
1 
 

Dry deposition of air pollutants on trees at regional scale: a case 1 

study in the Basque Country 2 

 3 

GARCÍA DE JALÓN S1*, BURGESS PJ2, CURIEL YUSTE J1, 6*, MORENO G3, GRAVES A2, PALMA JHN4, CROUS-4 

DURÁN J4, KAY S5, CHIABAI A1 5 

(1) Basque Centre for Climate Change (BC3), 48940, Leioa, Basque Country, Spain 6 

(2) Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 7 

(3) Forestry Research Group, INDEHESA, Universidad de Extremadura, 10600, Plasencia, Spain 8 

(4) Forest Research Centre, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal 9 

(5) Agroscope. Research Division Agroecology and Environment. Reckenholzstrasse 191, CH-10 

8046 Zürich, Switzerland 11 

(6) IKERBASQUE - Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Basque 12 

Country, Spain 13 

(*) Corresponding author. E-mail address: Silvestre.garciadejalon@bc3research.org 14 
 15 

Abstract 16 

There is increased interest in the role of trees to reduce air pollution and thereby improve human 17 

health and well-being. This study determined the removal of air pollutants by dry deposition of trees 18 

across the Basque Country and estimated its annual economic value. A model that calculates the 19 

hourly dry deposition of NO2, O3, SO2, CO and PM10 on trees at a 1 km x 1 km resolution at a regional 20 

scale was developed.  The calculated mean annual rates of removal of air pollution across various land 21 

uses were 12.9 kg O3 ha-1, 12.7 kg PM10 ha-1, 3.0 kg NO2 ha-1, 0.8 kg SO2 ha-1 and 0.2 kg CO ha-1. The 22 

results were then categorised according to land use in order to determine how much each land use 23 

category contributed to reducing air pollution and to determine to what extent trees provided 24 

pollution reduction benefits to society. Despite not being located in the areas of highest pollutions, 25 

coniferous forests, which cover 25% of the land, were calculated to absorb 21% of the air pollution. 26 

Compared to other land uses, coniferous forests were particularly effective in removing air pollution 27 
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because of their high tree cover density and the duration of leaf life-span. The total economic value 28 

provided by the trees in reducing these pollutants in terms of health benefits was estimated to be €60 29 

million yr-1 which represented around 0.09% of the Gross Domestic Product of the Basque Country in 30 

2016. Whilst most health impacts from air pollution are in urban areas the results indicate that most 31 

air pollution is removed in rural areas. 32 

Keywords: vegetation, health, pollutant, deposition velocity, land cover 33 

 34 
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1. Introduction 36 

Exposure to air pollution has been associated with increased mortality and morbidity. The World 37 

Health Organization (WHO) reported that in 2012, about 7 million people died as a result of fine-38 

particulate air pollution exposure. In the United States, Pope et al. (2009) found that sustained 39 

reductions in air pollution exposure were significantly correlated with an increase in life expectancy. 40 

Negative impacts from anthropogenic air pollution emissions can be reduced either by mitigating their 41 

health and environmental effects or by reducing emissions. Whilst much discussion has focused on 42 

measures that reduce emissions, such as decreasing traffic rates, phasing out old technologies, and 43 

increasing the use of public transport, there is great potential in reducing air pollution concentration 44 

through the use of vegetation (Vailshery et al., 2013; Escobedo et al., 2011; Guidolotti et al., 2017).  45 

Vegetation can reduce air pollution concentration by dry deposition, leading to improvements in 46 

human health and well-being (Mohan, 2016; Sanderson, 2008; Nowak et al., 2006; Nowak et al., 2013; 47 

Janhall, 2015; Litschke and Kuttler, 2008). In the dry deposition process, particles and gases are 48 

collected or are deposited on solid surfaces and this decreases the concentration in the air. 49 

Atmospheric particles and gases that are intercepted by vegetation can be either absorbed into plant 50 

tissues or retained on the surface of leaves, twigs, branches and the trunk. Pollutants absorbed by 51 

plant tissues can sometimes be turned into organic compounds stimulating the development of the 52 

plant (Sanderson, 2008; Lockwood et al., 2008). However most intercepted particles are retained on 53 

the plant surface and often drop to the ground with leaf and twig fall, are washed off by rain, or are 54 

resuspended in the atmosphere (Nowak et al., 2013). Thus, the retention of atmospheric particles in 55 

trees is usually temporary. This paper focuses on dry deposition on the surface of trees and does not 56 

assess the processes after deposition such as pollutant uptake or resuspension.  57 

Atmospheric particles can be deposited when they pass close to a surface. Compared with 58 

manufactured surfaces, trees have a large surface area per unit volume and a high surface roughness, 59 

which increases the probability of deposition (Janhall, 2015). Trees directly affect air quality by 60 

removing atmospheric particulate concentration, emitting pollen and volatile organic compounds, and 61 

through resuspension of particles captured on the plant surface (Nowak et al., 2013; Freer-Smith et 62 

al., 2004; Beckett et al., 2000a). Trees can also affect air quality by changing the microclimate by 63 

reducing exposure to solar radiation, modifying the wind, and by buffering air temperatures (Beckett 64 

et al., 2000b). 65 

Some studies have questioned the effectiveness of the filtration role of plants in reducing pollution 102 

concentrations, arguing that the net reduction by vegetation is not always clear (Ries and Eichhorn, 103 

2001; Litschke and Kuttler, 2008; Gromke and Ruck, 2007). One reason can be because vegetated 104 

areas are a barrier to air flow which can reduce air circulation in comparison with non-vegetated areas 105 

(Ries and Eichhorn, 2001; Gromke and Ruck, 2007). Thus, the volume of air that is exchanged per unit 106 

of time can be lower in vegetated areas than in non-vegetated areas. Litschke and Kuttler (2008) 107 

claimed that in order to provide a net reduction of air pollution, the particulate emissions of plants 108 

and the reduction in near-surface air exchange must be offset against the filtration performance. The 109 

authors gave the case of a road with trees on the roadside where a reduction in air exchange would 110 

result in an accumulation of dust and the reduction in pollutant concentration through deposition 111 

would be offset by reduced air exchange which would increase levels of pollutant concentration. This 112 

argument is mostly applicable to local scale assessments such as road trees or urban areas. However, 113 

pollutants will still persist and will eventually disperse elsewhere. For this reason, regional scale 114 
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assessments of the air pollution removal by trees need to also include the impact of forest and 115 

agricultural land.  116 

A further complication in the assessment of the filtration capacity of plants is that a number of factors 117 

influence dry deposition. Particle size and shape greatly influence deposition on plant surfaces 118 

(Janhall, 2015). Meteorological variables such as precipitation, solar radiation, humidity, wind speed, 119 

temperature and turbulence affect deposition velocity and thus the filtration performance of plants 120 

(Litschke and Kuttler, 2008). Dry deposition is also affected by plant characteristics such as plant 121 

species or planting configuration. Since most particles are deposited on leaves, higher deposition can 122 

be expected on evergreen species than on deciduous species since leaves remain on the tree 123 

throughout the year (Beckett et al., 2000a; Freer-Smith et al., 2004). Furthermore, cuticular, stomatal 124 

and mesophyll resistances of leaves, stems, and other organs directly affect deposition and these vary 125 

depending on plant species. Hairiness and wax content have also been reported to increase deposition 126 

(Janhall, 2015). Other factors that affect deposition and dispersion are vegetation density and 127 

distribution as well as the size and shape of the canopy.  128 

There are several models developed to simulate the dry deposition of air pollutants on trees. The 129 

European Monitoring and Evaluation Programme (EMEP) was developed to provide governments with 130 

scientific information on the evaluation of international protocols for emission reductions (EMEP, 131 

2018). Within EMEP, several models have been developed. The GAINS/RAINS model was developed 132 

to explore synergies and trade-offs between the control of local and regional air pollution and the 133 

mitigation of greenhouse gas emissions across various scales. The HM and POP models are chemical 134 

transport models that assess the regional atmospheric dispersion and deposition of heavy metals and 135 

persistent organic pollutants. The MSC-W chemical transport model assesses atmospheric dispersion 136 

and deposition of acidifying and eutrophying compounds, ground level ozone and particulate matter. 137 

Since 2017 the spatial resolution of these models has been a 0.1o x 0.1o longitude-latitude grid. In the 138 

United States, the USDA Forest Service developed the UFORE-D and i-Tree models which utilize field-139 

surveyed urban forest information, location specific data, weather data, and air pollutant 140 

measurements to quantify urban forest structure and forest-related effects such as quantifying dry 141 

deposition of air pollution by trees and shrubs (Hirabayashi et al., 2015).  142 

This study develops a regional scale model for evaluating dry deposition on vegetation. The model is 143 

based on the UFORE-D and i-Tree models and uses equations from previous studies (e.g. Baldocchi, 144 

1994; Farquhar et al., 1980). In comparison to previous studies, our model presents some advances 145 

for regional scale assessments by land cover through the use of new input variables such as satellite 146 

data, population density, road density, or land cover.  147 

This work aims to evaluate air pollution removal by dry deposition of trees in the Basque Country in 148 

northern Spain (Figure 1) and to assess air pollution removal by individual land uses. Whilst most 149 

studies that have assessed dry deposition of air pollution have focused on urban trees (e.g. Nowak et 150 

al., 2006; Nowak et al., 2013; Janhall, 2015), this study presents a regional scale approach for 151 

simulating the dry deposition of nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), carbon 152 

monoxide (CO) and particulate matter (PM10) on trees. The separate assessment by land cover is used 153 

to identify regions and land covers where trees provide the highest benefits to society. 154 

 155 

< INSERT FIGURE 1 > 156 

  157 
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2. Material and methods 158 

2.1. Materials 159 

This study used the Basque Country as a case study. The Basque Country occupies 7,234 km2 in which 160 

the population in 2016 was around 2.2 million people. Bilbao and the surroundings is the largest and 161 

the most industrialised metropolitan area in Basque Country (see population density map in Figure 1). 162 

Apart from Madrid and Barcelona, the metropolitan area of Bilbao is the most affected by air pollution 163 

in Spain (Ibarra-Berastegi et al., 2003; 2008; Gómez et al., 2004).  164 

This study used a range of time dependent and time independent data from diverse sources. Time 165 

dependent data included air pollution concentration, weather and leaf area index (LAI).  For air 166 

pollution concentration and weather variables, this study used data from the monitoring stations of 167 

the General Administration of the Autonomous Community of the Basque Country on an hourly basis 168 

(Gobierno Vasco, 2017). The air pollution data included atmospheric concentration levels of NO2, O3, 169 

SO2, CO and PM10 in 2016. Hourly weather data including wind, precipitation, humidity, pressure, solar 170 

radiation and temperature were also collected for this period. The data were collected from the online 171 

portal of the Basque Country (http://www.euskadi.eus) which had 53 air quality monitoring stations 172 

of which 47 stations had hourly data for the studied period (from 1 January 2016 at 00:00 to 31 173 

December 2016 at 23:59). The locations of the monitoring stations are shown in Figure 1. The LAI data 174 

were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) payload imaging 175 

sensor with a 500-m resolution (Myneni et al., 2015). As MODIS provides data on an eight-day basis, 176 

45 maps (raster layers) of LAI in the Basque Country in 2016 were downloaded. The values in each cell 177 

of the map were converted to hourly data assuming constant values during eight-day periods.  178 

The time independent data included population density, road density, tree cover, land cover, 179 

roughness length and data relating to plant characteristics. Population density data were obtained 180 

from the Center for International Earth Science Information Network (CIESIN) (2017) and road density 181 

data from OpenStreetMap (2015). Tree cover data were obtained from the raster layer Tree Cover 182 

Density 2012 with 20 m resolution from the Copernicus Land Monitoring Service (see Figure 2). Land 183 

cover data were obtained from the raster layer CORINE Land Cover (CLC 2012) with 100 m resolution 184 

from the Copernicus Land Monitoring Service (European Environment Agency, 2017). The roughness 185 

length values used in this study varied according to land use and season and were obtained from 186 

previous studies (Brook et al., 1999; EANET, 2010). They are shown in Table S.3. Data relating to the 187 

plant characteristics necessary for the calculation of deposition velocity were obtained from previous 188 

studies (see Table S.2). 189 

 190 

< INSERT FIGURE 2 > 191 

 192 

2.2. Analytical methods 193 

The method developed for this study aimed to measure the air pollution removal (NO2, O3, SO2, CO 194 

and PM10) by dry deposition on trees at regional scale. The computational analysis was done using R 195 

software (R Development Core Team, 2017).  196 

http://www.euskadi.eus/web01-a2ingair/es/contenidos/informacion/red_calidad_aire/es_def/index.shtml#2144
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2.2.1. Calculating the downward pollutant flux 197 

Material deposited per unit ground area  198 

The first step was to calculate the material deposited per unit ground area and time. Typically, this is 199 

calculated as the product of deposition velocity and pollutant concentration (Equation 1) (Hicks et al., 200 

1985; Pederson et al., 1995). 201 

 202 

𝐷𝑝,𝑡 = 𝑉𝑑𝑝,𝑡 ∗ 𝐶𝑝,𝑡 , (1) 

 203 

where 𝐷𝑝,𝑡 is the deposited amount of pollutant p per unit ground area and time instant t (g m-2 s-1). 204 

𝑉𝑑𝑝,𝑡 is the deposition velocity (m s-1). As the calculations were made on an hourly basis each time 205 

instant represented an hour (3600 s h-1). 𝐶𝑝,𝑡 is the concentration of pollutant p (g m-3) in every hour.  206 

 207 

Deposition velocity  208 

Deposition velocity (𝑉𝑑𝑝,𝑡) is the pollutant removal efficiency due to dry deposition. For NO2, O3, SO2 209 

and CO, deposition velocity was calculated as a function of three main resistances (Hicks et al., 1987; 210 

Pederson et al., 1995) (Equation 2):  211 

𝑉𝑑𝑝,𝑡 =
1

𝑅𝑎𝑡 + 𝑅𝑏𝑝,𝑡 + 𝑅𝑐𝑝,𝑡
, 

(2) 

 212 

where 𝑅𝑎𝑡 is the aerodynamic resistance, 𝑅𝑏𝑝,𝑡 is the quasi-laminar boundary layer resistance and 213 

𝑅𝑐𝑝,𝑡 is the canopy resistance (s m-1). To limit deposition estimates to periods of dry deposition, 𝑉𝑑𝑝,𝑡 214 

was set to zero during periods (hours) of rain (Nowak et al., 2006).  215 

Following Nowak et al. (2006) and Hirabayashi et al. (2015), deposition velocity for PM10 (𝑉𝑑𝑃𝑀10,𝑡) 216 

was set to a constant value during the in-leaf period which could be considered a rough estimate, 217 

since deposition velocity depends on the particle size. 218 

 219 

Aerodynamic resistance 220 

The aerodynamic resistance (𝑅𝑎𝑡) is the force exerted by the air on the surface of the plant that is 221 

parallel and opposite to the direction of flow relative to the plant. It affects the transport of the 222 

pollutant in the atmospheric surface layer towards the surface of the plant (Pederson et al., 1995). 223 

Aerodynamic resistance was calculated using a relationship described by Killus et al., (1984) (Equation 224 

3): 225 

𝑅𝑎𝑡 =
𝑢𝑡,𝑧

𝑢∗
𝑡
 2, (3) 

 226 

where 𝑢𝑡,𝑧 (m s-1) is the mean wind speed at height z at time instant t measured on an hourly basis at 227 

each monitoring station. When there were no measurements at a selected monitoring station, the 228 
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data from the closest station were used. The value 𝑢∗
𝑡 is the friction velocity (m s-1) at time instant t 229 

(see subsection “Friction velocity” below).  230 

 231 

Quasi-laminar boundary layer resistance 232 

The quasi-laminar boundary layer resistance (𝑅𝑏𝑝,𝑡) affects the process of the transport by molecular 233 

diffusion across an (intermittently present) thin laminar layer (Hicks et al., 1985) (Equation 4):  234 

𝑅𝑏𝑝,𝑡 = 2 ∗ (𝑆𝑐𝑝)
2

3 ∗ (𝑃𝑟)−
2

3 ∗ (𝑘 ∗ 𝑢∗
𝑡)−1, 

(4) 

 235 

where Sc is the Schmidt number, Pr is the Prandtl number and 𝑘 is the von Karman constant. 236 

 237 

Canopy or surface resistance  238 

The canopy or surface resistance (𝑅𝑐𝑝,𝑡) is the net resistance corresponding to the entire surface of 239 

the plant and affects the physical capture and chemical reactions. The canopy resistance usually 240 

dominates and controls the rate of deposition. (Pederson et al., 1995) (Equation 5): 241 

𝑅𝑐𝑝,𝑡 =
1

1

𝑟_𝑠𝑡+𝑟_𝑚𝑝
+

1

𝑟_𝑠𝑜𝑖𝑙𝑡
+

1

𝑟_𝑡𝑝

, 
(5) 

 242 

where 𝑟_𝑠𝑡 is the stomatal resistance at time t, 𝑟_𝑚𝑝 is the mesophyll resistance of each pollutant, 243 

𝑟_𝑠𝑜𝑖𝑙𝑡 is the soil resistance at time t , and 𝑟_𝑡𝑝 is the cuticular resistance of each pollutant. 244 

The calculation of the stomatal resistance used the analytical solution for coupled leaf photosynthesis 245 

developed by Baldocchi (1994). The analytical solution is based on four equations with four unknowns. 246 

Despite calculating stomatal resistance the model does not estimate stomata uptake. Fares et al. 247 

(2008) found a significant relationship between stomatal conductance and stomata uptake. 248 

Firstly, stomatal conductance, which is the inverse of stomatal resistance, is calculated on an hourly 249 

basis using the equation of Ball (1989) (Equation 6).  250 

𝐺𝑠𝑡 =
𝑚 ∗ 𝐴𝑡 ∗ 𝑟ℎ𝑡

𝐶𝑠𝑡
+ 𝑏′, 

(6) 

 251 

where 𝐺𝑠𝑡 is the stomatal conductance (µmol m-2 s-1), 𝐴𝑡 is the leaf photosynthesis (µmol m-2 s-1), 𝑟ℎ𝑡 252 

is relative humidity (%), and 𝐶𝑠𝑡 is hourly CO2 concentration at the leaf surface (ppm). The coefficient 253 

𝑚 is a dimensionless slope and 𝑏′ is the zero intercept when 𝐴𝑡 is equal to or less than zero. Units 254 

from µmol m-2 s-1 were converted to m s-1. 255 

The value 𝐴𝑡  is calculated using Farquhar et al. (1980) as a function of the carboxylation (𝑉𝑐), 256 

oxygenation (𝑉𝑜) and dark respiration (𝑅𝑑) rates of CO2 exchange between the leaf and the 257 

atmosphere (Equation 7): 258 

𝐴𝑡  = 𝑉𝑐 − 0.5 ∗ 𝑉𝑜 − 𝑅𝑑 (7) 
 259 
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Finally, to obtain an analytical solution for leaf photosynthesis, two conductance equations were 260 

employed (Equations 8 and 9). See Baldocchi (1994) for more details in the calculation. 261 

𝐶𝑖𝑡 = 𝐶𝑠𝑡 −
𝐴𝑡

𝐺𝑠𝑡
 

(8) 

𝐶𝑠𝑡 = 𝐶𝑎 −
𝐴𝑡

𝐺𝑏𝑡
, 

(9) 

 262 

where 𝐶𝑖𝑡 is the leaf internal CO2 concentration, 𝐶𝑠𝑡 is the leaf surface CO2 concentration, Ca is the 263 

atmosphere’s CO2 concentration (410 ppm) and 𝐺𝑏𝑡 is the conductance across the laminar boundary 264 

layer of the leaf (µmol m-2 s-1) for CO2 exchange. 265 

In the case of CO, it was considered that pollutant removal by vegetation was not directly related to 266 

transpiration (Bidwell and Fraser, 1972). Using Hirabayashi et al. (2015), canopy resistance was set to 267 

a constant value depending on the in-leaf and out-of-leaf periods. 268 

 269 

Friction velocity 270 

Friction velocity is a scaling parameter that describes the shear stress and atmospheric turbulence in 271 

the boundary layer which affects pollutant dispersion. Friction velocity is needed in order to obtain a 272 

vertical wind profile for given atmospheric conditions. Since friction velocity was estimated from 273 

hourly-averaged horizontal wind measurements within the roughness sublayer the following 274 

approximation was used (Equation 10, Prandtl, 1925):  275 

𝑢∗
𝑡 = √0.2 ∗ 𝑢𝑡,𝑧, (10) 

 276 

where 𝑢 ∗𝑡  is the friction velocity and 𝑢𝑡,𝑧 the mean wind speed at height z at the at time t. 277 

Material deposited per unit tree-covered area and time 278 

Finally, the amount of pollutant deposited per unit tree-covered area and time (DT) was calculated 279 

using Equation 11 (Janhall, 2015): 280 

𝐷𝑇𝑝,𝑡 = 𝐷𝑝,𝑡 ∗ 𝐿𝐴𝐼𝑡,𝑠𝑝 ∗ 𝑇𝐶, (11) 

 281 

where 𝐷𝑇𝑝,𝑡 is the deposited amount per unit tree-covered area of pollutant p and time instant t (g 282 

m-2 s-1). 𝐷𝑝,𝑡 was calculated following Equation 1. 𝐿𝐴𝐼𝑡,𝑠𝑝 is the leaf area index under tree canopy in 283 

each time instant (m2 of leaf area per m2 of ground area under the tree canopy). 𝑇𝐶 is the proportional 284 

tree cover between 0 and 1.  285 

Figure 3 shows an example of the calculated air pollutants deposited per unit broadleaf deciduous 286 

tree-covered area in 2016 at the “Algorta (Bbizi2)” monitoring station (Station code = 4). As shown in 287 

the upper graphs, most of the dry deposition was produced during the in-leaf period between April 288 

and November. In the lower graphs, we see that deposition is usually higher during early morning. 289 

 290 

< INSERT FIGURE 3 > 291 

 292 
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2.2.2. Regional air pollution removal 293 

In order to estimate air pollution removal at regional scale the material deposited per unit tree-294 

covered area (see Equation 17) was calculated in each cell of a raster layer of the Basque Country with 295 

a resolution of 1 km  1 km. For doing this, each cell needed hourly data (8,784 values in 2016) of the 296 

pollutant concentration, weather and LAI variables.  297 

As pollutant concentration and weather data were only collected in selected monitoring stations, the 298 

data were spatially interpolated for the rest of the Basque territory. In the case of air pollution 299 

concentration (NO2, O3, SO2, CO and PM10), the spatial interpolation included two steps. The first step 300 

was to identify the closest monitoring station for each raster cell. Previously, the location of each 301 

station that had data available was identified separately for each pollutant. Then the distance from 302 

each cell to each station was measured. This allowed us to assign the closest station to each cell in the 303 

1 km  1 km raster layer (see the assignation of the stations to each raster cell in Figure S.1 in the 304 

supplementary material). In this way, each monitoring station represented a geographical area in 305 

which cells would use the same air pollutant concentration data. The second step was to add to each 306 

raster cell an increment of pollutant concentration (positive or negative) based on the density of roads 307 

and population of each raster cell. In order to estimate the increment of pollutant concentration, the 308 

influence of density of roads and population on the atmospheric concentration of each pollutant was 309 

determined by linear regressions.  310 

Equation 12 shows the calculation of the increment of concentration (∆𝐶𝑝,(𝑖−𝑠𝑡)) of pollutant p in cell 311 

i respect to the closest station st: 312 

𝐶𝑝,𝑖 = 𝐶𝑝,𝑠𝑡 + ∆𝐶𝑝,(𝑖−𝑠𝑡), (12) 

 313 

where 𝐶𝑝,𝑠𝑡 is the concentration of pollutant p in station st and 𝐶𝑝,𝑖 in cell i.  314 

Equation 13 shows the linear regression (ordinary least squares, OLS) used to measure the effect of 315 

density of roads and population on pollutant concentration in the cells where the stations are located 316 

(st). Equation 14 shows the regression for the raster cells where there were no stations (i):  317 

𝐶𝑝,𝑠𝑡 = 𝛽0 + 𝛽1 ∗ 𝑅𝐷𝑠𝑡 + 𝛽2 ∗ 𝑃𝐷𝑠𝑡 + 𝜀 (13) 

  
𝐶𝑝,𝑖 = 𝛽0 + 𝛽1 ∗ 𝑅𝐷𝑖 + 𝛽2 ∗ 𝑃𝐷𝑖 + 𝜀 (14) 

 318 

where RD and PD indicate road and population density in each cell.  319 

The increment of pollutant concentration between cell i and station st (∆𝑝,(𝑖−𝑠𝑡)) was calculated as the 320 

difference between the two equations (Equation 15). 321 

∆𝐶𝑝,(𝑖−𝑠𝑡) = 𝐶𝑝,𝑖 − 𝐶𝑝,𝑠𝑡 = 𝛽1 ∗ (𝑅𝐷𝑖 − 𝑅𝐷𝑠𝑡) + 𝛽2 ∗ (𝑃𝐷𝑖 − 𝑅𝐷𝑠𝑡) (15) 

 322 

As all parameters in Equation 13 are known (𝐶𝑝,𝑠𝑡 , 𝑅𝐷𝑠𝑡  and 𝑃𝐷𝑠𝑡) the coefficients (𝛽0, 𝛽1and 𝛽2) can 323 

be estimated through the OLS regression. Since 𝑅𝐷𝑖 and 𝑃𝐷𝑖 are also known, ∆𝐶𝑝,(𝑖−𝑠𝑡) can be 324 

calculated for each cell in respect to its closest monitoring station through Equation 15. In each cell, 325 

this increment was added to the 8,784 hourly values of pollutant concentration.  326 
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In the case of weather data (hourly wind, precipitation, humidity, pressure, radiation and 327 

temperature), the same principle of using the closest weather station to each raster cell was used for 328 

each weather variable.  329 

These steps allowed the calculation of the quantity of pollutant deposited per unit ground area and 330 

per unit time (𝐷𝑝,𝑡) in each cell of the 1 km  1 km raster layer (see Equation 1). The hourly data for 331 

LAI and the tree cover map were used to calculate the deposited quantity of pollution per unit tree-332 

covered area (𝐷𝑇𝑝,𝑡)  in each cell of the raster layer (see Equation 11). 333 

2.2.3. Assessment by land cover and sensitivity analysis 334 

The last step was to assess air pollutant removal by land use and to undertake a sensitivity analysis. 335 

The raster layer CORINE Land Cover raster layer was used to locate the different land uses in the 336 

Basque Country. The CORINE Land Cover map was overlain with the generated maps of air pollutant 337 

removal. This then allowed identification of those areas where dry deposition on trees could be 338 

important and provided especially high levels of benefits to society.  339 

A sensitivity analysis was conducted to assess the model robustness and to increase the reliability of 340 

the model performance. The sensitivity analysis focused on the main sources of uncertainty within the 341 

input factors. One source of uncertainty was the representativeness of measurement stations. For 342 

example, the southern part of the Basque Country had very few stations, and consequently, there 343 

were some raster cells located far away from the stations. The other main source of uncertainty was 344 

the fact that meteorological measurements were point measurements and registered at a certain 345 

height above the surface which was not the same for all stations. Thus, the aerodynamic resistance 346 

due to vegetation was not determined at a constant height. The sensitivity analysis assessed the 347 

uncertainty of these two sources.  348 

In order to evaluate the uncertainty of the representativeness of measurement stations, an increment 349 

of -50%, -20%, 0%, 20% and 50% of pollutant concentration values were added in those cells that were 350 

far away from the stations. To test the uncertainty of point measurements an increment of -50%, -351 

20%, 0%, 20% and 50% of aerodynamic resistance was considered in the analysis. 352 

3. Results 353 

3.1. Air pollution removal by dry deposition on trees 354 

Figure 4 shows the spatial distribution of annual air pollution removal by dry deposition for each air 355 

pollutant in 2016. Mean NO2 deposition in the Basque Country was around 3 kg ha-1 yr-1 ranging from 356 

0 to 17.1 kg ha-1 yr-1. Deposition values above the 95 percentile were measured during daylight. A large 357 

amount of NO2 deposition was determined for the extensive forests to the south of the metropolitan 358 

areas of Bilbao and San Sebastian. This can be explained by the displacement and deposition of NOx 359 

gases generated from roads and densely populated areas in nearby areas. For O3, the highest values 360 

were obtained between June and August in areas far away from large cities. Mean O3 deposition was 361 

around 12.9 kg ha-1 yr-1 ranging from 0 to 42.8 kg ha-1 yr-1. Most SO2 was deposited in the forests 362 

surrounding the Bilbao metropolitan area. Mean SO2 deposition was around 0.8 kg ha-1 yr-1 ranging 363 

from 0 to 3.7 kg ha-1 yr-1. For CO, the highest hourly values were obtained from dusk until dawn 364 

between June and November. Mean CO deposition was around 0.2 kg ha-1 yr-1 ranging from 0 to 0.8 365 

kg ha-1 yr-1. Similar to NO2, the highest PM10 deposition was calculated to occur in the extensive forests 366 
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to the south of the metropolitan areas of Bilbao and San Sebastian. Mean PM10 deposition was around 367 

12.7 kg ha-1 yr-1 ranging from 0 to 38.5 kg ha-1 yr-1.  368 

Nowak et al. (2014) calculated the removal of NO2, O3, SO2 and PM2.5 in each state of the conterminous 369 

United States. In their study, the sum of NO2, O3, SO2 and PM2.5 removed by trees ranged from 49.9 kg 370 

ha-1 yr-1 in Maine to 1.2 kg ha-1 yr-1 in North Dakota. In our study, the calculated mean combined 371 

removal of NO2, O3, SO2 and PM10 was 29.4 kg ha-1 yr-1. 372 

The air pollution removal maps show that dry deposition was very low in areas with low tree cover 373 

density such as southern Basque Country which is mainly occupied by arable crops and vineyards (see 374 

tree cover map in Figure 2). Apart from tree cover density, concentration was the other main driver 375 

of air pollution removal. Overall, with the exception of O3, air pollution removal was found to be 376 

greater in the surroundings of areas with high industry development and population density which 377 

are usually associated with high pollutant concentration levels (Ilan Levy and Broday, 2017; Hao et al., 378 

2018).   379 

 380 

< INSERT FIGURE 4 > 381 

 382 

Amongst the studied pollutants, O3 showed the greatest reduction through dry deposition on trees 383 

(9,325 t of O3 yr-1, see Table 1). Regarding the other pollutants, 9,158 t of PM10 yr-1, 2,192 t of NO2 yr-384 
1, 608 t of SO2 yr-1 and 174 t of CO yr-1 were also removed. Assuming constant externality values from 385 

the literature across the Basque Country, the economic value of reducing the concentration of each 386 

pollutant was estimated. The externality values transferred in this study were based on the damage 387 

cost approach, typically used for evaluating air pollution effects. This approach focuses on the 388 

quantification of the explicit impact that the emissions have on human health, environment and 389 

economic activity (Ricardo-AEA, 2014). Removal of PM10 showed the greatest economic benefit at 390 

approximately €34 million yr-1. The total economic value of reducing all the pollutants was 391 

approximately €60 million yr-1, which was about 0.09% of the Gross Domestic Product of Basque 392 

Country in 2016. 393 

 394 

 < INSERT TABLE 1 > 395 

 396 

3.2. Air pollution removal by land cover 397 

The last step was to analyse air pollution removal by the different land covers in the Basque Country 398 

(Table 2). Air pollution removal in the land-cover group “Forest and semi-natural areas” provided 399 

about 93.7% of the total removal of all air pollutants which occupies 65.4% of the total area in the 400 

Basque Country with a 70.1% mean tree cover. Within the land-use group “Forest and semi-natural 401 

areas”, coniferous forest was the land cover that reduced air pollution the most. Whilst coniferous 402 

forest on average removed 6.47 kg NO2 ha-1 yr-1, deciduous forest removed 3.49 kg NO2 ha-1 yr-1. This 403 

was due to all of the main coniferous trees in the Basque Country are evergreen with a significant LAI 404 

throughout the year.  405 

After “Forest and semi-natural areas”, the next most effective land cover for removal of air pollution 406 

was “Agricultural areas” which removed around 5.8% of the total. The land cover group “Artificial 407 
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surfaces” then removed around 0.5% of the total. Trees near shorelines and marine coasts (Water 408 

bodies group) removed only 0.02% of the total value. 409 

< INSERT TABLE 2 > 410 

 411 

The results of the sensitivity analysis (Tables S.5 – S.14 in Supplementary Material) show that the 412 

model is sensitive to variations in pollutant concentration values. The spatial distribution of 413 

monitoring stations across the Basque Country was not homogenous as there were more stations in 414 

densely populated areas. Hence, the representativeness of measurement stations is a limitation that 415 

should be considered when interpreting the results of this study. The furthest distance from a station 416 

was about 15 km. The results also showed that estimated annual deposition was not strongly affected 417 

by the aerodynamic resistance.  418 

4. Discussion 419 

There are a number of factors that could explain why air pollution removal due to trees in the Basque 420 

Country was high. Firstly, the percentage of tree cover is a key determinant. In the Basque Country, 421 

the tree cover density within “forest and semi-natural areas” at around 49% is relatively high (Hansen 422 

et al., 2013a; Hansen et al., 2013b; Schuck et al., 2002). Secondly, Basque Country has large industrial 423 

areas and the population density of 303 inhabitants km-2 is the second highest in the country (Gómez 424 

et al., 2004). High population densities, with associated high levels of transportation, and 425 

industrialisation lead to high pollution concentrations (Ilan Levy and Broday, 2017; Hao et al., 2018). 426 

In turn, high air pollution concentrations can accentuate the deposition of pollutants by trees which 427 

is calculated as the product of concentration and deposition velocity (Janhall, 2015). The deposition 428 

velocity is mainly determined by meteorological variables and plant parameters. Litschke and Kuttler 429 

(2008) suggested that the main meteorological determinants of deposition velocity and the filtration 430 

performance of plants were precipitation, wind speed and radiation. Precipitation in the Basque 431 

Country is relatively high (around 1,000 mm yr-1) which would have an inverse relationship with air 432 

pollution removal as dry deposition velocity was set to zero during rain events. Although precipitation 433 

contributes to air pollution removal it was considered to be wet deposition and hence, excluded from 434 

dry deposition.   435 

The results of this study seem to indicate that the main driver of the air pollution removal by dry 436 

deposition and its economic value was the tree cover density and the duration of the LAI. One reason 437 

for this is that the effect of tree species on stomata conductance was only considered through the 438 

temporal LAI in each raster cell.  Overall, the land cover that provided the highest economic benefit 439 

was coniferous forests (tree cover density = 83.9%) which is largely occupied by the introduced species 440 

Pinus radiata D. Don. Coniferous and broad-leaved forests occupy almost half of the total area in the 441 

Basque Country but they provide about 83% of the total economic value of air pollution removal. This 442 

finding is in line with Nowak et al. (2014) who found that North Dakota (tree cover density = 3%) and 443 

Nebraska (tree cover density = 4%) were the states where tree cover density and air pollution removal 444 

were lowest, whilst New Hampshire (tree cover density = 89%) and Maine (tree cover density = 83%) 445 

had the highest tree cover and level of air pollution removal.  446 

About 94% of the dry deposition on trees in the Basque Country occurred in forest and natural areas, 447 

primarily in rural areas. However, as in many other regions, most of the population in the Basque 448 

Country is concentrated in urban areas. Therefore, it could be argued that in terms of reducing air 449 
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pollution concentration by dry deposition, trees in urban areas are likely to be more important than 450 

rural trees due to their proximity to people (Nowak et al., 2014). In this respect, the largest benefits 451 

could be in areas with the highest population density as the impact on human health would be greater, 452 

and it is recommended that the implications of this should be integrated in future research. In line 453 

with this finding but at considerably smaller spatial scale, the review on deposition on urban 454 

vegetation by Janhall (2015) suggested that vegetation should be close to the pollution source, e.g. 455 

low bushes between traffic lanes since proximity to the source increases pollutant concentration and 456 

thus deposition. This is supported by our study at regional scale since in most cases, the highest 457 

deposition rates were found in extensive forests close to the metropolitan area of Bilbao and to a 458 

lesser extent, in San Sebastian (Figure 4). However, it is worth noting that sometimes trees in urban 459 

areas can also have negative effects on urban air quality because they can act as a barrier to air flow 460 

and emit organic compounds with harmful effects on human health (Ries and Eichhorn, 2001; Gromke 461 

and Ruck, 2007; Litschke and Kuttler, 2008).  462 

There are a number of ways in which future research using this method could be developed. Firstly, 463 

the calculation of the deposition velocity depends on many parameters obtained from the literature, 464 

such as plant resistance and those related to the calculation of deposition velocity derived from 465 

experimental and modelling studies. In the literature, there are many discrepancies between these 466 

values (Litschke and Kuttler, 2008; Petroff et al., 2008). The use of these different values from the 467 

literature can lead to contrasting modelling results, which in turn can have a significant impact on 468 

regional estimations. Therefore, there is a need for further research of combining experimental 469 

analysis with modelling studies. Secondly, the effect of forest edges (transition zones between an area 470 

of woodland and fields or other open spaces) was not considered in the analysis. However, dry 471 

deposition is greater at the edge of forests than at the centre and consequently, large forests could 472 

be less efficient that forests occurring in patches (Templer et al 2015). Likewise, trees in agroforestry 473 

systems could provide greater benefits than in extensive forests since the marginal importance of tree 474 

cover seems to decrease as tree cover increases. Thirdly, the parameter values used for the calculation 475 

of canopy resistance, for example, for mesophyll or cuticular resistance can differ according to the 476 

tree species, individuals and even between leaves on the same tree (Lockwood et al., 2008). However, 477 

this study has demonstrated a systematic and transparent method to estimate at regional scale the 478 

extent by which trees can reduce pollutant concentration and thereby provide beneficial effects for 479 

human health. However, it should be noted that trees can also contribute to air pollution by emitting 480 

volatile organic compounds that can contribute to O3 and CO formation (Nowak and Heisler, 2010). In 481 

addition to this, some limitations could be associated to the use of plant physiological variables as 482 

input data in a regional scale model. Since dry deposition was calculated per raster cell (1 km x 1 km) 483 

instead of per tree, the effect of tree species on the calculation of some variables such as stomata 484 

resistance was not fully considered. Conversely, our model calculates stomatal conductance using 485 

temporal LAI data from the MODIS satellite which is affected by tree species. For instance, in a 486 

determined raster cell and time instant, if LAI of a particular species equals zero, then there is no 487 

stomata opening activity in that particular cell and time instant. Despite these limitations, the 488 

methodology allows the impact of regional air pollution removal by dry deposition of trees in different 489 

land covers to be calculated using an approach that could be replicated in other areas. 490 

5. Conclusion 491 

This study calculated the spatial distribution of air pollution removal by dry deposition of trees in the 492 

Basque Country and estimated its economic value. In doing so, a regional scale model calculating the 493 
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hourly deposited amount of NO2, O3, SO2, CO and PM10 on trees was presented. Although the 494 

methodology has limitations, it provides an estimate of the removal by trees of different forms of air 495 

pollution in the Basque Country. The proposed methodology could be used in different regions or 496 

contexts as long as representative hourly weather and air pollution concentration data are available. 497 

The estimated annual dry deposition of pollutants by trees in the Basque Country in 2016 was 498 

calculated to be 9,325 t O3, 9,158 t PM10, 2,192 t NO2, 608 t SO2 and 174 t CO. The estimated total 499 

economic benefit of reducing these pollutants was around €60 million yr-1 which represented around 500 

0.09% of the Gross Domestic Product of the Basque Country in 2016. Coniferous forests, which occupy 501 

25% of the area, were found to provide the most of the economic benefit from dry deposition as tree 502 

cover density and the duration of leaf life-span were important determinants of the amount of the 503 

deposited material.  Although the greatest health impacts from air pollution occur in urban areas 504 

where population density is highest, most air pollution is removed in rural areas. To this end, the 505 

hourly modelling approach presented here, using air pollution, weather, and leaf area index data 506 

collected in monitoring stations and by satellites provides an objective and transparent means of 507 

estimating air pollution benefits by trees. 508 
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