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stimulating informative article, which initially motivated this dissertation.

I would like to acknowledge the Spanish National Transplant Organi-
zation (ONT) for their kind attention, and the provided essential medical
information and help. I would like to thank also Elixabete Arrese Arratibel
and Ester Suñen Pardo, from the Immunology, Microbiology, and Parasitol-
ogy Department of the University of the Basque Country, for their responses
to the difficulties faced on immunology and HLA.

I would like to express my sincere gratitude to the University of the
Basque Country and the University of Primorska for the opportunity of
being a student in their institutions, and for providing me the necessary
academic training to commence my career as mathematician, and grow as a
student and as a person.

Lastly, I am also grateful to my parents, brother and close friends, for
respecting always my personal space in these demanding years.

v





Abstract

For patients with end-stage renal disease, kidney transplant is the best
available treatment, but due to graft accessibility and compatibility limi-
tations, fewer transplants than desired are performed. As a solution, F. T.
Rapaport proposed in 1986 the idea of a paired kidney exchange with living
donors. In this dissertation we present the adaptation of the Top Trading
Cycles algorithm of Gale, published in 1974 by L. Shapley and H. Scarf for an
economic model of trading, to the paired kidney exchange idea of Rapaport.
Such adaptation is due to A. E. Roth, T. Sönmez and M. U. Ünver (2004).
Gale’s TTC algorithm allows to achieve an assignation of the kidneys among
the patients that ensures the proper utilization of the grafts, the satisfaction
of the patients, and the non-manipulability of the mechanism. In this paper
we deeply study the main theoretical properties of the algorithm. Later,
we implement a C++ program for the mentioned algorithm, and perform
140 simulations, varying the dimensions of the problem and the preference
input matrices generated according to real data from the Spanish National
Transplant Organization. Finally, we have analysed the results and draw
some conclusions and further research.

Resumen

El mejor tratamiento disponible para pacientes con enfermedad renal en
etapa terminal es el trasplante de riñón, pero debido a las limitaciones en
la compatibilidad y accesibilidad de los órganos, se llevan a cabo menos
trasplantes de los deseados. Como solución, F.T. Rapaport propuso en
1986 el trasplante cruzado de riñones de donantes vivos. En este trabajo
presentamos la adaptación del algoritmo ’Top Trading Cycles’ de Gale,
publicado en 1974 por L. Shapley y H. Scarf para un modelo económico
de intercambio, a la idea de trasplantes cruzados de riñones de Rapaport.
Dicha adaptación se debe a A. E. Roth, T. Sönmez y M. U. Ünver (2004). El
algoritmo TTC de Gale permite lograr una asignación de los riñones entre los
pacientes que asegura el uso adecuado de los órganos, la satisfacción de los
pacientes y la no manipulabilidad del mecanismo. En esta disertación hemos
estudiado a fondo las principales propiedades teóricas del algoritmo. Pos-
teriormente, hemos implementado un programa en C++ para el algoritmo
anterior y ejecutado 140 simulaciones variando las dimensiones del problema
y las matrices de entrada generadas de acuerdo a datos reales de la Organi-
zación Nacional de Trasplantes. Finalmente, hemos analizado los resultados
y apuntado algunas conclusiones y futura investigación.
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Chapter 1

Introduction

1.1 Transplant context

In medicine, a transplant is a complex medical treatment that consists on
replacing a sick organ, that risks a person’s life, with another one that comes
from somebody else and operates properly. By 2019, Spain leads organ
donation worldwide for its twenty-seventh consecutive year, as stated by
the World Transplant Registry managed by the Spanish National Transplant
Organization (ONT), see [22], in collaboration with the World Health Organ-
ization (WHO), see [51]. The number of transplants in the world continues
raising, but much slower than desired. Despite in the last year the total
number of transplants in the world raised by 2.3% regarding the previous
one, barely 10% of the necessities of transplantations in the world, estimated
by the WHO, are covered. Among all the organ transplants, the kidney
transplant stands out globally for its frequency.

For patients with End-Stage Renal Disease (ESRD) (those for which
their kidneys carry out less than the 10% of their function), the kidney
transplant is the best available treatment. Since even though thanks to the
other only treatment for terminal kidney failure, dialysis, they could live
many years, their life quality decreases significantly. The average period of
waiting to receive a transplant is of 18 months, a long lapse in which some
patients lose their life (around 8% in Spain) or their illness worsens, and
they stop being potential kidney recipients.

Due to the shortage of organs, fewer transplants are executed than
desired. There are two sources from which kidney transplants can come,
on the one hand from donors in encephalic death (the most frequent in
Spain), and on the other, from living donors. In 2018, in Spain, just an
8.9% of the kidney transplants were from living donors according to the
ONT, that is, 6.3 per million of population (PMP) from the total amount
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2 1.1. Transplant context

of 70.8 kidney transplants PMP, see [26], whereas, worldwide, 36.5% of
the organs in kidney transplantations came from living donors. In 2018,
the Basque Country ranked third in the Spanish autonomous communities
ranking on living donor renal transplants, with 8.7 PMP.

Spain is considerably efficient in obtaining organs from donors in encephalic
death, being its donation rate practically the double of the one obtained
in most European countries; that is why the limited proportion of living
donors amazes. The efficiency on donations in encephalic death may have
made the Spanish system not to pay enough attention to the donation from
living individuals, which at present brings on a problem resulting from the
decrease of traffic accidents. Namely, it implies less overall deceased donors,
and especially, an important decrease on the number of young deceased
donors; which makes the average age of the donors in encephalic death
grow, reducing the life expectancy of the transplanted organ.

The quality and success probability of a kidney transplant are generally
higher when the organ comes from a living donor rather than from a deceased
one. Furthermore, for recipients aged 60 years or older, cadaveric donor renal
transplantation never provides better outcomes than living donor one. In the
direct kidney donation between alive, the patient usually receives one of the
two kidneys of a family member or a friend. Unfortunately, not every person
disposed to become renal donor, and healthy enough to do so, can donate
a kidney to his or her intended recipient. To perform the procedure, the
kidney must be feasible on medical grounds for the patient; this feasibility
depends on the immunological compatibilities between the patient and the
donor, specially on blood groups (ABO blood-type) and tissue types (human
leukocyte antigen (HLA) type). The HLA antigens’ essential role lies on
defense against microorganisms; they are genes essential to normal function
of the immune response, see [38]. The HLA incompatibility is one of the
major causes of organ transplant rejections. In the event of any incompati-
bility, the transplant is not possible, and the kidney of the donor disappears
from the system (the donor returns home) while the patient commonly enters
(or remains on) the queue for a cadaver kidney. These incompatibilities
constitute approximately one-third of the patients. It is important to point
out that buying and selling kidneys is against the law in almost every
country of the world (in Spain according to the established by Article 2
of law 30/1979 about graft extraction and transplantation, see [12]).

Until very few years ago, this was the only type of donation performed
between alive, but in 1986, the doctor Felix T. Rapaport (1929-2001), was
the first one to propose a paired kidney exchange program of living donors
in the attempt of making the most of the rejected donors. He was graduate
magna cum laude from New York University (NYU) undergraduate school
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(1951) and medical school (1954), and won the Medawar Prize in 1998, the
highest distinction of the international Transplantation Society, see [41]. The
idea is the following: suppose that a patient who needs a kidney transplant
obtains incompatibility results in the analysis regarding the kidney that
the partner would provide. Shortly after, the same doctor receives another
pair of patient-donor also incompatible. The thought of doing a paired
donation transplant arises then, possible in the case that the kidney of the
first donor is compatible with the second recipient and the first recipient with
the second donor. Moreover, longer cycles, involving three or more couples,
could be fulfilled. This new method of donation lies on the fact that living
donor kidneys can be assigned simultaneously, while cadaver kidneys cannot.
The Massachusetts General Hospital held the first kidney paired donation
transplant in the 25th of February 2003 while the first transplant of this
category in Spain took place in 2009 in the Cĺınic Hospital of Barcelona and
Virgen de las Nieves Hospital in Granada, see [5].

Lately, several centres in the United States, Europe, and Asia have
started to centralise the information about the patient-donor pairs to be
able to perform transplants of kidneys from living donors systematically.
Up to the moment in which the reference [18] was published, the longest
cycle of paired kidney exchange had been held in 2010, in the Northwestern
Memorial Hospital of Chicago, involving eight patients and eight donors.
In Spain, the longest chain up to the present succeeded in 2013, with 6
transplanted patients. On the performance intervened 5 patient-donor pairs,
a ’Good Samaritan’ donor (who donates a kidney to a patient who does not
know), and a recipient from the cadaver waiting list which closed the cycle,
see [24] .

1.2 Literature review

The kidney allocation problem for a paired kidney exchange program is a
variant of the ’house allocation problem’ proposed by Lloyd Shapley and
Herbert Scarf (1974) in the Journal of Mathematical Economics, see [39].
Such economic model of the allocation problem with indivisible commodities
was later deeply studied also by some important economists including Alvin
E. Roth (1982, 1977), Andrew Postlewaite (1977), Jun Wako (1984, 1991),
and Jinpeng Ma (1994), see [34, 36, 45, 46, 16]. Each one of them took from
Shapley and Scarf [39] as the basis for their papers, and later proceeded
focusing mostly on the core defined by weak domination, competitive al-
locations, and strategy-proofness of the mechanism. In 2004, Alvin E.
Roth together with two other economists, Tayfun Sönmez and M. Utku
Ünver, adapted for the first time the previous model to the paired kidney
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exchange problem in [37]. Later in 2010 and 2013, Jordi Massó wrote on
this same application of the model in [18] and [19]; being the first one
the inspiration article for this dissertation. He was post-doctoral fellow
at the University of Pittsburgh with Alvin E. Roth between 1988-1989,
and nowadays is professor of Economics at the Universitat Autónoma de
Barcelona. Throughout the whole dissertation several areas of mathematics
are deliberated such as graph theory, game theory, discrete mathematics,
probability, statistics, and mathematical programming.

1.3 Objectives

The general aim of this dissertation is to implement the Top Trading Cycles
(TTC) algorithm of Gale to the paired kidney donation. To achieve it, the
specific objectives of this paper are: (i) to understand the existing problems
on kidney donation, (ii) to study Gale’s TTC algorithm and its theoretical
properties, (iii) to replicate preference matrices utilising real data in order
to perform simulations, to develop the code which automates the algorithm,
and to study its performance.

1.4 Organization of the dissertation

The coming dissertation starts by presenting the assignment problem of
agents to indivisible objects based on the economic model presented by L.
Shapley and H. Scarf (1974) in [39]. This concept and all the basic initial
needed definitions and properties will be presented in Chapter 2. The Top
Trading Cycles algorithm of Gale, one of the most important notions in this
paper, is presented in Chapter 3. First, the main algorithm is introduced to
study later the competitive allocations and some properties as the emptiness
of the core and manipulability of the algorithm. Then, the previous ideas will
lead into the properties the algorithm holds for the benefit of the agents,
and proper utilisation of the existing objects. Chapter 4 is dedicated to
the computational implementation of the Top Trading Cycles algorithm of
Gale to the paired kidney exchange context, and to several simulations and
results. Lastly, the conclusions of the dissertation are developed.

There are four appendixes. In Appendix A, some useful proofs for several
lemmas from Chapter 3 are given. In Appendix B is described in detail how
to create a preference matrix, based on real data, that is the input for the
main program, presented in Appendix C, which solves the problem. Finally,
in Appendix D the detailed results of the simulations are shown.



Chapter 2

Fundaments on the
Assignment Problem

The main theory from which this dissertation emanates was developed by
Lloyd S. Shapley and Herbert Scarf (1974) in the Journal of Mathematical
Economics [39]; an economic model of trading in indivisible commodities
from the field of game-theory. Lloyd S. Shapley was awarded the Nobel
Prize in Economics 2012 together with the economist Alvin E. Roth ’for
their contributions to the theory of stable allocations and the practice of
market design’, see [42].

This dissertation is focused in the adaptation of the market model to
the transplantation problem, in particular, to the paired kidney exchange
problem on living donors. Alvin E. Roth, Tayfun Sönmez, and M. Utku
Ünver were the first ones to propose in 2004 this interpretation, see [37].
Notice that the goods are the kidneys, and they are exchanged without
money or payment. In fact, buying and selling organs is a completely illegal
activity in almost every country of the world.

Even though this dissertation will be centred mostly on the kidney
exchange problem, the concepts can very similarly be applied to other assign-
ment problems with indivisible objects in several daily life fields completely
different from medicine. In economics, for the house allocation problem with
only existing tenants, see [39], and house allocation model with existing
tenants as well as new applicants, see [1], in the work environment for job
distribution, see [8], and in education, for the school choice problem, see [2];
among many others.

5



6 2.1. The assignment problem of agents to indivisible objects.

2.1 The assignment problem of agents to indivisible
objects.

Let us consider n traders in a sort of market in which the goods are freely
transferable, but a customer never wants more than one item, and owning
any item is strictly preferred to owning no items. It is important to consider
also that no agent prefers owning several items to owning the most preferred
of these items. Each trader owns an indivisible commodity to barter with,
and there is no money or other means of exchange. Then the sole purpose
of the market activity is to consider the essentially ordinal preferences of
the traders among the indivisible objects available, and reallocate their
ownership. At least one outcome of this redistribution is such that no subset
of traders can improve it by trading their initial objects among themselves.

Let a finite set with n agents be denoted by

A = {a1, ..., an}

and a finite set with m (m ≥ n) indivisible objects by

O = {o1, ..., om}.

Definition 1. An allocation α: A −→ O is a map that assigns to each agent
an object such that no object corresponds to more than one agent.

Remark 1. An allocation is an injective map. It is surjective if the sets A
and O have the same number of elements.

In this dissertation, the dimension of the sets A and O will be equal such
that |A| = |O| = n, and each agent in A owns initially exactly one object
from O. Therefore, an allocation in the kidney exchange problem is simply
a permutation of the kidneys among the patients.

Definition 2. A graph G is a pair G = (N,E) consisting of a finite non-
empty set N and a set E of two-element subsets of N . The elements of
N are called graph nodes or vertices. An element e = {a, b} of E is called
an edge or arc with end vertices a and b. A graph in which the edges are
ordered pairs of nodes is called directed graph.

Definition 3. A cycle of a graph G, is a sequence of nodes of G that forms
a path such that the first node of the path corresponds to the last one.

Definition 4. An initial assignment of agents to objects is a map µ : A −→
O such that µ(ai) = oi for i = 1, ..., n. That is, µ describes all n initial
agent-object couples (a1, o1), ..., (an, on) in the assignment problem. It is
also called initial endowment.
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Notice that, an allocation or assignment can be seen as a permutation
of the initial endowment µ.

Example 1. Given four patient-donor couples:

(a1, o1), (a2, o2), (a3, o3), (a4, o4),

then the agents set and the objects set are respectively:

A = {a1, a2, a3, a4} and O = {o1, o2, o3, o4},

and the initial endowment is:

µ =

(
a1 a2 a3 a4
o1 o2 o3 o4

)
,

while an assignment example is:

α =

(
a1 a2 a3 a4
o3 o4 o2 o1

)
.

In the initial endowment of a problem in kidney transplantation context,
assume that for i = 1, ..., n, the patient ai is incompatible with the kidney
oi from donor i; otherwise, the transplant would be carried out between the
initial patient-donor couple, and the pair would not be in the assignment
problem. Additionally, we will consider that there is no patient entering the
problem with more than one incompatible donor.

Remark 2. For kidney oi being incompatible with patient ai, α(ai) = oi =
µ(ai) symbolizes that patient i does not obtain any kidney.

Definition 5. Let a ∈ A. The strict preference, or simply preference, Pa is
a transitive, asymmetric, and complete binary relation that represents the
strict order or ranking on the set of objects O.

Remark 3. Let a ∈ A.

- The order on the set of objects being strict for each agent in A implies
that no agent is indifferent between any two objects.

- Pa is a transitive relation, therefore for all oi, oj , and ok in the set
of objects O, oiPaoj and ojPaok together imply straightforward that
oiPaok.

- Pa is an asymmetric relation, hence distinct objects are never both
related to one another, i.e. if oPao

′ holds then o′Pao does not, and
vice versa, for o, o′ ∈ O and o 6= o′.

- The relation is complete, so very two elements in O are related with
each other in some way, i.e. ∀ o, o′ ∈ O either oPao

′ or o′Pao.
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In the transplants context, Pa reflects the degree of desirability for patient a
of the kidneys from the donors. The doctor of the sufferer is the one settling
the order over the available kidney set, depending on the compatibility of
each organ with the patient. Notation:

· ojPaioj′ denotes that the kidney from donor j is beforehand better
for patient i than the one from donor j′, due to different medical
factors.

In particular:

· ojPaioi denotes that kidney oj and patient ai are compatible.

· oiPaioj denotes that kidney oj and patient ai are incompatible.

That is because, if the kidney from donor j is worse for patient i than the
one from its initial pair i, ai would be receiving not as good option of kidney
as the first alternative oi.

Example 2.

Suppose that, for the four couples in the
previous example, the doctor determines their
preferences as Table 1 shows. The preference
ranking of each patient is represented by
columns in descending order (the most
preferable kidney on top), and the kidneys in
red cells represent the initial endowment of
each patient, previously designated by µ.

Table 1: Preferences.

Pa1 Pa2 Pa3 Pa4
o2 o3 o1 o2
o4 o2 o4 o3
o1 o1 o2 o4
o3 o4 o3 o1

Some examples of preferences:

· Kidney o2 is preferable than kidney o4 for patient a1, so: o2Pa1o4.

· Patient 1 and donor 4 are compatible, so: o4Pa1o1.

· Patient 1 and donor 3 are incompatible, so: o1Pa1o3.

Definition 6. Let a ∈ A be an arbitrary agent. Given a preference Pa, the
weak order of preference Ra is a transitive, antisymmetric, reflexive, and
complete binary relation such that, for every pair of objects o, o′ ∈ O, agent
a weakly prefers object o′ to object o if, and only if, either o and o′ are
equally preferred objects, or a strictly prefers o to o′; i.e., oRao

′ if and only
if one of the following holds:

(i) o = o′ (equally preferred), or

(ii) oPao
′ (strictly preferred).
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Remark 4. Take a ∈ A.

- Pa is a transitive relation, therefore for all oi, oj , and ok in O, oiRaoj
and ojRaok together imply that oiRaok.

- The relation is antisymmetric, hence if Ra satisfies both oRao
′ and

o′Rao for some o, o′ ∈ O, then o = o′ (equally preferred).

- Ra is a reflexive relation since oRao for all o ∈ O.

- The relation is complete, so every two elements in O are related with
each other in some way, i.e. ∀ o, o′ ∈ O either oRao

′ or o′Rao.

Definition 7. A profile P is a list of preference orderings, one for each
agent a ∈ A, that is, P = (Pa)a∈A.

Definition 8. The 4-tuple (A,O, P, µ) is called assignment problem. The
set of all assignment problems is denoted by P.

2.2 Mechanisms and their desired properties

The objective is to design a systematic method called mechanism that would
suggest for each assignment problem a description (an assignation α) of
which object receives each agent.

Let A be the set of all possible allocations of a given assignment problem.

Definition 9. A mechanism is a map φ : P −→ A such that for each
assignment problem (A,O, P, µ) ∈ P, φ[A,O, P, µ] ≡ ν is an allocation
ν : A −→ O in A.

Let us denote φ[A,O, P, µ](a) the object assigned to agent a in the as-
signment problem (A,O, P, µ) by mechanism φ.

It would be convenient that the proposal had some good qualities for the
benefit of the agents and the proper utilization of the existing objects. To
present them, previously some useful definitions will be given.

Definition 10. An allocation α : A −→ O is said to be individually
rational (IR) in the assignment problem (A,O, P, µ) if for each agent a ∈ A,
α(a)Raµ(a).

Definition 11. An allocation α : A −→ O is said to be Pareto-efficient
(PE) in the assignment problem (A,O, P, µ) if there does not exist any
other assignation ν such that:

(i) ν(a)Raα(a) for every a ∈ A, and
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(ii) ν(a)Paα(a) for some a ∈ A

A mechanism is individually rational or Pareto-efficient if always selects
an individually rational or Pareto-efficient allocation, respectively.

Definition 12. A coalition is a subset T ⊆ A of agents that cooperate to
achieve a common objective.

Definition 13. For a coalition T ⊆ A with T 6= ∅, a T-allocation αT is
defined by a permutation of the set T . An A-allocation is simply called an
allocation.

Definition 14. A coalition T ⊆ A is effective for an allocation α if, for each
agent a ∈ T , α(a) ∈ µ(T ), where µ(T ) = {µ(a)|a ∈ T}.

For any fixed profile, a coalition can improve upon an allocation if the
agents of that coalition can trade their initial objects among themselves to
make at least one agent obtain a better object without making any other
obtain a worse one, such fact is called domination.

Definition 15. An allocation ν strongly dominates an allocation α if there
is some coalition T ⊆ A effective for the allocation ν, such that:

ν(a)Paα(a) ∀ a ∈ T.

Thus, ν strongly dominates α if, by trading among themselves, a coalition
T ⊆ A could reach a reallocation ν which is strictly preferred by each
member of T rather than α.

Definition 16. An allocation ν weakly dominates an allocation α if there
is some coalition T ⊆ A effective for the allocation ν, such that:

(i) ν(a)Raα(a) ∀ a ∈ T ,

(ii) ν(a)Paα(a) for some a ∈ T.

Hence, ν weakly dominates α if, by trading among themselves, a coalition
T ⊆ A could reach a reallocation ν which is strictly preferred by some
member of T rather than α, and at least as preferred as α for each member
of T .

Definition 17. The core of an assignment problem (A,O, P, µ) is the set
of undominated allocations.

The core of an assignment problem can be defined by both strong or
weak domination.

Definition 18. An allocation α : A −→ O is said to be in the core defined
by strong domination of the assignment problem (A,O, P, µ) if there does
not exist any blocking coalition T ⊆ A and any assignation ν : A −→ O
such that T is effective for ν and ν strongly dominates α, i.e. satisfying:
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(i) ν(a) ∈ µ(T ) ∀a ∈ T , and

(ii) ν(a)Paα(a) ∀a ∈ T .

Definition 19. An allocation α : A −→ O is said to be in the core defined
by weak domination of the assignment problem (A,O, P, µ) if there does not
exist any blocking subset of agents T ⊆ A and any assignation ν : A −→ O
such that T is effective for ν and ν weakly dominates α, i.e. satisfying:

(i) ν(a) ∈ µ(T ) ∀a ∈ T ,

(ii) ν(a)Raα(a) ∀a ∈ T , and

(iii) ν(a)Paα(a) for some a ∈ T .

By definition, the core defined by weak domination is contained in the
core defined by strong domination.

Now, a proposed allocation solution for the assignment problem should
satisfy:

(i) Each agent should receive an object at least as good as its initial one;
this is, the assignment should be individually rational. Otherwise,
µ(a)Paα(a) and agent a, to whom an incompatible object reception is
proposed, could obstruct assignation α. This property is essential if
the involvement of the agents in the assignment problem is voluntary.

(ii) The coalition of all traders cannot improve upon the allocation pro-
posed by the mechanism; that is, the assignation needs to be Pareto-
efficient. This property will be fundamental to ensure the good
utilization of the existing objects.

(iii) The assignation proposed by the mechanism can not be blocked by any
subset of agents. In other words, it must have the property that there
does not exist any subset of agents that could get a better outcome,
concerning the assignation proposed, by reallocating between them
their initial objects; this means that no coalition of traders can improve
upon the proposed allocation. This is, the assignment should be in the
core defined by weak domination of the assignment problem, and
therefore, in the core defined by strong domination.

Lemma 1. Any allocation in the core defined by weak domination is indi-
vidually rational and Pareto-efficient.

Proof. To prove it, it is just needed to consider in the definition of core
by weak domination the possible blocking coalition to consist of each agent
itself (T = {a}, a ∈ A) and the set of all agents (T = A), respectively.
Suppose α is an allocation in the core defined by weak domination, then:
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(i) Assume that α is not IR, then there exists at least an agent a ∈ A
such that µ(a)Paα(a). Let us take T = {a}, µ weakly dominates α
via the blocking coalition T . Therefore α must be IR to be in the core
defined by weak domination.

(ii) Assume that α is not PE, then there exists some allocation ν such that
ν(a)Raα(a) for all a ∈ A and ν(a)Paα(a) for some a ∈ A. Therefore,
choosing T = A leads us straightforward to a contradiction.



Chapter 3

The Top Trading Cycles
Algorithm of Gale

3.1 The algorithm

The Top Trading Cycles algorithm of Gale, also known as Gale’s TTC
algorithm, is a procedure for trading indivisible goods without using money
or any other means of exchange. It was developed by David Gale (1921 -
2008), a recognised American mathematician and economist, and published
by L. Shapley and H. Scarf (1974) in [39]. The purpose of this algorithm
is to find an allocation that assigns to each agent the best available object,
taking into account every preference order.

Gale’s TTC algorithm solves the assignment problem by steps. In each
one proceed as follows: first, a directed graph is constructed in which the
nodes are the initial agent-object pairs (ai, oi) not assigned in the previous
stages; then, a single arc emanates from each node, so that each agent points
to its most preferred object among the ones taking part in the current step;
finally, the agents corresponding to the nodes belonging to some cycle in
the directed graph are assigned the object they point to, respectively. It
is important to consider that the algorithm is applied under the hypothesis
of the agent set A and object set O being the same size. Agents may
report indifference between several objects. In case of indifference, one
object should be selected among the equally preferred ones in each case
by breaking ties randomly; this could lead into different solutions of the
algorithm for the same problem. See the pseudocode in Algorithm 1.

Gale’s TTC algorithm identifies cycles successively. Notice that, in each
stage, there exists at least one cycle due to the finiteness of the node-set,
and if there are more than one cycle they never intersect with each other.
Loops are allowed, there can be a node whose agent points to its own object.

13
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The algorithm concludes then, after a finite number of steps.

Algorithm 1: Gale’s TTC algorithm.

input : A = {a1, a2, ..., an}, O = {o1, o2, ..., on}, P = (Pa)a∈A.
output: An assignment of objects to agents.
N = {1, 2, ..., n};
/* node i represents the initial pair (ai, oi) */

stages = 0; cycles = 0; loops = 0;
Function inCycle(node)

if node is not in a cycle nor in a loop, returns FALSE.
Otherwise, returns TRUE and the vector cycle containing all
the nodes that form the cycle or loop in which node is.

while N 6= ∅ do
stages = stages+ 1;
Construct a directed graph with the nodes that are in N;
for each element i in N do

Draw an arc from node i to the node corresponding to ai’s
first preferential object, among the ones still in Pai .

for each node k in N do
if inCycle(k) is True then

if length( cycle)==1 then
loops = loops+ 1;

else
cycles = cycles+ 1;

for i in cycle do
oj is the first preferable object for ai among the
objects remaining unassigned, according to Pai in P ;
ai is assigned to oj ;
remove column Pai from P ;
remove i from N ;
remove oi from each preference ordering in P ;

Definition 20. Sk is the set of agents that belong to a cycle and are assigned
to objects, and therefore removed from the assignment problem, in the k-th
stage of Gale’s TTC algorithm. The sets S1, S2, ..., SK are called top trading
cycles. A top trading cycle may consist of a single trader, and the agents
from more than one disjoint cycles can be part of the same top trading cycle.

Definition 21. Let Sk be a top trading cycle. If every agent in Sk belong
to the same cycle, Sk can be called simple top trading cycle.

Being A the set of agents of the assignment problem (A,O, P, µ), A can
be partitioned into a collection of one or more disjoint sets: A = S1 ∪ S2 ∪
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...∪SK , by taking S1 to be the top trading cycle for A, then taking S2 to be
the top trading cycle for A\S1, S3 the top trading cycle for A\(S1∪S2), and
so on and so forth will be Sk the top trading cycle for A\(S1∪S2∪ ...∪Sk−1)
following up until there are no agents in A\(S1 ∪ S2 ∪ ... ∪ SK).

The assignment obtained after applying Gale’s TTC algorithm to an
assignment problem (A,O, P, µ) will be denoted by η : A −→ O. By
such allocation, each agent obtains the object assigned to it by the trade
corresponding to the cycle by which was removed from the problem.

The algorithm would suggest doing the trades described by η. In those in
which η coincides with µ (loops) the corresponding agents would stay with
their initial object.

By Remark 2, referring to patients in need of a kidney transplantation,
the algorithm would propose to perform the transplants described by η,
except those in which η coincides with µ, because the corresponding patients
would nor receive any kidney and the respective donors would not donate
theirs.

Example 3. Let (A,O, P, µ) be an assignment problem such that |A| =
|O| = 12, µ(ai) = oi for i = 1, ..., 12, and profile P is given by Table 2.

Table 2: Profile
Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12
o4 o10 o10 o2 o6 o4 o2 o7 o1 o6 o4 o7
o3 o7 o6 o1 o5 o7 o1 o9 o6 o3 o6 o9
o9 o8 o5 o6 o3 o3 o5 o10 o2 o5 o1 o3
o13 o2 o9 o7 o9 o2 o8 o11 o5 o7 o5 o10
o1 o11 o1 o10 o8 o11 o10 o1 o4 o9 o8 o6
o7 o3 o7 o11 o12 o12 o6 o3 o11 o10 o2 o2
o6 o4 o3 o3 o11 o5 o9 o6 o9 o11 o12 o11
o11 o1 o2 o12 o4 o10 o7 o2 o3 o1 o7 o5
o2 o9 o11 o5 o7 o6 o4 o12 o7 o4 o9 o1
o10 o6 o8 o9 o1 o8 o11 o8 o10 o12 o3 o12
o8 o12 o4 o8 o10 o9 o12 o4 o12 o2 o11 o4
o5 o5 o12 o4 o2 o1 o3 o5 o8 o8 o10 o8

Remember that columns represent the preference ranking of each patient
over the kidney set in descending order, the items in red cells represent
the initial assignment of each patient (µ), and the kidneys in green cells are
the preferential graft for each patient.

Let us obtain the final assignment η applying Gale’s TTC algorithm. For
that, construct a graph with 12 vertices, each one symbolising the corre-
sponding patient-donor pair. Figure 1 represents the graph of the first step,
where each recipient points at its most preferred graft.
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The only cycle found in the first step is
the one represented by permutation (10 6
4 2); in the solution assignment we have:
η(a2) = o10, η(a4) = o2, η(a6) = o4 and
η(a10) = o6. Then, nodes 2, 4, 6, and 10
are removed from the assignment problem,
and since A\{a2, a4, a6, a10} 6= ∅ step 2 goes
on as shown in Table 3 and Figure 2; each
patient in A\{a2, a4, a6, a10} points now at its
preferential kidney in O\{o2, o4, o6, o10}.

1
2

3

4

5

6
7

8

9

10

11

12

Figure 1: First step

Table 3

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12

��ZZo4 ��HHo10 ��HHo10 ��ZZo2 ��ZZo6 ��ZZo4 ��ZZo2 o7 o1 ��ZZo6 ��ZZo4 o7
o3 ��ZZo7 ��ZZo6 ��ZZo1 o5 ��ZZo7 o1 o9 ��ZZo6 ��ZZo3 ��ZZo6 o9
o9 ��ZZo8 o5 ��ZZo6 o3 ��ZZo3 o5 ��HHo10 ��ZZo2 ��ZZo5 o1 o3
o13 o2 o9 ��ZZo7 o9 ��ZZo2 o8 o11 o5 ��ZZo7 o5 ��HHo10
o1 o11 o1 ��HHo10 o8 ��HHo11 ��HHo10 o1 ��ZZo4 ��ZZo9 o8 ��ZZo6
o7 o3 o7 ��HHo11 o12 ��HHo12 ��ZZo6 o3 o11 o10 ��ZZo2 ��ZZo2
o6 o4 o3 ��ZZo3 o11 ��ZZo5 o9 ��ZZo6 o9 o11 o12 o11
o11 o1 o2 ��HHo12 o4 ��HHo10 o7 ��ZZo2 o3 o1 o7 o5
o2 o9 o11 ��ZZo5 o7 o6 o4 o12 o7 o4 o9 o1
o10 o6 o8 ��ZZo9 o1 o8 o11 o8 o10 o12 o3 o12
o8 o12 o4 ��ZZo8 o10 o9 o12 o4 o12 o2 o11 o4
o5 o5 o12 o4 o2 o1 o3 o5 o8 o8 o10 o8

1

3

5

7
8

9

11

12

Figure 2: Second step

In this second stage, there is just one loop formed by patient 5 and its initial
donor’s kidney; a5 is assigned to its initial graft (η(a5) = o5), and step
3 follows with patients in A\{a2, a4, a5, a6, a10} and their respective initial
endowments.

Table 4

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12

��ZZo4 ��HHo10 ��HHo10 ��ZZo2 ��ZZo6 ��ZZo4 ��ZZo2 o7 o1 ��ZZo6 ��ZZo4 o7
o3 ��ZZo7 ��ZZo6 ��ZZo1 o5 ��ZZo7 o1 o9 ��ZZo6 ��ZZo3 ��ZZo6 o9
o9 ��ZZo8 ��ZZo5 ��ZZo6 o3 ��ZZo3 ��ZZo5 ��HHo10 ��ZZo2 ��ZZo5 o1 o3
o13 o2 o9 ��ZZo7 o9 ��ZZo2 o8 o11 ��ZZo5 ��ZZo7 ��ZZo5 ��HHo10
o1 o11 o1 ��HHo10 o8 ��HHo11 ��HHo10 o1 ��ZZo4 ��ZZo9 o8 ��ZZo6
o7 o3 o7 ��HHo11 o12 ��HHo12 ��ZZo6 o3 o11 o10 ��ZZo2 ��ZZo2
o6 o4 o3 ��ZZo3 o11 ��ZZo5 o9 ��ZZo6 o9 o11 o12 o11
o11 o1 o2 ��HHo12 o4 ��HHo10 o7 ��ZZo2 o3 o1 o7 ��ZZo5
o2 o9 o11 ��ZZo5 o7 o6 o4 o12 o7 o4 o9 o1
o10 o6 o8 ��ZZo9 o1 o8 o11 o8 o10 o12 o3 o12
o8 o12 o4 ��ZZo8 o10 o9 o12 o4 o12 o2 o11 o4
o5 o5 o12 o4 o2 o1 o3 o5 o8 o8 o10 o8

1

3

7
8

9

11

12

Figure 3: Third step

In step 3, the 3-cycle (1 3 9) is obtained as shown in Figure 3 based on
preferences of Table 4. In step 4 the only cycle is (7 8) according to Figure
4 and Table 5.
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Table 5

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12

��ZZo4 ��HHo10 ��HHo10 ��ZZo2 ��ZZo6 ��ZZo4 ��ZZo2 o7 ��ZZo1 ��ZZo6 ��ZZo4 o7

��ZZo3 ��ZZo7 ��ZZo6 ��ZZo1 o5 ��ZZo7 ��ZZo1 ��ZZo9 ��ZZo6 ��ZZo3 ��ZZo6 ��ZZo9

��ZZo9 ��ZZo8 ��ZZo5 ��ZZo6 o3 ��ZZo3 ��ZZo5 ��HHo10 ��ZZo2 ��ZZo5 ��ZZo1 ��ZZo3

��HHo13 o2 ��ZZo9 ��ZZo7 o9 ��ZZo2 o8 o11 ��ZZo5 ��ZZo7 ��ZZo5 ��HHo10
o1 o11 ��ZZo1 ��HHo10 o8 ��HHo11 ��HHo10 ��ZZo1 ��ZZo4 ��ZZo9 o8 ��ZZo6
o7 o3 ��ZZo7 ��HHo11 o12 ��HHo12 ��ZZo6 ��ZZo3 ��HHo11 o10 ��ZZo2 ��ZZo2
o6 o4 o3 ��ZZo3 o11 ��ZZo5 ��ZZo9 ��ZZo6 o9 o11 o12 o11
o11 o1 o2 ��HHo12 o4 ��HHo10 o7 ��ZZo2 o3 o1 o7 ��ZZo5
o2 o9 o11 ��ZZo5 o7 o6 o4 o12 o7 o4 ��ZZo9 ��ZZo1
o10 o6 o8 ��ZZo9 o1 o8 o11 o8 o10 o12 ��ZZo3 o12
o8 o12 o4 ��ZZo8 o10 o9 o12 o4 o12 o2 o11 o4
o5 o5 o12 o4 o2 o1 o3 o5 o8 o8 o10 o8

7
8

11

12

Figure 4: Fourth step

Step 5 proceeds just with nodes 11 and 12.
The preference for patient a11 is kidney o12,
and vice versa; hence, those assignations are
carried out and the algorithm ends with the
2-cycle (11 12).

11

12

Figure 5: Fifth step

The assignment η in the core obtained by Gale’s TTC algorithm can be
represented by:

η =

(
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
o3 o10 o9 o2 o5 o4 o8 o7 o6 o4 o12 o11

)

The algorithm would suggest doing the transplants described by η, except
those in which η allocates to a patient its initial donor’s kidney assigned
by µ. This means that every patient will receive a compatible living donor
kidney except patient 5.

The top trading cycles will be: S1 = {a2, a4, a6, a10}, S2 = {a5}, S3 =
{a1, a3, a9}, S4 = {a7, a8}, and S5 = {a11, a12}.

3.2 Competitive allocations

Let us denote p = (po1 , ..., pon) a price vector where poi > 0 is the price
assigned to each object oi. The price can be thought as a non-negative real
value useful to determine the accessibility of an object for a patient.

Definition 22. An object oj is accessible for agent ai in the price vector
p = (po1 , ..., pon) if poj ≤ pµ(ai).

This is, oj is accessible for ai if ai can obtain oj after trading its object µ(ai).
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Example 4. For the problem in Example 3 the top trading cycles were:
S1 = {a2, a4, a6, a10}, S2 = {a5}, S3 = {a1, a3, a9}, S4 = {a7, a8}, and S5 =
{a11, a12}. Hence, we could take the price vector:

p = (π3, π1, π3, π1, π2, π1, π4, π4, π3, π1, π5, π5),

where π1 > π2 > π3 > π4 > π5 > 0. The accessible kidneys for patient
a8 will be the ones initially corresponding to patients in S4 and S5 (i.e.,
o7, o8, o11, and o12), and the preferable one for it among them will be o7, the
one allocated by Gale’s TTC algorithm.

Definition 23. A pair (p, α) where p is a price vector and α is an allocation
is an efficiency equilibrium if, for every agent ai ∈ A, α(aj)Paiα(ai) implies
poj > poi .

If (p, α) is an efficiency equilibrium, then the allocation α assigns to each
agent a the best object it could purchase (or access to) at the prices p.

Definition 24. An allocation α is efficient if there exists a price vector p
such that (p, α) is an efficiency equilibrium.

Definition 25. An efficiency equilibrium (p, α) is named competitive equi-
librium if for all ai ∈ A:

(i) pα(ai) ≤ pµ(ai), and

(ii) α(ai)Raioj ∀ oj such that poj ≤ poi .

Definition 26. An allocation α is a competitive allocation if there exists a
price vector p such that (p, α) is a competitive equilibrium.

Alvin E. Roth and Andrew Postlewaite (1977) stated in [36] the following
lemma:

Lemma 2. Any competitive allocation can be thought of as resulting from
the method of Top Trading Cycles.

Proof. Let S1 ⊆ A be the set of agents whose initial objects are priced
highest among all the objects taking part in the problem. Then, all agents
in S1 must be getting their most preferred object in the whole set of objects
O. Furthermore, they must only be trading among themselves, since if any
agent is assigned the object of some other agent outside S1, then there must
be outside of S1 an agent a obtaining the initial endowment of some agent in
S1, which has a higher price than its initial object µ(a). But, this is clearly
impossible in a competitive allocation. For the same reason, two agents in
S1 can not prefer most the same object.
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Now, if S2 ⊆ A\S1 is the set of agents whose initial objects are priced
highest among the objects owned by the agents in A\S1. Then the agents in
S2 must be receiving their most preferred objects among those belonging to
agents in A\S1; that, arguing as before, must belong particularly to agents
in S2.

Proceeding this manner S1 will be a top trading cycle for A, S2 a top
trading cycle for A\S1, ..., Sk a top trading cycle for A\(S1, S2, ..., Sk−1), ...
Until A\(S1 ∪ S2 ∪ ... ∪ SK) = ∅ for some K > 0; hence, A = S1 ∪ S2 ∪ ... ∪
SK .

The idea of the following theorem was stated by Lloyd Shapley and
Herbert Scarf (1974) in [39] and stated as a theorem by Jun Wako (1984)
in [45]:

Theorem 3. The set of allocations generated by the method of Top Trading
Cycles coincides with the set of competitive allocations.

Proof. The proof is deduced from Lemma 2 and the following argument.
Any allocation α given by Gale’s TTC algorithm is competitive since agents
find their most preferred object, among their available options set, in the
cycle in which they are removed from the problem. In other words, there
exists a set of competitive prices for an allocation α given by Gale’s TTC
algorithm. Just assign arbitrary prices π1 > π2 > ... > πk > 0 to the initial
objects of agents in S1, S2, ..., Sk, respectively. Then, an agent a ∈ Sj can
trade its initial object at price πj ; hence, it cannot access the objects that
initially belong to agents in S1, S2, ..., Sj−1. Therefore, the agent’s benefit
is maximized if obtains the initial object of its cyclic successor in Sj , which
has exactly the same price as its initial object.

For T ⊆ A and ai ∈ T , let us denote B(T, ai) as the set of most
preferred objects in µ(T ) for agent ai, i.e. B(T, ai) = {o ∈ µ(T ) | oRaiµ(aj),
aj ∈ T}.

Definition 27. Let T be a non-empty subset of A, and ν any allocation. A
simple top trading cycle for T induced by ν is a non-empty subset S of T ,
whose smembers can be indexed in a cyclic order, S = {aσ(1), aσ(2), ..., aσ(s) =
aσ(0)}, in the following way: for each aσ(k), if ν(aσ(k)) ∈ B(T, aσ(k)), then
ν(aσ(k)) = µ(aσ(k+1)), and if ν(aσ(k)) 6∈ B(T, aσ(k)) then aσ(k+1) = aj , where
aj is some agent such that µ(aj) ∈ B(T, aσ(k)).

Let us introduce the next two results published by Jun Wako (1984) in
[45]:

Lemma 4. Let T be a non-empty subset of A and ν any allocation. A top
trading cycle for T induced by ν is a top trading cycle for T .
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Proof. Notice that for any non-empty set T ⊆ A, and any allocation ν, there
exists at least one top trading cycle for T induced by ν. Let us consider an
allocation ν. The top trading cycle(s) for T ⊆ A, T 6= ∅, induced by
allocation ν can be reached as follows:

Step 1: Choose any agent aσ(1) ∈ T .

Step 2: If ν(aσ(1)) ∈ B(T, aσ(1)) then let ν(aσ(1)) = µ(aσ(2)).
If ν(aσ(1)) /∈ B(T, aσ(1)) then choose any µ(ak) ∈ B(T, aσ(1)) and
let aσ(2) = ak.

Step 3: If ν(aσ(2)) ∈ B(T, aσ(2)), then let ν(aσ(2)) = µ(aσ(3)).
If ν(aσ(2)) /∈ B(T, aσ(2)), then choose any µ(at) ∈ B(T, aσ(2)) and
let aσ(3) = at.

Proceed in the same manner until an agent that was chosen in a previous
stage is chosen. Then, for T being a finite set, the method must stop in a
finite number of steps less or equal than |T | + 1. Hence there exists some
integer m, 1 ≤ m ≤ |T |, and some integer q, 1 ≤ q ≤ m, such that the agents
of the subset {aσ(q+1), ..., aσ(m), aσ(m+1) = aσ(q)} form a cycle and are a top
trading cycle for T (or at least a subset of a top trading cycle for T ).

Theorem 5. The core defined by weak domination is included on the set
of competitive allocations.

Proof. Let us proof that every allocation in the core is competitive. Bear
in mind that the core is defined by weak domination; then, the indifference
among objects is allowed.

If the core is empty, the theorem is trivial. Assume that the core is non-
empty. Let ν∗ be any allocation in the core. It is sufficient to show that ν∗

is a competitive allocation.

Recall that B(T, ai) = {o ∈ µ(T ) | oRaiµ(aj), aj ∈ T}, for T ⊆ A and
ai ∈ T . Let S1, S2, S3, ..., SK be the top trading cycles induced by ν∗. Let
ν be the allocation resulting from carrying out the trades within each cycle
in Sk for k = 1, 2, ...,K. Then ν is a competitive allocation by Theorem 3.
It will be shown that ν(ai) = ν∗(ai) for all ai ∈ Sk, by induction on k.

First we will show that ν(ai) = ν∗(ai) ∀ ai ∈ S1. By reductio ad
absurdum suppose that there exists an agent at ∈ S1 such that ν(at) 6=
ν∗(at). Since ν(at) is the object assigned by the top trading cycle S1 for A
induced by ν∗, the previous inequality implies that ν∗(at) /∈ B(A, at). Now,

ν∗(at) ∈ µ(A),
ν(at) ∈ B(A, at)

}
ν∗(at)/∈B(A,at)

==========⇒ ν(at)Patν
∗(at), (1)



Chapter 3. The Top Trading Cycles Algorithm of Gale 21

and ∀ai ∈ S1\{at}, as it can be either ν(ai) = ν∗(ai) or ν(ai) 6= ν∗(ai):

ν∗(ai) ∈ µ(A),
ν(ai) ∈ B(A, ai)

}
=⇒ ν(ai)Raiν

∗(ai). (2)

Additionally, by how ν is defined, µ(S1) = {ν(ai)|ai ∈ S1}, i.e. S1 is effective
for ν. (3)

Thus, from (1), (2), and (3), ν∗ is weakly dominated by ν via S1, then ν∗

does not belong to the core, leading us to a contradiction. Hence, ∀ai ∈ S1,
ν(ai) = ν∗(ai).

Suppose now by the induction hypothesis that for all Sq, q = 1, 2, ..., k−1:
ν(ai) = ν∗(ai) ∀ ai ∈ Sq.

And let us prove that ν(ai) = ν∗(ai) for all ai ∈ Sk. By reduction ad
absurdum suppose that there exists an agent at′ ∈ Sk such that ν(at′) 6=
ν∗(at′). Once again, since ν(at′) is the object assigned to at′ by the top
trading cycle Sk for A\(S1 ∪ S2 ∪ ... ∪ Sk−1) induced by ν∗, ν(at′) 6= ν∗(at′)
implies ν∗(at′) /∈ B(A\ ∪k−1q=1 Sq, at′).

By the hypothesis of the induction, each Sq, q = 1, 2, ..., k−1, is effective for
ν; hence, ∪k−1q=1Sq is effective for ν. Moreover, since for each agent ai ∈ Sq,
where q = 1, 2, ..., k− 1, ν(ai) = ν∗(ai) holds, ∪k−1q=1Sq is also effective for ν∗.

And, for ν∗ being an allocation, the complement A\ ∪k−1q=1 Sq also must be

effective for ν∗, i.e. {ν∗(aj)|aj ∈ A\ ∪k−1q=1 Sq} = µ(A\ ∪k−1q=1 Sq).

Consequently, ν∗(at′) ∈ µ(A\ ∪k−1q=1 Sq) since at′ ∈ Sk and Sk is a subset of

A\ ∪k−1q=1 Sq. Thus:

ν∗(at′) ∈ µ(A\ ∪q=k−1q=1 Sq),

ν(at′) ∈ B(A\ ∪q=k−1q=1 Sq, at′)

}
=⇒ ν(at′)Pat′ν

∗(at′), (4)

and ∀aj ∈ Sk\{at′}:

ν∗(aj) ∈ µ(A− ∪q=k−1q=1 Sq),

ν(aj) ∈ B(A− ∪q=k−1q=1 Sq, aj)

}
=⇒ ν(aj)Rajν

∗(aj). (5)

Additionally, by how ν is defined, µ(Sk) = {ν(ai)|ai ∈ Sk}. (6)

Hence, from (4), (5), and (6), ν∗ is weakly dominated by ν via Sk, therefore
ν∗ is not in the core, leading us to a contradiction. Consequently ν(ai) =
ν∗(ai) for all ai ∈ Sk.

In conclusion ν∗ = ν, and therefore, ν∗ is a competitive allocation.
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Alvin E. Roth and Andrew Postlewaite (1977) proved also the next
lemma in [36]:

Lemma 6. If no agent is indifferent between any objects, then a competitive
allocation weakly dominates any other allocation.

Proof. If η is any competitive allocation, by Lemma 2, it can be thought
of as resulting from the method of Top Trading Cycles; this is, by trading
among top trading cycles S1, S2, ..., SK . Let ν be any other allocation. If
ν(a) 6= η(a) for each a ∈ S1, η strongly dominates ν (and therefore, weakly
too) via coalition S1 since S1 is effective for η, and η gives each agent on S1
its most preferred object (bear in mind that there is no indifference allowed).
In the same way, η weakly dominates ν if ν(a) 6= η(a) just for some a ∈ S1.

On the contrary, if ν(a) = η(a) for each agent a ∈ S1, but ν(a) 6= η(a) for
each agent a ∈ S2, η weakly dominates ν via S1∪S2, since S1∪S2 is effective
for η, η(a)Raν(a) for each a ∈ S1∪S2, and η(a)Paν(a) for some a ∈ S1∪S2.
Exactly η(a)Paν(a) for each a ∈ S2 since there is no indifference, both η
and ν give agents in S1 their most preferred object, and η gives the agents
in S2 their most preferred object from O\η(S1). In the same way, η weakly
dominates ν if ν(a) 6= η(a) just for some a ∈ S2.

Following with the previous strategy, it can be shown that if no agent has
indifferences between any objects, η weakly dominates any other allocation
ν.

3.3 Non-emptiness of the core

The core defined by strong domination is always non-empty, but the core
defined by weak domination may be empty. Nevertheless, if no agent is
indifferent between any of the objects on the problem , then the core defined
by weak domination is always non-empty; in this case, the core coincides
with the unique competitive allocation (this last fact will be studied at the
end of section 3.5).

Alvin E. Roth and Andrew Postlewaite (1997) stated in [36] that the core
defined by strong domination is always non-empty, i.e. whether indifference
is allowed or not.

Lemma 7. The core defined by strong domination always contains the set
of competitive allocations, which is itself non-empty, and can contain several
allocations; so, the core as defined is always non-empty.

Proof. Let α be a competitive allocation. Then by Lemma 2 we know that
it can be thought as resulting from the Top Trading Cycles algorithm. Let
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then S1, S2, ..., SK be the top trading cycles associated to α, and notice that
they form a partition of A.

On the other hand, by the definition of competitive allocation we know that
there exists a price vector p = (po1 , po2 , ..., pom) such that for all ai ∈ A:

(i) pα(ai) ≤ pµ(ai), and

(ii) α(ai)Raioj ∀ oj s.t. poj ≤ poi .

By reductio ad absurdum, suppose there exists another allocation ν
(ν 6= α) that strongly dominates α via some coalition of agents T ⊆ A.

Take now an agent aj ∈ Sk ∩ T for some k ∈ {1, 2, ...,K}. For Sk being
a top trading cycle, lets say that, ∀ a ∈ Sk, pα(a) = pµ(a) = πk being πk
such that π1 > π2 > ... > πk > ... > πK . Furthermore, aj ∈ T , hence
ν(aj)Pajα(aj) by the definition of strong domination. Therefore, by the
properties of the competitive allocation, pν(aj) > pα(aj). Thus, pν(aj) = πr
for some r < k, and aj is an agent in Sr. But aj ∈ Sk and aj ∈ Sr for r < k
lead us to a contradiction.

In Example 5 will be seen how the core defined by weak domination can
be empty if indifference between objects is allowed. Lemma 4 and Theorems
3 and 5 will be utilized. This example is inspired in the one studied by Jun
Wako (1991) in [46].

Example 5. Given an assignment problem with 3 pairs agent-object and
the following preferences of the agents:

(i) o2Pa1o3Ia1o1

(ii) o1Ia2o3Pa2o2

(iii) o2Pa3o1Pa3o3

Table 6: Preferences.

Ra1 Ra2 Ra3
o2 o1 = o3

o2

o1 = o3
o1

o2 o3

where oiIakoj means that agent ak is indifferent between objects oi and oj.

By Gale’s TTC algorithm, two possible competitive allocations are obtained:

α1 =

(
a1 a2 a3
o2 o1 o3

)
and α2 =

(
a1 a2 a3
o1 o3 o2

)
,

but, for each assignment, a coalition of agents effective for some allocation
α can be found such that α weakly dominates it:
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(1) α1 is weakly dominated via coalition T = {a2, a3} by allocation ν in
which ν(a2) = o3 and ν(a3) = o2, since T is effective for ν and:

(i) ν(a2)Ra2α(a2), ν(a3)Ra3α(a3), and

(ii) ν(a3)Pa3α(a3)

(2) In a similar way can be seen that α2 is weakly dominated via coalition
T ′ = {a1, a2} by allocation ν ′ in which ν ′(a1) = o2 and ν ′(a2) = o1.

Therefore, neither α1 nor α2 belong to the core defined by weak domination.
By Lemma 2 it is known that there is not other possible competitive allocation.
Hence, the core defined by weak domination is empty by Theorem 5.

The TTC algorithm from Gale was indeed first presented in [39] by L.
Shapley and H. Scarf (1974) as an alternative proof to their original one,
given in the same document, for the following theorem:

Theorem 8. In every assignment problem with no indifference between
objects, the core defined by weak domination is always non-empty.

Proof. Let η be the allocation obtained by Gale’s TTC algorithm for the
assignment problem (A,O, P, µ). Remember that for η to be in the core by
weak domination, there should not exist any coalition of agents which, by
trading among its members, could allocate to each one an object which they
prefer at least as much as the one which they receive by assignment η, at
least one of them receiving an object that strictly prefers rather than the
one allocated by η.

Let us prove that η is in the core defined by weak domination of the
problem. To this effect, suppose that to solve problem (A,O, P, µ), K steps
of Gale’s TTC algorithm are needed, then there will be K disjoint sets
S1, S2, ..., SK , one for each stage 1, 2, ...,K, respectively. Recall that in Sj
there could be more than one cycle or loop (j = 1, 2, ...,K). Notice that K
stages can be considered:

(1) No agent in S1 can belong to a blocking coalition for allocation η,
strictly preferring such reallocation, since each of them has already
been assigned to its best object in O.

(2) No agent in S2 can belong to a blocking coalition for allocation η,
strictly preferring such reallocation, since each of them has already
been assigned to its best object in O\η(S1).

Let us show it by reductio ad absurdum. Take a ∈ S2 with
η(a) = o. Suppose that via some coalition T ⊆ A for which
a ∈ T , by some allocation ν, the agent a could be assigned an
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object o′ that strictly prefers, i.e. such that ν(a)Paη(a); that is
o′Pao. Assume also that ν(b)Rbη(b) and ν(b) ∈ µ(T ) ∀ b ∈ T .

Since o is the best object for a in O\η(S1), o
′ can not be in

that subset. Therefore, o′ ∈ η(S1), and thus, it is the initial
endowment of some agent a′ ∈ S1 ∩ T . Hence, η(a′) ∈ η(S1) too.
Considering that ν(b)Rbη(b) ∀ b ∈ T and η(a′) is the overall best
object for a′ then ν(a′) = η(a′), that is at the same time the
initial endowment of another agent a′′ ∈ S1 ∩ T .

Following this way we arrive to a point in which ν(a(j)) = η(a(j)) =
o′ for some a(j) ∈ S1 ∩ T . But o′ = ν(a), and since each object
can be assigned to an only agent, and:

ν(a(j)) = o′

ν(a) = o′

}
⇐⇒ a = a(j).

But a ∈ S2 and a(j) ∈ S1, and since those subsets are disjoint,
there is a contradiction.

(K) No agent in SK can belong to a blocking coalition for allocation η,
strictly preferring such reallocation, since each of them has already
been assigned to its best object in O\(η(S1) ∪ η(S2) ∪ ... ∪ η(SK−1)).
An argument analogous to the one utilised before could be used to
prove it.

In conclusion, there is no agent a in some coalition T such that by some
allocation ν could satisfy ν(a)Paη(a). And therefore, η is an allocation in
the core defined by weak domination of the assignment problem (A,O, P, µ)
since it can not be blocked by any subset of agents.

Hence, Gale’s TTC algorithm always selects an allocation in the core
defined by weak domination, and in consequence, no assignment problem
has an empty core defined by weak domination.

Alvin E. Roth and Andrew Postlewaite (1997) proved in [36] that, under
no indifference among objects, there is no allocation in the core other than
the one given by Gale’s TTC algorithm:

Theorem 9. If no agent is indifferent between any objects, the core defined
by weak domination of each assignment problem contains exactly one allo-
cation.

Proof. Let η be the allocation obtained by Gale’s TTC algorithm for the
assignment problem (A,O, P, µ) and consider ν another allocation for the
same problem (ν 6= η). It wants to be proved that ν can not be in the core
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defined by weak domination of the assignment problem.

Let k be the first stage in which there is an agent b ∈ Sk such that
ν(b) 6= η(b) (if there are more than one agents satisfying this property, b
is chosen arbitrarily among them). Then ν(a) = η(a) ∀a ∈ S1∪S2∪...∪Sk−1.

Since η allocates to each agent a ∈ Sk its preferred object in the available
object set O\(η(S1) ∪ η(S2) ∪ ... ∪ η(Sk−1)), and ν(a) must belong to that
same set, ν(a) can be at most as preferable, for agent a, as η(a). Hence,
it will be η(a)Raν(a). And besides, from Gale’s TTC algorithm, ∀a ∈ Sk,
η(a) ∈ µ(Sk). Recall that there is no indifferece between objects for each
agent; thus, by definition of η, since ν(b) 6= η(b), η(b)Pbν(b).

Therefore, the subset Sk of agents blocks allocation ν; since they can
improve concerning the allocation proposed, by trading among themselves
the objects initially assigned by µ (via allocation η). In conclusion, ν can
not be in the core defined by weak domination of the assignment problem
(A,O, P, µ).

Henceforth, strict preferences in which there is no indifference between
objects will be utilized in the coming sections. From this point on, the core
defined by weak domination will be denoted just ’core’, and weak domination
just ’domination’.

3.4 Manipulability of Gale’s TTC mechanism

The preference ordering Pa of agent a is who bears the responsibility for the
choice of the object that a receives by allocation η resulting from Gale’s TTC
algorithm over problem (A,O, P, µ). For this reason, an agent might wonder
if, displaying a different preference, it could end up receiving a better object
than the one obtained by Gale’s TTC algorithm. In the following it will be
demonstrated that the TTC algorithm encourages the agents to reveal their
true preferences.

Given a profile P and a new preference P ′a for agent a ∈ A, let us denote
(P−a, P

′
a) the profile obtained when replacing in P the preference Pa with

P ′a.

Definition 28. A mechanism φ : P −→ A is manipulable if there exists an
assignment problem (A,O, P, µ), an agent a ∈ A and a preference P ′a such
that: φ[A,O, (P−a, P

′
a), µ](a) Pa φ[A,O, P, µ](a).

In a manipulable mechanism, agent a receives a better object (according
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to Pa) by declaring P ′a instead of Pa. In that case, it is said that agent a
manipulates φ in the assignment problem (A,O, P, µ) by declaring P ′a.

Definition 29. A mechanism that is not manipulable is said to be strategy-
proof (SP).

A strategy-proof mechanism’s agent can not obtain an object more pre-
ferred than the one obtained when revealing his true preference, by misstat-
ing his preference while others stay with his trustful one. Hence, the agents
always have incentives to declare their true preference in such a mechanism.
The strategy-proofness of the mechanism ensures the use of proper infor-
mation, and hence the mechanism’s suggestion satisfies the rest of ideal
properties such as individual rationality and Pareto-efficiency.

Alvin E. Roth (1982) established in [34] that the mechanism of the core
is strategy-proof, i.e. Gale’s TTC algorithm, as a ϕ : P −→ A mechanism,
is not manipulable. To prove the result, first let us consider lemmas 10, 11,
and 12, where the notation summary is as follows:

P : fixed preference profile (without indifferences among objects).

TTCP : Gale’s TTC algorithm over the problem (A,O, P, µ).

GPk : Graph at the k-th stage of TTCP .

P ′: Preference profile which differs from P only in the report of a single
(fixed) agent ai who reports P ′ai instead of Pai .

SPk : set of agents that being part of a cycle (or loop) in stage k of
TTCP are allocated to an object and removed from the problem in
the k-th step of the algorithm.

Lemma 10. Let C = (n1, n2, ..., nm) be a chain in the graph GPk , and r > k,
then C is a chain in GPr if, and only if, nm is a node of GPr .

Proof. See Appendix A.

Lemma 11. Take P and P ′ as defined above, and let k and k′ be the
stages at which agent ai is removed from the market in TTCP and TTCP ′ ,
respectively. Then the graphs GPl and GP

′
l have the same cycles for 1 ≤ l ≤

min{k, k′} − 1, and the same nodes for 1 ≤ l ≤ min{k, k′}.

Proof. See Appendix A.

Lemma 12. Let P ′′ be a preference profile which differs from P ′ only in
the report of agent ai, where P ′′ai is any preference such that η′(ai)P

′′
aiη
′(aq)

for all aq 6= ai (being η′ the allocation resulting from TTCP ′). Then if η′′ is
the resulting allocation from TTCP ′′ , η

′′(ai) = η′(ai).
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Proof. See Appendix A.

Theorem 13. The mechanism of the core is strategy-proof.

Proof. Let us consider:

ϕ : P −→ A: mechanism that selects for each assignment problem the
only allocation in the core (the correspondent one obtained by Gale’s
TTC algorithm).

(A,O, P, µ) ∈ P: a fixed assignment problem.

ϕ[A,O, P, µ] = η : allocation obtained from Gale’s TTC algorithm’s
mechanism on problem (A,O, P, µ).

Consider P and P ′ as defined above, and let η and η′ be the allocations
resulting from TTCP and TTCP ′ , respectively, with η′(ai) = µ(aj); where
µ is the initial endowment, and ai is the agent that reports P ′ai instead of its
real preference ordering. Then, to prove the theorem, it is enough to show
that no P ′ai exists for which η′(ai)Paiη(ai), i.e. if Pai is agent ai’s sincere
preference, reporting P ′ai instead of Pai the agent ai will not get a preferred
outcome.

Let k and k′ be the steps of TTCP and TTCP ′ , respectively, at which
agent ai is removed from the market (i.e., ai ∈ SPk and ai ∈ SP

′
k′ ). The

node corresponding to the pair agent-object (ai, oi) will be represented as i
for each i = 1, 2, ..., n, being n the number of couples participating in the
problem.

Assume that either:

(i) η′(ai)Paiη(ai), or

(ii) η′(ai) = η(ai).

Let us conclude that (ii) holds. By reductio ad absurdum suppose that (i)
holds. Notice that (i) reflects that agent ai would be receiving a strictly more
preferable object (according to the truthful preference Pai) by revealing P ′ai
as preference rather than its real preference Pai . On the other hand, (ii)
indicates that, at the end, ai would be receiving the same object revealing
either preference P ′ai or Pai .

By Lemma 12, to consider P ′ai that ranks η(ai) first (i.e., η(ai)P
′
aiη(aj) ∀

aj 6= ai), implies straightforwardly η′(ai) = η(ai). That is, P ′ai ranks η′(ai)
first, i.e. η′(ai)P

′
aiη
′(aj) ∀ aj 6= ai.
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For any other construction of P ′ai , continue as follows. If k′ ≥ k, then

Lemma 11 states that, for 1 ≤ l ≤ k, GPl and GP
′

l have the same nodes.
Suppose now that η′(ai)Paiη(ai) (hypothesis (i), η′(ai) 6= η(ai)), then by
Lemma 10, and considering that the arc (i, j′) must be an arc of GPs for
s < k being η′(ai) = oj′ , then (i, j′) must be an arc of GPk too because j′

is a node of GPk . As η(ai) = oj , the arc (i, j) is obviously an arc in GPk
too (is the arc that assigns oj to agent ai in stage k and removes it from
the problem in that same step). Hence, since j 6= j′ and there can not be
two arcs emanating from i, a contradiction is noticed. Therefore, it must be
η′(ai) = η(ai) and k = k′.

Now, if k′ ≤ k, once again by Lemma 11, for 1 ≤ l ≤ k′ GPl and GP
′

l

graphs have the same nodes. Let C = (j′ = n1, n2, ..., nm = i) be the cycle
that forms at step k′ of TTCP ′ (it is the cycle that will remove ai from the
problem at stage k′ of TTCP ′). Unless maybe the arc emanating from i,
GPk′ and GP

′
k′ will have the same arcs (consider that ai was the only agent

who reported a different preference for P ′); therefore, unless maybe (i, j′)
all the other arcs of C will be in GPk′ (and in GP

′
k′ , obviously). So, C forms

a chain in GPk′ , and by Lemma 10, since k ≥ k′ and i is a node in GPk , then
C forms a chain also in GPk . Take once again η′(ai)Paiη(ai), i.e. oj′Paioj ,
from C being a chain in GPk , it is known that j′ is a node of GPk . Hence,
the arc emanating from i would point j′ due to the strict preference, and
(i, j) could not be an arc in GPk , which gives a contradiction for η(ai) = oj .
Therefore, it must be η′(ai) = η(ai) and k = k′.

3.5 Desirable properties of Gale’s TTC algorithm

The idea of core may be too demanding for the implementation of Gale’s
TTC algorithm to the assignment problem of living donor kidney exchange
due to the fact that it could be difficult for an agent to realize that by
becoming part of a coalition of agents, and redistributing their initial objects
among themselves, it would end up receiving a strictly preferred object than
the one obtained by Gale’s TTC algorithm, and the rest of participants in
the coalition receiving an object at least as good for them as the one obtained
in the first case. Additionally, it would not be feasible to perform the paired
transplants outside the institution that rules the program.

Nevertheless, in the general scope of this dissertation, it is sensible to require
that the mechanism is individually rational and efficient, and that encourages
the participants to state their truthful preferences. Jinpeng Ma (1994)
proved in [16] that a mechanism satisfies individual rationallity, Pareto-
efficiency and strategy-proofness if, and only if, it is the core mechanism.
In order to proof that result, lemmas 14 to 18 will be presented and proved
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before.

Definition 30. Given the profile P and two allocations α, ω : A −→ O for
the assignment problem (A,O, P, µ), let us define J(α, ω, P ) the agents that
strictly prefer allocation α to ω according to preferences in profile P , i.e.
J(α, ω, P ) := {a ∈ A : α(a)Paω(a)}. Notice that J(α, ω, P ), J(ω, α, P ), and
A\(J(α, ω, P ) ∪ J(ω, α, P )) form a partition of A.

For the next lemmas take a profile P honestly declared by the agents,
and assume that ϕ is the mechanism of the core and φ is an individually
rational, Pareto-efficient and strategy-proof mechanism; as they will be used
later to prove Theorem 19.

Lemma 14. Let α, ω be Pareto-efficient with respect to profile P, and
suppose α 6= ω. Then J(α, ω, P ) is not empty.

Proof. See Appendix A.

Lemma 15. Let η be the allocation in the core of assignment problem
(A,O, P, µ), and an allocation ν individually rational and Pareto-efficient
w.r.t. profile P, being η 6= ν. Then, exists a ∈ J(η, ν, P ) such that

η(a)Paν(a)Paµ(a).

Proof. See Appendix A.

Let us consider the following notation: for a fixed problem (A,O, P, µ),
ϕP (ai) := ϕ[A,O, P, µ](ai).

For a profile P , let us define TP as the agents that strictly prefer (accord-
ing to profile P ) some object o to the initial one, being o strictly less preferred
than the one assigned by ϕ, i.e. TP = {a ∈ A : ∃ o ∈ O s.t. ϕP (a)PaoPaµ(a)}
and the profile of preferences P ′ = (P ′a1 , P

′
a2 , ..., P

′
an) as follows:

P ′ai =

{
(..., ϕP (ai), µ(ai), ...) if ai ∈ TP
Pai if ai ∈ A\TP

(3.1)

Recall:

P−ai := (Pa1 , ..., Pai−1 , Pai+1 , ..., Pan) and
(Pa−i , P

′
ai) := (Pa1 , ..., Pai−1 , P

′
ai , Pai+1 , ..., Pan) ,

and let T ⊂ A be any subset of A. Denote

PT = (Pai)ai∈T , and P−T = PA\T = (Pai)ai∈A\T

Lemma 16. ϕP = ϕP ′ = ϕ(P ′−T , PT ) for all subsets T ⊆ A.
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Proof. Obvious by how P and P ′ are defined.

Lemma 17. ϕP ′ = φP ′ .

Proof. See Appendix A.

Lemma 18. ϕ(P ′−T , PT ) = φ(P ′−T , PT ) for any subset T ⊆ A.

Proof. See Appendix A.

Now we are set to prove the theorem:

Theorem 19. A mechanism φ : P −→ A is individually rational, Pareto-
efficient and strategy-proof if, and only if, φ is the mechanism of the core
(the one selecting the allocation according to Gale’s TTC algorithm).

Proof. Let ϕ be the mechanism in the core.

(=⇒) If φ is an IR, PE and SP mechanism, then by Lemma 18 taking T = A:

ϕ(P ′−T , PT ) = ϕ(P ′−A, PA) = ϕP

φ(P ′−T , PT ) = φ(P ′−A, PA) = φP

}
=⇒ ϕ = φ,

φ is the mechanism of the core.

(⇐=) If φ is the mechanism of the core for all P (i.e φ = ϕ), it is clear that
it satisfies IR and PE (Lemma 1), and from Theorem 13 follows that
φ will be SP.

Remark 5. First, any mechanism that orders the agents and allows that,
following this order, the agents receive successively its preferred object
among the ones still not chosen by its predecessors (called dictatorial mech-
anism in series), is Pareto-efficient and strategy-proof, but not individually
rational; second, the mechanism that always selects the initial endowment
(ψ[A,O, P, µ] ∀(A,O, P, µ) ∈ P) is individually rational and strategy-proof,
but not Pareto-efficient; third, there exist mechanisms that are individually
rational and Pareto-efficient, and at the same time manipulable (so not
strategy-proof). In the sense of these three observations, it can be pointed
out that individual rationality, Pareto-efficiency and strategy-proofness are
mutually independent.

The next example will show the third case proposed above:
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Example 6. Consider the problem (A,O, P, µ) where |A| = |O| = 4, µ(ai) =
oi for all i = 1, 2, 3, 4 and the preference profile is as given in Table 7:

Table 7: Preferences.

Pa1 Pa2 Pa3 Pa4
o3 o4 o1 o3
o2 o1 o2 o2
o1 o2 o3 o1
o4 o3 o4 o4

Let ϕ be the mechanism in the core
associated to Gale’s TTC algorithm.
Then,

ϕ[A,O, P, µ] =

(
a1 a2 a3 a4
o3 o4 o1 o2

)
,

and define another mechanism φ that coincides with ϕ in every assignment
problem except in (A,O, P, µ) (i.e., φ[A,O,Q, µ] = ϕ[A,O,Q, µ] for all
(A,O,Q, µ) ∈ P with Q 6= P ). Select now, for φ over (A,O, P, µ), the
next allocation:

φ[A,O, P, µ] =

(
a1 a2 a3 a4
o2 o4 o1 o3

)
.

Since ϕ is in the core, ϕ[A,O,Q, µ] is IR and PE for every (A,O,Q, µ) ∈
P; and therefore, ϕ[A,O,Q, µ] is IR and PE for each (A,O,Q, µ)
∈ P\(A,O, P, µ) (since ϕ[A,O, P, µ] 6= φ[A,O, P, µ]). But, it is easy to
notice that φ[A,O,Q, µ] is IR:

φ[A,O,Q, µ](a)Raµ(a) holds for each agent a ∈ A ,

and PE considering that there does not exist another allocation in which an
agent a′ ∈ A receives a strictly preferred object than the one assigned by φ
while each agent in A\{a} receives an object at least as preferred as the one
assigned by φ.

Obseve that the only possibility for a′ would be a1 receiving o3 instead of o2;
but, in that case, some other agent among the rest would receive an object
less desired than the one assigned by φ.

To see that φ can be manipulated, take a profile P ′ = (Pa1 , Pa2 , Pa3 , P
′
a4)

where o1P
′
a4o2P

′
a4o3P

′
a4o4. Then,

φ[A,O, P ′, µ] = ϕ[A,O, P ′, µ] =

(
a1 a2 a3 a4
o3 o4 o1 o2

)
.

Notice that φ had been chosen such that φ[A,O,Q, µ] = ϕ[A,O,Q, µ] for
every (A,O,Q, µ) ∈ P with Q 6= P .

Hence, as o2P
′
a4o3 (i.e., φ[A,O, P, µ](a4)P

′
a4φ[A,O, P ′, µ](a4)), agent a4

manipulates mechanism φ in the assignment problem (A,O, P ′, µ) by report-
ing Pa4 instead of the true preference order P ′a4.
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Lastly, another desirable property of the mechanism of the core associat-
ed with Gale’s TTC algorithm is that the selected allocation corresponds to
the one that would be obtained through a competitive market. Alvin E. Roth
and Andrew Postlewaite (1977) proved in [36] that, under no indifference
between goods, for each assignment problem exists just one allocation that
is a competitive equilibrium, and it coincides with the one selected by Gale’s
TTC algorithm, i.e. with the allocation in the core. It will be demonstrated
in the proof of Theorem 20, where theorems 8 and 9, and the concept of
competitive allocation will be put together.

Theorem 20. If no trader is indifferent between any goods, then the core
defined by weak domination is always non-empty and contains exactly one
allocation, which is the unique competitive allocation.

Proof. By Lemma 6 we know that if no trader is indifferent between any
goods, a competitive allocation weakly dominates every other allocation,
competitive or not. Hence, it is only needed to show that no allocation
weakly dominates a competitive allocation.

Let η be a competitive allocation. Associated with η are the coalitions
S1, S2, ..., SK (top trading cycles) which are effective for η, and prices π1, π2,
..., πK , respectively; such that π1 > π2 > ... > πk. Since η is competitive,
there exists a price vector p = (po1 , po2 , ..., pon) such that for each agent a,
pµ(a) = pη(a). Every agent in the coalition Sl will have the same price for
the object the agent owns (i.e., poi = πl ∀ ai ∈ Sl).

Take now another allocation ν and suppose the agent weakly dominates
η via some coalition T, then:

(i) ν(a) ∈ µ(T ) ∀ a ∈ T ,

(ii) ν(a)Raη(a) ∀ a ∈ T ,

(iii) ν(a)Paη(a) for some a ∈ T .

Next, let j be the smallest integer such that Sj ∩ T 6= ∅. As η is
competitive, if ν(a)Paη(a) for some a ∈ Sj ∩ T , ν(a) must have been sold
at a higher price than η(a) (πk = pν(a) > pη(a) = πj). But, this implies
that ν(a) must have been traded in some Sk for k < j, and hence, it must
have been the initial endowment of an element b ∈ Sk. But, T is effective
for ν, therefore ν(a) ∈ µ(T ), and so b ∈ T . Consequently, b ∈ Sk ∩ T for
k < j; which contradicts that j was the smallest integer such that Sj∩T 6= ∅.

Therefore, it is false that ν(a)Paη(a) for each a ∈ Sj ∩ T , and since (by
hypothesis) there is no indifference, and ν(a)Raη(a) for all a ∈ T (by (ii)),
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it must be that ν(a) = η(a) for all a ∈ Sj ∩ T .

Now, assume that S1, S2, ..., SK are simple top trading cycles. Then
since ν(a) ∈ µ(T ) ∀ a ∈ T and Sj ∩ T 6= ∅, it follows that Sj ⊆ T , and T\Sj
is effective for ν (Notice that, ∀ a ∈ Sj , ν(a) = η(a) and therefore, by how
Sj is defined, ν(a) ∈ µ(Sj) ∀a ∈ Sj).

Following this way, it will be seen that η(a) = ν(a) ∀a ∈ T (as condition
(iii) in the supposition above is not held).

So, ν does not weakly dominate η. Hence, no allocation weakly dominates
η. Therefore, η is in the core. Thus, the core is always non-empty and
contains exactly one allocation that is the unique competitive allocation.

In summary, under no indifference allowed, the Top Trading Cycles
algorithm from Gale is strategy-proof as a mechanism and selects the only
allocation in the core, such allocation is the only competitive allocation.
Moreover, it is the only mechanism that is strategy-proof among those
individually rational and Pareto-efficient.



Chapter 4

Implementation for the
Kidney Paired Donation

Once all the necessary theoretical concepts have been introduced and proved
in the previous chapters, the Top Trading Cycles algorithm of Gale can be
said to be an ideal mechanism to assign kidneys to patients in a paired
kidney exchange program. For the implementation of the algorithm to this
context, a computer program will facilitate and streamline the process. The
coded computer program consists of different sections with several functions
that will make easier to understand and code the main program.

4.1 Input data

The input of the TTC algorithm of Gale is a preference matrix; this is,
a profile P . In a real situation, it could be entered into the system by
the user, but let us create a random preference matrix deduced from a
database derived from real data, in order to perform simulations easily. Both
a random database and its associated preference matrix will be generated
by a function in the R environment, see [31], taking advantage of the large
number of statistical tools it offers.

The random preference matrix is generated in three steps, see the details
and codes in Appendix B. Let n be the number of patient-donor couples
taking part in the problem. First, a data matrix of dimensions n x 7 is
generated by using real data from the ONT retrieved from [21], see Appendix
B.1. The rows of the mentioned matrix represent the couples taking part
in the program, and the columns collect for each one the necessary data
to create a points matrix, in the second stage, according to the selection
and prioritization criteria agreed by the ONT in [25], see Appendix B.2.
The information collected in the columns for each couple is: the ABO blood
groups of the patient and the donor, the matching probability of the patient,
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the months the patient has spent on dialysis, the ages of the patient and
the donor, and the autonomous community where the couple comes from.
The points matrix is a square matrix of dimension n x n, where row j
represents the donor from couple j and column i the patient from couple
i. Hence, in position (j, i) is saved a score that represents how adequate
would be for patient i to be assigned the graft from donor j. The scores in
the points matrix are determined by characteristics as blood compatibility
between the patient and the donor, matching probability of the patient, age
difference between the patient and the donor, months the patient has spent
on dialysis treatment, geographical location of the couple, and pediatric
patients. Finally in the third step, see Appendix B.3, the scores of the
points matrix are ordered obtaining an n x n square matrix. In it, column
i saves, in descendent order, the donor from whom patient i wants most to
receive a kidney, to the donor from whom least.

If we observe Table 8 we can see how the needed time for generating
the data, points, and preference matrices, significantly increases while we
consider larger values of n.

Table 8: Mean time (sec.) for generating input data.

n 5 10 20 50 100 200 350

Time 0.22 0.24 0.33 0.91 3.23 15.18 62.32

4.2 Implementation

Once the preference matrix is obtained, to code the TTC algorithm, which
provides the solution to the assignment problem, C++ programming lan-
guage is used, see [11]. When coding, two functions will be essential to
facilitate the code writing process. The first one, PreferenceMat, will read
and save the preference matrix created in R environment from a .dat file,
and give us the number of couples taking part in the problem. The second
one, inCycle, will let us know if a couple belongs to a cycle in a determined
stage of the algorithm. Then, the solving procedure follows the main steps
of Algorithm 1 from Chapter 3, see the complete code in Appendix C. The
program returns as output the final assignment of kidneys to patients (η),
and detailed information about stages, time, transplants, and cycles.

4.3 Simulations and results

In our simulations, we consider 7 dimensions for the number of couples
taking part in the problem, n ∈ {5, 10, 20, 50, 100, 200, 350}, and 20 random
database samples. Then we study two factors: (i) for each dimension we
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observe the variations in the results, and (ii) we compare the results for the
different numbers of donor-patient couples. Tables 9 and 10 below show the
mean an the coefficient of variation of the results, respectively, where the
columns are as follows:

St., number of stages of the TTC algorithm,

Time, computing time in seconds (input time excluded),

Tr./%Tr., number and percentage of compatible transplants in the
allocation solution, respectively,

Cy., total number of cycles in the allocation solution,

min./avg./max. Cy/St, minimum, average, and maximum number
of cycles per stage, respectively, and

min./avg./max. Len. Cy., minimum, average, and maximum
length of a cycle in the algorithm, respectively.

Table 9: Means of the TTC implementation results.

Cy/St Len. Cy.
n St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

5 3 0.01 2 38 1 0 0.32 1 2 1.58 2

10 5 0.03 6 55.50 3 0 0.58 1 2 2.09 2

20 8 0.05 13 65 6 0 0.68 1 2 2.39 3

50 16 0.13 36 71.80 15 0 0.91 2 2 2.43 4

100 29 0.28 76 75.50 29 0 1 2 2 2.58 5

200 52 0.76 150 75.20 58 0 1.10 3 2 2.61 6

350 85 1.79 269 76.83 100 0 1.17 4 2 2.71 7

Table 10: Coefficients of variation of the TTC implementation results.

Cy/St Len. Cy.
n St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

5 24.18 14.76 74.24 74.24 71.19 0.22* 81.39 59.23 60.94 61.17 62.17

10 19.50 33.86 45.46 45.46 42.05 0.31* 50.72 37.53 23.54 27.52 39.18

20 12.41 16.15 24.45 24.45 26.71 0 * 22.60 21.30 10.91 10.13 17.60

50 10.73 16.94 13.34 13.34 11.72 0 * 8.46 23.54 0 8.97 16.22

100 11.26 22.48 10.11 10.11 11.97 0 * 8.49 22.76 0 6.62 12.56

200 8.08 26.66 7.82 7.82 7.68 0 * 6.45 25.31 0 5.39 21.45

350 6.31 17.31 5.92 5.92 7.03 0 * 4.19 19.66 0 4.03 17.64

*: standard deviation.
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(i) Samples for different databases for a fixed n. Table 10 shows the
coefficients of variation for the results of executing the TTC algorithm
with 20 random databases for a fixed number n of patient-donor couples.
The variables St., Tr., %Tr., Cy., avg. Cy/St, and avg. Len. Cy. show
small variability with respect to the mean for n greater or equal to
50. Moreover, the larger the size of the patient-donor couples set, the
smaller the deviation. The minimum variables are quite homogeneous,
except for the smallest sizes. Finally, the coefficients of variations
performance is not decreasing for the time and maximum variables.
The percentage of the deviation from the mean for the time is between
16.15% and 33.86%, for the maximum number of cycles per stage
between 19.66% and 59.23%, and for the maximum length of cycles
in the algorithm between 12.56% and 62.17%. Except in maybe some
particular cases, the maximum number of couples taking part in the
same cycle is quite feasible in medical terms even for large number of
couples, the largest mean we have obtained for the maximum length
of a cycle in a simulation has been 7 for n = 350; a positive result on
medical grounds considering the problems very long cycles can involve
on the operating room coordination, necessary human units, and many
other operational aspects. The detailed results of the simulations are
collected in Table 16 from Appendix D.

(ii) Samples for different values of n. Table 9 shows the mean results,
for each number n of patient-donor couples, of the outcomes obtained
in Table 16 from Appendix D. It can be appreciated that the larger
the size n, the larger the variables, specially the number of stages,
time, number of transplants, and number of cycles. Although the
time is increasing, it is remarkable the small time needed even for the
largest size n = 350, less than 2 seconds. The percentage of compatible
transplants seems to converge to 3/4 of n. The minimum number of
cycles per stage and the minimum length of a cycle in the algorithm
remain constant in 0 and 2 respectively. The average number of cycles
per stage and the average length of a cycle in the algorithm are quite
similar for each case, around 1 cycle per stage and length 2. The
maximum for the previous two variables increases with a speed up of
around 1 unit in the different sizes.

When considering the regression analysis of the variables with respect
to the size n, astonishing goodness-of-fit have been observed, see the
R-squared measures in Table 17 and the expression of the regression
curves for the highest determination coefficient in Appendix D.



Chapter 5

Conclusions and further
research

The objectives presented in the first chapter of the dissertation have been
successfully achieved. The difficulties on the waiting time for kidney trans-
plantation have been identified, and the economic model of trading indivisible
objects presented by L. Shapley and H. Scarf has been understood to be
able to implement it to the transplants context via the Top Trading Cycles
algorithm of Gale. Furthermore, the TTC algorithm has been proved to be
the ideal mechanism for trading indivisible goods with no money or other
means of exchange. The mechanism is individually rational so that every
participating agent obtains an object at least as good as its initial one, a
reallocation of the objects cannot give any agent a better object than the
one assigned by the mechanism without any other receiving a less preferred
one, i.e. it is Pareto-efficient, and no subset of agents can get a better
outcome than the allocation given by the algorithm by reallocating their
initial objects among them. Besides, it encourages the agents to reveal their
true preferences because of being strategy-proof.

The impossibility of adding immunological data to our database, due to
the lack of reachable resources about HLA information, leaves a significant
gap in the reliability of the simulations. Nevertheless, the main objective
of the program has been attained and works properly for the paired kidney
exchange assignations. It is successful in completing stages, and satisfies
cycles properly, assigning to each patient the best possible graft. The
coefficients of variation collected in Table 10 in the previous chapter show us
how close are the results of the simulations between each other; this is, the
algorithm works in a similar way for problems of the same dimensions, what
implies stability and robustness. The outcomes seem to be satisfactory for
the available data, with mean bigger than 75% of performable transplants
for problem dimensions larger than 50 couples. The mechanism turns out
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to be a big medical progress in the area of renal donation. Furthermore, the
welfare of the patients on the cadaver waiting list would improve due to the
relief of the demand on the supply of cadaver kidneys.

Up to this point, the first and most basic form of paired kidney exchange
has been discussed. Nevertheless, the research in this topic in the current
scientific community is focused in many improvements and variations. An
important improvement in the last years has been the possibility of per-
forming the transplants in a cycle in several times thanks to the presence
of ’bridge donors’. The ’bridge donor’ awaits to donate his kidney while
the partner has already been transplanted to enable a bigger number of
transplants; Spain introduced this figure for the first time in 2014, see [24],
after the ’bridge donor’ figure was approved in 2013 by the Transplant
Commission of the Interterritorial Health Council, see [10]. Another re-
markable advancement is the possibility of carrying out an international
paired kidney exchange, which the ONT successfully accomplished for the
first time in 2018, and later in 2019; both times between a Spanish patient-
donor pair and an Italian one, see [28] and [30]. One of the most relevant
variations of the kidney exchange program implementation is the indirect
exchange, where one incompatible patient-donor pair exchanges its kidney
with the cadaver queue, the patient in the couple receiving high priority on
the deceased donors queue, see [37] from Alvin E. Roth, Tayfun Sönmez, and
M. Utku Ünver (2004). However, this may have a negative impact on type
O patients waiting in the cadaver queue. Another version of paired kidney
exchange is the altruistic-donor chain, in which the chain starts with an
altruistic donor that enters the program willing to donate one of its kidneys,
and it ends with a patient-donor couple in the chain donating a kidney
to an unpaired recipient on the deceased-donor waiting list, see in [32] an
interesting related article by Michael A. Rees et al. (2009). A dynamic
kidney exchange model was also presented by M. Utku Ünver (2010) in [43].
These are just some of the possibilities for further research in the paired
kidney exchanges that have been studied until the moment this dissertation
has been written.



Appendix A

Proofs for auxiliary lemmas

In this appendix the proofs for the auxiliary lemmas for theorems 13 and 19
in Chapter 3 are shown.

Lemma 10. Let C = (n1, n2, ..., nm) be a chain in the graph GPk , and r > k,
then C is a chain in GPr if, and only if, nm is a node of GPr .

Proof. First, remember that (n1, n2, ..., nm) is a chain in GPk if (nq, nq+1) is
an arc of GPk for q = 1, ...,m − 1. Then, let (nm−1, nm) be an arc in GPk .
Notice that the object corresponding to node nm will be the most preferred
one among the available ones at stage k of the algorithm, i.e. in the set
O\(η(S1)∪ η(S2)∪ ...∪ η(Sk−1)), for the agent corresponding to node nm−1.
Now, as r > k, let us prove the two implications :

(=⇒) If (nm−1, nm) is an arc in GPr , nm must be a node in GPr .

(⇐=) If nm is a node in GPr , since the object corresponding to node nm will
still be the favourite one, among the available objects at stage r of the
algorithm, for the agent corresponding to nm−1, then (nm−1, nm) will
still be an arc in GPr .

Hence, the proof by induction proceeds forthwith: suppose that nm
is a node in GPr , then (nm−1, nm) is an arc in GPr . So, nm−1 is a node
of GPr , and therefore, (nm−2, nm−1) is an arc in this same graph. Thus,
(nm−2, nm−1, nm) is a chain in GPr . Following in the same way, if (n2, ..., nm)
is a chain in GPr , since n2 is a node of such graph, (n1, n2) must be an arc,
and therefore (n1, ..., nm) a chain, in GPr .

Lemma 11. Take P and P ′ as defined above, and let k and k′ be the
stages at which agent ai is removed from the market in TTCP and TTCP ′ ,
respectively. Then the graphs GPl and GP

′
l have the same cycles for 1 ≤ l ≤

min{k, k′} − 1, and the same nodes for 1 ≤ l ≤ min{k, k′}.

41



42

Proof. Recall that P ′ differs from P just in the report of an only fixed agent
ai, who declares P ′ai instead of Pai .

Let N be the set of nodes of GP1 and GP
′

1 . This two graphs differ only
maybe in the arc emanating from node i corresponding to agent ai, that is
the only one who has declared a different preference for profile P ′. Both
graphs will have the same cycles (and loops) if node i does not belong to a
cycle (or loop) in any of them (i.e., if min{k, k′} > 1). In this case, since
ai /∈ SP1 and ai /∈ SP

′
1 , GP2 and GP

′
2 will have the same set of nodes (N

without the nodes corresponding to agents in SP1 = SP
′

1 ). As argued before,
both graphs will differ only maybe in the arc emanating from i, and will
have the same cycles (and loops) if min{k, k′} > 2. The lemma follows
by induction: suppose that in stage l of TTCP and TTCP ′ the graphs GPl
and GP

′
l have the same nodes and the same cycles (and loops) (i.e., node

i will not belong to a cycle (or loop) and will continue unallocated). Then
in stage l + 1, both GPl and GP

′
l will have the same nodes. They will only

have the same cycles (and loops) if node i is not in a cycle (or loop) (i.e., if
min{k, k′} − 1 ≥ l + 1).

Therefore, GP1 and GP
′

1 will have the same set of nodes until the stage
in which ai is removed from the problem in TTCP or TTCP ′ , thus, for
1 ≤ l ≤ min{k, k′}. For the same reason, GPl and GP

′
l will have the same

cycles and loops until exactly one stage before ai is removed from one of the
problems (i.e., the stage in which ai belongs to a cycle or loop in one of the
problems); hence, for 1 ≤ l ≤ min{k, k′} − 1.

Lemma 12. Let P ′′ be a preference profile which differs from P ′ only in
the report of agent ai, where P ′′ai is any preference such that η′(ai)P

′′
aiη
′(aq)

for all aq 6= ai (being η′ the allocation resulting from TTCP ′). Then if η′′ is
the resulting allocation from TTCP ′′ , η

′′(ai) = η′(ai).

Proof. Let k′ and k′′ be the stages at which ai is removed from the market in
TTCP ′ and TTCP ′′ respectively, and let η′(ai) = µ(aj) = oj for some aj ∈ A.

Suppose ai is still on the market at period k′ of TTCP ′′ (i.e., k′ ≤ k′′),
then by Lemma 11 the graphs GP

′
k′ and GP

′′
k′ will have the same nodes, and

moreover, GP
′

k′−1 and GP
′′

k′−1 the same cycles. But, as η′(ai) = µ(aj) the arc

(i, j) is in GP
′

k′ , and besides, it is in GP
′′

k′ since P ′′ai ranks µ(aj) first for agent
ai over all the objects (i.e., the arc (i, j) is in the graph of every stage in
which j is still a node). Therefore, GP

′
k′ = GP

′′
k′ considering that the only

aspect in which GP
′

k′ and GP
′′

k′ could differ is in the arc emanating from i, that
it has been seen to be the same. In this case, i belongs in GP

′′
k′ to the same

cycle as in GP
′

k′ . Therefore, η′(ai) is allocated to ai in step k′ of TTCP ′′ , and
hence η′′(ai) = η′(ai). Lemmas 10 and 11 also imply that ai (and/or node
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i) can not be removed from the problem later than η′′(ai) (and/or node j)
in TTCP ′′ , then must be k′′ ≤ k′ too.

Lemma 14. Let α, ω be Pareto-efficient with respect to profile P, and
suppose α 6= ω. Then J(α, ω, P ) is not empty.

Proof. By reductio ad absurdum, suppose that:

J(α, ω, P ) = {a ∈ A : α(a)Paω(a)} = ∅ =⇒ @ a ∈ A s.t. α(a)Paω(a) .

Therefore, ω(a)Raα(a) ∀ a ∈ A. Hence, there are two possibilities:

(i) ω(a)Paα(a) for some a ∈ A =⇒ α is not PE w.r.t. P,

(ii) @ a ∈ A s.t. ω(a)Paα(a) =⇒ ω = α,

each of them leading to a contradiction.

Lemma 15. Let η be the allocation in the core of assignment problem
(A,O, P, µ), and an allocation ν individually rational and Pareto-efficient
w.r.t. profile P, being η 6= ν. Then exists a ∈ J(η, ν, P ) such that

η(a)Paν(a)Paµ(a).

Proof. First, notice that:

· η is the allocation in the core. Hence, η is IR and PE by Lemma 1.

· ν is IR and PE by hypothesis in Lemma 15.

By Lemma 14, since both η and ν are PE w.r.t. P and η 6= ν, then:

J(η, ν, P ) 6= ∅ =⇒ ∃ a ∈ A s.t. η(a)Paν(a) . (A.1)

By reductio ad absurdum, suppose now that:

@ a ∈ J(η, ν, P ) s.t. η(a)Paν(a)Paµ(a) . (A.2)

By (A.1) and (A.2), and since η(a)Paν(a):

@ a ∈ J(η, ν, P ) s.t. ν(a)Paµ(a) . (A.3)

And, ν is IR ⇐⇒ ν(a)Raµ(a) ∀a ∈ A (A.3)
===⇒ ν(a) = µ(a) ∀ a ∈ J(η, ν, P ).

Now, let be T = A\J(η, ν, P ). The restriction of allocation ν to the
coalition T, νT , is a T-allocation, i.e. νT (a) ∈ µ(T ) ∀ a ∈ T . Additionally,
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considering that, by Lemma 14, J(ν, η, P ) 6= ∅ (and the disjointness of
J(η, ν, P ) and J(ν, η, P )):

∃ a ∈ T s.t. ν(a)Paη(a) , (A.4)

and for how T is defined:

ν(a)Raη(a) ∀ a ∈ T . (A.5)

Hence, by (A.4), (A.5) and the effectiveness of νT , νT weakly dominates
η. Therefore, η does not belong to the core, which is a contradiction.

Lemma 17. ϕP ′ = φP ′ .

Proof. Notice that Lemma 15 is applicable because ϕP ′ is the mechanism
in the core of the assignment problem, φP ′ is IR and PE for any profile P ′.
By reductio ad absurdum, suppose that ϕP ′ 6= φP ′ , then:

∃ a ∈ J(ϕP ′ , φP ′ , P
′) s.t. ϕP ′(a) P ′a φP ′(a) P ′a µ(a). (A.6)

But, by how profile P ′ is defined above, and by the fact that ϕP = ϕP ′ from
Lemma 16, for each a ∈ A, there are two cases:

(1) If a ∈ TP , in preference P ′ ϕP (a) (and therefore ϕP ′(a)) is immediately
followed by the object µ(a).

(2) Otherwise, if a ∈ A\TP , then P ′a = Pa and @ o ∈ O s.t. ϕP ′(a)P ′aoP
′
aµ(a)

(remember that ϕ is IR), there are two possibilities:

· ϕP ′(a) is immediately followed by µ(a), or

· ϕP ′(a) = µ(a) in P ′a

In any case, there would not exist such object φP ′(a) in (A.6), which is a
contradiction.

Lemma 18. ϕ(P ′−T , PT ) = φ(P ′−T , PT ) for any subset T ⊆ A.

Proof. By Lemma 17, ϕP ′ = φP ′ . Let us consider two cases:

(1) T ⊆ A\TP , and

(2) T ⊆ TP

First, take a subset T ⊆ A\TP , then ∀ a ∈ T , P ′a = Pa, hence:

ϕ(P ′−T , PT ) = ϕ(P ′−T , P
′
T ) = ϕP ′ = φP ′ = φ(P ′−T , P

′
T ) = φ(P ′−T , PT ).
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Therefore, it is just needed to prove Lemma 18 for T ⊆ TP , i.e. the second
case. By induction on the size of subset T:
· If |T | = 0, by Lemma 17:

ϕ(P ′−T , PT ) = ϕ(P ′−∅, P∅)
= ϕP ′ = φP ′ = φ(P ′−∅, P∅)

= φ(P ′−T , PT ),

and Lemma 18 is satisfied.
· Assume by induction hypothesis that Lemma 18 holds for any |T | ≤ k.
· Let us prove for |T | = k+1. By reductio ad absurdum, suppose ϕ(P ′−T , PT ) 6=
φ(P ′−T , PT ). Denote Q = (P ′−T , PT ). Then by Lemma 15 (which can be

applied as ϕ is the mechanism of the core and φ is IR and PE):

∃ a ∈ J(ϕQ, φQ, Q) s.t. ϕQ(a) Qa φQ(a) Qa µ(a) (A.7)

If a ∈ A\T then, by Lemma 16, ϕP = ϕP ′ = ϕQ, i.e. ϕQ(a) = ϕP (a), and
from (A.7):

ϕP (a) P ′a φQ(a) P ′a µ(a), (A.8)

noticing that since Q = (P ′−T , PT ), Qa = P ′a for each a ∈ A\T . It
is impossible by the construction since in P ′a either µ(a) follows ϕP (a)
immediately, or ϕP (a) = µ(a), for all a ∈ A\T .

Therefore such a should be in T. Then by Lemma 16 we have:

ϕQ(a) = ϕP ′(a) = ϕ(Q−a, P ′a)
(a), (A.9)

Utilizing that (Q−a, P
′
a)a = P ′a, and hence, ϕP ′(a) = ϕ(Q−a, P ′a)

(a). And by
the induction hypothesis:

ϕ(Q−a, P ′a)
(a) = φ(Q−a, P ′a)

(a). (A.10)

By induction hypothesis, since |T\{a}| = k it can be assumed that:

ϕ(P ′−T\{a}, PT\{a}) = φ(P ′−T\{a}, PT\{a});

that is, ϕP ′(a) = φP ′(a), and therefore, (A.10) holds. Hence, from (A.7),
(A.9), and (A.10):

φ(Q−a, P ′a)
(a) Pa φQ(a). (A.11)

Observe that by how Q is defined, Qa = Pa and by (A.9) and (A.10)
ϕQ(a) = φ(Q−a, P ′a)

(a).

Substituting for Q, from (A.11):

φ((P ′−T , PT )−a, P ′a)
(a) Pa φ(P ′−T , PT )(a)

and a would be receiving a better object by reporting preference P ′a instead
of the truthful one Pa, which contradicts that the mechanism φ is strategy-
proof. Therefore, there does not exist such agent a (contradiction). Lemma
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18 is satisfied also for |T | = k + 1.

Hence, the lemma is true for any T ⊆ A.



Appendix B

Data, points, and preference
matrices

The implementation of the Top Trading Cycles algorithm of Gale for paired
kidney donation will be carried out by a computer program coded in C++
language. The purpose is to combine the patients and donors of n incom-
patible patient-donor pairs in the most profitable way and using the criteria
of selection and prioritization agreed by the ONT in 2015 for the Spanish
paired renal donation program, see [25]. Some simplifications when applying
the criteria will be considered due to the limited time, and shortage of
information or difficulties to obtain it; they will be discussed later.

As mentioned in Chapter 4, R environment has been utilized to generate
both the data matrix and its corresponding preference matrix. The appendix
will be organized as follows: first, a data matrix is generated based on the
data collected by the ONT; then, a points matrix is completed utilizing the
previous matrix and the selection and prioritization criteria proposed by the
ONT; lastly, the scores are ordered to obtain the preference matrix.

B.1 Generation of a data matrix

A realistic data matrix will be generated using the most influential infor-
mation when assigning pairs. All the necessary data is saved in a matrix
of n rows and exactly seven columns, being n the number of couples taking
part in the program. The first, third, forth, and fifth columns collect
information about the blood group, immunology, dialysis stage, and age of
the patients, respectively; the second and sixth columns gather information
about the donor’s blood group and age, respectively; and the last one details
the autonomous community where both the patient and the related initial
donor come from. Let us explain first in subsection B.1.1 the real database
and information we will use for the simulations, then in subsection B.1.2 a

47
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detailed explanation about how the data in the matrix is generated will be
given.

B.1.1 National registry of patient-donor pairs

The Spanish Paired Renal Donation Program developed in 2009, possesses a
national registry of patient-donor pairs available, created in the ONT. The
registry meets the requirements of the Organic Law 15/1999, of December
13, of Personal Data Protection, see [13], and its functions are:

• Gather the necessary information for the clinical and immune assess-
ment of the pairs.

• Identify the possible combinations of pairs for an exchange by com-
patibility criteria, and apply prioritization criteria in the cases of pairs
with more than one exchange choice.

• Provide each member of the pair a unique identifying number with
privacy purposes.

The registry collects the following variables of the agents and donors:

(i) Identity data (donor and patient): name, hospital, medical history
number, ID card, program enter date.

(ii) Demographic data (donor and patient): age (birth date), gender,
patient-donor relationship.

(iii) Blood group (donor and patient)

(iv) Immunological data:

- HLA Typing (donor and patient): generic HLA A, B, C,
DRB1, and DQB1.

- Rate of cytotoxic antibodies (patient): Panel Reactive An-
tibodies (PRA) estimated for classes I and II in the last year.

- Prohibited HLA specificities, determination date and used
technique.

(v) Clinical data (patient): dialysis state and accumulated months in
dialysis (including all the treatment periods).

(vi) Cause of inclusion on the program (donor respect to patient):
blood type incompatibilities, positive crossmatch, other cases.

(vii) Dialysis starting date.
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(viii) Results of crossmatch testing executed with pairs from the
program.

In renal transplantation, a positive crossmatch between donor cells and
recipient serum is related to early rejection or graft loss; therefore, a positive
result in crossmatch testing could in some cases be considered a contradiction
to renal transplantation, see [7].

A patient can enter the patient-donor pair registry with more than one
intended initial donor, and compatible pairs willing to be included in the
program (to obtain better graft compatibility, a donor more close in age, or
because of several other reasons) can participate. But, for this dissertation,
let us consider a database in which each patient enters the registry together
with a unique incompatible donor. Rename the national registry of patient-
donor pairs as Patients with Incompatible Donor registry (PID registry) for
a more clear understanding.

To generate a data matrix as close as possible to reality, let us use the
information from the PID registry from 2009 to 2014 in Spain, see [21],
which contains 316 patients with a single incompatible initial donor. Due
to the large amount of immunological groups, the difficulty in finding such
type of immunological data, and given the time constraints, we will not to
use the HLA typing characteristics; this will involve some restrictions and
decisions discussed later.

B.1.2 Data matrix

In the data matrix there are as many rows as patient-donor pairs (n) are
included in the assignment problem, and exactly seven columns; that is,
the factors related to the members in the patient-donor couples that will be
useful later for filling the points matrix. Let us start with a zero matrix of
dimensions nx7 as shown in CodeC0.R.

CodeC0.R

# Data matrix, points matrix, and preference matrix (input data sets

for Gale’s TTC algorithm implementation).

# Miren Lur Barquin Torre. 19 February 2020.

library(truncnorm)

library(MASS)

#zero matrix (nCouples x 7)

nCouples<-10

dataMat<-matrix(data=0,nCouples,7,byrow=TRUE)

dataMat<-as.data.frame(dataMat)
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Then the information will be organized as follows.

The first and second columns of the matrix will save the blood groups
of the patients and donors respectively. That way, row i will have in first
position agent ai’s blood group, and in second ai’s initial donor’s blood type.

Tables 11 and 12 show useful information to fill the first two columns of the
matrix. The first one contains the percentages of agents and donors that
belong to each blood group in the PID registry between 2009 and 2014, and
the patient-donor blood group compatibilities. The blood group depends on
two proteins A and B that can be present or not in each person’s blood;
this will determine the blood group to which the individual belongs. If not
protein A nor protein B are in the blood, the blood type is O, if both A
and B are present, the blood type is AB, and if either just protein A or
just protein B is present in the blood, the blood type will be A and B,
respectively. A patient cannot receive, from a donor, a protein that he or
she does not have; hence, the patient-donor compatibilities are as shown in
Table 11.

Table 11: Blood type percentages PID 2009-2014 and patient-donor blood
compatibilities.

Patients (%)

Donors (%)
O (29.7%) A (49.9%) B (15.8%) AB (4.6%)

O (55.9%)

A (28.4%)

B (13 %)

AB ( 2.7%)

Notice that we need to work with conditioned probabilities when deciding
to what blood group does a donor belong, considering its initial partner’s
blood type and if they are compatible or not.

Example 7. Let a patient have blood type B, and be ABO incompatible
with its initial donor. We want to determine to which blood group the initial
donor belongs. By the hypothesis, the donor should belong to the blood group
A or AB, which have probabilities of 0.499 and 0.046, respectively. Hence,
the probability of the donor belonging to the blood group A is 0.499/(0.499 +
0.046), and to the blood group B: 0.046/(0.499 + 0.046).

Table 12 shows the percentage of patient-donor couples that entered the
program because of blood group incompatibilities (ABOi) between 2009 and
2014. The remaining incompatible couples entered the program because of
the presence of antibodies in the patient against the donor’s HLA (HLAi).
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Table 12: Reasons for inclusion in PID registry 2009-2014.

REASON FOR INCLUSION (%)

ABOi 50.7

HLAi 49.3

For the first column, it is enough to create a random set of n elements that
follow a multinomial distribution according to the probabilities deduced from
the percentages given by the ’Patients (%)’ column in Table 11 for each ABO
blood type, see CodeC1.R.

CodeC1.R

# C1: Patients’ blood group.

probABOPatient <- c(0.559,0.284,0.13,0.027)

auxABOp<-rmultinom(1, nCouples , probABOPatient )

dataMat[,1]=rep(c("O","A","B","AB"),auxABOp)

In the second column, we need to consider each couple’s reason for inclusion
in the program, in addition to the percentages of the donors’ blood type
distribution given in Table 11. The 50.7% of the couples entering the
program were ABO incompatible. To fill the column, for each donor we
randomly decide, first, if it is ABO compatible with its partner, and next
which blood group the initial donor belongs to. In order of these two
decisions to follow every required condition, let us generate for each of them
a random number following a uniform distribution in [0, 1], and utilize the
probabilities derived from tables 11 and 12. See CodeC2.R.

CodeC2.R

# C2: Donors’ blood group.

o=0.297; a=0.499; b=0.158; ab=0.046 #Prob. ABO group donors.

p<-0.507 # The 50.7% of initial patient-donor pairs have ABO

incopatibilities.

for(i in 1:nCouples){

t<-runif(1,min=0, max=1)

compat<-runif(1,min=0, max=1)

if((compat <= p) & (dataMat[i,1]!="AB")){ # if incompatible (group

AB has no ABO incompatibilities)

if(dataMat[i,1]=="O"){ # O group patient

if(t<=(a/(a+b+ab))){

dataMat[i,2]="A"}
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else if(t<=((a+b)/(a+b+ab))){

dataMat[i,2]="B"}

else{dataMat[i,2]="AB"}}

else if(dataMat[i,1]=="A"){ # A group patient

if(t<=(b/(b+ab))){

dataMat[i,2]="B"}

else{dataMat[i,2]="AB"}}

else if(dataMat[i,1]=="B"){ # B group patient

if(t<=(a/(a+ab))){

dataMat[i,2]="A"}

else{dataMat[i,2]="AB"}}

}else{ # if compatible

if(dataMat[i,1]=="O"){ # O group patient

dataMat[i,2]="O"}

else if(dataMat[i,1]=="A"){ # A group patient

if(t<=(o/(o+a))){

dataMat[i,2]="O"}

else{

dataMat[i,2]="A"}}

else if(dataMat[i,1]=="B"){ # B group patient

if(t<=(o/(o+b))){

dataMat[i,2]="O"}

else{dataMat[i,2]="B"}}

else{ # AB group patient

if(t<=o){

dataMat[i,2]="O"}

else if(t<=(o+a)){

dataMat[i,2]="A"}

else if(t<=(o+a+b)){

dataMat[i,2]="B"}

else{dataMat[i,2]="AB"}}}}

The third column saves the matching probability (MP) of each patient.
This factor determines which patient had the least chance of finding a
compatible donor in the registry. The MP is calculated for every patient
in every match, and it satisfies the following formula developed by Keizer et
al. (2005), see [15], where PRA are the Panel Reactive Antibodies:

MP = (100 − PRA)
# ABO compatible donors without unacceptable HLA specificities

# ABO compatible donors
;

But due to the difficulty that establishing immunological incompatibili-
ties entails, and the large number of immunological groups as mentioned
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before, it will be considered that every pair has the same immunological
compatibility. Because of the previous simplification, the number of com-
patible donors will be the same as the number of compatible donors with
unacceptable HLA specificities, and therefore the MP will be considered as
100%−PRA%. According to the PID registry, the PRAs among the patients
are distributed as follows:

Table 13: PRA PID 2009-2014.

PRA (%) PATIENTS (%)

0 46.45

[1, 50) 14.2

[50, 80) 10.06

[80, 100] 29.29

When coding, a uniform distribution in the interval [0,1] will be useful to
determine to which PRA category belongs each patient according to Table
13. On the other hand, let us obtain a random PRA in the corresponding
interval by using a uniform distribution. The code for this column is CodeC3.R.

CodeC3.R

# C3: ’matching’ probability.

for(i in 1:nCouples){

t=runif(1,min=0, max=1)

if(t<=0.4645){

dataMat[i,3]=100-0}

else if(t<=(0.142+0.4645)){

dataMat[i,3]=100-(runif(1,min=1, max=49.99))}

else if(t<=(0.1006 +0.142+0.4645)){

dataMat[i,3]=100-(runif(1,min=50, max=79.99))}

else{

dataMat[i,3]=100-(runif(1,min=80, max=100.99))}}

The months that each patient has spent on dialysis treatment are collected
in column four. This time, the PID registry presents the variable with the
mean and standard deviation in a normal distribution, and the minimum
and maximum values. The mean of the dialysis for the patients is 55.7
months, and the standard deviation 61.7 months. Patients in the utilized
database have been from a minimum of 0 to a maximum of 297 months
on dialysis. To obtain the values of this characteristic for the patients in
the data matrix we have considered random values in a truncated normal
distribution. Nevertheless, there is a known percentage of patients that have
not started dialysis yet. Therefore, mind the 21.8% of the patients that have
been 0 months in dialysis according to Table 14.
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Table 14: Dialysis state PID 2009-2014.

DIALYSIS STATE PATIENTS (%)

Peritoneal dialysis 13.3

Hemodialysis 59.1

Predialysis 21.8

Dysfunctional Transplant 5.8

The code to obtain the fourth column is CodeC4.R.

CodeC4.R

# C4: number of months in dialisis.

auxCol4<-replicate(nCouples,0)

auxMonths<-rtruncnorm(round(nCouples*0.782), a=0, b=297, mean=55.7,

sd=61.7)

auxCol4[1:round(nCouples*0.782)]=round(auxMonths) # 21.8% of the

patient have not started dialysis yet.

auxCol4=sample(auxCol4)

dataMat[,4]=auxCol4

The fifth and sixth columns, contain the ages of each patient and each
donor, respectively. For patients’ ages, according to the 2009-2014 PID
registry, we have a normal distribution of mean 47.2 years and standard
deviation 11.9 years. The minimum age of patients taking part in the
program is 7 and the maximum age is 72. Random values in a truncated
normal distribution are selected to obtain the needed data, as shown in
CodeC5.R.

CodeC5.R

# C5: Patients’ ages.

auxAgeP<-rtruncnorm(nCouples, a=7, b=72, mean=47.2, sd=11.9)

dataMat[,5]=round(auxAgeP)

In the sixth column, initial donors’ ages are obtained in the same way as
patients’ ages in column five, this time with mean of 49.6 years, standard
deviation of 10.6 years, and minimum and maximum values of 19 and 74
years, respectively, see CodeC6.R.

CodeC6.R

# C6: Agents’ ages.

auxAgeD<-rtruncnorm(nCouples, a=19, b=74, mean=49.6, sd=10.6)
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dataMat[,6]=round(auxAgeD)

Finally, the last column collects information about the autonomous
community from which each individual comes from. To facilitate the analysis,
consider that the patient and donor in the same couple come from the same
autonomous community. The data is distributed as shown in Table 15.

Table 15: Autonomous Community PID 2009-2014.

AUTONOMOUS COMMUNITY (%)

Andalucia 31.7

Aragon 1.2

Canary Islands 1.5

Cantabria 0.9

Catalonia 45

Valencian Community 1.5

Galicia 5.6

Madrid 5

Basque Country 7.7

The column has been obtained randomly respecting the percentages
given in Table 15, working the same way as in the first column, as shown in
CodeC7.R.

CodeC7.R

# C7: Autonomous Communities.

# A.C. Notation %

# Andalucia 1 31.7

# Aragon 2 1.2

# Canary Islands 3 1.5

# Cantabria 4 0.9

# Catalonia 5 45

# Valencian C. 6 1.5

# Galicia 7 5.6

# Madrid 8 5

# Basque Country 9 7.7

probAutComm<-c(0.317,0.012,0.015,0.009,0.45,0.015,0.056,0.05,0.077)

auxAutComm<-rmultinom(1, nCouples , probAutComm )

auxCol7<-replicate(nCouples,0)

auxCol7=rep(c(1,2,3,4,5,6,7,8,9),auxAutComm)

auxCol7=sample(auxCol7)

dataMat[,7]=auxCol7
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Example 8 presents a data matrix generated for 10 patient-donor couples.

Example 8.

dataMat =



C1 C2 C3 C4 C5 C6 C7
a1 O O 100.00 28 42 43 5
a2 O O 100.00 63 41 52 1
a3 O O 11.79 0 47 41 5
a4 O O 100.00 87 50 52 9
a5 A A 8.65 79 34 41 1
a6 A B 100.00 93 57 55 5
a7 A AB 100.00 42 53 60 1
a8 A A 31.61 0 48 52 1
a9 B A 100.00 99 29 49 5
a10 B O 61.55 39 30 47 1



B.2 Generation of the points matrix

For the generation of the preference matrix for the agents in the data matrix
obtained in the previous section, let us first utilize a points system agreed by
the ONT, see [25], for defining the preferences between grafts. In this stage,
let us start with a zero square matrix of dimension n in which the columns
will represent the patients and the rows the donors. Next, let us add to each
position (j, i) the corresponding points in consideration of the characteristics
of patient i and donor j, both as individuals and related between them.

An explanation on the selection and prioritization criteria that will be
utilised is given in B.2.1, previously to filling the points matrix in subsection
B.2.2.

B.2.1 Selection and prioritization criteria

The purpose is to recognise for each patient the most suitable grafts in the
program and to consider those cases in which the recipient is less expected
to obtain a transplant because of medical restrictions.

On the one hand, the selection criteria will be evaluated, and on the
other, the prioritization criteria.

Selection criteria:

1. Blood group compatibility.

2. Immunological criteria.
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Prioritization criteria:
After considering the selection criteria, if there are more than one compatible
donor for a patient, some immunological and not immunological priorities
will be established:

1. Blood group compatibility: if the patient an the potential donor
are isogroup (+30 points (p.)).

2. MP:

0-25%: +30 p.

25-50%: +20 p.

50-75%: +10 p.

75-100%: +0 p.

3. Patient-donor age difference: priority if difference ≤ 10 years:

- If the difference is ≤ 10 years in both couples: +30 p.

- If the difference is ≤ 10 years in just one couple: +15 p.

- If the difference is > 10 years in both couples: +0 p.

In the case of pediatric patients or patients with PRA greater than
50%, blood group O, or incompatible donor of group AB, age difference
of more than 10 years will be accepted and they will receive 30 points
(+30 p.).

4. Time on dialysis: priority to the couple that has more accumulated
time on dialysis: 0.05*(months in dialysis) p.

5. Pediatric patients (≤ 16 years old): (just in the case of ties in the
score) the donor must be less or equal to 50 years old and will obtain
extra 30 points (+30 p.).

6. Geographical location: if the potential donor and the patient are
from the same autonomous community +5 p.

B.2.2 The points matrix

Let us create a zero square matrix with n columns and rows, being n the
number of couples taking part in the program. The columns will represent
the patients and the rows the participating donors. To complete the matrix,
follow four steps:

1. Each patient would rather to stay with its initial incompatible donor,
than to obtain an incompatible graft from some other donor. To
represent such incompatibility and preference, let us give -1 points
to every element in the diagonal of the matrix.
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2. Blood incompatibilities between the patient i and the potential donor
j are not accepted, hence element (j, i) in the matrix will receive -2
points.

3. The points determined by the restrictions in subsection B.2.1 will be
added to each element of the matrix that remains with 0 points.

4. If in any column there are ties between scores, the points relative to
autonomous communities will be added where corresponds.

The code is shown in PointsMat.R.

PointsMat.R

# Zero matrix (nCouples x nCouples). Rows->donors & columns->

patients.

pointsMat<-matrix(data=0,nCouples,nCouples,byrow=TRUE)

# First: all the patient-donor pairs that enter the program are

incompatible, therefore we do not need to add points to position

(i,i) for all i=1,..., nCouples but also is known that for any

patient is better to stay with its initial object than receive

another incompatible one. To represent this and make easier to

order the preferences, let’s give elements (i,i) in the diagonal

of the matrix value -1 and incompatibilities -2 (s.t. they stay

under the initial object in the preferences).

for(i in 1:nCouples){

pointsMat[i,i]=-1

}

for(i in 1:nCouples){

for(j in 1:nCouples){

if(i!=j){ # non isogroup

if((dataMat[i,1]=="O" & dataMat[j,2]!="O")|(dataMat[i,1]=="A"

&(dataMat[j,2]=="B"|dataMat[j,2]=="AB"))|(dataMat[i,1]=="B" & (

dataMat[j,2]=="A"|dataMat[j,2]=="AB"))){

pointsMat[j,i]=-2

}else{

# ISOGROUP

if(dataMat[i,1]==dataMat[j,2])

{pointsMat[j,i]=pointsMat[j,i]+30}

# MATCHING PROBABILITY

if(dataMat[j,3]<=25){pointsMat[j,i]=pointsMat[j,i]+30}

else if(dataMat[j,3]<=50){pointsMat[j,i]=pointsMat[j,i]+20}

else if(dataMat[j,3]<=75){pointsMat[j,i]=pointsMat[j,i]+10}

# AGE DIFFERENCE

# In the case of sensitized recipient (PRA>50), ABO group O

recipients, the donor belongs to ABO group AB or if the
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recipient is a child, they will accept the age difference > 10

and they will receive 30 points.

if( dataMat[j,5]<16|dataMat[j,1]==1|dataMat[j,2]==4|dataMat[

j,3]<=50){pointsMat[j,i]=pointsMat[j,i]+30}

else if(abs(dataMat[i,5]-dataMat[j,6])<=10 & abs(dataMat[j

,5]-dataMat[i,6])<=10){pointsMat[j,i]=pointsMat[j,i]+30}

else if (abs(dataMat[i,5]-dataMat[j,6])<=10 | abs(dataMat[j

,5]-dataMat[i,6])<=10){pointsMat[j,i]=pointsMat[j,i]+15}

# MONTHS ON DIALYSIS

pointsMat[j,i]=pointsMat[j,i]+0.05*dataMat[j,4]

# Child recipients (<16 years) will receive +30 points (

already done in AGE section) and the donor must be <=50 years

old.

if(dataMat[i,5]<16&dataMat[j,6]>50){pointsMat[j,i]=-2}

# The Autonomous Community will be used later just in the

case of tie.

}}}}

# in the case that there are ties in the columns, if both pairs

belong to the same Autonomous community add 5 points.

for(i in 1:nCouples){

repetitions<-c()

duplicates=pointsMat[,1][duplicated(pointsMat[,1])]

for(k in duplicates){

if(is.element(k, repetitions)==FALSE & k!=-2){

repetitions<-append(repetitions,k)

for(j in 1:nCouples){

if(pointsMat[j,i]==k){

if(dataMat[i,7]==dataMat[j,7]){

pointsMat[j,i]=pointsMat[j,i]+5

}}}}}}

By using the data matrix obtained in Example 8, the points matrix in
Example 9 is obtained.

Example 9. The points matrix (PointsMat) related to the data matrix in
Example 8 is:



a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

o1 −1.00 61.40 61.40 61.40 31.40 1.40 16.40 31.40 16.40 16.40
o2 63.15 −1.00 63.15 48.15 18.15 18.15 18.15 18.15 18.15 18.15
o3 90.00 90.00 −1.00 90.00 60.00 60.00 60.00 60.00 60.00 60.00
o4 64.35 49.35 64.35 −1.00 19.35 34.35 34.35 34.35 19.35 19.35
o5 −2.00 −2.00 −2.00 −2.00 −1.00 93.95 93.95 93.95 −2.00 −2.00
o6 −2.00 −2.00 −2.00 −2.00 −2.00 −1.00 −2.00 −2.00 49.65 49.65
o7 −2.00 −2.00 −2.00 −2.00 −2.00 −2.00 −1.00 −2.00 −2.00 −2.00
o8 −2.00 −2.00 −2.00 −2.00 80.00 80.00 80.00 −1.00 −2.00 −2.00
o9 −2.00 −2.00 −2.00 −2.00 34.95 49.95 49.95 49.95 −1.00 −2.00
o10 56.95 56.95 56.95 56.95 11.95 26.95 26.95 26.95 11.95 −1.00


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B.3 The preference matrix

The preference matrix is a square matrix of dimension n x n, being n the
number of couples taking part in the problem. Once we have the points
matrix, let us order the scores of each column decreasingly, this way the
most preferred object will be located on top. The indices that represent
each donor (and graft) will be saved in the preference matrix in the same
position as its corresponding score in the ordered points matrix; indices
with ties in scores will be reordered randomly among their positions. The
incompatibilities in each column will have same score but it is not necessary
to randomly reorder them since the patient would stay with his initial
donor rather than receiving an incompatible kidney. The code is detailed in
PreferenceMat.R:

PreferenceMat.R

prefMat<-matrix(data=0,nCouples,nCouples,byrow=TRUE)

for(i in 1:nCouples){

auxMat<-matrix(data=0,nCouples,2,byrow=TRUE)

for(j in 1:nCouples){

auxMat[j,1]=j

auxMat[j,2]=pointsMat[j,i]

}

auxDataFr<-as.data.frame(auxMat)

auxDataFr<-auxDataFr[order(auxDataFr$"V2", decreasing = TRUE),]

#if there are still ties in some column we order them randomly.

This will not be applied for objects with -2 points, since they

will not take part in the problem because of incompatibilities,

and therefore, it is not necessary.

duplicates<-auxDataFr[duplicated(auxDataFr$"V2"),]

auxVect<-c()

for(p in duplicates[,"V2"]){

if(is.element(p,auxVect)==FALSE & p!=-2){

auxVect<-append(auxVect,p)

}

}

if(length(auxVect)!=0){

for(q in auxVect){

auxInd<-c()

for(l in 1:nCouples){

if(auxDataFr[l,"V2"]==q){

auxInd<-append(auxInd,auxDataFr[l,"V1"])

}}

auxIndRand=sample(auxInd)

pos<-0

for(m in 1:length(auxIndRand)){

for(n in pos+1:nCouples){
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pos=n

if(auxDataFr[n,"V2"]==q){

auxDataFr[n,"V1"]=auxIndRand[m]

break

}}}}}

for(k in 1:nCouples){

prefMat[k,i]=auxDataFr[k,"V1"]

}

}

Therefore, the preference matrix derived from the previous two examples
is the one given in Example 10.

Example 10.

prefMat =



Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10
3 3 4 3 8 5 5 5 3 3
4 1 2 1 3 8 8 3 6 6
2 10 1 10 9 3 3 9 4 4
10 4 10 2 1 9 9 4 2 2
1 2 3 4 4 4 4 1 1 1
5 5 5 5 2 10 10 10 10 10
6 6 6 6 10 2 2 2 9 5
7 7 7 7 5 1 1 8 5 7
8 8 8 8 6 6 7 6 7 8
9 9 9 9 7 7 6 7 8 9



Subsections B.2.1 and B.2.2, and section B.3 propose randomly generated
data and a preference matrix which preserve the particularities of the PID
registry between 2009 and 2014.





Appendix C

Gale’s TTC Algorithm
Implementation Code

Given a preference matrix, the code for the implementation of TTC algorithm
from Gale is shown in TTC ImplementationCode.cpp:

TTC ImplementationCode.cpp

1 // Gale’s TTC algorithm implementation.

2 // Miren Lur Barquin Torre. 17 February 2020.

3
4 #include<iostream>

5 #include<vector>

6 #include<numeric>

7 #include<cmath>

8 #include<string>

9 #include<ctime>

10 #include<random>

11 #include<time.h>

12 #include<iomanip>

13 #include<fstream>

14
15 using namespace std;

16
17 void PreferenceMat(); // Initial preference matrix using vectors &

number of couples.

18 vector<vector<int>> inCycle(int vertex, vector<int> AdjacVect);

// Returns a vector with 1 (true) if vertex is in a cycle (or

loop) and 0 (false) if vertex is not in a cycle (or loop) as

first element, and the cycle to which vertex belongs in second

position (empty cycle if vertex does not belong to any).

19
20 clock_t timeUsed;

21 double cpu_time_used;

22 float nCouples;

23 int nStages = 0, nLoops = 0, nCycles = 0, lengthMaxCycles = 0,
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lengthMinCycles,

24 nMinCycles, nMaxCycles = 0;

25 vector<int> V, auxNumCyclesInStage, auxLengthCycles; // Vector V

will represent at the same time agents, objects and vertices.

26 vector<vector<int>> PrefMat;

27
28 struct Results {

29 int dim, num_Stages, num_Transplants, num_Cycles,

numMin_CyclesInStage, numMax_CyclesInStage, lengthMin_Cycles,

lenghtMax_Cycles;

30 float time, numAverage_CyclesInStage, lengthAverage_Cycles,

percent_Transpl;

31 };

32
33 int main() {

34 PreferenceMat(); // Obtains the preference matrix & number of

pairs taking part in the exchange.

35 nMinCycles = nCouples; // nCouples would be the max number of

cycles that could be in the problem (considering all were loops)

.

36 lengthMinCycles = nCouples; // The longest possible cycle is

the one in which every couple participate.

37 timeUsed = clock();

38 vector<int> FinalAllocAdjacVector(nCouples); // Creates a zero

vector in which the final allocation will be saved.

39 cout << "\nWHAT IS HAPPENING DURING THE RESOLUTION: ";

40 int noncerosV = V.size();

41 while (noncerosV != 0) {

42 nStages++;

43 cout << "\nSTAGE " << nStages;

44 int nCyclesInThisStage = 0;

45 vector<int> AdjacVect(nCouples); //Creates a zero vector in

which the adjacency vector at the current stage will be saved.

Creating the adjacency vector for stage nStage, will be as

drawing the graph.

46 for (int j : V) {

47 if (j != 0) {

48 for (int i = 0; i < nCouples; i++) {

49 if (PrefMat[i][j - 1] != 0) {

50 AdjacVect[j - 1] = PrefMat[i][j - 1];

51 break;

52 }}}}

53
54 //Once we have the graph with the arcs, we can search for the

cycles and the loops.

55 for (int k : V) {

56 if (k != 0) { // If k is still in the problem.

57 if (inCycle(k, AdjacVect)[0][0] == true) {

58 cout << "\n cycle(s): ";
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59 vector<int> cycle = inCycle(k, AdjacVect)[1];

60 for (int i : cycle) {

61 cout << i << " ";

62 }

63 // See if it is a loop or a cycle.

64 int lengthCycle = cycle.size();

65 if (lengthCycle == 1) {

66 nLoops++;

67 }

68 else {

69 auxLengthCycles.push_back(lengthCycle);

70 if (lengthCycle > lengthMaxCycles) {

lengthMaxCycles = lengthCycle; }

71 if (lengthCycle < lengthMinCycles) {

lengthMinCycles = lengthCycle; }

72 nCycles++;

73 nCyclesInThisStage++;

74 }

75 // Allocate to each agent taking part in the cycle

the corresponding object.

76 for (int v : cycle) {

77 FinalAllocAdjacVector[v - 1] = AdjacVect[v - 1];

78 for (int i = 0; i < nCouples; i++) {

79 //Delete the column corresponding to agent v

from the Preference matrix.

80 PrefMat[i][v - 1] = 0;

81 }

82 for (int j : V) {

83 if (j != 0) {

84 if (j != v) {

85 // Delete the object v from the

preferences of the agents still in the problem

86 for (int i = 0; i < nCouples; i++) {

87 if (PrefMat[i][j - 1] == v) {

88 PrefMat[i][j - 1] = 0;

89 break;

90 }}}}}

91
92 // Remove the vertices in the cycle from V because

they have already been assigned.

93 for (int i = 0; i < V.size(); i++) {

94 if (V[i] == v) {

95 V[i] = 0;

96 noncerosV--;

97 break;

98 }}}}}}

99
100 auxNumCyclesInStage.push_back(nCyclesInThisStage);

101 if (nCyclesInThisStage > nMaxCycles) { nMaxCycles =
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nCyclesInThisStage; }

102 if (nCyclesInThisStage < nMinCycles) { nMinCycles =

nCyclesInThisStage; }

103 }

104 cout << "\n \n \n The final allocation vector will be:\n";

105 cout << "( ";

106 for (int i : FinalAllocAdjacVector) {

107 cout << i << " ";

108 }

109 cout << ")";

110 cout << "\n \n";

111 cout << "FINAL ALLOCATION: " << endl;

112 for (int i = 0; i < nCouples; i++) {

113 cout << "Agent: " << i + 1 << " obtains object: " <<

FinalAllocAdjacVector[i] << "." << endl;

114 }

115 cout << "* Keep in mind that in those cases where the agent

obtains its initial object, the transplant will not be carried

out. ";

116
117 if(auxLengthCycles.size() == 0) {auxLengthCycles.push_back(0);

lengthMinCycles = 0; } // In the case that there are no cycles (

just loops)

118 if(auxNumCyclesInStage.size() == 0) {auxNumCyclesInStage.

push_back(0); nMinCycles = 0; }

119
120 float numAverageCyclesInStage = accumulate(auxNumCyclesInStage.

begin(), auxNumCyclesInStage.end(), 0.0) / auxNumCyclesInStage.

size();

121 float AverageLength = accumulate(auxLengthCycles.begin(),

auxLengthCycles.end(), 0.0) / auxLengthCycles.size();

122
123 timeUsed = clock() - timeUsed;

124 cpu_time_used = ((double)(timeUsed)) / CLOCKS_PER_SEC;

125
126 Results FinalResults;

127 FinalResults.dim = nCouples;

128 FinalResults.num_Stages = nStages;

129 FinalResults.time = cpu_time_used;

130 FinalResults.num_Transplants = nCouples - nLoops;

131 FinalResults.percent_Transpl = ((nCouples - nLoops) * 100) /

nCouples;

132 FinalResults.num_Cycles = nCycles;

133 FinalResults.numMax_CyclesInStage = nMaxCycles;

134 FinalResults.numAverage_CyclesInStage = numAverageCyclesInStage;

135 FinalResults.numMin_CyclesInStage = nMinCycles;

136 FinalResults.lenghtMax_Cycles = lengthMaxCycles;

137 FinalResults.lengthAverage_Cycles = AverageLength;

138 FinalResults.lengthMin_Cycles = lengthMinCycles;
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139
140 cout << "\n \n";

141 cout << "RESULTS: " << endl;

142 cout << "Dimension: " << FinalResults.dim << endl;

143 cout << "Number of stages: " << FinalResults.num_Stages << endl;

144 cout << "time: " << FinalResults.time << endl;

145 cout << "Number of transplants: " << FinalResults.num_Transplants

<< endl;

146 cout << "Percentage of transplanted kidneys: " << FinalResults.

percent_Transpl << endl;

147 cout << "Number of cycles: " << FinalResults.num_Cycles << endl;

148 cout << "Minimum number of cycles in a stage: " << FinalResults.

numMin_CyclesInStage << endl;

149 cout << "Average number of cycles in a stage: " << FinalResults.

numAverage_CyclesInStage << endl;

150 cout << "Maximum number of cycles in a stage: " << FinalResults.

numMax_CyclesInStage << endl;

151 cout << "Length of the shortest cycle: " << FinalResults.

lengthMin_Cycles << endl;

152 cout << "Average length of cycles: " << FinalResults.

lengthAverage_Cycles << endl;

153 cout << "Length of the longest cycle : " << FinalResults.

lenghtMax_Cycles << endl;

154
155 ofstream out("ResultadosTTCG.txt", fstream::app);

156 out <<FinalResults.dim << " & " << FinalResults.num_Stages << " &

" << FinalResults.time << " & " << FinalResults.num_Transplants

<< " & " << FinalResults.percent_Transpl << " & " <<

FinalResults.num_Cycles << " & " << FinalResults.

numMin_CyclesInStage << " & " << FinalResults.

numAverage_CyclesInStage << " & " << FinalResults.

numMax_CyclesInStage << " & " << FinalResults.lengthMin_Cycles

<< " & " << FinalResults.lengthAverage_Cycles << " & " <<

FinalResults.lenghtMax_Cycles <<" \\\\ "<< endl;

157 out << "\\hline" << endl;

158 out.close();

159 return 0;

160 }

161
162 // DEFINITION OF FUNCTIONS:

163
164 void PreferenceMat() {

165 // See how many couples are taking part in the problem.

166 int pairs = 0;

167 ifstream nPairs("RPrefMat.dat", fstream::binary | fstream::out);

168 string unused;

169 while (getline(nPairs, unused))

170 ++pairs;

171 nPairs.close();
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172
173 // Obtain the preference Matrix.

174 nCouples = pairs;

175 for (int i = 0; i < nCouples; i++) {

176 V.push_back(i + 1);}

177
178 vector<vector<int>> AuxPrefMat(nCouples, vector<int>(nCouples));

179 ifstream mat("RPrefMat.dat", fstream::binary | fstream::out);

180 for (int i = 0; i < nCouples; i++) {

181 for (int j = 0; j < nCouples; j++) {

182 mat >> AuxPrefMat[i][j];}}

183
184 mat.close();

185 PrefMat = AuxPrefMat;

186
187 //SHOW THE MATRIX:

188 cout << "\n \n The preference matrix is: \n";

189 cout << fixed << setfill(’ ’);

190 for (int i = 0; i < nCouples; i++) {

191 for (int j = 0; j < nCouples; j++) {

192 cout << setw(5) << PrefMat[i][j];}

193 cout << "\n";}

194 }

195
196 vector<vector<int>> inCycle(int vertex, vector<int> AdjacVect) {

197 int aux = AdjacVect[vertex - 1];

198 bool IsInAuxVect = false;

199 vector<int> auxVect, cycle;

200 if (vertex != aux) { auxVect.push_back(vertex); }

201 auxVect.push_back(aux);

202 while (IsInAuxVect == false) {

203 if (AdjacVect[aux - 1] == vertex) {

204 cycle = auxVect;

205 vector<vector<int>> ToReturn = { {1}, cycle };

206 return ToReturn;}

207 else {

208 aux = AdjacVect[aux - 1];

209 for (int i : auxVect) {

210 if (i == aux) {

211 IsInAuxVect = true;

212 break;

213 }}

214 if (IsInAuxVect != true) {

215 auxVect.push_back(aux);

216 }}}

217
218 vector<vector<int>> ToReturn = { {0}, {} };

219 return ToReturn;

220 }
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Gale’s TTC Algorithm
Implementation Results

To study the performance of the TTC algorithm from Gale, let us take
a sample size of 20 simulations for some fixed numbers of patient-donor
couples taking part in the problem; that is, for 5, 10, 20, 50, 100, 200, and
350 couples we will run 20 simulations. The results are collected in Table
16, where the information is organised in columns as follows:

First column: (n) number of couples taking part in the problem.

Second column: (St.) number of stages.

Third column: (Time) seconds to solve each problem.

Fourth column:(Tr.) number of possible transplants.

Fifth column: (%Tr.) percentage of possible transplants.

Sixth column: (Cy.) number of cycles.

Seventh, eighth, and ninth columns: (min./avg./max. Cy/St)
minimum, average, and maximum number of cycles in a stage, respec-
tively.

Tenth, eleventh, and twelfth columns: (min./avg./max. Len.
Cy.) minimum, average, and maximum length of a cycle in a stage,
respectively.

Notice that the running time on the third column measures the seconds
it takes the program to apply Gale’s TTC algorithm to each previously
generated preference matrix, without considering the time it takes to generate
the data, points and preference matrices.
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Table 16: Results of simulations for n = 5, 10, 20, 50, 100, 200, 350.

Cy/St Len. Cy.
n St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

5 3 0.01 2 40 1 0 0.33 1 2 2 2

5 4 0.01 2 40 1 0 0.25 1 2 2 2

5 4 0.01 2 40 1 0 0.25 1 2 2 2

5 2 0.01 2 40 1 0 0.50 1 2 2 2

5 2 0.01 5 100 2 1 1 1 2 2.50 3

5 3 0.01 3 60 1 0 0.33 1 3 3 3

5 4 0.01 0 0 0 0 0 0 0 0 0

5 4 0.01 0 0 0 0 0 0 0 0 0

5 2 0.01 0 0 0 0 0 0 0 0 0

5 2 0.01 0 0 0 0 0 0 0 0 0

5 3 0.00 4 80 2 0 0.67 1 2 2 2

5 4 0.01 2 40 1 0 0.25 1 2 2 2

5 3 0.01 2 40 1 0 0.33 1 2 2 2

5 2 0.00 2 40 1 0 0.50 1 2 2 2

5 3 0.00 2 40 1 0 0.33 1 2 2 2

5 3 0.01 0 0 0 0 0 0 0 0 0

5 3 0.01 4 80 2 0 0.67 1 2 2 2

5 3 0.00 2 40 1 0 0.33 1 2 2 2

5 3 0.01 2 40 1 0 0.33 1 2 2 2

5 3 0.01 2 40 1 0 0.33 1 2 2 2

10 6 0.05 6 60 3 0 0.50 1 2 2 2

10 4 0.03 5 50 2 0 0.50 1 2 2.50 3

10 5 0.03 4 40 2 0 0.40 1 2 2 2

10 4 0.02 4 40 2 0 0.50 1 2 2 2

10 4 0.02 4 40 2 0 0.50 1 2 2 2

10 5 0.03 2 20 1 0 0.20 1 2 2 2

10 5 0.02 9 90 4 0 0.80 1 2 2.25 3

10 6 0.05 8 80 4 0 0.67 1 2 2 2

10 5 0.04 0 0 0 0 0 0 0 0 0

10 5 0.03 7 70 3 0 0.60 1 2 2.33 3

10 4 0.05 8 80 3 0 0.75 1 2 2.67 4

10 5 0.03 2 20 1 0 0.20 1 2 2 2

10 4 0.02 9 90 3 0 0.75 1 2 3 4

10 3 0.03 8 80 3 1 1 1 2 2.67 4

10 5 0.03 4 40 2 0 0.40 1 2 2 2

10 3 0.02 8 80 4 1 1.33 2 2 2 2

10 4 0.03 6 60 3 0 0.75 2 2 2 2

10 4 0.05 4 40 2 0 0.50 1 2 2 2

10 6 0.04 6 60 3 0 0.50 1 2 2 2

10 4 0.03 7 70 3 0 0.75 1 2 2.33 3

20 8 0.04 16 80 7 0 0.88 1 2 2.29 3

20 7 0.04 15 75 7 0 1 2 2 2.14 3

20 8 0.05 11 55 5 0 0.63 1 2 2.20 3

20 9 0.06 14 70 6 0 0.67 1 2 2.33 3

20 9 0.05 17 85 8 0 0.89 1 2 2.13 3

Continued on next page
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Cy/St Len. Cy.
n St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

20 7 0.05 7 35 3 0 0.43 1 2 2.33 3

20 6 0.06 9 45 3 0 0.50 1 3 3 3

20 7 0.06 11 55 4 0 0.57 1 2 2.75 4

20 9 0.06 16 80 7 0 0.78 1 2 2.29 3

20 8 0.06 12 60 5 0 0.63 1 2 2.40 4

20 9 0.05 11 55 5 0 0.56 1 2 2.20 3

20 9 0.04 13 65 5 0 0.56 1 2 2.60 5

20 8 0.07 11 55 5 0 0.63 1 2 2.20 3

20 9 0.05 16 80 6 0 0.67 1 2 2.67 4

20 9 0.04 15 75 7 0 0.78 1 2 2.14 3

20 8 0.06 13 65 6 0 0.75 1 2 2.17 3

20 9 0.06 12 60 5 0 0.56 1 2 2.40 4

20 8 0.06 18 90 7 0 0.88 1 2 2.57 4

20 6 0.06 7 35 3 0 0.50 1 2 2.33 3

20 8 0.05 16 80 6 0 0.75 1 2 2.67 4

50 15 0.11 38 76 14 0 0.93 2 2 2.71 5

50 17 0.15 37 74 14 0 0.82 2 2 2.64 5

50 17 0.17 38 76 16 0 0.94 2 2 2.38 4

50 17 0.17 33 66 16 0 0.94 2 2 2.06 3

50 13 0.13 35 70 14 0 1.08 2 2 2.50 4

50 18 0.10 38 76 16 0 0.89 2 2 2.38 4

50 18 0.12 46 92 19 0 1.06 2 2 2.42 4

50 18 0.14 33 66 15 0 0.83 2 2 2.20 3

50 18 0.15 36 72 16 0 0.89 1 2 2.25 3

50 15 0.17 28 56 13 0 0.87 2 2 2.15 3

50 18 0.13 41 82 17 0 0.94 2 2 2.41 4

50 19 0.16 33 66 15 0 0.79 2 2 2.20 4

50 14 0.10 34 68 13 0 0.93 2 2 2.62 4

50 15 0.14 30 60 13 0 0.87 2 2 2.31 4

50 14 0.13 28 56 12 0 0.86 2 2 2.33 4

50 14 0.12 33 66 13 0 0.93 2 2 2.54 4

50 15 0.11 38 76 15 0 1 3 2 2.53 5

50 16 0.11 42 84 14 0 0.88 1 2 3 5

50 17 0.14 34 68 14 0 0.82 1 2 2.43 4

50 17 0.12 43 86 17 0 1 2 2 2.53 4

100 31 0.22 83 83 31 0 1 2 2 2.68 5

100 25 0.29 68 68 26 0 1.04 2 2 2.62 5

100 26 0.32 76 76 28 0 1.08 3 2 2.71 5

100 30 0.24 75 75 32 0 1.07 2 2 2.34 4

100 31 0.21 79 79 32 0 1.03 2 2 2.47 5

100 35 0.31 78 78 34 0 0.97 3 2 2.29 5

100 31 0.27 85 85 29 0 0.94 2 2 2.93 5

100 31 0.24 80 80 31 0 1 2 2 2.58 5

100 36 0.38 92 92 38 0 1.06 2 2 2.42 4

100 30 0.22 83 83 30 0 1 2 2 2.77 5

100 32 0.28 79 79 32 0 1 2 2 2.47 5

100 28 0.34 70 70 25 0 0.89 2 2 2.80 6

Continued on next page
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Cy/St Len. Cy.
n St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

100 28 0.19 62 62 24 0 0.86 2 2 2.58 5

100 27 0.29 78 78 29 0 1.07 2 2 2.69 6

100 27 0.29 65 65 24 0 0.89 1 2 2.71 6

100 30 0.26 78 78 32 0 1.07 3 2 2.44 6

100 23 0.26 74 74 27 0 1.17 2 2 2.74 5

100 32 0.41 69 69 28 0 0.88 2 2 2.46 4

100 31 0.38 72 72 28 0 0.90 3 2 2.57 6

100 25 0.21 64 64 27 0 1.08 2 2 2.37 5

200 56 0.79 159 79.5 58 0 1.04 2 2 2.74 8

200 60 0.77 148 74 65 0 1.08 2 2 2.28 5

200 54 1.07 148 74 55 0 1.02 3 2 2.69 9

200 52 0.99 152 76 57 0 1.10 3 2 2.67 7

200 50 0.76 144 72 56 0 1.12 4 2 2.57 8

200 58 1.13 157 78.5 64 0 1.10 3 2 2.45 4

200 50 0.59 145 72.5 56 0 1.12 3 2 2.59 4

200 48 0.58 141 70.5 52 0 1.08 2 2 2.71 5

200 54 0.69 161 80.5 60 0 1.11 2 2 2.68 6

200 52 1.03 149 74.5 56 0 1.08 2 2 2.66 6

200 45 0.59 147 73.5 58 0 1.29 4 2 2.53 6

200 47 0.88 133 66.5 49 0 1.04 2 2 2.71 5

200 44 0.90 135 67.5 50 0 1.14 2 2 2.70 6

200 56 0.60 142 71 57 0 1.02 2 2 2.49 5

200 54 0.54 153 76.5 58 0 1.07 3 2 2.64 6

200 55 1.02 154 77 60 0 1.09 3 2 2.57 6

200 53 0.51 169 84.5 62 0 1.17 3 2 2.73 6

200 56 0.55 146 73 56 0 1 2 2 2.61 6

200 50 0.57 141 70.5 61 0 1.22 3 2 2.31 5

200 55 0.65 184 92 65 0 1.18 3 2 2.83 6

350 84 1.64 261 74.57 93 0 1.11 4 2 2.81 9

350 88 1.72 269 76.86 98 0 1.11 3 2 2.75 6

350 93 2.54 275 78.57 105 0 1.13 3 2 2.62 5

350 91 1.80 293 83.71 107 0 1.18 4 2 2.74 7

350 84 1.70 276 78.86 95 0 1.13 4 2 2.91 8

350 87 1.70 288 82.29 108 0 1.24 3 2 2.67 7

350 85 1.81 259 74 103 0 1.21 4 2 2.52 7

350 81 2.29 253 72.29 98 0 1.21 4 2 2.58 6

350 87 1.47 261 74.57 100 0 1.15 5 2 2.61 7

350 85 1.66 293 83.71 106 0 1.25 4 2 2.76 8

350 90 1.71 268 76.57 95 0 1.06 3 2 2.82 7

350 85 1.52 277 79.14 104 0 1.22 3 2 2.66 6

350 74 1.50 235 67.14 87 0 1.18 5 2 2.70 6

350 87 1.73 261 74.57 100 0 1.15 3 2 2.61 6

350 81 2.29 267 76.29 96 0 1.19 3 2 2.78 8

350 93 1.60 283 80.86 111 0 1.20 3 2 2.55 6

350 87 1.59 274 78.29 105 0 1.21 3 2 2.61 6

350 72 1.39 235 67.14 83 0 1.15 3 2 2.83 9

350 82 1.83 276 78.86 98 0 1.20 3 2 2.82 9

350 86 2.22 274 78.29 98 0 1.14 3 2 2.80 9
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R-squared measures of goodness of fit for some regression models, where
the dependent variable is the number of patient-donor couples n, are shown
in Table 17. The highest values are in bold.

Table 17: R-squared measures

Cy/St Len. Cy.
Regression St. Time Tr. %Tr. Cy.

min. avg. max. min. avg. max.

Linear 0.997 0.973 1.000 0.414 1.000 0.230 0.653 0.912 0.143 0.464 0.846

Power 0.998 0.978 0.995 0.763 0.995 – 0.885 0.975 0.448 0.777 0.969

Inverse 0.405 0.272 0.364 0.994 0.378 0.466 0.886 0.591 0.861 0.981 0.728

Exponential 0.804 0.767 0.733 0.357 0.734 – 0.508 0.770 0.143 0.405 0.674

Logarithmic 0.818 0.654 0.776 0.827 0.791 0.487 0.971 0.938 0.450 0.831 0.987

S-curve 0.744 0.826 0.833 0.998 0.831 – 0.969 0.747 0.860 0.986 0.892

–: not calculable.

The best fitted regression curves for each variable are as follows:

St. = 0.762 · n0.797

Time = 0.001 · n1.251

Tr. = −2.397 + 0.773 · n

%Tr. = e4.351−3.523·n
−1

Cy. = 0.034 + 0.286 · n
min.Cy/St = 0.088− 0.018 · ln(n)

avg.Cy/St = 0.090 + 0.193 · ln(n)

max.Cy/St = 0.426 · n0.354

min.Len.Cy = 2.051− 2.213 · n−1

avg.Len.Cy = e0.979−2.580·n
−1

max.Len.Cy = −0.472 + 1.236 · ln(n)
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