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Abstract

This dissertation focuses on two main topics: commutators and maximal directional operators.
Our first topic will also distinguish between two cases: commutators of singular integral operators
and BMO functions and commutators of fractional integral operators and a BMO class that comes
from changing the underlying measure. Commutators are not only interesting for its own sake,
but they have been broadly studied because of their connection to PDEs.
Our first result gives us a new way of characterizing the class BMO. Assuming that the commutator
of the Hilbert transform in dimension 1 (or a Riesz transform in dimensions 2 and higher) and the
symbol b satisfy an L logL-type of modular inequality on the endpoint with constant B, we can
bound the BMO norm of the symbol by a fixed multiple of B; thus providing an endpoint version
of the classical result of Coifman, Rochberg and Weiss for commutators of Calderón-Zygmund
operators and BMO.
We also studied commutators of fractional integrals and BMO. In this case, we were interested in
finding quantitave two-weights estimates for the iterated version of these operators. We extended
the known sharp inequalities for the commutator of first order to the iterated case and also provided
a new proof of the previous results.
Lastly, we studied maximal directional operators. Specifically, we considered a singular integral
operator that commutes with translations and studied the maximal directional operator that arises
from it. We proved that for any subset of cardinality N of a lacunary set of directions we can
bound the Lp(Rn)-norm of the operator by the sharp bound

√
logN , thus completing some previous

results on the Hilbert transform on low dimensions.
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Resumen

Esta tesis está centrada en dos temas principales: conmutadores y operadores maximales direc-
cionales. El primer tema a tratar a su vez distinguirá entre dos casos: conmutadores de operadores
de integrales singulares y funciones BMO y conmutadores de operadores de integrales fraccionarias
y una clase de funciones de BMO que formaremos al cambiar la medida considerada. La teoría de
los conmutadores no sólo es interesante por sí misma, sino que también por su relación intrínseca
con la teoría de las EDPs.
Nuestro primer resultado nos proveerá de una nueva forma de caracterizar el espacio BMO. Asum-
iendo que el conmutador de la transformada de Hilbert en dimensión 1 (o de una transformada
de Riesz en dimensiones superiores a 2) y el símbolo b cumple una desigualdad de tipo L logL

en el extremo con constante B, podemos acotar la norma BMO del símbolo por un múltiplo de
la constante B; de esta manera proveyendo una versión en el extremo de un teorema clásico de
Coifman, Rochberg y Weiss para conmutadores de operadores de Calderón-Zygmund y funciones
BMO.
También estudiamos conmutadores de operadores de integrales fraccionarias y BMO. En este caso,
estuvimos interesados en encontrar cotas cuantitativas con dos pesos para la versión iterada de
estos operadores. Extendimos las cotas óptimas conocidas para el caso del conmutador de primer
orden al caso iterado, también dando una nueva prueba de los resultados ya conocidos.
Finalmente, estudiamos operadores maximales direccionales. Específicamente, consideramos oper-
adores de integrales singulares que conmutan con las traslaciones y estudiamos el operador maximal
direccional que se forma a partir de éstos. Probamos que para cualquier subconjunto de cardinal
N de un conjunto de direcciones lagunar podemos acotar la norma Lp(Rn) de este operador por
la constante óptima en términos de la cardinalidad del conjunto de direcciones

√
logN , de esta

manera completando los resultados previos que se habían obtenido para la transformada de Hilbert
en dimensiones bajas.



Introduction

This dissertation is roughly divided into two parts. The first chapters deal with the theory of
commutators of some linear operators and their associated symbols, while the last one is about
maximal directional operators.

Commutators

Take T to be a linear operator acting on some Lp(Rn) space, and b a function (which we will
refer as the symbol), we define the commutator operator as [b, T ]f(x) = b(x)Tf(x)−T (bf)(x). By
iterating this definition, recursively plugging as our operator T the commutator [b, T ], we can form
what we are going to call an iterated commutator or commutator of order k for k an integer and
denote T kb .

Commutators of Calderón-Zygmund operators and BMO

Chapter 2 is devoted to the study of the commutator that arises when we take T to be a Calderón-
Zygmund operator and b a BMO function. This class of operators was considered by Coifman,
Rochberg and Weiss as part of a study on factorization of the real Hardy space H1(Rn). They
proved that the commutator of a Calderón-Zygmund operator and a BMO function is a bounded
map from Lp(Rn) into Lp(Rn) for all 1 < p < ∞. They also proved that if we take the operator
T to be the Riesz transforms, then the condition that the symbol belongs to BMO is necessary
to get boundedness in any Lp(Rn), 1 < p < ∞, thus providing a new way of characterizing the
class BMO. In this dissertation, we focus on the endpoint version of this result: on the one hand,
it was Pérez who realized that the commutator might fail to be of weak type (1, 1) and obtained
the following endpoint inequality

|{x ∈ Rn : |[T, b]f(x)| > t}| ≤
∫
Rn
φ

(
‖b‖BMO|f(x)|

t

)
dx, (0.1)

where φ(t) = t(1 + log+(t)) and log+(t) = max(t, 0). This result opened up two natural questions:
whether we could get the necessity of BMO in this endpoint inequality, and what do we need to
ask of the function b to actually get the commutator to be of weak type (1, 1). The answer to the
first question is the first original contribution of this dissertation and is presented as Theorem 2.3
of Chapter 2.

v
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Theorem A. Let b be a locally integrable function on Rn and T = Rj a Riesz transform, 1 ≤ j ≤ n.

If there exists a constant B such that the commutator [b, Rj ] satisfy the inequality (0.1) for all t > 0

and all f = χE the characteristic function of a measurable set E, then b belongs to BMO.

As for the second question that we posed, we obtained that what we need in order to get that the
weak (1, 1) condition on the commutator is that the function b belongs to L∞(Rn), and that is the
second original contribution of this dissertation and is presented as Theorem 2.2 of Chapter 2.

Theorem B. Let b be a locally integrable function on Rn and T = Rj a Riesz transform, 1 ≤ j ≤ n.

If the commutator [b, Rj ] is of weak type (1, 1) then b ∈ L∞(Rn).

Commutators of fractional integrals and BMO

In Chapter 3 we are going to study two-weight estimates for the commutator of a fractional integral
operator and a symbol b that we will take suitable BMO space. The study of weighted estimates for
commutators of singular integral operators can be traced back to the work of Bloom, who proved
that taking H to be the Hilbert transform, λ, µ ∈ Ap and ν =

(
µ
λ

)1/p, then
‖[H, b]f‖Lp(λ) ≤ C‖f‖Lp(µ)

if and only if b belongs to BMOν , namely b is a locally integrable function such that

‖b‖BMOν = sup
Q

1

ν(Q)

∫
Q

|b− bQ| <∞.

For fractional integral operators the class of weights that is natural to consider is the Ap,q class,
since we know that fractional integrals map Lq(wq) to Lp(wp) if and only if the weight w belongs
to the Ap,q class. Our contribution to this topic is the following result, which can be thought as
the quantitative analogue of Bloom’s theorem can be found as Theorem 3.1 of Chapter 3.

Theorem C. Let 0 < α < n and 1 < p < n
α , q defined by 1

q + α
n = 1

p , k a positive integer. Assume

µ, λ ∈ Ap,q and that ν = µ
λ . If b ∈ BMOν1/k then

‖(Iα)kbf‖Lq(λq) ≤ C(m,n, α, p, [λ]Ap,q , [µ]Ap,q )‖b‖kBMO
ν1/k
‖f‖Lp(µp).

Conversely if for every set E of finite measure we have that

‖(Iα)kbχE‖Lq(λq) ≤ Cµp(E)1/p,

then b ∈ BMOν1/k .

The constant that we have denoted as C(m,n, α, p, [λ]Ap,q , [µ]Ap,q ) will be given explicit in terms
of the Ap,q constants of the weights λ and µ. Observe also that if we take the weights to be λ = µ

we arrive at yet another characterization of the space BMO.
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Maximal directional operators

In Chapter 4 we study a different class of operators that we will form by considering a one di-
mensional operator acting along a line in some n-dimensional Euclidean space, and then taking a
supremum as the line changes through a set of directions. In this dissertation we are going to care
about two types of questions of the theory of maximal directional operators: the first one is about
getting some structure on the set of directions so as to have the operator Lp-bounded, and the
second one is trying to get sharp bounds of the Lp-norm of the operator in terms of the number of
directions (in this case we are implicitly assuming that the set of directions we are considering has
finite cardinality). In this dissertation, we study the maximal directional operator that arises from
translation invariant singular integrals; specifically if V is a set of directions in the sphere Sn−1 we
define

TV f(x) := sup
v∈V

∣∣∣∣∫
Rn
m(v · ξ)f̂(ξ)eix·ξdξ

∣∣∣∣ , x ∈ Rn,

where m is a Mikhlin-Hörmander multiplier. If we try to address the two questions that we
mentioned for this operator, we immediately bump into a result by Łaba, Marinelli and Pramanik
that tells us that for the Hilbert transform and V any set of finite cardinality we have the lower
bound ‖HV ‖Lp(Rn)→Lp(Rn) & (log #V )

1
2 . This result tells us at the same time that we cannot

expect boundedness of the operator whenever the set of directions is infinite and it gives us a
candidate for a sharp bound in terms of the cardinality of the set of directions. Our contribution
is the following theorem, that proves that if we have some structure on the set of directions then
we can bound the maximal directional singular integral operator by the sharp constant (log #V )

1
2

and that can be found as Theorem 4.1 of Chapter 4.

Theorem D. For Ω a finite union of lacunary sets, and V ⊂ Ω any set of cardinality N it holds

‖TV f‖Lp(Rn) .
√

logN‖f‖Lp(Rn),

with the implicit constant dependent on the lacunarity order and constant, and the dimension n.
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Chapter 1

Preliminaries

We begin by defining the main operators that will be used throughout the thesis and stating some
well known properties.

1.1 Some basic notations

Throughout this dissertation we will take Rn to be the ambient space, and we reserve the notation
n for the dimension.
By Q we will denote a cube with sides parallel to the axes, by which we mean that there exists real
numbers a1 < b1, . . . , an < bn with |bi− ai| := side(Q) for all i = 1, . . . , n so that Q =

∏n
i=1[ai, bi).

By B(x, r) we will denote a ball with radious r and centered at the point x ∈ Rn.
We will call w a weight if w is a nonnegative, locally integrable function, that is finite almost
everywhere. We denote by ‖f‖Lp(w) the usual weighted Lp norms, that is

‖f‖Lp(w) :=

(∫
Rn
|f(x)|pw(x) dx

) 1
p

and the weak weighted Lp norms by

‖f‖Lp,∞(w) := inf

{
C > 0 : w({x ∈ Rn : |f(x)| > t}) ≤ Cp

tp
, for all t > 0

}
.

We will use the notations . and ' to indicate that the implicit constants are numerical, we will
indicate by subindexes whenever we want to make explicit the dependence of the constant on p or
n, for example.
We will also use the notation

fQ = −
∫
Q

f(x) dx :=
1

|Q|

∫
Q

f(x) dx.

1
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1.2 Classical theory

This section introduces some very well-known operators and some of their basic properties. These
results and further analysis can be found easily in the literature, we refer to the reader to for
example Chapters 2, 5 and 7 of [18].

1.2.1 Maximal functions

Definition 1.1. For a function f locally integrable in Rn we define the Hardy-Littlewood maximal

function as

Mf(x) := sup
Q3x

1

|Q|

∫
Q

|f(y)|dy, x ∈ Rn

where the supremum is taken over all the cubes containing x.

It is very well known that we could define the maximal function by taking the supremum to be
over balls instead of cubes, both centered and uncentered, and all these operators are comparable
and hence they enjoy the same boundedness properties.

Theorem. The maximal operator M satisfies

|{x ∈ Rn : Mf(x) > t}| . 1

t

∫
Rn
|f(x)|dx, f ∈ L1(Rn)

and for 1 < p ≤ ∞

‖Mf‖Lp(Rn) .p ‖f‖Lp(Rn), f ∈ Lp(Rn).

If we change the cubes for general rectangles with sides parallel to the axes, the resulting operator
is not comparable the Hardy-Littlewood maximal operator.

Definition 1.2. For f a locally integrable function in Rn, we define the strong maximal operator

as

Msf(x) := sup
R3x

1

|R|

∫
R

|f(y)|dy, x ∈ Rn,

where the supremum is taken over all the rectangles with sides parallel to the axes containing x.

Theorem. The strong maximal function Ms maps boundedly Lp(Rn) to itself for all 1 < p < ∞.

Unlike the HL maximal function, the strong maximal function is not weak (1,1).

Definition 1.3. We say that a weight w belongs to the Ap class for 1 < p <∞ if

[w]Ap := sup
Q

1

|Q|

∫
Q

w(x) dx

(
1

|Q|

∫
Q

w(x)−
1
p−1 dx

)p−1

<∞,

where the supremum is taken over all cubes Q with sides parallel to the axes.
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We say that a weight w belongs to the A1 class if

[w]A1
:= sup

Q

1

|Q|

∫
Q

w(x) dx ‖w−1‖L∞(Q) <∞,

where the supremum is taken over all cubes Q with sides parallel to the axes.

A classical result tells us that the Ap classes characterizes the strong (p, p) and weak (1, 1) bound-
edness of the maximal operator. Specifically, we have the following result.

Theorem. Let M be the Hardy-Littlewood operator and w a weight. Then M is bounded from

Lp(w) to Lp(w) for some 1 < p < ∞ if and only if w belongs to the Ap class. In the case p = 1,

we have that M is w-weak (1, 1) if and only if w belongs to the A1 class.

1.2.2 Singular integral operators

Definition 1.4. A linear operator T will be a Calderón-Zygmund operator (CZO) if it maps

L2(Rn) into itself boundedly and admits a representation whenever f is a C∞0 (Rn) function and

x /∈ supp(f) of the form

Tf(x) =

∫
Rn
K(x, y)f(y) dy,

where the kernel K is a function K : Rn × Rn\{(x, x) : x ∈ Rn} → R that satisfies:

(i) |K(x, y)| ≤ C
|x−y|n , if x 6= y,

(ii) |K(y, x)−K(y, z)|+ |K(x, y)−K(z, y)| ≤ C |x−z|γ
|x−y|n+γ , if |x− z| < 1

2 |x− y|,

for some constant C and exponent 0 < γ ≤ 1.

Definition 1.5. For f a function in the Schwartz class S(R) we define the Hilbert transform of f

as

Hf(x) := p. v.

∫
R

f(x− y)

y
dy = lim

ε→0

∫
|y|>ε

f(x− y)

y
dy, x ∈ R.

Definition 1.6. For f a function in the Schwartz class S(Rn) we define the Riesz transforms of f

as

Rjf(x) := p. v.

∫
Rn
f(y)

xj − yj
|x− y|n+1

dy, x ∈ Rn, j = 1, . . . , n.

A classical result tells us that if T is a CZO, then it extends to a linear operator that is of weak
type (1, 1) and of strong type (p, p) for all 1 < p < ∞. This operator is also bounded in the
weighted Lp, whenever the weight is in the right class.

Theorem. Let T be a CZO and w a weight in the class Ap for some 1 < p <∞. Then, T maps

boundedly from Lp(w) into itself. If w is a weight in A1, then T : L1(w)→ L1,∞(w).
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1.3 The space BMO

We say that a function b ∈ L1
loc(Rn) belongs to the class BMO(Rn) if

‖b‖BMO(Rn) := sup
Q

1

|Q|

∫
Q

|b(x)− bQ|dx <∞

where the supremum is taken over cubes. In this space, we have an equivalent norm, defined by

‖b‖′BMO(Rn) := sup
Q

inf
c

1

|Q|

∫
Q

|b(x)− c|dx.

For a cube Q, the infimum above is attained and the constants where this happens can be found
among the median values.

Definition 1.7. A median value of b over a cube Q will be any real number mQ(b) that satisfies

simultaneously

|{x ∈ Q : b(x) > mb(Q)}| ≤ 1

2
|Q|

and

|{x ∈ Q : b(x) < mb(Q)}| ≤ 1

2
|Q|.

The fact that the constant c in the definition of ‖b‖′BMO(Rn) can be chosen to be a median value of
b can be found for instance in [43]. [Ch. 8, p. 199]
An equivalent description of BMO(Rn) was obtained by John [23] and by Strömberg [42]. These
authors considered the following quantities for 0 < s < 1 and b measurable

‖b‖BMOs := sup
Q

inf
c

inf{t ≥ 0 : |{x ∈ Q : |b(x)− c| > t}| ≤ s|Q|}

and proved that ‖b‖BMOs is equivalent to the usual BMO(Rn)-norm for 0 < s ≤ 1/2. Here we will
understand that BMOs ≡ BMOs(Rn), we omit the dimension to simplify notation. They obtained
the following more precise estimates.

Theorem (Strömberg, [42]). For 0 < s ≤ 1/2 there exists a constant C depending only on n such

that

s‖b‖BMOs ≤ ‖b‖BMO ≤ C‖b‖BMOs .

For these “norms” it will be also useful to replace the general constant c by the median mQ(b).

Remark 1.8. Observe that to prove that a function b belongs to BMO it will be enough to find

constants A and s (0 < s ≤ 1/2) such that, for every cube Q we have

|{x ∈ Q : |b(x)−mQ(b)| > A}| ≤ s|Q|.
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Then we also have that ‖b‖BMO .n,s A.

1.4 Commutators of singular integrals and BMO

In this section we introduce an important class of operators, that will be the main focus of the
next chapters. Given a singular integral T and a locally integrable function b, we can define the
commutator operator as

[b, T ]f(x) := b(x)T (f)(x)− T (fb)(x)

This class of operators was first studied by Coifman, Rochberg and Weiss [10] while they were
looking for a new factorization of the real Hardy space H1. In order to achieve this the authors
established that if T is a Calderón-Zygmund operator then the condition that b belongs to BMO
is sufficient and necessary for Lp-boundedness, when 1 < p <∞.

Theorem (Coifman, Rochberg, Weiss (1976) [10]). Take T to be a Calderón-Zygmund operator

and b a function in BMO(Rn). Then, the commutator [b, T ] is a bounded map from Lp(Rn) into

Lp(Rn) for every 1 < p <∞. Conversely, if Rj (1 ≤ j ≤ n) are the Riesz transforms, b is a locally

integrable function and there exists some 1 < p < ∞ such that all the commutators [b, Rj ] are

bounded from Lp(Rn) into Lp(Rn) then the function b belongs to BMO(Rn). Moreover, we have

‖b‖BMO .n

n∑
j=1

‖[b, Rj ]‖Lp(Rn)→Lp(Rn).

Unlike the theory of singular integrals, this proof does not rely on a weak (1, 1) inequality, but
instead on duality. We can actually check that in general the commutator can fail to be weak (1, 1):
we just need to consider the case T = H the Hilbert transform and b = log |1 + x|. This example
was observed by Pérez in [39], where he also provided an endpoint theory for these operators.
Before stating this endpoint estimate, we first introduce a generalization of the commutator.

Definition 1.9. The commutator of order k for k = 2, 3, . . . is defined by the recursive formula

T kb := [T k−1
b , b]. For k = 1 we define T 1

b as the usual commutator T 1
b := [b, T ]. We will also refer

to this operator as an iterated commutator.

Theorem (Pérez, (1995) [39]). For T a Calderón-Zygmund operator, b ∈ BMO(Rn) and k ≥ 1 an

integer, we have the following estimate

|{x ∈ Rn : |T kb f(x)| > t}| ≤
∫
Rn
φk

(
‖b‖kBMO(Rn)|f(x)|

t

)
dx

for every smooth function with compact support f and t > 0; here the function φk is defined by

φk(t) := t(1 + log+(t))k, and log+(t) = max(0, log(t)).
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1.5 Fractional operators

Chapter 3 is devoted to proving a two-weight estimate for the commutator of a fractional operator
and a symbol belonging to the ‘right’ BMO in this context. The study of weighted estimates for
fractional operators is not interesting just for its own sake but also for its applications to partial
differential equations, Sobolev embeddings or quantum mechanics (see for instance [17, Section 9]
or [40]).
We start this section by giving the definitions of our main operators. From this moment on we are
going to take α a real number with 0 < α < n.

Definition 1.10. For f a locally integrable function we define the fractional maximal function as

Mαf(x) := sup
Q3x

1

|Q|1−αn

∫
Q

|f(y)|dy, x ∈ Rn.

Definition 1.11. For f ∈ Lp(Rn), 1 ≤ p <∞ we define the fractional integral operator as

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn.

The first result that we are going to state is a classical theorem that can be found for example in
[19, Chapter 6].

Theorem. Let 1 ≤ p < q < ∞, 1
q = 1

p −
α
n . We have that Iα maps Lq(Rn) to Lp(Rn) whenever

p > 1 and that it is of weak type (1, n−αn ).

The class of weights that governs the behaviour of fractional operators is the Ap,q class, which was
introduced by Muckenhoupt and Wheeden [35].

Definition 1.12. Given 1 < p < q <∞, we will say a weight w belongs to the class Ap,q if

[w]Ap,q := sup
Q

1

|Q|

∫
Q

wq
(

1

|Q|

∫
Q

w−p
′
) q
p′

<∞.

Since 1 < p < q <∞, using Hölder’s inequality, it is a simple observation that

[wp]Ap ≤ [w]
p
q

Ap,q
and [wq]Aq ≤ [w]Ap,q . (1.1)

In [35] the authors relate the boundedness of the fractional operator in the weighted setting with
the class Ap,q, proving the following theorem.

Theorem (Muckenhoupt, Wheeden [35]). Let 1 < p < n
α and q such that 1

q = 1
p −

α
n . Let T be

either the fractional operator Iα or the fractional maximal function Mα. Then, T maps Lq(wq) to

Lp(wp) if and only if w belongs to the Ap,q class.

During the last decade, many authors have devoted plenty of works to the study of quantitative
weighted estimates, in other words, estimates in which the quantitative dependence on the Ap
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constant [w]Ap or, in its case, on the Ap,q constant [w]Ap,q , is the central point. The A2 Theorem,
namely the linear dependence on the A2 constant for Calderón-Zygmund operators [21] can be
considered the most representative result in this line. In the case of fractional integrals, the sharp
dependence on the Ap,q constant was obtained by Lacey, Moen, Pérez and Torres [28]. The precise
statement is the following

Theorem (Lacey, Moen, Pérez, Torres [28]). Let 1 < p < n
α and q defined by 1

q + α
n = 1

p . Then,

if w ∈ Ap,q we have that

‖Iαf‖Lq(wq) ≤ cn,α[w]
(1−αn ) max

{
1, p
′
q

}
Ap,q

‖f‖Lp(wp)

and the estimate is sharp in the sense that the inequality does not hold if we replace the exponent

of the Ap,q constant by a smaller one.

1.5.1 Commutators of fractional operators and BMO

The counterpart of the theorem by Lacey, Moen, Pérez and Torres for commutators was obtained
by Cruz-Uribe and Moen [12]. The precise statement of their result is the following.

Theorem (Cruz-Uribe, Moen [12]). Let α ∈ (0, n) and 1 < p < n
α and q defined by 1

q + α
n = 1

p .

Then, if w ∈ Ap,q and b ∈ BMO we have that

‖[b, Iα]f‖Lq(wq) ≤ cn,α‖b‖BMO[w]
(2−αn ) max

{
1, p
′
q

}
Ap,q

‖f‖Lp(wp)

and the estimate is sharp in the sense that the inequality does not hold if we replace the exponent

of the Ap,q constant by a smaller one.

1.6 Maximal directional operators

Like we already mention at the Introduction, the last part of this thesis focuses on the study
of maximal directional singular integrals, that is considering a singular integral operator along a
line embedded in some higher dimensional space, and then taking a supremum over the lines. To
introduce this topic, we are going to review some of the previous work on the directional maximal
function.

Definition 1.13. For a set of directions Ω ⊂ Sn− 1 and f a locally integrable function in Rn we

define the directional maximal function as

MΩf(x) := sup
v∈Ω

sup
ε>0

1

2ε

∫ ε

−ε
|f(x+ tv)|dt x ∈ Rn.

The first clear observation is that if Ω consists of a single direction, then the operator will share
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the same boundedness properties of the maximal operator on the real line. We also note that
the construction of Besicovitch sets on the plane tells us that the Lp-boundedness cannot hold
independently of the set Ω. Indeed, for every ε > 0 we can find a collection of rectangles Rε such
that the measure | ∪R∈Rε R| < ε and | ∪R∈Rε R| & 1. If we take fε = 1∪R∈RεR, we then have that
MΩfε(x) & 1 for x ∈ ∪R∈Rε3R. This means that while the Lp norm of MΩfε is bounded by below
by some constant independent of ε, we have that ‖fε‖pLp(R2) < ε. This essentially opens up two
types of questions:

1. If we take Ω to be finite we trivially get ‖MΩ‖Lp(Rn) . #Ω, just by applying the triangle
inequality. The problem in this scenario is try to get optimal bounds depending on the
number of directions.

2. When Ω is infinite, the goal now shifts to finding some structure in Ω in order to guarantee
the Lp boundedness of the operator. Like we already mentioned, not containing Besicovitch
sets is a necessary condition for this to happen. It turns out that, in the plane, this condition
is equivalent to Ω being a generalized lacunary set, which in turn implies that MΩ is bounded
on Lp(R2), for 1 < p <∞ [4]. In higher dimensions, it is a priori not clear what a lacunary
set should look like, since we lose the notion of order.

1.6.1 Lacunary sets of directions

We are going to follow the notion of lacunary set of directions as seen on [37]. From now on the
ambient space will be Rn and we consider sets of directions Ω ⊂ Sn−1. If span(Ω) = Rd for some
d ≤ n then we define the sets of ordered pairs of indices

Σ = Σ(d) := {σ = (j, k) : 1 ≤ j < k ≤ d};

we will typically drop the dependence on d from the notation.
For σ ∈ Σ we now consider lacunary sequences {θσ,i}i∈Z that satisfy 0 < θσ,i+1 ≤ λσθσ,i, with
0 < λσ < 1. Take λ := maxσ λσ. From here on we will assume that the lacunarity constant
λ ∈ (0, 1) has a fixed numerical value and all sequences considered below will be lacunary with
respect to that fixed value λ.
Given an orthonormal basis (ONB) of span(Ω) = Rd

B := (e1, . . . , ed),

and a choice of lacunary sequences {θσ,`} as above we get for each σ ∈ Σ a partition of the sphere
into sectors

Sσ,` :=

{
v ∈ Sn−1 : θσ,`+1 <

|v · eσ(2)|
|v · eσ(1)|

≤ θσ,`
}
, Sd−1 =

⋃
`∈Z

Sσ,`.

Strictly speaking we need to complete the partition by adding the limit set Sσ,∞ := Sd−1∩(eσ(1)⊥∪
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eσ(2)⊥). A convenient way to do so is to define Z∗ := Z∪{∞}. We write any Ω ⊆ Sd−1 as a disjoint
union as follows:

Ω =
⋃
`∈Z∗

Ω ∩ Sσ,` :=
⋃
`∈Z∗

Ωσ,`, ∀σ ∈ Σ.

The collection of |Σ(d)| = d(d − 1)/2 partitions of Ω will be called a lacunary dissection of Ω

with parameters B and {θσ,`}. In particular we have that {Sσ,`} as defined above is a lacunary
dissection of the sphere Sd−1. We will refer to the sets {Ωσ,`}, {Sσ,`} as sectors of a dissection.
We will also need a finer partition of subsets of the sphere into cells which is generated as follows.
Consider a lacunary dissection of Ω ⊆ Sd−1, namely an ONB B and sequences {θσ,`}. Given
` = {`σ : σ ∈ Σ(d)} ∈ ZΣ we define

S` :=
⋂
σ∈Σ

Sσ,`σ , Ω` :=
⋂
σ∈Σ

Ωσ,`σ ,

so that we get the partitions

Sd−1 =
⋃

`∈ZΣ

S`, Ω` =
⋃

`∈ZΣ

Ω`.

We can now define what we mean by lacunary set of directions.

Definition 1.14. Let Ω ⊂ Sn−1 be a set of directions and assume that span(Ω) = Rd. Then Ω

is called lacunary of order 0 if it consists of a single direction. If L is a positive integer then Ω is

called lacunary of order L if there exists a dissection {Ωσ,`} of Ω such that for each σ ∈ Σ(d) and

` ∈ Z∗, the sector Ωσ,` = Sσ,` ∩Ω is a lacunary set of order L− 1. A set Ω will be called lacunary

if it is a finite union of lacunary sets of finite order.

Observe that a set Ω is lacunary of order 1 if there exists a dissection {Ωσ,`} such that each sector
Ωσ,` contains at most one direction.

Theorem (Parcet, Rogers [37]). Let n ≥ 2, p > 1 and Ω a set of directions in Sn−1 that is

lacunary. We have

‖MΩ‖Lp(Rn)→Lp(Rn) ≤ C sup
σ∈Σ

sup
`∈Z
‖MΩσ,`‖Lp(Rn)→Lp(Rn),

where the constant C depends on n, p and the lacunary constants.

Observe that by an inductive argument we can conclude that lacunarity is a sufficient condition to
get the Lp boundedness of the directional maximal function.
In Chapter 4 we are going to find bounds for the Lp norms of another directional operator: the one
that arises by taking a singular integral instead of the maximal function. For that, we are going
to need a series of tools, which we introduce in the next two subsections.
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1.6.2 Directional weighted norm inequalities

Given a closed set of directions Ω ⊂ Sn−1 and a non-negative, continuous function w on Rn, we
say that w belongs to AΩ

p for 1 ≤ p < ∞ if w belongs to the one-dimensional class Ap(`v) for all
lines `v, v ∈ Ω, with uniform bounds. More precisely, if we define the segments

I(x, t, v) := {x+ sv : |s| < t} ⊂ Rn, x ∈ Rn, t > 0, v ∈ Ω,

then

[w]Avp := sup
x∈Rn,t>0

(
−
∫
I(x,t,v)

w

)(
−
∫
I(x,t,v)

w−
1
p−1

)
[w]AΩ

p
:= sup

v∈Ω
[w]Avp , 1 < p <∞

and
[w]Av1 := sup

x∈Rn,t>0

w(I(x, t, v))

|I(x, t, v)|
‖w−1‖L∞(I(x,t,v)) [w]AΩ

1
:= sup

v∈Ω
[w]Av1 ,

and AΩ
p := {w ∈ C(Rn) : [w]AΩ

p
<∞}. Note that we need to consider continuous weights in order

to make sense of their restrictions to line segments in Rn. This turns out to be more of a technical
nuisance rather than substantial limitation and it is inconsequential for our applications. Finally
we write

AΩ
∞ :=

⋃
p>1

AΩ
p .

In the special case that Ω = {e1, . . . , en} is the standard coordinate basis we just write A∗p for the
corresponding Ap-class.
The following weighted version of the Marcinkiewicz multiplier theorem, due to Kurtz, can be
used in several occasions where we need to prove weighted norm inequalities along lacunary sets
of directions.

Proposition 1.15 (Kurtz [25]). Let m be a C∞ function in Rn away from the coordinate hyper-

planes and assume that ‖m‖∞ ≤ B. Suppose that for all 0 < k ≤ n we have

sup
xk+1,...,xn

∫
ρ

∣∣∣ ∂km(x)

∂ξ1 · · · ∂ξk

∣∣∣dξ1 · · · dξk ≤ B
for all dyadic rectangles ρ ⊂ Rk, and any permutation of the coordinates (ξ1, . . . , ξn). Then for all

p ∈ (1,∞) and all w ∈ A∗p the multiplier operator Tm(f) := (mf̂)∨ satisfies the weighted bounds

‖Tm‖Lp(w) . [w]γA∗p

where γ = γ(p, n,B) and the implicit constant is independent of w.

Proposition 1.16. Let Ω ⊂ Sn−1 be a set of directions which is lacunary of order L, where L is a

positive integer, and let w ∈ AΩ
p be a directional weight with respect to Ω. For all p ∈ (1,∞) there
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exists a constant γ = γ(p, n) > 0 such that

‖MΩ‖Lp(w) . [w]γL
AΩ
p
,

with implicit constant depending only on p, n and the lacunarity constant of Ω.

The boundedness of the directional maximal function MΩ now allows us to extrapolate weighted
norm inequalities from L2(w) as in [14, §4.2]. Namely the following holds.

Proposition 1.17. Let Ω ⊆ Sn−1 be a (closed) lacunary set of directions of finite order. Suppose

that there exists a p0 ∈ (1,∞) and γ > 0 such that for some family of pairs of non-negative function

(f, g) we have

‖f‖Lp0 (w) . [w]γ
AΩ
p0

‖g‖Lp0 (w)

with implicit constant independent of (f, g) and w. Then for all p ∈ (1,∞) and all w ∈ AΩ
p we

have

‖f‖Lp(w) . [w]
γp
AΩ
p
‖g‖Lp(w)

where γp depends on γ, n, p and the order of lacunarity of Ω; the implicit constant depends only on

p, n and the lacunarity constant of Ω.

1.6.3 The Chang-Wilson-Wolff inequality

A familiar tool that has been successfully used in several occasions in the theory of directional singu-
lar integrals is a consequence of the Chang-Wilson-Wolff inequality, [8]. This allows us to commute
the supremum over N multipliers with a suitable Littlewood-Paley projection at a

√
logN -loss.

For our application it will be useful to have the weighted version of the Chang-Wilson-Wolff
inequality, which we state below. For the details of the proof see for example [14, Proposition 5.4]
and the references therein. In order to state this result we introduce a coordinate-wise Littlewood-
Paley decomposition in the usual fashion.
Letting p be a smooth function on R such that

∑
t∈Z

p(2−tξ) = 1, ξ 6= 0,

and such that p vanishes off the set {ξ ∈ R : 1
2 < |ξ| < 2}, we define

(P tj f)∧(ξ) := p(2−tξj), ξ = (ξ1, . . . , ξn) ∈ Rn, t ∈ Z.

Proposition 1.18. Let {R1, . . . , RN} be Fourier multiplier operators on Rn satisfying uniform

L2(w)-bounds

sup
1≤τ≤N

‖Rτ‖L2(w) ≤ [w]γA∗2
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for some γ > 0. Let {P jt }t∈Z be a smooth Littlewood-Paley decomposition acting on the j-th

frequency variable, where 1 ≤ j ≤ n. For w ∈ A∗p and 1 < p <∞ we then have

∥∥∥ sup
1≤τ≤N

|Rτf |
∥∥∥
Lp(w)

. [w]
γp
A∗p

(
‖f‖Lp(w) +

√
log(N + 1)

∥∥∥(∑
t∈Z

sup
1≤τ≤N

|RτP jt f |2
) 1

2

∥∥∥
Lp(w)

)

for some exponent γp = γp(γ, p, n) and implicit constant independent of w, f,N .



Chapter 2

A characterization of BMO in terms

of endpoint bounds for the

commutator

The main objective of this chapter is to prove the analogous necessity result from Coifman-
Rochberg-Weiss theorem stated on Section 1.4 for the endpoint. As we already mentioned, the
proof of the CRW theorem is based on estimating the BMO norm of the symbol via a duality ar-
gument, which is not a tool that we have at our disposition at the endpoint. The results presented
here can be found in [1].
We begin with a result that relates the BMO norm of the symbol with the endpoint bound for the
higher order commutator of the Hilbert transform and the symbol b. We recall that if b is a locally
integrable function, f ∈ C∞0 (R) and k is a positive integer we may write the commutator of order
k of the Hilbert transform and b as

Hk
b f(x) = p. v.

∫
R

(b(x)− b(y))k

x− y
f(y) dy.

Theorem 2.1. Let b ∈ L1
loc(R). If there exists a constant B and a positive integer k such that we

have the following estimate

|{x ∈ R : |Hk
b f(x)| > t}| ≤

∫
R
φk

(
B|f(x)|

t

)
dx,

where φk(t) = t(1 + log+(t))k and log+(t) = max(log(t), 0), then b ∈ BMO(R) and ‖b‖BMO(R) .

B1/k.

13
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Proof. As we noted at Remark 1.8, it is enough to find a constant A such that for every interval I,

|{x ∈ I : |b(x)−mI(b)|k > A}| ≤ 1

2
|I|,

where mI(b) is a median of b on I.

Fix I an interval. We can find disjoint subsets of I, E+ and E− such that |E+| = |E−| = |I|/2,

E+ ⊂ {y ∈ I : b(y) ≥ mI(b)}

E− ⊂ {y ∈ I : b(y) ≤ mI(b)}.

Then,

|b(x)−mI(b)|kχI(x) = (b(x)−mI(b))
kχE+(x) + (mI(b)− b(x))kχE−(x).

For y ∈ E− and z ∈ E+ we have

|b(x)−mI(b)|kχI(x) ≤ (b(x)− b(y))kχE+(x) + (b(z)− b(x))kχE−(x).

Now integrating for y ∈ E− and z ∈ E+ and calling cI the center of I, we get

|b(x)−mI(b)|kχI(x) ≤ 1

|E−|

∫
E−

(b(x)− b(y))kχE+
(x) dy +

1

|E+|

∫
E+

(b(x)− b(z))kχE−(x) dz.

The first summand in the right hand side of the estimate above can be bounded above by

1

|E−|

∫
E−

(b(x)− b(y))kχE+(x) dy ≤ 1

|E−|

∫
R

(b(x)− b(y))k

x− y
(x− cI)χE+

(x)χE−(y) dy

+
1

|E−|

∫
R

(b(x)− b(y))k

x− y
(cI − y)χE+(x)χE−(y) dy

≤ 2
|x− cI |
|I|

|Hk(χE+
)(x)|+ 2

∣∣∣∣Hk

(
(· − cI)
|I|

χE−

)
(x)

∣∣∣∣ .
Using a similar estimate for the second summand we get

|{x ∈ I : |b(x)−mI(b)|k > A}| ≤ |{x ∈ R : |Hk(χE+
)(x)| > A/8}|

+ |{x ∈ R : |Hk((· − cI)/|I|χE−(x) > A/8}|

+ |{x ∈ R : |Hk(χE−)(x)| > A/8}|+ |{x ∈ R : |Hk((· − cI)/|I|χE+
)(x)| > A/8}|

=: (i) + (ii) + (iii) + (iv).

We show the estimate for (i). The estimates for the other terms are similar.

(i) ≤
∫
R
χE+

(x)
8B

A

(
1 + log+

(
χE+

(x)
8B

A

))k
dx ≤ |E+|

1

4
=
|I|
8
,
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if we choose A = 32B. Summing,

|{x ∈ I : |b(x)−mI(b)|k > A}| ≤ 1

2
|I|

as we wanted.

2.1 Higher dimensions

For this section we will be considering singular integral operators T of the form

Tf(x) := p. v.

∫
Rn

Ω(x− y)

|x− y|n
f(y) dy, (2.1)

where Ω ∈ Lip(Sn−1) is homogeneous of degree zero, satisfies
∫
Sn−1 Ω = 0, and the set {Ω(x) = 0}

has zero measure. An important class of operators that satisfies these conditions are the Riesz
transforms,

Rjf(x) := p. v.

∫
Rn

xj − yj
|x− y|n+1

f(y) dy.

First we prove that if the commutator of one of these operators with a symbol b is of weak type
(1, 1) then b must satisfy a stronger condition than BMO(Rn), namely b ∈ L∞(Rn).

Theorem 2.2. Let b be a locally integrable function and suppose [b, T ] : L1(Rn) → L1,∞(Rn) is

bounded. Then b ∈ L∞(Rn) and we have the bound ‖b‖∞ ≤ C(Ω, n)‖[b, T ]‖L1(Rn)→L1,∞(Rn).

Proof. We begin by fixing a locally integrable function b. Note that this assumption implies that

b is finite almost everywhere, and that almost every point y ∈ Rn is a Lebesgue point of b. Now

recall that

[b, T ]f(x) = p. v.

∫
Rn

b(x)− b(y)

|x− y|n
Ω(x− y)f(y) dy.

By renormalizing b, we can assume ‖[b, T ]‖L1(Rn)→L1,∞(Rn) = 1. Take f to be a C∞(Rn) function

with compact support, even, supp f ⊂ B(0, 1),
∫
f = 1, and 0 ≤ f ≤ 1. For every ε > 0, set

fε(x) := 1
εn f

(
x
ε

)
and fyε (x) := fε(y − x). Then, whenever y is a Lebesgue point of b, we have

lim
ε→0
|[b, T ]fyε (x)| = |b(x)− b(y)|

|x− y|n
|Ω(x− y)|.

So we get that, for every λ > 0 and y a Lebesgue point for b,

|{x ∈ Rn :
|b(x)− b(y)|
|x− y|n

|Ω(x− y)| > λ}| ≤ ‖[b, T ]‖L1→L1,∞

λ
. (2.2)

Fix ε > 0 and take K to be a compact subset of Sn−1 such that {x ∈ Sn−1 : Ω(x) = 0} ∩K = ∅

and |Sn−1 \ K| < ε. Call CΩ := inf{|Ω(x)| : x ∈ K} and note that CΩ > 0, by the Lipschitz
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assumption on Ω. We now define the following sets

Λλ(y) :=

{
x ∈ Rn :

x− y
|x− y|

∈ K, |b(x)− b(y)|
|x− y|n

> λ

}
,

SK(y) :=

{
x ∈ Rn :

x− y
|x− y|

∈ K
}
.

Note that, with the definitions above, and the choice of K, we have for every r > 0 that

|B(0, r) \ SK(0)| < εrn/n. (2.3)

By (2.2) and the definition of CΩ we have

|Λλ(y)| ≤ 1

CΩλ
.

Since our hypothesis is invariant under replacing b by b− c, for any constant c, and since b is finite

almost everywhere, we can assume that b(0) = 0 and we also have

|Λλ(0)| =
∣∣∣{x ∈ Rn :

x

|x|
∈ K, |b(x)|

|x|n
> λ

}∣∣∣ ≤ 1

CΩλ
.

Let y 6= 0 and x /∈ Λ1/|y|n(y), x ∈ B(y, 1
2 |y||b(y)|1/n) ∩ SK(y)

|b(x)| ≥ |b(y)| − |b(x)− b(y)|
|x− y|n

|x− y|n ≥ |b(y)| − 1

|y|n

(
1

2
|y||b(y)|1/n

)n
≥
(
1− 1

2n
)
|b(y)| = cn|b(y)|

for almost every y. Suppose that |b(y)| > 2n (if we had that |b(y)| ≤ 2n for all y 6= 0 that is also a

Lebesgue point then we would be done). We conclude that

A(y,K) := |{x ∈ [B(y,
1

2
|y||b(y)|1/n) ∩ SK(y) ∩ SK(0)]\Λ1/|y|n(y) :

|b(y)|
|x|n

>
1

|y|n
}|

≤ |{x ∈ SK(0) :
cn|b(x)|
|x|n

>
1

|y|n
}| = |Λ1/(cn|y|n)(0)| ≤ C−1

Ω cn|y|n.
(2.4)

Since |b(y)| > 2n,

|y||b(y)|1/n =
1

2
|y||b(y)|1/n +

1

2
|y||b(y)|1/n ≥ |y|+ 1

2
|y||b(y)|1/n.

This implies that B(y, 1
2 |y||b(y)|1/n) ⊂ B(0, |y||b(y)|1/n) and so

|A(y,K)| ≥
∣∣∣B(y,

1

2
|y||b(y)|1/n) ∩ SK(y)

∣∣∣− ∣∣∣B(0, |y||b(y)|1/n) ∩ SK(0)c
∣∣∣− ∣∣Λ1/|y|n(y)

∣∣ . (2.5)
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Let us observe that

|B(y,
1

2
|y||b(y)|1/n) ∩ SK(y)| = |B(0,

1

2
|y||b(y)|1/n) ∩ SK(0)|

=
1

2n
|y|n|b(y)|(|B(0, 1)| − |B(0, 1) ∩ SK(0)c|) ≥ 1

2n
|y|n|b(y)|

(
ωn −

ε

n

)
by (2.3); here ωn denotes the measure of the unit ball. We also have that

|B(0, |y||b(y)|1/n) ∩ SK(0)c|+ |Λ1/|y|n(y)| ≤ |y|n|b(y)||B(0, 1) ∩ SK(0)c|+ C−1
Ω |y|

n

≤ |y|n|b(y)| ε
n

+ C−1
Ω |y|

n,

here we are using (2.3) again. Estimate (2.5) then yields

|A(y,K)| ≥ |y|n|b(y)|
(

1

2n
ωn −

ε

n

2n + 1

2n

)
− C−1

Ω |y|
n.

Now take ε = n
2ωn

1
2n+1 . Combining with the previous estimate we get that

cnC|y|n ≥
ωn

2n+1
|y|n|b(y)| − C−1

Ω |y|
n

and so

|b(y)| ≤ max
{

2n,
2n+1(cn + 1)

CΩωn

}
= max

{
2n,

2

ωn
(2n+1 − 1)

1

CΩ

}
=: C(Ω, n)

for almost all y ∈ Rn and thus b is bounded and ‖b‖∞ ≤ C(Ω, n) as desired.

Now we prove a higher dimensional analogue of Theorem 2.2 for the class of singular integral
operators given in (2.1). We use a similar argument as the one given by Uchiyama in [44]. We
impose a symmetric condition on the adjoint operator; indeed, since we are assuming an endpoint
estimate, we can no longer rely on duality in order to conclude the boundedness of the adjoint
commutator. Note however that for the Riesz transforms, as well as for more general odd kernels
as in (2.1), it will be enough to assume the endpoint boundedness of [b, T ] at the endpoint in
order to conclude that b ∈ BMO(Rn) (we would get the condition on the adjoint for free, since
[b, T ]∗ = [b, T ∗] = [b,−T ] for odd convolution kernels).
For the statement of the theorem below we remember that φ1(t) = t(1 + log+ t).

Theorem 2.3. Let b be a locally integrable function on Rn. If there exists a constant B such that

for every measurable set E and t > 0 we have that

|{x ∈ Rn : |[b, T ]χE(x)| > t}| ≤
∫
Rn
φ1

(
BχE(x)

t

)
dx,

and

|{x ∈ Rn : |[b, T ∗]χE(x)| > t}| ≤
∫
Rn
φ1

(
BχE(x)

t

)
dx,
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then b ∈ BMO(Rn) and ‖b‖BMO(Rn) ≤ C(Ω, n)B.

Proof. As we did in the proof of Theorem 2.2, we can assume B = 1. Define M(b,Q) :=

inf
c∈R

1
|Q|
∫
Q
|b(y)− c|dy. We want to prove

sup
Q
M(b,Q) ≤ C(Ω, n). (2.6)

By translation and dilation invariance it suffices to prove (2.6) for the cube Q1 = {x ∈ Rn : |x| <

(2
√
n)−1}.

Let M := M(b,Q1) = |Q1|−1
∫
Q1
|b(y)−mQ1

(b)|dy, where mQ1
(b) is a median of b over Q1. Since

[b −mQ1
(b), T ] = [b, T ] we may assume that mQ1

(b) = 0. This means that we can find disjoint

subsets of Q1, E1 ⊃ {x ∈ Q1 : b(x) < 0} and E2 ⊃ {x ∈ Q1 : b(x) > 0} of equal measure. Define

ψ := χE2 − χE1 . Then ψ satisfies: ‖ψ‖∞ = 1, suppψ ⊂ Q1,

∫
ψ(x) dx = 0, ψ(x)b(x) ≥ 0, and |Q1|−1

∫
ψ(x)b(x) dx = M.

Take Σ ⊂ Sn−1 a compact set such that Ω(x) > 0 for every x ∈ Σ. From now on, we will denote

by Ai constants depending only on the dimension n and the kernel Ω. Take A1 such that for every

x ∈ Σ and z ∈ Sn−1 satisfying |x − z| < A1, we have |Ω(x) − Ω(z)| < 1
2
Ω(x). Denote x′ = x/|x|.

Then, for x ∈ G := {x ∈ Rn : |x| > A2 = 2A−1
1 + 1 and x′ ∈ Σ},

|[b, T ]ψ(x)| = |T (bψ)(x)− b(x)Tψ(x)| ≥ |T (bψ)(x)| − |b(x)||Tψ(x)|.

We bound these two terms separately. First, we bound

|T (bψ)(x)| =
∣∣∣∣p. v.∫

Q1

Ω(x− y)

|x− y|n
b(y)ψ(y) dy

∣∣∣∣ .
Observe that |(x−y)′−x′| < A1 and so Ω(x−y) > 1

2Ω(x), which in particular means that Ω(x−y)

is positive. Since we already have that b(y)ψ(y) is nonnegative and we are taking x ∈ G, we get∣∣∣∣p. v.∫
Q1

Ω(x− y)

|x− y|n
b(y)ψ(y) dy

∣∣∣∣ =

∫
Q1

Ω(x− y)

|x− y|n
|b(y)|dy ≥ A3M |x|−n.
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Now we have to deal with |Tψ(x)|. Since we have that
∫
ψ = 0 we can estimate

∣∣∣∣p. v.∫
Q1

Ω(x− y)

|x− y|n
ψ(y) dy

∣∣∣∣ =

∣∣∣∣∫
Q1

(
Ω(x− y)

|x− y|n
− Ω(x)

|x|n

)
ψ(y) dy

∣∣∣∣
≤
∫
Q1

∣∣∣∣Ω(x− y)

|x− y|n
− Ω(x)

|x|n

∣∣∣∣ dy

≤ A4|x|−n−1.

Then, we have

|[b, T ]ψ(x)| ≥ A3M |x|−n −A4|b(x)||x|−n−1.

Letting F := {x ∈ G : |b(x)| > (MA3/2A4)|x| and |x| < M1/n} we have

|{x ∈ Rn : |[b, T ]ψ(x)| > A3/2}| ≥ |{x ∈ (G\F ) ∩ {|x| < M1/n} : |[b, T ]ψ(x)| > A3/2}|

≥ |{x ∈ (G\F ) ∩ {|x| < M1/n} : 2−1A3M |x|−n > A3/2}|

= |(G\F ) ∩ {|x| < M1/n}| = A5(M −An2 )− |F |

By our assumption, we have that

|{x ∈ Rn : |[b, T ]ψ(x)| > A3/2}| ≤
∫
Q1

φ(2A−1
3 |ψ(x)|)dx ≤ |Q1|φ(2A−1

3 ).

Then

|F | ≥ A5(M −An2 )− φ(2A−1
3 )|Q1| ≥ A5M/2

by assuming, as we may, that M is large enough.

Let g(x) := sgn(b(x))χF (x) and T ∗ be the adjoint operator of T . Then, for x ∈ Q1,

|[b, T ∗]g(x)| ≥ |T ∗(bg)(x)| − |b(x)||T ∗(g)(x)|.

By the definition of F , we have

|T ∗(bg)(x)| =
∣∣∣p. v.∫

Rn
Ω(y − x)|x− y|−nb(y)g(y) dy

∣∣∣
=

∫
F

Ω(y − x)|x− y|−n|b(y)|dy.

Note that y ∈ F means that |y| ≤M1/n and thus

|T ∗(bg)(x)| ≥ A6

∫
F

MA3

2A4
|y|−n+1dy

≥ A6A3(2A4)−1A2M
1/n|F | ≥ A7M

1+1/n.
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For the second summand in the estimate for [b, T ∗] we have for x ∈ Q1 that

|T ∗g(x)| ≤
∣∣∣p. v.∫

F

Ω(y − x)|x− y|−ng(y) dy
∣∣∣

≤
∫
F

|Ω(y − x)||x− y|−n dy

≤ ‖Ω‖L∞(Sn−1)

∫
F

|y − x|−n dy

≤ ‖Ω‖L∞(Sn−1)

∫
A2≤|y|≤M1/n

1

|y|n − 2−n
≤ A8 logM.

Then, for x ∈ Q1,

|[b, T ∗]g(x)| ≥ A7M
1+1/n −A8|b(x)| logM.

By our assumption on T ∗ we can now conclude that

|{x ∈ Rn : |[b, T ∗]g(x)| ≥ (A7/2)M1+1/n}| ≤
∫
Rn
φ

(
|g(x)|

(A7/2)M1+1/n

)
dx

=

∫
F

φ([(A7/2)M1+1/n]−1)dx = |F |φ(A9M
−1/n−1)

≤Mφ(A9M
−1/n−1) = A9M

−1/n,

where the last inequality follows by taking M large enough, since log+ t vanishes for |t| < 1. On

the other hand,

|{x ∈ Rn : [b, T ∗]g(x)| ≥ A7M
1+1/n}| ≥ |{x ∈ Q1 : |[b, T ∗]g(x)| ≥ A7/2M

1+1/n}|

≥ |{x ∈ Q1 : A7M
1+1/n −A8 logM |b(x)| ≥ A7/2M

1+1/n}|

= |{x ∈ Q1 : |b(x)| ≤ A10M
1+1/n(logM)−1}|

= |Q1| − |{x ∈ Q1 : |b(x)| > A10M
1+1/n(logM)−1}|

≥ |Q1| −A10|Q1| logMM−1−1/n|Q1|−1

∫
Q1

|b(x)|dx

= |Q1| −A10|Q1| logMM−1/n ≥ A11,

as M−1/n logM is bounded for every M > e1/n. Then, we have that

M ≤ (A9/A11)n.

Summarizing the estimates above, we have proved that

M ≤ max
{ 2

A5
(1 +A5A

n
2 ), A

−1/n−1
9 , e1/n, (A9/A11)n

}
=: C(Ω, n),
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as all the constants Ai depend only on Ω and n.

2.2 A Hardy space for the commutator

We already mentioned that the commutator can fail to be of weak type (1, 1), so it makes sense to
ask whether, as in the case of classical singular integrals, we can find a subspace of the Hardy space
H1 from which we can obtain boundedness into L1(Rn). A natural candidate of such a subspace
was mentioned in [39], where the author introduced the spaces H(1,p)

b (Rn), which were defined
atomically in the following fashion. For 1 < p ≤ ∞ we will call a a (1, p) b-atom if it satisfies:

(a) There exists a cube Q such that supp(a) ⊂ Q,

(b) ‖a‖Lp(Q) ≤ |Q|
− 1
p′ ,

(c)
∫
Rn a(x)dx = 0,

(d)
∫
Rn a(x)b(x)dx = 0.

The space H(1,p)
b (Rn) is then defined as

H(1,p)
b (Rn) :=

f ∈ H1(Rn) : f =

∞∑
j=1

λjaj , with (aj)j∈N b-atoms, (λj)j∈N ∈ R and
∞∑
j=1

|λj | <∞

 .

These spaces endowed with their natural norm

‖f‖H(1,p)
b

:= inf


∞∑
j=1

|λj | : f =

∞∑
j=1

λjaj , (aj) b-atoms


are Banach spaces. Note that the (1, p) b-atoms are classical H1 atoms with the extra cancellation
condition (d), that involves the symbol b. It was suggested in [39] that this space is the “right”
space for the endpoint boundedness of the commutator, that is: given a BMO function b and a
Calderón-Zygmund operator T we have that [b, T ] : H(1,p)

b (Rn) → L1(Rn). Specifically, what was
proven was the following.

Theorem (Pérez [39]). Let T be a CZO and b a function in BMO. For 1 < p ≤ ∞, call A(1,p)
b (Rn)

to the set of (1, p) b-atoms that we defined before. Then, we have

sup
a∈A(1,p)

b (Rn)

‖[b, T ](a)‖L1(Rn) ≤ C

for some constant C.

It is relevant to note that both the commutator and the atoms involve the same symbol b. When
dealing with a general linear operator, asking to get boundedness of the operator on the whole
space from boundedness on the atoms is the same as asking for equivalence of the norm with
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the finite norm, which we define now. Consider the subspace H(1,p)
b,fin (Rn) := H(1,p)

b (Rn) ∩ Lpc(Rn),
which consists of all the functions on H(1,p)

b (Rn) that admit a finite atomic decomposition. In this
subspace we can define the norm

‖f‖H(1,p)
b,fin

:= inf


N∑
j=1

|λj | : f =

N∑
j=1

λjaj , (aj) b-atoms

 .

Observe that, for a function f ∈ H(1,p)
b,fin (Rn), we have the trivial inequalities

‖f‖H1 ≤ ‖f‖H(1,p)
b

≤ ‖f‖H(1,p)
b,fin

.

Here we want to draw a parallel with the case of the classical Hardy space H1(Rn). We know that
we can define this space using any (1, p) atoms with p ∈ [1,∞]; note that here the case p = ∞ is
included. We can also define the finite norm, and we know that for p <∞, the usual and the finite
norm are equivalent [34], that is

‖f‖H(1,p) ≈ ‖f‖H(1,p)
fin

, f ∈ H(1,p)
fin ,

and so to prove that a linear operator is bounded on H1 it is enough to test our operator on the
atoms. We also know that this equivalence might fail: this is the case when p = ∞. Indeed, in
[6] Bownik gives an example of a linear operator that is bounded uniformly on (1,∞)-atoms but
doesn’t admit a bounded extension to all H1. It is important to note that for some special cases,
like when our operator is a CZO, boundedness on atoms is enough to extrapolate to the whole
space. For the commutator we don’t have an analog result at hand. This was observed by Ky in
[26], where the author also obtained the following theorem.

Theorem (Ky [26]). Let T be a CZO, b a BMO function and 1 < p ≤ ∞. Then, the commutator

[b, T ] : H(1,p)
b (Rn)→ L1(Rn).

An easy observation about these spaces is that H(1,p2)
b (Rn) ⊆ H(1,p1)

b (Rn) when p2 > p1, but
the equality is unclear. An interesting open question is trying to characterize the biggest space
contained in H1(Rn) that maps into L1(Rn). Getting a clear picture of this space would also
allows us, via duality, to define the commutator on the other endpoint, namely from L∞(Rn). As
a first step in this direction, we computed the dual space of the H(1,p)

b,fin , from which we obtained
the following spaces.

Definition 2.4. The space BMOq
b(Rn) consists of the functions f ∈ Lqloc(Rn) such that the

quantity

‖f‖BMOqb
:= sup

B

(
inf
c0,c1

1

|B|

∫
B

|f(x)− c0 − c1b(x)|q dx

)1/q

<∞,

where the supremum is taken over all the balls B.

Observe that ‖f‖BMOqb
= 0 if and only if f = α + βb and so, in order to have a norm, we have to
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take the quotient by the subspace

S := {α+ βb, α, β ∈ R} =< 1, b > .

It is clear from the definition that BMO(Rn) ⊂ BMOq
b(Rn) for any 1 < q <∞. We will show that

this inclusion is proper with an easy example. Take b ∈ BMO(Rn) and consider the function b2,
which is typically not a BMO(Rn) function. We can compute for any ball B

1

|B|

∫
B

|b2(x)− 2bBb(x) + (bB)2|q dx =
1

|B|

∫
B

|b(x)− bB |2q dx ≤ ‖b‖2qBMO <∞,

and so b2 belongs to BMOq
b(Rn). For example, taking b(x) = log(x), we have that b2(x) = log2(x)

is not a BMO function.
An interesting question is whether we have an analog of the John-Nirenberg for the spaces BMOq

b(Rn).
The same example shows that if yes, then the decay must depend on the symbol b and will in general
be worse than the exponential one that we have in the traditional theorem.
Following the proof of the classical duality theorem of H1(Rn) and BMO(Rn) [41, Chapter IV] we
get the following theorem.

Theorem 2.5. Let b be non-constant BMO function, 1 < p < ∞ and q such that 1/p+ 1/q = 1.

Then the dual space of (H(1,p)
b,fin (Rn), ‖ · ‖H(1,p)

b,fin

) is BMOq
b(Rn).

Proof. Let g ∈ BMOq
b(Rn) and define the functional lg on H(1,p)

b,fin (Rn) by

lg(f) :=

∫
Rn
g(x)f(x) dx.

Observe that, since f has compact support, the integral above is absolutely convergent. We also

have

|lg(f)| = |
∫
Rn

N∑
j=1

λjaj(x)g(x) dx| = |
N∑
j=1

λj

∫
Bj

aj(x)(g(x)− cj0 − c
j
1b(x)) dx|

≤
N∑
j=1

|λj |(
∫
Bj

|aj(x)|p dx)1/p(

∫
Bj

|g(x)− cj0 − c
j
1b(x)|q dx)1/q ≤ ‖g‖BMOqb

N∑
j=1

|λj |.

Taking infimum on both sides with respect to all finite representations of f , we get

|lg(f)| ≤ ‖g‖BMOqb
‖f‖H(1,p)

b,fin

,

and this shows that every function in BMOq
b(Rn) can be identified with a functional in (H(1,p)

b,fin (Rn))∗,

proving the first inclusion.

To prove the converse inclusion take l ∈ (H(1,p)
b,fin (Rn))∗ of norm 1. We are going to construct a

function g ∈ BMOp
b(Rn) of norm less or equal than 1 such that l = lg. To that end fix a ball B
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and consider the closed subspace

Lp0(B) = {f ∈ Lp(B) :

∫
B

f(x) dx = 0,

∫
B

f(x)b(x) dx = 0}.

Observe that any function in Lp0(B) belongs to the space H(1,p)
b,fin and, moreover, satifies the norm

estimate ‖f‖H(1,p)
b,fin

≤ |B|1/q‖f‖Lp(B). Then l extends to a linear functional on Lp0(B) with norm at

most |B|1/q. Define S(B) :=< χB , bχB >⊂ Lp(B). It is not difficult to see that we can identify

(Lp0(B))⊥ = {φ ∈ (Lp(B))∗ : φ(Lp0(B)) = 0}

= {g ∈ Lq(B) :

∫
B

g(x)f(x) dx = 0 for all f ∈ Lp0(B)} = S(B)

which means that (Lp0(B))∗ = Lq(B)/S(B). So there exists an element GB ∈ Lq(B)/S(B) such

that

l(f) =

∫
B

f(x)GB(x) dx for all f ∈ Lp0(B)

and ‖GB‖Lq(B)/S(B) = inf
c0,c1

(

∫
B

|GB(x)− c0 − c1b(x)|q dx)1/q ≤ |B|1/q.

Observe that if B1 ⊂ B2 are balls, then GB1 − GB2 ∈ S(B1) since they both define the same

functional on B1. Without loss of generality we can suppose that b is non-constant on the ball of

radius 1 and center at the origin. Now consider the sequence of balls (Bi) = (B(0, i))i∈N and for

each ball define gBi = GBi + αBi + βBibχBi , with the constants chosen such that

∫
B(0,1)

gBi =

∫
B(0,1)

gBib = 0.

Now if we take two balls of the sequence, Bj ⊂ Bk, we have that gBj−gBk ∈ S(Bj), say gBj−gBk =

α + βb in Bj . But, since B(0, 1) is contained in Bj , we also have that
∫
B(0,1)

α + βb(x)dx =∫
B(0,1)

(α + βb(x))b(x)dx = 0 from where we can deduce that α = β = 0. We can now define

g(x) = gBi(x) for all x ∈ Bi. We are left to prove that g belongs to BMOq
b(Rn). Given any ball B

we can find an i such that B ⊂ Bi. Since g = gBi on B, we have that g|B = GBi |B +αBi +βBibχB

which is an element of the equivalence class of GB as we observed before. Hence

inf
c0,c1

(
1

|B|

∫
B

|g(x)− c0 − c1b(x)|q dx

)1/q

=
1

|B|1/q
‖GB‖Lq(B)/S(B) ≤ 1.

Since B was any ball, we can now take supremum over B to conclude the proof.



Chapter 3

Commutators of fractional integrals

The purpose of this chapter is to prove a quantitative two-weight estimate for the commutator of
fractional integrals and BMO functions. All the results of this chapter were part of joint work with
J. Martínez Perales and I. Rivera Ríos [3].
We recall that for α ∈ (0, n), a non-negative integer m and b ∈ Lmloc(Rn), the commutator of order
m is defined by

(Iα)mb f(x) :=

∫
Rn

(b(x)− b(y))m

|x− y|n−α
f(y) dy, x ∈ Rn.

Combining a sparse domination result that will be presented in Section 3.1 with techniques in [32]
we obtain the following result.

Theorem 3.1. Let α ∈ (0, n) and 1 < p < n
α , q defined by 1

q + α
n = 1

p and m a positive integer.

Assume that µ, λ ∈ Ap,q and that ν = µ
λ . If b ∈ BMO

ν
1
m
, then

‖(Iα)mb f‖Lq(λq) ≤ cm,n,α,p‖b‖mBMO
ν

1
m

κm‖f‖Lp(µp), (3.1)

where

κm :=

m∑
h=0

(
m

h

)(
[λ]

h
m

Ap,q
[µ]

m−h
m

Ap,q

)(1−αn ) max
{

1, p
′
q

}
P (m,h)Q(m,h)

and

P (m,h) ≤
(

[λq]
m+(h+1)

2

Aq
[µq]

m−(h+1)
2

Aq

)m−h
m max{1, 1

q−1}

Q(m,h) ≤
(

[λp]
h−1

2

Ap
[µp]

m−h−1
2

Ap

) h
m max{1, 1

p−1}
.

Conversely if for every set E of finite measure we have that

‖(Iα)mb χE‖Lq(λq) ≤ cµp(E)
1
p , (3.2)

25
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then b ∈ BMO
ν

1
m
.

In the case m = 1 a qualitative version of this result was established by Holmes, Rahm and Spencer
[20]. Besides providing a new proof of the result in [20], our theorem improves that result in several
directions. We provide quantitative bounds instead of qualitative ones and we extend the result to
iterated commutators.
If we restrict ourselves to the case µ = λ we have the following result.

Corollary 3.2. Let α ∈ (0, n) and 1 < p < n
α , q defined by 1

q + α
n = 1

p and m a non-negative

integer. Assume that w ∈ Ap,q and that b ∈ BMO. Then

‖(Iα)mb f‖Lq(wq) ≤ cn,p,q‖b‖mBMO[w]
(m+1−αn ) max

{
1, p
′
q

}
Ap,q

‖f‖Lp(wp), (3.3)

and the estimate is sharp in the sense that the inequality does not hold if we replace the exponent

of the Ap,q constant by a smaller one.

Conversely if m > 0 and for every set E of finite measure we have that

‖(Iα)mb χE‖Lq(wq) ≤ cwp(E)
1
p ,

then b ∈ BMO.

In the case m = 0 the preceding result is due to Lacey, Moen, Pérez and Torres [28]. The case
m = 1 was settled in [12] but using a different proof based on a suitable combination of the so called
conjugation method, that was introduced in [10] (see [9] for the first application of the method to
obtain sharp constants), and an extrapolation argument. The case m > 1 was recently established
in [5] also relying upon the conjugation method. We observe that Corollary 3.2 provides a new
proof of the results in [5,12]. Additionally we settle the sharpness of the iterated case and provide
a new characterization of BMO in terms of iterated commutators.

3.1 A sparse domination result for iterated commutators of

fractional integrals

We begin this section recalling the definitions of the dyadic structures we will rely upon. These
definitions and a profound treatise on dyadic calculus can be found in [30].
Given a cube Q ⊂ Rn, we denote by D(Q) the family of all dyadic cubes with respect to Q, that
is, the cubes obtained subdividing repeatedly Q and each of its descendants into 2n subcubes of
the same sidelength.
Given a family of cubes D, we say that it is a dyadic lattice if it satisfies the following properties:

1. If Q ∈ D then D(Q) ⊂ D,
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2. For every pair of cubes Q′, Q′′ ∈ D there exists a common ancestor, namely we can find
Q ∈ D such that Q′, Q′′ ∈ D(Q),

3. For every compact set K ⊂ Rn there exists a cube Q ∈ D such that K ⊂ Q.

Given a dyadic lattice D we say that a family S ⊂ D is an η-sparse family with η ∈ (0, 1) if there
exists a family {EQ}Q∈S of pairwise disjoint measurable sets such that, for any Q ∈ S, the set EQ
is contained in Q and satisfies η|Q| ≤ |EQ|.
Since the first simplification of the proof of the A2 theorem provided by Lerner [29], sparse dom-
ination theory has experienced a fruitful and fast development. However in the case of fractional
integrals, the sparse domination philosophy, via dyadic discretizations of the operator, had been
already implicitly exploited in [40], [38], and a dyadic type expression for commutators had also
shown up in [12]. We remit the reader to [11] for a more detailed insight on the topic.
Relying upon ideas in [22] and [31], it is possible to obtain a pointwise sparse domination that covers
the case of iterated commutators of fractional integrals. The precise statement is the following.

Theorem 3.3. Let 0 < α < n. Let m be a non-negative integer. For every f ∈ C∞c (Rn) and

b ∈ Lmloc (Rn), there exist a family {Dj}3
n

j=1 of dyadic lattices and a family {Sj}3
n

j=1 of sparse

families such that Sj ⊂ Dj, for each j, and

|(Iα)mb f(x)| ≤ cn,m,α
3n∑
j=1

m∑
h=0

(
m

h

)
Am,hα,Sj (b, f)(x), a.e. x ∈ Rn,

where, for a sparse family S, Am,hα,S (b, ·) is the sparse operator given by

Am,hα,S (b, f)(x) =
∑
Q∈S
|b(x)− bQ|m−h|Q|

α
n |f(b− bQ)h|QχQ(x).

To establish the preceding theorem we need to prove that the grand maximal truncated operator
MIα defined by

MIαf(x) = sup
Q3x

ess sup
ξ∈Q

∣∣Iα(fχRn\3Q)(ξ)
∣∣ ,

where the supremmum is taken over all the cubesQ ⊂ Rn containing x, maps L1(Rn) to L
n

n−α ,∞(Rn).
We will also use a local version of this operator which is defined, for a cube Q0 ⊂ Rn, as

MIα,Q0
f(x) = sup

x∈Q⊂Q0

ess sup
ξ∈Q

∣∣Iα(fχ3Q0\3Q)(ξ)
∣∣ .

3.1.1 Lemmata

The purpose of this subsection is to provide two lemmas that will be needed to establish Theorem
3.3. We start by presenting the first of them.

Lemma 3.4. Let 0 < α < n. Let Q0 ⊂ Rn be a cube. The following pointwise estimates hold:
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1. For a.e. x ∈ Q0,

|Iα(fχ3Q0)(x)| ≤ MIα,Q0f(x).

2. For all x ∈ Rn

MIαf(x) ≤ cn,α (Mαf(x) + Iα|f |(x)) .

From this last estimate it follows thatMIα is bounded from L1(Rn) to L
n

n−α ,∞(Rn).

Proof of Lemma 3.4. To prove (1), let Q(x, s) be a cube centered at x and such that Q(x, s) ⊂ Q0.

Then,

|Iα(fχ3Q0
)(x)| ≤ |Iα(fχ3Q(x,s))(x)|+ |Iα(fχ3Q0\3Q(x,s))(x)|

≤ |Iα(fχ3Q(x,s))(x)|+MIα,Q0f(x)

≤ Cn,αsαMf(x) +MIα,Q0
f(x),

(3.4)

where the last estimate for the first term follows by standard computations involving a dyadic

annuli-type decomposition of the cube Q(x, s). The estimate in (1) is then settled letting s→ 0 in

(3.4).

For the proof of the pointwise inequality in (2), let x be a point in Rn and Q a cube containing

x. Denote by Bx the closed ball centered at x of radius 2 diamQ. Then 3Q ⊂ Bx, and, for every

ξ ∈ Q we obtain

|Iα(fχRn\3Q)(ξ)| = |Iα(fχRn\Bx)(ξ) + Iα(fχBx\3Q)(ξ)|

≤ |Iα(fχRn\Bx)(ξ)− Iα(fχRn\Bx)(x)|

+ |Iα(fχBx\3Q)(ξ)|+ |Iα(fχRn\Bx)(x)|.

For the first term, by using the mean value theorem and adapting [18, Theorem 2.1.10] to our

setting, we get

|Iα(fχRn\Bx)(ξ)− Iα(fχRn\Bx)(x)| ≤
∫
Rn\Bx

∣∣∣∣ 1

|y − ξ|n−α
− 1

|y − x|n−α

∣∣∣∣ |f(y)|dy

≤ cn,α
∫
Rn\Bx

|x− ξ|
(|x− y|+ |y − ξ|)n−α+1

|f(y)|dy

≤ cn,αMαf(x).
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For the second term, taking into account the definition of Bx, we can write

|Iα(fχBx\3Q)(ξ)| =

∣∣∣∣∣
∫
Bx\3Q

1

|y − ξ|n−α
f(y) dy

∣∣∣∣∣
≤
∫
Bx\3Q

1

|y − ξ|n−α
|f(y)| dy

≤ cn,α
1

`(Q)n−α

∫
Bx

|f(y)|dy

≤ cn,αMαf(x).

To end the proof of this pointwise estimate we observe that

|Iα(fχRn\Bx)(x)| ≤ Iα|f |(x),

which finishes the proof of (2). Now, taking into account the pointwise estimate we have just

obtained, and the boundedness properties of the operators Iα and Mα, it is clear that MIα is

bounded from L1(Rn) to L
n

n−α ,∞(Rn), and we are done.

The second lemma that we will need for the proof of Theorem 3.3 is the so-called 3n dyadic lattices
trick. A proof can be found for example in [30] and essentially says that given a dyadic lattice D, if
we consider the family of cubes {3Q : Q ∈ D} it is possible to arrange them in 3n dyadic lattices.

Lemma 3.5 (Lerner, Nazarov [30]). Given a dyadic lattice D there exist 3n dyadic lattices Dj
such that

{3Q : Q ∈ D} =

3n⋃
j=1

Dj

and for every cube Q ∈ D we can find a cube RQ in each Dj such that Q ⊂ RQ and 3`(Q) = `(RQ)

Remark 3.6. Fix a dyadic lattice D. For an arbitrary cube Q ⊂ Rn there is a cube Q′ ∈ D

such that `(Q)
2 < `(Q′) ≤ `(Q) and Q ⊂ 3Q′. We can take a cube with that property since every

generation of cubes in D tiles Rn. From this and the preceding lemma it follows that 3Q′ = P ∈ Dj
for some j ∈ {1, . . . , 3n}. Therefore, for every cube Q ⊂ Rn there exists some j ∈ {1, . . . , 3n} and

some P ∈ Dj such that Q ⊂ P and `(P ) ≤ 3`(Q) and consequently |Q| ≤ |P | ≤ 3n|Q|.

3.1.2 Proof of Theorem 3.3

From Remark 3.6 it follows that there exist 3n dyadic lattices such that for every cube Q of Rn

there is a cube RQ ∈ Dj for some j for which 3Q ⊂ RQ and |RQ| ≤ 9n|Q|.
We claim that there is a positive constant cn,m,α verifying that, for any cube Q0 ⊂ Rn, there exists
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a 1
2 -sparse family F ⊂ D(Q0) such that for a.e. x ∈ Q0

|(Iα)mb (fχ3Q0
)(x)| ≤ cn,m,α

m∑
h=0

(
m

h

)
Bm,hF (b, f)(x), (3.5)

where
Bm,hF (b, f)(x) :=

∑
Q∈F
|b(x)− bRQ |m−h|3Q|

α
n |f(b− bRQ)h|3QχQ(x).

Suppose that we have already proved the claim. Let us take a partition of Rn by a family {Qk}k∈N
of cubes Qk such that supp(f) ⊂ 3Qk for each j ∈ N. We can do it as follows. We start with a
cube Q0 such that supp(f) ⊂ Q0. And cover 3Q0 \ Q0 by 3n − 1 congruent cubes Qk. Each of
them satisfies Q0 ⊂ 3Qk. We do the same for 9Q0 \ 3Q0 and so on. The union of all those cubes,
including Q0, will satisfy the desired properties.
Fix k ∈ N and apply the claim to the cube Qk. Then we have that since supp f ⊂ 3Qk the following
estimate holds for almost every x ∈ Rn:

|(Iα)mb f(x)|χQk(x) = |(Iα)mb (fχ3Qk)(x)|χQk(x) ≤ cn,m,α
m∑
h=0

(
m

h

)
Bm,hFk (b, f)(x),

where Fk ⊂ D(Qk) is a 1
2 -sparse family. Taking F =

⋃
k∈N Fk we have that F is a 1

2 -sparse family
and

|(Iα)mb f(x)| ≤ cn,m,α
m∑
h=0

(
m

h

)
Bm,hF (b, f)(x), a.e. x ∈ Rn.

Fix Q ⊂ F . Since 3Q ⊂ RQ and |RQ| ≤ 3n|3Q|, we have that |3Q|αn |f(b − bRQ)h|3Q ≤
3n|RQ|

α
n |f(b− bRQ)h|RQ . Setting

Sj := {RQ ∈ Dj : Q ∈ F}

and using that F is 1
2 -sparse, we obtain that each family Sj is 1

2·9n -sparse. Then we have that

|(Iα)mb f(x)| ≤ cn,m,α
3n∑
j=1

m∑
h=0

(
m

h

)
Am,hα,Sj (b, f)(x), a.e. x ∈ Rn,

and we are done.

Proof of the Claim (3.5)

To prove the claim it suffices to prove the following recursive estimate: there is a positive constant
cn,m,α verifying that there exists a countable family {Pj}j of pairwise disjoint cubes in D(Q0) such
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that
∑
j |Pj | ≤

1
2 |Q0| and

|(Iα)mb (fχ3Q0
)(x)|χQ0

(x)

≤ cn,m,α
m∑
h=0

(
m

h

)
|b(x)− bRQ0

|m−h|3Q0|
α
n |f(b− bRQ0

)h|3Q0
χQ0

(x)

+
∑
j

|(Iα)mb (fχ3Pj )(x)|χPj (x), a.e. x ∈ Q0.

Iterating this estimate, we obtain (3.5) with F = {P kj }j,k where {P 0
j }j := {Q0}, {P 1

j }j := {Pj}j
and {P kj }j is the union of the cubes obtained at the k-th stage of the iterative process from each
of the cubes P k−1

j of the (k − 1)-th stage. Clearly F is a 1
2 -sparse family, since the conditions in

the definition hold for the sets
EPkj = P kj \

⋃
j

P k+1
j .

Let us prove then the recursive estimate.
For any countable family {Pj}j of disjoint cubes Pj ∈ D(Q0) we have that

|(Iα)mb (fχ3Q0)(x)|χQ0(x)

= |(Iα)mb (fχ3Q0
)(x)|χQ0\

⋃
j Pj

(x) +
∑
j

|(Iα)mb (fχ3Q0
)(x)|χPj (x)

≤ |(Iα)mb (fχ3Q0
)(x)|χQ0\

⋃
j Pj

(x) +
∑
j

∣∣(Iα)mb (fχ3Q0\3Pj )(x)
∣∣χPj (x)

+
∑
j

∣∣(Iα)mb (fχ3Pj )(x)
∣∣χPj (x)

for almost every x ∈ Rn. So it suffices to show that we can find a positive constant cn,m,α in
such a way we can choose a countable family {Pj}j of pairwise disjoint cubes in D(Q0) with∑
j |Pj | ≤

1
2 |Q0| and such that, for a.e. x ∈ Q0,

|(Iα)mb (fχ3Q0
)(x)|χQ0\

⋃
j Pj

(x) +
∑
j

∣∣(Iα)mb (fχ3Q0\3Pj )(x)
∣∣χPj (x)

≤ cn,m,α
m∑
h=0

(
m

h

)
|b(x)− bRQ0

|m−h|3Q0|
α
n |f(b− bRQ0

)h|3Q0χQ0(x).

(3.6)

Using that (Iα)mb f = (Iα)mb−cf for any c ∈ R, and also that

(Iα)mb−cf =

m∑
h=0

(−1)h
(
m

h

)
Iα((b− c)hf)(b− c)m−h,
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it follows that

|(Iα)mb (fχ3Q0)|χQ0\∪jPj (x) +
∑
j

|(Iα)mb (fχ3Q0\3Pj )|χPj (x)

≤
m∑
h=0

(
m

h

)
|b(x)− bRQ0

|m−h|Iα((b− bRQ0
)hfχ3Q0

)(x)|χQ0\∪jPj (x) (3.7)

+

m∑
h=0

(
m

h

)
|b(x)− bRQ0

|m−h
∑
j

|Iα((b− bRQ0
)hfχ3Q0\3Pj )(x)|χPj (x). (3.8)

Now we define the set E := ∪mh=0Eh, where

Eh :=
{
x ∈ Q0 : MIα,Q0

(
(b− bRQ0

)hf
)

(x) > cn,m,α|3Q0|
α
n |(b− bRQ0

)hf |3Q0

}
,

with cn,m,α being a positive number to be chosen.
As we proved in Lemma 3.4, we have that

cn,α := ‖MIα‖L1(Rn)→L
n

n−α ,∞(Rn)
<∞,

so, sinceMIα,Q0
g ≤MIα(gχ3Q0

), we can write, for each h ∈ {0, 1, . . . ,m},

|Eh| ≤

(
cn,α

∫
3Q0
|f(b− bRQ0

)h|
cn,m,α|3Q0|

α
n |f(b− bRQ0

)h|3Q0

) n
n−α

=

(
cn,α|3Q0|

α
n−1

∫
3Q0
|f(b− bRQ0

)h|
cn,m,α|3Q0|

α
n |f(b− bRQ0

)h|3Q0

) n
n−α

|3Q0|(1−αn ) n
n−α

=

(
cn,α
cn,m,α

) n
n−α

|3Q0|(1−αn ) n
n−α = 3n

(
cn,α
cn,m,α

) n
n−α

|Q0|,

and we can choose cn,m,α such that

|E| ≤
m∑
h=0

|Eh| ≤
1

2n+2
|Q0|, (3.9)

this choice being independent from Q0 and f .
Now we apply Calderón-Zygmund decomposition to the function χE on Q0 at height λ = 1

2n+1 .
We obtain a countable family {Pj}j of pairwise disjoint cubes in D(Q0) such that

χE(x) ≤ 1

2n+1
, a.e. x 6∈

⋃
j

Pj .
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From this it follows that
∣∣∣E \⋃j Pj∣∣∣ = 0. The family {Pj}j also satisfies that

∑
j

|Pj | ≤ 2n+1|E| ≤ 1

2
|Q0|

and
|Pj ∩ E|
|Pj |

=
1

|Pj |

∫
Pj

χE(x) ≤ 1

2
for all j,

from which it readily follows that |Pj ∩ Ec| > 0 for every j. Indeed, given j,

|Pj | = |Pj ∩ E|+ |Pj ∩ Ec| ≤
1

2
|Pj |+ |Pj ∩ Ec|,

and from this it follows that 0 < 1
2 |Pj | < |Pj ∩ E

c|.
Fix some j. Since we have Pj ∩ Ec 6= ∅, we observe that

MIα,Q0

(
(b− bRQ0

)hf
)

(x) ≤ cn,m,α|3Q0|
α
n |(b− bRQ0

)hf |3Q0

for some x ∈ Pj and this implies that, for any Q ⊂ Q0 containing x, we have

ess sup
ξ∈Q

∣∣Iα((b− bRQ0
)hfχ3Q0\3Q)(ξ)

∣∣ ≤ cn,m,α|3Q0|
α
n |(b− bRQ0

)hf |3Q0
,

which allows us to control the summation in (3.8) by considering the cube Pj .
Now, by (1) in Lemma 3.4, we know that

∣∣Iα((b− bRQ0
)hfχ3Q0

)(x)
∣∣ ≤MIα,Q0

(
(b− bRQ0

)hf
)

(x), a.e. x ∈ Q0.

Since
∣∣∣E \⋃j Pj∣∣∣ = 0 we have, by the definition of E, that

MIα,Q0

(
(b− bRQ0

)hf
)

(x) ≤ cn,m,α|3Q0|
α
n |(b− bRQ0

)hf |3Q0
, a.e. x ∈ Q0 \

⋃
j

Pj .

Consequently,

∣∣Iα((b− bRQ0
)hfχ3Q0

)(x)
∣∣ ≤ cn,m,α|3Q0|

α
n |(b− bRQ0

)hf |3Q0
, a.e. x ∈ Q0 \

⋃
j

Pj .

These estimates allow us to control the remaining terms in (3.7), so we are done.

3.2 Proofs of Theorem 3.1 and Corollary 3.2

The proof of Theorem 3.1 is presented in the two first subsections. First we deal with the upper
bound and then with the necessity.
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We will end up this section with a subsection devoted to establish Corollary 3.2.

3.2.1 Proof of the upper bound

To settle the upper bound in Theorem 3.1 we argue as in [31, Theorem 1.4] or, to be more precise
as in [32, Theorem 1.1]. To do that we need to borrow the following estimate that was obtained
in the case j = 1 in [31] and for j > 1 in [32] and that can be stated as follows.

Lemma 3.7 (Lerner, Ombrosi, Rivera-Ríos [31, 32]). Let S be a sparse family contained in a

dyadic lattice D, η a weight, b ∈ BMOη and f ∈ C∞c (Rn). There exists a possibly larger sparse

family S̃ ⊂ D containing S such that, for every positive integer j and every Q ∈ S̃

∫
Q

|b− bQ|j |f | ≤ cn‖b‖jBMOη

∫
Q

AjS̃,ηf

where AjS̃,ηf stands for the j-th iteration of AS̃,η, which is defined by AS̃,ηf := AS̃(f)η, with AS̃
being the sparse operator given by

AS̃f(x) =
∑
Q∈S̃

1

|Q|

∫
Q

|f |χQ(x).

We will also make use of the following quantitative estimates. Let 1 < p < ∞ and S a γ-sparse
family. If w ∈ Ap then

‖AS‖Lp(w) ≤ cn,p[w]
max{1, 1

p−1}
Ap

. (3.10)

If p, q, α are as in the hypothesis of Theorem 3.1 and w ∈ Ap,q, then

‖IαS ‖Lq(wq)→Lp(wp) ≤ cn,p,q,α[w]
(1−αn ) max

{
1, p
q′

}
Ap,q

, (3.11)

where
IαS f(x) =

∑
Q∈S

1

|Q|1−αn

∫
Q

|f |χQ(x).

We observe that the proof of (3.11) is implicit in one of the proofs of [28, Theorem 2.6] that relies
essentially on computing the norm of the operator IαS by duality.
At this point we are in the position to prove the estimate (3.1).
Assume preliminary that b ∈ Lmloc(Rn), we’ll remove this assumption by the end. Taking into
account Theorem 3.3, it suffices to prove the estimate for the sparse operators

Am,hα,S (b, f) :=
∑
Q∈S
|b− bQ|m−h|Q|α/n|f(b− bQ)h|QχQ, h ∈ {0, 1, . . . ,m}.
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Assume that b ∈ BMOη with η to be chosen. We observe that, using Lemma 3.7,

∣∣∣∣∫
Rn
Am,hα,S (b, f)gλq

∣∣∣∣ ≤∑
Q∈S

(∫
Q

|g||b− bQ|m−hλq
)

1

|Q|1−α/n

∫
Q

|b− bQ|h|f |.

≤ cn‖b‖mBMOη

∑
Q∈S

(∫
Q

Am−hS̃,η (|g|λq)
)

1

|Q|1−α/n

∫
Q

AhS̃,η(|f |)

≤ cn‖b‖mBMOη

∫
Rn

∑
Q∈S

1

|Q|1−α/n

(∫
Q

AhS̃,η(|f |)
)
χQA

m−h
S̃,η (|g|λq)

= cn‖b‖mBMOη

∫
Rn
IαS

[
AhS̃,η(|f |)

]
(x)Am−hS̃,η (|g|λq)(x)dx.

Let us call IαS,ηf := IαS (f)η. Now, the self-adjointness of AS̃ yields

∫
Rn
IαS

(
AhS̃,η(|f |)

)
Am−hS̃,η (|g|λq) =

∫
Rn
AS̃

{
Am−h−1

S̃,η

[
IαS,η

(
AhS̃,η(|f |)

)]}
|g|λq.

Combining the preceding estimates we have that∣∣∣∣∫
Rn
Am,hα,S (b, f)gλq

∣∣∣∣ ≤ cn‖b‖mBMOη

∥∥∥AS̃Am−h−1

S̃,η IαS,ηA
h
S̃,η(|f |)

∥∥∥
Lq(λq)

‖g‖Lq′ (λq)

and consequently, taking supremum over g ∈ Lq′(λq) with ‖g‖Lq′ (λq) = 1,

‖Am,hα,S (b, f)‖Lq(λq) ≤ cn‖b‖mBMOη

∥∥∥AS̃Am−h−1

S̃,η IαS,ηA
h
S̃,η(|f |)

∥∥∥
Lq(λq)

.

Taking into account (3.10) we can estimate∥∥∥AS̃Am−h−1

S̃,η IαS,ηA
h
S̃,η(|f |)

∥∥∥
Lq(λq)

≤ cn,q

(
m−h−1∏
l=0

[λqηlq]Aq

)max{1, 1
q−1} ∥∥∥IαS,ηAhS̃,η(|f |)

∥∥∥
Lq(λqηq(m−h−1))

.

Using (3.11), we have that∥∥∥IαS,ηAhS̃,η(|f |)
∥∥∥
Lq(λqηq(m−h−1))

=
∥∥∥IαSAhS̃,η(|f |)

∥∥∥
Lq(λqηq(m−h))

≤ cn,p,α[ληm−h]
(1−αn ) max

{
1, p
′
q

}
Ap,q

∥∥∥AhS̃,η(|f |)
∥∥∥
Lp(λpηp(m−h))

and applying again (3.10),

∥∥∥AhS̃,η(|f |)
∥∥∥
Lp(λpηp(m−h))

≤ cn,p

(
m∏

l=m−h+1

[λpηlp]Ap

)max{1, 1
p−1}

‖f‖Lp(λpηmp).
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Gathering the preceding estimates we have that

‖Am,hα,S (b, f)‖Lq(λq) ≤ cn,α,p‖b‖mBMOηPQ[ληm−h]
(1−αn ) max

{
1, p
′
q

}
Ap,q

‖f‖Lp(λpηmp),

where

P :=

(
m−h−1∏
l=0

[λqηlq]Aq

)max{1, 1
q−1}

Q :=

(
m∏

l=m−h+1

[λpηlp]Ap

)max{1, 1
p−1}

.

Now we observe that choosing η = ν1/m, it readily follows from Hölder’s inequality

[λν
m−h
m ]Ap,q ≤ [λ]

h
m

Ap,q
[µ]

m−h
m

Ap,q
and [λrνr

l
m ]Ar ≤ [λr]

m−l
m

Ar
[µr]

l
m

Ar
, r = p, q.

Thus, we can write

P ≤

(
m−h−1∏
l=0

[λq]
m−l
m

Aq
[µq]

l
m

Aq

)max{1, 1
q−1}

Q ≤

(
m∏

l=m−h+1

[λp]
m−l
m

Ap
[µp]

l
m

Ap

)max{1, 1
p−1}

and, computing the products, we obtain

P ≤
(

[λq]
m+(h+1)

2

Aq
[µq]

m−(h+1)
2

Aq

)m−h
m max{1, 1

q−1}

and

Q ≤
(

[λp]
h−1

2

Ap
[µp]

m−h−1
2

Ap

) h
m max{1, 1

p−1}
.

Combining all the preceding estimates leads to the desired estimate.
To complete the proof we are going to show that b ∈ Lmloc(Rn). Indeed, for any compact set K we
choose a cube Q such that K ⊂ Q. Then

∫
K

|b|m ≤
∫
Q

|b|m ≤ cm
∫
Q

|b− bQ|m + cm

(∫
Q

|b|
)m

.

Since b is locally integrable, we only have to the deal with the first term. We observe that by
Lemma 3.7,

∫
Q

|b− bQ|mχQ ≤ cn‖b‖mBMO
ν1/m

∫
Q

AmS̃,ν1/m(χQ)

≤ cn‖b‖mBMO
ν1/m

(∫
Rn
AmS̃,ν1/m(χQ)pλp

) 1
p
(∫

Q

λ
p

1−p

) 1
p′

and arguing analogously as above we are done.
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3.2.2 Proof of the necessity

We are left to prove the converse statement of Theorem 3.1, that is that if for every set of finite
measure E we have

‖(Iα)mb χE‖Lq ≤ cµp(E)
1
p ,

then the symbol b must necessarily belong to the class BMO
ν

1
m
, where ν = µ

λ .
We are going to follow ideas in [32]. First we recall [32, Lemma 2.1]

Lemma 3.8 (Lerner, Ombrosi, Rivera-Ríos [32]). Let η ∈ A∞. Then

‖b‖BMOη ≤ sup
Q
ωλ(b,Q)

|Q|
η(Q)

0 < λ <
1

2n+1
.

where ωλ(f,Q) = infc∈R ((f − c)χQ)
∗

(λ|Q|) and

((f − c)χQ)∗(λ|Q|) = sup
E⊂Q
|E|=λ|Q|

inf
x∈E
|(f − c)(x)|.

We are ready now to give the proof. Let Q ⊂ Rn be an arbitrary cube. There exists a subset
E ⊂ Q with |E| = 1

2n+2 |Q| such that for every x ∈ E

ω 1

2n+2
(b,Q) ≤ |b(x)−mb(Q)|

where mb(Q) is a not necessarily unique number that satisfies

max {|{x ∈ Q : b(x) > mb(Q)}|, |{x ∈ Q : b(x) < mb(Q)}|} ≤ |Q|
2
.

Now let A ⊂ Q with |A| = 1
2 |Q| and such that b(x) ≥ mb(Q) for every x ∈ A. We call B = Q \A.

Then |B| = 1
2 |Q| and b(x) ≤ mb(Q) for every x ∈ B.

As Q is the disjoint union of A and B, at least half of the set E is contained either in A or in B.
We may assume, without loss of generality, that half of E is in A, so we have

|E ∩A| = |E| − |E ∩ (E ∩A)c| ≥ |E| − |E|
2

=
1

2n+3
|Q|.

So choosing A′ = A ∩ E we have that if y ∈ A′ and x ∈ B then ω 1

2n+2
(b,Q) ≤ b(y) −mb(Q) ≤

b(y) − b(x). Consequently, taking into account that A′ and B are disjoint subsets of Q, using
Hölder’s inequality and the hypothesis on (Iα)mb ,
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ω 1

2n+2
(b,Q)m|A′||B| ≤

∫
A′

∫
B

(b(y)− b(x))m dxdy

≤ `(Q)n−α
∫
A′

∫
B

(b(y)− b(x))m

|x− y|n−α
dxdy

= `(Q)n−α
∫
A′

(Iα)mb (χB)(x) dx

≤ `(Q)n−α
(∫

Q

λ−q
′
) 1
q′
(∫

Rn
(Iα)mb (χB)(x)qλ(x)q dx

) 1
q

≤ c`(Q)n−α
(∫

Q

λ−q
′
) 1
q′
(∫

Q

µp
) 1
p

= c|Q|2
(

1

|Q|

∫
Q

λ−q
′
) 1
q′
(

1

|Q|

∫
Q

µp
) 1
p

,

where we used that
1

q
+
α

n
=

1

p
⇐⇒ 1

q′
+

1

p
= 1 +

α

n
.

Taking into account that |A′|, |B| ' |Q|, it readily follows from the estimate above that

ω 1

2n+2
(b,Q)m ≤ c

(
1

|Q|

∫
Q

λ−q
′
) 1
q′
(

1

|Q|

∫
Q

µp
) 1
p

.

Since µ ∈ Ap,q we have that µp ∈ Ap. Hence (see for example [15])

1

|Q|

∫
Q

µp ≤ c
(

1

|Q|

∫
Q

µ
p
r

)r
, for any r > 1.

Using that inequality, for some r > 1 to be chosen, combined with Hölder’s inequality with β = r
p

1
m ,

we have that

(
1

|Q|

∫
Q

µp
) 1
p

≤ c
(

1

|Q|

∫
Q

µ
p
r λ−

p
r λ

p
r

) r
p

≤ c
(

1

|Q|

∫
Q

ν
1
m

)m(
1

|Q|

∫
Q

λ
p
r β
′
) r
pβ′

= c

(
1

|Q|

∫
Q

ν
1
m

)m(
1

|Q|

∫
Q

λ
p

r−pm

) r−pm
p

and choosing r = pm+ 1 we obtain

(
1

|Q|

∫
Q

µp
) 1
p

≤ c
(

1

|Q|

∫
Q

ν
1
m

)m(
1

|Q|

∫
Q

λp
) 1
p

.

This yields

ω 1

2n+2
(b,Q)m ≤ c

(
1

|Q|

∫
Q

ν
1
m

)m(
1

|Q|

∫
Q

λ−q
′
) 1
q′
(

1

|Q|

∫
Q

λp
) 1
p

.
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Now we observe that since q > p then by Hölder’s inequality

(
1

|Q|

∫
Q

λp
) 1
p

≤
(

1

|Q|

∫
Q

λq
) 1
q

and
(

1

|Q|

∫
Q

λ−q
′
) 1
q′

≤
(

1

|Q|

∫
Q

λ−p
′
) 1
p′

.

Thus (
1

|Q|

∫
Q

λ−q
′
) 1
q′
(

1

|Q|

∫
Q

λp
) 1
p

≤

[(
1

|Q|

∫
Q

λq
)(

1

|Q|

∫
Q

λ−p
′
) q
p′
] 1
q

.

Consequently, since λ ∈ Ap,q, we finally get

ω 1

2n+2
(b,Q) ≤ c 1

|Q|

∫
Q

ν
1
m

and we are done in view of Lemma 3.8.

3.2.3 Proof of Corollary 3.2

To prove the corollary it suffices to estimate each term in κm in Theorem 3.1 for µ = λ. Indeed,
we observe first that taking µ = λ

κm = [µ]
(1−αn ) max

{
1, p
′
q

}
Ap,q

m∑
h=0

(
m

h

)
[µq]

(m−h) max{1, 1
q−1}

Aq
[µp]

hmax{1, 1
p−1}

Ap
.

Now, taking into account (1.1), we get

[µq]
(m−h) max{1, 1

q−1}
Aq

≤ [µ]
(m−h) max{1, 1

q−1}
Ap,q

and
[µp]

hmax{1, 1
p−1}

Ap
≤ [µ]

h pq max{1, 1
p−1}

Ap,q
.

Consequently

κm ≤ cm[µ]
(1−αn ) max

{
1, p
′
q

}
+mmax

{
1, 1
q−1 ,

p
q ,
p′
q

}
Ap,q

.

Note that since p < q we have that p
q < 1 and also

p < q ⇐⇒ p′ > q′ ⇐⇒ 1

q − 1
<
p′

q
.

This yields that max
{

1, 1
q−1 ,

p
q ,

p′

q

}
= max

{
1, p

′

q

}
and we have that

κm ≤ cm[µ]
(m+1−αn ) max

{
1, p
′
q

}
Ap,q

,

as we wanted to prove.
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To establish the sharpness of the exponent in (3.3) we will use the adaption of Buckley’s example
[7] to the fractional setting that was devised in [12]. First we observe that we can restrict ourselves
to the case in which p′/q ≥ 1, since the case p′/q < 1 follows at once by duality, taking into account
the fact that (Iα)mb is essentially self-adjoint (in this case, [(Iα)mb ]∗ = (−1)m(Iα)mb ) and the fact
that if w ∈ Ap,q, then w−1 ∈ Aq′,p′ and [w−1]Aq′,p′ = [w]

p′/q
Ap,q

.
Suppose then that p′/q ≥ 1, and take δ ∈ (0, 1). Define the weight wδ(x) = |x|(n−δ)/p′ and the
power functions fδ(x) = |x|δ−nχB(0,1)(x). Easy computations yield

‖fδ‖Lp(wpδ ) � δ−1/p, and [wδ]Ap,q � δ−q/p
′
.

Let b be the BMO function b(x) = log |x|. For x ∈ Rn with |x| ≥ 2, we have that

(Iα)mb fδ(x) =

∫
B(0,1)

logm(|x|/|y|)
|x− y|n−α

|y|δ−n dy

≥ |x|δ−n+α

∫
B(0,|x|−1)

logm(1/|z|)
(1 + |z|)n−α

|z|δ−n dz

≥ cn
|x|δ

(1 + |x|)n−α

∫ |x|−1

0

logm(1/r)rδ−1 dr.

Integration by parts yields

∫ |x|−1

0

logm(1/r)rδ−1dr = δ−1|x|−δ logm |x|
m∑
k=0

m!

(m− k)!δk logk |x|

≥ δ−1|x|−δ logm |x|
m∑
k=0

(
m

k

)
(δ−1 log−1 |x|)k

= δ−1|x|−δ logm |x|(δ−1 log−1 |x|+ 1)m

≥ δ−m−1|x|−δ.

Then,
(Iα)mb fδ(x) ≥ cn

δm+1|x|n−α
, |x| ≥ 2.

Hence, taking into account that 1
q + α

n = 1
p , we have that

‖(Iα)mb fδ‖Lq(wqδ) ≥ cnδ−(m+1)

(∫
|x|≥2

|x|(n−δ)
q
p′

|x|(n−α)q
dx

)1/q

= cnδ
−(m+1)

(∫
|x|≥2

|x|−δq/p
′−n dx

)1/q

= cδ−(m+1)− 1
q

= c[wδ]
(m+1−αn ) p

′
q

Ap,q
‖fδ‖Lp(wpδ )

= c[wδ]
(m+1−αn ) max

{
1, p
′
q

}
Ap,q

‖fδ‖Lp(wpδ ),
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so the exponent in (3.3) is sharp.

Remark 3.9. We would like to point out that an alternative argument to settle the sharpness we

have just obtained follows from the combination of arguments in Sections 3.1 and 3.4 in [33].

3.3 Some further remarks

Connection with the boundedness of commutators of singular integrals

Theorem 3.1 combined with the characterization recently obtained in [32] allows to connect the
boundedness of commutators of singular integrals and of commutators of fractional integrals in the
unweighted setting via BMO. To be more precise, as a straightforward consequence of the result
above and [32, Remark 1.2] we obtain the following corollary.

Corollary 3.10. Let m1,m2 be positive integers and m = max{m1,m2} and assume that b ∈

Lmloc(Rn). The following statements are equivalent.

1. b ∈ BMO.

2. Given α ∈ (0, n), 1 < p < n
α and q defined by 1

q + α
n = 1

p ,

(Iα)m1

b : Lq(Rn) −→ Lp(Rn).

3. Let 1 < p <∞. Given Ω a continuous function on Sn−1, not identically zero with
∫
Sn Ω(θ)dθ =

0 and such that

ω(t) = sup
|θ−θ′|≤t

|Ω(θ)− Ω(θ′)|

satisfies the Dini condition, namely
∫ 1

0
ω(t)dt

t <∞, if we define

TΩf(x) := lim
ε→0

∫
|x−y|>ε

Ω
(
x−y
|x−y|

)
|x− y|n

f(y) dy,

then,

(TΩ)m2

b : Lp(Rn) −→ Lp(Rn).

Notice that, for instance, Hilbert and Riesz transforms are particular cases of the statement above.

Ap-A∞ constants

Also, we recall that w ∈ A∞ if and only if

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ) <∞
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and that is, up until now (see [16]), the smallest constant characterizing the A∞ class. We would
like to point out that it would be possible to provide mixed estimates for (Iα)mb in terms of this
A∞-constant. For that purpose it suffices to follow the same argument used to establish Theorem
3.1, but taking into account that, if w ∈ Ap and we call σ := w

1
1−p , then

‖AS‖Lp(w) ≤ cn,p[w]
1
p

Ap

(
[w]

1
p′

A∞
+ [σ]

1
p

A∞

)
.

Also, if α ∈ (0, n), 1 < p < n
α , q is defined by 1

q + α
n = 1

p and w ∈ Ap,q then taking σ as above,

‖IαS ‖Lp(wp)→Lq(wq) ≤ cn,p[w]Ap,q

(
[wq]

1
p′

A∞
+ [σp]

1
q

A∞

)
.

The preceding estimate was established in [13] and is also contained in the paper [16].



Chapter 4

Maximal directional operators

This last chapter deals with maximal directional operators. Our main operator to study is going
to be defined via the Fourier transform as follows. Take m to be a Mikhlin-Hörmander multiplier
on R, that is, m is a C∞(R\{0}) that satisfies

sup
ξ∈R\{0}

|ξ|α|∂αm(ξ)| .α 1, for all non-negative integers α.

For f ∈ C∞0 (Rn) and V a set of directions in Sn−1 we define

TV f(x) := sup
v∈V

∣∣∣∣∫
Rn
m(v · ξ)f̂(ξ)eiξ·xdξ

∣∣∣∣ , x ∈ Rn.

As we saw on Section 1.6, when dealing with the first example that we gave -the maximal directional
operator that arises from the maximal function- we usually focus on two types of questions. Recall
that basically the first question was about the structure of the set in order to get Lp-boundedness
and the second one was about trying to find sharp bounds of the Lp-norms of the operator in
terms of the cardinality of the set of directions. Now observe that one example that fits our
setting is the maximal directional Hilbert transform, this is the operator generated by considering
m(ξ) = −i sgn(ξ). A result from Łaba, Marinelli and Pramanik [27], elaborating on a previous
example by Karagulyan [24], tells us that if V is any set of directions in Sn−1 of cadinality N it
holds ‖HV ‖Lp→Lp & (logN)

1
2 , and thus we can immediately drop the first question and focus on

the case of sets of directions of finite cardinality. In a joint work with F. Di Plinio and I. Parissis
[2] we obtained the following.

Theorem 4.1. For Ω a finite union of lacunary sets, 1 < p <∞ and V ⊂ Ω any set of cardinality

N it holds

‖TV f‖Lp(Rn) . (logN)1/2‖f‖Lp(Rn),

with the implicit constant dependent on the lacunarity order and constant, and on the dimension

43
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n.

Recall that we have given the definition of lacunary sets of directions in Section 1.6.1. We im-
mediately simplify the definition of lacunarity by assuming -without loss of generality- that all
dissections are given with respect to lacunary sequences θσ,` = 2−` for all σ ∈ Σ, corresponding
to λ = 1/2. Furthermore by a standard approximation argument we can dispose of the final set
of the partition Ωσ,∞ and work with Z instead of Z∗. Also, by finite splitting, we can and will
assume that Ω ⊂ {x ∈ Rn : xi > 0, i = 1, . . . , n}.

4.1 The L2(R2)-case

In this section we are going to present the proof for Theorem 4.1 in L2(R2), since the structure of
the proof is similar to the one in the general case but the notation is much simpler. Take Ω a set of
directions in S1 lacunary of order L. We recall the definition of the sectors S` that we have given
in Section 1.6.1. Since we are assuming that Ω ⊂ {x ∈ R2 : x1, x2 > 0} and that the lacunarity
constant is 1/2, we have for ` ∈ Z

S` =
{
ω ∈ S1 : 2−(`+1) ≤ ω1

ω2
< 2−`

}
.

Whenever we are given a set of directions V , we will call V` := V ∩ S`.

Proof. Take V to be any subset of Ω of cardinality N , and v a direction of V . Observe that the

singularity of the operator Tv lies on the line {ξ ∈ R2 : v · ξ = 0}. For ` ∈ Z we are going to cover

all the singular lines of the operators Tv with v any direction in V`, with a cone. Explicitly, we

define

Ψ` :=

{
ξ ∈ R2\e⊥2 :

2−(`+1)

2
≤ −ξ1

ξ2
< 2 · 2−`

}
.

For a direction v ∈ V` we are going to split Tv into two operators: one that has its frequency

support inside the cone and another that has its frequency support outside the cone. To that end,

take ψ to be a bump function, ψ ≡ 1 on (1/4, 2) and ψ ≡ 0 on (1/6, 3)c, and K` to be the Fourier

multipliers with symbols K̂`(ξ) = ψ`(ξ) := ψ
( −ξ1

2−`ξ2

)
. Observe that ψ` ≡ 1 on Ψ` and ψ` ≡ 0

outside a slightly larger cone. We now split

Tvf = TvK`f + Tv(Id−K`)f := T in
v f + T out

v f ;

We will deal with the two parts separately.

The inner part:

Define

T in
V f := sup

`∈Z
|T in
V`
f | = sup

`∈Z
sup
v∈V`
|TvK`f |.
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We have

∥∥T in
V f
∥∥2

L2(R2)
≤
∥∥∥(
∑
`∈Z
|T in
V`
K`f |2)1/2

∥∥∥2

L2
≤ sup

`∈Z

∥∥T in
V`

∥∥2

L2(R2)

∥∥∥(
∑
`∈Z
|K`f |2)

1
2

∥∥∥2

L2(R2)
.

Using Plancharel’s theorem and the fact that the cones Ψ` have bounded overlap,

∥∥∥(
∑
`∈Z
|K`f |2)

1
2

∥∥∥
L2(R2)

=
∑
`∈Z

∫
R2

|K`f(x)|2dx =
∑
`∈Z

∫
R2

|ψ`(ξ)f̂(ξ)|2dξ ≤ 5‖f‖2L2(R2).
1

Finally, we can bound

‖T in
V f‖

2
L2(R2) . sup

`∈Z
‖TV`‖

2
L2(R2) ‖f‖

2
L2(R2),

with V` lacunary of order L− 1 by assumption.

The outer part:

We are going to further split the outer part into two pieces. Take another bump function η such

that η ≡ 1 on (−1/4, 1/4) and η ≡ 0 on (−3/4, 3/4)c. Now,

Tv(Id−K`)f = TvN`(Id−K`)f + Tv(Id−N`)(Id−K`)f ;

where (N`)
∧(ξ) = η`(ξ) := η

( −ξ1
2−`ξ2

)
. Observe that v is morally (1, 2−`) so what this multiplier is

doing is telling us which is the leading term in |v · ξ| ' |ξ1 + 2−`ξ2|.

(1− η`)

out

Cv

in η`

v = (1, 2−`)

ξ1

ξ2
v⊥

Figure 4.1: The splitting of the operator Tv.
1The constant 5 is irrelevant for us and included here because it is very easy to compute. We are going to omit
explicit constant going forward.
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We are going to use the Chang-Wilson-Wolff inequality that we presented in Section 1.6.3, with

the weight w = 1. To that end, take p to be a smooth function on R such that

∑
t∈Z

p(2−tξ) = 1, ξ 6= 0,

and such that p vanishes off the set {ξ ∈ R : 1
2 < |ξ| < 2} and define

(P tj f)∧(ξ) := p(2−tξj), j = 1, 2, t ∈ Z.

We will need to superimpose another Littlewood-Paley decomposition on top of this one, we do so

by taking a smooth function such that

supp q ⊂
{
ξ ∈ R :

1

4
< |ξ| < 4

}
,

∑
t∈Z

q(2−tξ) = 1 ξ 6= 0

q = 1 on supp p.

We define the operator

(Qjtf)∧(ξ) = f̂(ξ)q(2−tξj) j = 1, 2.

Lemma 4.2. Take Ms to be the strong maximal operator defined in 1.2. For v ∈ S` we have

|TvN`(Id−K`)P
2
t f(x)| . Msf(x), x ∈ R2

and

|Tv(Id−N`)(Id−K`)P
1
t f(x)| . Msf(x), x ∈ R2.

Proof. Define

Φv(x1, x2) =

∫
R2

m(v · ξ)η`(ξ)(1− ψ`(ξ))q(2−tξ2)eix·ξ dξ.

Observe that we have the pointwise identity TvN`(Id −K`)P
2
t f(x) = Φ ∗ (P 2

t f)(x), so to get the

desired estimate it is enough to control the derivatives of Φ.

Remember that we are taking v ∈ S`, which means that v2 ' 2−`v1. Note that the support of the

symbol η`(ξ)(1−ψ`)(ξ)q(2−tξ2) is contained in the set {−3/4 ≤ −ξ1/(2−`ξ2) ≤ 1/4}∩ {|ξ2| ∼ 2t},

so we trivially get that |Φ(x1, x2)| . 22t−`. We can bound the derivatives of m by

|∂αξ1m(v · ξ)| = |m(α)(v · ξ)|vα1 .
vα1
|v · ξ|α

.
1

(2−`|ξ2|)α
. 2α(`−t).
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and

|∂βξ2m(v · ξ)| = |m(β)(v · ξ)|vβ2 .
vβ2
|v · ξ|β

.
( v2

2−`v1

)β 1

|ξ2|β
. 2β(−t)

Indeed, we have that |ξ1| ≤ 1
42−`|ξ2| and so

|v1ξ1 + v2ξ2| ≥ v1(
v2

v1
|ξ2| − |ξ1|) & v1(2−`|ξ2| − |ξ1|) & v12−`|ξ2|.

We have to also consider the derivatives of η` and ψ`. We do one, the other one is similar:

|∂βξ2∂
α
ξ1ψ
( −ξ1

2−`ξ2

)
| ≤ |ψ(α+β)

( −ξ1
2−`ξ2

)
| 1

(2−`|ξ2|)α
( |ξ1|

2−`|ξ2|2
)β

. 2−α(t−`)2−βt.

Taking α, β = 0, 1, 2 we can bound

|Φ(x1, x2)| . 22t−` 1

(1 + 2t−`|x1|)2

1

(1 + 2t|x2|)2

and so |Φ ∗ (P 2
t f)(x)| . Ms(P

2
t f)(x) for all x ∈ R2.

The estimates for Tv(Id−N`)(Id−K`)f are similar. Call ϕ = (1− ψ)(1− η), and we have ϕ ≡ 0

on (−1/4, 2) and ϕ ≡ 1 on (−3/4, 3)c. We now take Φ to be

Φ(x1, x2) =

∫
R2

m(v · ξ)ϕ
( −ξ1

2−`ξ2

)
q(2−t|ξ1|)eix·ξ dξ

and we have that Φ ∗ (P 1
t f) = Tv(Id−N`)(Id−ψ`)(P 1

t f). By support considerations we have that

|Φ(x1, x2)| . 22t+`.

Now observe that ϕ` only has derivatives when |ξ1| ∼ 2−`|ξ2| and so we get

|∂βξ2∂
α
ξ1ϕ
( −ξ1

2−`ξ2
)| . 1

(2−`|ξ2|)α
|ξ1|β

(2−`|ξ2|2)β
. 2−αt2−β(t+`).

And also

|∂αξ1m(v · ξ)| . vα1
|v · ξ|α

.
1

|ξ1|α
∼ 2−αt

|∂βξ2m(v · ξ)| . vβ2
|v · ξ|β

.
vβ2

vβ1 |ξ1|β
∼ 2−β(t+`).

Like before, taking α, β = 0, 1, 2

|Φ(x1, x2)| . 22t+` 1

(1 + 2t|x1|)2

1

(1 + 2t+`|x2|)2
,

and so |Φ ∗ (P 1
t f)(x)| . Ms(P

1
t f)(x) for all x ∈ R2.
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To complete the bound of the outer part, we apply both the Chang-Wilson-Wolff inequality from

Proposition 1.18 and Lemma 4.2 to obtain

∥∥∥sup
v∈V
|T out
v f |

∥∥∥
L2(R2)

≤
∥∥sup
v∈V

TvN`(Id−K`)f
∥∥
L2(R2)

+
∥∥sup
v∈V

Tv(Id−N`)(Id−K`)f
∥∥
L2(R2)

. ‖f‖L2(R2) + (log(N + 1))
1
2

(∥∥∥[∑
t∈Z

sup
v∈V
|TvN`(Id−K`)(P

2
t f)|2

] 1
2
∥∥∥
L2(R2)

+
∥∥∥[∑

t∈Z
sup
v∈V
|Tv(Id−N`)(Id−K`)(P

1
t f)|2

] 1
2
∥∥∥
L2(R2)

)
. ‖f‖L2(R2) + (logN)

1
2

(∥∥∥[∑
t∈Z
|Ms(P

2
t f)|2

] 1
2
∥∥∥
L2(R2)

+
∥∥∥[∑

t∈Z
|Ms(P

1
t f)|2

] 1
2
∥∥∥
L2(R2)

)
. (logN)

1
2 ‖f‖L2(R2).

Completing the proof of theorem 4.1:

Combining both the estimates we obtained for the outer and the inner part we get

∥∥sup
v∈V
|Tvf |

∥∥
L2(R2)

≤
∥∥sup
v∈V
|T in
v f |

∥∥
L2(R2)

+
∥∥sup
v∈V
|T out
v f |

∥∥
L2(R2)

.

(
sup
`∈Z

∥∥TV`∥∥L2(R2)
+ (logN)

1
2

)
‖f‖L2(R2),

with V` lacunary of order L− 1. We can now deduce the theorem by induction on L. Indeed, this

estimate provides us with the inductive step and if L = 1, then V` consists of only one direction

and so sup
`∈Z
‖TV`‖L2(R2) is trivially bounded by the one-dimensional theory.

4.2 The Lp(Rn)-case

As we mentioned before, the core of the proof for the general case is similar to the L2(R2)-case.
Trying to replicate this proof comes with two main difficulties: the first one is figuring out the
right splitting to take when dealing with the geometry of Rn, and the second one is bounding the
square function that we plugged in the proof of the inner part (4.1) when we lose L2.
We review the set up of the problem. Let Ω ⊂ Sn−1 be a lacunary set of directions of order L.
Recall we will assume Ω ⊂ Rn+ and that all dissections are given with respect to the lacunary
sequences θσ,` = 2−`, ` ∈ Z, for all σ ∈ Σ. Let m be a Mikhlin-Hörmander multiplier on R and
define for a subset V ⊂ Ω,

TV f(x) = sup
v∈V

∣∣∣∣∫
Rn
m(v · ξ)f̂(ξ)eiξ·xdξ

∣∣∣∣ , x ∈ Rn.

Observe that for a fixed direction v ∈ V , the singularity of the operator Tvf = (m(v · .)f̂)∨ lies
on the (n − 1) dimensional hyperplane v⊥. In order to isolate the singularity, we introduce the
following frequency cutoffs that were first considered by Nagel, Stein and Wainger in [36].
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Definition 4.3. Let ω(ξ) denote a function that is homogeneous of degree zero and C∞ away

from the origin in Rn, and which satisfies

ω ≡


1, if |ξ1 + · · ·+ ξn| < 1

2n2 ‖ξ‖,

0, if |ξ1 + · · ·+ ξn| ≥ 1
n2 ‖ξ‖.

For a direction v ∈ Sn−1 we define the smooth frequency projections

Wvf(x) :=

∫
Rn
ω(v1ξ1, . . . , vnξn)f̂(ξ)eix·ξ dξ, x ∈ Rn. (4.1)

Note that the operator Id −Wv is a smooth frequency projection onto a cone with axis along v.
In particular the frequency support of the symbol of Id −Wv only intersects the hyperplane v⊥

at the origin. We will further split the “inner part” with the two-dimensional wedges that were
introduced by Parcet and Rogers in [37].

Definition 4.4. We define for σ ∈ Σ and ` ∈ Z

Ψσ,` :=

{
ξ ∈ Rn\e⊥σ(2) :

2−(`+1)

n
≤
−ξσ(1)

ξσ(2)
< 2−`n

}
,

and

Ψ̃σ,` :=

{
ξ ∈ Rn\e⊥σ(2) :

2−(`+1)

n+ 1
≤
−ξσ(1)

ξσ(2)
< 2−`(n+ 1)

}
.

Take κ to be a bump function such that

κ ≡


1 on [1/2n, n],

0 on [1/2(n+ 1), n+ 1]c,

and define the Fourier multiplier operators Kσ,` with symbols

κσ,`(ξ) := κ

(
−

ξσ(1)

2−`ξσ(2)

)
, Kσ,`f := (κσ,`f̂)∨.

Note that κσ,` is smooth, identically 1 on the wedge Ψσ,`, and identically 0 off Ψ̃σ,`. For a subset

∅ 6= U ⊆ Σ(d) we define

KU,` :=
∏
σ∈U

Kσ,`σ

with the product symbol being used to denote for compositions of operators in the display above.

The main geometric observation relating the Nagel-Stein-Wainger cones with the Parcet-Rogers
wedges is contained in the following lemma, which is an elaboration of a similar statement from
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[37, Proof of Theorem A].

Lemma 4.5. Let {Ωσ,`} be a lacunary dissection of Ω ⊂ Sd−1 and suppose that v ∈ Ω` for some

` ∈ ZΣ with ` = {`σ : σ ∈ Σ}. Then

Wvf =
∑

∅ 6=U⊆Σ(d)

(−1)|U |+1WvKU,`f.

Proof. Writing (Wvf)∧ =: ωv f̂ we note that the support of ωv satisfies

suppωv ⊆
{
ξ ∈ Rn : |ξ · v| < 1

n
max

1≤k≤n
|ξkvk|

}
=: Cv.

We read from [14, Proof of Lemma 3.2], together with the assumption that v ∈ Ω`, that

Cv ⊆
⋃
σ∈Σ

Ψσ,`σ .

The conclusion of the lemma follows from the display above, the inclusion-exclusion formula, and

the fact that for each σ ∈ Σ and ` ∈ Z the operator Kσ,` has symbol κσ,` which is identically 1 on

Ψσ,`.

4.2.1 Bounding the symbols

Lemma 4.6. Let Σ be associated with a given ONB on Sn−1 and denote by A∗p the class of weights

corresponding to its coordinate directions. Then for all w ∈ A∗p we have

sup
U⊆Σ

∥∥∥∥∥
( ∑

`∈ZU

∣∣KU,`f
∣∣2) 1

2

∥∥∥∥∥
Lp(w)

. [w]γA∗p‖f‖Lp(w)

for some γ = γ(p, n) and implicit constant independent of f and w.

Proof. By Khintchine’s inequality, it is enough to bound in Lp(w) the operator

f 7→
∑
`∈ZU

ε`KU,`f,

where {ε`} is an arbitrary choice of signs. Choose m =
∑

`∈ZU ε`κU,` in the theorem by Kurtz

stated in 1.15. The derivative estimates needed to apply the theorem are deduced by observing

that the wedges {Ψ̃σ,`} have bounded overlap.

As another direct application of Kurtz’s theorem one can easily provide weighted norm inequalities
for the conical multipliers Wv associated with a fixed direction v ∈ Rn.
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Lemma 4.7. For v ∈ Sn−1 let Wv be defined as in (4.1). Then for all p ∈ (1,∞) and all w ∈ A∗p
we have

sup
v∈Sn−1

‖Wv‖Lp(w) . [w]γA∗p

for some γ = γ(n, p) and implicit constant independent of w.

A maximal inequality for Nagel-Stein-Wainger cones

In the proof of our main theorem we will need a maximal version of Lemma 4.7. For this let us
consider a set Ω ⊂ Sn−1 and define the maximal cone multiplier operator

WΩf(x) := sup
v∈Ω
|Wvf(x)|, x ∈ Rn.

Lemma 4.8. Let Ω ⊂ Sn−1 be a lacunary set and w ∈ AΩ
p . Then

‖WΩ‖Lp(w) . [w]γ
AΩ
p

for some γ depending on p, n, and the lacunarity order of Ω.

Proof. By the extrapolation result of Proposition 1.17 it will be enough to proof the L2(w)-version

of the conclusion whenever w ∈ AΩ
2 . We will do so by proving the recursive formula

‖WΩf‖L2(w) ≤ B[w]γ
AΩ

2
sup
σ∈Σ

sup
`∈Z
‖WΩσ,`‖L2(w)

with γ as in the conclusion of the lemma and B > 0 a numerical constant depending only upon

dimension. The proof then follows by an inductive application of the formula above, repeated

as many times as the order of lacunarity L of Ω. The base step of the induction corresponds to

lacunary sets of order 0 in which case the desired estimate is the content of Lemma 4.7.

To prove the recursive formula let v ∈ Ω so that v ∈ Ω` for some unique ` ∈ ZΣ. By Lemma 4.5

we have that

|Wvf(x)| ≤
∑

∅ 6=U⊆Σ

( ∑
`∈ZΣ

|WΩ`
KU,`f |2

) 1
2

.

Taking L2(w)-norms and using the L2(w) vector-valued bound for {KU,`} of Lemma 4.6 yields

‖Wvf‖2L2(w) ≤ B sup
`∈ZΣ

‖WΩ`
‖2L2(w) ≤ B[w]2γ

AΩ
2

sup
σ∈Σ

sup
`∈Z
‖WΩσ,`‖

2
L2(w)

which proves the desired recursive estimate and thus the lemma.
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4.2.2 The proof of Theorem 4.1

This section is dedicated to the proof of our main theorem. We remember that m ∈ C∞(Rn\{0})
and Tv is the directional multiplier operator

Tvf(x) =

∫
Rn
f̂(ξ)m(ξ · v)eix·ξ dξ, x ∈ Rn,

while for any V ⊂ Sn−1 we have defined TV f = supv∈V |Tvf |. By the extrapolation result of
Proposition 1.17 the proof of the statement

sup
V⊂Ω

#V=N

‖TV f‖p . (logN)1/2‖f‖p, p ∈ (1,∞),

is reduced to proving that for all Ω ⊂ Sn−1 which are lacunary of some order L ≥ 1 and all
directional weights w ∈ AΩ

2 we have

sup
V⊂Ω

#V=N

‖TV f‖L2(w) . [w]γ
AΩ

2
(logN)1/2‖f‖L2(w) (4.2)

for some γ > 0 depending upon dimension and the order of lacunarity of Ω.
We note that, although we have allowed for the possibility that span(Ω) = d ≤ n, we can safely
reduce to the case d = n by an application of Fubini’s theorem. In what follows we thus work in
Rn with Ω ⊂ Sn−1 and span(Ω) = Rn. We will just write Σ for Σ(n).

The main splitting

The whole proof is guided by the following splitting of the operator Tv into two pieces. The first
contains the singularity of ξ 7→ m(ξ · v), with the complementary piece given by a Nagel-Stein-
Wainger cone as in Definition 4.3

|Tvf(x)| ≤ |TvWvf(x)|+ |Tv(Id−Wv)f(x)| =: |T in
v f(x)|+ |T out

v f(x)|, x ∈ Rn. (4.3)

Recall that Wv is defined in Definition 4.3. We deal first with the inner part.

The inner part

For fixed v ∈ V ⊂ Ω there exists a unique ` ∈ ZΣ such that v ∈ Ω`. Fixing such v and ` and using
Lemma 4.5 we readily see that

|T in
v f(x)| ≤

∣∣∣ ∑
∅ 6=U⊆Σ

(−1)|U |+1TvWvKU,`f(x)
∣∣∣ . ∑

∅6=U⊆Σ

sup
v∈V ∩Ω`

(∑
`

|TvWvKU,`f(x)|2
) 1

2

≤ sup
∅ 6=U⊆Σ

(∑
`

|T in
V ∩Ω`

KU,`f(x)|2
) 1

2

.
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Recall
T in
V f := sup

v∈V
|T in
v f | = sup

v∈V
|TvWvf |. (4.4)

Taking L2(w)-norms and using the weighted vector-valued bound of Lemma 4.6

∥∥T in
V f
∥∥2

L2(w)
. [w]2γ1

AΩ
2

sup
`∈ZΣ

∥∥T in
V ∩Ω`

∥∥2

L2(w)
‖f‖2L2(w)

. [w]γ2

AΩ
2

∥∥WΩ

∥∥2

L2(w)
sup
σ∈Σ

sup
`∈Z
‖TVσ,`‖

2
L2(w)‖f‖

2
L2(w).

Inserting the maximal inequality of Lemma 4.8 in the display above proves the recursive estimate

‖T in
V ‖L2(w) . [w]γ̃

AΩ
2

sup
σ∈Σ

sup
`∈Z
‖TVσ,`‖L2(w) (4.5)

for some exponent γ̃ depending only on the lacunarity order of Ω and the dimension.

The outer part

Let ϕ to be a bump function on R such that ϕ ≡ 0 on [−1/4, 1/4] and ϕ ≡ 1 on (−1/2, 1/2)c, and
define

ϕjv (ξ) := ϕ

(
nvjξj
‖(vξ)‖

)
, ξ = (ξ1, . . . , ξn) ∈ Rn\{0};

from here on, (vξ) denotes the vector (v1ξ1, . . . , vnξn). Observe that on Rn\{0} we have

1 = ϕ1
v +

n−1∑
j=2

ϕjv
∏

1≤`<j

(1− ϕ`v)

+
∏

1≤`<n

(1− ϕ`v) =: η1
v +

n−1∑
j=2

ηjv

+ ηnv . (4.6)

Therefore, we can further split the operator T out
v = Tv(Id−Wv) into n pieces,

T out
v f =

n∑
j=1

T out
v N j

vf,

where each N j
v is the Fourier multiplier with symbol ηj,v.

The heart of the proof for the outer part is the content of the following lemma which provides a
pointwise control of the operators T out

v N j
vP

j
t by suitable averages which are independent of the

direction. Here P tj is a coordinate-wise Littlewood-Paley projection which is defined as in the
discussion preceding Lemma 1.18. That is,

P̂ jt f = p(2−tξj)f̂ , ξ = (ξ1, . . . , ξn) ∈ Rn\{0}, t ∈ Z,

with supp(p) ⊆ {ξ ∈ R : 1
2 < |ξ| < 2}. We will need to superimpose another Littlewood-Paley
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decomposition on top of {P jt }. To this aim, consider a smooth function q on R such that

supp(q) ⊆ {ξ ∈ R :
1

4
< |ξ| < 4}, q ≡ 1 on {1

2
< |ξ| < 2},

and ∑
t∈Z

q(2−tξ) h 1, ξ ∈ Rn\{0}.

In the statement of the lemma below, Ms denotes the strong maximal function in Rn defined as in
1.2, with respect to our fixed choice of coordinates .

Lemma 4.9. For v ∈ Sn−1 and j = 1, . . . , n, we have the pointwise estimate

|T out
v N j

vP
j
t f(x)| . Ms(P

j
t f)(x)

with implicit constant depending only upon dimension.

Proof. For v ∈ Sn−1 call

Φv(x) :=

∫
Rn
m(v · ξ)(1− ωv(ξ))ηjv(ξ)q(2−tξj)eix·ξ dξ, x ∈ Rn.

Remember that v ∈ Ω` means that for every pair σ = (k, j) with 1 ≤ k < j ≤ n we have that

vj/vk ∼ 2−`(k,j) . Now for a general pair (k, j), call `kj := `(k,j) if k < j and `kj := −`(j,k) if k > j.

Set also `kk = 0.

From the construction of ϕjv, and the definition (4.6) of ηjv, it follows that

ξ ∈ supp ηjv =⇒ ‖(vξ)‖ . |vjξj |.

Then, for k = 1, . . . , n,

|ξk| ≤
‖(vξ)‖
vk

.
vj
vk
|ξj | . 2t−`kj ,

which shows that |Φv(x)| .
∏n
k=1 2t−`kj .

We proceed to show suitable derivative estimates for the Fourier transform of Φ. Without further

mention, estimates (4.7), (4.8), and (4.9) are meant to hold for ξ ∈ supp Φ̂, and α1, . . . , αn will

denote non negative integers with α = α1 + · · ·+ αn. Firstly,

|∂α1

ξ1
. . . ∂αnξn η

v
j (ξ)| .

(
v1

vj

)α1

· · ·
(
vn
vj

)αn 1

|ξj |α
.

n∏
k=1

2αk(t−`kj). (4.7)
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It is not difficult to see that ωv will satisfy the same derivative estimates, namely

|∂α1

ξ1
. . . ∂αnξn ωv(ξ)| .

(
v1

‖(vξ)‖

)α1

. . .

(
vn
‖(vξ)‖

)αn
.

n∏
k=1

2αk(t−`kj). (4.8)

Note that estimate (4.8) above was already implicitly used in the proof of Lemma 4.7. Finally, we

have to consider the derivatives of ξ 7→ m(ξ · v):

|∂α1

ξ1
. . . ∂αnξn m(ξ · v)| ≤ |m(α)(v · ξ)|vα1

1 . . . vαnn .

(
v1

|v · ξ|

)α1

. . .

(
vn
|v · ξ|

)αn
.

Observe that, since we are taking ξ ∈ supp(1− ωv), we have that

|v · ξ| ≥ 1

2n2
‖(vξ)‖ & |vjξj |

so that as before

|∂α1

ξ1
. . . ∂αnξn m(v · ξ)| .

n∏
k=1

2αk(t−lkj). (4.9)

Combining (4.7), (4.8), and (4.9) leads to the bound

|Φv(x)| .
n∏
k=1

2t−`kj

(1 + 2t−`kj |xk|)2
,

whence

|T out
v P jt f(x)| = |T out

v QjtP
j
t f(x)| = |Φv ∗ (P jt f)(x)| . Ms(P

j
t f)(x)

as desired.

Completing the proof of theorem 4.1

Recall the main splitting for Tv and the estimate for the inner part. We can then write, for each
V ⊂ Ω with #V = N , the estimate

‖TV f‖L2(w) ≤ B[w]γ
AΩ

2
sup
σ∈Σ

sup
`∈Z
‖TVσ,`‖L2(w) +

∥∥sup
v∈V
|T out
v f |

∥∥
L2(w)

,

where B denotes the implicit constant in the bound (4.5). Using weighted Littlewood-Paley theory,
the Chang-Wilson-Wolff reduction of Lemma 4.7 and the pointwise estimate of Lemma 4.9, the
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second summand can be further estimated as follows:

∥∥sup
v∈V
|T out
v f

∥∥
L2(w)

. [w]β
AΩ

2
sup

1≤j≤n

∥∥∥∥∥
(∑
t∈Z

P jt

(
sup
v∈V
|T out
v N j

vf |
)2
) 1

2

∥∥∥∥∥
L2(w)

.
√

logN [w]β
′

AΩ
2

sup
1≤j≤n

∥∥∥∥∥
(∑
t∈Z

sup
v∈V
|P jt (T out

v N j
vf)|2

) 1
2

∥∥∥∥∥
L2(w)

.
√

logN [w]β
′

AΩ
2

sup
1≤j≤n

∥∥∥∥∥
(∑
t∈Z

Ms(P
j
t f)2

) 1
2

∥∥∥∥∥
L2(w)

.
√

logN [w]β
′

AΩ
2
‖f‖L2(w).

(4.10)

In the last approximate inequality we used the weighted vector-valued estimates for Ms and another
application of weighted Littlewood-Paley theory.
Combining the estimates (4.5), (4.10), we realize that we have proved the following almost orthog-
onality principle for the maximal directional multiplier TV .

Theorem 4.10. Let Ω ⊂ Sn−1 be a set of directions which contains the coordinate directions.

Then for all w ∈ AΩ
p and every lacunary dissection {Sσ,`} of Sn−1 we have

sup
V⊆Ω

#V≤N

‖TV f‖L2(w) ≤ B[w]γ
AΩ

2

(
sup
σ∈Σ

sup
`∈Z
‖TVσ,`‖L2(w) +

√
logN

)
‖f‖L2(w)

for constants B, γ > 0 depending upon dimension and the order of the lacunary dissection.

Our main result Theorem 4.1 may be easily derived from Theorem 4.10 by means of the following
steps. First, Theorem 4.10 upgrades to the L2(w)-estimate

sup
V⊆Ω

#V≤N

‖TV f‖L2(w) .L [w]Lγ
AΩ

2

√
logN‖f‖L2(w)

when Ω ⊂ Sn−1 is a lacunary set of order L ≥ 1. This is obtained by induction on the order of
lacunarity L. Indeed, the case L = 0 is immediate, as a 0-th order lacunary set contains exactly
one direction. The inductive step follows by using the definition of lacunarity and the almost
orthogonality principle of Theorem 4.10. Finally the Lp(w)-estimate of Theorem 4.1 for p ∈ (1,∞)

is a consequence of the L2(w)-estimate just proved and the extrapolation result of Proposition 1.17.
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