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Summary

One of the most interesting phenomena in fluid literature is the occurrence and
evolution of vortex filaments. Some of their examples in the real world are smoke
rings, whirlpools, and tornadoes. For an ideal fluid, there have been several models
and governing equations to describe this evolution; however, due to its simplicity
and geometric properties, the vortex filament equation (VFE) has recently gained
substantial attention. As an approximation of the dynamics of a vortex filament, the
equation first appeared in the work of Da Rios in the beginning of twentieth century
[53]. This model is usually known as the localized induction approximation (LIA).

In this work, we examine the evolution of VFE for regular polygonal curves both
from a numerical and theoretical point of view in the Euclidean as well as hyperbolic
geometry. This has been achieved through four chapters where the first chapter briefly
describes the model, previous work and motivation; the second chapter deals with
the regular polygons with nonzero torsion in the Euclidean setting and in the third
and fourth chapters, we consider the case of regular planar polygons in the hyperbolic
setting. In the following lines, we summarize each of these chapters briefly.

Summary of Chapter 1

The chapter begins with a brief introduction to VFE,

Xt = Xs ∧± Xss, (1)

where X is an arc-length parameterized curve representing vortex filament, s the
arc-length parameter, t time and ∧± is the cross product given by

a ∧± b = (±(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1),

where the positive sign corresponds to the Euclidean case and the negative sign to the
hyperbolic case. The tangent vector T = Xs, satisfies the so-called Schrödinger map
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equation onto the sphere
Tt = T ∧± Tss, (2)

which has a very important property that during its evolution T preserves its size.
Through a transformation given by H. Hasimoto in 1970, (1)–(2) are related to the
cubic nonlinear Schrödinger equation [38].

In this work, we are mainly interested in filaments with corners. The evolution
of curves with one corner otherwise smooth has been understood thoroughly both
from a theoretical and numerical point of view, and the corresponding problem we
refer to as one-corner problem [21, 36]. However, the case of curves with multiple
corners was unaddressed until very recently. In this direction, the evolution of a regular
planar M -sided polygon in the Euclidean case revealed several interesting properties of
VFE. In this work, the corresponding problem will be referred to as planar M -polygon
problem [22]. This chapter briefly describes and highlights the key points of the two
problems. Furthermore, we discuss some exact solutions of VFE in the hyperbolic space
which also helps us in understanding the nature of polygonal curves in that setting.
Finally, we state some recent theoretical results on the evolution of VFE for polygonal
lines that play a very important role in obtaining certain preserved quantities [8, 9].

Summary of Chapter 2

The key ingredients of this chapter are M -polygons with nonzero torsion (helical
M -polygons) in the Euclidean space R3, and using them we show that the helices
and straight lines have the same instability as the one already established for circles
[22, 25]. In this direction, we consider the initial curve as a helical M -polygon which is
characterized by two parameters M and b. The parameter b corresponds to the third
component of the tangent vector T, a 2π-periodic function that takes M values on the
unit sphere S2; moreover, these parameters also determine the curvature angle ρ0 and
torsion angle θ0. At the level of the NLS equation, the nonzero-torsion problem can be
seen as a Galilean transformation of the planar M -polygon problem. Consequently,
using some algebraic computations, the evolution can be described for times that are
rational multiple of 2π/M2, i.e., when t = tpq = (2π/M2)(p/q), with gcd(p, q) = 1,
p ∈ Z, q ∈ N. It is found that the helical M -polygon curve at time tpq is a polygon
with Mq sides (if q odd) or Mq/2 sides (if q even). The presence of torsion causes a
lack of space and time periodicity which gives rise to what we call as Galilean shift
and phase shift. Then, a principle of conservation of energy proved in [8] allows us
to compute the angle ρq between any two adjacent sides of the resulting polygon, so,
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using the generalized quadratic Gauß sums, we can construct the polygonal curve, up
to a rigid movement. Later on, using algebraic techniques as in [23], an expression for
the speed of the center of mass cM is given. With all these ingredients, the algebraic
solution can be computed up to a rotation that remains undetermined.

For the numerical evolution, we use a pseudo-spectral discretization in space and
a fourth-order Runge–Kutta method in time. The symmetries of the tangent vectors
allow us to reduce the computation cost quite effectively. Numerical simulations show
that apart from the formation of new sides, the helical M -polygon moves in the vertical
direction at a constant speed and a rotation about the z-axis. Furthermore, we have
computed the angle between the new sides and speed numerically and have compared
the values with their algebraic counterparts.

We also study the trajectory of a point which is multifractal, but no more planar
as in the case of a regular planar M -polygon. Then, by taking b, such that θ0 = πc/d,
with gcd(c, d) = 1, c, d ∈ N, the periodicity in space can be recovered for large times
i.e., multiples of 2π/M2. For such time period, after removing the vertical height, the
third component of X(0, t) is periodic, and its structure can be compared with the
imaginary part of

ϕc,d(t) =
∑

k∈Ac,d

e2πikt

k
, t ∈

[0, 1/2], if c · d odd,
[0, 1], if c · d even,

where the set Ac,d is defined in (2.47). After applying an appropriate scaling, and
expressing it in terms of its Fourier expansion, we get

lim
M→∞

|n bn,M | =


1/4, if n ∈ Ac,d and c · d odd,
1/2, if n ∈ Ac,d and c · d even,
0, otherwise,

where bn,M are the Fourier coefficients. In the case of the straight lines, the trajectory
X(0, t) in the XY-plane tends to a 2π-periodic closed curve, which can be compared to

ϕM(t) =
∑

k∈AM

e2πik2t

k2 , t ∈ [0, 1],

where the set AM is defined in (2.50). Thus, after removing the vertical height of
X(0, t) and then performing a stereographic projection of the resulting curve, with a
proper orientation and scaling, we approximate its Fourier coefficients cn, to show that,
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for a given M ,

lim
b→1−

|n cn| =

1, if n ∈ AM ,

0, otherwise.

We also examine the behavior of T for rational times tpq, with q ≫ 1, and compare
it with the zero-torsion case. Finally, we briefly describe the numerical relationship
between the helical M -polygon and one-corner problems.

Thus, we see that these new solutions of VFE can be used to illustrate numerically
that smooth solutions such as helices and straight lines share the same instability as
the one already established for circles. This has been accomplished by showing the
existence of variants of the so-called Riemann’s non-differentiable function that are as
close to smooth curves as desired when measured in the right topology. This topology
is motivated by some recent results on the well-posedness of VFE, which proves that
the self-similar solutions of VFE have finite renormalized energy.

Summary of Chapter 3

In this chapter, we concentrate on the regular polygonal curve in the hyperbolic space
where the unit tangent vector T ∈ H2 (hyperbolic 2-space1) and the corresponding
curve X ∈ R1,2 (Minkowski 3-space3). The regular polygonal curve with zero torsion is
characterized by a parameter l > 0 which denotes the hyperbolic angle between any of
its two sides, we will call this curve a planar l-polygon. Let us mention that curves
with one corner and otherwise smooth in the Minkowski 3-space have already been
addressed; however, nothing has been done in the direction of curves with multiple
corners [21, 24]. The main motivation to consider them comes from the Euclidean
case where the evolution of M -polygons reveals many interesting features of VFE as
discussed previously.

One of our primary goals is to compute the evolution of a planar l-polygon both
theoretically and numerically. In this direction, for the algebraic computation, the
relationship of (1)–(2) with the NLS equation of defocussing type turns out to be
very useful where with the help of Galilean invariance, we obtain the evolution at
the rational times. The conservation law mentioned in Chapter 2 holds true in the
hyperbolic case as well, as a result, the mutual angle between any of the two sides of
the new polygon can be determined. With this and the quadratic Gauß sums, T and X
are recovered up to a rigid movement. On the other hand, for the numerical solution,

1See Appendix A
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we work with the coupled system of (1)–(2). Unlike in the Euclidean case, where a
pseudo-spectral discretization in space appears to be very efficient, in the hyperbolic
case, we solve the system using different numerical schemes. Moreover, since the planar
l-polygon has infinite length, to solve it numerically we truncate it and thus, the choice
of boundary conditions becomes very crucial. We have used the following numerical
methods with different boundary treatment:

1. A fourth-order finite difference discretization in space and a fourth-order Runge–
Kutta method in time with

(a) Dirichlet boundary conditions on T,

(b) Dirichlet boundary conditions on X;

2. Chebyshev spectral discretization in space (Dirichlet boundary condition on T)
with

(a) a fourth-order Runge–Kutta method in time,

(b) a second-order semi-implicit backward differentiation formula (SBDF) in
time as in [24],

(c) a second-order SBDF method for the stereographic projection of (2).

Among these schemes, we found that the finite difference scheme with fixed boundary
conditions on T gives the best results both in terms of accuracy and computational cost.
In this way, we verify the numerical evolution by comparing it with the algebraic one.
Remark that at a numerical level, the case of hyperbolic polygons is very different from
its Euclidean counterpart which makes it challenging in the following aspects. First,
the planar l-polygon is open and closed at infinity, therefore, only a part of the polygon
is considered for the numerical evolution. Moreover, due to the exponential growth of
the tangent vectors, working with a large value of l is not possible. In the Euclidean
case, due to the symmetries of the tangent vector T, the numerical computation could
be performed using only one side of the M -polygon, however, in the hyperbolic case,
because of the fixed boundary conditions, all sides of the planar l-polygon need to be
considered which in turn makes it more computationally expensive.

Numerical experiments show that during its evolution the center of mass of the
planar l-polygon propagates in the z-axis direction with a constant speed cl, and follows
a periodic trajectory along the y-axis whereas, it remains stationary along the x-axis.
We compute cl numerically and compare it with an exact expression which is later
obtained in Chapter 4. Moreover, X(0, t), i.e., the time evolution of a single point
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on the planar l-polygon lies in the YZ-plane and has a multifractal structure which
reminds us of the Riemann’s non-differentiable function as observed in the Euclidean
case. As a consequence, we can say that Riemann’s function and its variants appear as
universal objects in the dynamics of singular solutions of (1). Moreover, these universal
objects are, in the right topology, as close as desired to smooth curves as mentioned
previously.

Summary of Chapter 4

In this chapter, we follow the steps of the Euclidean case and try to answer up to
what extent the l-polygon problem in the hyperbolic case is related to the one-corner
problem. In this regard, we give numerical evidence of this relationship between the
two problems and claim that for infinitesimal times the multiple-corner problem can
be seen as a superposition of several one-corner problems. As a consequence, through
the one-corner problem, an exact expression for the speed of the center of mass of
the planar l-polygon is obtained and later, a numerical proof of the same has been
provided. Using the asymptotics of the tangent vector in the one-corner problem, exact
expressions for its second and third components at time zero have been obtained. On
the other hand, with the Laplace transform, using a completely different approach, the
expression for the first component has been recovered as well. Finally, we also compute
the linear momentum for the planar l-polygon numerically and show that its evolution
has an intermittent behavior.



Resumen

Uno de los fenómenos más interesantes en la literatura sobre fluidos es la aparición
y evolución de filamentos de vórtice. Algunos de sus ejemplos en el mundo real
son los anillos de humo, los remolinos y los tornados. Para un fluido ideal, existen
varios modelos y ecuaciones que describen su evolución. Sin embargo, debido a su
simplicidad y propiedades geométricas, la VFE (Vortex Filament Equation) ha llamado
recientemente la atención. Como una aproximación de la dinámica de un filamento
de vórtice, la ecuación apareció por primera vez en el trabajo de Da Rios a principios
del siglo XX [53]. Este modelo generalmente se conoce como LIA (localized induction
approximation).

En este trabajo, examinamos la evolución de VFE para curvas poligonales regulares
tanto desde un punto de vista numérico y teórico en la geometría euclidiana como
hiperbólica. Esto lo hemos elaborado a lo largo de cuatro capítulos donde el primer
capítulo describimos brevemente el modelo, el trabajo previo y la motivación; El
segundo capítulo trata de los polígonos regulares con torsión distinta de cero en la
configuración euclidiana y en los capítulos tercero y cuarto, consideramos el caso de
los polígonos planos regulares en la configuración hiperbólica. En las siguientes líneas,
resumimos brevemente cada uno de estos capítulos.

Resumen del capítulo 1

El capítulo comienza con una breve introducción a la VFE que fue obtenida por primera
vez por L.S. Da Rios en 1905 [53] como

Xt = Xs ∧± Xss, (3)

donde X es una curva parametrizada de longitud de arco que representa el filamento de
vórtice, s el parámetro por longitud de arco, t el tiempo y ∧± es el producto vectorial
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dado por
a ∧± b = (±(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1),

donde el signo positivo corresponde al caso euclidiano y el signo negativo al caso
hiperbólico. El vector tangente T = Xs satisface la llamada Schrödinger map equation
en la esfera

Tt = T ∧± Tss, (4)

que tiene una propiedad importante de esta ecuación es que T conserva su tamaño
durante la evolución. Mediante una transformación dada por H. Hasimoto en 1970,
(3)-(4) se relacionan con la ecuación cúbica no lineal de Schrödinger [38].

En este trabajo, estamos interesados principalmente en filamentos con esquinas. El
one-corner problem, es decir, la evolución de curvas suaves excepto en una esquina,
ha sido estudiada a fondo tanto desde un punto de vista teórico como numérico
[21, 36]. Sin embargo, el caso de las curvas con múltiples esquinas no ha sido abordado
hasta hace muy poco. En esta dirección, la evolución de un polígono plano de M
lados en el caso euclidiano reveló varias propiedades interesantes de la VFE. En
este trabajo, llamaremos a este problema planar M-polygon problem [22]. En este
capítulo se describen brevemente los dos problemas y se destacan sus puntos clave.
Además, estudiamos algunas soluciones exactas de la VFE en el espacio hiperbólico que
también nos ayuda a comprender la naturaleza de las curvas poligonales en ese entorno.
Finalmente, exponemos algunos resultados teóricos recientes sobre la evolución del flujo
binormal para líneas poligonales que juegan un papel muy importante en la obtención
de ciertas cantidades preservadas [8, 9].

Resumen del capítulo 2

Los ingredientes claves de este capítulo son los M -polígonos con torsión no nula (M -
polígonos helicoidales) en el espacio euclidiano R3, y al usarlos mostramos que las hélices
y las líneas rectas también tienen la misma inestabilidad como la que ya se estableció
para los círculos [22, 25]. En esta dirección, consideramos la curva inicial como un
M -polígono helicoidal que se caracteriza por dos parámetros M y b. El parámetro b
corresponde a la tercera componente del vector tangente T, una función 2π-periódica
que toma M valores en S2. Además, estos parámetros también determinan el ángulo
de curvatura ρ0 y el ángulo de torsión θ0. A nivel de la ecuación NLS, el problema
de la torsión no nula puede verse como una transformación galileana del problema
del M -polígono plano. En consecuencia, utilizando algunos cálculos algebraicos, la
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evolución se puede describir en los tiempos t = tpq = (2π/M2)(p/q), con mcd(p, q) = 1,
p ∈ Z, q ∈ N, es decir, en momentos que son múltiplos racionales de 2π/M2. En
concreto, la curva helicoidal M -polígono en el tiempo tpq es un polígono con Mq lados
(si q es impar) o Mq/2 lados (si q es par). La presencia de torsión provoca la falta de
periodicidad en espacio y tiempo, lo que da lugar a lo que llamamos Galilean shift y
phase shift. Entonces, un principio de conservación de energía demostrado en [8] nos
permite calcular el ángulo ρq entre dos lados adyacentes del polígono resultante, y por
lo tanto, utilizando las sumas de Gauß cuadráticas generalizadas, podemos construir
la curva poligonal excepto por un movimiento rígido. Más adelante, usando técnicas
algebraicas como en [23], se da una expresión para la velocidad del centro de masa cM .
Con todos estos ingredientes, la solución algebraica se puede calcular excepto por una
rotación indeterminada.

Para la evolución numérica, utilizamos una discretización pseudo-espectral en
espacio y un método Runge–Kutta de cuarto orden en tiempo. Las simetrías de los
vectores tangentes nos permiten reducir el costo de cálculo de manera bastante efectiva.
Las simulaciones numéricas muestran que, aparte de la formación de nuevos lados,
el M -polígono helicoidal se mueve en dirección vertical a una velocidad constante
y rotando alrededor del eje z. Hemos calculado el ángulo entre los nuevos lados
y la velocidad numéricamente y hemos comparado los valores con sus contrapartes
algebraicas.

También estudiamos la trayectoria de un punto, que es multifractal pero no plana
como en el caso de un M -polígono plano y regular. Además, al tomar b, de modo que
θ0 = πc/d, con gcd(c, d) = 1, c, d ∈ N, la periodicidad en espacio puede recuperarse
para grandes tiempos, es decir, múltiplos de 2π/M2. Además, para dicho período de
tiempo, después de eliminar la altura vertical, la tercera componente de X(0, t) es
periódica, y su estructura se puede comparar con la parte imaginaria de

ϕc,d(t) =
∑

k∈Ac,d

e2πikt

k
, t ∈

[0, 1/2], si c · d impar,
[0, 1], si c · d par,

donde el conjunto Ac,d se define en (2.47). Después de aplicar una escala adecuada y
expresarla en términos de su expansión de Fourier, obtenemos

lim
M→∞

|n bn,M | =


1/4, si n ∈ Ac,d y c · d impar,
1/2, si n ∈ Ac,d y c · d par,
0, en cualquier otro caso,
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donde bn,M son los coeficientes de Fourier. En el caso de las líneas rectas, la trayectoria
X(0, t) en el plano XY tiende a una curva cerrada periódica de 2π, que se puede
comparar con

ϕM(t) =
∑

k∈AM

e2πik2t

k2 , t ∈ [0, 1],

donde el conjunto AM se define en (2.50). Por lo tanto, después de eliminar la altura
vertical de X(0, t) y de realizar una proyección estereográfica de la curva resultante,
con una orientación y escala adecuadas, aproximamos sus coeficientes de Fourier cn

para mostrar que, para un determinado M ,

lim
b→1−

|n cn| =

1, si n ∈ AM ,

0, en cualquier otro caso.

También examinamos el comportamiento de T para tiempos racionales tpq con q ≫ 1
y lo comparamos con el caso de torsión nula. Finalmente, describimos brevemente
la relación numérica entre los problemas de M esquinas con torsión no nula y una
esquina.

Por lo tanto, vemos que estas nuevas soluciones de la VFE se pueden usar para
ilustrar numéricamente que las soluciones suaves como las hélices y las líneas rectas
comparten la misma inestabilidad que la ya establecida para los círculos. Esto se ha
logrado mostrando la existencia de variantes de la función no diferenciable de Riemann
que están tan cerca de las curvas suaves como se desee cuando se mide en la topología
correcta. Esta topología está motivada por algunos resultados recientes que muestran
que la VFE está bien definida y que las soluciones autosemejantes de la VFE tienen
energía renormalizada finita.

Resumen del capítulo 3

En este capítulo, nos concentramos en la curva poligonal regular en el espacio hiperbólico
tal que T in H2 y X in R1,2, donde T es el vector tangente unitario y X la curva. La
curva poligonal regular con torsión nula se caracteriza por un parámetro l > 0 que
denota el ángulo hiperbólico entre cualquiera de sus dos lados. Llamaremos a esta
curva un l-polígono planar.

Mencionemos que las curvas suaves excepto en una esquina en el espacio de
Minkowski X ∈ R1,2 ya se han abordado; sin embargo, no se ha trabajado en la
dirección de curvas con múltiples esquinas [21, 24]. La principal motivación para
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considerarlas proviene del caso euclidiano donde la evolución de los M -polígonos revela
muchas características interesantes de la VFE como se ha comentado anteriormente.

Uno de nuestros objetivos principales es calcular la evolución de un l-polígono plano
tanto teórica como numéricamente. En esta dirección, para el cálculo algebraico, la
relación de (3)-(4) con la ecuación NLS defocussing resulta ser muy útil cuando con
la ayuda de la invariancia galileana obtenemos la evolución en los tiempos racionales.
La ley de conservación mencionada en el Capítulo 2 también es válida en el caso
hiperbólico, y por lo tanto, se puede determinar el ángulo mutuo entre dos lados
cualesquiera. Con esto y las sumas cuadráticas de Gauß, M y X se recuperan excepto
por un movimiento rígido. Por otro lado, para la solución numérica, trabajamos con el
sistema acoplado de (3)-(4).

A diferencia del caso euclidiano, donde una discretización pseudo-espectral en el
espacio parece ser muy eficiente, en el caso hiperbólico resolvemos el sistema usando
diferentes planteamientos numéricos. Además, dado que el l-polígono planar tiene
una longitud infinita, para resolverlo numéricamente lo truncamos y, por lo tanto, la
elección de las condiciones de contorno se vuelve crucial. Hemos utilizado los siguientes
métodos numéricos con un tratamiento de contorno diferente:

1. Una discretización por diferencias finitas de cuarto orden en espacio y un método
Runge–Kutta de cuarto orden tiempo con:

(a) Condición de contorno de Dirichlet en X,

(b) Condición de contorno de Dirichlet en T,

2. Discretización espectral de Chebyshev en el espacio (condición de contorno de
Dirichlet en T) con:

(a) un método de Runge-Kutta de cuarto orden en tiempo,

(b) una fórmula de diferenciación hacia atrás (SBDF) semi-implícita de segundo
orden en tiempo como en [24],

(c) un método SBDF de segundo orden para la proyección estereográfica de (4).

Entre estos planteamientos, vemos que el de diferencias finitas con condiciones de
contorno fijas en T brinda los mejores resultados tanto en términos de precisión como
de eficiencia. De esta forma, verificamos la evolución numérica comparándola con la
algebraica. Observamos que que, a nivel numérico, el caso de los polígonos hiperbólicos
es muy diferente de su contraparte euclidiana, lo que lo convierte en un desafío en
los siguientes aspectos. Primero, el l-polígono planar es abierto abierto y cerrado en
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el infinito, por lo tanto, solo una parte del polígono se considera para la evolución
numérica. Además, debido al crecimiento exponencial de los vectores tangentes, no es
posible trabajar con un valor grande de l. En el caso euclidiano, debido a las simetrías
del vector tangente T, el cálculo numérico podría realizarse utilizando solo un lado
del M -polígono, pero en el caso hiperbólico, debido a las condiciones de contorno
predefinidas, es necesario tener en cuenta todos los lados del l-polígono plano, lo que a
su vez lo hace más costoso desde el punto de vista computacional.

Los experimentos numéricos muestran que durante su evolución el centro de masa
del l-polígono se propaga en la dirección del eje z con una velocidad constante cl y que
sigue una trayectoria periódica a lo largo del eje y, mientras que permanece estacionario
a lo largo el eje x. Calculamos cl numéricamente y lo comparamos con una expresión
exacta que luego se obtiene en el Capítulo 4. Además, al calcular X(0, t), es decir,
la evolución temporal de un solo punto en el l-polígono, notamos que se encuentra
en el plano YZ y tiene una estructura multifractal que nos recuerda la función no
diferenciable de Riemann como se observa en el caso euclidiano. Como consecuencia,
podemos decir que la función de Riemann y sus variantes aparecen como objetos
universales en la dinámica de soluciones singulares de (3). Además, estos objetos
universales están, en la topología correcta, tan cerca como se desee de curvas suaves
como se mencionó anteriormente.

Resumen del Capítulo 4

Siguiendo los pasos del caso euclidiano, en este capítulo tratamos de responder hasta
qué punto el problema del l-polígono en el caso hiperbólico está relacionado con el
problema de una esquina. En este sentido, damos evidencia numérica de esta relación
entre los dos problemas y afirmamos que, en tiempos infinitesimales, el problema de
las esquinas múltiples puede verse como una superposición de varios problemas de una
esquina. Como consecuencia, a través del problema de una esquina se obtiene una
expresión precisa para la velocidad del centro de masa del l-polígono plano y luego se
proporciona una prueba numérica del mismo.

Usando las asintóticas del vector tangente en el problema de una esquina, se
han obtenido expresiones exactas para sus componentes segunda y tercera en tiempo
cero. Por otro lado, con la transformación de Laplace, la expresión para el primer
componente también se ha recuperado. Finalmente, también calculamos el momento
lineal para el l-polígono planar numéricamente y mostramos que su evolución tiene un
comportamiento intermitente.



Chapter 1

Introduction

The primary goal of this chapter is to provide the key ingredients which help us in
introducing the main theme of the memoir. This has been achieved by introducing the
vortex filament equation, its properties, self-similar solutions, and recent work on the
corner shaped solutions. Some explicit solutions in the Minkowski space are considered
as well which will be one of the main objects of interest for us. Finally, we state some
recent theoretical results on polygonal lines whose application will play an important
role in this work.

1.1 Vortex filament equation

In this section, we discuss about the physical meaning behind the origin of the vortex
filament equation, its equivalent forms and their properties.

Given a three-dimensional ideal (non-viscous, incompressible) fluid with velocity
u and vorticity ω (curl of u), a vortex tube is a tubular region of the fluid where
the vorticity is very high compared to its surroundings, and a vortex filament is a
vortex tube with an infinitesimal cross-section. In other words, a vortex filament is an
imaginary spatial curve that induces a rotary flow in the space through which it passes.
The ability of the filament to induce circulation around it depends on its strength
which we denote as Γ.

We represent the vortex filament by an arc-length parameterized curve X(s, t) in
R3, where s is the arc-length parameter and t time. Assuming the curvature κ to be
nonzero and torsion τ , to every point of the curve, we can associate the tangent T,
normal n and binormal vector b which form an orthonormal basis and satisfy the
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Frenet–Serret system 
T
n
b


s

=


0 κ 0

−κ 0 τ

0 −τ 0




T
n
b

 . (1.1)

We consider the geometric flow

Xt = Xs ∧+ Xss, (1.2)

where ∧+ is the cross product in the Euclidean space. The flow was first obtained by
L.S. Da Rios in 1906 as a model to describe the flow of a vortex filament that evolves
according to Euler equations [53]. This model is known as the vortex filament equation
(VFE). Moreover, by using the definition of tangent vector T = Xs and (1.1), we can
express the flow as

Xt = κb, (1.3)

which implies that the filament curve moves in time in the direction of the binormal
vector with speed κ. Equation (1.3) is also known as the binormal equation. In order
to describe the model, since a vortex filament can be closed or extend to infinity in
both directions, for simplicity we take s ∈ R. Suppose that the vorticity of the given
fluid is supported along the filament; in other words, ω is a singular vectorial measure

ω = ΓTds,

where the circulation Γ is constant along the filament. Thus, using the Biot–Savart
integral, at any point P located outside of the filament, velocity u can be given by

u(P) = Γ
4π

∫ ∞

−∞

X(s, ·) − P
∥X(s, ·) − P∥3 ∧+ T(s, ·) ds, (1.4)

where ∥ · ∥ denotes the Euclidean distance.

Observe that the Biot–Savart integral is well-defined as long as the point P is not
on the filament, thus to find a law for the evolution of the filament, one identifies the
velocity of a point Q on the filament with that of the fluid at that point. However,
the main idea is to calculate the velocity of the filament as a limit of u(P) when P
approaches the filament. In this regard, in [53] a truncated Taylor expansion of X(s, ·)
at the point Q was considered. Note that since this approximation takes in account
only the parts of filament close to the given point Q, the binormal flow is also known
as the localized induction approximation (LIA) in the context of vortex dynamics.
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The strong assumptions in the derivation of the binormal flow makes this model less
useful from a physical point of view; however, like the Euler equations, the binormal
flow preserves the following quantities [55]:

(i) kinetic energy:
∫
κ2,

(ii) linear momentum or fluid impulse: 1
2
∫

X ∧+ ω,

(iii) angular momentum: 1
3
∫

X ∧+ (X ∧+ ω),

(iv) helicity:
∫
κ2τ ,

(v) total torsion:
∫
τ .

On the other hand, the binormal flow captures some of the well-known examples
of vortex filaments. For instance, some of its explicit solutions are the circle, helix,
and a straight line. The last case corresponds to the line vortex, which does not
move [11, p. 93], and is related to tornadoes or bathtub vortices. As for the circle, it
moves normal to its plane with a constant velocity given by the inverse of the radius.
The direction of propagation is determined by the orientation given to the circle; this
example represents the smoke rings that are generated in real fluids [11, p. 522]. Finally,
during its evolution, the helix does not change its shape either and depending on the
orientation, its movement involves a translation and a rotation about its axis. Vortices
with a helical shape are easy to generate; for example, they can be seen behind the
tips of the blades of a propeller. In fact, there are explicit solutions of Euler equations
that have a helical shape [37, 52].

Differentiating (1.2) with respect to s, yields the following equation for T:

Tt = T ∧+ Tss, (1.5)

which is known as the Schrödinger map flow onto the sphere. Equation (1.5) is a special
case of the Landau–Lifshitz equation for ferromagnetism and one of its important
properties is that during its evolution the norm of T remains preserved, i.e.,

1
2
d

dt
(T ◦+ T) = T ◦+ Tt = T ◦+ (T ∧+ Tss) = 0,

where ◦+ is the Euclidean inner product, hence, the arc-length parameterization is
preserved. In fact, this is considered as one of the drawbacks as an approximation of
(1.4). However, after a scaling, one can write T as a unit length vector. By writing it
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in a more geometric way, i.e.,
Tt = JDsTs, (1.6)

where D is the covariant derivative, J is the complex structure of the sphere, (1.5) can
be generalized to more general domains and images [41]. In the following lines, we will
discuss some of them.

1.1.1 The binormal flow in the Minkowski space

Consider the Minkowski 3-space1 R1,2 = {(x1, x2, x3) : ds2 = −dx2
1 + dx2

2 + dx2
3} and

the cross product ∧− defined as

a ∧− b = (−(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1), a,b ∈ R1,2. (1.7)

Then, the equation of T is
Tt = T ∧− Tss, (1.8)

and, equivalently, X ∈ R1,2 solves

Xt = Xs ∧− Xss. (1.9)

As seen before, during its evolution T preserves its magnitude and we have

∥T∥2
0 = (T ◦− T) = ±1, (1.10)

where the Minkowski pseudo-inner product

a ◦− b = −a1b1 + a2b2 + a3b3,

defines the Minkowski norm2 ∥ · ∥0. Thus, in (1.10)

1. the negative sign implies that T belongs to H2 = {(x1, x2, x3) : −x2
1 + x2

2 + x2
3 =

−1, x1 > 0}, i.e., the hyperbolic unit sphere and the corresponding curve X is
time-like. In this case, the Schrödinger flow of maps (1.8) is called the Minkowski
Heisenberg ferromagnet model;

2. the positive sign implies that T belongs to S1,1 = {(x1, x2, x3) : −x2
1+x2

2+x2
3 = 1},

also known as the de Sitter 2-space in general relativity. The corresponding curve
1See Appendix A
2Note that, ∥ · ∥0 is a pseudo-norm, however, with some abuse of notation, in this work, we call it

Minkowski norm.
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X is space-like and the Schrödinger flow of maps (1.8) is called the heat Heisenberg
model [27–29].

Note that for T ∈ H2, i.e., for an arc-length parameterized time-like curve X with
generalized curvature κ and torsion τ , the Frenet–Serret frame is given by


T
n
b


s

=


0 κ 0
κ 0 τ

0 −τ 0




T
n
b

 , (1.11)

where T◦− T = −1, n◦− n = 1, b◦− b = 1, T◦− n = T◦− b = n◦− b = 0, T∧− n = b,
n ∧− b = −T, T ∧− b = −n, and the normal n and binormal b vectors are space-like
[45].

In this work, we concentrate only on the cases when T lies in S2 and H2. Thus, for
the ease of notation, we combine and write the equation for X as

Xt = Xs ∧± Xss, (1.12)

and that for T as
Tt = T ∧± Tss, (1.13)

where the positive sign corresponds to (1.2), (1.5), and the negative sign to (1.8), (1.9).

1.1.2 The Hasimoto transformation

There is a natural connection between (1.12)–(1.13) and the nonlinear Schrödinger
equation (NLS). In [38], Hasimoto established this relationship by defining the filament
function

ψ(s, t) = κ(s, t)ei
∫ s

0 τ(s′,t)ds′
, (1.14)

and proving that such a ψ solves the NLS equation:

iψt + ψss ±
(1

2(|ψ|2 + A(t))
)
ψ = 0, (1.15)

with A(t) a time dependent real valued function which depends on the values of κ(s, t),
τ(s, t) at s = 0. Thus, the Euclidean case (positive sign) corresponds to a focusing
type and the hyperbolic case (negative sign) to the defocussing type NLS equation.
Note that by using

Ψ(s, t) = ψ(s, t)e
i
2
∫ t

A(t′)dt′
,
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one can get rid of A(t) in (1.15) and obtain

iΨt + Ψss ± 1
2 |Ψ|2Ψ = 0, (1.16)

a completely integrable system which exhibits a soliton behavior. Later in [44] it was
shown that the Heisenberg ferromagnet model (HF model) is equivalent to the NLS
equation obtained above through the Hasimoto transformation.

Let us mention that in this thesis, we will be mainly working with polygonal
curves, as a result, in order to avoid issues related to vanishing curvature, it’s more
convenient to work with a generalized version of the Frenet–Serret frame3, formed by
the orthonormal vectors T, e1 and e2

T
e1

e2


s

=


0 α β

∓α 0 0
∓β 0 0

 .


T
e1

e2

 , (1.17)

where T ∧± e1 = e2, e1 ∧± e2 = ±T and T ∧± e2 = −e1,T ◦± T = ±1, e1 ◦± e1 = 1 =
e2 ◦± e2. Moreover, under this setting, the filament function can be expressed as [22]

ψ ≡ α + iβ, (1.18)

where
α(s, t) = κ(s, t) cos

( ∫ s

0
τ(ξ, t)dξ

)
,

β(s, t) = κ(s, t) sin
( ∫ s

0
τ(ξ, t)dξ

)
.

(1.19)

It’s easy to check that the new definition of ψ also satisfies (1.15) 3.
Thanks to the relationship between (1.12)–(1.13) and (1.15), for a given time t,

from ψ(s, t), we can obtain T(s, t) and X(s, t) up to a rigid movement, as a result, the
main idea is to work with (1.15). Note that, if we define

ψ̃ ≡ eiλψ = eiλ(α + iβ), λ ∈ R,

and integrate (1.17) for ψ̃, the corresponding solution is {T̃, ẽ1, ẽ2}, where T̃ ≡ T, and
ẽ1 + iẽ2 ≡ eiλ(e1 + ie2), thus, T remains the same.

The Schrödinger map equation can also be transformed to a nonlinear Schrödinger
equation by using a stereographic projection of T ≡ (T1, T2, T3)T 4 onto the complex

3See Appendix A
4Note that, along this work, we have taken all the vectors in the column form.
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plane C [10]. In this regard, we define

z = x+ iy ≡ (x, y) ≡
(

T2

1 + T1
,

T3

1 + T1

)
, (1.20)

where T is projected from (−1, 0, 0)T into R2, identifying R2 with C. In the Euclidean
case, since T ∈ S2, there is a point on the sphere, (−1, 0, 0)T , corresponding to which
there is no point in C, as a result, there is a bijection between S2 − {(−1, 0, 0)T } and
R2. On the other hand, in the hyperbolic case, T ∈ H2, there is a bijection between D
and H2, where

D = {(x, y) ∈ R2 | x2 + y2 < 1},

is also known as Poincaré disc. Consequently, the tangent vector can be recovered by

T = (T1, T2, T3)T ≡
(

1 ∓ x2 ∓ y2

1 ± x2 ± y2 ,
2x

1 ± x2 ± y2 ,
2y

1 ± x2 ± y2

)T

.

Next, by differentiating (1.20) and using (1.13), one can arrive at the following nonlinear
Schrödinger equation

zt − izss ± 2iz̄z2
s

1 ± |z|2
= 0.

We will see later in Chapter 3 that this form can also be used for the numerical
evolution of (1.8).

1.2 One-corner problem

As mentioned previously, our main object of interests in this work are curves with
multiple corners. In that direction, it becomes natural to address first the case of curves
with one corner, which appear in the evolution of self-similar solutions of (1.12)–(1.13).

Apart from the explicit solutions of (1.12)–(1.13), another important class is the
one of self-similar solutions which are characterized by one parameter and for any time
t > 0, s ∈ R, are given by

X(s, t) =
√
tX

(
s√
t
, 1
)
,

that corresponds to the one-parameter family curve with curvature and torsion as

κ(s, t) = c0/
√
t, τ(s, t) = s/2t, (1.21)
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respectively. One of the interesting properties of these solutions is that they develop a
corner-shaped singularity in finite time [21, 36]. Here, depending on the underlying
framework, X can be a curve in R3 or R1,2 5. Note that the parameter c0 is the
curvature at time t = 1. Thus, for any time t > 0, using Frenet–Serret frame (1.1) or
(1.11) with (1.21) and the following initial conditions

X(0, t) = 2c0
√
t(0, 0, 1)T ,

T(0, t) = (1, 0, 0)T ,

n(0, t) = (0, 1, 0)T ,

b(0, t) = (0, 0, 1)T ,

(1.22)

the basis vectors T, n, b and hence, the curve X can be obtained up to a rigid
movement. And for c0 = 0, we define X0(s, t) = s(1, 0, 0)T .

As t tends to zero, the formation of singularity happens at s = 0 and the corre-
sponding curve X approaches to two non-parallel straight lines forming an (Euclidean
or time-like) angle ρ0 at the corner. Thus, at t = 0,

X(s, 0) =

A1s, s ≤ 0,
A2s, s ≥ 0

, T(s, 0) =

A1, s < 0,
A2, s > 0,

(1.23)

where Aj satisfy Aj ◦± Aj = ±1, j = 1, 2 and are given as

A1 = (A1
1,−A1

2,−A1
3)T , A2 = (A2

1, A
2
2, A

2
3)T . (1.24)

Let us also recall the very useful relationship between the parameter c0 and the first
component of Aj, i.e.,

A1
1 = A2

1 = e±c2
0π/2. (1.25)

which was obtained in [36] for the Euclidean case and in [21] for the hyperbolic case
and it was also shown that for t > 0, the solution curve X is C∞. Furthermore, (1.25)
also allows us to express the parameter c0 in terms of the angle ρ0:

c0 =


[(2/π) ln (cosh (ρ0/2))]1/2 , if Aj ◦− Aj = −1, j = 1, 2,

[−(2/π) ln (cos (ρ0/2))]1/2 , if Aj ◦+ Aj = 1, j = 1, 2.
(1.26)

5In this work, unlike in [21], instead of R2,1, we work with R1,2 and accordingly change the rest of
expressions. See Appendix A for the difference in their definitions.
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One can note that at the level of NLS equation, from (1.14) and (1.21),

ψ(s, t) = c0√
t
eis2/4t, (1.27)

is the solution of (1.15) with A(t) = −c2
0/t and ψ(s, 0) =

√
ic0δ, where δ is the Dirac

distribution. Moreover, in this setting, the L2 norm can be understood as the kinetic
energy. As |ψ(s, t)|2 = c2

0/t, ψ is not in L2(R), i.e., have infinite energy. However, by
using a pseudo conformal transformation it was shown that the solutions have finite
energy. This fact allows authors to prove some stability results and find adequate
function spaces so that the corresponding problem is well-posed. This work has been
carried out in a series of papers by Banica and Vega [3–6]. In other words, the existence
and uniqueness of the initial value problem, i.e., (1.2) with X(s, 0) as in (1.23) is proved
which also shows that there is a unique way in which the solution can be extended
in a continuous way for t ≤ 0 within the set of self-similar solutions [6, see Theorem
1.2, 1.3]. More concretely, the velocity at the point where the corner is located is
determined by the self-similar solution that at time zero has a corner with the same
angle. In fact, in [8] it was proved that there exists just one self-similar solution with
this property.

On the other hand, the numerical treatment of the problem was first addressed
in [15], and later a careful study for both Euclidean and Hyperbolic cases was done
in [24], where using appropriate boundary conditions, the formation of corner-shaped
singularity was captured numerically. Moreover, for the forward problem, i.e., starting
with a corner-shaped initial datum, the self-similar solutions were also recovered
numerically. It was found that due to the exponential growth of the first component
A1, the hyperbolic case becomes difficult to deal at the numerical level for all values of
c0; however, for smaller values, there was almost no difference between the two. In the
rest of this work, we will refer to this problem as one-corner problem.

1.3 Planar M-polygon problem

Although the one-corner problem has been well-addressed, a multiple-corner curve
as an initial datum has received attention very recently. The numerical evolution of
the (1.2), (1.5) for a polygonal initial curve was first considered in [40] where it was
observed that a unit square propagates in the vertical direction in such a way that
at later times also it is a polygon with different number of sides. In particular, at a
certain time, it reappears but with the axes turned by π/4-angle with respect to the
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initial configuration. For the numerical simulations, the method proposed in [15] was
used where (1.5) is discretized using Crank–Nicolson type scheme, and the curve is
recovered by integration with respect to the arc-length parameter.

Later, in [22], a planar M -polygon, i.e., a regular planar polygonal curve with M

sides was taken as an initial datum and it was shown that at rational times of the form
tpq = (2π/M2)(p/q), gcd(p, q) = 1, p ∈ Z, q ∈ N, depending on q, a regular polygonal
curve with multiple sides appears again. To be precise, if q is odd, the new polygon
has Mq sides, and for q even, it has Mq/2 sides, and during its evolution, the planar
M -polygon also moves in the vertical direction with a constant speed cM . For the
numerical simulations, a pseudo-spectral discretization in space with a fourth-order
Runge–Kutta method in time was employed. The results thus obtained not only verify
the observations made in [40], but also reveal several interesting properties of the
binormal flow. Some of these we will discuss in the following lines.

In the absence of torsion, at the level of NLS equation, the initial condition is given
by

ψ(s, 0) = 2π
M

∞∑
k=−∞

δ

(
s− 2πk

M

)
, (1.28)

where the coefficients 2π/M are obtained using the fact that the planar M -polygon is
closed.

Observe that, (1.28) satisfies eiMksψ(s, 0) = ψ(s, 0), for all k ∈ Z, as a result,
using the Galilean symmetry of (1.15) which says that if ψ is a solution, then so
is ψ̃n(s, t) = eins−in2tψ(s − 2nt, t), for all n, t ∈ R. If we choose the initial datum
such that ψ̃n(s, 0) = ψ(s, 0), i.e., ψ(s, 0) = einsψ(s, 0), for all n ∈ R, and if the
solution is unique, then ψ(s, t) = eins−in2tψ(s − 2nt, t), for all n, t ∈ R. Hence,
ψ(s, t) = eiMks−i(Mk)2tψ(s−2Mkt, t), for all k ∈ Z. One of the important consequences
of this invariance is that

ψ̂(k, t) = e−i(Mk)2tψ̂(0, t), ∀k ∈ Z,

which implies that
ψ(s, t) = ψ̂(0, t)

∞∑
k=−∞

e−(Mk)2t+iMks, (1.29)

and
|ψ̂(k, t)|2 = |ψ̂(0, t)|2.

Moreover, if ψ(s, t) ∈ L2([0, 2π)), then from Parseval’s theorem, ∑∞
k=−∞ |ψ̂(k, t)|2 < ∞,

which would imply ψ̂(0, t) and thus, ψ(s, t) is equal to zero. At this point recall that, in
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the one-corner problem ψ was not in L2, but in L2
loc; however, in the current scenario,

none of them is the case. However, by assuming uniqueness and considering only the
rational times tpq, through some algebraic techniques, one obtains

ψ(s, tpq) = 2π
Mq

ψ̂(0, tpq)
∞∑

k=−∞

q−1∑
m=0

G(−p,m, q) δ
(
s− 2πk

M
− 2πm

Mq

)
, (1.30)

where
G(a, b, c) =

c−1∑
l=0

e2πi(al2+bl)/c,

is the generalized quadratic Gauß sum, and ψ̂(0, tpq) that can be assumed to be real, is
the mean of ψ(s, tpq) over a period

ψ̂(0, tpq) = M

2π

∫ 2π/M

0
ψ(s, tpq) ds.

By using the properties of the Gauß sum (see [22, Appendix]), we can write

G(−p,m, q) =


√
qeiθm , if q odd ,

√
2qeiθm , if q even ∧ q/2 ≡ m mod 2,

0, if q even ∧ q/2 ̸≡ m mod 2,

(1.31)

for a certain angle θm that depends on m (and also p, q). Furthermore, by defining

ρm =



2π
M

√
q
ψ̂(0, tpq), if q odd ,

2π

M
√

q/2
ψ̂(0, tpq), if q even ∧ q/2 ≡ m mod 2,

0, if q even ∧ q/2 ̸≡ m mod 2,

(1.32)

(1.30) can be expressed as

ψ(s, tpq) =
∞∑

k=−∞

q−1∑
m=0

ρme
iθmδ

(
s− 2πk

M
− 2πm

Mq

)
. (1.33)

The above expression shows that at any rational time tpq, there are Mq new, equally
spaced Dirac deltas, which corresponds to Mq sides of the newly formed regular
polygonal curve. However, except for initial, half and final time period, i.e., at t = 0,
t1,2, t1,1, the coefficients multiplying Dirac deltas are not real, as a result, ψ(s, tpq) does
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not correspond to a planar polygonal at those times. Finally, when q is even, half of
the ρm are zero, as a result, there are only Mq/2 sides.

Integrating the Frenet–Serret frame using ψ(s, tpq), yields a rotation with an angle
ρm about an axis determined by θm, which in turn gives T and hence, the curve X up
to a rigid movement. By using the fact that the corresponding polygon is closed, the
angle ρm ≡ ρ can be obtained as

ρ =

2 arccos(cos1/q(π/M)), if q odd,
2 arccos(cos2/q(π/M)), if q even.

(1.34)

In the case of a planar M -polygon (from now on, referred to as planar M-polygon
problem), ψ(s, tpq) and T are periodic in time with a period 2π/M2.

Note that taking ψ̂(0, t) = 1, in (1.29) gives

ψ(s, t) =
∞∑

k=−∞
e−(Mk)2t+iMks = θ

(
M

2π ,
M2

π

)
, (1.35)

where θ(s, t) is the Jacobi theta function, and it is precisely the solution of the free
Schrödinger equation, i.e., ψt = iψss for initial data given by (1.28). On the other hand,
ψ̂(0, tpq) = 1 in (1.30) gives the mathematical expression for the well-known optical
phenomenon called Talbot effect [58]. Furthermore, in [12, 13], the authors used free
Schrödinger equation to model the Talbot effect and showed that at rational times the
solution can be obtained as a finite overlapping of translates of the initial datum, while
at irrational times the images have a fractal profile. The latter was also observed in
the case of planar M -polygon problem where the numerical simulation showed that the
tangent vector T has a fractal-like structure for the irrational times (see [22, Figure
8]). Let us mention that the fractal structures were also observed in [50] where using
(1.2), (1.5), an aortic valve model was proposed that described the apparent fractal
character of the valve’s fiber architecture. The fractal dimension of those curves was
calculated numerically in [57]. Furthermore, the axis-switching phenomenon observed
in the real fluids appears at the level of the curve X in the planar M -polygon case as
well. For instance, in Figure 1.1, we have taken M = 3, and on the right hand side, we
have plotted the curve X(s, t) at t = 0, t1,2, t1,1. The phenomenon is clearly visible at
t = t1,2 (in red) which has also been well observed in the evolution of a vortex filament
created in a lab experiment Figure 1.1 [42](see also [34, Figure 6], [35, Figure 10]).
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Figure 1.1 Vortex filaments in a lab experiment [42] and an equilateral triangle at time
initial, half and final time. The axis-switching phenomenon is clearly visible in both
the cases.

Hence, we see that the evolution of M -sided polygon reveals many fascinating
properties of VFE. Another such is the trajectory of a single point, i.e, X(0, t) which
we discuss in the following lines.

Trajectory of X(0, t)

Taking into account the symmetries of the planar M -polygon, it is easy to see that, for
a given M , the trajectory of a single point X(0, t) lies in a plane. Hence, by projecting
it onto C, we define

z̃(t) = ∥(X1(0, t), X2(0, t))∥ + iX3(0, t), t ∈ [0, 2π/M2],

where ∥ · ∥ is the Euclidean norm. Moreover, if we remove the constant vertical
movement,

z̃M(t) = z(t) − icM t, t ∈ [0, 2π/M2],

then the resulting curve is closed, 2π/M2-periodic and can be seen as a nonlinear
version of

ϕ(t) =
∞∑

k=1

eπik2t

iπk2 , t ∈ [0, 2]. (1.36)

Figure 1.2 shows z̃(t) (left) and z̃M (t) (right) for M = 3, and the latter can be compared
to Figure 3.15 (in red). The function ϕ(t) was used in [30] where its real part, i.e.,

f(t) =
∞∑

k=1

sin(πk2t)
πk2 , t ∈ [0, 2],

also known as Riemann’s non-differentiable function was studied. This function is
nowhere differentiable except at rational points t = p/q with p, q both odd. The proof
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of the multifractality of Riemann’s function is given in [39], and in [18], some other
relevant trigonometric sums are considered. However, in [22], using an appropriate
scaling that depends on M , a strong numerical evidence is given to show that, as M
tends to infinity, z̃M converges to ϕ. Furthermore, we redefine

ϕ(t) =
∞∑

k=1

e2πik2t

k2 , t ∈ [0, 1], (1.37)

and compute the Fourier coefficients ãn,M of the scaled version of z̃M , where the scaling
is obtained by comparing it with the new definition of ϕ. Hence, it can be concluded
that

lim
M→∞

|n ãn,M | =

1, if n = k2, k ∈ N,

0, otherwise;

where N = {1, 2, . . .}. In this work, we will call the plot of nãn,M as a function of n as
a fingerprint.

Figure 1.2 Left: z̃(t) and right: z̃M(t) for t ∈ [0, 2π/M2],M = 3.

Having learned about the one-corner and planar M -polygon problems, one natural
question to ask is up to what extent the two are related. This was addressed in [23]
where it was shown that at infinitesimal times, the planar M -polygon problem can be
explained as a superposition of M one-corner problems. Besides that, this relationship
turns out to have deeper implications, for instance, it allows computing the speed of
the center of mass of the planar M -polygon theoretically using the one-corner problem.

Let us conclude this section by commenting on the linear momentum of curve X
which is also called impulse in the fluid literature. As X is a closed curve, during the
evolution its linear momentum is preserved [52]. However, in the case of self-similar
solutions of the one-corner problem, it was found that this quantity is not preserved
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[7]. Later in [23], for the planar M -polygon problem, it was shown numerically that
these observations hold true and the second component of the linear momentum shows
an intermittent behavior whose shape can be compared to the Riemann’s function.

1.4 Some exact solutions in the Minkowski space

This section talks about some of the smooth solutions of (1.8)–(1.9) in the Minkowski
space which help us in understanding the corresponding polygonal curves.

In Section 1.1, we saw that the curve X ∈ R1,2 can be time-like or space-like;
however, in the following lines, we will consider the binormal motion of only time-like
curves.

o
1

x

y

z

a

b

Figure 1.3 The hyperbolic 2-space H2 and parameters a and b such that a2 − b2 = 1.
The red (blue) curves are the unit hyperbolas formed by the intersection of plane
z = ±b (z = 0) with H2.

A helix with a constant curvature and torsion converges to a circle as the torsion tends
to zero and to a straight line when the curvature goes to zero. In the Euclidean case,
the initial curve X can be chosen such that its shape (curvature, torsion) is determined
by the value of T3, i.e., the third component of the tangent vector T ∈ S2. For example,
see Figure 2.1, where T3 denoted as b ∈ [−1, 1], corresponds to the torsion of the
smooth curve X such that a2 + b2 = 1, with a as its curvature. Note that, choosing
the third component is arbitrary and since the cross product ∧+ is invariant under the
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o

1

x

y
z

b

a

Figure 1.4 The hyperbolic 2-space H2 and parameters a and b > 1 such that b2 −a2 = 1.

Euclidean isometries, the torsion can be associated with the first or second component
as well.

Proceeding with a similar reasoning, when T ∈ H2, we note that due to the
isometries in the Minkowski space, the torsion can be introduced in two different ways.
Thus, characterized by the parameter b which corresponds to the initial value of the
third component of the time-like vector T, we write the most general form of a helix
with a fixed axis as

X(s, t) = a sinh(s)x(t) + a cosh(s)y(t) + bsz0 + β(t)z0, a
2 − b2 = 1, (1.38)

where s is the arc-length parameter and both a and b are positive. Here, x(t), y(t) are
unit vectors which depend on time and make an orthonormal basis with the constant
unit vector z0 being the fixed axis of the helix, and β(t) is yet to be determined. By
substituting X(s, t) in (1.9), we obtain

dx
dt

= by,
dy
dt

= bx,
dβ

dt
= a2,

which after solving gives


x(t) = cosh(bt)x0 + sinh(bt)y0,

y(t) = sinh(bt)x0 + cosh(bt)y0,

β(t) = a2t,

(1.39)
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with x(0) = x0, y(0) = y0. As a result, we get

X(s, t) = a sinh(s+ bt)x0 + a cosh(s+ bt)y0 + (bs+ a2t)z0, (1.40)

and the tangent vector

T(s, t) = a cosh(s+ bt)x0 + a sinh(s+ bt)y0 + bz0, a
2 − b2 = 1. (1.41)

Figure 1.3 shows T at t = 0 for b = 0 (blue) and b ̸= 0, a > 0 (red). It is important to
mention that (1.39) and thus, (1.40) imply that the evolution of X is composed of two
different movements: a vertical translation along its axis with a speed 1 + b2, and a
rotation of angle b about its space-like axis. Furthermore, the evolution of T consists
of the same angular movement as in the case of X while its third component remains
fixed. Note that the limiting case b = 0 leads to the planar curve X, a hyperbola,
which moves in a vertical direction along its axis with unit speed. On the other hand,
as b goes to infinity, both angular velocity and vertical speed will tend to infinity as
well. As in [60], we call the curve X in (1.40) at t = 0, a hyperbolic helix .

On the other hand, when the parameter b corresponds to the initial value of the
first component of the time-like vector T, the most general form of a helix with a fixed
axis can be written as

X(s, t) = bsx0 + β(t)x0 + a sin(s)y(t) − a cos(s)z(t), b2 − a2 = 1, (1.42)

where both a and b are positive, y(t), z(t) are time dependent unit vectors that make
an orthonormal basis with a constant unit vector x0, i.e., the fixed axis of helix, and
β(t) is yet to be determined. As before, substitution of X(s, t) in (1.9) yields

dy
dt

= −bz, dz
dt

= by,
dβ

dt
= −a2,

which after solving with y(0) = y0, z(0) = z0, gives

X(s, t) = (bs− a2t)x0 + a sin(s− bt)y0 − a cos(s− bt)z0. (1.43)

The corresponding tangent vector

T(s, t) = bx0 + a cos(s− bt)y0 + a sin(s− bt)z0, (1.44)
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where b2 − a2 = 1, b > 1; Figure 1.4 shows T at t = 0. Observe that (1.43) imply
that the evolution of X is composed of two different movements: a translation in the
downward direction along the axis with a speed b2 − 1, and a negative rotation of angle
b about its time-like axis. Furthermore, the evolution of T consists of the same angular
movement as in the case of X while its first component remains fixed. Note that the
limiting case b = 1 leads to the stationary solution straight line and the corresponding
tangent vector will lie on the south pole of the hyperpoloid. On the other hand, as b
goes to infinity, both angular velocity and vertical speed will tend to infinity as well.
In this work, we denote the curve X in (1.43) at t = 0, by a circular helix [60].

1.5 Some existence and uniqueness results

In this section, we discuss some recent results on the well-posedness of VFE for certain
kind of initial data. Let us first mention that the existence results for curves with
curvature and torsion in Sobolev spaces of higher order were given in [38, 43, 47]; later,
in the framework of a weak formulation of the binormal flow, some existence results
for currents were obtained in [40]. Furthermore, the well-posedness of the one-corner
problem, i.e., when the initial data has just one corner and is otherwise smooth, has
already been discussed in Section 1.2.

In this work, we are interested in filament curves with corners which implies delta
functions as the initial data for (1.15) or piecewise continuous functions as the initial
data for (1.5). Therefore, we work with data in critical spaces and the problem turns
out to be much more involved. Recently, it has been proved that, for polygonal lines
that, at any given time, are asymptotically close at infinity to two straight lines, the
initial value problem is well-posed in an appropriate topology [8]. In other words, a
class of smooth solutions of the binormal flow that generates several corners in finite
time has been proposed. In the following lines, we summarize the results obtained
there.

The main idea is to consider a polygonal line with corners located at integers and
curvature angles θk’s. Then, by choosing the coefficients such that some moments of
the sequence {αk} are squared integrable, a strong smooth solution of VFE for t ̸= 0
which is a weak solution for all t, has been constructed. In particular, consider an
initial datum as a sum of Dirac masses

u(0) =
∑
k∈Z

αkδk,
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with coefficients in weighted summation spaces, i.e., ∥αk∥lp,s < ∞, where

∥αk∥lp,s :=
∑
k∈Z

(1 + |k|)ps|αk|p,

and
û(0)(ξ) =

∑
k∈Z

αke
−ikξ,

is 2π-periodic. Moreover, {αk} ∈ l2,s implies that û(0) ∈ Hs(0, 2π), and we define

Hs
pF := {u ∈ S ′(R), û(ξ + 2π) = û(ξ), û ∈ Hs(0, 2π)}

⊂ {u ∈ S ′(R), {∥û∥Hs(2πj,2π(j+1))}j ∈ l∞},

and
∥u∥Hs

pF
= ∥û∥Hs(0,2π).

Thus, the following results are obtained in [8].

Theorem 1 (Evolution of polygonal lines through the binormal flow). Let X(s, 0)
be an arc-length parameterized polygonal line with corners located at s ∈ Z, with the
sequence of angles θn ∈ (0, π) such that the sequence defined by

√√√√− 2
π

ln
(

sin
(
θn

2

))
, (1.45)

belongs to l2,3. Then there exists X(s, t), smooth solution of the binormal flow (1.3) on
t ̸= 0 and solution of (1.3) in the weak sense on R, with

|X(s, t) − X(s, 0)| ≤ C
√
t, ∀s ∈ R, |t| ≤ 1.

Theorem 2 (Solutions of 1-D cublic NLS with several Dirac masses as initial data).
Consider the following initial value problem for the 1-D cubic NLS equationi∂tu+ ∂ssu± 1

2

(
|u|2 − Q

2πt

)
u = 0,

u(0) = ∑
k∈Z αkδk,

(1.46)
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with Q = ∑
k∈Z |αk|2, and let s > 1/2, 0 < γ < 1 and {α} ∈ l2,s. Then, there exists

T > 0 and a unique solution on (0, T ) of the form

u(s, t) =
∑
k∈Z

Ak(t)eit∂ssδk(s), (1.47)

where Ak(t) = e∓i
|αk|2

4π
ln

√
t(αk +Rk(t)), such that lim

t→0
Ak(t) = αk, and

sup
0<t<T

t−γ∥{Rk(t)}∥l2,s + t∥{∂tRk(t)}∥l2,s < C. (1.48)

Furthermore, if an initial datum as a finite sum of N Dirac masses is considered in
(1.46) such that

|αk| = α,

and the NLS equation is renormalized with Q = (N − 1/2)α2, then there exists a unique
solution

u(t) = eit∂ssu(0) ± i

2e
i∂ss

((
|u(τ)|2 − Q

2πτ

)
u(τ)

)
dτ,

such that ̂e−it∂ssu(t) ∈ C1((−T, T ), Hs(0, 2π)) with

∥e−it∂ssu(t) − u(0)∥Hs
pF

≤ Ctγ, ∀t ∈ (−T, T ).

Moreover, if s ≥ 1, then the solution is global in time.

Thus, from the unique solution of (1.46), one can construct the curve X through
tangent vector T and the generalized Frenet–Serret frame as explained before. One
of the important properties of the solution obtained above is that it satisfies the
conservation law

Q =
∑
k∈Z

|αk|2 =
∑
k∈Z

|Ak(t)|2. (1.49)

At this point, one natural question to ask is if there are conserved quantities such as
(1.49) associated to (1.2), (1.5). In this direction, the authors consider a new topology
where the Fourier transform of the initial solution is measured in the L∞ norm. Note
that for the smooth solution of (1.5) the energy density is given by

|Ts|2 ds = κ2 ds,

where κ is the curvature. Consequently, the solutions of (1.5) that are obtained from
that of NLS equation with finite L2 norm, will have energy which is also finite. However,
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it is shown that this is not true for the solutions constructed above, and the result is
as follows [9].

Theorem 3. Let X be the solution curve with initial data as mentioned above, and T
its tangent vector. Define

E(T(t)) := lim
k→∞

∫ k+1

k
|T̂s(t, ξ)|2dξ. (1.50)

Then, for all t > 0 the following conservation law holds true:

E(T(t)) = 4π
∑
k∈Z

|αk|2, (1.51)

and at t = 0, when the singularities are created
∫ k+1

k
|T̂s(0, ξ)|2dξ = 4

∑
j∈Z

(1 − e−π|αj |2), ∀k ∈ Z. (1.52)

Hence, there is a jump discontinuity of E(T(t)) at time t = 0, showing an instantaneous
growth for positive times at large frequencies

E(T(0)) < E(T(t)).

The knowledge of these results will be extremely useful in this work as it will allow
us to compute some of the preserved quantities of the polygonal curves both in the
Euclidean and hyperbolic geometries.

1.6 Outline of the thesis

The objective of this Ph.D. thesis lies in the direction of describing the evolution of the
binormal flow for polygonal curves. As mentioned in Section 1.1, the equation plays an
important role in both Euclidean and hyperbolic cases, therefore, we consider polygons
in both settings. In the following lines, we state the organization of this thesis.

• In Chapter 1, we have discussed the background, motivation and relevant litera-
ture. In particular, the notion of one-corner and planar M -polygon problems has
been explained which lay an important foundation in following the rest of the
text.
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• Chapter 2 concentrates on the evolution of the helical M -polygon in the Euclidean
case. This can be seen as an extension of the planar M -polygon case explained
in Section 1.3. Apart from obtaining the numerical and algebraic solutions up
to a rotation, one of the most interesting outcomes of this work is to find new
variants of Riemann’s non-differentiable function in the trajectory of one point.
The results of this chapter are contained in the research article [25].

• From Chapter 3 onwards we delve into the hyperbolic setting and examine the
evolution of (1.8)–(1.9) for a regular planar l-polygon where the parameter l stands
for the hyperbolic angle between any two sides. Unlike its Euclidean counterpart,
the planar l-polygon is open and both of its endpoints grow exponentially, as a
result, solving the problem numerically becomes quite challenging. However, with
appropriate boundary conditions, we solve the system numerically and compare
it with the algebraic solution. We also draw a comparison between the Euclidean
and hyperbolic versions of the multifractal curve X(0, t). The results of this and
the next chapter are contained in the research article [26]

• Chapter 4 describes the relationship between the l-polygon and one-corner
problems in the Minkowski space. We show this relationship numerically and as
its consequence, through analytic techniques, we compute the speed of the center
of mass of the planar l-polygon with which it moves in the vertical direction. We
also give closed-form expressions of the components of the tangent vector T(s, 0)
in the one-corner problem.

• In Chapter 5, we summarize the main conclusions of the thesis and present its
possible extensions in a form of the future work.

• The thesis contains an appendix as well that covers the main elements of the
Minkowski space we need, such as definitions, notations, and isometries. A
brief introduction to the pseudo-spectral methods and their application to the
numerical method employed in Chapter 2 are also added in this appendix.

.



Chapter 2

Regular M-polygons with nonzero
torsion in the Euclidean space

The path isn’t a straight line; it’s a
spiral. You continually come back to
things you thought you understood
and see deeper truths.

Barry H. Gillespie
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2.1 Introduction

We consider the geometric flow in the Euclidean space and write

Xt = Xs ∧+ Xss, (2.1)

where s is the arc-length parameter, t time and ∧+ the usual cross product. The curve
X(s, ·) : R → R3 is arc-length parameterized and the tangent vector T ∈ S2 solves

Tt = T ∧+ Tss, (2.2)

With a curvature κ and a torsion τ , through the filament function

ψ(s, t) = κ(s, t)ei
∫ s

0 τ(s′,t)ds′ = α̃(s, t) + iβ̃(s, t), (2.3)

and the parallel-frame


T
e1

e2


s

=


0 α̃ β̃

−α̃ 0 0
−β̃ 0 0

 .


T
e1

e2

 , (2.4)

where T, e1, e2 form a unit orthonormal system, (2.1)–(2.2) are related to the focusing
type nonlinear Schrödinger equation (NLS)

ψt = iψss + i

2ψ
(
|ψ|2 + A(t)

)
, (2.5)

for some A(t), a real function of t. Thus, for a given t > 0, from ψ, through an
integration operation, T and X can be recovered up to a rigid movement. Let us also
mention that if we define

ψ̃ ≡ eiλψ = eiλ(α̃ + iβ̃), λ ∈ R,

and integrate (2.4) for ψ̃, the corresponding solution is {T̃, ẽ1, ẽ2}, where T̃ ≡ T, and
ẽ1 + iẽ2 ≡ eiλ(e1 + ie2), therefore, T remains the same.

In this chapter, we look at the evolution of (2.1)-(2.2) for an initial datum as an
M -sided polygon with nonzero torsion (helical M -polygons). The torsion in the initial
curve is determined by the parameter b, which without loss of generality can be taken
as the third component of tangent vector T. Hence, in Section 2.2, we formulate the
problem and obtain the evolution for rational times by algebraic means. Having done
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that, in Section 2.3, the problem has been solved numerically and thus, we compare
certain properties of the evolved curve with their algebraic counterparts. We note
that unlike in the zero-torsion case, the evolution is not time periodic; moreover, the
multifractal trajectory of the point X(0, t) is not planar and appears to be a helix. In
order to understand it further, we perform a Fourier analysis at a numerical level and
show the existence of variants of the so-called Riemann’s non-differentiable function
whose structure depends on the torsion introduced in the initial data [25]. This has
been documented in Section 2.4 which constitutes one of the main differences between
the planar and helical M -polygons. In Section 2.5, we compute the evolution of rational
times with a large denominator and thus, compare it with the zero-torsion case. Finally,
the numerical relationship between the helical M -polygon and one-corner problems
has been described in Section 2.6.

2.2 A solution of VFE for a regular helical M-poly-
gon

Our main goal is to construct the solutions of (2.1) and describe their corresponding
dynamics, for initial data given by regular helical M -polygons. Let us mention that
the initial data is characterized by two parameters, i.e., the number of tangent vectors
M and the torsion b as in Figure 2.1; we will soon see that parameter b determines
the curvature angle ρ0 and torsion angle θ0. As it will be explained in this section,
the behavior of regular polygons with nonzero torsion is a consequence of the Galilean
symmetry present in the set of solutions of (2.5). Therefore, this work can be regarded
as an extension of the zero-torsion case considered in [22], and as a result, [22, Theorem
1] holds true here as well. By denoting the filament function (2.3) by ψθ for θ0 ̸= 0,
and the corresponding curve as helical M -polygon, and ψ, when θ0 = 0, and the curve
X as planar M -polygon, we have the following:

Theorem 4. Assume that there exists a unique solution of the initial value problem

Xt = Xs ∧+ Xss, (2.6)

with X(s, 0) as a helical M -polygon. Then, at a time tpq, a rational multiple of 2π/M2,
i.e., tpq ≡ (2π/M2)(p/q), p ∈ Z, q ∈ N, gcd(p, q) = 1, the solution is a helical polygonal
curve with Mq sides (if q odd) or Mq/2 sides (if q even). All the new sides have the
same length, and the angle ρq between two adjacent sides is constant. Moreover, the
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polygon at a time tpq is the solution of the generalized Frenet–Serret system


T(s, tpq)
e1(s, tpq)
e2(s, tpq)


s

=


0 α(s, tpq) β(s, tpq)

−α(s, tpq) 0 0
−β(s, tpq) 0 0

 .


T
e1

e2

 , (2.7)

where α(s, tpq) + iβ(s, tpq) = Ψθ(s, tpq), for s ∈ [0, 2π), and

Ψθ(s, tpq) =



ρq√
q

∞∑
k=−∞

q−1∑
m=0

G(−p,m, q)

ei(kθ0+mθ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
, if q odd,

ρq√
2q

∞∑
k=−∞

q−1∑
m=0

G(−p,m, q)

ei(kθ0+mθ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
, if q even,

(2.8)

with G(a, b, c) being a generalized quadratic Gauß sum.

It is important to mention that due to the critical regularity of the initial data,
the uniqueness is a very challenging problem. The well-posedness of the problem with
initial datum as a smooth curve with just one corner has been established in a series of
papers by Banica and Vega [3–6]. Moreover, as mentioned in Chapter 1, the existence
and uniqueness for a polygonal line as an initial datum have been proved in [8]. These
results are also useful in addressing the case of periodic setting and as we will see later,
using the conservation law obtained there, we can compute the angle

ρq =

2 arccos(cos1/q(ρ0/2)), if q odd,
2 arccos(cos2/q(ρ0/2)), if q even.

(2.9)

2.2.1 Problem definition and formulation

Let us consider an arc-length parameterized regularM -polygon with a torsion depending
on a parameter b. Due to the fact that (2.1)-(2.2) are rotation invariant, we can assume
that the 2π-periodic tangent vector T(s, 0) lies on a circle of radius a, with a2 + b2 = 1
(see Figure 2.1):

T(s, 0) =
(
a cos

(
2πk
M

)
, a sin

(
2πk
M

)
, b

)T

≡ (a e2πik/M , b), s ∈ (sk, sk+1), (2.10)
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Figure 2.1 The unit sphere S2, and parameters a and b, where a2 + b2 = 1.

where k = 0, 1, . . . ,M − 1. The corresponding curve X(s, 0) is a helical polygon with
corners located at

X(sk, 0) =
(
aπ sin(π(2k − 1)/M)

M sin(π/M) ,−aπ cos(π(2k − 1)/M)
M sin(π/M) , b sk

)T

, (2.11)

so that for any s ∈ (sk, sk+1), the corresponding point X(s, 0) lies on the line segment
joining X(sk, 0) and X(sk+1, 0). Since T ∈ S2, it follows that b ∈ [−1, 1]; in this work,
we deal with b > 0, because the case with b < 0 can be recovered by the symmetries.
Note that b = 0 reduces back to the planar M -polygon case, b = 1 to the straight line,
and, for an intermediate value of b, the corresponding polygonal curve has a helical
shape. Let us denote Tk = T(s, 0), for s ∈ (sk, sk+1). The curvature angle ρ0 between
any two sides of the polygon is constant and is computed as

cos(ρ0) = Tk ◦+ Tk+1

= a2 cos
(

2πk
M

)
cos

(
2π(k − 1)

M

)
+ a2 sin

(
2πk
M

)
sin

(
2π(k − 1)

M

)
+ b2

= a2 cos
(2π
M

)
+ b2 = 1 − a2(1 − cos

(2π
M

)
)

= 1 − 2a2 sin2
(
π

M

)
,
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simplifies to
ρ0 = 2 arcsin

(
a sin

(
π

M

))
, (2.12)

which does not depend on k. On the other hand, the torsion angle θ0 is defined as the
angle between (Tk−1 ∧+ Tk) and (Tk ∧+ Tk+1), for all k. Thus, denoting the Euclidean
norm by ∥ · ∥, we have

cos(θ0) = (Tk−1 ∧+ Tk) ◦+ (Tk ∧+ Tk+1)
∥Tk−1 ∧+ Tk∥ ∥Tk ∧+ Tk+1∥

, (2.13)

where Tk ∧+ Tk+1

=
(
ab
(
sin

(
2πk
M

)
− sin

(
2π(k+1)

M

))
,−ab

(
cos

(
2πk
M

)
− cos

(
2π(k+1)

M

))
, a2 sin

(
2π
M

))T

=
(
−2ab sin

(
π
M

)
cos

(
π(2k+1)

M

)
,−2ab sin

(
π
M

)
sin

(
π(2k+1)

M

)
, a2 sin

(
2π
M

))T
,

and

∥Tk ∧+ Tk+1∥ = a sin
(2π
M

)√
1 + b2 tan2

(
π

M

)
. (2.14)

Therefore, (Tk−1 ∧+ Tk) ◦+ (Tk ∧+ Tk+1)

= 4a2b2 sin2
(

π
M

) (
cos

(
π(2k−1)

M

)
cos

(
π(2k+1)

M

)
+ sin

(
π(2k−1)

M

)
sin

(
π(2k+1)

M

))
+ a4 sin2

(
2π
M

)
= 4a2b2 sin2

(
π
M

)
cos

(
2π
M

)
+ a4 sin2

(
2π
M

)
.

Substituting above expressions in (2.13) gives

cos(θ0) = 4a2b2 sin2(π/M) cos(2π/M) + a4 sin2(2π/M)
a2 sin2(2π/M) (1 + b2 tan2(π/M)) =

a2 + b2 1−2 sin2(π/M)
cos2(π/M)

1 + b2 tan2(π/M)

= cos2(π/M) − b2 cos2(π/M) + b2 − 2b2 sin2(π/M)
cos2(π/M)(1 + b2 tan2(π/M)) = 1 − b2 tan2(π/M)

1 + b2 tan2(π/M) ,

which simplifies to
θ0 = 2 tan−1

(
b tan

(
π

M

))
. (2.15)

Moreover, ∥∥∥∥∥ Tk ∧+ Tk+1

∥Tk ∧+ Tk+1∥

∥∥∥∥∥ = 1,
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implies that
∥∥∥(−b cos(θ0/2) cos((2k+1)π/M)

cos(π/M) , −b cos(θ0/2) sin((2k+1)π/M)
cos(π/M) , a cos(θ0/2)

)∥∥∥
=
(

b2

cos2(π/M) + a2
)

cos2(θ0/2) = b2 + a2 cos2(π/M)
cos2(π/M) cos2(θ0/2)

= 1 − a2 sin2(π/M)
cos2(π/M) cos2(θ0/2) = 1,

and thus,

cos(θ0/2) = cos(π/M)√
1 − a2 sin2(π/M)

⇐⇒ cos
(
θ0

2

)
cos

(
ρ0

2

)
= cos

(
π

M

)
. (2.16)

The above relation gives a relationship between the curvature angle ρ0 and torsion
angle θ0 and M . Moreover, the following identities also hold true:

(i) tan
(

θ0
2

)
= b tan

(
π
M

)
,

(ii) sin
(

ρ0
2

)
= a sin

(
π
M

)
,

(iii) b tan
(

ρ0
2

)
= a sin

(
θ0
2

)
,

(iv) sin
(

θ0
2

)
cos

(
ρ0
2

)
= b sin

(
π
M

)
.

Spatial symmetries

Note that, (2.1)-(2.2) are rotation invariant, so, for an Euclidean rotation R, if X and
T are the respective solutions then, R · X and R · T also satisfy the equations. The
symmetries of the initial data for the zero-torsion case (see [22, (29)]) are also valid
here, as a result, X(s, t) and T(s, t) are invariant under a rotation of angle 2πk/M
around the z-axis, with the only exception that the third component X3 has now a
translation symmetry, i.e.,

T1(s+ 2πk
M

, t) + iT2(s+ 2πk
M

, t) = ei 2πk
M (T1(s, t) + iT2(s, t)),

T3(s+ 2πk
M

, t) = T3(s, t),

X1(s+ 2πk
M

, t) + iX2(s+ 2πk
M

, t) = ei 2πk
M (X1(s, t) + iX2(s, t)),

X3(s+ 2πk
M

, t) = X3(s, t) + 2πkb
M

.

(2.17)

Furthermore, due to the mirror invariance T(s, t) and T(−s, t) are symmetric about the
XZ-plane; consequently, X(s, t) and X(−s, t) are symmetric about the y-axis, for all t.
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Thus, if T(s, 0) = T̃(s, 0) is the initial solution then at any time during the evolution
the symmetry remains preserved and T(s, t) = T̃(s, t) and same holds true for X. An
important corollary of the aforementioned symmetries is that X(s+ 2πk, t) − X(s, t) =
2πb k(0, 0, 1)T , for all k ∈ Z which will be useful later.

Galilean invariance of the NLS equation

One of the important properties of the NLS equation is its invariance under the Galilean
transformations, i.e., if ψ is a solution of (2.5), so is ψ̃n(s, t) = eins−in2tψ(s − 2nt, t),
for all n, t ∈ R. Thus, if we choose the initial datum such that ψ̃n(s, 0) = einsψ(s, 0),
i.e., ψ(s, 0) = einsψ(s, 0), for all n ∈ R and if the solution is unique then ψ(s, t) =
eins−in2tψ(s− 2nt, t), for all n, t ∈ R.

Let us write the initial data of the NLS equation corresponding to the planar
M -polygon problem as

ψ(s, 0) = c0

∞∑
k=−∞

δ(s− 2πk/M), s ∈ [0, 2π], (2.18)

and when θ0 ̸= 0, as

ψθ(s, 0) = cθ,0 e
iγs

∞∑
k=−∞

δ(s− 2πk/M), s ∈ [0, 2π],

where γ = Mθ0/2π satisfies limM→∞ γ = b; and c0 and cθ,0 > 0 are constants depending
on the initial configuration of the respective curve. In particular, with

cθ,0 =
√

− 2
π

ln
(

cos
(
ρ0

2

))
, c0 =

√
− 2
π

ln
(

cos
(
π

M

))
, (2.19)

we have
ψθ(s, 0) = cθ,0

c0
eiγsψ(s, 0). (2.20)

Thus, by using the Galilean invariance of (2.5), we obtain

ψθ(s, t) = cθ,0

c0
eiγs−iγ2tψ(s− 2γ t, t). (2.21)

On the other hand, as observed in [22], (2.18) satisfies ψ(s, 0) = eiMksψ(s, 0), so using
Galilean invariance again, ψ(s, t) = eiMks−i(Mk)2tψ(s− 2Mkt, t), for all k ∈ Z, and for
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all t ∈ R. Moreover, the jth coefficient of ψ(s, t) is given by

ψ̂(j, t) = e−(Mk)2t−iM(j−k)(2Mkt)ψ̂(j − k, t),

for all j, k ∈ Z. In particular, with j = k, ψ̂(k, t) = e−(Mk)2tψ̂(0, t), and thus, we can
write

ψ(s, t) = ψ̂(0, t)
∞∑

k=−∞
e−(Mk)2t+iMks. (2.22)

which through (2.18) gives ψ̂(0, 0) = Mc0/2π. Therefore, combining (2.21) and (2.22),
we get

ψθ(s, t) = cθ,0

c0
ψ̂(0, t)eiγs−iγ2t

∞∑
k=−∞

e−i(Mk)2t+iMk(s−2γt), (2.23)

where ψ̂(0, t) is a constant depending on time, which, as mentioned in [22], can be
assumed to be real, for all t. Note that, in (2.21), ψ is 2π/M -space-periodic and
2π/M2-time periodic; but when γ ∈ (0, 1), ψθ(s, t) is not periodic. However, by taking
γ rational, space periodicity can be recovered; and if γ = 1, ψθ(s, t) is both space and
time periodic. During the evolution of a helical M -polygon, this will give rise to a
phase shift and a Galilean shift, as explained later.

2.2.2 The evolution at rational multiples of time t = 2π/M2

When t = tpq = (2π/M2)(p/q), with p ∈ Z, q ∈ N, and gcd(p, q) = 1, by substituting
tpq, γ in (2.23), we compute

ψθ(s, tpq) = cθ,0

c0
ψ̂(0, tpq)e

i

(
Mθ0

2π
s−

θ2
0

2π
p
q

)
∞∑

k=−∞
e−2πik2 p

q
+i(Mks−2kθ0

p
q

)

= cθ,0

c0
ψ̂(0, tpq)ei( Mθ0

2π
s−

θ2
0

2π
p
q

)
∞∑

k=−∞

q−1∑
w=0

e−2πi(kq+w)2 p
q

+i(M(kq+w)s−2(kq+w)θ0
p
q

)

= cθ,0

c0
ψ̂(0, tpq)e

i

(
Mθ0

2π
s−

θ2
0

2π
p
q

)
q−1∑
w=0

e−2πiw2 p
q

+iMw(s− 2θ0p

Mq
)

∞∑
k=−∞

eiMkq(s− 2θ0p

Mq
).

Next, by using

∞∑
k=−∞

eiMkq(s− 2θ0p

Mq
) = 2π

Mq

∞∑
k=−∞

δ

(
s− 2θ0p

Mq
− 2πk
Mq

)
,

and evaluating the resulting expression at s = 2θ0p
Mq

+ 2πk
Mq

, yields
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ψθ(s, tpq) = 2π
Mq

cθ,0

c0
ψ̂(0, tpq)

∞∑
k=−∞

q−1∑
w=0

e−2πiw2 p
q

+iMw( 2πk
Mq

)+i
Mθ0

2π
( 2θ0p

Mq
+ 2πk

Mq
)δ

(
s− 2θ0p

Mq
− 2πk
Mq

)
,

= 2π
Mq

cθ,0

c0
ψ̂(0, tpq)ei

θ2
0

2π
p
q

q−1∑
w=0

e−2πiw2 p
q

∞∑
k=−∞

q−1∑
m=0

e2πi(kq+m) w
q

+i(kq+m) θ0
q δ

(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)

= 2π
Mq

cθ,0

c0
ψ̂(0, tpq)ei

θ2
0

2π
p
q

∞∑
k=−∞

q−1∑
m=0

q−1∑
w=0

e2πi
(−pw2+mw)

q ei(kθ0+m
θ0
q

)δ

(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)

= 2π
Mq

cθ,0

c0
ψ̂(0, tpq)ei(θ2

0/(2π))(p/q)
∞∑

k=−∞

q−1∑
m=0

G(−p,m, q)ei(kθ0+mθ0/q)δ

(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
,

where G(−p,m, q) = ∑q−1
w=0 e

(−2πiw2p+2πiwm)/q is a generalized quadratic Gauß sum.
Using the properties of these sums, i.e., (1.31), we get

ψθ(s, tpq) =



2π
M

√
q

cθ,0
c0
ψ̂(0, tpq)ei(θ2

0/(2π))(p/q) ∞∑
k=−∞

q−1∑
m=0

ei(ξm+kθ0+mθ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
, if q odd,

2π

M
√

q/2
cθ,0
c0
ψ̂(0, tpq)ei(θ2

0/(2π))(p/(q/2)) ∞∑
k=−∞

q/2−1∑
m=0

ei(ξ2m+kθ0+2mθ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 4πm

Mq

)
, if q

2 even,
2π

M
√

q/2
cθ,0
c0
ψ̂(0, tpq)ei(θ2

0/(2π))(p/(q/2)) ∞∑
k=−∞

q/2−1∑
m=0

ei(ξ2m+1+kθ0+(2m+1)θ0/q)δ
(
s− 2θ0p

Mq
− 2πk

M
− 2π(2m+1)

Mq

)
, if q

2 odd,
(2.24)

for a certain angle ξm depending on m, p and q. Hence, at any rational time tpq,
the initial M Dirac deltas in s ∈ [0, 2π) turn into Mq Dirac deltas (if q odd), or
Mq/2 Dirac deltas (if q even). Moreover, at those times, the absolute value of their
coefficients is constant, and since the Dirac deltas are equally spaced, the sides of
the resulting polygon are equally lengthed. On the other hand, as a result of the



34 Regular M -polygons with nonzero torsion in the Euclidean space

Galilean transformation, a corner initially located at 2πk/M , k ∈ Z, is translated by
spq = 2θ0p/Mq at time tpq; we call this extra movement the Galilean shift. Although,
strictly speaking, ψθ (and X, T) are not time periodic now, their structure repeats
whenever t is increased by 2π/M2; along this chapter, we denote this important quantity
Tf ≡ 2π/M2, and refer to it, with some abuse of language, as the time period.

Computation of ψ̂(0, tpq)

In the Euclidean case, for the regular planar M -polygons, ψ̂(0, tpq) was obtained using
the fact that the polygon is closed. This was later confirmed in [23, Section 7] where it
was suggested that ψ̂(0, tpq) might be obtained from a conservation law. In [9, Section
4], it has been recently observed that this conservation law is a consequence of the
one established from non-closed polygonal lines (see Theorem 2). The argument is as
follows.

Let us consider the following initial value problem for the 1-D NLS equation

i∂ψ + ∂ssψ ± 1

2(|ψ|2 − A(t))ψ = 0,

ψ(s, 0) =
∞∑

k=−∞
αk(0)δ(s− k),

(2.25)

where {αk(0)} ∈ l2,s, s > 1/2. Then, there exists a unique solution

ψ(s, t) =
∞∑

k=−∞
αk(t)eit∂2

s δ(s− k),

with A(t) = Q/2πt, and

∞∑
k=−∞

|αk(t)|2 =
∞∑

k=−∞
|αk(0)|2 = Q,

where the coefficients αk(t) satisfy

i∂tαk(t) = ∓ 1
8πt

∑
k−j1+j2−j3=0

e−i
k2−j2

1 +j2
2 −j2

3
4t αj1(t)αj2(t)αj3(t) ± Q

4πtαk(t),

and can be obtained by doing a fixed point argument on α̃k(t) = e−i
|αk(0)|2

4π
log

√
tαk(t)

for the equation

i∂tα̃k(t) = ∓fk(t) ± 1
8πt(|α̃k(t)|2 − |αk(0)|2)α̃k(t),
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with

fk = 1
8πt

∑
(j1,j2,j3)∈NRk

e−i
k2−j2

1 +j2
2 −j2

3
4t e−i

|αk(0)|2−|αj1 (0)|2−|αj2 (0)|2−|αj3 (0)|2

4π
log

√
tα̃j1(t)α̃j2(t)α̃j3(t),

for NRk = {(j1, j2, j3) ∈ Z3, k − j1 + j2 − j3 = 0, k2 − j2
1 + j2

2 − j2
3 ≠ 0}, such that

lim
t→0

α̃k(t) = αk(0).

Observe that for N ∈ N, {Bj(t)} for j ∈ N with Bj(t) = α̃N+j(t) also solve the
last equation. Hence, if the initial data satisfies αk+N (0) = eiNwαk(0) for all k, w ∈ R,
N ∈ N and if the solution is unique, then it can be concluded that αk+N (t) = eiNwαk(t)
for all k and t.

In the case of a helical M -polygon, we have chosen cθ,0 such that

cos(ρ0/2) = e−πc2
θ,0/2, (2.26)

where ρ0 as in (2.12), is the angle between any two tangent vectors at t = 0. Thus, we
have αk(0) = cθ,0e

ikθ0 , and αk+M(0) = eiMθ0αk(0), so, if the solution is unique, then
αk+M(t) = eiMθ0αk(t). Moreover,

M−1∑
j=0

|αk(0)|2 =
M−1∑
j=0

|αk(t)|2 = Q.

Then,

|αk(0)| = cθ,0 =⇒ Q =
M−1∑
k=0

|cθ,0|2 = Mc2
θ,0 = −2M

π
ln cos

(
ρ0

2

)
.

Furthermore, at any rational time tpq (taking q odd for now), there are from (2.24)
Mq Dirac deltas with coefficients of equal modulus, which we call cθ,q. Therefore,

Mc2
θ,0 = Q =

Mq−1∑
k=0

|cθ,q|2 = Mq

∣∣∣∣∣ 2πcθ,0

M
√
qc0

ψ̂(0, tpq)
∣∣∣∣∣
2

,

which yields ψ̂(0, tpq) = Mc0/2π = ψ̂(0, 0) and cθ,q = cθ,0/
√
q. Note that (2.26) holds

true whenever there is a singularity formation; e.g., in our case, at rational times
tpq. The expression for cθ,q shows that the angle ρq between any two tangent vectors
remains equal and can be computed by writing√

− 2
π

ln
(

cos
(
ρq

2

))
= 1

√
q

√
− 2
π

ln
(

cos
(
ρ0

2

))
=⇒ cos

(
ρ0

2

)
= cosq

(
ρq

2

)
.
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After proceeding in the same way for q even, we conclude that

cos
(
ρq

2

)
=


cos1/q

(
ρ0

2

)
, if q odd,

cos2/q

(
ρ0

2

)
, if q even,

(2.27)

which is the same expression as in [22, (25)], with ρ0 = 2π/M .

2.2.3 Algebraic solution

In this section, we compute the tangent vector T and the curve X algebraically, which
we denote by Talg and Xalg, respectively. We follow the approach in [22], and construct
the algebraic solution up to a rigid movement. In this regard, let us define, for any
rational time tpq with q odd (the case with q even is similar):

Ψθ(s, tpq) = ρq

cθ,q

e−i(θ2
0/(2π))(p/q)ψθ(s, tpq); (2.28)

and, since limq→∞ ρqe
−i(θ2

0/(2π))(p/q)/cθ,q < ∞, Ψθ is well-defined, hence, from (2.24),

Ψθ(s, tpq) =



ρq

∞∑
k=−∞

q−1∑
m=0

ei(ξm+kθ0+mθ0/q)

δ
(
s− 2θ0p

Mq
− 2πk

M
− 2πm

Mq

)
, if q odd,

ρq

∞∑
k=−∞

q/2−1∑
m=0

ei(ξ2m+kθ0+2mθ0/q)

δ
(
s− 2θ0p

Mq
− 2πk

M
− 4πm

Mq

)
, if q

2 even,

ρq

∞∑
k=−∞

q/2−1∑
m=0

ei(ξ2m+1+kθ0+(2m+1)θ0/q)

δ
(
s− 2θ0p

Mq
− 2πk

M
− 2π(2m+1)

Mq

)
, if q

2 odd.

(2.29)

After writing Ψθ(s, tpq) = (αk,m + iβk,m)(s, tpq) = ρqe
iζk,m , we integrate (2.7) and obtain

the rotation matrix

Rk,m =


cρq sρqcζk,m

sρqsζk,m

−sρqcζk,m
c2

ζk,m
[cρq − 1] + 1 cζk,m

sζk,m
[cρq − 1]

−sρqsζk,m
cζk,m

sζk,m
[cρq − 1] s2

ζk,m
[cρq − 1] + 1

 , (2.30)

which performs a rotation of angle ρq about the rotation axis (0, sin(ζk,m),− cos(ζk,m))T

[22]. In other words, it describes the transition across a corner at s = (2π(k +
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1)/Mq + spq)−, k = 0, 1, . . . ,Mq − 1. Thus, we choose the basis vectors T̃(s), ẽ1(s),
ẽ2(s), such that they form the identity matrix at s = s−

pq, and obtain their values at
s = (2π(k+1)/Mq+spq)−, k = 0, 1, . . . ,Mq−1, by the action of Mq rotation matrices.
It is also important to mention that

RM−1,q−1 . . .RM−1,1 · RM−1,0 . . .R0,q−1 . . .R0,1 · R0,0 =


1 0 0
0 cos(Mθ0) − sin(Mθ0)
0 sin(Mθ0) cos(Mθ0)

 ,

which holds true for any q and M , and implies that the following quantity is preserved:
∫ 2π

0
τ(s′, tpq)ds′ =

∫ 2π

0
τ(s′, 0)ds′ = M

2πθ0

∫ 2π

0
ds′ = Mθ0. (2.31)

On the other hand, the vertices of X̃ (i.e., X up to a rigid movement) are now shifted
by the Galilean shift spq, and can be obtained by
X̃(spq) = X̃(0) + spqT̃(s−

pq),
X̃(2π(k+1)

Mq
+ spq) = X̃(2πk

Mq
+ spq) + 2π

Mq
T̃([2π(k+1)

Mq
+ spq]−), k = 0, 1, . . . ,Mq − 1,

with X̃(0) = (0, 0, 0)T . In this way, we get the positions of the vertices corresponding
to the interval s ∈ [spq, 2π + spq], and by calculating the non-vertex points by linear
interpolation, and using the symmetries mentioned in Section 2.2.1, X̃(s) can be
obtained for all s ∈ [0, 2π].

Note that the computation of X̃(2π + spq) serves to define the correct rotation
matrix L1, which allows the helical M -polygon to be aligned in such a way that its
axis is parallel to the z-axis. More precisely, L1 performs a rotation of angle equal to
the one between v = X̃(2π + spq) − X̃(spq) and (0, 0, 1)T , about an axis orthogonal
to a plane spanned by these two vectors. As a result, T = L1 · T̃, X = L1 · X̃; then,
we add a constant to the first and second components of X, in such a way that the
means of these components over a spatial period are zero, and obtain X and T, up to
a vertical movement, which can be computed at any time tpq from the speed of the
center of mass cM , and a rotation about the z-axis. In regard to the latter, this is the
main difference with respect to the planar M -polygons, where there was no rotation
about the z-axis. In fact, the rotation of a helical M -polygon about its axis turns out
to be a multifractal and, hence, its determination appears to be very difficult. We will
discuss this further in the next section.
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2.3 Numerical method and experiments

We solve numerically VFE and the Schrödinger map with the same numerical method
as in [22] (see Section 4 and the references therein), to approximate (2.1)-(2.2) for
the initial data X(s, 0) and T(s, 0), as given in (2.10) and (2.11), respectively. In this
regard, we use a pseudo-spectral discretization in space and a fourth-order Runge–Kutta
method in time. Since the tangent vector T is periodic in space, we can solve the
system in terms of T. Moreover, the space derivatives can be approximated using the
discrete Fourier transform which can be done very efficiently using the fft algorithm
in MATLAB.

More precisely, the space interval [0, 2π) is discretized into N equally spaced nodes,
i.e., sk = 2πk/N , k = 0, 1, . . . , N − 1, and the time period [0, Tf ], with Tf = 2π/M2,
into Nt + 1 equally spaced time instants, taking ∆t = Tf/Nt. Again, using the
symmetries of T, we can reduce all the discrete Fourier transforms of N elements, to
N/M elements, reducing the computation cost quite effectively1. With respect to the
stability constraints on N and ∆t, they are also the same as in [22]; hence, N/M and
Nt, once fixed for one value of M , can be used for all M . On the other hand, since
∆t = O(1/M2), we can expect more accurate results for larger M . In our numerical
simulations, we have taken N/M = 480 · 2r, Nt = 136080 · 4r, r = 0, 1, . . ., and different
values of b (or θ0).

Recall that the initial curve is characterized by two parameters, M and b. When
b ∈ (0, 1), as M is increased, the resulting initial curve tends to a helix. On the
other hand, for a fixed M , as b tends to 1, the curve approaches a straight line. In
our numerical simulations, we have analyzed both limits and computed the relevant
quantities in each case. Apart from the fact that, at any rational time tpq, there are
Mq or Mq/2 corners in s ∈ [0, 2π) (depending on whether q is odd or even), we observe
that the evolution is not periodic in time. As mentioned above, due to the Galilean
shift, a corner initially located at s = 0 moves to s = 2θ0/M at the end of one time
period; and the new helical M -polygon is rotated counterclockwise with respect to the
z-axis by a certain amount, which we refer to as the phase shift. Figure 2.2 shows both
shifts, for M = 3 and θ = π/2.

Accuracy

Denoting the numerical solution as Tnum(s, t), Xnum(s, t), we have Tnum(s, t) =
T(s, t) + O(∆t4). It is important to note that since the initial data for the tangent

1See Appendix A
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∆t ∥T(·,∆t) − T(·,∆t/2)∥ log2

(
∥T(·,∆t)−T(·,∆t/2)∥

∥T(·,∆t/2)−T(·,∆t/4)∥

)
5.916370345743490 · 10−4 1.150990969313999 · 10−1 2.241180926447556
2.958185172871745 · 10−4 1.361514265145060 · 10−3 4.160339679272480
1.479092586435873 · 10−4 7.970671544546493 · 10−5 4.094367008751559
7.395462932179363 · 10−5 5.089972204727020 · 10−6 3.968971596014078
3.697731466089681 · 10−5 3.261202549999181 · 10−7 3.964181824752017

Table 2.1 The order of accuracy of the Runge–Kutta method in time for M = 3, b = 0.4.

vector T is piecewise constant, the spectral accuracy with respect to the space variable
can not be expected, nevertheless, we check the accuracy with respect to the time
variable. In this direction, we have taken the parameters M = 3, b = 0.4, and different
values of time steps, i.e., ∆t = 1.183274069148698 · 10−3 · 2−n, n = 1, . . . , 7, N/M = 25,
∆s = 6.544984694978735 · 10−2, Tf = 2π/M2. Table 2.1 shows the corresponding error
values for the tangent vector T, and the norm ∥ · ∥ is given by

∥T∥ =

√√√√√ 1
N

3∑
i=1

N−1∑
j=0

T 2
i,j, (2.32)

where Ti,j = Ti(sj, ·).
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Figure 2.2 X(s, t), for M = 3, θ0 = π/2, b = 0.5774 . . ., at t = 0 (blue), and t = Tf

(red). The left-hand side shows the Galilean shift, and the right-hand side, the phase
shift.
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2.3.1 Numerical computation of ρq

It is also important to compare the numerical value of ρq with the one given by the
algebraic expression in (2.27), so for a given q, we compute the following errors:

∆ρabs
q,N/M,M = max

p∈{0,1,...,q−1}
gcd(p,q)=1

max
j=0,1,...,Mq−1

∣∣∣ρq − ρnum,j
pq

∣∣∣ ,
∆ρrel

q,N/M,M = max
p∈{0,1,...,q−1}

gcd(p,q)=1

max
j=0,1,...,Mq−1

∣∣∣∣∣ρq − ρnum,j
pq

ρq

∣∣∣∣∣ ,
(2.33)

where
ρnum,j

pq = arccos(Tj ◦+ Tj+1), (2.34)

j = 0, 1, . . . ,Mq−1. The value of the tangent vectors Tj , which are piecewise constant
at every time tpq, has been calculated using the mean of the inner points; for example,
for T(s), with s ∈ [0, 2π/Mq), we take the mean of the values corresponding to
s ∈ [π/2Mq, 3π/2Mq), etc. Using (2.33), we compute the absolute and relative errors,
for different values of b, q and M . The results for b = 0.4, q = 5, M = 3, 4, . . . , 20,
N/M = 480, 960, . . . , 7680, are plotted in Figure 2.3. Note that each color corresponds
to a different discretization in the numerical scheme, which clearly shows the convergence
of the errors, and hence, the agreement between numerical and algebraic values.

Remark that in the case of closed planar M -polygons in [22], and later, in the case
of closed irregular polygons in [23], it was observed that the product over a period
s ∈ [0, 2π) of the cosines of the halves of the angles between the adjacent sides is a
conserved quantity. In other words,

∏
m

cos
(
ρm(tp,q)

2

)
= constant, m ∈ {0, . . . , number_of_sides − 1}. (2.35)

In the case of a helical M -polygon, we have used (2.34) to test how well (2.35) holds.
In this regard, we compute

P (tpq) =
∏
j

cos
(
ρnum,j

pq

2

)
, (2.36)

where j runs through the sides of the helical M -polygon corresponding to s ∈ [0, 2π);
recall again that X is not periodic, but T is. In Table 2.2, we show the discrepancy
between the known exact value P (0) = 0.493039, and P (tpq), for M = 6, N/M = 7680,
b = 0.4, taking different values of p and q, such that gcd(p, q) = 1. Bearing in mind
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that the values of Tj in (2.34) have been obtained from a numerical approximation of
T(s) exhibiting the Gibbs phenomenon, we find the results remarkably accurate, in
particular for small values of q.

p/q |P (tpq) − P (0)| p/q |P (tpq) − P (0)|
1/12 6.9145 · 10−10 7/12 6.0515 · 10−7

1/10 1.4740 · 10−9 3/5 1.7293 · 10−7

1/6 3.3064 · 10−12 2/3 1.0791 · 10−11

1/5 7.4831 · 10−9 7/10 4.6939 · 10−8

1/4 3.3640 · 10−14 3/4 1.4713 · 10−12

3/10 4.0038 · 10−8 4/5 1.8406 · 10−7

1/3 1.0676 · 10−10 5/6 1.2848 · 10−9

2/5 7.4827 · 10−8 9/10 3.0165 · 10−7

5/12 2.1332 · 10−7 11/12 5.4525 · 10−7

1/2 1.1335 · 10−13 1 2.4403 · 10−13

Table 2.2 Discrepancy between (2.36) and P (0) = 0.493039, for M = 6, N/M = 7680,
b = 0.4, taking different values of p and q, such that gcd(p, q) = 1.
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Figure 2.3 Absolute error (left) and relative error (right) as in (2.33), in semilogarithmic
scale, for the angle ρq, taking b = 0.4, q = 5, M = 3, 4, . . . , 20, and different values of
N/M . The error clearly decreases, as N/M increases, showing the convergence between
the numerical and theoretical values.

2.3.2 Center of mass

It is evident from the numerical simulations that apart from the formation of new
corners, the evolution of a helical M -polygon involves a rotation about z-axis and a
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vertical translation along it as well. In this following lines, we compute the speed of
the center of mass of the polygonal curve and try to understand these movements.

Numerical computation of cM

As done in the zero-torsion case, for any time t ≥ 0, we compute the height of the
center of mass of the given curve by taking the mean of all the values of each component
of X(sj, t):

hN,k(t) = 1
N

N−1∑
j=0

Xk(sj, t), k = 1, 2, 3.

The numerical computations show that hN,k(t) is equal to zero for k = 1, 2 and hN,3(t)
increases linearly with time t. Thus, denoting hN,3(t) by hN(t), by making use of the
symmetries as mentioned in (2.17), we have

N−1∑
j=0

X3(sj, t) =
N/M−1∑

j=0
X3(sj, t) +

N/M−1∑
j=0

(
X3(sj, t) + 2πb

M

)
+ . . .

. . .+
N/M−1∑

j=0

(
X3(sj, t) + 2πb

M
(M − 1)

)

= M
N/M−1∑

j=0
X3(sj, t) +N

2πb(M − 1)M
M2 .

With this,

hN(t) = 1
N

N−1∑
j=0

X3(sj, t) = M

N

N/M−1∑
j=0

X3(sj, t) + 2πb(M − 1)
M

= hN/M(t) + πb

M
(M − 1).

(2.37)

By removing the subscript and denoting the height as h(t), the mean speed cnum
M can

be computed numerically as

cnum
M = h(2π/M2) − h(0)

2π/M2 .

Next, we compare cnum
M with the algebraic expression as in (2.45). Table 2.3 shows the

value |cM − cnum
M |, for M = 3, 4, . . . , 20, b = 0.4, N/M = 480 · 2r, Nt = 136080 · 4r, with

r = 0, 1, 2, 3, 4. We note that, for a given value of M , when N/M is approximately
doubled, the errors are divided by a factor slightly smaller than two, which implies
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that the errors behave as O((N/M)−1), and shows the convergence of cnum
M to cM .

Moreover, as M increases, the errors reduce, which can be explained from the fact that
∆t = O(1/M2). Finally, let us mention that cM converges to 1 − b2 = 0.84, as M tends
to infinity.

M N/M = 480 N/M = 960 N/M = 1920 N/M = 3840 N/M = 7680 cM

3 4.6546 · 10−4 2.8312 · 10−4 1.7068 · 10−4 1.0095 · 10−4 5.8967 · 10−5 0.5482
4 3.6695 · 10−4 2.1919 · 10−4 1.2842 · 10−4 7.4464 · 10−5 4.2869 · 10−5 0.6936
5 2.6525 · 10−4 1.5594 · 10−4 9.0443 · 10−5 5.2058 · 10−5 2.9801 · 10−5 0.7509
6 1.9506 · 10−4 1.1386 · 10−4 6.5718 · 10−5 3.7687 · 10−5 2.1512 · 10−5 0.7798
7 1.4803 · 10−4 8.6057 · 10−5 4.9532 · 10−5 2.8344 · 10−5 1.6151 · 10−5 0.7964
8 1.1573 · 10−4 6.7074 · 10−5 3.8535 · 10−5 2.2023 · 10−5 1.2534 · 10−5 0.8070
9 9.2671 · 10−5 5.3635 · 10−5 3.0776 · 10−5 1.7576 · 10−5 9.9931 · 10−6 0.8141
10 7.5791 · 10−5 4.3808 · 10−5 2.5118 · 10−5 1.4337 · 10−5 8.1465 · 10−6 0.8191
11 6.3086 · 10−5 3.6437 · 10−5 2.0874 · 10−5 1.1903 · 10−5 6.7637 · 10−6 0.8228
12 5.3297 · 10−5 3.0755 · 10−5 1.7614 · 10−5 1.0041 · 10−5 5.7034 · 10−6 0.8256
13 4.5601 · 10−5 2.6300 · 10−5 1.5057 · 10−5 8.5804 · 10−6 4.8729 · 10−6 0.8278
14 3.9449 · 10−5 2.2742 · 10−5 1.3017 · 10−5 7.4157 · 10−6 4.2106 · 10−6 0.8295
15 3.4456 · 10−5 1.9857 · 10−5 1.1362 · 10−5 6.4721 · 10−6 3.6742 · 10−6 0.8308
16 3.0349 · 10−5 1.7485 · 10−5 1.0003 · 10−5 5.6971 · 10−6 3.2339 · 10−6 0.8319
17 2.6931 · 10−5 1.5513 · 10−5 8.8735 · 10−6 5.053 · 10−6 2.8680 · 10−6 0.8329
18 2.4057 · 10−5 1.3855 · 10−5 7.9242 · 10−6 4.5119 · 10−6 2.5607 · 10−6 0.8336
19 2.1619 · 10−5 1.2448 · 10−5 7.1191 · 10−6 4.0531 · 10−6 2.3001 · 10−6 0.8343
20 1.9532 · 10−5 1.1245 · 10−5 6.4304 · 10−6 3.6607 · 10−6 2.0773 · 10−6 0.8349

Table 2.3 |cM − cnum
M | computed for different M and N/M values and b = 0.4. The

error decreases as N/M and M are increased and the reduction in the error is of the
first order.

Algebraic computation of cM

In this section, by using algebraic techniques, we compute the speed of the center of
mass cM . As observed in the zero-torsion case, we note that h(t) behaves linearly, but
when computed numerically, its derivative

h′(t) = 1
N

N−1∑
j=0

X3,t(sj, t)

= 1
N

N−1∑
j=0

(X1,s(sj, t)X2,ss(sj, t) −X1,ss(sj, t)X2,s(sj, t)) ,
(2.38)
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has a very singular shape, as shown in Figure 2.4 for M = 3, b = 0.4. In other words,

[mean(X3)]′(t) ̸= mean(X3,t)(t),

or,
cM = h′(t) = d

dt

( 1
2π

∫ 2π

0
X3(s, t)ds

)
̸= 1

2π

∫ 2π

0
X3,t(s, t)ds. (2.39)

However, upon integrating h′(t) in (2.38), the oscillations disappear completely and
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0.5
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Figure 2.4 mean(X3,t)(t), t ∈ [0, 2π/M2], for M = 3, b = 0.4, N/M = 211.

resulting h(t) is linear whose slope can be compared with the one obtained by (2.37),
when both computed numerically. With this observation, following the approach as
described in [23], we compute the vertical height h(t) as

h(t) − h(0) =
∫ t

0
mean(X3,t)(t′)dt′ =

∫ t

0

[ 1
2π

∫ 2π

0
X3,t(s, t′)ds

]
dt′. (2.40)

Thus, at the rational time t = tpq, for the unit vector k̂ = (0, 0, 1)T , we write
∫ 2π

0
X3,t(s, t)ds =

∫ 2π

0
(Xt(s, t) ◦+ k̂)ds =

[∫ 2π

0
T(s, t) ∧+ Ts(s, t)ds

]
◦+ k̂. (2.41)

Next, in order to determine the cross product, we consider the fact that at any time
tpq, depending on q, there are Mq or Mq/2 tangent vectors which make a constant
angle ρq mutually. Thus, without loss of generality, we can assume that at s = 0, the
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tangent vector T(0−) = (1, 0, 0)T ,

T(0+) = (cos(ρq), sin(ρq), 0)T ,
(2.42)

form an angle ρq as in (2.27). Then,

∫ ∞

−∞
T(s) ∧+ Ts(s)ds =

∫ 0+

0−
T(s) ∧+ Ts(s)ds =

∫ 0+

0−
T(s) ∧+ (α(s)e1 + β(s)e2)ds

=
∫ 0+

0−
α(s)T(s) ∧+ e1ds+

∫ 0+

0−
β(s)T(s) ∧+ e2ds

=
∫ 0+

0−
ρq cos(kθ0)δ(s)e2ds−

∫ 0+

0−
ρq sin(kθ0)δ(s)e1ds

= ρqe2(0−) = ρq(0, 0, 1)T ,

and since,
[T(0−) ∧+ T(0+)] = k̂ sin(ρq) = (0, 0, 1)T sin(ρq),

we obtain ∫ ∞

−∞
T(s) ∧+ Ts(s)ds = ρq

sin(ρq)
[T(0−) ∧+ T(0+)].

Denoting Tk, k = 0, 1, . . . ,Mq − 1, or, k = 0, 1, . . . ,Mq/2 − 1 as the tangent vectors
of corresponding helical polygon, at any time tpq

∫ 2π

0
X3,t(s, t)ds =

[
ρq

sin(ρq)
∑

k

Tk ∧+ Tk+1

]
◦+ k̂. (2.43)

In fact, since
∫ 2π

0 Xt(s, tpq)ds points in the k̂ direction, we can write
∫ 2π

0
Xt(s, tpq)ds = ρq

sin(ρq)
∑

k

Tk ∧+ Tk+1.

However, the above equation can be rewritten as
∫ 2π

0
Xt(s, tpq)ds = ρq

sin(ρq)
∆s

∑
k

Tk ∧+
Tk+1 − Tk

∆s ,

thus, formally,

lim
q→∞

[
ρq

sin(ρq)
∆s

∑
k

Tk ∧+
Tk+1 − Tk

∆s

]
=
∫ 2π

0
T(s) ∧+ Ts(s)ds.
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Note that in order to understand (2.43), we compute ∑k Tk ∧+ Tk+1 ≡ ∑
k Talg,k ∧+

Talg,k+1 using the symbolic computation in MATLAB. After computing this quantity
for small values of q, we can conjecture that, for all p such that gcd(p, q) = 1,

[∑
k

Talg,k ∧+ Talg,k+1

]
◦+ k̂ =


(1−cos(ρq))Mq

tan(π/M) , if q ≡ 1 mod 2,

(1−cos(ρq))Mq/2
tan(π/M) , if q ≡ 0 mod 2.

With this, we can write the right hand side of (2.39) as

1
2π

∫ 2π

0
X3,t(s, t)ds =


1

2π
ρq

sin(ρq)
(1−cos(ρq))Mq

tan(π/M) , if q ≡ 1 mod 2,

1
2π

ρq

sin(ρq)
(1−cos(ρq))Mq/2

tan(π/M) , if q ≡ 0 mod 2.
(2.44)

Moreover, when p ≡ 0 mod q, we have

1
2π

∫ 2π

0
X3,t(s, t)ds = 1

2π
ρ0

sin(ρ0)
(1 − cos(ρ0))M

tan(π/M) = C(M, b) = C,

which is a constant depending on the initial structure of polygonal curve X. Thus, with∫ 2π
0 X3,t(s, tpq)ds we can now compute h(t), and hence, cM . Without loss of generality

we can assume that q is an odd prime and in (2.40), we approximate the integral with
respect to time using trapezoidal rule and compute it for the limit q → ∞,

h(2π/M2) − h(0) =
∫ 2π/M2

0

[ 1
2π

∫ 2π

0
X3,t(s, t′)ds

]
dt′

= lim
q→∞

 2π
M2q

1
2π

1
2

∫ 2π

0
X3,t(s, t0q)ds+

q−1∑
p=1

∫ 2π

0
X3,t(s, tpq)ds+ 1

2

∫ 2π

0
X3,t(s, t0q)ds


= lim

q→∞

 2π
M2q

1
2π

C
2 +

q−1∑
p=1

ρq

sin(ρq)
(1 − cos(ρq))Mq

tan(π/M) + C

2


= lim

q→∞

[
C

M2q
+ ρq

sin(ρq)
(1 − cos(ρq))(q − 1)

M tan(π/M)

]
,
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as q → ∞, ρq → 0, which implies lim
q→∞

ρq/ sin(ρq) goes to 1, and thus, using (2.27) we
can write

h(2π/M2) − h(0) = 1
M tan(π/M) lim

q→∞
[(1 − cos(ρq)q)]

= 1
M tan(π/M) lim

q→∞

[
1 − (2 cos2/q(ρ0/2) − 1)

1/q

]
= −4 ln cos(ρ0/2)

M tan(π/M) .

Since h(2π/M2) − h(0) = cM(2π/M2),

cM = h(2π/M2) − h(0)
2π/M2 = −2 ln cos(ρ0/2)

(π/M) tan(π/M) . (2.45)

A similar computation for any time tpq would also show that h(tpq) − h(0) = cM tpq.
Moreover, using expression for ρ0 in (2.12) and L’ Hôpital’s rule twice, we can

compute

lim
M→∞

cM = −2
π

lim
M→∞

ln cos(ρ0/2)
M tan(π/M) = −2

π
lim

M→∞

ln(1 − a2 sin2(π/M))
tan(π/M)/M = a2 = 1 − b2,

which is in coherence with the fact that a smooth helical curve with torsion b, translates
in a vertical direction with a constant speed 1 − b2, and the case b = 1, i.e., a straight
line is a stationary solution.

2.4 Trajectory of X(0, t)

In this section, we describe the trajectory of a single point s = 0 located on the helical
M -polygon, which constitutes the main difference between the zero-torsion and the
nonzero-torsion cases. Recall that in the zero-torsion case, due to the symmetries of the
closed M -polygons, the trajectory of one point, i.e., X(0, t), which at the numerical level
was claimed to be a multifractal, lies in a plane [22]. However, for any θ0 > 0, X(0, t)
is no longer planar, and taking t ∈ [0, Tf ] is not enough to understand its structure, so
we consider larger times multiple of Tf . Figure 2.5 corresponds to an M -polygon with
M = 6, θ0 = π/5, i.e., b = 0.5628 . . ., t ∈ [0, 10π/3]. Observe that X(0, t) has a helical
shape, and exhibits a conspicuous fractal structure that repeats periodically, with some
rotation and a vertical movement. In order to further understand this curve, we analyze
each component of X(0, t), by using a Fourier series. In what follows, depending on
the choice of the parameter b, we consider two different cases.
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2.4.1 Case with b ∈ (0, 1)

Figure 2.5 Initial polygon X(s, 0) (blue), for M = 6, θ0 = π/5, i.e., b = 0.5628 . . ., and
its evolution at time t = 10π/3 (red), together with the curve described by X(0, t),
for t ∈ [0, 10π/3] (black). X(0, t) has a conspicuous fractal structure which repeats
periodically, with some rotation and a vertical movement.

Choice of parameter b

In the case of a planar M -polygon, the curve X(0, t) has a corner at those values of
t, at which the polygonal curve X(s, t) has a corner at s = 0, i.e., at t = tpq, with
q ̸≡ 2 mod 4. But for any θ0 > 0 (or b), due to the lack of space periodicity, for a
given time, a corner initially located at s = 0, is translated by the Galilean shift.
However, if b is chosen in such a way that, at the end of one time period, i.e., at t = Tf ,
the Galilean shift is a rational multiple of the side-length 2π/M of the corresponding
polygonal curve, then in a finite time, X(0, t) will have a corner. In other words, by
demanding that at t = Tf , i.e., p = 1, q = 1,

s1,1 = 2θ0

M
= 2π
M

c

d
=⇒ θ0 = πc

d
,

with gcd(c, d) = 1, c, d ∈ N, at the end of d (or d/2) time periods, the cumulative
Galilean shift will become equal to the side-length and s = 0 will correspond to a
corner.
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X(0, t) having corners depends mainly on the Galilean shift, or, in other words, in
order for the curve X(0, t) to have corners in finite time, b should be chosen in such a
way that, at t = Tf , the Galilean shift is a rational multiple of the side-length 2π/M
of the corresponding polygonal curve. This can be enforced by taking θ0 = πc/d, with
gcd(c, d) = 1, c, d ∈ N. Then, defining the following multiples of Tf :

T c,d
f ≡

(d/2)Tf ≡ πd/M2, if c · d odd,
d Tf ≡ 2πd/M2, if c · d even,

(2.46)

the numerical experiments reveal that, at times that are integer multiples of T c,d
f ,

X(0, t) has a corner, and the three-dimensional fractal structure of X(0, t) repeats with
period T c,d

f (see Figure 2.5). On the other hand, at rational multiples of T c,d
f , X(0, t)

has corners of different (smaller) scales.

In order to better understand X(0, t), we define, in t ∈ [0, T c,d
f ]:

z1,2(t) = X1(0, t) + iX2(0, t) = R(t)eiν(t),

X̃3(t) = X3(0, t) − cM t,

where
R(t) =

√
X2

1 (0, t) +X2
2 (0, t), ν(t) = arctan(X2(0, t)/X1(0, t)),

give the polar representation of z1,2(t), and X̃3(t) is X3(0, t) without its vertical height.
Since R(t) and X̃3(t) are periodic, we can consider their Fourier expansion:

R(t) =
∞∑

n=−∞
an,Me

2πi n t/T c,d
f , X̃3(t) =

∞∑
n=−∞

b̃n,Me
2πi n t/T c,d

f , t ∈ [0, T c,d
f ].

We have approximated the Fourier coefficients an,M and b̃n,M using the MATLAB
command fft, for M = 6, θ0 = π/5, t ∈ [0, 5π/18]. In the left-hand side of Figure 2.6,
we have plotted R(t); and, in the center, the fingerprint plot, i.e., the real part of the
approximations of n an,M , for n = 1, 2, . . . , 2000.

On the right-hand side, we have plotted ν(t), which describes the angular movement
of X(0, t) in the XY-plane and can be associated with the phase shift corresponding to
the angular movement of a corner initially located at s = 0. From its definition, one
can suspect that ν(t) has a multifractal structure, too; hence, computing the phase
shift at any rational time appears to be involved and deserves further research. We
make some more comments on this in the next section.
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Figure 2.6 Left: R(t), for t ∈ [0, T c,d
f ], M = 6, θ0 = π/5, c = 1, d = 5, b = 0.5628 . . ..

Center: Approximation of nℜ(an,M ), for n = 1, 2, . . . , 2000, where an,M are the Fourier
coefficients of R(t). The dominating points (red starred) are given by (2.47). Right:
ν(t), which seems to have a multifractal structure as well.

We have carried out a careful study of the fingerprints of R(t) and X̃3(t), with
t ∈ [0, T c,d

f ], for many different values of M , c and d, and have found strong evidence
that, when θ0 = cπ/d, gcd(c, d) = 1, the dominating points of the fingerprints belong
to the following set:

Ac,d =

{n(n d+ c)/2 |n ∈ Z} ∩ N, if c · d odd,
{n(n d+ c) |n ∈ Z} ∩ N, if c · d even.

(2.47)
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Figure 2.7 Left: X̃3(t), for t ∈ [0, T c,d
f ], M = 6, θ0 = π/5, c = 1, d = 5, b = 0.5628 . . ..

Center: Approximation of −nℑ(bn,M ), for n = 1, 2, . . . , 2000, where bn,M are the Fourier
coefficients of the scaled X̃3(t) multiplied by −1. The dominating points (red starred)
are given by (2.47). Right: Imaginary part of ϕc,d(t) in (2.48), where the sum is taken
over 211 values.

On the other hand, the relation between X(0, t) for planar M -polygons and Rie-
mann’s non-differentiable function suggests comparing X̃3(t) in the helical M -polygon
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Figure 2.8 For M = 4, θ0 = 2π/5, N/M = 211, left: on the top X̃3(t), for t ∈ [0, T c,d
f ],

and bottom is ℑϕc,d(t), t ∈ [0, 1]. Right: Approximation of −nℑ(bn,M), for n =
1, 2, . . . , 2000, where bn,M are the Fourier coefficients of the scaled X̃3(t) multiplied by
−1. The dominating points (red starred) are given by (2.47)

case and the imaginary part of

ϕc,d(t) =
∑

k∈Ac,d

e2πikt

k
, t ∈

[0, 1/2], if c · d odd,
[0, 1], if c · d even,

(2.48)

where Ac,d is given by (2.47).

Figure 2.7 is the continuation of Figure 2.6, and hence, all the parameters are identical.
On the left-hand side, we have plotted X̃3(t); in the center, minus the imaginary part
of the approximations of n bn,M , for n = 1, 2, . . . , 2000, i.e., the fingerprint of the scaled
X̃3(t); in general, the dominating points appear to be distributed around 1/4 (when
c · d is odd) or 1/2 (when c · d is even). Finally, on the right-hand side, we have plotted
the imaginary part of ϕc,d(t) which, except for a scaling, is visually indistinguishable
from the T c,d

f -periodic curve X̃3(t) on the left-hand side. See also Figure 2.8 where
we have considered the parameters M = 4, N/M = 211, c = 2, d = 5, i.e., θ0 = 2π/5
or b = 0.7265 . . .. Note that since c · d is even, ϕc,d(t) is periodic for t ∈ [0, 1] and
the dominating points in fingerprint plot are distributed about 1/2. However, due to
the smaller value of M , the noise (lower frequencies) in the fingerprint plot is more
pronounced.
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Figure 2.9 Initial polygon X(s, 0) (blue), for M = 20, θ0 = π/12, i.e., b = 0.8312 . . .,
and its evolution at time t = 2π (red), together with the curve described by X(0, t),
for t ∈ [0, 2π] (black). X(0, t) has a conspicuous fractal helical structure, as shown in
the zoomed part.

Computation of limM→∞ X(0, t)

As we have seen, when b ∈ (0, 1), the curve X(0, t) is not periodic, but studying its
structure componentwise sheds light on its behavior. We have also considered its time
evolution for M ≫ 1 and sufficiently large values of T c,d

f . Figure 2.9 shows X(0, t),
for M = 20, θ0 = π/12, b = 0.8312 . . . , t ∈ [0, 12π/5], along with the initial and final
helical polygonal curve. The fingerprint of the scaled X̃3(t) has been plotted on the
left-hand side of Figure 2.10, and it is quite clear that the dominating points converge
to 1/2; indeed, the convergence is stronger than that in the center of Figure 2.7, since
we have taken 104 points on the x-axis. This and other numerical experiments enable
us to conjecture that

lim
M→∞

|n bn,M | =


1/4, if n ∈ Ac,d and c · d odd,
1/2, if n ∈ Ac,d and c · d even,
0, otherwise.

On the other hand, the curve ν(t) shown on the right-hand side of Figure 2.10 appears
to converge to a straight line. In this regard, we have performed a basic linear fitting
ν(t) = mt+ c (red), with c = 1.4133 . . ., m = −0.8304 . . .. Note that the modulus of
m can be compared with the value of b, which can also be regarded as the angular
velocity of the helical curve X, as it evolves in time. Continuing the discussion from
the previous section, we compute the phase shift at time Tf , for a given M and b, by
calculating the angle between the tangent vector T at times t = 0 and t = Tf . Note
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Figure 2.10 Left: fingerprint of the scaled X̃3(t), taking M = 20, θ0 = π/12, c = 1,
d = 12, b = 0.8312 . . ., t ∈ [0, T c,d

f ]. The convergence of the dominating points to 0.5 is
clearly visible. Right: ν(t), together with its best fitting line; the slope is −0.8304 . . .,
and its modulus is close to the value of b.

that the phase shift decreases as M increases, and as M → ∞, it converges to 2πb/M2.
In Figure 2.11, we have compared the corresponding phase shift with the quantity
2πb/M2, taking b = 0.4, M = 3, 4, . . . , 20, N/M = 7680. The left-hand side shows
the phase shift values for different M values whereas on the right-hand side, we have
computed the relative and absolute errors. The results also suggest that, as M grows
larger, the amount of both the Galilean and the phase shifts decreases at the end of
one time period.
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Figure 2.11 Left: Phase shift, for M = 3, 4, . . . , 20, b = 0.4, N/M = 7680. Right: abso-
lute errors (circled points) and relative errors (starred points) computed by comparing
the phase shift with 2πb/M2, for each M . For a given value of b > 0, the phase shift
at the end of one time period decreases, as M increases.
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2.4.2 Case with b → 1−

From (2.15), it follows that, as θ0 → 2π/M , b → 1−, but in Section 2.2.1, we mentioned
that we can have both space and time periodicity only when γ = 1 (or θ0 = 2π/M).
Since, numerically, θ0 cannot be exactly 2π/M (or b = 1), we have taken b = 1 − 10−5,
and observed the evolution for M2 time periods, i.e., until t = 2π. On the other hand,
as b approaches 1, the speed of the center of mass cM tends to 0, and this implies that
the vertical movement (or the third component X3(0, t), which, after removing the
vertical height becomes 2π/M -periodic), is much smaller compared to the other two
components. Hence, in order to understand the behavior of X(0, t) in the XY-plane,
we consider the following stereographic projection onto C:

z(t) = X1(0, t)
1 + X̃3(t)

+ i
X2(0, t)

1 + X̃3(t)
, t ∈ [0, 2π], (2.49)

which is almost 2π-periodic. As done for b ∈ (0, 1), we approximate the Fourier
expansion of z(t), and note that the dominating points in its fingerprint correspond to
the squares of those integers belong to the set

AM = {1} ∪ {nM ± 1 |n ∈ N}. (2.50)

This motivates us to compare z(t) and

ϕM(t) =
∑

k∈AM

e2πik2t

k2 , t ∈ [0, 1]. (2.51)

In order to determine the correct orientation of the almost closed curve z(t), we rotate
it clockwise by an angle of π/2 − π/M radians, and call the resulting curve zM(t).
Figure 2.12 shows zM (t) (blue) and ϕM (t) (red), for M = 3. Except for a scaling, both
curves are visually the same.

In order to strengthen our claim, we take different values of M , M = 3, 4, . . . , 15,
and compare them with the corresponding ϕM(t). In particular, we compute ϕM(t) −
λMzM(t) − µM , for some λM ∈ R and µM ∈ C obtained using a least-square fitting:

λM = ℜ
(mean(zc

M(t) · ϕc(t)
mean(|zc

M(t)|2)

)
, µM = mean(ϕM) − λM mean(zM(t)); (2.52)

with
zc

M(t) = zM(t) − mean(zM(t)), ϕc
M(t) = ϕ̄M(t) − mean(ϕ̄M(t)),
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Figure 2.12 Left: Trajectory of a single point zM(t), for M = 3, N/M = 210. Right:
ϕM(t) in (2.51), where dim(AM) = 210. Both curves have been computed at Nt + 1
points in their respective domain intervals.

3 4 5 6 7 8 9 10 11 12 13 14 15
10

-4

10
-3

10
-2

Figure 2.13 Errors maxt |(ϕM −λMzM −µM )| (circled) and maxt |(ϕM −λMzM −µM )/ϕM |
(starred), where λM and µM are computed from (2.52) for M = 3, 4, . . . , 15.
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Figure 2.13 shows the absolute error (maxt |(ϕM − λMzM − µM)|) and relative error
(maxt |(ϕM − λMzM − µM)/ϕM |) between zM and ϕM . Note that, for different values
of M , the time period t ∈ [0, 2π] is the same, so the length of the vector zM(t) would
be M2Nt + 1, and would vary with M . Therefore, in order to keep a fair comparison
among all the M values, we have kept N/M constant, i.e., N/M = 210. As M increases,
the length of zM(t) increases, so we restrict ourselves to the case with M = 15, where
the length of zM(t) is 1.3608 · 108 + 1. Moreover, the plot clearly shows that the
convergence is quite strong in the sense that, as M increases, the discrepancy between
zM and ϕM decreases.

Moreover, the case M = 4, b = 1 − 10−5 is worth mentioning as well where the set
AM in (2.50) involves only half of the integers, see Figure 2.14 where we have plotted
zM(t) on the left, and ϕM(t) on the right hand side.

Figure 2.14 Left: Trajectory of a single point zM(t), for M = 4, N/M = 210. Right:
ϕM(t) in (2.51), where dim(AM) = 210. Both curves have been computed at Nt + 1
points in their respective domain intervals.

Finally, in Figure 2.15, we plot the fingerprint of the scaled zM (t), for b = 1 − 10−5,
t ∈ [0, 2π], M = 3 (left) and M = 4 (right). Observe that, as b tends to 1, the
dominating points in the fingerprint approach 1; in other words, we conjecture that

lim
b→1−

|n cn| =

1, if n ∈ AM ,

0, otherwise,

where cn are the Fourier coefficients of the scaled zM(t), which implies that the curve
zM converges to ϕM , as b → 1−.
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Figure 2.15 Left: Plot of nℜ(cn) against n, for M = 3, N/M = 210, b = 1 − 10−5,
t ∈ [0, 2π]. The dominating points (red starred) are of the form k2ck2 , where k is
such that mod(k ± 1,M) = 0; we have taken k ∈ {1, 2, 4, 5, 7, . . . , 34}. Right: Plot of
nℜ(cn) against n, for M = 4, N/M = 210, b = 1 − 10−5, t ∈ [0, 2π]. The dominating
points (red starred) are of the form k2ck2 , where k is such that mod(k ± 1,M) = 0;
we have taken k ∈ {1, 3, 5, 7, . . . , 99}.

2.5 Behavior of the tangent vector T near irra-
tional times

In the one-corner problem with fixed boundary conditions, and in the planar M -polygon
case with periodic boundary conditions a fractal-like phenomenon was observed in the
tangent vectors too [22, 24]. This suggests expecting a similar behavior in the case of
helical M -polygons. We use the algebraically constructed Talg, which is correct except
for a rotation about the z-axis, does not exhibit the Gibbs phenomenon, and can be
obtained without numerical simulations.

As in [22], we take rational times tpq, such that q is very large (i.e., tpq can be regarded
as an approximation of an irrational time), and there is no pair (p̃, q̃) where both q̃ and
|p/q − p̃/q̃| are small. In particular, we take M = 3, tpq = 2π

9 (1
4 + 1

41 + 1
401) = 2π

9 · 18209
65764 ,

and note that, as b moves from 0 to 1, the Mq/2 = 98646 values of T tend to concentrate
on the upper half of the sphere, whereas, when b ≈ 1, they lie very close to its north
pole (see the left-hand side of Figure 2.16). On the other hand, the stereographic
projection seems to be even more interesting: for b = 0, the fractal spiral-like structures
appear to be at three or four different scales (see [22, Fig. 8]), but, as b approaches 1,
the equally complex structures form a shape resembling a triskelion (see the right-hand
side of Figure 2.16).
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Figure 2.16 Left: Talg, for M = 3, b = 1 − 10−5, at tpq = 2π
9 (1

4 + 1
41 + 1

401) = 2π
9 · 18209

65764 .
As b tends to 1, the values of the tangent vector concentrate around the north pole of
S2. Right: The corresponding stereographic projection, which converges to a triskelion
with the same scale spirals.

2.6 Numerical relationship between the helical M-
polygon and one-corner problems

In this section, we establish the claim that the helical M -polygon problem can be
explained as a superposition of M one-corner problems for infinitesimal times, as in
[23]. Thus, in order to compare both cases when θ0 > 0, we obtain the solution of
one-corner problem, i.e., the orthonormal basis vectors Tcθ

, ncθ
, bcθ

, and the curve Xcθ
,

by integrating the Frenet–Serret frame (1.1) with initial conditions (1.21) and (1.22)
at t = t1,q, q ≫ 1. We take cθ,0 as defined in (2.19), so the inner angle between the
asymptotes of the tangent vectors, i.e., lims→−∞ Tcθ

(s) = A−, lims→∞ Tcθ
(s) = A+,

is equal to the angle between any two adjacent sides of the helical M -polygon with
A− = A1, A+ = A2 and Aj, j = 1, 2 as in (1.24).

Next, we have to rotate Xcθ
, Tcθ

, ncθ
and bcθ

, in such a way that the rotated
vectors Xrot and Trot match the M -polygon problem, where Xrot ≡ M · X and
Trot ≡ M · T, for a certain rotation matrix M, which is determined by imposing that
T−

rot = lims→−∞ Trot(s) = (a cos(2π/M),−a sin(2π/M), b)T , T+
rot = lims→+∞ Trot(s) =

(a, 0, b)T , with a2 + b2 = 1. In the following lines, we present two algorithms to compute
the rotation matrix M.
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Algorithm 1

(i) First, project A+ and A− on the plane z = 0, which can be done by performing
a rotation M1 about the x-axis(negative) of angle θ1

ν1 = arccos
 A2√

A2
2 + A2

3

 , M1 =


1 0 0
0 cos ν1 sin ν1

0 − sin ν1 cos ν1

 ,

so that

M1 · A± =


A1

±
√
A2

2 + A2
3

0

 .

(ii) Project T−
rot(s) and T+

rot(s) also on the plane z = 0. Consider the plane where
T−

rot and T+
rot lie and rotate it in such a way that its normal is parallel to z-axis

and passes through the origin. Compute

(a) normal to the initial plane n̂ = T−
rot∧+T+

rot

∥T−
rot∧+T+

rot∥ ,

(b) angle between n̂ and the z-axis and the rotation axis û2

ν2 = arccos(n̂ ◦+ (0, 0, 1)T ), û2 = n̂∧+(0,0,1)T

∥n̂∧+(0,0,1)T ∥ .

If θ2 is equal to zero, then the rotation matrix M2 is an identity matrix, otherwise,
M2 is rotation of angle θ2 about an axis û such that the vectors M2 · T±

rot lie on
the XY-plane.

(iii) Compute the angle between M1 · A± and M2 · T±
rot, and the rotation axis û3

ν3 = arccos
(
(M1 · A±) ◦+ (M2 · T±

rot)
)
, û3 = (M1·A±)∧+(M2·T±

rot)
∥(M1·A±)∧+(M2·T±

rot)∥ .

With θ3 and û3 we construct the corresponding rotation matrix M3.

(iv) Hence, M = M−1
2 · M3 · M1.

In our case, these matrices are

M1 =


1 0 0
0 A2√

A2
2+A2

3

A3√
A2

2+A2
3

0 − A3√
A2

2+A2
3

A2√
A2

2+A2
3
,

 , M3 =


cos(π/M) sin(π/M) 0

− sin(π/M) cos(π/M) 0
0 0 1

 ,
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M2 =


1 + cos2(π/M)(a cos(θ/2 − 1)) cos(θ/2) sin(π/M − ρ0/2) b cos(θ/2)

cos(θ/2) sin(π/M − ρ0/2) 1 + sin2(π/M)(a cos(θ/2 − 1)) − b
a

tan(ρ0/2)
−b cos(θ/2) b

a
tan(ρ0/2) a cos(θ/2)

 .

Algorithm 2

In this algorithm, we obtain the rotation matrix by using only two intermediate
rotations.

(i) Compute the angle ν1 between T+
rot and A+, i.e., ν1 = arccos(A+ ◦+ T+

rot) and
axis û = A+∧+T+

rot

∥A+∧+T+
rot∥ . If ν1 = 0 then M1 is an identity matrix, otherwise M1

performs a rotation of an angle ν1 about an axis û. Thus, M1 · A+ = T+
rot.

(ii) Denote Ã− = M1 · A− and T̃−
rot = M1 · T−

rot and ν2 as the angle they make
in the plane whose normal is T+

rot. In other words, ν2 = arccos
(
Ã−

⊥ ◦+ T̃−
rot⊥

)
,

where Ã−
⊥ = −T+

rot ∧+ (T+
rot ∧+ Ã−) and T̃−

rot⊥ = −T+
rot ∧+ (T+

rot ∧+ T̃−
rot) are the

orthogonal projection of each vector in the plane orthogonal to T+
rot. Thus, M2

is a matrix performing a rotation of an angle ν2 about an axis T+
rot.

(iii) Hence, the desired matrix is M = M2 · M1.

Thus, we obtain


Xrot,1

Xrot,2

Xrot,3

 =


−aπ/M

− aπ/M
tan(π/M)

0

+ M ·


Xc0,1

Xc0,2

Xc0,3

 ,

Trot,1

Trot,2

Trot,3

 = M ·


Tc0,1

Tc0,2

Tc0,3

 , (2.53)

where
(
−aπ/M,− aπ/M

tan(π/M) , 0
)T

is the location of corner of the helical M -polygon
corresponding to s = 0, at t = 0.
In our numerical simulations, we take ∆s = π/M2q, and integrate (1.1) by using a
fourth-order Runge–Kutta method with initial conditions (1.21) and (1.22) at t = t1,q.
Then, using the same ∆s, we compute the T(s, t1,q) corresponding to the M -polygon
problem, for M = 6, θ0 = π/5, q = 502. We have also compared the evolution of
Xrot(0, t) and X(0, t), where


Xrot,1(0, t)
Xrot,2(0, t)
Xrot,3(0, t)

 =


−aπ/M

− aπ/M
tan(π/M)

0

+ 2
√
tMcθ,0 ·


0
0
1

 . (2.54)
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We note that, when projected on the complex plane, X(0, t) can be very well approxi-
mated by Xrot(0, t) for small values of t such as t ∈ [0, t1,20]. Moreover, there is also a
similarity between the third components of both curves; these observations are shown
in Figure 2.17.
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Figure 2.17 Left: T for the M -polygon problem (blue) and Trot (red), for M = 6,
θ0 = π/5, at t = t1,502. Center: Comparison between X(0, t) (black) and Xrot(0, t)
(red). Right: Third component X3(0, t) (black) and Xrot,3(0, t) (red), for t ∈ [0, t1,20].

2.6.1 Approximation of the curvature at the origin

The relationship between the one-corner and the M -polygon problems has deep impli-
cations. For instance, in [23], this fact was used to compute the speed of the center
of mass through analytical techniques, or, to recover c0 in (2.26). In what follows, we
illustrate again the utility of this approach, to recover (2.19).

Observe that, in the one-corner problem (see [36]), the curvature at s = 0 and
t > 0 is given by c0(t) =

√
t∥Ts(0, t)∥; hence, in the case of regular M -polygons, the

corresponding formula is cθ,0(tpq) = √
tpq∥Ts(0, tpq)∥ at infinitesimal rational times

tpq. Following the same steps as in [23], we approximate Ts using finite differences.
Note that, for any given value of q, since θ0 < 2π/M , the Galilean shift satisfies
s1,q < 2π/Mq, and, as a result, T(s, t1,q) is continuous at s = 0, s = −∆s, and s = ∆s,
where ∆s = 2π/Mq, if q is odd, and ∆s = 4π/Mq if q is even. This fact also implies
that

T((−∆s+ s1,q)−, t1,q) = T(−∆s−, t1,q), T((∆s+ s1,q)−, t1,q) = T(∆s−, t1,q),
T(s−

1,q, t1,q) = T(0−, t1,q),
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Thus, using the algebraic solution Talg and bearing in mind the previous considerations,
we take q ≡ 2 mod 4, ∆s = 4π/Mq, so cθ,0 is approximated as

cθ,0 ≈ cq
θ,0 ≡

√
t1,q

∥Talg( 4π
Mq
, t1,q) − Talg(− 4π

Mq
, t1,q)∥

2 · 4π
Mq

, q ≫ 1. (2.55)

Recall that
Talg( 4π

Mq
, t1q)T

e1,alg( 4π
Mq
, t1q)T

e2,alg( 4π
Mq
, t1q)T

 = Rk,m


Talg(0, t1q)T

e1,alg(0, t1q)T

e2,alg(0, t1q)T

 , for k = 0,m = 1,


Talg(0, t1q)T

e1,alg(0, t1q)T

e2,alg(0, t1q)T

 = Rk,m


Talg(− 4π

Mq
, t1q)T

e1,alg(− 4π
Mq
, t1q)T

e2,alg(− 4π
Mq
, t1q)T

 , for k = −1,m = q − 1,

where Rk,m is as in (2.30). Since we need to compute the Euclidean norm of
Talg(4π/Mq, t−1q) − Talg(−4π/Mq, t−1q), we can safely ignore the global rotation of
Talg and assume that Talg(0, t1q), e1,alg(0, t1q), e2,alg(0, t1q) form the identity matrix.
Thus,


Talg

(
4π
Mq

−
, t1q

)
=
(
cos(ρq), sin(ρq) cos(θ1 + θ0

q
), sin(ρq) sin(θ1 + θ0

q
)
)T

Talg(0−, t1q) = (1, 0, 0)T ,

Talg

(
− 4π

Mq

−
, t1q

)
=
(
cos(ρq),− sin(ρq) cos(θq−1 + θ0

q
),− sin(ρq) sin(θq−1 + θ0

q
)
)T
,

which implies

∥∥∥∥∥Talg

(
4π
Mq

−
, t1q

)
− Talg

(
− 4π
Mq

−
, t1q

)∥∥∥∥∥ = sin(ρq)

√√√√2
((

1 + cos(θ1 − θq−1 + 2θ0

q

))

= 2 sin(ρq) cos
(
θ1 − θq−1

2 + θ0

q

)

= 2 sin(ρq) cos
(
θ0

q

)
, (2.56)

where in the last step we have used θ1 = θq−1, which follows from the properties of the
generalized Gauß sum: G(−p,m, q) = G(−p,−m, q) = G(−p, q −m, q). Substituting



2.7 Conclusion 63

(2.56) into (2.55) and taking the limit q → ∞,

cθ,0 = lim
q→∞

√
2π
M2q

2 sin(ρq) cos
(

θ0
q

)
8π/Mq

= lim
q→∞

√
q

8π [1 − cos2(ρq)] cos
(
θ0

q

)

= lim
q→∞

√√√√ q

8π

[
1 −

(
2 cos4/q

(
ρ0

2

)
− 1

)2
]

cos
(
θ0

q

)
=
√

− 2
π

ln
(

cos
(
ρ0

2

))
.

After computing cθ,0 analytically from (2.55), we have also approximated its value
numerically, taking M = 6, θ0 = π/5, and q = 1002, 2002, . . . , 128002. Table 2.4 shows
the discrepancies between the algebraic and numerical values. The results show clearly
that, when roughly doubling q, the errors are approximately halved, suggesting a
convergence order of O(1/q) = O(t1,q). We have considered different values of M and

q |cθ,0 − cq
θ,0| q |cθ,0 − cq

θ,0|
1002 6.8511 · 10−5 16002 4.2878 · 10−6

2002 3.4280 · 10−5 32002 2.1443 · 10−6

4002 1.7146 · 10−5 64002 1.0720 · 10−6

8002 8.5747 · 10−6 128002 5.3681 · 10−7

Table 2.4 |cθ,0 − cq
θ,0|, for M = 6, θ0 = π/5. The errors decrease as O(1/q) = O(t1,q).

θ0, and the consistency of numerical results give a strong evidence that at a numerical
level, for small times, the helical M -polygon problem with nonzero torsion, can be seen
as a superposition of M one-corner problems.

2.7 Conclusion

In this chapter, we have investigated the evolution of VFE for an M -sided regular
polygon with nonzero torsion in the Euclidean space. In this regard, the problem
has been solved numerically and the algebraic solution has been constructed up to a
rotation. A precise expression for the speed of the center of mass has been obtained
and for any rational time, the angle between any two sides of the new polygon has
been determined using a conservation law established in [8]. The numerical solution
suggests that due to the presence of nonzero torsion, the time evolution is neither space
nor time periodic and this results in a non-planar structure of X(0, t). However, with
a certain choice of torsion, through Fourier analysis at a numerical level, we are able
to discover new variants of Riemann’s non-differentiable function in the trajectory of
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X(0, t). Finally, we also comment on the relationship between the helical M -polygon
and one-corner problems.



Chapter 3

A regular planar l-polygon in the
Minkowski space

Time and space are modes by which
we think and not conditions in which
we live.

Albert Einstein
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3.1 Introduction

Let R1,2 = {(x1, x2, x3) : ds2 = −dx2
1 + dx2

1 + dx2
1} be the three-dimensional Minkowski

space, and H2 = {(x1, x2, x3) : −x2
1 + x2

1 + x2
1 = −1, x1 > 0} be the unit sphere in

it. For an arc-length parameterized initial curve X0 : R −→ R1,2, we consider the
geometric flow

Xt = Xs ∧− Xss, (3.1)

where s is the arc-length parameter, t time and the cross product ∧− is as in (1.7):

a ∧− b = (−(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1), a,b ∈ R1,2.

The time-like tangent vector T = Xs solves

Tt = T ∧− Tss. (3.2)

With the generalized curvature κ, torsion τ , through the filament function

ψ(s, t) = κ(s, t)ei
∫ s

0 τ(s′,t)ds′ = α̃(s, t) + iβ̃(s, t), (3.3)

and the parallel-frame 
T
e1

e2


s

=


0 α̃ β̃

α̃ 0 0
β̃ 0 0

 .


T
e1

e2

 , (3.4)

where T, e1, e2 form a unit orthonormal system, (3.1)–(3.2) are related to the following
defocussing type nonlinear Schrödinger equation

ψt = iψss − i

2ψ(|ψ|2 + A(t)), A(t) ∈ R. (3.5)

Thanks to the relationship between these three equations, for a given time t, from ψ(s, t),
we can obtain T(s, t) and X(s, t) up to a rigid movement which can be determined
using the symmetries of the problem, and hence, the main idea is to work with (3.5).

In this chapter, we present the binormal motion of the polygonal curves in the
Minkowski space R1,2. For an initial datum X(s, 0) as a regular planar l-polygon
(to be explained later) with its tangent vector T in the hyperbolic 2-space H2, in
Section 3.2, we formulate the problem and with appropriate algebraic techniques,
construct the solution for rational times. We present different methods to obtain
the time evolution of X and T numerically. For instance, in Section 3.4, (3.1)–(3.2)
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have been solved with a finite difference discretization in space and a fourth-order
Runge–Kutta method in time with Dirichlet boundary conditions. On the other hand,
in Section 3.5, we employ a Chebyshev discretization in space with implicit methods in
time. Moreover, the trajectory of a single point X(0, t) which resembles the so-called
Riemann’s non-differentiable function, has also been analyzed numerically.

3.2 A solution of VFE for a regular planar l-polygon

One of the main aims of this chapter is to obtain the solutions of (3.1) and explain
their dynamics when a regular planar l-polygon us considered as an initial datum. In
this direction, as in the Euclidean case, by assuming uniqueness, we prove the following
theorem:

Theorem 5. Assume that there exists a unique solution of the initial value problem

Xt = Xs ∧− Xss, (3.6)

with X(s, 0) as a regular planar l-polygon. Then, at a time tpq, a rational multiple
of 2π/r2, i.e., tpq ≡ (2π/r2)(p/q), with r = 2π/l, p ∈ Z, q ∈ N, gcd(p, q) = 1, the
solution is a skew lq-polygon with q times more sides (if q odd) or q/2 times more sides
(if q even) than the initial polygon. All the new sides have the same length, and the
time-like angle lq between two adjacent sides is constant. Moreover, the polygon at a
time tpq is the solution of the generalized Frenet–Serret system


T(s, tpq)
e1(s, tpq)
e2(s, tpq)


s

=


0 α(s, tpq) β(s, tpq)

α(s, tpq) 0 0
β(s, tpq) 0 0

 .


T
e1

e2

 , (3.7)

where α(s, tpq) + iβ(s, tpq) = Ψ(s, tpq), and Ψ(s, tpq) is the l-periodic function defined
over the period s ∈ [0, l) as

Ψ(s, tpq) =



lq√
q

q−1∑
m=0

G(−p,m, q)δ(s− lm
q

), if q odd,

lq√
2q

q−1∑
m=0

G(−p,m, q)δ(s− lm
q

), if q even,
(3.8)

with
G(a, b, c) =

c−1∑
l=0

e2πi(al2+bl)/c, a, b ∈ Z, c ∈ Z\{0},
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being a generalized quadratic Gauß sum.

We will see later that the time-like angle

lq =

2 arccosh(cosh1/q(l/2)), if q odd,
2 arccosh(cosh2/q(l/2)), if q even,

(3.9)

can be obtained using the conservation law described for the polygonal lines in [8] and
in Chapter 2.

3.2.1 Problem definition and formulation

We consider a regular planar polygonal curve with the time-like angle l > 0 between
any two sides, a constant that is arbitrary. Thus, following the idea of the M -polygon
problem in the Euclidean case, we look for a hyperbolic polygon with curvature

κ(s) = c0

∞∑
k=−∞

δ(s− lk), s ∈ R, (3.10)

where s is the arc-length parameter, the argument of the equally spaced Dirac deltas

0−l l−3l −2l 2l 3l

Figure 3.1 A Dirac comb: Dirac deltas equally spaced with an interval l.

corresponds to the location of the corners (Figure 3.1) and the coefficient c0 > 0 is
related to l through [21]

c0 =

√√√√ 2
π

ln
(

cosh
(
l

2

))
. (3.11)

The expression for κ(s) is known as a Dirac comb which is a periodic tempered
distribution. Note that in the absence of the torsion, from (3.3), ψ(s, 0) is the curvature
of the initial polygonal curve, i.e., ψ(s, 0) = κ(s).

Since (3.1)–(3.2) are invariant under hyperbolic rotations1, without loss of generality,
we can assume that the initial planar polygonal curve X(s, 0) and its tangent vector

1We call the rotations in Minkowski 3-space hyperbolic rotations (see Appendix A.) [49]
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o x

y

Figure 3.2 A planar l-polygon with l = 0.75, with vertices located at sn = nl, n ∈ Z
(marked with black square), and the asymptotes (in dotted red).

T(s, 0) lie in the XY-plane. Thus, taking OXY as the hyperbolic plane 2, we consider
the arc-length parameterized curve X(s, 0) whose vertices are given by

X(sn, 0) = j(l/2)ejsn

sinh(l/2) ≡ (l/2)
sinh(l/2) (sinh (sn) , cosh (sn) , 0)T ; (3.12)

we have used the notation ejθ = cosh(θ)+j sinh(θ), with j being the hyperbolic number
that satisfies j2 = +1 and sn = nl, n ∈ Z [17]. Furthermore, a point X(s, 0), for
sn < s < sn+1 lies in the segment that joins X(sn, 0) and X(sn+1, 0) (see Figure 3.2).
Since X(sn+1, 0) − X(sn, 0) = lej(sn+l/2), we obtain the tangent vector

T(s, 0) = ej(sn+l/2) ≡ (cosh (l/2 + sn) , sinh (l/2 + sn) , 0)T , (3.13)

for sn < s < sn+1, which is piecewise constant on the interval (sn, sn+1). Let us also
mention that both X(s, 0) and T(s, 0) are invariant under the hyperbolic rotation

H =
cosh(l) sinh(l)

sinh(l) cosh(l)

 .
A simple computation shows that

Hn =
cosh(nl) sinh(nl)

sinh(nl) cosh(nl)

 ,
2See Appendix A
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which implies that as |n| grows larger, | cosh(nl)| ≈ | sinh(nl)| ≫ 1, as a result, the
endpoints of the planar l-polygon will converge to the asymptotes of the hyperbola.
Since the regular polygonal curve is characterized by only one parameter, i.e., l, we call
it as a planar l-polygon. In a recent work, this object has been named as an elementary
t-convex polygon, characterized by a parameter t [31].

Note that in the Euclidean case, the M -sided polygon can be seen as an approxima-
tion of a circle to which it converges as M tends to infinity, whereas in the hyperbolic
case, the planar l-polygon converges to a hyperbola as l tends to zero, which is open
(see Figure 3.2). Moreover, since one of the main aims of this work is to compute the
numerical evolution of these curves, we will consider a finite polygonal curve, which
would imply a restriction on the number of sides or vertices. Thus, for an M -sided
hyperbolic polygon of length L = lM , the vertices are located at

X(sn, 0) = j(l/2)ejsn

sinh(l/2) ≡ (l/2)
sinh(l/2)

(
sinh (sn) , cosh (sn) − sinh(L/2)

M tanh(l/2) , 0
)T

, (3.14)

and the tangent vectors T(s, 0) are as in (3.13) with sn = −L/2+nl, n = 0, 1, 2, . . . ,M .
In the above expression we have taken M even, a similar expression can be obtained
for M odd as well. Finally, note that the construction of (3.12) and (3.14) is such that
the vertex corresponding to X(0, 0) lies on the y-axis.

Spatial symmetries of X and T

The invariance of (3.1)–(3.2) under the hyperbolic rotations follows from that of
Minkowski cross product under the same. So for a given hyperbolic rotation matrix
R such that R · T(s, 0) = T(s, 0) and R · X(s, 0) = X(s, 0), if the solution is unique,
then R · X(s, t) = X(s, t), R · T(s, t) = T(s, t) for all t. In particular, as already
mentioned in the previous section, X(s, 0), T(s, 0) given by (3.12), (3.13), respectively,
are invariant under a rotation of a time-like angle nl about a space-like z-axis for
all n ∈ Z, it can be concluded that X(s, t) and T(s, t) are invariant under the same
rotations, for all t. In other words, by writing X ≡ (X1, X2, X3)T , T ≡ (T1, T2, T3)T ,
and expressing the rotation in the hyperbolic plane using the hyperbolic number j, we
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write for all n ∈ N [17],

X1(s+ nl, t) + jX2(s+ nl, t) = ejnl(X1(s, t) + jX2(s, t)),
X3(s+ nl, t) = X3(s, t),

T1(s+ nl, t) + jT2(s+ nl, t) = ejnl(T1(s, t) + jT2(s, t)),
T3(s+ nl, t) = T3(s, t).

(3.15)

One of the important consequences of these symmetries is that for any time t, for all
n, the curve X(s+ nl, t) always lie in the same plane orthogonal to the z-axis.

As in the Euclidean case, (3.1)–(3.2) are mirror invariant, i.e., if X(s, t) satisfies
(3.1), so does X̃(s, t) = (−X1(−s, t), X2(−s, t), X3(−s, t))T and if X(s, 0) = X̃(s, 0),
then X(s, t) = X̃(s, t), for all t > 0. Similarly, if T(s, t) is a solution of (3.2), so
is T̃(s, t) = (T1(−s, t),−T2(−s, t),−T3(−s, t))T . As a result, X(s, t) − X(−s, t) is a
positive multiple of (1, 0, 0)T . This property plays an important role in constructing
the algebraic solutions, as we will see later.

Problem formulation

Observe that, by its definition, ψ(s, 0) is l-periodic and since NLS equation is invariant
with respect to space translations, ψ(s, t) is also l-periodic for all t ∈ R. On the other
hand, ψ(s, 0) = eirksψ(s, 0), where r = 2π/l, l > 0, thus, from Galilean invariance
ψ(s, t) = eirks−i(rk)2tψ(s− 2rkt, t). Since ψ is periodic, its Fourier coefficients can be
computed as

ψ̂(j, t) = 1
l

∫ l

0
e−2πisj/lψ(s, t)ds = 1

l

∫ l

0
e−irjs[eirks−i(rk)2tψ(s− 2rkt, t)]ds

= 1
l
e−i(rk)2t

∫ l

0
e−irs(j−k)ψ(s− 2rkt, t)ds = 1

l
e−i(rk)2t

∫
e−ir(j−k)(y+2rkt)ψ(y, t)dy

= e−i(rk)2t−ir(j−k)2rktψ̂(j − k, t),

which holds true for all j, k. By taking j = k, we obtain

ψ̂(k, t) = e−i(rk)2tψ̂(0, t),

as a result, ψ can be expressed as

ψ(s, t) = ψ̂(0, t)
∞∑

k=−∞
ei(rk)2t+i(rk)s, (3.16)
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where ψ̂(0, t) is a constant depending on time t and due to the Gauge invariance can be
taken real. In this work, without loss of generality, we take it to be real and its value is
computed explicitly by using a conservation law to be described later. However, t = 0
in (3.16) gives

ψ(s, 0) = ψ̂(0, 0)
∞∑

k=−∞
ei(rk)s = ψ̂(0, 0)

∞∑
k=−∞

e2πiks/l = c0

∞∑
k=−∞

δ(s− lk).

Using a well-known identity on Dirac comb

1
F

∞∑
k=−∞

e±2πiks/F =
∞∑

n=−∞
δ(s− nF ), (3.17)

and the last expression for ψ(s, 0), we obtain ψ̂(0, 0) = c0/l. On the other hand, if
ψ̂(0, t) = 1, we get

ψ(s, t) =
∞∑

k=−∞
e−i(2πk/l)2t+i(2πk/l)s = θ

(
s

l
,
4π
l2
t
)
,

where θ(s, t) is the well-known Jacobi theta function, the solution of the free Schrödinger
equation for the initial condition given by ψ(s, 0) with c0 = 1. Observe that

ψ(s, t+ (2π/r2)) = ψ̂(0, t)
∞∑

k=−∞
e−i(rk)2(t+ 2π

r2 )+i(rk)s

= ψ̂(0, t)
∞∑

k=−∞
e−i(rk)2te2πik2

ei(rk)s = ψ(s, t),

implies that ψ(s, t) periodic in time with a period 2π/r2 or l2/2π which we denote by
Tf in this chapter.

3.2.2 The evolution at rational multiples of time t = Tf

We evaluate (3.16) at t = tpq = 2π
r2

p
q
, p ∈ Z, q ∈ N, gcd(p, q) = 1 as

ψ(s, tpq) = ψ̂(0, tpq)
∞∑

k=−∞
e−(2πi(rk)2/r2)( p

q
)+i(rk)s

= ψ̂(0, tpq)
∞∑

k=−∞
e−2πik2( p

q
)+i(rk)s = ψ̂(0, tpq)

q−1∑
w=0

∞∑
k=−∞

e−2πi( p
q

)w2+irwseiqrks
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= ψ̂(0, tpq)
q−1∑
w=0

e−2πi( p
q

)w2+irws
∞∑

k=−∞
e2πiqks/l

= l

q
ψ̂(0, tpq)

q−1∑
w=0

e−2πi( p
q

)w2+irws
∞∑

k=−∞
δ
(
s− l

q
k
)

= l

q
ψ̂(0, tpq)

q−1∑
w=0

e−2πi( p
q

)w2+irw(kl/q)
∞∑

k=−∞
δ
(
s− l

q
k
)

= l

q
ψ̂(0, tpq)

q−1∑
w=0

q−1∑
m=0

e−2πi( p
q

)w2+irwl((qk+m)/q)
∞∑

k=−∞
δ
(
s− l

q
(qk +m)

)

= l

q
ψ̂(0, tpq)

∞∑
k=−∞

q−1∑
m=0

( q−1∑
w=0

e−2πi( p
q

)w2+2πiwm/q
)
δ
(
s− lk − lm

q

)
,

i.e.,

ψ(s, tpq) = l

q
ψ̂(0, tpq)

∞∑
k=−∞

q−1∑
m=0

G(−p,m, q)δ
(
s− lk − lm

q

)
, (3.18)

where G(a, b, c) = ∑c−1
l=0 e

2πi(al2+bl)/c, a, b,∈ Z, c ∈ Z \ {0}, is a generalised quadratic
Gauß sum. Moreover, by using the properties of the Gauß sum, we can write G(−p,m, q)
as:

G(−p,m, q) =


√
qeiθm , if q odd ,

√
2qeiθm , if q even ∧ q/2 ≡ m mod 2,

0, if q even ∧ q/2 ̸≡ m mod 2,

for a certain angle θm that depends on m (and also p, q). With this, if we consider
k = 0, i.e., s ∈ [0, l), then,

ψ(s, tpq) =



l
√
q
ψ̂(0, tpq)

q−1∑
m=0

eiθmδ
(
s− ml

q

)
, if q odd,

l√
q/2

ψ̂(0, tpq)
q/2−1∑
m=0

eiθ2m+1δ
(
s− (2m+1)l

q

)
, if q/2 odd,

l√
q/2

ψ̂(0, tpq)
q/2−1∑
m=0

eiθ2mδ
(
s− 2ml

q

)
, if q/2 even,

(3.19)

which implies that at any rational time tpq, a single side of the planar l-polygon at
t = 0, will evolve into q sides if q is odd, and q/2 sides if q is even. As it holds true for
any k ∈ Z, the resulting polygon will have q or q/2 times more sides than the initial
l-polygon. The new Dirac deltas thus formed, are equally spaced, as a result, all the
sides of the new polygon are of equal length. Furthermore, the coefficients of Dirac
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deltas have equal modulus and are given by

cq =


l√
q
ψ̂(0, tpq), if q is odd,

l√
q/2
ψ̂(0, tpq), if q is even.

(3.20)

In case of a finite length planar l-polygon initially with M sides, given any rational
time tpq, from (3.19), it will evolve into Mq-sided polygon for q odd, and Mq/2-sided
polygon for q even. The angle between any two of its sides will depend on ψ̂(0, tpq)
which will be determined in the next section.

It is important to mention that except for t = 0, t1,2 and t1,1, the coefficients
multiplying the Dirac deltas are not real, as a result, the corresponding polygon is
not planar, this fact will later be verified in the numerical results. Remark that, at
rational times tpq with q ≡ 2 mod 4, there is no corner at s = 0, for example, when
p = 1, q = 2, the polygonal curve is planar and has the same number of sides as the
initial polygon, but rotated by a time-like angle l/2 about the z-axis.

Computation of ψ̂(0, tpq)

Recall that in Chapter 2, we computed ψ̂(0, tpq) by using a conservation law established
in [8]. Following the discussion in Section 2.2.2, we note that the conservation law
holds true in both Euclidean (focusing NLS) and hyperbolic (defocusing NLS) cases.
Thus, for N ∈ N, if the initial data satisfies αk+N (0) = αk(0) for all k, and the solution
is unique, then, it can be concluded that α̃k+N(t) = α̃k(t) for all k and t.

In the regular planar l-polygon case, αk(0) = αk+1(0) = c0, and at any rational
time tpq (taking q odd for now), from (3.19), there are q times more Dirac deltas with
coefficients of equal modulus, i.e., cq. Then, the conservation law becomes

c2
0 = |αk(0)|2 =

q−1∑
k=0

|αk(tpq)|2 = qc2
q,

as a result, cq = c0/
√
q and

ψ̂(0, tpq) = c0/l = ψ̂(0, 0). (3.21)

Note that (3.11) holds true whenever there is a singularity formation, for instance,
in our case, at rational times tpq. Thus, denoting the time-like angle between any two
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tangent vectors by lq, we have

cosh
(
lq
2

)
= eπc2

q/2 ⇐⇒ cq =

√√√√ 2
π

ln
(

cosh
(
lq
2

))
,

and since for a given rational time, cq is the same for all k, the angle lq is constant for
all sides. Furthermore,

cq = c0√
q

=⇒

√√√√ 2
π

ln
(

cosh
(
lq
2

))
= 1

√
q

√√√√ 2
π

ln
(

cosh
(
l

2

))
,

i.e.,

cosh
(
l

2

)
= coshq

(
lq
2

)
.

After proceeding in the same way for q even, we conclude that

lq =

2 arccosh(cosh1/q(l/2)), if q odd,
2 arccosh(cosh2/q(l/2)), if q even.

(3.22)

3.2.3 Algebraic solution

In this section, we compute the tangent vector T and the curve X algebraically. We
follow an approach similar to the one used in [22], and construct the algebraic solution
up to a rigid movement which is later determined using the symmetries of the regular
planar l-polygon. In principle, we integrate (3.7) with

Ψ(s, tpq) = lq
cq

ψ(s, tpq) = α(s, tpq) + iβ(s, tpq), (3.23)

for q odd, and similarly, for q even, where ψ(s, tpq) is as in (3.19). The transformation
allows us to integrate the Frenet frame in a way that the coefficients appearing in
the semi-skew symmetric matrix3 are the curvature angle and the torsion angle. In
this way, the integration yields the corresponding rotation matrices which describe the
geometry of the polygonal curve, as we see in the following lines.

We consider a planar l-polygon with M sides, where without loss of generality, we
can take M to be even. The idea is to compute the basis vectors T, e1, e2 at any time

3See Appendix A for its definition and properties
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t = tpq from Ψ(s, tpq) = (α + iβ)(s, tpq). Recall that from (3.19) and (3.23), at any
rational time Ψ(s, tpq) is a sum of Mq or Mq/2 equally spaced deltas in s ∈ [−L/2, L/2],
which implies that the new polygonal curve will have Mq or Mq/2 tangent vectors.
In order to integrate the frame, we try to understand the transition from one side to
the next one, i.e., across one corner, so we consider a Dirac delta located at s = s̃, i.e.,
Ψ(s̃) = (c+ id)δ(s̃), so we need to integrate


T
e1

e2


s

=


0 cδ(s) dδ(s)

cδ(s) 0 0
dδ(s) 0 0

 ·


T
e1

e2

 = δ(s)B ·


T
e1

e2

 , (3.24)

where

B =


0 c d

c 0 0
d 0 0

 ,
is a semi-skew symmetric matrix. This system corresponds to T(s), e1(s) and e2(s)
constant everywhere, except at s = s̃ where there is a vertex. Let us assume that for
s < s̃, T(s) ≡ T(s̃−), e1(s) ≡ e1(s̃−), e2(s) ≡ e2(s̃−) are given, then the goal is to
calculate T(s̃+), e1(s̃+), e2(s̃+) which correspond to the orthonormal system for s > s̃,
T(s) ≡ T(s̃+), e1(s) ≡ e1(s̃+), e2(s) ≡ e2(s̃+). Then,


T(s̃+)T

e1(s̃+)T

e2(s̃+)T

 = exp
(

B
∫ s̃+

s̃−
δ(s′)ds′

)
·


T(s̃−)T

e1(s̃−)T

e2(s̃−)T

 = exp(B) ·


T(s̃−)T

e1(s̃−)T

e2(s̃−)T

 .

By expressing c+ id = leiθ, we write the matrix exponential4, exp(B)

=


cosh(l) cos(θ) sinh(l) sin(θ) sinh(l)

cos(θ) sinh(l) 1 + cos2(θ)(cosh(l) − 1) sin(θ) cos(θ)(cosh(l) − 1)
sin(θ) sinh(l) sin(θ) cos(θ)(cosh(l) − 1) 1 + cos2(θ)(cosh(l) − 1)

 , (3.25)

which is a hyperbolic rotation matrix performing a rotation of a time-like angle l about
a space-like axis (0,− sin(θ), cos(θ))T .

Consequently, if T(s̃−), e1(s̃−), e2(s̃−) form an orthonormal basis in R1,2, then so
does T(s̃+), e1(s̃+), e2(s̃+). In order to obtain the skew polygon with Mq or Mq/2
sides, we need to integrate the system (3.24) Mq or Mq/2 times. By taking s̃ = 0 and

4See Appendix A for its definition and properties
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expressing Ψ(s, tpq) = αk + iβk from (3.19) for s ∈ [0, l),

Ψ(s, tpq) =



q−1∑
m=0

(αm + iβm)δ
(
s− ml

q

)
, if q odd,

q/2−1∑
m=0

(α2m+1 + iβ2m+1)δ
(
s− (2m+ 1)l

q

)
, if q/2 odd,

q/2−1∑
m=0

(α2m + iβ2m)δ
(
s− 2ml

q

)
, if q/2 even,

(3.26)

with

αm + iβm =



lqe
iθm , if q odd,

lqe
iθm , if q even ∧ q/2 ≡ m mod 2,

0, if q even ∧ q/2 ̸≡ m mod 2,

(3.27)

where lq is as in (3.22), and thus, the structure of the polygon can be determined at any
rational time. As a result, from (3.18), (3.21) and (3.23), we conclude that Ψ(s, tpq),
s ∈ [0, l) is given by (3.8) which finishes the proof of Theorem 5.

Furthermore, let us denote (3.25) as Hm corresponding to (αm + iβm)δ, i.e., Hm

=


cosh(lq) cos(θm) sinh(lq) sin(θm) sinh(lq)

cos(θm) sinh(lq) 1 + cos2(θm)(cosh(lq) − 1) sin(θm) cos(θm)(cosh(lq) − 1)
sin(θm) sinh(lq) sin(θm) cos(θm)(cosh(lq) − 1) 1 + sin2(θm)(cosh(lq) − 1)

 ,
(3.28)

and note that, if (αm + iβm) = 0, then Hm is an identity matrix.
If q is odd, then T, e1, e2 are piecewise constant in the intervals formed by the

discretization sj = −(L/2) + j(L/Mq), j = 0, 1, . . . ,Mq, which in this case, will also
correspond to the location of the vertices, and we write


T(s−

1 )T

e1(s−
1 )T

e2(s−
1 )T

 =


T(s+

0 )T

e1(s+
0 )T

e2(s+
0 )T

 = H0 ·


T(s−

0 )T

e1(s−
0 )T

e2(s−
0 )T

 ,


T(s−
2 )T

e1(s−
2 )T

e2(s−
2 )T

 =


T(s+

1 )T

e1(s+
1 )T

e2(s+
1 )T

 = H1


T(s−

1 )T

e1(s−
1 )T

e2(s−
1 )T

 = H1H0 ·


T(s−

0 )T

e1(s−
0 )T

e2(s−
0 )T

 ,


T(s−
3 )T

e1(s−
3 )T

e2(s−
3 )T

 =


T(s+

2 )T

e1(s+
2 )T

e2(s+
2 )T

 = H2


T(s−

2 )T

e1(s−
2 )T

e2(s−
2 )T

 = H2H1H0 ·


T(s−

0 )T

e1(s−
0 )T

e2(s−
0 )T

 ,
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and so on. Hence,


T(s−
k+1)T

e1(s−
k+1)T

e2(s−
k+1)T

 =


T(s+

k )T

e1(s+
k )T

e2(s+
k )T

 = Hk


T(s−

k )T

e1(s−
k )T

e2(s−
k )T



= HkHk−1 . . .H1H0 ·


T(s−

0 )T

e1(s−
0 )T

e2(s−
0 )T

 , (3.29)

where k = 0, 1, . . . ,Mq − 1. Moreover, Hk is periodic modulo q, i.e., Hk+q ≡ Hk. The
above expression holds true when q/2 is even as well, with the only difference that Hk

with odd indices will be identity matrices. As a result,


T(s+
2k)T

e1(s+
2k)T

e2(s+
2k)T

 = H2kH2k−2 . . .H2H0 ·


T(s−

0 )T

e1(s−
0 )T

e2(s−
0 )T

 ,

and 
T(s+

2k)T

e1(s+
2k)T

e2(s+
2k)T

 ≡


T(s+

2k+1)T

e1(s+
2k+1)T

e2(s+
2k+1)T

 ≡


T(s−

2k+1)T

e1(s−
2k+1)T

e2(s−
2k+1)T

 , (3.30)

for k = 0, 1, . . . ,Mq/2 − 1. Similarly, for q/2 odd, Hk with even indices will be identity
matrices, which would imply


T(s+

2k+1)T

e1(s+
2k+1)T

e2(s+
2k+1)T

 = H2k+1H2k−1 . . .H3H1 ·


T(s−

1 )T

e1(s−
1 )T

e2(s−
1 )T

 ,

and 
T(s+

2k−1)T

e1(s+
2k−1)T

e2(s+
2k−1)T

 ≡


T(s+

2k)T

e1(s+
2k)T

e2(s+
2k)T

 ≡


T(s−

2k)T

e1(s−
2k)T

e2(s−
2k)T

 , (3.31)

for k = 0, 1, . . . ,Mq/2 − 1. It is important to mention that when q is even, the mutual
angle lq for half of the Mq sides is equal to zero which results into a polygon with
Mq/2 sides, this is clear from (3.30)–(3.31). Furthermore, at any rational time tpq, the
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following holds true


T(L
2

−)T

e1(L
2

−)T

e2(L
2

−)T

 = HMq−1 · HMq−2 · ... · H1 · H0


T(−L

2
−)T

e1(−L
2

−)T

e2(−L
2

−)T

 ,

and since Hk is periodic modulo q, by defining

H = Hq−1 · Hq−2 · ... · H1 · H0,

we can write 
T(L

2
−)T

e1(L
2

−)T

e2(L
2

−)T

 = HM


T(−L

2
−)T

e1(−L
2

−)T

e2(−L
2

−)T

 .

In summary, for any values of p, q, T, e1 and e2 can be determined up to a rigid
movement; this holds true for X as well which is obtained by integrating T. Since we
are dealing with a regular polygonal curve, the rigid movement can be computed by
making use of its symmetries. Thus, given any rational time tpq, we first compute the
rotation matrix Hk, then denoting the piecewise constant orthonormal basis vectors
up to a rigid movement by T̃, ẽ1, ẽ2, from (3.29) we have


T̃(s−

k+1)T

ẽ1(s−
k+1)T

ẽ2(s−
k+1)T

 =


T̃(s+

k )T

ẽ1(s+
k )T

ẽ2(s+
k )T

 = Hk


T̃(s−

k )T

ẽ1(s−
k )T

ẽ2(s−
k )T

 .

Without loss of generality we can consider the case k = 0 to be an identity matrix:


T̃(s−
k )T

ẽ1(s−
k )T

ẽ2(s−
k )T

 =


1 0 0
0 1 0
0 0 1

 ,

and using (3.29), we obtain Mq tangent vectors. Moreover, X̃, i.e., X up to a rigid
movement, can be computed from T̃ by

X̃(sk+1) = X̃(sk) + l

q
T̃(s+

k ), (3.32)
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for k = 0, 1, . . . ,Mq − 1, and X̃(s0) can be assigned any value, for example, X̃(s0) =
(0, 0, 0)T , and thus, we obtain the Mq + 1 vertices of the hyperbolic polygon. Next, we
determine the correct rotation by using the symmetries of the curve X as described in
Section 3.2.1. In this regard, first, to align the polygon orthogonal to the z-axis, we
use the fact that for any time t, X(−L/2 + lk), for k = 0, 1, . . . ,M lie in the XY-plane.
The aligned curve is rotated about the z-axis in such a way that X(l) − X(−l) is a
positive multiple of (1, 0, 0)T . One way the aforementioned procedure can be done
efficiently is the following:

(i) Compute the unit time-like vectors w+ = X̃(l)−X̃(0)
∥X̃(l)−X̃(0)∥0

, w− = X̃(−l)−X̃(0)
∥X̃(−l)−X̃(0)∥0

.

(ii) Compute the unit space-like vector û = w+∧−w−

∥w+∧−w−∥0
.

(iii) If space-like vectors û and ẑ = (0, 0, 1)T ,

(a) span a time-like vector subspace, i.e., û ◦− ẑ > ∥û∥0∥ẑ∥0, then the time-like
angle ν1 = arccosh

(
û◦−ẑ

∥u∥0∥z∥0

)
, and v̂ = û ∧− ẑ is a space-like vector,

(b) span a space-like vector subspace, i.e., û◦− ẑ < ∥û∥0∥ẑ∥0, then the space-like
angle ν1 = arccos

(
û◦−ẑ

∥u∥0∥z∥0

)
, and v̂ = û ∧− ẑ is a time-like vector,

(c) span a light-like vector subspace, i.e., û ◦− ẑ = ∥û∥0∥ẑ∥0, then ν1 = 0, and
L1 is an identity matrix,

then, L1 is a matrix performing a rotation of angle ν1 about the axis v̂/∥v̂∥0 [51].

(iv) Compute time-like vectors w+
rot = L1 · w+, w−

rot = L1 · w−, and w = w+
rot−w−

rot

∥w+
rot−w−

rot∥0
.

Then, ν2 = arccosh(w ◦− (1, 0, 0)T ) is the time-like angle, and L2 is the corre-
sponding rotation about the axis given by w∧−(1,0,0)

∥w∧−(1,0,0)∥0
,

(v) Compute the desired rotation L = L2 · L1, and T = L · T̃, X = L · X̃.

Thus, we obtain X, T in a correct orientation. Although, the computation of T is
done, to determine X completely, we need to specify the movement of its center of
mass which is computed in the next section.

3.3 Numerical solution

As mentioned previously, to compute the numerical evolution, we consider a planar
l-polygon of length L that is now characterized by two parameters, i.e., l and M such
that L = l · M . For our purpose, we take M even, so that the initial curve X(s, 0),
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s ∈ [−L/2, L/2], will have a vertex located at s = 0 and the symmetries described in
Section 3.2.1. This also allows us to capture the time evolution of a single point, i.e.,
X(0, t). Note that as we truncate the l-polygon, the role of boundary conditions in
the numerical scheme becomes very important. As with M we are approximating an
infinite long polygon, naturally, more accurate results are obtained for a large value
of L. However, for a fixed M , due to the exponential growth of the Euclidean norm
of tangent vector T, a large value of l causes the solution to blow up in a short time
making the numerical scheme unstable. This was also observed in the one-corner
problem where a large value of c0 lead to similar effects [24]. On the other hand, a
large value of M restricts us to consider small values of l.

Having said that, we solve (3.1)–(3.2) numerically for the initial data as in (3.13)–
(3.14) for s ∈ [−L/2, L/2]. There have been several papers dedicated to the numerical
treatment of (3.1)–(3.2) [15, 22, 24]. For instance, in the case of the Euclidean regular
M -polygons, the coupled system is solved with a pseudo-spectral method in space and
a fourth-order Runge–Kutta method in time [22, 25]. In the hyperbolic case, due to
the lack of spatial periodicity in X, T, the same numerical treatment is not possible.
In the following lines, we consider different numerical schemes and discuss the time
evolution of l-polygon problem.

3.4 Finite difference discretization

We divide the interval [−L/2, L/2] into N + 1 equally spaced nodes

sj = −L/2 + jL/N, j = 0, 1, . . . , N, (3.33)

with a fixed step size h = L/N . For any well-defined function u(s, ·), we let uj = u(sj, ·),
and consider the following fourth-order approximation of its first derivative

us(sj, ·) = D+−uj + O(h4),
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where D+−uj =

1
12h ×



−25uj + 48uj+1 − 36uj+2 + 16uj+3 − 3uj+4, j = 0,
−3uj−1 − 10uj + 18uj+1 − 6uj+2 + uj+3, j = 1,
uj−2 − 8uj−1 + 8uj+1 − uj+2, j = 2, . . . , N − 2,
−uj−3 + 6uj−2 − 18uj−1 + 10uj + 3uj+1, j = N − 1,
3uj−4 − 16uj−3 + 36uj−2 − 48uj−1 + 25uj, j = N,

(3.34)

similarly,
uss(sj, ·) = F+−uj + O(h4),

is the approximation for the second derivative, where F+−uj =

1
12h2 ×



45uj − 154uj+1 + 214uj+2 − 156uj+3 + 61uj+4 − 10uj+5, j = 0,
10uj−1 − 15uj − 4uj+1 + 14uj+2 − 6uj+3 + uj+4, j = 1,
−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2, j = 2, . . . , N − 2,
uj−4 − 6uj−3 + 14uj−2 − 4uj−1 − 15uj + 10uj+1, j = N − 1,
−10uj−5 + 61uj−4 − 156uj−3 + 214uj−2 − 154uj−1 + 45uj, j = N.

(3.35)
Note that in the above approximations, for the inner points we have used a fourth-
order central difference scheme. To maintain the same order of accuracy over all the
discretized domain, for the boundary and its neighboring points, we employ a fourth-
order forward/backward difference scheme. Furthermore, (3.34)–(3.35) correspond to
a system of simultaneous linear equations which can be expressed in a matrix form.
Denoting u = {u0, u1, . . . , uN−1, uN}T , we write (3.34)–(3.35) asus = D · u,

uss = F · u,

respectively, where D, F are (N + 1) × (N + 1) band matrices. On the other hand,
the time interval [0, Tf ] has been discretized into Nt + 1 equally spaced time steps
tk = k∆t, k = 0, 1, . . . , Nt, with ∆t = Tf/Nt.
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3.4.1 Fixed boundary conditions for T

We consider the following initial-boundary value problem,

Xt(s, t) = Xs(s, t) ∧− Xss(s, t) = T(s, t) ∧− Ts(s, t),
Tt(s, t) = T(s, t) ∧− Tss(s, t),
T(−L/2, t) = T−,

T(+L/2, t) = T+, s ∈ [−L/2, L/2], t ∈ [0, Tf ],

(3.36)

with initial conditions X(s, 0), T(s, 0) as given in (3.13), (3.14), respectively, andT− = (cosh (l/2 − L/2) , sinh (l/2 − L/2) , 0)T ,

T+ = (cosh (l/2 + L/2) , sinh (l/2 + L/2) , 0)T .

By using the space discretization mentioned above, we integrate (3.36) numerically by
using the fourth-order Runge–Kutta method in time. We write

T(n)
j ≡ T(n)(sj) ≡ T(sj, t

n), X(n)
j ≡ X(n)(sj) ≡ X(sj, t

n),

where X(0)
j can be computed from (3.14) by using a linear interpolation and T(sj, ·) =

T(s, ·) for sj ≤ s < sj+1, if s < 0, and sj < s ≤ sj+1, if s > 0. Thus, we obtain
N values of piecewise constant tangent vector, each corresponding to respective N
segments. Moreover, since (3.36) is solved only for T, so to keep the consistency in
dimensions we obtain its N + 1 values in the following way:

T̃(0)
0 = T(0)

0 , T̃(0)
j+1 = 1

2

(
T(0)

j + T(0)
j+1

)
, j = 0, 1, . . . , N − 2,

T̃(0)
N = T(0)

N−1, T(0)
j = T̃j

∥T̃j∥0
.

With this, we calculate

X(n+1)
j = X(n)

j + ∆t
6 (AX

j + BX
j + CX

j + DX
j ), j = 0, 1, 2, . . . , N,

T̃j = T(n)
j + ∆t

6 (AT
j + BT

j + CT
j + DT

j ),

T(n+1)
j = T̃j

∥T̃j∥0
, j = 1, 2, . . . , N − 1,

where,

AX
j = T(n)

j ∧− D
+−T(n)

j , AT
j = T(n)

j ∧− F
+−T(n)

j , T(A)
j = T(n)

j + ∆t
2 AT

j ,
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N ∆s ∆tmax

256 3.7500 · 10−2 7.441010326374327 · 10−4

512 1.8750 · 10−2 1.866312036256753 · 10−4

1024 9.3750 · 10−3 4.661983686987983 · 10−5

2048 4.6875 · 10−3 1.165021950245675 · 10−5

4096 2.3437 · 10−3 2.912999110940176 · 10−6

Table 3.1 ∆tmax for L = 9.6, Tf = 5.7296 · 10−2.

BX
j = T(A)

j ∧− D
+−T(A)

j , BT
j = T(A)

j ∧− F
+−T(A)

j , T(B)
j = T(n)

j + ∆t
2 BT

j ,

CX
j = T(B)

j ∧− D
+−T(B)

j , CT
j = T(B)

j ∧− F
+−T(B)

j , T(C)
j = T(n)

j + ∆tCT
j ,

DX
j = T(C)

j ∧− D
+−T(C)

j , DT
j = T(C)

j ∧− F
+−T(C)

j ,

and for the boundary conditions,

T(n)
0 ≡ T−, T(n)

N ≡ T+, n = 0, 1, . . . , Nt.

Remark that in order to avoid the accumulation of rounding errors, we renormalize T
at every (including intermediate) time steps which also guarantees that T(n)

j ∈ H2, for
all j and n.

Stability

From the numerical scheme described above, it is clear that ∆t is a function of ∆s. We
have computed numerically the value of ∆tmax, i.e., the maximum value of ∆t, for which
∥T∥ calculated using (3.37) does not blow up, or, in other words, the numerical scheme
is stable. We have taken M = 16, l = 0.6, L = 9.6, t ∈ [0, Tf ], where Tf = 5.7296 · 10−2.
The values of different ∆s, ∆tmax have been recorded in Table 3.1, and it is quite clear
that ∆t/∆s2 ≈ 0.5302 . . ., in other words, ∆t = O(∆s2) .

Accuracy

Denoting the numerical solution as Tnum(s, t), Xnum(s, t), we have Tnum(s, t) =
T(s, t) + O(∆s4) + O(∆t4). It is important to note that since the initial data for
tangent vector T is piecewise constant, a fourth-order accuracy in space is not achieved;
however, we check the accuracy with respect to the time variable. In this direction,
we have taken the parameters M = 16, l = 0.6, L = 9.6, and different values of time
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n ∥T(·,∆t) − T(·,∆t/2)∥ log2

(
∥T(·,∆t)−T(·,∆t/2)∥

∥T(·,∆t/2)−T(·,∆t/4)∥

)
0 2.026166725776559 · 10−2 0.334849613949231
1 1.606480288566086 · 10−2 1.501570043593869
2 5.673587765826951 · 10−3 3.701771082277862
3 4.360272628143871 · 10−4 4.002635528750734
4 2.720196570405965 · 10−5 4.006625209898787
5 1.692333374158203 · 10−6 4.003533506536733

Table 3.2 The order of accuracy for the Runge–Kutta method in time with fixed
boundary conditions on tangent vector T for M = 16, l = 0.6, computed using (3.37),
with ∆t = 2−n · 1.8189 · 10−4.

steps, i.e., ∆t = 2−n · 1.8189 · 10−4, n = 0, 1, . . . , 7, N = 25M , ∆s = 1.875 · 10−2,
Tf = 5.7296 · 10−2. Table 3.2 shows the corresponding error values for the tangent
vector T, and ∥ · ∥ is given by

∥T∥ =
 1
N + 1

N∑
j=0

(
−T 2

1,j + T 2
2,j + T 2

3,j

)1/2

, (3.37)

where Ti,j = Ti(sj, ·).

Center of mass

The numerical experiments show that apart from the formation of new corners at the
rational times, the planar l-polygon performs a vertical movement too. In order to
measure the latter, we compute the center of mass of the polygonal curve by calculating
the mean of X:

Xmean(t) = 1
L

∫ L/2

−L/2
X(s, t)ds.

With the discretization (3.33), we approximate the above integral numerically by using
the trapezoidal rule

∫ L/2

−L/2
X(s, t)ds ≈ ∆s

2

X(s0, t) + 2
N−1∑
j=1

X(sj, t) + X(sN , t)
 .

We analyze this quantity componentwise, and by using the spatial symmetries mentioned
in Section 3.2.1, we note that the first component is equal to zero and by denoting the
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second and third component by Xmean
2,0 and Xmean

3,0 , respectively, we have

Xmean
2,0 (t) = 1

N

N−1∑
j=0

X2(sj, t), Xmean
3,0 (t) = 1

N

N−1∑
j=0

X3(sj, t), (3.38)

We can further simplify and write Xmean
3,0 (t)

= 1
N

N−1∑
j=0

X3(sj, t)

= 1
N

[
X3(s0, t) + . . .+X3(sN/M−1, t) + . . .+X3(sN−N/M+1, t) + . . .+X3(sN , t)

]
= M

N

N/M−1∑
j=0

X3(sj, t). (3.39)

For the numerical simulations, we take M = 96, N/M = 29, l = 0.1, t ∈ [0, Tf ],
Nt = 80640, and note that Xmean

1,0 (t) is equal to zero; however, Xmean
2,0 (t), Xmean

3,0 (t) are
nonzero and exhibit certain structures in their trajectories. In order to understand
that, first we consider Xmean

3,0 (t) which determines the position of the center of mass
along the z-axis, in other words, the vertical height of the polygonal curve X(s, t).
After performing numerical simulations for different values of M and l, we observe that
Xmean

3,0 (t) can be very well approximated by means of a constant multiplied by t. To
be precise,

Xmean
3,0 (t) ≈

Xmean
3,0 (Tf )
Tf

t = cnum
l t, (3.40)

where cnum
l is the mean speed computed numerically. However, in Chapter 4, we will

obtain an exact expression for the mean speed of l-polygon:

cl = 4 ln cosh(l/2)
l
√

1 − sech2(l/2)
, (3.41)

which depends only on l.

At this point, it is important to mention that during the numerical evolution we
notice that the inner points of the T, and thus those of X, are far more accurate than
the ones close to the boundary. For instance, see Figure 3.3 where we have plotted
the absolute difference between the numerical and algebraic solutions of the third
component of T. Clearly, the error is much lesser for the inner points, as a result, it
becomes important to observe the evolution for them as well. With this motivation, in
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Figure 3.3 The absolute difference between the numerical and algebraic solution of the
third component of tangent vector at time t = Tf , for M = 96, l = 0.1, N/M = 29, s ∈
[−L/2, L/2]. The values represented by blue circles, are computed using the mean of
N/M values for each side. The magnified part shows that the error in the inner points,
i.e., when s ∈ [−L/4, L/4], is much lesser than the outer ones.

order to make a reasonable choice of the “inner points”, we define

Xmean
3,r (t) = 1

Nr

N−2rN/M−1∑
j=2rN/M

X3(sj, t), r = 0, 1, . . . ,M/4 − 1, (3.42)

for Nr = N − (4rN/M), i.e., the mean of X3(sj, t) for sj ∈ [−L/2 + 2rl, L/2 − 2rl]. For
each r, we compute maxn(|Xmean

3,r (t(n)) − clt
(n)|), i.e., the maximum difference between

Xmean
3,r (t) and its linear approximation clt. From Figure 3.4 it is quite clear that error

is smaller when the nodes closer to boundary are avoided; the figure is the continuation
of Figure 3.3, hence all parameters are identical. It also shows that after certain values
of r, the error does not vary much, as a result, without loss of generality, we can take
r = M/8 which would imply sj ∈ [−L/4, L/4], i.e., j = N/4 + 1, N/4 + 2, . . . , 3N/4.
Note that although Xmean

3,0 (t(n)) can be computed using only N/M values, but due to
the unevenness of errors discussed above, we will use N/2 elements.

In order to further strengthen the claim of (3.40), we compute maxn(|Xmean
3,r (t(n)) −

clt
(n)|) for different values of l and fixed r. Since a regular planar l-polygon is charac-

terized by the parameter l, the speed of center of mass depends only on it; however,
with parameter M , we are approximating the infinitely long planar l-polygon. In this
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Figure 3.4 maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96, l = 0.1, N/M = 29, where the
mean of X3(sj, t

(n)) has been computed using 4rN/M values such that sj ∈ [−L/2 +
2rl, L/2 − 2rl], r = 0, 1, 2, . . . ,M/4 − 1, cl = 1.000416458444891. Clearly, the error is
much lesser when inner points are considered.

regard, Table 3.3 shows the discrepancy for a fixed value of l, N/M and different values
of M , where cl is computed using (3.41). It is quite clear that the better results are
obtained for larger values of M . Recall that the choice of M also determines the values
of l for which the numerical method is stable. Therefore, for further simulations, we
have taken a moderately large value, i.e., M = 96 and different values of l and N/M .
For l = 0.025, 0.050, 0.1, 0.12, 0.15, and N/M = 26, 27, 28, 29, the corresponding errors
have been stored in Table 3.4. Moreover, every time the number of points is doubled,
the errors decrease by a factor little less than two, hence, suggesting that they behave
as O((N/M)−1). The table also shows the value of cl for each l which is very close to
1, as a result, we have shown the difference between the two. Clearly, cl decreases with
l and converges to 1 as l goes to zero, i.e., X(s, 0) tends to a hyperbola.

M N/M = 27 M N/M = 27

24 1.0476 · 10−8 96 1.2481 · 10−10

48 7.5024 · 10−10 192 8.8182 · 10−11

Table 3.3 maxn(|Xmean
3,r (t(n)) − clt

(n)|), l = 0.025, cl = 1.000026040853303, and different
L, M values where Xmean

3,r (t(n)) is computed for r = M/8. It is evident that better
results are obtained for large M values.
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In order to complete the discussion, we compute Xmean
3,r (t) for r = 0, i.e., using all

N elements and compute the errors as before. Figure 3.5 shows the corresponding
plot for Xmean

3,0 (t) which is also linear, but due to the presence of larger errors near the
boundary, the slope of the curve cnum

l differs a lot from the expected value. Moreover,
refining the grid also does not improve the results much, as seen in Table 3.5, thus
showing that the approximation, when all the points are considered, is not as good as
compared to the inner points.
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Figure 3.5 Xmean
3,r (t) as a function of t, for M = 96, N/M = 29, l = 0.1, t ∈ [0, Tf ] for r =

0 (red), cnum
l = 0.9899904240867042, and r = M/8 (blue), cnum

l = 1.000412194733485.

l N/M = 26 N/M = 27 N/M = 28 N/M = 29 (cl − 1)
0.15 2.0578 · 10−7 1.1334 · 10−7 6.3398 · 10−8 3.7051 · 10−8 9.3645 · 10−4

0.12 8.4311 · 10−8 4.6133 · 10−8 2.6124 · 10−8 1.5543 · 10−8 5.9957 · 10−4

0.1 4.0669 · 10−8 2.2237 · 10−8 1.2801 · 10−8 7.7110 · 10−9 4.1646 · 10−4

0.05 2.5460 · 10−9 1.5103 · 10−9 9.2425 · 10−10 6.1407 · 10−10 1.0415 · 10−4

0.025 1.6008 · 10−10 1.2481 · 10−10 8.8786 · 10−11 7.1406 · 10−11 2.6040 · 10−5

Table 3.4 The error maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96 and different N/M , l and
corresponding cl values, where Xmean

3,r (t(n)) is computed using (3.42) for r = M/8.

Next, we compute Xmean
2,r (t), which appears to be nonzero unlike the first component

and its Euclidean counterpart. In this regard, for the same parameters, i.e., M = 96,
l = 0.1, N/M = 29, we plot Xmean

2,r (t) for r = 0,M/8,M/4 in Figure 3.6. Observe that
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l N/M = 26 N/M = 27 N/M = 28 N/M = 29

0.15 3.7545 · 10−5 3.7455 · 10−5 3.7405 · 10−5 3.7377 · 10−5

0.12 2.3973 · 10−5 2.3936 · 10−5 2.3915 · 10−5 2.3904 · 10−5

0.1 1.6626 · 10−5 1.6609 · 10−5 1.6599 · 10−5 1.6593 · 10−5

0.05 4.1476 · 10−6 4.1465 · 10−6 4.1459 · 10−6 4.1456 · 10−6

0.025 1.0364 · 10−6 1.0363 · 10−6 1.0362 · 10−6 1.0362 · 10−6

Table 3.5 The error maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96 and different N/M , l and
corresponding cl values, where Xmean

3,r (t(n)) is computed using (3.42) for r = 0.

when the inner sides are considered the shape of the curve changes and appears to be
periodic when r = M/4. Let us mention that unlike Xmean

3,r where changing r value
does not change its value up to the numerical errors, the value of Xmean

2,r does depend
on the r value. However, in this experiment our aim is to observe the qualitative
behavior of its evolution rather than the quantitative one.
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Figure 3.6 Xmean
2,r (t) − Xmean

2,r (0) for M = 96, N/M = 29, l = 0.1, t ∈ [0, Tf ], using
r = 0 (left), i.e., N points, for r = M/8 (center), i.e., N/2 points and r = M/4 (right),
i.e., 4N/M points.

Furthermore, using the approach in Chapter 2 and [23, Section 4], we can compute
Xmean using the algebraic solution and thus, avoid the numerical errors completely. In
that direction, we compute

Xmean(t) =
∫ t

0
mean(Xt)(t′)dt′ =

∫ t

0

[
1
L

∫ L/2

−L/2
Xt(s, t′)ds

]
dt′, (3.43)

and for any rational time tpq, the first integral is precisely given by

∫ L/2

−L/2
Xt(s, tpq)ds = lq

sinh(lq)

Mq−1∑
k=0

Tk ∧− Tk+1, (3.44)
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where Tk = T(s+
k , ·).
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Figure 3.7 Second and third components of (3.43) and (3.44) computed for M = 8,
l = 0.6, q = 7560. Clearly, with an integration with respect to time, the oscillations
disappear and we obtain a periodic curve and a straight line respectively.

Hence, by approximating the integral with respect to time in (3.43) by a third-order
method, for a large q, we can compute the movement of the center of mass. Unlike
in the Euclidean case, we do not obtain a precise expression for the components of
Xmean, however, it certainly allows us to compute them using the algebraic solution
Talg which is free from numerical errors. In this regard, we have taken M = 8, l = 0.6,
q = 7560 and the interval [0, Tf ] has been divided into q equally spaced segments. We
have plotted the integral (3.44) whose first component is zero and the rest of the two
components seem to be very oscillatory in nature as seen in the Euclidean case (Figure
2.4). However, after integrating in time, the oscillations completely disappear and we
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obtain the second component as a periodic curve and the third component as a straight
line with a slope converging to cl with q, as observed previously (see Figure 3.7).

l N/M = 26 N/M = 27 N/M = 28 N/M = 29 N/M = 210

0.2 4.0442 · 10−2 3.2678 · 10−2 2.6665 · 10−2 2.2341 · 10−2 1.9248 · 10−2

0.15 2.2711 · 10−2 1.8066 · 10−2 1.4479 · 10−2 1.1974 · 10−2 1.0171 · 10−2

0.12 1.5620 · 10−2 1.2359 · 10−2 9.8698 · 10−3 8.4188 · 10−3 7.2017 · 10−3

0.1 1.1894 · 10−2 9.3896 · 10−3 7.5154 · 10−3 6.4954 · 10−3 5.5810 · 10−3

0.05 5.0056 · 10−3 3.9380 · 10−3 3.2342 · 10−3 2.8058 · 10−3 2.4328 · 10−3

0.025 2.3853 · 10−3 1.8751 · 10−3 1.5517 · 10−3 1.3476 · 10−3 1.1716 · 10−3

Table 3.6 The error maxj,n ∥Xnum(sj, t
(n)) − (0, Xmean

2 (t(n)), clt
(n)) − Xalg(sj, t

(n))∥, for
j = N/4 + 1, . . . , 3N/4 + 1, n = 0, 1, . . . , 1260, M = 48 and different N/M , l.

Comparison between the numerical and algebraic solution

Having learnt about the movement of the center of mass of the polygonal curve, we
compare the numerical solution Tnum, Xnum, with their algebraic counterparts which
we denote by Talg, Xalg. Since Xalg has been constructed up to a rigid movement, to
compare it with Xnum, we subtract its movement in the YZ-plane. In other words, we
compute maxj,n ∥Xnum(sj, t

(n)) − (0, Xmean
2,r (t(n)), cl t

(n)) − Xalg(sj, t
(n))∥, where ∥ · ∥

is the Euclidean distance, t(n) = (n/Nt)Tf , n = 0, 1, . . . , Nt, sj = −L/2 + jL/N ,
j = 0, 1, . . . , N + 1, and cl is computed using (3.41). For the numerical simulations,
we have taken a fixed value of M = 48, and different values of l and N/M . Note
that during the algebraic construction of Xalg, we obtain the vertices of the polygonal
curve for a given time; however, the in-between points, i.e., Xalg(sj, ·) have been
computed by using the linear interpolation. It is important to mention that given the
size of discretization, it can be computationally impossible to compare the solutions
at all Nt + 1 time instants, therefore, we have considered 1260 different time instants.
Moreover, as done before, we have computed the errors for r = M/8 or N/2 + 1 points,
and r = 0, i.e., all N + 1 points which have been stored in Table 3.6, 3.7, respectively.
As seen in the case of approximation of Xmean

3,r (t), we note that the magnitude of errors
is lesser when only inner points are considered, moreover, they decrease by a certain
factor when the discretization is made finer. Although the convergence is slow, keeping
in the mind that max ∥Xalg∥ ≫ 1, the results are satisfactory and show that as N
grows larger, the numerical solution converges to the algebraic one. It also gives strong
evidence the Xnum is periodic or at least quasi-periodic in time with a period Tf .
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The comparison between the two can be further appreciated if we add the movement
in the YZ-plane to Xalg(s, ·), and plot it along with Xnum(s, ·), for instance, see Figure
3.10. Bearing in mind that we have fixed the boundary conditions for Tnum, the error
towards the endpoints of Xnum is visible when compared with Xalg on the left-hand
side. At the same time, the difference between the figures is almost indistinguishable
as we move away from the boundaries, for instance, see Figure 3.11 where we have
plotted only the inner points.

l N/M = 26 N/M = 27 N/M = 28 N/M = 29 N/M = 210

0.2 6.9820 · 10−1 6.9650 · 10−1 6.9647 · 10−1 6.9486 · 10−1 6.9437 · 10−1

0.15 2.6192 · 10−1 2.6154 · 10−1 2.6165 · 10−1 2.6132 · 10−1 2.6125 · 10−1

0.12 1.4835 · 10−1 1.4826 · 10−1 1.4828 · 10−1 1.4818 · 10−1 1.4818 · 10−1

0.1 1.0043 · 10−1 1.0041 · 10−1 1.0040 · 10−1 1.0038 · 10−1 1.0037 · 10−1

0.05 3.3170 · 10−2 3.3198 · 10−2 3.3215 · 10−2 3.3218 · 10−2 3.3213 · 10−2

0.025 1.4688 · 10−2 1.4704 · 10−2 1.4712 · 10−2 1.4715 · 10−2 1.4714 · 10−2

Table 3.7 The error maxj,n ∥Xnum(sj, t
(n)) − (0, Xmean

2 (t(n)), clt
(n)) − Xalg(sj, t

(n))∥, for
j = 1, . . . , N + 1, n = 0, 1, . . . , 1260, M = 48 and different N/M , l.

Regarding the numerical solution of tangent vector Tnum, Figure 3.8 shows its first
component for M = 48, l = 0.2, N/M = 211, at different rational times. In the zoomed
part, we see that at half time period, i.e., t = t1,2, the tangent vector is continuous
at s = 0 (red), hence showing that the curve X does not have a vertex at that time.
Besides that, the oscillations arising due to the numerical approximation of a piecewise
constant function are more prominent towards the boundary which also contribute to
a larger error value as commented before. At the end of one time period, we obtain
the tangent vector up to the numerical errors (yellow), which is same as at the initial
time, thus showing the time periodicity of Tnum.

Figure 3.9 shows all three components of the tangent vector for both numerical and
algebraic solutions at one-third of the time period, i.e., t = t1,3. It is quite clear that
there are three times more segments and apart from the numerical oscillations, the two
figures are comparable. Since M = 48, therefore, at t = t1,3, there will be Mq = 144
tangent vectors, and thus we have

Talg,1 =


6.0854 · 101

−6.0846 · 101

−5.7735 · 10−2

 , Talg,2 =


5.4978 · 101

−5.4969 · 101

0

 , Talg,3 =


4.9836 · 101

−4.9825 · 101

5.7735 · 10−2

 ,
(3.45)

and the rest can be computed by rotating Talg,1, Talg,2, Talg,3 by a time-like angle l
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Figure 3.8 The first component of Tnum(s, t) for M = 48, l = 0.2, N/M = 211 at initial,
half and final time period.
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Figure 3.9 Tnum(s, t) (left) and Talg (right) at t = t1,3 l = 0.2, M = 48, N/M = 211.
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Figure 3.10 Xalg(s, tpq) (left) and Xnum(s, tpq) (right) for M = 48, l = 0.2, N/M = 211

at different rational times tpq. The errors towards the boundary points of Xnum is quite
prominent, however, as we move away the difference between the two figures is almost
indistinguishable.
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Figure 3.11 Xnum(s, tpq) (right) for M = 96, l = 0.1, N/M = 211 at different rational
times tpq when inner points, i.e., sj for j = N/4 + 1, . . . , 3N/4 are considered.
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about a space-like z-axis in the counter-clockwise direction consecutively. For instance,
the ones on the left-hand side of s = 0 are obtained by a hyperbolic rotation of an
angle L/2 − l about the z-axis

Talg,70 =


1.0217

−2.0156 · 10−1

−5.7735 · 10−2

 ,Talg,71 =


1.0050

−1.0017 · 10−1

0

 ,Talg,72 =


1.0017

−1.1093 · 10−4

5.7735 · 10−2

 .
(3.46)

In order to compare them with the corresponding numerical solution, we take the
mean of each segment and compute the absolute difference. Thus, with a discretization
N/M = 211, the maximum absolute and relative errors with (3.45) are O(1), O(10−1),
and O(10−5), O(10−2) for (3.46), which, in our opinion, given the nature of the problem,
is reasonably good.

Trajectory of X(0, t)

The choice of initial data (i.e., even number of sides for X) allows us to capture the
time evolution of X(0, t) numerically. Due to the mirror symmetries of X explained
in the Section 3.2.1, the z-axis and X(−L/2 + kl/2, t) for k = 0, 1, . . . , 2M always lie
in the same plane for all t ≥ 0, where an even value of k corresponds to the vertices
and an odd value to the middle point of the sides. In the following lines, we consider
only the evolution of vertices, and with parameters M = 48, N/M = 211, l = 0.2,
numerical simulations show that X(0, t) lies in the YZ-plane, whereas X(−L/2 + lk, t)
for k = 0, 1, 2, . . . ,M lie in a plane which is the YZ-plane rotated by a hyperbolic angle
L/2 − lk with respect to the z-axis in the counterclockwise direction. We have already
seen that the inner points are the most accurate ones, thus, we consider X(0, t), project
it onto the complex plane and define

z(t) = −X2(0, t) + iX3(0, t), t ∈ [0, Tf ], (3.47)

or, in general, for any vertex, i.e., k = 0, 1, . . . ,M

z(t) = −
[
ej(L/2−lk)(X1 + jX2)(−L/2 + lk, t)

]
+ iX3(−L/2 + lk, t), (3.48)

where we have used notation involving the hyperbolic number j.
Figure 3.12 shows the plot for z(t) (left) which reminds us of the one observed in

the Euclidean case [22]. Although, we are able to capture the trajectory of X(0, t), but
due to lack of numerical accuracy, the corners of z(t) are not as sharp as observed in the
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Euclidean case (for instance, z(t) towards the end of the time period). In our opinion,
up to some extent, this can be explained with the following reasons. It is quite clear
that the accuracy improves as N/M value increases, and we have also seen that more
accurate results are obtained for larger values of M . Therefore, a large of N yields
better numerical results. In the Euclidean case, due to the symmetries, it was possible
to work with just one side of the polygonal curve, i.e., only N/M points; and the efficient
fft algorithm in MATLAB makes the computation cost to be of O((N/M) log(N/M)).
However, in our case, due to the fixed boundary conditions, we work with all the sides
of the planar l-polygon and thus, the derivatives are computed using (N + 1) × (N + 1)
dimensional finite difference matrices. Naturally, the computational time is much
longer and from a numerical point of view, the problem is more challenging.

Having said that, in Figure 3.13, we plot the trajectory z(t) for M = 192, l = 0.025,
N/M = 211, i.e., N = 393216, and the corners can be well appreciated there. On
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Figure 3.12 z(t) (left) for M = 48, l = 0.2, N/M = 211, and zalg(t) (right) for l = 0.2
where the interval [0, Tf ] is divided into 7561 points.

the other hand, by plotting it componentwise we note that the second component of
X(0, t) is periodic in time while the third component becomes periodic after removing
the constant vertical movement, see Figure 3.14. Consequently, for a given value of l,
we define

zl(t) = z(t) − icl t, t ∈ [0, Tf ], (3.49)
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Figure 3.13 z(t) (left) and zl(t) (right) for M = 192, l = 0.05, N/M = 211.

which is Tf -periodic and is shown in Figure 3.13 for M = 192, l = 0.05. The multifractal
structure of zl(t) can be compared with the graph of

ϕ(t) =
∞∑

k=1

eiπk2t

iπk2 , t ∈ [0, 2]. (3.50)

ϕ(t) appeared in [30] where its real part

f(t) =
∞∑

k=1

sin(πk2t)
πk2 ,

also called Riemann’s non-differentiable function, was considered.
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Figure 3.14 M = 192, l = 0.05, N/M = 211, X2(0, t) (left), X3(0, t) (center) and
X3(0, t) − cl t, i.e., third component after removing the vertical height.

Remember that in the numerical simulations, with a large value of M , the value
of l needs to be chosen small, hence, we obtain the zl(t) only for certain values of l.
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However, the computation of the algebraic solution Xalg does not depend on M which
is also free from numerical errors. As a result, we can consider any value of l(bearing
in mind that due to the exponential growth of X and T, l can not be very large),
and compute z(t) algebraically. Since Xalg is determined up to a movement in the
YZ-plane, after adding the trajectory along the y-axis to the planar curve Xalg(0, t)
can be compared with ϕ(t). Furthermore, as we also know the exact value of cl, by
adding the vertical height for all the times, we can obtain z(t) algebraically. In other
words, we havezl,alg(t) = −(X2,alg(0, t) +Xmean

2,alg (t)) + iX3,alg(0, t),
zalg(t) = zl,alg(t) + iclt, t ∈ [0, Tf ],

(3.51)

with Xmean
2,alg (t) being the mean of the second component which can be obtained using

(3.43) as explained before. We also redefine the previous definition of ϕ(t) and write

ϕ(t) =
∞∑

k=1

e2πik2t

k2 , t ∈ [0, 1]. (3.52)

From now on, our purpose of working with X(0, t) will be two fold. First, we would
like to see its dependence on the parameter l and second, compare its structure with
the one in the Euclidean case. We begin by plotting zalg for l = 0.2 and compare it
with the one computed numerically, see Figure 3.12. One can note that except for a
horizontal translation, both figures are identically the same.

Having done that, to compare zalg with its Euclidean counterpart, we choose the
value of l such that the corresponding parameter c0 is kept the same in both cases.
More precisely, from (1.26)

[
2
π

ln
(
cosh

(
l
2

))]1/2
=
[
− 2

π
ln
(
cos

(
π
M

))]1/2
⇐⇒ l = 2 arccosh

(
sec

(
π
M

))
, (3.53)

where M is the number of sides of the Euclidean planar M -polygon.

Figure 3.15 shows zl,alg(t) (blue) for different values of l such that M = 3, 4, 5, 6
and 10 and ϕ(t) (red) where the respective intervals for t have been divided into 7561
points. It can be noted that except for a scaling, zl,alg corresponding to the value
M = 10 looks very close to ϕ (red). In order to further compare them, we employ
two different approaches. First, as done in Chapter 2, we consider ϕ − λlzl,alg − µl

where λl ∈ R and µ ∈ C have been computed from least squares fitting method. In
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particular,

λl = ℜ
(

mean(zc
l,alg(t) · ϕc(t)

mean(|zc
l,alg(t)|2)

)
, µl = mean(ϕ) − λl mean(zl,alg(t)); (3.54)

with
zc

l,alg(t) = zl,alg(t) − mean(zl,alg(t)), ϕc(t) = ϕ̄(t) − mean(ϕ̄(t)),

where the mean has been computed for Nt + 1 points. In this regard, we choose the
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Figure 3.15 zl(t) (blue) for different values of l computed using (3.53) for M = 3, 4, 5, 6
and 10, and ϕ(t) (red); parameter t takes its value in the respective intervals which are
divided into 7561 points.

value of l from (3.53) for M = 3, 4, . . . , 20 and Table 3.8 shows the absolute error
maxt |(ϕ(t) − λlzl,alg(t) − µl)| and relative error maxt |(ϕ(t) − λlzl,alg(t) − µl)/ϕ(t)|,
where maximum is taken over 7560 values and sum for ϕ(t) has been computed for
k = 1, 2, . . . , 211. It is quite clear that as l gets smaller, the two errors decrease, thus,
showing that zl,alg converges to ϕ.
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l ∥ϕ(t) − λlzl(t) − µl∥L∞ (∥ϕ(t) − λlzl(t) − µl)/ϕ(t)∥L∞

2.6639 2.372149809891611 · 10−1 2.103146176364024 · 10−1

1.7627 1.202137911333187 · 10−1 1.069015846447526 · 10−1

1.3485 7.395129681674713 · 10−2 6.553706601060941 · 10−2

1.0986 5.037950918821697 · 10−2 4.443542112256472 · 10−2

0.9293 3.663493700302557 · 10−2 3.213089943830340 · 10−2

0.8064 2.789087911280586 · 10−2 2.430407039076064 · 10−2

0.7127 2.197342077064023 · 10−2 1.900794506510361 · 10−2

0.6389 1.777857413459586 · 10−2 1.525374219018601 · 10−2

0.5791 1.472276688206210 · 10−2 1.249405615271557 · 10−2

0.5297 1.246933387993874 · 10−2 1.040521660507873 · 10−2

0.4881 1.072191965674805 · 10−2 8.785609255857535 · 10−3

0.4526 9.339284815580278 · 10−3 7.504212131235847 · 10−3

0.4220 8.226335556448189 · 10−3 6.472826985297105 · 10−3

0.3952 7.317114759958195 · 10−3 5.630289048039735 · 10−3

0.3717 6.564693662811320 · 10−3 4.933085043817143 · 10−3

0.3508 5.934935939585980 · 10−3 4.373662840752222 · 10−3

0.3322 5.402525137486635 · 10−3 3.944858964309793 · 10−3

0.3155 4.948361852601247 · 10−3 3.579444073336197 · 10−3

Table 3.8 The maximum errors between ϕ(t) = ∑∞
k=1

e2iπk2t

k2 and zl,alg(t). ϕ(t) has been
computed for k = 1, 2, . . . , 2048 and both ϕ(t) and zl,alg(t) have been evaluated at 7561
points.
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Figure 3.16 Fingerprint of zscaled
l,alg (t) for different values of l which are chosen using

(3.53) for M = 3, 4.
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Furthermore, using the fact that zl,alg(t) is Tf -periodic, we express the scaled zl,alg

in terms of its Fourier expansion

zscaled
l,alg (t) =

∞∑
n=−∞

dn,l e
2πint/Tf , t ∈ [0, Tf ],

where zscaled
l,alg (t) = λlzl,alg(t) + µl, and compute its fingerprint plot. This approach

was also employed in Chapter 2 where the Fourier coefficients dn,l are approximated
numerically by using the fft algorithm in MATLAB. Figures 3.16, 3.17 show the
fingerprint for l in (3.53) such that M = 3, 4, 5 and 10. We observe that the dominating
points (represented by blue stars) of ndn,l correspond to the squares of n whose value
gets closer to 1 as l becomes smaller. On the other hand, the rest of the points (noise)
approach to zero for smaller value of l; in other words, as l tends to zero, the dominating
points converge to 1 whereas the rest of them to zero. As a result, we conjecture that

lim
l→0

|n dn,l| =

1, if n = k2, k ∈ Z,

0, otherwise,

which also shows convergence of zscaled
l,alg to ϕ, as l tends to zero.
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Figure 3.17 Fingerprint of zscaled
l,alg (t) for different values of l which are chosen using

(3.53) for M = 5, 10.

Behavior of the tangent vector T near irrational times

Having seen the evolution of the regular M -polygons in the Euclidean case at rational
times tpq with q ≫ 1, we are motivated to do the same for a planar l-polygon [22, 25].
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In this direction, we consider the algebraic solution Talg that is free from the numerical
errors and has been determined completely in the previous section.

Recall that given any rational time tpq, the polygonal curve X has q or q/2 times
more sides and the tangent vector T has q or q/2 times more jumps. With this, first we
consider tpq with a small q and examine the evolution at t = tpq + ϵ, |ϵ| ≪ 1. We take
ϵ = Tf

q′ , q′ ≫ 1, and with gcd(q, q′) = 1, p
q

+ 1
q′ = pq′+1

qq′ , therefore, at tpq + ϵ, there will
be qq′ or qq′/2 times more sides. Figure 3.18 shows the stereographic projection of Talg

onto C for M = 8, l = 0.6, p = 1, q = 3, q′ = 7999. One can observe the 24 spiral-like
structures whose center correspond to the values of T at t = Tf/3. Moreover, it is
important to mention that these are not really spirals, but 8 × 23997 tangent vectors
that closely resemble to a curve with 24 spirals. These spirals can be compared with
the Cornu spiral which also appeared in [21, 22].

As a next step, we consider the rational times tpq with a large q such that there is
no pair p̃, q̃, with both q̃ and |p

q
− p̃

q̃
| small. In particular, for the same parameters as

before, we have taken t =
(

1
3 + 1

31 + 1
301

)
Tf = 10327

27993Tf . The corresponding stereographic
projection of Talg is shown in Figure 3.18 where one can observe the spiral structures
at a smaller scale, thus exhibiting a fractal-like phenomenon.

Figure 3.18 The stereographic projection of Talg(s, tpq), at two different values of tpq

for M = 8, l = 0.6.
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3.4.2 Fixed boundary conditions for X

As a next approach, we fix the boundary condition for X and consider the following
initial-boundary value problem,Xt(s, t) = Xs(s, t) ∧− Xss(s, t), s ∈ [−L/2, L/2],

X(−L/2, t) = X−, X(+L/2, t) = X+, t ∈ [0, Tf ],
(3.55)

with initial conditions X(s, 0) given by (3.12) andX− = (l/2)
sinh(l/2) (− sinh (L/2) , cosh (L/2) , 0)T ,

X+ = (l/2)
sinh(l/2) (sinh (L/2) , cosh (L/2) , 0)T ,

and the tangent vector can be computed at any time using T(s, t) = Xs(s, t).

Thus, by using the finite difference space discretization mentioned above, we
integrate (3.55) numerically by using a fourth-order Runge–Kutta method in time.
Using the notations the same as before

T(n)
j ≡ T(n)(sj) ≡ T(sj, t

n), X(n)
j ≡ X(n)(sj) ≡ X(sj, t

n),

we calculate

X(n+1)
j = X(n)

j + ∆t
6 (AX

j + BX
j + CX

j + DX
j ), j = 0, 1, 2, . . . , N,

where

AX
j = D+−X(n)

j ∧− F
+−X(n)

j , X(A)
j = X(n)

j + ∆t
2 AX

j ,

BX
j = D+−X(A)

j ∧− F
+−X(A)

j , X(B)
j = X(n)

j + ∆t
2 BX

j ,

CX
j = D+−X(B)

j ∧− F
+−X(B)

j , X(C)
j = X(n)

j + ∆tCX
j ,

DX
j = D+−X(C)

j ∧− F
+−X(C)

j ,

with the boundary conditions

X(n)
0 ≡ X−, X(n)

N ≡ X+,
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N ∆s ∆tmax

256 3.7500 · 10−2 7.441010326374327 · 10−4

512 1.8750 · 10−2 1.860252581593582 · 10−4

1024 9.3750 · 10−3 4.654409383678499 · 10−5

2048 4.6875 · 10−3 1.164548364087039 · 10−5

4096 2.3437 · 10−3 2.912110775760220 · 10−6

Table 3.9 ∆tmax for L = 9.6, Tf = 5.7296 · 10−2.

n ∥X(·,∆t) − X(·,∆t/2)∥ log2

(
∥X(·,∆t)−X(·,∆t/2)∥

∥X(·,∆t/2)−X(·,∆t/4)∥

)
1 3.833657201833302 · 10−4 0.634443131578382
2 2.469601403923588 · 10−4 3.515912027538592
3 2.158896791826083 · 10−5 4.035430655460087
4 1.316576831285029 · 10−6 4.029028353939669
5 8.064692640601389 · 10−8 4.015343036826833

Table 3.10 The order of accuracy for the Runge–Kutta method in time with fixed
boundary conditions on tangent vector X for M = 16, l = 0.6, computed using (3.37),
with ∆t = 2−n · 1.818913635335947 · 10−4.

and
T(n)

j = D+−X(n)
j , n = 0, 1, . . . , Nt.

Note that T(n) thus obtained may not have a unit norm for all n, and normalizing it
at every time instant will not affect the solution X(n).

Stability

From the discretization defined before, it is clear that ∆t is a function of ∆s. We
have computed numerically the value of ∆tmax, maximum value of ∆t, for which the
numerical scheme is stable. We have taken M = 16, l = 0.6, L = 9.6, t ∈ [0, Tf ], where
Tf = 5.7296 · 10−2. The values of different ∆s, ∆tmax have been recorded in the table
3.9, and it is quite clear that ∆t/∆s2 ≈ 0.5301 . . ., in other words, ∆t = O(∆s2).

Accuracy

Denoting the numerical solution as Tnum(s, t), Xnum(s, t), we have Xnum(s, t) =
X(s, t) + O(∆s4) + O(∆t4). It is important to note that since the initial data for the
curve X is piecewise differentiable, as a result, a fourth-order accuracy in space is not
achieved, nevertheless, we check the accuracy with respect to the time variable. In this
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direction, we have taken the parameters M = 16, l = 0.6, L = 9.6, and different values
of time steps, i.e., ∆t = 2−n · 1.8189 · 10−4 , n = 1, . . . , 7, N = 25M , ∆s = 1.875 · 10−2,
Tf = 5.7296 · 10−4. Table 3.2 shows the corresponding error values for the tangent
vector T where ∥ · ∥ is as in (3.37).

0 2 4 6 8 10 12 14 16 18 20 22
10
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Figure 3.19 The error maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96, l = 0.1, N/M = 29,
where the mean of X3(sj, t

(n)) has been computed using 4rN/M values such that
sj ∈ [−L/2 + 2rl, L/2 − 2rl], r = 0, 1, 2, . . . ,M/4 − 1. Results when boundary
conditions on X are considered.

Numerical results

We have performed the same numerical experiments with the same parameters as done
in the previous section, and the observations are the following

1. The third component of the center of mass, i.e., Xmean
3 (t) is linear as noticed

before. Figure 3.19 shows that choosing inner points for X yields more accurate
results where we have taken M = 96, l = 0.1, N/M = 29. As a next step,
we compute the error maxn(|Xmean

3,r (t(n)) − clt
(n)|) for all N and N/2 (inner)

points for M = 96, l = 0.025, 0.05, 0.1, 0.12, 0.15, and different discretization, i.e.,
N/M = 2n, Nt = 5040 ·4n−7, n = 7, 8, 9, 10, and present the results in Tables 3.11,
3.12, respectively. The errors clearly show the agreement between the numerical
and algebraic approach.
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l N/M = 27 N/M = 28 N/M = 29 N/M = 210

0.15 9.3160 · 10−8 6.1953 · 10−8 4.8137 · 10−8 4.0215 · 10−8

0.12 3.9341 · 10−8 2.8732 · 10−8 2.5508 · 10−8 2.5558 · 10−8

0.1 2.0118 · 10−8 1.5477 · 10−8 1.4274 · 10−8 1.1907 · 10−8

0.05 2.0160 · 10−9 2.1002 · 10−9 2.6505 · 10−9 2.6784 · 10−9

0.025 3.1577 · 10−10 4.1408 · 10−10 6.0336 · 10−10 6.4325 · 10−10

Table 3.11 The error maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96 and different N/M , l,
where Xmean

3,r (t(n)) is computed using (3.42) for r = M/8, i.e., N/2 points and fixed
boundary condition on X.

l N/M = 27 N/M = 28 N/M = 29 N/M = 210

0.15 2.4371 · 10−5 2.4396 · 10−5 2.4403 · 10−5 2.4371 · 10−5

0.12 1.5609 · 10−5 1.5617 · 10−5 1.5614 · 10−5 1.5585 · 10−5

0.1 1.0845 · 10−5 1.0848 · 10−5 1.0852 · 10−5 1.0858 · 10−5

0.05 2.7132 · 10−6 2.7126 · 10−6 2.7125 · 10−6 2.7126 · 10−6

0.025 6.7841 · 10−7 6.7819 · 10−7 6.7810 · 10−7 6.7808 · 10−7

Table 3.12 The error maxn(|Xmean
3,r (t(n)) − clt

(n)|) for M = 96 and different N/M , l,
where Xmean

3,r (t(n)) is computed using (3.42) for r = 0, i.e., N points and fixed boundary
condition on X.
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2. Xmean
2,r (t) for M = 96, l = 0.1, N/M = 29, has been plotted in Figure 3.20 which

can be compared with Figure 3.6, especially when the inner points are considered.
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Figure 3.20 Xmean
2,r (t) − Xmean

2,r (0) for M = 96, N/M = 29, l = 0.1, t ∈ [0, Tf ], using
r = 0 (left), i.e., N points, for r = M/8 (center), i.e., N/2 points and r = M/4 (right),
i.e., 4N/M points, for fixed boundary conditions of X.

Figure 3.21 The first component of Tnum(s, t) for M = 48, l = 0.2, N/M = 211 at
initial, half and final time period for fixed boundary condition of X.

3. We have also plotted the first component of tangent vector T at initial, final and
at half of the time period in Figure 3.21, and in the magnified part it is quite
clear that the information at the boundary is not captured well; moreover, when
compared with Figure 3.8, the oscillations are bigger.
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Figure 3.22 Xnum(s, tpq) for M = 48, l = 0.2, N/M = 211 at different rational times tpq

for fixed boundary conditions on X. The error towards the boundary points of Xnum

is quite prominent, however, as we move away the difference between the two figures is
almost indistinguishable.

Figure 3.23 z(t) for M = 48, l = 0.2 (left), and M = 96, l = 0.1 (right), N/M = 211.
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4. The evolution of X at different rational times is shown in Figure 3.22. We have
plotted all the points (left) and inner points (right) at t = 0, t1,3, t1,2, Tf which
can be compared with Figures 3.10, 3.11.

5. Although we do not see much difference at a visual level in X, T obtained from the
two approaches (i.e., fixed boundary condition for X and T), the trajectory X(0, t)
seems to show the imperfection more than the previous case. For example, when
compared Figure 3.23 with Figure 3.12, both for M = 48, l = 0.2, N/M = 211,
and one can clearly see that as time progresses, the corners of X(0, t) gets more
rounded. This can partially be explained by the noting that in the case of fixed
boundary condition for T, it is normalized at every time instant, whereas in
the current scenario, we only work with X, so renormalizing T does not affect
X. Consequently, the error propagation is faster. During our simulations, we
keep track of ∥T(·, t(n))∥2

0 + 1, for instance, for the parameters mentioned above,
maxn(∥T(·, t(n))∥2

0 + 1) = 5.875199227447503 · 10−4. Figure 3.24 shows z(t) and
zl(t) for M = 192, l = 0.05, N/M = 211, and it can be seen that the corners are
less rounded, but definitely not better than the previous approach (for example,
see Figure 3.13); moreover, maxn, (∥T(·, t(n))∥2

0 + 1) = 5.958725168397905 · 10−5.

Figure 3.24 z(t) (left) and zl(t) (right) for M = 192, l = 0.05, N/M = 211.

Thus, having compared the two ways of fixing the boundary condition with finite
difference space discretization, it seems very clear that the better results are obtained
when the end points for T are fixed. Recall that this was also a suitable choice when
the numerical study for the one-corner problem was done in [15, 24].
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3.5 Chebyshev spectral discretization

We noticed that in the Euclidean case, due to the periodicity of tangent vector T, a
pseudo-spectral discretization with trigonometric basis functions is very useful. In the
hyperbolic case, this not being the case, we have tried the finite difference discretization
which combined with fourth-order Runge–Kutta method gave reasonably good results.
However, due to their spectral accuracy, we are tempted to try the Chebyshev spectral
discretization which was remarkably accurate and efficient in the case of one-corner
problem [24].

We have seen in the previous section that working (i.e., fixing boundary conditions)
with the tangent vector T gives relatively better results, as a result, we follow the same
approach in this section as well. We will consider the Chebyshev spectral collocation
method [16, 59] with nodes sj

sj = (L/2) cos (jπ/N) , j = 0, 1, . . . , N, (3.56)

and approximate the tangent vector T by a polynomial of the form

T(s, t) ≈
N∑

k=0
ak(t)Uk(s/L), ∀t ≥ 0,

where Uk(s) = cos(k arccos(s)) is the Chebyshev polynomial of degree k.
Furthermore, due to the unequal distribution of Chebyshev points, we need to

reparameterize the initial data T(s, 0), X(s, 0), at the same time bearing in mind
that the sides of the planar l-polygon have equal (hyperbolic) length. We consider M
equally sized intervals [s̃k, s̃k+1], where s̃k = −L/2 + kL/M , k = 0, 1, . . . ,M − 1 and
divide the interval [−L/2, L/2] into N + 1 points given by (3.56). Thus, for given M

piecewise constant tangent vector Tk ≡ T(s, 0) for s ∈ [s̃k, s̃k+1], one way to obtain
T(sj, 0) could be the following:

1. Compute the count/density dk of Chebyshev nodes sj’s belonging to interval
[s̃k, s̃k+1) for k = 0, 1, . . . ,M/2 − 1. Due to the symmetry of sj’s, the remaining
dk values can be computed as dM−k−1 = dk, such that ∑M−1

k=0 dk = N .

2. Compute T(sj̃, 0) = Tk, for j̃ = j − 1 + ∑k
r=0 dr−1, j = 1, 2, . . . , dk, k =

0, 1, . . . ,M/2 − 1, d−1 = 0; and T(sj̃, 0) = Tk, for j̃ = j + ∑k
r=0 dr−1, j =

1, 2, . . . , dk, k = M/2,M/2 + 1, . . . ,M − 1.
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3. Note that T(sN/2, 0) is yet to be evaluated, so from N values of T(sj, 0), N + 1
values can be obtained by

T̃(s0, 0) = T(s0, 0),
T̃(sj+1, 0) = 1

2 [T(sj, 0) + T(sj+1, 0)] , j = 0, 1, . . . , N/2 − 2,
T̃(sN/2, 0) = 1

2

[
T(sN/2−1, 0) + T(sN/2+1, 0)

]
,

T̃(sj, 0) = 1
2 [T(sj, 0) + T(sj+1, 0)] , j = N/2 + 1, N/2 + 2, . . . , N − 1,

T̃(sN , 0) = T(sN , 0),
T(sj, 0) = T̃

∥T̃∥0
.

After having obtained T(s, 0), using Chebyshev integration, X(s, 0) can be obtained
up to a constant which can be determined from the mean of X(s, 0).

3.5.1 Working with the equation for T

With the initial data mentioned above, we first compute the evolution of (3.1)–(3.2)
using the Chebyshev space discretization and a fourth-order Runge–Kutta method in
time. As the latter is an explicit scheme, the stability of the numerical method imposes
a restriction of ∆t = O(∆s2). On the other hand, due to their unequal distribution
and clustering towards the boundary, for N Chebyshev nodes in the given interval,
the minimum step size ∆s = O(1/N2) implies ∆t = O(1/N4) and hence, makes the
method computationally undesirable. The implementation of this scheme is same
as the one explained in Section 3.4.1 with the only change that the finite difference
matrices5 have been replaced by their Chebyshev counterparts.

As a next approach, for the integration in time, we use multi-stage methods. The
main idea is to work with T and develop a numerical scheme where the higher-order
derivative term in (3.2) can be treated implicitly, thereby eliminating severe restrictions
on ∆t. In this regard, by denoting FN as the Chebyshev second-order differentiation
matrix and writing

Tn ≡


T n

1

T n
2

T n
3

 , where T n
k =



T n
k (s0)
T n

k (s1)
...

T n
k (sN−1)
T n

k (sN)


k = 1, 2, 3,

5See [59, Theorem 7] for their expression and further details.
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corresponds to a (N+1)-dimensional column vector, we begin with a first-order method
and discretize (3.2) as

Tn+1 − Tn

∆t = Tn ∧− Tn+1
ss = Tn ∧− FN Tn+1 =


T n

2 T
n+1
3,ss − T n

3 T
n+1
2,ss

−T n
1 T

n+1
3,ss + T n

3 T
n+1
1,ss

−T n
1 T

n+1
2,ss + T n

2 T
n+1
1,ss



=


0 T n

3 FN −T n
2 FN

T n
3 FN 0 −T n

1 FN

−T n
2 FN T n

1 FN 0



T n+1

1

T n+1
2

T n+1
2

 .
(3.57)

To implement the fixed boundary condition on T, i.e., Tk(s0, ·) = T+
k and Tk(sN , ·) = T−

k

for k = 1, 2, 3, we first decompose FN = (fi,j), i, j = 0, 1, . . . , N into

f+ =



f1,0

f2,0
...

fN−2,0

fN−1,0


, F̃N =



f1,1 f1,2 . . . f1,N−1

f2,1 f2,2 . . . f2,N−1
... ... . . . ...

fN−2,1 fN−2,2 . . . fN−2,N−1

fN−1,1 fN−1,2 . . . fN−1,N−1


, f− =



f1,N

f2,N

...
fN−2,N

fN−1,N


, (3.58)

where the first and the final row of FN have been discarded and F̃N is (N−1)× (N−1)
matrix. For the inner grid points, i.e., i = 1, 2, . . . , N − 1, we can write

T n
3 FNT

n+1
2 =



T n
3,1

T n
3,2
...

T n
3,N−2

T n
3,N−1




T n+1

2,0 f+ + T n+1
2,N f− + F̃N



T n+1
2,1

T n+1
2,2
...

T n+1
2,N−2

T n+1
2,N−1




= T n

3 T2,bd + T n
3 F̃NT

n+1
2 ,

where T2,bd = T n+1
2,0 f+ + T n+1

2,N f− is (N − 1)-dimensional column vector. With this,
(3.57) becomes

Tn+1 − Tn

∆t =


T n

3 T2,bd − T n
2 T3,bd

T n
3 T1,bd − T n

1 T3,bd

−T n
2 T1,bd + T n

1 T2,bd

+


0 T n

3 F̃N −T n
2 F̃N

T n
3 F̃N 0 −T n

1 F̃N

−T n
2 F̃N T n

1 F̃N 0


︸ ︷︷ ︸

F̃


T n+1

1

T n+1
2

T n+1
3

 ,
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or,

(IN−1 − ∆tF̃)


T n+1

1

T n+1
2

T n+1
3

 = ∆t


T n

3 T2,bd − T n
2 T3,bd

T n
3 T1,bd − T n

1 T3,bd

−T n
2 T1,bd + T n

1 T2,bd

+


T n

1

T n
2

T n
3

 , (3.59)

where Tk,bd = T n+1
k,0 f+ +T n+1

k,N f− and F̃ is (3N−3)×(3N−3) dimensional matrix. Thus,
we have system of 3N − 3 equations and 3N − 3 unknowns, i.e., T n+1

k (sj), k = 1, 2, 3,
j = 1, 2, . . . , N − 1. Moreover, for ∆t sufficiently small, IN−1 − ∆tF̃ is invertible, hence,
the system has a unique solution. From T, we compute

Xt(0, tn) = (T ∧− Tss)(0, tn),

from which X(0, t) can be computed by an integration with respect to time where we
can use a fourth-order method. With this, and integrating Xs = T, we obtain X(·, tn)
for n = 1, 2, . . . , Nt.

As the numerical results show that the first-order method is unconditionally stable,
we move forward to implement a second-order method which is known as second-order
semi-implicit backward differentiation formula (SBDF) [2]. Thus, using the notations
same as above, (3.2) can be discretized as

1
2∆t

(
3Tn+1 − 4Tn + Tn−1

)
=
[
(2Tn − Tn−1) ∧− Tn+1

ss

]
,

which in turn can be expressed as

1
2∆t

(
3Tn+1 − 4Tn + Tn−1

)
=

=


Cn

3 T2,bd − Cn
2 T3,bd

Cn
3 T1,bd − Cn

1 T3,bd

−Cn
2 T1,bd + Cn

1 T2,bd

+


0 Cn

3 F̃N −Cn
2 F̃N

Cn
3 F̃N 0 −Cn

1 F̃N

−Cn
2 F̃N Cn

1 F̃N 0


︸ ︷︷ ︸

F̃


T n+1

1

T n+1
2

T n+1
3

 ,

or,

(
3IN−1 − 2∆tF̃

)
T n+1

1

T n+1
2

T n+1
3

 = 2∆t


Cn

3 T2,bd − Cn
2 T3,bd

Cn
3 T1,bd − Cn

1 T3,bd

−Cn
2 T1,bd + Cn

1 T2,bd

+ 4


T n

1

T n
2

T n
3

−


T n−1

1

T n−1
2

T n−1
3

 , (3.60)

where Cn
k = 2T n

k −T n−1
k , Tk,bd = T n+1

k,0 f+ +T n+1
k,N f−, k = 1, 2, 3 are (N − 1)-dimensional

column vectors. As before, we solve a system of N−1 equations, and since 3IN−1−2∆tF̃
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is invertible independent of the choice of ∆t, the method is unconditionally stable.
It is important to mention that for the initialization, two initial data are needed, as
T(·, t0) is given, we obtain T(·, t1) by using the first-order method combined with a
fourth-order Richardson extrapolation.

Continuing in this direction, we proceed to construct a third-order method and
discretize (3.2) as

1
∆t

(11
6 Tn+1 − 3Tn + 3

2Tn−1 − 1
3Tn−2

)
=
[
(3Tn − 3Tn−1 + Tn−2) ∧− Tn+1

ss

]
.

After introducing the boundary conditions as done above, we note that the method
is not numerically stable. We have also tried replacing the implicit part with an
extrapolation, i.e.,

1
∆t

(11
6 Tn+1 − 3Tn + 3

2Tn−1 − 1
3Tn−2

)
=
[
(4Tn − 6Tn−1 + 4Tn−2 − Tn−3) ∧− Tn+1

ss

]
.

However, this also does not resolve the problem. Thus, we can obtain only a second-
order method in time.

3.5.2 Working with the stereographic projection form

In [24], solving the stereographic projection of (3.2) with a Chebyshev spectral dis-
cretization combined with second-order semi-implicit backward differentiation formula
(SBDF) was found to be very efficient and accurate [2]. Following their approach, we
consider the stereographic projection of T = (T1, T2, T3)T onto C,

z = x+ iy ≡ (x, y) ≡
(

T2

1 + T1
,

T3

1 + T1

)
, (3.61)

where T is projected from (−1, 0, 0)T into R2, identifying R2 with C [10]. In the
Euclidean case, since T ∈ S2, there is a point on the sphere, (−1, 0, 0)T , corresponding
to which there is no point in C, as a result, there is a bijection between S2−{(−1, 0, 0)T }
and R2. However, in the hyperbolic case, T ∈ H2, there is a bijection between D and
H2, where

D = {(x, y) ∈ R2 | x2 + y2 < 1},

is also known as Poincaré disc. Consequently, the tangent vector can be recovered by

T = (T1, T2, T3)T ≡
(

1 + x2 + y2

1 − x2 − y2 ,
2x

1 − x2 − y2 ,
2y

1 − x2 − y2

)T

.
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Next, by differentiating (3.61), using (3.2) we obtain that z solves the following
nonlinear Schrödinger equation

zt = izss + 2iz̄
1 − |z|2

z2
s .

By using Chebyshev spectral discretization, we approximate z by a polynomial of the
form

z(s, t) ≈
N∑

k=0
ak(t)Uk(s/L),

where Uk(s) = cos(k arccos(s)) is the Chebyshev polynomial of degree k. For the time
evolution, we have considered a semi-implicit second-order backward differentiation
formula (SBDF)

1
2∆t

[
3zn+1 − 4zn + zn−1

]
= izn+1

ss + 2N (zn, tn) − N (zn−1, tn−1), (3.62)

where N (z, ·) = 2iz̄
1−|z|2 z

2
s . Thus, we solve



zt = izss − 2iz̄
1+|z|2 z

2
s ,

z(s, 0) =
(

sinh(l/2+sn)
1+cosh(l/2+sn) , 0

)
,

z(−L/2, t) =
(

sinh(l/2−L/2)
1+cosh(l/2−L/2) , 0

)
,

z(+L/2, t) =
(

sinh(l/2+L/2)
1+cosh(l/2+L/2) , 0

)
.

(3.63)

One of the main advantages of working with the semi-implicit backward differentiation
formula is that treating the second-order derivative term zss implicitly helps in reducing
the restrictions on ∆t. Besides that, by working with this form the resulting linear
system from the above formulation is less computationally expensive due to the size of
the underlying matrix which is (N − 1) × (N − 1), as compared with (3.60) where we
need to solve (3N − 3) × (3N − 3) size matrices.

In [24], the main idea to compute the numerical solution for a certain time 0 < t ≪ 1;
however, in the present case, we are interested in X and T at all times, for which
second-order scheme is not desired. Furthermore, using a higher order scheme such as
a third-order and a fourth-order SBDF methods also do not yield satisfactory results.
Hence, it can be concluded that the pseudo-spectral discretization does not help us
in obtaining better results than the finite difference approach, in particular, a higher
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order method in time. The latter is important for our purpose as we are interested in
the behavior of X at all times, for instance, X(0, t).

3.6 Conclusion

In this chapter, we have discussed the evolution of VFE in the Minkowski space for a
regular planar l-polygon characterized by a parameter l > 0. It has been observed that
the evolution at a theoretical level can be compared with that in the Euclidean case;
however, the numerical treatment is quite different and challenging. In this regard,
we have found that both from the computational cost and the accuracy point of view
a finite difference discretization with fixed boundary conditions for tangent vector T
yields the best results. We have also commented on several other numerical methods
that we have tried. On the other hand, to study the trajectory X(0, t), we have worked
with the algebraic solution and shown that it converges to Riemann’s non-differentiable
function as the parameter l tends to zero. In the rest of this work, we will refer to this
problem as l-polygon problem.



Chapter 4

Connection between the l-polygon
problem and one-corner problem in
the Minkowski space

We are like islands in the sea,
separate on the surface but
connected in the deep.

William James
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4.1 Introduction

Given the parameter c0 > 0, let us denote the solutions of the one-corner problem as

Xc0 , Tc0 , nc0 , bc0 ,

which are obtained by integrating Xs = T, and the Frenet–Serret frame


T
n
b


s

=


0 c0/

√
t 0

c0/
√
t 0 s/2t

0 −s/2t 0




T
n
b

 , s ∈ R, (4.1)

with initial conditionsX(0, t) = 2c0
√
t(0, 0, 1)T , T(0, t) = (1, 0, 0)T ,

n(0, t) = (0, 1, 0)T , b(0, t) = (0, 0, 1)T .
(4.2)

Recall that the self-similar solutions

Xc0(s, t) =
√
tXc0(s/

√
t, 1), t > 0,

form a one-parameter family of curves with c0 as its curvature at t = 1 and converge to
two non-parallel straight lines as t approaches zero. This was proved in [21, Theorem
1], where it was also shown that Xc0 is smooth for all t > 0. Moreover, the following
asymptotics of Xc0 at t = 1 were obtained:

Xc0(s, 1) = A±
(
s− 2c2

0
s

)
− 4c0

s2 n + O
( 1
s3

)
, s → ±∞, (4.3)

where A± are unit time-like vectors as in (1.24) with A− = A1, A+ = A2. Note that
none of the components of Xc0(s, 1) is Lebesgue integrable on R, but if we define

e0 := A− ∧− A+

∥A− ∧− A+∥0
=
0,− A3√

A2
2 + A2

3

,
A2√

A2
2 + A2

3

T

, (4.4)

then, e0 ◦− A± = 0, as a result, in (4.3), we get rid of the term with A± and e0 ◦− Xc0

is finite. Hence, it can be integrated as

∫ ∞

−∞
e0 ◦− Xc0(s, 1)ds = 2πc2

0√
1 − e−πc2

0

. (4.5)
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One of the main outcomes of this chapter is the computation of the above integral.
In this regard, first, in Section 4.2, we establish a numerical relationship between
the l-polygon and one-corner problems in the Minkowski space. Later, through its
application, in Section 4.3, we obtain an expression for the mean speed cl of the
l-polygon with which it propagates in the vertical direction. This is done analytically
by computing (4.5) in Theorem 6, and later numerically in Section 4.4. Explicit
expressions for the components of A± have been determined in Section 4.5, and in
Section 4.6, we comment on the evolution of the linear momentum of the planar
l-polygon.

Let us also mention that we denote the numerical solutions of the l-polygon problem
by Tl and Xl, and this chapter follows the approach of [23] where the Euclidean case
was considered.

4.2 Numerical connection between the l-polygon
problem and the one-corner problem

In this section, we show numerically that the l-polygon problem in the Minkowski space
can be explained as a superposition of several one-corner problems at infinitesimal
small times. Recall that while solving the l-polygon problem numerically, we consider
a regular planar l-polygon with M sides; thus, bearing in mind that the orientation of
initial data in each case is in agreement with the other, we solve both the problems for
time t = t1,q, q ≫ 1. In other words, we solve the one-corner problem numerically such
that the hyperbolic angle at the corner s = 0 is equal to that of the l-polygon problem
and this can be done by choosing the parameter

c0 =

√√√√ 2
π

ln
(

cosh
(
l

2

))
. (4.6)

Also recall that

lim
s→−∞

Tc0 = A− = (A1,−A2,−A3)T , lim
s→∞

Tc0 = A+ = (A1, A2, A3)T ,

so the curve Xc0 and the orthonormal basis vectors Tc0 , nc0 and bc0 should be rotated
in such a way that for a hyperbolic rotation matrix H, Xrot ≡ H · Xc0 , Trot ≡ H · Tc0 ,
match their counterparts in the l-polygon problem. The matrix H can be computed
by enforcing the condition that lims→±∞ Trot(s) correspond to the tangent vector of
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the planar l-polygon at s = 0±, t = 0, i.e.,


lim
s→−∞

Trot(s) = (cosh (l/2) ,− sinh (l/2) , 0)T ,

lim
s→∞

Trot(s) = (cosh (l/2) , sinh (l/2) , 0)T .

Thus, we have

H =


1 0 0
0 A2√

A2
2+A2

3

A3√
A2

2+A2
3

0 −A3√
A2

2+A2
3

A2√
A2

2+A2
3

 , (4.7)

which can be explicitly computed by using the expressions1 for A1, A2, A3

A2 = 2
πc0

eπc2
0/4 sinh(πc2

0/2)ℜ {Υ} ,

A3 = 2
πc0

eπc2
0/4 sinh(πc2

0/2)ℑ{Υ},
(4.8)

with Υ = eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4), and A2
2 + A2

3 = eπc2
0 − 1. Furthermore,

Xrot ≡


Xrot,1

Xrot,2

Xrot,3

 = H ·


Xc0,1

Xc0,2

Xc0,3

+ l/2
sinh(l/2)


0(

1 − sinh(L/2)
M tanh(l/2)

)
0

 ,

Trot ≡


Trot,1

Trot,2

Trot,3

 = H ·


Tc0,1

Tc0,2

Tc0,3

 ,
(4.9)

where (0, l/2
sinh(l/2)

(
1 − sinh(L/2)

M tanh(l/2)

)
, 0)T corresponds to the location of the corner at t = 0,

s = 0 for the planar l-polygon in (3.14).

4.2.1 Numerical experiments

In the following lines, we describe the numerical method for the comparison between
the two problems. Depending on whether q is even or odd, for the l-polygon problem,
we compute the algebraic solution Talg(s, t1,q) at those s = sk ∈ [−l/2, l/2], l > 0,
which belong to the middle points of the sides of the corresponding skew hyperbolic
polygon. In this direction, depending on q, we consider the following discretization:

1See Section 4.5 for their computation
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q Error q Error q Error
501 1.4912 · 10−2 500 7.0958 · 10−3 502 6.7851 · 10−3

1001 1.1146 · 10−2 1000 5.0360 · 10−3 1002 5.2768 · 10−3

2001 7.8673 · 10−3 2000 3.5493 · 10−3 2002 3.7201 · 10−3

4001 5.5824 · 10−3 4000 2.5417 · 10−3 4002 2.6345 · 10−3

8001 3.9579 · 10−3 8000 1.8155 · 10−3 8002 1.8638 · 10−3

16001 2.8044 · 10−3 16000 1.2935 · 10−3 16002 1.3181 · 10−3

32001 1.9862 · 10−3 32000 9.1986 · 10−4 32002 9.3214 · 10−4

64001 1.4064 · 10−3 64000 6.5340 · 10−4 64002 6.5944 · 10−4

128001 9.9583 · 10−4 128000 4.6400 · 10−4 128002 4.6694 · 10−4

Table 4.1 The errors maxk(∥Talg(sk, t1,q) − Trot(sk, t1,q)∥) for different values of q,
l = 0.6, decrease as O(1/√q) = O(√t1,q).

(i) when q ≡ 1 mod 2:
we choose sk = l(2k− 1)/2q, k = −(q− 1)/2, . . . , (q+ 1)/2, ∆s = sk+1 − sk = l/q.
For example, for q = 101, k = −50, . . . , 51 and s−50 = −l/2, . . . , s0 = −l/2q,
s1 = l/2q, . . . , s51 = l/2;

(ii) when q ≡ 0 mod 4:
sk = l(2k − 1)/q, k = −q/4 + 1, . . . , q/4, ∆s = 2l/q. For example, for q = 100,
k = −24, . . . , 25, and s−24 = −49l/100q, . . ., s0 = −l/q, s1 = l/q, . . ., s25 =
49l/100q. Note that in this and the above case, s = 0 corresponds to a corner of
the skew l-polygon;

(iii) when q ≡ 2 mod 4:
sk = 2lk/q, k = −(q − 2)/4, . . . , (q − 2)/4, ∆s = 2l/q. For example, q = 102,
k = −25, . . . , 25, s−25 = −50l/100, . . ., s0 = 0, . . ., s25 = 50l/100. In this case,
there is no corner at s = 0.

On the other hand, by discretizing the interval [−l/2, l/2] into 24q + 1 points with a
step size ∆s = l/24q, we solve the one-corner problem numerically, i.e., at time t = t1,q,
we integrate (4.1) by using a fourth-order Runge–Kutta method with initial conditions
(4.2). In this way, Tc0(s, t1,q) can be computed for the same s = sk as mentioned above
and then, from (4.7), we obtain Trot(s, t1,q).

For our numerical simulations, we have taken M = 8, l = 0.6 and different values of
q. Figure 4.1 shows the errors log10(∥Talg(sk, t1,q) − Trot(sk, t1,q)∥) for different values
of q where ∥ · ∥ is the Euclidean distance and we compute it for each sk. The minimum
errors are shown in red color which are attained at very small values of s. Table 4.1
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Figure 4.1 The error log10(∥Talg(sk, t1,q) − Trot(sk, t1,q)∥) for different q val-
ues, for l = 0.6, q ≡ 0 mod 4 , q ≡ 2 mod 4, q ≡ 1 mod 4 and
log10(| ∥Talg(sk, t1,q) − Trot(sk, t1,q)∥0 |) for q ≡ 1 mod 4. The minimum values ob-
tained for the largest q are shown in red color.
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show the errors maxk(∥Talg(sk, t1,q) − Trot(sk, t1,q)∥) for the same values of q. It is
clear from the table that the maximum of error values decreases by a factor of square
root of two, every time when q is (approximately) doubled, in other words, it decreases
as O(1/√q) = O(t1,q). Note that the minimum error value is attained at smallest
values of s = |sk|.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.1

0

0.1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.1

0

0.1

Figure 4.2 The stereographic projection of Talg(s, tpq) for M = 8, l = 0.6, p = 1,
q = 501, 2001, 64002.

Nonetheless, for q odd, the plot of log10(∥Talg(sk, t1,q) − Trot(sk, t1,q)∥) seems to
have a different shape when compared with the other two cases. This peculiar phe-
nomenon was also observed in the Euclidean case ([23, Figure 2]) and could be explained
by computing Talg(sk, t1,q) for q odd. For instance, Figure 4.2 shows Talg for q = 501
where Mq = 8 × 501 points (red) appear to form a curve with a sawtooth effect.
However, if we plot only the alternate points (blue), we obtain two smooth curves
with the sawtooth structure in-between; and as q increases, the structure gets smaller
approximately by a factor of one half when q is taken approximately four times bigger
as seen in Figure 4.2 where q = 2001. This can be further appreciated in the fourth
subfigure where we measure the discrepancy between the two curves using ∥ · ∥0 instead
of ∥ · ∥.

On the other hand, for q even, we obtain a very regular curve as in Figure 4.2
where for q = 64002 we have plotted Talg(blue) and Trot(red) together; it is quite clear
that the two curves look almost identical. Moreover, for q/2 odd, since the tangent
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q Absolute Error Relative Error
502 4.452708337809863 · 10−5 2.650223938013458 · 10−4

1002 2.230639580691474 · 10−5 1.327662619091869 · 10−4

2002 1.116394232367202 · 10−5 6.644708106650881 · 10−5

4002 5.584661008195546 · 10−6 3.323955032925001 · 10−5

8002 2.793003139017758 · 10−6 1.662377864527374 · 10−5

16002 1.396670628817098 · 10−6 8.312895552983875 · 10−6

32002 6.983755935496827 · 10−7 4.156687515401240 · 10−6

64002 3.491995678728266 · 10−7 2.078413818533916 · 10−6

128002 1.746068324925965 · 10−7 1.039248861829102 · 10−6

Table 4.2 The errors for the approximation of c0 using (4.10) decrease as O(1/q) where
c0 = 0.1680125318446675, l = 0.6.

vector is continuous at s = 0, it is also possible to approximate the coefficient c0, as we
will see in the following lines.

Approximation of curvature at the origin

Recall that in the one-corner problem, for any time t > 0, c0 =
√
t ∥Ts(0, t)∥0, so

in the case of a planar l-polygon at t = t1,q, this becomes c0 = √
t1,q ∥Ts(0, t1,q)∥0,

where we approximate the derivative terms using a finite difference. Thus, without
loss of generality we can choose q ≡ 2 mod 4, in this way, T is continuous at s = 0 and
s = ±∆s for ∆s = 2l/q, we can write

Ts(0, t1,q) = lim
∆s→0

Talg(∆s, t1,q) − Talg(−∆s, t1,q)
2∆s ,

and
c0 = lim

q→∞
q≡2 mod 4

√
t1,q

∥Talg(2l/q, t1,q) − Talg(−2l/q, t1,q)∥0
4l/q . (4.10)

The absolute and relative errors for the above mentioned approximation (4.10) are
given in Table 4.2 and it’s quite clear that as q increases, the error decreases as
O(1/q) = O(t1,q). On the other hand, recall that at time t1,q for q even, there are
q/2 times more sides with mutual time-like angle lq, as a result, from the hyperbolic
rotation matrix (3.28)

Hm =


cosh(lq) cos(θm) sinh(lq) sin(θm) sinh(lq)

cos(θm) sinh(lq) 1 + cos2(θm)(cosh(lq) − 1) sin(θm) cos(θm)(cosh(lq) − 1)
sin(θm) sinh(lq) sin(θm) cos(θm)(cosh(lq) − 1) 1 + sin2(θm)(cosh(lq) − 1)

 ,
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we can write 
Talg(2l/q, t1,q)T

e1,alg(2l/q, t1,q)T

e2,alg(2l/q, t1,q)T

 = H1


Talg(0, t1,q)T

e1,alg(0, t1,q)T

e2,alg(0, t1,q)T

 ,
and 

Talg(−2l/q, t1,q)T

e1,alg(−2l/q, t1,q)T

e2,alg(−2l/q, t1,q)T

 = H−1
q−1


Talg(0, t1,q)T

e1,alg(0, t1,q)T

e2,alg(0, t1,q)T

 .
Since we are interested only in the Minkowski norm of Talg(2l/q, t1,q)−Talg(−2l/q, t1,q),
we can discard the global rotation and thus, without loss of generality, by taking


Talg(0, t1,q)T

e1,alg(0, t1,q)T

e2,alg(0, t1,q)T

 =


1 0 0
0 1 0
0 0 1

 ,
we getTalg(2l/q, t1,q) = (cosh(lq), cos(θ1) sinh(lq), sin(θ1) sinh(lq))T ,

Talg(−2l/q, t1,q) = (cosh(lq),− cos(θq−1) sinh(lq),− sin(θq−1) sinh(lq))T ,

and ∥Talg(2l/q, t1,q) − Talg(−2l/q, t1,q)∥0

=
∥∥∥(0, (cos(θ1) + cos(θq−1)) sinh(lq), (sin(θ1) + sin(θq−1)) sinh(lq))T

∥∥∥
0

= sinh(lq)
√

2 + 2(cos(θ1) cos(θq−1) + sin(θ1) sin(θq−1))

= sinh(lq)
√

2(1 + cos(θ − θq−1)) = 2 sinh(lq),

where in the last step, we have used the fact that θ1 = θq−1 which is immediate from the
properties of generalized Gauß sums: G(−p,m, q) = G(−p,−m, q) = G(−p, q −m, q)
and m = 1, gives the desired result. Thus, substituting the above expression in (4.10),
with Tf = l2/2π gives

c0 = lim
q→∞

√
Tf

q

q

4l2 sinh(lq) = lim
q→∞

√
q

2π
sinh(lq)

2

= lim
q→∞

1
2

√
q

2π (cosh2(lq) − 1) = lim
q→∞

1
2

√
q

2π

[(
2 cosh4/q(l/2) − 1

)2
− 1

]
,
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using L’Hôpital’s rule, we obtain

c0 = lim
q→∞

1
2

[ 8
π

(
2 cosh4/q(l/2) − 1

)
e

4
q

ln cosh(l/2) ln cosh(l/2)
]1/2

=
√

2
π

ln cosh(l/2).

Recall that l is the angle between time-like vectors A+ and A−

cosh(l) = A+ ◦− A− = −1 + 2A2
1,

thus, we recover

eπc2
0/2 = cosh(l/2) =

√
1 + cosh(l)

2 = A1.

Furthermore, we compare the time evolution of a one point in both the problems and
thus, we compute Xl(0, t) and Xrot(0, t) for t ∈ [0, t1,20]. In this regard, we have

Xrot(0, t) ≡


Xrot,1(0, t)
Xrot,2(0, t)
Xrot,3(0, t)

 = H ·


Xc0,1(0, 0)
Xc0,2(0, 0)
Xc0,3(0, 0)

+ l/2
sinh(l/2)


0(

1 − sinh(L/2)
M tanh(l/2)

)
0



= 2c0
√
t


0

A3√
A2

2+A2
3

A2√
A2

2+A2
3

+ l/2
sinh(l/2)


0(

1 − sinh(L/2)
M tanh(l/2)

)
0

 .
(4.11)

Figure 4.3 shows the trajectories for t ∈ [0, t1,20], i.e., for small times. Both Xl(0, t)
and Xrot(0, t) lie in the YZ-plane, and when plotted together it is clear in Figure 4.3
that Xl(0, t) (blue) can be approximated by a straight line (red) with a slope A2/A3.
On the other hand, if we plot the third components Xl,3(0, t), Xrot,3(0, t) for small
times, then the former (left) appears to grow along the curve 2c0

√
tA2/

√
A2

2 + A2
3 as

shown in Figure 4.3 (right).

For our numerical simulations, we have taken M = 8, l = 0.6, but the results hold
true for any M ≥ 2, where the choice of M to be even was made to take advantage of
the symmetries of the planar l-polygon. Thus, there is strong numerical evidence that
for small times the l-polygon problem can be seen a superposition of several one-corner
problems. In the following section, we utilize this fact to compute an exact expression
for the speed of the center of mass cl of the planar l-polygon.

Finally, remark that the quantity A2/A3 also determines the angle φ which the
curve Xrot(0, t) makes with the plane containing Xrot(s, 0). Interestingly, φ is also the
angle corresponding to the corner of zl(t) located at t = 0 which holds true in the
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Figure 4.3 Left side X(0, t), t ∈ [0, t1,20] for M = 8, l = 0.6 and on the right side the
third component versus time t for the l-polygon (blue) and one-corner (red) problems.

Euclidean case as well. To compare both cases simultaneously, from (3.53) we obtain
c0 for M = 3, 4, . . . , 20 and compute A2/A3 using (4.8) in the hyperbolic case and
using [36, (57)] for the Euclidean case. The values thus obtained have been plotted
in Figure 4.4 where it can be seen that A2/A3 is greater (smaller) than the one in
hyperbolic (Euclidean) case and tends to one as c0 becomes smaller. In fact, from
(4.8), A2(0)/A3(0) = 1. Thus, for a given c0, φ is more (less) than π/2 and converges
to π/2 in the limit, as in the case of Riemann’s non-differentiable function. Moreover,
for any c0 > 0 in the hyperbolic case, its value can be precisely given as

φ = arctan
(
A2

A3

)
= arctan

(
ℜ{Υ}
ℑ{Υ}

)
= arg(iῩ), (4.12)

with Υ = eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4). By using the following

Γ(z1)Γ(z2)
Γ(z1 + z2)

= B(z1, z2),

where B(·, ·) is the beta function, we can write

Υ = eiπ/4B(1 − ic2
0/4, 1/2 + ic2

0/4)Γ(3/2) =
√
π

2 eiπ/4B(1 − ic2
0/4, 1/2 + ic2

0/4).
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Figure 4.4 Semilogarithmic plot of A2/A3 as function of c0 in both Euclidean and
Hyperbolic cases. Clearly, as c0 tends to zero, A2/A3 approaches to one marked with
dashed dotted line.

4.3 Analytical computation of cl using one-corner
problem

In Chapter 3, during the numerical evolution of the planar l-polygon, we observed
that the trajectory of its center of mass lies in the YZ-plane. More precisely, for the
arc-length parameterized curve Xl with length L,

Xmean
l (t) = 1

L

∫ L/2

−L/2
Xl(s, t)ds = (0, y(t), clt),

where the second component y(t) was found to be Tf -periodic and a linear behavior was
noted in the third component. In this section, we consider only the third component:

clt = Xmean
3,l (t) = 1

N

N−1∑
j=0

Xl,3(sj, t) = M

N

N/M−1∑
j=0

Xl,3(sj, t),

where the equality on the right-hand side follows from (3.39) and implies that computing
the mean over the interval [−L/2, L/2] is equivalent to that over [−l/2, l/2]. In other
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words,
clt = 1

l

∫ l/2

−l/2
Xl,3(s, t) ds, ∀t > 0,

which we can be rewritten as

cl = 1
lt

∫ l/2

−l/2
Xl,3(s, t) ds, ∀t > 0,

and it holds true especially when t → 0. At this point, it is important to recall from the
previous section that, at infinitesimal times, the l-polygon problem can be described
as a superposition of several one-corner problems, as a result, we claim that

cl = lim
t→0

1
lt

∫ l/2

−l/2
Xrot,3(s, t) ds.

Moreover, by using the self-similarity of Xrot:

Xrot(s, t) =
√
tXrot(s/

√
t, 1), t > 0,

we can express
cl = lim

t→0

1
l
√
t

∫ l/2

−l/2
Xrot,3(s, 1) ds.

A simple change of variable s/
√
t → s gives

cl = lim
t→0

1
l

∫ l/2
√

t

−l/2
√

t
Xrot,3(s, 1) ds,

and passing the limit allows us to conjuncture that

cl = 1
l

∫ ∞

−∞
Xrot,3(s) ds,

where we have used Xrot(s) = Xrot,3(s, 1). As a result, we have the following result

Theorem 6. ∫ ∞

−∞
Xrot(s) ds = 2πc2

0√
1 − e−πc2

0

. (4.13)

With this, we obtain cl in terms of c0 and also l, i.e.,

cl = 2πc2
0

l
√

1 − e−πc2
0

= 4 ln cosh(l/2)
l
√

1 − sech2(l/2)
= − ln(1 − tanh2(l/2))

(l/2) tanh(l/2) . (4.14)
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Observe that because of the definition of Xrot in (4.9), and its initial value in (4.2), we
have ∫ ∞

−∞
Xrot(s)ds > 0. (4.15)

4.3.1 Proof of Theorem 6

Since the proof is mainly based on the one-corner problem, we take t = 1 and use
the following notation for the variables. We write X(s) = Xc0(s, 1), T(s) = Tc0(s, 1),
n(s) = nc0(s, 1), b(s) = bc0(s, 1), which implies Xc0(s, t) =

√
tX(s/

√
t), Tc0(s, t) =

T(s/
√
t), nc0(s, t) = n(s/

√
t), bc0(s, t) = b(s/

√
t). The non-bold letters X(s), T (s),

n(s), b(s) will be used to refer any component of their bold counterparts.
Differentiating X(s) three times and using the Frenet–Serret formulas, we obtain

the ODE [21]
X ′′′(s) = T ′′(s) = c0n

′(s) = c2
0T (s) + s

2c0b(s). (4.16)

Moreover, differentiating Xc0(s, t) =
√
tX(s/

√
t) both sides with respect to t gives

Xc0,t(s, t) = Xc0,s ∧− Xc0,ss = c0√
t
Tc0 ∧− nc0 = c0√

t
bc0(s, t) = c0√

t
b(s/

√
t),

(√
tX(s/

√
t)
)

t
= 1

2
√
t
X(s/

√
t) − s

2tXs(s/
√
t).

Combining the above two equations

c0√
t
b(s/

√
t) = 1

2
√
t
X(s/

√
t) − s

2tXs(s/
√
t),

which at t = 1 is
c0b(s) = 1

2X(s) − s

2X
′(s). (4.17)

Hence, from (4.16)-(4.17),

X ′′′(s) +
(

−c2
0 + s2

4

)
X ′(s) − s

4X(s) = 0, (4.18)

which has three linearly independent solutions and from [21, Theorem 1], we note that
the solution grows linearly as s → ∞. Next, by denoting the Fourier transform of X(s)
as X̂(ξ):

X̂(ξ) = 1√
2π

∫ ∞

−∞
X(s)e−isξds, X(s) = 1√

2π

∫ ∞

−∞
X̂(ξ)eisξdξ, (4.19)
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and from the properties of Fourier transform such as

[snX(s)]∧ = in
dn

dξn
X̂(ξ),

[
dn

dsn
X(s)

]∧

= (iξ)nX̂(ξ),

we learn that X̂(ξ) is a solution of

ξX̂ ′′(ξ) + 3X̂ ′(ξ) + 4ξ3X̂(ξ) + 4c2
0ξX̂(ξ) = 0. (4.20)

Note that (4.20) holds true for any component of X̂, especially for X̂rot which from
(4.9), is a linear combination of components of X̂. On the other hand, ξ = 0 is a
regular singular point of (4.20) whose indicial equation

r(r − 1) + 3r = 0, (4.21)

has r1 = 0, r2 = −2 as its two roots that differ by an integer. As a result, by using the
Frobenius-Fuch theorem, we obtain

X̂r1(ξ) =
∞∑

n=0
anξ

2n, for r = r1,

X̂r2(ξ) = cX̂r1(ξ) ln |ξ| + |ξ|−2
∞∑

n=0
bnξ

2n, for r = r2,

(4.22)

for some constant c and the coefficients an, bn which can be determined through
recursive relations. Note that X̂r1(ξ) is even and analytic, whereas X̂r2(ξ) is even and
behaves close to the origin as d2

dξ2 ln |ξ|. Therefore, following the discussion in [36], at
the origin the odd solution has to be like δ′. For the proof of Theorem 6, we will be
considering only the analytic solution, i.e., X̂r1(ξ).

Thus, by transforming the problem into the Fourier space, proving Theorem 6 is
equivalent to arriving at an expression for X̂rot(0) since

√
2πX̂rot(0) =

∫ ∞

−∞
Xrot(s) ds. (4.23)

In this regard, we introduce Ŵ (ξ2) = ξ2X̂(ξ), and with η = ξ2 > 0, Ŵ (η) = ηX̂(√η).
Also note that, ξ2δ′(ξ) = 0 and ξ2 d2

dξ2 ln |ξ| = −1, as a result, Ŵ (ξ) exists at ξ = 0 and
is bounded around it. As a next step, we look for the equation that Ŵ (ξ) satisfies, and



4.3 Analytical computation of cl using one-corner problem 135

in this regard, we differentiate Ŵ (η) and write

Ŵ ′(η) =
√
η

2 X̂ ′(√η) + 1
η
Ŵ (η),

Ŵ ′′(η) = 1
4X̂

′′(√η) + 1
2η

(
Ŵ ′(η) − 1

η
Ŵ (η)

)
+ 1
η
Ŵ ′(η) − 1

η2 Ŵ (η),

substituting X̂ ′, X̂ ′′ from above in (4.20), gives

Ŵ ′′(η) +
(

1 + c2
0
η

)
Ŵ (η) = 0. (4.24)

Observe that η = 0 is a regular singular point for the above equation and the corre-
sponding indicial equation r(r − 1) = 0 has r1 = 1 and r2 = 0 as its roots. Thus, by
using Frobenious-Fuch theorem as before, we write

Ŵr1(η) =
∞∑

n=0
dnη

n+1, for r = r1,

Ŵr2(η) = cŴr1(η) ln |η| +
∞∑

n=0
enη

n, for r = r2,

(4.25)

where the coefficients dn and en can be determined through recursive relations. It is
important to mention that (4.24) is a special case of a well-known equation called
Coulomb wave equation (see [48, Section 33.2(i)]) and its solution Ŵ (η) is known as
Coulomb wave function.

Furthermore, when r = 0 in (4.21), the corresponding solution (omitting the
subscript) X̂(ξ) is analytic and X̂(0) is finite. Consequently, Ŵ (η) = ηX̂(√η) is
analytic for η ≥ 0 and Ŵ (0) = 0. Also,

X̂(0) = lim
ξ→0

X̂(ξ) = lim
ξ→0

Ŵ (ξ2)
ξ2 = lim

ξ→0

2ξŴ ′(ξ2)
2ξ = Ŵ ′(0). (4.26)

With this, we state our first result

Lemma 1. (a) Given Ŵ (0) = 0, if Ŵ (η) is a solution of (4.24), then it is analytic
for η ≥ 0. Moreover, |Ŵ (η)| and |Ŵ ′(η)| are bounded for η ∈ [0,∞).

(b) Given Ŵ (0) ̸= 0, if Ŵ (η) is a solution of (4.24), then |Ŵ (η)| is bounded for
η ∈ [0,∞], whereas |Ŵ ′(η)| is bounded for η ∈ [ϵ,∞) for all ϵ > 0. Furthermore,
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for η small and positive,

Ŵ ′(η) = −c2
0Ŵ (0) ln(η) + O(1).

Proof. Following the above discussion, when Ŵ (0) = 0, Ŵ (η) is analytic, and the
remaining claim can be proved by defining the energy

E(η) = (Ŵ ′)2(η) +
(

1 + c2
0
η

)
Ŵ 2(η), ∀η > 0.

Its derivative

E ′(η) = 2Ŵ ′(η)
(
Ŵ ′′ +

(
1 + c2

0
η

)
Ŵ (η)

)
− c2

0
η2 Ŵ

2(η)

= − c2
0
η2 Ŵ

2(η) ≤ 0,

which implies that E(η) is a decreasing function for all η > 0, and

0 < E(η) ≤ E(η0), ∀η ≥ η0 > 0,

where

lim
η0→0+

E(η0) = (Ŵ ′)2(0) + Ŵ 2(0) + lim
η0→0+

c2
0
η
Ŵ 2(η)

= (Ŵ ′)2(0) + lim
η0→0+

2c2
0Ŵ (η0)Ŵ ′(η0) = (Ŵ ′)2(0).

Thus, |E(η)| ≤ (Ŵ ′)2(0) for all η ≥ 0, as a result, |Ŵ (η)| and |Ŵ ′(η)| are bounded in
[0,∞).

On the other hand, when Ŵ (0) ̸= 0, the analytic solution Ŵ (η) remains bounded
for the interval [0,∞), but as η → 0, E(η) → ∞, so, Ŵ ′(η) is not bounded at η = 0.
However, its behavior near the origin can be deduced by looking at the case r = −2 in
(4.25). Also, by writing

Ŵ ′(η) = Ŵ ′(1) −
∫ 1

η
Ŵ ′′(η̃)dη̃

= Ŵ ′(1) +
∫ 1

η

(
1 + c2

0
η̃

)
Ŵ (η̃)dη̃
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and using the fact that Ŵ (η) is bounded around zero, i.e., Ŵ (η) = Ŵ (0)+O(1), η → 0,
the result follows.

Let us mention that from now on we will be dealing with the case when Ŵ is
analytic, i.e., when Ŵ (0) = 0. In the following lines, we present few more results which
compose the proof of Theorem 6. In short, they are the following:

(i) equation for W when Ŵ (0) = 0,

(ii) expression for Ŵ ′(0) in terms of W (0),

(iii) asymptotics for Ŵ (η), η ≫ 1,

(iv) asymptotics of Ŵ (η) in terms of W (0),

(v) equation for (−n + ib)∧ and the conclusion.

Equation for W when Ŵ (0) = 0

Given that
Ŵ (η) = 1√

2π

∫ ∞

−∞
W (t)e−itη, η ≥ 0, (4.27)

solves (4.24), we want to look for the equation which W (t), a tempered distribution,
satisfies. In this regard, we consider (4.24) and compute

[
ηŴ ′′ + (η + c2

0)Ŵ
]∨

= 0.

Next, by using the following properties of inverse Fourier transform:

[
(iξ)nŴ (ξ)

]∨
= dnW (t)

dtn
,

[
in
dnŴ (ξ)
dξn

]∨

= tnW (t),

and substituting in the above equation, we obtain

(1 − t2)W ′(t) − (2t− ic2
0)W (t) = 0. (4.28)

Another simple computation gives

W (t) = W (0)
1 − t2

∣∣∣∣ t+ 1
t− 1

∣∣∣∣−ic2
0/2
, (4.29)
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which solves (4.28) and is regular for all t ̸= ±1. Furthermore, we express W (t) =
W (0)f+(t)f−(t) where

f+(t) = |1 + t|−ic2
0/2

1 + t
, f−(t) = |1 − t|ic

2
0/2

1 − t
,

satisfy (1 + t)f ′
+(t) = −f+(t)(ic2

0/2 + 1),
(1 − t)f ′

−(t) = −f−(t)(ic2
0/2 − 1),

respectively. Note that f+(t) is regular for all t ≥ 0 and f−(t) is regular for all t ≤ 0,
and f±(0) = 1.

Lemma 2. Assume that W (t) is given as in (4.29), then,
∫ ∞

0
W (t)dt = 0,

∫ 0

−∞
W (t)dt = 0,

and, hence, Ŵ (0) = 0.

Proof. Let us define

W+(t) =

0, t < 0,
W (t), t ≥ 0,

(4.30)

and W−(t) = W (t) −W+(t), thus, Ŵ (η) = Ŵ+(t) + Ŵ−(t). So, at η = 0, we have

Ŵ−(0) = 1√
2π

∫ 0

−∞

Y (0)
1 − t2

∣∣∣∣1 − t

1 + t

∣∣∣∣ic2
0/2
dt = W (0)√

2π

∫ 0

−∞
(1 + t)−ic2

0/2−1f−(t)dt,

and integration by parts yields

Ŵ−(0) = 2W (0)
ic2

0
√

2π

[∫ 0

−∞
f ′

−(t) |1 + t|−ic2
0/2 dt− 1

]
, (4.31)

similarly,
Ŵ+(0) = 2W (0)

ic2
0
√

2π

[∫ ∞

0
f ′

+(t) |1 − t|ic
2
0/2 dt+ 1

]
, (4.32)
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where the last two integrals are absolutely convergent. Hence, rewriting Ŵ−(0) as

Ŵ−(0) = 2W (0)
ic2

0
√

2π
lim
ϵ→0

[(∫ −1−2ϵ/(1−ϵ)

−∞
+
∫ 0

−1+2ϵ/(1+ϵ)

)
f ′

−|1 + t|−ic2
0/2dt− 1

]

= 2W (0)
ic2

0
√

2π
lim
ϵ→0

[
∆ϵ + ic2

0
2

(∫ −1−2ϵ/(1−ϵ)

−∞
+
∫ 0

−1+2ϵ/(1+ϵ)

)
f+(t)f−(t)dt

]
,

where ∆ϵ =
∣∣∣ 2ϵ

1−ϵ

∣∣∣−ic2
0/2 |2+2ϵ/(1−ϵ)|ic2

0/2

2+2ϵ/(1−ϵ) −
∣∣∣ 2ϵ

1+ϵ

∣∣∣−ic2
0/2 |2−2ϵ/(1+ϵ)|ic2

0/2

2−2ϵ/(1+ϵ) tends to zero as ϵ → 0,
and thus, we obtain

Ŵ−(0) = 1√
2π

lim
ϵ→0

[(∫ −1−2ϵ/(1−ϵ)

−∞
+
∫ 0

−1+2ϵ/(1+ϵ)

)
W (t)dt

]
.

Next, we perform change of variables

u = 1 − t

1 + t
, t = 1 − u

1 + u
, dt = − 2du

(1 + u)2 ,

so that
W (t(u)) = 1

4uW (0)(1 + u)2|u|ic2
0/2.

Consequently,

Ŵ−(0) = −W (0)√
2π

lim
ϵ→0

[(∫ −1/ϵ

−1
+
∫ 1

1/ϵ

)
|u|ic2

0/2

2u du

]
= 0.

By following the same steps, one can show that Ŵ+ = 0, and we conclude that
Ŵ (0) = 0.

Expression for Ŵ ′(0) in terms of W (0)

From (4.26), we can write

Ŵ ′(0) = lim
η→0

Ŵ ′(η) = lim
η→0

−i√
2π

∫ ∞

−∞
tW (t)e−itηdt

= lim
η→0

iW (0)√
2π

∫ ∞

−∞

t

t2 − 1

∣∣∣∣ t+ 1
t− 1

∣∣∣∣−ic2
0/2
e−itηdt = W (0)√

2π
lim
η→0

J(η),
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with J(η) = i
∫∞

−∞
t

t2−1

∣∣∣ t+1
t−1

∣∣∣−ic2
0/2
e−itηdt, η > 0. By rewriting

J(η) = ieiη

2

∫ ∞

−∞

1
t

∣∣∣∣ t

t− 2

∣∣∣∣−ic2
0/2
e−itηdt+ ie−iη

2

∫ ∞

−∞

1
t

∣∣∣∣t+ 2
t

∣∣∣∣−ic2
0/2
e−itηdt

= ieiη

2

∫ ∞

−∞

1
t

[
(cos(tη) − i sin(tη))

(∣∣∣∣ t

t− 2

∣∣∣∣−ic2
0/2

+
∣∣∣∣t+ 2
t

∣∣∣∣−ic2
0/2)]

dt

= ieiη

2 (J1(η) − iJ2(η)) , (4.33)

where 
J1(η) =

∫ ∞

−∞

1
t

cos(tη)
(∣∣∣∣ t

t− 2

∣∣∣∣−ic2
0/2

+
∣∣∣∣t+ 2
t

∣∣∣∣−ic2
0/2)

dt,

J2(η) =
∫ ∞

−∞

1
t

sin(tη)
(∣∣∣∣ t

t− 2

∣∣∣∣−ic2
0/2

+
∣∣∣∣t+ 2
t

∣∣∣∣−ic2
0/2)

dt.

Moreover, by following the same steps of Lemma 3.6 and 3.7 in [23], we get


lim
η→0

J1(η) = −i2π tan(c2
0π/4),

lim
η→0

J2(η) = 2π.

Consequently, from (4.33)

lim
η→0

J(η) = i

2

[
−i2π tanh

(
πc2

0
4

)
− i2π

]
= π

(
1 + tanh

(
πc2

0
4

))
,

and thus,

Ŵ ′(0) = W (0)
√
π

2

(
1 + tanh

(
πc2

0
4

))
= W (0)

√
2π

1 + e−πc2
0/2 . (4.34)

Asymptotics for Ŵ (η), η ≫ 1

Since the coefficients appearing in (4.24) are scalars, we can write Ŵ (η) using its real
and imaginary part as

Ŵ (η) = ℜ(Ŵ (η)) + iℑ(Ŵ (η)).

Naturally, both ℜ(Ŵ )(η) and ℑ(Ŵ (η)) solve (4.24). Next, we define

F (η) = ℜ(Ŵ (η)) + iℜ(Ŵ ′(η)),
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so that

F ′(η) = ℜ(Ŵ ′(η)) + iℜ(Ŵ ′′(η)) = ℜ(Ŵ ′(η)) + i

[
−
(

1 + c2
0
η

)
ℜ(Ŵ (η))

]

= −i[ℜ(Ŵ (η)) + iℜ(Ŵ ′(η))] − i
c2

0
η

ℜ(Ŵ (η))

= −iF (η) − i
c2

0
2η (F (η) + F̄ (η)) = −iF (η)

(
1 + c2

0
η

)
− i

c2
0

2η F̄ (η),

i.e.,

F ′(η) + iF (η)
(

1 + c2
0
η

)
= −i c

2
0

2η F̄ (η). (4.35)

With the integration factor eiφ(η), with φ(η) = η − c2
0
2 ln |η|, we can write

(
F (η)eiφ(η)

)′
= −ic2

0
2η F̄ (η)eiφ(η) =⇒ G′(η) = −ic2

0
2η e

2iφ(η)Ḡ(η),

for G(η) = eiφ(η)F (η). And by writing G(η) = F∞ + g(η), we obtain the equation for
g(η):

g′(η) = −ic2
0

2η e
2iφ(η)(F̄∞ + ḡ(η))

= −ic2
0

2η e
2iφ(η)F̄∞ − ic2

0
2η e

2iφ(η)ḡ(η).

Next, by integrating the last equation from [η, η̃] and following the same steps as in
[23, Section 3.2.1] and passing the limit in η̃, we obtain

F (η) = F∞e−iφ(η) − c2
0

4η F̄
∞eiφ(η) + ic4

0
8η F

∞e−iφ(η) + O
(

1
η2

)
. (4.36)

Differentiating the last expression and using (4.35) yields

(F (η) − F∞e−iφ(η))′ = −ic2
0

4η F̄
∞eiφ(η) + c4

0
8ηF

∞e−iφ(η) + O
(

1
η2

)
. (4.37)

From (4.36), we also obtain F∞ = limη→∞ F (η)eiφ(η) where F (η) consists of the real
parts of Ŵ and Ŵ ′. Furthermore, the aforementioned procedure also holds true for F (η)
defined using the corresponding imaginary parts, i.e., F (η) = ℑ(Ŵ (η)) + iℑ(Ŵ ′(η)).
Thus, combining both parts, the result is valid for F (η) = Ŵ (η) + iŴ ′(η) with
F∞ = limη→∞[eiφ(η)(Ŵ (η) + iŴ ′(η))].
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Lemma 3. Let F (η) = Ŵ (η) + iŴ ′(η) be even, with Ŵ (0) = 0. Then, for |s| ≫ 1,

1√
2π

∫ ∞

−∞
F (ξ2)eisξdξ = 1√

2π

∫ ∞

−∞
F∞ei(sξ−c2

0 ln |ξ|−ξ2)dξ + O
(

1
|s|

)
.

The proof follows using the same steps as in [23, Lemma 3.4].

Asymptotics of Ŵ (η) in terms of W (0)

In order to compute the asymptotics of Ŵ (η), we consider (4.27) and divide the integral
over different intervals while bearing in mind that Ŵ (t) is regular for t2 ̸= 1. In this
regard, let us define the test function ϕ such that supp(ϕ) = {t : |t2 − 1| ≤ 1/2} and
ϕ(t) = 1 when |t2 − 1| < 1/4. Thus, we express

Ŵ (η) = 1√
2π

∫ ∞

−∞
ϕ(t)W (t)e−itηdη + 1√

2π

∫ ∞

−∞
(1 − ϕ(t))W (t)e−itηdη

= Ŵ11(η) + Ŵ12(η),

where Ŵ12(η) corresponds to the integral over the region |t2 − 1| > 1/4. Next, by
defining the differential operator D as Df(t) = (iη)−1(df/dt) with Dt as its transpose
Dtf(t) = −(d/dt)(f/iη), then DN(eiηt) = eiηt,∀N , we write

Ŵ12(η) = Ŵ (0)√
2π

∫ ∞

−∞
(1 − ϕ(t)) 1

1 − t2
e−i

c2
0
2 ln| t+1

t−1 |D(e−itη)dt

= −Ŵ (0)√
2π

1
iη

∫ ∞

−∞

(
(1 − ϕ(t)) 1

1 − t2
e−i

c2
0
2 ln| t+1

t−1 |
)′

e−itηdt.

Expanding the integrand and using |t2 − 1| > 1/4, yields

|Ŵ12(η)| ≤ c

η
,

for some constant c, and with this we have Ŵ12(η) = O(1/η), when η ≫ 1. On the
other hand, Ŵ11(η) can be further simplified by dividing the integral as

Ŵ11(η) = 1√
2π

(∫
|t−1|<1

+
∫

|t+1|<1
+
∫

|t|>2

)
ϕ(t)W (t)e−itηdt

= S1(η) + S2(η) + 0.
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Using W (t) from (4.29), followed by a change of variable, for η ≫ 1, we write the
asymptotics of S1(η) as

S1(η) = −W (0)
2
√

2π
e−iη−i(c2

0/2) ln |2η|
∫ ∞

−∞

|t|ic2
0/2

t
e−itdt+ O

(
1
η

)
,

and similarly,

S2(η) = W (0)
2
√

2π
eiη+i(c2

0/2) ln |2η|
∫ ∞

−∞

|t|−ic2
0/2

t
e−itdt+ O

(
1
η

)
.

Moreover, by using the fact that W (0) is real, we have S2(η) = −S̄1(η). As a result,

Ŵ11(η) = S1(η) − S̄2(η) = 2ℑ(S1)(η)

= −W (0)√
2π

ℑ
(
e−iη−i(c2

0/2) ln |2η|
∫ ∞

−∞

|t|ic2
0/2

t
e−itdt

)
+ O

(
1
η

)
.

Next, consider the integral in the above expression

ς =
∫ ∞

−∞

|t|ic2
0/2

t
e−itdt = −2i

∫ ∞

0

|t|ic2
0/2

t
sin tdt = 2 sinh(πc2

0/4)Γ(ic2
0/2),

where the last equality can be obtained by solving the integral using Mathematica®.
We write ς = |ς|ei arg(ς), where |ς| = (2/c0)

√
π tanh(πc2

0/4) can be computed using
|Γ(iy)|2 = π/(y sinh(πy)), y ∈ R. With this,

Ŵ (η) = −W (0)
√

2
c0

tanh1/2
(
πc2

0
4

)
ℑ
(
e−iη−i(c2

0/2) ln |2η|+i arg(ς)
)

+ O
(

1
η

)
,

and

lim sup
η→∞

Ŵ (η) = |W (0)|
√

2
c0

tanh1/2
(
πc2

0
4

)
= |W (0)|

c0

(
2(1 − e−πc2

0/2)
1 + e−πc2

0/2

)1/2

. (4.38)

Equation for (−n + ib)∧(ξ) and the conclusion

We compute the expression for n(ξ) and b(ξ) by using the Frenet–Serret formulas:

T′ = c0n(s) =⇒ iξT̂(ξ) = c0n̂(ξ),
i.e., − ξ2X̂(ξ) = −Ŵ(ξ2) = −Ŵ(η) = c0n̂(ξ) =⇒ Ŵ(η) = −c0n̂(ξ),
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similarly,

c0b′ = −c0(s/2)n = −(s/2)X′′

=⇒ ic0ξb̂(ξ) = − i

2
d

dξ
(−ξ2X̂(ξ)) = i

2
d

dξ
Ŵ(ξ2) = iξŴ′(ξ2) =⇒ Ŵ′(η) = c0b̂(ξ).

Thus, we have
c0(−n + ib)∧(ξ) = Ŵ(η) + iŴ′(η).

Using e0 in (4.4), and Xrot = e0 · X, we have

Ŵrot(η) = Ŵrot(ξ2) = ξ2X̂rot(ξ2) = ξ2(e0 · X) = −e0 · c0n̂(ξ),

and since e0 is a constant vector, Ŵrot(η) satisfies (4.24) and

Ŵrot(0) = −e0 · c0n̂(0) = −e0 ·
(

1√
2π

∫ ∞

−∞
c0n(s)ds

)

= −e0 ·
(

1√
2π

(T(∞) − T(−∞))
)

= 1√
2π

e0 · (0, 2A2, 2A3) = 0,

as a result, from the part (i) of Lemma 1, Ŵ ′
rot(0) exists and is finite. Next, we write

Frot(η) = Ŵrot(η) + iŴ ′
rot(η) = c0e0 · (−n̂ + ib̂)(ξ),

and note that e0 · T is odd, whereas e0 · n and e0 · b are even, so, by using Lemma 3
for Frot(η), we get

c0e0 · (−n + ib)(s) = 1√
2π

∫ ∞

−∞
Frot(ξ2)eisξdξ

= 1√
2π
F∞

rot

∫ ∞

−∞
ei(sξ−c2

0 ln |ξ|−ξ2)dξ + O
(

1
|s|

)
, |s| ≫ 1.

Consider the integral on the right hand side of the above equality as
∫ ∞

−∞
ei(sξ−c2

0 ln |ξ|−ξ2)dξ = 1√
2π
eis2/4

∫ ∞

−∞
e−i(ξ−s/2)2

e−ic2
0 ln |ξ|dξ

= 1√
2π
eis2/4e−ic2

0 ln |s/2|
∫ ∞

−∞
eiξ2

dξ + O
(

1
|s|

)

= 1√
2π
eis2/4e−ic2

0 ln |s/2|
√
iπ + O

(
1
|s|

)
,
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where the second equality follows from [7, Lemma 2.1]. With this, we obtain

c0e0 · (−n + ib)(s) =
√
i/2|F∞

rot|eis2/4−ic2
0 ln |s/2|+i arg(F ∞

rot) + O
(

1
|s|

)
, |s| ≫ 1, (4.39)

and
lim

s→∞
c0e0 · (−n + ib)(s) = c0e0 · (−n + ib)(∞).

Next,

|c0e0 · (−n + ib)(∞)|2 = c2
0(e0 · n(∞))2 + (e0 · b(∞))2,

and note that

e0 · T(∞) =
0,− A3√

A2
2 + A2

3

,
A2√

A2
2 + A2

3

 · (A1, A2, A3) = 0,

which implies that the unit space-like vectors e0,n,b satisfy

e0 · n = 1, e0 · b = 0;

consequently,
|c0e0 · (−n + ib)(∞)|2 = c2

0.

Thus, from the above expression and (4.39), we have

|F∞
rot| =

√
2c0,

and since F∞
rot = lim

η→∞
eiφ(η)(Ŵrot + iŴ ′

rot)(η),

lim sup
η→∞

Ŵrot(η) =
√

2c0,

which by using (4.38) gives

|Wrot(0)| = c2
0

(
1 + e−πc2

0/2

1 − e−πc2
0/2

)1/2

.
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Recall that our main objective is to compute Ŵ ′
rot(0) which from (4.34) and above

expression is given by

Ŵ ′
rot(0) = Wrot(0)

√
2π

1 + e−πc2
0/2 = c2

0

( 2π
1 − e−πc2

0

)1/2
.

Thus, from (4.23) and (4.26), we conclude

∫ ∞

−∞
Xrot(s) ds =

√
2πX̂rot(0) =

√
2πŴ ′

rot(0) = 2πc2
0√

1 − e−πc2
0

.

4.4 Numerical computation of ∫∞
−∞Xrot(s)ds

In this section, we compute the integral
∫∞

−∞ Xrot(s)ds numerically and verify the
expression given in (4.13). The main idea is to solve the following initial value problem
at t = 1 using the approach in [23]:

X′′′(s) +
(

s2

4 − c2
0

)
X′(s) − s

4X(s) = 0
X(0) = 2c0(0, 0, 1)T ,

X′(0) = (0, 0, 1)T ,

X′′(0) = c0(0, 1, 0)T .

Then, from (4.11), Xrot ≡ X3,rot satisfies


X ′′′
rot(s) +

(
s2

4 − c2
0

)
X ′

rot(s) − s
4Xrot(s) = 0

Xrot(0) = 2c0A2/
√
A2

2 + A2
3,

X ′
rot(0) = 0,

X ′′
rot(0) = −c0A3/

√
A2

2 + A2
3.

(4.40)

Moreover, by taking X̃rot(s) = Xrot(−s), we note that

−Xrot(−s)′′′ +
(

(−s)2

4 − c2
0

)
(−X ′

rot(−s)) − (−s)
4 Xrot(−s)

= X̃rot(s)′′′ +
(
s2

4 − c2
0

)
X̃ ′

rot(s) − s

4X̃rot(s) = 0,
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−∞ Xrot(s)ds 147

i.e., X̃rot(s) is also a solution of (4.40). Since X̃rot(0) = Xrot(0), X̃ ′
rot(0) = X ′

rot(0),
X̃ ′′

rot(0) = X ′′
rot(0), hence, Xrot(s) is an even function. As a result,∫ ∞

−∞
Xrot(s)ds = 2

∫ ∞

0
Xrot(s)ds = 2 lim

s→∞

∫ s

0
Xrot(s̃)ds̃ = 2 lim

s→∞
Irot(s),

which solves 
I

(4)
rot(s) + (s2/4 − c2

0) I ′′
rot(s) − (s/4)I ′

rot(s) = 0
Irot(0) = 0, I ′

rot(0) = 2c0A2/
√
A2

2 + A2
3,

I ′′
rot(0) = 0, I ′′′

rot(0) = −c0A3/
√
A2

2 + A2
3.

(4.41)

Thus, the problem reduces to computing Irot(s) and in order to do it numerically, we
introduce

I1(s) = Irot(s), I2(s) = I ′
rot(s) = I ′

1(s),
I3(s) = I ′′

rot(s) = I ′
2(s), I4(s) = I ′′′

rot(s) = I ′
3(s),

and rewrite (4.41) as


I1(s)
I2(s)
I3(s)
I4(s)



′

=


0 1 0 0
0 0 1 0
0 0 0 1
0 s

4 −
(
c2

0 + s2

4

)
0




I1(s)
I2(s)
I3(s)
I4(s)

 =


I2(s)
I3(s)
I4(s)

s
4I2(s) −

(
c2

0 + s2

4

)
I3(s)

 , (4.42)

with initial conditionsI1(0) = 0, I2(0) = 2c0A2/
√
A2

2 + A2
3,

I3(0) = 0, I4(0) = −c0A3/
√
A2

2 + A2
3.

(4.43)

We solve (4.42)-(4.43) numerically by using a fourth-order Runge–Kutta method by
taking s ∈ [0, L/2], where the interval has been discretized into N + 1 equally spaced
nodes sn = n∆s, ∆s = (L/2)/N , n = 0, 1, 2, . . . , N . For our numerical simulations, we
have taken L = 2000, N = 106 and c0 = 0.1680125318446675 corresponding to l = 0.6.
The left side of Figure (4.5) shows the semilogarithmic plot of the approximation of
Irot(s) which as s gets larger converges to a value that can be given in a closed form
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by the expression in Theorem 6:

lim
s→∞

Irot(s) = 1
2

∫ ∞

−∞
Xrot(s)ds = πc2

0√
1 − e−πc2

0

.

The algebraic value of the integral for given c0 is 0.3044205299096596, and using that
we compute the error for the numerical solution. On the right-hand side of Figure 4.5,
we have plotted it on a logarithmic scale which clearly decreases as s grows. Moreover,
the above mentioned behavior remains consistent for different values of c0, i.e., l as
well, which gives a numerical proof of the Theorem 6.
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Figure 4.5 Left: Semilogarithmic plot for Irot(s) for smax = 1000, c0 =
0.1680125318446675. Right: Logarithmic plot of error |Irot(s) − πc2

0/
√

1 − e−πc2
0|

4.5 Expression for A± = (A1,±A2,±A3)T

For the one-corner problem in the Euclidean case, a precise expression for each of the
components of tangent vector A+ = (A1, A2, A3)T was given in [36], and later using a
similar approach, an expression for A1 was obtained in the hyperbolic case [21]. In the
following lines, we re-derive A1 by means of the Laplace transform using a completely
different approach, and continuing the computations in [21], we calculate A2 and A3

whose knowledge was found to be extremely useful in Section 4.2.
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4.5.1 Computation of A1 using the Laplace transform

Unlike the last section, where we used the analytic (even) solution of (4.20) to compute
the speed of center for mass, we consider the odd solution which behaves like δ′ near
the origin and can be expressed as

χ̂(ξ) = b0δ
′ + b1 sgn(ξ) + b2 sgn(ξ)ξ + . . . .

Differentiating it gives

χ̂′(ξ) = b0δ
′′ + (2b1 + 2b2ξ)δ + b2 sgn(ξ) + . . . ,

χ̂′′(ξ) = b0δ
′′′ + (2b1 + 2b2ξ)δ′ + 4b2δ + . . . ,

and substituting above terms in (4.20) yields the first few coefficients such as

b0 = 1, b1 = −c2
0, b2 = −c4

0/(1 − 4c2
0).

If we write the first component of X̂(ξ) as X̂1(ξ) = −iA1χ̂(ξ), and define

Ŵ1(η) = Ŵ1(ξ2) = ξ2X̂1(ξ), η > 0,

which solves

Ŵ ′′ + Ŵ

(
1 + c2

0
η

)
= 0 ⇔ ηŴ ′′ + ηŴ + c2

0Ŵ = 0,

then,

Ŵ1(0) = 0, Ŵ ′
1(0) = lim

η→0

Ŵ1(η)
η

= iA1c
2
0. (4.44)

Next, let’s define the Laplace transform of Ŵ1(η) as

L(t) = L{Ŵ1(η)} =
∫ ∞

0
Ŵ1(η)e−tηdη, t > 0, (4.45)

and consider
L
{
ηŴ ′′ + ηŴ + c2

0Ŵ
}

= 0. (4.46)

By using the following properties of the Laplace transform:

L{Ŵm(η)} = tmL{Ŵ (η)} − tm−1Ŵ (0) − tm−2Ŵ ′(0) − · · ·
− tŴm−2(0) − Ŵm−1(0),
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L{ηmŴ (η)} = (−1)m dm

dtm
L{Ŵ (η)}, m = 1, 2, . . . ,

(4.46) becomes

−[t2L(t) − tL(0) − L′(0)]′ − L′(t) + c2
0L(t) = 0

=⇒ t2L′(t) + 2tL(t) + L′(t) − c2
0L(t) = 0. (4.47)

Moreover,

L(0) =
∫ ∞

0
Ŵ1(η)dη = 2

∫ ∞

0
ξŴ1(ξ2)dξ = 2

∫ ∞

0
ξ3X̂1(ξ)dξ =

∫ ∞

−∞
ξ3X̂1(ξ)dξ,

where in the last equality we have used the fact that X̂1 is odd. Using the differentiation
property of the Fourier transform, we obtain

L(0) = iX ′′′
1 (s)|s=0 = ic0T

′
1(0) = ic2

0. (4.48)

Consider again (4.45) and write

L(t) =
∫ ∞

0
Ŵ1(η)e−tηdη = 1

t

∫ ∞

0
Ŵ ′

1(η)e−tηdη = Ŵ ′
1(0)
t2

+ 1
t2

∫ ∞

0
Ŵ ′′

1 (η)e−tηdη,

i.e.,
t2L(t) = Ŵ ′

1(0) +
∫ ∞

0
Ŵ ′′

1 e
−tηdη,

which as t → ∞ becomes
lim
t→∞

t2L(t) = Ŵ ′(0). (4.49)

Hence, from (4.47)-(4.48), we have the following initial value problem:L′(t) + 2t
1+t2 L(t) − c2

0
1+t2 L(t) = 0,

L(0) = ic2
0,

(4.50)

and after solving it, we get

L(t) = L(0)
1 + t2

ec2
0 arctan(t),

which in turn gives

lim
t→∞

t2L(t) = lim
t→∞

L(0)t2
1 + t2

ec2
0 arctan(t) = ic2

0e
πc2

0/2.
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Thus, from (4.44), (4.49) and the last equation, we conclude

ic2
0A1 = Ŵ ′(0) = ic2

0e
c2

0π/2 =⇒ A1 = eπc2
0/2.

The above approach works for the Euclidean case as well, hence, following the same
steps, one can arrive at the corresponding expression for A1.

4.5.2 Computation of A2 and A3

Writing the time-like tangent vector T, space-like normal and binormal vector n, b
componentwise, T ≡ (Tj), n ≡ (nj), b ≡ (bj), we have

|nj|2 + |bj|2 − |Tj|2 =

−1 if j = 1,
1, if j = 2, 3,

with initial conditions

T(0) = (1, 0, 0)T , n(0) = (0, 1, 0)T , b(0) = (0, 0, 1)T .

On the other hand, from [21, Theorem 1]

Aj = lim
s→∞

Tj(s), j = 1, 2, 3

and from [21, (51)]
Tj(s) = i(1 + θjϑ̄j)(s), j = 2, 3, (4.51)

where θj and ϑj satisfy

θ′′

j + i(s/2)θ′
j − (c2

0/4)θj = 0
ϑ′′

j + i(s/2)ϑ′
j − (c2

0/4)ϑj = 0
θ′

jϑ̄
′
j − (c2

0/4)θjϑ̄j = Ej,

(4.52)

and can be represented asθj(s) = (a1,jβ1(s) + a2,jβ2(s)),
ϑj(s) = (b1,jβ1(s) + b2,jβ2(s)).

(4.53)
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Moreover, Ej can be chosen as c2
0/2 and β1(s), β2(s) are as in [21, (55)]. With this,

our first goal is to compute a1,j, a2,j, b1,j, b2,j.

In this regard, differentiating (4.53) givesθ
′
j(s) = (a1,jβ

′
1(s) + a2,jβ

′
2(s)),

ϑ′
j(s) = (b1,jβ

′
1(s) + b2,jβ

′
2(s)),

(4.54)

and for j = 2, 3, the asymptotics of θj(s) and ϑj(s) are given by
θj(s) = (a1,jγ1 + a2,jγ2)e−i

c2
0
2 log s + O(1/s), s → ∞,

ϑj(s) = (b1,jγ1 + b2,jγ2)e−i
c2
0
2 log s + O(1/s), s → ∞.

(4.55)

So, for j = 2, we write
E2 = θ′

2ϑ̄
′
2 − (c2

0/4)θ2ϑ̄2 = c2
0/2,

and
T2(0) = i(1 + θ2(0)ϑ̄2(0)) = 0, =⇒ θ2(0)ϑ̄2(0) = −1,

as a result,
θ′

2(0)ϑ̄2(0) = c2
0/4. (4.56)

Also, recall that from [21, (52)-(53)]

nj = (i/c0)(θjϑ̄
′
j + θ′

jϑ̄j), bj = (1/c0)(θjϑ̄
′
j − θ′

jϑ̄j),

and
nj − ibj = (2i/c0)θjϑ̄

′
j, (4.57)

so for j = 2, 1 = (2i/c0)θ2(0)ϑ̄′(0). If we choose θ2(0) = 1, then by using (4.51),
(4.56),(4.57), we obtain θ

′
2(0) = ic0/2,
ϑ̄2(0) = −1, ϑ̄′

2(0) = −ic0/2.
(4.58)

Thus, by evaluating (4.53), (4.54) at s = 0, and using the fact that β1(0) = −β2(0),
β′

1(0) = β′
2(0), and (4.58), we get(a1,2 − a2,2)β1(0) = 1, (a1,2 + a2,2)β′

1(0) = ic0/2,
(b1,2 − b2,2)β1(0) = −1, (b1,2 + b2,2)β′

1(0) = ic0/2,
(4.59)



4.5 Expression for A± = (A1,±A2,±A3)T 153

which in turn gives 
a1,2 = ic0β1+2β′

1
4ββ′

1
, a2,2 = ic0β1−2β′

1
4ββ′

1
,

b1,2 = ic0β1−2β′
1

4ββ′
1

, b2,2 = ic0β1+2β′
1

4ββ′
1

,

(4.60)

where β1 = β1(0), β′
1 = β′

1(0). Similarly, for j = 3, by taking E3 = c2
0/2, θ3(0) = i and

after performing same steps as before
a1,3 = i

−c0β1+2β′
1

4ββ′
1

, a2,3 = −i c0β1+2β′
1

4ββ′
1
,

b1,3 = −i c0β1+2β′
1

4ββ′
1
, b2,3 = i

−c0β1+2β′
1

4ββ′
1

.

(4.61)

Remember that our aim is to compute Aj, which from (4.51) and (4.55) implies
computing

lim
s→∞

θj(s)ϑ̄j(s) = (a1,j(s)γ1 + a2,j(s)γ2)
(
b1,j(s)γ1 + b2,j(s)γ2

)
, j = 2, 3.

So, for j = 2, using (4.60), lim
s→∞

θ2(s)ϑ̄2(s)

= (a1,2γ1 + a2,2γ2)
(
b1,2γ1 + b2,2γ2

)
=
(
ic0

4β′
1
(γ1 + γ2) + 1

2β1
(γ1 − γ2)

)(
ic0

4β′
1
(γ1 + γ2) − 1

2β1
(γ1 − γ2)

)
,

(4.62)

where

γ1 = 2e−πc2
0/4Γ(1 + ic2

0/2), γ2 = −2eπc2
0/4Γ(1 + ic2

0/2),
β1 = 2e−πc2

0/8Γ(1 + ic2
0/4), β′

1 = −(c2
0/2)eiπ/4e−πc2

0/8Γ(1/2 + ic2
0/4).

Next, by taking
u = ic0

4β′
1
(γ1 + γ2), v = 1

2β1
(γ1 − γ2),

(4.62) becomes

lim
s→∞

θ2(s)ϑ̄2(s) = (u+ v)(ū− v̄) = |u|2 − |v|2 + vū− uv̄. (4.63)
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By using the following identities for y ∈ R:

|Γ(1 + iy)|2 = y2|Γ(iy)|2, |Γ(iy)|2 = π

y sinh πy ,

|Γ(1/2 + iy)|2 = π

cosh πy , Γ(1 + iy) = Γ(1 − iy),
(4.64)

we can compute

|γ1 − γ2|2 = 4|Γ(1 + ic2
0/2)|2(eπc2

0/4+e−πc2
0/4

)2

= 2πc2
0
(eπc2

0/4+e−πc2
0/4)2

sinh(πc2
0/2) = 4πc2

0
(1 + e−πc2

0/2)2

1 − e−πc2
0

,

and similarly,

|γ1 + γ2|2 = 4πc2
0
(1 − e−πc2

0/2)2

1 − e−πc2
0

, |β′
1|2 = πc2

0
4

e−πc2
0/4

cosh(πc2
0/4) , |β1|2 = πc2

0
e−πc2

0/4

sinh(πc2
0/4) ,

which gives

|u|2 = (1 − e−πc2
0/2)2 cosh(πc2

0/4)
e−πc2

0/4(1 − e−πc2
0)

, |v|2 = (1 + e−πc2
0/2)2 sinh(πc2

0/4)
e−πc2

0/4(1 − e−πc2
0)

.

On the other hand,

vū = (γ1 − γ2)
2β1

ic0

4β′
1
(γ1 + γ2),

where
(γ1 − γ2)(γ1 + γ2) = −4c2

0π,

can be easily computed by using the properties of Gamma function stated above, and

β1β̄
′
1 = −c2

0e
−πc2

0/4e−iπ/4Γ(1 + ic2
0/4)Γ(1/2 − ic2

0/4).

Thus, we have

vū = −iπc0

2
eπc2

0/4eiπ4

Γ(1 + ic2
0/4)Γ(1/2 − ic2

0/4) ,

and

vū− uv̄ = −iπc0e
πc2

0/4 ℜ{eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4)}
|Γ(1 − ic2

0/4)|2|Γ(1/2 − ic2
0/4)

= − 2i
πc0

eπc2
0/4 sinh(πc2

0/2)ℜ{eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4)}.
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Combining this and the expression for |u|2 and |v|2, from (4.63) we write

A2 = lim
s→∞

T2(s) = lim
s→∞

T2(s)(1 + θ2(s)ϑ̄2(s))

= 1 + |a|2 − |b|2 + bā− ab̄

= 2
πc0

eπc2
0/4 sinh(πc2

0/2)ℜ{eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4)},

and after performing similar steps for j = 3 and using (4.61), one can arrive at

A3 = 2
πc0

eπc2
0/4 sinh(πc2

0/2)ℑ{eiπ/4Γ(1 − ic2
0/4)Γ(1/2 + ic2

0/4)}.

4.6 Transfer of linear momentum

In case of a 3D fluid modeled by Euler equations and having a regular vorticity ω that
vanishes at infinity with an appropriate rate, the fluid impulse∫

R3
x ∧+ ω(x, t) dx,

remains conversed in time (see [46, p. 24]). For the motion of vortex filaments
under LIA, since the vorticity is assumed to be concentrated along the curve X, the
corresponding quantity is

M(t) =
∫ ∞

−∞
X(s, t) ∧+ T(s, t) ds,

which is called the linear momentum. The connection of this quantity with the fluid
impulse was shown in [52], and that it remains conserved for the closed regular curves,
was proved in [1].

Recently in [7, Appendix], for the self-similar solutions of VFE, the linear momentum
was obtained as

M(t) = |t|c0(A+ − A−) = 2c0|t|(0, A2, A3),

which decays as t decreases until it vanishes at the singularity formation time and
grows again after crossing t = 0; hence, it is not preserved. The reason for this can be
associated with the behavior of the filament at infinity. Later in [23], for the regular
planar M -sided closed polygons, it was found that M(t) remains conserved; however,
when it is computed only for one side of the M -polygon, a characteristic intermittent
behavior was observed.
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This motivates us to investigate the case of planar l-polygon in the Minkowski
space which are open. In this regard, we write the linear momentum for regular planar
l-polygon as

Ml(t) =
∫ ∞

−∞
ρl(s, t) ds, (4.65)

where ρl(s, t) = Xl(s, t) ∧− Tl(s, t). We compute this quantity numerically, and
for this, we consider an l-polygon Xl with M sides. Using Lemma 6.1 in [23] for
Xl, at any rational time tpq, Xl(s, tpq) ∧− Tl(s, tpq) is constant for s ∈ (sj, sj+1),
sj = −L/2 + jL/(Mq), j = 0, 1, . . . ,Mq − 1, L = Ml. Thus, (4.65) can be computed
exactly as

Ml(tpq) = l

q

Mq−1∑
j=0

Xl(sj, tpq) ∧− Tl(s+
j , tpq), (4.66)

which is valid for both q even and odd.

For our numerical simulations, we have taken M = 96, l = 0.1, N/M = 211, which
show that the first component of Ml(t) is identically equal to zero, whereas the shape
of second component reminds us of Figure 9 in [23] and third component resembles to
the real part of the Riemann’s function, i.e., ϕ(t) (see Figure 4.6).
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Figure 4.6 Left: Second component of M(t(n)), and right: Third component of M(t(n))-
M(t(0)) for M = 96, l = 0.1, N/M = 211 computed by considering only the inner
points as done in Chapter 3

As a next step, we observe the dependence of Ml(t) on the parameter l. Recall the
discussion on X(0, t) in Section 3.4.1, where for the same purpose, we worked with the
algebraic solution that was obtained up to a movement in the YZ-plane. In that case,
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we compute

∫ L/2

−L/2
Xalg(s, tpq) ∧− Talg(s, tpq) ds = l

q

Mq−1∑
j=0

Xalg(sj, tpq) ∧− Talg(s+
j , tpq).

In this regard, we have plotted the second and third components of M(t(n)) for
n = 0, 1, . . . , 9242, for M = 48, l = 0.1, which are both periodic in time. Furthermore,
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Figure 4.7 Left: Second component of M(t(n)), and right: third component of
M(t(n))-M(t(0)) for n = 0, 1, . . . , 2 · 4621, for M = 48, l = 0.1 and M3(t(0)) =
5.008337500992375 · 10−4.

note that in the previous sections we claimed that the l-polygon problem in the
Minkowski space can be seen as a superposition of several one-corner problems. Bearing
this in mind, we compute Ml(t) only for one side and observe the behavior of quantity

∫ l

0
ρl(s, t) ds,

which we compute by using the algebraic solution as

∫ l

0
Xalg(s, tpq) ∧− Talg(s, tpq) ds = l

q

q−1∑
j=0

Xalg(sj, tpq) ∧− Talg(s+
j , tpq). (4.67)

For the same choice of parameters mentioned above, we find that first component
of (4.67) is no more equal to zero, on the other hand, except for a scaling, the sec-
ond and third components do not change their shape when compared with their
counterparts in (4.66). Thus, an intermittent behavior is observed in all three com-
ponents. Observe that the first and second components are identically same up to
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a sign and scaling. To be precise, the scaling factor in the above-mentioned case is
20.016663875654110. As a next step, we have considered the l-polygon of fixed length
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Figure 4.8 First, second and third component of M(t(n)) computing using one side,
n = 0, 1, . . . , 2 · 4621, M = 48, l = 0.1. Observe that the first and second components
are identically same up to a sign and scaling. To be precise, the scaling factor in the
above mentioned case is −20.016663875654110.
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Figure 4.9 The first component of M(t(n)) computing using one side, n = 0, 1, . . . , 2 ·
4621, for different M and l values such that L = 4.8.

L, and different number of sides and angles between them. In particular, we have taken
L = 4.8, and M = 8, 10, 12, 14, 16, 18, 20, 22, 28, 48, i.e., l = 0.6, 0.48, 0.4, 0.3428 . . .,
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0.3, 0.2667 . . . , 0.24, 0.2182 . . . , 0.1714 . . . , 0.1, respectively, so that L = lM ; Figure 4.9
shows the first component of (4.67) for each of them. Note that except for a scaling,
the curves in Figure 4.9 can compared with the imaginary part of ϕ in (3.50).

4.7 Conclusion

In Chapter 3, it was observed that the planar l-polygon propagates in the vertical
direction with a constant speed cl. In this chapter, by establishing a relationship
between the l-polygon and one-corner problems, we have given an exact expression for
cl. The components of the tangent vector at time zero for the one-corner problem have
been determined, as a result, a precise mathematical expression is provided for each of
them. Moreover, we have also examined the behavior of the linear momentum for the
planar l-polygon which displays an intermittent behavior.





Chapter 5

Conclusions and Future work

5.1 Conclusions

The main protagonist of this memoir has been the vortex filament equation (VFE), a
subject in fluid literature that has gained a substantial attention recently. The equation
is also known as the binormal flow or localized induction approximation (LIA) and it
describes the time evolution of a vortex filament curve. In this thesis, we have studied
the evolution of regular polygonal curves according to VFE. Recent work on regular
planar M -sided polygons as an initial data shows that the numerical evolution captures
certain properties of the real fluid, for instance, the axis-switching phenomenon. On the
other hand, due to its relationship with the so-called Schrödinger map and nonlinear
Schrödinger (NLS) equation, we have a piecewise continuous initial data for the tangent
vectors and an infinite sum of Dirac deltas at the level of the NLS equation. As a
result, studying the problem from an analytical point of view also becomes important.

With this motivation, we have extended the previous case of regular planar M -
polygons in two different ways. First, by considering helical M -polygons, i.e., intro-
ducing a nonzero torsion in the Euclidean planar polygons and secondly, with planar
l-polygons in the hyperbolic space, called the Minkowski 3-space. Assuming uniqueness,
we have successfully investigated both the cases by observing that the dynamics at
later times exhibits a Talbot effect. That is to say, at rational multiples of the period
new polygons appears whose number of sides depends on the parity of the denominator
and this has been confirmed with both algebraic and numerical techniques. We have
also found that the time evolution preserves several quantities of the binormal flow and
the symmetries of the regular polygons help us in obtaining some of these. The speed
of the center of mass with which the polygonal curve moves in the vertical direction,
is one such example. In fact, the symmetries also come to our aid in reducing the
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computation cost of the numerical method in the Euclidean case, however, this has
not been the case in the hyperbolic setting. Furthermore, in the trajectory of a single
point, i.e., X(0, t), we have discovered new variants of the Riemann’s non-differentiable
function which is multifractal and of great interest from a mathematical point of view.
Let us not forget that the motivation to work with the polygonal curves also comes
from the one-corner problem. In this work, through numerical experiments, we have
observed that for infinitesimal times, the multiple-corner problem can be seen as a
superposition of several one-corner problems.

As a conclusion, we see that these new solutions (i.e., polygonal curves) of VFE
can be used to illustrate numerically that the smooth solutions given by helices and
straight lines in the Euclidean space and hyperbolas in the Minkowski space, share
the same instability as the one already established for circles. This is accomplished by
showing the existence of variants of the Riemann’s function that are as close to smooth
curves as desired when measured in the right topology. This topology is motivated by
some recent results on the well-posedness of VFE, which proves that the self-similar
solutions of VFE have finite renormalized energy [8, 9].

5.2 Future work

In this section, we present some ideas on the work done in this thesis that could be of
interest in the future.

In Chapter 2, for a given value of sides M and torsion b, along with the trajectory
of a single point X(0, t), we analyzed the evolution of a regular helical M -polygon both
algebraically and numerically. Moreover, given any rational time tpq, the aperiodic
evolution gives rise to two terms, i.e., Galilean shift spq and phase shift, which capture
the movement of a corner along the polygonal curve and the XY-plane, respectively.
Bearing this in mind, it might be interesting to look at the time evolution of a corner
for a given time period. In this direction, we have computed the trajectory of X(spq, tpq)
for p = 0, 1, . . . , q, M = 6, b = 0.4, N/M = 2q, where q = 2099 has been taken as a
prime number. Figure 5.1 shows the first, second and third components of X(spq, tpq),
which in turn has been shown on the left hand side of Figure 5.2. These plots remind
us of the trajectory X(0, t) in the zero-torsion case, whose presence can further be
seen after a certain rotation performed manually on X(spq, tpq); one can also compare
the case M = 3, b = 0.4, plotted on the right hand side of the Figure 5.2 with [22,
Figure 2]. Giving a precise expression or an algorithm to compute this rotation seems
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to be challenging and could be of immense help in determining the algebraic solution
completely.

In [39], it was shown that the Riemann’s function ϕ as in (3.50) satisfies

ϕ(t) = ϕ(tpq) + eiπm/4q−1/2(t− tpq)1/2 + lower-order terms,

with p, q ∈ Z, q > 0, gcd(p, q) = 1, m ≡ m(tpq) ∈ Z/8Z. This identity was proved in
[30, Theorem 4.2] which also implies that the Hölder exponent of ϕ is 1/2, i.e.,

|ϕ(t) − ϕ(tpq)| = q−1/2|t− tpq|1/2 + lower-order terms.

In our opinion, it could be interesting to compute the Hölder exponent and relevant
properties for the ϕM and ϕc,d which were discovered in the evolution of helical M -
polygons.
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Figure 5.1 The first (left), second (center) and third (right) component of X(spq, tpq)
for M = 6, b = 0.4, N/M = 2q, q = 2099 for one time period.

In Chapter 3, during the numerical evolution of hyperbolic l-polygon, we found
that a fourth-order finite difference space discretization with the same order explicit
Runge–Kutta method in time gave the best results. We also tried a pseudo-spectral
discretization with Chebyshev polynomials as basis functions, but due to their unequal
distribution near the boundary, an explicit method in time was undesirable. As a
result, we went on to work with the implicit methods and were successful in obtaining
a second-order semi-implicit backward differentiation formula for both Schrödinger
map equation and its stereographic projection. However, not only these methods are
of lower-order for our purpose, due to the denseness of the Chebyshev differentiation
matrices, the resulting system is also computationally expensive to solve. Thus, finding
an efficient higher-order method in time could be advantageous. On the other hand,
the second component of the trajectory of the center of mass of the l-polygon was
found to have a periodic structure. We think that it might be interesting to learn more
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about it as a function and its properties. Finally, we would also like to address the
case of an arbitrary polygon in the Minkowski space.

0

0.05

-0.75

0.1

-0.38

0.15

-0.8 -0.42

-0.46-0.85

0

0.05

0.1

0.15

-0.46

-0.42

-0.75-0.38 -0.8
-0.85

0

-0.4

0.2

-0.8

0.4

-0.6

0.6

-0.6

-0.4 -0.8

Figure 5.2 Left: X(spq, tpq) for M = 6, b = 0.4, N/M = 2q, q = 2099 for one time
period; center: X(spq, tpq) after a certain rotation, right: After a rotation X(spq, tpq)
for M = 3, b = 0.4.

In Chapter 4, we gave an expression for the angle φ which the curve Xrot(0, t)
makes with the plane containing Xrot(s, 0). Thus, for a given c0 > 0, from (4.8) we
have

φ = arctan
(
A2

A3

)
= arctan

(
ℜ{Υ}
ℑ{Υ}

)
= arg(iῩ), (5.1)

with

Υ = eiπ/4B(1 − ic2
0/4, 1/2 + ic2

0/4)Γ(3/2) =
√
π

2 eiπ/4B(1 − ic2
0/4, 1/2 + ic2

0/4),

where B(·, ·) is the beta function.
We are curious to know if the above expression can be reduced to a more simplified

form.

Helical polygons in the Minkowski space

Having addressed the helical polygons in the Euclidean case, it becomes natural to
consider its counterpart in the hyperbolic space. As mentioned in Section 1.4, in the
Minkowski space, the torsion can be introduced in two different ways, hence, following
that discussion, we expect hyperbolic and circular helical polygons. In the following
lines, we state some essential points to investigate each of the two cases.

Circular helical polygon

The arc-length parameterized regular circular helical polygon is characterized by
parametersM and b which correspond to the number of its sides and torsion, respectively.
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In this case, the parameter b is also the first component of the 2π-periodic tangent
vector T(s, 0) as shown in Figure 1.4. So, we write

T(s, 0) =
(
b, a cos

(
2πk
M

)
, a sin

(
2πk
M

))T

≡ (b, ae2πik/M), sk < s < sk+1, (5.2)

where sk = 2πk/M for k = 0, 1, ...,M − 1, b > 1, a2 − b2 = −1. The corresponding
curve X(s, 0) is a circular helical polygon whose vertices at sk are given by

X(sk, 0) =
(
bsk,

aπ sin(π(2k − 1)/M)
M sin(π/M) ,−aπ cos(π(2k − 1)/M)

M sin(π/M)

)T

, (5.3)

so that for any s ∈ (sk, sk+1), the corresponding point X(s, 0) lies on the line segment
joining X(sk, 0) and X(sk+1, 0). Moreover, the time-like curvature angle ρ0 and space-
like torsion angle θ0 are given by

ρ0 = 2 arcsinh
(
a sin

(
π

M

))
, θ0 = 2 arctan

(
b tan

(
π

M

))
,

which do not depend on k values and satisfy

cos
(
θ0

2

)
cosh

(
ρ0

2

)
= cos

(
π

M

)
.

On the other hand, at the level of NLS equation, the initial datum is the following:

ψθ(s, 0) = cθ,0e
iγs

∞∑
k=−∞

δ(s− 2πk/M),

where γ = Mθ0/2π and cθ,0 =
√

2
π

ln
(
cosh

(
ρ0
2

))
.

Hyperbolic helical polygon

When the parameter b corresponds to the third component of the tangent vector T(s, 0)
as in Figure 1.3, the regular hyperbolic helical polygon is characterized by parameter l
and b, where l is its side-length. Thus, we have

T(s, 0) =
(
a cosh

(
l

2 + sk

)
, a sinh

(
l

2 + sk

)
, b

)T

≡ (aej(l/2+sk)), sk < s < sk+1,

(5.4)
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where sk = kl for k ∈ Z, b > 1, a2 − b2 = −1. The corresponding curve X(s, 0) is a
hyperbolic helical polygon whose vertices at sk are given by

X(sk, 0) = l/2
sinh(l/2) (a sinh(sk), a cosh(sk), b)T , (5.5)

so that for any s ∈ (sk, sk+1), the corresponding point X(s, 0) lies on the line segment
joining X(sk, 0) and X(sk+1, 0). The time-like curvature angle and space-like torsion
angle are given by

ρ0 = 2 arcsinh
(
a sinh

(
l

2

))
, θ0 = 2 arctan

(
b tanh

(
l

2

))
,

which satisfy

cos
(
θ0

2

)
cosh

(
ρ0

2

)
= cosh

(
π

M

)
.

Moreover, the initial datum for the NLS equation is

ψθ(s, 0) = cθ,0e
iγs

∞∑
k=−∞

δ(s− lk),

where γ = θ0/l, and cθ,0 is as given above.

With this knowledge by following the steps as in Chapter 2, for a given rational
time tpq, ψ(s, tpq) can be obtained which also gives an expression for the Galilean shift
for both types of helical polygons. Later, by integrating generalized Frenet–Serret
formula (3.7), we can construct X and T up to a rigid movement. Furthermore, for
a given rational time tpq, the mutual angle between any two sides of the new helical
polygon is constant and given by

ρq =

2 arccosh
(
cosh1/q (ρ0/2)

)
, if q odd,

2 arccosh
(
cosh2/q (ρ0/2)

)
, if q even.

(5.6)

On the other hand, for the numerical evolution, we can employ the same methods as
discussed in Chapter 2 and 3. Hence, similar conclusions as in Chapter 2, are expected
to be drawn about the trajectory of X(0, t). Since we can construct the algebraic
solution up to a rotation, the evolution near the irrational times can also be investigated
for both kinds of helical polygons. We also plan to address their relationship with the
one-corner problem.
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Finally, giving a theoretical proof to (2.27), (3.22), (5.6) would also be interesting.
In this direction, we have started with an approach involving quaternions both in the
Euclidean and hyperbolic cases.





Appendix A

Basic concepts and supporting
computations

A.1 Basics of the hyperbolic geometry

In this section, we state some basic definitions and concepts in the hyperbolic geometry,
that have been essential in this Ph.D. thesis [45, 51].

A.1.1 The Minkowski space

The Minkowski space denoted by R1,2 is a three-dimensional Euclidean space defined
with the inner product:

u ◦− v = −u1v1 + u2v2 + u3v3, (A.1)

where u = (u1, u2, u3), v = (v1, v2, v3) and ⟨·, ·⟩0 is called the Lorentzian or Minkowski
inner product. Sometimes it is also expressed as

u ◦− v = u1v1 + u2v2 − u3v3, (A.2)

in that case, the Minkowski space is denoted by R2,1. The structure of ◦− allows it to
take both negative and non-positive values which implies that it is not positive-definite.
The inner product gives rise to the Minkowski norm:

∥u∥0 = √
u ◦− u =

√
−u2

1 + u2
2 + u2

3. (A.3)
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By defining a vector u = (u2, u3) ∈ R1,1, we have u = (u1, u) and then, we can also
write

∥u∥2
0 = −u2

1 + |u|2, (A.4)

The set of u ∈ R1,2 such that ∥u∥0 = 0 is the hypercone C2 defined by |u1| = |u|. The
hypercone C2 is called light cone of R1,2. Thus, depending on the value of ∥ · ∥0 a
vector u ∈ R1,2 can be characterized in three ways:

• Light-like when ∥u∥0 = 0 (light cone),

• Space-like when ∥u∥0 > 0 (exterior of the light cone),

• Time-like when ∥u∥0 is imaginary (interior of the light cone). A time-like vector
u is called positive/future (resp. negative/past) iff u1 > 0 (resp. u1 < 0). Both
interior and exterior of C2 in R1,2 are the open subsets of R1,2.

The first property also implies that the Minkowski norm ∥ · ∥0 is a pseudo-norm as a
light-like vector need not necessarily be a zero vector.

Hyperbolic plane

Given a and b real numbers,
z = a+ jb,

is a hyperbolic number where j satisfies j2 = +1 and is not a real number [17]. A
collection of all such z is identified as hyperbolic plane. Just like in the case of complex
plane, the addition and multiplication operations are defined as

(a+ jb) + (c+ jd) = a+ c+ j(b+ d),
(a+ jb)(c+ jd) = (ac+ bd) + j(ad+ bc).

Every hyperbolic number has a conjugate hyperbolic number

z̄ = a− jb.

Consequently, the modulus can be defined as

|z| =
√
zz̄ =

√
a2 − b2,

which can be real, purely imaginary or equal to zero for z ̸= 0. [54, Chapter 1, p.30]
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A.1.2 The hyperbolic 2-space

The curvature of a sphere of radius r in R3 is 1/r2, a positive constant and for a
hyperbolic 2-space, it is negative. The duality between spherical and hyperbolic
geometry tells that hyperbolic 2-space should be a sphere of imaginary radius. As we
have seen that under the notion of (A.3) imaginary lengths are possible, a hyperbolic
2-space can be defined as a collection of time-like vectors with unit magnitude:

F 2 = {u ∈ R1,2 : ∥u∥2
0 = −1}. (A.5)

Since a time-like vector has two components, F 2 is disconnected and is characterized
as a union of two (positive and negative) sheets. The subset of all u in F 2 such that
u1 > 0 (resp. u1 < 0) is called the positive/future (resp. negative/past) sheet of F 2.
The hyperboloid model H2 of hyperbolic 2-space is defined as the positive sheet of F 2:

H2 = {u ∈ R1,2 : ∥u∥2
0 = −1, u1 > 0}, (A.6)

which is the analogue of a unit sphere in the Euclidean case.

Definition 1. Two vectors u and v in R1,2 are Lorentz orthonormal if and only if
u ◦− v = 0.

Theorem 7. Given two nonzero Lorentz orthogonal vectors u and v in R1,2, if u is
time-like then v is space-like.

Definition 2. A vector subspace V of R1,2 is said to be

1. time-like if and only if V has a time-like vector,

2. space-like if and only if every nonzero vector in V is space-like, or

3. light-like otherwise.

Definition 3 (Time-like angle between time-like vectors). Let u and v be pos-
itive(negative) time-like vectors in R1,2. Then, the Lorentzian time-like angle
between u and v is defined as a unique nonnegative real number η(u, v) such that

u ◦− y = ∥u∥0∥v∥0 cosh η(u, v) (A.7)

Note that η(u, v) = 0 iff u and v are positive scalar multiple of each other.
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Definition 4. For u and v in R1,2, the Lorentzian cross product of u and v is
defined as

u ∧− v = Ĩ(u ∧+ v), (A.8)

where

Ĩ =


−1 0 0
0 1 0
0 0 1

 . (A.9)

Note that u ∧− v is Lorentz orthogonal to both u and v:

u ◦− (u ∧− v) = u ◦− Ĩ(u ∧+ y) = u ◦+ (u ∧+ v) = 0,
v ◦− (u ∧− v) = v ◦− Ĩ(u ∧+ y) = v ◦+ (u ∧+ v) = 0.

Theorem 8. Given u and v linearly independent space-like vectors in R1,2, the following
are equivalent:

1. The vectors u and v satisfy the inequality |u ◦− v| < ∥u∥0∥v∥0.

2. The vector subspace V spanned by u and v is space-like.

Definition 5 (The space-like angle between space-like vectors). Let u and v be space-
like vectors in R1,2 that span a space-like vector space. Then, the Lorentzian space-
like angle between u and v is defined as a unique real number η(u, v) between 0 and
π such that

u ◦− v = ∥u∥0∥v∥0 cos η(u, v). (A.10)

Observe that η(u, v) = 0 if and only if u and v are positive scalar multiples of each
other, η(u, v) = π/2 if and only if u and v are Lorentz orthogonal and η(u, v) = π if
and only if u and v are negative scalar multiples of each other.

Theorem 9. Given u and v linearly independent space-like vectors in R1,2, the following
are equivalent:

1. The vectors u and v satisfy the inequality |u ◦− v| > ∥u∥0∥v∥0.

2. The vector subspace V spanned by u and v is time-like.

Definition 6 (The time-like angle between space-like vectors). Let u and v be space-like
vectors in R1,2 that span a time-like vector space. Then, the Lorentzian time-like
angle between u and v is defined as a unique positive real number η(u, v) such that

|u ◦− v| = ∥u∥0∥v∥0 cosh η(u, v). (A.11)
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Theorem 10. Given u and v linearly independent space-like vectors in R1,2, the
following are equivalent:

1. The vectors u and v satisfy the inequality |u ◦− v| = ∥u∥0∥v∥0.

2. The vector subspace V spanned by u and v is light-like.

Definition 7 (The angle between space-like and time-like vectors). Let u be space-like
and v be time-like vectors in R1,2. Then, the Lorentzian time-like angle between u

and v is defined as a unique nonnegative real number η(u, v) such that

|u ◦− v| = ∥u∥0∥v∥0 sinh η(u, v). (A.12)

A.2 Rotation matrices in the Minkowski space

In this section, based on the work in [49], we describe the rotations in the Minkowski
space R1,2.

Recall that in the Euclidean case, given a rotation axis u = (a, b, c) and rotation
angle θ, using the Rodrigues’ formula, the corresponding rotation matrix can be
obtained as

eθA = I + sin(θ)A+ (1 − cos(θ))A2,

where

A =


0 −c b

c 0 −a
−b a 0

 ,
is the skew-symmetric matrix and I is the identity matrix in R3.

In the Minkowski space depending on the rotation axis whether it is space-like or
time-like, this formula takes different forms. Thus, for a rotation axis u = (a, b, c) and
a rotation angle θ,

• if rotation axis is time-like:

eθB = I + sin(θ)B + (1 − cos(θ))B2, (A.13)

• if rotation axis is space-like:

eθB = I + sinh(θ)B + (1 − cosh(θ))B2, (A.14)
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where

B =


0 c −b
c 0 −a

−b a 0

 ,
is the semi-skew symmetric matrix that satisfies ĨBĨ = −BT and Ĩ is as in (A.9).

Properties of a hyperbolic rotation matrix

Let’s denote the hyperbolic rotation matrix by H, then

• H is called semi-orthogonal matrix if Hu ◦− Hu = u ◦− u for u ∈ R1,2. This
property also implies that semi-orthogonal matrices preserve the length of the
vectors in the Minkowski space-time. Moreover, column (rows) of the semi-
orthogonal matrix form an orthonormal basis of R1,2.

• H is a semi-orthogonal matrix if and only if HT ĨH = Ĩ.

• Invariance of the Minkowski cross product:

H(v1 ∧− v2) = Hv1 ∧− Hv2, ∀v1, v2 ∈ R1,2.

• Given rotation H, through (A.13)–(A.14), the corresponding semi-skew symmetric
matrix can be retrieved as

B = H − ĨHT Ĩ

2 sinh(θ) , or B = H − ĨHT Ĩ

2 sin(θ) .

A.3 A brief introduction to the pseudo-spectral meth-
ods

Let us consider the following initial value problem,ut = N (u, us, uss, t), s ∈ [−L/2, L/2], t > 0,
u(s, 0) = u0(s),

(A.15)

where the solution u(s, t) satisfies certain boundary conditions and on the right hand
side, N is function of u, its derivatives with respect to s which in turn takes its values in
a compact interval of length L. By defining the operator D = ∂t − N , (A.15) becomes
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Du = 0. The main idea behind spectral methods is to approximate the solution u(s, t)
by a finite sum

uN(s, t) =
N∑

k=0
ak(t)ϕk(s),

where ak(t) are the expansion coefficients which need to be determined once the choice
of basis functions ϕk(s), k = 0, 1, . . . have been made. In case of an ODE, ak(t) ≡ ak.
The basis functions are chosen such that the following requirements are satisfied:

(i) the approximate solution uN(s, t) must converge to u(s, t) rapidly,

(ii) given coefficients ak, calculating another set of coefficients bk such that

d

ds

(
N∑

k=0
akϕk(s)

)
=

N∑
k=0

bkϕk(s),

should be easy,

(iii) the conversion between coefficients ak, k = 0, 1, . . . , N and the function values
u(sj, t) at grid points sj = −L/2 + jL/N , j = 0, 1, . . . , N , should be fast [32].

In the case of periodic problems, the trigonometric polynomials satisfy all three
requirements, while the first two are straightforward, the third was verified with the
invention of Fast Fourier Transform (FFT) algorithm in 1965 [20]. On the other hand,
for the nonperiodic problems, the trigonometric polynomials do not satisfy the first
requirement and imposing the periodicity artificially give rise to irregularity which make
the Fourier coefficients ak decrease as O(1/N) as N → ∞. Truncated Taylor expansion
uN(s, t) = ∑N

k=0 ak(t)sk also do not help for requirement (i) since the convergence
over [−1, 1] requires u(s, t) to be very smooth. The most successful function class is
orthogonal polynomials of Jacobi type, with Chebyshev and Legendre polynomials as
the most important cases.

As a next step, in order to determine the expansion coefficients, consider the residual

RN(s, t) = D(uN − u)(s, t).

The basic idea is to keep RN (s, t) as small as possible across the domain while satisfying
the boundary conditions. Following are the three ways to achieve this:

1. Tau: The spectral coefficients ak are chosen so that the boundary conditions are
satisfied and RN(s, t) is orthogonal to as many basis functions ϕk(s) as possible.
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2. Galerkin: The original basis functions are first recombined into new basis functions
so that the boundary conditions are satisfied. Then, the coefficients ak are chosen
so that RN(s, t) is orthogonal to as many new basis functions as possible.

3. Collocation or pseudo-spectral (PS): Similar to tau method, the coefficients ak

are selected so that the boundary conditions satisfied, and it is desired that
RN(s, t) is zero at as many (suitably chosen) spatial gridpoints as possible.

Let us also comment that all these methods work equally well for linear problems.
However, in the case of nonlinear problems, the pseudo-spectral (collocation) approach is
particularly easy to apply as it involves the product of numbers rather than determining
the expansion coefficients for products of expansions. Moreover, the convergence of
pseudo-spectral approximations for smooth functions is O(N−m) for every m with N

is the number of nodes, and O(cN) (0 < c < 1) for functions that are analytic. Such
behavior is known as spectral accuracy.

A.3.1 Application to the helical M-polygon problem

In Chapter 2, to solve the coupled system of VFE and Schrödinger map equation
numerically, we employed the pseudo-spectral discretization in space and due to the
periodicity of the tangent vector, the trigonometric polynomials were used. In the
following lines, we describe how the periodicity plays an important role in reducing
the computation cost [22].

Reduction of computation cost using symmetries

As the tangent vector T is 2π-periodic in space, we discretise the interval [0, 2π) into
N nodes, i.e., sj = 2πj/N for j = 0, 1, . . . , N − 1. In order to compute Ts and Tss,
we note that for a periodic function Z(s) evaluated at sj, its derivatives at sj can be
spectrally approximated as

Zs(sj) =
N/2−1∑

k=−N/2
ikẐ(k)e2πijk/N , Zss(sj) = −

N/2−1∑
k=−N/2

k2Ẑ(k)e2πijk/N , (A.16)

where
Ẑ(k) =

N−1∑
j=0

Z(sj)e−2πijk/N k = 0, 1, . . . , N − 1. (A.17)

Note that both (A.16)–(A.17) are inverse and direct discrete Fourier transforms (DFT)
of N elements, can be computed efficiently using the Fast Fourier algorithm (FFT)
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[33]. Next, from (2.17) we have that the T is invariant under the rotation of 2π/M
about z-axis and this fact helps us in reducing the computation cost of (A.16)–(A.17)
to N/M elements. In this regard, let us consider the first two component of T and
denote U(sj) = T1(sj, t) + iT2(sj, t) so that U(sj+N/M) = U(sj)e2πi/M ,

Û(k) =
N−1∑
j=0

U(sj)e−2πijk/N

=
M−1∑
l=0

N/M−1∑
j=0

U(sj+l N
M

)e−2πi(j+l N
M

)k/N =
M−1∑
l=0

N/M−1∑
j=0

U(sj)e2πil/Me−2πijk/N−2πilk/M

=
M−1∑
l=0

(N/M−1∑
j=0

U(sj)e−2πijk/N
)
e−2πi(k−1)l/M

=
N/M−1∑

j=0
U(sj)e−2πijk/N ·

M−1∑
l=0

e−2πi(k−1)l/M .

Using
M−1∑
l=0

e−2πi(k−1)l/M =

M, if k − 1 ≡ 0 mod M,

0, if k − 1 ̸≡ 0 mod M.

we obtain

Û(k) =

M
∑N/M−1

j=0 U(sj)e−2πijk/N , if k ≡ 1 mod M,

0, if k ̸≡ 1 mod M.

Thus, the non-zero Û(k) are computed using the DFT of N/M elements:

Û(Mk + 1) = M
N/M−1∑

j=0
U(sj)e−2πij(Mk+1)/N = M

N/M−1∑
j=0

[
U(sj)e−2πij/N

]
e−2πijk/(N/M)

for k = 0, 1, · · · , N/M − 1. Following the same steps as above for T3, the third
component of T and using

T3(sj+N/M) = T3(sj),

we get

T̂3(k) =
N−1∑
j=0

T3(sj)e−2πijk/N
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=
M−1∑
l=0

N/M−1∑
j=0

U(sj+l N
M

)e−2πi(j+l N
M

)k/N

=
M−1∑
l=0

N/M−1∑
j=0

U(sj)e−2πijk/N−2πilk/M

=
N/M−1∑

j=0
U(sj)e−2πijk/N ·

M−1∑
l=0

e−2πikl/M

=

M
∑N/M−1

j=0 U(sj)e−2πijk/N , ifk ≡ 0 mod M,

0, ifk ̸≡ 0 mod M.

and the non-zero elements of T̂3(k) are obtained with a FFT of N/M elements

Û(Mk) = M
N/M−1∑

j=0
U(sj)e−2πij(Mk)/N = M

N/M−1∑
j=0

U(sj)e−2πijk/(N/M) (A.18)

for k = 0, 1, · · · , N/M − 1.

Moreover, the computation of the derivatives using N/M elements is done using
the inverse FFT. In this direction, using k = Mk̃ + 1 for k̃ = 0, 1, . . . , N/M − 1

Us(sj) =
N/2−1∑

k=−N/2
ikÛ(k)e2πijk/N

=
N/(2M)−1∑

k′=−N/(2M)
i(Mk̃ + 1)Û(Mk̃ + 1)e2πij(Mk̃+1)/N

=
 N/(2M)−1∑

k̃=−N/(2M)
i(Mk̃ + 1)e2πijk̃/(N/M) Û(Mk̃ + 1)

 e2πij/N ,

and

Uss(sj) =
−

N/(2M)−1∑
k̃=−N/(2M)

(Mk̃ + 1)2e2πijk̃/(N/M) Û(Mk̃ + 1)
 e2πij/N

and

T3s(sj) =
N/(2M)−1∑

k̃=−N/(2M)
iMk̃e2πijk̃/(N/M) Û(Mk̃)

T3ss(sj) = −
N/(2M)−1∑

k̃=−N/(2M)
(Mk̃)2e2πijk̃/(N/M) Û(Mk̃),
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for j = 0, 1, . . . , N/M − 1.

A.4 Generalized Frenet–Serret frame

In the classical theory of continuous curves in R3, to describe a moving coordinate
frame along a sufficiently differentiable space, the Frenet–Serret formulas are employed
[56]. However, the main drawback of the Frenet–Serret frame is that it requires the
curvature to be nonzero everywhere. Thus, for many curves such as straight lines, it
is not possible to work with this frame, as a result, we look for a new generalization.
In the following lines, we derive it for both the Euclidean and hyperbolic cases. In
this regard, when we use ±, the positive sign corresponds to the Euclidean and the
negative one to the hyperbolic case. Similarly, by using ∓, we refer to the Euclidean
case with negative sign and to the hyperbolic case with positive sign.

Let us consider an arbitrary orthonormal basis {T, e1, e2} where the tangent
vector T, normal e1 and binormal e2 satisfy T ∧± e1 = e2, e1 ∧± e2 = ±T and
T ∧± e2 = −e1,T ◦± T = ±1, e1 ◦± e1 = 1 = e2 ◦± e2.
Since T ◦± Ts = 0, T ⊥ Ts, hence, we can express

Ts = κ1 e1 + κ2 e2, (A.19)

and similarly, we have

e1,s = κ4 T + κ3 e2, (A.20)
e2,s = κ5 T + κ6 e1, (A.21)

where κj, j = 1, 2, . . . , 6 are real constants to be determined later.
Furthermore, differentiating e1 ◦± T = 0 gives

e1,s ◦± T = −e1 ◦± Ts,

and computing it using (A.19)–(A.20) yields κ1 = ∓κ4. Similarly, using the orthogo-
nality of T, e2 and e1, e2, we get κ5 = ∓κ2 and κ6 = −κ3, respectively. Consequently,
by replacing κ1 = α, κ2 = β, κ3 = γ, we obtain the new generalized Frenet–Serret
frame as 

T
e1

e2


s

=


0 α β

∓α 0 γ

∓β −γ 0

 .


T
e1

e2

 . (A.22)
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Remark that when α = κ, the curvature of the curve and γ = τ , the torsion of the
curve, and β = 0, we recover the original Frenet–Serret frame (1.1), (1.11). On the
other hand, γ = 0 yields the so-called Bishop frame [14]. Next, in order to determine
how α, β, γ are related to κ and τ , we look at the relationship between the two
orthonormal frames which is given by


T
e1

e2

 =


1 0 0
0 cos(θ(s)) − sin(θ(s))
0 sin(θ(s)) cos(θ(s))

 .


T
n
b

 , (A.23)

for some angle θ that is a function of s [19]. Thus, by differentiating the expression for
e1 and e2, with respect to s, we get

e1,s = ns cos(θ) − n sin(θ)θ′ − bs sin(θ) − b cos(θ)θ′,

= (−κT + τb) cos(θ) − n sin(θ)θ′ − (−τn) sin(θ) − b cos(θ)θ′,

e2,s = ns sin(θ) + n cos(θ)θ′ + bs cos(θ) − b sin(θ)θ′

= (−κT + τb) sin(θ) + n cos(θ)θ′ + (−τn) cos(θ) − b sin(θ)θ′.

(A.24)

On the other hand, from (A.22)–(A.23)

e1,s = ∓αT + γe2 = ∓αT + γ(n sin(θ) + b cos(θ)),
e2,s = ∓βT − γe1 = ∓βT − γ(n cos(θ) − b sin(θ)).

(A.25)

Finally, by comparing (A.24)–(A.25), we obtainα = κ cos(θ), β = κ sin(θ),
γ = τ − θ′.

(A.26)

Recall that in the Bishop frame, i.e., the one we use while dealing with polygonal
curves, γ = 0, as a result,

θ(s) =
∫ s

τ(s̃)ds̃.

A.4.1 ψ = α + iβ satisfies the NLS equation

In the framework of the generalized Frenet–Serret frame, the filament function as in
(1.14) takes the following form

ψ = κei
∫ s

0 τ = α + iβ.



A.4 Generalized Frenet–Serret frame 181

We show that both in the Euclidean and hyperbolic setting, ψ satisfies the NLS
equation. To begin with, let us define

N = e1 + ie2, (A.27)

then from (1.17), we write

Ts = αe1 + βe2 = 1
2
(
ψ̄N + ψN̄

)
,

Ns = e1,s + ie2,s = ∓(α + iβ)T = ∓ψT.
(A.28)

By noting that T ∧± N = −iN, we can express

Tt = T ∧± Tss = T ∧±
[

1
2(ψ̄N + ψN̄)

]
s

= 1
2T ∧±

[
ψ̄Ns + ψ̄sN + ψsN̄ + ψN̄s

]
= i

2
(
ψsN̄ − ψ̄sN

)
.

As a next step, we write
Nt = a1T + a2N + a3N̄,

where the constants a1, a2 and a3 are calculated using

N ◦± T = 0 =⇒ Nt ◦± T = −N ◦± Tt = −iψs,

N ◦± N = 0 =⇒ Nt ◦± N = 0,
N ◦± N̄ = 2 =⇒ Nt ◦± N + N ◦± N̄t = 0.

(A.29)

Note that the last equation implies that the real part of Nt ◦± N̄ is equal to zero, i.e.,
Nt ◦± N̄ = iR, R ∈ R. As a result, we obtain a1 = ∓iψs, a2 = i

2R, a3 = 0, and

Nt = ∓iψsT + i

2RN.

By differentiating it with respect to s yields

Nts = ∓iψssT ∓ iψsTs + i
2RsN + i

2RNs

= ∓(iψss + i
2ψR)T ∓ i

2ψs(ψ̄N + ψN̄) + i
2RsN.

(A.30)
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On the other hand,

Nst = (∓ψT)t = ∓ψtT ∓ i
2ψ
(
ψsN̄ − ψ̄sN

)
= ∓ψtT ∓ i

2ψψsN̄ ± i
2ψψ̄sN.

(A.31)

Equating the coefficients of T and N in (A.30)–(A.31) gives

ψt = iψss + i
2Rψ,

i
2Rs = ± i

2ψψ̄s ± i
2 ψ̄ψs =⇒ R = ±|ψ|2 + A(t), A(t) ∈ R,

(A.32)

and
ψt = iψss ± i

2ψ(|ψ|2 + A(t)).
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