
Bachelor’s Degree in Informatics Engineering
Computer Engineering

Bachelor’s Thesis

Development of file access policies for
data-intensive applications in Linux

Author

Mikel Iceta Tena

2020

Bachelor’s Degree in Informatics Engineering
Computer Engineering

Bachelor’s Thesis

Development of file access policies for
data-intensive applications in Linux

Author

Mikel Iceta Tena

Directors

Iñaki Morlan Santa Catalina, Jose A. Pascual Saiz

Abstract

Our world has been going through a digitization process for some decades now, with the

transformation curve being sharper in the last few years. The rise of this new digital society

brings with it a huge amount of information, and so it is paramount to create new architec-

tures and hardware devices capable of storing and analyzing such information in a reason-

able time. The advancements in some fields such as persistent storage is notable, while in

other fields such as RAM some extra work must be done to counter the lack of physical im-

provement. For example, NVMe discs offer high transfer speeds and low latency in data access

while offering high capacities and moderate price points. The RAM, on the other hand, has

advanced less, being the transfer rates the only improved factor, letting both memory capac-

ity and prices almost intact. This results in data intensive systems with insufficient RAM that

continuously have to access disk in order to execute their programs, bringing a significant

degradation of the overall performance. The objective of this project is to analyze means of

operating with files other than the classic ones, analyzing the data access patterns of a given

application and developing a specific disk access policy for it to function with less hassle.

Specifically, we will focus on converting one existing program to a new memory-interacting

paradigm and developing new mapped-file page replacement policies at kernel level.

i

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Project Goals Document 3

3 Preliminaries 5

3.1 Introduction to kernels . 5

3.2 Kernel types . 7

3.3 The Linux Kernel . 8

3.4 Processes . 9

3.5 Virtual Memory in Linux . 11

3.5.1 Page tables . 11

3.5.2 Page faults . 13

3.5.3 Page fault handling in Linux kernel . 14

4 Themmap inteface 17

4.1 Interfacing mmap from user-space . 17

4.2 The page cache and mapped file faults . 19

4.3 Comparing mmap and read/write I/O functions . 20

iii

CONTENTS

4.4 Comparing mmap and read/write . 22

4.4.1 Sources and credits . 22

4.4.2 Experimental setup . 22

4.4.3 Analysis of the results and conclusions . 23

5 A real-life case study: BWA 25

5.1 Introduction . 25

5.2 Bwa-index . 26

5.3 Bwa-mem . 26

5.4 Motivation . 26

5.5 Possible solutions . 27

5.6 Modifications . 27

5.7 Experimentation and results . 28

5.8 Conclusions . 28

5.9 BWA2 . 29

6 Solution for a synthetic application 31

6.1 Background on DBMS . 31

6.1.1 Storage logic and the problem with big databases 32

6.1.2 Designing a database-like synthetic application 33

6.2 Modifying the Linux kernel . 33

6.2.1 Needed modifications . 33

6.2.2 Overview of mapped file faults . 34

6.3 Applying the modifications . 34

7 ProjectManagement 35

7.1 WBS Diagram . 35

7.2 Work packages and their tasks . 36

7.2.1 Preliminary study . 36

7.2.2 The mmap interface . 36

7.2.3 File mappings in BWA . 36

7.2.4 Modifying the Linux kernel . 37

iv

7.2.5 Meta-management . 37

7.3 Time estimation and deviations . 37

7.4 Deviation analysis . 38

7.4.1 Lack of documentation . 38

7.4.2 COVID-19 related back-offs . 39

8 Conclusions and futurework 41

Bibliography 43

v

List of Figures

3.1 Logical location of the kernel in the system. 5

3.2 ”Rings” found in the x86-64 architecture. Rings in gray are not used. 6

3.3 Differences between the three main kernel design patterns. 7

3.4 Basic structure of the Linux Kernel. 8

3.5 The simplified life cycle of a process. 9

3.6 The PCB contains a memory descriptor which keeps track of the virtual address

space usage. 11

3.7 The structure of a process in memory. 12

3.8 4 level paging system found in x86-64. 13

4.1 Effect of mmap-ing a file in the process memory descriptor. 18

4.2 Differences between accessing a file through the I/O stack and MMAP. 20

4.3 Differences between read/write operations using both mmap and I/O stack. . . 21

6.1 The fictional database in a hypothetical memory, with row and column orien-

tations. 32

6.2 Simplified interactions and calls between the VM system and the functions. . . 34

7.1 WBS Diagram of the project. 35

7.2 Simplified Gantt diagram of the project. 38

vii

List of Tables

4.1 Parameters used in the experiment and their possible values. 22

4.2 Mean bandwidth (in GB/s) obtained in each test and its standard deviation (Xeon

server). 23

4.3 Mean bandwidth (in GB/s) obtained in each test (i7 laptop). 24

5.1 List of files generated by the bwa index algorithm for two sample input files and

their size. The percentage denotes the fraction of the original FASTA file size. . . 27

5.2 Time difference between the original bwa and the mapped bwa index algorithms. 28

6.1 Example table from a fictional relational database. 31

7.1 ”Estimated vs real time” comparison for each work package group. 38

ix

CHAPTER 1

Introduction

From the smallest IoT sensors to the complex systems found in data centers, an increas-

ing number of devices generate and process huge amounts of data continuously. These pro-

cessing systems must load big amounts of data into their memory in order to process it. As

time goes by the amount of data generate by those devices scales up and as a consequence

the computers used to treat those data struggle to keep up with the memory requirements

[Makrani et al., 2018].

This scenario where the number of users and devices – and hence the amount of data gen-

erated – keeps growing and growing becomes unfeasible if advancements of similar magni-

tude are not done in the underlying technologies. Many factors limit the capacity of a system:

power consumption, cooling, bandwidth of the network in use, physical space and price.

All of them are to be considered at the time of setting up such a system, but there is one factor

that often goes by unnoticed: main memory usage. Main memory is the place where execut-

ing programs store code and data related to the application. Raw computing power (new CPU

and GPUs with higher clocks and more cores), persistent storage (NV-DIMM’s1, NVMe SSD’s2)

and network connections (400/800 GbE3, Infiniband HDR4 , Slingshot5) have improved in a

consistent way set against the growth of the needs of the society over time, even in orders of

magnitude from a generation to another.

On the other hand, the only advancements seen in the main memory are bandwidth im-

provements, higher clocks and lower consumption. These improvements are, to an extent,

sufficient to keep up with the needs of the average consumer, but when taking an overall

look at the ”data intensive world”, it is just not enough. This - alongside with its high price

tag - makes main memory a very scarce and valuable resource in most currently functioning

1https://www.zdnet.com/article/first-optane-performance-tests-show-benefits-and-limits-of-intels-nvdimms/
2https://es.wikipedia.org/wiki/NVM_Express
3https://en.wikipedia.org/wiki/Terabit_Ethernet
4https://www.infinibandta.org/infiniband-roadmap/
5https://www.cray.com/products/computing/slingshot

1

https://www.zdnet.com/article/first-optane-performance-tests-show-benefits-and-limits-of-intels-nvdimms/
https://es.wikipedia.org/wiki/NVM_Express
https://en.wikipedia.org/wiki/Terabit_Ethernet
https://www.infinibandta.org/infiniband-roadmap/
https://www.cray.com/products/computing/slingshot

2 Introduction

systems. It is considered scarce as e.g. a low-end system may have up to 10TB of persistent

storage while only having 32GB of RAM.

Modern data-intensive applications to need way more main memory than any mainstream/-

commercial system has to offer. This often ends up in situations where the systems need to

be constantly bringing data in and out from and to persistent storage, losing a substantial

amount of processing time doing so. This does not only physically degrade the memory sys-

tem (as a big amount of information is being written and read from the storage devices), but

it also does negatively affect the performance of the applications. Up until now, almost ev-

ery major problem encountered in terms of lack of computing resources has been solved by

adding more resources. This leads to the misconception that the only way to solve the lack of

memory is adding more memory.

In fact, there are several ways of alleviating the impact of the lack of memory. The most ob-

vious one is, indeed, adding more memory to the system. However, this is unfeasible as the

price of volatile memory is high and the number of modules that can be physically installed

in a computer is limited. The second way is augmenting the memory hierarchy by adding an

intermediate memory layer between the main memory and the persistent storage, being it

faster than the ”big” persistent storage but slower than the RAM. This has already been tested

in works such as the one of [Essen et al., 2012], and although it is not as fast as just adding

RAM, it significantly increases the storage subsystem performance.

Another option – the core of this work – is to modify the way the OS manages and allocates the

memory by changing/optimizing the page allocation policies and algorithms and changing

the applications to interact with files in a different way. Linux can only improve access latency

for sequential reads. For any other access pattern it simply does nothing. In this work we will

try to answer the following questions:

• Can new memory management policies be implemented in order to satisfy the needs

of a particular application?

• Can an application be modified in order to process bigger files without a notable perfor-

mance degradation?

Results obtained throughout this project show that the answer to both questions is «yes».

CHAPTER 2

Project Goals Document

The goal of the project is to inquire into alternative ways of interacting with files in Linux, as

well as modifying the kernel’s memory subsystem for it to manage new access patterns.

As any other monolithic kernel, Linux has an integrated memory management mechanism.

This allows applications to access the memory in an easy and normalized way. This system

brings the data in to main memory from disk as needed. When there is not enough room to

store everything in the main memory, data must be evicted from it and brought back later if

needed again. This may lead to situations where the memory system does not perform good.

The classic file reading logic traverses the whole I/O stack an can be considered too much of

a burden in some cases.

As a workaround, files can be mapped into the process address space, avoiding traversing the

whole stack. In Linux this can be done via themmap interface. This solution can improve tim-

ings and even allow the execution of otherwise unusable programs. Data intensive applica-

tions tend to be hard on the main memory, and vary in the data accessing patterns. Linux is a

general-purpose kernel and, as such, it only includes policies to deal with sequential accesses.

This results in a sub-optimal performance as the kernel keeps failing on guessing which in-

formation it has to bring in or out from/to disk for non-trivial access patterns.

Several test bench applications will be designed and implemented to test various hypotheses

in the area of memory performance. An existing data-intensive program will be executed and

measured in order to find a case where it can not be executed on a given machine. Its data-

accessing logic will then be changed so it can be executed and the time will be compared with

that of a machine that could originally execute it.

After an application has been modified to test the capabilities of mmap, some modifications

to the Linux kernel itself will be presented. These modifications will aim to adapt the mem-

ory subsystem to the needs of certain applications. Specifically, a new page-fault read-ahead

logic/policy will be proposed and implemented. This will reduce the time spent on I/O oper-

ations (and thus improve the performance).

3

4 Project Goals Document

Themain tasks of the project can be summarized into the next list:

1. To perform a deep study of Linux memory management subsystem.

2. To dive into alternative ways of accessing large disk files.

3. To modify an existent data-intensive application’s way of accessing disk files.

4. To create a synthetic data-intensive application and tailoring a new page-faulting policy

optimized for it.

Even if this project revolves around specific programs, the approach can be applied to virtu-

ally any kind of application. Determining access patterns in common/popular data-intensive

applications and tailoring an appropriate algorithm can be taken as long-term or an optional

goal for this project. The main activities of the project will be carried in the next way:

First, the Linux kernel has to be understood. After the preliminary study is finished, the Linux

code related to memory management has to be explored looking for the point where the page

replacing policies are implemented for the mapped files. To be able to compare mmap to the

I/O stack a test suite will be created, consisting of various shell scripts combined with C pro-

grams to read and write with synthetic, known patterns. This will provide a deeper under-

standing of Linux memory concepts and will allow finding the files where policies are imple-

mented. Further testing will be performed in pursuance of determining if mmap is a better

alternative in every scenario. Once the implementation point is found, a synthetic data inten-

sive program will be created and the memory subsystem will be modified to accommodate

it to the application.

CHAPTER 3

Preliminaries

The Linux kernel is very intricate, but it can be understood after worming in into its source

code. The whole project revolves around the behavior of the memory subsystem found in the

Linux kernel for the x86-64 architecture in data intensive environments. As a consequence, all

of the following research and most of the explained concepts will be centered on that specific

version.

3.1 Introduction to kernels

The Kernel is the program (or set of programs) that governs the computer it runs on. It is re-

sponsible for the functioning of the system and acts as an intermediate layer between the op-

erating system (and the user applications) and the machine’s hardware, as depicted in Figure

3.1. A kernel is comprised of several processes running at a high privilege level that maintain

the system running.

Figure 3.1: Logical location of the kernel in the system.

The kernel keeps track of every process, including the ones that shape it, in a complex struc-

ture called the Process Control Block (PCB). This structure includes the exact execution state

for each process: processor register values, scheduling information, execution privileges, etc.

5

6 Preliminaries

In multi-programming environments multiple tasks can be running at the same time, so the

kernel stores a list (usually a doubly-linked list) containing all existing PCBs. The PCB list is

stored inside protected structures inside the kernel memory in order to hide sensible data

from user space.

All modern kernels support multi-programming which, as stated before, allows multiple pro-

cesses to be run concurrently on the same processor core. This concurrency is but a mere il-

lusion1 created by the continuous context switching performed by the kernel. When a task

is evicted from execution state for any reason different than it coming to its end, the kernel

saves its information (context) in the corresponding PCB and then restores that of another

ready-to-run task. This is called a context switch (or preemption) and involves a series of

queues to store every process that is in each state at any given time. Each context switch is

said to come at a cost: latency, as saving/restoring the information is not free (computation-

ally speaking).

To assure security, CPUs include isolate, hard-coded privilege levels called rings. The high-

est is the less privileged one and the lowest the most privileged. Rings differ in which CPU

instructions can be executed by the calling program. If application issues an non-permitted

instruction, a General Protection Exception will be raised by the CPU to stop its execution. In

order to satisfy requests from non-privileged code that needs low-level access to protected re-

sources, applications must ask the kernel to do it using an interface (i.e. system calls). When

a program performs a system call, the kernel will receive the request and honor it if possible.

As it can be seen in Figure 3.2, in the x86-64 architecture user space applications may only

be executed in ring 3, while the kernel is executed in ring 0. Even if rings 1-2 were originally

created in order to be used by device drivers, they are widely unused, and modern operat-

ing systems such as Linux and Windows only work in two levels: supervisor/kernel (ring 0)

and user modes(ring 3). An additional ring (-1), is used in virtualized environments. The VM

hypervisor2 executes at level -1 3, and the hosted kernels at level 0.

Figure 3.2: ”Rings” found in the x86-64 architecture. Rings in gray are not used.

1Considering a single core processor.
2The hypervisor is an abstraction layer present in virtualized environments. It is located between the hosted ker-

nels and the host kernel in order to isolate them one from another and from the hardware
3The ring -1 does not actually exist. It is a virtual layer created by the hypervisor.

3.2 Kernel types 7

3.2 Kernel types

Switches between privileged (kernel) and non-privileged (user) execution modes and vice-

versa yield a time overhead to the execution. Various philosophies exist in regards of which

parts of the system should be part of the kernel and thus be executed in kernel mode, as it

can be seen in Figure 3.3. The main approaches are:monolithic, microkernel and hybrid
kernel designs.

Figure 3.3:Differences between the three main kernel design patterns.

InamonolithickernelbasedOS, all of the operating system runs in kernel mode, including

device drivers, inter-process communication mechanisms, virtual memory, etc. User appli-

cations access resources using the kernelSystemCall Interface. A call to this interface results

in an privilege level switch, which triggers the functions that satisfies the call via kernel code

and then returns to user privilege level.

As a major part of the whole system resides in the kernel in monolithic approaches, the num-

ber of mode transitions between kernel and user mode is reduced in comparison to other

designs. As a downhill, this block-like design proves to be the most difficult to maintain, as

the modularity level is very low and the code tends to get tangled. When a part of the kernel

suffers a failure, the whole system may crash. Examples of monolithic kernels include BSD,

Linux and Unix kernel families.

The opposite philosophy is implemented inmicrokernels, where only basic scheduling and

IPC primitives are included and run in privileged mode. Every other application, such as de-

vice drivers, file managing and complex IPC systems (such as sockets) is run in user mode.

These tasks can communicate with the kernel and other applications in a client/server man-

ner. On one hand, using this scheme may result in a slower execution, as these separate user

space applications incur in more execution mode transitions when communicating than in

8 Preliminaries

other kernel types, creating as a consequence, overheads. On the other hand, this loose cou-

pling makes development, securing and maintenance easier, as modules can be updated and

substituted without the need of modifying and re-compiling the whole system. Examples of

microkernels are the L3 and L4 families.

The third option combines the former two. The hybrid design incorporates as kernel code

some of the code that is considered unnecessary in microkernel approaches (such as device

drivers or full IPC mechanisms). This approach aims to gather the benefits of both microker-

nel and monolithic designs, finding a balance. Examples of hybrid kernels are Windows NT,

Apple XNU.

3.3 The Linux Kernel

The Linux kernel is a free and open-source, monolithic, Unix-like operating system kernel 4.

Since its launch in 1991, Linux has evolved by the hands of many different developers. This

makes its source code enormous (27+ million lines of code 5) and difficult to read and under-

stand. Subsystems are usually scattered between different source files written and/or main-

tained by different programmers, each with their own thinking and coding style. Linux is a

monolithic kernel, which makes tinkering through it an even more difficult task. Even when

vastly simplified, as can be seen in Figure 3.4, the structure may seem intricate.

Figure 3.4: Basic structure of the Linux Kernel.

To correctly and securely run multiple processes at the same time, Linux implements a Vir-

tual Memory system which presents a different working space to each process. Every pro-
4https://en.wikipedia.org/wiki/Linux_kernel
5https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/

https://en.wikipedia.org/wiki/Linux_kernel
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/

3.4 Processes 9

cess has a different and unique (virtual) memory address space and can be partially loaded

into different, non-contiguous physical memory locations, effectively and efficiently allowing

multiple processes to be run at the same time without clogging the machine and isolating

one from another.

3.4 Processes

The term process is used to refer to a program during any of its execution states, from the

moment it is created to its destruction. A program is said to be executing when it is read from

disk into main memory (RAM) and instantiated. Various processes may exist as different in-

stances of the same program. At any given time, a task may be in one of the states depicted

in Figure 3.5.

Figure 3.5: The simplified life cycle of a process.

In UNIX-like systems (such as Linux) the only way to spawn a new process is by duplicating an

existing one. This is done by means of the fork system call6, which is internally implemented

by either the fork() function or a variant of the clone() function (it depends on the machine

architecture).

In any case, when an existing process calls a fork, the call tree will end up with a call to the

_do_fork() function. This will duplicate the original operating structures of the parent process

(e.g. the PCB) and its address space layout. After the information of the parent process has

been completely copied to the child process, minor changes are done to the descriptor of the

children process in order to differentiate it from its parent and is then put into the execution

queue (if no image substitution is needed), waiting to be executed.

The process dispatcher will eventually put it to run in the CPU. This execution will carry on

until one of the following happens:

6https://www.tutorialspoint.com/how-to-create-a-process-in-linux

https://www.tutorialspoint.com/how-to-create-a-process-in-linux

10 Preliminaries

• The execution time slice is exceeded and preemption7is provoked.

• A higher priority process enters the ready state and provokes preemption.

• The task blocks on an event, such as an I/O operation, and gets preempted.

• The process ends, calls the do_exit() function and terminates.

The highest time penalty of creating a new process is the one needed to copy the aforemen-

tioned structures of the parent process and modifying the unique fields. Pretty much every-

thing will remain shared in memory among the parent and the child processes with a read-

only flag. Only when a write operation is performed to a memory position there will be an

actual information copy. This is known as copy on write (or CoW) or lazy copy philosophy.

This CoW is quite useful in many cases, as copying the entire address space content while

creating new processes would be useless in the case of a process that changes its execution

image after being created. For example, when executing a program from the terminal, the

interpreter process (sh, zsh, bash…) forks itself and then changes the image being run at the

children’s side. Physically duplicating all of the information would be useless, as it would be

discarded as soon as execve() is called to load the wanted program into memory.

The functions from the exec syscall family load the information of the desired program and

prepare the process to be run (if its safe to do so). Such functions will clear the address space

of the caller in order to accommodate the soon-to-be-born process, and similarly to what

happens to the fork call, it will happen in a CoW manner. This means that only a part of the

program will be initially loaded into main memory. The actual information transaction relies

on the kernel’s paging system, which will read the information from the secondary storage

(disk) on demand.

As this project revolves around the behavior of processes in the memory scope, it is important

to take a look at the kernel structures that help understand the interactions between the pro-

cess and the main memory. Linux implements its PCB using the task_struct data type, a cir-

cular, doubly-linked list which manages all of the PCBs. This structure includes a mm_struct
type field calledmm. This field points to the memory descriptor of the task, which contains

all sorts of information on how is it structured in the virtual memory system.

The memory descriptor contains multiple representations of the memory structure of the

process. Only one of them is shown in the Figure 3.6 for the sake of simplicity, as the described

areas are the same.

TheThe Stack is a region reserved for objects with automatic lifetime (see Figure 3.7), which

include function calls and the variables generated in them. This region grows towards the

MMAP segment. The Memory Mapping region contains information about the files that

have been mapped into the memory as well as mappings of loaded shared libraries (.so files).

The MMAP segment grows towards the Heap. The Heap stores the dynamic objects. These

7Wikipedia: Preemption is the act of temporarily interrupting a task being carried out by a computer system,
without requiring its cooperation, and with the intention of resuming the task at a later time. This is also known as
a context switch.

3.5 Virtual Memory in Linux 11

Figure3.6:The PCB contains a memory descriptor which keeps track of the virtual address space usage.

are allocated using calls to i.e. malloc() and disappear when a destructor function is called,

i.e. free(). The Heap grows towards the MMAP segment. The BSS region holds all the non-

initialized variables of the process. The DATA region contains initialised data such as as-

signed variables and constants, and the TEXT region contains the executable image of the

program itself.

3.5 Virtual Memory in Linux

Virtual memory was developed during the decade of 1950. Its main goal is to allow multiple

programs to be loaded into memory simultaneously and transparently in multiprogramming

systems. Thanks to the Virtual Memory system, a program needs not to be fully loaded in

memory in order to function. The parts of a process that are not being used can be evicted

from main memory in order to accommodate new parts or even parts from another process.

The parts of the process that are loaded into memory are said to be resident.

When non-resident information is needed for the execution of a program, kernel’s paging

system in conjunction with the Memory Management Unit translates the virtual address to

a physical one in order to bring it from persistent storage. This translation system relies on

page tables to perform the correspondence.

3.5.1 Page tables

The page is the smallest allocation unit in terms of memory. The actual memory portion de-

scribed by a page depends on the underlying architecture, but most of the actual ones (such

12 Preliminaries

Figure 3.7: The structure of a process in memory.

as x86-64) implement multiple page sizes (4KiB is the most usual, but 2MiB and 1GiB pages

can also be allocated). To keep everything uniform, the minimal allocation unit used for the

secondary memory is also the page. The main memory is organized in frames, which may

contain a page or be free.

In order to allocate as many programs as possible the virtual memory system (inside the ker-

nel) keeps track of each process’ page table, allowing the program to be not only partially

loaded but also using (physically) non-contiguous memory regions, as the translation system

allows it. As a consequence, contiguous linear addresses used by a process do not to corre-

spond to physical contiguous addresses.

The page translation system is implemented in practice using a hierarchical set of address

tables, as it can be seen in the Figure 3.8. Processes refer to ”their” information using virtual

addresses, which correspond to a certain physical memory address. In order to translate from

virtual to physical and determine if a page is residing in memory, the kernel paging system

must (usually) go through all of the levels of the aforementioned hierarchical table set.

Up until now, x86-64 used a 4-level paging system which uses 48 out of the 64 available hard-

ware memory bus bits to address memory, limiting the maximum physical memory to 256TiB,.

New advances in the matter present a 5-level translation system, which step up the actual

physical addressable limit from 256TiB to 128PiB. In both 4-level and 5-level paging used in

the x86-64 architecture, the uppermost table is addressed using the base address stored in

the CR3 CPU register as the starting point of the translation.

From that point on, fragments of the linear address are used as offsets to find the exact entry

on the current level table which, in turn, contains the base address of the next level table. This

3.5 Virtual Memory in Linux 13

Page Map Level 4 Table
(PML4)
256TiB

Page Directory Pointer Table
(PDPT)
512GiB

Page Directory Table
(PDT)
1GiB

Page Table
(PT)

2MiB

Physical Page
4KiB

Figure 3.8: 4 level paging system found in x86-64.

is done until the physical page address is resolved and tested. If the page has not been loaded

into memory (it is not resident), the paging system will raise a page fault in order to bring it to

memory (if possible).

Bringing pages one by one can negatively affect the overall performance, as it will make the

faulting process to continuously incur in costly I/O transactions. That is why pages are bought

to memory in blocks rather than doing it one by one. This is useful in scenarios where the data

is accessed sequentially, but not in the case of random reads or distant memory blocks, as the

faults will require I/O operations more often.

3.5.2 Page faults

There are three main page fault types: soft, hard and invalid. When a program faults on a page,

three situations may arise: (1) the page is residing in the main memory but is not mentioned

in the page table of the process, (2) the page has not yet been loaded into main memory, so

access to secondary memory is required and (3) the access is out of permitted bounds.

When a page fault occurs, the best case scenario is the minor fault (1), as it only requires min-

imum changes to the process descriptor and the Memory Management Unit. This is usually

the case of references to shared resources in memory, where other processes have bought

that page to memory but the MMU does not know that it has been loaded in the context of

that process.

When a major page fault (2) happens the system’s page fault handling system brings the page

from the secondary storage. The process is then evicted from the running state and put into

the waiting queue in order to proceed. The memory allocation code seeks a free page set big

14 Preliminaries

enough to satisfy the petition or replaces victim, non-free pages based on the systems re-

placement policy. After the placing is resolved, the victim dirty data is written back to the

disk (if needed) and the MMU and process descriptor are updated. This concludes the fault

and puts the process back into the ready to run queue. The process will be awakened by the

CPU scheduler when its time comes and it will proceed with the execution.

The invalid or illegal access case (3) just implies that the process has tried to access a memory

location which does not belong to its address space. This is common when trying to access an

uninitialized object which points to address 0 from kernel space (null pointer) and provokes

a segmentation fault which stops the offending process.

3.5.3 Page fault handling in Linux kernel

The function designated as the default page fault interruption handler in Linux is named

do_page_fault(). Each architecture (x86, x86-64, ARM, ARM64, PPC, etc.) has a different ver-

sion of this function, each designed to fit the hardware of each platform. The exact imple-

mentation is available under the arch/arch_name/mm/ directory, in the fault.c file. In the

case of the x86_64 architecture under the version 5.2.2, this function does as follows:

1 do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)

2 {

3 enum ctx_state prev_state;

4

5 prev_state = exception_enter();

6 trace_page_fault_entries(regs, error_code, address);

7 __do_page_fault(regs, error_code, address);

8 exception_exit(prev_state);

9 }

First, this function saves the current context into a variable using the exception_enter() func-

tion. This includes the processor register values, execution state, etc. mentioned earlier in

this work. This is done to keep track of the execution state of the running process at the time

of calling the function. Then the function activates page fault tracing (debugging) if enabled

(trace_page_fault_entries()and calls__do_page_fault()which simply carries on the fault rou-

tine and restores the execution state using exception_exit().

The next crucial function is the previously stated__do_page_fault(). It is the page fault routine

entry point in Linux. It will unchain the function series that will bring the information from

storage into memory. It executes the following code:

1 static noinline void

2 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,

3 unsigned long address)

4 {

5 prefetchw(¤t−>mm−>mmap_sem);

6

3.5 Virtual Memory in Linux 15

7 if (unlikely(kmmio_fault(regs, address)))

8 return;

9

10 /* Was the fault on kernel−controlled part of the address space? */

11 if (unlikely(fault_in_kernel_space(address)))

12 do_kern_addr_fault(regs, hw_error_code, address);

13 else

14 do_user_addr_fault(regs, hw_error_code, address);

15 }

16 NOKPROBE_SYMBOL(__do_page_fault);

This function first locks on mmap_sem to protect the address space of the process from race

conditions, then checks if the fault refers to a memory mapped I/O (MMIO) region. If so, it

launches the kmmio handler to take care of it. After that, the function determines if the ad-

dress belongs to the kernel portion or user portion of the address space. This check is done us-

ing theunlikelymacro, which tells the compiler to generate assembly code which will favour

the else branch, improving the accuracy of the CPUs branch predictor, as the majority of the

page faults will be issued by user mode code.

The function then launches routines do_kern_addr_fault() or do_user_addr_fault() accord-

ing to the origin. The first function is not relevant in the scope of this project, as DI applica-

tions are not run in kernel mode, and kernel space faults performed from user space will end

up in segment faults. The second function checks if the fault is valid, and if so, calls han-
dle_mm_fault. If no errors occur during the process, this function will also update the minor

or major page fault counters.

As stated before, Linux is a big and complicated kernel. This means that for a certain oper-

ation (such as accessing a file), several methods exist. Having seen how frequent page faults

and system calls may affect the performance and given the fact that reading a big file will

result in lots of system calls, a question arises: Does Linux offer any other way of interacting

with files apart from the common read and write system calls?

CHAPTER 4

Themmap inteface

MMAP is a functionality present in modern kernels such as Linux and BSD. Its functions al-

low processes to map files from secondary storage, devices and even other processes into

their virtual address space and access them. This feature allows seamless and direct access

to resources, as an access to an array position is directly translated into a memory space ac-

cess. In the case of devices, MMAP will connect the device memory with the address space,

so references to a certain address range will result in accesses to the device itself. If at the

time of addressing a position its content is not residing in main memory, the system brings

it through a special kind of page faults. This access goes through less layers than the classic

reading method, which involves intermediate buffers and using system calls.

4.1 Interfacingmmap from user-space

The two main system calls used to map and unmap files into the calling processes address

space are mmap() and munmap(). Their headers are:

1 #include <sys/mman.h>

2 void *mmap(void *start, size_t length, int prot, int flag s, int fd, off_t offset);

3 int munmap(void *start, size_t length);

The first function, mmap(), takes as an input parameter the desired start address and tries to

map length bytes at an offset value offset, using the file pointed by the fd file descriptor as a

source. If succeeded, the function will map the file into the processes address space with the

given prot mode and flags flags and return a pointer to the initial address.

The parameterprot can either bePROT_NONE, which won’t allow access to the pages or a bit-

wise or of any of PROT_EXEC, PROT_READ and PROT_WRITE macros. As their names imply,

they mark the ability of the mapped pages to be executed, read and/or written respectively.

17

18 The mmap inteface

The flags parameter determines the characteristics of the mapped object. A mapping can be

fixed, shared or private. Fixed maps will overwrite existing mappings in case of overlapping

and will try to force the specified address to be the beginning of the mapping. Shared maps

can be shared among processes and writing operations are equivalent to writing directly to

the mapped file. Private maps create a copy of the mapped file which does not reflect changes

in the file until flushed. The Linux kernel’s MMAP implementation also describes 11 more

flags which are not POSIX compliant.

When a file mapping is created using themmap() system call, an entry is created in the calling

process’ PCB mm_struct, assigning part of the virtual address space to the backing file.

Pointers to start and end of memory mapped files are stored in several ways inside the mem-

ory descriptor of the process (see Figure 3.6), and the data is allocated in the Memory Mapping

Region segment of the process, growing towards the heap segment. As it is represented in the

Figure 4.1 (all other vm_area_structs have been omitted for the sake of simplicity), mapping

a file using mmap will proyect it as contiguous linear addresses in the process control block.

Figure 4.1: Effect of mmap-ing a file in the process memory descriptor.

When the mmap system call is performed successfully, the memory-related structures are

updated (ie. a Virtual Memory Area -or VMA- structure which points to the mapping and the

file descriptor is created and it is then inserted into the VMA list between the stack and heap

VMAs). If no hints are given to the system or flags does not contain MAP_POPULATE, no in-

formation further than the first block is copied to main memory at first. If such flag is present,

the virtual-physical address correspondences will be resolved before returning control to the

calling code.

This happens because of the ”lazy” implementation style of MMAP in Linux, which relies on

mapped page faults to actually perform memory transactions. As stated before, the process

may press the system to populate the memory address translation table at the beginning

using the MAP_POPULATE flag. The same goes with the actual data copying, which can be

”forced” by using madvise over the address range.

4.2 The page cache and mapped file faults 19

4.2 The page cache andmapped file faults

The previous Linux chapter found in this work mentions a page faulting system used to trans-

fer data from the disk to the main memory. This routine and the code that composes it are in

charge of bringing data blocks from storage devices into main memory in the process called

page faulting. When taking a look at the statistics shown by processes that employ MMAP

as the main mean of dealing with files, it becomes clear that there is an inconsistency in the

expected faults vs observed faults binomial. Preliminary experiments show that there are

no more than a few major page faults when dealing with sequential reads even in huge file.

Logic would tell that after (access-size * number-of-accesses > block-size) a major fault would

occur, as the program would be reading a non-resident block. The results show that only mi-

nor faults occur during a sequential read. This happens because the ”regular” page faulting

system does not deal with such kind of faults. That is to say, there is a different system that

handles page faults generated by mapped files.

The function mainly in charge of bringing pages correspondent to memory-mapped files is

filemap_fault(), which resides in /mm/filemap.c. This background-running process makes

use of a readaheadmechanism and thepagecache in order to diminish the amount of directly-

generated hard faults. In Linux, the mapped faulting mechanisms can be given hints about

the memory access behavior by means of calling madvise(), posix_fadvise() and related func-

tions. Calling these functions will result in aVM_TYPEflag being activated, where TYPE is the

access pattern hint.

As of Linux version 5.2.2, the mapped fault system uses two VM hints implemented as bit-

masks: VM_SEQ_READ for sequential read patterns and VM_RND_READ for random or un-

known patterns. The system also implements a simple heuristic to detect linear and random

read patterns, so even if a hint is given at first it may be internally changed later.

Operating Systems use a portion of the free main memory space to accommodate what is

called thepage cache [Duarte, 2019]. This cache contains pages from secondary storage in or-

der to speed-up data accesses. The page cache also has eviction mechanisms in order to free

up space when needed, so pages not used in a long time are marked cold and pages used of-

ten are marked warm. When the system is under memory pressure, the cold pages are more

likely to be evicted from main memory than the ones that are warm.

The method used for filling in the page cache is a readahead system [Services, 2017]. This in-

cludes what is called a readahead window, which is a region next to the faulted page which

will be asynchronously loaded into memory. When the accesses reach the end of the window,

it is moved forward in order to bring more pages. As this is done in background, the process

itself does not incur in major faults, but just minor faults which will just assign the pages from

the page cache to the process address space.

When first accessing a mapped file or the access pattern stops being sequential (or if its not

sequential at all) a major page fault will occur. When that happens, the mapped file fault sys-

tem brings an initial block to memory. This can result beneficial for programs that access

20 The mmap inteface

data following principles such as time, spatial and sequential reference locality, as the related

pages will be warm in the page cache and the number of major page faults will be reduced.

This same behaviour harms applications with random access patterns, as references to dis-

tant blocks will force the system to fault pages more often. As a result, if a random access

pattern is hinted or if the heuristic determines so, the readahead mechanism is disabled.

4.3 Comparingmmap and read/write I/O functions

From the many ways that Linux offers to access files, the classic read/write(2) combination

and the mmap(2) interface are the most straightforward to use and thus the more common

ones. The main difference between classicandmemorymappedfile operations resides in the

way of interacting with the file. MMAP directly maps the file into the address space, and the

process can access it as if it was in memory, counting on mapped page faults to load the data

into a page cache. The classic method, on the other hand, copies the file into separate buffers

and then interacts with them instead.

MMAP can be seen as a simpler alternative of interacting with files comparing to the tradi-

tional read and write functions due to the evasion of a significant part of the I/O stack and the

lack of frequent, direct system calls (as it can be seen on Figure 4.2).

Figure 4.2:Differences between accessing a file through the I/O stack and MMAP.

While using the full stack via read/write, each interaction will result in a direct system call

that must traverse through all of the I/O stack to satisfy the request, which as stated in previ-

ous chapters adds context-switch and buffer interaction overheads. With a memory-mapped

region, the content is copied to a page cache in main memory in the background rather than

4.3 Comparing mmap and read/write I/O functions 21

a process-specific buffer and in foreground, so there is no explicit context switching to ker-

nel mode. As the page cache is global, if a thread closes a file and then re-opens it (or another

thread opens it), chances are the file will still be cached as opposed with the case of using read,

where the file are flushed from user-space buffer memory quickly after the file is closed.

As it can be seen in Figure 4.3, an operation on a mapped file will never directly perform a

system call (apart from the initial mmap, the final munmap and possible mremap calls). This

read hit

write hit

async write

(a)MMAP (b) I/O Stack

Figure 4.3:Differences between read/write operations using both mmap and I/O stack.

means that the direct context switches are vastly reduced, as mmap is run in user-space with

no system call being used apart from the map creating function call. In any write case, the

Virtual Memory system inside the kernel will take care of syncing the dirty pages to disk from

the page cache in the background according to its configuration.

As stated before, mmap runs in user mode. This also allows the system to take advantage

of the underlying vector architecture (SSE and AVX instruction set) to manage data faster.

When the access pattern favors MMAP, a significant speed-up can be achieved when com-

pared to the read/write functions. As a downside, if the application reads memory in a way

that is unsuitable for MMAP, a high amount of pages will be constantly be read to page cache

via mapped page fault interruptions. This may add an excessive overhead when invoked too

often or with a pattern that does not suit the predefined behaviors.

In a big data environment where the file does not fully fit in the RAM, and thus can not be

entirely read into it, mmap should perform better than the classic read/write functions.

22 The mmap inteface

4.4 Comparingmmap and read/write

The mmap interface would seem to be faster than the typical I/O stack functions to access

files in certain situations. But, where does this difference really reside in terms of execution?

In order to discover the real differences between the memory access via mmap and the stan-

dard read/write functions, an experiment is going to be carried.

4.4.1 Sources and credits

Given the needs of the project, an existing benchmark has been modified instead of creating

one from scratch. The base is pm [Fedorova, 2019], which can be found in her GitHub reposi-

tory1. The C benchmarking code has been altered both to modify the file access and to output

the desired metrics in the desired format. A new Bash script has also been created to launch

the experiment and collect the metrics in separate csv files. A Python script has also been

created in order to process and plot the csv files outputted by the experiments. The gener-

ated code along with the results can be found in the DADI repository under the comparison
directory2.

4.4.2 Experimental setup

The premise is the next: mapped file accesses should be faster than the read/write file ac-
cesses.The experiment consists on reading and writing information using the same patterns

and techniques over the same data, and extract the elapsed time and the obtained band-

width. The parameters and their variations are described in the table 4.1.

Parameter Values
Mode mmap, syscall
Test read, write
File size 256MB, 1GB, 4GB
Cache cold, warm
Access sequential, random
Block size 8KB

Table 4.1: Parameters used in the experiment and their possible values.

A previous analysis has been performed to check the impact of the working block size in the

resulting bandwidth. The tested sizes were 4, 8 and 16 kilobytes. After 720 different tests, 8KB

size was deemed the best size for this experiment.

Further trial-and-error experiments have been done to determine the impact of different

benchmarking techniques. After the tests, the conclusion is that both methods should be

reading with the same level of handicap in order to obtain reliable results. Thus, the original

1https://github.com/fedorova/pm
2https://gitlab.com/dadi-tfg/dadicode/-/tree/master/comparison

https://github.com/fedorova/pm
https://gitlab.com/dadi-tfg/dadicode/-/tree/master/comparison

4.4 Comparing mmap and read/write 23

code was modified so both mmap and read/write experiments process the whole files char-

acter by character. For each combination, 5 runs will be done, each run using a seed from 1 to

5 to assure reproducibility. A mean will be calculated (plus standard deviation). This adds up

for 240 unique experiments. The tests have been performed on a machine with the following

specifications:

• CPU: Intel Xeon Gold 6130, 16 cores (32 threads) @ 3.7GHz

• RAM: 32GiB, DDR4-2666MHz

• Storage: SATA III SSD

• OS: Rocks 7.0 Manzanita (CentOS 7.4 kernel 3.10)

The experiment could have been run on a machine with a mechanical HDD, SATA SSD, NVMe

and NV-DIMM, in order to further see which method suits better different physical device

types. This was not possible due to external causes explained in a later chapter3.

4.4.3 Analysis of the results and conclusions

The raw results (time and bandwidth) from the experiments can be found in the respective

csv files in the repository4. The mean bandwidth along with its standard deviation can be

seen in the table 4.2.

Execution Test 256MB dev 1GB dev 4GB dev

cold seq

MMrd 0.269 0.000 0.227 0.001 0.434 0.002
IOrd 0.220 0.005 0.085 0.005 0.121 0.002

MMwr 2.251 0.151 2.085 0.151 0.706 0.592
IOwr 2.023 0.196 2.009 0.196 0.812 0.435

warm seq

MMrd 0.269 0.000 0.256 0.008 0.500 0.018
IOrd 0.227 0.001 0.229 0.000 0.229 0.001

MMwr 2.026 0.116 2.186 0.192 0.896 0.508
IOwr 1.835 0.209 1.917 0.172 0.958 0.501

cold rnd

MMrd 0.267 0.000 0.237 0.011 0.465 0.019
IOrd 0.153 0.004 0.155 0.001 0.106 0.003

MMwr 2.749 0.303 2.568 0.259 2.039 0.177
IOwr 1.855 0.172 1.711 0.129 1.271 0.177

warm rnd

MMrd 0.267 0.000 0.247 0.007 0.494 0.005
IOrd 0.229 0.000 0.228 0.001 0.228 0.000

MMwr 2.753 0.143 2.605 0.203 2.231 0.221
IOwr 1.879 0.202 1.757 0.157 1.448 0.255

Table 4.2:Mean bandwidth (in GB/s) obtained in each test and its standard deviation (Xeon server).

The measurements show that mmap yields higher data transfer rates for every tests. The only

exception occurs in the 4GB file sequential writes, where the write function presents a better
3COVID-19 disease and related confinement measures.
4https://gitlab.com/Ratolon/dadicode/-/tree/master/comparison/

https://gitlab.com/Ratolon/dadicode/-/tree/master/comparison/

24 The mmap inteface

mean bandwidth. This discrepancy can be ditched as the standard deviation is at least 50%

of the mean value. As the size of the file increase, the fraction of time spent in populating the

mmap translation tables becomes smaller in comparison to the actual data access time.

Writing differs from reading both in magnitude and standard deviation. Writes are in general

faster than reads, and have a notable variation in terms of time and bandwidth. This could be

due to the machine on which the tests were performed or its SATA controller/bus, or due to

other processes running in the system.

Tests have also been performed with a 16GB file to test the behavior of both methods on sce-

narios where the file is larger than the system memory. Results are not shown as the hard-

ware of the testing machine could not process the classic read/write tests in a moderate time.

Additional tests have been performed on a laptop with following specs:

• CPU: Intel Core i7-8550U, 4 cores (8 threads) @ 4GHz

• RAM: 8GiB, DDR4-2400MHz

• Storage: Samsung PM961 256GiB NVMe, read-write 3GiB/s - 1.7GiB/s

• OS: Void Linux with kernel 5.5.2 (Minimal installation with no GUI)

Results are gathered in the table 4.3 (standard deviation omitted as it is similar to the one seen

in 4.2).

Execution Test 256MB 1GB 4GB

cold seq

MMrd 0.507 0.509 1.028
IOrd 0.375 0.359 0.352

MMwr 2.791 0.917 0.363
IOwr 5.04 0.301 0.269

warm seq

MMrd 0.506 0.507 1.01
IOrd 0.39 0.084 0.071

MMwr 3.431 2.578 0.49
IOwr 4.237 1.031 0.316

cold rnd

MMrd 0.507 0.511 1.027
IOrd 0.418 0.415 0.417

MMwr 2.862 0.78 0.368
IOwr 5.504 0.332 0.316

warm rnd

MMrd 0.504 0.504 1.009
IOrd 0.415 0.413 0.413

MMwr 3.765 2.068 0.498
IOwr 4.802 1.088 0.3906

Table 4.3:Mean bandwidth (in GB/s) obtained in each test (i7 laptop).

Results show that different kernels, architectures and storage device types show different

bottlenecks. Nonetheless, the conclusion stays the same: mmap performs better except in

cases with high variance. The final conclusion is that mmap is a viable solution for big files,

for both regular and NVMe SSD’s.

CHAPTER 5

A real-life case study: BWA

The mmap interface found in Linux has been proven to be a competitor to the normally used

read/write functions. It shows advantage over the classical data accessing methods in syn-

thetic programs that were specifically created for the tests. But is it competitive in a real-world

application? Is it worth the effort modifying a program to interact with the files via mmap?

BWA is a data-intensive, memory-bound application used in biology-related work. The data

access logic found in the application will be modified to add mmap capabilities and will then

be compared to the original version in terms of performance.

5.1 Introduction

BWA (Burrows-Wheeler Aligner) is a software package for mapping low-divergent sequences

against a large reference genome, such as the human genome. It consists of three algorithms:

BWA-backtrack, BWA-sw and BWA-mem. As the mem algorithm is the latest incorporation

to the BWA application, it is the one that is going to be looked at. The mem algorithm requires

the input genome to be previously indexed into several auxiliary files. The index algorithm

found in bwa is responsible for this indexing and it will also be modified.

As stated before, modifications to the code will only affect index and mem programs. The

changes are only related to memory management and do not alter the results of the output

files or the algorithm itself. The original program can be found in its official repository1, while

the modified version can be found in the DADI repository2.

1https://github.com/lh3/bwa
2https://gitlab.com/dadi-tfg/bwa-1-mmap

25

https://github.com/lh3/bwa
https://gitlab.com/dadi-tfg/bwa-1-mmap

26 A real-life case study: BWA

5.2 Bwa-index

The index function generates several files parting from the original FASTA file. For a given

.fastagenome the program outputs 5 files with the extensions .fasta.amb, .fasta.ann, .fasta.bwt,

.fasta.pac, .fasta.sa.

The program creates a buffer to store the information of each file in memory using calloc(3).
When fully processed the program writes the information to the storage in the form of the

aforementioned files and finally frees the allocated memory using free(3). This algorithm oc-

cupies a big amount of physical memory, as each buffer needs to be fully allocated from start

to end. If the machine is low on memory or simply does not have the required amount of RAM,

the execution will fail or incur in heavy thrashing as the information will be continuously be-

ing swapped from and to main storage.

5.3 Bwa-mem

The inputs of thememprogram are a ”big” genome in the FASTA format, and one or optionally

two ”small” reads that are going to be aligned with the big one. In order to process the FASTA

file, it has to be indexed using the index program first. The mem function loads the fasta file,

its associated indexed files and the short reads that are to be compared with it. Similarly to

what happens with index, mem loads all of the information at once into the main memory

in regions allocated using calloc(3). If the available memory is not sufficient, heavy thrashing

will occur and the application will run indefinitely at maximum CPU use, thus rendering the

system unusable.

5.4 Motivation

In order to be successful, the modified version must both allow files that could not be pro-

cessed originally to be treated in a tolerable time and not harm the execution time in cases

where the files could originally fit in the system memory. That is to say, the time is not impor-

tant for when the files were not originally supported, but it is crucial not to exceed by much

the original time for the cases that were supported. The table 5.1 shows the output file sizes

obtained by indexing two sample fasta format genome assembly files.

As a general rule, the program will need 2.72 times the fasta file size in RAM in order to index

it. This requirement is greater while executing the algorithm, where all of the aforementioned

files plus the (one or optionally two) readings are loaded in main memory. The total amount

of necessary RAM in that case parts from 2.72 times the fasta file and its maximum value de-

pends on the size of the readings that are to be aligned with it. If taken into account, auxiliary

buffers also allocated via calloc(3) aggravate the high memory requirement.

5.5 Possible solutions 27

File SARS-CoV-2 % ucsc.hg19 %
fasta 72.6MB 1 2.98GB 1
amb 59KB 7.9E-4 8.39KB 2.7E-6
ann 336KB 4.5E-3 3.94KB 1.2E-6
bwt 71.1MB 0.98 2.92GB 0.98
pac 17.8MB 0.24 748MB 0.24

sa 35.6MB 0.49 1.46GB 0.49
TOTAL 197.5MB 2.72 8.1GB 2.72

Table 5.1: List of files generated by the bwa index algorithm for two sample input files and their size.
The percentage denotes the fraction of the original FASTA file size.

5.5 Possible solutions

Two solutions that satisfy the problem arise. The first one implies dividing the process into

chunks and generating the files in smaller sections using read/write. The second consists on

mapping the files using mmap, so they are loaded on-demand but fully ”present” at all times

for the process.

Applying the first approach (which is partially done in the original code) may seem impracti-

cal as the code has to be examined in depth in order to check if it can even be implemented

in every memory-heavy point. If at any given point the system is under a big memory pres-

sure and the chunks are not of an appropriate size, thrashing may occur as it happens in the

original version. This thrashing is likely to occur due to the nature of calloc/malloc memory

regions, where an evicted page must go to swap.

The second approach maps the needed files, so reads will bring information into the page

cache via mapped file faults. This alternative is more attractive, as the memory does not get

as clogged as with the first approach. When the memory system is under pressure, the pages

in the page cache can be just evicted (uncommitted write operations would be performed

before doing so) without swapping.

Both approaches also differ in terms of resource usage. The original approach may generate

a big bottleneck when writing the whole file at the end. The first alternative would divide that

”big” write operation into smaller writes at the end of the processing of each chunk. The sec-

ond one would distribute the usage through all of the execution evenly, as the I/O operations

are performed at the moment of addressing the data rather than in big chunks. This can de-

grade the performance by some seconds but reduce the overall stress and effect generated

by bwa on the memory system and other running processes.

5.6 Modifications

As stated previously, the changes consist on mapping the big files. When creating them, the

process will directly write to disk. When reading them, the process will keep only the neces-

sary information at each time. The main difference comes after mapping the .bwt file, which

28 A real-life case study: BWA

has a size of 0.98 times the size of the input fasta. The .sa file is also relatively large, having a

size of 0.49 times the input fasta, so it is also mapped. Even though the .pac file is also consid-

erably large, it is not going to be mapped to boost the speed, as it has not been deemed big

enough.

5.7 Experimentation and results

The mem algorithm and its requirements vastly vary depending on the fastq read count and

size, so executing it and comparing results among files in a consistent way is unfeasible. That

is why the benchmarking will consist on running the index algorithm -which only depends

on the input file size- over different files. The experiments will be carried on a machine with

the following specs:

• CPU: Intel Xeon Gold 6130, 16 cores (32 threads) @ 3.7GHz

• RAM: 32GiB, DDR4-2666MHz

• Storage: SATA III SSD

• OS: Rocks 7.0 Manzanita (CentOS 7.4 kernel 3.10)

Table 5.2 gathers the resulting execution time of the index algorithm over different-sized files.

The results show that both the original and the mapped versions perform almost equally for

Name Fasta size Index (orig) Index (mmap) Speed-up
Candida Albicans 13.8MB 6.68s 6.14s 1.087x
SARS-CoV-2 72.6MB 68.85s 65.91s 1.044x
Electrophorus Electricus 533.MB 561.3s 510.1s 1.100x
Asparagus Officinalis 1.1GB 1263s 1173s 1.076x
Homo Sapiens Sapiens 3.0GB 3942s 3611s 1.091x

Table 5.2: Time difference between the original bwa and the mapped bwa index algorithms.

every input file, regardless of the input fasta file size. In fact, the mapped version is strictly

faster than the original. An experiment on a machine with 8GB RAM - which could not origi-

nally process the Homo Sapiens Sapiens genome because of memory requirements- shows

that the indexing can be performed in approximately 3000 seconds when the processor is at

its Intel TurboBoostmode. There is an infinite speed-up as the computer could originally not

process the file.

5.8 Conclusions

When using bwa index and mem, if the system memory is enough to store everything, the

performance of the original version is expected to be on a par (if not better) with the modified

5.9 BWA2 29

version, as it reads everything in the beginning. The latency of reading the whole file at once

from memory will be equal to that derived from faulting from disk during execution. In the

case of files that exceed the memory of the machine, the time does not really matter as the

original version will simply get stuck, while the modified version will be able to process the

files.

This experiment shows that not only MMAP can perform faster than the classic ways of read-

ing files, but it also allows applications to process big files with little modifications.

5.9 BWA2

A second version of the BWA algorithm has been developed, bringing significant changes.

The second version is written in C++ in its majority as opposed to the full-C implementation

of the first one. It also includes vast improvements on the architectural side, using AVX vec-

tor instructions when available and reorganizing the program logic to exploit the character-

istics of the underlying machine (e.g. multiple threads). BWA2 was presented in the work of

[Vasimuddin et al., 2019] and can be found on its repository 3.

An attempt has been done to give mmap capabilities to this second version of the program4,

but the nature of the algorithm it implements will not allow a full mmap-ing. It turns out that

second version gains speed at the cost of consumingmuchmore memory, as it decompresses

everything into memory. All huge, intermediate buffers could be mapped into storage, but

bwa2 would then flood the disk storage. Due to the obscurity of C++ code and time constraints,

the attempt has been abandoned.

3https://github.com/bwa-mem2/bwa-mem2
4https://gitlab.com/dadi-tfg/bwa-mem2-mmap

https://github.com/bwa-mem2/bwa-mem2
https://gitlab.com/dadi-tfg/bwa-mem2-mmap

CHAPTER 6

Solution for a synthetic application

As stated in the previous chapter, the Linux kernel and the way it manages mapped file faults

can be a burden for certain applications. The performance could be improved if a read-ahead

policy that satisfies the reading pattern is designed and implemented at kernel level. Through-

out this chapter a synthetic application will be designed with a given access pattern, and a

way to modify Linux will be explored.

6.1 Background on DBMS

The created synthetic application is inspired on the principles of a relational data base man-

agement system (RDBMS)1. Relational databases (RD) use projections from the real world do-

main in the form of tables, following the relational model2. The data is presented as tuples

(rows) of data, which contain a unique key, information and usually references to other tables.

The tables are entwined and grouped using cross-references or relations (hence the name).

Table 6.1 shows a fictional list of people who are to attend a congress.

Table: RITSI congress trip, people information
ID Name Surname DNI PhoneNo LDAP Bus Hotel
001 Mikel Iceta 72546844G 600000001 miceta003 N N
002 Jose Pascual 12344321E 600000002 scpasaj Y Y
003 Inaki Morlan 54328461I 600000003 acpmosai Y Y
004 Jose M Irizar 73816492S 600000004 jirizar009 N N

...

Table 6.1: Example table from a fictional relational database.

The organization staff could use this table in conjunction with other tables in order to i.e. get

the e-mail address associated to each person, or to check if they have paid the inscription.
1https://en.wikipedia.org/wiki/Relational_database#RDBMS
2https://en.wikipedia.org/wiki/Relational_model

31

https://en.wikipedia.org/wiki/Relational_database#RDBMS
https://en.wikipedia.org/wiki/Relational_model

32 Solution for a synthetic application

Queries performed against a certain table may access the memory it is stored in in many dif-

ferent ways. For example, an access to a whole row will impact the memory in a different way

than an access to a whole column3. This is due to the way in which the information is stored

in the hard disk.

6.1.1 Storage logic and the problemwith big databases

Similarly to what happens with matrices in programming languages4, RDBMS’s may store

data in two different ways. While row-oriented systems serialize each tuple (or row), column-
oriented systems will serialize the columns. This means that in the first model all elements

from the same row are adjacent in memory, while in the second model the elements of the

same column are the ones being adjacent, as depicted in Figure 6.1.

Disk storage, row-oriented

001 | Mikel | Iceta | ... 002 | Jose | Pascual | ... 003 | Inaki | Morlan |

Block 0

Row 0

Block 1

Row 1

Block 2

Row 2

...

...

Disk storage, column-oriented

001 | 002 | 003 | ... Mikel | Jose | Inaki | ... Iceta | Pascual | Morlan |

Block 0

Col 0

Block 1

Col 1

Block 2

Col 2

...

...

Figure 6.1: The fictional database in a hypothetical memory, with row and column orientations.

When the whole table set fits in memory (and once its fully loaded), accesses to all table po-

sitions will have a constant time cost. The same does not happen when dealing with huge
tables that do not fit in the RAM, where a contrasting behavior occurs. As the tables do not

completely fit in memory, I/O operations must be performed every now and then via page

faults. In row-oriented systems, accesses to a whole column will result in far much more page

faults than in column-oriented ones (and vice-versa), as elements will be separated one from

each other by a stride instead of being adjacent. This may degrade the performance of the

whole database system and impact the service time.

In previous chapters mmap has been analyzed as an alternative to the standard read/write

functions when dealing with data-intensive problems. It has been proven that it allows a ma-

chine that could not process a file to be able to do so, and to do the same thing faster than

read/write in machines that could handle the file. Databases suppose a big part of the data-

intensive application ecosystem.

3This only applies to when the database does not fit in the main memory and it has to be read from disk.
4C stores matrices in row-major order while Fortran stores them in column-major order.

6.2 Modifying the Linux kernel 33

6.1.2 Designing a database-like synthetic application

A synthetic benchmark application has been written bearing in mind the nature of databases.

The program opens a file, maps it into its memory space using mmap and then just reads

some data, simulating a query. The elapsed time is then printed. The reading pattern is de-

signed to be contrary to the storage logic to reproduce a situation where the page cache reada-

head policies will be a bottleneck. That is to say, the simulated file is considered to be row-

oriented and the program reads a whole column to generate page faults that can not be sat-

isfied by the actual sequential policy.

6.2 Modifying the Linux kernel

In order to implement a new flag for the application to use, it has first to be implemented

at kernel level and compiled. The system must not only detect when the application gives

hints on its memory usage and act, but it also must not disrupt the normal functioning of the

system.

It is important to remark the lofty hardship of worming through a whole kernel composed of
27+million lines with the only help being a page containing the source code5. The process of

modifying the kernel has included installing a bare-bone Void Linux, setting up a compilation

environment, endless wire-pulling from file to file to determine the execution flow of function

calls and trial-and-error kernel debugging. In addition, the memory subsystem and some of

the internal kernel structures happen to be quite undocumented, so a lot of blind walking

was involved in the process of determining the context and exact actions performed in each

function call. The asynchronous and entwined nature of the kernel make everything even

more difficult to understand.

That being said, all of the modified files can be found on the project repository, in the kernel
folder6, along with some useful scripts to move the information from the editing folder to the

kernel source code folders.

6.2.1 Neededmodifications

The first thing needed for the kernel to adapt to a new data access pattern is the application it-

self to announce or give a hint on how it is going to access the memory. This is done by means

of madvise(), which has some predefined flags declared in its code. Creating a newhintneeds

the corresponding flag to be declared in both /include/uapi/asm-generic/mman-common.h

and /tools/include/uapi/asm-generic/mman-common.h. The function madvise_behavior()

in the file madvise.c must also be modified in order to add a case in its internal switch to

add the VM flag to the VMA structure. This also requires the corresponding VM flag to exist,

which can be declared in mm.h. If the userspace GLIBC headers are not modified to add the
5https://elixir.bootlin.com/linux/latest/ident
6https://gitlab.com/dadi-tfg/dadicode/-/tree/master/kernel

https://elixir.bootlin.com/linux/latest/ident
https://gitlab.com/dadi-tfg/dadicode/-/tree/master/kernel

34 Solution for a synthetic application

new mode, the MADV flag will not be declared for userspace and the calling user code will fail

to compile7.

6.2.2 Overview ofmapped file faults

The entry point of a mapped file page fault is the function filemap_fault(), which is invoked

via the vma operations vector from the faulting mapped memory region, and is given the

information of the virtual memory fault by the VM system. The call chain is simplified and

summarized in the Figure 6.2. Depending on if the page is already in memory or if it is not

present, the function will call do_async_mmap_readahead() or do_sync_mmap_readahead(),

respectively.

ra_submit

page_cache_async_readaheadpage_cache_sync_readahead

__do_page_cache_readahead

ondemand_readahead

Virtual File System

madvise, fadvise
(syscalls)

Figure 6.2: Simplified interactions and calls between the VM system and the functions.

In the case of do_sync_mmap_readahead(), the algorithm will determine via the VM flags if

the access is random or sequential. If the access is random, the algorithm does nothing. If it

is a sequential access (VM_SEQ_READ is present in the flags) the program calls the function

page_cache_sync_readahead(). 8

The function page_cache_sync_readahead() resides on the file readahead.c and will just call

ondemand_readahead(), which in turn will also only call the function ra_submit(), which calls

__do_page_cache_readahead(), returning the execution flow to the file filemap.c. This func-

tion, after several checks, will call read_pages(), which will perform the actual I/O operation

and read the page.

6.3 Applying themodifications

Apart from the mentioned modifications, the new readahead should be implemented inside

the call tree. This could be implemented by adding counters, or address markers to the exist-

ing programs and structures. This part has been classified as future work by force majeure,

as the (later explained) circumstances have not allowed it.

7Actually, the user code will be able use the flag referring to it by the associated number, but not with the name
8If enough misses occur during a sequential read-ahead, the system automatically changes the pattern flag to

VM_RAND_READ.

CHAPTER 7

ProjectManagement

Many information is gathered and many documents are created during a project’s lifetime.

Project management plays a vital role in maintaining a working order and assuring the cor-

rect advancement of the project itself.

7.1 WBS Diagram

The Work Breakdown Structure diagram expresses the work that needs to be performed in

a tree, with the project itself being the root. The second level of the tree contains the phases

of the project and the next two levels contain the work packages and the tasks that define

them. This project’s WBS diagram can be seen in Figure 7.1.

Figure 7.1:WBS Diagram of the project.

35

36 Project Management

The work must be correctly separated into sequential phases. Each phase will then be de-

composed into smaller and easier to process work packages. This way, the work that needs

to be done can be expressed in a hierarchical manner, making it easier to understand and to

perform.

7.2 Work packages and their tasks

This section is devoted to elaborating on the tasks needed to achieve the main goals of the

project. A brief text is provided with each item, describing the work package or task it refers

to.

7.2.1 Preliminary study

The theoretical base of the project includes the definition of some key concepts. The prelim-

inary study will determine the base of the process of running an application.

• Kernels: Determine the main types of kernels and compare them.

• Processes: Determine how a process is created and how it interacts with the memory,

other processes and the kernel itself.

• VirtualMemory andpaging: Further study of the interactions of processes and phys-

ical memory.

7.2.2 Themmap interface

Once the basic functioning of the system is understood, a deeper dive can be done in terms

of file accesses. The mmap interface seems like a good alternative, so a study of its viability

has to be carried.

• Introduction: Summarize the usage and functioning of the mmap implementation

found in Linux.

• Page cache and mapped file faults: Determine the approximate functioning of the

page faulting system in charge of mapped file page faults.

• Comparemmapandread/write: Check whether mmap is a viable alternative to stan-

dard read/write system calls.

7.2.3 Filemappings in BWA

A real-world application that suffers from memory leaks can be modified so it can treat bigger

files without actually having the necessary amount of RAM. BWA is an existing data-intensive

program that suffers from memory leaks.

7.3 Time estimation and deviations 37

• Identify the leaks: Determine the points where the memory is allocated.

• Modify bwa: Substitute the memory allocations with file mappings.

• Comparison: Compare the speed of both methods, old and new.

7.2.4 Modifying the Linux kernel

Modifications can be performed at kernel-level for applications that already interact with files

using mmap to execute faster.

• Context: Find a situation where the actual page faulting system does not satisfy (enough)

the running data-intensive application.

• Modification: Modify the kernel so it suits the application.

• Comparison: Check if it the modification was of any good.

7.2.5 Meta-management

This is the transversal part of the project. It includes all the tasks needed to define and con-

trol the advancements on the matter of the project. The goal of this part is to assure all of

the work packets and tasks are completed. As it is meta-management, it is not considered

needed including it in the WBS diagram.

• Documentation: This task includes all of the written documents and code documen-

tation done throughout the project.

• Code/information repository: This task regards the creation and maintenance of the

online GitLab repo. It includes all of the code (kernel modifications, test applications,

etc.) and the information (this document, the presentation, etc.) created throughout the

project.

7.3 Time estimation and deviations

Once all of the tasks needed to achieve the goals of the project are defined, a time estimation

can be done in order to evaluate the scope of the project. This estimation is represented in the

Table 7.1. The tasks have been extracted from the Figure 7.1. Each line contains the estimated

time required for the task (a priori) and the real time that has been needed to complete it (a
posteriori).

The project starts in December, 2019. The milestones for each part of the project are depicted

in the Figure 7.2.

38 Project Management

Estimation (h) Real (h)
PRELIMINARY STUDY
Generic

Kernel documentation 10 10
Linux-specific

Process documentation 20 20
VM & page faults documentation 20 40
Experiments 20 30

THEMMAP INTERFACE
Introduction 20 30
Page cache study 40 50
Comparison 50 50
AREAL LIFE CASE STUDY: BWA
Identify the leaks 10 10
BWA modification 20 30
Comparison 20 10
MODIFYING THE LINUXKERNEL
Context 10 10
Modifications 50 20
Comparison 20 -
PROJECTMANAGEMENT
Documentation 20 20
Code/information repository 3 2
Total 333 332

Table 7.1: ”Estimated vs real time” comparison for each work package group.

January February March April May JuneDecember

State of the art

Initial experiments

Evaluation

Presentation

Documentation

Defense

Figure 7.2: Simplified Gantt diagram of the project.

7.4 Deviation analysis

7.4.1 Lack of documentation

The Table 7.1 shows a notable time difference in the documentation parts of both Linux, its

memory and the mmap interface. This deviation has been caused primarily by the lack of

actual documentation, research and articles on the topics of the project. That is to say, the

documentation has been mainly created rather than collected and summarized.

7.4 Deviation analysis 39

7.4.2 COVID-19 related back-offs

The COVID-19 pandemic is an ongoing pandemic originated from the severe acute respira-

tory syndrome coronavirus (SARS-CoV-2). At the time of publication, it is a global pandemic.

The Spanish government has implemented a state of alarm in order to apply some restric-

tions and measures to contain the virus. The measures applied to prevent further spreading

of the virus include self-isolation and social distancing. Businesses, public services such as

the university and buildings shut themselves down in order to save lives. As a side effect, the

confinement has left people stranded at home, far from their workstations and study mate-

rial.

In what concerns to the project two consequences have appeared due to the state of alarm

caused by the COVID-19, a technical one and a logistic one. As there was no way to access

other machines, no further tests could be done in chapter 4 with the mentioned storage con-

figurations. Also, moving back home consumes time and in this particular case removes the

only quiet study spaces available. This has left the modification of the kernel out of the time

scope of this thesis.

CHAPTER 8

Conclusions and futurework

The end of the this work comes with some interesting conclusions:

• mmap is actually a viable alternative to read/write

– when dealing with big files.

– when accessing the files several times or in a one-shot fashion.

– when performing both sequential and random accesses.

• Applications

– can be converted to a mmap logic without modifying the underlying algorithms,

getting a performance boost.

– can be initially designed to handle files with the mmap interface.

– could benefit from a readahead policy that better suits them than ”sequential” or

”random”.

• The Linux kernel

– is hard to understand, read and modify.

– can be modified ad-hoc to satisfy the needs of a given problem, but not without a

hassle.

– can be modified to add new mapped file fault page readahead policies.

The progress of the project has been vastly slowed down by the lack of documentation on the

matter. Few documents exist explaining the internal functioning of the Linux memory sub-

system. In fact, few information (including papers, articles, websites, wiki pages, etc.) exists

documenting the insides of the Linux kernel in general. Some books such as [Gorman, 2004],

[Bach, 1989] and [Love, 2010] give an insight of the internal mechanisms found in Linux, but

are either too shallow in the field of memory management and mmap or too old (kernel 2.X)

41

42 Conclusions and future work

to reflect the functioning of the new Linux kernels. Profound diving into the internet and the

Linux kernel source files had to be done in order to determine entry points and to define some

operative structures of the kernel.

This project as a whole has supposed a personal evolution. From the day the subject and

direction were defined, this has brought many challenges in terms of time administration,

workload estimations and even personal management. It has also brought the opportunity

to improve as a person and as a researcher, as there was not much work to rely on at the

beginning.

Two main lines of action are defined for future work in this project. The first one implies fin-
ishing the pending tasks described in chapters 4 and 6. The second one is a little bit more

complicated. It supposes studying data intensive applications and developing data access

strategies, not only at kernel level but also at application level. This will enhance data access

and thus reduce the compute time and allow processing data at a larger scale without the

need of actually upgrading the hardware. Likewise, the impact of technologies (such as Intel

Optane1) will be studied and, as a consequence, new kernel-level strategies will have to be

explored for the memory subsystem to take advantage of these new kind of devices.

A third (optional) future task includes repeating the tests in a updated kernel. The provided

computer had a distribution using Linux kernel 3.10, which at time of redacting the work is

7 years old (latest LTS version is 5.4.47). This means that some features present in modern

hardware are not fully supported, and also means that the memory system is outdated as

does not fully reflect the functioning of actual systems.

1https://www.intel.es/content/www/es/es/architecture-and-technology/optane-memory.html

https://www.intel.es/content/www/es/es/architecture-and-technology/optane-memory.html

Bibliography

[Bach, 1989] Bach, M. J. (1989). The design of the Unix Operating System. Prentice/Hall, Inc.,

Englewood Cliffs, New Jersey.

[Duarte, 2019] Duarte, G. (2019). Webpage: Page cache, the affair between memory and files.

https://manybutfinite.com/post/page-cache-the-affair-between-memory-and-files/.

Accessed: 2020-06-18.

[Essen et al., 2012] Essen, B. V., Hsieh, H., Ames, S., and Gokhale, M. (2012). Di-mmap: A high

performance memory-map runtime for data-intensive applications. In 2012 SC Compan-
ion: High Performance Computing, Networking Storage and Analysis, pages 731–735.

[Fedorova, 2019] Fedorova, A. (2019). Webpage: Why is mmap faster than system calls.

https://medium.com/@sasha_f/why-mmap-is-faster-than-system-calls-24718e75ab37.

Accessed: 2020-06-18.

[Gorman, 2004] Gorman, M. (2004). Understanding the Linux Virtual Memory Manager.
Pearson Education, Inc., Upper Saddle River, New Jersey.

[Love, 2010] Love, R. (2010). LinuxKernelDevelopment, 3rded. Pearson Education, Inc., Upper

Saddle River, New Jersey.

[Makrani et al., 2018] Makrani, H. M., Rafatirad, S., Houmansadr, A., and Homayoun, H. (2018).

Main-memory requirements of big data applications on commodity server platform. In

Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’18, page 653–660. IEEE Press.

[Services, 2017] Services, H. L. (2017). Webpage: Page cache, the affair between memory and

files. https://www.halolinux.us/kernel-architecture/page-cache-readahead.html. Ac-

cessed: 2020-06-18.

[Vasimuddin et al., 2019] Vasimuddin, M., Misra, S., Li, H., and Aluru, S. (2019). Efficient

architecture-aware acceleration of bwa-mem for multicore systems. In 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 314–324.

43

https://manybutfinite.com/post/page-cache-the-affair-between-memory-and-files/
https://medium.com/@sasha_f/why-mmap-is-faster-than-system-calls-24718e75ab37
https://www.halolinux.us/kernel-architecture/page-cache-readahead.html

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Project Goals Document
	Preliminaries
	Introduction to kernels
	Kernel types
	The Linux Kernel
	Processes
	Virtual Memory in Linux
	Page tables
	Page faults
	Page fault handling in Linux kernel

	The mmap inteface
	Interfacing mmap from user-space
	The page cache and mapped file faults
	Comparing mmap and read/write I/O functions
	Comparing mmap and read/write
	Sources and credits
	Experimental setup
	Analysis of the results and conclusions

	A real-life case study: BWA
	Introduction
	Bwa-index
	Bwa-mem
	Motivation
	Possible solutions
	Modifications
	Experimentation and results
	Conclusions
	BWA2

	Solution for a synthetic application
	Background on DBMS
	Storage logic and the problem with big databases
	Designing a database-like synthetic application

	Modifying the Linux kernel
	Needed modifications
	Overview of mapped file faults

	Applying the modifications

	Project Management
	WBS Diagram
	Work packages and their tasks
	Preliminary study
	The mmap interface
	File mappings in BWA
	Modifying the Linux kernel
	Meta-management

	Time estimation and deviations
	Deviation analysis
	Lack of documentation
	COVID-19 related back-offs

	Conclusions and future work
	Bibliography

