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Abstract

Conducting research in order to know the range of problems inwhich a search
algorithm is effective constitutes a fundamental issue to understand the algorithm
and to continue the development of new techniques. In this work, by progressively
increasing the degree of interaction in the problem, we study to what extent different
EDA implementations are able to reach the optimal solutions. Specifically, we deal
with additively decomposable functions whose complexity essentially depends on
the number of sub-functions added. With the aim of analyzingthe limits of this
type of algorithms, we take into account three common EDA implementations that
only differ in the complexity of the probabilistic model. The results show that
the ability of EDAs to solve problems quickly vanishes aftercertain degree of
interaction with a phase-transition effect. This collapseof performance is closely
related with the computational restrictions that this typeof algorithms have to
impose in the learning step in order to be efficiently applied. Moreover, we show
how the use of unrestricted Bayesian networks to solve the problems rapidly be-
comes inefficient as the number of sub-functions increases.The results suggest that
this type of models might not be the most appropriate tool forthe the development
of new techniques that solve problems with increasing degree of interaction. In
general, the experiments proposed in the present work allowus to identify patterns
of behavior in EDAs and provide new ideas for the analysis anddevelopment of
this type of algorithms.
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1 Introduction

Estimation of distribution algorithms (EDAs) [23, 29, 31] are a population-based op-
timization paradigm in the field of evolutionary computation (EA) that has obtained
increasing attention during the last decade. Proofs of thispopularity are the deve-
lopment of new and more complex EDAs [19, 25, 31], the new applications for them
[1, 3, 34] and the works which study fundamental issues in order to better understand
how these algorithms perform [10, 18, 36]. However, the range of problems in which
this type of algorithms are effective remains practically unknown. Nevertheless, some
previous works [7, 9, 15] are related with this topic. We argue that studying the limits
of performance of any search algorithm is a crucial task in order to advance the deve-
lopment of more efficient and effective techniques.

The main characteristic of EDAs is the use of probabilistic models to lead the search
towards promising areas of the space of solutions throughout a learning and sampling
iterative process. In fact, different EDA implementationsare usually distinguished
by the class of probabilistic model used. Thus, the more complex the model is, the
greater the ability of an EDA to capture possible interactions among the variables of
the problem. As has been shown in different works [2, 23, 37],this ability is crucial to
successfully solve problems that hide interdependences among variables. However, in-
creasing the complexity has a computational cost. Therefore, the order of dependencies
in the probabilistic models must be restricted in order to achieve feasible applications.
Thus, the most general EDAs, which are able to learn a new multivariate probabilistic
model at each generation, use approximate learning techniques of bounded computational
cost. Actually, the study and development of this class of algorithms constitutes a main
topic in EDA research [4, 18, 24]. Specifically, probabilistic models such as Bayesian
networks have become popular tools in this regard.

In this work, we numerically analyze the limits that different EDA implemen-
tations encounter to effectively solve problems in relation to the number of interactions
between the variables. In these terms, we argue that the limits for this type of algorithms
are mainly imposed by the probabilistic model they rely on. Thus, the complexity
allowed in the model strongly determines to what degree of interaction in the problem
the algorithm is able to successfully face. We believe that,even in the case of using
general Bayesian networks, the restrictions imposed by thestructural learning will
cause strong limitations. In order to systematically studyto what extent EDAs are able
to solve problems, we use an additive decomposable function(ADF) in which new sub-
functions are progressively added. With the aim of achieving a strong interdependence
between the variables belonging to each sub-function, we assign deceptive function
values [16]. In order to study the impact that increasing thecomplexity of the probabilistic
model entails in the performance of the algorithm, we use three different implemen-
tations. Firstly, an EDA that assumes independencies between variables, secondly,
an EDA that learns a tree-like structure at each generation and finally an EDA that
learns unrestricted Bayesian networks. Since the population size is a critical parameter
in EDAs and especially when Bayesian networks are learned [14], we use different
population sizes in the experiments. Additionally, we use three different problem sizes
to complete the analysis.

According to the results, the ability of EDAs to solve the problems generated
steeply decreases after a certain number of sub-functions in the objective function. This
threshold of performance shows a marked effect of phase transition that clearly delimits
the frontiers of effectiveness. These limits are found by adding some additional sub-
functions to a separable deceptive function similar to the Goldberg’s Deceptive3 [17].
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In this work, we pay special attention to EDAs based on Bayesian networks. For this
type of algorithms, we show that the dramatical loss of performance is due to the
lack of the structural learning method to build more complexmodels. Furthermore,
the complexity of the networks that the algorithm has to learn in order to solve the
problems rises exponentially with the number of sub-functions in the ADF. These
results suggest strong computational limitations to overcome the limits of applicability
of EDAs based on Bayesian networks. Therefore, the development of approaches
such as probabilistic models based on factor graphs [22,27], effective use of low-order
statistics [12] or mixtures between genetic operators and learning [33,38,39] could be
promising research areas in order to efficiently overcome the limits that the Bayesian
networks exhibit in the terms presented in this paper.

The remainder of the paper is organized as follows. Section 2introduces probabilistic
models based on Bayesian networks and presents the EDA implementations used in
the paper. Section 3 introduces the definition of the fitness function and the particular
procedure to progressively increase the number of interactions. Section 4 explains and
discusses the results of the experiments. Section 5 draws the conclusions obtained
during the study. Finally, Section 6 points out possible future work.

2 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) arise as an alternative to genetic algorithms
(GAs) [17]. EDAs, instead of exchanging information between individuals through
genetic operators, use machine learning methods to extractrelevant features of the
search space through the selected individuals of the population. The collected information
is represented using a probabilistic model which is later employed to generate new
solutions. The general scheme of the EDA approach is shown inAlgorithm 1.

Algorithm 1: EDA

1 D0 ← GenerateN individuals randomly
2 t← 1
3 do {
4 Dt−1 ← Evaluate individuals

5 DSe
t−1 ← SelectM < N individuals fromDt−1 according to a selection

method
6 pt(x) = p(x|DSe

t−1) ← Estimate the joint probability by using a
probabilistic model

7 Dt← SampleM individuals frompt(x) and create the new population
8 t← t + 1
9 } until Stop criterion is met

2.1 Probabilistic models and factorizations

The term probabilistic model refers to the qualitative and quantitative structure given
by a probability function [6]. Although the EDA paradigm could admit any type of
probabilistic model, the most popular models are those thatexpress their qualitative
component through a graph. In particular, one class of models that has been extensively
applied in EDAs are Bayesian networks [13,28,32].
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Formally, a Bayesian network is a pair(S, θ) representing a graphical factorization
of a probability distribution. The structureS is a directed acyclic graph which reflects
the set of conditional (in)dependences among the variables. Regardingθ, it is a set of
parameters for the local probability distributions associated with each variable.

The factorization of the probability distribution is codified as:

p(x) =

n
∏

i=1

p(xi|pai) (1)

wherepai denotes a value of the variablesPai, the parent set ofXi in the graphS.
With reference to the set of parametersθ, if the variableXi hasri possible values,

the local distributionp(xi|pa
j
i , θi) is an unrestricted discrete distribution:

p(xk
i |pa

j
i , θi) ≡ θijk (2)

wherepa1
i , . . . , pa

qi

i denote theqi possible values of the parent setPai. In other
words, the parameterθijk represents the probability of variableXi being in itsk-th
value, knowing that the set of its parents’ variables is in its j-th value. Therefore, the
local parameters are given byθi = ((θijk)ri

k=1)
qi

j=1.

2.2 EDA implementations

In this work, besides studying the learning limits of EDAs based on Bayesian networks,
we also show to what extent this type of algorithms outperforms EDAs with simpler
models. This is useful to analyze the utility of increasing the complexity of the model.

Specifically, we use the following three EDA implementations that only differ in the
structural model. Firstly, we deal with the well known univariate marginal distribution
algorithm (UMDA) [26]. The model used to estimate the joint probability distribution
from the selected individuals at each generation is as simple as possible. It is factorized
as a product of independent univariate marginal distributions. This factorization is
given by Equation 1, where the parent sets are empty (∀i, Pai = ∅). Secondly, we
use an EDA that learns a bivariate probabilistic model at each generation which will
be called Tree-EDA. In particular, the factorization of theprobability distribution is
given by a tree structure learned through the algorithm proposed by Chow and Liu
[8]. The graph that represents the tree structure is directed and its factorization can
be formulated by using Equation 1 where all the parent sets have only one variable
(∀i, |Pai| = 1). Lastly, we use the estimation of Bayesian network algorithm (EBNA)
that considers general models without restrictions. In this case, the structural learning
is based on a score+search technique [23]. Specifically, thesearch is carried out using
the algorithm B [5] and the score is the Bayesian InformationCriterion (BIC) [35].
Algorithm B is a greedy search procedure which starts with anarcless structure and,
at each step, adds the arc with the maximum improvement in thescore. The algorithm
finishes when there is no arc whose addition improves the score.

Since all the above mentioned factorizations of the probability distribution can be
encoded by using Bayesian networks, we use similar approaches both to learn the
parameters and sample the new solutions. Thus, the parameters θ are estimated by
maximum likelihood using Laplace correction [23] and the sampling is carried out by
a common method known as probabilistic logic sampling (PLS)[20].
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3 Fitness functions

In order to investigate the behavior of EDAs as the complexity of the function increases,
we deal with additively decomposable functions (ADFs). It is well known that many
optimization problems studied over the years can be modelled by using this type of
functions. Our model function, in which new sub-functions are progressively added,
can be seen as a system that increases its complexity with thetime due to the creation
of new interactions among the variables.

3.1 Definitions

A fitness functionf : X = {0, 1}n → R is additive if it can be represented as a sum
of sub-functions of lower dimension,

f(x) =
∑

Ci∈C

fi(ci), (3)

whereC = {C1, .., Cl} is a collection of distinct sub-setsCi ⊆X andci denotes the
assignment of the variables belonging toCi. This type of functions is also characterized
by its orderk, which is the size of the largest sub-set inC.

In this work, we use a particular instance of this general class of functions. Firstly,
all the sub-sets inC have three variables (k = 3). Therefore,C consists of any collection

of distinct sub-sets taken from all theC(n, k) =

(

n

k

)

possible sub-sets of variables.

Secondly, all the sub-functionsfi are the same deceptive function [17] denoted byf3dec

. By using a unitation functionu(y) =
∑k

i=1 yi wherey ∈ {0, 1}k, the deceptive
function of three variables is defined as,

f3dec(ci) =















0.9 for u(ci) = 0
0.8 for u(ci) = 1
0.0 for u(ci) = 2
1.0 for u(ci) = 3

From the point of view of the EDA analysis, the benefit of the fitness functions
that we propose is twofold. Firstly, independently of the number of sub-functions, we
always know the global optimum which is the assignment of allones forX. Secondly,
the deceptive approach creates a strong interdependence among the three variables
belonging to each sub-function.

Regarding thef3dec functions, when they are disposed without overlapping among
the set of variablesX, the fitness function is called Goldberg’s Deceptive3 function
[16]. This specific function was proposed in the context of genetic algorithms aimed
at finding their limitations. Thus, in the present work, thisfunction constitutes a useful
reference in order to analyze the limits of performance in EDAs. Nowadays, deceptive
or trap separable functions are widely used to test evolutionary algorithms.

3.2 Implementation of the functions

In order to progressively increase the complexity of the functions, we propose a simple
procedure. Basically, we generate a sequence of objective functions in which each
function adds one more sub-function than the previous one. This sequence of functions
is given by the ordered setC = {C1, .., Cl}. This set is a collection ofl distinct
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subsets of variables randomly selected according to a uniform distribution from all
theC(n, 3) possible combinations. Although we could introduce inC all theC(n, 3)
distinct subsets, it is not necessary for our purposes. Thus, thes-th objective function
in the sequence sumss sub-functions which are applied to the corresponding firsts
subsets of variables inC. Thes-th function can be expressed as,

fs(x) =

s≤l
∑

i=1

f3dec(ci) (4)

The ordered setC has a restriction. The firstn/k subsets cover the whole set
of variablesX without overlapping, forming a separable function. Note that in the
functions froms = 1 to s = n/k some of the variables do not have any sub-function
assigned. In order to complete these functions and keep the optimum in the assignment
of all ones in this specific stage, we directly apply the unitation function over the set of
variablesX\

⋃s

i=1 Ci without sub-function assignment. This stage is useful to analyze
UMDA, Tree-EDA, and even EBNA with insufficient population size to reliably reach
the optimum, because the algorithms can fail before reaching the level of the Godberg’s
Deceptive3 function. Furthermore, this separable function is useful as a reference of
problem difficulty.

Finally, due to the random nature of the setC, we create for the experiments100
different random instances of this type of sets and the results shown are the average
among them. We use a problem size ofn = 72 and the maximum allowed numbers of
combinations inC is l = 200. In addition, for each possible function, we carry out10
independent EDA runs.

3.3 Degree of interaction and problem difficulty

The degree of interaction can be seen as a concept related with the interdependences
that emerge among the variables of a problem. Although therecould be many different
ways to measure this notion, in the context of the present work, we assume that the
degree of interaction is essentially given by the number of sub-functions included in
the objective function.

Additionally, in order to provide a more intuitive measure of the degree of interaction,
we also take into account the number of sub-functions that each variable has assigned.
For example, in the separable deceptive function each variable belongs to only one
sub-function. In general, givens sub-functions of sizek overn variables, we calculate
the expected number of sub-functions assigned to each variable. It is given by,

〈s〉 = s
k

n
. (5)

Note that, the maximum number of sub-functions assigned pervariable isk C(n,k)
n

and therefore depends on the problem size. A measure whose range is independent of
this parameter is the density of sub-functions in the objective function, which is given
by d = s

C(n,k) .
In order to illustrate how the landscapes of the functions change according to the

number of sub-functions added, we present a simple example with 9 variables. Fig. 1
shows the function values that four different objective functions assign to all possible
solutions of the search space. Due to the properties of the objective functions, we
can group these solutions by the number of ones in order to provide more intuitive
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(b) f6, 6 sub-functions,〈s〉 = 2
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(c) f9, 9 sub-functions,〈s〉 = 3
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(d) f84, all the84 sub-functions,〈s〉 = 28

Figure 1: Different snapshots that show how the landscape ofthe functions withn = 9
changes according to the number of deceptive sub-functions. The space of solutions
in the x-axis is grouped and labeled by the number of ones. Thevertical dashed
lines enclose the different groups of solutions that have the same number of ones.
The function values of the solutions are in the y-axis. The assignment of all zeros
is highlighted with a circle and the optimum (all ones) with two concentric circles. (a)
Landscape of the functionf3 that adds3 sub-functions and has〈s〉 = 1. (b) Landscape
of the functionf6 that adds6 sub-functions and has〈s〉 = 2. (c) Landscape of the
functionf9 that adds9 sub-functions and has〈s〉 = 3. (d) Landscape of the function
f84 that adds all the84 possible sub-functions and has〈s〉 = 28.
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plots. The vertical dashed lines enclose the groups of solutions that have the same
number of ones. For example, the area that corresponds to thenumber4 (x-axis)
contains exactly theC(9, 4) solutions with4 ones. Thus, the area that corresponds
to the number0 or number9 in the x-axis only includes one solution. Nevertheless,
both these solutions play a crucial role in the class of functions that we propose, and
therefore, the assignment of all zeros is highlighted with acircle and the optimum (all
ones) with two concentric circles.

For example, Fig. 1(a) corresponds to the landscape of the Goldberg’s separable
deceptive function and Fig. 1(d) corresponds to a function that sums allC(n, k) possible
sub-functions. In turn, Figs. 1(b) and 1(c) show the landscapes for two intermediate
functions in which each variable exactly belongs to2 and3 sub-functions. In general,
we can observe, without using specific measures of problem difficulty for EAs [21,
30], that the optimum tends to be isolated as the number of sub-functions increases.
Therefore, it will be more difficult to find useful information in the populations to
guide the algorithm towards the optimum. After the third snapshot (Fig.1(c)), the
assignments of all zeros forX is the sub-optimum and it becomes more attractive
as more sub-functions are added. The neighborhoods of this solution tend to have
higher function values than the neighborhoods of the optimum. We are assuming that
the neighborhoods are given by a bit-flip operator [21]. Nevertheless, we can see in
Fig.1(c) that there are solutions near to the optimum that keep high quality function
values, and therefore, they can contain valuable information about the optimal solution.
Even in the last snapshot (Fig.1(d)), some traces of information about the optimum
remain in the solutions with more than6 ones.

4 Experiments

4.1 Descriptors and parameters

In order to measure the performance of EDAs we use two descriptors. Firstly, we
calculate the Hamming distance between the best solution given by the algorithm and
the optimum. This measure indicates the quality of the solutions that EDAs are able
to return. Secondly, we calculate the ratio of successful runs. This measure represents
the proportion of problems solved for each level of difficulty that the number of sub-
functions provides. In addition, we record the order of the Bayesian networks learned
by EBNA at each generation. The order of the Bayesian networkis given by the number
of variables in the largest factor of the corresponding factorization i.e. the maximum
number of parents plus the child. The results that we presentonly take into account the
maximum order among the networks learned during each run. This provides a measure
of the computational cost of the search. All the results are shown both in relation to
the number of sub-functions and the average number of sub-functions assigned to the
variables〈s〉.

Besides the three problems sizes (n ∈ {24, 48, 72}) that we consider for the ex-
periments, different population sizes are also used in order to show the impact of this
parameter. Particularly, we use five different population sizesN ∈ {1000, 5000, 10000,
15000, 20000}. The results confirm that the population size has a higher influence on
EDAs based on Bayesian networks. Therefore, in order to avoid unnecessary experi-
ments, the last two sizes will be used only for EBNA. Finally,the stopping criterion of
the algorithms is a fixed number ofn generations, that is, as many as the number of
problem variables.
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(a) n = 24
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(b) n = 48
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(c) n = 72

Figure 2: Hamming distance and ratio of success for UMDA withdifferent population
sizes and problem sizes. The description of the plots is as follows. The x-axis at the
bottom shows the number of sub-functions. The x-axis at the top shows the average
number of sub-functions assigned to each variable given by〈s〉. The y-axis on the
left of the charts shows the Hamming distance between the best solution given by the
algorithm and the optimum. The curves that increase correspond to this label. The
y-axis on the right shows the ratio of successful runs which correspond to the curves
that decrease.

4.2 Results

In this section, we summarize the results that we have obtained in the analysis of the
limits that EDAs encounter as the number of sub-functions increases in the objective
function.

Figs. 2, 3 and 4 show the performance in terms of Hamming distance and ratio of
successful runs for UMDA, Tree-EDA and EBNA respectively. The different elements
of the charts are explained in the labels of these figures. Forthe sake of simplicity and
clarity in the plots, and due to the constant patterns observed in the results, some curves
are ignored.

Through the two descriptors used in these three Figures, we clearly see the manner
in which the performance of different EDAs collapses. The curves show an effect of
phase transition after a certain level of difficulty. This effect is particularly noticeable
in the curves of ratio of successful runs which fall off from1 to 0 by only adding a
low number of sub-functions. In UMDA and Tree-EDA, the difference between total
success and complete failure is in approximately two sub-functions. When EDA learns
Bayesian networks, the transition from1 to 0 in ratio of successful runs is slightly more
progressive, it approximately happens in6 or 8 sub-functions. In this case, the shape
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(a) n = 24
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(b) n = 48
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(c) n = 72

Figure 3: Hamming distance and ratio of success for UMDA withdifferent population
sizes and problem sizes. The description of the plots is as follows. The x-axis at the
bottom shows the number of sub-functions. The x-axis at the top shows the average
number of sub-functions assigned to each variable given by〈s〉. The y-axis on the
left of the charts shows the Hamming distance between the best solution given by the
algorithm and the optimum. The curves that increase correspond to this label. The
y-axis on the right shows the ratio of successful runs which correspond to the curves
that decrease.
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(a) n = 24
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(b) n = 48
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(c) n = 72

Figure 4: Hamming distance and ratio of success for UMDA withdifferent population
sizes and problem sizes. The description of the plots is as follows. The x-axis at the
bottom shows the number of sub-functions. The x-axis at the top shows the average
number of sub-functions assigned to each variable given by〈s〉. The y-axis on the
left of the charts shows the Hamming distance between the best solution given by the
algorithm and the optimum. The curves that increase correspond to this label. The
y-axis on the right shows the ratio of successful runs which correspond to the curves
that decrease.
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of the curves is more flexible and has a greater dependence both on the population
size and problem size. In fact, according to our results, themore complex the model
is, the greater the influence of these two elements. On the onehand, whereas UMDA
is hardly influenced by the population and problem size, we can see that Tree-EDA
and EBNA need a minimum population size to have a competent performance and it
becomes evident as the problem size increases. In Figs. 3(c)and 4(c), the curves of
ratio of success show that the lowest population size is clearly insufficient to reach
the optimum. Nevertheless, the population size in the curves for EBNA clearly has
a greater impact than for Tree-EDA. On the other hand, the benefits that learning
Bayesian networks or increasing the population size could have to achieve a better
performance in EDAs tend to vanish as the problem size increases. This fact can
be observed in Fig. 4. Firstly, the curves for different population sizes are closer
for the problems with48 and72 variables. Secondly, as the problem size increases,
the moment in which the algorithm starts to fail is closer to the separable deceptive
function in〈s〉 = 1.

The Hamming distance shows a more progressive change that provides complementary
information about the quality of the solutions. For example, although the ratio of
success can be equal to0 with only four sub-functions in Fig. 2, UMDA returns high
quality solutions which are close to the optimum. Similar situations happen in other
scenarios except for the smallest problem size in Fig. 4(a),where both curves are more
balanced. Finally, the curves of Hamming distance indicatethat, after a certain level of
difficulty, all EDAs return the same solution which is in the assignment of all zeros. If
we take into account the combinatorial number of sub-functions that we can introduce
in the ADF, selecting UMDA would be the best option, in terms of efficiency and
efficacy, to solve the great majority of the problems. Only ina small range of our
problems does EBNA provides better results.

Table 1: Number of sub-functions to which EDAs have reliability of the 95% (they
reach the optimum in the95% of the runs) for each type of learning, problem size and
population size. Below the number of variables, the total number of sub-functions that
can be added to the ADF is shown.

Problem EDAs Population size
size 1000 5000 10000 15000 20000

UMDA 2 2 2
n = 24 Tree-EDA (〈s〉 = 1) 8 8 8

C(24, 3) = 2024 EBNA 10 (〈s〉 = 2) 16 18 18 20
UMDA 2 2 2

n = 48 Tree-EDA 4 (〈s〉 = 1) 16 16
C(48, 3) = 17296 EBNA 4 22 26 28 28

UMDA 0 2 2
n = 72 Tree-EDA 2 (〈s〉 = 1) 24 24

C(72, 3) = 59640 EBNA 2 32 36 38 40

In Table 1, we show the number of sub-functions for which the different EDAs are
able to keep a reliability of95%. In addition, in this table we show the total number of
sub-functions that can be added to the objective function. The specific study of these
thresholds is useful to better know where the limits of this type of algorithms are in
relation to the complexity of the probabilistic model and the population size.
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(c) n = 72

Figure 5: Order of the Bayesian networks learned by EBNA. Forthis chart, we only
take into account the Bayesian network with the maximum order during each run. The
results are shown in relation to the average number of sub-functions assigned to the
variables.

As was expected, we can observe that the probabilistic modelhas an important
influence to solve more difficult problems. The best results are obtained with the
smallest problem size. In this case, EBNA is able to solve problems which approximately
double the number of sub-functions than the separable deceptive function. However,
this proportion gets lower as the problem size increases. The balance between solving
a wider range of problems and the computational cost that more complex probabilistic
models entails, deserves a specific analysis.

Regarding the population size, we see that, although this parameter is critical to
obtain a competent behavior of EDAs based on Bayesian networks, it shows a limited
utility to overcome certain thresholds of problem difficulty. This indicates that incre-
asing the population size is not the solution to solve more difficult problems. In fact,
as the size of this parameter increases, it has a diminishingimpact and the level of
difficulty that EBNA is able to reach tends to stabilize. In addition, Table 1 shows the
results for population sizes up to20, 000 for the problem size ofn = 24. This is a
huge population size for this number of variables because itrepresents an important
proportion of the search space. Even in this case, the threshold of the number of sub-
functions hardly varies for EBNA.

In Fig. 5, we analyze the complexity of the Bayesian networkslearned by EBNA
during the searches. Specifically, we focus on the order of these probabilistic models.
As aforementioned, the order is given by the number of variables in the largest factor of
the factorization. For this figure, we only take into accountthe maximum order during
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(a) n = 24 (b) n = 48 (c) n = 72

Figure 6: Spaces of problems that the different EDAs have solved. We assume that two
functions with the same number of sub-functions represent the same level of difficulty
and, therefore, the same allocation in the space of problems. The area of the biggest
square represents the number of all possible levels of difficulty from 0 sub-functions to
C(n, k). The three squares inside the big squares (from left to rightare UMDA, Tree-
EDA and EBNA) represent the space of problems that each EDA was able to solve with
a reliability of95% for each problem size.

each run.
The phase-transition effect observed in Figs. 2, 3 and 4 is closely related with Fig.

5. Thus, the algorithm starts to dramatically fail after thepeaks in the curves shown in
Fig. 5. Note that, as the problem size increases, this effectis more marked. This figure
shows that the complexity of the Bayesian networks increases exponentially by only
adding a few sub-functions to the ADFs. After this first stageof rising, the learning is
unable to obtain adequate structures to solve the problems and the complexity of the
networks decreases.

Finally, we show in Fig. 6 a more intuitive result. This figurerepresents the proportion
of problems that different EDAs were able to solve with reliability. The big squares
represent the whole space of problems that we can create for each number of variables
with sub-functions of size3. We can observe how the space of problem that EBNA
is able to solve (small squares on the right) dramatically decreases with the problem
size. Only forn = 24 the influence of the population size in EBNA can be observed
(double square). This is an intuitive result that also is useful to suggest the wide scope
for improvement that can exists for this type of algorithms.

5 Conclusions

In this work, we have analyzed the limits of performance thatdifferent EDA imple-
mentations encounter as the degree of interaction among thevariables of the problem
increases. We base the analysis on the use of additive decomposable functions in which
new sub-functions with the same deceptive values are progressively added. Thus, the
degree of interaction can be directly measured by the numbersub-functions that the
objective function includes. Moreover, we use the separable deceptive function as a
reference of problem difficulty in order to provide more intuitive results. In the experi-
ments, we have dealt with three different EDA implementations. Since these algorithms
only differ in the probabilistic model used, the results show the impact that introducing
more complex models has in order to solve a wider range of problems. We have also
used different population sizes. This parameter has been critical in order to achieve
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a competent behavior in EDAs based on Bayesian networks. However, the results
suggest that, in general, increasing this parameter is not the solution to efficiently solve
more complex problems. The limits seem to strongly depend onthe probabilistic model
itself.

We have discovered that, when the problem has strong interactions among the
variables, the performance of the algorithm collapses witha phase-transition effect
as the number of sub-functions in the objective function increases. The threshold in
which EDAs based on Bayesian networks fails is between the separable deceptive
functions and the objective functions with2n/k sub-functions. We have also shown
that the complexity of the networks learned by the algorithmhas to exponentially
rise with the number of sub-functions in the objective function in order reach the
optimum. Therefore, after a certain threshold, the learning collapses and the algorithm
dramatically fails. It suggests that, after a critical degree of interaction, the learning
of Bayesian networks might not be able to recover the information needed to reach
the optimum from the population. According to the growth that the curves of order
show, the use of Bayesian networks in EDAs does not seem an appropriate tool for
the development of new techniques capable of solving problems with an increasing
degree of interaction among the variables. In order to make aqualitative step forward
in this regard, we believe that the development of new approaches such as probabilistic
models based on factor graphs [22, 27], effective use of low-order statistics [12] or
mixtures between genetic operators and learning [33, 38, 39] constitutes a promising
research area.

In essence, we have explored the general concept of boundaries of effectiveness in
EDAs in relation to the degree of interaction of the problem.In this regard, we have
exposed specific information with clear patterns of behavior that offer the possibility of
conjecturing on more general issues about the limitations of this class of evolutionary
algorithm.

6 Future work

There are a number of trends which are worth extending the results presented in this
paper.

The first extension of this work is to test the most sophisticated EDAs that actually
exist. They can include additional techniques such as niching or local searches. Finding
the level of problem difficulty that this type of algorithms is able to reach is important
to confirm the hypothesis of learning limits in EDAs based on Bayesian networks.
In addition, the analysis of exact methods to learn Bayesiannetworks in EDAs [11]
could provide valuable information about this issues but they are only feasible for small
problems. Similarly, we should propose and test, under the same conditions, alternative
approaches such as mixture of simple evolutionary algorithms instead of sophisticated
EDAs.

In order to estimate to what extent the introduction of more complex models and
additional techniques benefit EDAs, we should carry out a study in order to estimate
the balance between computational cost and performance in the terms proposed in this
work.

In order to contrast the results that we have obtained with this particular model of
function, we should conduct similar experiments with othertypes of functions. An
appropriate candidate could be the Ising problem whose difficulty could be increased
with the number of interactions between couples of variables. However, the disadvantages
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of this problem are 1) the calculation of the optimum and 2) the need to analyze
different instances not only with different structures butalso with different parameters.

Due to the constant patterns observed in the results, we think it could be possible to
theoretically model the curves of ratio of success and Hamming distance. This would
be useful in order to estimate the performance of EDAs based on Bayesian networks in
relation to the number of sub-functions in the objective function and the problem size.
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