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Identifying optimal technological portfolios for European power generation towards
climate change mitigation: a robust portfolio analysis approach

Abstract

In this paper, an integrative approach is proposed to link integrated assessment modelling
results with a novel portfolio analysis framework for robust modelling. The approach is applied
for identifying optimal technological portfolios for power generation in the EU towards climate
change mitigation, in a timescale until 2050. The technologies considered include
photovoltaics, concentrated solar power, wind, nuclear, biomass and carbon capture and
storage. The proposed approach links data from the Global Change Assessment Model
(GCAM), namely subsidy curves for emissions reduction and energy security for the six power
generation technologies until 2050, with other decision support methods, in the aim of
managing the inherent uncertainty and assessing the robustness of the optimal portfolios. The
modelling results are then integrated in a bi-objective evaluation model for portfolio analysis.
The model treats uncertainty stochastically, using a Monte Carlo simulation algorithm and the
Iterative Trichotomic Approach, and defines specific portfolios of electricity generation
technologies as the most robust. The results are presented and discussed, mainly in terms of
highlighting the robustness of the Pareto optimal solutions, which is essential for policymakers
to be more confident when selecting technology portfolios that feature a high degree of
uncertainty, regarding their vulnerability to different future developments. By aggregating the
results to one robust technological portfolio, the proposed approach features the potential to
subsequently be linked to a deterministic model.

Keywords: decision support, power generation, technology R&D, portfolio analysis,
uncertainty, robustness.
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Introduction

The EU has set a long-term goal of reducing greenhouse gas (GHG) emissions by 80-95%,
when compared to 1990 levels, by 2050. Towards achieving this target, the Commission has
published an Energy Roadmap for 2050 to explore cost-efficient ways to make the European
economy more climate-friendly and less energy-consuming, while also increasing
competitiveness and security of supply (EC, 2016a.). It is clear that all main sectors responsible
for Europe's GHG emissions—power generation, industry, transport, buildings, construction
and agriculture—need to contribute to this low-carbon transition according to their
technological and economic potential. In 2015, one quarter of global GHG emissions was
caused by fossil fuel combustion in power plants (IPCC, 2014), while in Europe emissions of
fuel combustion by energy industries amounted to 28.2% of total GHG emissions (Eurostat,
2017). Decarbonising electricity generation is therefore crucial to the efforts towards climate
change mitigation (Arvesen et al., 2018) and has the potential to almost totally eliminate CO;
emissions by 2050, by exploiting renewable energy sources (e.g. solar, wind, biomass, etc.),
using other low-emission alternatives like nuclear power plants, or maturing and diffusing
carbon capture and storage (CCS) technologies in fossil fuel power stations (EC, 2016b).

On the basis of the above, the need to secure support for coordinated environmental, climate,
and energy planning emerges. Particularly, the process of designing technological mixes for
electricity generation takes on special significance in the context of energy and environmental
planning. In this process, cost-related parameters are first examined; however, other
characteristics must also be taken into consideration, including the level of dependence on
imported resources; the corresponding energy security and efficiency of the territory; and the
social and environmental impact that the use of the available technologies might entail
(Valentine, 2011). Thus, energy planning, perceived as a problem of investment selection
(Awerbuch, 2004), facilitates the long-term design of the electricity generation mix that best
reconciles security of supply, sustainability (economic, social and environmental) and
competitiveness (Hickey et al., 2010). What is also important is the diverse nature and uncertain
potential of energy technologies that currently are or may later be available to mitigate GHG
emissions (Pugh et al., 2011). The long service life of power generation assets and the high
level of uncertainty, both stemming from the horizon subject to analysis, strongly impact the
different variables of the selection problem, which are a synthesis of technological, economic,
regulatory and environmental variables (deLlano-Paz et al., 2017). This further poses a
challenge to policymakers trying to invest funds in an optimal electricity generation portfolio
(Pugh et al., 2011).

Typically, integrated assessment modelling can prove very valuable to meeting the challenges
of sustainability (Jakeman and Letcher, 2003) and is widely used to explore potential strategies
for climate change mitigation and energy planning (Krey, 2014). Integrated assessment models
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(IAMs) give fruitful insights in the tradeoffs and synergies among policy goals; support the
identification of important cross-sector interactions; and to some extent consider uncertainty,
in factors such as population and economic growth, technology development, human behavior,
and climate change (Shi et al., 2017). As a result, key reports targeted to policymakers and the
public rely heavily on scenarios produced by IAMs (Arvesen et al., 2018; IPCC, 2014). Despite
academic researchers having extensively worked on and employed 1AM-based approaches for
the purposes of investigating future energy, land use, and emission pathways at global to
continental scales (Vuuren et al., 2011), it is important to note that these formalised modelling
frameworks face considerable difficulties in giving appropriate responses to short-term patterns
of the power sector (Pietzcker et al., 2017). Furthermore, 1AMs typically treat uncertainty
deterministically, i.e. by means of scenarios (Nikas et al., 2018); Jakeman and Letcher (2003)
recognise the need for improved techniques of uncertainty and sensitivity analysis as a central
challenge in the use of IAMSs. Last but not least, climate-economy modelling by means of IAMs
typically excludes policymakers and other stakeholder groups or, limits their participation to
the extent of partly formulating the assumptions, by which modelling simulations are driven
(van Vliet et al., 2010). Other weaknesses associated with IAMs are extensively discussed in
(Doukas et al., 2018).

As a valuable tool in the management of such complex environmental and energy problems
(Uusitalo et al., 2015), decision support systems have the potential to effectively summarise
and bring together various, distinct consequences related to alternative planning options
(Doukas, 2013). As the recent literature suggests, a broadly established approach to meeting
the challenges associated with the definition of energy plans for a certain territory or region can
be found in Modern Portfolio Theory (MPT). Typically, the portfolio approach is based on the
solution of problems with one objective function seeking to minimise either the cost or the risk
of the portfolio, subject to different constraints, also considering that real electricity generation
assets can be defined in terms of cost or return and economic risk, for each alternative
technology (deLlano-Paz et al., 2017). The most exhaustive and complete reviews on the
application of MPT in energy planning are found in the studies of Delarue et al. (2011) and
Jano-1to and Crawford (2017). On more topics related to the principles of portfolio theory, the
reader is referred to the papers of Awerbuch and Berger (2003), Awerbuch and Yang (2007),
Elton and Gruber (1997). Furthermore, Lathtinen et al.(2017) and Pérez Odeh et al (2018) give
a comprehensive review of portfolio-oriented decision analysis methods in environmental
decision making and portfolio applications in electricity markets respectively.

It is noteworthy that, given that problems of this particular domain are subject to numerous
objectives and criteria, the existence of a single optimal solution leading to one particular course
of action, upon which the decision maker has no influence, is rarely achieved or meaningful. A
solution to this challenge lies in the identification of a Pareto set of optimal solutions (Hamilton
et al., 2015). Reaching a set of near-optimal solutions provides a much more fruitful input into
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the decision making process (Lempert et al., 2016), and is easier to explain than any other
practical recommendation. Such analysis is crucial as it can provide a measure of confidence
in the ability to differentiate between different decisions (Jakeman and Letcher, 2003; Weyant,
2017). Portfolio analysis (PA) is commonly employed in applications with multiple objectives
and widely supports stochastic treatment of uncertainty.

In this paper, an integrated approach to linking IAMs with a novel PA approach towards
providing more fruitful and robust policy recommendations, is developed and presented. The
proposed approach is applied for the identification of optimal electricity generation portfolios
in the EU, in the scope of achieving the goal of transforming Europe into a competitive, low-
carbon economy by 2050.

Initially, the performance of six electricity generation technologies is examined regarding both
the achieved GHG emissions reduction and the respective energy security as a result of specific
technological subsidisation. The datasets are obtained from the Global Change Assessment
Model (GCAM), a partial equilibrium IAM. The initial modelling results are appropriately
aggregated to be utilised for PA. Subsequently a technological R&D portfolio problem for
European power generation technologies is modelled and solved with the use of multi-objective
programming and stochastic uncertainty treatment. The portfolio selection problem focuses on
an EU-27 level approach, and evaluates different power generation options in a timescale until
2050. The portfolios are evaluated based on their performance with regard to their contribution
to the reduction of GHG emissions, and the positive consequences they may induce on energy
security. To deal with the inherent uncertainty characterising the basic parameters of the model,
namely GHG emission reduction and energy security, a Monte Carlo simulation is carried out.
Through this approach, the robustness of the obtained optimal energy technology portfolios can
be evaluated, by considering that the uncertainty in the model’s parameters is of stochastic
nature. The robustness of the Pareto optimal solutions is essential for building confidence
among policymakers, when selecting technological portfolios that feature a high degree of
uncertainty regarding their vulnerability to probable future developments. By aggregating the
results to one robust technological portfolio, the proposed approach can potentially be further
linked to a deterministic model.

Baker and Solak (2011) have previously used modelling results from the Dynamic Integrated
Climate-Economy (DICE) model and MiniCAM (older version of the GCAM model) IAMs in
a stochastic optimisation-oriented PA; while Pugh et al. (2011) aggregated different
technological scenarios from the GCAM model into one specific scenario and built a Ranked
ROIl-oriented optimal R&D electricity generation portfolio. The present study, however,
utilises GCAM outputs to evaluate electricity generation technologies by simultaneously
considering two optimisation criteria, namely maximisation of GHG reduction and energy
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security, and deals with stochastic uncertainty instead of discrete scenarios to obtain robust
optimal technological portfolios.

The paper is organised as follows: the following section contains a detailed description of the
employed models and methods. The third section proposes an integrated approach to creating
links between the different models. In the fourth section, the approach is applied in the case
study, the results and robustness analysis are presented in detail and discussed. Finally, some
conclusions are presented.

Methods and models

The proposed approach is based on a blend of different models and methodological
frameworks. An overview of the models to be linked in the proposed approach is presented in
the following figure (Figure 1).
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Figure 1: Blend of methods and models to be linked
The different models and methods are concisely described in the following paragraphs.

GCAM

GCAM is a dynamic-recursive, partial equilibrium model with technology-rich representations
of the economy, the energy, water, agricultural, and land use sectors. It was developed by Joint
Global Change Research Institute (JGCRI, 2017), a partnership between the Pacific Northwest
National Laboratory (PNNL) and the University of Maryland. At a timescale of more than
30years GCAM and its predecessors (e.g. MiniCAM) have been used in applications
investigating future emission scenarios and energy technology pathways (Shi et al., 2017).
GCAM is one of the four models chosen to develop the Representative Concentration Pathways
(van Vuuren et al., 2011) of the IPCC’s 5" Assessment Report (IPCC, 2015) and has
participated in almost all of major climate/energy assessment over the last years. It connects
socioeconomics, energy, land use and climate modules and it is meant to represent the
consequences of climate change mitigation policies, including carbon taxes, carbon trading,
regulations and accelerated deployment of energy technology (JGCRI, 2017). Representative
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applications of the GCAM model include those of Collins et al., 2015; Ebi et al., 2014 and
Fisher et al., 2014.

The energy system in GCAM includes primary energy resource production, energy
transformation and the use of final energy forms to deliver energy services. The model
distinguishes between depletable and renewable resources. Depletable resources include fossil
fuels such as oil (both conventional and unconventional), gas and coal, and uranium (for nuclear
power); renewable resources include different types of biomass (purpose-grown, municipal
waste and residue), wind (on- and off-shore), geothermal energy, hydropower, rooftop areas
for solar photovoltaic (PV) equipment and non-rooftop solar, including Concentrated Solar
Power (CSP). Regarding the land-use module, the model is divided in 283 agro-ecological
zones (Monfreda et al., 2008), which are divided in arable (crops) and non-arable (desert or
urban) land categories. GCAM also tracks an important number of GHGs like CO; (both FFI
and land-use) or methane (CH4) and the most hazardous air pollutants such as organic and black
carbon (OC and BC), sulphur dioxide (SO2) or nitrogen oxides (NOX).

For the purposes of this study, the GCAM 4.3 version is used, providing results on a regional
level, by examining Europe as a whole instead of individually modelling each European
country. There exist other models designed to focus exclusively on the European energy
system, such as PRIMES (E3MLab, 2014) and JRC-EU-TIMES (Joint Research Centre, 2013).
In comparison to these bottom-up energy system models with disaggregation at the European
country level, GCAM is a partial equilibrium model covering the entire European region and
the entire economy, featuring both bottom-up and top-down approaches (Urban et al., 2007) as
well as representing both endogenous and induced technological progress (Nikas et al., 2018).
Last but not least, there have been applications in the literature featuring stochastic uncertainty
assessment by means of Monte Carlo analyses at the regional or global level (e.g. Scott et al.,
1999), as well as applications integrating the model with PA approaches (e.g. Pugh et al., 2011;
Baker and Solak, 2011). All of these reasons constitute the background of our choice to use the
GCAM model.

Portfolio Analysis

Multi-objective optimisation

Unlike single-objective optimisation, where the optimal solution of the problem is usually
unique, the optimal solution in multi-objective optimisation is a set of performances across the
various objective functions, between which there emerge conflicts. Multi-objective
optimisation can be described in mathematical terms as follows (minimisation):

miny = [f,(x), L(X),..., fn(X)] s.to.x € 0 @Y
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Where 2 is the feasible solution area and f;(x), ..., f,(x) are n objective functions having
conflict with each other.

Pareto dominance
According to Eqg. (1), x* dominates another solution x (denoted by x* > x), if the following
two conditions are satisfied:

vI € {1,2,..,n},f; (x*) < f; (%) 2
3k €{1,2,...,n} fk (x") < fk (x) @
Where x,x* €

In other words, this definition says that x* is Pareto dominant if there exists no feasible vector
x which would decrease some criterion without causing a simultaneous increase in at least one
other criterion (assuming minimisation).

It must be noted that, in case of maximisation in the objective functions, only a change in the
direction of the inequalities is required.

Pareto optimal and Pareto optimal set
A solution x* is non-dominated and is Pareto optimal if

AxeN:x>x" 3)

The set of all Pareto optimal solutions is a Pareto optimal set (PS).

Pareto optimal front
Pareto optimal front (PF) is the set consisting of objective function vectors related to the Pareto
optimal set.

PF = {y = [f1(x), f2(x),..., f()]"|x € PS} (4)

The shape of the Pareto front indicates the nature of the trade-off between the different objective
functions.

Therefore, multi-objective optimisation is an approach to finding Pareto optimal solutions and
obtaining the Pareto optimal front. A proper multi-objective solution method should lead to the
Pareto optimal set and also solutions with appropriate diversity (Chiandussi et al., 2012; Rayat
etal., 2017).
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The AUGMECONZ2 method

AUGMECON?2 (Mavrotas and Florios, 2013), a new version of the AUGMECON method
(Mavrotas, 2009), is a general purpose method, which constitutes an especially suitable method
for Multi-Objective Integer Programming (MOIP) problems.

AUCMECON is an improvement of the original g-constraint method, which is—along with the
weighting method—one of the two most popular methods for generating representations of the
Pareto front. As described in Mavrotas, 2009, the e-constraint method has certain advantages
in relation to the weighting method, especially in the presence of discrete variables (Mixed
Integer or Pure Integer problems). The g-constraint approach, first introduced by Haimes, et al.
(1971), generates efficient solutions by converting all but one objective functions into
constraints of the model (Haimes et al., 1971). The augmented e-constraint approach
(AUGMECON) developed by Mavrotas (2009) can be used in order to remove weakly efficient
solutions generated when applying the classical e-constraint approach. (Hombach and Walther,
2015). AUGMECON is extended by Mavrotas and Florios (2013) in AUGMECON2 method,
which in the case of MOIP and 0-1 Multiciteria Ordered Median Problems (MOMP) problems
(i.e. MOIP problems with only 0-1 variables as integer variables, which constitute the vast
majority of MOIP problems), can be used to produce the exact (or complete) Pareto set, i.e. all
the Pareto optimal solutions (Mavrotas and Florios, 2013). For calculating the exact Pareto set
in MOIP problems with integer objective function coefficients, the AUGMECON2 method has
been coded in the General Algebraic Modeling System (GAMS).

In the literature, several versions of the e-constraint method have appeared trying to improve
its performance or adapt it to a specific type of problems like MOIP problems (Keshavarz and
Toloo, 2015; Mazidi et al., 2016). The technical novelties of the AUGMECON 2 method are:
() construction of the payoff matrix in order to calculate the ranges of every objective
functions; (b) avoidance of weakly Pareto optimal solutions by transforming the objective
function constraints to equalities, by explicitly incorporating the appropriate slack (for
minimisation objectives) or surplus (for maximisation objectives) variables; (c) early exit from
the loops in order to treat the case of infeasibilities; and (d) less computational time (Xidonas
et al., 2016b). These improvements are more effective when the problem contains discrete
variables and the feasible region is non-convex (Mavrotas and Florios, 2013).

In the following, the augmented e-constrained method (AUGMECON 2) developed by
Mavrotas (2009) is implemented in order to solve the bi-objective optimisation model of
technological R&D selection. Thus, all efficient solutions are obtained and the calculation of
weakly efficient solutions is avoided.
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Robustness Analysis

Monte Carlo simulation

As already outlined, it is true that several uncertain factors (costs, demand function, prices,
system operation, regulatory measures, etc.) are present in electricity markets, affecting the
agents participating in them. The risks affect different elements in the form of uncertainty and
variability, including financial and regulatory aspects; issues related to climate change; societal
acceptance of certain technologies; conditioning factors related to energy security; and
transaction costs (Jano-Ito and Crawford-Brown, 2017). Various methods have been proposed
for dealing with this uncertainty, the most common ones being fuzzy programming, chance-
constrained programming, robust programming, and stochastic programming (Mavrotas and
Pechak, 2013).

In this work, the implied uncertainty is considered as being of stochastic nature. Each uncertain
parameter is characterised by a probability distribution. Using Monte Carlo simulation, various
probability distributions for uncertain parameters can be contemplated. Subsequently, a Monte
Carlo simulation samples the values from these distributions, and the Mathematical
Programming (MP) models with the sampled values are solved. This process is repeated T times
(with T being a large number, for example T=1,000) in order to have an adequate sample for
drawing robust conclusions. This pair of sampling and optimisation is the core of calculations.
For example, if the number of Monte Carlo simulations is set to 1,000, then 1,000 sampling and
optimisation runs will be carried out. The output of this process will be 1,000 different Pareto
fronts of optimal portfolios, based on the sampling of the model’s parameters.

Iterative Trichotomic Approach

In order to build robust optimal portfolios, this study uses the main idea of the iterative
trichotomic approach (ITA) (Mavrotas and Pechak 2013). The trichotomic approach was first
introduced in integer programming, to deal with uncertainty in single objective problems of
project portfolio selection. Xidonas et al. extend the applicability of ITA to the case of multi-
objective optimisation (Xidonas et al., 2016a). The difference with the original ITA of Mavrotas
is that the “multiobjective” version of ITA provides information about the degree of certainty
for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area
from project level to portfolio level.

This study properly links the implementation of ITA in a bi-objective model to provide Pareto
Optimal Portfolios (POPs), among which the most preferred one is selected by the decision
makers. In this way, the decision makers’ selection is supported by specific indicators on the
degree of certainty regarding the portfolios’ Pareto optimality. As described in the above
section, uncertainty is incorporated using probability distributions for R&D technologies’
performance, which is the major driver of the optimisation. Each Monte Carlo sampling
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provides a Pareto of optimal portfolios. The ITA approach proposes an “iterative” proCess
developed in a series of computation round. In each computation round all POPs p are allocated
in three sets: the green set (G), the red set (R) and the grey set (Y). Eventually, in each round,
ITA divides the optimal portfolios in the three subsets (G, R,Y) depending on their degree of
participation in the T generated Pareto sets. The green set includes the portfolios p that are
present in all Pareto sets (PSy, . .., PSy) of the computation round, the red set includes the
portfolios that were produced in the initial computational round but are not present in any of T
Pareto sets in current computational round and the grey set includes portfolios that are present
in some of T Pareto sets. In the first round (round with maximum uncertainty), a maximum
number of portfolios is generated as candidate final POPs. The first round results only in green
and grey sets, as there is no portfolio to be excluded (red set) from the Pareto set. In subsequent
rounds some of these initial optimal portfolios are not present anymore in any of the T Pareto
sets, so they join the red set. Along this process, the uncertainty of the model’s parameters
(objective functions’ coefficients) is reduced (e.g. by reducing the standard deviation of a
normal probability distribution or shrinking the interval of a uniform probability distribution).
As the uncertainty is reduced, more portfolios from the grey set move to the green one (appear
in all Pareto sets). Eventually, and as uncertainty gradually decreases, each one of the initial
POPs is characterised as red or green, resulting in obtaining the final Pareto set.

Proposed integrated approach

Each of the above described models has certain concrete advantages in supporting decision
making in environmental and energy planning as well as climate policy. This paper makes an
endeavor to synthesise these models in an integrated approach and provide stakeholders with a
fully featured, robust decision support framework. The first step features the formulation of the
PA model, in the aim of supporting policymakers by providing them with a set of optimal
alternatives (Pareto set), instead of one optimal solution, which is rarely the case in this problem
domain. To formulate the bi-objective problem, suitable objective functions (optimisation
criteria) and constraints must be first defined. An appropriate programming method is selected
to carry out the multi-objective optimisation, resulting in a Pareto optimal set of efficient
portfolios. Here the AUGMECON2 method is suggested for the multi-objective modelling part.
The second step requires the application of the GCAM model (or any similar IAM) in order to
extract key quantitative information on the climate-energy bi-objective problem to be solved.
The outputs of the IAM can be inserted as parameters in the bi-objective model (e.g. as
objective function coefficients, constraints, etc.). This second step ensures that the information
arising from the GCAM model is further utilised and exploited to give even more concrete and
concise insights for decision making. In the next step, the optimisation process is enhanced with
robustness features. The selected method of multi—objective modelling, namely the
AUGMECON2 method, supports incorporation of stochastic uncertainty by appropriately
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applying Monte Carlo simulation and the ITA technique. Finally, these three discrete steps lead
to a specific, well-defined set of robust optimal portfolios from which the most preferable can
be selected by the decision makers and could subsequently be used by a linked deterministic
model. This kind of information is highly important for the decision makers when selecting
technological portfolios that feature a high degree of uncertainty regarding their Pareto
optimality. The proposed approach is summarised in concrete steps in the following figure
(Figure 2).

[ Step 1: Problem Formulation
\
Decision Variables Bi-objective Linear
Objective Functions Programming Model in
Constraints GAMS
S
[ Step 2: Input Data ]
4 Six Electricity Generation Technologies
Subsidies
GHG Reduction Benefits
\_ Contribution To Energy Security Y,

Step 3: Robustness Analysis

( Stochastic Uncertainty ]

[ Final Pareto Optimal Portfolios ]

Figure 2: Proposed approach steps

The expected added value of the proposed integration orbits around the gap between the output
of formalised modelling frameworks and the actual policy questions that these are asked to help
answer. The integrated assessment modelling component, in this implementation of the GCAM
model, helps represent and evaluate the behaviour and interactions of the energy system with
fossil fuel emissions, also providing insights into the resulting energy security associated with
different power generation technologies and respective subsidy levels. However, the modelling
outcomes cover the contributions and effects of individual electricity generation technologies,
while decision makers must essentially evaluate the technological energy mix as a whole.
Through the implementation of the PA module, the data resulting from the GCAM model are
further evaluated in the form of portfolios, based on multiple optimisation criteria. This enables
policymakers to select over a range of optimal portfolios, as generated in the Pareto Front,
depending on the levels of the two optimisation criteria that better fulfill their needs.

[Type here]


https://dx.doi.org/10.1016/j.jup.2019.01.006
http://creativecommons.org/licenses/by-nc-nd/3.0/

This document is the Accepted Manuscript version of a Published Work that appeared in final
form in:

Forouli A., Doukas H., Nikas A., Sampedro J., Van de Ven D.-J. 2019. Identifying optimal technological
portfolios for European power generation towards climate change mitigation: A robust
portfolio analysis approach. Utilities Policy. 57. 33-42. DOI (10.1016/j.jup.2019.01.006).

© 2019 Elsevier Ltd. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 3.0 license
http://creativecommons.org/licenses/by-nc-nd/3.0/

Furthermore, given the need for robust decision making, cultivated by the uncertain dynamics
of the energy market and long-term future developments, the proposed approach eventually
attempts to evaluate the resulting technological R&D portfolios in light of uncertainty. This is
done by assessing the impact of stochastic uncertainty in the optimal portfolios resulting from
the PA component.

Application Results and Discussion

Step 1 — Problem Formulation

This paper suggests an integrated approach to evaluate the performance of electricity generation
technologies on an EU-27 level and in a timescale until 2050. To achieve this, a bi-objective
programming model for PA under uncertainty is utilised so that numerical results provided by
the GCAM maodel can be appropriately aggregated.

The analysis particularly focuses on six low-carbon generation technologies (i =1...6),
namely T1: photovoltaics (PV), T2: concentrated solar power (CSP), T3: wind, T4: nuclear,
T5: biomass and T6: carbon capture and storage (CCS). We focus on these six technologies as
they are, compared to conventional technologies, highly relevant for subsidisation in the near
future towards reducing CO emissions at the EU level. Furthermore, geothermal or other
technologies with smaller potential, however relevant, are not included to avoid complicating
the portfolio analysis.

Input from the GCAM model provides ten different subsidy values (j = 1 ...10), calculated as
a multiplication of the unitary subsidies ($/GJ of electricity output, from 10 to 100% of the
LCOE in 2010) with the electricity consumption of the analysed technology in 2050. Stemming
from the fact that the short-term impact of policies promoting new technologies is considerably
reduced by the installed power capacity in the base years of the analysis, the robust portfolio
analysis is applied in the results until 2050 so that the effects of the technologies can be clearly
visible.

The problem is solved according to two optimisation criteria. The first objective function seeks
to maximise the reduction of GHG emissions corresponding to specific budget investment:

6 10
maximise Z, = Z Z GHGreduction(i,j) * B(i, )

i=1j=1

Where GHGreduction(i, ) is the emissions reduction achieved by the i technology under
budget option j.

The second objective is to maximise the system’s energy security again in relation to the
allocated budget.
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6 10

maximise Z; = Z Z Security (i,j) * B(i, )

i=1j=1

Where Security (i, j) is the contribution to energy security of technology i under budget option
j.

The objective functions’ coefficients, namely emissions reduction (GHGreduction(i, j)) and
energy security (Security (i,j)) are collected as an outcome of the GCAM model. The
decision variables of the model are binary. The binary variables Bi, j represent the existence of
the “i technology and j subsidy” options corresponding to the specific technology selection
((Bi,j = 1)ornot(Bi,j = 0)).

The model also incorporates five specific constraints.

1. First of all, a budget constraint is used in order to secure that the cumulative cost of
approved applications does not exceed a previously defined, overall budget.

6 10
Z Z Subsidy (i,j) * B(i,j) < maxBudget

i=1j=1

Where maxBudget is the total available budget and Subsidy (i, j) the j cost option
of technology i. In the specific application, the available budget is set equal to 35% of
the maximum cost of all six technologies.

2. This application also defines a minimum bound of emissions reduction to be achieved
by the portfolio.

6 10
Z Z GHGreduction (i,j) * B(i,j) = minEmissions

i=1j=1

Where minEmissions is the minimum required reduction of GHG emissions and
GHGreduction (i,j) the emissions reduction when selecting the jw cost option of
technology i. The emission reduction target is set equal to 40% of the emissions
reduction that would be achieved if all technologies were subsidised at 100% of their
total cost.

3. Specific bounds are imposed to control the distribution of budget across the energy
generation technologies, and with a focus on specific energy sources. In particular, it
is considered preferable that nuclear projects not dominate a portfolio, as such projects
are not supported in several countries of the EU. This condition is expressed with the
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following constraint, defined as “nuclear energy is not allowed to be receive more than
30% of the total available budget”:

Subsidy(Nuclear,j) * B(Nuclear,j) < 0.3 * maxBudget,Vj=1..10

The next constraint allows for the determination of specific energy technology
preferences. Through this particular constraint wind and photovoltaic energy are
preferred as dominant technological sources, and the allocation of budget in such
generation technologies “must thus collectively equal to more than 40% of the total
available budget”.

Subsidy(PV,j) * B(PV,j) + Subsidy(wind, j) * B(wind, j) = 0.4 maxBudget,Vj=1..10

5.

In order to assure that only one budget option is allocated per technology, the following
constraint is added.

10
ZB(i,j) <1,Vi=1..6
=

The constraint guarantees that, in the case of purchasing a new technology with a
certain amount of budget, purchasing the same technology with another amount of
budget is not possible.

Table 1: Problem Definition - overview

Decision Variables Description

If Bi,j =1 the pair “i technology and j
subsidy” is approved.

Bi,j . . .
] Otherwise if Bi,j =0 the corresponding
technology-subsidy pair is rejected.
Objective Functions Description

maximise Z4

maximise Z,

maximise the reduction of GHG emissions
corresponding to specific subsidy
maximise the system’s energy security
corresponding to specific subsidy

Constraints Description
Budget constraint Overall implementation cost must be less

than 35% of maximum (i.e. if all
technologies were subsidised at 100%).
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Emissions reduction target Overall emissions reduction must be greater
than 40% of maximum (i.e. if all
technologies were subsidised at 100%).

Nuclear constraint Participation of Nuclear power cannot be
greater than 30%.

Wind and PV dominance More than 40% of the total available budget
must be allocated to wind and PV energy.

Unique subsidy constraint One budget option can be allocated per
technology.

Stemming from the above analysis it is important to highlight that the contribution of each
technology in energy security and emission reduction is linked with a certain implementation
cost (variable j). By that, and considering 1) the overall maximum budget constraint which the
implementation cost of all technologies must not exceed and 2) the two objective functions
aiming to achieve the maximum of energy security and emissions reduction, the model
identifies the alternatives (portfolios of technologies) that give the maximum contribution to
energy security and emission reduction, with a minimum of budget investment, thus also
featuring the inherent notion of “cost-effectiveness”.

Step 2 — Input Data

The study makes use of GCAM in order to quantify the GHG reduction benefits and the
contribution of individual technologies to EU’s energy security, for different budget options
(subsidies). As required in the previous step, ten subsidy levels are defined and their individual
interaction to GHG reduction and contribution to energy security is assessed for each of the six
technologies, based on the GCAM model.

For calculating the subsidy, the unitary subsidies ($/energy unit, from 10 to 100% of the energy
technology Levelised Cost of Energy - LCOE) are multiplied with electricity consumption of
the examined technology in 2050. LCOE is calculated from a mixed set of data on capital and
maintenance costs, efficiency, capacity factors, etc. The modelling assumptions used in this
application are documented in Muratori et al. (2017). The subsidisation procedure to the EU-
27 region is applied in the period from 2020 to 2050 by adding up the results for EU12 and
EU15, which are the two EU regions predefined in the GCAM 4.3 model.

Energy security is calculated as the energy produced in the region divided by the total energy
consumed in the region. Energy consumption data for the base years (up to 2010) is provided
by the International Energy Agency (IEA) and simulated by the GCAM model until 2050.

EU-27 future fossil fuel production has been taken from the estimates of IEA. Biomass local
production and consumption are also extracted from the model. Finally, it is assumed that all
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of the renewable (solar, wind, geothermal and hydropower) and nuclear energy is produced and
consumed inside the region.

Table 2: Maximum contributions per technology

Technology Maximum Energy Security ~ Maximum GHG emissions reduction
PV 80.9% 510.86 MTC
CspP 53.2% 93.20 MTC
Wind 70.0% 296.55 MTC
Nuclear 95.1% 730.20 MTC
Biomass 48.6% 322.08 MTC
CCsS 48.0% 157.93 MTC

The most interesting finding of this step is that, as expected, the subsidisation of different clean
energy sources would result in positive and substantial emission reductions. However, the
features of each technology (such as cost, intermittency or lifetime) cause CO; reduction paths
to differ among the technologies.

Considering the assumption that renewable and nuclear energy is produced and consumed
within the region, subsidising those sources benefits energy security. Nevertheless, energy
security decreases when the budget is spent on CCS and biomass. This is consistent because
supplies of fossil and bio-energy are limited, so the region should import these resources from
abroad if regional demand increases. Consequently, although subsidising CCS or biomass
would entail significant CO; reductions per unit of subsidy, it might also result in energy
security related problems.

Step 3 - Uncertainty Management and Robustness Assessment

After selecting the input data the PA model as described in Step 1 is run, resulting in a set of
optimal portfolios, i.e. the Pareto Front, the robustness of which is assessed in this step. The
Pareto Front is illustrated in Figure 3, in which the most robust portfolios are further
highlighted. This is easier to understand when considering that Figure 3 corresponds to the 6%
round of the ITA implementation, where a standard deviation of ¢ =0% is reflected,
corresponding to the Pareto Front when no uncertainty is considered, as described below.
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Final Pareto Front
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Figure 3: Final Pareto front of robust portfolios

The uncertainty characterising the estimation of technology performance, in reducing GHG
emissions as well as contributing to energy security, is expressed by introducing normal
distributions for relevant technologies’ values. Specifically, the mean value for the normal
distributions is set equal to the estimated values as obtained from the runs of the GCAM model,
and the standard deviation of the iterations equal to 5%, 4%, 3%, 2%, 1%, and 0%
corresponding to six ITA rounds. The whole process (model building, random sampling, Pareto
set generation) is implemented within the GAMS platform. 1,000 Monte Carlo iterations are
performed for each ITA computation round. It must be noted that, in the specific application, a
94% acceptance threshold for the green set is determined (if a portfolio is present in 94% of
Pareto sets i.e. in 940 out of 1,000).

The results of multi-objective ITA are shown in Table 3. There are in total 842 POPs that
participate in 1,000 Pareto sets of the initial round. At subsequent iterations, the standard
deviation of sampling distributions is reduced as shown in the first column of Table 3.
Eventually, on the last round the final Pareto set is obtained; this comprises 16 POPs of R&D
electricity generation technologies. The additional information that ITA gives is that it reveals
which of these 16 portfolios can be considered more certain than others. The degree of certainty
for each portfolio is directly related to the corresponding round that it enters the green set (the

earlier the portfolio enters the green set, the more certain the decision makers is about its Pareto
optimality).

Table 3: ITA results

Green Red Grey
oc=5% Round 1 0 0 842
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o=4% Round 2 0 321 521
o=3% Round 3 1 546 295
o=2% Round 4 2 704 136
o=1% Round 5 3 779 60
o=0% Round 6 16 826 0

The final set of the 16 POPs with the most robust portfolios illustrated by bubbles of greater
size is shown in Figure 3 and further elaborated in Figure 4.
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Figure 4: Technology contribution in the 16 robust portfolios

The portfolio that corresponds to the maximum robustness exhibits energy security of 63.82%
and emission reduction of 1,345.8 MTC and is further elaborated in Table 4. It is noteworthy
that CCS and biomass shares in the portfolio budget are rather small, despite featuring high
contribution to emissions reduction; regardless of the capacity to invest more, larger
investments in these technologies would negatively affect the energy security-emissions
reduction tradeoff. The second and third most robust portfolios involve subsidies for CSP
energy in a significantly lesser amount, while subsidies in biomass and CCS-equipped plants
are doubled. However, contribution of PV, wind and nuclear in the investment mix appears to
be consistent among the robust portfolios. The final Pareto Front also indicates a reduction on
energy security among the robust portfolios. This is justified by the fact that, as biomass is more
likely to be imported, larger investments in this technology would have a negative impact on
energy security. The same applies for combustible resources and, thus, CCS technologies.

Table 4: Technologies participation in robust portfolios

Contribution to Contribution to
portfolio’s total portfolio’s total Share of total
Technology energy security emissions reduction portfolio budget
Portfolio 1
PV 18.80% 13.91% 36.41%
CSP 14.83% 5.03% 11.61%
Wind 19.98% 22.53% 18.49%
Nuclear 22.25% 36.79% 25.81%
Biomass 11.60% 12.10% 5.16%
CCs 12.54% 9.64% 2.52%
Ranges of the technologies’ contributions in robust portfolios 1-16
PV 18.56% - 19.20% 13.71% - 17.05% 36.41% - 39.19%
CSP 13.78% - 14.83% 2.59% - 6.16% 4.36% - 12.51%
Wind 19.72% - 20.40% 22.20% - 27.60% 18.49% - 19.92%
Nuclear 21.96% - 22.72% 36.25% - 45.06% 25.81% - 27.79%
Biomass 11.52% - 12.55% 0.85% - 14.09% 0.13% - 9.89%
CCS 12.27% - 12.67% 3.21% - 11.44% 0.45% - 4.87%

Conclusion

This paper links two models used to explore potential strategies of climate change mitigation
and energy planning, namely an 1AM with a robust PA model. The application particularly
focuses on the evaluation of EU-27 electricity generation options in a long-term perspective
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(2050). The analysis properly integrates the GCAM model results into a portfolio generation
model, while also treating exogenous uncertainty stochastically. The outcome of the proposed
approach is a set of optimal electricity generation portfolios, among which the most robust is
selected.

The results give an indication on how subsidisation among the energy generation technologies
should be allocated. The analysis shows that technologies like PV, wind and nuclear energy
must be prioritised and subsidised; while investments in biomass, CCS and CSP appear to
contribute less to EU’s power generation mix, when considering the given time horizon and
both of the problem’s objectives, i.e. overall GHG emissions reduction and energy security
maximisation. Further analysis of the inherent stochastic uncertainty indicates that the three
technologies with the largest shares in the portfolio budget also appear to be the most robust,
in the context of this particular problem. Policymakers are therefore provided with clear
recommendations regarding PV, wind and nuclear, as well as flexibility to select among
different options in CCS, CSP and biomass.

It is important to note that the calculated outputs of this analysis are strongly dependent on the
modelling assumptions; the results should be carefully interpreted, while taking into
consideration the assumptions outlined and referred to in the “Input Data” section. For instance,
introducing other power generating (e.g. geothermal) or energy efficiency technologies, with
substantial potential relevant for the European region, could have an impact on the resulting
subsidisation portfolios and therefore constitute an interesting future direction of the proposed
research.

Further prospects towards enriching the proposed methodological framework potentially
include integrating the PA model with other climate-economy models, which cover a complete
set of relevant emissions and a different level of granularity from the GCAM model. This can
be extended to the assumed economic approach of the linked 1AM, by additionally integrating
the PA component with general equilibrium or macroeconometric models, and shifting the
focus from aspects that partial equilibrium modelling highlights, thus maximising the
robustness of the framework’s findings. It is also interesting to use nationally disaggregated
data and proceed to carrying out country-level analyses based on the methodological framework
developed and presented in this study, either with GCAM or with other climate-economy
modelling frameworks like the PRIMES or JRC-EU-TIMES models for modelling on European
countries.

Finally it should be noted that, although the proposed methodological framework is in the
context of emerging scientific paradigms in support of climate policymaking that highlight the
need to reduce or help understand uncertainty (Doukas et al., 2018), by providing information
on the level of certainty associated with resulting policy options thereby maximising the
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robustness of the results and adding value for policymakers, the latter are not actively involved
in the study. There is huge potential in involving both policymakers and other stakeholder
groups in policy analysis, in order to understand the motives and strategies of all actors relevant
in the required transformations (Turnheim et al., 2015), as well as exploit their expertise to
bridge knowledge gaps and further reduce the various uncertainties in this domain (Nikas et al.,
2017). In this respect, it would be interesting to work with stakeholders and decision makers in
climate action, by expanding the method to some other regions and/or technologies, or
eliminating any of the used ones; as well as to better incorporate real-world context in the
modelling assumptions, constraints and parameters of the modelling exercise.
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