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An atlas of O-linked glycosylation on peptide
hormones reveals diverse biological roles
Thomas D. Madsen 1, Lasse H. Hansen 1,2, John Hintze 1, Zilu Ye 1, Shifa Jebari3, Daniel B. Andersen4,5,

Hiren J. Joshi 1, Tongzhong Ju6, Jens P. Goetze2,4, Cesar Martin 6, Mette M. Rosenkilde 4,

Jens J. Holst 4,5, Rune E. Kuhre4,5, Christoffer K. Goth 1, Sergey Y. Vakhrushev 1 &

Katrine T. Schjoldager 1✉

Peptide hormones and neuropeptides encompass a large class of bioactive peptides that

regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood

pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-

glycans on peptide hormones. We find that almost one third of the 279 classified peptide

hormones carry O-glycans. Many of the identified O-glycosites are conserved and are pre-

dicted to serve roles in proprotein processing, receptor interaction, biodistribution and

biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of

members of the neuropeptide Y and glucagon families modulate receptor activation prop-

erties and substantially extend peptide half-lives. Our study highlights the importance of O-

glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large

class of biomolecules serves as a discovery platform for an important class of molecules with

potential opportunities for drug designs.
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Peptide hormones, neuropeptides, and other biologically
active peptides represent one of the largest and most pro-
mising classes of drug candidates. A wide range of synthetic

analogs are emerging as major drug candidates for treatment of
neurological and metabolic disorders, mediating their physiolo-
gical effects by acting as either agonists or as antagonists on their
cognate receptors1. While peptide hormone-based drugs benefit
from being selective for their cognate receptors, the usage of
native peptides as therapeutics is challenging due to the inherent
instability giving rise to short half-lifes of the biologically active
peptide form(s) on a scale of a few minutes2. Thus, considerable
efforts are being devoted to discovery and development of
peptide-based analogs to improve stability and circulation time,
as well as safety, immune tolerance, efficacy, and biodistribution.
Different strategies include use of unnatural amino acids, mod-
ifications such as lipidation, PEGylation, conjugation to anti-
bodies, and stapled peptides3. A prerequisite for rational design
and development of improved peptide hormone drugs is
knowledge of the molecular composition and structure of the
natural bioactive peptides, and their mode of interaction with
receptors.

Peptide hormones are synthesized as precursor proteins that
may undergo regulated proteolytic processing during their
transport through the secretory pathway to become mature
hormones (involving enzymes such as carboxypeptidases4, pro-
protein convertases (PCs)5, and C-terminal α-amidation6). In
addition, a number of other posttranslational modifications
(PTMs) have been identified, including tyrosine sulfation7, N-
terminal acetylation8, phosphorylation9, and glycosylation10.
Unlike constitutively secreted proteins, most peptide hormones
are stored within the cell. Upon secretion, most peptide hor-
mones are prone to specific and rapid proteolytic degradation
resulting in short circulatory half-lives11–13. As a result, the
plasma concentration of most peptide hormones is in the lower
picomolar range, which for technical reasons has challenged the
peptidomic insight into the molecular composition of the mature
forms of these hormones and their PTMs. Recent sensitive mass
spectrometry (MS)-based studies have identified alpha-amida-
tion, acetylation, and phosphorylation on select peptide
hormones9,14. However, given that the vast majority of proteins
trafficking the secretory pathway undergo O-glycosylation, it is
surprising that only very few O-glycosylated peptide hormones
have been identified to date10,15–19.

Mucin-type O-glycosylation (hereafter O-glycosylation) is a
highly abundant PTM estimated to affect 80% of secreted proteins
in a cell15. The biosynthesis is initiated by a large family of 20
partly redundant polypeptide GalNAc-transferases (GalNAc-T)
isoenzymes, and recently we and others have demonstrated that
O-glycosylation plays wide roles in co-regulation of fundamental
processes, such as PC processing, ectodomain shedding, and
receptor modulation, to fine-tune and diversify biological func-
tions of proteins20–22. Most recently, we identified O-glycosites
on the atrial natriuretic peptide (ANP) hormone, and found that
O-glycans in the receptor-binding region alter the mode of action
of ANP in rats, providing improved therapeutic performance10.
Prompted by this, we hypothesized that O-glycosylation could be
a more prevalent PTM of peptide hormones than recognized to
date, and that a focused discovery strategy would reveal this.

Here, we present the design and application of a comprehen-
sive discovery program focused at identifying O-glycans on the
large class of low molecular weight peptide hormones. We use
different enrichment strategies and targeted MS-based analysis of
multiple biosources to produce an atlas of O-glycosites on peptide
hormones. We identify wide occurrence of O-glycans on select
subfamilies of peptide hormones with multiple O-glycosites in the
receptor-binding domains conserved among peptide sequences

within subfamilies, as well as through evolution. We demonstrate
that O-glycans in receptor-binding regions serve to modulate
both peptide hormone stability and receptor signaling.

Results
Workflow for discovery of glycans on peptide hormones. We
designed a proteomics-based workflow targeting low molecular
weight glycoproteins using low molecular weight enrichment
(LMWE) and lectin weak affinity chromatography (LWAC)
enrichments15,23, and applied a comprehensive database of neu-
ropeptides and peptide hormones (NeuroPep; http://isyslab.info/
NeuroPep/)24 for informatics. The strategy (presented in Sup-
plementary Fig. 1a) was applied to both cell lines (N2A and
STC-1) and organs known to express and/or secrete high levels of
diverse peptide hormones, including porcine and rat brain, cer-
ebellum, heart, and pancreas as well as porcine intestinal ileum,
and human plasma, cerebrospinal fluid (CSF), and prostate
cancer biopsies (Fig. 1).

Across all biosources, we identified ~97,000 peptide-spectrum
matches containing glycan information (Supplementary Fig. 1a).
In total, 445 O-glycosites were found to be located on distinct
prohormone proteins24. Of these, 36 sites were identified on
human prohormone sequences and 409 glycosites were identified
on nonhuman (porcine or rodent) prohormones. The latter were
subjected to prediction of conservation in human neuropeptide
orthologs by sequence alignment analysis and revealed that 374
out of 409 glycosites were predicted to be conserved in humans,
based on conservative preservation of Ser/Thr residues within
(±5) amino acid residues25 (Supplementary Fig. 1b). In total, 410
(36+ 374) conserved O-glycosylation sites were included for
further analysis. Surveying the distribution of the identified
human and conserved O-glycosites across each peptide hormone
precursor revealed that about half (223) of the 410 glycosites were
located in the proprotein part, and the other half (187) were
located on the mature peptide hormones (Fig. 1a, Table 1). These
O-glycosites were distributed on 91 mature peptide hormone
sequences out of the total 279 peptide hormones annotated in the
comprehensive Neuropep database24 (including 14 peptide
hormones for which we only observed ambiguously assignable
glycosites; Fig. 1b, Table 1, Supplementary Fig. 1b, Supplementary
Data 1–4). The identification correlated well with the known
tissue expression of specific peptide hormones (e.g., insulin and
pancreatic polypeptide (PPY) in pancreas). We identified fewest
peptide hormones in plasma, and most in brain and intestinal
tissues among the different biosources analyzed (Fig. 1c). In
general, the LMWE resulted in more identifications of peptide
hormone O-glycosites compared to the traditional analysis of
total tissue/cell extracts (Rapigest) and biofluids, and in total
contributed with >25% (24) additional peptide hormones with O-
glycosylation (Fig. 1d). Each LMWE resulted in the identification
of a similar number of glycosylated peptide hormones per
biosource analyzed (Supplementary Data 2) where subtle
qualitative differences were noted. For example, glycosylated
insulin-like growth factor II (IGFII) was only identified in CSF
after EtOH extraction, glycosylated glucagon-like peptide 1 (GLP-
1) was found in ileum only after acidic extraction, and
glycosylated CCB peptide was observed only after acetone
extraction in both whole brain and cerebellum.

An atlas of peptide hormone O-glycosylation. Human peptide
hormones are classified into 46 distinct families of which O-
glycosylated members were identified in 28 of the families (Fig. 2,
Supplementary Data 1–3). In addition, the algorithm NetOGlyc
4.0 (ref. 15; http://www.cbs.dtu.dk/services/NetOGlyc/) predicted
that the majority of peptide hormone families contain
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glycosylated members (41 out of 46). Among the glycosylated
peptide hormone families, well-characterized peptides like GLP-1,
cholecystokinin (CCK), neuropeptide Y (NPY), galanin (GAL),
and secretin (SCT) were found glycosylated.

We analyzed glycosite locations relative to protein topology
and known functional features and found that the majority of
sites were distributed among regions of the peptide hormones
typically referred to as the address and message regions26.
Approximately 10% of the glycosites were located ±5 amino acids
from a PC processing site (Fig. 3a). For example, in proopiome-
lanocortin (POMC; Supplementary Fig. 2a), we confirmed the
Thr71 glycosite adjacent to the 71TENPRK↓Y77 processing site,
which inhibits activation of gamma-melanocyte stimulating
hormone27. In proNPY (Supplementary Fig. 2b), we identified
Ser68 and Ser69 glycosites immediately adjacent to the PC1/3
activation (63RYGKR↓SS69) site in NPY28. In somatostatin
(Supplementary Fig. 2c), an ambiguous glycosite (Ser89 or
Ser92) was found just C-terminal to the furin/PACE4 activating
site 85ELQR↓SANS92 29.

We explored the address and message glycosites relative to
characterized structural and/or functional receptor-binding
motifs. Interestingly, in five different peptide hormone families

a majority of the glycosites were located in the highly conserved
functional domains involved in receptor interaction (Fig. 3b). A
detailed description of all five families is included in Supplemen-
tary Fig. 3.

O-glycans on peptide hormones modulate receptor activation.
The glucagon (GCG) family members share a highly conserved
O-glycan at Thr7, while the NPY family members share a con-
served O-glycan at Thr32 (Fig. 4a, b). To explore the potential
functional impact of site-specific O-glycosylation on mature
peptide hormones, we chose to study members of these families
(vasoactive intestinal polypeptide (VIP), GCG, GLP-1, NPY, and
peptide YY (PYY)). We chemoenzymatically synthesized the
candidate hormones with the three most common O-GalNAc-
type structures, including Tn (GalNAcα1-O-Ser/Thr), T (Galβ1-
3GalNAcα1-O-Ser/Thr), and sialylated ST (NeuAcα2-3Galβ1-
3GalNAcα1-O-Ser/Thr; Fig. 4c), to generate NPYThr32, PYYThr32,
VIPThr7, GCGThr7, and GLP-1Thr7. These peptide glycovariants
were used for classical dose–response studies using COS-7 cells
that transiently expressed relevant cognate receptors. All recep-
tors were activated by the relevant non-modified peptide ligands
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producing half the maximal effect (EC50) at doses in accordance
with the literature30–33. A summary of all dose–response curves is
presented in Supplementary Fig. 4, and exact EC50 values can be
found in Supplementary Table 1.

In the GCG family, non-glycosylated VIP exhibited a potency
of 0.2 nM and 0.4 nM for VIP receptor 1 and 2 (VPAC1 and 2),
respectively. In striking contrast, all three glycoforms of VIPThr7

showed a strongly reduced potency on both VPAC1 and VPAC2
(Fig. 4d). GLP-1 signals exclusively through the GLP-1 receptor
(GLP-1R), and in our assay non-glycosylated GLP-1 showed a
potency of 0.05 nM for GLP-1R, while GLP-1Thr7 produced a less
potent yet full maximal response. Activation of the glucagon
receptor (GCGR) by GCG occurred with an EC50 of 1.3 nM, while
GCGThr7 exhibited decreased potency with 100–1000-fold
increased EC50 dependent on the structure of the installed O-
glycan (Fig. 4d, Supplementary Figs. 4 and 5a). The NPY family
peptide hormones activate the same members of the Gi-coupled
NPY receptor family (NPY1R, NPY2R, NPY4R, and NPY5R;
Fig. 4e, Supplementary Fig. 4). In agreement with past studies,T
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Fig. 2 Glycosylation of peptide hormones is a widespread phenomenon.
Bar graph illustrating that 28 out of the 46 human families annotated in the
NeuroPep24 database contain at least one glycosylated member (yellow).
The glycosylation prediction algorithm, NetOGlyc 4.0, predicts that almost
all (41 out of 46) families contain glycopeptide hormones (light gray) and
five families only have members without glycosylation (dark gray). The
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hormone family abbreviations.
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non-glycosylated PYY and NPY activated receptors with
potencies (EC50) between 2.6–204 nM and 0.4–10.7 nM,
respectively34,35. One exception was activation of the Y5 receptor
that showed an EC50 value of 204 nM compared to previously
reported 1.2 nM34. Interestingly, among the four receptors tested,
NPY2R and NPY5R partially tolerated NPYThr32-Tn and
PYYThr32-Tn with EC50 values in the range of 58–550 nM (Fig. 4e),
whereas NPYR1 and NPYR4 showed only slight activation at the
highest dose of the glycosylated peptide hormones tested
(Supplementary Figs. 4 and 5b).

In summary, all O-glycosylated peptide hormones elicited a
dampened agonist response with increased EC50 values correlat-
ing positively with the size of the O-glycan. The presence of sialic
acid with its strong negative charge, however, did not
substantially affect the potency of the members of the GCG
family when comparing to the other tested variants. In general,
O-glycans located in the receptor-binding domain of the NPY
family members had a bigger impact on receptor activation than
glycans in the receptor-binding domain of GCG family members
(Fig. 4d, e). Further investigation is required to explain this
phenomenon, but it could be related to the large extracellular N-
terminal domain of the receptors to the GCG family members36

(like other class B G-protein-coupled receptors), which may allow
for binding of the C-terminally non-glycosylated part (Fig. 4a). In
contrast, NPY receptors (which belong to A-class G-protein-
coupled receptors) do not contain this large extracellular N-
terminal domain37 (Fig. 4b).

ProNPY is highly glycosylated in a neuroendocrine cell line.
Estimation of stoichiometry using LC–MS/MS is difficult with
LWAC-enriched glycopeptide samples, because the non-
glycosylated peptide fraction is depleted by the lectin enrich-
ment. In addition to this, the determination of glycosylation
stoichiometry in non-enriched samples is challenged by the
general sample complexity and dynamic range38. Studying the
low abundant peptide hormones that are often not detectable in
proteomics studies further adds to the difficulties in detection of
glycopeptides let alone identification of glycoforms and stoi-
chiometry of glycosylation. Thus, to address stoichiometry with
one peptide hormone, we stably expressed full-length preproNPY
in the neuroendocrine STC-1 cell line and used traditional
SDS–PAGE molecular weight shift assays to evaluate the degree
of O-glycosylation. Direct SDS–PAGE western blotting of tri-
chloroacetic acid concentrated conditioned media showed that
secreted proNPY migrated as two distinct and equally intense

bands (proteoforms 1 and 2, Fig. 5a, lane 1). Treatment with
neuraminidase to remove sialic acids on glycans collapsed the two
immunoreactive bands of proNPY into one apparently co-
migrating band, which demonstrated that the upper band of
proNPY contains sialylated glycans (lane 2). To confirm the
presence of GalNAc-type O-glycans, we expressed proNPY in a
high producer cell line, HEK293-6E, that secreted proNPY in
amounts directly detectable by western blotting without con-
centrating the sample further. HEK293-6E-produced proNPY
migrated as three bands; two upper strong (proteoform 2 and 3)
and one lower weak (proteoform 1) band (Fig. 5b, lane 1). As
with STC-1, neuraminidase demonstrated that a considerable
amount of proNPY contains sialylated glycans (lane 2). For fur-
ther confirmation, we used a recently characterized O-
glycoprotease from Akkermansia muciniphila, OpeRATOR,
which specifically cleaves O-glycopeptides immediately N-
terminal to an O-glycan, but is blocked by the presence of sialic
acid39. Treatment with OpeRATOR only in combination with
neuraminidase resulted in the loss of the intensity of the upper
band concomitantly with the appearance of a band migrating
approximately as 4–5 kDa (lane 3), confirming that a majority of
proNPY contains one or more O-glycans with sialic acid. In our
atlas, we identified multiple glycosylation sites on proNPY, and
based on this data it was not possible to determine the specific
OpeRATOR cleavage site(s) (Supplementary Fig. 6). However, the
data confirmed that two mammalian cell lines, STC-1 and
HEK293-6E, produce proNPY with at least 50% sialylated
GalNAc-type O-glycans.

Glycans in mature NPY unfolds its amphipathic alpha-helix.
GalNAc-type O-glycans are most often found in unstructured
regions of glycoproteins15,40. Surprisingly, the conserved glycans
in all the members of the GCG, NPY, and calcitonin families are
positioned at the C- or N-terminus of amphipathic alpha-helices
(Supplementary Fig. 7a–c). The alpha-helix is important for
receptor recognition and activation41, and specifically for NPY,
the alpha-helix is suggested to play a crucial role in prompting a
two-step receptor-binding mechanism. Here, NPY first binds to
the lipid membrane to increase its effective concentration41,42,
followed by a lateral diffusion on the membrane to the receptor,
where NPY binds its receptors and activates intracellular signal-
ing cascades. To explore the potential structural impact of O-
glycans on NPY, we measured mature NPY in solution without
and with O-glycans at Thr32 using circular dichroism (CD)
spectroscopy. NPY showed 33% alpha-helical content in line with
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previous studies43, whereas NPYThr32 glycovariants with O-
glycans in the alpha-helical interface decreased the alpha-helical
content to 23–26%, seen as an increase in ellipticity at 222 nm
(Fig. 5c, Supplementary Fig. 7d). Interestingly, where the Tn
structure produced a major change, elongation to T and ST
structures did not further change the secondary structure dra-
matically, which is in line with previous studies of mucin O-
glycopeptides44.

O-glycans modulate peptide hormone stability in vitro. Most
peptide hormones are rapidly degraded with half-lives of only a
few minutes11,13. O-glycans in close proximity to proteolytic
processing sites can modulate the rate of processing20. To study
the effects of O-glycans on peptide hormones, we subjected
selected glycosylated peptide hormones to in vitro degradation by
neprilysin (NEP) or dipeptidyl peptidase IV (DPP-IV) enzymes,
which are known to metabolize a large number of peptide hor-
mones and other bioactive peptides in vivo, including PYY, VIP,
GLP-1, SCT, and GAL45,46. Both DPP-IV and NEP degraded all
tested non-glycosylated peptides fully or partially within 15–30
min, while the corresponding glycopeptides demonstrated
increased stability for 60–120 min (Fig. 6a, Supplementary Fig. 8).
In some cases, the intact, non-degraded glycopeptide hormones
were still detectable even after overnight incubations. The pro-
tective effects seemed to be most profound with the larger sialyl-T
glycoforms.

GLP-1Thr7 exhibits increased circulation time in vivo. Intact
GLP-1 (7–36 amide) is rapidly cleared from circulation with a
half-life of ~2min47. To evaluate the effect of O-glycosylation on
GLP-1 clearance in vivo, we measured the half-life of GLP-1Thr7

glycoforms after administration of an i.v. bolus (20 nmol/kg) of
GLP-1 to male Wistar rats (n= 8; Fig. 6b). In agreement with
previous studies, GLP-1 and immunoreactive metabolites were
rapidly cleared from circulation with a half-life of t1/2= 2.7min
when fitted to a one-phase decay model, while GLP-1Thr7 glyco-
forms showed significantly slower elimination with half-lives of
t1/2= 6.4min (T-variant) and t1/2= 22.7 min (ST variant),
respectively. As a result, non-glycosylated GLP-1 was undetectable
after the 15 min timepoint from injection, while GLP-1Thr7-ST

remained readily detectable in circulation even after 60 min.

Discussion
Here, we developed a strategy to explore O-glycosylation on
peptide hormones and demonstrate that almost 33% of all known
human peptide hormones may carry O-glycans in four mam-
malian species investigated. We present a comprehensive atlas of
O-glycosites on the large class of peptide hormones, which should
find use in wider studies into specific functions of O-glycans on
individual hormones. We highlight examples of biological func-
tion of site-specific O-glycans in select peptide hormones,
demonstrating that O-glycans can modify receptor activation and
prevent degradation and clearance. GalNAc-type O-glycosylation
is an exceptional form of protein glycosylation in that it is
regulated by a large family of up to 20 GalNAc-T isoforms,
providing opportunities for a high degree of differential regula-
tion of glycosites on specific proteins in cells48. The GalNAc-T
isoforms are known to serve co-regulatory roles in fine-tuning
functions of specific proteins with clear disease-causing
consequences23,49–51, and we recently demonstrated that graded
induction of individual GalNAc-T isoforms in cell models pro-
vides corresponding graded O-glycosylation of highly select gly-
cosite substrates specific to the induced GalNAc-T52. In the
present study, we did not address the biosynthesis of glycosylated
peptide hormones and in particular the specific GalNAc-T

isoforms controlling glycosylation of the identified glycosites.
This is a considerable challenge for future studies that should be
aided by the presented atlas of glycosites.

Surprisingly, we identified >150 glycosites on mature peptide
hormones with many located in the receptor-interacting regions.
O-glycans are known to modulate receptor functions, as first
described for O-fucosylation of the Notch receptor53, and more
recently for GalNAc-type O-glycosylation of the low-density
lipoprotein receptor-related receptors54–56. However, to our
knowledge, receptors recognizing protein/peptide ligands have
not yet been described to exhibit specific recognition of O-
glycosylated ligands, apart from the large families of lectin
receptors that primarily recognize the glycans57. In agreement
with this, we found that O-glycans at specific well-conserved
amino acids in VIP, GCG, GLP-1, NPY, PYY, and PPY resulted
in lower receptor potency in vitro. For GCG and GLP-1, the size
of the O-glycan correlated positively with the observed reduction
in potency and for VIP all glycoforms diminished activation
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Fig. 6 Stability of glycosylated peptide hormones in vitro and in vivo. a
Summary of in vitro degradation of peptide hormones using purified NEP
or DPP-IV monitored by matrix assisted laser desorption/ionization-time
of flight (MALDI-TOF) timecourse assay (See Supplementary Fig. 8 for
spectra). Qualitative scoring ++: fully susceptible to degradation, +:
reduced susceptibility, −: not susceptible to degradation. b Plasma
concentrations of GLP-1 or glycoforms over time after intravenous
bolus injection (20 nmol per kg) in anesthetized rats (n= 8 rats per
group). GLP-1 was measured by an assay targeting the amidated
C-terminus of the molecule measuring total GLP-1 (intact 7–36 amide
and metabolites hereof). Half-lives (T1/2) are indicated with 95%
confidence intervals. For each glycoform, timepoints represented by n > 4
measurements were included in the analysis (n(GLP-1)= 35, n(GLP-1 T)=
38, n(GLP-1 ST)= 41 measurements in total). Multiple linear regression
was performed in b. ns not significant; ***p < 0.001 (all indicated p-values
< 0.0001). Source data for b is provided as a Source data file.
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similarly (Fig. 4). Among the NPY receptors tested, NPY2R and
NPY5R were less affected by O-glycans on NPY and PYY, while
O-glycans completely abolished NPY1R and NPY4R activation.
Chemical modifications of amino acids in the receptor-binding
domain of NPY are known to alter selectivity for the different
receptors58, and our results showing that O-glycans in the ligand-
binding region of NPY altered the receptor interaction are well in
agreement with this. Although, with the lectin enrichment strat-
egy, we gain the sensitivity needed for glycosite identification, we
lose the opportunity for broad assessment of O-glycan stoichio-
metry. Stoichiometric analysis of O-glycans is one of the major
challenges for the field; however, we did demonstrate high gly-
cosylation occupancy for proNPY when expressed in two differ-
ent cell lines. We expect that future studies will reveal how this
reflects the O-glycan occupancy found in circulation or at the
local site of secretion.

Interestingly, we observed a substantial overlap between
reported phosphorylated peptides from two recent peptidomics
studies9,14, and the identified O-glycosites on peptide hormones
(24 out of 91 glycosylated peptide hormones contain both PTMs,
see Table 1 and Supplementary Data 5). In several peptide hor-
mones, we found closely positioned phosphosites (superscript P)
and O-glycosites (superscript G), including NPY (NLITP/G

RQRYP and SGSGPETLISDLLMRESPTG/PENVPRTGRLEDPA),
somatostatin (QRSP/GANSP/GNPA), and vasostatin-2
(VEEPSPSGKDVM). This may suggest an interplay between the
two PTMs much like the illustrative example of the fibroblast
growth factor FGF2321,59. Here, O-glycosylation by the GalNAc-
T3 isoform inhibits PC processing by furin and adjacent phos-
phorylation by the Fam20C kinase inhibits glycosylation, and
augments processing and inactivation. Thus, glycosylation and
phosphorylation may regulate the function of peptide hormones
in concert with each other.

Peptide hormones are inherently unstable and circulate in
minute amounts. Here, we demonstrated that O-glycans on SCT,
VIP, GAL, GLP-1, and PYY protect the peptide hormones from
proteolytic degradation in vitro. The most prominent effects were
observed with the naturally occurring sialylated ST O-glycan
structure, where, e.g., full-length PYYThr32 and GALSer23 remained
readily detectable after 24 h incubation with NEP. In addition,
the in vivo circulatory half-life of GLP-1 was increased approxi-
mately tenfold compared to the non-glycosylated peptide. These
results are well in line with the general concept that protein gly-
cosylation increases stability by shielding the protein backbone
from proteolytic cleavage, and also that sialic acid capping of
glycans is needed to maintain plasma half-life by, e.g., reducing
uptake by the Ashwell–Morell (asialoglycoprotein) receptor60,61.
Although not addressed here, protein glycosylation can change the
cellular uptake and, as shown for an enkephalin-derived glyco-
peptide, increase both transport across the blood–brain barrier and
general bioavailability62. Whether naturally occurring O-glycans
on peptide hormones affect biodistribution in vivo remains to be
elucidated. Our data suggests that O-glycosylation of peptide
hormones serves to fine-tune their bioactivities by decreasing
receptor stimulation and increasing bioavailability, which may be
advantageous for inducing lower and sustainable signals. The O-
glycans may also be important for producing selective signals for
subsets of related receptors, as we recently described in case of
ANP10. The NPY family members are ubiquitously expressed in
the body, and act as neurotransmitters to regulate a vast array of
physiological processes via binding and signaling through the Gi-
coupled NPY receptors (NPY1R, NPY2R, NPY4R, or NPY5R), and
PTMs may play a role in orchestrating selectivity as observed for
the N-terminal truncation by DPP-IV34. Another example is
GLP-1, whose primary functions include increase of insulin
secretion (i.e., to act as an incretin), inhibition of gastrointestinal

motility and physiological regulation of appetite, where PTMs may
be involved in directing the response.

The great therapeutic potential of peptide hormones was rea-
lized almost a century ago and candidate drug designs continue to
emerge2. Basing peptide therapeutics on naturally occurring
biomolecules is a favorable approach since this often leads to
lower toxicity and immunogenicity, as well as higher selectivity,
and thus predictable physiological actions and behavior2. How-
ever, probing the function and efficacy of unmodified peptides
has demonstrated low biostability and circulation time, and
therefore low efficacy2,63. A number of studies have explored the
chemical introduction of artificial glycans on peptide hor-
mones64–67, and interestingly all studies find—very much in line
with what we show here for the naturally occurring O-glycans—
that the analogs chemically modified with artificial glycan struc-
tures are less or equally potent in in vitro receptor activation
assays, yet more potent and stable in vivo.

Peptide hormones are frequently detected in clinical immu-
noassays and the presence of O-glycans on peptide hormones
may mask antibody epitopes, which leads to underestimated
concentrations as previously demonstrated for NT-proBNP68,69.
Thus, the atlas may also serve as a guide in the strategic design of
biomarker assays.

In summary, we provide a comprehensive atlas of O-glycosites
on peptide hormones, and illustrate examples of functions of site-
specific O-glycans for processing, bioavailability and bioactivity of
select peptides. Our results suggest that O-glycosylation plays
much wider roles in regulating and tuning the functions of
peptide hormones than currently acknowledged, and considering
O-glycans in studies, biomarker assays, and rational drug designs
may be fruitful as recently demonstrated for ANP.

Methods
Ethical considerations. Rat in vivo studies and extraction of porcine tissues were
conducted with permission from the Danish Animal Experiments Inspectorate (2013-
15-2934-00833), and in accordance with the guidelines of Danish legislation governing
animal experimentation (1987) and the National Institutes of Health (publication
number 85-23). The Regional Committee on Health Research Ethics approved the use
of human tissue (KF 01287197), written informed consent was obtained from all study
participants, and the study abides by the Declaration of Helsinki principles. Plasma
and CSF samples were collected with written informed concent, and subsequently
pooled and anonymized. The National Committee on Health Research Ethics has
evaluated that the use of these samples for the glycoproteomics study did not need
approval because of the anonymization of patient samples.

Tissue extraction. Porcine brain, cerebellum, ileum, and pancreas tissue from
female LYD pigs of ∼30 kg, as well as atrial appendage tissue from newborn piglets
were extracted according to standard protocols. Prostate tissue specimens were
collected from 25 patients undergoing radical prostatectomy for cancer (median
age 65 years (range 54–72))70. Aliquots of frozen tissue were crushed using a
CryoPrep tissue extractor (Covaris, Woburn, Massachusetts) and proteins were
extracted in boiling water for 20 min, followed by homogenization with an Ultra-
Turrax homogenizer (IKA, Staufen, Germany; Supplementary Data 2 and 3:
LMWE H2O). After 30 min centrifugation at 13,000 × g, supernatants were col-
lected. The ileum sample pellet was further extracted in 0.5 M acetic acid (AcOH)
at room temperature (RT) for 30 min (Supplementary Data 2 and 3: LMWE
AcOH) followed by centrifugation as above. For acidic ethanol extractions, ileum
and pancreatic tissues were homogenized and extracted by rotating at 4 °C for 4 h
in 0.18 M HCl/70% ethanol (Supplementary Data 2 and 3: LMWE EtOH/HCl).
The samples were adjusted to pH 7 (NaOH), followed by centrifugation as above. A
fraction of the brain, cerebellum, prostate gland, and ileum water extract under-
went additional low-molecular-weight enrichment by either acetone precipitation
(Supplementary Data 2 and 3: LMWE acetone) or acetone precipitation after
acidification (Supplementary Data 2 and 3: LMWE acetone AcOH). Precipitation
was performed either before or after adjusting to 0.5 M AcOH by addition of ice
cold acetone (final v/v 67%), followed by incubation for 1 h at −20 °C, and sub-
sequent centrifugation at 16.000 × g for 30 min (supernatants were collected). All
supernatants were lyophilized and reconstituted in Milli-Q water followed by
protein concentration determination by Pierce BCA protein assay kit (Pierce,
Thermo Fischer Scientific), except the water extracts where lyophilization and
reconstitution was omitted.

Rats were sacrificed and pancreas, heart, cerebellum, and brain tissues were
dissected free and snap-frozen in liquid nitrogen. Frozen tissues were pulverized
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using a mortar and pestle in liquid nitrogen. Proteins were extracted from ∼100 mg
tissue in 300 µL 50 mM ammonium bicarbonate containing 1% RapiGest SF
Surfactant (Waters, from here on: Rapigest), using an IKA Ultra Turbax blender at
maximum speed for 20 s followed by 30 s of sonication using a Sonic
Dismembrator (Fischer Scientific). Samples were diluted to 0.1% Rapigest in 50
mM ammonium bicarbonate and immediately subjected to enzymatic digestion
and desialylation.

Enzyme digestion and desialylation. All extracted samples were adjusted to 50
mM ammonium bicarbonate, heated for 10 min at 80 °C, followed by reduction
with 5 mM dithiothreitol (60 °C, 30 min) and alkylation with 10 mM iodoaceta-
mide (30 min, RT, in the dark). Subsequently, samples were incubated with trypsin,
chymotrypsin or GluC (Roche; 37 °C, overnight, 1 µg enzyme per 100 µg protein).
The following day, the enzyme reaction was quenched and Rapigest was pre-
cipitated by acidifying with trifluoroacetic acid (TFA). The solution was cleared by
centrifugation (10,000 × g, 10 min) and peptides were purified on C18 Sep-Pak
columns (Waters), and dried down using a SpeedVac vacuum concentrator
(Thermo Fischer Scientific). If not already desialylated, the dried peptides were
resuspended in 1 mL 50mM sodium acetate (pH 5.5) containing 0.1 U/mL neur-
aminidase (Sigma, N3001) followed by incubation at 37 °C for 1 h, purified by C18
Sep-Pak columns and dried down.

In the case of rat tissues, 200 µg digest was labeled with TMTsixplex or
TMT10plex (Thermo Fischer Scientific) according to manufacturer’s instructions
(Supplementary Data 2 and 3: Rapigest).

Cell protein extraction. STC-1 (CRL-3254) cells derived from mouse invasive
small intestinal neuroendocrine carcinoma and N2a (CCL-131) cells from mouse
neuroblastoma were obtained from ATCC and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Sigma) supplemented with 10% fetal bovine serum
(Sigma) and 4 mM GlutaMAX (Gibco) at 37 °C and 5% CO2. Conditioned media
cleared from dead cells and debris obtained from 2× T175 flasks cultured for
48–72 h were dialyzed, neuraminidase (N3001, Clostridium perfringens neur-
aminidase type VI, Sigma) treated, and enriched for glycoprotein by capture on
short (300 µl beads contained in 1 ml syringes) PNA agarose columns (Vector
labs). Glycoproteins were eluted by heating the lectin (2 × 90 °C, 10 min) in 50 mM
ammonium bicarbonate containing 0.05 % Rapigest. Total cell lysates were
obtained by washing a monolayer of cells in ice cold phosphate-buffered saline
(PBS), scraping off the cells and adding 2 ml 0.05–0.1% Rapigest to solubilize the
cell pellet. The resulting suspension was sonicated and cleared by centrifugation
followed by enzymatic digestion and desialylation as described above.

Biofluid extraction. Blood for O-glycoproteomic plasma analyses was collected
and pooled from two healthy volunteers into EDTA-coated tubes (K2E K2EDTA
Vacuette) followed by centrifugation at 5000 × g for 10 min and stored at −20 °C
until use. CSF was obtained and pooled from 50 patients that underwent lumbar
puncture. The samples were anonymized before use. Both crude and LMWF-
enriched plasma and CSF were subjected to the O-glycoproteome workflow. For
LMWF enrichment, 40 mL CSF or a volume of plasma containing ~60 mg of
proteins (measured by Pierce BCA protein assay kit) was precipitated by adding
two parts of 96% ethanol followed by incubation at RT for 30 min. Samples were
centrifuged at 10,000 × g for 10 min, and the supernatant was lyophilized and
resuspended in 0.05% Rapigest followed by desialylation in 50 mM sodium acetate
buffer with 0.1 U/mL neuraminidase (Sigma, N3001). The LMWF-enriched sam-
ples were further enriched for O-glycopeptides on short PNA columns as done for
the cell secretomes. In parallel, 5 mg of total protein (as determined by Pierce BCA
protein assay kit) from non-LMWF-enriched biofluid samples was desialylated as
described for the LMWF-enriched samples, before enzymatic degradation omitting
the glycoprotein enrichment on short PNA columns.

LWAC O-glycopeptide enrichment. Agarose bound lectins PNA (binds galactosyl
(β-1,3) N-acetylgalactosamine, T-antigen), Jacalin (binds galactosyl (β-1,3) N-
acetylgalactosamine, T-antigen, or α-N-acetylgalactosamine, Tn-antigen71), or
VVA (α-N-acetylgalactosamine, Tn-antigen) were obtained from Vector Labora-
tories. Dried samples were reconstituted in 2 mL lectin-binding buffer (PNA-
binding buffer 10 mM HEPES (pH 7.4), 150 mM NaCl, 0.1 mM CaCl2, and 0.01
mM MnCl2; Jacalin-binding buffer 175 mM Tris (pH 7.5); VVA-binding buffer 20
mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM CaCl2/MgCl2/MnCl2/ZnCl2, and 1M
urea), filtered through a 0.45 µm spin column and injected onto a pre-equilibrated
2.6 m long column packed with lectin-bound (PNA, Jacalin, or VVA) agarose
beads at a constant flow rate of 0.1 mL/min. For VVA (N2A cells are naturally
deficient in O-glycan elongation and produce glycoproteins with truncated Tn
(HexNAc) glycans), the column was first washed for 3× column volumes (CV) in
0.4 M glucose and glycopeptides were eluted with 2× CV 0.2 M GalNAc and 1× CV
0.4M GalNAc. For PNA and Jacalin LWAC, the column was washed 2× CV in
lectin-binding buffer, and glycopeptides were eluted with 2× CV 0.5M galactose
and 1× CV 1M galactose, respectively. A total of 5% of the elution fractions were
analyzed by LC–MS/MS to check for sample complexity. If appropriate, the elution
fractions were pooled and fractionated using either high pH-fractionation52 or
isoelectric focusing prior to nLC-MS/MS analysis.

nLC-MS/MS analysis. LC–MS/MS was performed on a system composed of an
EASY-nLC 1000 (Thermo Fisher Scientific) interfaced via a nanoSpray Flex ion
source to an LTQ-Orbitrap Velos pro hybrid spectrometer or Orbitrap Fusion
Tribrid (Thermo Fisher Scientific), equipped for both higher energy collisional
dissociation (HCD) and electron transfer dissociation (ETD) modes, enabling
peptide sequence analysis with and without retention of glycan site-specific frag-
ments, respectively. The nLC was operated in a one-column setup with an ana-
lytical column (20 cm length, 75 μm inner diameter) packed with C18 reverse
phase material (1.9-μm particle size, ReproSil-Pur, Dr. Maisch, Ammerbuch
Entringen, Germany). Each sample dissolved in 0.1% formic acid was injected onto
the column and eluted in a gradient from 2% to 30% B in 105 min (2 h method) or
165 min (3 h method), from 30% to 100% B in 5 min and 100% B for 10 min at 200
nl min−1 (solvent A, 100% H2O; solvent B, 100% acetonitrile; both containing 0.1%
(v/v) formic acid). A data-dependent mass spectral acquisition routine, ETD
triggering of subsequent HCD scan, was used for all runs. Briefly, a precursor
MS1 scan (m/z 350–1700) of intact peptides was acquired in the Orbitrap at a
resolution setting of 30,000 (Velos Pro) or 120,000 (Fusion), followed by Orbitrap
ETD-MS2 at a resolution setting of 15,000 (Velos Pro) or 60,000 (Fusion; m/z of
120–2000) of the five most abundant multiply charged precursors in the
MS1 spectrum; this event was followed up by an HCD-MS2 fragmentation at a
resolution setting of 7500 (Velos Pro) or 60,000 (Fusion; m/z of 120–2,000) for the
same precursor ion. In cases where preliminary screening of fractions for glyco-
peptide enrichment was carried out prior to IEF, the ETD-MS2 step was omitted,
and HCD-MS2 at a resolution setting of 7500 (Velos Pro) or 60,000 (Fusion; m/z
120–2000) of the ten most abundant multiply charged precursors was acquired
(top ten method). These HCD-MS2 spectra were simply screened for the
appearance of the HexNAc oxonium fragment ions at m/z 204.086.

Data analysis. The raw data were processed using Proteome Discoverer 1.4 software
(Thermo Fisher Scientific) and searched against the human, porcine, mouse, or rat-
specific Uniprot databases downloaded in January 2013. The Sequest HT search node
was used for HCD and ETD data. In all cases, the precursor mass tolerance was set to
15 p.p.m. and fragment ion mass tolerance to 20 millimass units. Carbamidomethy-
lation on cysteine residues was used as a fixed modification. Methionine oxidation,
and HexNAc or HexHexNAc attachment to serine, threonine, or tyrosine were used as
variable modifications. In the case of the VVA-enriched N2a cell line samples only
HexNAc (Ser, Thr, and Tyr) and methionine oxidation were used as variable mod-
ifications. As an additional preprocessing procedure, all HCD spectra showing the
presence of fragment ions at m/z 204.08 were extracted into a single.mgf file, and the
exact mass of 1×, 2×, 3×, and 4× HexNAc, Hex(1)HexNAc(1) units or the different
combinations of the two modifications were subtracted from the corresponding pre-
cursor ion mass, generating a distinct file for each subtracted glycan mass38. In this
process, a suffix of _#xT and/or _#xTn was added to the filename of the generated.mgf
files, indicating the number of subtracted masses of Hex(1)HexNAc(1) and/or Hex-
NAc units, respectively. In the case of VVA-enriched samples, the subtraction was
only performed for HexNAc, resulting in a _#xGalNAc suffix added to the.mgf file-
name. These preprocessed data files were submitted to a Sequest HT node under the
conditions mentioned above, without considering HexNAc or Hex(1)HexNAc(1)
modifications. Unassigned spectra were submitted to a second Sequest HT node using
the same parameters as above with the exception of performing the search using semi-
specific trypsin/chymotrypsin/GluC cleavage; all spectra were searched against a decoy
database using a target false discovery rate of 1%. The final list was filtered against the
human part of the NeuroPep database24 to include only peptide hormones.

Multiple sequence alignment. All alignments were performed in ClustalO using
the peptide sequences of Homo sapiens, Sus scrofa, Mus musculus, and Rattus
norvegicus.

Immunoblotting. PreproNPY-plasmid (Human, Uniprot: P01303) was obtained
from Genewiz (www.genewiz.com) in the pUC57 framework and subcloned into
pcDNA3-plasmid (Invitrogen, Thermo Fischer Scientific) with Bam/NotI restric-
tion enzymes (New England Biolabs) followed by ligation with T4 DNA ligase
(Thermo Fisher Scientific). STC-1 cells72 stably transfected with preproNPY
(maintained in 700 µg/mL Zeocin (Invitrogen, Sigma)) were seeded out in six-well
dishes and grown to 50% confluency. Cells were incubated in Opti-Mem media
(Sigma) for 72 h to accumulate secreted proteins.

HEK293-6E (obtained through a license agreement with Dr. Yves Durocher,
Bioprocédés Institute de recherche en biotechnologie, Montréal) were grown in
suspension in serum-free F17 medium (Invitrogen, Thermo Fischer Scientific)
supplemented with 0.1% Kolliphor P188 (Sigma) and 4 mM GlutaMax (Gibco,
Sigma) at 37 °C and 5% CO2 under constant agitation (120 r.p.m.). A total of 15 mL
of HEK293-6E cells (1 × 106 cells/mL) were transfected with preproNPY by adding
combined 15 µg DNA and 90 µg of polyethyleneimine-25K (Polysciences,
Warrengton, PA, USA), co-incubated at RT for 10 min in 500 µL Opti-Mem.
HEK293-6E cells were cultured for 5 days before harvest of the conditioned media.

For enzymatic treatment, the conditioned medium was adjusted to 20 mM Tris
(pH 6.8). STC-1 samples were treated with 0.05 mU/μL neuraminidase (Sigma,
N3001) overnight (37 °C), and HEK-6E samples were treated with 0.05 mU/µL
neuraminidase (Sigma, N3001) and 4 U/µL OpeRATOR for 6 h (37 °C).
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Subsequently, 200 µL of each STC-1 sample was concentrated through
trichloroacetic acid precipitation (final v/v 10%) followed by centrifugation
(16,000 × g, 10 min), and resuspension of the pellet in 15 µL 67 mM Tris (pH 8), 1×
NuPage® LDS-buffer (Thermo Fischer Scientific) and 1× Bolt Sample Reducing
Agent (Thermo Fischer Scientific) to allow for immunoblotting of all 200 µL/lane.
A total of 10 µL of each HEK-6E sample was stopped by addition of 3.5 µL 4× LDS
buffer and 1.5 µL 10x Bolt Sample Reducing Agent to a final volume of 15 µL and
blotted without upconcentration.

Samples were boiled 10min at 80 °C, prior to separation on 4–12% Bis-tris gels
(NuPage, Thermo Fischer Scientific) and blotted onto nitrocellulose membrane for 11
min at 20 V, using the semi-dry Iblot2 system (Thermo Fischer Scientific). Antibody
staining was performed according to the modified protocol by Okita et al.73.
Membranes were blocked 5min in 1% milk, 0.1% bovine serum albumin (Sigma; w/v)
in Tris-buffered saline with 0.05% Tween-20 (TBS-T) followed by 3min wash in PBS
with 0.05% Tween-20 (PBS-T). Blots were fixed in 0.2% glutaraldehyde (Sigma) in
PBS-T for 15min at RT. After three brief washes in PBS-T, antigen retrieval was
performed by microwave treatment (600W, 10min) in citrate retrieval buffer (10mM
citric acid, 1 mM EDTA, 0.05% Tween-20, pH 6.0), followed by incubation in
quenching buffer for 10min at RT (200mM glycine in TBS-T, pH 7.4). Blots
were incubated overnight with anti-NPY antibody (Cell Signaling Technologies
D7Y5A, Rabbit mAb #11976) diluted 1:1000 in the blocking solution at 4 °C. On
the next day, the blots were washed in TBS-T followed by 1 h incubation with
secondary HRP-conjugated goat antirabbit Ig’s (DAKO, P0448, 0,25 μg/mL). The
membranes were washed in TBS-T and developed using SuperSignal West Pico PLUS
Chemiluminescent Substrate (Thermo Fischer Scientific). Pictures were taken with a
LAS-3000 instrument (GE healthcare)

Purified glycopeptides. Peptide hormones were obtained from chemical synthesis
(Synpeptides) in both non-glycosylated and T-glycosylated forms, except the VIP and
SCT peptides that were only obtained in non-glycosylated forms. NPY and PYY were
also obtained in their Tn forms (Synpeptides). To obtain Tn-glycosylated variants of
VIP, GCG, GAL, SCT, and GLP-1, non-glycosylated peptides were chemoenzyma-
tically glycosylated with GalNAc-T125 (25mM cacodylic acid sodium, pH 7.4, 10mM
MnCl2, 0.25% Triton X-100, 2mM UDP-GalNAc (Sigma), 40 µg/mL enzyme, and
1mg/mL peptide, 37 °C overnight) and C18 high-performance liquid chromato-
graphy (HPLC) purified. Correct site incorporation was confirmed by LC–MS. The
Tn-glycosylated peptides obtained by either chemical or chemoenzymatic synthesis
were chemoenzymatically elongated to the T-variant using the T-synthase74 (25mM
cacodylic acid sodium, pH 7.4, 10mM MnCl2, 0.25% Triton X-100, 2 mM UDP-Gal
(Sigma), 4 pmol/h/µL enzyme, and 1mg/mL peptide, 37 °C overnight) and HPLC
purified. A fraction of all T peptides was chemoenzymatically elongated to the ST
form using purified ST3Gal1 (50mM MES pH 6.5, 2mM CMP-NeuAc (Sigma),
40 µg/mL enzyme, 1 mg/mL peptide, 37 °C overnight)75. The glycoproducts from
each reaction were separated from non-glycosylated product on C18 HPLC (Thermo,
Ultimate™ 3000, Phenomenex, Jupiter, 5 μm, 300 Å, 250mm) under isocratic condi-
tions (between 20% and 40% acetonitrile dependent on peptide), lyophilized and
resuspended in Milli-Q water. Glycopeptide product quantification was performed
using HPLC (UV 210 nm) by comparison with a standard curve of weighed non-
glycosylated peptide as standard. GCGThr7-T was deglycosylated using O-glycanase
(Merck, #324716; 50mM phosphate buffer pH 6.0, 0.13 mU/mL enzyme, 1mg/mL
GCGThr7-T, 37 °C for 2 h) and HPLC purified as described above. Deglycosylated
GCG precipitated at assay conditions, and was resolubilized by addition of 0.1% TFA
prior to HPLC purification.

Transfection and tissue cultures for receptor activation. COS-7 (CRL-1651,
ATCC) cells were grown in DMEM 1885 supplemented with 10% fetal bovine
serum (Sigma), 2 mM glutamine, 180 units/ml penicillin, and 45 g/ml streptomycin
at 10% CO2 and 37 °C. One day after seeding in culture flasks (seeding density of
6 million cells per T175 flask), the cells were transiently transfected with 40 µg
receptor DNA for cAMP determination and a combination of 20 µg receptor DNA
and 30 µg of pcDNA 1.1 plasmid encoding a chimeric G protein GαΔ6qi4myr76 for
IP3 determination, using the calcium phosphate precipitation method77.

IP3 assay. One day after transfection, COS-7 cells transiently expressing either
NPY1R, 2 R, 4 R, or 5 R (35,000 cells/well) were incubated with myo-[3H]inositol
(5 µl/ml, 2 µCi/ml) in 0.1ml of medium overnight in a 96-well plate. The following
day, cells were washed twice in PBS and incubated in 0.1ml of Hanks’ balanced salt
solution (Invitrogen, Thermo Fischer Scientific) supplemented with 10mM LiCl at
37 °C in the presence of various concentrations of NPY or PYY, and their respective
glycoforms for 90min (in duplicate determinations). Assay medium was then
removed, and cells were extracted by the addition of 50 µl of 10mM formic acid to
each well, followed by incubation on ice for 30–60min. The [3H]inositol phosphates
in the formic acid cell lysates were thereafter quantified by adding yttrium silicate-
poly-D-Lys-coated SPA beads78. Briefly, 35 µl of cell extracts were mixed with 80 µl of
SPA bead suspension in H2O (12.5 µg/µl) in a white 96-well plate. Plates were sealed
and shaken on table shaker for at least 30 min. SPA beads were allowed to settle and
react with the extract for at least 8 h before radioactivity was determined using a
Packard Top Count NXT scintillation counter (PerkinElmer Life Sciences).

cAMP assay. One day after transfection, the COS-7 cells were seeded at 35,000
cells/well in 96-well plates. 24 h later, cells were washed twice with HEPES-buffered
saline (in mmol/L: 20 HEPES, 150 NaCl, 0.75 NaH2PO4, pH 7.4) and incubated 30
min at 37 °C in HEPES-buffered saline containing 1 mmol/L iso-
butylmethylxanthine (IBMX) phosphodiesterase inhibitor (Sigma-Aldrich,
Brondby, Denmark). Peptide hormones, either non-glycosylated or glycosylated on
Thr7, were then added (in duplicate determinations) followed by 30 min incuba-
tion at 37 °C. Subsequently, the medium was removed and the cells were treated
with the enzyme fragment complementation-based cAMP assay according to
manufacturer’s instructions (HitHunter cAMP XS+assay, DiscoveRx, Fremont,
CA). The cAMP content was measured as luminescence using an EnVision 2104
Multitable Platereader (PerkinElmer) with a cAMP standard curve for validation.

Enzyme assay. Recombinant protease assays were performed in a MALDI-TOF
timecourse assay. A total of 15 µM peptide hormone underwent enzymatic treat-
ment in vitro at 37 °C in either 50 mM Tris, 0.05% Brij-35, pH 9.0 for NEP assays,
or 50 mM Tris, pH 8.0 for DPP-IV assays. The amount of enzyme used was
optimized to fully digest the non-glycosylated peptide hormone of interest within
1 h of incubation. The final concentrations used in the assays are as follows; NEP
(R&D Systems): 150 pg/μL enzyme for VIP, GAL, and SCT assays. A total of 10 ng/
µL for GLP-1 assays, and 20 ng/μL for PYY assays; DPP-IV (R&D Systems): 4 ng/
µL for VIP assays, 5 ng/µL for GLP-1 assays, and 10 ng/μL for PYY assays. Product
development was evaluated by quenching 1 µL reaction in 40 µL 0.1% TFA after 15
min, 30 min, 60 min, 120 min, and 24 h of reaction time, followed by MALDI-TOF
analysis. A 1:1 mixture of GLP-1Thr5 and GLP-1Thr7 glycosylated variants was used
in this assay due to limited amounts of material.

MALDI-TOF-MS was performed in linear positive mode on a Bruker Autoflex
instrument (Bruker Daltonik GmbH, Bremen, Germany) by mixing the quenched
aliquots with a saturated solution of α-Cyano-4-hydroxycinnamic acid in ACN/
H2O/TFA (70:30:0.1) at a 1:1 ratio on a target steel plate.

CD spectroscopy. CD spectra of 20 µM NPY or NPY glycovariants were obtained
in 15 mM sodium phosphate buffer (pH 7) at 25 °C between 200 and 260 nm at a
scan rate of 50 nm/min. Each spectrum was obtained as an average of 15 accu-
mulations corrected by subtracting the measurements in 15 mM phosphate buffer
alone. Measurements were performed in a Jasco-810 spectropolarimeter equipped
with Peltier temperature control, using a quartz cuvette of 0.1 cm path length.
Alpha-helical content was calculated by the mean residue molar ellipticity at 222
nm as [(−[θ]222+ 3000)/(36,000+ 3000)] × 10079.

Half-life of native and glycosylated GLP-1 isoforms in rats. Male Wistar rats
(≈250 g) were obtained from Janvier (Saint Berthevin Cedex, France) and housed
in pairs under standard conditions with ad libitum access to chow and water. Rats
were acclimatized for at least 1 week before the study. Studies were carried out on
two occasions, matching on each occasion the number of rats in each group, while
at the same time avoiding rats from the same cage receiving the same test solution.
Rat body weight did not differ between treatment groups (343 ± 14.36 g vs. 333.9 ±
15.74 g vs. 353.3 ± 12.57 g, p > 0.359). On the day of study, non-fasted rats were
anesthetized by a subcutaneous injection with Hypnorm/Midazolam (0.3 ml per
100 g body weight) and placed on a heated operating table (37 °C). The abdominal
cavity was opened by a midline incision and a plastic catheter was inserted in the
portal vein. Blood was collected (∼300 µl per timepoint) through the catheter into
ice cold EDTA-coated tubes that were immediately placed one ice. Samples were
collected at timepoint −5, 0, 1, 2, 5, 10, 15, 25, 45, and 60 min. In between samples,
∼200 µL PBS were injected to flush the catheter and replace lost fluid. Total blood
volume withdrawal was ~3 ml, corresponding to ∼15% of the total blood volume
(estimated by: blood volume (ml)= 0.06 × body weight (g) + 0.77)80. Immediately
after the 0 min sample collection, one of three test compounds was injected (20
nmol per kg body weight) into the inferior vena cava through a 26 Gauge needle.
Test compounds consisted of synthetic GLP-1 7–36 amide and two glycosylated
GLP-1Thr7-T and GLP-1Thr7-ST isoforms, prepared in PBS+ 1% Human Serum
Albumin (Millipore) and injection volume was ∼300 µL. Blood was centrifuged
(1650 × g, 4 °C, 15 min) within 30 min after collection, and plasma was transferred
into clean Eppendorf tubes and stored at −20 °C until hormone analysis. At end of
study, rats were sacrificed by diaphragm perforation.

Biochemical measurements. Plasma concentrations of total GLP-1 were mea-
sured using an in-house assay (code: 89390), employing an antibody diluted
1:200,000 specifically targeting the amidated C-terminus of the molecule, thus
measuring both intact GLP-1 (7–36 amide), the primary metabolite (9–36 amide)
and other potential N- or mid-terminally truncated isoforms81. Non-extracted
samples were diluted 500× in assay buffer to stay within the sensitive range of the
assay, and to eliminate potential cross-reaction between the antibodies and non-
GLP-1 related plasma molecules (matrix effect).

Statistical analysis. All parameters and errors were determined with the
GraphPad Prism version 8 software, except half-life determinations that were
performed with the R Studio software.
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Within each independent receptor activation assay, a nonlinear regression
(three parameter logistic fit with Hill coefficient= 1) was fitted to the raw data of
the non-glycosylated agonist, and top (100% receptor activation) and bottom (0%
receptor activation) parameters were used for normalization of all data within that
assay. LogEC50’s of the normalized values were determined by nonlinear
regression (constraining the Hill coefficient= 1 and the top (Emax) to 100%
receptor activation). For Emax determinations, the same analysis was repeated
without constraint on the top parameter.

Half-life was determined individually for each GLP-1 variant using the linear
model command (lm, Concentration∼ Timepoint) on ln-transformed data. Only
data points represented by n > 4 were included in the analysis. To test the difference
in rate constant (k), a multiple linear model (lm) was fitted to the pooled data with
glycoform set as interaction (lm, Concentration∼ Timepoint *Glycoform). The
analysis was repeated while removing the non-glycosylated peptide data to test for
difference between the GLP-1 T and ST forms (***p < 0.001; **p < 0.01; *p < 0.05).

When comparing multiple groups, one-way ANOVA was performed with
Tukey’s post hoc test for testing difference between multiple groups (ns, not
significant; ***p < 0.001; **p < 0.01; *p < 0.05 (two tailed)). Comparison of exactly
two groups was performed with two-tailed Student’s t-test (ns, not significant;
***p < 0.001; **p < 0.01; *p < 0.05 (two tailed)).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MS proteomics data underlying Fig. 1, Table 1, Figs. 2 and 3, and Supplementary
Figs. 1–3 have been deposited to the ProteomeXchange Consortium via the MassIVE
partner repository (massive.ucsd.edu) with the dataset identifier PXD018560. Data are
also available at the MassIVE repository with identifier MSV000085289. Source data are
provided with this paper. All other data are available in the main text, the Supplementary
Materials, or from the corresponding author on reasonable request.
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