porosity of MOF-5 induces an increase in the gas diffusivity, which is slightly 

higher for CH4 (1.8×10-9 m2 s-1) compared to that of CO2 (1.2×10-9 m2 s-1).57 Moreover, the cavity size 

of MOF-5 (around 6 Å) is significantly larger than the kinetic diameter of both tested gases (3.3 

Å for CO2 and 3.8 Å for CH4), which also contributes to the observed decrease in selectivity. 

Nonetheless, and due to the fact that CO2 solubility in MOF-5 is higher than that of CH4,43, 58 it can 

be concluded that CO2 transport across the membrane is favoured over CH4. Moreover, literature 

values reported for other MMMs are displayed in Figure 5. It is clear that depending on the 

selection and loading degree of the different components present in the MMM (PIL, IL and 
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MOF), different values of CO2 permeability and CO2/CH4 ideal selectivity can be achieved. 

 

Figure 5. CO2/CH4 MMMs ideal selectivity as a function of CO2 permeability. Data are plotted on a log-
log scale and the upper bound is adapted from Robeson.56 Literature values reported for other MMMs are 
also illustrated by colored circles (a),37 (b),41 and (c),59 for comparison purposes. 
 

4. CONCLUSIONS 

In summary, three-component MMMs composed of poly([Pyr11][Tf2N]) PIL, [C2mim][BETI] IL 

and MOF-5 were prepared by solvent evaporation technique. The influence of incorporating 

different MOF-5 loadings on membrane morphology, thermal and mechanical stability, as well 

as on the CO2/CH4 separation performance of the formed PIL/IL/MOF-5 membranes was 

evaluated. 
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The FTIR study confirmed the successful incorporation of [C2mim][BETI] IL and MOF-5 

within the PIL matrix, while the SEM images of the membrane cross sections revealed that 

dense, homogenous and defect-free membrane structures were obtained. Despite the lower 

thermal stability of MOF-5, the onset (< 656 K) and decomposition (< 685 K) temperatures of 

the PIL/IL/MOF membranes were not significantly different compared to those of PIL/IL 

membrane and thus, the prepared MMMs are suitable for biogas upgrading. On the other hand, 

the addition of MOF-5 particles originated more rigid and fragile membranes in comparison with 

the PIL/IL composite, but the hydrophilic character remained the same, which is quite important 

for CO2-transport.  

The pure gas permeation results showed that CO2 permeability increased with the amount of 

MOF-5 incorporated. The MMM with 30 wt% of MOF-5 achieved the highest CO2 permeability 

of 340 Barrer. The only observed drawback was that the incorporation of MOF-5 resulted in a 

noticeable decrease in CO2/CH4 selectivity, possibly explained by the cavity size of MOF-5. 

However, it should be possible to improve the CO2/CH4 separation performance of this MMM 

system by adjusting the amount of IL, or using different PILs, free ILs and MOF particles with 

higher CO2/CH4 selectivity. Although further research is needed to achieve PIL/IL/MOF with 

better performance properties, the results of this work opens up the  relevance of understanding 

at a molecular level the role of each component, in order to better tune-design MMMs for biogas 

upgrading.  
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ABBREVIATIONS 

A   Membrane area 

Barrer   1×10-10 cm3(STP) cm cm-2 cmHg-1 s-1 

BETI Bis(pentafluoroethylsulfonyl) imide 

BTC   Benzene-1,3,5-tricarboxylate 

CH4   Methane 

CO2   Carbon Dioxide 

DMF   Dimethylformamide 

FTIR   Fourier Transform Infrared Spectroscopy 

H2   Hydrogen 

H2S   Hydrogen sulfide 

IL   Ionic liquid 

l   Membrane thickness 

N2   Nitrogen 

MIL   Materials of Institut Lavoisier 

MMM   Mixed matrix membrane 

MOF   Metal organic framework 
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P    Permeablity 

p   Pressure 

pfeed   Pressure in the feed compartment 

PTFE   Poly(tetrafluoroethylene) 

PIL   Poly(ionic liquid) 

pperm    Pressure in the permeate compartment 

SAPO   Silicoaluminophosphate 

SEM   Scanning Electron Microscopy 

SILM   Supported Ionic Liquid Membrane 

t   Time 

Tdec   Decomposition temperature 

TGA   Thermogravimetric analysis 

Tonset   Onset temperature 

Vfeed   Volume of the feed compartment 

Vperm   Volume of the permeate compartment 

ZIF-8   Zeolitic imidazolate framework 

α   Ideal selectivity 

β    Geometric parameter 

Cation 

[C2mim]  1-ethyl-3-methylimidazolium 

[C4mpyr]   1-butyl-3-methylpyrrolidinium  

Polycations 

[Pyr11]   Poly(diallyldimethylammonium) 

[smim]   Poly(1-styrenemethyl-3-methylimidazolium) 

[vbim]   Poly(1-viny-3-butylimidazolium) 
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Anions 

[B(CN)4]  Tetracyanoborate 

[BETI]   Bis(pentafluoroethylsulfonyl)imide 

[BF4]   Tetrafluoroborate 

[Tf2N]   Bis(trifluoromethylsulfonyl)imide 
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