Asymmetric Catalytic Approach to α-Functionalized Amides

AUTORIZACIÓN DEL DEPARTAMENTO

El Consejo del Departamento de Química Orgánica I en reunión celebrada el día 24 de enero de 2020 ha acordado dar la conformidad a la admisión a trámite de presentación de la Tesis Doctoral titulada: Asymmetric Catalytic Approach to α-Functionalized Amides, dirigida por el Dr Claudio Palomo Nicolau y la Dra Mํ Antonia Mielgo Vicente y presentada por Doña. Ana Vázquez Albisu ante este Departamento.

En Vitoria-Gasteiz a 24 de enero de 2020

Eskerrak

Esta Tesis Doctoral ha sido realizada en el Departamento de Química Orgánica I de la Facultad de Ciencias Químicas de Donostia de la Universidad del País Vasco (UPV/EHU), bajo la dirección del Dr. Claudio Palomo y la Dra. M ${ }^{\text {a }}$ Antonia Mielgo, a quienes expreso mi gratitud por haberme dado la oportunidad de incorporarme a este grupo de investigación y por la formación tan completa y de calidad que me habéis ofrecido. Por otro lado, querría agradecer a Aitor por su implicación, interés y apoyo en la última etapa de mi tesis. Debo agradecer, además, la financiación de este trabajo, que ha provenido de una beca predoctoral del Gobierno Vasco.

My sincere thanks go to Dr. Gilles Guichard for giving me the opportunity to realize a fourmonth stay in the Institut Européen de Chimie et Biologie (IECB) in Pessac (Bordeaux). I would also like to thank Diane for all the French lessons before my departure, for all your help, support and motivation. I am also thankful to Stéphanie, Christophe and Céline for helping with all the chemistry with the oligoureas, and all the funny moments we have had. I am also deeply thankful to the other members of the lab.

Bihotzez eskertu nahi diet laborategian nirekin egon direnei. Bertan emandako lehen pausoetan gidatu eta laguntzegatik, zure dinamismo eta laguntasunagatik, eskerrik asko Eider. Iurre eta Sandrarekin batera ere lan egitea gozada bat izan da niretzako. Mon ami Julien, Donostian zein Burdeosen zure profesionaltasuna, eskuzabaltasuna eta laguntasuna bihotzez eskertzen ditut. Laborategitik pasatakoekin eta daudenekin igarotako uneak (sagardotegiak, hondartza, taper bazkariak, juergak eta Potesera egindako ihesaldia), zuen alaitasun eta humoreak eguneroko erronkei aurre egiten lagundu didate. Aigor, Laino eta Olaf, nire familia bihurtu zarete urte hauetan eta elkarrekin sortutako laguntasun honek aurrera jarraitzea espero dut. Nutrizio, muskulito, one piece, karretera, industrialdea, konpetenzia, TIC, BOPV, telenovela eta txamanen inguruan asko irakatsi didazue, eta horregatik ez ahaztu Ordizian lagun on bat duzuela.

Kuadrilla eta familiari eskerrik asko nire kezkak, urduritasunak eta bildurrak kontatzean aurrera jarraitzeko animoak eman eta hitz egokiak aukeratzeagatik. Fakultatetik irten naizen bakoitzean eta zuekin elkartzean, nire errealitatea erabat aldatu eta bizitzan benetan garrantzitsuena dena zer den ikustarazi didazue, nire zailtasun profesionalak ahaztuz. Aita, aunque lleves toda la vida haciéndote un lio con mis estudios y no consigas aclararte, tengo la suerte de poder decir que siempre tendré una familia que me apoyará en todas las decisiones que tome y que estará a mi lado cuando lo necesite. Inguruan ditudan emakume guztiei eredugarri zaretela esan nahi dizuet. Hala ere, nire bizitzako erreferenterik onena, entzule eta sostengua bizitzako arlo guztietan, nire ama da. Bidean aurkitutako oztopo eta erronka guztiei aurre egiteko gai naizela eta borrokatzeko indarra soberan dudala ikustarazteagatik, eskerrik asko. Azkenik, urte guzti hauetan eta bereziki etapa aldapatsu honetan jaso dudan goxotasun, pazientzia eta maitasun guzti hori eskertu nahi dizkizut, bihotza.

Summary

The objective of this PhD Thesis has been the introduction of two novel pronucleophiles (Figure A) for catalytic reactions under Brønsted base (BB) catalysis: 4substituted pyrrolidin-2,3-diones (A) and o-nitroanilides (B).

A

Figure A. Novel pronucleophiles developed in this Thesis: 4-Substituted pyrrolidin-2,3-diones A, and b) Schiff bases of glycine o-nitroanilide B.

4-Substituted pyrrolidin-2,3-diones (A, Figure A) exhibit two important features which render them efficient substrates for BB catalysis. Firstly, they are enolized to a large extent, what facilitates deprotonation by soft bases and subsequent reaction with an electrophile under catalytic conditions (a, Scheme A.). And, secondly, the rigidity of their cyclic structure, provides an efficient platform for stereocontrol during the $\mathrm{C}-\mathrm{C}$ bond forming step.

Given the precedents from this laboratory for the synthesis of amino acid N carboxyanhydrides (NCAs) $\mathbf{3}$ containing a quaternary stereocenter starting from disubstituted β-lactams 1 (b, Scheme A), it has been proven that the same methodology can be applied to pyrrolidin-2,3-diones 2 (c, Scheme A). These N-carboxyanhydrides constitute very attractive intermediates as the structure offers simultaneously both, N protection and carbonyl activation. Subsequent ring-opening of $\mathbf{4}$ by a nucleophile affords $\beta^{2,2}$-amino acid derivatives with different functionalities at the newly created stereocenter.

b)

1

2

Scheme A. a) Enolization of 4-substituted pyrrolidin-2,3-diones and their reaction with an electrophile under BB catalysis. b) Previous work from the group with disubstituted β-lactams 1. c) Our approach for the synthesis of $\beta^{2,2}$-amino acid derivatives with 4,4-disubstituted pyrrolidin-2,3-diones 2.

These heterocycles had never been used in asymmetric catalysis in spite of their biological and pharmaceutical interest, but in this thesis they have been employed in different organocatalytic and metal-catalyzed asymmetric allylic alkylation reactions with high efficiency and stereoselectivity, in the presence of bifunctional chiral Brønsted base catalysts $\left(\mathrm{BB}^{*}\right)$ or palladium chiral phosphine $\left(\mathrm{Pd}^{0} / \mathrm{P}^{*}\right)$ catalytic systems with generation of a tetrasubstituted stereocenter (Scheme B). More specifically, the use of pyrrolidin-2,3diones as Michael donors in BB-catalyzed conjugate additions to α-oxy enones and vinyl ketones and Pd-catalyzed asymmetric α-allyation has been explored and it has been observed that the reactions proceed well in terms of reactivity and enantioselectivity, and as it has been mentioned, their transformation into NCAs followed by ring opening, provides $\beta^{2,2}$-amino acid derivatives. This protocol represents a new catalytic approach to $\beta^{2,2}$-amino acids, that allows for the first time their direct coupling with nucleophiles.

Scheme B. Our approach to acces β^{22}-amino acid derivatives through asymmetric catalytic processes, followed by ring expansion (NCA) and subsequent ring opening by a nucleophile.

Given the good results in the asymmetric allylic alkylation with cyclic α substituted ketoamides, we then focused our interest on the allylation of the more challenging acyclic α-ketoamides to generate tetrasubstituted stereocenters. The Pdcatalyzed AAA worked efficiently with acyclic ketoamides, but the enantioselectivity values were not as high as with pyrrolidin-2,3-diones (Scheme C).

Scheme C. Pd-Catalyzed AAA of acyclic α-ketoamides.

With the previously mentioned strategy, β^{22}-amino acid derivatives can be obtained, including highly functionalized amides, whose direct catalytic access is challenging. Other strategy to afford α-functionalized amides is the introduction of activating groups into the structure that enhance the acidity of the α-carbon. Therefore,
based on the literature precedents that make use of intramolecular hydrogen bonds that lower the $\mathrm{p} K_{\mathrm{a}}$ (higher acidity) of the α-carbon, we designed Schiff bases of glycine o nitroanilide (B, Figure A) as efficient reagents for bifunctional Brønsted base promoted stereoselective aldol reactions.

In this design, we expected that the presence of the o-nitroanilide framework, which provides an efficient hydrogen-bonding platform, would result in higher acidity of the α-carbon and, efficient stereoselectivity control. Furthermore, after simple modifications, the o-nitroanilide moiety should be easily displaced by different nucleophiles thus providing and efficient entry to peptide derivatives and other interesting building blocks (Scheme D).

Scheme D. BB-Catalyzed aldol reaction of o-nitroanilides and subsequent transformation into α-amino β hydroxy acids.

With the newly designed o-nitroanilide, their aldol reaction in which two contiguous tertiary stereocenters are generated has been studied. The optimal conditions were found using the new ureidopeptide type catalyst as depicted in Scheme E, and after reductive work-up, the adducts were isolated as their corresponding syn aminoalcohols in good yields and excellent stereoselectivity.

Scheme E. syn-Selective BB-catalyzed aldol reaction of ketimines of glycine nitroanilides.

In addition, the equivalent aldimines have also been explored in the aldol reaction and in contrast to ketimines, a squaramide-based organocatalyst afforded the reaction anti- adducts with the highest diastereo- and enantioselectivity (Scheme F).

Scheme F. anti-Selective BB-catalyzed aldol reaction of aldimines of glycine nitroanilides.

Finally, under the supervision of Prof. Gilles Gichard in the European Institute of Chemistry and Biology (IECB) at Bordeaux-Pessac campus in the Peptidomimetic Chemistry Group, synthesis of different chain-length valine-based oligoureas and their evaluation as H -bonding chiral organocatalysts in the well-known Michael addition of diethyl malonate to nitrostyrene has been performed (Scheme G). It has been observed that the hexamer containing valine residues promotes the reaction with highest enantioselectivity, comparing to shorter chain oligoureas. However, this result does not improve the ones previously obtained in the group with the oligourea bearing the valine-alanine-leucine sequence.

Scheme G. Conjugate addition of diethyl malonate to nitrostyrene promoted by valine-based oligoureas.

Resumen

El objetivo de la presente Tesis Doctoral ha sido introducir dos nuevos pronucleófilos (Figura A) para reacciones catalíticas promovidas por bases de Brønsted (BB): Las pirrolidin-2,3-dionas 4-sustituídas A y o-nitroanilidas de tipo B, basados en su alta reactividad, debido a distintos factores, tal y como se muestra a continuación.

Figura A. Nuevos pronucleófilos desarrollados en esta Tesis: Pirrolidin-2,3-dionas 4-sustituídas (A), y o-nitroanilidas (B).

Las pirrolidin-2,3-dionas 4-sustituídas (A, Figura) tienen distintas características que las hacen eficientes para catálisis por BB. Por un lado, están enolizadas, lo que facilita su desprotonación por bases débiles y la reacción posterior con un electrófilo en condiciones catalíticas (a, Esquema A). Además, debido a la rigidez de su estructura cíclica, el estereocontrol durante la formación del enlace C-C está favorecido.

Basándonos en los precedents de nuestro grupo de investigación sobre la síntesis de N-carboxyanhídridos de tipo $\mathbf{3}$ con un centro stereogénico tetrasustituído, a partir de β lactamas disustituídas 1 (b, Esquema A), se ha aplicado la misma metodología a las pirrolidin-2,3-dionas 2 (c, Esquema A). Estos N-carboxyanhídridos constituyen intermedios de gran interés, debido a que su estructura ofrece simultáneamente protección de la amina y activación del carbonilo. La posterior apertura del ciclo por un nucleófilo, genera derivados de $\beta^{2,2}$-aminoácidos con distintas funcionalidades en el estereocentro creado.

Pyrrolidin-2,3-dionas 4-sustituídas

Esquema A. a) Enolización de las pirrolidin-2,3-dionas 4-sustituídas y su reacción con electrófilos bajo catálisis por BB. b) Trabajo previo del grupo con β-lactamas disustituídas 1. c) Nuestra aproximación a derivados de $\beta^{2,2}$-aminoácidos partiendo de pirrolidin-2,3-dionas 4,4-disustituídas 2.

En la presente Tesis Doctoral, se ha demostrado que las pirrolidin-2,3-dionas, que no se habían empleado previamente en catálisis asimétrica a pesar del interés biológico y farmacéutico que presentan, pueden ser utilizadas en distintas reacciones de adición conjugada organocatalíticas y en la alquilación alílica asimétrica, promovida por catálisis metálica con buen rendimiento y estereoselectividad (Scheme A). Dichas reacciones han sido catalizadas por bases bifuncionales de Brønsted quirales (BB^{*}) y por el sistema catalítico de complejos de paladio y fosfina quiral $\left(\mathrm{Pd}^{0} / \mathrm{P}^{*}\right)$, con generación de un estereocentro tetrasustituído. Más específicamente, se han estudiado las pirrolidin-2,3dionas como dadores de Michael en la adición organocatalítica y enantioselectiva a α-oxy enonas y a vinil cetonas promovida por bases de Brønsted bifuncionales y la alquilación alílica asimétrica catalizada por paladio (Pd-AAA). Los aductos obtenidos por medio de las reacciones mencionadas, además de ser estructuras de interés biológico, son también precursores de $\beta^{2,2}$-aminoácidos (Esquema B). Más específicamente, su transformación a NCAs por expansión de anillo, seguido de apertura del mismo por distintos nucleófilos, da lugar a derivados de $\beta^{2,2}$-aminoácidos. Esta metodología supone una nueva estrategia catalítica para acceder a $\beta^{2,2}$-aminoácidos.

Esquema B. Nuestra estrategia para accede a derivados de β^{22}-aminoácidos por preocesos asimétricos cataíticos, seguido de expansion de anillo (NCA) y posterior apertura del ciclo por un nucleófilo.

Debido a los buenos resultados obtenidos en la AAA con cetoamidas cíclicas α sustituídas, se propuso estudiar la misma reacción con las cetoamidas acíclicas α sustituídas, para generar estereocentros tetrasustituídos en sistemas menos rígidos. La reacción transcurrió eficientemente con las cetoamidas acíclicas, pero los niveles de enantioselectividad no fueron tan altos como con las cetoamidas cíclicas (Esquema C).

Esquema C. Alquílación alílica asimétrica de α-cetoamidas acíclicas promovida por Pd.

Tal y como se ha mencionado anteriormente, otra estrategia para acceder a amidas α-funcionalizadas, es la incorporación de grupos activantes en la estructura, de manera que aumente la acidez del carbono en alfa. Así, basándonos en los precedentes de la
bibliografía que hacen uso de enlaces de hidrógeno intramoleculares para aumentar la acidez (bajando el valor de $\mathrm{p} K_{\mathrm{a}}$), se diseñaron bases de Schiff de la glicina (B, Figura A) como pronucleófilos en la reacción aldólica promovida por bases bifuncionales de Brønsted.

En este diseño, se predijo que la presencia de la unidad o-nitroanilida, la cual contribuye a un sistema eficiente de enlaces de hidrógeno, daría lugar a una mayor acidez del carbono en alfa y a un mayor estereocontrol, actuando como un auxiliar. Además, tras simples transformaciones, la unidad o-nitroanilida, debería desprenderse por medio de distintos nucleófilos, dando lugar a derivados de péptidos y estructuras de interés sintético (Esquema D).

Esquema D. Reacción aldólica de o-nitroanilidas promovida por BB y posterior transformación a α-amino β-hidroxiácidos.

Así, se ha estudiado la reacción aldólica de las o-nitroanilidas en la que se generan dos estereocentros terciarios adyacentes. Las condiciones óptimas de reacción con las cetiminas se consiguieron con el ureidopéptido mostrado en el Esquema E, siendo mayoritario el diastereoisómero sin. Tras la reacción aldólica, se aislaron los aductos de reacción en forma de amino alcoholes, tras aminación reductora con buen rendimiento y estereoselectividad.

Esquema E. Reacción aldólica \sin-selectiva de cetiminas de la glicina promovida por BB.

En paralelo, también se ha estudiado la reacción aldólica de las aldiminas equivalentes, y al contrario que con las cetiminas, el catalizador bifuncional de tipo escuaramida mostrado en el Esquema F, dio lugar mayoritariamente a aductos anti con altos niveles de diastero- y enantioselectividad.

Esquema F. Reacción aldólica anti-selectiva de aldiminas de la glicina promovida por BB.

Por último, bajo supervisión del Prof. Gilles Guichard en el Instituto Europeo de Química y Biología (IECB) en el Departamento de Química Peptidomimética del campus de Burdeos-Pessac, se ha llevado a cabo la síntesis de oligoureas formadas de distintos número de residuos de valina y se han evaluado como organocatalizadores quirales de enlace de hidrógeno en la conocida adición conjugada de dietil malonato al nitroestireno (Esquema G). En este estudio, se ha observado que la oligourea de seis unidades de valina promueve la reacción con mayor rendimiento y estereoselectividad. Sin embargo, esta oligourea no llega a los niveles de enantioselectividad obtenidos por el grupo con el hexámero formado por unidades de valina-alanina-leucina.

Esquema G. Adición conjugada de dietíl malonato a nitroestireno promovida por la oligourea derivada de la valina.

Abbreviations and acronyms

Standard abbreviations and acronyms have been used as recommended in "Guidelines for authors" (J. Org. Chem., January 2017). Additionally, the following abbreviations and acronyms have been employed:

Alk	Alkyl
B	Base
BA	Brønsted Acid
BB	Brønsted Base
BHT	2,6 -Di-tert-butyl-4-methylphenol
Cat.	Catalyst
Conv.	Conversion
CSA	Camphorsulphonic acid
DIAD	Diisopropyl azodicarboxylate
DIPEA	Diisopropylethylamine
DMBA	Dimethoxybenzyl
DMP	Dimethoxypropane
DSC	N, N '-Disuccinimidyl dicarbonate
E	Electrophile
EDC HCl	N-(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide
	hydrochloride
$e e$	Enantiomeric excess
EWG	Electron withdrawing group
HATU	O-(7-Azabenzotriazol-1-yl)- $N, N, N, N-$
	tetramethyluroniumhexafluorophosphate
HOBT	1 -Hydroxybenzotriazole
IBCF	Isobutyl chloroformate
KHMDS	Potassium bis(trimethylsilyl)amide
LG	Leaving group
LiHMDS	Lithium bis(trimethylsilyl)amide
MS	Molecular sieves
NaHMDS	Sodium bis(trimethylsilyl)amide
Napht	Naphtyl
ND	Not determined
NMM	N-methyl morpholine
n.r.	No reaction
$o-$	ortho-
ORTEP	Oak ridge thermal ellipsoid plot
$p-$	para-

PMP	p-methoxyphenyl
PTC	Phase transfer catalysis
Rac	Racemic
RAMP	(R)-1-amino-2-methoxymethylpyrrolidine
Ref.	Reference
SAMP	(S)-1-amino-2-methoxymethylpyrrolidine
	2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium
TBTU	tetrafluoroborate
	Toluene
Tol	Valine

INDEX

1. Introduction 27
1.1. α-Functionalized carbonyl compounds 27
1.1.1.Relevance of α-functionalized carbonyl compounds 27
1.1.2. Strategies for the enantioselective α-functionalization of carbonyl compounds 29
1.1.2.1. Metal catalysis 31
1.1.2.2. Organocatalysis 42
1.2. Direct enantioselective α-functionalization of carbonyl compounds promoted by chiral Bronsted Bases 47
1.3. Objectives 60
2. Pyrrolidin-2,3-diones as useful intermediates in the synthesis of enantiopure α-functionalized amides 69
2.1. General considerations 69
2.2. Access to enantiopure amides through pyrrolidin-2,3-diones. 71
2.3. Synthetic plan 73
2.4. Results and discussion 76
2.4.1. Organocatalytic conjugate addition to enones 76
2.4.2. Palladium-catalyzed asymmetric allylic alkylation 81
2.4.2.1. Pd-catalyzed AAA of pyrrolidin-2,3-diones 87
2.4.2.2. Pd-catalyzed AAA of acyclic ketoamides 96
2.4.3. Elaboration of the adducts 104
3. Activated amides in aldol reaction. 115
3.1. α-Functionalization of amides via BB catalysis 115
3.2. Activation of imino esters/amides through intramolecular H-bonding 118
3.3. Synthetic plan 120
3.4. Results and discussion 122
3.4.1. Organocatalytic aldol reaction of glycine derived ketiminoamides 122
3.4.1.1. Catalyst screening 122
3.4.1.2. Control experiments 124
3.4.1.3. Aldehyde scope 125
3.4.1.4. More reactive ketiminoamides for the aldol reaction. 127
3.4.2. Organocatalytic aldol reaction of glycine derived aldiminoamides 131
3.4.2.1. Catalyst screening 132
3.4.2.2. Control experiments 134
3.4.2.3. Aldimine screening 134
3.4.2.4. Aldehyde scope 136
3.4.3. Elaboration of the adducts 138
3.4.3.1. Imine hydrolysis 138
3.4.3.2. Removal of the nitroanilide unit 139
3.4.3.3. Other transformations 141
4. New oligoureas for their evaluation in organocatalysis 147
4.1. Synthetic foldamers to mimic protein features 147
4.2. Oligoureas as hydrogen bonding catalysts for enantioselective reactions 149
4.2.1. Valine-based oligourea for organocatalysis 151
4.3. Synthetic plan 152
4.4. Results and discussion 154
5. CONCLUSIONS 159
6. EXPERIMENTAL SECTION 167
6.1. MATERIALS AND TECHNIQUES 167
6.1.1.Reagents and solvents 167
6.1.2. General experiments 167
6.1.3. Chromatography 167
6.1.4. Optical rotation 168
6.1.5. Melting points 168
6.1.6.NMR spectra 168
6.1.7. Mass spectra 168
6.1.8. Infrared spectra 169
6.1.9. Determination of enantiomeric excesses 169
6.1.10. X-Ray diffraction analysis 169
6.2. PREPARATION OF CATALYSTS 169
6.2.1. Preparation of chiral amines 170
6.2.1.1. Synthesis of 9-amino-(9-deoxy)epiquinine 170
6.2.1.2. Preparation of (1S,2S)-2-(piperidin-1-yl)cyclohexan-1-amine 172
6.2.2. Synthesis of squaramide-based catalyst C23 172
6.2.3. Ureidopeptide-like Brønsted base catalysts 175
6.2.3.1. Preparation of N-protected amino acids $\mathbf{9 3 - 9 6}$ 175
6.2.3.2. Isocyanate synthesis and coupling with the amine ${ }^{231}$ 177
6.3. EXPERIMENTAL SECTION OF CHAPTER 2 180
6.3.1. Preparation of chiral ligands 180
6.3.1.1. New phosphine ligands L11 and L12 180
6.3.2. Preparation of pronucleophiles 182
6.3.2.1. Synthesis of pyrrolidin-2,3-diones 182
6.3.2.2. Synthesis of acyclic ketoamides 191
6.3.3. Preparation of electrophiles 198
6.3.3.1. Preparation of enones 198
6.3.3.2. Preparation of allyl carbonates 201
6.3.4. Organocatalytic conjugate addition to enones 202
6.3.4.1. Asymmetric addition to α '-oxy enones 202
6.3.4.2. Asymmetric addition to vinyl ketones 203
6.3.4.3. Racemic reaction. 203
6.3.4.4. Characterization data for compounds 204
6.3.5.Pd-catalyzed AAA of pyrrolidin-2,3-diones 210
6.3.5.1. Decarboxylative AAA of pyrrolidin-2,3-diones 210
6.3.5.2. Intermolecular AAA of pyrrolidin-2,3-diones 217
6.3.5.3. Characterization of compounds 218
6.3.6.Pd-catalyzed AAA of acyclic ketoamides 225
6.3.6.1. Decarboxylative AAA of acyclic ketoamides 225
6.3.6.2. Intermolecular AAA of acyclic ketoamides 229
6.3.6.3. Characterization of compounds 230
6.3.7. Elaboration of adducts 234
6.3.7.1. To NCAs and ring opening with amines 234
6.3.7.2. Hydrogenation 236
6.3.8. ORTEP diagram for compounds $14 \mathrm{Ba}, 22 \mathrm{Aa}$ and 33A. 237
6.4. EXPERIMENTAL SECTION OF CHAPTER 3 238
6.4.1.Preparation of pronucleophiles 238
6.4.1.1. Preparation of ketimine hydrochlorides 238
6.4.1.2. Preparation of Ketimines and Aldimines of Glycine Nitroanilides 239
6.4.1.3. Preparation of Ketimines and Aldimines of Glycine Esters 248
6.4.2. Preparation of aldehydes 249
6.4.3. Aldol reaction of nitroanilides 249
6.4.3.1. Asymmetric reaction 249
6.4.3.2. Racemic reaction 250
6.4.3.3. Characterization of compounds 251
6.4.4. Elaboration of adducts 265
6.4.4.1. Imine hydrolysis and amine protection 265
6.4.4.2. Removal of the nitroanilide unit 268
6.4.4.3. Protection of the amino alcohol 269
6.4.4.4. Hydrogenation of the amino alcohol 270
6.4.5. ORTEP diagram for compounds $45,58,62,61$ and 79 272
6.5. EXPERIMENTAL SECTION OF CHAPTER 4 274
6.5.1. Synthesis of oligoureas O7-O12 274
6.5.1.1. Synthesis of building block 91 274
6.5.1.2. Methylation 276
6.5.1.3. Coupling 276
6.5.1.4. Boc deprotection 278
6.5.2. Catalysis promoted by oligoureas $\mathrm{O} 7-\mathrm{O} 12$ 281
6.5.2.1. Preparation of catalyst and base solution. 281
6.5.2.2. Asymmetric reaction 282
6.6. Representative NMR spectra 283
6.7. HPLC chromatograms 459

Chapter 1

Introduction

1. Introduction 27
1.1. α-Functionalized carbonyl compounds 27
1.1.1. Relevance of α-functionalized carbonyl compounds 27
1.1.2. Strategies for the enantioselective α-functionalization of carbonyl compounds 29
1.1.2.1. Metal catalysis 31
1.1.2.2. Organocatalysis 42
1.2. Direct enantioselective α-functionalization of carbonyl compounds promoted by chiral Bronsted Bases. 47
1.3. Objectives 60

1. Introduction

1.1. α-Functionalized carbonyl compounds

1.1.1. Relevance of α-functionalized carbonyl compounds.

Many biologically active compounds contain a stereogenic center attached to a carbonyl unit (Figure 1), ${ }^{1}$ a feature that makes enantiopure molecules bearing this structure of great interest. Historically, the best way to obtain biologically active enantiomerically pure compounds has been to isolate them from natural sources. However, due to the limitation of natural sources, great efforts have been made in synthesis, in order to develop new and more efficient protocols to obtain enantiomerically enriched compounds.

Dehydroepiandrosterone (Steroid hormone)

Penicilin
(Antibiotic)

Figure 1. Biologically active compounds containing α-functionalized carbonyl units.

Two main strategies can be considered for the introduction of a stereogenic center at the α-position of a carbonyl compound (Scheme 1). The first consists on the employment of a carbonyl compound as an electrophile (a, Scheme 1). In this context, one possibility involves the nucleophilic α-substitution on a carbonyl compound bearing a leaving group at the alpha position (a1, Scheme 1). A second approach involves the addition of a nucleophile to a $\mathrm{C}=\mathrm{X}$ double bond ($\mathrm{X}: \mathrm{O}, \mathrm{N}$) placed at the α-position of the carbonyl group in a 1,2 -dicarbonyl or equivalent compound (a2, Scheme 1) .

Another approach is the use of carbonyl compounds as nucleophiles (b, Scheme 1). In this case, the reaction occurs between an electrophile and an enolate anion or equivalent, generated from an enolizable carbonyl compound. In this context, two

[^0]possibilities exist. Indirect methods in which preformation of the enolate (or silyl enol ether) is carried out, or direct methods in which the enolate (or equivalent) is generated in situ. This methodology is very versatile among others due to different aspects. First, there are many options to generate enolates or their equivalents (enolate, silyl enol ether, metal enolate or enamine). Secondly, enolates and equivalents are highly nucleophilic, enabling the reaction with many electrophiles.
a) Carbonyl containing compounds as electrophiles

b) Carbonyl compounds as nucleophiles

Scheme 1. Main approaches for the stereoselective formation of a stereogenic center at the α-position of carbonyl compounds.

The most general means of generating carbon nucleophiles involves removal of a proton from a carbon by a Brønsted base, to provide enolates or equivalents (b, Scheme 1). A quantitative measure of the acidity of these carbonyl substrates in solution is given by the dissociation constant $\left(K_{\mathrm{a}}\right)$, which is usually expressed as $\mathrm{p} K_{\mathrm{a}}$. This factor influences the aptitude of a compound to generate the corresponding enolate and accept electrophiles. A classification of carbonyl compounds regarding their carbon acidity would include 1,3-dicarbonyl compounds ($\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{DMSO} \approx 13-16$) and aldehydes ($\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{DMSO} \approx 17$), as more easily enolizable compounds, in contrast to ketones ($\mathrm{p} K_{\mathrm{a}}$ in DMSO ≈ 27), esters ($\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{DMSO} \approx 30$) and amides ($\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{DMSO} \approx 35$), which are less acidic as it is shown in Scheme 2. In this context, unactivated carbonyl compounds display higher $\mathrm{p} K_{\mathrm{a}}$ values, thus they are more challenging substrates for deprotonation and their α-functionalization is more difficult. As a consequence, amides and esters have been the most challenging substrates in this strategy.

Scheme 2. $\mathrm{p} k_{\mathrm{a}}$ values of the α-carbons in carbonyl compounds in DMSO. ${ }^{2}$

In all the above options (Scheme 1) at least one new stereocenter is created. Therefore, the control of its configuration is of great relevance, and for this purpose asymmetric synthesis offers the optimal tools. In this context, the use of carbonyl compounds as nucleophiles has been the most developed strategy involving the use of chiral auxiliaries, metal catalysts and organocatalysts. The main contributions are summarized below.

1.1.2. Strategies for the enantioselective $\boldsymbol{\alpha}$-functionalization of carbonyl compounds

Asymmetric synthesis, ${ }^{3}$ that is formation of new bonds in a diastereo- and enantiocontrolled manner, is a good tool for the obtention of enantiopure products. Here, achiral substrates are employed in the reaction, while the asymmetric induction comes from a chiral ligand, ${ }^{4}$ a chiral auxiliary ${ }^{5}$ or a chiral catalyst. ${ }^{6}$ The two formers require the

[^1]use of stoichiometric amounts of chiral compounds, whereas substoichiometric quantities of catalysts are employed in asymmetric catalysis. Chiral auxiliaries were initially developed for the α-functionalization of carbonyl compounds. This methodology is based on the formation of a covalent bond between a substrate and the chiral auxiliary, which controls the stereoselectivity of the process, and it is removed and recovered after the reaction (Figure 2).

Since Enders reported in 1976 SAMP and RAMP auxiliaries ${ }^{7}$ for the asymmetric α-alkylation of ketones, these chiral auxiliaries have proven to be very useful for the α functionalization of aldehydes and ketones. Further examples made use of substrates in the carboxylic acid oxidation state, and, after the asymmetric reaction afforded the corresponding carboxylic acid derivative, aldehyde or ketone, depending on the scission conditions. In this context, following Evans's contribution with chiral oxazolidinones as auxiliaries for the asymmetric formation of a stereogenic center at the α-position of acyl systems, ${ }^{8}$ other chiral auxiliaries were reported ${ }^{9}$ including Oppolzer 10 and Myers ${ }^{11}$ auxiliaries (Figure 2).

SAMP Enders, 1976

Oxazolidinone Evans, 1981

Camphorsultam
Oppolzer, 1984

Pseudoephedrine
Myers, 1994

Figure 2. Some representative chiral auxiliaries.

However, the use of substoichiometric quantities of a chiral enantiopure catalyst, known as asymmetric catalysis, which avoids the additional steps of attachement and

[^2]dettachmement of the chiral source, remains more attractive due to step economy. As a result, this strategy has experienced a great development during the last decades.

The field of asymmetric catalysis has been classified into three categories: biocatalyisis, organocatalysis and metal catalysis. Biocatalysis ${ }^{12}$ was the first pioneering methodology developed in this field and it makes use of enzymes to catalyze reactions. However, due to the the high specificity between the substrate and the biocatalyst, the strategy turns limited for obtaining enantiopure compounds. In contrast, metal catalysis ${ }^{13}$ and organocatalysis (which uses small organic molecules to catalyze organic transformations) ${ }^{14}$ have emerged as attractive synthetic alternatives.

Both strategies, metal based catalysis and organocatalysis, have been deeply investigated and applied to the direct α-functionalization of carbonyl compounds. The main results and characteristics of these methodologies are described below.

1.1.2.1. Metal catalysis

In the field of asymmetric catalysis, metal-catalysis has played a significant role in allowing synthetic access to biologically interesting molecules. ${ }^{15}$ Regarding direct methods for enolate generation, introduction of new bifunctional Lewis acid/Brønsted base metal catalysts by Shibasaki ${ }^{16}$ and Trost, ${ }^{17}$ represented a considerable progress in the field (Figure 3). ${ }^{18}$ Thus, these catalysts can simultaneously bind and activate the

[^3]pronucleophile and the electrophile, improving the efficiency and the stereoselectivity of the reaction, compared with conventional (monofunctional) catalysts. ${ }^{19}$

Figure 3. Most representative bifunctional metal catalysts.

However, as each carbonyl containing compound has a different reactivity, a deeper insight on their most significant reactions is described below.
a) More reactive carbonyl compounds

In this section, 1,3-dicarbonyl compounds (active methylenes; $\mathrm{p} K_{\mathrm{a}}=13-16$) and aldehydes $\left(\mathrm{p} K_{\mathrm{a}}=17\right)$, which are carbonyl compounds with lower $\mathrm{p} K_{\mathrm{a}}$ values, have been considered.

Starting with the first ones, the two carbonyl groups can chelate the metal center to form a stable six-membered structure, thus facilitating their functionalization. Hence, 1,3-dicarbonyl compounds have been widely investigated as nucleophiles in Mannich, aldol, Michael and allylic alkylation reaction as described below.

Since the pioneering work of Jørgensen and co-workers involving the first direct asymmetric Mannich reaction of substituted and unmodified malonates and β-ketoesters with N-tosyl- α-imino esters, ${ }^{20}$ other contributions have been reported. ${ }^{21}$

However, the use of 1,3-dicarbonyl compounds in aldol reactions has been limited due to the retroaldol reaction that can occur under proton-transfer conditions. ${ }^{22}$ In spite of

[^4]that, some examples of aldol reactions of dicarbonyl compounds promoted by metal catalysis have been reported by Sodeoka's group, and Matsunaga/Shibasaki. ${ }^{23}$

Conjugate additions of 1,3-dicarbonyl compounds have been widely explored in the presence of various well-defined metal catalyst systems. ${ }^{24}$ In this context, many contributions in the conjugate addition of cyclic and acyclic β-ketoesters, β-diketones, β ketoacids and 2-fluoro or bromomalonates to various nitroalkenes and enones affording excellent yields and enantioselectivities have been reported. A representative example described by Shibasaki and co-workers ${ }^{25}$ in the conjugate addition of cyclic β-ketoesters to methyl vinyl ketone and acrylates, afforded reaction adducts with high enantioselectivity promoted by their bifunctional catalyst (Scheme 3). As postulated by the authors, the ketoester is activated by the basic unit (R-ONa) through generation of the corresponding sodium enolate, and the enone is activated by the Lewis acid, La (III).

Scheme 3. Michael addition of β-ketoesters to vinyl ketone and acrylates promoted by a bifunctional metal catalyst. Shibasaki, 1996.

1,3-Dicarbonyl compounds have also shown to be very efficient substrates for enantioselective palladium-catalyzed asymmetric allylic alkylations (Pd-AAA). The main contributions in this field will be mentioned in the following chapter.

[^5]In contrast to the vast number of examples involving the metal catalyzed α functionalization of 1,3-dicarbonyl compounds, aldehyde α-functionalization has been more challenging due to additional problems associated with aldol and self-aldol reaction, polyaldolization, dehydration of the product enabling Michael-type additions, Tishchenko-type processes and oligomerization. ${ }^{26}$ As a result, these substrates have been little explored in this strategy.

Following these representative examples, other contributions to the α functionalization of 1,3-dicarbonyl compounds promoted by chiral metal catalysis have been published. ${ }^{27}$

b) Less reactive carbonyl compounds

Going back to the α-carbon acidity classification, less acidic compounds include ketones ($\mathrm{p} K_{\mathrm{a}}$ in $\mathrm{DMSO} \approx 26.5$), and carbonyl compounds in the carboxylic acid oxidation state such as esters ($\mathrm{p} K_{\mathrm{a}}$ in DMSO ≈ 29.5) and amides ($\mathrm{p} K_{\mathrm{a}}$ in DMSO ≈ 35). As mentioned before, the low acidity of the α-carbon in these substrates complicates efficient protocols for their α-functionalization using metal catalysts, compared to the more reactive 1,3-dicarbonyl compounds.

In this context, ketones do not inherently experiment the self-condensation due to their lower electrophilicity and their α-functionalization via metal-catalysis has been investigated in Mannich, aldol and Michael reactions as well as in Pd-catalyzed asymmetric allylic alkylations. Some representative examples are depicted in Scheme 4.

In 1999, Shibasaki's group used a bifunctional heterobimetallic catalyst for the first report of a direct catalytic asymmetric Mannich reaction between aromatic ketones and aminoethyl ethers (a, Scheme 4) with high catalyst loading ($30 \mathrm{~mol} \%$) obtaining the adducts in good yield but low enantioselectivities. ${ }^{28}$ In this context, an improvement in the α-functionalization of ketones came with hydroxyketones. ${ }^{29}$ These substrates provide excellent stereoselectivity compared to simple ketones due to the possibility of acting as bidentate ligands. This feature can enhance the reactivity and stereoselectivity of the reaction, compared to simple ketones. Many contributions by Shibasaki ${ }^{30}$ and Trost,

[^6]among others, have been described involving these substrates and affording the corresponding adducts with high enantioselectivity. ${ }^{21}$ For instance, Trost and co-workers ${ }^{31}$ employed their dinuclear zinc catalyst $\mathbf{C 2}$ to promote aldol reactions of α-hydroxyketones with aliphatic linear and branched aldehydes, with excellent yields and stereocontrol (b, Scheme 4). Another contribution that is worth mentioning was reported by Shibasaki and co-workers ${ }^{32 \mathrm{c}}$ with the bifunctional catalyst $\mathbf{C 5}$ that proved to be excellent for the conjugate addition of hydroxyketones to enones (c, Scheme 4).

Ar: Ph, Furan
R: Alkyl

65-97\% yield
syn:anti = 5:1 -> 20:1
86-98\% ee (syn)

Shibasaki, 1999

Scheme 4. Some representative examples of α-functionalization of ketones via metal catalysis.

[^7]Following these representative examples, other contributions to the metalcatalyzed α-functionalization of ketones have been reported. ${ }^{33}$

Regarding esters and amides, the standard procedure for their α-functionalization involves irreversible generation of metal enolates using stoichiometric amounts of strong bases such as lithium diisopropylamide (LDA), potassium hexamethyldisilazide (KHMDS) (a, Scheme 5), or alternatively isolable silyl enolates generated from stoichiometric amounts of silicon reagents and bases (b, Scheme 5), ${ }^{34}$ in both cases in the presence of a chiral catalyst (ML*, in a or LA* in b).

Scheme 5. Standard procedures for the α-functionalization of amides and esters: a) and b) stoichiometric approaches, and c) catalytic procedure for activated amides or esters.

An example of this approach, which involves stoichiometric enolate formation and subsequent catalytic α-allylation of unactivated amides in the presence of a chiral palladium catalyst with a ferrocene ligand, was reported by Hou in 2008, as depicted in Scheme 6. ${ }^{34 \mathrm{c}}$

[^8]

Scheme 6. Pd-Catalyzed asymmetric allylic alkylation of unactivated amides with stoichoimetric enolate formation. Hou, 2008.

However, the catalytic variants are limited to some modified and activated amides or esters ${ }^{35}$ (c, Scheme 5). The main contributions of this approach are summarized below.

Heterocyclic donors

The use of activated heterocyles is a very useful tool to access α-functionalized substrates in the carboxylic acid oxidation state. For this purpose, some specific examples have been reported.

The heterocyclic systems developed for this purpose (Figure 4) posses interesting characteristics, ${ }^{36}$ such as their easy deprotonation under soft enolization conditions (aromaticity is generated after enolate formation in some cases). Additionally, the stereoselectivity control is easier due to the rigidity of the cyclic structure. Moreover, most of them are substituted at the α-position and after reaction with an electrophile, a tetrasubstituted stereocenter is formed. Finally, these cycles (1a,1b and 1c) can be opened under appropriate conditions after the enantioselective reaction to afford α - hydroxy, α mercapto and α - or β-amino acid derivatives with a tetrasubstituted stereocenter.

[^9]1. Heterocycles that provide aromatic enolates
1a)

X $=0$ Oxazol-5(4H)-one
α-Hydroxy carboxylic acid surrogates
1b)

X = 0 Oxazol-4(5H)-ones
$\mathrm{X}=\mathrm{S}$ Thiazol-4(5H)-ones
α-Hydroxy/mercapto carboxylic acid surrogates
1c)

$\mathrm{X}=0 \quad$ Isoxazol-5(4H)-ones
X = NR Pyrazol-5(4H)-ones
β-Hydroxy/amino acid surrogates

1d)

$\mathrm{X}=\mathrm{O}$ Benzofuran-2(3H)-ones $X=$ NR Oxindoles

2. Activated heterocycles that do not provide aromatic enolates

Barbituric acid surrogate
2b)

Thiolactams
Access to amides

Figure 4. Some representative activated heterocycles employed in asymmetric metal catalysis, for their α functionalization.

In this context, oxazol-5-(4H)-ones (1a, Figure 4) have been widely explored ${ }^{37}$ in asymmetric transformations involving their α-functionalizalization. However, upon enolization the reaction can occur either at the α - or γ-position, thus regioselectivity problems can arise. ${ }^{38}$ In this case, the reaction adducts are precursors of α-hydroxy carboxylic acids. In contrast, oxazol-4-(5H)-ones ${ }^{39}$ ($1 \mathrm{~b}(\mathrm{X}=\mathrm{O}$), Figure 4) and their sulphur ${ }^{40}$ analogues ($1 \mathrm{~b}(\mathrm{X}=\mathrm{S}$), Figure 4) (developed in our research group), which upon reaction provide α-hydroxy or α-mercapto derivatives, only exhibit one nucleophilic position at the α-carbon to the carbonyl. Both structures provide access to α-substituted

[^10]carboxylic acid surrogates. Similarly, isoxazol-5(4H)-ones ${ }^{41}$ (1c (X=O), Figure 4) and their analogues pyrazol-5(4H)-ones ${ }^{42}$ (1c (X=NR), Figure 4) can be employed to access β-hydroxy/amino acid surrogates. In addition, other interesting nucleophiles with low $\mathrm{p} K_{\mathrm{a}}$ values are benzofuran- $2(3 H)$-ones ${ }^{43}(1 d(X=O)$, Figure 4$)$ and oxindoles $(1 d(X=N R)$, Figure 4), ${ }^{44}$ which also generate aromatic enolates.

Barbituric acid derivatives (2a, Figure 4$)^{45}$ and thiolactams ${ }^{46}$ (2b, Figure 4) are very attractive reactants for asymmetric catalysis in the synthesis of a wide variety of bioactive compounds and big efforts have been made to expand their scope. Other cycles employed in asymmetric metal catalysis, though mainly for their γ-functionalization or as electrophiles, are γ-butenolides, ${ }^{47} \beta$-unsaturated γ-butyrolactams ${ }^{48}$ and γ-substituted deconjugated butenolides. ${ }^{49}$

Acyclic donors

Similarly, acyclic activated structures have also been employed in asymmetric metal catalysis to access α-functionalized carboxylic acid derivatives (Figure 5). These include 2-acylimidazoles (a, Figure 5), which are known to be excellent ester surrogates due to the enhanced reactivity and stereoselectivity compared to simple esters or amides, on account of the privileged modes of coordination with metal complexes, thus facilitating soft enolization. ${ }^{50}$ In addition they can be easily transformed into ketones or carboxylic acid derivatives.

A key step in the biosynthesis of polyketides and fatty acids is the in situ generation of the nucleophile through decarboxylation followed by a C-C bond forming reaction. This has served as inspiration to chemists, and malonic acid half thioesters (MAHT) and oxoesters (MAHO) have emerged as ester enolate analogues for catalytic

[^11]asymmetric reactions (b, Figure 5). ${ }^{51}$ Furthermore, the thioester unit can be transformed into the corresponding ester under methanolic conditions. ${ }^{52}$
a)

R: Alk, Ar; R¹: Alk, Ar
Acylimidazole ${ }^{50}$
b)

c)

N-Propionylthiazolidinethione ${ }^{53}$
d)

Thioalkylamides ${ }^{54}$
e)

R: H, Alk
N-Acyl pyrrole ${ }^{55}$
f)

X: O, S
R: MeS, $\mathrm{N}_{3}, \mathrm{CF}_{3}$, Alk
7-Azaindolyn(thio)amide ${ }^{56}$
h)

i)

j)

R^{1} : Alk; R^{2} : Alk, Ar
R^{3} : Alk, R^{4} : Bn, Ar
Imide type nucleophiles ${ }^{60}$
g)

R: Alk
N-Acyl oxazolinone ${ }^{57}$
k)

R: OR', NHR'
Glycine iminoamide/esters ${ }^{61}$

Figure 5. Some representative acyclic activated structures employed in asymmetric metal catalysis, for their α-functionalization.

Thioesters contain a more acidic α-carbon than their equivalent esters and therefore, their α-functionalization is facilitated. On this basis, Evans ${ }^{53}$ described in 2003 the aldol reaction of N-propionylthiazolidinethione (c, Figure 5) and Shibasaki and Kumagai reported thioalkylamides (d, Figure 5) for their direct enantioselective aldol reaction. ${ }^{54}$ It is noteworthy that all the mentioned structures can be transformed into different carboxylic acid derivatives.

Because the lone pair on the nitrogen atom is delocalized in heterocyclic aromatic systems, the properties of the adjacent carbonyl groups are similar to those of a phenyl

[^12]ketone regarding the enhanced acidity of the α-carbon. In this context, N-acyl pyrrole, ${ }^{55}$ 7-azaindolyn(thio)amide derivatives, ${ }^{56} \mathrm{~N}$-acyl oxazolidindiones, ${ }^{57} \mathrm{~N}$-acyl indoles ${ }^{58}$ and unsaturated N-acyl pyrazoles ${ }^{59}$ (e, f, g, h and i, Figure 5) are considered activated amide structures and have been successfully employed for α-functionalization reactions.

Other strategies for amide activation involve the introduction of electron withdrawing groups either at the amide nitrogen, ${ }^{60}$ providing imide type substrates (j , Figure 5), or at the α-carbon of the amide (k, Figure 5). Examples of the latter are glycine iminoesters or iminoamides which are activated through introduction of the imine moiety at the α-carbon, thus increasing its acidity. ${ }^{61}$ Even though most examples of asymmetric catalysis involving these substrates have been performed by phase transfer catalysis (PTC), metal-catalyzed approaches have also been reported with excellent yield and stereocontrol, and after imine hydrolysis, the corresponding β-substituted- α-amino derivatives can be obtained.

In summary, different reactions for the α-functionalization of carbonyl compounds promoted by metal catalysis have been reported. However, there are still limitations due to the problems associated with aldehyde functionalization, the inherent low reactivity of ketones (hydroxyketones are required for optimal reactivity and stereocontrol), esters and amides (introduction of activating groups is required for their catalytic functionalization).

[^13]
1.1.2.2. Organocatalysis

With the growth of organocatalysis at the beginning of this millennium, two metal free main pathways for the activation of enolizable carbonyl substrates were developed which have been classified as covalent and non-covalent catalysis. ${ }^{62}$

Covalent catalysis comprises catalysts which are bound to the substrates covalently in a reversible manner to generate a reactive intermediate that participate in organic reactions. In contrast, non-covalent catalysis relies on weak attractive interactions between the catalyst and the substrate to promote the reaction through reactive intermediates. The main strategies for covalent and non covalent catalysis are summarized below.

1.1.2.2.1. \quad Covalent catalysis

In this strategy, the strong interaction between the catalyst and the substrate allows an effective and well-defined influence of the former in the stereochemistry and reaction rate. Among catalysts working through this model, primary and secondary amines (also called aminocatalysts) stand out. In addition, N-heterocyclic carbenes ${ }^{63}$ and chiral isothioureas ${ }^{64}$ have emerged as very useful catalysts to promote asymmetric reactions. Other covalent organocatalytic systems are tertiary amines, ${ }^{65}$ pyridines, ${ }^{66}$ trialquilphosphines and trialquilamines, ${ }^{67}$ and chiral oxyranes ${ }^{68}$ but their characteristics will not be discussed in this thesis.

[^14]With respect to aminocatalysis, different activation strategies have been reported. On the one hand, enamine activation, works through HOMO orbital activation, ${ }^{69}$ while SOMO activation ${ }^{70}$ makes use of radicals through a radical cation intermediate formation, and both strategies are useful for the synthesis of α-functionalized compounds. The HOMO-activation concept was extended to the use of α, β-unsaturated aldehydes and ketones, which after condensation with a chiral amine, generate a dienamine species capable of undergoing stereoselective α or γ-functionalization of the starting carbonyl compound. ${ }^{71}$ Trienamines, which are formed upon the condensation of organocatalysts with dienals or dienones, react at β, ε-positions leading to functionalized cyclohexenes. ${ }^{72}$ In addition, iminium ion activation ${ }^{73}$ of α, β-unsaturated compounds through LUMO orbital activation, provides β-functionalized compounds.

Regarding α-functionalization of carbonyl compounds, List, Lerner and Barbas III, ${ }^{74}$ pioneered enamine catalysis for aldol reactions in 2000 followed by many other contributions as it is shown in Scheme 7. Here, the enamine intermediate generated from a primary or secondary amine and an enolizable aldehyde or ketone, posses and increased nucleophilicity compared with the starting carbonyl compound, thus enabling different reactions. The adducts obtained in the reaction (bonded to the catalyst) are hydrolized in situ, leading to the desired α-substituted adduct and recovering the starting chiral amine catalyst, which can re-enter the catalytic cycle. ${ }^{75}$

[^15]

Scheme 7. Representative examples of α-functionalization of aldehydes and ketones via enamine catalysis.

As earlier mentioned, enamine catalysis has enabled many protocols for the direct α-functionalization of aldehydes and ketones, but until recently, alkylation reactions using this methodology were lacking, due to the preferential alkylation of the amine catalyst with the alkyl electrophiles. Hence, these challenges were overcome by SOMO catalysis, where aldehyde and ketone α-alkylation has been carried out with excellent stereoselectivity. ${ }^{76}$

Many contributions have been made in the field of asymmetric α-functionalization of carbonyl compounds promoted by aminocatalysis. However, the procedures are limited to aldehydes and ketones, and the use of sterically hindered ketones still remains a challenge. In addition, unsymmetrical ketones have been barely used due to the bad regiocontrol and low diastereomeric ratios. Moreover, in cross aldol reactions chemoselectivity is still hard to control.

1.1.2.2.2. Non-covalent catalysis

Enolizable carbonyl compounds can also be activated in a non-covalent manner by cooperative, weak attractive interactions between the catalyst and the substrate. Although the catalyst-substrate interactions are generally weaker and less directional than with covalent catalysis, non-covalent interactions operate in concert to ensure a high level of transition state organization. This way, efficient activation and a high degree of

[^16]enantioselectivity is obtained. The strategies included in this type of catalysis involve hydrogen bonding, ${ }^{77}$ Brønsted acid, ${ }^{78}$ ion-pairing, ${ }^{79}$ and Brønsted base catalysis. ${ }^{80}$

Hydrogen bonding and Brønsted acid (BA) activation of carbonyl compounds have attracted much attention. The first one is based on the activation of carbonyl compounds by hydrogen bonds, whereas Brønsted acids activate carbonyl compounds through protonation (enol). However, although in some cases there is no clear borderline between H-bonding catalysis and BA catalysis, in general Brønsted acid catalysis is considered an extreme case of H -bonding wherein the shared hydrogen is completely transferred to the substrate. Hydrogen bonding catalysts include (thio)ureas and squaramides among others, and this strategy has resulted efficient for electrophilic activation, but their main contributions in the α-functionalization of carbonyl compounds have been carried out in combination with other catalytic systems forming a bifunctional catalyst as it will be exaplained later in more detail.

Since the first introduction of phosphoric acids as asymmetric BA catalysts independently by Akiyama ${ }^{81}$ and Terada ${ }^{82}$ in 2004, enantioselective Brønsted acid catalysis has attracted much attention for asymmetric synthesis. Numerous variations of mostly BINOL-derived phosphoric acids have been developed. ${ }^{83}$ List and co-workers reported in 2015 the first enatioselective conjugate addition of α-branched cyclic ketones

[^17]to enones via a concerted acid-base mechanism with C6 (Scheme 8). ${ }^{84}$ The authors suggest that the chiral phosphoric acid could activate the enol nucleophile through the Brønsted base ($\mathrm{P}=\mathrm{O}$) moiety and the electrophile through the BA ($\mathrm{P}-\mathrm{OH}$) site. However, there is a limitation in the methodology that involves the need of a bulky R^{1} group in the ketone to obtain high enantioselectivities.

Scheme 8. Conjugate addition of branched cyclic ketones to enones promoted by a chiral Brønsted acid.
List, 2015.

The fact that ion-pairing interactions are less directional than covalent or hydrogen-bonding interactions, underlies the challenge in designing stereoselective catalysts that operate efficiently with this methodology. However, several powerful approaches have been developed for asymmetric catalysis of transformations that involve charged intermediates. Among them, phase-transfer catalysis ${ }^{85}$ has been widely explored in asymmetric catalysis. Here, an enolate-ion, formed in situ is paired with an enantiopure quaternary ammonium cation. Partitioning to the organic phase is thus facilitated, allowing the enolate to selectively react with an organic soluble electrophile. PTC has promoted a wide number of stereoselective transformations. The most representative phase transfer catalysts are quaternary ammonium salts derived from cinchones ${ }^{86}$ and binaftilamines (a, Figure 6). ${ }^{87}$

[^18]

Dolling, 1984

Ar: $3,4,5-\mathrm{F}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}$
b)

α-Substituted
α-amino acids

Figure 6. a) Most representative chiral ammonium phase transfer catalysts. b) Glycine imino esters and α-substituted α-amino acids.

More specifically, the most studied substrates in PTC include compounds bearing active methylene groups. Thus, β-ketoesters ${ }^{85 c}$ and ketones ${ }^{88} \alpha$-functionalization has been successfully performed by PTC. However, reactions involving glycine imino esters (b, Figure 6) stand out. Moreover, due to their easy transformation into α-substituted α-amino acids, ${ }^{89}$ transformations involving these substrates (activated ester structure) are of great interest and PTC has proven to be an outstanding tool for that purpose as it will be explained in more detail in chapter 3 .

Another approach for the α-functionalization of carbonyl compounds is Brønsted Base catalysis which is outlined in the following section.

1.2. Direct enantioselective $\boldsymbol{\alpha}$-functionalization of carbonyl compounds promoted by chiral Brønsted Bases

A Brønsted base (BB) is defined as a molecular entity capable of accepting a hydron (or proton) from an acid or the corresponding chemical species. ${ }^{90}$ This proton transfer is often considered from the organic synthesis point of view, key for activation of one of the reaction components that precedes the new bond formation. Enolizable carbonyl compounds with relatively small $\mathrm{p} K_{\mathrm{a}}$ value ($10-17 \mathrm{p} K_{\mathrm{a}}$ range in DMSO) ${ }^{2}$ are the

[^19]most exploited substrates in soft enolization. ${ }^{91}$ In this strategy, a relatively weak chiral amine is usually employed to reversively and catalytically deprotonate a relatively acidic substrate.

A simplified catalytic cycle involving carbonyl compounds is shown in Figure 7. Deprotonation of the carbonyl compound by the basic catalyst initiates the catalytic cycle forming a chiral ion pair. The enolate reacts with the electrophile in an enantioselective manner to afford a Nu-E adduct as reaction product and the free basic catalyst is released for a new catalytic cycle.

Figure 7. Catalytic cycle promoted by a chiral Brønsted base (BB*).

In the design of chiral BB catalysts, different nitrogen containing functionalities have been employed. Among them, tertiary amines, guanidines, ${ }^{92}$ amidines and imidazoles ${ }^{93}$ are the most prominent (Figure 8). Cinchona alkaloids constitute a very popular source of enantiopure BB , but their use in asymmetric catalysis has been limited to relatively acidic compounds with small $\mathrm{p} K_{\mathrm{a}}$ values, like 1,3-dicarbonyl compounds (β cyanoesters, malonitriles, nitroalkanes) in Mannich-type and 1,4-conjugate additions. Simple ketones, aldehydes, esters and other carboxylic acid derivatives remain elusive subtrates in BB catalysis.

[^20]

Figure 8. Monofunctional chiral BB catalysts.

As it has been mentioned before, in this kind of processes, chirality transfer from the chiral catalyst to the product occurs during the key $\mathrm{C}_{\alpha}-\mathrm{E}$ bond forming reaction. This step implies information transfer throughout a non-covalent substrate-catalyst ion-pairing complex, and due to the intrinsic nondirectional nature of these electrostatic interactions in ion-pairing complexes, prediction of the stereoinduction exerted from the catalyst is difficult to make. In order to form bonds in the correct orientation, dual activation is considered the best tool. In this case, both the nucleophile and electrophile are activated simultaneously by two catalytic units, improving the reaction efficiency and/or chemoselectivity.

The close proximity of both catalytic units, could facilitate asymmetric induction the same way enzymes do. In this context, the most successful strategies consist of a chiral amine (BB) and an efficient H-bond donor group, such as urea, thiourea, (thio)squaramide or sulphonamide (Scheme 9). These modifications have given rise to more active and selective bifunctional BB catalysts. ${ }^{94}$

$\mathrm{BB}^{*}=$ chiral Bronsted base

Scheme 9. General structure of chiral bifunctional BB catalysts.

[^21]The most representative bifunctional Brønsted base catalysts are shown below (Figure 9).

Takemoto, 2003

Connon and Soós 2005

Dixon 2005

C9

Rawal, 2008

Palomo, 2013

Figure 9. Representative bifunctional Brønsted Bases.

In 2003, Takemoto et al. ${ }^{95}$ developed the first highly enantioselective bifunctional Brønsted base C7, which consisted of a 1,2-diaminocyclohexane derived thiourea which worked efficiently in the Michael addition of malonates to nitroalkenes. According to the authors proposal, the nucleophile would be activated by the amino group, whereas the thiourea moiety would activate the electrophile (a, Figure 10). This way, the approach of both components occurs in a stereoselective manner. ${ }^{96}$ However, later Pápai and coworkers proposed and alternative substrate-catalyst combination for the same transformation (b, Figure 10). ${ }^{97}$

[^22]

Takemoto, 2005

Pápai, 2006

Figure 10. Two proposals for the catalyst-substrate interactions in the conjugate addition of malonates to nitrostyrene promoted by thiourea $\mathbf{C 7}$.

After this pioneering work, many other chiral tertiary amine derived thioureas were developed and efficiently used in enantioselective catalytic reactions. Connon, Dixon and Soós independent work ${ }^{98}$ reported simultaneously bifunctional (thio)ureatertiary amine catalysts C8-C9 (Figure 9) to promote Michael reactions efficiently.

Rawal and co-workers ${ }^{99}$ introduced in 2008 the squaramide containing structure $\mathbf{C 1 0}$ (Figure 9) bearing a squaramide group as efficient H -bond donor unit in asymmetric catalysis. The first reaction employing this type of catalysts was the conjugate addition of 2,4-pentanediones to β-nitrostyrene with excellent results at even low catalyst loading ($0.1 \mathrm{~mol} \%$). Since then, other groups have employed squaramide type Brønsted base catalysts in many other transformations, ${ }^{100}$ with special success in tandem and domino reactions, ${ }^{101}$ including the thiosquaramide-derived variant. ${ }^{102}$

Both (thio)urea and squaramide functions are structurally rigid. Nevertheless, unlike (thio)ureas, squaramides contain two ($\mathrm{N}-\mathrm{H}$) and two carbonyl ($\mathrm{C}=\mathrm{O}$) units showing one more acceptor than thioureas (Figure 11). Besides, the distance between both hydrogen units attached to the nitrogen atom is larger in the case of squaramides $(2.71 \mathrm{~A}$ vs 2.13 A$) .{ }^{103}$ Both units are able to delocalize the nitrogen lone pair through the carbon heteroatom double bond, but squaramides can delocate the lone pair through the

[^23]partially aromatic cyclobutenedione, thus increasing the acidity of $\mathrm{N}-\mathrm{H}$ unit, compared to the thiourea analogs. ${ }^{104}$ Consequently, squaramides can form stronger hydrogen bonds, which may explain their higher reactivity, even at lower catalyst loadings.

Figure 11. Comparison between squaramides and thioureas.

In 2013, our research group introduced a new variant of bifunctional BB catalyst containing a ureidopeptide unit as H bond donor site ${ }^{105}$ which bears three tunable parts for stereoinduction. In this first work, catalyst C11 (Figure 9) was employed in the Michael reaction of 5 H -thiazol-4-ones with nitroolefins with high diastereo- and enantioselectivity and it proved to be more effective than Takemoto's thiourea in the reaction. These catalysts are easily tunable in the carbamate group, the amino acid rest and in the chiral BB site for improving the efficiency, and they have been employed in our research group in different reactions providing the reaction adducts with excellent diastereo- and enantioselectivities. ${ }^{106}$

In general, when bifunctional BB catalysts are employed, three possible and different mechanistic proposals (including the previously mentioned proposals of Takemoto and Pápai/Zhong) can be considered, as depicted in Figure 12. ${ }^{107}$

[^24]

Model A: Takemoto

Model B1: Pápai

Model B2: Zhong

Model C: Wang

Figure 12. Three alternative substrate-catalyst combinations in reactions promoted by bifunctional BBs.

The development of new types of bifunctional BBs has enabled different transformations at the α-position of carbonyl compounds. The main contributions are explained below.
a) More reactive carbonyl compounds

The α-functionalization of carbonyl compounds promoted by BBs has been mainly focused on 1,3-dicarbonyl compounds, while no examples of aldehydes have been reported to the best of our knowledge.

In this context, mono thiomalonates (MTMs) have been explored as efficient substrates for catalytic asymmetric Michael ${ }^{108}$ and Mannich ${ }^{109}$ reactions in BB catalysis. Other 1,3-dicarbonyl compounds (malonates, β-diketones, β-ketoesters) have been subjected to the conjugate addition to nitroolefins ${ }^{110}$ and enones, ${ }^{111}$ promoted by

[^25]bifunctional BBs , as well as to Mannich reactions, ${ }^{112} \alpha$-aminations ${ }^{113}$ and aldollactonizations ${ }^{114}$ with excellent stereoselectivity.

b) Less reactive carbonyl compounds

As previously mentioned, the α-functionalization of less reactive carbonyl compounds (ketones, esters and amides) promoted by BBs is challenging due to the low acidity of the α-carbon, and activation of the nucleophile is required for their use in BB catalysis.

In this context, few protocols for the α-functionalization of ketones via BB have been published ${ }^{115}$ and, as mentioned, they all include activating groups at the α-position. Wang and co-workers ${ }^{116}$ reported the first asymmetric conjugate addition of α-aryl cyclopentanones to nitroolefins promoted by the bifunctional organocatalyst $\mathbf{C 1 2}$ which bear multiple H -bond donors (Scheme 10). In this case, the aromatic substituent at the α position of the starting ketone enhances the acidity of that carbon. Following this work, Zhao and co-workers ${ }^{117}$ performed the first enantioselective Mannich reaction of ketones bearing electron withdrawing groups at the α-position with excellent diastereo- and enantioselectivity using bifunctional BBs.

Scheme 10. Michael addition of α-aryl cyclopentanones to nitroolefins promoted by C12.
Wang, 2010.

[^26]In addition, dienolate (or equivalent dienamine) intermediates are considered particular ketones and their use as nucleophiles ${ }^{118}$ involves the control of the $\alpha-$ vs Υ competitive reaction pathways (Scheme 11).

Scheme 11. Competitive pathways in the functionalization of dienolate intermediates.

The resulting adducts are of great synthetic versatility. While γ-addition products have been obtained by enamine (dienamine/trienamine) ${ }^{119}$ and metal catalysis, ${ }^{120}$ the alternative α-reaction is less favoured due to the disruption of the π-conjugation at some point of the reaction. In this context, Brønsted base catalyzed α-functionalization of vinylogous enolates remains little explored, and the few examples described provide the adducts with moderate enantioselectivities or are restricted to specific substrates. Hence, our research group has reported the catalytic asymmetric α-selective conjugate addition of vinylogous ketone enolates ${ }^{121 \mathrm{a}}$ (Scheme 12a), alkynyl ketones ${ }^{121 b}$ (Scheme 12b), cyclic and acyclic α-substituted ketones ${ }^{121 c}$ (Scheme 12c) and tetralones ${ }^{121 \mathrm{~d}}$ (Scheme 12d) with excellent stereoselectivity. In addition, conjugate addition of α-hydroxy ketones (h , Figure 14) ${ }^{122 a}$ (activated ketones, masked ester donors) to nitroalkenes under bifunctional BB catalysis, afforded reaction adducts with excellent stereoselectivity and their

[^27]elaboration provided the corresponding enantioenriched α-branched carboxylic acids and aldehydes.

Scheme 12. Some examples from our research group of α-selectivity in the conjugate addition of ketones.

With respect to carboxylic acid derivatives, as well as for metal-catalysis, more reactive heterocyclic and acyclic donors have been developed for BB-catalyzed reactions in order to access through posterior transformation, α-functionalized esters and amides.

Heterocyclic donors

As mentioned before in the metal catalysis section, different heterocycles whose $\mathrm{p} K_{\mathrm{a}}$ is lower due to the formation of aromatic enolates and whose hydrolysis gives rise to α - or β-amino acid derivatives have been also applied in organocatalysis. Oxazol-5-(4H)-
ones 123 (or azlactones), their analogues thiazol-5-(4 H)-ones ${ }^{124}$ (1a, Figure 13) and oxazol-$4-(5 \mathrm{H})$-ones ${ }^{125}$ and their thiazolone ${ }^{105}$ and imidazolone ${ }^{126}$ analogues (1b, Figure 13) have been also explored in the field. As mentioned, thiazolones were developed in our research group and employed in different reactions. ${ }^{127}$ Likewise, the conjugate addition of related hydantoins (1c, Figure 13) to nitroolefins and vinyl ketones has been reported in our group. ${ }^{128}$

Regarding substrates which do not generate aromatic enolates, but which bear more acidic α-carbons, rhodanines, ${ }^{129}$ piperazin-2,3,6-triones ${ }^{130}$ and barbituric acid derivatives ${ }^{131}$ (2a, 2b and 2c, Figure 13) have also been reported in different organocatalytic reactions with excellent stereoselectivity.

[^28]1. Heterocycles that provide aromatic enolates

1a)

X = O Oxazol-5(4H)-one
X = S Thiazol-5(4H)-one
Access to α-hydroxy/ mercapto carboxylic acid surrogates

1b)

$X=0 \quad$ Oxazol-4(5H)-one
X = NR' Imidazol-4(5H)-one
$X=S \quad$ Thiazol-4(5H)-one
Access to α-hydroxy/amino/ mercapto carboxylic acid surrogates

Hydantoin equivalent
Access to α-amino acids
2. Heterocycles that do not provide aromatic enolates

Rhodanine

2b)

Piperazin-2,3,5-trione

Barbituric acid surrogate

Figure 13. Some representative activated heterocycles employed in BB catalysis for their asymmetric α functionalization.

Acyclic donors

As mentioned in section 1.1.2.1., malonic acid half esters and thioesters (MAHOs and MAHTs) have been successfully employed as more reactive ester surrogates not only in metal catalysis, but also in organocatalysis (a, Figure 14). ${ }^{51}$ However, a more atom economical approach, avoiding decarboxylation as a driving force is the use of arylacetic thioesters (b, Figure 14). These reagents have been applied in asymmetric Michael ${ }^{132}$ and Mannich ${ }^{133}$ reactions. Thioesters were also employed in our group as more reactive ester analogues, ${ }^{121 a}$ where β, γ-unsaturated thioesters (c (X=S), Figure 14) were found to be more reactive and regioselective to α-addition than their parent esters (c ($\mathrm{X}=\mathrm{O}$), Figure 14). ${ }^{134}$

[^29]In addition, pyrazoleamides (d, Figure 14), which are considered activated amide structures, are the only example of direct α-functionalization of amides, ${ }^{135}$ and were first reported in organocatalysis by Barbas III. ${ }^{135 d}$ This functional group increases the acidity of the α-carbon and also improves the steoreocontrol through hydrogen bonding. Moreover, the pyrazol group can be displaced by nucleophiles such as alcohols and amines, affording different esters and amides.
a)

b)

Arylacetic thioester ${ }^{132-133}$
c)

X: O, S
β, γ-unsaturated (thio)ester ${ }^{121 \mathrm{a}, 134}$
d)

R: Aryl, vinyl
Pyrazolamide ${ }^{135}$
e) R

R, R ${ }^{1}$: Aryl,aryl
Acylimidazole ${ }^{50}$

Acylsilane ${ }^{136}$

α-Ketophosphonate ${ }^{137}$
h)

α-Hydroxyketone ${ }^{122}$
i)

j)

R: Alk
Glycine iminoesters ${ }^{138}$

Figure 14. Some representative activated acyclic donors employed for their BB catalyzed asymmetric α functionalization.

Acylimidazoles (e, Figure 14), ${ }^{50}$ acylsilanes (f, Figure 14$)^{136}$ and α ketophosphonates (g, Figure 14) ${ }^{137}$ have also been explored in organocatalytic reactions. After reaction, these groups can be easily converted into carboxylic acids, esters or amides. Another strategy involves the activation of the substrates through intramolecular

[^30]hydrogen bonds, a feature that can increase the acidity of the methylenic carbon as in α hydroxyketones (h, Figure 14) ${ }^{122}$ and iminoesters i and jin Figure 14. ${ }^{138}$

The limitations in catalysis of less reactive carbonyl compounds are evident. More specifically, the described procedures for the α-functionalization of esters and amides involve stoichiometric enolization, while metal catalyzed and organocatalytic methods are scarce. In spite of that, enantiopure α-functionalized amides are of great interest due to their presence in pharmaceuticals, natural products and biologically active compounds. Therefore, renewing or developing new activation modes (that make α-carbon more acidic), to access these compounds in an catalytic manner is required.

1.3. Objectives

The previous precedents show that, due to the low acidity of the α-carbon in amides, their asymmetric organocatalytic α-functionalization has been scarcely developed. There is only one example of α-functionalization promoted by BBs, which involves the use of pyrazoleamides as activated amide substrates.

The limitations in the direct catalytic functionalization of amides render interesting approaches involving functionalization starting from more reactive heterocyclic surrogates and further transformation into amides. In this context, our first goal has been the introduction of a new and efficient heterocycle for catalytic reactions and for subsequent transformation into different functionalities with generation of tetrasubstituted stereocenters, particularly all-cabon quaternary stereocenters ${ }^{139}$ which is still challenging in asymmetric organocatalysis.

With this purpose in mind, we selected pyrrolidin 2,3-diones (a, Scheme 13) as promising pronucleophiles for two reasons. First, because the corresponding reaction adducts could be transformed under mild conditions into $\beta^{2,2}$-amino acid derivatives; and secondly, because their heterocyclic scaffold is present in molecules of biological interest. To evaluate the usefulness of these cyclic ketoamides as pronucleophiles in catalytic

[^31]reactions, conjugate additions and Pd-catalyzed asymmetric allylic alkylation (Pd-AAA) were selected. As an additional challenge, the investigation of acyclic ketoamides in the Pd-AAA was also considered (b, Scheme 13). The corresponding results are explained in Chapter 2.
a) Pyrrolidin 2,3-diones

b) Acyclic α-ketoamides

Scheme 13. a) Transformation of pyrrolidin-2,3-diones into $\beta^{2,2}$-amino acid derivatives. b) Pd-catalyzed AAA of acyclic α-ketoamides.

Another objective of this Thesis has been the development of a new activation mode for amides in order to overtake their inherent low reactivity and to access enantiopure amide containing reaction adducts leaving behind old fashioned stoichiometric and metallic procedures. Therefore, an activated amide bearing an intramolecular hydrogen bonding system has been designed for aldol reactions promoted by bifunctional BBs (Scheme 14). These results are collected in Chapter 3.

Scheme 14. Novel activation mode in amides for BB catalysis.

Finally, a short stay was carried out under supervision of Prof. Gilles Gichard in the European Institute of Chemistry and Biology (IECB) at Bordeaux-Pessac campus in the Peptidomimetic Chemistry Group. The research project has focused on the synthesis
of valine-based oligoureas and their evaluation as H -bonding chiral organocatalysts in the well-known conjugate addition of diethyl malonate to nitrostyrene (Scheme 15). Chapter 4 deals with the corresponding results.

Scheme 15. Conjugate addition of diethyl malonate to nitrostyrene promoted by valine-based oligoureas.

Chapter 2

Pyrrolidin-2,3-diones as intermediates in the synthesis of $\boldsymbol{\alpha}$-functionalized amides
2. Pyrrolidin-2,3-diones as useful intermediates in the synthesis of enantiopure α-functionalized amides 69
2.1. General considerations 69
2.2. Access to enantiopure amides through pyrrolidin-2,3-diones. 71
2.3. Synthetic plan 73
2.4. Results and discussion 76
2.4.1. Organocatalytic conjugate addition to enones 76
2.4.2. Palladium-catalyzed asymmetric allylic alkylation 81
2.4.2.1. Pd-catalyzed AAA of pyrrolidin-2,3-diones 87
2.4.2.2. Pd-catalyzed AAA of acyclic ketoamides 96
2.4.3. Elaboration of the adducts. 104

2. Pyrrolidin-2,3-diones as useful intermediates in the synthesis of enantiopure α-functionalized amides

2.1. General considerations

Construction of tetrasubstituted carbon stereocenters, particularly all-carbon quaternary stereogenic centers is an important challenging goal in asymmetric catalysis. However, the direct approach to structurally interesting molecules is often limited, due to the low reactivity and the difficulty in controlling the stereoselectivity of the process. ${ }^{140}$ In this context, as mentioned in the introduction, direct catalytic α-functionalization of amides is challenging, due to the low acidity of the α-carbon. Therefore, the search of new and more efficient pronucleophiles that upon reaction with an electrophile, can be converted into different structures, is of great interest. Pyrrolidin-2,3-diones (Figure 15a) exhibit rich reactivity due to the combination of both nucleophilic and electrophilic characteristics, which can enable various types of reactions and sequential or cascade transformations with suitable nucleophiles and electrophiles. Furthermore, they are structural motifs that are present in a wide variety of biologically important compounds (Figure 15b). ${ }^{141}$
a)

Pyrrolidin-2,3-dione
b)

Protein-protein interaction stabilizer

Figure 15. a) General structure of pyrrolidin-2,3-diones, and their reactive sites. b) An example of a biologically relevant compound bearing the above structure.

[^32]However, in spite of the biological and pharmaceutical interest in this family of compounds, the asymmetric synthesis of chiral pyrrolidin-2,3-diones and reactions involving them have been barely explored. When we started this project and, to our knowledge, there was only one organocatalytic example involving the use of 4unsubstituted pyrrolidin-2,3-diones as nucleophiles, developed by Xu and co-workers, in a one pot Michael/Pictet-Spengler sequence (a, Scheme 16). ${ }^{142}$ The products obtained are synthetically and medicinally important, and are efficiently constructed in a highly stereocontrolled manner. Other examples of the use of pyrrolidin-2,3-diones as electrophiles had been published. For example, Ling and Fen described a Diels-Alder reaction of $\mathrm{C}(4)$-alkylidene pyrrolidin-2,3-diones with cyclopentadiene promoted by a chiral N, N '-dioxide $/ \mathrm{Ni}^{\mathrm{II}}$ complex to furnish bridged $\mathrm{C}(4)$-spiro pyrrolidin-2,3-diones (b, Scheme 16). ${ }^{143}$ Besides, the reaction with allene ketones catalyzed by cinchona alkaloid could not afford quaternary stereocenters at the C 4 position of the ring (c, Scheme 16). ${ }^{144}$ In this context, other examples were reported in racemic form (d, Scheme 16) to provide fused rings and spirocyclopropanes (e, Scheme 16). ${ }^{145}$

[^33]a)
a)

b)

e)

Scheme 16. Catalytic reactions of pyrrolidin-2,3-diones.

2.2. Access to enantiopure amides through pyrrolidin-2,3-diones

Pyrrolidin-2,3-diones were selected as pronucleophiles for different asymmetric reactions in order to access highly functionalized enantiopure amides. Given the precedents from this laboratory for the synthesis of amino acid N-carboxyanhydrides of type 3 containing a quaternary stereocententer starting from disubstituted β-lactams $\mathbf{1}$ (Scheme 17), ${ }^{146}$ we envisaged that the same methodology could be applied to 4 substituted pyrrolidin-2,3-diones $\mathbf{2}$. In this instance, β-amino acid N-carboxyanhydrides of type $\mathbf{4}$ could be produced, which would be of interest in β-peptide coupling reactions.

These N-carboxyanhydrides constitute very attractive intermediates as this structure offers simultaneously both, N-protection and carbonyl activation. Hence, this

[^34]approach would involve the transformation of the corresponding reaction adducts into the corresponding N-carboxyanhydrides and subsequent ring-opening by an amine (or other nucleophiles), thus affording $\beta^{2,2}$-amino acid derivatives bearing a quaternary stereocenter at the alpha position.
a)

Scheme 17. a) Previous work from the group with β-lactams. b) Our approach for the synthesis of $\beta^{2,2}$ amino acid derivatives from pyrrolidin-2,3-diones.

After catalytic enantioselective reaction of these pyrrolidin-2,3-diones with an appropriate electrophile, a tetrasubstituted stereocenter would be generated (2). Their ring expansion would provide the corresponding NCA 4, and sybsequent nucleophilic attack of an alcohol, amine or an amino acid would give rise to $\beta^{2,2}$-amino acid derivatives 6 . Performing the ring opening reaction with an amine, α-functionalized amides would be obtained (Figure 16). This would constitute an excellent alternative method to access α functionalized amides containing a quaternary stereocenter in a not straightforward manner.
a)

$\beta^{2,2}$-Amino acid
b)

α, α-Disubstituted amide

Figure 16. a) General structure of a $\beta^{2,2}$-amino acid. b) An amide bearing a quaternary stereocenter at the α position.

Moreover, the enantioselective synthesis of β-amino acids has focused much attention over the years, not only because they are important building blocks for a wide variety of natural products and pharmaceutical agents, but also because they are mimics
of protein structural motifs. ${ }^{147}$ On this basis, we envisaged that our approach would be useful for that purpose.

2.3. Synthetic plan

Construction of pyrrolidin-2,3-diones bearing an all-carbon quaternary stereocenter at C-4 in a catalytic enantioselective manner has not yet been described in the literature. One reason could be that the direct alkylation of pyrrolidin 2,3-diones by alkyl halides provides mainly O-alkylated products (Scheme 18). ${ }^{148}$ Southwick and Barnas observed a 3:1 mixture of O-alkylated and C-alkylated products in the alkylation of sodium enolates obtained from 4-benzyl pyrrolidin-2,3-diones.

Scheme 18. Alkylation reaction of sodium enolates of 4-substituted pyrrolidin-2,3-diones

On the other hand, experimental data show that $\mathrm{C}(4)$-substituted pyrrolidin-2,3diones exist almost exclusively as the enolic form. ${ }^{148}$ In this context, we envisaged that a weak Brønsted base might be sufficient for enolate generation and promotion of the reaction with an electrophile under catalytic conditions. The main problems associated to this proposal would be firstly the control of reaction stereochemistry, and secondly the control of C-alkylation vs O-alkylation. Furthermore, and as previously mentioned, the resultant 4,4-disubstituted adducts could be transformed, on the basis of previous work from this laboratory, ${ }^{146}$ into N-carboxyanhydrides 4, thereby enabling subsequent couplings with nucleophiles, affording this way highly functionalized amides, esters or $\beta^{2,2}$-amino acids 6 (Scheme 19).

[^35]

Scheme 19. Our approach for the synthesis of $\beta^{2,2}$-amino acid derivatives.

The required pyrrolidin-2,3-diones $\mathbf{1 0}$ were prepared following the protocol shown in Scheme 20, adapting a literature procedure which involves the aza-Michael addition of the corresponding amine 7 to the appropiate acrylate $\mathbf{8}$, followed by cyclization of the corresponding β-amino ester 9 with ethyl oxalate and further in situ decarboxylation (Scheme 20).

Scheme 20. Synthesis of pyrrolidin-2,3-diones 10.

Southwick and Barnas demonstrated by IR spectroscopy that these compounds, in contrast to non-substituted pyrrolidin-2,3-diones, are essentially in their enolic form. This fact was corroborated by IR analysis and by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in CDCl_{3} solution of our synthesized pyrrolidin-2,3-diones. Figure 17 and 18 show the IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, respectively for of compound 10Aa.

Figure 17. IR spectrum of 10 Aa .

Figure 18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 10Aa.

2.4. Results and discussion

2.4.1. Organocatalytic conjugate addition to enones

In order to explore the reactivity of these 4 -substituted pyrrolidinones, the conjugate addition of 10Aa to methyl acrylate $\mathbf{1 1}$ promoted by the squaramide based, bifunctional Bronsted base catalyst C20 was first explored at room temperature (Scheme 21). However, only 50% of conversion was obtained in 24 h , thus corroborating the low reactivity of acrylates as Michael acceptors in these reactions.

Based on the precedents of our research group with α '-oxy enones as more reactive ester surrogates, the reaction with enone $\mathbf{1 2}$ was also explored, and full conversion and 84% ee were obtained. ${ }^{149}$

Scheme 21. Preliminary experiments on the catalytic asymmetric conjugate addition of pyrrolidin-2,3-dione 10Aa to methyl acrylate $\mathbf{1 1}$ and α^{\prime}-oxy enone 12.

On this basis and with the aim of improving the enantioselectivity, other bifunctional BBs were evaluated in the reaction of 4-methyl-pyrrolidin 2,3-dione 10Aa with silyloxy enone 12. First, as Table 1 ilustrates, the conjugate additions promoted by urea C18 and thiourea C19 were explored, but both catalysts afforded lower enantioselectivity than C20. In addition, the derived analogue squaramide C21, provided

[^36]similar enantioselectivity level ($75 \% \mathrm{ee}$). Therefore we decided to modify the structure of $\mathbf{C 2 0}$ in order to optimize the process. Hence, an amide unit was installed in the catalyst providing C22, and in the presence of this promoter, a slight increase in the enantiocontrol was observed. Furthermore, the N-methyl derivative C23, allowed an increase in enantioselectivity and lowering the temperature to $0{ }^{\circ} \mathrm{C}$, the enantiomeric excess reached 91%.

Table 1. Catalyst screening in the reaction of 10Aa with $12 .{ }^{[\text {a] }}$

C21 66\%, 75\% ee

C22 R: H 70\%, 78\% ee
C23 R: Me 85\%, 84\% ee
$84 \%, 91 \% e e^{[b]}$
[a] Reactions performed on a 0.2 mmol scale in 0.4 mL of DCM by using 2 equiv. of silyloxy enone $\mathbf{1 2}$. Isolation of 14Aa was effected by desilylation with AcOH in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$; see experimental section for more details. Enantioselectivities were determined by HPLC analysis on a chiral stationary phase. [b] The reaction was carried out at $0^{\circ} \mathrm{C}$.

The advantages of this new modular subfamily of squaramide catalysts when compared to more common catalysts like C20 are evident, as the catalyst can be easily modulable tuning the carboxamide function in order to improve catalyst/substrate interaction. These catalysts are easily obtained from the carboxylic acid intermediate through peptide coupling with the corresponding amine (Scheme 22).

Scheme 22. Preparation of catalysts C22 and C23.

Next, we explored the substrate scope varying the substituents at the nitrogen atom and at the C 4 position of the pyrrolidin-2,3-dione ring (R and R^{1}). As depicted in Table 2, switching the benzyl group to 1-naphtylmethyl, the resulting product 14Ba increased the enantiomeric excess to $96 \% e e$, and similar levels were maintained when a benzyl group was installed at C4 position, leading to 14Bb with $92 \% \mathrm{ee}$. Both yield and enantioselectivity were also high when N-isopropyl 14Ca was employed as pronucleophile.

Table 2. Conjugate additions to α^{\prime} 'silyloxy enone 12. ${ }^{[\text {a] }}$

A R: Bn
B R: 1-Naph $-\mathrm{CH}_{2} \quad$ a $\mathrm{R}^{1}: \mathrm{Me}$
CR: ${ }^{i} \mathrm{Pr}$

[a] Reactions performed on a 0.2 mmol scale in 0.4 mL of DCM by using 2 equiv. of silyloxy enone $\mathbf{1 2}$. Isolation of $\mathbf{1 4}$ was effected by desilylation with AcOH in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$; see experimental section for more details. Enantioselectivities were determined by HPLC analysis on a chiral stationary phase.

Compounds 14Aa and 14Ba were then transformed into their corresponding esters by simple oxidative cleavage of the acyloin moiety with NaIO_{4} and subsequent esterification (Scheme 23), showing the utility of the α-hydroxy carbonyl motif as carboxylic acid derivatives surrogates, ${ }^{149}$ since the reaction of 10Aa with methyl acrylate 11 (Scheme 21) failed (50% conversion after 24 h at room temperature).

Scheme 23. Transformation of adducts 14Aa and 14Ba into the corresponding methyl ester derivatives.

The reaction with enones further illustrates the feasibility of the proposal. Thus reaction of 10Aa with methyl vinyl ketone (MVK) 15 carried out at $-10{ }^{\circ} \mathrm{C}$ in the presence of C22 led to product 18Aa in 75% yield and 88% ee (Table 3). For this reaction, however, both $\mathbf{C 2 0}$ and $\mathbf{C 2 3}$ were found to be equally effective affording enantioselectivities of 92 and $90 \% e e$, respectively. Likewise 18Ab was obtained from 10Ab and MVK 15 in good yield and 93% ee using catalyst C23 whilst catalyst C20 led to adduct $\mathbf{1 8 A b}$ with almost the same enantioselectivity level. Further experiments revealed that with both catalysts ($\mathbf{C 2 0}$ and $\mathbf{C 2 3}$) the stereochemical outcome of the reaction appears to be independent upon the N-substitution pattern of the nucleophile employed. Derivatives 10Ba, 10Bb, 10Ca and 10Da, respectively reacted with MVK 15 to afford the corresponding adducts 18Ba, 18Bb, 18Ca and 18Da with $e e$ values between $91-98 \%$. Furthermore, the reaction seems to be general with respect to the enone component, as reaction of compound 10Ab with ethyl vinyl ketone $\mathbf{1 6}$ and 4methylphenyl vinyl ketone $\mathbf{1 7}$ promoted by catalyst $\mathbf{C 2 3}$ provided under the same conditions, the corresponding adducts 19Ab and 20Ab with 88 and $87 \% e e$, respectively.

Table 3. Catalytic conjugate addition of pyrrolidin-2,3-diones $\mathbf{1 0}$ to enones 15-17. ${ }^{[a]}$

[a] Reactions performed on a 0.2 mmol scale in 0.4 mL of DCM by using 2 equiv. of enone 15-17. Yield of isolated product after chromatography. Enantioselectivity determined by chiral HPLC.

The absolute configuration of the products from these reactions was determined ${ }^{149}$ by X-ray single crystal structure analysis of adducts $\mathbf{1 4 B a}$ and that of the remaining adducts was established by assuming a uniform reaction mechanism (Figure 19).

Figure 19. X-ray structure for compound 14Ba.

CHAPTER 2

2.4.2. Palladium-catalyzed asymmetric allylic alkylation

Following the good results obtained in the conjugate addition of pyrrolidin-2,3diones to α^{\prime}-oxy enones and vinyl ketones, and with the aim of expanding the scope of reactions involving these substrates, the asymmetric allylic alkylation (AAA) was selected.

The insertion of allylic groups at the α-position of carbonyl-containing compounds is of great interest, and palladium-catalyzed asymmetric allylic alkylation constitutes a very useful tool for that purpose. The general catalytic cycle of the reaction consists of four steps (Scheme 24). The first one involves coordination of the transition metal to the electrophilic olefin (A complex), followed by ionization of the allylic leaving group to generate the $\mathrm{Pd}^{\mathrm{II}} \pi$-allyl transition metal complex B. Further alkylation of the nucleophile (enolate) generates a new transition metal olefin complex (C), whose decomplexation provides the allylated product and returns the transition metal Pd^{0} so that it can re-enter the catalytic cycle (Scheme 24). When this reaction is performed in the presence of a chiral ligand, asymmetric induction can be achieved. ${ }^{150}$

decomplexation

(C)

(B)

Scheme 24. Catalytic cycle in Pd-catalyzed allylic alkylation.

[^37]The most employed ligands in Pd-AAA are phosphines, and a variety of scaffolds have arisen from the different contributions in the field. Figure 20 shows the most representative chiral ligands in this area. ${ }^{151}$

$(S, S)-L 1$ Trost

$(R, R)-\mathrm{L} 4 \mathrm{R}=\mathrm{H} \quad \mathrm{Ar}=\mathrm{Ph}$
$(R, R)-L 5 \mathrm{R}=\mathrm{CF}_{3} \mathrm{Ar}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
Trost

(S,S)-L2
Trost

L6
(S)-BINAP

(S,S)-L3 Trost

(S)-L7 Ar $=\mathrm{Ph}$
(S) $-\mathrm{L8} \mathrm{Ar}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$

Stolz

L9
Feringa

Figure 20. Representative chiral ligands used in Pd-AAA reactions.

For two decades, the reaction had been limited to stabilized carbanions that function as soft nucleophiles ($\mathrm{p} K_{\mathrm{a}}<20$) like anions of malonic esters, β-keto esters, α imino esters and sulfones. But less reactive nucleophiles (hard nucleophiles) have also been proven to be efficient in the reaction after formation of enolates. As mentioned, the $\mathrm{Pd}^{\mathrm{II}} \pi$-allyl complex reacts with an enolate, and for their generation, different methods have been employed. Nevertheless, an unavoidable and general problem in the allylation of differentially substituted ketones with multiple acidic sites is the formation of isomeric enolates, which can lead to the generation of different regioisomeric products (a, Scheme 25). The first solutions to circunvent this problem involved the use of substrates with α blocking groups to shield undesired deprotonation sites (b1, Scheme 25), or to install electron withdrawing groups at the α position to reduce the $\mathrm{p} K_{\mathrm{a}}$ of the desired deprotonation sites (b2, Scheme 25). In all of the above cases, as the such generated

[^38]enolate reacts with an external electrophile, this approach is usually referred as intermolecular AAA.
a) Regioselectivity problems

b) Proposed solutions
b,1) Shielded enolates

b,2) Stabilized enolates

Scheme 25. a) Regioselectivity problem in enolate alkylation. b) Proposed solutions: $b, 1$) α^{\prime} blocking strategy. $\mathrm{b}, 2) \alpha$-EWG to provide reduction in $\mathrm{p} K_{\mathrm{a}}$.

Even though both proposed strategies (b1 and b2 in Scheme 25) have resulted in high regiocontrol in AAA, ${ }^{152}$ these approaches involve the introduction of functional groups into the starting ketone that can be unwanted, reducing the applications of these compounds in total synthesis. Despite these limitations, many nucleophiles have been successfully α-allylated following these approaches and the most representative ones are depicted in Figure 21.

On the other hand, organocatalysis has also been combined in an efficient manner with palladium catalysis in AAA. In this context, α-allylation of enamines of 1,3dicarbonyl compounds, ${ }^{153}$ aldehydes ${ }^{154}$ and ketones ${ }^{155}$ has been achieved in an efficient

[^39]and stereoselective manner. Likewise, Brønsted acid ${ }^{156}$ and phase-tranfer catalysis ${ }^{157}$ have also been combined with Pd catalysis.
a) Cyclic nucleophiles

b) Acyclic nucleophiles

Figure 21. Representative pronucleophiles employed in the Pd-AAA. a) Cyclic nucleophiles. ${ }^{158}$ b) Acyclic nucleophiles. ${ }^{159}$
${ }^{154}$ a) F. Bihelovic, R. Matovic, B. Vulovic, R. N. Saicic, Org. Lett. 2007, 9, 5063-5066; b) X. Zhao, D. Liu, F. Xie, Y. Liu, W. Zhang, Org. Biomol. Chem. 2011, 9, 1871-1875; c) S. Afewerki, I. Ibrahem, J. Rydfjord, P. Breinstein, A. Córdova, Chem. Eur. J. 2012, 18, 2972-2977; d) M. Yoshida, T. Terumine, E. Masaki, S. Hara, J. Org. Chem. 2013, 78, 10853-10859.
${ }^{155}$ a) S. Yasuda, N. Kumagai, M. Shibasaki, Heterocycles, 2012, 86, 745-757; b) X. Zhao, D. Liu, F. Xie, Y. Liu, W. Zhang, Org. Biomol. Chem. 2011, 9, 1871-1875.
${ }^{156}$ For some representative examples, see: a) G. Pupo, R. Properzi, B. List, Angew. Chem. Int. Ed. 2016, 55, 6099-6102; b) S. Mukherjee, B. List, J. Am. Chem. Soc. 2007, 129, 11336; c) G. Jiang, B. List, Angew. Chem. Int. Ed. 2011, 50, 9471.
${ }^{157}$ For some representative examples, see: a) M. Nakoji, T. Kanayama, T. Okino, I. Takemoto, Org. Lett. 2001, 3, 3329-3331; b) M. Nakoji, T. Kanayama, T. Okino, I. Takemoto, J. Org. Chem. 2002, 67, 74187423.
${ }^{158}$ For reviews, see: a) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943; b) J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846-1912; B. M. Trost J. E. Schiltz, Synthesis 2019, 51, 1-30. For 1,3-dicarbonyl compounds, see: c) B. M. Trost, R. Radinov, E. M. Grenzer, J. Am. Chem. Soc. 1997, 119, 7879-7880; d) R. Kuwano, K-I. Uchida, Y. Ito, Org. Lett. 2003, 5, 2177-2179; e) B. M. Trost, E. J. Doncklete, D. A. Thaisrivongs, M. Osipov, J. T. Master, J. Am. Chem. Soc. 2015, 137, 27762784; f) B. M. Trost, B. Schäffner, M. Osipov, D. A. A. Wilton, Angew. Chem. Int. Ed. 2011, 50, 3548 3551. For the first example involving ketones, see: g) B. M. Trost, G. M. Schröder J. Am. Chem. Soc. 1999, 121, 6759-6760; h) B. M. Trost, G. M. Schröder Chem. Eur. J. 2005, 11, 174-184. For the first example with azlactones, see: i) B. M. Trost Angew. Chem. Int Ed. Engl. 1997, 36, 2635-2637. For barbituric acids, see: j) B. M. Trost, G. M. Schroeder J. Org. Chem. 2000, 65, 1569. For oxindoles, see: k) B. M. Trost, S. Malhotra, W. H. Chan, J. Am. Chem. Soc. 2011, 133, 7328; 1) B. M. Trost, J. Xie, J. D. Sieber, J. Am.

In spite of this progress, the regioselectivity in enolate generation was still an issue in some cases. An alternative solution for that problem came by Tsuji and coworkers when they introduced in the 80s some alternative methods for the selective enolate generation. Using silyl enol ether ${ }^{160}$ (a, Scheme 26) or enol acetate ${ }^{161}$ (b, Scheme 26) substrates in the presence of appropriate additives, the latent enolates were unmasked as single isomers. Subsequent allylic alkylation of these derivatives provided the corresponding reaction adducts without the need of additional functional groups unlike the first approaches. Besides, Tsuji's group ${ }^{162 a}$ and Saegusa's ${ }^{162 b}$ group also showed that allyl fragments could also be introduced into cyclic ketones by the use of allyl enol carbonates ${ }^{163}$ or allyl β-keto esters ${ }^{164}$ (c, Scheme 26). The loss of CO_{2} after palladium complexation, replaces the need to selectively prepare preformed enolate equivalents. This way, both the allyl electrophile and the enolate nucleophile are formed in situ by Pd^{0}. Although the exact mechanism of this reaction remains unclear, recently it has been postulated that it may occur through the formation of a palladium enolate. ${ }^{165}$ This methodology is known as the decarboxylative (Pd-DAAA) or Tsuji-Trost asymmetric allylic alkylation (AAA). With all of these methods explored by Tsuji, the enolates are formed with high regioselectivity and providing the products in high regiocontrol and in a straightforward manner.

Chem. Soc. 2011, 133, 20611; m) B. M. Trost, J. T. Masters, A. C. Burns, Angew. Chem. Int. Ed. 2013, 52, 2260; n) B. M. Trost, M. Osipov, Angew. Chem. Int. Ed. 2013, 52, 9176.
${ }^{159}$ For 1,3-dicarbonyl compounds, see: a) M. Sawamura, H. Nagata, H. Sakamoto, Y. Ito, J. Am. Chem. Soc. 1992, 114, 2586-2592; b) R. Kuwano, Y. Ito J. Am. Chem. Soc. 1999, 121, 3236-3237. For alkanoic esters, see: c) R. Visse, M.-A Möllemann, M. Braun, Eur. J. Org. Chem. 2019, 4604-4608. For amides, see: d) K. Zhang, Q. Peng, X. L. Hou, Y. D. Wu, Angew. Chem. Int. Ed. 2008, 47, 1741-1744; e) Y.-J. Jiang, G.P. Zhang, J.-Q. Huang, D. Chen, C.-H. Ding, X.-L. Hou, Org. Lett. 2017, 19, 5932-5935. For acylsilanes, see: f) J.-P. Chen, C.-H. Ding, W. Liu, X.-L. Hou, L.-X. Da, J. Am. Chem. Soc. 2010, 132, 15493-15495.
${ }^{160}$ J. Tsuji, I. Minami, I. Shimizu, Chem. Lett. 1983, 1325-1326.
${ }^{161}$ J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 4713-4714.
${ }^{162}$ a) I. Shimizu, T. Yamada, J. Tsuji, Tetrahedron Lett.1980,21,3199; b) T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, T. Saegusa, J. Am.Chem. Soc. 1980,102, 6381.
${ }^{163}$ J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 1793-1796.
${ }^{164}$ a) I. Shimizu, T. Yamada, J. Tsuji, Tetrahedron Lett. 1980, 21, 3199-3202; b) Saegusa published a very similar work with β-keto esters simultaneously with Tsuji's work, see: T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, T. Saegusa, J. Am. Chem. Soc. 1980, 102, 6381-6384.
${ }^{165}$ J. James, M. Jackson, P. J. Guiry, Adv. Synth. Catal. 2019, 361, 3016-3049.

Scheme 26. Different approaches for the regioselective enolate formation.

Although these methods provided promising strategies for regioselective enolate generation, asymmetric variants of the Pd-DAAA were not reported until the 2000s. Figure 22 shows the representative pronucleophiles used following the Pd-DAAA developed by Tsuji, which has allowed to broaden the scope and synthetic potential of this transformation. ${ }^{165}$
a) Cyclic nucleophiles

b) Acyclic nucleophiles

Figure 22. Representative pronucleophiles employed in the Pd-DAAA. ${ }^{165}$ a) Cyclic nucleophiles. b) Acyclic nucleophiles.

2.4.2.1. Pd-catalyzed AAA of pyrrolidin-2,3-diones

Given the success in the conjugate addition of pyrrolidin-2,3-diones to α-oxy enones and vinyl ketones, we wondered whether these promising pronucleophiles would generate enantiopure allyl derivatives through a Pd-catalyzed AAA. The resulting adducts could also follow ring expansion (NCA formation) and ring opening after reaction with a nucleophile to afford α-tetrasubstituted derivatives bearing an allyl group at the α-position (Scheme 27), thus providing α-allyl $\beta^{2,2}$-amino acid derivatives (α-functionalized amides when using an amine as a nucleophile). As far as we know, ketoamides have not been employed as pronucleophiles in asymmetric allylic alkylation.

Scheme 27. Proposed synthetic plan to obtain α-allyl $\beta^{2,2}$-amino acid derivatives.

In a first instance, the decarboxylative asymmetric allylic alkylation approach via allyl enol carbonates was selected, attracted by the mild and neutral reaction conditions that are employed in this methodology. It was gratifying to observe that pyrrolidin 10Aa reacted with allyl chloroformate to afford 21Aa without generation of side products and with good yield after column chromatography (Scheme 28).

Scheme 28. Synthesis of the allyl enol carbonate 21Aa.

Then, the allyl enol carbonate 21Aa was subjected to allylation conditions in the presence of different phosphine ligands in order to check both the reactivity and the enantioselectivity of the reaction products. For that purpose, toluene was selected as the solvent and $\mathrm{Pd}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$ as palladium source to perform the reaction at room temperature (Table 4).

Trost ligands L1-L4 were firstly checked and it was observed that $\mathbf{L} \mathbf{1}$ afforded the reaction adduct with full conversion, but with poor enantioselectivity ($-36 \% \mathrm{ee}$). In contrast, when employing L2 and L3, the reation did not proceed. However, it was gratifying to see that structurally similar $\mathbf{L 4}$ provided the allyl derivative 22Aa in total conversion, 65% yield and with 76% ee. L6 provided the reaction adduct in good conversion but with low enantiocontrol. Next, we decided to switch to Stolz ligand L7, but despite the good reactivity, the enantiocontrol was low (-42% ee). Structurally similar L11 and L12 were synthesized in the laboratory, following literature protocols, ${ }^{166}$ but results were not satisfactory as $\mathbf{L 1 1}$ did not promote the allylation and $\mathbf{L 1 2}$ afforded 22Aa

[^40]with low conversion and enantioselectivity. Finally, L13 was also investigated but no reaction was observed.

Table 4. Catalyst screening for the DAAA of 21Aa. ${ }^{[a]}$

(S,S)-L1
conv. $>99 \%, 75 \%$ yield,
-36% ee
$(S, S)-L 2$
NR

(S)-L6
conv. 90%, 82% yield,
-24% ee
$(S, S)-L 3$
NR
(R, R)-L4
conv. $>99 \%, 65 \%$ yield, 76% ee

(S,S)-L11
NR

(S,R)-L12 conv. 23%, ND

(S)-L7 conv. $>99 \%, 82 \%$ yield,
-42% ee

(S,S)-L13 NR
-8% ee
[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of toluene. Conversion related to the disappearance of the starting material. Yield of isolated product after chromatography. Enantioselectivity determined by chiral HPLC. NR: Not reaction. ND: Not determined.

It should be noted that the reaction is very sensitive to air and moisture, thus the reactions had to be perfomed under inert conditions. This implies the use of freshly distilled and degassed solvents in previously dried vials under Ar atmosphere. Oxidation of the ligands to the corresponding phosphine oxides had to be prevented. This can be easily checked by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ experiments and purified by column chromatography (explained in more detail in the experimental section).

With the optimal ligand $\mathbf{L 4}$ in hand, a solvent screening was performed under the same reaction conditions (Table 5). As it can be seen in the table, increasing the polarity of the solvents, the enantioselectivity was enhanced. Compared to toluene which provides 22Aa with 76% ee (entry 1), with THF the enantioselectivity increases up to 90% (entry 2), a value which does not improve at $0^{\circ} \mathrm{C}(91 \% e e)$, and in dioxane the reaction adduct is provided with 92% ee (entry 3). However, when acetonitrile was used (entry 4), the enantiocontrol dropped dramatically up to $18 \% e e$. Thus, dioxane was chosen as the optimal solvent for the reaction and for further experiments.

Table 5. Solvent screening for the DAAA of 21Aa. ${ }^{[a]}$

Entry	Solvent	Polarity index ${ }^{\mathbf{1 6 7}}$	Conv. (\%) ${ }^{[\mathrm{bb]}}$	Yield (\%) $^{[\mathrm{c}]}$	$\boldsymbol{e e}$ (\%) ${ }^{[\mathrm{dd]}}$
1	Toluene	2.4	>99	65	76
2	$\mathrm{THF}^{[\mathrm{e}]}$	4.0	90	88	90
3	Dioxane	4.8	>99	78	92
4	$\mathrm{CH}_{3} \mathrm{CN}$	5.8	>99	74	18

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. [b] Related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC. [e] Same results were obtained at $0^{\circ} \mathrm{C}$.

Next, the reaction scope was explored with pyrrolidinones bearing different substituents at the N - and C4- positions under optimized reaction conditions (Table 6). The synthesis of the starting allyl enol carbonates and the subsequent allylation proved to be general for different substitution patterns. Switching to 1-naphthylmethyl group in the nitrogen, the reaction adduct 22Ba was generated with high conversion and enantioselectivity. Variation of the C 4 substituent, showed that with benzyl group in C 4 , the corresponding adducts were afforded in high conversion and enantioselectivity 22Ab and 22Bb, but when changing to a phenyl group, enantioselectivity dropped below 60% $e e$ in both 22Ac and 22Bc. In addition, 22Ea and 22Da were afforded with enantioselectivity values up to 90% ee. Small alkyl chains at the the nitrogen atom, (22Fa

[^41]and 22Ga) lowered enantioselectivity to 70 and 76% respectively, whereas sterically more hindered 22Ca and 22Ha were produced with high enantioselectivity.

Table 6. Scope of the allylation reaction. ${ }^{[a]}$

10

1)

$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$
(R, R)-L4 ($10 \mathrm{~mol} \%$)
Dioxane, RT, 16 h
22
A R: Bn
B R: 1-Naph-CH2
C R: ${ }^{i} \mathrm{Pr}$
E R: 3,4-DMB
FR: Me
a R^{1} : Me
G R: Et
b R^{1} : Bn
D R: PMP
FR: Cy
c R^{1} : Ph

22Aa R^{1} : Me 78\%, 92\% ee
22Ab R^{1} : Bn 96\%, 96\% ee
22Ac R^{1} : Ph 85\%, 55\% ee

22Ba ${ }^{1}$: Me 77\%, 93% ee 22Bb R^{1} : $\mathrm{Bn} 78 \%$, 96% ee 22Bc R^{1} : Ph $84 \%, 42 \%$ ee

22Ea $73 \%, 88 \%$ ee

22Fa R: Me 81\%, 70% ee
22GaR: Et 83\%, 76\% ee 22CaR: ${ }^{i} \operatorname{Pr} 77 \%, 92 \%$ ee
22Da 96\%, 90\% ee
[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. Yield of isolated product after chromatography. Enantioselectivity determined by chiral HPLC.

The absolute configuration of adduct 22Aa was established by a single crystal Xray analysis and the configuration of the remaining adducts was assigned by assuming a uniform reaction mechanism.

Figure 23. ORTEP diagram of compound 22Aa.

Once the decarboxylative asymmetric allylic alkylation (DAAA) was proven to be a good methodology to obtain allyl derived tetrasubstituted pyrrolidin-2,3-diones, a more direct approach (intermolecular AAA) was explored in order to check the feasibility of the methodology. For this purpose, allyl tert-butyl carbonate 23 was added to the palladium species followed by the addition of 10Aa and $\mathbf{L 4}$ at $0^{\circ} \mathrm{C}$ (Scheme 29). No external base was required for the reaction to work, probably due to the in situ enolization of the nucleophile. The reaction worked well under the described conditions, and enantioselectivity was also in the range of the previous methodology. Thus both approaches seem to be valid for the enantioselective α-allylation reaction of pyrrolidin-2,3-diones.

Scheme 29. Intermolecular allylation of pyrrolidin-2,3-dione 10Aa.

The influence of the nature of the carbonate group was also checked in this reaction and the results are shown in Table 7. The screening showed that the results are independent on the nature of the leaving group. The enantioselectivity values were in the same range, all comparable to the decarboxylative version (92% ee).

Table 7. Carbonate screening in the allylation reaction of 10Aa. ${ }^{[a]}$

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent (mol ratio 10/allyl carbonate of 1:1.2). [b] Related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC.

As a major challenge, the intermolecular allylation of 10Aa with phenyl substituted allyl carbonates was also explored (Table 8). This reaction is challenging since it provides the possibility to access both regioisomers, linear 29a or branched 29b. Different carbonates (26-28) were explored under the usual reaction conditions. When the reaction was carried out with tert-butyl cinnamyl carbonate 26 for 16 h at room temperature, the linear product 29a was detected with $50-55 \%$ conversion, but no trace of the branched product was observed. However, after 4 days at the same temperature, the branched product was detected in 20%. Thus we can conclude that under these reaction conditions, branched product generation is slower. When using carbonates 27 and 28, similar conversion was observed after 16 h for the linear product, with no branched product generation, also checked in the crude of the reaction. However, after column chromatography purification, the branched regioisomer 29b was detected (29a/29b 57:43 with 27, and 29a/29b 67:33 with 28, entries 2 and 3).

Table 8. Asymmetric Allylic Alkylation of 10Aa with alkyl cinnamyl carbonates 26-28.

Entry	\mathbf{R}	$\mathbf{t}(\mathbf{h})$	Total conv. $(\%)^{[b]}$	Conv. 29a $(\%)^{[b]}$	Conv. 29b $(\%)^{[b]}$	$\mathbf{2 9 a}^{29} \mathbf{b}^{[\mathrm{cl}]}$	$\boldsymbol{e} \boldsymbol{e}(\%)^{[\mathrm{d}]}$
1	$\mathbf{2 6}$	16	52	52	0		
		4 d	63	43	20	n.d.	23
2	$\mathbf{2 7}$	16	55	55	0	$57 / 43$	20
3	$\mathbf{2 8}$	16	50	50	0	$67 / 33$	24

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent (mol ratio pyrrolidin/allyl carbonate of 1:2). [b] Related to the disappearance of the starting material. [c] 29a:29b ratio after column chromatography. [d] Enantioselectivity determined by chiral HPLC for 29a.

The generation of the branched product after column chromatography made us wonder whether the acid silica would promote the isomerisation of the linear product. Therefore, the stability of the linear adduct was checked under different conditions (Scheme 30). Thus a mixture of compounds 29a/29b in a 80:20 ratio was treated with silica in THF at room temperature for 16 h and it was observed that the product ratio did not vary (a, Scheme 30). In addition, the same mixture was treated with the palladium source in THF at room temperature and the product ratio was also maintained after 16 h (b, Scheme 30). Finally, it was observed that the allylation of 10Aa with 27 did not proceed in the absence of the catalyst and in the presence of silica in THF at room temperature (c, Scheme 30). Therefore, further information is required to have a better understanding of the reaction pathway.

a) 29a/29b: 80/20 $\xrightarrow[\text { THF, RT, } 16 \mathrm{~h}]{\text { silica }}$ 29a/29b: 80/20
b) 29a/29b: 80/20 $\xrightarrow[\text { THF, RT, } 16 \mathrm{~h}]{\mathrm{Pd}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}}$ 29a/29b: 80/20

Scheme 30. Stability experiments with the reaction adducts.

The addition of a base (TEA, DIPEA, DBU, $\mathrm{Li}_{2} \mathrm{CO}_{3}$, and chiral bifunctional BB) did not improve the reactivity nor the regioselectivity. Finally, other chiral ligands were also explored (0). Ligand $\mathbf{L} 1$ afforded the reaction adducts in 63% conversion after 4 days with 23% ee (entry 1). In contrast, when $\mathbf{L 3}$ was employed, the reaction did not proceed (entry 2), and as happened with unsubstituted carbonates, $\mathbf{L 4}$ afforded the reaction adduct with the highest enantioselectivity ($50 \% e e$, entry 3), although still poor.

Table 9. Ligand screening of 10Aa with tert-butyl cinnamyl carbonate 26. ${ }^{[a]}$

$(S, S)-$ L1

$(S, S)-L 3$

(R, R)-L4

Entry	Ligand $(\mathbf{5 ~ m o l} \%)$	\mathbf{t} (h)	Total. Conv. $(\%)^{[b]}$	Conv. 29a $(\%)^{[b]}$	Conv. 29b $(\%)^{[b]}$	$\boldsymbol{e} \boldsymbol{e}$ $(\%)^{[\mathrm{c}]}$
1	$\mathbf{L 1}$	16	52	52	0	
		4 d	63	43	20	23
3	$\mathbf{L 3}$	16	0	-	-	-
2	$\mathbf{L 4}$	16	56	56	0	
		4 d	64	42	22	50

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent (mol ratio pyrrolidin 10Aa/allyl carbonate 26 of 1:2). [b] Related to the disappearance of the starting material. [c] Enantioselectivity determined by chiral HPLC.

2.4.2.2. \quad Pd-catalyzed AAA of acyclic ketoamides

Given the good results of asymmetric allylic alkylation with cyclic α-substituted ketoamides, we focused our interest on the allylation of the more challenging acyclic α ketoamides to generate tetrasubstituted stereocenters (Scheme 31). For a first exploration, α-phenyl ketoamides were selected, expecting that the reactivity and stereoselectivity control would be favoured. Therefore, ketoamides bearing different substituents at the amide nitrogen were explored in the AAA.

(\pm

Scheme 31. Assymmetric allylic alkylation of acyclic α-ketoamides.

Due to the lower rigidity of the acyclic structure，control of enantioselectivity seems a more difficult task with these substrates．The acyclic ketoamides were prepared following the protocol shown in Scheme $32 .{ }^{168}$ The commercially available（di）amines 30A－30F were coupled with 2－oxobutyric acid in presence of DIPEA and TBTU followed by the arylation of the α－carbon with a palladium－phosphine catalyst at high temperature in a sealed tube．

30A R^{1}, R^{2} ：$B n$
31A（84\％）
（ \pm ）32A（70\％）
30B R^{1}, R^{2} ：Et
31B（92\％）
（ \pm ）32B（ 60% ）
30C R^{1}, R^{2} ：${ }^{i} \mathrm{Bu}$
31C（98\％）
（土）32C（58\％）
30D R ${ }^{1}$ ， R^{2} ：1－Napht－ CH_{2}
31D（77\％）
（土）32D（83\％）
30E R^{1}, R^{2} ：$-\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}$
31E（84\％）
（土）32E（80\％）
30F $\mathrm{R}^{1}, \mathrm{R}^{2}$ ：$-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}$
31F（92\％）
（ \pm ） 32 F （ 80% ）
30G R^{1} ： $\mathrm{OMe}, \mathrm{R}^{2}$ ： Me
31G（60\％）
（土）32G（83\％）
30H R ${ }^{1}$ ： $\mathrm{Ph}, \mathrm{R}^{2}$ ： Me
31H（85\％）
（ \pm ） $\mathbf{3 2 H}$（ 68% ）

Scheme 32．Synthesis of α－phenyl ketoamides 32A－F

In a first instance，the decarboxylative asymmetric allylic alkylation was considered．Following a procedure from the literature，the enol carbonate of compound 32A was formed at $-78^{\circ} \mathrm{C}$ in THF，in the presence of NaHMDS，TMEDA followed by the addition of allyl chloroformate（Figure 24）．${ }^{169}$ It was gratifying to observe that only one isomer was formed（checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ）and its geometry was determined by X－ray analysis（Figure 24）．

[^42]
(\pm) 32A

1) NaHMDS, TMEDA THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$

Figure 24. Enol carbonate formation of ketoamide 32A and X-ray structure of enol carbonate 33A.

Then, enol carbonates of ketoamides 32B-F were prepared following the same procedure and the final adducts were obtained with same selectivity and similar conversion (Table 10). As mentioned, the substituents of the nitrogen atom of the amide were varied to explore their influence in the enantioselectivity.

Table 10. Enol carbonate formation of acyclic α-ketoamides 32A-F.

A R: Bn D R: 1-Napht-CH
B R: Et ER: $-\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}$
C R: i'Bu F R: $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}$

36E 79\%

33D 70\%

$$
\text { mol scale and in } 0
$$

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of. Yield of isolated product after chromatography.

However, with amides not symmetrically substituted at the nitrogen, isomeric mixtures of the enol carbonates were detected, even under different reaction conditions (Table 11). These substrates were discarded (ketoamides 32G and 32H) and their allylation was not performed.

Table 11. Enol carbonate formation with ketoamides 32G and 32H. ${ }^{[a]}$

(\pm) 32G R: OMe
(\pm) $\mathbf{3 2 H} \mathrm{R}: \mathrm{Ph}$

1) Base,

$-78^{\circ} \mathrm{C}, 5$ min
五

E/Z
33

Entry	Product	Base	Yield $^{[\text {[] }}$	Mixture $^{\text {[c] }}$
1	33G	NaHMDS in THF, TMEDA	58	$46: 54$
2	KHMDS in Tol, TMEDA	67	$32: 68$	
3	33H	LiHMDS in THF, TMEDA	65	$74: 26$
4	$\left(\mathrm{PhMe}_{2} \mathrm{Si}_{2}\right)_{2}$ NLi in hexane, TMEDA	70	$30: 70$	
NaHMDS in THF,				
TMEDA				

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of. [b] Yield of isolated product after chromatography. [c] Mixture of E / Z isomers, which were not identified.

The study of the asymmetric allylation began with the ligand screening of compound 33A in dioxane at room temperature. As happened with pyrrolidin-2,3-diones, L4 promoted the allylation with the highest enantioselectivity. Despite providing the reaction adducts in good yields, no control of enantioselectivity was observed with L1, L7 and L14.

Table 12. Ligand screening in DAAA of acyclic ketoamide 33A. ${ }^{[a]}$

Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. Yield of isolated product after chromatography. Enantioselectivity determined by chiral HPLC.

With the best ligand in hand, the palladium source was varied to explore the influence in enantioselectivity (Table 13). Thus, when switching to $\mathrm{Pd}(\mathrm{dmdba})_{2}$ (entry 2) or $\mathrm{Pd}(\mathrm{dba})_{2}$ (entry 3), same reactivity and lower enantioselectivity than with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ was observed. Hence, $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ and ligand $\mathbf{L 4}$ were selected for the next studies.

Table 13. Palladium screening with 33A. ${ }^{[a]}$

Entry	Pd	Conv. (\%) $)^{[b]}$	Yield (\%) $)^{[d]}$	ee (\%) $)^{[d]}$
1	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$	>99	84	60
2	$\mathrm{Pd}(\mathrm{dmdba})_{2}$	>99	76	53
3	$\mathrm{Pd}(\mathrm{dba})_{2}$	>99	68	52

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. [b] Conversion after 2 h , related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC.

With the aim of increasing the enantioselectivity values, a solvent screening was also carried out whose results are depicted in Table 14. Performing the reaction in THF, the same value of enantioselectivity than with dioxane was observed (entry 2), and when using toluene as the solvent, the enantioselectivity dropped to 45% ee (entry 3). Therefore, dioxane was the solvent of choice for the next experiments.

Table 14. Solvent screening of 33A. ${ }^{[\text {a] }}$

Entry	Solvent	Conv. (\%) $)^{[\mathrm{b]}}$	Yield (\%) $^{[\mathrm{c]}}$	$\boldsymbol{e} \boldsymbol{e}(\%)^{[\mathrm{d}]}$
1	Dioxane	>99	84	60
2	THF	>99	76	60
3	Toluene	>99	80	45

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. [b] Conversion after 2 h , related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC.

With the optimized reaction conditions, an amide screening was carried out in order to check the influence of the amide substituents in enantioselectivity (Table 15). Changing the amide substituent to diethyl (33B) or diisobutyl (33C) groups, the corresponding adducts were afforded with the same enantioselectivity level ($60 \% \mathrm{ee}$). However, the enantiocontrol was slightly lower when 1-naphtylmethyl derivative 33D, or cyclic amides $\mathbf{3 3 E}$ and $\mathbf{3 3 F}$ were employed.

Table 15. Amide screening of the allylation reaction with acyclic ketoamides. ${ }^{[a]}$

A R: Bn D R: 1-Napht-CH 2
B R: Et ER: $-\left(\mathrm{CH}_{2}\right)_{5}-$
C R: 'Bu F R: $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}$

34A 84\%, 60\% ee

34B 70\%, 60\% ee

34C 90\%, 60\% ee

34D 80\%, 56\% ee

34E 81\%, 54\% ee

34F 73\%, 48\% ee
[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent. Yield of isolated product after chromatography. Enantioselectivity determined by chiral HPLC.

The intermolecular version of the reaction was also investigated with acyclic ketoamides. Here, longer reaction times were required, compared to the decarboxylative version, but enantioselectivity remained unaltered (Scheme 33).

Conv.: 80\%, Yield: 71\% 60% ee

Scheme 33. Intermolecular AAA of 32A with 23.

A base screening was also performed (Table 16) and it was observed that the reaction proceeds without the need of the base, but its addition increases the reaction rate (entry 1 and 2). In addition, the enantioselectivity value decreased significantly to 10% when NaHMDS was employed instead of DIPEA (entry 2). Besides, both enantiomers of the chiral base C24 were checked, but it was observed that the configuration had no influence in stereoselectivity as the same enantiocontrol was obtained with both of them (entries 3 and 4).

Table 16. Base screening of AAA of α-phenyl ketoamide 32A. ${ }^{[\text {a] }}$

Entry	Base	Conv. (\%) $)^{[b]}$	Yield (\%) $^{[\mathrm{c}]}$	$\boldsymbol{e} \boldsymbol{e}(\%)^{[d]}$
1	-	68	-	-
	DIPEA (0.5 equiv.)	80	68	60
2	NaHMDS (1 equiv.)	>99	72	10
3	(R)-C24	>99	75	52
4	(S)-C24	>99	73	52

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent (mol ratio ketoamide 32A/allyl tert-butyl carbonate 23 of 1:2). [b] Conversion after 16 h , related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC.

With these results in hand, improvement of the enantioselectivity was pursued with the variation of the amide group from dibenzyl- to dipyridine (Table 17). We hypothesized that the nitrogen of the aromatic ring could have an influence in the enantiocontrol. However, enantioselectivity with 32I decreased up to 32% ee (entry 2).

Table 17. Intermolecular allylation. ${ }^{[a]}$

Entry	Product	\mathbf{R}	Conv. (\%) ${ }^{[b]}$	Yield (\%) ${ }^{[\mathrm{c}]}$	$e e(\%){ }^{[d]}$
1	34A		>99	80	60
2	34J		>99	73	32

[a] Reactions performed on a 0.2 mmol scale and in 0.8 mL of solvent (mol ratio ketoamide/allyl tert-butyl carbonate 23 of $1: 2$). [b] Conversion after 16 h , related to the disappearance of the starting material. [c] Yield of isolated product after chromatography. [d] Enantioselectivity determined by chiral HPLC.

To conclude, the asymmetric allylic alkylation of pyrrolidin 2,3-diones has proven an excellent procedure for the generation of quaternary stereocenters bearing an allyl group at the alpha position with high enantioselectivity. In contrast, the enantiocontrol when using acyclic ketoamides was not so good as higher levels than 60% ee were not obtained. Hence, further studies in this field are at the moment underway in our research group, pursuing an improvement in the enantiocontrol in the α-allylation of acyclic α ketoamides.

2.4.3. Elaboration of the adducts

As mentioned at the beginning of the chapter, based on the precedents of this laboratory, we questioned whether these 4,4-disubstituted pyrrolidin-2,3-diones upon Baeyer-Villiger oxidation could be regioselectively transformed into the respective N carboxyanhydrides, that is, a carboxyl activated form of $\beta^{2,2}$-amino acids which would provide the opportunity to perform further couplings. Thus, we were pleased to find that reaction of 14Ba, 18Da, and 22A with m-chloroperbenzoic acid (m-CPBA) at $-20^{\circ} \mathrm{C}$ in DCM proceeds with complete regio- and chemoselectivity to give the respective β-amino
acid derived N-carboxyanhydrides ($\beta^{2,2}$-NCAs) 35-37 almost quantitatively and without products from oxidation of the exocyclic carbonyl group or epoxidation of the allyl group (Scheme 34). To the best of our knowledge, this is the first approach to carboxyl activated forms of α, α-disubstituted β-amino acids instead of the most common free acids or esters, ${ }^{170}$ and therefore products of more complexity may be made readily feasible by coupling of these NCAs with appropriate nucleophiles.

Scheme 34. Transformation of the reaction adducts into the corresponding NCAs 35-37.

With the NCAs in hand, the last step would be the nucleophilic reaction with an amine, to afford highly functionalized amides. Hence, coupling of 39 with Lphenylalanine tert-butyl ester, furnished product $\mathbf{3 8}$ in 77% yield. Similarly, $\mathbf{3 7}$ reacted with benzylamine to afford 39 in 75% yield.

[^43]

35

37

16 h

Scheme 35. Reactions of the amines and amino acids with NCAs.

Despite the interest in $\beta^{2,2}$-amino acids, the procedures for their catalytic and enantioselective synthesis are very limited. ${ }^{171}$ Besides the narrow range of the existing enantioselective methods for the synthesis of $\beta^{2,2}$-amino acids, it is noteworthy that these methodologies generally involve several steps including N-protection, subsequent carbonyl group activation and final coupling (a, Scheme 36), thus complicating the process. Therefore, our methodology (b, Scheme 36) has proven to be a very efficient tool to access $\beta^{2,2}$-amino acid derivatives with good reactivity and high enantioselectivity, containing functionalized groups at the alpha position to the carbonyl unit. ${ }^{172}$

[^44]a) General methodology (3 steps)

Scheme 36. a) General procedure for the incorporation and/or derivatization of amino acids into peptidic sequences and b) Our approach based on N -carboxyanhydrides.

When this research work started, there were no examples of the synthesis of $\beta^{2,2}-$ amino acids through Pd-dAAA. However, Noda and Shibasaki ${ }^{173}$ published in 2018, the decarboxylative allylation of substituted isoxazolidin-5-ones and their hydrolysis to afford $\beta^{2,2}$-amino acids bearing an allyl group (Scheme 37). In addition, a similar approach was reported by Pierce and co-workers. ${ }^{174}$

Scheme 37. Pd-catalyzed AAA of isoxazolidin-5-ones and their hydrolysis to afford $\beta^{2,2}$-amino acids.

Finally, hydrogenation of the allyl group afforded the corresponding alkyl derivatives in an easy manner for both cyclic 22Aa and acyclic ketoamides 34C.

[^45]

Scheme 38. Hydrogenation of 22Aa and 34C.

Chapter 3

Activated amides in aldol reaction
3. Activated amides in aldol reaction 115
3.1. α-Functionalization of amides via BB catalysis 115
3.2. Activation of imino esters/amides through intramolecular \mathbf{H}-bonding 118
3.3. Synthetic plan 120
3.4. Results and discussion 122
3.4.1. Organocatalytic aldol reaction of glycine derived ketiminoamides 122
3.4.1.1. Catalyst screening 122
3.4.1.2. Control experiments 124
3.4.1.3. Aldehyde scope 125
3.4.1.4. More reactive ketiminoamide for the aldol reaction 127
3.4.2. Organocatalytic aldol reaction of glycine derived aldiminoamides 131
3.4.2.1. Catalyst screening 132
3.4.2.2. Control experiments 134
3.4.2.3. Aldimine screening 134
3.4.2.4. Aldehyde scope 136
3.4.3. Elaboration of the adducts 138
3.4.3.1. Imine hydrolysis 138
3.4.3.2. Removal of the nitroanilide unit 139
3.4.3.3. Other transformations 141

3. Activated amides in aldol reaction

3.1. $\boldsymbol{\alpha}$-Functionalization of amides via BB catalysis

α-Functionalized amides are structural units present in pharmaceuticals, natural products and biologically active compounds, as well as in many industrial materials such as polymers, detergents and lubricants (Figure 25), and therefore amide α functionalization reactions are significant transformations in organic chemistry and biochemistry. ${ }^{175}$

Figure 25. Biologically active compounds bearing an amide unit.

In spite of the huge importance of α-functionalized amides in organic chemistry, well-established methods for their asymmetric synthesis are limited. Most examples are promoted via stoichiometric approaches, and catalytic strategies (metal catalysis, and Brønsted base catalysis) involving α-functionalization of amides remains challenging, due to the low acidity of their α-carbon. As mentioned in the introduction, the strategies that have been reported in this context involve the use of activated amides.

Additionally, there is a great interest in the enantioselective synthesis of α-amino acids due to their presence in many natural and non-natural products as well as useful scaffolds for asymmetric catalysis. ${ }^{176}$ Therefore, different approaches for their enantioselective synthesis have been reported, mostly relying on the use of glycine as starting material (Figure 26). ${ }^{177}$

[^46]

Figure 26. Approach to α-amino acids through benzophenone imine glycine esters.

In this context, benzophenone imines of glycine esters, introduced by O'Donnel and Eckrich ${ }^{178}$ in 1978, have shown to be very useful bench stable pronucleophiles for this goal. ${ }^{179}$ However, their use in enantioselective synthesis has been mainly limited to metal ${ }^{180}$ and phase transfer catalysis ${ }^{181}$ while application in BB / H-bonding catalysis remains essentially underexplored. ${ }^{182}$
α-Amino β-hydroxy acids are of interest in medicinal chemistry ${ }^{183}$ and useful starting materials for synthesis. One approach for their asymmetric synthesis is the aldol reaction of glycine iminoesters. The first catalytic direct aldol reaction of benzophenone imines of glycine esters was reported in 1991 by Miller and Gasparski using phasetransfer catalysis, but the major anti-adducts were produced in low diastereoselectivity and negligible enantiomeric excess. ${ }^{184}$ Maruoka achieved a significant improvement through the development of the N-spiro, binaphtyl-based ammonium phase transfer catalysts C25 (a, Scheme 39), which provided the anti isomers in excellent stereoselectivity for aliphatic aldehydes but very poor with aromatic aldehydes. ${ }^{185}$ In the same context Shibasaki described the use of the heterobimetallic $\mathrm{Li}_{3}\left[\mathrm{La}(\mathrm{S}-\mathrm{BINOL})_{3}\right]$

[^47]catalysts to access the anti- aldols, but poor to only moderate stereoselectivities were observed (b, Scheme 39). ${ }^{186}$
a) Maruoka, $\mathbf{2 0 0 4}^{185}$

b) Shibasaki, 2002^{186}

c) Trost, $2014^{188 a}$

Scheme 39. Representative literature precedents involving aldol reaction of glycinate Schiff bases.

Poor diastereo- and enantioselectivities were also produced in the aldol reaction of the corresponding lithium enolate of the iminoester with aldehydes in the presence of

[^48]$(-)$-sparteine. ${ }^{187}$ The only report concerning the synthesis of syn- isomers was described by Trost using a zinc-ProPhenol-catalyst (c, Scheme 39). ${ }^{188}$ The reaction works well for α-substituted aldehydes but provides less satisfactory enantioselectivities for aromatic or linear alkyl aldehydes. To the best of our knowledge, no organocatalytic syn-selective protocols for the direct aldol reaction of these iminoesters have been reported to date. In addition Brønsted base/H-bonding catalysis with benzophenone iminoesters is underexplored. The main reason that may account for this observation is the relatively low acidity of the methylenic carbon, which precludes enolate generation through deprotonation by soft Brønsted bases.

3.2. Activation of imino esters/amides through intramolecular \mathbf{H} bonding

Only recently, three examples of stereoselective α-functionalization of imino esters promoted by BBs have been documented in which the low reactivity problem has been solved by using the more acidic structural analogs $\mathbf{4 2}, 43$ and $\mathbf{4 4}$ (Figure 27). The increased acidity of these compounds is the result of the structural modification of the imine function of the iminoester as in compound $\mathbf{4 2}$ developed by Kobayashi and coworkers ${ }^{189}$ whose fluorenyl moiety stabilizes the resulting enolate by more extensive charge delocalization, or as in compound $\mathbf{4 3}^{190}$ and $\mathbf{4 4}{ }^{191}$ wherein the acidity of the methylenic carbon is increased through intramolecular hydrogen bonding of the previously installed o-hydroxylaryl motif at the imine function.

Kobayashi (2008)
42

Alemán (2018)
43

Guo (2018)
44

Figure 27. Glycine ester derived imines used in BB asymmetric catalysis.

[^49]In this context, there are a few examples in the literature documenting the intramolecular hydrogen bond activation of substrates for catalytic reactions, as it will be explained below. In addition to the recent works by Aleman and Guo (Figure 27, compounds 43 and 44), different research groups, ${ }^{192}$ have reported the increased reactivity of different substrates through intramolecular hydrogen bonding, which also provide the reaction adducts in good stereoselectivity (Figure 28). Takemoto and coworkers designed an activated Michael acceptor with enhanced reactivity due to the intramolecular hydrogen bonding between the imide N-H moiety and the methoxy group of the benzamide (a, Figure 28), and Kim designed a similar activated Michael acceptor (b, Figure 28). Following this work, Vicario reported an activated nitroalkene (c, Figure 28), based on the same strategy, and in our research group, α-hydroxy enones (d, Figure 28) were reported as useful templates for conjugate additions. Regarding nucleophilic activation through intramolecular hydrogen bonding, Da employed o hydroxyacetophenone (e, Figure 28) as nucleophile for the cross-aldol reaction with trifluoromethyl ketones promoted by bifunctional BB catalysis and, as mentioned in the introduction, our research group reported hydroxyketones (f, Figure 28) for the conjugate addition to nitroalkenes.

Electrophile activation

a)

b)

c)

Vicario (2012)
d)

Palomo (2014)

Nucleophile activation

e)

Da (2017)
Palomo (2018)

Figure 28. Examples of intramolecular H-bond activation for electrophiles and nucleophiles in asymmetric catalysis.

[^50]Based on these examples in which intramolecular hydrogen bond preactivate the pronucleophile for the subsequent reaction, we decided to evaluate a conceptually new option for iminoesters in which the activation of the glycine derived benzophenone imine proceeds from the carboxylic acid terminus by formation of an o-nitroanilide (Figure 29).

Figure 29. New glycine derived benzophenone imine $\mathbf{4 5}$ for BB asymmetric catalysis.

It has been reported that o-nitroanilides of simple carboxylic acids exhibit intramolecular hydrogen bonding between the oxygen of the nitro group and the hydrogen of the amide moiety, ${ }^{193}$ a feature that facilitates hydrolysis by enzymes. ${ }^{194}$ Therefore, we hypothesized that benzophenone imine 45 , besides this H-bond pattern, should also exhibit an additional H -bonding with the imine function increasing the acidity of the methylenic carbon thus allowing enolization with a weak tertiary amine base.

3.3. Synthetic plan

Preparation of $\mathbf{4 5}$ was carried out following the protocol shown in Scheme 40.

Scheme 40. Retrosynthesis of nitroanilide 45.

[^51]The first step is the coupling of N-(tert-butoxycarbonyl)glycine with 2nitroaniline. For this reaction pyridine was used as solvent and phosphorus oxychloride as the condensing agent, following a procedure developed by Tesser. ${ }^{195}$ Under these conditions, 46 was obtained in 68% yield (Scheme 41). Removal of the Boc- group and condensation with benzophenone imine in dichloromethane, led to o-nitroanilide $\mathbf{4 5}$ in good yield.

Scheme 41. Synthesis of nitroanilide 45.

The previously mentioned H -bonding interactions could be confirmed in the X-ray structure analysis of compound $\mathbf{4 5}$, which revealed hydrogen bond lengths of $1,987 \AA$ and $2,149 \AA$ that fit well with the proposed bifurcated hydrogen bond motif ${ }^{196}$ (Figure 30). Interestingly, the X-Ray analysis also showed an additional hydrogen bonding ($2.234 \AA$) between the o-aromatic hydrogen and the carbonyl oxygen. Therefore, while amides are known to be reluctant to enolization, ${ }^{197}$ we expected these structural features should render substrate 45 quite promising for Brønsted base promoted stereoselective transformations.

[^52]

Figure 30. X-ray structure for compound 45.

The previous precedents on organocatalytic aldol reactions of iminoesters clearly show the need of protocols to access the syn aldol isomers. Therefore, with pronucleophile 45 in hand, we selected the aldol reaction to check our hypothesis on the higher reactivity on nitroanilides $\mathbf{4 5}$ in BB bifunctional catalysis in order to explore both the reactivity and dioastereoselectivity of this transformation.

3.4. Results and discussion

3.4.1. Organocatalytic aldol reaction of glycine derived ketiminoamides

3.4.1.1. Catalyst screening

Initially, the approach was evaluated from the reaction of benzophenone imine 45 with hydrocinnamaldehyde 48a (Table 18) mediated by different bifunctional BBs at room temperature. Under these reaction conditions, formation of small amounts (10-15\%) of the cyclisized product 50a were also observed. ${ }^{198}$ However, after one-pot reductive work up with $\mathrm{NaBH}_{3} \mathrm{CN} / \mathrm{AcOH}$, both the aldol adduct and the cyclisized product were transformed into amino alcohol derivative 49a with no loss of stereoselectivity. Therefore, the same procedure was followed in all of the studies in order to avoid product mixture generation. Using squaramides C27 and C28, the reaction, indeed proceeded to give the aldol product 49a after one-pot reductive work up, but with very poor diastereoselectivity and negligible enantioselectivity, albeit very good for the minor

[^53]Table 18. Catalyst screening for the aldol reaction of 45 and hydrocinnamaldehyde 48a. ${ }^{[a]}$

[a] Reaction conditions: Nitroanilide 45 (0.2 mmol , 1 equiv.) in 0.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hydrocinnamaldehyde 48 ($0.6 \mathrm{mmol}, 3$ equiv.). Conversion determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction. The dr values were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction and corrobotared in the reaction crude after reduction. The $e e$ values were determined for the major diastereiomer by chiral HPLC. [b] Reaction carried out at $0^{\circ} \mathrm{C}$ in 64 h .
isomer. Using the parent ureas C29 and C30 much better diastereocontrol was achieved, but the enantioselectivity of the product was still poor. To improve the stereocontrol through the incorporation of additional H -bond donors, we focused on ureidopeptide derived Brønsted bases, previously developed in our research group. It was gratifying to observe that with exception of C35, the new catalysts C31-C37 provided diastereomeric ratios greater than 98:2 in each case with good enantioselectivity. C34 was mostly unsoluble and conversion was lower than with C37. Therefore, further improvement was achieved using catalyst C37 and lowering the reaction temperature to $0{ }^{\circ} \mathrm{C} 49 \mathrm{a}$ was afforded in 77% isolated yield and $94 \% e e$.

3.4.1.2. Control experiments

To further show the relevance of the intramolecular hydrogen bonding in o nitroanilide 45, benzophenone imines 51 and 52 were prepared and subjected to treatment with hydrocinnamaldehyde under the above reaction conditions (Scheme 42). The reaction with $\mathbf{5 1}$ did not proceed. This observation suggests the inability of the NO_{2} group in para position to participate in intramolecular H -bond, thus corroborating the potential of the designed nucleophile $\mathbf{4 5}$. The same result was obtained with α-imino ester 52. Likewise, in an attempt to strengthen the hydrogen bonding, compound $\mathbf{5 3}$ bearing an additional nitro group at the para position was also prepared. In this case, the reaction proceeded in poor yield, with a slight loss in diastereoselectivity, but with a dramatic decrease in enantioselectivity.

Scheme 42. Control experiments.

3.4.1.3. Aldehyde scope

With the optimal reaction conditions in hand, the scope of aldehydes was then investigated with $\mathbf{4 5}$, in order to show the generality of the reaction. The study was performed with other enolizable aldehydes. When hexanal was used (entry 2), it was noticed that longer reaction timers were required, but high diastereoselectivity (>98:2) and high enantioselectivity were observed. When using 2-octynal (entry 3), total conversion was obtained after 24 h , but diastereoselectivity lowered to 77:23 and enantioselectivity was reduced to $4 \% e e$. Sterically more demanding aldehydes (isopropanal, cyclohexanecarboxaldehyde, entries 4-6), did not provide the corresponding reaction adducts, even at high temperatures. Aromatic aldehydes were also unreactive towards nucleophile 45 (entries 7 and 8) under those reaction conditions.

Table 19. Aldehyde scope of 45 . ${ }^{[a]}$

Entry	\mathbf{R}	Prod	t (h)	Conv. $(\%)^{[c]}$	$\begin{gathered} \text { Yield } \\ (\%) \end{gathered}$	$d r^{[d]}$	$\begin{gathered} \boldsymbol{e} \boldsymbol{e} \\ (\%)^{[\mathrm{e}]} \end{gathered}$
1	$3^{3} 5^{5} \mathrm{Ph}$	49a	48	95	70	>98:2	88
2	${ }^{n}$ Pent	49b	48	46	35	>98:2	90
3	$\cdots{ }^{\text {N }}$ 三 $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	49c	24	100	85	77:23	4
4	${ }^{\text {i }} \mathrm{Pr}$	49d	24	0	-	-	-
$5{ }^{[b]}$			24	0	-	-	-
6		49e	24	0	-	-	-
7	p-Tolualdehyde	49 f	24	<5	-	-	-
8	Ph	49g	24	15	-	-	-

$\sqrt[{[a}]]{\text { Reaction conditions: } \mathbf{4 5}\left(0.2 \mathrm{mmol}, 1 \text { equiv.), } \mathrm{NaHCO}_{3}(20 \mathrm{~mol} \%) \text { and the corresponding aldehyde (} 0.6\right.}$ mmol, 3 equiv.) in dichloromethane (0.6 mL). ${ }^{[b]}$ The reaction was carried out at $50^{\circ} \mathrm{C}$ in dichloroethane. ${ }^{[\mathrm{c}]}$ Determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, before reduction. ${ }^{[d]}$ Determined before reduction by ${ }^{1} \mathrm{H}$-NMR and corroborated after reduction. ${ }^{[e]}$ Determined by chiral HPLC for the major diastereioisomer.

In order to broad the scope of the aldol reaction, further activation of the pronucleophile was investigated. Therefore, two pathways were considered: 1) the introduction of an electronwithdrawing group at the aromatic ring of the imine, and 2) switching from ketiminoamides to aldiminoamides. The corresponding results of these two alternatives are summarized below.

3.4.1.4. More reactive ketiminoamides for the aldol reaction.

In this context and, as mentioned before, we first considered the introduction of CF_{3} - groups in the imine unit (Figure 31). ${ }^{186}$

increased nucleophilicity

Figure 31. Proposal for increasing the nucleophilicity.through EWG introduction.

Hence, two different pronucleophiles were prepared 57 and 58 (Scheme 43). The corresponding imines were not commercially available, therefore imine hydrochlorides $\mathbf{5 5}$ and $\mathbf{5 6}$ were prepared adapting the described procedures, and compounds $\mathbf{5 7}$ and $\mathbf{5 8}$ were obtained in good yields. ${ }^{199}$

[^54]

1) $\mathrm{Mg}, \mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 2 h
2)

55 R: $3,5-\mathrm{CF}_{3}$ (75\%)
56 R: $4-\mathrm{CF}_{3}$ (82\%)

Scheme 43. Synthesis of pronucleophiles 56 and 57.

The aldol reaction of compounds $\mathbf{5 7}$ and $\mathbf{5 8}$ with hydrocinnamaldehyde 48a was then explored in the presence of $\mathbf{C 3 7}$ at $0^{\circ} \mathrm{C}$ (Table 20). Compound $\mathbf{5 7}$ afforded the reaction adduct with full conversion in 16 h , but with lower stereoselectivity values (entry 2). Compound 58 (entry 3) also showed increased reactivity with respect to $\mathbf{4 5}$ and provided the reaction adduct with excellent diastereo and enantioselectivity (Entry 2). With these results in hand, $\mathbf{5 8}$ was selected for the study of the reaction scope with different aldehydes.

Table 20. Imine screening with hydrocinnamaldehyde 48a. ${ }^{[a]}$

Entry	Ar	Prod	$\mathbf{t}(\mathbf{h})$	Conv. (\%) ${ }^{[\mathrm{b}]}$	Yield (\%)	$\boldsymbol{d r} \boldsymbol{r}^{[\mathrm{cc}]}$	$\boldsymbol{e e}(\boldsymbol{(\%})^{[\mathrm{d}]}$
1	Ph	$\mathbf{4 9 a}$	64	99	77	$>98: 2$	94
2	$3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}$	$\mathbf{5 9 a}$	16	100	84	$88: 12$	76
3	$4-\mathrm{CF}_{3} \mathrm{Ph}$	$\mathbf{6 0 a}$	16	80	64	$>98: 2$	92

[a] Reaction conditions: Nitroanilide (0.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and hydrocinnamaldehyde (0.6 mmol , 3 equiv.) [b] Determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction. [c] Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction and corroborated after reduction. [d] Determined for the major diastereiomer by chiral HPLC.
p-Trifluoromethyl derivative $\mathbf{5 8}$ was therefore subjected to the general reaction conditions with different enolizable aldehydes at $-10^{\circ} \mathrm{C}$ (Table 21). With the exception of the α-branched aldehyde cyclohexane carboxaldehyde 48e which was inert also to this system, results were consistently good. As data in Table 21 show, short and long alkyl chains (butanal, hexanal, heptanal), β-branched isovaleraldehyde, and even aldehydes bearing side chains with functional groups (carbamate, ether) participate satisfactorily in this reaction. Chemical yields were generally good and essentially a single diastereoisomer was produced with high enantiomeric excess. Importantly, in every case under these reaction conditions self aldol products from the corresponding enolizable aldehyde 48 were not detected.

Table 21. Scope of the catalytic aldol reaction of nitroanilide $\mathbf{5 8}$ with enolizable aldehydes. ${ }^{[a]}$

$58 \%,>98: 2 d r, 92 \% e e^{[b]}$

$72 \%,>98: 2 d r, 92 \%$ ee

$78 \%,>98: 2 d r, 84 \%$ ee

[a] Reaction conditions: $\mathbf{5 8}$ ($0.2 \mathrm{mmol}, 1$ equiv.) and the corresponding aldehyde ($0.6 \mathrm{mmol}, 3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ Yields refer to isolated adducts after reduction of the imine. The $d r$ values were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction and corroborated after reduction. The $e e$ values determined for the major diastereiomer by chiral HPLC after reduction. [b] Reaction carried out at $0^{\circ} \mathrm{C}$. [c] The reaction was also tried at $40^{\circ} \mathrm{C}$, but conversion remained negligible.

The absolute configuration of the adducts was determined by X-Ray analysis of compound $\mathbf{6 1}$ after transformation of 59a through imine hydrolysis and further coupling with 4-bromobenzoyl chloride, and that of the remaining adducts was established by assumption of a uniform reaction mechanism (Figure 32).

61

Figure 32. X-Ray structure of compound 61.

3.4.2. Organocatalytic aldol reaction of glycine derived aldiminoamides

As a second possibility for the improvement of the reactivity of $\mathbf{4 5}$ in the aldol reaction, glycine aldimino amide $\mathbf{6 2}$ was prepared following the general procedure (Scheme 44). The X-ray analysis of 62 confirmed the existence of the same intramolecular hydrogen bond network than in $\mathbf{4 5}$ and the E geometry of the imine

Scheme 44. Preparation and X-Ray structure of compound 62.

3.4.2.1. Catalyst screening

The aldol reaction of $\mathbf{6 2}$ with hydrocinnamaldehyde 48a was then investigated at room temperature in the presence of different catalysts (Table 22). C37 afforded 63a with complete conversion in 3 h revealing that the reactivity of $\mathbf{6 2}$ was much higher than that of $\mathbf{4 5}$ ($16 \mathrm{~h}, 84 \%$ conv.). However, diastereoselectivity and enantioselectivity were very low (55:45 dr, 24\% and 25% ee for each diastereoisomer, respectively). Lowering the temperature to $-10^{\circ} \mathrm{C}$, did not significantly improve the stereocontrol (entry 2). Hence, a catalyst screening was performed. Switching to quinine-derived squaramides C20 and C38, inversion of the diastereoselectivity was observed and enantioselectivity values improved to 93% in both cases (entries 3 and 4). Looking for an improvement in diastereoselectivity, catalysts $\mathbf{C 2 1}$ and $\mathbf{C 2 2}$ which differ in the aromatic unit were checked, but the reaction did not proceed at $-10^{\circ} \mathrm{C}$, and RT and $0^{\circ} \mathrm{C}$ were respectively required for conversion improvement. Diastereoselectivity was low in both cases and enantioselectivity was moderate. Therefore as C38 and C20 had provided the best results, structural modifications in $\mathbf{C 3 8}$ and $\mathbf{C 2 0}$ were then considered, and in a first instance the basic unit was varied. C28 and C29 were then screened under the same reaction conditions. As a result, both catalysts afforded excellent enantioselectivity and improved diastereoselectivity up to 90:10 (entryies 7 and 8).

Table 22. Catalyst screening in the reaction of 62 with hydrocinnamaldehyde 48a.

[a] Reaction conditions: 62 ($0.2 \mathrm{mmol}, 1$ equiv.) and hydrocinnamaldehyde $\mathbf{4 8 a}$ ($0.6 \mathrm{mmol}, 3$ equiv.) in dry dichloromethane $(0.6 \mathrm{~mL})$. [b] Determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reductive work-up. [c] Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction (syn/anti) and corroborated after reduction. [d] Determined by chiral HPLC. [e] Reaction carried out at room temperature. [f] Reaction carried out at $0^{\circ} \mathrm{C}$.

3.4.2.2. Control experiments

Control experiments were also performed in this case, and it was gratifying to observe the significance of the intramolecular hydrogen bonding network in o nitroanilides for success. Compounds 64, 65 and 66 were prepared and none of them afforded the corresponding adduct under the standard reaction conditions (a, Scheme 45). In addition, when the reaction was carried out with $\mathbf{6 2}$ in the absence of catalyst under the same reaction conditions, no reaction was observed after 3 days (b, Scheme 45).

Scheme 45. Control experiments: a) Reactivitiy of aldimines 64, 65 and 66 in the aldol reaction with 48a.
b) Reaction of the starting $\mathbf{6 2}$ in the absence of catalyst. NR: no reaction.

3.4.2.3. Aldimine screening

On the other hand, an in order to improve the diastereoselectivity values obtained with 62, variations in the imine structure were also considered. Therefore, amides bearing different imine substituents were prepared (67-72, Table 23) and screened under the previously optimized reaction conditions. The phenyl- derivative 67 (entry 3) did not react at $-10^{\circ} \mathrm{C}$, and only 20% conversion was obtained at room temperature in four days. When the reaction was performed with the antracenyl derivative 68 (entry 4), the temperature had to be increased to $0^{\circ} \mathrm{C}$ for the reaction to proceed, but the diastereo and enantiocontrol were poor. With the ortho-substituted derivatives 69, 70, 71 and $\mathbf{7 2}$ (entries $5,6,7,8$) the aldol reactions were run at room temperature, as conversion at -10 ${ }^{\circ} \mathrm{C}$ was very low. As a result, diastereoselectivity and enantioselectivity dropped. After these results aldimine $\mathbf{6 2}$ was selected for the study of the aldehyde scope.

Table 23. Imine screening of glycine aldimines with hydrocinnamaldehyde 48a. ${ }^{\text {[a] }}$

[a] Reaction conditions: The corresponding nitroanilide (0.2 mmol) and hydrocinnamaldehyde 48a (0.6 mmol, 3 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. [b] Determined by the disappearance of the starting material before reduction by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. [c] anti/syn ratio determined before reduction by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and corroborated after reductive work up. [d] Determined by chiral HPLC for the major and minor (anti/syn) diastereomers respectively. [e] Precipitates at $-10^{\circ} \mathrm{C}$.

3.4.2.4 Aldehyde scope

With the best imine group in hand, the aldehyde scope was studied with 62 in the presence of C28. The corresponding results are shown in Table 24. Reaction of $\mathbf{6 2}$ with aliphatic aldehydes (butanal, hexanal, isovaleraldehyde), provided the reaction adduct with 90:10 anti/syn ratio and ee values up to 96%. 4-Pentenal also reacted affording the adduct in $90: 10 \mathrm{dr}$ and $96 \% \mathrm{ee}$. The reaction with sterically more hindered aldehydes as cyclohexane carboxaldehyde, afforded 63e with $85: 15 d r$ and $93 \% e e$. In all of the investigated cases, the low solubility of catalyst $\mathbf{C 2 8}$ under the reaction conditions longered reaction time to 72 h .

Table 24. Scope of aldehydes with $\mathbf{6 2}$. ${ }^{[a]}$

[a] Reaction conditions: Nitroanilide $62(0.2 \mathrm{mmol})$ and the corresponding aldehyde ($0.6 \mathrm{mmol}, 3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. Conversion determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ before reduction. The $d r$ values were determined before reduction by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and corroborated after reduction. The $e e$ values were determined by chiral HPLC for the major anti diastereoisomer. [b] The reaction was carried out at $0^{\circ} \mathrm{C}$.

The absolute configuration of the reaction adducts was determined for compound 79 by X-Ray single crystal structure analysis after transformation of 63a through imine hydrolysis and further coupling with 4-bromobenzoyl chloride in the presence of DMAP, and that of the remaining adducts was established by assuming a uniform reaction mechanism.

Figure 33. X-Ray structure of 79

3.4.3. Elaboration of the adducts

These densely functionalized adducts are of interest for further reactions and can therefore be transformed into different functionalities, as summarized below.

3.4.3.1. Imine hydrolysis

Hydrolysis of the imine moiety of the aldol adduct 60a provided β-hydroxy- α amino amide 80a with the same initial diastereoselecivity as showed the treatment of $\mathbf{6 0 a}$ with HCl in THF at $0^{\circ} \mathrm{C}$ for one hour. Subsequent Boc protection of 80a rendered $\mathbf{8 1}$. This way, the optimal imine structure can be employed in the organocatalytic reaction, regardless the synthetic utility, as it is easily eliminated under mild reaction conditions. Additionally, coupling of 80a with 4-bromo benzoyl chloride, afforded 61, which enabled crystallization for X-Ray analysis and determination of the absolute configuration. Following the same methodology, hydrolysis and further coupling of 63a with 4-bromo benzoyl chloride in presence of DMAP, afforded 79 with good yield, also enabling crystallization for X-Ray analysis and determination of the absolute configuration.

Scheme 46. Hydrolysis of the imine moiety and amine-protection.

3.4.3.2. \quad Removal of the nitroanilide unit

One of the most synthetically interesting transformation consists on the removal of the nitroanilide (Scheme 47), which can be considered as an auxiliary that enhances the reactivity of the nucleophile. For this goal different reaction conditions were explored, which are summarized below.

Scheme 47. Removal of the nitroanilide unit.

The first efforts were directed towards the direct esterification of the amide of compound 49a under acidic conditions in MeOH . However, the starting material did not react under any of the conditions shown in Table 25.

Table 25. First efforts towards removal of the nitroanilide unit in adduct 49a.

Entry	Solvent	Acid (M)	Equiv.	$\left.\mathbf{T ~ (~}{ }^{\circ} \mathbf{C}\right)$	$\mathbf{t}(\mathbf{h})$	Conv. (\%)
1	MeOH	$\mathrm{HCl}(3 \mathrm{M})$	1.3	RT	16	0
2	MeOH	$\mathrm{HCl}(3 \mathrm{M})$	6.7	RT	16	0
3	MeOH	$\mathrm{HCl}(3 \mathrm{M})$	10	40	4	0
4	MeOH	HCl conc	66	RT	48	0
5	MeOH	$\mathrm{HCl}(1.25 \mathrm{M})$	3	RT	16	0
6	MeOH	$\mathrm{HCl}(6 \mathrm{M})$	20	RT	4	0
7		$\mathrm{H}_{2} \mathrm{SO}_{4}$ conc	38	RT	48	0
8	-	$\mathrm{HCl}_{\text {conc }}$	230	100	4	0
9	MeOH	$\mathrm{BF}_{3} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	1	65	3	0

Transamidation of the reaction adducts was also tried, by treatment of adduct 49a with 1.2 equiv. of benzylamine in DMF at $50^{\circ} \mathrm{C}$, but no reaction was observed after 16 h , probably due to the nature of the nitroanilide as a bad leaving group or to the stabilization of the group through hydrogen bonding.

Scheme 48. Transamidation.efforts 49a.

Other strategy that enables milder hydrolysis conditions involves the N methylation or the Boc-protection of the amide, in order to create a more labile leaving group. On this basis, following a procedure described by Verho and co-workers, ${ }^{200} \beta$ -hydroxy- α-amino amide 49a was Boc-protected (82) and converted into the corresponding carboxylic acid $\mathbf{8 3}$ using $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ with good yield (Scheme 49).

Scheme 49. Boc protection and further hydrolysis of 49a.

3.4.3.3. Other transformations

Protection of 49a with camphorsulphonic acid and dimethoxy propane afforded $\mathbf{8 4}$ with good yield.

Scheme 50. Protection of amino alcohol 49a with CSA and DPM.

[^55]We were surprised to find that the benzhydryl moiety was not cleaved under hydrogenation conditions when 49a was used with the aim of obtaining the N-Boc derivative 81, in the presence of tert-butyl dicarboxylate. Alternatively, the nitro group was reduced to the amine, and a mixture of $\mathbf{8 5}$ and $\mathbf{8 6}$ was obtained.

Scheme 51. Hydrogenation of 49a.

In summary, we have reported a highly diastereo- and enantioselective direct aldol reaction of Schiff bases of glycine o-nitroanilide triggered by an intramolecular hydrogen bonding as key activation element. In this way both anti- and syn- β-hydroxy α-amino acids may be accessed from the same strategy by simple using a glycine o-nitroanilide derived ketimine or aldimine and their corresponding optimal catalysts, respectively. This realization constitutes the first synthetic application of this type of amides that will clearly found further utility in asymmetric catalysis.

Chapter 4

New Oligoureas for their evaluation in organocatalysis
4. New oligoureas for their evaluation in organocatalysis 147
4.1. Synthetic foldamers to mimic protein features 147
4.2. Oligoureas as hydrogen bonding catalysts for enantioselective reactions 149
4.2.1. Valine-based oligourea for organocatalysis 151
4.3. Synthetic plan 152
4.4. Results and discussion 154

4. New oligoureas for their evaluation in organocatalysis.

4.1. Synthetic foldamers to mimic protein features

In nature, there are large molecules that perform diverse functions such as catalysis, tight and specific binding, directed flow of electrons or molecular recognition among others. The polymers that fulfil these functions, mostly proteins or RNA, are unique compared to other biological and synthetic polymers because of their ability to adopt specific compact conformations that are kinetically and thermodynamically stable. In other words, there is a strong relationship between folding and function among proteins. ${ }^{201}$ These folding patterns generate "active sites" via precise three dimensional arrangements of functional groups.

Figure 34. Folding of a random coil forming a helix.

On this basis, the design of discrete non-natural oligomers (foldamers) with predictable and well-characterized folding patterns has attracted considerable attention in the last decade. ${ }^{202}$ The term foldamer refers to a synthetic polymer with a strong tendency to adopt a specific compact conformation. The ability to synthesize sequence-based oligomers that fold with high fidelity (foldamers) raises interesting prospects for mimicking biopolymers and for creating molecules with functions.

[^56]In addition, the possibility to integrate and convert high resolution structural data into a functional outcome is being explored for biomedical applications (antimicrobials, cell penetrating agents and inhibitors of protein-protein interactions). ${ }^{203}$

It has been demonstrated that some non-natural oligoamide backbones exhibit protein-like conformational behaviour. This is of great interest for chemists. ${ }^{204}$ On this basis, many research groups have focused on the synthesis of new oligoureas for different purposes. The applications of foldamers are being explored in different fields. In this context, Zuckermann and co-workers ${ }^{205}$ studied peptoid sequences that form supramolecular assembles of nanosheets and nanotubes (Figure 35).

Figure 35. Applications of peptoid polymers in materal science.

Biomedical applications of foldamers have also been studied by different groups. Based on the difficulties of proteins to penetrate human cells, different cell-penetrating agents have been synthesized. More specifically, Amblard and co-workers ${ }^{206}$ designed the oligomer shown in Figure 36, through a straightforward conversion of peptide sequences into γ-lactam containing oligomers, that adopt a ribbon-like secondary structure which enables cell penetration.

[^57]

Figure 36. Conversion of peptides into cell-penetrating α-amino γ-lactam foldamers.

Recently, organocatalysis has emerged as an additional application of foldamers. Similar to enzymes, preorganization of the catalyst through H-bonding may contribute to enhance catalyst efficiency through stabilization of charged and transition-state intermediates. Even though peptides have been described as catalysts in a wide number of stereoselective transformations, ${ }^{207}$ little progress has been made in this direction with foldamers.

4.2. Oligoureas as hydrogen bonding catalysts for enantioselective reactions

Preorganization of a catalyst through folding would be expected to contribute to enhanced catalytic efficiency through cooperative substrate binding, specific stabilization of charged transition-states and intermediates and minimization of the entropic cost of transition-state binding.

Based on the idea that oligourea foldamers could be useful in hydrogen bonding catalysis, the group of Guichard and our own group investigated for the first time enantiopure helical oligo(thio)urea foldamers for enantioselective carbon-carbon bond forming reactions (Scheme 52). ${ }^{208}$ In this context, a potential oligourea foldamer catalyst that is known to be long enough (hexamer) to form a stable helix O6 was designed (a and b in Figure 37). More specifically, the valine-alanine-leucine sequence was combined with a classical activating electron withdrawing group forming the final organocatalyst. As mentioned, the H -bond network provides the helical conformation leaving the first two ureas free, ready to interact with substrates and anions.

[^58]Then, the conjugate addition of malonate esters to different nitroolefins promoted by $\mathbf{O 6}$ in combination with triethylamine as Brønsted base cocatalyst was performed. It is noteworthy that even at low catalyst loading, the reactivity and stereoselectivity were high. Thus the catalytic system proved to be valid for different substitution patterns.

Scheme 52. Conjugate addition of malonate esters to nitroolefins, promoted by 06.

The reaction was performed employing a very low catalyst loading, leading to high yields and excellent enantioselectivity. A study on the effect of the oligourea chain length was performed, observing that the ability to form a stable helix influences the enantioselectivity. As it is known, the helix forming propensity of a specific compound can be measured by electronic circular dichroism (ECD) spectroscopy (c, Figure 37). As Figure 37 ilustrates, the tetramer, pentamer and hexamer, displayed the characteristic ECD signature with a positive maximum whose intensity increases with the number of residues in the chain.
a)

b)

c)

Figure 37. a) Representation of the extended chain of the N, N^{\prime}.linked oligourea O6. b) X-Ray crystal structure of O6. c) Electronic circular dichroism (ECD) analysis of oligoureas O1-O6.

All foldamers were tested in the conjugate addition, and it was observed that all of the oligoureas catalyzed the reaction even at low catalyst loading. There was almost no enantiocontrol in the presence of monomer and dimer. Therefore, it can be stated that well-defined helical conformation is required for efficient stereocontrol in catalysis. Moreover, it was proven that the activity of the catalytic system persists at high temperature, with a slight decrease in enantioselectivity.

With these precedents in mind, additional studies in the ability of different oligoureas to catalyze asymmetric reactions were proposed. In this context, the aim of my research work was the synthesis of different chain-length (L)-valine-based oligoureas and their evaluation in organocatalysis.

4.2.1. Valine-based oligourea for organocatalysis

The interest in having a valine-based oligourea relies on the structure. Unlike alanine and leucine, valine is β-branched. Same as isoleucine and threonine, valine contains two non-hydrogen substituents in β position (Figure 38).

Non-substituted in β

L-Alanine

L-Leucine

Substituted in β

L-Isoleucine

L-Treonine

Figure 38. Amino acids

Hence, the interest relies on the bulkyness around the amino acid unit. We wondered whether this fact would restrict the conformations that the main chain may adopt and influence the enantioselectivity outcome of the reaction.

4.3. Synthetic plan

Preparation of valine-based oligoureas was carried out following the described procedures.

Scheme 53. Retrosynthesis of oligoureas 07-012.

The valine-based building block was prepared as shown in Scheme 54. ${ }^{209}$ First, the Boc-protected valine was reduced to the corresponding alcohol 88, followed by the Mitsunobu reaction, in the presence of phthalimide. The phthalimide derivative $\mathbf{8 9}$ was then reduced to the corresponding amine $\mathbf{9 0}$ and this was activated by reaction with N, N^{\prime} disuccinimidyl carbonate affording 91 with an overall yield of 52%.

[^59]

Scheme 54. Synthesis of valine building block.

After preparation of building block 91, different chain-length oligoureas were synthesised in solution according to the method shown in Scheme $55 .{ }^{210}$ Firstly, the Cterminal residue of the oligourea chain 92 was prepared by methylation of the N-Boc protected and DSC activated building block 91 . Then, a synthetic pathway that involves successive deprotection/coupling sequences allowed the introduction of each residue of the oligomer in a stepwise manner with good yield. Final coupling of the amino group of the chain with 3,5-bis(trifluoromethyl)phenyl isocyanate, afforded the corresponding oligoureas 07-012 with good yield.

Scheme 55. Synthesis of oligoureas 07-012.
${ }^{210}$ a) V. Diemer, L. Fischer, B. Kauffmann, G. Guichard, Chem. Eur. J. 2016, 22, 15684-15692; b) N. Pendem, C. Douat, P. Claudon, M. Laguerre, S. Castano, B. Desbat, D. Cavagnat, E. Ennifar, B. Kauffmann, G. Guichard, J. Am. Chem. Soc. 2013, 135, 4884-4892.

4.4. Results and discussion

With all the oligoureas in hand, their screening in the conjugate addition of dimethylmalonate with nitrostyrene was performed. Catalysis with $\mathbf{O 1 0}$ (tetramer) was not performed due the impurities found on the oligourea and its low solubility. All catalytic experiments were carried out twice, in order to check the reproducibility of the reaction. As it can be seen in Table 26, all the oligoureas promote the reaction though the reactivity is much lower when short chains $\mathbf{O 7}$ and $\mathbf{O 8}$ are employed. Regarding enatioselectivity, the stereocontrol with monomer $\mathbf{O 7}$ and dimer $\mathbf{O 8}$ is very low. The enantiomeric excess increases to higher values (up to $75 \% ~ e e$) with longer chains. It has been proven that even at low catalyst loading (0.3 and $0.1 \mathrm{~mol} \%$), the reactivity and the enantiocontrol is mantained (entries 6 and 7).

Table 26. Oligourea screening in the conjugate addition of diethyl malonate to nitrostyrene, promoted by oligoureas 07-012. ${ }^{[a]}$

Entry	0	Conv. (\%) ${ }^{[b]}$	Yield (\%)	$e e(\%)^{\text {[c] }}$
1	07	47	30	2
		47	32	5
2	08	53	40	16
		53	37	17
3	09	81	60	63
		81	62	60
4	011	92	70	70
		92	72	68
5	012	92	70	75
		93	73	73
$6^{[d]}$		92	70	72
$7{ }^{[\text {[e] }}$		90	72	70

[a] Reaction conditions: Nitrostyrene (0.5 mmol), the corresponding oligourea $\mathbf{0 7 - 0 1 2}$ ($0.0005 \mathrm{mmol}, 0.01$ equiv.) and diethyl malonate ($1 \mathrm{mmol}, 2$ equiv.). [b] Conversion determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. [c]The $e e$ values were determined by chiral HPLC. [d] Reaction performed with $0.3 \mathrm{~mol} \%$ of O12. [e] Reaction performed with $0.1 \mathrm{~mol} \%$ of $\mathbf{O 1 2}$.

If we compare the result obtained with valine-base hexamer O12, with the previous one from the group using O6, it is clear that with valine-alanine-leucine sequence, higher enantioselectivity level than with $\mathbf{O 1 2}$ is induced. (Table 27).

Table 27. Comparison in the conjugate addition of diethyl malonate to nitrostyrene, promoted by oligoureas O6 and O12. ${ }^{\text {[a] }}$

Entry	O (\%)	Conv. (\%) ${ }^{[b]}$	Yield (\%)	$\boldsymbol{e e}(\%)^{[\mathrm{c}]}$
$\mathbf{1}$	O6	98	75	89
$\mathbf{2}$	$\mathbf{O 1 2}$	90	72	70

[a] Reaction conditions: Nitrostyrene (0.5 mmol), the corresponding oligourea 07-012 ($0.0005 \mathrm{mmol}, 0.01$ equiv.) and diethyl malonate ($1 \mathrm{mmol}, 2$ equiv.). [b] Conversion determined by the disappearance of the starting material by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. [c]The $e e$ values were determined by chiral HPLC.

In summary, we have observed that with the valine-based monomer $\mathbf{O 7}$ and dimer O8, do not provide reaction adducts enantioselectively. However, when trimer $\mathbf{O 9}$ is employed, moderate values are obtained. This enantiomeric excess increases with the pentamer $\mathbf{O 1 1}$ and with the hexamer $\mathbf{O 1 2}$, which affords values up to 70% ee. Although the results do not improve the previous ones obtained with the sequence valine-alanineleucine O6, these new oligoureas induce stereoselectivity, as well even at low catalyst loading ($0.1 \mathrm{~mol} \%$). Further studies on the structure-activity should give extra information in the correlation between the oligomer catalyst efficiency and its folding propensity.

Chapter 5

Conclusions

5. CONCLUSIONS

Two Brønsted base promoted highly stereoselective approaches have been developed in order to access enantiopure α-functionalized amides, thereby overcoming the low acidity problem associated to these substrates. In this context, 4 -substituted pyrrolidin-2,3-diones have been employed as efficient new donor templates in Brønsted base catalyzed conjugate additions to α 'silyloxy enones and vinyl ketones with high enantioselectivity. The palladium-catalyzed asymmetric allylic alkylation (AAA) has also been successfully performed with these potential heterocycles. The corresponding enantioenriched reaction adducts bearing a tetrasubstituted stereocenter, have been transformed into $\beta^{2,2}$-amino acid derivatives, following a strategy that involves the transformation of the adducts into N-carboxyanhydrides and subsequent ring opening with different nucleophiles. When the nucleophile employed for the reaction is an amine, highly functionalized amides with a quaternary stereocenter in α-position can be obtained.

On the other hand, Schiff bases of glycine o-nitroanilide as efficient donors for the Brønsted Base catalyzed syn-selective aldol reaction have been designed. The presence of the o-nitroanilide framework provides an efficient hydrogen-bonding platform that accounts for both, the higher acidity of the α-carbon and efficient stereoselectivity control. This constitutes the first application of this type of amides in asymmetric catalysis. The equivalent aldimines, provide anti adducts, thus enabling the access to synor anti- adducts depending on the substrate. Besides, the o-nitroanilide unit can be removed to obtain the corresponding α-amino β-hydroxy acids.

Finally, new valine-based oligoureas have been synthesized during the international stay at the European Institut of Chemistry and Biology (IECB) at BordeauxPessac campus under the supervision of Prof. Gilles Guichard, and their evaluation as hydrogen-bonding organocatalysts with an achiral cocatalyst has been performed in the conjugate addition of diethyl malonate to nitrostyrene. Enantioselectivity proved to be oligourea chain length dependant. Thus, the valine-based hexamer oligourea promotes the reaction with higher, but moderate enantioselectivity. Although more information is needed, this study helps to understand the main elements for stereocontrol in urea based oligomers.

Chapter 6

Experimental section

6. EXPERIMENTAL SECTION 167
6.1. MATERIALS AND TECHNIQUES 167
6.1.1. Reagents and solvents 167
6.1.2. General experiments 167
6.1.3. Chromatography 167
6.1.4. Optical rotation 168
6.1.5. Melting points 168
6.1.6.NMR spectra 168
6.1.7. Mass spectra 168
6.1.8. Infrared spectra 169
6.1.9. Determination of enantiomeric excesses 169
6.1.10. X-Ray diffraction analysis 169
6.2. PREPARATION OF CATALYSTS 169
6.2.1. Preparation of chiral amines 170
6.2.1.1. Synthesis of 9-amino-(9-deoxy)epiquinine 170
6.2.1.2. Preparation of (1S,2S)-2-(piperidin-1-yl)cyclohexan-1-amine 172
6.2.2. Synthesis of squaramide-based catalyst C23 172
6.2.3. Ureidopeptide-like Brønsted base catalysts 175
6.2.3.1. Preparation of N-protected amino acids $\mathbf{9 3 - 9 6}$ 175
6.2.3.2. Isocyanate synthesis and coupling with the amine 177
6.3. EXPERIMENTAL SECTION OF CHAPTER 2 180
6.3.1. Preparation of chiral ligands 180
6.3.1.1. New phosphine ligands L11 and L12 180
6.3.2. Preparation of pronucleophiles 182
6.3.2.1. Synthesis of pyrrolidin-2,3-diones 182
6.3.2.2. Synthesis of acyclic ketoamides 191
6.3.3. Preparation of electrophiles 198
6.3.3.1. Preparation of enones 198
6.3.3.2. Preparation of allyl carbonates 201
6.3.4. Organocatalytic conjugate addition to enones 202
6.3.4.1. Asymmetric addition to α '-oxy enones 202
6.3.4.2. Asymmetric addition to vinyl ketones 203
6.3.4.3. Racemic reaction. 203
6.3.4.4. Characterization data for compounds 204
6.3.5.Pd-catalyzed AAA of pyrrolidin-2,3-diones 210
6.3.5.1. Decarboxylative AAA of pyrrolidin-2,3-diones 210
6.3.5.2. Intermolecular AAA of pyrrolidin-2,3-diones 217
6.3.5.3. Characterization of compounds 218
6.3.6.Pd-catalyzed AAA of acyclic ketoamides 225
6.3.6.1. Decarboxylative AAA of acyclic ketoamides 225
6.3.6.2. Intermolecular AAA of acyclic ketoamides 229
6.3.6.3. Characterization of compounds 230
6.3.7. Elaboration of adducts 234
6.3.7.1. To NCAs and ring opening with amines 234
6.3.7.2. Hydrogenation 236
6.3.8. ORTEP diagram for compounds 14Ba, 22Aa and 33A 237
6.4. EXPERIMENTAL SECTION OF CHAPTER 3 238
6.4.1. Preparation of pronucleophiles 238
6.4.1.1. Preparation of ketimine hydrochlorides 238
6.4.1.2. Preparation of Ketimines and Aldimines of Glycine Nitroanilides 239
6.4.1.3. Preparation of Ketimines and Aldimines of Glycine Esters 248
6.4.2. Preparation of aldehydes 249
6.4.3. Aldol reaction of nitroanilides 249
6.4.3.1. Asymmetric reaction 249
6.4.3.2. Racemic reaction 250
6.4.3.3. Characterization of compounds 251
6.4.4. Elaboration of adducts 265
6.4.4.1. Imine hydrolysis and amine protection 265
6.4.4.2. Removal of the nitroanilide unit 268
6.4.4.3. Protection of the amino alcohol 269
6.4.4.4. Hydrogenation of the amino alcohol 270
6.4.5. ORTEP diagram for compounds $45,58,62,61$ and 79 272
6.5. EXPERIMENTAL SECTION OF CHAPTER 4 274
6.5.1. Synthesis of oligoureas O7-O12 274
6.5.1.1. Synthesis of building block 91 274
6.5.1.2. Methylation 276
6.5.1.3. Coupling. 276
6.5.1.4. Boc deprotection 278
6.5.2. Catalysis promoted by oligoureas O7-O12 281
6.5.2.1. Preparation of catalyst and base solution 281
6.5.2.2. Asymmetric reaction 282
6.6. Representative NMR spectra 283
6.7. HPLC chromatograms 459

6. EXPERIMENTAL SECTION

6.1. MATERIALS AND TECHNIQUES

6.1.1. Reagents and solvents

Reagents were purchased from different commercial suppliers (Aldrich, Across, Alfa Aesar, Fluka, TCI, Merck, Fluorochem, etc.), stored as specified by the manufactured and used without previous purification unless otherwise stated.

Triethylamine, DBU, and DIPEA were purified by distillation. Liquid aldehydes were purified by distillation before usage and stored in the fridge at $-30^{\circ} \mathrm{C}$ under nitrogen. When anhydrous solvents were required, they were dried following established procedures. ${ }^{211}$ Dichloromethane was dried over CaH_{2}, tetrahydrofuran, toluene and dioxane were dried over sodium and diethyl ether was dried by filtration through activated alumina (powder 150 mesh, pore size 58 Å, basic Sigma Aldrich) columns.

6.1.2. General experiments

All non-aqueous reactions were performed under inert atmosphere using ovendried glassware and were magnetically stirred. Yields refer to chromatographically purified and spectroscopically pure compounds, unless otherwise stated.

Heat requiring reactions were performed using a hotplate with a sand or an oil bath and a condenser. Reactions requiring low temperatures were performed using cooling bath circulators Huber T100E and acetone or isopropanol baths.

Organic layers washed with aqueous phases were dried over MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through cotton. Organic solvents were evaporated under reduced pressure using Büchi R-100, R-200 and R-210 rotavapors, the latter equipped with a Büchi V-700 vacuum pump and a Büchi V-850 vacuum controller, appropriate for the evaporation of solvents when products were volatile compounds. For the complete removal of solvents vacuum pump Telstar Top-3 ($\approx 0.5 \mathrm{mmHg}$) was employed.

6.1.3. Chromatography

Reactions and flash chromatographic columns were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualized by

[^60]fluorescence quenching under UV light, Fisher Biolock lamp VL-4LC, $\lambda=254$ and 365 nm . In addition, TLC plates were stained with a dipping solution of potassium permanganate (1 g) in 100 ml of water (limited lifetime), followed by heating and charring with $1 \% \mathrm{w} / \mathrm{w}$ ninhydrin in ethanol followed by heating.

Chromatographic purification was performed on Merck ROCC 60 silica gel 40-63 $\mu \mathrm{m}$ as stationary phase and a suitable mixture of solvents (typically hexane: ethyl acetate, pentane: diethyl ether or dichloromethane: methanol) as eluent.

Non acid silica gel was prepared by mixing silica gel with a saturated aqueous solution of sodium bicarbonate (300 mL of solution for 100 g of silica gel) during 24 h and subsequent evaporation of water in an oven at $80^{\circ} \mathrm{C}$ for 72 hours.

6.1.4. Optical rotation

Optical rotations were recorded using a Jasco P-2000 polarimeter; specific rotations (SR) $\left([\alpha]_{\mathrm{D}}\right)$ are reported in 10^{-1} deg. $\mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}$; concentrations (c) are quoted in $\mathrm{g} / 100 \mathrm{~mL}$; ${ }_{\mathrm{D}}$ refers to the D -line of sodium (589 nm); temperatures (T) are given in degree Celsius (${ }^{\circ} \mathrm{C}$).

6.1.5. Melting points

Melting points were determined in open capillaries in a Stuart SHP3 melting point apparatus and microscope and were uncorrected.

6.1.6. NMR spectra

NMR spectra were recorded using a Bruker Avance $300\left(300 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 75$ MHz for ${ }^{13} \mathrm{C}$) spectrometer, Bruker 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or Bruker AV-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts (δ) are quoted in parts per million referenced to the residual solvent peak, usually $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ ($\delta=7.26$) and ${ }^{13} \mathrm{C}(\delta=77.0)$. The multiplicity of each signal is designated using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; brs, broad singlet. Coupling constants (J) are reported in Hertz (HZ). MestrReNova Mnova 8.1 program was used to process and edit the registered spectra.

6.1.7. Mass spectra

Ms spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model) on a UPLC-DAD-QTOF, Ultra High Performance Liquid Chromatography-Mass spectrometer, Waters UPLC ACQUITY, Waters PDA detector,

Waters Sunapt G2 or on an Agilent Thermoquest LCT spectrometer. Mass spectrometry analyses were performed in the General Research Service (SGIker) of the University of the Basque Country (UPV/EHU) and ESI-MS analyses in Bordeaux, were carried out with a ThermoElectron LCQ Advantage spectrometer equipped with an ion-trap mass analyzer.

6.1.8. Infrared spectra

Infrared spectra were recorded on a Bruker Alpha FT-IR spectrometer as a thin film.

6.1.9. Determination of enantiomeric excesses

Enantiomeric excesses were determined using analytical high performance liquid chromatography (HPLC) performed on Waters 600-E (equipped with 2996 and 2998 photodiode array UV detector) employing Daicel columns (IA, IB, IC, ID, IF, AD-H, AY-H, AS-H, OD-H, OJ-H) and phenomenex Lu-xi (cellulose $3 \mu \mathrm{~m}$, amylose $3 \mu \mathrm{~m}$).

6.1.10. X-Ray diffraction analysis

The X-ray diffraction analysis experiments were conducted in the General Research Service (SGIker) of the University of the Basque Country (UPV/EHU) using difractometers for monocrystals.

6.2. PREPARATION OF CATALYSTS

Organocatalysts C18, ${ }^{212} \mathbf{C 1 9},{ }^{213} \mathbf{C 2 0},{ }^{214} \mathbf{C 2 1},{ }^{215} \mathbf{C 2 2},{ }^{216} \mathbf{C 2 7},{ }^{217} \mathbf{C 2 8},{ }^{218} \mathbf{C 2 9},{ }^{219}$ $\mathbf{C 3 0},{ }^{220} \mathbf{C 3 1}$ and $\mathbf{C 3 2},{ }^{221} \mathbf{C 3 3},{ }^{222}$ and $\mathbf{C 3 8},{ }^{223}$ and $\mathbf{C 3 9}{ }^{224}$ were prepared following reported procedures. Catalysts C23, C34-37 were synthesized as follows:

[^61]
6.2.1. Preparation of chiral amines

6.2.1.1. Synthesis of 9-amino-(9-deoxy)epiquinine ${ }^{225}$

Step 1: A mixture of quinine ($16.2 \mathrm{~g}, 50 \mathrm{mmol}, 1$ equiv.) and triethylamine (25.1 $\mathrm{mL}, 180 \mathrm{mmol}, 3.6$ equiv.) in dry THF (250 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and then methanesulfonyl chloride ($7.0 \mathrm{~mL}, 90 \mathrm{mmol}, 1.8$ equiv.) was added dropwise. The mixture was stirred overnight at room temperature. The reaction was quenched with water (40 mL) and then THF was removed under vacuum. The residue was dissolved in dichloromethane (40 mL) and washed with water (30 mL) and saturated sodium bicarbonate (30 mL). The organic layer was dried over MgSO_{4}, filtered and concentred under vacuum to afford the crude product in 96% yield, which was used in the next step without further purification.

Step 2: The crude product ($19.3 \mathrm{~g}, 48 \mathrm{mmol}, 1$ equiv.) was dissolved in DMF (150 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaN}_{3}(6.2 \mathrm{~g}, 96 \mathrm{mmol}, 2$ equiv.) was added portionwise. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 48 h and after this time the reaction was quenched with water (80 mL) and then ethyl acetate (150 mL) was added. The organic layer was separated and washed with saturated $\mathrm{NaCl}(5 \times 60 \mathrm{~mL})$, dried over MgSO_{4},

[^62]filtered and evaporated under reduced pressure to obtain the crude product in quantitative yield, which was used in the next step without further purification.

Step 3: The crude product was dissolved in THF (250 mL) and $\mathrm{PPh}_{3}(12.6 \mathrm{~g}, 48$ mmol, 1 equiv.) was added. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ and stirred until the gas evolution ceased ($\sim 5 \mathrm{~h}$). Then $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added and the mixture was stirred overnight at $40{ }^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the residue was dissolved in dichloromethane (150 mL). $\mathrm{HCl} 6 \mathrm{M}(250 \mathrm{~mL})$ was added and the aqueous phase was separated and washed with dichloromethane ($2 \times 100 \mathrm{~mL}$). Then the aqueous layer was cooled to $0^{\circ} \mathrm{C}$ and basified until $\mathrm{pH}>10$ with $\mathrm{NaOH} 40 \%$. The aqueous phase was then extracted with dichloromethane (3 x 150 mL), dried over MgSO_{4} and concentrated under reduced pressure to afford 9 -amino-(9-deoxy)epiquinine as a yellow viscous oil. Yield: 56% ($8.7 \mathrm{~g}, 26.9 \mathrm{mmol}$). All data were consistent with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 8.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-8.05$ (m, 4H), 5.79-5.75 (m, 1H), $4.97(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.02-$ $3.34(\mathrm{~m}, 3 \mathrm{H}), 2.75-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 1.26-1.63(\mathrm{~m}, 4 \mathrm{H})$, $0.80-0.78(\mathrm{~m}, 1 \mathrm{H})$.

6.2.1.2. Preparation of (1S,2S)-2-(piperidin-1-yl)cyclohexan-1-amine ${ }^{226}$

Glutaraldehyde ($50 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}, 0.93 \mathrm{~mL}, 5.1 \mathrm{mmol}, 1.05$ equiv.) was added dropwise to a mixture of ($1 S, 2 S$)-(+)-1,2-diaminocyclohexane ($560 \mathrm{mg}, 4.9 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NaBH}(\mathrm{OAc})_{3}\left(4.16 \mathrm{~g}, 19.6 \mathrm{mmol}, 4.0\right.$ equiv.) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(30 \mathrm{~mL})$ at room temperature. The mixture was stirred at room temperature for 3 h , and quenched with $\mathrm{NaOH} 6.0 \mathrm{M}(15 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice (2 x 15 mL). The organic layers were combined and washed with brine ($1 \times 15 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the product as brown oil. Yield: 80% ($715 \mathrm{mg}, 3.92 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.71-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.60$ $-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.25-0.99(\mathrm{~m}, 4 \mathrm{H})$. Spectral data were in agreement with the data described in the literature.

6.2.2. Synthesis of squaramide-based catalyst C23

Squaramide based catalysts C23 was synthesized according to the protocol shown below. 3-Amino-5-(trifluoromethyl)benzoic acid was prepared following procedures described in the literature. ${ }^{227}$

[^63]

$\mathbf{1}^{\text {st }}$ step: ${ }^{228}$ To a solution of 3,4-dimethoxy-3-cyclobutane-1,2-dione ($710 \mathrm{mg}, 5$ mmol, 1 equiv.) in $\mathrm{MeOH}(5 \mathrm{~mL}$) aminobenzoic acid ($5 \mathrm{mmol}, 1.03 \mathrm{~g}, 1$ equiv.) was added and the mixture was stirred at room temperature for 15 h . The white precipitate was filtered, washed with MeOH and dried in vacuo to give the title product as a yellow solid. Yield: $96 \%(1.51 \mathrm{~g}, 4.8 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , Acetone-d6) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}$, $1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 3 \mathrm{H})$.
$2^{\text {nd }}$ step: Triethylamine ($0.67 \mathrm{~mL}, 4.8 \mathrm{mmol}, 1$ equiv.) and (R, R)-9-deoxy-9epiaminoquinine ($1.55 \mathrm{~g}, 4.8 \mathrm{mmol}, 1$ equiv.) were added to a suspension of the squarate ($1.51 \mathrm{~g}, 4.8 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 16 h and then was directly purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 99: 1$) to give the title product as a yellow solid. Yield: $50 \%(1.46 \mathrm{~g}, 2.4 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , Acetonitrile-d3) $\delta 11.51(\mathrm{bs}, 1 \mathrm{H}), 10.17$ (bs, 1H), $8.85(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.07-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{dd}, J=9.2,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.40(\mathrm{bs}, 1 \mathrm{H}), 5.86$ (ddd, $J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-4.97$ (m, 2H), 4.50 ($\mathrm{s}, 1 \mathrm{H}$), $4.05-3.53(\mathrm{~m}, 5 \mathrm{H}), 3.51-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.97$

[^64]$(\mathrm{m}, 4 \mathrm{H}), 1.78(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Acetonitrile- $d 3$) $\delta 185.7,181.9,171.9,169.0,166.5,159.5,149.0,145.6,142.4,140.6$, $139.6,138.4,132.8,131.7$ (q), 127.9, 127.0, 123.2, 122.7, 120.7, 120.6, 117.4, 117.0, 102.2, 60.4, 56.3, 55.3, 54.3, 42.2, 37.3, 27.6, 24.7, 24.2. UPLC-DAD-QTOF: $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 607.2168, found: 607.2175 .
$\mathbf{3}^{\text {rd }}$ Step: C6 229 : 1-Methylimidazole ($0.2 \mathrm{~mL}, 2.5 \mathrm{mmol}, 2.5$ equiv.) was added to a slurry of the benzoic acid derivative obtained in the previous step ($606 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . $\mathrm{MsCl}(0.12$ $\mathrm{mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added to the mixture under $-5^{\circ} \mathrm{C}$. After stirring at that temperature for 20 min , the corresponding amine ($1 \mathrm{mmol}, 1$ equiv.) was added. The mixture was then stirred at room temperature overnight. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to the mixture and a solid was formed. This solid was solved in EtOAc (10 mL) and the organic layer was washed with brine ($3 \times 50 \mathrm{~mL}$) and dried over anhydrous MgSO_{4}. The solvent was evaporated under reduced pressure and the crude was purified by silica flash column chromatography to afford the desired catalyst $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 98:2). Yellow solid. Yield: $95 \%(1.4 \mathrm{~g}, 1.7 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=-115.89^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta 8.77(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.93(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, $3.36-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , Acetone- d_{6}) $\delta 185.8,181.4,169.7$, 169.1, 164.1, 159.3, 148.4, 146.8, 145.8, 143.9, 142.4, 141.1, 138.9, 132.6, 132.4, 131.9, 129.3, $128.8,128.5,126.1,125.7,123.0,122.5,122.1,120.7,119.3,118.4,116.6,114.8,102.2$, $60.7,56.7,56.3,54.9,41.5,40.4,38.3,30.3,28.5,28.1,26.7$. UPLC-DAD-QTOF: $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~F}_{9}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 831.2593, found: 831.2596.

[^65]
6.2.3. Ureidopeptide-like Brønsted base catalysts

6.2.3.1. Preparation of N-protected amino acids 93-96 ${ }^{230}$

$\mathbf{1}^{\text {st }}$ step: Pyridine ($0.9 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1$ equiv.) was added to a stirred solution of p-nitrophenyl chloroformate ($2.2 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane (13.6 mL). The white slurry was cooled to $0^{\circ} \mathrm{C}$ and the corresponding alcohol ($10 \mathrm{mmol}, 1$ equiv.) was slowly added at the same temperature. After addition, the mixture was allowed to warm to room temperature and stirred for 16 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and washed with $\mathrm{HCl} 1 \mathrm{M}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentred under reduced pressure. The residue was used in the next step without further purification.
$\mathbf{2}^{\text {nd }} \boldsymbol{s t e p : ~ T o ~ a ~ s t i r r e d ~ s o l u t i o n ~ o f ~} L$-tert-leucine ($1.31 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.) in 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}(26 \mathrm{~mL})$, and dimethylformamide (10 mL), a solution of the corresponding carbonate ($10 \mathrm{mmol}, 1$ equiv.) in dimethylformamide (30 mL) was slowly added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h and at room temperature for 16 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The aqueous layer was cooled in an ice bath and acidified with concentrated HCl , followed by extraction with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine ($5 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure.
(S)-3,3-Dimethyl-2-(((pyren-1-ylmethoxy)carbonyl)amino)butanoic acid 93

The title compound was prepared from 1pyrenemethanol ($2.32 \mathrm{~g}, 10 \mathrm{mmol}$) according to the general procedure. Purification by column chromatography (hexane/EtOAc, 70:30) afforded 93 as

[^66]white solid. Yield: $74 \%(2.9 \mathrm{~g}, 7.4 \mathrm{mmol})$. m.p. $=93-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-7.96(\mathrm{~m}, 9 \mathrm{H}), 5.80(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.58-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.40(\mathrm{~m}$, $1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,156.5$, $131.7,131.2,130.7,129.5,128.2,127.8,127.6,127.4,126.0,125.5,124.8,124.6$, $122.9,65.6,62.4,34.7,26.6$. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{*}{ }^{*}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 412.1525, found: 412.1529.

(S)-2-((((3,5-Bis(trifluoromethyl)benzyl)oxy)carbonyl)amino)-3,3-dimethylbutanoic acid $94{ }^{231}$

The title compound was prepared from 3,5bis(trifluoromethyl)benzyl alcohol ($2.44 \mathrm{~g}, 10 \mathrm{mmol}$) according to the general procedure. Removal of the remaining fenol was not possible by column chromatography, so after the work up described in the general procedure, the crude was dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and basified with NaOH 20%. The aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, acidified with concentrated HCl and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and evaporated under reduced pressure to afford 94 as white solid. Yield: 91% (3.65 g , 9.1 mmol). All spectroscopic data were consistent with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-$ $5.09(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$.

(S)-3,3-Dimethyl-2-(((naphthalen-2-ylmethoxy)carbonyl)amino)butanoic acid $95{ }^{232}$

The title compound was prepared from 2naphthalenemethanol ($1.58 \mathrm{~g}, 10 \mathrm{mmol}$) according to the general procedure. Removal of the remaining fenol was not possible by column chromatography. After the work up described in the general procedure, the crude was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and basified with saturate $\mathrm{NaHCO}_{3}(1 \times 20 \mathrm{~mL})$. The aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ mL), acidified with concentrated HCl and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and evaporated under reduced pressure to afford $\mathbf{9 5}$ as white solid. Yield $48 \% ~(1.5 \mathrm{~g}, 4.8 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.36(\mathrm{~m}$, $3 \mathrm{H}), 5.47(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

[^67]
(S)-3,3-Dimethyl-2-(((naphthalen-1-ylmethoxy)carbonyl)amino)butanoic acid 96

The title compound was prepared from 1naphthalenemethanol ($1.58 \mathrm{~g}, 10 \mathrm{mmol}$) according to the general procedure. Purification by column chromatography (hexane/EtOAc, 80:20) afforded 96 as white solid. Yield: $88 \%(2.8 \mathrm{~g}, 8.8 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=131-135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.10(\mathrm{~s}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dt}, J=27.2,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.60(\mathrm{q}$, $J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,156.4,133.8,131.7,129.5,128.8,127.6,126.7,126.07$, 125.4, 123.7, 65.6, 62.3, 34.7, 26.6. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{*} *[\mathrm{M}+\mathrm{Na}]^{+}$ calcd.: 338.1368 , found: 338.1369 .

6.2.3.2. Isocyanate synthesis and coupling with the amine ${ }^{232}$

93 R: 1-Pyrenyl-
94 R: $3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-$
95 R: 2-Napth- $\mathrm{CH}_{2}{ }^{-}$
96 R: 1-Napth- $\mathrm{CH}_{2}-$

: 1-PyrenylC36 R: 2-Napth- $\mathrm{CH}_{2}{ }^{-}$ C37 R: 1-Napth- $\mathrm{CH}_{2}-$

To a cooled solution of the corresponding N-protected α-amino acid ($5 \mathrm{mmol}, 1$ equiv.) in dry THF (20 mL), isobutyl chloroformate ($0.65 \mathrm{~mL}, 5 \mathrm{mmol}, 1$ equiv.) and N methylmorpholine ($0.6 \mathrm{~mL}, 5 \mathrm{mmol}, 1$ equiv.) were added at $-20^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 20 min . Then, a suspension of $\mathrm{NaN}_{3}(0.48 \mathrm{~g}, 7.5$ mmol, 1.5 equiv.) in 5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added and the reaction mixture stirred at the same temperature for 30 min . The organic layer was separated, evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL), and washed with water (15 mL). The organic phase was dried over MgSO_{4}, filtered and concentrated in vacuo to give a yellow oil which was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting solution was stirred at $40{ }^{\circ} \mathrm{C}$ under nitrogen for 1-2 h . The reaction was monitored by IR analysis until disappearance of the azide band (from azide $\approx 2136 \mathrm{~cm}^{-1}$ to isocyanate $\approx 2239 \mathrm{~cm}^{-1}$)

After isocyanate generation, the corresponding amine was added ($638 \mathrm{mg}, 3.5 \mathrm{mmol}, 0.7$ equiv.) and the reaction mixture was stirred for 16 h at room temperature. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on non acidic silica gel to afford the desired catalysts.

Pyren-4-ylmethyl ((S)-2,2-dimethyl-1-(3-((1S,2S)-2-(piperidin-1yl)cyclohexyl)ureido)propyl)carbamate C34

Prepared according to the general procedure starting from $93(1.94 \mathrm{~g}, 5 \mathrm{mmol})$ according to the general procedure. Purified by column chromatography (hexane/EtOAc, 70:30). White solid. Yield: 48% $(1.36 \mathrm{~g}, 2.4 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=178-180^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=-$ $9.64^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 70^{\circ} \mathrm{C}$) $\delta 8.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.34-8.28(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ $(\mathrm{s}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.61-2.51(\mathrm{~m}$, 2 H), $2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.21$ $-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $\left.d_{6}\right) \delta 157.1,155.5,130.8$, $130.7,130.6,130.2,128.6,127.8,127.5,127.3,126.3,125.5,125.4,124.6,123.9$, $123.8,123.2,67.4,65.0,63.5,49.8,49.0,40.4,36.0,33.9,26.2,25.5,25.1,24.6$, 24.6 , 23.6 . UPLC-DAD-QTOF: $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 569.3492, found: 569.3501.

3,5-Bis(trifluoromethyl)benzyl ((1S)-2,2-dimethyl-1-(3-((2S)-2-(piperidin-1yl)cyclohexyl)ureido)propyl)carbamate C35

Prepared according to the general procedure starting from 94 ($2 \mathrm{~g}, 5 \mathrm{mmol}$). Purified by column chromatography by non-acid silica gel (hexane/EtOAc, 80:20). White solid. Yield: 58% $(1.68 \mathrm{~g}, 2.8 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=-3.50^{\circ}\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $=170-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO $-d_{6}, 70^{\circ} \mathrm{C}$) $\delta 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.13$ (t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.34(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 4 \mathrm{H}), 1.32(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 157.1,155.0,141.2,130.2(\mathrm{q}, J=32.6 \mathrm{~Hz}), 127.8,125.1$
, $121.5,121.3,67.7,65.1,63.4,49.7,49.1,35.8,33.8,25.9,25.4,25.0,24.6,24.5$, 23.6 . UPLC-DAD-QTOF: $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 581.2926, found: 581.2881.

Naphthalen-2-ylmethyl ((1S)-2,2-dimethyl-1-(3-((2S)-2-(piperidin-1yl)cyclohexyl)ureido)propyl)carbamate C36

Prepared according to the general procedure starting from 95 ($1.57 \mathrm{~g}, 5 \mathrm{mmol}$). Purified by column chromatography by non-acid silica gel (hexane/EtOAc, 70:30). White solid. Yield: 61% $(1.06 \mathrm{~g}, 2.14 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=170-172{ }^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{23}=-$ $15.6^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 70^{\circ} \mathrm{C}$) $\delta 7.99-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.65-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$, $5.15(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64$ $-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 157.2,155.5,134.9,132.7,132.5,127.9$, $127.7,127.6,126.3,126.2,126.1,125.7,67.5,65.2,49.7,49.0,35.9,33.8,25.9$, $25.5,25.0,24.6,23.6$. UPLC-DAD-QTOF: $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 495.3335, found: 495.3348 .

Naphthalen-1-ylmethyl ((1S)-2,2-dimethyl-1-(3-((2S)-2-(piperidin-1yl)cyclohexyl)ureido)propyl)carbamate C37

Prepared according to the general procedure starting from 96 ($1.57 \mathrm{~g}, 5 \mathrm{mmol}$). Purified by column chromatography by non-acid silica gel (hexane/EtOAc, 90:10). White solid. Yield: 60% (1.42 $\mathrm{g}, 3 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=174-179{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=-19.1^{\circ}(c=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 70^{\circ} \mathrm{C}$) $\delta 8.32-8.27(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.18(\mathrm{~m}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, ~ J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.16(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{q}, 2 \mathrm{H}), 5.39(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (br s, $J=6.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (br s, 2H), 2.60 (br s, 2H), 2.43 (s, 1H), 2.28 (d, $J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 157.3,155.5,133.2,132.7,131.0,128.5,126.6,126.4,125.9$, $125.3,123.6,65.2,63.4,49.5,49.3,35.8,33.6,25.5,24.5,23.8$. UPLC-DADQTOF: $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 495.3335, found: 495.3349.

6.3. EXPERIMENTAL SECTION OF CHAPTER 2

6.3.1. Preparation of chiral ligands

Ligands L1, L2, L6, L7, L13 and L14 are commercially available and were purchased from commercial suppliers. Ligands L3 and L4 were prepared following synthetic sequences described in the literature. ${ }^{233} \mathbf{L} 11$ and $\mathbf{L} 12$ were prepared as follows. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were carried out to check the stability of the phosphine towards oxidation. Oxidazed phosphine chemical shifts $\approx 30 \mathrm{ppm}$, not oxidized $\approx-8-11 \mathrm{ppm}$. In the cases where oxidation of the phosphine was detected, the oxidized compound was removed by column chromatography. For non oxidized (S, S)-L3 ${ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) δ-9.90; for non oxidized $(R, R)-\mathbf{L 4}{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-10.87$.

6.3.1.1. New phosphine ligands L11 and L12 $\mathbf{2 3 4}^{234}$

$1^{\text {st }}$ step: The corresponding aminoalcohol ($586 \mathrm{mg}, 5 \mathrm{mmol}, 1$ equiv.), the corresponding Fmoc protected amino acid ($1.697 \mathrm{~g}, 5 \mathrm{mmol}$, 1 equiv.) and $\mathrm{PPh}_{3}(3.934 \mathrm{~g}$, $15 \mathrm{mmol}, 3$ equiv.) were dissolved in dry dichloromethane (100 mL) and DIPEA (2.61 $\mathrm{mL}, 15 \mathrm{mmol}, 3$ equiv.) was added at $0{ }^{\circ} \mathrm{C}$. To the previous mixture, $\mathrm{CCl}_{4}(1.59 \mathrm{~mL}, 25$ mmol, 5 equiv.) was added dropwise at the same temperature and the mixture was allowed to stir at room temperature for 16 h . Toluene (60 mL) was added to the reaction mixture and the solvent evaporated ca. (80 mL). Hexane was then added and the flask was allowed to stand for 30 min . The precipitate was removed by eluting through a pad of celite and washed with a mixture of toluene/hexane. (3:4). The filtrate was concentrated and purified by flash column chromatography.

[^68]$\mathbf{2}^{\text {nd }}$ step: The Fmoc-protected oxazoline (1 mmol) was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL})$ and pyridine (8 mL) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and it was monitored by TLC. After completion, the solvents were evaporated and the crude was purified by column chromatography.
$3^{\text {rd }}$ step: DCC ($921 \mathrm{mg}, 4.46 \mathrm{mmol}, 2.2$ equiv.) and DMAP ($25 \mathrm{mg}, 203 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) were added to a suspension of 2-(diphenylphosphino)benzoic acid ($1.243 \mathrm{~g}, 4.06$ mmol, 2 equiv.) in dry dichloromethane (14 mL) at $0^{\circ} \mathrm{C}$ under argon atmosphere. After solubilisation of the reagents, the corresponding oxazoline ($403 \mathrm{mg}, 2.03 \mathrm{mmol}, 1$ equiv.) was added and the mixture stirred at room temperature for 16 h . Then, water was added to the reaction mixture and it was extracted with dichloromethane. The combined organic layers were dried over MgSO_{4}, and the crude was purified by column chromatography.

N-((S)-1-((R)-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)-2-methylpropyl)-2(diphenylphosphaneyl)benzamide L11

The intermediate from the $1^{\text {st }}$ step was purified eluting with (hexane/EtOAc, 95:5) and the intermediate from the $2^{\text {nd }}$ step with (DCM/MeOH, 90:10). The crude from the $3^{\text {rd }}$ step was purified by column chromatography (hexane/EtOAc, 80:20) to afford L11 as a white solid. Yield: 55% ($543 \mathrm{mg}, 1.12 \mathrm{mmol}$). m.p. $=121-123^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{23}=-39.3^{\circ}\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{ddd}, J=7.5,3.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.38 (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dtt, $J=10.6,6.7,2.4 \mathrm{~Hz}, 12 \mathrm{H}$), 6.99 (ddd, J $=7.6,3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.74(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,166.1,141.7,137.6,136.6,134.5,134.1,133.8,130.3,128.8$, 128.7, 128.7, 128.6, 128.5, 127.6, 75.4, 69.3, 53.2, 33.8, 31.6, 26.0, 18.9, 18.1. ${ }^{31}$ P NMR (162 MHz, CDCl_{3}) $\delta-11.83$. UPLC-DAD-QTOF: $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 486.2544, found: 486.2563 .

N-((R)-1-((R)-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)-2-methylpropyl)-2(diphenylphosphaneyl)benzamide L12

The intermediate from the $1^{\text {st }}$ step was purified eluting with (hexane/EtOAc, 90:10) and the intermediate from the $2^{\text {nd }}$ step with ($\mathrm{DCM} / \mathrm{MeOH}, 95: 5$). The crude from the $3^{\text {rd }}$ step was purified by column chromatography (hexane/EtOAc, 80:20) to afford $\mathbf{L 1 2}$ as a yellow oil. Yield: $65 \%(642 \mathrm{mg}, 1.31 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-12.15^{\circ}$ $\left(\mathrm{c}=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{ddd}, J=7.5,3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.99(\mathrm{ddd}, J=7.7,3.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$
$(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{ddd}, J=8.3,4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.97(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.58(\mathrm{~m}, 15 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,166.0,141.7,137.8,137.6,136.6,134.6,134.1$, $133.8,130.3,128.8,128.7,128.7,128.6,128.6,128.5,127.8,75.6,69.3,53.3,33.6,31.7$, 26.2, 18.8, 18.3. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-10.12. UPLC-DAD-QTOF: $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 486.2545, found: 486.2560 .

6.3.2. Preparation of pronucleophiles

6.3.2.1. Synthesis of pyrrolidin-2,3-diones

General procedure for the synthesis of 4-substituted pyrrolidin-2,3-diones:

6.3.2.1.1. \quad Addition of amines to acrylates: Synthesis of β-amino esters

β-Amino esters were synthesized by the addition of the corresponding amine to the the corresponding α-substituted acrylate and these were prepared according to literature protocols. ${ }^{235}$ In the case of less hindered amines mild reaction conditions were applied (METHOD A) in MeOH at room temperature without catalyst. However, the conjugate addition of hindered amines to substituted acrylates did not procceed under the above mentioned reaction conditions and this was successfully achieved by ruthenium activation. With ruthenium (III) chloride as catalyst and poly ethylene glycol as solvent (METHOD B), single addition products are obtained with very high yield.
6.3.2.1.1.1. Method A^{236}

7
7F R: Me 7GR: Et

8a: $R^{1}: M e$
(± 9
(\pm) $9 \mathrm{Fa} \mathrm{R}: \mathrm{Me} ; \mathrm{R}^{1}: \mathrm{Me}$
(\pm) $9 \mathrm{Ga} R: \mathrm{Et} ; \mathrm{R}^{1}: \mathrm{Me}$

[^69]To a solution of the amine (1 equiv.) in $\mathrm{MeOH}(0.2 \mathrm{~mL} / \mathrm{mmol}$), a solution of methyl methacrylate (1.5 equiv.) in $\mathrm{MeOH}(0.15 \mathrm{~mL} / \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 3 days. After completion of the reaction, methanol was evaporated and the crude product was purified by flash column chromatography on silica gel.
6.3.2.1.1.2. Method B^{237}

A R: Bn
B R: 1-Napht-CH
a R^{1} : Me
b R^{1} : $B n$
c $R^{1}: P h$
C R: 'Pr
D R: PMP
E R: 3,4-DMB
H R: Cy
(土) 9Aa R: Bn, R^{1} : Me
(\pm) 9Ab R: Bn, $\mathrm{R}^{1}: \mathrm{Bn}$
(\pm) 9Ac R: Bn, R¹: Ph
(\pm) 9Ba R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Me
(\pm) 9Bb R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Bn
(\pm) 9Bc R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Ph
(\pm) 9Ca R: ${ }^{i} \mathrm{Pr}, \mathrm{R}^{1}$: Me
(\pm) 9Da R: PMP; $\mathrm{R}^{1}: \mathrm{Me}$
(\pm) 9Ea R: 3,4-DMB, R1: Me
(\pm) $9 \mathrm{Ha} \mathrm{R}: \mathrm{Cy}, \mathrm{R}^{1}: \mathrm{Me}$
$\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.022 \mathrm{~g}, 0.1 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ was added to a mixture of PEG (average MW 2000, 8 g), the amine ($20 \mathrm{mmol}, 1$ equiv.) and methyl acrylate ($20 \mathrm{mmol}, 1$ equiv.). The reaction mixture was kept at $50{ }^{\circ} \mathrm{C}$ for 16 h by magnetic stirring and then cooled to room temperature. The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and then it was kept cooling in a refrigerator for 30 min to aid precipitation. The precipitate was filtered and washed with further portions of $\mathrm{Et}_{2} \mathrm{O}$, and the washings were combined with the initial filtrate. The combined organic phases were washed several times with $\mathrm{H}_{2} \mathrm{O}$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and removal of the solvent, the product was purified by flash column chromatography.

(土) Methyl 3-(benzylamino)-2-methylpropanoate 9Aa ${ }^{238}$

Prepared according to METHOD B starting from benzylamine 7A ($2.18 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl methacrylate $\mathbf{8 a}(2.13 \mathrm{~mL}$, $20 \mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a yellow oil. Yield: 80% (3.32 g , 16.0 mmol). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{td}, J=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

[^70]
(\pm) Methyl 2-benzyl-3-(benzylamino)propanoate $\mathbf{9 A b}{ }^{239}$

Prepared according to METHOD B starting from benzylamine 7A ($2.18 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl 2-benzylacrylate $\mathbf{8 b}(3.52 \mathrm{~g}$, $20 \mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a yellow oil. Yield: $61 \%(3.46 \mathrm{~g}, 12.2 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.16(\mathrm{~m}, 10 \mathrm{H}), 3.90-$ $3.82(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=12.0,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.93(\mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$.

(\pm) Methyl 3-(benzylamino)-2-phenylpropanoate 9Ac ${ }^{240}$

Prepared according to METHOD B starting from benzylamine 7A ($2.18 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl 2-phenylacrylate 8c ($3.244 \mathrm{~g}, 20$ $\mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a yellow oil. Yield: 65% ($3.501 \mathrm{~g}, 13.0 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.16(\mathrm{~m}, 10 \mathrm{H}), 3.90-$ $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=12.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$.

(\pm) Methyl 2-methyl-3-((naphthalen-1-ylmethyl)amino)propanoate 9Ba

Prepared according to METHOD B starting from 1naphthylmethylamine 7B ($2.93 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl methacrylate $\mathbf{8 a}$ ($2.13 \mathrm{~mL}, 20 \mathrm{mmol}$). The title compound was purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a yellow oil. Yield: $58 \%(2.98 \mathrm{~g}, 11.6 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.17-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.37(\mathrm{~m}$, $4 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.63(\mathrm{~m}, 3 \mathrm{H}), 1.19$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
(\pm) Methyl 3-((naphthalen-1-yl)methylamino)-2-benzylpropanoate 9Bb

Prepared according to METHOD B starting from 1naphtylmethylamine 7B ($2.2 \mathrm{~g}, 14 \mathrm{mmol}, 1 \mathrm{eq}$) and methyl 2benzylacrylate $\mathbf{8 b}$ ($3.5 \mathrm{~g}, 20 \mathrm{mmol}, 1 \mathrm{eq}$.) The title compound was purified by flash column chromatography

[^71](hexane/EtOAc, 80:20) and isolated as a yellow oil. Yield: $68 \%(1.5 \mathrm{~g}, 13.5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.6$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 4.29-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.75(\mathrm{~m}, 5 \mathrm{H})$.
(\pm) Methyl 3-((naphthalen-1-ylmethyl)amino)-2-phenylpropanoate 9Bc

Prepared according to METHOD B starting from 1naphthylmethylamine 7B ($3.34 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl 2phenylacrylate 8 c ($3.4 \mathrm{~g} \mathrm{~mL}, 20 \mathrm{mmol}$). Purified by column chromatography (hexane/EtOAc, 80:20) and isolated as yellow oil. Yield: $70 \%(4.45 \mathrm{~g}, 14 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.33-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.95-$ $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=12.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H})$.

(\pm) Methyl 3-(isopropylamino)-2-methylpropanoate $9 \mathrm{Ca}^{241}$

Prepared according to METHOD B starting from isopropylamine 7C $(1.72 \mathrm{~mL}, 20 \mathrm{mmol})$ and methyl methacrylate $\mathbf{8 a}(2.13 \mathrm{~mL}, 20 \mathrm{mmol})$. The title compound was isolated as a yellow oil. Yield: $76 \%(2.420 \mathrm{~g}$, 15.2 mmol). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H})$, $2.68-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{dd}, J=6.2,1.1 \mathrm{~Hz}, 6 \mathrm{H})$.
(\pm) Methyl 3-((4-methoxyphenyl)amino)-2-methylpropanoate 9Da

Prepared according to METHOD B starting from p-anisidine $(2.46 \mathrm{~g}, 20 \mathrm{mmol}) 7 \mathrm{D}$ and methyl methacrylate $9 \mathbf{9}(2.13 \mathrm{~mL}$, $20 \mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a yellow oil ($2.68 \mathrm{~g}, 12.0 \mathrm{mmol}$, $60 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.85-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.49(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, 3 H), 3.69 (s, 3H), 3.37 (dd, $J=12.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (dd, $J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-$ $2.72(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

[^72]
(\pm) Methyl 3-((3,4-dimethoxybenzyl)amino)-2-methylpropanoate 9Ea ${ }^{242}$

MeO methacrylate $\mathbf{8 a}(2.13 \mathrm{~mL}, 20 \mathrm{mmol})$. Purified by column chromatography (hexane/EtOAc, 50:50) and isolated as yellow oil. Yield: 70% (3.74 g , $14 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, 2H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

(\pm) Methyl 2-methyl-3-(methylamino)propanoate $9 \mathbf{F a}^{243}$

Prepared according to METHOD A starting from 33% methylamine 7F in EtOH ($2.5 \mathrm{~mL}, 20 \mathrm{mmol}$) and methyl methacrylate $\mathbf{8 a}(3.2 \mathrm{~mL}, 30$ $\mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 90:10) and isolated as yellow oil. Yield: 75% ($1.95 \mathrm{~g}, 15 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

(\pm) Methyl 3-(ethylamino)-2-methylpropanoate $\mathbf{9} \mathbf{G a}^{244}$

Prepared according to METHOD A starting from 70\% ethylamine in water 7G $(1.89 \mathrm{~mL}, 20 \mathrm{mmol})$ and methyl methacrylate $\mathbf{8 a}(3.2 \mathrm{~mL}$, $30 \mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 90:10) and isolated as yellow oil. Yield: 80% ($2.3 \mathrm{~g}, 15.8 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
(\pm) Methyl 3-(cyclohexylamino)-2-methylpropanoate $\mathbf{9} \mathbf{H a}^{245}$

Prepared according to METHOD B starting from cyclohexylamine $\mathbf{7 H}(2.28 \mathrm{~mL}, 20 \mathrm{mmol})$ and methyl methacrylate $\mathbf{8 a}(2.13 \mathrm{~mL}, 20$ $\mathrm{mmol})$. The title compound was purified by flash column chromatography (hexane/EtOAc, 90:10) and isolated as yellow oil. Yield: $65 \%(2.56 \mathrm{~g}$, $13 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$

[^73]NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.45-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
6.3.2.1.2. Cyclization and in situ decaboxilation

(\pm) 9Aa R: $\mathrm{Bn}, \mathrm{R}^{1}$: Me
10Aa R: Bn, R^{1} : Me
(\pm) $9 \mathrm{Ab} \mathrm{R}: \mathrm{Bn}, \mathrm{R}^{1}: \mathrm{Bn}$
(\pm) 9Ac R: Bn, $\mathrm{R}^{1}: \mathrm{Ph}$
(\pm) 9Ba R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}: \mathrm{Me}$
(\pm) 9Bb R: 1-Napht- $-\mathrm{CH}_{2}, \mathrm{R}^{1}: \mathrm{Bn}$
(\pm) 9Bc R: 1-Napht- $-\mathrm{CH}_{2}, \mathrm{R}^{1}: \mathrm{Ph}$
(\pm) $9 \mathrm{Ca} \mathrm{R}:{ }^{i} \mathrm{Pr}, \mathrm{R}^{1}: \mathrm{Me}$
(\pm) 9Da R: PMP; $\mathrm{R}^{1}: \mathrm{Me}$
(\pm) 9Ea R: 3,4-DMB, R^{1} : Me
(\pm) $9 \mathrm{Fa} \mathrm{R}: \mathrm{Me}, \mathrm{R}^{1}$: Me
(\pm) $\mathbf{9 G a} R$: Et, $\mathrm{R}^{1}: \mathrm{Me}$
(\pm) $9 \mathrm{Ha} \mathrm{R}: \mathrm{Cy}, \mathrm{R}^{1}$: Me

10Ab R: Bn, R¹: Bn
10Ac R: Bn, $R^{1}: P h$
10Ba R: 1-Napht-CH $\mathrm{C}_{2}, \mathrm{R}^{1}$: Me
10Bb R: 1-Napht-CH $\mathrm{C}_{2} \mathrm{R}^{1}$: Bn
10Bc R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Ph
10Ca R: ' $\mathrm{Pr}, \mathrm{R}^{1}$: Me
10Da R: PMP; R ${ }^{1}$: Me
10Ea R: 3,4-DMB, R^{1} : Me
10Fa R: Me, R^{1} : Me
10Ga R: Et, R^{1} : Me
10Ha R: Cy, R ${ }^{1}$: Me

To a solution of the corresponding β-amino ester 9 ($10 \mathrm{mmol}, 1$ equiv.) and ethyl oxalate ($1.6 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv.), sodium ethoxide ($817 \mathrm{mg}, 12 \mathrm{mmol}, 1.3$ equiv.) was added. The mixture was heated under reflux for 5 h (except for $\mathbf{1 0 F a}$ and $\mathbf{1 0 G a}$) and ethanol was removed by distillation leaving a liquid residue which was dissolved in a 50 mL of warm water. Acidification with 3 M HCl precipitated a solid and the resulting decarboxilated product was collected by filtration and then purified. The ${ }^{1} \mathrm{H}$-NMR spectra of the obtained products in CDCl_{3} showed that they were essentially in their enolic form.

1-Benzyl-3-hydroxy-4-methyl-1H-pyrrol-2(5H)-one 10Aa

Prepared according to the general procedure starting from methyl 3-(benzylamino)-2-methylpropanoate 9Aa ($2.073 \mathrm{~g}, 10 \mathrm{mmol}$) and purified by flash silica column chromatography (hexane/EtOAc, 80:20). The title compound was isolated as a white solid. Yield: 86% ($2.75 \mathrm{~g}, 8.6 \mathrm{mmol}$). m.p. $=140-144^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.06(\mathrm{~m}, 5 \mathrm{H})$, $6.48(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4$, $142.0,137.0,128.9,128.2,127.8,118.2,50.7,46.9,10.3$. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 204.1025, found: 204.1023.

1,4-Dibenzyl-3-hydroxy-1H-pyrrol-2(5H)-one 10Ab

Prepared according to the general procedure starting from methyl 2-benzyl-3-(benzylamino)propanoate $9 \mathrm{Ab}(2.79 \mathrm{~g}, 10 \mathrm{mmol})$ and purified by flash silica column chromatography (hexane/EtOAc, 1:1). The title compound was isolated as a yellow solid. Yield: $93 \%(2.60 \mathrm{~g}$, 9.32 mmol). m.p. $=149-151^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-$ 7.11 (m, 10H), 4.59 (s, 2H), 3.66 (s, 2H), 3.51 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.1, 142.1, 138.9, 136.9, 129.0, 128.9, 128.8, 128.2, 127.9, 126.7, 120.8, 49.1, 47.0, 31.6. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+$ calcd.: 280.1338, found: 280.1335 .

1-Benzyl-3-hydroxy-4-phenyl-1H-pyrrol-2(5H)-one 10Ac

Prepared according to the general procedure starting from methyl 3-(benzylamino)-2-phenylpropanoate 9Ac ($2.693 \mathrm{~g}, 10 \mathrm{mmol}$) and purified by flash silica column chromatography (hexane/EtOAc, 1:1). The title compound was isolated as a white solid. Yield: 92% ($2.43 \mathrm{~g}, 9.2 \mathrm{mmol}$). m.p. $=240-244{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.79-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.01(\mathrm{~m}, 8 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 166.7,143.2,137.5,132.7,128.7,128.5,127.6,127.4,127.1,125.7,116.6$, 47.1, 45.8. UPLC-DAD-QTOF: $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 266.1181, found: 266.1173.

3-Hydroxy-4-methyl-1-(naphthalen-1-ylmethyl)-1H-pyrrol-2(5H)-one 10Ba

Prepared according to the general procedure starting from methyl 2-methyl-3-((naphthalen-1-ylmethyl)amino)propanoate 9Ba (2.573 g, 10 mmol) and purified by flash silica column chromatography (hexane/EtOAc, 80:20). The title compound was isolated as a white solid. Yield: $65 \%(1.65 \mathrm{~g}, 6.5 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=158-161^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.17-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.35(\mathrm{~m}, 4 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9$, $141.8,134.1,132.3,131.6,129.1,128.8,127.5,127.1,126.3,125.4,123.9,118.2,50.7$, 45.1, 10.3. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+$ calcd.: 254.1181, found: 254.1181.

4-Benzyl-3-hydroxy-1-((naphthalen-1-yl)methyl)-1H-pyrrol-2(5H)-one 10Bb

Prepared according to the general procedure starting from methyl 3-((naphthalen-1-yl)methylamino)-2-benzylpropanoate 9Bb $\quad(2.7 \mathrm{~g}, 8$ mmol) and purified by flash silica column chromatography (hexane/EtOAc, 1:1). The title compound was isolated as a white solid. Yield: $70 \%(1.8 \mathrm{~g}, 5.6 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11$ (dd, J $=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~m}, J=15.4,8.5,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.29$
$(\mathrm{m}, 3 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,141.9,138.7,133.7,132.1,131.5,129.1,128.7,128.7,127.3,127.0$, $126.5,126.2,125.3,123.7,120.7,49.0,45.1,31.2$. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 330.1494, found: 330.1495. m.p. $=178-180^{\circ} \mathrm{C}$.

3-Hydroxy-1-(naphthalen-1-ylmethyl)-4-phenyl-1,5-dihydro-2H-pyrrol-2-one 10Bc

Prepared according to the general procedure starting from methyl 3-((naphthalen-1-ylmethyl)amino)-2-phenylpropanoate 9Bc (3.19 g, 10 mmol) and purified by flash silica column chromatography (hexane/EtOAc, 70:30). The title compound was isolated as an orange solid. Yield: $55 \%(1.73 \mathrm{~g}, 5.5 \mathrm{mmol}) . \mathrm{T}_{\text {dec }}=168-170^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-$ $7.50(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $202.9,160.6,134.9,132.8,132.4,130.1,129.7,129.6,128.4,128.1,127.3$, 127.1, $126.3,124.6,49.0,46.2,30.8$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 316.1338, found: 316.1340 .

3-Hydroxy-1-isopropyl-4-methyl-1H-pyrrol-2(5H)-one 10Ca

Prepared according to the general procedure starting from methyl 3-(isopropylamino)-2-methylpropanoate $9 \mathbf{C a}(1.59 \mathrm{~g}, 10 \mathrm{mmol})$ purified by flash silica column chromatography (hexane/EtOAc, 80:20). The title compound was isolated as a yellow solid. Yield: $71 \%(1.11 \mathrm{~g}, 7.13 \mathrm{mmol})$. m.p. $=138-140{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (s, $2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,142.2$, 117.2, 46.4, 43.3, 21.0, 10.3. UPLC-DAD-QTOF: $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 156.1025, found: 156.1011.

3-Hydroxy-1-(4-methoxyphenyl)-4-methyl-1H-pyrrol-2(5H)-one 10Da

Prepared according to the general procedure starting from methyl 3-((4-methoxyphenyl)amino)-2-methylpropanoate 9Da ($2.233 \mathrm{~g}, 10 \mathrm{mmol}$) and purified by flash silica column chromatography (hexane/EtOAc, 1:1). The title compound was isolated as a yellow solid. Yield: 71% ($1.55 \mathrm{~g}, 7.1$ mmol). m.p. $=173-175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.49(\mathrm{~m}$, $2 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,156.7,141.8,132.6,120.5,116.2,114.6,55.7$, 51.9, 10.4. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 220.0974, found: 220.0973.

1-(3,4-Dimethoxybenzyl)-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ea

Prepared according to the general procedure starting from methyl 3-((3,4-dimethoxybenzyl)amino)-2-methylpropanoate 9Ea (2.67 g , $10 \mathrm{mmol})$ and purified by flash silica column chromatography (hexane/EtOAc, 70:30). The title compound was isolated as a white solid. Yield: 70% ($1.8 \mathrm{~g}, 7 \mathrm{mmol}$). m.p. $115-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{~m}, 3 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $6 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.05,149.21,148.54$, $141.73,129.32,120.40,117.86,111.26,110.99,55.83,50.30,46.43,10.05$. UPLC-DAD-QTOF: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 264.1236, found: 264.1229 .

3-Hydroxy-1,4-dimethyl-1,5-dihydro-2H-pyrrol-2-one 10Fa

HO Me Prepared according to the general procedure starting from methyl 2-methyl3 -(methylamino)propanoate $9 \mathbf{F a}(1.31 \mathrm{~g}, 10 \mathrm{mmol})$ performing the addition in an ice bath and stirring at room temperature, and purified by flash silica column chromatography (EtOAc). The title compound was isolated as yellow solid. Yield: $70 \%(1.27 \mathrm{~g}, 7 \mathrm{mmol})$ m.p. $140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,142.0$, 118.0 , 53.2 , 29.8 , 10.1. UPLC-DAD-QTOF: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 128.0712, found: 128.0716 .

1-Ethyl-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ga

Prepared according to the general procedure starting from methyl 3-(ethylamino)-2-methylpropanoate 9Ea ($1.45 \mathrm{~g}, 10 \mathrm{mmol}$) performing the addition in an ice bath and stirring at room temperature, and purified after crushing with diethyl ether. The title compound was isolated as a white solid. Yield: $85 \%(1.19 \mathrm{~g}, 8.5 \mathrm{mmol})$. m.p. $144-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.66(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,142.1,117.5,50.4,37.5,13.7,10.2$. UPLC-DAD-QTOF: $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 142.0868 , found: 142.0871.

1-Cyclohexyl-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ha

Prepared according to the general procedure starting from methyl 3-(cyclohexylamino)-2-methylpropanoate 9Ha (1.99 g, 10 mmol) and purified by flash silica column chromatography (hexane/EtOAc, 80:20). The title compound was isolated as a white solid. Yield: 76% ($1.48 \mathrm{~g}, 7.6$ mmol). m.p. $167-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.05-3.92(\mathrm{~m}$,
$1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR（75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.0,51.1,47.3,31.6,25.6,10.3$ ．UPLC－DAD－QTOF： $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd．：196．1338，found：196．1340．

6．3．2．2．Synthesis of acyclic ketoamides

6．3．2．2．1．Method A

$$
\begin{aligned}
& \text { 30A } R^{1}, R^{2}: \mathrm{Bn} \\
& \text { 30B } R^{1}, R^{2}: \mathrm{Et} \\
& \text { 30C } R^{1}, \mathrm{R}^{2}: \mathrm{Bu} \\
& \text { 30D } R^{1}, \mathrm{R}^{2}: 1-\mathrm{Napht}-\mathrm{CH}_{2} \\
& \text { 30E } R^{1}, \mathrm{R}^{2}:-\left(\mathrm{CH}_{2}\right)_{5} \\
& \text { 30F } R^{1}, \mathrm{R}^{2}:-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}- \\
& \text { 30G } R^{1}: \mathrm{OMe}, \mathrm{R}^{2}: \mathrm{Me} \\
& \text { 30H } \mathrm{R}^{1}: \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{Me}
\end{aligned}
$$

31A R^{1}, R^{2} ：$B n$ 31B R^{1}, R^{2} ：Et 31C R^{1}, R^{2} ：＇Bu 31D $\mathrm{R}^{1}, \mathrm{R}^{2}$ ：1－Napht－CH ${ }_{2}$ 31E $\mathrm{R}^{1}, \mathrm{R}^{2}$ ：$-\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}$ 31F $\mathrm{R}^{1}, \mathrm{R}^{2}$ ：$-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2^{-}}$ 31G R^{1} ： $\mathrm{OMe}, \mathrm{R}^{2}$ ： Me 31H R ${ }^{1}$ ： $\mathrm{Ph}, \mathrm{R}^{2}$ ：Me
（土）32A $R^{1}, R^{2}: B n$
（土）32B R^{1}, R^{2} ：Et
（ \pm ） $32 \mathrm{C} R^{1}, R^{2}$ ： Bu
（土）32D R^{1}, R^{2} ：1－Napht－ CH_{2}
（土）32E R ${ }^{1}, \mathrm{R}^{2}:-\left(\mathrm{CH}_{2}\right)_{5}-$
（ \pm ） $32 \mathrm{~F} \mathrm{R}^{1}, \mathrm{R}^{2}$ ：$-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}{ }^{-}$
（ \pm ）32G $R^{1}: \mathrm{OMe}, \mathrm{R}^{2}$ ： Me
（ $\mathbf{\pm}$ ） $\mathbf{3 2 H} \mathrm{R}^{1}: \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{Me}$
$\underline{1^{\text {st }} \text { step：}}$ Amide bond formation $\mathbf{3 1 A - 3 1 H}$

Method A1 ${ }^{246}$ ：To a solution of 2－oxobutyric acid（ $598 \mathrm{mg}, 5.85 \mathrm{mmol}, 1$ equiv．） in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ 50 mL ），the corresponding amine（ $6.43 \mathrm{mmol}, 1.1$ equiv．）was added followed by DIPEA（ $4.07 \mathrm{~mL}, 23.4 \mathrm{mmol}, 4$ equiv．）and TBTU（ $2.06 \mathrm{~g}, 6.43 \mathrm{mmol}, 1.1$ equiv．）． The reaction mixture was stirred at room temperature for 16 h ．Then，TBTU $(0.47 \mathrm{~g}, 1.46$ mmol， 0.25 equiv．）was added and the mixture was stirred for 3 h ，and then washed with $\mathrm{HCl} 3 \mathrm{M}(2 \times 100 \mathrm{~mL})$ ．The organic layer was dried over MgSO_{4} and evaporated under reduced pressure．The crude product was purified by flash column chromatography．

Method A2 $\mathbf{2}^{247}$ ：To a solution of 2－oxobutyric acid（ $510 \mathrm{mg}, 5 \mathrm{mmol}, 1$ equiv．）in $\mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL}), \mathrm{N}, \mathrm{O}$－dimethylhydroxylamine hydrochloride（ $7.5 \mathrm{mmol}, 1.5$ equiv．）was added followed by EDCI hydrochloride（ $1.24 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.3$ equiv．）at room temperature．The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}$（ $1.04 \mathrm{~mL}, 7.5 \mathrm{mmol}, 1.5$ equiv．） was added dropwise．After addition，the mixture was stirred at room temperature for 16 h ． The solvent was evaporated and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and

[^74]washed with brine ($1 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The crude product was purified by flash column chromatography.
$\underline{2^{\text {nd }} \text { step: }} \alpha$-Arilation of ketoamides $\leq \mathbf{3 2 A - 3 2} \mathbf{H}^{248}$

A flame-dried sealing tube was cooled under a steam of Ar and charged with $\operatorname{Pd}(\mathrm{dba})_{3}(0.04 \mathrm{mmol}, 0.02$ equiv.) and tri-tert-butylphosphonium tetrafluoroborate $(0.08$ mmol, 0.08 equiv.). Dry toluene (5 mL) was added followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3 \mathrm{mmol}, 3$ equiv.). The mixture stirred at room temperature for 2 h . The corresponding ketoamide (1 mmol, 1 equiv.) and benzyl iodide ($2 \mathrm{mmol}, 2$ equiv.) were added and stirred at $130^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat) and extracted with dichloromethane. The organic phase was dried over MgSO_{4} and evaporated in vacuo to afford the crude which was purified by flash column chromatography.

6.3.2.2.2. Method B^{249}

$\mathbf{1}^{\text {st }}$ step: 2-Oxobutanoic acid ($1.02 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv.), tert-butyl alcohol (1.9 $\mathrm{mL}, 20 \mathrm{mmol}, 2$ equiv.) and pyridine ($2 \mathrm{~mL}, 25 \mathrm{mmol}, 2.5$ equiv.) were dissolved in dry THF (10 mL) at $0{ }^{\circ} \mathrm{C}$. Mesyl chloride ($0.93 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv.) was then added dropwise, and the reaction was warmed to room temperature and stirred for 16 h . The reaction was quenched with water (20 mL) and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The crude was used in the next step without further purification. All spectroscopic data were coincident with those previously described. Yellow oil. Yield: 75% ($1.18 \mathrm{~g}, 7.5 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.79(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.
$\mathbf{2}^{\text {nd }}$ step: A flame-dried sealing tube was cooled under a steam of Ar and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(25 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.02$ equiv.) and tri-tert-butylphosphonium

[^75]tetrafluoroborate ($23 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.08$ equiv.). Dry toluene (5 mL) was added followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($415 \mathrm{mg}, 6 \mathrm{mmol}, 3$ equiv.) and the mixture stirred at room temperature for 2 h . Then, tert-butyl 2-oxo-3-phenylbutanoate ($1 \mathrm{mmol}, 1$ equiv.) and benzyl iodide ($0.16 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv.) were added and the mixture stirred at 110 ${ }^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat) and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and evaporated in vacuo to afford crude 32I. The title compound was purified by flash column chromatography (hexane/EtOAc, 95:5) and isolated as a colourless oil. Yield: 67% (238 $\mathrm{mg}, 0.67 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{250}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.09(\mathrm{~m}, 5 \mathrm{H}), 4.34(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$.
$\mathbf{3}^{\text {rd }}$ step: To a solution of $\mathbf{3 2 I}$ ($234 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in dry dichloromethane $(1 \mathrm{~mL})$, TFA $(1 \mathrm{~mL})$ was slowly added at room temperature and the mixture was stirred at the same temperature for 3 h until consumption of the starting material (followed by TLC). Then, the acid was co-evaporated with EtOAc until dryness and the crude was used in the next step without further purification. To a solution of the acid ($178 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in DCM (1 mL), a catalytic amount of DMF (1 drop) and oxalyl chloride (0.1 mL , $1.2 \mathrm{mmol}, 1.2$ equiv.) were added at $0{ }^{\circ} \mathrm{C}$ and it was stirred at room temperature until generation of gasses stopped (2 h). The mixture was cooled in an ice bath, amine 30J and DIPEA ($2 \mathrm{mmol}, 2$ equiv.) were added and the mixture was allowed to stir at room temperature for 4 h . Then the reaction was quenched by the addition of water (3 mL) and the organic materials were extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined extracts were washed with brine ($1 \times 15 \mathrm{~mL}$) and dried over MgSO_{4}. The crude material was purified by flash silica gel column chromatography to afford 32J as a yellow oil.

N, N-Dibenzyl-2-oxobutanamide $\mathbf{3 1} \mathrm{A}^{251}$

Prepared according to General Method A1 starting from dibenzylamine 30A ($1.24 \mathrm{~mL}, 6.43 \mathrm{mmol}$). Purified by column chromatography (hexane/EtOAc, 90:10) to afford X as a white solid. Yield: 84% ($1.38 \mathrm{~g}, 4.9 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 10 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

[^76]
N, N-Diethyl-2-oxobutanamide 31B ${ }^{252}$

Prepared according to General Method A1 starting from diethylamine $(0.84 \mathrm{~g}, 5.36 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

N, N-Diisobutyl-2-oxobutanamide 31C

Prepared according to General Method A1 starting from diisobutylamine 30C ($1.12 \mathrm{~mL}, 6.43 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 95:5) and isolated as a colourless oil. Yield: $98 \%(1.22 \mathrm{~g}, 5.73 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.20(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=28.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85(\mathrm{~d}, J=27.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.85(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.0,168.3,54.7,51.5,33.6,27.2$, $26.3,20.2,19.9,7.2$. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO} 2[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 213.1785, found: 213.1701.

N, N-Bis(naphthalen-1-ylmethyl)-2-oxobutanamide 31D

Prepared according to General Method A1 starting from bis(naphthalen-1-ylmethyl)amine ${ }^{253}$ 30D ($2.49 \mathrm{~g}, 6.43 \mathrm{mmol}$). Purified by column chromatography (hexane/EtOAc, 90:10) and isolated as a white solid. Yield $77 \%(1.71 \mathrm{~g}, 4.5 \mathrm{mmol})$. m.p. $=118-$ $180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.93-$ $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ $-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.9,168.2,133.4,129.1,129.0,127.9,127.7$, $127.1,126.7,126.5,126.5,126.3,125.4,50.2,47.4,33.7,7.0$. UPLC-DAD-QTOF: $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 382.1752, found: 383.1780.

[^77]
1-(Piperidin-1-yl)butane-1,2-dione 31E ${ }^{254}$

Prepared according to General Method A1 starting from piperidine 30E ($0.64 \mathrm{~mL}, 6.43 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a colourless oil. Yield: 84\% $(0.83 \mathrm{~g}, 4.91 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.61-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.73-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-Morpholinobutane-1,2-dione 31F ${ }^{255}$

Prepared according to General Method A1 starting from morpholine 30F ($0.55 \mathrm{~mL}, 6.43 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 80:20) and isolated as a colourless oil. Yield: 92% $(0.84 \mathrm{~g}, 5.36 \mathrm{mmol})$. All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.61-3.35(\mathrm{~m}, 6 \mathrm{H}), 3.35-3.16$ (m, 2H), $2.59(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

N-Methoxy- N-methyl-2-oxobutanamide 31G

Prepared according to General Method A2 starting from N, O dimethylhydroxylamine hydrochloride $\mathbf{3 0 G}$ ($731.5 \mathrm{mg}, 7.5 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 70:30) and isolated as a colourless oil. Yield: $60 \%(370 \mathrm{mg}, 2.55 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2,168.2,62.2,32.9,31.4,6.5$. UPLC-DAD-QTOF: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 146.0817, found: 146.0820 .

N-Methyl-2-oxo- N-phenylbutanamide $31 \mathbf{H}^{256}$

Prepared according to General Method A2 starting from N methylaniline ($10.69 \mathrm{~mL}, 6.43 \mathrm{mmol}$) $\mathbf{3 0 H}$. Purified by flash column chromatography (hexane/EtOAc, 90:10) and isolated as a colourless oil. Yield: 85% ($1.04 \mathrm{~g}, 5.46 \mathrm{mmol}$). All the spectroscopic data were coincident with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left.\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{~m}, 3 \mathrm{H}), 6.91 \mathrm{~m}, 2 \mathrm{H}\right), 3.02$ $(\mathrm{s}, 1 \mathrm{H}), 2.28(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

[^78]
(\pm) 2-Oxo-3-phenyl-N,N-bis(pyridin-2-ylmethyl)butanamide 32J

Prepared according to General Method B starting from di-(2picolyl)amine 30J ($0.27 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv.). Purified by column chromatography (hexane/EtOAc, 1:1) to afford the pure amide as a yellow oil. Yield: $71 \%(254 \mathrm{mg}, 0.71 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.29$ - $7.20(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $198.8,167.5,155.7,149.3,136.8,136.7,129.1,128.8,128.6,128.3,127.7,127.1$, $122.5,122.3,121.5,52.6,49.9,48.9$. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ calcd.: 360.1674 , found: 360.1684 .

(\pm) N,N-Dibenzyl-2-oxo-3-phenylbutanamide 32A

 dibenzyl-2-oxobutanamide 31A ($357 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by column chromatography (hexane/EtOAc, 95:5) to afford 32A as a colourless oil. Yield: 70% ($250 \mathrm{mg}, 0.7 \mathrm{mmol}$). m.p. $=78-81^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.55-7.17(\mathrm{~m}, 11 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.7$, $167.2,136.9,135.3,134.9,130.0,129.1,128.8$, $128.5,128.3,128.3,128.0,127.8,127.8,127.3,49.4,48.9,45.8,15.1$. UPLC-DAD-QTOF: $\mathrm{C}_{4} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 358.1807, found: 358.1810.

(\pm) N, N-Diethyl-2-oxo-3-phenylbutanamide 32B

Prepared according to the General Procedure A starting from N, N -diethyl-2-oxobutanamide 31B ($157 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 90:10) to afford 32B as colourless oil. Yield: $60 \%(140 \mathrm{mg}, 0.6 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.04(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.00$ $(\mathrm{m}, 1 \mathrm{H}), 2.85-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,166.9,144.9,137.2,129.1,128.8$, $128.3,127.8,127.3,48.8,41.7,38.9,15.0,13.9,12.3$. UPLC-DAD-QTOF: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 234.1494, found: 234.1498.

(\pm) N, N-Diisobutyl-2-oxo-3-phenylbutanamide 32C

Prepared according to the General Procedure A starting from N, N -diisobutyl-2-oxobutanamide 31C ($157 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 98:2) to afford 32C as yellow oil. Yield: $58 \%(168 \mathrm{mg}, 0.58 \mathrm{mmol})^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.36-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.55(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J$ $=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,167.5,137.3,128.8$, 128.6 , $127.5,53.9,51.0,48.6,26.4,25.6,19.9,19.7,19.4,19.2,15.8$. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 290.2054, found: 290.2062.

(\pm) N, N-Bis(naphthalen-1-ylmethyl)-2-oxo-3-phenylbutanamide 32D

Prepared according to the General Procedure A starting from N, N -bis(naphthalen-1-ylmethyl)-2-oxobutanamide 31D (381 mg, 1 mmol). Purified by column chromatography (hexane/EtOAc, 95:5) to afford 32D as a white solid. Yield: $83 \%(379 \mathrm{mg}, 0.83 \mathrm{mmol})$. m.p. $=121-124^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03-7.65(\mathrm{~m}$, 5 H), $7.60-7.02$ (m, 13H), $6.79-6.47$ (m, 1H), 5.24 (d, $J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{td}, J=11.3,9.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.68-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.35(\mathrm{~m}, 1 \mathrm{H})$, $1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,167.9,137.1,133.8$, $133.7,131.4,130.6,129.2,128.9,128.7,128.4,128.2$, $127.9,126.5,126.3,125.9$, $125.8,125.6$, 125.2 , 124.7 , 123.3 , $122.1,49.0,46.9,44.9$, 15.6 . UPLC-DADQTOF: $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 458.5760, found: 458.5788.

(\pm) 3-Phenyl-1-(piperidin-1-yl)butane-1,2-dione 32E

Prepared according to the General Procedure A starting from 1-(piperidin-1-yl)butane-1,2-dione 31E ($169 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 90:10) to afford 32D as a yellow oil. Yield: $80 \%(196 \mathrm{mg}, 0.8 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (ddd, J $=13.1,8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (ddd, $J=13.5,8.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dddd, $J=13.5,6.3$, $4.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.64$ $(\mathrm{tq}, J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,165.8,136.8$, 129.0, 128.7, 127.7, 48.8, 46.5, 42.1, 25.6, 25.1, 24.1, 14.8. UPLC-DAD-QTOF: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 246.1494, found: 246.1503.

(\pm) 1-Morpholino-3-phenylbutane-1,2-dione 32F

Prepared according to the General Procedure A starting from 1-morpholinobutane-1,2-dione 31F ($171 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 80:20) to afford 32F as a white solid. Yield: 80% ($196 \mathrm{mg}, 0.79 \mathrm{mmol}$). m.p. $=91-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.08(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.39(\mathrm{~m}$, $1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.40 (m, 1H), $1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.0,165.2$, $136.2,128.8,128.3,127.6,65.8,48.3,45.4,41.10,14.1$ UPLC-DAD-QTOF: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 248.1287, found: 248.1292 .

(\pm) N-Methoxy- N-methyl-2-oxo-3-phenylbutanamide 32G

Prepared according to the General Procedure A starting from N -methoxy- N-methyl-2-oxobutanamide $\mathbf{3 1 G}$ ($145 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 90:10) to afford 32G as a colourless oil. Yield: $83 \%(183 \mathrm{mg}, 0.83 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.37-7.08(\mathrm{~m}, 5 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,167.9,128.7,128.5,128.1,127.6$, $127.1,62.2,49.2,31.5,16.0$. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 222.1123, found: 222.1145 .

(\pm) N -Methyl-2-oxo- $\mathrm{N}, 3$-diphenylbutanamide $\mathbf{3 2 H}$

Prepared according to the General Procedure A starting from N-Methyl-2-oxo- N-phenylbutanamide 31H ($191 \mathrm{mg}, 1 \mathrm{mmol}$). Purified by flash column chromatography (hexane/EtOAc, 95:5) to afford $\mathbf{3 2 H}$ as a colourless oil. Yield: $68 \%(181 \mathrm{mg}, 0.68 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-$ $6.92(\mathrm{~m}, 9 \mathrm{H}), 6.74-6.50(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,143.6,141.2,129.4,129.2,128.6$, $128.5,127.9,127.0,126.7,125.4,36.5,28.4,26.1$. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 267.1376, found: 267.1365 .

6.3.3. Preparation of electrophiles

6.3.3.1. Preparation of enones

Enones $\mathbf{1 5}$ and $\mathbf{1 6}$ were commercially available and were used in the reaction after distillation, and $\mathbf{1 2}$ and $\mathbf{1 7}$ were prepared as follows:

6.3.3.1.1. Synthesis of α '-hydroxy enone 12

The two procedures (method A and B) described below are efficient for the obtention of enone 12.

METHOD A: ${ }^{257}$

To a solution of methoxypropadiene ($3.5 \mathrm{~g}, 50 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at -40 ${ }^{\circ} \mathrm{C}$, $n \mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $22 \mathrm{~mL}, 55 \mathrm{mmol}$) was added under nitrogen and the reaction was stirred at $-40^{\circ} \mathrm{C}$ for 10 min . Then, acetone ($4.0 \mathrm{~mL}, 55 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}$ $(55 \mathrm{~mL}$) was added within 5 min . The reaction was stirred at the same temperature for 0.5 h and quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The resulting mixture was allowed to warm to room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 2-methyl-3-methoxy-3,4-pentadien-2-ol as a yellow liquid that was employed in the next step without further purification. Yield: $82 \%(5.6 \mathrm{~g}, 41.0 \mathrm{mmol})$.

The material from the previous step (2-methyl-3-methoxy-3,4-pentadien-2-ol, 5.6 $\mathrm{g}, 41.0 \mathrm{mmol})$ was added dropwise to 5% aq $\mathrm{H}_{2} \mathrm{SO}_{4}(110 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h . After this time the reaction was allowed to warm to room temperature and the solution was saturated with solid NaCl . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 60 \mathrm{~mL})$ and the combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give a yellow oil which upon distillation afforded the enone 97 as a colorless liquid. Yield: $88 \%(4.4 \mathrm{~g}, 38.7 \mathrm{mmol})$ b.p. $45^{\circ} \mathrm{C}(13$ mmHg); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3445(\mathrm{OH}), 1693(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{dd}, J=9.5$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=2.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.3,131.1,128.8,75.4,26.1$.

[^79]
METHOD B: ${ }^{258}$

Commercially available 3-hydroxy-3-methyl-2-butanone ($5.3 \mathrm{~mL}, 50 \mathrm{mmol}, 1$ equiv.) and paraformaldehyde ($3 \mathrm{~g}, 100 \mathrm{mmol}, 2$ equiv.) were added to a solution of ${ }^{i} \operatorname{Pr}_{2} \mathrm{NH}$ ($14.0 \mathrm{~mL}, 100 \mathrm{mmol}, 2$ equiv.) and TFA ($9.6 \mathrm{~mL}, 125 \mathrm{mmol}, 2.5$ equiv.) in THF (250 mL). The mixture was refluxed and paraformaldehyde ($3 \mathrm{~g}, 100 \mathrm{mmol}, 2$ equiv.) was added every 2 h three times. The mixture was stirred at reflux overnight and then was cooled to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added and the mixture was washed with $1 \mathrm{~N} \mathrm{HCl}(75 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{NaOH}(75 \mathrm{~mL})$ and brine $(75 \mathrm{~mL})$, and the organic layer was dried over MgSO_{4}. The solvent was removed under reduced pressure (230 mbar / bath 40 ${ }^{\circ} \mathrm{C}$). The residue was purified by flash column chromatography on silica gel (eluting with diethyl ether) to afford 4-hydroxy-4-methylpent-1-en-3-one $\mathbf{9 7}$ as colorless oil. Yield: 5.0 g, $44.5 \mathrm{mmol}, 89 \%$.
6.3.3.1.2. Silylation of α^{\prime}-hydroxy enone ${ }^{259}$

3-(Trimethylsilyl)-2-oxazolidinone (TMSO) ($3.4 \mathrm{~mL}, 22.5 \mathrm{mmol}, 1.5$ equiv.) and 3 drops of trifluoromethanesulfonic acid were added to enone $97(1.7 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv.). The reaction mixture was stirred at room temperature for 2 h , diluted with pentane $(20 \mathrm{~mL})$ and subsequently washed with water $(20 \mathrm{~mL})$ and NaHCO_{3} sat. $(20 \mathrm{~mL})$. The organic phase was then dried over with MgSO_{4} and concentred under reduced pressure to afford the title compound $\mathbf{1 2}$ as a colorless oil. Yield: $93 \%(2.6 \mathrm{~g}, 14.0 \mathrm{mmol})$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=17.3,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 202.8,130.7,129.2,79.3,27.2,2.3$.
6.3.3.1.3. Synthesis of 1-(p-tolyl)prop-2-en-1-one 17^{260}

[^80]To a solution of 1 -(p-tolyl)ethan-1-one ($2.0 \mathrm{~mL}, 15 \mathrm{mmol}, 1$ equiv.) and paraformaldehyde ($0.9 \mathrm{~g}, 30 \mathrm{mmol}, 2$ equiv.) in dry THF (15 mL) was added diisopropylammonium trifluoroacetate $(2.2 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv.) and trifluoroacetic acid ($0.1 \mathrm{~mL}, 1.5 \mathrm{mmol}, 0.1$ equiv.). The reaction mixture was stirred at reflux for 2 h , then cooled down to room temperature and a second addition of paraformaldehyde ($0.9 \mathrm{~g}, 30$ mmol, 2 equiv.) and diisopropylammonium trifluoroacetate ($2.2 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv.) was performed. The reaction mixture was then stirred at reflux overnight, then cooled down and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and washed with 1 M HCl and 1 M MaOH . The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel eluting with hexane/ethyl acetate $95 / 5$ to give the title compound as colorless oil. Yield: $76 \%(1.7 \mathrm{~g}, 11.4 \mathrm{mmol})$. All data were consistent with those previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.87 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=17.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.

6.3.3.2. Preparation of allyl carbonates

Carbonates 23-25 and 26-28 were prepared according to the procedures described in the literature. ${ }^{261}$

[^81]
6.3.4. Organocatalytic conjugate addition to enones

6.3.4.1. Asymmetric addition to α '-oxy enones

To a mixture of the corresponding pyrrolidin-2,3-dione ($0.2 \mathrm{mmol}, 1$ equiv.) and the α 'silyloxyenone 12 ($74 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv.) in dichloromethane (0.4 mL) catalyst C23 ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added. The mixture was stirred until consumption of the α-ketoamide (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). The reaction mixture was then quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. For the desilylation step, the reaction crude was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and, $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and glacial acetic acid $(0.3 \mathrm{~mL})$ were added. The reaction mixture was stirred for 1 h at room temperature and was then quenched with NaHCO_{3} saturated aqueous solution (20 mL). The organic layer was separated and evaproated under reduced pressure and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel to afford the expected adducts.

6.3.4.2. Asymmetric addition to vinyl ketones

To a mixture of the corresponding enol $\mathbf{1 0}$ ($0.2 \mathrm{mmol}, 1$ equiv.) and the corresponding vinyl ketone 15-17 ($0.4 \mathrm{mmol}, 2$ equiv.) in dichloromethane (0.4 mL) catalyst $\mathbf{C 2 3}(17 \mathrm{mg}$, $0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added. The mixture was stirred until consumption of the enol 9 (monitored by ${ }^{1} \mathrm{H}$-NMR). The reaction mixture was then quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel to afford the expected adducts.

6.3.4.3. Racemic reaction

To a mixture of the corresponding α-ketoamide $\mathbf{1 0}$ ($0.2 \mathrm{mmol}, 1$ equiv.) the corresponding enone $\mathbf{1 2}$ or $\mathbf{1 5 - 1 7}$ ($0.3 \mathrm{mmol}, 1.5$ equiv.) in dichloromethane (0.4 mL) triethylamine ($56 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv.) was added at room temperature. The mixture was stirred at the same temperature, until consumption of the α-ketoamide (monitored by $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$. The reaction mixture was then quenched with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude was purified by flash column chromatography on silica gel to afford the expected adducts.

6.3.4.4 Characterization data for compounds

1-Benzyl-4-(4-hydroxy-4-methyl-3-oxopentyl)-4-methylpyrrolidine-2,3-dione 14Aa

The title compound was prepared from 1-benzyl-3-hydroxy-4-methyl-1 H -pyrrol-2($5 H$)-one 10Aa ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-methyl-4-((trimethylsilyl)oxy)pent-1-en-3-one $\mathbf{1 2}$ ($75 \mathrm{mg}, 0.4$ mmol) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 80:20) to give the title compound as a white foam. Yield: $84 \%(53 \mathrm{mg}, 0.17 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=+$ $18.9^{\circ}\left(\mathrm{c}=1.15,90 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.77$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.6,203.5,159.2,134.6,129.3,128.7$, 128.6, 76.6, 53.9, 48.6, 42.5, 31.1, 30.2, 26.7, 21.9. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 318.1705 , found: 318.1705 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H, hexane $/$ isopropanol $40 / 60$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$, retention times: 23 min (major.) and $28 \min$ (minor.)).

4-(4-Hydroxy-4-methyl-3-oxopentyl)-4-methyl-1-(naphthalen-1-ylmethyl)pyrrolidine-2,3-dione 14Ba

The title compound was prepared from 3-hydroxy-4-methyl-1-(naphthalen-1-ylmethyl)-1 H -pyrrol-2(5H)-one 10Ba ($51 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and 4-methyl-4-((trimethylsilyl)oxy)pent-1-en-3-one 12 (75 $\mathrm{mg}, 0.4 \mathrm{mmol})$ following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 80:20) to give the title compound as a white foam. Yield: $86 \%(63 \mathrm{mg}, 0.17 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=+18.3^{\circ}\left(\mathrm{c}=1.6,96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.36(\mathrm{~m}, 4 \mathrm{H}), 5.31(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.2,203.6,158.8,134.1,131.5,130.0,129.9,129.1,128.9,127.6,126.7$, $125.3,123.5,76.5,53.6,46.9,42.5,31.2,23.0,26.6,22.2 . U P L C-D A D-Q T O F:$ $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 368.1862, found: 368.1861.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H, hexane/ethanol 50/50, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 14 min (minor.) and 16 \min (major.)).

(S)-4-Benzyl-4-(4-hydroxy-4-methyl-3-oxopentyl)-1-((naphthalen-1-yl)methyl) pyrrolidine-2,3-dione 14Bb

The title compound was prepared from 4-benzyl-3-hydroxy-1-(naphthalen-1-ylmethyl)-1,5-dihydro-2 H -pyrrol-2-one 10Bb (66 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and 4-methyl-4-((trimethylsilyl)oxy)pent-1-en-3one 12 ($75 \mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a white solid. Yield: 80% ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$). m. p. $=118-120^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+$ $13.6^{\circ}\left(\mathrm{c}=2.9,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.54$ $-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.79-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97$ (d, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.0,204.2,158.6,134.5,134.1,131.4,129.8,129.7,128.9,128.6$, $128.6,127.5,126.6,125.2,123.5,49.3,46.7,42.2,30.7,26.5$. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calculated.: 444.2175, found: 444.2173.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 60/40, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 23 min (minor.) and $26 \min$ (major.)).

(R)-4-(4-hydroxy-4-methyl-3-oxopentyl)-1-isopropyl-4-methylpyrrolidine-2,3-dione 14 Ca

The title compound was prepared from 3-hydroxy-1-isopropyl-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ca ($31 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-methyl-4-((trimethylsilyl)oxy)pent-1-en-3-one $\mathbf{1 2}$ (75 mg , 0.4 mmol) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a white solid. Yield: $84 \%(45 \mathrm{mg}, 0.17 \mathrm{mmol})$. m. p. $=90-92{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}$ $=-2.1^{\circ}\left(\mathrm{c}=0.9,88 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.65-4.56(\mathrm{~m}, 1 \mathrm{H})$, $3.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (ddd, $J=8.2,6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.91(\mathrm{td}, J=8.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.6,203.9,158.6,49.8,44.6,42.5,31.0,30.2,26.7,21.7$, 19.4. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calculated.: 270.1705, found: 270.1713.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol 50/50, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 34 min (major.) and $44 \min$ (minor.)).

(R)-1-Benzyl-4-methyl-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Aa

The title compound was prepared from 1-benzyl-3-hydroxy-4-methyl1 H -pyrrol-2(5 H)-one 10Aa ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and but-3-en-2-one $\mathbf{1 5}$ ($28 \mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 80:20) to give the title compound as a white foam. Yield: 75% (41 mg , $0.15 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=-1.0^{\circ}\left(\mathrm{c}=1.75,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40$ - $7.18(\mathrm{~m}, 5 \mathrm{H}), 4.71(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=8.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,203.6,159.2,134.6,129.2$, 128.7, 128.6, 54.0, 48.6, 42.5, 37.8, 30.9, 30.1, 21.8. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 274.1443, found: 274.1453.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 80/20, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$, retention times: 38 min (minor.) and 41 min (major.)).
(S)-1,4-Dibenzyl-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Ab

The title compound was prepared from 1,4-dibenzyl-3-hydroxy-1H-pyrrol-2($5 H$)-one $\mathbf{1 0 B b}(59 \mathrm{mg}, 0.2 \mathrm{mmol}$) and but-3-en-2-one 15 (28 $\mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 80:20) to give the title compound as a white foam. Yield: 84% (59 mg , $0.17 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-15.3^{\circ}\left(\mathrm{c}=2.0,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.50$ (s, 2H), 3.48 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.17-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-$ $2.22(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.7, 204.4, 159.1, 135.0, 134.4, 129.9, 129.2, 128.9, 128.4, 128.4, 127.5, 49.8, 48.4, 46.9, 41.9, 37.6, 30.8, 30.1. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 350.1756 , found: 350.1769 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 50/50, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 21 min (minor.) and 40 min (major.)).

(R)-4-Methyl-1-((naphthalen-1-yl)methyl)-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Ba

The title compound was prepared from 3-hydroxy-4-methyl-1-(naphthalen-1-ylmethyl)-1,5-dihydro- 2 H -pyrrol-2-one 10Ba (51 mg , $0.2 \mathrm{mmol})$ and but-3-en-2-one $\mathbf{1 5}(28 \mathrm{mg}, 0.4 \mathrm{mmol})$ following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a white foam. Yield: $95 \%(60 \mathrm{mg}, 0.19 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-$ $0.2^{\circ}\left(\mathrm{c}=1.0,93 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-$ $7.95(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.16$ (ddd, $J=17.8,10.2$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.7,203.8,158.8,134.1,131.4,129.9,129.9,129.1,128.9$, 127.4, 126.6, 125.3, 123.6, 53.4, 46.9, 42.4, 37.6, 31.1, 29.8, 22.0. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 324.1600, found: 324.1606.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel OD-H hexane/ isopropanol 80/20, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 61 min (major.) and $76 \min$ (minor.)).

(S)-4-Benzyl-1-((naphthalen-1-yl)methyl)-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Bb

The title compound was prepared from 4-benzyl-3-hydroxy-1-(naphthalen-1-ylmethyl)-1,5-dihydro-2 H -pyrrol-2-one 10Bb (66 mg , $0.2 \mathrm{mmol})$ and but-3-en-2-one $15(28 \mathrm{mg}, 0.4 \mathrm{mmol})$ following the general procedure. The crude material was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a white solid. Yield: $97 \%(77 \mathrm{mg}, 0.19 \mathrm{mmol})$. m. p. $=$ $146-147^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-8.0^{\circ}\left(\mathrm{c}=1.0,91 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{dd}, J=6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.89$ (m, 2 H), 2.54 (d, J $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.63(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.4,204.3,158.6,134.6,133.9,131.2,129.6,128.9$, $128.5,127.2,126.4,125.2,123.5,49.2,46.8,46.5,41.8,37.3,30.6,29.8$. UPLC-DADQTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 400.1913, found: 400.1913.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel OD-H hexane/isopropanol $50 / 50$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 38 min (minor.) and 50 min (major.)).

(R)-1-Isopropyl-4-methyl-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Ca

 The title compound was prepared from 3-hydroxy-1-isopropyl-4-methyl-1,5-dihydro-2H-pyrrol-2-one $\mathbf{1 0 C a}(31 \mathrm{mg}, 0.2 \mathrm{mmol})$ and but-3-en-2-one $\mathbf{1 5}$ ($28 \mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. he crude material was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a white foam. Yield: 98% $(45 \mathrm{mg}, 0.19 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+18.7^{\circ}\left(\mathrm{c}=1.0,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.60(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (dd, $J=8.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{td}, J=8.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{dd}, J=$ $6.8,4.1 \mathrm{~Hz}, 6 \mathrm{H}$), $1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,204.0,158.6,49.7$, $44.5,42.4,37.8,30.7,30.1,21.7,19.4$. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 226.1443, found: 226.1450 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel OJ-H hexane/isopropanol 80/20, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 19 min (minor.) and 21 min (major.)).
(R)-1-(4-Methoxyphenyl)-4-methyl-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Da

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel OD-H hexane/isopropanol 70/30, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 29 min (minor.) and 34 min (major.)).

(S)-1,4-Dibenzyl-4-(3-oxopentyl)pyrrolidine-2,3-dione 19Ab

The title compound was prepared from 1,4-dibenzyl-3-hydroxy-1 H -pyrrol-2($5 H$)-one 10Ab ($59 \mathrm{mg}, 0.2 \mathrm{mmol}$) and pent-1-en-3-one 16 ($34 \mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. The crude was purified by flash column chromatography on silica gel
(hexane/EtOAc, 1:1) to give the title compound as a white foam. Yield: 94% ($68 \mathrm{mg}, 0.19$ mmol). $[\alpha]_{\mathrm{D}}{ }^{25}=-11.3^{\circ}\left(\mathrm{c}=1.4,88 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-$ $7.10(\mathrm{~m}, 6 \mathrm{H}), 7.06-6.82(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=$ $12.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.80(\mathrm{~m}, 2 \mathrm{H})$, $0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.3,204.2,158.9,134.8,134.1$, 129.7, 128.9, 128.7, 128.2, 128.1, 127.3, 49.6, 48.2, 46.7, 41.7, 36.0, 30.6, 7.7. UPLC-DAD-QTOF: $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated.: 364.1913, found: 364.1918.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 50/50, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 35 min (minor.) and 51 \min (major.)).
(S)-1,4-Dibenzyl-4-(3-oxo-3-(p-tolyl)propyl)pyrrolidine-2,3-dione 20Ab

The title compound was prepared from 1-benzyl-3-hydroxy-4-phenyl-1 H-pyrrol-2($5 H$)-one 10Ab ($59 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1 -(p-tolyl)prop-2-en-1-one 17 ($59 \mathrm{mg}, 0.4 \mathrm{mmol}$) following the general procedure. The crude was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to give the title compound as a yellow solid. Yield: 73% ($62 \mathrm{mg}, 0.15 \mathrm{mmol}$). m. p. $=144-$ $145^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-38.5^{\circ}\left(\mathrm{c}=1.8,87 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-$ 7.70 (m, 2H), $7.30-7.13$ (m, 8H), $7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.94$ (ddd, $J=16.9,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.74$ (m, $1 \mathrm{H}), 2.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (ddd, $J=14.2,10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=14.2,10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.6,198.0,159.2$, $144.5,135.1,134.4,134.0,130.0,129.5,129.2,128.9,128.4,128.4,128.3,127.5,49.8$, 48.5, 47.2, 42.2, 32.6, 31.5, 21.8. UPLC-DAD-QTOF: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calculated.: 426.2069, found: 426.2075.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/isopropanol 80/20, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 22.1 min (major.) and 26.7 min (minor.)).

6.3.5. Pd-catalyzed AAA of pyrrolidin-2,3-diones

6.3.5.1. Decarboxylative AAA of pyrrolidin-2,3-diones

6.3.5.1.1. Carbonate formation

10Aa R: $\mathrm{Bn}, \mathrm{R}^{1}$: Me	21Aa R : $B n, R^{1}$: Me
10Ab R: Bn, R^{1} : Bn	21Ab R: $\mathrm{Bn}, \mathrm{R}^{1}$: Bn
10Ac R: $\mathrm{Bn}, \mathrm{R}^{1}$: Ph	21Ac R: $\mathrm{Bn}, \mathrm{R}^{1}$: Ph
10Ba R: 1-Napht-CH2, R ${ }^{1}$: Me	21Ba R: 1-Naph- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Me
10Bb R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Bn	21Bb R: 1-Naph- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Bn
10Bc R: 1-Napht- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Ph	21Bc R: 1-Naph- $\mathrm{CH}_{2}, \mathrm{R}^{1}$: Ph
10Ca R: ${ }^{\text {'Pr }}$, R^{1} : Me	21Ca R: ${ }^{\text {P }}$ (${ }^{\text {a }}$, ${ }^{1}$: Me
10Da R: PMP; ${ }^{1}$: Me	21Da R: PMP; R1: Me
10Ea R: 3,4-DMB, R^{1} : Me	21Ea R: 3,4-DMB, R^{1} : Me
10 Fa R : Me, R^{1} : Me	21Fa R: Me, R^{1} : Me
10Ga R: Et, R ${ }^{1}$: Me	21Ga R: Et, R^{1} : Me
10Ha R: Cy, R^{1} : Me	21Ha R: Cy, R ${ }^{1}$: Me

The corresponding 2,3-dioxopyrrolidine ($0.5 \mathrm{mmol}, 1$ equiv.) was dissolved in dry dichloromethane $(2 \mathrm{~mL} / \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. To this solution allyl chloroformate $(64 \mu \mathrm{~L}, 0.6$ mmol, 1.2 equiv.) was added followed by slow addition of triethylamine ($0.11 \mathrm{~mL}, 0.75$ mmol, 1.5 equiv.). Then, the reaction was stirred at room temperature for 1 h until complete conversion (followed by TLC). The reaction was quenched with $\mathrm{HCl}(1 \mathrm{M})$ and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and evaporated under reduced pressure. Purification by column chromatography afforded the corresponding allyl carbonates and the crude was purified by column chromatography.

1-Benzyl-2,5-dihydro-4-methyl-2-oxo-1H-pyrrol-3-yl vinyl carbonate 21Aa

Prepared according to the general procedure starting from 1-benzyl-3-hydroxy-4-methyl-1,5-dihydro-2 H -pyrrol-2-one 10Aa (101 mg, 0.5 mmol). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as white solid. Yield: 85% ($122 \mathrm{mg}, 0.42 \mathrm{mmol}$). m.p. $78-79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~m}, 5 \mathrm{H}), 6.03-5.74$ $(\mathrm{m}, 1 \mathrm{H}), 5.40-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}$,

3H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,151.5,138.4,136.5,135.7,130.6,128.5$, $127.8,127.4,119.1,69.3,50.1,46.1,10.7$. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ calcd.: 288.1236, found: 288.1243.

1,4-Dibenzyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl vinyl carbonate 21Ab

Prepared according to the general procedure starting from 1,4-dibenzyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one 10Ab ($140 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc 1:1) led to the title compound as white foam. Yield: 70% ($125 \mathrm{mg}, 0.35 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.12-5.87(\mathrm{~m}, 1 \mathrm{H})$, $5.43(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~s}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,151.9,139.0,138.4$, $136.7,136.5,130.9,129.0,128.9,128.7,128.1,127.8,127.1,119.7,69.9,48.9$, 46.7, 32.1 . UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 364,1471 , found: 364,1486 .

Allyl (1-benzyl-2-oxo-4-phenyl-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ac

Prepared according to the general procedure starting from 1-benzyl-3-hydroxy-4-phenyl-1,5-dihydro-2H-pyrrol-2-one 10Ac (133 mg, 0.5 mmol). Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as a white foam. Yield: 60% ($105 \mathrm{mg}, 0.3$ $\mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.21$ $(\mathrm{m}, 8 \mathrm{H}), 6.14-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.84-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.16$ $(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,151.5,136.6,134.3,130.9,130.0,129.1$, 129.0 , $128.3,128.0,127.0,119.8,70.1,48.1,46.8$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 350.1392 , found: 350.1406 .

Allyl (4-methyl-1-(naphthalen-1-ylmethyl)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ba

Prepared according to the general procedure starting from 3-hydroxy-4-methyl-1-(naphthalen-1-ylmethyl)-1,5-dihydro-2H-pyrrol-2-one 10Ba ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as yellow oil. Yield: $95 \% ~(160 \mathrm{mg}, 0.47 \mathrm{mmol})$. m.p. $102-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.19-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.33(\mathrm{~m}, 4 \mathrm{H})$, 5.98 (ddt, $J=17.2,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.26(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $4.75(\mathrm{dt}, J=5.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.4,151.8,138.8,135.9,133.9,132.1,131.4,130.9,129.0,128.6,127.5,127.0,126.2$,
125.2, 123.8, 119.6, 69.7, 50.4, 44.7, 11.0. UPLC-DAD-QTOF: $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ calcd.: 414.1705, found: 414.1700.

Allyl (4-benzyl-1-(naphthalen-1-ylmethyl)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Bb

Prepared according to the general procedure starting from 4-benzyl-3-hydroxy-1-(naphthalen-1-ylmethyl)-1,5-dihydro-2H-pyrrol-2-one 10Bb $(165 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$. Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as yellow foam. Yield: $82 \% ~(170 \mathrm{mg}, 0.41 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{dt}, J=8.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (ddt, $J=17.1$, $10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.59$ $(\mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,151.7,138.8,138.4,136.4$, $133.8,131.9,131.3,130.8,128.9,128.8,128.5,127.3,126.9,126.9,126.1,125.1,123.6$, 119.5, 69.7, 48.7, 44.7, 31.8. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 338.1392, found: 338.1396 .

Allyl (1-(naphthalen-1-ylmethyl)-2-oxo-4-phenyl-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Bc

Prepared according to the general procedure starting from 3-hydroxy-1-(naphthalen-1-ylmethyl)-4-phenyl-1,5-dihydro-2H-pyrrol-2-one 10Bc ($158 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as white solid. Yield: 50% ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$). m.p. $131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 6.12-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~m}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,151.5$, $134.5,134.0,132.0,131.5,130.9,130.0,129.3,129.0,128.8,127.7,127.2,127.0$, $126.4,125.3,123.8,119.8,70.1,48.1,45.1$. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 400.1549 , found: 400.1551 .

Allyl (1-isopropyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ca

Prepared according to the general procedure starting from 3-hydroxy-1-isopropyl-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ca ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 50:50) led to the title compound as a yellow foam. Yield: $77 \%(92 \mathrm{mg}, 0.39 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{ddt}, J=17.2,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.12(\mathrm{~m}$,
$2 \mathrm{H}), 4.65$ (dt, $J=5.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 2H), 1.90 (s, 3H), $1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,151.8,138.9,135.0,130.8$, 119.3, 69.5, 46.3, 42.9, 20.6, 11.0. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 240.1236, found: 240.1239 .

1-(4-Methoxyphenyl)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl vinyl carbonate 21Da

Prepared according to the general procedure starting from 3-hydroxy-1-(4-methoxyphenyl)-4-methyl-1,5-dihydro- 2 H -pyrrol-2-one 10Da (110 mg , 0.5 mmol). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a white solid. Yield: 72% ($108 \mathrm{mg}, 0.36$ mmol). m.p. $93-95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.13-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=18.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,156.5,151.9,139.2,134.9$, $132.3,130.9,120.3,119.8,114.3,69.8,55.5,51.6,11.1$. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 304.1185, found: 304.1190.

Allyl (1-(3,4-dimethoxybenzyl)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ea

Prepared according to the general procedure starting from 1-(3,4-dimethoxybenzyl)-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2one 10Ea ($132 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a white solid. Yield: 70% ($120 \mathrm{mg}, 0.35 \mathrm{mmol}$). m.p. $99-101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.83-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.03-5.87(\mathrm{~m}$, $1 \mathrm{H}), 5.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dt}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.87,151.9,149.4,148.7,138.9,135.9,130.9,129.3$, 120.6 , $119.6, ~ 111.3,111.1,69.7,56.0,50.4,46.4,11.1$.UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 348.1447, found: 348.1456.

1,4-Dimethyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl vinyl carbonate 21Fa

Prepared according to the general procedure starting from 3-hydroxy-1,4-dimethyl-1,5-dihydro-2H-pyrrol-2-one 10Fa ($64 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$). Purification by column chromatography (EtOAc) led to the title compound as colourless oil. Yield: 70% ($72 \mathrm{mg}, 0.35 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.23$
$(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9,151.8,139.0,135.3,130.8,119.5,69.6,52.9,29.5,10.9$. UPLC-DAD-QTOF: $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 212.0923, found: 212.0930.

Allyl (1-ethyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ga

Prepared according to the general procedure starting from 1-ethyl-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one $\mathbf{1 0 G a}$ (70 mg, 0.5 mmmol). Purification by column chromatography (hexane/EtOAc, 50:50) led to the title compound as colourless oil. Yield: 76% ($86 \mathrm{mg}, 0.38$ mmol). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.14-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.22$ $(\mathrm{m}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.18$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,152.0,139.2,131.0,119.6$, $69.7,50.4,37.3,13.7,11.1$. UPLC-DAD-QTOF: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 226.1079, found: 226.1090.

Allyl (1-cyclohexyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ha

Prepared according to the general procedure starting from 1-cyclohexyl-3-hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Ha ($98 \mathrm{mg}, 0.5 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as a colourless oil. Yield: 88% ($123 \mathrm{mg}, 0.44 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.12-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.70$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.84-$ $1.72(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.21(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,152.0,139.1$, $135.1,131.0,119.5,69.7,50.9,47.3,31.4,25.6,11.1$. UPLC-DAD-QTOF: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 280.1549, found: 280.1559 .
6.3.5.1.2. Asymmetric reaction ${ }^{262}$

In an oven dried vial, $\mathrm{Pd}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(11 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $(R, R)-\mathbf{L 4}$ ($10 \mathrm{~mol} \%$) were placed under argon atmosphere. Freshly distilled and degassed solvent (1 mL) was then added and the solution was stirred at the corresponding temperature for ca. 15 min until the reaction turned from heterogeneous deep red to homogeneous orange-green in colour. To this mixture, a premixed solution of allyl carbonate 21 ($0.2 \mathrm{mmol}, 1$ equiv.) in the same solvent (1 mL) was slowly added. The reaction mixture stirred at the same temperature until complete conversion of the starting material (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). Then, a saturated aqueous solution of brine (15 mL) was added and the aqueous phase was extracted with DCM ($3 \mathrm{x} 10 \mathrm{~mL} / \mathrm{mmol}$). The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. The crude material was purified by column chromatography.

[^82]
6．3．5．1．3．Racemic reaction

21Aa R：Bn， R^{1} ：Me	（土）22Aa R：Bn， R^{1} ： Me
21Ab R：Bn， R^{1} ： Bn	（ \pm 22Ab R：Bn， $\mathrm{R}^{1}: \mathrm{Bn}$
21Ac R： $\mathrm{Bn}, \mathrm{R}^{1}$ ： Ph	（ \pm 22Ac R：Bn， $\mathrm{R}^{1}: \mathrm{Ph}$
21Ba R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}$ ：Me	（ \pm ）22Ba R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}$ ：Me
21Bb R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}$ ： Bn	（ \pm ）22Bb R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}: \mathrm{Bn}$
21Bc R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}$ ：Ph	（ \pm ）22Bc R：1－Napht－ $\mathrm{CH}_{2}, \mathrm{R}^{1}$ ： Ph
21Ca R：${ }^{\text {＇Pr }}$ ， R^{1} ：Me	（土）22Ca R：${ }^{\text {P }}$（ ${ }^{\text {a }}$ ， R^{1} ：Me
21Da R：PMP； R^{1} ：Me	（土）22Da R：PMP； R^{1} ：Me
21Ea R ：3，4－DMB， R^{1} ：Me	（ \pm ）22Ea R：3，4－DMB， $\mathrm{R}^{1}: \mathrm{Me}$
21Fa R：Me， R^{1} ：Me	（ \pm ）22Fa R：Me， R^{1} ：Me
21Ga R：Et，R ${ }^{1}$ ：Me	（ \pm 22Ga R：Et， R^{1} ：Me
21Ha R：Cy， R^{1} ：Me	（土）22Ha R：Cy， R^{1} ：Me

To a mixture of allyl carbonate 21 （ $0.2 \mathrm{mmol}, 1$ equiv．）in dichloromethane（ 1 mL ）， $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added at room temperature．The reaction mixture stirred until complete conversion of the starting material（monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ）． Then，a saturated aqueous solution of brine（ 15 mL ）was added and the aqueous phase was extracted with DCM（ $3 \times 10 \mathrm{~mL} / \mathrm{mmol}$ ）．The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure．The crude material was purified by column chromatography．

6.3.5.2. Intermolecular AAA of pyrrolidin-2,3-diones

6.3.5.2.1. Asymmetric reaction ${ }^{263}$

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(11 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and (R, R)-L4 (16.2 $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was dissolved in degassed dioxane (1 mL) and the mixture was stirred under argon atmosphere for 10 min for complexation (observed by a change in colour from dark red to green, approx 10 min). Then, the corresponding allyl carbonate 23$\mathbf{2 8}$ ($0.4 \mathrm{mmol}, 2$ equiv.) and a solution of the ketoamide $\mathbf{1 0} \mathbf{~ A a}$ ($0.2 \mathrm{mmol}, 1$ equiv.) in the corresponding solvent (1 mL) was slowly added. The reaction mixture was stirred at the same temperature until complete conversion of the starting material (monitored by ${ }^{1} \mathrm{H}$ NMR). Then, a saturated aqueous solution of brine (10 mL) was added and the aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. The crude material was purified by flash column chromatography to afford the pure reaction adducts.

6.3.5.2.2. Racemic reaction

[^83]To a solution of the ketoamide 10Aa ($0.2 \mathrm{mmol}, 1$ equiv.) and the corresponding carbonate 23 or $\mathbf{2 6}$ ($0.4 \mathrm{mmol}, 2$ equiv.) in dry dichloromethane (0.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added in one portion under argon atmosphere at room temperature. The reaction mixture was stirred until complete conversion of the starting material (16 h). Then, the solvent was evaporated and the crude was purified by column chromatography

6.3.5.3. Characterization of compounds

(S)-4-Allyl-1-benzyl-4-methylpyrrolidine-2,3-dione 22Aa

Prepared according to the general procedure starting from 1-benzyl-2,5-dihydro-4-methyl-2-oxo-1 H -pyrrol-3-yl vinyl carbonate 21Aa (43 mg , 0.15 mmol). Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as a white solid. Yield: 78% (28 mg , $0.12 \mathrm{mmol})$. m.p. $68-69^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-38.3^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.60(\mathrm{~m}$, $2 \mathrm{H}), 3.40(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.17$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,159.3,134.6,131.4,129.1,128.7,128.5$, 120.4, 52.4, 48.6, 43.3, 41.7, 22.0. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calculated: 244.1338, found: 244.1341 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 80/20, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 41 min (minor.) and 44 \min (major.)).

(R)-4-Allyl-1,4-dibenzylpyrrolidine-2,3-dione 22Ab

Prepared according to the general procedure starting from 1,4-dibenzyl-2-oxo-2,5-dihydro-1 H -pyrrol-3-yl vinyl carbonate 21Ab ($55 \mathrm{mg}, 0.15$ mmol). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a white solid. Yield: 96% ($46 \mathrm{mg}, 0.14$ $\mathrm{mmol})$. m.p. $99-100^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+1.8^{\circ}\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.81(\mathrm{~m}, 4 \mathrm{H}), 5.72-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.15-$ $4.94(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ - $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.12(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,159.2$, 135.1, $134.3,131.1,129.9,129.0,128.8,128.4,128.2,127.4,120.8,48.5,48.3,47.6$, 42.2 , 41.8 . UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 320.1651 , found: 320.1661 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ADH hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 18 min (minor.) and 19 \min (major.)).

(R)-4-Allyl-1-benzyl-4-phenylpyrrolidine-2,3-dione 22Ac

Prepared according to the general procedure starting from Allyl (1-(naphthalen-1-ylmethyl)-2-oxo-4-phenyl-2,5-dihydro-1 H -pyrrol-3-yl) carbonate 21Ac ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as a white solid. Yield: 85% ($39 \mathrm{mg}, 0.13 \mathrm{mmol}$). m.p. $111-113^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+122.2^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.11(\mathrm{~m}, 10 \mathrm{H}), 5.49-$ $5.33(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.2,159.0,138.0$, $134.5,131.4,129.1,128.9,128.6,129.0,127.9,126.4,120.6,51.9,48.7,43.9$, 42.8 . UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 306.1494, found: 306.1503.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ADH hexane/isopropanol 80/20, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 10 min (major.) and 13 \min (minor.)).

(S)-4-Allyl-4-methyl-1-(naphthalen-1-ylmethyl)pyrrolidine-2,3-dione 22Ba

Prepared according to the general procedure starting from allyl (4-methyl-1-(naphthalen-1-ylmethyl)-2-oxo-2,5-dihydro-1 H -pyrrol-3-yl) carbonate 21Ba ($51 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (silica, (hexane/EtOAc, 70:30) led to the title compound as a white solid. Yield: 82% ($34 \mathrm{mg}, 0.12 \mathrm{mmol}$). m.p. $83-$ $85^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+2.4^{\circ}\left(\mathrm{c}=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.07-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{dq}, J=5.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.37(\mathrm{~m}, 4 \mathrm{H})$, $5.38-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.53(\mathrm{~m}$, $2 \mathrm{H}), 3.21(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (ddt, $J=13.7,7.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01$ (ddt, $J=13.7,7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.8, 158.9, 134.0, 131.5, 131.1, 130.0, 129.7, 128.9, 128.7, 127.2, 126.5, 125.1, 123.7, 120.1, 51.9, 46.7, 43.3, 41.8, 21.8. UPLC-DAD-QTOF: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 294.1494, found: 294.1501.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 70/30, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 25 min (minor.) and 27 \min (major.)).

(R)-4-Allyl-4-benzyl-1-(naphthalen-1-ylmethyl)pyrrolidine-2,3-dione 22Bb

Prepared according to the general procedure starting from allyl (4-benzyl-1-(naphthalen-1-ylmethyl)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Bb ($62 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as a white solid. Yield: $78 \%(43 \mathrm{mg}, 0.12 \mathrm{mmol})$. m.p. $103-104{ }^{\circ} \mathrm{C} .[\alpha]_{D}{ }^{25}=$ $-8.1^{\circ}\left(\mathrm{c}=2.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{ddt}, J=$ $7.7,4.9,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.58-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{dd}, J=5.0,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.79-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{dddd}, J=16.8,10.0,8.1$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.59(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.32$ (m, 1H), 2.10 (dd, $J=$ $13.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,158.7,134.8,133.9,131.4,130.9$, 129.8, 129.6, 129.5, 128.7, 128.4, 128.2, 127.2, 127.1, 126.4, 125.0, 123.6, 120.5, 48.0, 47.7, 46.5, 41.9, 41.5. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 370.1807 , found: 370.1808.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AS-H hexane/isopropanol 50/50, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 34 min (major.) and 47 min (minor.)).

(R)-4-Allyl-1-(naphthalen-1-ylmethyl)-4-phenylpyrrolidine-2,3-dione 22Bc

Prepared according to the general procedure starting from allyl (1-(naphthalen-1-ylmethyl)-2-oxo-4-phenyl-2,5-dihydro-1 H -pyrrol-3-yl) carbonate 21Bc ($60 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as a yellow foam. Yield: $84 \%(45 \mathrm{mg}, 0.13 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+36.2^{\circ}(\mathrm{c}=1.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.99-$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 5.36-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.2,158.7,137.8,134.1,131.6,131.1,129.9,129.0,128.9,127.7$, $127.4,126.6,126.3,125.2,123.9,120.4,51.6,50.8,46.9$, 42.6 . UPLC-DADQTOF: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 356.1651 , found: 356.1653 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AS-H hexane/isopropanol 60/40, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 30 min (major.) and 45 \min (minor.)).

(S)-4-Allyl-1-isopropyl-4-methylpyrrolidine-2,3-dione 22Ca

Prepared according to the general procedure starting from allyl (1-isopropyl-4-methyl-2-oxo-2,5-dihydro- 1 H -pyrrol-3-yl) carbonate 21Ca ($36 \mathrm{mg}, \quad 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 50:50) led to the title compound as a white solid. Yield: 77% ($23 \mathrm{mg}, 0.12 \mathrm{mmol}$). m.p. $80-82{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+12.2^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (dt, $J=$ $6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (ddt, $J=13.7,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.05(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,158.9$, 131.7, 120.3, 47.9, 44.6, 43.1, 42.0, 22.2, 19.5. UPLC-DAD-QTOF: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 196.1338, found: 196.1341 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AS-H hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 41 min (major.) and 49 \min (minor.)).
(S)-4-Allyl-1-(4-methoxyphenyl)-4-methylpyrrolidine-2,3-dione 22Da

Prepared according to the general procedure starting from 1-(4-methoxyphenyl)-4-methyl-2-oxo-2,5-dihydro-1 H -pyrrol-3-yl vinyl carbonate 21Da ($45 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a white solid. Yield: $96 \%(37 \mathrm{mg}, 0.14 \mathrm{mmol})$. m.p. $90-91^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+$ $5.1^{\circ}\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.06(\mathrm{~m}$, $2 \mathrm{H}), 3.95(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.41$ (m, $1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,158.2$, $157.7,131.9,131.5,121.1,120.6,114.5,55.7,54.3,43.1,41.9,22.3$. UPLC-DADQTOF: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 260.1287, found: 260.1299.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ADH hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 39 min (major.) and 42 \min (minor.)).
(S)-4-Allyl-1-(3,4-dimethoxybenzyl)-4-methylpyrrolidine-2,3-dione 22Ea

Prepared according to the general procedure starting from allyl(1-(3,4-dimethoxybenzyl)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3yl) carbonate 22Ea ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 70:30) led to the title compound as yellow oil. Yield: $84 \%(38 \mathrm{mg}, 0.13 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+49.7^{\circ}$
$\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.80(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $5.61-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=$ 13.7, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,159.2,149.6$, $149.3,131.4,127.1,121.3,120.4,111.6,111.2,56.1,52.3,48.4,43.3,41.7,22.1$. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 304.1549, found: 304.1564.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ASH hexane/isopropanol 50/50, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 17 min (major.) and 19 \min (minor.)).

(S)-4-Allyl-1,4-dimethylpyrrolidine-2,3-dione 22Fa

Prepared according to the general procedure starting from Allyl (1-ethyl-4-methyl-2-oxo-2,5-dihydro-1 H -pyrrol-3-yl) carbonate 21Fa (32 $\mathrm{mg}, \quad 0.15 \mathrm{mmol})$. Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a yellow oil. Yield: $81 \%(20 \mathrm{mg}, 0.12 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+2.9^{\circ}\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.78-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.5,159.6,131.6,120.4,55.5,51.5,41.8,31.8$, 22.2 . UPLC-DAD-QTOF: $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 168.1025, found: 168.1033 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ASH hexane/isopropanol 80/20, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 26 min (major.) and 36 \min (minor.)).

(S)-4-Allyl-1-ethyl-4-methylpyrrolidine-2,3-dione 22Ga

Prepared according to the general procedure starting from Allyl (1-ethyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl) carbonate 21Ga (34 $\mathrm{mg}, \quad 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 1:1) led to the title compound as a yellow oil. Yield: $83 \%(23 \mathrm{mg}, 0.12 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+8.4^{\circ}\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.72-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.14(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9,159.2,131.7,120.3,52.6,43.2,41.9,39.3,22.3,12.2$. UPLC-DAD-QTOF: $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 182.1181, found: 182.1186 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ASH hexane/isopropanol 80/20, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 25 min (major.) and 31 \min (minor.)).

(S)-4-Allyl-1-cyclohexyl-4-methylpyrrolidine-2,3-dione 22Ha

Prepared according to the general procedure starting from Allyl (1-cyclohexyl-4-methyl-2-oxo-2,5-dihydro-1 H -pyrrol-3-yl) carbonate 21Ha ($42 \mathrm{mg}, 0.15 \mathrm{mmol}$). Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as a white solid. Yield: $80 \%(28 \mathrm{mg}, 0.12 \mathrm{mmol})$. m.p. $75-77{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+21.9^{\circ}(\mathrm{c}=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.22-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.48-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.22$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,159.0,131.7,120.3,52.5,49.1,43.3$, 42.0 , 29.8, 25.3 , 22.2 . UPLC-DAD-QTOF: $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 236.1651, found: 236.1656 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AS-H hexane/isopropanol 50/50, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 44 min (major.) and 56 min (minor.)).

1-Benzyl-4-cinnamyl-4-methylpyrrolidine-2,3-dione 29a

Prepared according to the general procedure starting from 1-benzyl-3-hydroxy-4-methyl-1,5-dihydro-2 H -pyrrol-2-one 10Aa $(40.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and (E)-(tert-butyl carbonic) cinnamic anhydride 26 ($99 \mathrm{mg}, \quad 0.4 \mathrm{mmol}$). Purified by column chromatography (hexane/EtOAc, 1:1). Yield: 35% ($22 \mathrm{mg}, 0.07$ mmol). Yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-2.30^{\circ}\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-$ $7.04(\mathrm{~m}, 10 \mathrm{H}), 6.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.81(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.8$, $159.3,136.5,135.3,134.6,129.1,128.7,128.6,128.4,127.9,126.4,122.6,119.7$, $119.3,52.4,48.6,43.8,41.1,22.3$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 320.1657, found: 320.1652 .

The enantiomeric purity was determined by HPLC analysis after transformation of 29a into 98.

29a

1) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

To a solution of 29a ($0.03 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL}), m \mathrm{CPBA}(12 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1.5$ equiv.) was slowly added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ and warmed up to room temperature. The reaction was quenched with aqueous 10% NaHSO_{3} and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. All organic phases were combined, washed with NaOH 1 N , dried over MgSO_{4} and evaporated under reduced pressure to afford the NCAs. Benzylamine ($4 \mu \mathrm{~L}, 1.2$ equiv.) was added to a solution of the crude NCA (1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched with HCl 1 N , and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$, washed with $\mathrm{NaHCO}_{3}(1 \times 5$ mL) and dried over MgSO_{4}. The combined organic layers were evaporated under reduced pressure. The crude was purified by column chromatograpy (hexane/EtOAc, 1:1) to afford 98 as a yellow oil. Yield: $66 \%(7 \mathrm{mg}, 0.02 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.32-7.18(\mathrm{~m}, 13 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.08(\mathrm{~m}, 1 \mathrm{H})$, $4.52-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$.

HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 80/20, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: 17 min (major.) and 18 min (minor.)).

1-Benzyl-4-methyl-4-(1-phenylallyl)pyrrolidine-2,3-dione 29b

Prepared according to the general procedure starting from 1-benzyl-3-
 hydroxy-4-methyl-1,5-dihydro-2H-pyrrol-2-one 10Aa ($40.6 \mathrm{mg}, 0.2$ mmol) and (E)-(tert-butyl carbonic) cinnamic anhydride 26 ($99 \mathrm{mg}, 0.4$ mmol). Purified by column chromatography (hexane/EtOAc, 70:30). Yield: $18 \%(11 \mathrm{mg}, 0.036 \mathrm{mmol})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.13-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ (s, 3 H). UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 320.1657 , found: 320.1650 .

6.3.6. Pd-catalyzed AAA of acyclic ketoamides

6.3.6.1. Decarboxylative AAA of acyclic ketoamides

6.3.6.1.1. \quad Carbonate formation ${ }^{263}$

Sodium hexamethyldisilazane $1 \mathrm{M}(0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}, 1.2$ equiv. $)$ was dissolved in dry THF (2 mL) at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The flask was warmed to $0{ }^{\circ} \mathrm{C}$ and TMEDA ($90 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 1.2$ equiv.) was added. The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of the corresponding ketoamide ($0.5 \mathrm{mmol}, 1$ equiv.) in THF (0.5 mL) was slowly added. The reaction mixture turned dark red and the mixture was allowed to stir for 30 min at the same temperature for enolate formation. Allyl chloroformate ($71 \mu \mathrm{~L}, 0.6$ $\mathrm{mL}, 1.2$ equiv.) was then added and the mixture was stirred at the same temperature for 5 minutes. Then it was allowed to reach room temperature and quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was then diluted with diethyl ether and the organic phase was washed with brine, dried over MgSO_{4} and evaporated in vacuo. The crude was purified by column chromatography.

(E)-Allyl (1-(dibenzylamino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33A

Prepared according to the general procedure starting from $\mathrm{N}, \mathrm{N}-$ dibenzyl-2-oxo-3-phenylbutanamide 32A ($179 \mathrm{mg}, 0.5 \mathrm{mmol}$,). Purified by column chromatography (hexane/EtOAc, 90:10) to afford $\mathbf{3 3 A}$ as a white solid. Yield $70 \%(150 \mathrm{mg}, 0.35 \mathrm{mmol})$. m.p. $=110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.09$ $(\mathrm{m}, 12 \mathrm{H}), 6.94-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.03-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.30(\mathrm{~m}$, 2H), 4.72 (dt, $J=5.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,152.7,137.8,136.7,135.9,135.7,131.2,129.9,129.3,128.7$

```
, 128.6, 128.3, 128.3, 128.1, 127.6, 127.3, 119.5, 69.5, 51.3, 46.2, 18.3 . UPLC-
``` DAD-QTOF: \(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 442.2018, found: 442.2019.

\section*{(E)-Allyl (1-(diethylamino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33B}

Prepared according to the general procedure starting from \(\mathrm{N}, \mathrm{N}-\) diethyl-2-oxo-3-phenylbutanamide 32B (\(117 \mathrm{mg}, 0.5 \mathrm{mmol}\)). Purified by flash column chromatography (hexane/EtOAc, 95:5) to afford 33B as a colourless oil. Yield: \(60 \%(95 \mathrm{mg}, 0.3 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.02-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.50-\) \(5.22(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.67(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11\) \((\mathrm{s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(164.1,152.7,137.9,137.1,131.1,128.4,128.3,128.1,127.3,119.2,69.2,42.4\), \(37.8,17.5,12.4,11.5\).UPLC-DAD-QTOF: \(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 318.1705, found: 318.1714.

\section*{(E)-Allyl (1-(diisobutylamino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33C}

Prepared according to the general procedure starting from \(\mathrm{N}, \mathrm{N}-\) diisobutyl-2-oxo-3-phenylbutanamide 32C (\(145 \mathrm{mg}, 0.5 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5) to afford 33C as a colourless oil. Yield: \(58 \%(104 \mathrm{mg}, 0.29 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.23(\mathrm{~m}, 5 \mathrm{H}), 6.08-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.19\) (m, 2H), 4.68 (m, 2H), 3.01 (d, \(J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\)), 2.84 (d, \(J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02\) (s, 3H), \(1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (126 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 165.3,152.4,138.3,137.0,131.4,129.6,129.2,128.7,128.3,128.3\) , 119.5, 69.4, 56.1, \(51.8,29.8,26.7,26.2,20.6,20.0,18.4\) UPLC-DAD-QTOF: \(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 373.5905 , found: 373.5966.

\section*{(E)-Allyl (1-(bis(naphthalen-1-ylmethyl)amino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33D}

Prepared according to the general procedure starting from \(\mathrm{N}, \mathrm{N}-\) bis(naphthalen-1-ylmethyl)-2-oxo-3-phenylbutanamide 32D (\(228 \mathrm{mg}, 0.5 \mathrm{mmol}\)). Purified by flash column chromatography (hexane/EtOAc, 90:10) to afford 33D as a colourless oil. Yield: \(83 \%\) (\(217 \mathrm{mg}, 0.4 \mathrm{mmol}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.95\) (s, 1H), \(7.82(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40\) (dd, \(J=29.6,8.4 \mathrm{~Hz}, 6 \mathrm{H}\)), \(7.21-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{t}, J=8.0\) \(\mathrm{Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.21(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.66\) \((\mathrm{s}, 2 \mathrm{H}), 4.62-4.48(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 165.6,152.5\),
\(137.7,136.8,133.9,132.1,128.9,128.4,128.3,128.2,127.7,126.4,126.2,125.8\), \(125.1,124.6,124.3,122.3,119.4,69.4,47.6,44.1,18.5\). UPLC-DAD-QTOF: \(\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 541.7483, found: 541.7470.

\section*{(E)-Allyl (1-oxo-3-phenyl-1-(piperidin-1-yl)but-2-en-2-yl) carbonate 33E}

Prepared according to the general procedure starting from 3-phenyl-1-(piperidin-1-yl)butane-1,2-dione 32E (\(123 \mathrm{mg}, 0.5 \mathrm{mmol}\)). The crude product was purified by flash column chromatography (hexane/EtOAc, 80:20) to afford 33E as a colourless oil. Yield: \(80 \%\) (\(130 \mathrm{mg}, 0.4 \mathrm{mmol}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(7.34-7.11\) \((\mathrm{m}, 5 \mathrm{H}), 5.86(\mathrm{ddt}, J=17.2,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{dt}, J=5.7,1.4\) \(\mathrm{Hz}, 2 \mathrm{H}), 3.35-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.46-0.88(\mathrm{~m}, 4 \mathrm{H})\), \(0.91-0.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 163.2,152.7,137.8,136.6,131.0\), 128.2, 128.2, 127.9, 127.2, 119.1, 69.0, 47.4, 42.0, 24.6, 24.5, 24.0, 17.2. UPLC-DADQTOF: \(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 330.1705 , found: 330.1711 .

\section*{(E)-Allyl (1-morpholino-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33F}

Prepared according to the general procedure starting from 1-morpholino-3-phenylbutane-1,2-dione \(\mathbf{3 2 F}\) (\(124 \mathrm{mg}, 0.5 \mathrm{mmol}\)). The crude product was purified by flash column chromatography (hexane/EtOAc, 70:30) to afford 33F as a colourless oil. Yield: \(76 \%\) (\(127 \mathrm{mg}, 0.38 \mathrm{mmol}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.41-\) 7.32 (m, 3H), 7.31 - 7.21 (m, 2H), \(6.14-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.67\) (d, \(J=\) \(5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 4 \mathrm{H}), 3.14-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 163.7,153.0,137.7,136.0,131.0,128.8,128.6,128.0\), \(119.5,69.4,65.8,47.0,41.8,17.4\). UPLC-DAD-QTOF: \(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 331.2405 , found: 331.2411 .
(E)-Allyl (1-(methoxy(methyl)amino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33G

Prepared according to the general procedure starting from N -methoxy- \(N\)-methyl-2-oxo-3-phenylbutanamide 32G (\(111 \mathrm{mg}, 0.5\) mmol). Purified by column chromatography (hexane/EtOAc, 90:10) to afford 33G as a colourless oil. Yield: \(80 \%\) (\(122 \mathrm{mg}, 0.4\) mmol). Isolated as a \(45: 55 \mathrm{E} / \mathrm{Z}\) mixture. \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.19(\mathrm{~m}, 10 \mathrm{H}), 5.99-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.27(\mathrm{~m}\), \(2 \mathrm{H}), 5.26-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})\), \(3.41(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 152.7\), \(152.4,137.8,135.2,130.9,128.3,128.2,127.9,127.6,127.5,119.3,118.9,69.2\),
\(69.0,61.2,59.5,35.9,33.6,19.1,17.8\). UPLC-DAD-QTOF: \(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 306.2205 , found: 306.2269 .

\section*{(E)-Allyl (1-(methyl(phenyl)amino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33H}

Prepared according to the general procedure starting from \(N\)-methyl-2-oxo-N,3-diphenylbutanamide \(\mathbf{3 2 H}\) (\(134 \mathrm{mg}, 0.5 \mathrm{mmol}\)). Purified by flash column chromatography (hexane/EtOAc, 90:10) to afford 33H as a colourless oil. Yield: \(71 \%\) (\(124 \mathrm{mg}, 0.36 \mathrm{mmol}\)). Major isomer: \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.16(\mathrm{~m}, 9 \mathrm{H}), 7.06(\mathrm{~s}\), \(1 \mathrm{H}), 5.82-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.05\) (s, 3H). \({ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.2,152.6,142.8,137.8,136.8,131.0,128.0\) , 125.6, 125.0, 119.2, 69.2, 36.8, 17.7. UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 351.1570, found: 351.1564.
6.3.6.1.2. Asymmetric reaction \({ }^{262}\)

A solution of \(\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)\) and \((R, R)-\mathbf{L 4}(16 \mathrm{mg}\), \(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\)) was stirred in degassed dioxane (1 mL) under argon atmosphere for 10 min for complexation (observed by a change in colour from dark red to green, approx \(10 \mathrm{~min})\). A solution of the enol carbonate \(\mathbf{3 3}(0.2 \mathrm{mmol}, 1\) equiv.) in dioxane (1 mL) was slowly added. The reaction mixture was then stirred at the same temperature until complete conversion of the starting material (monitored by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)). Then, a saturated aqueous solution of brine (10 mL) was added and the aqueous phase was extracted with EtOAc (3 x \(10 \mathrm{~mL})\). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The crude material was purified by flash column chromatography to afford the pure reaction adducts.

\subsection*{6.3.6.1.3. Racemic reaction}

To a solution of the corresponding enol carbonate 33 (\(0.2 \mathrm{mmol}, 1\) equiv.) in dry dichloromethane \((0.5 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)\) was added in one portion under argon atmosphere at room temperature. The reaction mixture stirred until complete conversion of the starting material. Then, the solvent was evaporated and the crude was purified by column chromatography.

\subsection*{6.3.6.2. Intermolecular AAA of acyclic ketoamides}
6.3.6.2.1. Asymmetric reaction \({ }^{263}\)

A solution of \(\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(10 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)\) and \((R, R)-\mathbf{L 4}(16 \mathrm{mg}\), \(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\)) in degassed dioxane (1 mL) under argon atmosphere was stirred for 10 min for complexation (observed by a change in colour from dark red to green, approx 10 min). A solution of the corresponding ketoamide 32 (\(0.2 \mathrm{mmol}, 1\) equiv.) in dioxane (1 mL) was slowly added followed by tert-butyl allyl carbonate (\(0.4 \mathrm{mmol}, 2\) equiv.) and DIPEA (\(0.2 \mathrm{mmol}, 1\) equiv.). The reaction mixture was stirred at the same temperature until complete conversion of the starting material (monitored by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)). Then, a saturated aqueous solution of brine (10 mL) was added and the aqueous phase was
extracted with EtOAc (\(3 \times 10 \mathrm{~mL}\)). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The crude material was purified by flash column chromatography to afford the pure reaction adducts.

\subsection*{6.3.6.2.2. Racemic reaction}

To a solution of the corresponding ketoamide (\(0.2 \mathrm{mmol}, 1\) equiv.) and allyl tertbutyl carbonate (\(0.4 \mathrm{mmol}, 2\) equiv.) in dry dichloromethane \((0.5 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.02\) \(\mathrm{mmol}, 10 \mathrm{~mol} \%\)) was added in one portion under argon atmosphere at room temperature. The reaction mixture was stirred until complete conversion of the starting material. Then, the solvent was evaporated and the crude was purified by column chromatography.

\subsection*{6.3.6.3. Characterization of compounds}

\section*{\(N, N\)-Dibenzyl-3-methyl-2-oxo-3-phenylhex-5-enamide 34A}

The title compound was prepared according to the general procedure starting from (\(E\))-allyl (1-(dibenzylamino)-1-oxo-3-phenylbut-2-en-2-yl) 33A (\(88 \mathrm{mg}, 0.2 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5) to afford 34A as a white solid. Yield: \(84 \%(66 \mathrm{mg}, 0.17 \mathrm{mmol})\). m.p. \(=63-65^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=+11.7^{\circ}(\mathrm{c}=1.5\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.14\) \((\mathrm{m}, 5 \mathrm{H}), 6.77(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.09-\) \(3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9\), \(167.9,141.0,136.6,136.0,134.5,130.0,129.8,129.6,129.4,129.6,129.2\), 128.5 , \(128.5,128.5,120.0,55.0,50.6,46.5,44.1,22.8\).UPLC-DAD-QTOF: \(\mathrm{C}_{2}{ }_{4} \mathrm{H}_{24} \mathrm{NO}_{2}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 398.2120, found: 398.2113.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AD-H hexane/isopropanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 10 min (major.) and 12 \(\min\) (minor.)).

\section*{\(N, N\)-Diethyl-3-methyl-2-oxo-3-phenylhex-5-enamide 34B}

The title compound was prepared according to the general procedure starting from (E)-allyl (1-(diethylamino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33B (\(63 \mathrm{mg}, 0.2 \mathrm{mmol}\)). Purified by flash column chromatography (hexane/EtOAc, 95:5) to afford 34B as colourless oil. Yield: \(80 \%(44 \mathrm{mg}, 0.16 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+10.3^{\circ}\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR \((300 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.42(\mathrm{~m}, 0 \mathrm{H}), 5.24-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.06(\mathrm{~m}\), \(1 \mathrm{H}), 3.01-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 1.18-0.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 203.5,166.2,140.2,133.6,128.7,127.4,118.8,53.7,43.3\) , \(41.7,38.2,21.1,13.7,12.2\).UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 274.1807, found: 274.1807.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel AY-H hexane/isopropanol 95/5, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 16 min (major.) and 30 \(\min\) (minor.)).

\section*{\(N, N\)-Diisobutyl-3-methyl-2-oxo-3-phenylhex-5-enamide 34C}

The title compound was prepared according to the general procedure starting from \((E)\)-allyl (1-(diisobutylamino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate 33C (\(75 \mathrm{mg}, 0.2 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5) to afford 34C as colourless oil. Yield: \(90 \%(59 \mathrm{mg}, 0.19 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+11.3^{\circ}\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.03\) \((\mathrm{m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~m}\), \(12 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2,167.5,140.5,133.8,128.7,127.3,118.8\), \(54.2,53.4,50.7,43.8,26.5,25.9,21.0,20.3,19.7\). UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 329.4950 , found: 329.4956 .

The enantiomeric purity was determined in compound 41, obtained after hydrogenation of the allyl group in 34C.

To a solution of \(\mathbf{3 4 C}(36 \mathrm{mg}, 0.1 \mathrm{mmol})\) in EtOH (0.4 mL) under argon atmosphere, Pd on carbon (8 mg) was carefully added. The mixture was stirred under \(\mathrm{H}_{2}\) for 16 h and then filtered through celite. Evaporation of the solvent under reduced
pressure provided 41 as a yellow oil. Quantitative yield. \({ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(7.28(\mathrm{~m}, 5 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H})\), \(1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=13.8\) \(\mathrm{Hz}, 3 \mathrm{H}), 0.74(\mathrm{~m}, 12 \mathrm{H})\).

HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 5 min (major.) and 6 min (minor.)).

\section*{3-Methyl- \(N, N\)-bis(naphthalen-1-ylmethyl)-2-oxo-3-phenylhex-5-enamide 34D}

The title compound was prepared according to the general procedure starting from \((E)\)-allyl (1-(bis(naphthalen-1-ylmethyl)amino)-1-oxo-3-phenylbut-2-en-2-yl) carbonate (108 \(\mathrm{mg}, 0.2 \mathrm{mmol}\)) 33D. Purified by column chromatography (hexane/EtOAc, 95:5) to afford 34D as colourless oil. Yield: \(80 \%\) (\(79 \mathrm{mg}, 0.16 \mathrm{mmol}\)). \([\alpha]_{\mathrm{D}}{ }^{25}=-2.9^{\circ}\left(\mathrm{c}=2.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.99-7.71(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.41(\mathrm{~m}\), 4H), 7.42 - 7.32 (m, 4H), \(7.30-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.41(\mathrm{~m}\), \(1 \mathrm{H}), 5.15-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 202.4\), 167.5 , \(139.9,133.9,133.6,131.6,130.3,129.0\), \(128.9,128.8,128.6,128.4,127.5,127.4,126.8,126.6,126.3,126.1,125.9,125.6\), \(125.3,124.9,123.7,122.2,118.9,53.9,46.7,44.3,43.1,21.3\). UPLC-DAD-QTOF: \(\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 498.3376, found: 498.3356 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 9 min (major.) and 11 \(\min\) (minor.)).

\section*{3-Methyl-3-phenyl-1-(piperidin-1-yl)hex-5-ene-1,2-dione 34E}

The title compound was prepared according to the general procedure starting from (\(E\))-allyl (1-oxo-3-phenyl-1-(piperidin-1-
yl)but-2-en-2-yl) carbonate 33E (\(66 \mathrm{mg}, 0.2 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10) to afford 34E as colourless oil. Yield: \(81 \% ~(46 \mathrm{mg}, 0.16 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=+0.7^{\circ}\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(7.51-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.56(\mathrm{ddt}, J=17.2,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{t}, J\) \(=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-2.64(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.28-0.97(\mathrm{~m}\), 2H). \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 203.6,165.2,140.0,133.6,128.7,127.5,127.4,118.8\), 53.6, 46.7, 43.2, 41.8, 25.8, 25.2, 24.3, 20.9. UPLC-DAD-QTOF: \(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 286.1807, found: 286.1809.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 30 min (major.) and 32 \(\min\) (minor.)).

\section*{3-Methyl-1-morpholino-3-phenylhex-5-ene-1,2-dione 34F}

The title compound was prepared according to the general procedure starting from (E)-allyl (1-morpholino-1-oxo-3-
phenylbut-2-en-2-yl) carbonate 33F (\(67 \mathrm{mg}, 0.2 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10) to afford 34F as colourless oil. Yield: \(73 \%(42 \mathrm{mg}, 0.14 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{25}=-3.1^{\circ}\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(7.57-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.70-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.32-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.33(\mathrm{~m}, 4 \mathrm{H}), 3.32\) \(-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.80(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5,165.2,139.5,133.4,129.0,127.8,127.6,119.1,66.3,53.9\), 46.0, 42.7, 41.3, 21.0. UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 288.1600, found: 288.1605

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 80/20, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 11 min (major.) and 13 \(\min\) (minor.)).

\section*{3-Methyl-2-oxo-3-phenyl- \(N, N\)-bis(pyridin-2-ylmethyl)hex-5-enamide 34J}

The title compound was prepared according to the general procedure starting from 2-oxo-3-phenyl- \(\mathrm{N}, \mathrm{N}\)-bis(pyridin-2ylmethyl)butanamide 32J (\(72 \mathrm{mg}, 0.2 \mathrm{mmol}\)). The solvent was evaporated and the crude was purified by column chromatography (hexane/EtOAc, 30:70) to afford 34J as colourless oil. Yield: \(68 \%(54 \mathrm{mg}, 0.14 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+10.9^{\circ}\) \(\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.48-8.39(\mathrm{~m}, 2 \mathrm{H})\), \(7.76-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.71\) - \(6.58(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.20-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45\) \((\mathrm{d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 1 \mathrm{H})\), \(2.95-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 203.9,167.9\), 141.0 , \(136.6,136.0,134.5,130.0,129.8,129.6,129.4,129.2,128.5,128.5,128.5,120.0\), 55.0 , \(50.6,46.5\), \(44.1,22.8\).UPLC-DAD-QTOF: \(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 400.2154 , found: 400.2166

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/isopropanol 70/30, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 14 min (major.) and 18 \(\min\) (minor.)).

\subsection*{6.3.7. Elaboration of adducts}

\subsection*{6.3.7.1. To NCAs and ring opening with amines}

\(\mathbf{1}^{\text {st }}\) step: To a solution of the reaction adduct (0.2 mmol , 1 equiv.) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})\), \(m\) CPBA (\(67 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5\) equiv.) was slowly added at \(-20^{\circ} \mathrm{C}\). The reaction mixture was stirred at \(-20^{\circ} \mathrm{C}\) or warmed up to room temperature for 1 h . The reaction was quenched with aqueous \(10 \% \mathrm{NaHSO}_{3}\) and the mixture extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})\). All organic phases were combined, washed with \(\mathrm{NaOH} 1 \mathrm{~N}(1 \times 4 \mathrm{~mL})\), dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure to afford the corresponding pure NCAs.

\section*{(R)-5-(4-Hydroxy-4-methyl-3-oxopentyl)-5-methyl-3-(naphthalen-1-ylmethyl)-1,3-oxazinane-2,6-dione 35}

The title compound was prepared starting from (\(R\))-4-(4-hydroxy-4-methyl-3-oxopentyl)-4-methyl-1-(naphthalen-1-yl-methyl)pyrrolidine-2,3-dione 14Ba (\(73 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and following the general procedure at \(-20{ }^{\circ} \mathrm{C}\) for 1 h . The crude material was pure enough for the next step (\(77 \mathrm{mg}, 0.2 \mathrm{mmol}\), quantitative). \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-8.05(\mathrm{~m}, 1 \mathrm{H})\), \(8.03-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{~d}, J=14.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.08\) (d, \(J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.92\) (m, 2H), 2.41 (ddd, \(J=18.1,9.3,5.9 \mathrm{~Hz}, 1 \mathrm{H})\), 2.26 (ddd, \(J=18.1,9.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79\) (ddd, \(J=14.9,9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=\) \(14.7,9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})\).

\section*{(R)-3-(4-Methoxyphenyl)-5-methyl-5-(3-oxobutyl)-1,3-oxazinane-2,6-dione 36}

The title compound was prepared starting from (\(R\))-1-(4-methoxyphenyl)-4-methyl-4-(3-oxobutyl)pyrrolidine-2,3-dione 18Da (\(58 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and following the general procedure at -20 \({ }^{\circ} \mathrm{C}\) for 1 h . The crude material was pure enough for the next step (61 \(\mathrm{mg}, 0.2 \mathrm{mmol}\), quantitative). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.31-\) 7.18 (m, 2H), \(7.03-6.88\) (m, 2H), 3.81 (s, 3H), 3.57 (q, \(J=12.9\) \(\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.85(\mathrm{~m}, 1 \mathrm{H})\), 1.35 (s, 3H).

\section*{(S)-5-Allyl-3-benzyl-5-methyl-1,3-oxazinane-2,6-dione 37}

The title compound was prepared starting from (\(S\))-4-allyl-1-benzyl-4-methylpyrrolidine-2,3-dione (\(49 \mathrm{mg}, 0.2 \mathrm{mmol}\)) 22Aa and following the general procedure at \(-20^{\circ} \mathrm{C}\) for 1 h . The crude material was pure enough for the next step (\(51 \mathrm{mg}, 0.2 \mathrm{mmol}\), quantitative). \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.65-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.24-4.91(\mathrm{~m}, 2 \mathrm{H})\), \(4.66(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J\) \(=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})\).

\section*{2nd step:}

METHOD A: Amino ester hydrochlorides as nucleophiles
A suspension of the amino ester hydrochloride (1.2 equiv.) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (2 \(\mathrm{mL} / \mathrm{mmol}\)) was treated with \(\mathrm{Et}_{3} \mathrm{~N}\) (2.0 equiv.) for 30 min . The mixture was then cooled to \(-20^{\circ} \mathrm{C}\) and the corresponding NCA (1.0 equiv.) solution in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL} / \mathrm{mmol})\) was added at this temperature. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched with HCl 1 N , and the mixture extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL} / \mathrm{mmol})\), washed with \(\mathrm{NaHCO}_{3}(1 \times 4 \mathrm{~mL} / \mathrm{mmol}\) and dried over \(\mathrm{MgSO}_{4}\). The organic layer was evaporated under reduced pressure to provide the reaction product.

METHOD B: Amines as nucleophiles
The amine nucleophile (1.2 equiv.) was added to a solution of the crude NCA (1 equiv.) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} / \mathrm{mmol})\) at \(-20^{\circ} \mathrm{C}\). The reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched with HCl 1 N , and the mixture extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (\(3 \times 2 \mathrm{~mL} / \mathrm{mmol}\)), washed with \(\mathrm{NaHCO}_{3}(1 \times 4 \mathrm{~mL} / \mathrm{mmol})\) and dried over \(\mathrm{MgSO}_{4}\). The organic layer was evaporated under reduced pressure to provide the reaction product.

\section*{(S)-tert-Butyl 2-((R)-6-hydroxy-2,6-dimethyl-2-(((naphthalen-1-ylmethyl)amino)} methyl)-5-oxoheptanamido)-3-phenylpropanoate 38

The title compound was prepared from (\(R\))-5-(4-hydroxy-
4-methyl-3-oxopentyl)-5-methyl-3-(naphthalene-1-ylmethyl)-1,3-oxazinane-2,6-dione 35 (\(77 \mathrm{mg}, 0.2 \mathrm{mmol}\)), (S)-tert-butyl 2-amino-3-phenylpropanoate hydrochloride (\(62 \mathrm{mg}, 0.24 \mathrm{mmol}\)) and triethylamine (\(56 \mu \mathrm{~L}, 0.4 \mathrm{mmol}\)) following METHOD A. The reaction mixture was stirred for 16 h until completion of reaction. The crude material
was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate \(80 / 20\)) to give the title compound as a white foam (\(86 \mathrm{mg}, 0.15 \mathrm{mmol}, 77 \%\) yield). \([\alpha]_{\mathrm{D}}{ }^{25}=+1.8^{\circ}\left(\mathrm{c}=0.8,96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~d}, J=8.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{dt}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.12-\) \(7.03(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05\) \((\mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J\) \(=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=13.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H})\), \(1.44(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{\mathrm{C}}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.7\), \(176.0,171.3,137.2,134.2,132.0,129.4,129.1,128.5,128.3,127.0,126.8,126.7,126.0\), \(125.6,123.9,81.8,76.5,56.6,53.5,52.3,44.2,38.0,31.8,28.2,26.7,26.6,22.1\). UPLC-DAD-QTOF: \(\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+\) calcd.: 561.3328, found: 561.3331.

\section*{(R)-N-Benzyl-2-((benzylamino)methyl)-2-methylpent-4-enamide 39}

The title compound was prepared from (\(S\))-5-allyl-3-benzyl-5-methyl-1,3-oxazinane-2,6-dione 37 (\(52 \mathrm{mg}, 0.2 \mathrm{mmol}\)), benzylamine (\(28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}\)) following METHOD B . The reaction mixture was stirred for 16 h until completion of reaction. The crude material was purified by flash column chromatography on silica gel (hexane/EtOAc, 50:50) to give the title compound as a yellow oil. Yield: \(70 \%(45 \mathrm{mg}, 0.14 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=11.2^{\circ}\) \(\left(\mathrm{c}=0.5,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.38-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~m}\), \(2 \mathrm{H}), 5.97-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.79\) \((\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=\) \(13.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 176.8,134.3,128.7\), \(128.6,128.3,127.9,127.4,127.3,118.1,55.7,54.6,44.6,43.5,42.3,22.2\). UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 323.2126, found: 323.2123.

\subsection*{6.3.7.2. Hydrogenation}

\section*{(S)-1-Benzyl-4-methyl-4-propylpyrrolidine-2,3-dione 40}

To a solution of 22Aa (\(49 \mathrm{mg}, 0.2 \mathrm{mmol}\)) in EtOH (0.6 mL) under argon atmosphere, Pd on carbon (8 mg) was carefully added. The mixture was stirred under \(\mathrm{H}_{2}\) for 16 h and then filtered through celite. Purification by column chromatography (hexane/EtOAc, 80:20) led to the title compound as white foam. Yield: \(80 \%\) (\(39 \mathrm{mg}, 0.16 \mathrm{mmol}\)). \([\alpha]_{\mathrm{D}}{ }^{25}=22.14^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.68\) \((\mathrm{s}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}\), \(3 \mathrm{H}), 1.22-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.2\),
\(159.5,134.7,129.2,128.7,128.5,128.0,53.5,48.6,43.6,39.9,22.3,17.5,14.5\). UPLC-DAD-QTOF: \(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 246.1502, found: 246.1494 .
6.3.8. ORTEP diagram for compounds 14Ba, 22Aa and 33A.

\subsection*{6.4. EXPERIMENTAL SECTION OF CHAPTER 3}

\subsection*{6.4.1. Preparation of pronucleophiles}

\subsection*{6.4.1.1. Preparation of ketimine hydrochlorides}

Imine hydrochlorides \(\mathbf{5 5}\) and \(\mathbf{5 6}\) were prepared adapting literature procedures. \({ }^{264}\)

Dry diethyl ether (50 mL) was added to a three-necked round bottom flask equipped with a reflux condenser containing magnesium powder (\(434 \mathrm{mg}, 20 \mathrm{mmol}, 1\) equiv.) and iodine (20 mg). The resulting suspension was heated to mild reflux and the corresponding bromobenzene was added dropwise (\(20 \mathrm{mmol}, 1\) equiv.). The resulting mixture was stirred at the same temperature for 2 h , the magnesium was dissolved and the solution darkened.

The corresponding benzonitrile (\(20 \mathrm{mmol}, 1\) equiv.) was then added dropwise to the solution and the mixture was allowed to stir at the same temperature for 16 h , resulting in the formation of a white salt. Thus, \(\mathrm{Me}_{3} \mathrm{SiCl}(2.5 \mathrm{~mL}, 20 \mathrm{mmol}, 1\) equiv.) was added dropwise with vigorous stirring after removing the heating, and the resulting mixture was stirred at room temperature for 16 h . A brown solid formed as a result, and the mixture was concentrated under reduced pressure and dissolved in benzene in order to filter off the salts. Benzene was then removed under reduced pressure and the resulting crude was dissolved in dry diethyl ether (10 mL) and the mixture was cooled to \(-78{ }^{\circ} \mathrm{C}\). Then, HCl (2 M in \(\mathrm{Et}_{2} \mathrm{O}, 10 \mathrm{~mL}, 20 \mathrm{mmol}, 1\) equiv.) was added, the resulting suspension was allowed to warm to room temperature over 30 minutes and the solid was filtered and washed with diethyl ether and dried under an IR lamp affording the desired product.

\footnotetext{
\({ }^{264}\) Adapted from: a) Á. Pintér, G. Haberhauer, I. Hyla-Kryspin, S. Grimme, Chem. Commun. 2007, 37113713; b) L.-H. Chan, E. G. Roschow, J. Organomet. Chem. 1967, 9, 231-250 c) S. Zhang, W. E. Piers, X. Gao, M. Parvez, J. Am. Chem. Soc. 2000, 122, 5499-5509.
}

\subsection*{6.4.1.2. Preparation of Ketimines and Aldimines of Glycine Nitroanilides}

6.4.1.2.1. \(\quad I^{\text {st }}\) step: Amide formation

Method A1 \({ }^{265}\) : Boc-Gly-OH (\(1.38 \mathrm{~g}, 10 \mathrm{mmol}, 1\) equiv.) and the corresponding nitroaniline (\(10 \mathrm{mmol}, 1\) equiv.) were dissolved in dry pyridine (30 mL). The solution was cooled to \(-15{ }^{\circ} \mathrm{C}\) and phosphorus oxychloride (\(1 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1\) equiv.) was added dropwise with vigorous stirring. During addition, the reaction mixture coloured deeply red and slowly changed to brown. The reaction was complete after 30 minutes (monitored by TLC). The reaction was quenched with ice water (100 mL) and the mixture extracted with EtOAc (\(4 \times 60 \mathrm{~mL}\)). The organic phase was dried over \(\mathrm{MgSO}_{4}\), and the solvent was evaporated in vacuo. The residue was coevaporated successively with hexane and diethyl eter, and the resulting solid was crushed with diethyl ether and hexane.

Method A2: Boc-Gly-OH (\(1.05 \mathrm{~g}, 6 \mathrm{mmol}, 1.2\) equiv.) was disolved in dry DMF (7 mL) and DIPEA (\(5.2 \mathrm{~mL}, 30 \mathrm{mmol}, 6\) equiv.) was added at room temperature. 2,5Dinitroaniline (\(920 \mathrm{mg}, 5 \mathrm{mmol}, 1\) equiv.) was added, followed by HATU (\(2.09 \mathrm{~g}, 5.5\) mmol, 1.1 equiv.). The mixture stirred at room temperature for 16 h . Then, a solution of \(\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1: 1)\) was added to the reaction mixture and it was extracted with EtOAc (3 x 50 mL), washed with brine (\(5 \times 30 \mathrm{~mL}\)), dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure.

Method A3 \({ }^{266}\) : Boc-Gly-OH (\(5 \mathrm{mmol}, 1\) equiv.) was dissolved in dry THF (10 mL), and isobutyl chloroformate (\(0.8 \mathrm{~mL}, 6 \mathrm{mmol}, 1.2\) equiv.) and \(\mathrm{NMM}(0.66 \mathrm{~mL}, 6\)

\footnotetext{
\({ }^{265}\) Rijkers, D. T. S.; Adams, H.; Hemker, C.; Tesser, G. I. Tetrahedron, 1995, 51, 11235-11250.
\({ }^{266}\) P. Gisbert, P. Trillo, I. M. Pastor, Chemistry Select 2018, 3, 887-893.
}
mmol, 1.2 equiv.) were added at \(-15{ }^{\circ} \mathrm{C}\) to form the mixed anhydride. The mixture was stirred at the same temperature for 45 minutes. Then, aniline (\(5 \mathrm{mmol}, 1\) equiv.) was added and the mixture stirred for 3 h at room temperature. The reaction mixture was filtered through a plug of silica, eluting with EtOAc. Ethyl acetate was removed under reduced pressure and X was purified after recrystallization with \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\)-pentane.
6.4.1.2.2. \(\quad 2^{\text {nd }}\) step: Amine deprotection

To a solution of the corresponding aminoamide (3 mmol) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})\) trifluoroacetic acid (4.5 mL) was added at \(0{ }^{\circ} \mathrm{C}\). The mixture was stirred at room temperature for 30 min until full conversion (monitored by TLC). The solvents were evaporated under vacuum and the residue was coevaporated successively with a mixture of ether and pentane. Then it was dried in vacuo and the resulting solid was used in the next step without further purification. Quantitative yield.

\subsection*{6.4.1.2.3. \(\quad 3^{\text {rd }}\) step: Imine formation}

Method B1: The synthesis of the diaryl iminoamides 45, \(\mathbf{5 1}\) and \(\mathbf{5 3}\) derived from benzophenone imine was carried out starting from the corresponding aminoamide salt.

To a suspension of the corresponding aminoamide salt (\(3 \mathrm{mmol}, 1\) equiv.) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (11 mL) benzophenone imine (\(3 \mathrm{mmol}, 1\) equiv.) and anhydrous \(\mathrm{MgSO}_{4}(903 \mathrm{mg}\), \(7.5 \mathrm{mmol}, 2.5\) equiv.) were added. The reaction was stirred at room temperature for 24 h . The reaction mixture was filtered to remove the salt and evaporated in vacuo. The crude
was crushed in diethyl ether/hexane to afford pure solids, which were used as such in the next step.

Method B2: In cases when hydrochloride imines or aldehydes were employed, the corresponding amine salt was neutralized by the addition of a saturate solution of \(\mathrm{NaHCO}_{3}\) and successive extractions with dichloromethane (\(\approx 70 \%\) yield in the extraction).

47 Ar: o- \(\mathrm{NO}_{2} \mathrm{Ph}\)
101 Ar: Ph
102 Ar: \(p-\mathrm{NO}_{2} \mathrm{Ph}\)
1) \(\mathrm{NaHCO}_{3}\)

57 Ar: o- \(\mathrm{NO}_{2}, \mathrm{R}^{1}, \mathrm{R}^{2}: 3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}\)
\(58 \mathrm{Ar}: o-\mathrm{NO}_{2}, \mathrm{R}^{1}, \mathrm{R}^{2}: 4-\mathrm{CF}_{3} \mathrm{Ph}\)
62 Ar: o- \(\mathrm{NO}_{2}, \mathrm{R}^{1}: 3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
64: Ar: \(p-\mathrm{NO}_{2}, \mathrm{R}^{1}: 3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
65: Ar: Ph, R \({ }^{1}: 3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
67 Ar: o- \(\mathrm{NO}_{2}, \mathrm{R}^{1}\) : Ph, \(\mathrm{R}^{2}\) : H
68 Ar: o- \(\mathrm{NO}_{2}, \mathrm{R}^{1}\) : Antracenyl, \(\mathrm{R}^{2}\) : H
69 Ar: o-NO \(\mathrm{NO}_{2}, \mathrm{R}^{1}: 2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
70 Ar: o- \(\mathrm{NO}_{2}, \mathrm{R}^{1}: 2,6-\mathrm{Cl}_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
\(71 \mathrm{Ar}: o-\mathrm{NO}_{2}, \mathrm{R}^{1}: 2,4,6-\mathrm{F}_{3} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)
\(72 \mathrm{Ar}: \mathrm{o}-\mathrm{NO}_{2}, \mathrm{R}^{1}: 2-\mathrm{NO}_{2} \mathrm{Ph}, \mathrm{R}^{2}: \mathrm{H}\)

To a solution of the aminoamide (\(3 \mathrm{mmol}, 1\) equiv.) in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL}\)), the corresponding imine hydrochloride or aldehyde (\(3 \mathrm{mmol}, 1\) equiv.) and anhydrous \(\mathrm{MgSO}_{4}\) (\(903 \mathrm{mg}, 7.5 \mathrm{mmol}, 2.5\) equiv.) were added. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was filtered then to remove the salt and evaporated to dryness in vacuo. The crude was crushed in diethyl ether/hexane to afford pure iminoamide derivatives which were used as such in the next step.

\section*{Tert-butyl (2-((2-nitrophenyl)amino)-2-oxoethyl)carbamate 46}

Prepared according to method A1 starting from \(o\)-nitroaniline (1.38 g , \(10 \mathrm{mmol})\). Yellow solid. Yield: \(68 \%(2.01 \mathrm{~g}, 6.8 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=128-\) \(130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.02(\mathrm{brs}, 1 \mathrm{H}), 8.84(\mathrm{dd}, J=\) \(8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.7\), \(7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.19\) (brs, 1 H), \(4.05(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57\) (s, 3 H), \(1.53(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.6,136.6,134.9,127.0,126.5,124.2\), 122.7, 81.8, 46.4, 28.9.UPLC-DAD-QTOF: \(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 296.1168, found: 296.1274 .

\section*{Tert-butyl (2-((4-nitrophenyl)amino)-2-oxoethyl)carbamate \(99^{265}\)}

Prepared according to method A1 starting from p-nitroaniline (\(1.38 \mathrm{~g}, 10 \mathrm{mmol}\)). White solid. Yield: \(69 \%(1.27 \mathrm{~g}, 3.9 \mathrm{mmol})\). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.21\) (d, \(J=9.2 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.70 (d, \(J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})\). All data were consistent with those previously reported.

\section*{Tert-butyl (2-((2,4-dinitrophenyl)amino)-2-oxoethyl)carbamate 100}

Prepared according to method A2 starting from 2,5-dinitroaniline \((1.83 \mathrm{~g}, 10 \mathrm{mmol})\). Purified by column chromatography (hexane/EtOAc, 90:10) to afford \(\mathbf{1 0 0}\) as a yellow solid. Yield: \(77 \%(2.62 \mathrm{~g}, 7.7 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=186-188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.29(\mathrm{~s}\), \(1 \mathrm{H}), 9.12-9.02(\mathrm{~m}, 2 \mathrm{H}), 8.43(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}\), \(J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.8,156.2,142.0,139.2\), \(135.3,130.2,122.3,122.1,81.5,46.0,28.3\). UPLC-DAD-QTOF: \(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}^{*}\) \(*[\mathrm{M}+\mathrm{Na}]^{+}\)calcd.: 363.0917, found: 363.0911.

\section*{Tert-butyl (2-oxo-2-(phenylamino)ethyl)carbamate 101 \({ }^{266}\)}

Prepared according to method A3. Purified by column chromatography (hexane/EtOAc, 90:10) to afford X as a yellow solid. Yield: \(75 \%(1.05 \mathrm{~g}, 4.2 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\) \(8.34(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=15.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 1 \mathrm{H})\), \(5.43(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})\). All data were consistent with those previously reported.

2-((2-Nitrophenyl)amino)-2-oxoethan-1-aminium 2,2,2-trifluoroacetate 47

Prepared according to the general procedure starting tert-butyl (2-((2-nitrophenyl)amino)-2-oxoethyl)carbamate 46 (\(885 \mathrm{mg}, 3 \mathrm{mmol}\)). Yellow solid. m.p. \(=148-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.15-7.93(\mathrm{~m}\), \(1 \mathrm{H}), 7.84-7.59\) (m, 2H), 7.41 (ddd, \(J=8.6,6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}\)), 4.03 (s, 3H). \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\)) \(\delta 166.4,135.1,129.6,127.1,126.4\), 125.6, 41.2. UPLC-DAD-QTOF (measured after neutralization): \(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 196.0722, found: 196.0723.

2-((4-Nitrophenyl)amino)-2-oxoethan-1-aminium 2,2,2-trifluoroacetate 102

120.1, 114.4, 41.2. UPLC-DAD-QTOF (measured after neutralization): \(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 196.0722, found: 196.0727.

2-((2,4-Dinitrophenyl)amino)-2-oxoethan-1-aminium 2,2,2-trifluoroacetate 103

Prepared according to the general procedure starting from tertbutyl (2-((2,4-dinitrophenyl)amino)-2-oxoethyl)carbamate \(\mathbf{1 0 0}\) \((1.02 \mathrm{~g}, 3 \mathrm{mmol})\). White solid. m.p. \(=146-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.57-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.25\) \((\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 166.4\) , 143.5 , \(139.3,136.3,129.4,125.4,121.9,41.7\). UPLC-DADQTOF (measured after neutralization): \(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Na}^{*} *[\mathrm{M}+\mathrm{Na}]^{+}\)calcd.: 263.0392, found: 263.0403.

\section*{2-Oxo-2-(phenylamino)ethan-1-aminium 2,2,2-trifluoroacetate 104}

O The title compound was prepared from tert-butyl (2-oxo-2(phenylamino)ethyl)carbamate \(101(750 \mathrm{mg}, 3 \mathrm{mmol})\). White solid. m.p. \(=165-168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.80-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-\) \(7.20(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\)) \(\delta 165.4,136.2\), 129.3 , 125.8 , \(121.4,40.9\). UPLC-DAD-QTOF (measured after neutralization): \(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 151.0874, found: 151.0879.

\section*{2-((Diphenylmethylene)amino)- N -(2-nitrophenyl)acetamide 45}

Prepared according to method B1 starting from 2-((2-nitrophenyl)amino)-2-oxoethan-1-aminium 47 (\(927 \mathrm{mg}, 3 \mathrm{mmol}\)) and benzophenone imine (\(0.5 \mathrm{~mL}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(78 \%\) (\(840 \mathrm{mg}, 2.34 \mathrm{mmol}\)). m.p. \(=111-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29\) (dd, \(J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.97-7.79\) (m, 2H), 7.69 (ddd, \(J=8.7\), \(7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.3,171.6,139.4,137.4,136.7,135.5,132.2,130.2,130.1,129.9\), 129.5, 128.2, 126.9, 124.5, 123.5, 58.6. UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 360.1270, found: 360.1274 .

\section*{2-((Diphenylmethylene)amino)- N -(4-nitrophenyl)acetamide 51}

Prepared according to method B1 starting from 2-((4-nitrophenyl)amino)-2-oxoethan-1-aminium 2,2,2trifluoroacetate \(\mathbf{1 0 2}\) (\(927 \mathrm{mg}, 3 \mathrm{mmol}\)) and benzophenone imine (\(0.5 \mathrm{~mL}, 3 \mathrm{mmol}\)). White solid. Yield: \(82 \%\) (883 mg , \(2.5 \mathrm{mmol})\). m.p. \(=183-188^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.78\) (brs, 1 H), \(8.43-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.81(\mathrm{~m}, 2 \mathrm{H})\), 7.71 (dd, \(J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.08(\mathrm{~m}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.9,170.0,144.3,144.0,139.0,136.5,131.9,130.1,129.8\), 129.2, 127.8, 125.9, 119.8, 57.4. UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 360.1270, found: 360.1372.
\(N\)-(2,4-Dinitrophenyl)-2-((diphenylmethylene)amino)acetamide 53

Prepared according to method B1 starting from 2-((2,4-dinitrophenyl)amino)-2-oxoethan-1-aminium 103 (1.06 mg , 3 mmol) and benzophenone imine (\(0.5 \mathrm{~mL}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(66 \%(800 \mathrm{mg}, 1.98 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=175-180^{\circ} \mathrm{C}\). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 12.53(\mathrm{~s}, 1 \mathrm{H}), 9.24(\mathrm{~d}, J=9.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=9.4,2.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.87\) (dd, \(J=8.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}\)), \(7.60-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}\), 2H). \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.0,171.1,139.5,138.1,136.2,132.5,131.4\), \(130.2,130.0,129.4,129.3,128.97,128.6,128.4,127.1,122.7,122.2\), 57.6 . UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 405.1199, found: 405.1192.

\section*{2-((Bis(3,5-bis(trifluoromethyl)phenyl)methylene)amino)-N-(2nitrophenyl)acetamide 57}

Prepared according to method B2 starting from 2-amino- N -(2-nitrophenyl)acetamide 47 (\(585 \mathrm{mg}, 3 \mathrm{mmol}\)) and 3,5bis(trifluoromethyl)phenyl)methaniminehydrochloride \(\mathbf{5 5}\) (\(1.47 \mathrm{~g}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(66 \%(1.25 \mathrm{~g}, 1.98\) mmol). m.p. \(=178-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\) \(12.07(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0 \mathrm{H}), 8.31-8.22(\mathrm{~m}, 2 \mathrm{H})\), \(8.13(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=9.1 \mathrm{~Hz}, 0 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 168.2\), \(165.3,139.0,137.2,136.4,136.0,133.2\) (q), 128.7, \(127.5,126.0,125.4,124.4,124.0,122.3,57.9\).UPLC-DAD-QTOF: \(\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 632.0842, found: 632.0844.

Prepared according to method B2 starting from 2-amino- N -(2-nitrophenyl)acetamide 47 (\(585 \mathrm{mg}, 3 \mathrm{mmol}\)) and bis(4(trifluoromethyl)phenyl)methaniminium 5 (\(1.06 \mathrm{~g}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(75 \%\) (\(1.1 \mathrm{~g}, 2.25 \mathrm{mmol}\)). m.p. \(=165-168\) \({ }^{\circ} \mathrm{C}\). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.94(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{dd}, J\) \(=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}\), \(4 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.28,168.50,140.50,139.03,136.91,135.82,134.17\), 129.00, 127.53, 126.45, 126.40, 125.86, 125.59, 125.54, 123.62, 122.29, 57.61.UPLC-DAD-QTOF: \(\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 496.1096, found: 496.1102 .

\section*{(E)-N-(2-Nitrophenyl)-2-((4-(trifluoromethyl)benzylidene)amino)acetamide 62}

Prepared according to method B2 starting from 2-amino-N-(2nitrophenyl)acetamide 47 (588 mg, 3 mmol) and 3,5bis(trifluoromethyl)benzaldehyde (\(0.48 \mathrm{~mL}, 3 \mathrm{mmol}\)). Yellow solid. Yield \(60 \%(75.5 \mathrm{mg}, 1.8 \mathrm{mmol})\). m.p. \(=155-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 8.50(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=10.0 \mathrm{~Hz}\), \(1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 168.8,161.0,137.1,135.9,134.2,132.6(\mathrm{q}, J=33.9 \mathrm{~Hz})\), \(128.7,128.6,125.9,125.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 123.7,122.1,62.8\). UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 420.0783, found: 420.0786.

\section*{(E)-2-((3,5-Bis(trifluoromethyl)benzylidene)amino)-N-(4-nitrophenyl)acetamide 64}

Prepared according to method B2 starting from 2-amino- N -(4-nitrophenyl)acetamide \(\mathbf{1 0 2}\) (\(585 \mathrm{mg}, 3 \mathrm{mmol}\)) and \(3,5-\) bis(trifluoromethyl)benzaldehyde (\(0.48 \mathrm{~mL}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(75 \%\) (\(943 \mathrm{mg}, 2.25 \mathrm{mmol}\)) m.p. \(=144-\) \(148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}\), 1 H), 8.26 (\(\mathrm{s}, 2 \mathrm{H}\)), 8.22 (\(\mathrm{s}, 1 \mathrm{H}\)), 8.03 (\(\mathrm{s}, 1 \mathrm{H}), 7.80\) (d, \(J=9.2\) \(\mathrm{Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,161.7,144.0,143.0,136.9\), \(132.8(\mathrm{q}, J=33.8 \mathrm{~Hz}), 128.4,125.3\), 119.5 , 63.1 . UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 420.1087, found: 420.1099.

\section*{(E)-2-((3,5-Bis(trifluoromethyl)benzylidene)amino)- \(N\)-phenylacetamide 65}

Prepared according to method B2 starting from 2-amino-Nphenylacetamide 104 (\(450 \mathrm{mg}, 3 \mathrm{mmol}\)) and 3,5bis(trifluoromethyl)benzaldehyde (\(0.48 \mathrm{~mL}, 3 \mathrm{mmol}\)). Yellow solid Yield: \(73 \%\) (\(820 \mathrm{mg}, 2.19 \mathrm{mmol}\)). m.p. \(=141-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}\), \(2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,161.0\), \(137.3,137.1,132.7(\mathrm{q}, J=33.9 \mathrm{~Hz}), 129.2,128.3,125.1,125.1,124.9,120.2,63.3\). UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 375.0932, found: 375.0930.

\section*{(E)-2-(Benzylideneamino)- N -(2-nitrophenyl)acetamide 67}

Prepared according to method B2 starting from 2-amino- N -(2nitrophenyl)acetamide 47 (\(585 \mathrm{mg}, 3 \mathrm{mmol}\)) and benzaldehyde (0.3 \(\mathrm{mL}, 3 \mathrm{mmol}\)). White solid. Yield: \(77 \%\) (\(654 \mathrm{mg}, 2.31 \mathrm{mmol}\)). m.p. \(=\) \(214-218{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=\) \(9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.86(\mathrm{~m}\), \(1 \mathrm{H}), 7.65(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,164.3,135.8,135.3,134.5,131.8,129.0,128.8,125.9\), \(123.5,122.2,63.1\). UPLC-DAD-QTOF: \(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 284.1035, found: 284.1031.

\section*{(E)-2-((Anthracen-9-ylmethylene)amino)- N -(2-nitrophenyl)acetamide 68}

Prepared according to method B2 starting from 2-amino-N-(2nitrophenyl)acetamide 47 (588 mg, 3 mmol) and 9anthracenecarboxaldehyde (\(619 \mathrm{mg}, 3 \mathrm{mmol}\)). Aldehyde residue was removed by column chromatography (hexane/EtOAc, 90:10), followed by a washing with a saturate \(\mathrm{NaHCO}_{3}\) solution. Yellow solid. Yield: \(75 \%\) (\(862 \mathrm{mg}, 2.25 \mathrm{mmol}\)). m.p. \(=142-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.61(\mathrm{~s}, 1 \mathrm{H}), 9.66(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J\) \(=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}\), \(1 \mathrm{H}), 7.66-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 169.8,163.9,135.7,131.3,129.3,127.60,125.6,124.7,123.7,122.8\), 65.5 .UPLC-DAD-QTOF: \(\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}^{*} *[\mathrm{M}+\mathrm{Na}]^{+}\)calcd.: 406.1168, found: 406.1160 .

\section*{(E)-2-((2,6-Dimethylbenzylidene)amino)-N-(2-nitrophenyl)acetamide 69}

Prepared according to method B2 starting from 2-amino- N -(2nitrophenyl)acetamide 47 (588 mg, 3 mmol) and 2,6dimethylbenzaldehyde (\(403 \mathrm{mg}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(70 \%\) \((653 \mathrm{mg}, 2.1 \mathrm{mmol})\). m.p. \(=130-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 11.43(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.19\) \((\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}\), \(2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 170.0,164.5,138.6,135.7\) , \(134.2,132.4,130.1,129.1,127.9,125.8,123.6,122.7,65.1,21.2\). UPLC-DADQTOF: \(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 312.1348, found: 312.1354.

\section*{(E)-2-((2,6-Dimethylbenzylidene)amino)- \(N\)-(2-nitrophenyl)acetamide 70}

Prepared according to method B2 starting from 2-amino- N -(2nitrophenyl)acetamide 47 (585 mg, 3 mmol) and 2,6dichlorobenzaldehyde (\(525 \mathrm{mg}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(65 \%\) \((685 \mathrm{mg}, 1.95 \mathrm{mmol})\). m.p. \(=140-143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR \((300 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.16\) (dd, \(J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=1.3\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=1.4\) \(\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.1,160.1,137.2,135.5,135.1,134.0\), \(131.1,129.0,128.3,125.7,123.7,122.8,64.0\). UPLC-DAD-QTOF: \(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 351.0280, found: 351.0266 .

\section*{(\(\boldsymbol{E}\))- \(N\)-(2-Nitrophenyl)-2-((2,4,6-trifluorobenzylidene)amino)acetamide 71}

Prepared according to method B2 starting from 2-amino- N -(2nitrophenyl)acetamide 47 (585 mg, 3 mmol) and 2,4,6trifluorobenzaldehyde (\(1.01 \mathrm{~g}, 3 \mathrm{mmol}\)). White solid. Yield: \(70 \%\) (\(708 \mathrm{mg}, 2.1 \mathrm{mmol}\)). m.p. \(=138-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 11.42(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.21\) (d, \(J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.09(\mathrm{~m}, 1 \mathrm{H})\), \(6.78(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2,164.3(\mathrm{dt}, J=\) \(257.1 \mathrm{~Hz}, 17.1 \mathrm{~Hz}), 162.8\) (ddd, \(J=260.3,23.9,12.0 \mathrm{~Hz}\)), 154.5, 135.6, 134.1, 125.8 , \(123.7,122.7,101.4\) (dd, \(J=25.2 \mathrm{~Hz}, 4.1 \mathrm{~Hz}\)), 65.0 . UPLC-DAD-QTOF: \(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 338.0753, found: 338.0754.

\section*{(E)-2-((2-Nitrobenzylidene)amino)-N-(2-nitrophenyl)acetamide 72}

Prepared according to method B2 starting from 2-amino- N -(2nitrophenyl)acetamide 47 (\(585 \mathrm{mg}, 3 \mathrm{mmol}\)) and 2nitrobenzaldehyde (\(453 \mathrm{mg}, 3 \mathrm{mmol}\)). Yellow solid. Yield: \(80 \%\) (\(787 \mathrm{mg}, 2.4 \mathrm{mmol}\)). m.p. \(=160-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\) NMR \((300 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 11.75(\mathrm{~s}, 11 \mathrm{H}), 8.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H})\), \(8.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{q}, J=9.1,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.55(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.1,160.0,136.0,134.1\), \(131.9,129.7,125.9,124.6,123.7,122.4,63.3\). UPLC-DAD-QTOF: \(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Na}^{*}\) * \([\mathrm{M}+\mathrm{Na}]^{+}\)calcd.: 351.0705 , found: 352.0707 .

\subsection*{6.4.1.3. Preparation of Ketimines and Aldimines of Glycine Esters}

To a suspention of glycine ester hydrochloride (\(377 \mathrm{mg}, 3 \mathrm{mmol}, 1\) equiv.) in \(\mathrm{DCM}(6 \mathrm{~mL})\), the corresponding imine or aldehyde (\(2.4 \mathrm{mmol}, 0.8\) equiv.) was added. Triethylamine was added dropwise (\(0.42 \mathrm{~mL}, 3 \mathrm{mmol}, 1\) equiv.) and the reaction was stirred at room temperature for 24 h . The mixture was then diluted with \(\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})\), filtered and washed with \(\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})\), brine (\(3 \times 10 \mathrm{~mL}\)). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated to dryness. The crude was obtained with quantitative yield and was used without further purification.

\section*{Methyl 2-((diphenylmethylene)amino)acetate \({ }^{267} 52\)}

Prepared according to the general procedure starting with glycine ester hydrochloride (\(377 \mathrm{mg}, 3 \mathrm{mmol}\)) and benzophenone imine (0.5 \(\mathrm{mL}, 3 \mathrm{mmol}, 1\) equiv.). Yield: \(>99 \%\). All the spectroscopic data were coincident with those previously reported. \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 7.74-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.29(\mathrm{~m}\),

\footnotetext{
\({ }^{267}\) P. Nun, P, V. Prez, M. Calms, J. Martinez, F. Lamaty, Chem. Eur. J. 2012, 18, 3773-3779
}

3H), \(7.25-7.14\) (m, 1H), 4.25 (s, 2H), 3.77 (\(\mathrm{s}, 3 \mathrm{H}\)).

\section*{Methyl (\(\boldsymbol{E}\))-2-((3,5-bis(trifluoromethyl)benzylidene)amino)acetate \({ }^{268} \mathbf{6 6}\)}

Prepared according to the general procedure starting with glycine ester hydrochloride (\(377 \mathrm{mg}, 3 \mathrm{mmol}\)) and 3,5bis(trifluoromethyl)benzaldehyde (\(0.38 \mathrm{~mL}, 2.4 \mathrm{mmol}\)). Yield: \(65 \%\) \((488 \mathrm{mg}, 1.56 \mathrm{mmol})\). All the spectroscopic data were coincident with those previously reported. \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39\) (s, \(1 \mathrm{H}), 8.23(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})\).

\subsection*{6.4.2. Preparation of aldehydes}

Aliphatic aldehydes 48a, 48b, 48d, 48e, 48h, 48i, 48j, 48k, 48m aromatic aldehydes 48f-g and propargylic aldehyde 48c are commercially available. They were purchased from commercial suppliers and distilled before their use in aldol reaction. Aldehyde \(\mathbf{4 8 1}\) was prepared following the literature procedure. \({ }^{269}\)

\subsection*{6.4.3. Aldol reaction of nitroanilides}

\subsection*{6.4.3.1. Asymmetric reaction}

The corresponding nitroanilide (\(0.2 \mathrm{mmol}, 1\) equiv.) and the corresponding catalyst (\(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%\)) were dissolved in dry dichloromethane \((0.5 \mathrm{~mL})\) at the

\footnotetext{
\({ }^{268}\) Z. Chen, N. Ren, X. Ma, J. Nie, F.-G. Zhang, J.-A Ma, ACS Catal. 2019, 9, 4600-4608.
\({ }^{269}\) X. Xiao, S. Anthony, G. Kohlagen, Y. Pommier, M. Cushman, Bioorg. Med. Chem. 2004, 126, 51475160.
}
corresponding temperature. To the mixture, \(\mathrm{NaHCO}_{3}(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%)\) was added in one portion, followed by the corresponding aldehyde (\(0.6 \mathrm{mmol}, 3\) equiv.) The reaction mixture was stirred at the indicated temperature until consumption of the starting material (followed by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)). Then, \(\mathrm{MeOH}\left(0.4 \mathrm{~mL}\right.\)) was added, followed by \(\mathrm{NaBH}_{3} \mathrm{CN}\) (32 \(\mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\) equiv.) and \(\mathrm{AcOH}(24 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2\) equiv.) and the mixture stirred for 2 h at room temperature (reduction of the imine can be followed by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)), the solvents were evaporated under reduced pressure, the resulting residue was redissolved in dichloromethane and washed with a saturated \(\mathrm{NaHCO}_{3}\) solution (\(1 \times 4 \mathrm{~mL}\)). The organic phase was dried over \(\mathrm{MgSO}_{4}\) and evaporated in vacuo. The crude was purified by column chromatography.

\subsection*{6.4.3.2. Racemic reaction}

48

The corresponding nitroanilide (\(0.2 \mathrm{mmol}, 1\) equiv.) and C39 (\(0.02 \mathrm{mmol}, 20\) \(\mathrm{mol} \%)\) were dissolved in dry dichloromethane \((0.5 \mathrm{~mL})\) at room temperature. To the mixture, \(\mathrm{Et}_{3} \mathrm{~N}\) (\(0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%\)) was added, followed by the corresponding aldehyde (\(0.6 \mathrm{mmol}, 3\) equiv.) The reaction was stirred at room temperature until consumption of the starting material (followed by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)). To the reaction mixture \(\mathrm{MeOH}(0.4 \mathrm{~mL}\)) was added, followed by \(\mathrm{NaBH}_{3} \mathrm{CN}(32 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\) equiv.) and \(\mathrm{AcOH}(24 \mu \mathrm{~L}, 0.4\) mmol, 2 equiv.). The reaction mixture stirred for 2 h at room temperature (the reduction of the imine can be followed by \({ }^{1} \mathrm{H}-\mathrm{NMR}\)), the solvents were evaporated under reduced pressure, the resulting crude was redissolved in dichloromethane and washed with a saturate \(\mathrm{NaHCO}_{3}\) solution (\(1 \times 4 \mathrm{~mL}\)). The organic phase was dried over \(\mathrm{MgSO}_{4}\) and evaporated in vacuo. The crude was purified by column chromatography.

\section*{General procedure for the Boc-protection of the aldol adducts}

In some cases, Boc-protection of the secondary amine was carried out in order to find appropriate HPLC conditions for enantiomer separation. This was performed following the general procedure indicated below.

The purified compound (1 equiv.) was dissolved in dry dichloromethane (\(5 \mathrm{~mL} / \mathrm{mmol}\)) and \(\mathrm{Boc}_{2} \mathrm{O}\) (1.2 equiv.) was added followed by DMAP (\(20 \mathrm{~mol} \%\)). (The quantities have to be measured accurately to avoid amide Boc-protection). The reaction was followed by TLC, and when finished, the mixture was filtered through a small silica plug and evaporated under reduced pressure.

\subsection*{6.4.3.3. Characterization of compounds}
(2S,3R)-2-(Benzhydrylamino)-3-hydroxy- \(N\)-(2-nitrophenyl)-5-phenylpentanamide 49a

Prepared according to the general procedure starting from 2-
 ((diphenylmethylene)amino)- N -(2-nitrophenyl)acetamide 45 (\(72 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde \(48 \mathrm{a}(80 \mu \mathrm{~L}, 0.6\) mmol). Purified by column chromatography (hexane/EtOAc, 90:10). Yellow oil. Yield: \(71 \%(70 \mathrm{mg}, 0.14 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=-\) \(1.3^{\circ}\left(c=1.35,94 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.77(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=\) \(8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.46\) \(-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.05(\mathrm{~m}, 9 \mathrm{H}) ., 4.91(\mathrm{~s}, 12 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=3.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6\), \(143.0,142.4,141.4,137.1,135.7,134.0,129.0,128.8,128.7,128.6,127.8,127.6\), \(127.4,126.2,125.9,123.7,122.2,72.1,66.8,65.0,35.4,32.4\). UPLC-DAD-QTOF: \(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 496.2233, found: 496.2236 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/ethanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 18 min (major) and 40 min (minor)).
(2S,3R)-2-(Benzhydrylamino)-3-hydroxy- N -(2-nitrophenyl)octanamide 49b

Prepared according to the general procedure starting from 2-((diphenylmethylene)amino)- \(N\)-(2-nitrophenyl)acetamide 45 (\(72 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hexanal 48b (\(74 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)).

Purified by column chromatography (hexane/EtOAc, 90:10). Yellow oil. Yield: 71\% \((65.5 \mathrm{mg}, 0.14 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-8.2^{\circ}\left(c=2,90 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR \((300 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 11.86(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.57-7.07(\mathrm{~m}, 11 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.15-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-\) \(1.51(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.05-0.68(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(173.8,143.1,142.6,137.0,135.7,134.1,129.0,128.9,128.7,127.8,127.7,127.6\), \(127.5,127.3,125.9,123.6,122.1,72.9,67.0,65.0,33.9,31.8,25.8,22.7,14.2\). UPLC-DAD-QTOF: \(\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 462.2390, found: 462.2393.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/ethanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 16 min (minor) and 17 min (major)).

\section*{(2S,3R)-2-(Benzhydrylamino)-3-hydroxy- \(N\)-(2-nitrophenyl)dec-4-ynamide 49c}

Prepared according to the general procedure starting from 2-((diphenylmethylene)amino)- N -(2nitrophenyl)acetamide \(45(71.8 \mathrm{mg}, 0.2 \mathrm{mmol})\) and 2 octynal 48c (\(86 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 92:8). Yellow oil. Yield: \(85 \%\) (\(82 \mathrm{mg}, 0.17 \mathrm{mmol}\)). Both diastereoisomers were separated by column chromatography. Major diastereoisomer: \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=\) \(10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33\) \(-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.98-4.85(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, 1 \mathrm{H}), 3.51\) \((\mathrm{s}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.90\) \(-0.59(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,143.3,142.0,137.2,135.8,133.9\) , \(129.0,129.0,127.9,127.7,127.1,125.9,123.9,122.3,88.1,78.1,66.2,63.2\), \(62.7,31.1,28.2,22.2,18.8,14.0\). Minor diastereoisomer: \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 11.94(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.53(\mathrm{~m}\), \(3 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.09(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.01\) \((\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.01(\mathrm{~m}, 6 \mathrm{H})\), \(0.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.6,143.3,142.5,137.1\), \(135.7,134.1,128.9,128.8,128.1,127.6,127.4,125.85,123.6,122.3,89.4,76.9\), \(66.8,65.4,65.2,31.0,28.2,22.2,18.8,13.9\) UPLC-DAD-QTOF: \(\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 486.2393, found: 486.2402.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/isopropanol 90/10, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 24 min (major) and 27 min (minor); Minor diastereioisomer 27 min (major) and 38 min (major)).
(2S,3R)-2-(Benzhydrylamino)- \(N\)-(2,4-dinitrophenyl)-3-hydroxy-5phenylpentanamide 54a

Prepared according to the general procedure starting from \(N\)-(2,4-dinitrophenyl)-2((diphenylmethylene)amino)acetamide (\(81 \mathrm{mg}, 0.2 \mathrm{mmol}\)) 53 and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5). Yellow oil. Yield: \(51 \%(55 \mathrm{mg}, 0.1 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-9.0\left(c=2,20 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 12.29(\mathrm{~s}, 1 \mathrm{H}), 9.16-9.06(\mathrm{~m}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(8.46-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.07(\mathrm{~m}, 12 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=\) \(3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 174.2\), \(142.7,142.0,141.0,139.1,129.9,129.1,128.8\), \(128.8,128.6,127.9,127.5,127.2,126.4,122.2,72.3,67.3,65.4,35.7,32.4\) .UPLC-DAD-QTOF: \(\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 541.2087, found: 541.2076.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF hexane/ethanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: 16 min (minor) and 17 min (major)).
(2S,3R)-2-((Bis(3,5-bis(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-N-(2-nitrophenyl)-5-phenylpentanamide 59a

Prepared according to the general procedure starting from 2-((Bis(3,5-bis(trifluoromethyl)phenyl)methylene)amino)- N -(2nitrophenyl)acetamide \(57(126 \mathrm{mg}, \quad 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10). Yellow oil. Yield: \(84 \%(129 \mathrm{mg}, 0.17 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-10.5(c=1,76 \% e e\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.75(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J\) \(=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 3 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-\) \(7.14(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H})\), \(2.80-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.8,143.8\), \(143.6,140.8,136.1,133.8,133.5-132.2(\mathrm{~m}), 128.9,128.6,127.8,127.4,126.6\), \(126.1,121.8,72.1,65.8,65.4,35.5,32.3,29.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 768.1746, found: 768.1732.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IAIA) hexane/isopropanol 98:2, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer: 30 min (major) and 36 min (minor); Major diastereoisomer: 49 min (major) and 56 min (minor).

\section*{(2S,3R)-2-((Bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-N-(2-nitrophenyl)-5-phenylpentanamide 60a}

Prepared according to the general procedure starting from 2-((bis(4-(trifluoromethyl)phenyl)methylene)amino)- N -(2nitrophenyl)acetamide (\(99 \mathrm{mg}, \quad 0.2 \mathrm{mmol}\)) \(\mathbf{5 8}\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10). Yellow oil. Yield: \(60 \%\) (\(76 \mathrm{mg}, 0.12 \mathrm{mmol}\)). \([\alpha]_{\mathrm{D}}{ }^{24}=-20.8\left(c=1,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\). H NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.76(\mathrm{~s}, 1 \mathrm{H}), 8.83-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.58\) \((\mathrm{m}, 5 \mathrm{H}), 7.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})\), \(4.19-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.83(\mathrm{~m}, 1 \mathrm{H})\), \(2.67(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.8,146.0,145.6,141.2\), \(136.9,136.0,133.9\), 130.6 (q), \(128.8,128.6,128.1,127.7,124.0,122.1,72.0,66.1\), 65.2 , 35.5 , 32.4 . UPLC-DAD-QTOF: \(\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 632.1992, found: 632.1984 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IF) hexane/isopropanol 98:2, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer: 32 min (minor) and 37 min (major); Major diastereoisomer: 40 min (minor) and 45 min (major).

\section*{(2S,3R)-2-((Bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-N-(2nitrophenyl)octanamide 60b}

Prepared according to the general procedure starting from 2-
((bis(4-(trifluoromethyl)phenyl)methylene)amino)-N-(2nitrophenyl)acetamide (\(99 \mathrm{mg}, 0.2 \mathrm{mmol}\)) \(\mathbf{5 8}\) and hexanal 48b (\(74 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5). Yellow oil. Yield: \(82 \%\) (\(98 \mathrm{mg}, 0.16\) \(\mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{24}=-2.4\left(c=1,90 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.66(\mathrm{~s}, 4 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{q}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{t}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H})\), \(4.23-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 4 \mathrm{H})\), \(0.99-0.81(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.9,146.2,145.8,136.9,136.0\), \(134.0,130.3\) (q, \(J=32.6,10.5 \mathrm{~Hz}), 128.1,127.7,126.2\), \(126.2,126.0,123.8,122.0\), \(72.8,66.3,65.3,34.0,31.8,25.8,22.7,14.1\). UPLC-DAD-QTOF: \(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 598.2138 found: 598.2141.

The enantiomeric purity was determined by HPLC analysis (Phenomenex-Lux \(3 \mu \mathrm{~m}\) i-Amilose-1 (00G-4729-E0)) hexane/isopropanol 95:5, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer 31 min (major) and 39 min (minor); Major diastereoisomer 43 min (minor) and 46 min (major).

\section*{(2S,3R)-2-((Bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-N-(2-} nitrophenyl)hexanamide 60h

Prepared according to the general procedure starting from 2-
((bis(4-(trifluoromethyl)phenyl)methylene)amino)- N -(2nitrophenyl)acetamide (\(99 \mathrm{mg}, 0.2 \mathrm{mmol}) \mathbf{5 8}\) and butyraldehyde 48 h (\(54 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5). Yellow oil. Yield: \(72 \%(80 \mathrm{mg}, 0.14 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-13.9(c=0.5,92 \% e e\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}\), \(J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{q}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.22\) \((\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.31-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.44-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.51(\mathrm{~m}\), \(3 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.10-0.65(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9\), \(146.1,145.7,136.0,134.0,130.56\) (q), 128.1, 127.7, 126.3, 126.2, 126.0, 123.9, \(122.0,72.6,66.3,65.3,36.1,19.3,14.0\). UPLC-DAD-QTOF: \(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 570.1836 found: 570.1828 .
The enantiomeric purity was determined by HPLC analysis (Phenomenex-Lux \(3 \mu \mathrm{~m}\) i-Amilose-1 (00G-4729-E0)) hexane/isopropanol 95:5, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer 31 min (major) and 41 min (minor); Major diastereoisomer 45 min (minor) and 49 min (major).
(2S,3R)-2-((Bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-5-methyl-N-(2nitrophenyl)hexanamide 60i

Prepared according to the general procedure starting from 2-

((bis(4-(trifluoromethyl)phenyl)methylene)amino)- N -(2nitrophenyl)acetamide (\(99 \mathrm{mg}, \quad 0.2 \mathrm{mmol}\)) \(\mathbf{5 8}\) and isovaleraldehyde \(\mathbf{4 8 i}\) (\(64 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5). Yellow oil. Yield: \(78 \%(91 \mathrm{mg}, 0.16 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-6.9(c=0.5,84 \% e e\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J\) \(=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 4 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{q}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{td}, J=\) \(7.9,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 6 \mathrm{H}), 4.31-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}\), \(0 \mathrm{H}), 1.56(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,146.2,145.8,137.0,136.0,134.0,129.6,128.1,127.7,126.2\)
, \(126.0,123.9,122.1,70.9,66.3,65.5,42.9,24.9,23.6,21.8\). UPLC-DAD-QTOF: \(\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 584.1980 found: 584.1987.

The enantiomeric purity was determined by HPLC analysis (Phenomenex-Lux \(3 \mu \mathrm{~m}\) i-Amilose-1 (00G-4729-E0)) hexane/isopropanol 95:5, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer 18 min (major) and 26 min (minor); Major diastereoisomer 30 min (major) and 36 min (minor).
(2S,3R)-2-((Bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy- \(N\)-(2nitrophenyl)nonanamide \(\mathbf{6 0 j}\)

Prepared according to the general procedure starting from
 2-((bis(4-(trifluoromethyl)phenyl)methylene)amino)-N-(2nitrophenyl)acetamide (\(99 \mathrm{mg}, 0.2 \mathrm{mmol}\)) 58 and heptanal \(\mathbf{4 8 j}(84 \mu \mathrm{~L}, 0.6 \mathrm{mmol})\) Purified by column chromatography (hexane/EtOAc, 94:6). Yellow oil. Yield: \(76 \%\) (93 mg , \(0.15 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-9.6\left(c=1,90 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.80(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.66(\mathrm{~s}, 4 \mathrm{H}), 7.62(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.10(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.37-3.19(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 8 \mathrm{H})\), \(1.04-0.76(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,146.7,146.3,137.5,136.5\), \(134.6,131.0(\mathrm{q}, ~ J=32.4 \mathrm{~Hz}), 128.6,128.2,126.8\), 126.7 , 126.5 , \(126.5,124.4,122.6\), \(73.4,66.9,65.8,34.6,32.4,29.8,26.6,23.2,14.7\). UPLC-DAD-QTOF: \(\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 612.2298 found: 612.2297.

The enantiomeric purity was determined by HPLC analysis (Phenomenex-Lux \(3 \mu \mathrm{~m}\) iCellulose) hexane/isopropanol 95:5, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer 19 min (major) and 21 min (minor); Major diastereoisomer 23 min (major) and 29 min (minor).
(2S,3R)-5-(Benzyloxy)-2-((bis(4-(trifluoromethyl)phenyl)methyl)amino)-3-hydroxy-\(N\)-(2-nitrophenyl)pentanamide 60k

Prepared according to the general procedure starting from 2-
((bis(4-(trifluoromethyl)phenyl)methylene)amino)-N-(2nitrophenyl)acetamide (\(99 \mathrm{mg}, \quad 0.2 \mathrm{mmol}) \mathbf{5 8}\) and (benzyloxy)acetaldehyde 48k (\(84 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 85:15). Yellow oil. Yield: \(70 \%(91 \mathrm{mg}, 0.14 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-13.2\left(c=0.5,90 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.74(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64\) (s, \(5 \mathrm{H}), 7.50(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.13(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.47\)
\((\mathrm{s}, 2 \mathrm{H}), 4.37-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.84\) (\(\mathrm{m}, 2 \mathrm{H}\)). \({ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.5,146.0(\mathrm{q}), 135.8,134.1,129.6,128.7\), \(128.2,127.9,127.8,126.1,126.1,125.9,125.9,123.7,122.1,73.8,72.9,69.2,66.2\) , 65.6 , 33.2 . UPLC-DAD-QTOF: \(\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 662.2083 found: 662.2090 .

The enantiomeric purity was determined by HPLC analysis (Phenomenex-Lux \(3 \mu \mathrm{~m}\) i-Amilose-1 (00G-4729-E0)) hexane/isopropanol 95:5, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\). Retention times: Minor diastereoisomer 31 min (major) and 37 min (minor); Major diastereoisomer 37 min (minor) and 45 min (major).

\section*{tert-Butyl ((2R,3S)-(3-((bis(4-(trifluoromethyl)phenyl)methyl)amino)-2-hydroxy-4-((2-nitrophenyl)amino)-4-oxobutyl)carbamate 601}

The title compound was prepared according to the general
 procedure starting from 2-((bis(4-(trifluoromethyl)phenyl)methylene)amino)-N-(2nitrophenyl)acetamide (\(99 \mathrm{mg}, 0.2 \mathrm{mmol}\)) 58 and tert-butyl (\(6-\) oxohexyl)carbamate 481 (\(130 \mathrm{mg}, 0.6 \mathrm{mmol}\)). The crude was purified by column chromatography (hexane/EtOAc, 80:20). Yellow oil. Yield: \(63 \%(88 \mathrm{mg}, 0.13 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{24}=-1.8\left(c=1.5,88 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.77(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}\), \(4 \mathrm{H}), 7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H})\), \(4.66-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.36-\) \(1.12(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,156.4,146.2,145.8,136.9,135.9\), \(135.8,134.1,130.3(\mathrm{q}, J=42.7 \mathrm{~Hz}), 128.1,127.7,126.2,126.1,125.9,123.7,122.0\), \(72.1,66.1,55.7,40.0,33.9,30.2\). UPLC-DAD-QTOF: \(\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 713.2774 found: 713.2774.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/isopropanol 90/10, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: 26 min (minor) and 29 \(\min\) (major).
(2R,3R)-2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-hydroxy-N-(2-nitrophenyl)-5phenylpentanamide 63a

Prepared according to the general procedure starting from (E) N -(2-nitrophenyl)-2-((4(trifluoromethyl)benzylidene)amino)acetamide \(\mathbf{6 2}(82 \mathrm{mg}, 0.2\) mmol) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)).

Purified column chromatography (hexane/EtOAc, 85:15), separable diastereoisomers. Yellow oil. Yield (including both diastereoisomers): \(80 \%\) (\(89 \mathrm{mg}, 0.16 \mathrm{mmol}\)). \([\alpha]_{\mathrm{D}}{ }^{23}=-\) \(1.675^{\circ}\left(c=2,97 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=\) \(8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.35-\) \(7.09(\mathrm{~m}, 5 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83\) \((\mathrm{m}, 1 \mathrm{H}), 2.80-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7\), \(141.5,141.2,135.9,134.0,128.7,128.6,126.4,126.0,123.9,122.2,121.7,72.0\), \(68.0,52.5,34.6,32.2\). UPLC-DAD-QTOF: \(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 556.1671, found: 556.1693.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IA hexane/isopropanol \(95 / 5\), flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 14 min (minor) and 17 min (major); Minor diastereoisomer 23 min (major) and 30 min (minor).

\section*{2-((Anthracen-9-ylmethyl)amino)-3-hydroxy- \(N\)-(2-nitrophenyl)-5phenylpentanamide 74a}

Prepared according to the general procedure starting from \((E)\)-2-

((anthracen-9-ylmethylene)amino)- \(N\)-(2-nitrophenyl)acetamide \(68(77 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}\), 0.6 mmol). Purified by column chromatography (hexane/EtOAc, 90:10). Yellow solid. Yield: \(56 \%\) (\(58 \mathrm{mg}, 0.11 \mathrm{mmol}\)). \([\alpha]_{\mathrm{D}}{ }^{24}=-\) \(15.7^{\circ}\left(c=1,12 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\)). \({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(11.60(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04-7.95\) \((\mathrm{m}, 2 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=12.9\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-\) \(2.90(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(172.4,141.4,135.8,134.2,131.6,130.5,129.4,128.5,128.0,126.6,126.1,125.2\), \(123.9,122.3,71.9,68.3,44.8,34.6,29.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 520.2236, found: 520.2238.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ID hexane/isopropanol 90/10, flow rate \(=1 \mathrm{~mL} / \mathrm{min}\), retention times: Minor diastereoisomer 30 min (minor) and 34 min (major); Major diastereoisomer 41 min (minor) and 48 min (major).

2-((2,6-Dimethylbenzyl)amino)-3-hydroxy- \(N\)-(2-nitrophenyl)-5-phenylpentanamide 75a

Prepared according to the general procedure starting from \((E)\) -2-((2,6-dimethylbenzylidene)amino)- N -(2nitrophenyl)acetamide \(69 \quad(62 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 95:5). Yield: 67\% (60 \(\mathrm{mg}, 0.13 \mathrm{mmol})\). Yellow oil. \([\alpha]_{\mathrm{D}}{ }^{24}=-6.2^{\circ}(c=0.5,66 \% e e\), \(\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.57(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J\) \(=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.11-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.02-\) \(3.94(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.74-\) \(2.58(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,141.4,137.2,135.8\), \(134.0,128.6,127.7,126.2,125.9,123.8,122.4,72.0,68.2,47.1,35.4,32.1,19.8\). UPLC-DAD-QTOF: \(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 448.2236, found: 448.2253.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IC hexane/isopropanol 90/10, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 25 min (major) and 27 min (minor); Minor diastereoisomer 30 min (major) and 44 min (minor).

\section*{2-((2,6-Dichlorobenzyl)amino)-3-hydroxy- \(N\)-(2-nitrophenyl)-5-phenylpentanamide 76a}

Pprepared according to the general procedure starting from \((E)\) -2-((2,6-dimethylbenzylidene)amino)-N-(2nitrophenyl)acetamide \(70 \quad(70 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: 76\% \((74 \mathrm{mg}, 0.15 \mathrm{mmol})\). White solid. m.p. \(=181-184{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}=-9.3^{\circ}(c=1,66 \% e e\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J\) \(=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-6.96(\mathrm{~m}, 9 \mathrm{H}), 4.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H})\), \(3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.67(\mathrm{~m}\), \(2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.3,141.5,136.1,135.7,129.6,128.5,126.0\), 125.9 , \(123.6,122.2,71.7,67.0,47.4,34.3,31.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 488.1144 , found: 488.1165 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF hexane/isopropanol 90/10, flow rate \(=0.6 \mathrm{~mL} / \mathrm{min}\), retention times: Major
diastereoisomer 27 min (major) and 30 min (minor); Minor diastereoisomer 33 min (major) and 40 min (minor).

\section*{3-Hydroxy- N -(2-nitrophenyl)-5-phenyl-2-((2,4,6-trifluorobenzyl)amino)pentanamide 77a}

Prepared according to the general procedure starting from (\(E\)) \(N\)-(2-nitrophenyl)-2-((2,4,6trifluorobenzylidene)amino)acetamide \(71(67 \mathrm{mg}, 0.2 \mathrm{mmol})\) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 92:8). Isolated as a \(73: 27\) diastereomeric mixture. Yield: \(77 \%\) (\(73 \mathrm{mg}, 0.15 \mathrm{mmol}\)). White solid. m.p. \(=190-192{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}=-12.3^{\circ}\left(c=1.5,80 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (300 \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.91(\mathrm{~s}, 1 \mathrm{H}), 11.81(\mathrm{~s}, 0 \mathrm{H}), 8.84(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.06(\mathrm{~m}, 9 \mathrm{H}), 6.82-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.13-3.82(\mathrm{~m}, 5 \mathrm{H})\), \(3.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0 \mathrm{H}), 3.31(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.58(\mathrm{~m}\), \(2 \mathrm{H}), 1.97-1.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 173.0,172.0,162.0(\mathrm{~m}), 161.9\) (m) , 141.3, \(137.0,135.8,134.0,128.7,128.5,126.2,125.9,123.7,122.1,100.5\) (dd, \(J=26.3 \mathrm{~Hz}, 2.7 \mathrm{~Hz}\)) , \(72.0,71.8,67.4,67.2\), \(39.9,39.7,35.5,34.3,32.2\), 32.0 . UPLC-DAD-QTOF: \(\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 474.1641, found: 474.1663.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel ID hexane/isopropanol 90/10, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 29 min (minor) and 36 min (major); Minor diastereoisomer 44 min (major) and 51 min (minor).

\section*{3-Hydroxy-2-((2-nitrobenzyl)amino)- N -(2-nitrophenyl)-5-phenylpentanamide 78a}

Prepared according to the general procedure starting from \((E)\) -2-((2-nitrobenzylidene)amino)- \(N\)-(2-nitrophenyl)acetamide \(\mathbf{7 2}\) (\(66 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and hydrocinnamaldehyde 48a (\(80 \mu \mathrm{~L}, 0.6\) mmol). Purified by column chromatography (hexane/EtOAc, 85:15). Yield: \(75 \%\) (\(70 \mathrm{mg}, 0.15 \mathrm{mmol}\)) Yellow oil. \([\alpha]_{\mathrm{D}}{ }^{24}=-\) \(3.6^{\circ}\left(c=1,80 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\) \(11.78(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.76-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-6.97(\mathrm{~m}, 7 \mathrm{H}), 4.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}\), \(2 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.01-\) \(1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,141.3,135.8,133.8,132.0,128.8\), \(128.7,128.6,126.2,125.9,125.3,123.8,122.3,72.2,67.5,50.7,35.5,32.3\). UPLC-DAD-QTOF: \(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 465.1174, found: 465.1178 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF hexane/isopropanol 80/20, flow rate= \(1 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 18 min (major) and 20 min (minor); Minor diastereoisomer 23 min (major) and 33 min (minor).

\section*{2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-hydroxy- \(N\)-(2-nitrophenyl)octanamide 63b}

Prepared according to the general procedure starting from
(\(E\))- \(N\)-(2-nitrophenyl)-2-((4(trifluoromethyl)benzylidene)amino)acetamide 62 (82 mg , 0.2 mmol) and hexanal 48b (\(74 \mu \mathrm{~L}, 0.6 \mathrm{mmol}\)). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: \(82 \%\) (\(85 \mathrm{mg}, 0.16 \mathrm{mmol}\)). Yellow oil. \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CDCl}_{3}\right) \delta 11.74(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, 1 \mathrm{H}), 8.23(\mathrm{dd}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J\) \(=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{q}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=4.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 1.69-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.01-0.62(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,141.6,137.0,135.9,134.0,132.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 128.6\), \(126.0,123.9,122.2,121.6,72.8,68.1,52.6,32.8,31.7,25.7,22.7,14.1\). UPLC-DAD-QTOF: \(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 522.1828, found: 522.1853.

The enantiomeric purity was determined by HPLC analysis after boc-protection of the amine.
tert-Butyl (3,5-Bis(trifluoromethyl)benzyl)(3-hydroxy-1-((2-nitrophenyl)amino)-1-oxooctan-2-yl)carbamate 104b

Prepared according to the general procedure. \([\alpha]_{\mathrm{D}}{ }^{24}=-9.1^{\circ}\) \(\left(c=1,95 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.78\) \((\mathrm{s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})\), 7.90 (s, 2H), 7.77 (s, 1H), \(7.68-7.58\) (m, 1H), 7.19 (dd, 1H), \(5.19-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H})\), \(1.70(\mathrm{~s}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 5 \mathrm{H}), 0.92-0.66\) \(\left.(\mathrm{m}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta 169.8,153.8,141.4,135.8,134.1,132.0(\mathrm{q}, J=\) \(33.2 \mathrm{~Hz}), 128.4,125.9,123.6,121.9,121.6,83.3,77.2,67.3,52.5,31.4,30.5,27.7\) , \(25.5,22.6,14.0\). UPLC-DAD-QTOF: \(\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 622.2352, found: 622.2363 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF and ID hexane/isopropanol 98/2, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer

52 min (minor) and 56 min (major); Minor diastereoisomer 79 min (minor) and 90 min (major).

\section*{2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-cyclohexyl-3-hydroxy- N -(2nitrophenyl)propanamide 63e}

Prepared according to the general procedure starting from 2-((diphenylmethylene)amino)- N -(2-nitrophenyl)acetamide 62 (\(83.8 \mathrm{mg}, 0.2 \mathrm{mmol}\)) and cyclohexanecarbaldehyde \(48 \mathrm{e}(72 \mu \mathrm{~L}\), 0.6 mmol). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: \(77 \%\) (\(82 \mathrm{mg}, 0.15 \mathrm{mmol}\)). Yellow oil. \([\alpha]_{\mathrm{D}}{ }^{23}=-\) \(4.6^{\circ}\left(c=2,88 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.66\) \((\mathrm{s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J\) \(=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=4.7 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.85-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.17-0.96(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4\), \(141.7,135.8,132.0(\mathrm{q}, ~ J=33.4 \mathrm{~Hz}), 128.6,126.0,123.8,122.3\), \(121.6,77.5,64.9\), 52.0 , \(40.6,29.9,28.3,26.3,26.1,25.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 534.1828, found: 534.1841.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel two columns IAIA hexane/isopropanol 80/20, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 40 min (minor) and 47 min (major); Minor diastereoisomer 44 min (minor) and 60 min (major).

\section*{2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-hydroxy- \(N\)-(2-nitrophenyl)hexanamide} 63h

Prepared according to the general procedure starting from \((E)-\mathrm{N}\) -(2-nitrophenyl)-2-((4(trifluoromethyl)benzylidene)amino)acetamide \(\mathbf{6 2}(82 \mathrm{mg}, 0.2\) mmol) and butyraldehyde \(48 \mathrm{~h}(54 \mu \mathrm{~L}, 0.6 \mathrm{mmol})\). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: \(71 \%\) (70 \(\mathrm{mg}, 0.14 \mathrm{mmol})\). Yellow oil. \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.75\) (\(\mathrm{s}, 1 \mathrm{H}\)), \(8.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.65\) (td, \(J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\)), 7.21 (td, \(J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 2 \mathrm{H})\), \(3.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,141.6,135.9,134.0,132.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 128.6,126.0\), 123.9 , \(122.2,121.6,72.5,68.2,52.6,34.9,19.2,13.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 494.1515, found: 494.1532 .

The enantiomeric purity was determined by HPLC analysis after Boc-protection of the amine.

\section*{tert-Butyl (3,5-bis(trifluoromethyl)benzyl)(3-hydroxy-1-((2-nitrophenyl)amino)-1-oxohexan-2-yl)carbamate 104h}

Prepared according to the general procedure. \([\alpha]_{\mathrm{D}}{ }^{23}=-5.1^{\circ}\) (\(c=1.5,95 \% ~ e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.79\) \((\mathrm{s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91\) \((\mathrm{s}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.10(\mathrm{~m}\), \(1 \mathrm{H}), 5.25-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.85-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.3\) \(\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,154.0,141.5,136.0,134.3,132.2(\mathrm{q}, J=\) \(33.4 \mathrm{~Hz}), 128.6,126.1,123.8,122.1,121.8,118.5,83.5,77.8,67.5,52.7,32.7\), 27.9, 19.3, 13.9 . UPLC-DAD-QTOF: \(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 594.2039, found: 594.2031.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF and ID hexane/isopropanol 98/2, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 56 min (minor) and 59 min (major); Minor diastereoisomer 73 min (minor) and 91 min (major).

\section*{2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-hydroxy-5-methyl- N -(2nitrophenyl)hexanamide 63i}

Prepared according to the general procedure starting from \((E)-\mathrm{N}-\)
(2-nitrophenyl)-2-((4(trifluoromethyl)benzylidene)amino)acetamide \(\mathbf{6 2}(82 \mathrm{mg}, 0.2\) mmol) and isovaleraldehyde \(\mathbf{4 8 i}(64 \mu \mathrm{~L}, 0.6 \mathrm{mmol})\). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: 76\% (\(77 \mathrm{mg}, 0.15 \mathrm{mmol}\)). Yellow oil. \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta\) \(11.72(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.78\) (s, \(1 \mathrm{H}), 7.66(\mathrm{t}, 1 \mathrm{H}), 7.22(\mathrm{t}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40\) (d, \(J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 1 \mathrm{H})\), 0.92 (dd, \(J=12.3,6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.7\), \(141.6,135.9\), \(134.0,132.0(\mathrm{~d}, J=33.4 \mathrm{~Hz}), 128.7,126.0,123.9,122.2,121.6,70.8,68.4,52.6\), 41.7, 24.7, 23.7, 21.5 . UPLC-DAD-QTOF: \(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 508.1671, found: 508.1672.

The enantiomeric purity was determined by HPLC analysis after Boc-protection of the amine.

\section*{tert-Butyl}
(3,5-bis(trifluoromethyl)benzyl)(3-hydroxy-5-methyl-1-((2-nitrophenyl)amino)-1-oxohexan-2-yl)carbamate 104i

Prepared according to the general procedure. \([\alpha]_{\mathrm{D}}{ }^{23}=-14.05^{\circ}\) (\(c=0.75,95 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.79\) \((\mathrm{s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90\) \((\mathrm{s}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 5.34-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})\), \(1.87-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J\) \(=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,153.8,141.4,135.8,134.2,132.0\) (\(\mathrm{q}, J=33.4 \mathrm{~Hz}\)), \(128.4,125.9,123.6,121.9,121.6,83.3,75.5,67.7,52.6,39.2,27.7\) , \(24.8,23.2\), 21.7 . UPLC-DAD-QTOF: \(\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 608.2195 , found: 608.2195 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF and ID hexane/isopropanol 98/2, flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer 46 min (minor) and 51 min (major); Minor diastereoisomer 55 min (minor) and 60 min (major).

\section*{2-((3,5-Bis(trifluoromethyl)benzyl)amino)-3-hydroxy-N-(2-nitrophenyl)hept-6enamide 63m}

Prepared according to the general procedure starting from 2-((diphenylmethylene)amino)- N -(2-nitrophenyl)acetamide \(\mathbf{6 2}\) \((82 \mathrm{mg}, 0.2 \mathrm{mmol})\) and 4 -pentenal \(48 \mathrm{~m}(60 \mu \mathrm{~L}, 0.6 \mathrm{mmol})\). Purified by column chromatography (hexane/EtOAc, 90:10). Yield: \(84 \%\) (\(85 \mathrm{mg}, 0.17 \mathrm{mmol}\)). Yellow oil. \([\alpha]_{\mathrm{D}}{ }^{23}=+5.2^{\circ}\) \(\left(c=1.5,95 \% ~ e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.75\) \((\mathrm{s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.86(\mathrm{~m}, 1 \mathrm{H})\), \(7.79(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, 0 \mathrm{H}), 5.94-5.69(\mathrm{~m}, 1 \mathrm{H})\), \(5.16-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.12(\mathrm{~m}\), \(1 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,141.6,137.8,135.9\), \(132.0(\mathrm{q}, J=33.3 \mathrm{~Hz}), 128.6,126.0\), \(123.9,122.2,121.1,115.8,72.2,68.2\), 52.6 , 31.8 , 30.3 . UPLC-DAD-QTOF: \(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 506.1515, found: 505.1539.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralcel IF hexane/isopropanol \(97 / 3\), flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\), retention times: Major diastereoisomer

32 min (minor) and 37 min (major); Minor diastereoisomer 51 min (minor) and 54 min (major).

\subsection*{6.4.4. Elaboration of adducts}

\subsection*{6.4.4.1. Imine hydrolysis and amine protection}

Ar: \(4-\mathrm{CF}_{3} \mathrm{Ph}\) 60a

\section*{(2S,3R)-2-amino-3-hydroxy-N-(2-nitrophenyl)-5-phenylpentanamide 80a}

60a (\(0.2 \mathrm{mmol}, 1\) equiv.) was dissolved in THF (5 mL) and \(\mathrm{HCl} 1 \mathrm{M}\left(0.68 \mathrm{~mL}, 0.68 \mathrm{mmol}, 3.4\right.\) equiv.) was added at \(0^{\circ} \mathrm{C}\). The mixture stirred at the same temperature for 2 h . Then, when the reaction was finished (monitored by TLC), the solvent was evaporated under reduced pressure and \(\mathrm{NaHCO}_{3}\) (sat) was added until pH 8 9. The mixture was extracted with DCM (\(3 \times 10 \mathrm{~mL}\)), brine (10 mL) was added to the aqueous phase and this was extracted again with \(\mathrm{DCM}(3 \times 5 \mathrm{~mL})\). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The crude was used in the next step without further purification. Yield: \(80 \%\) (\(52 \mathrm{mg}, 0.16 \mathrm{mmol}\)). Yellow oil. \([\alpha]_{\mathrm{D}}{ }^{23}=-8.1^{\circ}\left(c=2,94 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.06(\mathrm{~s}\), \(1 \mathrm{H}), 8.79(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.01(\mathrm{~m}\), \(5 \mathrm{H}), 4.41-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.61(\mathrm{~m}\), 1H), \(2.01-1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 173.8,141.6,135.7,134.2\), \(128.7,128.6,126.3,125.9,123.6,122.2,71.3,60.0,35.4,32.4\). UPLC-DADQTOF: \(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 330.1454, found: 330.1462.

\section*{tert-Butyl ((2S,3R)-3-hydroxy-1-((2-nitrophenyl)amino)-1-oxo-5-phenylpentan-2-} yl)carbamate 81

Aminoalcohol 80a (\(0.2 \mathrm{mmol}, 1\) equiv.) was dissolved in dry dichloromethane (1.8 mL), di-tert-butyl dicarbonate (48 mg , \(0.22 \mathrm{mmol}, 1.1\) equiv.) was added at room temperature and the mixture stirred for 16 h . The reaction was quenched with \(1 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})\) and the mixture extracted with DCM (\(3 \times 6 \mathrm{~mL}\)). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The crude was purified by column chromatography (hexane/EtOAc, 88:12) to afford \(\mathbf{8 1}\) as yellow oil. Yield: \(67 \%\) (0.094 \(\mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-20.1^{\circ}\left(c=1,88 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.17(\mathrm{~s}\), \(1 \mathrm{H}), 8.76(\mathrm{dd}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.15(\mathrm{~m}\), \(5 \mathrm{H}), 5.57(\mathrm{~d}, 1 \mathrm{H}), 4.47-4.36(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,156.2,141.3,136.1,135.9,128.7\), \(128.6,126.3,125.9,123.9,123.7,122.2,81.2,70.4,59.6,35.0,32.1,28.4\). UPLC-DAD-QTOF: \(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}^{*} *[\mathrm{M}+\mathrm{Na}]^{+}\)calcd.: 452.1798, found: 452.1804.

\section*{4-Bromo- \(N\)-((2S,3R)-3-hydroxy-1-((2-nitrophenyl)amino)-1-oxo-5-phenylpentan-2yl)benzamide 61}

Aminoalcohol 80a (\(0.2 \mathrm{mmol}, 1\) equiv.) was dissolved in dry THF (1 mL) and 4-bromobenzoyl chloride (\(0.2 \mathrm{mmol}, 1\) equiv.) was added in one portion, followed by slow addition of triethylamine \((0.65 \mathrm{~mL})\). The reaction mixture was stirred at room temperature for 2 h until complete conversion of the starting material. Then the solvent was evaporated, and the residue was redisolved in dichloromethane (5 mL), washed with water (3 mL), and extracted with dichloromethane (2 x 5 mL). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\) and evaporated in vacuo. The crude was purified by column chromatography (hexane/EtOAc, 90:10) and afforded \(\mathbf{6 1}\) as a white solid. Yield: \(75 \%(76 \mathrm{mg}, 0.15 \mathrm{mmol}) . \mathrm{m} . \mathrm{p} .=145-147{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=-7.4^{\circ}(c=2,92 \% e e\), \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{dd}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.4\), \(1.4 \mathrm{~Hz}, 1 \mathrm{H}\)), \(7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.92\) \((\mathrm{d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.78-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{q}, J=\) \(8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,167.5,141.1,137.2,135.8,133.7\), \(132.2,129.1,128.7,128.5,127.3,126.3,125.9,124.1,122.6,70.3,58.7,34.8\), 32.1 . UPLC-DAD-QTOF: \(\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 512.0826, found: 512.0821.

\section*{(2R,3R)-2-amino-3-hydroxy-N-(2-nitrophenyl)-5-phenylpentanamide 105a}

63a (\(0.2 \mathrm{mmol}, 1\) equiv.) was dissolved in THF (5 mL) and \(\mathrm{HCl} 1 \mathrm{M}\left(0.68 \mathrm{~mL}, 0.68 \mathrm{mmol}, 3.4\right.\) equiv.) was added at \(0^{\circ} \mathrm{C}\). The mixture stirred at the same temperature for 2 h . Then, when the reaction was finished (monitored by TLC), the solvent was evaporated under reduced pressure and \(\mathrm{NaHCO}_{3}\) (sat) was added until pH 8 9. The mixture was extracted with DCM (\(3 \times 10 \mathrm{~mL}\)), brine (10 mL) was added to the aqueous phase and this was again extracted with DCM (\(3 \times 5 \mathrm{~mL}\)). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The crude was used in the next step without further purification. Yield: \(70 \%(46 \mathrm{mg}, 0.14 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}\) \(=-2.6^{\circ}\left(c=0.5,97 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.92(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J\) \(=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.14(\mathrm{~m}, 6 \mathrm{H}), 4.03\) \(-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})\), 2.02 - \(1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 174.0,141.7,135.7,133.9,128.6\), 126.2 , \(125.9,123.8,122.4,73.1,60.08,34.8,31.9\). UPLC-DAD-QTOF: \(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\) \([\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 330.1454 , found: 330.1462 .

\section*{(2R,3R)-2-(4-Bromobenzamido)-1-((2-nitrophenyl)amino)-1-oxo-5-phenylpentan-3yl 4-bromobenzoate 79}

Aminoalcohol 105a (0.2 mmol, 1 equiv.) was dissolved in dry THF (1 mL) and 4-bromobenzoyl chloride (\(0.4 \mathrm{mmol}, 2\) equiv.) was added in one portion, followed by slow addition of triethylamine \((0.65 \mathrm{~mL})\) and DMAP (\(30 \mathrm{~mol} \%\)). The reaction mixture stirred at room temperature for 16 h until complete conversion of the starting material. Then the solvent was evaporated, and the residue was redisolved in dichloromethane, washed with water, and extracted with dichloromethane (\(2 \times 5\) \(\mathrm{mL})\). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\) and evaporated in vacuo. The crude was purified by column chromatography (hexane/EtOAc, 80:20) and afforded 79 as a white solid. Yield: \(65 \%(90\) \(\mathrm{mg}, 0.13 \mathrm{mmol})\). m.p. \(=88-93^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{23}=-2.3^{\circ}\left(c=0.5,97 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}\), \(J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}\), 2H), \(7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 5.42-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.16-4.95(\mathrm{~m}\), \(1 \mathrm{H}), 2.82(\mathrm{~d}, J=23.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,166.8,163.8,140.2,136.2,133.9,132.3,132.1,131.8,131.4\) , \(129.0,128.8,128.5,128.2,126.5,125.9,124.0,122.1,76.0,59.3,33.3,32.1\). UPLC-DAD-QTOF: \(\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 694.0195, found: 694.0198 .

\subsection*{6.4.4.2. Removal of the nitroanilide unit \({ }^{270}\)}

Compound 49a (0.2 mmol) was dissolved in dry acetonitrile (0.3 mL) and DMAP \((8 \mathrm{mg}, 0.06 \mathrm{mmol}, 30 \mathrm{~mol} \%\)) was added, followed by and di-tert-butyl dicarbonate (280 \(\mathrm{mg}, 1.2 \mathrm{mmol}, 6\) equiv.). The solution stirred at room temperature for 16 h . Then, the solution was evaporated and the resulting residue purified by column chromatography (hexane/EtOAc, 95:5) to afford \(\mathbf{8 2}\) as yellow oil. Yield: \(65 \%(90 \mathrm{mg}, 0.13 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=\) \(-7.9^{\circ}\left(c=2,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})\),

\footnotetext{
\({ }^{270}\) Adapted from: a) S.-Y. Zhang, Q. Li, G. He, W. A. Nack, G. Chen, J. Am. Chem. Soc. 2013, 135, 1213512141. b) O. Verho, M. Pourghasemi Lati, M. Oschmann, J. Org. Chem. 2018, 83, 4464-4476.
}
\(7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.07(\mathrm{~m}, 13 \mathrm{H})\), \(5.25(\mathrm{t}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.79-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.24-\) \(1.98(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 176.0,153.8\), \(150.6,145.9,144.5,143.1,141.6,134.0,131.7,129.1,128.6,128.5,127.3,127.0\), \(126.0,125.2,84.9,82.3,76.9,65.4,62.2,33.5,31.8,27.9,27.5\). UPLC-DADQTOF: \(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 696.3285, found: 696.3285 .

Compound \(\mathbf{8 2}\) (\(139 \mathrm{mg}, 0.2 \mathrm{mmol}\)) was dissolved in \(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 3: 1(2 \mathrm{~mL})\). Then, \(\mathrm{LiOH} \mathrm{H}_{2} \mathrm{O}\) (\(9 \mathrm{mg}, 0.4 \mathrm{mmol}, 2\) equiv.) and \(30 \% \mathrm{H}_{2} \mathrm{O}_{2}(22 \mu \mathrm{~L}, 1 \mathrm{mmol}, 5\) equiv.) were added at \(0{ }^{\circ} \mathrm{C}\). The reaction mixture was stirred at room temperature for 48 h , and \(\mathrm{Na}_{2} \mathrm{SO}_{3}\) (\(252 \mathrm{mg}, 2 \mathrm{mmol}, 10\) equiv.) was added. The mixture was then diluted with EtOAc, acidified with 0.5 M HCl , and extracted with EtOAc (\(3 \times 10 \mathrm{~mL}\)). The organic layer was dried over anhydrous \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane/EtOAc, 80:20) to afford \(\mathbf{8 3}\) as a yellow oil. Yield: \(76 \%(71 \mathrm{mg}, 0.15 \mathrm{mmol}) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=-9.1^{\circ}\left(c=1,91 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (300 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-6.85(\mathrm{~m}, 12 \mathrm{H})\)., \(5.12-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~s}\), \(1 \mathrm{H}), 3.33(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}\), \(1 \mathrm{H}), 2.14-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 176.2\), 153.1 , \(143.4,142.3,141.0,128.9,128.8,128.6,128.5,127.8,127.6,127.3,126.6,126.3\), \(82.8,65.69,61.0,33.3,31.8,29.9,27.8\). UPLC-DAD-QTOF: \(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 476.2437, found: 476.2437.

\subsection*{6.4.4.3. Protection of the amino alcohol}

2-amino-3-hydroxy- \(N\)-(2-nitrophenyl)-5-phenylpentanamide 49a (100 mg, 0.2 mmol, 1 equiv.) was disolved in dimethoxypropane (2 mL) and camphorsulfonic acid (CSA) (\(9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%\)) was added at room temperature. The mixture was stirred at \(80^{\circ} \mathrm{C}\) for 4 h (followed by TLC). Then, the solvent was evaporated and the crude was purified by column chromatography (hexane/EtOAc, 90:10) to afford \(\mathbf{8 4}\) as yellow oil. Yield: \(67 \%(73 \mathrm{mg}, 0.13 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-12.1^{\circ}\left(c=1,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.4\), \(1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.07(\mathrm{~m}, 15 \mathrm{H}), 5.24\) \((\mathrm{s}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.64\)
\((\mathrm{m}, 1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.2,143.5,141.7,141.4,136.8,135.7,134.3,129.9,128.8\), \(128.5,128.5,128.4,127.7,127.6,127.2,125.9,125.8,125.3,123.2,122.0,77.2\), \(73.6,70.9,36.5,32.3,29.6,25.5\). UPLC-DAD-QTOF: \(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 536.2549 , found: 536.2556 .

\subsection*{6.4.4.4. Hydrogenation of the amino alcohol}

To a solution of 49a (\(69 \mathrm{mg}, 0.14 \mathrm{mmol}\)) in EtOAc (1.5 mL), \(\mathrm{Boc}_{2} \mathrm{O}(37 \mathrm{mg}, 0.17\) mmol, 1.2 equiv.) was added at room temperature. The mixture stirred under argon and \(\mathrm{Pd} / \mathrm{C}(7 \mathrm{mg})\) was added in one portion and it was stirred under \(\mathrm{H}_{2}\) atmosphere for 16 h . The reaction mixture was filtered through a celite pad and concentrated in vacuo.

\section*{Tert-butyl ((2S,3R)-1-((2-aminophenyl)amino)-3-hydroxy-1-oxo-5-phenylpentan-2yl)(benzhydryl)carbamate 85}

Observation in the crude NMR: 73\%. Purified by column chromatography (hexane/EtOAc, 80:20) to afford \(\mathbf{8 5}\) as a white foam. Yield: \(43 \%(34 \mathrm{mg}, 0.06 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-9.6^{\circ}(c=2\), \(92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\)) \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.17(\mathrm{~s}, 1 \mathrm{H})\), \(7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.06(\mathrm{~m}, 18 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.94(\mathrm{~m}\), \(1 \mathrm{H}), 3.25\) (d, \(J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.76\) (m, 1H), \(2.75-2.49\) (m, 1H), \(1.96-1.75\) (m, \(2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.6,153.9,142.8,141.6,131.3\), 129.2 , 129.0 , 128.9 , \(128.7,128.6,127.8,127.7,127.6,127.5,126.8,126.2,125.4\), \(124.8,124.7,81.0,72.2,66.4,64.6,35.2,32.2\), 28.4 . UPLC-DAD-QTOF: \(\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 566.3019, found: 566.3022.

\section*{\(N\)-(2-Aminophenyl)-3-benzhydryl-2,2-dimethyl-5-phenethyloxazolidine-4carboxamide 86}

Observation in the crude NMR: 27\%. Purified by column chromatography (hexane/EtOAc, 80:20) to afford \(\mathbf{8 6}\) as a white foam. Yield: \(34 \% ~(23 \mathrm{mg}, 0.05 \mathrm{mmol}) .[\alpha]_{\mathrm{D}}{ }^{23}=-8.2^{\circ}(c=2,92 \%\) \(e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\)). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.55-\) \(7.10(\mathrm{~m}, 67 \mathrm{H}), 7.06(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.70(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.13-3.92(\mathrm{~m}\), \(1 \mathrm{H}), 3.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{q}, J=7.8\), \(7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,142.8,141.6,140.5,129.0,128.9\), \(128.7,127.8,127.7,127.6,127.5,127.3,126.2,125.0,124.1,119.7,118.3,72.1\), 66.3, 64.4, 35.2, 32.3 . UPLC-DAD-QTOF: \(\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 466.2495, found: 466.2498 .
6.4.5. ORTEP diagram for compounds \(45,58,62,61\) and 79.

58

62

\subsection*{6.5. EXPERIMENTAL SECTION OF CHAPTER 4}

\subsection*{6.5.1. Synthesis of oligoureas O7-O12}

Oligomers O7-012 were synthesized in solution using a stepwise approach and N Boc protected succinimidyl carbamate building block following previously reported procedures. \({ }^{271}\)

\subsection*{6.5.1.1. Synthesis of building block 91}

The valine-based building block 91 was synthesized according to a procedure described in the literature. \({ }^{272}\)

Step 1: Boc-(L)-valine \(\mathbf{8 7}\) (\(7 \mathrm{~g}, 32 \mathrm{mmol}, 1\) equiv) was dissolved in dry THF (60 mL) at \(0{ }^{\circ} \mathrm{C}\) under nitrogen atmosphere. Then, \(N\)-methylmorpholine (\(3.75 \mathrm{~mL}, 35.2\) mmol, 1.1 equiv.) was added, followed by isobutyl chloroformate (\(4.56 \mathrm{~mL}, 35.2 \mathrm{mmol}\), 1.1 equiv.) which was added dropwise at the same temperature. The reaction mixture was stirred at room temperature for 45 minutes (followed by TLC), while a white precipitate formed. This was removed by filtration (rinsed with THF) and the filtrate was added dropwise to an opened flask containing a suspension of \(\mathrm{NaBH}_{4}(2.44 \mathrm{~g}, 64 \mathrm{mmol}, 2\) equiv.) in distilled water \((9.6 \mathrm{~mL})\) at \(0{ }^{\circ} \mathrm{C}\). Then, THF was evaporated and the residue, redissolved in \(\mathrm{EtOAc}(45 \mathrm{~mL})\) and washed with \(1 \mathrm{M} \mathrm{KHSO}_{4}(24 \mathrm{~mL})\). The organic phase was washed with \(1 \mathrm{M} \mathrm{KHSO}_{4}(3 \times 16 \mathrm{~mL})\), a saturated solution of \(\mathrm{NaHCO}_{3}(3 \times 16 \mathrm{~mL})\)

\footnotetext{
\({ }^{271}\) a) V. Diemer, L. Fischer, B. Kauffmann, G. Guichard, Chem. Eur. J. 2016, 22, 15684-15692.; b) N. Pendem, C. Douat, P. Claudon, M. Laguerre, S. Castano, B. Desbat, D. Cavagnat, E. Ennifar, B. Kauffmann, G. Guichard, J. Am. Chem. Soc. 2013, 135, 4884-4892.
\({ }^{272}\) C.Aisenbrey, N. Pendem, G. Guichard, B. Bechinger, Org. Biomol. Chem., 2012, 10, 1440-1447.
}
and brine (\(1 \times 16 \mathrm{~mL}\)). The organic layer was dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. Crude \(\mathbf{2}\) was used without further purification.

Step 2: Triphenyl phosphine (\(10 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.2\) equiv.) was dissolved in dry THF (60 mL) at \(0{ }^{\circ} \mathrm{C}\) and phtalimide (\(5.65 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.2\) equiv.) was added, followed by slow addition of DIAD (\(7.6 \mathrm{~mL}, 38.7 \mathrm{mmol}, 1.2\) equiv.) at the same temperature. Alcohol 2 (\(32 \mathrm{mmol}, 1\) equiv.) was then added in dry THF (12 mL) and the mixture was allowed to stir at room temperature for 16 h (followed by TLC). The mixture was then concentrated and the resulting crude \(\mathbf{8 9}\) was used in the next step without any further purification.

Step 3: Phtalimide 89 (\(32 \mathrm{mmol}, 1\) equiv.) was dissolved in \(\mathrm{MeOH}(150 \mathrm{~mL}\)) and monohydrated hydrazine (\(6.1 \mathrm{~mL}, 80 \mathrm{mmol}, 2.5\) equiv.) was added. The mixture was refluxed for 16 h , while a big amount of precipitate was formed. The mixture was then filtered to remove the solid. The solvent was evaporated and the crude was dissolved in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) (32 mL) and washed with a saturated solution of \(\mathrm{NaHCO}_{3}(1 \times 20 \mathrm{~mL}\)). The aqueous phase was extracted with \(\mathrm{EtOAc}(3 \times 16 \mathrm{~mL})\) and \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 16 \mathrm{~mL})\), and the combined organic phases were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. Crude 90 was used in the next step without further purification.

Step 4: To a solution of disuccinidimyl carbonate (\(9.8 \mathrm{~g}, 38.4 \mathrm{mmol}, 1.2\) equiv.) in dry dichloromethane (38 mL), a solution of \(\mathbf{9 0}\) (\(32 \mathrm{mmnol}, 1\) equiv.) in dichloromethane (38 mL) was slowly added at \(0{ }^{\circ} \mathrm{C}\) and the resulting mixture was stirred for 16 hours. Then, the mixture was filtered to remove the precipitate. The solution was washed with a solution of \(1 \mathrm{M} \mathrm{KHSO}_{4}(3 \times 20 \mathrm{~mL}\)), and brine (\(1 \times 30 \mathrm{~mL}\)). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\), filtered and evaporated under reduced pressure to afford 91. Trituration with diethyl ether led to the title compound as a white solid. Overall yield: \(64 \% ~(5.05 \mathrm{~g}, 14.7 \mathrm{mmol})\). All the spectroscopic data were identical to the reported in literature. \({ }^{273}{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 6.09\) (brs, 1H), 4.58 (brd, \(J=16.4 \mathrm{~Hz}, 1 \mathrm{H}\)), 3.56 (brs, 1H), 3.41 (brd, \(J=13.4 \mathrm{~Hz}, 1 \mathrm{H}\)), 3.26 (brs, 1H), 2.81 (\(\mathrm{s}, 4 \mathrm{H}\)), \(1.87-1.72\) (m, \(1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})\).

\footnotetext{
\({ }^{273}\) G. Guichard, V. Semetey, C. Didierjean, A. Aubry, J.-P. Briand, M. Rodriguez, J. Org. Chem. 1999, 64, 8702-8705.
}

\subsection*{6.5.1.2. Methylation}

To a cooled suspension of \(\mathrm{MeNH}_{2}-\mathrm{HCl}\) (7 mmo , 2.5 equiv.) in acetonitrile (2.3 mL) at \(0{ }^{\circ} \mathrm{C}\), DIPEA (\(14 \mathrm{mmol}, 5\) equiv.) was added, followed by a solution of 91 (2.8 mmol, 1 equiv.) in acetonitrile (34 mL) and the reaction mixture was stirred at room temperature for 16 h . Then, acetonitrile was evaporated under reduced pressure and the residue was solubilized in EtOAc . The mixture was washed with a 1 N solution of \(\mathrm{KHSO}_{4}\) (\(1 \times 5 \mathrm{~mL} / \mathrm{mmol}\)), saturated \(\mathrm{NaHCO}_{3}\) solution (\(1 \times 15 \mathrm{~mL}\)), brine (\(1 \times 15 \mathrm{~mL}\)), dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. Trituration in diethyl ether led to the title compound 92 as a white solid. Yield: \(80 \%(0.58 \mathrm{~g}, 2.24 \mathrm{mmol})\). All the spectroscopic data were identical to the reported in literature. \({ }^{272}{ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.93(\mathrm{~s}, 1 \mathrm{H})\), \(4.62(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~m}, J=34.9,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~m}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})\), \(1.86-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{dd}, J=8.4,6.9 \mathrm{~Hz}, 6 \mathrm{H})\).
6.5.1.3. Coupling \({ }^{274}\)

The Boc-protected compound 92-96 (\(1 \mathrm{mmol}, 1\) equiv.) was dissolved in trifluoroacetic acid (6 mL) at \(0{ }^{\circ} \mathrm{C}\) under \(\mathrm{N}_{2}\) atmosphere and the resulting mixture was stirred at room temperature for 2 h . After complete conversion, the reaction mixture was concentrated under reduced pressure and coevaporated 3 times with cyclohexane. The obtained residue was redisolved in the corresponding solvent (4 mL), and DIPEA (3 mmol, 3 equiv.) was added at \(0^{\circ} \mathrm{C}\). Then, 91 (\(1.5 \mathrm{mmol}, 1.5\) equiv.) was added in one portion and the mixture was stirred for 16 h at room temperature \((\mathrm{pH}\) was checked after succinimide addition, basic conditions are required for the addition). After reaction

\footnotetext{
\({ }^{274}\) L. Fischer, P. Claudon, N. Pendem, E. Miclet, C. Didierjean, E. Ennifar, G. Guichard, Angew. Chem. Int. Ed. 2010, 49, 1067-1070.
}
completion (monitored by TLC), the solvent was evaporated and the residue was dissolved in AcOEt (5 mL). The resulting solution was washed with a 1 N solution of \(\mathrm{KHSO}_{4}(3 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})\), a saturated \(\mathrm{NaHCO}_{3}\) solution (\(2 \times 5 \mathrm{~mL}\)) and \(\mathrm{H}_{2} \mathrm{O}(1\) x 5 mL). The combined organic layers were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. The reaction crudes were crushed with \(\mathrm{Et}_{2} \mathrm{O}\).

\section*{\(\left(\operatorname{Boc}\left(\mathrm{Val}^{\mathrm{u}}\right)_{2} \mathrm{NHMe}\right) 93\)}

Prepared according to the general procedure starting from \(92(259 \mathrm{mg}, 1 \mathrm{mmol})\) in acetonitrile. White solid. Yield: \(64 \%\) (\(248 \mathrm{mg}, 0.64 \mathrm{mmol}\)). \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OH}\right) \delta 6.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.75(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.35\) \((\mathrm{m}, 1 \mathrm{H}), 3.05-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H})\), 0.92 (dd, \(J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})\).

\section*{\(\left(\operatorname{Boc}\left(\mathrm{Val}^{\mathrm{U}}\right)_{3} \mathrm{NHMe}\right) 94\)}

Prepared according to the general procedure starting from 93 (\(387 \mathrm{mg}, 1 \mathrm{mmol}\)) in acetonitrile. White solid Yield: \(76 \%\) (391, \(0.76 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH} \delta 6.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.18(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=16.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78\) \((\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.42(\mathrm{~m}, 6 \mathrm{H}), 2.70(\mathrm{~d}, J=4.1 \mathrm{~Hz}\), 3 H), \(2.63-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.41\) (dd, \(J=18.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}\)), \(1.62(\mathrm{ddq}, J=20.7,13.8,7.0\) \(\mathrm{Hz}, 3 \mathrm{H}), 1.46\) (s, 9H), \(1.04-0.81\) (m, 18H).

\section*{(Boc(Val \(\left.{ }^{\text {u }}\right)_{4} \mathbf{N H M e) ~} 95\)}

Prepared according to the general procedure starting from \(94(515 \mathrm{mg}, 1 \mathrm{mmol})\) in
DMF (4 mL). White solid. Yield: \(80 \% ~(516 \mathrm{mg}, 0.8 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (300 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OH}\right) \delta 6.65(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.21(\mathrm{~m}, 3 \mathrm{H}), 6.03\) (d, \(J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.45(\mathrm{~m}\), \(8 \mathrm{H}), 2.71(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.54-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{ddd}, J=19.4,12.3,6.0 \mathrm{~Hz}, 4 \mathrm{H})\), 1.48 (s, 9H), \(0.99-0.85(\mathrm{~m}, 24 \mathrm{H})\).

\section*{\(\left(\operatorname{Boc}\left(\mathrm{Val}^{\mathrm{u}}\right)_{5} \mathrm{NHMe}\right) 96\)}

Prepared according to the general procedure starting from \(95(643 \mathrm{mg}, 1 \mathrm{mmol})\) in DMF (4 mL). White solid. Yield: \(79 \% ~(609 \mathrm{mg}, 0.79 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (300 MHz , DMSO- \(d_{6}\)) \(\delta 6.94(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.12(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H})\), \(6.03-5.96(\mathrm{~m}, 3 \mathrm{H}), 5.94-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.58(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.41(\mathrm{~m}, 12 \mathrm{H}), 2.60\) \(-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.68(\mathrm{~m}, 30 \mathrm{H})\).
(Boc(Valu \(\left.{ }_{6}{ }_{6} \mathrm{NHMe}\right) 97\)

Prepared according to the general procedure starting from 96 (\(771 \mathrm{mg}, 1 \mathrm{mmol}\)) in DMF (4 mL). The solid was triturated with pentane. White solid. Yield: \(70 \% ~(629 \mathrm{mg}\), \(0.7 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (300 MHz, DMSO- \(d_{6}\)) \(\delta 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.09\) \((\mathrm{m}, 10 \mathrm{H}), 5.72(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.20(\mathrm{~m}, 25 \mathrm{H}), 2.57(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 5 \mathrm{H}), 2.42-\) \(2.26(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.92-0.66(\mathrm{~m}, 36 \mathrm{H})\).

\subsection*{6.5.1.4. Boc deprotection}

The Boc-protected compound 92-97 (\(1 \mathrm{mmol}, 1\) equiv.) was dissolved in trifluoroacetic acid (6 mL) at \(0^{\circ} \mathrm{C}\) under \(\mathrm{N}_{2}\) atmosphere. \({ }^{272}\) After complete conversion (2 h , followed by TLC), the reaction mixture was concentrated under reduced pressure and coevaporated 3 times with cyclohexane. The residue was redissolved in DMF (4 mL) and DIPEA (\(3 \mathrm{mmol}, 3\) equiv.) was added at \(0^{\circ} \mathrm{C}\). Bis-trifluorophenylisocyanate (1.2 mmol , 1.2 equiv.) was added dropwise and the mixture was stirred at \(0^{\circ} \mathrm{C}\) for 40 minutes. When the reaction finished, the mixture was dissolved in \(\operatorname{EtOAc}(5 \mathrm{~mL})\) and the organic phase was washed with \(\mathrm{KHSO}_{4}(2 \times 5 \mathrm{~mL})\), water (\(5 \times 5 \mathrm{~mL}\)), \(\mathrm{NaHCO}_{3}(1 \times 5 \mathrm{~mL})\) and water (1 x 5 mL). The combined organic phases were dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure.

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathbf{P h N H C O}-\mathrm{Val}^{\mathrm{u}}\) - \({ }^{\mathbf{N H M E ~ O}}{ }^{275}\)}

Prepared according to the general procedure starting from 92 (\(259 \mathrm{mg}, 1 \mathrm{mmol}\)). Purification by column chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)\) afforded the title compound as a white solid. Yield: \(70 \%\) (\(289 \mathrm{mg}, 0.7 \mathrm{mmol}\)). All spectroscopic data were coincident with those previously reported. \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\right) \delta 7.99(\mathrm{~s}, 2 \mathrm{H})\), \(7.47(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{brs}, 1 \mathrm{H}), 5.89(\mathrm{brs}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 1 \mathrm{H})\), \(3.36-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{dd}, J=9.6,6.8\) Hz, 6H).

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{PhNHCO}-\left(\mathrm{Val}^{\mathrm{u}}\right)_{2} \mathrm{NHMe} \mathrm{O8}\)}

Prepared according to the general procedure starting from 93 (\(387 \mathrm{mg}, 1 \mathrm{mmol}\)). Purification by column chromatography \(\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 97: 3\right)\) afforded the title compound as a white solid. Yield: \(60 \%\) (\(325 \mathrm{mg}, 0.6 \mathrm{mmol}\)). \({ }^{1} \mathrm{H}\) NMR (400 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OH}\right) \delta 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.31\) (brs, 1 H), 6.07 (brs, 1 H), 5.94 (brs, 1H), 3.77 \(3.63(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.86\) \((\mathrm{m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=\) \(7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\)) \(\delta 162 ., 161.5,157.8\) , 143.6, 132.9 (\(\mathrm{q}, ~ J=32.9 \mathrm{~Hz}\)), 126.1, 123.4, 118.9, 115.1, 57.0, 56.8, 43.5, 43.4, \(43.2,43.1,31.6,27.1,26.9,19.9,19.8,18.4,18.2 .{ }^{19} \mathrm{~F}\) NMR (\(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\)) \(\delta-\) 64.6 . MS (ESI): \(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 543.25128, found: 543.24932.

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}\left(\mathrm{Val}^{\mathrm{u}}\right)_{3} \mathrm{NHMe} \mathrm{O9}\)}

\footnotetext{
\({ }^{275}\) D. Bécart, V. Diemer, A, Salaun, M. Oiarbide, Y. Reddy Nelly, B. Kauffmann, L. Fischer, C. Palomo, G. Guichard, J. Am. Chem. Soc. 2017, 139, 12524-12532.
}

Prepared according to the general procedure starting from \(\mathbf{9 4}(515 \mathrm{mg}, 1 \mathrm{mmol})\). Trituration in diethyl ether led to the title compound as a white solid. Yield: 73\% (489 \(\mathrm{mg}, 0.73 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\)) \(\delta 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~m}, J=\) \(24.5,14.8,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.90-5.76(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.44(\mathrm{~m}, 6 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.73\) (dd, \(J=12.0,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=19.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.77\) \((\mathrm{m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\right) \delta 162.0,161.7,161.6,161.6,158.2,143.4\), \(133.1(\mathrm{q}, J=32.8 \mathrm{~Hz}), 126.1,123.4,119.0,115.4,56.6,56.3,56.1,44.5,44.1\), 43.7, \(32.3,31.9,31.6,26.9,20.1,20.0,19.9,18.4,18.4,18.1 .{ }^{19}\) F NMR (376 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OH}\right) \delta\)-64.6 . MS (ESI): \(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 671.34625, found: 671.34370.

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathbf{P h}\left(\text { Val }^{\mathbf{u}}\right)_{4}{ }^{\mathbf{N H M e}} \mathbf{O 1 0}\)}

Prepared according to the general procedure starting from 95 (\(643 \mathrm{mg}, 1 \mathrm{mmol}\)). Trituration in diethyl ether afforded the title compound as a white solid. Yield: 70\% (558 \(\mathrm{mg}, 0.7 \mathrm{mmol}\)). There were some impurities that could not be separated by column chromatography nor trituration with different solvents. MS (ESI): \(\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~F}_{6} \mathrm{~N}_{10} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}\) calcd.: 799.44121, found: 799.43802.

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathbf{P h}\left(\text { Val }^{\mathrm{u}}\right)_{5}{ }^{\mathbf{N H}} \mathbf{~ H M e ~} \mathbf{O 1 1}\)}

Prepared according to the general procedure starting from \(96(771 \mathrm{mg}, 1 \mathrm{mmol})\). Trituration in diethyl ether afforded the title compound as a white solid. Yield: \(68 \%\) (629 \(\mathrm{mg}, 0.68 \mathrm{mmol}) .{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\)) \(\delta 8.27(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.44\) \((\mathrm{m}, 5 \mathrm{H}), 6.37\) (dd, \(J=11.1,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.11\) (d, \(J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-3.69\) (m, 9H), \(3.03-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.66\) (ddd, \(J=25.4,19.2,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.08-\) \(1.70(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.02(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR (\(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\)) \(\delta 162.4,162.3,161.5\) , \(161.4,158.3\), 143.2 , \(133.24(\mathrm{q}, ~ J=33.1 \mathrm{~Hz}), 126.0\), 123.3 , 119.0 , 115.7 , 56.8 , 56.7 , \(56.6,56.2,56.1,55.5,55.4,44.9,44.8,44.7,44.5,43.7,43.6,32.7,31.9,31.8\), \(26.8,26.7,20.1,20.0,19.9,18.9,18.7,18.5,18.2,18.0 .{ }^{19} \mathrm{~F}\) NMR (376 MHz , \(\left.\mathrm{CD}_{3} \mathrm{OH}\right) \delta\)-64.6. MS (ESI): \(\mathrm{C}_{40} \mathrm{H}_{69} \mathrm{~F}_{6} \mathrm{~N}_{12} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 927.53617, found: 927.53265 .

\section*{\(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Ph}\left(\mathrm{Val}^{\mathrm{u}}\right)_{6} \mathrm{NHMe} \mathrm{O}^{\mathbf{O l 2}}\)}

Prepared according to the general procedure starting from \(97(899 \mathrm{mg}, 1 \mathrm{mmol})\). Trituration in diethyl ether afforded the title compound as a white solid. Yield: 75\% (790 \(\mathrm{mg}, 0.75 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\right) \delta 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.44\) (brs, \(3 \mathrm{H}), 6.27\) (brs, 5 H\(), 6.10(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.47(\mathrm{~m}, 12 \mathrm{H}), 2.72(\mathrm{~s}\), 3 H), 2.70-2.64 (m, 2H), 2.44 (dt, \(J=29.1,19.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.79-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.16-0.74\) \((\mathrm{m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\) NMR \(\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\right) \delta 162.4,162.2,162.0,162.0,161.5,158.3\), \(143.2,133.4,133.1,119.0,115.8,115.7,115.6,56.7,56.7,56.6,56.4,56.2,56.2\), \(56.0,55.9,55.6,55.5,54.7,44.9,44.8,44.7,44.5,43.7,43.6,32.7,31.9,31.8\), \(31.8,26.8,26.7,20.2,20.1,20.0,19.9,18.9,18.7,18.5,18.3,18.3 .{ }^{19}\) F NMR (376 \(\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}\right) \delta-64.6 . \mathrm{MS}(\mathrm{ESI}): \mathrm{C}_{46} \mathrm{H}_{81} \mathrm{~F}_{6} \mathrm{~N}_{14} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}\)calcd.: 1055.63114, found: 1055.62655.

\subsection*{6.5.2. Catalysis promoted by oligoureas O7-012}

\subsection*{6.5.2.1. Preparation of catalyst and base solution}

First, a stock solution of the catalyst in \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\) (1:1) was prepared. The oligourea catalyst O7-O12 (0.01 mmol) was dissolved in 2 mL of a solution of \(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\), and each reaction vial was charged with \(500 \mu \mathrm{~L}\) of this solution. \({ }^{276}\) The catalyst was then concentrated with Genetac Evaporator (method: medium BP).

Then, a stock solution of triethylamine in toluene was prepared, dissolving triethylamine (\(139 \mu \mathrm{~L}, 101 \mathrm{mg}, 1 \mathrm{mmol}\)) in dry toluene \((10 \mathrm{~mL})\) in a volumetric flask.

\footnotetext{
\({ }^{276}\) For reactions with \(0.3 \mathrm{~mol} \%\) catalyst loading, \(300 \mu \mathrm{~L}\) were measured, and for reactions in \(0.1 \mathrm{~mol} \%\) catalyst loading \(100 \mu \mathrm{~L}\).
}

\subsection*{6.5.2.2. Asymmetric reaction}

O7 n=1
O8 n=2
\(09 \mathrm{n}=3\)
\(011 \mathrm{n}=5\)
\(012 \mathrm{n}=6\)

Nitrostyrene (\(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1\) equiv.) was added to the vial loaded with the corresponding oligourea catalyst (\(0.0025 \mathrm{mmol}, 0.5 \mathrm{~mol} \%\)) and it was dissolved after addition of the base solution (0.5 mL). Then, diethyl malonate (\(152 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2\) equiv.) was added and the mixture was vigorously stirred at room temperature for 48 h . Then, the reaction was quenched with \(\mathrm{HCl}(1 \mathrm{M})\) or \(\mathrm{KHSO}_{4}(1 \mathrm{M})\) and the mixture was extracted with \(\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})\). The combined organic phases were washed with brine (\(1 \times 20\) mL), dried over \(\mathrm{MgSO}_{4}\) and evaporated under reduced pressure. Purification by column chromatography (cyclohexane/EtOAc, 95:5) led to the title compound as a transparent oil. All the spectroscopic data were coincident with those described in the literature. \({ }^{275}\)

\subsection*{6.6. Representative NMR spectra}

\(\qquad\)

\footnotetext{

}

\(\stackrel{\text { ®̃o }}{\text { ®o }}\)

テテテ

虽

\begin{tabular}{|c|c|}
\hline \(\wedge\) & \\
\hline กิ & \\
\hline 1 & \(\xrightarrow{\sim}\) \\
\hline
\end{tabular}

\((S, S)-\) L3

(\(R, R\))-L4

\begin{tabular}{|c|}
\hline & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & & 1 & 1 & 1 & & 1 & 1 & & & 1 & & \\
\hline 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & \[
\begin{gathered}
50 \\
\mathrm{f}_{1}(\mathrm{pm})
\end{gathered}
\] & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 \\
\hline
\end{tabular}

L12

N:

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
우ํํํํํㅇ \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

\(\stackrel{\circ}{\square}\)

(\(\pm\)) 9 Fa

10Ab

\begin{tabular}{|c|c|c|}
\hline F & Foon & -9\% \\
\hline 1 & 117 & な\% \\
\hline
\end{tabular}


```

~

```


10Ba

佥

10Bb

9Da
苜

\(\stackrel{\sim}{\sim}\)
\(\stackrel{0}{0}\)

10Ea

200

\begin{tabular}{|c|c|c|c|c|}
\hline & \(\ddagger\) & \(\stackrel{\circ}{\stackrel{\circ}{\square}}\) & N & \(\stackrel{\infty}{\sim}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & \(\stackrel{\infty}{\square}\) \\
\hline \(\underbrace{m \text { mпn }}\) & \\
\hline
\end{tabular}

\(N\)
\(\infty\)
\(\stackrel{\infty}{0}\)

\(-117.49\)

N
\(\underset{\sim}{\mathrm{m}}\)
\(\underset{\sim}{\mathrm{O}}\)
1

31B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \[
\stackrel{\rightharpoonup}{N}
\] & & & N' & & \\
\hline 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & \[
4.5
\] & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0 \\
\hline
\end{tabular}

31C

31D

31E

31F

\(\stackrel{\circ}{i}\)

(士) 32B

\begin{tabular}{l}
-199.51 \\
\\
\\
-166.90 \\
\\
\\
< 145.06 \\
144.65 \\
-137.24 \\
\hline \begin{tabular}{l}
129.08 \\
128.79 \\
128.32 \\
127.81 \\
127.25
\end{tabular}
\end{tabular}


```

\i\

```

(\(\pm\)) 32C

NiN

(\(\pm\)) 32 E

\section*{ \\ }

(土) 32F

\section*{ \\ NへべべべべべN}

\(\underset{y}{\text { Y }}\)

（ \(\pm\) ）32G

\(\stackrel{\text { İ }}{\tilde{j}}\)
\(\stackrel{\text { 解等 }}{\boldsymbol{j}}\)

(\(\pm\)) \(\mathbf{3 2 H}\)

\(\stackrel{\circ}{1}\)
\(\stackrel{\text { N }}{i}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \% & \% & \% & & \% & 嚱 \\
\hline
\end{tabular}

\footnotetext{

}

14Ca
ペ

18Aa

\(\stackrel{\circ}{\text { in }}\)

18Ab

合荡
-

18Ca

\footnotetext{

}

18Da
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \[
\stackrel{\rightharpoonup}{\infty}
\] & & & & & & & & & \[
\begin{aligned}
& \text { 'ơ } \\
& \text { N }
\end{aligned}
\] & & & & & \\
\hline . 0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & \[
\begin{gathered}
4.5 \\
\mathrm{f}(\mathrm{ppm})
\end{gathered}
\] & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0 \\
\hline
\end{tabular}

\footnotetext{

}
\begin{tabular}{|c|c|c|}
\hline ta & \(\stackrel{\stackrel{7}{¢}}{ }\) & \\
\hline & \({ }^{+}\) & \\
\hline
\end{tabular}

19Ab

\footnotetext{

}

20Ab

ハ

\footnotetext{

}
\(\stackrel{\rightharpoonup}{0}\)
\(\stackrel{N}{\infty} \stackrel{\infty}{+}\)

21Aa

21Ab

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & 130 & 120 & & & 1 & & 70 & & & 40 & 30 & & \\
\hline 90 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{gathered}
100 \\
f 1
\end{gathered}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

i % 裂
i % 裂

21Ba

\(\circ\)
\(\stackrel{\circ}{1}\)
1

21Ca
\[
\underset{\sim}{\underset{\sim}{i}}
\]

\[
\begin{aligned}
& \underbrace{\dot{\circ} \text { in in in in }}
\end{aligned}
\]

21Ea

ò
\(\stackrel{-}{7}\)

21Ha

mলm

22Aa

22Ac

22Ba

ハion

\footnotetext{

}

22Ca


```

$\underbrace{2}_{1}$

```

```

$\stackrel{\sim}{\sim}$

```


22Ga

\section*{\(\stackrel{\substack{i \\ 1}}{1}\)}
\(\stackrel{\text { N. }}{\stackrel{\circ}{n}}\)

ペำ

+icil

98

\(\stackrel{N}{\underset{1}{\sim}}\)

29b

\[
\begin{aligned}
& \text { ヘヘ入入入 }
\end{aligned}
\]

\(\qquad\)

33E

N

45:55 E/Z mixture 33G

\(\stackrel{\text { Fin }}{\substack{\text { ® } \\ i}}\)
ヘin in in

No

\(\stackrel{\substack{\underset{\sim}{n} \\ i}}{\stackrel{m}{~}}\)

41
\(-204.1\)
\(\stackrel{\infty}{\stackrel{\infty}{\circ}}\)
-i
No

34E

ハ

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{20} \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline & & & \[
\begin{array}{ll}
6 \\
0 & \stackrel{H}{M} \\
0 \\
0 & \stackrel{N}{\mathrm{~N}}
\end{array}
\] & & \multicolumn{3}{|l|}{ ヘ м м - -} & & \[
\begin{aligned}
& \text { ' } \\
& \stackrel{1}{0} \\
& 0
\end{aligned}
\] & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& 6 . \\
& 0 . \\
& 0 . \\
& 0.0
\end{aligned}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \underset{-1}{\infty} \\
& \stackrel{1}{\mathrm{~N}}
\end{aligned}
\]} & & \\
\hline J.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \[
\stackrel{5.0}{\mathrm{f} 1(\mathrm{ppm})}
\] & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 \\
\hline
\end{tabular}
Min

36

37

-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 170 & 160 & 15 & 1 & 13 & & 11 & 10 & 1 & 1 & 70 & 60 & 50 & 10 & 1 & 1 & 1 & \\
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\mathrm{f}_{1}(\mathrm{ppm})
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\(\underset{\substack{\tilde{N} \\ \underset{\sim}{1} \\ \underset{1}{1} \\ \hline}}{ }\)
N N N N N N N
\(\stackrel{\circ}{\square}\)

\footnotetext{

}

49b


```

\

```

```

~~
N~~~~

```


Minor diastereioisomer 49c


```

|゙~

```


๗ٌ mi m
MM1

No

it

\begin{tabular}{c}
\(N\) \\
\(\underset{i}{N}\) \\
\(\underset{i}{2}\) \\
\hline
\end{tabular}

63a

\(\stackrel{\infty}{\infty} \stackrel{\infty}{\sim}\)

74a

 1

\[
\begin{aligned}
& \text { Nog }{ }^{\circ}
\end{aligned}
\]

|
\(\underset{\infty}{\infty} \stackrel{N}{\wedge} \quad \stackrel{n}{0}\)
\(\stackrel{\sim}{\sim}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & \\
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

105a

萑
\(\stackrel{\sim}{\omega}\)
佥尘品
ヅへ


```

|

```

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & ソ & -1r \\
\hline
\end{tabular}

\(\underset{\sim}{\circ}\)

へへへへへへ

:~~~

85

シٌ

\begin{tabular}{|c|}
\hline & & & & & & & & & 1 & & 1 & & 1 & 1 & 1 & & 1 & & \\
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{gathered}
100 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline & & & & & & & & & & & & & & & & & & & \\
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
100
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline & & & & & & & & & & & & & & & & & & & \\
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{gathered}
100 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\subsection*{6.7. HPLC chromatograms}

rac-14Aa

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 29.02 & 50.30 \\
\hline 2 & 32.88 & 49.70 \\
\hline
\end{tabular}

\section*{14Aa}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 28.25 & 95.64 \\
\hline 2 & 33.35 & 4.36 \\
\hline
\end{tabular}
\(91 \%\) ee

Column: AY-H
Eluent: 50:50 Hx:EtOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)

14Ba
rac-14Ba

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 13.59 & 50.18 \\
\hline 2 & 15.69 & 49.82 \\
\hline
\end{tabular}

\section*{14Ba}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 14.01 & 1.89 \\
\hline 2 & 16.03 & 98.11 \\
\hline
\end{tabular}

\section*{\(96 \%\) ee}

\section*{Column: AY-H}

Eluent: 40:60 Hx:iPrOH
Flow rate: \(0.6 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)

14Bb
rac-14Bb

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 16.09 & 50.47 \\
\hline 2 & 26.14 & 49.53 \\
\hline
\end{tabular}

\section*{14Bb}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 20.53 & 3.65 \\
\hline 2 & 34.72 & 96.35 \\
\hline
\end{tabular}

\section*{92\% ee}

rac-14Ca

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 33.80 & 50.12 \\
\hline 2 & 43.28 & 49.88 \\
\hline
\end{tabular}

\section*{14 Ca}

\begin{tabular}{|l|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 33.74 & 6.29 \\
\hline 2 & 43.7 & 93.71 \\
\hline
\end{tabular}
\(\mathbf{8 8 \%}\) ee

18Аа

\section*{Column: ODH}

Eluent: 80:20 Hx:iPrOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-18Aa

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 37.75 & 50.58 \\
\hline 2 & 42.57 & 49.42 \\
\hline
\end{tabular}

\section*{18Aa}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 38.82 & 1.83 \\
\hline 2 & 42.59 & 98.17 \\
\hline
\end{tabular}

\section*{\(96 \%\) ee}

18Ab

Column: ODH
Eluent: 50:50 Hx:iPrOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-18Ab

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 21.47 & 50.72 \\
\hline 2 & 40.77 & 49.28 \\
\hline
\end{tabular}

18Ab

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 20.87 & 3.46 \\
\hline 2 & 39.85 & 96.54 \\
\hline
\end{tabular}
\(94 \%\) ee

18Ba

Column: ODH
Eluent: 80:20 Hx: iPrOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-18Ba

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 61,92 & 49.77 \\
\hline 2 & 71.76 & 50.23 \\
\hline
\end{tabular}

\section*{18Ba}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 61.40 & 96.64 \\
\hline 2 & 75.69 & 3.36 \\
\hline
\end{tabular}

92\% ee

\section*{Column: ODH}

Eluent: 50:50 Hx:iPrOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-18Bb

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 38.12 & 49.84 \\
\hline 2 & 54.20 & 50.16 \\
\hline
\end{tabular}

\section*{18Bb}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 38.54 & 3.42 \\
\hline 2 & 50.45 & 96.58 \\
\hline
\end{tabular}

94\% ee

18Ca

Column: OJ-H
Eluent: 80:20 Hx:iPrOH
Flow rate: \(0.5 \mathrm{~mL} / \mathrm{min}\) \(\lambda: 254 \mathrm{~nm}\)
rac-18Ca

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 49.38 & 49.65 \\
\hline 2 & 55.88 & 50.35 \\
\hline
\end{tabular}

\section*{18Ca}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 53.02 & 2.03 \\
\hline 2 & 56.13 & 97.97 \\
\hline
\end{tabular}

\section*{\(96 \% e e\)}

rac-18Da

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 27.71 & 49.60 \\
\hline 2 & 33.78 & 50.40 \\
\hline
\end{tabular}

\section*{18Da}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 29.62 & 4.31 \\
\hline 2 & 34.35 & 95.69 \\
\hline
\end{tabular}

\section*{\(91 \% e e\)}

19Ab

Column: IC
Eluent: 50:50 Hx:iPrOH
Flow rate: \(1.0 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-19Ab

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 34.34 & 49.79 \\
\hline 2 & 50.75 & 50.21 \\
\hline
\end{tabular}

\section*{19Ab}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \multicolumn{1}{c|}{ \% Area } \\
\hline 1 & 34.65 & 6.00 \\
\hline 2 & 50.79 & 94.00 \\
\hline
\end{tabular}

\section*{\(88 \%\) ee}

20Ab

Column: IA Eluent: 80:20 Hx:iPrOH

Flow rate: \(1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
\(\qquad\)
rac-20Ab

\begin{tabular}{|l|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 22.72 & 50.15 \\
\hline 2 & 26.92 & 49.85 \\
\hline
\end{tabular}

\section*{20Ab}

\begin{tabular}{|r|r|r|}
\hline & Retention Time & \% Area \\
\hline 1 & 22.08 & 93.43 \\
\hline 2 & 26.70 & 6.57 \\
\hline
\end{tabular}

87\% ee

22Aa

Column: IC
Eluent: 80:20 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Aa

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 41,5 & 50,49 \\
\hline 44,2 & 49,51 \\
\hline
\end{tabular}

22Aa

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 42,8 & 3,58 \\
\hline 44,5 & 96,42 \\
\hline
\end{tabular}
\(92 \% e e\)

\author{
Column: ADH \\ Eluent: 90:10 Hex/iPrOH \\ Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\) \\ \(\lambda: 254 \mathrm{~nm}\)
}
rac-22Ab

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 18,6 & 49,83 \\
\hline 20.0 & 50,17 \\
\hline
\end{tabular}

22Ab

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 17,8 & 98,19 \\
\hline 19,3 & 1,81 \\
\hline
\end{tabular}

96\% ee

22Ac

Column: ADH
Eluent: 80:20 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-22Ac

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 8,9 & 51,09 \\
\hline 11,6 & 48,91 \\
\hline
\end{tabular}

22Ac

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 9,8 & 77,28 \\
\hline 12,8 & 22,72 \\
\hline
\end{tabular}

Column: IC
Eluent: 70:30 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
22Ba
rac-22Ba

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 25,2 & 50,11 \\
\hline 27,1 & 49,89 \\
\hline
\end{tabular}

\section*{22Ba}

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 24,8 & 3,39 \\
\hline 26,7 & 96,61 \\
\hline
\end{tabular}

Column: AS-H
Eluent: \(50: 50 \mathrm{Hex} / \mathrm{iPrOH}\)
Flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
rac-22Bb

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 35,7 & 49,79 \\
\hline 48,7 & 50,21 \\
\hline
\end{tabular}

\section*{22Bb}

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 34,3 & 97,85 \\
\hline 47,4 & 2,15 \\
\hline
\end{tabular}
\(96 \%\) ee

22Bc

Column: ASH
Eluent: 60:40 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Bc

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 29,7 & 50,29 \\
\hline 45,3 & 49,71 \\
\hline
\end{tabular}

\section*{22Bc}

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 29,5 & 70,95 \\
\hline 45,2 & 29,05 \\
\hline
\end{tabular}

rac-22Ca

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 40,5 & 49,84 \\
\hline 48,6 & 50,16 \\
\hline
\end{tabular}

22 Ca

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 40,6 & 96,06 \\
\hline 48,9 & 3,94 \\
\hline
\end{tabular}
\(92 \%\) ee

\section*{Column: ADH}

Eluent: 90:10 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 210 \mathrm{~nm}\)
22Da
rac-22Da

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 38,6 & 95,24 \\
\hline 42,1 & 4,76 \\
\hline
\end{tabular}
\(90 \%\) ee

22Ea

Column: ASH
Eluent: 50:50 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Ea

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 16,3 & 49,95 \\
\hline 18,9 & 50,05 \\
\hline
\end{tabular}

22Ea

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 16,5 & 93,87 \\
\hline 19,3 & 6,13 \\
\hline
\end{tabular}
\(88 \%\) ee

22Fa

Column: ASH
Eluent: 80:20 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Fa

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 26,0 & 50,12 \\
\hline 36,0 & 49,88 \\
\hline
\end{tabular}

\section*{22Fa}

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 26,4 & 82,70 \\
\hline 36,4 & 17,30 \\
\hline
\end{tabular}
\(66 \%\) ee

22Ga

Column: ASH
Eluent: 80:20 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Ga

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 25,5 & 50,36 \\
\hline 30,7 & 49,64 \\
\hline
\end{tabular}

22Ga

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 24,6 & 87,89 \\
\hline 30,5 & 12,11 \\
\hline
\end{tabular}

22Ha

Column: ASH
Eluent: 50:50 Hex/iPrOH
Flow rate \(=0.5 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-22Ha

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 45,350 & 49,93 \\
\hline 55,448 & 50,07 \\
\hline
\end{tabular}

\section*{22Ha}

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 44,4 & 95,49 \\
\hline 55,7 & 4,51 \\
\hline
\end{tabular}
\(90 \%\) ee

Column: IC
Eluent: 80:20 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-98

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 17,130 & 49,60 \\
\hline 18,872 & 50,40 \\
\hline
\end{tabular}

98

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 16,698 & 74,78 \\
\hline 18,291 & 25,22 \\
\hline
\end{tabular}
\(50 \%\) ee

34A

Column: ADH
Eluent: 90:10 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-34A

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 10,00 & 50,47 \\
\hline 11,67 & 49,53 \\
\hline
\end{tabular}

34A

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 9,8 & 79,85 \\
\hline 11,6 & 20,15 \\
\hline
\end{tabular}
\(60 \% e e\)

34B

Column: AYH
Eluent: 95:5 Hex \(/\) iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-34B

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 15,84 & 50,63 \\
\hline 29,37 & 49,37 \\
\hline
\end{tabular}

34B

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 15,71 & 79,76 \\
\hline 29.97 & 20,24 \\
\hline
\end{tabular}

60\% ee

Column: IC
Eluent: 90:10 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 6,05 & 49,43 \\
\hline 5,54 & 50,57 \\
\hline
\end{tabular}

41

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 5,51 & 79,84 \\
\hline 6,00 & 20,16 \\
\hline
\end{tabular}
\(60 \%\) ee

34D
rac-34D

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 9,48 & 51,34 \\
\hline 10,82 & 48,66 \\
\hline
\end{tabular}

34D

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 9,43 & 78,03 \\
\hline 10,85 & 21,97 \\
\hline
\end{tabular}
\begin{tabular}{l}
Column: IC \\
Eluent: \(90: 10 \mathrm{Hex} / \mathrm{PrOH}\) \\
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\) \\
\(\lambda: 254 \mathrm{~nm}\) \\
\hline
\end{tabular}
rac-34E

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 30,81 & 49,86 \\
\hline 32,74 & 50,14 \\
\hline
\end{tabular}

34E

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 30,32 & 76,89 \\
\hline 32,29 & 23,11 \\
\hline
\end{tabular}
\(54 \% e e\)

rac-34F

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 11,27 & 49,49 \\
\hline 12,56 & 50,51 \\
\hline
\end{tabular}

34F

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 11,10 & 74,12 \\
\hline 12,50 & 25,88 \\
\hline
\end{tabular}

Column: IA
Eluent: 70:30 Hex/iPrOH
Flow rate \(=1 \mathrm{~mL} / \mathrm{min}\)
\(\lambda: 254 \mathrm{~nm}\)
rac-34J

\begin{tabular}{|c|r|}
\hline Retention Time & \% Area \\
\hline 14,70 & 65,93 \\
\hline 19,63 & 34,07 \\
\hline
\end{tabular}

34J

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 13,57 & 65,93 \\
\hline 17,90 & 34,07 \\
\hline
\end{tabular}
\(32 \%\) ee

49a

Eluent: Hx/EtOH, 90/10
Flow: \(1 \mathrm{~mL} / \mathrm{min}\)
Column: IA
\(\lambda: 254 \mathrm{~nm}\)
rac-49a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 18.649 & 50.47 \\
\hline 2 & 38.333 & 49.53 \\
\hline
\end{tabular}

49a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 19,808 & 97,12 \\
\hline 2 & 41,228 & 2,88 \\
\hline
\end{tabular}
\(94 \%\) ee

49b
rac-49b

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 13.462 & 35.59 \\
\hline 2 & 17.127 & 37.27 \\
\hline 3 & 18.784 & 17.93 \\
\hline 4 & 22.141 & 9.21 \\
\hline
\end{tabular}

\section*{49b}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 12.928 & 94.39 \\
\hline 2 & 16.539 & 5.61 \\
\hline
\end{tabular}

89\% ee

Major diastereoisomer
49c

Eluent: Hx/EtOH, 90/10
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IA
\(\lambda: 254 \mathrm{~nm}\)
rac-49c

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 24.544 & 49.98 \\
\hline 2 & 27.470 & 50.02 \\
\hline
\end{tabular}

49c

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 24.408 & 51.22 \\
\hline 2 & 27.354 & 48.78 \\
\hline
\end{tabular}
\(2 \% e e\)

Eluent: Hx/EtOH, 90/10
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IA
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-49c}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 27.150 & 51.37 \\
\hline 2 & 38.416 & 48.63 \\
\hline
\end{tabular}

49c

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 27.178 & 49.03 \\
\hline 2 & 38.523 & 50.97 \\
\hline
\end{tabular}
\(2 \% e e\)

Eluent: Hx/EtOH, 90/10
Flow: \(1 \mathrm{~mL} / \mathrm{min}\)
Column: IF
\(\lambda: 254 \mathrm{~nm}\)
rac-54a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 14,936 & 6,98 \\
\hline 2 & 15,985 & 42,26 \\
\hline 3 & 17,567 & 42,09 \\
\hline 4 & 18,627 & 8,68 \\
\hline
\end{tabular}

54a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 14,649 & 5,76 \\
\hline 2 & 15,578 & 34,74 \\
\hline 3 & 16,936 & 52,97 \\
\hline 4 & 18,140 & 6,53 \\
\hline
\end{tabular}
\(20 \% e e\)

59a

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 98 / 2\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IAIA
\(\lambda: 254 \mathrm{~nm}\)
rac-59a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 29,642 & 33,89 \\
\hline 2 & 35,456 & 35,33 \\
\hline 3 & 48,953 & 15,97 \\
\hline 4 & 55,712 & 14,81 \\
\hline
\end{tabular}

59a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 48,546 & 87,65 \\
\hline 2 & 56,141 & 12,35 \\
\hline
\end{tabular}
\(76 \%\) ee

Eluent: Hx/EtOH, 98/2
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IF
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-60a}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 29,630 & 23,67 \\
\hline 2 & 34,031 & 24,00 \\
\hline 3 & 39,997 & 25,50 \\
\hline 4 & 44,853 & 26,82 \\
\hline
\end{tabular}

60a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 40,539 & 4,29 \\
\hline 2 & 45,369 & 95,71 \\
\hline
\end{tabular}

92\% ee

\section*{Rac-60h}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 31,987 & 39,71 \\
\hline 2 & 39,821 & 11,48 \\
\hline 3 & 44,126 & 10,76 \\
\hline 4 & 48,390 & 38,06 \\
\hline
\end{tabular}

60h

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,789 & 4,18 \\
\hline 2 & 40,715 & 1,16 \\
\hline 3 & 44,795 & 1,89 \\
\hline 4 & 49,133 & 92,78 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,789 & 4,31 \\
\hline 2 & 49,133 & 95,69 \\
\hline
\end{tabular}

92\% ee

Rac-60i

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 18,587 & 20,01 \\
\hline 2 & 26,331 & 20,19 \\
\hline 3 & 29,602 & 32,13 \\
\hline 4 & 35,727 & 27,68 \\
\hline
\end{tabular}
\(60 i\)

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,299 & 92,49 \\
\hline 2 & 36,980 & 7,51 \\
\hline
\end{tabular}

84\% ee

\section*{Rac-60b}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,961 & 28,36 \\
\hline 2 & 39,738 & 22,59 \\
\hline 3 & 43,346 & 22,38 \\
\hline 4 & 47,109 & 26,67 \\
\hline
\end{tabular}

60b

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,652 & 5,13 \\
\hline 2 & 39,474 & 0,56 \\
\hline 3 & 43,032 & 0,47 \\
\hline 4 & 46,229 & 93,84 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,652 & 5,18 \\
\hline 2 & 46,229 & 94,82 \\
\hline
\end{tabular}
\(90 \% e e\)
\begin{tabular}{|c|c|}
\hline \(\bigcirc \mathrm{O} \mathrm{OH}\) & Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 95 / 5\) \\
\hline N & Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\) \\
\hline & Column: Phenomenex-Lux \(3 \mu \mathrm{~m}\) Cellulose-1 \\
\hline \(\mathrm{F}_{3} \mathrm{C}\) & \(\lambda: 254 \mathrm{~nm}\) \\
\hline
\end{tabular}

Rac-60j

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 19,312 & 21,87 \\
\hline 2 & 21,046 & 22,64 \\
\hline 3 & 22,654 & 27,16 \\
\hline 4 & 29,202 & 28,33 \\
\hline
\end{tabular}

60 j

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 18,565 & 95,14 \\
\hline 2 & 20,574 & 4,86 \\
\hline
\end{tabular}
\(90 \% e e\)

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 95 / 5\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: Phenomenex-Lux \(3 \mu \mathrm{~m}\) Cellulose- 1
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-60k}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,904 & 35,84 \\
\hline 2 & 31,746 & 36,45 \\
\hline 3 & 37,123 & 12,52 \\
\hline 4 & 44,819 & 15,20 \\
\hline
\end{tabular}

60k

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 37,106 & 5,31 \\
\hline 2 & 44,744 & 94,69 \\
\hline
\end{tabular}
\(90 \%\) ee

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 90 / 10\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IA
\(\lambda: 254 \mathrm{~nm}\)
601
Rac-601

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 24.861 & 45.25 \\
\hline 2 & 28.333 & 54.75 \\
\hline
\end{tabular}

601

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 25.991 & 5.85 \\
\hline 2 & 29.414 & 94.15 \\
\hline
\end{tabular}

88\%ee

Rac-63a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 13.877 & 13.31 \\
\hline 2 & 16.598 & 13.62 \\
\hline 3 & 22.920 & 37.47 \\
\hline 4 & 29.726 & 35.60 \\
\hline
\end{tabular}

63a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 13.194 & 2.99 \\
\hline 2 & 15.360 & 73.58 \\
\hline 3 & 21.342 & 14.22 \\
\hline 4 & 27.520 & 9.21 \\
\hline
\end{tabular}
\(97 \% e e\)

74a

\section*{Rac-74a}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,416 & 9,85 \\
\hline 2 & 34,651 & 9,07 \\
\hline 3 & 40,649 & 41,45 \\
\hline 4 & 47,449 & 39,64 \\
\hline
\end{tabular}

74a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 30,595 & 7,74 \\
\hline 2 & 34,629 & 21,09 \\
\hline 3 & 41,504 & 26,26 \\
\hline 4 & 47,907 & 44,91 \\
\hline
\end{tabular}
\(12 \%\) ee

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 80 / 20\)
Flow: \(1 \mathrm{~mL} / \mathrm{min}\)
Column: IF
\(\lambda: 254 \mathrm{~nm}\)

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 18.346 & 35.69 \\
\hline 2 & 20.113 & 34.88 \\
\hline 3 & 23.351 & 15.26 \\
\hline 4 & 35.241 & 14.17 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 17.983 & 49.10 \\
\hline 2 & 19.774 & 5.38 \\
\hline 3 & 22.812 & 30.20 \\
\hline 4 & 33.296 & 15.33 \\
\hline
\end{tabular}
\(\mathbf{8 0 \%}\) ee

Rac-75a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 25,995 & 12,64 \\
\hline 2 & 27,294 & 12,09 \\
\hline 3 & 30,061 & 39,81 \\
\hline 4 & 44,547 & 35,46 \\
\hline
\end{tabular}

75a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 24,538 & 77,32 \\
\hline 2 & 25,813 & 15,36 \\
\hline 3 & 28,162 & 6,93 \\
\hline 4 & 43,932 & 0,39 \\
\hline
\end{tabular}
\(66 \%\) ee

Eluent: Hx/iPrOH, 80/20
Flow: \(0.6 \mathrm{~mL} / \mathrm{min}\)
Column: IF
\(\lambda: 254 \mathrm{~nm}\)
76a

\section*{Rac-76a}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 26,998 & 34,74 \\
\hline 2 & 30,045 & 34,91 \\
\hline 3 & 32,879 & 14,73 \\
\hline 4 & 39,764 & 15,62 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 26,961 & 71,90 \\
\hline 2 & 30,177 & 14,50 \\
\hline 3 & 33,039 & 6,98 \\
\hline 4 & 39,921 & 6,62 \\
\hline
\end{tabular}

66\% ee

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 28.933 & 17.32 \\
\hline 2 & 36.872 & 16.18 \\
\hline 3 & 44.886 & 34.53 \\
\hline 4 & 51.704 & 31.97 \\
\hline
\end{tabular}

77a

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 28.968 & 7.33 \\
\hline 2 & 34.504 & 66.05 \\
\hline 3 & 44.205 & 15.27 \\
\hline 4 & 51.031 & 11.35 \\
\hline
\end{tabular}
\(80 \%\) ee

104b

\section*{Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 98 / 2\)}

Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IFID
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-104b}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 55,852 & 19,99 \\
\hline 2 & 59,203 & 19,37 \\
\hline 3 & 72,716 & 29,87 \\
\hline 4 & 91,330 & 30,77 \\
\hline
\end{tabular}

\section*{104b}

\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Retention \\
Time
\end{tabular} & \% Area \\
\hline 1 & 56,624 & 2,17 \\
\hline 2 & 59,880 & 85,22 \\
\hline 3 & 74,598 & 2,52 \\
\hline 4 & 94,325 & 10,09 \\
\hline
\end{tabular}

Eluent: Hx/iPrOH, 98/2
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IFID
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-104b}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 52,469 & 24,63 \\
\hline 2 & 55,592 & 25,41 \\
\hline 3 & 77,537 & 24,92 \\
\hline 4 & 88,303 & 25,03 \\
\hline
\end{tabular}

\section*{104b}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 53,682 & 1,48 \\
\hline 2 & 56,542 & 91,84 \\
\hline 3 & 79,249 & 0,78 \\
\hline 4 & 90,427 & 5,91 \\
\hline
\end{tabular}

95\% ee

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 98 / 2\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IFID
\(\lambda: 254 \mathrm{~nm}\)

Rac-104h

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 45,955 & 24,50 \\
\hline 2 & 51,756 & 26,74 \\
\hline 3 & 55,390 & 24,79 \\
\hline 4 & 60,598 & 23,97 \\
\hline
\end{tabular}

\section*{104h}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 46,175 & 1,99 \\
\hline 2 & 51,707 & 89,68 \\
\hline 3 & 55,492 & 1,23 \\
\hline 4 & 60,954 & 7,10 \\
\hline
\end{tabular}

96\% ee

63m
rac-63m

Eluent: Hx/iPrOH, 97/3
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IF
\(\lambda: 254 \mathrm{~nm}\)

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 32,170 & 32,10 \\
\hline 2 & 36,954 & 31,17 \\
\hline 3 & 51,009 & 19,14 \\
\hline 4 & 54,026 & 17,60 \\
\hline
\end{tabular}

63m

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 32,543 & 2,10 \\
\hline 2 & 36,807 & 89,14 \\
\hline 3 & 51,551 & 6,80 \\
\hline 4 & 54,151 & 1,96 \\
\hline
\end{tabular}
\(96 \%\) ee

63e

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 80 / 20\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IAIA
\(\lambda: 254 \mathrm{~nm}\)

\section*{Rac-63e}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \% Area \\
\hline 1 & 21,664 & 35,92 \\
\hline 2 & 24,126 & 13,96 \\
\hline 3 & 25,390 & 36,04 \\
\hline 4 & 30,458 & 14,08 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & Retention Time & \(\%\) Area \\
\hline 1 & 21,361 & 2,89 \\
\hline 2 & 23,655 & 9,53 \\
\hline 3 & 25,000 & 86,79 \\
\hline 4 & 29,924 & 0,80 \\
\hline
\end{tabular}

Eluent: \(\mathrm{Hx} / \mathrm{iPrOH}, 90 / 10\)
Flow: \(0.5 \mathrm{~mL} / \mathrm{min}\)
Column: IA
\(\lambda: 254 \mathrm{~nm}\)
rac-98

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 11.921 & 48.33 \\
\hline 29.719 & 51.67 \\
\hline
\end{tabular}

98

\begin{tabular}{|c|c|}
\hline Retention Time & \% Area \\
\hline 12.06 & 12.91 \\
\hline 30.23 & 87.09 \\
\hline
\end{tabular}
\(74 \%\) ee```

[^0]: ${ }^{1}$ Dehydroepiandrosterone: a) D. Freilich, S. Ferris, M. Wallace, L. Leach, A. Kallen, J. Frincke, C. Ahlem, M. Hacker, D. Nelson, J. Hebert, Am. J. Trop. Med. Hyg. 2000, 63, 280-283. Penicilin: b) A. Fleming, Br. J. Exp. Pathol. 1929, 10, 226-236. Lankacidin c) C: K. Ootsu, T. Matsumoto, S. Harada, T. Kishi, Cancer Chemoteraphy Reports 1975, 59, 919-928.

[^1]: ${ }^{2}$ Based on the Bordwell pKa table (See: http://www.chem.wisc.edu/areas/reich/pkatable/index.htm).
 ${ }^{3}$ For more information about asymmetric synthesis, see: a) Gawley, R. E.; Aube, J. Principles of Asymmetric Synthesis 2nd Edition, 2012, Pergamon Press, Oxford. b) Asymmetric Synthesis II: More Methods and Applications, Eds. Christmann, M.; Bräse, S., 2012, Wiley-VHC, Weinheim, Germany. c) Christmann, M.; Bräse, S. Asymmetric Synthesis: The Essentials, 2007, Wiley-VCH, New York.
 ${ }^{4}$ For more information about chiral ligands, see: a) Privileged chiral ligands and catalyst, Ed. Zhou, Q.-L. 2011, Wiley-VCH, Weinheim. For the use of (-)-sparteine as chiral ligand in asymmetric synthesis, see: b) Schütz, T. Synlett 2003, 6, 901-902.
 ${ }^{5}$ For more information about chiral auxiliaries, see: a) G. Roos, Key Chiral Auxiliary Applications, 2014, Academic Press, New York; b) S. G. Davies, A. M. Fletcher, J. E. Thomson, Chem. Commun. 2013, 49, 8586-8598; c) F. Glorious, Y. Gnass, Syntesis, 2006, 12, 1899-1930; d) G. Roos, Compendium of Chiral Auxiliary Applications, 2002, Academic Press, New York; e) S. Jones, J. Chem. Soc. Perkin Trans. 2002, 1, 1-21.
 ${ }^{6}$ For general references on asymmetric catalysis, see: a) K. Mikami, M. Lautens, New Frontiers in Asymmetric Catalysis, 2007, Wiley-VCH, Weinhelm; b) B. M. Trost, Proc. Natl. Acad. Sci. USA, 2004, 101, 5348-5355.

[^2]: ${ }^{7}$ For the first example, see: a) D. Enders, H. Eichenauer, Angew. Chem. 1976, 88, 579-581. For a review, see: b) A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, Tetrahedron, 2002, 58, 2253-2329.
 ${ }^{8}$ For the first example, see: D. A. Evans, J. Bartroli, T. L Shih, J. Am. Chem. Soc. 1981, 103, 2127-2129.
 ${ }^{9}$ For further information on the subject see: a) M. M. Heravi, V. Zadsirjan, Tetrahedron: Asymmetry 2014, 25, 1061-1090; b) L. M. Geary, P. G. Hultin, Tetrahedron: Asymmetry 2009, 20, 131-173; c) C. Palomo, M. Oiarbide, J. M. García, Chem. Soc. Rev. 2004, 33, 65-75; d) P. Arya, H. Qin, Tetrahedron 2000, 56, 917-947.
 ${ }^{10}$ For the first example, see: W. Oppolzer, C. Chapuis, G. Bernardielli, Helv. Chim. Acta 1984, 67, 13971401.
 ${ }^{11}$ For the first example, see: A. G. Myers, B. H. Yang, H. Chen, J. L. Gleason, J. Am. Chem. Soc. 1994, 116, 9361-9362.

[^3]: ${ }^{12}$ For general reviews on enzymatic catalysis, see: a) X. Garrrabou, D. S. Macdonald, B. I. M. Wicky, D. Hilbert Angew. Chem. Int. Ed. 2018, 57, 5288-5291; b) G. De Gonzalo, I. Lavandera, V. Gotor, Catalytic Methods in Asymmetric Synthesis. Advanced material, techniques, and applications, 2011, 391-527, Ed. M. Gruttadauria, F. Giacalone, John Wiley \& Sons; c) N. Zagrebelny, Russ. Chem. Rev. 2005, 74, 285-296; d) M. T. Reetz, B. Brunner, F. Schnerider, C. M. Schulz, M. M. Clouthier, M. Kayser, Angew. Chem. Int. Ed. 2004, 43, 4075-4078.
 ${ }^{13}$ For general reviews on organometallic catalysis, see: a) S. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek, Chem. Soc. Rev. 2015, 44, 433-448; b) D. Steinborn, Fundamentals of Organometallic Catalysis, 2011, Wiley-VCH, Germany; c) D. Astruc, Organometallic Chemistry and Catalysis, 2007, Springer-Verlag Berlin Heidelberg
 ${ }^{14}$ a) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Ed. Dalko, P. I. 2013. Wiley-VCH; b) Enantioselective Organocatalysis, Ed. Dalko, P. I. 2007. Wiley-VCH; c) Asymmetric Organocatysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Ed. Berkessel, A.; Gröger, H. 2005. Wiley-VCH.
 ${ }^{15}$ a) M. Beller, C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed., Vol. 1-2; Wiley-VCH: Weinheim, 2004; b) G.-Q. Lin, Y.-M. Li, A. C. S. Chan, Principles and Applications of Asymmetric Synthesis; JohnWiley \& Sons: New York, 2001; c) E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive Asymmetric Catalysis, Vol. I-III; Springer:Berlin, 1999.
 ${ }^{16}$ Y. M. A. Yamada, N. Yoshikawa, H. Sasai, M. Shibasaki, Angew. Chem. Int. Ed. Engl. 1997, 36, 18711872.
 ${ }^{17}$ B. M. Trost, H. Ito, J. Am. Chem. Soc. 2000, 122, 12003-12004.
 ${ }^{18}$ For the concept of bifunctional metal complexes see: a) J. Ito, H. Nishiyama, Bifunctional Molecular Catalysis. Topics in organometallic Chemistry, Ed. Springer, Berlin 2011, vol. 37; b) M. Shibasaki, M. Kanai, S. Matsunaga, Acc. Chem. Res. 2009, 42, 1117-1127; c) T. Ikariya, K. Murata, R. Noyori, Org. Biomol. Chem. 2006, 4, 393-406.

[^4]: ${ }^{19}$ M. Shibasaki, M. Kanai, S. Matsunaga, Acc. Chem. Res. 2009, 42, 1117-1127.
 ${ }^{20}$ M. Marigo, A. Kjaersgaard, K. Juhl, N. Gathergood, K. A. Jørgensen, Chem. Eur. J. 2003, 9, 2359-2367.
 ${ }^{21}$ A. Córdova, Acc. Chem. Res. 2004, 37, 102-112.
 ${ }^{22}$ Y. Yamashita, T. Yasukawa, W-J. Yoo, T. Kitanosono, S. Kobayashi, Chem. Soc. Rev. 2018, 47, 43884480.

[^5]: ${ }^{23}$ a) S. Mouri, Z. H. Chen, S. Matsunaga and M. Shibasaki, Chem. Commun., 2009, 5138; b) N. Umebayashi, Y. Hamashima, D. Hashizume and M. Sodeoka, Angew. Chem., Int. Ed., 2008, 47, 4196; c) I. Fukuchi, Y. Hamashima, M. Sodeoka, Adv. Synth. Catal., 2007, 349, 509.
 ${ }^{24}$ K. Zheng, X. Liu, X. Feng, Chem. Rev. 2018, 118, 7586-7656.
 ${ }^{25}$ H. Sasai, E. Emori, T. Arai, M. Shibasaki, Tetrahedron Lett. 1996, 37, 5561-5564

[^6]: ${ }^{26}$ B. Alcaide, P. Almendros, Angew. Chem. Int. Ed. 2003, 42, 858-859.
 ${ }^{27}$ For reviews on some representative metal-catalyzed reactions including α-functionalization reactions, see: a) see ref: 22; b) N. Kumagai, M. Kanai, H. Sasai, ACS Catal., 2016, 6, 4699-4709; c) S. Matsunaga, M. Shibasaki, Chem. Commun., 2014, 50, 1044-1057; d) A. M. R. Smith. K. K. Hii, Chem. Rev. 2011, 111, 1637-1656; e) H. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed., 2005, 44, 1924-1942.
 ${ }^{28}$ S. Yamasaki, T. Iida, M. Shibasaki, Tetrahedron Lett. 1999, 40, 307-310.
 ${ }^{29}$ C. Palomo, M. Oiarbide, J. M. García, Chem. Soc. Rev. 2012, 41, 4150-4164.
 ${ }^{30}$ N. Yoshikawa, N. Kumagai, S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki, M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 2466-2467.

[^7]: ${ }^{31}$ a) B. M. Trost, H. Ito, E. R. Silcoff, J. Am. Chem. Soc. 2001, 123, 3367-3368. For Mannich reactions of α-hydroxyketones promoted by the same catalyst, see: b) B. M. Trost, L. M. Terrell, J. Am. Chem. Soc. 2003, 125, 338-339.
 ${ }^{32}$ Mannich reaction: a) S. Matsunaga, N. Kumagai, S. Harada, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 4712-4713. Aldol reaction: b) N. Kumagai, S. Matsunaga, T. Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 2169-2178. Michael addition: c) S. Harada, N. Kumagai, T. Kinoshita, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2003, 125, 2582-2590.

[^8]: ${ }^{33}$ a) B. M. Trost, J. S. Tracy, T. Saget, Chem. Sci., 2018, 9, 2975-2980; b) B. M. Trost, M. J. Bartlett, Acc. Chem. Res., 2015, 48, 688-701.
 ${ }^{34}$ For general examples of C-C bond formation using amides and esters, see: a) Y.-J. Yiang, G.-P. Zhang, J.-Q. Huang, D. Chen, C.-H. Ding, X.-L. Hou, Org. Lett. 2017, 19, 5932-5935; b) Y. Yamamoto, H. Suzuki, Y. Yasuda, A. Iida, K. Tomioka, Tetrahedron Lett. 2008, 49, 4582; c) K. Zhang, Q. Peng, X.-L. Hou, Y.-D. Wu, Angew. Chem. Int. Ed. 2008, 47, 1741-1744; d) D.A. Oare, M. A. Henderson, M. A. Sanner, C. H. Heathcock, J. Org. Chem. 1990, 55, 132-157; e) H. Fujieda, M. Kanai, T. Kambara, A. Iida, K. Tomioka, J. Am. Chem. Soc. 1997, 119, 2060-2061.

[^9]: ${ }^{35}$ a) N. Kumagai, M. Shibasaki, Synthesis, 2019, 51, 185-193; b) N. Kumagai, M. Shibasaki, Chem. Eur. J. 2016, 22, 15192-15200; c) H. Suzuki, I. Sato, Y. Yamashita, S. Kobayashi, J. Am. Chem. Soc. 2015, 137, 4336-4339.
 ${ }^{36}$ A. Mielgo, C. Palomo, Beilstein J. Org. Chem. 2016, 12, 918-936.

[^10]: ${ }^{37}$ a) N. M. Hewlett, C. D. Hupp, J. J. Tepe, Synthesis 2009, 17, 2825-2839; b) J. S. Fisk, R. A. Mosey, J. J. Tepe, Chem. Soc. Rev. 2007, 36, 1432-1440.
 ${ }^{38}$ J. Alemán, A. Minelli, S. Cabrera, E. Reyes, K. A. Jørgensen, Chem. Eur. J. 2008, 14, 10958-10966.
 ${ }^{39}$ a) B. M. Trost, K. Hirano, Angew. Chem. Int. Ed. 2012, 51, 6480-6483; b) D. Zhao, L. Wang, D. Yang, Y. Zhang, R. Wang, Angew. Chem. Int. Ed. 2012, 51, 7523-7527; c) B. M. Trost, K. Dogra, M. J. Franzini, J. Am. Chem. Soc. 2004, 126, 1944-1945.
 ${ }^{40}$ T.-C. Wang, Z.-Y. Han, P.-S. Wang, H.-C. Lin, S.-W. Luo, L.-Z. Gong, Org. Lett. 2018, 20, 4740-4744. For oxazol-4-(5H)-ones and thiazol-4-(5H)-ones, see: b) W. Chen, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 377-382;

[^11]: ${ }^{41}$ T. Hellmuth, W. Frey, R. Peters, Angew. Chem. Int. Ed. 2015, 54, 2788-2791.
 ${ }^{42}$ Z. Wang, Z. Yang, D. Chen, X. Liu, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2011, 50, 4928-4932.
 ${ }^{43}$ Y. Jie, Y.-L. Ding, S.-S. Niu, J.-T. Ma, Y. Chen, J. Org. Chem. 2018, 83, 1913-1923.
 ${ }^{44}$ a) Z.-Y. Cao, J. Zhou, Org. Chem. Front. 2015, 2, 849-858; b) K. Shen, X. Liu, L. Lin, X. Feng, Chem. Sci. 2012, 3, 327-334.
 ${ }^{45}$ C. Segovia, A. Lebrêne, V. Levacher, S. Oudeyer, J.-F. Brière, Catalysis, 2019, 131.
 ${ }^{46}$ D. Sureshkumar, Y. Kawato, M. Iwata, N. Kumagai, M. Shibasaki, Org. Lett. 2012, 14, 3108-3111.
 ${ }^{47}$ L. Yan, X. Wu, H. Liu, L. Xie, Z. Jiang, Mini-Reviews Med. Chem. 2013, 13, 845-853.
 ${ }^{48}$ a) X. Jusseau, L. Chabaud, C. Guillou, Tetrahedron 2014, 70, 2595-2615; b) C. Schneider, F. Abels, Org. Biomol. Chem. 2014, 12, 3531-3543; c) G. Casiraghi, L. Battistini, C. Curti, G. Rassu, F. Zanardi, Chem. Rev. 2011, 111, 3076-3154; d) S. E. Denmark, J. R. Heemstra, G. L. Beutner, Angew. Chem. Int. Ed. 2005, 44, 4682-4698.
 ${ }_{50}^{49}$ L. Zhou, L. Lin, J. Ji, M. Xie, X. Liu, X. Feng, Org. Lett. 2011, 13, 3056-3059.
 ${ }^{50}$ For a review, see: J. Lauberteaux, D. Pichon, O. Baslé, M. Mauduit, R. Marcia de Figuereido, J.-M. Campagne ChemCatChem, 2019, 11, 5705-5722.

[^12]: ${ }^{51}$ For reviews, see: a) S. Nakamura, M. Sano, A. Toda, D. Nakane, H. Masuda Chem. Eur. J. 2015, 21, 3929-3932; b) S. Nakamura, Org. Biomol. Chem. 2014, 12, 394-405; c) Z.-L. Wang, Adv. Synth. Catal. 2013, 355, 2745-2755; d) L. Bernardi, M. Fochi, M. Comer Franchini, A. Ricci, Org. Biomol. Chem. 2012, 10, 2911-2922; e) C.-H. Tan, Y. Pan Synthesis 2011, 13, 2044-2053.
 ${ }_{53}^{52}$ J. Wang, J. Chen, C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2012, 51, 2382-2386.
 ${ }_{54}^{54}$ D. A. Evans, C. W. Downey, J. L Hubbs, J. Am. Chem. Soc. 2003, 125, 8706-8707.
 ${ }^{54}$ M. Iwata, R. Yazaki, I. H. Chen, D. Sureshkumar, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2011, 133, 5554-5560.

[^13]: ${ }^{55}$ For Mannich reaction, see: a) S. Harada, S. Handa, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed. 2005, 44, 4365-4368. For Aldol reaction, see: b) B. M. Trost, D. J. Michaelis, M. I. Truica, Org. Lett. 2013, 15, 4516-4519; c) B. M. Trost, W. M. Seganish, C. K. Chung, D. Amans, Chem. Eur. J. 2012, 18, 29482960.
 ${ }^{56}$ A recent contribution involving 7-azaindolynthioamides: a) R. Pluta, Z. Li, N. Kumagai, M. Shibasaki, DOI: 10.1021/acs.orglett.9b04120. For aldol reactions, see: b) K. Weidner, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2014, 53, 6150-6154; c) K. Weidner, Z. Sun, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2015, 54, 6236-6240; d) H. Noda, F. Amemiya, K. Weidner, N. Kumagai, M. Shibasaki, Chem. Sci. 2017, 8, 3260-3269; e) A. Matsuzawa, H. Noda, N. Kumagai, M. Shibasaki, J. Org. Chem. 2017, 82, 8304-8308; f) Z. Liu, T. Takeuchi, R. Pluta, F. Arteaga, N. Kumagai, M. Shibasaki, Org. Lett. 2017, 19, 710-713. For Mannich reactions, see: g) Z. Sun, K. Weidner, N. Kumagai, M. Shibasaki Chem. Eur. J. 2015, 21, 17574-17577; h) L. Brewitz, F. Arteaga, L. Yin, K. Akigiri, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2015, 137, 15929-15939.
 ${ }^{57}$ For α-allylation, see: B. M. Trost, D. K. Michaelis, J. Charpentier, J. Xu, Angew. Chem. Int. Ed. 2012, 51, 204-208.
 ${ }^{58}$ For α-allylation, see: E. J. Alexy, T. J. Fulton, H. Zhang, B. M. Stolz, Chem. Sci. 2019, 10, 5996-6000.
 ${ }^{59}$ For α-amination, see: a) S. Lin, Z. Lin, J. Org. Chem. 2019, 84, 12399-12407; b) X. Fu, H.-Y. Bai, G.-D. Zhu, Y. Huang, S.-Y. Zhang, Org. Lett. 2018, 20, 3469-3472.
 ${ }^{60}$ For α-allylation, see: P. Starkov, J. T. Moore, D. C. Duquette, B. M. Stolz, I. Marek, J. Am. Chem. Soc. 2017, 139, 9615-9620.
 ${ }^{61}$ For aldol reactions, see: a) N. Yoshikawa, M. Shibasaki, Tetrahedron 2002, 58, 8289. b) B. M. Trost, F. Miege J. Am. Chem. Soc. 2014, 136, 3016-3019. For Mannich reaction, see: c) E. Hernando, R. Gómez Arrayás, J. C. Carretero Chem. Commun. 2012, 48, 9622-9624. For Michael reaction, see: d) X.-F. Bai, L. Li, Z. Xu, Z.-J. Zheng, C.-G. Xia, Y.-M. Cui, L.-W. Xu Chem. Eur. J. 2016, 22, 10399-10404. For $\alpha-$ allylation, see: e) X. Huo, J. Fu, X. He, J. Chen, F. Xie, W. Zhang, Chem. Comm. 2018, 54, 599-602; f) X. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am. Chem. Soc. 2018, 140, 2080-2084; g) X. Huo, R. He, J. Fu, J. Zhang, G. Yang, W. Zhang, J. Am. Chem. Soc. 2017, 139, 9819-9822.

[^14]: ${ }^{62}$ Classification proposed by Langebek in 1994. For more information, see: a) A. Berkessel, H. Groger, Asymmetric Organocatalysis. From Biomimetic Concepts to Applications in Asymmetric Synthesis (Chapter 2), 2005, Wiley-VHC; b) J. L. Vicario, D. Badia, L. Carrillo, E. Reyes, Organocatalytic Enantioselective Conjugate Addition Reactions. A Powerful Tool for the Stereocontrolled Synthesis of Complex Molecules, 2010, RSC. For a classification based on the acid/base character of the catalysts, see: c) J. Seayad, B. List, Org. Biomol Chem. 2005, 3, 719-724.
 ${ }^{63}$ a) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511-3522; b) D. Enders, O. Niemeier, A. Henseler, Chem.Rev. 2007, 107, 5606-5655; c) N. Marion, S. Diez-Gonzalez, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
 ${ }^{64}$ For the pioneering work with chiral isothioureas, see: a) J. Merad, J.-M. Pong, O. Chuzel, C. Bressy, Eur. J. Org. Chem. 2016, 5589-5610; b) V. B. Birman, X. Li, Org. Lett. 2006, 8, 1351-1354;
 ${ }^{65}$ a) E. L. Myers, O. Illa, M. A. Shaws, S. L. Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841-5883; b) M. J. Gaunt, C. C. C. Johanson, Chem. Rev. 2007, 107, 5596-5605; c) S. France, D. J. Guerin, S. J. Miller, T. Lectka, Chem. Rev. 2003, 103, 2985-3012.
 ${ }^{66}$ a) V. Declerck, J. Martínez, F. Lamaty, Chem. Rev. 2009, 109, 1-48; b) P. R. Krishna, R. Sachwani, P. S. Reddy, Synlett, 2008, 2897-2912; c) G. Masson, C. Housseman, J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 4614-4628; d) Y.-L. Shi, Eur. J. Org. Chem. 2007, 2905-2916; e) D. Basavaiah, K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581-1588.
 ${ }^{67}$ a) V. Declerck, J. Martinez, F. Lamaty, Chem. Rev. 2009, 109, 1-48; b) P. R. Krishna, R. Sachwani, P. S. Reddy, Synlett, 2008, 2897-2912; c) G. Masson, C. Housseman, J. Zhu, Angew. Chem. Int. Ed. 2007, 46, 4614-4628; d) Y.-L. Shi, M. Shi, Eur. J. Org. Chem. 2007, 2905-2916; e) D. Basavaiah, K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581-1588.

[^15]: ${ }^{68}$ a) M. Frohn, Y.Shi, Synthesis, 2000, 1979-2000; b) S. E. Denmark, Z. Wu, Synlett, 1999, 847-859.
 ${ }^{69}$ For reviews on aminocatalysis see: a) B. M. Paz, H. Jiang, K. A. Jørgensen, Chem. Eur. J. 2015, 21, 1846-1853; b) M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A. Jørgensen, Chem. Commun. 2011, 47, 632-649; c) A. Dondoni, A. Massi, Angew. Chem. Int. Ed. 2008, 47, 4638-4660. d) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138-6171. e) S. Mukherjee, J. W. Yang, S. Hoffman, B. List, Chem. Rev. 2007, 107, 5471-5569.
 ${ }^{70}$ a) P. Melchiorre, Angew. Chem. Int. Ed. 2009, 48, 1360-1363; b) H.-Y. Young, J.-B. Hung, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004-7005; c) T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science, 2007, 322, 77-80.
 ${ }^{71}$ For the first example of dienamine catalysis, see: S. Bertelsen, M. Marigo, S. Brandes, P. Diner, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973-12980.
 ${ }^{72}$ For the first example of trienamine catalysis, see: Z.-J. Jia, H. Jiang, J.-L. Li, B. Gschwend, Q.-Z. Li, X. Yin, J. Grouleff, Y. C. Chen, K. A. Jørgensen, J. Am. Chem. Soc. 2011, 133, 5053-5061.
 ${ }^{73}$ For general reviews of iminium ion catalysis, see: a) J. B. Brazier, N. C. O. Tomkinson, Top. Curr. Chem. 2010, 291, 281-347; b) G. Bartoli, P. Melchiorre, Synlett, 2008, 12, 1759-1772; c) P. M. Pihko, I. Majander, A. Erkkila, Chem. Rev. 2007, 107, 5416-5470; d) G. Lelais, D. W. C. MacMillan, Aldrichimica Acta, 2006, 39, 79-87.
 ${ }^{74}$ B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395-2396.
 ${ }^{75}$ I. Ojima, Catalytic Asymmetric Synthesis, Ed. John Wiley \& Sons, New York, 2010.

[^16]: ${ }^{76}$ Science of Synthesis: Asymmetric Organocatalysis 1 Lewis Base and Acid Catalysis, Ed. B. List 2012. Thieme.

[^17]: ${ }^{77}$ For general reviews on hydrogen-bonding catalysis: a) Y. Nishikawa Tetrahedron Lett. 2018, 59, 216223; b) A. Doyle, E. N. Jacobsen Chem. Rev. 2007, 107, 5713-5743; c) P. R. Schreiner Chem. Soc. Rev. 2003, 32, 289-296; d) M. S. Taylor, E. N. Jacobsen Angew. Chem. Int. Ed. 2006, 45, 1520-1543.
 ${ }^{78}$ For general reviews on Brønsted acid catalysis: a) C. Min, D. Seidel, Chem. Soc. Rev. 2017, 46, 58895902; b) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047-9153; c) T. Akiyama, J. Itoh, K. Fuchibe Adv. Synth. Catal. 2006, 348, 999-1010; d) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe Angew. Chem. Int. Ed. 2004, 43, 1566-1568.
 ${ }^{79}$ For a general review on Ion-Pairing catalysis that includes anion binding, phase transfer, cation binding and chiral anion directed catalysis, see: a) K. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534561; For a general review on anion-binding catalysis, see: b) M. D. Visco, J. Attard, Y. Guan, A. E. Matson, Tetr. Lett. 2017, 58, 2623-2628.
 ${ }^{80}$ For general reviews on Brønsted base catalysis: a) B. Teng, W. C. Lim, C. H. Tan Synlett, 2017, 28, 1272-1277; b) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications; (Ed.: P. I. Dalko), Wiley-VCH, Weinheim, Vol. 1-3, 2013; c) Asymmetric Organocatalysis 1, Brønsted Base and Acid Catalysis, and Additional Topics (Ed: K. Maruoka), Thieme, Stuttgart, 2012; d) Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysis, and Additional Topics (Ed.: B. List), Thieme, Stuttgart, 2012; e) A. Ting, J. M. Gross, N, T. McDougal, S. E. Schaus, Top. Curr. Chem. 2010, 291, 145200; f) I. Ojima, Catalytic Asymmetric Synthesis, Ed. John Wiley and Sons, New York, 2010; g) C. Palomo, M. Oiarbide, R. Lopez, Chem. Soc. Rev. 2009, 38, 632.
 ${ }_{81}^{81}$ T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int. Ed. 2004, 126, 5356-5357.
 ${ }^{82}$ D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356-5357.
 ${ }^{83}$ a) T. Akiyama and K. Mori, Chem. Rev. 2015, 115, 9277-9306; b) M. Rueping, D. Parmar and E. Sugiono, Asymmetric Brønsted Acid Catalysis, Wiley-VCH Verlag GmbH \& Co.KGaA, 2015, pp. 5-86.
 c) M. Rueping, A. Kuenkel and I. Atodiresei, Chem. Soc. Rev. 2011, 40, 4539-4549; d) M. Terada, Synthesis 2010, 1929-1982; e) T. Akiyama, Chem. Rev. 2007, 107, 5744-5758.40; f) H. Yamamoto and K. Futatsugi, Angew. Chem., Int. Ed. 2005, 44, 1924-1942.39.

[^18]: ${ }^{84}$ I. Felker, G. Pupo, B. List, Angew. Chem. Int. Ed. 2015, 54, 1960-1964.
 ${ }^{85}$ For general reviews on phase transfer catalysis: a) J. Tan, N. Yasuda, Org. Process Res. Dev. 2015, 19, 1731-1746; b) S. Shirakawa, S, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312-4348; c) O. Takashi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 23, 4222-4266; d) K. Maruoka, O. Takashi, Chem. Rev. 2003, 103, 3013-3028.
 ${ }^{86}$ U.-H. Dolling, P. Davis, E. J. J. Grabowski, J. Am. Chem. Soc. 1984, 106, 446-447.
 ${ }^{87}$ K. Maruoka, T. Ooi, T. Kano, Chem. Commun. 2007, 1487-1495.

[^19]: ${ }^{88}$ a) M. B. Andrus, E. J. Hicken, J. C. Stephens, Org. Lett. 2004, 6, 2289-2292. b) A. E. Nibbs, A.-L. Baize, R. M. Herter, K. A. Scheidt, Org. Lett. 2009, 11, 4010-4013.
 ${ }^{89}$ Enantioselective Amino Acid Synthesis by Chiral PTC, see: a) S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312.4348; b) K. Maruoka, Chem. Rec. 2010, 10, 254-259; c) K. Maruoka, Chem. Rec. 2010, 10, 254-259; d) T. Hashimoto, K. Maruoka, Chem Rev. 2007, 107, 5656-5682; e) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222-4266; f) M. J. O’Donnell, Acc. Chem. Res. 2004, 37, 506517; g) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013-3028.
 ${ }^{90}$ For reviews on organocatalytic reactions promoted by chiral Brønsted bases, see ref 80 .

[^20]: ${ }^{91}$ For pioneering examples of soft enolization, see: a) M. W. Rathke, P. J. Cowan, J. Org. Chem. 1985, 50,2622-2624; b) M. W. Rathke, M. Nowak, J. Org. Chem. 1985, 50, 2624-2626; c) R. E. Tirpak, R. S. Olsen, M. W. Rathke, J. Org. Chem. 1985, 50, 4877-4879.
 ${ }_{92}$ Guanidines are considered superbases, due to the stability of their conjugate acids. For reviews on guanidines in asymmetric synthesis, see: a) D. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488-507; b) T. Ishikawa, T. Kumamoto, Synthesis 2006, 737-752; c) T. Ishikawa, T. Isobe, Chem. Eur. J. 2002, 8, 553557; d) D. Mailhol, M. M. Coquerel, J. Rodriguez, Adv. Synth. Catal. 2012, 354, 3523-3532.
 ${ }^{93}$ For a review on imidazole catalysts in asymmetric synthesis, see: Z. Zhang, F. Xie, J. Jia, W. Zhang, J.Am. Chem. Soc. 2010, 132, 15939-15941 and references therein.

[^21]: ${ }^{94}$ a) S. Nagy, G. Dargó, P. Kisszéleky, Z. Fehrér, A. Simon, J. Barabás, T. Höltzl, B. Mátravölgyi, L. Kárpáti, L. Drahos, P. Huszthy, J. Kupai, New. J. Chem. 2019, 43, 5948-5959; b) Y. Nishikawa, Tetrahedron Lett. 2018, 59, 216-223.

[^22]: ${ }^{95}$ T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672-12673.
 ${ }^{96}$ T. Okino, Y. Hoashi, T. Furakawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119-125.
 ${ }^{97}$ Pápai proposed that the nucleophile coordinates to the NH-bonds of the thiourea moiety and the nitrostyrene is activated by the protonated tertiary amine, based on DFT studies: a) A. Hamza, G. Schubert, T. Soós, I. Pápai J. Am. Chem. Soc. 2006, 128, 13151-13160. Later Zhong reported a modified proposal based on DFT studies, stating that the proton in ortho position of the aromatic ring in a similar thiourea type catalyst also participates in the activation of the nucleophile in the conjugate addition of a cyclic ketoester to nitrosyrenes, see Figure 12, B2. Further evidence of the participation of this proton was provided by Schreiner and co-workers, based on IR, NMR, ESI and DFT studies: b) K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann, S. Guenther, P. R. Schreiner, Eur. J. Org. Chem. 2012, 5919-5927.

[^23]: ${ }^{98}$ a) S. H. McCoey, S. J. Connon Angew. Chem. Int. Ed. 2005, 44, 6367-6370. b) J. Ye, D. J. Dixon, P. S. Hynes Chem. Commun. 2005, 4481-4483. c) B. Vakulya, S. Varga, A. Csámpai, T. Soós Org. Lett. 2005, 7, 1967-1969.
 ${ }^{99}$ J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416-14417.
 ${ }^{100}$ For reviews on squaramide-based catalysts see: a) B.-L. Zhao, J.-H. Li, S.-M. Du, Chem. Rec. 2017, 17, 994-1018; b) X. Han, H.-B. Zhou, C. Dong, Chem. Rec. 2016, 16, 897-906; c) J. Alemán, H. Jiang, K. A. Jørgensen, Chem. Eur. J. 2011, 17, 6890-6899.
 ${ }^{101}$ For a review on squaramide-catalyzed domino and tandem reactions see: P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal. 2015, 357, 254-281.
 ${ }^{102}$ M. Rombola, V.-H. Rawal, Org. Lett. 2018, 20, 514-517.
 ${ }^{103}$ T. Okino, Y. Hoashi, T. Fukurawa, X. N. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119-125

[^24]: ${ }^{104}$ a) S. Tomàs, R. Prohens, M. Vega, M. C. Rotger, P. M. Deyá, A. Costa, J. Org. Chem. 1996, 61, 9394 9401. b) T. Okino, Y. Hoashi, T. Fukurawa, X. N. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119125.
 ${ }^{105}$ a) S. Diosdado, J. Etxabe, J. Izquierdo, A. Landa, A. Mielgo, I. Olaizola, R. López, C. Palomo, Angew. Chem. Int. Ed. 2013, 52, 11846-11851.
 ${ }^{106}$ For further utility of these catalysts, see: a) I. Bastida, M. San Segundo, R. López, C. Palomo Chem. Eur. J. 2017, 23, 13332-13336; b) H. Echave, R. López, C. Palomo Angew. Chem Int. Ed. 2016, 55, 3364-3368; c) S. Diosdado, R. López, C. Palomo, Chem. Eur. J. 2014, 20, 6526-6531.
 ${ }^{107}$ For Model A, see a) ref. 96; For Model B1, see: b) see ref. 97a; For Model B2, see: c) B. Tan, Y. Lu, X. Zeng, P. J. Chua, G. Zhong Org. Lett. 2010, 12, 2682-2695 (based on DFT studies). For Model C (based on DFT and NMR studies), see: d) J.-L. Zhu, Y. Zhang, C. Liu, A.-M. Zheng, W. Wang, J. Org. Chem. 2012, 77, 9813-9825.

[^25]: ${ }^{108}$ a) A. Kolarovic, A. Käslin, H. Wennemers, Org. Lett. 2014, 16, 4236-4239; b) Y. Arakawa, S. P. Fritz, H. Wennemers, J. Org. Chem.2014, 79, 3937-3945; c) O. D. Eng, S. P. Fritz, A. Käsling, H. Wennemers, Org. Lett. 2014, 16, 5454-5457.
 ${ }^{109}$ a) O. D. Engl, S. P. Fritz, H. Wennemers, Angew. Chem. Int. Ed. 2015, 54, 8193-8197; b) A. Bahlinger, S. P. Fritz, H. Wennemers, Angew. Chem. Int. Ed. 2014, 53, 8779-8783.
 ${ }^{110}$ a) H.Y Bae, S. Some, J. S. Oh, Y. S. Lee, C. E. Song, Chem. Commun. 2011, 47, 9621-9623; b) J. Luo, L.-W. Xu, R.A.S. Hay, Y. Lu, Org. Lett. 2009, 11, 437-440; c) Z.-H. Zhang, X.-Q. Dong, D. Chen, C.-J. Wang, Chem. Eur. J. 2008, 14, 8780-8783; d) S. H. McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367-6370; e) J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481-4483.
 ${ }^{111}$ J. Wang, H. Li,L. Zu,W. Jiang, H. Xie, W. Duan, W. Wang, J. Am. Chem. Soc. 2006, 128, 12652-12653.

[^26]: ${ }^{112}$ a) A. L. Tillman, J. Ye, D. J. Dixon, Chem. Commun. 2006, 1191-1193. b) J. Song, Y. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 6048-6049.
 ${ }^{113}$ a) H. Konishi, T. Y. Lam, J. P. Lamerich, V. H. Rawal, Org. Lett. 2010, 12, 2028-2031; b) S. Saaby, M. Bella, K.A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 8120-8121.
 ${ }^{114}$ S. Meninno, T. Fuoco, C. Tedesco, A. Lattanzi, Org. Lett. 2014, 16, 4746-4749.
 ${ }^{115}$ R. Cano, A. Zakarian, G. P. McGlacken, Angew. Chem. Int. Ed. 2017, 56, 9278-9290.
 ${ }^{116}$ X.-Q. Dong, H.-L.Teng, M.-C. Tong, H. Huang, H.-Y. Tao, C.-J. Wang, Chem. Commun. 2010, 46, 6840-6842.
 ${ }^{117}$ Q. Guo, J C.-G. Zhao, Org. Lett. 2013, 5, 508-511.

[^27]: ${ }^{118}$ For reviews on vinylogous addition reactions, see: a) C. Schneider, F. Abels, Org. Biomol. Chem. 2014, 12, 3531-3543; b) G. Casiraghi, L. Battistini, C. Curti, G. Rassu, F. Zanardi, Chem. Rev. 2011, 111, 30763154. c) S. E. Denmark, J. R. Heemstra, G. L. Beuter, Angew. Chem. Int. Ed. 2005, 44, 4682-4698.
 ${ }^{119}$ For reviews, see: a) V. Marcos, J. Alemán, Chem. Soc. Rev. 2016, 45, 6812-6832; b) I. D. Jurberg, I. Chatterjee, R. Tannerta, P. Melchiorre, Chem. Commun. 2013, 49, 4869-4883.
 ${ }^{120}$ For reviews, see: a) X. Jusseau, L. Chabaud, C. Guillou, Tetrahedron 2014, 70, 2595-2615. b) Q. Zhang, X. Liu, X. Feng, Curr. Org. Synth. 2013, 10, 764-785.
 ${ }^{121}$ a) I. Iriarte, O. Olaizola, S. Vera, I. Gamboa, M. Oiarbide, C. Palomo, Angew. Chem. Int. Ed. 2017, 56, 8860-8864; b) T. Campano, I. Iriarte, O. Olaizola, J. Etxabe, A. Mielgo, I. Ganboa, J. M. Odriozola, J. M. Garcia, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 4390-4397; c) I. Urruzuno, O. Mugica, G. Zanella, S. Vera, E. Gómez-Bengoa, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 9701-9709; d) I. Urruzuno, O. Mugica, M. Oiarbide, C. Palomo, Angew. Chem. Int. Ed. 2017, 56, 2059-2063.
 ${ }^{122}$ a) I. Olaizola, T. E. Campano, I. Iriarte, S. Vera, A. Mielgo, J. M. Garcia, J. M. Odriozola, M. Oiarbide, C. Palomo, Chem. Eur. J. 2018, 24, 3893-3901. Another example involving α-hydroxyketones as nucleophiles in organocatalysis: b) P. Wang, H.-F. Li, J.-Z. Zhao, Z.-H. Du, C.-S. Da, Org. Lett. 2017, 19, 2634-2637.

[^28]: ${ }^{123}$ a) A.-N. Alba, R- Ríos, Chem.-Asian J. 2011, 6, 720-734; b) R. A. Mosey, J. S. Fisk, J. J. Tepe, Tetrahedron: Asymmetry 2008, 19, 2755-2762.
 ${ }^{124}$ For the first organocatalytic asymmetric reaction with these substrates, see: a) D. Uraguchi, K. Koshimoto, T. Ooi, Chem. Commun. 2010, 46, 300-302. Other organocatalytic reactions: b) X. Liu, L. Deng, H. Song, H. Jia, R. Wang, Org. Lett. 2011, 13, 1494-1497; c) X. Liu, H. Song, Q. Chen, W. Li, W. Yin, M. Kai, R. Wang, Eur. J. Org. Chem. 2012, 6647-6655; d) D. Uraguchi, K. Yamada, T. Ooi, Angew. Chem. Int. Ed. 2015, 54, 9954-9957
 ${ }^{125}$ Applications in organocatalysis: a) A. Morita, T. Misaki, T. Sugimura Tetrahedron. Lett. 2015, 56, 264267; b) T. Wang, Z. Yu, D.-L. Hoon, K.-W. Huang, Y. Lan, Y. Lu Chem. Sci. 2015, 6, 4912-4922; c) S. Duan. S. Li, N.-N. Du, C.-H. Tan, Z. Jiang J. Org. Chem. 2015, 80, 7770-7778; d) Q. Liu, B. Qiao, K. F. Chin, C.-H. Tan, Z. Jiang Adv. Synth. Catal. 2014, 356, 3777-3783; e) A. Morita, T. Misaki, T. Sugimura Chem. Lett. 2014, 43, 1826-1828; f) M. Xu, B. Qiao, S. Duan, H. Liu, Z. Jiang Tetrahedron 2014, 70, 86968702; g) B. Qiao, Y. An, Q. Liu, W. Yang, H. Liu, J. Shen, L. Yan, Z. Jiang Org. Lett. 2013, 15, 23582361 ; h) N. Lu, H. Wang Int. J. Quantum Chem 2013, 113, 2267-2276; i) Z. Han, W. Yang, C.-H. Tan Adv. Synth. Catal. 2013, 355, 1505-1511; j) N. Jin, T. Misaki, T. Sugimura Chem. Lett. 2013, 42, 894-896; k) H. Huang, K. Zhu, W. Wu, Z. Jin, J. Ye Chem. Commun. 2012, 48, 461-463; 1) T. Misaki, N. Jin, K. Kawano, T. Sugimura Chem. Lett. 2012, 1675-1677; m) T. Misaki, N. Jin, K. Kawano, T. Sugimura J. Am. Chem. Soc. 2011, 133, 5695-5697; n) T. Misaki, G. Takimoto, T. Sugimura J. Am. Chem. Soc. 2010, 132, 62866287.
 ${ }^{126}$ J. Etxabe, J. Izquierdo, A. Landa, M. Oiarbide, C. Palomo, Angew. Chem. Int. Ed. 2015, 54, 6883-6886.
 ${ }^{127}$ T. Wang, Z. Yu, D. L. Hoon, K.-W. Huang, Y. Lan, Y. Lu, Chem. Sci. 2015, 6, 4912-4922.
 ${ }^{128}$ a) J. Izquierdo, N. Demurget, A. Landa, T. Brinck, J. M. Mercero, P. Dinér, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 12431-12438; b) J. Izquierdo, J. Etxabe, E. Duñabeitia, A. Landa, M. Oiarbide, C. Palomo, Chem. Eur. J. 2018, 24, 7217-7227.
 ${ }^{129}$ H. Xu, T.-C. Kang, F. Sha, X.-Y. Wu, Org. Biomol. Chem. 2018, 16, 5780-5787.
 ${ }^{130}$ a) R. W. Foster, E. N. Lenz, N. S. Simpkins, D. Stead, Chem. Eur. J. 2017, 23, 8810-8813; b) A. Cabanillas, C. D. Davies, L. Male, N. S. Simpkins, Chem. Sci. 2015, 6, 1350-1354.
 ${ }^{131}$ a) see Ref 45; b) S. Del Pozo, S. Vera, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2017, 139, 1530815311

[^29]: ${ }^{132}$ a) D. A. Alonso, S. Kitagaki, N. Utsumi, C. F. Barbas III, Angew. Chem. Int. Ed. 2008, 47, 4588-4591; b) S. Duce, M. Jorge, I. Alonso, J. L. G. Ruano, M. B. Cid, Eur. J. Org. Chem. 2013, 7067-7075; c) P.-Y. Géant, M. Urban, M. Remes, I. Císarova, J. Veselý, Eur. J. Org. Chem. 2013, 7979-7988; d) A. Claraz, G. Sahoo,D. Berta, A. Madarász, I. Pápai, P. M. Pikho, Angew. Chem. Int. Ed. 2016, 55, 669-673; e) S. Li, E. Zhang, J. Feng, X. Li, Org. Chem. Front. 2017, 4, 2301-2305.
 ${ }^{133}$ a) J. Guang, A. J. Larson, J. C. G. Zhao, Adv. Synth. Catal. 2015, 357, 523-529; b) M. C. Kohler, J. M. Yost, M. R. Garnsey, D. M. Caltart, Org. Lett. 2010, 12, 3376-3379..
 ${ }^{134}$ Mannich reaction involving α-Styrylacetates: Guang, S. Rout, M. Bihani, A. J. Larson, H. D. Arman, J. C.-G. Zhao, Org. Lett. 2016, 18, 2648-2651.

[^30]: ${ }^{135}$ A recent example in Diels-Alder reaction: a) J. Quin, Y. Zhang, C. Liu, J. Zhou, R. Zhan, W. Chen, H. Huang, Org. Lett. 2019, 21, 7337-7341; b) S. Agrawal, N. Molleti, V. K. Singh, Chem. Commun. 2015, 51, 9793-9796 ; c) T. Ze, X.-B. Wang, F. Sha, X.-Y. Wu, J. Org. Chem. 2014, 79, 4332-4339; d) B. Tan, G. Hernández-Torrez, C. F. Barbas III, Angew. Chem. Int. Ed. 2012, 51, 5381-5385.
 ${ }^{136}$ L. Wu, G. Li, Q. Fu, L. Yu, Z. Tang, Org. Biomol. Chem. 2013, 11, 443-447.
 ${ }^{137}$ a) J. Guang, J. C.-G. Zhao, Tetrahedron Lett. 2013, 54, 5703-5706. b) J. Guang, Q. Guo, J. C.-G. Zhao, Org. Lett. 2012, 14, 3174-3177.

[^31]: ${ }^{138}$ a) W. Wen, L. Chen, M.-J. Luo, Y. Zhang, Y.-C. Chen, Q. Ouyang, Q.-X. Guo, J. Am. Chem. Soc. 2018, 140, 9774-9780; b) A. Guerrero-Corella, F. Esteban, M. Iniesta, A. Martín-Somer, M. Parra, S. Díaz.Tendero, A. Fraile, J. Alemán, Angew. Chem. Int. Ed. 2018, 57, 5350-5354.
 ${ }^{139}$ For reviews, see: a) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, $2745-2759$; b) J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593-4623; c) M. Bella, T. Caspery, Synthesis 2009, 1583 -1614; d) P. G. Cozzi, R. Hilgraf, N. Zimmerman, Eur. J. Org. Chem. 2007, 5969-5614; e) B. M. Trost, C. Jiang, Synthesis 2006, 369- 396; f) Quaternary Stereocenters (Eds: J. Christoffers, A. Baro) Wiley-VCH, Weinheim, 2005; g) C. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 5363 -5367.

[^32]: ${ }^{140}$ For reviews, see: a) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, $2745-2759$; b) J. P. Das, I. Marek, Chem. Commun. 2011, 47, 4593-4623; c) M. Bella, T. Caspery, Synthesis 2009, 1583 -1614; d) P. G. Cozzi, R. Hilgraf, N. Zimmerman, Eur. J. Org. Chem. 2007, 5969-5614; e) B. M. Trost, C. Jiang, Synthesis 2006, 369- 396; f) Quaternary Stereocenters (Eds: J. Christoffers, A. Baro) Wiley-VCH, Weinheim, 2005; g) C. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 5363 -5367.
 ${ }^{141}$ a) A. I. Meyers, L. Snyder, J. Org. Chem. 1993, 58, 36-42; b) C. M. Moody, D. W. Young, Tetrahedron Lett. 1994, 35, 7277-7280; c) B. Rigo, D. Fasseur, N. Cherepy, D. Couturier, Tetrahedron Lett. 1989, 30, 7057-7060; d) G. Poli, S. C. Baffoni, G. Giambastiani, G. Renginato, Tetrahedron 1998, 54, 10403-10418.

[^33]: ${ }^{142}$ H.-L. Zhu, J.-B. Ling, P.-F. Xu, J. Org. Chem. 2012, 77, 7737-7743.
 ${ }^{143}$ Y. Lu, Y. Zhou, L. Lin, H. Zheng, K. Fu, X. Liu, X. Feng, Chem. Commun. 2016, 52, 8255-8258.
 ${ }^{144}$ S. Zhang, Y.-C. Luo, X.-Q. Hu, Z.-Y. Wang, Y.-M. Liang, P.-F. Xu, J. Org. Chem. 2015, 80, 72887294.
 ${ }^{145}$ a) S. Zhang, X.-Q. Hu, Z.-Y. Wang, P.-F. Xu, Synthesis 2015, 47, 2529-2537; b) X. B. Chen, L. Zhu, L. Fanf, S. Y. Yan, J. Lin, RSC Adv. 2014, 4, 9926-9934.

[^34]: ${ }^{146}$ For a review on the use of β-lactams in α - and β-amino acid synthesis, see: C. Palomo, J. M. Aizpurua, I. Gamboa, M. Oiarbide, Synlett 2001, 12, 1813-1826.

[^35]: ${ }^{147}$ For reviews, see: a) D. Seebach, J. Gardiner, Acc. Chem. Res. 2008, 41,1366-1375; b) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219 - 3232.
 ${ }^{148}$ P. L. Southwick, E. F. Barnas, J. Org. Chem. 1962, 27, 98-106.

[^36]: ${ }^{149}$ This part is described in: E. Badiola, Doctoral Thesis, " α-Oxy enones and pyrrolidin-2,3-diones as efficient new templates in asymmetric organocatalytic Michael reactions", EHU/UPV, 2016, 142.

[^37]: ${ }^{150}$ A. Y. Hong, B. M. Stolz, Eur. J. Org. Chem. 2013, 2745-2759

[^38]: ${ }^{151}$ B. M. Trost, J. E. Schultz, Synthesis, 2019, 51, 1-30.

[^39]: 152 a) B. M. Trost, G. M. Schroeder, Chem. Eur. J. 2005, 11, 174-184; b) R. Kuwano, K. Uchida, Y. Ito, Org. Lett. 2003, 5, 2177-2179; c) B. M. Trost, G. M. Schroeder, J. Kristensen, Angew. Chem. Int. Ed. 2002, 41, 3492-3495; d) S.-L. You, X.-L. Hou, L.-X. Dai, X.-Z. Zhu, Org. Lett. 2001, 3, 149-151; e) S.-L. You, X.-L. Hou, L.-X. Dai, B.-X. Cao, J. Sun, Chem. Commun. 2000, 1933-1934; f) R. Kuwano, Y. Ito, J. Am. Chem. Soc. 1999, 121, 3236-3237; g) B. M. Trost, G. M. Schroeder, J. Am. Chem. Soc. 1999, 121, 67596760; h) B. M. Trost, X. Ariza, Angew. Chem. 1997, 109, 2749-2751; Angew. Chem. Int. Ed. Engl. 1997, 36, 2635-2637; i) B. M. Trost, R. Radinov, E. M. Grenzer, J. Am. Chem. Soc. 1997, 119, 7879-7880; j) M. Sawamura, M. Sudoh, Y. Ito, J. Am. Chem. Soc. 1996, 118, 3309-3310; k) M. Sawamura, H. Nagata, H. Sakamoto, Y. Ito, J. Am. Chem. Soc. 1992, 114, 2586-2592; 1) T. Hayashi, K. Kanehira, T. Hagihara, M. Kumada, J. Org. Chem. 1988, 53, 113-120.
 ${ }^{153}$ M. Yoshida, J. Org. Chem. 2017, 82, 12821-12826.

[^40]: ${ }^{166}$ Adapted from: J.-Y. Lee, J.J. Miller, S.S. Hamilton, M.S. Sigman, Org. Lett. 2005, 7, 1837-1839.

[^41]: ${ }^{167}$ http://macro.lsu.edu/howto/solvents/Polarity\%20index.htm

[^42]: ${ }^{168}$ For the first step：a）M．R．Davis，E．K．Singh，H．Wahyudi，L．D．Alexander，J．B．Kunicki，L．A． Nazarova，K．A．Fairweather，A．M．Giltrap，K．A．Jolliffe，S．R．McAlpine，Tetrahedron 2012，68，1029－ 1051；b）M．M．Zhao，W．F．Li，X．Ma，W．Z．Fan，X．M．Tao，X．M．Li，X．M．Xie，Z．G．Zhang，Sci．China． Chem．2013，56，342－348．For the second step：B．P．Zavesky，S．L．Bartlett，J．S．Johnson，Org．Lett．2017， 19，2126－2129．
 ${ }^{169}$ B．M．Trost，J．Xi，J．Am．Chem．Soc．2005，127，17180－17181．

[^43]: 170 a) H. Kricheldorf, α-Amino Acid-N-Carboxyanhydrides and related Heterocycles, Springer, 1997. For recent examples from b-amino acids, see: b) J. G. Hernández, E. Juaristi, J. Org. Chem. 2010, 75, 7107 7111.

[^44]: ${ }^{171}$ a) S. Abele, D. Seebach, Eur. J. Org. Chem. 2000, 1-15; b) B. Weiner, W. Szymánsky, D. B. Janssen, A. J. Minnaand, B. L. Feringa, Chem. Soc. Rev. 2010, 39, 1656-1691.
 ${ }^{172}$ E. Badiola, I. Olaizola, A. Vázquez, S. Vera, A. Mielgo, C. Palomo Chem. Eur. J. 2017, 23, 8185-8195.

[^45]: ${ }_{173}$ J.-S. Yu, H. Noda, M. Shibasaki, Angew. Chem. Int. Ed. 2018, 57, 818-822.
 174 a) N. V. Shymanska, J. G. Pierce, Org. Lett. 2017, 19, 2961-2964. b) A. Q. Cusumano, M. W. Boudreau, J. G. Pierce, J. Org. Chem. 2017, 82, 13714-13721.

[^46]: ${ }^{175}$ P. Rajput, A. Sharma, J. Pharmacol. Med. Chem. 2018, 2, 22-31.
 ${ }^{176}$ a) Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, A. B. Hughes Ed.; Wiley-VCH, 2011; b) Asymmetric Synthesis and Application of α-Amino Acids; Soloshonok, V. A.; Izawa, K., Eds.; American Chemical Society: Washington DC, 2009.
 ${ }^{177}$ a) R. Saladino, G. Bot-taa, M. Crucianelli, Mini-Rev. Med. Chem. 2012, 12, 277-300; b) C. Nájera, J. M. Sansano, Chem. Rev. 2007, 107, 4584-4671.

[^47]: ${ }^{178}$ a) M. J. O’Donnell, T. M. Eckrich, Tetrahedron Lett. 1978, 19, 4625-4628. For reviews, see: b) M. K. O’Donnel, Tetrahedron 2019, 75, 3667-3696; c) A. Jakubowska, K. Kulig, Current Org. Synthesis 2013, 10, 547-563.
 ${ }^{179}$ For nucleophilic reactivities of Schiff base derivatives of amino acids, see: D. S. Timofeeva, A. R. Ofial, H. Mayr, Tetrahedron 2019, 75, 459-463.
 ${ }^{180}$ For enantioselective amino acid synthesis by metal catalysis: a) Y. Wang, X. Song, J. Wang, H. Moriwaki, V. A. Soloshonok, H. Liu, Amino Acids 2017, 49, 1487-1520; b) J. Adrio, J. C. Carretero, Chem. Comтип. 2011, 47, 6784-6794.
 ${ }^{181}$ Enantioselective amino acid synthesis by chiral PTC, see: a) S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 4312.4348; b) K. Maruoka, Chem. Rec. 2010, 10, 254-259; c) K. Maruoka, Chem. Rec. 2010, 10, 254-259; d) T. Hashimoto, K. Maruoka, Chem Rev. 2007, 107, 5656-5682; e) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222-4266; f) M. J. O’Donnell, Acc. Chem. Res. 2004, 37, 506517; g) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013-3028.
 ${ }^{182}$ A 1,3-dipolar cycloaddition of azomethyine ylides with nitroalkenes promoted by a bifunctional BB with low enantiocontrol: M.-X. Xue, X.-M Zhang, L.-Z. Gong, Synlett, 2008, 691-694.
 ${ }^{183}$ Z. Ziora, M. Skwarczynski, Y. Kiso, Amino Acids, Peptides and Proteins in Organic Chemistry (Ed.: A. B. Hughes), Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2011, 4, 189-245.
 ${ }^{184}$ C. M. Gasparski, M. J. Miller, Tetrahedron 1991, 47, 5367-5378.
 ${ }^{185}$ a) T. Ooi, M. Taniguchi, M. Kaweda, K. Maruoka, Angew. Chem. Int. Ed. 2002, 41, 4542-4647; b) T. Ooi, M. Kaweda, M. Taniguchi, K. Maruoka, J. Am. Chem. Soc. 2004, 126, 9685-9694; c) S. Mettath, G. S. C. Srikanth, B. S. Dangerfields, S. L. Castle, J. Org. Chem. 2004, 69, 6489-6492.

[^48]: ${ }^{186}$ N. Yoshikawa, M. Shibasaki, Tetrahedron 2002, 58, 8289-8298.

[^49]: ${ }^{187}$ J. B. MacMillan, T. F. Molinski, Org. Lett. 2002, 4, 1883-1886.
 ${ }^{188}$ a) B. M. Trost, F. Miege, J. Am. Chem. Soc. 2014, 136, 3016-3019. For racemic syn-selective aldol reaction, see: b) S. Lou, A. Ramirez, D. A. Conlon, Adv. Synth. Catal. 2015, 357, 28-34.
 ${ }^{189}$ S. Kobayashi, R. Yazaki, K. Seki, Y. Yamashita, Angew. Chem. Int. Ed. 2008, 47, 5613-5615.
 ${ }^{190}$ A. Guerrero-Corella, F. Esteban, M. Iniesta, A. Martín-Somer, M. Parra, S. Díaz-Tendero, A. Fraile, J. Alemán, Angew. Int. Chem. Ed. 2018, 57, 5350-5354
 ${ }^{191}$ W. Wen, L. Chen, M.-J. Luo, Y. Zhang, Y.-C. Chen, Q. Ouyang, Q.-X. Guo, J. Am. Chem. Soc. 2018, 140, 9774-9780.

[^50]: ${ }^{192}$ For electrophile activation, see: a) T. Inokuma, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2006, 128, 9413-9419; b) G. Talavera, E. Reyes, J. L. Vicario, L. Carrillo, Angew. Chem. Int. Ed. 2012, 51, 41044107; c) E. Badiola, B. Fiser, E. Gómez-Bengoa, A. Mielgo, I. Olaizola, I. Urruzuno, J. M. Garcia, J. M. Odriozola, J. Razkin, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2014, 136, 17869-17881. For nucleophile activation, see: a) P. Wang, H.-F. Li, J.-Z. Zhao, Z.-H. Du, C.-S. Da, Org. Lett. 2017, 19, 2634-2637; b) I. Olaizola, T. E. Campano, I. Iriarte, S. Vera, A. Mielgo, J. M. García, J. M. Odriozola, M. Oiarbide, C. Palomo, Chem. Eur. J. 2018, 24, 3893-3901.

[^51]: ${ }^{193}$ a) L. Skulski, J. Org. Chem. 1963, 28, 3565-3567; b) J. R. Bartel-Keith, R. F. W. Cieciuch, Can. J. Chem. 1968, 46, 2593-2600.
 ${ }^{194}$ S. Darvesh, R. S. McDonald, K. V. Darvesh, D. Mataija, S. Mothana, H. Cook, K. M. Carneiro, N. Richard, R. Walsh, E. Martinic, Bioorg. Med. Chem. 2006, 14, 4586-4599.

[^52]: 195 D. T. S. Rijkers, H.P.H.M. Adams, H. Coenraad Hemker, G. I. Tesser, Tetrahedron 1995, 51, 1123511250.
 ${ }^{196}$ The hydrogen bond in the solid state: T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48-76.
 ${ }^{197}$ First amide donor in organocatalysis: a) B. Tan, G. Hernández-Torres, C. F. Barbas III, Angew. Chem. Int. Ed. 2012, 51, 5381-5385; Angew. Chem. 2012, 124, 5477-5481. For amides in metal catalysis: b) N. Kumagai, M. Shibasaki, Chem. Eur. J. 2016, 22, 15192-15200; c) N. Kumagai, M. Shibasaki, Synthesis, 2019, 51, 185-193.

[^53]: ${ }^{198}$ The formation of this product was not observed at $0{ }^{\circ} \mathrm{C}$ or lower.

[^54]: ${ }^{199}$ Adapted from: a) Á. Pintér, G. Haberhauer, I. Hyla-Kryspin, S. Grimme, Chem. Commun. 2007, 37113713; b) L.-H. Chan, E. G. Roschow, J. Organomet. Chem. 1967, 9, 231-250 c) S. Zhang, W. E. Piers, X. Gao, M. Parvez, J. Am. Chem. Soc. 2000, 122, 5499-5509.

[^55]: ${ }^{200}$ O. Verho, M. Pourghasemi Lati, M. Oschmann, J. Org. Chem. 2018, 83, 4464-4476.

[^56]: ${ }^{201}$ L. Fischer, G. Guichard Org. Biomol. Chem. 2010, 8, 3101-3117.
 ${ }^{202}$ a) I. Saraogi, A. D. Hamilton Chem. Soc. Rev. 2009, 38, 1726-1743; b) Foldamers: Structure, Properties and Applications, ed. S. Hecht, I. Huc Wiley-VCH, Weinheim, 2007; c) C. M. Goodman, S. Choi, S. Shandler, W. F. DeGrado Nat. Chem. Biol. 2007, 3, 252-262; d) I. Huc Eur. J. Org. Chem. 2004, 17-29; e) D. Seebach, A. K. Beck, D. J. Bierbaum Chem. Biodiversity 2004, 1, 1111-1239; f) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore Chem. Rev. 2001, 101, 3893-4012g) S. H. Gellman Acc. Chem. Res. 1998, 31, 173-180.

[^57]: ${ }^{203}$ a) B. Baptiste, F. Godde, I. Huc ChemBioChem 2009, 10, 1765-1767; b) A. D. Bautista, C. J. Craig, E. A. Harker, A. Scherpartz Curr. Opin. Chem. Biol. 2007, 11, 685-692
 ${ }^{204}$ W. S. Horne, S. H. Gellman Acc. Chem. Res. 2008, 41, 1399-1408.
 ${ }^{205}$ a) E. J. Robertson, A. Battigelli, C. Proulx, R. V. Mannige, T. K. Haxton, L. Yun, S. Whitelam, R. N. Zuckermann Acc. Chem. Res. 2016, 49, 379-389; b) J. Sun, X. Jiang, R. Lund, K. H. Downing, N. P. Balsara, R. N. Zuckerman Proc. Natl. Sci. U.S.A., 2016, ASAP Online (2016); c) R. V. Mannige, T. K. Haxton, C. Proulx, E. J. Robertson, A. Battigelli, G. L. Butterfoss, R. N. Zuckermann, S. Whitelam, Nature, 2015, 526, 415-420.
 ${ }^{206}$ V. Martin, B. Legrand, L. Vezenkov, M. Berthet, G. Subra, M. Calmès, J. L. Bantignies, J. Martinez, M. Amblard Angew. Chem. Int. Ed. 2015, 54, 13966-13970.

[^58]: ${ }^{207}$ a) B. Lewandowski, H. Wennemers Curr. Opin. Chem. Biol. 2014, 22, 40-46; b) E. A. Colby Davie, S. M. Mennen, Y. Xu, S. J. Miller Chem. Rev. 2007, 107, 5759-5812.
 ${ }^{208}$ D. Bécart, V. Diemer, A. Salaün, M. Oiarbide, Y. Reddy Nelli, B. Kauffmann, L. Fischer, C. Palomo, G. Guichard J. Am. Chem. Soc. 2017, 139, 12524-12532.

[^59]: ${ }^{209}$ C.Aisenbrey, N. Pendem, G. Guichard, B. Bechinger, Org. Biomol. Chem., 2012, 10, 1440-1447.

[^60]: ${ }^{211}$ Armanego, W. L. F.; Perrin, D. D. Purification of laboratory Chemicals, $3^{\text {rd }}$ Edition ButterworthHeinemann, Oxford, 1988.

[^61]: ${ }^{212}$ B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967-1969.
 ${ }^{213}$ K. Greenaway, P. Dambruoso, A. Ferrali, A. J. Hazelwood, F. Sladojevich, D. J. Dixon, Synthesis 2011, 12, 1880-1886.
 ${ }^{214}$ W. Yang, M. U. Du, Org. Lett. 2010, 12, 5450-5453.
 ${ }^{215}$ J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416-14417.
 ${ }^{216}$ I. Urruzuno, O. Mugica, M. Oiarbide, C. Palomo, Angew. Chem. Int. Ed. 2017, 56, 2059-2063.
 ${ }^{217}$ W. Yang, D.-M. Du, Adv. Synth. Catal. 2011, 353, 1241-1246.
 ${ }^{218}$ K. Hu, A. Lu, Y. Wang, Z. Zhou, C. Tang, Tetrahedron: Asymm 2013, 24, 953-957.
 ${ }^{219}$ Y. Kurimoto, T. Nasu, Y. Fuji, K. Asano, S. Matsubara, Org. Lett. 2019, 21, 2156-2160.
 ${ }^{220}$ L. Jiao, X. Zhao, H. Liu, X. Ye, Y. Li, Z. Jiang, Org. Chem. Front. 2016, 3, 470-474.
 ${ }^{221}$ Prepared following the methodology described for ureidopeptide catalysts. For more details, see: S. Rodriguez, doctoral thesis, Asymmetric α-Functionalization of Barbituric Acids via Brønsted Base Catalysis. EHU/UPV, 2018 (https://www.ehu.eus/es/web/gicas/tesiak).

[^62]: ${ }^{222}$ Prepared following the methodology described for ureidopeptide catalysts. For more details, see: H. Echave, doctoral thesis, α-Keto Amides in Brønsted-Base Mediated Stereoselective Aldol and Mannich reactions: Access to Chiral Polyfunctionalized Scaffolds. EHU/UPV, 2017 (https://www.ehu.eus/es/web/gicas/tesiak).
 ${ }^{223}$ H. Y. Bae, S. Some, J. H. Lee, J.-Y. Kim, M. J. Song, S. Lee, Y. J. Zhang, C. E. Song, Adv. Synth. Catal. 2011, 353, 3196-3202.
 ${ }^{224}$ Z. Zhang, Z. Bao, H. Xing, Chem. Eur. J. 2012, 18, 8464-8473.
 ${ }^{225}$ Adapted from: H. Brunner, J. Büegler, B. Nuber, Tetrahedron: Asymmetry, 1995, 6, 1699-1702.

[^63]: ${ }^{226}$ J. Gonzalez-Sabin, V. Gotor, F. Rebolledo, Chem. Eur. J. 2004, 10, 5788-5794.
 ${ }^{227}$ J. Shirai, S. Morimoto,H. Sugiyama, N. Sakauchi, T. Yoshikawa PCT Int. Appl., 2008133344, 06 Nov 2008.

[^64]: ${ }^{228}$ Adapted from: Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal, Chem. Commun. 2010, 46, 3004-3006.

[^65]: ${ }^{229}$ Adapted from: L. Mao, Z. Wang, Y. Li, X. Han, W. Zhou Synlett 2011, 1, 129-133.

[^66]: ${ }^{230}$ P. Lan, Jr. J. A. Porco, M. S. South, J. J. Parlow, Comb. Chem. 2003, 5, 660 -669.

[^67]: ${ }^{231}$ I. Bastida, M. San Segundo, R. López, C. Palomo, Chem. Eur. J. 2017, 23, 13332-13336.
 ${ }^{232}$ S. Diosdado J. Etxabe, J. Izquierdo, A. Landa, A. Milego, I. Olaizola, R. López, C. Palomo, Angew. Chem. Int. Ed. 2013, 52, 11846-11851.

[^68]: ${ }^{233}$ B. M. Trost, D. L. Van Vranken, C. Bingel J. Am. Chem. Soc. 1992, 114, 9327-9343.
 ${ }^{234}$ Adapted from: J.-Y. Lee, J.J. Miller, S.S. Hamilton, M.S. Sigman Org. Lett. 2005, 7, 1837-1839.

[^69]: ${ }^{235}$ J. E. Beddow, S. G. Davies, K. B. Ling, P. M. Roberts, A. J. Russell, A. D. Smith, J. E. Thomson, Org. Biomol. Chem. 2007, 5, 2812-2825.
 ${ }^{236}$ D. Howton, J. Org. Chem 1945, 10, 4, 277-282.

[^70]: ${ }^{237}$ H. Zhang, Y. Zhang, L. Liu, H. Xu, Y. Wang, Synthesis 2005, 13, 2129-2136.
 ${ }^{238}$ J. Escalante, M. Carrillo-Morales, I. Linzaga, Molecules 2008, 13, 340-347.

[^71]: ${ }^{239}$ H. E. Bartrum, H. Adams, L. Caggiano, R. F. W. Jackson, Tetrahedron 2008, 64, 3701-3712.
 ${ }^{240}$ H. Rangel, M. Carrillo-Morales, J. M. Galindo, E. Castillo, A. Obregón-Zúñiga, E. Juaristi, J. Escalante, Tetrahedron: Asymmetry 2015, 26, 325-332.

[^72]: ${ }^{241}$ See ref 237

[^73]: ${ }^{242}$ P. Steunenberg, M. Sijm, H. Zuilhof, J. P. M. Sanders, E. L. Scott, M. C. R. Franssen, J. Org. Chem. 2013, 78, 3802-3813.
 ${ }^{243}$ O. I. Lukashov, P. V. Kazakov, N. S. Mirzabekova, Pharmaceut. Chem. J. 2015, 49, 51-54.
 ${ }^{244}$ Y. Guindon, Z. Liu, Z. Jung, J. Am. Chem. Soc. 1997, 119, 9289-9290.
 ${ }^{245}$ J. Včelák, J. Čermák, M. Czakóová, J. Storch, J. Mol. Catal. A-Chem. 2006, 259, 41-45.

[^74]: ${ }^{246}$ M．R．Davis，E．K．Singh，H．Wahyudi，L．D．Alexander，J．B．Kunicki，L．A．Nazarova，K．A． Fairweather，A．M．Giltrap，K．A．Jolliffe，S．R．McAlpine，Tetrahedron 2012，68，1029－1051
 ${ }^{247}$ M．－M．Zhao，W．F．Li，X．Ma，W．Z．Fan，X．M．Tao，X．M．Li，X．M．Xie，Z．G．Zhang，Sci．China． Chem．2013，56，342－348．

[^75]: ${ }^{248}$ B. P. Zavesky, S. L. Bartlett, J. S. Johnson, Org. Lett. 2017, 19, 2126-2129.
 ${ }^{249}$ For ketoester synthesis: D. Becerra, W. Raimondi, T. Constantieux, D. Bonne, J. Rodriguez, Synthesis 2017, 49, 195-201.

[^76]: ${ }^{250}$ S. L. Bartlett, K. M. Keiter, B. P. Zavesky, J. S. Johnson, Synthesis 2019, 51, 203-212.
 ${ }^{251}$ D. Tejedor, L. Cotos, F. García-Tellado Org.Lett. 2011, 13, 4422-4425.

[^77]: ${ }^{252}$ R. Peters, M. Althaus, A.-L. Nagy Org. Biomol. Chem. 2006, 4, 498-509.
 ${ }^{253}$ Prepared according to the described procedures: a) M. Lüthy, K. Schenk, P. Renaud Chem. Eur. J. 2010, 16, 10171-10177; b) X. Wang, B. List Angew. Chem. Int. Ed. 2008, 47, 1119-1122

[^78]: ${ }^{254}$ R. Newton, S. P. Marsden Synthesis 2005, 19, 3263-3270.
 ${ }^{255}$ P. Duhamel, L. Duhamel, J.L. Klein Bulletin de la Societe Chimique de France 1973, 2, 2517-2521.
 ${ }^{256}$ M. Baode, T. Miao, Y. Sun, Y. He, J. Liu, Y. Feng, H. Chen, Q.-H. Fan Chem. Eur. J. 2014, 20, 9969 9978.

[^79]: ${ }^{257}$ C. Palomo, M. Oiarbide, J. M. García, A. González, E. Arceo J. Am. Chem. Soc. 2003, 125, 1394213943.

[^80]: ${ }_{258}^{258}$ Adapted from: A. Bugarin, K. D. Jones, B. T. Connell Chem. Commun. 2010, 46, 1715-1717.
 ${ }^{259}$ Adapted from: J. M. Aizpurua, C. Palomo, A. L. Palomo Can. J. Chem. 1984, 62, 336-340.
 ${ }^{260}$ S. H. Guo, S. Z. Xing, S. Mao, Y. R. Gao, W. L. Chen, Y. Q. Wang, Tetrahedron Lett. 2014, 55, 67186720.

[^81]: ${ }^{261}$ a) P. Vertelsaljai, P. V. Navaratne, A. J. Grenning, Angew. Chem. Int. Ed. 2016, 55, 317-320; b) N. Kagawa, H. Takabatake, Y. Masuda, Tetrahedron Lett. 2014, 55, 6427-6431.

[^82]: ${ }^{262}$ Adapted from: B. M. Trost, J. Xu, J. Am. Chem. Soc. 2005, 127, 2846-2847.

[^83]: ${ }^{263}$ Adapted from: a) M. Hayashi, L. E. Brown, J. A. Porco, Eur. J. Org. Chem. 2016, 4800-4804; b) C.-X. Zhuo, S.-L. You, Angew. Chem. Int. Ed. 2013, 52, 10056-10059.

