
Máster Universitario en Modelización e Investigación
Matemática, Estadística y Computación 2019/2020

Trabajo Fin de Máster
On the use of Neural Networks to solve

Differential Equations

Alberto García Molina
Tutor/es

Carlos Gorria Corres

Lugar y fecha de presentación prevista
12 de Octubre del 2020

Abstract

English.

Artificial neural networks are parametric models, generally adjusted to solve regression and
classification problem. For a long time, a question has laid around regarding the possibility
of using these types of models to approximate the solutions of initial and boundary value
problems, as a means for numerical integration. Recent improvements in deep-learning have
made this approach much attainable, and integration methods based on training (fitting)
artificial neural networks have begin to spring, motivated mostly by their mesh-free nature and
scalability to high dimensions. In this work, we go all the way from the most basic elements,
such as the definition of artificial neural networks and well-posedness of the problems, to
solving several linear and quasi-linear PDEs using this approach. Throughout this work we
explain general theory concerning artificial neural networks, including topics such as vanishing
gradients, non-convex optimization or regularization, and we adapt them to better suite the
initial and boundary value problems nature. Some of the original contributions in this work
include: an analysis of the vanishing gradient problem with respect to the input derivatives, a
custom regularization technique based on the network’s parameters derivatives, and a method
to rescale the subgradients of the multi-objective of the loss function used to optimize the
network.

Spanish.

Las redes neuronales son modelos paramétricos generalmente usados para resolver problemas
de regresiones y clasificación. Durante bastante tiempo ha rondado la pregunta de si es posible
usar este tipo de modelos para aproximar soluciones de problemas de valores iniciales y de
contorno, como un medio de integración numérica. Los cambios recientes en deep-learning han
hecho este enfoque más viable, y métodos basados en entrenar (ajustar) redes neuronales han
empezado a surgir motivados por su no necesidad de un mallado y su buena escalabilidad a
altas dimensiones. En este trabajo, vamos desde los elementos más básicos, como la definición
de una red neuronal o la buena definición de los problemas, hasta ser capaces de resolver
diversas EDPs lineales y casi-lineales. A lo largo del trabajo explicamos la teoría general
relacionada con redes neuronales, que incluyen tópicos como los problemas de desvanecimiento
de gradientes (vanishing gradient), optimización no-convexa y técnicas de regularización, y
los adaptamos a la naturaleza de los problemas de valores iniciales y de contorno. Algunas
de las contribuciones originales de este trabajo incluyen: un análisis del desvanecimiento de
gradientes con respecto a las variables de entrada, una técnica de regularización customizada
basada en las derivadas de los parámetros de la red neuronal, y un método para rescalar los
subgradientes de la función de coste multi-objectivo usada para optimizar la red neuronal.

I

Acknowledgements

To my advisor Carlos Gorria Corres, for his advice, and to my family and friends who have
given me their support in all these months.

II

Preamble

The structure of this work is divided into 5 chapters and 2 annexes.

Chapter 0 starts by giving an initial pragmatic overview of multi-linear algebra. Its purpose
is to give anyone foreign to this subject a working knowledge of tensors: defining their notation
and how to operate with them. Tensors will be extensively used throughout Chapter 2 when
describing artificial neural networks.

Chapter 1 contains the actual introduction to problem at hand. Here we will be exploring
the motivations for using artificial neural networks to numerically integrate initial/boundary
value problems. On top of this, we will also be listing the differential operators that will be
used, describe the general conditions under which we will be guaranteeing well-posedness, and
examine state of the art.

Chapter 2 will layout the theoretical framework of artificial neural networks. It will be
covering the everything necessary to define and train a deep learning model from ground
zero. The topics covered in this section include: definition and design choices, establishment
of an objective (loss) function and non-convex optimization, and the use of regularization
techniques. Although these topics are general to deep-learning, throughout this whole chapter
we have adapted them, where necessary, to fit the subject of this work.

Chapter 3 is the experimental part of this work. The first three sections contain the
discussion on some practical issues, namely, the programming, approximating capacities of
artificial neural networks and training multi-objective functions. Following these sections, lie
the experiments and simulations of this work. Here we put into practice all the previous
knowldege that we have build up to numerically integrate some instances of initial/boundary
value problems. On each instance we benchmark and discuss the results for several set-ups
based on the different architectures and training options seen up to this point.

Chapter 4 has the final conclusions to this work. An analysis on the limitations and the
advantages of this technique with respect to others, as a way to approximate solutions of
differential equations, is made. Also, based on the experience from this work, we suggest
possible lines of work and open related questions, which can be consider for further work.

Annexes A & B include: a linear algebra perspective of some expressions in Chapter 2
for further clarity, and the code, respectively.

III

Contents

Abstract I

Preamble III

List of Figures V

Table Index VI

0 Overview of Multi-linear Algebra 1
0.1 What is a tensor? . 1
0.2 Tensor Operations and Summation Convention 2
0.3 Linear Algebra as Multi-linear Algebra . 3
0.4 Derivatives of Vector Functions and Tensors 4
0.5 The Chain Rule in Tensor Notation . 5

1 Introduction 6
1.1 Posing the Problem . 9
1.2 Relevant Literature . 12

2 Artificial Neural Networks Framework 14
2.1 What are Artificial Neural Networks? . 14
2.2 From Numerical Integration to Deep-Learning 17
2.3 Derivatives: Back Propagation and Gradient Issues 18

2.3.1 Derivatives Behaviour (Vanishing and Exploding Gradients) 19
2.4 Optimizers . 25

2.4.1 First Order Methods . 26
2.4.2 Second Order Methods . 31

2.5 Activation Functions and Parameter Initialization 35
2.5.1 Parameter Initialization . 38

2.6 Regularization . 39
2.6.1 Noise-based Regularizations . 40
2.6.2 Restriction-based Regularizations . 42
2.6.3 Other Regularizations . 45

3 Case Studies and Simulations 46
3.1 Coding Artificial Neural Networks . 46
3.2 Approximating a Function . 47
3.3 Training with Multi-Objective Loss Functions 51
3.4 Model Simulation . 55

3.4.1 Model 1: The 1D Divergence Operator 55
3.4.2 Model 2: The 2D Divergence Operator 57
3.4.3 Model 3: The 2D Laplacian Operator 61
3.4.4 Model 4: The 1D Advection Operator 62

IV

3.4.5 Model 5: The 2D Clairaut Operator 64
3.4.6 Model 6: The 2D Burgers Operator . 65

4 Conclusions 68
4.1 Author’s Final Thoughts . 69
4.2 Further Work . 69

A Linear Algebra Formulation of 2.3.1 70

B The Code 72
B.1 imports Cell . 73
B.2 auxiliryPlotting Class . 73
B.3 myDataSets Class . 79
B.4 problemInstance Class . 82
B.5 secondOrderOptimizers Class . 86
B.6 myLayer Class . 87
B.7 myModel Class . 89
B.8 execution Cell . 100

Bibliography 102

List of Figures

2.1 Perceptron scheme. 14
2.2 A directed graph which could be a possible representation of the architecture

or an artificial neural network. Nodes are artificial neurons and edges indicate
which neurons feed into each other. 15

2.3 General scheme of a perceptron based fully-connected feed-forward artificial
neural network. 15

2.4 Computational graph of example (2.6). 19
2.5 Computational graph (derivatives) of example (2.6). In green the flow of nodes

required to compute 𝜕𝑓(𝑥, 𝑦)/𝜕𝑥 . 19
2.6 Example model: A 2-3-4-2 artificial neural network. 20
2.7 Main activation functions and their first order derivatives. 36
2.8 Combination of sigmoid functions. 37
2.9 Secondary activation functions and their first order derivatives. 37
2.10 Example of overfitting of a model. 40
2.11 Example of a model adding noisy input. 41

3.1 Comparison for different activation functions training performance for a
[3,4,1]-ANN, with Adam 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽1 = 0.999. Log10 scale. 48

3.2 Comparison for different first order optimizers training performance for a
[3,4,1]-ANN, with sigmoid activations. Lower image in log10 scale. 49

3.3 Training performance of a [3,4,1]-ANN with sigmoid activations, to fit (3.1),
using BFGS and L-BFGS. 50

V

3.4 Training performance of a [3,4,1]-ANN with sigmoid activations, to fit (3.1),
using Adam with 𝜂 = 0.01. 51

3.5 Example of possible multi-objective functions. Component and total
representation. 52

3.6 Example of possible multi-objective functions. Adjusted factors. 53
3.7 Training performance of 3 models trained for a [1,5,5,1]-ANN scheme, with no

regularization, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 3000
epochs. (3.5) . 56

3.8 Final results. Best performing trained model (tanh) for (3.7) against the exact
solution. 57

3.9 Result of a [1,10,10,1]-ANN model and tanh activations, trained with no
regularization, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 12000
epochs. Left plot: model against exact solution. Right plot MSE error of the
model, for each point in the domain. 58

3.10 Comparison of different regularization techniques in training performance of
3 models trained for a [1,10,10,1]-ANN scheme, using Adam with 𝜂 = 0.01,
𝛽1 = 0.9, 𝛽2 = 0.999, on 8000 epochs. (3.10) 60

3.11 Comparison of different regularization techniques in training performance of
3 models trained for a [1,40,40,1]-ANN scheme, using Adam with 𝜂 = 0.01,
𝛽1 = 0.9, 𝛽2 = 0.999, on 8000 epochs. (3.10) 60

3.12 Final results of the best performing trained model ([1,40,40,1]-ANN, trained
with the custom regularization (2.58)) for (3.7) against the exact solution. . . 60

3.13 Results and performance of the model trained for (3.11). 62
3.14 Positive and negative sign solutions of 3.13. 63
3.15 Results and performance of the model trained for (3.16). 64
3.16 Results and performance of the model trained for (3.17). 65
3.17 Results and performance of the model trained for (3.18). 67

Table Index

1.1 Comparison between FEMs and the Artificial Neural Network Methods. 8
1.2 List of differential operators used in Chapter 3. 9

2.1 List of main activation functions. 36
2.2 List of secondary activation functions. 37

3.1 Results of 3 models trained for a [1,5,5,1]-ANN scheme, with no regularization,
using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 3000 epochs. (3.5) 56

3.2 Results of 6 models with different architectures, trained for (3.10), using
Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 8000 epochs and different
regularization techniques. 59

VI

Chapter 0
Overview of Multi-linear Algebra
Generally, when working in the context of artificial neural networks, the framework linear

algebra is more than enough to describe the elements and operations taking place. Even when
dealing with convolutional networks, which may involve operations on 3 dimensional arrays
of objects, one can be decompose everything into vectors matrices, matrix multiplications and
element-wise products. Thus, many times, when in the context of artificial neural networks,
any explicit reference to multi-linear algebra or the tensor nature of such objects is disregarded.

In this work, however, we will be taking the multi-linear algebra approach. There are two
main draws for doing this, i.e. generalizing vectors and matrices to tensors:

– First, the tensor notation is very powerful. This notation serves two purposes: it allows
us to represent operations between tensors in a very compact way and it also helps to
keep track of dimensions at any time.

– Second, multi-linear algebra provides a simple and natural framework to characterize
high order derivatives of multidimensional objects such as vectors or matrices, which is
a particularity of this work. In this framework derivatives and the chain rule are really
easy to interpret as they visually take the form of the one dimensional case.

For the next part of this chapter we will be covering the basics of tensors. However, since
the objective of this work is not to discuss multi-linear algebra, and the only purpose of this
chapter is to serve as an entry point to the concepts and the notation of tensors, we will be
taking a hands-on informal approach. This means that, there will be no formal definitions
and every concept will be explained through an example. For a proper introduction with due
rigour one can refer to chapters 2 to 4 in [1].

0.1 What is a tensor?
Perhaps the simplest way to define a tensor is as an element in a tensor space, which is

nothing else than a direct product of vector spaces and dual vector spaces. So, for example,
lets imagine a random tensor 𝑇 in the following tensor space:

𝑇 ∈ ℝ4∗ ⊗ ℝ2∗ ⊗ ℝ3, (1)

then 𝑇 is of the form 𝑇 = 𝑣 ⊗ 𝑤 ⊗ 𝑧, where 𝑣 ∈ ℝ4∗, 𝑤 ∈ ℝ2∗, 𝑧 ∈ ℝ3. Observe that 𝑇
is uniquely defined in the tensor space by 4 × 2 × 3 = 24 scalar components (the individual
coordinates of 𝑣, 𝑤 and 𝑧, having fixed a base in each (dual) vector space).

The previous is essentially a definition of a tensor, but in practice we want to describe a
tensor not by a direct product of vectors but by a set of scalar coordinates, the same way we
do with a vector space. This is achieved by defining a tensor base. So, given a base for each
of the (dual) vector spaces in the tensor space; for the previous example {𝑒1, 𝑒2, 𝑒3, 𝑒4}ℝ4∗ ,
{ ̂𝑒1, ̂𝑒2}ℝ2∗ , { ̃𝑒1, ̃𝑒2, ̃𝑒3}ℝ3 ; we can intuitively build a base for the tensor space as follows:

{𝑒𝑖 ⊗ ̂𝑒𝑗 ⊗ ̃𝑒𝑘 | 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, 𝑘 = 1, 2, 3}ℝ4∗⊗ℝ2∗⊗ℝ3 (2)

1

Now we can describe any tensor in the tensor space through its coordinates in the tensor
base, the same way we do with vectors in vector spaces. Thus, 𝑇 can be represented through
its 24 scalar coordinates of the tensor base as:

𝑇 ≡ ∑
𝑖,𝑗,𝑘

𝑇 𝑖,𝑗
𝑘 𝑒𝑖 ⊗ ̂𝑒𝑗 ⊗ ̃𝑒𝑘, (3)

where the 𝑇 𝑖,𝑗
𝑘 ’s are the coordinates. This latest characterization of a tensor as coordinates

of a tensor base is the main way of defining tensors formally, and the one that can be found
in almost every source, including [1], being any other characterization equivalent to this.

From (3) we can derive the abstract notation for tensors. Looking back at (3) we realize
that once the tensor base has been selected, the explicit reference for the summation over all
indices and the tensor base can be implicitly assumed, thus we can omit it. So in the end
we end up writing the tensor 𝑇 as 𝑇 𝑖,𝑗

𝑘 , where where 𝑖, 𝑗 and 𝑘 become free indexes which
are general place-holders that can take values in 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2 and 𝑘 = 1, 2, 3. It is
important to note that while 𝑇 𝑖,𝑗

𝑘 denotes a tensor in abstract notation, once we replace the
free indexes with actual values, for example 𝑇 2,1

1 ∈ ℝ we denote a component. In fact, every
time we replace a free index with an actual value, we fix the base element associated with
that index, hence we obtain a new tensor in a lower dimension tensor space. For instance:

𝑇 2,𝑗
𝑘 ≡ ∑

𝑗,𝑘
𝑇 2,𝑗

𝑘 𝑒2 ⊗ ̂𝑒𝑗 ⊗ ̃𝑒𝑘 ∈ ℝ2∗ ⊗ ℝ3. (4)

Just for the sake of completeness, we will give some important facts and ideas about tensor
spaces that will help understand tensors better:

– In principle, since the tensor space is a direct product, the order in which the (dual)
vector spaces appear in the product does not affect the nature of the space. The only
convention is that the dual vector spaces must appear before the vector spaces; so in
practice ℝ4∗ ⊗ ℝ2∗ ⊗ ℝ3 can describe the same tensors as ℝ2∗ ⊗ ℝ4∗ ⊗ ℝ3. However, in
terms of notation the order is important as the indexes must appear in the same order
as the (dual) vector spaces in the direct product, by convention. Given the previous
example, it is said that the tensors in the first tensor space 𝑇 𝑖,𝑗

𝑘 and the tensors 𝑇 𝑗,𝑖
𝑘 in

the second tensor space are related by index juggling.

– A tensor space is said to be of dimension (𝑟, 𝑠), if it is the direct product of 𝑟 dual
vector spaces and 𝑠 vector spaces. Hence, in the example (1), the tensor space is of
dimension (2, 1). Note that one of the perks of the abstract notation is that we can
know a tensor’s dimension easily by simply counting the number of free super-indexes
(which yields 𝑟) and the number of free sub-indexes (which yields 𝑠).

0.2 Tensor Operations and Summation Convention
The are a few operations that can be performed on tensors. For example, if two tensors

exist in the same tensor space, 𝑎𝑖,𝑗
𝑘 , 𝑏𝑖,𝑗

𝑘 ∈ 𝕋 we can add them by simply adding the coordinates
that correspond to the same element of the base. This is:

𝑐𝑖
𝑗 = 𝑎𝑖,𝑗

𝑘 + 𝑏𝑖,𝑗
𝑗 ≡ ∑

𝑖,𝑗,𝑘
(𝑎𝑖,𝑗

𝑘 + 𝑏𝑖,𝑗
𝑘) 𝑒𝑖 ⊗ ̂𝑒𝑗 ⊗ ̃𝑒𝑘. (5)

2

Two tensors 𝑎𝑖
𝑘 ∈ 𝕋 and 𝑏𝑖′,𝑗′

𝑘′ ∈ 𝕋′, which can exist in very different tensor spaces can always
be multiplied in what is known as the tensor product. The resulting tensor exists in the tensor
space formed by the direct product combination of the original tensor spaces, 𝕋 ⊗ 𝕋′, the new
base becomes the direct product of the original tensor spaces bases, and the new components
are the product of the originals. For this example:

𝑐𝑖,𝑖′,𝑗′

𝑘,𝑘′ = 𝑎𝑖
𝑘 ⋅ 𝑏𝑖′,𝑗′

𝑘′ ≡ ∑
𝑖,𝑘

∑
𝑖′,𝑗′,𝑘′

(𝑎𝑖
𝑘 ⋅ 𝑏𝑖′,𝑗′

𝑘′) 𝑒𝑖 ⊗ ̃𝑒𝑘 ⊗ 𝑒𝑖′ ⊗ ̂𝑒𝑗′ ⊗ ̃𝑒𝑘′ ∈ 𝕋 ⊗ 𝕋′. (6)

There is another “way” in which we can multiply tensors. Lets imagine that we have two
tensors 𝑎𝑖

𝑗 ∈ ℝ2∗ ⊗ℝ3 and 𝑏𝑗′

𝑘′ ∈ ℝ3∗ ⊗ℝ4. Observe that in this particular case, the first tensor
space contains the vector space ℝ3, and the second tensor space contains its dual counterpart,
the dual ℝ3∗. Since ℝ3∗ is the space of linear applications ℝ3 → ℝ, instead of taking the direct
product ̂𝑒𝑗 ⊗ ̂𝑒𝑗′ we can apply one to the other ̂𝑒𝑗(̂𝑒𝑗′) = 𝛿𝑗′

𝑗 , where 𝛿𝑗′

𝑗 is the Kronecker ’s
delta, and we are assuming the basis are orthonormal. The rest of the elements of the basis
will behave as in the tensor product. This “way” of multiplying tensors is called a contraction,
and under this rules the multiplication looks like:

𝑐𝑖
𝑘′ = 𝑎𝑖

𝑗 ⋅ 𝑏𝑗′

𝑘′ ≡ ∑
𝑖

∑
𝑘′

∑
𝑗,𝑗′

̂𝑒𝑗(̂𝑒𝑗′) (𝑎𝑖
𝑗 ⋅ 𝑏𝑗′

𝑘′) 𝑒𝑖 ⊗ ̃𝑒𝑘′

= ∑
𝑖

∑
𝑘′

∑
𝑗,𝑗′

𝛿𝑗′

𝑗 (𝑎𝑖
𝑗 ⋅ 𝑏𝑗′

𝑘′) 𝑒𝑖 ⊗ ̃𝑒𝑘′

= ∑
𝑖

∑
𝑘′

∑
𝑗

(𝑎𝑖
𝑗 ⋅ 𝑏𝑗

𝑘′) 𝑒𝑖 ⊗ ̃𝑒𝑘′ ∈ ℝ2∗ ⊗ ℝ4.

(7)

To this point we have defined how to sum tensors, and two ways two multiply them: the
tensor product and the contraction (when compatible). However, it is confusing that we have
been using the same notation to denote the tensor product and the contraction. This is
where the Einstein Summation Convention comes in. Note that in (7) we have denoted the
contraction operation by 𝑎𝑖

𝑗 ⋅ 𝑏𝑗′

𝑘′ , which contains the free indexes 𝑗 and 𝑗′, but looking at the
final expression, because we are applying the Kronecker’s delta, one of the indexes has become
irrelevant. Hence, in the product of two tensors, when the same free index is repeated, the
element of the basis for that index gets contracted (Einstein Summation Convention). This
means that from now on 𝑎𝑖

𝑗 ⋅ 𝑏𝑗′

𝑘′ will be a tensor product as in (6), and 𝑎𝑖
𝑗 ⋅ 𝑏𝑗

𝑘′ will be a
contraction on the 𝑗-th index, defined as:

𝑐𝑖
𝑘′ = 𝑎𝑖

𝑗 ⋅ 𝑏𝑗
𝑘′ ≡ ∑

𝑖
∑
𝑘′

∑
𝑗

(𝑎𝑖
𝑗 ⋅ 𝑏𝑗

𝑘′) 𝑒𝑖 ⊗ ̃𝑒𝑘′, (8)

and we will call both tensor multiplications. In a practical sense the Einstein summation
convention provides some kind of cancellation intuition. We can imagine as if repeating
indexes up and down cancel each other in the resulting tensor, 𝑐𝑖

𝑘′ = 𝑎𝑖
C𝑗
⋅ 𝑏 C𝑗𝑘′ .

As a final note, we can also define the transposition of a tensor as (𝑎𝑖,𝑗
𝑘)⊺ = 𝑎𝑘

𝑖,𝑗. In essence
the transposition operator acts in each of the vector spaces that compose the tensor space.

0.3 Linear Algebra as Multi-linear Algebra
Multi-linear algebra is a generalization on linear algebra. Thus we can express all objects

in linear algebra through tensors and any linear algebra operators as tensor operators. In this
section we will draw a parallel between one and the other for the most basic concepts.

3

The most simple objects that can be described as tensors are vector and dual vectors. A
vector in a vector space (a.k.a contravariant vector), which is represented in linear algebra as
column array, is a (0,1) dimensional tensor. Similarly, a dual vector in a dual space (a.k.a dual
vector, covariant vector, covector or one-form), which is represented in linear algebra as row
array, is a (1,0) dimensional tensor. Next, there is an example of a vector and a dual vector
resp., in the left written in tensor form and in the right in its linear algebra representation:

𝑣𝑖 ≡
⎛⎜⎜⎜⎜
⎝

𝑣1

𝑣2

𝑣3

⎞⎟⎟⎟⎟
⎠

, 𝑣𝑗 ≡ (𝑣1 𝑣2 𝑣3) . (9)

A matrix in its tensor form simply is a (1,1) dimensional tensor. If we think of a matrix as
a linear application, i.e. a vector of one-forms (a vector of applications from ℝ𝑛 → ℝ), it is
natural that its tensor representation would be 𝑎𝑖

𝑗. Note that 𝑎𝑖,𝑗 and 𝑎𝑖,𝑗 would also be able
to describe the same number of elements, but they define objects of different nature than a
matrix. An example of a matrix 𝑎𝑖

𝑗 ∈ ℝ3∗ ⊗ ℝ3 in tensor and linear algebra representation
would be the following:

𝑎𝑖
𝑗 =

⎛⎜⎜⎜⎜
⎝

𝑎1
𝑗

𝑎2
𝑗

𝑎3
𝑗

⎞⎟⎟⎟⎟
⎠

≡
⎛⎜⎜⎜⎜⎜
⎝

(𝑎1
1 𝑎1

2 𝑎1
3)

(𝑎2
1 𝑎2

2 𝑎2
3)

(𝑎3
1 𝑎3

2 𝑎3
3)

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎1
1 𝑎1

2 𝑎1
3

𝑎2
1 𝑎2

2 𝑎2
3

𝑎3
1 𝑎3

2 𝑎3
3

⎞⎟⎟⎟⎟
⎠

. (10)

A special case is the identity matrix 𝐼 𝑖
𝑗. Observe that its components satisfy that 𝐼 𝑖

𝑗 = 1
when 𝑖 = 𝑗, and 𝐼 𝑖

𝑗 = 0 when 𝑖 ≠ 𝑗. This is actually the definition of the Kronecker’s delta,
and indeed, it is the Kronecker’s delta that is the tensor generalization of the identity, and
as a consequence of the identity matrix in linear algebra. Hence, from now on 𝐼 𝑖

𝑗 = 𝛿𝑖
𝑗.

Finally, regarding operations we can represent: the scalar product of two vectors as a
transposition and a contraction, 𝑤𝑖 ⋅ (𝑣𝑖)⊺; the outer product of two vectors as transposition
and a tensor product, 𝑤𝑖 ⋅ (𝑣𝑗)⊺; a matrix-vector multiplication as a contraction, 𝑎𝑖

𝑗 ⋅ 𝑣𝑗; and
a matrix-matrix multiplication as a contraction, 𝑎𝑖

𝑗 ⋅ 𝑏𝑗
𝑘.

0.4 Derivatives of Vector Functions and Tensors
In this section we will discuss the need of tensors as a tool to deal with high order derivatives

of vector functions through an example. Lets suppose we have a vector function 𝑓 which takes
as an input a vector in ℝ3 and outputs a vector in ℝ2, through a linear algebra representation
this would be:

𝑓 ∶ ℝ3 ⟶ ℝ2

𝑥 =
⎛⎜⎜⎜⎜
⎝

𝑥1

𝑥2

𝑥3

⎞⎟⎟⎟⎟
⎠

⟶ ⎛⎜
⎝

𝑓1(𝑥)
𝑓2(𝑥)

⎞⎟
⎠

. (11)

Note that the application does not have to be lineal, as the components 𝑓1 and 𝑓2 can be
non-linear.

4

Now we would like to get the partial derivatives with respect to the components 𝑥1, 𝑥2, 𝑥3,
of the input vector. These partial derivatives define the Jacobian matrix, which is well known
in vector calculus:

𝐽 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑓1(𝑥)
𝜕𝑥1

𝜕𝑓1(𝑥)
𝜕𝑥2

𝜕𝑓1(𝑥)
𝜕𝑥3

𝜕𝑓2(𝑥)
𝜕𝑥1

𝜕𝑓2(𝑥)
𝜕𝑥2

𝜕𝑓2(𝑥)
𝜕𝑥3

⎞⎟⎟⎟⎟⎟⎟
⎠

. (12)

Considering further higher order derivatives into account is already a problem. The function
(11) is a one dimensional object, and its first order derivatives (12) already require a two
dimensional object to be represented. Therefore its second order derivatives will require a
three dimensional object (a matrix whose elements are dual vectors), to be represented. This
is impractical and it is where tensors become really useful.

It is possible to describe the vector function as a tensor, 𝑓𝑘(𝑥𝑖) ∈ ℝ2, and take advantage of
multi-linear algebra to represent its partial derivatives. However, first we need to know how to
differentiate in the context of tensors. This is part of what is known as Ricci calculus or tensor
calculus (a subdomain of differential geometry), which has several ways of defining derivatives
on tensors. Nevertheless, in practice, since we will only make use of partial derivatives (which
are done with respect to a single component, ignoring the rest), the only thing we need to do
is to multiply the following dual vector (one-form) through a tensor product:

𝜕
𝜕𝑥𝑖 = (𝜕

𝜕𝑥1
𝜕

𝜕𝑥2
𝜕

𝜕𝑥3) ∈ ℝ3∗. (13)

Applying the operator to 𝑓𝑘(𝑥𝑖) once we obtain:

𝜕
𝜕𝑥𝑖′ ⋅ 𝑓𝑘(𝑥𝑖) ∈ ℝ3∗ ⊗ ℝ2, (14)

which has, in fact, the dimensions of a matrix as shown in the previous section. Indeed, this
is the Jacobian matrix, and if we were to replace the free indices 𝑘 and 𝑖′ to obtain every
component and write them in matrix form, we would exactly recover (12).

Applying the operator to 𝑓𝑘(𝑥𝑖) multiple times we obtain its higher order derivatives as:

𝜕2

𝜕𝑥𝑖′𝜕𝑥𝑖″ ⋅ 𝑓𝑘(𝑥𝑖) ≡ 𝜕
𝜕𝑥𝑖′ ⋅ 𝜕

𝜕𝑥𝑖″ ⋅ 𝑓𝑘(𝑥𝑖) ∈ ℝ3∗ ⊗ ℝ3∗ ⊗ ℝ2, (15)

𝜕3

𝜕𝑥𝑖′𝜕𝑥𝑖″𝜕𝑥𝑖‴ ⋅ 𝑓𝑘(𝑥𝑖) ≡ 𝜕
𝜕𝑥𝑖′ ⋅ 𝜕

𝜕𝑥𝑖″ ⋅ 𝜕
𝜕𝑥𝑖‴ ⋅ 𝑓𝑘(𝑥𝑖) ∈ ℝ3∗ ⊗ ℝ3∗ ⊗ ℝ3∗ ⊗ ℝ2. (16)

0.5 The Chain Rule in Tensor Notation
As we have seen in (14-16), derivatives using the Einstein Summation Convention take a

really simple form, which resembles in appearance to the one variable calculus framework.
Another case in which this happens is when applying the chain rule. For instance, given
(𝑓𝑘 ∘ 𝑔𝑙)(𝑥𝑖) = 𝑓𝑘(𝑔𝑙(𝑥𝑖)) = 𝑓𝑘(𝑦𝑙) ∶ ℝ2 → ℝ3 → ℝ2 where 𝑓𝑘 ∶ ℝ3 → ℝ2 and 𝑔𝑙 ∶ ℝ2 → ℝ3

the chain rule is applied just by making use of contractions as follows:

𝜕
𝜕𝑥𝑖′ ⋅ 𝑓𝑘(𝑔𝑙(𝑥𝑖)) = 𝜕𝑓𝑘(𝑔𝑙(𝑥𝑖))

𝜕𝑔𝑙(𝑥𝑖) ⋅ 𝜕𝑔𝑙(𝑥𝑖)
𝜕𝑥𝑖′ = 𝜕𝑓𝑘

𝜕𝑦𝑙 ⋅ 𝜕𝑦𝑙

𝜕𝑥𝑖′ ∈ ℝ2∗ ⊗ ℝ2 (17)

5

Chapter 1
Introduction
Many phenomenons in physics, finance and other branches of science are modelled through

equations or systems of equations involving rates of change, i.e. derivatives. These systems
are generally classified as: systems of ordinary differential equations or ODEs, when every
equation depends on the derivatives of a single variable (usually called time); or systems of
partial differential equations or PDEs, when some equation in the system depends on the
derivatives of more than one variable.

Finding the solutions to these systems of differential equations is of great importance to
make predictions based on these models. Nevertheless, there are very few cases in which
one can find an analytic expression for these solutions. Usually this involves having a very
specific type of equations and making some kind of assumption on the form of solution. This
is the case of methods such as the integrating factor to solve linear ODEs; or the method of
characteristics to solve certain types of PDEs, whereby we assume that there is a parametric
form to the solutions of the system. Therefore, in many situations, the only way to gain
insights from the solutions of these systems of differential equations is to compute them
numerically (known as numerical integration).

There are a wide variety of methods to integrate numerically ODEs and PDEs. In general,
the main methods follow the following ideas:

– In the case of a system of ODEs we can think of its solutions as functions of the time
variable, or simply as trajectories in time. Hence, starting at an initial point (the initial
condition), the idea is to numerically compute the trajectory moving along the tangent
in discrete intervals (steps) of time. The two principal methods that use this idea are
the Runge-Kutta and the Taylor Series methods; where the first “averages” the tangent
of intermediate substeps of time, and the second uses the Taylor theorem locally up to
some order, to get better approximations of the tangent for larger steps of time.

– When it comes to PDEs the approach of moving through the trajectory becomes useless,
as the solutions are no more one dimensional curves, but at least two dimensional or
higher surfaces for which there is no unique way to move through them starting at any
given point. For these types of systems the most widely used methods are the ones in
the Galerkin projection family, whose general oversimplified idea consist in using a base
of functionals {𝜙𝑘}∞

𝑘=0 in an adequate function space (a Sobolev space) to approximate
the solution via a linear combination of base elements 𝑢(𝑥) = ∑∞

𝑘=0 𝑐𝑘𝜙𝑘(𝑥). Replacing
the expression 𝑢(𝑥) into the differential equations and projecting into the function space
< ⋅, 𝜙𝑘 >, a linear system of equations is obtained which has to be solved to obtain the
coefficients 𝑐𝑘. Actually, in this process the main computational expense usually comes
with the resolution of the linear system, which has complexity 𝑂(𝑚3), where 𝑚 is the
number of variables, i.e. the number coefficients 𝑐𝑘. This is why selecting a good base
is very important, since a good choice can lead to a sparser matrix for the linear system
after the projection which can greatly reduce the number of operations.

6

The two principal methods in the Galerkin family are the spectral method and the
finite elements method (FEM), the main difference of which relies in the choice of the
base. While the first uses a truncated base of functions which are globally defined in the
solution’s domain, like a truncated Fourier base {𝑒2𝜋𝑘/𝐿}𝑁

𝑘=0; the second uses a finite
base {𝜙𝑘}𝑁

𝑘=0 of piece-wise locally defined “tent-like” functions, each associated to a
node of a mesh of the solution’s domain {𝑥𝑘}𝑁

𝑘=0, in a way that 𝜙𝑘(𝑥𝑗) = 𝛿𝑘
𝑗 . This last

type of methods that use a mesh approach are referred to as collocation methods.

Each of these methods have their own pros and cons. The spectral methods are typically
used in very specific equations where a particular base is known to work well, for example
the Fourier base on the Laplace equation, or in general, where solutions are known to be
periodic. One good quality of these methods is that they are very stable and enjoy very
good error properties, however, they are difficult to generalize. Applying an ill-thought
choice of base to an equation, can lead to projections < ⋅, 𝜙𝑘 >= ∫Ω ⋅ 𝜙𝑘(𝑥) 𝑑𝑥 with
very hard integrals to compute and a dense linear system matrix to solve for 𝑐𝑘. In
contrast, FEMs are very generalizable as they use piece-wise polynomial and locally
defined functions as a base, which make projection integrals < ⋅, 𝜙𝑘 > relatively easy to
compute and the linear system matrix to obtain the 𝑐𝑘s is very sparse given that there is
very little overlapping in the base function’s compact support. As a downside, its error
and stability are strongly tied to the number of nodes (usually large) in the mesh, which
cannot be trivially generated either, and requires some computational complexity.

These are some of the most popular methods, but there are many more. For PDEs in
particular, some other notable mentions are: the finite differences methods, which makes use
of differences between nodes to approximate derivatives; the pseudo-spectral methods, which
are similar to the spectrals, but it uses quadrature formulas for the projection integrals; and
the Monte Carlo methods, which consist in simulating and averaging copies of the system.

In general, there is no single best method, each has its own trade-offs. Nonetheless, in most
instances for PDEs (especially in engineering), the preferred method of numerical integration
is the FEM due to its versatility. It avoids any complications of having to choose a particular
basis of functions, the mesh can be adapted easily to irregular solution domains, the projection
integrals are easy to compute, the linear system matrix to obtain the coefficients 𝑐𝑘 is sparse,
the stability is good enough for many equations, and the error behaviour is well known and
can be reduced refining (adding points to) the mesh. However, as good as this sounds, this
method incurs in what is known as a dimensionality curse (impracticality when scaling to
larger dimensions). For instance, suppose we want to solve some PDE within a certain error
threshold in various dimensions. Solving the 1D version on a segment would require a 𝑛
node mesh; the 2D version on a square would require a 𝑛2 node mesh; the 3D version on a
cube would require a 𝑛3 node mesh; and so on. Hence, to maintain the same error threshold
in a system with 𝑑 dimensions requires a mesh with 𝑛𝑑 nodes. If we recall, solving the
linear system for the coefficients 𝑐𝑘 had computational complexity of 𝑂(𝑚3), with 𝑚 being
the number of nodes in the mesh (same as functions in the basis in the FEMs). Putting
all this together means that in order to keep the error under a threshold as the dimension
increases the complexity scales as 𝑂((𝑛𝑑)3) ≡ 𝑂(𝑛3𝑑). Thus, the conclusion is that: to keep
the error within a certain threshold, the computational complexity of the FEM at least grows
exponentially with the dimension of the equations, not even taking into account the increase
in computations for the mesh or the projections. Already a system in 4 dimensions starts to
be impractical to solve with FEMs. (From now on, 4 or more dimensions is high-dimensional).

7

High dimensional systems are not very common in physics, but arise in many fields such
as sociology and economics. For example, if we were to consider option pricing in finance,
assuming the market parameters constant (to not incur in a stochastic problem), the system
would be modelled after a PDE which has at least as many variables and dimensions as stocks
in the portfolio as well as the time, which is generally a large number [2]. In cases such as
the one we have just exposed, FEMs are impractical and Monte Carlo methods are used
[3], but still have some stability limitations. For this reason in recent times, with the many
improvements in artificial neural network, new machine learning methods have resurged as
potential candidates to deal with these kinds of high dimensional problems. The main idea is
based in using the good qualities of artificial neural networks as function approximators.

An artificial neural network is just a complex parametrized function 𝒩(𝑥; 𝜃), which uses
modular architecture based on the concept of neurons, has a structure optimized for computer
processing, and makes use of non-linear optimization algorithms to train its parameters to
fit some model (we will cover this in Chapter 2). Basing ourselves in the previous simplified
definition, the deep-learning approach should be straight forward, simply put: the method
will approximate the exact solution by taking an artificial neural network, replacing it into
the differential equation and using an optimization algorithm to train its parameters so that
the equation is satisfied; all while making use of deep-learning strategies to speed up the
process. In [4] this type of methods is referred to as “Deep Galerkin Method”, the reason being
that: both methodologies revolve around approximating the exact solutions of a differential
equation via a parametrized function, either a linear combination of base functions or an
artificial neural network; and both involve replacing this approximation into the differential
equation and solving an inverse problem to find its coefficients or parameters. However,
the artificial neuron strategy differ much in nature and lacks many of the elements of the
methods in the Galerkin family as it does not: take into account the idea of weak formulation
(which we have not explained here for simplicity); use linear combination of base functions
and projections; and the resulting inverse problem does not lead to solving a linear system
of equations in favour all in favour of a pure non-convex optimization. In fact, it is because
of these differences that this machine learning approach should be, in theory, able to scale
well with dimension, since in using non-convex optimization, all dimensions are trained at the
same time, which should not increase much computational cost. On the other hand, one of
the main problems is that the error is not bound by an order and is unpredictably subject to
optimization and training particularities. The following table summarizes all the above:

Galerkin Methods (FEM) Artificial Neural Network Methods

Approximates the solution with a base of
linear functions.

Approximates the solution with an artificial
neural network.

Requires computing some integrals (or
quadratures) and solving a linear system.

Requires solving a non-convex optimization
problem.

Error order and stability properties known. Error and stability unknown and depends on
the specifics of the optimization.

The complexity scales exponentially with the
dimension.

Generalizes well to higher dimensions with
just a few more neurons.

Table 1.1: Comparison between FEMs and the Artificial Neural Network Methods.

8

In this work, we will be using deep-learning techniques and methodologies to try and solve
some instances of differential equation. The objective will be to analyse the viability and
capabilities of these methods. Although the main interest for this methods is in integrating
PDEs (as the existing ODE integration methods are already very efficient), we will start in
a progressive way, by studying its application on ODEs (which can be seen as a particular
case of PDEs). Then we will scale up the complexity of the operators until we are able to
solve some low-dimensional PDEs. Higher dimensional equations will be out of scope since
the aim is to illustrate the feasibility, and strengths-weaknesses of this strategy for which two
dimensions will be enough.

1.1 Posing the Problem
In its most general form, a system of differential equations with solution in the real space

may be represented as follows:

ℒ[𝑢(𝑥)] = 𝑓(𝑥), 𝑥 ∈ Ω ⊆ ℝ𝑛, (1.1)

where Ω ⊆ ℝ𝑛 is a compact manifold, ℒ[⋅] is a differential operator, 𝑓(𝑥) ∶ Ω → ℝ𝑚 is the
external force, and 𝑢 ∶ Ω → ℝ𝑚 is a solution of the system. Note that (1.1) may represent
either a system of ODEs or PDEs depending of the differential operator. The list of operators
which we will be solving in Chapter 3 are:

Name Expression

Identity Operator ℒ[𝑢(𝑥)] = 𝑢(𝑥)

1D Divergence Operator ℒ[𝑢(𝑥)] = 𝜕𝑢(𝑥)
𝜕𝑥

2D Divergence Operator ℒ[𝑢(𝑥, 𝑦)] = 𝜕𝑢(𝑥, 𝑦)
𝜕𝑥 + 𝜕𝑢(𝑥, 𝑦)

𝜕𝑦

2D Laplacian Operator ℒ[𝑢(𝑥, 𝑦)] = 𝜕2𝑢(𝑥, 𝑦)
𝜕𝑥2 + 𝜕2𝑢(𝑥, 𝑦)

𝜕𝑦2

1D Advection Operator ℒ[𝑢(𝑥)] = 𝑢(𝑥) ⋅ 𝜕𝑢(𝑥)
𝜕𝑥

2D Clairaut Operator ℒ[𝑢(𝑥, 𝑦)] = 𝑥 ⋅ 𝜕𝑢(𝑥, 𝑦)
𝜕𝑥 + 𝑦 ⋅ 𝜕𝑢(𝑥, 𝑦)

𝜕𝑦

2D Burgers Operator

ℒ[u(𝑥, 𝑦)] = ℒ[(𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦))]

= (𝑢𝑥(𝑥, 𝑦) ⋅ 𝜕𝑢𝑥(𝑥, 𝑦)
𝜕𝑥 + 𝑢𝑦(𝑥, 𝑦) ⋅ 𝜕𝑢𝑥(𝑥, 𝑦)

𝜕𝑦 ,

𝑢𝑥(𝑥, 𝑦) ⋅ 𝜕𝑢𝑦(𝑥, 𝑦)
𝜕𝑥 + 𝑢𝑦(𝑥, 𝑦) ⋅ 𝜕𝑢𝑦(𝑥, 𝑦)

𝜕𝑦)

Table 1.2: List of differential operators used in Chapter 3.

9

Recall that at the start of this section, in defining (1.1) we indicated that 𝑢 was “a” solution
to the system of differential equations. In fact, there are usually many solutions or none may
even exist. To ensure existence and uniqueness of the solution we need to impose some
additional conditions to (1.1), namely initial conditions on ODEs and boundary conditions
on PDEs. The most common set of these conditions are:

Cauchy (ODE): 𝑢(𝑥0) = 𝑢0 (1.2)

Dirichlet (PDE): 𝑢(𝑥) = 𝑔(𝑥), 𝑥 ∈ Γ ≡ 𝜕Ω (1.3)

Neumann (PDE): 𝜕𝑢(𝑥)
𝜕𝑛(𝑥) = 𝑔(𝑥), 𝑥 ∈ Γ ≡ 𝜕Ω (1.4)

Cauchy (PDE): 𝑢(𝑥) = 𝑔1(𝑥) ∧ 𝜕𝑢(𝑥)
𝜕𝑛(𝑥) = 𝑔2(𝑥), 𝑥 ∈ Γ ≡ 𝜕Ω (1.5)

where Γ or 𝜕Ω (depending on the convention) is the border of the domain Ω and 𝑛(𝑥) is the
normal vector at the point 𝑥 ∈ Ω. Descriptively, Cauchy initial conditions fix the solution
value at a certain point; Dirichlet border conditions, fix the solution values at the border of
the domain; Neumann border condition, fix the flow coming in and out of the domain; and
finally, Cauchy border conditions are a mix of Dirichlet and Neumann conditions. [5]

Before proceeding, one observation has to be made on ODEs. Given a single ODE of 𝑛-th
order (the highest derivative in the equation has order 𝑛) with 𝑛 > 1, it is common practice to
transform the equation into a system of first order ODEs by simply introducing the following
set of 𝑛 − 1 equations 𝑢1 = 𝑢′, ..., 𝑢𝑛−1 = 𝑢′

𝑛−2 = 𝑢(𝑛−1), and using them to replace any
derivatives of order higher than one in the original equation. This means that any given
𝑛-th order ODE is equivalent to a system of 𝑛 first order ODEs; thus finding a solution
to the original 𝑛-th order equation, 𝑢(𝑥), is equivalent to finding an extended manifold
solution in the corresponding system of first order equations, u(𝑥) = (𝑢, 𝑢1, ..., 𝑢𝑛−1)(𝑥),
which includes its derivatives. The (1.2) definition of Cauchy initial conditions is based on
this last paradigm where we consider systems of first order ODEs. Hence, when considering a
𝑛-th order ODE in its original form, the equivalent of fixing an initial point on the manifold
solution u(𝑥0) = (𝑢0, 𝑢1,0, ..., 𝑢𝑛−1,0) is to fix the value of its first 𝑛 − 1 derivatives, and on
those premises these conditions should be written as 𝑢(𝑥0) = 𝑢0, ..., 𝑢(𝑛−1)(𝑥0) = 𝑢𝑛−1,0.

Summarizing, we will be considering systems of differential equations (1.1) in combination
some initial/boundary conditions (1.2-1.5), mainly Cauchy conditions, to formulate what
are known as an initial/boundary value problems. The main objective is to formulate a
“well-posed” problem: a set of basic properties which is required to apply any numerical
integration successfully. A system of differential equations is said to be well-posed in the
Hadamard sense [5], if it holds the following three conditions:

– A solution exists.
– The solution is unique.
– The is stable, i.e. it changes continuously with small variations of its initial conditions,

boundary conditions and external force.

Proving that a given problem is well-posed is a really tricky matter. There are very few
general results and many of the proofs are case specific: they may apply to certain types
of differential operators (for example linear or Poisson operators), require a certain type of
boundary conditions and impose several degrees of regularity.

10

As shown in Table 1.2, in this work we will be using very simple differential operators,
all of them linear or quasi-linear. Also, the external force terms will always be an analytic
functions (actually polynomials) and the initial/boundary conditions will be for the most part
of Cauchy type. Under these specific conditions the Cauchy-Kovalevskaya theorem guarantees
the existence of an unique analytic solution to the expression in both the ODE and PDE cases.

Nonetheless, this theorem has its limitations:

– First, it is a local theorem, although this can be remedied if all the terms are analytic
everywhere to form a global version by “stitching” the local solutions in several local
neighbourhoods to form a cover of the domain and build a global solution. Since the
solution has to be unique in the intersection of the neighbourhoods the global solution
has to be unique.

– Second, the proof is very dependant on the analyticity of the coefficients in the operator
and external force as its proof relies on the methods of majorants. The sketch of this
proof goes as follows [6, 7]: first we assume that the solution can be written as power
series in some neighbourhood 𝑈 ⊆ Ω, the coefficients of which are obtained from the
initial conditions and replacing the power series into the differential equation. Then we
attempt to find some power series that majorates the solution power series, the definition
of which is that ∑𝑘 𝑎𝑘𝑥𝑘 majorates ∑𝑘 𝑏𝑘𝑥𝑘 iff |𝑎𝑘| < 𝑏𝑘. Finally, we use the property
that states that if a series is majorated by a series that converges, so does that series. If
the majorating series to the solution power series is adequately chosen and converges,
so does the solution power series which converges to the local unique analytic solution.
When the differential equation is linear or quasi-linear, for every 𝑥0 ∈ 𝑈 ⊆ Ω, there is
always a systemic change of variables ℎ ∶ 𝑈 → 𝑉 such that ℎ(𝑥0) = 0. Then, on this new
domain 𝑉 , we can always construct a power series that converges to 0 with radius of
convergence 𝜌 = 1, and majorates the power series solution 𝑢(ℎ(𝑥)) ∶ 𝑉 → ℝ𝑛. This
makes the proof independent of the differential operator as long as it is linear
or quasi-linear. Note that, this proof is constructive as the power series solution
satisfies the differential operator and initial/boundary conditions, and it converges on
a neighbourhood ℎ−1(𝐷0(1)) of 𝑥0. Therefore, it is a valid local solution, and likewise
its uniqueness is proven from a similar argument.
The assumptions of analyticity and constructiveness of the proof in this theorem implies
that the theorem is proving that there is a unique analytic solution. This is much
different than claiming that the only solution is analytic. Hence, the initial/boundary
problem could still have other non-analytic solutions. (Actually, in the case of ODEs,
the Picard–Lindelöf theorem guarantees general uniqueness over other solutions, so the
analytic one is the only one; but there are no similar results for PDEs.)

Despite the two potential limitations in applying the Cauchy-Kovalevskaya theorem that
we have just seen, this will be enough for the artificial neural network to approximate the
analytic solution of the problem. The reason for this assumption is that the artificial neural
networks will be composed of analytic functions (almost everywhere), thus we expect them to
fit preferentially that solution. From now on, there will be no further discussions about the
well-posedness of the initial/boundary problems that we will attempt to solve in this work,
the Cauchy-Kovalevskaya theorem will always apply.

11

1.2 Relevant Literature
The approach for solving differential equation systems dates relatively “old”; at least, we

have found and article [8], dating back to 1994. Although this article uses a graph-like
structure acknowledged as an artificial neural network to solve ODEs, it applies a FEM type
of “tend-like” activation functions and does not rely in “training” in the modern sense, i.e.
defining a non-convex optimization problem, opting instead for some kind of Galerkin method
hybrid. Throughout this article there are some references of some papers which use some kind
of mean square error and non-convex optimization (the most standard approach nowadays),
but the author regards them as computationally expensive. This shows that the state of the
field of deep-learning back then did not allow for these strategies to be viable candidates to
integrate differential equations.

Moving to more recent times, articles explicitly integrating ODEs with artificial neural
networks are hard to come by, since as explained before, there are very efficient methods
already to integrate ODEs, and the main interest is in PDEs. A related case that we found
very interesting and worth mentioning is [9], which uses a reverse approach. Instead of training
an artificial neural network to integrate an ODE, it uses ODE numerical integrators to train
artificial neural networks.

With regards to PDEs, [4] is a very complete work. It defines a loss by the discretization over
a random collocation of points, of the error of the artificial neural network with respect to the
boundary value problem (the same idea we will be using to define a loss in 2.2). Then, it goes
to solving very high dimensional free boundary PDEs (for American options), and boundary
problems (for the Hamilton-Jacobi-Bellman). Two interesting features in this work are that:
in the article is called Monte Carlo method for fast computation of second derivatives, which
is a type o synthetic gradient; and proof to restricted version of a universal approximation
theorem for the solution of PDEs. A synthetic gradient [10] is usually used for very large
networks or very large amounts of data. Instead of computing the exact derivatives of the
loss function with respect to the parameters required to minimize the loss, the derivatives are
drawn from a distribution which is updated for every step of the training. This technique
trades off not having the exact derivatives, with less computational cost and possibility of
asynchronous training. The authors of [4] use this Monte Carlo method to avoid the expensive
cost of a second order automatic differentiation for very high dimensions. In this work, we
will not be considering this technique since, unlike [4] which integrates PDEs of up to 200
dimensions, we only integrate PDEs of up to 2 dimensions (not really high dimensions) like
almost all of the other papers that we will review next do. However, the use of a synthetic
gradient is a recurrent theme in papers dealing with very high dimensional systems.

Other paper focused on high dimensions are [11] and [12]. Both are similar in that they
do not consider deterministic PDEs but BSDEs (Backward Stochastic Differential Equations)
such as the Allen-Cahn (physics) or Black-Scholes (economics) equations, and they consider
systems of up to 100 dimensions.

Closer to the line of work of this project are [13, 14, 15, 16, 17, 18]. The outlines of these
work are quite similar: they simulate PDEs of up to 2 dimensions and do some kind of error
analysis. Some the characteristics of [15] is that it analyses the effect in the error of the mesh
and number of hidden nodes, and in [16, 17] the method is compared to an standard FEM
method. On the more interesting side of things lie [13] and [18].

12

[18] follows up on the architecture of [4], which uses a special kind of feed-forward artificial
neural network. In a regular feed-forward artificial neural network the neurons are divided
into sequential layers, then the outputs of a layer strictly get fed as input to the next layer
(we will see this in section 2.1). However, [4] used an architecture where the outputs of a
layer feed all of its successive layers. This seem to yield good results although there is no
comparison to other type of architectures.

[13] is focused in, instead of using the artificial neural network approach for its capabilities to
integrate systems in high dimensions, in using its mesh-free nature to integrate over irregular
domains. In this paper artificial neural networks are trained to fit the advection and diffusion
operators for collocations of very irregular domains. It also applies a very original idea which
is to consider the approximated solution as 𝑢̂(𝑥) = 𝑔(𝑥) + 𝐷(𝑥) ⋅ 𝑢̃(𝑥), where 𝑔(𝑥) is the
boundary condition, 𝐷(𝑥) is a distance function to the border such that 𝐷(𝑥) = 0 iff 𝑥 ∈ Γ,
and 𝑢̃(𝑥) is a regular artificial neural network. This way 𝑢̂(𝑥) always satisfies the boundary
conditions by construction and it is only required to train the model to fit differential equation,
thus one can pre-compute the distance from the collocation to the border since it does not
change throughout the training, and focus on a single objective loss function. For this work we
reckoned that this idea would only work well with Neumann or Dirichlet boundary conditions,
but with Cauchy boundary conditions which include both at the same time.

Other papers that relate artificial neural networks to PDEs are: [19], which is a version
of [9] relating PDEs to the dynamics of non-convex optimization in convolutional networks;
and [20] which draw the same relation between the dynamics of the optimization of general
artificial neural networks and PDEs, using statistical physics techniques. Also [21, 22, 23] are
a series of papers by the same author which train artificial neural networks with experimental
data from physics to learn the underlying behaviours modelled by PDEs.

Finally, we want to remark that the need for the derivatives of artificial neural networks with
respect to inputs, which seem to be something that would not appear in simple regression or
classification problems, thus only related to this topic, has been used in other contexts. [24, 25]
are examples of this, both make use of information about the derivatives as regularization
techniques and to speed up training in problems with no imperative use for them.

13

Chapter 2
Artificial Neural Networks Framework

In this chapter we will be covering from scratch everything about artificial neural networks
that we will be using to solve differential equations in the next chapter. We will start by
defining what an artificial neuron and artificial neural network are; explain the architecture
of a fully-connected feed-forward neural network; their possible activation functions and
initializations; show how to assign a loss function to train the model to fit the initial/boundary
value problem; discuss the pros and cons of the main optimizer options available to train the
model; and examine diverse regularization techniques which help improve training results.

2.1 What are Artificial Neural Networks?
Artificial neural networks are ensembles of units called artificial neurons. There are many

designs for these artificial neurons, and by combining and arranging them in different ways
we can create networks with very different behaviours and results.

In this work, the only type of artificial neuron that we will be using is known as the
perceptron, which is probably the simplest and the most widely used. Figure 2.1 shows the
basic scheme of a perceptron. A percepton takes in 𝑛 inputs, which we can view as coordinates
of a vector 𝑥𝑛; it combines them linearly multiplying weights and adding a bias; and then
applies a (mostly) non-linear function 𝑎 to the linear combination.

...

Figure 2.1: Perceptron scheme.

Some other popular design are convolutional neurons, which are used in image recognition;
and memory cells, which are used in data with time dependencies such as video processing.

The way in which we combine artificial neurons to form artificial neural networks is such
that the outputs of group of neurons become the input of another group of neurons. In this
light, one can think of an artificial neural network as a directed graph with entry and exit
edges, where each of the nodes correspond to a neuron and the directed edges indicate which
neurons outputs feed another neuron as inputs. This is why many times the neurons in a
network are referred to as nodes.

14

Figure 2.2: A directed graph which could be a possible representation of the architecture or
an artificial neural network. Nodes are artificial neurons and edges indicate which neurons
feed into each other.

One approach for organizing these neurons is using a feed-forward scheme. By this scheme
we divide the neurons into sequential layers (groups). Then the outputs of a layer can only
become inputs of the next layer. Using the graph characterization, this would correspond
to artificial neural networks defined by directed graphs without cycles. The main advantage
of this scheme is it allows for the use standard back-propagation algorithm (which we will
be explaining in the next sections) to train the parameters in the neurons to fit a certain model.

A particular case of feed-forward artificial neural networks is the fully-connected. This
happens when all the neurons in a layer are connected to all in the neurons in the next layer.

.

.	.	.

.	.	.

.	.	.

.	.	.

.	.	.

Figure 2.3: General scheme of a perceptron based fully-connected feed-forward artificial
neural network.

Throughout this work we will be exclusively using perceptron fully-connected feed-forward
artificial neural networks with different number of layers and different number of nodes per
layer to approximate the solutions of differential equations. Figure 2.3 shows the standard
graph representation of the structure of such neural networks based on the concepts explained
up to this point. Note that the edges are not directed, as it is unnecessary, since by standard
convention the flow of the neurons goes from left to right.

An artificial neural network provides a frame to define complex parametric functions in a
modular way as a composition of simpler operations encapsulated in artificial neurons (we
will insist in this point the next sections).

15

The following observations are a way to better understand artificial neural networks:

– A single neuron can form a neural network. In that case, if the activation function is
identity, and we adjust the parameters of the neuron so the outputs fit a continuous
dataset, we perform a linear regression. Indeed 𝑤𝑖 and 𝑏 are simply the slope and the
intercept. Similarly, if the activation function is a sigmoid, and we adjust the parameters
of the neuron so the outputs fit a binary dataset, we perform a logistic regression.

– In more complex deep neural networks, we kind of expand the same ideas as in the single
neuron. In general, in artificial neural networks, what happens in regression problems
is that we fit the parameters to make the hyper-surface defined by network structure
get as close as possible to the sample data; and in classification problems we fit the
parameters as much as possible to match the underlying marginal distribution of each
category with the network structure.

Finally we will end this introductory section with some nomenclature for the rest of the
work:

– A feed-forward neural network is said to be deep when it contains more that one layer.

– In deep neural networks, layers are classified as input, hidden and output layers. The
input layer is the one that simply takes in the inputs and does no transformations; the
output layer is the last layer of the sequence of layers and its outputs are the output
results of all the whole network; and the hidden layers are all that lie between the input
and output layers. Based on Figure 2.3, the input vector corresponds to the input layer
(layer 0, even though it is not explicitly referenced as that), layers 1 to 𝑙 − 1 would be
the hidden layers and layer 𝑙 would be the output layer.

– A feed-forward fully-connected network is defined by its number of layers, the number
of neurons (nodes) in each layer, and its types of neurons. A neuron is defined by its
weights, bias and activation function. Therefore, from now on we will use the following
standard nomenclature, which contains all the elements that we need, to completely
define our networks:

ℓ layers indexes,
𝑛ℓ, 𝑚ℓ neurons indexes for layer ℓ,

𝑤[ℓ] 𝑚ℓ−1𝑛ℓ weights of the neuron 𝑛ℓ in the layer ℓ (parameters),
𝑏[ℓ]

𝑛ℓ bias of the neuron 𝑛ℓ in the layer ℓ (parameters),
𝑎[ℓ]

𝑛ℓ
activation function of the neuron 𝑛ℓ in the layer ℓ,

𝑧[ℓ]
𝑛ℓ result of the linear combiantion of the neuron 𝑛ℓ in the layer ℓ,

𝑦[ℓ]
𝑛ℓ result of applying the activation function of the neuron 𝑛ℓ in the layer ℓ.

By this notation we will consider the input vector as layer 0 for which no transformations
are performed, therefore, 𝑥𝑖 = 𝑧[0]

𝑖 = 𝑦[0]
𝑖. Also, the output layer (the 𝑛-th layer) never

has an activation function, therefore 𝑢̂𝑖 = 𝑧[𝑛]
𝑖 = 𝑦[𝑛]

𝑖.

16

2.2 From Numerical Integration to Deep-Learning
The intended use of the artificial neural networks in this work is for them to approximate the

solution of some initial/boundary value problem. In order to achieve this, the parameters of
the network should be tweaked to minimize some measure representing how well the network
satisfies the differential operator and initial/boundary conditions.

Given the artificial neural network approximation of the solution, 𝑢̂(𝑥; 𝑤, 𝑏), which depends
parametrically on the set of all weights 𝑤 and all biases 𝑏, we can define a positively defined
loss or cost function, 𝐿(𝑤, 𝑏), that quantifies the degree of satisfaction of the network to the
problem, in the following terms:

𝐿(𝑤, 𝑏) = 𝐿1(𝑤, 𝑏) + 𝐿2(𝑤, 𝑏) + 𝑅(𝑤, 𝑏), (2.1)

where 𝐿1(𝑤, 𝑏) is the loss term measuring how well the neural network approximates the
differential operator (1.1), 𝐿2(𝑤, 𝑏) is the loss term measuring how well the neural network
approximates the initial/boundary conditions (1.2-1.5), and R(w,b) is the regularization term
of the loss which is a term that will help to stabilize and improve the convergence in the
optimization (this terms will be covered in a later section). In particular, using Cauchy
boundary conditions, which are the most complex of all, the terms would be:

𝐿1(𝑤, 𝑏) = ∣∣ℒ[𝑢̂(𝑥; 𝑤, 𝑏)] − 𝑓(𝑥)∣∣
Ω,2

= ∫
Ω

(ℒ[𝑢(𝑥; 𝑤, 𝑏)] − 𝑓(𝑥))
2
𝑑𝑥, (2.2)

𝐿2(𝑤, 𝑏) = ∣∣𝑢̂(𝑥; 𝑤, 𝑏) − 𝑔1(𝑥)∣∣
Γ,2

+ ∣∣𝜕𝑢̂(𝑥; 𝑤, 𝑏)
𝜕𝑛(𝑥)] − 𝑔2(𝑥)∣∣

Γ,2

= ∫
Γ

(𝑢̂(𝑥; 𝑤, 𝑏) − 𝑔1(𝑥))
2
𝑑𝑥 + ∫

Γ
(𝜕𝑢̂(𝑥; 𝑤, 𝑏)

𝜕𝑛(𝑥) − 𝑔2(𝑥))
2
𝑑𝑥,

(2.3)

with || ⋅ ||Ω,2 the norm of the 𝐿2(Ω) Hilbert space (which is the space of square integrable
functions in Ω), and the same concept applies to || ⋅ ||Γ,2. However, in practice, as the integrals
in (2.2-2.3) are virtually impractical to compute, instead of using the ||⋅||Ω,2 and ||⋅||Γ,2 norms,
a discrete approximation is used. The is achieved is by taking a random collocation of 𝑁Ω
points in Ω and 𝑁Γ points in Γ, which can be obtained by using a Monte Carlo hit-and-miss
approach, and discretizing as ∫Ω → 1/𝑁Ω ∑𝑁Ω

and ∫Ω → 1/𝑁Γ ∑𝑁Γ
. Thus the actual loss

terms become:

𝐿1(𝑤, 𝑏) ≈ 1
𝑁Ω

∑
𝑖∈𝑁Ω

(ℒ[𝑢(𝑥𝑖; 𝑤, 𝑏)] − 𝑓(𝑥𝑖))
2
, (2.4)

𝐿2(𝑤, 𝑏) ≈ 1
𝑁Γ

∑
𝑖∈𝑁Γ

(𝑢̂(𝑥𝑖; 𝑤, 𝑏) − 𝑔1(𝑥𝑖))
2

+ 1
𝑁Γ

∑
𝑖∈𝑁Γ

(𝜕𝑢̂(𝑥𝑖; 𝑤, 𝑏)
𝜕𝑛(𝑥𝑖)

− 𝑔2(𝑥𝑖))
2
. (2.5)

Observe that we have transformed the continuous loss functions into the MSE (mean squared
error) on a random collocation of points of the domain and the border. Now, on these premises,
the problem has changed in nature, from a numerical integration problem, to an almost purely
deep-learning regression type of problem. Other discretizations using the absolute error or
the Huber error would have yielded equally valid approximations.

17

The next steps are straightforward, train the artificial neural network as done in any other
deep-learning regression type of problem. This entails, taking the loss 𝐿(𝑤, 𝑏) which defines a
hyper-surface in the parameter space, and given a certain initialization of parameters (𝑤0, 𝑏0),
use a gradient-based optimization technique to minimize the loss function which is equivalent
to minimizing the error of the approximation.

2.3 Derivatives: Back Propagation and Gradient Issues
As we have just stated we would like to use some kind of gradient-based optimization

technique to optimize 𝐿(𝑤, 𝑏). The idea of this kind of techniques is to start at some point
and move that point in steps along the direction of the gradient until we reach the minimum
or sufficiently low value of the loss function. This strategy implies that in every step we are
required to compute the gradient ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0) at the point we are in.

Using a feed-forward scheme allows for the application of “standard” back-propagation
algorithms to compute the derivatives of these gradients, which other schemes do not allow,
or require of many modifications. In actuality, back-propagation is the name that receives
in deep-learning a backward accumulation automatic differentiation algorithm (or autodiff),
which is a type of dynamic programming algorithm used to compute derivatives of composed
functions efficiently in computers. [26]

We will illustrate how a backward autodiff works with the following example, imagine we
wanted to calculate in a computer the derivative in (𝑥0,𝑦0) of:

𝑓(𝑥, 𝑦) = sin(𝑒𝑥 + 𝑥𝑒𝑦). (2.6)

What an autodiff algorithm does is decompose progressively the function into primitive
operations (sums, subtractions, multiplications, divisions and basic functions: exponentials,
sinus, cosines...). A computer can take any of this primitive operations and compute their
values and the values of its derivatives at any point with arithmetic precision. For (2.6), the
decomposition would be:

𝑧1 = sin(𝑧2) ⟶ 𝜕𝑧1
𝜕𝑧2

= cos(𝑧2), 𝑧5 = 𝑥 ⟶ 𝜕𝑧5
𝜕𝑥 = 1

𝑧2 = 𝑧3 + 𝑧4 ⟶ 𝜕𝑧2
𝜕𝑧3

= 1, 𝜕𝑧2
𝜕𝑧4

= 1 𝑧6 = 𝑥 ⟶ 𝜕𝑧6
𝜕𝑥 = 1

𝑧3 = 𝑒𝑧5 ⟶ 𝜕𝑧3
𝜕𝑧5

= 𝑒𝑧5, 𝑧7 = 𝑒𝑧8 ⟶ 𝜕𝑧7
𝜕𝑧8

= 𝑒𝑧8

𝑧4 = 𝑧6 ⋅ 𝑧7 ⟶ 𝜕𝑧4
𝜕𝑧6

= 𝑧7, 𝜕𝑧4
𝜕𝑧5

= 𝑧6, 𝑧8 = 𝑦 ⟶ 𝜕𝑧8
𝜕𝑦 = 1.

(2.7)

From a implementation stance, this decomposition is used to build what is known as a
computational graph, which is a directed graph such that, its nodes store the computed
numerical values of the primitive operations 𝑧𝑖 and their derivatives at the point of calculation
(𝑥0,𝑦0), and its directed edges store the precedence of all operations. Figures (2.4-2.4) show the
computational graph of (2.6). In Tensorflow v2.3 which is the deep-learning framework that
we will be using in the next chapter to build artificial neural networks, computational graphs
are natively implemented in a class called tape, which automatically builds these graphs.

18

Figure 2.4: Computational graph of example (2.6).

Figure 2.5: Computational graph (derivatives) of example (2.6). In green the flow of nodes
required to compute 𝜕𝑓(𝑥, 𝑦)/𝜕𝑥

The computation of the derivatives at the point (𝑥0,𝑦0) is done by multiplying and adding
(when more than one edge enters a node) the values of derivatives (actually, the Jacobians)
at the nodes following the directions of the edges. This algorithm in its backward version is
exactly the same as successively applying the chain rule in order, from the most fundamental
operation to the most composed one, in a systematic way. Its forward version applies the
chain rule in the other order. For (2.6) the algorithm would be the same as using the chain
rule as follows:

𝜕𝑓(𝑥, 𝑦)
𝜕(𝑥, 𝑦) = ((𝜕𝑧1

𝜕𝑧2
⋅ 𝜕𝑧2

𝜕𝑧3
) ⋅ 𝜕𝑧3

𝜕𝑧5
) ⋅ 𝜕𝑧5

𝜕(𝑥, 𝑦)

+ ((𝜕𝑧1
𝜕𝑧2

⋅ 𝜕𝑧2
𝜕𝑧4

) ⋅ 𝜕𝑧4
𝜕𝑧6

) ⋅ 𝜕𝑧6
𝜕(𝑥, 𝑦)

+ (((𝜕𝑧1
𝜕𝑧2

⋅ 𝜕𝑧2
𝜕𝑧4

) ⋅ 𝜕𝑧4
𝜕𝑧7

) ⋅ 𝜕𝑧7
𝜕𝑧8

) ⋅ 𝜕𝑧8
𝜕(𝑥, 𝑦).

(2.8)

The dynamic programming element to this algorithm is very helpful as it allows to use the
same computation graph of a given point to compute with no additional cost the derivatives
with respect to intermediate operations and parameters (which will be extremely useful). It
also provides better errors and stability than numerical differentiation which approximates
derivatives by differences. This is also different from symbolic differentiation. [27]

2.3.1 Derivatives Behaviour (Vanishing and Exploding Gradients)
In this subsection we will compute the derivatives of an example artificial neural network

and look at how they behave. Although by using the back propagation algorithm we are
able to numerically compute derivatives up to any order with great precision by successively
applying the algorithm to its outputted derivatives, this does not imply that the derivatives
we compute (in a structural sense) are well suited to train the model. Differences in magnitude
and sensitivity to variations of the parameters can make training almost impossible.

19

When computing the gradient of the loss function with respect to the parameters to train
the artificial neural network, we obtain the following:

∇(𝑤,𝑏)𝐿(𝑤, 𝑏) ∶= 𝜕𝐿(𝑤, 𝑏)
𝜕(𝑤, 𝑏) = 𝜕𝐿1(𝑤, 𝑏)

𝜕(𝑤, 𝑏) + 𝜕𝐿2(𝑤, 𝑏)
𝜕(𝑤, 𝑏) + 𝜕𝑅(𝑤, 𝑏)

𝜕(𝑤, 𝑏) , (2.9)

where, in particular,
𝜕𝐿1(𝑤, 𝑏)

𝜕(𝑤, 𝑏) = 𝜕ℒ[𝑢̂(𝑥; 𝑤, 𝑏)]
𝜕(𝑤, 𝑏) − 𝜕𝑓(𝑥)

𝜕(𝑤, 𝑏). (2.10)

and thus, we observe from the term in 𝐿1 that, in order to obtain the gradient, we will require
the derivatives of up to first order for (𝑤, 𝑏), and up to the highest order in the differential
operator ℒ for (𝑥), which in this work can be of up to order 2 from the Laplacian operator.

Next, we will use an example artificial neural network consisting of 4 layers: an input layer
of 2 neurons, two hidden layers of 3 and 4 neurons respectively, and an output layer of 2
neurons (see Figure 2.6). Using this example for greater clarity, we will first characterize
its elements in detail, which will serve as a consolidation example of the first section of this
chapter. Then, we will be applying the chain rule to express some derivatives of up to order 2
in variables and order 1 in parameters, and we will discuss their potential issues when used in
gradient based training, namely the issues with vanishing and exploding gradients. This whole
subsection will be written in the tensor formulation introduced in Chapter 0. In Appendix A,
we reproduce the results in this subsection that make sense in linear algebra notation, for
didactic reasons.

Figure 2.6: Example model: A 2-3-4-2 artificial neural network.

Given our example artificial neural network (Figure 2.6), the elements that characterize it
(variables, parameters and activation functions), in the most general way for perceptron type
neurons, are:

𝑛0, 𝑚0 = 1, 2, 𝑛1, 𝑚1 = 1, 2, 3, 𝑛2, 𝑚2 = 1, 2, 3, 4, 𝑛3, 𝑚3 = 1, 2,

𝑤[1] 𝑚0𝑛1 , 𝑤[2] 𝑚1𝑛2 , 𝑤[3] 𝑚2𝑛3 , 𝑧[0]
𝑛0 = 𝑥𝑛0

, 𝑧[1]
𝑛1, 𝑧[2]

𝑛2, 𝑧[3]
𝑛3 = 𝑢̂𝑛3

,
𝑏[1]

𝑛1, 𝑏[1]
𝑛2, 𝑏[1]

𝑛3, 𝑦[0]
𝑛0 = 𝑥𝑛0

, 𝑦[1]
𝑛1, 𝑦[2]

𝑛2, 𝑦[3]
𝑛3 = 𝑢̂𝑛3

,
𝑎[1]

𝑛1
, 𝑎[2]

𝑛2
∶ ℝ ⟶ ℝ.

(2.11)

Recall that each of this elements is a tensor in itself.

20

In particular, for each of the layers ℓ, the output variables 𝑦[ℓ]
𝑛ℓ and 𝑧[ℓ]

𝑛ℓ of each neuron
are (where remember that from now on everything is written in Einstein convention notation):

𝑧[1]
𝑛1 = 𝑏[1]

𝑛1 + 𝑤[1] 𝑛0𝑛1 ⋅ 𝑦[0]
𝑛0 , 𝑦[1]

𝑛1 = 𝑎[1]
𝑛1

(𝑧[1]
𝑛1) ,

𝑧[2]
𝑛2 = 𝑏[2]

𝑛2 + 𝑤[2] 𝑛1𝑛2 ⋅ 𝑦[1]
𝑛1 , 𝑦[2]

𝑛2 = 𝑎[2]
𝑛2

(𝑧[2]
𝑛2) ,

𝑧[3]
𝑛3 = 𝑏[3]

𝑛3 + 𝑤[3] 𝑛2𝑛3 ⋅ 𝑦[2]
𝑛2 , 𝑦[3]

𝑛3 = 𝑧[3]
𝑛3.

(2.12)

If we were compose all these output variables we can see that this instance of an artificial
neural network actually represents the composite function:

𝑦[3]
𝑛3 = 𝑏[3]

𝑛3 + 𝑤[3] 𝑛2𝑛3 ⋅ 𝑎[2]
𝑛2

(𝑏[2]
𝑛2 + 𝑤[2] 𝑛1𝑛2 ⋅ 𝑎[1]

𝑛1
(𝑏[1]

𝑛1 + 𝑤[1] 𝑛0𝑛1 ⋅ 𝑦[0]
𝑛0)) , (2.13)

or equivalently,

𝑢̂𝑛3
= 𝑏[3]

𝑛3 + 𝑤[3] 𝑛2𝑛3 ⋅ 𝑎[2]
𝑛2

(𝑏[2]
𝑛2 + 𝑤[2] 𝑛1𝑛2 ⋅ 𝑎[1]

𝑛1
(𝑏[1]

𝑛1 + 𝑤[1] 𝑛0𝑛1 ⋅ 𝑥𝑛0
)) . (2.14)

Now, we will compute some derivatives applying the chain rule:

Derivatives of order 1 in 𝑥:

𝜕𝑢̂𝑛3

𝜕𝑥𝑚0

∶= 𝜕𝑦[3]
𝑛3

𝜕𝑧[0]
𝑛0

= 𝜕𝑦[3]
𝑛3

𝜕𝑧[3]
𝑚3

⋅ 𝜕𝑧[3]
𝑚3

𝜕𝑦[2]
𝑛2

⋅ 𝜕𝑦[2]
𝑛2

𝜕𝑧[2]
𝑚2

⋅ 𝜕𝑧[2]
𝑚2

𝜕𝑦[1]
𝑛1

⋅ 𝜕𝑦[1]
𝑛1

𝜕𝑧[1]
𝑚1

⋅ 𝜕𝑧[1]
𝑚1

𝜕𝑦[0]
𝑛0

⋅ 𝜕𝑦[0]
𝑛0

𝜕𝑧[0]
𝑚0

= 𝛿𝑚3𝑛3 ⋅ 𝑤[3] 𝑛2𝑚3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝛿𝑚2𝑛2 ⋅ 𝑤[2] 𝑛1𝑚2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑤[1] 𝑛0𝑚1 ⋅ 𝛿𝑚0𝑛0

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1 .
(2.15)

Derivatives of order 2 in 𝑥:

𝜕2𝑢̂𝑛3

𝜕𝑥𝑚0
𝜕𝑥𝑚0

∶= 𝜕
𝜕𝑧[0]

𝑚0

(
𝜕𝑢̂𝑛3

𝜕𝑥𝑚0

)

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝜕
𝜕𝑧[0]

𝑚0

𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1

+ 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝜕

𝜕𝑧[0]
𝑚0

𝐷𝑛1 (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2,𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2))

⋅ (𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]
𝑛1

(𝑧[1]
𝑛1

)) ⋅ 𝑤[1] 𝑚0
𝑛1

) ⋅ (𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1)

+ 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1,𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1 .
(2.16)

21

Derivatives of order 0 in 𝑥 and order 1 in 𝑤:

𝜕𝑢̂𝑛3

𝜕𝑤[3] 𝑛2𝑚3

= 𝛿𝑚3𝑛3 ⋅ 𝑦[2]
𝑛2,

𝜕𝑢̂𝑛3

𝜕𝑤[2] 𝑛1𝑚2

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝛿𝑚2𝑛2 ⋅ 𝑦[1]

𝑛1,

𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0𝑚1

∶= 𝜕𝑦[3]
𝑛3

𝜕𝑤[1] 𝑛0𝑚1

= 𝜕𝑦[3]
𝑛3

𝜕𝑧[3]
𝑚3

⋅ 𝜕𝑧[3]
𝑚3

𝜕𝑦[2]
𝑛2

⋅ 𝜕𝑦[2]
𝑛2

𝜕𝑧[2]
𝑚2

⋅ 𝜕𝑧[2]
𝑚2

𝜕𝑦[1]
𝑛1

⋅ 𝜕𝑦[1]
𝑛1

𝜕𝑧[1]
𝑚1

⋅ 𝜕𝑧[1]
𝑚1

𝜕𝑤[1] 𝑛0𝑚1

= 𝛿𝑚3𝑛3 ⋅ 𝑤[3] 𝑛2𝑚3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝛿𝑚2𝑛2 ⋅ 𝑤[2] 𝑛1𝑚2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑦[0]
𝑛0

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑦[0]
𝑛0.

(2.17)
Derivatives of order 0 in 𝑥 and order 1 in 𝑏:

𝜕𝑢̂𝑛3

𝜕𝑏[3]
𝑚3

= 𝛿𝑚3𝑛3 ,

𝜕𝑢̂𝑛3

𝜕𝑏[2]
𝑚2

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝛿𝑚2𝑛2 ,

𝜕𝑢̂𝑛3

𝜕𝑏[1]
𝑚1

∶= 𝜕𝑦[3]
𝑛3

𝜕𝑏[1]
𝑚1

= 𝜕𝑦[3]
𝑛3

𝜕𝑧[3]
𝑚3

⋅ 𝜕𝑧[3]
𝑚3

𝜕𝑦[2]
𝑛2

⋅ 𝜕𝑦[2]
𝑛2

𝜕𝑧[2]
𝑚2

⋅ 𝜕𝑧[2]
𝑚2

𝜕𝑦[1]
𝑛1

⋅ 𝜕𝑦[1]
𝑛1

𝜕𝑧[1]
𝑚1

⋅ 𝜕𝑧[1]
𝑚1

𝜕𝑏[1]
𝑚1

= 𝛿𝑚3𝑛3 ⋅ 𝑤[3] 𝑛2𝑚3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝛿𝑚2𝑛2 ⋅ 𝑤[2] 𝑛1𝑚2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1 .

(2.18)

Derivatives of order 1 in 𝑥 and order 1 in 𝑤[1]:

𝜕2𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

𝜕𝑥𝑚0

∶= 𝜕
𝜕𝑤[1] 𝑛0

𝑚1

(
𝜕𝑢̂𝑛3

𝜕𝑥𝑚0

)

= 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2,𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2))

⋅ (𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]
𝑛1

(𝑧[1]
𝑛1

)) ⋅ 𝛿𝑚1
𝑛1

⋅ 𝑦[0]
𝑛0

) ⋅ (𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝑤[1] 𝑚0𝑛1)

+ 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1,𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑦[0]
𝑛0

⋅ 𝑤[1] 𝑚0𝑛1

+ 𝑤[3] 𝑛2𝑛3 ⋅ 𝐷𝑛2 (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ 𝐷𝑛1 (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝛿𝑚0
𝑛0

⋅ 𝛿𝑚1𝑛1 .
(2.19)

22

The vanishing and exploding gradient problems are a recurrent issue in the deep-learning
field, and in fact, it was the main reason for which, although the concept artificial neural
networks was well known since the 1950s, it was not until the early 2000s when the effect
of this issues were “mitigated” with new techniques, that the field of deep-learning exploded
became what it is today. The solution up until now has been to design improved optimizers,
use regularization techniques, increase computer power and make use of parallel computation,
and create new architectures that preserve data structures (such as convolutional networks
in image processing). In the following sections we will see the ideas for the typical optimizers
and regularizations that are used to avoid the “classical” vanishing and exploding gradients.

From the derivatives with respect to 𝑤 and 𝑏 in (2.17) and (2.18), these gradient problems
can be straight forward explained. Observe that in the derivatives of the parameters, as we go
from the deepest (closest to the input) layer to the shallowest layers (closest to the output) of
the network, the number of terms and derivatives of the activation functions increase. Thus,
when the weights 𝑤 become small (or large) with respect to 1, or the activation function
has a small (or large) slope in the range of the linear combination of the neurons 𝑧, both of
which are extremely common, then as we consider the derivatives of deeper parameters, these
become the product of an increasing number of small (or large) terms. In conclusion, as we
consider deeper layers, the derivatives used to train the parameters become vanishingly small
or explosively large with respect to the shallower layers, making the optimization of these
deeper parameters almost impossible. Given our problem (only in 𝑤, but equivalent in 𝑏):

“Calssic” Vanishing Gradient: ∣
𝜕𝑢̂𝑛3

𝜕𝑤[3] 𝑛2𝑚3

∣ >> ∣
𝜕𝑢̂𝑛3

𝜕𝑤[2] 𝑛1𝑚2

∣ >> ∣
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0𝑚1

∣ .

“Calssic” Exploding Gradient: ∣
𝜕𝑢̂𝑛3

𝜕𝑤[3] 𝑛2𝑚3

∣ << ∣
𝜕𝑢̂𝑛3

𝜕𝑤[2] 𝑛1𝑚2

∣ << ∣
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0𝑚1

∣ .
(2.20)

At this point, we will refer to the vanishing and exploding gradient problems that we have
just explained as “classical” because it is the one that always takes place in any deep-learning
classification and regression problem. However, by the very nature of this problem, being that
the loss function contains derivatives of artificial neural network in 𝑥, we incur in a second
type of vanishing and exploding gradient problems which is harder to see. If the classical
vanishing/explode type implies that the derivatives of the artificial neural network 𝑢̂ with
respect to the parameters 𝑤 and 𝑏 increase/decrease as we consider parameters in deeper
layers; in this second type, for higher order derivatives of 𝑢̂ in 𝑥, their derivatives with respect
to the same parameter of the same layer also vanishes or explodes as we consider higher
derivatives in 𝑥. Given our problem (only in 𝑤, but equivalent in 𝑏):

“Second type” Vanishing Gradient: ∣
𝜕𝑢̂𝑛3

𝜕𝑤[ℓ] 𝑛2𝑚3

∣ >> ∣
𝜕2𝑢̂𝑛3

𝜕𝑤[ℓ] 𝑛1𝑚2𝜕𝑥𝑚0

∣ >>

“Second type” Exploding Gradient: ∣
𝜕𝑢̂𝑛3

𝜕𝑤[ℓ] 𝑛2𝑚3

∣ << ∣
𝜕2𝑢̂𝑛3

𝜕𝑤[ℓ] 𝑛1𝑚2𝜕𝑥𝑚0

∣ <<
(2.21)

23

Showing this second type of gradient problem a bit less obvious than the classic one. To be
able to give an intuition of the problem we will consider the case in which all the activation
functions are exponential 𝑎[ℓ]

𝑛ℓ
(𝑥) = 𝑒𝑥. In such case the derivatives of the activation function

are simply:

𝐷𝑛ℓ (𝑎[ℓ]
𝑛ℓ

(𝑧[ℓ]
𝑛ℓ)) = 𝑎[ℓ]

𝑛ℓ
(𝑧[ℓ]

𝑛ℓ) ⋅ 𝟙𝑛ℓ,
𝐷𝑛ℓ,𝑛ℓ (𝑎[ℓ]

𝑛ℓ
(𝑧[ℓ]

𝑛ℓ)) = 𝑎[ℓ]
𝑛ℓ

(𝑧[ℓ]
𝑛ℓ) ⋅ 𝟙𝑛ℓ,𝑛ℓ,

(2.22)

where 𝟙𝑛ℓ is the tensor whose every component is 1, and 𝟙𝑛ℓ,𝑛ℓ = 𝟙𝑛ℓ ⋅ 𝟙𝑛ℓ. Then, for an
exponential activation function, the derivatives (2.17) and (2.19) of the weights 𝑤[1] in the
first layer become:

𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0𝑚1

= 𝑤[3] 𝑛2𝑛3 ⋅ (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝟙𝑛2 ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝟙𝑛1 ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑦[0]
𝑛0,

(2.23)
𝜕2𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

𝜕𝑥𝑚0

= 𝑤[3] 𝑛2𝑛3 ⋅ (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝟙𝑛2,𝑛2

⋅ (𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]
𝑛1

(𝑧[1]
𝑛1

)) ⋅ 𝟙𝑛1 ⋅ 𝛿𝑚1
𝑛1

⋅ 𝑦[0]
𝑛0

) ⋅ (𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝟙𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1)

+ 𝑤[3] 𝑛2𝑛3 ⋅ (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝟙𝑛2 ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝟙𝑛1,𝑛1 ⋅ 𝛿𝑚1𝑛1 ⋅ 𝑦[0]
𝑛0

⋅ 𝑤[1] 𝑚0𝑛1

+ 𝑤[3] 𝑛2𝑛3 ⋅ (𝑎[2]
𝑛2

(𝑧[2]
𝑛2)) ⋅ 𝟙𝑛2 ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]

𝑛1
(𝑧[1]

𝑛1)) ⋅ 𝟙𝑛1 ⋅ 𝛿𝑚0
𝑛0

⋅ 𝛿𝑚1𝑛1 ,
(2.24)

Since the derivative of the exponential is essentially itself, and the activation function tensor
is made of copies of exponentials for which differentiating means multiplying 𝟙𝑛ℓ tensors, both
expressions (2.23) and (2.24) are written in the same terms, hence are easy to compare. As
the tensor operations (sums and products) are commutative; and given a tensor 𝑇 𝑖,𝑗

𝑘 , which
lets say has non-zero components for simplicity, we can define a “pseudo-inverse” to the
contraction (𝑇 𝑖,𝑗

𝑘)−1 = [𝑇 −1]𝑘𝑖,𝑗 (element-wise) such that it holds 𝑇 𝑖,𝑗
𝑘 ⋅ [𝑇 −1]𝑘𝑖,𝑗 = 𝑖 ⋅ 𝑗 ⋅ 𝑘 (if

there are zero values, we would have we would have to fix an inverse element for the zero
components and discount the zeroes from the count 𝑖 ⋅ 𝑗 ⋅ 𝑘; here we will assume there are no
zeroes for clarity); then we can easily replace (2.23) in (2.24) yielding:

𝜕2𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

𝜕𝑥𝑚0

=
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

⋅ (𝟙𝑛2 ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝟙𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1)

+
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

⋅ 𝟙𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1 +
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

⋅ 𝛿𝑚0
𝑛0

⋅ (𝑛0)−1 ⋅ (𝑦[0]
𝑛0

)
−1

,
(2.25)

and grouping,

𝜕2𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

𝜕𝑥𝑚0

= (𝟙𝑛2 ⋅ 𝑤[2] 𝑛1𝑛2 ⋅ (𝑎[1]
𝑛1

(𝑧[1]
𝑛1)) ⋅ 𝟙𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1

+ 𝟙𝑛1 ⋅ 𝑤[1] 𝑚0𝑛1 + 𝛿𝑚0
𝑛0

⋅ (𝑛0)−1 ⋅ (𝑦[0]
𝑛0

)
−1

) ⋅
𝜕𝑢̂𝑛3

𝜕𝑤[1] 𝑛0
𝑚1

.
(2.26)

24

From (2.26) we see that, in the case of exponential activation functions, we can write the
derivatives of a given weight and input in terms of a lower order derivative in terms of the
input (this can be done for any order of the input). Now, regarding the factor in parenthesis
in (2.26), assuming that the input is normalized and we do not shuffle data: the third term
behaves as a very large constant (>> 1) which increases with the input dimension; when the
weights are small, the second term is the largest, thus since the weights are small, the whole
factor is small (<< 1); and when the weights are large, it is the first term that dominates,
making the whole factor very large (>> 1). This creates the vanishing/exploding gradient
effect described previously in (2.21). Also, this same analysis can be carried out with respect
to any other weight or bias parameter making a few changes, but in case of considering
other activation functions, although the end conclusion is the same and can be empirically
visualized, the analytic study becomes much harder.

This issue is important when considering operators with that contain derivatives of different
order or products of derivatives, which is always ignored. For example, the laplacian operator
which contain only additions of second order derivatives does not have this problem as the
effect of no derivative vastly dominates the effect of another when deriving over the parameters,
but the burger’s operator presents it.

2.4 Optimizers

Recall that in section 2.2 we transformed the problem of approximating the solution of
an initial/boundary problem into a non-convex optimization problem, whereby we had to
find the minimum (or a sufficiently small value) of a loss function 𝐿(𝑤, 𝑏), defined by (2.1),
(2.4) and (2.5). On that section we went on to anticipate that, in order to do that, we would
be using a gradient based optimization technique (optimizer), which required the computation
of the loss derivatives with respect to the parameters, i.e. the gradient ∇(𝑤,𝑏)𝐿(𝑤, 𝑏). This
had led to section 2.3 were we explained the algorithm of back propagation to compute such
derivatives and the discussions of their potential problems, namely the vanishing/exploding
gradients. Now everything is set up and it is finally time to get into the process of actually
making the parameters of the artificial neural network approximate the solution (optimizing
the loss function), which in deep-learning jargon is known as the training process.

The following discussion will be devoted to explaining the design of some of the most
important gradient based optimizers used in deep-learning, and the ones we will be using
in this work. These optimizers are the so called methods of steepest descent or methods of
gradient descent, which are a family of methods used to solve general non-linear (convex or
non-convex) unrestricted optimization problems. Intuitively, the idea behind these methods
relies on thinking of the loss function as a hyper-surface 𝐿(𝑤, 𝑏) ∶ ℝ𝑛 ×ℝ𝑚 → ℝ, where 𝑤 ∈ ℝ𝑛

and 𝑏 ∈ ℝ𝑚. Then, starting at some (𝑤0, 𝑏0), initial point, the method goes on to calculate
new points which should reduce the loss function value by moving within a certain rate, 𝜂,
named the learning rate, in the direction of ∇(𝑤,𝑏)𝐿(𝑤, 𝑏). The typical analogy for this idea is
thinking of it as having a ball (initial point), and letting it roll downhill along the slope (the
direction of the gradient) until it reaches the bottom.

25

As simple as these method look conceptuality, in practice it non that easy to reach the
minimum. If we were to apply one of this methods to a linear or quadratic bowl loss function
((𝑎𝑥 + 𝑏)2, 𝑎 > 0), we are guaranteed that the gradient at any point would always point in
the direction of the only existing minimum, thus given adequate learning rates, these methods
would have perfect convergence. However, with almost every other loss function, the direction
of steepest descent (gradient) does not necessarily point to the global minimum. Moreover, if
the problem is non-convex, as all the ones we will be considering in this work, we are almost
guaranteed that there are many local minimums, and the direction of steepest descent may
lead the method to a local minimum and not the global one.

Another tricky issue for these methods is the presence of saddle or “saddle-like” regions of
the loss function. These are regions for which we have very small derivatives of the gradient
in certain directions, and very large in others. Visualizing these regions in the loss function,
they resemble to, and thus are often called, “valleys”. What happens in these areas is that, in
the ball analogy, the ball start oscillating up and down along the valley’s walls (directions of
large value derivatives) but is unable to make any progress across the valley (directions of low
value derivatives). When using these steepest descent, this “saddle-like” region effect, as well
as the effect of not being unable to escape a local minimum, is often reflected in the method
when the point and loss function start oscillating between the same two very similar values.

These are the main three problems with steepest descent: the gradient not pointing in the
direction of the global minimum; getting trapped in a local minimum; and stagnating when
passing through “saddle-like” regions of the loss function. In order to avoid or mitigate these
issues as much as possible, there are also three measures that can be applied: choosing a good
initialization (starting point); applying some regularization technique, which somewhat has
the effect of smoothing the loss function; and adjusting “properly” the learning rate at each
step. In the next sections we will be looking at the initialization (which is tightly related to
the selection of activation function), and the regularization techniques. For the rest of this
section we will see different designs of steepest descent methods which adjust the learning
rates for every step based on different ideas. We will divide these designs into first order if
they require only the gradient, and second order if they also require estimates of the curvature.

For an extensive qualitative survey on gradient based methods [28] has a good coverage;
in particular, in Table I and Table II there is a very complete comparison among first and
higher order methods respectively. Other non gradient based methods are quite rare, for
instance, in [29] a bio-inspired approach is used: a population of artificial neural networks
is generated using different weights and architectures (hyper-parameters); the networks get
tested and ranked by complexity and performance; then, a new population is generated based
on the best performing networks with small alterations; and the process gets repeated.

2.4.1 First Order Methods
As we have already explained, these methods only depend on the gradient. The idea behind

being so many variations is to have the method correct its learning rate by keeping some kind
of memory of the gradients at previous points (steps) to improve convergence [30]. Next, we
will discuss this methods grouping them in the following categories, from least to most refined:

– Vanilla (No Learning Rate Correction)
– Momentum Learning Rate Correction
– Component Learning Rate Adaptation
– Momentum + Component Learning Rate Adaptation

26

Vanilla (No Learning Rate Correction)

This group is the simplest and easiest to implement. It is actually the plain idea we have
just explained, thus at every new step 𝑡 + 1 we update the previous point with the formula:

(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) − 𝜂∇(𝑤,𝑏)𝐿(𝑤𝑘, 𝑏𝑘). (2.27)

Generally, if the batches of input data (here the random collocation of points in Ω) is large,
computing ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) in every step can be computationally very expensive. Recall that
the factors in the loss function are of the form 1/𝑁 ∑ 𝑁

𝑖=1(...), which means that if 𝑁 is
large, in every step we have to compute a large sum of sub-gradients, 1/𝑁 ∑ 𝑁

𝑖=1∇(𝑤,𝑏)(...),
which can be costly. The fix is to take what is known as an stochastic or on-line approach,
this is, to divide the input data into partitions, {𝑥𝑖}𝑖∈𝑀1

, ..., {𝑥𝑖}𝑖∈𝑀𝑘
, with 𝑀1 + ...𝑀𝑘, and

compute the gradient in every step just for the data of one of those partitions. If the input
data is well randomized into the partitions, and the partitions are rotated consistently at
every step, the differences in the gradient from not using the whole batch should be evened
out throughout the many steps. When partitions of more than one data input are used the
method is called mini-batch gradient descent, when the partitions contain a single data
input the method is called stochastic gradient descent (SGD), and when the full batch is
used the method is simply called gradient descent (GD). Often times, no distinction is made
between mini-batch and stochastic, and both get referred to as stochastic gradient descent.

This stochastic approach can be applied to all the variations that we will be seeing next. In
this work, however, we will not be sampling very large input data batches and the artificial
neural networks will not be very large either, so we will always take full-batch approaches.

In terms of usage one would think that these version being the least refined would also be the
least used, but it is far from the truth. It is true that the learning rate, 𝜂, has to be manually
adapted in every step, which requires much try-and-error experimentation. This is done by
setting a learning schedule, which is the set of instructions on how to vary the learning rate
(for example, one could be as follows: for the first 1000 steps use 𝜂 = 0.001, then every 1000
steps reduce 𝜂/10). Nonetheless, in recent times, and specially for artificial neural networks
with large amounts of parameters (something that happens in very deep percepton neural
networks, or in convolutional networks by design), there have been many papers that claim
plain SGD (or at most the momentum we will be seeing next) can outclass any other variation
that we will see here. The strategy in these papers is to use an unusually large learning rate,
which means moving too far in the direction of the gradient and straying from the optimal
path of minimal loss value, in order to create an annealing effect [31]. This annealing effect
is a direct parallel from its homonym in metallurgy. Using these very “long jumps” allows
for greater mobility for the point we are at in the method, giving it the capacity to get over
“walls” and explore the loss hyper-surface to get into a better region, before switching to the
regular small learning rate strategy used to achieve convergence. This works the same way
as heating a metal to allow for greater mobility of its molecules, and then letting them settle
by cooling the metal. Adding noise to the gradient has been for a long time an extremely
successful regularization technique in deep-learning problems following the same principle of
annealing of adding some exploration component. However, this concept takes it further,
the objective being achieving superconvergence, which happens when entering in a very
good region where the method suffers a drastic drop in its loss value, and convergence can be
obtained many orders of magnitude faster than with a standard approach. In [32] successive
cycles of short and long learning rates are used to obtain superconvergence, and [33] develop
an adapted version called SGD with Entropy following these same ideas.

27

As we will see the idea behind the next variations is to speed up the method by
auto-adjusting the initial learning rate at every step. This implies less tweaking of the learning
rates as the method will reduce it natively when the loss is worsening to stay in the right
track, and increase it when the loss is improving to go faster. This also make these variations
incompatible wil superconvergence, as in the first step where the loss worsens, the method
will immediately damp the learning rate.

Momentum Learning Rate Correction

Adding momentum to correct the learning rate in GD is very old and one of the first
improvements on GD, the idea being based on keeping the inertia. In the ball analogy, if a
ball is located at certain point but was carrying some velocity in a some direction, at that
point it would not stop cold and resume its movement following the steepest descent. The ball
will combine its previous inertia with the movement defined by the slope it is in. This is the
idea behind classical momentum (CM), where the effective change 𝑣𝑡+1 at the step 𝑡 + 1
is not only given by the gradient at that point, but also by a certain proportion 𝜇 by the
effective change of the previous step 𝑣𝑡:

𝑣𝑡+1 ⟶ 𝜇𝑣𝑡 − 𝜂∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡),
(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) + 𝑣𝑡+1.

(2.28)

Intuitively, if we were are moving in a very consistent direction through the loss hyper-
surface, the inertial term from the previous step 𝑣𝑡 adds to the gradient making larger jumps
in that direction. Conversely if the direction suddenly changes, 𝑣𝑡 dampens the jump as we
might have overstepped into a bad area by taking to large of a jump in the previous step. A
second variation of this idea is the Nesterov’s accelerated gradient (NAG), which tend
to yield better results than CM. The difference is that in NAV we look at the gradient not at
the point we are in, but in a point projected ahead as if we had done a second jump in the
previous step:

𝑣𝑡+1 ⟶ 𝜇𝑣𝑡 − 𝜂∇(𝑤,𝑏)𝐿((𝑤𝑡, 𝑏𝑡) + 𝜇𝑣𝑡),
(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) + 𝑣𝑡+1.

(2.29)

This subsection is based on the article [34].

Component Learning Rate Adaptation

While momentum uses the information of the previous gradient to speed up or slow down
the method when there is consistent or changing behaviour, it does little to move forward in
saddle regions. Recall that this kind of regions occur when some derivatives are several order
of magnitude larger than others, i.e. some components of the gradient are much larger than
others, which can be caused by vanishing or exploding gradient problems. In these cases we
cannot increase the global learning rate to take longer jumps in the flatter directions because
this would also make the jumps longer in the steeper directions, which require shorter steps
to not stray from the convergence path. Also, momentum cannot help either, as it only adds
up on the previous gradient, which is still small for the flatter directions. The solution is to
rescale the learning rate for each component in the gradient individually based on previous
gradients. So, if there have been directions which have had consistently small derivatives, we
want to take larger jumps just in those directions, and conversely for directions which have
had consistently large derivatives, we want to make smaller jumps to not to overstep out of
the convergence path.

28

The first method that we are going to review is the Adaptative gradient Algorithm
(AdaGrad). In its original paper [35], the method is presented as follows:

𝐺𝑡 = ∑𝑡
𝜏=1(∇(𝑤,𝑏)𝐿(𝑤𝜏 , 𝑏𝜏)) ⋅ ((∇𝐿(𝑤,𝑏)(𝑤𝜏 , 𝑏𝜏))⊺ ∈ 𝑅𝑛+𝑚×𝑛+𝑚,

(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) − 𝜂 (𝑑𝑖𝑎𝑔(𝐺𝑡) + 𝜀𝐼𝑑)−1/2 ∇(𝑤,𝑏)𝐿(𝑤𝜏 , 𝑏𝜏).
(2.30)

where 𝐺𝑡 is the cumulative matrix of products of the past gradients, 𝑑𝑖𝑎𝑔(𝐺𝑡) is the diagonal
of such matrix, 𝐼𝑑 corresponds to the identity matrix, and 𝜀 is a small constant to avoid diving
by zero. As the matrix 𝐺𝑡 can be computed accumulatively and only its diagonal elements
are used, we suggest rewriting the method in the following vectorized way:

𝒢𝑡 ⟶ 𝒢𝑡−1 + ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ∈ 𝑅𝑛+𝑚,
(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) − 𝜂 (𝒢𝑡 + 𝜀 1)−1/2 ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝜏 , 𝑏𝜏).

(2.31)

where products, inverses and root are all element-wise, and 1 es the vector consisting of all
ones. Observe that if some direction of the gradient has consistently small derivatives, the
cumulative value of 𝒢𝑡 will be small, and thus dividing by the square root of that value
will increase the learning rate of direction (the inverse happens for components with large
derivatives). This is sort of approximating the curvature in the principal directions by the
values of its past gradients. However, this cumulative nature is this method’s main problem,
as we are constantly accumulating positive values, 𝒢𝑡 becomes increasingly large at each step,
and since we are constantly dividing the learning rate by it, the methods halts the progress
and is unable to scape local minima as time passes.

An improvement of AdaGrad cames with AdaDelta, [36], which mitigates the effect of the
strong decay in learning rates of AdaGrad. Instead of using the accumulated information of
all the squared previous gradients, it uses an exponential decay moving average of the square
values of the gradient. This is instead of 𝒢𝑡, it uses 𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡))2]:

𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡))2] = 𝜌 𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡−1, 𝑏𝑡−1))2]
+(1 − 𝜌) ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡),

(2.32)

where 𝜌 is the decay rate of the moving average. On top of this change, the method also adds
a second idea. Since dividing by the square root of (2.32) is sort of a very brute approximation
of dividing by the local curvature, in an attempt to resemble a second order Newton method,
a term approximating the slope is multiplied. This term is a moving average of the squares
of previous increments, 𝐸[(Δ(𝑤𝑡, 𝑏𝑡))2] which uses the same decay rate as before:

𝐸[(Δ(𝑤𝑡, 𝑏𝑡))2] = 𝜌 𝐸[(Δ(𝑤𝑡−1, 𝑏𝑡−1))2]
+(1 − 𝜌) Δ(𝑤𝑡, 𝑏𝑡) ⊙ Δ(𝑤𝑡, 𝑏𝑡),

(2.33)

then the final algorithm at each step 𝑡 works as:

Compute (2.32),

Δ(𝑤𝑡, 𝑏𝑡) ⟶ √𝐸[(Δ(𝑤𝑡, 𝑏𝑡))2] + 𝜀 1
√𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡))2] + 𝜀 1

,

Compute (2.33),
(𝑤𝑡, 𝑏𝑡) ⟶ (𝑤𝑡−1, 𝑏𝑡−1) + Δ(𝑤𝑡, 𝑏𝑡).

(2.34)

29

As a general note on the equations posed for this method, all the operations in (2.32-2.34) have
been element wise. Finally, observe that the increment Δ(𝑤𝑡, 𝑏𝑡) in (2.34) has in its numerator
a term that approximates the slope and in its denominator a term that approximates the
curvature, which tries to replicate a structure 𝐻(𝑓)−1 ⋅ ∇𝑓 of a Newton method.

A parallel developed, very popular and much simpler method than AdaDelta to solve the
fast damping of AdaGrad is RMSProp. This is an unpublished method proposed in a
Coursera course by Geoffrey Hinton, in lecture 6.5. [37]. This method was thought as an
adaptation of the RProp which is a method originally designed for full-batches, to be able to
account for mini-batches. This RProp method does not take into account the magnitude
of the derivatives in the gradient, and instead, only takes into consideration the sign of
the derivatives. Each direction learning rate is increased slightly every time the sign of its
corresponding derivative it preserved, and drastically decreased whenever the sign of the
derivative changes, everything within a certain threshold. When working with mini-batches
this method can have many problems, as some sub-gradient may change in sign for some
derivative due to the characteristics of that specific mini-batch, and not because the method
has entered into region with a different behaviour. For instance, if the last 9 out of 10
derivatives in a direction have been positive and the only one has been negative, we do not
want to drastically reduce its learning rate. To fix this resilience RMSProp uses the following
moving average:

𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡))2] = 0.9 𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡−1, 𝑏𝑡−1))2]
+0.1 ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡),

(𝑤𝑡+1, 𝑏𝑡+1) ⟶ (𝑤𝑡, 𝑏𝑡) − 𝜂 (𝐸[(∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡))2] + 𝜖 1)−1/2 ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝜏 , 𝑏𝜏),
(2.35)

where again all the operations are element-wise. Note that the directional adaptation of the
gradient at the current step 𝑡 is introduced with a factor of 0.1. This gives robustness to the
method as it requires persistence in the change of a sign through several steps to change the
behaviour of the method. RMSProp also works better than RProp with full-batch, due to
this robustness.

Momentum + Component Learning Rate Adaptation

This last type of methods combine the ideas of momentum and component learning rate
adaptation. Recall that momentum introduced information about the slope by preserving
some of the gradient of the last step, and component adaptation rescaled the components of
the gradient in each direction dividing by the square root of the square of the gradient, which
is some kind of approximation of the curvature in the principal directions corresponding to
the elements in the diagonal of the Hessian, and tell us about the variation of the slope and
the directions that we can go faster. Combining slope and curvature to get some sort of
first order Newton method has already been done AdaDelta, however, as the information of
the slope came from previous increments (already corrected gradients) and not strictly from
previous gradients (the definition of momentum), we refrained from including it in this section.

Mainly the first method that embraced this approach is Adam, [38] (2014), not taking
into account AdaDelta, (2012). Adam at the present time (2020) is one of the best result
yielding first order methods, and it has become the almost de facto optimizer in deep-learning
applications. It combines the versatility of pure classical momentum (to scape local minima)
and component learning rate adaptation (to escape saddle-points), and it is quite fast.

30

The method design is as follows:

𝑚𝑡 ⟶ 1
1 − (𝛽1)𝑡 (𝛽1 𝑚𝑡−1 + (1 − 𝛽1) ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡)),

𝑣𝑡 ⟶ 1
1 − (𝛽2)𝑡 (𝛽2 𝑣𝑡−1 + (1 − 𝛽2) ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ⊙ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡)),

(𝑤𝑡, 𝑏𝑡) ⟶ (𝑤𝑡−1, 𝑏𝑡−1) − 𝜂 𝑚𝑡√𝑣𝑡 + 𝜀,

(2.36)

where all operations (sums, products, roots and inverses) are element wise, 𝑚𝑡 is called
the first order momentum in 𝑡 and 𝛽1 is its decay rate, and 𝑣𝑡 is called the second order
momentum in 𝑡 and 𝛽2 is its decay rate.

Observe that inside the big parenthesis of 𝑚𝑡, we have a decaying average of the gradient,
which resembles the classical momentum as defined in (2.28), and the big parenthesis of 𝑣𝑡
is exactly the same as the decaying average principal direction curvature approximation in
the AdaDelta (2.32). Each of the momentums is given an exponential rescale factor in the
form of the term 1/(1 − (𝛽)𝑡), which tends to 1 as 𝑡 increases. Hence, since 0 < 𝛽2 < 𝛽1 < 1,
in the beginning 𝑚𝑡 dominates over 𝑣𝑡 giving some sort of annealing effect by prioritizing
momentum over curvature in the first steps. Finally the steps are updated as in AdaDelta
following a Newton-like approach.

Other notable variations of Adam are: AMSGrad [39], which tries to fix the convergence
problem of Adam in some instances (however, it is argued that the very specific instances
that AMSGrad fixed do not really occur real problems, thus it is sometimes regarded as more
complex and noisier version of Adam); Nadam [40] which uses Nesterov’s momentum instead
of classical momentum (from which the N in its name comes from); and AdamW, which tries
to incorporate a Tikhonov regularization (which we will see in the Regularization section)
inside the optimizer, instead of adding it to the loss function. As an additional comment,
very recently a new type of more sophisticated first order methods which do not even require
specifying a learning rate have appeared yielding apparently better results than Adam and
its variations, one such method is YellowFin [41].

2.4.2 Second Order Methods
The previous first order methods yield good results in relatively small artificial neural

networks (a few layers deep). They are not very computationally intensive and have linear
convergence (which is often times enough), all at the expense of fixing a hyper-parameter,
namely the learning rate. In particular, AdaDelta and Adam have proven to work really well
against vanishing/exploding gradient and sparse gradient problems. Sparse gradients are
a “kind” of vanishing gradients which happens when the dataset is sparse, i.e. there are rare
features that occur in very few data points. Hence, if we recall that given the loss function
form, the gradient is actually a sum of sub-gradients each associated to an individual data
point, 1/𝑁 ∑ 𝑁

𝑖=1∇(𝑤,𝑏)(...), then the contributions to the gradient to fit these rare features
are small in comparison to more common features, as there are fewer points and sub-gradients
that can add to the sum. In that case it is said that there is a weak signal for that feature,
and in practice this means that the parameters associated with that feature have smaller
derivatives, creating saddle regions as the vanishing gradient problem does.

31

Nevertheless, as well as these first order methods work in many small problems with a
somewhat homogeneous dataset, there are two related motives occurring in more complex
problems that may require the consideration of higher order methods:

– The first, motive is computational cost: As we consider larger artificial neural networks,
the number of parameters scales up, and the smaller number of steps required with the
quadratic convergence (or almost quadratic) of second order methods start to become a
computational advantage to the simpler but larger amount of steps required with linear
convergence of first order methods.

– The second motive, very related to the first, is the high slope variation: As the number
of parameters increase or the input dataset becomes more noisy, the loss function
hyper-surface starts becoming more “bumpy”, meaning that in using first order methods
the strides in the direction of the gradient have to be shorter to account for its variation,
i.e. the learning rate has to be reduced. Recall that AdaDelta and Adam corrected the
learning rate based on some sort of approximation of diagonal of the Hessian. Therefore,
when the Hessian increases (which happen when the number of parameters increase),
the effect of elements outside of diagonal aggregate to become more relevant, and the
methods lose part of their effectiveness.

Out of all the second order methods, the classic optimization Newton method is the
principal one. This method relies on the Taylor expansion up to second order to approximate
the function to be optimized by a quadratic function, in a local neighbourhood or region of
confidence of a point (𝑤0, 𝑏0). In our case, the loss function can be approximated by:

𝐿((𝑤0, 𝑏0) + 𝑝) ≈ 𝐿(𝑤0, 𝑏0) + ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0)⊺ 𝑝 + 1
2 𝑝⊺ 𝐻(𝑤0, 𝑏0) 𝑝, (2.37)

where 𝑝 is an increment within the region of confidence and 𝐻(𝑤0, 𝑏0) is the Hessian matrix
in (𝑤0, 𝑏0). Then, as (2.37) is a quadratic function of 𝑝, it should have a unique minimum 𝑝0,
thus deriving the expression (2.37) with respect to 𝑝 ∈ ℝ𝑛×𝑚, the minimum 𝑝0 must satisfy:

𝜕
𝜕𝑝(𝐿((𝑤0, 𝑏0) + 𝑝)) ≈ 𝜕

𝜕𝑝(𝐿(𝑤0, 𝑏0) + ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0)⊺ 𝑝 + 1
2 𝑝⊺ 𝐻(𝑤0, 𝑏0) 𝑝),

𝜕
𝜕𝑝(𝐿((𝑤0, 𝑏0) + 𝑝)) ≈ ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0) + 𝐻(𝑤0, 𝑏0) 𝑝,

0 = 𝜕
𝜕𝑝(𝐿((𝑤0, 𝑏0) + 𝑝0)) ≈ ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0) + 𝐻(𝑤0, 𝑏0) 𝑝0,

𝑝0 ≈ −𝐻−1(𝑤0, 𝑏0) ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0).

(2.38)

Therefore the optimization Newton method, being at (𝑤𝑡, 𝑏𝑡) in step 𝑡, computes a new
step point by approximating the original function in a confidence region around (𝑤𝑡, 𝑏𝑡) by
a quadratic function using Taylor’s theorem, then finds the increment 𝑝𝑡 that minimizes
that quadratic approximation of the original function, and moves using that increment. In
summary, the optimization Newton method update rule is:

𝑝𝑘 → −𝐻−1(𝑤𝑡, 𝑏𝑡) ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0),
(𝑤𝑡+1, 𝑏𝑡+1) → (𝑤𝑘, 𝑏𝑡) + 𝑝𝑡.

(2.39)

The increment 𝑝𝑡 in known as search direction these types of methods.

32

Note that no hyper-parameters are required, and second order convergence is guaranteed
by Taylor’s theorem. As a major drawback, the method involves computing the Hessian
matrix and inverting it, which is an extremely impractical and computationally expensive
task, even if the number of parameters is just moderately large. Thus, there are a series of
methods that modify this optimization Newton method to use approximations instead of the
whole inverse of the Hessian, but preserve many of the good properties of the original. As a
trade-off for their decrease in computational complexity, these methods loose their quadratic
convergence, but they still get a much better than linear convergence, usually referred to as
super-linear convergence, which outclass any first order method’s convergence.

Quasi-Newton Method

In the Quasi-Newton family each step update uses the same idea as in the Newton method,
with the a small variation. Instead of computing and using the Hessian matrix 𝐻(𝑤𝑡, 𝑏𝑡), we
use an approximation matrix 𝐵𝑡 which we have to update in every step. This means that, in
essence, all the reasoning and derivation for the update rule are completely analogous to that
of (2.37-2.38) with the only difference being writing 𝐵𝑡 instead of 𝐻(𝑤𝑡, 𝑏𝑡). The final update
rule will in fact have the same blueprint as the Newton’s,

𝑝𝑘 → −𝐵−1
𝑡 ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0),

(𝑤𝑡+1, 𝑏𝑡+1) → (𝑤𝑘, 𝑏𝑡) + 𝑝𝑡,
(2.40)

with a few additions (two in particular). The first is that, in every step 𝐻(𝑤𝑡, 𝑏𝑡) is being
replaced by 𝐵𝑡, which is a matrix that changes with the curvature, but does not necessarily
have to be an exact approximation of the Hessian matrix (for instance, it could be a scaled
down version or be displaced). This means that we can trust the search direction 𝑝𝑡 for its
direction but not for its magnitude, thus, we will require a learning rate 𝛼𝑡 to scale 𝑝𝑡 at
every step. There are two ways to compute 𝛼𝑡 at each step, namely inexact lines search and
trust regions. Coincidently, the Quasi-Newton methods that we will be seeing next use inexact
lines search, and the truncated Newton methods of the next subsection use trust region. In
particular, the inexact lines search that we will use is the satisfaction of Wolfe conditions
which is given by the following set of inequalities:

𝐿((𝑤𝑡, 𝑏𝑡) + 𝛼𝑘𝑝𝑡) ≤ 𝐿(𝑤𝑡, 𝑏𝑡) + 𝑐1𝛼𝑡∇𝐿(𝑤𝑡, 𝑏𝑡)⊺𝑝𝑡,
∇𝐿((𝑤𝑡, 𝑏𝑡) + 𝛼𝑘𝑝𝑡)⊺𝑝𝑘 ≥ 𝑐2∇𝐿((𝑤𝑡, 𝑏𝑡))⊺𝑝𝑡,

(2.41)

with 0 < 𝑐1 < 𝑐2 < 1. Using Wolfe conditions, 𝛼𝑘 is progressively decreased until the
inequalities (2.41) are satisfied. This guarantees the learning rate holds sufficient decease in
curvature conditions.

The second issue is how to compute the matrices 𝐵𝑡 at every step. In principle, two
general requirements are demanded, that help calculate the matrix: it has to be symmetric
like the Hessian and it must satisfy the secant equation (or Quasi-Newton equation). This
secant equation can be obtained by differentiating in terms of the increment variable p for
the quadratic approximation (2.37 with 𝐵𝑡) for a given step 𝑡:

𝜕
𝜕𝑝(𝐿((𝑤𝑡, 𝑏𝑡) + 𝑝)) ≈ 𝜕

𝜕𝑝(𝐿(𝑤𝑡, 𝑏𝑡) + ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡)⊺ 𝑝 + 1
2 𝑝⊺ 𝐵𝑡 𝑝),

𝜕𝐿((𝑤𝑡, 𝑏𝑡) + 𝑝)
𝜕((𝑤𝑡, 𝑏𝑡) + 𝑝) ⋅ 𝜕((𝑤𝑡, 𝑏𝑡) + 𝑝)

𝜕𝑝 ≈ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) + 𝐵𝑡 𝑝,
(2.42)

33

∇(𝑤,𝑏)𝐿((𝑤𝑡, 𝑏𝑡) + 𝑝) ⋅ (0 + 𝐼𝑑) ≈ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) + 𝐵𝑡 𝑝,
then, if we take the value of 𝑝 for the actual increment 𝑠𝑘 = 𝛼𝑘𝑝𝑘, we expect 𝐵𝑡 ≈ 𝐵𝑡+1,
which yields:

∇(𝑤,𝑏)𝐿((𝑤𝑡, 𝑏𝑡) + 𝑠𝑘) ≈ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) + 𝐵𝑡+1 𝑠𝑘,
∇(𝑤,𝑏)𝐿(𝑤𝑡+1, 𝑏𝑡+1) − ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡) ≈ 𝐵𝑡+1 𝑠𝑘,

𝑦𝑘 ≈ 𝐵𝑡+1 𝑠𝑘,
(2.43)

where 𝑦𝑘 = ∇(𝑤,𝑏)𝐿(𝑤𝑡+1, 𝑏𝑡+1) − ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡). The last expression of (2.43) is what is
known as the secant equation.

Therefore the general update rule of a Quasi-Newton method would be:

1. Obtain the search direction solving 𝑝𝑘 = −𝐵−1
𝑡 ∇(𝑤,𝑏)𝐿(𝑤0, 𝑏0).

2. Use Wolfe conditions (or any other approach) to find 𝛼𝑘.

3. Compute the next gradient ∇(𝑤,𝑏)𝐿((𝑤𝑡, 𝑏𝑡) + 𝛼𝑘𝑝𝑘).
4. Compute the next matrix 𝐵𝑡+1 imposing symmetry and satisfying the secant equation.

Every Quasi-Newton method varies in their approaches to compute 𝛼𝑡, and speciality 𝐵𝑡,
as are many ways to construct symmetric matrices that satisfy the secant equation. Ideally,
we want to use a expression of 𝐵𝑡 which is easy to compute and easy to invert. The first of
these methods was the Davidon–Fletcher–Powell method (DFP), but in current times the
Broyden–Fletcher–Goldfarb–Shanno method (BFGS) and its Limited Memory version
(which require less storage memory) are the most widely used methods in this family.

The BFGS impose the extra condition that 𝐵𝑡 has to be positive defined, on top of the
symmetry and satisfaction of the secant equation, and use Wolfe conditions. The following
expression is the one that satisfies the three conditions:

𝐵𝑡+1 = 𝐵𝑡 − 𝐵𝑡𝑠𝑡𝑠⊺
𝑡 𝐵𝑡

𝑠⊺
𝑡 𝐵𝑡𝑠𝑡

+ 𝑦𝑡𝑦⊺
𝑡

𝑦⊺
𝑡 𝑠𝑡

, (2.44)

which allows for the Sherman–Morrison formula to invert the matrix recurrently:

𝐵−1
𝑡+1 = (𝐼𝑑 − 𝑠𝑡𝑦⊺

𝑡
𝑦⊺

𝑡 𝑠𝑡
) 𝐵−1

𝑡 (𝐼𝑑 − 𝑦𝑡𝑠⊺
𝑡

𝑦⊺
𝑡 𝑠𝑡

) + 𝑠𝑡𝑠⊺
𝑡

𝑦⊺
𝑡 𝑠𝑡

. (2.45)

Section based on [42, 43]. [44] has a really recommendable coverage on, line search conditions,
trust regions and Quasi-Newton methods, far beyond this work. Also, [45] proposes a
mini-batch adaptation of the L-BFGS method.

Truncated Newton Method

While Quasi-Newton methods such as BFGS have been adapted and used for large
deep-learning applications successfully, not many other types second order methods have
historically been used. In 2010 though, Martens [46] proposed an adaptation of a type of
methods called the truncated Newton methods or Hessian-Free methods, which has been
fairly replicated. The set-up for this method also revolves around trying to fixing the main
problem of the optimization Newton method. Hence it tries to find the search direction 𝑝𝑡 by
solving the system in (2.38) without having to invert the Hessian matrix.

34

Rearranging the last expression of (2.38), the system to find the search direction in step 𝑡,
can be written as:

𝐻(𝑤𝑡, 𝑏𝑡) 𝑝𝑡 ≈ ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡). (2.46)
Here, the point of this method is that we do not have to compute the Hessian or any

approximation matrix at all. Given any vector 𝑣, its product by the Hessian matrix can be
thought of a directional derivative of the gradient as a function. Thus, we can compute the
product 𝐻(𝑤𝑡, 𝑏𝑡) 𝑣 by evaluating an extra derivative:

𝐻(𝑤𝑡, 𝑏𝑡) 𝑣 = lim
𝜀→0

∇(𝑤,𝑏)𝐿((𝑤𝑡, 𝑏𝑡) + 𝜀𝑣) − ∇(𝑤,𝑏)𝐿(𝑤𝑡, 𝑏𝑡)
𝜀 , (2.47)

where the limit can actually be replaced by some finite difference taking a small 𝜀 or by any
other method. Then, we can use the Conjugate Gradient (CG) algorithm to solve the linear
system (2.46) combined with (2.47) to obtain the search direction 𝑝𝑡. In summary the steps
for step 𝑡 would be:

1. Randomly initialize a search direction 𝑝𝑡,0
2. Apply the CG algorithm to solve the linear system of (2.46). Since with regards

to the Hessian (which is the matrix of the linear system), the CG only requires the
products 𝑝⊺

𝑡,𝑖 𝐻(𝑤𝑡, 𝑏𝑡) 𝑝𝑡,𝑖, use the finite differences of the gradient from (2.47) to
compute this product without needing the Hessian.

3. Once the CG has converged (or is close enough) to the solution 𝑝𝑡, update the point
(𝑤𝑡+1, 𝑏𝑡+1) = (𝑤𝑡, 𝑏𝑡) + 𝑝𝑡 and repeat the process.

This last method is the only one in this section that we have not used, as the implementation
required much more technical work than the rest, since there is no package from which to
adapt it. However, we still wanted it to be explained as a promising second order alternative
to the LBFGS and BFGS.

2.5 Activation Functions and Parameter Initialization
In this section we will be introducing the most commonly used activation functions in

deep-learning. We have avoided this issue up to this point because the choice of activation
functions is crucial in mitigating the gradient problems and speeding up the optimization
process, which we have now covered. Also, in practice, all the activation functions of an
artificial neural network are chosen to be the same (except for the output layer), so from now
on we will assume this is the case.

Although any function can do theoretically as long as it is continuous and one time piecewise
differentiable, there are some other that can proof beneficial. For example, using bounded
or dissipative functions can add a component of localized training, making the output of the
activation function in certain neurons mostly dominant with respect to others for some range
of input values, thus the parameters of those neurons become descriptive of the characteristics
of that range of input values. As well as this, functions with derivatives close in magnitude
to their primitives, or derivatives that have a close to linear behaviour in some region are
desirable, as this helps mitigate the gradient problems and improve convergence through the
initialization of the parameters (we will look this last part in the next subsection).

The following table shows the main classic activation functions used in deep-learning
(holding many of the properties stated above), in order, from most used (top) to the least
used (bottom).

35

Name Value First Derivative

Sigmoid: 𝑎(𝑥) = 𝜎(𝑥) = 1
1 + 𝑒−𝑥 𝑎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

ReLU 𝑎(𝑥) = max(𝑥, 0) 𝑎′(𝑥) = Θ(𝑥)

Hyperbolic Tangent: 𝑎(𝑥) = sinh(𝑥)
cosh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 𝑎′(𝑥) = 1
cosh2(𝑥)

= 4
(𝑒𝑥 + 𝑒−𝑥)2

Exponential: 𝑎(𝑥) = 𝑒𝑥 𝑎′(𝑥) = 𝑒𝑥

Table 2.1: List of main activation functions.

About the nomenclature in table above: the sigmoid function is almost always represented as
𝜎(𝑥), and Θ(𝑥) stands for the Heaviside step function, which is 0 if the input is negative and 1
if the input is positive. Also due to the specifics of this work, where the loss function contains
derivatives of artificial neural network, we would like to impose the following reasonable
condition. If 𝑛 is the degree of the differential system linear operator (this is, the highest
order derivative of the operator), then at least the first 𝑛 + 1 derivatives of the activation
function should be different from zero. This condition makes sense as we would like to have
some contribution (or signal) to model the higher order derivatives and not to have have them
vanish. Therefore, from the previous list the ReLU (Rectified Lineal Unit) function is mostly
unsuitable for this work, since its second order derivative is strictly zero. We can see this
effect clearly from (2.16), where we expressed the Hessian tensor (second order derivatives
tensor) of our example network. If we are to consider the tensor arrangement of activation
functions with ReLUs, then 𝐷𝑛ℓ,𝑛ℓ(𝑎[ℓ]

𝑛ℓ
(𝑧[ℓ]

𝑛ℓ)) = 0𝑛ℓ,𝑛ℓ, is the tensor of zeros, and since
these terms appear multiplying in every factor of (2.16), all the second order derivatives of
the artificial network with respect to the inputs are zero.

Figure 2.7: Main activation functions and their first order derivatives.

36

Observe that all the classic activation functions are monotonically increasing and bounded:
the exponential and ReLU in the positive values, the sigmoid between 0 and 1 and the
hyperbolic tangent between -1 and 1. In general, using activation functions with these two
characteristics allows for some sort of localized pulse-like behaviour, which can be helpful in
modelling traits over very specific regions. For instance, lets assume we have two neurons
that use sigmoids, both share the same one input 𝑥, and having weights and biases 𝑤1 = −3,
𝑤2 = 2, 𝑏1 = −2, 𝑏2 = 10. Figure 2.8, shows the result of imputing 𝑥 to the neurons and
adding them up in the next layer. Note that the end result is some kind of continuous version
of a square pulse function, which in this case differentiates between the region (-2.5,7.5) and
the rest of the real line.

Figure 2.8: Combination of sigmoid functions.

Through time many secondary variations of these functions have appeared trying to fix some
of their inconveniences. Two popular ones that we will consider are the Swish function [47],
which also appear under the name of Sigmoid-Weighted Linear Unit [48], and the Softplus
function [49]. The first offers a smooth continuous variation of the ReLU function using the
sigmoid in its formula (thus has no vanishing higher order derivatives), and the second fixes
the acute growth of the exponential function.

Name Value First Derivative

Swish: 𝑎(𝑥) = 𝑥 ⋅ 𝜎(𝑥) 𝑎′(𝑥) = 𝜎(𝑥) + 𝑥 𝜎(𝑥) (1 − 𝜎(𝑥))

Softplus 𝑎(𝑥) = 𝑙𝑜𝑔 (𝑒𝑥 + 1) 𝑎′(𝑥) = 𝑒𝑥

𝑒𝑥 + 1

Table 2.2: List of secondary activation functions.

Figure 2.9: Secondary activation functions and their first order derivatives.

37

2.5.1 Parameter Initialization
An issue which depends directly on the activation function choice is the parameter

initialization, necessary as the starting point to perform the iterative optimization methods
we saw in the previous section. Actually, the optimization process is very sensitive to the
initial point, and slight variations can even lead to very different results.

Each activation function has its own set of different initialization arrangements (many
named after the authors that proposed them). However, all of them share the same the basic
principle, which is to set the parameters so that, at least for the first inputs, the activation
functions behave in their linear regime. For example, if we were to choose exponentials as
activation functions, 𝑎(𝑥) = 𝑒𝑥 ≈ 1 + 𝑥 + 𝑥2/2 + ..., we would like the parameters to be close
to 0, so the inputs to each function are also close to 0 (or small) for each activation function
behave like 1 + 𝑥 in the first steps. The reason behind using this idea (with a few refinements
that we will be covering in the next paragraph) is because, in practice, solving exactly the
non-convex optimization problem is virtually impossible, and many times even finding a decent
enough result becomes a matter of luck with trial and error (using different methods and
initialization points). By starting in a point at a region where activation functions behave
linearly, we guarantee that the slopes (the loss derivatives with respect to the parameters)
will not vanish or explode abruptly from the start and convergence will be smooth (at least
in the beginning).

There are two extra considerations that we have to add to the previous idea of starting in
the linear regime.

– First we have to break the symmetry of the parameters. This is means that we cannot
initialize all the parameters in a layer with the same values. Recall the derivatives
computed in section 2.3.1. Giving the same values to the parameters in a layer implies
that the derivatives with respect to the parameters for that layer are all the same, thus at
every step of the optimization the parameters also increment by the same amount, and
stay equal along the whole process. To avoid this symmetry which effectively impede
the ability of the parameters of a layer to adapt to different traits of the dataset, we
add some variance by drawing the parameters from a distribution, usually a uniform or
a normal. For instance, in the exponential case, instead of initializing the parameters
with 0 (which is actually the only value for which the parameters cannot be trained),
we would draw them from something like 𝒩(0, 0.1) or 𝒰(−0.1, 0.1).

– Second, we have to balance the variance of the weights in every neuron, so that the
neurons outputs all stay within a certain magnitude. The two conditions to impose
are for the linear combination of the neurons during evaluation to have similar variance
(2.48), and for each loss derivative with respect to the parameters of a neuron in during
back-propagation to also be similar in variance (2.49).

∀ℓ, ℓ′, 𝑛, 𝑛′, 𝑉 𝑎𝑟(𝑧[ℓ]
𝑛) = 𝑉 𝑎𝑟(𝑧[ℓ′]

𝑛), (2.48)

∀ℓ, ℓ′, 𝑛, 𝑛′, 𝑉 𝑎𝑟 (𝜕𝐿
𝜕𝑤[ℓ]

𝑛
) = 𝑉 𝑎𝑟 (𝜕𝐿

𝜕𝑤[ℓ′]
𝑛

) . (2.49)

Assuming independence with respect to inputs and zero mean (2.48-2.49) become:

∀ℓ, ℓ′, 𝑛, 𝑛′, 𝑛ℓ 𝑉 𝑎𝑟(𝑤[ℓ]
𝑛) = 𝑛ℓ′ 𝑉 𝑎𝑟(𝑤[ℓ′]

𝑛), (2.50)
∀ℓ, ℓ′, 𝑛, 𝑛′, 𝑛ℓ+1 𝑉 𝑎𝑟(𝑤[ℓ]

𝑛) = 𝑛ℓ′+1 𝑉 𝑎𝑟(𝑤[ℓ′]
𝑛). (2.51)

38

Averaging the previous conditions yield:

∀ℓ, 𝑛, 𝑉 𝑎𝑟(𝑤[ℓ]
𝑛) = 2

𝑛ℓ + 𝑛ℓ+1
, (2.52)

where 𝑛ℓ is the number of inputs of the neuron (called the fan-in), and 𝑛ℓ+1 is the
number of outputs to the neuron (called the fan-out), which in fully-connected artificial
neural networks is equivalent to the number of neurons in the current and the next layer
respectively. Note that in practice we are simply scaling by the size of the network.

Getting these three ideas together (linear regime, variation and fan-in/out scaling) lead
to the Xavier/Glorot [50] and He [51] initializations, which are the main ones we will be
using throughout this work. The former uses straight forward (2.52), and the latter makes
a correction for linear units (which are activation functions which drop or almost drop their
negative values, for example the ReLU) by dropping the fan-out term. These initializations
in their uniform and normal distribution versions therefore are:

Xavier Uniform: 𝒰 (−√ 6
𝑛ℓ + 𝑛ℓ+1

, √ 6
𝑛ℓ + 𝑛ℓ+1

) , (2.53)

Xavier Normal: 𝒩 (0, √ 2
𝑛ℓ + 𝑛ℓ+1

) , (2.54)

He Uniform: 𝒰 (−√ 6
𝑛ℓ

, √ 6
𝑛ℓ

) , (2.55)

He Normal: 𝒩 (0, √ 2
𝑛ℓ

) , (2.56)

For the sigmoid and hyperbolic tangent activation functions we will use the Xavier/Glorot
initialization, and for the ReLU, exponential, swish and softplus activation functions we will
be using the He initialization.

2.6 Regularization
At this point we have all the tools necessary to build an artificial neural network and to

apply an optimization method to train it. However, there is still the issue of selecting and
tuning the hyper-parameters of our inverse problem (recall that these are problems in which
we have sample data and we want to fit the parameters of certain model to fit the data),
which is hard. The issue here is that, given any model with certain hyper-parameters defining
it, in our case the number of layers and neurons, there are two opposite situations that may
arise. Either the number of hyper-parameters are too few and the model is too simple to fit
the data (underfitting), or the number of hyper-parameters are too many and the model has
extra degrees of freedom that do not necessarily fit the data (overfitting).

Underfitting is a problem which is relatively simple to spot, it is impossible to accurately
fit the model to the data for as much as we train the model, and it has its only solution in
increasing the number of hyper-parameters or the complexity of the model. For overfitting,
detecting and solving to the problem is not as easy. To mitigate overfitting, as well as
sometimes fixing the ill-posedness of a problem, regularization techniques are commonly used.

39

An overfitted model can be harder to train, this is because in the optimization process,
the gradient that updates the parameters contains contributions of the extra degrees of
freedom of the model. This can make the optimization process much noisier and susceptible
to over-represent outliers. Also, overfitted models tend to generalize data poorly, i.e. their
ability to predict on new data decreases, as any data not strictly in the training set would
not simply be the extrapolation of the relations among the training points, but would also
contain the contributions of the degrees of freedom. Regularization techniques help reduce
the number degrees of freedom of the models.

Figure 2.10: Example of overfitting of a model.

The previous Figure 2.10 show an example of an overfitted model. Both the blue line
and orange line are polynomial models that fit the training data (red points). The orange
model (which has more coefficients than the blue model) is overfitted though, since, most
prominently at the extreme points, it generates a bumpy behaviour completely unrelated to
that of the training data, related to the unnecessary extra parameters that we have added.

In practice finding the exact right number of hyper-parameters required in a model is an
almost impossible task by the sheer amount of possibilities. Besides a trial and error strategy
would impractical to compare models due to training being a computationally costly process
sensitive to the optimizer and initial conditions. Hence effectively, since there is no general
rule that can be followed, the hyper-parameters are often chosen within a reasonable rough
margin (mostly based on the results of the first few steps of the optimization), guaranteeing
some overfitting. Then regularization techniques are used to clamp down on the extra degrees
of freedom of the model. This is much more viable approach than training an almost
exponentially increasing amount of models with different numbers of hyper-parameters to
narrow down the right number which does not underfit or overfit the data.

Each of the following subsections will be dedicated to a different regularization
technique. We will improvise two categories to group these techniques based on the main
general principles behind them, namely noise-based regularizations and restriction-based
regularizations. In this work we will only be using restriction-based regularizations though.

2.6.1 Noise-based Regularizations
Behind the noise-based regularizations lies the idea that adding an stochastic component

throughout the training process to add some (small) variance into model. To much variance
can lead to a chaotic model (undesirable), but adding a small variance during training can
be very beneficial as it can somewhat be seen as employing the extra degrees of freedom to
account for the extra variability of the model.

40

Figure 2.11: Example of a model adding noisy input.

Intuitive the concept in its most trivial form can be seen in Figure 2.11, which is nothing
more than Figure 2.10 to which we have added some extra noisy points (the original points
plus some extra noise). It now becomes apparent that when fitting the model the end result
would be closer to the well-defined model (blue line) than to the overfitted model (orange
line), since now the model has to also account for the green dots for which the blue line has
a smaller error, specially at the extremes. Thus, if the variance is small the extra degrees of
freedom are spent to ensure that small variations in the data do not yield overwhelmingly
large changes in the model.

Now that we have explained how noise works, we will be looking at how to introduce it
into the model for the training phase. The most obvious way is to introduce variance into
the model is by using the direct approach, this is add noise to the input data, like for
example, 𝑥𝑖 + 𝒩(𝜇, 𝜎). A much smarter way to apply this concept is making use of some
invariant to generate new data, in what is called data augmentation. This happens a lot
in object recognition, whereby a car in a picture is car independently of the image being
rotated 90º or the car appearing in the center or a corner of the picture, thus we can rotate
or shift the pictures to generate new inputs.

There are much more sophisticated way to introduce variance into the model. One of these
is using noisy neurons, which implies that, only during the training phase, we add noise to
the output of each neuron, this is 𝑦[ℓ]

𝑛ℓ + 𝒩(𝜇, 𝜎). Another one is the dropout technique
[52], which only during the training phase uses a probability to suppress the output of a given
neuron. Hence, for example, for every neuron at each step we would draw a number from a
uniform distribution 𝑝 ∼ 𝒰(0, 1), and if 0.9 < 𝑝 < 1 we would set its output to 0 (this would
be a dropout of 10%). At last we recall that the annealing effect explained in section 2.4.1
for the vanilla stochastic gradient descent can also be considered some sort of noise-based
regularization technique.

One of the main issues with noise is that, we want to introduce some small variance
throughout the model during training, but we want this variance to be controlled and small
along the process, for the end result not to be a chaotic model fitting only noise. By this we
mean that, we do not want the effect of the variance introduced in the early layers (the ones
closest to the input) to explode in the following layers. We want the variance contribution
to remain small as it gets imputed into its next layers. The principal idea to assure this, as
well as providing other very good properties, are the normalization techniques which has
become a staple in many deep-learning, namely batch and layer [53] normalization. It consists
in normalizing either input batch or the outputs of the neurons of every layer, respectively.

41

In general for small models (specially in their number of layers) with well initialized
parameters do not require normalization because in those dimensions the noise will most
likely not scale up. One inconvenience of normalizations is that it correlates the gradients.
Recall from (2.4-2.5), that the loss function is a summation over each of the individual losses
at the points of the collocation, which makes the derivatives of the parameters with respect
to the loss a sum of uncorrelated derivatives. Normalization entangles these derivatives which
makes the update gradient for the optimizer correlated with respect to collocation points,
thus, the gradient computation at every step of the training becomes less sparse and more
computationally expensive. Additionally, normalization does not work well with dropout.

The reason we have disregarded noise-based in favour of restriction-based regularizations,
although both are mutually compatible, is because understanding the behaviour of noise in
a context where we are considering the derivatives of the artificial neural network is very
risky and becomes exponentially more complex with the order of the derivatives. Also, in
the case of normalization (which we have tested for this work), where we do not actually
introduce variance but limit its effects, the extra increase in computational cost, caused by
the correlation of the gradient, builds up on the already unavoidable computation of higher
order order derivatives of the neural network required in this work, making the training process
many times slower and impractical. On the contrary, the techniques that we have categorized
as restriction-based are mostly (soft or hard) binds on the parameters. Thus, their application
do not interfere with the computation of 𝐿1 and 𝐿2, and so, their effect is applies afterwards.

2.6.2 Restriction-based Regularizations
On the other side of the spectrum lie what we have named as restriction-based regularization

techniques. These are a set of soft or hard constrains on the parameters, added in the loss
function or are applied independently. Hence, any extra degrees of freedom in the model may
be invested in fulfilling these constrains.

The most common of these all are the weight penalties (actually it would be parameter
penalties). This regularization techniques rely on an extra term, which is added to the
loss function, and impose some preference in the parameters (this would correspond to the
placeholder term 𝑅 introduced in (2.1)). The most notable of these regularizations is the
popular Tikhonov regularization which implies adding the following term:

𝑅 = 𝜆 (||𝑤||22 + ||𝑏||22) ∶= 𝜆 ∑
ℓ,𝑛ℓ,𝑚ℓ−1

(||𝑤[ℓ] 𝑚ℓ−1𝑛ℓ ||22 + ||𝑏[ℓ]
𝑛ℓ||22) , (2.57)

where 𝜆 is the regularization scale factor. Technically, this is same Tikhonov regularization
as the one used in the least squares method for linear regression. One possible interpretation
for it is that we impose a “minimum energy” model, i.e. we are looking for a model where
the bias and specially the slopes are the smallest possible (yielding a “flatter model”), which
happens naturally as we minimize the term 𝑅 in the loss function. Another common reading
is that the additive contribution of ∇(𝑤,𝑏)𝑅 to the total update gradient introduces some sort
of dampening force which penalizes the optimization method when moving in directions where
the loss function, 𝐿(𝑤, 𝑏), is less smooth (which happen with larger values of 𝑤 and 𝑏). Going
back to Figure 2.10, the well-defined model would satisfy best the term (2.57).

42

Furthermore, the reason why these are called weight penalties and not parameter penalties,
is because in most cases this regularization only affects the slopes (weights), and ||𝑏||22, the bias
terms in (2.57), are dropped. For this work though, we are considering the bias term as we
believe it provides some sort of centring effect on the neuron outputs which (in the particular
problem instances chosen for this work) help in speeding up the training. However, in a general
context, this could prove tricky and is generally undesirable, specially in instances where the
solution to the initial/boundary problem we want to approximate have many different localized
features, i.e. the solution is very bumpy (which will not be case in this work). The reason
for this, is that biases, although not strictly necessary in an artificial neural network (an only
weights network is absolutely functional), when applied help to optimize the differentiation
among neurons in the same layer. For example, in a neuron using sigmoid activation functions,
given two inputs from two different regions and combining them with the weights, suppose
we obtain values 0.5 and 1.5. Then, computing the activation, giving the neuron 𝑏 = 0,
yields a difference in output between the two inputs of ∼ 0.19, and for 𝑏 = 2, it yields a
difference in output between the two inputs of ∼ 0.05. This is apparent from Figure 2.7 as we
see that the maximal slope is centred around zero. Hence, using a bias to shift the product
of inputs and weights in a neuron can lead to an increase or decrease of the difference in
outputs among values in different regions, an effect that applying a Tikhonov term which
pushes 𝑏 → 0 can even negate, as contrary to the multiplicative contribution of the weights
in the neuron, biases have an additive one requiring much larger values to have a significant
effect. A second interpretation can be drawn by explanation given in Figure 2.8, whereby we
argued that two increasing functions could be combined to form a sort of dissipative square
pulse function. By reducing the biases, we reduce the amplitude of the plateaus (width of
the windows) of these arrangements, which reduces some the specificity that can be achieved
for certain regions in the model. Finally, we can still argue that the loss of some localized
specialization in the neurons due to the term ||𝑏||22 should still not pose a problem in the
adaptability of the model, as it would simply make the contributions of a the neurons in a
layer for a region more overlapping, why should this be a concern and undesirable? Although
this last statement is true, a generally desired feature for a good artificial neural network is
for it to be a sparse artificial neural network, i.e. that for any input given to the network
almost all of the signal is contributed by just few neurons (or in other words any input only
require passing through few relevant neurons neurons, and not all of them have to be active
at the same time). Because of the objective of this work, which is proving it is possible to
approximate solutions of initial/boundary problems by artificial neural networks, we would
rather have the extra regularization effects of the term to obtaining a sparser network.

Another custom weight penalty that we have devised and seems to work rather well in this
work is the following:

𝑅 = 𝜆 (∣∣𝜕𝑢̂(𝑥)
𝜕𝑤 − 𝜕

𝜕𝑤
𝜕𝑢̂(𝑥)

𝜕𝑥 ∣∣
2

2
+ ∣∣𝜕𝑢̂(𝑥)

𝜕𝑏 − 𝜕
𝜕𝑏

𝜕𝑢̂(𝑥)
𝜕𝑥 ∣∣

2

2
)

∶= 𝜆 ∑
ℓ,𝑛ℓ,𝑚ℓ−1

⎛⎜
⎝

∣∣ 𝜕𝑢̂(𝑥)
𝜕𝑤[ℓ] 𝑚ℓ−1𝑛ℓ

− 𝜕
𝜕𝑤[ℓ] 𝑚ℓ−1𝑛ℓ

𝜕𝑢̂(𝑥)
𝜕𝑥 ∣∣

2

2

+ ∣∣𝜕𝑢̂(𝑥)
𝜕𝑏[ℓ]

𝑛ℓ

− 𝜕
𝜕𝑏[ℓ]

𝑛ℓ

𝜕𝑢̂(𝑥)
𝜕𝑥 ∣∣

2

2

⎞⎟
⎠

,
(2.58)

with its idea being, instead of using the extra degrees of freedom to obtain the solution with
minimal slopes, to find a solution whose derivatives with respect to the parameters and with
respect to parameters and inputs are similar in magnitude. This turns out to work quite well
as we will see in the next section, and in fact, it requires no extra computations as all the
derivatives involved in (2.58) are automatically calculated when computing ∇(𝑤,𝑏)𝐿1 (the loss
of the differential operator).

43

A topic that we have not covered yet is the setting of the regularization coefficient 𝜆. This
has to be done manually and it has to be revised and updated at every step of the training
process. We want the model to minimize its errors 𝐿1 + 𝐿2 (main objective) over fitting the
term 𝑅 (secondary objective). Typically, to stablish priority as with any other multi-objective
function we use the coefficient 𝜆, to limit the magnitude in which the term regularization 𝑅
contributes the total loss without becoming irrelevant. One possible reasonable demand would
be to ask for the regularization term magnitude to be between 10% and 20% of the main term
magnitude, of in other words 0.1 ⋅ (|𝐿1| + |𝐿2|) ⪅ |𝑅| ⪅ 0.2 ⋅ (|𝐿1| + |𝐿2|), and adjust 𝜆 every
time the criterion is not met. A much logical approach at first sight would seem to be, adapt
𝜆 as a function of the magnitudes of the terms, for example in the Tikhonov case, we could
always make 𝜆 = 0.1(|𝐿1| + |𝐿2|)/| (||𝑤||22 + ||𝑏||22) |, for 𝑅 to always be 10% of the other
two terms. However, bear in mind that every time we modify 𝜆 we are in fact changing the
total loss function 𝐿(𝑤, 𝑏), which is detrimental for the robustness and convergence of the
optimization process. Thus, it is best to use a threshold that allows the optimizer to train
on a fixed hyper-surface for many steps until a correction has to be done, than to have the
optimizer move on a hyper-surface that changes in every step, more so considering that all
but vanilla SGD use some kind of memory from previous gradients, which becomes irrelevant
if the hyper-surface has changed. Nevertheless, in section 3.3 in the next chapter, we will
propose an alternative approach to deal with this issue as part of a larger framework to deal
with multi-objective loss functions, which seems to perform much better than this classical
threshold strategy and achieve faster convergence.

An alternative to weight penalties are the weight constrains (or parameter constrains),
which are sets of inequalities that can be applied to the parameters, either by component
value like 𝑎 < |𝑤[ℓ] 𝑚ℓ−1𝑛ℓ | < 𝑏, or by node or layer norm 𝑎 < ||𝑤[ℓ]

𝑛ℓ||22 < 𝑏. The way to apply
these inequalities is usually by clipping, this is for example, if we update a parameter in a
given training step and surpass the upper bound 𝑏, then parameter is set to 𝑏. This effectively
stalls the training of parameters that have become to large (usually very dominant effects)
or prevents from vanishing parameters that have become too small (usually very negligible
effects), forcing a more even distribution in the relevance of the parameters. A more common
clipping practice is gradient clipping, which is applied on the gradients with respect to
the parameters used to update the parameters on an upper bound. Hence, this limits the
effect of any exploding derivatives case, as any extremely large derivative which would mean
an extremely large update, whereby using gradient clipping would be instantly reduced to a
maximum reasonable range. In the training of all the models in this work we have implemented
a component upper bound weights and bias clipping 103, which is reasonable enough for the
small scale of the models, and an upper bound gradient clipping by norm of all the parameters
in the layer of 1.

Finally, we propose and will implement the following idea for a regularization, which can be
drawn from the context of this work. Since want to train artificial neural networks to satisfy
differential equations, and thus approximate their unique exact solutions, any conservation
law satisfied by the exact solutions must also be approximately satisfied by the artificial neural
network. Hence we can add conservation laws to the loss function the same way we did
with the other weight penalty regularization, by simply replacing the conservation laws into
the placeholder 𝑅 (and optionally adding some regularization constant). Actually we could
argue that, since the network must also satisfy the conservation law as closely as possible as
the exact solution does, the term is not actually a regularization but a legitimate extra term
which speeds up training, and not an extra condition which help select some specific model
among the many that approximate the solution (essentially a regularization).

44

Not many differential equation have known conservation laws though, and thus, are hard to
come by. Besides, in cases where conservation laws are known, usually adding an external force
to the equation (something we will be doing in this work) invalidates such laws. Sometimes,
although it is rare, this can be accounted for by deriving again the conservation law with the
external force, and this can lead to the original law with some extra terms, like an the integral
over the domain of the external force if the domain is bounded.

2.6.3 Other Regularizations
In this subsection we will look at two very common practices that might as well fall in the

category of regularization. The first is known as pre-training, which consists of, instead of
initializing a new artificial neural network to approximate an initial/boundary problem, we
would use an already existing one as a starting point, with the hopes that this network is
already closer to the desired outcome. All the attempts in this work to use pre-training with
artificial neural network trained to only fit the initial/border data, to only fit the domain, or
to fit the differential equation dropping any of its terms, have either had the same performance
as using no pre-training, or worsened. The most plausible explanation might be that being the
loss function multi-objective, it is best to keep a balanced agreement between the two parts
from the start, rather than starting by fitting either 𝐿1 or 𝐿2, as the region in the parameter
space we can fall in during these one term optimizations might be useless or even detrimental
to the other term, thus making worse the combined optimization.

Second is early stop, which is not only always applicable, but useful in many ways. Data
used to fit artificial neural networks (or any model by that), is usually split into two groups,
the training data and the validation data. The training data is used to fit the model (it is
the data imputed in the loss function during the optimization), and validation data is used
as a control mechanism to prevent overfitting of the model. Therefore every certain number
of iterations in the process (for example 1000 iteration), we evaluate the loss with respect to
the validation set, and if this validation set loss has worsened with respect to its previous
evaluation, then we stop the training (this is early stop). The principle here is that the
training process is blind to the validation data (not used), however the model should still fit
this data as part of its capabilities to generalize beyond the training points. Similarly to the
workings of noise, if the validation loss gets worst, the behaviour beyond the training points
becomes undesirable, and thus, the model is overfitting. When this happens we can simply
stop the training completely, or it might be a sign that the learning rate of the optimizer is too
large and we have to reduce it, we can try introduce some extra regularization or adapt the
regularization coefficient 𝜆 to correct the model, or we can generate a new batch which is
also a regularization technique, and resume the training. Hence, early stopping is very useful
not only as a regularization technique, but it gives a cue to rectify the training of the model
when the process is stalled. Throughout this work we use validation intervals (we check the
validation loss) every 1000 steps of training.

As a final note, we want to address the reason why we do not check the validation loss at
every step. The first motive is because first order optimizers are not always smooth, i.e. the
loss function can be decreasing but in an oscillating (conjugate) manner (specially around
valleys), thus in a very short span early stop could confuse one of these fluctuations where
the is at local maximum with a stop criterion. Still, for second order methods which use
line-search that guarantees that there is always a decrease in loss (or they simply stop), the
reason is that it is computationally more expensive to evaluate an extra loss at each step, and
a few more steps from the early stop criterion will not substantially change the model.

45

Chapter 3
Case Studies and Simulations
In this chapter we will finally be training artificial neural networks to approximate the

solutions of some instances of initial/boundary, starting by the most simple case and building
up to more complex operators.

The layout of this chapter will be fairly consistent. Besides the first three sections,
dedicated to the general implementation related topics practical to this work: the coding
framework, function approximation capabilities of artificial neural networks, and adaptation
to multi-objective function training; each of the remaining sections follows the same structure
of posing a problem instance, training, and result analysis, with different operators. All of the
operators used in this chapter have already been detailed in Table 1.2, and as mentioned in
the introduction, we will be using only Cauchy initial/boundary conditions. With regards to
the external forces, we will be selecting them ad-hoc in every problem so that the solution is
a simple known polynomial. This way we can benchmark the artificial neural network results
against the exact solution with ease.

3.1 Coding Artificial Neural Networks
From an implementation standpoint, deep-learning model training require the computation

of many operations, specially linear combinations (tensor operations). Recall that an artificial
neural network neuron is composed of a linear combination of the outputs of the previous layer,
and an application of a non-linear activation functions. In terms of activation functions,
little can be done to improve performance, but the many sums and products of the linear
combinations are susceptible to high parallelization, as they are mostly independent among
neurons, low in computational cost and high in number. Therefore, in order to speed up
learning, instead of using CPUs, which at the time of this work have up to 8/16 cores, i.e.
processing units and maximum amount of operations that can be perform in parallel, we can
make use of the already existing GPU hardware. GPUs are optimized for image processing,
a process which rely heavily in matrix multiplication. Thus contrary to CPUs composed of
a few powerful cores, GPU are built using a large number of lower end cores, which at the
time of this work can be in average of 120 cores. By parallelizing the linear combination
operations to the many cores of a GPU, we can reduce the training time of an artificial neural
network manifold, especially in larger networks. Nowadays, a new piece of hardware specially
designed for deep-learning training has irrupted called TPUs (Tensor Processing Units). This
hardware contains an even larger number of cores and its architecture is ad-hoc designed to
parallelize tensor operations, improving on the capabilities of GPUs.

In order to manage and distribute the flow of operations to make the most use of GPUs
and TPUs, there are several developed software solutions. We will briefly give a basic
understanding on the most prominent high/medium/low level options.

46

On the lowest level, almost exclusively, lies the APIs named CUDA, developed by GPU
maker NVidia. This API allows for direct control and distribution of operations of the cores
in a GPU/TPU. However, from a practical perspective, unless we want to really customize
and micromanage the resources in our GPU/TPUs, this level of control is too much. Thus,
there are several middle-level libraries used in deep-learning that automatically handle these
tasks, the most popular ones being TensorFlow, developed by Google, and PyTorch, which
is open source (both running on CUDA). The way this libraries work is by implementing
their own class for multi-dimensional objects (like arrays), and every time tensor operations
are performed on these objects, they use CUDA under the hood to distribute its operations
into the GPUs and/or TPUs cores automatically. This simplifies the work by allows us to
concentrate on programming the mathematical framework for the models without having to
deal with the management of the parallelization tasks. Lastly, on top of these libraries, there
are also higher level ones, such as Keras library which hinges on TensorFlow. These build
on the multi-dimensional class to further implement classes for layers, models, optimizers,
training, and more, with many options, creating a structure that allows to build and train a
model in a very simple and encapsulated manner.

The code for this work has been written using Python’s version of TensorFlow 2.3. Some of
the principal classes of the Keras library that implement the layers, models and optimizers,
have been imported but only serve as a structure, since they were not applicable to the special
formulation of this work, they had to be completely overwritten. Moreover, the execution has
been done through Jupyter Notebooks in the Google Colab cloud environment which offers a
free Nvidia K80/T4 GPU. For the code, address to Appendix B.

3.2 Approximating a Function
Here we will be studying the approximating capabilities of an artificial neural network to

model a function. This can be considered, in the context of this work, as simplest case of
differential equation possible, the trivial case of the identity operator, whereby the artificial
neural network should be adjusted to satisfy:

ℒ[𝑢̂(𝑥)] = 𝑓(𝑥) ⇒ 𝑢̂(𝑥) = 𝑓(𝑥), (3.1)
which is equivalent to simply having the artificial neural network model the external force

function. Being this operator of order zero, initial/boundary conditions are irrelevant, and
thus, the loss function to optimize is:

𝐿(𝑤, 𝑏) = 𝐿1(𝑤, 𝑏) + 𝑅 = 1
𝑁Ω

∑
𝑖∈𝑁Ω

(𝑢̂(𝑥𝑖; 𝑤, 𝑏) − 𝑓(𝑥𝑖))
2

+ 𝑅. (3.2)

The (external force) function that we will be approximating in this section will be the
polynomial 𝑓(𝑥) = 𝑥(𝑥 − 1). Using this instance as an example, we will compare how well
different optimizers and activation functions work at the task of modelling functions, as well
as explain some of the behaviours of training. Here, the basic metric to assess performance is
the relation loss function - iterations, this represents how well the model fits the solution at
every step. As the loss function can have has very steep decreases in value, we will be using
logarithmic scales for better representations. Moreover, for every model we will be showing
a plot of the end result compared to the real solution, and in evaluation future evaluations,
where it actually applies, we will also be decomposing the total loss into its components 𝐿1
and 𝐿2.

47

At last, we will be using an artificial neural network with an input layer with 1 neuron,
two hidden layer with 3 and 4 neurons each, and an output layer with 1 neuron; which we
will call a [3,4,1]-ANN, to approximate (3.1). First, we will start by comparing, how different
activation functions work for the same network layout with different choices of activation
functions. For this purpose we will use an Adam optimizer fixed to 𝜂 = 0.01, 𝛽1 = 0.9,
and 𝛽1 = 0.999, and we will see the performance for the first 10000 iterations without any
adjustments. The only regularization applied will be a parameter upper bound of 10𝑒3 and a
gradient clipping by layer norm of 1, which as explained in the regularization section of this
work, will be the standard. Initialization from here on are done as detailed in 2.5.1, using the
normal distribution versions.

Figure 3.1: Comparison for different activation functions training performance for a
[3,4,1]-ANN, with Adam 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽1 = 0.999. Log10 scale.

From Figure 3.1 we can observe that by the end of the training, for many of this activation
functions, the loss value stagnates an oscillating behaviour starts to appear. This is in some
sources called saturation, meaning that the model is unable to learn more. Fundamentally this
is intrinsic to the model because we are approximating functions which may (and actually
have) a very different analytic structure from the parametric model we are using. Hence, the
same way it happens when we use a Taylor series expansion, where we have to truncate at
some order to obtain a finite model obtaining an error, here we will also have an intrinsic
minimal error to the model. However, being this a non-convex optimization problem, we do
not know if these saturations correspond to reaching the intrinsic error of the model (global
minimum), or if it corresponds to a local minimum or a valley. When this happens, if we
have implemented early stop in the training loop, the process will stop (which happened for
the exponential and softplus activations in Figure 3.1). Then, we can choose to strengthen
the regularization (not very effective), or to reduce the learning rate in the optimizer or use a
second order one in the hopes it is valley and we can scape it. If we use a second order method
(in this work L-BFGS), and the method stops, we can be almost completely sure that at loss
is in some minimum and we will not be able to scape it. This is because the stop criterion
with line search is not finding any ratio in the gradient direction that can actually decrease
the loss function (and line search looks for this ratio with exponential decay), thus almost
guaranteeing we are in a minimum. Here is where luck of non-convex optimization comes into
place, as a different initialization, or instance of the same initialization, or a simpler of more
complex network layout, or an apparently worst performing optimizer can lead to a different
optimization path through the loss hyper-surface, leading to a better fitting model.

48

In this benchmark we have used quite a minimal model to ensure it is not too overfitted
(regularization can only fix some overfitting) and the loss function is quite smooth, and we
have used a fairly robust optimizer. Therefore, we can assume with some confidence that the
saturation corresponds at least to some minimum close to the global one. This lead us to
extrapolate as a general criterion that, the activation functions that saturate the latest and
at lower values, i.e. sigmoid, hyperbolic tangent and swish, are preferable to the exponential
or softplus activation functions, and thus, we will prioritize the in the upcoming simulations
(which does not mean that for some particular instance an exponential or softplus activation
could outperform the others).

As a second part of this benchmarking, we will compare possibilities of the other crucial
choice in training, the optimizers. We will be using the same set-up as before, but this time
instead of fixing the optimizer, we will be fixing the activation function to be sigmoids.

Figure 3.2: Comparison for different first order optimizers training performance for a
[3,4,1]-ANN, with sigmoid activations. Lower image in log10 scale.

From these first 10000 iterations, all using a learning rate of 𝜂 = 0.01 (the rest of the hyper-
parameters in the optimizers can be drawn from the legend in Figure 3.2), we can see many
of the behaviours expected from section 2.4.1. Vanilla, classic and Nesterov momentum SGD,
all had a very similar performance reaching an almost-saturation around the same loss value,
which means that at that point we should have reduced manually the learning rate. Although,
it is hard to discern from Figure 3.2, Nesterov momentum had the fastest initial decrease until
reaching the state of almost-saturation, followed by classic momentum and vanilla SGD, as
expected.

49

As for the optimizers that adjust the learning component-wise, AdaGrad and AdaDelta
performed poorly. In the AdaGrad case, which completely stopped learning in iteration 6696,
it matches well with what we had explained in the previous chapter, the exponential
accumulation of previous gradients in 𝐺(𝑡) from (2.30) vanished the update gradient. For the
AdaDelta case, the method is steady but starts slow, which occurs because of the quotient
of (2.34). Since the moving average of gradient and the increment Δ(𝑤𝑡, 𝑏𝑡) are similar, the
quotient that yield the actual increment ∼ 1, making the starting convergence small.

On the other side of the component-wise adapting optimizers lay the RMSProp and Adam
methods. These will be our preferred methods, especially Adam, since they yield very good
results and have great autonomy (require little adjusting of the learning rate).

Concluding this discussion on optimizers, in the next Figure 3.4, we show the performance
of the BFGS and L-BFGS, which are second order optimizers we use in this work. As it
should be the behaviours are the exact same, since both, the limited memory version and the
original methods are the same method, the only change being that the original method keeps
the required matrices and vectors in memory, and the limited memory version stores only
vectors by keeping the already multiplied matrix vector products. The line search will have
10 attempts to reduce the coefficient 𝛼. Comparing the performance of these methods to the
first order ones, we see that the gains are much smaller (the figure does not use logarithmic
scale) and each step takes much more time. While this is true, it is also true that the method is
much more steady than the first order ones, and can further make gains in regions where first
order methods get stuck. Hence, we will use these methods, especially L-BFGS, to unblock
the training when first order methods stuck (mostly because of valleys).

Figure 3.3: Training performance of a [3,4,1]-ANN with sigmoid activations, to fit (3.1),
using BFGS and L-BFGS.

Finally we will show the end result of fitting the [3,4,1]-ANN model with sigmoids, using
the Adam optimizer in the same conditions as before, for executions for 15000 iterations, with
a training set of 10000 training points randomly collocated using a uniform distribution on
the [0,1] segment. In the next figure will represent the model against the exact solution and
the loss function for the iterations of training. We can see that model and the exact solution
overlap very well, with a final total loss achieved of 𝐿 = 𝐿𝑠𝑜𝑙 = 4.331806𝑒 − 07.

50

Figure 3.4: Training performance of a [3,4,1]-ANN with sigmoid activations, to fit (3.1),
using Adam with 𝜂 = 0.01.

3.3 Training with Multi-Objective Loss Functions
In this section we will be discussing some of the issues that arise when training

multi-objective functions, and we will propose a method to adjust the gradients that will
stabilize the training process.

One of the main inconveniences in this work is that our target loss function (2.1) is composed
of two very different components: 𝐿1 satisfying the differential operator and 𝐿2 satisfying the
initial/boundary conditions. However, in reality, we actually want to approximate the exact
unique analytic solution to the initial/boundary problem, 𝑢(𝑥). Therefore, this means that
ideally, we would want to be minimizing:

𝐿𝑠𝑜𝑙(𝑤, 𝑏) ≈ 1
𝑁Ω + 𝑁Γ

∑
𝑥𝑖∈𝑁Ω,𝑁Γ

(𝑢(𝑥𝑖) − 𝑢̂(𝑥𝑖; 𝑤, 𝑏))
2
. (3.3)

Since the exact solution, 𝑢(𝑥), is generally unknown, as this is the whole purpose of using a
numerical integration method, 𝐿𝑠𝑜𝑙(𝑤, 𝑏) cannot be computed. The question thus is, how well
does the target loss 𝐿(𝑤, 𝑏) (2.1) and its terms correlate with the ideal loss 𝐿𝑠𝑜𝑙(𝑤, 𝑏) (3.3)?

Throughout this work we have introduced ad-hoc initial/boundary conditions, as well as
external forces, to modify the models so that the unique solution is known and has a simple
form, which means that 𝐿𝑠𝑜𝑙(𝑤, 𝑏) could always be computed. Observing how the models in
the next sections behaves, we can conclude that the relation between the target and ideal losses
is not strictly correlational. Indeed, although 𝐿(𝑤, 𝑏) and 𝐿𝑠𝑜𝑙(𝑤, 𝑏) have their only global
minimum at 0, which corresponds to the model being the exact solution 𝑢̂ = 𝑢 (the desired
end result and the one we would surely obtain optimizing both if the problem was purely
convex), both losses describe completely different hyper-surfaces. In fact, we could argue
that 𝐿(𝑤, 𝑏) is a poor choice of a loss function, since 𝐿1(𝑤, 𝑏) = 0 for any solution of the
differential operator satisfying any other set of initial/boundary conditions, and 𝐿2(𝑤, 𝑏) = 0
for any function that satisfies the initial/boundary conditions. This implies that there is an
infinite number of potential local minima where the optimization can fall in, or at least by
the standards of this work as we expect some continuity in with respect to the operators and
conditions, extremely flat valleys.

51

Imagine, we would want to approximate the solution of 𝑑𝑢/𝑑𝑥 = 2𝑥 − 1 with 𝑢(0) = 0,
which is nothing more than 𝑢(𝑥) = 𝑥2 − 𝑥, with a model of the type 𝑢̂ = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. The
losses corresponding to the parameter values 𝑎 = 1.5, 𝑏 = −2 and 𝑐 = 0.05, for the point 0.5
of the domain take values 𝐿1 = 0.25 and 𝐿𝑠𝑜𝑙 = 0.105625, and for the second point 0.1 of the
domain take values 𝐿1 = 0.81 and 𝐿𝑠𝑜𝑙 = 0.002025. Through this basic example we have seen
that, not even in this simplified model, the loss functions at two different points are positively
correlated, as in the first case 𝐿1 ↓ 𝐿𝑠𝑜𝑙 ↑ and in the second case 𝐿1 ↑ 𝐿𝑠𝑜𝑙 ↓. On top of this,
we see that the magnitudes of both losses are different, and furthermore this proportion does
not remain constant during training. This means that the scenario where in the first stages
of training, a decrease from 10−1 to 10−4 in 𝐿1 represents a 10−1 to 10−2 decrease in 𝐿𝑠𝑜𝑙 for
the domain points, and the later on in training, a decrease from 10−4 to 10−6 in 𝐿1 represents
a 10−1 to 10−5 decrease in 𝐿𝑠𝑜𝑙 for the domain points, is very plausible. This poses one of
main problems of this method for integrating differential equations compared to others, such
as FEM, which is: in a general situation where the exact solution is unknown, it is not possible
to know the real error of the approximated artificial neural network solution, 𝑢̂. (The same
arguments are valid with respect between 𝐿2 and 𝐿𝑠𝑜𝑙, and 𝐿1 and 𝐿2).

The fact that the terms 𝐿1 and 𝐿2 behave so differently between them, and during training,
makes simultaneous training of these two objectives quite hard. For this work, we always
chose the domain in which we want to approximate the solutions to be Ω = [0, 1] in the one
dimensional case, and Ω = [0, 1] × [0, 1] in the two dimensional case. Under this regimes,
the two main behaviours of the losses after the first steps of training, when the optimization
has stabilized, are that 𝐿 << 𝐿𝑠𝑜𝑙, and ∇(𝑤,𝑏)𝐿2(𝑤, 𝑏) >> ∇(𝑤,𝑏)𝐿1(𝑤, 𝑏) always (at least
in this work). Both are expected characteristics of the training: the first is related to the
explanations of the previous paragraph as having similar information about the derivatives is
not the same as being the same function; and the second occurs due to the initial/boundary
conditions always having information of one derivative less than the differential operator, thus
the vanishing gradient problem (2.21) with respect to input derivatives explained in 2.3.1.

Having ∇(𝑤,𝑏)𝐿2(𝑤, 𝑏) >> ∇(𝑤,𝑏)𝐿1(𝑤, 𝑏) is a real problem. In fact if we were to optimize the
model with what tools we have discussed until now, we would not be able to model anything
past the divergence operator, as the artificial neural networks would fit the initial/border
conditions with great precision and nothing else. At this point the optimization gets stuck in
a very flat valley where the gradient is basically too weak and noisy that not even L-BFGS
can find a minimum loss improvement in that direction. We will illustrate this problem with
the following example shown in Figure 3.5.

Figure 3.5: Example of possible multi-objective functions. Component and total
representation.

52

Suppose that we wanted to find the simultaneously the minimum of the two individual
loss functions, 𝐿1 and 𝐿2 shown in Figure 3.5 (left), and thus, we consider the global loss
function composed by their addition represented in Figure 3.5 (right). The actual expressions
of the functions can be drawn from the figure legends, but are irrelevant as are using them
for conceptual reasons. Observe that the term 𝐿1 is much flatter (has smaller derivatives)
than the term 𝐿2, hence, when adding both functions together, the topology of the end result
becomes mostly that of 𝐿2. When it comes to the term 𝐿1, it acts as though it is little more
than a constant moving up or down the global loss, and the whole variation is dominated
by 𝐿2. Therefore, minimizing the global loss 𝐿 effectively becomes minimizing the 𝐿2 with
complete disregard to 𝐿1. For example, if we were to optimize the global loss starting at the
green point of the figure (around 0.1), we would be moving to the right and most likely get
stuck in the local minimum of the second term (around 0.7), which is the same that would
happen optimizing only 𝐿2. This might be acceptable if we were only minimizing 𝐿2, since
we might accept this local minimum as a good enough result. However, at around 0.7 the
term 𝐿1 still has a very clear slope that points to the right, and quite strong for 𝐿1 standards,
although it is many orders of magnitude weaker to its counterpart in 𝐿2. Hence, this slope
for 𝐿1 is completely ignored, meaning that we are not minimizing 𝐿1 at all. Finally, the
question is, how to balance the influence of both terms, 𝐿1 and 𝐿2?

Figure 3.6: Example of possible multi-objective functions. Adjusted factors.

In Figure 3.6 we show what happens when we scale a term relatively to the other (here by a
factor of 3). Note that, when multiplying a term by a factor, we also multiply their slopes and
the variance it contributes to the global loss by that same factor. Hence, the final global loss
function becomes a much more balanced agreement between the two terms. Here, minimizing
the global loss starting at the green point and reaching the region at 0.7 does not represent
such a strong sink for a gradient based approach to overcome. The region is still a good local
minimum for 𝐿2, but the slope of 𝐿1 which disagrees showing a strong direction of decrease
for 𝐿1 to the right, now has enough influence over the global loss to have an effect. Balancing
the terms makes it so that the minimum found for global loss is at least a minimum (or close
enough) for each of the individual terms 𝐿1 and 𝐿2.

Going back to the problem of ∇(𝑤,𝑏)𝐿2(𝑤, 𝑏) >> ∇(𝑤,𝑏)𝐿1(𝑤, 𝑏) in the regime we are dealing
with, i.e. the differential operator loss 𝐿1 is much flatter that the initial/border loss 𝐿2, we
would like to find a consistent way to balance the loss terms for any instance. The approach
that we will be taking in this work to deal with this issue does not use a scale factor, as the
example in Figures 3.5 and 3.6, but make use of the exact same underlying ideas.

53

We will still be computing the global loss as 𝐿(𝑤, 𝑏) = 𝐿1(𝑤, 𝑏) + 𝐿2(𝑤, 𝑏) + 𝑅(𝑤, 𝑏) (2.1),
and we will still be computing the each individual gradients with respect to the components
∇(𝑤,𝑏)𝐿1(𝑤, 𝑏), ∇(𝑤,𝑏)𝐿2(𝑤, 𝑏), ∇(𝑤,𝑏)𝑅(𝑤, 𝑏), which is done separately since the global loss is
additive. However, the difference here will be that, the gradient of the global loss will not be
calculated as ∇(𝑤,𝑏)𝐿(𝑤, 𝑏) = ∇(𝑤,𝑏)𝐿1(𝑤, 𝑏) + ∇(𝑤,𝑏)𝐿2(𝑤, 𝑏) + ∇(𝑤,𝑏)𝑅(𝑤, 𝑏) but using:

∇(𝑤[ℓ],𝑏[ℓ])𝐿(𝑤[ℓ], 𝑏[ℓ]) →
∇(𝑤[ℓ],𝑏[ℓ])𝐿1(𝑤[ℓ], 𝑏[ℓ])

||∇(𝑤[ℓ],𝑏[ℓ])𝐿1(𝑤[ℓ], 𝑏[ℓ])||22
⋅ min(||∇(𝑤[ℓ],𝑏[ℓ])𝐿1(𝑤[ℓ], 𝑏[ℓ])||22, ||∇(𝑤[ℓ],𝑏[ℓ])𝐿2(𝑤[ℓ], 𝑏[ℓ])||22)

+
∇(𝑤[ℓ],𝑏[ℓ])𝐿2(𝑤[ℓ], 𝑏[ℓ])

||∇(𝑤[ℓ],𝑏[ℓ])𝐿2(𝑤[ℓ], 𝑏[ℓ])||22
⋅ min(||∇(𝑤[ℓ],𝑏[ℓ])𝐿1(𝑤[ℓ], 𝑏[ℓ])||22, ||∇(𝑤[ℓ],𝑏[ℓ])𝐿2(𝑤[ℓ], 𝑏[ℓ])||22)

+𝜆 ⋅
∇(𝑤[ℓ],𝑏[ℓ])𝑅(𝑤[ℓ], 𝑏[ℓ])

||∇(𝑤[ℓ],𝑏[ℓ])𝑅(𝑤[ℓ], 𝑏[ℓ])||22
⋅ min(||∇(𝑤[ℓ],𝑏[ℓ])𝐿1(𝑤[ℓ], 𝑏[ℓ])||22, ||∇(𝑤[ℓ],𝑏[ℓ])𝐿2(𝑤[ℓ], 𝑏[ℓ])||22),

(3.4)
which means that, before adding up the individual losses (and regularization) gradients, we
renormalise the sub-gradient of each layer to the minimum between 𝐿1 and 𝐿2. Geometrically,
we are adjusting the slopes corresponding to one layer of 𝐿1, 𝐿2 and 𝑅 (corrected by 𝜆), to
be of the same magnitude, and thus, make each of the terms equally influential to the global
loss (the regularization corrected by 𝜆), which was the original intention.

This fixes really well the vanishing gradient problem with respect to the derivatives of the
inputs, and the reason is, in some sense, analogous to why the first order methods which we
called component learning rate adapting (Adam et al.) deal so well with the classic vanishing
gradient problem. In those methods the gradients are adjusted component-wise, i.e. each
parameter derivative is modified individually based on the changes for the previous vales of
that same parameter. Hence, although the gradient gets deformed (we are no longer moving
in maximal slope direction), it is much preferable as it allows for a much more equilibrated
learning where all the parameters learn at similar rates, increasing naturally smaller parameter
derivatives, when the slope in that direction is steady. Similarly, what component learning
rate adapting optimizers do for parameters, (3.4) does among the global loss terms, 𝐿1, 𝐿2
and 𝑅, allowing to rescale in a balanced way naturally smaller sub-gradients, which otherwise
would have no contribution.

Correcting the gradient before introducing it the optimizer is much convenient than altering
the global loss function 𝐿(𝑤, 𝑏) terms with coefficients (recalled we already gave some
arguments when discussing weight penalties in section 2.6.2). First, we only affect the step we
take during the optimization, thus 𝐿(𝑤, 𝑏) and their terms remain unaltered and consistent
metric of the performance of the model throughout the whole training. Second, it is really
the gradient (slope of the hyper-surface) and not the actual value of the loss (which can be
naturally high or low) that conditions the optimization process.

Finally, comment there is a second multi-objective behaviours due to the loss terms
effectively being the sum over a collocation of points in the domain and initial/boundary
conditions. A possible fix to this is to increase the power of the norm, | ⋅ | → || ⋅ ||22 → || ⋅ ||𝑛𝑛,
which is known to make the problem more sensible to outliers. Since we are not using noise,
and the collocation points expected outputs are deterministic, as a result of satisfying the
initial/boundary value problem, making the model more sensible to fit the regions where there
are more discrepancies between the model and the expected outputs can be very beneficial.

54

3.4 Model Simulation
At last, in this section we will be numerically integrating initial/boundary value problem

with the operators already introduced in Table 1.2 (except for the identity operator which
already got covered in section 3.2). As stated before we will add external forces and
initial/boundary conditions, so that the exact solution, 𝑢(𝑥), has a simple polynomial form
and the exact loss 𝐿𝑠𝑜𝑙 (3.3) can be computed.

The general layout for all instance will consist on several distributions of layers and
neurons, activation functions, optimization methods, and regularizations, that we will vary
and compare among each other. In terms of the sampling, we will always approximate the
solutions in the domain Ω = [0, 1] for 1D, and Ω = [0, 1] × [0, 1] for 2D, hence, we will always
draw samples of 10000 and 1000 points, for the domain and initial/boundary training sets,
and validation sets, respectively, from ∼ 𝒰(0, 1) distributions. While a very small collocation
sample may lead to very poorly fitted model, there is a point where increasing the size of
the sample does not improve the result of the model, which has to be located with trial and
error. For most of the instances in this work it is probably around 1000 points, thus we have
increased it 10 fold for safety reasons. Also implicitly applied through all the instances, there
will be upper bound parameter constrains of 103, gradient clipping by layer with norm 1,
early stop evaluation every 500 training steps (or epochs), and the gradient adjustment (3.4).

Each of the instances will be increasing in complexity. Furthermore each instance may
contain optional comparisons for some of the aspects that we have already discussed for
benchmarking reasons.

3.4.1 Model 1: The 1D Divergence Operator
For the first proper initial/boundary problem we will be approximating the 1D divergence

operator (derivative equals to an external force), which is one of the most simple models that
we can generate. The exact instance of this ODE will be:

∇(𝑥) ⋅ 𝑢(𝑥) = 𝜕𝑢(𝑥)
𝜕𝑥 = 2𝑥 − 1,

𝑢(0) = 0,
(3.5)

which has exact solution 𝑢(𝑥) = 𝑥2 − 𝑥. The solution can be easily obtain through the
separation method by integrating both sides:

∫
𝑥

0

𝜕𝑢(𝑥)
𝜕𝑥 𝑑𝑥 = ∫

𝑥

0
2𝑥 − 1 𝑑𝑥,

𝑢(𝑥) |𝑥0 = 𝑥2 − 𝑥 ∣𝑥0 ,
𝑢(𝑥) − 𝑢(0) = (𝑥2 − 𝑥) − (02 − 0),

𝑢(𝑥) = (𝑥2 − 𝑥).

(3.6)

Here the loss function we are optimizing is:

𝐿(𝑤, 𝑏) = 1
𝑁Ω

∑
1≤𝑖≤𝑁Ω

(𝜕𝑢̂(𝑥𝑖; 𝑤, 𝑏)
𝜕𝑥 − (2𝑥𝑖 − 1))

2
+ (𝑢̂(0; 𝑤, 𝑏) − 0)2 + 𝑅(𝑤, 𝑏). (3.7)

55

For this instance we will focus on the effect in the models of varying the activation functions.
We will be training 3 model with sigmoid, hyperbolic tangent and swish activation functions
respectively. All model will be trained on 3000 iterations (epochs), using a [1,5,5,1]-ANN,
with no regularization, and using Adam with 𝜂 = 0.01, 𝛽1 = 0.9 and 𝛽2 = 0.999. Table 3.1
shows the end result losses, and Figure 3.7 plots the performance of the training (the losses
for the figure have been broken into each of its components).

Activation 𝐿 𝐿𝑠𝑜𝑙

Sigmoid 1.66 ⋅ 10−4 1.71 ⋅ 10−6

Tanh 1.20 ⋅ 10−4 4.02 ⋅ 10−7

Swish 6.41 ⋅ 10−5 1.75 ⋅ 10−6

Table 3.1: Results of 3 models trained for a [1,5,5,1]-ANN scheme, with no regularization,
using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 3000 epochs. (3.5)

Figure 3.7: Training performance of 3 models trained for a [1,5,5,1]-ANN scheme, with no
regularization, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 3000 epochs. (3.5)

56

From the previous results we can see some interesting behaviours. First of all, the worst
performing activation (the swish) with regards to the solution loss 𝐿𝑠𝑜𝑙, was actually the best
in terms of the objective loss 𝐿; and the best performing activation (the tanh) with regards
to the solution loss 𝐿𝑠𝑜𝑙, was not the best in terms of the objective loss 𝐿. Also, we see that
there is correlation between 𝐿 (3rd plot of Figure 3.7) and 𝐿𝑠𝑜𝑙 (4th plot of Figure 3.7); and
that 𝐿1 dominates over 𝐿2, meaning 𝐿2 is natively much smaller that 𝐿1. A well as this, we
observe that the swish model had a much later initial decay than the other two, but the three
of them start saturating at the same time. All these are expected behaviours that we have
explained before.

Finally, in the next figure we plot the output of the best performin model (the one with
tanh activations), against the exact solution. Note that just in 3000 epochs (2min) the match
is almost perfect.

Figure 3.8: Final results. Best performing trained model (tanh) for (3.7) against the exact
solution.

3.4.2 Model 2: The 2D Divergence Operator
Here we will take the previous model to the next level adding a dimension, and in doing so

we will consider our first PDE. Still, this will be a very simple problem. The instance we will
be considering first is:

∇(𝑥,𝑦) ⋅ 𝑢(𝑥, 𝑦) ⋅ 1 = 𝜕𝑢(𝑥, 𝑦)
𝜕𝑥 + 𝜕𝑢(𝑥, 𝑦)

𝜕𝑦 = (2𝑥 − 1) ⋅ (𝑦2 − 𝑦) + (𝑥2 − 𝑥) ⋅ (2𝑦 − 1),

𝑢(𝑥, 0) = 0, 𝑥 ∈ (−∞, ∞),
(3.8)

which has exact solution 𝑢(𝑥, 𝑦) = (𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦). The loss function for (3.8) would be:

𝐿(𝑤, 𝑏) = 1
𝑁Ω

∑
1≤𝑖≤𝑁Ω

(𝜕𝑢̂(𝑥𝑖, 𝑦𝑖; 𝑤, 𝑏)
𝜕𝑥 + 𝜕𝑢̂(𝑥𝑖, 𝑦𝑖; 𝑤, 𝑏)

𝜕𝑦 − (2𝑥𝑖 − 1)(𝑦2
𝑖 − 𝑦𝑖)

−(𝑥2
𝑖 − 𝑥𝑖)(2𝑦𝑖 − 1))

2
+ 1

𝑁Γ
∑

1≤𝑖≤𝑁Γ

(𝑢̂(𝑥𝑖, 0; 𝑤, 𝑏) − 0)2 + 𝑅(𝑤, 𝑏).
(3.9)

However, there is an issue when using the (3.9) loss function. The border conditions are
described by a curve for 𝑥 ∈ (−∞, ∞), but effectively, we cannot draw samples from such a
wide range. Since, we are limiting ourselves to approximating the solutions in the domain to
Ω = [0, 1] × [0, 1] for practical reasons, we will sample 𝑥 from (−10, 10) for the 𝐿2 term.

57

The following Figure 3.9 shows the results of training a model under the previous
assumptions (specifics in the caption). Observe that the left plot shows that, the solution
approximated by the model has two separate regions, one approximating really well the exact
solution, and another one that does not by a large margin. If we turn to the right plot we see
that the MSE of the individual points with respect to the differential operator/external force
is very even, meaning every point is equally well fitted.

Figure 3.9: Result of a [1,10,10,1]-ANN model and tanh activations, trained with no
regularization, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 12000 epochs. Left
plot: model against exact solution. Right plot MSE error of the model, for each point in the
domain.

This occurs because, in practice, when we draw a sample points for the border conditions,
we are limiting ourselves to 𝑥 ∈ (−10, 10). Hence, for all purposes we are solving (3.8) with
boundary conditions 𝑢(𝑥, 0) = 0, 𝑥 ∈ (−10, 10), which are no longer Cauchy conditions and
do not guarantee uniqueness. The solution we want to find is also a solution of the problem
we are fitting in practice, but there are many more. In fact, what we see in Figure 3.9 is the
artificial neural network overlapping two different solutions of the problem (the one closest
to 𝑦 = 0 is the one we would want). Thus, this a good example of what happens when
integrating a problem which is not well-posed.

In order to fix this issue we will change the Cauchy “border” conditions, which for infinite
domains would be simply an open curve, to its finite domain version, which requires the
information over the border. This means, for Ω = [0, 1] × [0, 1], changing (3.8) to:

∇(𝑥,𝑦) ⋅ 𝑢(𝑥, 𝑦) ⋅ 1 = 𝜕𝑢(𝑥, 𝑦)
𝜕𝑥 + 𝜕𝑢(𝑥, 𝑦)

𝜕𝑦 = (2𝑥 − 1) ⋅ (𝑦2 − 𝑦) + (𝑥2 − 𝑥) ⋅ (2𝑦 − 1),

𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 0, 𝑥 ∈ (0, 1),
𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑦 ∈ (0, 1),

(3.10)
with its respective change in the loss function (3.9). The solution for this problem is the same
as before.

58

In the actual experiments for (3.10) we will take more interesting features to compare than
the simple activation functions of the previous instance. Here we will analyse the effects of
the size of the artificial neural network and the regularization.

When choosing an artificial neural network architecture, the general rule is that deeper
neural networks are able to learn more complex functions, although at a greater cost of training
[54]. Furthermore, papers such as [55], focused on learning polynomials with artificial neural
networks, suggest that a fully-connected network with a single hidden layer with a number
of nodes equals to the degree of the polynomial, would be enough to learn a polynomial (this
is an rough and imprecise extraction of what [55] states, but holds for the most part). In
this work though, we have been using two hidden layers so far (an will keep using them),
and a much larger number of neurons than the theoretic minimal suggests for the underlying
solutions we want to approximate. The reason for doing this is to better account for the
information of the derivatives during training and make use of regularization techniques, to
obtain better minima.

For this instance (3.10) we will be training 6 models, all using hyperbolic tangent activations
and are trained on Adam with 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, on 8000 epochs. The
models will either have a [1,10,10,1]-ANN structure or a [1,40,40,1]-ANN structure; and be
trained using no regularization, the custom regularization (2.58) with 𝜆 = 1, or a Tikhonov
regularization with 𝜆 = 1; which make for a total of 6 combinations. Moreover, all the models
with the same architecture have been initialized with exactly the same parameters. This has
been done to root out the possible effect of luck for starting at a slightly better point for the
optimization, and ensure the difference is training are caused by the regularization.

In Table 3.2 we show the final results of the models, and in Figures 3.10 and 3.11 we
show the performance of the training. First, we observe for these kind of problems Tikhonov
regularizations do not work well and their training incurs in early stopping. For the (2.58)
custom regularization we see that, in the smaller [1,10,10,1]-ANN model, the training is
actually hindered and yields awful results, but used the larger [1,40,40,1]-ANN model it
outperforms any other set-up. This, is due to what we have already explained in section 2.6,
that regularizations clamp down on the extra degree of freedom overfitting the model. Hence,
for the smaller model which is adequately parametrized, it becomes an extra condition drawing
resources form the model, while for the larger model it narrows the parameters to the fit the
model. Furthermore, not only the larger model with regularization outperforms the smaller
one without, but if we compare their performances from Figures 3.10 and 3.11, we note that
by the end of the training, the smaller model has saturated (stagnated), while the larger is
still steadily decreasing (thus, have more room for improvement). This shows that is much
preferable to have a larger model with regularization than simply a well adjusted one.

Architecture - Regularization Technique 𝐿 𝐿𝑠𝑜𝑙
[1,10,10,1]-ANN - No Regularization 1.04 ⋅ 10−4 7.52 ⋅ 10−6

[1,10,10,1]-ANN - (2.58) Regularization with 𝜆 = 0.1 7.18 ⋅ 10−3 2.84 ⋅ 10−4

[1,10,10,1]-ANN - Tikhonov Regularization with 𝜆 = 0.1 6.33 ⋅ 10−4 4.19 ⋅ 10−5

[1,40,40,1]-ANN - No Regularization 6.36 ⋅ 10−4 1.95 ⋅ 10−5

[1,40,40,1]-ANN - (2.58) Regularization with 𝜆 = 0.1 2.93 ⋅ 10−4 2.32 ⋅ 10−6

[1,40,40,1]-ANN - Tikhonov Regularization with 𝜆 = 0.1 3.88 ⋅ 10−3 7.91 ⋅ 10−5

Table 3.2: Results of 6 models with different architectures, trained for (3.10), using Adam
with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, on 8000 epochs and different regularization techniques.

59

Figure 3.10: Comparison of different regularization techniques in training performance of 3
models trained for a [1,10,10,1]-ANN scheme, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999,
on 8000 epochs. (3.10)

Figure 3.11: Comparison of different regularization techniques in training performance of 3
models trained for a [1,40,40,1]-ANN scheme, using Adam with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999,
on 8000 epochs. (3.10)

Figure 3.12: Final results of the best performing trained model ([1,40,40,1]-ANN, trained
with the custom regularization (2.58)) for (3.7) against the exact solution.

60

3.4.3 Model 3: The 2D Laplacian Operator
At this point we will complicate a bit more the differential operator by considering second

order derivatives. Thus, we will consider the following boundary value problem for the
Laplacian operator in 2 dimensions:

Δ𝑢(𝑥, 𝑦) = 𝜕2𝑢(𝑥, 𝑦)
𝜕𝑥2 + 𝜕2𝑢(𝑥, 𝑦)

𝜕𝑦2 = 2 ⋅ (𝑦2 − 𝑦) + 2 ⋅ (𝑥2 − 𝑥),

𝑢(Γ) = 𝑔1(Γ) ∶
⎧{
⎨{⎩

𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 0, 𝑥 ∈ (0, 1),
𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑦 ∈ (0, 1),

𝜕𝑢(Γ)
𝜕(𝑥, 𝑦) ⋅ 𝑛(Γ) = 𝑔2(Γ) ∶

⎧{
⎨{⎩

𝜕𝑢(𝑥, 0)
𝜕𝑦 = −(𝑥2 − 𝑥), 𝜕𝑢(𝑥, 1)

𝜕𝑦 = (𝑥2 − 𝑥), 𝑥 ∈ (0, 1),
𝜕𝑢(0, 𝑦)

𝜕𝑥 = −(𝑦2 − 𝑦), 𝜕𝑢(1, 𝑦)
𝜕𝑥 = (𝑦2 − 𝑦), 𝑦 ∈ (0, 1),

(3.11)
which has exact solution 𝑢(𝑥, 𝑦) = (𝑥2 −𝑥) ⋅ (𝑦2 −𝑦), as with the previous problem. The form
of problem (3.11) in its general form, for any dimension and external force, constitutes what is
called the Poisson equation, which is important throughout physics, as it is the interpretation
of Gauss Law in terms of potentials.

Before training an artificial neural network to fit this model, we would like to make a brief
note regarding the coding of higher order derivatives in TensorFlow. Looking at the official
documentation of TensorFlow, the method given to obtain higher order derivatives in one
variable is by nesting auto-differentiations calls. However, note that, TensorFlow is used in a
context of training artificial neural networks, thus when auto-differentiating twice we obtain:

∇(𝑥)𝑓(𝑥1, ..., 𝑥𝑛) = (𝜕𝑓
𝜕𝑥1

, ..., 𝜕𝑓
𝜕𝑥𝑛

) ,

∇2
(𝑥)𝑓(𝑥1, ..., 𝑥𝑛) = (𝜕

𝜕𝑥1

𝑛
∑
𝑚=1

𝜕𝑓
𝜕𝑥𝑚

, ..., 𝜕
𝜕𝑥𝑛

𝑛
∑
𝑚=1

𝜕𝑓
𝜕𝑥𝑚

) ,
(3.12)

which is not the Laplacian. There are two ways to overcome this issue: either use the unstack
and stack functions to decouple the inputs and compute the gradients tracking only an
individual variable (the option we have used in the code); or to use the hessian function
to compute the Hessian matrix and then compute the trace, which is highly inefficient as we
only require the elements in the diagonal. Without [56] where this observation is pointed out,
we would not have been able to carry out this simulation.

At this point we have already experimented on all the principal options and hyper-parameter
choices covered in this work, and we have studied their performance. So, from now on, we
will be dropping the comparisons and limit ourselves to simply solve the next models with
the best possible set-up best on what we have discussed.

The artificial neural network model trained for (3.11) has achieved a final global loss of
𝐿 = 1.23 ⋅ 10−3 and final loss with respect to the solution of 𝐿𝑠𝑜𝑙 = 4.25 ⋅ 10−6. This model
consisted of a [1,40,40,1]-ANN with tanh activations, trained for 6000 epochs (when early stop
triggered), using Adam with 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and the custom regularization
(2.58) with 𝜆 = 0.1. The results can be seen in the following Figure 3.13.

61

Figure 3.13: Results and performance of the model trained for (3.11).

3.4.4 Model 4: The 1D Advection Operator
For this simulation we step down from the 2D PDE cases, to go back to an ODE. The

reason for this downgrade is to explain a certain issue occuring for this operator. This issue
is one that happens for the final case of this section, the 2D Burgers operator, and since the
advection operator we are proposing coincides with the Burgers operator in 1D, we see this
as a much simpler example to introduce a discussion.

62

The initial value problem we want to consider is:

𝑢(𝑥) ⋅ ∇(𝑥) ⋅ 𝑢(𝑥) = 𝑢(𝑥) ⋅ 𝜕𝑢(𝑥)
𝜕𝑥 = 2𝑥3 − 3𝑥2 + 𝑥,

𝑢(0) = 0,
(3.13)

which has exact solution 𝑢(𝑥) = 𝑥2 − 𝑥, same as the 1D divergence case. This problem look
like falling under the Cauchy-Kovalevskaya conditions, so existence and uniqueness should be
guaranteed. However, there is a subtlety hidden here. If we write the equation in its canonical
form (isolating the higher derivative), which is required to apply the Cauchy-Kovalevskaya
theorem,

𝜕𝑢(𝑥)
𝜕𝑥 = 2𝑥3 − 3𝑥2 + 𝑥

𝑢(𝑥) , (3.14)

we note that the equation is quasi-linear and its terms are analytic everywhere except for the
zeroes of 𝑢(𝑥). Hence we have local existence and uniqueness almost everywhere, but since
it can fail in some points, we cannot build a unique global solution using the theorem. This
can be verified easily in this case, as the differential equation is separable and can be solved
easily by separations of variables method:

∫
𝑥

0
𝑢(𝑥)𝜕𝑢(𝑥)

𝜕𝑥 𝑑𝑥 = ∫
𝑥

0
2𝑥3 − 3𝑥2 + 𝑥 𝑑𝑥,

1
2(𝑢(𝑥))2∣

𝑥

0
= 1

2𝑥4 − 𝑥3 + 1
2𝑥2 ∣

𝑥

0
,

1
2(𝑢(𝑥))2 − 0 = 1

2𝑥4 − 𝑥3 + 1
2𝑥2 − 0,

𝑢(𝑥) = ±
√

𝑥4 − 2𝑥3 + 𝑥2 = ±(𝑥2 − 𝑥).

(3.15)

Looking at Figure 3.14 we observe that the solutions intersect (hence, are not unique) at
the roots of 𝑢(𝑥).

Figure 3.14: Positive and negative sign solutions of 3.13.

To fix this issue and fix a solution, it is enough to provide information about an extra
derivative of one more order than the required by the Cauchy conditions. Therefore, the
well-posed problem that we will consider will be:

𝑢(𝑥) ⋅ ∇(𝑥) ⋅ 𝑢(𝑥) = 𝑢(𝑥) ⋅ 𝜕𝑢(𝑥)
𝜕𝑥 = 2𝑥3 − 3𝑥2 + 𝑥,

𝑢(0) = 0, 𝑢′(0) = −1.
(3.16)

63

The artificial neural network model trained for (3.16) has achieved a final global loss of
𝐿 = 1.05 ⋅ 10−3 and final loss with respect to the solution of 𝐿𝑠𝑜𝑙 = 2.74 ⋅ 10−7. This model
consisted of a [1,20,20,1]-ANN with sigmoid activations, trained for 3000 epochs using Adam
with 𝜂 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, and the custom regularization (2.58) with 𝜆 = 0.1. The
results can be seen in the following Figure 3.16.

Figure 3.15: Results and performance of the model trained for (3.16).

3.4.5 Model 5: The 2D Clairaut Operator
The Clairaut operator can be seen as an upgrade to the 2D Advection case. It may not

be much more complicated than what we have seen before, but it is the first PDE with
non-constant coefficients that we integrate in this work. We pose its boundary problem as:

(𝑥, 𝑦) ⋅ ∇(𝑥,𝑦)𝑢(𝑥, 𝑦) = 𝑥 ⋅ 𝜕𝑢(𝑥, 𝑦)
𝜕𝑥 + 𝑦 ⋅ 𝜕𝑢(𝑥, 𝑦)

𝜕𝑦
= 𝑥 ⋅ (2𝑥 − 1) ⋅ (𝑦2 − 𝑦) + (𝑥2 − 𝑥) ⋅ 𝑦 ⋅ (2𝑦 − 1),

𝑢(𝑥, 0) = 0, 𝑢(𝑥, 1) = 0, 𝑥 ∈ (0, 1),
𝑢(0, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑦 ∈ (0, 1),

(3.17)

with solution 𝑢(𝑥, 𝑦) = (𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦), as always.

64

The artificial neural network model trained for (3.17) has achieved a final global loss of
𝐿 = 3.04 ⋅ 10−6 and final loss with respect to the solution of 𝐿𝑠𝑜𝑙 = 3.96 ⋅ 10−6. This model
consisted of a [1,40,40,1]-ANN with tanh activations, trained for 8000 epochs, using Adam
with 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and the custom regularization (2.58) with 𝜆 = 0.1.
The results can be seen in the following Figure 3.16.

Figure 3.16: Results and performance of the model trained for (3.17).

3.4.6 Model 6: The 2D Burgers Operator
Finally, we will numerically integrate the last, and most complex, boundary problem of this

work. This would be the 2D Burgers operator, and it can be regarded as the multi-dimensional
case of the advection operator. While the advection operator is applied on scalar functions,
the Burgers operator is applied on vector fields.

65

The boundary value problem requires, as explained in the 1D advection case, information
on one more derivative than in the Cauchy conditions, and thus will be defined by:

u(𝑥, 𝑦) ⋅ ∇(𝑥,𝑦)u(𝑥, 𝑦) = (𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦))
⎛⎜⎜⎜
⎝

𝜕𝑢𝑥(𝑥, 𝑦)
𝜕𝑥

𝜕𝑢𝑦(𝑥, 𝑦)
𝜕𝑥

𝜕𝑢𝑥(𝑥, 𝑦)
𝜕𝑦

𝜕𝑢𝑦(𝑥, 𝑦)
𝜕𝑦

⎞⎟⎟⎟
⎠

= ⎛⎜
⎝

(𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦)[(2𝑥 − 1) ⋅ (𝑦2 − 𝑦) + (𝑥2 − 𝑥) ⋅ (2𝑦 − 1)]
(𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦)[(2𝑥 − 1) ⋅ (𝑦2 − 𝑦) + (𝑥2 − 𝑥) ⋅ (2𝑦 − 1)]

⎞⎟
⎠

u(Γ) = g1(Γ) ∶
⎧{
⎨{⎩

𝑢𝑥(𝑥, 0) = 𝑢𝑦(𝑥, 0) = 0, 𝑢𝑥(𝑥, 1) = 𝑢𝑦(𝑥, 1) = 0, 𝑥 ∈ (0, 1),
𝑢𝑥(0, 𝑦) = 𝑢𝑦(0, 𝑦) = 0, 𝑢𝑥(1, 𝑦) = 𝑢𝑦(1, 𝑦) = 0, 𝑦 ∈ (0, 1),

𝜕u(Γ)
𝜕(𝑥, 𝑦) ⋅ n(Γ) = g2(Γ) ∶

⎧{{{{
⎨{{{{⎩

𝜕𝑢𝑥(𝑥, 0)
𝜕𝑦 = −(𝑥2 − 𝑥), 𝜕𝑢𝑥(𝑥, 1)

𝜕𝑦 = (𝑥2 − 𝑥), 𝑥 ∈ (0, 1),
𝜕𝑢𝑥(0, 𝑦)

𝜕𝑥 = −(𝑦2 − 𝑦), 𝜕𝑢𝑥(1, 𝑦)
𝜕𝑥 = (𝑦2 − 𝑦), 𝑦 ∈ (0, 1),

𝜕𝑢𝑦(𝑥, 0)
𝜕𝑦 = −(𝑥2 − 𝑥), 𝜕𝑢𝑦(𝑥, 1)

𝜕𝑦 = (𝑥2 − 𝑥), 𝑥 ∈ (0, 1),
𝜕𝑢𝑦(0, 𝑦)

𝜕𝑥 = −(𝑦2 − 𝑦), 𝜕𝑢𝑦(1, 𝑦)
𝜕𝑥 = (𝑦2 − 𝑦), 𝑦 ∈ (0, 1),

(3.18)
with the vector field u(𝑥) = ((𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦), (𝑥2 − 𝑥) ⋅ (𝑦2 − 𝑦)) as its solution.

We have called the differential operator in (3.18) as the Burgers operator (although it is not
the real burgers operator) because the most prominent place we can find this operator is in the
inviscid Burgers equation, where it appears along an extra 𝜕/𝜕𝑡. Hence, we can think of (3.18)
as the system that solves for the steady-state solutions 𝑢𝑡 = 0 of an inviscid Burgers equation.

All the attempts to obtain the two components of the solution as an artificial neural network
with 2 outputs resulted in failure. The models always seemed to get stuck in very bad
local minima and the process was slow. We assume that the reasons for this lies in the
fully-connected nature of the architecture we are using, since we were trying to adjust 2
functions on the same parameters (despite being the same in this case). Hence, we have taken
the much efficient approach of approximating each component of the solution with a separate
neural network, and obtained much better results. We will only show the results for the first
component since the operator and external force are symmetric, therefore the behaviours for
both components are the almost same.

The artificial neural network model trained for (3.18) has achieved a final global loss of
𝐿 = 6.21 ⋅ 10−6 and final loss with respect to the solution of 𝐿𝑠𝑜𝑙 = 8.75 ⋅ 10−5. This model
consisted of a [1,40,40,1]-ANN with tanh activations, trained for 8000 epochs, using Adam
with 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, and the custom regularization (2.58) with 𝜆 = 0.1.
The results can be seen in the following Figure 3.17.

66

Figure 3.17: Results and performance of the model trained for (3.18).

67

Chapter 4
Conclusions

Regarding the method, in this work we have covered, theoretically and in practice, all
the elements necessary to build a functional artificial neural network method to solve
initial/boundary problem. Based on what we have seen as a whole we can conclude that
this approach offers a solid option for integrating PDEs. Summarizing all of the pros and
cons discussed so far:

• Pros:

– Mesh-free algorithm: we do not need a mesh, a less costly random collocation of
points approach is enough.

– Higher dimensions of the same operator do not increase much the number of
iterations necessary.

– Good interpolation capacities for points outside of the collocation.
• Cons:

– Unknown error behaviour: we do not known the precision we are getting and
cannot use an objective stop criterion.

– Unknown stability: we are subject to solving a non-convex optimization, which
means that we incur in many potential traps such as local minima and valleys,
yielding bad results.

– Iterative method: we are required to evaluate the derivatives of the artificial neural
network at each step of the training, thus the cost of an increase in complexity
in the equations by having many different derivatives, accumulates exponentially
through the training.

The first and the last cons can be somewhat mitigated. For the last we can try to use
synthetic derivatives (i.e. draw the from a distribution or approximation). This idea is not
foreign, as we have already seen in this work how the second order quasi-Newton methods
(BFGS and L-BFGS) and truncated Newton methods (the Hessian-free), use approximations
of the Hessian to avoid computing the whole matrix.

In the case of the error, looking back at the simulations we can observe that in the cases
where we took the same operator in different dimensions, like with the divergence operator,
the relation between the objective loss 𝐿 and the exact solution loss 𝐿𝑠𝑜𝑙 behaved in a very
similar way. This means that perhaps we could roughly use the results of a smaller problem
in 1D to approximate the relation between 𝐿 and 𝐿𝑠𝑜𝑙.

To sum up, we would recommend this kind of method to deal with simple differential
equations (not many different types of derivatives) in high dimensions and irregular domains.
The strengths and weaknesses are close to that of Monte Carlo methods, so with further
research it could became an alternative to those methods.

68

4.1 Author’s Final Thoughts
This work contains a wide coverage of the topics general to the subject of deep learning, auto-

differentiation, activation functions, optimizers, regularizations, problems like the vanishing
and exploding gradient..., all of them applicable to contexts other than this project. The
perspective of artificial neural networks through the view of tensors has also been very helpful.

As well as this, there has been an important part of programming involved using TensorFlow,
and many bits of practical knowledge were gained through the experience of the many
simulations. By experimenting on the cases we were able to identify many problems like the
vanishing and exploding gradient with respect to inputs, and offer solutions such as the custom
regularization (2.58) proposed in this job, and mechanism (3.4) to balance the gradients.

Finally, from a personal standpoint, I am really satisfied with this work since I have learned
many things about differential equations and artificial neural networks, and I believe I have
gained much expertise practical to understand and work confidently with those fields.

4.2 Further Work
As contents for further work it would be interesting to study the effect of different

architectures and the relations between the objective loss and the solution loss to obtain
a measure of the real error. An interesting architecture for PDEs could be the convolutional
one, since it is known to preserve account for the spacial relations of its inputs.

69

Appendix A
Linear Algebra Formulation of 2.3.1

Here we will be describe the elements and derivatives of the example model in Figure 2.6
using linear algebra notation for clarity purposes. We will limit ourselves to tensors in which
the linear algebra representation is practical, i.e. up to (1,1)-tensors, or vector and matrices.

First, we will start by writing the variables and parameters (2.11) of the artificial neural
network in linear algebra form:

𝑦[ℓ]
𝑛ℓ ≡ ⎛⎜⎜

⎝

𝑦[1]
1

𝑦[1]
2

𝑦[3]
3

⎞⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

𝑦[2]
1

𝑦[2]
2

𝑦[2]
3

𝑦[2]
4

⎞⎟⎟⎟⎟⎟
⎠

, ⟮𝑦[3]
1

𝑦[3]
2
⟯ ,

𝑧[ℓ]
𝑛ℓ ≡ ⎛⎜⎜

⎝

𝑧[1]
1

𝑧[1]
2

𝑧[3]
3

⎞⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

𝑧[2]
1

𝑧[2]
2

𝑧[2]
3

𝑧[2]
4

⎞⎟⎟⎟⎟⎟
⎠

, ⟮𝑧[3]
1

𝑧[3]
2
⟯ ,

𝑤[ℓ] 𝑚ℓ𝑛ℓ ≡ ⎛⎜⎜
⎝

𝑤[1]1
1 𝑤[1]2

1
𝑤[1]1

2 𝑤[1]2
2

𝑤[1]1
3 𝑤[1]2

3

⎞⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

𝑤[2]1
1 𝑤[2]2

1 𝑤[2]3
1

𝑤[2]1
2 𝑤[2]2

2 𝑤[2]3
2

𝑤[2]1
3 𝑤[2]2

3 𝑤[2]3
3

𝑤[2]1
4 𝑤[2]2

4 𝑤[2]3
4

⎞⎟⎟⎟⎟⎟
⎠

, ⟮𝑤[3]1
1 𝑤[3]2

1 𝑤[3]3
1 𝑤[3]4

1
𝑤[3]1

2 𝑤[3]2
2 𝑤[3]3

2 𝑤[3]4
2
⟯ ,

𝑏[ℓ]
𝑛ℓ ≡ ⎛⎜⎜

⎝

𝑏[1]
1

𝑏[1]
2

𝑏[3]
3

⎞⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

𝑏[2]
1

𝑏[2]
2

𝑏[2]
3

𝑏[2]
4

⎞⎟⎟⎟⎟⎟
⎠

, ⟮𝑏[3]
1

𝑏[3]
2
⟯ ,

(A.1)

The operations in each neuron, without Einstein Notation are: (2.12):

𝑧[1]
𝑛1

= 𝑏[1]
𝑛1

+
2

∑
𝑘=1

𝑤[1]𝑘
𝑛1

⋅ 𝑥𝑘 , 𝑦[1]
𝑛1

= 𝑎[1]
𝑛1

(𝑧[1]
𝑛1

)

𝑧[2]
𝑛2

= 𝑏[2]
𝑛2

+
3

∑
𝑘=1

𝑤[2]𝑘
𝑛2

⋅ 𝑦[2]
𝑘 , 𝑦[2]

𝑛2
= 𝑎[2]

𝑛2
(𝑧[2]

𝑛2
)

𝑧[3]
𝑛3

= 𝑏[3]
𝑛3

+
4

∑
𝑘=1

𝑤[3]𝑘
𝑛3

⋅ 𝑦[3]
𝑘 , 𝑢𝑛3

= 𝑦[3]
𝑛3

= 𝑧[3]
𝑛3

(A.2)

70

The total composed output (2.14) of the artificial neural network, without Einstein Notation
is:

𝑢𝑛3
= 𝑏[3]

𝑛3
+

4
∑
𝑘1=1

𝑤[3]𝑘1𝑛3 ⋅ 𝑎[2]
𝑘1

(𝑏[2]
𝑘1

+
3

∑
𝑘2=1

𝑤[2]𝑘2
𝑘1

⋅ 𝑎[1]
𝑘2

(𝑏[1]
𝑘2

+
2

∑
𝑘3=1

𝑤[1]𝑘3
𝑘2

⋅ 𝑥𝑘3
))

(A.3)
An example of the chain rule would be the following (where underneath we have specified

the dimensions of the resulting matrix):

𝜕𝑢𝑛′
3

𝜕𝑥𝑛′
0

=
𝜕𝑦3

𝑛′
3

𝜕𝑧0
𝑛′

0

=
𝜕𝑦3

𝑛′
3

𝜕𝑧3𝑛3⏟
2×2

⋅
𝜕𝑧3

𝑛3

𝜕𝑦2𝑛2⏟
2×4

⋅
𝜕𝑦2

𝑛2

𝜕𝑧2𝑛2⏟
4×4

⋅
𝜕𝑧2

𝑛2

𝜕𝑦1𝑛1⏟
4×3

⋅
𝜕𝑦1

𝑛1

𝜕𝑧1𝑛1⏟
3×3

⋅
𝜕𝑧1

𝑛1

𝜕𝑦0𝑛0⏟
3×2

⋅
𝜕𝑦0

𝑛0

𝜕𝑧0
𝑛′

0⏟
2×2

(A.4)

Finally, the partial derivatives used in the chain rules for (2.15-2.18), in their matrix form
look like:

𝜕𝑦[3]
𝑛′

3

𝜕𝑧[3]
𝑛3

=
⟮
⟮
⟮
⟮
⟮

𝜕𝑦[3]
1

𝜕𝑧[3]
1

𝜕𝑦[3]
1

𝜕𝑧[3]
2

𝜕𝑦[3]
2

𝜕𝑧[3]
1

𝜕𝑦[3]
2

𝜕𝑧3
2

⟯
⟯
⟯
⟯
⟯

= ⟮1 0
0 1

⟯ (A.5)

𝜕𝑦[2]
𝑛2

𝜕𝑧[2]
𝑛2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑦[2]
1

𝜕𝑧[2]
1

𝜕𝑦[2]
1

𝜕𝑧[2]
2

𝜕𝑦[2]
1

𝜕𝑧[2]
3

𝜕𝑦[2]
1

𝜕𝑧[2]
4

𝜕𝑦[2]
2

𝜕𝑧[2]
1

𝜕𝑦[2]
2

𝜕𝑧[2]
2

𝜕𝑦[2]
2

𝜕𝑧[2]
3

𝜕𝑦[2]
2

𝜕𝑧[2]
4

𝜕𝑦[2]
3

𝜕𝑧[2]
1

𝜕𝑦[2]
3

𝜕𝑧[2]
2

𝜕𝑦[2]
3

𝜕𝑧[2]
3

𝜕𝑦[2]
3

𝜕𝑧[2]
4

𝜕𝑦[2]
4

𝜕𝑧[2]
1

𝜕𝑦[2]
4

𝜕𝑧[2]
2

𝜕𝑦[2]
4

𝜕𝑧[2]
3

𝜕𝑦[2]
4

𝜕𝑧[2]
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑎[2]
1(𝑧2

1)
𝜕𝑧2

1
0 0 0

0 𝜕𝑎[2]
2(𝑧2

2)
𝜕𝑧2

2
0 0

0 0 𝜕𝑎[2]
3(𝑧2

3)
𝜕𝑧2

3
0

0 0 0 𝜕𝑎[2]
4(𝑧2

4)
𝜕𝑧2

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(A.6)

𝜕𝑦[1]
𝑛1

𝜕𝑧[1]
𝑛1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑦[1]
1

𝜕𝑧[1]
1

𝜕𝑦[1]
1

𝜕𝑧[1]
2

𝜕𝑦[1]
1

𝜕𝑧[1]
3

𝜕𝑦[1]
2

𝜕𝑧[1]
1

𝜕𝑦[1]
2

𝜕𝑧[1]
2

𝜕𝑦[1]
2

𝜕𝑧[1]
3

𝜕𝑦[1]
3

𝜕𝑧[1]
1

𝜕𝑦[1]
3

𝜕𝑧[1]
2

𝜕𝑦[1]
3

𝜕𝑧[1]
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑎[1]
1(𝑧[1]

1)
𝜕𝑧[1]

1
0 0

0 𝜕𝑎[1]
2(𝑧[1]

2)
𝜕𝑧[1]

2
0

0 0 𝜕𝑎[1]
3(𝑧[1]

3)
𝜕𝑧[1]

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(A.7)

𝜕𝑦[0]
𝑛0

𝜕𝑧[0]
𝑛′

0

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑦[0]
1

𝜕𝑧[0]
1

𝜕𝑦[0]
1

𝜕𝑧[0]
2

𝜕𝑦0
2

𝜕𝑧[0]
1

𝜕𝑦[0]
2

𝜕𝑧[0]
2

⎞⎟⎟⎟⎟⎟⎟
⎠

= ⟮1 0
0 1

⟯ (A.8)

The derivatives of 𝑧[ℓ]
𝑛ℓ with respect to 𝑦[ℓ]

𝑛ℓ are simply the weight matrices in (A.1).

71

Appendix B
The Code

As already introduced in section 3.1, the code has been implemented using Python’s version
TensorFlow 2.3. The code was implemented a Google Colab notebook, hence each class was
encapsulated in a cell. Next, there is a brief simplified description on what each cell/class
contains:

– imports Cell: Imports the main libraries, which includes TensorFlow for tensor
manipulation, Time to get the time stamp, Pickle to save the models, MatPlotLib
to plot the models, among many others. It also suppresses Warnings.

– auxiliryPlotting Class: Encapsulates the methods for plotting results. It contains
functions to: plot the distribution of dataset collocations points, plot the output of
the model along the exact solution, plot the loss vs epoch graph of the training of the
model, plot the errors of individual points in the training set, and plot the loss vs epoch
of multiple models in the same graph.

– myDataSets Class: Used to create instances of myDataSets. Each of this instances
mainly generate for different options, and contain, the collocation of points for the
training and validation sets.

– problemInstance Class: Encapsulates the methods for the specifics of the diverse
instances of the initial/boundary problems. It contains functions that given the training
or validation set, and the artificial neural network output and derivatives, return the
values of: the differential operator, the external force, the initial/boundary conditions
lhs and rhs, and the exact solution of the problem.

– secondOrderOptimizers Class: Used to create instances of secondOrderOptimizers
implementing the BFGS and L-BFGS optimizers. Since Keras only contains first order
optimizers, this custom class uses the implementation in tensorflow_probability library,
which is generic, and adapts it to input artificial neural network models.

– myLayer Class: Overrides the keras.Layer class and it is used to create object instances
of myLayer. These objects contain the parameters and composition of the neurons in
an artificial neuron layer, and the feed method which process an input to obtain the
corresponding layer output.

– myModel Class: Overrides the keras.Model class to create instances of myModel,
which implements the artificial neural network models. These objects are based on
collections of myLayer instances, and contain either, a first order optimizer instance
from Keras, or second order optimizer instance from secondOrderOptimizers, which can
be accessed and changed at any moment. Through the methods in these objects and
given a myDataSets instance one can: obtain the model output, or train the model for a
problem set-up which calls on problemInstance for its specifics. Historical information
about the loss performance during training is stored in the object. Also, there are
methods to save and load models in *.pickle files, for later use.

72

– execution Cell: These are the snippets of code that calls on to the previous classes
to perform the experiments. One of these calls usually consist on: a call to instance a
myDataSets and myModel, with some options; a call to the fit method in myModel, to
train the artificial neural network; a call to one of the auxiliryPlotting methods to plot
the results; and optionally, saving the model. B.8 has an example showing in comments
all of the variations that can be used.

There are more functionalities implemented throughout these classes. For more details, read
the comments through the code. (The code font has been reduced to preserve indentation).

B.1 imports Cell

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 import math
7 from math import log
8 import numpy as np
9

10 import time
11 import matplotlib.pyplot as plt
12 from pylab import rcParams
13 from mpl_toolkits.mplot3d import Axes3D
14
15 import pickle
16 from google.colab import files # Only for the colab environment.
17
18 import tensorflow as tf
19 import tensorflow_probability as tfp
20 from tensorflow import keras
21 from tensorflow.keras import layers
22
23 import logging, os
24
25 # Supress Warnings.
26
27 logging.disable(logging.WARNING)
28 os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
29
30 # Optional code to check if there is a GPU available.
31
32 #%tensorflow_version 2.x
33 #device_name = tf.test.gpu_device_name()
34 #if device_name != '/device:GPU:0':
35 # raise SystemError('GPU device not found')
36 #print('Found GPU at: {}'.format(device_name))

B.2 auxiliryPlotting Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 class auxiliryPlotting:
7
8 ####################
9 # Plots the generated sets (Only 2D).

10 ####################
11 def plot_datasets (data_set):
12
13 %matplotlib inline
14 training_set, border_training_set, validation_set = data_set.get_sets()
15 _ , _, _, input_dim, output_dim = data_set.get_set_dimensions()
16
17 if (input_dim == 2):
18 plt.scatter(training_set[:,0], training_set[:,1], s=0.1)
19 plt.title('Training Set')
20 plt.show()
21
22 plt.scatter(border_training_set[0][:,0], border_training_set[0][:,1], s=0.1)
23 plt.title('Border Training Set')
24 plt.show()
25
26 plt.scatter(validation_set[:,0], validation_set[:,1], s=0.1)
27 plt.title('Validation Set')
28 plt.show()
29 else:
30 print('Invalid dimensions for plot.')

73

31
32 ####################
33 # Plot loss (Only for training set).
34 ####################
35 def plot_loss_function (model,
36 init_range = 0,
37 end_range = -1,
38 subdivide_losses = False,
39 use_log_scale = False):
40
41 %matplotlib inline
42
43 #Sets the x range of the plot.
44 plot_real_sol_loss = True
45 if (end_range < 0):
46 end_range = len(model._losses)
47
48 # Plots the real loss.
49 min_loss = min(model._losses[init_range:end_range])
50 max_loss = max(model._losses[init_range:end_range])
51
52 if (use_log_scale == True):
53 min_loss = min(loss for loss in model._losses[init_range:end_range] if loss > 0)
54 plt.plot(range(init_range, end_range),
55 [log(y,10) if y !=0 else None
56 for y in model._losses[init_range:end_range]],
57 label='Loss')
58 plt.ylim(log(min_loss ,10), log(max_loss ,10))
59 plt.title('Loss (log) - Epoch')
60 else:
61 plt.plot(range(init_range, end_range),
62 model._losses[init_range:end_range],
63 label='Loss')
64 plt.ylim(min_loss, max_loss)
65 plt.title('Loss - Epoch')
66
67 plt.xlim(init_range, end_range)
68 plt.legend()
69 plt.show()
70 print('Minimum Loss at:', str(min_loss))
71
72 # Plots the loss wrt the real solution.
73 min_loss_wrt_solution = min(model._losses_solution[init_range:end_range])
74 max_loss_wrt_solution = max(model._losses_solution[init_range:end_range])
75
76 if (use_log_scale == True):
77 min_loss_wrt_solution = min(loss for loss in model._losses_solution[init_range:end_range] if loss > 0)
78 plt.plot(range(init_range, end_range),
79 [log(y,10) if y !=0 else None
80 for y in model._losses_solution[init_range:end_range]],
81 label='Loss wrt Solution')
82 plt.ylim(log(min_loss_wrt_solution ,10), log(max_loss_wrt_solution ,10))
83 plt.title('Loss wrt Exact Sol (log) - Epoch')
84 else:
85 plt.plot(range(init_range, end_range),
86 model._losses_solution[init_range:end_range],
87 label='Loss')
88 plt.ylim(min_loss_wrt_solution , max_loss_wrt_solution)
89 plt.title('Loss wrt Exact Sol - Epoch')
90 plt.xlim(init_range, end_range)
91 plt.legend()
92 plt.show()
93 print('Minimum Loss wrt Solution at:', str(min_loss_wrt_solution))
94
95 # Plots the subdivision of the loss by its components.
96 if (subdivide_losses == True):
97
98 # Domain Component
99 min_domain_loss = min(model._losses_domain[init_range:end_range])

100 max_domain_loss = max(model._losses_domain[init_range:end_range])
101
102 if (use_log_scale == True):
103 min_domain_loss = min(loss for loss in model._losses_domain[init_range:end_range] if loss > 0)
104 plt.plot(range(init_range, end_range),
105 [log(y,10) if y !=0 else None
106 for y in model._losses_domain[init_range:end_range]],
107 label='Loss')
108 plt.ylim(log(min_domain_loss ,10), log(max_domain_loss ,10))
109 plt.title('Domain Loss (log) - Epoch')
110 else:
111 plt.plot(range(init_range, end_range),
112 model._losses_domain[init_range:end_range],
113 label='Loss')
114 plt.ylim(min_domain_loss, max_domain_loss)
115 plt.title('Domain Loss - Epoch')
116
117 plt.xlim(init_range, end_range)
118 plt.legend()
119 plt.show()
120 print('Minimum Domain Loss at:', str(min_domain_loss))
121
122 # Border Component
123 min_border_loss = min(model._losses_border[init_range:end_range])
124 max_border_loss = max(model._losses_border[init_range:end_range])
125
126 if (use_log_scale == True):
127 min_border_loss = min(loss for loss in model._losses_border[init_range:end_range] if loss > 0)
128 plt.plot(range(init_range, end_range),
129 [log(y,10) if y !=0 else None
130 for y in model._losses_border[init_range:end_range]],
131 label='Loss')
132 plt.ylim(log(min_border_loss ,10), log(max_border_loss ,10))

74

133 plt.title('Border Loss (log) - Epoch')
134 else:
135 plt.plot(range(init_range, end_range),
136 model._losses_border[init_range:end_range],
137 label='Loss')
138 plt.ylim(min_border_loss, max_border_loss)
139 plt.title('Border Loss - Epoch')
140
141 plt.xlim(init_range, end_range)
142 plt.legend()
143 plt.show()
144 print('Minimum Border Loss at:', str(min_border_loss))
145
146 # Regularization Component
147 if (model._regularization != None):
148 min_reg_loss = min(model._losses_regularization[init_range:end_range])
149 max_reg_loss = max(model._losses_regularization[init_range:end_range])
150
151 if (use_log_scale == True):
152 min_reg_loss = min(loss for loss in model._losses_regularization[init_range:end_range] if loss > 0)
153 plt.plot(range(init_range, end_range),
154 [log(y,10) if y !=0 else None
155 for y in model._losses_regularization[init_range:end_range]],
156 label='Loss')
157 plt.ylim(log(min_reg_loss ,10), log(max_reg_loss ,10))
158 plt.title('Regularization Loss (log) - Epoch')
159 else:
160 plt.plot(range(init_range, end_range),
161 model._losses_regularization[init_range:end_range],
162 label='Loss')
163 plt.ylim(min_reg_loss, max_reg_loss)
164 plt.title('Regularization Loss - Epoch')
165 plt.xlim(init_range, end_range)
166 plt.legend()
167 plt.show()
168 print('Minimum Regularization Loss at:', str(min_border_loss))
169
170 ####################
171 # Plots the model (Uses the validation set).
172 ####################
173 def plot_model (data_set,
174 model,
175 plot_real_sol = False):
176
177 if (model._input_dim == 1):
178 if (model._output_dim == 1):
179 outputs, _ = model.predict(data_set._validation_set)
180 exact_sol = problemInstance.exact_solution(inputs = data_set._validation_set,
181 exact_solution = model._exact_solution,
182 input_dim = 1,
183 output_dim = 1)
184 plt.scatter(data_set._validation_set, outputs, s=0.1, label='Model')
185 plt.scatter(data_set._validation_set, exact_sol, s=0.1, label='Exact Solution')
186 plt.xlabel('x')
187 plt.ylabel(r'$\hat{u}(x)$')
188 plt.legend()
189 plt.title('Model')
190 else:
191 print('Invalid dimensions for plot.')
192
193 elif (model._input_dim == 2):
194 x = data_set._validation_set[:,0]
195 y = data_set._validation_set[:,1]
196
197 if (model._output_dim == 1):
198 outputs, _ = model.predict(data_set._validation_set)
199 exact_sol = problemInstance.exact_solution(inputs = data_set._validation_set,
200 exact_solution = model._exact_solution,
201 input_dim = 2,
202 output_dim = 1)
203 # Modificar para los limites reales.
204 plt.rcParams['figure.figsize'] = [8,8]
205 fig = plt.figure()
206 ax = plt.axes(projection='3d')
207 ax.set_title('Model')
208 ax.set_xlim(tf.math.reduce_min(x), tf.math.reduce_max(x))
209 ax.set_ylim(tf.math.reduce_min(y), tf.math.reduce_max(y))
210 ax.set_xlabel('x')
211 ax.set_ylabel('y')
212 ax.set_zlabel('u (x,y)')
213 ax.scatter3D(x, y, outputs, cmap='Greens', s=1, label='Model')
214 fig = plt.figure()
215
216 ax.scatter3D(x, y, exact_sol, cmap='Greens', s=1, label='Exact Solution')
217 fig = plt.figure()
218 ax.set_title('Model vs Exact Solution')
219 ax.legend()
220 #Optional
221 ax.view_init(20, 230)
222
223 elif (model._output_dim == 2):
224 outputs, _ = model.predict(data_set._validation_set)
225 exact_sol = problemInstance.exact_solution(inputs = data_set._validation_set,
226 exact_solution = model._exact_solution,
227 input_dim = 2,
228 output_dim = 2)
229 # Modificar para los limites reales.
230 plt.rcParams['figure.figsize'] = [7,7]
231 fig = plt.figure()
232 ax = plt.axes(projection='3d')
233 ax.set_title('Model')
234 ax.set_xlim(tf.math.reduce_min(x), tf.math.reduce_max(x))

75

235 ax.set_ylim(tf.math.reduce_min(y), tf.math.reduce_max(y))
236 ax.set_xlabel('x')
237 ax.set_ylabel('y')
238 ax.set_zlabel('u_x(x,y)')
239 ax.scatter3D(x, y, outputs[:,0], cmap='Greens', s=0.2)
240 fig = plt.figure()
241
242 fig = plt.figure()
243 ax = plt.axes(projection='3d')
244 ax.set_title('Exact Solution')
245 ax.set_xlim(tf.math.reduce_min(x), tf.math.reduce_max(x))
246 ax.set_ylim(tf.math.reduce_min(y), tf.math.reduce_max(y))
247 ax.set_xlabel('x')
248 ax.set_ylabel('y')
249 ax.set_zlabel('u_x(x,y)')
250 ax.scatter3D(x, y, exact_sol[:,0], cmap='Greens', s=0.2)
251 fig = plt.figure()
252 plt.legend()
253
254 # Modificar para los limites reales.
255 plt.rcParams['figure.figsize'] = [7,7]
256 fig = plt.figure()
257 ax = plt.axes(projection='3d')
258 ax.set_title('Model')
259 ax.set_xlim(tf.math.reduce_min(x), tf.math.reduce_max(x))
260 ax.set_ylim(tf.math.reduce_min(y), tf.math.reduce_max(y))
261 ax.set_xlabel('x')
262 ax.set_ylabel('y')
263 ax.set_zlabel('u_y(x,y)')
264 ax.scatter3D(x, y, outputs[:,1], cmap='Greens', s=0.2)
265 fig = plt.figure()
266
267 fig = plt.figure()
268 ax = plt.axes(projection='3d')
269 ax.set_title('Exact Solution')
270 ax.set_xlim(tf.math.reduce_min(x), tf.math.reduce_max(x))
271 ax.set_ylim(tf.math.reduce_min(y), tf.math.reduce_max(y))
272 ax.set_xlabel('x')
273 ax.set_ylabel('y')
274 ax.set_zlabel('u_y(x,y)')
275 ax.scatter3D(x, y, exact_sol[:,1], cmap='Greens', s=0.2)
276 fig = plt.figure()
277 plt.legend()
278
279 else:
280 print('Invalid dimensions for plot.')
281
282 ####################
283 # Plots the squared error (Prototype).
284 ####################
285 def plot_error (data_set,
286 model):
287
288 if (model._input_dim == 1):
289 if (model._output_dim == 1):
290 outputs, _ = model.predict(data_set._validation_set)
291 exact_sol = problemInstance.exact_solution(inputs = data_set._validation_set,
292 exact_solution = model._exact_solution,
293 input_dim = 1,
294 output_dim = 1)
295 plt.scatter(data_set._validation_set, tf.square(outputs-exact_sol), s=0.1, label='Square Error')
296 plt.legend()
297 plt.title('Model')
298 else:
299 print('Invalid dimensions for plot.')
300
301 elif (model._input_dim == 2):
302 x = data_set._validation_set[:,0]
303 y = data_set._validation_set[:,1]
304
305 if (model._output_dim == 1):
306 # Loss wrt to the operator and force
307 domain_ind_loss = tf.reduce_sum(
308 tf.square(
309 problemInstance.differential_operator(
310 inputs = data_set._training_set,
311 outputs = model.predict(data_set._training_set,
312 model._required_derivative_order)[0],
313 outputs_derivatives = model.predict(data_set._training_set,
314 model._required_derivative_order)[1],
315 differential_operator = model._differential_operator ,
316 input_dim = 2,
317 output_dim = 1)
318 - problemInstance.external_force(inputs = data_set._training_set,
319 external_force = model._external_force,
320 input_dim = 2,
321 output_dim = 1)),
322 axis = 1,
323 keepdims =True)
324
325 #border_ind_loss = tf.reduce_sum(
326 # tf.square(data_set._border_training_set[1]
327 # - model.predict(data_set._border_training_set[0])[0],
328 # model._required_derivative_order),
329 # axis = 1,
330 # keepdims = True)
331
332 # Modificar para los limites reales.
333 plt.rcParams['figure.figsize'] = [7,7]
334 fig = plt.figure()
335 ax = plt.axes(projection='3d')
336 ax.set_xlim(0, 1)

76

337 ax.set_ylim(0, 1)
338 ax.set_xlabel('x')
339 ax.set_ylabel('y')
340 ax.set_zlabel(r'$L_{1}(x;w,b)$')
341 ax.scatter3D(#tf.concat([data_set._training_set[:,0], data_set._border_training_set[0][:,0]], axis=0),
342 #tf.concat([data_set._training_set[:,1], data_set._border_training_set[0][:,1]], axis=0),
343 #tf.square(tf.concat([domain_ind_loss, border_ind_loss], axis=0)),
344 tf.concat([data_set._training_set[:,0]], axis=0),
345 tf.concat([data_set._training_set[:,1]], axis=0),
346 tf.square(tf.concat([domain_ind_loss], axis=0)),
347 cmap='Greens',
348 s=0.2)
349 fig = plt.figure()
350 ax.set_title(r'MSE for the individual domain points: $||\mathcal{L}[\hat{u}(x,y)]-f(x,y)||^{2}_{2}$')
351 # Optional
352 ax.view_init(30, 40)
353
354 # Loss wrt to the real sol.
355 #input_set = tf.concat([data_set._training_set[:], data_set._border_training_set[0][:]], axis=0)
356 input_set = tf.concat([data_set._training_set[:]], axis=0)
357 outputs, _ = model.predict(input_set)
358 exact_sol = problemInstance.exact_solution(inputs = input_set,
359 exact_solution = model._exact_solution,
360 input_dim = 2,
361 output_dim = 1)
362 # Modificar para los limites reales.
363 plt.rcParams['figure.figsize'] = [7,7]
364 fig = plt.figure()
365 ax = plt.axes(projection='3d')
366 ax.set_title('Model')
367 ax.set_xlim(0, 1)
368 ax.set_ylim(0, 1)
369 ax.set_xlabel('x')
370 ax.set_ylabel('y')
371 ax.set_zlabel('Square Error')
372 ax.scatter3D(input_set[:,0],
373 input_set[:,1],
374 tf.square(outputs-exact_sol),
375 cmap='Greens',
376 s=0.2)
377 fig = plt.figure()
378 ax.set_title('Square Error of the Real Sol')
379
380 if (model._output_dim == 2):
381 # Loss wrt to the operator and force
382 domain_ind_loss = tf.reduce_sum(
383 tf.square(
384 problemInstance.differential_operator(
385 inputs = data_set._training_set,
386 outputs = model.predict(data_set._training_set,
387 model._required_derivative_order)[0],
388 outputs_derivatives = model.predict(data_set._training_set,
389 model._required_derivative_order)[1],
390 differential_operator = model._differential_operator ,
391 input_dim = 2,
392 output_dim = 2)
393 - problemInstance.external_force(inputs = data_set._training_set,
394 external_force = model._external_force,
395 input_dim = 2,
396 output_dim = 2)),
397 axis = 1,
398 keepdims =True)
399
400 border_ind_loss = tf.reduce_sum(
401 tf.square(data_set._border_training_set[1]
402 - model.predict(data_set._border_training_set[0])[0],
403 model._required_derivative_order),
404 axis = 1,
405 keepdims = True)
406
407 # Modificar para los limites reales.
408 plt.rcParams['figure.figsize'] = [7,7]
409 fig = plt.figure()
410 ax = plt.axes(projection='3d')
411 ax.set_title('Model')
412 ax.set_xlim(0, 1)
413 ax.set_ylim(0, 1)
414 ax.set_xlabel('x')
415 ax.set_ylabel('y')
416 ax.set_zlabel('Square Error')
417 ax.scatter3D(tf.concat([data_set._training_set[:,0], data_set._border_training_set[0][:,0]], axis=0),
418 tf.concat([data_set._training_set[:,1], data_set._border_training_set[0][:,1]], axis=0),
419 tf.square(tf.concat([domain_ind_loss, border_ind_loss], axis=0)),
420 cmap='Greens',
421 s=0.2)
422 fig = plt.figure()
423 ax.set_title('Square Error of the Loss Formula')
424
425 else:
426 print('Invalid dimensions for plot.')
427
428 def plot_loss_comparison (models,
429 names,
430 title,
431 init_range = 0,
432 end_range = -1,
433 subdivide_losses = False,
434 use_log_scale = False):
435
436 %matplotlib inline
437 #rcParams['figure.figsize'] = 15, 5
438 rcParams['figure.figsize'] = 20, 4

77

439
440 #Sets the x range of the plot.
441 if (end_range < 0):
442 end_range = 0
443 for model in models:
444 end_range_var = len(model._losses)
445 if (end_range < end_range_var):
446 end_range = end_range_var
447
448 # Plots the global loss.
449 min_loss = 1e30
450 max_loss = 0
451 for model in models:
452 min_loss_var = min(loss for loss in model._losses[init_range:end_range] if loss > 0)
453 max_loss_var = max(model._losses[init_range:end_range])
454 if (min_loss_var < min_loss):
455 min_loss = min_loss_var
456 if (max_loss_var > max_loss):
457 max_loss = max_loss_var
458
459 if (use_log_scale == True):
460 for model_ind in range(len(models)):
461 plt.plot(range(init_range, len(models[model_ind]._losses)),
462 [log(y,10) if y !=0 else None
463 for y in models[model_ind]._losses[init_range:len(models[model_ind]._losses)]],
464 label = names[model_ind])
465 plt.ylim(log(min_loss ,10), log(max_loss ,10))
466 plt.title(r'Global Loss Logaritm, $log_{10}(L(w,b))$ vs Epoch - ' + title)
467 else:
468 for model_ind in range(len(models)):
469 plt.plot(range(init_range, len(models[model_ind]._losses)),
470 models[model_ind]._losses[init_range:len(models[model_ind]._losses)],
471 label = names[model_ind])
472 plt.ylim(min_loss, max_loss)
473 plt.title(r'Global Loss, L(w,b) vs Epoch - ' + title)
474
475
476 plt.xlim(init_range, end_range)
477 plt.xlabel('Iterations ')
478 plt.ylabel('Loss')
479 plt.legend()
480 plt.show()
481
482 # Plots the loss wrt the real solution.
483 min_loss = 1e30
484 max_loss = 0
485 for model in models:
486 min_loss_var = min(loss for loss in model._losses_solution[init_range:end_range] if loss > 0)
487 max_loss_var = max(model._losses_solution[init_range:end_range])
488 if (min_loss_var < min_loss):
489 min_loss = min_loss_var
490 if (max_loss_var > max_loss):
491 max_loss = max_loss_var
492
493 if (use_log_scale == True):
494 for model_ind in range(len(models)):
495 plt.plot(range(init_range, len(models[model_ind]._losses_solution)),
496 [log(y,10) if y !=0 else None
497 for y in models[model_ind]._losses_solution[init_range:len(models[model_ind]._losses_solution)

]],
498 label = names[model_ind])
499 plt.ylim(log(min_loss ,10), log(max_loss ,10))
500 plt.title(r'Exact Solution Loss Logaritm, $log_{10}(L_{sol}(w,b))$ vs Epoch - ' + title)
501 else:
502 for model_ind in range(len(models)):
503 plt.plot(range(init_range, len(models[model_ind]._losses_solution)),
504 models[model_ind]._losses_solution[init_range:len(models[model_ind]._losses_solution)],
505 label = names[model_ind])
506 plt.ylim(min_loss, max_loss)
507 plt.title(r'Exact Solution Loss, $L_{sol}(w,b)$ vs Epoch - ' + title)
508
509 plt.xlim(init_range, end_range)
510 plt.xlabel('Iterations ')
511 plt.ylabel('Loss')
512 plt.legend()
513 plt.show()
514
515 # Plots the border loss.
516 min_loss = 1e30
517 max_loss = 0
518 for model in models:
519 min_loss_var = min(loss for loss in model._losses_border[init_range:end_range] if loss > 0)
520 max_loss_var = max(model._losses_border[init_range:end_range])
521 if (min_loss_var < min_loss):
522 min_loss = min_loss_var
523 if (max_loss_var > max_loss):
524 max_loss = max_loss_var
525
526 if (use_log_scale == True):
527 for model_ind in range(len(models)):
528 plt.plot(range(init_range, len(models[model_ind]._losses_border)),
529 [log(y,10) if y !=0 else None
530 for y in models[model_ind]._losses_border[init_range:len(models[model_ind]._losses_border)]],
531 label = names[model_ind])
532 plt.ylim(log(min_loss ,10), log(max_loss ,10))
533 plt.title(r'Initial Condition Loss Logaritm, $log_{10}(L_{2}(w,b))$ vs Epoch - ' + title)
534 else:
535 for model_ind in range(len(models)):
536 plt.plot(range(init_range, len(models[model_ind]._losses_border)),
537 models[model_ind]._losses_border[init_range:len(models[model_ind]._losses_border)],
538 label = names[model_ind])
539 plt.ylim(min_loss, max_loss)

78

540 plt.title(r'Initial Condition Loss, $L_{2}(w,b)$ vs Epoch - ' + title)
541
542 plt.xlim(init_range, end_range)
543 plt.xlabel('Iterations ')
544 plt.ylabel('Loss')
545 plt.legend()
546 plt.show()
547
548 # Plots the domain loss.
549 min_loss = 1e30
550 max_loss = 0
551 for model in models:
552 min_loss_var = min(loss for loss in model._losses_domain[init_range:end_range] if loss > 0)
553 max_loss_var = max(model._losses_domain[init_range:end_range])
554 if (min_loss_var < min_loss):
555 min_loss = min_loss_var
556 if (max_loss_var > max_loss):
557 max_loss = max_loss_var
558
559 if (use_log_scale == True):
560 for model_ind in range(len(models)):
561 plt.plot(range(init_range, len(models[model_ind]._losses_domain)),
562 [log(y,10) if y !=0 else None
563 for y in models[model_ind]._losses_domain[init_range:len(models[model_ind]._losses_domain)]],
564 label = names[model_ind])
565 plt.ylim(log(min_loss ,10), log(max_loss ,10))
566 plt.title(r'Domian Loss Logaritm, $log_{10}(L_{1}(w,b))$ vs Epoch - ' + title)
567 else:
568 for model_ind in range(len(models)):
569 plt.plot(range(init_range, len(models[model_ind]._losses_domain)),
570 models[model_ind]._losses_domain[init_range:len(models[model_ind]._losses_domain)],
571 label = names[model_ind])
572 plt.ylim(min_loss, max_loss)
573 plt.title(r'Domian Loss, $L_{1}(w,b)$ vs Epoch - ' + title)
574
575 plt.xlim(init_range, end_range)
576 plt.xlabel('Iterations ')
577 plt.ylabel('Loss')
578 plt.legend()
579 plt.show()

B.3 myDataSets Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 class myDataSets:
7
8 # Initialize myDataSets object.
9 def __init__ (self,

10 training_batch_size = 2000,
11 border_training_batch_size = 20,
12 validation_batch_size = 1000,
13 input_dim = 1,
14 method = 'uniform-hit-collocation',
15 domain = 'hypercube-0-1',
16 border = 'side-x_1-y_0',
17 seed = None):
18
19 self._training_batch_size = training_batch_size
20 self._border_training_batch_size = border_training_batch_size
21 self._validation_batch_size = validation_batch_size
22 self._input_dim = input_dim
23
24 self.method = method
25 self.domain = domain
26 self.border = border
27
28 seed_1 = None
29 seed_2 = None
30 seed_3 = None
31 if (seed != None):
32 seed_1 = seed
33 seed_2 = 2*seed
34 seed_3 = 3*seed
35
36 self._training_set = self.generate_domain_set (training_batch_size, input_dim,
37 method, domain, seed_1)
38
39 self._border_training_set = self.generate_border_set (border_training_batch_size ,
40 input_dim, method, border, seed_2)
41
42 self._validation_set = self.generate_domain_set(validation_batch_size , input_dim,
43 method, domain, seed_3)
44
45 # Generates a distribution of points inside the solving domain.
46 def generate_domain_set (self,
47 batch_size = 2000,
48 input_dim = 1,
49 method = 'uniform-hit-collocation',
50 domain = 'hypercube-0-1',
51 seed = None):
52
53 if (seed != None):
54 tf.random.set_seed(seed)

79

55
56 if (method == 'uniform-hit-collocation '):
57 if (domain == 'hypercube-0-1'):
58 domain_set = tf.random.uniform(shape=[batch_size, input_dim],
59 minval=0., maxval=1., dtype=tf.float32)
60 elif (domain == 'quarter-hypercube-0-1'):
61 domain_set = tf.random.uniform(shape=[batch_size, input_dim],
62 minval=0., maxval=0.5, dtype=tf.float32)
63 elif (domain == 'hypercube-0-2'):
64 domain_set = tf.random.uniform(shape=[batch_size, input_dim],
65 minval=0., maxval=2., dtype=tf.float32)
66
67 return domain_set
68
69 # Generates a distribution of points on the border of the solving domain.
70 def generate_border_set (self,
71 batch_size = 2,
72 input_dim = 1,
73 method = 'uniform-hit-collocation',
74 border = 'hypercube-0-1',
75 seed = None):
76
77 if (seed != None):
78 tf.random.set_seed(seed)
79
80 if (method == 'uniform-hit-collocation '):
81 if (border == 'hypercube-0-1'):
82 if (input_dim == 1):
83 x1 = tf.constant(0., shape=[1, input_dim], dtype=tf.float32)
84 x2 = tf.constant(1., shape=[1, input_dim], dtype=tf.float32)
85 border_set = tf.concat([x1, x2], axis=0)
86
87 elif (input_dim == 2):
88 x1 = tf.random.uniform(shape=[batch_size//4],
89 minval=0.,
90 maxval=1.,
91 dtype=tf.float32)
92 y1 = tf.constant(0.,
93 shape=[batch_size//4],
94 dtype=tf.float32)
95 border_set_1 = tf.stack([x1, y1], axis=1) # y=0
96
97 x2 = tf.random.uniform(shape=[batch_size//4],
98 minval=0.,
99 maxval=1.,

100 dtype=tf.float32)
101 y2 = tf.constant(1.,
102 shape=[batch_size//4],
103 dtype=tf.float32)
104 border_set_2 = tf.stack([x2, y2], axis=1) # y=1
105
106 x3 = tf.constant(0.,
107 shape=[batch_size//4],
108 dtype=tf.float32)
109 y3 = tf.random.uniform(shape=[batch_size//4],
110 minval=0.,
111 maxval=1.,
112 dtype=tf.float32)
113 border_set_3 = tf.stack([x3, y3], axis=1) # x=0
114
115 x4 = tf.constant(1.,
116 shape=[batch_size//4],
117 dtype=tf.float32)
118 y4 = tf.random.uniform(shape=[batch_size//4],
119 minval=0.,
120 maxval=1.,
121 dtype=tf.float32)
122 border_set_4 = tf.stack([x4, y4], axis=1) # x=1
123
124 border_set = tf.concat([border_set_1, border_set_2, border_set_3, border_set_4],
125 axis=0)
126
127 elif (border == 'side-x_1-y_0'):
128 if (input_dim == 1):
129 border_set = tf.constant(0., shape=[1, input_dim], dtype=tf.float32)
130 elif (input_dim == 2):
131 x1 = tf.random.uniform(shape=[batch_size],
132 minval=-1.,
133 maxval=2.,
134 dtype=tf.float32)
135 y1 = tf.constant(0.,
136 shape=[batch_size],
137 dtype=tf.float32)
138 border_set = tf.stack([x1, y1], axis=1)
139
140 elif (border == 'side-x_1-y_0_expanded '):
141 if (input_dim == 1):
142 border_set = tf.constant(0., shape=[1, input_dim], dtype=tf.float32)
143 elif (input_dim == 2):
144 x1 = tf.random.uniform(shape=[batch_size],
145 minval=-1.,
146 maxval=2.,
147 dtype=tf.float32)
148 y1 = tf.constant(0.,
149 shape=[batch_size],
150 dtype=tf.float32)
151 border_set = tf.stack([x1, y1], axis=1)
152
153 elif (border == 'two_sides-x_0-y_0'):
154 if (input_dim == 1):
155 border_set = tf.constant(0., shape=[1, input_dim], dtype=tf.float32)
156 elif (input_dim == 2):

80

157 x1 = tf.random.uniform(shape=[batch_size//2],
158 minval=0.,
159 maxval=1.,
160 dtype=tf.float32)
161 y1 = tf.constant(0.,
162 shape=[batch_size//2],
163 dtype=tf.float32)
164
165 x2 = tf.constant(0.,
166 shape=[batch_size//2],
167 dtype=tf.float32)
168 y2 = tf.random.uniform(shape=[batch_size//2],
169 minval=0.,
170 maxval=1.,
171 dtype=tf.float32)
172
173 border_set_1 = tf.stack([x1, y1], axis=1) # y=0
174 border_set_2 = tf.stack([x2, y2], axis=1) # x=0
175 border_set = tf.concat([border_set_1, border_set_2],
176 axis=0)
177
178 return border_set
179
180 # Returns the sets stored in this object.
181 def get_sets(self):
182 return self._training_set, self._border_training_set , self._validation_set
183
184 # Returns the metadata of the sets stored in this object.
185 def get_set_metadata(self):
186 return self._training_batch_size , self._border_training_batch_size , self._validation_batch_size ,\
187 self._input_dim, self.method, self.domain, self.border
188
189 # Drops the values which have negative loss.
190 def drop_negative_loss (data_set,
191 model):
192
193 # TBD
194 domain_ind_dif = tf.reduce_sum(
195 problemInstance.differential_operator(
196 inputs = data_set._training_set,
197 outputs = model.predict(data_set._training_set,
198 model._required_derivative_order)[0],
199 outputs_derivatives = model.predict(data_set._training_set,
200 model._required_derivative_order)[1],
201 differential_operator = model._differential_operator ,
202 input_dim = model._input_dim,
203 output_dim = model._output_dim)
204 - problemInstance.external_force(inputs = data_set._training_set,
205 external_force = model._external_force,
206 input_dim = model._input_dim,
207 output_dim = model._output_dim),
208 axis = 1,
209 keepdims = False)
210
211 # TBD
212 border_ind_dif = tf.reduce_sum(
213 data_set._border_training_set[1]
214 - model.predict(data_set._border_training_set[0],0)[0],
215 axis = 1,
216 keepdims = False)
217
218 # Mask
219 filtered_training_set = tf.boolean_mask(tensor = data_set._training_set,
220 mask = domain_ind_dif > 0,
221 axis = 0)
222 filtered_border_training_set_0 = tf.boolean_mask(tensor = data_set._border_training_set[0],
223 mask = border_ind_dif > 0,
224 axis = 0)
225 filtered_border_training_set_1 = tf.boolean_mask(tensor = data_set._border_training_set[1],
226 mask = border_ind_dif > 0,
227 axis = 0)
228
229 # Replace the Dataset
230 if (filtered_training_set.shape[0] != 0):
231 data_set._training_set = filtered_training_set
232 data_set._training_batch_size = filtered_training_set.shape[0]
233 if (filtered_border_training_set_0.shape[0] != 0):
234 data_set._border_training_set[0] = filtered_border_training_set_0
235 data_set._border_training_set[1] = filtered_border_training_set_1
236 data_set._border_training_batch_size = filtered_border_training_set_0.shape[0]
237
238 # Drops the values which have negative loss.
239 def drop_best_loss (data_set,
240 model):
241
242 # TBD
243 domain_ind_dif = tf.reduce_sum(tf.square(
244 problemInstance.differential_operator(
245 inputs = data_set._training_set,
246 outputs = model.predict(data_set._training_set,
247 model._required_derivative_order)[0],
248 outputs_derivatives = model.predict(data_set._training_set,
249 model._required_derivative_order)[1],
250 differential_operator = model._differential_operator ,
251 input_dim = model._input_dim,
252 output_dim = model._output_dim)
253 - problemInstance.external_force(inputs = data_set._training_set,
254 external_force = model._external_force,
255 input_dim = model._input_dim,
256 output_dim = model._output_dim)),
257 axis = 1,
258 keepdims = False)

81

259
260 # TBD
261 border_ind_dif = tf.reduce_sum(tf.square(
262 data_set._border_training_set[1]
263 - model.predict(data_set._border_training_set[0],0)[0]),
264 axis = 1,
265 keepdims = False)
266
267 # TBD
268 domain_best = tf.math.reduce_mean(
269 domain_ind_dif)
270
271 border_best = tf.math.reduce_mean(
272 border_ind_dif)
273
274 # Mask
275 filtered_training_set = tf.boolean_mask(tensor = data_set._training_set,
276 mask = domain_ind_dif > domain_best,
277 axis = 0)
278 filtered_border_training_set_0 = tf.boolean_mask(tensor = data_set._border_training_set[0],
279 mask = border_ind_dif > border_ind_dif,
280 axis = 0)
281 filtered_border_training_set_1 = tf.boolean_mask(tensor = data_set._border_training_set[1],
282 mask = border_ind_dif > border_ind_dif,
283 axis = 0)
284
285 # Replace the Dataset
286 if (filtered_training_set.shape[0] != 0):
287 data_set._training_set = filtered_training_set
288 data_set._training_batch_size = filtered_training_set.shape[0]
289 if (filtered_border_training_set_0.shape[0] != 0):
290 data_set._border_training_set[0] = filtered_border_training_set_0
291 data_set._border_training_set[1] = filtered_border_training_set_1
292 data_set._border_training_batch_size = filtered_border_training_set_0.shape[0]

B.4 problemInstance Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6
7 class problemInstance():
8
9 ####################

10 # Validates if the problem instance of a model is implemented.
11 ####################
12 def instance_exists (differential_operator ,
13 external_force,
14 exact_solution):
15
16 if (differential_operator == 'Constant'):
17 required_derivative_order = 0
18 elif (differential_operator == 'Divergence '):
19 required_derivative_order = 1
20 elif (differential_operator == 'Advection'):
21 required_derivative_order = 1
22 elif (differential_operator == 'Laplacian'):
23 required_derivative_order = 2
24 elif (differential_operator == 'Clairaut'):
25 required_derivative_order = 1
26 elif (differential_operator == 'Korteweg-deVries'):
27 required_derivative_order = 3
28 else:
29 raise Exception("Invalid differential operator option. Please recompile with a valid name.")
30
31 if (external_force == 'Force_Constant'
32 or external_force == 'Force_Divergence'
33 or external_force == 'Force_Laplacian'
34 or external_force == 'Force_Advection'
35 or external_force == 'Force_Clairaut'
36 or external_force == 'Force_Korteweg-deVries'):
37 pass
38 else:
39 raise Exception("Invalid external force option. Please recompile with a valid name.")
40
41 if (exact_solution == 'Sol_Polynomial_2Deg_1D_1D '
42 or exact_solution == 'Sol_Polynomial_2Deg_2D_1D '
43 or exact_solution == 'Sol_Polynomial_2Deg_2D_2D '
44 or exact_solution == 'Sol_Polynomial_4Deg_1D_1D '):
45 pass
46 else:
47 raise Exception("Invalid exact solution option. Please recompile with a valid name.")
48
49 return required_derivative_order
50
51 ####################
52 # Computes the differential operator value.
53 ####################
54 #@tf.function(experimental_relax_shapes = True)
55 def differential_operator (inputs,
56 outputs,
57 outputs_derivatives ,
58 differential_operator ,
59 input_dim,
60 output_dim):

82

61
62 #batch_size = inputs.shape[0]
63 # tf.print(batch_size)
64
65 if (differential_operator == 'Constant'):
66 if (input_dim == 1):
67 dif_operator_output = outputs
68 elif (input_dim == 2):
69 dif_operator_output = outputs
70 else:
71 raise Exception("Incompatible dimension (Diff Operator).")
72
73 if (differential_operator == 'Divergence '):
74 if (input_dim == 1):
75 dif_operator_output = outputs_derivatives[0]
76 elif (input_dim == 2):
77 dif_operator_output = tf.reduce_sum(outputs_derivatives[0], axis=1, keepdims=True)
78 else:
79 raise Exception("Incompatible dimension (Diff Operator).")
80
81 if (differential_operator == 'Laplacian'):
82 if (input_dim == 2):
83 dif_operator_output = tf.reduce_sum(outputs_derivatives[1],
84 axis=1,
85 keepdims=True)
86 else:
87 raise Exception("Incompatible dimension (Diff Operator).")
88
89 if (differential_operator == 'Advection'):
90 if (input_dim == 1):
91 dif_operator_output = outputs*outputs_derivatives[0]
92 elif (input_dim == 2):
93 dif_operator_output = tf.linalg.matvec(outputs_derivatives[0], outputs) # transpose_a = True
94 #outputs = tf.reshape(outputs,[batch_size,1,output_dim])
95 #outputs_derivatives[0] = tf.transpose(outputs_derivatives[0], perm=[0, 2, 1])
96 #dif_operator_output = tf.matmul(outputs, outputs_derivatives[0])
97 #dif_operator_output = tf.reshape(dif_operator_output,
98 # [batch_size, output_dim])
99 else:

100 raise Exception("Incompatible dimension (Diff Operator).")
101
102 if (differential_operator == 'Clairaut'):
103 if (input_dim == 2):
104 dif_operator_output = tf.reduce_sum(inputs*outputs_derivatives[0],
105 axis = 1,
106 keepdims = True)
107 else:
108 raise Exception("Incompatible dimension (Diff Operator).")
109
110 if (differential_operator == 'Korteweg-deVries'):
111 if (input_dim == 1):
112 dif_operator_output = outputs_derivatives[2]-outputs_derivatives[0]
113 else:
114 raise Exception("Incompatible dimension (Diff Operator).")
115
116 return dif_operator_output
117
118 ####################
119 # Computes the external force value.
120 ####################
121 #@tf.function(experimental_relax_shapes = True)
122 def external_force(inputs,
123 external_force,
124 input_dim,
125 output_dim):
126
127 batch_size = inputs.shape[0]
128 # tf.print(batch_size)
129
130 if (external_force == 'Force_Constant '):
131 if (input_dim == 1 and output_dim == 1):
132 x = inputs
133 ext_force_output = x*(x-1)
134 else:
135 raise Exception("Incompatible dimension (External force).")
136
137 if (external_force == 'Force_Divergence '):
138 if (input_dim == 1 and output_dim == 1):
139 x = inputs
140 ext_force_output = 2*x-1
141 elif (input_dim == 2 and output_dim == 1):
142 x = inputs[:,0]
143 y = inputs[:,1]
144 ext_force = (2*x-1)*y*(y-1)+x*(x-1)*(2*y-1)
145 ext_force_output = tf.reshape(ext_force,
146 [batch_size, output_dim])
147 else:
148 raise Exception("Incompatible dimension (External force).")
149
150 if (external_force == 'Force_Laplacian '):
151 if (input_dim == 2 and output_dim == 1):
152 x = inputs[:,0]
153 y = inputs[:,1]
154 ext_force = 2*y*(y-1)+2*x*(x-1)
155 ext_force_output = tf.reshape(ext_force,
156 [batch_size, output_dim])
157 else:
158 raise Exception("Incompatible dimension (External force).")
159
160 if (external_force == 'Force_Advection '):
161 if (input_dim == 1 and output_dim == 1):
162 x = inputs

83

163 ext_force_output = x*(x-1)*(2*x-1)
164 elif (input_dim == 2 and output_dim == 2):
165 x = inputs[:,0]
166 y = inputs[:,1]
167 x_ext_force = x*(x-1)*y*(y-1)*((2*x-1)*y*(y-1)+x*(x-1)*(2*y-1))
168 y_ext_force = x*(x-1)*y*(y-1)*((2*x-1)*y*(y-1)+x*(x-1)*(2*y-1))
169 ext_force_output = tf.stack([x_ext_force, y_ext_force], axis=1)
170 else:
171 raise Exception("Incompatible dimension (External force).")
172
173 if (external_force == 'Force_Clairaut '):
174 if (input_dim == 2 and output_dim == 1):
175 x = inputs[:,0]
176 y = inputs[:,1]
177 ext_force = x*(2*x-1)*y*(y-1)+y*x*(x-1)*(2*y-1)
178 ext_force_output = tf.reshape(ext_force,
179 [batch_size, output_dim])
180 else:
181 raise Exception("Incompatible dimension (External force).")
182
183 if (external_force == 'Force_Korteweg-deVries'):
184 if (input_dim == 1 and output_dim == 1):
185 x = inputs
186 ext_force_output = -4*x*x*x+3*x*x+32*x-10
187 else:
188 raise Exception("Incompatible dimension (External force).")
189
190 return ext_force_output
191
192 ####################
193 # Computes the rhs border functions of the boundary conditions.
194 # Returns list with [border_inputs, rhs_function_1, rhs_funtion_2, ...]
195 ####################
196 def border_data_prep(border_inputs,
197 border_type,
198 border_batch_size,
199 external_force,
200 required_derivative_order ,
201 input_dim,
202 output_dim):
203
204 border_data = None
205 if (required_derivative_order != 0):
206 border_data = [border_inputs]
207
208 if (required_derivative_order >= 1):
209
210 # Border is always zero in the perimeter.
211 if (input_dim == 1):
212 x1 = border_inputs[:,0]
213
214 if (output_dim == 1):
215 g1 = 0.*x1
216 border_set_outputs = tf.stack([g1], axis=1)
217
218 elif (output_dim == 2):
219 g1 = 0.*x1
220 g2 = 0.*x1
221 border_set_outputs = tf.stack([g1, g2], axis=1)
222
223 elif (input_dim == 2):
224 x1 = border_inputs[:,0]
225 y1 = border_inputs[:,1]
226
227 if (output_dim == 1):
228 g1 = 0.*x1*y1
229 border_set_outputs = tf.stack([g1], axis=1)
230
231 elif (output_dim == 2):
232 g1 = 0.*x1*y1
233 g2 = 0.*x1*y1
234 border_set_outputs = tf.stack([g1, g2], axis=1)
235
236 border_data.append(border_set_outputs)
237
238 if (required_derivative_order >= 2 or external_force == 'Force_Advection '):
239
240 if (external_force == 'Force_Laplacian' or external_force == 'Force_Advection '):
241 if (border_type == 'side-x_1-y_0'
242 or border_type == 'side-x_1-y_0_expanded '):
243
244 if (input_dim == 1):
245 x1 = border_inputs[:,0]
246
247 if (output_dim == 1):
248 g1 = 2.*x1-1
249 border_set_outputs = tf.stack([g1], axis=1)
250
251 elif (input_dim == 2):
252 x1 = border_inputs[:,0]
253 y1 = border_inputs[:,1]
254
255 if (output_dim == 1):
256 g1 = (2.*y1-1)*x1*(x1-1)
257 border_set_outputs = tf.stack([g1], axis=1)
258
259 elif (border_type == 'two_sides-x_0-y_0'):
260 if (input_dim == 1):
261 x1 = border_inputs[:,0]
262
263 if (output_dim == 1):
264 g1 = 2.*x1-1

84

265 border_set_outputs = tf.stack([g1], axis=1)
266
267 elif (input_dim == 2):
268 sub_batch_size = border_batch_size//2
269 x1 = border_inputs[0*sub_batch_size:1*sub_batch_size ,0]
270 y1 = border_inputs[0*sub_batch_size:1*sub_batch_size ,1]
271 x2 = border_inputs[1*sub_batch_size:2*sub_batch_size ,0]
272 y2 = border_inputs[1*sub_batch_size:2*sub_batch_size ,1]
273
274 if (output_dim == 1):
275 g1 = x1*(x1-1)*(2.*y1-1) # First y=0
276 g2 = (2.*x2-1)*y2*(y2-1) # Second x=0
277 border_set_outputs = tf.stack([g1,g2], axis=1)
278
279 elif (border_type == 'hypercube-0-1'):
280 if (input_dim == 1):
281 x1 = border_inputs[:,0]
282
283 if (output_dim == 1):
284 g1 = 2.*x1-1
285 border_set_outputs = tf.stack([g1], axis=1)
286
287 elif (input_dim == 2):
288 sub_batch_size = border_batch_size//4
289 x1 = border_inputs[0*sub_batch_size:1*sub_batch_size ,0]
290 y1 = border_inputs[0*sub_batch_size:1*sub_batch_size ,1]
291 x2 = border_inputs[1*sub_batch_size:2*sub_batch_size ,0]
292 y2 = border_inputs[1*sub_batch_size:2*sub_batch_size ,1]
293 x3 = border_inputs[2*sub_batch_size:3*sub_batch_size ,0]
294 y3 = border_inputs[2*sub_batch_size:3*sub_batch_size ,1]
295 x4 = border_inputs[3*sub_batch_size:4*sub_batch_size ,0]
296 y4 = border_inputs[3*sub_batch_size:4*sub_batch_size ,1]
297
298 if (output_dim == 1):
299 g1 = x1*(x1-1)*(2.*y1-1) # First y=0
300 g2 = x2*(x2-1)*(2.*y2-1) # First y=1
301 g3 = (2.*x3-1)*y3*(y3-1) # Second x=0
302 g4 = (2.*x4-1)*y4*(y4-1) # Second x=1
303
304 border_set_outputs = tf.stack([g1,g2,g3,g4], axis=1)
305
306 border_data.append(border_set_outputs)
307
308 return border_data
309
310 ####################
311 # Computes the boundary conditions (lhs).
312 ####################
313 def lhs_boundary_condtions (inputs,
314 outputs,
315 outputs_derivatives ,
316 border_type,
317 border_batch_size,
318 external_force,
319 required_derivative_order ,
320 input_dim ,
321 output_dim):
322
323 boundary_cond = []
324
325 if (required_derivative_order >= 1):
326 boundary_cond.append(outputs)
327
328 if (required_derivative_order >= 2 or external_force == 'Force_Advection '):
329 if (external_force == 'Force_Laplacian' or external_force == 'Force_Advection '):
330 if (border_type == 'side-x_1-y_0'
331 or border_type == 'side-x_1-y_0_expanded '):
332 if (input_dim == 1):
333 if (output_dim == 1):
334 boundary_cond.append(outputs_derivatives[0])
335
336 elif (input_dim == 2):
337 if (output_dim == 1):
338 boundary_cond_val = outputs_derivatives[0][:,1]
339 boundary_cond_val_resized = tf.stack([boundary_cond_val], axis=1)
340 boundary_cond.append(boundary_cond_val_resized)
341
342 elif (border_type == 'two_sides-x_0-y_0'):
343 if (input_dim == 1):
344 if (output_dim == 1):
345 boundary_cond.append(outputs_derivatives[0])
346
347 elif (input_dim == 2):
348 if (output_dim == 1):
349 sub_batch_size = border_batch_size//2
350 boundary_cond_val_1 = outputs_derivatives[0][0*sub_batch_size:1*sub_batch_size ,1] # First y=0
351 boundary_cond_val_2 = outputs_derivatives[0][1*sub_batch_size:2*sub_batch_size ,0] # Second x=0
352 boundary_cond_val_comb = tf.stack([boundary_cond_val_1,boundary_cond_val_2], axis=1)
353 boundary_cond.append(boundary_cond_val_comb)
354
355 elif (border_type == 'hypercube-0-1'):
356 if (input_dim == 1):
357 if (output_dim == 1):
358 boundary_cond.append(outputs_derivatives[0])
359
360 elif (input_dim == 2):
361 if (output_dim == 1):
362 sub_batch_size = border_batch_size//4
363 boundary_cond_val_1 = outputs_derivatives[0][0*sub_batch_size:1*sub_batch_size ,1] # y=0
364 boundary_cond_val_2 = outputs_derivatives[0][1*sub_batch_size:2*sub_batch_size ,1] # y=1
365 boundary_cond_val_3 = outputs_derivatives[0][2*sub_batch_size:3*sub_batch_size ,0] # x=0
366 boundary_cond_val_4 = outputs_derivatives[0][3*sub_batch_size:4*sub_batch_size ,0] # x=1

85

367 boundary_cond_val_comb = tf.stack([boundary_cond_val_1,boundary_cond_val_2 ,boundary_cond_val_3 ,
boundary_cond_val_4], axis=1)

368 boundary_cond.append(boundary_cond_val_comb)
369
370 return boundary_cond
371
372 ####################
373 # Computes the exact solution value.
374 ####################
375 #@tf.function(experimental_relax_shapes = True)
376 def exact_solution (inputs,
377 exact_solution,
378 input_dim,
379 output_dim):
380
381 batch_size = inputs.shape[0]
382 # tf.print(batch_size)
383
384 if (exact_solution == 'Sol_Polynomial_2Deg_1D_1D '):
385 if (input_dim == 1 and output_dim == 1):
386 x = inputs
387 exact_sol_output = x*(x-1)
388 else:
389 raise Exception("Incompatible dimension (External force).")
390
391 if (exact_solution == 'Sol_Polynomial_4Deg_1D_1D '):
392 if (input_dim == 1 and output_dim == 1):
393 x = inputs
394 exact_sol_output = x*(x-1)*(x*x-4)
395 else:
396 raise Exception("Incompatible dimension (External force).")
397
398 if (exact_solution == 'Sol_Polynomial_2Deg_2D_1D '):
399 if (input_dim == 2 and output_dim == 1):
400 x = inputs[:,0]
401 y = inputs[:,1]
402 exact_sol = x*(x-1)*y*(y-1)
403 exact_sol_output = tf.reshape(exact_sol,
404 [batch_size, output_dim])
405 else:
406 raise Exception("Incompatible dimension (External force).")
407
408 if (exact_solution == 'Sol_Polynomial_2Deg_2D_2D '):
409 if (input_dim == 2 and output_dim == 2):
410 x = inputs[:,0]
411 y = inputs[:,1]
412 x_exact_sol = x*(x-1)*y*(y-1)
413 y_exact_sol = x*(x-1)*y*(y-1)
414 exact_sol_output = tf.stack([x_exact_sol, y_exact_sol],
415 axis=1)
416 else:
417 raise Exception("Incompatible dimension (External force).")
418
419 return exact_sol_output

B.5 secondOrderOptimizers Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 class secondOrderOptimizers():
7
8 def __init__ (self,
9 name,

10 model):
11
12 self._name = name
13 self._model = model
14
15 def optimizer_train_data (self,
16 inputs,
17 border_data,
18 split_gradient = False,
19 display_gradient_norm = False,
20 normalize_gradient = False,
21 train_only_domain = False,
22 train_only_border = False):
23
24 self._inputs = inputs
25 self._border_data = border_data
26 self._split_gradient = split_gradient
27 self._display_gradient_norm = display_gradient_norm
28 self._normalize_gradient = normalize_gradient
29 self._train_only_domain = train_only_domain
30 self._train_only_border = train_only_border
31
32 def flatten_tensor_list (self,
33 tensor_list):
34
35 lineraized_params = tf.constant(0., shape=[1,])
36 for param_ind in range(0, len(tensor_list)//2):
37 for param_sub_ind in range(0, tensor_list[2*param_ind].shape[0]):
38 param = tensor_list[2*param_ind][param_sub_ind]
39 lineraized_params = tf.concat([lineraized_params, param], axis=0)
40 param = tensor_list[2*param_ind+1]

86

41 lineraized_params = tf.concat([lineraized_params, param], axis=0)
42 lineraized_params = tf.reshape(lineraized_params, [1,-1])
43 return lineraized_params
44
45 def update_parameters (self,
46 lineraized_params):
47
48 init_pos = 1
49 final_pos = 1
50 for param_ind in range(0, len(self._model._trainable_weights)//2):
51 for param_sub_ind in range(0, self._model._trainable_weights[2*param_ind].shape[0]):
52 final_pos = init_pos + self._model._trainable_weights[2*param_ind][param_sub_ind].shape[0]
53 self._model._trainable_weights[2*param_ind][param_sub_ind].assign(lineraized_params[0,init_pos:final_pos])
54 init_pos = final_pos
55 final_pos = init_pos + self._model._trainable_weights[2*param_ind+1].shape[0]
56 self._model._trainable_weights[2*param_ind+1].assign(lineraized_params[0,init_pos:final_pos])
57 init_pos = final_pos
58
59 def parametric_model (self,
60 new_parameters):
61
62 self.update_parameters(new_parameters)
63
64 loss, _, _, _ = self._model.loss_function (inputs_domain = self._inputs,
65 border_data = self._border_data,
66 is_training = False,
67 use_only_domain = self._train_only_domain,
68 use_only_border = self._train_only_border)
69
70 gradient_update = self._model.back_propagation(inputs = self._inputs,
71 border_data = self._border_data,
72 is_training = False,
73 split_gradient = True,
74 display_gradient_norm = False,
75 normalize_gradient = self._normalize_gradient ,
76 train_only_domain = self._train_only_domain,
77 train_only_border = self._train_only_border)
78
79 gradient_update = self.flatten_tensor_list(gradient_update)
80 loss = tf.reshape(loss, shape=[1])
81 return loss, gradient_update
82
83 def apply_gradients (self):
84
85 initial_params = self.flatten_tensor_list(self._model._trainable_weights)
86 if (self._name == 'L-BFGS'):
87 optimization_results = tfp.optimizer.lbfgs_minimize(self.parametric_model,
88 initial_position = initial_params,
89 num_correction_pairs = 10,
90 tolerance = 1e-32,
91 max_iterations=1,
92 parallel_iterations=1,
93 stopping_condition=None,
94 max_line_search_iterations = 10)
95 elif (self._name == 'BFGS'):
96 optimization_results = tfp.optimizer.bfgs_minimize(self.parametric_model,
97 initial_position = initial_params,
98 tolerance = 1e-32,
99 max_iterations=1,

100 parallel_iterations=1,
101 stopping_condition=None,
102 max_line_search_iterations = 10)
103 optimized_params = optimization_results.position
104 self.update_parameters(optimized_params)
105
106 _ = self._model.back_propagation(inputs = self._inputs,
107 border_data = self._border_data,
108 is_training = True,
109 split_gradient = self._split_gradient,
110 display_gradient_norm = self._display_gradient_norm ,
111 normalize_gradient = self._normalize_gradient ,
112 train_only_domain = self._train_only_domain,
113 train_only_border = self._train_only_border)

B.6 myLayer Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 class myLayer(keras.layers.Layer):
7
8 ####################
9 # Initialize the Layer object.

10 ####################
11 def __init__ (self,
12 name = 'newLayer'):
13
14 super(myLayer, self).__init__()
15 self._name = name
16
17 ####################
18 # Constructs the Layer
19 ####################
20 def build (self,
21 input_dim = 2,

87

22 output_dim = 2,
23 activation = 'sigmoid',
24 weight_initializer = 'xavier',
25 bias_initializer = 'xavier',
26 seed = None,
27 batch_normalization = False,
28 supress_bias = False,
29 epsilon = 1e-12):
30
31 self._input_dim = input_dim
32 self._output_dim = output_dim
33 self._activation = activation
34 self._weight_initializer = weight_initializer
35 self._bias_initializer = bias_initializer
36 self._batch_normalization = batch_normalization
37 self._has_bias = not supress_bias
38 self._epsilon = epsilon
39
40 if (weight_initializer == 'zeros'):
41 wInit = tf.keras.initializers.Zeros()
42 elif (weight_initializer == 'ones'):
43 wInit = tf.keras.initializers.Ones()
44 elif (weight_initializer == 'normal_0_1 '):
45 wInit = RandomNormal(mean=0., stddev=1., seed=seed)
46 elif (weight_initializer == 'uniform_-1_1'):
47 wInit = tf.keras.initializers.RandomUniform(minval=-1., maxval=1., seed=seed)
48 elif (weight_initializer == 'xavier'):
49 wInit = tf.keras.initializers.GlorotNormal(seed=seed)
50 elif (weight_initializer == 'he'):
51 wInit = tf.keras.initializers.he_normal(seed=seed)
52
53 if (bias_initializer == 'zeros'):
54 bInit = tf.keras.initializers.Zeros()
55 elif (bias_initializer == 'ones'):
56 bInit = tf.keras.initializers.Ones()
57 elif (bias_initializer == 'normal_0_1 '):
58 bInit = RandomNormal(mean=0.,stddev=1.,seed=seed)
59 elif (bias_initializer == 'uniform_-1_1'):
60 bInit = tf.keras.initializers.RandomUniform(minval=-1., maxval=1., seed=seed)
61 elif (bias_initializer == 'xavier'):
62 bInit = tf.keras.initializers.GlorotNormal(seed=seed)
63 elif (bias_initializer == 'he'):
64 bInit = tf.keras.initializers.he_normal(seed=seed)
65
66 self.w = self.add_weight(
67 name = self._name + ' W',
68 shape = (self._input_dim, self._output_dim),
69 initializer = wInit,
70 trainable = True)
71 tf.cast(self.w, tf.float32)
72
73 if (self._has_bias == True):
74 self.b = self.add_weight(
75 name = self._name + ' b',
76 shape = (self._output_dim ,),
77 initializer = bInit,
78 trainable = True)
79 else:
80 bInit = tf.keras.initializers.Zeros()
81 self.b = self.add_weight(
82 name = self._name + ' b',
83 shape = (self._output_dim ,),
84 initializer = bInit,
85 trainable = True)
86 tf.cast(self.b, tf.float32)
87
88 ####################
89 # Feeds the input into the layer.
90 ####################
91 def feed(self,
92 inputs = None):
93
94 if (self._has_bias == True):
95 outputs = tf.matmul(inputs, self.w) + self.b
96 else:
97 outputs = tf.matmul(inputs, self.w)
98
99 if (self._activation == 'sigmoid'):

100 outputs = tf.nn.sigmoid(outputs)
101 if (self._activation == 'tanh'):
102 outputs = tf.keras.activations.tanh(outputs)
103 if (self._activation == 'relu'):
104 outputs = tf.nn.relu(outputs)
105 if (self._activation == 'exponential '):
106 outputs = tf.keras.activations.exponential(outputs)
107 if (self._activation == 'elu'):
108 outputs = tf.keras.activations.elu(outputs, alpha=1.0)
109 if (self._activation == 'swish'):
110 outputs = tf.keras.activations.swish(outputs)
111 if (self._activation == 'softplus'):
112 outputs = tf.nn.softplus(outputs)
113
114
115 if (self._batch_normalization == True):
116 mean, var = tf.nn.moments(outputs, axes=0, keepdims=True)
117 outputs = (outputs-mean)/(tf.math.sqrt(var + self._epsilon))
118
119 return outputs

88

B.7 myModel Class

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 class myModel(tf.keras.Model):
7
8 ####################
9 # Initializes the model instance.

10 ####################
11 def __init__ (self,
12 name = 'myModel'):
13
14 super(myModel, self).__init__()
15
16 # Initializes the name and flags for the model.
17 self._name = name
18 self.built = False
19 self._is_compiled = False
20 self._has_dataset = False
21
22 # Initializes the historical training variables of the model.
23 self._num_epochs_trained = 0
24 self._losses = []
25 self._losses_domain = []
26 self._losses_border = []
27 self._losses_regularization = []
28 self._losses_solution = []
29 self._losses_validation = []
30
31 ####################
32 # Builds the layers of the model.
33 ####################
34 def build (self,
35 input_dim = 2,
36 hidden_dim = [5,5],
37 output_dim = 2,
38 activations = 'sigmoid',
39 weight_initializers = 'xavier',
40 bias_initializers = 'xavier',
41 batch_normalization = False,
42 supress_bias = False,
43 seed = None,
44 epsilon = 1e-12):
45
46 # Sets up the basic characteristics of the layers in the model.
47 self._input_dim = input_dim
48 self._hidden_dim = hidden_dim
49 self._output_dim = output_dim
50 self._num_hidden_layers = len(hidden_dim)-1
51 self._activations = activations
52 self._weight_initializers = weight_initializers
53 self._bias_initializers = bias_initializers
54 self._batch_normalization = batch_normalization
55 self._has_bias = not supress_bias
56
57 self._layers = []
58
59 # Constructs the input layer.
60 layer = myLayer('Input_Layer ')
61 layer.build(input_dim = self._input_dim,
62 output_dim = self._hidden_dim[0],
63 activation = self._activations,
64 weight_initializer = self._weight_initializers ,
65 bias_initializer = self._bias_initializers,
66 seed = seed,
67 batch_normalization = self._batch_normalization ,
68 supress_bias = supress_bias,
69 epsilon = epsilon)
70 self._layers.append(layer)
71 self._trainable_weights.append(layer.variables[0])
72 self._trainable_weights.append(layer.variables[1])
73
74 # Constructs the hidden layers.
75 for layer_num in range(1,self._num_hidden_layers+1):
76 layer = myLayer('Hidden_Layer_ '+str(layer_num))
77 layer.build(input_dim = self._hidden_dim[layer_num-1],
78 output_dim = self._hidden_dim[layer_num],
79 activation = self._activations,
80 weight_initializer = self._weight_initializers ,
81 bias_initializer = self._bias_initializers,
82 seed = seed,
83 batch_normalization = self._batch_normalization ,
84 supress_bias = supress_bias,
85 epsilon = epsilon)
86 self._layers.append(layer)
87 self._trainable_weights.append(layer.variables[0])
88 self._trainable_weights.append(layer.variables[1])
89
90 # Constructs the output layer.
91 layer = myLayer('Output_Layer ')
92 layer.build(input_dim = self._hidden_dim[-1],
93 output_dim = self._output_dim,
94 activation = None,
95 weight_initializer = self._weight_initializers ,
96 bias_initializer = self._bias_initializers,

89

97 seed = seed,
98 batch_normalization = False,
99 supress_bias = supress_bias,

100 epsilon = None)
101 self._layers.append(layer)
102 self._trainable_weights.append(layer.variables[0])
103 self._trainable_weights.append(layer.variables[1])
104
105 # Raise flag if the neural network has been built successfuly.
106 self.built = True
107
108 ####################
109 # Sets up the optimizer.
110 ####################
111 def set_up_optimizer (self,
112 optimizer_selection ,
113 learning_rate = 1e-03,
114 epsilon = 1e-07):
115
116 # Sets up the information of the optimizer.
117 self._optimizer_selection = optimizer_selection
118 self._learning_rate = learning_rate
119 self._epsilon = epsilon
120
121 # Adam Optimizer (1st Order)
122 if (self._optimizer_selection == 'Adam'):
123 self._optimizer1 = tf.keras.optimizers.Adam(learning_rate = self._learning_rate,
124 epsilon = self._epsilon,
125 amsgrad = False)
126 self._optimizer2 = tf.keras.optimizers.Adam(learning_rate = self._learning_rate,
127 epsilon = self._epsilon,
128 amsgrad = False)
129 # AMSGrad Optimizer (1st Order)
130 elif (self._optimizer_selection == 'AMSGrad'):
131 self._optimizer1 = tf.keras.optimizers.Adam(learning_rate = self._learning_rate,
132 epsilon = self._epsilon,
133 amsgrad = True)
134 self._optimizer2 = tf.keras.optimizers.Adam(learning_rate = self._learning_rate,
135 epsilon = self._epsilon,
136 amsgrad = True)
137 # Nadam Optimizer (1st Order)
138 elif (self._optimizer_selection == 'Nadam'):
139 self._optimizer1 = tf.keras.optimizers.Nadam(learning_rate = self._learning_rate,
140 epsilon = self._epsilon)
141 self._optimizer2 = tf.keras.optimizers.Nadam(learning_rate = self._learning_rate,
142 epsilon = self._epsilon)
143 # AdaGrad Optimizer (1st Order)
144 elif (self._optimizer_selection == 'AdaGrad'):
145 self._optimizer1 = tf.keras.optimizers.Adagrad(learning_rate = self._learning_rate,
146 epsilon = self._epsilon)
147 self._optimizer2 = tf.keras.optimizers.Adagrad(learning_rate = self._learning_rate,
148 epsilon = self._epsilon)
149 # AdaDelta Optimizer (1st Order)
150 elif (self._optimizer_selection == 'AdaDelta'):
151 self._optimizer1 = tf.keras.optimizers.Adadelta(learning_rate = self._learning_rate,
152 rho = 0.95,
153 epsilon = self._epsilon)
154 self._optimizer2 = tf.keras.optimizers.Adadelta(learning_rate = self._learning_rate,
155 rho = 0.95,
156 epsilon = self._epsilon)
157 # RMSProp Optimizer (1st Order)
158 elif (self._optimizer_selection == 'RMSProp'):
159 self._optimizer1 = tf.keras.optimizers.RMSprop(learning_rate=self._learning_rate,
160 epsilon = self._epsilon)
161 self._optimizer2 = tf.keras.optimizers.RMSprop(learning_rate=self._learning_rate,
162 epsilon = self._epsilon)
163 # Vanilla SDG Optimizer (1st Order)
164 elif (self._optimizer_selection == 'Vanilla_SGD '):
165 self._optimizer1 = tf.keras.optimizers.SGD(learning_rate = self._learning_rate,
166 nesterov = False)
167 self._optimizer2 = tf.keras.optimizers.SGD(learning_rate = self._learning_rate,
168 nesterov = False)
169 # SGD with Momentum Optimizer (1st Order)
170 elif (self._optimizer_selection == 'Momentum_SGD '):
171 self._optimizer1 = keras.optimizers.SGD(learning_rate = self._learning_rate,
172 momentum = 0.9,
173 nesterov = False)
174 self._optimizer2 = keras.optimizers.SGD(learning_rate = self._learning_rate,
175 momentum = 0.9,
176 nesterov = False)
177 # SGD with Nesterov Momentum Optimizer (1st Order)
178 elif (self._optimizer_selection == 'Nesterov_SGD '):
179 self._optimizer1 = keras.optimizers.SGD(learning_rate = self._learning_rate,
180 momentum = 0.9,
181 nesterov = True)
182 self._optimizer2 = keras.optimizers.SGD(learning_rate = self._learning_rate,
183 momentum = 0.9,
184 nesterov = True)
185 # BFGS Optimizer (2st Order)
186 elif (self._optimizer_selection == 'BFGS'):
187 self._optimizer = secondOrderOptimizers(name = 'BFGS',
188 model = self)
189 # L-BFGS Optimizer (2st Order)
190 elif (self._optimizer_selection == 'L-BFGS'):
191 self._optimizer = secondOrderOptimizers(name = 'L-BFGS',
192 model = self)
193 else:
194 self._is_compiled = False
195 raise Exception("Invalid optimizer.")
196
197 ####################
198 # Builds the problem instance and training set up.

90

199 ####################
200 def compile (self,
201 differential_operator = None,
202 external_force = None,
203 exact_solution = None,
204 optimizer_selection = None,
205 learning_rate = 1e-03,
206 epsilon = 1e-07,
207 scale_factor = 1,
208 loss_fuction = 'square_L2_error',
209 regularization = None,
210 regularization_coef = 0,
211 clip_gradient = 'global'):
212
213 # Sets up he problem solved by the model.
214 self._differential_operator = differential_operator
215 self._external_force = external_force
216 self._exact_solution = exact_solution
217
218 # Sets up the regularization and loss options.
219 self._scale_factor = scale_factor
220 self._loss_fuction = loss_fuction
221 self._regularization = regularization
222 self._regularization_coef = regularization_coef
223 self._clip_gradient = clip_gradient
224
225 # Constructs the optimizer and validates the instances.
226 if (regularization == None):
227 print('No regularization introduced, using default None')
228 self._required_derivative_order = problemInstance.\
229 instance_exists(differential_operator = self._differential_operator ,
230 external_force = self._external_force,
231 exact_solution = self._exact_solution)
232 self.set_up_optimizer(optimizer_selection = optimizer_selection,
233 learning_rate = learning_rate,
234 epsilon = epsilon)
235
236 # Raise flag if the problem and training instance has been built successfuly.
237 self._is_compiled = True
238
239 ####################
240 # Feed forward of the neural network, returning also the gradient wrt inputs.
241 ####################
242 def predict (self,
243 inputs,
244 return_derivative_order = 0):
245
246 if (self.built == False):
247 raise Exception("Cannot feed forward, the model is not built.")
248
249 outputs_derivatives = []
250 if (return_derivative_order in (0,1,2,3)):
251
252 # Output with 0 order derivative.
253 if (return_derivative_order == 0):
254 outputs = self._layers[0].feed(inputs)
255 for layer_ind in range(1, self._num_hidden_layers+2):
256 outputs = self._layers[layer_ind].feed(outputs)
257 tf.debugging.check_numerics(outputs, message = 'NaN occurred in network output.')
258
259 # Output with 1st order derivatives.
260 if (return_derivative_order == 1):
261 with tf.GradientTape(persistent = False) as tape_ord1:
262 tape_ord1.watch(inputs)
263 outputs = self._layers[0].feed(inputs)
264 for layer_ind in range(1, self._num_hidden_layers+2):
265 outputs = self._layers[layer_ind].feed(outputs)
266 # Adaptation for multi-valued functions in one derivative (Burgers Operator).
267 if (self._output_dim < 2):
268 outputs_1st_der = tape_ord1.gradient(outputs,
269 inputs)
270 else:
271 outputs_1st_der = tape_ord1.batch_jacobian(outputs,
272 inputs)
273 outputs_derivatives.append(outputs_1st_der)
274 del tape_ord1
275 tf.debugging.check_numerics(outputs,
276 message = 'NaN occurred in network output.')
277 tf.debugging.check_numerics(outputs_1st_der,
278 message = 'NaN occurred in network 1st derivative output.')
279
280 # Output with 2nd order derivatives.
281 elif (return_derivative_order == 2):
282 outputs_1st_der = []
283 outputs_2nd_der = []
284 input_component_list = tf.unstack(inputs, axis = 1)
285 for dim in range(inputs.shape[1]):
286 input_component_list[dim] = tf.expand_dims(input_component_list[dim], axis = 1)
287 for dim in range(inputs.shape[1]):
288 with tf.GradientTape(persistent = True) as tape_ord2:
289 with tf.GradientTape(persistent = True) as tape_ord1:
290 tape_ord2.watch(input_component_list[dim])
291 tape_ord1.watch(input_component_list[dim])
292 reconst_inputs = tf.squeeze(tf.stack(input_component_list , axis = 1), axis = 2)
293 outputs = self._layers[0].feed(reconst_inputs)
294 for layer_ind in range(1, self._num_hidden_layers+2):
295 outputs = self._layers[layer_ind].feed(outputs)
296 outputs_1st_der_var = tape_ord1.gradient(outputs,
297 input_component_list[dim])
298 outputs_2nd_der_var = tape_ord2.gradient(outputs_1st_der_var,
299 input_component_list[dim])
300 outputs_1st_der.append(outputs_1st_der_var)

91

301 outputs_2nd_der.append(outputs_2nd_der_var)
302 del tape_ord1
303 del tape_ord2
304
305 outputs_derivatives.append(tf.squeeze(tf.stack(outputs_1st_der, axis = 1), axis = 2))
306 outputs_derivatives.append(tf.squeeze(tf.stack(outputs_2nd_der, axis = 1), axis = 2))
307
308 tf.debugging.check_numerics(outputs,
309 message = 'NaN occurred in network output.')
310 tf.debugging.check_numerics(outputs_derivatives[0],
311 message = 'NaN occurred in network 1st derivative output.')
312 tf.debugging.check_numerics(outputs_derivatives[1],
313 message = 'NaN occurred in network 2nd derivative output.')
314
315 # Output with 3rd order derivatives. (CORRECT FOR THE THIRD ORDER DERIVATIVE RIGHT)
316 #elif (return_derivative_order == 3):
317 # with tf.GradientTape(persistent = False) as tape_ord3:
318 # tape_ord3.watch(inputs)
319 # with tf.GradientTape(persistent = False) as tape_ord2:
320 # tape_ord2.watch(inputs)
321 # with tf.GradientTape(persistent = False) as tape_ord1:
322 # tape_ord1.watch(inputs)
323 # outputs = self._layers[0].feed(inputs)
324 # for layer_ind in range(1, self._num_hidden_layers+2):
325 # outputs = self._layers[layer_ind].feed(outputs)
326 # outputs_1st_der = tape_ord1.gradient(outputs,
327 # inputs)
328 # outputs_derivatives.append(outputs_1st_der)
329 # del tape_ord1
330 # outputs_2nd_der = tape_ord2.gradient(outputs_1st_der,
331 # inputs)
332 # outputs_derivatives.append(outputs_2nd_der)
333 # del tape_ord2
334 # outputs_3rd_der = tape_ord3.gradient(outputs_2nd_der,
335 # inputs)
336 # outputs_derivatives.append(outputs_3rd_der)
337 # del tape_ord3
338 # tf.debugging.check_numerics(outputs,
339 # message = 'NaN occurred in network output.')
340 # tf.debugging.check_numerics(outputs_1st_der,
341 # message = 'NaN occurred in network 1st derivative output.')
342 # tf.debugging.check_numerics(outputs_2nd_der,
343 # message = 'NaN occurred in network 2nd derivative output.')
344 # tf.debugging.check_numerics(outputs_3rd_der,
345 # message = 'NaN occurred in network 3rd derivative output.')
346
347 else:
348 raise Exception("Invalid order for network derivative computation.")
349
350 return outputs, outputs_derivatives
351
352 ####################
353 # Calculates the loss function.
354 ####################
355 def loss_function (self,
356 inputs_domain,
357 border_data = None,
358 is_training = False,
359 use_only_domain = False,
360 use_only_border = False):
361
362 # Initializes the losses variables.
363 loss_domain = tf.constant(0.)
364 loss_border = tf.constant(0.)
365 loss_regularization = tf.constant(0.)
366 loss_solution = tf.constant(0.)
367
368 # Evaluates the left-hand-side and the right-hand-side of the differential equation and solution.
369
370 # Use the gradient balancing regularization.
371 if (self._regularization != 'Gradient_Type '):
372 outputs, outputs_derivatives = self.predict(inputs = inputs_domain,
373 return_derivative_order = self._required_derivative_order)
374 else:
375 with tf.GradientTape(persistent = True) as tape_reg:
376 tape_reg.watch(self._trainable_weights)
377 outputs, outputs_derivatives = self.predict(inputs = inputs_domain,
378 return_derivative_order = self._required_derivative_order)
379 outputs_param_der = tape_reg.gradient(outputs,
380 self._trainable_weights,
381 unconnected_gradients = tf.UnconnectedGradients.ZERO)
382 outputs_derivatives_param_der = tape_reg.gradient(outputs_derivatives[0],
383 self._trainable_weights,
384 unconnected_gradients = tf.UnconnectedGradients.ZERO)
385 for weight_ind in range(self._num_hidden_layers+2):
386 loss_regularization += tf.reduce_mean(tf.square(outputs_derivatives_param_der[2*weight_ind]
387 - outputs_param_der[2*weight_ind]))
388 loss_regularization += tf.reduce_mean(tf.square(outputs_derivatives_param_der[2*weight_ind+1]
389 - outputs_param_der[2*weight_ind+1]))
390 del tape_reg
391
392 diff_op_output = problemInstance.\
393 differential_operator(inputs = inputs_domain,
394 outputs = outputs,
395 outputs_derivatives = outputs_derivatives ,
396 differential_operator = self._differential_operator ,
397 input_dim = self._input_dim,
398 output_dim = self._output_dim)
399 ext_force_output = problemInstance.\
400 external_force(inputs = inputs_domain,
401 external_force = self._external_force,
402 input_dim = self._input_dim,

92

403 output_dim = self._output_dim)
404
405 exact_sol_output = problemInstance.\
406 exact_solution(inputs = inputs_domain,
407 exact_solution = self._exact_solution,
408 input_dim = self._input_dim,
409 output_dim = self._output_dim)
410
411 # Evaluates the left-hand-side of the border conditions.
412 # Right-hand-side already computed in border_data[1:n].
413 if (border_data != None):
414 outputs_border, outputs_derivatives_border = self.predict(inputs = border_data[0],
415 return_derivative_order = self._required_derivative_order)
416 lhs_border = problemInstance.\
417 lhs_boundary_condtions (inputs = border_data[0],
418 outputs = outputs_border,
419 outputs_derivatives = outputs_derivatives_border ,
420 border_type = self._border_type,
421 border_batch_size = self._border_training_batch_size ,
422 external_force = self._external_force,
423 required_derivative_order = self._required_derivative_order ,
424 input_dim = self._input_dim,
425 output_dim = self._output_dim)
426
427 # Computes the loss function for the L2 Error.
428 if (self._loss_fuction == 'L2_error'):
429 loss_domain = tf.reduce_mean(
430 tf.norm(diff_op_output-ext_force_output,
431 ord = 'euclidean',
432 axis = 1))
433 if (border_data != None):
434 for ind in range(len(border_data)-1):
435 loss_border += tf.reduce_mean(
436 tf.norm(lhs_border[ind] - border_data[ind+1],
437 ord='euclidean',
438 axis=1))
439 if (self._regularization == 'Tikhonov'):
440 for weight_ind in range(self._num_hidden_layers+2):
441 loss_regularization += tf.reduce_mean(
442 tf.norm(self._trainable_weights[2*weight_ind],
443 ord='euclidean',
444 axis = 1))
445 loss_regularization += tf.reduce_mean(
446 tf.norm(self._trainable_weights[2*weight_ind+1],
447 ord='euclidean',
448 axis = 0))
449 elif (self._regularization == None
450 or self._regularization == 'Gradient_Type'
451 or self._regularization == 'Quadratic_Balance '):
452 pass
453 else:
454 print('Invalid regularization option, defaulting to none.')
455 self._regularization = None
456 loss_solution = tf.reduce_mean(
457 tf.norm(outputs-exact_sol_output,
458 ord='euclidean',
459 axis=1))
460
461 # Computes the loss function for the Square L2 Error (MSE).
462 elif (self._loss_fuction == 'square_L2_error '):
463 loss_domain = tf.reduce_mean(
464 tf.reduce_sum(tf.square(diff_op_output-ext_force_output),
465 axis = 1,
466 keepdims = True))
467 if (border_data != None):
468 for ind in range(len(border_data)-1):
469 loss_border += tf.reduce_mean(
470 tf.reduce_sum(tf.square(lhs_border[ind] - border_data[ind+1]),
471 axis = 1,
472 keepdims = True))
473 if (self._regularization == 'Tikhonov'):
474 for weight_ind in range(self._num_hidden_layers+2):
475 loss_regularization += tf.reduce_mean(
476 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind]),
477 axis = 1,
478 keepdims = True))
479 loss_regularization += tf.reduce_mean(
480 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind+1]),
481 axis = 0,
482 keepdims = True))
483 elif (self._regularization == None
484 or self._regularization == 'Gradient_Type'
485 or self._regularization == 'Quadratic_Balance '):
486 pass
487 else:
488 print('Invalid regularization option, defaulting to none.')
489 self._regularization = None
490 loss_solution = tf.reduce_mean(
491 tf.reduce_sum(tf.square(outputs-exact_sol_output),
492 axis = 1,
493 keepdims = True))
494
495 # Computes the loss function for the Absolute Error (L1).
496 elif (self._loss_fuction == 'absolute_error '):
497 loss_domain = tf.reduce_mean(
498 tf.reduce_sum(tf.abs(diff_op_output-ext_force_output),
499 axis = 1,
500 keepdims = True))
501 if (border_data != None):
502 for ind in range(len(border_data)-1):
503 loss_border += tf.reduce_mean(
504 tf.reduce_sum(tf.abs(lhs_border[ind] - border_data[ind+1]),

93

505 axis = 1,
506 keepdims = True))
507 if (self._regularization == 'Tikhonov'):
508 for weight_ind in range(self._num_hidden_layers+2):
509 loss_regularization += tf.math.reduce_mean(
510 tf.reduce_mean(tf.abs(self._trainable_weights[2*weight_ind]),
511 axis = 1,
512 keepdims = True))
513 loss_regularization += tf.math.reduce_mean(
514 tf.reduce_mean(tf.abs(self._trainable_weights[2*weight_ind+1]),
515 axis = 0,
516 keepdims = True))
517 elif (self._regularization == None
518 or self._regularization == 'Gradient_Type'
519 or self._regularization == 'Quadratic_Balance '):
520 pass
521 else:
522 print('Invalid regularization option, defaulting to none.')
523 self._regularization = None
524 loss_solution = tf.reduce_mean(
525 tf.reduce_sum(tf.abs(outputs-exact_sol_output),
526 axis = 1,
527 keepdims = True))
528
529 # Experimental: Computes the loss (MSE) proportional to the external force.
530 elif (self._loss_fuction == 'force_proportional_error '):
531 loss_domain = tf.reduce_mean(
532 tf.square((diff_op_output-ext_force_output)
533 *(ext_force_output+1e-12)))
534 if (border_data != None):
535 for ind in range(len(border_data)-1):
536 loss_border += tf.reduce_mean(
537 tf.square(lhs_border[ind] - border_data[ind+1]))
538 if (self._regularization == 'Tikhonov'):
539 for weight_ind in range(self._num_hidden_layers+2):
540 loss_regularization += tf.reduce_mean(
541 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind]),
542 axis = 1,
543 keepdims = True))
544 loss_regularization += tf.reduce_mean(
545 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind+1]),
546 axis = 0,
547 keepdims = True))
548 elif (self._regularization == None
549 or self._regularization == 'Gradient_Type'
550 or self._regularization == 'Quadratic_Balance '):
551 pass
552 else:
553 print('Invalid regularization option, defaulting to none.')
554 self._regularization = None
555 loss_solution = tf.reduce_mean(
556 tf.square(outputs-exact_sol_output))
557
558 # Computes the square of the MSE, i.e. the ||.||^{4}_{2} error .
559 elif (self._loss_fuction == 'square_MSE '):
560 loss_domain = tf.reduce_mean(
561 tf.reduce_sum(tf.square(tf.square(diff_op_output-ext_force_output)),
562 axis = 1,
563 keepdims = True))
564 if (border_data != None):
565 for ind in range(len(border_data)-1):
566 loss_border += tf.reduce_mean(
567 tf.reduce_sum(tf.square(tf.square(lhs_border[ind] - border_data[ind+1])),
568 axis = 1,
569 keepdims = True))
570 if (self._regularization == 'Tikhonov'):
571 for weight_ind in range(self._num_hidden_layers+2):
572 loss_regularization += tf.reduce_mean(
573 tf.reduce_mean(tf.square(tf.square(self._trainable_weights[2*weight_ind])),
574 axis = 1,
575 keepdims = True))
576 loss_regularization += tf.reduce_mean(
577 tf.reduce_mean(tf.square(tf.square(self._trainable_weights[2*weight_ind+1])),
578 axis = 0,
579 keepdims = True))
580 elif (self._regularization == None
581 or self._regularization == 'Gradient_Type'
582 or self._regularization == 'Quadratic_Balance '):
583 pass
584 else:
585 print('Invalid regularization option, defaulting to none.')
586 self._regularization = None
587 loss_solution = tf.reduce_mean(
588 tf.reduce_sum(tf.square(outputs-exact_sol_output),
589 axis = 1,
590 keepdims = True))
591
592 # Experimental: Computes the loss (MSE) proportional to the square of the inputs.
593 elif (self._loss_fuction == 'input_proportional_error '):
594 loss_domain = tf.reduce_mean(
595 tf.square((diff_op_output-ext_force_output)
596 *inputs_domain*inputs_domain))
597 if (border_data != None):
598 for ind in range(len(border_data)-1):
599 loss_border += tf.reduce_mean(
600 tf.square(lhs_border[ind] - border_data[ind+1]))
601 if (self._regularization == 'Tikhonov'):
602 for weight_ind in range(self._num_hidden_layers+2):
603 loss_regularization += tf.reduce_mean(
604 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind]),
605 axis = 1,
606 keepdims = True))

94

607 loss_regularization += tf.reduce_mean(
608 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind+1]),
609 axis = 0,
610 keepdims = True))
611 elif (self._regularization == None
612 or self._regularization == 'Gradient_Type'
613 or self._regularization == 'Quadratic_Balance '):
614 pass
615 else:
616 print('Invalid regularization option, defaulting to none.')
617 self._regularization = None
618 loss_solution = tf.reduce_mean(
619 tf.square(outputs-exact_sol_output))
620
621 # Computes the loss (MSE) with respect to one component.
622 elif (self._loss_fuction == 'square_L2_error_1st_comp '):
623 loss_domain = tf.reduce_mean(tf.square(diff_op_output-ext_force_output)[:,0])
624 if (border_data != None):
625 for ind in range(len(border_data)-1):
626 loss_border += tf.reduce_mean(
627 tf.reduce_sum(tf.square(lhs_border[ind] - border_data[ind+1]),
628 axis = 1,
629 keepdims = True))
630 if (self._regularization == 'Tikhonov'):
631 for weight_ind in range(self._num_hidden_layers+2):
632 loss_regularization += tf.reduce_mean(
633 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind]),
634 axis = 1,
635 keepdims = True))
636 loss_regularization += tf.reduce_mean(
637 tf.reduce_mean(tf.square(self._trainable_weights[2*weight_ind+1]),
638 axis = 0,
639 keepdims = True))
640 elif (self._regularization == None
641 or self._regularization == 'Gradient_Type'
642 or self._regularization == 'Quadratic_Balance '):
643 pass
644 else:
645 print('Invalid regularization option, defaulting to none.')
646 self._regularization = None
647 loss_solution = tf.reduce_mean(tf.square(outputs-exact_sol_output)[0])
648
649 # Error for invalid loss option.
650 else:
651 raise Exception("Invalid loss option. Please recompile with a valid name.")
652
653 # Experimental: Implement the quadratic loss balance regularization.
654 if (self._regularization == 'Quadratic_Balance '):
655 if (inputs_border != None and expected_outputs_border != None):
656 loss_regularization += tf.sqrt(tf.square(loss_domain-loss_border))
657
658 # Implements the train only domain or border options
659 coef_domain = 1
660 coef_border = 1
661 if (use_only_domain == True):
662 coef_border = 0.
663 if (use_only_border == True):
664 coef_domain = 0.
665
666 # Computes the total loss and checks for explosions.
667 loss = coef_domain*loss_domain + coef_border*loss_border
668 tf.debugging.check_numerics(loss_domain, message='NaN occurred in domain loss funtion.')
669 tf.debugging.check_numerics(loss_border, message='NaN occurred in border loss funtion.')
670 tf.debugging.check_numerics(loss_regularization, message='NaN occurred in regularization loss funtion.')
671 tf.debugging.check_numerics(loss, message='NaN occurred in total loss funtion.')
672
673 # If the method is set to training mode, the losses are saved on the historical training variables.
674 if (is_training == True):
675 self._losses_domain.append(loss_domain.numpy())
676 self._losses_border.append(loss_border.numpy())
677 self._losses_regularization.append(loss_regularization.numpy())
678 self._losses.append(loss.numpy())
679 self._losses_solution.append(loss_solution.numpy())
680
681 return loss, loss_domain, loss_border, loss_regularization
682
683 ####################
684 # Computes the gradient wrt the weights.
685 ####################
686 def back_propagation (self,
687 inputs,
688 border_data,
689 is_training,
690 split_gradient = False,
691 display_gradient_norm = False,
692 normalize_gradient = False,
693 train_only_domain = False,
694 train_only_border = False):
695
696 # Executes the back propagation
697 with tf.GradientTape(persistent = True) as tape_bp:
698 tape_bp.watch(self._trainable_weights)
699 loss, loss_domain, loss_border ,\
700 loss_regularization = self.loss_function(inputs_domain = inputs,
701 border_data = border_data,
702 is_training = is_training,
703 use_only_domain = train_only_domain,
704 use_only_border = train_only_border)
705
706 total_loss_f = loss+self._regularization_coef*loss_regularization
707
708 gradient_update = tape_bp.gradient(total_loss_f,

95

709 self._trainable_weights,
710 unconnected_gradients = tf.UnconnectedGradients.ZERO)
711
712 # Splits the gradient wrt to each individual loss component.
713 if (split_gradient == True):
714 gradient_update_domain = tape_bp.gradient(loss_domain,
715 self._trainable_weights,
716 unconnected_gradients = tf.UnconnectedGradients.ZERO)
717 gradient_update_border = tape_bp.gradient(loss_border,
718 self._trainable_weights,
719 unconnected_gradients = tf.UnconnectedGradients.ZERO)
720 gradient_update_regularization = tape_bp.gradient(loss_regularization ,
721 self._trainable_weights,
722 unconnected_gradients = tf.UnconnectedGradients.ZERO)
723 del tape_bp
724
725 # Avoids NAN propagation by rightfully setting them to 0.
726 gradient_update = [tf.where(tf.math.is_nan(g), tf.zeros_like(g), g)
727 for g in gradient_update]
728 if (split_gradient == True):
729 gradient_update_domain = [tf.where(tf.math.is_nan(g), tf.zeros_like(g), g)
730 for g in gradient_update_domain]
731 gradient_update_border = [tf.where(tf.math.is_nan(g), tf.zeros_like(g), g)
732 for g in gradient_update_border]
733 gradient_update_regularization = [tf.where(tf.math.is_nan(g), tf.zeros_like(g), g)
734 for g in gradient_update_regularization]
735
736 # Applies clipping regularization to bound the gradients.
737 if (self._clip_gradient == 'global'):
738 gradient_update = tf.clip_by_global_norm(gradient_update, 1e+1)[0]
739 gradient_update_domain = tf.clip_by_global_norm(gradient_update_domain , 1e+1)[0]
740 gradient_update_border = tf.clip_by_global_norm(gradient_update_border , 1e+1)[0]
741 gradient_update_regularization = tf.clip_by_global_norm(gradient_update_regularization , 1e+1)[0]
742 elif (self._clip_gradient == 'value'):
743 gradient_update = [tf.clip_by_value(g, clip_value_min = -1e+1, clip_value_max = 1e+1)
744 for g in gradient_update]
745 gradient_update_domain = [tf.clip_by_value(g, clip_value_min = -1e+1, clip_value_max = 1e+1)
746 for g in gradient_update_domain]
747 gradient_update_border = [tf.clip_by_value(g, clip_value_min = -1e+1, clip_value_max = 1e+1)
748 for g in gradient_update_border]
749 gradient_update_regularization = [tf.clip_by_value(g, clip_value_min = -1e+1, clip_value_max = 1e+1)
750 for g in gradient_update_regularization]
751 elif (self._clip_gradient == 'norm'):
752 gradient_update = [tf.clip_by_norm(g, 1e+1) for g in gradient_update]
753 gradient_update_domain = [tf.clip_by_norm(g, 1e+1) for g in gradient_update_domain]
754 gradient_update_border = [tf.clip_by_norm(g, 1e+1) for g in gradient_update_border]
755 gradient_update_regularization = [tf.clip_by_norm(g, 1e+1) for g in gradient_update_regularization]
756 elif (self._clip_gradient == None):
757 pass
758 else:
759 print('Invalid clipping option, defaulting to global.')
760 self._clip_gradient = 'global'
761
762 # Applies gradient normalization regularization.
763 if (normalize_gradient == True):
764 norm = tf.linalg.global_norm(gradient_update)
765 gradient_update = [g/norm for g in gradient_update]
766
767 # Rescale Gradient Regularization (Always On)
768 if (border_data != None):
769 for layer_num in range(self._num_hidden_layers+2):
770 weight_norm_domain = tf.norm(gradient_update_domain[2*layer_num],
771 ord = 'euclidean',
772 axis = 0)
773 bias_norm_domain = tf.norm(gradient_update_domain[2*layer_num+1],
774 ord = 'euclidean',
775 axis = 0)
776 weight_norm_border = tf.norm(gradient_update_border[2*layer_num],
777 ord = 'euclidean',
778 axis = 0)
779 bias_norm_border = tf.norm(gradient_update_border[2*layer_num+1],
780 ord = 'euclidean',
781 axis = 0)
782 weight_norm_regularization = tf.norm(gradient_update_regularization[2*layer_num],
783 ord = 'euclidean',
784 axis = 0)
785 bias_norm_regularization = tf.norm(gradient_update_regularization[2*layer_num+1],
786 ord = 'euclidean',
787 axis = 0)
788
789 weight_norm = tf.minimum(weight_norm_domain, weight_norm_border)
790 bias_norm = tf.minimum(bias_norm_domain, bias_norm_border)
791
792 gradient_update_domain[2*layer_num] = gradient_update_domain[2*layer_num]*weight_norm/(weight_norm_domain+1e-31)
793 gradient_update_domain[2*layer_num+1] = gradient_update_domain[2*layer_num+1]*bias_norm/(bias_norm_domain+1e-31)
794
795 gradient_update_border[2*layer_num] = gradient_update_border[2*layer_num]*weight_norm/(weight_norm_border+1e-31)
796 gradient_update_border[2*layer_num+1] = gradient_update_border[2*layer_num+1]*bias_norm/(bias_norm_border+1e-31)
797
798 gradient_update_regularization[2*layer_num] = gradient_update_regularization[2*layer_num]*weight_norm/(

weight_norm_regularization+1e-31)
799 gradient_update_regularization[2*layer_num+1] = gradient_update_regularization[2*layer_num+1]*weight_norm/(

bias_norm_regularization+1e-31)
800
801 gradient_update[2*layer_num] = (self._scale_factor*gradient_update_domain[2*layer_num]
802 + gradient_update_border[2*layer_num]
803 + self._regularization_coef*gradient_update_regularization[2*layer_num])
804 gradient_update[2*layer_num+1] = (self._scale_factor*gradient_update_domain[2*layer_num+1]
805 + gradient_update_border[2*layer_num+1]
806 + self._regularization_coef*gradient_update_regularization[2*layer_num+1])
807
808 # Displays the gradient(s) if the option is selected.

96

809 if (display_gradient_norm == True):
810 total_norm = tf.linalg.global_norm(gradient_update)
811 domain_norm = tf.linalg.global_norm(gradient_update_domain)
812 border_norm = tf.linalg.global_norm(gradient_update_border)
813 regularization_norm = tf.linalg.global_norm(gradient_update_regularization)
814 print(' Total Gradient Norm', str(total_norm.numpy()))
815 print(' Domain Gradient Norm', str(domain_norm.numpy()))
816 print(' Border Gradient Norm', str(border_norm.numpy()))
817 print(' Regularization Gradient Norm', str(regularization_norm.numpy()))
818 for layer_num in range(self._num_hidden_layers+2):
819 print(' ', self._layers[layer_num]._name, ' Total Weight Gradient Norm: ',
820 str(tf.norm(gradient_update[2*layer_num],
821 ord = 'euclidean', axis = 1).numpy()))
822 print(' ', self._layers[layer_num]._name, ' Domain Weight Gradient Norm: ',
823 str(tf.norm(gradient_update_domain[2*layer_num],
824 ord = 'euclidean', axis = 1).numpy()))
825 print(' ', self._layers[layer_num]._name, ' Border Weight Gradient Norm: ',
826 str(tf.norm(gradient_update_border[2*layer_num],
827 ord = 'euclidean', axis = 1).numpy()))
828 print(' ', self._layers[layer_num]._name, ' Regularization Weight Gradient Norm: ',
829 str(tf.norm(gradient_update_regularization[2*layer_num],
830 ord = 'euclidean', axis = 1).numpy()))
831 print(' ', self._layers[layer_num]._name, ' Total Bias Gradient Norm: ',
832 str(tf.norm(gradient_update[2*layer_num+1],
833 ord = 'euclidean', axis = 0).numpy()))
834 print(' ', self._layers[layer_num]._name, ' Domain Bias Gradient Norm: ',
835 str(tf.norm(gradient_update_domain[2*layer_num+1],
836 ord = 'euclidean', axis = 0).numpy()))
837 print(' ', self._layers[layer_num]._name, ' Border Bias Gradient Norm: ',
838 str(tf.norm(gradient_update_border[2*layer_num+1],
839 ord = 'euclidean', axis = 0).numpy()))
840 print(' ', self._layers[layer_num]._name, ' Regularization Bias Gradient Norm: ',
841 str(tf.norm(gradient_update_regularization[2*layer_num+1],
842 ord = 'euclidean', axis = 0).numpy()))
843
844 return gradient_update
845
846 ####################
847 # Applies an optimization step.
848 ####################
849 def apply_training_step (self,
850 inputs,
851 border_data,
852 split_gradient = False,
853 display_gradient_norm = False,
854 normalize_gradient = False,
855 train_only_domain = False,
856 train_only_border = False):
857
858 if (self._optimizer_selection != 'L-BFGS' and self._optimizer_selection != 'BFGS'):
859 gradient_update = self.back_propagation(inputs = inputs,
860 border_data = border_data,
861 is_training = True,
862 split_gradient = split_gradient,
863 display_gradient_norm = display_gradient_norm ,
864 normalize_gradient = normalize_gradient,
865 train_only_domain = train_only_domain,
866 train_only_border = train_only_border)
867 if (train_only_domain == True):
868 self._optimizer1.apply_gradients(zip(gradient_update, self._trainable_weights))
869 elif (train_only_border == True):
870 self._optimizer2.apply_gradients(zip(gradient_update, self._trainable_weights))
871 else:
872 self._optimizer1.apply_gradients(zip(gradient_update, self._trainable_weights))
873 else:
874 self._optimizer.apply_gradients()
875
876 # Applies clipping regularization to bound the weights.
877 for layer_num in range(self._num_hidden_layers+2):
878 self._trainable_weights[2*layer_num].assign(tf.clip_by_value(self._trainable_weights[2*layer_num],
879 clip_value_min = -1e+5,
880 clip_value_max = +1e+5))
881 self._trainable_weights[2*layer_num+1].assign(tf.clip_by_value(self._trainable_weights[2*layer_num+1],
882 clip_value_min = -1e+5,
883 clip_value_max = +1e+5))
884
885 # Clip by magnitude
886 #weight_tensor = self._trainable_weights[2*layer_num]
887 #weight_sign = tf.math.sign(self._trainable_weights[2*layer_num])
888 #clipped_weight_tensor = tf.clip_by_value(tf.abs(weight_tensor),
889 # clip_value_min = 1e-3,
890 # clip_value_max = 1e+2)
891 #self._trainable_weights[2*layer_num].assign(weight_sign * clipped_weight_tensor)
892 #
893 #bias_tensor = self._trainable_weights[2*layer_num+1]
894 #bias_sign = tf.math.sign(self._trainable_weights[2*layer_num+1])
895 #clipped_bias_tensor = tf.clip_by_value(tf.abs(bias_tensor),
896 # clip_value_min = 1e-3,
897 # clip_value_max = 1e+2)
898 #self._trainable_weights[2*layer_num+1].assign(bias_sign * clipped_bias_tensor)
899
900 ####################
901 # Loads the training sets to train the network.
902 ####################
903 def use_training_sets (self,
904 data_set):
905
906 if (data_set == None):
907 raise Exception("No data set loaded.")
908
909 training_batch_size , border_training_batch_size , validation_batch_size , \
910 input_dim, method, domain, border = data_set.get_set_metadata()

97

911 if (self._input_dim != input_dim):
912 raise Exception("Data set input dimension incompatible with neural network.")
913
914 training_set, border_training_set, validation_set = data_set.get_sets()
915 print('Dataset uploaded.')
916
917 return training_batch_size , border_training_batch_size , validation_batch_size ,\
918 training_set, border_training_set, validation_set ,\
919 method, domain, border
920
921 ####################
922 # Trains the model.
923 ####################
924 def fit (self,
925 data_set = None,
926 num_epochs = 1000,
927 plot_interval = 500,
928 validation_interval = 5000,
929 stagnation_stop_tol = 1e-16,
930 split_gradient = False,
931 display_gradient_norm = False,
932 normalize_gradient = False,
933 train_only_domain = False,
934 train_only_border = False,
935 dual_training = False,
936 auto_batch_rotation = 0):
937
938 # Loads the data set.
939 training_batch_size , border_training_batch_size , validation_batch_size ,\
940 training_set, border_training_set, validation_set ,\
941 method, domain_type, border_type = self.use_training_sets(data_set = data_set)
942
943 self._border_type = border_type
944 self._border_training_batch_size = border_training_batch_size
945
946 border_data = problemInstance.\
947 border_data_prep(border_inputs = border_training_set ,
948 border_type = border_type,
949 border_batch_size = self._border_training_batch_size ,
950 external_force = self._external_force,
951 required_derivative_order = self._required_derivative_order ,
952 input_dim = self._input_dim,
953 output_dim = self._output_dim)
954
955 # Loads data in optimizer if BFGS or L-BFGS
956 if (self._optimizer_selection == 'L-BFGS' or self._optimizer_selection == 'BFGS'):
957 self._optimizer.optimizer_train_data (inputs = training_set,
958 border_data = border_data,
959 split_gradient = split_gradient,
960 display_gradient_norm = display_gradient_norm ,
961 normalize_gradient = normalize_gradient,
962 train_only_domain = train_only_domain,
963 train_only_border = train_only_border)
964
965 # First Iteration.
966 start_time = time.perf_counter()
967 target_total_num_epochs = self._num_epochs_trained + num_epochs - 1
968 if (self._num_epochs_trained == 0):
969 loss_validation, _, _, _ = self.loss_function (inputs_domain = validation_set,
970 border_data = border_data,
971 is_training = False,
972 use_only_domain = False,
973 use_only_border = False)
974 self._losses_validation.append(loss_validation.numpy())
975
976 self._num_epochs_trained += 1
977 self.apply_training_step (inputs = training_set,
978 border_data = border_data,
979 split_gradient = split_gradient,
980 display_gradient_norm = display_gradient_norm ,
981 normalize_gradient = normalize_gradient,
982 train_only_domain = train_only_domain,
983 train_only_border = train_only_border)
984
985 print('Epoch:', str(self._num_epochs_trained), 'Training Loss:', str(self._losses[-1]),
986 'Training Loss wrt Sol:', str(self._losses_solution[-1]))
987 print('Domain Loss:', str(self._losses_domain[-1]),
988 'Border Loss:', str(self._losses_border[-1]),
989 'Regularization Loss:', str(self._losses_regularization[-1]))
990
991 # Training Loop
992 while (self._num_epochs_trained <= target_total_num_epochs):
993 self._num_epochs_trained += 1
994 if (dual_training == True):
995 if (self._num_epochs_trained % 2 == 0):
996 train_only_domain = True
997 train_only_border = False
998 else:
999 train_only_domain = False

1000 train_only_border = True
1001
1002 self.apply_training_step (inputs = training_set,
1003 border_data = border_data,
1004 split_gradient = split_gradient,
1005 display_gradient_norm = display_gradient_norm ,
1006 normalize_gradient = normalize_gradient,
1007 train_only_domain = train_only_domain,
1008 train_only_border = train_only_border)
1009
1010 print('Epoch:', str(self._num_epochs_trained), 'Training Loss:', str(self._losses[-1]),
1011 'Training Loss wrt Sol:', str(self._losses_solution[-1]))
1012 print('Domain Loss:', str(self._losses_domain[-1]),

98

1013 'Border Loss:', str(self._losses_border[-1]),
1014 'Regularization Loss:', str(self._losses_regularization[-1]))
1015
1016 # Stagnation Stop.
1017 if (abs(self._losses_domain[-1]-self._losses_domain[-2]) <= stagnation_stop_tol
1018 and abs(self._losses_border[-1]-self._losses_border[-2]) <= stagnation_stop_tol
1019 and abs(self._losses_regularization[-1]-self._losses_regularization[-2]) <= stagnation_stop_tol):
1020 break
1021
1022 # Early Stop (Validation loss evaluation).
1023 if (self._num_epochs_trained % validation_interval == 0):
1024 loss_validation, _, _, _ = self.loss_function (inputs_domain = validation_set,
1025 border_data = border_data,
1026 is_training = False,
1027 use_only_domain = False,
1028 use_only_border = False)
1029 self._losses_validation.append(loss_validation.numpy())
1030 print('Evaluation Loss on Epoch' , str(self._num_epochs_trained), ':',
1031 str(self._losses_validation[-1]))
1032 if (self._losses_validation[-1] > self._losses_validation[-2]):
1033 print('Early stop - Loss wrt validation set worsen.')
1034 break
1035
1036 # Autoregulates the regularization coefficient if it only improves the regularization term.
1037 if (self._losses_domain[-1] > self._losses_domain[-validation_interval]
1038 or self._losses_border[-1] > self._losses_border[-validation_interval]):
1039 print('Regularization is too strong reducing factor by /5.')
1040 self._regularization_coef = self._regularization_coef/5
1041
1042 # Rotate batches.
1043 if (auto_batch_rotation != 0):
1044 new_sample = myDataSets(training_batch_size = training_batch_size ,
1045 border_training_batch_size = border_training_batch_size ,
1046 validation_batch_size = validation_batch_size ,
1047 input_dim = self._input_dim,
1048 method = method,
1049 domain = domain_type,
1050 border = border_type,
1051 seed = None)
1052
1053 training_batch_size , border_training_batch_size , validation_batch_size ,\
1054 training_set, border_training_set, validation_set ,\
1055 method, domain_type, border_type = self.use_training_sets(data_set = data_set)
1056
1057 # Plot loss every specified number of epochs while training.
1058
1059 if (self._num_epochs_trained % plot_interval == 0):
1060 real_start_epoch = self._num_epochs_trained - num_epochs
1061 auxiliryPlotting.plot_loss_function(model = self,
1062 init_range = self._num_epochs_trained -plot_interval+1,
1063 end_range = -1,
1064 subdivide_losses = False,
1065 use_log_scale = False)
1066
1067 end_time = time.perf_counter()
1068 print("Execution Time:", end_time - start_time)
1069
1070 #######################33
1071 # A REVISAR
1072 ##########################33
1073
1074 def save(self, filepath=''):
1075
1076 config_list = []
1077
1078 config_list.append(self._name)
1079 config_list.append(self._num_epochs_trained)
1080 config_list.append(self._losses_from_domain)
1081 config_list.append(self._losses_from_border)
1082 config_list.append(self._losses_from_regularization)
1083 config_list.append(self._losses)
1084 config_list.append(self._losses_wrt_solution)
1085 config_list.append(self._losses_wrt_validation)
1086
1087 config_list.append(self._input_dim)
1088 config_list.append(self._hidden_dim)
1089 config_list.append(self._output_dim)
1090 config_list.append(self._activation)
1091 config_list.append(self._weight_initializers)
1092 config_list.append(self._bias_initializers)
1093 config_list.append(self._batch_normalization)
1094
1095 config_list.append(self._trainable_weights)
1096
1097 config_list.append(self._learning_rate)
1098 config_list.append(self._scale_factor)
1099 config_list.append(self._regularization_coef)
1100
1101 config_list.append(self._differential_operator)
1102 config_list.append(self._external_force)
1103 config_list.append(self._exact_solution)
1104 config_list.append(self._loss_fuction)
1105 config_list.append(self._regularization)
1106 config_list.append(self._clip_gradient)
1107 config_list.append(self._optimizer_selection)
1108
1109 pickle_out = open(filepath + self.name + ".pickle", "wb")
1110 pickle.dump(config_list, pickle_out)
1111 pickle_out.close()
1112 files.download(self.name + ".pickle")
1113
1114 def load(filepath='', filename=''):

99

1115
1116 pickle_in = open(filepath + filename + ".pickle", "rb")
1117 config_list = pickle.load(pickle_in)
1118
1119 ld_name = config_list[0]
1120 model = myModel(ld_name)
1121 model._num_epochs_trained = config_list[1]
1122 model._losses_from_domain = config_list[2]
1123 model._losses_from_border = config_list[3]
1124 model._losses_from_regularization = config_list[4]
1125 model._losses = config_list[5]
1126 model._losses_wrt_solution = config_list[6]
1127 model._losses_wrt_validation = config_list[7]
1128
1129 ld_input_dim = config_list[8]
1130 ld_hidden_dim = config_list[9]
1131 ld_output_dim = config_list[10]
1132 ld_activation = config_list[11]
1133 ld_weight_initializers = config_list[12]
1134 ld_bias_initializers = config_list[13]
1135 ld_batch_normalization = config_list[14]
1136 model.build(ld_input_dim, ld_hidden_dim, ld_output_dim,
1137 ld_activation, ld_weight_initializers , ld_bias_initializers ,
1138 ld_batch_normalization , None)
1139
1140 layer_copy = model._layers.copy()
1141 model._trainable_weights = config_list[15]
1142 model._layers = layer_copy
1143
1144 for layer_num in range(0, model._num_hidden_layers+2):
1145 model._layers[layer_num]._trainable_weights = model._trainable_weights[2*layer_num:2*(layer_num+1)]
1146 model._layers[layer_num].w = model._layers[layer_num]._trainable_weights[0]
1147 model._layers[layer_num].b = model._layers[layer_num]._trainable_weights[1]
1148
1149 ld_learning_rate = config_list[16]
1150 ld_scale_factor = config_list[17]
1151 ld_regularization_coef = config_list[18]
1152 ld_differential_operator = config_list[19]
1153 ld_external_force = config_list[20]
1154 ld_exact_solution = config_list[21]
1155 ld_loss_fuction = config_list[22]
1156 ld_regularization = config_list[23]
1157 ld_clip_gradient = config_list[24]
1158 ld_optimizer_selection = config_list[25]
1159
1160 model.compile(learning_rate = ld_learning_rate, scale_factor = ld_scale_factor,
1161 differential_operator = ld_differential_operator ,
1162 external_force = ld_external_force,
1163 exact_solution = ld_exact_solution, loss_fuction = ld_loss_fuction,
1164 regularization = ld_regularization, regularization_coef = ld_regularization_coef ,
1165 clip_gradient = ld_clip_gradient, optimizer_selection = ld_optimizer_selection)
1166
1167 return model
1168
1169 def save_weights(self, filepath=''):
1170
1171 pickle_out = open(filepath + self.name + "_weights.pickle", "wb")
1172 pickle.dump(self._trainable_weights, pickle_out)
1173 pickle_out.close()
1174
1175 def set_weights(self, filepath='', filename=''):
1176
1177 pickle_in = open(filepath + filename + ".pickle", "rb")
1178 self._trainable_weights = pickle.load(pickle_in)

B.8 execution Cell

1 """
2 @author: Alberto Garcia Molina
3 @latest_update: 12/10/2020
4 """
5
6 # Creates the training/validation set.
7 sample = myDataSets(training_batch_size = 10000,
8 border_training_batch_size = 10000,
9 validation_batch_size = 1000,

10 input_dim = 1,
11 method = 'uniform-hit-collocation',
12 domain = 'hypercube-0-1', #'quarter-hypercube-0-1' #'hypercube-0-2'
13 border = 'hypercube-0-1', #'side-x_1-y_0' #'side-x_1-y_0_expanded' #'two_sides-x_0-y_0'
14 seed = 1993)
15
16 #Initializes the model.
17 model = myModel('model_name ')
18 model.build(input_dim = 1,
19 hidden_dim = [3,4,3],
20 output_dim = 1,
21 activations = 'sigmoid', #'tanh' #'swish' #'exponential' #'softplus' #'relu' #'elu'
22 weight_initializers = 'xavier', #'he' #'normal_0_1' #'uniform_-1_1' #'zeros' #'ones'
23 bias_initializers = 'xavier', #'he' #'normal_0_1' #'uniform_-1_1' #'zeros' #'ones'
24 batch_normalization = False, # Actually layer normalization.
25 supress_bias = False, # Make the neurons have no bias terms.
26 seed = 1993,
27 epsilon = 1e-12)
28 model.compile(differential_operator = 'Constant', #'Divergence' #'Advection' #'Laplacian' #'Clairaut'
29 external_force = 'Force_Constant', #'Force_Divergence' #'Force_Advection' #'Force_Laplacian' #'Force_Laplacian'
30 exact_solution = 'Sol_Polynomial_2Deg_1D_1D ', #'Sol_Polynomial_2Deg_1D_1D ' #'Sol_Polynomial_2Deg_2D_1D ' #'

100

Sol_Polynomial_2Deg_2D_2D '
31 optimizer_selection = 'Adam', #'AMSGrad' #'Nadam' #'AdaGrad' #'AdaDelta' #'RMSProp' #'Vanilla_SGD' #'Momentum_SGD'

#'Nesterov_SGD' #'BFGS' #'L-BFGS'
32 learning_rate = 1e-02,
33 epsilon = 1e-31,
34 scale_factor = 1,
35 loss_fuction = 'square_L2_error', #'L2_error' #'square_L2_error' #'absolute_error' #'square_MSE' #'

square_L2_error_1st_comp '
36 regularization = None, #'Gradient_Type' #'Tikhonov'
37 regularization_coef = 0.1,
38 clip_gradient = 'global' #'value' 'norm'
39)
40
41 # Trains the model.
42 model.fit (data_set = sample,
43 num_epochs = 15000,
44 validation_interval = 1000,
45 plot_interval = 500,
46 stagnation_stop_tol = 1e-16,
47 split_gradient = True, # Has to always be set to True
48 display_gradient_norm = False,
49 normalize_gradient = False,
50 train_only_domain = False,
51 train_only_border = False,
52 dual_training = False, # Experimental, do not use. Set to False.
53 auto_batch_rotation = False # Automatically generates new collocations with the same set-up as sample every

plot_interval iterations.
54)
55
56 # Optional Plots:
57 auxiliryPlotting.plot_loss_function(model = model,
58 init_range = 0,
59 end_range = -1,
60 subdivide_losses = True,
61 use_log_scale = True)
62
63 auxiliryPlotting.plot_model(data_set = sample,
64 model = model,
65 plot_real_sol = True)
66
67 auxiliryPlotting.plot_error (data_set = sample,
68 model = model)
69
70 auxiliryPlotting.plot_loss_comparison (models = [model1, model2, model3],
71 names = [model1_name, model3_name, model3_name],
72 title = ['loss of model 1', 'loss of model 2', 'loss of model 3'],
73 init_range = 0,
74 end_range = -1,
75 subdivide_losses = True,
76 use_log_scale = True)
77
78 # save/load options:
79
80 model.save(filepath='C//...')
81 model.load(filepath='C//...')

101

Bibliography

[1] R. L. Bishop and S. I. Goldberg, Tensor analysis on manifolds. Dover, Dec. 1980.
[2] C. Reisinger and G. Wittum, “Efficient hierarchical approximation of high-dimensional option pricing

problems,” SIAM J. Sci. Comput., vol. 29, pp. 440–458, 2007.
[3] L. Grzelak, J. Witteveen, M. Suárez-Taboada, and C. Oosterlee, “The stochastic collocation Monte

Carlo sampler: Highly efficient sampling from ’expensive’ distributions,” Quantitative Finance, vol. 19,
pp. 339–356, 2019.

[4] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial differential
equations,” Journal of Computational Physics, vol. 375, p. 1339–1364, Dec 2018.

[5] W. Hughes, J. H. Merkin, and R. Sturman, “Analytic solutions of partial differential equations,” 2003/4.
MATH3414, School of Mathematics, University of Leeds, lectures notes.

[6] S. Kepley and T. Zhang, “A constructive proof of the Cauchy-Kovalevskaya theorem for ordinary
differential equations.,” arXiv: Classical Analysis and ODEs, 2019.

[7] D. G. Gaidashev, “CHAPTER 2 The Cauchy-Kovalevskaya Theorem.” http://www2.math.uu.se/
~gaidash/1MA216/CK.pdf. Accessed: 2020-09-01.

[8] A. Meade and A. Fernandez, “The numerical solution of linear ordinary differential equations by
feedforward neural networks,” Mathematical and Computer Modelling, vol. 19, no. 12, pp. 1 – 25, 1994.

[9] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,”
ArXiv, vol. abs/1806.07366, 2018.

[10] M. Jaderberg, W. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and K. Kavukcuoglu,
“Decoupled neural interfaces using synthetic gradients,” ArXiv, vol. abs/1608.05343, 2017.

[11] W. E, J. Han, and A. Jentzen, “Deep learning-based numerical methods for high-dimensional parabolic
partial differential equations and backward stochastic differential equations,” Communications in
Mathematics and Statistics, vol. 5, p. 349–380, Nov 2017.

[12] C. Beck, E. Weinan, and A. Jentzen, “Machine learning approximation algorithms for high-dimensional
fully nonlinear partial differential equations and second-order backward stochastic differential equations,”
Journal of Nonlinear Science, vol. 29, pp. 1563–1619, Aug. 2019.

[13] J. Berg and K. Nyström, “A unified deep artificial neural network approach to partial differential
equations in complex geometries,” Neurocomputing, vol. 317, pp. 28–41, 2018.

[14] T. Dockhorn, “A discussion on solving partial differential equations using neural networks,” ArXiv,
vol. abs/1904.07200, 2019.

[15] S. H. Kolluru, “A neural network based method to solve boundary value problems,” ArXiv,
vol. abs/1909.11082, 2019.

[16] I. Lagaris, A. Likas, and D. Papageorgiou, “Neural-network methods for boundary value problems with
irregular boundaries,” IEEE transactions on neural networks, vol. 11 5, pp. 1041–9, 2000.

[17] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving ordinary and partial
differential equations,” IEEE transactions on neural networks, vol. 9 5, pp. 987–1000, 1998.

[18] A. Al-Aradi, A. Correia, D. Naiff, G. Jardim, and Y. F. Saporito, “Solving nonlinear and high-dimensional
partial differential equations via deep learning,” arXiv: Computational Finance, 2018.

[19] L. Ruthotto and E. Haber, “Deep neural networks motivated by partial differential equations,” Journal
of Mathematical Imaging and Vision, vol. 62, pp. 352–364, 2019.

[20] P. Chaudhari, A. M. Oberman, S. Osher, S. Soatto, and G. Carlier, “Deep relaxation: partial differential
equations for optimizing deep neural networks,” Research in the Mathematical Sciences, vol. 5, pp. 1–30,
2017.

102

http://www2.math.uu.se/~gaidash/1MA216/CK.pdf
http://www2.math.uu.se/~gaidash/1MA216/CK.pdf

[21] M. Raissi and G. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential
equations,” ArXiv, vol. abs/1708.00588, 2018.

[22] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics informed deep learning (Part I): Data-driven
solutions of nonlinear partial differential equations,” ArXiv, vol. abs/1711.10561, 2017.

[23] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics informed deep learning (Part II): Data-driven
discovery of nonlinear partial differential equations,” ArXiv, vol. abs/1711.10566, 2017.

[24] P. Simard, B. Victorri, Y. LeCun, and J. Denker, “Tangent prop - a formalism for specifying selected
invariances in an adaptive network,” in NIPS, 1991.

[25] W. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu, “Sobolev training for neural
networks,” in NIPS, 2017.

[26] R. Grosse, “CSC321 Lecture 10: Automatic Differentiation.” https://www.cs.toronto.edu/~rgrosse/
courses/csc321_2018/slides/lec10.pdf. Accessed: 2020-09-01.

[27] A. G. Baydin, B. Pearlmutter, A. Radul, and J. Siskind, “Automatic differentiation in machine learning:
a survey,” ArXiv, vol. abs/1502.05767, 2017.

[28] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods from a machine learning
perspective,” IEEE Transactions on Cybernetics, vol. 50, pp. 3668–3681, 2020.

[29] A. Gaier and D. R. Ha, “Weight agnostic neural networks,” in NeurIPS, 2019.

[30] S. Ruder, “An overview of gradient descent optimization algorithms,” ArXiv, vol. abs/1609.04747, 2016.

[31] Y. Li, C. Wei, and T. Ma, “Towards explaining the regularization effect of initial large learning rate in
training neural networks,” ArXiv, vol. abs/1907.04595, 2019.

[32] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural networks using large learning
rates,” ArXiv, vol. abs/1708.07120, 2017.

[33] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina, “Entropy-SGD: Biasing gradient descent into wide valleys,” ArXiv, vol. abs/1611.01838,
2016.

[34] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in
deep learning,” in Proceedings of the 30th International Conference on Machine Learning (S. Dasgupta
and D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA),
pp. 1139–1147, PMLR, 17–19 Jun 2013.

[35] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic
optimization.,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, 2011.

[36] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” ArXiv, vol. abs/1212.5701, 2012.

[37] G. Hinton, “Lecture 6a. Overview of mini-batch gradient descent.” https://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed: 2020-09-01.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014. cite arxiv:1412.6980
Comment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[39] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and beyond.,” in ICLR,
OpenReview.net, 2018.

[40] T. Dozat, “Incorporating nesterov momentum into Adam,” 2016.

[41] J. Zhang, I. Mitliagkas, and C. Ré, “Yellowfin and the art of momentum tuning,” ArXiv,
vol. abs/1706.03471, 2019.

[42] J. Rafati and R. F. Marcia, “Quasi-Newton optimization methods for deep learning applications.,” CoRR,
vol. abs/1909.01994, 2019.

[43] J. Martínez, “Practical quasi-Newton methods for solving nonlinear systems,” Journal of Computational
and Applied Mathematics, vol. 124, pp. 97–121, 2000.

[44] J. Nocedal and S. J. Wright, “Numerical optimization (springer series in operations research and financial
engineering),” 2000.

103

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[45] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. Tang, “A progressive batching L-BFGS
method for machine learning,” in ICML, 2018.

[46] J. Martens, “Deep learning via hessian-free optimization.,” in ICML (J. Fürnkranz and T. Joachims,
eds.), pp. 735–742, Omnipress, 2010.

[47] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” ArXiv,
vol. abs/1710.05941, 2018.

[48] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning,” Neural networks : the official journal of the International
Neural Network Society, vol. 107, pp. 3–11, 2018.

[49] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings
of the 27th International Conference on Machine Learning (ICML-10) (J. Fürnkranz and T. Joachims,
eds.), pp. 807–814, 2010.

[50] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”
vol. 9 of Proceedings of Machine Learning Research, (Chia Laguna Resort, Sardinia, Italy), pp. 249–256,
JMLR Workshop and Conference Proceedings, 13–15 May 2010.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification,” in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), December 2015.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way
to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56,
pp. 1929–1958, 2014.

[53] J. Ba, J. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv, vol. abs/1607.06450, 2016.

[54] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,”
in NIPS, 2006.

[55] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, “Learning polynomials with neural networks,” in
ICML, 2014.

[56] Z.-Q. J. Xu, “A note of using Tensorflow to code Laplacian operator in high dimension.” https:
//ins.sjtu.edu.cn/people/xuzhiqin/pub/laplaciancode.pdf. Accessed: 2020-09-01.

104

https://ins.sjtu.edu.cn/people/xuzhiqin/pub/laplaciancode.pdf
https://ins.sjtu.edu.cn/people/xuzhiqin/pub/laplaciancode.pdf

	Abstract
	Preamble
	List of Figures
	Table Index
	Overview of Multi-linear Algebra
	What is a tensor?
	Tensor Operations and Summation Convention
	Linear Algebra as Multi-linear Algebra
	Derivatives of Vector Functions and Tensors
	The Chain Rule in Tensor Notation

	Introduction
	Posing the Problem
	Relevant Literature

	Artificial Neural Networks Framework
	What are Artificial Neural Networks?
	From Numerical Integration to Deep-Learning
	Derivatives: Back Propagation and Gradient Issues
	Derivatives Behaviour (Vanishing and Exploding Gradients)

	Optimizers
	First Order Methods
	Second Order Methods

	Activation Functions and Parameter Initialization
	Parameter Initialization

	Regularization
	Noise-based Regularizations
	Restriction-based Regularizations
	Other Regularizations

	Case Studies and Simulations
	Coding Artificial Neural Networks
	Approximating a Function
	Training with Multi-Objective Loss Functions
	Model Simulation
	Model 1: The 1D Divergence Operator
	Model 2: The 2D Divergence Operator
	Model 3: The 2D Laplacian Operator
	Model 4: The 1D Advection Operator
	Model 5: The 2D Clairaut Operator
	Model 6: The 2D Burgers Operator

	Conclusions
	Author's Final Thoughts
	Further Work

	Linear Algebra Formulation of 2.3.1
	The Code
	imports Cell
	auxiliryPlotting Class
	myDataSets Class
	problemInstance Class
	secondOrderOptimizers Class
	myLayer Class
	myModel Class
	execution Cell

	Bibliography

