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Abstract
Aim: Freshwater megafauna remain underrepresented in research and conservation, 
despite a disproportionately high risk of extinction due to multiple human threats. 
Therefore, our aims are threefold; (i) identify global patterns of freshwater mega-
fauna richness and endemism, (ii) assess the conservation status of freshwater mega-
fauna and (iii) demonstrate spatial and temporal patterns of human pressure 
throughout their distribution ranges.
Location: Global.
Methods: We identified 207 extant freshwater megafauna species, based on a 30 kg 
weight threshold, and mapped their distributions using HydroBASINS subcatch-
ments (level 8). Information on conservation status and population trends for each 
species was extracted from the IUCN Red List website. We investigated human im-
pacts on freshwater megafauna in space and time by examining spatial congruence 
between their distributions and human pressures, described by the Incident 
Biodiversity Threat Index and Temporal Human Pressure Index.
Results: Freshwater megafauna occur in 76% of the world’s main river basins (level 3 
HydroBASINS), with species richness peaking in the Amazon, Congo, Orinoco, 
Mekong and Ganges-Brahmaputra basins. Freshwater megafauna are more threat-
ened than their smaller counterparts within the specific taxonomic groups (i.e., fishes, 
mammals, reptiles and amphibians). Out of the 93 freshwater megafauna species 
with known population trends, 71% are in decline. Meanwhile, IUCN Red List assess-
ments reported insufficient or outdated data for 43% of all freshwater megafauna 
species. Since the early 1990s, human pressure has increased throughout 63% of 
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1  | INTRODUC TION

Megafauna species have long fascinated humans due to their spec-
tacular appearance (Donlan et al., 2006). Despite this, over the 
past 50,000 years, approximately two-thirds of megafauna species 
have become extinct globally, mainly due to direct anthropogenic 
impacts and climate change (Barnosky, Koch, Feranec, Wing, & 
Shabel, 2004). Furthermore, many remaining megafauna species 
are experiencing range contractions and population declines (Malhi 
et al., 2016; Wolf & Ripple, 2017). This decline and loss of mega-
fauna species and populations can have profound effects on local 
ecosystems, leading to altered habitat conditions for co-occurring 
species, disruption of biogeochemical processes and loss of key eco-
system services (Estes, Heithaus, McCauley, Rasher, & Worm, 2016; 
Estes et al., 2011; Naiman, Bilby, Schindler, & Helfield, 2002; Smith, 
Doughty, Malhi, Svenning, & Terborgh, 2016). To date, research and 
conservation activities have predominantly focused on marine and 
terrestrial megafauna, neglecting those in freshwaters (Cooke et al., 
2013; He et al., 2017).

Freshwaters support a disproportionally large amount of bio-
diversity (approximately 9.5% of all animal species and 35% of all 
vertebrate species, despite covering less than 1% of the earth’s 
surface; excluding wetlands) (Balian, Segers, Lévêque, & Martens, 
2008) and provide a wide range of important services for humans, 
including food supply, water purification, flood regulation, carbon 
sequestration, transportation etc. (Aylward et al., 2005). However, 
freshwater biodiversity is experiencing unprecedented and growing 
pressure from human activities (Dudgeon et al., 2006; Vörösmarty 
et al., 2010). At the same time, the rate of decline of vertebrate pop-
ulations is much higher in freshwaters (81%) than in terrestrial (38%) 
and marine (36%) realms (WWF, 2016). Indeed, one in three fresh-
water species is under threat (Collen et al., 2014).

Large-bodied freshwater species, despite many being well-
known and iconic, are threatened worldwide (e.g., 16 of the 25 stur-
geon species are Critically Endangered; IUCN, 2016) due to intrinsic 
factors such as K-selected life-history characteristics and extrin-
sic pressures. Given the multiple threats they are facing, and their 

susceptibility to extinction, these large-bodied freshwater animals 
are in urgent need of conservation actions (Hogan, 2011; Winemiller, 
Humphries, & Pusey, 2015). Establishing effective conservation 
strategies for freshwater megafauna requires knowledge of their 
distribution patterns, population trends and underlying threats. 
However, there remain key knowledge gaps in the conservation sta-
tus and population trends of freshwater megafauna species (Carrizo 
et al., 2017), and the relationship between global diversity patterns 
of freshwater megafauna and multiple human pressures.

A comprehensive understanding of global freshwater mega-
fauna diversity patterns and their conservation status is also re-
quired to assess their risk of extinction. Spatial congruence analyses 
between species distribution and human pressures may highlight 
potential conflicts between human activities and freshwater mega-
fauna diversity, which will enable identification of basins where 
high biodiversity and intense human pressure coincide (Janse et al., 
2015; Kehoe et al., 2015). Such information will facilitate the de-
velopment of proactive and sustainable conservation strategies 
such as spatial conservation prioritization (Linke, Pressey, Bailey, & 
Norris, 2007).

Building on a previous selection of ambassador freshwater 
megafauna species (Carrizo et al., 2017), we complement the spe-
cies list to include all known extant freshwater megafauna species, 
identify hotspots of freshwater megafauna richness and endemism, 
and assess the global conservation status of these large-bodied ani-
mals. We then demonstrate spatial and temporal patterns of human 
pressures throughout their distribution ranges. Based on our analy-
ses, we emphasise the future challenges of freshwater megafauna 
conservation and provide suggestions for conservation actions in 
different basins.

2  | METHODS

2.1 | Species distribution mapping

We compiled a comprehensive list of 207 extant freshwater mega-
fauna species based on a pre-established 30 kg weight threshold 

their distribution ranges, with particularly intense impacts occurring in the Mekong 
and Ganges-Brahmaputra basins.
Main conclusions: Freshwater megafauna species are threatened globally, with in-
tense and increasing human pressures occurring in many of their biodiversity hot-
spots. We call for research and conservation actions for freshwater megafauna, as 
they are highly sensitive to present and future pressures including a massive boom in 
hydropower dam construction in their biodiversity hotspots.

K E Y W O R D S

conservation, flagship species, freshwater biodiversity hotspot, human impact, size, umbrella 
species
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(Carrizo et al., 2017; He et al., 2017). The species list includes 130 
fishes, 44 reptiles, 31 mammals and 2 amphibians (Table S1). As part 
of the assessments of species extinction risk for the International 
Union for Conservation of Nature (IUCN) Red List of Threatened 
Species (hereafter IUCN Red List), geographic distributions have 
been mapped for many species. Distribution maps for 155 of the 
207 species were obtained from the IUCN Red List website (www.
iucnredlist.org) (IUCN, 2016) and related databases and expert 
sources (e.g., the IUCN Species Survival Commission Specialist 
Groups). The standard spatial layer for IUCN distribution maps is the 
HydroBASINS dataset (version 1b with inserted lakes), which deline-
ates catchments into 12 increasingly fine spatial resolutions using 
a hierarchically-nested approach at the global scale (Lehner & Grill, 
2013). For freshwater biodiversity conservation, using HydroBASINS 
to map their distribution is essential, as management units for fresh-
waters are often delineated at the subcatchment scale (Hermoso, 
Linke, Prenda, & Possingham, 2011). Where a species distribution 
was not mapped to HydroBASINS by IUCN, we converted the exist-
ing range map to the subcatchment (level 8) of the HydroBASINS 
spatial layer. For species with no available map from the IUCN and 
related database (n = 52), we collected species distribution range 
descriptions from other databases (e.g., Fish Base, http://www.fish-
base.org; NatureServe, http://www.natureserve.org), and from pub-
lished literature (Table S2), to generate HydroBASINS distribution 
maps. For each species assessed and mapped for the IUCN Red List, 
“Presence” and “Origin” classifications were provided. “Presence” 
was coded as Extant, Probably Extant, Possibly Extant, Possibly 
Extinct, Extinct (post 1500), or Presence Uncertain, while “Origin” 
was coded as Native, Reintroduced, Introduced, Vagrant, or Origin 
Uncertain (IUCN, 2016). When creating new distribution maps, we 
followed the same approach as Carrizo et al., (2017). Only the native 
and currently extant (i.e., Extant, Probably Extant) ranges of a spe-
cies were considered in this study. We derived species richness and 
threatened richness maps at the subcatchment (level 8) resolution of 
HydroBASINS. We also calculated freshwater megafauna richness 
within major basins such as the Amazon, Congo and Yangtze (level 3 
HydroBASINS). Species restricted to a single, large level 3 basin were 
classified as basin-endemic species.

2.2 | Population trends and conservation status

We obtained population trends and conservation status for 170 
freshwater megafauna species from the IUCN Red List website 
(IUCN, 2016). For the 37 species not assessed for the IUCN Red 
List, we considered their population trends as unknown. In addi-
tion, we also obtained the IUCN Red List Categories of all species 
classified as being freshwater dependent (25,965 species) from 
the underlying database, the IUCN Species Information Service, 
on 5th May 2016. Following the IUCN Red List classification, spe-
cies listed as Critically Endangered, Endangered and Vulnerable 
were considered threatened. For the purposes of this study, we as-
sumed that species listed as Data Deficient have the same propor-
tion of threatened species as those with sufficient data. Therefore, 

the fraction of threatened species was calculated using the follow-
ing equation: 

2.3 | Human pressure on freshwater megafauna

The global spatial distribution and intensity of human impacts on 
freshwater megafauna were derived from the Incident Biodiversity 
Threat Index (IBTI), which combines multiple human stressors on 
freshwater ecosystems, including catchment disturbance, pollu-
tion, river fragmentation, exploitation pressure and invasive spe-
cies (Vörösmarty et al., 2010). However, the IBTI and its layers 
represent a snapshot index of threats at a single point in time. In 
contrast, the Temporal Human Pressure Index (THPI) enables track-
ing of the temporal change in human pressures throughout fresh-
water megafauna distribution ranges. It presents levels of change 
between 1990 and 2010 for variables such as human population 
density, stable nightlight and land use transformation (Geldmann, 
Joppa, & Burgess, 2014). Although the initial purpose of the THPI 
was to track changes in the terrestrial environment, this index pro-
vides valuable information on the pressures facing freshwater eco-
systems (e.g., habitat degradation, pollution), as rivers and lakes 
invariably receive the accumulated impacts of terrestrial based 
human activities throughout their catchments, occupying the low-
est elevations in a landscape. In addition to the main IBTI and THPI 
indices, we analysed two sublayers of the IBTI separately, that is, 
dam density and fishing pressure, which are major threats to many 
freshwater megafauna species (He et al., 2017) but are not repre-
sented by threat layers included in the THPI.

The mean values for each HydroBASINS level 8 subcatch-
ment of both IBTI and THPI were calculated using the zonal sta-
tistics tool in QGIS (Quantum GIS Development Team, 2015). 
Subcatchments with an IBTI value >0.75 were considered to have 
high levels of human pressure according to Vörösmarty et al. 
(2010), while those with a mean THPI value >0 were considered 
as having increased human pressure (Geldmann et al., 2014). 
Concordance maps were plotted to show the spatial relationship 
between freshwater megafauna diversity and human pressure. 
The colour axes were defined using the freshwater megafauna 
species richness and the value of human pressure indices. The 
IBTI, dam density and fishing pressure layers are available online 
(http://riverthreat.net/data.html) and the THPI data were pro-
vided by Geldmann et al. (2014).

3  | RESULTS

3.1 | Distribution and status of freshwater 
megafauna

Freshwater megafauna species occur in 76% of the world’s main river 
basins (level 3 HydroBASINS) (Figure 1a; Figures S1 and S2). The 

% threatened= (Critically Endangered + Endangered + Vulnerable)∕

(total assessed - Extinct - Extinct in theWild -

Data Deficient)

http://www.iucnredlist.org
http://www.iucnredlist.org
http://www.fishbase.org
http://www.fishbase.org
http://www.natureserve.org
http://riverthreat.net/data.html
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Amazon basin exhibits the highest freshwater megafauna richness (35 
species), followed by the Congo (23), Orinoco (23), Mekong (22) and 
Ganges-Brahmaputra (22) basins (Figure S1a; Table S3). Forty-eight 
megafauna species (23% of all species) are endemic, i.e., they occur 
only in a single, large-scale basin (level 3 HydroBASINS). The Amazon 
(five endemic species), Congo (5), Mekong (4) and the Yangtze (4) con-
tain the highest numbers of endemic freshwater megafauna species 
(Table S5).

Of the 93 (45%) freshwater megafauna species with known 
population trends, 71% species are in decline, particularly those 
occurring within the Caspian Sea region, Mekong, Chao Phraya and 
Ganges-Brahmaputra basins (Figure 1c). Sixty-two per cent of fresh-
water megafauna species with stable or increasing population trends 
occur in North America (Figure 1b). The greatest number of fresh-
water megafauna species with unknown population trends (33%) are 
found in South America (Figure 1d).

Compared to all freshwater species assessed for the IUCN Red 
List, freshwater megafauna have a higher proportion of threatened 
species than their smaller counterparts within specific taxonomic 
groups (i.e., fishes, mammals, reptiles, amphibians) (Figure 2). The 
Mekong river basin exhibits the highest number of threatened 
species (15 species), followed by the Ganges-Brahmaputra basin 
(13) (Figures S1b and S3a; Table S3). The proportion of threat-
ened endemic freshwater megafauna species is substantial at 
78% (Table S1). However, according to the IUCN Red List, 43% of 
freshwater megafauna species have insufficient data or data that 

require updating (i.e., they were last assessed more than 10 years 
ago, Table S1).

3.2 | Human pressure on freshwater megafauna

Human pressure varies within the different basins (level 3 
HydroBASINS; Table S3 and S4). The spatial congruence analy-
sis indicates that the megafauna species-rich basins of South and 
Southeast Asia are facing a high level of human pressure (i.e., many 
subcatchments have IBTI values >0.75; Figure 3a). In particular, 
the Mekong, Chao Phraya and Ganges-Brahmaputra basins are ex-
posed to intense pressures from dam construction (Figure 4a) and 
direct exploitation, such as fishing (Figure 4b). In North America, 
freshwater megafauna species in the Mississippi river basin are also 
subject to intense human pressures. The IBTI indicates that total 
human pressure on freshwater megafauna is relatively low in the 
Congo and Amazon river basins (with the exception of the Andean 
Amazon). However, freshwater megafauna species are facing high 
exploitation pressure in the main stem of the Amazon and its major 
tributaries (Figure 4b).

According to the THPI, since the early 1990s, human pressure 
has increased throughout 63% of the global distribution ranges of 
freshwater megafauna. There are noticeable increases in human 
pressure within many subcatchments (i.e., THPI value >20) in mon-
soonal Asia (e.g., upper Yangtze, lower Pearl, Songhua, Red and 
Mahanadi basins), the Niger and Nile basins and in the upper reaches 

F IGURE  1 Species richness of freshwater megafauna (a) overall (b) with increasing or stable, (c) declining and (d) unknown population 
trends [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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of the Paraná river (Figure 3b). On the contrary, human pressure has 
remained constant, or has decreased, in regions such as Siberia (with 
the exception of the Amur basin) and in the Amazon and the Congo 
basins (i.e., most subcatchments with THPI value <5).

4  | DISCUSSION

4.1 | Current status of freshwater megafauna

As observed previously (Carrizo et al., 2017), our study re-
emphasises that freshwater megafauna diversity hotspots are 
located in tropical and subtropical regions. However, freshwater 
megafauna species are threatened globally and have higher extinc-
tion risks than their smaller counterparts. In addition, due to their 
relatively long generation times and complex life cycles (Stone, 
2007), freshwater megafauna are more likely to face delayed ex-
tinctions (i.e., extinction debt), as previously demonstrated for 
other species with long generation times (Kuussaari et al., 2009). 
Thus, freshwater megafauna could still occupy rivers and lakes for 
many years after their reproduction has been disrupted; rendering 
them functionally extinct. Given the rapid degradation of fresh-
water ecosystems, in combination with long generation times and 
complex life cycles, many megafauna species will be at high risk 
of extinction in the future, as the rate of decline in many freshwa-
ter habitats may be too rapid for them to adapt (Winemiller et al., 
2015). The proportion of threatened freshwater megafauna spe-
cies is likely to be underestimated in this study, as it has been sug-
gested that species classified as Data Deficient probably have a 
higher risk of extinction (Bland, Collen, Orme, & Bielby, 2015). This 
is certainly the case for those species inhabiting basins in rapidly 
developing regions of South America and monsoonal Asia.

Moreover, the 48 endemic megafauna species are particularly 
susceptible to extinction due to their restricted distributions. For 
example, those species endemic to the Yangtze basin (Baiji, Lipotes 
vexillifer; Chinese Paddlefish, Psephurus gladius; Yangtze Sturgeon, 

Acipenser dabryanus; Yangtze Finless Porpoise, Neophocaena asiaeori-
entalis ssp. asiaeorientalis) are Critically Endangered or even Critically 
Endangered (Possibly Extinct) due to serious habitat fragmenta-
tion resulting from construction of the Gezhouba, Three Gorges, 
Xiangjiaba and Xiluodu dams, in addition to continuous habitat deg-
radation within the basin (IUCN, 2016).

Our study emphasises the high levels of threat to freshwater 
megafauna and reveals the lack of basic information available on the 
status of many of these species. Although the proportion of freshwa-
ter megafauna species threatened with extinction (54% of all species) 
resembles that of terrestrial megafauna species (59%) (Table S6), all ter-
restrial megafauna species (i.e., carnivores ≥15 kg, herbivores ≥100 kg) 
have been assessed and reassessed for the IUCN Red List (IUCN, 2016; 
Ripple et al., 2016). In contrast, a quarter of freshwater megafauna 
species still lack sufficient information to evaluate their conservation 
status, particularly amongst species occurring in South America (Figure 
S3b). The majority of species with insufficient information or outdated 
assessments are reptiles and fishes, which suggests a bias in survey-
ing towards better-known mammals (Ford, Cooke, Goheen, & Young, 
2017).

4.2 | Human pressure throughout distribution 
ranges of freshwater megafauna

Freshwater megafauna are particularly impacted by water abstrac-
tion and habitat degradation resulting from rapid development (e.g., 
urbanisation, agriculture expansion), associated with human popula-
tion growth and increasing energy demand. This is especially evident 
in monsoonal Asia, where economic growth usually overrides environ-
mental conservation, resulting in increased river fragmentation, wet-
land drainage and pollution (Dudgeon, 2000; Hughes, 2017). Moreover, 
this region is also predicted to suffer high levels of future habitat con-
version (e.g., urban and agricultural expansion) (Oakleaf et al., 2015), 
posing further stress on freshwater megafauna and their habitats.

Although the THPI shows that human impact in both the Amazon 
and Congo basins has not noticeably increased between 1990 and 
2010 (i.e., most subcatchments within the basin have THPI values <5), 
threats to freshwater megafauna species are likely to be underesti-
mated in these basins, due to a dearth of pressure data (Geldmann 
et al., 2014; Joppa et al., 2016). For example, 44.2% of the Amazon 
river basin is already protected (Abell, Lehner, Thieme, & Linke, 2016), 
yet freshwater megafauna species are still subject to habitat destruc-
tion, pollutants released from agriculture, mining and oil spills; par-
ticularly in the Andean Amazon region (Azevedo-Santos et al., 2016; 
Castello et al., 2013). In the Congo river basin, the situation is possibly 
worse, as the protected area coverage is lower (Abell et al., 2016), and 
the basin is experiencing ongoing habitat conversion due to deforesta-
tion and expansion of agricultural activities (Ernst et al., 2013; Zhou 
et al., 2014). The current protected area system is largely designed for 
terrestrial ecosystems and, therefore, provides limited protection for 
freshwaters and their species (Pimm et al., 2014). Even where there is 
a spatial overlap between freshwater megafauna and protected areas 
(Carrizo et al., 2017), little to no targeted management is provided 

F IGURE  2 Proportion of threatened freshwater megafauna 
(black) and other threatened freshwater species (grey) (total and 
within four taxonomic groups)
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when developing action plans. In addition, hydrological connectivity 
within catchments leaves freshwater megafauna more susceptible 
to disturbances originating beyond the boundaries of the protected 
areas (e.g., dams and sources of pollution in upstream areas), further 
reducing their effectiveness (Pringle, 2001). A greater focus is needed 
on the design and management of protected areas to provide greater 
protection for freshwater species, as demonstrated to be effective in 
some cases (Britton et al., 2017).

While the THPI and IBTI identify many of the same areas as being 
subject to intense human pressures (e.g., Songhua river basin, lower 
Yangtze river basin, upper stretches of the Paraná river), there are 
marked differences between the two indicator values in other re-
gions (e.g., Mekong and Ganges-Brahmaputra basins, Caspian Sea 
and Black Sea regions) (Figure 3; Table S3). This is likely due to the 
use of different pressures within the indices. For example, the THPI–
initially designed to track changes in human pressures on terrestrial 

habitats, likely underestimates threats such as harvesting and dam 
construction (Geldmann et al., 2014), which represent major threats 
to many freshwater megafauna species (He et al., 2017) and are in-
cluded in the IBTI. In addition to harvesting pressure and dam con-
struction, freshwater megafauna are also subject to threats such as 
habitat degradation, pollution, invasive species and the potential im-
pact of climate change (He et al., 2017). Some of these threats (e.g., 
habitat degradation and pollution) are often correlated with human 
population density and land-use intensity, which are included within 
the THPI. However, knowledge gaps on the impacts of these threats 
(e.g., impacts of climate change on freshwater megafauna), and lim-
ited data availability at the global scale (e.g., data on invasive species 
in freshwater ecosystems), prevented separate analysis of congru-
ence between these threats and freshwater megafauna diversity.

In the Amazon, Mekong and Ganges-Brahmaputra basins, where 
74 freshwater megafauna species exist, exploitation pressure 

F IGURE  3 Concordance map of freshwater megafauna species richness with (a) IBTI and (b) THPI. Green areas in (b) refer to regions 
with stable or decreased human pressure, while other colours indicate increased human pressure [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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is intense (McIntyre, Liermann, & Revenga, 2016). Although 94 
freshwater megafauna species are listed in the Convention on 
International Trade in Endangered Species of Wild Fauna and Flora 
(CITES), they still face high levels of exploitation driven by a vast de-
mand for consumption as food and for traditional medicine (Alves, da 
Silva Vieira, & Santana, 2008; Cheung & Dudgeon, 2006), alongside 
being caught as bycatch (Raby, Colotelo, Blouin-Demers, & Cooke, 
2011). For instance, freshwater turtles are intensively exploited in 
Asia, with an estimated annual trade of 13,000 tonnes, including 
a number of threatened megafauna species (e.g., the New Guinea 
Giant Softshell Turtle, Pelochelys bibroni, Asian Giant Softshell Turtle, 
Pelochelys cantorii, Asian Narrow-headed Softshell Turtle, Chitra chi-
tra and Indian Narrow-headed Softshell Turtle, Chitra indica) (Cheung 
& Dudgeon, 2006). In the Amazon river basin, unsustainable har-
vesting is common and has led to sharp population declines, and 
in some cases, local extinctions of freshwater megafauna species 
such as the Arapaima, Arapaima spp. and the Amazonian Manatee, 

Trichechus inunguis (Castello, Arantes, McGrath, Stewart, & Sousa, 
2015; Castello et al., 2013). The risk is further compounded, as rarity 
makes these species even more attractive to fishers and collectors, 
thus driving them into an extinction vortex (Courchamp et al., 2006).

At last, one of the greatest rising threats to freshwater species, 
and megafauna in particular, is dam construction. Dams have been 
built along most large rivers (Nilsson, Reidy, Dynesius, & Revenga, 
2005), blocking migratory routes of many mega-fishes (Hogan, 
2011), often resulting in their inability to reach critical spawning 
and feeding grounds. Dams also modify upstream and downstream 
habitat conditions through alterations to the natural flow, sediment 
and thermal regimes, further changing river morphology and habitat 
conditions. The combined impacts of overexploitation and fragmen-
tation by dams have pushed sturgeons in the Yangtze river, Caspian 
Sea and Black Sea regions, as well as many large catfishes in South 
and Southeast Asia, to the verge of extinction (Hogan, 2011; Pikitch, 
Doukakis, Lauck, Chakrabarty, & Erickson, 2005).

F IGURE  4 Concordance map of freshwater megafauna species richness with (a) dam density and (b) fishing pressure [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4.3 | Future challenges for freshwater megafauna 
conservation

Despite the general recognition that freshwater megafauna species 
are facing a disproportionately high level of extinction risk, informa-
tion on their life histories, population dynamics and even taxonomy 
(e.g., Arapaima spp.) remains insufficient for many species, and con-
servation actions are scarce (Carrizo et al., 2017). Such knowledge 
gaps may constrain development of efficient management strate-
gies and implementation of conservation actions (Humphries & 
Winemiller, 2009), with potentially devastating impacts on the future 
survival of many megafauna species. In addition, human pressure on 
freshwaters is likely to grow precipitously (Bunn, 2016), considering 
the rapidly growing economy, increase in human population and sub-
sequent water and energy demands, urban expansion, agricultural 
intensification and the manifold interactions with climate change 
(Vörösmarty, Green, Salisbury, & Lammers, 2000).

Furthermore, over 3,700 major hydropower dams are planned 
or under construction globally, covering key biodiversity hotspots 
for freshwater megafauna (Winemiller et al., 2016; Zarfl, Lumsdon, 
Berlekamp, Tydecks, & Tockner, 2015). With dams widely consid-
ered a source of green energy, this boom in hydropower could be 
further accelerated by the recent Paris climate agreement (Hermoso, 
2017). Thus, the location and operation of new dams requires careful 
consideration and balancing of multiple, often potentially conflict-
ing interests (e.g., biodiversity conservation vs. energy provision) 
(Winemiller et al., 2016; Ziv, Baran, Nam, Rodríguez-Iturbe, & Levin, 
2012). Altered flow regimes and truncated connectivity may not only 
impact migratory fishes, but also mammals and reptiles in down-
stream areas (e.g., the Gahrial, Gavialis gangeticus and the Giant Otter, 
Pteronura brasiliensis). Effective fish passages should be designed that 
not only target jumping fish species such as salmonids, but also facil-
itate the movement of other large migratory fishes such as sturgeons 
and catfishes, when dams are constructed. Furthermore, maintain-
ing environmental flows for downstream reaches will be essential to 
mitigate the negative impacts of dams on freshwater megafauna and 
other species (Poff & Zimmerman, 2010; Sabo et al., 2017).

Although freshwater megafauna species face severe threats, 
there is still an opportunity to prevent their extinction if timely 
conservation actions, based on political will, credible research and 
evidence are undertaken. North America provides a good example, 
where populations of most freshwater megafauna are stable or in-
creasing despite high levels of human pressure (Haxton, Sulak, & 
Hildebrand, 2016; IUCN, 2016). This success results from extensive 
monitoring, well-developed research and conservation actions, and 
public and political will to ensure the persistence of these species.

Our study suggests that the highly threatened, yet poorly 
known, freshwater megafauna are in urgent need of conservation 
action, given the rapidly increasing pressures of global development. 
Impacts on these remarkable species also represent a symptom of 
the unrecognised impacts on the many other freshwater species 
that share their habitats. To facilitate the planning and prioritization 
of conservation actions, we identified basins where high levels of 

freshwater megafauna diversity and severe persistent pressures co-
incide (e.g., the Mekong and Ganges-Brahmaputra basins). Integrated 
catchment management planning must incorporate consideration 
of the ecological requirements of freshwater megafauna, the con-
nectivity of freshwater systems, environmental flows, alongside 
outreach and education programmes for local communities in these 
priority basins. We also highlight hotspots of freshwater megafauna 
diversity with relatively low human pressure and large information 
gaps (e.g., the Amazon and the Orinoco basins), where assessments 
of the status of freshwater megafauna and research on improved 
design of protected areas for freshwater ecosystems should be a 
priority. In addition, management strategies accounting for the life-
history traits of targeted species (e.g., regulations on catch and sale 
during breeding/spawning seasons) are urgently required. As dams 
proliferate globally it is critical that their design and placement bet-
ter avoids or mitigates impacts on freshwater species, particularly 
for the megafauna highlighted in this study. Despite their large size 
and impressive nature, freshwater megafauna remain poorly known 
and continue to decline at an alarming rate throughout many of their 
ranges. To ensure the persistence of these iconic species for future 
generations we should urgently balance the needs of global devel-
opment with those of freshwater megafauna.
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