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ABSTRACT 12 

Current ozone (O3) concentration levels entail significant damages in crop yields around 13 

the world. The reaction of the emitted precursors (mostly methane and nitrogen oxides) 14 

with solar radiation contribute to O3 levels that exceed established thresholds for crop 15 

damage. This paper shows current and projected (up to 2080) relative yield losses (RYLs) 16 

driven by O3 exposure for different crops and the associated economic damages applying 17 

dynamic crop production and prices that are calculated per region and period. We adjust 18 

future crop yields in the Global Change Assessment Model (GCAM) to reflect the RYLs 19 

and analyze the effects on agricultural markets. We find that the changes (generally 20 

reductions) in O3 precursor emissions in a reference scenario would reduce the 21 

agricultural damages, compared to present, for most of the regions, with a few exceptions 22 

including India, where higher future O3 concentrations have large negative impacts on 23 

crop yields. The annual economic impact of O3 driven losses from 2010-2080 are, in 24 

billion US dollars at 2015 prices ($B), 5.0-6.0, 9.8-18.8, 6.7-10.6 and 10.4-12.5 for corn, 25 

soybeans, rice and wheat, respectively, with the large losses for wheat and soybeans 26 

driven by their comparatively high responses to O3. When O3 effects are explicitly 27 

modelled as exogenous yield shocks in future periods, there is a direct impact in future 28 

agricultural markets. Therefore, the aggregated net present value (NPV) of crop 29 

production would be reduced around by $90.8B at a global level. However, these changes 30 

are not distributed evenly across regions, and the net present market value of the crops 31 

would increase by up to $118.2B (India) or decrease by up to $59.2B (China).  32 
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1 Introduction 43 

Tropospheric ozone (O3) is the most hazardous pollutant for crop yields (Emberson et al., 44 

2018). When crops are exposed to high O3 concentration levels, it penetrates through the 45 

stomata during plant gas exchange and, as a strong oxidant, it induces several harmful 46 

effects, such as visible foliar injuries (necrosis and chlorosis), reduced photosynthesis, 47 

gene alteration, and a reduction in yields (Avnery et al., 2011a; Emberson et al., 2018). 48 

While other variables, such as temperature, precipitation or carbon fertilization effect 49 

(CFE) may affect crop yields, exposure to O3 has the largest effect within expected 50 

environmental changes (Shindell, 2016) and is consistently negative, while impacts 51 

associated with changing climate may have negative or positive impacts, depending on 52 

crop, location, and climate projection. Consequently, the O3-related decrease in crop 53 

yields would increase pressures on several measures associated with food security (Long 54 

et al., 2005; Mills et al., 2011). Recent studies have shown that different crop varieties 55 

have different response to O3 exposure in some crops such as winter wheat (Biswas et al., 56 

2009) or soybeans (Osborne et al., 2016), which could make O3-related food security 57 

impacts uncertain.  58 

The main driver for O3 formation is the reaction of the emitted precursors with solar 59 

radiation. Changes in meteorological conditions, such as temperature variations, would 60 

also significantly affect O3 levels, as demonstrated in different studies (Coates et al., 61 

2016; Cox and Chu, 1996). Prior literature has extensively analyzed the effect of both 62 

greenhouse gases (GHG), including methane (CH4), and non-GHG air pollutants such as 63 

nitrogen oxides (NOX), carbon monoxide (CO), and non-Methane Volatile Organic 64 

Compounds (NMVOC) on O3 formation (Burney and Ramanathan, 2014). However, O3 65 

formation is also partially determined by natural precursors such as biogenic nitrogen 66 

oxides missions (lightening and soils), wildfires or biogenic volatile compounds 67 

(BVOCs) emissions (Cooper et al., 2014).  68 

In terms of historical O3 concentration levels, Griffiths et al., (2020) in the framework of 69 

the Phase 6 of the Coupled Model Intercomparison Project (CMIP6), shows that current 70 

O3 levels have increased around 40% compared to preindustrial levels (1850). This 71 

finding is consistent with the historical trends presented by Young et al., (2013) in the  72 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). O3 73 

concentrations have decreased in developed countries in recent years (Cooper et al., 74 

2014), while other regions, such as developing Asia, have substantially increased their O3 75 

levels (Chang et al., 2017). Even though several regions have established different O3-76 

control measures1, the increase of global methane emissions2 and the increment in natural 77 

wildfires would increase O3 levels, so more stringent control policies may be required 78 

(Lin et al., 2017). 79 

 
1 In addition to individual countries, several international agencies, namely the World Health Organization 

(WHO) or the Environmental Protection Agency (EPA), have established different targets and measures 

for controlling O3 concentration levels (Ainsworth et al., 2012). 
2 Because of the long equilibration time, changes in O3 concentrations attributable to variations in methane 

emissions are independent of the location of those methane emissions (Van Dingenen et al., 2018a). 



Several studies predict that the reduction of precursor emissions coming from 80 

implemented climate policies would result in a significant decrease of O3 concentration 81 

levels (Dentener et al., 2005; Sicard et al., 2017). Furthermore, the atmospheric 82 

transportation of those species entails significant inter-regional effects (Fiore et al., 2009). 83 

The individual effects of O3 precursors vary3 and, due to these differences, some studies  84 

demonstrate that mitigation actions for NOX or CH4 would be the most effective ones in 85 

order to reduce O3 concentration levels (Shindell et al., 2019; West et al., 2007), even 86 

though in VOC-limited conditions, reducing NOx can lead to increased O3 concentrations 87 

(Fiore et al., 1998). In addition, some studies have analyzed the effectiveness of the 88 

improvement of agricultural practices as a measure to reduce O3 damages (Teixeira et al., 89 

2011). They found that modifying crop calendars or crop varieties could be an adequate 90 

action for some concrete crops in some concrete regions, but there would not be a 91 

significant effect at a global level. 92 

Different studies have analyzed current O3-related crop damages using exposure-response 93 

functions (ERF) (Avnery et al., 2011a, 2011b; Feng et al., 2019; Ghosh et al., 2018; Van 94 

Dingenen et al., 2009; Vandyck et al., 2018). According to their results, focusing on year 95 

2000, soybeans and wheat are the most O3 sensitive crops, with global yield losses 96 

ranging from 6% to 16% and from 4% to 15%, respectively, depending on the region. 97 

Rice and corn would be less affected, as their potential crop damages in 2000 would 98 

account for 3-4% and 2.5-5.5%, respectively. Wang and Mauzerall (2004) showed that 99 

some Asian regions (China, Japan and South Korea), would have significantly higher O3 100 

damages on crops. According to this study, in those regions in 1990, the O3 driven yield 101 

losses ranged from 1% to 9% for wheat, corn and rice, while, for soybeans, the damages 102 

would range between 23% and 27%. Those losses would increase for 2020, when wheat, 103 

corn and rice reduce their yield by 2 to 16%, and soybeans by 28% to 35%. Some 104 

literature estimates future O3 effects on crops. Van Dingenen et al. (2009) show the 105 

potential crop losses for 2030, following the “current legislation” scenario (CLE)4. These 106 

authors use the TM5 Fast Scenario Screening Tool (TM5-FASST) air quality model to 107 

show that relative yield losses will be significantly larger in 2030, mostly for wheat and 108 

rice. The additional yield losses for these crops will amount 2-6% and 1-6% respectively, 109 

due to the increase on future O3 concentration levels. In this line, Chuwah et al. (2015) 110 

combines an integrated assessment model (IMAGE) with TM5-FASST, and they report 111 

that crop losses might reach up to 20% in 2050. In addition, they show that by 112 

implementing stringent climate policies (Representative Concentration Pathway (RCP) 113 

2.6), those yield losses would be significantly limited, not exceeding 10% in any region. 114 

The studies mentioned do estimate current or future agricultural damages based on 115 

different methodologies. However, to our knowledge, this study is the first study 116 

estimating economic impacts associated to crop exposure to O3 using temporal and 117 

regionally dynamic agricultural production and price estimations. For that purpose, we 118 

 
3 O3 concentrations respond linearly to reductions in CH4, CO and NMVOC emissions (Fiore et al., 2009, 

2008), but the O3 decrease would be greater (non-linear) with NOX reductions (Wu et al., 2009). 
4 Details of the scenario can be found in Stohl et al., 2015 



have developed and applied an innovative approach that subsequently connects an 119 

integrated assessment model (Global Change Assessment Model, GCAM) with an air 120 

quality tool (TM5-Fast Scenario Screening Tool, TM5-FASST), explained in detail in the 121 

following section. In addition, this integrated framework can be used to observe the 122 

relative importance of incorporating O3 damages into scenario analysis. Another 123 

innovative aspect of this study is that it compares the net present value of crop losses by 124 

comparing a scenario without O3 related crop damages with a similar scenario where O3 125 

damages are exogenously set as yield reductions. This is an important factor since 126 

projected reductions in yield productivity would alter the production of each commodity 127 

both globally and regionally due to changes in comparative advantage across regions. 128 

These changes in production levels and location of production consequently affect future 129 

crop prices. Moreover, crop demand is affected by different factors and does not directly 130 

respond to changes in yield productivity. These effects are captured by using an integrated 131 

assessment model (GCAM). 132 

 133 

2 Materials and Methods 134 

This study uses GCAM and TM5-FASST to assess the future impacts of O3 driven 135 

damages on agricultural systems. GCAM is an integrated assessment model developed 136 

by the Joint Global Change Research Institute, which captures the dynamics of the 137 

socioeconomic, energy, land-use and climate systems. It tracks a wide variety of 138 

pollutants5, for each period, region and sector, with internally consistent estimates of 139 

future O3 precursors. The model divides the world in 32 regions and runs in 5-year time 140 

steps from 1990 to 21006.  141 

In this study GCAM 4.4 is used with regionally differentiated agricultural markets that 142 

track gross imports and exports, and food consumption driven by prices and demand for 143 

staple and non-staple commodities7, as the response of consumers to changes in prices 144 

and income are less elastic for staple crops than for non-staple crops. To meet global 145 

demand for agricultural products, farmers in different Agro-Ecological Zones (AEZs) 146 

(Monfreda et al., 2009) of each region compete on prices for their share in the regional 147 

market, and subsequently, regional markets compete with each other for their share in the 148 

global market for agricultural commodities. The competition between domestic and 149 

imported commodities are on the consumer side, following GCAM logit structure (Clarke 150 

 
5 It reports both GHGs and non-GHG air pollutants such as carbon dioxide (CO2), methane (CH4), nitrogen 

dioxide (N2O), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxides (NOx), non-methane volatile 

organic compounds (NMVOC), ammonia (NH3), black carbon (BC) or organic carbon (OC). 
6 For detailed information, see online documentation: https://github.com/JGCRI/gcam-doc/tree/gh-

pages/v4.4 
7 Staple crops in GCAM are differentiated into five grains and roots/tubers commodities (corn, rice, wheat, 

other grain, roots/tubers). Non-staple foods consist of other crops (miscellaneous crops, oil crops, palm 

fruit, sugar crops) and animal products (dairy, beef, poultry, sheep/goat, other meat/fish). See table S2 in 

the SI for a full list of crop commodities used in GCAM. 

https://github.com/JGCRI/gcam-doc/tree/gh-pages/v4.4
https://github.com/JGCRI/gcam-doc/tree/gh-pages/v4.4


and Edmonds, 1993), while the producer receives the same price for both domestic and 151 

export production.  152 

Economic land use decisions in GCAM are based on a logit model of sharing (McFadden, 153 

1973) based on relative inherent profitability of using land for competing purposes. The 154 

interpretation of this sharing system in GCAM is that there is a distribution of profit 155 

behind each competing land use within a region, rather than a single point value. Each 156 

competing land use option has a potential average profit over its entire distribution. The 157 

share of land allocated to any given use is based on the probability that that use has the 158 

highest profit among the competing uses (Wise et al., 2014; Zhao et al., 2020). The 159 

relative potential average profits are used in the logit formulation, where an option with 160 

a higher average profit will get a higher share than one with a lower average profit. The 161 

profit rate is the difference between the market price of the commodity and the production 162 

costs, which depend on land rent, fertilizer costs, other non-land costs and the crop yield. 163 

Crop yields in the base year (2010) are taken from FAO (2013) data and are calibrated 164 

for each of the AEZs within each of the 32 regions. For the estimation of future yields by 165 

region and AEZ, GCAM uses FAO projections through 2050 and, with the exception of 166 

fodder and fiber crops, yields for all crops in all regions are assumed to increase, but at 167 

decreasing rate, through 21008 (Bond-Lamberty et al., 2019).  168 

The future path of O3 precursor emissions reported by GCAM9 is fed into the TM5-169 

FASST model. TM5-FASST is an air quality source receptor model that, using 170 

atmospheric and meteorological information10, transforms those precursors into region or 171 

grid (1ºx1º) level PM2.5 and O3 concentrations. Based on that information, the model 172 

estimates potential health and agricultural damages. Detailed information about TM5-173 

FASST can be found in Van Dingenen et al. (2018b). 174 

O3-related agricultural damages are calculated for four representative crops, namely 175 

wheat, corn, rice and soybeans and they are estimated based on O3-exposure indicators, 176 

exposure-response functions (ERFs), and spatially distributed crop production and 177 

growing seasons. In terms of O3 indicators, TM5-FASST analyses crop exposures to O3 178 

based on two different metrics: “the accumulated daytime hourly O3 concentration above 179 

a threshold of 40 ppb (AOT40)”, and the “seasonal mean daytime O3 concentration (Mi)”, 180 

M7 for the 7-hour mean and M12 for the 12-hour mean (Van Dingenen et al., 2009) 11. 181 

The calculations of the results are developed using AOT40, while the supplementary 182 

information (hereinafter SI) shows the results using the Mi indicator, as the metric used 183 

is a key factor for determining the results (Lefohn et al., 2018). 184 

Following the definition of the UN Convention on Long-Range Transboundary Air 185 

Pollution (CLRTAP, 2017) and the Tropospheric Ozone Assessment Report (TOAR) 186 

 
8
 http://jgcri.github.io/gcam-doc/aglu.html 

9 We have run a GCAM baseline scenario for this analysis, so we assume there is no climate policy or target 

established. The implications of the model assumptions are discussed in section 4. 
10 TM5-FASST is based on a single meteorological year (2001) 
11 M7 and M12 are indistinctly used as they are significantly correlated.  

http://jgcri.github.io/gcam-doc/aglu.html


(Mills et al, 2018a), AOT40 is calculated as the sum of the differences between the hourly 187 

mean ozone concentrations and the specified threshold (40 ppb) for all daylight hours 188 

over a determined time horizon, which is three months in TM5-FASST. The units for 189 

AOT40 are parts per billion hours (ppb h). The reference height for O3 concentrations in 190 

TM5-FASST is 30 meters, which is the mid-point of the TM5’s lower layer grid box. O3 191 

is usually monitored at significantly lower altitudes (3 to 5 m), where concentration levels 192 

are lower due to deposition or other chemical processes. However, Van Dingenen et al., 193 

(2009) compares simulations at the reference height (30m) with monitored observation 194 

and demonstrates that crop metrics obtained from the grid box center reproduce the 195 

observations within their standard deviations. Therefore, the model does not apply a 196 

vertical profile correction factor, assuming a well-mixed 30m superficial layer.  197 

AOT40 is calculated at grid level, based on O3 hourly surface concentrations (1°x1°). 198 

These indicators are combined with growing season data in order to obtain gridded 3-199 

monthly accumulated indices, which are the inputs for exposure-response functions used 200 

for estimating percentage relative yield losses (RYLs). Gridded crop data, including crop 201 

growing season and crop suitability index (based on average climate of 1961–1990), 202 

comes from the Global Agro-Ecological Zones V.3 database (GAEZ V.3). This data set 203 

provides gridded information on the crop-specific growth cycles, considering the number 204 

of days from crop emergence to full maturity. Growth cycles are determined optimally to 205 

obtain best possible yields for each crop. A detailed description on this data set is 206 

available online12. 207 

The exposure-response functions (ERFs) that TM5-FASST applies for estimating 208 

regional crop damages for wheat, corn, rice and soybeans at grid level (1°x1°), are based 209 

on a linear model13, which is built from crop-response data from more than 700 studies, 210 

and is described in Mills et al., (2007). Then, RYLs, calculated at grid level, are weighted 211 

to region level by the crop production per grid cell, using the gridded crop production 212 

maps from GAEZ V.3.  213 

To calculate the economic impacts, estimated relative crop losses (RYLs) for each region 214 

and period are multiplied by the agricultural production levels and market prices, obtained 215 

from GCAM for every region and period. Literature has demonstrated that applying a 216 

current price could result in significant underestimation of economic losses (Heck et al., 217 

1987). This study overcomes that limitation as it is based on a dynamic integration of 218 

different models. 219 

As the model is calibrated for 2010, the damages are included as yield shocks relative to 220 

that base year. Using regional agriculture production projections from GCAM combined 221 

with the RYLs from TM5-FASST, we estimate economic damages by multiplying the 222 

 
12 http://gaez.fao.org/Main.html 
13 While for AOT40 the ERFs are linear, for Mi, the ERFs follow a Weibull distribution (Wang and 

Mauzerall, 2004). 

http://gaez.fao.org/Main.html


RYL by the projected production (Q) and price (P) levels for each crop, region, and 223 

period, as summarized in the following equation: 224 

Economic Damaget,i,j = RYLt,i,j × Pt,i,j × Qt,i,j   (1) 225 

where t, i and j represent the period, region and crop, respectively. 226 

Finally, the obtained O3 damage coefficients (per period and region) are re-set into 227 

GCAM, as exogenous yield shocks. So, we have compared the outcomes of a default 228 

GCAM baseline (no future changes in O3 effects) with the scenario where we incorporate 229 

the estimated O3-related yield changes per period and region. This innovative procedure 230 

makes it possible to see the impacts on agricultural systems by including the O3 damages 231 

into future projections. For that purpose, we have calculated the difference of the net 232 

present value (NPV) of crop production for the two scenarios, as noted in the following 233 

equation: 234 

∆NPVi,j = NPVi,j(scen) − NPVi,j(base) 235 

∆NPVi,j = ∑
Pt,i,j(scen)×Qt,i,j, (scen)−Pt,i,j(base)×Qt,i,j(base)

(1+𝑟)𝑡𝑡    (2) 236 

where P and Q are the crop price and the production, and t, i and j represent the period, 237 

region and commodity, respectively. In this study, the discount rate (r) is 3% and the base 238 

year is 2010 for NPV calculation. 239 

In a next step, we applied an index-decomposition analysis, following the Logarithmic 240 

Mean Divisia Index 1 method (Ang, 2004; Arto et al., 2009), in order to identify which 241 

are the factors that have the largest effects on the market value variation by crop. Table 1 242 

lists the factors analyzed; detailed documentation on the decomposition analysis can be 243 

found in section 4 of the SI. 244 

  245 



 246 

Factor Description 

Price effect (ΔP) Changes in NPV of crop production due 

to changes in prices 

Yield effect (ΔY) Changes in NPV of crop production due 

to direct changes in yields 

Land share effect (ΔsL) Changes in NPV of crop production due 

to changes in land shares of different 

crops 

Total land use effect (ΔLU) Changes in NPV of crop production due 

to variations of total land dedicated to 

crop production 
 247 
Table 1: Factors contributing to the change in the Net Present Value (NPV) of crop production 248 

between two scenarios. 249 

 250 

TM5-FASST model only calculates damage coefficients for four crops (wheat, corn, rice 251 

and soybeans), so omitting the impacts on other crops would distort the RYLs across 252 

crops and the market equilibria. In order to avoid that inconsistency, we have expanded 253 

the losses to all the crops, using a crop mapping based on their carbon fixation pathway. 254 

C3 and C4 plant species present differences in stomatal conductance and transpiration 255 

rates, which determine their sensitivity to O3 damage (Ainsworth, 2017; Knapp, 1993) 256 

Based on this criterion, the corn damage coefficient is applied to C4 classified 257 

commodities, while for C3 crops, the average damage of rice and wheat (or rice, wheat 258 

and soybean) is considered depending on the crop type classification (Table S3)14.  259 

 260 

3 Results 261 

Figure 1 shows CH4 and NOX emissions per region and period, as they are the most 262 

significant pollutants for O3 formation (Shindell et al., 2019; West et al., 2007). The 263 

emissions of other O3 precursors such as NMVOCs15 can be found in the SI. Note that 264 

the results are presented for 32 GCAM regions. The SI details the country to region 265 

mapping (table S1). 266 

 
14 This average includes damage coefficient from soybean for those crop groups that include legumes (f.e. 

MiscCrop). 
15 The model does not include CO-O3 source-receptors, so O3 will not be affected by changes in CO 

emissions 



 267 
Figure 1: O3 main precursor emissions (CH4 and NOX) per region and period (Tg). Simulations 268 

have been done with GCAM. 269 

 270 

In absolute terms, China, India and USA (and Russia, for CH4) have the largest emissions 271 

for both CH4 and NOX. However, future CH4 and NOX emission pathways have different 272 

trends. Figure 1 shows that emissions of CH4, with no climate policy established, would 273 

increase in almost all the regions, while NOX emissions would be flat or decrease all 274 

around the world. The reason is that GCAM implicitly incorporates future measures 275 

against air pollutants, based on planned emission control policies or future technological 276 

developments related to income increases, which, despite the uncertainties, would better 277 

estimate future emissions based on historical observations (Smith et al., 2005). These 278 

emission pathways result in different O3 levels for every period and region. Figure 2 279 

shows the gridded annual averaged O3 levels for the medium term (2050). For short 280 

(2030) and long (2080) term levels, see the SI.  281 

 282 

 283 



 284 
Figure 2: Annual average O3 (ppb) in 2050. Emissions of precursors are simulated with GCAM 285 

and these are fed into TM5-FASST for estimating O3 concentration levels. 286 

 287 

Figure 2 shows two primary observations around O3 distribution. First, the highest O3 288 

levels are formed around the equator. This happens because regions that are closer to the 289 

equator belt experience the largest solar irradiance and O3 is formed when its precursors 290 

react with solar radiation. The map also shows the correlation between regional precursor 291 

emissions and O3 concentration levels. Regions such as India, China or USA, which are 292 

the largest emitters of precursors (see Figure 1), have the highest O3 levels16.   293 

 
16 Short (2030) and long (2050) terms show similar trends on O3, as can be seen in the SI. 



 294 
 295 

Figure 3: A) Relative Yield Losses (RYLs) related to O3 exposure per period, crop and region 296 

(%). B) Gridded percentage difference in RYLs in 2080 compared to RYLs in 2020. Note that 297 

values in red (blue) indicate that there has been a decrease (improvement) in yield productivity. 298 

Emissions of precursors are simulated with GCAM and these are fed into TM5-FASST for 299 

estimating O3 concentration levels and the subsequent RYLs based on exposure-response 300 

functions (ERFs). 301 



The resulting yield losses due to these O3 concentration levels for the mentioned crops 302 

(corn, rice, wheat and soybeans) are summarized in Figure 3. This figure shows that corn 303 

and rice crops are less affected by O3 than wheat17 and soybeans. The regions where corn 304 

suffers the largest yield losses during the analyzed time horizon (2020-2080) are Northern 305 

Africa (5-6%), India (4-6%), Canada (4-5%), USA (3-5%) and China (2.5-4.5%). Similar 306 

trends can be found for rice, as the most significant RYLs are in Northern Africa (6-7.5%) 307 

and India (5-7.5%). Wheat damages are relatively larger, accounting for 15-19% in South 308 

Korea, 14-17% in Europe Non-EU18, 10-15% in USA, 7-12% in China, 8-10% in EU-15 309 

and Middle East and 7.5-8.5% in Northern Africa. Likewise, soybeans suffer substantial 310 

RYLs in this time horizon, with largest effects in India (11-17%), Canada (13-14%), 311 

Middle East (12-15%) and USA (9-13%).   312 

Figure 3B also demonstrates that most of the regions have decreasing RYLs for each crop 313 

up to 2080 compared to current damages, due to the reduction of future O3 concentration 314 

levels. However, some regions show larger RYLs over time, driven by significant 315 

increases in some precursors. For example, in India, future crop damages would increase 316 

with respect to current levels. In 2050, the relative increments (with respect to the base 317 

year) range from 47% (soybeans) to 56% (rice). This is driven primarily by the substantial 318 

increase in CH4 emissions through 205019 ,which more than double with respect to 2010 319 

(127%) (see Figure 1). This effect is softened in 2080, as indicated in the gridded maps. 320 

The SI includes a detailed table of the RYL per region, crop and period applying both 321 

AOT40 and Mi metrics (Table S4). The estimated yield losses have an associated 322 

economic impact (see eq 1), as presented in Figure 420.  323 

  324 

 
17 While wheat damages during the study are calculated using “total wheat” values, the SI (figure S3) 

includes RYL coefficients for spring and winter wheat. 
18 This region includes, Albania, Bosnia-Herzegovina, Croatia, Macedonia and Turkey 
19 GCAM estimates that the large population growth in India would entail an increase in the demand for 

dairy products (from 95 Mt in 2010 to 445 Mt in 2050), which would subsequently increase CH4 emissions  
20 In GCAM, soybeans are included the oilcrop category. Economic damages have therefore been estimated 

for the whole category. See Table S2 in the SI for a full list of commodities included in this category. 



 325 
Figure 4: Economic damage driven by O3 exposure per region, period and crop in billion $ at 326 

2015 prices (B$(2015)). Emissions of precursors are simulated with GCAM and these are fed into 327 

TM5-FASST for estimating O3 concentration levels and the subsequent RYLs based on exposure-328 

response functions (ERFs). RYLs are then multiplied by region, crop and period-based prices and 329 

production levels obtained from GCAM simulations. 330 

 331 

Figure 4 shows that corn driven economic losses decrease in the short term, and, then, 332 

they remain relatively unaltered, ranging from $5.0 to 6.0 billion at 2015 prices ($B). 333 

USA, which is the largest corn producer (33-38%, over time), bears the majority of 334 

damages, accounting for 44-55% of global corn damages, depending on the period. China, 335 

which produces between 18% and 23% of the corn, also experiences a large share of the 336 

damages (18-31%). Oilcrops, the category that includes soybeans, show a large increase 337 

in economic damages, from $9.8B in 2010 to $18.3B in 2080. The increase in damages 338 

in this crop is driven largely by increasing production volumes, mostly in USA, which is 339 

the largest oilcrop producer (18-22% of total production). The increase in oilcrop 340 

production is driven by an increase on demand for feed21 and biodiesel production. In 341 

regional terms, USA has the largest damage (38-54%) followed up by India, which has 342 

only 7% of the economic damages in 2010, but 24% of global oilcrop damages by 2080. 343 

Economic damages of rice also increase during most of the 21st century (from $6.8B in 344 

 
21 Meat production increases around 75% (818 Mt) up to 2050 at a global level. Consequently, the increase 

in feed production entails a significant increment in oilcrop (soybean cake) demand, accounting for 61 Mt 

(34%).  



2010 to $10.1B in 2070). China, India and Southeast Asia are the largest producers; 345 

however, economic damages in Southeast Asia are small due to relatively lower O3 346 

concentration levels. Therefore, India (in the long term) and China experience most of 347 

the damages. These regions represent between 37-72% and 5-30% of the total rice 348 

damages, respectively. Global production changes during the analyzed period are smaller 349 

than 10%, which means that, as opposed to oilcrops, the increase of economic damages 350 

in rice production would be directly driven by higher O3 concentration levels in future 351 

periods. Finally, the figure shows that economic damages of wheat are fairly constant, 352 

ranging from $10.4B to $12.5B during the analyzed time period. Although the regional 353 

allocation of the damages varies through the time horizon, the costs are principally borne 354 

by four of the larger producers: China, EU-15, India, and USA. In 2020, China 355 

experiences the largest damages (19-24% of the global wheat damages), followed by EU-356 

15 (20-21%), USA (16-18%), and India (7-12%). However, in the long term (2080), 357 

damages in China (7%) drop drastically while they increase in India (17%). In 2080, the 358 

largest impacts are located in EU-15, USA and India, representing the 21%, 19% and 359 

17% of the total wheat damages, respectively. In order to analyze the O3 effects on 360 

agricultural markets, we evaluate the O3 driven variations on the cumulative (2010-2080) 361 

NPV of crop production. Table 2 summarizes the decomposed (and total) effects for 362 

different regions (see section 2).  363 

  364 



Region ΔP ΔY ΔsL ΔLU ΔNPV 

Africa Eastern -2.75 -4.38 2.02 -3.27 -8.40 

Africa Northern -6.95 -0.42 -0.79 -3.60 -11.77 

Africa Southern -0.54 -1.47 0.73 -2.36 -3.65 

Africa Western 2.09 -14.29 6.35 -2.63 -8.49 

Argentina -11.38 0.17 -2.45 -6.69 -20.36 

Australia NZ -3.20 -0.67 0.77 -5.66 -8.76 

Brazil -9.10 5.76 1.68 -7.24 -8.91 

Canada -8.06 8.62 2.07 -5.05 -2.41 

Central America and Caribbean -2.18 0.18 0.29 -2.44 -4.16 

Central Asia -2.96 1.81 0.74 -2.48 -2.89 

China -178.19 200.04 4.92 -85.95 -59.19 

Colombia -0.62 0.02 0.40 -1.53 -1.73 

EU-12 -11.49 4.87 -3.07 -7.02 -16.70 

EU-15 -73.76 59.90 3.24 -37.75 -48.40 

Europe Eastern -6.93 3.09 -0.43 -3.18 -7.46 

Europe Non-EU -31.71 35.49 4.12 -11.28 -3.38 

European Free Trade Association -1.11 1.33 0.26 -0.44 0.04 

India 215.30 -114.89 -9.87 27.75 118.19 

Indonesia -2.74 0.17 0.09 -1.02 -3.50 

Japan -8.08 6.57 0.18 -6.86 -8.20 

Mexico -13.14 14.70 2.92 -6.77 -2.27 

Middle East -21.74 20.79 2.01 -7.26 -6.19 

Pakistan 1.24 -5.90 -1.73 -0.15 -6.54 

Russia -6.07 3.88 -0.62 -6.69 -9.50 

South Africa -0.74 -0.92 -0.79 -1.32 -3.78 

South America Northern -0.18 0.01 0.36 -0.79 -0.60 

South America Southern -3.98 1.29 -0.93 -4.46 -8.08 

South Asia 1.65 -4.44 -0.74 0.10 -3.44 

South Korea -0.34 -1.69 0.22 -1.11 -2.91 

Southeast Asia -12.22 5.95 2.23 -7.21 -11.25 

USA -111.47 172.04 23.82 -10.55 73.89 

TOTAL -311.32 397.59 37.99 -214.95 -90.80 

 365 

Table 2: Contribution of different factors to the cumulative (2010 - 2080) variations in the net 366 

present value (NPV) of crop production per region in billion $ at 2015 prices. The four factors are 367 

Price effect (ΔP), Yield effect (ΔY), Land share effect (ΔsL), and Total land use effect (ΔLU) 368 

(see Table 1). The last column (ΔNPV) shows the total change on the NPV of crop production 369 

aggregated per region, while the last row (TOT), shows the aggregation of each decomposed 370 

effect. Results are based on the combined application of GCAM and TM5-FASST. 371 

 372 

Table 2 shows that in cumulative terms (2010-2080), the total NPV of crop production 373 

would be reduced by $90.8B$ at a global level. Productivity improvements driven by 374 

future O3 reductions increase the output of the land and, therefore, for satisfying a 375 

determined demand, total land dedicated to crops decreases accordingly. So, these results 376 



entail positive effects to the consumer side (lower prices), while negative to the producer 377 

side (reduction in commercialized farmland22). 378 

Regarding regional distribution, absolute changes in the NPV of crop production are 379 

largely concentrated in four regions: China, EU-15, India and USA, although some other 380 

regions such as Argentina, EU-12 or Southeast Asia also present significant variations. 381 

As shown in Figure 3, future increase in O3 concentrations in India (and in some other 382 

regions such as Western Africa or South Asia) would reduce yield productivity (-383 

$114.9B), so, although there would be more land dedicated to agriculture, commodity 384 

prices would subsequently increase ($215.3B), which could generate food insecurity 385 

and/or land use related hazards in these regions. On the other side, China and EU-15 (and 386 

most of the regions, with smaller impacts), are expected to reduce their future O3 387 

concentration levels, resulting in future improvements in yield productivity ($200.1B and 388 

$59.9B$ respectively). Therefore, the subsequent reduction on commodity prices and the 389 

decrease of the land dedicated to agriculture reduces the NPV of crop production in 390 

$59.19B and $48.4B respectively. Finally, USA also benefits from significant yield 391 

productivity improvements driven by a projected decrease of O3 concentration levels 392 

($172.04B), so there is less land dedicated to agriculture and commodity prices decrease. 393 

However, these effects do not outweigh the production increase driven by yield 394 

improvements, so the NPV of crop production increases in $73.89B in this region. The 395 

reason is that USA is the largest producer of corn, oilcrop, and wheat23, and the increase 396 

in production driven by productivity improvements would increase global demand for 397 

biofuels, softening the price effect significantly.  398 

 399 

4 Discussion 400 

The application of the presented integrated methodology allows us to capture the 401 

interactions between the economic dynamics, emissions, atmospheric conditions and 402 

agricultural production. Therefore, the obtained results are directly related to the 403 

socioeconomic, environmental or land-use assumptions taken for future scenario 404 

projections. For example, current and future regional emission factors, food, and non-405 

food demands for different crops, or population and GDP growth rates affect both global 406 

and regional results. Even though all future modelling projections have an inherent 407 

uncertainty, the models used in this study are well-accepted and have been extensively 408 

used by the scientific community. GCAM has been under development for more than 30 409 

years and it has been applied in several multi-model and multi-sectoral analysis, including 410 

scenarios for the IPCC (Thomson et al., 2011) and the Shared Socioeconomic Pathways 411 

(Calvin et al., 2017). There is a large amount of peer reviewed studies using GCAM24. It 412 

has been coupled with different models or tools with different focus and is an important 413 

tool for the scientific community. Likewise, TM5-FASST has been widely used by 414 

 
22 This will have direct implications in CO2 land use change (LULUCF) emissions, which are not considered 

in this study.  
23 EU-15, USA and India are the larger wheat producers, depending on the period. 
24 http://www.globalchange.umd.edu/publications/ 

http://www.globalchange.umd.edu/publications/


different institutions (WB and ICCI, 2013; OECD, 2016) and in several peer reviewed 415 

scientific articles25. Additionally, the model documentation paper (Van Dingenen et al., 416 

2018b) develops a detailed validation of TM5-FASST against a full global atmospheric 417 

chemistry transport model (TM5). The study shows that TM5-FASST replicates the 418 

atmospheric model in terms of additivity and linearity for both current values and future 419 

scenarios. 420 

We have compared our results with other studies where ERFs are applied for estimating 421 

RYLs and/or economic damages. In year 2000, economic damages associated to O3-422 

related crop losses would account for $10-26B according to the mentioned studies. We 423 

estimate that economic losses for 2010 (first year of analysis) represent around $34B. 424 

Although we identify similar trends in some regions and for some crops, trends in terms 425 

of agricultural damages for several other crops diverge because regional land use, crop 426 

production levels, and crop demands are endogenous in GCAM, which allows for varying 427 

responses in regional production and consumption. In terms of future projections, results 428 

are not directly comparable since there are significant differences between the models 429 

used, the scenario definition and assumptions regarding future development levels. 430 

However, we do find that changes in RYLs through 2030 are consistent with Van 431 

Dingenen et al., (2009), Chuwah et al., (2015), and Vandyck et al., (2018) varying across 432 

regions, with increases in South-Asia (India or Bangladesh) and decreases in Europe or 433 

China. Regarding economic damages, Avnery et al., (2011b) estimate that annual 434 

economic losses in 2030 would range from $12-35B at a global level, depending on the 435 

scenario. According to our results, economic losses in 2030 would amount $36B. We 436 

have compared our economic damages with different global and regional studies (Feng 437 

et al., 2019; Ghude et al., 2014; Holland et al., 2006; McGrath et al., 2015; Sharma et al., 438 

2019), which is summarized in Table 3. 439 

  440 

 
25 A summary of some of these studies is presented in Van Dingenen et al., (2018b), S1. 



Study Crops included Year 
Annual Economic 

losses ($B) 
Global    

Avnery et al., 2011a, 
2011b 

Maize, Soybeans, Wheat 
2000 11 - 18 

2030 12 - 35 

Van Dingenen et al., 2009 Maize, Soybeans, Rice, Wheat 2000 14 - 26 

Present study Maize, Soybeans*, Rice, Wheat 

2010 34 
2030 36 

2050 44.5 

2080 44 

China    

Avnery et al., 2011a, 

2011b 
Maize, Soybeans, Wheat 

2000 2.5 - 3.5 

2030 5 - 8.5 

Feng et al., 2019 Rice, Wheat 2015 18.6 

Van Dingenen et al., 2009 Maize, Soybeans, Rice, Wheat 2000 3-5.5 

Wang and Mauzerall, 
2004 

Maize, Soybeans, Rice, Wheat 
1990 3.5 
2020 6.5 

Present study Maize, Soybeans, Rice, Wheat 

2010 7.8 

2030 6.1 
2050 5.4 

2080 3.5 

European Union    

Holland et al., 2006 23 crops 
2000 8.4 

2020 5.6 

Van Dingenen et al., 2009 Maize, Soybeans, Rice, Wheat 2000 0.8 - 1 

Present study Maize, Soybeans, Rice, Wheat 

2010 4.2 

2030 3.5 

2050 3.9 
2080 4 

India    

Avnery et al., 2011a, 

2011b 
Maize, Soybeans, Wheat 

2000 1 - 4 

2030 1.5 – 8.5 

Ghude et al., 2014 Soybeans, Rice and Wheat 2005 1.2 

Sharma et al., 2019 Rice and Wheat 2015 6.5 

Van Dingenen et al., 2009 Maize, Soybeans, Rice, Wheat 2000 2.8 – 6.1 

Present study Maize, Soybeans, Rice, Wheat 

2010 4.1 
2030 9.6 

2050 13.9 

2080 13.3 

USA    
Avnery et al., 2011a, 

2011b 
Maize, Soybeans, Wheat 

2000 2.5 – 3.5 

2030 3.5 – 4.5 

McGrath et al., 2015 Maize, Soybeans 1980 - 2011 9 

Van Dingenen et al., 
2009** 

Maize, Soybeans, Rice, Wheat 2000 1.8 - 4 

Present study Maize, Soybeans, Rice, Wheat 

2010 11 

2030 8.9 
2050 11.2 

2080 12.8 

        *Present study estimates damages for oilcrops, which includes more than soybeans (see table S2 in the SI)  441 
        **Economic losses for North America 442 
 443 
 444 
Table 3: Comparison of annual economic damages between this study and previous estimates in 445 

literature. Annual economic losses represent the sum of the damages for all crops included. 446 

 447 

The use of ERFs is a well-accepted methodology for estimating RYLs that is adequate 448 

for scenario analysis within the context of an integrated modelling framework as 449 

presented in this work. However, this method has some limitations. ERFs are based on 450 

European and North American information, due to lack of data in other regions, 451 



potentially resulting in underestimation of the O3 driven crop losses in Asian regions 452 

(Emberson et al., 2009). 453 

Recent studies are focusing on regional and national data in order to more accurately 454 

estimate the O3 impacts on crops in different regions outside of North America and 455 

Europe, such as China (Feng et al., 2017; Yi et al., 2020), India (Singh and Agrawal, 456 

2017) or Africa (Hayes et al., 2019). The integrated modeling framework applied in this 457 

study analyses the entire world in a national scale, and it uses global inventories to 458 

calibrate and estimate current and future emissions of O3 anthropogenic precursors. Even 459 

though different data sources report some regional differences in emissions of O3 460 

precursors26, the model consistently estimates future emission trajectories. In the case of 461 

China, recent studies have estimated that NOx emissions have decreased around 20% 462 

from 2013 to 2017 (Li et al., 2019; Zheng et al., 2018). According to GCAM simulations, 463 

the NOx reduction in China from 2010 to 2020 would account for 21%.  464 

In terms of sub-regional dynamics, TM5-FASST does not consider emission pattern 465 

changes within each country. In China, results show high O3 levels around the Himalaya 466 

and the Tibetan Plateau, which is consistent with prior studies (Dentener et al., 2006; 467 

Moore and Semple, 2009). Recent studies estimate that O3 levels in some cities in Eastern 468 

China would reach up to 70-100 ppb in 2017 (Chen et al., 2018; Li et al., 2019; Wang et 469 

al., 2017), while our estimates show smaller annual averaged concentration levels (50-70 470 

ppb). However, TM5-FASST implicitly incorporates emission-concentration 471 

sensitivities, and the Figure S3 in the SI shows the relation between NOx emissions and 472 

O3 concentrations for China, measured as the monthly accumulated hourly O3 above 40 473 

ppb per kg emitted during daytime. The figure shows that Eastern China is by far the most 474 

sensitive region, especially in summer (June). Conversely, wintertime O3 titration in the 475 

most polluted locations brings down O3 on an annual basis27, so the annually averaged 476 

values presented in Figure 2 would be significantly reduced in Eastern China. 477 

Nevertheless, if it turns out that future AOT40 levels in Eastern China are higher than 478 

estimated in this study, this will have consequences for overall damages in agricultural 479 

systems for China. 480 

Regarding source-receptor coefficients, the SRCs used in ERFs are estimated based on 481 

present-day growing seasons (year 2000 in TM5-FASST). Future climate variations could 482 

impact growing seasons, which is an effect that is not captured with the application of 483 

these ERFs. Additionally, these studies do not capture vegetation dynamics, not 484 

considering physiological factors such as soil particularities, vapor pressure, 485 

transpiration, or evaporation (Emberson et al., 2018; Schauberger et al., 2019). This may 486 

potentially overestimate the O3 impacts on crops in water scarce regions, while 487 

underestimating the effects in water abundant regions. This difference in the methodology 488 

may account for the smaller RYLs values for wheat in both China and India compared to 489 

 
26 For example, USA NOx emissions in the model are larger than the EPA-inventory emissions, as shown 

in Shi et al., (2017). The potential implications of the divergences in precursor emissions would have a 

direct effect on the variations on RYLs in that region, with the subsequent impacts on agricultural markets. 
27 In fact, for the winter months there is a negative correlation between NOx emissions and O3 production. 



Schauberger et al., 2019; however, the RYLs for soybeans are notably larger when 490 

applying ERF models than when considering the whole vegetation system.  491 

In addition, recent literature has shown that yield losses based on stomatal uptake or flux 492 

dose-response models would be more accurate, as it has been demonstrated that ozone 493 

effects are more greatly correlated with stomatal uptake than with ozone concentrations 494 

(Mills et al., 2018b, 2018c; Pleijel et al., 2007). Even though the methods used in this 495 

work differ to the mentioned studies there are some similar outcomes, as they show that 496 

wheat and soybeans are the most affected crops while rice and maize would be less 497 

impacted (Mills et al., 2018b). Moreover, Mills et al., (2018c) shows that currently, RYLs 498 

for wheat would represent around 6-10%, being USA and China the some of the most 499 

affected regions. These conclusions are similar to the results presented in this study. 500 

Regarding the crop exposure to O3, we identify that the applied AOT40 measure has some 501 

limitations. First, this metric omits O3 concentration below 40 ppb which may have 502 

additional effects (Emberson et al., 2009)28. However, AOT40 is considered a robust 503 

exposure indicator and allows for result comparison with different studies29. In order to 504 

address this uncertainty and see the effect of the indicator on RYLs we have re-calculated 505 

the RYL coefficients by using Mi exposure indicator (table S4). The table shows that the 506 

differences in RYLs driven by the exposure metric would vary per region and crop but, 507 

in general, while corn and rice show more similar results, there are large divergences in 508 

wheat and, especially, soybean RYLs. Additionally, TM5-FASST only allows estimation 509 

of the RYLs for four crops, requiring extrapolation of the damages to other commodities 510 

based on their carbon fixation pathway (see section 2). Although there exist additional 511 

ERF functions for other crops (Mills et al., 2007), the structure of GCAM, which 512 

combines crops in aggregate commodities, does not allow to apply those individualized 513 

functions. This is planned to be explored in further research.  514 

Finally, this work focuses exclusively on the O3 impacts on crop yields. Future work is 515 

planned to explore the combined effects of O3 and climate change impacts, due to 516 

changing temperature or precipitation, and carbon fertilization effects (Ainsworth et al., 517 

2012; Guarin et al., 2019; Reilly et al., 2007; Tai et al., 2014). This combined approach 518 

could provide a more holistic perspective of the potential crop damages. 519 

 520 

5 Conclusion 521 

The study demonstrates that high O3 concentration levels cause harmful impacts to crop 522 

yields all over the world. This conclusion is consistent across all the studies analyzed, 523 

even though they are based on substantially different models and methodologies. Results 524 

presented in this work indicate that there are significant crop losses and economic 525 

 
28 Additionally, the linearized source-receptor coefficients in TM5-FASST could over (or under) estimate 

the AOT40 change upon a precursor emission change, particularly in O3 concentrations around the 

threshold (40 ppb) level (Van Dingenen et al., 2018b). 
29 It is also the measure used in semi-empirical models (Ren et al., 2007). 



damages that could result in regional problems of food security and wealth losses. We 526 

believe that the magnitude of the results could encourage stakeholders and policymakers 527 

not only to take action for reducing harmful O3 levels, but to consider O3 as a relevant 528 

element in the design of future global change strategies. Additionally, we show that 529 

incorporating O3 to scenario analysis is an important consideration as there are dynamic 530 

changes on the agricultural markets, such as variations in production and price levels that 531 

are directly attributable to O3-driven yield losses. The outcomes in this study could boost 532 

modelling communities to incorporate O3 effects in yields to individual scenario 533 

simulations or to model inter-comparison studies. 534 
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