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Abstract 

In view of the current concern about environmental problems, the depletion of natural 

resources, the lack of space in landfills and climate change among others, initiatives such 

as the valorisation of waste and industrial by-products in cement-based products are 

currently a priority that will lead to sustainable development in the construction sector.  

As a result of this approach, the use of slags from the Electric Arc Furnace (EAF) as 

aggregates in the concrete has been proved to be successful for multiple applications 

avoiding the use of natural aggregates. Hence, the range of aggregates available for 

designing concretes is continuously growing. 

The morphology of granular materials strongly depends on their physical properties and 

the processing operations to which they have been exposed. In particular, the EAF slag 

possess a cavernous structure which difficult the concrete mix design according to the 

conventional methods. Thus, the growing need to manufacture a more sustainable 

concrete with the available materials taking advantage of all the natural resources and 

including waste or by-products from other industries, requires the optimization of the 

concrete mix design considering the properties of the components and reducing the 

environmental and economic impact. 

The main objective of this thesis is to design economic and environmentally sustainable 

concrete mixes made with natural limestone (NL) aggregates and electric arc furnace 

(EAF) aggregate through a particle packing density perspective without compromising 

their compressive strength and workability. 

In order to verify the potential of particle packing theories to design more economical 

and environmentally sustainable NL aggregate and EAF  aggregate concrete mixes, two 

traditional optimal curves and two current discrete packing models were validated with 

experimental packing results to demonstrate its feasibility in the prediction of the most 

compacted structure. Several (17) NL and EAF aggregate concrete mixes were then 

designed by varying the aggregate proportion and the content of cement paste to 

analyse the effect of aggregate packing density on the fresh and hardened concrete 

properties. Finally, the economic and environmental impact of the different concrete 

mixes were assessed to evaluate the potential of the particle packing methods in the 

development of more sustainable concrete. 

It was concluded that the concrete mixtures designed by maximizing the coarse 

aggregates content in the range of the maximum packing density present the highest 

compressive strength and workability and the low environmental and economic impact. 

In addition, due to the higher compressive strength and the low contribution of 

aggregate in the concrete environmental impact, the EAF aggregate concrete 

contributes to a greater reduction of the environmental and economic impact.
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6 Environmental and economic impact of NL and EAF aggregate 

concretes 

In Chapter 6, the environmental and economic impact of the natural limestone (NL) and 

electric arc furnace (EAF)aggregate concrete developed in chapter 5 will be assessed to 

determine the feasibility of the particle packing model (PPM) in sustainable concrete 

mix design. In addition, a detailed life cycle inventory (LCI)at local scale of the natural 

limestone (NL) aggregates and electric arc furnace (EAF) aggregates will be presented 

and the environmental impact of both aggregate and the recycled concrete aggregate 

(RCA) will be compared. 

6.1 Introduction 

Although concrete has a low environmental impact (200 kg CO2 eq./t of 

concrete)compared to other construction materials (recycled steel 1100 kg CO2 eq./t of 

steel), its huge consumption causes a substantial environmental impact (Favier et al. 

2018).Cement is the main responsible of the CO2 concrete emission. However, the 

impacts are not only because of CO2emission, but also because of the mass consumption 

of raw material (mainly aggregates that represent 70-80% of the total concrete volume) 

and the waste that is generated after its life cycle(Rodríguez-Robles et al. 2019).This 

causes not only a depletion of natural resources but also a lack of available space due to 

the disposal of waste in landfills. 

In addition, to avoid industrial by-products from other industries such as slag from 

electric arc furnaces, these are successfully used as aggregates in concretes. However, 

the use of recycled products as aggregates in concrete is not always beneficial from an 

environmental and economic point of view. The use of EAF aggregates in concrete may 

contribute to the environmental impact by reducing both waste or by-product landfilling 

and natural resources extraction, as happens with the RCA aggregates from C&DW. 

However, in some cases, the environmental burdens connected to the recycled 

aggregate concrete production process lead to a reduction in environmental benefits. 

One of the reasons is the long distance among the generation source, the treatment 

facility, the concrete production plant and the construction site or when the energy 

demand to achieve the desire granular size is higher than for the NL aggregates. 

Concerning the economic impact, although the price of EAF and RCA aggregates is 

usually cheaper in comparison with NL aggregates, the transport cost can increase the 

economic impact. For the social impact it is expected that potential impact on human 

health will be equivalent or even lower than for natural aggregates as the treatment 

process of EAF slag and C&DW compared to natural crushed aggregates is mainly 
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mechanical (crushing and screening). Therefore, PM10 emissions related to the 

extraction process of the natural rock are avoided. 

From among the available methods to assess the environmental impact of concrete, Life 

Cycle Assessment (LCA) is perhaps the most widely used (Pradhan et al. 2019; 

Schuurmans et al. 2005; Turk et al. 2015; Hossain et al. 2016a; Hossain et al. 2017; 

Simion et al. 2013; Chen et al. 2010; Smith & Durham 2016; Hossain et al. 2016b; Salas 

et al. 2016; García-Gusano et al. 2014; Penteado et al. 2015; Gursel et al. 2014; Ruan & 

Unluer 2016). Among the limits of this methodology are the flexibility of the LCA 

approach that complicated their comparison because of the use of different data base 

and life cycle impact categories (LCIA) methodologies, and the lack of reliable and 

detailed life cycle inventory (LCI) data with geographic and technological 

representativity. 

To deal with the first limit, until now the environmental product declaration (EPD) based 

on (UNE-EN 15804 2013)have been widely in the construction sector, this methodology 

has been used the LCIA characterization factors developed by CML. However, a more 

recent methodology developed by the European Commission, the Product 

Environmental Footprint (PEF)(EC-JRC 2012) is intended to provide a “common way of 

measuring environmental performance of product”, therefore the EPD norm has been 

recently updated in an attempt to converge with the PEF method.  

The aim of this chapter is to assess the feasibility of the concrete mix design with NL and 

EAF aggregates through PPM and to support the local construction sector to make 

decisions in the selection of concrete components considering the environmental and 

economic burdens and to provide a useful LCI for upcoming LCA studies.  

With these aim in mind, the following partial goals are proposed: 

- To develop a detailed LCI for NL and EAF aggregate production in Basque 

Country, based on primary data from representative companies. 

- To compare and assess the environmental impact of NL and EAF aggregates 

produced in the Basque Country. Two scenarios will be contemplated for the EAF 

aggregates: 

o Scenario A: Considering the EAF slag treatment process and transport 

from the facilities to the treatment plant. 

o Scenario B: Considering also the avoided environmental burden of 

delivering to landfill the EAF slags. 

In addition, a sensitive analysis will be performed to find the limit of the 

transport distance compared to the NL aggregate. 

- To compare and assess the environmental impact of RCA with the NL and EAF 

aggregates. For this purpose, a tentative LCA analysis for two common sources 

of RCA will be performed attending to estimated LCI values from literature. 
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- To compare and assess the environmental burden and economic impact of 

different concrete mixes made with NL and EAF aggregates. For this purpose, the 

tool and the global index developed in the SUPERCONCRETE project (645704 - 

SUPERCONCRETE 2014)has been updated and applied to the assessment of 

these concrete. The influence of the functional unit (FU) selection were also 

analysed. In addition, the limits of the transport distance of EAF aggregates 

compared to NL aggregate attending to environmental impact has been 

stablished through. a sensitive analysed. 

6.2 Life cycle Assessment (LCA) approach 

The standardised LCA methodology(ISO 14040 - ISO 14044:2006)was used to assess and 

to compare the environmental impact of NL and EAF aggregates and the concrete mixes, 

presented in chapter 5, made with both aggregates types. 

In addition, in order to analyse the environmental feasibility of other recycled aggregate 

options at local scale, the environmental impact of RCAs has also been assessed and 

compared to the NL and EAF impacts. 

The four mandatory steps of the of the LCA framework, goal and scope definition, 

Inventory analysis (LCI), environmental impact assessment (LCIA), and interpretation 

were detailed below. 

6.2.1 Goal and scope definition 

The goal of this LCA includes: 

- First, to develop a regional LCI for NL and EAF aggregate production in Basque 

Country, based on primary data.  

- Second, to compare the environmental burden of different aggregates (NL, EAF 

and RCA) produced in the Basque Country through reliable data. 

- Third, to compare and study the environmental impact of different concrete 

mixes made with NL and EAF aggregates. 

The three objectives intend to support the local construction sector to make decisions 

in the selection of concrete components considering the environmental burdens and to 

provide a useful LCI for upcoming LCA studies.  

Thus, the scope can be divided in two comparative LCA studies: 

- Aggregates LCA 

- Concrete mixes LCA 

Both analyses were conducted from a cradle-to-gate approach since the studies were 

performed at material scale regardless the final application of the product. 
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For the comparative LCA of the aggregates, 1t of aggregate was selected as the 

functional unit (FU). The main reason is that energy consumption during production or 

recycling process is accounted by mass of the aggregate, regardless of the specific 

density of the material. Therefore, the unit of mass is considered to be more reliable 

and representative for comparing different types of aggregates. In addition, for the 

construction sector, 1t of concrete ingredient is usually used as the reference unit for 

the price. 

However, it should be noted that the higher density of EAF compared to NL will have 

effect in the environmental impacts of the material transport and in concrete mix, as 

higher mass will be needed to fill a unit volume. Therefore, both aspects should be also 

considered in the environmental impact of concrete production. 

The system boundaries of the NL aggregate involve the extraction of raw materials from 

the quarry, the transport of the raw materials to the processing facilities and the 

processing stages (crushing, grinding and screening) (see Fig. 6.1). 

 

Fig. 6.1. System boundary of NL aggregate production. 

The system boundaries of the EAF aggregates (see Fig. 6.2) include the transport of the 

EAF slag to the treatment plant, the process of watered and aerated until its volumetric 

stabilization for 90 day to limit expansion phenomena and there cycling process 

(crushing, magnetic separation of metallic fractions and screening). The cooling process 
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of the EAF slag is out of the boundaries systems since it is necessary regardless the EAF 

slag will be valorised or landfilled (CEDEX 2011). Two scenarios were considered: 

- Scenario A: Considering, the transport of the EAF slag and the EAF slag treatment 

process. The avoided burdens will be out of the system boundaries. 

- Scenario B: An additional scenario that takes into account the avoided impacts 

of sending the EAF slag to landfill. 

 

Fig. 6.2. System boundaries of EAF aggregate production. 

For the RCA aggregates, two scenarios were assumed to consider RCA from C&DW of 

concrete structures and RCA from the waste stream of the precast companies.  

- Scenario A: The RCA are recycled from C&DW in a stationary recycling plant. 
- Scenario B: The RCA are recycled from the rejected concrete fractions of a 

precast concrete company in a mobile crusher. 
The scenario A includes the transport of the C&DW from the demolition site to the 

stationary recycling plant and the recycling process (crushing, magnetic separation of 

metallic fractions and screening). The scenario B includes the transport of the mobile 

crusher to the precast company to treat the waste fraction generated during a year and 

the crushing process. 

For the comparative LCA of concrete mixes, the selection of the FU plays a relevant role 

and only concrete with the same performance properties should be compared. As the 
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assessed concrete mixes present differences on compressive strength values, 1m3 of 

concrete per unit of compressive strength at 28 days (1 m3·MPa) was selected as 

functional unit (FU). 

The system boundaries of the concrete production analysis include the three stages of 

the product stage described in UNE-EN 15804:2012+A1 (see Fig. 6.3).  

- 1. Raw material which includes, extraction, handling, transportation and 

processing of the raw materials to obtain each final concrete ingredient. 

- 2. Transport of raw material to the concrete mix facilities. 

- 3. Concrete manufacturing. 

Due to the concrete mixes were only prepared at lab scale, in a first approach the 

delivery distances of the different materials and the energy consumption for concrete 

production were not considered as it was assumed to be the identical for all concrete 

mixes. The energy consumption of the mixing process energy was assumed also the 

same regardless of the concrete mix. Therefore, the goal of the comparative LCA is not 

affected by transport and manufacturing environmental impacts. In addition, the raw 

materials production accounts for approximately 94% (Filippo et al. 2018) of the 

concrete environmental impact during the production stage, thus it is global impact is 

almost negligible. In a second approach a transport sensitive analysis was carried out to 

study the influence of the distance of NL and EAF aggregates treatment plants to the 

concrete mix facilities(Turk et al. 2015). 

 

Fig. 6.3. System boundaries of NL aggregate concrete and EAF aggregate concrete. 

6.2.2 Life Cycle Inventory (LCI) 

This stage comprises the collection and quantification of the relevant input and out flows 

of a product. Different sources have been considered for the data collection in the 

following order of priority: 
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- Data provided by the companies involved. 

- Environmental product declaration and databases. 

- Articles, books and reports directly related to the materials and processes under study. 

The materials and energy flows to produced NL and EAF aggregates were supplied by 

the companies (see sections 6.2.2.1 and 6.2.2.2). Due to the lack of primary data related 

to the RCA aggregates because of the scope of the thesis, the energy consumptions and 

materials flows for the RCA, were taken from related papers and reports (see section 

6.2.2.3). 

Regarding the LCI of the CEMII A-M (V-L) 42.5R used in the concrete mixes, due to the 

lack of primary data, environmental product declaration (EPD) and specific databases 

(there are EPD and CEMII databases with average data, but these do not take into 

account the amount and type of addition), the input/output data system of the 

production process was designed by collecting data from the PEF Database, the CPM 

database (Swedish Life Cycle Center 1996)and related sources. 

The data of the secondary process electricity, fuel, water, landfill and transport was 

collected from the PEF Life Cycle Database. 

The secondary LCI to perform the LCA are summarised in Table 6.1: 

Table 6.1. LCI data set use for the LCA methodology and the EF LCIA. 

Type of 
flow 

Process 
Database 

source 

Diesel 
Diesel mix at filling station, consumption mix, at filling station, 
from crude oil and bio components, 7.23 wt.% bio components 
- EU-27 

PEF database 

Electricity 
Electricity grid mix 1kV-60kV, consumption mix, to consumer, 
AC, technology mix, 1kV - 60kV - ES 

PEF database 

CEMI 
Portland cement, production mix, at plant, raw material 
extraction, production of clinker, and cement grinding, CEM I 

PEF database 

Water Tap water, at user, technology mix, per kg water PEF database 

Transport 
Total weight >32 t, mix Euro 0-5, consumption mix, to 
consumer, diesel driven, Euro 0 - 5 mix, cargo, more than 32t 
gross weight / 24,7t payload capacity - ROW w/o EU-28+3 

PEF database 

Landfill 

Landfill of inert (construction materials), production mix 
(region specific sites), at landfill site, landfill including leachate 
treatment and with transport without collection and pre-
treatment - ES 

PEF database 

Flows 

Water to Cooling - ES PEF database 

particles (PM10) PEF database 

from arable, irrigated, intensive (land transformation) PEF database 

Mineral extraction site -ES (land use) PEF database 

To mineral extraction site -ES (land transformation) PEF database 

industrial area(land use) PEF database 
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Type of 
flow 

Process 
Database 

source 

from unspecified (land transformation) PEF database 

to industrial area(land transformation) PEF database 

6.2.2.1 NL aggregate production 

The process description and the energy consumption to produce NL aggregate were 

supplied by the Amantegui S.L company. Their quarry (Markomin-Goikoa) and facilities 

located in Mañaria produces limestone aggregates of different quality and particles size 

distribution according to the application (aggregate for concrete production, mortars, 

asphalts and public works in general). Their product portfolio can be found on-line19. 

The production capacity of the crushed limestone plant is designed to produce between 

1,200,000 and 1,500,000 tons per year. However, given the instability of the sector, 

production is lower. Thus, the energy consumption was obtained on the basis of 

production over the last 5 years in Table 6.2 (see annex for more details). 

Limestone rock is extracted from the quarry by using explosive. Once the material has 

been extracted from the exploitation, it is transported by truck to the processing 

facilities where the limestone is crushed, grinding and screening obtaining different 

particles size fractions. For this propose, the treatment plant consists on the following 

facilities, primary crushing, intermediate stock, secondary crushing, tertiary crushing 

and sand plant.  The common treatment process is as follow: 

In the first step the limestone is fed into the primary crusher to reduces larger pieces 

and a vibrating screen to providing pieces between 75 and 300 mm and the all in one 

fraction(0/32mm). Then, the larger limestone pieces pass through a secondary crusher 

and a vibrating screen, which generates streams of different particle size, generally 

useful for drainage application (20/40; 40/80; 31.5/90).Afterward, the material passes 

through a tertiary crusher and through a vibrating screen to obtain aggregate fraction 

commonly use in concrete (10/20; 11/22; 4/11; 2/6). Finally, the material passes through 

a mill and vibrating screen in the sand plant to obtain sand fractions (0/4; 0/2). Along 

the process, there are several, vibration feeder, vibration screening and conveyor belts, 

and different system to minimize dust emissions. The production of different particle 

size materials is regulated according to the market demand.  

The impact related to the transport of the raw material will be minimal, as the common 

practice is to locate the treatment plants close to the quarry to reduce the energy 

consumption and cost. Likewise, concrete mixing plants in Basque Country are usually 

located close to the aggregate facilities maximum at a distance of 30km radius. 

 
19http://www.amantegi.com/ 



 6 Environmental and economic impact of NL and EAF aggregate concretes  

237 
 

The sources of emissions are related to the fuel and electricity consumed by machinery 

in both extraction and processing and to the uncontrolled particle release to the air. The 

water consumption is assumed to be zero, since the water used to wet tracks and to 

reduce dust during the crushing process comes from rainwater stored in settling ponds. 

The amount of fuel and electricity consumed per year was provided by the company and 

the particle release to the air were estimated according to recent guide published 

recently with this aim (Consejería de agricultura, ganadería 2019).  

It is commonly assumed that the environmental impact of aggregates is the same 

regardless of the size of the fraction, as the production process is complex to isolate the 

impact of each fraction and it is assumed that all aggregate fraction has a similar 

function. However, it is well known that sand production requires more energy 

consumption and is therefore more costly than other fractions. Hence, in this thesis, in 

order to obtain the environmental impact of each aggregate size fraction (0/2; 0/4; 4/12 

and 12/22) from a realistic point of view, the economic allocation was used.  

The other possibilities considered and the reason for their exclusion are detailed below: 

- The option of accounting for all energy consumption needed to produce 1 tonne 

of each fraction by considering the aggregate production flows in recent years, 

was discarded as the environmental impact of the finer aggregate size fraction 

will be disproportionately high due to the lower production of these materials. 

Moreover, for a same energy consumption and therefore for the same impact 

burdens, more products are produced (multifunctional process), so the 

environmental impact should not be related to only one aggregate fraction.  

- Physical mass allocation was also excluded, since according to the material flow, 

more coarse aggregate is produced. Therefore, although it is known that the fine 

fraction consumes more energy to be produced, applying this method, the 

impact will be greater for the coarse aggregate fractions. 

Table 6.3 shows the mass balance and the allocated flow through economic allocation. 

Table 6.2. Global LCI data of the NL aggregate production. 

 Quantity Source 

Total production of NL 
aggregate (t) 

456377 
Primary data (Average value base on the last 5 
years) (see Annex) 

Diesel consumption (l) 196850 
Primary data (Average value base on the last 5 
years) (see Annex) 

Electricity (kWh) 957972 
Primary data (Average value base on the last 5 
years) (see Annex) 

Particles emission PM10 
(kg) 

1244.25 

Value calculated according to the 
recommendations of the following 
guide(Consejería de agricultura, ganadería 2019) 
(see Annex) 
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 Quantity Source 

Explosives (t) 10820 
Estimated value according to the LCI published by 
(Kittipongvises 2017) 

Land Occupation (m2a) 311000 The calculations were performed according to the 
methodology recommended by Frischknecht et al. 
(Frischknecht et al. 2007), which suggests the 
period of 20 years for the mining activity. (see 
Annex) 

Land transformation (m2) 15550 

 

Table 6.3. Economic allocation of the NL aggregate fractions. Energy consumption and 
particles emissions.  

Product 
Mass 

balance 
(%) 

Price21(€/t) 
Economic 
Allocation 

factor 

Diesel 
(L/t) 

Electricity 
(kWh/t) 

PM10 

(kg/t) 

NL (11/22) 0.7 15.5 1.3 0.85 4.14 5.38E-03 

NL (4/11) 26.8 10.7 37.5 0.59 2.86 3.71E-03 

NL (0/4) 10.6 7.1 9.9 0.39 1.89 2.46E-03 

NL (0/2) 15.7 7.3 14.9 0.40 1.94 2.53E-03 

Other 
fractions 

46.3 6.5 22 36.3 0.36 1.73 2.25E-03 

6.2.2.2 EAF aggregate production 

The process description and the energy consumption to valorize EAF slag were supplied 

by HORMOR company. Their facilities are in Zestoa (Gipuzkoa). After the cooling the EAF 

slags are transported about 40 km from the ArcelorMittal steel making company located 

in Olaberria to the treatment plant. The nearest inert landfill (Aizmendi, located in San 

Sebastian) is at the same distance (40 km). 

The plant is designed to treat 80 t/h. Considering a journey of 1826 h/year and a 70% of 

efficiency rate due to the maintenance processes and stops for loading and unloading 

as recommend Evangelista et al. (Evangelista et al. 2018a), 102256 t of EAF aggregate 

are produced per year. The energy consumption was obtained on the basis of last year’s 

production (see Table 6.4) (see annex for details). Diesel consumption was directly 

provided by Hormor company and the electricity consumption was calculated from the 

power of the machinery and the production capacity. Although it is known that other 

granular size fractions are obtained for other application, it was assumed that only the 

aggregate fraction for concrete were manufactured (EAF 0/5; EAF 4/11; EAF 11/22). 

 
20The explosive is considered by the quarry company as an energy source, so its emissions have been 
related to energy consumption data. Particle emission due to the blasting process has not been 
considered. 
21 Details of the price source are in the section 6.2. 
22 It was assumed an average price of the all-in-one aggregate fractions and aggregates for breakwater 
application. http://basepreciosconstruccion.gobex.es/p/p01ag/p01ag.html 
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The EAF slags is previously cooled by a continuous spraying system while the material is 

deposited in a pit. After that the EAF slag is transported to the treatment plant where 

the slag is watering and aerated for 90 days for its volumetric stability. Then, the slag is 

transported to the feeding hopper of the crusher where there is a magnetic separator 

to remove the metal pieces. Then, the crushed slag is transported through a conveyor 

with several magnetic separators to the vibration screens to obtaining the coarse 

aggregate fractions (4/11; 11/22). After that, the rejected fraction is transported to a 

mill to obtain the sand and the remaining materials returns to the previous circuit where 

it is screened again. Finally, the material is transported from the storage hoppers to the 

stockpiles.  

Concerning to the European Union directives (European Union 2008) the EAF slags are 

considered as by-products rather than waste and consequently, allocation should be 

applied to considered not only the environmental impact related to EAF slag treatment 

but also the impact related to the steel making production. However, the choice of the 

allocation type is very influential in the results of an LCA and is therefore one of the most 

controversial issues in LCA (Chen et al. 2010).In the EAF slag cases, there are several 

reasons for considering the EAF slag as waste or raw material and not consider its 

upstream impact: 

- There is no consensus on the most optimal allocation (physical, economic or 

none) type for this type of product and conflicts of interest can arise between 

the metallurgical and construction sectors. Due to the high emissions of steel 

compared to natural aggregates, if allocation by mass is applied for example to 

eq. CO2 emission it will result in higher emission values than natural aggregates. 

In case of economic allocation, the price of the EAF slag is usually unknown and 

it may fluctuate depending on availability 

- In the Basque Country the valorization of EAF slag for construction application 

had to be enhanced through mandatory restrictions to avoid landfilled(DECRETO 

64 2019). 

- The lack of data on EAF slag primary production. 

In literature, the LCA related with EAF aggregate only consider the treatment or recycling 

process (Faleschini et al. 2014; Evangelista et al. 2018b; Anastasiou et al. 2017). 

Therefore, during the EAF aggregate production, the environmental impact is related to 

the fuel and electricity consumed by machinery, the water during the stabilization 

process and to the uncontrolled particle release to the air during the crushing stages.  

In contrast to the NA aggregate production process, the EAF treatment process is 

simpler and produces a similar amount of each aggregate fraction. In addition, the 

product price is the same for all produced fractions (0/5; 4/11; 11/22) to be used as 

aggregate in concrete. Therefore, it was assumed that the environmental impact of the 

aggregates is the same regardless of the size of the fraction. 
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Table 6.4. Global LCI data of the EAF aggregate production. 

 Quantity Source 

Total production 
capacity (t/h) 

80 Primary data 

Total aggregate 
production (t) 

102256 

Calculated by considering a journey of 1826 h/year and a 
70% of efficiency rate due to the maintenance processes and 
stops for loading and unloading as recommend Evangelista 
et al. (Evangelista et al. 2018a)(see annex) 

Diesel 
consumption (l) 

16100 Primary data 

Electricity 
consumption 
(kWh) 

387314 

Calculated from the machinery power (Primary data) and 
assuming a 70% of efficiency of the total plant capacity due 
to the maintenance processes and stops for loading and 
unloading as recommend Evangelista et al. (Evangelista et 
al. 2018a)(see annex) 

Particles emission 
PM10 (kg) 

109.15 
Value calculated according to the recommendations of the 
following guide(Consejería de agricultura, ganadería 2019) 
(see Annex) 

Land Occupation 
(m2a) 

15700 The calculations were performed according to the 
methodology recommended by Frischknecht et al. 
(Frischknecht et al. 2007), which suggests the period of 50 
years for the industrial activity. (see Annex) 

Land 
transformation 
(m2) 

314 

 

Due to the lack of data of water consumption the following assumptions were 

considered: 

- Cooling process of the EAF slag: 0.1 l of water per kg of EAF slag. 

This value was established by considering a water consumption of 0.5 l/s during 

the dumping time of 180 t of EAF slag to the pit, which is approximately 10hours. 

- Volumetric stabilization of the EAF slag: 1 l of water per kg of EAF slag.  

This value was established by considering that the EAF slag needed a 5% of water 

each three days (1l of water per 20 kg of EAF slag), and a third of the days are 

rainy. So, for the 90 day of the stabilisation process, 20l of water are needed for 

every 20 kg of EAF slags. 

In the first scenario in which the environmental impact to avoid landfill is not considered 

the transport by truck of the EAF slag were assumed. The truck is supposed to returns 

load with the metal scrap recovered during the recycling process. As the 1.075 ton of 

EAF slag were considered to obtain 1 ton of EAF aggregates only one trip was 

considered(Evangelista et al. 2018a).The transport were modelled as follows according 

to the PEF recommendation (Zampori & Pant 2019): The truck is fully loaded for delivery 

but 93.25% empty at its return, the utilisation ratio is (24.7t real load / 24.7t payload x 

50%km + 1.7t real load / 24.7t payload x 50%km) = 53% which was assumed 50%. 
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In the second scenario, the environmental impact to avoid EAF slag landfill is considered. 

In this case, the real distance from the steelmaking company to the nearest landfill was 

assumed (40km). According to the PEF guide (Zampori & Pant 2019), bulk shall be 

modelled with a default utilisation ratio of 50%. Therefore, the truck is fully loaded for 

delivery but empty at its return, the utilisation ratio is (24.7t real load / 24.7t payload x 

50%km + 1·10-3treal load / 24.7t payload x 50%km) = 50%. 

The mass balance and the LCI flows were detailed in Table 6.5. 

Table 6.5. Energy consumption, water demand and particles emissions of EAF aggregates. 

Product 
Mass 

balance (%) 
Price (€/t) Diesel (L/t) 

Electricity 
(kWh/t) 

Water 
(l/t) 

PM10 
(kg/t) 

EAF (0/5) 30 4.5 0.157 4.15 0.001 2.12E-04 

EAF (4/11) 37 4.5 0.157 4.15 0.001 2.12E-04 

EAF (11/22) 33 4.5 0.157 4.15 0.001 2.12E-04 

6.2.2.3 RCA aggregates 

Due to the lack of primary data, the RCA LCI was conducted by considering data related 
to recent papers involving treatment processes and technologies like those of local 
recycling plants. Two scenarios were considered, with the aim to assess two of the 
common streams of the RCA: 

- Scenario A: The RCA are recycled from C&DW in a stationary recycling plant. 
- Scenario B: The RCA are recycled from the rejected concrete fractions of a 

precast concrete company in a mobile crusher. 
The stationary C&DW plants in the Basque Country consist commonly of a previous 
selection of the received material by removing the materials and large impurities 
manually or by means of a mobile machine equipped with a clamp.  This is called the 
triage stage. Then, the clean flow of C&DW pass directly through the crusher (primary 
and secondary) and the vibration screening, while the flow with impurities goes through 
different separation technologies to remove the impurities. These technologies consist 
of vibrating screens to separate the fine fraction (<40mm), blowers to remove light 
waste, manual triage and electromagnets to separate the metal elements.  Finally, the 
stone stream passes through the primary and secondary crusher and the vibrating 
screen to classify the material by its granular distribution.  

The mobile plant is basically a crusher. These plants allow to reduce the transport cost 
of huge volumes of C&DW to the treatment plants but only cleaned C&DW can be 
recycled. 

For the stationary plant, the energy consumption were collected from the data 

published by Pradhan et al. (Pradhan et al. 2019) since the treatment process and the 

equipment are comparable to the local process. 

Considering the distance between the different locations of the authorized recycling 

plants in the Basque Country. A maximum radius of 50 km from the demolition site to 

the recycling plant was assumed. The truck is supposed to returns empty. The transport 



 6 Environmental and economic impact of NL and EAF aggregate concretes  

242 
 

were modelled according to the PEF recommendation (Zampori & Pant 2019): bulk shall 

be modelled with a default utilisation ratio of 50%. Therefore, the truck is fully loaded 

for delivery but empty at its return, the utilisation ratio is (24.7t real load / 24.7t 

payloadx50%km + 1·10-3treal load / 24.7t payload x 50%km) = 50%. 

In the case of scenario B, precast concrete waste is taken into account to obtain a high 

and controlled quality RCA of the rejected fractions of its products and close the life 

cycle. For this scenario, data on production capacity and waste generated were provided 

by a representative precast concrete company in the Basque Country (Prefabricados 

Alberdi). Its annual production varies between 40,000 to 50,000 t of concrete per year 

and the waste stream represent 1% of the total production. In addition, the 50% of the 

waste stream are clean aggregates obtained from the equipment cleaning processes. 

Therefore, only the remaining fraction must be crushed to obtain recycled concrete 

aggregate and close the life cycle. To obtain the recycled aggregate there are two 

options: renting a mobile crusher or sent the waste to a RCD stationary plant. In this 

study, the first option was chosen. The energy consumption of the mobile crusher 

(Metso LT1213) were assumed to be 3.15 l/t according to the Zhao study (Zhao et al. 

2020). 

A distance of 50km was considered to transport the mobile crusher. The transport is 

assumed to be full for delivery and return. The impact of the machinery transport was 

allocated by mass of waste to be treated (45,000*0.01*0.5=225t). 

Table 6.6 and Table 6.7 includes the LCI assumed for the RCA aggregates and the 

transport distances considered for each scenario. 

Table 6.6.Energy consumption, water demand and particles emissions of RCA aggregates 
(Pradhan et al. 2019). 

Scenario Product Diesel (l/t) Electricity (kWh/t) Water (kg/t) PM10 (kg/t) 

A RCA 0.1 2.15 5 1.51E-3 

B RCA 3.15 - - 8.52E-4 

 

Table 6.7. Transportation distances. 

Scenario Product From To 
Distance 

(km) 

A C&DW waste Demolition site Recycling plant 50 

B Concrete waste Precast company Crusher equipment - 

B Crusher equipment (42 t) Renting company Precast company 50 
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6.2.2.4 Cement production 

The nominal composition of CEMII/A-M (V-L) 42.5R provided by FYM Heilderberg 

Cement group is as follow23: 

Clinker Fly ash Limestone Minor constituents 

80% 9% 9% 2% 

 

As the revised EPD and database only provide average values for all the CEMII 

production in a region regardless of its compositions, the unitary process has been 

designed to consider the fly ash and limestone content (see Table 6.8 and Table 6.9). 

With this aim, the following assumption were done: 

- The “Portland cement (CEM I); CEMBUREAU technology mix, EN 197-1; 

CEMBUREAU production mix, at plant” process from the ELCD database, was 

used to calculate the impact of the sum of clinker and minor constituents. 

- The fly ash is a by-product from the combustion of pulverized coal in thermal 

power plants that does not require further processing before it is incorporated 

into cement therefore the upstream impact related to the electricity production 

were not considered. This assumption is common applied in other LCA studies 

related to cementing products (Athena Sustainable Materials Institute 2016). 

- The consumption energy and the dust emission of the limestone powder were 

considered according to the production process “Production of powdered 

limestone” of the CML dataset(Swedish Life Cycle Center 1996) and the typical 

consumption of a commercial mill used for that proposed24. The considered 

values are show in Table 6.8. 

The transport of the materials was considered negligible. 

Table 6.8. LCI unitary process to produce 1t of powered limestone. 

Flow type Process Amount Source of data 
Source of 
process 

Electricity 
consumption 

Electricity grid mix 1kV-60kV, 
consumption mix, to 

consumer, AC, technology mix, 
1kV - 60kV - ES 

25 kWh 
CPM dataset and 

typical consumption of 
a commercial mill 

PEF 
database 

Dust emission  72 g CPM dataset ELCD v3.2 

 

 
23 https://www.fym.es/es/ipro-tecno-425-r 
24 https://www.hcmilling.com/solutions/mineral-processing/limestone-processing-solution.html 

https://www.fym.es/es/ipro-tecno-425-r
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Table 6.9. LCI unitary process to produce 1 t of CEMII/A-M (V-L) 42.5R 

Flow type Process Amount 
Source of 
process 

CEMI 
Portland cement, production mix, at plant, 

raw material extraction, production of 
clinker, and cement grinding, CEM I 

0.82 t PEF database 

Powdered limestone Powdered limestone 0.09 t Table 6.9 

Fly ash - 0.09 t - 

 

6.2.2.5 Concrete mixes 

The concrete mixes studied and characterized in chapter 5 were analyzed here. These 

mixes include concrete made with NL aggregates and concrete made with EAF 

aggregates.  

The aggregates combination in both types of concretes were designed through 

conventional methods (optimal grading curves), particle packing models and 

experimental packing density results. In addition, the cement content of the concrete 

mix was also modified according to the packing degree of the aggregates. Therefore, 

concrete mixes with different aggregate combination, cement contents and 

compressive strength were assessed.  

The concrete mix design is included in Table 6.10.  

After obtaining the environmental impact of each raw material, the environmental 

impact of concrete was modeled by multiplying the mass of each concrete component 

for its environmental impact. After that, each impact was divided by its compressive 

strength at 28 days.  
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Table 6.10. Concrete mixes. 

Materials (kg/m3) 
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NL (0/4) 776 1030 947 1143 978 996 965 - - 905 844 804 751 - - - - 

NL (4/12) 587 412 474 458 542 579 615 - - 436 407 594 555 - - - - 

NL (12/22) 530 618 474 305 373 403 440 - - 664 619 603 563 - - - - 

NL (0/2) - - - - - - - 376 335 - - - - 402 375 905 844 

EAF (0/5) - - - - - - - 828 919 - - - - 1065 994 586 547 

EAF (4/12) - - - - - - - 518 574 - - - - 630 588 433 404 

EAF (12/22) - - - - - - - 594 681 - - - - 416 389 430 401 

CEM II 42.5R  290 290 290 290 306 270 252 326 267 260 317 260 317 260 317 260 317 

Wfree 180 180 180 180 168 149 139 179 147 143 174 143 174 143 174 143 174 

Wabs 10.6 11.1 10.7 11.3 11.1 11.6 11.8 31.2 37.2 10.6 9.9 11 10.3 34.3 32 33.6 31.4 

Properties 

Bulk density (kg/m3) 2378 2349 2355 2370 2397 2385 2445 2864 2935 2426 2401 2441 2422 2952 2870 2791 2719 

Hardened density (kg/m3) - - - - 2487 2484 2412 2974 3049 2509 2492 2526 2501 2907 2850 2727 2702 

Slump (mm) 120 90 80 25 40 10 10 160 15 15 80 15 150 0 150 15 40 

Compr. strength (MPa)* 42.2 40.2 39.4 37.8 42.8 38.5 40.7 45.4 44.2 48.7 45.5 42.3 39.8 51.9 53.1 47.0 41.6 
* 100mm cubis specimen at 28d
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6.2.2.6 Limitations 

- Aggregates are considered as an intermediate product; therefore, the use stage 

and the end of life were excluded. In case of the concrete LCA, the use stage and 

end of life were not considered due to the final application of concrete is 

unknown. In addition, the transportation of concrete components and the 

concrete manufacturing was not considered as it was supposed the same for all 

the concrete mixes. Hence, the characterized impact results should be carefully 

considered. 

- The LCI data for NL and EAF aggregate is collected from plants stablished in the 

Basque Country 

- Emissions of particle matter and the land occupation were calculated due to the 

lack of primary data. 

- The lubrication oil of the vehicles used during the treatment of the aggregates 

were not considered. 

- During the EAF treatment the recovery metal fraction were not accounted due 

to the lack of primary data. 

- The primary LCI data were collected attending to geographic, temporal and 

technological representativity. However, when a secondary LCI process were not 

available for the specific geography, national and European averages conditions 

were selected. 

- The transport scenarios, vehicle type and transport distances, were designed 

according to the local conditions. These distances can vary drastically depending 

on the geographical area and the availability of materials.Fig. 6.4 shows the 

differences between transport systems according to the type of aggregate. 

Therefore, this study is more relevant in a Basque Country context. 

 

Fig. 6.4. Delivery of natural, EAF and RCA aggregates 
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6.2.3 Environmental impact assessment (LCIA) 

The LCIA has been carried out following the impact methodology recommended by the 

product environmental footprint method (PEF) by the European Commission (Zampori 

& Pant 2019). 

It was selected since it is the method recommended by the European Commission to 

assess the environmental impact of products in a harmonized way and will be the 

reference method in a recent future. In addition, until now the available EPDs are 

developed according to the EN-15804:2012+A1:2013 framework and the CML LCIA 

methodology has been used. However, the EPDs has a limited valid date and an update 

of the EN-15804 (EN 15804:2012+A1:2013+A2:2019) has recently published with the 

aim to converge with the PEF method.  One of the changes is the use of the European 

Commission's EF Environmental Footprint impact methodologies with slight exceptions. 

More information can be obtained in (Durão et al. 2020). Therefore, the trend is to 

assess the environmental impact according to the PEF LCIA methodology. 

The list with the names, acronyms and the units are included in Table 6.11. It should be 

noted that the LCA were not globally performed according to PEF since there not yet a 

Product Environmental Footprint Category Rules (PEFCRs) for construction products. 

Table 6.11. Recommended impact categories according to EF method (Fazio et al. 2018). 

Impact Category Abbreviations Units 
1 Global warming potential (climate change) GWP100 kg CO2 eq. 

2 Ozone depletion potential ODP kg CFC-11 eq. 

3 Human toxicity, cancer effects HTc CTUh 

4 Human toxicity, non-cancer effects HTn-c CTUh 

5 
Particle matter/Respiratory inorganics PM Disease 

incidences 

6 Ionising radiation, human health IR kBq U235 

7 Photochemical ozone formation POCP Kg NMVOC ew. 

8 Acidification  AP Mol H+ eq 

9 Eutrophication, terrestrial EPt Mol H+ eq 

10 Eutrophication, aquatic freshwater EPfw kg P eq. 

11 Eutrophication, aquatic marine EPmw kg N eq. 

12 Ecotoxicity (freshwater) ET CTUe 

13 
Land use LU aggregated 

index25 

14 
Water scarcity WS kg world eq. 

deprived 

15 
Abiotic depletion potential (Resource use, minerals and 
metals) 

ADP-E kg Sb eq. 

16 
Abiotic depletion potential-fossil fuels (Resource use, 
energy carries) 

ADP-F MJ 

 

 
25Dimensionless, aggregated index of: kg biotic production/ (m2·a)7 kg soil/ (m2·a) m3 water/ (m2·a) m3g.water/ (m2·a) 
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The open source software OpenLCA 1.10.2 were used to calculate the environmental 

impact. The PEF LCA data sets and the EF LCIA method recently available for OpenLCA 

was used for modelling the LCA system.  

6.2.3.1 Normalization and weighting 

The normalization and weighting steps are optional in the LCA studies according to (ISO 

14040 - ISO 14044:2006). However, in the PEF studies both are mandatory steps.  

The aim of the normalization is to compare the magnitude of the impact categories to a 

reference unit. With this aim the normalization factor defined in the PEF method were 

applied to the LCIA results. These factors are expressed per capita based on a global 

value (Zampori & Pant 2019).  

In addition, the weighting step was also considered as it is stablished in the PEF studies. 

The weighted results of different impact categories help to compare and assess their 

relative importance. In addition, these values can be aggregate to obtain a single score 

across life cycle impact categories.  

6.3 Economic assessment 

The economic impact of the concrete mix was calculated attending to the material unit 

price. It was calculated in the same way of the environmental impact (multiplying the 

mass of each material for its price), using the material prices detailed in the Table 6.12. 

Table 6.12. Material prices. 

Material 
Price 
€/t 

Ref. 
Year 

Source Assumptions 

CEM II/ A-M (V-L) 
42.5R  

93.57 2019 (Colegio oficial de aparejadores 2019) 
CEM II/ A-M 

42.5R 

NL (0/4) 10.72 2019 (Colegio oficial de aparejadores 2019) 
Crushed 

limestone 
sand (0/5) 

NL (4/12) 7.71 2019 (Colegio oficial de aparejadores 2019) 
Crushed 

aggregate 
6/12 D.A.<30 

NL (12/22) 7.30 2019 (Colegio oficial de aparejadores 2019) 
Crushed 

aggregate 
12/18 D.A.<30 

NL (0/2) 15.53 2019 (Colegio oficial de aparejadores 2019) 
Crushed 

limestone 
sand 0.5/1.5 

EAF (0/5) 4.5 2019 
Direct data from a local EAF slag treatment 

plant in the Basque country 
- 

EAF (4/12) 4.5 2019 
Direct data from a local EAF slag treatment 

plant in the Basque country 
- 

EAF (12/22) 4.5 2019 
Direct data from a local EAF slag treatment 

plant in the Basque country 
- 

Water 1.73 2018 https://www.iagua.es/data/servicios/bilbao - 
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The unit price was obtained from different sources of data representative at local and 

country scale. Prices do not include profit margins nor transportation costs.  

6.4 Global environmental and economic index 

With the aim of comparing the concrete mix attending to environmental, performance 

and economic criteria, a global index were calculated according to the method proposed 

in the SUPERCONCRETE project(645704 - SUPERCONCRETE 2014). 

The performance criteria were including in the environmental impact assessment as the 

FU selected in the LCA was 1 m3of concrete MPa of compressive strength at 28 days.  

To combine economic and environmental parameters in a global index, a unique value 

of impact for each criteria was calculated. On the one hand, the environmental impact 

was quantifying through LCA methodology and EF impact assessment including 

normalization and weighing steps to obtain a global value. On the other hand, the 

economic impact was calculated according to the market price of each concrete 

ingredient. Therefore, a unique value has been considered, avoiding the weighting step. 

The main aim of the global index is to help in the selection of the optimal alternative. In 

this thesis the alternatives include 17 concrete mixes. The options involve two types of 

concretes, NL aggregate concrete and EAF aggregate concrete which has been designed 

attending to experimental aggregate packing results and different particle packing 

model (PPM), models with different cement contents as was explained in chapter 5.  

To combine economic and environmental parameters in a global index, environmental 

and economic criteria were considered of equal weight. This assumption may change 

depending on the interests of the stakeholders. For this end, the impact of each criteria 

environmental an economic, were normalised by dividing each impact by the maximum 

environmental or economic impact. Thus, values from 0 to 1 are assigned to each 

concrete mix.  

Finally, equal weighting was considered to obtain the global index for both criteria, 

environmental and economic. Therefore, each environmental and economic impact was 

multiplied by 0.5 and the result was summed for each concrete mix to obtain the global 

index of each one. 

The concrete mix with higher global index (close to 1) has the higher environmental and 

economic impact. By contrast, the concrete mixes with lower global index will be the 

most suitable from the environmental and economic point of view. 
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6.5 Comparative LCA of aggregates 

This section presents the results of a comparative LCA between the NL, EAF and RCA 

aggregates. First, the environmental impact of each type of aggregate is analyzed 

individually to identify the most relevant impact categories and processes. Then, the 

weighted environmental impact is analyzed to compare the impact of different 

aggregate alternatives on a local scale. 

6.5.1 Natural aggregates 

The environmental impact of the NL aggregates involves all the production process 

including the transport from the extraction site to the treatment facilities, the handling 

activities and the treatment process since the primary data supplied by the company 

include the total energy consumption during a year. Table 6.13 shows the environmental 

impact resulting from the production of each fraction of NL aggregate and Fig. 6.5 

includes the relative impact of each impact categories comparing the four size fractions. 

From these results, the following observation can be done: 

- As was expect, the production of the NL (0/2) aggregate fraction presents the 

highest environmental impact, following by the NL (0/4) and the NL (11/22) and 

NL (4/12) which have similar impact.  

Table 6.13. LCIA impact per ton of product. 

Impact category Unit NL (0/2) NL (0/4) NL (4/11) NL (4/11) 

AP Mol H+ eq 8.06E-03 5.58E-03 3.69E-03 3.79E-03 

GWP100 kg CO2 eq. 2.13E+00 1.48E+00 9.77E-01 1.00E+00 

ET CTUe 5.23E-01 3.62E-01 2.39E-01 2.80E-03 

EPmw kg N eq. 1.87E-03 1.29E-03 8.57E-04 9.93E-01 

EPfw kg P eq. 1.75E-05 1.21E-05 8.02E-06 8.83E-03 

EPt Mol H+ eq 1.92E-02 1.33E-02 8.80E-03 2.46E-01 

HTc CTUh 1.93E-08 1.34E-08 8.85E-09 8.81E-04 

HTn-c CTUh 2.65E-07 1.83E-07 1.21E-07 8.24E-06 

IR kBq U235 3.33E-01 2.31E-01 1.53E-01 9.05E-03 

LU Item(s) 2.45E+02 1.69E+02 1.12E+02 9.10E-09 

ODP kg CFC-11 eq. 3.68E-10 2.55E-10 1.69E-10 1.25E-07 

PM Disease incidences 3.66E-07 2.53E-07 1.67E-07 1.57E-01 

POCP kg NMVOC ew. 5.20E-03 3.60E-03 2.38E-03 1.15E+02 

ADP-F MJ 6.31E+01 4.36E+01 2.89E+01 1.74E-10 

ADP-E kg Sb eq. 8.13E-07 5.63E-07 3.72E-07 1.72E-07 

Water use m3 1.37E+00 9.47E-01 6.27E-01 2.45E-03 

 

- The contribution in all categories is the same as to define the impact of each size 

fraction, economic allocated were used. In terms of relative impact, Fig. 6.5 
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shows that the all the categories impacts of are reduced by 31% for the 

production of the NL(0/4)fraction compared to the NL (0/2) and the impact of 

coarse aggregate fractions NL (4/11) and NL (11/22) are reduced by up to 53%. 

Hence, the common practice of assuming the average impact regardless of the 

size fraction, may benefit the impact of the fine fraction sizes and impair the 

impact of the coarse fraction. This fact has not shown a relevant effect in the 

global impact of conventional concrete made with natural since cement is the 

main contribution. However, when aggregates are used in other application or 

concrete made with alternative binders, the difference between the effect of the 

two fine fractions NL (0/2) and NL (0/4) and the coarse fractions NL(4/11) and NL 

(11/22) can acquire a greater relevance in the final impact values of the product.  

 

 

Fig. 6.5. Relative impact comparing the difference aggregates fractions 

To compare the impact of different categories the values were normalized and weighted 

as was detailed in section 6.2.3.1. The results are shown in Fig. 6.6 and Fig. 6.7 

respectively. 

 

Fig. 6.6. Normalized values. 
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Fig. 6.7. Contribution of different impact categories based on normalised and weighted results 

Based on the normalised and weighted results, the most relevant impact categories are: 

Resource use fossils (ADP-F), climate change (GWP), particulate matter (PM) and land 

use (LU) for a cumulative contribution of 84.8% of the total impact. 

Fig. 6.8 shows the contribution of the different flows to each impact category, land use 

in the quarry facilities, particles matter emission during the treatment process and 

electricity and diesel use during the aggregate production. As can be seen, the electricity 

use is relevant in 9 impact categories AP, GWP, EPmw, EPt, IR, ODP, POCP, ADP-E and 

water use and the diesel use is main responsible of 5 categories, ET, EPfw, HTc, HTnc 

and ADP-F. The PM and Land use impact are mainly due to the direct particles’ emission 

during the treatment process and the land occupation and transformation impact.  

 

Fig. 6.8. Contribution of flows to the impact categories based on characterized results. 
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From all of them, the main responsible flows of aggregate impact are the flows with the 

highest contribution in the most relevant impact categories. For ADP-F, both the use of 

diesel (55%) and the electricity (45%) have a similar relevance in the abiotic depletion of 

fossil fuels. In GWP impact the electricity consumption acquired the highest relevance 

(79%). Diesel consumption is mainly related to the vehicle needed to transport and 

handling the material while the electricity is linked to the treatment process machinery.  

For the categories PM and LU, the emission values were estimated as mentioned in 

Section 6.2.2, so the actual emission could vary. Concerning the water use impact, 

although water is used to irrigate the track to avoid the emission of particles and to feed 

the dust control systems, as previously stated, the rainwater that is collected is used for 

this function reducing the environmental impact.  

The options for reducing the impact are limited, as it is a simple process and its impact 

is very low compared to other building materials. With the technology upgrading, the 

use of electricity from renewable sources and the use of electricity or even biofuel for 

the vehicle could lead to greater protection of the environment. Improving the energy 

and production efficiency of material processing equipment, mainly crushers, as they 

are the most energy-intensive and require the most maintenance, could be another way 

to reduce impacts. 

6.5.2 EAF aggregates 

Two different scenarios have been considered to assess the environmental impact of 

the EAF aggregates. The first one (scenario A) involves the transport from the 

steelmaking company to the treatment plant and the energy consumption during the 

treatment process while the second one (scenario B) includes also the avoided burden 

of sending the EAF slag to landfill. Table 6.14 includes the processes involved in each 

scenario.  

The characterized impact results for each scenario are shown in Table 6.15. Fig. 6.9 and 

Fig. 6.10 include the contribution of each process in the environmental impact for the 

scenario A and scenario B respectively. From these results, the following observation 

can be done: 

- For the scenario A, as can be seen in Fig. 6.9, transport process is the main 

responsible for all the impact categories excepting IR, LU, ODP, ADP-E and water 

use. IR, ODP and ADP-E are mainly related to the consumption of electricity while 

land use and water used are directly related with the land occupation and 

transformation of the recycling facilities and to the water use during the 

watering and aerated process of the EAF slag. 

- Concerning the results of the scenario B, the negative values indicate 

environmental benefits as the disposal of inert waste produces a greater 
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environmental impact than the process of treating the EAF slag. As can be seen 

in Fig. 6.10 all the impact categories are highly affected by the landfill process 

excepting ODP and IR. 

- The results show that the valorization of EAF slag is by far more environmentally 

sustainable than the disposal of EAF slag in landfill. It should be noted that, the 

landfill process was selected from the PEF database. Therefore, these results 

should be taken with caution since the actual emission of this type of waste could 

have a minor impact on the environment. 

- Regarding the present conditions of the landfills in the Basque Country and the 

commitment to enhance the economic circularity force to valorize the EAF slags 

without option to deliver them to landfill. Therefore, at present there is no 

option to send these EAF slag to landfill. 

Table 6.14. Processes of the scenarios assessed. 

Scenario A Avoided burden of the scenario B 

A1-Transport to EAF recycling 
plant 

A2-EAF 
processing 

B1-Transport to 
landfill 

B2-Avoided 
landfill 

 

Table 6.15. LCIA impact per ton of EAF aggregate. 

Impact 
category 

Scenario A Scenario B  

A1 A2 A1 +A2 B1 B2 A1+A2+B1+B2 

AP 2.47E-02 5.87E-03 3.06E-02 -2.30E-02 -1.60E-01 -1.52E-01 

GWP100 2.43E+00 1.78E+00 4.22E+00 -2.26E+00 -2.74E+01 -2.54E+01 

ET 5.68E-01 1.53E-01 7.21E-01 -5.28E-01 -4.71E+00 -4.51E+00 

EPmw 1.19E-02 1.32E-03 1.33E-02 -1.11E-02 -4.77E-02 -4.56E-02 

EPfw 1.04E-05 4.53E-06 1.50E-05 -9.72E-06 -4.02E-04 -3.97E-04 

EPt 1.31E-01 1.41E-02 1.45E-01 -1.22E-01 -5.31E-01 -5.07E-01 

HTc 3.04E-08 4.93E-09 3.53E-08 -2.82E-08 -2.99E-07 -2.92E-07 

HTn-c 8.65E-08 7.20E-08 1.58E-07 -8.05E-08 -1.21E-05 -1.20E-05 

IR 2.49E-03 3.26E-01 3.28E-01 -2.32E-03 -3.09E-01 1.73E-02 

LU 8.08E+00 3.37E+01 4.18E+01 -7.51E+00 -1.22E+02 -8.74E+01 

ODP 3.94E-12 3.62E-10 3.66E-10 -3.67E-12 -4.54E-11 3.17E-10 

PM 1.63E-07 1.13E-07 2.76E-07 -1.52E-07 -1.75E-06 -1.63E-06 

POCP 2.21E-02 3.86E-03 2.60E-02 -2.06E-02 -1.30E-01 -1.24E-01 

ADP-F 3.26E+01 3.50E+01 6.75E+01 -3.03E+01 -3.58E+02 -3.21E+02 

ADP-E 2.01E-07 6.79E-07 8.80E-07 -1.87E-07 -2.53E-06 -1.84E-06 

Water use 1.43E-01 1.29E+00 1.44E+00 -1.33E-01 -2.10E+00 -7.99E-01 
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Fig. 6.9. Contribution of different process of the environmental impact. Based on characterised 
results. Scenario A: EAF aggregates.  

 

Fig. 6.10. Contribution of different process of the environmental impact. Based on 
characterised results. Scenario B: EAF aggregates. 

The characterised results were weighted after its normalization to identify the most 

relevant impact categories. The results are shown in Fig. 6.11 for the scenario A and in 

Fig. 6.12.for the scenario B. 

Based on the normalised and weighted results, the most relevant impact categories for 

the scenario A are: Resource use (minerals and metals and fossils) ADP-F abiotic 

depletion, climate change (GWP), particulate matter (PM), acidification (AP) and 

photochemical ozone formation(POCP), for a cumulative contribution of 83% of the total 

impact. The most relevant impact categories correspond to those of scenario B for a 

cumulative contribution of 82.4 % of the total impact except for POCP.  
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Fig. 6.11. Contribution of different impact categories based on normalised and weighted 
values. Scenario A: EAF aggregates. 

 

Fig. 6.12. Contribution of different impact categories based on normalised and weighted 
values. Scenario B: EAF aggregates. 
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In addition, with the technology upgrading, the use of electricity from renewable 

sources and the use of electricity or even biofuel for the vehicle could lead to greater 

protection of the environment. 

 

Fig. 6.13. Contribution of flows to the impact categories (Scenario A), based on characterized 
values. 
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at 300 tkm. Considering the sum of the weighted impact values (see Fig. 6.15), for 

distance lower than 400 tkm the production of EAF aggregates results advantageous 

compared to the NL aggregates. 

 

Fig. 6.14. Influence of the transport distance of EAF slag in the most relevant categories. 

 

Fig. 6.15. Influence of transport distant of EAF slag in the global weighted results. 

 

y = 0.0608x + 1.7816

y = 0.0608x - 27.879

y = 2.1324

-2.80E+01

-1.80E+01

-8.00E+00

2.00E+00

0 100 200 300 400 500

G
W

P
1

0
0

 (
kg

 C
O

2
 e

q
./

t)

tkm

Scenario A
Scenario B
NL (0/2)
NL (0/4)

y = 0.8138x + 34.955

y = 0.8138x - 353.6

y = 63.069

-350

-150

50

250

0 100 200 300 400 500
A

D
P

 -
F 

(M
J)

tkm

Scenario A
Scenario B
NL (0/2)
NL (0/4)

y = 4E-09x - 2E-06

y = 4E-09x + 1E-07

y = 4E-07

-2.00E-06

-1.50E-06

-1.00E-06

-5.00E-07

1.00E-20

5.00E-07

1.00E-06

1.50E-06

2.00E-06

0 100 200 300 400 500

P
M

 (
D

is
e

as
e

 in
ci

d
e

n
ce

s)
 

tkm

Scenario
B
Scenario
A

y = 0.0006x + 0.0059

y = 0.0006x - 0.177

y = 0.0081

-0.2

-0.1

0

0.1

0 100 200 300 400 500

A
P

 (
M

o
l H

+ 
e

q
 )

tkm

Scenario A
Scenario B
NL (0/2)
NL (0/4)

y = 6E-06x + 0.0001

y = 6E-06x - 0.0022

y = 0.0003

-0.003

-0.002

-0.001

1E-17

0.001

0.002

0.003

0 50 100 150 200 250 300 350 400 450 500

W
e

ig
h

te
d

 v
al

u
e

s 

tkm

Scenario A
Scenario B
NL (0/2)
NL (0/4)
NL (4/11)



 6 Environmental and economic impact of NL and EAF aggregate concretes  

259 
 

6.5.3 Recycled aggregates 

For the RCA aggregates, two different scenarios have been considered to assess the 

environmental impact. In the first one (scenario A), the RCA is recycled from C&DW in a 

stationary recycling plant while in the second one (scenario B) the RCA is recycled from 

the rejected concrete fractions of a precast concrete company in a mobile crusher. 

In both scenarios, only the recycling and transport process was considered, leaving the 

avoided boundaries related to the disposal of waste in the landfill outside of the system 

boundaries. 

Table 6.16 show the environmental impact resulting from the production of the RCA 

aggregate and Fig. 6.16 include the relative impact of each impact categories comparing 

the both scenarios. Fig. 6.17 and Fig. 6.18 show the environmental impact contribution 

of each process. From these results, the following observation can be done: 

- According to the characterized results, it is not possible to predict which scenario 

present the highest environmental benefit as differences between the impact 

categories can be found. Hence, to compare both scenarios the values were 

weighted after the normalization step to obtain the weighted value (see Table 

6.17). The results show that the scenario A is slightly (4%) more environment-

friendly than the scenario B. Considering that aggregates will be used to make 

concrete, the small difference may be supplied by the fact that the recycled 

aggregates are in the same recycling plant and therefore the impact of the RCA 

transport to the concrete manufacturing site is avoided. 

- In the scenario A, transport is responsible of the most impact categories while 

for the scenario B, the treatment process is more influential. The differences are 

probably due to the type of energy used to feed the crusher. In the scenario A 

(stationary recycling plant) the crushers run with electricity while in the scenario 

B diesel is needed to feed the mobile crusher. The contribution impact of each 

flow can be seen in Fig. 6.19 and Fig. 6.20. 

Table 6.16. LCIA impact per ton of RCA aggregate. 

Impact category 
Scenario A Scenario B 

A1 A2 A1+A2 B1 B2 B1+B2 

AP 2.87E-02 3.10E-03 3.18E-02 1.07E-02 1.01E-02 2.08E-02 

GWP100 2.83E+00 9.33E-01 3.76E+00 3.62E-04 1.63E+00 2.69E+00 

ET 6.60E-01 8.93E-02 7.49E-01 2.46E-01 1.67E-02 1.93E+00 

EPmw 1.39E-02 7.00E-04 1.46E-02 5.19E-03 1.55E+00 7.71E-03 

EPfw 1.21E-05 2.69E-06 1.48E-05 4.54E-06 6.75E-02 6.37E-05 

EPt 1.52E-01 7.44E-03 1.59E-01 5.68E-02 1.69E+00 8.04E-02 

HTc 3.53E-08 2.94E-09 3.82E-08 1.32E-08 2.52E-03 7.88E-08 

HTn-c 1.01E-07 4.24E-08 1.43E-07 3.76E-08 5.92E-05 9.18E-07 

IR 2.89E-03 1.69E-01 1.72E-01 1.08E-03 2.36E-02 4.16E-02 

LU 9.39E+00 5.63E+00 1.50E+01 3.51E+00 6.57E-08 1.06E+02 
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Impact category 
Scenario A Scenario B 

A1 A2 A1+A2 B1 B2 B1+B2 

ODP 4.58E-12 1.88E-10 1.93E-10 1.71E-12 8.81E-07 3.75E-11 

PM 1.89E-07 1.12E-07 3.01E-07 7.07E-08 4.05E-02 1.93E-07 

POCP 2.58E-02 2.04E-03 2.78E-02 9.61E-03 1.03E+02 1.58E-02 

ADP-F 3.79E+01 1.89E+01 5.67E+01 1.41E+01 3.58E-11 1.43E+02 

ADP-E 2.34E-07 3.56E-07 5.89E-07 8.72E-08 1.23E-07 7.09E-07 

Water use 1.66E-01 1.06E+00 1.23E+00 6.21E-02 6.18E-03 4.27E-01 

 

Table 6.17. Sum of all the weighed results for scenarios A and scenario B. 

 Scenario A Scenario B Impact difference 

Total weighted value 3.68E-04 3.84E-04 4.2% 

 

 

Fig. 6.16. Relative impact comparing both scenarios. RCA aggregates. 

 

Fig. 6.17.Contribution of different process of the environmental impact. Based on 
characterised values. Scenario A: RCA aggregates. 
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Fig. 6.18. Contribution of different process of the environmental impact. Based on 
characterised values. Scenario B: RCA aggregates. 

 

Fig. 6.19. Contribution of flows to the impact categories based on characterized values. 
Scenario A: RCA aggregates. 
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Fig. 6.20. Contribution of flows to the impact categories based on characterized results. RCA: 
Scenario B: RCA aggregates 

Based on the normalised and weighted results, the most relevant impact categories for 

the scenario A are: climate change (GWP), Resource use (minerals and metals and 

fossils) (ADP-F), particle matter (PM) and Eutrophication, terrestrial (EPt).for a 

cumulative contribution of 82.4% of the total impact. In the case of scenario B, the most 

relevant impact categories correspond to those of scenario A. However, as expected due 

to the different energy systems during the treatment process, the ADP-F is the most 

relevant impact for scenario B, as diesel fuel consumption is higher. 

 

Fig. 6.21.Contribution of different impact categories based on normalised and weighted 
values. Scenario A: RCA aggregates. 
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Fig. 6.22. Contribution of different impact categories based on normalised and weighted 
results. Scenario B: RCA aggregates. 

Fig. 6.23 shows the transport influence in the environmental impact of both scenarios. 

As can be seen, for short distances the transport of the C&DW (scenario A) can results 

beneficial for the environmental impact. However, there is a limit (54 km in this study 

case) from which the displacement of the material has a greater impact than the 

transport of the equipment (scenario B).  

 

Fig. 6.23. Influence of transport distance in both RCA scenarios 
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The environmental impact of the aggregates was compared by means of the weighted 

results (see Table 6.18). Both the contribution of the different flows and the contribution 

of each environmental impact were represented in Fig. 6.25 and Fig. 6.24. 

As can be seen the natural aggregates presents the lowest impact values as the facilities 

are strategically located to avoid the transport impact. For the EAF and RCA aggregates 

transport is the highest contributor excepting for the scenario B of the RCA for which 

the diesel consumption of the mobile crusher is the main responsible of the 

environmental impact. For the recycled aggregates (EAF and RCA) slight differences can 

be found in the total environmental impact. However, it can be observed that the 

treatment process of the scenario A of the RCA presents the lowest environmental 

impact even lower than for the natural aggregates. Therefore, a reduction of the 

transport distance could rank them as the best option from an environmental point of 

view.  The environmental impact related to the treatment process of EAF aggregates is 

also lower than that of NL aggregates. 

Concerning to the impact categories, climate change (GWP), abiotic depletion of fossil 

fuels (ADP-F) and particles matter (PM) can be established as the most affected during 

the aggregate production process. The acidification (AP), photochemical ozone 

formation, human health (POCP) and eutrophication, terrestrial (EPt) are also relevant 

for the EAF and RCA aggregate as its value increase with the use of transport.  

Table 6.18. Total weighted values for each aggregate type. 

Type of aggregate Weighted value 

NL (0/2) 2.56E-04 

NL (0/4) 1.77E-04 

NL (4/11) 1.17E-04 

NL (11/22) 1.21E-04 

EAF (Scenario A) 3.89E-04 

RCA (Scenario A) 3.68E-04 

RCA (Scenario B) 3.84E-04 
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Fig. 6.24. Contribution of the flows on the aggregates impact. Based on weighted values. 

 

Fig. 6.25. Contribution of the impact categories on the aggregates impact. Based on weighted 
values. 
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differences in the use of EAF aggregates instead of natural aggregates and to check the 

feasibility of use PPM to design concrete from a sustainable perspective. 

In this regard, in a first approach the characterized impact results for each mix were 

calculated through an update version of the tool developed in the SUPERCONCRETE 

project(645704 - SUPERCONCRETE 2014). Then, the results were normalized and 

weighted, as explained in the methodology, to define the most relevant impact 

categories and the most relevant contribution material for each impact category; in 

other words, to identify the hotspots. 

In a second approach, a single score of each of environmental impact were obtained 

from the weighted impacts and it was combined with the economic impact to obtain a 

comparative global index, as was explained in 6.4. Thus, all concrete mixes can be 

compared attending to environment, performance and economic requirement.  

The environmental impact of the scenario A of the EAF aggregates has been selected to 

assess the environmental impact of concrete, since the govern of the Basque Country 

has recently established especial conditions for the dumping of some recoverable 

industrial waste in view of the deficit in the capacity of the landfills26. This 

announcement totally limits the delivery of EAF slag to landfill. Hence, the avoided 

impact burdens to landfilling were not considered.  

6.6.1 SUPERCONCRETE tool 

The tool developed in the SUPERCONCRETE project were designed to calculate the 

environmental and economic impact of concrete mix at raw material level attending to 

the impact categories registered in the EPD LCIA methodology (CML). However, with the 

development of PEF, the rules to perform the EPD are changing and the norm has been 

recently adapted to looking for the unification of the LCA studies. Therefore, the tool 

was used as reference by modifying and updating the impact categories and 

normalization and weighting factors according to PEF. 

The characterized results of each concrete mix per m3·MPa and per m3are show in the 

annex (see Table A8 and Table A9). The maximum and minimum impact for each 

category has been highlighted in red and in green color respectively. It is possible to 

appreciate the differences in the results depending on the chosen functional unit. 

Fig. 6.26 and Table 6.19 shows the global environmental impact of each concrete mix. 

From these results the following observations can be done:  

 
26https://www.euskadi.eus/gobierno-vasco/-/noticia/2020/medio-ambiente-establece-condiciones-
para-el-vertido-de-algunos-residuos-industriales-valorizables-ante-el-deficit-de-capacidad-de-los-
vertederos/ 
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- Climate change (GWP100), resource use, fossils (ADP-F) and acidification (AP) are 

the most relevant impact categoriesfor a cumulative contribution of about 83% 

in all concrete mix. Photochemical ozone formation, human health (POCP) and 

particle matter (PM) have been also considered as the impact contribution is 

close to acidification impact. Therefore, in the effort to obtain more sustainable 

concretes, reducing the impact on these categories is key to reducing the 

environmental impact. 

- Attending to the global impact results, the E-EAF-V1 presents the low impact 

following by the E-NL-V1, both mixes has been designed according to the range 

of maximum packing of aggregatesand the maximization of coarse aggregate 

fraction proportion and a low cement content260 kg/m3.  

The 3-P-NL-V2 and the CPM-EAF-V2 presents the highest environmental impact. 

This concrete mix where designed attending to the maximum packing predicted 

by the 3-paramenters packing model and the compressible packing model (CPM) 

without considering the range of maximum packing. In addition, both mixes have 

a high cement content 317 kg/m3. 

- Seven (7) concrete mixes present a lower environmental impact than the 

average, four of them are made with EAF aggregates and only two of the EAF 

aggregate concrete mixes overcome the average value, EAF-q0.33 and CPM-EAF-

V2.  Both mixes were designed with a high cement content 326 and 317 kg/m3 

respectively. All the mixes with a lower environmental impact than the average 

value have conservative cement contents (lower than 270 kg/m3) excepting the 

E-EAF-V2 which was designed to a cement content of 317 kg/m3. Hence, the use 

of the EAF aggregates dosages through particles packing theories seem to be a 

promising alternative to reduce the environmental impact of concrete. 

- Comparing the environmental impact of the NL-(47:53):41, NL-(60:40):50, NL-

(50:50):50 and NL-(40:60):60 which were designed with the same cement 

content 300 kg/m3 but different aggregates proportions, differences up to a 

maximum of 11% are observed in the global environmental impact. It should be 

noted that the mix with the low environmental impact (NL-(47:53):41) were 

designed through Fuller curve. 

- The same happens when the E-NL-V1 and 3-P-NL-V1 (260 kg cement/m3), E-NL-

V2 and 3-P-NL-V2(317 kg cement/m3), E-EAF-V1 and CPM-EAF-V1 (260 kg 

cement/m3), E-EAF-V2 and CPM-EAF-V2(317 kg cement/m3) are compared, 

finding environmental benefits of about 11-14% depending of the aggregate 

proportion and even environmental benefits of 22% by comparing E-EAF-V2 and 

CPM-EAF-V2. 

- Despite the higher environmental impact of EAF due to the transport distance 

(see section 6.5.2) and the higher mass of EAF required to obtain the same 

volume of concrete due to its higher density, the environmental impact of EAF 
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concrete is similar or even lower than that of NL concrete when the compressive 

strength is considered. 

 

Fig. 6.26. Weighted environmental impact results of the concrete mix. Contribution of each 
impact category. Results per functional unit m3·MPa of concrete. 
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not match for the two selected functional units. This proves the importance of selecting 

an appropriate functional unit according to the function of the product. 
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Table 6.19. Global environmental impact for each concrete mix. 

Concrete mix Global EI (FU:m3·MPa) Global EI (FU:m3) 

NL-(47:53):41 2.11E-04 8.89E-03 

NL-(60:40):50 2.22E-04 8.93E-03 

NL-(50:50):50 2.26E-04 8.90E-03 

NL-(40:60):60 2.36E-04 8.92E-03 

NL-q0.29 2.19E-04 9.37E-03 

NL-q0.31 2.16E-04 8.32E-03 

NL-q0.33 1.91E-04 7.78E-03 

EAF-q0.33 2.25E-04 1.02E-02 

EAF-q0.35 1.93E-04 8.52E-03 

E-NL-V1 1.65E-04 8.02E-03 

E-NL-V2 2.13E-04 9.69E-03 

3-P-NL-V1 1.89E-04 8.01E-03 

3-P-NL-V2 2.43E-04 9.68E-03 

E-EAF-V1 1.59E-04 8.24E-03 

E-EAF-V2 1.86E-04 9.90E-03 

CPM-EAF-V1 1.77E-04 8.30E-03 

CPM-EAF-V2 2.39E-04 9.95E-03 

 

The aggregates production contributes also to the particle matter (PM) (about 20% of 

the concrete impacts), since during the treatment process (crushing, grinding, sieving 

and handling) process different particles sizes are release to the air. Finally, the EAF 

aggregates contributes about 6-10% in the acidification and the photochemical ozone 

formation impacts (AP and POCP) due to the transport impact from the steelmaking 

company to the recycling plant. 

The contribution of each concrete component in all the assessed impact categories can 

be seen in the annex section. 
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Fig. 6.27. Contribution of the concrete components to the concrete impact in the most 
relevant impact categories. 

As cement production is the main process contributor in concrete manufacture it was 
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Fig. 6.28. Relationship between environmental impact and cement content. Top, Functional 

unit m3·MPa; Above, Functional unit m3 

6.6.2 Sensitive analysis of EAF aggregates transport distance 

Transport distance is one of the key aspects in the construction industry since 

significantly affects the environmental and economic impact. Therefore, the facilities of 
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treatment plant to concrete mix plant) can be established at 90km. As can be seen, there 

are higher ranges (up to 500 and 700 km) when the mixtures are compares with the less 

environmental concrete mixtures. 

 

Fig. 6.29. Influence of different EAF concrete aggregates on transport distance 
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Fig. 6.30. Economic impact of concrete mixes 

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

0 100 200 300 400 500 600 700 800

W
ei

gh
te

d
 r

es
u

lt
s

tkm

E-EAF-V1

E-EAF-V2

CPM-EAF-V1

CPM-EAF-V2

EAF-q0.33

EAF-q0.35

Ref. min. E-NL-V1

Ref. max. 3-P-NL-V2

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

€
/m

3

€
/m

3 ·
M

P
a

FU (m3·Mpa)

FU (1 m3 of concrete)



 6 Environmental and economic impact of NL and EAF aggregate concretes  

273 
 

The contribution of each concrete component in the total cost were represented in Fig. 

6.31. Its term of cost the cement is also the main contributor. However, the contribution 

is lower than for the environmental impacts, representing the between 56 to 74 % of 

the total impact depends on the type of concrete. As it can be observed cement cost is 

more relevant in EAF aggregate concrete mixes since the EAF aggregates are cheaper 

than the NL aggregates. In addition, the influence of the fine aggregates (NL (0/4) and 

NL (0/2)) is slightly higher compared to the coarse fraction and to the EAF aggregates.  

 

Fig. 6.31. Relative contribution of each concrete component in the global concrete cost. 
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Fig. 6.32. Relationship between economic impact and cement content. Top, Functional unit 
m3·MPa; Above, Functional unit m3 

Finally, with the aim of considering both criteria economic and environmental, a global 
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6.33 and Table 6.20. 

 

Fig. 6.33. Global index attending to economic and environmental criteria 

y = 0.002x + 0.5168
R² = 0.2227

y = 0.0022x + 0.2232
R² = 0.2123

0.20

0.40

0.60

0.80

1.00

1.20

1.40

200 220 240 260 280 300 320 340

Ec
o

n
o

m
ic

 im
p

ac
 F

U
 p

er
 

m
3 ·

M
P

a

Cement content (kg/m3)

NL aggregate concretes

EAF aggregate concretes

y = 0.0739x + 23.475
R² = 0.8978

y = 0.0769x + 18.097
R² = 0.3418

20.00

25.00

30.00

35.00

40.00

45.00

50.00

200 220 240 260 280 300 320 340

Ec
o

n
o

m
ic

 im
p

ac
t 

p
er

 m
3

Cement content (kg/m3)

NL aggregate concretes

EAF aggregate concretes

50% 49% 50% 49% 50% 49% 48% 55% 54% 48%
51% 48%

51%
53% 55% 49%

51%

50%
51% 50% 51%

50% 51%
52%

45%
46%

52%

49%
52%

49%

47%
45% 51%

49%

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Economic impact Environmental impact Average value



 6 Environmental and economic impact of NL and EAF aggregate concretes  

275 
 

E-EAF-V1, E-EAF-V2 and E-NL-V1 are the more sustainable concrete mixes according to 

the environmental and economic criteria (global index) (see Table 6.20). All three mixes 

were designed by maximizing the coarse aggregate content within the range of the 

maximum experimental packing density of aggregates. Hence, the combination of PPM 

and LCA assessment seem to be a promising alternative in the design of sustainable 

concrete mixes. In addition, the E-EAF-V1 and E-NL-V1 were designed with a low content 

of cement 260 kg/m3 and consequently low workability (slump 0mm and 15mm), being 

only useful for application where high energy of compaction is applied, as rolled 

compacted concrete or precast concrete. By contrast, the E-EAF-V2 were designed with 

a cement content of 317 kg/m3 and its slump results is 150mmresulting in a fluid 

consistency according to the EHE-08. It should be noted, that admixtures where no 

added, therefore the workability properties could be improved by using them. 

Considering the 5 concrete mixes with the lowest global index impact, it can be found, 

that four of them are EAF aggregate concretes. Hence, the use of EAF aggregates seem 

to be competitive alternative of the NL aggregate. In addition, its valorization goes 

through a circular economic avoiding the sending to landfill of waste and the use of 

natural resources.  

Table 6.20. Concrete mixes ranked according to the global index. 

Concrete ID Environmental impact Economic impact Global Index 

NL-(40:60):60 0.97 1.00 0.98 

3-P-NL-V2 1.00 0.97 0.98 

CPM-EAF-V2 0.98 0.93 0.96 

NL-(50:50):50 0.93 0.94 0.94 

NL-(60:40):50 0.91 0.96 0.93 

NL-q0.31 0.89 0.94 0.91 

NL-q0.29 0.90 0.90 0.90 

NL-(47:53):41 0.87 0.87 0.87 

E-NL-V2 0.88 0.85 0.86 

EAF-q0.33 0.93 0.76 0.84 

NL-q0.33 0.79 0.86 0.82 

3-P-NL-V1 0.78 0.83 0.80 

CPM-EAF-V1 0.73 0.75 0.74 

EAF-q0.35 0.79 0.68 0.74 

E-NL-V1 0.68 0.73 0.70 

E-EAF-V2 0.77 0.63 0.70 

E-EAF-V1 0.65 0.57 0.61 

As can been seen in Fig. 6.34, the global index decreases as the compressive strength 

increases for both types of concrete. However, although there is a tendency for the 

overall index to increase as the cement content increases, the relationship is not totally 



 6 Environmental and economic impact of NL and EAF aggregate concretes  

276 
 

lineal as there are concrete mixtures with the same cement content that have large 

differences in the global index. 

 

Fig. 6.34. Effect of compressive strength and cement content in the global index 
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plant) while the diesel consumption of the mobile crusher is responsible of the 71% of 

the total weighted impact valuefor the scenario B (RCA recycled from the rejected 

concrete fractions of a precast concrete company in a mobile crusher).  

In the Basque Country, the environmental impact of the treatment process of EAF and 

RCA aggregates in a stationary plant is similar or even lower than for the NL aggregate 

production. However, the material transport conducts to a higher impact of the EAF and 

RCA. Hence, NL aggregates present the lowest environmental impact as the treatment 

facilities are strategy located next to the quarries to avoid the transport impact. It should 

be also noted that if the avoided environmental burden from waste disposal in landfill 

is considered, the benefit of recycling is included and therefore, at least for the EAF 

aggregate, the environmental impact result negative, which is possitive. 

Cement is responsible for more than the 80% of the environmental impact in the most 

relevant impact categories of concrete, being close to the 100% for the climate change 

impact category (GWP). This fact is due to the simplicity and relative low energy 

consumption of the aggregate production against the CO2 released during the 

calcination process of the limestone that account for more than the 50% of cement 

Portland production process. The highest contribution of the aggregate can be found in 

the use of resource fossil fuel (ADP-F) and the emission of particle matter (PM), 

accounting about 10% and 20% of the total impact contribution respectively. The EAF 

aggregates also contributes between 6 to 10% on the AP and POCP mainly due to the 

transport process.   

Contrary as it can be expected, a higher cement content does not necessary lead to a 

high environmental impact when the concrete compressive strength is considered in the 

FU. Therefore, although aggregate has low influence in the environmental impact, 

environmental benefits between 11-14% has been found in both types of concrete, due 

to the aggregate skeleton design within the range of maximum packing density of 

aggregates and the maximization of the coarse aggregate proportion.  

In addition, although the EAF aggregates present a environmental impact higher than 

the NL aggregates in the proposed local scenario (due to the transport stage), it was 

found that the concrete made with EAF aggregates contributes, in general, to a 

reduction of the environmental impact and cost. 

The sensitive analysis of EAF aggregate transport distance revealed that the use of EAF 

aggregate as replacement of NL aggregate is environmental feasible for distance of 50 

km and up to 90 km if the transport from steelmaking company to the treatment plant 

is also considered. Longer distance up to 700 km were found feasible comparing all the 

EAF aggregate concrete mix with the natural aggregate mix with the highest 

environmental impact. To determine the economic and environmental feasibility the 

transport cost should be further analyzed. 
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Although cement is the most expensive material in concrete mix, the higher concrete 

cost does not match with the higher cement content. The cement cost contributes 

between 56 to 74% of the total material concrete cost, being most relevant in EAF 

aggregate concrete due to the low price of the EAF aggregates. The use of the NL (0/2) 

to improve the granular size distribution in EAF aggregate concrete accounts for half or 

even more of the total price of the aggregates due to its high price compared to EAF 

aggregates. Consequently, the amount of NL (0/2) in the EAF aggregates must be 

optimised as much as possible to obtain the required functional properties without 

significantly impairing the economical and environmental, respectively impacts. 

In line with the findings of other authors (Braga et al. 2017), the higher environmental 

impacts are not always related to greater cost. Therefore, the use of the global index 

that includes environmental and economic criteria could support decision making in 

comparing different dosages of concrete. 

As the cost of the EAF aggregates is lower than the NL aggregate, the global index results 

again beneficial for the concrete mix made with EAF aggregates. The most sustainable 

concrete mix attending to economic and environmental criteria match again with the 

aggregate mix design proposed in chapter 5.  
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7 Conclusions and Future Perspectives 

In Chapter 7, a summary of the contributions will be presented, as well as the lessons 

that have been learned in relation to the most innovative aspects of this thesis. Drawing 

from the experimental work, some lines of investigation that might be explored in the 

future will also be discussed in the last section. 

7.1 Conclusions 

The central conclusion of this study is that the particle packing approach to the design 

of aggregate mixes both with NL aggregate concretes and with EAF aggregate concretes 

is a valid approach for the production of high compressive strength concrete and for the 

reduction of their environmental and economic impacts. 

At the end of each previous chapter, a series of partial conclusions may be found on the 

contents of each chapter. In consequence, only the fundamental conclusions of the 

research and the lessons that have been learned in relation to its most innovative results 

are summarized here. 

- From the comparison of the experimental results on the maximum packing 

density of aggregate and the application of the ideal distribution curves to 

aggregate mix design to find the highest packing density, it has been concluded 

that the predictions from the ideal curves matched the packing densities of the 

NL aggregate mixtures far more closely than the packing densities of the EAF 

aggregate mixtures. Therefore, other methods, in which aggregate shape is 

considered for the design of the EAF aggregate mixture, may be preferred. 

- Two discrete Particle Packing Methods (PPM) were compared to validate their 

suitability, accuracy and practicality at an industrial scale for the prediction of 

the aggregate packing density of NL aggregate concrete and EAF aggregate 

concretes. From those results, the 3-parameter packing model (3-PPM) showed 

high accuracy for the ternary and the quaternary mixtures of the aggregates 

under study.  

- Experimental packing density measurements revealed that a range of 

combinations, rather than a single aggregate combination within the maximum 

packing density can be obtained, due to the nature of the aggregate fraction 

(granular size distribution and shape variability).  

- Maximizing the amount of the larger-size aggregate fraction within the range of 

aggregates that reached maximum packing densities was beneficial for the 

concrete mix design with NL and EAF aggregates, providing higher compressive 

strength, greater workability, and requiring a lower content of fines. In addition, 
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the environmental impact (carbon footprint) of these concretes was, in general, 

much lower than conventional concretes.  

- The prediction of the optimal cement paste content of the concrete to obtain a 

specific workability, based only the packing density of aggregate, was not 

feasible, as the amount of concrete paste for the mix onset of flow will also 

depend on the total specific surface area of the aggregate. The aggregate packing 

density, measured by the compaction method using a tamping rod, appears to 

be a suitable starting point for calculating lower levels of paste content without 

excessive experimental testing, for the production of concrete mixes with a 

minimum cement content. 

- The reduction of the cement in the design of both the NL and the EAF aggregate 

concretes without additives was limited by the workability of the mixtures. The 

low workability of concretes made with a reduced quantity of cement in this 

thesis limited their applicability to precast concrete or roller‐compacted 

concrete. In terms of the hardened properties a reduction of cement of 

approximately 18% (from 317 kg/m3 to 260 kg/m3) was not detrimental to the 

compressive strength of the concrete at 28 days. 

- There is no regional data base on NL and EAF aggregate production in the Basque 

Country, so the primary data were gathered from two representative aggregate 

facilities. 

- Considering its weighted values, EAF aggregate production has an environmental 

impact of approximately 50-70% higher than NL aggregate production, due to 

the high contribution of the transport impact (62%). However, the concrete 

made with EAF aggregates, due to its higher compressive strength and the low 

contribution of those aggregates of its environmental impact, generally 

contributed to a reduction of the environmental impact when compressive 

strength was considered in the functional unit (FU). The transport distance from 

the treatment plant to the concrete plant may therefore be lengthier than the 

natural aggregate up to a minimum of 50 km according to the sensitivity analysis. 

- Environmental benefits of between 11 and 14% were found for NL and EAF 

aggregates concretes designed with the same content of cement. So, despite the 

low contribution of EAF aggregates to the impact of concrete, aggregate mix 

design can increase the performance and consequently lower the environmental 

and economic impacts of EAF concretes significantly. 

- Higher environmental impact is not always related to higher costs. The suitability 

of the global environmental and economic index as an easily used indicator was 

demonstrated for supporting decision-making when comparing the impact of 

different concrete mixes. 
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7.2 Afterthoughts: Future Perspectives 

The research in this thesis has contributed to the existing literature on particle packing 

models for the design of sustainable concrete mixes and their validation through 

environmental and economic impact assessments.  Specifically, the applicability and 

actual limitations of particle packing methods to the design of sustainable concrete 

mixtures made with conventional aggregates (NL aggregates) and recovered materials 

(EAF aggregates) have been analysed. From the observations during the experimental 

campaign, some promising lines of research have emerged for future in-depth 

investigations: 

- Aggregate mix design purely based on maximum packing density will not 

necessarily lead to concrete mixes of higher compressive strength, as the paste 

(and water) demand will also depend on the specific surface area of the fine 

aggregate fraction and the nature of the material. Therefore, the optimum 

aggregate mix should be determined from both the maximum packing density 

and the paste that the mixture requires to arrive at onset of flow. From this 

perspective, aggregate concrete mix design through maximization of the amount 

of larger aggregate within the range of maximum packing density appears to be 

a valid means of approximating the optimal aggregate mix of both NL aggregate 

concrete and EAF aggregate concretes. However, further exploration of the 

relationship between aggregate specific surface and the demand for water and 

cement paste to arrive at the onset of flow of the mix appears to be a promising 

line for the development of a more accurate and rational method. The main 

limitation of this research line is the method that could be used to determine the 

specific surface area of crushed and cavernous aggregate in a reliable way for its 

eventual standardization within a recognized framework of reference. 

- To extend the study to an exploration of the effect of adding admixtures to the 

concrete mixture designed through the particle packing method. Two aims arise 

here:  

o To analyse the potential for increasing the workability of concrete to 

extend the range of application of concretes with reduced cement 

content.  

o To analyse the effect on the environmental and economic sustainability 

of concrete mixtures. 

- To explore aggregate packing under wet conditions more deeply. The results of 

aggregate mix packing densities with particle sizes lower than 4 mm under wet 

conditions differ from those in the dry state. As concrete is a wet material, the 

study of packing density under such conditions could improve the accuracy of 

concrete mix design with particle packing methods. In addition, the effect of the 
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admixtures, specially superplasticisers, could also be considered when 

measuring packing density under wet conditions. 

- The experimental campaign testing concrete performance has been focused on 

the air content of the concrete, and concrete density, packing density 

workability, and compressive strength. Additional tests that could include 

mechanical tests (tensile splitting strength, modulus of elasticity, long-term 

compressive strength, shrinkage and creep) and durability tests (carbonation, 

chloride ingress, sulphate resistance, freeze-thaw resistance, permeability, 

alkali-silica reaction, alkali-silica), should also be performed, to assay all aspects 

of concrete performance and to assess the influence of aggregate mix design and 

cement content, in relation to the particular exposure class that may be 

required. 

- As most of the data-base information represents averaged compilations from a 

country or a continent, the need for life cycle inventories (LCI) of construction 

materials at local levels that might be focused on geographical, and temporal 

technological representativeness is a key point to consider. Such a database 

could facilitate reliable comparisons of environmental impacts between various 

materials with similar functionalities, assisting decision-making in relation to 

product design.  
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Annex 1. Additional information of Chapter 4. 

A- Calibration process of vibration-table acceleration  

The vibration table was calibrated to achieve an acceleration of 4g (as suggested by F. 

de Larrard (de Larrard 1999)). The values were measured with an accelerometer sensor 

and an Arduino system at different frequencies (22, 24, 26, 28, 30, 32, 33 and 35 hz) and 

locations (on the vibration table (see Fig. A1.1), on both the lower zone (see Fig. A1.2) 

and the upper zone of the mould (see Fig. A1.3)).  

 

Fig.A1.1. Accelerometer sensor position on the vibration table. 

 

 

Fig.A1.0.1. Accelerometer sensor position on the upper zone of the mould. 
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Fig. A1.0.2. Accelerometer sensor positioned on the lower zone of the mould. 

The sensor had a reading speed of 0.02 s and the acceleration values were registered 

during a period of approximately 40 s, as shown in Fig. A1.4.  

Three tests were performed at each frequency for each sensor location and the average 

value was calculated for the minimum and maximum recorded values.  

Sensor calibration requires a stationary sensor on a horizontal surface that measures 0g 

on both the X-axis and the Y-axis, while the Z-axis should measure 1g. Several tests were 

analysed at this position without vibration, to check for any deviations. Slight deviations 

can be observed in Fig. A1.5. These deviations were corrected for each test and possible 

changes were checked with a measurement before each test in the static state. 

 

Fig. A1.0.3. Acceleration results at 50 Hz. Table secured to the ground with silent block 
supports.  
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Fig. A1.0.4. Accelerometer static test  

Fig. A1.6 shows the differences between the acceleration values for the table on the 

three axes at eight different frequencies. The largest difference is on both axes where 

the frequency increase appears to increase the acceleration. However, at 28 Hz the 

acceleration on the y-axis slightly decreased compared to the same acceleration at 26 

Hz. The acceleration on the z-axis remained practically constant from a range of 

frequencies from 24 to 35Hz on the maximum values and from a range of 30 to 35Hz on 

the minimum values. The desired acceleration of 4g on all the three axes, both for the 

maximum and minimum acceleration, was reached at a frequency of 32Hz.  

The low standard deviations (ranging from 0.04 to 0.61 g) between the three tests for 

the three sensor positions indicated that accurate values were obtained.  

 

 

Fig. A1.0.5. Results of the maximum and minimum acceleration of each axis on the vibration 
table at different frequencies. 
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In Fig. A1.7, the results of the acceleration values for the upper zone of the mould on 

the three axes are shown at six different frequencies. In Fig. A1.0.2, the acceleration 

values for the lower zone of the mould are shown at eight different frequencies.  

In both the upper and the lower zone of the mould, the acceleration appeared to be 

practically independent of the selected frequency in the range of 26 to 35 Hz (see Fig. 

A1.7, Fig. A1.8). However, the acceleration was significantly lower at 22hz.  

It can also be highlighted that the mould acceleration results showed an acceleration 

higher than 4g on all three axes, at frequencies higher than 22Hz, reaching and even 

exceeding 5g. 

 

 

Fig. A1.0.6. Results of the maximum and minimum acceleration of each axis on the upper 
zone of the mould at different frequencies. 

 

Fig. A1.0.7. Results of the maximum and minimum acceleration of each axis on the lower 
zone of the mould at different frequencies. 
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Fig. A1.9 shows slight differences between the acceleration values for the upper and 

lower zones of the mould. The largest difference, on the z-axis, corresponds to the y-

axis on the table (the longitudinal direction, parallel to the table). In that case, the 

acceleration was higher in the upper zone, probably due to the fixations securing the 

mould to the table. 

 

 

Fig.A1.0.8. Comparison of the maximum and minimum acceleration on the three axes in both 
the upper and the lower zones of the mould. 

In view of the results and the vibration table in use, the frequency clearly cannot be 

adjusted to obtain an acceleration of 4g on all axes and parts of the mould, so two 

different test frequencies were selected. 

On the one hand, 33 Hz was selected as the 4 g acceleration was reached or even 

exceeded in the three test zones. On the other hand, 26 Hz was chosen to compare the 

measurement of PD with two different accelerations, as the vibration table acceleration 

at 26 Hz was lower than at 33 Hz.  

Calibration of the optimum vibration time (Test duration). 

The optimal duration of the compaction process was measured, by conducting the 

compression and vibration packing tests until a constant PD was reached (i.e. until a 

constant height of aggregate was reached in the mould). 
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The coarse and medium fractions of crushed limestone aggregates (NL) were used to 

calibrate the test duration. Both fractions were tested at two different frequencies (26 

and 33Hz). The same sample was vibrated four times for one minute, to ensure a 

constant PD value had been reached, verifying the piston movement at one-minute 

intervals. Having reached a constant measurement, another 3-minute test of continuous 

vibrations was performed to verify whether the measurement was the same. 

The results are shown in Table A1.1. 

Table A1.1. Aggregate heights within the cylindrical mould after the PD test. 

 Frequency (Hz) Aggregate Height (mm) 

1 min +1 min +1 min +1 min 3 min 

NL (11/22) 33 20.2 20 19.9 19.9 19.9 

NL (11/22) 26 21 20.8 20.6 20.6 20.5 

NL (4/11) 33 19 18.9 18.6 18.6 18.6 

NL (4/11) 26 20 19.7 19.5 19.5 19.4 

 

On the basis of the results, the test duration was set at 3 min, within which time the PD 

appeared to have stabilized at a constant level.  

B- Deviations of the theoretical models from the experimental 

packing density 

Natural limestone aggregates 

Binary mixtures 

 

NL (4/11) NL (11/22) Φexp

0 1 0.502 0.5 -0.07% 0.48 -5.30% 0.5 -0.60% 0.502 0.00% 0.502 0.00%

0.1 0.9 0.512 0.52 1.63% 0.49 -4.10% 0.52 1.10% 0.514 0.30% 0.511 -0.12%

0.2 0.8 0.516 0.54 4.16% 0.51 -2.10% 0.54 3.60% 0.524 1.60% 0.520 0.81%

0.3 0.7 0.529 0.55 4.38% 0.52 -2.80% 0.55 3.70% 0.534 0.96% 0.528 -0.17%

0.4 0.6 0.535 0.56 4.84% 0.52 -3.30% 0.56 4.10% 0.542 1.35% 0.535 -0.05%

0.5 0.5 0.539 0.56 4.38% 0.51 -4.80% 0.56 3.50% 0.548 1.71% 0.540 0.14%

0.6 0.4 0.539 0.56 3.57% 0.51 -6.50% 0.55 2.60% 0.544 0.99% 0.539 -0.04%

0.7 0.3 0.542 0.55 1.53% 0.5 -9.30% 0.54 0.40% 0.539 -0.62% 0.534 -1.44%

0.8 0.2 0.54 0.54 -0.02% 0.48 -11.50% 0.53 -1.30% 0.532 -1.49% 0.529 -2.06%

0.9 0.1 0.536 0.53 -1.41% 0.47 -13.40% 0.52 -2.80% 0.525 -2.14% 0.523 -2.43%

1 0 0.517 0.52 -0.02% 0.46 -12.20% 0.51 -1.40% 0.517 0.00% 0.517 0.00%

2.1%

0.2%

1.2%

2.4%

-0.5%

1.0%

13.4%

-6.8%

3.9%

4.1%

1.2%

2.3%

2.1%

2.2%

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Loose packing (D-L)

Maximum error

Mean error

Standard Deviation

4.8%
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NL (4/11) NL (11/22) Φexp

0 1 0.534 0.534 0.1% 0.507 -5.33% 0.530 -0.72% 0.534 0.00% 0.534 0.00%

0.1 0.9 0.544 0.555 2.0% 0.524 -3.82% 0.550 1.18% 0.547 0.57% 0.545 0.16%

0.2 0.8 0.557 0.575 3.1% 0.540 -3.15% 0.570 2.25% 0.560 0.47% 0.555 -0.32%

0.3 0.7 0.559 0.592 5.5% 0.551 -1.45% 0.586 4.60% 0.571 2.11% 0.565 1.01%

0.4 0.6 0.566 0.602 6.0% 0.555 -1.98% 0.596 4.99% 0.581 2.57% 0.573 1.20%

0.5 0.5 0.565 0.605 6.6% 0.552 -2.36% 0.597 5.43% 0.587 3.78% 0.579 2.49%

0.6 0.4 0.568 0.601 5.4% 0.545 -4.22% 0.593 4.17% 0.584 2.72% 0.578 1.77%

0.7 0.3 0.577 0.593 2.7% 0.535 -7.85% 0.584 1.24% 0.579 0.41% 0.575 -0.35%

0.8 0.2 0.577 0.583 1.0% 0.524 -10.11% 0.574 -0.53% 0.574 -0.53% 0.571 -1.06%

0.9 0.1 0.566 0.572 1.1% 0.512 -10.55% 0.563 -0.56% 0.568 0.31% 0.566 0.04%

1 0 0.561 0.561 0.0% 0.501 -11.98% 0.551 -1.73% 0.561 0.00% 0.561 0.00%

1.0%Standard Deviation 2.3% 3.6% 2.5% 1.3%

2.5%

Mean error 3.0% -5.7% 1.8% 1.1% 0.4%

Maximum error 6.6% 12.0% 5.4% 3.8%

3-P (unc.) 3-P (comp.)

Compacted packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ)

NL (4/11) NL (11/22) Φexp

0 1 0.566 0.566 0.0% 0.536 -5.60% 0.561 -1.07% 0.566 0.00% 0.566 0.00%

0.1 0.9 0.596 0.590 -1.0% 0.556 -7.19% 0.584 -0.81% 0.581 -2.52% 0.579 -2.93%

0.2 0.8 0.613 0.614 0.2% 0.576 -6.42% 0.608 0.25% 0.596 -2.82% 0.592 -3.61%

0.3 0.7 0.62 0.635 2.3% 0.592 -4.73% 0.628 2.48% 0.610 -1.62% 0.603 -2.74%

0.4 0.6 0.629 0.646 2.6% 0.599 -5.01% 0.638 2.15% 0.623 -1.03% 0.614 -2.42%

0.5 0.5 0.63 0.647 2.6% 0.595 -5.88% 0.638 1.08% 0.630 -0.06% 0.623 -1.15%

0.6 0.4 0.631 0.642 1.8% 0.587 -7.50% 0.633 0.65% 0.629 -0.38% 0.623 -1.31%

0.7 0.3 0.63 0.636 0.9% 0.577 -9.19% 0.627 1.36% 0.626 -0.59% 0.622 -1.32%

0.8 0.2 0.634 0.629 -0.8% 0.566 -12.01% 0.619 -2.07% 0.623 -1.76% 0.620 -2.28%

0.9 0.1 0.612 0.621 1.5% 0.556 -10.07% 0.611 -1.07% 0.619 1.11% 0.617 0.85%

1 0 0.614 0.614 0.0% 0.545 -12.66% 0.603 -1.96% 0.614 0.00% 0.614 0.00%

1.3%Standard Deviation 1.3% 2.6% 1.5% 1.1%

3.6%

Mean error 0.9% -7.8% 0.1% -0.9% -1.5%

Maximum error 2.6% 12.7% 2.5% 2.8%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)
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NL (4/11) NL (11/22) Φexp

0 1 0.594 0.594 0.0% 0.56 -5.51% 0.588 -0.95% 0.594 0.00% 0.594 0.00%

0.1 0.9 0.617 0.619 0.3% 0.58 -5.65% 0.612 -2.03% 0.609 -1.24% 0.607 -1.65%

0.2 0.8 0.635 0.644 1.4% 0.6 -5.13% 0.637 -0.90% 0.624 -1.72% 0.619 -2.52%

0.3 0.7 0.642 0.666 3.7% 0.62 -3.72% 0.658 1.20% 0.638 -0.63% 0.631 -1.75%

0.4 0.6 0.656 0.679 3.4% 0.62 -5.13% 0.670 1.42% 0.650 -0.91% 0.641 -2.31%

0.5 0.5 0.663 0.680 2.5% 0.62 -7.28% 0.670 1.30% 0.653 -1.54% 0.646 -2.57%

0.6 0.4 0.659 0.674 2.2% 0.61 -8.21% 0.663 0.38% 0.651 -1.18% 0.646 -2.05%

0.7 0.3 0.645 0.665 3.0% 0.6 -7.86% 0.654 -0.55% 0.649 0.55% 0.644 -0.12%

0.8 0.2 0.657 0.655 -0.3% 0.59 -11.93% 0.644 -2.44% 0.645 -1.89% 0.642 -2.37%

0.9 0.1 0.64 0.645 0.8% 0.58 -11.11% 0.633 -0.17% 0.640 0.04% 0.639 -0.20%

1 0 0.635 0.635 0.1% 0.57 -12.39% 0.623 -1.82% 0.635 0.00% 0.635 0.00%

1.0%Standard Deviation 1.4% 2.9% 1.3% 0.8%

2.6%

Mean error 1.6% -7.6% -0.4% -0.8% -1.4%

Maximum error 3.7% 12.4% 2.4% 1.9%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

NL 

(0/4)
NL 

(4/11) 

NL 

(11/22)
Φexp

0 0.6 0.4 0.54 0.559 3.57% 0.553 2.57% 0.544 0.99% 0.540 0.14%

0.1 0.54 0.36 0.595 0.590 0.581 0.572

0.2 0.48 0.32 0.632 0.627 0.617 0.602

0.3 0.42 0.28 0.62 0.663 7.22% 0.660 6.81% 0.653 5.84% 0.630 2.37%

0.4 0.36 0.24 0.66 0.679 3.35% 0.679 3.34% 0.685 4.29% 0.655 -0.13%

0.5 0.3 0.2 0.67 0.677 0.43% 0.679 0.79% 0.685 1.54% 0.673 -0.12%

0.6 0.24 0.16 0.68 0.665 -2.25% 0.669 -1.63% 0.673 -1.09% 0.663 -2.51%

0.7 0.18 0.12 0.67 0.649 -3.85% 0.654 -3.02% 0.657 -2.59% 0.650 -3.70%

0.8 0.12 0.08 0.632 0.638 0.639 0.634

0.9 0.06 0.04 0.614 0.621 0.618 0.616

1 0 0 0.6 0.597 0.05% 0.605 1.25% 0.597 0.00% 0.597 0.00%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.7%

Mean error 1.2% 1.4% 1.3% -0.6%

Maximum error 7.2% 6.8% 5.8%

1.8% Standard Deviation 3.5% 3.0% 2.7%
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NL 

(0/4)
NL 

(4/11) 

NL 

(11/22)
Φexp

0 0.6 0.4 0.57 0.601 5.43% 0.593 4.17% 0.584 2.72% 0.578 1.77%

0.1 0.54 0.36 0.642 0.634 0.625 0.613

0.2 0.48 0.32 0.685 0.678 0.668 0.648

0.3 0.42 0.28 0.68 0.725 6.77% 0.718 5.91% 0.712 5.01% 0.684 1.10%

0.4 0.36 0.24 0.72 0.750 4.45% 0.746 3.87% 0.753 4.79% 0.717 0.05%

0.5 0.3 0.2 0.74 0.757 2.31% 0.755 1.95% 0.764 3.08% 0.747 0.96%

0.6 0.24 0.16 0.76 0.753 -0.21% 0.752 -0.43% 0.760 0.70% 0.747 -1.13%

0.7 0.18 0.12 0.75 0.744 -0.61% 0.743 -0.75% 0.752 0.45% 0.742 -0.98%

0.8 0.12 0.08 0.733 0.733 0.741 0.733

0.9 0.06 0.04 0.722 0.721 0.726 0.722

1 0 0 0.71 0.709 0.05% 0.709 0.05% 0.709 0.00% 0.709 0.00%

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Loose packing (D-C)

Vol. fraction (%) Packing density & error (%)

1.8%

Mean error 2.6% 2.1% 2.4% 0.3%

Maximum error 6.8% 5.9% 5.0%

1.0% Standard Deviation 2.8% 2.4% 1.9%

NL 

(0/4)
NL 

(4/11) 

NL 

(11/22)
Φexp

0 0.6 0.4 0.63 0.642 1.76% 0.587 -7.57% 0.642 1.69% 0.629 -0.38% 0.623 -1.31%

0.1 0.54 0.36 0.689 0.625 0.688 0.673 0.660

0.2 0.48 0.32 0.741 0.666 0.739 0.720 0.698

0.3 0.42 0.28 0.75 0.793 5.50% 0.704 -6.45% 0.790 5.15% 0.767 2.31% 0.737 -1.65%

0.4 0.36 0.24 0.79 0.821 3.57% 0.711 -11.43% 0.816 2.89% 0.804 1.47% 0.774 -2.37%

0.5 0.3 0.2 0.8 0.821 2.11% 0.692 -16.26% 0.814 1.26% 0.809 0.56% 0.793 -1.36%

0.6 0.24 0.16 0.82 0.813 -0.90% 0.667 -22.86% 0.805 -1.88% 0.808 -1.49% 0.795 -3.14%

0.7 0.18 0.12 0.8 0.802 0.74% 0.643 -23.71% 0.793 -0.32% 0.803 0.87% 0.793 -0.40%

0.8 0.12 0.08 0.791 0.621 0.782 0.794 0.787

0.9 0.06 0.04 0.779 0.599 0.770 0.782 0.779

1 0 0 0.77 0.768 -0.04% 0.579 -32.71% 0.758 -1.35% 0.768 0.00% 0.768 0.00%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.1%

Mean error 1.8% -17.3% 1.1% 0.5% -1.5%

Maximum error 5.5% 32.7% 5.1% 2.3%

1.2% 1.0% Standard Deviation 2.0% 8.9% 2.3%
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NL 

(0/4)
NL 

(4/11) 

NL 

(11/22)
Φexp

0 0.6 0.4 0.66 0.674 2.17% 0.617 -6.87% 0.663 0.65% 0.651 -1.18% 0.646 -2.05%

0.1 0.54 0.36 0.721 0.655 0.710 0.697 0.683

0.2 0.48 0.32 0.773 0.696 0.762 0.744 0.722

0.3 0.42 0.28 0.75 0.819 8.30% 0.728 -3.20% 0.809 7.15% 0.791 5.07% 0.760 1.22%

0.4 0.36 0.24 0.83 0.835 1.01% 0.724 -14.25% 0.827 0.04% 0.814 -1.55% 0.796 -3.84%

0.5 0.3 0.2 0.84 0.831 -0.73% 0.701 -19.32% 0.823 -1.69% 0.818 -2.37% 0.803 -4.18%

0.6 0.24 0.16 0.85 0.821 -3.65% 0.677 -25.79% 0.813 -4.69% 0.816 -4.29% 0.804 -5.85%

0.7 0.18 0.12 0.85 0.810 -4.48% 0.652 -29.73% 0.801 -5.60% 0.810 -4.41% 0.801 -5.63%

0.8 0.12 0.08 0.798 0.629 0.789 0.801 0.795

0.9 0.06 0.04 0.786 0.607 0.777 0.789 0.786

1 0 0 0.78 0.775 -0.01% 0.587 -32.07% 0.765 -1.31% 0.775 0.00% 0.775 0.00%

Maximum error 8.3% 32.1% 7.1% 5.1% 5.8%

Mean error 0.4% -18.7% -0.8% -1.2% -2.9%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

2.5% Standard Deviation 3.9% 10.4% 3.9% 3.0%

NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.4 0.6 0.535 0.562 4.84% 0.558 4.08% 0.542 1.35% 0.535 -0.05%

0.1 0.36 0.54 0.600 0.596 0.590 0.575

0.2 0.32 0.48 0.638 0.635 0.628 0.605

0.3 0.28 0.42 0.611 0.670 8.81% 0.668 8.55% 0.665 8.12% 0.634 3.62%

0.4 0.24 0.36 0.65 0.685 5.07% 0.685 5.17% 0.698 6.83% 0.659 1.42%

0.5 0.2 0.3 0.662 0.681 2.83% 0.684 3.25% 0.693 4.46% 0.677 2.25%

0.6 0.16 0.24 0.665 0.668 0.46% 0.673 1.12% 0.679 2.13% 0.667 0.25%

0.7 0.12 0.18 0.654 0.651 -0.44% 0.657 0.39% 0.662 1.22% 0.652 -0.23%

0.8 0.08 0.12 0.633 0.639 0.642 0.636

0.9 0.04 0.06 0.615 0.622 0.620 0.617

1 0 0 0.597 0.597 0.05% 0.605 1.25% 0.597 0.00% 0.597 0.00%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.6%

Mean error 3.1% 3.4% 3.4% 1.0%

Maximum error 8.8% 8.6% 8.1%

1.3%Standard Deviation 3.1% 2.6% 2.9%
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NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.4 0.6 0.566 0.602 6.01% 0.596 4.99% 0.581 2.57% 0.573 1.20%

0.1 0.36 0.54 0.645 0.639 0.632 0.617

0.2 0.32 0.48 0.690 0.684 0.677 0.654

0.3 0.28 0.42 0.663 0.731 9.29% 0.726 8.62% 0.721 8.07% 0.690 3.90%

0.4 0.24 0.36 0.704 0.756 6.82% 0.752 6.37% 0.763 7.77% 0.724 2.79%

0.5 0.2 0.3 0.723 0.761 5.04% 0.759 4.77% 0.772 6.33% 0.754 4.13%

0.6 0.16 0.24 0.73 0.756 3.48% 0.755 3.31% 0.767 4.88% 0.753 3.10%

0.7 0.12 0.18 0.728 0.747 2.49% 0.746 2.38% 0.758 3.95% 0.747 2.55%

0.8 0.08 0.12 0.735 0.734 0.744 0.737

0.9 0.04 0.06 0.722 0.722 0.728 0.724

1 0 0 0.709 0.709 0.05% 0.709 0.05% 0.709 0.00% 0.709 0.00%

Loose packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

4.1%

Mean error 4.7% 4.4% 4.8% 2.5%

Maximum error 9.3% 8.6% 8.1%

1.4%Standard Deviation 2.8% 2.6% 2.7%

NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.4 0.6 0.629 0.654 3.77% 0.607 -3.65% 0.646 2.64% 0.623 -1.03% 0.614 -2.42%

0.1 0.36 0.54 0.703 0.648 0.695 0.675 0.660

0.2 0.32 0.48 0.757 0.691 0.749 0.723 0.699

0.3 0.28 0.42 0.726 0.807 10.07% 0.724 -0.34% 0.799 9.14% 0.771 5.89% 0.739 1.74%

0.4 0.24 0.36 0.778 0.829 6.10% 0.719 -8.13% 0.821 5.28% 0.811 4.06% 0.776 -0.20%

0.5 0.2 0.3 0.786 0.825 4.78% 0.696 -12.86% 0.818 3.93% 0.815 3.60% 0.799 1.68%

0.6 0.16 0.24 0.792 0.816 2.89% 0.671 -18.08% 0.808 1.95% 0.814 2.72% 0.801 1.07%

0.7 0.12 0.18 0.778 0.804 3.23% 0.646 -20.50% 0.796 2.21% 0.808 3.70% 0.797 2.43%

0.8 0.08 0.12 0.792 0.622 0.783 0.798 0.790

0.9 0.04 0.06 0.780 0.600 0.770 0.784 0.780

1 0 0 0.768 0.768 -0.04% 0.579 -32.71% 0.758 -1.35% 0.768 0.00% 0.768 0.00%

0.6%

Standard Deviation 2.9% 10.3% 3.0% 2.2% 1.5%

Mean error 4.4% -13.8% 3.4% 2.7%

2.4%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Maximum error 10.1% 32.7% 9.1% 5.9%
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NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.4 0.6 0.656 0.679 3.43% 0.632 -3.83% 0.670 2.15% 0.650 -0.91% 0.641 -2.31%

0.1 0.36 0.54 0.729 0.673 0.720 0.700 0.685

0.2 0.32 0.48 0.783 0.715 0.773 0.748 0.724

0.3 0.28 0.42 0.78 0.828 5.75% 0.742 -5.17% 0.819 4.75% 0.797 2.12% 0.763 -2.18%

0.4 0.24 0.36 0.825 0.840 1.83% 0.731 -12.90% 0.833 0.96% 0.821 -0.45% 0.800 -3.11%

0.5 0.2 0.3 0.839 0.834 -0.56% 0.706 -18.85% 0.827 -1.46% 0.824 -1.80% 0.809 -3.65%

0.6 0.16 0.24 0.825 0.824 -0.17% 0.680 -21.39% 0.816 -1.14% 0.822 -0.39% 0.809 -1.93%

0.7 0.12 0.18 0.809 0.812 0.32% 0.654 -23.66% 0.803 -0.73% 0.815 0.73% 0.805 -0.46%

0.8 0.08 0.12 0.799 0.630 0.790 0.804 0.798

0.9 0.04 0.06 0.787 0.608 0.778 0.791 0.787

1 0 0 0.775 0.775 -0.01% 0.587 -32.07% 0.765 -1.31% 0.775 0.00% 0.775 0.00%

0.5% -0.1%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.6%Maximum error 5.8% 32.1% 4.8% 2.1%

-1.9%

Standard Deviation 2.2% 9.4% 2.1% 1.2% 1.2%

Mean error 1.5% -16.8%

NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.5 0.5 0.539 0.564 4.38% 0.559 3.50% 0.548 1.71% 0.540 0.14%

0.1 0.45 0.45 0.600 0.596 0.586 0.572

0.2 0.4 0.4 0.637 0.633 0.623 0.602

0.3 0.35 0.35 0.668 0.666 0.659 0.630

0.4 0.3 0.3 0.652 0.683 4.48% 0.683 4.54% 0.692 5.75% 0.655 0.48%

0.5 0.25 0.25 0.667 0.679 1.83% 0.682 2.22% 0.689 3.15% 0.673 0.92%

0.6 0.2 0.2 0.667 0.667 -0.05% 0.671 0.59% 0.676 1.34% 0.663 -0.55%

0.7 0.15 0.15 0.650 0.655 0.660 0.650

0.8 0.1 0.1 0.632 0.639 0.640 0.634

0.9 0.05 0.05 0.615 0.621 0.619 0.616

1 0 0 0.597 0.597 0.05% 0.605 1.25% 0.597 0.00% 0.597 0.00%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

0.9%

Mean error 2.1% 2.4% 2.4% 0.2%

Maximum error 4.5% 4.5% 5.7%

0.5%Standard Deviation 2.0% 1.4% 2.0%
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Electric Arc Furnace (EAF) aggregates 

Binary mixtures 

NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.5 0.5 0.63 0.656 3.97% 0.604 -4.24% 0.648 2.75% 0.630 -0.06% 0.623 -1.15%

0.1 0.45 0.45 0.704 0.644 0.695 0.675 0.660

0.2 0.4 0.4 0.756 0.685 0.747 0.722 0.699

0.3 0.35 0.35 0.805 0.718 0.796 0.770 0.738

0.4 0.3 0.3 0.79 0.827 4.44% 0.716 -10.28% 0.819 3.57% 0.807 2.15% 0.775 -1.90%

0.5 0.25 0.25 0.814 0.824 1.20% 0.694 -17.24% 0.816 0.29% 0.812 -0.26% 0.796 -2.22%

0.6 0.2 0.2 0.795 0.814 2.37% 0.669 -18.80% 0.806 1.41% 0.811 1.98% 0.798 0.35%

0.7 0.15 0.15 0.803 0.645 0.795 0.805 0.795

0.8 0.1 0.1 0.791 0.621 0.782 0.796 0.789

0.9 0.05 0.05 0.779 0.599 0.770 0.783 0.780

1 0 0 0.768 0.768 -0.04% 0.579 -32.71% 0.758 -1.35% 0.768 0.00% 0.768 0.00%

1.3% 0.8%

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

2.2%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

Maximum error 4.4% 32.7% 3.6% 2.2%

-1.0%

Standard Deviation 1.7% 9.6% 1.7% 1.1% 1.0%

Mean error 2.4% -16.7%

NL  (0/4) NL (4/11) NL (11/22) Φexp

0 0.5 0.5 0.663 0.680 2.47% 0.627 -5.69% 0.670 1.08% 0.653 -1.54% 0.646 -2.57%

0.1 0.45 0.45 0.728 0.667 0.718 0.699 0.684

0.2 0.4 0.4 0.780 0.708 0.770 0.747 0.723

0.3 0.35 0.35 0.825 0.736 0.816 0.794 0.762

0.4 0.3 0.3 0.833 0.838 0.65% 0.728 -14.48% 0.831 -0.27% 0.818 -1.85% 0.798 -4.33%

0.5 0.25 0.25 0.848 0.833 -1.83% 0.704 -20.49% 0.825 -2.77% 0.821 -3.31% 0.806 -5.15%

0.6 0.2 0.2 0.835 0.822 -1.53% 0.678 -23.14% 0.814 -2.54% 0.819 -1.97% 0.807 -3.51%

0.7 0.15 0.15 0.811 0.653 0.802 0.813 0.803

0.8 0.1 0.1 0.799 0.630 0.790 0.803 0.796

0.9 0.05 0.05 0.787 0.608 0.777 0.790 0.787

1 0 0 0.775 0.775 -0.01% 0.587 -32.07% 0.765 -1.31% 0.775 0.00% 0.775 0.00%

-1.7% -3.1%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

5.2%Maximum error 2.5% 32.1% 2.8% 3.3%

Standard Deviation 1.6% 8.8% 1.4% 1.1% 1.8%

Mean error -0.1% -19.2% -1.2%
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EAF (4/11) EAF (11/22) Φexp

0 1 0.482 0.482 0.07% 0.449 -7.35% 0.477 -1.11% 0.482 0.00% 0.482 0.00%

0.1 0.9 0.497 0.502 0.97% 0.466 -6.65% 0.496 -0.19% 0.495 -0.36% 0.493 -0.71%

0.2 0.8 0.505 0.521 3.03% 0.483 -4.55% 0.515 1.93% 0.508 0.62% 0.505 -0.05%

0.3 0.7 0.531 0.537 1.20% 0.496 -7.06% 0.532 0.10% 0.520 -2.03% 0.515 -3.01%

0.4 0.6 0.513 0.550 6.65% 0.505 -1.58% 0.544 5.64% 0.532 3.51% 0.525 2.36%

0.5 0.5 0.527 0.556 5.15% 0.508 -3.74% 0.550 4.15% 0.541 2.64% 0.534 1.32%

0.6 0.4 0.529 0.556 4.90% 0.506 -4.55% 0.551 3.91% 0.547 3.28% 0.541 2.21%

0.7 0.3 0.525 0.553 5.11% 0.500 -5.00% 0.548 4.12% 0.545 3.73% 0.541 2.89%

0.8 0.2 0.54 0.548 1.47% 0.493 -9.53% 0.542 0.44% 0.543 0.50% 0.539 -0.10%

0.9 0.1 0.54 0.542 0.31% 0.485 -11.34% 0.536 -0.74% 0.539 -0.14% 0.538 -0.46%

1 0 0.535 0.535 -0.07% 0.476 -12.39% 0.529 -1.14% 0.535 0.00% 0.535 0.00%

1.6%Standard Deviation 2.3% 3.2% 2.4% 1.8%

3.0%

Mean error 2.6% -6.7% 1.6% 1.1% 0.4%

Maximum error 6.7% 12.4% 5.6% 3.7%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

EAF (4/11) EAF (11/22) Φexp

0 1 0.54 0.547 0.04% 0.505 -6.93% 0.539 -1.47% 0.540 0.00% 0.540 0.00%

0.1 0.9 0.552 0.572 0.14% 0.524 -5.34% 0.564 -1.31% 0.555 0.46% 0.553 0.12%

0.2 0.8 0.569 0.597 2.19% 0.541 -5.18% 0.589 0.90% 0.569 -0.04% 0.565 -0.71%

0.3 0.7 0.583 0.620 -0.08% 0.556 -4.86% 0.614 -1.08% 0.582 -0.13% 0.577 -1.09%

0.4 0.6 0.568 0.637 6.24% 0.564 -0.71% 0.634 5.83% 0.595 4.46% 0.587 3.31%

0.5 0.5 0.584 0.643 4.51% 0.567 -3.00% 0.642 4.38% 0.605 3.46% 0.597 2.15%

0.6 0.4 0.585 0.643 2.51% 0.564 -3.72% 0.641 2.24% 0.606 3.48% 0.600 2.54%

0.7 0.3 0.582 0.641 3.06% 0.557 -4.49% 0.637 2.46% 0.605 3.79% 0.600 3.06%

0.8 0.2 0.601 0.637 0.77% 0.550 -9.27% 0.630 -0.25% 0.603 0.30% 0.600 -0.23%

0.9 0.1 0.602 0.633 -0.84% 0.541 -11.28% 0.624 -2.31% 0.600 -0.37% 0.598 -0.65%

1 0 0.596 0.628 0.03% 0.532 -12.03% 0.617 -1.87% 0.596 0.00% 0.596 0.00%

1.6%Standard Deviation 2.1% 3.3% 2.6% 1.8%

CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Mean error 1.7% -6.1% 0.7% 1.4%

Maximum error 6.2% 12.0% 5.8% 4.5% 3.3%

0.8%

Compacted packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β)
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Ternary mixtures 

EAF (4/11) EAF (11/22) Φexp

0 1 0.547 0.547 0.04% 0.508 -7.68% 0.539 -1.47% 0.547 0.00% 0.547 0.00%

0.1 0.9 0.571 0.572 0.14% 0.529 -7.94% 0.564 -1.31% 0.563 -1.35% 0.562 -1.69%

0.2 0.8 0.584 0.597 2.19% 0.551 -5.99% 0.589 0.90% 0.580 -0.75% 0.576 -1.40%

0.3 0.7 0.621 0.620 -0.08% 0.571 -8.76% 0.614 -1.08% 0.595 -4.29% 0.590 -5.27%

0.4 0.6 0.597 0.637 6.24% 0.583 -2.40% 0.634 5.83% 0.610 2.17% 0.603 1.02%

0.5 0.5 0.614 0.643 4.51% 0.586 -4.78% 0.642 4.38% 0.623 1.51% 0.615 0.20%

0.6 0.4 0.627 0.643 2.51% 0.582 -7.73% 0.641 2.24% 0.628 0.19% 0.622 -0.79%

0.7 0.3 0.621 0.641 3.06% 0.577 -7.63% 0.637 2.46% 0.630 1.37% 0.625 0.61%

0.8 0.2 0.632 0.637 0.77% 0.570 -10.88% 0.630 -0.25% 0.630 -0.32% 0.627 -0.86%

0.9 0.1 0.638 0.633 -0.84% 0.563 -13.32% 0.624 -2.31% 0.629 -1.36% 0.628 -1.65%

1 0 0.628 0.628 0.03% 0.555 -13.15% 0.617 -1.87% 0.628 0.00% 0.628 0.00%

1.6%Standard Deviation 2.1% 3.2% 2.6% 1.7%

5.3%

Mean error 1.7% -8.2% 0.7% -0.3% -0.9%

Maximum error 6.2% 13.3% 5.8% 4.3%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

EAF (4/11) EAF (11/22) Φexp

0 1 0.583 0.582 -0.12% 0.542 -7.56% 0.573 -1.69% 0.583 0.00% 0.583 0.00%

0.1 0.9 0.606 0.608 0.31% 0.564 -7.45% 0.598 -1.26% 0.599 -1.09% 0.597 -1.44%

0.2 0.8 0.62 0.634 2.26% 0.586 -5.80% 0.624 0.71% 0.616 -0.71% 0.612 -1.38%

0.3 0.7 0.651 0.659 1.23% 0.604 -7.78% 0.649 -0.31% 0.631 -3.15% 0.625 -4.13%

0.4 0.6 0.635 0.676 6.12% 0.615 -3.25% 0.666 4.69% 0.645 1.61% 0.638 0.44%

0.5 0.5 0.651 0.682 4.56% 0.615 -5.85% 0.672 3.10% 0.655 0.67% 0.649 -0.36%

0.6 0.4 0.662 0.680 2.66% 0.610 -8.52% 0.670 1.14% 0.657 -0.73% 0.651 -1.63%

0.7 0.3 0.652 0.675 3.40% 0.603 -8.13% 0.664 1.83% 0.658 0.88% 0.653 0.19%

0.8 0.2 0.67 0.669 -0.22% 0.596 -12.42% 0.657 -1.91% 0.657 -1.92% 0.654 -2.42%

0.9 0.1 0.663 0.662 -0.22% 0.588 -12.76% 0.650 -1.98% 0.656 -1.06% 0.654 -1.31%

1 0 0.654 0.654 0.05% 0.580 -12.76% 0.643 -1.77% 0.654 0.00% 0.654 0.00%

1.3%Standard Deviation 2.1% 3.0% 2.2% 1.3%

4.1%

Mean error 1.8% -8.4% 0.2% -0.5% -1.1%

Maximum error 6.1% 12.8% 4.7% 3.2%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)
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EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.6 0.4 0.529 0.562 5.87% 0.556 4.91% 0.547 3.28% 0.541 2.21%

0.1 0.54 0.36 0.590 0.584 0.569 0.559

0.2 0.48 0.32 0.617 0.612 0.591 0.577

0.3 0.42 0.28 0.594 0.639 7.06% 0.635 6.39% 0.612 2.93% 0.593 -0.10%

0.4 0.36 0.24 0.603 0.651 7.39% 0.648 6.87% 0.622 3.00% 0.608 0.86%

0.5 0.3 0.2 0.616 0.652 5.47% 0.649 5.08% 0.624 1.23% 0.615 -0.24%

0.6 0.24 0.16 0.625 0.645 3.03% 0.642 2.72% 0.622 -0.41% 0.615 -1.70%

0.7 0.18 0.12 0.618 0.634 2.45% 0.632 2.20% 0.618 0.07% 0.612 -0.95%

0.8 0.12 0.08 0.621 0.620 0.612 0.608

0.9 0.06 0.04 0.608 0.606 0.604 0.602

1 0 0 0.594 0.594 0.02% 0.593 -0.12% 0.594 0.00% 0.594 0.00%

0.0%

Maximum error 7.4% 6.9% 3.3%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

1.2%Standard Deviation 2.5% 2.3% 1.5%

2.2%

Mean error 4.5% 4.0% 1.4%

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.6 0.4 0.585 0.623 6.11% 0.617 5.12% 0.598 2.17% 0.592 1.14%

0.1 0.54 0.36 0.652 0.646 0.622 0.611

0.2 0.48 0.32 0.679 0.673 0.645 0.629

0.3 0.42 0.28 0.65 0.698 6.90% 0.693 6.16% 0.663 2.02% 0.646 -0.62%

0.4 0.36 0.24 0.657 0.705 6.80% 0.700 6.17% 0.668 1.65% 0.658 0.21%

0.5 0.3 0.2 0.679 0.701 3.13% 0.697 2.56% 0.669 -1.47% 0.660 -2.83%

0.6 0.24 0.16 0.682 0.691 1.32% 0.687 0.77% 0.667 -2.22% 0.660 -3.40%

0.7 0.18 0.12 0.67 0.679 1.26% 0.675 0.74% 0.663 -1.13% 0.657 -2.05%

0.8 0.12 0.08 0.665 0.662 0.656 0.652

0.9 0.06 0.04 0.651 0.648 0.647 0.645

1 0 0 0.637 0.637 0.06% 0.634 -0.46% 0.637 0.00% 0.637 0.00%

Compacted packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.4%

Mean error 3.7% 3.0% 0.1% -1.1%

Maximum error 6.9% 6.2% 2.2%

1.6%Standard Deviation 2.7% 2.6% 1.7%



 

307 
 

 

 

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.6 0.4 0.627 0.643 2.51% 0.582 -7.66% 0.633 0.92% 0.628 0.19% 0.622 -0.79%

0.1 0.54 0.36 0.679 0.609 0.668 0.656 0.645

0.2 0.48 0.32 0.716 0.635 0.704 0.683 0.668

0.3 0.42 0.28 0.698 0.750 6.90% 0.656 -6.44% 0.738 5.46% 0.707 1.26% 0.690 -1.21%

0.4 0.36 0.24 0.713 0.767 7.03% 0.656 -8.62% 0.756 5.70% 0.717 0.54% 0.707 -0.85%

0.5 0.3 0.2 0.713 0.766 6.90% 0.640 -11.39% 0.755 5.55% 0.723 1.44% 0.714 0.18%

0.6 0.24 0.16 0.726 0.758 4.22% 0.620 -17.19% 0.747 2.76% 0.727 0.12% 0.719 -0.98%

0.7 0.18 0.12 0.724 0.748 3.22% 0.599 -20.92% 0.736 1.65% 0.728 0.48% 0.721 -0.40%

0.8 0.12 0.08 0.738 0.579 0.725 0.726 0.721

0.9 0.06 0.04 0.727 0.560 0.714 0.722 0.719

1 0 0 0.716 0.716 0.06% 0.542 -32.15% 0.703 -1.86% 0.716 0.00% 0.716 0.00%

-0.6%

Maximum error 7.0% 32.2% 5.7% 1.4%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

0.5%Standard Deviation 2.5% 8.6% 2.7% 0.5%

1.2%

Mean error 4.4% -14.9% 2.9% 0.6%

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.6 0.4 0.662 0.672 1.52% 0.610 -8.49% 0.670 1.14% 0.657 -0.79% 0.651 -1.68%

0.1 0.54 0.36 0.724 0.650 0.705 0.685 0.675

0.2 0.48 0.32 0.764 0.670 0.742 0.714 0.698

0.3 0.42 0.28 0.73 0.791 7.69% 0.667 -9.50% 0.772 5.40% 0.732 0.28% 0.720 -1.39%

0.4 0.36 0.24 0.751 0.794 5.37% 0.653 -15.01% 0.782 4.01% 0.742 -1.26% 0.732 -2.54%

0.5 0.3 0.2 0.758 0.787 3.72% 0.638 -18.88% 0.779 2.63% 0.748 -1.34% 0.739 -2.51%

0.6 0.24 0.16 0.774 0.779 0.60% 0.622 -24.38% 0.770 -0.53% 0.751 -3.00% 0.744 -4.04%

0.7 0.18 0.12 0.766 0.769 0.45% 0.607 -26.12% 0.760 -0.82% 0.752 -1.83% 0.746 -2.65%

0.8 0.12 0.08 0.760 0.593 0.749 0.751 0.747

0.9 0.06 0.04 0.751 0.579 0.739 0.747 0.745

1 0 0 0.742 0.742 -0.05% 0.566 -31.07% 0.728 -1.91% 0.742 0.00% 0.742 0.00%

1.2%Standard Deviation 2.7% 7.9% 2.5% 1.0%

-19.1% 1.4% -1.1% -2.1%

Maximum error 7.7% 31.1% 5.4% 3.0%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

4.0%

Mean error 2.8%
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EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.8 0.2 0.529 0.551 4.06% 0.546 3.07% 0.543 2.53% 0.539 1.94%

0.1 0.72 0.18 0.579 0.573 0.565 0.557

0.2 0.64 0.16 0.605 0.600 0.586 0.575

0.3 0.56 0.14 0.576 0.628 8.33% 0.624 7.64% 0.601 4.18% 0.591 2.52%

0.4 0.48 0.12 0.583 0.642 9.26% 0.639 8.73% 0.607 4.00% 0.600 2.83%

0.5 0.4 0.1 0.587 0.646 9.06% 0.643 8.66% 0.611 3.86% 0.604 2.77%

0.6 0.32 0.08 0.612 0.640 4.42% 0.638 4.10% 0.611 -0.13% 0.605 -1.12%

0.7 0.24 0.06 0.61 0.631 3.29% 0.629 3.03% 0.610 -0.07% 0.605 -0.86%

0.8 0.16 0.04 0.597 0.619 3.58% 0.618 3.37% 0.606 1.47% 0.603 0.92%

0.9 0.08 0.02 0.607 0.606 0.601 0.599

1 0 0 0.594 0.594 0.02% 0.593 -0.12% 0.594 0.00% 0.594 0.00%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

2.8%

Mean error 5.3% 4.8% 2.0% 1.1%

Maximum error 9.3% 8.7% 4.2%

1.5%Standard Deviation 3.1% 3.0% 1.8%

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.8 0.2 0.589 0.606 2.74% 0.612 3.77% 0.599 1.65% 0.595 1.08%

0.1 0.72 0.18 0.634 0.641 0.622 0.614

0.2 0.64 0.16 0.661 0.667 0.644 0.631

0.3 0.56 0.14 0.638 0.682 6.51% 0.688 7.27% 0.652 2.15% 0.645 1.07%

0.4 0.48 0.12 0.641 0.693 7.45% 0.697 8.09% 0.657 2.39% 0.650 1.33%

0.5 0.4 0.1 0.631 0.692 8.76% 0.696 9.32% 0.659 4.18% 0.652 3.22%

0.6 0.32 0.08 0.656 0.684 4.06% 0.688 4.60% 0.658 0.29% 0.652 -0.58%

0.7 0.24 0.06 0.664 0.673 1.28% 0.676 1.82% 0.655 -1.36% 0.651 -2.06%

0.8 0.16 0.04 0.659 0.660 0.17% 0.664 0.70% 0.650 -1.31% 0.647 -1.80%

0.9 0.08 0.02 0.647 0.651 0.644 0.643

1 0 0 0.637 0.634 -0.46% 0.637 0.06% 0.637 0.00% 0.637 0.00%

Loose packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

3.2%

Mean error 3.8% 4.5% 1.0% 0.3%

Maximum error 8.8% 9.3% 4.2%

1.6%Standard Deviation 3.2% 3.3% 1.8%
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Quaternary mixtures 

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.8 0.2 0.618 0.637 2.97% 0.570 -8.47% 0.626 1.26% 0.627 1.37% 0.630 1.91%

0.1 0.72 0.18 0.672 0.595 0.660 0.649 0.657

0.2 0.64 0.16 0.708 0.622 0.696 0.671 0.683

0.3 0.56 0.14 0.702 0.742 5.36% 0.643 -9.11% 0.730 3.80% 0.689 -1.91% 0.696 -0.86%

0.4 0.48 0.12 0.71 0.761 6.65% 0.648 -9.61% 0.749 5.23% 0.699 -1.64% 0.706 -0.60%

0.5 0.4 0.1 0.702 0.761 7.80% 0.634 -10.67% 0.750 6.42% 0.706 0.58% 0.713 1.52%

0.6 0.32 0.08 0.719 0.755 4.75% 0.616 -16.81% 0.743 3.25% 0.711 -1.06% 0.717 -0.22%

0.7 0.24 0.06 0.737 0.746 1.19% 0.596 -23.65% 0.734 -0.44% 0.715 -3.08% 0.720 -2.39%

0.8 0.16 0.04 0.72 0.736 2.20% 0.577 -24.77% 0.724 0.50% 0.717 -0.45% 0.720 0.02%

0.9 0.08 0.02 0.726 0.559 0.713 0.717 0.719

1 0 0 0.716 0.716 0.06% 0.542 -32.15% 0.703 -1.86% 0.716 0.00% 0.716 0.00%

1.3%Standard Deviation 2.5% 8.4% 2.7% 1.4%

2.4%

Mean error 3.9% -16.9% 2.3% -0.8% -0.1%

Maximum error 7.8% 32.2% 6.4% 3.1%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0 0.8 0.2 0.655 0.664 1.41% 0.596 -9.97% 0.653 -0.27% 0.657 0.34% 0.654 -0.15%

0.1 0.72 0.18 0.700 0.622 0.688 0.685 0.00% 0.677 0.00%

0.2 0.64 0.16 0.737 0.649 0.725 0.709 0.00% 0.700 0.00%

0.3 0.56 0.14 0.737 0.769 4.20% 0.670 -9.99% 0.757 2.70% 0.721 -2.22% 0.714 -3.19%

0.4 0.48 0.12 0.747 0.785 4.82% 0.672 -11.16% 0.774 3.45% 0.731 -2.26% 0.724 -3.21%

0.5 0.4 0.1 0.754 0.784 3.87% 0.658 -14.61% 0.773 2.49% 0.737 -2.24% 0.731 -3.13%

0.6 0.32 0.08 0.765 0.778 1.65% 0.639 -19.69% 0.766 0.17% 0.742 -3.08% 0.737 -3.86%

0.7 0.24 0.06 0.772 0.769 -0.34% 0.620 -24.54% 0.757 -1.93% 0.745 -3.67% 0.740 -4.30%

0.8 0.16 0.04 0.756 0.760 0.56% 0.601 -25.76% 0.748 -1.10% 0.745 -1.43% 0.742 -1.87%

0.9 0.08 0.02 0.751 0.583 0.738 0.744 0.00% 0.743 0.00%

1 0 0 0.742 0.742 -0.05% 0.566 -31.07% 0.728 -1.91% 0.742 0.00% 0.742 0.00%

1.7%Standard Deviation 1.9% 7.6% 2.0% 1.4%

-18.4% 0.4% -1.3% -1.8%

Maximum error 4.8% 31.1% 3.5% 3.7%

Compacted packing (D-C33)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (B: β) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

4.3%

Mean error 2.0%
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NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.70 0.24 0.06 0.626 0.631 0.75% 0.629 0.49% 0.610 -2.70% 0.605 -3.51%

0.06 0.66 0.23 0.06 0.641 0.645 0.65% 0.644 0.41% 0.616 -4.00% 0.610 -5.04%

0.10 0.63 0.22 0.05 0.655 0.653 0.621 0.614

0.13 0.61 0.21 0.05 0.647 0.662 2.31% 0.661 2.10% 0.624 -3.73% 0.616 -4.99%

0.19 0.57 0.19 0.05 0.657 0.677 2.94% 0.676 2.76% 0.630 -4.36% 0.621 -5.80%

0.20 0.56 0.19 0.05 0.679 0.678 0.630 0.622

0.30 0.49 0.17 0.04 0.663 0.702 5.60% 0.701 5.49% 0.639 -3.80% 0.628 -5.51%

0.40 0.42 0.14 0.04 0.720 0.720 0.645 0.633

0.47 0.37 0.13 0.03 0.665 0.725 8.32% 0.726 8.37% 0.648 -2.69% 0.636 -4.62%

0.50 0.35 0.12 0.03 0.725 0.726 0.646 0.636

0.60 0.28 0.10 0.02 0.712 0.714 0.639 0.632

0.70 0.21 0.07 0.02 0.687 0.688 0.630 0.625

0.80 0.14 0.05 0.01 0.657 0.658 0.620 0.616

0.90 0.07 0.02 0.01 0.626 0.627 0.609 0.607

1.00 0.00 0.00 0.00 0.597 0.597 0.05% 0.598 0.19% 0.597 0.00% 0.597 0.00%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

5.8%

Mean error 2.9% 2.8% -3.0% -4.2%

Maximum error 8.3% 8.4% 4.4%

1.8%Standard Deviation 2.8% 2.8% 1.4%

NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.70 0.24 0.06 0.676 0.673 0.655 0.651

0.06 0.66 0.23 0.06 0.689 0.694 0.73% 0.691 0.22% 0.665 -3.59% 0.659 -4.51%

0.10 0.63 0.22 0.05 0.706 0.703 0.672 0.665

0.13 0.61 0.21 0.05 0.696 0.716 2.73% 0.712 2.27% 0.676 -2.89% 0.669 -4.01%

0.19 0.57 0.19 0.05 0.706 0.734 3.87% 0.731 3.46% 0.686 -2.93% 0.677 -4.23%

0.20 0.56 0.19 0.05 0.738 0.735 0.687 0.679

0.30 0.49 0.17 0.04 0.723 0.769 6.03% 0.767 5.72% 0.702 -2.99% 0.691 -4.56%

0.40 0.42 0.14 0.04 0.798 0.797 0.715 0.703

0.47 0.37 0.13 0.03 0.749 0.813 7.89% 0.812 7.81% 0.720 -3.99% 0.710 -5.55%

0.50 0.35 0.12 0.03 0.817 0.817 0.720 0.712

0.60 0.28 0.10 0.02 0.815 0.816 0.720 0.712

0.70 0.21 0.07 0.02 0.794 0.796 0.717 0.711

0.80 0.14 0.05 0.01 0.764 0.766 0.713 0.709

0.90 0.07 0.02 0.01 0.732 0.733 0.707 0.705

1.00 0.00 0.00 0.00 0.7 0.700 0.05% 0.702 0.28% 0.700 0.00% 0.700 0.00%

Compacted packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

5.5%

Mean error 3.5% 3.3% -2.7% -3.8%

Maximum error 7.9% 7.8% 4.0%

1.8%Standard Deviation 2.8% 2.8% 1.3%
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NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.70 0.24 0.06 0.754 0.746 -1.08% 0.734 -2.75% 0.720 -4.75% 0.715 -5.46%

0.06 0.66 0.23 0.06 0.763 0.763 0.06% 0.751 -1.60% 0.729 -4.60% 0.723 -5.52%

0.10 0.63 0.22 0.05 0.776 0.763 0.736 0.728

0.13 0.61 0.21 0.05 0.773 0.785 1.50% 0.772 -0.15% 0.740 -4.43% 0.732 -5.56%

0.19 0.57 0.19 0.05 0.78 0.804 2.96% 0.790 1.32% 0.749 -4.13% 0.740 -5.44%

0.20 0.56 0.19 0.05 0.807 0.794 0.750 0.741

0.30 0.49 0.17 0.04 0.791 0.840 5.84% 0.826 4.23% 0.764 -3.58% 0.752 -5.16%

0.40 0.42 0.14 0.04 0.873 0.858 0.769 0.761

0.47 0.37 0.13 0.03 0.805 0.893 9.86% 0.878 8.30% 0.769 -4.71% 0.761 -5.80%

0.50 0.35 0.12 0.03 0.899 0.884 0.768 0.761

0.60 0.28 0.10 0.02 0.893 0.878 0.766 0.759

0.70 0.21 0.07 0.02 0.858 0.843 0.761 0.756

0.80 0.14 0.05 0.01 0.816 0.802 0.755 0.752

0.90 0.07 0.02 0.01 0.777 0.762 0.748 0.746

1.00 0.00 0.00 0.00 0.74 0.740 -0.03% 0.725 -2.01% 0.740 0.00% 0.740 0.00%

Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Compacted packing (D-C26)

Vol. fraction (%)

5.8%

2.7% 1.0% -3.7% -4.7%

9.9% 8.3% 4.8%Maximum error

Mean error

Standard Deviation 3.6% 3.7% 1.9%1.6%

NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.70 0.24 0.06 0.739 0.769 3.96% 0.757 2.43% 0.745 0.76% 0.740 0.15%

0.06 0.66 0.23 0.06 0.768 0.787 2.35% 0.774 0.79% 0.753 -1.94% 0.747 -2.78%

0.10 0.63 0.22 0.05 0.798 0.786 0.759 0.752

0.13 0.61 0.21 0.05 0.784 0.807 2.87% 0.794 1.30% 0.763 -2.76% 0.755 -3.83%

0.19 0.57 0.19 0.05 0.79 0.826 4.30% 0.812 2.73% 0.771 -2.52% 0.761 -3.77%

0.20 0.56 0.19 0.05 0.829 0.815 0.772 0.762

0.30 0.49 0.17 0.04 0.81 0.860 5.82% 0.846 4.24% 0.782 -3.62% 0.771 -5.02%

0.40 0.42 0.14 0.04 0.890 0.875 0.781 0.773

0.47 0.37 0.13 0.03 0.823 0.906 9.20% 0.891 7.60% 0.779 -5.71% 0.771 -6.69%

0.50 0.35 0.12 0.03 0.910 0.894 0.777 0.771

0.60 0.28 0.10 0.02 0.895 0.878 0.772 0.767

0.70 0.21 0.07 0.02 0.857 0.840 0.766 0.761

0.80 0.14 0.05 0.01 0.815 0.800 0.758 0.755

0.90 0.07 0.02 0.01 0.776 0.761 0.749 0.748

1.00 0.00 0.00 0.00 0.74 0.740 -0.03% 0.725 -2.01% 0.740 0.00% 0.740 0.00%

-2.3% -3.1%

2.7% 2.8% 2.0%

Compacted packing (D-C33)

Vol. fraction (%)

6.7%

Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

9.2% 7.6% 5.7%

2.3%

4.1% 2.4%

Maximum error

Mean error

Standard Deviation
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NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.50 0.30 0.20 0.616 0.652 5.47% 0.649 5.08% 0.624 1.23% 0.615 -0.24%

0.06 0.47 0.28 0.19 0.636 0.668 4.73% 0.665 4.37% 0.631 -0.75% 0.621 -2.45%

0.10 0.45 0.27 0.18 0.678 0.676 0.636 0.625

0.13 0.44 0.26 0.17 0.641 0.686 6.60% 0.684 6.28% 0.639 -0.26% 0.627 -2.16%

0.19 0.41 0.24 0.16 0.657 0.702 6.42% 0.700 6.14% 0.646 -1.78% 0.633 -3.87%

0.20 0.40 0.24 0.16 0.705 0.703 0.646 0.633

0.30 0.35 0.21 0.14 0.729 0.727 0.655 0.640

0.40 0.30 0.18 0.12 0.746 0.745 0.660 0.645

0.47 0.27 0.16 0.11 0.67 0.749 10.55% 0.749 10.54% 0.662 -1.22% 0.646 -3.65%

0.50 0.25 0.15 0.10 0.747 0.748 0.660 0.647

0.60 0.20 0.12 0.08 0.658 0.729 9.70% 0.730 9.83% 0.651 -1.05% 0.643 -2.40%

0.70 0.15 0.09 0.06 0.698 0.699 0.640 0.633

0.80 0.10 0.06 0.04 0.663 0.664 0.627 0.622

0.90 0.05 0.03 0.02 0.629 0.630 0.612 0.610

1.00 0.00 0.00 0.00 0.597 0.597 0.05% 0.598 0.19% 0.597 0.00% 0.597 0.00%

Maximum error 10.5% 10.5% 1.8% 3.9%

Loose packing (D-L)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Standard Deviation 3.2% 3.2% 0.9% 1.4%

Mean error 6.2% 6.1% -0.5% -2.1%

NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.50 0.30 0.20 0.679 0.701 3.13% 0.697 2.56% 0.669 0.660

0.06 0.47 0.28 0.19 0.702 0.720 2.49% 0.716 1.95% 0.680 -3.23% 0.670 -4.81%

0.10 0.45 0.27 0.18 0.733 0.729 0.687 0.676

0.13 0.44 0.26 0.17 0.715 0.743 3.73% 0.739 3.25% 0.692 -3.29% 0.680 -5.08%

0.19 0.41 0.24 0.16 0.727 0.763 4.67% 0.759 4.23% 0.702 -3.55% 0.689 -5.50%

0.20 0.40 0.24 0.16 0.766 0.762 0.704 0.691

0.30 0.35 0.21 0.14 0.799 0.796 0.718 0.704

0.40 0.30 0.18 0.12 0.827 0.825 0.731 0.715

0.47 0.27 0.16 0.11 0.745 0.840 11.33% 0.839 11.23% 0.735 -1.33% 0.721 -3.32%

0.50 0.25 0.15 0.10 0.843 0.842 0.735 0.723

0.60 0.20 0.12 0.08 0.727 0.834 12.78% 0.835 12.90% 0.733 0.77% 0.724 -0.45%

0.70 0.15 0.09 0.06 0.805 0.807 0.727 0.721

0.80 0.10 0.06 0.04 0.770 0.772 0.720 0.715

0.90 0.05 0.03 0.02 0.734 0.736 0.711 0.708

1.00 0.00 0.00 0.00 0.7 0.700 0.05% 0.702 0.28% 0.700 0.00% 0.700 0.00%

Maximum error 12.8% 12.9% 3.5% 5.5%

Compacted packing (D-C)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Standard Deviation 4.4% 4.5% 1.7% 2.2%

Mean error 5.5% 5.2% -1.8% -3.2%
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NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.50 0.30 0.20 0.713 0.766 6.98% 0.756 5.64% 0.723 1.44% 0.714 0.18%

0.06 0.47 0.28 0.19 0.745 0.785 5.07% 0.774 3.69% 0.734 -1.45% 0.724 -2.95%

0.10 0.45 0.27 0.18 0.797 0.786 0.741 0.730

0.13 0.44 0.26 0.17 0.759 0.807 5.92% 0.795 4.54% 0.746 -1.69% 0.734 -3.39%

0.19 0.41 0.24 0.16 0.769 0.826 6.93% 0.814 5.54% 0.756 0.742

0.20 0.40 0.24 0.16 0.830 0.817 0.758 0.744

0.30 0.35 0.21 0.14 0.863 0.850 0.772 0.756

0.40 0.30 0.18 0.12 0.896 0.882 0.779 0.766

0.47 0.27 0.16 0.11 0.79 0.915 13.65% 0.901 12.33% 0.779 -1.45% 0.769 -2.79%

0.50 0.25 0.15 0.10 0.920 0.906 0.778 0.769

0.60 0.20 0.12 0.08 0.782 0.907 0.894 0.775 -0.92% 0.767 -2.00%

0.70 0.15 0.09 0.06 0.865 0.852 0.769 0.763

0.80 0.10 0.06 0.04 0.821 0.807 0.761 0.756

0.90 0.05 0.03 0.02 0.778 0.764 0.751 0.749

1.00 0.00 0.00 0.00 0.74 0.740 -0.03% 0.725 -2.01% 0.740 0.00% 0.740 0.00%

Maximum error 13.7% 12.3% 1.7% 3.4%

Compacted packing (D-C26)

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Standard Deviation 4.0% 4.2% 1.1% 1.4%

Mean error 6.4% 5.0% -0.7% -1.8%

NL (0/2) EAF (0/5) EAF (4/11) EAF (11/22) Φexp

0.00 0.50 0.30 0.20 0.758 0.789 3.96% 0.779 2.63% 0.748 -1.34% 0.739 -2.51%

0.06 0.47 0.28 0.19 0.772 0.807 4.34% 0.796 3.00% 0.758 -1.87% 0.748 -3.25%

0.10 0.45 0.27 0.18 0.819 0.808 0.764 0.753

0.13 0.44 0.26 0.17 0.791 0.828 4.50% 0.817 3.14% 0.769 -2.91% 0.757 -4.54%

0.19 0.41 0.24 0.16 0.805 0.847 4.96% 0.835 3.58% 0.777 -3.59% 0.764 -5.40%

0.20 0.40 0.24 0.16 0.850 0.838 0.778 0.765

0.30 0.35 0.21 0.14 0.882 0.869 0.789 0.775

0.40 0.30 0.18 0.12 0.913 0.899 0.789 0.779

0.47 0.27 0.16 0.11 0.824 0.928 11.25% 0.914 9.80% 0.787 -4.64% 0.778 -5.87%

0.50 0.25 0.15 0.10 0.931 0.916 0.786 0.778

0.60 0.20 0.12 0.08 0.798 0.911 0.895 0.781 0.773

0.70 0.15 0.09 0.06 0.866 0.851 0.773 0.767

0.80 0.10 0.06 0.04 0.821 0.806 0.763 0.759

0.90 0.05 0.03 0.02 0.779 0.764 0.752 0.750

1.00 0.00 0.00 0.00 0.74 0.740 -0.03% 0.725 -2.01% 0.740 0.00% 0.740 0.00%

Compacted packing (D-C33)

Maximum error 11.2% 9.8% 4.6% 5.9%

Vol. fraction (%) Packing density & error (%)

CPM (A:βm) CPM (C: ϒ) 3-P (unc.) 3-P (comp.)

Standard Deviation 3.3% 3.4% 1.5% 2.0%

Mean error 4.8% 3.4% -2.4% -3.6%
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Annex 2. Additional information of Chapter 6 

This appendix reports data and general information of the NL and EAF aggregate 

facilities and assumption. In addition, a section with extra data of the concrete 

environmental impact was included.  

A- NL aggregate data: 

The Natural limestone (NL) aggregates are extracted from quarry. These materials were 

supplied by AMANTEGUI company located in Mañaria Bizakaia and were obtained 

through crushing, screening and sorting processes. 

The data supplied by the company are included in the tables reported below (Table A2.1 

and Table A2.2).  

Table A2.1. General data on the natural aggregate facility. 

Production capacity 1,200,000-1,500,000 t/year 

Year Total production (t) 
Electric energy (kWh) Diesel fuel  

Total (kWh) kWh/t (l) l/t 

2015 719,030  1,403,164 3.26 242,712 0.56 

2016 374,851  707,979 4.67 215,484 1.42 

2017 353,524  688,546 4.41 183,000 1.17 

2018 419,975  774,404 3.93 159,079 0.81 

2019 424,506  1,215,766 4.20 183,973 0.63 

Average values 456,377 957,972 4.09 196,850 0.92 

 

The water consumption can be estimated as zero, since the water used to clean tracks 

and to control the dust pollution during the crushing process comes from rainwater 

stored in settling ponds. 

Table A2.2. Mass balance of the NL aggregate production. 

Aggregates 2015(%) 2016(%) 2017(%) 2018(%) 2019(%) 

NL (0/2) 0.2 0.3 0.6 1.0 1.4 

NL (0/4) 31.6 20.8 19.3 24.3 32.3 

NL (4/12) 10.4 8.8 11.1 10.2 12.7 

NL (12/22) 17.7 11.7 13.2 11.3 21.8 

Others size fractions  40.1 58.4 55.8 53.1 31.7 

 

In order to obtain the granular size distribution demanded by the market, the quarry has 

the following facilities with their corresponding capacity: 
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Primary installation (Primary crusher): 2000 t/hour 

Secondary installation: 700 t/hour 

Ternary installation: 650 t/hour 

Quaternary installation 120 t/hour 

Fig. A1 show a schematic process of the NL aggregate production used to estimate the 

particle matter emission during the treatment process. 

 

Fig. A2.1. Schematic process of the NL aggregate production. Adapted from(Consejería de 
agricultura, ganadería 2019) 

The mass balance represented in Fig. A2.1 should be consider with caution as some of 

the mass flows has been assumed. To obtain a more accurate value of the PM10 

emission the detailed mass balance of the quarry and all the processing machinery 

should be considered. 

In Table A2.3, the particles emission were calculated according to the method and 

recommended emission factor proposed in a guide with this aim (Consejería de 

agricultura, ganadería 2019). 

Table A2.3. Particles emission PM10 during the NL aggregate production. 

 Material amount (t) Emission factors (PM10 kg/t) EmissionsPM10(kg) 

Primary crusher 453377 2.7E-04 1.2E+02 

Sorter 453377 3.7E-04 1.7E+02 

Secondary crusher 390004 2.7E-04 1.1E+02 

Sorter 390004 3.7E-04 1.4E+02 

Tertiary crusher 245131 2.7E-04 6.6E+01 



 

316 
 

Sorter 245131 3.7E-04 9.1E+01 

Sand crusher 125138 6.0E-04 7.5E+01 

Sorter 125138 1.1E-03 1.4E+02 

General particle 
material treatment 

453377 7.2E-0427 3.2E+02 

Conveyor 453377 2.3E-05 1.0E+01 

Total emissions   1244.25 

 

 

Fig. A2.2. Extension of the AMANTEGUI facilities. Screenshot of the satellite map of Google. 

The land used were estimated according to the LCI published by (Kittipongvises 2017) 

Total facilities area= 20.2+9.29+1.61 ha = 311,000 m2 

 
27Calculated by considered an average air speed of 2.8m/s and a material humidity of 2.1%. 
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B- EAF aggregates data 

Data supplied by HORMOR company. 

Production capacity of the facilities:80 t/h 

Table A2.4. Available machinery and consumption. 

Type of equipment Quantity CV KW 

Conveyor 3 2 1.5 

Conveyor 3 30 22.4 

Electromagnet 3 1.5 1.1 

Vibration Screen 1 15 11.2 

Crusher 1 270 201.3 

Crusher 1 250 186.4 

Total  635.5 473.9 

 

Fig. A2.3 show a schematic process of the EAF aggregate production used to estimate 

the particle matter emission during the treatment process. 

 

Total facilities area= 20.2+9.29+1.61 ha = 311,000 m2 

FU: 1t of natural aggregate 

Annual production: 456,377 t/year 

Land Occupation= 311,000/(456,377)=0.67 m2a 

Occupation, mineral extraction site. 

- Land Transformation= 311,000/(20·456,377)=0.034 m2 

Transformation, from arable, irrigated, intensive. 

Transformation, to mineral extraction site 

Total facilities area= 20.2+9.29+1.61 ha = 311,000 m2 

FU: 456377 t of natural aggregate 

Annual production: 456,377 t/year 

Land Occupation: 3110000m2a 

Land Transformation: 15550m2 
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Fig. A2.3. Schematic process of the EAF aggregate production. Adapted from(Consejería de 
agricultura, ganadería 2019) 

The mass balance represented in Fig. A2.3 should be considered with caution as some 

of the mass flows has been assumed. To obtain a more accurate value of the PM10 

emission the detailed mass balance of the EAF treatment plant and all the processing 

machinery should be considered (see Fig. A2.4 Hormor facilities). 

In Table A2.5, the particles emission were calculated according to the method and 

recommended emission factor proposed in a guide with this aim(Consejería de 

agricultura, ganadería 2019). 

Table. A2.5. Particles emission PM10 during the EAF aggregate treatment. 

 Material amount 
(t) 

Emission factors 
(PM10 kg/t) 

Emissions 
PM10(kg) 

Primary crusher 102256 2.70E-04 2.76E+01 

Sorter 102256 3.70E-04 3.78E+01 

Secondary crusher 30676.8 2.70E-04 8.28E+00 

Sorter 30676.8 3.70E-04 1.14E+01 

Conveyor 102256 2.30E-05 2.35E+00 

General particle material treatment 102256 2.12E-0428 2.17E+01 

Total emissions   109.15 

 

 
28Calculated by considered an average air speed of 2.8m/s and a material humidity of 5%. 
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Fig. A2.4. Extension of the HORMOR facilities. Screenshot of the satellite map of Google 

The land used were estimated according to the methodology published by 

(Kittipongvises 2017), which suggests the period of 50 years for the industrial activity. 

C- RCA aggregates 

In Table A2.6 and Table A2.7, the particles emission were calculated according to the 

method and recommended emission factor proposed in a guide with this aim(Consejería 

de agricultura, ganadería 2019). 

Table A2.6. Particles emission PM10 during the RCA aggregate treatment (scenario A). 

 
Material amount 

(t) 
Emission factors 

(PM10 kg/t) 
Emissions 
PM10(kg) 

Primary crusher 1 2.70E-04 2.70E-04 

Sorter 1 3.70E-04 3.70E-04 

Secondary crusher 1 2.70E-04 2.70E-04 

Sorter 1 3.70E-04 3.70E-04 

Conveyor 1 2.30E-05 2.30E-05 

General particle material treatment 1 2.12E-0410 2.12E-0410 

Total emissions   1.51E-03 

Total area= 15700m2 

UF: 1t of natural aggregate 

Annual production: 102,256 t/year 

Land occupation= 15,700/(102,256)=0.15 m2a 

- Occupation, industrial area. 

Land transformation= 15700/(50·102256)=3.07*10-3 m2 

- Transformation, from unknown. 

- Transformation, to industrial area. 
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Table A2.7. Particles emission PM10 during the RCA aggregate treatment (scenario B). 

 Material amount 
(t) 

Emission 
factors(PM10kg/t) 

Emissions 
PM10(kg) 

Primary crusher 1 2.70E-04 2.70E-04 

Sorter 1 3.70E-04 3.70E-04 

General particle material treatment 1 2.12E-0410 2.12E-0410 

Total emissions   8.52E-04 
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D- Environmental impact of concrete mixes. 

The characterized environmental impact of the concrete mixes per m3·MPa of concrete are shown in Table A2.8. 

 

Table A2.8. LCIA results per m3·MPa of concrete. 

 

 

 

 

AP GWP100 ET EPmw EPfw EPt HTc HTn-c IR LU ODP PM POCP ADP-F ADP-E Water use COST

Mol H+ eq kg CO2 eq. CTUe kg N eq. kg P eq. Mol H+ eq CTUh CTUh kBq U235 Item(s) kg CFC-11 eq.Disease incidencesKg NMVOC ew. MJ kg Sb eq. m
3

€

1 NL-(47:53):41 9.26E-03 4.81E+00 1.82E-01 2.94E-03 1.93E-06 3.21E-02 7.51E-09 3.39E-07 1.37E-01 9.64E+00 6.36E-11 5.49E-08 8.61E-03 1.99E+01 1.79E-07 3.78E-01 1.05E+00

2 NL-(60:40):50 9.75E-03 5.05E+00 1.93E-01 3.09E-03 2.08E-06 3.37E-02 7.95E-09 3.56E-07 1.45E-01 1.10E+01 6.81E-11 5.89E-08 9.06E-03 2.12E+01 1.91E-07 4.02E-01 1.15E+00

3 NL-(50:50):50 9.93E-03 5.15E+00 1.95E-01 3.15E-03 2.08E-06 3.44E-02 8.06E-09 3.63E-07 1.47E-01 1.06E+01 6.85E-11 5.92E-08 9.23E-03 2.14E+01 1.93E-07 4.06E-01 1.14E+00

4 NL-(40:60):60 1.04E-02 5.37E+00 2.04E-01 3.28E-03 2.19E-06 3.58E-02 8.43E-09 3.79E-07 1.53E-01 1.13E+01 7.20E-11 6.21E-08 9.63E-03 2.24E+01 2.02E-07 4.26E-01 1.20E+00

5 NL-q0.29 9.64E-03 5.00E+00 1.89E-01 3.05E-03 2.00E-06 3.34E-02 7.79E-09 3.52E-07 1.42E-01 9.95E+00 6.40E-11 5.70E-08 8.96E-03 2.07E+01 1.86E-07 3.70E-01 1.08E+00

6 NL-q0.31 9.49E-03 4.91E+00 1.87E-01 3.00E-03 2.04E-06 3.28E-02 7.73E-09 3.47E-07 1.41E-01 1.09E+01 6.47E-11 5.75E-08 8.81E-03 2.06E+01 1.86E-07 3.72E-01 1.13E+00

7 NL-q0.33 8.39E-03 4.34E+00 1.67E-01 2.66E-03 1.84E-06 2.90E-02 6.86E-09 3.07E-07 1.25E-01 1.01E+01 5.80E-11 5.16E-08 7.79E-03 1.83E+01 1.66E-07 3.33E-01 1.04E+00

8 EAF-q0.33 1.03E-02 5.09E+00 1.98E-01 3.36E-03 2.07E-06 3.67E-02 8.36E-09 3.53E-07 1.45E-01 6.73E+00 6.85E-11 5.76E-08 9.54E-03 2.14E+01 1.94E-07 4.02E-01 9.19E-01

9 EAF-q0.35 8.90E-03 4.31E+00 1.73E-01 2.93E-03 1.87E-06 3.20E-02 7.33E-09 2.98E-07 1.25E-01 6.13E+00 6.18E-11 5.08E-08 8.23E-03 1.85E+01 1.71E-07 3.62E-01 8.18E-01

10 E-NL-V1 7.23E-03 3.74E+00 1.43E-01 2.29E-03 1.56E-06 2.50E-02 5.90E-09 2.64E-07 1.08E-01 8.45E+00 4.94E-11 4.41E-08 6.71E-03 1.57E+01 1.42E-07 2.84E-01 8.73E-01

11 E-NL-V2 9.38E-03 4.87E+00 1.83E-01 2.97E-03 1.92E-06 3.25E-02 7.55E-09 3.43E-07 1.38E-01 9.28E+00 6.15E-11 5.49E-08 8.72E-03 2.01E+01 1.80E-07 3.57E-01 1.03E+00

12 3-P-NL-V1 8.32E-03 4.31E+00 1.64E-01 2.63E-03 1.79E-06 2.88E-02 6.78E-09 3.04E-07 1.24E-01 9.58E+00 5.67E-11 5.05E-08 7.72E-03 1.81E+01 1.63E-07 3.26E-01 9.98E-01

13 3-P-NL-V2 1.07E-02 5.57E+00 2.09E-01 3.40E-03 2.18E-06 3.71E-02 8.62E-09 3.92E-07 1.58E-01 1.05E+01 7.02E-11 6.25E-08 9.96E-03 2.29E+01 2.05E-07 4.08E-01 1.17E+00

14 E-EAF-V1 7.29E-03 3.57E+00 1.42E-01 2.39E-03 1.53E-06 2.61E-02 5.99E-09 2.47E-07 1.03E-01 5.30E+00 5.04E-11 4.17E-08 6.75E-03 1.52E+01 1.40E-07 2.95E-01 6.86E-01

15 E-EAF-V2 8.49E-03 4.22E+00 1.63E-01 2.77E-03 1.69E-06 3.02E-02 6.89E-09 2.93E-07 1.20E-01 5.55E+00 5.64E-11 4.74E-08 7.88E-03 1.76E+01 1.60E-07 3.33E-01 7.58E-01

16 CPM-EAF-V1 8.01E-03 3.95E+00 1.59E-01 2.61E-03 1.81E-06 2.85E-02 6.68E-09 2.75E-07 1.16E-01 8.31E+00 5.81E-11 4.89E-08 7.40E-03 1.72E+01 1.60E-07 3.35E-01 9.06E-01

17 CPM-EAF-V2 1.08E-02 5.40E+00 2.12E-01 3.50E-03 2.30E-06 3.82E-02 8.86E-09 3.77E-07 1.56E-01 9.67E+00 7.46E-11 6.35E-08 1.00E-02 2.30E+01 2.10E-07 4.33E-01 1.12E+00

IDNº
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The characterized environmental impact of the concrete mixes per m3 of concrete are shown in Table A2.9.  

Table A2.9. LCIA results per m3 of concrete. 

AP GWP100 ET EPmw EPfw EPt HTc HTn-c IR LU ODP PM POCP ADP-F ADP-E Water use COSt

Mol H+ eq kg CO2 eq. CTUe kg N eq. kg P eq. Mol H+ eq CTUh CTUh kBq U235 Item(s) kg CFC-11 eq. Disease Kg NMVOCew. MJ kg Sb eq. m
3

€

NL-(47:53):41 3.91E-01 2.03E+02 7.67E+00 1.24E-01 8.14E-05 1.35E+00 3.17E-07 1.43E-05 5.77E+00 4.07E+02 2.68E-09 2.32E-06 3.63E-01 8.42E+02 7.57E-06 1.59E+01 4.42E+01

NL-(60:40):50 3.92E-01 2.03E+02 7.74E+00 1.24E-01 8.38E-05 1.36E+00 3.19E-07 1.43E-05 5.82E+00 4.40E+02 2.74E-09 2.37E-06 3.64E-01 8.50E+02 7.68E-06 1.62E+01 4.62E+01

NL-(50:50):50 3.91E-01 2.03E+02 7.69E+00 1.24E-01 8.21E-05 1.35E+00 3.18E-07 1.43E-05 5.79E+00 4.17E+02 2.70E-09 2.33E-06 3.64E-01 8.44E+02 7.60E-06 1.60E+01 4.47E+01

NL-(40:60):60 3.92E-01 2.03E+02 7.71E+00 1.24E-01 8.30E-05 1.35E+00 3.19E-07 1.43E-05 5.80E+00 4.28E+02 2.72E-09 2.35E-06 3.64E-01 8.47E+02 7.64E-06 1.61E+01 4.55E+01

NL-q0.29 4.12E-01 2.14E+02 8.07E+00 1.31E-01 8.55E-05 1.43E+00 3.33E-07 1.51E-05 6.08E+00 4.26E+02 2.74E-09 2.44E-06 3.83E-01 8.87E+02 7.95E-06 1.59E+01 4.63E+01

NL-q0.31 3.65E-01 1.89E+02 7.22E+00 1.16E-01 7.85E-05 1.26E+00 2.97E-07 1.33E-05 5.43E+00 4.18E+02 2.49E-09 2.22E-06 3.39E-01 7.94E+02 7.16E-06 1.43E+01 4.36E+01

NL-q0.33 3.42E-01 1.77E+02 6.78E+00 1.08E-01 7.48E-05 1.18E+00 2.79E-07 1.25E-05 5.09E+00 4.12E+02 2.36E-09 2.10E-06 3.17E-01 7.46E+02 6.75E-06 1.35E+01 4.21E+01

EAF-q0.33 4.67E-01 2.31E+02 9.00E+00 1.53E-01 9.39E-05 1.67E+00 3.80E-07 1.60E-05 6.58E+00 3.05E+02 3.11E-09 2.61E-06 4.33E-01 9.70E+02 8.82E-06 1.82E+01 4.17E+01

EAF-q0.35 3.93E-01 1.91E+02 7.64E+00 1.30E-01 8.27E-05 1.42E+00 3.24E-07 1.32E-05 5.52E+00 2.71E+02 2.73E-09 2.25E-06 3.64E-01 8.20E+02 7.56E-06 1.60E+01 3.62E+01

E-NL-V1 3.52E-01 1.82E+02 6.97E+00 1.11E-01 7.62E-05 1.22E+00 2.87E-07 1.29E-05 5.24E+00 4.12E+02 2.41E-09 2.15E-06 3.27E-01 7.67E+02 6.92E-06 1.38E+01 4.25E+01

E-NL-V2 4.27E-01 2.22E+02 8.32E+00 1.35E-01 8.71E-05 1.48E+00 3.44E-07 1.56E-05 6.28E+00 4.22E+02 2.80E-09 2.50E-06 3.97E-01 9.14E+02 8.17E-06 1.62E+01 4.67E+01

3-P-NL-V1 3.52E-01 1.82E+02 6.95E+00 1.11E-01 7.57E-05 1.22E+00 2.87E-07 1.29E-05 5.23E+00 4.05E+02 2.40E-09 2.14E-06 3.27E-01 7.65E+02 6.90E-06 1.38E+01 4.22E+01

3-P-NL-V2 4.26E-01 2.22E+02 8.31E+00 1.35E-01 8.67E-05 1.48E+00 3.43E-07 1.56E-05 6.27E+00 4.16E+02 2.79E-09 2.49E-06 3.97E-01 9.13E+02 8.15E-06 1.62E+01 4.64E+01

E-EAF-V1 3.78E-01 1.85E+02 7.35E+00 1.24E-01 7.92E-05 1.35E+00 3.11E-07 1.28E-05 5.34E+00 2.75E+02 2.62E-09 2.17E-06 3.50E-01 7.91E+02 7.27E-06 1.53E+01 3.56E+01

E-EAF-V2 4.51E-01 2.24E+02 8.68E+00 1.47E-01 9.00E-05 1.61E+00 3.66E-07 1.56E-05 6.37E+00 2.95E+02 3.00E-09 2.52E-06 4.19E-01 9.37E+02 8.50E-06 1.77E+01 4.02E+01

CPM-EAF-V1 3.77E-01 1.85E+02 7.48E+00 1.22E-01 8.52E-05 1.34E+00 3.14E-07 1.29E-05 5.45E+00 3.91E+02 2.73E-09 2.30E-06 3.48E-01 8.10E+02 7.52E-06 1.57E+01 4.26E+01

CPM-EAF-V2 4.49E-01 2.24E+02 8.80E+00 1.46E-01 9.56E-05 1.59E+00 3.69E-07 1.57E-05 6.47E+00 4.02E+02 3.10E-09 2.64E-06 4.17E-01 9.55E+02 8.73E-06 1.80E+01 4.67E+01

ID
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The impact contribution of each concrete component per impact categories is depicted 

in the following 17 figures. 
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