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ABSTRACT 

 

Understanding spoken language requires analysis of the rapidly unfolding speech signal at multiple levels: 

acoustic, phonological, and semantic. However, there is not yet a comprehensive picture of how these 

levels relate. We recorded electroencephalography (EEG) while listeners (N=31) heard sentences in 

which we manipulated acoustic ambiguity (e.g., a bees/peas continuum) and sentential expectations (e.g., 

Honey is made by bees). EEG was analyzed with a mixed effects model over time to quantify how 

language processing cascades proceed on a millisecond-by-millisecond basis. Our results indicate: (1) 

perceptual processing and memory for fine-grained acoustics is preserved in brain activity for up to 900 

msec; (2) contextual analysis begins early and is graded with respect to the acoustic signal; and (3) top-

down predictions influence perceptual processing in some cases, however, these predictions are 

available simultaneously with the veridical signal. These mechanistic insights provide a basis for a better 

understanding of the cortical language network.  
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1. INTRODUCTION 

Typical listeners appear to process speech effortlessly despite the significant computational 

challenge posed by speech perception. Speech input unfolds continuously over time, requiring rapid 

analysis of linguistic information at multiple levels. This analysis must be performed on a signal with 

substantial acoustic variability and contextual dependency. This complexity is underscored by the large 

number of people with communication disorders who may struggle with speech perception: Hearing 

loss, for example, affects up to 15% of adults, and as many as 12% of school-aged children have language-

related disorders (Tomblin et al., 1997), which have been linked to speech perception and word 

recognition deficits (McMurray et al., 2010, Robertson et al., 2009, Werker and Tees, 1987, Vandewalle 

et al., 2012). This emphasizes the need to fully characterize the cortical and cognitive mechanisms by 

which typical listeners perceive speech. 

A key question is how early perceptual processing relates to higher order (semantic, meaning-

based, or broader sentential and contextual) processing. By definition, higher order processing relies on 

feedforward input from perception, and the ascending path of auditory input through subcortical 

auditory structures and cortical language areas is well-described (Hickok and Poeppel, 2007, Malmierca 

and Hackett, 2010, McQueen et al., 2016). However, the nature of the computations that relate acoustic 

input to these higher levels is not fully characterized along three crucial dimensions: 1) the time period 

over which information about lower levels of analysis (e.g., auditory, phonetic cues) are maintained as 

later steps (e.g., lexical/semantic) unfold, 2) when semantic access begins, and 3) whether there are 

descending (feedback) modulations of the incoming auditory signal (McQueen, Eisner, & Norris, 2016).   

Addressing these questions is critical for two larger debates in language processing (and cognitive 

neuroscience). First, is speech perception accomplished by (1) rapidly transforming the signal into 

discrete units (discarding acoustic variability) (Liberman et al., 1957, Chang et al., 2010) or (2) preserving 

a more flexible (but perhaps noisier) gradient representation (Kapnoula et al., 2017, Port, 2007)? 

Second, do listeners maintain a only a veridical (bottom-up) representation of the input (Firestone and 
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Scholl, 2016, Norris et al., 2000, Lupyan and Clark, 2015) or is perception biased by top-down 

expectations (McMurray and Jongman, 2011, Getz and Toscano, 2019, Broderick et al., 2019)? The 

present study uses a novel electroencephalography (EEG) paradigm to address three questions 

concerning the dynamics of processing at different levels of speech perception. 

1.1 First, we ask how long fine-grained acoustic detail is maintained even after lexical and semantic 

processing has begun. For example, Voice Onset Time (VOT) is the primary acoustic cue that 

distinguishes voiced and voiceless sounds, such as /b/ and /p/. It reflects the time between the opening of 

the articulators and the onset of vocal fold vibration. A prototypical /b/ has a short VOT of 0-15 msec, 

whereas a prototypical /p/ has a longer VOT of 40-60 msec, with a category boundary between 15 and 

25 msec (Allen et al., 2003, Lisker and Abramson, 1964). A classic debate in speech perception is 

whether small differences that would still signal the same phoneme (e.g., between 50 and 60 msec, both 

/p/’s) are discarded or preserved. Under a categorical view, ignoring such differences may be more 

efficient, as they are likely noise (Liberman et al., 1957); alternatively, preserving within-category 

differences may allow for more flexible processing (McMurray et al., 2009). 

Most recent work suggests listeners preserve such differences in a gradient manner (McMurray et 

al., 2002, Miller, 1997, Andruski et al., 1994). However, while this issue is resolved in psycholinguistics, 

there is still debate over the underlying neuroscience (Chang et al., 2010, Toscano et al., 2010). A more 

compelling way to ask this question is to ask what listeners might do with a gradient representation. 

Critically, for a gradient representation to be useful, it must persist long enough in time to help listeners 

update decisions more flexibly. 

Prior studies suggest listeners maintain fine-grained detail (e.g., the degree of voicing) for 200-500 

msec (McMurray et al., 2009, Gwilliams et al., 2018, Zellou and Dahan, 2019) and possibly as long as a 

second (Brown-Schmidt and Toscano, 2017). This is well into the period where semantic access should 

have begun (Gaskell and Marslen–Wilson, 1999). However, these studies generally use a “garden path” 

paradigm in which the auditory cue (e.g. the VOT) may be partially ambiguous, but listeners receive 
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disambiguating lexical or sentential information later. Here, if the cue is not perceived accurately, the 

interpretation may be revised in light of later disambiguating acoustic information. Three issues with this 

paradigm prevent a clear conclusion.  

First, listeners may learn (over the experiment) to maintain fine-grained detail for a longer duration 

than they normally would, as they repeatedly encounter situations in which their initial interpretation is 

wrong and is corrected by later arriving information. However, in real sentences, there may be 

considerably less impetus to preserve this information, as preceding sentential or other context can 

eliminate the early ambiguity. If representation of fine-grained acoustic detail in these contexts is 

preserved past the point of semantic access, this would imply that the auditory system is fundamentally 

organized to process the auditory input in a gradient (non-categorical) manner and to retain it over 

time.  

Second and more importantly, in most cases, the later semantic information completely swamps 

effects of perceptual gradiency. As a result, it is unclear whether the initiation of semantic access may 

disrupt these memory representations, thus it is important to evaluate the timecourse of these 

processes simultaneously.  

Finally, with the exception of Gwilliams et al. (2018), all of these studies measure gradiency at the 

lexico-semantic level (e.g., the degree of commitment to a meaning), not at the auditory level (e.g., 

memory for the continuous VOT value).  As a result, it is unclear whether fine-grained acoustic detail is 

maintained in some form of perceptual memory, or simply via the relative activation of competing 

interpretations. Characterizing this level of analysis may require neural measures that can target auditory 

encoding of acoustic cues (e.g. Toscano et al., 2010). 

1.2 Second, we ask if perceptual processing continuously cascades to influence integration of semantic 

expectations from a sentence, or if perceptual analysis must complete before words can be integrated into the 

sentence. Conventional EEG work suggests that an incoming visual stimulus (written word) or acoustic 

signal (spoken word) is integrated with previously-set semantic expectations in the brain about 400 
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msec after stimulus presentation (the canonical N400 component) (Kutas and Hillyard, 1980). This 

would appear to be well after perceptual processing is complete, that is, after low level perceptual 

information has been categorized or abstracted, when within-category detail is lost, and the resulting 

phoneme is passed on to the next level of processing. The typical N400 suggests a more stage-like 

operation in which these perceptual operations are complete and semantic processes happen later. 

In contrast, recent studies using more naturalistic sentences indicates integration with meaning-

based context begins at an earlier time (Broderick et al., 2018, Broderick et al., 2019, see Kutas and 

Federmeier, 2011 for a review, and see Dahan and Tanenhaus, 2004, for supporting evidence using the 

Visual World Paradigm, Tanenhaus et al., 1995). However, these studies have not simultaneously 

examined the timecourse of perceptual processing along with that of semantic or contextual processing. 

Thus, it is still unclear whether perceptual processing is complete when semantic access begins (i.e., 

whether the acoustic signal has been categorized), or whether perceptual-stage processing is ongoing 

while these contextual expectations are being used. Under the latter case, we might expect semantic 

processing to show sensitivity to fine-grained phonetic cues in the signal. Such a cascade has been shown 

for the semantics of single words (Andruski et al., 1994, McMurray et al., 2002), but not yet during the 

semantic processing of a sentence.  

1.3 Third, we ask if speech perception is accomplished entirely via bottom-up processing, or if top-down 

feedback carrying specific linguistic content plays a role. Longstanding psycholinguistics work suggests that 

phoneme categorization as well as ratings of phonemic “goodness” are affected by semantic or lexical 

expectations (e.g. Ganong, 1980, Connine et al., 1991, Allen and Miller, 2001). However, it is unclear 

whether this information truly feeds back to affect perception or whether it has its effect in some form 

of post perceptual decision system (Norris et al., 2000, Magnuson et al., 2003, McQueen, 2003).  

Cognitive neuroscience—which can target auditory encoding more directly—offers clues favoring 

feedback. Gow and Olson (2016) used magnetoencephalography (MEG) with a Granger Causality 

Analysis to demonstrate connections from higher-level language areas to lower phonological processing 
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hubs during sentence processing. However, it is not clear whether this top-down signal reflects actual 

linguistic content, as opposed to less specific processes like attentional modulation (McQueen et al., 

2016). Getz and Toscano (2019) overcame this using the N1 EEG component. The N1 is an early 

component which reflects a number of low-level auditory processes. Among several things it tracks, it 

shows sensitivity to the actual VOT the subject heard (Toscano et al., 2010, Sharma et al., 2000, Pereira 

et al., 2018, Frye et al., 2007). A more negative N1 corresponds to a short VOT, and a less negative N1 

corresponds to longer VOTs. Thus, the N1 can in part reflect the content of perceptual encoding, and 

not just a degree of processing difficulty (as do many EEG components).  This offers a way to pinpoint 

feedback to auditory content.  

In Getz and Toscano’s study, subjects saw a visual prime (MASHED) followed by an auditory target 

(potatoes). Semantic expectations (from the prime) affected the encoding of the target word’s VOT (at 

the N1)—/b/-biased contexts showed a lower N1 than /p/-biased, even when the auditory stimulus was 

identical. This effect was only observed at the phonemic category boundary. This offers some evidence 

for feedback. However, this study used isolated auditory target words and primes with extremely high 

co-occurrence. Therefore, it is unclear if this effect would generalize to a more dynamic sentential 

context. Neither study examined the detailed timecourse of this operation to determine when it begins 

and how long it lasts (relative to other processes such as the maintenance of fine-grained detail). Thus, a 

broader investigation is necessary to establish that feedback occurs more generally, and to determine 

when it operates relative to the array of simultaneous processes. 

 1.4 The present study. Addressing these three questions requires us to identify the precise time 

windows during which processing at different levels of analysis (auditory, phonological, contextual) takes 

place. Conventional EEG analyses have generally focused on finding differences in limited time windows 

around specific component peaks. However, these types of analyses alone cannot speak to how different 

processing steps fit together in time. Some recent work has sought to take this more comprehensive 

approach in written language comprehension (see Hauk et al., 2006, which examines the timecourse of 
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visual word recognition in EEG) and in the perception of isolated spoken words (see Ettinger et al., 

2014, which examines the interaction of morphology and surprisal over time in MEG). As of yet this 

approach has not been applied to a level of spoken language that is arguably more dynamic and where 

time is perhaps more critical. Crucially, while there is a longstanding assumption that perceptual and 

semantic processing operate in some form of continuous cascade, there is not a comprehensive picture 

of how all the parts fit together over time. 

Similar to these prior studies, we conducted a continuous-in-time analysis of the EEG signal during 

sentence processing. As in Getz and Toscano, we start from the finding that the N1 component tracks 

auditory encoding of acoustic cues, such as VOT. Here, an effect of VOT on the scalp voltage (lower 

VOTs ~ more negative N1s) is taken as a marker of perceptual encoding (particularly during the early, 

N1 window).  We embed this paradigm in a task in which participants heard a semantically biasing 

sentence such as Honey is made by—, followed by a token from a b/p continuum (bees/peas), where one 

side of the continuum is more likely to complete the sentence. In a typical N1 paradigm, one would 

predict that the N1 should linearly track the VOT of the continuum with lower VOTs reflecting more 

/b/-like stimuli. Further, if feedback is operative, one would predict that the N1 (VOT encoding) would 

be lower for /b/-biased sentences, though this may be limited to more ambiguous VOTs.  

To address our broader questions about the temporal aspects of language processing at different 

stages, we extend this paradigm to identify the timecourse of contextual/semantic processing, potential 

feedback signals, and the interaction of these factors with perceptual processing. These analyses provide 

a comprehensive picture of the timecourse of acoustic cue encoding, semantic integration, and 

contextual feedback during online, naturalistic sentence processing. They suggest perceptual processing 

of speech is fundamentally graded, and this gradiency persists well past the point of semantic integration. 

But they also suggest that semantic integration occurs very early and can exert feedback effects on 

perception in limited but robust ways. 
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2. MATERIALS & METHODS 

 2.1 Participants. Participants were 36 University of Iowa undergraduates, who completed the study 

for course credit in Elementary Psychology. Three participants were excluded for low accuracy on the 

behavioral task (less than 80% correct at VOT endpoints); two more were excluded due to excessive 

movement artifact in the EEG. The final sample included 31 participants (21 female, 9 male, 1 

nonbinary/unreported; age range: 18-30 years). 

 2.2 Design. Participants listened to sentences and indicated with a gamepad whether the final, target 

word began with /b/ or a /p/. The target words were selected such that each set of target words 

(bark/park) contained minimal pairs representing the endpoints of a VOT continuum. VOT was varied 

from 0 to 60 msec, with steps every 10 msec. There were 10 total target word continua. Sentences 

were designed to bias listeners toward one endpoint or the other of a given continuum. For example, 

“Good dogs sometimes also bark” is /b/-biased, while “Driving in Iowa City is miserable because there’s 

never anywhere to park” is /p/-biased. Sentences were normed in a separate free-response experiment 

to ensure that they predicted their target word more than 75% of the time, on average. See Table 1 for 

some example items, and Supplement S1 for full the full set of experimental sentences and items, with 

details on cloze probability of sentences, word frequency, average duration, and other stimulus 

characteristics. There were three /b/- and three /p/-biased sentences for each of the 10 continua. It was 

not possible to create sentences with neutral coarticulation (e.g., the /o/ in to or also of the preceding 

examples would partially predict a /b/ or /p/ due to coarticulation). Thus, sentences were recorded with 

Table 1. Examples of experimental stimuli. 

/B/-biased /P/-biased 

Sentence Target Word Sentence Target Word 

She stole my doll, so I asked her 

to give it— 
back 

A school is to fish what 

to wolves is a— 
pack 

Quiet dogs sometimes also— bark 

Driving in Iowa City is 

miserable because 

there’s never anywhere 

to— 

park 

She lied on the sandy— beach 
The state fruit of George 

is the— 
peach 
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both sides of the continuum, and this was counterbalanced within subject (across trials). There were 10 

continua, crossed with 7 steps of VOT, 2 coarticulation conditions, and 6 sentences per continuum, for 

a total of 840 experimental trials.  

We also included 240 filler trials in which the target words were always consistent with the 

sentence (see Supplement S1). These sentences and target words were distinct from the experimental 

items. Filler words began with either a /b/ or a /p/ and were not manipulated along a VOT continuum. 

This was done to ensure that the majority of trials fulfilled contextual expectations (so subjects wouldn’t 

fully ignore the sentence contexts) even as the target sentences were presented equally with each step 

of the continuum. 

Finally, an additional 60 catch trials were used. Catch trials were designed to keep participants 

engaged with the semantic/contextual information of the sentences, to ensure that they were generating 

meaning-based expectations for the target word. In experimental and filler trials, participants need not 

explicitly attend to the sentences to accurately categorize the target word. In comparison, on catch 

trials, subjects heard sentences without an auditory target word and chose via button push which of two 

(visually presented) words best completed the sentence. Catch trials were randomly interleaved among 

experimental and filler trials, such that participants would not know from the sentence context alone 

which type of response (phonemic—/b/ or /p/, or lexicosemantic—beach or peach) would be needed. 

Catch trials consisted of one presentation of each of the 60 experimental sentences, with no repetitions. 

The response options for catch trials were minimal pairs (i.e. beach or peach). Participants correctly 

identified the semantically related target word on 99.2% of trials, indicating that they were maintaining 

attention on meaning-based content of the sentences and that the sentences consistently predicted their 

target word.  

There were a total of 1140 trials (experimental, catch, and filler trials interleaved), and participants 

took roughly 1.5 hours to complete the task.  
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2.3 Materials. Context sentences were natural utterances of a female native English speaker, 

recorded in mono at a sampling rate of 44100 Hz. Each sentence was produced with both the /b/- and 

/p/-initial target words. For example, the female speaker produced both A pelican has a long beak and A 

pelican has a long peak. The final target words were then excised and both forms were used. Across 

trials, subjects heard both coarticulatory forms of the sentence with each step of the continuum, and the 

coarticulation of the sentence-final phoneme was included as a factor in our analyses. Sentences were 

cut in Praat from the beginning phoneme to the release of the sentence-final phoneme before the target 

word. Finally, we manipulated sentence duration to create 5 different versions of each sentence. This 

was done to ensure that any evoked EEG activity from the preceding sentences would average out when 

timelocking to the target word. We used the PSOLA (Pitch Synchronous OverLap and Add) function in 

Praat to create two slower versions (92.5% and 85% of the original duration) and two faster versions 

(107.5% and 115% of the original duration. Finally, the resulting sentences were later spliced onto the 

target words from the VOT continuum.  

To create VOT continua for the target words, natural recordings from the same female speaker, 

recorded separately from the sentence, were used. These were artificially manipulated in Praat 

(Boersma, 2006). We started with a token from each endpoint of the continuum, cleaned and prepped 

as described. Tokens were matched for pitch and prosody as much as possible. Any aspiration that was 

naturally produced on the /b/ token was removed, such that the /b/ token had a true VOT of 0 msec. 

The /p/ token had at least 80 msec of aspiration. After choosing the endpoint tokens, we created the 

continua. We excised the beginning of the /b/ and replaced it with a similarly long portion of aspiration 

from the /p/. This was done in consecutively increasing 10 msec increments, from 0 (representing the 

most /b/-like sounds) to 60 msec (representing the most /p/-like sound), which resulted in seven VOT 

steps along the continuum.   

2.4 Procedure. Participants gave informed consent before completing the study. Then, participants 

were fit with an EEG cap and escorted into the experiment booth. Participants were instructed that 
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there would be two different types of trials: (1) They will hear a sentence and also hear a target word, 

and need to respond with what letter that target word started with (/b/ or /p/), or (2) they will hear a 

sentence that will end abruptly, and two visual target words will appear on the screen. In this case, they 

should choose what word best completes the sentence. Participants were made aware that these two 

different types of trials would occur randomly throughout the experiment.   

On each trial, a black fixation cross on a white background was shown on a 26” monitor while 

participants heard sentences over Etymotic ER1 earphones, ending in a target word. The interstimulus 

interval between the end of the sentence-final phoneme to the beginning articulation of the target word 

was jittered around an average duration of 115 msec. After the target word finished playing, response 

options appeared on the screen, and the participant had 2 seconds to respond via a button press on a 

gamepad. When the participant responded or when maximum time (2 seconds) elapsed, the response 

options disappeared, and the trial advanced. There was an intertrial interval of 1.5 seconds. 

2.5 Electroencephalography. EEGs were recorded with a 32-channel BrainVision actiCap system in an 

electrically-shielded sound-attenuated booth. Electrodes were placed according to the International 10-

20 system, referenced online to the left mastoid, and re-referenced offline to the average of the left and 

right mastoids. Horizontal and vertical electrooculogram (EOG) recordings were obtained via 

electrodes placed approximately 1 cm from the lateral canthus of each eye and on the cheekbone 

directly below the center of the left eye. Recordings were collected via BrainVision active electrodes 

and the signal was amplified via BrainVision actiCHamp system. Impedance was less than 5 kΩ at all sites 

at the beginning of the recording session. Continuous data was resampled to 500 Hz and band pass 

filtered from 0.1 Hz to 30 Hz with an 8 dB / octave rolloff. Eye blinks were removed using ocular 

correction Independent Component Analysis (ICA), and trials with artifacts that exceeded a 100 µV 

change in a 100 msec window were excluded (approximately 5% of trials). Event-related potentials are 

timelocked to the onset of the sentence-final target word, data are baselined for each trial using a 300 
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msec window preceding the target word onset, and are then averaged across frontocentral electrodes 

(Fz, F3, F4, Cz, C3, C4). Full scalp topographies over time available in Supplement S7. 
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RESULTS 

3.1 Semantic bias of the preceding sentence shifts listeners’ categorization of the target 

word. 

 Figure 1 (left panel) shows the response data as a function of sentence context. For short VOTs, 

listeners were more likely to choose /b/, with a steep transition to /p/ around 30 msec. We used a 

logistic mixed effects model to determine whether Bias and VOT significantly influenced phoneme 

categorization responses. Fixed effects included Bias and Coarticulation (which were contrast coded: -1 

= /b/, 1 = /p/) and VOT was a continuous predictor (scaled and centered from -1 to 1). Random effects 

structures were chosen through forward model selection (Matuschek et al., 2017) and included a 

random intercept of Subject, as well as random slopes of Bias and VOT on subject; random intercept of 

Item and a random slope of Bias on Item. Full details are in Supplement S3.  

 

  

 We found a significant main effect of VOT on phoneme responses (β = 5.36, SE = 0.30, z = 18.15, p 

< .0001) with more /b/ responses for shorter steps. Sentence bias significantly shifted the categorization 

curve in the predicted direction (β = 0.47, SE = 0.13, z = 3.48, p = .0005): When listeners heard a 

Figure 1. Behavioral response data. The left panel shows the effect of sentence context on phoneme categorization (N = 31, p = .0005). 

The shaded region is standard error of the mean. The right panel shows the effect of sentence context on reaction times (N = 31, p = 

.01). 
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sentence which biased them to expect a /p/-initial word, they were significantly more likely to respond 

/p/. This replicates previous psycholinguistic work (Miller et al., 1984) and validates the stimuli and task. 

Coarticulation in the final phoneme of the sentence context also played the predicted role, with more 

/p/ responses after a /p/-coarticulated phoneme (β = 0.37, SE = 0.02, z = 17.07, p < .0001; see 

Supplement S2 for a plot of the Coarticulation effect on categorization responses).  

 Reaction time (RT) data is shown in Figure 1 (right panel), and shows the expected peak near the 

category boundary. RT was log scaled and analyzed with a linear mixed model with fixed effects of Bias 

(contrast coded) and VOT and the quadratic effect of VOT (as continuous predictors).  The quadratic 

term (VOT2) was included since RTs typically peak during ambiguous VOTs and decrease at either 

category side (Pisoni and Tash, 1974). Details of this model are in Supplement S3. The model also 

included interaction terms of Bias x VOT and Bias x VOT2. Random effects were selected by forward 

model selection and included random intercepts of subject and item, and random slopes of Bias, VOT, 

and VOT2 by subject and by item. 

We found a significant effect of VOT (β = -.029, SE = 0.03, t(10.19) = -1.37, p = .007), with shorter 

VOTs resulting in longer RTs, and longer VOTs resulting in shorter RTs. There was also a significant 

effect of VOT2, where VOTs at the category boundary resulted in longer RTs than those at the 

endpoints (β = -.039, SE = 0.005, t(22.74) = -7.36, p < .001). Finally, we found a significant effect of the 

interaction Bias x VOT2 (β = .0068, SE = 0.003, t(23370) = 2.57, p = .01). This reflects the fact that the 

peak RT shifted along with the category boundary, depending on the sentence bias. 

3.2 Characterizing the comprehensive timecourse of speech processing 

 Figure 2 shows average voltage at frontocentral electrodes over time as a function of VOT. The 

gray inset zooms in on the time window from 125 to 225 msec, at the canonical N1. Longer, /p/-like 

VOTs result in a less negative N1, whereas shorter, /b/-like VOTs yield a more negative N1, replicating 

prior work. However, visual inspection of the full timecourse, also suggests a similar linear effect just 

after the canonical P2 component, and again late in the epoch around 700-900 msec (indicated with 
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arrows on Figure 2). This underscores a need to expand the analyses to the full timecourse of 

processing, as not all of the effects of interest occurred directly at a component peak. Moreover, voltage 

at any moment is likely a product of multiple factors (and their interactions). Thus, characterizing 

processing may require an analysis that considers multiple simultaneous predictors over time.   

 Therefore, we developed a statistical approach to ask when each experimental manipulation (e.g., 

VOT, sentential context) significantly affected neural processing (the EEG waveform) over the full 

timecourse of processing. We ran a linear mixed-effects (LME) model every 2 milliseconds from 100 

msec pre-target word onset to 1000 msec post-onset to predict the measured voltage at frontocentral 

electrodes from all of the experimental factors (adjusting for the large number of comparisons). From 

this, we determined the time regions over which a given factor (e.g., VOT) significantly impacted voltage. 

This approach allows us to characterize the timecourse of processing when both lower level and higher 

level information is available (see also Broderick et al., 2018, Broderick et al., 2019). 

Figure 2. Averaged EEG waveform as a function of VOT, timelocked to the presentation of the target word (N = 31). 
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 To answer our three primary questions, we examined subsets of the manipulated factors. First, to 

assess the duration over which fine-grained acoustic information is maintained, we examined the 

temporal extent of the effect of VOT, reflecting the veridical acoustic signal. Additionally, we included a 

quadratic effect of VOT (centered-VOT2), reflecting an alternative hypothesis in which the voltage on 

the scalp does not reflect the raw VOT, but rather it reflects whether the VOT clearly belongs to a 

specific phonemic category or not (e.g., higher voltage at the boundary, analogous to the effect shown in 

reaction time literature).  

Second, to identify time windows in which expectations from the sentence impacted processing, we 

treated VOT in terms of distance from the expected category. For example, in a /b/-biased sentence, a 

VOT of 0 msec (/b/-like) was perfectly expected, while a VOT of 60 msec (/p/-like) would be 

unexpected; conversely, for a /p/-biased sentence, a VOT of 0 msec (/b/-like) was not expected, while 60 

msec (/p/-like) would be highly expected. This was operationalized as a Bias × VOT interaction. By 

estimating the onset of this effect, we could determine when the incoming signal is compared to 

sentence-based expectations. This interaction is analogous to typical N400 analyses (Kutas and Hillyard, 

1980), as it reflects the degree of expectation or violation. If fine-grained representations of VOT are 

preserved even after the onset of semantic processing (Question 1), the linear effect of VOT should be 

preserved even after the Bias × VOT interaction becomes significant.  

 Finally, to identify feedback from sentence processing to the level of VOT encoding, we assessed a 

main effect of Bias. That is, if context-based expectations influence how listeners encode VOT from the 

earliest moments of target word processing, a /b/-biased sentence should lead to a lower voltage overall 

in the EEG (shorter, /b/-like VOTs = more negative N1s). However, Getz and Toscano (2019) observed 

this effect only at ambiguous VOTs. In our model, this should appear as an interaction of the quadratic 

effect of VOT and sentence bias (Bias × VOT2 interaction). Thus, feedback would be indicated by either 

a main effect of Bias or a Bias × VOT2 interaction. Moreover, if we find a time window in which VOT 
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alone affects the signal, this suggests a point where only bottom-up acoustic information is processed, 

independently of top-down feedback.  

To summarize, the fixed effects included the linear effect of VOT (of the target word, centered and 

scaled from -1 to 1), the quadratic effect of VOT (VOT2, calculated from the centered VOT term and 

then re-centered and scaled from -1 to 1), Coarticulation (of the sentence-final phoneme, -1 = /b/, 1 = 

/p/), and semantic Bias (of the preceding sentence; -1 = /b/, 1 = /p/). We also included interaction terms 

for Bias × VOT and Bias × VOT2. 

Potential random effects included Subject and Item. As all of the fixed effects were within-subject 

and within-item, they were potential random slopes. There is some current debate around the optimal 

approach to selecting random effects structure (Barr et al., 2013, Matuschek et al., 2017, Seedorff et al., 

submitted). While Barr et al. (2013) recommends a maximal approach with fully random slopes, this 

approach has been shown to be anti-conservative when the data do not warrant this (Seedorff et al., 

submitted, Matuschek et al., 2017). The maximal approach is further complicated by the complexity of 

the models used here and the fact that they needed to be run hundreds of times—non-convergence 

would be a real problem. However, Seedorff et al. (submitted) recently introduced a model-space 

approach in which all possible random effects structures are tested, and the model with the lowest 

Akaike’s Information Criterion (AIC) is kept. They showed that this holds Type I error at .05 and 

maximizes power, as it chooses models only as complex as necessary for the data.   

Thus, random effects structure was determined applying this procedure to representative 

timepoints. The model with the lowest AIC was recorded at each timepoint. We then examined the 

distributions of models across time to select a single random effects structure that could be used for the 

entire time course (i.e. the model that had the lowest AIC at the highest number of timepoints).  The 

final, random effects structure included a random intercept of Subject, random intercept of Item, and 

random slope of Bias on Item. 
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 Because we were conducting multiple comparisons across time, it was important to control for 

family-wise error. Significance tests in a timeseries are highly autocorrelated, and thus do not represent 

truly independent tests. We corrected our significance tests using a true family-wise error correction 

developed as part of the Bootstrapped Differences of Timeseries (BDOTS) approach to timeseries 

analysis. This family-wise error correction that computes autocorrelation among the statistics and 

identifies an adjusted alpha value for each factor. This approach is less conservative than a traditional 

Bonferonni correction. It also offers a true family-wise error correction, unlike FDR which admits some 

probability of false discovery (see Oleson et al., 2017, for a derivation and Monte Carlo simulations, and 

Seedorff et al., 2018, for application to Visual World Paradigm data). Corrected alphas for each factor 

are reported in the Supplement S3. The LME model was fit in R using the lme4 package. Further model 

details are also available in the Supplement S3. We summarize the major findings below. 
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Figure 3. (A) The full model output over time. The intercept (estimated voltage from the model output) is shown on the bottom line graph 

with beta coefficients of significant predictors shown above; the width of the balloon corresponds to the strength of the effect and the 

positive/negative symbol corresponds to the direction of the effect. (B-F) Effects taken from peak effect timepoints show change in 

predicted voltage as a function of different predictors, calculated from a parametric bootstrap on the estimated model that time.  This 

bootstrap estimated the predicted voltage for a “new” subject. Individual effects (like VOT) were set to the original values used in the 

model; for effects not shown, corresponding IVs were set to 0. Standard error of the model’s predicted value is shown by the shaded 

region. In the calculations for B-F, the terms for VOT and VOT2 move together, as they reflect different polynomial transformations of the 

same variable. VOT2 shows the effect of phonemic ambiguity (A and D). VOT is acoustic cue encoding (C and E). Bias × VOT2 shows the 

differential effect of predictions from the sentence Bias depending on whether the incoming VOT is near category boundary (ambiguous) 

or not (D). Bias × VOT is the integration of semantic/contextual information with the incoming spoken word (E and F). 
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3.3 Early perceptual processing is sensitive exclusively to the bottom-up signal, and 

acoustic representations endure for a long time. 

  Figure 3 shows the full output of the LME model, with insets showing main effects and interactions 

at peak effect timepoints (see Supplement S4 for a table summarizing complete results). We found an 

early linear effect of VOT in the time associated with the canonical N1 shown in Figure 2. This linear 

effect was significant from 130-220 msec (see Figure 3C, showing model-predicted voltage as a function 

of VOT at that time point). However, the linear effect of VOT (in red) also re-appears at multiple later 

timepoints with a second later window from 260-340 msec, and even later effects past 700 msec, as can 

be seen in Figure 2 and 3A, and in Supplement Figure S4. This suggests that fine-grained differences in 

the acoustic cue is maintained in cortical activity for substantially longer than they exist in the auditory 

signal.  

 The quadratic effect of VOT (VOT2) was also significant (Figure 3A, in blue; see Supplement S6 for 

EEG waveform), with an extremely early effect from 80-164 msec (during the canonical P50). Like with 

VOT, this effect re-appears at later timepoints. Our early effect replicates Gwilliams et al. (2018); 

however, the later effects have not been observed previously. This suggests that multiple concurrent 

representations (both categorized and veridical) of the acoustic signal are maintained during processing. 
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3.4 Semantic processing overlaps with early perceptual analysis and is graded with respect  

to the fine-grained acoustic signal. 

To visualize the effect of semantic expectations, we recoded VOT in terms of its distance of the 

expected phonemic category (i.e. /b/ or /p/). Figure 4 shows the EEG as a function of this relative VOT 

measure. It suggests a time just after the P2 (the dark gray inset) in which expectations affect scalp 

voltage, with less expected stimuli leading to a lower voltage. In our statistical model, the Bias × VOT 

interaction (orange in Figure 3A) was significant from 228-352 msec, corresponding with the inset in 

Figure 4, which is substantially earlier than typical N400 window for semantic integration, but consistent 

with recent work (Broderick et al., 2018). Furthermore, the effect of context integration was not 

restricted to this time window, but extended through about 600 msec. 

Figure 4. Averaged EEG waveform as a function of distance from expectation, timelocked to the presentation of the target word (N = 31). 
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 Importantly, this contextual integration effect was gradient, relative to VOT. This suggests interlevel 

interactions and continuous cascades in processing: processing at the semantic or sentential levels 

interacts directly with perceptual analysis of the acoustic signal. This interpretation is further supported 

by the fact that the effect of cue encoding (the VOT main effect) and the effect of integration (the Bias × 

VOT interaction) were significant during overlapping time windows (260-340 msec and 228-352 msec, 

respectively).  

Secondly, the direction of the interaction switches throughout processing (Figure 3E vs 3F). At 

early points (Figure 3E), this is consistent with the direction predicted by the conventional N400; it 

then reverses (Figure 3F) for about 100 msec and returns to the predicted direction (the third 

region, 530-580 msec). This temporary switch in direction may reflect the integration of different 

types of processing, such as novelty P3 effect (see Friedman et al., 2001 for a review), in which a 

more surprising (or less expected) stimulus yields a higher amplitude positive peak. Or, it may 

reflect activity originating in a different cortical area; this is considered further in the discussion. 

3.5 Evidence for feedback. 

 There was little overall evidence for a main effect of Bias. This suggests that expectations from 

sentence context may not generally bias VOT encoding. However, we did find a significant Bias × VOT2 

interaction from 208-270 msec (green in 3A) and at multiple later points in the timecourse of 

processing. At 240 msec (Figure 3D, bottom), when listeners expect a /p/, VOTs are encoded less 

negatively (more /p/-like) but only at the ambiguous VOTs (in the middle of the continuum). Similarly, 

when listeners expect a /b/, VOTs are shifted more negatively (more /b/-like), but again only in the 

middle of the continuum. This effect does not hold for endpoint VOTs clearly belonging to a phoneme 

category, suggesting that those VOTs at category boundary may be more susceptible to some types of 

top-down influences. 
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3. DISCUSSION 

 This study aimed to characterize how the neurophysiological correlates of distinct components of 

language processing (perceptual encoding, semantic expectations, feedback) relate during real-time 

dynamic sentence processing. We asked (1) how long fine-grained acoustic detail is maintained in the 

neural signal, (2) how semantic processing relates to perceptual processing, and (3) how and when 

semantic feedback affects acoustic encoding. Our statistical approach used an LME model over time to 

capture cascading levels of processing: from acoustic encoding to graded semantic/contextual 

processing. 

4.1 Limitations.  

The study has two limitations worth discussing. First, it was necessary to have multiple repetitions 

of each sentence, in order to have sufficient power to detect an effect of VOT and maintain a balanced 

design. However, the repetition of sentences may have caused participants to engage with the sentence 

contexts in an unnatural way, due to task demands, or may have created stronger expectations than 

what would be observed in free-running, conversational speech processing. Nevertheless, this design is 

similar to others which have explored issues of subphonemic and sentential processing (Gow Jr and 

Olson, 2016, Getz and Toscano, 2019), and yet still overcomes some of the limitations of those designs. 

Moreover, with over 60 sentences it would have been difficult for participants to store much in 

memory.  

Second, we limited our LME analyses to an average of frontocentral electrodes in order to capture 

both auditory and semantic/contextual information in the EEG signal. Thus, it could be possible that our 

effects are unique to this subset of electrodes. However, Supplement S5 shows a replication of our LME 

analysis at centroparietal electrodes to test the robustness of our conclusions. This shows a highly 

similar pattern of results, suggesting these effects are not an artifact of the recording sites that were 

chosen. 
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4.2 Listeners retain fine-grained representations of perceptual cues.  

We found a linear effect of VOT on voltage at frontocentral electrodes at times that extend to roughly 

350 msec post stimulus onset. This effect also re-appeared later in the epoch from approximately 650 

msec to 900 msec, switching directions briefly from ~650-750 msec. Even this initial period is well 

beyond the typical N1, and in total both effects represent a substantial extension to earlier studies (Getz 

and Toscano, 2019, Toscano et al., 2010). It suggests the brain retains gradient differences in VOT for a 

considerable amount of time, long after semantic processing has begun (indicated by our Bias × VOT 

effect beginning at 228 msec). This long-term storage of fine-grained detail may be crucial for allowing 

listeners to revise earlier perceptual decisions on the basis of subsequent context. In this vein, prior 

psycholinguistic work suggests that listeners retain and use such information as late as one second after 

the target word (Szostak and Pitt, 2013, Connine et al., 1991, Brown-Schmidt and Toscano, 2017). 

Critically, we extend this by showing that listeners retain subphonemic information even when no 

further disambiguating linguistic information is coming. That is, even though the maintenance of VOT will 

not be needed to help resolve any prior ambiguity, listeners appear to spontaneously retain it anyways. 

This offers some of the strongest evidence to date that long-term retention of fine-grained detail is a 

typical mode of language processing. 

One possible mechanistic basis of this effect is are actively maintaining subphonemic acoustic 

information (e.g., the continuous VOT) to support this kind of flexible updating. This may reflect 

something akin to an echoic store that could be crucial in cases when lexical analysis completely fails 

(e.g., in challenging signals) and the signal essentially must be reparsed. Alternatively, it could take the 

form of a set of continuous cue values (e.g,. VOTs) rather than a raw acoustic store. Critically, this 

maintenance of the VOT occurred concurrently with semantic processing and integration, and both 

processes overlapped at 260-340 msec. This suggests that semantic integration does not cause 

perceptual analysis to cease.   
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 Another possible interpretation is that these effects do not reflect acoustic-level information from 

brain activity in the later time periods. The early effect of VOT around 100-200 msec almost certainly 

reflects perceptual-level processing, however, it is possible that this information might be rapidly 

abstracted to a weighted phonemic, or even lexico-semantic, representation. That is, it could be that, for 

example, the acoustic-level VOT of 60 msec may instead be maintained at the phonemic level as “14% 

/b/-like, 86% /p/-like” (or at the lexical level as “14% beach-like, 86% peach-like). Or, similarly, this later 

effect could be reflective of some sort of weighted motor planning or response-based representation.   

Parsimony argues more for the former than the latter explanation. Particularly in the ~100-350 

msec time window, it is more likely the representation of VOT itself (either as an auditory or cue-value 

based), than something else. In this window, the effect is strong and consistent in its polarity, At the 

later 650-900 msec time window, this argument may hold true. The brief switch in the direction of the 

VOT effect from ~650-750 msec could also indicate that the underlying neural substrate has changed, 

and perhaps by extension that the nature of the graded representation has changed into one of these 

more abstracted forms such as  weighted phonemic or lexical representation.  

This alternative cannot be ruled out from this data alone. However, we note that even if this late 

effect reflects something higher order, the VOT would be recoverable from this weighted higher-level 

representation. That is, if the listener knew the sound was 60% peach-like they could determine that 

VOT was likely around 25 msec. Therefore, fine-grained acoustic detail is still maintained and 

recoverable from net state of activity, even if the representation is maintained in a more abstracted 

form. 

4.3 Some VOTs are more difficult than others. 

In addition to the linear trend of VOT, we also found an extremely early quadratic VOT effect from 

80-164 msec, and this reappeared later throughout the timecourse of processing. This effect reflects 

differential processing for ambiguous VOTs (in the middle of the continuum) than clearer, endpoint 

VOTs. It can be interpreted in at least two ways. First, this VOT2 effect could reflect rapid, near 
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immediate phonological categorization, suggesting a form of categorical perception (Liberman et al., 

1957, Chang et al., 2010). This interpretation would appear to conflict with our claims of a robust 

gradient effect. However, if the VOT2 effect does reflect a category-based response, we note that these 

categorized representations must be maintained in parallel to the cue level representations (Pisoni and 

Tash, 1974), because the linear representation of VOT is maintained concurrently (and in fact, even 

longer). Thus, this is not consistent with classic accounts of categorical perception.  

Alternatively, the VOT2 effect may not reflect categorization at all. Instead, it may reflect the 

difficulty in encoding a given VOT: non-canonical VOTs near the category boundary are harder to 

identify from the signal due to their relative rarity in a spoken language. This explains the longer lasting 

and later linear effect of VOT: after this initial encoding difficulty is overcome, the linear representation 

can be maintained. This would support a statistical learning account (Maye et al., 2008, Maye et al., 

2002), in which listeners have less experience with category-boundary VOTs in their native language. 

This is also supported by neural modeling suggesting that auditory feature maps (e.g., of cues like VOT) 

are sensitive to the relative frequency of individual cue values, devoting more “neural representational 

space” to more canonical values (Salminen et al., 2009, Herrmann et al., 1995, Gauthier et al., 2007). 

4.4 Contextual Integration and the N400. 

 We found that the electrophysiological signal in the conventional N400 time window is continuous 

with respect to the fine-grained acoustics, suggesting that fine-grained variation in acoustic cues (which 

should have been discarded during perceptual processing) cascades to affect how words are integrated 

into a sentence. This has not been observed in prior N400 studies (which typically do not manipulate 

the acoustic or perceptual form of the stimulus). These findings suggest that not only is the cue level of 

representation continuous with respect to the input, but this gradiency is preserved throughout the 

process of integrating words into sentences. That is, the degree of difficulty with which semantic 

alternatives are integrated with expectations from the surrounding sentential context is graded relative 
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to the fine-grained acoustics: the further an acoustic cue is from the expected acoustic cue, the larger 

N400-like effect we observe.  

Contextual integration began as early as 228 msec into the target word, earlier than the canonical 

N400, but similar to Broderick et al. (2018). This is during the time in which raw VOT is maintained in 

the signal, which suggests that multiple levels of linguistic analysis are taking place simultaneously. 

Semantic integration does not wait for perceptual processing to finish. 

4.5 Context Driven Feedback and Predictive Coding. 

Finally, we show some evidence for top-down feedback on the parsing of the acoustic signal. While 

classic debates focus on the broader question of whether feedback is present or not (e.g., Norris et al., 

2000), our results suggest a more complex story. Our data show little overall effect of sentential bias on 

overall voltage. However, we did observe a Bias  VOT2 interaction that is consistent with the predicted 

effect (and similar to Getz and Toscano, 2019). This suggests that the effect of semantic expectations on 

encoding of VOT may be limited to ambiguous VOTs. Perhaps it is recruited due to the difficulty in 

encoding these VOTs indicated by the main effect of VOT2. This limited effect is also consistent with 

Allen and Miller (2001) who showed that goodness ratings can be influenced by lexical status only at the 

boundary, whereas speaking rate (a bottom up factor) affects them at all VOTs. 

 The feedback effect observed here was somewhat late in processing. This timecourse is not 

entirely consistent with Getz and Toscano (2019), who found an effect of bias at roughly 75-125 msec, 

at the peak of the canonical N1. In contrast, we did not observe this effect until around 200 msec. It 

may take longer for expectations set in a dynamic sentence context to build and influence perception 

than it might in the highly associated word pairs used by Getz and Toscano (2019). Importantly, our 

feedback effect still occurs before the onset of semantic integration of the target word (as shown by the 

Bias  VOT effect). This suggests that at ambiguous VOT steps, sentential bias plays a significant role in 

parsing the acoustic signal even before semantic integration of the unfolding word has begun. This is 
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strong evidence that we are detecting a true feedback signal in the language system, and not some other 

type of attentional process. 

At the same time, we also observed an early time window (130-220 msec) which appears to be 

exclusive to bottom-up perceptual processing. This type of delayed interaction between perceptual 

processing and top-down feedback is not fully captured by any of the current theories of speech 

perception. It may be consistent with a hybrid of an interactive-activation (e.g., McClelland and Elman, 

1986) and a predictive-coding model (Rao and Ballard, 1999, McMurray and Jongman, 2011, Blank and 

Davis, 2016). In predictive coding accounts, listeners must maintain both a raw encoding of the signal 

(e.g., VOT) and a representation of the expected signal (e.g., the VOT that is predicted by the context). 

This dual representation is necessary as speech perception is not based solely on either the bottom-up 

signal or the expected value, but rather is based on a comparison between the two (e.g., is this VOT 

higher or lower than would be expected) (McMurray and Jongman, 2011). In our experiments, the 

earliest time window (130-220 msec), which was only sensitive to VOT, may reflect the veridical signal, 

while the later VOT2 × Bias region (208-270 msec) reflects expectations. Maintaining these concurrent 

representations may help listeners avoid over-relying on the biased representation, which, in rare cases, 

may turn out to be false (Norris et al., 2000). Further experiments will be required to clarify exactly 

how bottom-up and top-down feedback interact in the timecourse of speech processing and whether 

these computations are carried out simultaneously in the same brain region or different brain regions in 

parallel. 

 As a whole, this suggests a model of speech processing in which there are no clearly delineated 

states and multiple processes—signal based, feedback based, and semantic integration—occur 

simultaneously in overlapping waves. At every level, the system is highly gradient with respect to the 

incoming signal, while also driven by expectations.  
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S1: Stimulus details. 

Below we quantify relevant characteristics of both the biasing sentences as well as the target words.  

• Cloze probabilities were determined in a separate free-response norming experiment, run on 

Amazon Mechanical Turk with native English speakers. For each sentence we computed the 

likelihood of the predicted response.  These were not significantly different between /b/-biased and 

/p/-biased sentence contexts (t(58) = 1.188, p = .23). 

o /b/-biased average: 0.86 ± 0.11 

o /p/-biased average:  0.82 ± 0.15 

 

• Duration was calculated in Praat from the original, naturally-spoken utterance of the female native 

speaker with the coarticulation matching the sentence bias, and were not significantly different 

between /b/-biased and /p/-biased sentence contexts (t(58) = 0.719, p = .47). 

o /b/-biased average: 2165.4 ± 708.8 msec 

o /p/-biased average: 2280.6 ± 517.0 msec 

 

• Idioms were determined by whether or not the target word referred to its literal definition, or 

whether it was part of a larger phrase with an obfuscated meaning (i.e. “the birds and the bees”), and 

were not significantly different between conditions (χ2(1, N=60) = 0.626, p = .30). 

o /b/-biased average: 1 idiom / 30 total phrases 

o /p/-biased average: 3 idioms / 30 total phrases 

 

• Compound words included proper nouns (i.e. Super Bowl), words where the target made up part of 

that word (i.e. iPad), and also word pairs with extremely high co-occurrences (i.e. amusement park). 

The /p/-biased condition did have significantly more compound words than the /b/-biased condition 

(χ2(1, N=60) = 8.369, p = .002). 

o /b/-biased average: 4 compound words / 30 total phrases 

o /p/-biased average: 16 compound words / 30 total phrases 

 

• Word frequency was calculated for each word. A dash indicated that the word didn’t show up in the 

corpus. We used both Brown frequency and Kucera-Francis frequency; word frequency was not 

significant different between conditions (Brown: t(18) = 1.394, p = .18; Kucera-Francis: t(18) = 

1.343, p = .19). 

o /b/-biased average  

▪ Brown: 32.3 ± 69.0  

▪ Kucera-Francis: 167 ± 303.7 

o /p/-biased average:  

▪ Brown: 0.6 ± 0.84  

▪ Kucera-Francis: 23.7 ± 29.5 

 

 

Tables S1a and S1b show the full set of experimental stimuli and their accompanying characteristics. 
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Table S1a: /B/-biased experimental stimuli. 

Sentence Cloze 

prob. 

Duration 

(msec) 

Idiom Compound 

Word 

Target 

Word 

Brown 

freq. 

K-F 

freq. 

She stole my doll, so I asked her 

to give it .91 3338.3   
back 221 967 

Don’t worry, I got your .88 1625.2   

I can’t reach to scratch my .82 1957.0   

There are some good news, and 

some .81 1876.2   

bad 64 142 Well, that’s too .78 1051.6   

Sometimes he’s good, sometimes 

he’s .75 3198.6   

The dog started to .88 1217.1   

bark - 14 The outer part of a tree is called .82 1990.1   

Quiet dogs sometimes also .79 1920.8   

If you are dirty, you should get in 

the tub and take a  1.0 3171.5   
bath 3 26 

She took a nice warm .84 1540.8   

The little girl took a bubble .76 1661.2   

He enjoyed the ocean air, so he 

often went to the  .96 3348.7   
beach 1 61 

She lied on the sandy .91 1397.3   

While in LA, we went to Venice .65 2213.5   

Winnie the Pooh is a hungry 1.0 1762.6   

bear 9 57 
The white furry animal is a polar .96 2535.4   

The animal on California’s flag is 

a .75 2868.2   

Honey is made by 1.0 1324.6   

bees 1 - 
I had to talk to my son about the 

birds and the 1.0 2683.5 X  

Out of the hive, came the  .76 1792.1   

The governor vetoed the  1.0 1937.7   

bill 7 143 
I paid my water .89 1633.2   

In order to register, you must 

pay your University .88 3794.6   

I poured my cereal into the .96 2026.6   

bowl 2 23 
Beyoncé sang at the Super .96 1979.7  X 

We’re going to Florida to watch 

the Orange .92 2743.1  X 

I have a play station and an X- 1.0 2700.1  X 

box 15 70 She played with a jack-in-the- .70 1980.2  X 

It’s an empty jewelry .65 1693.3   
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Table S1b: /P/-biased experimental stimuli. 

Sentence Cloze Duration Idiom Compound 

Word 

Target 

Word 

Brown 

freq. 

K-F 

freq. 

A school is to fish what to 

wolves is a  1.0 2894.8   

pack 2 25 For school, I need a back .90 2091.1  X 

I ran out of cigarettes, so I’ll go 

buy a .85 2462.4   

You move the computer mouse 

on a mouse .96 2307.0  X 
pad - 8 

In the lake, we saw a lily .95 1852.0  X 

The iPhone is smaller than an i .89 2598.3  X 

There are several roller coasters 

in that amusement 1.0 2843.5  X 

park 2 94 

Driving in Iowa City is miserable 

because there’s never anywhere 

to .90 3713.2   

In New York, there is the 

Central .72 1958.7  X 

She was led down the garden .86 1675.5   

path - 44 
Unfortunately, our shop is a bit 

off the beaten .59 3031.4 X  

He went down the wrong .39 1449.1   

Super Mario found Princess 1.0 2070.7  X 

peach - 3 The state fruit of Georgia is the .87 2041.3   

Isn’t she just a Georgia .68 1729.5 X  

My running shoes are done, I 

need to get me a new .88 2967.6   
pair 1 6 

These gloves are on sale, I’ll get a .70 2621.9   

Another word for “couple” is a .67 2033.3   

Fergie is in the Black-Eyed .95 2190.5  X 

peas - - Hummus is made out of chick .83 1608.8  X 

I’m allergic to sugar snap .62 1812.3  X 

Relax and take a chill 1.0 2038.6 X  

pill - 15 I order to sleep I take a sleeping .90 2420.2   

If you are in pain, take a pain .57 2453.6   

Santa lives at the North 1.0 1725.4  X 

pole - 18 

There are no penguins in the 

South .70 2195.0  X 

Greenland is right under the 

North .81 2074.8  X 

I got a vaccination for the 

chicken .92 2494.5  X 

pox 1 1 A lot of Native Americans died 

of small .91 3058.1  X 

He is down with chicken .74 2005.0  X 
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Table S1c. All filler stimuli. 

B-biased P-biased 

Sentence Cloze 
Target 

Word 
Sentence Cloze 

Target 

Word 

A pub is just another name for a  1.0 

bar 

Miss Universe wished for world .95 

peace 

I’ll just get something from the 

salad 

.96 Speak up, or forever hold your .95 

If you want a drink, you should 

go to a 

.81 War is the opposite of .92 

Whatever floats your .86 

boat 

The head of the Catholic church 

is the 

.84 

pope 
We went fishing on my dad’s  .71 In the Vatican, they elected the 

new 

.82 

I am bored of sailing, I want a 

motor 

.68 He wore a tall white hat and a 

big cross, just like the 

.68 

Every Thanksgiving, my sister and 

I fight over the wish 

1.0 

bone 

I need a pencil or a .96 

pen 
I’ve sprained my ankle, but I’ve 

never broken a 

1.0 There is no more ink in this .86 

The dog ran out to bury her 1.0 The pitcher just went into the 

bull 

.35 

On Kindle, you can read an e- .73 

book 

I need an Advil because I’m in  .91 
pain 

He’s so predictable, like an open .95 I’m completely numb, I feel no .83 

Let me read my .52 You just need to step up to the .83 plate 

My feet stayed dry because I 

wore my rain 

.95 

boots 

The walls need another coat of .96 

paint 
This dress goes with these 

cowboy 

.91 They’re as close as two coats of .63 

It’s snowing, so put on a pair of 

snow 

.82 She made a list with cons and 1.0 
pros 
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S2: Effect of Coarticulation 

Coarticulation in the final phoneme(s) of the carrier sentence was manipulated orthogonally to the 

other factors as it provides a secondary cue to voicing (the primary cue being Voice Onset Time, or 

VOT). Previous psycholinguistic work has shown that coarticulatory information of a preceding 

phoneme influences how listeners categorize phonemes (Holt, Lotto, & Kluender, 2000; Mann & Repp, 

1980). While this was not a variable of core interest (rather, a methodological counterbalancing factor), 

we conducted exploratory analyses which included coarticulation as a factor in our analysis of the 

response data.  

Figure S2 shows phoneme response curves as a function of coarticulatory condition. The model is the 

same as described in Figure 1 (left panel, main text) and is further detailed in S3 below. Coarticulation 

shifted phoneme responses in the predicted direction (β = 0.37, SE = 0.022, z = 17.07, p < .0001). 

 

 

 

  

Figure S2. Phoneme categorization curves split by coarticulation of the sentence-final phoneme (N = 31, p < .0001). Shaded region 

is standard error of the mean. 
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S3: Model descriptions & detailed output for phoneme responses and reaction times. 

Phoneme response categorization data. 

 

Response categorization was analyzed with a mixed effects model with the binomial link function.  The 

fixed effects are Bias and Coarticulation as factors and VOT as a continuous predictors, and the random 

effects (chosen through forward model selection) are a random intercept of Subject, as well as random 

slopes of Bias and VOT on subject, random intercept of Item and a random slope of Bias on Item. 

Fixed effects are coded using the scheme described in Table S3a.   

The formula for the model (in LMER) notation is provided in (1). 

results <- glmer( Response ~ Bias + VOT + Coarticulation + ( 1 + Bias + VOT | Subject )  

… + ( 1 + Bias | Item ), data = currentdata, family = binomial )     

 

Full model output for fixed effects is shown in Table S3b. 

 

 

  

Table S3a. Fixed effects coding scheme 

for response categorization LME. 

Bias VOT 

actual code actual code 

B -1 0 -1 

P 1 10 -0.667 

 20 -0.333 

Coarticulation 30 0 

actual code 40 0.333 

B -1 50 0.667 

P 1 60 1 

 

 

 

 

 

(1) 

Table S3b. Response categorization LME output of fixed effects.  

Fixed Effects B SE z  p  

(Intercept) 0.50 0.29 1.73 .08  

Bias 0.47 0.13 3.48 .0005 *** 

VOT 5.36 0.30 18.15 < .0001 *** 

Coarticulation 0.37 0.02 17.07 < .0001 *** 
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Reaction time data. 

Reaction time data (RT) was also analyzed with a mixed effects model. RTs were transformed using 

natural log. The fixed effects are Bias, included as a factor, VOT, included as a continuous predictor, and 

VOT2, also included as a continuous predictor. The coding scheme is shown in Table S3c. The random 

effects (chosen through forward model selection) are a random intercept of Subject, random slopes of 

Bias, VOT, and VOT2, random intercept of Item, as well as random slopes of Bias, VOT, and VOT2 by 

Item. 

 

The formula for the model (in LMER) notation is provided in (2). 

 

results <- lmer(RT_log ~ Bias*(VOT + VOT2) + (1 + Bias + VOT + VOT2) || Item) +  

   (1 + Bias + VOT + VOT2) | Subject), data = currentdata )   

 

Full model output for fixed effects is shown in Table S3d. 

 

Table S3c. Fixed effects coding scheme for RT LME.. 

Bias VOT VOT2 

actual code actual code actual code 

B -1 0 -1 0 1 

P 1 10 -0.667 10 -0.111 

 20 -0.333 20 -0.778 

 30 0 30 -1 

40 0.333 40 -0.778 

50 0.667 50 -0.111 

60 1 60 1 

 

Table S3d. RT LME output of fixed effects.  

Fixed Effects B SE df t  p  

(Intercept) 2.44 .03 34.08 87.44 < .001 *** 

Bias -.0068 .005 10.19 -1.37 .19  

VOT -.029 .009 20.99 -3.01 .007 ** 

VOT2 -.039 .005 22.74 -7.36 < .001 *** 

Bias x VOT .0006 .003 23370 .19 .85  

Bias x VOT2 .0068 .003 23370 2.57 .01 * 
Note: Degrees of freedom are estimated using the Satterthwaite approximation, as implemented in 

the lmerTest package in R. This is a standard approach for calculating degrees of freedom in linear 

mixed effects models. Using these approximations has not been shown to result in higher Type I error 

rates (see Seedorff et al., submitted). 

 

 

 

 

 

(2) 
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S4: Detailed results of LME analysis of EEG over time. 

We ran an LME analysis of the EEG signal every 2 msec to determine when different factors significantly 

predicted the averaged scalp voltage from frontocentral electrodes (Fz, F3, F4, Cz, C3, C4). This set of 

electrodes was chosen because they have been implicated in acoustic processing at the canonical N1 (Fz, 

F3, F4; Toscano, McMurray, Dennhardt, & Luck, 2010) as well as semantic processing in the auditory 

modality at the canonical N400 (Cz, C3, C4; Kutas & Federmeier, 2011).  

 

Fixed effects are Bias and Coarticulation, included as factors, and linear VOT and quadratic VOT as 

continuous predictors. Table S4a shows the coding scheme used. Alpha levels for each factor were 

corrected for multiple comparisons and are shown in Table S4b (Oleson, Cavanaugh, McMurray, & 

Brown, 2017; Seedorff, Oleson, & McMurray, 2018).  

 

Random effects structure are a random intercept of Subject, random intercept of Item, and random 

slope of Bias on Item. Random effects structure was determined by choosing representative timepoints 

along the epoch, and testing different models at said timepoints. The model with the lowest Akaike’s 

Information Criterion (AIC) at the majority of timepoints was then selected to run across the full epoch. 

 

The formula for the model (in LMER) notation is provided in (3).   

 

 results <- lmer( Voltage ~ Bias * ( VOT + VOT2 ) + Coarticulation + ( 1 | Subject ) + 

        ( 1 + Bias || Item), data = currentdata ) 

 

 

 

 

 

 

 

 

  

Table S4a. Fixed effects coding scheme for EEG LME over time. 

Bias VOT VOT2 

actual code actual code actual code 

B -1 0 -1 0 1 

P 1 10 -0.667 10 -0.111 

 20 -0.333 20 -0.778 

Coarticulation 30 0 30 -1 

actual code 40 0.333 40 -0.778 

B -1 50 0.667 50 -0.111 

P 1 60 1 60 1 

 

Table S4b. Error-corrected alphas for predictors (main effects and interactions). 

 Bias Coarticulation VOT VOT2 Bias x VOT Bias x VOT2 

FWEC ɑ’s 0.0169 0.0168 0.0227 0.0206 0.0259 0.0193 

 

(3) 
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Finally, Table S4c shows a summary of the LME outputs, shown in Figure 3 (main text), with the time 

windows (a) of all significant predictors after correction for multiple comparisons. The last column in 

Table S4c gives the formula with beta coefficients for the midpoint of the time window, corresponding 

to the time shown in (b). Select timepoints from later in the epoch are plotted in Figure S4, which were 

not included in the main text. 

S4: Effect of Phonemic Ambiguity (VOT2) on EEG signal. 

Phonemic ambiguity was coded as distance from the middle VOT in our continuum and included as the 

term VOT2 in our LME model for predicting scalp voltage. Figure S4 shows the EEG waveform at 

frontocentral electrodes, split by steps from the most ambiguous token. The most visible effect can be 

seen at the canonical P50 and P200 peaks, where the most ambiguous token yields the highest voltage, 

roughly 110 msec and 250 msec, respectively. 

 

  

Figure S4. Averaged EEG waveform from frontocentral electrodes as a function of distance from ambiguous VOT, timelocked to the 

presentation of the target word (N = 31). 

 

Table S4c. Significant time windows (a) and corresponding formulas with beta weights from timepoint (b). 

Time (msec) Significant 

Predictor 

Formula to calculate µV 

B0 + B1X1 + B2X2 + … (a) (b) 

96 – 118   108 Coarticulation 1.289 + (0.225*Coarticulation) 

 

80 – 164  122 VOT2 

 

1.371 + (0.103*VOT) + (-0.407*VOT2) 

130 – 220  176 VOT 

 

-0.773 + (0.939*VOT)  

208 – 270  238 Bias x VOT2 0.825 + (0.043*Bias) + (0.079*VOT) + (-0.292*VOT2) + 

(0.347*Bias*VOT) + (-0.334*Bias*VOT2) 

232 – 274 254 VOT2 

 

0.840 + (0.151*VOT) + (-0.301*VOT2) 

228 – 352  290 Bias x VOT 

 

0.332 + (0.002*Bias) + (0.515*VOT) + (0.712*Bias*VOT) 

260 – 340 300 VOT 

 

0.130 + (0.620*VOT) 

276 – 292 284 Coarticulation 

 

0.441 + (-0.190*Coarticulation) 

372 – 416  394 VOT2 

 

0.343 + (-0.150*VOT) + (0.211*VOT2) 

388 – 410  398 Bias x VOT2 0.375 + (0.066*Bias) + (-0.170*VOT) + (0.212*VOT2) + 

(-0.515*Bias*VOT) + (0.216*Bias*VOT2) 

378 – 486 432 Bias x VOT 0.503 + (0.032*Bias) + (-0.163*VOT) +  

(-0.758*Bias*VOT) 

468 – 492  478 Coarticulation 

 

-0.007 + (0.188*Coarticulation) 

470 – 498   484 Bias x VOT2 -0.060 + (0.073*Bias) + (0.080*VOT) + (0.122*VOT2) + 

(-0.263*Bias*VOT) + (-0.326*Bias*VOT2)  

506 – 528 518 Bias 

 

-0.184 + (0.228*Bias) 

520 – 542  530 Bias x VOT2 -0.232 + (0.132*Bias) + (0.127*VOT) + (-0.033*VOT2) + 

(0.211*Bias*VOT) + (-0.247*Bias*VOT2) 

530 – 580  556 Bias x VOT -0.531 + (0.082*Bias) + (-0.004*VOT) + 

(0.329*Bias*VOT) 

670 – 762 716 VOT 

 

-0.371 + (-0.294*VOT) 

706 – 782 744 VOT2 

 

0.307 + (-0.274*VOT) + (-0.266*VOT2) 

804 – 848 826 VOT 

 

0.899 + (0.362*VOT) 

864 – 882  874 VOT 

 

0.517 + (0.238*VOT) 
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Figure S4. Effects taken from peak effect timepoints show change in predicted voltage as a function of different predictors, calculated 

from a parametric bootstrap on the estimated model that time.  This bootstrap estimated the predicted voltage for a “new” subject. 

Individual effects (like VOT) were set to the original values used in the model; for effects not shown, corresponding IVs were set to 0. 
Standard error of the model’s predicted value is shown by the shaded region. In the calculations for B-F, the terms for VOT and VOT2 

move together, as they reflect different polynomial transformations of the same variable. VOT2 shows the effect of phonemic ambiguity 

(D). VOT is acoustic cue encoding (C and E). Bias × VOT2 shows the differential effect of predictions from the sentence Bias depending on 

whether the incoming VOT is near category boundary (ambiguous) or not (A). Bias × VOT is the integration of semantic/contextual 

information with the incoming spoken word (B). 
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S5: Replication of LME analysis over time at centroparietal electrodes. 

We chose frontocentral electrodes for our main analysis to capture electrodes sensitive both to 

auditory processing as well as semantic/contextual processing (see S4). However, semantic/contextual 

integration indicated by the N400 is often strong over parietal electrodes as well.  Thus, to be sure that 

our analyses are robust and not particular to that subset of electrodes, we re-ran the model shown in 

(3) using centroparietal electrodes (Cz, C3, C4, Pz, P3, P4) to capture both a potentially more parietal 

N400 and centrally located auditory information. Results are below and can be directly compared to 

Figure 3 in the main text. 

We see again an early and long-lasting effect of VOT (from around 130 msec to ~350 msec) that re-

emerges around 660 msec. As in the primary analysis, there was little overall main effect of Bias, but a 

Bias × VOT interaction from around 210 msec to 500 msec (and later). Crucially, the Bias × VOT2 

interaction was significant in the 210 to ~280 msec range, as was also observed in the primary analyses 

at frontocentral electrodes. Thus, none of the conclusions—particularly those reflecting context 

effects—are affected by which of these electrode subsets were included in the analysis.  
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Figure S5. Replication of LME over time at centroparietal electrodes (C3, Cz, C4, P3, Pz, P4). (A) The full model output over time. The 

intercept (estimated voltage from the model output) is shown on the bottom line graph with beta coefficients of significant predictors 

shown above; the width of the balloon corresponds to the strength of the effect and the positive/negative symbol corresponds to the 

direction of the effect. (B-F) Effects taken from peak effect timepoints show change in predicted voltage as a function of different 

predictors, calculated from a parametric bootstrap on the estimated model that time.  This bootstrap estimated the predicted voltage for a 

“new” subject. Individual effects (like VOT) were set to the original values used in the model; for effects not shown, corresponding IVs were 

set to 0. Standard error of the model’s predicted value is shown by the shaded region. In the calculations for B-F, the terms for VOT and 

VOT2 move together, as they reflect different polynomial transformations of the same variable. VOT2 shows the effect of phonemic 

ambiguity (A and D). VOT is acoustic cue encoding (C and E). Bias × VOT2 shows the differential effect of predictions from the sentence 

Bias depending on whether the incoming VOT is near category boundary (ambiguous) or not (D). Bias × VOT is the integration of 

semantic/contextual information with the incoming spoken word (E and F). 
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Table S5. Significant time windows (a) and corresponding formulas with beta weights from timepoint (b) for 

LME at centroparietal electrodes. 

Time (msec) Significant 

Predictor 

Formula to calculate µV 

B0 + B1X1 + B2X2 + … (a) (b) 

80 - 158 120 VOT2 

 

0.94088 + (0.133*VOT) + (-0.408*VOT2) 

 

102 – 114   108 Coarticulation 

 

0.902 + (0.201*Coarticulation) 

130 – 224 178 VOT 

 

-0.609 + (0.642*VOT) 

212 – 274 244 Bias x VOT2 0.555 + (0.093*Bias) + (0.276*VOT) + (-0.281*VOT2) + 

(0.706*Bias*VOT) + (-0.450*Bias*VOT2) 

212 – 374 294 Bias x VOT 

 

0.094 + (-0.053*Bias) + (0.585*VOT) + 

(1.008*Bias*VOT) 

232 – 278 236 VOT2 

 

0.562 + (0.235*VOT) + (-0.256*VOT2)  

236 – 354 296 VOT 

 

0.071 + (0.601*VOT) 

276 – 290 284 Coarticulation 

 

0.221 + (-0.146*Coarticulation) 

402 – 500  450 Bias x VOT 

 

-0.069 + (-0.062*Bias) + (-0.061*VOT) +  

(-0.461*Bias*VOT) 

482 – 486 484 Coarticulation -0.385 + (0.158*Coarticulation) 

486 – 494 490 Bias x VOT2 -0.410 + (0.052*Bias) + (-0.063*VOT) + (0.179*VOT2) + 

(-0.323*Bias*VOT) + (-0.205*Bias*VOT2) 

510 – 518 514 Bias  -0.459 + (0.175*Bias) 

524 – 540  532 Bias x VOT2 

 

-0.520 + (0.052*Bias) + (0.125*VOT) + (0.129*VOT2) + 

(0.009*Bias*VOT) + (-0.228*Bias*VOT2) 

596 – 682  640 Bias x VOT -1.156 + (-0.095*Bias) + (-0.068*VOT) +  

(-0.323*Bias*VOT) 

664 – 682  674 VOT -0.993 + (-0.230*VOT) 

718 – 770  744 VOT 

 

0.337 + (-0.374*VOT) 

724 – 782  754 VOT2 

 

0.649 + (-0.356*VOT) + (-0.227*VOT2) 

830 – 834  832 VOT 

 

1.620 + (0.206*VOT) 

856 – 866  862 Bias x VOT 

 

1.593 + (0.034*Bias) + (0.186*VOT) +  

(0.221*Bias*VOT) 

866 – 882  872 VOT 1.570 + (0.236*VOT) 

924 – 934  930 VOT 0.798 + (0.228*VOT) 

926 – 960  942 Bias x VOT 0.637 + (0.038*Bias) + (1.881*VOT) + (0.301*Bias*VOT) 

956 – 968 968 VOT 0.369 + (0.215*VOT) 
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S6: Effect of Phonemic Ambiguity on EEG waveform. 

Phonemic ambiguity was coded as distance from the middle VOT (30 msec) in our continuum and 

included as the term VOT2 in our LME model for predicting scalp voltage, detailed in Table S4a. Figure 

S6 shows the waveform at frontocentral electrodes split by steps from the most ambiguous token. The 

most visible effect can be seen at the canonical P50 and P200 peaks, where the most ambiguous token 

yields the highest voltage, roughly 110 msec and 250 msec, respectively. 

 

 

 

  

Figure S6.  Averaged EEG waveform as a function of distance from the most ambiguous VOT, timelocked to the presentation of the target 

word (N = 31). 
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S7: Scalp Topographies. 

Our primary analyses focused at frontocentral electrodes, where acoustic (N1) and semantic (N400) 

information can be recorded. However, full scalp topographies are useful for a variety of reasons, and as 

such, are reported below.  

The canonical P1/P50 can be best seen at 100 to 150 msec; the N1 at 150 to 200 msec; the P2 from 200 

to 300 msec; N400 starting at 400 msec and peaking at 700 msec; and finally we see some visual evoked 

activity later in the epoch after ~800 msec after word offset, when response options are presented on 

the screen. 

 

 

  

Figure S7. Scalp topography of grand average EEG waveform, averaged in 50 msec bins post-target word onset (N = 31). 
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