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Abstract

Many of the most recent publications in the embedded MPC field choose to use first-
order algorithms as a solution to the complexity of accelerating second-order algorithms
in systems with restricted computing resources. Thus, the purpose of this project
consist on evaluating the response of these first order algorithms and compare their
performance with second-order algorithms to have consistent criteria to design specific
accelerators optimized in the development of SoCs with application to the high per-
formance embedded MPC.

To aim this objective, the first part of the text focuses on explaining a background
needed to understand the approach of the optimization algorithms in the solution of a
reformulated MPC problem arising from a state-space model. In this chapter, defini-
tions such as Shift and Delta discretisation, System Variable and Dynamics Stacking,
and Sparse and Dense formulation are explained.

Once the related background is presented, it is analysed in detail the application
to the MPC of the most current and efficient first order algorithms, making a study of
the proposals published in recent years. In this section, definitions such as optimality,
stopping conditions and convergence will be taken into account.

After this analysis, the application of these algorithms will be adapted to different
MPC formulation options where it will be evaluated their computational performance
in different scenarios.

Lastly, the results obtained of the previous evaluation will be compared with the
performance of the second order algorithms, particularly using a simplified Interior
Point which it is optimised for an embedded MPC implementation. This compar-
ison will allow to take appropriate design decisions in the implementation of MPC
in embedded systems considering aspects such as hardware simplicity, computational
performance and numerical characteristics.

Keywords: Model Predictive Control, optimization algorithms, AMA, ADMM,
reduced-Hessian method, embedded MPC.
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Laburpena

MPC txertatuaren arloko argitalpen berrienetako askok lehen mailako algoritmoak
erabiltzen dituzte baliabide informatiko mugatuak dituzten sistemetan bigarren mail-
ako algoritmoen azelerazioaren konplexutasunari aurre egiteko. Beraz, proiektu honen
helburua lehen mailako algoritmo horien erantzuna ebaluatzea eta haien errendimen-
dua bigarren mailako algoritmoekin alderatzen da. Horrela, eraginkortasun handiko
MPC kontrolagailu txertatuak gauzatzeko SoC arkitektura berriak diseinatzeko be-
harrezkoak diren azeleragailuak diseinatzeko irizpideak lortu nahi dira.

Helburu hori lortzeko, lan honen lehen atalean, egoera-espazioko eredutik sortzen
den birformulatutako MPC problemen ebazpenerako beharrezko diren optimizazio-
algoritmoen planteamendua ulertzeko beharrezkoak diren aurrekariak azaltzen dira.
Kapitulu honetan, zenbait definizio azaltzen dira, hala nola Shift eta Delta diskretiza-
zioa, aldagaien eta sistemen dinamikaren pilaketa, eta formulazio trinko eta sakabanatuak.

Aurrekariak aurkeztu ondoren, lehen mailako algoritmo berri eta eraginkorrenak
MPC-aren arloan nola aplikatu diren aztertzen da, horretarako azken urteetako ar-
gitalpen zientifikoetan agertutako proposamenak aztertuz. Atal honetan optimiza-
zioa, bukaera-baldintzak eta konbergentzia bezalako kontzeptuak kontuan hartuko
dira. Ondoren, algoritmo horien aplikazioa MPCren formulazio-aukera desberdinet-
ara egokituko da, haien errendimendu konputazionala hainbat egoera esanguratsuetan
ebaluatuz.

Azkenik, aurreko ebaluaziotik lortutako emaitzak bigarren mailako algoritmoen
errendimenduarekin konparatuko dira, bereziki sistema txertatuetan erabiltzeko op-
timizatua izan den IP (Interior Point) algoritmo sinplifikatu bat erabilita, MPC txer-
tatua ezartzeko optimizatuta dagoena. Konparazio horri esker, diseinu-erabaki egokiak
hartu ahal izango dira sistema txertatuetan MPCa ezartzeko, ondorengo alderdi hauek
kontuan hartuta: hardwarearen sinpletasuna, errendimendu konputazionala eta zen-
bakizko ezaugarriak.

Hitz-gakoak: Kontrol prediktiboa, optimizazio-algoritmoak, AMA, ADMM, Hesiar-
murriztuaren metodoa, MPC txertatua.
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Resumen

Muchas de las publicaciones más recientes en el campo del MPC embebido optan por
utilizar algoritmos de primer orden como solución a la complejidad de la aceleración
de los algoritmos de segundo orden en sistemas con recursos informáticos restringidos.
Por lo tanto, el propósito de este proyecto consiste en evaluar la respuesta de estos
algoritmos de primer orden y comparar su rendimiento con los algoritmos de segundo
orden con la finalidad de tener criterios consistentes para diseñar aceleradores específi-
cos optimizados en el desarrollo de SoCs con aplicación al MPC embebido de alto
rendimiento.

Para lograr este objetivo, la primera parte del texto se centra en explicar los ante-
cedentes necesarios para entender el enfoque de los algoritmos de optimización en la
solución de un problema de MPC reformulado que surge de un modelo en espacio de
estados. En este capítulo, se explican definiciones como la discretización Shift y Delta,
el apilamiento de las variables y de la dinámica del sistema, y las formulaciones densa
y dispersa.

Una vez presentados los antecedentes, se analiza en detalle la aplicación al MPC
de los algoritmos de primer orden más actuales y eficientes, haciendo un estudio de
las propuestas publicadas en los últimos años. En este apartado se tendrán en cuenta
definiciones como la optimización, las condiciones de parada y la convergencia.

Tras este análisis, la aplicación de estos algoritmos se adaptará a las diferentes
opciones de formulación de MPC donde se evaluará su rendimiento computacional en
diferentes escenarios.

Por último, los resultados obtenidos de la evaluación anterior se compararán con
el rendimiento de los algoritmos de segundo orden, en particular utilizando un IP
simplificado que está optimizado para una implementación MPC embebida. Esta
comparación permitirá tomar decisiones de diseño adecuadas en la implementación de
MPC en sistemas embebidos considerando aspectos como la simplicidad del hardware,
el rendimiento computacional y las características numéricas.

Palabras clave: Control predictivo, algoritmos de optimización, AMA, ADMM,
método de Hessiana-reducida, MPC embebido.
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Chapter 1

Introduction

1.1 Motivation

Model Predictive Control (MPC) is recognized due to its ability in handling multiple
inputs and outputs with constraints. MPC has been popularly employed in processes
where the system dynamics is slow, since the computational time for solving the optim-
isation problems is greater. In recent years, model predictive control for fast dynamic
embedded systems has been in the spotlight. In these embedded systems, the com-
puting platforms usually have limited computation resources.

Existing iterative-based optimisation algorithms for MPC need to solve a system
of linear equations based on a Karush-Kuhn-Tucker (KKT) system. In most of cases,
it is the main computational load. Thus, accelerating the solution of the KKT sys-
tem will substantially improve the performance of many MPC optimisation algorithms.

In some recent research papers it is claimed that first-order optimization methods,
in contrast to second-order methods should be used to solve MPC problems in em-
bedded implementations due to the fact that they often require simpler arithmetics.
Although, first order methods usually converge much more slowly than second order
do, they can be more easily parallelized , they are better to larger problems due to the
simplicity of the operations and they can be accommodated to fixed-point arithmetics
[Jerez et al., 2013].

On the other hand, it is established that first-order algorithms using splitting meth-
ods are quite beneficial when applied to large-scale problems [Boyd et al., 2010] and
their potential in solving small to medium scale embedded optimisation problems has
been studied [Stathopoulos et al., 2016].

In this work, MPC problem is solved with two first-order optimisation algorithms:
Alternating minimization algorithm (AMA) and Alternating direction method of mul-
tipliers (ADMM). To solve the MPC problem, it is needed to be reformulated into a
appropriate formulation. Each reformulation results in a different problem but all of
them describe the same MPC setup.

1
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1.2 Project outline
This work starts in Chapter 2 with a brief review focuses on explaining a background
needed to understand the approach of the optimization algorithms in the solution of
are formulated MPC problem arising from a state-space model. Definitions such as
Shift and Delta discretisation, Sparse and Dense formulation, and QP solvers are ex-
plained. This chapter is intended mainly for background and can be skipped.

In Chapter 3, first-order methods for embedded MPC are described. Alternating
direction method of multipliers (ADMM), Alternating minimization algorithm (AMA)
and their accelerated variants are defined.

In Chapter 4, the reduced Hessian method is presented in order to reduce the size
of the matrices in a new QP. In addition, Turnback algorithm, a method to obtain
banded null space from the left-side of the equality constraints matrix is described.
This method is applied to the first-order methods mentioned in the previous chapter.

In Chapter 5, computational analysis is presented for all the algorithms before stud-
ied. Tests as scalability, comparison of the best first-order methods with a simplified
IP and the performance of these algorithms in closed loop are carried out. With these
simulations, conclusions about the stability of iterations and total times according to
a selected prediction horizon are obtained.

In Chapter 6, experimental results are shown and their tests are carried out in a
embedded platform. In this analysis, closed loop performance for selected algorithms is
evaluated where the repeated variables with more computational burden are identified.
Finally in Chapter 7, conclusions of this project are presented.



Chapter 2

Related Backgrounds

2.1 Model Predictive Control

The basic idea of MPC is shown in Figure 2.1. Considering a system with discrete-
time setting which should follow a set-point, at each sampling time instant, a MPC
controller determines a sequence of control inputs by minimising an objective function
with constraints over a prediction horizon. This objective function depends on the
model of the controlled system since in their constraints, the state-space model of the
system is included as well as other restrictions required in the behaviour of the plant.

Figure 2.1: Receding Horizon Strategy [Dang, 2018]

The prediction horizon N is the number of steps that the behaviour of the system
is predicted being each step the sampling time. To achieve a good prediction, a reliable
state-space model is needed. In addition, considering this horizon and minimising the
objective function, the ideal inputs to be applied in the following N sampling times
are obtained. These set of inputs is also named control sequence.

3
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Other concept to take into account is the control horizon which consists on the
number of steps applied in the plant once calculated the control sequence. This ho-
rizon will always be less or equal to the prediction horizon and often is defined as 1
which means that only the input corresponding to the next sampling instant of the
control sequence is applied to the plant.

In the Figure 2.1, the control horizon es equal to 1 and thus, the control sequence
is determined again in next sampling instant. On the contrary, if the control horizon
is different to 1, the control sequence is calculated again in the next instant after the
application of the control horizon defined. This technique is also known as receding
horizon strategy.

In this work, MPC with a linear system, quadratic stage and linear constraints is
considered. Thus, its objective function is defined as

min J =
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQNxN

s.t. xk+1 = Axk +Buk for i = 0, . . . , N − 1

Gxxk ≤ gx ; Guuk ≤ gu

GNxN ≤ gN

(2.1)

where N is the prediction horizon; Q and QN are positive semi-definite matrices; R
is positive definite matrix; A and B are the matrices of the discrete-time state space
model; Gx, GN , Gu, gx, gN , gu are appropriate matrices and vectors describing the
constraints of the system.

Thus, the computational burden of this controller is quite larger than a classical
PID controller since the solution in each sampling time is obtained taking into ac-
count the model of the plant which is solved reformulating the MPC problem and
calculating variables on-line. This is not the case of classical PIDs since they can be
tuned manually or using some strategy before staring the control; however, the MPC
problem uses the description of the system to predict the future, the objective function
that describes what we want to obtain reformulated to a mathematical optimization
problem, the control law that described how the problem should be optimized and the
optimal control value found with an algorithm based on the requirements of the system.

Therefore, taking into account the statements mentioned in the last paragraph, if it
is considered to control a system using embedded platforms, the design complexity for
MPC controllers is quite substantial unlike the PIDs. In this design, the complexity
involves how to reformulate the MPC problem to convert it into a QP problem, the
code size as well as the hardware resources needed to solve this problem, and also the
accuracy in case of designing the controller with a word length required.

In addition, the main feature of MPC type controllers type is their natural way of
taking constraints into account. On this way, the controllers can work close to that
constraints which it is extra beneficial in all applications where the optimal work point
lies close to a limit.
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2.2 MPC Problem
The state space model of the model of the linear continuous-time system

ẋc(t) = Acxc(t) +Bcuc(t)

yc(t) = Ccxc(t)
(2.2)

The matrices Ac, Bc and Cc are coefficients corresponding to continuous-time problem.

2.2.1 Discrete Domain

There are two ways to discretise the system. Considering a LTI system represented by
the discrete-time state space model

xk+1 = Axk +Buk

yk = Cxk
(2.3)

where xk is the state vector at sample instant k, uk is the input vector and yk is
the output vector.

2.2.1.1 Shift Form

Representation

xk+1 = Aqxk +Bquk

yk = Cqxk
(2.4)

The matrices are defined as
Aq = eAc∆

Bq =
eAc∆ − I

Ac
Bc

(2.5)

where Aq and Bq are the matrices for the shift discrete representation. ∆ is the
sampling time.

2.2.1.2 Delta Form

In control systems with high sampling rates, especially with oversampling, numerical
problems can be severe. Thus, delta discretisation offers the possibility of increasing
the sampling rate in the controller by improving control performance and alleviating
numerical problems resulting from limitations in computing accuracy.

This performance is relevant in the embedded control with FPGAs since they allow
us to work with oversampling which involves defining the sampling frequency above
the recommended frequencies in a classical control and thus, the response of the con-
trol system is improved [Goodall and Donoghue, 1993].

Furthermore, using this discretisation, the margin to limit the accuracy of the cal-
culation without affecting considerably the response of the controller can be increased.
This advantage allows us to make processor designs for MPC by reducing the word
length in the arithmetic of the algorithms and, therefore, the consumption of resources
and area can be reduced.
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Representation

δk = Aδxk +Bδuk

xk+1 = xk + ∆δk
(2.6)

Being the matrices

Aδ =
Aq − I

∆

Bδ =
Bq

∆

(2.7)

where Aδ and Bδ are the matrices for the shift discrete representation. ∆ is the
sampling time.

2.3 MPC Formulation

The control of this system is determined by MPC with objective function and con-
straints. At every sampling instant, given an estimate or measurement of the current
state of the plant , the finite-horizon constrained LQR problem is to minimize

min
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQNxN

s.t. xk+1 = Axk +Buk for i = 0, . . . , N − 1

Jxk ≤ j

Euk ≤ e

(2.8)

Inequality constraints express the box constraints xmink ≤ xk ≤ xmaxk and umink ≤
xk ≤ umaxk . Also, these can be represented as Jtxk +Etuk ≤ d where Jt, Et and d are
defined as

Jt =

[
J
0

]
, Et =

[
0
E

]
, d =

[
j
e

]
(2.9)

The form of the inequality constraints will affect directly the system dynamics
stacking of the problem (dense or sparse). On the other hand, the objective function
can be expressed in a more general way,

1

2

N−1∑
k=0

(||xk − xrefx||
2
Qk

+ ||uk − urefx||
2
Rk

) +
1

2
||xN − xrefN ||

2
QN

(2.10)

Thus, if it is assumed that xrefx and xrefx are equal to zero, first formulation (2.8)
is obtained.

2.3.1 System Variable Stacking

Consist on assembling decision variables (inputs and states) over MPC prediction
horizon (N) in a single variable.
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Simple Stacking

x =

x1

...
xN

 , u =

 u0

...
uN−1

 −→ z =



x1

...
xN
u0

...
uN−1


(2.11)

Alternating Stacking

x =

x1

...
xN

 , u =

 u1

...
uN−1

 −→ z =



u0

x1

u1

...
uN−1

xN


(2.12)

2.4 MPC Reformulation

In MPC, if the system model is linear and the objective function is quadratic, one can
formulate the MPC optimisation problem as a sparse QP, keeping both the states and
controls as decision variables. In contrast, MPC can also be formulated as a dense QP,
keeping only the controls as decision variables. The sparse QP will have both equality
and inequality constraints while the dense QP will have only inequality constraints.

2.4.1 Dense QP Formulation

According to [Maciejowski, 2002], considering a discrete-time linear time-invariant
model of the plant

xk+1 = Axk +Buk,

yk = Cxk.
(2.13)

where xk ∈ Rn is the state vector at sample instant k, uk ∈ Rl is the input vector and
yk ∈ Rm is the output vector.

Then, predictions can be described as follows

x̂(k + 1|k) = Ax(k) +Bû(k|k),

x̂(k + 2|k) = Ax(k + 1) +Bû(k + 1|k)

= A2x(k) + ABû(k|k) +Bû(k + 1|k),

...

x̂(k +Hp|k) = Ax̂(k +Hp − 1|k) +Bû(k +Hp − 1|k)

= AHpx(k) + AHp−1Bû(k|k) + ...+Bû(k +Hp − 1|k)

where Hp is the prediction horizon and Hu is the control horizon.
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There will be changes at times k, k + 1, ..., k + Hu − 1 and will remain constant
after that û(k + i|k) = û(k +Hu − 1) where Hu ≤ i ≤ Hp − 1. Being,

∆û(k + i|k) = û(k + i|k)− û(k + i− 1|k) (2.14)

Then,

û(k|k) = ∆û(k|k) + u(k − 1),

û(k + 1|k) = ∆û(k + 1|k) + ∆û(k|k) + u(k − 1),

...

û(k +Hu − 1|k) = ∆û(k +Hu − 1|k) + ...+ ∆û(k|k) + u(k − 1)

This is, in a reduced form

û(k + i|k) = u(k − 1) +
i∑
i=0

∆û(k + i|k) (2.15)

since ∆û(k + i|k) changes respect to the previous value ∆û(k + i− 1|k).

So, rewriting the state predictions with variation of input vectors

x̂(k + 1|k) = Ax(k) +B[∆û(k|k) + u(k − 1)],

x̂(k + 2|k) = A2x(k) + (A+ I)B∆û(k|k) +B∆û(k + 1|k)

+ (A+ I)Bu(k − 1),

...

x̂(k +Hu|k) = AHux(k) + (AHu−1 + ...+ A+ I)B∆û(k|k) + ...

+B∆û(k +Hu − 1|k) + (AHu−1 + ...A+ I)Bu(k − 1),

x̂(k +Hu + 1|k) = AHu+1x(k) + (AHu + ...+ A+ I)B∆û(k|k) + ...

+ (A+ I)B∆û(k +Hu − 1|k) + (AHu + ...A+ I)Bu(k − 1),

...

x̂(k +Hp|k) = AHpx(k) + (AHp−1 + ...+ A+ I)B∆û(k|k) + ...

+ (AHp−Hu + ...+ A+ I)B∆û(k +Hu − 1|k)

+ (AHp−1 + ...A+ I)Bu(k − 1).

= AHpx(k) +
[∑Hp−1

i=0 AiB
]

∆û(k|k) + ...

+
[∑Hp−Hu

i=0 AiB
]

∆û(k +Hu − 1|k)

+
[∑Hp−1

i=0 AiB
]
u(k − 1).

In matrix form:

Y (k) = Cx(k)

Y (k) = Ψx(k)+Υu(k − 1) + Θ∆u(k)
(2.16)
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where,

Y (k) =



ŷ(k + 1|k)
...

ŷ(k +Hu|k)
ŷ(k +Hu + 1|k)

...
ŷ(k +Hp|k)


; ∆u(k) =

 ∆û(k|k)
...

∆û(k +Hu − 1|k)



Ψ =



CA
...

AHu

AHu+1

...
AHp


; Υ =



CB
...

C
∑Hu−1

i=0 AiB

C
∑Hu

i=0A
iB

...

C
∑Hp−1

i=0 AiB



Θ =



B · · · 0
...

. . .
...

C
∑Hu−1

i=0 AiB · · · CB

C
∑Hu

i=0A
iB · · · C(A+ I)B

...
. . .

...

C
∑Hp−1

i=0 AiB · · · C
∑Hp−Hu

i=0 AiB


Objective Function

Since y(k + 1) must maintain close to the reference r(k|k), a quadratic error is used
to minimize it in order to consider the deviations both the positives and the negative
ones.

‖r(k + i|k)− ŷ(k + i|k)‖2 (2.17)

where, i = 1, 2, ..., Hp.

In addition, seeking for minimizing ∆û(k + 1|k to avoid rough control actions

‖∆û(k + i|k)‖2 i = 0, 1, ..., Hu − 1. (2.18)

The objective of carrying out a control function is defined

ν(k + i) = ‖r(k + i|k)− ŷ(k + i|k)‖2
αi

+ ‖∆û(k + j|k)‖2
βj

(2.19)

for i = 1, 2, ..., n and j = 0, 1, ..., n− 1. Being, αi and βj are scalar weight factors.

Also denoted as

ν(k + i) =

Hp∑
i=1

‖r(k + i|k)− ŷ(k + i|k)‖2
αi

+
Hu−1∑
i=0

‖∆û(k + i|k)‖2
βi

(2.20)

In matrix form,

ν(k) = ‖Θ∆u(k)− E(k)‖2
Q + ‖∆u(k)‖2

R (2.21)
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if E(k) = Yr(k)−Ψx(k)−Υu(k − 1).

Eq.(2.21) can be developed taking into account that ‖x‖2
M ≡ xTMx. Then,

x = Θ∆u− E; xT = (Θ∆u− E)T = ∆uTΘT − ET (2.22)

Thus, the objective function is equivalent

ν(k) = (∆u(k)TΘT − E(k)T )Q(Θ∆u(k)− E(k)) + ∆u(k)TR∆u(k)

= ∆u(k)TΘTQΘ∆u(k)− E(k)TQΘ∆u(k)−∆u(k)TΘTQE(k)

+ E(k)TQE(k) + ∆u(k)TR∆u(k)

= ∆u(k)TΘTQΘ∆u(k)− 2∆u(k)TΘTQE(k) + E(k)TQE(k) + ∆u(k)TR∆u(k)

= E(k)TQE(k)− 2∆u(k)TΘTQE(k) + ∆u(k)T (ΘTQΘ +R)∆u(k)

where,

Q =



α(1) · · · 0
...

...
...

0 α(i)
...

...
. . .

...
0 · · · α(Hp)


R =



β(0) · · · 0
...

...
...

0 β(i)
...

...
. . .

...
0 · · · β(Hu)


(2.23)

Since E(k)TQE(k) = constant, objective function is equal

ν(k) =
1

2
∆u(k)TH∆u(k) + hT∆u(k) (2.24)

where,
H = 2(ΘTQΘ +R) (2.25)

h = −2(ΘTQE(k)) (2.26)
Finally, minimizing ν(k) with linear constraints in ∆u(k) is a quadratic-convex

optimization problem.

Linear constraints

F


û(k|k)
...

û(k +Hu − 1|k)
1

 ≤ 0; L


ŷ(k + 1|k)

...
ŷ(k +Hp|k)

1

 ≤ 0; E


∆û(k|k)

...
∆û(k +Hu − 1|k)

1

 ≤ 0

To minimize ν(k) subject to constraints imposed to ∆u(k).

• First constraint is equal to
∑Hu−1

i=0 Fiû(k+i|k)+f ≤ 0 where F = [F1, F2, ..., FHu , f ].
Since û(k + i− 1|k) = u(k − 1) +

∑i−1
j=0 ∆û(k + j|k), constraints can be written

as
Hu∑
j=1

Fj∆û(k|k) +
Hu∑
j=2

Fj∆û(k + 1|k) + ...+ FHu∆û(k +Hu − 1|k)

+
Hu∑
j=1

Fju(k − 1) + f ≤ 0

(2.27)
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If Fi =
∑Hu

j=i Fj and F = [F0,F1, ...,FHu ]. Then,

F∆u(k) ≤ −F1u(k − 1)− f (2.28)

• Now, doing the same for the second constraint. Assuming full state measure-
ments, L = [Γ, l] can be defined as

L

(
Ψx(k) + Υu(k − 1) + Θ∆u(k)

1

)
≤ 0 (2.29)

It is the same
Γ[Ψx(k) + Υu(k − 1) + Θ∆u(k)] + l ≤ 0 (2.30)

Resulting
ΓΘ∆u(k) ≤ −Γ[Ψx(k) + Υu(k − 1)]− l (2.31)

• Here, the expression is formulated in function of ∆(u(k)). Then, with E =
[W,−ω] it only remains to put the inequality into the form

W∆(u(k)) ≤ ω (2.32)

Therefore, inequalities can be assembled before described into the single inequality F
ΓΘ
W

∆u(k) ≤

 −F1u(k − 1)− f
−Γ[Ψx(k) + Υu(k − 1)]− l

ω

 (2.33)

Simplifying the inequality
G∆u(k) ≤ g (2.34)

In summary, the dense QP formulation is obtained

min
∆u(k)

1

2
∆u(k)TH∆u(k) + hT∆u(k)

s.t. G∆u(k) ≤ g.

(2.35)

2.4.2 Sparse QP formulation

At every sampling instant, given an estimate or measurement of the current state of
the plant x̂, the finite-horizon constrained Linear-Quadratic Regulator (LQR) problem
is to minimize

min
u

N−1∑
k=0

(xTkQxk + uTkRuk) + xTNQNxN

s.t. xk+1 = Axk +Buk

Gxxk ≤ gx

Guuk ≤ gu

GNxN ≤ gN

(2.36)

where k = 0, 1, . . . , N − 1; N is equal to Hp which is the prediction horizon; Qx,
QN ∈ Rnx×nx are positive semi-definite matrices; R ∈ Rnu×nu is positive definite mat-
rix; Gx ∈ Rnix×nx , GN ∈ Rnit×nx , Gu ∈ Rniu×nu , gx ∈ Rnix , gN ∈ Rnit , gu ∈ Rniu are



12 CHAPTER 2. RELATED BACKGROUNDS

appropriate matrices and vectors describing the constraints of the system (nix, nit, niu
are number of the state constraints, terminal constraints and input constraints).

Minimization function can be described in matrix form

J =

[
x(k)
u(k)

]T [
Q 0
0 R

] [
x(k)
u(k)

]
+ xTNQNxN (2.37)

By using sparse formulation which keeps both the states and control as decision
variables

z = (uk, xk+1, u1, xk+2, . . . , uk+N−1, xk+N) (2.38)

With respect to the constraints

• Equality constraint : As it is known, in sparse formulation, system dynamics is
left as equality constraints. Thus, it must be expressed respect to the new matrix
of decision variables, resulting

Fz = f (2.39)

where, F ∈ Rneq×nd and f ∈ Rneq being neq = Nnx, , the number of equality
constraints:

F =


−B I 0 · · · 0
0 −A −B · · · 0
...

...
...

. . .
...

0 0 0 · · · I

 f =


Ax0

0
...
0

 (2.40)

• Inequality constraints : A ordered matrix in function of the inequalities described
in Eq.(2.36) must be created, resulting

Gz ≤ g (2.41)

where, G ∈ Rnineq×nd and g ∈ Rnineq being nineq = (N − 1)(nix + niu) + nit + niu,
the number of inequality constraints:

G =


Gu 0 · · · 0 0
0 Gx · · · 0 0
...

...
. . .

...
...

0 0 · · · Gu 0
0 0 · · · 0 GN

 g =


gu
gx
...
gu
gN

 (2.42)

Thus, problem (2.36) can be written as

min
z

1

2
zTHz

s.t. Fz = f

Gz ≤ g

(2.43)
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where H ∈ Rnd×nd is positive semi-definite (nd = N(nx+nu) is the number of decision
variables). H have the following description

H =



R 0 0 · · · 0 0 0
0 Q 0 · · · 0 0 0
0 0 R · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Q 0 0
0 0 0 · · · 0 R 0
0 0 0 · · · 0 0 QN


(2.44)

Finally, in comparison to the general QP formulation

min
z

1

2
zTHz + hT z

s.t. Fz = f

Gz ≤ g

(2.45)

the linear expression of the objective function disappears since h:=0.

In summary, in sparse formulation, the future states can be kept as decision vari-
ables and the system dynamics can be incorporated into the problem by enforcing
equality constraints. In this case, the vector z is created with both variables and all
the matrices are banded and sparse. Also, the number of non-zero elements in those
matrices grows linearly with the horizon length.

2.5 QP solvers
Once formulated the QP according to the formulations previously seen, a suitable al-
gorithm to solve this optimisation problem is needed.

Second order algorithms such as interior-point methods (IPM) and active-set (ASM)
are two commonly employed solvers in the optimisation field. The main computational
load of these methods is the solution of a set of linear equations at every iteration,
and this can be the bottleneck for embedded systems using these methods. However,
recent publications have given guidelines to overcome this bottleneck. Particularly, in
[del Rio Ruiz and Basterretxea, 2019], it is described a robust methodology to design
fixed-point processing modules for the hardware acceleration of linear solvers in IP
algorithms. In this article, it is pointed out the need for a simplified IP algorithm for
a more hardware friendly scheme without perceptible negative impact on the control
performance.

In addition, in terms of embedded systems, FPGAs and hybrid platforms (SoCs)
are really useful to test the performance of each enhance due to the fact that they are
embedded platforms which have a highly parallel computation capability. Thus, they
are often chosen to tackle the computation demanding task of solving the system of
linear equations [Hartley et al., 2012] [Liu et al., 2014].
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Recently, first-order QP solvers, such as gradient-based methods and splitting al-
gorithms have been in the spotlight because of their simpler structure, low cost im-
plementation, efficient parallelism, and fixed-point arithmetic opportunity. Due to
its simplicity in concept and underlying algebraic calculations, splitting methods are
gaining particularly popular for embedded MPC applications.

Fast gradient method is one of the most known first order algorithms and it is par-
ticularly attractive for application to MPC in embedded control system design due both
to the relative ease of implementation and to the availability of strong performance
certification guarantees. However, its use is limited to cases in which the projection
operation in these algorithms is simple, e.g. in the case of box constrained inputs.
This method is not convenient when state constraints is included in the problem since
they change the geometry of the feasible set such that the projection subproblem is
as difficult as the original problem. Therefore, fast gradient method (FGM) is often
applied in cases where only input constraints are present, and splitting algorithms such
as AMA and ADMM are used for cases in which both state and input constraints are
present. Indeed, the sparse formulations, used by ADMM and AMA, are constructed
taking into account both constraints.

For this reason, in this work, the analysis will be focused on these last two al-
gorithms.

2.6 Splitting method

Operator splitting method are used by first-order optimization algorithms to reduce
the complexity of the problem. This splitting can be developed for both dense and
sparse formulation. For simplicity, sparse formulation will be analysed; however,
this procedure can be replicated for a dense formulation deleting the equality con-
straints.

Considering the following optimal control problem to define the MPC problem

min
z

1

2
zTHz + hT z

s.t. Gz ≤ g

Fz = f

(2.46)

where, H ∈ Rn×n positive definite. F ∈ Rp×n, G ∈ Rq×n and z ∈ Rn, h ∈ Rn, f ∈ Rp,
g ∈ Rq are vectors.

As it is mentioned before, Eq.(2.46) must be modified to be applied to splitting al-
gorithms. Thus, it is achieved inserting a slack variable υ to the inequality constraints.
Therefore, the transformation of the inequalities are described as follows:

Gz ≤ g

0 ≤ g −Gz
0 ≤ υ = g −Gz

(2.47)
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Now,
Gz+υ = g

υ ≥ 0
(2.48)

In order to express the same problem, Eq.(2.48) must be expressed as an indicator
function:

Iυ(υ) =

{
0 if υ ≥ 0
∞ otherwise

(2.49)

It will be inserted as an additional function, named g(υ), to be minimized in (2.46).
Thus, the sparse formulation ends up being defined as

min
z,υ

f(z) + g(υ)

s.t. Az +Bυ = c
(2.50)

where,

f(z) =
1

2
zTHz + hT z (2.51)

A =

[
G
F

]
, B =

[
I
0

]
, c =

[
g
f

]
(2.52)

On the other hand, if a dense formulation is needed, the equality constraints are
deleted of the Eq.(2.46) and following the insertion of the slack variable, the problem
is described as

min
z,υ

f(z) + g(υ)

s.t. Gz + υ = g
(2.53)

where,

f(z) =
1

2
zTHz + hT z (2.54)

2.6.1 Lagrangian

First-order algorithms work with the Lagrangian of the constraints to solve the op-
timization problem. So, the Lagrangian for the formulation in (2.50), is denoted as

L(z, υ, y) = f(z) + g(υ) + yT (Az +Bυ − c) (2.55)

where y is a Lagrange multiplier. Thus, its gradient in function of z :

∇Lz =
∂f(z)

∂z
+
∂g(υ)

∂z
+
∂yT (Az +Bυ − c)

∂z
(2.56)

The solution for the first parameter:

∂f(z)

∂z
=

1

2
(HT +H)z + h (2.57)

Due to the fact that H is symmetric, it is the same that its transpose and the derivative
of the first parameter is defined:

∂f(z)

∂z
= Hz + h (2.58)
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Now, the third parameter is solved since the second one is zero:

∂yT (Az +Bυ − c)
∂z

= ATy (2.59)

Therefore, the gradient of the Lagrangian results:

∇Lz = Hz + h+ ATy (2.60)

2.6.2 Augmented Lagrangian

An extended version of the Lagrangian is used in some splitting algorithms. So, it is
necessary to define both its expression and its gradient.

Augmented Lagrangian for the formulation in (2.50) is defined as

Lρ(z, υ, y) = f(z) + g(υ) + yT (Az +Bυ − c) +
ρ

2
‖Az +Bυ − c‖2

2 (2.61)

where ρ is the penalty parameter which in some cases can be selected to increase the
convergence rate.

The gradient of Eq.(2.61) must be calculated. As it is seen in the previous sub-
section, the gradient for a standard Lagrangian is obtained so only it is necessary
to calculate the derivative of the Euclidean norm attached to the penalty parameter.
This expression will be obtained using indicial notation:

Qi = (Az +Bυ − c)i = Aijzj +Bijυj − ci (2.62)

M = ‖.‖2
2 = QiQi = (Aijzj +Bijυj − ci)(Aiqzq +Biqυq − ci) (2.63)

∂M

∂zp
= Aijδjp(Aiqzq +Biqυq − ci) + (Aijxj +Bijυj − ci)Aiqδqp (2.64)

where, δ is the Kronecker delta:

∂zj
∂zp

= δjp =

{
1 if j = p
0 if j 6= p

(2.65)

∂zq
∂zp

= δqp =

{
1 if q = p
0 if q 6= p

(2.66)

Then,

∂M

∂zp
= AipAiqzq + AipBiqυq − Aipci + AijAipzj +BijAipυj − Aipci

= 2Aip(Aiqzq +Biqυq − ci)
= 2AipQi

(2.67)

Taking into account:

[R(n× n)y(n× 1)]s =
n∑
t=1

Rstyt (2.68)
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Thus,
∂M

∂zp
= 2(ATQ)p = (∇M)p (2.69)

Therefore, the gradient of an Euclidean norm:

∇zM = 2AT (Az +Bυ − c) (2.70)

Finally, the gradient of the augmented Lagrangian is described as

∇zLp(z, υ, y) = Hz + h+ ATy + ρAT (Az +Bυ − c)

= (H + ρATA)z + [q + ρAT (Bυ +
y

ρ
− c)] (2.71)
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Chapter 3

First-order algorithms for embedded
MPC

According to [McInerney et al., 2018], FPGA implementations have recently used first-
order methods such as Nesterov’s Fast Gradient Method (FGM), or Alternating direc-
tion method of multipliers (ADMM). These methods utilize only first-order information
in their computations, and have generally three main steps:

• Compute a search direction.

• Compute the step size and apply the search direction.

• Project onto the feasible set.

According to [Shukla et al., 2017], the key feature of splitting methods is that each
of the three steps is computationally cheap and often has a closed form solution.

In this work, two well-known methods are analysed in order to know more about
their structure and performance: Alternating minimization algorithm (AMA) and Al-
ternating direction method of multipliers (ADMM).

For ease of reference, the sparse QP is recalled:

min
x,z

f(z) + g(υ)

s.t. Az +Bυ = c
(3.1)

where,

f(z) =
1

2
zTHz + hT z (3.2)

A =

[
G
F

]
, B =

[
I
0

]
, c =

[
g
f

]
(3.3)

3.1 ADMM
In agreement with [Boyd et al., 2010], there are precursors to the alternating method
of multipliers. These concepts are not crucial in the development of the algorithm,
however, it provides some useful background.

19



20 CHAPTER 3. FIRST-ORDER ALGORITHMS FOR EMBEDDED MPC

3.1.1 Dual Ascent

Consider the equality-constrained convex optimization problem

min f(z)

s.t. Az = b,
(3.4)

with variable z ∈ Rn, where A ∈ Rm×n. As it is know, Lagrangian for this problem is

L(z, y) = f(z) + yT (Az − b) (3.5)

and the dual function is

g(y) = inf
x
L(z, y) = −f ∗(−ATy)− bTy, (3.6)

where y is the dual variable or Lagrange multiplier, and f ∗ is the convex conjugate of f .

The dual function was obtained taking into account as convex conjugate

f ∗(u) = zTu− f(z) (3.7)

So, Lagrangian in Eq.(3.5)

L(z, y) = f(z) + yT (Az − b) = f(z) + zTATy − bTy (3.8)

And its derivative
∂f

∂z
+ ATy = 0, (3.9)

Also expressed as
∂f

∂z
= −ATy, (3.10)

Thus, the first and second element of the Lagrangian can be written as

f(z) + zTATy = f(z) + zT (−∂f
∂z

), (3.11)

It can be represented using the definition of the Eq.(3.7)

f(z) + zTATy = f(z) + zT (−(−ATy)) = −f ∗(−ATy). (3.12)

Therefore, the dual function results as it is described in Eq.(3.6).

On the other hand, the dual problem will be

max g(y), (3.13)

with variable y ∈ Rm. Assuming that strong duality holds, the optimal values of the
primal and dual problem are the same. A primal optimal point x∗ from a dual optimal
point y∗ can be recovered as

z∗ = min
z
L(z, y∗), (3.14)

provided there is only one minimizer of L(z, y∗).
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Assuming that g is differentiable, the gradient ∇g(y) can be evaluated as follows.

zk+1 = minL(z, yk) (3.15)

yk+1 = yk + αk(Azk+1 − b), (3.16)

where αk > 0 is a step size. This algorithm is called dual ascent since the dual function
increases in each step.

In the dual ascent method, the dual problem using gradient ascent is solved. Note
that the dual function might not be differentiable. To guarantee that f ∗ is differenti-
able, it is assumed that f is strictly convex. In some cases, this prevent us from simply
solving the dual problem with gradient ascent. If the dual function is not differen-
tiable, the proximal point method can be used which does not require the objective
function to be differentiable. As a result of applying the proximal point method to the
dual problem, method of multipliers is obtained.

3.1.2 Dual Decomposition

Dual ascent method has the benefit which can lead to a decentralized algorithm in
some cases. For instance, if f is separable, meaning that

f(z) =
N∑
i=1

fi(zi), (3.17)

where z = (z1, ..., zN) and variables zi are subvectors of z.

This means that the z-minimization step (3.15) splits into N separate problems
that can be solved in parallel. Explicitly, the algorithm is

zik+1 = min
zi

Li(z
i, yk) (3.18)

yk+1 = yk + αk(Azk+1 − b). (3.19)

In this case, the dual ascent method is referred as dual decomposition.

3.1.3 Method of Multipliers

Also known as Augmented Lagrangian method. Here, it is necessary to consider the
augmented Lagrangian for Eq.(3.4)

Lρ(z, y) = f(z) + g(υ) + yT (Az − b) +
ρ

2
‖Az − b‖2

2 (3.20)

being the penalty parameter ρ> 0. The augmented Lagrangian can be viewed as the
ordinary Lagrangian associated with the problem

min f(z) +
ρ

2
‖Az − b‖2

2

s.t. Az = b.
(3.21)
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This problem is clearly equivalent to the original problem Eq.(3.4), since for any
feasible x the term added to the objective is zero. The associated dual function is
gρ(y) = inf Lρ(z, y).

According to [Boyd et al., 2010], the benefit of including the penalty term is that
gρ can be shown to be differentiable under mild conditions on the original problem.
Thus, applying dual ascent to the modified problem yields the algorithm

zk+1 = min
z
Lρ(z, yk) (3.22)

yk+1 = yk + ρ(Azk+1 − b). (3.23)

which is known as method of multipliers for solving Eq.(3.4). It is worth highlighting
that the method of multipliers converges under far more general conditions than dual
ascent, including cases when f is not strictly convex.

3.1.4 Algorithm

According to [Boyd et al., 2010], ADMM is an algorithm that is intended to blend
the decomposability of dual ascent with the superior convergence properties of the
method of multipliers. The algorithm solves problems in the form (2.50). The only
difference from the general linear equality-constrained problem (3.4) is that variable x
has been split into two parts, with the objective function separable across this splitting.

As in the method of multipliers, the augmented Lagrangian is formed and it is
expressed in the Eq.(2.61) for the problem defined in Eq.(2.50). ADMM consists of
the iterations

zk+1 := min
z
Lρ(z, υk, yk) (3.24)

υk+1 := min
υ
Lρ(zk+1, υ, yk) (3.25)

yk+1 = yk + ρ(Azk+1 +Bυk+1 − c), (3.26)

where ρ> 0.

ADMM can be writen in a slightly different form by combining the linear and
quadratic terms in the augmented Lagrangian and scaling the dual variable y.

If r = Az +Bυ − c:

yT r +
ρ

2
‖r‖2

2 = (
ρ

2
)‖r +

y

ρ
‖2

2 − (
1

2ρ
)‖y‖2

2

= (
ρ

2
)‖r + τ‖2

2 − (
ρ

2
)‖τ‖2

2,
(3.27)

where τ = y
ρ
is the scaled dual variable.
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Using the scaled dual variable, it can express ADMM as

zk+1 := min
z

(f(z) +
ρ

2
‖Az +Bυk − c+ τk‖2

2), (3.28)

υk+1 := min
υ

(g(υ) +
ρ

2
‖Azk+1 +Bυ − c+ τk‖2

2), (3.29)

τk+1 = τk + Azk+1 +Bυk+1 − c. (3.30)

This formulation is named scaled form which is exactly the same that the unscaled
form.

3.1.5 z-update

According to [Boyd et al., 2010], following the scaled form, if z-update step is expressed
as

zk+1 = min
z

(f(z) +
ρ

2
)‖Az − ν‖2

2) (3.31)

where ν = −Bυk + c− τk. In case A=I, z-update is

zk+1 = min
z

(f(z) +
ρ

2
‖z − ν‖2

2) = proxρ,f (3.32)

This in variational analysis is known as the Moreau envelope and it is connected
to the theory of the proximal point algorithm.

In addition, if f is the indicator function of a closed nonempty convex set C, the
z-update is

zk+1 = min
z

(f(z) +
ρ

2
)‖z − ν‖2

2) = ΠC(ν) (3.33)

where ΠC denotes projection onto C.

It is important to know that the procedure for the minimization of z is symmet-
ric for υ-update. In our case, the sub-problem for the z-update in Eq.(3.24) is an
unconstrained QP and has the unique solution

zk+1 = −(H + ρATA)−1[h+ ρAT (Bυ +
y

ρ
− c)] (3.34)

for Eq.(2.71) equal to zero.

3.1.6 υ-update

The sub-problem for the υ-update in Eq.(3.25) is derived from the definition of prox-
imal operator described in [Stathopoulos et al., 2016].

As it was mentioned, for a function f, its proximal operator proxf is defined as

proxf := min
x

(f(υ) +
1

2
‖υ − x‖2), (3.35)
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Also defined, according to [Parikh and Boyd, 2013], in a scaled function λf where
λ> 0 and it is called as the proximal operator of f with parameter λ.

proxλf (κ) = min
x

(f(υ) +
1

2λ
‖υ − κ‖2). (3.36)

Thus,
prox 1

ρ
f = min

x
(f(υ) +

ρ

2
‖υ − x‖2), (3.37)

Resulting the Moreau envelope described in Eq.(3.32).

Since there is a special case which indicates that when g is the indicator function of
a closed convex set Υ = {υ : υ ≥ 0}, its proximal operator prox 1

ρ
g reduces to projection

onto Υ. According to [Dang et al., 2015], this notation for projection can be reduced
for this sub-problem as

ΠΥ(φ) = min
υ∈Υ
‖υ − φ‖2

2 (3.38)

Now, doing the same operation calculated for z-update:

υk+1 = min
υ

(g(υ) +
ρ

2
‖Bυ − φ‖2

2) (3.39)

where φ = −Azk+1 − τk + c.

Due to the fact that υ only operates in inequality constraints

υk+1 = min
υ

(g(υ) +
ρ

2
‖υ − φ‖2

2) = ΠΥ(φ) (3.40)

where φ = −Gzk+1 − τ gk + g.

To demonstrate that the projection corresponds to the original sub-problem

ΠΥ(−Gzk+1 − τ gk + g) = min
υ

(g(υ) +
ρ

2
‖υ +Gzk+1 + τ gk − g‖

2
2)

= min
υ
Lρ(zk+1, υ, yk)

(3.41)

Therefore, solution for a projection on the box type set:

υk+1 = πΥ(−Gzk+1 − τkg + g) = max{0,−Gzk+1 − τkg + g}, (3.42)

where τk is the scaled dual variable and g are the values of c corresponding to the
dimension of inequality constraints.

On the other hand, another way to obtain this result is operating as was done for
z-update but now calculating the derivative of augmented Lagrangian respect to υ

∇υLρ(z, υ, y) = ρBT (Azk+1 +Bυ + τk − c) = 0 (3.43)

Since υ is only present in the inequality constraints, the expression before obtained
can be reduced as

0 = ρ(Gzk+1 + υ + τ gk − g), (3.44)
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So, to solve υ-update it is necessary to take into account these conditions
(1) υ = −Gzk+1 − τ gk + g, obtained from Eq.(3.44).
(2) υ ≥ 0, obtained from indicator function g(υ).

Then, in terms of transcription in a code, it is the same that calculate the maximum
between 0 and the first condition (max{0,−Gzk+1 − τ gk + g}) since the result never
will be negative. On this way, conditions will always be fulfilled.

3.1.7 Optimality and Stopping conditions

According to [Boyd et al., 2010], the necessary and sufficient optimality conditions for
the ADMM problem are primal feasibility

Az∗ +Bυ∗ − c = 0, (3.45)

and dual feasibility,
0 ∈ ∂f(z∗) + ATy∗ (3.46)

0 ∈ ∂g(υ∗) +BTy∗ (3.47)

Here, ∂ denotes the sub differential operator since when f and g are differentiable, the
sub differentials ∂f and ∂g can be replaced by their gradients and ∈ can be replaced
by =.

Since υk+1 minimizes Lρ(zk+1, υ, yk) by definition,

0 ∈ ∂g(υk+1 +BTyk + ρBT (Azk+1 +Bυk+1 − c)),
= ∂g(υk+1 +BTyk + ρBT rk+1),

= ∂g(υk+1 +BTyk+1),

(3.48)

This means that υk+1 and yk+1 always satisfy Eq.(3.47), so attaining optimality comes
down to satisfying Eq.(3.45) and Eq.(3.46). This phenomenon is analogous to the
iterates of the method of multipliers always being dual feasible.

Since zk+1 minimizes Lρ(z, υk, yk) by definition,

0 ∈ ∂f(zk+1 + ATyk + ρAT (Azk+1 +Bυk − c)),
= ∂f(zk+1 + AT (yk + ρrk+1 + ρB(υk − υk+1)),

= ∂f(zk+1 + ATyk+1 + ρATB(υk − υk+1)),

(3.49)

or equivalently,
ρATB(υk+1 − υk) ∈ ∂f(zk+1 + ATyk+1) (3.50)

This means that the quantity

sk+1 = ρATB(υk+1 − υk) (3.51)

can be viewed as a residual for the dual feasibility condition (3.46). Then, sk+1 as the
dual residual at iteration k+1 and to rk+1 = Azk+1 +Bυk+1− c as the primal residual
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at iteration k+1.

In summary, the optimality conditions for the ADMM problem consist of three
conditions, Eq.(3.45–3.47). The last condition (3.47) always holds for (zk+1, υk+1, yk+1);
the residuals for the other two, (3.45) and (3.46), are the primal and dual residuals
rk+1 and sk+1, respectively. These two residuals converge to zero as ADMM proceeds.

Finally, a reasonable termination criterion is that the primal and dual residuals
must be small

‖rk‖2 ≤ εprimal and ‖sk‖2 ≤ εdual. (3.52)

where εprimal > 0 and εdual > 0 are feasibility tolerances for the primal and dual
feasibility conditions, respectively.

Algorithm 1 ADMM
Require: z0, υ0, τ0 fixed, ρ > 0
while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = −(H + ρATA)−1[h+ ρAT (Bυk + τk − c)]
υk+1 = max{0,−Gzk+1 − τkg + g}
τk+1 = τk + Azk+1 +Bυk+1 − c

end while

3.1.8 Indirect Indicator formulation

According to [Manickathu2016] the indirect splitting can be applied in problem (2.46)
to facilitate the implementation of ADMM and AMA. Using a slack variable ω and
the indicator functions IFz=f (z), Iω≥0(ω), the constraints are shifted to the objective
by demanding the constraint Gz + ω = g. Thus, the following QP is obtained

min
z,ω

1

2
‖z‖2

H + hT z + IFz=f (z) + Iω≥0(ω)

s.t. Gz + ω = g
(3.53)

For this setup, the first step of ADMM requires solving following KKT equation[
H + ρGTG F T

F 0

] [
zk+1

θk+1

]
=

[
−(h+ ρGT (τk + ωk − g))

f

]
(3.54)

where θk+1 is the Lagrangian multiplier associated with an equality-constrained
minimisation in the first step of the ADMM algorithm.

With respect to the step-size, it is heuristic selected, based on [Gadhimi] and it is
written as

ρ∗ = (
√
λmin,>0(GH−1GT )λmax,>0(GH−1GT ))−1 (3.55)

3.1.9 Theoretical Step-sizes

An important factor is the choice of the step size. Several papers have written on
how to choose an optimal step-size ρ∗. This step size is optimal with respect to the
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Algorithm 2 Indirect ADMM
Require: z0, ω0, τ0 fixed.
ρ∗ = (

√
λmin,>0(GH−1GT )λmax,>0(GH−1GT ))−1

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = solve(3.54)
ωk+1 = max{0,−Gzk+1 − τk + g}
τk+1 = τk +Gzk+1 + ωk+1 − g

end while

worst-case convergence rate.

An optimal step size is usually specified for a certain formulation and demands
certain requirements of the problem structure to be applied. If there is not an optimal
step size because of some of the requirements are not met, an heuristic approach might
yield a good performance.

Raghunathan and Di Cairano without Equality Constraint

According to [Raghunathan and Di Cairano, 2014], optimal step size is calculated for
a QP with the following structure

min
y,w

1

2
yTQy + qTy

s.t. y = w

w ∈ γ

(3.56)

where Q is positive definite and symmetric and γ is a nonempty polyhedron γ =
[ymin, ymax].

Thus, the optimal step-size, as it is mentioned in [Raghunathan and Di Cairano, 2014],
for this formulation is

ρ∗ =
√
λmin(Q)λmax(Q) (3.57)

and the corresponding convergence rate is

ζ∗ =

1
λmin(Q)

1
λmin(Q)

+ 1√
λmin(Q)λmax(Q)

(3.58)

where λ(M) is the calculation of eigenvalues of the matrix M .

Raghunathan and Di Cairano with Equality Constraint

As it is mentioned in the Direct formulation for the ADMM algorithm, in the art-
icle written by [Raghunathan and Cairano, 2015], an optimal step size is obtained for
convex QPs which have the following structure

min
y

1

2
yTQy + qTy

s.t. Ay = b

y ∈ γ

(3.59)
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where Q is assumed to be symmetric positive semidefinite and positive definite on the
null space of equality constraints, (ZTQZ > 0), being Z an orthogonal basis for the
null space of the matrix A. Furthermore, γ = [ymin, ymax] are defined as box con-
straints.

Thus, the optimal step size for QPs which have this form is given as

ρ∗ =
√
λmin(ZTQZ)λmax(ZTQZ) (3.60)

This ρ∗ is optimal if the matrix A is full row rank.

Gadhimi and Teixeira

According to [Ghadimi et al., 2015], ADMM algorithm solves QPs of the form

min
y

1

2
xTQx+ qTx+ I+(z)

s.t. Ax− c+ z = 0
(3.61)

where Q is assumed to be symmetric and positive definite and A is either full row-rank
or invertible.

It is shown in [Ghadimi et al., 2015] that the convergence rate ζ can be arbitrarily
close to 1 when the rows of A are linearly dependent. Thus, the optimal step size ρ∗
and convergence rate ζ∗ are

ρ∗ =
1√

λmin(AQ−1AT )λmax(AQ−1AT )
(3.62)

ζ∗ =
λmax(AQ

−1AT )

λmax(AQ−1AT ) +
√
λmin(AQ−1AT )λmax(AQ−1AT )

(3.63)

3.2 AMA
Another splitting method is the Alternating minimization algorithm (AMA). Accord-
ing to [Shukla et al., 2017], AMA comes down to the following three numerical oper-
ations:

• Solving a system of linear equations;

• Matrix-vector multiplications;

• Vector-vector manipulations.

As it is known, the most computational costly operation is solving a linear system
of equations. It is often the case that splitting methods give rise to a KKT system of
the form [

K11 KT
21

K21 0

] [
t1
t2

]
=

[
b1

b2

]
Fortunately, for splitting methods, the KKT matrix does NOT change over iter-

ations (except very few anomaly cases) and thus one can precompute the inverse or
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matrix factorization. It is important to note that matrices involved are often struc-
tured. Thus, one can exploit this fact while either solving the linear system of equations
or computing matrix-vector multiplications.

According to [Stathopoulos et al., 2016], AMA derives from applying Proximal
Gradient Method (PGM) to the dual problem. The method requires smoothness of f,
a property that can be recovered if and only if the function f is strongly convex.

For this algorithm, the Eq.(3.1) will be taken into account where f is a quadratic
objective function defined over a linear system and g is an indicator function on a set
(e.g positive orthant).

Therefore, AMA is defined as

zk+1 = min
z
L(z, υk, τk) (3.64)

υk+1 = min
υ
Lρ(zk+1, υ, τk) (3.65)

τk+1 = τk + (Azk+1 +Bυk+1 − c) (3.66)

where τ = y
ρ
.

3.2.1 z-update

Since this update is based only in the ordinary Lagrangian, it is necessary to use its
calculation applied to a QP which was developed in subsection (2.6.1). Thus, equalising
to zero the gradient with respect to x of the Lagrangian, zk+1 is obtained:

∇Lz = Hz + h+ ATy = 0 (3.67)

zk+1 = −H−1(h+ ATyk) (3.68)

3.2.2 υ-update

After this point, all proceedings are exactly the same as for ADMM since AMA also
uses the augmented Lagrangian for υ-update and therefore, dual variable update does
not change.

3.2.3 Stopping Conditions

Here, it is necessary to accomplish the same conditions defined for ADMM which are
expressed in Eq.(3.45-3.47). As it was mentioned, only the first step of the algorithm
changes in AMA in respect to ADMM. Thus, primal residual is the same and dual
residual is defined in function of Eq.(3.46) since it is used the ordinary Lagrangian
instead of the augmented one.

0 ∈ ∂f(zk+1 + ATyk),

= ∂f(zk+1 + AT (yk+1) + AT (yk − yk+1)),
(3.69)
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or equivalently,
AT (yk+1 − yk) ∈ ∂f(zk+1 + ATyk+1) (3.70)

Then, dual residual is
sk+1 = AT (yk+1 − yk) (3.71)

Algorithm 3 AMA
Require: z0, ν0, τ0 fixed, ρ > 0
while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = −(H)−1[h+ ρAT τk]
νk+1 = max{0,−Gxk+1 − τkg + g}
τk+1 = τk + Azk+1 +Bνk+1 − c

end while

In summary, according to [Stathopoulos et al., 2016], compared to AMA, ADMM
only differs in the minimization of the augmented Lagrangian function in the first step.
This trait has the advantage that there is not step-size restrictions for ADMM.

On the other hand, the augmented Lagrangian minimization complicates the first
step by the addition of a (possibly dense) quadratic form. This is not the case with
AMA, where first actualization remains simple.

3.2.4 Dual Problem and Convergence

Although ADMM is guaranteed to convergence for any positive scalar step-size, this is
not the case for AMA. Convergence of AMA is only guaranteed if the step-size satis-
fies a condition involving a function, which is part of the objective of the dual problem.

Recalling the Lagrangian, developed in section 2.6.1, of the problem described in
Eq.(3.1) as

L(z, υ, y) = f(z) + g(υ) + yT (Az +Bυ − c)
L(z, υ, y) = f(z) + g(υ) + yTAz + yTBυ − yT c
L(z, υ, y) = f(z) + g(υ) + zTATy + υTBTy − yT c

L(z, υ, y) = f(z) + 〈z, ATy〉+ g(υ) + 〈υ,BTy〉 − yT c
The dual objective D(λ) is given by

D(y) = inf
z,υ
L(z, υ, y)

D(y) = inf
z,υ

(f(z) + 〈z, ATy〉+ g(υ) + 〈υ,BTy〉 − yT c)

D(y) = inf
z

(f(z) + 〈z, ATy〉) + inf
υ

(g(υ) + 〈υ,BTy〉)− yT c

Using the definition of the conjugate function

h∗(y) = sup
x

(〈x, y〉 − h(x)) = − inf
x

(h(x) + 〈x, y〉) (3.72)

this expression can be written as

D(y) = −f ∗(−ATy)− g∗(−BTy)− yT c (3.73)
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Thus, the dual of the problem (3.1) has the form

max
y

D(y) = −f ∗(−ATy)︸ ︷︷ ︸
−F (y)

−g∗(−BTy)− cTy (3.74)

As it was mentioned, f is a strongly convex and g is a convex function. Applying
AMA to the primal problem (3.1) is equivalent with applying the FBS method to
problem (3.74). Convergence of FBS applied to the dual problem is guaranteed under
the condition ρ < 2

L(∇F (y))
.

Assuming that f is a strongly convex function with convexity modulus σf and g is
a convex function, not necessarily smooth, convergence of AMA is guaranteed if

0 < ρ <
2

L(∇F (y))
(3.75)

In general condition, (3.75) is difficult to impose as f ∗ might not have a trivial
expression. A stricter condition is

0 < ρ <
2σf

λmax(ATA)
(3.76)

which is really helpful if σf is known. Nonetheless, if σf is equal to zero, the objective
function is not strongly convex and AMA cannot be used.

3.2.5 Indirect Indicator formulation

In the previous algorithm, an indirect indicator formulation was developed considering
the problem (2.46). In this subsection, the AMA method is applied to this problem.
So, the iterates are the same as (3.64-3.66).

The main difficulty in this case is the first step since the second iterate requires a
clipping and the third iterate is a simple dual update. Therefore, following the same
analysis which is made for ADMM, the first step of AMA requires solving following
KKT equation [

H F T

F 0

] [
zk+1

θk+1

]
=

[
−(h+ ρGT τk)

f

]
(3.77)

In terms of convergence speed, the step-size selected is

0 < ρ <
2σf

λmax(F TF )
(3.78)

3.3 Accelerated Variants
The size of residuals indicates how far the iterates are from a solution. There are
multiple ways to accelerate the convergence of the first-order methods such as over-
relaxation, hot starting, the usage of variable step-size or the Nesterov’s acceleration.

In this work, accelerated versions of basic algorithms are obtained such that these
residuals decay quickly. Particularly, only Nesterov’s acceleration will be considered to
increase the convergence speed of these two methods before shown. Thus, considering
the QP (3.1), Fast AMA and Fast ADMM are explained.



32 CHAPTER 3. FIRST-ORDER ALGORITHMS FOR EMBEDDED MPC

Algorithm 4 Indirect AMA
Require: Initialize τ0

ρ =
σf

λmax(FTF )

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = solve(3.77)
ωk+1 = max{0,−Gzk+1 − τk + g}
yk+1 = yk +Gzk+1 + ωk+1 − g

end while

3.3.1 Fast AMA

By applying the Nesterov-type acceleration step to the dual variable τ , an accelerated
method is obtained.

Algorithm 5 Fast AMA
Require: τ0 = τ̂1, α1 = 1
while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = −(H)−1[h+ ρAT τ̂k]
υk+1 = max{0,−Gzk+1 − τ̂ gk + g}
τk+1 = τ̂k + Azk+1 +Bυk+1 − c
αk+1 =

1+
√

1+4α2
k

2

τ̂k+1 = τk+1 + αk−1
αk+1

(τk+1 − τk)
end while

The primal residual
rk+1 = Azk+1 +Bυk+1 − c (3.79)

And the dual residual

sk+1 =
AT

ρ
(τk+1 − τ̂k) (3.80)

Step size selection for FAMA

A theorical analysis of the convergence of FAMA can be found in [Pu, 2016]. The
dual formulation obtained in Eq.(3.74) is taking into account in convergence analysis.
FAMA is the dual method of FISTA and their well-studied convergence properties can
be transferred to FAMA. The condition that ensures convergence in AMA is established
in a similar manner using the duality with the FBS method. Thus, the step-size is
defined as

0 < ρ <
1

L(∇F (ν))
(3.81)

3.3.2 Fast ADMM for Strongly Convex Problems

According to [Goldstein et al., 2014], an accelerated variant of ADMM are listed in
Algorithm 6. The accelerated method is simply ADMM with a predictor-corrector
type acceleration step. This step is stable only in the special case where both objective
terms in QP are strongly convex.
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Algorithm 6 Fast ADMM for Strongly Convex Problems
Require: υ0 = υ̂1, τ0 = τ̂1, ρ > 0, α1 = 1
while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = −(H + ρATA)−1[h+ ρAT (Bυ̂k + τ̂k − c)]
υk+1 = max{0,−Gzk+1 − τ̂ gk + g}
τk+1 = τ̂k + Azk+1 +Bυk+1 − c
αk+1 =

1+
√

1+4α2
k

2

υ̂k+1 = υk+1 + αk−1
αk+1

(υk+1 − υk)
τ̂k+1 = τk+1 + αk−1

αk+1
(τk+1 − τk)

end while

In the accelerated case, the primal residual is unchanged rk+1 = Azk+1 +Bυk+1−c;
a simple derivation yields the following new dual residual

sk+1 = ρATB(υk+1 − υ̂k) (3.82)

3.3.3 Fast ADMM for Weakly Convex Problems

In this case, ADMM can still be accelerated, however it cannot guarantee a global
convergence rate as in the strongly convex case. For weakly convex problems, it must
be enforced stability using a restart rule. This rule relies on a combined residual, which
measures both primal and dual error simultaneously.

ck =
1

ρ
‖τk+1 − τ̂k‖2 + ρ‖B(υk+1 − υ̂k)‖2. (3.83)

The first term of the combined residual measures the primal residual whereas the
second term is closely related to the dual residual but differs in that is does not require
multiplication by AT .

Algorithm 7 Fast ADMM with Restart
Require: υ0 = υ̂1, τ0 = τ̂1, ρ > 0, α1 = 1, η ∈ (0, 1)
while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
zk+1 = −(H + ρATA)−1[h+ ρAT (Bυ̂k + τ̂k − c)]
υk+1 = max{0,−Gzk+1 − τ̂ gk + g}
τk+1 = τ̂k + Azk+1 +Bυk+1 − c
ck = ρ−1‖τk+1 − τ̂k‖2 + ρ‖B(υk+1 − υ̂k)‖2

if ck < ηck−1 then

αk+1 =
1+
√

1+4α2
k

2

υ̂k+1 = υk+1 + αk−1
αk+1

(υk+1 − υk)
τ̂k+1 = τk+1 + αk−1

αk+1
(τk+1 − τk)

else
αk+1 = 1, υ̂k+1 = υk, τ̂k+1 = τk
ck = η−1ck−1

end if
end while
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Algorithm 7 involves a parameter η ∈ (0, 1). Because it is desirable to restart
the method as infrequently as possible, a value for η close to 1 is recommended. In
[Goldstein et al., 2014], η = 0.999 is used.

Step-size selection for FADMM

There is no publication dealing with an optimal step-size ρ∗ for FADMM. However, in
case of a QP with inequality constraints , the step-size described in [Ghadimi et al., 2015]
can be used as heuristic depending on the row rank of the constraint matrix. On the
other hand, in case of the QP has both equality and inequality constraints, the step-
size developed in [Raghunathan and Di Cairano, 2014] can also be considered as a
heuristic approach.



Chapter 4

Null Basis for Embedded MPC

4.1 Reduced-Hessian Method
According to [Dang et al., 2017], null space method in optimization is usually referred
to as reduced Hessian approach. The basic idea is to describe the equality constraints
by using a null basis and a particular solution.

The main purpose of using this method is to reduce the number of decision variables
in a QP problem with sparse formulation. This reduction can be achieved eliminating
the equality constraints that represent the system dynamics using the null space of
these constraints. On this way, a new QP problem is generated with a reduced-size
matrices.

Considering a sparse QP formulation and an Alternating Variable Stacking

min
z

1

2
zTHz

s.t. Fz = f

Gz ≤ g

(4.1)

The solution of equality constraints of the QP can be parametrised by

z = z0 + Y y (4.2)

where z0 is the particular solution of Fz0 = f and Y is a null basis of F (FY = 0).
Therefore, QP (4.1) can be solved via solving the following equivalent problem:

min
y

1

2
yT H̃y + (zT0 H0)y

s.t. G̃y ≤ g −Gz0 , g̃

(4.3)

where H̃ = Y THY , G̃ = GY and H0 = HY .

The number of decision variables of QP (4.3) is Nnu; whereas it is N(nx + nu) in
the original QP (4.1). If nu << nx, the reduction in number of decision variables can
be quite substantial. It is worth highlighting that this size reduction also decreases
the computational time of the algorithm.

35
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4.2 Null basis to solve KKT system
Null basis is not unique. A banded null basis as well as a null dense basis can be
calculated. In sparse QP formulation of MPC, the equality constant matrix (F ) has
a banded structure. For a banded matrix, there may exist a banded null basis for its
null space.
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(b) H̃ is the new Hessian matrix
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Figure 4.1: Example of banded matrices

If Y is a banded matrix, the matrices H̃, G̃ and H0 will have a banded pattern.
For instance, in Fig. 4.1, a new banded QP problem is obtained defined with banded
matrices.

In order to construct a banded null basis Y for the null space of F , Turnback
algorithm is used by [Berry et al., 1985].

In case of a banded null basis not being necessary, a dense null basis (MATLAB
command: Y = null(F )) would be used which results in dense matrices in the new
QP (4.3).

With respect to QP solver, it can be evaluated with splitting algorithms as de-
scribed in the previous section, AMA, ADMM and their variants. Thus, slack variable
ν ≥ 0 is introduced in Eq.(4.3) giving G̃y + ν = g̃.

4.2.1 Turnback algorithm

A banded null basis based on an algorithm from structural engineering community
called Turnback Algorithm was developed originally by [Topcu, 1979]. The banded
null basis is used to obtain a smaller size QP than the original sparse QP while main-
taining banded structures of matrices.

First-order algorithms can be employed for exploiting banded matrices to solve this
new QP. In case of polytopic constraints, there are several existing ADMM and AMA
variants using slack variables to deal with. The applicability of the proposed algorithm
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depends on whether or not Turnback algorithm can construct a banded null basis.

The interpretation of the turnback method as a matrix factorization was given
in [Kaneko et al., 1982]. [Gilbert and Heath, 1987] and [Berry et al., 1985], in later
extensions, confirm that turnback algorithms are the most effective algorithms for
constructing a banded null basis.

Algorithm 8 Turnback Algorithm [Dang et al., 2017]

Given F ∈ Rm×n(m < n), a banded null basis Y ∈ Rn×r(r = n − m) can be
constructed where FY = 0m×r.
Denote Fi, i = 1, 2, . . . , n, the i − th column. S a subset of {1, 2, . . . , n}, FS is a
set of columns of F which indices are in S, Yi(S) are elements in i− th column of Y
which indices are in S. Thus, the main 3 steps are as follows:

1. Column dependency identification step
Find active indices c1, c2, . . . , cr so that the set of columns {F1, F2, . . . , Fck} \
{Fc1 , . . . , Fck−1} are linearly dependent (k = 1, 2, . . . , r is increased to find a
corresponding ck. {Fc1 , . . . , Fck−1} = ∅ if k = 1).

2. Turn-back step

(a) k = 1, Γ = ∅

(b) Set column Fck as an active column

(c) Find tk = max{j|j < ck & FSk , {Fck , Fck−1
, . . . , Fj}\{FΓ} are linearly

dependent }(Sk = {ck, ck−1, . . . , j} \ Γ is a set of indices in descending
order). Find linear dependent coefficients vector bk for FSk : FSkbk = 0
and the last element of bk is set to 1. Assign Yk(Sk) = bk.

(d) k = k + 1,Γ = Γ ∪ {tk}. If k ≤ r, return to set columns as actives
columns (2.b), else quit and return Y .

Basically, as is shown in Algorithm 8, this algorithm has three phases. In the first
phase, it searches for a set of active columns ck, where an active column is a column
such that columns starting from 1 to ck, excluding previously found active columns,
are linearly dependent.

In the second one, the turnback phase, starting from an active column ck, the
search is conducted in the reserved direction to find a turnback column tk. And the
third phase, the banded null basis is constructed.
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4.3 Compute a particular solution z0

Recall that z = (u0, x1, u1, x2, . . . , uN−1, xN), and the constraints Fz = f , f =
[Ax0; 0; . . . ; 0] (x0 is given), is the compact form of the following constraints:

x1 = Ax0 +Bu0,

x2 = Ax1 +Bu1,

...

xN = AxN−1 +BuN−1.

(4.4)

Then a particular solution of Fz = f is any z which elements satisfy the above
constraints. One such particular set is:

u0 = u1 = . . . = uN−1 = 0

x1 = Ax0, x2 = Ax1, . . . , xN = AxN−1.
(4.5)

4.4 Banded and Dense Null Basis ADMM

Algorithm 9 B-ADMM

I. Offline: Y (by turnback), H̃, G̃,H0

II. Online:
2.1. Compute particular solution z0

2.2. ωT = zT0 H0, g̃ = g −Gz0

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
yk+1 = −(H̃ + ρG̃T G̃)−1[ω + ρG̃T (νk + τk − g̃)]
νk+1 = max{0,−G̃yk+1 + g̃ − τk}
τk+1 = τk + G̃yk+1 + νk+1 − g̃

end while
Obtain: ystop. Solution: z = z0 + Y ystop

Algorithm 10 D-ADMM

I. Offline: Y (by null(F)), H̃, G̃,H0

II. Online:
2.1. Compute particular solution z0

2.2. ωT = zT0 H0, g̃ = g −Gz0

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
yk+1 = −(H̃ + ρG̃T G̃)−1[ω + ρG̃T (νk + τk − g̃)]
νk+1 = max{0,−G̃yk+1 + g̃ − τk}
τk+1 = τk + G̃yk+1 + νk+1 − g̃

end while
Obtain: ystop. Solution: z = z0 + Y ystop

Being the primal residual

rk+1 = G̃yk+1 + νk+1 − g̃ (4.6)
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And, the dual residual
sk+1 = ρG̃T (νk+1 − νk) (4.7)

In both cases, residuals are equal due to the fact that the only modification is in
the construction of the null basis Y .

Step-size selection

According to [Dang et al., 2017], the step-size ρ for this ADMM formulation can be
chosen heuristically based on [Ghadimi et al., 2015]:

ρ =

(√
λmin,>0(G̃H̃−1G̃T )λmax,>0(G̃H̃−1G̃T )

)−1

(4.8)

4.5 Banded and Dense Null Basis AMA

Algorithm 11 B-AMA

I. Offline: Y (by turnback), H̃, G̃,H0

II. Online:
2.1. Compute particular solution z0

2.2. ωT = zT0 H0, g̃ = g −Gz0

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
yk+1 = −H̃−1[ω + ρG̃T (τk)]
νk+1 = max{0,−G̃yk+1 + g̃ − τk}
τk+1 = τk + G̃yk+1 + νk+1 − g̃

end while
Obtain: ystop. Solution: z = z0 + Y ystop

Algorithm 12 D-AMA

I. Offline: Y (by null(F)), H̃, G̃,H0

II. Online:
2.1. Compute particular solution z0

2.2. ωT = zT0 H0, g̃ = g −Gz0

while ‖rk+1‖ ≥ εprimal or ‖sk+1‖ ≥ εdual do
yk+1 = −H̃−1[ω + ρG̃T (τk)]
νk+1 = max{0,−G̃yk+1 + g̃ − τk}
τk+1 = τk + G̃yk+1 + νk+1 − g̃

end while
Obtain: ystop. Solution: z = z0 + Y ystop

Step-size selection

Considering that the dual problem is of (4.3), the dual function is defined as

D(ν) = −f ∗(−G̃Tν)− g∗(−ν)− νT g̃ (4.9)
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where ν is the Lagrangian parameter. f(y) is a quadratic and g(ν) is an indicator
function.

Taking into account that the conjugate of a quadratic for a strictly convex matrix
is

f ∗(y) =
1

2
(y − q)TA−1(y − q)− d (4.10)

assuming the quadratic function f(x) = 1
2
‖x‖Q + qTx+ d with Q ∈ S++ where S++ is

a set of symmetric positive definite real matrices; and the conjugate of the Indicator
on the Non-Negative Orthant is g∗(−ν) = g(ν) = I+(ν). The dual function can be
rewritten as

D(ν) = − 1

2
(G̃Tν + h)T H̃−1(G̃Tν + h)︸ ︷︷ ︸

F (−ν)

−I+(ν)− νT g̃ (4.11)

which gives L(∇F (−ν)) = L(∇F (ν)) = λmax(G̃H̃
−1G̃T ). Thus, the step size condition

takes the form
0 < ρ <

2

L(∇F (ν))
=

2

λmax(G̃H̃−1G̃T )
(4.12)



Chapter 5

Computational Analysis

The purpose of this chapter is to carry out a computational study of these algorithms
applied to MPC in such a way that allows to draw conclusions about the effects
of MPC parameters on the different formulations, so that clear criteria about the
most convenient formulation can be established for the implementation of embedded
controllers in the most efficient way.

5.1 Scalability

In order to study how varying the size of matrices due to the prediction horizon af-
fects the convergence rate and execution time of each algorithm when solving at each
sampling step a QP formulated using first order algorithms as it is mentioned in pre-
vious chapters.

To aim this, 500 synthetic random MPC problems are generated. Particularly,
100 MPC problem per prediction horizon. Here, QPs are obtained arising from each
random MPC.

These randomMPC problems are created by generating 500 random sets of matrices
A, B, Gx, Gu, Gn= Gx with parameters Q=I and R=I. The size of these matrices will
be defined taking into account 8 states and 3 inputs. Tests are carried out on a PC
to obtain the convergence property, in terms of computational time and the number
of iterations of each algorithm.

To ensure that the generated QPs are feasible, a random initial state (x0) is gen-
erated and a particular solution for the equality constraints is obtained (Fz0 = f).
Then, by substituting z0 to the inequality constraints, gx, gN and gu is chosen such
that the inequality is feasible. In addition, prediction horizon evaluated along the
simulations are N = [5, 10, 15, 20, 25].

It is worth highlighting that the total time until the convergence of the algorithm
in each simulation is measured in the main loop of the algorithm without considering
previous calculations as step-size or Cholesky factorization of the left-side of the linear
system.

41
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Appendix A contains all the results obtained in this experiment. Figure 5.1 shows
the average time per iteration obtained for all the algorithms under study in the 100
random MPC problems for each prediction horizon.
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Figure 5.1: Graph of the average time per iteration for 100 random MPC problems

As it is shown, both in AMA variants and ADMM variants, the Indirect Indicator
formulations are slower than the formulations by reduced-Hessian. This makes sense
since as the prediction horizon increases, the size of the matrices in the QP problem are
larger and it takes more time for finding a solution. It occurs since a dense formulation
(considers only inputs) has less decision variables than a sparse form (consider state
and inputs) which it is characteristic when a problem is solved with a second-order
optimization algorithm.

In addition, this increment of the problem is substantial if the number of states
is greater. On the contrary, in the case of using reduced-Hessian approach where the
original problem is reduced and the states are not considered, this solution will take
less time.

To visualise better the performance of the algorithms in each prediction horizon,
the graph in the Figure 5.1 is converted in a bar plot (Figure 5.2). In this figure, it is
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Figure 5.2: Bar plot for the average time per iteration for 100 random MPC problems

proven the average time taken by the indirect formulation is bigger than the others.
However, once demonstrates that the reduced-Hessian approach takes less time, it is
convenient to analyse these approaches in detail.
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Figure 5.3: Average time per iteration for ADMM variants using the reduced-Hessian
method

Figure 5.3 shows the average time per iteration for the ADMM algorithms using
the reduced-Hessian method. Here, it is noted that using a dense null basis the time
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is not the best whereas using a banded null space, the average time is reduced. This
reduction is more visual as the prediction horizon increases. Furthermore, with respect
to the accelerated variants, these have the best average time in the comparison and the
banded approach maintains its trend with respect to the corresponding basic algorithm.
It is the same for the dense approach which time is better than the DADMM and
BADMM but worse than the accelerated variant for the banded ADMM.
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Figure 5.4: Average time per iteration for AMA variants using the reduced-Hessian
method

With respect to the AMA algorithms using the reduced-Hessian approach, Figure
5.4 is presented. According to this graph, the average time for banded AMA is also
better than the dense variant and the difference between them increases as the pre-
diction horizon is bigger. In addition, accelerated variants are slightly better than the
basic algorithms.

Once described both algorithms separately, it is necessary to evaluate a comparison
which includes all the algorithms using reduced-Hessian. Therefore, Figure 5.5 is
presented where the accelerated variants are not considered due to the fact that they
always tend to improve the convergence speed and analysing this acceleration is the
same than evaluate original algorithms. For this reason, only the performance of the
basic algorithms will be shown.

Figure 5.5 shows that the shortest average time in the comparison is the banded
approach for the AMA algorithm. This makes sense since it is the algorithm with the
minimum number of operations to obtain a solution due to the banded matrices and
simple updates.

After BAMA, Dense AMA and Banded ADMM are the shortest average times.
During the first four prediction horizon, AMA algorithm is more stable; however, in
the last prediction horizon, the AMA variant increases considerably unlike the ADMM
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Figure 5.5: Average time per iteration for all the algorithms using the reduced-Hessian
method

variant. Thus, considering all the horizons, it is said that the banded ADMM is more
stable throughout the horizons.

With respect to the time of Dense ADMM, it increases in each horizon; thus, it
is considered the worst in the graph. Despite that, the difference between the longest
and shortest average time is not huge.
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Figure 5.6: Bar plot of average time per iteration for all the algorithms using the
reduced-Hessian method

On the same way, a bar plot in Figure 5.6 is shown to consider a better visualiza-
tion of the information obtained. As it is shown, in the first horizon, all responses are
practically the same; thus, in case of having a problem with this prediction horizon,
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probably it is not necessary to distinguish between variants such as banded or dense
formulation using reduced-Hessian approach.

In the second horizon, AMA variants has a slightly better behaviour with respect to
the ADMM algorithms. Here, the differences between algorithms could start appearing
because the size of the constructed matrices increases according to the horizon selected.

In the third and fourth horizon, the differences are really noted and it is highlighted
the average time of the banded AMA approach which has been the shortest.

Finally, in the last prediction horizon, as it is shown in Figure 5.6, banded AMA
results with the best performance, following by the banded approach for the ADMM
algorithm.

Once analysed the results in term of average time per iteration for all the al-
gorithms, it is necessary to take into account the total time of them. As time total is
referred to the multiplication of the time taken for the algorithm until the convergence
and the number of iteration taken.
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Figure 5.7: Bar plot of maximum total times for Indirect formulations

In Figure 5.7, the maximum total time for Indirect formulations are shown. In
this case, considering all the problems, the average time per iteration shown in Figure
5.6 is multiplied for the maximum number of iterations obtained. On this way, it is
shown that the ADMM is quite better than the AMA variant. It makes sense since
the step-size of the Indirect ADMM is considered as optimal unlike the Indirect AMA
its step-size is selected following a general condition.

With respect to the reduced-Hessian variants, in Figure 5.8, the maximum total
time for all the algorithms is shown. It is obtained in the same way than the indirect
formulations by multiplying the average time per iteration described in Figure 5.6
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and the maximum iterations obtained for each algorithm according to the prediction
horizon.
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Figure 5.8: Bar plot of maximum total time for formulations using reduced-Hessian
method

As it is presented in Figure 5.8, Banded variants are better than the Dense variants
both in ADMM and AMA. The largest differences between algorithms are obtained as
the prediction horizon is increased. Thus, in the prediction horizon equal to 25, it is
proven that the banded variants consume less total time than dense variants, and the
AMA algorithms use a shorter time than ADMM methods.

N
1
=5 N

2
=10 N

3
=15 N

4
=20 N

5
=25

0

20

40

60

80

100

120

140

160

180

200

Figure 5.9: Bar plot of maximum iterations for formulations using reduced-Hessian
method

In Figure 5.9, the data for the maximum iterations is presented. Here, the ana-
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lysis is according to the performance of all the algorithms in each prediction horizon
since the same problems for each algorithm tested in each horizon are solved. Thus,
this Figure shows the comparison of these maximum iterations for all the algorithms
solving the same problems.

In this Figure 5.9, the AMA variants requires less iterations than the ADMM
variants. This makes sense since the AMA algorithm is easier to solve than the
ADMM method due to the first update (linear solver) of their approach as first-order
algorithms.

In addition, the banded approach demonstrates a smooth increase in its iterations
unlike the dense approach. This performance could occur due to the construction of
the new problem which only differs in the null space.

In summary, both algorithms with banded reduced-Hessian approach applied have
a good performance throughout prediction horizons evaluated. Therefore, in order
to obtain more information about their performance, they will be tested in the next
section, with two reference second-order algorithms.

5.1.1 Data dispersion

The measurements of central tendency are not always adequate to describe data. Thus,
to describe data, it is necessary to know the extent of variability. This is given by the
measures of dispersion. Range, interquartile range, and standard deviation are the
three commonly used measures of dispersion.

In this case, a high dispersion means that the time or number of iterations of a spe-
cific algorithm changes easily and this can get worse its performance. Thus, suffering
minimal variations in its initial conditions, this algorithm can increase substantially
its iterations, and its time until convergence, unlike others. Therefore, the purpose of
this study is to identify these algorithms with high dispersion.

In this project, standard deviation of the data will be used to analyse this disper-
sion. Therefore, the following tables will describe the standard deviation for all the
resulting data obtained in this experiment for each prediction horizon. Also, a box
plot will be presented to reinforce the standard deviation results.

Prediction horizon N = 5

Table 5.1: Standard deviation for all the algorithms in N = 5

N = 5
Algorithms AMA IND ADMM IND DAMA DADMM BAMA BADMM FDAMA FDADMM FBAMA FBADMM
Times (ms) 11.3157 1.0826 0.2774 0.6471 0.3851 0.6862 0.4148 0.2107 0.6481 0.2452
Iterations 179.0662 14.4881 16.4043 33.5194 22.2644 42.0923 25.0738 11.1554 36.0941 13.8858
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Figure 5.10: Box plot of resulting data in N = 5. (∗) is the mean and (∆) is the
standard deviation.

Table 5.2: Standard deviation for all the algorithms in N = 10

N = 10
Algorithms AMA IND ADMM IND DAMA DADMM BAMA BADMM FDAMA FDADMM FBAMA FBADMM
Times (ms) 33.5631 2.8299 1.0487 2.3677 1.4772 2.9435 1.7787 0.5934 2.5503 0.7352
Iterations 172.2242 13.7054 15.6593 31.5848 21.8968 40.0529 24.9273 10.3625 37.6894 13.1985

Prediction horizon N = 10

Prediction horizon N = 15

Table 5.3: Standard deviation for all the algorithms in N = 15

N = 15
Algorithms AMA IND ADMM IND DAMA DADMM BAMA BADMM FDAMA FDADMM FBAMA FBADMM
Times (ms) 67.7019 5.7446 2.3018 5.1300 3.2370 7.0110 3.8297 1.1383 5.6175 1.3747
Iterations 189.9563 15.3225 17.3202 35.7266 25.0657 48.7116 27.3023 11.1957 44.0504 15.2457

Prediction horizon N = 20
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Figure 5.11: Box plot of resulting data in N = 10. (∗) is the mean and (∆) is the
standard deviation.

Table 5.4: Standard deviation for all the algorithms in N = 20

N = 20
Algorithms AMA IND ADMM IND DAMA DADMM BAMA BADMM FDAMA FDADMM FBAMA FBADMM
Times (ms) 99.8839 9.8187 2.9222 7.8764 3.7318 9.7715 4.5877 1.6582 6.6372 1.9974
Iterations 172.1373 15.4262 15.0622 35.7777 21.7885 47.1399 24.2222 11.6742 37.0207 15.4829

Prediction horizon N = 25

Table 5.5: Standard deviation for all the algorithms in N = 25

N = 25
Algorithms AMA IND ADMM IND DAMA DADMM BAMA BADMM FDAMA FDADMM FBAMA FBADMM
Times (ms) 389.7153 106.2469 4.3675 28.3437 5.6840 26.0245 6.3188 2.9678 8.4758 2.9178
Iterations 163.1267 42.2142 14.7999 86.8310 20.6462 89.5890 22.7808 15.2542 33.5062 17.4530

Taking into account all the data dispersion shown in the box plots (Figure 5.10-
5.14) and Tables 5.1-5.5, it is noted that Indirect AMA has the bigger dispersion of
all the algorithms throughout the prediction horizons. As it is mentioned previously,
this could occur due to the step-size selection for this algorithm which was chosen
based on the general restriction for AMA which involves the convexity modulus and
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Figure 5.12: Box plot of resulting data in N = 15. (∗) is the mean and (∆) is the
standard deviation.

the eigenvalues of the equality constraints matrix.

Moreover, the ADMM variants has lower dispersion unlike the AMA variants. This
means that the stability in terms of time and iterations is more robust than the rest
of the other approach. This could be due to the fact that the step-size selection for
the ADMM variants are considered as optimal whereas there are AMA variants which
step-sizes are not optimized (e.g Indirect AMA).

5.2 Comparison with second-order algorithm

In order to analyse the behaviour of the best first-order algorithms resulting of the
previous study, it is necessary to compare them with a second-order algorithm. For this
work, the simplified Interior Point (IP) developed in [del Rio Ruiz and Basterretxea, 2019]
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Figure 5.13: Box plot of resulting data in N = 20. (∗) is the mean and (∆) is the
standard deviation.

is used as second-order method. In addition, the two first-order algorithms considered
for this study are the banded AMA and banded ADMM.

These algorithms are tested with a model considered as a benchmark in [Liu et al., 2014],
[Jerez et al., 2011] and many recent works use it to validate their hardware controller.
This problem has been selected since it has the advantage to be easily modified and
this allows to establish constraints in the state and input variables obtaining hard or
soft problems.

In addition, this benchmark allows to vary the size of the resulting QP problem by
modifying the number of masses and inputs, meanwhile the control objective can be
easily changed by varying the configuration of the system (e.g. attached to walls in
each end), the desired reference and the size of the QP problem.

This benchmark example consisting of a set of oscillating masses attached to walls
is considered. In this case, the system is sampled every 0.5 seconds assuming masses
and spring constants with a value of 1kg and 1Nm−1, respectively. The system has
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Figure 5.14: Box plot of resulting data in N = 25. (∗) is the mean and (∆) is the
standard deviation.

two control inputs, three masses and two states for each mass, its position and ve-
locity, for a total of six states. The prediction horizon used is a range defined as
N = [5, 10, 15, 20, 25].

The objective of this controller is to track a reference for the position of each mass
while satisfying the system limits beginning from an initial state. In this study, this
initial state is randomly generated in order to evaluate how stable are the performance
of these algorithms starting from different states. Thus, 100 random initial states are
generated for each prediction horizon.

On the other hand, in order to analyse the performance of the algorithms when
the constraints are different, two types of experiment will be tested when there are
both soft and hard constraints. For soft constraints, ‖xk‖∞ ≤ 3.5 and ‖uk‖∞ ≤ 0.5
are defined. Whereas for hard constraints, ‖uk‖∞ ≤ 0.1 is selected.

The algorithms tested have the following configurations: For the simplified IP:
sigma = 0.1, gamma = 0.1 and mulimit = 0.1. And the first-order algorithms have,
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as stopping conditions, a primal and dual error equal to 1e−4 with step-size defined in
[Ghadimi et al., 2015] for ADMM and ρ = 0.99 ∗ 2/λmax(GH

−1GT ) for AMA.

Therefore, taking into account the above-mentioned statements, results are ob-
tained which consist on sets of histograms that identify the number of occurrences of
each algorithm and their iterations according to the initial state generated randomly.

Both, soft and hard constraints are evaluated in order to identify the performance
of the algorithm in term of time and number of iterations when the problem is stricter
since using only soft constraints could offer unfair conclusions regarding second-order
algorithms.

It is expected that the first-order algorithms increase substantially their total time
due to the increase in the complexity of the problem, and that the simplified IP barely
changes its number of iterations and therefore, its total time.

5.2.1 Soft constraints

Figure 5.15: Resulting histograms for N=5

In Figure 5.15, results are shown for a prediction horizon equal to 5. According to
these results, the first-order algorithms vary their iterations depending on the initial
state. With respect to the ADMM variant, it takes more iterations than the AMA
variant for the same random initial states and it has a range of iterations between 20
and 52.

In addition, with respect to banded AMA, its range of iterations are located
between 10 and 24. Thus, it is proven that banded AMA takes less iterations than
ADMM. This makes sense since the computational burden for the first update in both
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first-order algorithm is more complex in BADMM than BAMA.

It is worth highlighting that there is a number of occurrences for both first-order
algorithms where the initial state makes that the problem is solved in 1 iteration. This
occurs due to the random initial states corresponding to these occurrences are near
to the stabilization and the algorithm only needs one iteration to found the optimum
solution.

With regard to the second-order algorithm, this algorithm has the relevant char-
acteristic that the range of iterations are the same for all the random initial states.
Thus, it is proven the stability of the second-order algorithms unlike the first-order
algorithms that increase their iterations when the initial state is not convenient to
found the solution quickly.

Based on these results, it is expected that as the prediction horizon increases, the
range of the number of iterations for the first-order algorithms will be wider. On the
contrary, in the case of the second-order algorithms, it is expected that their range is
maintained throughout the prediction horizons.

Figure 5.16: Resulting histograms for N=10

In the Figure 5.16, the pattern is the same for the prediction horizon equal to
10. First-order algorithms have a range wider being the ADMM the variant with more
iterations whereas the simplified IP maintains its range. With respect to the simplified
IP, it demonstrates more stability in iterations maintaining its range in all the random
initial states.

On the same way, Figure 5.17 for the prediction horizon equal to 15 is presented. In
this case, the ADMM variant requires more iterations that the rest of the algorithms.
This makes sense since the complexity of the problem increases as the initial state is
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Figure 5.17: Resulting histograms for N=15

far of the solution and therefore, the calculation of the linear solver takes more time.

Furthermore, the banded AMA approach has its range of iterations between 12 and
58 iterations (without considering the random initial states that allow the problem to
be solved in one iteration), and it has the best performance of the first-order algorithms.

The simplified IP maintains its range despite the fact that the prediction horizon
increases for all the initial states. The same pattern is presented for Quadprog which
also maintains its range.

For the prediction horizon equal to 20 and 25, Figure 5.18 and Figure 5.19 are
shown, respectively. For N = 20, the pattern is the same as the previous horizons
being the simplified IP more stable than the first-order algorithms. In addition, AMA
variant continues being the best of the splitting methods.

With respect to the plot corresponding toN = 25, the iterations for banded ADMM
are really wider than for the rest of the algorithms. This response is not the same for
banded AMA which iterations are not increase considerably.

The iterations for the simplified IP continues being the same for this horizon and
this probes that the random initial states do not affect its convergence.

With regard to the resulting histograms, it is noted that the warm starting is sub-
stantial in the first-order algorithms since they also depend on the initial state selected
to improve the convergence speed. Warm starting refers to consider an initial state
close to the solution; on the contrary, it is named a Cold starting. However, it does
not occur with the second-order algorithm where the number of iterations are exactly
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Figure 5.18: Resulting histograms for N=20

Figure 5.19: Resulting histograms for N=25

the same for any initial state and any prediction horizon.

On the other hand, to obtain more information about the behaviour of these two
types of algorithms, total times must be presented in each prediction horizon both first
and second-order methods.
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Figure 5.20: Average total time in milliseconds for each prediction horizon in both first
and second-order algorithms following soft constraints

In Figure 5.20, the average total time for all the algorithms tested is shown. These
values were calculated by multiplying the average time per iteration of each algorithm
and the maximum number of iterations considering the simulations performed. In
this Figure, the banded AMA has the shortest average total time of the comparison;
however, to define a fair approach in terms of total time, it is necessary to consider both
the maximum number of iterations and the maximum time taken until the convergence
in each algorithm since it is the maximum time to converge what will condition the
maximum sampling rate to be applied to the control system.

In Figure 5.21, it is noted that the simplified IP has a more stable maximum total
time than the first-order methods. This makes sense since the number of iterations
in the first-order methods increase considerably when the complexity of the problem
is bigger. This does not occur with the second-order algorithms since their iterations
barely change even though the initial state is randomly generated.

Therefore, when the constraints will be harder, it is expected that the iterations of
the first-order methods severely increase unlike the simplified IP its iterations will be
maintained throughout the random initial states.

Data dispersion

In this section, the data dispersion will be presented in terms of box plots of the total
time and their standard deviations in each prediction horizon.

Taking into account the box plots and standard deviation table, it is noted that
the Banded ADMM has the largest dispersion of the comparison. It makes sense since
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Figure 5.21: Maximum total time in milliseconds for each prediction horizon in both
first and second-order algorithms following soft constraints

Table 5.6: Standard deviation of total time (ms)

Prediction Horizon Simplified IP BADMM BAMA
5 55.2920 10.2771 2.3369
10 21.2650 55.9403 11.4043
15 53.6094 219.2546 55.8375
20 94.8759 688.7603 155.4223
25 199.0841 490.9147 88.9247

it is a first-order method and their iterations change too much in the simulations even
though the constraints are soft. Indeed, this algorithm requires the biggest number of
iterations to converge of all the experiment. In addition, the data dispersion increases
as the prediction horizon is bigger.

In summary, first-order methods changes their iterations as the size of the QP is
bigger and the initial state is selected. Therefore, in order to establish more perform-
ance differences between these two types of algorithms, hard constraints are used in the
benchmark example. It is expected that the number of iterations increases consider-
ably for the first-order algorithms whereas in the second-order methods, they maintain
their iterations in a short range.

5.2.2 Hard constraints

In Figure 5.24, the response of the algorithms under hard constraints for N = 5 is
presented. As it is shown, the first order algorithms are the most affected group in
this comparison since their iterations are increased with respect to the 5.15. This be-
haviour is due to the reduction of the input constraints and the corresponding initial
state. Despite that behaviour, the banded AMA is better than the ADMM variant
since its iterations are located between 8 and 36 iterations.
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(b) Prediction horizon N = 10
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(c) Prediction horizon N = 15

Figure 5.22: Box plot of resulting data. (∗) is the mean and (∆) is the standard
deviation.
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(a) Prediction horizon N = 20
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(b) Prediction horizon N = 25

Figure 5.23: Box plot of resulting data. (∗) is the mean and (∆) is the standard
deviation.

With respect to the second-order method, it is really stable in iterations. However,
it is evident that the variation will not be noted since it is the first horizon and the
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Figure 5.24: Resulting histograms for N=5 using hard constraints

construction of the matrices are not big. Thus, it is expected that the algorithms have
a slightly variation in their iterations as the prediction horizon increases.

Figure 5.25: Resulting histograms for N=10 using hard constraints

In the Figure 5.25, the results corresponding to the prediction horizon equal to 10
is presented. According to these histograms, the banded ADMM iterations are con-
siderably increased. The same pattern is shown for AMA variant but the number of
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iterations is less than ADMM and it does not exceed the 70 iterations.

In the case of the simplified IP, it maintains its range during all the random initial
states and this continues proving the stability in terms of iterations of this second-
order method. At this point, it is expected for the rest of prediction horizon, the same
performance.

Figure 5.26: Resulting histograms for N=15 using hard constraints

With respect to the graph for the prediction horizon equal to 15, Figure 5.26 is
shown. In this case, unlike the second-order methods which have a stable perform-
ance in iterations, the first-order algorithms continue increasing such that the banded
ADMM has the range of iterations up to 250 iterations. This is due to the fact that
the construction of the matrices in the QP problem are increasing and the random
initial state is in some occurrences not convenient for solving the problem.

In addition, banded AMA results with less iterations than ADMM variant since
its range is up to 125 iterations. Thus, it is noted that the differences between both
banded approaches are bigger when the prediction horizon increases considerably.

In Figure 5.27, the results for a prediction horizon N = 20 is shown. Here, the
differences between both first-order algorithm are notorious since problems for ADMM
tend to be solved in up to 360 iterations and for banded AMA, the major concentration
of solved problems is located around 200 iterations.

With respect to the second-order algorithm, the simplified IP has increased its
range solving the half of the total problems in a range between 12 and 14 iterations.
This new performance for the simplified IP reflects the increase of the complexity in
the solution of the problems and the sizes of the constructed matrices in the QP.
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Figure 5.27: Resulting histograms for N=20 using hard constraints

Figure 5.28: Resulting histograms for N=25 using hard constraints

In the last prediction horizon tested, Figure 5.28 shows the performance of the
optimizations algorithms according to their number of iterations.

In this case, the ranges from both first-order methods are really separated and it
is easy to identify that the banded ADMM need more iterations to solve this kind of
problems with a big prediction horizon. In addition, banded AMA is better than the
ADMM variant since their number of iterations are smaller.

On the other hand, in order to see clearer how the second-order methods are
resulted, Figure 5.29 shows a zoom of the area around these algorithms.

The simplified IP solves all the QP problems between 10 and 14 iterations. As it
is seen, comparing these results with the previous prediction horizon, the number of
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Figure 5.29: Zoom of second-order histograms for N=25 using hard constraints

occurrences for the range from 12 to 14 iterations is increased.

Taking into account the above-mentioned statements according to the pattern
shown for each prediction horizon, the simplified IP demonstrates a more stable per-
formance than the first-order algorithms. This makes sense since this is a main char-
acteristic for the second-order methods.

On the contrary, the first-order algorithms deteriorate their performance as the
prediction horizon is bigger since it only uses the gradient to solve the problem. Thus,
it is concluded that if the problem is stricter due to the size of the QP, harder con-
straints or the initial states, the total time increase substantially and this is a crucial
disadvantage in comparison to the second-order methods.

In addition, it is said that considering hard constraints, the second-order methods
maintain their stability despite that the initial state is different. This is not the same
for first-order methods which, as it is seen before, they increase their substantially
iterations if the problem is bigger and if the initial state is far for the solution.

On the other hand, in order to complete the analysis for hard constraints the meas-
urement of the total times in each prediction horizon is calculated.

In Figure 5.30, the average total time is obtained by multiplying the average time
per iteration of the algorithms and the maximum number of iterations performed by
each one in this experiment. According to the results, the first-order algorithms have
increased their iterations in comparison to the case of soft constraints whereas the
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Figure 5.30: Comparison of first and second-order algorithms in terms of average total
time (ms)

behaviour of the second-order methods, in terms of iterations, is almost the same. In
addition, the banded ADMM increases its average total time due to this algorithm
requires more iterations than the rest of the methods.
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Figure 5.31: Comparison of first and second-order algorithms in terms of maximum
total time (ms)

On the same way, in Figure 5.31, the maximum total time is obtained. This
variable is calculated by multiplying the maximum time and the maximum number
of iterations for each algorithm in the simulations performed. Here, the differences
between algorithms are quite substantial since the first-order algorithms has the largest
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total time of the comparison. Also, the stability of the second-order algorithm, in terms
of maximum total time, is noted. This proves, as it is expected, that the number of
iterations increases considerably since the complexity of the problem is larger. Also,
the stability of the second-order methods is noted which maintains their performance
throughout prediction horizons.

Data dispersion

Standard deviation and box plots are described in order to measure the dispersion of
the resulting data.

Table 5.7: Standard deviation of total time (ms)

Prediction Horizon 5 10 15 20 25
Simplified IP 12.2077 26.9078 65.2187 144.4892 286.6258
BADMM 27.2591 229.9912 1669.5254 11874.9354 30263.8017
BAMA 6.77619 48.4888 490.4169 2824.2196 6480.5713

Based on the results presented in the box plots and the Table of the standard de-
viation, the banded ADMM is the algorithm with most dispersion of the comparison.
This occurs due to the iterations of the ADMM variant increase considerably when
the complexity of the problem is larger. This behaviour is a main characteristic of
the first-order methods since the increase of the iterations also occurs with the AMA
variant but less dispersion than the BADMM.

With respect to the second-order algorithm, its iterations and time until conver-
gence do not change considerably and thus, its total time and dispersion are much
more stable.

5.3 Closed Loop

In order to analyse the behaviour in closed loop of the first and second-order methods
used in the previous section, a study based on simulations in each prediction horizon
with a selected control objective is evaluated.

In this case, the benchmark example have the same structure that the previous sec-
tion. It is described as a set of oscillating masses attached to walls in both extremes
by springs. The objective control is to stabilize the masses with the inputs resulting
an equilibrium in the states and inputs after a number of steps selected.

This is a soft control objective; however, it can be useful to identify the main
characteristics of the algorithms throughout the control loop. In addition, the purpose
of this experiment is to recognize how the iterations change during the control as the
initial state in each sampling time is redefined by feedback.

In this case, the system is sampled every 0.5 seconds assuming masses and spring
constants with a value of 1kg and 1Nm−1, respectively. As it is said before, the
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(b) N = 10

Quadprog Simplified IP BADMM BAMA

Algorithms

0

1000

2000

3000

4000

5000

6000

7000

T
o
ta

l 
ti
m

e
 (

m
s
)

(c) N = 15
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Figure 5.32: Box plot of resulting data. (∗) is the mean and (∆) is the standard
deviation.

system has two control inputs, three masses and two states for each mass, its posi-
tion and velocity, for a total of six states. The prediction horizon used is defined as
N = [5, 10, 15, 20, 25].
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Figure 5.33: System tested in closed loop

The initial state is randomly generated in order to evaluate how stable are the
performance of these algorithms starting from different states and how to develop the
control throughout the control loop.

Therefore, 100 random initial states are generated for each prediction horizon and
the constraints are defined as ‖xk‖∞ ≤ 3.5 and ‖uk‖∞ ≤ 0.5.

The algorithms tested have the following configurations: For the simplified IP:
sigma = 0.1, gamma = 0.1 and mulimit = 0.1. The first-order algorithms have, as
stopping conditions, a primal and dual error equal to 1e−4 with step-size defined in
[Ghadimi et al., 2015] for ADMM and ρ = 0.99 ∗ 2/λmax(GH

−1GT ) for AMA.

Taking into account the parameters above defined, the experiment obtains the
following results.

As it is shown in Figure 5.34, the control sequence is the same for the three al-
gorithms; however it is necessary to know how the number of iterations progresses
along the steps of the control according to the prediction horizon evaluated.

5.3.1 Patterns

In order to establish a pattern in the behaviour of the algorithms, the maximum
values in each step, considering the 100 initial states, are calculated obtaining a set of
50 values (equal to the number of steps) for all the control sequence. This calculation
is carried out for all the prediction horizons.

As it is shown in Figure 5.35 for a prediction horizon equal to 5, the number of
iterations for the simplified IP barely change throughout the number of steps; thus,
this proves that the initial state do not alter the response of this second-order method.
However, this is not the case of the first-order algorithms which iterations increase in
the first part of the control sequence and they reduce considerably their iterations (and
logically the time until the convergence) when the control is close to the stabilization.

Comparing the two first-order algorithms, ADMM variant requires more iterations
than the banded AMA. Thus, it is expected that the difference of iterations between
these algorithms increases as the prediction horizon is bigger.

In Figure 5.36, the pattern for N = 10 is presented. The behaviour of all the
algorithms is practically the same and the difference between the iterations of BADMM
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Figure 5.34: Example to resulting control for the three algorithms

and BAMA continues increasing.

In the Figure 5.37 and Figure 5.38, the patterns for N = 15 and N = 20, respect-
ively, are shown. Here, the first-order algorithms greatly increase their iterations and
the stability of the iterations for the simplified IP is noted as the best option when the
size of the QP problem is augmented.

On the other hand, in terms of first-order algorithms, banded AMA has better
performance than the banded ADMM with the same initial states to solve the same
QP problem.

Finally, in Figure 5.39, the pattern for N = 25 is presented. As it is shown, the
differences of iterations are notorious being the best choice the second order algorithm.

In addition, once presented the bar plots for each prediction horizon, it is worth
highlighting that with this control objective, the first-order algorithms tend to solve
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Figure 5.35: Resulting iterations pattern for the closed loop simulations in N = 5
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Figure 5.36: Resulting iterations pattern for the closed loop simulations in N = 10

the problem in 1 iteration. This occurs only when the control is close to the equilib-
rium; however, if the control objective is stricter, the iterations will vary throughout
the number of steps and this could be a drawback if the sampling time need to be short.

Based on the results before shown, it is noted that the effort of the controller is
bigger when the prediction horizon is increased. In this case, the maximum prediction
horizon tested is N = 25; thus, the worse result of each study will be obtained in
this horizon. Therefore, the maximum total time is shown for this prediction horizon
and it is calculated by multiplying the time until the convergence and the number of
iterations performed for each step control for the 100 problems run. Once multiplied,
these values are obtained by selecting the maximum total time for each step in the
control loop.
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Figure 5.37: Resulting iterations pattern for the closed loop simulations in N = 15
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Figure 5.38: Resulting iterations pattern for the closed loop simulations in N = 20

As it is shown in Figure 5.40, the results for the maximum total time in the max-
imum prediction horizon tested is presented. In this case, the first-order algorithms
seem to have better performance than the simplified IP; however, this behaviour is
noted only for the case when the complexity of the problem is smooth. In addition, as
the reference is the equilibrium, the iterations after half the number of steps are equal
to 1 due to the effort of the controller at this point is minimal.

It is worth highlighting that the Figure 5.40, is not a decisive plot about the
performance of the algorithms due to the fact that they are running according to soft
constraints; for this reason, it is necessary to carry out the same interpretation when
the constraints are harder.
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Figure 5.39: Resulting iterations pattern for the closed loop simulations in N = 25
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Figure 5.40: Resulting maximum total time pattern for the closed loop simulations in
N = 25

5.3.2 Total times

Total times give more information about the performance of the algorithms during the
closed loop. Thus, it is necessary to obtain the maximum time until the convergence
of the algorithms for all the simulations.

In Figure 5.41, the maximum time until the convergence increases for all the al-
gorithms as the size of the QP problem is larger. This is due to the fact that the
prediction horizon is evaluated following a scalability.
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Figure 5.41: Maximum times for 100 random initial states per horizon

With respect to the first-order algorithms, the banded AMA formulation has the
shortest maximum time unlike the banded ADMM which maximum time increases
quickly.

Despite that the second-order method presents a larger maximum time than the
first-order algorithms, this does not mean that the performance of them are better
than the simplified IP since the iterations for the first-order methods are reduced to 1
when the control objective is the equilibrium. Thus, it could be consistent to change
the control objective for evaluating the case when the iterations of these methods are
different to 1.
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Figure 5.42: Maximum total times for 100 random initial states per horizon



74 CHAPTER 5. COMPUTATIONAL ANALYSIS

In Figure 5.42, the maximum total times are presented. The total times are ob-
tained by multiplying the time until the convergence and the number of iterations
performed for each sampling time of the control sequence. Once multiplied, the max-
imum total time is obtained by selecting the maximum total value of all the control
sequence. Here, the banded ADMM is clearly the worst algorithm of the comparison
since their number of iterations are the largest and therefore, the total time increases
considerably.

Furthermore, simplified IP demonstrates a good performance since it has the
shortest maximum total time of the comparison over all the prediction horizons. This
makes sense since their number of iterations does not change so much than the first-
order algorithms iterations.

In summary, it is clear the advantages of using the second-order methods to solve
QP problems when the complexity of these problems increase due to the constraints,
the initial states or the prediction horizon selected.

5.4 Closed Loop with control objective modified

The purpose of this section is to define a stricter control objective in order to identify
the performance of the algorithms tested when the complexity of the problem is larger.

The benchmark example is the same that in the previous section . However, there is
a main difference in the structure of the system in comparison to the previous problem
since the oscillating masses only are attach to wall in a extreme. Thus, the objective
control consist on following the reference defined for the inputs and states after a
number of steps selected.

Figure 5.43: Structure of problem tested

This control objective is useful to identify the main characteristics of the algorithms
throughout the control loop and how the iterations change during the control as the ini-
tial state in each sampling time is redefined by feedback. The initial state is randomly
generated in order to evaluate how stable are the performance of these algorithms
starting from different states and how to develop the control throughout the control
loop.

Therefore, 100 random initial states are generated for each prediction horizon and
the constraints are defined as ‖xk‖∞ ≤ 3.5 and ‖uk‖∞ ≤ 0.5. The algorithms tested
have the following configurations: For the simplified IP: sigma = 0.1, gamma = 0.1
and mulimit = 0.1. The first-order algorithms have, as stopping conditions, a primal
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and dual error equal to 1e−4 with step-size defined in [Ghadimi et al., 2015] for ADMM
and ρ = 0.99 ∗ 2/λmax(GH

−1GT ) for AMA.
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Figure 5.44: Example of closed loop for IP
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Figure 5.45: Example of closed loop for BAMA

In Figure 5.44 - 5.46, an example of close loop performance for the IP, BAMA and
BADMM is presented. As it is shown, the two inputs are different to 0 throughout
the control sequence.

It is worth highlighting that the reference is fixed to xref = [0.4; 0;−0.2; 0; 0; 0] and
uref = [0; 0] for all the problems since only a scenery different to the stabilization of
the decision variables (previous section) is needed to identify the performance of these
algorithms.

Now, an identical analysis to the previous section is carried out taking into account
maximum iterations patterns for each prediction horizon and total times in order to
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Figure 5.46: Example of closed loop for BADMM

study the behaviour of each algorithm in this different scenery to the stabilization.

5.4.1 Patterns

In this part, the maximum values in each step considering the 100 initial states are
calculated obtaining a set of 50 values (equal to the number of steps) for all the control
sequence. This calculation is carried out for all the prediction horizons.
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Figure 5.47: Resulting iterations pattern for the closed loop simulations in N = 5

In Figure 5.47, the closed loop simulations for all the algorithms in N = 5 is presen-
ted. As it is shown, the pattern is different to the analysis in the previous section since
the iterations are different to 1 in all the number of steps.

Even though the prediction horizon is 5, the differences in number of iterations
between algorithms are high and the algorithm with less number of iterations the
simplified IP (second-order method). This behaviour makes sense since the stability of
the second-order method in terms of iterations is a main characteristic of them when
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solving QP problems and they are not changed in spite of varying the initial state or
the reference trajectory.
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Figure 5.48: Resulting iterations pattern for the closed loop simulations in N = 10

As it is shown in Figure 5.48, the number of iterations continues increasing for the
first-order methods where the banded ADMM has more iterations than the banded
AMA. It is expected that the iterations of banded AMA and banded ADMM increase
much more as the prediction horizon is bigger.
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Figure 5.49: Resulting iterations pattern for the closed loop simulations in N = 15

Based on the results shown in Figure 5.49 and Figure 5.50, the best performance
in these comparisons is the simplified IP. These iterations barely change throughout
the number of steps. This result proves that the simplified IP is better when the com-
plexity of the problem is larger.
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Figure 5.50: Resulting iterations pattern for the closed loop simulations in N = 20

It is expected that in a prediction horizon equal to 25, the differences are much
more notorious and the first-order methods increase their iterations, with more of them
for the banded ADMM.
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Figure 5.51: Resulting iterations pattern for the closed loop simulations in N = 25

According to the results shown in Figure 5.47 - 5.51, it is noted that the first-order
methods have a simple structure as algorithm but require a lot of numbers of itera-
tions especially when the problem needs to operate close to the constraints or start
in a hard initial state. This is not the case of the second-order algorithm that main-
tains its iterations in spite of the variations both control objective and QP problem size.

As it was carried out for the problem with soft constraints, the maximum total time
of the algorithms is presented. These values are calculated on the same way that for
the Figure 5.40. This analysis is focused on how the algorithms change their behaviour
(in a hard scenery) in comparison with their performance in a smooth scenery.
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Figure 5.52: Resulting maximum total time pattern for the closed loop simulations in
N = 25

As it is shown in Figure 5.52, the increase of the maximum total times in the first-
order algorithms is evident. This variation is directly related to the increased severity
in the constraints. As it is noted, even though the constraints are stricter, the banded
AMA could be a good option; however, in case of the complexity of the problem is even
more demanding, the maximum total times for the first-order methods will increase
substantially and therefore, the simplified IP is selected as the best option due to its
performance throughout the different analysis carried out and in particular, when the
controller requires demanding operation points along the control sequence.

5.4.2 Total times

Total times need to be calculated to obtain more information about the performance
of these algorithms in this new control objective.

In Figure 5.53, the maximum times are calculated by selecting the maximum time
until the convergence for all the algorithms and all the steps in each prediction ho-
rizon. Compared to Figure 5.41, the maximum times until the convergence for the
first-order algorithms increase because the control objective is stricter. In addition,
the maximum time for the simplified IP in each prediction horizon is almost the same
than their performance in Figure 5.41.

Once presented these maximum times until the convergence of all the algorithms,
the maximum total times are calculated. The total times are obtained by multiply-
ing the time until the convergence and the number of iterations performed for each
sampling time of the control sequence. Once multiplied, the maximum total time is
obtained by selecting the maximum total value of all the control sequence.
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Figure 5.53: Resulting maximum times in ms for the closed loop simulations.
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Figure 5.54: Resulting maximum total times in ms for the closed loop simulations.

Based on the results shown in Figure 5.54, first-order algorithms have the largest
maximum total times due to their iterations. This is a disadvantage for the first-order
methods since the simplified IP barely changes its total time which it is considered as
a good performance. Furthermore, these results show how the second-order method
does not change both in times and iterations in spite of the parameters are stricter or
complexity of the problem is larger.

In summary, the second-order method have demonstrate a better global perform-
ance than the first-order methods. This is appreciated in the different comparisons
when the first-order methods have increased their statistics whereas the simplified
IP barely changes them. Thus, this stability makes the second-order methods more
appropriated if the control needs to operate with stricter requirements.



Chapter 6

Experimental results

In this chapter, closed loop problems will be developed to evaluate the embedded be-
haviour of reduced-Hessian method applied to AMA and ADMM algorithm and the
simplified IP, software based MPC controllers on a Xilinx Zynq-7000 XC7020 SoC with
embedded dual core ARM Cortex-A9 processor have been tested.

As regards the procedure of implementation, using Matlab Coder R2017b, C-code
is generated from the m-file of each variant of the algorithms. The purpose is to ana-
lyse how varying the number of decision variables, inequalities and large sized matrices
affect the convergence rate and execution time of each algorithm when solving at each
sampling step a QP formulated with banded null space.

Furthermore, the functions which are more computationally expensive can be iden-
tified in the first-order algorithms and on this way, to analyse the possibility of carrying
out a hardware acceleration of these functions.

It will be evaluated two types of control objectives. The first is focuses on referring
the control to the equilibrium in the decision variables. And, the second objective is
to appreciate the performance of the algorithms when the inputs and states need to
operate throughout the control sequence without having the equilibrium as reference.

With regard to the LTI model used in this experiment, it will be the same in
each control objective as in the computational study and the MPC controllers will be
evaluated with the same horizons N = [5, 10, 15, 20, 25].

6.1 Closed Loop

In this case, the benchmark example have the same structure that the analysis carried
out in the computational study. As it was mentioned in section 5.3, the benchmark
example is described as a set of oscillating masses attached to walls in both extremes
by springs and it is defined as it is shown in Figure 5.33.

The objective control is to stabilize the masses with the inputs resulting an equi-
librium in the states and inputs after a number of steps selected.This is a soft control
objective; however, it can be useful to identify the main characteristics of the al-
gorithms throughout the control loop and to achieve the identification of variables

81



82 CHAPTER 6. EXPERIMENTAL RESULTS

with a high computational burden. In addition, the purpose of this experiment is
to recognize how the iterations change during the control as the initial state in each
sampling time is redefined by feedback.

An example to the resulting performance of the algorithms is presented in Figure
6.1 - 6.3.
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Figure 6.1: Experimental result in closed loop for simplified IP
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Figure 6.2: Experimental result in closed loop for BAMA

In order to observe the results of the times until the convergence for each algorithm
in all the simulations made in the embedded platform, the Table 6.1 is presented. These
times were calculated as the time taken by the algorithm in finding the optimal solution
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Figure 6.3: Experimental result in closed loop for BADMM

in each sampling time. Thus, there are 5000 values corresponding to the number of
steps and the number of problems. Based on these values, the minimum, maximum
and mean times are obtained.

Table 6.1: Times in milliseconds of the resulting data considering all the simulations
for the algorithms tested

Simplified IP BAMA BADMM
Prediction
Horizon

Min.
value

Max.
value

Mean
value

Min.
value

Max.
value

Mean
value

Min.
value

Max.
value

Mean
value

N=5 142.7120 176.1680 158.9931 0.6560 20.0600 10.4389 0.8970 50.3640 27.6320
N=10 522.3020 648.7560 584.1297 2.0510 102.9920 56.9920 2.9260 283.0630 159.2666
N=15 1139.395 1416.903 1277.3863 4.2520 325.945 149.34902 6.141 892.87 423.03422
N=20 2057.069 2483.183 2255.03779 7.449 629.837 268.68597 10.909 1760.105 767.92409
N=25 3184.505 3838.465 3487.91597 11.663 1187.366 424.97716 16.906 3280.891 1211.50223

As it is shown in the Table 6.1, for the first-order methods, the times start shorter
and they continues increasing as the prediction horizon is bigger. In addition, the
variation between their minimum and maximum values are greater in BADMM and
BAMA unlike the simplified IP which maintains its times due to the fact that the
iterations barely change in these experimental results.

Furthermore, the first-order algorithms demonstrate that the number of iterations
severely affects the time until the convergence since these iterations increase when the
problem is bigger and therefore, the algorithm requires more time to find a solution.
On the same way, BADMM formulation has worse times than the BAMA in all the
prediction horizons tested.

On the other hand, another important aspect to take into account is the pattern
of the iterations in each prediction horizon. This pattern is expected to be similar to
that of the computational study.
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Figure 6.4: Experimental results in closed loop for N = 5
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Figure 6.5: Experimental results in closed loop for N = 10

Based on results of iterations in Figure 6.4 - 6.8, they are similar to the results
obtained in the computational study. Here, the first-order methods also have a part
of the steps with a number of iterations equal to 1. This performance is different for
the simplified IP since their iterations maintains a short variation range.

Furthermore, both in BAMA and BADMM, the number of iterations increases
considerably as the prediction horizon is larger. This makes sense since the size of the
QP problem is bigger and it gains complexity.

Therefore, it is expected that if the control objective is harder to maintain in a close
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Figure 6.6: Experimental results in closed loop for N = 15
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Figure 6.7: Experimental results in closed loop for N = 20

loop (with decision variables changing during all the control sequence), the number
of iterations will increase much more and making that the possibility of using these
controllers not the best choice.

Once presented the pattern of iterations for this control objective, in Figure 6.9,
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Figure 6.8: Experimental results in closed loop for N = 25

the maximum times are calculated. These values do not mean that the simplified IP
have a bad performance since it is necessary to take into account the iterations of
each algorithm. Despite that, these times gives more information about how the time
is modified as the prediction horizon is larger. This variation occurs both first and
second-order algorithms.
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Figure 6.9: Maximum times for each prediction horizon

In addition, focused on developing the performance of all the algorithms, the times
per iterations are shown for each prediction horizon in Figure 6.10.
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(b) N = 10

BADMM BAMA Simplified IP
0

20

40

60

80

100

120

T
im

e
s
 p

e
r 

it
e
ra

ti
o
n
 (

m
s
)

TPI

(c) N = 15
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Figure 6.10: Average times per iteration for each prediction horizon
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In this Figure 6.10, the first-order algorithms seem to operate better than the sim-
plified IP; however, it is not a fair comparison since it is necessary to remember that
there are steps which iterations are equal to 1. Thus, these results only show a per-
formance with a smooth control objective.

On the other hand, in order to complete this analysis in terms of times until the
convergence, total times are calculated in Figure 6.11. Here, the maximum, minimum
and mean total times are obtained by multiplying the number of iterations and the
time until the convergence of each algorithms for all the prediction horizons.

Based on these results, the banded ADMM has the worst total time of the compar-
ison and simplified IP, the best performance. This is due to the number of iterations
of the second-order method which iterations barely change.

6.1.1 Times in repeated variables

In order to identify the times in repeated variables which are part of the close loop
simulations in each first-order algorithm, the maximum and minimum times are ob-
tained. With these times in each prediction horizon, variables with a high computa-
tional burden will be chosen and analysed in order to study the possibility of a certain
acceleration of them based on hardware description.

It is worth highlighting that in a closed loop simulation, there are two types of re-
peated variables. The first type is the variables which repetitions occur each step in the
control loop, this means that their updates are needed each sampling time. The num-
ber of recalculations is defined by the number of steps selected for the control sequence.

The second type of repeated variables are those which are recalculated in each
iteration performed by the algorithm. The first-order algorithms have 3 main updates
and two residual comparisons; thus, all of them are measured in this analysis.

Based on the results described in Table 6.2 - 6.6 for each prediction horizon, in the
first prediction horizon N = 5, the operations which time is larger are the right-side of
the inequality constraints matrix g and the particular solution z0 for the control loop.
These variable are repeated the number of steps selected for each sampling time. For
the loop of the algorithm which calculation is repeated for each iteration performed,
almost all the variables have a large computational burden; however, the first step
corresponding to the banded linear solver has the largest time of the comparison. This
makes sense since this step involves multiples operations unlike the rest of the variable
inside the loop of the algorithm.

With respect to the prediction horizon equal to N = 10, the time taken by partic-
ular solution z0 is notoriously larger than the time in N = 5. This is consistent with
the theory since in this update, a linear system must be solved and thus, it requires
more time to be calculated. Moreover, in the loop of the algorithm, the linear solver,
the second update and the calculation of the dual residual have the highest times of
the comparison.
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Figure 6.11: Total times for each prediction horizon

In the Table 6.4 corresponding to the prediction horizon N = 15, the calculation
of the particular solution z0 is the most computationally expensive of the control loop
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Table 6.2: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 5

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0120 0.0530 0.0120 0.0370

Calculation of
second term in

quadratic function
h 0.1620 0.2470 0.1620 0.2150

Calculation of
right-side of inequality

constraints
g 0.3060 0.4270 0.3060 0.4100

Particular solution z0 2.4340 2.7240 2.4350 2.7180
Algorithm Loop

First step
(Linear solver) z 0.1390 4.4740 0.2460 13.3540

Second step y 0.1280 3.8020 0.1710 10.2540
Third step τ 0.1120 3.5050 0.1120 6.8580

Calculation of primal
and dual residuals

‖r‖ 0.1010 3.1340 0.1010 6.2080
‖s‖ 0.1140 3.8940 0.2050 11.2430

Table 6.3: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 10

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0130 0.0470 0.0130 0.0420

Calculation of
second term in

quadratic function
h 0.5600 0.7220 0.5620 0.6890

Calculation of
right-side of inequality

constraints
g 1.0840 1.3070 1.0850 1.2820

Particular solution z0 14.3050 15.3930 14.3060 15.4920
Algorithm Loop

First step
(Linear solver) z 0.4540 23.9000 0.8200 77.5180

Second step y 0.4010 19.3490 0.5660 56.9080
Third step τ 0.3740 18.3070 0.3770 38.0070

Calculation of primal
and dual residuals

‖r‖ 0.3530 17.1850 0.3540 35.5930
‖s‖ 0.3770 21.1140 0.7220 68.0590

since its time has increased considerably. Furthermore, the times for the loop of the
algorithm continues increasing even though there are two variables which times are
bigger: The linear solver and the calculation of the dual residual. They have the
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Table 6.4: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 15

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0140 0.0530 0.0130 0.0630

Calculation of
second term in

quadratic function
h 1.2000 1.4770 1.2000 1.5830

Calculation of
right-side of inequality

constraints
g 2.3400 2.6860 2.3430 2.6070

Particular solution z0 44.1280 47.5140 44.1230 47.8270
Algorithm Loop

First step
(Linear solver) z 0.9430 76.6830 1.7180 248.8090

Second step y 0.8340 60.2660 1.1970 179.0750
Third step τ 0.7970 58.1880 0.7980 118.1550

Calculation of primal
and dual residuals

‖r‖ 0.7650 55.8810 0.7650 113.0660
‖s‖ 0.7960 68.7350 1.5470 221.1170

Table 6.5: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 20

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0140 0.0570 0.0150 0.0520

Calculation of
second term in

quadratic function
h 2.1860 2.4780 2.1940 2.4760

Calculation of
right-side of inequality

constraints
g 4.1760 4.4900 4.1900 4.5530

Particular solution z0 102.6950 107.6010 102.6880 107.6940
Algorithm Loop

First step
(Linear solver) z 1.6570 144.2250 3.0360 486.5770

Second step y 1.4570 118.7810 2.1500 356.0440
Third step τ 1.4070 115.7190 1.4090 234.8120

Calculation of primal
and dual residuals

‖r‖ 1.3670 112.4720 1.3680 227.9940
‖s‖ 1.4070 129.8080 2.7440 436.3960

largest time of the comparison but without much difference to the other variables in
the loop of the algorithm.
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Table 6.6: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 25

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0140 0.0640 0.0150 0.0700

Calculation of
second term in

quadratic function
h 3.3000 3.6570 3.3070 3.7270

Calculation of
right-side of inequality

constraints
g 6.4550 7.0110 6.4760 6.9720

Particular solution z0 188.9600 196.3140 188.9170 196.1920
Algorithm Loop

First step
(Linear solver) z 2.6700 278.2050 4.7960 919.6880

Second step y 2.2190 219.0270 3.2930 655.0300
Third step τ 2.1620 214.7280 2.1460 428.4560

Calculation of primal
and dual residuals

‖r‖ 2.1110 209.9240 2.0960 418.5710
‖s‖ 2.2700 252.4510 4.3460 832.2770

As regards the prediction horizon N = 25, the particular solution is clearly the
most computationally expensive operation of the control loop. In addition, the linear
solver and the dual residual calculation have the highest time of the comparison in
the loop of the algorithm. The relevance of the dual residual calculation can be better
noted in the banded ADMM than the banded AMA.

In summary, taking into account the results and comments before mentioned, it is
noted that in case of using an acceleration strategy, there are two approaches consid-
ering both control loop and the loop of the algorithm

In the first approach, the particular solution can be accelerated in order to reduce
the time in the control loop which need to be calculated in each sampling time. There
is not another variable which increases its number of iterations as the calculation of
the particular solution in the process to redefine the QP problem.

In the second approach, corresponding to the loop of the algorithm, it could be exist
two procedures to accelerate variables. In the first procedure, only the linear solver
(first update) is accelerated since it is the most computationally expensive in this loop;
however, the times for the rest of the variables also increases as the prediction horizon is
bigger. Thus, the second procedure consists on developing an acceleration considering
all the variable involved in the loop of the algorithm. Evidently, the complexity of the
second procedure is quite substantial than the first procedure but these operations are
calculated each number of iterations and they use to increase considerably when the
complexity of the problem is larger.



6.2. CLOSED LOOP WITH CONTROL OBJECTIVE MODIFIED 93

6.2 Closed Loop with control objective modified
Once presented the performance for a smooth control objective (the equilibrium of
the decision variables), it is necessary to change this control objective. Thus, the
benchmark problem is modified on the same way that it is carried out during the
computational study in section 5.4.

In this modified problem, the oscillating masses only are attached to a wall in a
extreme and the inputs are located in the masses of the extremes. On this way, the
structure of the problem is the same that the Figure 5.43.

As it is mentioned in the previous chapter, this control objective is useful to identify
the main characteristics of the algorithms throughout the control loop and how the
iterations change during the control as the initial state in each sampling time is re-
defined by feedback.

The initial state is randomly generated in order to evaluate how stable are the
performance of these algorithms starting from different states and how to develop the
control throughout the control sequence. Therefore, C-code for 100 random initial
states are generated for each prediction horizon in the embedded platform where the
constraints are defined as ‖xk‖∞ ≤ 3.5 and ‖uk‖∞ ≤ 0.5.

An example to the resulting performance of the algorithms is presented in Figure
6.12 - 6.14.
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Figure 6.12: Experimental result in closed loop for simplified IP

In order to observe the results of the times until the convergence for each algorithm
in all the simulations carried out in the embedded platform, the Table 6.7 is presented.
These times were calculated as the time taken by the algorithm in finding the optimal
solution in each sampling time. Based on these values, the minimum, maximum and
mean times are obtained.
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Figure 6.13: Experimental result in closed loop for BAMA
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Figure 6.14: Experimental result in closed loop for BADMM

Table 6.7: Times in milliseconds of the resulting data considering all the simulations
for the algorithms tested

Simplified IP BAMA BADMM
Prediction
Horizon

Min.
value

Max.
value

Mean
value

Min.
value

Max.
value

Mean
value

Min.
value

Max.
value

Mean
value

N=5 150.2060 186.8430 169.7600 0.6640 29.7230 18.7523 15.8630 73.4570 48.8654
N=10 553.8940 675.7010 634.2977 23.1900 270.4930 110.5584 77.4860 704.2990 300.4329
N=15 1332.395 1579.462 1411.53911 58.759 682.907 284.64952 187.51 1845.602 788.79878
N=20 2330.812 2764.839 2489.2330 121.613 1167.57 520.37895 392.966 3187.729 1461.72407
N=25 3610.824 4283.231 3873.83998 190.251 1837.568 832.03705 628.299 5071.281 2349.14295

According to the Table 6.7, minimum values for the first-order methods have in-
creased due to the fact that the number of iterations are different to 1 over all the
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control sequence. This increment is obtained by the change of the control objective.
Thus, these times could eve increase much more if the complexity of the problem is
bigger than the current.

In addition, if the minimum values are largest, it makes sense that the maximum
values also increase and on this way, the mean will be larger for this problem than for
the control objective carried out in the previous section.

On the other hand, another important aspect to take into account is the pattern of
the iterations in each prediction horizon with this control objective. This new pattern
is calculated by selecting the maximum iterations in each step of the control loop for
all the simulations, and it is expected to be similar to that of the computational study.
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Figure 6.15: Experimental results in closed loop for N = 5

In Figure 6.15 - 6.19, patterns for all the prediction horizons are presented. Ac-
cording to these results, the number of iterations are different to 1 in all the control
sequence and they increase as the prediction horizon is bigger for banded ADMM and
banded AMA.

With respect to the first-order methods, the banded ADMM has the most number
of iterations from N = 5 until N = 25. Even though the banded AMA has less iter-
ations than banded ADMM, the simplified IP is selected as the best choice to solve
these problems due to its stability with different initial states and QP problem sizes.

Therefore, it is demonstrate the stability of the second-order method in terms of
iterations when the complexity of the problem increase due to prediction horizon, ini-
tial state or reference trajectory in the control objective.
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Figure 6.16: Experimental results in closed loop for N = 10
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Figure 6.17: Experimental results in closed loop for N = 15

Once presented the pattern of iterations for this modified control objective, in
Figure 6.20, the maximum times are calculated.

In addition, focused on obtaining all the information about the performance of all
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Figure 6.18: Experimental results in closed loop for N = 20

5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

300

350

Figure 6.19: Experimental results in closed loop for N = 25

the algorithms, the times per iterations are shown for each prediction horizon in Figure
6.21.

In this Figure 6.21, the first-order algorithms seem to operate better than the sim-
plified IP; however, it is not a fair comparison since it is necessary to take into account
the number of iterations that the algorithms require to solve the QP problem.
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Figure 6.20: Maximum times for each prediction horizon

On the other hand, in order to complete this analysis in terms of times until the
convergence, total times are calculated in Figure 6.22. Here, the maximum, minimum
and mean total times are obtained by multiplying the number of iterations and the
time until the convergence of each algorithms for all the prediction horizons.

For the prediction horizon N = 5, the banded AMA results the best performance
of the comparison in terms of total times. However, in the next prediction horizon
(N = 10), the simplified IP emphasizes its stability since the first-order algorithms
increase their iterations and therefore, their total times.

The same performance occurs for the rest of prediction horizons since the second-
order method barely change it total time whereas the first-order algorithms continues
increasing their times. As mentioned above, this notable increase is due to the number
of iterations that can become excessive if the complexity of the problem is even greater
in case the control objective is more restrictive and demanding.

6.2.1 Times in repeated variables

In order to identify the times in repeated variables which are part of the close loop
simulations in each first-order algorithm, the maximum and minimum times are ob-
tained. With these times in each prediction horizon, variables with a high computa-
tional burden will be chosen and analysed in order to study the possibility of a certain
acceleration of them based on hardware description.

Unlike the resulting times for the smooth control objective, it is expected that the
times for the control loop slightly change and the times for the loop of the algorithm
increase considerably due to the rise of the complexity of the problem and the number
of iterations.
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(b) N = 10
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Figure 6.21: Times per iteration for each prediction horizon
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Figure 6.22: Total times for each prediction horizon
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Table 6.8: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 5

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0130 0.0880 0.0130 0.0350

Calculation of
second term in

quadratic function
h 0.2190 0.2940 0.2200 0.2890

Calculation of
right-side of inequality

constraints
g 0.3180 0.3860 0.3170 0.4170

Particular solution z0 2.4380 2.6940 2.4380 2.7260
Algorithm Loop

First step
(Linear solver) z 0.1430 6.5810 4.1720 19.4770

Second step y 0.1290 5.6970 3.1910 14.9550
Third step τ 0.1120 5.1530 2.1290 9.9990

Calculation of primal
and dual residuals

‖r‖ 0.1010 4.6700 1.9200 9.0140
‖s‖ 0.1140 5.7680 3.6130 16.4650

Table 6.9: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 10

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0130 0.0420 0.0130 0.0510

Calculation of
second term in

quadratic function
h 0.7410 0.8750 0.7420 0.9160

Calculation of
right-side of inequality

constraints
g 1.1040 1.2400 1.1080 1.2830

Particular solution z0 14.5190 15.5490 14.5200 15.6220
Algorithm Loop

First step
(Linear solver) z 5.2350 62.7150 21.2360 193.9000

Second step y 4.4660 50.7490 15.7190 143.7890
Third step τ 4.1930 48.1960 10.4140 94.7880

Calculation of primal
and dual residuals

‖r‖ 3.9390 45.2340 9.6530 88.4750
‖s‖ 4.6170 55.4320 18.6790 167.3190
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Table 6.10: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 15

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0140 0.1070 0.0140 0.0400

Calculation of
second term in

quadratic function
h 1.5710 1.8870 1.5700 1.9130

Calculation of
right-side of inequality

constraints
g 2.3890 2.6150 2.3980 2.6840

Particular solution z0 44.8030 47.9240 44.8030 47.7610
Algorithm Loop

First step
(Linear solver) z 13.6360 161.6630 52.2110 516.0980

Second step y 10.9530 125.3620 37.2660 368.7220
Third step τ 10.5560 121.0820 24.6520 243.9220

Calculation of primal
and dual residuals

‖r‖ 10.1270 116.3820 23.5790 233.6880
‖s‖ 12.1940 145.4150 47.0560 456.9130

Table 6.11: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 20

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0150 0.0560 0.0150 0.0520

Calculation of
second term in

quadratic function
h 2.6880 3.0150 2.6860 3.0780

Calculation of
right-side of inequality

constraints
g 4.1780 4.5440 4.1910 4.5010

Particular solution z0 102.7080 108.5050 102.7110 107.7210
Algorithm Loop

First step
(Linear solver) z 27.2980 266.4420 108.0320 880.3540

Second step y 23.2100 220.5850 78.9560 643.6390
Third step τ 22.6150 215.0540 52.4040 427.6200

Calculation of primal
and dual residuals

‖r‖ 21.9300 208.3760 50.8130 414.1320
‖s‖ 24.6380 240.5270 98.6540 788.7120

Based on the results described in Table 6.8 - 6.12 for each prediction horizon, the
times calculated have increased especially in the loop of the algorithm.
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Table 6.12: Resulting times in milliseconds of repeated variables in the closed loop
simulations in N = 25

Times (ms)
BAMA BADMM

Variables Symbols Min. value Max. value Min. value Max. value
Control Loop

Calculation of
right-side of equality

constraints
f 0.0150 0.0620 0.0150 0.0560

Calculation of
second term in

quadratic function
h 4.1020 4.5040 4.1020 4.4900

Calculation of
right-side of inequality

constraints
g 6.4510 6.9580 6.4740 7.0140

Particular solution z0 188.8340 196.9660 188.8460 196.7860
Algorithm Loop

First step
(Linear solver) z 44.417 432.137 175.752 1421.739

Second step y 35.1180 337.9500 125.0280 1010.212
Third step τ 34.3950 331.1830 82.3920 665.8390

Calculation of primal
and dual residuals

‖r‖ 33.5920 323.3200 80.4340 650.5140
‖s‖ 40.5570 392.9470 159.4520 1282.026

For a prediction horizon N = 5, the particular solution z0 is the most computa-
tionally expensive calculation in the control loop. Furthermore, considering the loop
of the algorithm, the first update corresponding to the solution of the linear system
has the highest time of this comparison; however, the times of the rest of variables in
this loop are close to the time of the first update.

With respect to the prediction horizon N = 10, the particular solution z0 still has
the highest time of the control loop. This makes sense since for this calculation, it is
necessary to solve a linear system more complex as the prediction horizon is bigger.
Moreover, for the loop of the algorithm, the first update and the dual residual are the
largest times of this comparison.

As regard the prediction horizon N = 15, only the particular solution increase its
time and it has the highest time of the control loop. Furthermore, the first update
and the dual residual are the operations with most computational burden in the loop
of the algorithm.

For the prediction horizons N = 20 and N = 25, the particular solution is clearly
the variable which consumes more time in the control loop. Also, all the variables
in the loop of the algorithm increase their times and only the linear solver is slightly
more computationally expensive.

In summary, taking into account both the smooth and the modified control ob-
jective, the second-order methods have the best performance in terms of stability in
iterations and behaviour when the parameters of the problems are stricter. This is not
the case for the first-order algorithms which iterations increase considerably when the
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complexity of the system is larger.

In terms of first-order methods, the banded ADMM had demonstrated a worse
performance that the banded AMA; however, it is important to take into account that
the ADMM algorithm can be used in more problems than the AMA variants since
ADMM does not require a strictly convex function.

As regards a future hardware acceleration, it is clear that it must be considered
both the control and algorithm loop since the variables inside of these loop are repeated
a certain number of times. It is evident that the acceleration should be focused on the
loop of the algorithm since the variables are recalculated each iteration. Thus, con-
sidering the inefficient performance in terms of iterations of the first-order algorithms
when the complexity of a problem is larger, it is necessary to reduce this time per
iteration.

As it is summarized in the above section, the control loop could be accelerated
considering only the linear solver (first update) or carrying out a pipelining of all the
loop of the algorithm. This decision depends on the problem sizes, the horizon selected
and the hardware resources.

Finally, in terms of the control loop, it is noted that there is only one operation
needs to be accelerated which is the particular solution z0 which is part of the reduced-
Hessian approach to reduce the size of a original QP problem and to construct banded
matrices.



Chapter 7

Conclusions

Taking into account the above-obtained results, reduced-Hessian method proves a in-
crease in the performance in terms of time until the convergence due to the reduction
of operations in the first update of the algorithm. In addition, this method allows to
reduce the size of the original problem by deleting the states and creating a new QP.

Despite the AMA variant based-null space is better than the ADMM, the latter
can work with a non-strictly convex problems whereas the main requirement to use
AMA is the strongly convexity of the problem evaluated. This is a crucial advantage
since ADMM could be used in all types of convex problems; in addition, reformulating
the QP by using the reduced-Hessian method, the size and therefore, the complexity
of the new problem is less to be solved by the algorithm.

On the other hand, comparing the first-order methods to the second-order al-
gorithms (simplified IP, in this project), the latter ones demonstrate a high robustness
along the variation of complexity of the problem evaluated. This is not the same
performance for the first-order algorithms that increase considerably their total times
when the complexity is intensified due to the increase of the prediction horizon, the
number of decision variables, the constraints or the initial state. This behaviour of the
second-order methods, in particular of the simplified IP demonstrates the stability of
these algorithms throughout the variation of the initial conditions and they are chosen
as the best option to solve a problem.

In addition, despite that the second-order methods have better performance in
terms of total times, it is difficult to embed them on limited resources platforms and
thus, it is still being researched. This problem does not occur for the first-order
algorithms their internal updates are relatively easy to parallelize and to embed in
comparison to the procedures of the second-order methods.

Repeated variables in the closed loop are identified in the experimental results.
According to these results, the first step of the algorithm loop and the particular
solution of the control loop have the most computational burden of the closed loop. The
algorithm loop is recalculated in each iteration whereas the control loop is recalculated
in each sampling time. This analysis is relevant since allows to organize which updates
could be accelerated by hardware description. In addition, these results allows to
define the maximum sampling time for the application.
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Appendix A

Scalability results

Table A.1: Results for N = 5

N = 5
Algorithms Average Time (ms) Average Iterations Average time per iteration (TPI)
AMA IND 6.0732 101.2100 0.0600
ADMM IND 0.7075 11.6600 0.0607

DAMA 0.1730 10.0700 0.0172
DADMM 0.3541 20.1200 0.0176
BAMA 0.2384 13.5500 0.0176
BADMM 0.4336 25.5700 0.0170
FDAMA 0.2801 16.2400 0.0172
FDADMM 0.1704 8.8400 0.0193
FBAMA 0.3723 21.8000 0.0171
FBADMM 0.1972 10.4300 0.0189

Table A.2: Results for N = 10

N = 10
Algorithms Average Time (ms) Average Iterations Average time per iteration (TPI)
AMA IND 2.5754 118.6700 0.1828
ADMM IND 2.5754 13.9800 0.1842

DAMA 0.7746 12.3100 0.0629
DADMM 1.7145 24.7000 0.0694
BAMA 1.0408 17.4300 0.0597
BADMM 2.2662 33.0700 0.0685
FDAMA 1.3139 19.9500 0.0659
FDADMM 0.5486 9.9800 0.0550
FBAMA 1.7026 27.5400 0.0618
FBADMM 0.6503 12.2800 0.0530
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Table A.3: Results for N = 15

N = 15
Algorithms Average Time (ms) Average Iterations Average time per iteration (TPI)
AMA IND 45.4834 130.5900 0.3483
ADMM IND 5.3644 14.6900 0.3652

DAMA 1.8568 13.8600 0.1340
DADMM 4.0034 27.7300 0.1444
BAMA 2.5747 20.6000 0.1250
BADMM 5.3466 39.0000 0.1371
FDAMA 2.6821 20.3500 0.1318
FDADMM 1.0722 10.6600 0.1006
FBAMA 3.8741 30.8300 0.1257
FBADMM 1.3045 13.8200 0.0944

Table A.4: Results for N = 20

N = 20
Algorithms Average Time (ms) Average Iterations Average time per iteration (TPI)
AMA IND 82.7745 150.7300 0.5492
ADMM IND 9.1205 15.7200 0.5802

DAMA 2.7490 14.4500 0.1902
DADMM 6.2445 29.1700 0.2141
BAMA 3.4358 19.5100 0.1761
BADMM 7.3631 36.9800 0.1991
FDAMA 4.3066 23.0100 0.1872
FDADMM 1.5419 11.6300 0.1326
FBAMA 5.4606 30.9200 0.1766
FBADMM 1.7688 14.0000 0.1263

Table A.5: Results for N = 25

N = 25
Algorithms Average Time (ms) Average Iterations Average time per iteration (TPI)
AMA IND 323.7722 149.9800 2.1588
ADMM IND 34.2211 14.9300 2.2921

DAMA 4.1739 14.3600 0.2907
DADMM 8.5983 28.9200 0.2973
BAMA 4.6186 19.8000 0.2333
BADMM 9.6636 37.4900 0.2578
FDAMA 6.2268 22.5200 0.2765
FDADMM 2.2989 11.4000 0.2017
FBAMA 7.0856 31.0600 0.2281
FBADMM 2.3968 14.5600 0.1646
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