
 

Doctoral Thesis 
 

FOUR ESSAYS ON FINANCIAL RISK QUANTIFICATION 
 

ANDRÉS MORA VALENCIA 
 
 

Thesis Supervisors: 
ANTONIO DÍAZ 

GONZALO GARCÍA-DONATO 
October, 2019 

 

 



1 

Doctoral Thesis 

“FOUR ESSAYS ON FINANCIAL RISK 

QUANTIFICATION” 

ANDRÉS MORA VALENCIA 

Thesis Supervisors: 

ANTONIO DÍAZ 

GONZALO GARCÍA-DONATO 

October, 2019

(c)2020 ANDRES MORA VALENCIA



2 
 

  



3 
 

ACKNOWLEDGEMENTS 

First of all, Thank God without Him I am nothing! Then, I would like to thank my thesis 

advisors, Professors Drs. Antonio Díaz and Gonzalo García-Donato for their invaluable 

guidance, patience, confidence and support.  

I would want also to thank the professors of the Master and Ph.D Programme in 

Quantitative Finance and Economy for all the acquired knowledge. 

I am also very thankful to Professors Drs. Esther B. Del Brío and Javier Perote for their 

support and helping me finishing one chapter of this thesis. 

I am also grateful for conversations and suggestions of Professor Dr. Alfonso Novales, 

collaboration of Professors Dr. Miguel Angel Martínez, Susan Orbe and Angel Pardo. 

This thesis is dedicated in the memoriam of my father Guillermo, to my mother Hilda and 

my brother Diego Fernando.  



4 
 

Contents 

Introduction of the Thesis ..................................................................................... 8 

Chapter 1. Risk quantification in turmoil markets .......................................... 14 

1.1 Introduction of Chapter 1 ......................................................................... 14 

1.2 The ARMA-GARCH-VaR model ............................................................ 18 

1.3 Estimation methods ................................................................................... 23 

1.4 Backtesting in turmoil markets ................................................................ 26 

1.5 Conclusions of Chapter 1 .......................................................................... 40 

Chapter 2. Quantifying risk in traditional energy investments ....................... 47 

2.1 Introduction of Chapter 2 ......................................................................... 47 

2.2 Literature review ....................................................................................... 50 

2.3 The Model and Methodology.................................................................... 52 

2.4 Data ............................................................................................................ 58 

2.5 Empirical Results ...................................................................................... 63 

2.6 Conclusions of Chapter 2 .......................................................................... 70 

Chapter 3. Risk quantification for Commodity ETFs: Backtesting Value-at-Risk and Expected 

Shortfall ................................................................................................................ 76 

3.1 Introduction of Chapter 3 ......................................................................... 76 

3.2 Literature Overview .................................................................................. 80 

3.3 Models and Methodology .......................................................................... 82 

3.4 Risk quantification for individual commodity ETFs .............................. 89 

3.5 Portfolio risk quantification ..................................................................... 96 

3.6 Discussion ................................................................................................. 103 

3.7 Conclusions of Chapter 3 ........................................................................ 104 

Chapter 4. A note on SMA vs. LDA-AMA: The dawning of a new regulation114 

Abstract .............................................................................................................. 114 

4.1 Introduction of Chapter 4 ........................................................................... 114 

4.2 LDA-AMA Model ........................................................................................ 116 

4.3 Modelling the Tails ...................................................................................... 117 



5 
 

4.4 SMA .............................................................................................................. 119 

4.5 Discussion ..................................................................................................... 122 

5. Conclusions of the Thesis .............................................................................. 134 
 

 

  



6 
 

LIST OF TABLES 

 
Table 1: Descriptive statistics of DJIA returns ........................................................................... 29 

Table 2: Backtesting results for DJIA log returns: # Exceptions, Violation ratio and 

Unconditional Coverage and Independence Tests ...................................................................... 32 

Table 3: Descriptive Statistics for CHF/USD, EuroStoxx50, VIX and Commodity Index returns

 ..................................................................................................................................................... 33 

Table 4: Backtesting Results for four portfolios and five estimation methods: number of 

exceptions .................................................................................................................................... 38 

Table 5: Unconditional Coverage and independence tests for the different portfolios ............... 38 

Table 6. Descriptive statistics for daily stock returns of the Portfolio SI (sustainable industry) 

and Portfolio TI (traditional oil and gas industry) ....................................................................... 59 

Table 7. In-Sample results of ARMA-GARCH model fit to the analyzed indexes .................... 64 

Table 8. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable 

Index (SI) and the Traditional Oil and Gas Industry (TI) ........................................................... 66 

Table 9. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable 

Index (SI) and the Traditional Oil and Gas Industry (TI). Considering external regressors in the 

variance equation of GARCH model. ......................................................................................... 67 

Table 10. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the 

Traditional Oil and Gas Index (TI) ............................................................................................. 68 

Table 11. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the 

Traditional Oil and Gas Index (TI). Considering external regressors in the variance equation of 

GARCH model. ........................................................................................................................... 68 

Table 12. Descriptive statistics of Commodity ETFs .................................................................. 89 

Table 13. Estimates of ARMA(1,1)-EGARCH(1,1) models ...................................................... 91 

Table 14. Diagnostics of ARMA(1,1)-EGARCH(1,1) ................................................................ 93 

Table 15. Backtesting 99%-VaR for Commodity ETFs returns.................................................. 94 

Table 16. Backtesting 97.5%-VaR for Commodity ETFs returns............................................... 95 

Table 17. T-test for 97.5%-ES for Commodity ETFs returns ..................................................... 95 

Table 18. Descriptive statistics of Commodity ETF Portfolios .................................................. 98 

Table 19. Estimates of DCC models ........................................................................................... 99 

Table 20. T-test for 97.5%-ES for Commodity ETFs portfolio returns .................................... 100 

Table 21. Pairwise Diebold Mariano test for 97.5%-ES ........................................................... 100 

Table 22. Average ratio 97.5%-ES to 99%-VaR ....................................................................... 103 

Table 23. Studies proposing Bayesian methods to combine internal and external data published 

in the Journal of Operational Risk ............................................................................................. 116 

Table 24. Studies regarding robust estimation of operational risk published in the Journal of 

Operational Risk ........................................................................................................................ 118 

Table 25. BI component assessment depending on BI values................................................... 119 

Table 26. Proposed coefficients per bucket (BCBS, 2014) ....................................................... 120 

 

 

 

  



7 
 

LIST OF FIGURES 

Figure 1: Prices and returns of the four portfolios ...................................................................... 35 

Figure 2: Backtesting for EuroStoxx-50 returns: VaR estimates and exceptions ....................... 37 

Figure 3. Graphical representation for multiple VaR backtesting ............................................... 57 

Figure 4. Sustainable Index (SI) returns ...................................................................................... 60 

Figure 5. Traditional oil and gas industry Index (TI) returns ...................................................... 61 

Figure 6. Value of an initial investment of 100 on each index.................................................... 62 

Figure 7.  Ratio of value index to potential loss .......................................................................... 63 

Figure 8. Variance of Oil, Gas and Coal price returns ................................................................ 65 

Figure 9. Comparison of 99%-VaR and 97.5%-ES for each model for SI negative log-returns 69 

Figure 10. Commodity ETFs prices ............................................................................................ 90 

Figure 11. Commodity ETFs returns ........................................................................................... 90 

Figure 12. 97.5%-ES for portfolio of Commodity ETFs .......................................................... 102 

  



8 
 

Introduction of the Thesis 

 

Financial risk is related to the potential loss that a financial institution or investor may 

incur due to adverse variations in financial variables (factors). The main financial risks 

are credit, market and operational risk. Credit risk may be defined as the potential loss 

that a borrower fails to meet its obligations (BCBS, 1999), whereas market risk is the 

potential loss resulting from adverse movements of market prices (BCBS, 2016), and 

operational risk is defined as the potential loss arising from inadequate or failed internal 

processes, people and systems or from external events (BCBS, 2011).  

The adequate assessment of these risks is the base for regulatory and economic capital, 

i.e. the amount of money provisioned by financial institutions to buffer the potential 

losses. One of the main concerns of regulators is the procurement of financial stability, 

which can be threatened by financial crises. That is why the necessity to examine the 

statistical and mathematical properties of risk measures. Value-at-Risk (VaR) has been 

the standard risk measure in the financial industry during twenty years since its inception 

(in the so-called Basel I in 1996) and can be defined as the maximum loss (in “normal” 

market conditions) given a confidence level and time horizon. However, it is very well-

known that VaR does not satisfy a desirable property for risk measures to be coherent, 

the so-called subadditivity or diversification property. Moreover, VaR can be seen as the 

minimum loss given the worst losses. For these reasons, this risk measure has been 

criticized for its inability to capture tail risk. A possible solution is provided with 

Expected Shortfall (ES) measure, which is quantified as the average losses given that 

losses have exceeded VaR, and ES is proven to be a coherent risk measure.  

The aim of regulators is that financial institutions can raise their capital provisions after 

the events occurred in the global financial crisis (subprime and sovereign debt crises). To 

this end, the Financial Review of Trading Book (FRTB) was initially released in 2012 

bringing challenges to the financial industry. With the new regulation, the Basel 

Committee proposed to switch from VaR to ES for market risk purposes and scrap 

Advanced Measurement Approach (AMA) for operational risk quantification. Besides 

the standard proposal of Basel Committee to estimate each type of risk, the regulator 

allows financial institutions the use of their own internal models. The acceptance of the 

latter models depends on validation procedures such as backtesting and stress testing 
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processes. For VaR there are “relatively” simple methods to perform backtesting given 

that this risk measure satisfies the elicitability property, a desirable property to perform 

forecasting. ES is not elicitable by itself (Gneiting, 2011), but is jointly elicitable with 

VaR (Fissler and Ziegel, 2016) what makes the validation procedure of ES models not 

that straightforward as in the VaR case. Currently the regulator advises calculating ES as 

risk measure and perform VaR backtesting at 97.5% and 99% confidence levels. A 

barometer of financial system is the performance of the so-called global systemically 

important banks (G-Sibs). It is considered that a failure on one of these banks may trigger 

a financial crisis. In 2018, the US G-Sibs exhibited 11 VaR breaches in aggregate, a high 

amount of violations when it is expected 2.5 (6.25) exceptions for 99%-VaR (97.5%-

VaR).1 

According to the final FRTB framework published on January 14, 2019 the Basel 

Committee estimates a median increase of 16%, and a weighted average of 22% in market 

risk capital requirements compared with the previous Basel 2.5 framework based on an 

impact study carried out by the Committee with data of 2017. A similar study resulted in 

an increasing around 40% with the original FRTB version. The initial implementation 

date of the new rules was January 2019, but it was postponed until January 2022. Despite 

of the challenges above-mentioned, banks see more attractive to develop their own 

internal models rather than adopting the standardized approach. Though the latter 

approach is less complex it is more risk-sensitive than internal model approach (IMA), 

and it is expected an increase in average of 30% in capital requirements with respect to 

Basel 2.5 with the standard approach. A study in 2016 found market risk capital would 

increase by 1.5 times by utilizing IMA models and 2.4 times under the standardized 

approach.2 However, a recent (and undisclosed) study of International Swaps and 

Derivatives Association (ISDA) suggests an increase of three times higher.3  

Regarding operational risk, this type of risk is gaining relevance each time. By end of 

2018, 32.4% of the risk-weighted assets (RWA) for the eight US G-Sibs corresponded to 

operational risk capital. Since Basel II the most predominant models are the Loss 

Distribution Approach (LDA) classified as one of the Advanced Measurement Approach 

 
1 “At US G-Sibs, 11 VAR breaches in 2018” report by Alessandro Aimone. Available at 

https://www.risk.net/risk-quantum/6412711/at-us-g-sibs-11-var-breaches-in-2018. 
2 “Can bankers stop the trading book killer?” report by Samuel Wilkes. Available at 

https://www.risk.net/our-take/6645301/can-bankers-stop-the-trading-book-killer 
3 “Revealed: FRTB impact three times higher than expected” report by Samuel Wilkes. Available at 

https://www.risk.net/regulation/6947536/revealed-frtb-impact-three-times-higher-than-expected 
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(AMA). The other two suggested approaches by the Basel Committee are the Basic 

Indicator Approach (BIA) and the Standardized Approach (TSA), which basically 

depends on the gross income of the financial institutions. Under LDA models, it is 

common to employ Extreme Value Theory (EVT), for modelling the tails, and copulas 

for risk aggregation to quantify VaR at 99.9% of confidence level of the whole entity. 

One of the main critiques of LDA models is that this is not a forward-looking risk 

measure. Moreover, by employing different distributions to fit the severities may lead 

different capital buffers with the same data. The new proposal of the Basel Committee is 

the Standardized Measurement Approach (SMA) that will replace the three current 

methodologies, and as in the case for the new rules for market risk the objective of the 

Committee is that financial institutions increase the capital buffer. The objective seems 

to be possibly achieved according to a recent publication of the European Banking 

Authority (EBA). The study found that total annual losses overshot operational risk 

capital in ten occasions with the current regulation. With the new proposal it would have 

been only three cases. The analysis was performed in 146 banks for three years (2015 – 

2017).4 

Given the above framework, more study is needed to provide regulators and practitioners 

the adequate tools to assess the risk measures and how to validate it. This Thesis aims to 

analyze the performance of VaR and recent proposals of validating ES with different 

distributional models for market risk. Furthermore, this project also reviews the 

advantages and drawbacks of the new guidelines for operational risk and proposes the 

Median Shortfall as a risk measure.  

The first chapter “Risk quantification in turmoil markets” analyzes VaR backtesting by 

employing five distributions: the Gaussian distribution, the Student’s t distribution, the 

generalized Pareto distribution (GPD), the α-stable distribution and the g-and-h 

distribution. The latter two distributions do not have a closed-form expression for its 

probability density function (pdf), then parameter estimation is challenging. We examine 

two estimation methods for stable distribution based on the characteristic function. One 

method is subject to Maximum Likelihood Estimation (MLE) and the other method 

employs regression (RegK). For g-and-h distribution, the popular method to estimate its 

 
4 “Policy Advice on the Basel III Reforms: Operational Risk”. Available at 

https://eba.europa.eu/documents/10180/2886865/Policy+Advice+on+Basel+III+reforms+-

+Operational+Risk.pdf 
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parameters is based on quantiles. In particular, we propose a robust regression to estimate 

the h parameter. The results show that GPD and α-stable distributions perform well for 

risk measurement purpose. A version of this chapter has been published in “Risk 

Management Journal” co-authored with Antonio Díaz and Gonzalo García-Donato. 

The second chapter “Quantifying Risk in Traditional Energy and Sustainable 

Investments” aims to examine the ability of the recent proposal of Basel Committee of 

ES risk measure to appropriately quantify market risk in the stock returns. This proposal 

poses a challenge to academics and practitioners, due to the procedure to validate ES 

measures is still an open question. The data in the application section consists of portfolio 

of sustainable energy assets and another portfolio of traditional energy asset, more 

specifically the Dow Jones Sustainability Index the Bloomberg World Oil & Gas Index, 

respectively. To this end, we perform a novel backtesting procedure based on multinomial 

tests (Kratz et al., 2018) for different value-at-risk (VaR) levels rather than performing a 

binomial test for each VaR level, since it is proven that ES can be approximated as a 

weighted sum of different VaR levels (Emmer et al., 2015). The results show that fat-

tailed distributions, e.g. stable and generalized Pareto distributions, outperform for both 

sustainable and traditional portfolios. A version of this chapter has been published in 

“Sustainability Journal” co-authored with Antonio Díaz and Gonzalo García-Donato. 

The third chapter “Risk quantification for Commodity ETFs: Backtesting Value-at-Risk 

and Expected Shortfall” studies the risk assessment of alternative methods for a wide 

variety of Commodity ETFs divided in two parts. We implement well-known as well as 

and recently proposed backtesting techniques for both VaR and ES under extreme value 

theory (EVT), parametric, and semi-nonparametric techniques to univariate ETFs in the 

first part. The application of Gram-Charlier distribution to ES is introduced in this chapter 

and for this purpose we derive a straightforward closed form of ES. For the ES validation, 

we employ the method proposed by Fissler and Ziegel (2016) as an alternative of the 

proposal of Kratz et al. (2018) employed in the previous chapter. We show that, for the 

confidence levels recommended by Basel Accords, EVT and Gram-Charlier expansions 

have the best coverage test and skewed-t and Gram-Charlier the best relative 

performance. Hence, we recommend the application of the above-mentioned distributions 

to mitigate regulation concerns about global financial stability and commodities risk 

assessment. The second part expands the previous part from the univariate (Gram-

Charlier distribution) to the multivariate case (semi-nonparametric - SNP distribution) 
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and studies the risk assessment of ETF portfolios. We applied the SNP model with 

dynamic conditional correlations (DCC) and EGARCH models and implement the Fissler 

and Ziegel (2016) methodology to validate ES to commodity ETF portfolios formed by 

bivariate combinations of two metals (Gold and Silver ETFs) and energy (Oil ETF). 

Results support that multivariate SNP-DCC model outperforms multivariate normal 

distribution and provides accurate risk measures for commodity ETFs. A version of the 

univariate part of this chapter has been published in “International Review of Financial 

Analysis” and the multivariate part in “European Journal of Finance” co-authored with 

Esther B. Del Brío and Javier Perote. 

Finally, the fourth chapter “A note on SMA vs. LDA-AMA: The dawning of a new 

regulation” summarizes the main research on Loss Measurement Approach (LDA), which 

suggests the estimation of 99.9%-VaR for operational risk. Furthermore, advantages and 

drawbacks of the Basel Committee proposal (SMA model) are detailed in this chapter. 

Moreover, it is suggested the estimation of 99.9%-Median Shortfall instead of the 

Standard Measurement Approach. A version of this chapter has been published in 

“Journal of Operational Risk”. 

Then, the idea of this thesis is to provide some analysis of validation results for the new 

proposal (ES risk measure). Since it is not clear how to validate the ES amounts for market 

risk proposes, the results of this document is important for risk managers, the Basel 

Committee, main financial regulators (the Federal Reserve, the UK’s Prudential 

Regulation Authority, the European Banking Authority and Japan’s Financial Services 

Agency), and local regulators. Finally, for operational risk purposes, the last chapter 

reviews the literature about the most common methodology to assess 99.9%-OpVaR 

which is the LDA technique. Moreover, it is proposed the Median Shortfall as risk 

measure when Loss Distribution Approach is employed to quantify provision for 

operational losses. 
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Chapter 1. Risk quantification in turmoil markets5 

 

Abstract 

The aim of this paper is to examine the performance of the Value-at-Risk (VaR) 

measure under different distributional models in the highly demanding context of the 

recent financial crisis. This task is one of the main challenges of the financial industry. In 

addition to the normal and Student’s t distributions, we analyze three distributions 

especially appropriate for capturing tail risk: the generalized Pareto distribution (GPD), 

the α-stable distribution and the g-and-h distribution. We also address the problem of 

efficiently estimating the parameters of these distributions. Our backtesting analysis 

shows that GPD and α-stable distributions perform well for this risk measurement 

purpose.  

Keywords: Backesting VaR, g-and-h, alpha-stable, EVT-POT 

 

1.1 Introduction of Chapter 1 

Due to the recent financial crises (subprime and sovereign debt) and the recent 

plunge in oil prices, financial institutions are searching for better models to quantify 

investment risk. Value-at-Risk (VaR) is the standard risk measure in the financial 

industry, but regulatory entities have recently expressed concern about its inability to 

capture tail risk. These entities have proposed employing the Expected Shortfall (ES) 

model.6 However, it is not clear how to evaluate the goodness of the ES risk model 

(backtesting), and financial institutions must continue to perform backtesting based on 

VaR models. In fact, the Fundamental Review of Trading Book (BIS 2016) states that the 

backtesting requirements remain based on the 1-day static VaR measure.7 

 
5 A version of this chapter has been published in Risk Management Journal, co-authored with Antonio Díaz 

and Gonzalo García-Donato. 

6 VaR is defined as the  quantile of a relevant profit and loss (P&L) distribution to assess the risk exposure 

of single investments and portfolios. The expected shortfall is the conditional expectation of loss given that 

the loss is beyond the VaR level. 
7 One of the key enhancements of the revised market risk framework (see BIS 2016) consists of a shift from 

VaR to an ES measure of risk under stress. The document comments that the use of ES will help ensure a 

more prudent capture of “tail risk” and capital adequacy during periods of significant financial market 

stress. ES must be computed daily for each trading desk using a 97.5th percentile, one-tailed confidence 

level. However, backtesting requirements are based on comparing each desk’s 1-day static VaR measure 
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The normal distribution was initially suggested to fit financial asset returns, but 

the observed return distribution exhibits heavier tails than the normal distribution. For 

this reason, Student’s t distribution has been employed as a benchmark model, according 

to the recent literature. However, these distributions are symmetric around the mean. To 

capture tail risk, the literature proposes several distributions. Among the studies that apply 

heavy tail distributions in measuring market risk, McNeil and Frey (2000) find that the 

VaR from a generalized Pareto distribution (GPD) performs well on several probability 

levels. Kiesel et al. (2003) find that results obtained by peak over threshold (POT) are 

similar to the empirical quantiles. Angelidis et al. (2004) compare the performance of 

normal, Student’s t and generalized error distributions (GED) and show that leptokurtic 

distributions behave well. In a similar study, Bekiros and Georgoutsos (2005) show that 

GPD performs better than other distributions (normal, Student’s-t and GED) to calculate 

VaR at 99.5%. Other examples of good performance for risk quantification obtained by 

extreme value theory (EVT) distributions are Byström (2004), Lauridsen (2000), Ourir 

and Snoussi (2012), and De Jesús et al. (2013), among others.  

Combinations or variations of EVT distributions also perform well for risk 

quantification purposes. For instance, Chavez-Demoulin and McGill (2012) and Herrera 

and Schipp (2014) employ Hawkes processes with GPD. The authors find that this type 

of process provides an appropriate estimation of risk measures, although the classical 

POT model performs better than the Hawkes process in low-volatility periods. Santos et 

al. (2013) propose the Duration-based Peak over Threshold (DPOT) and Peaks over 

Random Threshold (PORT) methods. The results show that DPOT and PORT perform 

better than classical POT, according to the unconditional coverage test. Wei et al. (2013) 

compare a multifractal volatility model with several GARCH-type models. The 

backtesting results show that the proposed method performs better than GARCH models. 

Herrera and Shipp (2014) utilize self-exciting marked point processes and find that these 

models provide accurate risk measures. 

Several studies show that the α-stable distribution performs better than other 

distributions for a number of purposes. Khindanova et al. (2001) conclude that the VaR-

α-stable model performs better than the VaR-normal model. Marinelli et al. (2007) 

compare the VaR-α-stable and VaR-GPD models and find that the α-stable distribution 

 
(calibrated to the most recent 12 months’ data, equally weighted) at both the 97.5th percentile and the 99th 

percentile, using at least one year of current observations of the desk’s one-day P&L. 
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is better to compute VaR at 95%; however, the models present similar results when the 

VaR at 99% is calculated. Güner et al. (2010) employ hedge fund returns and compare 

the out-of-sample results between the α-stable and Student’s t distribution. The results 

show the superiority of the α-stable distribution. Rachev et al. (2010) (RRS hereafter) 

compare the α-stable distribution with the normal distribution, Student’s t distribution and 

GPD, and the results again show that the α-stable distribution performs best. However, 

this result could be driven by the threshold choice. 

Another alternative distribution considered in the literature is the skewed t. 

Kuester et al. (2006) compare the performance of the skewed-t distribution with the 

normal distribution, Student’s t distribution and GPD. The results show that the GPD and 

skewed t distribution perform well. Stavroyiannis et al. (2012) analyze the skewed t and 

Pearson’s type-IV distributions. They find that Pearson’s type IV distribution is better 

than the skewed-t distribution when calculating VaR at high confidence levels. These 

results are in line with those of Grigoletto and Lisi (2009, 2011). Based on Zhang and 

Cheng (2005), Haas (2009) studies both Gaussian and Student’s t mixtures. The author 

finds that mixtures of Student’s t distributions perform better than Gaussian mixtures. On 

the other hand, Ausín et al. (2014) show how to perform Bayesian predictions of VaR. 

The authors develop a Bayesian semiparametric approach employing mixtures of 

Gaussian distributions with a prior Dirichlet process, and they find that their proposal 

allows for superior flexibility when capturing the stylized facts of financial returns. 

Another flexible model with good backtesting performance is Gram-Charlier 

(GC) distribution, which is an expansion of normal distribution in terms of Hermite 

polynomials (see for instance Polanski and Stoja, 2010; Del Brio et al., 2014). 

In this paper, we consider three distributions to appropriately capture tail risk, i.e., 

the α-stable, g-and-h and generalized Pareto distributions. Unfortunately, the parameter 

estimation for these distributions is challenging, particularly when the density is not 

analytically expressible. This is the case of α-stable and g-and-h distributions. The 

classical maximum likelihood method cannot be applied directly, and the numerical 

extraction of the density is necessary. In addition, the estimation process may be 

computationally expensive. We use these distributions to measure VaR and examine 

friendlier and more efficient estimation methods. Koutruvelis (1980) proposed a linear 

regression on the sample characteristic function to estimate the α-stable parameters, 

whereas the quantile method developed by Hoaglin (1985) is used to estimate the g-and-
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h parameters. In addition, GPD parameter estimates depend on the threshold selection 

and then its quantile quantification. There are some techniques for choosing the threshold, 

but there is no method for choosing the “optimal” threshold. This drawback is also 

examined in this paper. We illustrate the relevance of the threshold choice using the RRS 

(2010) paper as a benchmark. These authors fix the threshold at 1.02% based on a result 

obtained by Goldberg and Weinstein (2008). This value is far removed from the range of 

values proposed by the vast majority of studies in the literature.  

In the process of estimating the three distributions proposed to capture tail risk, 

we use a two-step procedure (McNeil and Frey, 2000) using an ARMA(1,1)-

GARCH(1,1) process. Most of the abovementioned empirical studies that apply the POT 

method employ this procedure. It is based on Diebold et al. (1998), which consists of 

filtering the financial asset returns by an AR(1)-GARCH(1,1) process in the first step. In 

the second step, the GPD is fitted to the standardized residuals. Jalal and Rockinger 

(2008) show that this technique presents very good forecasting properties when 

calculating VaR. In this line, Berkowitz and O’Brien (2002) find that a VaR-ARMA(1,1)-

GARCH(1,1)-normal model is satisfactory to forecast risk measures for main US 

commercial banks. Pérignon et al. (2008) examine Canadian commercial bank data and 

obtain a similar result.  

Our sample includes five indexes that proxy the portfolio investment of US stocks, 

European stocks expressed in US dollars, US equity options, foreign exchange rates, and 

commodities during the November 2006–December 2015 period. This period is chosen 

because it includes the financial market turmoil in 2007 and 2008, which led to the most 

severe financial crisis since the Great Depression. The crisis spread rapidly from financial 

markets to the real economy. Many large financial institutions in the United States and 

Europe were bailed out by national governments, and others failed. Part of this period 

was disastrous for the financial sector, and the risk management practices of financial 

institutions have been subjected to considerable criticism. 

This paper aims at providing useful insight regarding the use of distributions that 

appropriately capture tail risk in measuring VaR. We empirically test whether the ARMA-

GARCH-VaR model and the α-stable, g-and-h and generalized Pareto distributions 

succeeds in the backtesting analysis of different financial assets. We start by replicating 

the RRS (2010) analysis to compare the results for alternative ARMA-GARCH 

specifications. We show that the threshold choice is a key issue. In addition, we observe 
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that the ARMA(1,1)-GARCH(1,1) is a sound model to capture the volatility process. The 

results of ARMA-GARCH-α-stable are consistent with RRS (2010) and suggest an 

adequate VaR prediction under the POT method. 

We proceed to formally investigate which distributions improve the performance 

of the VaR measure using the backtesting technique. One novelty of this research is the 

comparison of the α-stable distribution with other parametric distributions. Few studies 

are devoted to analyzing this distribution from a market risk measurement perspective. 

Moreover, to our knowledge, this is the first work to include the g-and-h distribution in a 

backtesting framework. In addition, we propose a robust regression to estimate the h 

parameter in the g-and-h distribution case. 

Our analysis has certain similarities with that provided by Del Brio et al. (2014). 

The authors examine the performance of heavy-tailed innovations applied in developed 

and emerging market indices. They show that GC and GPD exhibit good performance in 

the backtesting results. Although we also base the analysis on normal, Student's t 

(benchmark cases in the literature) and GPD, we consider other heavy-tailed distributions 

such as g-and-h and alpha-stable distributions applied to different financial assets. 

Additionally, we explore other estimation methods different from the classical MLE for 

distributions which the pdf is not expressible. Moreover, our study includes violation 

ratio, independence test and 95% confidence interval of the exceptions in the backtesting 

results.  

The rest of the paper is organized as follows: Section 2 presents the models and 

the VaR methodology, Section 3 addresses the estimation methods for the distributions 

presented in the previous section, Section 4 analyzes the data and the results on VaR 

backtesting, and Section 5 concludes. 

 

1.2 The ARMA-GARCH-VaR model 

The most relevant stylized facts of daily stock returns (Granger and Ding 1995, 

Rydén et al. 1998, Cont 2001, McNeil et al. 2005, among others) are (1) an absence of a 

linear autocorrelation, (2) an unconditional (conditional, in some cases) distribution of 

returns exhibiting heavy tails, (3) profit and loss asymmetry, (4) volatility clustering, and 

(5) a slow decay of autocorrelation in absolute returns. Since the GARCH model is a 
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flexible tool useful to capture the aforementioned properties (Teräsvirta and Zhao 2011), 

stock returns are filtered by a GARCH process, and the VaR measure is employed to 

quantify risk. Current risk measures are based on statistical measures that describe the 

conditional loss distribution, and the one most widely used in the financial industry is the 

VaR measure. VaR can be defined as the maximum loss that can be expected of a portfolio 

over a time horizon (1 day or 10 days for market risk and regulatory purposes) given a 

specific level, 100(1 − α) % probability (confidence level). Assume that R represents the 

returns random variable and has a cumulative distribution function (cdf) F. Then, VaR 

can be defined as 

𝑉𝑎𝑅1−𝛼(𝑅) = inf{𝑟 ∈ ℝ: 𝐹(𝑟) ≥ 𝛼}.                      (1) 

In other words, 𝑉𝑎𝑅1−𝛼(𝑅) = 𝐹−1(𝛼) is the 𝛼 quantile of returns cdf. As it is 

commonly used, it is assumed that returns follow 𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑍𝑡+1 (see, for 

instance, McNeil et al. 2005). Given probability level 𝛼, the VaR can be expressed as  

𝑉𝑎𝑅1−𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1𝑞𝛼(𝑍𝑡+1),                               (2) 

 

where 𝑍𝑡+1 is the innovations process with G cdf centered at zero and has unit variance, 

and 𝑞𝛼(𝑍𝑡+1) is the 𝛼 quantile of 𝑍𝑡+1. Let 𝑅𝑡 be the log returns, and assume that 𝑅𝑡 is a 

covariance stationary process. Then, the ARMA(1,1)-GARCH(1,1) process is given by 

𝜇𝑡+1 = 𝜃0 + 𝜃1𝜇𝑡+1 + 𝜃2𝜀𝑡+1 + 𝜀𝑡+1, 

𝑍𝑡+1 = 𝜀𝑡+1𝜎𝑡+1,       𝜀𝑡+1~𝐺(0,1), 

 𝜎𝑡+1
2 = 𝛽0 + 𝛽1𝜀𝑡+1

2 + 𝛽2𝜎𝑡
2.                                                (3) 

Conditional mean 𝜇𝑡+1 is modeled by an ARMA(1,1) process, and a GARCH(1,1) 

process is employed for conditional volatility 𝜎𝑡+1. The ARMA(1,1)-GARCH(1,1) has 

been shown to be an appropriate model due to its forecasting abilities, among other 

GARCH-type models (Lunde and Hansen, 2005). The parameters are usually estimated 

by the ML method.8  

 
8 For a review of ARMA-GARCH models, see, for instance, Li et al. (2002). Examples and more details of 

ARMA-GARCH models applied in risk management can be found in McNeil et al. (2005) and Jondeau et 

al. (2007). 
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In this paper, the model presented in expression (3) is combined with expression 

(2) to quantify VaR as follows: 

𝑉𝑎𝑅1−𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1𝑞𝛼(𝑍𝑡+1),                                       (4) 

where 𝑞𝛼(𝑍𝑡+1) is the 𝛼-quantile of 𝑍𝑡+1.  

 

1.1. Distributions 

For the innovations distribution (G in equation 3), the following distributions are 

analyzed: (i) normal, (ii) Student’s t, (iii) 𝛼–stable, (iv) generalized Pareto, and (v) g-and-

h. 

(i) Normal distribution 

The density of a standard normal distribution is given by 

(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 .                                          (5) 

 

(ii) Student’s t distribution 

𝑡(𝑥) =
𝛤(

𝜈+1

2
)

√𝜋(𝜈−2)𝛤(
𝜈

2
)

(1 +
𝑥2

𝑛−2
)

−
𝜈+1

2
,                            (6) 

where 𝛤 represents the gamma function, and 𝜈 is the degree of the freedom parameter. In 

financial applications, 𝜈 is found to vary between 6 and 10 (Danielsson 2011, p. 41). 

When 𝜈 → ∞, Student’s t distribution is approximated by a normal distribution. 

(iii) Stable distribution 

The stable distribution is usually described by its characteristic function because 

its probability density function (pdf) is not expressible. There are three cases for known 

closed-form expressions for their densities: the normal, Cauchy and Lévy distributions. 

The characteristic function is given by 

𝐸[𝑒𝑖𝜃𝑋] = {
𝑒𝑥𝑝 (−𝜎𝛼|𝜃|𝛼 (1 − 𝑖𝛽(𝑠𝑖𝑔𝑛𝜃) tan

𝜋𝛼

2
) + 𝑖𝜇𝜃)    if   𝛼 ≠ 1,

𝑒𝑥𝑝 (−𝜎|𝜃| (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln|𝜃|) + 𝑖𝜇𝜃)       if   𝛼 = 1,

   (7) 
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where the sign function is defined as 

𝑠𝑖𝑔𝑛𝜃 = {
 1   if  𝜃 > 0,
 0   if  𝜃 = 0,

−1   if  𝜃 < 0.
                                        (8) 

The four parameters are index of stability (characteristic exponent) 𝛼 ∈ (0,2], 

skewness parameter 𝛽 ∈ [−1,1], scale parameter 𝜎 > 0, and location parameter 𝜇 ∈ ℝ.  

In our applications, the standard α-stable is employed, i.e., 𝜇 = 0 and 𝜎 = 1. 

When 𝛼 =  2 and 𝛽 =  0, the 𝛼-stable distribution is the normal distribution, and its tail 

has a finite variance. The smaller the value of the index stability, the heavier the 

distribution tail. If 1 < 𝛼 < 2, the mean is finite, but the distribution exhibits infinite 

variance; however, when 𝛼 < 1 the mean is not finite.  

Since the density is not expressible in closed form, the parameter estimation is not 

straightforward. Usually, three methods are employed: quantile method, generalized 

method of moments (GMM), and maximum likelihood (ML). The quantile method was 

initially proposed by Fama and Roll (1971). McCulloch (1986) developed a technique 

based on five quantiles of a sample to estimate 𝛼 and 𝛽 without asymptotic bias, and it is 

restricted to 𝛼 > 0.6. The method of moments is applied to the empirical characteristic 

function, e.g., Carrasco and Florens (2000) introduce GMM for a continuum of moments 

conditions. On the other hand, numerical methods are utilized to extract the pdf when ML 

is applied. One method to approximate the pdf is the fast Fourier transform (FFT) 

approach (Mittnik et al. 1999), and the other is the direct integration method (Nolan 

2001). 

(iv) The generalized Pareto distribution (GPD) 

The cdf of the GPD is given by 

𝐺𝜉,𝛽(𝑥) = {
1 − (1 + 𝜉 𝑥 𝛽⁄ )−1 𝜉⁄ ,   if  𝜉 ≠ 0

1 − exp(− 𝑥 𝛽⁄ ),           if  𝜉 = 0
,   (9) 

where 𝜉 is the shape parameter, and 𝛽 is the scale parameter.  

If 𝜉 ≥ 0, then 𝛽 > 0 and 𝑥 ≥ 0. However, if 𝜉 < 0, then 0 ≤ 𝑥 ≤  −𝛽/𝜉. When 

𝜉 > 0, the GPD is the Pareto distribution; when 𝜉 = 0, it is the exponential distribution; 

and when 𝜉 > 0, the distribution is the Pareto type II distribution. Heavy-tailed empirical 

distributions usually follow a GPD with positive shape parameter 𝜉 > 0.  
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A useful result in EVT is the Pickand, Balkema and de Haan Theorem (see, for 

example, Embrechts et al. 1997). Given financial loss data, exceedances distribution  𝐹𝑢 

(losses above threshold u) can be approximated by a GPD when the threshold tends 

toward the endpoint of the distribution. That is, given distribution function 𝐹 (which 

belongs to the maximum domain of attraction of the generalized extreme value, GEV 

distribution), exceedances distribution 𝐹𝑢 converges to a GPD when threshold u is 

progressively increased. 

According to McNeil et al. (2005), the VaR or 𝛼-quantile is obtained from 

𝑞𝛼(𝑍) = 𝑢 +
𝛽

𝜉
[(

1−𝛼

𝑁𝑢 𝑛⁄
)

−𝜉

− 1],                               (10) 

where u is the chosen threshold, 𝛽 and 𝜉 are the scale and shape parameters, respectively, 

𝑁𝑢 is the threshold exceedances, and 𝑛 is the sample size. Therefore, 𝑁𝑢 𝑛⁄  is an empirical 

estimator for the excess distribution.  

EVT is successfully applied to financial risk measures. There are two types of 

methods: block maxima and peaks over threshold (POT). The POT method is very useful 

to analyze extreme losses that exceed high threshold u. Because of its efficient use of 

data, POT is the technique most widely employed. This approach was introduced by 

Smith (1989), Davison and Smith (1990), and Leadbetter (1991). The selection of the 

threshold is a drawback of the POT method because there is a tradeoff between the bias 

and variance of the GPD parameter estimates. There are several alternatives to solve this 

drawback (see, for instance, Beirlant et al. 2004); however, there is no method for 

choosing the “optimal” threshold. Graphical techniques, such as the visualization of the 

mean excess plot, may lead to an imprecise selection of the threshold when the 

distribution is far from the GPD (Ghosh and Resnick 2010). Among others, Chavez-

Demoulin (1999), McNeil and Frey (2000), and Araújo-Santos and Fraga-Alves (2013) 

suggest choosing the threshold at the 10th percentile of the standardized residuals of the 

log returns. 

 

(v) g-and-h distribution 

The g-and-h distribution was introduced by Tukey in 1977 and has been 

successfully applied in finance (see Dutta and Perry, 2006 and the references therein). Let 
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𝑍~𝑁(0,1) be a standard normal random variable. Random variable 𝑋 is g-and-h 

distributed with 𝑔 and ℎ parameters (𝑔 ≠ 0 and ℎ ∈ ℝ) if  

𝑋 =
exp(𝑔𝑍)−1

𝑔
exp(ℎ𝑍2 2⁄ ),                                    (11) 

and it is 𝑋~g-and-h denoted. The 𝑔 parameter controls the amount and asymmetry 

direction, while the h parameter accounts for kurtosis. The larger the value of 𝑔, the more 

skewed the distribution, while the distribution exhibits more elongation at higher values 

of h. 

Several distributions can be obtained by varying the values of the parameters. A 

special case of the g-and-h distribution is the normal distribution when 𝑔 = ℎ = 0. 

Martinez (1981), Martinez and Iglewicz (1984), Hoaglin (1985), Dutta and Babbel 

(2002), and others have studied the properties of the g-and-h distribution. The pth 

percentile of 𝑔 (𝑔𝑝) is given by 𝑔𝑝 = − (
1

𝑍𝑝
) log (

𝑋1−𝑝−𝑋0.5

𝑋0.5−𝑋𝑝
), and it is common to estimate 

𝑔 as the median of different values of 𝑔𝑝. Another property is that given a certain value 𝑔, 

the ℎ value is given by log
𝑔(𝑋𝑝−𝑋1−𝑝)

exp(𝑔𝑍𝑝)−exp(−𝑔𝑍𝑝)
= ℎ(𝑍2 2⁄ ). Then, an estimate for ℎ can be 

obtained as the slope of the regression log
𝑔(𝑋𝑝−𝑋1−𝑝)

exp(𝑔𝑍𝑝)−exp(−𝑔𝑍𝑝)
 vs. (𝑍2 2⁄ ).  

In this paper, a robust regression is proposed to estimate the h parameter. An 

important result of Degen et al. (2007) is concerned with EVT and the g-and-h 

distribution. The authors find that high quantile estimation by the POT method is 

generally inaccurate if the data follow a g-and-h distribution. For this reason, the g-and-

h distribution is also included in the backtesting. The quantile estimation is based on 

Degen et al. (2007, Section 2.1). Since 𝑘(𝑥) =
exp(𝑔𝑥)−1

𝑔
exp(ℎ𝑥2 2⁄ ) is strictly 

increasing (for ℎ > 0), the cdf of a g-and-h random variable 𝑋 can be written as 

𝐹(𝑥) = 𝛷(𝑘−1(𝑥)),                                    (12) 

where 𝛷 denotes the standard normal cdf. Then, the quantile is given by 

𝑞𝛼 = 𝑘(𝛷−1(𝛼)).                                      (13) 

 

1.3 Estimation methods 
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The ML method is generally employed to estimate the parameters when the 

distribution presents a closed-form expression for the pdf. Various numerical methods 

exist to maximize the (log) likelihood function; however, it can exhibit several local 

maxima or be relatively flat. Moreover, several distributions do not have an analytical 

expression for the pdf, e.g., the α-stable and g-and-h distributions. In some cases, a 

numerical extraction of the likelihood function is possible, but it may be computationally 

expensive. The financial returns are filtered by an ARMA(1,1)-GARCH(1,1) process 

(Berkowitz and O’Brien, 2002; Güner et al., 2010), and its parameters are estimated by 

the ML method for the normal and Student’s t distributions. A two-step procedure is 

applied for the general Pareto, α-stable and g-and-h distributions. In the first step, the 

returns are filtered using QML, and then, the distributions are fitted to the standardized 

residuals from the first step. This procedure has been shown to provide accurate results 

(see, e.g., Ergen, 2015). 

 

1.4  Estimation method for the normal and Student’s t distributions 

The likelihood function is given by 

𝐿(𝛩; 𝑅) = ∏
1

𝜎𝑡
𝑔 (

𝑟𝑡−𝜇𝑡

𝜎𝑡
)𝑛

𝑡=1 .       (14) 

where 𝜎𝑡  follows a GARCH(1,1) process and 𝜇𝑡 an ARMA(1,1) process, 𝛩 represents the 

parameter set to be estimated, and 𝑔 is the distribution of the disturbances (normal or 

Student’s t, in this case).  

To obtain the estimations, the first-order conditions for the (log) likelihood 

functions are solved using numerical algorithms (usually a Newton-Raphson 

modification such as BFGS or BHHH methods). 

 

1.5  Estimation method for the GPD 

To estimate the GPD parameters through maximum likelihood estimation (MLE), 

the loglikelihood function is given by 

log 𝐿(𝑍; 𝜉, 𝛽) = −𝑁𝑢 log 𝛽 − (1 +
1

𝜉
) ∑ log (1 + 𝜉

𝑍𝑗

𝛽
)

𝑁𝑢
𝑗=1 ,   (15) 
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where 𝑍 is the standardized residuals from (3), 𝑁𝑢 is the number of exceedances over 

specific threshold 𝑢, and 𝛽 and 𝜉 are the scale and shape parameters, respectively.  

As mentioned, literature usually uses a threshold 𝑢, which corresponds to the 10% 

of the left tail of the standardized residual distribution. 

 

1.6  Estimation method for the α-stable distribution 

To estimate the α-stable parameters, two methods are employed. One is based on 

MLE (henceforth α-stable-ML), where the pdf is estimated from the characteristic 

function using direct integration, following Nolan (2001). Another method, proposed by 

Koutrouvelis (1980), is also employed. The latter is based on regression (henceforth α-

stable-RegK) over the sample characteristic function, 𝜙̂𝑡 =
1

𝑛
∑ exp{𝑖𝑡𝑥𝑗}𝑛

𝑗=1 . Because of 

the law of large numbers, the sample characteristic function is a consistent estimator for 

the characteristic function (Čižek et al., 2011, p. 31). The α-stable characteristic function 

obtains 

log(− log ⎸𝜙(𝑡)⎹2) = log(2𝜎𝛼) + 𝛼 log(𝑡).   (16) 

As expression (16) depends only on 𝛼 and 𝜎, a regression is proposed to estimate 

these parameters. The regression equation is 𝑦𝑘 = 𝑚 + 𝛼𝜔𝑘 + 𝜀𝑘, where 𝑦 =

log(− log ⎸𝜙(𝑡)⎹2), 𝑚 = log(2𝜎𝛼), 𝜔 = log(𝑡), and 𝜀𝑘 is the error term. Koutrouvelis 

(1980) proposes 𝑡𝑘 =
𝜋𝑘

25
 , where 𝑘 = 1, … , 𝐾, and 𝐾 ranges between 9 and 134 for 

different 𝛼 values and sample sizes. Once 𝛼 and 𝜎 have been estimated, 𝜇 and 𝛽 can be 

estimated. The real and imaginary part of the characteristic function are given by (for 𝛼 ≠

0) 

Re𝜙(𝑡) = exp(−⎸𝜎𝑡⎹𝛼) cos [𝜇𝑡 + ⎸𝜎𝑡⎹𝛼𝛽sgn(𝑡) tan
𝜋𝛼

2
],  (17) 

Im𝜙(𝑡) = exp(−⎸𝜎𝑡⎹𝛼) sin [𝜇𝑡 + ⎸𝜎𝑡⎹𝛼𝛽sgn(𝑡) tan
𝜋𝛼

2
],   (18) 

Then, (17) and (18) can obtain 

arctan
Im𝜙(𝑡)

Re𝜙(𝑡)
= 𝜇𝑡 + 𝛽𝜎𝛼 tan

𝜋𝛼

2
𝑠𝑔𝑛(𝑡)⎸𝜎𝑡⎹𝛼 .                             (19) 
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Another regression is run to obtain 𝜇 and 𝛽 estimates. The regressions are 

repeated, with 𝛼̂, 𝛽̂, 𝜎̂ and 𝜇̂ as the initial conditions, until a convergence criterion is 

satisfied. The 25% of the truncated mean is employed as the initial estimate for 𝜇, and 𝛼 

is obtained from Fama and Roll (1971), as suggested by Koutrouvelis (1980). 

 

1.7  Estimation method for the g-and-h distribution 

To estimate the g parameter, the methodology proposed by Hoaglin (1985) is 

utilized in our applications. This methodology is based on quantiles and compared with 

other estimation methods (such as ML and method of moments). The method based on 

quantiles is probably more accurate, fitting the tails of the distribution, and it is adequate 

for the g-and-h distribution, which is a transformation of the standard normal distribution. 

Other methods have been proposed to estimate the parameters, numerical estimations of 

the likelihood function (Rayner and MacGillivray, 2002) and Bayesian computations 

(Haynes and Mengersen, 2005).  

Our paper estimates the h parameter as the slope of a robust regression 

log
𝑔(𝑋𝑝−𝑋1−𝑝)

exp(𝑔𝑍𝑝)−exp(−𝑔𝑍𝑝)
 vs 𝑍𝑝

2 2⁄  and not the classical linear regression. 

 

1.4 Backtesting in turmoil markets 

In this section, we assess the VaR performance using backtesting applied to three 

sample data and the abovementioned estimation methods for the five distributions: 

normal, Student’s t, GPD, α-stable and g-and-h.  

As input, we use returns of a US stock exchange index (the Dow Jones Industrial 

Average, DJIA), an European stock index (the DJ EuroStoxx 50 Index) expressed in US 

dollars, US equity market volatility (the Chicago Board Options Exchange Volatility 

Index, CBOE VIX), which can be interpreted as a proxy of an equity option portfolio,9 

the US dollar spot exchange rate versus the Swiss Franc (CHF/USD), and a commodity 

 
9 The VIX or S&P 500 option implies volatility is usually used as an expected future volatility measure or 

an investor “fear gauge” index. The volatility is the main determinant of the price of an equity option. The 

higher the volatility of the underlying asset (the equity market), the higher the price of the option. 
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index investment (the Bloomberg Commodity Index).10 We consider alternative 

investments of a typical financial institution. These five indexes replicate diversified 

portfolios on financial assets. Most financial institutions invest in portfolios of US stocks, 

European stocks, US equity options, foreign currencies, and commodities. 

The sample period includes one of the worst global financial crises since the 

1930s. This was not only a financial crisis but an economic crisis. The bailouts and 

defaults of some financial institutions focused policy makers’ attention on the risk 

management practices of financial institutions. New Basel III rules (sometimes called 

Basel IV rules) emerged from this period of stress. Thus, our sample period seems to be 

especially appropriate to compute tail risk. 

 

1.5  Backtesting 

Backtesting is the most common technique utilized by the financial industry to 

validate internal VaR models. The idea is to calculate the number of times the actual 

losses have exceeded the estimated VaRs. These exceedances are called violations or 

exceptions. It is expected that the number of exceptions is approximately 1% of cases 

when a 99% VaR is calculated. If the percentage of exceptions is higher (lower) than 1%, 

then the VaR model underestimates (overestimates) risk. The one-day-ahead VaR is 

calculated by implementing a rolling window, usually of 250 or 500 observations. The 

backtesting is based on the assumptions that the number of exceptions is generated by an 

i.i.d. Bernoulli process. The random variable (the number of exceptions, X) is 1 if the 

actual loss is greater than the predicted VaR; otherwise, it is 0. Then, the indicator 

function is 

𝐼1−𝛼,𝑡+1 = {
1, 𝑖𝑓 𝑟𝑡+1 < 𝑉𝑎𝑅1−𝛼,𝑡+1

0,                            otherwise.
     (20) 

If backtesting period T is very large, X follows a normal distribution, and a 95% 

confidence interval for the expected number of exceptions is given by 

𝐸(𝑋) = 𝑇𝛼, 

 
10 The most popular commodity investment strategy is to invest in a basket of commodities in a given 

commodity index. In fact, a number of market participants and policy-makers contend that commodity 

index investment was a major driver of the 2007-2008 spike in commodity futures prices. 
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𝑣𝑎𝑟(𝑋) = 𝑇𝛼(1 − 𝛼).      (21) 

The test of unconditional coverage (Kupiec, 1995) enables testing whether the 

realized deviation rate from the VaR is in line with the confidence interval. Additionally, 

Christoffersen (1998) develops a conditional coverage test that represents an incorporated 

test of the hypothesis of unconditional coverage and independence. The author tests for 

bunching, i.e., a greater probability of deviation from VaR happening after a previous 

deviation from VaR (hit sequences). 

 

1.6  Capturing the volatility process 

To examine the performance of different methodologies in the backtesting and 

illustrate how relevant the threshold choice in EVT is, we perform a comparison of 

different alternatives using the RRS (2010) paper as a benchmark. These authors compare 

three fat-tailed methodologies, i.e., stable Paretian, Student's t with 𝜈 = 5 (degrees of 

freedom) and EVT, alongside the normal distribution model, in a backtesting exercise. 

The models are filtered for auto-regression and volatility clustering based on ARMA-

GARCH. In this section, we replicate the RRS (2010) paper using the same distributions 

and almost the same dataset, but we consider five alternative methods: the ARMA-

GARCH-normal; the ARMA-GARCH-t with fixed three degrees of freedom (𝜈 = 3) and 

a changing number of degrees of freedom estimated in each step of the rolling window; 

the ARMA-GARCH-POT; the ARMA-GARCH-α-stable estimated by two different 

methods; and the ARMA-GARCH-g-and-h.  

In addition to the additional models we fit, we illustrate the relevance of the 

parameter choice in the cases of Student’s t and POT. These authors employ a strange 

value for the threshold in the latter model (u = 1.02%). Goldberg and Weinstein (2008) 

suggest this threshold. These authors use a particular method to select this value from a 

specific set of data. However, there is no a commonly accepted threshold selection 

method. Most of the literature proposes a threshold value equivalent to 5% or 10% of the 

left tail distribution. This range of values with an appropriate data size yields accurate 

parameter estimates of the GPD. Thus, we prefer to use the standard value proposed by 

the literature, i.e., u = 10%. 
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We also try to find evidence about the method that allows the best adjustment to 

the market conditions during the sample period, providing the most realistic VaR 

forecasts with exceedances within the confidence interval. Additionally, this preliminary 

comparison allows us to fix the value of the threshold (u) in the ARMA-GARCH-POT 

that we use in the next section. 

The dataset comprises 1,671 Dow Jones Industrial Average (DJIA) Index prices 

from August 2003 to December 2009. The log returns are calculated as 𝑟𝑡 =

100log(𝑃𝑡 𝑃𝑡−1⁄ ), where 𝑃𝑡 is the price at time t, for a total of 1,670 observations. Table 

1 presents the main descriptive statistics. As expected, the statistics show that the DJIA 

log returns exhibit heavier tails (excess kurtosis is 12.37) than the normal distribution.  

Table 1: Descriptive statistics of DJIA returns 

Statistics   DJIA  

Mean   0.0080  

Median  0.0298  

Standard deviation   1.2476 

Variance  1.5564 

Skewness   0.0351 

Excess kurtosis   12.3739 

Minimum  −8.2005 

Maximum   10.5083 

The table presents descriptive statistics for the daily logarithmic returns of the DJIA index 

during the August 2003–December 2009 period.  

The parameters of the α-stable distribution are estimated using both ML (α-stable-

ML) and the Koutrouvelis method (α-stable-RegK). In the ML case, the pdf is obtained 

by direct integration of the characteristic function. In the estimation of the POT method, 

the two-step procedure proposed by McNeil and Frey (2000) is applied. The threshold (u) 

is fixed to the 10% percentile of the standardized residuals. The threshold selection and 

its consequences in estimating the GPD parameters are drawbacks of this method. Though 

there exist visualization methods to choose the threshold (Hill plot and mean excess plot), 

these methods have problems, and there is no “optimal” method to choose the threshold. 

This remains an open question in EVT. For that reason, we suggest choosing 𝑢 = 10% 
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(as in other EVT studies) on the left-tail distribution; this allows an adequate VaR 

prediction under the POT method, according to our results.  

Table 2 compares the results of the backtesting conducted by RRS (2010) (left 

column) with the results for the five proposed models in our paper (rest of the columns). 

Although RRS (2010) change the length of the rolling window from 500 to 3,000 days in 

the POT model, we use a 500-day rolling window in all models. Therefore, the 

backtesting period is 1,170 days, and the expected number of exceptions is 11.70 when 

calculating 99% VaR. The standard error is 3.40, and the 95% confidence interval is (5.03, 

18.37).  

In general, we obtain a number of exceptions for the ARMA-GARCH-normal 

distribution, similarly to RRS (2010). Also consistent with RRS, the estimated exceptions 

for the ARMA-GARCH-α-stable distribution is the closest to the expected number of 

violations. However, there are some differences from other models. Although the number 

of exceptions for the ARMA-GARCH-t distribution are seemly similar, RRS (2010) 

employ 𝜈 = 5, while our study uses 𝜈 = 3. Nevertheless, when the degrees of freedom 

parameter is estimated in each step of the rolling window, we obtain 15 exceptions, which 

is within the 95% confidence interval [5, 18].  

For the POT method, RRS (2010) employ an unusual threshold, 𝑢 = 1.02%, and 

a different moving window of 3,000 observations. As an alternative, we choose a 

threshold 𝑢 = 10% and maintain a consistent size, i.e., 500 observations, for the moving 

window for all analyzed models. While RRS (2010) reveal a poor performance of EVT, 

our study obtains 14 exceptions, which lays in the 95% confidence interval [5, 18]. This 

simple model comparison shows that the results of RRS (2010) may have been caused by 

a poor threshold and rolling days. Therefore, the 10th percentile of the data is employed 

in the following application. 

The right side of Table 2 presents the violation ratio (VR) and the statistics and p-

values for the unconditional coverage (UC) and independence (ind) tests. The VR is 

calculated as the ratio between the violations obtained by each VaR model and the 

expected violations. The best model is the one in which the VR is closest to 1, according 

to the expected number of exceptions. If the VR is higher (lower) than 1, the model 

underestimates (overestimates) risk. The VR is formally tested by the UC test, and the 

VaR model is correct according to the exceptions ratio under the null hypothesis. Though 
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a VaR model may be adequate in the sense of the coverage test, the exceptions may occur 

in successive days. This could cause the bankruptcy of a financial institution with a 

greater likelihood than if the exceptions happened independently. For this reason, an 

independence hypothesis test is also performed. The null hypothesis is the independent 

occurrence of the exceptions.11  

 
11 More details about these hypothesis tests can be found in Christoffersen (1998 and 2003) and Danielsson 

(2011). 
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Table 2: Backtesting results for DJIA log returns: # Exceptions, Violation ratio and Unconditional Coverage and Independence Tests 

 RRS (2010)   Our analysis   

Model Exceptions Exceptions VR ucLR  p-value indLR  p-value  

ARMA-GARCH-Normal  20  27   2.3076   14.7603  0.0001   1.2768   0.2585  

ARMA-GARCH-t:         

    · fixed 𝜈  3 {𝜈 = 5}  4 {𝜈 = 3}  0.3419   6.8647   0.0088   0.0274   0.8684  

    · changing 𝜈 -  15   1.2820   0.8632  0.3528   0.3899   0.5323  

ARMA-GARCH-POT  1 {u =1.02% and 3,000 

days rolling window} 

 14 {u =10%}  1.1966   0.4296   0.5121   0.3394   0.5602  

ARMA-GARCH- α-stable:         

    · ML  11  12   1.0256   0.0077   0.9300   0.2489   0.6178  

    · RegK   -  10   0.8547   0.2624   0.6085   0.1726   0.6778 

ARMA-GARCH-g-and-h   -  8   0.6837   1.3294   0.2489   0.1102   0.7398  

Backtesting period 1,130 days 1,170 days      

95% confidence interval for 

the number of exceptions 

[4, 17] [5, 18]      

The left column of the table replicates results shown by RRS (2010) in their Figure 6. The footnote of the figure says: “Note: the backtesting period 

is 1,130 days and the 95% confidence interval for the number of exceedances is [4, 17]”. The rest of the columns show our own results: the number 

of exceptions, the violation ratio (VR), and the likelihood ratios for both the unconditional coverage test (LRuc) and the independence part of the 

conditional coverage hypothesis (LRind). Both tests are proposed by Christoffersen (1998). RRS (2010) employ ν=5 to estimate ARMA-GARCH-

t, while our study uses ν=3. Alternatively, we also evaluate ARMA-GARCH-t by estimating the degrees of freedom parameter in each step of the 

rolling window. α-stable-ML indicates that the parameters have been estimated using ML (the pdf is obtained by direct integration of the 

characteristic function), and α-stable-RegK uses the Koutrouvelis method to estimate the parameters. Dataset for our estimates: daily logarithmic 

returns of the DJIA index during the backtesting period July 2005 to December 2009 (1,170 days) obtained from 500-day rolling windows. 
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Table 3: Descriptive Statistics for CHF/USD, EuroStoxx50, VIX and Commodity Index 

returns  

  Statistics   CHF/USD   EuroStoxx50 VIX BCOM 

Mean 0.0063 -0.0111 -0.0340 -0.0323 

Median -0.0131 0.0000 0.3044 0.0000 

Standard deviation  0.6449 1.5278 7.2746 1.1176 

Variance 0.4159 2.3344 52.9201 1.2490 

Skewness  -0.0991 0.0257 -0.7431 -0.3296 

Kurtosis  4.9506 8.2881 6.8337 6.1266 

Minimum -3.4831 -8.2078 -49.6007 -6.4023 

Maximum  2.4405 10.4376 35.0588 5.6474 

The table presents descriptive statistics for the daily logarithmic returns of the US dollar spot 

exchange rate versus the Swiss Franc (CHF/USD), the DJ Euro Stoxx 50 Index (EuroStoxx50), 

the CBOE Volatility Index (VIX) and the Bloomberg Commodity Index (BCOM). Period from 

November 2006 to December 2015. 

 

As expected, VaR models that do not satisfy the confidence interval for the number of 

exceptions are the same models where the null hypothesis is rejected for the UC test (fourth 

column of Table 3). These models are ARMA-GARCH-normal and ARMA-GARCH-t (𝜈 = 

3). The independent occurrence of the exceptions hypothesis cannot be rejected for all models. 

This means that ARMA(1,1)-GARCH(1,1) is a sound model to capture the volatility process.  

 

1.7  Backtesting for different portfolios 

In this section, we analyze the performance of the considered methods to compute the 

VaR on four diversified portfolios during a large time period that includes the worst financial 

crisis since the Great Depression. The period from November 2006 to December 2015 

contained a global financial crisis and economic crisis and a European debt crisis. Therefore, 

these characteristics make this period an ideal context for backtesting VaR. The selection of 

the period is deliberate; the period allows us to start the backtesting immediately after the 

bankruptcy of Lehman Brothers (September 15, 2008). The initial 500-day window to compute 

the VaR includes the beginning of the turmoil in August 2007 and the failure of this financial 

services firm.  
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Financial institutions allocate financial assets into classes. Four of the most usual 

classes are European stocks, US equity options, foreign currencies, and commodities. We 

consider three indexes and a foreign exchange rate as proxies of the typical well-diversified 

portfolios that financial institutions hold. The data correspond to the US dollar spot exchange 

rate versus the Swiss Franc (CHF/USD), the DJ Euro Stoxx 50 Index (henceforth 

EuroStoxx50), the Chicago Board Options Exchange Volatility Index (VIX) and the 

Bloomberg Commodity Index (BCOM).  

Our period consists of 2,370 working days. We compute 2,369 logarithmic returns 

as  𝑟𝑡 = 100log(𝑃𝑡 𝑃𝑡−1⁄ ) from the daily prices of each time series. Figure 1 shows the prices 

in the upper panel and the returns in the lower panel. The vertical line represents the beginning 

of the backtesting period. The figures depict the extreme volatility that characterizes the period. 

Table 3 shows descriptive statistics for the analyzed time series. The returns exhibit heavier 

tails than normal. EuroStoxx50 returns show the largest kurtosis, and VIX returns are the most 

dispersed (standard deviation is 7.27).  
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Figure 1: Prices and returns of the four portfolios 

 

Daily prices and logarithmic returns of the US dollar spot exchange rate versus the Swiss Franc 

(CHF/USD), the DJ Euro Stoxx 50 Index (EuroStoxx) expressed in US dollars, the CBOE 

Volatility Index (VIX) and the Bloomberg Commodity Index (BCOM). Period from November 

2006 to December 2015.  
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We use the same distributions described in the previous section to compute the VaR 

and evaluate the goodness of each VaR model forecast. We also learn from the results of the 

previous section to choose the v and u parameters. In the case of ARMA-GARCH-t, degrees 

of freedom v is estimated in each step of the rolling window. In the case of ARMA-GARCH-

POT, the value of threshold u is fixed at the commonly used 10%. The window size for the 

rolling window used during the backtesting period is 500 days. Then, the backtesting analysis 

includes 1,869 days, from October 2008 to December 2015. The expected number of 

exceptions is approximately 19 when a 99% VaR is calculated, and the 95% confidence interval 

for the exceptions is between 10 and 27.  

Figure 2 plots the temporal evolution of the VaR of the EuroStoxx50 returns and 

highlights where the exceptions are for each estimation model. Tables 4 and 5 show the 

numerical results of the backtesting analysis. ARMA-GARCH-normal performs well only for 

CHF/USD and commodity returns. The normal distribution produces good backtesting results 

when the asset returns exhibit not as heavy tails as in the case of CHF/USD and commodity 

returns. Their kurtosis values are 4.95 and 6.12, respectively, less than the other two asset 

returns where the normal model under-predicts risk. On the other hand, ARMA-GARCH-t, 

ARMA-GARCH-g-and-h and ARMA-GARCH-α-stable(RegK) do not work well for VIX 

returns. The g-and-h distribution tends to over-predict risk for the analyzed asset returns 

because the violation ratio is less than one. Both ARMA-GARCH-POT and ARMA-GARCH-

α-stable(ML) perform well for the analyzed time series.  
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Figure 2: Backtesting for EuroStoxx-50 returns: VaR estimates and exceptions 

 

 

 

Dataset: daily VaR estimates and exceptions during the backtesting period October 2008 to 

December 2015 (1,870 days) obtained from daily logarithmic returns of the DJ EuroStoxx 50 

index expressed in US dollars using 500-day rolling windows. 
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Table 4: Backtesting Results for four portfolios and five estimation methods: number of 

exceptions 

95% confidence interval for number of exceptions = [10, 27].  

Expected number of exceptions = 19. 

Model  CHF/USD EuroStoxx50  VIX  BCOM 

ARMA-GARCH-normal  25 40 57 26 

ARMA-GARCH-t (changing v) 25 26 36 17 

ARMA-GARCH-POT (u = 

10%)  

23 23 23 17 

ARMA-GARCH- -stable-ML 20 20 13 19 

ARMA-GARCH- -stable-

RegK  

20 13 8 16 

ARMA-GARCH-g-h  14 12 10 14 

The number of degrees of freedom v in ARMA-GARCH-t is estimated in each step of the 

rolling window. The threshold in ARMA-GARCH-POT is fixed in u = 10%. α-stable-ML 

indicates that the parameters have been estimated using ML (the pdf is obtained by direct 

integration of the characteristic function), and α-stable-RegK uses the Koutrouvelis method to 

estimate the parameters. Dataset: daily logarithmic returns of the CHF/USD, the DJ Euro Stoxx 

50 Index (EuroStoxx50), the CBOE Volatility Index (VIX) and the Bloomberg Commodity 

Index (BCOM). The backtesting period ranges from October 2008 to December 2015 (1,869 

days) obtained from 500-day rolling windows. 

 

Table 5: Unconditional Coverage and independence tests for the different portfolios 

Model  VR   ucLR    p-value   indLR    p-value  

Panel a: CHF/USD 

Normal  1.34 1.9459 0.1630 0.8953 0.3440 

Student’s t  1.34 1.9459 0.1630 0.8953 0.3440 

POT (u = 10%)  1.23 0.9353 0.3335 1.1356 0.2866 

 -stable-ML 1.07 0.0906 0.7633 0.4329 0.5106 

 -stable-RegK  1.07 0.0906 0.7633 0.4329 0.5106 

g-and-h  0.75 1.3018 0.2538 0.2114 0.6456 
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Panel b: EuroStoxx 50 

Normal  2.14 18.4976 0.0000 1.1733 0.2787 

Student’s t  1.39 2.5745 0.1086 0.7340 0.3916 

POT (u = 10%)  1.23 0.9353 0.3334 0.5735 0.4489 

 -stable-ML 1.07 0.0906 0.7633 0.4329 0.5106 

 -stable-RegK  0.69 1.9585 0.1617 0.1822 0.6695 

g-and-h  0.64 2.7702 0.0960 0.1552 0.6936 

      

Panel c: VIX 

Normal  3.05 51.2959 0.0000 0.8082 0.3686 

Student’s t  1.93 12.7403 0.0003 1.7213 0.1895 

POT (u = 10%)  1.23 0.9353 0.3335 4.6534 0.0310 

 -stable-ML 0.69 1.9584 0.1616 0.1822 0.6694 

 -stable-RegK  0.43 7.8649 0.0050 0.6882 0.7931 

g-and-h  0.53 4.9127 0.0267 0.1076 0.7428 

      

Panel d: Commodity 

Normal  1.39 2.5745 0.1086 0.7340 0.3916 

Student’s t  0.91 0.1592 0.6899 0.3123 0.5763 

POT (u = 10%)  0.91 0.1592 0.6899 0.3123 0.5763 

 -stable-ML 1.01 0.0051 0.9427 0.3904 0.5320 

 -stable-RegK  0.85 0.4111 0.5214 0.2765 0.5990 

g-and-h  0.75 1.3018 0.2538 0.2114 0.6456 

The number of degrees of freedom v in ARMA-GARCH-t is estimated in each step of the 

rolling window. The threshold in ARMA-GARCH-POT is fixed at u = 10%. α-stable-ML 

indicates that the parameters have been estimated using ML (the pdf is obtained by direct 

integration of the characteristic function), and α-stable-RegK uses the Koutrouvelis method to 

estimate the parameters. VR is the violation ratio. LRuc is the likelihood ratio test for 

unconditional coverage. LRind is the likelihood ratio test of the independence part of the 

conditional coverage hypothesis. Both tests are proposed by Christoffersen (1998). Dataset: 

daily logarithmic returns of the CHF/USD, the DJ Euro Stoxx 50 Index (EuroStoxx50) 

expressed in US dollars, the CBOE Volatility Index (VIX) and the Bloomberg Commodity 
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Index (BCOM). The backtesting period ranges from October 2008 to December 2015 (1,869 

days) obtained from 500-day rolling windows. 

 

The UC test shown in Table 5 confirms the results obtained in Table 4. The null 

hypothesis of the independence test cannot be rejected in any model. The GPD and α-stable 

distributions perform well for the analyzed cases in this paper. However, special care must be 

taken when estimating its parameters. POT-GPD accuracy depends on the threshold selection. 

As observed in the previous application, a careless selection of the threshold yields poor 

backtesting results. The ML estimation is not directly applied to the α-stable distribution 

because its pdf is not analytically expressible; however, Nolan (2001) developed fast and 

accurate techniques to estimate the parameters of the α-stable distribution, as confirmed with 

the good results of the backtesting procedure.  

 

1.5 Conclusions of Chapter 1 

The best model to capture tail events and to quantify accurate risk measures is still an 

open question in quantitative risk management. The literature shows that several distributions 

capture the skewness and heavy tails of financial asset returns. In our study, we examine the 

performance of Student’s t, GPD, α-stable and g-and-h distributions to address one of the main 

financial risk management challenges. The current VaR models have been subjected to a great 

deal of criticism since the bailouts and failure of several financial institutions during the last 

financial crisis. We examine the forecasting ability of these distributions through a backtesting 

analysis of an extremely demanding sample period. Additionally, the estimation of the α-stable 

distribution is a challenge. We check two alternative estimation methods: the ML method 

(which, according the literature, provides more accurate results than other methods but is 

computationally expensive) and methods developed by Nolan (2001) that provide both fast and 

accurate results.  

Consistent with the financial literature, we conclude that the GPD, α-stable and g-and-

h distributions perform well for heavy-tailed data in our sample period. Therefore, we also 

recommend the use of the g-and-h distribution that incorporates skewness and kurtosis in the 

VaR calculation. Although there is no closed expression for its pdf, the parameter estimation 

of it is simpler than the α-stable case. However, the risk measures obtained by the g-and-h 
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model are very conservative for not data that are not so heavy tailed. For this case, the GPD 

and the α-stable distribution also work well. The POT method employs exceedances over a 

certain threshold, while the α-stable employs all data. The threshold selection is a drawback in 

EVT because there is a tradeoff between bias and variance in estimating the GPD parameters. 

Nevertheless, satisfactory VaR results are obtained when the 10th percentile is chosen as a 

threshold. Future research will be conducted to test coherent risk measures with the models 

analyzed in this paper. 
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Chapter 2. Quantifying risk in traditional energy investments12 

Abstract 

As investors are increasingly concerned about the risks associated to the environmental and 

financial impact of burning of fossil fuels (oil, natural gas and coal), we examine the ability of 

the recently adopted expected shortfall (ES) risk measure to properly quantify market risk for 

a sustainable fossil-free stock index and a highly consumable fuel dependent index. We obtain 

evidence that a newly proposed backtesting procedure for the ES based on multinomial tests is 

an adequate and simple method to validate these risk measure when applied to a highly volatile 

stock index. Backtesting results of the ES show that flexible heavy-tailed distribution α–stable 

performs well for modelling the loss distribution. These results are even better off when the 

variances of fossil fuel price returns are included as external regressors in the GARCH model 

variance equation. In this case, the ES computed from the four considered loss distributions 

perform properly. 

Keywords: Oil and gas industry; Expected shortfall; Backtesting; Sustainability index 

 

2.1 Introduction of Chapter 2 

 

The debate on the role of fossil fuels in climate change affects all facets of society. The 

financial industry is also being affected, both by a progressive increase in awareness of the 

potential impact of climate change on investments, and by the risk of fossil fuels becoming 

“stranded”, i.e. unburned or in the ground, as regulation increases. The traditional energy 

industry is currently exposed to downside risks from write-offs or revaluations of these 

unsustainable assets. However, companies in the traditional energy industry have been used for 

diversification purposes and have demonstrated their potential to provide high realized returns 

along with high volatility as commodity prices rise or fall. While there is a move towards 

divestment in fossil fuels, replacing investment in the traditional energy sector with other 

sustainable investments, individual and institutional investors seek to balance risk and expected 

return.13  

 
12 A version of this chapter has been published in Sustainability Journal, co-authored with Antonio Díaz and 

Gonzalo García-Donato. 
13 For instance, the Rockefeller Family Fund publicly announced its decision to divest from fossil fuels. In 

addition, a report by Moody’s (Adams et al., 2016) notes that 175 oil and mining companies were on below 
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The existing literature proposes several risk measurement tools to provide financial 

institutions, risk managers and market participants with appropriate technical approaches to 

measure the risk of the financial markets. It is therefore important for these market players to 

adequately quantify the potential economic loss of their investments. In the case of the 

traditional energy industry, the literature focuses risk quantification based on Value-at-Risk 

(VaR), but there is scarce work regarding the new trend-setting topic of the Expected Shortfall 

(ES) backtest. In this paper, we examine the use and validation of the ES or Conditional Value-

at-Risk (CVaR), as the risk measure recently recommended by banking regulators, in two 

broadly diversified investments, one in the traditional energy industry and one excluding fossil 

fuel companies, during the last decade. In addition, we implement a new ES backtesting 

procedure based on multinomial tests. 

The main focus of our research in this paper is to examine the ability of ES risk measures 

to correctly quantify the risk the investments in the oil, gas and coal industry investments. ES 

is defined as the expected loss conditional on the loss being greater than the VaR level. In 

January 2016, financial regulators propose the use of the ES instead of VaR to prudently 

capture tail risk and capital adequacy. This change is challenging for portfolio and risk 

managers because it is not clear which validation method the regulator and the industry should 

use to test the proposed risk measure, i.e., it is not clear how to evaluate the goodness of the 

ES risk measure. Currently, there is a vivid debate in academia and the financial industry about 

how to validate internal models in regulatory capital under ES calculation. In this paper, we 

apply the new method proposed by Kratz et al. (2018) to validate ES. As this risk measure can 

be approximated as a weighted sum of different levels of VaRs; this method consists of utilizing 

a multinomial test instead of several independent binomial tests.  

Our paper makes four contributions to the literature on risk measurement in the context 

of the traditional energy markets. The high volatility of the stock returns of the companies of 

energy industry provides a suitable and demanding dataset to examine the performance of the 

proposed ES backtesting technique. First, we employ several GARCH models to adequately 

model the risk of a broadly diversified portfolio of traditional energy industry stocks over a 

long period of time that includes periods of calm, turmoil and severe financial and economic 

crises. Second, the behavior of this portfolio is examined in relation to the behavior of a 

sustainable equity portfolio to provide guidance to investors at a time when a divestment 

 
investment grade watch in early 2016, mainly because of the shift from carbon-intensive fossil fuel to renewable 

energy investment, i.e. transition risk, which affects oil prices. 
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movement is observed in the fossil fuel industry. Third, we applied a new ES backtesting 

procedure based on multinomial tests for different VaR levels instead of performing a binomial 

test for each VaR level as in the scarce previous literature on financial markets. To the best of 

our knowledge, this is the first attempt to apply multinomial tests on traditional energy and 

sustainable stock indexes. Fourth, we analyze the inclusion of exogeneous variables to improve 

the performance of the forecast volatility model as corroborated by the backtesting analysis.  

We proxy the traditional energy industry through the S&P 500 Oil, Gas and Consumable 

Fuels Index, called Traditional Index (TI), and the divestment movement in fossil fuels 

thorough the FTSE Developed ex Fossil Fuel Index, called Sustainable Index (SI). A simple 

descriptive analysis reveals that the global portfolio excluding fossil fuel industry assets 

performs financially better than the portfolio of assets related to the traditional oil and gas 

industry over the last decade. However, TI outperformances during the crisis and subsequent 

period of uncertainty, which is a good feature for portfolio and risk managers seeking to 

diversify overall risk of their portfolios. 

We consider four statistical models, normal, Student’s t, 𝛼–stable, and generalized 

Pareto, to examine the variability of negative log-returns of two broadly diversified stock 

indexes. The one-day-ahead VaR and ES are calculated by applying a rolling window of 250 

observations. Thus, the length of the backtesting period for both indexes is 2709 days with an 

expected number of exceptions of 27.09 for a 99%-VaR. We compute the well-known binomial 

tests for VaR at 99% and the two new multinomial tests, i.e. the Pearson and Nass statistics, 

proposed by Kratz et al. (2018), for 97.5%-ES backtesting. 

The results of the multinomial and binomial tests show that flexible heavy-tailed 

distribution α–stable performs well for data employed in our paper. This is important for 

regulation purposes and for practitioners. For market risk, the main difficulty is the ES 

backtesting method as noted above, but this work sheds light on solving this problem. 

Moreover, we find that including variance of unsustainable asset returns as external regressors 

in the GARCH model help improve the backtesting results. In this case, the ES computed from 

the four considered loss distributions perform properly. 

The rest of the paper is organized as follows: we present a survey of the relevant literature 

in Section 2 of the paper. Section 3 presents the models and the backtesting methodology, 

Sections 4 and 5 analyze the data and the results on ES backtesting, and Section 6 concludes 

the paper. 
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2.2 Literature review 

There is an academic literature on the modelling of the risk of highly volatile prices of 

both energy commodities and energy stocks and derivatives. Energy commodity markets are 

naturally vulnerable to significant price changes. It is therefore important to model these price 

fluctuations and implement an effective tool for managing energy price risk. VaR has become 

a popular risk measure in the financial industry. The internal model approach under the Basel 

II framework proposes VaR as a risk measure to gauge the amount of assets needed to cover 

possible losses, i.e., the minimum regulatory capital requirements. A variety of works have 

been published on risk quantification applied to different financial assets (e.g., stocks, bonds, 

commodities, and derivatives), and several backtesting methods have been proposed to validate 

VaR models (see for instance Christoffersen, 1998; for different VaR forecasting tests).14 

VaR answers the question of how much we can lose with a given probability over a given 

time horizon.15 The popularity of this instrument is essentially due to its conceptual simplicity. 

VaR reduces the risk associated with any portfolio to a single number, the loss associated with 

a given probability. In addition, VaR helps portfolio managers determine the most appropriate 

risk management policy for each situation. Thus, VaR is the primary tool used to forecast 

extreme declines in returns and is often used for designing optimal risk management strategies.  

Previous literature examines the use of VaR to measure risks in energy markets. They 

use different return distributions in order to estimate VaR from oil and carbon prices (e.g., 

Cabedo and Moya, 2003, Ewing and Malik, 2010, Feng, Wei, Wang, 2012). Some studies 

consider GARCH specifications to model heavy-tailed and asymmetric return distributions for 

VaR estimation from energy commodity prices (e.g., Costello et al., 2008, Fan et al., 2008, 

Hung et al., 2008, Marimoutou, Raggad, and Trabelsi, 2009, Youssef, Belkacem, and Mokni, 

2015, Bunn et al., 2016, Lux et al., 2016, Wang, Liu, Ma, and Wu, 2016, Lyu et al., 2017, 

Ewing, Malik and Anjum, 2018) and from their financial derivative prices and even from 

carbon dioxide emission allowance prices (e.g., Nomikos and Pouliasis, 2011, Segnon et al., 

 
14 The idea is to calculate the number of times the actual losses have exceeded the estimated VaRs. It is expected 

that the number of exceptions is approximately 1% of cases when a 99% VaR is calculated. If the percentage of 

exceptions is higher (lower) than 1%, then the VaR model underestimates (overestimates) risk. 
15 VaR is defined as the  quantile of a relevant profit and loss (P&L) distribution to assess the risk exposure of 

single investments and portfolios. It estimates how much a portfolio might lose, given normal market 

conditions, over a target horizon such that there is a low, prespecified probability that the actual loss will be 

larger. 
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2017). Alternative methodologies to capture downside risks for crude oil prices are also used 

(e.g., Huang et al., 2008, Chiu et al., 2010, He et al., 2011, Herrera, 2013). For multivariate 

analysis cases, recent papers propose copula approaches to model dependence between 

different crude oil markets or between crude oil and other energy markets (e.g., Aloui et al., 

2014, Jäschke, 2014, Zolotko et al., 2014, Ghorbel et al., 2014, Lu et al., 2014, González-

Pedraz, 2014). 

Nevertheless, financial regulatory entities have recently expressed concern about the 

inability of VaR to capture tail risk. It is not a “coherent” measure of risk because it does not 

satisfy the property of “subadditivity” (Artzner et al., 1999). In addition, VaR does not allow 

the magnitude of losses suffered above the threshold to be known. In January 2016, the Basel 

Committee on Banking Supervision changes from requiring banks to calculate market risk 

capital on the basis of VaR to using ES on the behavior of market variables during a 250-day 

period of stressed market conditions.16 ES, C-VaR or expected tail loss is the expected loss 

conditional on the loss being worse than the VaR loss. As with VaR, ES attempts to provide a 

unique number that summarizes the total risk in a portfolio. The use of ES poses a challenge to 

portfolio and risk managers because it is not clear which validation method the regulator and 

the industry will employ to test the proposed risk measure, i.e., it is not clear how to evaluate 

the goodness of the ES risk measure. A backtesting method for ES is not as straightforward as 

in the case of VaR, due to ES not satisfying the elicitability property (e.g., Weber, 2006; 

Gneiting, 2011). An appropriate scoring function that this risk measure can minimize does not 

exist. In fact, the Basel Committee proposes to use ES to calculate capital requirements, but 

instead proposes to carry out the backtest using a VaR measure.17 

Literature on the use of ES in the energy industry is scarce. Some studies use ES 

constraints in the optimization programs to choose investment projects (e.g., Bruno and 

Sagastizábal, 2011, Tekiner-Mogulkoc et al., 2015, Hemmati et al., 2016, Lu et al., 2016; 

Roustai, et al., 2018). Other papers include the ES as risk objective function in the estimation 

of hedging strategies to reduce price volatility risk into energy markets (e.g., Alizadeh et al., 

2008, Conlon and Cotter, 2013, Chai and Zhou, 2018). The authors suggest that ES should be 

an appropriate metric accounting for some properties of the energy assets. Finally, Youssef et 

 
16 The “Fundamental Review of the Trading Book” (Basel Committee on Banking Supervision, January 2016) 

changes the measure to use for determining market risk capital. Instead of VaR with a 99% confidence level, 

expected shortfall (ES) with a 97.5% confidence level is proposed. 
17 The “Fundamental Review of the Trading Book” states that the backtesting requirements continue to be based 

on the 1-day static VaR measure considering 250 days of (rolling) window size. 
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al. (2015) apply both VaR and ES to model the price risk of four energy commodities. To 

backtest ES, they use a circular bootstrap method from the one-sided test proposed by McNeil 

and Frey (2000). They conclude that the forecasted ES measure captures actual shortfalls in a 

satisfactory manner. 

There are several important differences between these prior papers and our own research 

in this paper. First, we examine the correct measurement of the risk borne by the equity 

portfolios of companies in the traditional energy sector and of companies in all sectors, 

excluding those related to the fossil fuel sector. Second, we analyze a new ES backtesting 

method in a highly volatile financial asset. Third, we study the inclusion of exogeneous 

variables to improve the performance of the forecast volatility model.  

 

2.3 The Model and Methodology 

VaR and ES approaches model the left tail of the return distribution or, similarly, the 

right tail of the loss distribution. The losses or negative log-returns over the next day are defined 

here as Lt+1 = −100log(Pt+1/Pt), where Pt represents the corresponding index prices. As it is 

commonly employed in the literature (see, e.g., McNeil et al., 2005), we suppose that 

conditional on the location-scale parameters 𝜇𝑡+1 and 𝜎𝑡+1, negative log-returns follow 𝐿𝑡+1 =

𝜇𝑡+1 + 𝑡+1, and the innovations are 𝑡+1 = 𝑡+1𝑍𝑡+1. The random variables 𝑍𝑡+1 are assumed 

to be independently distributed with a common cumulative distribution function (CDF) 𝐺 that, 

for certain cases, depends on unknown parameters. We discuss several possibilities for 𝐺 in the 

next section. The parameter 𝜇𝑡+1 is modeled by an ARMA(1,1) process, and a GARCH(1,1) 

process is employed for 𝜎𝑡+1, that is, 

𝜇𝑡+1 = 𝜃0 + 𝜃1𝜇𝑡 + 𝜃2𝜀𝑡 + 𝜀𝑡+1, 

𝜎𝑡+1
2 = 𝛽0 + 𝛽1𝜀𝑡

2 + 𝛽2𝜎𝑡
2 + 𝛾1𝑣𝑎𝑟𝑡

𝑜𝑖𝑙 + 𝛾2𝑣𝑎𝑟𝑡
𝑔𝑎𝑠

+ 𝛾3𝑣𝑎𝑟𝑡
𝑐𝑜𝑎𝑙,                                                

(1) 

where 𝜃1 and 𝜃2 are the parameters associated of AR(1) and MA(1) respectively. Apart from 

the variables of the standard GARCH(1,1) model, the variances of oil, gas and coal price returns 

are considered as external regressors. Thus, our empirical results consider two methods of 

backtesting. One method excludes the external regressors (i.e. 𝛾1 = 𝛾2 = 𝛾3 = 0) from the 
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GARCH model, and the other method takes into account these variables in the variance 

equation of the GARCH model. Given a probability level 𝛼, the VaR can be expressed as  

𝑉𝑎𝑅𝛼 = 𝜇𝑡+1 + 𝜎𝑡+1𝑞𝛼,                              (2) 

where 𝑞𝛼 is the 𝛼 quantile of 𝐺. The ARMA-GARCH model is implemented by using 

rugarch package in R.18 

 

3.1. Distributions and estimation strategy 

In the ARMA(1,1)-GARCH(1,1) setting above, the location and variability of negative 

log-returns are modeled through the parameters 𝜇𝑡+1 and 𝜎𝑡+1. The distribution 𝐺 should be 

free of any such parameters (to avoid identifiability issues) and must account for other 

important features, such as asymmetry and/or kurtosis. In particular, the statistical models we 

consider are: (i) normal (used for comparative purposes), (ii) Student’s t, (iii) 𝛼–stable, and 

(iv) generalized Pareto. 

(vi) Normal distribution 

The CDF of a standard normal distribution is given by 

𝛷(𝑥) = ∫
1

√2𝜋
𝑒−

𝑡2

2 𝑑𝑡
𝑥

−∞
.                                          (3) 

 

(vii) Student’s t distribution 

The CDF of a Student’s t distribution is given by 

𝐻(𝑥) = ∫
𝛤(

𝜈+1

2
)

√𝜋𝜈𝛤(
𝜈

2
)

(1 +
𝑡2

𝜈
)

−
𝜈+1

2𝑥

−∞
𝑑𝑡,                           (4) 

where 𝛤 represents the gamma function, and 𝜈 > 0 is the degrees of freedom parameter that 

controls the kurtosis (small values of 𝜈 correspond to heavier tails). The Cauchy distribution is 

a particular case when 𝜈 = 1. 

(viii) 𝛼–stable distribution 

The 𝛼–stable distribution is commonly described by its characteristic function, since 

the probability density function (PDF) is not available in closed-form. 

 
18 Ghalanos, A. (2018). rugarch: Univariate GARCH models. R package version 1.4-0. 
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𝐸[𝑒𝑖𝑡𝑋] = {
𝑒𝑥𝑝 (− (1 − 𝑖𝛽(𝑠𝑖𝑔𝑛(𝑡)) tan

𝜋𝛼

2
))    if   𝛼 ≠ 1,

𝑒𝑥𝑝 (|𝑡| (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛(𝑡)) ln|𝑡|))       if   𝛼 = 1,

   (5) 

where the 𝑠𝑖𝑔𝑛(𝑡) function is defined as 1 if 𝑡 > 0; 0 if 𝑡 = 0 and −1 otherwise. 

The parameters in this distribution are the index of stability (characteristic exponent) 𝛼 ∈

(0,2] and a skewness parameter 𝛽 ∈ [−1,1]. There are three cases with known closed-form 

expressions for their densities: the normal (when 𝛼 =  2 and 𝛽 =  0), Cauchy (𝛼 =  1 and 𝛽 =

 0), and Lévy distributions (𝛼 =  1/2 and 𝛽 =  0). The smaller the value of 𝛼, the heavier the 

distribution tail. The stable package for R developed by Nolan is employed to fit Stable 

distribution. 

(ix) The generalized Pareto distribution (GPD) 

The CDF of the GPD is given by 

𝐹𝜉,𝛽(𝑥) = {
1 − (1 + 𝜉 𝑥 𝛽⁄ )−1 𝜉⁄ , if  𝜉 ≠ 0

1 − exp(− 𝑥 𝛽⁄ ),          if  𝜉 = 0
,   (6) 

where 𝜉 is the shape parameter and 𝛽 is the scale parameter. When 𝜉 > 0, the GPD is the Pareto 

distribution; when 𝜉 = 0, it is the exponential distribution; and when 𝜉 < 0, the distribution is 

the Pareto type II distribution. Heavy-tailed empirical distributions usually follow a GPD with 

a positive shape parameter 𝜉 > 0.  

When 𝐺 is either a normal or a Student’s t distribution, the parameters for the 

ARMA(1,1)-GARCH(1,1) and for the innovations are estimated jointly by employing the 

Maximum Likelihood (ML) estimation. A two-step approach is used to estimate the parameters 

for the cases where 𝐺 is either a 𝛼-stable or a generalized Pareto distribution. First, the Quasi-

ML (QML) method is used to estimate the parameters in the ARMA(1,1)-GARCH(1,1), thus 

allowing estimations of the underlying innovations to be produced, say, ̂𝑡+1. Specific methods 

are then performed in a second step to estimate the parameters in 𝐺: 

• For the 𝛼-stable distribution, the ML approach is employed by using the direct 

integration method in Nolan (2001). 

• For the generalized Pareto distribution, the peaks over threshold (POT) method is 

employed to estimate the parameters. According to McNeil et al. (2005), the VaR or 

𝛼-quantile is obtained from 

𝑞𝛼(𝑍) = 𝑢 +
𝛽

𝜉
[(

1−𝛼

𝑇𝑢 𝑇⁄
)

−𝜉

− 1],                             (7) 
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where u is the chosen threshold, 𝛽 and 𝜉 are the scale and shape parameters, 

respectively, 𝑇𝑢 is the threshold exceedances, and 𝑇 is the sample size. Therefore, 𝑇𝑢 𝑇⁄  

is an empirical estimator for the excess distribution. In this paper, the threshold is 

chosen as the 10th percentile of the standardized residuals of the negative log-returns 

as is typical in the literature (Chavez-Demoulin, 1999, Nomikos and Pouliasis, 2011, 

McNeil et al., 2000, Araújo-Santos et al., 2013, Díaz et al., 2017). The evir package in 

R is employed to implement the EVT-GPD model. 

 

3.2 Backtesting ES 

As mentioned above, the method to be used to validate the results of the application of 

the ES remains an open question. Fissler et al. (2016) show that ES and VaR are jointly 

elicitable, and the authors propose a scoring function that is more complicated than the well-

known scoring function for VaR. Comparative tests can then be performed following the 

Diebold-Mariano test (e.g., Del Brio et al., 2017). Based on the Monte Carlo simulations, 

Acerbi et al. (2014) propose other tests for ES; following the argument that VaR and ES are 

jointly elicitable, in this paper, we employ the simple approach proposed by Kratz et al. (2018) 

to validate ES calculations in an implicit manner. ES can be approximated by a weighted sum 

of VaR levels (Emmer et al., 2015), and then, a multinomial test can be performed rather than 

the binomial test for each VaR level. This paper extends applications of Kratz et al. (2018) to 

traditional energy and sustainable indexes. Moreover, our work considers an ARMA-GARCH 

model with external regressors to filter the negative log-returns of the analyzed assets, whereas 

Kratz et al. (2018) employ the ARCH and GARCH models. 

Following the Kratz et al. (2018) notation, ES can be calculated as in Acerbi et al. 

(2002) 

ES𝛼(𝐿) =
1

1−𝛼
∫ 𝑞𝑢(𝐿)

1

𝛼
𝑑𝑢.      (8) 

A simple approximation can be obtained from different quantiles (Emmer et al., 2015)  

ES𝛼(𝐿) ≈
1

4
[𝑞𝛼(𝐿) + 𝑞0.75𝛼+0.25(𝐿) + 𝑞0.5𝛼+0.5(𝐿) + 𝑞0.25𝛼+0.75(𝐿)], 
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where 𝑞𝛼(𝐿) = VaR𝛼(𝐿). Kratz et al. (2018) then propose backtesting for ES by 

simultaneously backtesting multiple VaR estimates. Backtesting is based on multinomial tests 

of VaR exceptions. It is worthwhile to mention that the approximation can be generalized as 

ES𝛼(𝐿) ≈
1

𝑁
∑ 𝑞

𝛼+
𝑖−1

𝑁
(1−𝛼)

(𝐿),𝑁
𝑖=1      (9) 

where 𝑁 is the number of quantiles to be used in the approximation. Although a higher 𝑁 

results in a better estimation of ES, simulations performed by Kratz et al. (2018) show that four 

quantiles provide reasonable size and power for the backtest. It is also noteworthy that the 

previous notation implies that risk measures are calculated over the loss distribution, i.e., the 

right tail of the distribution.  

The number of exceptions (violations) are estimated given a certain model (distribution) 

and for each confidence level. As is typical in the literature, the exception indicator at each 

time 𝑡 is defined as a function that takes value 1 if a loss has exceeded the VaR level. That is, 

𝐼𝑡,𝑖 = 𝐼
{𝐿𝑡>VaR𝛼𝑖,𝑡},

      (10) 

where 𝛼𝑖 is as follows: 

𝛼𝑖 = 𝛼 +
𝑖−1

𝑁
(1 − 𝛼),    (11) 

for 𝑖 = 1, … , 𝑁, with 𝛼0 = 0 and 𝛼𝑁+1 = 1. 

Then, the number of exceptions 𝑋𝑡 at each time 𝑡 is given by 

𝑋𝑡 = ∑ 𝐼𝑡,𝑖
𝑁
𝑗=1 .       (12) 

As the number of exceptions follows a multinomial distribution, the unconditional 

coverage property can be written as 

𝑋𝑡~MN(1, (𝛼1 − 𝛼0, … , 𝛼𝑁+1 − 𝛼𝑁)),     (13) 

Our interest is a measure that counts the outcomes {0,1, … , 𝑁} with probabilities 𝛼1 −

𝛼0, … , 𝛼𝑁+1 − 𝛼𝑁 that sum to one. The cell counts 𝑂𝑗  are then given by 

𝑂𝑗 = ∑ 𝐼{𝑋𝑡=𝑗}
𝑛
𝑡=1 ,      (14) 

where 𝑛 is the backtesting period, and 𝑗 = 0,1, … , 𝑁. Then, the random vector should follow 

the multinomial distribution  
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(𝑂0, … , 𝑂𝑁)~MN(𝑛, (𝛼1 − 𝛼0, … , 𝛼𝑁+1 − 𝛼𝑁)).      (15) 

The null and alternative hypotheses are given by 

H0: 𝜃𝑖 = 𝛼𝑖 for 𝑖 = 1, … , 𝑁 

H1: 𝜃𝑖 ≠ 𝛼𝑖 for at least one 𝑖 ∈ {1, … , 𝑁}, 

where 0 = 𝜃0 < 𝜃1 < ⋯ < 𝜃𝑁+1 = 1 is an arbitrary sequence of parameters from a specific 

model, and (𝑂0, … , 𝑂𝑁)~MN(𝑛, (𝜃1 − 𝜃0, … , 𝜃𝑁+1 − 𝜃𝑁)) (Kratz et al., 2018). 

 

Figure 3 illustrates an example for our case (97.5%-ES and 𝑁 = 4). 

 

Figure 3. Graphical representation for multiple VaR backtesting 

 

 

For this case, the number of exceptions 𝑋𝑡 for each 𝑡 is calculated as 

𝑋𝑡=1 = 𝐼1,1 + 𝐼1,2 + 𝐼1,3 + 𝐼1,4 = 0, 

𝑋𝑡=2 = 𝐼2,1 + 𝐼2,2 + 𝐼2,3 + 𝐼2,4 = 1, 

⋮ 
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𝑋𝑡=7 = 𝐼7,1 + 𝐼7,2 + 𝐼7,3 + 𝐼7,4 = 3.      (16) 

The cell counts 𝑂𝑗  are given by 

𝑂0 = ∑ 𝐼{𝑋𝑡=0} = 1𝑛
𝑡=1 , since 𝑋1 = 0, 

𝑂1 = ∑ 𝐼{𝑋𝑡=1}
𝑛
𝑡=1 = 1, since 𝑋2 = 1, 

𝑂2 = ∑ 𝐼{𝑋𝑡=2}
𝑛
𝑡=1 = 1, since 𝑋3 = 2, 

𝑂3 = ∑ 𝐼{𝑋𝑡=3}
𝑛
𝑡=1 = 3, since 𝑋4, 𝑋6, 𝑋7 = 3, 

𝑂4 = ∑ 𝐼{𝑋𝑡=4}
𝑛
𝑡=1 = 1, since 𝑋5 = 4.     (17) 

There are several multinomial tests; the most common is the Pearson chi-squared test, 

for which the test statistic 𝑆𝑁 follows a 𝜒𝑁
2  distribution under the null hypothesis: 

𝑆𝑁 = ∑
(𝑂𝑗+1−𝑛[𝛼𝑗+1−𝛼𝑗])

2

𝑛[𝛼𝑗+1−𝛼𝑗]
~ 𝜒𝑁

2 .𝑁
𝑗=0        (18) 

The null hypothesis is rejected at a prespecified type I error 𝜅 when 𝑆𝑁 > 𝜒𝑁
2 (1 − 𝜅).  

Another test is the Nass test, which is an improvement over the previous test when cell 

probabilities are small (Kratz et al., 2018). The test statistic is 𝜒𝜐
2 distributed under the null 

hypothesis: 

2E(𝑆𝑁)

var(𝑆𝑁)
𝑆𝑁 ~ 𝜒𝜐

2,      (19) 

where E(𝑆𝑁) = 𝑁, var(𝑆𝑁) = 2𝑁 −
𝑁2+4𝑁+1

𝑛
+

1

𝑛
∑

1

[𝛼𝑗+1−𝛼𝑗]

𝑁
𝑗=0  and 𝜐 =

2(E(𝑆𝑁))
2

var(𝑆𝑁)
. 

The null hypothesis is rejected at a prespecified type I error 𝜅 when 
2E(𝑆𝑁)

var(𝑆𝑁)
𝑆𝑁 >

𝜒𝜐
2(1 − 𝜅). 

 

2.4 Data 

The idea of the empirical section is to compare the validation of the risk model of 

investments that only include, or alternately exclude, shares of companies related to the fossil 

fuel industry. Therefore, our data comprise two sets of daily prices detailed as follows. We 

prepare one of the datasets to consider the companies that are not exposed to unsustainable 
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assets. We refer to these as the sustainable index (SI). It should capture the stock return 

behavior of sustainable companies. This first set of data corresponds to FTSE Developed ex 

Fossil Fuel Total Return Index. This index is a part of the Sustainability and Environmental, 

Social and Governance (ESG) indexes of FTSE Russell (other indexes with similar 

characteristics can be found at its website). This index is designed to represent the performance 

of FTSE All-World Index constituents after the exclusion of companies that have some 

exposure of revenues and/or reserves to fossil fuels. The second set of data is obtained from 

the S&P 500 Oil, Gas and Consumable Fuels Index.19 This index includes companies in the 

energy sector engaged in the exploration, production, refining, marketing, storage and 

transportation of oil, gas, coal and consumable fuels. It is used as proxy of the whole oil and 

gas industry and is referred to as the traditional oil and gas index (TI).  

Both indexes are capitalization-weighted and enable us to study the risk of investing in 

broadly diversified portfolios that include or exclude the traditional energy industry. The price 

data comprise information from July 31, 2006 to November 16, 2018 for a total of 3,210 price 

observations.20 Moreover, we are interested in the effect of variability of main stranded asset 

price returns in the variance behavior of the indexes. To this end, prices of oil, gas and coal 

have been collected for the same period of SI and TI indexes.21 The abovementioned data are 

obtained from Bloomberg platform.  

Table 6. Descriptive statistics for daily stock returns of the Portfolio SI (sustainable industry) 

and Portfolio TI (traditional oil and gas industry)  

  Statistics   SI Index   TI Index Oil returns Gas returns Coal returns 

Mean 0.024 0.007 -0.008 -0.019 0.016 

Median 0.070 0.000 0.000 0.000 0.000 

Standard deviation  1.002 (15.85) 1.638 (25.91) 2.324 (36.75) 3.034 (47.97) 1.500 (23.72) 

Skewness  -0.489 -0.261 0.134 0.617 0.697 

Excess Kurtosis  9.003 13.747 4.968 5.873 44.624 

Minimum -6.785 -16.294 -13.065 -18.054 -20.729 

Maximum  8.648 17.208 16.410 26.771 23.841 

Annual volatility in parentheses  

 
19 “Standard and Poor’s 500 Oil, Gas and Consumable Fuels Index is a capitalization-weighted index. The index 

was developed with a base level of 10 for the 1941-43 base period. The parent index is SPXL3. This is a GICS 

Level 3 Industries. Standard and Poor’s 500 (Industry) Index is a capitalization-weighted index. The index is 

designed to measure performance of the broad domestic economy through changes in the aggregate 

market value of 500 stocks representing all major industries. The index was developed with a base level of 10 

for the 1941-43 base periods.” Source: Bloomberg LP. 
20 The selection of the indexes and period is restricted to availability of data from Bloomberg platform. 
21 The Generic 1st ‘CL’ Futures (CL1), Generic 1st ‘NG’ Futures (NG1) and Richards Bay Coal Futures (XO1) 

are obtained for oil, gas and coal prices, respectively.  
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The descriptive statistics show that analyzed stock index returns exhibit very well-known 

stylized facts for financial asset daily returns. The mean and median returns of the TI are close 

to zero, but the SI shows a mean of 0.024% and a median of 0.071%. In terms of daily volatility, 

the TI shows a standard deviation which is approximately two-thirds greater than the SI. The 

index returns distributions display fat tails, since excess kurtosis is higher than 0. Moreover, 

the distributions are negative skewed, which implies more negative extreme values. Figure 4 

and 5 depict the returns for both indexes. The index returns exhibit similar characteristics and 

are remarkably affected by subprime crisis, as exhibited by the high volatility in approximately 

2007 and 2008, and the financial problems faced by most companies in oil and gas industry. 

For the stranded asset returns, gas presents the higher volatility, whereas coal exhibit fatter tails 

among the three assets, and all the analyzed asset returns display positive skewed distributions.  

Figure 4. Sustainable Index (SI) returns 
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Figure 5. Traditional oil and gas industry Index (TI) returns 

 

 

To show the temporal evolution of accumulated returns during the sample period, Figure 

6 depicts the value of an initial investment of 100 on each of the indexes on July 31, 2006. In 

the financial crisis period, TI investment value is higher than SI investment. However, after 

such period, particularly since 2012, SI investment has clearly outperformed TI investment. 

According to the compound annual growth rate (CAGR), the performance of SI investment is 

better off than TI investment during the analyzed period. Considering a year of 252 days (12.7 

years for 3,210 days) and final values (on November 16, 2018) for SI and TI of 184.95 and 

80.89 respectively, the CAGR for SI and TI investments are 4.95% and −1.65% respectively. 
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Figure 6. Value of an initial investment of 100 on each index 

 

The relationship between risk, as measured by standard deviation, and the rate of return 

of the traditional oil and gas industry index shows a worse performance than that observed for 

the sustainable asset index. Alternatively, we also analyze the risk-return combination 

considering ES as the measure of risk. The relation value of SI investment to potential loss 

outperforms the relation of TI investment to loss during the analyzed period, when loss is 

estimated based on 97.5%-ES.22 Figure 7 shows the evidence abovementioned. 

 
22 Values of 97.5%-ES estimated for Stable model are employed when external regressors are considered in the 

GARCH model. Thus, potential loss is calculated as 𝐿𝑜𝑠𝑠𝑡 = 𝐸𝑆𝑡
97.5(𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑡). 
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Figure 7.  Ratio of value index to potential loss 

 

 

Beyond other considerations relating to climate change awareness or the risk of further 

regulation of the fossil fuel industry, i.e. from a strictly financial point of view, the global 

sustainable portfolio excluding fossil fuel industry assets performs better than the portfolio of 

assets related to the traditional oil and gas industry over the last decade. Anyway, this relatively 

poor performance on the traditional oil and gas industry assets is not necessarily a bad result. 

An interesting feature for portfolio managers is the outperformance of this index during the 

crisis and subsequent period of uncertainty. During these periods, the correlation of these assets 

with the rest of the market tends to decrease, being very low or even negative. Therefore, they 

are assets to be included in a portfolio to diversify the overall risk.  

 

2.5 Empirical Results 

This section presents the results of computing VaR and ES from both datasets, SI and TI 

stock indexes, and provides the ES backtesting analysis in comparison with traditional 

backtesting methods for VaR. The backtesting is classified in two cases. One method considers 

the ARMA-GARCH model with different innovations presented in Section 3.1. to filter the 

returns of SI and TI indexes, whereas the second method includes the variance of stranded asset 
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presented in Table 7. The results show that the parameters related to oil, gas and coal variances 

are statistically not significant. In other words, variance of stranded assets does not seem to 

have explanatory power in the variance of SI and TI returns. In fact, the estimation of ARMA-

GARCH parameters when the variances of unsustainable assets are not included in the variance 

equation does not vary significantly comparing the estimation when the external regressors are 

taken into account. In what follows, we analyze whether the inclusion of these regressors help 

improve the backtesting results. 

Table 7. In-Sample results of ARMA-GARCH model fit to the analyzed indexes 

Panel A: ARMA-GARCH Estimation 

ARMA-GARCH with Gaussian 
innovations 

TI Index SI Index 

𝜃0 0.036 (0.067) 0.058 (0.000) 
𝜃1 -0.082 (0.887) 0.023 (0.857) 
𝜃2 0.028 (0.961) 0.101 (0.435) 
𝛽0 0.023 (0.000) 0.009 (0.000) 
𝛽1 0.084 (0.000) 0.105 (0.000) 
𝛽2 0.907 (0.000) 0.888 (0.000) 

ARMA-GARCH with Student’s t 
innovations 

TI Index SI Index 

𝜃0 0.050 (0.007) 0.071 (0.000) 
𝜃1 -0.040 (0.938) -0.067 (0.656) 
𝜃2 -0.013 (0.980) 0.188 (0.206) 
𝛽0 0.019 (0.002) 0.006 (0.004) 
𝛽1 0.080 (0.000) 0.101 (0.000) 
𝛽2 0.913 (0.000) 0.898 (0.000) 
𝜈 6.923 (0.000) 5.414 (0.000) 

Panel B: ARMA-GARCH Estimation Considering External Regressors in the variance equation 

ARMA-GARCH with Gaussian 
innovations 

TI Index SI Index 

𝜃0 0.035 (0.667) 0.059 (0.000) 
𝜃1 -0.081 (0.887) 0.024 (0.855) 
𝜃2 0.027 (0.961) 0.102 (0.429) 
𝛽0 0.023 (0.003) 0.005 (0.144) 
𝛽1 0.083 (0.000) 0.109 (0.000) 
𝛽2 0.907 (0.000) 0.881 (0.000) 
𝛾1 0.000 (0.999) 0.000 (0.425) 
𝛾2 0.000 (0.999) 0.000 (0.277) 
𝛾3 0.000 (0.999) 0.000 (0.999) 

ARMA-GARCH with Student’s t 
innovations 

TI Index SI Index 

𝜃0 0.050 (0.007) 0.071 (0.000) 
𝜃1 -0.040 (0.938) -0.068 (0.652) 
𝜃2 -0.013 (0.980) 0.189 (0.205) 
𝛽0 0.019 (0.003) 0.006 (0.093) 
𝛽1 0.080 (0.000) 0.103 (0.000) 
𝛽2 0.913 (0.000) 0.898 (0.000) 
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𝛾1 0.000 (0.999) 0.000 (0.999) 
𝛾2 0.000 (0.999) 0.000 (0.999) 
𝛾3 0.000 (0.999) 0.000 (0.999) 
𝜈 6.923 (0.000) 5.311 (0.000) 

P-values in parentheses 

The first 250 returns of oil, gas and coal assets are employed to obtain the first set of 

values of their respective variances, and a rolling window of 250 observations is implemented 

to estimate the rest of the variances. That is, the initial range of data from August 1, 2006 to 

July 15, 2007 is employed in order to calculate the variances that act as external regressors. 

Figure 8 shows the estimated variance of the stranded asset returns. Variability of oil and coal 

returns were mainly affected by the subprime crisis, and high volatility in the gas returns is 

observed posterior that date. The correlation between logreturns (estimated variance of 

logreturns) between oil and gas is 0.18 (0.40), for oil and coal is 0.16 (0.78), and for gas and 

coal is 0.02 (0.32) for the analyzed period.23 

Figure 8. Variance of Oil, Gas and Coal price returns 

 

 

The one-day-ahead VaR and ES are calculated by also implementing a rolling window 

of 250 observations, then the initial window size is ranged from July 16, 2007 to June 29, 2008. 

The backtesting period for both analyzed indexes (SI and TI) ranged from June 30, 2008 to 
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November 16, 2018, and its length period is 2709 days. Thus, the expected number of 

exceptions is 27.09 (approximated to 27 in Table 3 and 4) for both indexes when calculating 

99%-VaR.  

Table 8 presents the results of testing VaR and ES for both the SI and the TI when the 

variance of unsustainable assets is not considered in the GARCH model. We compute the well-

known binomial tests for VaR at 99% and the two new multinomial tests, i.e. the Pearson and 

Nass statistics, proposed by Kratz et al. (2018), for 97.5%-ES backtesting. In the case of the 

sustainable index, the binomial test for VaR rejects the Student’s t and GPD models, since both 

models overpredict risk for the index returns. In most applications of market risk quantification, 

results of EVT techniques based on GPD model are favorable. However, in this case, the 

binomial test for 99%-VaR rejects the good performance of this model. A plausible reason is 

that the amount of observations (in the tail of the empirical distribution) employed to fit the 

GPD, which is 25 in each step of the rolling window. It is very well-known that parameter 

estimation depends on the threshold selection, which is still an open question in EVT, and this 

drawback is discussed for instance in Díaz et al. (2017). Backtesting ES of the SI, the results 

of Pearson and Nass tests do not reject the good performance of normal, Stable and GPD 

models, but Student’s t model does not perform satisfactorily, which is consistent with 

backtesting of VaR results for the same index (Table 8, Panel a). 

In the case of the traditional oil and gas industry index returns, only the Student’s t model 

does not perform well according to the binomial test for 99%-VaR (Table 3, Panel b), whereas 

all the models perform well for 97.5%-ES backtesting, according to Pearson and Nass statistics. 

Table 8. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable 

Index (SI) and the Traditional Oil and Gas Industry (TI) 

Model 99% VaR 97.5% ES 
EE Violations 𝑂0 𝑂1 𝑂2 𝑂3 𝑂4 Pearson Nass 

Panel a) Sustainable Index (SI): 

Normal 27 33 (0.270) 2644 13 17 10 25 7.60 7.39 
Student’s-t 27 11 (0.000) 2658 9 21 10 11 9.71 9.45 
Stable 27 32 (0.357) 2631 21 19 16 12 2.84 2.76 
GPD-POT 27 15 (0.011) 2654 17 20 10 8 8.17 7.94 
 
Panel b) Traditional Oil & Gas Industry (TI): 

Normal 27 32 (0.357) 2648 9 17 14 21 5.22 5.07 
Student’s-t 27 14 (0.005) 2657 14 8 16 14 5.87 5.71 
Stable 27 32 (0.357) 2638 9 21 17 24 7.65 7.44 
GPD-POT 27 20 (0.151) 2660 13 13 9 14 6.18 6.01 
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EE stands for Expected Exceptions. The critical value for the Pearson test is 9.49, and that for 

the Nass test is 9.31. The P-value for the binomial test in parenthesis. 𝑂𝑗 (𝑗 = 0,1,2,3,4) counts the 

times the number of exceptions (𝑋𝑡) are equal to 𝑗 for each time t and for all VaR levels. Backtesting 

periods include 2709 days for the SI and the TI portfolios. 

 

Table 9 replicates analysis of Table 8, but the new analysis considers the external 

regressors in the equation of variance (Equation [1]). Although the binomial test for 99%-VaR 

still rejects the good performance of the Student’s t model, all other models now exhibit a 

reasonable performance for VaR and ES tests. This is an important result, since there is 

evidence that employing external regressors (variance of stranded asset returns) help improve 

risk model validations for the analyzed data in our paper. 

Table 9. Comparison of 99%-VaR and 97.5%-ES (implicit) backtesting for the Sustainable 

Index (SI) and the Traditional Oil and Gas Industry (TI). Considering external regressors in 

the variance equation of GARCH model. 

Model 99% VaR 97.5% ES 
EE Violations 𝑂0 𝑂1 𝑂2 𝑂3 𝑂4 Pearson Nass 

Panel a) Sustainable Index (SI): 

Normal 27 33 (0.270) 2641 15 16 13 24 4.13 4.02 
Student’s-t 27 17 (0.036) 2655 12 21 10 11 7.40 7.20 
Stable 27 32 (0.357) 2633 19 17 17 23 2.45 2.39 
GPD-POT 27 20 (0.151) 2649 15 21 11 13 4.21 4.10 
 
Panel b) Traditional Oil & Gas Industry (TI): 

Normal 27 35 (0.144) 2643 11 18 14 23 4.83 4.70 
Student’s-t 27 23 (0.417) 2650 18 10 18 13 3.91 3.81 
Stable 27 34 (0.199) 2630 15 21 18 25 5.16 5.02 
GPD-POT 27 25 (0.683) 2655 14 10 11 19 5.75 5.59 

EE stands for Expected Exceptions. The critical value for the Pearson test is 9.49, and that for 

the Nass test is 9.31. The P-value for the binomial test in parenthesis. 𝑂𝑗 (𝑗 = 0,1,2,3,4) counts the 

times the number of exceptions (𝑋𝑡) are equal to 𝑗 for each time t and for all VaR levels. Backtesting 

periods include 2709 days for the SI and the TI portfolios. 

 

We also conduct the simple backtest of ES, commonly used in the literature, as a 

robustness check of the new multinomial test previously applied to validate ES. Table 10 shows 

the results of independent individual binomial backtests of VaR for four confidence levels 

equal to and higher than that used in the 97.5% ES estimate. This analysis is performed for 

both indexes without considering external regressors in variance equation. This methodology 

based on independent testing for different confidence levels provides results similar to those 

obtained in the multinomial test for three loss distributions. However, it indicates that the GPD 
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model overpredicts risk when VaR is calculated at 98.75% and 99.375% (97.5% and 98.125%) 

confidence levels for SI (TI) index return as can be seen in Table 10, Panel a (Panel b). Anyway, 

the results for the Pearson and Nass tests for 97.5%-ES displayed in Table 8, which rejects the 

Student’s t model and shows that the normal and Stable models perform well for both indexes, 

are also confirmed by the individual binomial tests. 

Table 10. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the 

Traditional Oil and Gas Index (TI)  

Model 97.5%VaR 98.125%VaR 98.75%VaR 99.375%VaR 

Panel a) Sustainable Index (SI): 

 [52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17 
Normal 65 52 35 25 
Student’s-t 51 42 21 11 
Stable 78 57 38 22 
GPD-POT 55 38 18 8 
     
Panel b) Traditional Oil & Gas Industry (TI): 

 [52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17 
Normal 61 52 35 21 
Student’s-t 52 38 30 14 
Stable 71 62 41 24 
GPD-POT 49 36 23 14 

EE stands for Expected Exceptions. 95% confidence interval in brackets for each expected 

number of exceptions. Backtesting periods include 2709 days for the SI and the TI portfolios. 

 

Table 11 presents same results as Table 10 considering variance of unsustainable asset 

returns as independent variables in the variance equation of the GARCH model. Only Student’s 

t model is rejected when 98.75%-VaR is calculated for SI index returns. Once again, the risk 

model performance is better off when the variances of stranded asset returns are included as 

regressors in the variance equation to assess VaR at different confidence levels.  

Table 11. Exceptions obtained for each VaR level for the Sustainable Index (SI) and the 

Traditional Oil and Gas Index (TI). Considering external regressors in the variance equation 

of GARCH model. 

Model 97.5%VaR 98.125%VaR 98.75%VaR 99.375%VaR 

Panel a) Sustainable Index (SI): 

 [52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17 
Normal 68 53 37 24 
Student’s-t 54 42 21 11 
Stable 76 57 40 23 
GPD-POT 60 45 24 13 
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Panel b) Traditional Oil & Gas Industry (TI): 

 [52;84] EE = 68 [37;65] EE = 51 [23;45] EE = 34 [9;25] EE = 17 
Normal 66 55 37 23 
Student’s-t 59 41 31 13 
Stable 79 64 43 25 
GPD-POT 54 40 30 19 

EE stands for Expected Exceptions. 95% confidence interval in brackets for each expected 

number of exceptions. Backtesting periods include 2709 days for the SI and the TI portfolios. 

 

Finally, Figure 9 shows the comparison of 99%-VaR and 97.5%-ES (with external 

regressors in the variance equation) for each analyzed model applied to SI returns.24 As 

expected, 99%-VaR is similar to 97.5%-ES for the Gaussian case; however, it is noted that 

97.5%-ES is higher than 99%-VaR for stable and GPD cases. This result corroborates one of 

the arguments used by the Basel Committee to defend the use of ES to calculate the market 

risk of a financial institution. 

 

Figure 9. Comparison of 99%-VaR and 97.5%-ES for each model for SI negative log-returns  

Panel A: 99%-VaR and 97.5%-ES for Gaussian model  

 

Panel B: 99%-VaR and 97.5%-ES for Student’s t model 

 
24 Similar results are obtained for Portfolio TI returns and are available upon request, and for both indexes when 

external regressors are not included in the variance equation in GARCH model. 
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Panel C: 99%-VaR and 97.5%-ES for stable models 

 

Panel D: 99%-VaR and 97.5%-ES for POT model 

 

 

2.6 Conclusions of Chapter 2 

Energy assets are a class of assets widely used by portfolio and risk managers for 

diversification purposes, although these assets have higher volatilities than other types of stocks 

and are affected by a trend towards divestment caused by greater global awareness of the 

environmental and financial impact of climate change. For this reason, we analyze the 

appropriate quantification of risk for portfolios formed by companies in the traditional energy 

sector and compare them with portfolios that exclude these assets. The validation of ES as a 
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risk measure recently proposed by financial regulators is a topical issue and its implementation 

on highly volatile assets is an experiment of maximum interest. Thus, in this paper we shed 

some light on how to solve the problem of ES backtesting. 

We consider two broadly diversified stock indexes, one of fossil fuel-related companies 

and another that includes sustainable companies from all sectors except these traditional energy 

companies. The sustainability stock index financially outperforms the traditional energy stock 

index, although the latter offers good results in times of turmoil and crisis in the markets. This 

is undoubtedly an interesting feature for portfolio and risk managers. 

We examine several distributions to perform the ES backtesting procedure proposed by 

Kratz et al. (2018) when applied to both stock indexes. The validation of models shows that 

including the variances of the stranded asset (oil, gas and coal) returns as external regressors 

in the variance equation of GARCH model help improve the backtesting results of the analyzed 

models. In general, Stable model performs well in all cases. Most studies that employ EVT 

techniques based on GPD model show adequate results according to backtesting results in 

market risk quantification. However, in our application when window size is equal to 250 

observations, the latter model does not perform well for 99%-VaR backtesting in sustainable 

index. Nevertheless, when external regressors are considered in the variance equation, the GPD 

model performs satisfactorily.  

The backtesting procedure is based on multinomial tests for different VaR levels rather 

than performing a binomial test for each VaR level, since ES can be approximated in terms of 

multiple VaRs (Emmer et al., 2015). We obtain evidence that the multinomial test is an 

adequate and simple method to validate ES models as presented in this paper. This simple 

approach leads to an implicit manner for ES backtesting, and it is suggested for regulatory 

purposes. The current regulation proposes performing VaR backtesting at 97.5% and 99% 

confidence levels to validate ES calculations. The latter approach was an initial solution for the 

non-elicitability of ES, which made many in academia and the financial industry think that ES 

could not be backtested. Future research can be conducted to compare other ES tests such as 

those proposed by Acerbi et al. (2012 and 2014). 
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Chapter 3. Risk quantification for Commodity ETFs: Backtesting Value-at-Risk and 

Expected Shortfall25 

 

 

Abstract 

This paper studies the risk assessment of alternative methods for a wide variety of Commodity 

ETFs and portfolios based on them. We implement well-known, as well as recently proposed 

backtesting techniques, for both value-at-risk (VaR) and expected shortfall (ES) under 

parametric and semi-nonparametric techniques. The application of the latter to ES is introduced 

in this paper and for this purpose we derive a straightforward closed form of ES. We show that, 

for the confidence levels recommended by Basel Accords, Student’s t and Gram-Charlier 

present the best relative performance for individual Commodity ETFs. Moreover, we show that 

multivariate semi-nonparametric distribution performs better than multivariate normal 

distribution for portfolios of Commodity ETFs. Hence, we recommend the application of the 

above mentioned leptokurtic distributions to mitigate regulation concerns about global 

financial stability and financialization of commodity business throughout an adequate risk 

assessment. 

Keywords: Value-at-risk; Expected shortfall; Backtesting; Gram-Charlier expansion; SNP-

DCC; Financialization. 

 

3.1 Introduction of Chapter 3 

Commodity prices experienced a boom in the mid-2000s triggered by the need of metal 

supplies (such as iron, aluminum, copper, steel, and zinc) and energy from China. During this 

period, large commodity traders in 2010 such as Vitol, Glencore or Cargill had benefited from 

the positive returns of commodities, typically 6-8% a year.  

 
25 A version of this chapter has been published in International Review of Financial Analysis Journal (univariate 

case), and European Journal of Finance (multivariate case) co-authored with Esther B. Del Brio and Javier Perote 
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Recently, there has been a sharp decline in the price of these assets because of both the increase 

in supply and the slower economic growth in emerging markets. By end of August 2015 all 

main commodities (energy, industrial metals and agriculture) prices had plunged in a 10-20% 

range year-to-date. Slowdown of Chinese investment has mainly affected copper producers 

(e.g., Chile), since China demands 45% of the output. As a consequence, by the end of 

September 2015 Glencore’s share price had plummeted by almost a third. In 2013, Deutsche 

Bank and JP Morgan also suffered huge losses in based metals businesses. In addition, 

developed markets based on mining and energy industries like Canada and Australia have also 

been affected by the decline in commodity prices.  

However, the volatility in the commodity market is not only affected by demand and supply of 

consumers and producers. Derivatives and Commodity Exchange Traded Funds (ETFs) have 

been employed by financial market participants to invest in commodity-linked instruments and 

its speculation has been the reason of the rapid increase of oil prices in 2007 and part of 2008 

(Hume et al., 2016). In fact, in the last decades, the presence of capital markets and financial 

industry with the so-called “financialization” of commodity business has distorted commodity 

prices and contributed to the bubble formation in these markets. 

With the boom of commodity prices, several ETFs were created in order to track the price of 

main commodities such as gold, silver and oil, and then allow investors to buy commodities as 

trading stocks. ETFs were created in the early 90s and can be defined as baskets of securities 

that are traded on a stock exchange like individual stocks. Initially, ETFs replicated equity 

products, but other types of assets such as fixed income, credit, emerging markets, 

commodities, among others, are also employed as underlying assets. The main advantage of 

these financial instruments is the low-cost diversification and easier accessibility of certain 

asset classes, but also they feature high liquidity and tradability. 

On the other hand, commodity assets present higher volatilities than equity assets even in 

“relatively” calm periods, because commodities cannot be easily stored. The high volatility of 

the underlying assets also produces a higher uncertainty on the Commodity ETFs market. In 

other words, there is the so-called decay or slippage (as it is known in the industry jargon), 

which is the rapidly decline in ETFs price. For instance, gold ETFs fell closer to 33% in 2014, 

and most of sales in 2013 came from SPDR Gold Shares ETF (one of the analyzed data in this 

paper), mainly caused by the announcement of the Federal Reserve about reducing its 
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quantitative easing plan and the global sentiment.26 Financialization has helped to convert 

commodities into tradeable securities (e.g. Commodity ETFs), and thus has contributed to the 

recent decline in commodity prices and its high volatility (Tang and Xiong, 2012; Singleton, 

2013 among others). 

From the regulatory point of view, the Financial Stability Board (FSB) and Bank for 

International Settlements (BIS) published separated reports in April 2011 and expressed their 

concerns about the potential systemic impact of the ETFs industry. Possible financial stability 

risks are related to the complexity and relative opacity of these instruments, which make 

difficult the risk assessment according to the regulators’ reports. Furthermore, the UN 

Conference on Trade and Development in 2015 has criticized the financialization of 

commodities highlighting its impact on speculative bubbles inflation. 

Since 1996, Value-at-risk (VaR) has been the standard market risk measure to assess regulatory 

capital requirements. This risk measure, defined as the maximum loss given certain probability 

level and time horizon (usually 99% and one or ten days, respectively), has been criticized 

because it does not fulfill the ‘subadditivity’ property. This property states that the total risk of 

a portfolio should be less than or equal to the sum of risks of the individual portfolio assets, i.e. 

a ‘coherent’ risk measure should be consistent with risk diversification. For this reason, other 

coherent risk measures have been proposed, the Expected Shortfall (ES) or conditional VaR 

(CVaR), defined as the conditional expectation of losses for losses that has exceeded a certain 

VaR threshold, being the most widely used. As a matter of fact, the VaR’s inability to 

accurately capture tail risk during the global financial crisis made the Basel Committee on 

Banking Supervision (BCBS) reconsider the use of VaR and publish the review of trading book 

rules − the so-called Basel 2.5 − on May 2012 with the aim to replace VaR by ES.  

However, ES also feature disadvantages compared to VaR. By definition, ES is always higher 

than VaR at a given confidence level, and can be huge depending on the assumed distribution 

to fit the losses. Though many banks have been used ES to assess regulatory capital, ES is very 

sensitive to extreme events and may result in unstable capital numbers at high confidence levels 

− for this reason, ES is commonly computed at 97.5%. In addition, ES is not as intuitive as 

VaR, and thus its figures are not easy to explain to the board members. Furthermore, ES does 

 
26 Though Commodity ETFs have been used to amplify bets − especially on oil, gold and natural gas price, our 

study analyzes non-leveraged Commodity ETFs. Leveraged Commodity ETFs (LETFs) will be the focus in a 

future research. 
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not satisfy the ‘elicitability’ property − i.e the capacity of determination for optimal forecasts 

(Emmer et al., 2015), which generated a vivid debate on whether ES can be backtestable. On 

the contrary, VaR satisfies such property and there are very well-known backtesting methods 

for this measure. Therefore, the discussion resulted in a tradeoff between coherence and 

elicitability, the former being preferred by regulators. However, recent studies (see Section 2) 

have shown that ES can be backtestable, although the proposed methods are less appealing than 

the straightforward backtesting alternatives for VaR. 

This paper contributes to the literature by providing a comparison between both risk measures 

(VaR and ES) through a wide variety of methodologies including parametric distributions 

(Gaussian, Student’s t and Skewed-t), semi-nonparametric distributions − a couple of 

expansions of Gram-Charlier (GC) series − in univariate and multivariate frameworks. In all 

these cases we implement backtesting techniques to study model performance and risk 

assessment of Commodity ETFs, designed in response to the concerns about global financial 

stability. So far, risk management studies have been devoted to commodities directly or 

commodity derivatives. Hence, and to our knowledge, this is the first paper which analyzes 

risk management applied to Commodity ETFs. Furthermore, we derive a closed form to 

calculate ES for the Gram-Charlier distribution, which facilitates the implementation of ES on 

this type of models. All in all, the contribution of this paper is three-fold. First, we propose a 

jointly (i.e. more efficient) estimation of Gram-Charlier parameters and ARMA-EGARCH 

process for risk calculation purposes. Previous studies have implemented two-step procedures 

and estimated in a first step an AR(MA)-GARCH process by Quasi Maximum Likelihood 

(QML) and the remaining density parameters in a second step. Second, we extend the study in 

Del Brio et al. (2011), by applying SNP-DCC in a risk measure framework. Third, the results 

of this work have interesting implications for practitioners and regulators, since our application 

implements appropriate backtesting techniques to evaluate the performance of ES for 

individual assets and portfolios, which may help to mitigate main concerns of regulators about 

commodity financialization. 

The rest of the paper is organized as follows: Section 2 reviews the literature on risk measures 

and their applications to commodity assets, Section 3 describes the risk models and VaR and 

ES methodologies, Section 4 presents the empirical performance of the models for forecasting 

VaR and ES with a sample of six different Commodity ETFs, Section 5 compares the ES 

backtesting performance for three bivariate portfolios, Section 6 discusses the main results of 

this paper in light of the new regulation and Section 7 concludes. 
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3.2 Literature Overview 

This section presents an overview of recent advances on risk measures focusing on their 

properties and applications to commodity markets. 

VaR has been the standard risk measure for financial industry since mid-1990s and a vast 

literature has been devoted to it − see, e.g. Jorion (2006). The use of ES was proposed by 

Artzner et al. (1997) and its properties studied in Acerbi and Tasche (2002), and Rockafellar 

and Uryasev (2002). As discussed in the previous section, VaR is not a coherent risk measure 

since it does not satisfy subadditivity, unlike ES.27 Empirical studies have shown that under 

extreme fluctuations VaR may underestimate risk but ES may overcome this shortcoming; 

however, ES strongly depends on the estimation accuracy (Yamai and Yoshiba, 2005). As a 

consequence, capital calculated from ES might be less stable than that of the VaR when the 

losses exhibit fat tails. This evidence is consistent with Cont et al. (2010), who find that ES is 

less robust and more data-sensitive than VaR. Nevertheless, under a new notion of (qualitative) 

robustness, Embrechts et al. (2015) show that ES is more robust than VaR.  

Recently, the ‘elicitability’ of risk the measures has been discussed because of its importance 

for studying model performance in forecasting applications. Formally, a risk measure is 

elicitable if it minimizes a suitable expected scoring function (Bellini and Bignozzi, 2015). 

Gneiting (2011) shows that ES does not satisfy this property and thus finding accurate 

techniques for backtesting ES could be challenging. In this line, Acerbi and Székely (2014) 

provide three methods to backtest ES and show that ES can be used for model testing, but still 

elicitability is important to make comparisons of different models. Particularly, if elicitability 

is not satisfied there is no consistent scoring function and therefore it is not possible to establish 

which model has the best performance. Very recently, Fissler et al. (2016) propose two methods 

based on conditional elicitability of ES, one of them is applied in this paper.  

On the other hand, Bellini et al. (2014) and Ziegel (2014) finds that expectiles (introduced by 

Newey and Powell, 1987) are both coherent and elicitable risk measures. Expectiles are derived 

by employing asymmetric least squares and can be used to estimate VaR and ES (Taylor, 2008). 

 
27 See Artzner et al. (1999) for more details about the properties that a risk measure should satisfy to be coherent.  
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This measure has the advantage of assuming a free distribution, but its concept is less intuitive 

than VaR and ES. 

As discussed above, every risk measure has its own advantages and drawbacks. Emmer et al. 

(2015) overview the desired properties of risk measures (coherence, elicitability, robustness, 

comonotonicity and additivity, among others) and their impact on capital allocation. These 

authors conclude that ES is a good risk measure in practice, although the discussion of the best 

risk measure is still an open question and depends on the characteristics to be evaluated. For 

instance, in a recent work Koch-Medina and Munari (2016) warn about the use of ES for capital 

adequacy and portfolio risk measurement since ES does not necessarily guarantee protection 

of liability holders. 

Recent studies on risk management applications to commodity markets have undertaken 

different approaches and have been applied to different assets (Giot and Laurent, 2003; Hung 

et al., 2008; Chiu et al., 2010; Aloui and Mabrouk, 2010; Youssef et al. (2015), Andriosopoulos 

and Nomikos, 2015; Aloui and Jammazi, 2015), although as far as we know they have never 

been used for modeling Commodity ETFs. All these papers, after testing a wide variety of 

models, point to the adequacy of different (asymmetric and long memory) GARCH models 

with (skewed) heavy-tailed distributions for risk assessment. Particularly, Giot and Laurent 

(2003) and Aloui and Mabrouk (2010) show that the APARCH (or FIAPARCH) model with 

skewed-t innovations outperforms other alternatives in several commodity and energy markets. 

Similarly, Youssef et al. (2015) support a FIAPARCH with EVT for estimating both VaR and 

ES − a circular bootstrap being employed to backtest ES. On the other hand, Hung et al. (2008) 

find that GARCH models with heavy-tailed innovations provide accurate risk measures for 

energy commodities and Steen et al. (2015) and Andriosopoulos and Nomikos (2015) show 

that quantile regression techniques and Monte Carlo simulations, respectively, outperform 

many other alternatives for modeling risk for most commodities and, particularly those of 

energy. Finally, other authors find evidence in favor Hull-White (Chiu et al., 2010) and three 

wavelet-based (Aloui and Jammazi, 2015) models for Brent and WTI crude oil prices. 

Previous mentioned studies are related to an application for individual assets. Regarding 

portfolio risk, Lu et al. (2014) combine copula (t-Copula, Gaussian copula and Symmetric Joe-

Clayton copula) with GARCH-type models to estimate VaR of an equally weighted portfolio 

formed by crude oil futures and natural gas futures. The results show that t-Copula performs 

well and skewed-t has a better fit than normal and Student-t for individual assets. 
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Our study is related to all this literature, but we focus on the comparison between traditionally 

employed models in commodity markets with semi-nonparametric techniques (both univariate 

and multivariate), which have never been employed for such purposes despite being very 

flexible to accurately account for salient empirical regularities of financial data (particularly 

leptokurtosis and wavy-thicked tails). 

 

3.3 Models and Methodology 

It is well-known that financial returns are highly leptokurtic, negatively skewed and exhibit 

clustering and persistence in conditional volatility.28 Commodity ETFs are not an exception on 

such patterns and thus non-Gaussian models seem also appropriate for providing accurate risk 

measures. This paper compares the relative performance of different parametric and semi-

nonparametric methods for measuring both VaR and ES. In what follows we review these 

models, their implementation for computing VaR and ES (remarkably, the ES application for 

the GC distribution, which is introduced in this paper) and the tests for relative performance 

based on backtesting techniques. 

Commodity returns present a predictable component in the conditional mean that has 

traditionally been modeled according to simple ARMA structures. Squared returns, however, 

exhibit particular dynamics (conditional heteroskedasticity, volatility clustering and long 

memory) that have been extensively studied since Engle (1982) and Bollerslev (1986) 

introduced ARCH and GARCH models. As we focus on VaR and ES performance due to the 

distributional hypotheses, we implement standard models in risk management applications for 

the first and second conditional moments. Particularly, our applications assume an ARMA(1,1) 

for modeling conditional mean − equation (2) − and an EGARCH(1,1) for modeling 

conditional variance − equation (3), the latter process being able to capture the ‘leverage effect’ 

or the asymmetric impact in volatility from negative and positive shocks (Nelson, 1991).  

Therefore, we model asset returns (𝑟𝑡) as in equation (1), where 𝜇𝑡 and 𝜎𝑡
2 are the conditional 

mean and variance, respectively, and 𝑧𝑡 are the standardized errors defined in equation (4), 

which we assume to be distributed according to a certain distribution G. The complete model 

is described below. 

 
28 See, e.g. Cont (2001) for a description of the main stylized empirical regularities of the data. 
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𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 ,           (1) 

𝜇𝑡 = 𝜑 + 𝜙𝜇𝑡−1 + 𝜃𝜀𝑡−1 + 𝜀𝑡 ,              (2) 

log 𝜎𝑡
2 = 𝜔 + 𝛼(|𝑧𝑡−1| − 𝔼[|𝑧𝑡−1|]) + 𝛾𝑧𝑡−1 + 𝛽 log 𝜎𝑡−1

2           (3) 

𝑧𝑡 = 𝜀𝑡 𝜎𝑡⁄ ,   𝑧𝑡~𝐺(0,1),               (4) 

where 𝜑, 𝜙 and 𝜃 are the parameters of the ARMA(1,1), and 𝜔, 𝛼, 𝛽 and 𝛾 the parameters of 

the EGARCH(1,1) and 𝜀𝑡 a white noise. For the sake of comparison, different standardized (i.e. 

zero mean and unit variance) density specifications are considered for G. 

 

3.1. Distributional hypotheses 

Besides the Gaussian density, included as benchmark, we compare the most widely used 

parametric distributions to capture leptokurtosis (Student’s t) and skewness (skewed-t). 

Furthermore, we also incorporate the semi-nonparametric approach, which has been shown to 

accurately feature financial returns distribution (Mauleón and Perote, 2000) but, as stated 

above, we are unaware of any previous application for modeling Commodity ETFs. The 

outstanding performance of this method is based on the asymptotic property of the GC type A 

series for approximating any frequency function under weak regularity conditions (Kendall and 

Stuart, 1977). All these probability density functions (pdf) are described below. 

(i) Gaussian pdf: 

𝜙(𝑧𝑡) =
1

√2𝜋
𝑒−

𝑧𝑡
2

2 .     (5) 

(ii) Student’s t pdf:  

𝑡(𝑧𝑡) =
𝛤(

𝜈+1

2
)

√𝜋(𝜈−2)𝛤(
𝜈

2
)

(1 +
𝑧𝑡

2

𝜈−2
)

−
𝜈+1

2
,    (6) 

where 𝛤  is the gamma function and 𝜈 is the degrees of freedom parameter.  

(iii) Skewed-t pdf (Fernández and Steel, 1998): 

𝑔(𝑧𝑡) = {

−
2

𝛾+
1

𝛾

𝑡(𝛾𝑧𝑡) 𝑓𝑜𝑟 𝑧𝑡 < 0,

2

𝛾+
1

𝛾

𝑡 (
𝑧𝑡

𝛾
)     𝑓𝑜𝑟 𝑧𝑡 ≥ 0,

         (7) 
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where γ is the shape parameter, which incorporates the skewness, and 𝑡(𝑧𝑡) is the Student’s t 

pdf in equation (6). 

(iv) GC Type A pdf: 

𝑓(𝑧𝑡, 𝒅) = (1 + ∑ 𝑑𝑠𝐻𝑠(𝑧𝑡)𝑆
𝑠=2 )𝜙(𝑧𝑡),    (8) 

where 𝜙(𝑧𝑡) denotes the normal pdf in equation (5), 𝒅′ = (𝑑1, … , 𝑑𝑆) ∈ ℝ𝑆 is a vector of 

parameters such that 𝑓(𝑧𝑡, 𝒅) ≥ 0 and 𝐻𝑠 is the Hermite polynomial (HP) of order s, which is 

defined in terms of the sth order derivative of 𝜙(𝑧𝑡) as  

𝑑𝑠𝜙(𝑧𝑡)

𝑑𝑧𝑡
𝑠

= (−1)𝑠𝐻𝑠(𝑧𝑡)𝜙(𝑧𝑡).     (9) 

In particular, the first eight HP are: 𝐻1(𝑧𝑡) = 𝑧𝑡, 𝐻2(𝑧) = 𝑧𝑡
2 − 1,

 
𝐻3(𝑧) = 𝑧𝑡

3 − 3𝑧𝑡,
 

𝐻4(𝑧𝑡) = 𝑧𝑡
4 − 6𝑧𝑡

2 + 3,  𝐻5(𝑧𝑡) = 𝑧𝑡
5 − 10𝑧𝑡

3 + 15𝑧𝑡 ,  𝐻6(𝑧𝑡) = 𝑧𝑡
6 − 15𝑧𝑡

4 + 45𝑧𝑡
2 −

15, 𝐻7(𝑧𝑡) = 𝑧𝑡
7 − 21𝑧𝑡

5 + 105𝑧𝑡
3 − 105𝑧𝑡,  𝐻8(𝑧𝑡) = 𝑧𝑡

8 − 28𝑧𝑡
6 + 210𝑧𝑡

4 − 420𝑧𝑡
2 +

105. 

These polynomials form an orthonormal basis, thus satisfying the orthogonality property, 

∫ 𝐻𝑠(𝑧𝑡)𝐻𝑗(𝑧𝑡)𝜙(𝑧𝑡) 𝑑𝑧𝑡 = 0 𝑠𝑗 ,   (10) 

which is the basis of the characterization of GC series as a pdf and its parameters in terms of 

its density moments. For instance, even non-central moments depend on the even 𝑑𝑠 parameters 

(e.g. 𝑑2 accounts for the variance, 𝑑4 for the excess kurtosis and the rest of the even parameters 

capture higher-order moments) and skewness is captured by the odd parameters. A well-known 

shortcoming of this expansion is that it is not necessarily positive for all the values of the 

parameters, which calls for the implementation of positive transformations (Gallant and 

Nychka, 1987; León et al. 2009) or positivity constraints (Jondeau and Rockinger, 2001). 

However, we use the original GC Type A expansion in equation (8), which is simpler and more 

useful for risk measure applications.  

Most of the empirical studies that implement GC density in finance − mainly for option 

valuation, e.g. Jarrow and Rudd (1982) − truncate the expansion in n = 4 and employ only two 

terms of the expansion, 𝑑3 and 𝑑4. These models, as well as the other parametric distributions, 

were jointly estimated with the ARMA(1,1)-EGARCH(1,1) models − equations (2) and (3) − 

by maximum likelihood (ML) techniques. 
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3.2. VaR measures 

The estimated VaR with a confidence level   is computed as a linear transformation of the 

estimated α-quantile, 𝑞̂𝛼(𝑧𝑡), of the assumed standardized distributions in the above section. 

Therefore, the predicted VaR for the variable r at the time horizon t+1 and with confidence 

level  is given in equation (11). 

VaR𝑡+1
 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝑞̂𝛼(𝑧𝑡+1),    (11) 

where 𝜇̂𝑡+1 and 𝜎̂𝑡+1 are the predictions for the mean and standard deviation conditioned on 

the available information at time t, t, obtained from the ARMA-EGARCH model described 

in equations (2) and (3). This measure amounts for the maximum expected loss of the variable 

in t+1 obtained with a probability . 

The α-quantiles can be easily estimated by numerical integration and, for the GC density, may 

be obtained as those 𝑞̂𝛼(𝑧𝑡) = −1(𝛼) satisfying 

(𝑞̂𝛼(𝑧𝑡)) = ∫ (𝑧𝑡)𝑑𝑧𝑡
𝑞̂𝛼(𝑧𝑡)

−∞
− (𝑞̂𝛼(𝑧𝑡)) ∑ 𝑑𝑠𝐻𝑠−1(𝑞̂𝛼(𝑧𝑡)) = 𝑆

𝑠=2 , (12) 

as a direct application of equation (10).  

 

3.3. ES measures 

The ES for a given confidence level   is the expected return of the variable on the worst   per 

cent of the cases. In terms of the standardized distribution of 𝑧𝑡 it can be calculated as  

𝐸𝑆𝛼 =
1

1−𝛼
∫ 𝑉𝑎𝑅𝑢(𝑧𝑡)𝑑𝑢.

1

𝛼
    (13) 

Thus, the expected shortfall for the variable r at the time horizon t+1 and with confidence level 

 is obtained through the following transformation 

ES𝑡+1
 = 𝜇̂𝑡+1 + 𝜎̂𝑡+1𝐸𝑆̂𝛼(𝑧𝑡+1),   (14) 

where 𝜇̂𝑡+1 and 𝜎̂𝑡+1 are the predictions for the mean and standard deviation conditioned on 

t. The ES estimates are usually obtained by numerical integration, but in most cases the use 
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of closed forms can simplify the estimation procedures. Particularly, closed forms of most of 

the cases studied in Section 3.1 are displayed below.29 

(i) Gaussian ES: 

𝐸𝑆𝛼 =
𝜙(𝛷−1(𝛼))

1−𝛼
,      (15) 

where 𝜙 is the pdf of standard normal − equation (5) − and 𝛷−1(𝛼) is its corresponding  -

quantile. 

(ii) Student’s t ES: 

𝐸𝑆𝛼 =
𝑡𝜈(𝑔𝜈

−1(𝛼))

1−𝛼
(

𝜈+(𝑔𝜈
−1(𝛼))

2

𝜈−1
),    (16) 

where 𝑡𝜈 is the pdf of standard Student’s t − equation (6), 𝑔𝜈
−1(𝛼) its corresponding  -quantile 

and 𝜈 the degrees of freedom parameter.  

(iii) GC Type A ES: 

𝐸𝑆𝛼 = (−1(𝛼))[1 + ∑ 𝑑𝑠[𝐻𝑠(−1(𝛼)) + 𝑠𝐻𝑠−2(−1(𝛼))]𝑆
𝑠=2 ].   (17) 

where 𝜙 is the pdf of standard normal − equation (5) − and −1(𝛼) is the -quantile of the GC 

Type A distribution −equation (8). The proof is provided in the Appendix A. 

 

3.4. Backtesting methods 

3.4.1. Tests for VaR 

a. Bernoulli coverage test 

The VaR backtesting is usually based on the assumption that the number of exceptions is 

generated by an iid Bernoulli process. The violations or exceptions is 1 if the actual loss is 

greater than the predicted VaR, otherwise it is 0. The null hypothesis of Bernoulli Coverage 

test indicates that the VaR model is correct according to the exceptions ratio. 

A coverage test may also be performed by the likelihood ratio (LR), which asymptotically 

follows a chi-square distribution with one degree of freedom,  

 
29 The ES under the Skewed-t in the empirical application of next section was obtained by numerical integration. 
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𝐿𝑅 = −2 log {
(1−𝑝)𝑇0𝑝𝑇1

(1−𝑇1 𝑇⁄ )𝑇0(𝑇1 𝑇⁄ )𝑇1
} ~𝜒1

2,    (18) 

where 𝑝 is the proportion of violations to be tested − 1% and 2.5% in next section’s empirical 

application. 𝑇1 and 𝑇0 are the number of ones (violations) and zeros (no violations) in the 

backtesting period of size 𝑇. The p-value is then calculated as: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1 − 𝐹(𝐿𝑅),     (19) 

where 𝐹 is the cumulative distribution function (cdf) of a chi-square random variable with one 

degree of freedom. 

b. Relative Comparison for VaR 

The relative performance of a risk measure is based on a scoring function. This function is 

denoted as 𝑆(𝑥, 𝑦), where 𝑥 is the set of point forecasts given by a certain model and 𝑦 are the 

verifying observations. The scoring function can be viewed as a prediction error function that 

has to be minimized. A scoring function consistent for VaR is (Gneiting, 2011) 

𝑆(VaR𝑡+1
 , 𝑟𝑡+1) = (𝐼{𝑟𝑡+1<𝑉𝑎𝑅𝑡

𝛼} − 𝛼)(Ç(𝑉𝑎𝑅𝑡
𝛼) − Ç(𝑟𝑡+1)),  (20) 

where Ç is a strictly increasing function. This scoring function can be used to rank VaR 

forecasts and to implement Diebold and Mariano’s (1995) test for relative VaR model 

performance. The Diebold-Mariano’s test statistic (DM) is calculated as 

𝐷𝑀 =
𝑑̅

𝑠.𝑒.(𝑑)
,       (21) 

where 𝑑̅ denotes the mean of 𝑑𝑡 which is 

𝑑𝑡 = 𝑆(𝑖)(VaR𝑡+1
 , 𝑟𝑡+1) − 𝑆(𝑗)(VaR𝑡+1

 , 𝑟𝑡+1),    (22) 

where 𝑆(𝑖) and 𝑆(𝑗)denote the scores obtained from VaR models (𝑖) and (𝑗) respectively, 

𝑠. 𝑒. (𝑑) denotes the standard error of the statistics and requires the implementation of a 

heteroskedasticity and autocorrelation consistent (HAC) variance estimator (e.g., Newey-West 

estimator). The null hypothesis is 𝐷𝑀 = 0, and the alternative is 𝐻1
(𝑖)

: 𝐷𝑀 < 0 

and 𝐻1
(𝑗)

: 𝐷𝑀 > 0. Since the limiting distribution of DM statistic is standard normal the null 

hypothesis is rejected for smaller values than −1.96 at 5% of significance level indicating the 

outperformance of model (𝑖) and the opposite indicates that model (𝑗) is better. The application 

in next section uses a squared error function for the scoring function. 



88 
 

3.4.2. Tests for ES 

a. t-test 

A first test for ES is based on the violation residuals which is calculated as 

𝐾𝑡+1 = (
𝐿𝑡+1−𝐸𝑆𝑡

𝛼

𝐸𝑆𝑡
𝛼−𝜇𝑡+1

) 𝐼{𝐿𝑡+1>𝑉𝑎𝑅𝑡
𝛼},     (23) 

where 𝐿𝑡+1 is the actual loss, 𝐸𝑆𝑡
𝛼  is the estimated ES given in equation (14), 𝜇𝑡+1 is the 

conditional mean of the model − equation (2). The indicator function 𝐼{𝐿𝑡+1>𝑉𝑎𝑅𝑡
𝛼} takes value 

1 when the actual loss has exceeded the estimated VaR, and 0 otherwise. Then, the null 

hypothesis of zero mean violation residuals may be tested by a simple t-test on this variable 

(McNeil et al., 2015), 

𝑡 − 𝑠𝑡𝑎𝑡 =
𝐾̅

𝑠 √𝑇⁄
,      (24) 

where 𝐾̅ is the sample mean of the violation residuals of size 𝑇, and 𝑠 denotes its standard 

deviation. The p-value is calculated as 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2Prob(𝑡 > |𝑡 − 𝑠𝑡𝑎𝑡|).     (25) 

b. Relative Comparison for ES 

Fissler et al. (2016) show that VaR and ES are jointly elicitable and therefore a possible scoring 

function for both arguments is given by 

𝑆(VaR𝑡+1
 , ES𝑡+1

 , 𝑟𝑡+1) = (𝐼{𝑟𝑡+1<𝑉𝑎𝑅𝑡
𝛼} − 𝛼)(𝐺1(𝑉𝑎𝑅𝑡

𝛼) − 𝐺2(𝑟𝑡+1)) +

1

𝛼
𝐺2(ES𝑡+1

 )𝐼{𝑟𝑡+1<𝑉𝑎𝑅𝑡
𝛼}(VaR𝑡+1

 − ES𝑡+1
 ) + 𝐺2(ES𝑡+1

 )(ES𝑡+1
 − VaR𝑡+1

 ) − ℊ2(ES𝑡+1
 ), (26) 

where ℊ2
′ = 𝐺2, 𝐺1 and 𝐺2 are continuously differentiable functions30, e.g. 𝐺1(𝑥) =

𝑥 and 𝐺2(𝑥) = exp(𝑥), see Fissler and Ziegel (2016) for more details. In this paper, a 

homogeneous of degree zero scoring function is employed, since Patton and Sheppard (2009) 

show that this type of scoring functions presents good size and power properties in volatility 

applications. In particular,  𝐺1(𝑥) = 0 and ℊ2(𝑥) = log 𝑥. For such scoring function, the 

relative performance of the models can be assessed by implementing DM test in equation (21). 

 

 
30 𝐺1 is weakly increasing function and 𝐺2 is strictly increasing function. 
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3.4 Risk quantification for individual commodity ETFs 

4.1. Data 

The sample comprises nine years of daily prices from January 2007 to January 2016 for Gold, 

Silver, Oil, Agriculture, Energy and Broad Commodity ETFs. All data were obtained from 

Bloomberg; further details on the data are provided in Appendix B. Table 12 displays the 

descriptive statistics for continuously compounded returns of these series, defined as 

rt=100log(Pt/Pt-1), where Pt represents ETFs prices at time t.  

Table 12. Descriptive statistics of Commodity ETFs 

 Gold Silver Oil Agriculture Energy Broad 
Mean 0.0244 0.0045 -0.0731 -0.0099 -0.0406 -0.0279 
Median 0.0433 0.0882 -0.0171 0.0000 0.0000 0.0000 
Standard 

deviation 
1.2642 

(19.99) 

2.1821 

(34.50) 

2.1963 

(34.73) 

1.2680 

(20.05) 

1.7523 

(27.71) 

1.3127 

(20.75) 
Min -9.1905 -19.8349 -11.2996 -8.9990 -9.02391 -6.9341 
Max 10.6974 13.4733 9.1691 7.6675 8.8686 6.6484 
Skewness -0.2567 -0.9751 -0.1966 -0.2513 -0.1912 -0.3048 
Excess 

Kurtosis 
6.0464 7.6419 2.4764 5.4450 2.6507 2.6222 

Annual volatility in parentheses 

 

Descriptive statistics confirm that Commodity ETFs feature the same regularities as most 

financial data: Location statistics (daily mean and median) are around zero reflecting market 

efficiency; they exhibit negative skewness (i.e. more probability mass around positive returns, 

but also more extreme values at the left tail of negative returns); high volatility and kurtosis 

(Oil ETF featuring the highest volatility followed by Silver ETF, the latter having the highest 

excess kurtosis). Figures 10 and 11 display prices and returns, respectively, which give a clear 

idea about the instability and volatility clustering of the data. 
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Figure 10. Commodity ETFs prices 

 

 

Figure 11. Commodity ETFs returns  

 

 

4.2. Model Performance for Commodity ETFs 

This section presents the parameter estimation of the ARMA(1,1)-EGARCH(1,1) model under 

the alternative distributional hypotheses in Section 3.1 and the model comparison according to 
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the tests mentioned in Section 3.2. We examine backtesting for both VaR (at 99% and 97.5%) 

and ES (at 97.5%), and discuss the relative model assessment. 

4.2.1. Model estimates 

Table 13 presents the ML estimates of the parameters of the ARMA(1,1)–EGARCH(1,1) 

model under four distributional hypotheses: Gaussian (Panel A), Student’s t (Panel B), 

Skewed-t (Panel C) and GC (Panel D). It is noteworthy that, unlike Del Brio and Perote (2012), 

where parameters are estimated in two steps, we estimate ARMA-EGARCH and GC 

innovation parameters jointly by ML. P-values for testing the significance of every parameter 

are given in parentheses. The estimates of the AR (ϕ) and MA (θ) structures are significant for 

most cases of Commodity ETF series. The values of the EGARCH(1,1) parameters are also 

statistically significant, γ is positive indicating that positive innovations generate more 

volatility than negative shocks, and β is close to one for all series, reflecting the persistence 

and clustering in volatility. The estimates for the shape (degrees of freedom), ν, and skew 

parameter (ξ) of the Student’s t distributions are significant and reveal the leptokurtic and 

(negatively) skewed nature of the data, which is confirmed by the estimates of the parameters 

of the GC densities, 𝑑3 (skewness coefficient) and 𝑑4 (excess kurtosis). 

Table 13. Estimates of ARMA(1,1)-EGARCH(1,1) models 

 Gold Silver Oil Agriculture Energy Broad 

Panel A: Gaussian 

μ 0.023 (0.000) -0.013 (0.766) -0.038 (0.248) -0.032 (0.057) -0.029 (0.252) -0.037 (0.068) 

 0.952 (0.000) 0.044 (0.153) -0.725 (0.000) 0.490 (0.000) -0.858 (0.000) -0.880 (0.000) 

 -0.965 (0.000) -0.014 (0.669) 0.685 (0.000) -0.538 (0.000) 0.819 (0.000) 0.858 (0.000) 

 0.014 (0.000) 0.051 (0.000) 0.013 (0.000) 0.002 (0.113) 0.008 (0.000) 0.004 (0.008) 

 -0.010 (0.236) -0.016 (0.164) -0.051 (0.000) 0.007 (0.344) -0.046 (0.000) -0.023 (0.002) 

 0.981 (0.000) 0.971 (0.000) 0.991 (0.000) 0.997 (0.000) 0.993 (0.000) 0.994 (0.000) 

 0.145 (0.00) 0.203 (0.000) 0.101 (0.000) 0.114 (0.000) 0.098 (0.000) 0.103 (0.000) 

Panel B: Student’s t 

μ 0.042 (0.022) 0.038 (0.242) -0.019 (0.574) -0.028 (0.024) -0.004 (0.857) -0.020 (0.301) 

 0.449 (0.000) -0.337 (0.000) -0.715 (0.000) 0.402 (0.000) -0.837 (0.000) -0.855 (0.000) 

 -0.489 (0.000) 0.322 (0.000) 0.672 (0.000) -0.457 (0.000) 0.795 (0.000) 0.827 (0.000) 

 0.003 (0.115) 0.012 (0.000) 0.008 (0.000) -0.001 (0.671) 0.003 (0.091) 0.000 (0.870) 

 0.009 (0.373) 0.011 (0.287) -0.047 (0.000) 0.000 (0.958) -0.042 (0.000) -0.025 (0.004) 

 0.992 (0.000) 0.992 (0.000) 0.993 (0.000) 0.997 (0.000) 0.995 (0.000) 0.996 (0.000) 

 0.107 (0.000) 0.117 (0.000) 0.101 (0.000) 0.107 (0.000) 0.101 (0.000) 0.102 (0.000) 

 4.960 (0.000) 4.310 (0.000) 12.285 
(0.000) 

8.292 (0.000) 9.371 (0.000) 9.521 (0.000) 

Panel C: Skewed Student’s t 

μ 0.023 (0.262) -0.034 (0.245) -0.035 (0.270) -0.032 (0.057) -0.025 (0.312) -0.031 (0.033) 



92 
 

 0.443 (0.000) -0.277 (0.000) -0.701 (0.000) 0.405 (0.000) -0.825 (0.000) -0.814 (0.000) 

 -0.485 (0.000) 0.257 (0.000) 0.655 (0.000) -0.463 (0.000) 0.781 (0.000) 0.782 (0.000) 

 0.003 (0.129) 0.011 (0.000) 0.009 (0.000) -0.000 (0.704) 0.004 (0.038) 0.006 (0.690) 

 0.009 (0.386) 0.010 (0.320) -0.047 (0.000) 0.000 (0.971) -0.043 (0.000) -0.025 (0.003) 

 0.992 (0.000) 0.992 (0.000) 0.993 (0.000) 0.997 (0.000) 0.995 (0.000) 0.996 (0.000) 

 0.107 (0.000) 0.118 (0.000) 0.103 (0.000) 0.109 (0.000) 0.104 (0.000) 0.103 (0.000) 

 5.069 (0.000) 4.341 (0.000) 13.008 
(0.000) 

8.299 (0.000) 9.894 (0.000) 9.902 (0.000) 

Skew-ξ 0.939 (0.000) 0.894 (0.000) 0.918 (0.000) 0.970 (0.000) 0.897 (0.000) 0.919 (0.000) 

Panel D: GC 

μ 0.003 (0.000) -0.003 (0.925) -0.038 (0.493) -0.031 (0.052) -0.030 (0.534) -0.087 (0.017) 

 0.840 (0.000) 0.034 (0.000) -0.726 (0.000) 0.491 (0.022) -0.858 (0.000) -0.880 (0.000) 

 -0.853 (0.000) -0.024 (0.000) 0.684 (0.000) -0.527 (0.010) 0.818 (0.000) 0.855 (0.000) 

 0.018 (0.000) 0.063 (0.000) 0.011 (0.002) 0.035 (0.000) 0.009 (0.003) 0.017 (0.000) 

 -0.005 (0.621) -0.003 (0.848) -0.056 (0.000) -0.059 (0.004) -0.049 (0.000) -0.057 (0.000) 

 0.981 (0.000) 0.965 (0.000) 0.992 (0.000) 0.970 (0.000) 0.993 (0.000) 0.980 (0.000) 

 0.055 (0.000) 0.056 (0.000) 0.020 (0.000) 0.046 (0.000) 0.028 (0.000) 0.033 (0.000) 
𝑑3 -0.035 (0.004) -0.042 (0.000) -0.022 (0.034) -0.032 (0.008) -0.034 (0.002) -0.026 (0.024) 
𝑑4 0.166 (0.000) 0.244 (0.000) 0.111 (0.000) 0.408 (0.000) 0.116 (0.000) 0.228 (0.000) 

μ, ϕ and   are the parameters of the ARMA(1,1) model; , , γ and  are the parameters of the EGARCH(1,1) 

model;  and ξ are the parameters of the (skewed) Student’s t; d3i and d4i are the parameters of the GC model. P-

values for the t-test in parentheses. 

 

The skewness parameter for Gold and Agricultural ETFs is close to one, when filtering the 

returns by an ARMA(1,1)-EGARCH(1,1) with innovations skewed-t distributed. This fact 

indicates that the distribution for these variables is close to the Student’s t (as revealed by the 

similar loglikelihood and information criteria values in Table 14, Panel A and B), and the 

performance would be expected to be same for both distributions, when calculating risk 

measures for Gold ETF. In addition, the degrees of freedom parameter (ν) for Oil ETF is 

“relatively” high (12.28) when filtering the returns by an ARMA(1,1)-EGARCH(1,1) with 

innovations Student's t distributed. The higher the value of this shape parameter the less 

leptokurtic the distribution is (i.e. closer to the Gaussian pdf). This feature was also clear from 

the descriptive statistics (see Table 1), where Oil ETF presents the minimum excess kurtosis 

(2.47). It is worth noting that, after filtering Oil ETF returns by an ARMA(1,1)-EGARCH(1,1) 

model with skewed-t distribution for the innovations, the estimation for degrees of freedom is 

still relatively high (13) and skewness parameter close to one. The diagnostic tests for serial 

correlation (Ljung Box statistic) on the ARMA(1,1)-EGARCH(1,1) model (levels and squared) 

standardized residuals are displayed in Table 3, as well as the accuracy criteria (AIC, BIC and 

HQC) under the different distributional hypotheses. 
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Table 14. Diagnostics of ARMA(1,1)-EGARCH(1,1)  

 Gold Silver Oil Agriculture Energy Broad 

Panel A: Gaussian 

LL -3548.78 -4738.13 -4648.64 -3323.15 -4146.57 -3497.14 
AIC 3.131 4.179 4.100 2.933 3.658 3.086 
BIC 3.149 4.197 4.118 2.950 3.675 3.103 

HQC 3.138 4.185 4.106 2.939 3.664 3.092 
LBSR 0.051 

(0.821) 
0.009 

(0.923) 
0.194 

(0.659) 
0.696 (0.404) 0.079 

(0.778) 
0.030 

(0.862) 
LBSSR 7.829 

(0.005) 
10.31 

(0.001) 
1.679 

(0.195) 
0.485 (0.486) 1.006 

(0.316) 
0.303 

(0.582) 

Panel B: Student’s t 

LL -3458.40 -4647.04 -4632.68 -3287.33 -4117.24 -3468.68 
AIC 3.053 4.099 4.087 2.902 3.633 3.062 
BIC 3.073 4.120 4.107 2.922 3.653 3.082 

HQC 3.060 4.107 4.094 2.909 3.640 3.069 
LBSR 1.967 

(0.161) 
3.595 

(0.058) 
0.286 

(0.593) 
1.461 (0.227) 0.194 

(0.659) 
0.006 

(0.938) 
LBSSR 33.83 

(0.000) 
30.40 

(0.000) 
1.758 

(0.185) 
0.720 (0.396) 0.930 

(0.335) 
0.222 

(0.637) 

Panel C: Skewed Student’s t 

LL -3455.90 -4638.37 -4628.84 -3286.86 -4111.05 -3464.98 
AIC 3.051 4.093 4.084 2.903 3.628 3.059 
BIC 3.074 4.115 4.107 2.925 3.651 3.082 

HQC 3.060 4.101 4.093 2.911 3.637 3.068 
LBSR 2.185 

(0.139) 
4.077 

(0.043) 
0.461 

(0.497) 
1.750 (0.186) 0.340 

(0.560) 
0.070 

(0.791) 
LBSSR 33.70 

(0.000) 
30.18 

(0.000) 
1.552 

(0.213) 
0.624 (0.430) 0.753 

(0.385) 
0.257 

(0.612) 

Panel D: GC 

LL -1389.89 -2593.33 -2562.65 -1278.65 -2045.83 -1434.25 
AIC 1.232 2.292 2.265 1.134 1.809 1.271 

BIC 1.255 2.314 2.287 1.157 1.832 1.294 

HQC 1.240 2.300 2.273 1.142 1.818 1.279 

LBSR 0.255 
(0.613) 

2.965 
(0.085) 

0.310 
(0.577) 

0.166 (0.683) 0.794 
(0.373) 

3.228 
(0.0724) 

LBSSR 21.690 
(0.000) 

28.751 
(0.000) 

47.300 
(0.150)  

3.900 (0.048) 39.519 
(0.271) 

83.646 
(0.413) 

LL: Loglikelihood, AIC: Akaike information criterion, BIC: Bayesian (Schwartz) information criterion, 

HQC: Hannan-Quinn information criterion, LBSR: Ljung Box Standardized Residuals, LBSSR: Ljung 

Box Squared Standardized Residuals (1 lag). P-values for testing H0: no serial correlation in 

parentheses. 
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Accuracy criteria show that ARMA-EGARCH-Gaussian is outperformed by the other models 

for all series. Though the hypothesis of absence of serial correlation is rejected for squared 

standardized residuals in metal (Gold and Silver) ETFs, the ARMA-EGARCH model seems to 

be adequate for Commodity ETF returns, since their most important parameters to capture 

volatility persistence and leverage effects are significant.  

 

4.2.2. Model performance for VaR and ES 

a. Tests for 99%-VaR 

According to Bernoulli Coverage test for VaR − see equation (18) − presented in Table 4, 

ARMA-EGARCH-skewed-t and ARMA-EGARCH-GC perform adequately for all 

Commodity ETFs, but the ARMA-EGARCH-GC fails in Agriculture ETF. ARMA-EGARCH-

Gaussian and ARMA-EGARCH-t tend to underestimate risk, whereas ARMA-EGARCH-

skewed-t seems to overestimate it. As seen in Table 15, ARMA-EGARCH-Gaussian and 

ARMA-EGARCH-t only perform reasonably well for Agriculture ETF returns according to the 

coverage test. Details about the relative performance tests of VaR at 99% (pairwise DM test) 

can be found in Appendix C. Results for relative performance shows the outperformance of 

non-Gaussian models with the exception of Oil ETF (as commented before, Oil ETF features 

the less leptokurtic pattern of all series), but ARMA-EGARCH-t performs poorly in most cases 

(all cases except for Silver and Oil ETFs). ARMA-EGARCH-GC is significantly better than 

ARMA-EGARCH-skewed-t for Silver and Oil ETFs, whereas ARMA-EGARCH-skewed-t 

performs more accurately than ARMA-EGARCH-GC for Energy ETF. 

Table 15. Backtesting 99%-VaR for Commodity ETFs returns 

 

Expected number of exceptions = 18     

Data: December 2008 – January 2016 

    

1771 days  Gold Silver Oil Agriculture Energy Broad 

ARMA-EGARCH-

Gaussian 

43 (0.000) 38 (0.000) 35 (0.000) 24 (0.154) 38 (0.000) 33 (0.001) 

ARMA-EGARCH-t 28 (0.023) 27 (0.039) 27 (0.039) 18 (0.945) 29 (0.013) 29 (0.013) 

ARMA-EGARCH- 

skewed-t  

25 (0.101) 15 (0.506) 15 (0.506) 21 (0.445) 17 (0.864) 15 (0.506) 

ARMA-EGARCH-GC 21 (0.445) 21 (0.445) 16 (0.678) 5 (0.000) 24 (0.154) 17 (0.864) 

P-values for Bernoulli Coverage test in parentheses. 

b. Tests for 97.5%-VaR and 97.5%-ES 
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Table 16 displays the results of the Bernoulli Coverage test for VaR at 97.5%. They confirm 

the good performance of ARMA-EGARCH-skewed-t and ARMA-EGARCH-GC models. 

However, the ARMA-EGARCH-Gaussian for Silver, Agriculture and Broad ETFs are not 

rejected at 5% confidence. As expected, Gaussian model performs better when the confidence 

level of the VaR is not so high (e.g. 97.5%). The 97.5%-VaR relative performance (see results 

in Appendix D) supports the ARMA-EGARCH-GC and ARMA-EGARCH-skewed-t as the 

best models. ARMA-EGARCH-Gaussian (ARMA-EGARCH-t) only performs well for one 

(two) case(s). 

Table 16. Backtesting 97.5%-VaR for Commodity ETFs returns 

 

Expected number of exceptions = 44     

Data: December 2008 – January 2016 

    

1771 days  Gold Silver Oil Agriculture Energy Broad 

ARMA-EGARCH-

Gaussian 

62 (0.011)  57 (0.063) 62 (0.011) 49 (0.479) 58 (0.046) 53 (0.197) 

ARMA-EGARCH-t 62 (0.011) 56 (0.086) 59 (0.033) 45 (0.912) 56 (0.086) 53 (0.197) 

ARMA-EGARCH- 

skewed-t  

42 (0.727) 34 (0.103) 39 (0.412) 40 (0.508) 27 (0.005) 33 (0.072) 

ARMA-EGARCH-GC 42 (0.727) 41 (0.614) 44 (0.967) 22 (0.000) 46 (0.794) 30 (0.021) 

P-values for the Bernoulli Coverage  test in parentheses. 

 

Table 17 presents the results of the t-test − equations (23) and (24) − for model performance in 

terms of ES, the null hypothesis being zero mean of violation residuals. Hence, a model is good 

enough if there is no evidence to reject null hypothesis. The results of t-test for ES at 97.5% 

show that ARMA-EGARCH-skewed-t and ARMA-EGARCH-GC model the best (these 

models are never rejected) followed by ARMA-EGARCH-t (rejected in 4 occasions). AR-

GARCH-Gaussian is always rejected when risk is measured by ES at 97.5%.  

Table 17. T-test for 97.5%-ES for Commodity ETFs returns 

 

Mean of violation residual is zero 

Data: December 2008 – January 2016  

    

1771 days  Gold Silver Oil Agriculture Energy Broad 

ARMA-EGARCH-

Gaussian 

4.443 (0.000) 3.455 (0.001) 3.004 (0.004) 2.203 (0.032) 3.539 (0.001) 3.410 (0.001) 

ARMA-EGARCH-t -4.586 (0.000) -4.014 (0.000) -1.292 (0.201) -3.177 (0.003) -1.785 (0.079) -1.209 (0.232) 

ARMA-EGARCH-

skewed-t  

1.756 (0.087) 1.206 (0.237) 0.342 (0.734) 0.951 (0.347) 1.561 (0.130) 1.541 (0.133) 

ARMA-EGARCH-GC 1.855 (0.071) 1.856 (0.071) 1.179 (0.245) -0.856 (0.401) 3.027 (0.004) 1.288 (0.208) 

P-values for the t-test test in parentheses. 

 

Relative performance (DM pairwise) test for ES is displayed in Appendix E. In this case, the 

best models are ARMA-EGARCH-t and ARMA-EGARCH-GC, followed by ARMA-
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EGARCH-skewed-t. Gaussian model works better than Student’s t and GC models for Oil and 

Energy ETFs respectively. Once more, this is not an unexpected result, since excess kurtosis 

in these two series are the lowest. 

In summary, ARMA-EGARCH-GC outperforms the other models for most series and 

according to Bernoulli test, t-test and relative performance tests for VaR and ES estimations. 

Nevertheless, ARMA-EGARCH-skewed-t and ARMA-EGARCH-t seem to be the best models 

according to coverage test for 99%-VaR and relative performance for 97.5%-ES, respectively. 

ARMA-EGARCH-Gaussian performs very poorly according to both coverage and relative 

performance test for all series with the exception of the Oil ETFs series (the less leptokurtic 

one).  

 

3.5 Portfolio risk quantification 

The former section reveals the GC distribution as an accurate distribution to measure ETFs risk 

according to both VaR and ES. In this section we extend the analysis to the multivariate case 

by studying the relative performance of multivariate GC (henceforth, multivariate SNP 

distribution) and Gaussian distribution for ES backtesting of three bivariate portfolios of ETFs. 

The predicted risk measures for the portfolio return rp at the time horizon t+1 and with 

confidence level  is given by 

VaR𝑝,𝑡+1
 = 𝜇̂𝑝,𝑡+1 + 𝜎̂𝑝,𝑡+1𝑞̂𝛼(𝑧𝑝),     (27) 

ES𝑝,𝑡+1
 = 𝜇̂𝑝,𝑡+1 + 𝜎̂𝑝,𝑡+1𝐸𝑆̂𝛼(𝑧𝑝),    (28) 

where forecasted conditional mean and variance of the portfolio are computed as 𝜇̂𝑝,𝑡+1 =

∑ 𝑤𝑖𝜇̂𝑖,𝑡+1
𝑛
𝑖=1  and 𝜎̂𝑝,𝑡+1

2 = ∑ 𝑤𝑖𝑤𝑗𝜎̂𝑖𝑗,𝑡+1
𝑛
𝑖=1 , respectively, which are obtained through the 

forecasted mean for every asset i (𝜇̂𝑖,𝑡+1) and the covariance of every couple of assets i and j 

(𝜎̂𝑖𝑗,𝑡+1 = 𝜌̂𝑖𝑗,𝑡+1𝜎̂𝑖,𝑡+1𝜎̂𝑗,𝑡+1) and considering the weight of every asset i, denoted by 𝑤𝑖 and 

satisfying 0 𝑤𝑖 1 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Note that 𝜌̂𝑖𝑗,𝑡+1 accounts for the estimated conditional 

correlation coefficient between assets i and j and then 𝜎̂𝑖𝑗,𝑡+1 = 𝜎̂𝑖,𝑡+1
2  when i = j. 

We assume that the marginal distribution of every individual asset follows the ARMA(1,1)-

EGARCH(1,1) model in equations (1)-(4) with either Gaussian or GC innovations. In addition, 

an estimation for the conditional correlation 𝜌̂𝑖𝑗,𝑡+1 is necessary to find the predicted volatility 
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of portfolio returns. To this end, standard Dynamic Conditional Correlation (Gaussian-DCC) 

and semi-nonparametric DCC (SNP-DCC) models are employed in this section. The former 

model was introduced by Engle (2002), and the latter by Del Brio et al. (2011), which extends 

of the seminal Engle’s (2002) work to non-Gaussian distributions. Next subsection reviews 

these models. 

 

5.1. The Gaussian-DCC and SNP-DCC models 

The multivariate SNP of vector 𝒛𝑡 = (𝑧1𝑡 , 𝑧2𝑡, … , 𝑧𝑛𝑡)′ ∈ ℝ𝑛
 with 𝑧i𝑡~𝐺𝐶(0,1) − i.e.  distributed 

as in equation (8) − and conditional correlation matrix 𝑹𝑡 (with general element {
𝑖𝑗

}) is 

characterized in terms of the following pdf: 

𝒇𝑆𝑁𝑃(𝒛𝑡|𝑡−1) = (2𝜋)−
𝑛

2|𝑹𝑡|−
1

2exp {−
1

2
𝒛𝑡

′ 𝑹𝑡
−1𝒛𝑡} [∑ 𝜓𝑖(𝑥𝑖𝑡)

𝑛
𝑖=1 ]

1

𝑛
        (29) 

where 𝜓
𝑖
(𝑥𝑖𝑡) = 1 + 𝑑3𝑖(𝑥𝑖𝑡

3 − 3𝑥𝑖𝑡) + 𝑑4𝑖 (𝑥𝑖𝑡
4 − 6𝑥𝑖𝑡

2 + 3) and   

𝒙𝑡 = (𝑥1𝑡, 𝑥2𝑡, … , 𝑥𝑛𝑡)′ = 𝑹𝑡
−1 2⁄

𝒛𝑡.            (30) 

It is noteworthy that the multivariate SNP distribution collapses to the multivariate Gaussian 

distribution when 𝑑3,𝑖 = 𝑑4,𝑖 = 0 and then Gaussian-DCC is a particular case of SNP-DCC.  

The transformation in equation (30) is not unique, although this fact does not impact the 

estimates of the conditional correlations. For example, for the bivariate case (𝑛 = 2) and the 

eigenvalue decomposition this transformation yields 

𝑥1𝑡 =
1

2
(

1

√1+𝜌12,𝑡
+

1

√1−𝜌12,𝑡
) 𝑧1𝑡 +

1

2
(

1

√1+𝜌12,𝑡
−

1

√1−𝜌12,𝑡
) 𝑧2𝑡  (31) 

𝑥2𝑡 =
1

2
(

1

√1+𝜌12,𝑡
−

1

√1−𝜌12,𝑡
) 𝑧1𝑡 +

1

2
(

1

√1+𝜌12,𝑡
+

1

√1−𝜌12,𝑡
) 𝑧2𝑡  (32) 

Then, the DCC model employed in this article can be formulated as: 

      𝒓𝑡 = 
𝑡
(𝝓) + 𝑡            (33) 

𝑡~𝑮𝑪(𝟎, 𝑫𝒕𝑹𝒕𝑫𝒕)      (34) 

log𝑫𝒕
𝟐 = 𝑑𝑖𝑎𝑔{𝑖} + 𝑑𝑖𝑎𝑔{𝑖} ∘ (|𝒕−𝟏| − 𝔼[|𝒕−𝟏|]) + 𝑑𝑖𝑎𝑔{𝛾𝑖} ∘ 𝒕−𝟏 + 𝑑𝑖𝑎𝑔{

𝑖
} ∘ log𝑫𝒕−𝟏

𝟐           (35) 

𝒛𝒕 = 𝑫𝒕
−𝟏𝒕       (36) 

𝑸𝒕 = 𝑺 ∘ (𝜾𝜾′ − 𝑨 − 𝑩) + 𝑨 ∘ 𝒛𝒕−𝟏𝒛𝒕−𝟏
′ + 𝑩 ∘ 𝑸𝒕−𝟏   (37) 
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𝑹𝒕 = 𝑑𝑖𝑎𝑔{𝑸𝒕}−1
2⁄ 𝑸𝒕𝑑𝑖𝑎𝑔{𝑸𝒕}−1

2⁄     (38) 

where 𝑫𝒕
𝟐 is the diagonal matrix of conditional variances with EGARCH dynamics31  and 

𝑸𝒕 the conditional covariance matrix of the DCC type − i.e. 𝜾 is a vector of ones, the symbol ∘ 

represents the element-by-element multiplication operator (Hadamard product), matrices A, B 

and 𝜾𝜾′ − 𝑨 − 𝑩  are positive definite matrices and S is the unconditional correlation matrix 

of 𝒛𝒕.  

It can be easily proved that the loglikelihood functions of both Gaussian-DCC and SNP-DCC 

models can be split in two terms, volatility and correlation, which allows to consistently 

estimate the density parameters in two steps: Firstly, conditional means and variances are 

estimated independently for every variable and, secondly, conditional correlations are 

estimated in the standardized (zero mean and unit variance) Gaussian and SNP distributions. 

In particular, the loglikelihood (LL) function in the second stage for SNP-DCC becomes (after 

deleting unnecessary constants) 

LL(𝑆𝑁𝑃) = −
1

2
log|𝑹𝑡| −

1

2
𝒛𝑡

′ 𝑹𝑡
−1𝒛𝑡 + ∑ log{∑ 𝜓

𝑖
(𝒙𝑖𝑡)𝑛

𝑖=1 }𝑇
𝑡=1 .  (39) 

 

5.2. Application 

For the sake of simplicity,32 our application reduces to three bivariate (n = 2) and equally 

weighted (𝑤𝑖 = 0.5,𝑖 = 1,2) portfolios: Portfolio A, formed by Gold and Silver ETFs; 

Portfolio B, formed by Gold and Oil ETFs; and Portfolio C, formed by Silver and Oil ETFs. 

Table 18 exhibits the main descriptive statistics for the portfolio returns, which are 

characterized by the same stylized facts than the individual commodity EFTs. 

Table 18. Descriptive statistics of Commodity ETF Portfolios 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 
Mean 0.0144 −0.0243 −0.343 
Median 0.0592 0.0013 −0.0061 
Standard deviation 1.6434 (25.98) 1.4132 (22.34) 1.8221 (28.81) 
Min −13.7779 −7.0676 −12.1956 
Max 12.0853 7.4417 8.3828 
Skewness −0.7347 −0.1067 −0.4720 
Excess Kurtosis 6.7643 2.4751 3.4321 

 
31 As far as we know this paper presents the first application of the SNP-DCC model with EGARCH innovations. 
32 Moreover, the other ETFs analyzed in this paper (Agriculture, Energy and Broad) track diversified commodity 

portfolios (see Appendix B). 
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Annual volatility in parentheses 

 

Table 19 shows the estimated parameters for Gaussian-DCC (Panel A) and SNP-DCC (Panel 

B). The first two rows present the estimations for the DCC part, and results support the 

conditional correlation model. It must be noted our application incorporates an AR(1)-

EGARCH(1,1). As expected, parameters for volatility part are similar to the estimations found 

in the univariate section (see Table 2). Furthermore, the parameters of the GC density for both 

dimensions are significant reflecting the outperformance of the SNP-DCC model.  

Table 19. Estimates of DCC models 

Panel A: Gaussian-DCC 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Α-DCC 0.041 (0.000) 0.044 (0.000) 0.024 (0.002) 

Β-DCC 0.937 (0.000) 0.909 (0.000) 0.950 (0.000) 

ϕ1 0.021 (0.338) 0.021 (0.338) -0.015 (0.686) 

1 0.014 (0.002) 0.014 (0.002) 0.051 (0.000) 

1 -0.012 (0.504) -0.012 (0.504) -0.016 (0.345) 

δ1 0.980 (0.000) 0.980 (0.000) 0.972 (0.000) 

1 0.146 (0.000) 0.146 (0.000) 0.201 (0.023) 

ϕ2 -0.015 (0.686) -0.042 (0.191) -0.042 (0.191) 

2 0.051 (0.000) 0.013 (0.000) 0.013 (0.000) 

2 -0.016 (0.345) -0.052 (0.000) -0.052 (0.000) 

2 0.972 (0.000) 0.991 (0.000) 0.991 (0.000) 

γ2 0.201 (0.023) 0.102 (0.000) 0.102 (0.000) 

Panel B: SNP-DCC 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Α-DCC 0.030 (0.000) 0.039 (0.000) 0.025 (0.001) 

Β-DCC 0.942 (0.000) 0.911 (0.000) 0.945 (0.000) 

ϕ1 0.003 (0.000) 0.003 (0.000) -0.003 (0.925) 

1 0.016 (0.000) 0.016 (0.000) 0.061 (0.000) 

1 -0.004 (0.621) -0.004 (0.621) -0.003 (0.848) 

1 0.980 (0.000) 0.980 (0.000) 0.963 (0.000) 



100 
 

γ1 0.053 (0.000) 0.053 (0.000) 0.055 (0.000) 

ϕ2 -0.003 (0.925) -0.036 (0.490) -0.036 (0.490) 

2 0.061 (0.000) 0.010 (0.000) 0.010 (0.000) 

2 -0.003 (0.848) -0.055 (0.000) -0.055 (0.000) 

2 0.963 (0.000) 0.990 (0.000) 0.990 (0.000) 

γ2 0.055 (0.000) 0.022 (0.000) 0.022 (0.000) 

d31 -0.008 (0.700) -0.067 (0.003) -0.073 (0.001) 

d41 0.101 (0.000) 0.099 (0.000) 0.116 (0.000) 

d32 -0.059 (0.005) -0.048 (0.010) -0.052 (0.007) 

d42 0.121 (0.000) 0.034 (0.000) 0.032 (0.000) 

A-DCC and B-DCC are the parameters of the DCC model; ϕi is the parameter of  the AR(1) model; i, i, γi and i 

are the parameters of the EGARCH(1,1) model; d4i and d4i are the parameters of the GC model. P-values in 

parentheses. 

 

Table 20 presents the results of t-test for ES at 97.5%. Once again, a model is good enough if 

the null hypothesis cannot be rejected. The SNP-DCC performs adequately in  all cases, 

whereas Gaussian-DCC fails in the three analyzed portfolios. 

Table 20. T-test for 97.5%-ES for Commodity ETFs portfolio returns 

 

Mean of violation residual is zero 

Data: December 2008 – January 2016 (1771 days for backtesting)  
Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Gaussian-DCC 6.944 (0.000) 4.810 (0.000) 4.713 (0.000) 

SNP-DCC 1.938 (0.061) 1.664 (0.110) 1.699 (0.100) 
P-values for the t-test test in parentheses. 

The results of relative performance test for ES are shown in Table 21. A pairwise Diebold 

Mariano test less than −1.96 indicates that SNP-DCC is preferred to Gaussian-DCC at 5% of 

significance. The results show the outperformance of SNP-DCC for all the analyzed portfolios. 

 

Table 21. Pairwise Diebold Mariano test for 97.5%-ES 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 
DM test -5.540 (0.000) -3.532 (0.000) -3.584 (0.000) 
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Finally, Figure 12 presents the comparison of 97.5%-ES estimated by Gaussian-DCC and SNP-

DCC for the conditional correlations of the three analyzed portfolios. This figure illustrates the 

underperformance of the Gaussian-DCC for capturing extreme values and the more accuracy 

of the SNP-DCC for this purpose. 
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Figure 12. 97.5%-ES for portfolio of Commodity ETFs 
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3.6 Discussion 

Since the global financial crisis, regulators and policy makers have been concerned about 

financial stability and an important instrument to achieve this goal is capital adequacy 

requirements. In this line, the Basel Committee published a consultative document (BCBS, 

2013) on the Fundamental Review of Trading Book (FRTB).  One of the main changes 

proposed in the FTRB is replacing 99%-VaR with a 97.5%-ES in the internal models approach 

for financial institutions. With the new rules, regulators estimate that banks would have to 

increase capital buffer around 40% in average to mitigate potential market risk losses in their 

trading books. Nevertheless, few studies are devoted to examine the impact for capital 

requirements with the new regulatory proposal. For instance, Kellner and Rösch (2016) find 

that ES is more sensitive towards regulatory arbitrage and model risk, especially under 

parameter misspecification. Table 22 presents the ratio 97.5%-ES to 99%-VaR in average for 

the backtesting period applied to the six commodity ETFs analyzed in this paper. 

Table 22. Average ratio 97.5%-ES to 99%-VaR 

Data: December 2008 – January 2016   
1771 days Gold Silver Oil Agriculture Energy Broad 

Gaussian 1.005 
(0.000) 

1.005 
(0.000) 

1.005 
(0.000) 

1.005 (0.000) 1.005 
(0.000) 

1.005 
(0.000) 

Student’s t 1.427 
(0.294) 

1.495 
(0.340) 

1.141 
(0.227) 

1.154 (0.060) 1.160 
(0.104) 

1.157 
(0.102) 

Skewed-t 1.160 
(0.104) 

1.160 
(0.103) 

1.160 
(0.103) 

1.160 (0.104) 1.161 
(0.104) 

1.161 
(0.104) 

GC 0.994 
(0.004) 

0.994 
(0.022) 

1.000 
(0.004) 

1.000 (0.006) 0.999 
(0.004) 

0.999 
(0.005) 

Standard deviation in parentheses. 

As expected, the ratio 97.5%-ES/99%-VaR for the Gaussian case is 1, the reason for the Basel 

Committee to establish the 97.5% confidence level for ES. From the stylized facts of daily 

returns, empirical distribution of financial assets exhibits heavier tails than normal, and 

leptokurtic distributions such as Student’s t and its skewed version have been employed. 

Results of Table 11 point to an average increment between 14% and 42% by replacing VaR 

with ES, if the financial institution assumes a Student’s t risk model, and an average increment 

of 16% by using a skewed-t risk model. The ratio 97.5%-ES/99%-VaR for GC is also close to 

one as in the Gaussian case, since GC distribution is an expansion in terms of derivatives of 

the Gaussian pdf − and their corresponding Hermite polynomials, see equation (9). However, 

due to the fact that GC allows for skewness and kurtosis, capital requirements based on GC-
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ES are higher than Gaussian-ES, and risk measures based on GC distribution perform well 

according to our results. The ratio ES to VaR for GC implies that 97.5%-ES behaves very 

similarly to 99%-VaR and studies have shown good backtesting performance for GC-VaR (Del 

Brio et al., 2014a,b). From the multivariate perspective used for analyzing portfolios, different 

results from calculating ES at 97.5% under a Gaussian or SNP distribution can be observed. 

The ratio SNP-ES/Gaussian-ES for Portfolio B (Gold-Oil) and C (Silver-Oil) is 1.66, and for 

Portfolio A (Gold-Silver) is 1.91. This evidence implies that risk is underestimated more than 

a half (for Portfolio A) if a financial institution employs the Gaussian model to buffer capital 

against potential losses in commodity ETF markets. 

On the other hand, the high volatility in the commodity markets has been pressuring emerging 

economies, and the correlation of equity-commodities has increased with financialization of 

commodities (Basak and Pavlova, 2016). The results of this paper highlight the use of 

leptokurtic distribution to assessing risk, especially GC distribution, in order to mitigate 

potential losses when there is an exposure of commodities and other financial instruments.  

ETFs have provided investors, portfolio managers and risk quantification area access to a 

variety of alternative strategies and investments with the advantages of liquidity transparency 

and cost effectiveness. In financial crises, the main concern for financial institutions is high 

volatility, and Volatility ETFs may be a solution for fluctuations in implied market volatility. 

Asset managers have been considering the inclusion of commodities in their portfolios, since 

commodities are negatively correlated to other financial assets in “relatively” calm periods or 

for market-neutral strategy reasons. One of the best ways to include commodities in portfolios 

is through ETFs due to the abovementioned advantages. However, in crisis periods correlations 

between asset returns tend to be positively high. Thus, this paper focuses on Commodity ETFs 

in order to quantify its risk especially in crisis periods. 

 

3.7 Conclusions of Chapter 3 

The Basel Committee’s fundamental review of trading book proposes to replace Value-at-Risk 

(VaR) at 99% by Expected Shortfall (ES) at 97.5% as the more accurate market risk measure. 

This proposal has initiated a controversial debate in the academy and financial industry about 

the appropriateness of such measure, mainly due to its troublesome backtesting 

implementation. On the other hand, there are straightforward methods to backtest VaR, 

although this risk measure fails to satisfy the subadditivity axiom, a desirable property to be a 
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coherent risk measure. ES indeed satisfy this latter property but its lacks of elicitability opens 

the debate on whether ES might be backtestable. However, recent studies have shown that, 

under certain conditions, it is possible to implement performance tests in terms of ES jointly 

with VaR. This paper presents an application of these methods to different Commodity ETFs 

in order to shed some light on the risk assessment of different techniques, which cover 

parametric (Gaussian, Student’s t and skewed-t), and semi-nonparametric (with two alternative 

specifications: the univariate and multivariate case). Particularly, as far as we know, the ES 

assessment of the latter is being tested for the first time. 

Coverage test for backtesting 97.5%-VaR shows that ARMA-EGARCH-skewed-t performs 

satisfactorily for Commodity ETFs. Whereas, relative performance shows that ARMA-

EGARCH-GC and ARMA-EGARCH-t are the best models for 97.5% VaR and 97.5% ES, 

which is the new confidence level proposed by Basel Accords. For portfolios of Commodity 

ETFs, the SNP-DCC is preferred to the Gaussian-DCC according to t-test and relative 

performance tests. Therefore, our study recommends the implementation of these techniques, 

particularly the one based on the Gram-Charlier expansion for which we provide a 

straightforward closed form for ES. 

Future research will study of alternative semi-nonparametric methods for portfolio assessment 

− e.g. the SNP-DECO model by Ñíguez and Perote (2016) − and the applications of new risk 

measures such as median shortfall, which has been proven to be elicitable and satisfies a wide 

set of economic axioms (Kou and Peng, 2014). Spectral risk measures introduced by Acerbi 

(2002) appear to be other interesting avenues for research, and calculating confidence intervals 

of these risk measures on a specific model, since European Banking Authority urges the need 

for its calculation. Another future research will be focused on the analysis of interdependence 

in commodity market caused by financialization and contagion ES as per in Suh (2015). From 

the point of view of risk managers is also interesting to analyze the role of commodities (and 

commodity ETFs) in risk diversification, since the negative correlation between commodities 

and stocks has recently become strongly positive. 
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Appendix A. ES computation for GC 

ES for the GC Type A distribution can be obtained as the expected probability of variable 𝑧𝑡 

conditioned on the fact that this variable had exceeded a given quantile 𝑞̂𝛼(𝑧𝑡) = −1(𝛼). 

Therefore 

𝐸𝑃[𝑧𝑡𝑧𝑡 < −1(𝛼)] = ∫ 𝑧𝑡𝑓(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

 

= ∫ 𝑧𝑡(𝑧𝑡) [1 + ∑ 𝑑𝑠𝐻𝑠(𝑧𝑡)

𝑆

𝑠=2

] 𝑑𝑧𝑡

−1(𝛼)

−∞

 

= ∫ 𝑧𝑡(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

+ ∫ ∑ 𝑑𝑠𝐻𝑠(𝑧𝑡)

𝑆

𝑠=2

𝑧𝑡(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

 

= ∫ 𝑧𝑡(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

+ ∑ ∫ 𝑑𝑠𝐻𝑠(𝑧𝑡)𝑧𝑡(𝑧𝑡)
−1(𝛼)

−∞

𝑑𝑧𝑡

𝑆

𝑠=2

 

= ∫ 𝑧𝑡(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

+ ∑ 𝑑𝑠 ∫ 𝑧𝑡𝐻𝑠(𝑧𝑡)(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

𝑆

𝑠=2

 

= − (−1(𝛼)) + ∑ 𝑑𝑠 [−𝐻𝑠 (−1(𝛼))  (−1(𝛼)) + 𝑠 ∫ 𝐻𝑠−1(𝑧𝑡)(𝑧𝑡)𝑑𝑧𝑡

−1(𝛼)

−∞

]

𝑆

𝑠=2

 

= − (−1(𝛼)) [1 + ∑ 𝑑𝑠 [𝐻𝑠 (−1(𝛼)) + 𝑠𝐻𝑠−2 (−1(𝛼))]

𝑆

𝑠=2

] 

By direct application of Lemma 1 and Lemma 2 in Ñíguez and Perote (2012) for and taking 

into account that 𝐻1(𝑧𝑡) = 𝑧𝑡. 

Consequently, for the GC expansion considered in Section 4 and 𝑢 = −1(𝛼),  

𝑓(𝑧𝑡) = [1 + 𝑑3𝐻3(𝑧𝑡) + 𝑑4𝐻3(𝑧𝑡) + 𝑑6𝐻6(𝑧𝑡)+𝑑8𝐻8(𝑧𝑡)](𝑧𝑡) 

𝐸𝑃[𝑧𝑡𝑧𝑡 < 𝑢] = −(𝑢) − 𝑑3(𝑢)[𝑢3 − 3𝑢 + 3𝑢] − 𝑑4(𝑢)[𝑢4 − 6𝑢2 + 3 + 4(𝑢2 − 1)]

− 𝑑6(𝑢)[𝑢6−15𝑢4 + 45𝑢2 − 15 + 6𝑢4 − 36𝑢2 + 18] 

−𝑑8(𝑢)[𝑢8 − 28𝑢6 + 21015𝑢4 − 420𝑢2 + 105 + 8(𝑢6−15𝑢4 + 45𝑢2 − 15)] 

= −(𝑢) − 𝑑3(𝑢)𝑢3 − 𝑑4(𝑢)[𝑢4 − 2𝑢2 − 1] − 𝑑6(𝑢)[𝑢6−9𝑢4 + 9𝑢2 + 3]

− 𝑑8(𝑢)[𝑢8 − 20𝑢6 + 90𝑢4 − 60𝑢2 − 15] 
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Appendix B. Data description 

ETF 

Commodity 

Ticker Description 

Gold GLD SPDR Gold Shares is an investment fund incorporated in the USA.  

The investment objective of the Trust is for the Shares to reflect 

the performance of the price of gold bullion, less the Trust's 

expenses. The Trust holds gold and is expected from time to time 

to issue Baskets in exchange for deposits of gold and to distribute 

gold in connection with redemptions of Baskets.   

Silver SLV iShares Silver Trust is a trust formed to invest in silver. The assets 

of the trust consist primarily of silver held by the custodian on 

behalf of the trust. The objective of the trust is for the shares to 

reflect the price of silver owned by the trust, less the trust's 

expenses and liabilities.  

Oil USO United States Oil Fund LP is a Delaware limited partnership 

incorporated in the USA. The Fund's objective is to have changes 

in percentage terms of its unit's net asset value reflect the changes 

of the price of WTI Crude Oil delivered to Cushing, Oklahoma, as 

measured by changes in percentage terms of the price of the WTI 

Crude Oil futures contract on the NYMEX. 

Agriculture DBA PowerShares DB Agriculture Fund is an exchange-traded fund 

incorporated in the USA. The Fund's objective is to reflect the 

performance of the DBIQ Diversified Agriculture Index Excess 

Return. 

Energy DBE PowerShares DB Energy Fund is an exchange-traded fund 

incorporated in the USA. The Fund's objective is to track the DBIQ 

Optimum Yield Energy Index Excess Return. 

Broad DBC PowerShares DB Commodity Index Tracking Fund is an 

investment fund incorporated in the USA. The Fund's objective is 

to reflect the performance of the DBIQ Optimum Yield Diversified 

Commodity Index Excess.  The Fund invests in commodities such 

as Light, Sweet Crude Oil, Heating Oil, Aluminum, Gold, Corn 

and Wheat. 

Source: Bloomberg LP. 
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Appendix C. Pairwise Diebold Mariano test for 99%-VaR 

  Panel C.1. Gold ETF returns 

Model A → 

Model B ↓ 

ARMA-

EGARCH-t 
ARMA-EGARCH- 

skewed-t 
ARMA-

EGARCH-GC 

ARMA-EGARCH-normal -2.346 (0.009) -1.507 (0.145) -1.912 (0.028) 

ARMA-EGARCH-t  0.089 (0.535) -1.161 (0.123) 

ARMA-EGARCH- skewed-t    -0.931 (0.176) 

   Panel C.2. Silver ETF returns 

ARMA-EGARCH-normal -1.600 (0.055) 4.304 (0.999) -0.303 (0.381) 

ARMA-EGARCH-t  4.151 (0.999) 0.071 (0.528) 

ARMA-EGARCH- skewed-t    -2.647 (0.004) 

Panel C.3. Oil ETF returns 

ARMA-EGARCH-normal 1.311 (0.905) 3.828 (0.999) -2.129 (0.017) 

ARMA-EGARCH-t  -1.311 (0.095) -1.311 (0.095) 

ARMA-EGARCH- skewed-t    -4.363 (0.000) 

Panel C.4. Broad ETF returns 

ARMA-EGARCH-normal -2.996 (0.001) -2.532 (0.006) -1.682 (0.046) 

ARMA-EGARCH-t  -2.218 (0.013) -0.509 (0.305) 

ARMA-EGARCH- skewed-t    1.564 (0.941) 

Panel C.5. Agriculture ETF returns 

ARMA-EGARCH-normal -1.482 (0.069) -2.367 (0.009) -2.212 (0.013) 

ARMA-EGARCH-t  -0.700 (0.242) -1.130 (0.129) 

ARMA-EGARCH- skewed-t    -0.944 (0.173) 

Panel C.6. Energy ETF returns 

ARMA-EGARCH-normal -1.826 (0.034) -1.825 (0.034) 1.438 (0.925) 

ARMA-EGARCH-t  1.697 (0.955) 2.620 (0.996) 

ARMA-EGARCH- skewed-t    2.620 (0.996) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A is 

preferred than Model B, figures in red indicate the opposite. Otherwise both models present the same 

performance. P-values in parentheses. 

  



112 
 

Appendix D. Pairwise Diebold Mariano test for 97.5%-VaR 

  Panel D.1. Gold ETF returns 

Model A → 

Model B ↓ 

ARMA-

EGARCH-t 
ARMA-EGARCH- 

skewed-t 
ARMA-

EGARCH-GC 

ARMA-EGARCH-normal -0.268 (0.394) -1.170 (0.121) -2.064 (0.019) 

ARMA-EGARCH-t  -1.342 (0.089) 1.566 (0.059) 

ARMA-EGARCH- skewed-t    -0.691 (0.245) 

   Panel D.2. Silver ETF returns 

ARMA-EGARCH-normal 0.633 (0.737) 5.172 (0.999) -0.2285 (0.409) 

ARMA-EGARCH-t  4.871 (0.999) -0.356 (0.361) 

ARMA-EGARCH- skewed-t    -3.488 (0.000) 

Panel D.3. Oil ETF returns 

ARMA-EGARCH-normal 1.309 (0.905) 4.997 (0.999) -2.685 (0.004) 

ARMA-EGARCH-t  -1.309 (0.095) -1.309 (0.095) 

ARMA-EGARCH- skewed-t    -5.619 (0.000) 

Panel D.4. Broad ETF returns 

ARMA-EGARCH-normal -2.645 (0.004) -3.239 (0.001) -1.777 (0.038) 

ARMA-EGARCH-t  -3.244 (0.001) -1.035 (0.150) 

ARMA-EGARCH- skewed-t    1.990 (0.977) 

Panel D.5. Agriculture ETF returns 

ARMA-EGARCH-normal -1.133 (0.129) -3.508 (0.000) -2.604 (0.005) 

ARMA-EGARCH-t  -2.752 (0.003) -1.788 (0.037) 

ARMA-EGARCH- skewed-t    0.305 (0.620) 

Panel D.6. Energy ETF returns 

ARMA-EGARCH-normal -1.555 (0.060) -1.555 (0.060) 1.068 (0.857) 

ARMA-EGARCH-t  1.738 (0.959) 1.866 (0.969) 

ARMA-EGARCH- skewed-t    1.866 (0.969) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A is 

preferred than Model B, figures in red indicate the opposite. Otherwise both models present the same 

performance. P-values in parentheses. 
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Appendix E. Pairwise Diebold Mariano test for 97.5%-ES 

  Panel E.1. Gold ETF returns 

Model A → 

Model B ↓ 

ARMA-

EGARCH-t 
ARMA-EGARCH- 

skewed-t 
ARMA-

EGARCH-GC 

ARMA-EGARCH-normal -2.451 (0.007) -2.166 (0.015) -1.993 (0.023) 

ARMA-EGARCH-t  -1.683 (0.046) 0.855 (0.196) 

ARMA-EGARCH- skewed-t    1.459 (0.927) 

   Panel E.2. Silver ETF returns 

ARMA-EGARCH-normal -2.186 (0.014) 0.989 (0.838) -1.961 (0.025) 

ARMA-EGARCH-t  4.193 (0.999) 0.394 (0.637) 

ARMA-EGARCH- skewed-t    -4.143 (0.000) 

Panel E.3. Oil ETF returns 

ARMA-EGARCH-normal 1.707 (0.956) 4.233 (0.999) 0.076 (0.530) 

ARMA-EGARCH-t  2.415 (0.992) -1.670 (0.047) 

ARMA-EGARCH- skewed-t    -3.977 (0.000) 

Panel E.4. Broad ETF returns 

ARMA-EGARCH-normal -0.933 (0.175) -2.114 (0.0173) 0.257 (0.602) 

ARMA-EGARCH-t  -1.923 (0.027) 0.615 (0.731) 

ARMA-EGARCH- skewed-t    2.028 (0.979) 

Panel E.5. Agriculture ETF returns 

ARMA-EGARCH-normal -2.185 (0.014) 0.242 (0.596) -1.163 (0.122) 

ARMA-EGARCH-t  5.980 (0.999) 1.638 (0.949) 

ARMA-EGARCH- skewed-t    -2.177 (0.015) 

Panel E.6. Energy ETF returns 

ARMA-EGARCH-normal -1.320 (0.093) -1.300 (0.097) 2.174 (0.985) 

ARMA-EGARCH-t  1.697 (0.955) 2.410 (0.992) 

ARMA-EGARCH- skewed-t    2.407 (0.992) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A is 

preferred than Model B, figures in red indicate the opposite. Otherwise both models present the same 

performance. P-values in parentheses. 
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Chapter 4. A note on SMA vs. LDA-AMA: The dawning of a new regulation33 

 

Abstract 

A recent Basel Committee on Banking Supervision publication suggesting a switch from 

Advance Measurement Approach (AMA) to Standardized Measurement Approach (SMA), has 

generated debate in the financial industry and among academics regarding the new rules. This 

note presents a non-exhaustive review of the literature on operational risk quantification under 

a combination of the Loss Distribution Approach (LDA) model—the most commonly used 

approach to AMA models—and Extreme Value Theory (EVT). The literature review points 

out that Bayesian inference has provided solutions to different problems when modelling 

operational data. The main comments prepared by the financial industry in response to the new 

proposal and two recently published papers which analyze the impact of SMA are also 

summarized in the present document. Finally, the discussion section proposes an alternative 

solution, a single-loss approximation model (taking into account several severity and frequency 

distributions) with an appropriate risk measure under a Bayesian Model Averaging (BMA) 

setting as an intermediate solution to estimate operational risk capital, and its application will 

be the focus for future research. 

 

Keywords: advanced measurement approach, loss distribution approach, standardized 

measurement approach, Bayesian methods 

 

 

4.1 Introduction of Chapter 4 

Operational risk is perhaps the most difficult risk to quantify. For a reliable assessment method, 

it is necessary to understand the nature of operational risk in accordance with its definition, its 

empirical characteristics and the risk factors of operational loss. 

Operational risk is defined as: “the risk of a loss resulting from inadequate or failed internal 

processes, people and systems or from external events. This definition includes legal risk, but 

excludes strategic and reputational risk” (BCBS, 2006, p. 144). Studies have found that the 

 
33 A version of this chapter has been published in the Journal of Operational Risk 
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main stylized facts (empirical characteristics) of operational loss are: (i) the existence of 

extremes and (right) skewed distributed, (ii) the variation of loss frequencies over time, (iii) 

the fact that loss severities are often infinite-mean,34 and (iv) tail dependence (Moscadelli, 

2004; McNeil et al., 2005; Nešlehová et al. 2006; Chavez-Demoulin, et al. 2006; Brechman et 

al., 2014). These empirical characteristics pose a challenge for risk managers and regulators in 

terms of estimating operational risk capital. Under Basel II, there are three possible methods to 

model operational risk: The Basic Indicator Approach (BIA), the Standard Approach (TSA) 

and the Advanced Measurement Approach (AMA). Inasmuch as AMA models, the Loss 

Distribution Approach (LDA) is the most commonly used by sophisticated banks. 

The aim of the Basel Committee on Banking Supervision is to propose a simple method that 

captures the simplicity and comparability characteristics of a standardized approach, and that 

gathers the risk-sensitivity property of an advanced approach. Given the recent crises, a further 

purpose of the Basel Committee is to increase the minimum capital requirements, but not 

significantly so. 

In March 2016, the Basel Committee (BCBS, 2016) published the consultative document on 

the Standardized Measurement Approach (SMA) as a means for calculating operational risk 

capital. This proposal has generated a debate in the financial industry and among academics. 

Some operational risk consultants argue that AMA models—which involve choice of severity, 

frequency models, and loss aggregation—are too complicated and that they do not make sense 

in terms of operational risk. The real reason for which AMA is considered complicated is that 

the nature of operational risk is not fully understood. Thus the Basel Committee wants to 

minimize the drawbacks of AMA by proposing a simple equation. On the other hand, a 

different section of the financial industry and a number of academics consider that the Basel 

Committee ignores the results of recent research, which indicates that tail operational losses 

are a source of systemic risk and a simple equation cannot adequately model the idiosyncratic 

and systemic components of operational risk. The SMA-averse sector agrees that new rules 

constitute a backward-looking measure, since they depend on historical data that is insensitive 

to current levels of risk. In addition, the main variable of SMA, the so-called “business 

indicator”, depends only on size (gross income) and it is not related to a risk measure as is the 

 
34 Infinite-mean models are distributions which tail index is between 0 and 1. Therefore, it is not possible to 

quantify the expected value of the tail and risk measures such as expected shortfall are meaningless. 
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case for AMA models. This could provoke a “perverse” incentive to misreport losses. 

Moreover, the new proposal does not consider insurance hedging. 

 

4.2 LDA-AMA Model 

AMA allows banks to employ their internal models to assess capital charges and quantify 

operational risk at 99.9%-VaR in a 1-year horizon. LDA is the most commonly used approach 

by sophisticated banks and is a very well-known tool in insurance analytics. For the LDA, 

operational losses are classified into a matrix of eight business lines and seven event types. 

LDA-AMA includes four inputs: (1) internal loss data, (2) external loss data, (3) scenario 

analysis, and (4) business environment and internal control factors (BEICFs).  

More recent references that cover the abovementioned inputs to model operational risk are 

Girling (2013), Cruz and Peters (2015), and Cavestany et al. (2015). A strand of the literature 

has proposed solutions to combine internal and external data, including Bayesian methods (see 

Table 1) and scaling models (Dahen and Dionne, 2010). For the fourth element (BEICFs), 

Dutta and Babbel (2013) propose a method that combines scenario analysis with historical loss 

data to assess the impact of each scenario on the total operational risk capital using the change 

of measure approach.  

Table 23. Studies proposing Bayesian methods to combine internal and external data 

published in the Journal of Operational Risk 

Authors Title of the publication Year 

Shevchenko, P. 
Wütrich, M. 

The structural modelling of operational risk via Bayesian 
inference: Combining loss data with expert opinions 

2006 

Lambrigger, D., 
Shevchenko, P., 
Wütrich, M. 

The quantification of operational risk using internal data, 
relevant external data and expert opinion 

2007 

Gustaffson, J., 
Nielsen, J.P. 

A mixing model for operational risk 2008 

Peters, G., 
Shevchenko, P, 
Wütrich, M. 

Dynamic operational risk: modelling dependence and 
combining different sources of information 

2009 

Agostini, A., 
Talamo, P., 
Vecchione, V. 

Combining operational loss data with expert opinions 
through advanced credibility theory 

2010 

 



117 
 

Several workshops and conferences have been organized in which practitioners and the 

academic community have discussed the challenges in measuring operational risk. For 

instance, the working paper “Statistical Issues in Financial Risk Modeling and Banking 

Regulation” which resulted from the workshop organized in 2009, found that combinations of 

LDA and Extreme Value Theory (EVT) were the most commonly used by the industry when 

calculating a high quantile (i.e. 99.9%-VaR); however, no best practice as such was established. 

Furthermore, the “optimal” threshold selection is still an open question under EVT, and the 

LDA model underestimates risk when compared to other approaches (Haubenstock and Hardin, 

2003; Madigan, 2009). More details of the LDA model and its applications can be found in 

Frachot et al. (2001), Shevchenko (2010), among others. 

 

4.3 Modelling the Tails 

A big challenge in applying LDA is the severity distribution selection. There are a number of 

interesting articles in the Journal of Operational Risk that investigate several distributions 

(EVT distributions, (truncated) lognormal, Pareto, Champernowne, GB2, g-and-h), and how to 

model operational risk under LDA (single-loss approximation, fuzzy approach, convolution 

operator, fast Fourier transforms, Panjer recursions, copulas, Bayesian, robust and maximum 

entropy methods). Given the nature of operational losses, it seems that extreme value 

distributions are the most adequate. One of the first publications introducing EVT in 

operational risk was written by Medova (2000) who proposed the use of expected shortfall (ES) 

instead of Value-at-Risk (VaR), due to the fact that VaR can violate the subadditivity property. 

Several works have shown the good performance of EVT under operational loss data (de 

Fontnouvelle et al., 2003; de Fontnouvelle et al., 2004; Moscadelli, 2004; Han et al., 2015). 

Nevertheless, some conditions, especially in the data, must be satisfied in order to obtain 

consistent results in applying EVT under the operational risk framework. EVT accurately 

estimates high quantiles when there is sufficient data to calibrate the models (e.g. parameters 

in the Generalized Pareto Distribution (GPD) when applying the Peak Over Threshold (POT) 

methodology). Moreover, second order35 information about the true data generating process 

complicates convergence to the GPD approach (Chavez-Demoulin et al., 2006). The latter may 

occur when the severities can be accurately modelled by a g-and-h distribution (Dutta and 

 
35 For more details of second-order regular variation theories and their relation with high-quantile estimation for 

operational risk, see for instance Degen and Embrechts (2008) and references therein. 
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Perry, 2006; Degen et al., 2006); however, other studies have shown similar and consistent 

results when comparing EVT and g-and-h calibration to operational losses (Jobst, 2007; Buch-

Kromann, 2009). For other aspects to be considered when applying EVT, see for instance 

Diebold et al. (1998), Embrechts et al. (1997), Nešlehová et al. (2006), and Embrechts (2009). 

Robust statistics provide a plausible solution for scarce and contaminated data when estimating 

EVT distribution parameters of operational severities (Huber, 2008). Recently, Chavez-

Demoulin et al. (2015) proposed a dynamic EVT approach which allows parameters to vary 

with certain covariates (business line, event type and time). 

Nevertheless, the main critiques of LDA-AMA include the instability of capital charge (i.e. 

high variability in risk-weighted asset calculations), especially when there is a big loss, lack of 

forward-looking information, and inconsistent exposure estimates by using different 

parametric models to fit the losses (other critiques to AMA are found in Moosa, 2007; 2008). 

In particular, Zhou et al. (2016) and other authors referenced in Table 24, propose methods to 

quantify operational capital in a more accurate, robust and less volatile fashion, which 

considers the over-dispersion of the frequency process (Feria-Domínguez et al., 2015).  

 

Table 24. Studies regarding robust estimation of operational risk published in the Journal of 

Operational Risk 

Authors Title of the publication Year 

Horbenko, N., 
Ruckdeschel, P., 
Bae, T. 

Robust estimation of operational risk 2011 

Opdyke, J.D., 
Cavallo, A. 

Estimating operational risk capital: the challenges of 
truncation, the hazards of maximum likelihood estimation, 
and the promise of robust statistics 

2012 

Opdyke, J.D. Estimating operational risk capital with greater accuracy, 
precision and robustness 

2014 

 

Non-parametric methods have also been proposed to quantify operational risk VaR, due to the 

advantage they present in terms of not assuming specific distributions (Buch-Kromann et al., 

2007, Bolancé et al., 2012; Tursunalieva and Silvapulle, 2016), as well as right-truncated 

distributions which allow more stable estimations of capital requirements by employing AMA 

(Carrillo-Menéndez and Suárez, 2012). 
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The OpRisk North America and Europe conferences have also been actively gathering people 

in the industry to discuss the latest approaches to estimate capital buffer. Since the Basel 

Committee for Banking Supervision (BCBS) proposed that AMA should be replaced by SMA, 

the latest meetings have been deliberating the convenience of the implementation of the latter 

approach. 

 

4.4 SMA 

As in the cases for BIA and TSA, SMA only reports a capital charge at enterprise level and 

neglects the relevant information on loss events in different business lines and external 

operational loss. SMA comprises two main elements, the Business Indicator (BI) intended to 

reflect systematic risk, and the Loss Component (LC), which attempts to represent the 

idiosyncratic risk.  

The BI is calculated as the sum of the 3-year average of (i) interest, lease and dividend 

component (ILDC), (ii) the service component (SC), and (iii) the financial component (FC). 

Banks are classified into five buckets depending on their BI value, and the BI factor ranges 

0.11−0.29 in order to find the BI component (BIC) as indicated in Table 25. 

 

Table 25. BI component assessment depending on BI values 

Bucket BI (€ bn) BI component 

1 0 – 1 0.11BI 

2 1 – 3 110 m + 0.15(BI – 1 bn) 

3 3 – 10 410 m + 0.19(BI – 3 bn) 

4 10 – 30 1.74 bn + 0.23(BI – 10 bn) 

5 30 to +∞ 6.34 bn + 0.29(BI – 30 bn) 

 

The constant values in the third column of Table 25 assure that the BI component is a piecewise 

linear function depending on the BI values. These values are obtained after data calibration 

collected in the Quantitative Impact Studies (QIS) by the Committee in 2015 and modification 

of its revision report to simple approaches (BCBS, 2014). As a result of the latter report, BI 

replaces Gross Income (GI) in the BIA and TSA methods, since BI variable is more risk 
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sensitive according to the Basel Committee. The business lines and regulatory coefficients of 

TSA are also changed by five buckets and corresponding coefficients (after technical and 

cluster analyses) as presented in Table 26. Then, the BI factors in the SMA are in line with the 

coefficients initially proposed in BCBS (2014). 

Table 26. Proposed coefficients per bucket (BCBS, 2014) 

Bucket BI (€ bn) coefficient 

1 0 – 0.1 10% 

2 0.1 – 1 13% 

3 1 – 3 17% 

4 3 – 30 22% 

5 30 to +∞ 30% 

 

Another important variable in SMA is the Internal Loss Multiplier (ILM), which depends on 

LC 

𝐼𝐿𝑀 = ln {𝑒1 − 1 +
𝐿𝐶

𝐵𝐼𝐶
}, 

where 

𝐿𝐶 = 7
1

𝑇
∑ 𝑆(𝑡)

𝑇

𝑡=1

+ 7
1

𝑇
∑ 𝑆(𝑡)I{𝑆(𝑡)>10m}

𝑇

𝑡=1

+ 5
1

𝑇
∑ 𝑆(𝑡)I{𝑆(𝑡)>100m}

𝑇

𝑡=1

, 

where 𝑆(𝑡) is the total annual operational loss and 𝑇 is equal to 10 years, or 5 years if the bank 

does not have good quality loss data; I{∙} denotes the usual indicator function, which is equal to 

1 if the condition inside the brackets holds, and zero otherwise. Thus, SMA suggests the use of 

historical 10-year internal loss data for calculating the ILM, whereas AMA requires 5 years of 

historical data. However, ILM is a backward-looking measure, which acts as a risk sensitivity 

factor whose purpose is to improve operational risk management.  

Bringing the elements of SMA together, the regulatory capital is then calculated as  

𝑆𝑀𝐴 = {
𝐵𝐼𝐶, if Bucket 1,

110 + 𝐼𝐿𝑀(𝐵𝐼𝐶 − 110), if Buckets 2 − 5.
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Despite the fact that the purpose of BCBS is not a significant increment in capital buffer, 

according to a study36 by Operational Riskdata eXchange (ORX), there is an increase in the 

average of 61% capital under SMA compared with the current regulation. Another finding of 

the study is that SMA capital at a consolidated level can be much higher than the sum of 

subsidiary level capital. This may cause the decentralization of risk-management systems and 

banks would have the incentive to legally break up into their subsidiaries in order to report less 

regulatory capital; a problem faced when using a non-subadditive risk measure (see Section 

6.1.1 of McNeil et al., 2005). Another criticism is that operational loss exhibits extremes, and 

ILM includes a division of LC by the BI component which is calculated as an average.  

The comments on the BCBS consultative document on SMA were received by June 3, 2016. 

In general, the financial industry37 disagrees with the proposed methodology due to; (i) a loss 

of investment in terms of resources to meet AMA requirements; (ii) a business indicator that 

does not capture conduct risk which is the main characteristic of operational risk; (iii) the 

needlessness of applying SMA to operational losses that can be modelled by AMA; (iv) the 

calibration of the approach using an incomplete QIS; (v) the fact that scrapping AMA could 

result in a loss of risk sensitivity; (vi) the possibility of SMA being very volatile, significantly 

increasing capital (since the new proposal is over-conservative and over-sensitive to BI size 

and large losses); (vii) multiple variations of capital tranches which may lead to less 

understandable and comparable capital requirements; (viii) inadequate incentives for risk 

management without BEICFs, among other criticisms. 

The Journal of Operational Risk has been publishing outstanding technical papers regarding 

operational risk measurement from academics and practitioners, and two technical papers, 

which analyze the impact of SMA, have recently been published in the Journal.  

Mignola et al. (2016) and Peters et al. (2016) ran several simulations to analyze the variability 

level of SMA capital under common distributions typically used in operational risk and 

consistent business indicators. The authors found that (i) a high variability of SMA capital 

(mainly explained by the variability of the BI Component) compared to current internal models, 

 
36 See The Operational Riskdata eXchange Association, Capital impact of the SMA, ORX benchmark of the 

proposed Standardized Measurement Approach 5 (May 18, 2016), available at 

https://www.orx.org/Lists/PublicDocuments/ORX%20Capital%20impact%20of%20the%20SMA.pdf 
37 Based on response documents from Institute and Faculty of Actuaries (IFoA), European Banking Federation 

(EBF), Canadian Bankers Association (CBA), British Bankers' Association (BBA), the International Swaps and 

Derivatives Association (ISDA), the International Association of Credit Portfolio Managers (IACPM), the Japan 

Financial Markets Council (JFMC), International Banking Federation (IBFed), the Institute of International 

Finance (IIF) and the Global Financial Markets Association (GFMA) 
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and (ii) that banks would be over-insured against operational loss under the new proposal when 

compared to AMA models. The simulations were performed using a compound Poisson 

process, where the severity follows a lognormal distribution, which is not precisely a very 

heavy-tailed distribution. It would be interesting to run similar simulations by employing 

distributions with a heavier tail than the lognormal distribution (Pareto, for instance) in order 

to model the “infinite-mean” characteristic of operational losses, and over-dispersed frequency 

distributions. However, the authors have found overwhelming results that discard two of main 

objectives of the SMA proposal: comparability and risk-sensitivity. Moreover, Peters et al. 

(2016) propose a way to standardize AMA (which consists mainly of a hybrid LDA model with 

factor regression components) instead of calling it off.  

The main drawbacks of SMA and AMA models are described as follows. As is the case for 

AMA, SMA too is considered a backward-looking measure due to the fact that historic losses 

are employed to predict future losses. However, SMA, in contrast to AMA, is highly volatile, 

it is not related to a risk-based capital measure, and it does not consider insurance hedging. 

Since BI is related to a bank’s income, this may provide financial institutions with incentives 

to report less income in order to shorten provisions for potential losses. There are challenges 

associated to modelling operational risk losses through LDA-AMA; for instance, the important 

fluctuations in regulatory capital for institutions with comparable operational risk exposures. 

Nevertheless, the literature recognizes that extreme loss is a stylized fact of operational risk, 

which can be better modelled using very well-known actuarial techniques. Moreover, AMA 

usually provides lower capital requirement levels than BIA and TSA creating incentives for a 

bank to switch to AMA models, even if they are more complex to use when calculating capital. 

In sum, both SMA and AMA present disadvantages given the trade-off between simplicity and 

sensitivity. The SMA is a simple formula, but it is not risk sensitive. However, the main source 

of these shortcomings is a lack of understanding of the operational risk drivers that did not 

allow the Committee to focus on a way to foster the advantages of AMA. 

 

4.5 Discussion 

Recent papers published in the Journal of Operational Risk show that SMA may lead to 

abnormal levels of capital and the main objectives of the regulator will not be satisfied, but 

LDA-AMA exhibits well-known shortcomings. This section introduces some ideas from the 

literature review to propose an intermediate solution in the future or a transition period. 
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The initial step in adequate operational risk management consist of an adequate control 

procedure for internal processes, people, systems and external events, which are the sources of 

operational loss. Some financial institutions have been (mega-)fined for their improper 

practices; however, such events continue to occur with increasing frequency, meaning that 

financial institutions’ internal controls are failing and, as such, creating perverse incentives that 

can lead to conduct risk and, in turn, monetary loss. The literature has proposed that gaps in 

governance and risk culture need to be filled in order to prevent operational losses, see for 

instance Andersen et al. (2012, Section 5) for other mitigation strategies. 

More research is needed on covariates or determinants of operational losses in order to 

understand its nature and determine a “reliable” business indicator. The literature identifies 

important variables such as firm-specific characteristics, board composition, the state of the 

economy, accounting and public disclosure standards, the constraints on the decision-making 

power of executives, the power of regulators, levels of corruption, and the quality of 

governance (Chernobai et al., 2011; Moosa, 2011; Cope et al., 2012; Wang and Hsu, 2013; 

Barakat, et al., 2014; Moosa, 2015; Li and Moosa, 2015). A sound understanding of the 

operational risk factors will allow banks to quantify risk and capital buffer more adequately in 

the future. 

A solution proposed by a member of the financial industry involves the weighted sum of the 

internal model of a bank and SMA, where the weight assigned to the internal model is zero if 

the bank has a poor model. This could be useful for a transition period when a better solution 

is proposed. 

Under frequency and severity distributions, an operational risk model should be (i) realistic, 

(ii) well-specified, (iii) flexible, and (iv) simple (Dutta and Perry, 2007). Thus, an intermediate 

solution is the OpCaR proposed by BCBS (2014) and based on works by Böcker and 

Klüppelberg (2005), and Böcker and Spritulla (2006). The OpCaR is a closed-form solution 

(aka the single-loss approximation) to quantify VaR by employing the quantile of the fitted 

severity distribution and the expected value of the assumed frequency process. This result is 

based on standard LDA model and subexponential severity distributions38 under weak 

regularity conditions (see Theorem 1.3.9 of Embrechts et al., 1997 for more details). Though 

SMA has been calibrated with the OpCaR model, the proposal is to use the single-loss 

 
38 Examples of subexponential distributions are Pareto, log-gamma, g-and-h, Burr, modified Champernowne, 

lognormal, Weibull and Benktander type I and type II. 
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approximation with the internal loss data for each financial institution with an appropriate risk 

measure and an adequate model averaging as explained below.  

Regarding risk measure quantification, median shortfall may be a good proposal, although it 

may not be coherent for all loss distributions. Expected shortfall is a coherent risk measure, 

which is very sensitive to extreme events and in infinite-mean models, it is not possible to 

quantify it. Median shortfall, on the other hand, is greater than VaR, but less than expected 

shortfall at the same confidence level (e.g. 99.9%), when the distribution of operational losses 

is right-skewed. Thus, it may be possible for the objective of non-significant increases in 

regulatory capital to be achieved. Moreover, median shortfall is a suitable and reliable risk 

measure for operational losses (Moscadelli, 2004). Nevertheless, if expected shortfall is the 

selected risk measure, the recent methodology proposed by Cirillo and Taleb (2016) may be 

useful to deal with infinite-mean models by employing what the authors call the dual 

distribution. 

Concerning forward-looking quantification, since historical data is commonly employed to 

predict risk, Bayesian networks allow the combination of historical data (backward-looking) 

with expectations and opinions (forward-looking) to obtain posterior predictions of operational 

risk events, and to consider the correlation between losses in the different processes pertaining 

to financial institutions (Cornalba and Giudici, 2004; Aquaro, 2010; Sanford and Moosa, 2015; 

Yan and Wood, 2017). An excellent guide which illustrates how to apply Bayesian networks 

for operational risk is provided by Cowell et al. (2007). 

Our proposed solution for forward-looking and instability capital aspects is a Bayesian Model 

Averaging (BMA) methodology. All models are subject to model uncertainty and it is usual to 

select one model from a variety of models by employing frequentist tests or Bayesian model 

selection (Peters and Sisson, 2006). BMA is the most effective way to deal with this problem 

and it has a better predictive ability than using a single model (Hoeting et al., 1999). The 

OpCaR methodology proposes that we should average VaR from different models, but 

Bayesian averaging is the most adequate manner to average plausible models, where the weight 

assigned to each forecast is given by the posterior probability of each model. The initial single-

loss approximation model proposed by Böcker and Klüppelberg (2005) has been refined and 

can be tested (see Peters et al., 2013, and references therein). In what follows, we focus on two 

of the abovementioned ideas. One is median shortfall and the second concerns BMA. 

5.1. Risk quantification 
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We calculate VaR, expected shortfall (ES) and median shortfall (MS) of operational risk data.  

VaR𝛼 = 𝑞𝛼(𝐹) = inf{𝑙 ∈ ℝ: 𝐹𝐿(𝑙) ≥ 𝛼}, 

ES𝛼 = E[𝐿|𝐿 ≥ VaR𝛼], 

MS𝛼 = inf{𝑙 ∈ ℝ: 𝐹𝛼,𝐿(𝑙) ≥ 1 2⁄ }, 

where 𝑞𝛼(𝐹) is the 𝛼-quantile of loss distribution 𝐹𝐿, and 𝐹𝛼,𝐿 denotes the 𝛼-tail distribution 

(with 𝛼 = 0.999 for operational risk). Our loss distributions are obtained by performing 

100000 simulations given the parameters of frequency and severity distributions provided in 

Hess (2011), which is based on SAS OpRisk Global Data. The operational loss is given by: 

𝐿 = ∑ 𝑋𝑖,

𝑁

𝑖=1

 

where 𝑁 follows a discrete distribution (frequency distribution), and 𝑋𝑖 are positive 

independent and identically distributed random variables, which follow a continuous 

distribution (severity distribution). The author employs a Poisson distribution (with parameter 

λ) for frequency distribution, and evaluates lognormal (with parameters μ and σ) and gamma 

(with parameters k and θ) distributions for severity distribution in different business lines: 

Commercial Banking (CB), Corporate Finance (CF), Retail Banking (RB), Insurance (I), 

Trading and Sales (TS), Asset Management (AM), and Retail Brokerage (RB). The risk 

measures are calculated from the aggregate loss distributions: Poisson-Lognormal and Poisson-

Gamma.  

 

Table 27. VaR and shortfall risk measures for Poisson-Lognormal and Poisson-Gamma models 

  CB CF RB I TS AM RB 

Poi λ 0.1233 0.1622 0.1525 0.1536 0.1495 0.1114 0.1476 

LN μ 1.6 2.73 0.12 1.52 1.37 1.85 1.09 

σ 2.37 2.25 2.50 2.26 2.97 2.50 2.05 

VaR 1529.65 4630.66 534.71 1343.08 6627.56 2506.37 437.93 

ES 4497.45 

(2.94) 

11348.57 

(2.45) 

1490.18 

(2.79) 

3421.67 

(2.55) 

24237.44 

(3.66) 

9189.78 

(3.67) 

1060.84 

(2.42) 
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MS 2392.3 

(1.56) 

8626.47 

(1.86) 

966.86 

(1.81) 

2207.47 

(1.64) 

14243.31 

(2.15) 

4962.29 

(1.98) 

730.69 

(1.67) 

Ga k 0.44 0.44 0.53 0.55 0.47 0.45 0.57 

θ 379.1 573.5 135.9 131.9 566.3 488.5 99.5 

VaR 1805.45 2810.72 560.89 529.11 2526.82 2242 391.56 

ES 2068.73 

(1.14) 

3834.15 

(1.36) 

672.88 

(1.20) 

628.32 

(1.19) 

3080.10 

(1.22) 

2495.65 

(1.11) 

483.68 

(1.24) 

MS 1836.73 

(1.02) 

3881.17 

(1.38) 

601.33 

(1.07) 

567.26 

(1.07) 

3003.79 

(1.19) 

2276.60 

(1.01) 

496.77 

(1.27) 

Ratio of shortfall measures (ES and MS) to 99.9%-VaR in parentheses. Poi stands for Poisson distribution, LN 

indicates lognormal distribution and Ga represents gamma distribution. VaR is assessed as the quantile of the 

aggregate loss at 99.9% confidence level, Expected Shortfall (ES) is calculated as the mean of losses given that 

the losses have exceeded VaR, whereas Median Shortfall (MS) is computed as the median of loss exceedances. 

 

As seen in Table 27, most of the cases’ expected shortfall is greater than median shortfall, since 

the tail of operational risk losses is generally right-skewed. The average ratio of ES to VaR is 

2.95 (1.21) for lognormal (gamma) severity case, whereas the ratio MS to VaR is 1.81 (1.14). 

Other values can be obtained depending on the severity model employed, but MS could achieve 

the objective of non-significant increase with respect to the current regulation. 

 

5.2. BMA 

Though the use of BMA in finance is scarce, there are some interesting applications in 

exchange forecasting (Wright, 2008; Feldkircher et al., 2014), portfolio selection (Ando, 2009), 

and interest rates (Maltritz and Molchanov, 2013; Chua et al., 2013). 

Let us assume that there are 𝐾 models 𝑀1, … , 𝑀𝐾; for instance: Poisson-Lognormal, and 

Poisson-Pareto, among others. Let 𝜃𝑘 be the vector of parameters for each model 𝑀𝑘; for 

example, 𝜆, 𝜇 and 𝜎 for the Poisson-Lognormal model. The modeler has a prior belief that the 

data generating process is given by 𝑀𝑘, denoted by 𝑃(𝑀𝑘). This prior distribution is updated 

given observed (operational risk loss) data 𝐷, to obtain the posterior probability for model 𝑀𝑘: 

𝑃(𝑀𝑘|𝐷) =
𝑃(𝐷|𝑀𝑘)𝑃(𝑀𝑘)

∑ 𝑃(𝐷|𝑀𝑙)𝑃(𝑀𝑙)
𝐾
𝑙=1

, 
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where 

𝑃(𝐷|𝑀𝑘) = ∫ 𝑃(𝐷|𝜃𝑘 , 𝑀𝑘) 𝑃(𝜃𝑘|𝑀𝑘)𝑑𝜃𝑘 

is the marginal likelihood for model 𝑀𝑘, 𝑃(𝜃𝑘|𝑀𝑘) is the prior density of 𝜃𝑘 under model 𝑀𝑘, 

and 𝑃(𝐷|𝜃𝑘 , 𝑀𝑘) is the likelihood. The integrals are not easily found analytically, but Bayesian 

computation methods can solve this problem. The model priors can be non-informative or real 

prior opinions driven by expert opinions or extracted from self-assessment questionnaires, as 

in the case of Fignini et al. (2015). The proposed quantity of interest ∆, is a risk measure that 

can be VaR, ES or MS. By knowing the posterior model probability 𝑃(𝑀𝑘|𝐷), the risk measure 

is obtained as the posterior mean as follows: 

E(∆|𝐷) = ∑ ∆̂𝑘

𝐾

𝑘=1

𝑃(𝑀𝑘|𝐷), 

where ∆̂𝑘= E(∆|𝐷, 𝑀𝑘), and the posterior model probability 𝑃(𝑀𝑘|𝐷), can be seen as weights. 

Other model averaging methods can be employed such as the frequentist approach (weights 

depend on Akaike information criterion) and the predictive likelihood approach (see for 

instance Ando and Tsay, 2010; and the references therein). In particular, for the single-loss 

approximation, the quantity of interest ∆, is given by: 

VaR𝛼 = 𝐹−1 (1 −
1 − 𝛼

E(𝑁)
), 

where 𝐹 is the cumulative distribution function of the severity distribution for each model, 

E(𝑁) is the expected value of the frequency distribution (𝜆, if the Poisson distribution is 

employed), and 𝛼 → 1 is the confidence level. For several severity distributions, ES and MS 

can be analytically derived, and BMA would then be employed for these risk measures and to 

compare the results. The application of this proposal will be the focus for future study. 

The ideas presented in this paper refer to strategies we consider convenient for a better 

understanding of operational risk and for finding the “almost” right model to quantify it. The 

debate surrounding SMA vs AMA models is just beginning and we propose a single-loss 

approximation model with the appropriate risk measure under a BMA setting as an alternative 

solution to estimate operational risk capital. 
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5. Conclusions of the Thesis 

 

This section wraps the results up of this thesis. The aim of this thesis is to analyze performance 

of VaR and ES measures for market risk purposes and review the advantages and drawbacks 

of the new proposal for operational risk. The first chapter “Risk quantification in turmoil 

markets” analyzes several assets performance such as foreign currency (CHF/USD), 

Eurostoxx50, VIX index and a Commodity Index during global financial crisis under different 

distributional models for Value-at-Risk (VaR) quantification purposes. The results of this 

chapter show that the generalized Pareto distribution (GPD), α-stable and g-and-h distributions 

perform well for the analyzed data in our sample period according to VaR backtesting 

procedure. The second chapter “Quantifying Risk in Traditional Energy and Sustainable 

Investments” examines the risk performance for two diversified stock indexes, one of fossil 

fuel-related companies and another that includes sustainable companies from all sectors except 

these traditional energy companies. For Expected Shortfall (ES), it is employed the 

multinomial test and we conclude that this test is an appropriate and simple method to validate 

ES models as presented in this thesis. The third chapter “Risk quantification for Commodity 

ETFs: Backtesting Value-at-Risk and Expected Shortfall” analyzes the risk assessment of 

alternative methods for some univariate and portfolios of Commodity ETFs. Backtesting 

results for 97.5%-VaR shows that skewed-t performs satisfactorily for Commodity ETFs. 

According to ES validation tests, Gram-Charlier and Student-t are the best models for 97.5% 

VaR and 97.5% ES. For portfolios of Commodity ETFs, the SNP-DCC is preferred to the 

Gaussian-DCC according to t-test and relative performance tests. The last chapter “A note on 

SMA vs. LDA-AMA: The dawning of a new regulation” reviews the current and the proposed 

rules to quantify operational risk and proposes an adequate manner to “average” different 

amounts of OpRisk and proposes the median shortfall as an alternative to quantify operational 

risk.  

Future research will be focused on analysis of non-modellable risk factors (NMRF) and 

implementation of the profit and loss attribution (PLA) test, which measures the accuracy of 

risk model estimates of profit and losses (P&L). In addition, other methods to test ES will be 

objective of study for market risk, as other methods to estimate operational risk capital in an 

appropriate way. 



 

 


