Contributions to automatic learning of
kernel functions
Ibai Roman Txopitea

Supervised by Roberto Santana, Alexander Mendiburu and Jose A. Lozano

2020

é) Intelligent \ v
U Systems GrouD informatika facultad de Universidad ~ Euskal Herriko
fakultatea informatica del Pais Vasco Unibertsitatea

Konputazio Zientziak eta Adimen Artifizialaren Saila

Departamento de Ciencias de la Computacién e Inteligencia Artificial

Contributions to automatic learning of
kernel functions

by

Ibai Roman Txopitea

Supervised by Roberto Santana, Alexander Mendiburu and Jose A. Lozano

Dissertation submitted to the Department of Computer Science and Artificial
Intelligence of the University of the Basque Country (UPV/EHU) as partial
fulfilment of the requirements for the PhD degree in Computer Science

Donostia - San Sebastian, May 2020

(cc)2020 IBAI ROMAN TXOPITEA (cc by 4.0)

Zurine, familia
eta lagunei

Acknowledgments

First of all, I would like to thank my advisors Alexander Mendiburu, Roberto
Santana, and Jose A. Lozano. Without their wise guidance, this dissertation
would never have been possible. Your patience and encouragement, as well
as the scientific discussions, have been essential in the development of this
dissertation. I hope to continue working together in the future. Thank you
very much.

I also owe a debt of gratitude to Prof. Lu for allowing me to complete a
stay as a visitor in the Brain-like Computing and Machine Intelligence center
at the Shanghai Jiao Tong University.

Special thanks go to to my friends in the Intelligent Systems Group with
whom I have shared these years, and also to the members of other research
groups at the Faculty of Computer Science. They are part of this work.

T would like to acknowledge the great work of John Kennedy, whose com-
ments on English writing have improved the readability of the published con-
tributions.

I am grateful to the Basque Government for the financial support (PRE-
2013-1-919). In addition, this work has been supported by the Spanish Min-
istry of Science and Innovation (project TIN2016-78365-R), and the Basque
Government (IT1244-19 and ELKARTEK programs).

Finally, I would like to thank the support of Zurine, my family and friends.
This thesis is also for them.

Abstract

Many Machine Learning algorithms rely on kernel functions to solve the pro-
posed tasks. Among these algorithms, we can find kernel methods, including
Support Vector Machines (SVMs), or Bayesian inference methods, such as
Gaussian Processes (GPs). However, the validity of these algorithms to solve
problems depends largely on the kernel function, and there is no kernel func-
tion that is optimal for all application domains. Some standard kernels, which
are invalid under certain conditions, have been proposed in the literature.
Researchers have also manually designed problem-specific kernels aiming to
improve the performance of those standard kernels. However, choosing among
the set of standard kernels or creating a new one requires expert knowledge of
the algorithm and the application domain. Therefore, there is a great interest
in automating this process.

The work done in the SVM literature suggests that using Genetic Pro-
gramming is a valid solution to learn kernel functions in an automatic manner.
However, SVMs consist of several components that interact with each other
and there is not a complete understanding of the implications that these in-
teractions have in the evolution of kernel functions.

In this research direction, in the kernel search for SVMs, two types of
grammars have been proposed to define the search space, kernel composition
methods and approaches based on basic mathematical expressions; while in
GPs, most of the work has focused only on the combination of kernels. In fact,
we have not found any approach based on basic mathematical expressions in
the GP field.

In this dissertation we study the use of Genetic Programming to learn
kernels for both SVMs and GPs. First, we describe the analysis made in the
field of SVMs, where we have studied the different interactions between the
components of SVMs during the evolution of kernels, and provide some guide-
lines to improve the kernel learning process. Next, we propose a method based
on basic mathematical expressions to learn kernels for GPs through Genetic
Programming, and test the validity of this method in various applications in
time series prediction and Natural Language Processing.

Contents

Acknowledgments VII
Abstract IX
Table of contents XII
Notation. XIII
Glossaries XVI

Part I Introduction

1

2

Introduction 3
Background 7
2.1 Kernel functions. i 7
2.2 Models 9
2.3 Proposals for kernel function design................... 15

Part II Methodological Contributions

3

An analysis of SVM kernel learning........................ 23
3.1 Introduction 23
3.2 Thesearch spaceo iiiin .. 25
3.3 Kernel structure search.......... i i 32
3.4 Hyperparameter and C optimization 39
3.5 Metrics .ot 43
3.6 Conclusions.ouiui 46

XII Contents

4 GenProg approach to learn GP kernels based in basic

mathematical expressions 49
4.1 Introduction i 49
4.2 Elementary mathematical expression grammar for GPs....... 50
4.3 Evolving kernel functions for GP based on the new grammar.. 51
4.4 ConcluSionsttt 56
5 Automatic GP kernel learning for time series extrapolation 57
5.1 Introduction i 57
5.2 Time series extrapolation problems 58
5.3 Alternative search methods 59
5.4 Experimental Setup............. i i 62
5.5 Metric comparison for hyperparameter optimization 63
5.6 Testing the proposed grammar, 66
5.7 Time series extrapolation benchmark 68
5.8 Comparing our proposal to ad hoc kernel approaches......... 73
5.9 Conclusions. 76
6 Automatic GP kernel learning for Natural Language
Processing 79
6.1 Introduction 79
6.2 Evolving multi-objective kernel functions 80
6.3 Sentence embeddings i i 82
6.4 Sentiment Analysisc.iiiiiiiiiii 83
6.5 Machine Translation Quality Estimation.................... 89
6.6 ConcluSionSottt 101

Part III Conclusions

7 ConclusSionsS. 107
7.1 Contributions 108
7.2 Future work 109
7.3 Publications 110
Appendix A Examples of evolved kernel functions.......... .. 113

References 119

Symbols and Notation

Symbol Meaning

X vector

xT transpose of a vector

1 vector of ones

M matrix

| M| determinant of M matrix

||| Euclidean norm

d(x,x") Kronecker delta. 1 if x equals x" and 0 otherwise
(-,-)y, inner product in Space V

N natural numbers

R real numbers

n number of input samples

d dimension of the input space

X d x n matrix of the input samples
X test input samples

X ith input sample

X_; x; removed from X

0 vector of kernel hyperparameters

Glossary

AML Automatic Machine Learning. 4, 16, 23
ARD Automatic Relevance Determination. 8

BIC Bayesian Information Criterion. 18, 45-47, 54-56, 91, 100, 108
CBOW Continuous Bags of Words. 82

GenProg Genetic Programming. 1X, 4, 18, 23, 3239, 45-47, 49, 51, 54-57,
59, 76, 82, 86, 94, 107, 108, 110

GP Gaussian Process. IX, 4, 5, 7-9, 12-16, 18-20, 49-51, 56-58, 63, 64, 68,
69, 73, 75-77, 79, 80, 8284, 86, 92, 94, 96, 97, 101-103, 107-110, 117, 118

HTER Human Translation Edit Rate. 80, 90, 91, 93, 95, 96, 98, 100

LML Log Marginal Likelihood. 13, 14, 54, 55, 63-66, 68-73, 75-77, 80, 84,
86, 94

LOOCV Leave-one-out Cross Validation. 13, 14, 54, 55, 63-65

LSTM Long Short-term Memory. 83, 94, 95, 103

NLP Natural Language Processing. IX, 5, 49, 79, 80, 82, 89, 101, 102, 108-110
NLPD Negative Log Predictive Densities. 64, 65, 6973, 7577, 80, 84, 8689,
92

PCC Pearson’s Correlation Coefficient. 79, 84, 86-89, 91

PMLB Penn Machine Learning Benchmarks. 26, 27, 30, 32-36, 38, 41, 43, 44,
46

PS Periodic Spikes. 73, 75-77

PSD Positive semi-definite. 3, 5, 7, 12, 15, 16, 18, 20, 29, 30, 49, 51-53, 56,
63, 109

QE Quality Estimation. 79, 80, 82, 83, 89, 91-94, 97, 100-103

RBF Radial Basis Function. 8, 25-27, 35, 36, 39, 41

XVI Glossary

RMSE Root Mean Squared Error. 64-67, 69, 70, 72, 75, 76, 95-100, 102
RNN Recurrent Neural Network. 83, 94, 103

SA Sentiment Analysis. 5, 79, 80, 82-85, 94, 101, 102, 109, 110

SE Squared Exponential. 8, 9, 13-16, 19, 25, 68, 70, 71, 79, 86, 87, 95-97,
103, 113

SVM Support Vector Machine. IX, 3-5, 7-12, 15, 16, 18-20, 23-26, 28-30,
33, 39-47, 49-51, 56, 107-109

Part I

Introduction

1

Introduction

Machine Learning is a field devoted to designing algorithms and techniques
which are able to complete specific tasks. Based on sample data, mathemat-
ical models are built for different purposes, such as classification, regression,
clustering, and so on. Many machine learning algorithms use kernel functions
in order to encode the particular manner in which the similarity between any
pairs of data points is defined. Introduced by Mercer (1909), kernel functions
hold Mercer’s condition, which, in the discrete case, is analogous to the Posi-
tive semi-definite (PSD) matrix property.

Among the machine learning algorithms that are based on kernel functions,
the kernel methods are particularly noteworthy. These methods are character-
ized by the use of the “kernel trick”, which consists of turning a linear model
into a non-linear one by replacing the inner product between the features with
a kernel function. These functions compute the dot product of the projections
of two data points into a feature space (Shawe-Taylor et al., 2004), avoid-
ing the explicit computation of the feature mapping. Kernel methods include
the kernel perceptron, kernel principal component analysis, or kernel canoni-
cal correlation analysis, their best known example being the Support Vector
Machine (SVM).

SVMs (Vapuik, 1963) have long been the reference paradigm in supervised
classification and regression. Although the field is nowadays overwhelmed by
the application of deep learning approaches, SVMs remain one of the best
alternatives whenever the requirements for using deep neural networks are not
met. When applied to binary classification problems, SVMs separate samples
from the two different classes by means of a hyperplane that maximizes the
gap to the nearest samples in order to ensure a proper generalization. SVMs
can even handle non-linearly-separable problems by means of a kernel function
(Boser et al., 1992), and when this kernel meets Mercer’s condition (Mercer,
1909), the optimal hyperplane can be found.

In spite of the fact that SVMs are adequate tools to solve classification
problems, the choice of the kernel heavily influences their performance, and
there is no rule of thumb to select it. In addition, most of the kernels have

4 1 Introduction

some parameters that need to be adjusted, which hardens the kernel selection
problem. These parameters, often called hyperparameters, are usually tuned
by optimizing a given metric.

While some standard kernels proposed in the literature are straightfor-
wardly used in different applications, tailored kernels produce generally bet-
ter results (Duvenaud et al., 2013; Howley and Madden, 2006), since each
problem has its own specific characteristics. Several works in the literature
pose the selection of the kernel as a search problem in the space of kernels
with no human intervention (Howley and Madden, 2006; Diosan et al., 2012;
Koch et al., 2012). In order to achieve an Automatic Machine Learning (AML)
approach, complex search methods, such as Genetic Programming (GenProg)
(Koza, 1992), have been used in the literature to find kernels that improve the
performance of standard kernels (Howley and Madden, 2006; Diosan et al.,
2008; Kronberger and Kommenda, 2013).

In the SVM literature, two main approaches have been proposed to define
the kernel function space: kernel composition methods and basic mathematical
expression based approaches. In kernel composition methods (Diosan et al.,
2012; Sullivan and Luke, 2007), some composition rules that preserve Mer-
cer’s condition are used to combine predefined kernels, guaranteeing that the
newly created kernels also meet this condition. Alternatively, basic mathe-
matical expression based methods (Howley and Madden, 2005; Diosan et al.,
2007; Koch et al., 2012) use simpler expressions as building-blocks for the
kernel functions. While these approaches do not guarantee that the kernels
satisfy Mercer’s condition, they allow a richer and broader set of kernels to
be explored.

There is extensive literature about kernel search methods for SVMs. How-
ever, in addition to the kernel, SVMs involve several components that must
be adjusted in order to obtain a good performance. In the effort to study the
search methods themselves, little attention has been paid to these other SVM
components, and there are still some open questions regarding their influence
when it comes to selecting the best possible kernel.

Besides the application of kernel functions in kernel methods, they are also
required in some Bayesian inference methods, such as Gaussian Processes
(GPs) (Rasmussen and Williams, 2006). Despite being studied by different
communities, it is widely known that kernel methods and GPs are closely
related (Kanagawa et al., 2018).

GPs (Rasmussen and Williams, 2006) are one of the most studied tech-
niques in Machine Learning for regression tasks and they have also been exten-
sively applied for function approximation. In comparison to other regression
methods, GPs not only provide a prediction of a given function, but also esti-
mate the uncertainty of these predictions. Furthermore, GPs have been used
for optimization tasks under the umbrella of Bayesian optimization (Moctkus
et al., 1978), as this model relies on strong Bayesian inference foundations and
can be updated when new evidence becomes available.

1 Introduction 5

A GP is a collection of random variables, any finite set of which has a
joint Gaussian distribution. It is completely defined by a mean function and
a covariance function described in terms of a PSD kernel, i.e., a Mercer ker-
nel. The assumption in GPs is that, as the similarity between two solutions
increases, so does the similarity of the function value at these solutions, which
makes the kernel a key element in any application of GPs.

Any application of GPs requires a kernel function to be defined and their
hyperparameters to be adjusted to the data. In early applications of GPs, the
kernel function was often selected from a predefined set (Brochu et al., 2010),
or designed by an expert (Rasmussen and Williams, 2006). Then, the search
for the hyperparameters was approached as an optimization process. Although
some recent works tackle the question of automating the choice of the kernel
(Lloyd et al., 2014; Kronberger and Kommenda, 2013; Duvenaud et al., 2013),
automatic kernel search has not been investigated in GPs to the same extent
as in kernel methods. Most works have focused on kernel combination, and,
to the best of our knowledge, no basic mathematical expression approaches
have been proposed.

Taking into account that the kernels play a main role in this kind of meth-
ods, the objective of this dissertation is to address the issues and limitations
of static kernels and contribute with automated kernel learning techniques to,
both, SVM and GP fields. Regarding SVMs, we study in depth the compo-
nents involved in SVM kernel learning beyond the search method itself. We
address their interactions with the kernel learning process in order to shed
some light on the issues found in the literature. As for the Bayesian inference
methods, we propose using a basic mathematical expression based method for
GPs, bringing the advances made in the SVM literature to the GPs. By ex-
ploring this wider search space of kernels that also contains non-Mercer ones,
this method is able to find kernels that improve the state-of-the-art results
of time series regression tasks with GPs. We have also successfully applied
this technique to solve various Natural Language Processing (NLP) tasks by
means of GPs, first, tackling Sentiment Analysis (SA) tasks by means of a
multi-objective extension of our proposal, and secondly, improving the per-
formance of the most used kernels in translation effort prediction.

This dissertation is organized as follows: First, in Chapter 2, a background
about the automatic learning of kernel functions is provided. Next, the main
contributions of the dissertation are presented. In Chapter 3, the influence of
different SVM components in the kernel learning process is analyzed. Chap-
ter 4 introduces our proposal to learn kernels for GPs, which is applied to
time series problems in Chapter 5. In Chapter 6, this GP kernel learning pro-
posal is also applied to SA and translation effort prediction NLP problems.
Finally, in Chapter 7, the concluding remarks and the lines for future work
are presented.

2

Background

This chapter presents the background of the dissertation. First, in Section 2.1,
we introduce the definition of the kernel functions. Next, the foundations of
the SVM and GP models are explained in Section 2.2. Finally, the literature
regarding automatic kernel learning is reviewed in Section 2.3.

2.1 Kernel functions

A Positive semi-definite (PSD) kernel & is a symmetric function S x § — R
on the set S, such that, the matrix M, where m;; = k(z;, z;), Vz1,....,2p €S
and Vn € N, is (i) symmetric, i.e., M = M7, and (ii) a PSD matrix. A matrix
is PSD if uMu” > 0 for all real vectors u € R™, which is equivalent to saying
that all its eigenvalues are non-negative.

In the SVM literature PSD kernels are often addressed as Mercer kernels,
since a PSD kernel holds Mercer’s condition (Mercer, 1909), as it satisfies:

/S/S g(x)k(z,2")g(z") dwda’ > 0 (2.1)

for any square integrable function g(z).

Kernel functions can be also interpreted as inner products in some Hilbert
space (Hilbert, 1906). Given a mapping function ¢ : X — V a PSD kernel can
be written as:

k(zi,zj) = (o(x:). ¢(x5))y, (22)

Although the use of kernels enables the algorithms to be applied to other

types of data, in this dissertation we work with real vector spaces.

2.1.1 Standard kernel functions

The kernel functions can be divided into two main families: stationary and
non-stationary kernels (Genton, 2002).

8 2 Background

A stationary kernel is translation invariant. Among the stationary kernels,
we focus on isotropic kernels, as they are the most used kernel functions in
the literature. Such kernels can be defined by the following equation:

k(x.x") = k(r)

0 6

(2.3)

r=

where % is a function that guarantees that the kernel satisfies Mercer’s condi-
tion and 6; is the lengthscale hyperparameter. The lengthscale hyperparameter
can be also a vector that expresses the relevance of each dimension d, as sug-
gested in Automatic Relevance Determination (ARD) approaches (MacKay,
1996; Neal, 1996).

On the contrary, in non-stationary kernels, the output of the kernel may
vary with translation transformations of the input space. Within this family,
the most common ones are those that depend on the dot product of the input
vectors, and they are usually referred to as dot-product kernels:

k(x,x") = k(s)

ey

where 0; is again the lengthscale hyperparameter, 6 is the shift hyperparam-
eter and 1 is a vector of ones.

Table 2.1 shows eleven standard kernels used in different applications of
SVMs and GPs (Howley and Madden, 2006; Koch et al., 2012; Diosan et al.,
2012). One of the most popular kernel choices, the Squared Exponential (SE)
kernel (also known as Radial Basis Function (RBF) in the SVM literature
or the Exponentiated Quadratic) can be represented as shown in Figure 2.1.
This kernel is known to capture the smoothness property of the data.

12
A' | -
10 = S
. ¥ -8 { g-
B) 6
4

nput, x

s

nput, x input, x

covariance, k(x, x

Fig. 2.1. SE kernel. On the left side, the actual outcome of the kernel function is

shown according to the values of the input vectors. On the right, the same function
is shown, when z’ = 0.

2.2 Models 9

| Kernel function expressions ‘

Constant kcon (x,x") = 6
White Noise kwn (x,x") = 0y 6(x,x’)
Exponential kr(r) = 03 exp(—r)
~ exponential ki~ (r) =63 exp(—17)
Squared Exponential | ksg(r) = 62 exp (—%TQ)
Matern12 karz(r) = 03exp (—r)
Matern32 Earsa(r) = 63 (1+ v3r) exp (—V3r)
Matern52 karsa(r) = 03 (1 + 57 + §r2) exp (—\/gr)
Rational Quadratic | kro(r) =05 (1+ 5=r°) ~
Periodic kper(r) = 08 exp (—%)
P
Linear krin(s) =s

Table 2.1. Standard kernel functions. 6y and 60, are the kernel hyperparameters,
called amplitude and period respectively. r is described in Equation (2.3), while s is
presented in Equation (2.4).

2.2 Models

The kernel function is the key component of several machine learning algo-
rithms. Among them, SVMs and GPs are the most representative. Thus, in
this chapter, a gentle introduction to both methods is provided.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) were introduced by Vapnik in 1963 as non-
probabilistic linear classifiers to solve binary classification problems. Later,
probabilistic variants (Platt, 1999) of SVMs and extensions to multi-class
problems (Crammer and Singer, 2001) were proposed.

In a supervised binary classification scenario, linear classifiers, such as
SVMs, classify these samples by means of a hyperplane. Nevertheless, there
arc many ways to position this hyperplane. SVMs are characterized by the use
of a hyperplane that maximizes the separation, or margin, between classes, as
can be seen in Figure 2.2.

In the most trivial case, where the samples are linearly-separable, the
hard-margin formulation can be used. Then, the margin from the plane to the
solutions of each class is maximized to achieve a better generalization. Given
some data D = {x;,y;}'_y (n € N), where y; € {—1,+1} indicates to which
class x; € R? (d € N) belongs, the maximal separating hyperplane can be
found by solving the following optimization problem:

min <%WWT>

subject to
yi(wx? +b) > 1,Vi € {1,2,...,n}

(2.5)

10 2 Background

4\4 ,.:"-f. .

Fig. 2.2. SVM diagram. The blue and red dots represent the data samples belonging
to each class. The straight line represents the hyperplane, while the dashed lines
represent the support vectors.

where w is the normal vector of the hyperplane, n refers to the number of
samples in the dataset and b corresponds to a special parameter in SVMs,
often called bias.
The label assigned to each new sample x, is determined by the following
function:
ye = sgn(wxr 4 b) (2.6)

where sgn(a) returns +1 if a is positive, and —1 otherwise.

On the contrary, the soft-margin formulation allows linear SVMs to be
used with non-linearly-separable data by introducing the hinge loss function
(L(w,b) = max(0,1 — y;(wx] + b)) with the error variable (;:

l n
min <2WWT +C Z Q)
i=1
subject to (2.7)
yi(wx! +b) >1— ¢ and
G >0,Vie{1,2,..,n}

where C' is the regularization parameter. If its value is large, having a small
hinge loss will be more important than having large margins. Therefore, SVMs
will reduce the margin of the hyperplane in order to classify as many training
points as possible correctly. On the other hand, if the value of C' is small,
increasing margins will be more important than reducing the hinge loss. Thus,
SVMs will assume some classification errors to have large margins. In the
extreme case, when C' is tiny, SVMs will behave similarly to the hard-margin
case.
Equation (2.7) can be simplified by solving its Lagrangian dual:

2.2 Models 11

n 1 n o on
§ § § T
max Q; — 5 aiajyiy]-xixj
i=1 =1 j=1

subject to (2.8)

n
Zaiyi =0 and
i=1
C>w >0Vie{l,2,..,n}

In this dual formulation, «; can be found by means of quadratic program-
ming methods (Joachims, 1998). Consequently, w and b can be calculated as
follows:

n
w = Z QY X
i=1 (2.9)
b=yp — Wxg

where xp and yp are the values for a sample on the boundary of the margin.

2.2.1.1 Kernel trick

When data is not linearly-separable in the original space, there might be some
feature space V where a hyperplane can classify the data. Boser et al. (1992)
proposed a mapping of the data to a higher dimensional space, called the
kernel trick.

As mentioned in Section 2.1, a kernel function &k can be defined as an inner
product in some Hilbert space k(x;, x;) = (¢(x:), 6(x;)),,, given a feature map
¢ : R — V. Thus, replacing the dot product operations in Equation (2.8) with
the kernel function k is equivalent to mapping the data to the feature space
VY and computing the SVM in such space, which allows non-linearly-separable
classification problems to be solved. In addition, the quadratic programming
problem required to find the optimal hyperplane is convex as long as the kernel
function satisfies Mercer’s condition (Burges and Crisp, 2000).

2.2.1.2 Kernel and parameter setting for SVMs

As explained in the previous section, the application of SVMs requires op-
timizing the weights (w) and bias (b), as well as setting the C' parameter.
Apart from these general parameters of SVMs, in kernel learning approaches,
the kernel structure and its hyperparameters (6) must also be searched for.
All these components are depicted in Figure 2.3.

In order to find the best kernel structure for a certain problem, all the
components must be properly set. In Chapter 3 we describe the work done,
as part of this dissertation, to analyze these components and their interplay.

12 2 Background

Kernel

learning
e © setting
©

Performance
metric

Fig. 2.3. Kernel search diagram for SVMs. The elements that take part in the
kernel search are shown in rectangles, while the associated parameters are displayed
in circles.

2.2.2 Gaussian Processes

A Gaussian Process (GP) is a stochastic process, defined by a collection of
random variables, any finite number of which have a joint Gaussian distribu-
tion (Rasmussen and Williams, 2006). A GP can be interpreted as a distri-
bution over functions, and each sample of a GP is a function. GPs can be
completely defined by a mean function m(x) and a covariance function. GP
models use a PSD kernel to define the covariance between any two function
values cov (f(x), f(x')) = k(x,x’) (Duvenaud, 2014). Given that, a GP can
be expressed as follows:

f(x) ~ GP(m(x), k(x,x')) (2.10)

where we assume that x € R? and d € N.

GPs can be used for regression by obtaining their conditional distribution
given some (training) data, also known as the posterior distribution. The joint
distribution between the training outputs £ = (f1, fo, ..., fn) (where f; € R,
i € {1,...,n} and n € N) and the test outputs f. = (fnt1, fat2, s fntn.) 18
given by:

£7 M(X,)| |K(X.,X) K(X.,X,)

where N(u,) is a multivariate Gaussian distribution, X = (x1,X2, ..., Xp)
(x; € R4, i € {1,...,n} and n € N) corresponds to the training inputs, and

]~ ([Me0], [) KXY oy

2.2 Models 13

Xi = (Xn41,Xn+2; s Xntn,) to the test inputs. K (X, X,) denotes the n X n,
matrix of the covariances evaluated for all the (X, X,) pairs.

The predictive Gaussian distribution can be found by obtaining the con-
ditional distribution given the training data and the test inputs:

£ X., X, f ~ N(M(X.), K(X., X.))
M(X.) = M(X.) + K(X., X)K(X,X) ! (f7 — M(X)) (2.12)
K(X.,X,)=K(X,,X,) - K(X,,X)K(X,X)"'K(X, X.)

As in many previous works (Chu and Ghahramani, 2005; Brochu et al.,
2010; Wang and de Freitas, 2014), we consider an a priori equal-to-zero mean
function (m(x) = 0).

2.2.2.1 Importance of the kernel function in GPs

The choice of the kernel function and its hyperparameters has a critical influ-
ence on the behavior of the model, and it is crucial to achieve good results in
any application of GPs. This selection has usually been made by choosing one
kernel a priori, and then adjusting the hyperparameters of the kernel function
in order to optimize a given metric for the data.

To illustrate the influence of both the covariance function and its hyper-
parameters, Figure 2.4 shows several GP models learned from the same input
data by using different kernel functions and/or hyperparameters. It can be
seen that the functions described by the SE kernel (bottom) are smoother
than those drawn by the Matern32 kernel (top). Note also that the shape of
the functions depends on the hyperparameters.

2.2.2.2 Kernel and parameter setting for GPs

Although a variety of methods have been also proposed to optimize the hyper-
parameters (Sundararajan and Keerthi, 2001; Toal et al., 2008, 2011; Garnett
et al., 2014), the most common approach is to find the hyperparameter set
that maximizes the Log Marginal Likelihood (LML):

1 1
Ly (X,£,0) =logp(flX,0)= —EmaKa_lmf - ilog | Kol — g log 27

with
m! =7 — M(X)
K, =K(X.X)

(2.13)

where 6 is the set of hyperparameters of the kernel and n is the length of X.
Alternatively, a Leave-one-out Cross Validation (LOOCV) metric was pro-
posed by Rasmussen and Williams (2006). In this case, the likelihood of each

14 2 Background

6-
A
2 -
0-
- T . i : -2 - i : .
0 5 10 0 5 10
(c) SE kernel with 6, (d) SE kernel with 05

Fig. 2.4. GP model variations on the same input data (black dots) depending on the
kernels and their hyperparameters. The Matern32 and SE kernels are shown with
different hyperparameter values. The continuous blue curve represents the mean of
the posterior GP, while the light blue shadow shows 3 times its standard deviation.
The thin blue curves are 10 samples of the posterior GP.

sample of the training data is measured given the rest of the data. Then, these
probabilities are added as follows:

n
Lrooov (X, £,0) =Y logp (fi| X, ;,6)
i=1 , (2.14)
P = M 1 1
logp (fil X.£-:,0) = —% - 5109 o — 3 log 2m
where p; and o; are the posterior mean and variance for x; given X_; and
f_;.

The selection of the right set of hyperparameters is known to be a hard
problem, particularly when few observations are available (Wang and de Fre-
itas, 2014; Benassi et al., 2011; Bull, 2011). Although in most cases the gra-
dient of the LML and the LOOCYV has a closed-form expression, depending
on the problem, these functions can be multi-modal and a greedy search pro-
cedure may lead to suboptimal results.

2.3 Proposals for kernel function design 15

2.3 Proposals for kernel function design

In the early stages of SVM and GP research, the standard kernel functions
introduced in Table 2.1 were applied (Mohandes et al., 2004; Zhou and Wang,
2005; Lin and Chen, 2011; Xu et al., 2019). In order to select the most suitable
kernel among them, cross-validation techniques were used (Hussain et al.,
2011). Similarly, decision trees were also proposed to find the most appropriate
kernel depending on the characteristics of the problem (Ali and Smith-Miles,
2006).

Later, methodological advances allowed these standard kernels to be com-
bined to create more complex structures. First, problem-specific kernel func-
tions were manually developed, although, later, automatic techniques were
proposed for learning these new kernels.

2.3.1 Composed ad hoc kernel functions

These proposals depart from the basis that there are certain kernel operations
which guarantee that, if the source kernels are PSD, the result will also keep
the positive semi-definiteness of its components (Duvenaud, 2014; Durrande
et al., 2012). Here, some of these operations are presented:

o Sum: k(x,x') = k1 (x,x') + k2(x,x").

e Product: k(x,x') = ki(x,x’) X ka(x,x).

e Polynomial: k(x,x’) = p(ki(x,x’)), where p is a polynomial function with
non-negative coeflicients.

Exponential: k(x,x’) = exp(ki1(x,x")).

Composition with a function: k(x,x’) = f(x)ki(x,x") f(x'), with f : R? —
R.

o Mapping: k(x,x’) = k; (¥ (x), ¥(x")), with ¥ : R? — R4,

These composed kernels can be also described by using a tree structure,
as shown in Figure 2.5.

kcomp(x,x") = ksr(x,X') ¥ (kppr(%,x") + 2kma2(x, X))

Fig. 2.5. Composed kernel represented as a tree.

16 2 Background

To illustrate the effect of the kernel composition, in Figure 2.6 we show the
kernel function that results from the addition and product of a Linear kernel
and a Periodic one. In the composed kernel functions, clear periodic patterns
and decreasing slopes can be observed.

These basic operations can be used to create complex kernel functions by
combining the standard kernels (Kronberger and Kommenda, 2013; Lloyd
et al., 2014; Howley and Madden, 2005). In the GP literature, some au-
thors use their expertise on the problem to design custom kernel functions
based on these kernel composition techniques (Rasmussen and Williams,
2006; Preotiuc-Pietro and Cohn, 2013). For example, Rasmussen and Williams
(2006) introduced an ad hoc kernel to fit the Mauna Loa Atmospheric CO,
time series, which is a well-known problem in the GP literature due to its
several periodic patterns (this time series problem is discussed in detail in
Section 5.2). Furthermore, Klenske et al. (2013) propose a product of a SE
and a Periodic kernel to control periodic errors in astrophotography systems.
Similarly, Preotiuc-Pietro and Cohn (2013) designed an ad hoc kernel to pre-
dict the number of occurrences of certain hashtags in Twitter, given the past
records. Finally, Wilson and Adams (2013) took advantage of the Bochner
Theorem (Bochner, 1959) to design kernels that were able to model the peri-
odical patterns of several time series.

2.3.2 Automatic kernel learning methods

In order to achieve an AML approach, several search methods have been
proposed for learning kernels with no human intervention. This is usually ap-
proached as a constructive procedure in which some kernel components are
brought together in order to find the combination that provides the best per-
formance. To do so, these approaches define a grammar that includes the
modules to be used and the rules to combine them, as well as a search algo-
rithm that defines the way the search is conducted.

Note that these grammars may include the kernel hyperparameters, which
are usually optimized during the kernel learning process, as elements in the
grammar. There might be some benefits in separating the hyperparameter
learning from the structure search, as two different search methods can be
used, one to learn the kernel structure and other to find the best hyperpa-
rameters. Thus, each search method can better exploit the regularities of each
search space.

In the case of SVMs, it is desirable to obtain a Mercer kernel, as this
condition ensures the convergence to the global optimum of the algorithm
used to solve Equation (2.8) (Howley and Madden, 2005), while in GPs, the
kernel function must be PSD in order to have closed formulas. Nevertheless,
defining a grammar by means of which all Mercer kernels can be composed
and all kernels that can be composed are Mercer is not an easy task. In fact,
to the best of our knowledge, there is no proposal in the literature in this
sense.

2.3 Proposals for kernel function design 17

covariance, k(x, x')
covariance, k(x, 0.0)
1
b b o e N ow o

input. x inout. x

(a) Linear kernel kprn(x,x")

3-
/ ®
2 - = =)
0% 510-
T £ X
x -8 ¥ X g-
5 o S 9
2 ‘6 & £ 6-
oy E £
a3z 4
.
2-
34 L o 5-2)) ! .)))
-3 -2 -2 0 a 2 13
input, x input, x

(b) Periodic kernel kpgr(x,x")

N ,///// &
TS AR
Al

~
in

input, x'

-1

covariance, k(x, X')
“w
o

covariance, k(x, 0.0)
&

-2-

N
in

//°

e
o

-3

innut. X input. x

() krLin(x,

»

")+ kper(x%,%')

40 -

20-

-20-

covariance, k(x, x')
covariance, k(x, 0.0)
o

-3 =2 =1 o 1 2
Input. x

w

(d) krin(x,x') X kppr(X,X')

Fig. 2.6. Example of a composed kernel function. On the left side, the outcome of
the kernel is shown. On the right, the same function is shown when 2’ = 0.

18 2 Background

Thus, automatic kernel learning methods can be classified depending on
how they deal with Mercer’s condition: kernel composition approaches and
methods based on basic mathematical expressions. In this section, we describe
the work done in the literature devoted to the study of both approaches.

2.3.2.1 Automatic kernel learning approaches based on kernel
composition

These approaches are based on the kernel composition properties introduced
in Section 5.8. The grammar is composed of a set of kernels like those shown in
Table 2.1, along with the composition rules presented in Section 2.3.1. Thus,
in these approaches, Mercer’s condition is guaranteed by the grammar itself.

In addition, the kernels obtained by using these methods have shown their
ability to capture function properties such as smoothness, trend and periodic-
ity (Duvenaud et al., 2013; Lloyd et al., 2014). Furthermore, as the behavior
of the standard kernels and the operators is well-known, the behavior of their
compositions may be guessed by an expert (Lloyd et al., 2014).

On the contrary, although all the solutions created by means of kernel
composition are guaranteed to be PSD, not all Mercer kernels can be created
through this method. Furthermore, depending on the application domain,
the search may end up with extremely complex structures that can be too
cost-intensive to evaluate (Sullivan and Luke, 2007). Also note that these
approaches rely on kernels that have already been proposed in the literature.
There is no reason to assume that kernels obtained by composing a limited
set of human-designed kernels are optimal for arbitrary problems. In fact,
using previously designed kernels as building-blocks could bias the search and
prevent the exploration of more promising candidates.

Genetic Programming (GenProg) (Koza, 1992) has been one of the most
used methods to automatically find kernel combinations that improve the
performance of standard kernels in SVM literature (Howley and Madden,
2005; Diosan et al., 2008). GenProg is an evolutionary algorithm designed
to search in a predefined space of computer programs, i.e., kernel functions
in our case. Most of these GenProg approaches report some sort of accuracy
gains over standard kernel functions (Howley and Madden, 2005; Koch et al.,
2012).

In the GP literature, Kronberger and Kommenda (2013) proposed Gen-
Prog as a method for compositional kernel search. Nevertheless, the experi-
mentation of this work was limited to the Mauna Loa Atmospheric COs time
series and some synthetic two-dimensional datasets. In addition to GenProg,
other search methods have been proposed to search for kernel composition in
GPs. Duvenaud et al. (2013) proposed a greedy search procedure, where the
best kernel function in terms of Bayesian Information Criterion (BIC) was
searched in the space of possible compositions (sums and products) of the
standard kernels. Later, Lloyd et al. (2014) improved the previous approach
by adding change-point and change-window kernels. Similarly, Malkomes et al.

2.3 Proposals for kernel function design 19

(2016) used Bayesian Optimization, while Hinton and Salakhutdinov (2008)
applied Deep Belief Nets to search in the model space. Finally, Deep Kernel
Learning has been also proposed based on spectral mixture kernels (Wilson
et al., 2016).

2.3.2.2 Basic mathematical expression based automatic approaches

The second type of approaches are based on basic mathematical expressions
as building blocks. An example is shown in Figure 2.7, where the SE kernel is
represented as a tree composed of basic mathematical expressions.

kse(x,x') = 03 exp (—%

Fig. 2.7. SE kernel represented as a tree composed of basic mathematical expres-
sions.

These proposals are more flexible and potentially better because they allow
a richer and a wider set of kernels to be explored, built from scratch, without
any previous bias. This types of grammars allow more compact kernel expres-
sions to be found than those designed by an expert or automatically learned
by composing kernels. In addition, note that a basic mathematical expression
based grammar can be designed for every kernel composition grammar, where
all the kernels that can be created from the former are a superset of all the
kernels that can be composed with the latter.

In contrast, the wider search space derived from the basic mathematical
expression based approaches may hinder the task of finding good-performing
kernels.

Another undesirable downside of being able to compose more compact and
flexible kernels is that these methods may generate non-Mercer kernels during
the search. The simplest way to deal with this problem is not to guarantee that
kernels meet Mercer’s condition (Bing et al., 2010; Howley and Madden, 2005;
Gagné et al., 2006; Thadani et al., 2006). Although, this option is not valid for
GPs, it can be used for SVMs, assuming that the optimization algorithm used
to find the optimal hyperplane may not converge to the global optimum. Other
proposals in the literature (Howley and Madden, 2006; Diogan et al., 2007;
Koch et al., 2012) check Mercer’s condition for every kernel and those that
do not meet this condition are penalized or discarded. Howley and Madden

20 2 Background

(2006), and Diogan et al. (2007), propose a method to penalize (assigning
the worst possible fitness to them) the non-PSD kernels in evaluation time,
while Koch et al. (2012) suggest discarding the non-PSD kernels and repeat
the kernel creation process. Although these methods have been proposed for
SVMs, they are also applicable for GPs.

Part 11

Methodological Contributions

3

An analysis of SVM kernel learning

3.1 Introduction

Selecting the kernel function that will be used is an important choice in the
SVM setting discussed in Section 2.2.1.2. Towards an AML approach of SVMs,
many research outputs have been produced dealing with the challenge of au-
tomatic learning of good-performing kernels. However, these works have been
carried out without a thorough analysis of the set of components that in-
fluence the behavior of SVMs and their interaction with the kernel. These
components are related in an intricate manner and it is difficult to provide a
comprehensible analysis of their joint effect. This chapter is devoted to filling
this gap introducing the necessary steps in order to understand these inter-
actions and provide clues for the research community to know where to place
the emphasis.

To start with, a search space which contains all (and only) the Mercer
kernels has not been described yet. Instead, previously proposed methods
pose some sort of limitations in the search space of kernels, whether only
considering a subset of all the Mercer kernels or also including some which
are non-Mercer. Several challenges have to be dealt with in relation to this
topic: How does the selected search space of kernels influence the results of
SVMs? According to the characteristics of the kernels, which are the regions
of the search space on which the search efforts should focus?

Once the space of possible kernels has been defined, the next relevant ques-
tion is the selection of a strategy to carry out the search. Most of the works in
the literature have proposed various heuristic algorithms to solve this search
problem, GenProg being one of the most used (Howley and Madden, 2006;
Diogan et al., 2012; Koch et al., 2012). However, there is a lack of knowledge
about many aspects related to the specific characteristics of the kernel func-
tion optimization problem, and in particular, about how these characteristics
relate to the way the GenProg search for optimal solutions is accomplished.
Furthermore, there is no clear understanding of the relative performance of
GenProg compared to other simpler search strategies, since other optimiza-

24 3 An analysis of SVM kernel learning

tion methods have rarely been applied to this problem. Relevant questions
in this area are: What is the relevance of the search method with respect to
the characteristics of the chosen search space? Which characteristics should a
search algorithm have in order to efficiently explore the kernel space?

Apart from the choice of the kernel, there are other components of SVMs
that interact in a complex manner, which hinders the identification of the
essential elements that are necessary to obtain a good performance in the
classification task. However, in most of the previous works little attention has
been paid to the rationale behind the choice of those components of SVMs
and how these choices influence the dynamics and results of the kernel search.

The learning of the kernel itself is often divided into the kernel structure
search and the tuning of its hyperparameters. This tuning process is one of the
steps involved in the SVM learning, whose essential role is usually overlooked
in the literature. The key questions are: What is the relevance of finding the
right hyperparameters? Which is the best method for finding them? How much
computational effort needs to be used to optimize the hyperparameters?

Beyond the setting of the kernel and its hyperparameters, the commonly
used flexible variant of SVMs has its own parameter (C'), whose role is to deal
with the overfitting of the model. Although the choice of C strongly influences
the effectiveness of the final classifier, it is not clear in the literature what
the interactions of this parameter are with the rest of the components. For
instance, what is the contribution of the C parameter to the performance of
SVMs with a particular choice of the kernel? Which is the interplay between
the kernel hyperparameter setting and the C' parameter setting?

Finally, for an automated kernel search, we not only need to assess the
quality of the solution on the training data but also to implicitly capture how
it will generalize to new data. If a wrong evaluation measure is chosen, then,
an apparently good solution (in terms of the measure) may overfit the data
and produce poor results at the prediction stage. The choice of the objective
function used to evaluate the quality of the kernel also has an impact on the
roughness of the kernel search space, and therefore on the performance of the
search methods. Most of the previous works in the literature have used the
classifier accuracy as the metric of choice. However, are there better metrics
to guide the search for optimal kernels?

Trying to shed some light on these issues, in this chapter we analyze the
components involved in the structural learning of kernels. We start by consid-
ering each component independently, and we then proceed by addressing the
way they interact to influence the behavior of SVMs. In the study of these
components and their interactions, we introduce some guidelines to improve
the performance of SVMs.

3.2 The search space 25

3.2 The search space

Depending on the classification problem that is being solved by means of
SVMs, some elements of the grammar might be crucial. However, most of the
kernel learning approaches do not single out the grammar nor the choice of
the elements that compose it as relevant issues.

3.2.1 Relevance of periodic elements

In order to illustrate the importance of including the appropriate elements
in the grammar, we compare the classic RBF kernel®' to the Periodic kernel
in a subset of well-known problems. The RBF kernel is known for capturing
the smoothness property of the data, as elements close to each other in terms
of Euclidean distance have a high kernel value and it smoothly decreases as
the distance increases. The elements needed to compose the RBF kernel are
present in most of the grammars reported in the kernel learning literature,
regardless of the grammar type choice, whether they use kernel composition or
are based on basic mathematical expressions. On the other hand, the Periodic
kernel is based on the RBF kernel, however it adds a spectral transformation
to the space (HajiGhassemi and Deisenroth, 2014) in order to model periodic
patterns in the data. Periodic elements, such as the spectral transformation,
have been overlooked in the kernel search literature, and only some approaches
(Bing et al., 2010) include them in their grammars.

If the Periodic kernel obtains a better result than the RBF, it may indicate
that some periodic patterns are present in the data. If so, having the spectral
transformation in the grammar is essential to achieve good results.

Although some of the kernel search approaches have been used to solve
particular problems, most works in the literature test their proposals in the
UCI classification datasets (Dua and Graff, 2017), shown in Table 3.1, in order
to compare their results with those reported in previous works.

[Classification problem { Samples Variables Classes \

pima 768 8 2
ionosphere 351 34 2
heart statlog 270 13 2
glass2 163 9 2
liver disorder 345 6 2
breast cancer Wisconsin 569 30 2

Table 3.1. Characteristics of the UCI problems studied in this work.

In these UCI datasets, the RBF kernel has a reasonably good performance,
close to the state-of-the-art kernels created by composition (Diogan et al.,

! In this section we refer to the SE kernel as RBF, as it is the name most commonly
used in the SVM literature.

26 3 An analysis of SVM kernel learning

2012). It might indicate that modeling the smoothness property of the data
is enough to achieve good classification results (Duvenaud et al., 2013).

To widen the scope of the analysis, we searched for other types of classifi-
cation problems, where new kernel properties, apart from smoothness, could
be necessary to obtain more accurate results. In a preliminary experiment, we
used the Penn Machine Learning Benchmarks (PMLB) (Olson et al., 2017) to
find datasets where RBF does not perform so well, possibly indicating that
other kernel properties are needed.

After evaluating the SVMs with the RBF kernel in all the PMLB databases,
we selected the 8 problems where the lowest accuracy was obtained. The char-
acteristics of these datasets are shown in Table 3.2. In the non-binary PMLB
problems, the one-vs-one approach was used.

‘ Classification problem ‘ Samples Variables Classes ‘
calendarDOW 399 31 5
contraceptive 1473 9 3
GAMETES Epistasis 0.1H 1600 19 2
GAMETES Epistasis 0.4H 1600 19 2
GAMETES Heterogeneity 50 1600 19 2
GAMETES Heterogeneity 75 1600 19 2
parity5+5 1124 10 2
Hill Valley with noise 1212 100 2

Table 3.2. Characteristics of the PMLB problems for which the RBF kernel ob-
tained the worst accuracies.

In order to compare the results of the RBF kernel to the Periodic kernel
(PER), we ran a second experiment with the Periodic and RBF kernels in the
previously shown UCI and PMLB databases.

The dataset was partitioned twice. A random fold of 20% of the data is
selected as the test set, and a 4-fold cross-validation was used to set C' and
the hyperparameters for each kernel. The SVMs were fitted in each fold of the
training set for each combination of C (275 to 2!%, at powers of 22 as proposed
by Sousa et al. (2017)) and the hyperparameters (272 to 2%, at powers of 2),
with a limit of 1000 evaluations. Next, the combination with the best average
accuracy was selected to be evaluated in the test set.

In Table 3.3 the results of this experimentation are shown. Although in the
UCT datasets the results of both kernels are similar, important performance
gains can be obtained in the GAMETES PMLB datasets when using the
periodic kernel instead of the RBF.

In spite of being very similar kernels, there are remarkable performance
differences between the RBF and Periodic kernels depending on the database.
The limited capacity of the RBF kernel to model the GAMETES databases
restricts the classification performance of the SVMs. This suggests that in-
cluding the elements of the Periodic kernel in the kernel search grammar is

3.2 The search space 27

| [Classiﬁcation problem [RBF PER ‘
pima 0.772 0.758

.| lonosphere 0.939 0.944

(:-)3 heart statlog 0.826 0.837
glass2 0.809 0.773
liver disorder 0.743 0.726
breast cancer Wisconsin 0.972 0.974
calendarDOW 0.621 0.624
contraceptive 0.547 0.548

m| GAMETES Epistasis 0.1H 0.562 0.668
S GAMETES Epistasis 0.4H 0.709 0.797
A GAMETES Heterogeneity 50 | 0.660 0.714
GAMETES Heterogeneity 75| 0.669 0.701
parityb5+5 0.931 0.905
Hill Valley with noise 0.815 0.801

Table 3.3. Mean accuracies in the test set for the RBF kernel and the Periodic
kernel in UCI and PMLB classification problems. The numbers in bold indicate the
best result for each problem. UCI databases are shown in the top 6 rows of the table,
while PBML problems are at the bottom of the table.

crucial in some problems, and highlights the importance of a careful selection
of the elements that compose this grammar.

3.2.2 Proposed grammar

In order to investigate the importance of the selected search space, and taking
into account the grammars proposed in the literature, we designed a grammar
based on basic mathematical expressions by means of which all the kernels of
Table 2.1 can be composed. The production rules of this grammar are shown
in Table 3.4.

The scalar non-terminal is the start symbol of the grammar. It also in-
cludes the +, x, and " arithmetic operators, with their usual meanings (ad-
dition, product and power, respectively). Note that we only allow hyperpa-
rameters as the exponent in the power operator. The same interpretation is
given to the unary operators. The power to the minus one is also added as a
unary operator in order to allow division operations. Then, the input vectors
are converted into scalars by means of the square distance and dot product
non-terminals, as described in Section 2.1.1. Similarly, constant and noise non-
terminals, whose values depend on the input hyperparameter, are included.
The subtraction and the division of an input vector by a hyperparameter are
also incorporated. In addition, the grammar also contains the spectral trans-
formation, in order to allow periodic kernels, as suggested by HajiGhassemi
and Deisenroth (2014). Finally, (x,x’) (the input vectors of the kernel) and 6
(the hyperparameters) are the terminals of this grammar.

28 3 An analysis of SVM kernel learning

kernel : scalar start symbol
scalar :
| scalar™ power
| scalar + scalar add
scalar x scalar multiply
ply
| scalar—! div
| escalar exp
| Vscalar sqrt
| scalar? square
| — scalar negative
| tanh(scalar) tanh

2
I

| |linvec — invec’ sq-distance

| invec.invec'” dot_product
| hp constant
| hp x §(x,x") noise

)

(invec, invec') :
| ([sin(invec) cos(invec)] ,
[sin(invec’) cos(invec’)]) spectral

| (in}:/:c} inzzc/ <_div
| (invec — 1hp, invec’ — 1hp) x_rest
| (x,x) input

hp :
[05|1]2]3]5
[60 |61] ...] 6
Table 3.4. Proposed grammar for SVMs. t indicates the number of different hyper-
parameters allowed in the grammar (in this work, it is set to ¢ = 20).

3.2.2.1 Random kernel generation

In order to randomly generate kernel expressions, we propose a strongly-typed
grow method based on the work presented by Koza (1992). This approach
creates kernels from scratch, without any knowledge of previously proposed
kernels. This is achieved by a recursive process where, at each step, a random
terminal or a random operator is added.

When generating random solutions, some of the solutions may be too com-
plex in terms of the number of terms in the expression, and others too simple
or trivial. Thus, we propose a method to control the depth of the generated
expressions by setting a minimum (d;,) and a maximum depth (dpq.). As
can be seen in Table 3.4, some of the non-terminals have the same symbol on
both sides of the production rule. These non-terminals guarantee that, once
selected, the iterative procedure can continue growing this branch, i.e., they
are recursive. During the creation process, we select a uniformly random pro-
duction rule depending on the current symbol. If the minimum depth has not

3.2 The search space 29

been reached, only recursive non-terminals are used. Then, until the maximum
depth is reached, any non-terminal can be selected. Finally, when the maxi-
muin depth is reached, only the terminals and the non-recursive non-terminals
are used, limiting the depth of the expression.

3.2.2.2 Dealing with non-Mercer kernels

In order to mitigate the evaluation of non-Mercer kernels, we followed the ap-
proach used by Koch et al. (2012): check the positive definiteness of the matrix
generated by a kernel for some random data and attempt the generation of
the kernel again if this matrix is not PSD.

As mentioned in Section 2.1, any matrix generated by a Mercer kernel has
to be symmetric and also PSD. To identify non-PSD kernels, we generate w
random uniformly distributed datascts X = (x1,Xs,...,X,) (where x; € R9,
i € {1,..,n} and n € N) and check the M matrix produced by the kernel
for each dataset. If any M matrix matches the following cases, the generation
process of the kernel is repeated:

e M # MT: As previously mentioned, the matrix given by a Mercer kernel
should be symmetric.

e Any my; is negative: It has been proved (Zhang, 2011) that, if any of the
elements in the main diagonal are negative, the matrix is not PSD.

e Any of the eigenvalues of M is negative: Similarly, all the eigenvalues of
the matrix should be non-negative.

With this method, and using the grammar shown in Table 3.4, 9 trials were
required on average in the experiments conducted in this chapter to create
a kernel that generates a PSD matrix. Note that meeting these conditions is
not sufficient for a kernel to be Mercer. Although some non-Mercer kernels
may pass the PSD check, it was not a problem during the experimentation,
as the SVM optimization did not converge in only 3.16% of the kernels that
passed the PSD check.

3.2.3 Increasing grammar experiment

Following the experiment introduced in Section 3.2.1, we conducted a more in-
depth experiment to observe the influence of the grammar in the search of the
best kernel for the SVM classification. Particularly, we wanted to measure the
effect that the addition of certain elements to the grammar has in randomly
generated kernels and in the performance of the SVMs that use these kernels.

In order to carry out this experiment, we obtain a series of grammars that
arc able to create kernels that can generate PSD matrices and each grammar
in the sequence comprises all the elements from the previous one. We start
with the minimum possible grammar, including the input vector and the dot
product operator from which only a simplified version of the Linear kernel

30 3 An analysis of SVM kernel learning

can be created. To create the next grammar, we add one random element
to the first one, and test whether a random kernel generated with this new
grammar, which contains this new element, passes the PSD check. d,in = 5
and dy,q, = 15 were set to control the depth of the generated expressions. If
the randomly generated kernel fails the test, we try adding another element
to the grammar. If, after testing all the elements, none of the new grammars
is able to generate a random kernel that passes the PSD check, we try to add
pairs of elements to the grammar. On the other hand, if the new grammar is
able to generate random kernels that pass the PSD check, this new grammar
is added to the sequence, and the process is repeated adding a new element to
it. We repeat this experiment obtaining 10 series of 27 grammars for each UCI
and PMLB database. Next, for each grammar in the sequence, we randomly
generate 18 kernels and evaluate them. The evaluation of these kernels is
carried out following the same setting used in Section 3.2.1.

Figure 3.1 illustrates one of these experiments in the GAMETES Epistasis
0.4H database. It can be seen that, when including certain elements in the
grammar, the accuracy of SVMs increases. For example, when the spectral
non-terminal is included, in combination with the exponential, 60% accuracy
can be achieved. Moreover, in the 16th iteration, the inclusion of the multipli-
cation non-terminal improves the accuracy up to 74%. In the following iter-
ations, the sq_distance non-terminal slightly increases the performance when
selected. Overall, the performance of the best kernel of each iteration (created
by means of a richer grammar) shows an increasing trend.

To obtain a general view of the experiment, in Figure 3.2 the average
accuracy for each iteration and database is shown. In some problems, such
as pima, heart statlog and breast cancer Wisconsin the results of the first
iteration, i.e., the simplified Linear kernel, can not be improved with the
addition of new elements. This is consistent with the results of Table 3.3,
where the rest of the standard kernels barely outperform the results of the
Linear kernel. However, for the rest of the problems, there is a clear increase
in accuracy when new elements are added to the grammar. This is especially
visible in the glass2, parity5+5 and GAMETES databases.

In summary, this experiment shows that including a wide set of elements
in the grammar is beneficial for any kernel structure search attempt. If some of
these elements are missing, the performance of SVMs is limited, regardless of
the number of evaluations or the search method. Thus, framing an appropriate
search space is essential to achieve good results. Our first recommendation
would be to include as many elements described in the literature as possible.
Particularly, we have observed in the experiment of Section 3.2.1 that the
spectral element is essential for some particular problems. A possible drawback
derived from a very rich grammar would be a wider search space, which makes
it more difficult for a search algorithm to find a good performing combination
(kernel). However, as discussed in Section 3.3, even a basic random search
algorithm with a limited budget is able to provide competitive results.

3.2 The search space 31

1.0-
0.9-

0.8 -

Best accuracy

add -
multiply -
exp -

negative -

tanh -

power -

div -
m

sqrt -
square -
sq_distance -
dot_product
constant -
noise -
x_div -
x_rest -
spectral - TN T
6, -

@
Ny
L T T T T T T T T T |

iteration

Out Ingrammar In best

Fig. 3.1. Increasing grammar experiment in the GAMETES FEpistasis 0.4H dataset.
The figure at the bottom shows the elements present in the grammar at each itera-
tion. The lightest blue color indicates that an element is out of the grammar, while
the darker blue color expresses that this element is included. If the best kernel of
that iteration contains a certain element the darkest blue color is shown. At the top,
the accuracy on the test set of the best random kernel (selected according to the
training set) is plotted.

32 3 An analysis of SVM kernel learning

1.0-

O g - 0~g-0-9-0-0-0-0-0-0-¢ .,°~.—o-.-o—'~o-¢—o
> o0 ey
Y 0.9- o etmttmged]

o A=+ "~y
5 I, T /\+_+_+_+\+_+—+
v
9 0.8 - .\._._._.,._._.---.—l-l"‘l-—._. oo '~---—!~.—l--—:—l—l
=)
ﬁ A A A, ‘\X,X/‘\x\x x/A—A:’A‘
Q \A—‘/‘ x‘;‘ /S A % /;\ A7A A A
Q 0.7 - XX=xexe Ao VR W
o 0. Nl
o
© —®— breast-cancer-wisconsin
g 0.6 - —%— glass2
< ~W~ heart-statlog
+ ionosphere
il liver-disorder
0.5 —&— pima
') ')))
0 5 10 15 20 25
iteration
(a) UCI
~®- GAMETES_Epistasi_0.1H
1.0~ - GAMETES Epistasis_0.4H
~#~ GAMETES_Heterogeneity_50
5 ~4~ GAMETES_Heterogeneity_75
o 0.9 - —@~ Hill_valley with_noise
3 &~ calendarDOW
8 ~%- contraceptive
© 0.8 - @~ parity5+5
-~
8 /
Q 0.7 - ' XX x’ '{x X
. - - o
% 0\ P gt ./ 33,.:+_z_=_§
- o7 X L e
o 230-0-4-0 /e .\9';:.?")(5??’>A B e s
>06- / N\ Hep “?"/ > 0-g-O~,-0-®
< e St W N /': ,+::;(.;A .—o-o’ o -
. -8 —
p=e= \.‘éf, :.— ""V \(‘W"' e SO N S A
0.5 v 'fu-v‘—'—-'—'—" oy ="
|
0 5 10 15 20 25
iteration
(b) PMLB

Fig. 3.2. Average accuracy on the test set of the best kernel (selected according to
the training set) at each iteration.

3.3 Kernel structure search

Once the importance of the grammar and the search space has been intro-
duced, we then focus on the kernel structure search step. For this purpose, we
designed an experiment to compare the performance of GenProg with other

3.3 Kernel structure search 33

kernel structure search approaches, also including the standard kernels shown
in Table 2.1, for the UCI and PMLB databases.

The GenProg method studied in this experiment is based on the math-
ematical expression grammar introduced in Section 3.2.2. As shown in Al-
gorithm 1, in this approach, an initial population of N random kernels is
generated with a minimum (d,,;,) and a maximum depth (d,qz), and evalu-
ated. After sclecting the S best individuals, the algorithm randomly chooses
between a mutation or a crossover operator (with probability p,, and pc, re-
spectively, where p.; = 1 — py,) to generate an offspring population of N new
individuals. After evaluating all the individuals in this offspring population,
the previously selected individuals are added to generate the next population
that consists of N + S individuals. This procedure is repeated for G gener-
ations, until the last population is evaluated and the best individual found
during the whole process is returned.

Algorithm 1 GenProg algorithm for SVM kernel structure search
1: procedure GENPROG(N, G, S, pm, Dexs B, dmin, dmaz)

pop = GENRANDPOP(N, dmin, dmaz)

3 EVALUATE(pop)

4 all = pop

5: =0

6: while i < G —1 do

7.

8

sel = SELECT(pop, S)
of fspring = VARIATE(sel, N, Pm, Dex)

9: EVALUATE(of fspring)
10: all = allUof fspring
11: pop = sel Uof fspring
12: 1=14+1

13: end while

14: best = SELECT(all, 1)
15: return best

16: end procedure

In order to assess the contribution that each component of the proposed
GenProg algorithm makes to the kernel search, we introduce three algorithms
to be used as a baseline in the experiments.

First, we describe a random search algorithm that generates N kernels
following the method described in Section 3.2.2.1. Then, the best solution is
chosen according to the cross validated accuracy in the training set.

Secondly, in order to measure the gain produced by the crossover operator
in the GenProg setting, we use a hill-climbing algorithm (Davis, 1991), which
does not depend on this operator. This procedure generates an initial kernel,
from which a second kernel is created by applying a random mutation. Next,
the best kernel in terms of accuracy is selected. This procedure is repeated
for N evaluations.

34 3 An analysis of SVM kernel learning

Finally, we also introduce a GenProg variant without the spectral element
in the grammar (sGenProg), in order to develop the results of the experiment
shown in Section 3.2.1.

In all these approaches, before the evaluation of every kernel, the hyper-
parameters and C were optimized as in the experiment in Section 3.2.1. In
the kernel structure search approaches, the hyperparameters were optimized
in a grid of 272 to 2%, at powers of 2, with a limit of 1000 evaluations. For a
fair comparison, we used a more exhaustive grid search to find the hyperpa-
rameters for the standard kernels: 272 to 24, at powers of 20!, with a limit of
486000 evaluations. In the GenProg approach, in each of the G = 27 genera-
tions, N = 18 kernels were created and the best S = 4 kernels were chosen as
seeds for new individuals. The mutation and crossover probabilities were set to
Pm = 0.4 and p., = 0.6 respectively. Similarly, N = 486 evaluations were car-
ried out in the random search and hill-climbing methods. Each configuration
was repeated 10 times.

As can be seen in Table 3.5, the GenProg approach improves the training
set results of the standard kernels in all the UCI and PMLB databases, except
in the GAMETES problems, where it is not able to achieve the same accuracy
as the Periodic kernel. Notable performance gains were achieved in the glass2,
parity5+5 and Hill Valley with noise problems by using the GenProg method.
The hill-climbing and the random search methods obtain results similar to
the best standard kernel in most of the databases. Comparing GenProg to
the random search and the hill-climbing methods, the best average accuracies
are achieved by GenProg.

The results obtained in the training set by the different models are used to
determine the best performing model in the test set. However, the performance
of the models changes when applied to the test set, probably due to the
overfitting effect. Thus, in spite of obtaining good accuracy values in the
training set, the GenProg approach is not able to maintain those results in
the test set. Table 3.6 shows that this issue is clearly visible in most databases
where slight differences were observed in the training set between the GenProg
and the best standard kernels. However, in other datasets, such as glass2,
parity5+5 and Hill Valley with noise, the GenProg kernel learning method is
clearly a better choice in the training set, and these results are also visible in
the test set.

In the contraceptive and GAMETES FEpistasis 0.4H databases, GenProg
achieves better average accuracy values in the test set than the other kernel
structure search methods. In some other problems, such as pima, heart stat-
log, liver disorder and GAMETES Epistasis 0.4H problems, the exploitation
oriented mutation operator of the hill-climbing algorithm generates the best
kernels for the test set. On the other hand, the exploration oriented behavior
of the random search seems to be less prone to overfitting, achieving the best
results in the breast cancer Wisconsin, calendarDOW and two GAMETES
Heterogeneity problems.

35

3.3 Kernel structure search

‘goeordde 3o1Juer) sso[-[R1300ds o) S9)ROIPUI 0IJUeN)S “WL[qOId DR I0J JMSSI 1S9 S} 9)RIIPUT P[O] U SISQUINU SY,], "UMOYS
ST POY[J9UI T[D.1RSS [OTLIOY DR AQ PoAdITOR ADRINOOR WS oF, *19s Julurel) oY} Ul JuouILedXs [oIess [oWI0Y] oY) JO SNy *G'¢ S[qe],

S06°0 9880 LI8°0 9640 GER'0 0C80 8c80 €€8°0 9980 ostou jim Adf[eA [ITH
666°0 066°0 8¢6'0 L4670 ¢cL’0 CEY0 €940 49940 L6VO g+gAyred
€€L°0 €L9°0 ¢cEL’0 GTL0 9€2°0 G99°0 7990 6990 LIG0|GL Ayeuesoreq SHIANVD
60L°0 299°0 90L°0 ¥0L°0 9TL’0 0S9°0 L¥9°0 T¥9°0 ©0S'0|0¢ £y1ous5or1eH SHLANVD |9
€6L°0 0040 €6L°0 1640 ¥6L°0 0690 989°0 8L9°0 €0S°0 HY'0 sweisidy SHLANVD m
189°0 9640 089°0 6490 ¥89°0 ¢8S9°0 8LG°0 9.¢°0 T0S0 HT 0 1seIsidd SHILAINY D |&
€LS5°0 6940 0LG°0 6950 ¢LG°0 99G°0 9990 ¥9¢0 91¢0 aa19dadeI)U0d
S99°0 90 0990 1990 1690 L29'0 €90 ¢g9'0 G650 MO Tepusres
986°0 986°0 G860 ¥86°0 7860 €86°0 ¥86°0 ¥86°0 1860 UISUOISIA [ooUueD 15ealq
€92°0 962,70 0640 SvL0 LyL’0 €VL0 TVL0 LELO L6970 1OPIOSIP IOAT]
606°0 9€8°0 c98°0 0980 Ga8’0 €180 €180 608°0 GIL0 gsses -
8L48°0 8.8°0 848°0 9180 698°0 098°0 6980 6480 6480 Sopyess eor] | A
¢96°0 296°0 8G6°0 9960 8G6°0 996°0 L96°0 996°0 6880 asaydsouor |~
€64°0 €6.°0 88L°0 88L0 G8L'0 €8L0 G8L0 T8L'0 6140 eund

E@ﬂ:w.@ Sorquerys DY wopuey | YAd JA9dH GSIN CEIN NIT werqoad :osdufmmﬂoi 7

3 An analysis of SVM kernel learning

36

* kO_wmmEomics problem k LIN M32 M52 RBF PER kw.wc&cg HC sGenProg Q&Euacﬁ

pima 0.759 0.766 0.773 0.766 0.765 0.762 0.763 0.756 0.759
_,| lonosphere 0.875 0.942 0.945 0.942 0.944 0.945 0.945 0.944 0.946
m heart statlog 0.830 0.820 0.824 0.820 0.815 0.806 0.811 0.815 0.802
glass2 0.710 0.818 0.800 0.794 0.800 0.773 0.803 0.776 0.836
liver disorder 0.684 0.722 0.732 0.735 0.713 0.712 0.719 0.714 0.719
breast cancer Wisconsin 0973 0.969 0.971 0970 0.971 0.975 0.969 0.972 0.973
calendarDOW 0.577 0.620 0.621 0.623 0.619 0.626 0.619 0.609 0.616
contraceptive 0.521 0.555 0.553 0.550 0.548 0.547 0.547 0.553 0.552
m| GAMETES Epistasi_0.1H 0.467 0.561 0.562 0.559 0.675 0.676 0.675 0.560 0.675
M GAMETES Epistasis 0.4H 0.489 0.697 0.708 0.717 0.797 0.796 0.796 0.722 0.796
A| GAMETES Heterogeneity 50 | 0.482 0.648 0.651 0.653 0.721 0.719 0.719 0.665 0.712
GAMETES Heterogeneity 75| 0.488 0.665 0.670 0.668 0.720 0.714 0.713 0.672 0.708
parity5+5 0.474 0.542 0.718 0.892 0.865 0.985 0.965 0.998 1.000
Hill Valley with noise 0.819 0.849 0.841 0.825 0.837 0.786 0.818 0.865 0.910

Table 3.6. Results of the Kernel search experiment in the test set. The mean accuracy achieved by each kernel search method is
shown. The numbers in bold indicate the best result for each problem. sGenProg indicates the spectral-less GenProg approach.

3.3 Kernel structure search 37

Besides, the GenProg approach with the spectral element in the grammar
shows a better performance than the spectral-less variant in the training set in
all the problems, especially in the glass2, calendarDOW, Hill Valley with noise
and GAMETES problems. In Table 3.6, it can be seen that these differences
are also notable in the test set. These problems probably include some periodic
patterns that can be better modeled when the spectral element is present.

We conducted a statistical test to assess the existence of significant differ-
ences among the methods in the test set. For each database, we applied Fried-
man’s test (Friedman, 1937) and we found significant differences (o = 0.05) in
the ‘onosphere, glass2, contraceptive, parity5+5 and all GAMETES databases
(p-values can be seen in Figures 3.3 and 3.4). Then, for each configuration,
we applied a post-hoc test based on Friedman’s test as in the work done by
Demsar (2006), and adjusted the results with Shaffer’s correction (Shaffer,
2012). The results are shown in Figures 3.3 and 3.4, and in Table 3.7, where
a summary of the statistical tests is presented.

3 4 5 6 7 3456789 4 5 6 7
- T L L L | | |
M52— PER Random HC LIN— GenProg
HC GenProg GenProg RBF M52— PER
M32 Random M52 M32 RBF— GenProg
RBF L GenProg PER— sGenProg M32—— HC
—LIN LIN ——Random
p-value: 6.01e-01 p-value: 1.29e-03 p-value: 7.51e-01
(a) pima (b) ionosphere (c) heart statlog
3456789 3456738 4 5 6
[L [L | |
GenProg PER RBF—| M32 Random —' PER
HC M52 M52— GenProg LIN—— M52
M32— Random HC—— PER GenProg —T—RBF
RBF— GenProg sGenProg Random sGenProg L—M32
—LIN —LIN —HC
p-value: 7.93e-03 p-value: 5.67e-02 p-value: 9.08e-01
(d) glass2 (e) liver disorder (f) breast cancer Wisconsin

Fig. 3.3. Critical difference diagrams in UCI datasets. Search methods are ordered
following their rankings. The methods with no significant differences among them
are matched with a straight line.

38 3 An analysis of SVM kernel learning

345678 3456789 23456789
L I I [

RBF— M32 M52 GenProg PER+ M52
Random— H M32— Random Random- GenProg
GenProg— GenProg PER— GenProg GenProg— M32

M52—— PER RBF— H: HC— RBF

—LIN “LIN LIN
p-value: 3.10e-01 p-value: 5.65e-03 p-value: 4.54e-05

(a) calendarDOW (b) contraceptive (¢) GAMETES Ep. 0.1H

23456789 23456789 23456789
[[Ly
Random-| sGenProg PER-] sGenProg PER- M52
GenProg- RBF Random—| RBF HC— GenProg
PER— M52 HC- M32 Random— M32
HC— M32 GenProg—! M52 GenProg— RBF
LIN LIN LIN
p-value: 8.09e-07 p-value: 2.21e-07 p-value: 1.67e-07

(d) GAMETES Ep. 0.4H (e) GAMETES Het. 50 (f) GAMETES Het. 75

23456789 12345678
Ly L1
GenProg RBF GenProg— M52
sGenProg- PER sGenProg— RBF
Random— M52 LIN Hi
HC— —rM32 M32: —rPER
LIN Random
p-value: 1.60e-06 p-value: 4.08e-01
(g) parity5+5 (h) Hill Valley with noise

Fig. 3.4. Critical difference diagrams in PMLB datasets. Search methods are or-
dered following their rankings. The methods with no significant differences among
them are matched with a straight line.

Overall, the GenProg method is the best performing approach, obtain-
ing significantly better results than the Linear (LIN), Matern32 (M32) and
Matern52 (M52) kernels in some problems. On the contrary, there are not
many statistical differences between the structure search methods. Among the
standard kernels, the periodic kernel shows significantly better results than
the Linear kernel in 6 databases, and improves the performance of Matern32
in GAMETES Epistasis 0.4H, and Matern52 in GAMETES Heterogeneity 50.

3.4 Hyperparameter and C optimization 39

| H LIN RBF M32 M52 sGenProg PER HC Random GenProg[Worse ‘

LIN 0 1 2 2 2 6 7 6 33
RBF

M32

M52
sGenProg
PER

HC
Random
GenProg
Better

DO DO OO OO
SO OO O~ O
oo ocoo~=Oo
DO DO O~ INO
OO OO O~ NON
DO OO WO

OO OOoOOoOOoOoOo
NIO OO OO
NIOO OO DO OO
woooooo~Oo

o
)
[ee]
Ne)
—
o

Table 3.7. Summary table of the statistical testing. The number of databases where
the method in the column is significantly better than the method in the row is shown.

Although the GenProg approach improves the results of the standard ker-
nels in the training set, and it has a better exploration-exploitation balance
than random search and hill-climbing, these results cannot be transferred to
the test set, probably due to overfitting issues. In the test set, there are no
significant differences between the GenProg approach and the simpler kernel
structure search methods. It is also important to notice that a single change
in the grammar can produce a greater impact in the results than the search
method itself, as in the GAMETES problems, where the average differences
between the results of the GenProg with and without the spectral element
are higher than the gap between the hill-climbing and the standard GenProg
approach.

As a final note, we can question the importance of the kernel search method
compared to the importance of selecting an appropriate search space. Accord-
ing to the experiments, the GenProg method shows the best results. Never-
theless, the absence of statistical differences with the random search suggests
that the efforts of the practitioners should focus on the design of an adequate
search space rather than on the design of the best possible search algorithm.
It is also worth mentioning the small differences we found between the train-
ing and test results. Not having a measure of complexity of the models in
the kernel learning approaches has probably generated models that are too
dependent on the training set.

3.4 Hyperparameter and C optimization

‘We have shown that in SVMs there are several variables to optimize apart from
the kernel structure, such as the kernel hyperparameters and the C parameter.
Hyperparameters, being part of the kernel, change the transformed space,
while the C' parameter balances the trade-off between increasing the margin
and assuming greater hinge loss. In this section, we review the literature about

40 3 An analysis of SVM kernel learning

the C' parameter and hyperparameter setting and investigate the interplay of
these variables for several kernels.

3.4.1 Hyperparameter setting

During the kernel learning process, kernel hyperparameters must be carefully
set. A change in the hyperparameters can be as relevant as a change in the
structure of the kernel. These hyperparameters clearly influence the results of
the kernel function, and therefore, the performance of SVMs.

In the initial kernel learning approaches, the hyperparameters were not
even included in the grammar (Howley and Madden, 2005, 2006; Diogan et al.,
2007; Thadani et al., 2006). In other methods, random constants were incorpo-
rated to the grammar, which can be interpreted as hyperparameters that are
learned together with the structure (Sullivan and Luke, 2007; Phienthrakul
and Kijsirikul, 2007; Gijsberts et al., 2010; Alizadeh and Ebadzadeh, 2011;
Gagné et al., 2006; Sousa et al., 2017). Alternatively, hyperparameters can
be also learned apart from the structure in a secondary optimization proce-
dure. The most common hyperparameter optimization method is grid search
(Girdea and Ciortuz, 2007; Diogan et al., 2012; Koch et al., 2012; Mezher and
Abbod, 2014; Diosan et al., 2008), although more complex methods have also
been tried, such as particle swarm optimization (Schuh et al., 2012). As can
be seen, choosing the right hyperparameters for the kernel remains an open
question.

3.4.2 C parameter setting

The value of C' also influences the evaluation of the quality of the kernels gen-
erated during the learning process. The simplest approach to fairly compare
the kernels is to set a constant value for the C parameter (C' = ¢) (Diosan
et al., 2007; Girdea and Ciortuz, 2007). However, this approach also creates
a bias in the kernel selection process to that constant value of C.

The opposite approach is to run an exhaustive search in a reduced set of
values (Koch et al., 2012). Here, a kernel-performance-maximizing C' is se-
lected for each of the visited kernels, increasing the computational cost of the
search. We can classify these approaches depending on the method used to
deal with the optimization of C, along with the search of a kernel and its hy-
perparameters: (i) the approaches that use a nested search procedure, where
we optimize C for each kernel structure and hyperparameters visited in the
search (ii) the methods that optimize C' together with the kernel hyperpa-
rameters (Koch et al., 2012) and (iii) the algorithms that optimize C' together
with the kernel as a parameter of the kernel itself (Sousa et al., 2017).

Finally, the C' parameter can be selected based on the characteristics of
the evaluation of the kernel in the data as proposed by Chapelle (2002) (rep-
resented as ¢, in this chapter). For each kernel, a good value of C is ap-
proximated while reducing the evaluation cost in a similar way to the fixed
case.

3.4 Hyperparameter and C optimization 41

Analogous to the hyperparameter tuning problem, the C' parameter setting
poses many questions when searching for the most suitable kernel. There is a
clear interplay between these parameters, and also a trade-off between quality
and computational cost.

3.4.3 Interplay between optimization procedures

By means of the following experiment, we would like to investigate the interac-
tion between the kernel hyperparameters and the C' parameter. Particularly,
we analyze the performance and the overfitting of SVMs with different kernel
hyperparameters and C parameter values for several kernel structures in the
mentioned UCI and PMLB datasets.

We have selected some of the standard kernels shown in Table 2.1. Three
hyperparameter configurations are tested for each kernel: a set of default hy-
perparameters (6; = 1), a random set of hyperparameters, and an optimized
set of hyperparameters according to a grid search (27° to 2%, at powers of 2,
with a limit of 1000 evaluations) that maximizes the accuracy in the training
set when C = ¢j,. Furthermore, for each kernel and hyperparameter config-
uration, 20 values (27° to 2%, at powers of 22) for C are tried apart from
cp-

In Figures 3.5, 3.6 and 3.7, the results of the experiment are shown. For
each database, the accuracy in the test set is represented by a heatmap. In the
X axis the different values of C' are shown, while in the Y axis the different
kernels and their hyperparameters can be seen.

The best results are achieved with the optimized hyperparameters. This
can be clearly seen in the parity5+5 database, where the Periodic, RBF and
Matern52 kernels obtain their best results when optimizing their hyperpa-
rameters. Regarding the influence of C, note that lower values of C' show a
lower performance in almost every configuration. Although there are some
databases, such as breast cancer Wisconsin or contraceptive, where the C
parameter has very little influence, in the rest of the problems certain C' val-
ues are required to achieve the best possible performance. Also, it is worth
mentioning that configurations with optimized hyperparameters show a more
consistent performance for different values of C. Finally, it can be seen that
¢, shows good accuracy values overall.

On the whole, there is a clear influence of the kernel structure and hyper-
parameters in the results, but also the C' parameter can drastically change
the quality of the prediction. In order to set the values of the hyperparame-
ters and the C parameter, a grid search is highly recommended due to their
strong interactions. Searching the hyperparameters on a grid and using the
data based approach suggested by Chapelle (2002) to set the C' parameter
could be a good approximation in the cases where the exhaustive search is
not computationally affordable.

42

Fig. 3.5. Accuracy in the test set for different values of C' per kernel and hyperpa-
rameter optimization methods for UCI datasets. cj, indicates the C' value proposed
by Chapelle (2002). def indicates the default set of hyperparameters, while opt and
rand refer to the optimized and random hyperparameters respectively. The gray

3 An analysis of SVM kernel learning

def, Linear - 10
def, Matern32 -
def, Matern52 08
def, Periodic
def, RBF S
opt, Linear
opt., Matern32 0.6 E
opt. Matern52 3
opt, Periodic | 8
opt. RBF 04 2
rand, Linear
rand, Matern32 _02
rand, Matern52 =
rand. Periodic -
rand, RBF - -00
mnmmoocoeocoo & :
ONononNonN®
o N~
Qo AR3
o~
=
C value
(a) pima
def, Linear 10
def, Matern32
def, Matern52 0.8
def, Periodic)
def, RBF
opt, Linear P
06 ©
e
t. Period; 3
opl 'enoaic - R
opt, RBF - 04 2
rand, Linear -
rand. Matern32 -02
rand, Matern52
rand. Periodic -
rand, RBF - 0.0
JloNwN©®N®©
M N~
Qe I Eni-Y
o~
o
C value
1.0
0.8
opt, Linear - >
opt, Matern32 - 0.6 E
3
04 2
rand, Linear -
rand, Matern32 - -02
rand, Matern52 - =
rand, Periodic
-0.0

C value

(e) liver disorder

def, Linear

def, Matemn32
def, Matern52
def, Periodic
def, RBF

opt, Linear

opt, Matemn32
opt, Matern52
opt, Periodic
opt, RBF

rand, Linear
rand, Matern32
rand, Matern52
rand, Periodic
rand, RBF

Accuracy

Ch

noo
o N o

0.03125
0.125
320
128.0
512.0
2048.0

C value

(b) ionosphere

-
o

def, Linear
def, Maten32 -§
def, Matern52
def, Periodic

o
@

<}
o

opt, Matern32 -}
opt, Matern52
opt, Periodic 4
opt, RBF

rand, Linear
rand, Matern32
rand, Matern52
rand, Periodic -
rand, RBF -

o
e
Accuracy

320
128.0

C value

(d) glass2

def, Linear
def, Matern32
def, Matern52
def, Periodic
def, RBF
opt, Linear -
opt, Matem32
opt, Matern52
opt, Periodic
opt, RBF
rand, Linear -
rand, Matern32 -
rand, Matern52 |
rand, Periodic
rand, RBF

Accuracy

0
~
-
™
o
o

C value

(f) breast cancer Wisconsin

areas indicate the combinations for which the SVM could not be computed.

3.5 Metrics

43

def, Linear 1.0
def, Matern32 -
def, Matern52 - 0.8
def, Periodic - :
def, RBF -
opt, Linear 06 >
opt, Matern32 opt, Matern32 e
opt. Matern52 opt, Matern52 S
opt. Periodic - opt, Periodic 04 it
opt, RBF T
rand, Linear -
rand, Matern32 K _02
rand, Matern52 - = .
rand, Periodic -
rand, RBF - ' ' -0.0
C value C value
def, Linear 1.0 1.0
def, Matern32
def, Matern52 08 0.8
def, Periodic) def, Periodic =
def, RBF 5 def, RBF -
opt. Linear opt, Linear
0.6 % opt, l?4atem32 0.6 :%
c c
3 3
Lo4 O 04 O
o< <
rand, Matern32
-02 rand, Matem52 [0
0.0 0.0

C value

(d) GAMETES Ep. 0.4H

C value

(c) GAMETES Ep. 0.1H

Fig. 3.6. Accuracy in the test set for different values of C' per kernel and hyperpa-
rameter optimization methods for PMLB datasets. ¢;, indicates the C' value proposed
by Chapelle (2002). def indicates the default set of hyperparameters, while opt and
rand refer to the optimized and random hyperparameters respectively. The gray
areas indicate the combinations for which the SVM could not be computed.

3.5 Metrics

Another important aspect of the kernel learning is the metric used to evaluate
its performance. The selected metric should be informative about the perfor-
mance of the kernels in the training set, but it also needs to provide some
clues as to the generalization ability of the kernel. Furthermore, it has a di-
rect influence on the search method, as the roughness of the search landscape
heavily depends on this choice.

In the SVM kernel search literature, almost every proposal uses accuracy
(Gagné et al., 2006; Howley and Madden, 2005; Sousa et al., 2017; Mezher
and Abbod, 2014; Alizadeh and Ebadzadeh, 2011; Sullivan and Luke, 2007;
Diosan et al., 2008; Schuh et al., 2012; Diosan et al., 2012; Thadani et al.,
2006; Girdea and Ciortuz, 2007) or classification error related metrics (Koch

44 3 An analysis of SVM kernel learning

def, Linear - 10 10
def, Matern32 -
def, Matern52
def, Periodic 0.8 0.8
> >
06 3 06 2
opt. Materns2 5 opt, Matern52 5
opt. Periodic | 8 opt, Periodic | 8
gpt. RBF 04 2 f04 8
rand, Linear
rand, Matern32 -02 rand, Matern32 -02
rand, Matern52 -| = rand, Matern52 | .
rand, Periodic -
rand, RBF ’ Ay -00 -00
C value C value
(a) GAMETES Het. 50 (b) GAMETES Het. 75
def, Linear . def, Linear 10
def, Matern32 def, Matern32
def, Matern52 - def, Matern52 0.8
def, Pefnodlc + def,:efncdic =
def, RBF - lef, RBF
opt, Linear opt, Linear 0.6 1y
opt. Matemg% . opt, Matemg& oE
opt. Matern52 - opt, Matern52 5
opt, Periodic - I opt, Periodic 04 8
opt. RBF - | opt, RBF | T <
rand, Linear - rand, Linear
-0.2
rand. Periodic -
rand, RBF - : X ‘ 0.0
C value C value
(c) parity5+5 (d) Hill Valley with noise

Fig. 3.7. Accuracy in the test set for different values of C' per kernel and hyperpa-
rameter optimization methods for PMLB datasets. ¢;, indicates the C' value proposed
by Chapelle (2002). def indicates the default set of hyperparameters, while opt and
rand refer to the optimized and random hyperparameters respectively. The gray
areas indicate the combinations for which the SVM could not be computed.

et al., 2012; Howley and Madden, 2006; Gijsberts et al., 2010) to measure the
goodness of the kernel. As these metrics are discrete, some of the approaches
include tiebreakers to deal with the same results when comparing similar
kernels (Howley and Madden, 2006; Thadani et al., 2006). There is very little
knowledge about the performance of other metrics. For example, Valerio and
Vilalta (2014) tried to estimate the goodness of the matrix generated by the
kernel measuring the intra/extra class similarity ratio instead of evaluating
the SVMs.

The accuracy may seem the best choice according to the literature, but
it also has some drawbacks. As previously mentioned, this measure requires
some methods to deal with tie results. It produces a search landscape where
we can not directly obtain the gradient of this metric, disallowing the usage of
many search methods that exploit this feature to optimize the C parameter,

3.5 Metrics 45

the kernel or its hyperparameters. Besides, the accuracy does not include any
information about the generalization ability of the model and requires some
k-fold cross-validation to mitigate overfitting, which is very computationally
demanding.

3.5.1 Likelihood based metric for the SVM kernel selection

Considering the issues derived from using the accuracy as a metric to guide
the selection of kernels, there appears to be a need to investigate alternative
methods to measure the performance of the kernels. In order to provide a
more robust measure than the accuracy, we propose a Bayesian Information
Criterion (BIC) (Schwarz, 1978) based measure for SVMs, SVMBIC. This
measure uses Platt scaling (Platt, 1999) to obtain probabilistic predictions
of the SVM model and includes a complexity penalization according to the
number of hyperparameters. It can be described as follows:

n
SVMBIC(k;) = -2 Z log p (yilxi, ki, 0 pest) + q log n (3.1)
i=0
where ¢ is the number of hyperparameters of the kernel and n is the number of
data points in X. 6; pes: is the best hyperparameter set for the kernel structure

Being a continuous measure, SVMBIC provides a smoother landscape than
the accuracy, as small changes in the SVM parameters produce little varia-
tions in their values. Therefore, gradient based approaches can be used to
optimize the hyperparameters or C. Besides, it includes an explicit complex-
ity penalization.

The following experimental scenario was designed as a test for this new
measure against the commonly used accuracy metric. By using GenProg as
described in Section 3.3, we search for new kernels in the UCI datasets. In
order to take advantage of properties of the BIC measure, we have optimized
the hyperparameters based on a multi-start variation of Powell’s conjugate
direction method (Powell, 1964) for every kernel, while for the experimental
setting with the accuracy measure, we perform a grid search to find the best
parameters. In both cases the same amount of evaluations was allowed (1000).
The C parameter was set following a grid search as in the experiment described
in Section 3.2.1.

The results of the experiment are summarized in Table 3.8. As expected,
in all the problems, the kernel structures optimized using accuracy as metric
achieve better results in the training set than those learned by means of the
SVMBIC metric, being particularly noticeable in the GAMETES Heterogene-
ity 50 problem. However, when compared in the test set, the performance gap
between these two methods is undoubtedly lower for most of the problems. In
fact, for the heart statlog and contraceptive problems, the SVMBIC method
outperforms the results obtained by using accuracy as the metric.

46 3 An analysis of SVM kernel learning

Classification # of HPs| Training set Test set
problem Ac. [BIC | Ac. [BIC | Ac. [BIC
pima 4.2 0.1{0.793 0.770|0.759 0.758
— ionosphere 4.8 0.4]0.962 0.939]0.946 0.942
8 heart statlog 3.4 0.0/0.878 0.847| 0.802 0.820
glass2 4.8 0.710.909 0.835|0.836 0.803
liver disorder 54 0.3]0.763 0.727(0.719 0.712
breast-cancer-wisco. 4.6 0.0/0.986 0.978|0.973 0.973
calendarDOW 5.7 0.7/0.665 0.592|0.616 0.594
contraceptive 4.5 0.8]0.573 0.552| 0.552 0.553
m| GAMETES Epistasis 0.1H 4.8 1.6|0.681 0.674|0.675 0.670
E GAMETES Epistasis 0.4H 4.1 1.9]0.793 0.734|0.796 0.739
Al GAMETES Heterogeneity 50 | 4.4 1.1/ 0.709 0.576 |0.712 0.576
GAMETES Heterogeneity 75| 5.3 1.0|0.733 0.681|0.708 0.675
parity5+5 3.8 1.710.999 0.987|1.000 1.000
Hill_Valley_w._noise 4.0 1.8]/0.905 0.863|0.910 0.884

Table 3.8. SVMBIC (BIC) measure compared to accuracy (Ac.). The average num-
ber of hyperparameters of the best kernels is shown on the left. The mean accuracy
achieved by each kernel search metric (in the training and test sets) is shown in the
right-most columns. The numbers in bold indicate the best result for each problem.

Moreover, in Table 3.8, the average number of hyperparameters of the
best kernels obtained in each search procedure is shown. As can be seen, the
SVMBIC approach clearly penalizes the number of hyperparameters, showing
a lower average number of hyperparameters per kernel than the accuracy
guided approach.

According to the results of our experimentation, SVMBIC can be used
to obtain simpler kernels than those obtained with accuracy, close to them
in terms of performance, even outperforming the latter in some of the runs.
The reduction of the overfitting of the solutions, together with the continuous
nature of the SVMBIC measure, can contribute to improving the performance
of a GenProg-like search.

3.6 Conclusions

Kernel functions are a key element of SVMs, as their performance strongly
depends on them. Although the previous works in automated kernel search for
SVMs have focused on the search algorithm itself, there are other components
of the method that influence and condition the performance of SVMs that
have not received the same attention. In this chapter, we have identified those
components and analyzed the interactions between them, with the aim of
obtaining a more general view about the kernel search for SVMs, making the
following contributions:

3.6 Conclusions 47

e Identification of the components that influence the performance of SVMs:
Apart from the weights of the hyperplane and the bias of the SVM, the
kernel structure, its hyperparameters and the C' parameter are also im-
portant for the efficiency of the method. The practitioner should consider
all these components as a whole, instead of focusing on just one of them.

e The intrinsic limitation of using a reduced set of databases to evaluate
kernel search strategies has been exposed: We have identified a number of
datasets where the behavior of standard kernels is far from being optimal.
We highlight the need to extend the benchmark of datasets and increase
the variety of characteristics that the datasets exhibit.

e Analysis of the kernel space: The kernel space where the search is carried
out is a key element for the automated kernel search. We have proposed a
basic mathematical expression based grammar, and proved the influence
of including different elements in the performance of SVMs. All in all,
it is worth expanding the search space by adding new elements to the
grammar.

e Insights about the kernel structure search have been provided: Several
methods have been proposed to learn the structure of the kernel for
SVMs. We have compared the performance of the GenProg to other sim-
pler search methods, obtaining marginal gains over them. Including the
right elements in the grammar can be more important than the search
method itself when trying to find the best kernel structure.

e Study the interplay of the hyperparameter tuning and C' parameter set-
ting: We have shown that the value of the hyperparameters and the value
of C' can drastically change the behavior of SVMs. We have also provided
guidance on setting those parameters during the kernel search.

e A novel metric for the SVM kernel search has been proposed: Although
the accuracy has been the standard measure in the SVM classification
problems, it also presents some challenges. We propose a metric based on
the BIC measure, which can overcome these problems.

In conclusion, in this work we have provided several ideas to improve
the setting and, consequently, the performance of SVMs. We have shown the
importance of understanding the characteristics of the kernel space beyond
the search method itself. We have also provided some clues about the best
practices to set the hyperparameters and the C' parameter in order to better
balance the computational effort used during the kernel search. Finally, we
have proposed a measure to evaluate the efficiency of the kernel, which should
be further studied.

4

GenProg approach to learn GP kernels based
in basic mathematical expressions

4.1 Introduction

Kernel learning methods based on basic mathematical expressions have their
own advantages, although, as we have seen in SVMs, finding the most appro-
priate solution can be very challenging due to the vast number of kernels that
can be generated and the lack of guarantee that these kernels satisfy the PSD
property. On the GP side, having a grammar that allows non-PSD kernels
adds some additional challenges. For example, although SVMs can deal with
non-Mercer kernels, the exact inference of GPs requires the kernels to be PSD.
Therefore, some procedure to exclude the non-PSD kernels should be included
during the search in the space of mathematical expressions. Furthermore, the
performance of GPs is very sensitive to the values of kernel hyperparameters.
Although most SVM approaches (Koch et al., 2012; Diogan et al., 2007; How-
ley and Madden, 2006) deal with hyperparameters by means of optimizing
small grids or using GenProg with random constants in the grammar, more
advanced techniques are required to adapt the hyperparameters during the
kernel search for GPs.

In this chapter, we propose a novel GenProg method, EvoCov, which is
able to overcome these challenges and learn adequate kernel functions for each
problem. This method does not rely on previously proposed kernels, and thus,
new kernels may naturally arise. In order to deal with non-PSD kernels, we
bring the approach proposed by Koch et al. (2012) in SVMs to GPs, where
the kernel creation is retried if a non-PSD kernel is found. Moreover, we
add a hyperparameter inheritance method to GenProg in order to adapt the
hyperparameters.

This method is extended and applied in Chapters 5 and 6, where kernel
functions for GPs are learned to solve time series extrapolation and NLP
problems respectively.

50 4 GenProg approach to learn GP kernels based in basic mathematical expressions

4.2 Elementary mathematical expression grammar for
GPs

First, we introduce a new elementary mathematical expression grammar for
GPs, shown in Table 4.1, similar to the work done for SVMs in Section 3.2.2.
After some preliminary experiments, we concluded that, contrary to the
SVMs, a greater number of elements in the grammar was detrimental to the
search. Thus, we use a simpler grammar in order to reduce the number of pos-
sible kernels and improve the performance of the search. First, —1 and —0.5
terminals are used instead of the minus operator. Also, tanh is not included
since it was hardly ever used in the literature of GPs, as well as the noise
operator. Finally, x_div and x_rest are merged with sq_distance, dot_product
and spectral operands, in order to reduce the complexity of vector operators.
Despite having simplified the grammar, the standard kernel functions in Ta-
ble 2.1 and their sum/product compositions remain a subset of our search
space.

kernel : scalar start symbol
scalar :

| scalar™® power

| scalar + scalar add

| scalar x scalar multiply

| scalar™* div

| escalar exp

| Vscalar sqrt

| scalar? square

| i“,:’;fc — % . sq-distance

| (invez;olhpl)) (inve(}::p—olhpl)T dOt,pI'OdllCt

| hp constant

b
(invec, invec') :
| ([szn(“—x) cos(%=],

hp hp
sin(22;‘) 003(2;{;‘)]) spectral
| (x,x") input

hp :
| —1] —05]1(2]3]5
[00 |61]... 106

)

Table 4.1. Proposed grammar for GPs. ¢t indicates the number of different hyper-
parameters allowed in the grammar (in this work it is set to ¢t = 20).

4.3 Evolving kernel functions for GP based on the new grammar 51

4.3 Evolving kernel functions for GP based on the new
grammar

Once the grammar has been introduced, we present our GenProg approach for
GP kernel search, EvoCov. This algorithm takes into account two challenges
related to this problem: The cost of evaluating the fitness function (mainly
due to hyperparameter optimization) and the fact that many of the kernels
generated during the search are not PSD.

Our GenProg approach is shown in Algorithm 2. First, an initial popula-
tion of N kernels is generated. In order to do so, each individual is created at
random, limited by a maximum (d;,q,) and a minimum (d,,;,) depth. At each
generation, the whole population is evaluated. Next, the relative improvement
(relimprov) is calculated, which measures the improvement from the best fit-
ness value of the previous generation to the best fitness value in the current
generation. If the relative improvement in the current population is greater
than a threshold 8, a new population is generated through selection and vari-
ation. As shown in the GenProg method studied in Section 3.3, after selecting
the S best individuals, a mutation or a crossover operator is randomly applied
with probability p,, and p., respectively (where p., = 1 — p,,) to generate
the offspring population. Since, due to the hyperparameter inheritance (as
explained in Section 4.3.3.2), we want to re-evaluate the selected individuals
and evaluate N kernels at each generation, the offspring population consists of
N — S new individuals. When the relative improvement is lower than or equal
to the threshold, the current population is replaced by a randomly generated
one. This procedure is repeated for G generations. Finally, the last popula-
tion is evaluated and the best individual found during the whole process is
returned.

In the following sections, we describe each of the methods used by Algo-
rithm 2. First, we address the issue of randomly generating new kernels for
the initial population. Then, we provide the variation operators conceived to
generate kernels that are likely to inherit useful characteristics from the se-
lected ones. A method to control the depth of the expressions created by the
variation operators is also introduced. Next, we explain how the GP kernels
are evaluated.

4.3.1 Initial population

We generate kernel functions at random until the desired population size is
reached, using the same procedure described in Section 3.2.2.1. Similarly, we
identify the non-PSD kernels as in Section 3.2.2.2, and generate a new one
if any of the described conditions are met, as non-PSD kernels are not valid
for GPs. However, non-compliance with all these conditions is necessary but
not sufficient for a kernel to be PSD. Although in SVMs the evaluation of the
kernel can be carried out despite being non-Mercer, the covariance matrix can
not be inverted for GP inference. Thus, if after passing the PSD check, we find

52 4 GenProg approach to learn GP kernels based in basic mathematical expressions

Algorithm 2 EvoCov algorithm
1: procedure EvoCov(N, G, S, pm, Dexs 8, dmin, dmaz)

2: pop = GENRANDPOP(N, dmin, dmaz)

3: bestfit_1 = ©

4 all = pop

5: 1=0

6: while i <G — 1 do

7: EVALUATE(pop)

8: best = SELECT(pop, 1)

9: best fit; = GETFITNESS(best)

10: relimprov = W

11: if 8 < relimprov then

12: sel = SELECT(pop, S)

13: of fspring = VARIATE(sel, N — S, pm, Dez)
14: else > Restart procedure
15: sel =0

16: of fspring = GENRANDPOP(N, dmin, dmax)
17: best fit; = oo

18: end if

19: pop = sel U of fspring
20: all = allUof fspring
21: i=1+1

22: end while

23: EVALUATE((pop)

24: best = SELECT(all, 1)
25: return best

26: end procedure

out that the kernel is not PSD during the evaluation step, the fitness value
of the kernel is penalized. Fortunately, this validity check is severe enough to
avoid most of the false positives. Among the kernels that were generated and
validated during the preliminary experiments conducted in Chapter 5, only
0.67% were not PSD.

4.3.2 Variation operators for kernel generation

Our kernel search method is based on perturbation or variation methods that
modify previous solutions to obtain new ones. We use two variation operators
which are randomly selected at every VARIATE function call in Algorithm 2:
A crossover operator, which combines two kernel functions to generate a new
one that inherits some of the features of its parents, and a mutation operator,
which introduces slight modifications to the original kernel to obtain a new
individual. We also explain how the algorithm controls the depth of the trees
generated by these variation methods.

4.3 Evolving kernel functions for GP based on the new grammar 53

4.3.2.1 Crossover

A purely random crossover operator hardly ever produces PSD kernels. Since
kernel function evaluation is a computationally costly process, we would like
to avoid non-PSD kernels. As explained in Section 2.3.1, the product or the
sum of two PSD kernels is also PSD. Hence, a crossover method could just
combine two PSD kernels with any of these operators to generate a new PSD
kernel.

However, this procedure rapidly increases the depth of the expressions.
Therefore, we propose a crossover operator that randomly selects a sub-
expression from each kernel and combines them with the sum or the product
operator. As this method does not guarantee that the resulting kernel is PSD,
this operation must be repeated if a non-PSD kernel is found. Nevertheless,
the method increases the chance of obtaining a PSD kernel, since, if both of
the sub-expressions are PSD, the result is guaranteed to be also PSD.

4.3.2.2 Mutation

Based on the work done by Fortin et al. (2012), the algorithm applies a muta-
tion operator that randomly selects one of the following methods in a type-safe
manner:

Insert: Inserts an elementary mathematical expression (see Table 4.1) at a
random position in the kernel expression, as long as both the output of
the operator at the selected position and the output of the expression to
be inserted agree. The operator at the chosen position is used as the input
of the newly created expression. If more inputs are required by the new
operator, new terminals are chosen at random.

Shrink: This operator shrinks the kernel expression by randomly choosing an
operator and replacing it with one of its arguments (also randomly chosen)
of the same type.

Uniform: Selects a point uniformly at random in the kernel expression and
replaces the sub-expression at that point by a randomly generated sub-
expression, using the random generation method described in Section 3.2.2.1.
Note that the output type of the new sub-expression must match the out-
put type of the replaced one.

Replacement: Replaces a randomly chosen operator from the kernel expres-
sion by an operator with the same number of inputs and types, also ran-
domly chosen.

As these methods do not guarantee that the generated kernels are PSD,
mutations are repeated if a non-PSD kernel is detected (see Section 3.2.2.2).

4.3.2.3 Bloat control

None of the variation methods described above limits the depth of the kernel
expression. Depending on the operators, the depth of the expressions may

54 4 GenProg approach to learn GP kernels based in basic mathematical expressions

increase without any limit during the search, making the resulting kernel
functions highly complex and useless for practical applications. This is a well-
known problem in GenProg literature, known as bloating (Koza, 1992). In our
work, when the depth of a kernel expression becomes larger than 0,4, we
discard the expression. In this case, the mutation or the crossover method is
repeated until a kernel with the desired depth is obtained, or a limit of p,,q.
trials is reached. If this number of trials is exceeded, one of the parent kernels
is returned unchanged.

4.3.3 Evaluation

In our approach, in contrast to other GenProg applications, the solutions do
not encode all the necessary information to be evaluated. In order to evaluate
each kernel, we need to set the value of the hyperparameters. Thus, the fitness
of the solutions depends on the results of the hyperparameter optimization.
Both search procedures, the selection of the best hyperparameters for each
kernel and the selection of the best kernel given these hyperparameters, are
illustrated in Figure 4.1.

91’1 ~ METRIC, ; 92,1 ~ METRIC;; eN‘l ~ METRICy ;

01'2 - METRIC, 02'2 ~ METRIC,, ele - METRICy ;

eLQ - METRIC, o eZ,Q - METRIC; q eN.Q ~ METRICy q
argmax argmax | argmax

kl e1,best k2 e2,best ‘ kN eN.best ‘
SELECT BIC, BIC, BICy

ksell kseIZ v kseIS
esell,best eselz,best eselp.best:

Fig. 4.1. Two nested search procedures: The selection of the best hyperparameters
for each kernel is made according to a given METRIC, such as LML or LOOCV,
and the selection of the best kernels according to the BIC.

Following the work done by Duvenaud et al. (2013), we use the Bayesian
Information Criterion (BIC) (Schwarz, 1978) as a quality metric for each ker-
nel. BIC is a metric for model selection which adds a regularization term to
the LML to penalize the complexity of the kernels. This metric serves as the
fitness function of our GenProg algorithm and it can be expressed as follows:

4.3 Evolving kernel functions for GP based on the new grammar 55
BIC(ki) = 2 log p (£|X, ki, O pest) — q log n (4.1)

where ¢ is the number of hyperparameters of the kernel and n is the number
of data points in X. 6; pes: is the best hyperparameter set for the kernel k;
according to a given metric.

Before computing the BIC associated to a given kernel, the hyperparam-
eters have to be optimized. As we have discussed in Section 2.2.2.2, several
metrics (LML, LOOCYV, ...) can be used to measure the quality of each hy-
perparameter set. Thus, we find the best hyperparameter set for kernel ¢ as
follows:

0;.best = argmaz; METRIC (f, X, k;, 0,) (4.2)

4.3.3.1 Hyperparameter Optimization Algorithm

The hyperparameters are optimized by means of Powell’s local search algo-
rithm (Powell, 1964). As this algorithm does not deal with boundaries, the
search space has to be constrained by penalizing non-feasible hyperparameter
sets. Moreover, as the function to optimize might be multi-modal, a multi-
start approach was used, performing a restart every time the stopping criteria
of Powell’s algorithm are met, and getting the best overall result. Note that,
as a result of the inclusion of the randomized restarts, the hyperparameters
found for a certain kernel in two independent evaluations may not be the
same. In fact, this implies that the fitness function optimized by the GenProg
algorithm, i.e., BIC, is stochastic.

4.3.3.2 Random Restarts and Hyperparameter inheritance

The initial solutions for the restarts of the hyperparameter optimization al-
gorithm are sampled from two different distributions depending on the origin
of the kernel. In the randomly generated kernels, the initial hyperparameters
for these restarts are sampled from a uniform distribution within the search
bounds. On the other hand, if a kernel is generated through any of the varia-
tion methods, we take advantage of the information gathered in previous hy-
perparameter optimization procedures by adapting the inheritance technique
described by Duvenaud et al. (2013) and Lloyd et al. (2014) to the partic-
ularities of GenProg. Instead of restarting the multi-start optimization from
a uniform distribution, each restart is sampled from a Gaussian distribution
centered on the hyperparameter values of the parent individuals and with a
pre-defined variance (o). This inheritance method is particularly useful when
the variation performs few changes to the expression.

Note that, in Algorithm 2, the selected individuals are kept for the next
population and the whole population is evaluated at each generation. Thus,
some individuals may be evaluated several times during the search. This pro-
cedure, along with the hyperparameter inheritance, allows the selected in-
dividuals to keep optimizing their hyperparameters across generations, and

56 4 GenProg approach to learn GP kernels based in basic mathematical expressions

compete fairly with the individuals in the offspring population, which inherit
the hyperparameters.

4.3.4 Selection

‘We perform a search in the kernel function space to find the kernel that max-
imizes the BIC. Thus, the selection operator shown in Algorithm 2 selects the
S best kernels according to the BIC metric by applying truncation selection.

4.4 Conclusions

In this chapter, we have presented an evolutionary approach to learn kernel
functions for GPs. While other GP approaches are based on kernel composi-
tion, in our approach, kernels are modeled by means of basic mathematical
expressions, making the following contributions:

e Basic mathematical expressions as building blocks for GP kernels: We
propose bringing the progress made in other Machine Learning areas to
the GPs by considering its covariance function as a program that can be
learned.

e Fast PSD check for GP kernels, following the approach proposed by Koch
et al. (2012) in SVMs: Although some of the kernels generated by this
new random method are not PSD, we have defined a kernel validation
procedure that rapidly discards most non-PSD expressions based on the
properties of the covariance matrix.

e Adapt the hyperparameter inheritance to GenProg: We have incorporated
the hyperparameter inheritance technique described by Duvenaud et al.
(2013) and Lloyd et al. (2014) within GenProg, improving the efficiency
of the algorithm.

5

Automatic GP kernel learning for time series
extrapolation

5.1 Introduction

The objective in time series extrapolation is to predict future time-stamp
values given some previous data. While properties such as the smoothness
of the data have been extensively studied in GP literature for interpolation
problems, other properties required in extrapolation, including periodicities
and trends, have not been studied to the same extent.

In this chapter, we solve real-world time series prediction problems by
using the EvoCov algorithm to learn kernels for GP, showing that these models
are also valuable in extrapolation tasks. In order to validate this approach,
we have conducted an extensive experimentation. In particular, the goals of
the experiments carried out in this chapter are:

e To compare the proposed mathematical expression based grammar to the
kernel composition approaches (Duvenaud et al., 2013).

e To benchmark EvoCov to state-of-the-art methods for time series extrap-
olation tasks (Lloyd et al., 2014).

e To compare our proposal to the ad hoc kernels proposed in the literature
(Preotiuc-Pietro and Cohn, 2013).

e To study the influence of the metric used to optimize the hyperparameters
in time series extrapolation problems.

The chapter has been organized in the following way: first, an introduction
to the time series extrapolation problem is given, before describing the exper-
imental setup. In order to validate the different components of the proposed
GenProg algorithm, we include two simpler kernel learning methods for GP:
Random Search and GoWithTheFirst. Next, four experiments are shown, one
for each objective of the experimentation.

58 5 Automatic GP kernel learning for time series extrapolation

5.2 Time series extrapolation problems

Real-world time series extrapolation problems have been considered for the
evaluation of our methods, being more realistic than synthetic time series
benchmarks. These problems are characterized by a limited amount of gen-
erally noisy data, with strong variations from the training set to the test set
due to the temporal bias between both sets.

One of the datasets most frequently used to test GP approaches is the
Mauna Loa Atmospheric COy time series (Rasmussen and Williams, 2006;
Kronberger and Kommenda, 2013; Duvenaud et al., 2013). This time series,
shown in Figure 5.1, was analyzed in detail by Rasmussen and Williams
(2006), who also proposed a hand-tuned kernel function. Duvenaud et al.
(2013) also used this time series to investigate the structure discovery for
kernel functions, improving the results shown by the kernel proposed by Ras-
mussen and Williams (2006).

385 -

380 -

370 -

365 -

Carbon Dioxide (parts per million)

1998 2000 2002 2004 2006
Year

Fig. 5.1. Time series extrapolation in the Mauna Loa Atmospheric CO2 dataset.
The dots represent the last samples of the training set (the first samples of the
training set are not shown), while the triangles show the samples of the test set.
The prediction given by the ad hoc kernel proposed by Rasmussen and Williams
(2006) is illustrated with a continuous blue curve for the mean of the GP model and
the light blue shadow shows 3 times the standard deviation.

In addition to the mentioned time series, other common datasets have
been included in this study. Following the work done by Lloyd et al. (2014),
in the first two experiments, we use the real-world time series described in

5.3 Alternative search methods 59

Table 5.1, which are also illustrated in Figures 5.2 and 5.3'. We trained all
the algorithms on the first 90% of the data, and predicted the remaining 10%.

[Name | Size Properties |
Airline 144 P, AT
Solar 402 P, C
Mauna Loa Atmospheric CO2 545 P, AT
Beveridge Wheat Price Index 370 P, C
Daily minimum temperatures in Melbourne | 1000 P N
Internet traffic data (bits) 1000 P+
Monthly average daily calls 180 N, C
Monthly critical radio frequencies 240 P+
Monthly production of gas in Australia 476 P, AT
Monthly prod. of sulphuric acid in Australia | 462 N
Monthly U.S. male unemployment 408 P, AT
Number of daily births in Quebec 1000 N
Real daily wages in England (£) 735 EXP

Table 5.1. Description of the time series used in the experiments. The visually
identifiable periodic patterns are described with the letter P, and if many periods are
present, P+ is shown. The ascendant trends are represented by AT and exponential
growths by EXP. N denotes the presence of noise, while C indicates a trend change
at some point in the time series.

5.3 Alternative search methods

In order to verify that every component of the GenProg algorithm introduced
in the previous chapter is providing benefits to the kernel search, we include
two algorithms to be used as a baseline in the experiments. In order to test the
joint contribution of the mutation and crossover operators, a Random Search
algorithm (Rastrigin, 1963) is proposed, which only uses the same random
generation and selection methods as EvoCov. Also, in order to measure the
gain produced by the crossover operator, we propose an algorithm which does
not depend on this operator, the GoWithTheFirst algorithm, inspired by the
“go with the winner” methods (Aldous and Vazirani, 1994).

5.3.1 Random Search algorithm

As shown in Algorithm 3, this Random Search method generates a random
population by iteratively following the random generation method described
in Section 3.2.2.1 until the desired population size is achieved (V). Next,

! The time series data can be found at https://pkg.yangzhuoranyang.com/tsdl/

60 5 Automatic GP kernel learning for time series extrapolation

600~ D ~
wn o~
S 500- £
o =
=t "
5 400- g
&300- 2
g g
7 200- =
& ©

100- ©¥ | | | ‘ ‘ 3

D
RCRC A x‘f’@ AR
(a) Airline (b) Solar

<
il
z 20 300- SR
. L
[} 9} RIS
a 9 200 Ry
@ o & PSR B I e
© FrI :{f $
s 100- 2, A *f.’f&,"\
N -20- SPNY e .
8 8
< v I N () o SNESSS S S S S — —
0800825105 1°,020, 087, 00°, 097,000 o0 A 50 (6 (00 (190 a0 °
(c) Mauna Loa (d) Wheat Price
25- 120000~ %
o RN H
S 20 _ 100000 3 e "
4] = YR P L ta
515 S 800007, s B ¥ 3 “ “
© S o000 A S 2 g i il
©] TR s . L a
g 10 g et AL e
€ 40000- :. . é:l:.;é;'u: \-(:,‘a‘: N
5- oG "%‘ o i
@ 20000~ ° z =
0 ‘
N oo 083 08> 029 420 0 02® 022 00 O R 50*'& 5
490X 9R 100102\ 9P7 00 9% 1900219000 200 NSRS
(e) Mel. Temps. (f) Traffic data
50- +
800- _ t
Y 40- o
T 600~ ¢
8 § 30 M
-
o wn 3
3 400 g20 N
L7 © H
X = 10-
200- M,,*J
[O e 0 - el
RS @bﬁ RN @16 RN RIS S SR e 1@“
(g) Avg. calls. (h) Radio fregs.

Fig. 5.2. Time series extrapolation problems. The dots represent the samples of
the training set, while the triangles show the samples of the test set.

5.3 Alternative search methods 61

= S
s =
< 60000- S 200-
= el
E g
= 40000~ 5 150
e} [w}
'43 @
v i
3 20000~ £ 100
o =}
= <
o < so-
N N o o
1952 9 196° (10 (617 (020 (08”100 (oo 1957 4980 (98 (o1° (917 (80 (¥ (o0 (0°
(a) Gas Aus. (b) Acid Aus.
1400- .
5 1200-
[
3'1000- 2
o
£ 800 =
S 600- 5
- #
S 400-
#
200-
"Gl 050 oe® o6 06?1 10 e D e® o od o2 o® o0d
x‘*u%x‘bﬁi\,‘*@\,‘)@x‘* \,‘56%\911\,‘516\9?’0 L P L I AP L
(c) U.S. unemp. (d) Births Queb.
50- .
A
W0 &
2]
3 a
o 30 /
e
@ 20-
()]
< H
= 10-

0

Q‘ 0‘ Q‘ Q‘ 0‘ Q‘ Q‘ 0‘
20 0 B (W 400 o0 o o
(e) Wages Eng.

Fig. 5.3. Time series extrapolation problems. The dots represent the samples of
the training set, while the triangles show the samples of the test set.

it chooses the best solution according to the selection criterion described in
Section 4.3.4.

5.3.2 GoWithTheFirst algorithm

The GoWithTheFirst algorithm, shown in Algorithm 4, (i) generates an initial
population of size N, (ii) applies a hill-climbing procedure for H evaluations
for each individual, by generating a random mutation, and keeping the best
solution between the original and the mutated one, and (iii) discards the

62 5 Automatic GP kernel learning for time series extrapolation

Algorithm 3 Random Search Algorithm

1: procedure RANDOM SEARCH(N, dmin, dmaz)

2: pop = GENRANDPOP(N, dmin, dmaz)

3: best = SELECT(pop, 1) > Best kernel is selected
4: return best

5: end procedure

worst individual among this optimized population, according to the selection
criteria. The steps (ii) and (iii) are repeated until only one kernel is left.

Algorithm 4 GoWithTheFirst algorithm
1: procedure GO-WITH-THE-FIRST(N, H, dmin, dmaz)

2: pop = GENRANDPOP(N, dmin, dmaz)
3: i=0
4: while ¢ < (N —1) do > Generation loop
5: ji=0
6: best_pop = ()
7 while j < (N — i) do > Population loop
8: best = pop;
9: k=0
10: while k < H do > Local search loop
11: mutation = MUTATE(best)
12: best = SELECT(mutation U best, 1)
13: k=k+1
14: end while
15: best_pop = best_pop U best
16: j=j+1
17: end while
18: pop = SELECT (best_pop, N —i — 1)
19: 1=14+1
20: end while
21: return popo > Return the only individual in the population

22: end procedure

5.4 Experimental Setup

In order to validate our approach, we designed the following experimental
setup. In Section 5.5, we compare several metrics to optimize the hyperpa-
rameters, in order to find the most appropriate one in this context of time
series extrapolation problems. Then, we validate the proposed basic math-
ematical expression based grammar in Section 5.6, by introducing random

mutations to some of the best performing kernels in these problems, learned

5.5 Metric comparison for hyperparameter optimization 63

by means of kernel composition. Section 5.7 is devoted to comparing the Evo-
Cov algorithm to various state-of-the-art methods in an extensive benchmark.
Finally, in Section 5.8, we compare our proposal to an ad hoc kernel specifi-
cally designed to predict trends in the Twitter timeline.

For the GP regression, a noisy approach was used, by adding a GP with
a white noise kernel to the model, and including its noise hyperparameter to
the hyperparameter optimization process. For the random generation method,
dmin = 5 and dpa; = 15 were used to limit the size of each expression tree. In
order to discard the non-PSD kernels, the positive semi-definiteness conditions
described in Section 3.2.2.2 were checked in w = 20 random datasets. Besides,
to avoid bloating, a maximum depth of 0,,,, = 40 was allowed, and the
number of attempts was limited to p,q. = 250 in each variation operator.

In the Random Search algorithm, N = 20000 was set to generate the
initial population. Similarly, in the GoWithTheFirst algorithm, N = 13 initial
individuals and H = 200 local search evaluations were used in order to have
a comparable evaluation budget. Finally, after some preliminary experiments
with the EvoCov approach, we set the parameters to the following values:
N =141, G = 141, § = 14, p,, = 0.4, pcp, = 0.6 and S = le—5. All these
algorithms were also coded in Python, based on the EA software DEAP?
(Fortin et al., 2012). Due to the stochastic nature of our algorithms, each
kernel search process was repeated 10 times in all the experiments.

Regarding the hyperparameter optimization, in every restart of Powell’s
optimization algorithm (Powell, 1964), a Gaussian noise with oy = 0.1 was
added to the inherited hyperparameters. Since the computational time re-
quired to evaluate the hyperparameters increases quadratically with the size
of the time series, in order to keep a reasonable computational cost to optimize
these hyperparameters in all the problems, we decided to adjust the number
of evaluations allowed in the hyperparameter optimization depending on the
length of the time series. Thus, we allow @ = ref_fun_call x %
evaluations, where current_ts_len is the length of the current time series and
ref_fun_call is a parameter of the algorithm. In the experiment shown in
Section 5.5, we allow ref_fun_call = 5000 evaluations, and for the rest of the
experiments ref_fun_call = 300.

5.5 Metric comparison for hyperparameter optimization

In GP literature, hyperparameter optimization is considered a crucial task.
Most of the works carried out in this field rely on the LML for hyperparame-
ter optimization (Kronberger and Kommenda, 2013; Duvenaud et al., 2013).
However, it has been reported that the LML may lead to suboptimal results
under certain conditions, where LOOCV could be more robust(Bachoc, 2013).
Regarding the kernel optimization, having a consistent method to optimize the

% https://deap.readthedocs.io

64 5 Automatic GP kernel learning for time series extrapolation

hyperparameters helps to obtain more reliable evaluations of the individuals.
Hence, before evaluating the differences among the kernel search algorithms
introduced in the previous sections, we decided to perform an experiment to
test if other alternative metrics to LML and LOOCV can improve the results
in time series extrapolation problems.

Apart from the well-known LML and LOOCV, we tested other metrics
specifically designed to optimize the hyperparameters in extrapolation prob-
lems. While LML measures the probability of the training data given the prior
GP model, the goal in extrapolation is to increase the probability of the test
data given the posterior GP model. Therefore, along with the prior LML, we
also measure the posterior LML, by splitting the training set at a given point
in time into the training-training and training-test sets. Thus, the probability
of the training-test set given a GP model conditioned to the training-training
set, i.e., the posterior LML, can be measured.

Furthermore, we also use the Negative Log Predictive Densities (NLPD)
(Quinonero-Candela et al., 2006) as a extrapolation oriented version of the
LOOCYV. NLPD adds the likelihood of each prediction in the training-test
set, given some hyperparameters and the training-training data as follows:

1 &
Lipp(Xe £, X,£,0) = —— 3 logp (fuilX.;, X.£,0) (5.1)
* =1

where n, is the number of test samples in X,, and f, corresponds to their
function values.

Finally, we also measure the Root Mean Squared Error (RMSE) in the
training-test set as a measure of the quality of the hyperparameters.

Having such a variety of metrics to choose from, it is unclear which of
these metrics is most suitable for time series extrapolation tasks. We would
like to find the best metric to optimize the hyperpameters of some of the
most competitive kernel structures in the time series described in Table 5.1.
Thus, we considered the best kernels found for each of the problems in the
work done by Duvenaud et al. (2013). For each metric and time series, we
carried out an optimization process with Powell’s algorithm, in order to find
which one leads to the best results in terms of the RMSE in the test set. Each
optimization process starts from a random hyperparameter set and stops when
5000 samples have been taken. Due to the randomness of the process, 10 trials
were carried out.

In Table 5.2, the results in the test set are shown for the thirteen time
series in terms of average RMSE. The NLPD outperforms the rest of the
metrics in five of the problems, while LML gets the best overall results in four
time series and RMSE is the best choice in three. These three metrics show
better average results compared to posterior LML and LOOCYV, as the former
is only able to obtain the best results in the Daily Minimum Temperatures
in Melbourne time series, and the latter is not able to beat other metrics in

5.5 Metric comparison for hyperparameter optimization 65

any of the problems. As expected, in these extrapolation problems, LOOCV
is the metric with the worst performance for hyperparameter optimization.

| [LML LOOCV Post. LML __ NLPD _RMSE]|

Airline 37.00 230.27 157.96 57.10 97.34
Solar 269.12 539.64 925.25 279.24 132.04
Mauna Loa 4.40 37.61 3.94 2.34 3.19
Wheat Price 54.13 99.64 67.94 52.58 266.37
Mel. Temps. 4.92 6.63 4.62 5.62 4.67
Traffic data 49352.14 4994073.33 38259.26 23756.89 25970.23
Avg. calls. 212.22 43078.20 1460.47 844.32 55.08
Radio fregs. 2.14 2.01 1.27 0.74 1.63
Gas Aus. 13791.03 179944.80 26403.55 18066.63 50771.39
Acid Aus. 39.58 1979.48 56.56 53.42 67.89
U.S. unemp. 142.30 4436.13 265.76 192.34 219.65
Births Queb. 44.78 16203.27 49.84 44.54 46.40
Wages Eng. 23.26 40.97 15.16 15.38 13.61

Table 5.2. Hyperparameter optimization metrics compared across different time
series. The average RMSE in the test set is shown for each metric. The best results
for each time series are shown in bold.

Statistical tests were used to determine if there is a metric that is more
robust than the others in time series extrapolation problems?®. First, we aver-
aged all the RMSE results for each metric and time series, and then applied
Friedman’s test (Friedman, 1937). We found significant differences between all
the metrics (o = 0.05. p-value = 8.454e¢—5). Then, we applied a post-hoc test
based on Friedman’s test, and adjusted the results with Shaffer’s correction
(Shaffer, 2012). In Figure 5.4, the critical differences between the metrics are
shown. As can be seen, there are no significant differences between NLPD,
LML, RMSE and posterior LML. Similarly, the results between LOOCV and
posterior LML do not differ significantly.

Overall, it can be seen that there is no metric best suited for guiding the
hyperparameter optimization for all the time series, and the choice of the
best metric depends on the problem. However, it is clear that some of these
metrics, such as LOOCV, do not produce competitive results for any dataset.

As the differences between LML and NLPD are not significant, in the
following experiments, we used two variants of EvoCov for optimizing the pa-
rameters: one using LML (EvoCov-LML) and the other using NLPD (EvoCov-
NLPD).

3 The tests were carried out using the SCMAMP R package (Calvo and Santafé,
2016)

66 5 Automatic GP kernel learning for time series extrapolation

2 3 4 5
|
NLPD t—rt———————+— RMSE
LML . ¢ Post_LML
— LoocV

Fig. 5.4. Critical differences diagram between hyperparameter optimization met-
rics. The metrics are ordered following their rankings. The metrics with no significant
differences between them are matched with a straight line.

5.6 Testing the proposed grammar

Once we have selected a metric to optimize the hyperparameters, we test
whether better kernels can be found with our grammar, compared to kernel
composition approaches. Particularly, we would like to know:

1. Whether it is possible to improve the composed kernels by means of ma-
nipulating elementary mathematical expressions, as we propose in this
chapter.

2. Whether the proposed mutation operator allows such an improvement.

Given the best kernels found by Duvenaud et al. (2013) for all the time
series, we generated 200 random mutations according to the method described
in Section 4.3.2.2. Next, we performed a hyperparameter optimization process
using the LML metric for each mutation, departing from the best hyperpa-
rameter values found in the original work. Finally, we measured the RMSE in
the test set for all these mutations against the RMSE provided by Duvenaud
et al. (2013).

Table 5.3 shows the results of this experiment for the 13 time series pre-
viously introduced. In addition, for illustrative purposes, the results for the
Mauna Loa Atmospheric CO4 time series are detailed in Figure 5.5.

Regarding the results in Table 5.3, in 12 out of 13 time series, among
the 200 randomly generated kernels, there are some kernels that have better
results than the original one in terms of RMSE with fewer hyperparameters.

In Figure 5.5 the RMSE and the number of hyperparameters of the 200
random mutations for the Mauna Loa Atmospheric COs time series are il-
lustrated. There are 36 mutated kernels that obtain a better RMSE than the
original one for the Mauna Loa Atmospheric CO- time series. Moreover, some
of those kernels have a slightly lower number of hyperparameters (9 instead
of 10) than the best kernel achieved by Duvenaud et al. (2013).

As we have shown in this experiment, we conclude that it is possible to
improve the results obtained by compositional kernel search approaches by

5.6 Testing the proposed grammar 67

| Name [Better fitted Simpler Both ‘
Airline 0.38 0.43 0.13
Solar 0.55 0.32 0.21
Mauna Loa 0.18 0.34 0.05
Wheat Price 0.40 0.19 0.11
Mel. Temps. 0.23 0.27 0.00
Traffic data 0.24 0.38 0.07
Avg. calls. 0.50 0.48 0.20
Radio fregs. 0.36 0.30 0.05
Gas Aus. 0.71 0.41 0.30
Acid Aus. 0.56 0.43 0.23
U.S. unemp. 0.47 0.38 0.15
Births Queb. 0.48 0.32 0.13
Wages Eng. 0.38 0.28 0.08

Table 5.3. Results of the random mutation experiment. In the second column,
the ratio of mutated kernels that are better fitted, in terms of RMSE, than the
best kernel achieved by Duvenaud et al. (2013) is shown. The ratio of kernels that
are simpler than the original one, according to the number of hyperparameters, is
illustrated in the third column. In the last column, the ratio of kernels that are both

better fitted and simpler can be found.

RMSE

of hyperparameters

L
L]
L4 ®
L]
- i
[
il k s
b B
[
t —
6 7 8 9 10 11 12

Fig. 5.5. RMSE and number of hyperparameters of the 200 random mutations
for the Mauna Loa Atmospheric CO3 time series. The triangle represents the orig-
inal kernel, and the vertical and horizontal straight lines represent its number of
hyperparameters and RMSE respectively.

means of manipulating elementary mathematical expressions. We can also
confirm that the mutation operator presented in this work allows such im-

provements.

68 5 Automatic GP kernel learning for time series extrapolation

5.7 Time series extrapolation benchmark

In view of the results obtained in the previous section, we evaluated EvoCov,
along with the proposed alternative search methods, in the benchmark pre-
sented by Lloyd et al. (2014). To the best of our knowledge, this work provides
the most extensive comparison in the literature in time series extrapolation
with GPs. In this benchmark the following algorithms can be found:

Eureqa: A Symbolic Regression engine that uses genetic algorithms to search
in the space of the possible equations (Schmidt and Lipson, 2013). Al-
though this approach may seem similar to our work, Eureqa learns the
predictive function itself, while our approach provides a probabilistic pre-
diction by means of GPs.

Linear Regression (LIN): The basic linear regression is approximated by a
GP model with a Linear kernel. The hyperparameters are learned by the
LML optimization.

Squared Exponential (SE): A GP model with the SE kernel shown in Table
2.1 is used. The hyperparameters are also learned by optimizing the LML.

Bayesian variant of multiple kernel learning (MKL): A weighted sum of base
kernels is used to construct more complex ones (Bach et al., 2004).

Change Point (CP) Modeling: A GP based approach allowing changepoints
in kernels, that is, a combination of kernels where the weight of each of
the components depends on the inputs (Garnett et al., 2010; Saatgi et al.,
2010; Fox and Dunson, 2012).

Spectral Mixture Kernels (SK): These kernels model the spectral density with
a Gaussian mixture (Wilson and Adams, 2013).

Trend-Cyclical-Trregular (TCI) Models: The statistical model described by
Lind et al. (2006) is approximated by means of GPs and combining the
Periodic kernels with Linear ones as covariance function.

GPSS: The greedy GP kernel search method described by Duvenaud et al.
(2013) is used.

ABCD accuracy (ABCDa): An improvement of GPSS, introduced by Lloyd
et al. (2014), which includes the ChangeWindow and ChangePoint kernels.

ABCD interpretability (ABCDi): A modification of the previous approach
that focuses on interpretability. This approach favors additive components
as they are more interpretable by the practitioners. Similarly, the authors
decided to remove the Rational Quadratic kernel as it is more difficult to
describe automatically (Lloyd et al., 2014).

All the compositions of kernels that are included in GPSS can be repre-
sented in our grammar. Thus, the search space of EvoCov is a superset of
the search space of GPSS. On the other hand, ABCD approaches include
ChangeWindow and ChangePoint kernels that cannot be modeled with the
current grammar of EvoCov. Hence, different kernels can be found by these
approaches.

5.7 Time series extrapolation benchmark 69

Table 5.4 shows the numerical results of the experimentation for each time
series, while in Figure 5.6, the overall results are illustrated. EvoCov is pre-
sented in two variants, one using LML to optimize the hyperparameters, and
the other variant using the NLPD metric. Note that RMSE is standardized by
dividing by the smallest RMSE achieved in the experiments for each dataset,
so that the best performance on each dataset has a value of 1. Also, it is worth
mentioning that, in the experiments conducted by Lloyd et al. (2014), only
one trial for cach time scries and algorithm was carried out?, and, for our
algorithms, the mean and the best of ten trials are shown.

As we can see in Table 5.4, EvoCov-LML achieves the best average result
across all problems and beats the rest of the algorithms in the Mauna Loa At-
mospheric COy time series. Moreover, its overall median result is the second
best, very close to the best one. The best trials of this algorithm outperform
the rest of the algorithms in three other problems. Our GoWithTheFirst algo-
rithm is the best choice in Monthly critical radio frequencies time series, and
its best trials were better than the other algorithms in 6 problems. Although
its average performance is not as good as EvoCov-LML, it was able to achieve
the third best median RMSE. EvoCov-NLPD shows the best behavior in Solar
time series. On the contrary, this approach obtains poor results in Monthly
average daily calls, compromising its average result. The Random Search was
able to get the best result for the Solar time series in its best trial. However,
this algorithm has a worse performance than those already mentioned, con-
firming the contribution of the mutation and crossover operators. Regarding
the compositional kernel search approaches, GPSS approach gets the second
best mean result, and is able to beat the rest of the algorithms in Daily min-
imum temperatures in Melbourne time series. ABCDa obtains the third best
mean result. This algorithm gets the best median result and holds the best
results in three of the time series. ABCDi, with worse results than ABCDa
according to the mean, is the best approach in Monthly average daily calls and
Number of daily births in Quebec problems. On the other hand, there are some
other time series, such as Beveridge Wheat Price Index, Monthly U.S. male
unemployment and Airline, where the algorithms based on the CP, Linear
and Spectral kernels, produce better results than compositional kernel search
approaches. Finally, out of the GP approaches, Eureqa outperforms the rest
of the approaches in Real daily wages in England time series. However, this
symbolic regression engine is worse than EvoCov-LML in the rest of the time
series.

Table 5.5 shows the number of hyperparameters of the best kernel found
for each algorithm in each problem. It can be seen that the compositional
kernel approaches (ABCDi, ABCDa and GPSS) have always more hyperpa-
rameters than any of our approaches on average. The only exception can be
found in Number of daily births in Quebec time series, where ABCDi uses 6

4 The results were gathered from the supplementary material of the work done by
Lloyd et al. (2014).

5 Automatic GP kernel learning for time series extrapolation

70

Random | Go With EvoCov EvoCov
ABCDa GPSS ABCDi CP LIN MKL SE SP-bic TCI eureqa| Search The First | LML NLPD

wmming waming W¢mi§¢@s wamizgc
Airline 1.34 1.35 2.47 5.63 5.80 5.55 37.80 1.17 1.69 3.80(1.18 3.31 1.02 145 1.0* 1.31 1.11 1.56
Solar 1.66 2.13 2.08 1.71 1.77 1.65 266 1.99 1.70 4.36|1.0* 2.39 1.08 1.84 1.07 1.84 1.01 1.60
Mauna Loa 3.46 1.46 2.47 4.29 T7.87 4.30 4.56 3.26 3.18 6.28|8.53 23.44 1.0* 1.50 1.07 1.35 1.08 2.50
Wheat Price 1.13 1.11 1.26 1.06 1.08 3.19 3.23 3.19 3.19 1.39/1.01 2.08 1.0* 2.37 1.04 1.29 1.32 1.77
Mel. Temps. 1.01 1.0* 1.01 1.35 152 135 273 1.03 1.00 1.29/1.00 1.03 1.00 1.01 1.00 1.02 1.01 1.02
Traffic data 1.46 1.70 2.96 6.10 7.21 598 6.04 494 3.13 9.15|5.32 10.78 1.64 3.89 1.0* 3.63 1.46 4.82
Avg. calls. 2.98 226 1.0* 3.54 28.76 1.80 22.63 11.04 1.80 493.30|1.21 7.76 1.33 6.82 1.16 2.81 1.45 11.69
Radio fregs. 5.61 3.32 3.40 565 7.79 5.65 1529 1.81 4.17 2.55|1.31 2.69 1.0* 1.835 1.07 1.68 1.78 4.08
Gas Aus. 1.01 3.33 2.06 3.16 2.66 291 287 1.62 1.52 2.74|1.79 5.02 1.0*¥ 2.75 1.06 2.50 1.39 2.34
Acid Aus. 1.11 1.82 1.60 249 3.89 1.78 1.20 1.58 1.99 2.18/1.68 2.04 1.0* 1.52 1.08 1.43 2.03 2.33
U.S. unemp. 291 1.66 2.73 2.24 1.35 230 2.54 4.81 3.01 3.01{1.32 5.25 1.30 1.59 1.0* 1.74 1.17 1.84
Births Queb. 1.17 125 1.11 2.04 2.17 2.05 1.84 1.71 1.73 2.14|1.30 1.74 1.0* 1.13 1.05 1.21 1.14 145
Wages Eng. 3.03 324 4.00 5.84 4.25 3.16 5.35 3.63 3.12 1.0*%|2.61 3.04 2.99 3.60 2.88 3.55 1.28 2.56
Mean 2.14 1.97 2.16 3.47 5.85 3.21 836 3.21 2.40 41.01 5.43 2.36 1.95 3.00
Median 1.46 1.70 2.08 3.16 3.89 291 3.23 199 1.99 2.74 2.68 1.56 1.48 1.83

Table 5.4. Standardized RMSE for each extrapolation problem and algorithm is shown.

In our approaches, the mean and the best

values are illustrated. The best results on average for each time series are shown in bold, while the best results among all methods are
highlighted with an asterisk.

71

5.7 Time series extrapolation benchmark

"(F10Z) e 10 pAorT £q ouwop S[I0m oY} Jo [eLIDIRW Arejuetnarddns
9UY} Ul PUNoj 9 jou P[nod 941 se SulSSIW ST BJep dWOos (DY U] "umoys st smjourerediodAy jo roqunu oferose ayy ‘soypeordde imo uy
"PaIspISuOD Os[e ST JojewreredredAy astou oy T, ‘wyjriode pue we[qoid uoryejoder)xs yoes I10j srejewreredradAy jo equny ‘G G o[qel,

) 18 6°¢ £¢ 8L 9IT € 9¢ ¥ 60L8FL S€I €91 ued\
9'G €9 0¢ 0¢ L 01 1) ¥ 8T 6T €1 - "Suy sefep
02 89 9°¢ 0°¢ 9 6 ¢ g ¥ ¢ 9 1T - "qan) syyIg
e'8 'L 8F 79 8 8T L ¥ 6 0T Q1 e1 ‘dwoun g N
) <) g9 ve 6 al ¢ L AR A L1 61 Sny poy
L8 Per 08 8°¢G 1T €1 ¢ g ¥ 81 1C 12 8% SNy sen)
08 9L 19 09 8 Tl ¢ g ¥oo¢ ¢l 6 G1 'sbary orpey
92 1T z8 XS) ¢ L ¥ 11 91 61 81 'S[[ed “Say
€9 101 09 1% 8 €I ¢ g ¥ ¢l 9C g1 ST 'yRD OlRl],
eg Ty gy Sy L 6 € 9 ¥ 9 8 6 6 ‘sduioy, N
8¢ 99 6F ve g 2 € 9 vooer €1 2 71 Q0L YROY A
80T 0L 6¥ L9 8 Tl ¢ g ¥ g gl 1T 01 O RUNE\
€9 0L Al g 0T €I) ¥ 8T 61 e1 €z Ie[og
g8 z 01 €9 1’9 8§ 91 ¢ g ¥ 8 g1 4! QuIlY
AdTIN TINT s8I oyl YdIed§|[DL 219-dS dS TN NIT dD DAV SSdD 'dDdVv
>Ooo>m— >Ooo>m Sﬁg OU EO@C@MH

72

ABCDa

GPSS

ABCDi

CP

LIN

MKL

SE

SP-bic

TCI

eurega

Random
Search
Go with
the first

EvoCov
LML

EvoCov
NLPD

Fig. 5.6. Standardized RMSE of each algorithm in each problem. Note that the

5 Automatic GP kernel learning for time series extrapolation

[S |
I :

L

] =

] | -
N N
o] \

R I I

o[_Jr

s I I

o] | e
T e
y[lj ,,,,,,,,,,,,,,, b o o oo
S o ac oo

[w w w w \

results of our algorithms have more observations due to the 10 trials.

hyperparameters, and EvoCov-LML and EvoCov-NLPD use 6.8 and 7.0 hy-
perparameters respectively. An example of the difference in the complexity
between kernels learned by composition approaches and those based on basic

mathematical expressions can be found in Appendix A.

5.8 Comparing our proposal to ad hoc kernel approaches 73

Overall, EvoCov-LML is a competitive approach compared to the current
state-of-the-art compositional kernel search approaches. In spite of not in-
cluding the ChangePoint and ChangeWindow kernels, this approach is able
to obtain comparable results to ABCDa, with kernels that have fewer hy-
perparameters, which makes them easier to optimize. Unfortunately, having
only one execution of the methods compared to does not allow more sound
conclusions to be provided.

5.8 Comparing our proposal to ad hoc kernel approaches

As we have mentioned in Section 2.3.1, many works in GPs propose a human-
designed specific kernel for each particular problem. In the work carried out by
Preotiuc-Pietro and Cohn (2013), the number of tweets that contain a given
hashtag in the Twitter timeline was predicted by means of GPs. The authors
show that this time series information is also useful to predict the hashtags
that a tweet has given its content. They propose an ad hoc kernel, Periodic
Spikes (PS), that captures the periodicities of these hashtag time series. For
example, the #goodmorning hashtag shows a clear periodic pattern, as it is
more frequently tweeted in the mornings. On the other hand, there are some
hashtags, such as #np (now playing), that do not follow the periodic pattern
mentioned above, and according to the authors, there are kernels better suited
than PS for these problems. Our proposal should be able to identify these
situations, and offer the best possible kernel without human intervention.

Hence, we carried out the experiment introduced by Preotiuc-Pietro and
Cohn (2013), where #goodmorning, #breakfast, #confessionhour, #fail, #fyi
and #raw hashtags were predicted®. For cach hashtag, the number of tweets
per hour was collected, using one month for training and the next one for
testing, except for the #goodmorning hashtag, as in the original paper, where
only 3 weeks were gathered, having 2 weeks to train and the last one to
test. These time series are illustrated in Figure 5.7, where the number of
occurrences of each hashtag is shown.

In Figure 5.8, an example of the hashtag prediction is illustrated, where the
best model given by our approach in a single run is shown. In this problem,
a periodic trend can be appreciated, which is successfully captured by our
model.

Table 5.6 shows a comparison between EvoCov-LML, EvoCov-NLPD and
the PS kernel. The experiments with the PS kernel were carried out using our
software, and @ = 5000 samples were allowed to find the best hyperparame-
ters for this kernel. As can be seen, EvoCov-NLPD is the best approach on
average, obtaining the best results in the #confessionhour problem. EvoCov-
LML is able to get the best score for the #fail and #fyi hashtags, finding a
complex periodic pattern. It is also worth mentioning that the best trials of

® Data can be found at https://web.sas.upenn.edu/danielpr/resources/

74 5 Automatic GP kernel learning for time series extrapolation

1.0- s 1.0- .
. . o 4

0.8- 0.8- .
e e A oa om

0.6- * e 4 ee s sesks 4 AMALM 4 4 Ak 0.6-

0.4- o esesece ooe ee @ oee @ ¢ AMMAL Ak A AMMAMAA AMia 0.4- .

"

o
¥
o
¥

0.0- A

o
o

of hashtags (Normalized)
of hashtags (Normalized)

N NI I S s e N I Y T I e
ST BB S R0, ST T S R0

AP BTSTTe AP PP
(a) #breakfast (b) #confessionhour

=l =l

0 1.0- 4 0 1.0- .
X X
© © N

g 08 g08 . . PN
£ £

<} o R S
S o6 206 x TRV B I
” » 5 CDERoh ap ok dumel nedm
304 3 0.4 oot somer arow eoremme o s i ik s
g g
G G —

© 0.2 © 0.2
< K=
S0 Soo-
o * I
B A5 Al oS o0, AL o B A5 Al SR A5, AL o
el eer olalatale® el eer olalatale®
DM E N U S e N N g e N A e e N N g
(c) #fail (d) #tyi.
1.0- . .

e o o =
~ o o o

o
N

. - " T 4

of hashtags (Normalized)
o
o

of hashtags (Normalized)

ENENC I 2
x*‘@x*‘olﬂ‘olﬂ‘@
70>790% 70> 10

o
LY O oY
28> oS>

N @ A5 g
WG NPT

1‘&‘1‘&

(e) #goodmorning (f) #raw

Fig. 5.7. Hashtag time series problems. The dots represent the samples
training set, while the triangles show the samples of the test set.

of the

5.8 Comparing our proposal to ad hoc kernel approaches 75

°
(O]
N
© 1.25-
£
S
S 100- 4 - A
= °
L 0.75- 2
=
-8 ’
— 050-
o
o
o 0.25-
(@)}
S 0.00-
£ 0.
©
c —-0.25-
.
(@]
3 ! ,
A ab
\’..0\ \,0\
P\ T\ e

Fig. 5.8. Extrapolation of #goodmorning hashtag time series. The dots represent
the last samples of the training set, while the triangles show the samples of the test
set. The prediction given by a GP model with a kernel learned by the EvoCov-LML
method is illustrated with a continuous blue curve for the mean, and the light blue
shadow shows 3 times the standard deviation.

this algorithm obtain the best results in four out of five problems. However,
in simpler periodic time series, such as #goodmorning, #breakfast and #raw,
the PS kernel is the best choice, getting the best median result.

PS EvoCov-NLPD | EvoCov-LML
Best ‘ Mean | Best ‘ Mean | Best ‘ Mean

#breakfast 1.019 1.045 1.00* 1.090 1.060 1.148
#confessionhour | 320.167 320.190 1.00% 97.229 1.017 197.542
#tail 1.008 1.363 1.00* 1.034 1.007 1.096
#iyi 1.019 1.050 1.024 1.041 1.00* 1.001
#goodmorning 1.00* 1.058 1.317 1.527 1.003 1.103
#raw 1.004 1.365 1.155 1.754 1.00* 1.677
Mean 54.345 17.279 33.928
Median 1.211 1.309 1.125

Table 5.6. The PS ad hoc kernel compared to EvoCov-LML and EvoCov-NLPD, in
hashtag prediction problems. Standardized RMSE for each extrapolation problem
and algorithm is shown. In all the approaches, the mean and the best results are
illustrated. The best results on average are shown in bold, while the best results
among all methods are highlighted with an asterisk.

76 5 Automatic GP kernel learning for time series extrapolation

Table 5.7 shows the number of hyperparameters used by the different ap-
proaches. As expected, our approaches use more hyperparameters than the
PS kernel, as this kernel is specifically designed for these problems.

\ [PS EvoCov-NLPD EvoCov-LML |

#breakfast 3.0 4.8 5.7
#confessionhour | 3.0 5.3 10.7
#fail 3.0 7.0 6.5
#1yi 3.0 4.3 2.9
#goodmorning | 3.0 7.2 7.9
#raw 3.0 5.5 11.2
Mean 3.0 5.7 7.5

Table 5.7. Number of hyperparameters for each extrapolation problem and algo-
rithm. The noise hyperparameter is also considered. In our approaches, the average
number of hyperparameters is shown.

In order to assess whether there are significant differences between the
ad hoc PS kernel and EvoCov approaches, we applied Friedman’s test to
their RMSE results in each problem. In #breakfast, #fyi and #goodmorning
hashtags, significant differences can be observed (a = 0.05. p-values are shown
in Figure 5.9). Following the same procedure as in Section 5.5, we applied a
post-hoc test based on Friedman’s test, and adjusted the results with Shaffer’s
correction (Shaffer, 2012). In Figure 5.9, the results of this post-hoc testing
are shown. While in #breakfast, the PS kernel and EvoCov-NLPD present
significantly better results than EvoCov-LML, in #goodmorning hashtag, the
PS kernel and EvoCov-LML outperform the EvoCov-NLPD approach. Finally,
it is worth mentioning that EvoCov-LML is the best choice in #fyi.

The PS kernel is able to hold the best results in three out of six problems,
although the results only show statistical differences with EvoCov-LML in
#breakfast, and with EvoCov-NLPD in #goodmorning. Moreover, the EvoCov
approaches, without any knowledge about the problem, are able to obtain
similar predictions to PS, even EvoCov-LML improving the results of the
PS kernel in #fyi. Also note that the EvoCov approaches are able to produce
better average results than the PS kernel, showing a more adaptable behavior.

5.9 Conclusions

Overall, these experiments enabled the evaluation of the GenProg variant
proposed in this dissertation, being able to improve the state-of-the-art results
in the application of GPs to time series extrapolation. We have also provided
valuable insights about the suitability and performance of several metrics for
hyperparameter optimization in extrapolation problems.

5.9 Conclusions 77

1 2 3 1 2 3 1 2 3
8 L |] 3 L] 8
g : 3
3 p p
E E E
Y by i
PS EvoCov.LML EvoCov.NLPD ——! PS EvoCov.NLPD —— EvoCov.LML
EvoCov.NLPD EvoCov.LML. PS
(a) breakfast (b) confessionhour (c) fail
1 2 3 1 2 3 1 2 3
1 3 3 1 5
< b4 <
EvoCov.LML EvoCov.NLPD PS EvoCov.NLPD PS EvoCov.LML
PS$ —M8M8M8M8M8m™— EvoCov.LML EvoCov.NLPD
(d) fyi (e) goodmorning (f) raw

Fig. 5.9. Critical difference diagrams for the PS ad hoc kernel compared to EvoCov-
LML and EvoCov-NLPD in hashtag prediction problems. The methods are ordered
following the results in their ranking. The metrics with no significant differences
among them are matched with a straight line.

We can conclude that it is neither necessary to use kernels designed by an
expert nor to create kernels by composition of a priori defined ones to solve
time series extrapolation problems with GPs. It is possible to learn simpler
and better kernels than those that rely on previous knowledge through the
evolution of expressions based on basic mathematical operations.

6

Automatic GP kernel learning for Natural
Language Processing

6.1 Introduction

In the previous chapter, our proposal for evolving kernels was tested on time
series extrapolation. In this chapter, we extend our experiments to another
field of interest, Natural Language Processing (NLP), extending the function-
ality of the EvoCov algorithm to deal with multi-objective problems.

As in many other areas, GPs have been successfully applied to different
NLP tasks. For instance, in Sentiment Analysis (SA), which consists of iden-
tifying or classifying the opinions contained in written or spoken language
in an automated manner, several authors have shown promising results in-
ferring the latent sentiments by means of GPs (Beck et al., 2015; Beck and
Cohn, 2017; Beck, 2017b). Similarly, in Machine Translation Quality Esti-
mation (QE), many studies have relied on GPs to provide post-editing work
estimations (Cohn and Specia, 2013; Shah et al., 2013; Beck et al., 2016). GPs
have been also used in text classification (Polajnar et al., 2011), where the
goal is to assign predefined labels to the text.

Nevertheless, the use of GPs to solve NLP problems also poses some chal-
lenges. First, as stated throughout this dissertation, choosing the best per-
forming kernel is not an easy task. In most of the applications of GPs to
NLP, the choice of the most appropriate kernel was made a-priori, based on
preliminary experiments or previous results. In early studies, the SE kernel
was the most commonly applied one. In the work done by Specia et al. (2013),
post-editing effort was predicted by using this kernel. Shah et al. (2013) also
relied on the SE kernel to select the most relevant features for QE using GPs.
In more recent studies, although Beck et al. (2016) pointed out that the results
of Matern52 and Matern32 kernels were very similar to those of the SE kernel
in Machine Translation QE, in SA, Matern kernels showed better results than
the SE (Beck, 2017a).

Secondly, regarding the metric used to measure the quality of the kernels,
there is no single criterion. While in the SA literature Pearson’s Correlation
Coefficient (PCC) (Pearson, 1895) has been used, this metric does not provide

80 6 Automatic GP kernel learning for Natural Language Processing

insights about the uncertainty that GPs are able to model. As the GPs offer a
probabilistic prediction about emotions, metrics such as the LML (Rasmussen
and Williams, 2006), or the NLPD (Quifionero-Candela et al., 2006), could
seem better suited to choose between GP models. Similarly, Machine Trans-
lation QE tasks also present a similar issue, where different metrics have been
described to measure the quality of the traunslation (Specia, 2011), such as,
post-editing score, Human Translation Edit Rate (HTER) or post-edit time.

A third aspect to consider in NLP tasks is the method selected to extract
features from the text. Specia et al. (2013) proposed a Machine Translation QE
framework where some features were extracted relying on expert knowledge.
However, as feature engineering can be highly time-consuming (Specia et al.,
2013), several works have tried to automate the feature extraction process.
For example, Beck et al. (2015) applied structural kernels to emotion analysis
and QE (Beck, 2017a). Other authors have proposed sentence embeddings to
extract the features from the text. Yankovskaya et al. (2019) used this type
of vector representation of the source and automatically translated texts to
successfully predict the post-editing effort based on a neural-based regression
model.

Taking into account these three issues, in this chapter, we extend the pre-
viously introduced EvoCov algorithm in order to efficiently solve this kind
of task. Thus, we automatically evolve ad hoc kernels by means of a multi-
objective approach of EvoCov that considers multiple NLP metrics simultane-
ously, with the aim of producing a diverse set of kernels that is also balanced
according to the criteria represented by these metrics. In addition, sentence
embedding techniques are used for extracting the features from the text, tak-
ing a step towards a fully automated framework for solving SA and QE tasks.

The chapter is organized as follows. First, the proposed algorithm is pre-
sented in Section 6.2. Then, in Section 6.3, the automatic techniques com-
monly used to extract sentence embeddings are described. In Sections 6.4 and
6.5, we show the experiments conducted regarding SA and QE problems re-
spectively. Finally, in Section 6.6, the conclusions of the chapter are detailed.

6.2 Evolving multi-objective kernel functions

As mentioned in the introduction, in some cases the use of more than one
metric can be advisable or even necessary. Thus, in this chapter we develop a
multi-objective variant of the EvoCov algorithm (introduced in Section 4.3),
called MOECov.

The description of MOECov is shown in Algorithm 5. As in EvoCov, first,
an initial population of N kernels is generated, limiting the depth of the kernel
expressions (maximum d,,q,, minimum d,,;,). At each generation, the whole
population is evaluated and the relative improvement (relimprov) is calcu-
lated. If the relative improvement in the current population is greater than a
threshold (3, the S best individuals are selected and an offspring population of

6.2 Evolving multi-objective kernel functions 81

N — S new individuals is randomly generated by applying a mutation (with
probability p,,,) or a crossover (with probability p..) operator for each individ-
ual. Otherwise, the current population is replaced by a randomly generated
one. After repeating this procedure for G generations, the last population is
evaluated and the best individuals, taking into account the balance between
all the metrics, are returned.

Algorithm 5 MOECov algorithm

1: procedure MOECoOV(N, G, O, S, pm, Pex, B, dmin, dmaz)
2: pop = GENRANDPOP(N, dmin, dmac)

3: for j in O do
4: bestfit_a j = 00
5: bestfit_1,; = o0
6: end for
7 all = pop
8: i=0
9: while i <G —1 do
10: EVALUATE(pop)
11: for j in O do
12: bestfit; ; = GETBESTFITNESS(pop, j)
13: relimprov; = %(bwtﬂtzi”ﬁiii;ﬁ:gl’j)_beStfltz’J
14: end for
15: if 8 < MAX (relimprov) then
16: sel = SELECT(pop, S)
17: of fspring = VARIATE(sel, N — S, pm, Pex)
18: else > Restart procedure
19: sel =10
20: of fspring = GENRANDPOP(N, dpmin, dmaz)
21: for j in O do
22: bestfiti_1; = 00
23: best fit; j = 0o
24: end for
25: end if
26: pop = sel U of fspring
27: all = all U of fspring
28: i=1i+1
29: end while
30: EVALUATE(pop)
31: best = SELECTBEST(all)
32: return best

33: end procedure

MOECov algorithm differs from EvoCov in several aspects. First, the eval-
uation step has been adapted to consider more than one metric. In Sections
6.4.1 and 6.5.1, the metrics used for each particular problem are introduced.

82 6 Automatic GP kernel learning for Natural Language Processing

Secondly, the SELECT function in Algorithm 5, that selects the most
promising individuals, has been adapted by adding Pareto operators (Pareto
set). Inspired by the NSGA2 algorithm (Deb et al., 2000), the population is
divided into groups of non-dominated solutions corresponding to the Pareto
fronts by iteratively selecting the Pareto set, excluding these solutions from
the general set, and repeating the operation with the rest of individuals. The
individuals in each group are sorted by crowding distance, and finally, the
best S individuals are chosen. At the end of the evolution process, the SE-
LECTBEST function selects the non-dominated individuals among all the
expressions created during the whole process. Thus, the practitioner is pro-
vided with a set of Pareto optimal solutions to choose from depending on the
requirements of the problem.

Also note that the restart procedure has been altered. A restart will be
made only if none of the objectives have been improved. In addition, this
improvement is now checked taking into account the previous 2 generations,
reducing the number of restarts.

Regarding the grammar, the kernel functions are encoded according to the
basic mathematical expression grammar described in Section 4.2. However,
we limited the search to stationary kernels (see Equation (2.3)), as in the
preliminary experiments we conducted, we found out that, when sentence
embeddings are used as the input of the GPs, the kernels that include the
dot_product operator are hardly ever chosen by the GenProg algorithm.

6.3 Sentence embeddings

For the problems presented in this chapter, SA and QE, as well as for NLP
problems in general, a previous step is needed: extract usable features from
the input data.

In the initial NLP approaches, expert domain knowledge was used to
extract relevant information from text and produce vector representations
(Callison-Burch et al., 2011). For instance, Specia (2011) extracted 80 shal-
low and Machine Translation independent features from the source sentences,
their corresponding automatic (before post-editing) translations, and mono-
lingual and parallel corpora. A selected set of these features, comprising only
17 features, was used by Specia et al. (2013) to predict translation-effort.

Recent advances in artificial neural networks have allowed the feature en-
gineering process to be automated, reducing expert knowledge dependency. In
word embeddings, each word is assigned a vector of continuous values using a
neural network. Some of the first embedding methods, and still among those
most used, are the Continuous Bags of Words (CBOW) and the Skip-gram
models (Mikolov et al., 2013; Pennington et al., 2014).

Nevertheless, in the SA and QE tasks presented in this dissertation, sen-
tence vector representations are required. In order to obtain these vector rep-
resentations, there are two main approaches: word embedding aggregation (Le

6.4 Sentiment Analysis 83

and Mikolov, 2014) and the direct sentence embedding encoding (Kiros et al.,
2015).

In word embedding aggregation methods, vector representations of each
word in the sentence are obtained. Then, a function that combines the em-
bedding representations of all the words in a single vector is computed to
generate the sentence embedding. The usual approach when combining em-
beddings from words in a sentence is to compute the average. This is the
procedure used by Beck (2017a), who used 100-dimensional GloVe embed-
dings (Pennington et al., 2014) as the representation of choice for mapping
texts to emotion scores using GP regression.

In addition to the word embedding aggregation methods, direct sentence
embedding encodings can be also obtained by means of pre-trained bidirec-
tional Long Short-term Memory (LSTM) artificial Recurrent Neural Networks
(RNNs). This approach was successfully applied in Machine Translation QE
using a neural-based regression model (Yankovskaya et al., 2019).

6.4 Sentiment Analysis

Once the general framework has been explained, the next two sections are
devoted to each of the problems described initially: Sentiment Analysis (SA)
(this section), and Quality Estimation (QE) (Section 6.5).

Sentiment Analysis (SA) is an automated process that infers the opinion
or feeling from a piece of text. It can be considered as a particular type of
semantic annotation of the text. SA is a very complex problem due to several
factors, including the ambiguity of human language, the large variability in
the use of terms across individuals, and the complexity of grammatical rules.
However, the availability of large text corpora and the usefulness of mining
these corpora, e.g., for opinion mining related to products, services or politics
(Pang and Lee, 2008), have contributed to developing more advanced machine
learning algorithms for this task.

One of the directions of extending SA methods is to go beyond text cate-
gorization in positive or negative classes, to a more fine-grained emotion an-
notation (Ortigosa-Herndndez et al., 2012; Strapparava and Mihalcea, 2007).
This could be done by extending the number of classes in which a text is
classified, but also by allowing a continuous value of the strength in which
the sentiment is manifested in the text. A subject is requested to evaluate,
in a range [0,100] several sentiments (e.g., joy, fear, etc.) in a text. In the
sentence “Alonso would be happy to retire with three titles”, for example, joy
and sadness feelings are mixed.

The problem we address in this chapter is to automatically estimate the
intensity of a given sentiment from the analysis of the text. This problem
is posed as a supervised regression problem in which a number of text sam-
ples are available together with their corresponding sentiment value. After
extracting the sentence embedding of each sample using a word embedding

84 6 Automatic GP kernel learning for Natural Language Processing

aggregation method, we use a GP model to predict the sentiment value present
in the text.

In SA tasks, Pearson’s Correlation Coefficient (PCC) is one of the most
used metrics to measure the quality of the prediction. This metric divides the
covariance of two variables by the product of their standard deviations. In the
case of GPs, PCC can be measured as follows:

)= Doty (fei = Fi) (prwi — fis)
VI (= £ 0 — 2)?

where n., is the number of test samples, and f. corresponds to their function
values. p, indicates the predictive mean of the GP model. f, and . are the
mean values of their corresponding f, and p, vectors.

Note that PCC does not depend on the variance of the GP model, and
thus, it does not take advantage of all the information provided by the prob-
abilistic prediction. On the other hand, the NLPD, introduced in Section 5.5,
is more informative about the performance of the GP model, as it measures
the likelihood of the predictive Gaussian distribution to the data.

PCC(p,. £,

(6.1)

6.4.1 Fitness evaluation for Sentiment Analysis

In the SA setting of MOECov, it is desirable to ensure a high correlation
between the prediction and the actual data, as it has been already investigated
with other models with the PCC metric. At the same time, we want to take
advantage of the GPs to provide an accurate probabilistic prediction in terms
of NLPD. As can be seen, although PCC and NLPD metrics are related,
they evaluate the quality of the kernel from different perspectives. In order
to balance the kernel learning process between these two objectives, when
applying to SA tasks, the EVALUATE function in Algorithm 5 measures
both the PCC and NLPD metrics.

In addition, we have observed that the complexity of the kernels, in terms
of number of primitives or depth, increases the evaluation time and the risk to
overfit. Thus, in order to obtain simple kernels that are efficient to evaluate,
we also take the evaluation time as the third objective, indirectly discouraging
kernels with large expressions.

The fitness evaluation of these metrics can be represented as shown in
Figure 6.1. Before carrying out these evaluations, the hyperparameters of the
kernel function are set according to the LML as explained in Section 2.2.2.2.
Then, PCC and the NLPD are evaluated by dividing the training set into
3 cross-validation folds. The results in each fold are averaged to obtain the
actual fitness of each kernel. Finally, the time spent computing both metrics
in each fold is added as the third objective.

6.4 Sentiment Analysis 85

0;, LML, , 0,1~ LMLy, Op1~ LMLy,
612 LML, ; 6, LML; B2 LMLy
810 LMLy o 020/~ LML Onof> LMLyg
argmax argmax argmax
k1 01 best k2 02 pest kN O pest
NLPD, NLPD, NLPDy
SELECT PCC, PCC, PCCy
T, T, Ty
ks,ell kselZ e ksels
esell,best esel?.best eselS,hest

Fig. 6.1. Fitness evaluation in MOECov for SA.

6.4.2 Sentiment Analysis experiments

The goal of this experiment is to evaluate the performance of the proposed
MOECov algorithm for the task of sentiment prediction from text. First, we
introduce the problem benchmark and word embeddings. Then, we describe
the parameters used by the algorithms and explain the characteristics of the
experimental framework. Finally, we present the numerical results obtained
from the experiments and discuss these results.

6.4.2.1 Benchmark problems and word-embeddings

We use the SemEval2007 Affective Text shared task dataset (Strapparava
and Mihalcea, 2007)!, following the work carried out by Beck (2017a). In this
dataset, news headlines were manually annotated by experts, assigning to
each text a degree of presence for each six Eckman (Ekman, 1993) emotions:
anger, disgust, fear, joy, sadness and surprise. In the original work where this
dataset was introduced, texts were divided into “dev” and “test” datasets.
For the experiments presented by Beck (2017a), the two sets were combined
and further divided into 10 folds used for cross-validation. We also use this
10-fold partition to evaluate our algorithms.

In order to compute a representation for each text, punctuations in each
headline were removed, tokenized (Bird et al., 2009), and case ignored. From
the resulting text, the word-vector representation of each word was obtained
using the 100-dimensional GloVe embeddings (Pennington et al., 2014)2. After
deleting the words that were not found in the embedding, the representation
of each headline was computed as the average of the words.

! Available at https://web.eecs.umich.edu/~mihalcea/downloads.html#
affective
2 Available at https://nlp.stanford.edu/projects/glove/

86 6 Automatic GP kernel learning for Natural Language Processing

6.4.2.2 Experimental setup

Our experiments consist of learning a kernel for a GP regressor that predicts a
particular emotion based on sentence embeddings. We compare the MOECov
algorithm with different variants of a-priori defined kernel methods, which
were shown by Beck (2017a) to produce good prediction results for the six
emotions previously described.

The parameters used by the evolutionary algorithm were chosen after some
preliminary experimentation. N = 38 kernels are generated in each of the
G = 65 generations. These newly generated kernels are evaluated and the
best S = 9 kernels are selected. In order to apply the restart procedure,
a threshold g = le—5 is set. Besides, variation operators are applied with a
mutation probability p,, = 0.6 and a crossover probability pee = 1—pm, = 0.4.

In spite of having a non-dominated set of kernels as a result of the MOECov
algorithm, in order to illustrate of the results of this experimentation, we select
the best kernel in terms of the LML metric during the training step.

The hyperparameters of the standard kernels are learned according to the
LML metric. Then, for each of these kernels and selected kernel in MOECov,
we evaluate the PCC and NLPD on the test dataset and measure the time
to compute this evaluation. Due to the stochastic nature of the MOECov
algorithm and the hyperparameter optimization of the standard kernels, for
every configuration, the kernel search process was repeated 30 times along 10
random cross-validation folds.

6.4.2.3 Comparison between MOECov and standard kernels

Table 6.1 shows the average PCC metric of the best solution obtained by the
algorithms in the 30 experiments. We remark that these values have been
computed on the test data, which was not used for learning the GenProg pro-
grams. The results for the NLPD metric are shown in Table 6.2. In both tables,
the best average value obtained for each of the sentiments are highlighted.

The analysis of the tables reveals that, in terms of the average fitness,
MOECov improves all the other kernels for both metrics in most of the cases.
For the PCC metric, only in the disqust dataset, MOECov was not able to
outperform the Matern52 (M52) kernel. For the NLPD metric, MOECov out-
performs all the algorithms for all the sentiments.

Among the standard kernels, Matern52 seems a better choice than the
others, as it gets the second best result on average in the rest of the problems
according to the PCC metric. Matern52 is also the second best choice in
NLPD, only surpassed by the SE kernel in the fear dataset, while the results
of the Matern32 (M32) and the SE kernels are similar. As can be appreciated
in the tables, the Linear kernel (LIN) is the worst performing kernel according
to the average results.

We conducted a statistical test to assess the existence of significant differ-
ences among the algorithms. For each metric and emotion, we applied Fried-
man’s test (Friedman, 1937) and we found significant differences in every

6.4 Sentiment Analysis 87

| [LIN M32 M52 SE MOECov |

anger 0.58592 0.63556 0.64010 0.62629 0.64690
disgust | 0.44828 0.52492 0.52782 0.50111 0.52456
fear 0.68056 0.72810 0.73059 0.72737 0.73555
joy 0.53832 0.55775 0.57459 0.56341 0.59158
sadness | 0.63625 0.67148 0.68205 0.67876 0.69710
surprise | 0.40311 0.45416 0.45647 0.43758 0.46751

Table 6.1. Mean results for PCC metric (the higher the better). The best results
are shown in bold.

[[LIN M32 M52 SE MOECov]|

anger 3.94141 3.92037 3.91162 3.93041 3.91084
disgust | 3.81476 3.78148 3.77491 3.80068 3.77419
fear 4.16636 4.10615 4.10060 4.09860 4.07623
joy 4.34633 4.32588 4.30362 4.32737 4.29549
sadness | 4.31082 4.28845 4.27618 4.28176 4.24454
surprise | 4.06292 4.04524 4.04519 4.05110 4.02712

Table 6.2. Mean results for NLPD metric (the lower the better). The best results
are shown in bold.

comparison (a = 0.05. p-values are shown in Figure 6.2 and Figure 6.3).
Then, for each configuration, we applied a post-hoc test based on Friedman’s
test as suggested by Demsar (2006), and adjusted the results with Shaffer’s
correction (Shaffer, 2012).

The results are shown in Figure 6.2 and Figure 6.3. They confirm a coher-
ent pattern where MOECov is the best performing algorithm for most of the
datasets. However, according to this test, the differences between MOECov
and Matern52 are not significant for most of the datasets.

In evaluating these results it is important to take into account that the
kernels produced by MOECov have been generated completely from scratch,
with no prior knowledge of the existing kernels. The algorithm is able to evolve
a well performing kernel starting from elementary mathematical components.

The computational overhead introduced by MOECov should be also con-
sidered. Most of the effort is spent evaluating kernels. The rest of the calcula-
tions required by the algorithm are negligible. Therefore, in this experiment,
MOECov has required approximately 2500 times more computational time
than fixed kernels. In terms of the evaluation time, once the kernel has been
learned, the effort required to compute the kernels generated by MOECov is
similar to the standard kernels.

6.4.2.4 Analysis of the MOECov evolution

One distinctive feature of our approach is that we simultaneously optimize
different characteristics of the kernels. In order to determine whether the

88 6 Automatic GP kernel learning for Natural Language Processing

p-value: 4.79e-10
p-value: 4.716-06
p-value: 5.32e-12

MOECov M52 MOECov M52 MOECov M52
M32 SE M32 —— SE M32 — SE
—LIN LIN LN
(a) Anger (b) Disgust (c) Fear
2 3 4 5 2 3 4 5 1 2 3 4 5
| 1 1 | © L 1 1 | © L 1 1 1 | «
i i
— 5 Z g
@ @ I)
3 £ 3
— i — < i
MOECov M52 MOECov M52 MOECov M52
M32 — SE M32 SE M32 SE
LIN LIN S LIN
(d) Joy (e) Sadness (f) Surprise

Fig. 6.2. Critical difference diagrams for the PCC metric. The kernels are ordered
following their rankings. The metrics with no significant differences between them
are matched with a straight line.

multi-objective approach effectively leads to the creation of more efficient ker-
nels in terms of the accuracy for the prediction task and in terms of efficiency,
we analyze the fitness distribution of the solutions in the first and last popula-
tion of MOECov for the anger dataset. These results are shown in Figure 6.4,
where, for the sake of the visualization, only one (illustrative) execution of
the algorithm is shown.

In Figure 6.4 we represent the scatter plots for each possible pair of objec-
tives. As can be appreciated in the figures, from the first to the last population
there is an improvement in the values of the objective values for the PCC and
NLPD metrics. However, the computational time actually increases from the
first to the last population. This result is not surprising since it is expected
that the increase in accuracy of the trees is achieved by also augmenting their
complexity. In this scenario, using the time as a third objective can serve to
counteract the useless complexity gain of the programs.

6.4.2.5 Transferability of the evolved kernels

An important question to analyze is whether the kernels evolved by MOECov
are only valid for the sentiment datasets in which they have been learned or
they can also be used in other datasets. This question can be framed on the
general research that investigates the transferability of solutions produced by
evolutionary algorithms (Igbal et al., 2016; Garciarena et al., 2018; Santana
et al., 2012). In order to answer this question, we have used the best kernels

6.5 Machine Translation Quality Estimation 89

p-value: 2.246-05
p-value: 2.216-04

p-value: 1.01e-11

MOECov M32 M52 M32 MOECov M52
M52 —— SE MOECov SE M32 SE
LIN LIN — LN
(a) Anger (b) Disgust (c) Fear
2 3 4 5 2 3 4 1 2 3 4 5
| 1 1 | © L 1 | « L 1 | ~
: : 2 — g
@ @ I —)
3 £ 3
— i — < i
MOECov M32 MOECov — M52 MOECov M52
M52 —— SE M32 ——r SE M32 SE
LIN LN LIN
(d) Joy (e) Sadness (f) Surprise

Fig. 6.3. Critical difference diagrams for the NLPD metric. The kernel are ordered
following their rankings. The metrics with no significant differences between them
are matched with a straight line.

learned for the anger dataset to make predictions in other datasets. This can
be considered as a transfer learning scenario in which the anger dataset is the
source domain and all the other datasets serve as target domains. Notice, that
in this particular example we do not recompute the hyperparameter values for
the kernels. We simply apply the kernels as they are to the target datasets.

Figure 6.5 and Figure 6.6 respectively show the distributions of the objec-
tives values for the PCC and NLPD metrics. In the figures, MOECov_anger
indicates the kernels learned using the anger dataset. Notice that all the other
algorithms have been learned using (training) data for each target dataset. The
analysis of the figures indicate that the transferability of the kernels depends
on the type of metric used. Results for PCC are at least as good as those
obtained with the other kernels. However, for the NLPD metric, the results
are slightly worse.

The main conclusion from these experiments is that the kernels evolved for
predicting some sentiment can be also useful to predict other sentiments. This
means that the type of transformations that make a kernel a good predictor
are similar across sentiment domains.

6.5 Machine Translation Quality Estimation

Machine Translation QE has attracted a lot of attention within NLP liter-
ature. Depending on the quality of the automatic translation, human post-

90 6 Automatic GP kernel learning for Natural Language Processing

+ +
150
¥ +
GE) 100 +eo + +e +
= + g +
o o
50 o %
o l.;.b .$ §.’ L]
+
0- + ++
0.75
tabite v+ L A
- o o
0.50 + I
0.25 -
o o
Q <& L) .
O 0.00- + ¥ Generation
o () e ®
3 o e 0
-0.25 - . - - ° + 64
-0.50 - ° .
(] L]
L] L]
8-
7-
a) (] + e
%6
=4
L] o
5- o - o -
+ +
o 4
4- + - oo 2
B R
0 100 200 -1 0 1 5 10
Time PCC NLPD

Fig. 6.4. Distribution of the objective values in the first and last population of
MOECov for one execution of the algorithm in the anger dataset.

editing work is often required, and it is desirable to have an estimation of
the cost of the editing process (in terms of time, effort, or editing distance).
Based on the work done by Specia (2011), we measure the post-editing effort
in terms of the following metrics: post-editing score, Human Translation Edit
Rate (HTER) and post-edit time.

In order to score the post-editing effort, Specia (2011) asked the translators
to post-edit each sentence and rate the post-editing effort according to the
following options:

1. Requires complete retranslation.

2. Requires some retranslation, but post-editing is still quicker than retrans-
lation.

3. Very little post-editing needed.

4. Fit for purpose.

Another metric used to evaluate the translation quality is the edit dis-
tance between the automatic translation and its post-edited version. This

6.5 Machine Translation Quality Estimation 91

—_——
——
anger - ———
—E
———eE
————
e
disgust - —_———
—
e ——
e
—
fear - ——
I MOECov anger —0_
= LIN ———
= M32
. M52 e
I SE —————————
joy - —_—————
—
——
sadness - —_— =
-
—————————
——— e
—*—
surprise - —_——
—_—
—_——_—_—_—_———

Fig. 6.5. Results of the transferability experiments for the PCC metric. Each colored
shape shows a kernel density estimation of the distribution. A boxplot of the results
is shown inside. Higher is better.

is computed using the HTER (Snover et al., 2006). HTER is defined as
HTER = f%w, where pe,, is the number of words in the sentence and e
refers to the number of edits, which can be: standard insertion, deletion and
substitution of single words, as well as shifting of word sequences.

Finally, Specia (2011) computed the post-edit time using the average num-
ber of seconds required by two translators to post-edit each word in the sen-
tence, i.e., the number of seconds to post-edit the sentence normalized by the
number of words in that sentence.

6.5.1 Fitness evaluation for Quality Estimation

In order to apply the MOECov algorithm in QE, for each solution (kernel), the
BIC value related to the prediction of each of the QE metrics is computed. As a

92 6 Automatic GP kernel learning for Natural Language Processing

_&——.— I MOECov anger
———— ———— [LIN

anger - ————————————— [M32
——— — I M52
———lER—————————— pa GF
eer——
disgust - mmaEe———
e ————
E——
————
fear - ——.—
——
——
——
joy - A
—~
—_———
e
sadness - —
— C——
—~—
———
surprise - g
3.0 3.5 4.0 4.5 5.0 5.5 6.0

NLPD

Fig. 6.6. Results of the transferability experiments for the NLPD metric. Similar
to the previous figure, a boxplot is shown inside each colored shape that shows the
estimation of the distribution. Lower is better.

consequence, the hyperparameters are optimized three times, one for each QE
metric. Both learning procedures, the selection of the best hyperparameters for
each metric, and the selection of the best kernel given these hyperparameters,
are illustrated in Figure 6.7.

6.5.2 Quality Estimation experiments

The experiments for the QE problem consist of learning a GP regressor based
on a combination of source and automatically translated embeddings, in order
to predict one or several metrics. Particularly, we would like to know if the
evolution of GP kernels by means of the EvoCov algorithm can improve the
results of standard stationary kernels. In addition, we test the ability of the
MOECov algorithm to learn kernels that can be adapted to several Quality

6.5 Machine Translation Quality Estimation 93

Oscore 11 WML 2z
escure.l,Z "MLz

escere,l.l) " MLcre o

argmax
kl es(m,lbt_g kZ estom.Z.beg k‘N escm.N.bcg
eml.beﬂ eHTE\.Z.best eHTE{N.bes
Btime 1 best en‘me,2,best7 96me,N,beﬁf
sf:orel | s:corez | scorey,
SELECT |, HTER; , HTER; . HTERy
time, time; timey
ksell kselz kseIS
esf.ore.sell.bes(es(ore,sellbes! escom.sels,bm
OnTeR selLbest | |BnTER sel2 best O17ER sels best
eﬁrm.sell,beﬂ ehmn,sellhest erime,stls_best

Fig. 6.7. Fitness evaluation for QE. In the top left of the figure the hyperparameter
optimization for k1 and score metric is shown. This optimization is carried out for
each kernel and objective. Then, the best kernels are selected as shown in Section 6.2,
taking into account the performance of the kernel in each of the objectives.

Estimation (QE) metrics. Finally, we also investigate the best approach to con-
form the sentence embeddings for translation post-editing effort estimation,
comparing the word-vector aggregation methods to the direct computations
of the sentence embedding.

6.5.2.1 Datasets and embeddings

To carry out these experiments, we use the datasets originally proposed by
Specia (2011):

1. en-es news-test2010: 1000 English news sentences and their translations
into Spanish using Moses software (Koehn et al., 2007). We decided to
use 600 sentences for training and 400 for testing.

2. fr-en news-test2009: 2525 French news sentences and their Moses trans-
lations into English. In order to have similar computation times as in
the en-es news-test2010 dataset, 600 sentences were used for training and
those remaining for testing.

Punctuation was removed from the sentences, the text was tokenized, and
case was ignored. A zero-vector representation was assigned to the words
missing in the dictionary. For the HTER metric, an equal cost was used for
all edits (Specia, 2011).

For each sentence and language, several sentence and word embeddings
were extracted. For the first dataset, we used English GloVe word embeddings

94 6 Automatic GP kernel learning for Natural Language Processing

(Pennington et al., 2014) of 50 and 300 dimensions. To represent sentences in
the target language, we applied the Spanish word embeddings of size 100 com-
puted from the CoNLL17 corpus and available at the NLPL word embeddings
repository3. For the second dataset, French word embeddings of sizes 300 and
52 were used. The 300-dimensional embeddings? were trained on data from
Common Crawl and Wikipedia, using fastText (Grave et al., 2018), while the
52-dimensional word embeddings® were trained using Twitter messages (De-
riu et al., 2017). The 100-dimensional word embeddings used for the target
language are those provided by GloVe.

We computed the sentence embeddings for the source and target languages
(before post-edition). In order to create the sentence embeddings based on the
word-vectors, we examined several methods to aggregate them. Apart from the
mean (mean) function, we used another two functions: the maximum (maz) of
all word embeddings (maximum value of each embedding component across all
word embeddings), and the standard deviation (std) of word embeddings. The
rationale behind these two choices is to determine whether “extreme values”
or “amount of sentence variability” are better predictors of QE effort.

Apart from the sentence embeddings computed by aggregating word-
vectors, we also computed the sentence embeddings using LASER, sentence
embeddings (Artetxe and Schwenk, 2019). As these bidirectional LSTM artifi-
cial RNN were pre-trained for different languages, we applied them for source
and automatically translated sentences with 1024 dimensions.

Finally, all these sentence embeddings from the source and target lan-
guages were concatenated to produce the vector representations that are used
by the GP model. The embedding combinations tried in the experiments are
detailed in Table 6.3.

6.5.2.2 Experimental setup

In the GenProg algorithms used in these experiments, EvoCov and MOECov,
N = 38 kernels were generated in each of the G = 65 generations. We used a
similar setting to the one followed in the SA experiments, selecting the best
S = 9 kernels each generation, using a threshold of 8 = le—4 to restart the
procedure, and applying the variation operators with a mutation probability
Pm = 0.6 and a crossover probability p., =1 — p,, = 0.4.

Learning a GP regressor implies optimizing the hyperparameters of the
kernel. In order to carry out this optimization, = 350 evaluations of the
LML were allowed for all the kernels evaluated during the experimentation,
including the evolved and standard kernels. Since the local optimizer used for
this optimization is a stochastic process, we ran 30 executions of the fitting
process using the training data. For the standard kernels, this amounts to

3 http://vectors.nlpl.eu/repository/
4 https://fasttext.cc/docs/en/crawl-vectors.html
5 https://www.spinningbytes.com/resources/wordembeddings/

6.5 Machine Translation Quality Estimation 95

Source Automatically
Embedding types Dataset | sentence translated sentence
0-1024 en-es Not used 1024-dim LASER
fr-en Not used 1024-dim LASER
LASER‘ 1024-0 en-es 1024-dim LASER Not used
embeddings fr-en 1024-dim LASER Not used
10241024 |_67¢3 1024-dim LASER 1024-dim LASER
fr-en 1024-dim LASER 1024-dim LASER
0-100 en-es Not used 100-dim NLPL
fr-en Not used 100-dim GloVe
300-0 en-es 300-d%m GloVe Not used
mean /masx /std fr-en 300-dim fastText Not used
: en-es 300-dim GloVe 100-dim NLPL
word-vector - 300-100 =G e e 100-dim GloVe
aggregations .
50/52-0 en-es 50-d}m GloVe Not used
fr-en 52-dim tweet Not used
en-es 50-dim GloVe 100-dim NLPL
50/52-100 1= 5o dim tweet 100-dim GloVe

Table 6.3. Embedding types used in the experiments.

learning 30 different hyperparameter configurations of the same kernel. For
the kernels evolved by means of EvoCov, this means obtaining 30 different
kernels. Also, in order to evaluate the performance of the multi-objective
variant of the algorithm, MOECov, we obtained 30 different non-dominated
sets of kernels with their hyperparameters optimized for each metric. Finally,
for each kernel, the quality of the prediction was measured by computing the
RMSE between the known true metric values and the predictions.

6.5.2.3 Embedding type comparison

The aim of this experiment is to investigate whether the different ways to
compute sentence embeddings influences the quality of the prediction. This
experiment was carried out with the SE kernel, as the best-known representa-
tive of the standard kernels. Figure 6.8 shows the RMSE as computed in the
test set with the max, mean, and std functions of the word-vectors, and the
sentence embeddings provided by the LASER bidirectional LSTM. For each
embedding type, several dimensions were tried, also testing the possibility of
not including the source or the automatically translated sentence. Each dot in
the plot represents the result in terms of RMSE for each of the 30 executions.

The analysis of Figure 6.8 reveals that there are no major differences in sen-
tence embeddings for the time and HTER metrics in the en-es news-test2010
dataset. However, for the score metric, LASER embeddings produce lower er-
rors in the predictions than the word-vector aggregation functions. This effect
is more pronounced in the fr-en news-test2009 dataset for all metrics, where
the LASER embeddings produce better predictions. Among the word-vector

96 6 Automatic GP kernel learning for Natural Language Processing

aggregation functions, obtaining the maximum value of the vector is the best
option according to the results shown in the fr-en news-test2009 dataset for
the score and time metrics.

® laser ® max ® mean e std
w o, son . °8 o8g O . 021 o o 3 om e O o
060 PR | 1id gfegd Pl ;‘::-':".’-ﬁ"
a:s § 120 2GRS S oo} s f AFLHA
058 3 § 3 BV 1t 4§ 25 Y g 88 ~E 3
w s f’%t w t §9q y woot & ¢ @ 5
g 1ig Rexhb Swog g g SHRERAF S 4. S
d s H4 o oo .
Zoso § | 3 :.::'i;i}._.] el e Eows e 3 3 el @ &
).!-..-.-. R e BRI
N S . KA 0.17 H 0o o |
ose § . my s BEwRlh s o
LI I | ¢ 3 Wt ' 016 . « o °
§338g8g¢8 §388g84¢8 §388Z8¢8
T O T o ® 9 & o T O 0 ® 9 & o T o5 0 ® 9 3 o
S = % S 3 © S = % S 3 © S = 3 S 3 ©
N 85 8 3 88 g N 88 g
=4 I =} o =4 o
Embedding type Embedding type Embedding type
(a) score in en-es (b) time in en-es (c) HTER in en-es
. . .l 0.180 = o
068 5" 24 ‘ ';'?: " . 5 G s S0l me}
. ‘EER 3 R 0.175 0 aii"'i‘
o : . g m g,..
w . . LR X R w 22 woi70 ¢ g ¢ b1
Loes ¢ ¢ o fo8 E04 = e ' 2 v § Ryl
2 ’ ' ! LN O L B z i o165 3 3 8wt Mol
. ti . 20 M B | e,
i ‘ * . 0160 ¢ § ¢ HE
0.64] ‘ ' ' s 1 ¢ 80
. s . I B 0155 2 . *
3383838 3383858 $33838¢%98
e 32T 8T8 3 e 3 e T 8T8 I Sy e T8 T8 I
s83°°ggsg s383°°gzg¢g 383°°gsg¢g
N ® s N -1 & ® S
=4 o = o =] o
Embedding type Embedding type Embedding type
(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Fig. 6.8. Comparison between the embedding types for a GP model with the SE ker-
nel. Each dot represents the RMSE of each of the 30 executions for each embedding
type. The embedding types are shown along the x axis, using colors to distinguish
between LASER embeddings and mean/max/std word-vector aggregation methods.
At the top, the results for the en-es news-test2010 dataset for each metric can be
found. At the bottom of the figure, the results for the fr-en news-test2009 dataset
are shown.

The numeric results of the experiment are presented in Table 6.4, where the
average RMSE of all the 30 executions is shown. According to these average
results, the configurations based on the LASER embeddings obtain the best
results in all the metrics and datasets. The best results in the en-es news-
test2010 dataset for score and time metrics and in the fr-en news-test2009
dataset for score metric are obtained by using both source and automatically
translated embeddings. Regarding the word-vector aggregation methods, the

6.5 Machine Translation Quality Estimation 97

influence of the number of dimensions of the selected embeddings is less no-
ticeable than the choice of the aggregation function.

en-es fr-en
Embedding type | HTER score time | HTER score time

0-1024 0.1883 0.5560 108.2696 | 0.1642 0.6495 19.1413
LASER 1024-0 0.1879 0.5562 106.1376 | 0.1653 0.6487 19.0268
1024-1024 | 0.1882 0.5545 105.2971| 0.1645 0.6476 19.2748
0-100 0.1930 0.5899 108.4599 | 0.1845 0.6781 21.1592
300-0 0.2212 0.5804 110.3525| 0.1715 0.6642 21.9848
max 300-100 0.2538 0.5796 107.4330 | 0.1887 0.6669 20.0665
50/52-0 0.2555 0.5761 110.6683 | 0.1711 0.6612 20.9603
50/52-100 | 0.2681 0.5826 106.6381| 0.1946 0.6721 19.8703
0-100 0.1929 0.5913 111.3924| 0.1737 0.6862 21.5264
300-0 0.1910 0.5817 111.2523| 0.1693 0.6794 22.7502
mean 300-100 0.1897 0.5847 110.1628 | 0.1718 0.6858 21.6260
50/52-0 0.1904 0.5852 112.0467| 0.1686 0.6837 22.9924
50/52-100 | 0.1912 0.5858 111.5610| 0.1747 0.6940 21.8793

0-100 0.1946 0.5948 109.9629 | 0.1731 0.6767 21.8624
300-0 0.1926 0.5906 107.9739 | 0.1711 0.6814 22.4847
std 300-100 0.1930 0.5909 107.1841| 0.1721 0.6740 20.7808

50/52-0 0.1932 0.5871 112.1964 | 0.1694 0.6822 22.4158
50/52-100 | 0.1929 0.5887 111.7536| 0.1757 0.6770 21.2571

Table 6.4. Comparison between the embedding types for a GP model with SE
kernel (mean RMSE from 30 executions). The best results are shown in bold.

In conclusion, the LASER embeddings are the best choice to compute the
sentence embeddings for translation-effort prediction with GP models using
the SE kernel. None of the word-vector aggregation methods has been able
to obtain competitive results on average in the tested datasets and metrics.
Also, including the source and automatically translated embeddings as inputs
of the GP model is preferable according to the results of this experiment.

6.5.2.4 Learning kernels for QE

In this second experiment regarding QE, we compare the classical kernel mod-
els to the evolved kernels learned by the EvoCov algorithm. Figure 6.9 shows
the RMSE on the test set of the GP models with these kernels. As they are
the sentence representations that showed the best results in the previous ex-
periment, we selected LASER, embeddings (including the information of the
automatically translated sentences) to carry out this second experiment. In
addition, we also included the mean aggregation function since it is one of the
most commonly reported aggregation methods in the literature.

The first remarkable fact in Figure 6.9 is that GP kernels show a smaller
variance compared to the standard kernels, which can be a sign of conver-

98 6 Automatic GP kernel learning for Natural Language Processing

gence of the algorithm to the optimal kernel. Furthermore, it can be seen that
the results in this experiment are consistent with the experiment shown in
Section 6.5.2.3, as the LASER embeddings outperform the word-vector ap-
proaches, which is particularly evident for the fr-en news-test2009 dataset.
‘While the performance of the standard kernels is similar in all the databases

and metrics, the evolved kernels show a better performance in the word-vector
approaches.

® Maten32 ® Matern 52 e SE ® EvoCov
0.60 (X 3 oo, $% a8 28230 232 etes et
yis, dies pedy cesl i3, 020 ¥fde iiig feds
3T I I S L T abef 1330 vibd
o guig ¥igi iy 1348 pyge 3444 o DT ANTL abMy
u soed o0) u 284 ¢ J’ "*! w com e . | .
2 st 3528 Ypes 2 €rnd sees 2 2198 20 ev%d
Z 056 &.“ ce§ el) g0 ovrry L. z018 32¢% if,' sice
It e 5 0% . see? 24 33¢:
- . .o s 1%°3
,51-. . * "%, ®ee® 017 822 e oo
0.54 { 5 80 % °ef ecew §ii¢ HEEN :
e . FLES vone . 016 "% ¢.° ., e
N 8 8 N 8 8 X 8 8
t=] - - o - - o - -
s 1) Q 5 =) Q&) =) R
3 8 B N 3 2 N 3 g
e % s e % s e % s
2 g 5 g g g b g g
kd € & £ k! £
Embedding type Embedding type Embedding type
(a) score in en-es (b) time in en-es (c) HTER in en-es
0.70 . . e L. e 0175 o= e . .
1. 1 2 Ve 3;!5 t34
‘. i eos ¥ i%»
H 0170 o+ o .8
0.68 Qs 0 os? ¢ o o0 37i 2(‘,
W o LJTHE S w 2 2 w cres el b |
n e . %) 00165 %8 .‘l e%e g
=066 * % o S = = 4 .o (4
i3 z’i’ . 4 @ 9o 4 ?:‘i 8 e.,°
H X ¢ s 0.160 a2t
o6t EIEE i‘;‘ il
e 18 Y 0155 o° e
< o (=3 < (=3 o < o o
S = e] e e g e e
i =) & iy =) N o =) I
S 8 g N 8 2 X 8 2
g < 8 E < 8 g < 3
< € & 3 ks £
Embedding type Embedding type Embedding type
(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Fig. 6.9. Comparison between the EvoCov kernel learning method and the standard
kernels. At the top, the results for the en-es news-test2010 dataset for each metric
can be found. At the bottom of the figure, the results for the fr-en news-test2009
dataset are shown.

In Table 6.5 the average RMSE results are shown. It can be seen that the
kernels learned by the EvoCov algorithm outperform the standard kernels on
average in 4 out of 6 problems using the LASER embeddings. Nevertheless, for
the score and time metrics in the en-es news-test2010 dataset, the results are
favorable to the Matern32 kernel. On the configurations where the sentence

6.5 Machine Translation Quality Estimation 99

embedding were produced by aggregating the word-vectors, the best average
results are achieved by the EvoCov algorithm in all the cases.

en-es fr-en
Emb. type | Method | HTER score time | HTER score time
EvoCov | 0.1824 0.5552 105.9512]0.1615 0.6471 18.5265
LASER | M32 0.1883 0.5542 105.1188| 0.1645 0.6474 19.6751
1024-1024 | M52 0.1880 0.5545 105.5599| 0.1645 0.6475 19.6734
SE 0.1882 0.5545 105.2971| 0.1645 0.6476 19.2748
EvoCov | 0.1838 0.5656 108.8462| 0.1682 0.6671 20.7017
mean M32 0.1873 0.5931 109.6791| 0.1708 0.6987 21.5774
300-100 | n52 0.1883 0.5959 109.1189 | 0.1715 0.6929 21.3227
SE 0.1897 0.5847 110.1628| 0.1718 0.6858 21.6260
EvoCov| 0.1861 0.5709 109.7424| 0.1681 0.6650 20.8455
mean M32 0.1909 0.5927 111.0449| 0.1713 0.7010 21.2932
50/52-100 | p152 0.1904 0.5887 111.2285| 0.1724 0.6915 21.4581
SE 0.1912 0.5858 111.5610| 0.1747 0.6940 21.8793

Table 6.5. Comparison between the EvoCov kernel learning method and the stan-
dard kernels (mean RMSE from 30 executions). The best results for each embedding
type are underlined, while the best results overall are shown in bold.

In order to assess the existence of significant differences among the stan-
dard kernels and the evolved ones, we conducted a statistical test based on the
results of the LASER embeddings. For each dataset and metric, we applied
Friedman’s test (Friedman, 1937) and we found significant differences in 4 out
of 6 comparisons (o« = 0.05. p-values can be seen in Figure 6.10). Then, for
each configuration, we applied a post-hoc test based on Friedman’s test, and
adjusted the results with Shaffer’s correction (Shaffer, 2012).

The results of the statistical tests are shown in Figure 6.10. They confirm
a coherent pattern, where EvoCov is the best performing kernel for 3 of the
configurations. However, according to this test, it can also be appreciated
that for these configurations the differences between the kernels learned by
EvoCov and Matern32 are not significant. On the other hand, the Matern32
kernel obtains significantly better results than the EvoCov kernels on both
datasets for the time metric.

Overall, the kernels learned by the EvoCov algorithm have shown a solid
performance in most of the sentence embedding types. These kernels outper-
form the standard ones in all the databases and metrics for the word-vector
embeddings, although they obtain mixed results when using the LASER em-
beddings.

6.5.2.5 Learning multi-objective kernels

Another relevant issue is to analyze if an approach similar to the one presented
can be adapted to different metrics by only optimizing their hyperparameters.

100 6 Automatic GP kernel learning for Natural Language Processing

1 2 3 4 2 3 4 1 2 3
L | | 'SI L | | $ L | | gl
) & $
g 5 5
] g g
z i :
Matern.32 — Matern.52 SE Matern.52 EvoCov —— SE
EvoCov ——SE Matern.32 — EvoCov Matern.52 ——— ' Matern.32
(a) score in en-es (b) time in en-es (¢) HTER in en-es
1 2 3 4 2 3 4 1 2 3
L |] s L |] s L |] g
§ g £
= s o
E g — g
E £ £
i l =
EvoCov Matern.52 Matern.32 SE EvoCov Matern.32
Matern.32 ——SE Matern.52 EvoCov SE ——Mm™™ Matern.52
(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Fig. 6.10. Critical difference diagrams for the standard kernels and EvoCov with
1024 — 1024-dimensional LASER. sentence-vectors. The methods are ordered fol-
lowing their rankings. The metrics with no significant differences among them are
matched with a straight line. At the top, the results for the en-es news-test2010
dataset can be found, while at the bottom of the figure, the results for the fr-en
news-test2009 dataset are shown.

Thus, we conducted a third experiment using the MOECov algorithm and
compared the results to those obtained by the standard kernels.

Being a multi-objective approach, the outcome of the MOECov algorithm
is a set of non-dominated kernels per execution. For illustrative purposes, in
Figure 6.11, we show a parallel coordinates diagram for one of the experiment
runs, where all the kernels evolved by MOECov are compared to the stan-
dard kernels. It can be seen that most of the kernels selected by MOECov
obtain good results in HTER and score metrics, although their performance
is slightly worse than the standard kernels for the time metric in most types
of embeddings.

In addition, a summary of the results is shown in Table 6.6. There, the
final kernels (those non-dominated according to the BIC measure during the
training step) provided by MOECov for each of the executions are compared
to the standard kernels. This comparison is made over the test set, in terms of
RMSE for each of the QE metrics. This table shows the ratio of executions in
which the standard kernels are not dominated by any of the evolved kernels.
We also measure the average ratio of MOECov kernels that dominate, draw
with, or are dominated by the standard kernels for each type of sentence
embedding. We see that for the LASER embeddings, the Matern52 is the
most competitive choice as it is not dominated in 13 out of 30 executions

6.6 Conclusions 101

MoeCov Matern 32 Matern 52 — SE
1.0 1.0 1.0
508 508 508
|1 @ @
B & 5
g 06 gos g o6
5 <] <]
c c / =
o 0.4 w 04 0.4
%]
=
0.2 o 0.2 0.2
—
0.0 = 00 0.0
HTER score time HTER score time HTER score time

(a) LASER 1024-1024 in (b) mean 50-100 in en-es (c) mean 300-100 in en-es
en-es

1.0 1.0 1.0
508 508 508
o1 @ @
[} © ©

0.6 . .
E E 06 g 0.6
<] <] S
£ £ £
504 504 SN 504
[} (2] [}
> > =
© 0.2 o2 02

e
0.0 0.0 0.0
HTER score time HTER score time HTER score time

(d) LASER 1024-1024 in (e) mean 50-100 (f) mean 300-100 in fr-en
fr-en

Fig. 6.11. Parallel coordinate plot for one of the executions comparing the results
of MOECov with standard kernels. The results for the en-es news-test2010 dataset
can be found at the top, while the results for the fr-en news-test2009 dataset are
shown at the bottom.

in the en-es news-test2010 dataset and in 10 executions in the fr-en news-
test2009 dataset. Nevertheless, in most executions there is a kernel in the
non-dominated solutions proposed by MOECov that dominates each standard
kernel.

All in all, the kernels learned by the MOECov algorithm have shown their
ability to predict several QE metrics, dominating the performance of the stan-
dard kernels in most cases.

6.6 Conclusions

The application of GPs on NLP tasks has grown in interest in recent years.
Some of the most relevant NLP research fields where GPs have been used
include SA and QE of automatic translation. Moreover, recent advances in
sentence embeddings have facilitated automatic feature extraction procedures
that traditionally required some domain expertise. However, similar to the
time series problems shown in Chapter 5, the kernel selection remains a key

102 6 Automatic GP kernel learning for Natural Language Processing

% of exccutions Avg.‘ % of 1\40EC9V kernels that
Standard || the standard kernel | dominate/draw with/are
Emb. type | kernels is non-dominated dominated by the standard kernel
M32 30.00 13.23 / 79.04 / 7.74
LASER
1024-1024 | M52 43.33 13.47 / 79.78 / 6.75
SE 36.67 11.58 / 81.91 / 6.51
" M32 40.00 15.06 / 81.71 / 3.23
2 | mean
L [300-100 M52 40.00 17.09 / 80.65 / 2.26
© SE 46.67 19.54 / 78.13 / 2.33
mean M32 36.67 20.89 / 75.44 / 3.67
50/52-100 M52 43.33 14.54 / 77.07 / 8.39
SE 33.33 18.61 / 77.31 / 4.08
M32 23.33 7.39 / 77.50 / 15.11
LASER .
1024-1024 | M52 33.33 7.99 / 76.43 / 15.58
SE 30.00 7.52 / 78.02 / 14.47
| mean M32 16.67 28.74 / 70.24 / 1.02
i’ 300-100 M52 6.67 31.00 / 67.25 / 1.75
h SE 0.00 43.55 / 55.51 / 0.94
mean M32 6.67 30.95 / 68.48 / 0.57
50/52-100 M52 6.67 38.60 / 60.92 / 0.48
SE 0.00 53.89 / 45.94 / 0.17

Table 6.6. Comparison of the standard kernels and the kernels proposed by MOE-
Cov in terms of RMSE for each execution. The percentage of executions where the
standard kernel is not dominated is shown. The average percentage of MOECov
kernels that dominate, draw with and are dominated by the standard kernel is rep-
resented in the right-most column.

issue in the application of GPs to these NLP problems. Moreover, in SA and
QE, it is desirable that such models are suitable for various tasks, and several
metrics have been proposed to measure the quality of the GP models. Thus, we
have proposed a multi-objective extension of the EvoCov algorithm, MOECov,
that is able to learn kernels that are adequate according to several metrics. To
the best of our knowledge, this is the first work that uses evolved GP kernels
for multi-objective problems. Neither could we find previous studies that try
to optimize the hyperparameters of fixed kernels simultaneously considering
two or more metrics.

By addressing the creation of kernels as a multi-objective problem, we
have been able to generate kernels that simultaneously optimize two of the
SA metrics proposed, along with the computational complexity. Furthermore,
the kernels evolved for predicting some sentiment can be also useful to predict
other sentiments. We have also demonstrated that, by using MOECov, kernels
that are able to predict several QE metrics can be learned. Moreover, these
kernels evolved by means of EvoCov improve the performance of the standard
kernels in most cases.

6.6 Conclusions 103

In terms of the sentence embeddings used, LASER embeddings have
proved to be more valuable compared to the sentence embeddings computed
by aggregating word-vectors. Once the bidirectional LSTM RNN has been pre-
trained for several languages, the LASER embeddings are the recommended
option for translation-effort prediction with GP models using the SE kernel.
Among the functions used to aggregate the word-vectors, max function has
showed a slight advantage over the extensively used mean. In most of the QE
experiments carried out using these sentence embedding methods, including
the information from the automatically translated text has helped to improve
the results.

Part III

Conclusions

7

Conclusions

Kernel functions are an essential component of many machine learning al-
gorithms. The kernel methods are a good example of this, where the kernel
function plays a key role. One of the best-known kernel methods is the SVM
model, where the kernel function allows non-linear classification problems to
be dealt with. Beyond kernel methods, kernel functions are also needed in
Bayesian inference methods, such as GPs.

In general, and particularly for SVMs and GPs, the choice of the kernel
heavily influences the performance of the methods, and there is no rule of
thumb for selecting the most appropriate one. Although different standard
kernels have been proposed, the best results are commonly obtained by using
kernels specifically designed for solving the problem at hand. Furthermore,
due to the complexity of this procedure and the expert knowledge required,
there is an increasing interest in developing algorithms which are able to learn
kernels without human intervention.

In this regard, several methods, such as GenProg, have been proposed in
the SVM literature to automatically find kernels that improve the performance
of standard kernels. Apart from the selected method to represent the kernel
functions and the chosen search algorithm, learning kernel functions for SVMs
involves several components that need to be adjusted in order to obtain good
performance, such as the hyperparameters of the kernel, the C parameter,
and the selected metric to evaluate the performance of the kernel.

On the other hand, the kernel search problem has not attracted that much
attention in the GP literature. While for SVMs, two types of grammars have
been proposed to define the search space of kernel functions, kernel composi-
tion methods and basic mathematical expression based approaches, in GPs,
most of the works have only focused on combining kernels. To the extent of
our knowledge, approaches based on basic mathematical expressions, which
allow a wider search space of kernels, have not been investigated in the GP
field.

108 7 Conclusions

Next, we describe the contributions made during this dissertation, the
ideas for future work, and finally the publications accepted in international
conferences and journals.

7.1 Contributions

In this dissertation we have investigated the issue of learning kernels for two
important Machine Learning methods, SVMs and GPs. We have analyzed
the work done in SVMs in depth and identified areas for improvement, and
brought to the GPs the advances made in the SVM literature, adapting these
techniques to the particularities of the GPs. We have also demonstrated the
usefulness of this GP approach in time series and NLP tasks, even extending
the method to multi-objective problems.

We summarize the contributions made during this dissertation as follows:

e In-depth study of the components that influence the kernel search for
SVMs: We have identified the different elements of SVMs, from weights
and the bias of the hyperplane, to the C parameter, paying attention to the
kernels and its hyperparameters, and investigated their interplay during
the search. We have focused our efforts on basic mathematical expression
based grammars to define the search space, and on GenProg as the search
method. We emphasize the importance of having the right elements in the
grammar, and question the performance of GenProg over other simpler
search methods. Including the correct elements in the grammar can be
more important than the search method itself when trying to find the
best kernel structure for SVMs. We have also proposed some methods to
set the hyperparameters and C' during the kernel search. Finally, we have
introduced a metric based on the BIC measure, which can overcome the
challenges presented by the accuracy.

e Proposal of basic mathematical expressions as building blocks for GP
kernels: We have proposed bringing the progress made in SVMs to the GPs
by considering its covariance function as a program that can be learned
by means of GenProg. The usage of basic mathematical expressions as
building blocks provides much simpler kernels than kernel combination
approaches, even improving their performance. We have also incorporated
hyperparameter inheritance into GenProg, improving the efficiency of the
algorithm. Some of the components designed in EvoCov could be extended
to other GenProg applications beyond GPs.

e Application of the method to time series regression tasks: By means of
this technique, we have improved the state-of-the-art results of time se-
ries regression tasks. We have also investigated several metrics for kernel
hyperparameter optimization, providing valuable insights into their influ-
ence on the performance of the GPs in time series extrapolation.

7.2 Future work 109

e Application of the method to various NLP tasks: By addressing the cre-
ation of kernels as a multi-objective problem, we have been able to gen-
erate kernels that simultaneously optimize different accuracy metrics. We
have also researched the best methods for feature extraction to be used
in GPs, comparing several types of sentence embeddings. Thus, we have
improved the performance of the most used kernels in translation effort
prediction with GPs, and have shown that this method can be also useful
in SA tasks.

e Development of a software for GP and SVM kernel learning: The proposed
kernel learning algorithms have been coded in Python and made publicly
available in the Python Package Index!. Morcover, the software developed
to carry out the experimentation related to GPs, GPlib, has also been
published?. These pieces of software can be useful to further develop the
issues discussed in this dissertation or in other application areas.

7.2 Future work

In this section the future research directions derived from this dissertation are
presented.

First, further research on grammar definition is suggested, as possible per-
formance gains have been reported when certain elements are added to the
grammar. These are the improvement areas we have identified:

e Extend the grammar to ChangePoint and ChangeWindow kernels: Lloyd
et al. (2014) showed that this type of kernels are very useful in some time
series extrapolation tasks. New elements could be added to the grammar
to be able to create kernels of this kind.

e Create a basic mathematical expression based grammar that is able to
reproduce the standard kernels, where any composition of the building-
blocks is guaranteed to be PSD: The search space described by this gram-
mar would be able to merge the benefits of kernel composition approaches
and basic mathematical expression based grammars. The next step in
grammar definition could be to investigate the existence of a grammar
that could be used to describe a search space that contains all the PSD
kernels and only these PSD kernels.

In addition, it is also interesting to investigate more sophisticated metrics
to better evaluate the kernel and its hyperparameters:

e Improve the performance of the SVMBIC metric: We have seen that SVM-
BIC introduces some interesting properties compared to the traditional
accuracy. New methods for finding kernels and hyperparameters can be
designed so that SVMBIC metric can take advantage of their properties.

! nttps://pypi.org/project/evocov/
2 https://pypi.org/project/gplib/

110 7 Conclusions

e Better metrics to evaluate the performance of the hyperparameters in
GPs: We propose continuing the work done to measure the performance of
the hyperparameter optimization metrics for GP extrapolation problems.

Finally, there are various possibilities to extend our studies on the appli-
cations of the proposed method in the NLP field:

e Extend the work done in SA to other domains: Other sentiment datasets,
possibly in other languages, could be considered.

e Improve the experimentation done to validate the proposed multi-objetive
GenProg approach: In the SA experiments, we noticed that, at the time
of stopping the MOECov algorithm, the quality of the solutions was still
improving. Therefore, more fitness evaluations are likely to produce better
results of the algorithm.

e Apply the proposed methods to classification tasks within NLP: Although
we focus on regression problems in this work, our contribution can be
easily extended to other NLP applications, such as text classification.

e Better understand the interplay between the sentence embeddings and
the GP models: We noticed that dot_product elements were hardly ever
selected when evolving kernels for GPs based on sentence embedding data.
The relation of the elements in the selected kernels with the sentence
embedding type should be further studied.

7.3 Publications

In this section, the publications and submissions are presented. First, we
present the publications directly derived from the thesis:

1. I. Roman, A. Mendiburu, R. Santana, and J. A. Lozano, “Sentiment anal-
ysis with genetically evolved Gaussian kernels,” in Proceedings of the Ge-
netic and Evolutionary Computation Conference, Prague, Czech Republic,
Jul. 2019, pp. 1328-1337, doi: 10.1145/3321707.3321779.

2. 1. Roman, R. Santana, A. Mendiburu, and J. A. Lozano, “Evolving Gaus-
sian Process Kernels for Translation Editing Effort Estimation,” in Pro-
ceedings of the 13th International Conference on Learning and Intelligent
Optimization, Chania, Greece, 2020, pp. 304-318, doi: 10.1007/978-3-030-
38629-0_25.

Next, the submissions that are in a revision process are shown:

1. “Evolution of Gaussian Process kernels for machine translation post-
editing effort estimation,” submitted to Annals of Mathematics and Arti-
ficial Intelligence.

2. “Evolving Gaussian Process kernels from elementary mathematical ex-
pressions,” submitted to IEEE Transactions on Cybernetics.

3. “SVM kernel learning revisited,” submitted to Neural Computing and
Applications journal.

7.3 Publications 111

Finally, in spite of not being strictly related to this dissertation, we also
list the publications produced during this thesis, as their work has contributed
to some extent to the contents of this dissertation:

1. I. Roman, R. Santana, A. Mendiburu, and J. A. Lozano, “An Ex-
perimental Study in Adaptive Kernel Selection for Bayesian Optimiza-
tion,” IEEE Access, vol. 7, pp. 184294-184302, 2019, doi: 10.1109/AC-
CESS.2019.2960498.

2. I. Roman, A. Mendiburu, R. Santana, and J. A. Lozano, “Bayesian Opti-
mization Approaches for Massively Multi-modal Problems,” in Proceed-
ings of the 13th International Conference on Learning and Intelligent Op-
timization, Chania, Greece, 2020, pp. 383-397, doi: 10.1007/978-3-030-
38629-0_31.

3. I. Roman, J. Ceberio, A. Mendiburu, and J. A. Lozano, “Bayesian op-
timization for parameter tuning in evolutionary algorithms,” in IEEE
Congress on Evolutionary Computation, CEC 2016, Vancouver, Canada,
Jul. 2016, pp. 4839-4845, doi: 10.1109/CEC.2016.7744410.

4. I. Roman, R. Santana, A. Mendiburu, and J. A. Lozano, “Kernel hau-
tapen dinamikoa Optimizazio Bayesiarrean,” in 1. Ikergazte: Nazioarteko
ikerketa euskaraz. Kongresuko artikulu-bilduma, Durango, 2015, p. 842.

5. I. Roman, R. Santana, A. Mendiburu, and J. A. Lozano, “Dynamic Kernel
Selection Criteria for Bayesian Optimization,” in BayesOpt 2014: NIPS
Workshop on Bayesian Optimization, Montreal, Canada, 2014.

A

Examples of evolved kernel functions

In order to illustrate the characteristics of the kernels learned through compo-
sition approaches in contrast to kernels composed of basic mathematical ex-
pressions, we compare the ad hoc kernel designed by Rasmussen and Williams
(2006) for the Mauna Loa Atmospheric COy time series (shown in Equa-
tion (A.1)) and the kernel automatically composed by the approach proposed
by Duvenaud et al. (2013) (Equation (A.2)), to a kernel learned by means of
EvoCov (Equation (A.3)).

]{TRw(X, X,) :k‘SE(X, Xl) X k‘PER(X, Xl) + k’SE(X,X/) + k’RQ(X, Xl)—l—

kse(x,x") + kwn (x,x) (A1)

kapss(x,x) =(ksp(x,x') + kper(x,x')) x (ksp(x,x') + kro(x, X))+

kw N (x,x)
(A.2)

! 0.5 1
|| hpu) hPlb ||2))
kBvocon(X,X') =hp?.0(x,x') + 5 x < +
X

hps + H x s {571 % hpl8+
hpie hpis

!
B ([sm(z,f;‘) cos(—z’;l;x)] [sm(th) 608(7277};;’()}
Tp e

2

e

)

(A.3)

In Figures A.1, A.2 and A.3, these three kernels are represented as basic
mathematical expression trees. It can be seen that the tree corresponding to
the kernel created by EvoCov has a more compact structure.

A Examples of evolved kernel functions

114

< <
CLiiw> () ooy Xawn)
<> Give> oI) G= & (min)
<> @ CORC) CTDONCD G @ Coneid G G () Lamd
Comunt) G (CTO NG, > BT, Gt COR IO ICTIICT T O,
COIOICCICTID T R IO ICO I ICTO I B CTO IO LCED T CID AT R I E CHECED S OR O D, Comed D) D
© Conuil (i) Comed (o) Comma) (it Cotme (o) Comeid @) (D) () Commd) (o) Gt (2 Cimdd (= (W
G5 D) EmD @ (B G @) Gmd GaD (D G) D @D (oD Gne) () Gimd () Qs> (O =
@ O, & G4 O, & O, > IR DD
DI LT G @ E&D
& G () G Gohed G Gmd (D
Q@ @

Fig. A.1. Kernel designed by Rasmussen and Williams (2006) for the Mauna Loa Atmospheric CO2 time series, illustrated as a tree
composed of basic mathematical expressions.

115

A Examples of evolved kernel functions

‘strorssa1dxe [edT)RUWLI[JRUI JIsk(JO PasoduIod 9011 @ sk PoJRIISI][l ‘SoLIos
awr) 20, dupydsow)y eor] vuNey 9y 10j (£10g) ‘Te 1° pneusan(Aq pesodoid wrjtioS[e oy Jo sueswr Aq poures| [UIdY ‘Z'V "SI

CO Ead G Gomed G (o) Comed ©
CD L I CTTY flmand @ G
Coad D Gows &B ©) D Grd <O) €
Comerd (D G (D) Comod Qo) @D Coad (ro) Cunnd (e Good G (re) Come G @D G (o) Comnd
Gard Geomd O XA CO R OUCD L0 BEECT O XD ORI O
OIOICD IO IR CIID ICT D ICD S CID R I JCT I CID I ED S DR CII JCT X CDOAC S <5
== <= Crsd o= <y G o) (re=d
CO TR & . T2 ORC (@) Comsd
Cored G Gomend Comd CaennaS Catnsd <
CD! Cr) (o
CORPRCE

Cr)

A Examples of evolved kernel functions

116

Cammd (o) Comd G G i) Coned Cuemd (82 ORI I CID,
€5, IR CTIICO NG Catd G Coemd (1) G
< G CORC ()

G (O

Fig. A.3. Kernel learned by means of EvoCov for the Mauna Loa Atmospheric CO3 time series, illustrated as a tree composed of
basic mathematical expressions.

A Examples of evolved kernel functions 117

While the kernel designed by Rasmussen and Williams (2006) and the one
learned by means of the algorithm proposed by Duvenaud et al. (2013) are
composed by 77 and 64 primitives respectively, the EvoCov kernel uses only
41 primitives.

Figure A.4 shows the outcome of these kernels. In spite of having such
different expressions, it can be appreciated that their outcome is similar.

50 100 138
nput, x nput. x

(a) Rasmussen and Williams (2006)

(¢) EvoCov

Fig. A.4. Output of the kernels designed for the Mauna Loa Atmospheric CO- time
series. On the left side, the actual outcome of the kernel function is shown, according
to the values of the input vectors. On the right, the same function is shown, when
' =0.

Finally, in Figure A.5, the predictions of the GP model with each of the
kernels are illustrated for the Mauna Loa Atmospheric COy time series. The

118 A Examples of evolved kernel functions

kernel designed by Rasmussen and Williams (2006) shows the highest error
in this regression task, the EvoCov kernel being the one with the best perfor-
mance among these three kernels.

w a
s =

Carbon Dioxide (parts per million)
o ” N

1998 3060 ?Et? 2004 2006
Year

(a) Rasmussen and Williams (2006)

w S

Carbon Dioxide (parts per million)

1998 2000 2002 2004 2006
Year

(b) Duvenaud et al. (2013)

Carbon Dioxide (parts per million)

1998 2000 2002 2004
Year

(c) EvoCov

Fig. A.5. GP predictions of the kernels designed for the Mauna Loa Atmospheric
CO» time series. The dots represent the last samples of the training set (the first
samples of the training set are not shown), while the triangles show the samples of
the test set. The predictions are illustrated with a continuous blue curve for the mean
of the GP model and the light blue shadow shows 3 times the standard deviation.

References

Aldous, D. and Vazirani, U. (1994). ”Go with the winners” algorithms. In
Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 492-501.

Ali, S. and Smith-Miles, K. A. (2006). A meta-learning approach to automatic
kernel selection for support vector machines. Neurocomputing, 70(1):173—
186.

Alizadeh, M. and Ebadzadeh, M. M. (2011). Kernel evolution for support
vector classification. In 2011 IEEE Workshop on Evolving and Adaptive
Intelligent Systems (EAIS), pages 93-99.

Artetxe, M. and Schwenk, H. (2019). Massively Multilingual Sentence Em-
beddings for Zero-Shot Cross-Lingual Transfer and Beyond. Transactions of
the Association for Computational Linguistics, 7:597-610. Publisher: MIT
Press.

Bach, F. R., Lanckriet, G. R. G., and Jordan, M. I. (2004). Multiple Ker-
nel Learning, Conic Duality, and the SMO Algorithm. In Proceedings of
the Twenty-first International Conference on Machine Learning, ICML ’04,
pages 6—, New York, NY, USA. ACM.

Bachoc, F. (2013). Cross Validation and Maximum Likelihood estimations of
hyper-parameters of Gaussian processes with model misspecification. Com-
putational Statistics & Data Analysis, 66:55-69.

Beck, D. (2017a). Modelling Representation Noise in Emotion Analysis using
Gaussian Processes. In Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers), pages
140-145, Taipei, Taiwan. Asian Federation of Natural Language Processing.

Beck, D. and Cohn, T. (2017). Learning Kernels over Strings using Gaus-
sian Processes. In Proceedings of the Fighth International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pages 67-73,
Taipei, Taiwan. Asian Federation of Natural Language Processing.

Beck, D., Cohn, T., Hardmeier, C., and Specia, L. (2015). Learning Structural
Kernels for Natural Language Processing. Transactions of the Association
for Computational Linguistics, 3:461-473.

120 References

Beck, D., Specia, L., and Cohn, T. (2016). Exploring Prediction Uncertainty
in Machine Translation Quality Estimation. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Language Learning, pages
208-218.

Beck, D. E. (2017b). Gaussian Processes for Text Regression. phd, University
of Sheffield.

Benassi, R., Bect, J., and Vazquez, E. (2011). Robust Gaussian Process-
Based Global Optimization Using a Fully Bayesian Expected Improvement
Criterion. In Coello, C. A. C., editor, Learning and Intelligent Optimiza-
tion, number 6683 in Lecture Notes in Computer Science, pages 176-190.
Springer Berlin Heidelberg,.

Bing, W., Wen-qiong, Z., Ling, C., and Jia-hong, L. (2010). A GP-based kernel
construction and optimization method for RVM. In 2010 The 2nd Inter-
national Conference on Computer and Automation Engineering (ICCAE),
volume 4, pages 419-423.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with
Python: analyzing text with the natural language toolkit. 7 O'Reilly Media,
Inc.”.

Bochner, S. (1959). Lectures on Fourier Integrals. (AM-42). Princeton Uni-
versity Press. Google-Books-ID: O1jQCwAAQBALJ.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A Training Algorithm for
Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, COLT 92, pages 144-152, New York,
NY, USA. ACM. event-place: Pittsburgh, Pennsylvania, USA.

Brochu, E., Cora, V. M., and de Freitas, N. (2010). A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning. arXiv:1012.2599 [cs].
arXiv: 1012.2599.

Bull, A. D. (2011). Convergence Rates of Efficient Global Optimization Al-
gorithms. Journal of Machine Learning Research, 12:2879-2904.

Burges, C. J. and Crisp, D. J. (2000). Uniqueness of the SVM solution. In
Advances in Neural Information Processing Systems, pages 223-229.

Callison-Burch, C., Kochn, P., Monz, C., and Zaidan, O. F. (2011). Findings
of the 2011 Workshop on Statistical Machine Translation. In Proceedings
of the Sixth Workshop on Statistical Machine Translation, WMT ’11, pages
22-64, Stroudsburg, PA, USA. Association for Computational Linguistics.
event-place: Edinburgh, Scotland.

Calvo, B. and Santafé, G. (2016). scmamp: Statistical Comparison of Multiple
Algorithms in Multiple Problems. The R Journal, 8(1):248-256.

Chapelle, O. (2002). Support Vector Machines: Induction Principle, Adaptive
Tuning and Prior Knowledge. PhD thesis, LIPG6.

Chu, W. and Ghahramani, Z. (2005). Gaussian Processes for Ordinal Regres-
sion. Journal of Machine Learning Research, 6(Jul):1019-1041.

Cohn, T. and Specia, L. (2013). Modelling annotator bias with multi-task
gaussian processes: An application to machine translation quality estima-

References 121

tion. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 32—
42.

Crammer, K. and Singer, Y. (2001). On the Algorithmic Implementation of
Multiclass Kernel-based Vector Machines. Journal of Machine Learning
Research, 2(Dec):265-292.

Davis, L. (1991). Bit-climbing, representational bias, and test suit design. In
Proc. Intl. Conf. Genetic Algorithm, 1991, pages 18-23.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A Fast Elitist
Non-dominated Sorting Genetic Algorithm for Multi-objective Optimiza-
tion: NSGA-II. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton,
E., Merelo, J. J., and Schwefel, H.-P., editors, Parallel Problem Solving
from Nature PPSN VI, Lecture Notes in Computer Science, pages 849-858.
Springer Berlin Heidelberg,.

Demsar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data
Sets. Journal of Machine Learning Research, 7:1-30.

Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Miiller, S., Cieliebak, M.,
Hofmann, T., and Jaggi, M. (2017). Leveraging Large Amounts of Weakly
Supervised Data for Multi-Language Sentiment Classification. In Proceed-
ings of the 26th International Conference on World Wide Web, WWW
17, pages 1045-1052, Republic and Canton of Geneva, Switzerland. Inter-
national World Wide Web Conferences Steering Committee. event-place:
Perth, Australia.

Diosan, L., Rogozan, A., and Pecuchet, J. P. (2007). Evolving kernel functions
for SVMs by genetic programming. In Sizth International Conference on
Machine Learning and Applications (ICMLA 2007), pages 19-24.

Diogan, L., Rogozan, A., and Pecuchet, J.-P. (2008). Optimising Multiple
Kernels for SVM by Genetic Programming. In Fvolutionary Computation
in Combinatorial Optimization, Lecture Notes in Computer Science, pages
230-241. Springer, Berlin, Heidelberg.

Diosan, L., Rogozan, A., and Pecuchet, J.-P. (2012). Improving classification
performance of Support Vector Machine by genetically optimising kernel
shape and hyper-parameters. Applied Intelligence, 36(2):280-294.

Dua, D. and Graff, C. (2017). UCI Machine Learning Repository. University
of California, Irvine, School of Information and Computer Sciences.

Durrande, N., Ginsbourger, D., and Roustant, O. (2012). Additive covariance
kernels for high-dimensional Gaussian process modeling. Annales de la
Faculté de Sciences de Toulouse, Tome 21(numéro 3):p. 481-499.

Duvenaud, D. (2014). Autornatic model construction with Gaussian processes.
Thesis, University of Cambridge.

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. (2013).
Structure Discovery in Nonparametric Regression through Compositional
Kernel Search. In Proceedings of The 30th International Conference on
Machine Learning, pages 1166—-1174.

122 References

Ekman, P. (1993). Facial expression and emotion. American Psychologist,
48(4):384.

Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., and Gagné,
C. (2012). DEAP: Evolutionary Algorithms Made Easy. Journal of Machine
Learning Research, 13(Jul):2171-2175.

Fox, E. B. and Dunson, D. B. (2012). Multiresolution Gaussian Processes. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Ad-
vances in Neural Information Processing Systems 25, pages 737-745. Curran
Associates, Inc.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32(200):675-701.

Gagné, C., Schoenauer, M., Sebag, M., and Tomassini, M. (2006). Genetic
Programming for Kernel-Based Learning with Co-evolving Subsets Selec-
tion. In Parallel Problem Solving from Nature - PPSN IX, Lecture Notes
in Computer Science, pages 1008-1017. Springer, Berlin, Heidelberg.

Garciarena, U., Santana, R., and Mendiburu, A. (2018). Evolved GANs for
Generating Pareto Set Approximations. In Proceedings of the Genetic and
FEvolutionary Computation Conference, GECCO 18, pages 434441, New
York, NY, USA. ACM. event-place: Kyoto, Japan.

Garnett, R., Osborne, M. A., and Hennig, P. (2014). Active Learning of
Linear Embeddings for Gaussian Processes. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence, UAT’14, pages 230239,
Arlington, Virginia, United States. AUAI Press.

Garnett, R., Osborne, M. A., Reece, S., Rogers, A., and Roberts, S. J. (2010).
Sequential Bayesian Prediction in the Presence of Changepoints and Faults.
The Computer Journal, 53(9):1430-1446.

Genton, M. G. (2002). Classes of Kernels for Machine Learning: A Statistics
Perspective. Journal of Machine Learning Research, 2:299-312.

Gijsberts, A., Metta, G., and Rothkrantz, L. (2010). Evolutionary Optimiza-
tion of Least-Squares Support Vector Machines. In Data Mining, Annals of
Information Systems, pages 277-297. Springer, Boston, MA.

Girdea, M. and Ciortuz, L. (2007). A Hybrid Genetic Programming and
Boosting Technique for Learning Kernel Functions from Training Data. In
Ninth International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2007), pages 395-402.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, T. (2018).
Learning Word Vectors for 157 Languages. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC-
2018), pages 3483-3487, Miyazaki, Japan. European Languages Resources
Association (ELRA).

HajiGhassemi, N. and Deisenroth, M. (2014). Analytic Long-Term Forecast-
ing with Periodic Gaussian Processes. In Proceedings of Machine Learning
Research, pages 303-311.

References 123

Hilbert, D. (1906). Grundziige einer allgemeinen Theorie der linearen Integral-
gleichungen. Vierte Mitteilung. Nachrichten von der Gesellschaft der Wis-
senschaften zu Gottingen, Mathematisch-Physikalische Klasse, 1906:157—
228.

Hinton, G. E. and Salakhutdinov, R. R. (2008). Using Deep Belief Nets to
Learn Covariance Kernels for Gaussian Processes. In Platt, J. C., Koller,
D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information
Processing Systems 20, pages 1249-1256. Curran Associates, Inc.

Howley, T. and Madden, M. G. (2005). The Genetic Kernel Support Vector
Machine: Description and Evaluation. Artificial Intelligence Review, 24(3-
4):379-395.

Howley, T. and Madden, M. G. (2006). An Evolutionary Approach to Auto-
matic Kernel Construction. In Artificial Neural Networks — ICANN 2006,
Lecture Notes in Computer Science, pages 417-426. Springer, Berlin, Hei-
delberg.

Hussain, M., Wajid, S. K., Elzaart, A., and Berbar, M. (2011). A Compar-
ison of SVM Kernel Functions for Breast Cancer Detection. In Imaging
and Visualization 2011 Fighth International Conference Computer Graph-
ics, pages 145-150.

Igbal, M., Zhang, M., and Xue, B. (2016). Improving classification on images
by extracting and transferring knowledge in genetic programming. In 2016
IEEE Congress on Evolutionary Computation (CEC), pages 3582-3589.

Joachims, T. (1998). Making large-scale SVM learning practical. Technical
Report 1998,28, Technical Report.

Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperumbudur, B. K. (2018).
Gaussian Processes and Kernel Methods: A Review on Connections and
Equivalences. arXiv:1807.02582 [cs, stat]. arXiv: 1807.02582.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A.,
and Fidler, S. (2015). Skip-Thought Vectors. In Cortes, C., Lawrence, N. D.,
Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural
Information Processing Systems 28, pages 3294-3302. Curran Associates,
Inc.

Klenske, E. D., Zeilinger, M. N.; Schélkopf, B., and Hennig, P. (2013). Non-
parametric dynamics estimation for time periodic systems. In 2013 51st
Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 486-493.

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., and Konen,
W. (2012). Tuning and evolution of support vector kernels. Ewvolutionary
Intelligence, 5(3):153-170.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi,
N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Con-
stantin, A., and Herbst, E. (2007). Moses: Open Source Toolkit for Statisti-
cal Machine Translation. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics Companion Volume Proceedings

124 References

of the Demo and Poster Sessions, pages 177-180, Prague, Czech Republic.
Association for Computational Linguistics.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press.

Kronberger, G. and Kommenda, M. (2013). Evolution of Covariance Functions
for Gaussian Process Regression Using Genetic Programming. In Computer
Aided Systems Theory - EUROCAST 2013, Lecture Notes in Computer
Science, pages 308-315. Springer, Berlin, Heidelberg.

Le, Q. and Mikolov, T. (2014). Distributed Representations of Sentences
and Documents. In International Conference on Machine Learning, pages
1188-1196. ISSN: 1938-7228 Section: Machine Learning.

Lin, K.-P. and Chen, M.-S. (2011). On the Design and Analysis of the Privacy-
Preserving SVM Classifier. IEEE Transactions on Knowledge and Data
Engineering, 23(11):1704-1717.

Lind, D., Marchal, W., and Wathen, S. (2006). Basic Statistics for Busi-
ness & Economics. McGraw-Hill/Irwin series Business statistics. McGraw-
Hill/Irwin.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J., and Ghahramani,
7. (2014). Automatic Construction and Natural-Language Description of
Nonparametric Regression Models. In Twenty-FEighth AAAI Conference on
Artificial Intelligence.

MacKay, D. J. C. (1996). Bayesian Methods for Backpropagation Networks. In
Models of Neural Networks III, Physics of Neural Networks, pages 211-254.
Springer, New York, NY.

Malkomes, G., Schaff, C., and Garnett, R. (2016). Bayesian optimization
for automated model selection. In Lee, D. D., Sugiyama, M., Luxburg,
U. V., Guyon, 1., and Garnett, R., editors, Advances in Neural Information
Processing Systems 29, pages 2900-2908. Curran Associates, Inc.

Mercer, J. (1909). XVI. Functions of positive and negative type, and their con-
nection the theory of integral equations. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 209(441-458):415-446.

Mezher, M. A. and Abbod, M. F. (2014). Genetic folding for solving multiclass
SVM problems. Applied Intelligence, 41(2):464—472.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Dis-
tributed Representations of Words and Phrases and their Compositionality.
In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Wein-
berger, K. Q., editors, Advances in Neural Information Processing Systems
26, pages 3111-3119. Curran Associates, Inc.

Mohandes, M. A., Halawani, T. O., Rehman, S., and Hussain, A. A. (2004).
Support vector machines for wind speed prediction. Renewable Energy,
29(6):939-947.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of Bayesian
methods for seeking the extremum. In Towards Global Optimization, vol-
ume 2, pages 117-129. Elsevier.

References 125

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes
in Statistics. Springer-Verlag, New York.

Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J., and Moore,
J. H. (2017). PMLB: a large benchmark suite for machine learning evalua-
tion and comparison. BioData Mining, 10(1):36.

Ortigosa-Hernandez, J., Rodriguez, J. D., Alzate, L., Lucania, M., Inza, 1.,
and Lozano, J. A. (2012). Approaching Sentiment Analysis by using semi-
supervised learning of multi-dimensional classifiers. Neurocomputing, 92:98—
115.

Pang, B. and Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foun-
dations and Trends in Information Retrieval, 2(1 2):1 135.

Pearson, K. (1895). Note on regression and inheritance in the case of two
parents. Proceedings of the Royal Society of London, 58:240-242.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532-1543.

Phienthrakul, T. and Kijsirikul, B. (2007). GPES: An algorithm for evolving
hybrid kernel functions of Support Vector Machines. In 2007 IEEE Congress
on Evolutionary Computation, pages 2636-2643.

Platt, J. (1999). Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in Large-Margin Clas-
sifiers, 10(3):61 74.

Polajnar, T., Rogers, S., and Girolami, M. (2011). Protein interaction detec-
tion in sentences via Gaussian Processes: a preliminary evaluation. Inter-
national Journal of Data Mining and Bioinformatics, 5(1):52-72.

Powell, M. J. D. (1964). An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The Computer
Journal, 7(2):155-162.

Preotiuc-Pietro, D. and Cohn, T. (2013). A temporal model of text period-
icities using Gaussian Processes. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 977-988.

Quinonero-Candela, J., Rasmussen, C. E.; Sinz, F., Bousquet, O., and
Scholkopf, B. (2006). Evaluating Predictive Uncertainty Challenge. In
Quinonero-Candela, J., Dagan, I., Magnini, B., and d’Alché Buc, F., editors,
Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entailment, Lecture Notes
in Computer Science, pages 1-27. Springer Berlin Heidelberg.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine
learning. MIT Press.

Rastrigin, L. (1963). The convergence of the random search method in the ex-
tremal control of a many parameter system. Automaton € Remote Control,
24:1337-1342.

Saatci, Y., Turner, R., and Rasmussen, C. E. (2010). Gaussian Process Change
Point Models. In Proceedings of the 27th International Conference on Inter-

126 References

national Conference on Machine Learning, ICML’10, pages 927-934. Om-
nipress.

Santana, R., Mendiburu, A., and Lozano, J. A. (2012). Structural transfer
using EDAs: An application to multi-marker tagging SNP selection. In 2012
IEEE Congress on Evolutionary Computation, pages 1-8.

Schmidt, M. and Lipson, H. (2013). Eureqa (version 0.98 beta)[software].
Nutonian, Somerville, Mass, USA.

Schuh, M. A., Angryk, R. A., and Sheppard, J. (2012). Evolving Kernel Func-
tions with Particle Swarms and Genetic Programming. In Youngblood,
G. M. and McCarthy, P. M., editors, Proceedings of the Twenty-Fifth Inter-
national Florida Artificial Intelligence Research Society Conference, 2012,
pages 80-85, Marco Island, Florida. AAAT Press.

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of
Statistics, 6(2):461 464.

Shaffer, J. P. (2012). Modified Sequentially Rejective Multiple Test Proce-
dures. Journal of the American Statistical Association.

Shah, K., Cohn, T., and Specia, L. (2013). An investigation on the effective-
ness of features for translation quality estimation. In Proceedings of the
Machine Translation Summit, volume 14, pages 167-174.

Shawe-Taylor, D. o. C. S. R. H. J., Shawe-Taylor, J., and Cristianini, N.
(2004). Kernel Methods for Pattern Analysis. Cambridge University Press.
Google-Books-1D: 9i0vg121ti4C.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006).
A study of translation edit rate with targeted human annotation. In In
Proceedings of Association for Machine Translation in the Americas, pages
223-231.

Sousa, A. D. M., Lorena, A. C., and Basgalupp, M. P. (2017). GEEK: Gram-
matical Evolution for Automatically Evolving Kernel Functions. In 2017
IEEE Trustcom/BigDataSE/ICESS, pages 941-948.

Specia, L. (2011). Exploiting objective annotations for measuring translation
post-editing effort. In Proceedings of the 15th Conference of the European
Association for Machine Translation, pages 73-80.

Specia, L., Shah, K., de Souza, J. G., and Cohn, T. (2013). QuEst - A trans-
lation quality estimation framework. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics: System Demon-
strations, pages 79-84, Sofia, Bulgaria. Association for Computational Lin-
guistics.

Strapparava, C. and Mihalcea, R. (2007). SemEval-2007 Task 14: Affective
Text. In Proceedings of the Jth International Workshop on Semantic Eval-
uations, SemEval ’07, pages 70-74, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sullivan, K. M. and Luke, S. (2007). Evolving Kernels for Support Vector Ma-
chine Classification. In Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’07, pages 1702-1707, New York,
NY, USA. ACM.

References 127

Sundararajan, S. and Keerthi, S. S. (2001). Predictive Approaches for
Choosing Hyperparameters in Gaussian Processes. Neural Computation,
13(5):1103-1118.

Thadani, K., Ashutosh, Jayaraman, V. K., and Sundararajan, V. (2006). Evo-
lutionary Selection of Kernels in Support Vector Machines. In 2006 Inter-
national Conference on Advanced Computing and Communications, pages
19-24.

Toal, D. J. J., Bressloff, N. W., and Keane, A. J. (2008). Kriging Hyperparam-
eter Tuning Strategies. American Institute of Aeronautics and Astronautics
Journal, 46(5):1240-1252.

Toal, D. J. J., Bressloff, N. W.; Keane, A. J., and Holden, C. M. E. (2011).
The development of a hybridized particle swarm for kriging hyperparameter
tuning. Engineering Optimization, 43(6):675-699.

Valerio, R. and Vilalta, R. (2014). Kernel selection in support vector machines
using gram-matrix properties. In Proceedings of the 27th International Con-
ference on Advances in Neural Information Processing Systems. Workshop
on Modern Nonparametrics: Automating the Learning Pipeline, NIPS, vol-
ume 14, pages 2-4.

Vapnik, V. (1963). Pattern recognition using generalized portrait method.
Automation and remote control, 24:774-780.

Wang, Z. and de Freitas, N. (2014). Theoretical Analysis of
Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters.
arXiw:1406.7758 [cs, stat]. arXiv: 1406.7758.

Wilson, A. and Adams, R. (2013). Gaussian Process Kernels for Pattern
Discovery and Extrapolation. In Proceedings of The 30th International
Conference on Machine Learning, pages 1067-1075.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Deep Kernel
Learning. In Artificial Intelligence and Statistics, pages 370-378.

Xu, J., Zeng, W., Lan, Y., Guo, J., and Cheng, X. (2019). Modeling the
Parameter Interactions in Ranking SVM with Low-Rank Approximation.
IEEFE Transactions on Knowledge and Data Engineering, 31(6):1181-1193.

Yankovskaya, E., Téttar, A., and Fishel, M. (2019). Quality Estimation and
Translation Metrics via Pre-trained Word and Sentence Embeddings. In
Proceedings of the Fourth Conference on Machine Translation (Volume 3:
Shared Task Papers, Day 2), pages 101-105, Florence, Italy. Association for
Computational Linguistics.

Zhang, F. (2011). Positive Semidefinite Matrices. In Matriz Theory, Univer-
sitext, pages 199-252. Springer, New York, NY.

Zhou, S. and Wang, K. (2005). Localization site prediction for membrane
proteins by integrating rule and SVM classification. IEEE Transactions on
Knowledge and Data Engineering, 17(12):1694-1705.

Intelligent h

’) informatika facultad de Universidad Euskal Herriko
CU SyStemS GrOUP fakultatea informatica del Pais Vasco Unibertsitatea

