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Abstract

Conducting research in order to know the range of problenaghinh a search
algorithm is effective constitutes a fundamental issuentenstand the algorithm
and to continue the development of new techniques. In thigvioy progressively
increasing the degree of interaction in the problem, weystoidrhat extent different
EDA implementations are able to reach the optimal soluti@pecifically, we deal
with additively decomposable functions whose complexgéigentially depends on
the number of sub-functions added. With the aim of analyzivglimits of this
type of algorithms, we take into account three common EDAé@mgntations that
only differ in the complexity of the probabilistic model. &hesults show that
the ability of EDAs to solve problems quickly vanishes aftertain degree of
interaction with a phase-transition effect. This collap§eerformance is closely
related with the computational restrictions that this tygealgorithms have to
impose in the learning step in order to be efficiently appligbreover, we show
how the use of unrestricted Bayesian networks to solve tbblgms rapidly be-
comes inefficient as the number of sub-functions increadesresults suggest that
this type of models might not be the most appropriate tooltferthe development
of new techniques that solve problems with increasing aegfanteraction. In
general, the experiments proposed in the present work alidw identify patterns
of behavior in EDAs and provide new ideas for the analysis daglopment of
this type of algorithms.



1 Introduction

Estimation of distribution algorithms (EDAS) [23, 29, 31kaa population-based op-
timization paradigm in the field of evolutionary computati(EA) that has obtained
increasing attention during the last decade. Proofs ofgbsularity are the deve-
lopment of new and more complex EDAs [19, 25, 31], the newiaafns for them
[1, 3, 34] and the works which study fundamental issues irotd better understand
how these algorithms perform [10, 18, 36]. However, the easigproblems in which
this type of algorithms are effective remains practicathkmown. Nevertheless, some
previous works [7,9, 15] are related with this topic. We a&gluat studying the limits
of performance of any search algorithm is a crucial task @eoto advance the deve-
lopment of more efficient and effective techniques.

The main characteristic of EDAs is the use of probabilistodiels to lead the search
towards promising areas of the space of solutions throughtearning and sampling
iterative process. In fact, different EDA implementaticare usually distinguished
by the class of probabilistic model used. Thus, the more ¢exihe model is, the
greater the ability of an EDA to capture possible interactiamong the variables of
the problem. As has been shown in different works [2, 23,84, ability is crucial to
successfully solve problems that hide interdependencesgnariables. However, in-
creasing the complexity has a computational cost. Thezefoe order of dependencies
in the probabilistic models must be restricted in order toi@ee feasible applications.
Thus, the most general EDAs, which are able to learn a newivaridte probabilistic
model at each generation, use approximate learning teedsiof bounded computational
cost. Actually, the study and development of this classgdalhms constitutes a main
topic in EDA research [4, 18, 24]. Specifically, probabitishodels such as Bayesian
networks have become popular tools in this regard.

In this work, we numerically analyze the limits that diffateEDA implemen-
tations encounter to effectively solve problems in relatmthe number of interactions
between the variables. In these terms, we argue that this fionithis type of algorithms
are mainly imposed by the probabilistic model they rely orhug, the complexity
allowed in the model strongly determines to what degreetefattion in the problem
the algorithm is able to successfully face. We believe teagn in the case of using
general Bayesian networks, the restrictions imposed bysthestural learning will
cause strong limitations. In order to systematically stiadyhat extent EDAs are able
to solve problems, we use an additive decomposable fun@idf) in which new sub-
functions are progressively added. With the aim of achigaiistrong interdependence
between the variables belonging to each sub-function, wggmasleceptive function
values [16]. In order to study the impact that increasingtiraplexity of the probabilistic
model entails in the performance of the algorithm, we usesldifferent implemen-
tations. Firstly, an EDA that assumes independencies leetwariables, secondly,
an EDA that learns a tree-like structure at each generationfiaally an EDA that
learns unrestricted Bayesian networks. Since the populaize is a critical parameter
in EDAs and especially when Bayesian networks are learnéf] jte use different
population sizes in the experiments. Additionally, we Use¢ different problem sizes
to complete the analysis.

According to the results, the ability of EDAs to solve the lgens generated
steeply decreases after a certain number of sub-functighsiobjective function. This
threshold of performance shows a marked effect of phassitiamthat clearly delimits
the frontiers of effectiveness. These limits are found bgiragl some additional sub-
functions to a separable deceptive function similar to tieédBerg’s Deceptive3 [17].



In this work, we pay special attention to EDAs based on Bayesetworks. For this
type of algorithms, we show that the dramatical loss of pemmce is due to the
lack of the structural learning method to build more compiexdels. Furthermore,
the complexity of the networks that the algorithm has toridarorder to solve the
problems rises exponentially with the number of sub-fuuriin the ADF. These
results suggest strong computational limitations to owerethe limits of applicability
of EDAs based on Bayesian networks. Therefore, the devedapwf approaches
such as probabilistic models based on factor graphs [22efféLtive use of low-order
statistics [12] or mixtures between genetic operators aaching [33, 38, 39] could be
promising research areas in order to efficiently overcoradithits that the Bayesian
networks exhibit in the terms presented in this paper.

The remainder of the paper is organized as follows. Sectintt@duces probabilistic
models based on Bayesian networks and presents the EDArnmaptations used in
the paper. Section 3 introduces the definition of the fitnesstfon and the particular
procedure to progressively increase the number of intersct Section 4 explains and
discusses the results of the experiments. Section 5 draevedhclusions obtained
during the study. Finally, Section 6 points out possiblefeatwork.

2 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAS) arise as aewalative to genetic algorithms
(GAs) [17]. EDAs, instead of exchanging information betweedividuals through
genetic operators, use machine learning methods to exgbmtant features of the
search space through the selected individuals of the pt@uld he collected information
is represented using a probabilistic model which is lateplegred to generate new
solutions. The general scheme of the EDA approach is showigorithm 1.

Algorithm 1: EDA

Dy «+— GeneratéV individuals randomly

t—1

do {
D;_; «— Evaluate individuals
fo1 «— SelectM < N individuals fromD,_; according to a selection
method

6 pi(x) = p(x|DJ) « Estimate the joint probability by using a

probabilistic model

7 D, «— SampleM individuals fromp;(x) and create the new population
t—t+1

} until Stop criterion is met

a b WD B

©

2.1 Probabilistic models and factorizations

The term probabilistic model refers to the qualitative andritative structure given
by a probability function [6]. Although the EDA paradigm ddwdmit any type of
probabilistic model, the most popular models are those dkptess their qualitative
componentthrough a graph. In particular, one class of nsatlat has been extensively
applied in EDAs are Bayesian networks [13, 28, 32].



Formally, a Bayesian network is a pé#, 0) representing a graphical factorization
of a probability distribution. The structurgis a directed acyclic graph which reflects
the set of conditional (in)dependences among the variaBegardingd), it is a set of
parameters for the local probability distributions asatexd with each variable.

The factorization of the probability distribution is codiff as:

n

p(x) = [ p(zilpa,) @

i=1

wherepa, denotes a value of the variablfs:;, the parent set ok, in the graphs.
With reference to the set of parametéysf the variableX; hasr; possible values,
the local distributionp(x;|pa?, ;) is an unrestricted discrete distribution:

p(af|pal,0;) = i 2)

wherepa}, ..., pal denote they possible values of the parent sBia;. In other
words, the parametéy;;, represents the probability of variablé; being in itsk-th
value, knowing that the set of its parents’ variables isstyith value. Therefore, the

local parameters are given By = ((0:;x);, )7, -

2.2 EDA implementations

In this work, besides studying the learning limits of EDAs®&d on Bayesian networks,
we also show to what extent this type of algorithms outpenf®bEDAs with simpler
models. This is useful to analyze the utility of increasing tomplexity of the model.

Specifically, we use the following three EDA implementatitimat only differ in the
structural model. Firstly, we deal with the well known uniege marginal distribution
algorithm (UMDA) [26]. The model used to estimate the joinblpability distribution
from the selected individuals at each generation is as siagppossible. Itis factorized
as a product of independent univariate marginal distrilmgti This factorization is
given by Equation 1, where the parent sets are emptyRa; = (). Secondly, we
use an EDA that learns a bivariate probabilistic model ahegmeration which will
be called Tree-EDA. In particular, the factorization of {r@bability distribution is
given by a tree structure learned through the algorithm gseg by Chow and Liu
[8]. The graph that represents the tree structure is didemtel its factorization can
be formulated by using Equation 1 where all the parent sets baly one variable
(Vi, |Pa;| = 1). Lastly, we use the estimation of Bayesian network alati{EBNA)
that considers general models without restrictions. s ¢laise, the structural learning
is based on a score+search technique [23]. Specificallgahrch is carried out using
the algorithm B [5] and the score is the Bayesian Informa@oiterion (BIC) [35].
Algorithm B is a greedy search procedure which starts witlamtess structure and,
at each step, adds the arc with the maximum improvement isdbiee. The algorithm
finishes when there is no arc whose addition improves thescor

Since all the above mentioned factorizations of the prditaldiistribution can be
encoded by using Bayesian networks, we use similar appesabth to learn the
parameters and sample the new solutions. Thus, the pamarfetee estimated by
maximum likelihood using Laplace correction [23] and thmplng is carried out by
a common method known as probabilistic logic sampling (HR8).



3 Fitness functions

In order to investigate the behavior of EDAs as the compjefithe function increases,
we deal with additively decomposable functions (ADFs).sltiell known that many
optimization problems studied over the years can be matié§eusing this type of
functions. Our model function, in which new sub-functioms progressively added,
can be seen as a system that increases its complexity withrtbelue to the creation
of new interactions among the variables.

3.1 Definitions

A fitness functionf : X = {0,1}" — R is additive if it can be represented as a sum
of sub-functions of lower dimension,

fl@)="Y" fie), 3)
C,eC
whereC = {C4, .., C,} is a collection of distinct sub-se€s; C X andc¢; denotes the
assignment of the variables belongingi@ This type of functions is also characterized
by its orderk, which is the size of the largest sub-setin
In this work, we use a particular instance of this general<ts functions. Firstly,
all the sub-sets i@l have three variable& (= 3). Therefore( consists of any collection

of distinct sub-sets taken from all thieé(n, k) = Z possible sub-sets of variables.

Secondly, all the sub-functiorfsare the same deceptive function [17] denotedhy.
. By using a unitation function(y) = Zle y; wherey € {0,1}*, the deceptive
function of three variables is defined as,

0.9 for wu(c;)=0
) 08 for wu(e)=1
f3dec(ci) - 0.0 fO’I" U(Ci) =92

1.0 for wu(e;) =3

From the point of view of the EDA analysis, the benefit of thad#s functions
that we propose is twofold. Firstly, independently of themoer of sub-functions, we
always know the global optimum which is the assignment obadls forX. Secondly,
the deceptive approach creates a strong interdependermegaime three variables
belonging to each sub-function.

Regarding thefs ;.. functions, when they are disposed without overlapping amon
the set of variablesX, the fitness function is called Goldberg’s Deceptive3 figrct
[16]. This specific function was proposed in the context afajie algorithms aimed
at finding their limitations. Thus, in the present work, thiaction constitutes a useful
reference in order to analyze the limits of performance ilMEONowadays, deceptive
or trap separable functions are widely used to test evalatipalgorithms.

3.2 Implementation of the functions

In order to progressively increase the complexity of thecfioms, we propose a simple
procedure. Basically, we generate a sequence of objectiveibns in which each

function adds one more sub-function than the previous ohis.Sequence of functions
is given by the ordered s&t = {C4,..,C;}. This set is a collection of distinct



subsets of variables randomly selected according to a mmittistribution from all
the C'(n, 3) possible combinations. Although we could introduc€iall the C(n, 3)
distinct subsets, it is not necessary for our purposes. , thas-th objective function
in the sequence sumssub-functions which are applied to the corresponding first
subsets of variables . Thes-th function can be expressed as,

s<l

fs (ZB) = Z f3dec(ci) (4)

The ordered sef has a restriction. The first/k subsets cover the whole set
of variablesX without overlapping, forming a separable function. Notattim the
functions froms = 1 to s = n/k some of the variables do not have any sub-function
assigned. In order to complete these functions and keeptiraum in the assignment
of all ones in this specific stage, we directly apply the didtafunction over the set of
variablesX'\ | J;_, C; without sub-function assignment. This stage is useful tiyee
UMDA, Tree-EDA, and even EBNA with insufficient populatioizes to reliably reach
the optimum, because the algorithms can fail before regahimlevel of the Godberg’s
Deceptive3 function. Furthermore, this separable funcisouseful as a reference of
problem difficulty.

Finally, due to the random nature of the €etwe create for the experiments0
different random instances of this type of sets and the t®shlown are the average
among them. We use a problem sizenof 72 and the maximum allowed numbers of
combinations irC is I = 200. In addition, for each possible function, we carry @0t
independent EDA runs.

3.3 Degree of interaction and problem difficulty

The degree of interaction can be seen as a concept relatedhgiinterdependences
that emerge among the variables of a problem. Although ekl be many different
ways to measure this notion, in the context of the presenkwee assume that the
degree of interaction is essentially given by the numbemubffeinctions included in
the objective function.

Additionally, in order to provide a more intuitive measuféle degree of interaction,
we also take into account the number of sub-functions theit gariable has assigned.
For example, in the separable deceptive function eachhbilarizelongs to only one
sub-function. In general, givensub-functions of sizé overn variables, we calculate
the expected number of sub-functions assigned to eactolariais given by,

(s) =s—. (5)

Note that, the maximum number of sub-functions assignedarigible isk@
and therefore depends on the problem size. A measure whoge isaindependent of
this parameter is the density of sub-functions in the objedunction, which is given
byd = %

In order to illustrate how the landscapes of the functiorengie according to the
number of sub-functions added, we present a simple exanigiedwariables. Fig. 1
shows the function values that four different objectivediions assign to all possible
solutions of the search space. Due to the properties of tfectdle functions, we
can group these solutions by the number of ones in order taigganore intuitive
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Figure 1: Different snapshots that show how the landscageediinctions withn = 9
changes according to the number of deceptive sub-functidhe space of solutions
in the x-axis is grouped and labeled by the number of ones. vEntcal dashed
lines enclose the different groups of solutions that haweséime number of ones.
The function values of the solutions are in the y-axis. Tha&gmsnent of all zeros
is highlighted with a circle and the optimum (all ones) witfotconcentric circles. (a)
Landscape of the functiofy that adds} sub-functions and hgs) = 1. (b) Landscape
of the functionfs that addss sub-functions and hag) = 2. (c) Landscape of the
function fo that add9) sub-functions and hag) = 3. (d) Landscape of the function
fs4 that adds all th&4 possible sub-functions and haés = 28.



plots. The vertical dashed lines enclose the groups of isoithat have the same
number of ones. For example, the area that corresponds toutimder4 (x-axis)
contains exactly th€’(9,4) solutions with4 ones. Thus, the area that corresponds
to the numbeb or number in the x-axis only includes one solution. Nevertheless,
both these solutions play a crucial role in the class of fionstthat we propose, and
therefore, the assignment of all zeros is highlighted witlirele and the optimum (all
ones) with two concentric circles.

For example, Fig. 1(a) corresponds to the landscape of théb@im's separable
deceptive function and Fig. 1(d) corresponds to a functiahgums alC (n, k) possible
sub-functions. In turn, Figs. 1(b) and 1(c) show the landssdor two intermediate
functions in which each variable exactly belong@tand3 sub-functions. In general,
we can observe, without using specific measures of probldimutiy for EAs [21,
30], that the optimum tends to be isolated as the number cfiguttions increases.
Therefore, it will be more difficult to find useful informatioin the populations to
guide the algorithm towards the optimum. After the third gsteot (Fig.1(c)), the
assignments of all zeros foX is the sub-optimum and it becomes more attractive
as more sub-functions are added. The neighborhoods of dghifa tend to have
higher function values than the neighborhoods of the optime are assuming that
the neighborhoods are given by a bit-flip operator [21]. Nehadess, we can see in
Fig.1(c) that there are solutions near to the optimum thapKagh quality function
values, and therefore, they can contain valuable infolonatbout the optimal solution.
Even in the last snapshot (Fig.1(d)), some traces of infiomabout the optimum
remain in the solutions with more th&rones.

4 Experiments

4.1 Descriptors and parameters

In order to measure the performance of EDAs we use two destsip Firstly, we
calculate the Hamming distance between the best soluti@ndiy the algorithm and
the optimum. This measure indicates the quality of the swistthat EDAs are able
to return. Secondly, we calculate the ratio of successfud.rirhis measure represents
the proportion of problems solved for each level of diffigutat the number of sub-
functions provides. In addition, we record the order of tlagy@&sian networks learned
by EBNA at each generation. The order of the Bayesian netis@iken by the number
of variables in the largest factor of the correspondingdézation i.e. the maximum
number of parents plus the child. The results that we presépntake into account the
maximum order among the networks learned during each ruis.prbvides a measure
of the computational cost of the search. All the results amvs both in relation to
the number of sub-functions and the average number of suttifuns assigned to the
variables(s).

Besides the three problems sizes€ {24, 48, 72}) that we consider for the ex-
periments, different population sizes are also used inrdadshow the impact of this
parameter. Particularly, we use five different populatizesV € {1000, 5000, 10000,
15000, 20000}. The results confirm that the population size has a higharenfie on
EDAs based on Bayesian networks. Therefore, in order tadawenecessary experi-
ments, the last two sizes will be used only for EBNA. Finalhe stopping criterion of
the algorithms is a fixed number afgenerations, that is, as many as the number of
problem variables.
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Figure 2: Hamming distance and ratio of success for UMDA wifferent population
sizes and problem sizes. The description of the plots is lasv® The x-axis at the
bottom shows the number of sub-functions. The x-axis atdpeshows the average
number of sub-functions assigned to each variable givefishy The y-axis on the
left of the charts shows the Hamming distance between thiesbigion given by the
algorithm and the optimum. The curves that increase cooraspo this label. The
y-axis on the right shows the ratio of successful runs whimtespond to the curves
that decrease.

4.2 Results

In this section, we summarize the results that we have odafldimthe analysis of the
limits that EDAs encounter as the number of sub-functionsdases in the objective
function.

Figs. 2, 3 and 4 show the performance in terms of Hammingristand ratio of
successful runs for UMDA, Tree-EDA and EBNA respectiveliieifferent elements
of the charts are explained in the labels of these figurestHeosake of simplicity and
clarity in the plots, and due to the constant patterns oleskn/the results, some curves
are ignored.

Through the two descriptors used in these three Figuresleaey see the manner
in which the performance of different EDAs collapses. Thevea show an effect of
phase transition after a certain level of difficulty. Thigeet is particularly noticeable
in the curves of ratio of successful runs which fall off frdmo 0 by only adding a
low number of sub-functions. In UMDA and Tree-EDA, the diface between total
success and complete failure is in approximately two suiztfans. When EDA learns
Bayesian networks, the transition franto 0 in ratio of successful runs is slightly more
progressive, it approximately happensinr 8 sub-functions. In this case, the shape
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Figure 3: Hamming distance and ratio of success for UMDA wlifferent population
sizes and problem sizes. The description of the plots is lasv® The x-axis at the
bottom shows the number of sub-functions. The x-axis atdpeshows the average
number of sub-functions assigned to each variable givefshy The y-axis on the
left of the charts shows the Hamming distance between thiesb&gion given by the
algorithm and the optimum. The curves that increase cooraspo this label. The
y-axis on the right shows the ratio of successful runs whimtespond to the curves
that decrease.
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Figure 4: Hamming distance and ratio of success for UMDA wlifferent population
sizes and problem sizes. The description of the plots is lasv® The x-axis at the
bottom shows the number of sub-functions. The x-axis atdpeshows the average
number of sub-functions assigned to each variable givefshy The y-axis on the
left of the charts shows the Hamming distance between thiesb&gion given by the
algorithm and the optimum. The curves that increase cooraspo this label. The
y-axis on the right shows the ratio of successful runs whimtespond to the curves
that decrease.
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of the curves is more flexible and has a greater dependenbheobothe population
size and problem size. In fact, according to our resultsptbee complex the model
is, the greater the influence of these two elements. On théané, whereas UMDA
is hardly influenced by the population and problem size, we see that Tree-EDA
and EBNA need a minimum population size to have a competefaneance and it
becomes evident as the problem size increases. In Figsasdc}(c), the curves of
ratio of success show that the lowest population size isrlgléasufficient to reach
the optimum. Nevertheless, the population size in the cufee EBNA clearly has
a greater impact than for Tree-EDA. On the other hand, thefiterthat learning
Bayesian networks or increasing the population size coalde o achieve a better
performance in EDAs tend to vanish as the problem size iseea This fact can
be observed in Fig. 4. Firstly, the curves for different plagion sizes are closer
for the problems withd8 and 72 variables. Secondly, as the problem size increases,
the moment in which the algorithm starts to fail is closertie separable deceptive
function in(s) = 1.

The Hamming distance shows a more progressive change thédles complementary
information about the quality of the solutions. For exam@khough the ratio of
success can be equal@awvith only four sub-functions in Fig. 2, UMDA returns high
quality solutions which are close to the optimum. Similduaiions happen in other
scenarios except for the smallest problem size in Fig. d(agre both curves are more
balanced. Finally, the curves of Hamming distance indittzg after a certain level of
difficulty, all EDAs return the same solution which is in thesgynment of all zeros. If
we take into account the combinatorial number of sub-femgtithat we can introduce
in the ADF, selecting UMDA would be the best option, in ternfsefficiency and
efficacy, to solve the great majority of the problems. Onhaismall range of our
problems does EBNA provides better results.

Table 1: Number of sub-functions to which EDAs have reli@pibf the 95% (they
reach the optimum in th&5% of the runs) for each type of learning, problem size and
population size. Below the number of variables, the totahber of sub-functions that
can be added to the ADF is shown.

Problem EDAs Population size

size 1000 | 5000 | 10000| 15000| 20000

UMDA 2 2 2

n =24 Tree-EDA| ((s) =1) 8 8 8
C(24,3) = 2024 | EBNA 10 | ((s)=2) 16 18 18 | 20

UMDA 2 2 2

n =48 Tree-EDA 41 (s)=1)16 16
C(48,3) = 17296 | EBNA 4 22 26 28 | 28

UMDA 0 2 2

n="72 Tree-EDA 2| (s)=1)24 24
C(72,3) = 59640 | EBNA 2 32 36 38 | 40

In Table 1, we show the number of sub-functions for which tiffeint EDAs are
able to keep a reliability 035%. In addition, in this table we show the total number of
sub-functions that can be added to the objective functidre Specific study of these
thresholds is useful to better know where the limits of tliset of algorithms are in
relation to the complexity of the probabilistic model and thopulation size.
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Figure 5: Order of the Bayesian networks learned by EBNA.thr chart, we only

take into account the Bayesian network with the maximummadeng each run. The
results are shown in relation to the average number of sobtifins assigned to the
variables.

As was expected, we can observe that the probabilistic muakelan important
influence to solve more difficult problems. The best resutes @tained with the
smallest problem size. In this case, EBNA is able to solveleras which approximately
double the number of sub-functions than the separable teedpnction. However,
this proportion gets lower as the problem size increases.bBance between solving
a wider range of problems and the computational cost thae mmmplex probabilistic
models entails, deserves a specific analysis.

Regarding the population size, we see that, although thisnpeter is critical to
obtain a competent behavior of EDAs based on Bayesian nketpmbishows a limited
utility to overcome certain thresholds of problem diffigulhis indicates that incre-
asing the population size is not the solution to solve moifecdit problems. In fact,
as the size of this parameter increases, it has a diminishipgct and the level of
difficulty that EBNA is able to reach tends to stabilize. Irddibn, Table 1 shows the
results for population sizes up 8, 000 for the problem size ofi = 24. Thisis a
huge population size for this number of variables becausepitesents an important
proportion of the search space. Even in this case, the tbicksifithe number of sub-
functions hardly varies for EBNA.

In Fig. 5, we analyze the complexity of the Bayesian netwdeksned by EBNA
during the searches. Specifically, we focus on the ordereaxfelprobabilistic models.
As aforementioned, the order is given by the number of végsaib the largest factor of
the factorization. For this figure, we only take into accatnietmaximum order during
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Figure 6: Spaces of problems that the different EDAs havweesblWe assume that two
functions with the same number of sub-functions represensame level of difficulty
and, therefore, the same allocation in the space of probldine area of the biggest
square represents the number of all possible levels ofdliffirom 0 sub-functions to
C(n, k). The three squares inside the big squares (from left to aghtUMDA, Tree-
EDA and EBNA) represent the space of problems that each EBPalvke to solve with
a reliability of95% for each problem size.

each run.

The phase-transition effect observed in Figs. 2, 3 and disety related with Fig.

5. Thus, the algorithm starts to dramatically fail after geaks in the curves shown in
Fig. 5. Note that, as the problem size increases, this éff@sbre marked. This figure
shows that the complexity of the Bayesian networks incieagponentially by only
adding a few sub-functions to the ADFs. After this first stafiesing, the learning is
unable to obtain adequate structures to solve the problaechéh@ complexity of the
networks decreases.

Finally, we show in Fig. 6 a more intuitive result. This figuepresents the proportion
of problems that different EDAs were able to solve with rellity. The big squares
represent the whole space of problems that we can creatadhmeimber of variables
with sub-functions of siz8€. We can observe how the space of problem that EBNA
is able to solve (small squares on the right) dramaticaltyreleses with the problem
size. Only forn = 24 the influence of the population size in EBNA can be observed
(double square). This is an intuitive result that also iSwide suggest the wide scope
for improvement that can exists for this type of algorithms.

5 Conclusions

In this work, we have analyzed the limits of performance tiifferent EDA imple-
mentations encounter as the degree of interaction amongatiables of the problem
increases. We base the analysis on the use of additive desaitnle functions in which
new sub-functions with the same deceptive values are pssigedy added. Thus, the
degree of interaction can be directly measured by the nusidefunctions that the
objective function includes. Moreover, we use the separdbteptive function as a
reference of problem difficulty in order to provide more ititte results. In the experi-
ments, we have dealt with three different EDA implementatidince these algorithms
only differ in the probabilistic model used, the resultswstibe impact that introducing
more complex models has in order to solve a wider range oflpnod We have also
used different population sizes. This parameter has begecatin order to achieve
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a competent behavior in EDAs based on Bayesian networks. elAawthe results
suggest that, in general, increasing this parameter isvactdlution to efficiently solve
more complex problems. The limits seem to strongly deperni@probabilistic model
itself.

We have discovered that, when the problem has strong inignacamong the
variables, the performance of the algorithm collapses witphase-transition effect
as the number of sub-functions in the objective functiomdases. The threshold in
which EDAs based on Bayesian networks fails is between tparable deceptive
functions and the objective functions wign/k sub-functions. We have also shown
that the complexity of the networks learned by the algorithas to exponentially
rise with the number of sub-functions in the objective fimctin order reach the
optimum. Therefore, after a certain threshold, the leayeivilapses and the algorithm
dramatically fails. It suggests that, after a critical degpof interaction, the learning
of Bayesian networks might not be able to recover the inféionaneeded to reach
the optimum from the population. According to the growthtttiee curves of order
show, the use of Bayesian networks in EDAs does not seem awo@igie tool for
the development of new techniques capable of solving pnableith an increasing
degree of interaction among the variables. In order to makesditative step forward
in this regard, we believe that the development of new amremsuch as probabilistic
models based on factor graphs [22, 27], effective use ofdoter statistics [12] or
mixtures between genetic operators and learning [33, 3&@$%stitutes a promising
research area.

In essence, we have explored the general concept of boesddréffectiveness in
EDAs in relation to the degree of interaction of the probldmthis regard, we have
exposed specific information with clear patterns of behatiat offer the possibility of
conjecturing on more general issues about the limitatidrikie class of evolutionary
algorithm.

6 Future work

There are a number of trends which are worth extending thdtsggresented in this
paper.

The first extension of this work is to test the most sophigtid&DAs that actually
exist. They can include additional techniques such asmiphii local searches. Finding
the level of problem difficulty that this type of algorithnssable to reach is important
to confirm the hypothesis of learning limits in EDAs based ay&sian networks.
In addition, the analysis of exact methods to learn Bayes&works in EDAs [11]
could provide valuable information about this issues beytre only feasible for small
problems. Similarly, we should propose and test, underaheesconditions, alternative
approaches such as mixture of simple evolutionary algmstinstead of sophisticated
EDAs.

In order to estimate to what extent the introduction of marmplex models and
additional techniques benefit EDAs, we should carry out dysin order to estimate
the balance between computational cost and performanbe ietms proposed in this
work.

In order to contrast the results that we have obtained withghrticular model of
function, we should conduct similar experiments with ottygres of functions. An
appropriate candidate could be the Ising problem whosedif§i could be increased
with the number of interactions between couples of varabitowever, the disadvantages
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of this problem are 1) the calculation of the optimum and 2 tieed to analyze
different instances not only with different structures &lsb with different parameters.

Due to the constant patterns observed in the results, wieitiéould be possible to
theoretically model the curves of ratio of success and Hargrdistance. This would
be useful in order to estimate the performance of EDAs basd&hgesian networks in
relation to the number of sub-functions in the objectivection and the problem size.
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