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Abstract 

Vapour pressure deficit (D) is projected to increase in the future as temperatures rise. In 

response to increased D, stomatal conductance (gs) and photosynthesis (A) are reduced, which 

may result in significant reductions in terrestrial carbon, water, and energy fluxes. It is thus 

important for gas exchange models to capture the observed responses of gs and A with 

increasing D.  

We tested a series of coupled A-gs models against leaf gas exchange measurements from the 

Cumberland Plain Woodland (Australia), where D regularly exceeds 2 kPa and can reach 8 

kPa in summer. Two commonly used A-gs models (Leuning 1995 and Medlyn et al. 2011) 

were not able to capture the observed decrease in A and gs with increasing D at the leaf scale. 

To explain this decrease in A and gs, two alternative hypotheses were tested: hydraulic 

limitation (i.e., plants reduce gs and/or A due to insufficient water supply) and non-stomatal 

limitation (i.e., downregulation of photosynthetic capacity). We found that the model that 

incorporated a non-stomatal limitation captured the observations with high fidelity and 

required the fewest number of parameters. While the model incorporating hydraulic 

limitation captured the observed A and gs, it did so via a physical mechanism that is incorrect.   

We then incorporated a non-stomatal limitation into the stand model, MAESPA, to examine 

its impact on canopy transpiration and gross primary production. Accounting for a non-

stomatal limitation reduced the predicted transpiration by ~19%, improving the 

correspondence with sap flow measurements, and gross primary production by ~14%. Given 

the projected global increases in D associated with future warming, these findings suggest 

that models may need to incorporate non-stomatal limitation to accurately simulate A and gs 

in the future with high D. Further data on non-stomatal limitation at high D should be a 

priority, in order to determine the generality of our results and develop a widely applicable 

model.  

 

Keywords: Vapour pressure deficit, stomatal conductance, non-stomatal limitation, hydraulic 

limitation, model-data assimilation, photosynthesis  

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz103/5586169 by IN

R
A - Institut N

ational de la R
echerche Agronom

ique user on 13 D
ecem

ber 2019



 3 

Introduction 

Vapour pressure deficit (D) is the difference between the amount of water vapour that the air 

can hold at saturation (es) and the actual amount of water vapour in the air (ea; Monteith and 

Unsworth, 2013). With rising air temperatures, es increases exponentially and as a result, D is 

projected to increase strongly into the future (Ficklin and Novick, 2017). At the leaf level, as 

D increases and plant water supply becomes limiting, a direct reduction in stomatal 

conductance (gs) occurs to limit transpiration, which inevitably also affects photosynthesis 

(A; Cowan and Farquhar, 1977). The reduction of A and potentially transpiration due to 

increasing D has important implications for global carbon-climate predictions (Reichstein et 

al., 2013; Will et al., 2013). Thus, it is crucial to understand the response of vegetation to the 

projected increase in D (Novick et al., 2016).  

The challenges involved in modelling gs responses to high D have been discussed since the 

late 1970’s (Cowan, 1978; Farquhar, 1978). Monteith (1995) characterised the response of gs 

to D as consisting of two different regimes: (i) regime A—where gs gradually declines with 

D, but transpiration (E) increases with D; (ii) regime B—where gs declines non-linearly with 

D, resulting in a peak and then decline in E. Regime A is the most commonly observed 

pattern and occurs at intermediate D (0.5-2 kPa). It also represents the range of leaf level 

measurements most commonly used to parameterise models of gs (e.g., Ball et al., 1987; 

Leuning, 1995; Medlyn et al., 2011). Regime B takes place at higher D (D > 2 kPa), which is 

typically rare in humid ecosystems but common in hot and dry ones (e.g., Franks et al., 1997; 

Thomas and Eamus, 1999; MacFarlane et al., 2004; Whitley et al., 2013; Gimeno et al., 2018; 

Renchon et al., 2018).  

Current representations of gs in terrestrial biosphere models (TBMs) differ in their sensitivity 

to D, especially at D > 2 kPa (i.e., regime B; De Kauwe et al., 2015; Knauer et al., 2015; 

Franks et al., 2017), which has carry-over effects on TBM predictions at high D. The gs 

model of Leuning (1995) has a strong D dependence (gs depends on the reciprocal of D), 

which yields a reduction in E at high D. However, it can be difficult to parameterise the 

Leuning model such that it can fit data at both high and low D (Duursma et al., 2014). The 

parameter values most commonly used are biased towards low D (e.g., those used in the 

Community Atmosphere Biosphere Land Exchange (CABLE) land surface model 

(Kowalczyk et al., 2015) or the Sheffield Dynamics Global Vegetation Model (Woodward et 

al., 1995)). Alternatively, Medlyn et al. (2011) proposed an optimality model, in which gs 
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depends on D-0.5. Due to this lower sensitivity of gs to D compared to the Leuning model, the 

Medlyn model does not predict a reduction in E at high D (i.e., regime B).  

The reduction of E at high D in regime B could result from a hydraulic limitation (Buckley, 

2005). Experimental observations show that gs is strongly linked to guard cell and epidermal 

turgor (e.g., Franks et al., 1997; Franks, 2004) and not simply to environmental conditions 

(i.e., D). Tuzet et al. (2003) proposed a model coupling gs to leaf water potential (ψL). The ψL 

term in the Tuzet model is determined by the balance of plant water use via stomata and the 

water supply, which is calculated as the product of hydraulic conductance and the difference 

between leaf and soil water potentials. In the Tuzet model, ψL is solved iteratively by 

balancing the demand and supply. If the hydraulic conductance is held constant, the Tuzet 

model will not yield a decline in transpiration at high D because a reduction in ψL cannot 

occur at the same time as a reduction in transpiration (Farquhar 1978). However, reductions 

in hydraulic conductance can occur within the xylem by cavitation (Tyree and Sperry, 1989) 

or in the outside xylem component of the pathway via a variety of mechanisms (Scoffoni et 

al., 2017). A very negative ψL leads to a large pressure difference but low conductance, the 

net effect of which can lead to a reduction in water supply and thus a decrease in gs. Although 

theoretically plausible, the hydraulic limitation hypothesis has not been extensively tested 

against observations.   

An alternative hypothesis to explain the coupled A-gs response at high D is a non-stomatal 

limitation of A (Dewar et al. 2018; Gimeno et al. 2019). The mechanism for such a non-

stomatal limitation is not clear, but it could potentially involve biochemical regulation or a 

reduction in mesophyll conductance. For example, Duursma et al. (2014) proposed that the 

reduction of E at high D is driven by a decrease in apparent carboxylation capacity (Vcmax) at 

the high temperatures (>30°C) that accompany high D. This hypothesis was supported by leaf 

and canopy scale measurements in a whole tree chamber experiment (Duursma et al., 2014). 

Low leaf water potential at high D could also reduce apparent photosynthetic capacity via a 

downregulation of the capacity of photosynthetic biochemistry or a reduction in mesophyll 

conductance (Tezara et al., 1999; Lawlor and Cornic, 2002; Lawlor and Tezara, 2009), which 

would subsequently drive a coupled reduction in gs. Such an effect is increasingly reported in 

soil drought studies (e.g., Zhou et al., 2013, 2014; Verhoef and Egea, 2014; Drake et al., 

2017). Incorporating a non-stomatal limitation into TBMs has led to improved predictions of 

soil drought responses (Keenan et al., 2010, Verhoef and Egea, 2014; De Kauwe et al., 2015; 

Drake et al., 2017). Although these studies have shown the importance of non-stomatal 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz103/5586169 by IN

R
A - Institut N

ational de la R
echerche Agronom

ique user on 13 D
ecem

ber 2019



 5 

limitation under soil drought (i.e., via reduced photosynthetic capacity), it is unclear whether 

high D can cause the same non-stomatal limitation.   

Here, we evaluate alternative stomatal modelling approaches at a woodland site where D 

reaches high levels every summer (mean daily maximum = 2.7 kPa; maximum = 8 kPa). We 

first test leaf-scale models against in situ observations which showed a reduction in gs and A 

with increasing D (Gimeno et al., 2016). We then implement the best model into a canopy 

scale model against whole-tree-scale sap flow data that showed a decrease in transpiration at 

high D (Gimeno et al., 2018). We aim to quantify how well the alternative gas exchange 

models captured the high D responses of both gs and A. 

 

Methods 

We tested five leaf-scale gs models in this study (Table 1): (i) the Medlyn model (Medlyn et 

al., 2011), which is derived from optimal stomatal theory and assumes that gs depends on the 

reciprocal of D0.5; (ii) the Leuning model (Leuning, 1995), which has a similar functional 

form to the Medlyn model but assumes a stronger gs sensitivity to D; (iii) the Tuzet stomatal 

model (Tuzet et al., 2003), which assumes a gs sensitivity to ψL, incorporating a reduction of 

hydraulic conductance with low ψL (hereafter referred as Tuzet K-PSI); (iv) the Tuzet 

stomatal model incorporating a non-stomatal limitation at low ψL (hereafter referred as Tuzet 

V-PSI); and (v) the Medlyn model, incorporating a non-stomatal limitation that increases 

with increasing D (hereafter referred as Medlyn V-D). The comparison between the 

performance of Medlyn and Leuning model tests whether increasing the sensitivity of gs to D 

improves model performance. The Tuzet K-PSI model was chosen to test whether 

considering a hydraulic limitation improved model performance. The comparison between 

the Tuzet V-PSI and Medlyn V-D models was designed to test whether this assumption was 

necessary to improve predictions at high D and to explore the best way to represent non-

stomatal limitation. 

 

Sites 

Data were obtained from two sites in the Cumberland Plain Woodland. The first site is the 

Eucalyptus Free-air-CO2-Enrichment site (EucFACE) in Richmond, Western Sydney, 

Australia (33.62ºS, 150.73ºE). The site is a natural mature woodland, dominated by 

Eucalyptus tereticornis. EucFACE consists of six circular plots (referred to as “rings” 
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 6 

hereafter), each of which has a diameter of 25 m (Gimeno et al., 2016). The rings receive two 

CO2 concentrations: ambient (rings 1, 4, 5; ambient CO2 ≈ 400 μmol mol-1) and elevated 

(rings 2, 3, 6; ambient CO2+150 μmol mol-1). The data from the elevated CO2 rings were 

included in this study to increase the number of observations for statistical testing, but 

responses to elevated CO2 are not a focus of the study (see Gimeno et al., 2016, 2018 for 

analysis of effects of elevated CO2). Meteorological data measured at EucFACE during the 

measurement period of the year 2013 are shown in Figure S1. The second site is 10 km south 

of EucFACE in the Castlereagh Nature Reserve, Sydney, Australia (33.39ºS, 150.46ºE) 

(Zeppel et al., 2008). This site is also a mature natural woodland with E. parramattensis as 

the dominant species, a local species closely related to E. tereticornis.    

 

Measurements 

This study used three types of data:  leaf gas exchange (Zeppel et al., 2008; Gimeno et al., 

2016), xylem vulnerability curves, and sap flow (Zeppel et al., 2008; Gimeno et al., 2018).  

Leaf gas exchange and xylem cavitation data were used in parameterization as well as 

evaluation of the gs models. Sap flow data were used in whole-tree scale evaluations to test 

transpiration predictions of the canopy scale model.   

Diurnal leaf gas exchange measurements were made throughout the day under prevailing 

field conditions using LiCOR 6400XT at EucFACE in 2013 (Gimeno et al., 2016) and a 

LCpro+ system (ADC BioScientific, Hoddesdon, UK) at Castlereagh in 2006 (Zeppel et al., 

2008). Canopy access at EucFACE was provided by a crane (canopy height = 20m) whereas 

canopy access at Castlereagh was provided by a portable rising work platform (canopy height 

= 2-8 m), both suitable to reach the upper canopy. The EucFACE data were measured at 

saturating photosynthetically active radiation (1800 μmol m-2 s-1).  The Castlereagh data were 

measured at ambient light levels, so we only used data with saturating light (>1200 μmol m-2 

s-1). At EucFACE, leaf water potential measurements at pre-dawn, morning (9:30-11:30), and 

afternoon (13:00-15:00) were also made by Gimeno et al. (2016).   

In addition to the four diurnal gas exchange campaigns at EucFACE, repeated light- and 

temperature-controlled photosynthesis-CO2 response (A-Ci) curves on the same 3 or 4 trees in 

each ring were measured and used to calculate the maximum apparent electron transport rate 

(Jmax; μmol m-2 s-1) and apparent carboxylation capacity (Vcmax; μmol m-2 s-1). The Jmax and 

Vcmax values were estimated with the “fitacis” function from the plantecophys R package 
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 7 

(Duursma, 2015). The temperature dependencies of Jmax and Vcmax were obtained from a 

different set of A-Ci curves measured at four leaf temperatures ranging between 20 and 40 ºC 

during February 2016. We fitted peaked Arrhenius functions to the values of Jmax and Vcmax 

obtained at each measurement temperature (Medlyn et al., 2002). The resulting Jmax and 

Vmcmax at 25ºC (i.e., Jmax.25 and Vcmax.25) values were averaged for each ring on each 

measurement date. We also estimated one-point Vcmax from the diurnal measurements using 

the “one-point method” (De Kauwe et al. 2016). As a result, each diurnal gas exchange 

measurement corresponded to a modelled Vcmax based on A-Ci curve data and the temperature 

response, and an in situ Vcmax based on the “one-point method”.     

A hydraulic vulnerability curve for E. tereticornis was constructed using benchtop 

dehydration (Sperry et al. 1988). Two-metre-long branches were excised from six mature 

canopy trees located outside the rings at EucFACE, using the canopy crane. Collections were 

made in the early morning (between first light and sunrise). Branches were placed in large 

plastic bags with moist towels to prevent dehydration and cut ends were recut under water 

and allowed to rehydrate. Branches were transported in water and were stored in a cool room 

24 hours before measurements. Stem percent loss of conductivity was measured using 

hydraulic flow measurements on increasingly dehydrated branch segments using a flowmeter 

(Liqui-Flow L10, Bronkhorst High-Tech BV, Ruurlo, Gelderland, Netherlands) at low 

pressure (< 4 kPa).  Four to six stem segments were measured per large branch at 

progressively lower water potentials (measured on covered leaves using a pressure chamber – 

PMS Instrument Company, Albany, OR, USA). To quantify the impact of cavitation for the 

Tuzet models, a Weibull function following Ogle et al. (2009) was fitted to produce a 

vulnerability curve using the ‘fitplc’ function in the fitplc R package (Duursma and Choat, 

2017).   

Canopy transpiration was estimated with sap flow measurements at both the EucFACE and 

the Castlereagh sites. At EucFACE, two custom-built two-probe heat-pulse sensors (Edwards 

Industries, Havelock North, New Zealand) were installed at two positions on each tree, on 

three or four trees per ring (Gimeno et al. 2018). The data from all six rings were upscaled to 

estimate stand averages using sap wood area, which was allometrically calculated with 

measured stem diameter. The volumetric soil water content (θ) of the site was measured 

every ~20 days using neutron measurements at 25 cm intervals (NMM, 503DR 

Hydroprobe®, Instroteck, NC, USA) and averaged to the mean moisture of the top 150 cm of 

the soil (Figure 1; Gimeno et al. 2018). Sap flow at the Castlereagh site was obtained from 
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 8 

Zeppel et al. (2008). The measurements used two-probe heat pulse sensors and sampled six 

trees with two sensors per tree from June to December 2006. The corresponding soil moisture 

measurements at Castlereagh were recorded with an array of frequency domain reflectometry 

sensors (Theta Probe, ML2-X; Delta-T devices, Cambridge,UK) for the top 70 cm.  

 

Leaf gas exchange models  

We used the Medlyn model as our baseline stomatal conductance model because it requires 

the fewest parameters (Medlyn et al., 2011):  

𝑔𝑠 = 1.6 ∙ (1 + 𝑔1.𝑀𝐸𝐷

√𝐷
) ∙ 𝐴

𝐶𝑎
     (1) 

where gs is the stomatal conductance to water vapour (mol m-2 s-1); g1.MED is the optimal 

stomatal behaviour parameter (kPa0.5; see detailed explanation in Medlyn et al., (2011)); A is 

the CO2 assimilation rate (μmol m-2 s-1); Ca is the atmospheric CO2 concentration (μmol mol-

1). We modelled A with the plantecophys R Package (Duursma, 2015), which uses the 

Farquhar-von Caemmerer-Berry photosynthesis model (Farquhar et al., 1980).   

An earlier gs model was proposed by Leuning (1995), who assumed an inverse stomatal 

response to D: 

𝑔𝑠 = 1.6 ∙ 𝑔1.𝐿𝐸𝑈 ∙
𝐴
𝐶𝑎
∙ 1
1+𝐷 𝐷0⁄

     (2) 

where g1.LEU is an empirical slope determining the sensitivity of gs to A and other 

environment variables (dimensionless); and D0 reflects the sensitivity of gs to D (kPa). Both 

the Medlyn and Leuning models can include a minimum stomatal conductance, g0, as an 

intercept (Duursma et al., 2019). This study assumed g0 = 0 since the estimated g0 is 

negligible (Gimeno et al., 2016).  

We also tested a modified version of the model proposed by Tuzet et al. (2003), following 

Duursma and Medlyn (2012): 

𝑔𝑠 = 1.6 ∙ 𝑔1.𝑇𝑈𝑍
𝐴
𝐶𝑎
∙ 𝑓𝑠(𝜓𝐿)    (3) 

where g1.TUZ is an empirical slope parameter and fs is the sigmoidal function defined as: 

𝑓𝑠(𝜓𝐿) = 1+exp (𝑠𝑓∙𝜓𝑓)
1+exp (𝑠𝑓∙(𝜓𝑓−𝜓𝐿))

    (4) 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz103/5586169 by IN

R
A - Institut N

ational de la R
echerche Agronom

ique user on 13 D
ecem

ber 2019



 9 

where ψL is leaf water potential (MPa); ψf is an empirical reference water potential (MPa), 

and sf is a sensitivity parameter describing the steepness of the response of gs to ψf (MPa-1).  

The Tuzet model resembles the Medlyn and Leuning models but replaces the dependence on 

D with a function of ψL.  

The leaf water potential ψL is obtained as follows. Assuming that the transpiration is a 

balance of demand and supply: 

𝐸 = 𝐾 ∙ (𝜓𝑠 − 𝜓𝐿) = 𝑔𝑠 ∙ 𝐷/𝑃𝑎𝑡𝑚    (5) 

where K is the soil-to-leaf hydraulic conductance (mol m-2 s-1 MPa-1); ψs is the soil water 

potential (MPa) and Patm is the atmospheric air pressure (kPa). To solve for ψL requires a 

value for K, which is assumed to decrease as plant water potential becomes more negative 

(Tyree and Sperry 1989): 

𝐾 = 𝐾𝑚𝑎𝑥 ∙ 𝑅𝑃𝐿𝐶   (6) 

where Kmax is the maximum hydraulic conductance (mol m-2 s-1 MPa-1). RPLC is the 

percentage loss of hydraulic conductance and takes the form of a Weibull function as fitted 

by Neufeld et al. (1992):  

𝑅𝑃𝐿𝐶 = 1
1+exp (𝑎∙(𝜓𝐿−𝜓50))

    (7) 

where a and ψ50 are fitted parameters, representing the rate of decline of the curve and the 

leaf water potential at which plant hydraulic conductance is reduced to 50% respectively.  

This equation was fitted to the hydraulic vulnerability curves described above. Combining 

Equations 3 – 7 allows both ψL and gs to be predicted.  

We tested two alternative ways to represent non-stomatal limitations. In the first, Vcmax was 

assumed to decline with leaf water potential (the V-PSI hypothesis): 

𝑉 = 𝑉𝑐𝑚𝑎𝑥
1+exp (𝑠𝑓𝑣∙𝜓𝑓𝑣)

1+exp (𝑠𝑓𝑣∙(𝜓𝑓𝑣−𝜓𝐿))
    (8) 

where V is the Vcmax modified by non-stomatal limitation and sfv and ψfv are fitted parameters.  

ψfv is an empirical reference water potential (MPa), and sfv is a sensitivity parameter 

describing the “steepness” of the response of Vcmax to ψfv (MPa-1). Note that this is the same 

form of sigmoidal function as used in the Tuzet model (Eqn. 3).  

In the second representation of the non-stomatal limitation, we derived a direct empirical 

relationship between Vcmax and D (the V-D hypothesis): 
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 10 

𝑉 = min (10,𝑉𝑐𝑚𝑎𝑥 ∙ (1 − 𝑐𝐷 ∙ 𝐷))    (9) 

where cD is a fitted parameter (kPa-1). This relationship is different from that in Eqn. 8 

because it assumes the apparent carboxylation capacity directly responds to D. Although the 

mechanism for such a change is unclear, this simple empirical approach allows us to explore 

the possibility of direct downregulation of apparent Vcmax and Jmax. Similar simple empirical 

approaches have been used to explore non-stomatal limitation under low soil moisture 

content (e.g., Keenan et al., 2010, Verhoef and Egea, 2014; De Kauwe et al., 2015; Drake et 

al., 2017). We set a minimum Vcmax of 10 (μmol m-2 s-1) to avoid negative values produced by 

the linear decline of Vcmax with D. The same relationship is assumed for Jmax.  

We assumed that the impact of reduced soil water availability could be represented in the 

Tuzet model by the reduction of soil moisture potential (ψs), which was estimated from the 

pre-dawn leaf water potential (ψpd; MPa). For the Medlyn and Leuning models, we assumed 

an exponential dependence of the g1 parameter on ψpd following Zhou et al. (2013): 

𝑔1 = 𝑔1.𝑀𝐴𝑋 ∙ exp (𝛽 ∙ 𝜓𝑝𝑑)    (10) 

where g1 represents g1.MED and g1.LEU; g1.MAX is g1 when ψpd = 0; β represents the sensitivity of 

g1 to ψpd. The impact of dry soil was implemented to account for the variation in the soil 

water availability among the campaigns. 

 

Parameterisation of leaf gas exchange models 

We used R (version 3.4.1 R Core Team) as the modelling and statistical tool. We used 

measured values of incident photosynthetically active radiation, leaf temperature, 

atmospheric CO2 concentration, D, ψpd, Jmax, and Vcmax for the diurnal gas exchange data (at 

EucFACE only). We then parameterized the Medlyn and Leuning models at leaf scale using 

the differential evolution algorithm (DEoptim package) to fit all the parameters (g1.MAX, β, D0, 

and cD) in the coupled A-gs model against the measured A and gs data. We used a similar 

approach to determine the unknown parameter values in the Tuzet models. As a result, all the 

models tested at the leaf-scale were fitted to measurements of A and gs.   

The fidelity of the leaf-scale models was evaluated via: (i) the Bayesian Information Criteria 

(BIC), which considered the relative residuals of predictions (both A and gs) as well as the 

number of parameters in the models; (ii) the coefficient of determination (R2) of both A and 
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gs. We ranked the models with these measures and selected the one with the highest overall 

ranking.   

 

Stand scale model 

We implemented the Medlyn model (Eqn. 1) with V-D relationship (Eqn. 9) into a process-

based stand-scale model MAESPA (Duursma and Medlyn 2012). For the purposes of this 

study, the plant hydraulics sub-model of MAESPA was not used; instead soil water content 

was prescribed rather than being simulated. The stand simulation included all six rings in 

EucFACE and covered the period between 1 January 2013 to 31 December 2013 on a half 

hourly basis. MAESPA considers the radiative transfer to an array of grid points within each 

tree crown and calculates gas exchange at each grid point based on light interception at each 

timestep. Understory plants were not included here because they do not contribute to tree 

transpiration. The model was parameterised with data on size and position of each tree as 

well as the smoothed and gap-filled leaf area index (Duursma et al., 2016; Figure S1).  

Meteorological (Figure S1) and soil water content data (Figure 1) observed in each ring were 

input to the model. The original met data were aggregated to half-hourly averages and gap-

filled with nearest available values (less than 1% of the total). Canopy physiology was 

parameterized with measurements of the light response of photosynthesis, dark respiration 

rate, and the temperature response of photosynthesis and respiration, all made at EucFACE 

and assumed not to vary across treatments. We assumed a minimum gs (Duursma et al., 2019) 

of 0.01 (mol H2O m-2 leaf s-1) during daytime to avoid zero transpiration at extreme 

environmental conditions (e.g., high D). The transpiration of the canopy in the model is given 

by the Penman-Monteith equation, which considers net radiation, windspeed, relative 

humidity, and gs.  

The impact of low soil water content on stomatal conductance in MAESPA was modelled as 

a function of g1 and volumetric soil water (θ) content following Drake et al. (2017):  

𝑔1 = 𝑔1.𝑆𝐴𝑇 ∙ ( 𝜃−𝜃𝑚𝑖𝑛
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

)𝑞    (11) 

where g1.SAT is the value of g1 (kPa0.5) at saturating soil water content; θmax and θmin are 

empirically fitted parameters defining the upper and lower boundaries beyond which g1 is not 

affected by θ; and q is the parameter describing the non-linearity of the function. We fitted 

Eqn. 11 to the data from Gimeno et al. (2016) to obtain the values of θmax, θmin, and q (0.25, 
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0.11, and 0.38 respectively) with the non-linear least squares method (nls, R function). The 

fitted relationship between g1.MAX and θ used in the model is shown in Figure S2. Jmax in 

MAESPA is taken as a constant mean of 159 (μmol m-2 s-1) for all rings and time. Vcmax in 

MAESPA also remained constant over time but taken as 83 (μmol m-2 s-1) for elevated CO2 

rings and 91 for ambient CO2 rings as per measurements (Ellsworth et al., 2017; Wujeska-

Klause et al., 2019). The parameter values used in MAESPA are presented in Table S2.  

 

Results 

Leaf gas exchange models 

The leaf gas exchange data from EucFACE showed a clear decline in both A and gs with 

increasing D (Figure 2). The baseline model (Medlyn with constant V) was unable to capture 

the response of A (Figure 3a) or gs (Figure 3b) to D. As a result, this model ranked lowest 

amongst the models tested (BIC = -2452; Table 1). It over-predicted A at high D but under-

predicted gs at low D. The Leuning model, despite its stronger sensitivity to D, shared the 

same problems as the Medlyn model (Table 1; Figure 3 c and d). In addition, we obtained 

unrealistic parameter values (g1.MAX, β, and D0) for the Leuning model (Table 1). Utilising the 

default parameter values for the Leuning model used in the CABLE land-surface model (for 

the evergreen broadleaf plant functional type), for example, led to severe under-prediction of 

gs (Figure S3). In other words, with commonly used parameter values, the Leuning model 

would have performed worse than all other models tested here (BIC = -2479).   

The model incorporating hydraulic limitation (Tuzet K-PSI) showed a good agreement (BIC 

= -2387) with observations at both low and high D (Figure 4 and Table 1). It achieved the 

second-best BIC value (Table 1). However, a comparison with the measured leaf water 

potential values shows that the Tuzet model performed well for the wrong reasons. The Tuzet 

K-PSI model predicted a decline of ψL with increasing D (Figure 5a); a large gradient 

between ψs and ψL (~ 4 MPa); and ψL values below ψ50 (< -5 MPa). None of these predictions 

were supported by the observations (Figure 5 a and b).  The observed ψL did not change with 

D (Figure 5a) and remained above the point of onset of embolism in all measurements 

(Figure 5b). The minimum observed ψL value was -3.3 MPa, which was estimated to 

correspond to a PLC of 18%. 

We examined the gas exchange data directly for evidence of non-stomatal limitation. Figure 6 

shows the ratio of one-point Vcmax (estimated from gas exchange data using the “one-point” 
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method) to the predicted Vcmax at the same temperature (estimated from A-Ci curves 

performed at a range of temperatures). This ratio declined strongly with increasing D as 

shown by data from EucFACE and Castlereagh sites. This decline in the one-point Vcmax 

clearly demonstrates that non-stomatal limitation is a factor in the decline of A at high D. 

We then tested whether the non-stomatal limitation could be predicted as a function of leaf 

water potential (Tuzet V-PSI). Adding non-stomatal limitation to the Tuzet model comes at a 

cost of increased complexity, requiring six parameters to be fitted at the same time. This 

added complexity was not justified by the marginal improvements in R2 resulting in the worst 

BIC value of all models tested (Table 1; Figure 7 a and b). Including the non-stomatal 

limitation in the Tuzet model did not lead to model improvement, which can be explained as 

follows. Firstly, we know that the plants did not reduce ψL sufficiently to cause cavitation and 

a reduction in hydraulic conductance (Figure 5). Therefore, the non-stomatal limitation as a 

function of ψL cannot predict a reduction in transpiration at high D. The observed decrease in 

gs at high D leads to a less negative ψL at high D, and a less negative ψL implies a higher 

Vcmax. Higher Vcmax at high D contradicts both the assumption of non-stomatal limitation and 

the evidence shown in Figure 6.   

Incorporating non-stomatal limitation into the Medlyn model (Medlyn V-D; Figure 7 c and d) 

improved the model predictions of both A and gs (BIC = -2384). The Medlyn model, together 

with an empirical decline in Vcmax with D, achieved better R2 values for both A and gs than the 

more complicated models, resulting in the best BIC value (Table 1).   

It is not possible to determine from our measurements what mechanism causes this reduction 

in apparent Vcmax. Following Zhou et al. (2013), we investigated the possibility that the 

reduction is largely attributable to a reduction in mesophyll conductance by estimating how 

large the reduction in gm would need to be, to fully explain the observed reduction in one-

point Vcmax. We assumed that all the discrepancy between the Medlyn model prediction and 

diurnal gas exchange data could be attributed to gm. Then, for each diurnal measurement, a gm 

value was estimated as that which minimized the difference between the model predictions 

and the diurnal observations. A reduction in gm from 0.2 to 0.01 mmol m-2 s-1 would be 

implied if non-stomatal limitation were entirely due to a reduction of gm (Figure 8). 
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Stand scale model 

Whole-tree transpiration estimated from sap flow measurements was used to evaluate the 

performance of the Medlyn V-D hypothesis at the whole-tree scale using the MAESPA 

model. The standard MAESPA using the Medlyn model overpredicted transpiration at 

EucFACE especially at high D (example of Ring 2 in Figure 9 a and b). The difference 

between the predicted and observed values increased strongly at high D (compare green with 

red dots in Figure 9b).  However, after incorporating the Medlyn V-D model, MAESPA 

closely followed the seasonal variation of the measurements (Figure 7c) and agreed with 

observations across the full range of D. Overall, incorporating the Medlyn V-D model 

increased the coefficient of determination from 0.78 to 0.87 and reduced the root mean 

squared error (0.027 to 0.025; L hr-1).  The improvements were even larger at high D (>2.5 

kPa) with a reduction of root mean squared error from 0.070 to 0.037. During the simulated 

year of 2013, incorporating non-stomatal limitation into MAESPA, resulted in a ~19% 

reductions in predicted annual transpiration (59.7 kg H2O m-2 yr-1) and a ~14% reduction in 

gross primary production (222.4 g C m-2 yr-1). These findings indicate a large impact of non-

stomatal limitation at high D.   

We also explored whether the new model would improve predicted transpiration compared to 

observations at the Castlereagh site with similar species and climate conditions. Without 

canopy physiology or canopy structure data to parameterize the Castlereagh site, we took the 

approach of standardizing the observed sap flow and modelled E by their respective maxima 

and comparing the relationships of E with D (Figure 10). Both sites show a peaked 

relationship of E with D with the turning point occurring between 1-3 kPa, which agrees with 

the prediction of MAESPA incorporating non-stomatal limitation (red line in Figure 10).   

 

Discussion 

We evaluated a suite of commonly used gs models and assumptions (hydraulic and non-

stomatal limitation) used to represent the coupled A-gs response to D at two native evergreen 

woodland sites in western Sydney. The observed decline of A and gs at high D could not be 

captured with current widely-used models of stomatal conductance, and models were not 

improved by incorporating hydraulic limitation and xylem cavitation. The model 

incorporating a non-stomatal limitation (i.e., a reduction of apparent photosynthetic capacity 
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with increasing D) gave the best agreement with the observations at a large range of D. This 

finding highlights the importance of accounting for non-stomatal limitation in TBMs.   

Standard models 

Standard leaf gas exchange models, embedded within TBMs, perform poorly when D 

increases above 2.5 kPa, despite their wide use and important role (De Kauwe et al., 2015; 

Knauer et al., 2015). This finding is in line with previous studies showing the difficulties of 

modelling leaf gas exchange at high D (e.g., Farquhar, 1978; Franks et al., 1997; Eamus et 

al., 2008). Our analysis re-emphasises the need to improve leaf gas modelling in ecosystems 

that experience high D. The concerned regions include drylands, which cover 41% of the 

Earth’s land surface (Reynolds et al., 2007) and potentially tropical, subtropical, and 

temperate ecosystems during dry seasons and heatwaves (Novick et al., 2016).  

The comparison between the Leuning (1995) and Medlyn et al. (2011) models yields an 

important result, which is that improvements in the performance of the leaf gas exchange 

model at high D are unlikely to be achieved by varying the stomatal sensitivity to D. The 

Medlyn model does not have a mechanism that allows gs or A to decrease at high D except 

via the temperature dependence of photosynthesis (Duursma et al., 2015; Kala et al., 2016). 

In contrast, the Leuning model does have a stronger regulation of gs at high D but performs 

poorly at low D (Figure 3 and S3), and requires an additional parameter to achieve this 

compared to the Medlyn model. Nonetheless, neither model is able to capture both gs and A at 

high D. 

Models with hydraulic limitation  

The decline of gs at high D in the models incorporating hydraulic limitation is achieved either 

by a small hydraulic conductance (resulting from a very negative ψL) or by a small pressure 

gradient (resulting from a ψL close to ψs). The Tuzet model assumes the decline of ψL drives 

the reduction of gs at high D. We found that this assumption led to an unrealistic decline in ψL 

with increasing D, contradicting ψL observations, which remained relatively consistent over 

the course of a day (Figure 5a). Moreover, the predicted ψL fell below the estimated ψ50 

which is inconsistent with previous studies suggesting plant maintain ψL above the point of 

onset of xylem embolism (Sperry et al., 2002; Choat et al., 2012; Li et al., 2018).   

Incorporating non-stomatal limitation allowed a ψL close to ψs at high D. However, a less 

negative ψL implied a higher Vcmax at high D which again contradicted the assumption of non-
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stomatal limitation and the observations (Figure 6). As a result, the hydraulic limitation as 

implemented here, was an unable to capture the observed D responses. Alternative models 

could potentially be more successful: Buckley (2013), for instance, proposed to model 

stomatal regulation via guard cell osmotic pressure in response to the water status of the 

surrounding epidermal cells. This approach is important because it can also incorporate 

increases in extra-xylary resistance that have been observed to occur in leaves (Yang and 

Tyree 1994; Scoffoni et al., 2017), roots (Cuneo et al., 2016), and the rhizosphere (North and 

Nobel, 1997). However, at this point the majority of models do not incorporate these 

resistances. 

Plausible mechanisms of non-stomatal limitation 

Studies on mesophyll conductance and photosynthetic capacity (e.g., Mediavilla et al., 2002; 

Nascimento and Marenco, 2013) have suggested the importance and mechanisms of non-

stomatal limitation. The proposed mechanisms for non-stomatal limitation fall into two 

categories: (i) a biochemical-signalling-induced reduction in carboxylation capacity; or (ii) a 

reduction in mesophyll conductance, both of which have some empirical and theoretical 

support. Lawlor and Cornic (2002) and Lawlor and Tezara (2009) illustrated that 

carboxylation capacity is down-regulated at high water deficit due to reduction in adenosine 

triphosphate (ATP) synthesis. Huang et al. (2006) explored the cause of “midday depression” 

of gs and A and suggested that the regulation of photosynthetic capacity is the likely 

explanation as plants aim to protect chloroplasts.  

An alternative explanation for the decline of carboxylation capacity in the afternoon is sink 

limitation. It has been proposed that the accumulation of starch and sugar in the leaf over 

time causes an inhibition of photosynthesis (Paul and Foyer, 2001). We did not explore this 

effect because the data do not support this explanation at EucFACE (Wujeska-Klause et al., 

2019). We compared the diurnal time-course of photosynthesis for days with low and high D 

(Figure S9). On days with low D, there is no reduction in afternoon photosynthesis even 

though morning photosynthesis was high, indicating that the accumulation of starch and 

sugar is not strong enough to cause a reduction in photosynthetic capacity. 

It is also possible that non-stomatal limitation is due to a reduction of mesophyll conductance 

(gm) with increasing D. Flexas et al. (2008) examined our current understanding of the 

response of gm to the environment (including D) and suggested that gs and gm could be co-

regulated. Warren (2008) reported no gm response to D in Eucalyptus seedlings. However, 
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that study only considered a small range of D (1 kPa to 2 kPa) which is not sufficient to show 

the decline observed here.  We investigated how large the reduction in gm would need to be to 

fully explain the observed reduction in apparent Vcmax and found that a reduction in gm from 

0.2 to 0.01 mmol m-2 s-1 would be implied if non-stomatal limitation were entirely due to a 

reduction of gm (Figure 8). These values and magnitude of change of gm are consistent with 

previous studies (Niinemets et al., 2009; von Caemmerer and Evans, 2015), suggesting that 

the apparent down-regulation could potentially be attributable to gm. However, this result is 

not conclusive, because we are unable to quantify gm with the data available. 

 

Consequences for terrestrial biosphere models 

This study showed that the current gas exchange models in TBMs can perform poorly at high 

D. TBMs thus may be improved by incorporating non-stomatal limitation to predict A and gs 

more accurately at high D. Previous studies have recommended using non-stomatal limitation 

to improve modelled response to decreasing soil moisture availability (e.g., Keenan et al., 

2010; Egea et al., 2011; Zhou 2013; De Kauwe et al., 2015). Knauer et al. (2019) further 

demonstrated that incorporating non-stomatal limitation significantly changed the predicted 

CO2 response in TBMs. Here we suggest that incorporating non-stomatal limitation at high D 

may be necessary to capture the correct diurnal pattern of gs and A as well as annual 

transpiration and gross primary production in ecosystems currently experiencing high D (>2 

kPa) and likely to under future warming. 

However, we showed that under current hydraulic limitation assumptions, non-stomatal 

limitation cannot be successfully linked to ψL. We applied a simple empirical relationship to 

estimate non-stomatal limitation with D, but without a good understanding of the 

underpinning mechanism or its generality, it is unclear how widely this empirical dependence 

could be used. Further studies at high D would be useful to quantify the impact of non-

stomatal limitation more broadly, and to develop theoretical or mechanistic models (e.g., 

Gimeno et al., 2019). To inform mechanistic models of non-stomatal limitation, future studies 

need to collect extensive leaf gas exchange data across plant functional types under high D 

(>2 kPa). In addition, mechanistic studies are needed to elucidate the key processes 

underlying non-stomatal regulation, including changes in photosynthetic capacity and gm. 

The empirical relationship describing non-stomatal limitation that we present here could be 

replaced with theoretical or mechanistic alternatives as they emerge.   
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Data and Materials Availability 

The code and parameters of the models are freely available via https://github.com/Jinyan-

Yang/Yang_2019_VPD.   
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Figure captions 

Figure 1. (a) Soil water content (θ; dimensionless) averaged over the top 150 cm of each ring 

and (b) Leaf Area Index (LAI) at EucFACE in 2013. The LAI data were estimated by 

Duursma et al. (2016) from measurements of PAR transmittance and smoothed with a 

generalized additive model. Warm (red, orange and brown) and cold (blue, cyan and navy 

blue) colours depict elevated and ambient CO2 rings. 
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Figure 2. The observed response of light-saturated photosynthesis (A) and stomatal 

conductance (gs, re-drawn from Gimeno et al. 2016) to vapour pressure deficit (D) in the 

Licor chamber at EucFACE. Data are leaf gas exchange from four campaigns in 2013 in all 

six rings (obtained from Gimeno et al. 2016). The chamber D is similar to that of the outside 

air. Open circles: Ambient (A) rings; Closed circles: Elevated (E) rings.   
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Figure 3. Modelled photosynthesis (A) and stomatal conductance (gs) compared with 

observations. (a) and (b) Medlyn model (Eqn. 1). (c) and (d) Leuning model (Eqn. 2). Models 

were fitted to both A and gs data.   
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Figure 4. Modelled photosynthesis (A) and stomatal conductance (gs) incorporating 

hydraulic limitation (Tuzet K-PSI, Eqns. 3-7) compared with observations.   

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz103/5586169 by IN

R
A - Institut N

ational de la R
echerche Agronom

ique user on 13 D
ecem

ber 2019



 29 

Figure 5. The Tuzet K-PSI model did not capture the observed leaf water potential (ψL). (a) 

Predicted and observed ψL (circles and crosses, respectively) from the Tuzet model. 

Observations were made mid-morning (lower D, shown in blue) or early afternoon (higher 

D, shown in orange). (b) Estimated PLC curve based on dehydration measurements.  Note in 

(a) that observed ψL stays above the water potential corresponding to ~20% PLC (> -3 

MPa), but the model predicts this value to fall to ~80% PLC (< - 5 MPa).  
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Figure 6. Ratio of one-point Vcmax (estimated from gas exchange data using the “one-point” 

method) to the predicted Vcmax at the same temperature (estimated from A-Ci curves 

performed at a range of temperatures), as a function of D. EucFACE data (orange) are from 

Gimeno et al. (2016); Castlereagh data (blue) are from Zeppel et al. (2008). Only the 

EucFACE data are used in parameterization; the Castlereagh data are used to show that the 

pattern is consistent across sites in the area.  
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Figure 7. Modelled photosynthesis (A) and stomatal conductance (gs) incorporating non-

stomatal limitation (Eqn. 9) into Tuzet (Tuzet V-PSI) and Medlyn models (Medlyn V-D) 

compared with observations.   
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Figure 8. Estimated mesophyll conductance (gm; mol m-2 s-1) shows a decline with increasing 

vapour pressure deficit (D; kPa).  The gm is estimated from diurnal leaf gas exchange 

measurements in EucFACE during 2013 under the assumption that the observed decline in 

Vcmax is entirely due to decreasing gm. The line marks the linear regression fit: ln(gm) = -0.79-

1.91∙ln(D) with a R2 of 0.6. The fitting estimates a gm of 0.12 mol m-2 s-1at D =2 kPa; 0.03 

mol m-2 s-1at D = 4 kPa.   
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Figure 9. Modelled transpiration (E) compared to sap flow estimated by heat pulse sensors 

(measured E). Data shown are daytime for one stand (Ring 2) in 2013. Other stands are 

similar (Figures S4-S8). Panels (a) and (b) show measured and modelled E over time from 

original MAESPA. Panels (c) and (d) show the result from MAESPA with V-D hypothesis. 

The solid lines in Panels (a) and (c) show the daily average while the shading shows hourly 

variation (standard deviation).  
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Figure 10.  Transpiration (E) across different sources/sites as a function of vapour pressure 

deficit (D). (a) is the sap flow data from Castlereagh (Zeppel et al., 2009).  Bold line: 

generalised additive model (df = 5) fit to the data at saturated light (with PAR > 75% 

quantile). (b) and (c) are the estimated (sap flow) and modelled half-hourly daytime E for 

Ring 2 at EucFACE in 2013, respectively. Black and blue lines represent the same fitting to 

the modelled and sap flow data.  
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Tables 

Table 1. Summary of model parameter values and performance considered in this study. Note 
the differences in meanings and units in g1 among models. Table shows both the coefficient of 
determination (R2; higher is better) and inverse of Bayesian information criterion (BIC; 
lower is better) of both A and gs. Each criterion is ranked for the best two model 
combinations (best and second best marked as dark and light shade). Units for parameters 
are as follows: g1.max and g1T, kPa0.5; β, unitless; D0, kPa; ψf  and ψfv, MPa; ; sf and sfv, MPa-

1; Kmax, mol m-2 s-1 MPa-1; cD, kPa-1.  

  

gs model  Vcmax/Kmax model   Fitted 
parameters  

R2 of A  R2 of gs  -BIC  

Medlyn   

(Eqn. 1)  
V constant  

g1.max =5.34   

β = 1.34  
0.54  0.62  2452  

Leuning (Eqn. 
2)  V constant  

g1.max = 19.90   

β = 0.38  

D0 = 0.72  

0.70  0.76  2411  

Tuzet   

(Eqn. 3)   

  

V constant   

K = f(ψL)   

(Eqn. 6)  

g1T =8.95   

ψf  = -4.25   

sf  = 2.28    

Kmax = 1.01  

0.77  0.71  2387  

Tuzet   

(Eqn. 3)   

  

V =  f(ψL) (Eqn. 
8)  

K = f(ψL)   

(Eqn. 6)  

g1T =12.83   

ψf  = -1.56   

sf = 16.62    

Kmax = 3.98  

ψfv = -3.42   

sfv = 0.50  

0.65  0.75  2397  

Medlyn   

(Eqn. 1)  

V = f(D)   

(Eqn. 9)  

g1.max =5.67   

β = 0.56   

cD = 0.14  

0.77  0.74  2384  
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