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Abstract 
 

Introduction 

Vaccines that require the addition of substances named adjuvants for enhancement of the 

immune response are mainly those composed of killed organisms or highly purified antigens. By 

themselves, antigens are not able to induce a strong and long-lasting immune response. Thus, 

adjuvants that increase the speed of the response to the antigen, that reduce the quantity of 

antigen that need to be exposed to for a long-lasting immune response or that bias the immune 

response towards specific cells of the immune system (e.g., bias the response towards a TH1 or 

a TH2 immune response) are added to the vaccines. Aluminium salts, especially aluminium 

hydroxide and aluminium phosphate, are among the most widely used adjuvants in human and 

veterinary vaccines. 

Despite aluminium adjuvants have been in use for a long time, with the first aluminium 

salt used as adjuvant in the 1930’s, the mechanism of action by which they elicit an immune 

reaction is not fully understood. Multiple mechanisms of action have been proposed and it 

seems that rather than having a dominant one, aluminium acts simultaneously through multiple 

pathways. In addition to its partially understood mechanism of action, some concerns regarding 

its safety have recently been raised. It is well known that Al is a non-essential element for the 

human body and is thought that it lacks any essential biological function. The fact that the body 

is not able to excrete all injected Al in a short-term period of time through normal mechanisms 

such as urine, points towards a high persistence of the material in the body. Moreover, the fact 

that Al may be able to reach distant organs though translocation of the material by phagocytic 

immune cells from the monocytic cell line (with translocation of the material to lymph nodes 

demonstrated) have raised some concerns, since the material may be translocated to such a 

distant tissue as brain after accumulation of the material from multiple exposures of 

aluminium-based vaccines in predisposed individuals. Thus, in this work a long-term experiment 

in which sheep receive multiple aluminium-based vaccines was developed to study the fate of 

injected aluminium and to asses if the aluminium of multiple vaccinations accumulated in the 

body due to its high persistence. 

Few works have analysed the immune response to aluminium adjuvants in a large 

mammal such as sheep through high throughput technology (RNA sequencing). Most studies on 

aluminium adjuvants have been done in mice models, which may fail to recreate some aspects 

of the mechanism of action. Larger animals like sheep share similarities to human regarding 

physiology, anatomy, metabolism, genetics and size, making them a good alternative. First and 

foremost, the route for vaccine administration is the same in human and farm animals, through 

the subcutaneous or intramuscular route. Secondly, large farm animals such as sheep have 

aluminium-based vaccines designed specifically for them. 

 

Objectives 

The general aim of this work is the study of genes and regulatory elements involved in the 

immune response induced by aluminium hydroxide after repetitive inoculation of commercial 

vaccines composed of said element. For that purpose, RNA sequencing (RNA-seq) libraries from 

multiple tissues of sheep were prepared and analysed with the protocols described in this thesis. 

Expression levels for mRNAs and miRNAs were quantified for each animal in peripheral blood 

mononuclear cells (PBMCs) and parietal lobe cortex. In addition, circular RNAs (circRNAs) were 

characterized in those sheep samples. The study of the mentioned elements and their 
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interactions may help to understand better the mechanism of action of aluminium adjuvants 

and to discern if the aluminium is able to reach a distant organ such as brain. 

 

Material and methods 

Samples in this study were obtained from the Rasa Aragonesa sheep breed, a breed from the 

Northeast of Spain raised mostly for meat production. Three months old purebred lambs were 

selected from a single pedigree flock and after a short period of two months to acclimatize to 

the new environment, the sheep were randomly distributed in three different treatment groups: 

one group receiving multiple inoculations of commercial vaccines composed of aluminium 

hydroxide, named Vac group; another group receiving equivalent doses of the adjuvant 

(Alhydrogel) diluted in phosphate-buffered saline, named Adj group; and a group only receiving 

phosphate-buffered saline, termed Control group. The complete experiment lasted 475 days, from 

February 2015 to June 2016. During that period of time, nine different vaccines were 

administered to each animal, which comprises a total of 19 inoculations throughout 16 different 

inoculation dates. All commercial vaccines used in this study are common vaccines given to 

sheep during their productive period in Spain. 

Comparisons of multiple tissues from these animals would allow to discern key elements of 

Al mechanism of action, in addition to check if Al accumulates in a distant tissue such as brain. In this 

work, sequencing results from PBMCs and parietal lobe cortex will be presented. This being a 

coordinated project, the histopathological analyses and behavioural changes of the animals 

were studied by other research groups under the same project. RNA-seq was applied by our 

research group to characterize molecular changes in the transcriptome in the previously 

commented tissues. Therefore, libraries for total RNA-seq, which undergo ribosomal RNA 

depletion, retaining any non-coding RNA, and miRNA-seq were prepared. It was taken into 

account that the sheep reference genome is still in progress, with non-coding element such as 

lncRNAs and circRNAs being poorly annotated. Thus, paired-end libraries were prepared and 

were sequenced with a high enough depth for novel element characterization. In this work, the 

differential expression results from the previously commented tissues and novel circRNA 

characterization will be presented. 

 

Results and discussion 

The expression of the NLRP3 inflammasome has been related to Al adjuvant activity and it has 

been reported that IL1B activation is dependent of the expression of the inflammasome. In 

PBMC samples, NLRP3 had a constant expression when sheep that received commercial vaccines 

(Vac-injected sheep) were compared to their initial stage, before any vaccination, while it was 

found downregulated in sheep that received the aluminium hydroxide (AH) adjuvant diluted in 

phosphate-buffered saline (Adj-injected sheep). Thus, it seems that the inflammasome is not 

required for Al adjuvant activity in sheep under the conditions of this experiment, which point 

towards an inflammasome independent activation of the immune response. The contradictory 

results regarding the requirement of the inflammasome may be explained by the multifaceted 

activation of the immune response by Al adjuvants. Multiple mechanisms have been reported 

for Al activated immune response: formation of a depot; creation of a local pro inflammatory 

environment, which results in recruitment of different immune cells at the injection site; due to 

tissue damage at the injection site, endogenous danger signals  that induce an inflammatory 

response (uric acid and host DNA in the case of Al) are released from necrotic cells; enhancement 

of antigen uptake and presentation; and as previously stated, activation of the NLRP3 

inflammasome, which leads to production of the pro inflammatory cytokine  IL-1β. Instead of 

having a dominant mechanism for immune stimulation, it seems that multiple pathways are 
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activated simultaneously, and when one of the pathways is not activated, the others may act 

compensatory to elicit a strong enough immune response. Differences regarding the role of the 

inflammasome in adjuvant activity may be attributed to differences in the studies such as the 

formulation used (different combinations of adjuvant and antigen, which results in differences 

in agglomerate size and adsorption rate), immunization protocols, animal models and route of 

administration. 

The consequent increase in inflammatory signals led to the activation of the NF-κB 

signaling pathway in both Vac- and Adj-inoculated sheep when compared against their initial 

state before any vaccination. There were multiple genes from the NF-κB family, such as NFKB2, 

RELA and RELB, which were highly expressed in both groups simultaneously. The main 

differences in both groups were in the expression of genes from the cytokine-cytokine receptor 

interaction pathway, which were clearly downregulated in Adj-injected animals. This was 

consistent with the induction of an ongoing immune response against the vaccine, but 

suggesting a milder induction of the immune response in Adj-inoculated animals. Although the 

adjuvant is not antigenic per se, it seems that is able to produce a non-specific induction of 

proinflammatory responses when the adjuvant is injected alone without any pathogen. 

Something that would be concordant with multiple reports showing immune stimulation 

without any adsorbed antigen. 

Regarding the miRNA differential expression analysis in PBMCs, there were some 

miRNAs that had been previously related to Al adjuvants. miR-125b, which was upregulated in 

Vac-inoculated sheep, has been shown to be a reactive oxygen species (ROS)- and NF-κB 

up-regulated miRNA by Al. Despite not being directly linked to Al, miR-99a, which was also 

upregulated in Vac injected sheep, has been shown to be promoted by NF-κB. There is a broad 

activation of the NF-κB pathway and it seems that said pathway is highly regulated by multiple 

miRNA expression in the immune response to Al adjuvants. When miRNA-mRNA co-expression 

was checked, multiple factors related to cellular response to DNA damage stimulus, RNA binding 

and response to stimulus were found to be negatively correlated. Among them, there were 

some negatively correlated miRNA-mRNA pairs related to the NF-κB pathway, pointing as 

previously mentioned to a highly regulated expression of said pathway by miRNAs in Al elicited 

immune response. MAP3K2 (MEKK2), which is a predicted target of let-7b (upregulated in Adj-

injected sheep), is a kinase that controls the persistent activation of NF-κB in response to 

stimulation with proinflammatory cytokines through the formation of the 

MAP3K2:IκB-β:NF-κB:IKK complex. SNX27, which is a predicted target of miR-125b (upregulated 

in Vac-injected sheep), has been shown to cause NF-κB hyperactivation after its silencing. Apart 

to pairs related to NF-κB, it was found a pair related to DNA damage response. CHEK1, predicted 

to be targeted by miR-16b (miRNA upregulated in Adj-injected animals), has been shown to have 

reduced levels of expression after exposure to aluminium chloride or aluminium chlorohydrate. 

In contrasts to the high expression change seen in PBMC samples, , it was shown  nearly 

no differential expression in the parietal lobe cortex samples of animals vaccinated with 

commercial vaccines and the quantity of Al detected in parietal lobe samples from the Vac-

inoculated sheep was similar to those of the control group, which indicate that commercial 

formulations are pretty safe under the conditions of this experiment. Completely different was 

the case of Adj-inoculated animals, in which a tendency to higher Al content was detected when 

compared to control samples. It must be pointed that most of the Al accumulation 

measurements made in the parietal lobe were below 1 µg/g, a level considered safe. With nearly 

5 times more DEGs in Adj-injected sheep than the Vac-inoculated animals, among the 

differentially expressed genes there were terms usually found dysregulated in neurological 

diseases, namely: VCAM1, TRPM4, GDF10 and NTN1. Taken together, it seems that under the 
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terms of this experiment Al was able to reach the cortex and induce molecular changes when is 

free from any antigen. Thus, it raises some concerns on the safety of a large number of vaccine 

trials, which uses Al adjuvant-containing placebo groups. 

Regarding the miRNA differential expression analysis, a pattern similar to the total RNA-

seq differential expression analysis was seen, with nearly no significant change in Vac-inoculated 

animals. When miRNA-mRNA co-expression was checked for differentially expressed miRNAs, 

multiple factors related to mitochondria function, maintenance of neural polarity and DNA 

damage were found. Among them, there were some predicted targets that would help to broad 

our knowledge on Al toxicity in brain, pointing to a dysregulation of mitochondrial functions. 

ACTR10, which is a predicted target of the up-regulated let-7b in Adj-inoculated animals, has 

been shown to disrupt mitochondrial retrograde transport at its absence, leading to 

accumulation of mitochondria in axon terminals. In addition, MRS2, another predicted target of 

let-7b, is a mitochondrial Mg transporter that has been related to defects in the organelle and 

apoptosis. Taken together, it seems that Al may be causing an imbalance in metal ion levels, 

which would be concordant to what have been seen in other species such as rats treated with 

an intragastric administration of Al gluconate. 

As previously stated, paired-end libraries were sequenced with a high enough depth for 

novel sheep RNA characterization. circRNAs are non-coding RNAs with a cyclic structure. 

Recently, circRNAs have caught the attention of researchers due their tissue specific expression, 

conservation across species and their involvement in multiple biological functions, such as 

neuronal differentiation, neuronal apoptosis and BBB dysfunction in brain and basic immune 

functions and transcription regulation in blood. Thus, this study attempted to annotate novel 

circRNAs in sheep and to discern if circRNAs have any role in Al adjuvancy. It must be pointed 

that there is not database recording sheep circRNAs and the tissues used in this study have not 

been used previously for circRNA annotation. Thus, this study will broad the current sheep 

circRNA annotation. 

After circRNA characterization by two different tools, a wide expression of circRNAs was 

found in both tissues. A total of 2,510 and 3,403 circRNAs were detected in parietal lobe cortex 

and PBMCs, respectively, of which 1,379 were completely novel circRNAs (841 exclusive to 

PBMC samples, 421 exclusive to encephalon samples and 117 expressed in both tissues). Most 

of the identified circRNAs originated from annotated genes, and supposing that all exons were 

retained, they were generally formed by two or three distinct exons, in agreement with what 

has been previously reported in human and mouse data. In addition, it has been described that 

some circRNAs have a tissue-dependent or developmental stage-dependent expression pattern. 

In our samples, 1,236 circRNAs (36.32% of all detected blood circRNAs) were detected in both 

tissues, which is concordant with approximately 30% of the detected blood circRNAs 

overlapping with circRNAs expressed in the cerebellum of human and mouse data. 

The circRNAs detected in this study were compared to other sheep circRNA identified in 

pituitary gland and in longissimus dorsi muscle, since as previously pointed there is no database 

recording them. Only a few circRNA backsplice junctions were detected in all tissues at the same 

time, while several hundreds of circRNAs were exclusive to each tissue, which shows how some 

circRNAs have a tissue-dependent expression. Furthermore, since multiple studies have shown 

that circRNAs have evolutionary conservation between human and mouse, the circRNAs 

detected in this work were compared to a human circRNA database. Approximately the 63% of 

circRNAs in both tissues had completely conserved backsplice sites when compared to human 

backsplice junctions. 

Among the functional roles that have been proposed for circRNAs, there is binding 

activity between circRNAs and RNA binding proteins (RBPs), which suggests that circRNAs can 
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impact the same functional processes in which the corresponding linear host gene is involved. 

Under the assumption that the function of a circRNA may be associated with the known function 

of its parental gene, PBMC circRNAs were related to multiple immune functions such as B- and 

T-cell proliferation, neutrophil degranulation, the MAPK cascade and the NF-κB signaling, while 

parietal lobe cortex circRNAs were related to synapse regulation, behaviour, learning process 

and brain development. Furthermore, multiple circRNAs have been reported to act as miRNA 

sponges, which are defined as sequences with multiple miRNA binding sites that compete with 

target genes for miRNA binding. There was only one circRNA exclusively expressed in cortex 

samples, and hosted by the CDR1 gene, containing multiple binding sites for miR-7 and 

miR-1224, both reported to be expressed in the mammalian brain. 

Regarding the differential expression analysis, it must be pointed that there is no tool 

designed specifically for circRNA expression data based on rRNA depleted total RNA-seq 

libraries. Most researchers use tools such as DESeq2 and edgeR, which are based in a negative 

binomial distribution, but there have not been any study showing if the negative binomial model 

is adequate for circRNA expression data, which only counts backsplice junction reads. At least in 

our samples, circRNA expression data had generally very low counts (a few highly expressed 

circRNAs originated most of the counts) and is zero-inflated. Due to the different structure of 

circRNA expression data and uncertainty of whether the methods used so far are adequate, 

multiple methods were applied to our data. Independent of the choice of method, we did not 

detect any differentially expressed circRNAs in any of the two tissues, which indicates that 

circRNAs may not be connected with aluminium adjuvancy. 

 

Conclusions 

Briefly, a general activation of the immune response was seen in both Vac- and Adj-inoculated 

animals in PBMCs, with the activation of the NF-κB signaling pathway in both treatment groups. 

There were similarities in the immune response seen in both treatments, but it was shown that 

without the presence of any antigen a milder immune response was induced in Adj-inoculated 

sheep. Interestingly, the expression of the NLRP3 inflammasome was not required for 

aluminium adjuvant activity in the animals of this study. Regarding the expression of miRNAs 

and their interaction with the studied mRNAs, it was shown that multiple miRNAs such as let-7b 

(upregulated in Adj tf vs. Adj t0 comparison), miR-125b and miR-99a (both upregulated in Vac tf 

vs. Vac t0 comparison) may be related to the NF-κB pathway, pointing towards a highly regulated 

expression of the pathway by miRNAs in response to aluminium adjuvants. 

In parietal lobe cortex samples, it was shown nearly no differential expression in the 

animals vaccinated with commercial vaccines, while in Adj-inoculated sheep a few more 

differentially expressed genes (nearly 5 times more) were found. This was highly concordant 

with the Al levels detected in the tissue, with no difference of aluminium content between 

control samples and Vac-inoculated sheep and with a tendency to higher aluminium levels in 

Adj-inoculated sheep. From the results of this study, it seems that the aluminium from 

commercial vaccines is not able to reach the parietal lobe cortex after a long-term exposure. 

Regarding the circRNA characterization, a wide expression of said elements was found 

in both tissues. In addition, sheep circRNAs detected in this study were highly conserved when 

compared to human circRNAs. Independent of the choice of differential expression method, 

there were no differentially expressed circRNAs in both tissues, which may indicate an 

aluminium independent expression of circRNAs. 
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Resumen 
 

Introducción 

Las vacunas compuestas por organismos muertos o antígenos altamente purificados requieren 

la adición de ciertas sustancias para la mejora de la respuesta inmune. Dichas vacunas no son 

capaces de inducir una respuesta inmune fuerte y duradera por sí solas y necesitan la adición de 

substancias denominadas adyuvantes. Se entiende como adyuvante cualquier substancia que 

aumente la velocidad de la respuesta al antígeno, que reduzca la cantidad de antígeno al que se 

debe exponer para una respuesta inmune duradera o que sesgue la respuesta inmune hacia 

células específicas del sistema inmune (por ejemplo, hacia una respuesta inmune TH1 o TH2). Las 

sales de aluminio, especialmente el hidróxido de aluminio y el fosfato de aluminio, se 

encuentran entre los adyuvantes más utilizados en vacunas humanas y veterinarias. 

A pesar de que los adyuvantes de aluminio han estado en uso durante un largo periodo 

de tiempo, siendo la primera sal de aluminio utilizada como adyuvante en la década de 1930, el 

mecanismo de acción por el cual provocan una reacción inmune no está completamente 

estudiado. Se han propuesto múltiples mecanismos de acción y en lugar de tener uno 

dominante, parece ser que el aluminio (Al) actúa simultáneamente a través de múltiples vías. 

Además de su mecanismo de acción parcialmente estudiado, recientemente se han planteado 

algunas preocupaciones con respecto a su seguridad. Es bien sabido que el Al es un elemento 

no esencial para el cuerpo humano y se cree que carece de cualquier función biológica esencial. 

El hecho de que el cuerpo no pueda excretar todo el Al inyectado en un período corto de tiempo 

a través de mecanismos como la orina, apunta hacia una alta persistencia del material en el 

cuerpo. Además, el hecho de que el Al pueda ser capaz de alcanzar órganos distantes a través 

de la translocación del material mediante células inmunes fagocíticas de la línea celular 

monocítica (con la translocación del material a los ganglios linfáticos ya demostrado) ha 

generado algunas preocupaciones, sobre todo en cuanto a la todavía por demostrar capacidad 

de translocación al cerebro en individuos predispuestos después de exposiciones a múltiples 

vacunas con base de aluminio. Por lo tanto, en este trabajo se analizó un experimento a largo 

plazo en el que ovejas reciben múltiples vacunas compuestas de hidróxido de aluminio con el 

objetivo de estudiar el destino del aluminio inyectado y evaluar si el aluminio se acumula en el 

cuerpo debido a su más que demostrada alta persistencia. 

Pocos trabajos han analizado la respuesta inmune a los adyuvantes de aluminio en un 

mamífero grande como la oveja a través de tecnologías de alto rendimiento (secuenciación de 

ARN o ARN-seq). La mayoría de los estudios sobre adyuvantes de aluminio se han centrado en 

el uso de ratones como modelo animal, que pueden no recrear algunos aspectos del mecanismo 

de acción. Animales más grandes como las ovejas comparten muchas similitudes con los 

humanos en cuanto a fisiología, anatomía, metabolismo, genética y tamaño, lo que los convierte 

en una buena alternativa. En primer lugar, la ruta para la administración de la vacuna es la misma 

en humanos y animales de granja, siendo esta la ruta subcutánea o intramuscular. En segundo 

lugar, animales de granja como la oveja tienen vacunas a base de aluminio diseñadas 

específicamente para ellas después de pasar rigurosos controles. 

 

Objetivos 

El objetivo principal de este trabajo es el estudio de genes y elementos reguladores involucrados 

en la respuesta inmune inducida por el hidróxido de aluminio después de inoculaciones 

repetitivas de vacunas comerciales. Para ello, se prepararon y analizaron bibliotecas de 

secuenciación de ARN (ARN-seq) de múltiples tejidos ovinos con los protocolos descritos en esta 
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tesis. Los niveles de expresión de ARNm y miARN fueron cuantificado para cada animal en células 

mononucleares de sangre periférica (PBMC) y en la corteza del lóbulo parietal. Además, los ARN 

circulares (circARN) fueron caracterizados en esas mismas muestras ovinas. El estudio de los 

elementos mencionados y sus posibles interacciones puede ayudar a comprender el mecanismo 

de acción del hidróxido de aluminio y a discernir si puede alcanzar un órgano tan distante como 

el cerebro. 

 

Materiales y métodos 

Las muestras de este estudio provinieron de la raza ovina Rasa Aragonesa, una raza del noreste 

de España criada principalmente para la producción de carne. Se seleccionaron corderos de tres 

meses de pedigrí de raza pura de un solo lote. Después de un corto período de aclimatación de 

dos meses, las ovejas se distribuyeron aleatoriamente en tres grupos de tratamiento diferentes: 

un grupo que recibió múltiples inoculaciones de vacunas comerciales compuestas de hidróxido 

de aluminio, denominado grupo Vac; otro grupo que recibió dosis equivalentes del adyuvante 

(Alhydrogel) diluido en tampón fosfato salino, denominado grupo Adj; y un grupo que solo 

recibió tampón fosfato salino, denominado grupo control. El experimento completo duró 475 

días, desde febrero de 2015 hasta junio de 2016. Durante ese período de tiempo, se 

administraron nueve vacunas distintas a cada animal, resultando en un total de 19 vacunaciones 

en 16 fechas de inoculación distintas. Todas las vacunas comerciales utilizadas en este estudio 

son vacunas comunes que usualmente se administran en España a las ovejas durante su período 

productivo. 

Las comparaciones de los múltiples tejidos en estos animales permitirían discernir 

elementos clave del mecanismo de acción del Al, además de verificar si se acumula en un tejido 

distante como el cerebro. Al tratarse de un proyecto coordinado, los análisis histopatológicos y 

los cambios de comportamiento de los animales fueron estudiados por otros grupos de 

investigación bajo el mismo proyecto. En este trabajo se presentarán los resultados de la 

secuenciación (ARN-seq) de PBMCs y la corteza del lóbulo parietal.  Se prepararon bibliotecas 

de secuenciación de ARN total, en el que el ARN ribosómico es removido reteniendo cualquier 

secuencia de ARN no codificante, y de secuenciación de miARN. Se tuvo en cuenta que el 

genoma de referencia ovino está incompleto, sobre todo en elementos no codificantes como 

lncARNs y circARNs. Por lo tanto, se prepararon bibliotecas paired-end y se secuenciaron con 

una profundidad suficientemente alta como para permitir la caracterización de nuevos ARNs no 

codificantes. En este trabajo se presentarán los resultados de la expresión diferencial de los 

tejidos previamente comentados y de la caracterización de circARNs. 

 

Resultados y discusión 

En otros estudios, la expresión del inflamasoma NLRP3 se ha relacionado con la actividad 

adyuvante del Al y se ha descrito que la activación de IL-1β depende de la expresión del 

inflamasoma. En nuestras muestras de PBMCs, NLRP3 tenía una expresión constante cuando las 

ovejas que recibieron vacunas comerciales (grupo Vac) se compararon con su etapa inicial, antes 

de recibir cualquier vacunación, mientras que se encontró una regulación negativa en las ovejas 

que recibieron el adyuvante diluido en tampón fosfato salino (grupo Adj). Por lo tanto, parece 

que bajo las condiciones de este experimento las ovejas no requieren de la expresión del 

inflamasoma para la actividad adyuvante del Al, apuntando hacia una activación de la respuesta 

inmune independiente del inflamasoma. Los resultados contradictorios con respecto al 

requerimiento del inflamasoma pueden explicarse por la activación multifacética de la respuesta 

inmune del Al. Se han descrito múltiples mecanismos para la activación de la respuesta inmune 

por el Al: formación de depósitos; creación de un entorno proinflamatorio local, que da como 
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resultado el reclutamiento de diferentes células inmunes en el sitio de inyección; liberación de 

señales de peligro endógenas (ácido úrico y ADN del huésped en el caso de Al) de células 

necróticas que inducen una respuesta inmune, todo debido al daño causado en el tejido en el 

sitio de inyección; mejora de la captación y presentación de antígeno; y como se indicó 

anteriormente, la activación del inflamasoma NLRP3, que conduce a la producción de la 

citoquina proinflamatoria IL-1β. En lugar de tener un mecanismo dominante para la 

estimulación inmune, parece que se activan múltiples vías simultáneamente, y cuando una de 

las vías no se activa, las otras pueden actuar de manera compensatoria para provocar una 

respuesta inmune lo suficientemente fuerte. Las diferencias con respecto al papel del 

inflamasoma en la actividad adyuvante también se pueden atribuir a diferencias en los estudios, 

como la formulación utilizada (diferentes combinaciones de adyuvante y antígeno, que dan 

como resultado a diferencias en el tamaño del aglomerado y tasa de adsorción), protocolos de 

inmunización, modelos animales y ruta de administración. 

El aumento de las señales inflamatorias condujo a la activación de la vía de señalización 

NF-κB en ovejas de los grupos Vac y Adj en comparación con su estado inicial antes de cualquier 

vacunación. Se hallaron múltiples genes de la familia NF-κB, como NFKB2, RELA y RELB, 

altamente expresados de manera significativa en ambos grupos. Las principales diferencias en 

ambos grupos se hallaban en la expresión de genes de la vía de interacción de receptores de 

citoquinas y citoquinas, que estaban claramente con regulación negativa en animales del grupo 

Adj. Esto es consistente con la inducción de una respuesta inmune contra la vacuna, pero sugiere 

una inducción más leve en animales inoculados solo con el adyuvante. Aunque el adyuvante no 

es antigénico per se, parece que es capaz de producir una inducción no específica de respuestas 

proinflamatorias incluso cuando ningún antígeno se halla presente. Esto concuerda con 

múltiples trabajos anteriores que muestran estimulación inmune sin ningún antígeno adsorbido. 

Respecto al análisis de expresión diferencial de miARNs en PBMCs, se hallaron 

diferencialmente expresados algunos miARNs que ya se habían relacionado previamente con el 

Al. Se ha demostrado que miR-125b, que estaba sobreexpresado en ovejas del grupo Vac, es un 

miARN sobreexpresado por especies de oxígeno reactivo (EOR o ROS) y por NF-κB en la 

respuesta al Al. A pesar de no estar directamente relacionado con Al, miR-99a, que también 

estaba sobreexpresado en ovejas del grupo Vac, ha demostrado ser promovido por NF-κB. Existe 

una amplia activación de la ruta NF-κB y parece que dicha ruta está altamente regulada por la 

expresión de miARNs en la respuesta inmune al Al. Cuando se analizó la coexpresión de miARN-

ARNm, se descubrieron múltiples factores negativamente correlacionados relacionados con la 

respuesta celular a estímulos de daño de ADN, unión del ARN y respuesta a estímulos. Entre 

ellos, había algunos pares de miARN-ARNm negativamente correlacionados relacionados con la 

ruta NF-κB, apuntando como se ha mencionado anteriormente, a una expresión altamente 

regulada de dicha ruta por miARNs en la respuesta inmunitaria provocada por el Al. MAP3K2 

(MEKK2), que es una diana predicha de let-7b (sobreexpresado en el grupo Vac), es una quinasa 

que controla la activación persistente de NF-κB en respuesta a la estimulación con citoquinas 

proinflamatorias a través de la formación del complejo MAP3K2:IκB-β:NF-κB:IKK. Por otro lado, 

se ha visto que SNX27, que es una diana predicha de miR-125b (sobreexpresado en el grupo 

Vac), causa hiperactivación de NF-κB. Además de los pares relacionados con NF-κB, se encontró 

un par relacionado con la respuesta al daño del ADN. Se ha demostrado que CHEK1, diana 

predicha de miR-16b (sobreexpresado en el grupo Adj), tiene niveles reducidos de expresión 

después de la exposición al cloruro de aluminio o clorhidrato de aluminio. 

En contraste a los cambios de expresión observados en las muestras de PBMC, casi no 

se observó expresión diferencial en las muestras de la corteza del lóbulo parietal en animales 

del grupo Vac y se pudo comprobar que la cantidad de Al detectada en dichas muestras era 
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similar a la del grupo de control, lo que indica que las vacunas comerciales son bastante seguras 

en las condiciones de este experimento. Completamente diferente es el caso de los animales del 

grupo Adj, en los que se detectó una tendencia a un mayor contenido de Al en comparación con 

las muestras de control. Debe señalarse que la mayoría de las mediciones de acumulación de Al 

realizadas en el lóbulo parietal estaban por debajo de 1 µg/g, un nivel considerado seguro. Con 

casi 5 veces más genes diferencialmente expresados, entre los genes diferencialmente 

expresados en el grupo Adj había términos que generalmente se encuentran desregulados en 

enfermedades neurológicas, a saber: VCAM1, TRPM4, GDF10 y NTN1. Parece que, bajo los 

términos de este experimento, el Al pudo llegar a la corteza e inducir leves cambios moleculares 

cuando está libre de cualquier antígeno. Por lo tanto, plantea algunas dudas sobre la seguridad 

de una gran cantidad de ensayos de vacunas que utilizan grupos placebo con solo el adyuvante 

de Al. 

Con respecto al análisis de expresión diferencial de miARNs, se observó un patrón similar 

al análisis de ARNm, con apenas algún cambio significativo en los animales del grupo Vac. 

Cuando se verificó la coexpresión de miARN-ARNm, se encontraron múltiples factores 

relacionados con la función de las mitocondrias, el mantenimiento de la polaridad neural y el 

daño del ADN. Entre ellos, había algunas dianas predichas que podrían ayudar a ampliar nuestro 

conocimiento sobre la toxicidad de Al en el cerebro, apuntando a una desregulación de las 

funciones mitocondriales. Se ha demostrado que ACTR10, que es una diana predicha del let-7b 

(sobreexpresado en el grupo Adj), interrumpe el transporte retrógrado mitocondrial en su 

ausencia, lo que lleva a la acumulación de mitocondrias en axones terminales. Además, MRS2, 

otro target predicho de let-7b, es un transportador de Mg mitocondrial que se ha relacionado 

con defectos en el orgánulo y apoptosis. En conjunto, parece que el Al puede estar causando un 

desequilibrio en los niveles de iones metálicos, lo que sería concordante con lo que se ha visto 

en otras especies, como en ratas tratadas con una administración intragástrica de gluconato de 

Al. 

Como se ha indicado previamente, las librerías paired-end se secuenciaron con una 

profundidad suficientemente alta como para la caracterización de nuevos ARN ovinos. Los 

circARN son ARN no codificantes con una estructura cíclica. Recientemente, los circARN han 

llamado la atención de los investigadores debido a su expresión específica mostrada en 

múltiples tejidos, su conservación entre especies y su participación en múltiples funciones 

biológicas, como la diferenciación neuronal, la apoptosis neuronal y la disfunción de la barrera 

hematoencefálica en el cerebro y funciones inmunes básicas y la regulación de la transcripción 

en la sangre. Por lo tanto, en este estudio se anotaron nuevos circARNs ovinos para discernir si 

dichos elementos tienen algún papel en la adyuvancia del Al. Debe señalarse que no existe una 

base de datos que registre los circARN ovinos y que los tejidos utilizados en este estudio no se 

han utilizado previamente para la anotación de circARN. Por lo tanto, este estudio ampliará la 

anotación actual de circARN ovinos. 

Después de la caracterización de circARNs mediante dos programas distintos, se 

encontró una amplia expresión de circARNs en ambos tejidos. Se detectaron un total de 2,510 y 

3,403 circRNAs en la corteza del lóbulo parietal y PBMCs, respectivamente, de los cuales 1,379 

eran completamente nuevos (841 exclusivos en PBMCs, 421 exclusivos en encéfalo y 117 

expresados en ambos tejidos simultáneamente). El origen de la mayoría de los circARNs 

identificados eran genes anotados, y suponiendo que todos los exones son retenidos, 

generalmente estaban formados de dos o tres exones distintos, de acuerdo con lo que se ha 

descrito previamente en humanos y ratones. Además, se ha descrito que algunos circARNs 

tienen un patrón de expresión dependiente del tejido o del estadio de desarrollo. En nuestras 

muestras, se detectaron 1,236 circRNAs (36.32% de todos los circRNAs sanguíneos detectados) 
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expresados simultáneamente en ambos tejidos, lo cual concuerda con aproximadamente el 30% 

de los circRNAs sanguíneos detectados que se superponen con los circRNAs expresados en el 

cerebelo en datos humanos. 

Los circARNs detectados en este estudio se compararon con otros circARNs ovinos 

identificados en la glándula pituitaria y en el músculo longísimo, ya que, como se ha señalado 

anteriormente, no existe una base de datos que los registre. Solo unos pocos circARNs eran 

expresados simultáneamente en todos los tejidos, mientras que varios cientos de circARNs eran 

exclusivos de cada tejido, lo que muestra cómo algunos circARNs tienen una expresión 

tejido-dependiente. Además, dado que múltiples estudios han demostrado que los circARNs 

tienen una conservación evolutiva entre humanos y ratones, los circARNs detectados en este 

trabajo se compararon con una base de datos de circARN humanos, CIRCpedia. 

Aproximadamente el 63% de los circARNs ovinos en ambos tejidos estaban conservados al 

compararlos con la base de datos humana. 

Entre los roles funcionales que se han propuesto para los circRNA, se ha demostrado 

actividad entre circRNA y proteínas de unión a ARN (RBP), lo que sugiere que los circRNA pueden 

afectar los mismos procesos funcionales en los que está involucrado el gen correspondiente. 

Bajo el supuesto de que la función de un circARN puede estar asociada con la función conocida 

de su gen parental, los circARN estaban relacionados con múltiples funciones inmunes como la 

proliferación de células B y T, la desgranulación de neutrófilos, la cascada de MAPK y la vía NF-κB 

en PBMCs, mientras que los circARN de la corteza del lóbulo parietal estaban relacionados con 

la regulación de la sinapsis, el comportamiento, el proceso de aprendizaje y el desarrollo del 

cerebro. Además, se ha informado que los circARNs pueden actuar como esponjas de miRNAs, 

que se definen como secuencias con múltiples sitios de unión con el miRNA que compiten con 

los genes huésped por la unión con el miRNA. Solo existía un circARN expresado exclusivamente 

en muestras de corteza, y alojado en el gen CDR1, que contenía múltiples sitios de unión para 

miR-7 y miR 1224. 

Con respecto al análisis de expresión diferencial, debe señalarse que no existe una 

herramienta diseñada específicamente para los datos de expresión de circARNs. La mayoría de 

los investigadores usan herramientas como DESeq2 y edgeR, que se basan en una distribución 

binomial negativa, pero no se ha realizado ningún estudio que demuestre si el modelo binomial 

negativo es adecuado para los datos de expresión de circARNs, que solo cuenta las lecturas de 

los extremos de la circularización. Al menos en nuestras muestras, los datos de expresión de 

circARNs generalmente tenían recuentos muy bajos (unos pocos circRNA altamente expresados 

originaron la mayoría de los recuentos). Debido a la diferente estructura de los datos de 

expresión de circARNs y la incertidumbre de si los métodos utilizados hasta ahora son 

adecuados, se aplicaron diversos métodos a nuestros datos. Independientemente de la elección 

del método, no detectamos ningún circARN diferencialmente expresado en ninguno de los dos 

tejidos, lo que puede indicar que los circRNA pueden no estar conectados con la adyuvancia de 

aluminio. 

 

Conclusiones 

En resumen, se observó una activación general de la respuesta inmune en animales de los 

grupos Vac y Adj en PBMCs, con la activación de la ruta NF-κB en ambos grupos de tratamiento. 

Se observaron similitudes en la respuesta inmune en ambos tratamientos, pero se demostró 

que sin la presencia de ningún antígeno la respuesta inmune era más leve. Curiosamente, la 

expresión del inflamasoma NLRP3 no era necesaria para la actividad adyuvante de aluminio en 

los animales de este estudio. Con respecto a la expresión de miARNs y su interacción con los 

ARNm estudiados, se demostró que múltiples miARNs como let-7b (sobreexpresado en la 
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comparación Adj tf vs. Adj t0), miR-125b y miR-99a (ambos sobreexpresados en la comparación 

Vac tf vs Vac t0) puede estar relacionado con la ruta NF-κB, apuntando hacia una expresión 

altamente regulada de la ruta por miARNs en respuesta a los adyuvantes de aluminio. 

En las muestras de corteza del lóbulo parietal, casi no se observó expresión diferencial 

en los animales inoculados con vacunas comerciales, mientras que en las ovejas inoculadas con 

adyuvante únicamente se encontraron algunos genes expresados diferencialmente (casi 5 veces 

más en comparación con el primer grupo). Esto concuerda con los niveles de Al detectados en 

el tejido, sin diferencias en el contenido de aluminio entre las muestras de control y las ovejas 

del grupo Vac y con una tendencia a niveles más altos de aluminio en las ovejas del grupo Adj. 

A partir de los resultados de este estudio, parece que el aluminio de las vacunas comerciales no 

es capaz de alcanzar la corteza del lóbulo parietal después de una exposición a largo plazo. 

Con respecto a la caracterización de circARNs, se encontró una amplia expresión de 

dichos elementos en ambos tejidos. Además, los circARNs ovinos detectados en este estudio 

estaban altamente conservados en comparación con los circARNs humanos. 

Independientemente de la elección del método de expresión diferencial, no hubo circRNA 

expresados diferencialmente en ambos tejidos, lo que puede indicar una expresión 

independiente al aluminio de los circARNs. 
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Chapter 1 

1 Introduction & Literature Review 
 

 

Since their discovery, adjuvants have been widely used on vaccines to elicit a strong immune 

response. Aluminium-based adjuvants are the most widely used in veterinary medicine. 

However, their mechanism of action is not totally understood. Thus, is imperative to further 

investigate the adjuvants and how they exercise their function. 

This chapter briefly introduces a general background on sheep and the adjuvants, mainly 

focusing in aluminium (Al) hydroxide, the adjuvant this work focuses on. Then I provide an 

overview of the RNA sequencing technology and the options to analyse the data produced by 

this technology. Furthermore, a sort summary about microRNAs (miRNAs) is added since data 

from total RNA and miRNA sequencing is going to be analysed throughout this work. In addition, 

a brief description of circular RNAs (circRNAs) is given at the end. 

 

1.1 Sheep (Ovis aries) 

 

Being one of the earliest animals domesticated for agricultural purposes, sheep are raised for 

meat, milk and wool production. Selection for different traits has resulted in a great variety of 

breeds worldwide. The United Kingdom and Spain accounts for a large proportion (about %45) 

of the European Union’s (EU) sheep, Spain being the second largest producer of sheep meat in 

the EU (1). In Spain, sheep production is an important field as the country holds about 16 million 

of sheep. 

Apart from studies with agricultural applications, lately livestock species have also been 

useful as models for human diseases like neurological diseases and heart diseases. Despite the 

fact that mouse models have a lower cost, they sometimes fail to recreate some aspects of the 

disease at study, while larger animals like sheep share more similarities to human regarding 

physiology, anatomy, metabolism, genetics and size, making them a good alternative (2–4). 

Notwithstanding such advantages, the purchase and maintenance of larger animals is more 

expensive and require special facilities. 

In recent years there have been an increase in the research of multiple diseases and 

traits of agricultural interest in small ruminants by next-generation sequencing technology, 

specially RNA sequencing (RNA-seq). This is due to the recent reduction in cost of such 

technology, allowing the inclusion of more samples per experiment, and due to the power of 

the tool for exploring the genetic architecture of complex traits. However, the ovine reference 

genome lag behind those of other domestic species such as cattle and further work is needed to 

improve its annotation. 

Due to the importance of sheep production in Spain, sheep are highly supervised with 

disease prevention and control measures and they are put under highly strict vaccination 

schedules. All flocks are inoculated on a routine and systematic basis with aluminium-based 

adjuvanted vaccines against different pathogens and for antiparasitic treatment. Taking all that 

into account, each animal is given an average of 4 inoculations (range 2-9, depending of the 
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flock) with aluminium hydroxide (AH) salts as adjuvant per year during the 7-8 years in which 

the animal is considered economically productive (5). 

 

 

 

Figure 1.1: Photo of a Rasa Aragonesa sheep (photo adapted 

from the feagas federation web page, 
https://feagas.com/razas/ovino/rasa-aragonesa/#!). 

 

 

All the analyses carried out in this work have been done in a specific sheep breed, Rasa 

Aragonesa (See Figure 1.1). The Rasa Aragonesa is a sheep breed that can be found in the 

Northeast of Spain in most of the Ebro basin (See Figure 1.2). They are very well adapted in all 

geographical means of the Ebro Valley, from the most arid environments to the valleys and ports 

of the Pyrenees. 

Rasa Aragonesa sheep are physically characterized as hornless, without wool in their 

head, average size and weight with balanced proportions and a sub-convex profile, reaching 

convex in males. This breed is mainly raised for meat production (https://feagas.com). 

 

 

 

 

Figure 1.2: Distribution of the Rasa Aragonesa breed 

investigated in this work in Spain (photo adapted from 
the feagas federation web page, 
https://feagas.com/razas/ovino/rasa-aragonesa/#!). 

 

 

1.2 Adjuvants 
 

Adjuvants can be described as substances added to vaccines, especially to those containing killed 

organisms or highly purified antigens (Ag), to enhance the immune response. Adjuvants can be 

used to increase the speed of the response to the antigen, to reduce the quantity of antigen 

needed to induce a long lasting immune response, to reduce the number of doses needed or to 

modify the immune response to particular cells of the immune system, acting directly on T or B 

cells or using them to bias towards a TH1 or TH2 response. Independently of their mode of action, 

the adjuvants achieve an immunostimulatory effect. The choice of adjuvant would be 

determined by the antigen, the desired immune response and the route of administration (6). 

https://feagas.com/razas/ovino/rasa-aragonesa/#!
https://feagas.com/razas/ovino/rasa-aragonesa/#!
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Table 1.1: List of some of the most common adjuvants in humans and in animals in use or in 
clinical trial classified by their source. The table is based on references (7,8,10–18). 

Adjuvant Type of immune response  State 

Mineral salts 
    Alum TH2, TFH, IgG1/IgE Not used anymore 
    Inject-alum TH2, TFH, IgG1/IgE Only experimental immunology 

    Alhydrogel [aluminium hydroxide] TH2, TFH, IgG1/IgE Numerous licensed products 
    Adju-Phos [aluminium phosphate] TH2, TFH, IgG1/IgE Numerous licensed products 
    Calcium phosphate TH1  
Oil emulsions and surfactant-based formulations 
    MF59 TH1, TH2, IgG2a, IgG1 Fluad 
    QS-21 [purified saponin] TH1, TH2, Tc Clinical Phase 3 
    AS02  
    [MPL + QS-21 in oil-on-water emulsion] 

TH1 Development discontinued 

    AS03 TH1, TH2 Pandemrix 
    ISA-51 and ISA-720 Tc ClimaVax-EGF [only available in 

Cuba and some south American 
countries] 

Particulate adjuvants 
    virosomes TH1, TH2 Epaxal, Inflexal V 
    AS04 [Al salt + MPL] TH1 Cervarix, Fendrix 
    ISCOMS [structured complex of     
    saponins and lipids] 

TH1, TH2, Tc, IgG2a Clinical Phase 2 

    PLG [polylactide co-glycolide]  Clinical Phase 1 
Microbial derivatives 
    MPL [monophosphoryl lipid A] TH1, TFH, Tc  
    Detox [MPL + M. Phlei cell wall  
    skeleton] 

  

    AGP TH1  
    DC-Chol TH1  

    CpG motifs TH1 Heplisav-B 
    Modified LT and CT TH1, TH2, IgA, IgG1, IgE  
Endogenous human immunomodulators 
    hGM-CSF TH1, TH2 Clinical Phase 1/2 
    hIL-12 TH1, IgG2a, IgG2b  
Inert vehicles 
    Gold particles   

Abbreviations: TH1, T helper 1 cells; TH2, T helper 2 cells; TFH, Follicular B helper T cells; Tc, Cytotoxic T cell; IgG1, 
Immunoglobulin G1; IgE, immunoglobulin E; CT, cholera toxin; LT, Escherichia coli heat labile enteroroxin; 

 

The discovery of vaccine adjuvants can be traced back to 1925, where Gaston Ramon, 

while developing a diphtheria and tetanus vaccine, demonstrated that adding different 

Figure 1.3: Proposed mechanism of 

action for adjuvants. Many adjuvants act 
as ligands for pattern recognition 
receptors (PRRs), inducing the production 
of cytokines and chemokines that direct 
the immune response towards a TH1 or 
TH2 response. Activation of the 
inflammasome has also been shown to 
induce the secretion of pro-inflammatory 
cytokines IL-1β and IL-18. Some adjuvants 
also influence antigen presentation by 
major histocompatibility complex (MHC) 
or induces cell recruitment at the 
injection site (figure adapted from (6)). 
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substances to the antigen (tapioca, lecithin, oil, saponin,…) could improve the immune response 

(11). Later in 1926, Alexander Thomas Glenny demonstrated an increase in effectiveness of the 

diphtheria toxoid by precipitating it with aluminium salts (17). In the 1930’s, aluminium salts 

were the first adjuvants used for human vaccines and they continue to be the most commonly 

used adjuvants in human and veterinary vaccines. For more than 60 years, aluminium salts have 

been the only licensed adjuvants in commercial vaccines, but around 1990’s new vaccines with 

other compounds as adjuvants (mainly squalene emulsion based adjuvants and virosomes) 

emerged for commercial use (17). Currently, there is ongoing research in an attempt to improve 

current adjuvant formulation and to find new compounds for triggering different immune 

reactions. 

Adjuvants are an heterogeneous group of compounds and they can be classified by 

different traits: their source, the mechanism of action (See figure 1.3) or physical or chemical 

properties (13). In table 1.1 can be seen a list of the current most common adjuvants in use or 

in clinical trial classified by their source. The Food and Drug Administration in the United States 

and the European Union has only approved in humans the use of aluminium salts, AS04 (Cervarix 

vaccine, which is a vaccine to prevent cervical cancer. No longer commercialized in U.S.), AS03 

(in a vaccine for prevention of H5N1 influenza or commonly known as bird flu), MF59 (Fluad 

vaccine, which is a vaccine to prevent influenza in adults over 65 years), AS01B (Shingrix vaccine, 

for the prevention of shingles) and CpG 1018 (Heplisav-B vaccine, for the prevention of infection 

caused by hepatitis B virus) as adjuvants. Other adjuvants like mineral oil emulsions or complete 

Freund’s adjuvant are thought to be too reactogenic for human use, some of them being only 

licensed for veterinary vaccines. 

Since their discovery, aluminium salts are the most widely used compounds in human 

and veterinary vaccines. Despite the multiple intents trying to decipher their mechanism of 

action, it remains elusive and only a partial picture has been achieved. In some cases, even 

contradictory elements have been reported as will be seen below. All the experiments carried 

out in this work have been done with vaccines composed of aluminium hydroxide (Alhydrogel). 

 

1.2.1 Aluminium Hydroxide (Alhydrogel) 
 

1.2.1.1 Physicochemical properties 
 

Despite being called Aluminium Hydroxide (Alhydrogel), the adjuvant used in vaccine 

formulations is not chemically Al(OH)3. Such  adjuvants are usually prepared adding alkali to the 

solution of aluminium salts, generating  a poorly crystalline aluminium oxyhydroxide [AlO(OH)] 

(18), also termed poorly crystalline boehmite (or Pseudo-boehmite). It is usually prepared using 

AlCl3 or alum [AlK(SO4)2] as the aluminium solution and sodium hydroxide as alkali (19). In spite 

of the fact that “aluminium hydroxide-based adjuvant” does not reflect its true chemical 

composition, in this thesis, we will continue using this term to refer to the adjuvant, since that 

naming has been used and accepted for many years. 

Aluminium hydroxide gels are composed of elongated nanoparticles (crystals) with an 

approximate size of 4 x 2 x 10 nm (19) (See figure 1.4). These nanoparticles tend to self-associate 

forming micro- and nanoparticles of variable size. In its native form, Shardlow et al. (2016) 

showed by photon correlation spectroscopy that Alhydrogel nanoparticles had a size range 

between 955-7456 nm with the majority of the intensity being between 2.2-3.3 µm (20). 

Although it has to be noted that such spectroscopy has a maximum limit, being only capable of 

detecting particles up to 10 µm. It has been reported that the nanoparticles can form aggregates 
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up to 17 µm in size (21). Moreover, AH adjuvant has a mean surface area of 509 m2/g (with a 

95%  confidence interval of 30 m2/g), being such high value an important characteristic of the 

adjuvant, which is one of the reasons for its high protein absorption capacity (22). Burrell et al. 

(2000) reported that aluminium-containing adjuvants stored at room temperature during a 15 

month period become more ordered, with a consequent reduction of the surface area and a 

lower absorption capacity (23). 

 

 

 

 

Figure 1.4: Structure of aluminium hydroxide adjuvant. 

(figure adapted from (19)) 

 

 

1.2.1.2 Mechanism of Action 
 

Despite aluminium adjuvants being one of the most used in human and veterinary vaccines since 

their discovery, the mechanism of action by which they elicit an immune reaction is not fully 

understood. Several mechanisms have been proposed and it seems that rather than having a 

dominant one, aluminium elicit a strong immune response operating simultaneously through 

multiple pathways. Some different mechanisms have been proposed: 1) The depot effect, also 

known as repository effect; 2) Induction of inflammation, leading to activation and maturation 

of immune cells, with a direct effect in the uptake of antigens by APCs; 3) The “Danger Theory”.  

After inoculation of the vaccine into the organism, a depot is formed at the inoculation 

site. The antigen is slowly released by the adjuvant and long-lasting interactions between 

antigen and APCs are promoted. The release of the antigen would be influenced by properties 

of both antigen and adjuvant previously described, such as association strength or adjuvant 

particle size. Experiments by Harrison et al. (1935) showed that the antitoxin was present in the 

serum after re-injection of the nodules formed after inoculation of an alum precipitated toxoid 

from a guinea pig to a second pig (24), verifying the depot effect. However, the depot effect 

alone cannot explain completely the immune reaction caused by aluminium adjuvants. In 

addition, there have been different reports suggesting that the depot effect is not necessary for 

the immune reaction caused by aluminium adjuvants. Holt et al. (1950) inoculated diphtheria 

toxoid adsorbed with aluminium adjuvant into guinea pigs and demonstrated that even cutting 

off the tissue where the inoculation was done after 7 days post vaccination, the vaccine was still 

able to carry on its immune modulation (25). Another study showed in mice that removal of the 

injection site with the associated alum depot 2 hours after immunizations had no effect in the 

magnitude of antigen-specific T- and B-cell responses (26). Together, these studies indicate that 

the depot effect is not necessary for aluminium adjuvants to carry out their role as long as the 

concentration of Ag is high at the injection site and engulfed by APCs. 

It has been shown that aluminium adjuvants create a local pro-inflammatory 

environment, recruiting different immune cells at the site of injection (See figure 1.5). Such cells 

are composed of neutrophils, eosinophils, natural killer cells (NK cells), CD11b* monocytes, 

macrophages and immature dendritic cells (DC) (27,28). The recruitment of those cells lead to 

expression of messenger RNAs (mRNAs) related to chemokines, cytokines and cell adhesion 
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molecules and their secretion (29). Different studies have been trying to address the signalling 

pathways that triggers DC and macrophages activation after Al exposure (See figure 1.6). 

 

 
Figure 1.5: Current understanding of aluminium based adjuvants in vivo. After aluminium administration, 

different cells are recruited at the injection site. Immature DC take up the soluble Ag or particulate Ag 
together with the aluminium and migrate towards the draining lymph node (DLN). Then, after leaking out 
of conduits the Ag, resident DCs take up the Ag and present it to naïve T cells. As a result of CD8 and CD4 
T cell activation, effector CD8 and CD4 T cells (eCD8 and eCD4, respectively) are produced. eCD4 cells can 
polarize into T helper (TH) 1, 2, 17 or T follicular helper (TFH) cells. In the case of aluminium based adjuvants, 
they mostly polarize into TH2 and TFH cells. Those cells can reach to the border of B cell follicle, activating 
B cells that produce effector B cells (eB) and then differentiate in plasma cells (PCs). As a result, high-
affinity antibodies are secreted. (figure adapted from (29)) 

According to the danger theory, pathogens or other elements such as adjuvants cause 

tissue damage at the injection site. Then, endogenous danger signals are released from the 

damaged tissues which induces an inflammatory response, initiating an adaptative immune 

response (28). These endogenous danger signals, also known as damage-associated molecular 

patterns (DAMPs), have been claimed to be released from necrotic cells or stressed cells, due  

to endocytosis of the adjuvant (30). Aluminium hydroxide has been reported to produce 

granulomatous inflammatory reactions and promote local necrosis in vaccinated muscle tissue 

(31). Usually uric acid, ATP, host DNA or HMGB1 are released after tissue damage. In the case of 

aluminium based adjuvants, the release of uric acid (32) and host DNA (33) has been reported 

at the injection site.  

Uric acid release activates the NLRP3 inflammasome (34), also known as NALP3 and 

cryopyrin. The NLRP3 inflammasome is a large multiprotein complex composed of the NLR 

(nucleotide-binding oligomerization domain and leucine-rich repeat-containing receptor) 

protein NLRP3, the adapter ASC (apoptosis-associated speck like protein containing a caspase 

recruitment domain) and pro-caspase-1 and it participates in the production of the pro-

inflammatory cytokines IL-1β and IL-18. There is controversy about the requirement of the 

NLRP3 inflammasome in the alum-induced response. In vitro, aluminium-containing adjuvants 

stimulate the production of IL-1 β through the inflammasome (35,36). Despite the agreement 
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on the role of the inflammasome in vitro, there is no consensus in how this translates to in vivo. 

There have been recent studies in which NLRP3 deficient mice vaccinated with aluminium 

hydroxide-based adjuvant showed no significant effect on T and B cell responses (37,38). Despite 

not knowing if the inflammasome is needed for Al adjuvancity, there is in vitro and in vitro 

evidence that shows the importance of inducible HSP70 in IL-1β expression induced by Al (39). 

Another study showed that both IL-1α and IL-1β were essential for neutrophil infiltration at the 

injection site and that the NLRP3 inflammasome was dispensable for such effect, while cathepsin 

S (CTSS) was indispensable for IL-1β induction at the injection site (40). Futhermore, aluminium 

adjuvants have been shown to induce host DNA release. It has been proposed that host DNA 

signalling differentially regulates production of immunoglobulin E (IgE), through  an IRF3 

(interferon response factor 3)-dependent mechanism, and immunoglobulin G1 (IgG1) (33). TLR9 

can sense DNA and it would lead to IL-1β production via NF-κB activation or IFNβ production via 

IRF3 activation (27). 

 

 
Figure 1.6: Pathways induced by aluminium in DCs and macrophages. (1) The binding of alum at the cell 

membrane causes lipid raft formation. (2) In the lipid raft, ITAM-containing receptors cluster and activate 
the Syk-PI3Kδ pathway. (3) Then, cytosolic phospholipase A2 (cPLA2) is activated probably via the p38 
MAP kinase, which in turn results in release of arachidonic acid (AA) from membrane lipids. COX2 and 
mPGES-1 convert AA to prostaglandin E2 (PGE2). (4) PGE2 instructs the TH2 response upon release from 
the cell. (5) In addition, aluminium induces the release of uric acid. (6) Lysosomal damage is induced after 
phagocytosis of aluminium or uric acid crystals. (7) Activation of the NLRP3 inflammasome by the release 
of enzymes like Cathepsin B into the cytoplasm. (8) Activation of caspase-1 lead to cleavage of proIL-1β 
into active IL-1β. (9) Aluminium can also induce the release of host DNA due to necrosis at the injection 
site. (10) Host DNA activates monocytes through IRF3, being critical for migration of inflammatory 
monocytes. (figure adapted from (27) and based on (41)) 

Despite AH not being antigenic itself, there have been multiple reports on immune 

stimulation without any adsorbed antigen and, as consequence, without long-term release of 

antigen (30,42). Güven et al. (2013) showed that aluminium hydroxide adjuvant activated the 

three complement pathways with a major involvement of the alternative complement pathway, 

providing an explanation to how the adjuvant was able to stimulate an immune response by 
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providing a “surface” for complement activation, antigen opsonisation and  stimulation of 

antigen removal through complement receptors (43). 

As previously mentioned, several mechanisms of action have been proposed for the 

aluminium adjuvant, and rather than having a dominant one, it seems that multiple pathway are 

activated simultaneously. In some cases, contradictory results have been obtained, making it 

difficult to reach an agreement. Those differences may be explained by the physicochemical 

properties of the adjuvant used in each study, with varying particle size or difference in antigen 

and adjuvant under study, or by the animal model in use, as each animal model has different 

Toll-like receptor (TLR) expression patterns (6). Despite those differences, the fact that AH 

induces mainly a TH2 response, TFH cells and the antibody isotypes IgG1 and IgE is not under 

dispute (7). The limited capacity of Al based adjuvants to induce a TH1 immune response has 

been addressed by different studies. It has been shown that Al adjuvants activates the Syk-PI3 

pathway (41) and activation of the PI3 kinase inhibits secretion of IL-12p70 cytokine by DCs, 

which is a key cytokine that drives the polarisation of naïve T cells towards a TH1 phenotype (44). 

In addition, other study showed that Al adjuvants promote IL-10 expression, which can block TH1 

responses, and IL-10-deficient mice were able to show an increase in TH1 responses after 

vaccination of Al adjuvants (45). 

 

1.2.1.3 Aluminium translocation to other tissues 
 

Although the benefits of vaccination have never been questioned, there is disagreement on the 

degree of safety of aluminium-containing vaccines. There is some controversy regarding the 

capacity of aluminium adjuvants to reach distant organs after a long-term exposure. In a 

research study in which New Zealand White rabbits were injected intramuscularly with labelled 

AH, it was determined by accelerator mass spectrometry that Al was detectable in blood one 

hour after vaccination and that the body was able to partially eliminate through urine the Al 

absorbed from the adjuvant, but only a 6% of the AH adjuvant dose was eliminated after 28 days 

post vaccination (46). The retention level seen for AH is consistent with its expected low 

solubilization rate (47). In the same study, the following distribution profile to tissues for the AH 

adjuvant was seen for the short time of the experiment: kidney > spleen > liver > heart > lymph 

node > brain (46). Such study had a limited number of samples and there is a need of further 

long-term studies on a larger number of animals. 

In a more recent study, after intramuscular injection of the aluminium adjuvant in mice, 

the material was translocated at a very slow rate in normal conditions to draining lymph nodes 

(DNL) and thereafter was detected associated with phagocytes in blood and spleen (48). It has 

been shown in mice that AH particles are transported by cells of monocytic lineage to the DLN 

and bloodstream, reaching distant organs such as the spleen (48,49). Furthermore, there is some 

controversy regarding the capacity of Al to reach such a distant organ as the brain. Multiple 

studies has shown a slow Al translocation to the brain after intramuscular injection (48,50), while 

in another study in which CD1 and C57BL/6J mice received an intramuscular injection of AH, the 

CD1 mice showed a lack of Al translocation to brain and ,in contrast, in the C57BL/6J mice Al was 

still detected one year later (51). Such differences in both strains may be due to differences in 

the genetic background. Interestingly, C57BL/6J strain mice produce more MCP1/CCL2 than 

other strains (51), a key cytokine which recruits monocytes, memory T cells and DCs to the sites 

of inflammation. 

Taking all into account, it is clear that aluminium adjuvants are extremely biopersistent 

and such biopersistence can be seen at the site of injection and in distant organs such as the 
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DLN and spleen, although the translocation of Al to brain needs further research. The slow 

translocation and clearance of Al has raised some concern due to extensive vaccination 

campaigns that some farm animals are subject to during their productive period.  

 

1.2.1.4 Toxicity 
 

Aluminium is the most abundant metal element in the biosphere and humans are frequently 

exposed to it as Al is being widely used in different fields such as pharmaceuticals and to a lesser 

extent in foods (e.g. in food additives or due to contaminants) and water (due to water 

treatment process or from weathering rocks and soils). Al is routinely taken up by the human 

body through ingestion and inhalation. The neurotoxic effects of aluminium on brain are well 

known. It has been shown that Al nanoparticles are capable of surpassing the blood brain barrier 

(BBB) and elicit an immune inflammatory response (52). High-level exposure to Al could impair 

neuronal functions, while low-level and long-term exposure to Al has been linked to some 

neurological diseases like Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), 

dementia and Parkinson disease (PD) (53). It has been shown that Al causes oxidative stress and 

mitochondrial dysfunction, being involved in the production of reactive oxygen species (ROS) 

(54). Recent reports about translocation of Al adjuvants to the brain has gained more attention, 

although it remains a topic of constant debate. It has been pointed that there is prolonged 

retention of a fraction of Al that enters the brain, which may accumulate within repeated 

exposures (54). Environmental Al has been suspected to act as a co-factor for some neurological 

diseases and, due to some reports of Al adjuvant translocation to brain, the idea that Al 

adjuvants may not be totally safe over a long-term exposure in predisposed individuals has 

emerged.  

There are multiple studies about the toxic properties of aluminium in humans exposed 

via inhalation, oral, or dermal exposure, supported by a large number of studies in laboratory 

animals. Numerous studies have reported that subjects exposed to airborne Al showed reduced 

respiratory functions (55) and aluminium welders and workers exposed to high levels of Al have 

showed a declining performance in neuropsychological tests (56). In contrast, the absorption of 

Al via dermal exposure is poorly understood, although there are some reports on antiperspirants 

which use Al as a component, mainly in the form of aluminium chloride and aluminium 

chlorohydrate, that has linked their use with breast cancer (57). Such link is not well supported 

by consistent scientific data (56,58) and needs further research. In addition, cases of skin 

irritations associated with cosmetic products containing aluminium have been reported in 

human (59). Regarding the Al intake via the oral route, multiple animal studies have identified 

the nervous system as the major target of Al toxicity, while others have found adverse effects 

such as impaired erythropoiesis in rats, erythrocyte damage and increased susceptibility to 

infection (60). 

In a recent research study by Crépeaux et al. (2016), mice were subject to multiple AH 

adjuvant injections to study the dose-response (200, 400 and 800 µg Al/Kg groups) and an 

unusual pattern limited to the low-dose group was observed (61). Mice injected with 200 µg 

Al/Kg displayed a decreased locomotor activity and a higher cerebral Al level, associated with a 

nearly complete disappearance of the aluminium-induced granulomas. In contrast, those 

changes were not seen in the highest dose groups. Such difference may be due to aluminium 

agglomerates size, as the higher doses formed larger agglomerates, probably making it more 

difficult for transportation by monocyte-lineage cells.  
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To sum up, aluminium is a non-essential element for the human body and is thought to 

serve no essential biological function, but humans are constantly exposed to such element in 

their daily lives. Under low levels of exposition, the body is able to handle it, but upon high level 

exposures, long-term exposures or predisposed individuals, it seems that Al can affect the 

health, especially impairing the central nervous system (CNS). 

 

1.2.1.5 Aluminium and diseases 
 

As previously stated, Al has been linked to some neurological diseases like Alzheimer’s disease 

(AD), amyotrophic lateral sclerosis (ALS), dementia, multiple sclerosis (MS) and Parkinson 

disease (PD) (53). See table 1.2 for a list of diseases associated with aluminium. Accumulation of 

Al within the CNS seems to reach a threshold in which it is able to induce proinflammatory 

signalling, dysregulation of gene expression, brain cell damage and a functional decline in 

neurons that results in cognition, memory and behaviour deficits (62). Despite Al elicits its 

neurotoxic effect through a myriad of mechanism, oxidative stress (accumulation of high levels 

of ROS) seems to be a common mechanism in many of such diseases (63). In addition to oxidative 

stress, Al is able to modify hippocampal calcium signal pathways, which are crucial to neural 

plasticity and therefore to memory (56). 

AD is a neurodegenerative disease disorder characterized by the presence of 

extracellular senile plaques containing the amyloid protein (Aβ) and neurofibrillary tangles 

composed of hyperphosphorylated tau protein, perturbed metal (copper, iron and zinc) 

homeostasis, oxidative stress, neuroinflammation, irreversible loss of neurons and other 

pathologies (64,65). Since the discovery that brain tissues of AD patients contains more Al than 

non-demented age-matched controls and that Al is not homogeneously distributed in the tissue 

(66), Al is thought to be a potential environmental risk factor for the disease. However, it is not 

clear whether the Al is the cause of the disease onset, or whether is a change produced due to 

the disease pathology. Furthermore, the contribution of cumulative doses of Al to AD is still 

unknown and further research is needed. 

Similar to AD, exposure to aluminium has been identified as a possible contributor to 

MS. MS is a demyelinating neurodegenerative disease of unknown aetiology. Patients with 

relapsing-remitting and progressive MS were found to have a significant increase in Al 

concentration in urine (67). In addition, in a recent study, brain tissues from 14 donors diagnosed 

with MS were evaluated with transversely heated graphite furnace atomic absorption 

spectrometry and all patient had at least one brain tissue with a pathologically significant Al 

concentration (68). 

PD is a neurodegenerative disease characterized with neuronal loss and presence of 

Lewy bodies (abnormal aggregates of protein, g.e. α-syn, that develops in nerve cells) in the 

surviving neurons. Mitochondrial dysfunction, oxidative/nitrative stress, microglia activation 

and inflammation have been suggested responsible for the neuronal death (69). Several studies 

have shown increased Al concentrations in the substantia nigra of PD patients compared to 

controls (70). 

Apart from neurodegenerative diseases, aluminium has been linked to some 

autoimmune/inflammatory diseases such as macrophagic myofasciitis (MMF) and 

autoimmune/inflammatory syndrome induced by adjuvants (ASIA). Autoimmune diseases arise 

when the immune system recognise self-antigens as foreigners, leading to inflammation and 

tissue death. The possible link between some adjuvant and autoimmune diseases is quite 

controversial. Such diseases are complex and a combination  of genetic, hormonal and/or 



 11 

 

environmental factors may play a role, making it difficult to attribute causality (71). Despite 

multiple studies have pointed out a probable relationship between aluminium adjuvants and 

genetically predisposed individuals, there is no clear evidence of a causal association. 

 

Table 1.2: Diseases associated to aluminium exposure. It must be pointed that in the majority 
of cases is not clear whether Al is the direct cause of the disease or only an environmental factor 
associated with it.  Most of the associations are under constant discussion in the scientific 
community. The table is based on references (41,72–77). 

Disease Al Exposure Symptoms 

Potroom Asthma Al dust and gases 
(Inhalation) 

Workers on a broad range of aluminium factories 
affected. Shown respiratory symptoms such as cough, 
phlegm, dyspnea, wheezing and chest tightness. Some 
workers have shown a long-term impairment and an 
asthma-like syndrome. 

Dialysis 
Encephalopathy 

Dialysis A complication surged from prolonged haemodialysis 
exposure in chronic renal failure patients, linked to Al-
containing phosphate binders. Characterized by speech 
alterations, dyspraxia, unconsciousness and psychosis 
following ataxia and dementia, between others. 

Alzheimer Disease Dietary 
(Oral) 

High concentration of Al increase amyloid aggregation 
and deposition, which is one of the main features of the 
disease. Typical sign of the disease are neurofibrillary 
tangles, deposition of extracellular senile plaques and 
loss of synapses and neurons, between others. 

Parkinson’s Disease Dietary 
(Oral) 

Al+3 toxicity impairs iron metabolism, which results in 
accumulation of iron in neurons and, consequently, 
oxidative damage. Characterized by selective neuronal 
death in substantia nigra, its main symptoms are 
difficulties in speaking and a decrease in motor abilities. 

Multiple Sclerosis Unknown 
Adjuvants associated 

High Al concentrations in urine and brain samples of 
patients with the disease. Characterized as a 
demyelinating disease of unknown cause. 

Gulf War Syndrome Adjuvants associated A spectrum of disorders among veterans of the Persian 
Gulf War (1990-1991). Characterized by fatigue, muscle 
pain, emotional disorders, stress and memory loss. 

Amyotrophic 
Lateral Sclerosis 

Adjuvants associated A neurological disease characterized by muscle 
weakness, disability and eventually death by 
respiratory failure. It may be part of Gulf War 
Syndrome. 

ASIA Adjuvants associated Condition in which repeated exposure to 
aluminium-based adjuvants lead to aberrant 
autoimmune responses in susceptible individuals. 
The syndrome encompasses a diverse group of 
disorders including siliconosis, MMF, Gulf war 
syndrome (GWS) and post-vaccination 
phenomena. 

Macrophagic 
Myofasciitis 

Adjuvants associated Characterized by inflammatory macrophages with 
agglomerates of nanocrystals, which contain 
aluminium, in their cytoplasm. Patients show 
diffuse myalgia, arthralgia and fatigue. 

 

MMF is a disease (described first in France) characterized by inflammatory macrophages 

with agglomerates of nanocrystals, which contain aluminium, in their cytoplasm and associated 
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microscopic muscle necrosis in biopsy samples of the deltoid muscle. MFF patients are 

characterized by diffuse myalgia, arthralgia and fatigue. Taking into account that macrophages 

contained Al, that patients manifesting the lesion had no particular exposure to Al other than 

previous vaccinations and that the lesions were localised near the usual injection site for 

vaccines in the deltoid muscle, it was thought at first to be related to the immunization. Now is 

clear that the rapid emergence of MFF in France was mainly due to three factors: (1) change of 

vaccination route in the early 1990s, from the subcutaneous route to the intramuscular route; 

(2) extension of hepatitis B vaccination to the adult population; and (3) use of the deltoid muscle 

for routine muscle biopsy, while the biceps brachialis and the quadriceps femoris are preferred 

in most other countries (77). The Global Advisory Committee on Vaccine Safety (GACVS) from 

the World Health Organization (WHO) has discussed the safety of aluminium-containing 

vaccines, reaching the conclusion that at present there is no evidence of a health risk from such 

vaccines and suggest that further research is necessary to determine if there is a link between 

MFF and aluminium-containing vaccines, as it may be only a coincidence. 

 

Table 1.3: Suggested diagnostic criteria for ASIA (table adapted from (78)). 

Diagnosis criteria for ASIA 

Major Criteria: 
1. Exposure to an external stimulus (infection, vaccine, silicone, adjuvant) prior to 

clinical manifestations. 
2. The appearance of “typical” clinical manifestations: 

- Myalgia, Myositis or muscle weakness. 
- Arthralgia and/or arthritis. 
- Chronic fatigue, un-refreshing sleep or sleep disturbances. 
- Neurological manifestations (especially associated with demyelination). 
- Cognitive impairment, memory loss. 
- Pyrexia, dry mouth. 

3. Removal of inciting agent induces improvement. 
4. Typical biopsy of involved organs. 

Minor Criteria: 
1. The appearance of autoantibodies or antibodies directed at the suspected adjuvant. 
2. Other clinical manifestations (i.e. irritable bowel syndrome) 
3. Specific HLA (i.e. HLA DRB1, HLA DQB1) 
4. Evolvement of an autoimmune disease (i.e. Multiple Sclerosis, Systemic Sclerosis). 

 

ASIA is a recently identified new condition (for now is not recognised as an official diagnosis) in 

which repeated exposure to aluminium-based adjuvants lead to aberrant autoimmune 

responses in susceptible individuals. The syndrome encompasses a diverse group of disorders 

including siliconosis, MMF, Gulf war syndrome (GWS) and post-vaccination phenomena, which 

share clinical and pathogenic resemblances. A recent study has suggested that the interval from 

exposition to severe ASIA manifestation can range from 2 days to 23 years (76). In table 1.3 can 

be seen the suggested diagnostic criteria for ASIA. Patient must show at least 2 major criteria or 

1 major and 2 minor criteria to be diagnosed. Since the proposition of the syndrome and the 

diagnostic criteria, it has been severely criticized by part of the scientific community. One of the 

major criticisms to the syndrome has been that the diagnostic criteria are exceptionally broad, 

it appears to include all patients with an autoimmune disorder (79). A registry for ASIA has been 

recently created in an attempt to increase the knowledge on the clinical and laboratory 

presentation (80). An animal model of ASIA in commercial sheep has been recently described 

(5). Sheep exposed to multiple aluminium-based vaccinations from bluetongue vaccines showed 
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an acute phase occurring 2-6 days after vaccination. Animals were characterized by nervous 

clinical signs such as lethargy, bruxism, stupor, abnormal behaviour, disorientation and low 

response to external stimuli. Most sheep recovered from this phase, but some of the sheep 

exposed to external stimuli (mainly cold weather) progressed towards a chronic phase (it could 

appear directly without previous manifestation of the acute phase). In the chronic phase, 

aluminium was detectable in blood and animals were characterized by neurological 

abnormalities, cachexia, anasarca, coma and ending in death (81). 

Despite aluminium been linked to different neurological and autoimmune diseases, a 

causative role for it needs to be probed. This is a theme under constant debate through the 

scientific community and further research, preferably in vivo and in a long-term experiment, 

needs to be carried out. 

 

1.3 RNA sequencing (RNA-seq) 
 

RNA-seq methods are part from what is known as the second-generation high-throughput 

sequencing technology, also known as next generation sequencing (NGS). Such methods allow 

the determination of individual nucleotides from RNAs in a massively parallel format, obtaining 

millions of sequences from samples. As a result, a picture of the transcriptome is achieved from 

cells or tissues. A typical RNA-seq experiment returns sequences between 50 or 150 nucleotides 

long, so such methods are not capable of capturing completely long RNAs in a single reaction. 

Recently, the third-generation sequencing technology has started to be applied, in which 

individual molecules of DNA or RNA are used as templates, obtaining in each reaction sequences 

of 1500 nucleotides approximately. Despite the gain in sequence length, there is a loss in 

sequencing depth, as only a few millions of sequences are obtained in each run of the 

technology. There is a continuous increase of studies applying RNA-seq, as the technology price 

is decreasing, making it more affordable to all laboratories across the world. 

Little by little, RNA-seq has replaced DNA microarrays for gene expression pattern 

analyses. Briefly, DNA microarrays consist of predetermined nucleic acid probes attached to a 

surface, in which labelled (with a fluorescent marker) complementary DNA (cDNA) derived from 

cellular RNA is put over the array and the quantity of cDNA in each probe is assessed by the use 

of lasers. When comparing both technologies, RNA-seq has some clear advantages. First of all, 

RNA-seq does not require a priori knowledge of the organism under study, making it an ideal 

technology for the discovery of uncharacterized transcripts, while microarrays only search for 

transcripts whose known sequence has been attached to a probe. Due to that, RNA-seq can be 

used well with non-model organisms such as sheep, goat and pig. Secondly, RNA-seq can detect 

lowly- and highly-expressed transcripts more effectively. In microarrays, lowly-expressed 

transcripts emit such a low fluorescence that it is hard to differentiate from background 

fluorescence, while for highly-expressed transcripts the signal become saturated. Moreover, 

each probe in a microarray can differ in their hybridization properties. Despite the advantages 

of RNA-seq, such methods produce enormous quantities of data that need to be analysed more 

meticulously, the pipelines for analysis of data produced in RNA-seq protocols are not totally in 

consensus and it still remains an expensive technology (although its drop of prize has made it 

more affordable for laboratories). For the study of model organisms and well-defined 

transcripts, microarrays still remain as the preferred option, since for a cheaper prize more 

samples can be included into the experiment. In addition, it has been shown that microarray 

intensity levels and RNA-seq mapped reads are highly correlated, differing when the array 

intensities are large and the sequence counts low (82). 
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1.3.1 Library preparation 
 

Prior to library preparation, the isolated RNA must be quality checked for degradation, purity 

and quantity. One of the most used platforms for this are the NanoDrop Spectrophotometer 

(Thermo Scientific Inc, Bremen, Germany) for RNA quantity and purity and Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) for RNA integrity and concentration. 

Nanodrop measures with a spectrometer utilizing a linear charge-coupled device array the light 

(produced by a pulsed xenon flash lamp) passing through a sample. 1µl samples are enough to 

ensure accurate and reproducible results. The platform is not able to differentiate between DNA 

and RNA and degraded RNA give similar readings as intact RNA, so the platform is unable to 

check for DNA contamination or the quality of the sample (83). Despite all of that, NanoDrops is 

able to measure the sample concentration in ng/µl and the 260/280 and 260/230 absorbance 

ratios. The 260/280 absorbance ratio is used to assess the purity of DNA or RNA, being a ratio of 

~2 considered as “pure” for RNA. Lower ratios may indicate the presence of protein, phenol or 

other contaminants. The 260/230 absorbance ratio is a secondary measure of nucleic acid purity 

which commonly is in the range of 1.8-2.2. Lower ratios may indicate the presence of co-purified 

contaminants. In contrast, the Agilent 2100 Bioanalyzer is a microfluidics-based automated 

electrophoresis used for sample quality. Similar to the NanoDrop system, 1µl samples are 

enough for nucleic acids. The system calculates the RNA Integrity Number (RIN), which is a 

numerical value between 1 and 10 calculated from the entire electrophoretic trace, 1 indicating 

a degraded profile and 10 indicating an intact sample. Such value was introduced to substitute 

the 18S to 28S ribosomal subunits ratio for determining the degradation level, in an attempt to 

standardize the process and remove any individual-dependent interpretation. 

 

 
Figure 1.7: Illumina total RNA library preparation. a) Ribo-Zero depletion and RNA fragmentation. b) 

cDNA first strand synthesis. c) cDNA second strand synthesis. d) 3’ end adenylation. e) Adaptor ligation 
(single-index adapters shown in image). f) DNA fragment enrichment. g) Final library. h) Cluster generation 
and read 1 sequencing. i) Paired-end turnaround and read 2 sequencing (figures adapted from the TruSeq 
Stranded Total RNA manual from the Illumina webpage, https://emea.illumina.com/). 

Once good RNA quality samples are obtained, the samples need to be prepared for 

sequencing. The RNAs are converted into a cDNA library due to the improved chemical stability 

https://emea.illumina.com/
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of such molecules, making them more manageable for the sequencing protocols from each 

platform. As each sequencing platform has its own library protocols with varying steps, and the 

objective of this thesis is not to give a detailed description of each one (in case of interest, each 

protocol can be found in each company’s website), only a brief description of the protocol for 

the sequencing of total RNA from the Illumina platform, which is the one used throughout this 

thesis, will be provided. In figure 1.7 a schematic workflow for the Illumina Total-RNA library 

preparation is shown. 

Briefly, the Illumina TruSeq Stranded Total RNA library preparation includes the 

following major steps (the protocol is optimized for 0.1-1 µg of total RNA): 

1. Ribosomal RNA (rRNA) is removed annealing total RNA to biotinylated and target-

specific oligo magnetic beads. Depending of the kit used, cytoplasmic or/and 

mitochondrial rRNA in case of eukaryotic organism or cytoplasmic or/and 

chloroplast rRNA in case of plants can be removed. In case of blood samples, there 

is another kit that depletes goblin-encoding mRNAs in addition to the previous rRNA 

species. 

2. Following purification, the RNA is fragmented into small pieces using divalent 

cations under elevated temperature. Other platforms use enzymes or heat alone for 

fragmentation. 

3. RNA fragments are copied into first strand cDNA using reverse transcriptase and 

random hexamer primers. 

4. Second strand cDNA is synthetized using DNA Polymerase I and RNase H. To achieve 

strand specificity, previous to the second strand synthesis, deoxythymidine 

triphosphate (dTTP) is replaced by deoxyuridine triphosphate (dUTP), which 

quenches the second strand during amplification. 

5. A single ‘A’ nucleotide is added to the 3’ ends of the double-stranded cDNA (ds 

cDNA) to prevent them from ligating to each other during the adapter ligation 

reaction. 

6. Adapters are ligated to prepare the ds cDNA for hybridization onto a flow cell. The 

adapters can be indexed for each library reaction, allowing for pooling libraries later 

for sequencing. 

7. The DNA fragments are enriched with polymerase chain reaction (PCR) and purified 

to achieve the final cDNA. The polymerase used in this step does not incorporate 

past dUTP, quenching the second strand effectively. 

8. Once the library is prepared, it is sent to the sequencing facility for cluster 

generation and sequencing. 

 

In addition, for small RNA sequencing, especially microRNAs (miRNAs), from the same good RNA 

quality samples, library preparation changes slightly. In figure 1.8 can be seen a schematic 

workflow of the Illumina TruSeq Small RNA library preparation. The protocol is optimized for 1 

µg of total RNA. Briefly, the protocol use adapters that take advantage of a common structure 

of most miRNA molecules: mature miRNAs have a 5’-phosphate and a 3’-hydroxyl group. First, 

3’ and 5’ adapters are ligated to the small RNAs. Then, reverse transcription followed by PCR is 

used to create cDNA. PCR is performed with two primers that anneal to the ends of the adapters. 

Finally, amplified cDNA is purified by a gel electrophoresis. From the gel, individual bands can 

be used for sequencing. The 147 nt band primarily contains mature miRNAs (  2̴2 nt in size), while 

the 157 nt band contains piwi-interacting RNAs, some mature miRNAs and other regulatory 

small RNA molecules (  ̴30 nt sized fragments). 
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Figure 1.8: Illumina TruSeq Small RNA library preparation 

(figures adapted from the Illumina webpage, 

https://emea.illumina.com/). 

 

 

 

 

 

1.3.2 RNA-seq platforms 
 

There are multiple platforms with totally different approaches to produce RNA-seq sequences. 

Despite technologically different, such platforms rely on similar workflows for the generation 

and analysis of sequencing libraries. Generally, NGS technologies capture the light emitted when 

a correct base is incorporated into the sequencing reaction to the template being sequenced 

(84). Thus, the raw output from sequencing machines consist of image records of the light 

emitted by every single reaction. Those images are processed to extract numerical values for 

every base. Then, these values are used to determine the bases, ending with a list of sort 

sequences with base quality values. In table 1.4 can be seen some of the major RNA-seq 

platforms and their general properties. 

 

Table 1.4: Major RNA-seq platforms and their general properties (table adapted from (83)). 

Platform Sequencing Chemistry Detection Chemistry 

Illumina Sequencing by synthesis Fluorescence 
SOLiD Sequencing by ligation Fluorescence 
Roche 454 Pyrosequencing Luminescence 
Ion Torrent Sequencing by synthesis Proton release 
PacBio sequencing Single-molecule, Real-Time (SMRT) Real-time fluorescence 
Oxford nanopore Electrophoresis Electrical current difference per nucleotide through 

a pore 

 

As each sequencing platform has its own method, and the objective of this thesis is not 

to give a detailed description of each one, only a brief description for the sequencing from the 

Illumina platform, which is one of the most popular sequencing platforms and the one used 

throughout this thesis, will be provided. In figure 1.9 a schematic workflow for Illumina 

sequencing can be seen. Briefly, sequencing templates from the library are loaded and 

hybridized to the flow cell surface. Then, through solid-phase bridge amplification, clusters of 

up to 1,000 identical copies of each template are created. The reverse strands are cleaved and 

washed away. The generation of such clusters are necessary due to the signal emitted by the 

synthesis of a single deoxynucleotide triphosphate (dNTP) is not strong enough to be detected. 

Finally, reagents are added to the flow cell to execute sequencing by synthesis, a process in 

which a labelled nucleotide is imaged thanks to the fluorescence emitted in each cycle. The 

nucleotide label serves as a terminator for polymerization, so after each dNTP incorporation, 

the signal emitted is imaged and the label is cleaved to allow the incorporation of the next base. 

The reconstruction of the sequence of added nucleotides in a specific location on the flow cell 

https://emea.illumina.com/
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corresponds to nucleotide sequences of a template ds cDNA, which are recorded in a massive 

parallel manner. Each base has an assigned quality score. Compared to other platforms such as 

Roche 454 and SOLiD, Illumina sequencing is the cheapest option with the biggest output at the 

expense of accuracy (85). 

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) was a next generation 

DNA sequencing platform commercialized by Life Technologies, who was later acquired by 

Thermo Fisher Scientific Corporation. This approach is based on ligation, it exploits the mismatch 

sensitivity of a DNA ligase enzyme to determine the underlying sequence of the target DNA 

molecule. The major shortcoming of the platform is sort read lengths, but it has one of the 

highest accuracies from all the platform previously listed (85). 

Roche 454 was the first NGS method commercially available. Instead of detecting 

labelled dNTPs, this platform used pyrosequencing technology, in which chemiluminescence of 

pyrophosphate release during dNTP binding is detected. The main advantages of this platform 

is long read lengths (up to 700 bp) and the fast speed of the method, but it has a high cost due 

to the reagent prize, a high error rate in terms of poly-bases longer than 6 bp and low throughput 

(85). 

 

 
Figure 1.9: Illumina sequencing. a) Library preparation. b) The library is loaded into flow cell and 

hybridized to the surface. c) solid-phase bridge amplification by adding unlabelled nucleotides and 
enzyme, building double-stranded bridges on the solid-phase substrate. d) Double-stranded molecules 
are denatured, leaving single-stranded templates anchored to the substrate. e) The process is repeated 
until dense clusters of double-stranded DNA are generated. f) Four fluorescently labelled nucleotides, 
primers and DNA polymerase are added. g) After laser excitation, the fluorescence emitted from each 
cluster is captured. This last two steps are repeated until all the sequence from the template is captured. 
h) The emission wavelength and intensity are used to identify the bases in each fragment (figures adapted 
from the sequencing protocols from the Illumina webpage, https://emea.illumina.com/). 

Ion Torrent is another next generation DNA sequencing platform from Thermo Fisher 

Scientific. It is based on the detection of hydrogen ions released during DNA polymerization. 

When a nucleotide is added to the template complementary strand, an ion-sensitive field-

effector transistor (ISFET), a device used for measuring ion concentration in solution, detects 

the reaction due to a change in pH. The main advantages of the platform are its speed and low 

cost. When homopolymer repeats of the same nucleotide are present in the template, multiple 

nucleotides are inserted in the same reaction, resulting in a greater pH change and electronic 

https://emea.illumina.com/
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signal. Due to that, it is quite difficult for the platform to enumerate long repeats. It has been 

shown that Ion Torrent and Illumina platforms have a high degree of concordance at the gene-

level read counts, detecting similar sets of differentially expressed genes (DEGs) and reaching 

similar conclusions at the pathway level (86). 

PacBio sequencing or SMRT (Single-molecule, Real-Time) sequencing from Pacific 

BioSciences is a third-generation high throughput technology and it collects data from millions 

of wells using the DNA replication to sequence long fragments of DNA or RNA. Single-stranded 

DNA templates are circularized by ligation of hairpin adapters at both ends and the light pulses 

emitted by labelled nucleotides are detected when a polymerase bound to a hairpin adaptor 

adds nucleotides to the template. In comparison to any second-generation throughput 

technologies, PacBio offers longer reads (over 10 kb) and faster runs, but in return it has a lower 

throughput (0.5-1 billion bases), higher error rates (around 11%-15%) and a higher cost (87). The 

long reads make the technology ideal for identification and quantification of isoforms. 

Oxford nanopore sequencing is another third-generation high throughput technology. 

When an ion current is passed through a nano-scaled hole, the device measures the change in 

current in real-time as the DNA molecule pass through or near the nanopore, using the 

information about the current change to identify the exact nucleotides in the template. In 

comparison to PacBio system, Oxford nanopore returns slightly longer reads and the quantity of 

reads per flow cell is higher, but in return the data of PacBio is of higher base quality (88). 

 

1.3.3 RNA-seq applications 
 

RNA-seq can be applied to answer a broad range of questions such as transcript quantification, 

differential gene expression profiling, study of alternative splicing events, discovery of new 

transcripts, annotation of non-coding molecules (such as miRNAs, lncRNAs and circRNAs), de 

novo genome assembly and identification of single nucleotide polymorphisms (SNPs). 

Depending of the interests of the study and the organism under study, different experimental 

designs would be applied. For example, if a reference genome is available for the organism of 

interest, the expression level can be quantified directly mapping the reads onto the genome. In 

contrast, if there is no reference genome available, the reads must be assembled into contigs 

previous to any quantification. In general, there is no consensus pipeline for each analysis type, 

being dozens of different algorithms to chose from for each step. There is no optimal tool for all 

RNA-seq data sets. In addition, RNA-seq data can be combined with other genome-wide data 

such as DNA sequencing, DNA methylation or ChIP-seq (Chromatin immunoprecipitation 

sequencing) to connect gene regulation with specific aspects of molecular physiology (89). 

 

1.3.3.1 Differential expression 
 

Differential expression analysis is the most common application for RNA-seq data. The 

expression values, which are based in the number of reads that map to the characteristic of 

interest (at the exon, transcript or gene level), are compared among samples in different 

conditions in an attempt to discover key elements in diseases, treatments or pathways. In this 

kind of experiment is recommended to have at least three biological samples of the same 

condition to be able to measure the biological variation between samples and differentiate it 

from the variation caused by the treatment. The more samples per condition, the more precise 

the mean expression levels, leading to a more accurate modelling of the data. Normally, there 

is no necessity for technical replicates at the sequencing level (repeated measurements of the 
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same biological sample used to test the variability of a protocol), as the reproducibility of RNA-

seq is quite high. 

In one RNA-seq study in Merino sheep, peripheral blood mononuclear cell (PBMC) 

expression levels at three different time points from sheep infected with the fasciola hepatica 

parasitic trematode were compared relative to uninfected controls (90). Over 100 million reads 

were obtained. Key genes involved with the immune response to the parasite were identified 

and the study showed that events related to the complement system, the chemokine signalling, 

T-cell activation and metabolic processes were altered by the presence of the trematode. This 

study is a clear example of how RNA-seq data can be used to study the temporal progression of 

a disease, treatment or condition (in this case the temporal progression of the host response to 

Fasciola hepatica). 

In addition, RNA-seq data can be used to find elements that regulates different traits of 

interest, to select those traits in animal breeding, for example. In a study realized in Spanish 

Churra and Assaf breeds, two breeds with totally different milk production traits, milk somatic 

cells from ewes on four different time points were sequenced (91). A total of 1,116 million 

paired-end 75 nt reads were obtained. In the comparison between the two sheep breeds, 256 

annotated differentially expressed genes were observed. Some of those genes were shown to 

be related to the endopeptidase and channel activity GO terms, finding some genes that may 

explain the higher cheese yield of the Churra breed. 

 

1.3.3.2 De novo assembly 
 

Before the introduction of NGS technology, very few well-studied organisms had their genome 

fully sequenced with an enriched annotation, being some of the protein-coding genes 

computationally predicted. RNA-seq allowed to different laboratories to build complete 

transcriptomes from non-model organisms and to identify new genes, being those new genes 

annotated by sequence similarity to other organisms with known gene functions. 

Transcriptomes for the ‘Bouche de Bétizac’ and ‘Madonna’ chestnuts (92), blueberry (93), four 

different species of common tropical crustose coralline algae (94), pieris rapae butterfly (95) and 

two related geese species (96) have been recently created de novo, to name just a few examples. 

The first draft of the sheep (Ovis aries) reference genome was done by The International 

Sheep Genomics Consortium using whole-genome shotgun sequencing of a Texel ewe and 

Illumina paired-end sequence data from a Texel ram (97). In addition, data from seven different 

tissues in conjunction to existing ovine EST collections and other NGS datasets were used to 

predict genes and to annotate them in the de novo assembly. The final Oar v3.1 assembly had a 

contig N50 length of   4̴0 kb and a total assembled length of 2.61 Gb, with   9̴9% anchored to the 

26 autosomes and the X chromosome (98). 

 

1.3.3.3 Alternative splicing 
 

Splicing patterns of a gene are not fixed, from one gene multiple mRNAs can be produced. Thus, 

alternative splicing is a post-transcriptional process that increases the proteome diversity, 

particularly in mammals. There are seven distinct alternative splicing events in total: exon 

skipping, intron retention, alternative 3’ splice site, alternative 5’ splice site, alternative first 

exon, alternative last exon and mutually exclusive exons (99). Alternative splicing has been 

studied with reverse transcription polymerase chain reaction (RT-PCR), sequencing of expressed 

sequence tags (ESTs) or designed microarrays, but such technologies have low-throughput, high 
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noise or are limited to known splicing patterns (100). RNA-seq has improved the capacity to 

study splicing patterns, although it is still complex to quantify each alternatively spliced 

transcript expression, since it is quite complex to assign short reads to an exon of a transcript 

when said exon is part of multiple transcripts. Such drawback of RNA-seq technology has been 

partially solved with third-generation sequencing technologies such as PacBio and Oxford 

Nanopore, as it is possible to sequence complete mRNA molecules in one reaction, but at the 

cost of a higher error rate. 

In a study analysing muscle transcriptomes of Dorper and Small-Tailed Han sheep (99), 

multiple alternative splicing events were found. Approximately 26% of the reference genes 

underwent some splicing event, being alternative 3’/5’ splice sites the most common, while 

intron retention was the least frequent. In addition, they were able to identify splicing event 

exclusive to each species. In a more recent study, liver tissues of Mongolian and Lanzhou fat-

tailed sheep were analysed (101). Higher rates of alternative splicing were found in the samples 

(from 30.54% to 38.33%) and in contrast to the previous study, the most common splicing event 

was intron retention. Such differences may be explained by breed differences or may be 

indicative of the lack of information on alternative splicing in sheep, in any case more studies 

should be conducted. 

 

1.3.3.4 Variant discovery 
 

RNA-seq data allows for detection of transcriptome variants such as SNPs and short insertions 

or deletions (INDELs) at a large scale. Some of those variants can be related to different 

phenotypes of interest or diseases. It must be noted that RNA-seq data is though not to be an 

ideal source for SNP detection due to high false positive rates caused  by the complexity of 

alignment due to RNA splicing, sequencing errors, random errors introduced  during RT-PCR or 

RNA editing (102). It has been shown that there are large differences (up to 10%) between 

genotypes inferred from DNA and RNA sequencing. With RNA-seq data alone, it is complex to 

distinguish between a true SNP or an RNA editing process. 

In a recent study from high-throughput RNA-seq data, tissue samples from longissimus 

dorsi muscle, perinephric fat and tail fat in three different sheep breeds (Lanzhou fat-tail sheep, 

small-tail Han sheep and Tibetan sheep) were compared in an attempt to find genetic variations 

related to the fat-tail phenotype (103). They reported 33 SNPs distributed across a chromosome 

3 region previously related to fat deposition in tails of sheep, in addition to three genes (CREB1, 

WDR92 and ETAA1) that may be associated with fat tail development. In other study, RNA-seq 

data from milk somatic cells from Churra and Assaf sheep were analysed to identify genetic 

variations related to milk yield (104). From 216,637 detected variants (SNPs and INDELs), 57,795 

were detected in regions harbouring Quantitative Trait Loci (QTL) for milk yield, protein 

percentage and fat percentage. In addition, 20 mutations having great effects on principal milk 

proteins and lipid metabolism proteins were found. 

 

1.3.3.5 Long non-coding RNAs (lncRNAs) 
 

Despite lncRNAs were known before the introduction of NGS technology, it was the use of RNA-

seq that allowed to see how extensively expressed were in different tissues. lncRNAs can be 

described as sequences longer than 200 nucleotides (transcribed from both protein-coding and 

non-coding DNA regions) without open reading frames and 3’-untranslated regions (3’-UTRs) 

(105). It has been shown that these molecules are able to interact with proteins, DNA or other 
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RNA molecules, having principal roles in multiple pathways such as gene regulation, cell 

differentiation and chromatin remodelling. RNA-seq, with an adequate library preparation, 

allows identification and quantification of such molecules. 

In a recent study, Alpine merino sheep skin samples were sequenced on a Illumina 

machine to integrate mRNA and lncRNA information (106). A total of 884 lncRNAs were 

identified. From those lncRNA, they were able to see that lncRNAs were shorter than mRNAs in 

length distribution, that lncRNAs were composed of less exons and that sheep lncRNAs were 

longer in comparison to the ones detected in human and mouse. In a more recent study, Subo 

Merino sheep (a Chinese breed) skin samples were sequenced to study the involvement of 

lncRNAs in the development of hair follicles (107). From 10,193 (1,540 known and 8,653 novel) 

identified lncRNAs, 471 were differentially expressed. In agreement with the previous study, 

they showed that lncRNA were shorter in comparison to mRNAs, have a lower expression and 

are composed of less exons (the majority of two exons). In addition, among the differentially 

expressed mRNAs there were predicted targets of lncRNAs with functions in hair follicle 

development and morphogenesis, epidermis development and morphogenesis and cell 

differentiation and migration. 

Furthermore, RNA sequencing technology can be used for the annotation of other non-

coding molecules such as microRNAs (miRNAs) and circular RNAs (circRNAs). Those applications 

will be explained later in sections specific for them. 

 

1.3.4 Biases in RNA-seq 
 

There is a broad range of platforms for RNA-seq, each with its own benefits and drawbacks. The 

objective of this thesis is not to give a detailed list for each one, only those biases related to all 

platforms and the ones related exclusively to Illumina sequencing (the one used throughout this 

thesis) are going to be explained in more detail. Illumina sequencing has been shown to be highly 

replicable and with fairly little technical variation (82). Despite such advantages, it has been 

shown that the technology suffers from some biases introduced during library preparation and 

others related to the sequencing itself. 

One of the most important characteristics of NGS data that must be taken into account 

is its high error rate. For the Illumina HiSeq2000 and MiSeq sequencing machines, an error rate 

of  0̴.1% per base has been reported, being the most common error single nucleotide 

substitutions (108). As previously noted, Illumina uses labelled dNTPs to detect inserted 

nucleotides to the template by fluorescence. A and C nucleotides can be detected upon a light 

excitation produced by a red laser, while G and T nucleotides needs light excitation through a 

green laser. Due to similar emission spectra, C to A and G to T are the most common 

substitutions in Illumina sequencing (109). Other mechanisms that cause incorrect base calling 

in the sequencing are the ones known as post-phasing and pre-phasing. Pre-phasing can occur 

due to inadequate flushing of the flow cell, resulting in non-incorporated nucleotides remaining 

after a cycle, which can lead to incorporation of more than one nucleotide in some sequences 

from the cluster in the following cycles. In contrast, post-phasing can occur due to an incomplete 

removal of the terminator in a cycle, which results in a lag in the synthesis of some sequences 

in a cluster (109,110). Both processes cause an incorrect elongation of the sequence, as a result 

the fluorescence signal from the cluster has interferences. This can explain why at the end of 

the reads the quality of base-calling usually drops in Illumina sequencing, since the longer the 

read the weaker the signal from the cluster due to accumulation of such events (110). Such 

sequencing errors are particularly relevant for SNP discovery, as it is complex to differ a 
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sequencing error from a true SNP (84). This can be avoided increasing the sequencing depth to 

reach a level where a sequence is sequenced multiple times, which can help to correct for 

sequencing errors. 

Previous to the synthesis of cDNA during library preparation, RNA molecules are 

fragmented into smaller pieces. Depending of the platform, the fragmentation can be done at 

the RNA level through hydrolysis or nebulization or at the DNA level through DNase I treatment 

or sonication, for example. Illumina prepares their libraries through RNA fragmentation with 

divalent cations under elevated temperatures. Such fragmentation causes a little bias in the 

transcript coverage and it has been shown that there is a lower coverage of both 3’/5’ transcript 

ends, while in cDNA fragmentation methods there is a strong bias towards identification of the 

3’ end (111). Due to a lower coverage of the transcript ends, it is usually complex to clearly define 

the 3’/5’ ends of transcripts through Illumina sequencing, something that can be partially solved 

with an adequate sequencing depth. cDNA synthesis is another step in which bias is introduced 

at the library preparation. Illumina uses random hexamer priming to generate complementary 

reads across the full transcript. It has been shown that such priming leads to a not totally uniform 

coverage of the transcript due to a bias in the nucleotide composition at the start of the first 

strand cDNA (112,113). This bias can be seen as a strong pattern in nucleotide frequencies in the 

first 13 positions at the 5’ end. Despite the bias introduced by random hexamer priming, it is 

preferred to other methods such as oligo(dT) priming, which are highly biased towards the 3’ 

ends (112). 

Library preparation procedures usually employs PCR amplification before sequencing. 

This step has been shown to be the major cause of uneven read coverage in regions with 

enriched GC or AT content (114,115), being such regions underrepresented when sequencing. It 

has been found that Illumina sequencing has a dependence between GC content of the full DNA 

(not only the sequenced read) and read count and that such bias in not consistent between 

samples (116), making it hard to correct for. Moreover, since GC content is sometimes 

correlated with functionality, it is complex to differ between GC bias and the true signal. Library 

preparations with optimized PCR protocol or with a PCR-free protocol have been developed in 

an attempt to correct for GC bias (114). It must be taken into account that PCR-free methods 

require large amounts of starting RNA material, which makes them inadequate when dealing 

with small amounts of RNA from clinical isolates. In contrast, other studies have tried to deal 

with the GC content bias at the data analysis step, developing normalization strategies specific 

for GC bias correction (117). The RNA selection step (rRNA removal or polyA selection) has been 

pointed as another source of variability in the coverage of transcripts (118). It has been shown 

that a combination of a TRIzol RNA extraction and RiboZero RNA-seq protocol (based on rRNA 

removal) produce a significant increase of intronic sequences in comparison to other RNA-seq 

protocols, being the origin of these intronic sequences pre-mRNA or splicing by-products (119). 

Other characteristics of transcripts that seem to influence expression quantification of 

RNA-seq data are the length and real expression levels. Due the inherent nature of RNA-seq 

data, which is short reads from the full transcript formed at the fragmentation step, the counts 

for a transcript will be proportional to the real expression level and its length, since longer 

transcripts originate more fragments and this results in more sequencing reads (120). 

Normalization methods that divide the obtained counts with transcript length have been 

proposed as a countermeasure for this kind of bias, but such normalization methods only 

mitigate it. In addition, the ability of RNA-seq data to detect rare transcripts is influenced by the 

sequencing depth, as RNA-seq is biased towards highly expressed genes which concentrate the 

vast majority of sequencing reads (121). The probability to sequence lowly expressed transcripts 

increase with greater sequencing depths, but more reads also means noisier data that results in 
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a more difficult differential expression analysis. For transcriptomes of similar size to the human, 

it has been estimated that approximately 10 million reads of 35 nt in length (  1̴0x coverage) 

would be required for quantification of 80% of expressed genes, while approximately 700 million 

reads would be needed for quantification of more than 95% of the expressed transcripts (122). 

Despite not being a bias directly related to library preparation or sequencing process, it 

has been shown that RNA degradation, which occurs in most of isolated RNA samples with a 

varying degree that depends on sample collection and storage conditions, impairs accurate 

quantification of transcripts (123). It has been pointed that RIN values used for RNA degradation 

assessment has several issues, since its calculation relies heavily in 18S and 28S ribosome RNA 

properties and as a result it is not a direct measure of mRNA integrity. In addition, it has to be 

taken into account that RNA decay rate is transcript-specific. Different metrics had been 

proposed in an attempt to improve the quantification of RNA integrity, such as transcript 

integrity number (TIN) (123) or DV200 metric proposed by Illumina 

(www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-

rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf). Illumina laboratories has 

pointed out that mean RNA fragment size is a more reliable metric for quantification of RNA 

quality for the TruSeq library preparation kit and they defined the DV200 metric, which is the 

percentage of RNA fragments > 200 nucleotides. In contrast, TIN is a metric that measures the 

percentage of the transcript that has uniform coverage and it has been demonstrated to be quite 

useful to adjust gene expression and improve differential expression analysis. 

Until now library preparation and sequencing biases of total RNA have been addressed. 

The preparation of libraries for miRNA-seq has slight variations, which results in other kind of 

bias in the data. In those library preparations, the adapter sequence ligation at both ends of 

small RNAs is a critical step and it has been shown that differences in adapter ligation efficiency 

among protocols result in drastically altered expression patterns of individual miRNAs (124). In 

addition, the formation of adapter dimers lead to detection of reads without miRNA insert, 

reducing the number of informative reads. 

 

1.4 Non-coding RNAs (ncRNAs) 
 

Approximately   2̴1,000 protein-coding genes have been described in human, but these protein-

coding regions only encompass   1̴.5% of the human genome (125). With the exception of some 

well-known ncRNAs with specific roles in translation of protein-coding RNAs such as rRNA or 

transfer RNA (tRNA), the rest of the DNA sequence was thought to represent noise and was 

referred as junk DNA. With improvements in technology and additional research, this notion has 

changed markedly in recent years and a wide variety of different ncRNAs with distinct functional 

roles have been described, seeing that the majority of the human genome (up to 90%) is 

transcribed into RNAs (126). The emergence of NGS technology has allowed the discovery of 

thousands of ncRNAs with important roles in gene expression, such as miRNAs and lncRNAs. It 

has been shown that such ncRNA elements are not only rare transcripts and, despite generally 

having a lower expression level than protein-coding molecules, ncRNAs are expressed more 

broadly than initially thought. 

In spite of the fact that thousands of ncRNAs are being described, further research is 

needed for their functional annotation. ncRNAs can be classified into two main categories with 

multiple subcategories inside of them: small non-coding RNAs and long non-coding RNAs. The 

structure and function and how they interact with other molecules is best known for small 

ncRNAs. In contrast, lncRNAs, which are usually defined as non-coding transcripts longer that 

https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/evaluating-rna-quality-from-ffpe-samples-technical-note-470-2014-001.pdf
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200 nucleotides, not have a clearly defined structure and functional role. New lncRNAs are 

constantly defined and new categories and functions are published annually. In table 1.5 can be 

seen a brief list of different ncRNA classes with some of their properties. This thesis does not 

intend to give a detailed description of all ncRNAs, only miRNAs and circRNAs are going to be 

described in more detail, since they are the two main ncRNA classes that are going to be 

annotated and analysed in sheep with the data presented in this thesis. 

 

Table 1.5: Classes of non-coding RNAs and their approximate size and functions (human as 
reference) (table adapted from (83,126–130)). 

 

Class Size Function 
microRNA 
(miRNA) 

21-23 nt RNA that, in complex with AGO protein, binds to mRNA 
to induce deadenylation and decay or translational 
regulation. 

Long non-coding RNA 
(lncRNA) 

>200 nt Long elements transcribed by RNA polymerase II, 
occasionally capped and polyadenylated. Roles in post-
transcriptional regulation of mRNA and cis regulation.  

PIWI-associated RNA 
(piRNA) 

25-33 nt Involved in the epigenetic and post-transcriptional 
silencing of transposons and other repeat-derived 
transcripts. 

Ribosomal RNA 
(rRNA) 

120, 160, 1,868, 
5,025 nt 

RNA compound of the small and large ribosomal 
subunit. 

Small conjugation-specific RNA 
(scan RNA/scnRNA) 

28 nt Double-stranded RNAs processed by a Dicer-related 
RNase that recognize genomic internal eliminated 
sequences in the developing macronucleous of ciliates 
and target them for destruction. 

Small nuclear RNA 
(snRNA) 

100-300 nt Molecules found within the splicing speckles and Cajal 
bodies. Participates in the splicing of pre-mRNA. 

Small nucleolar RNA 
(snoRNA) 

60-300 nt Participate in chemical modification of other RNAs, 
mainly rRNA, tRNA and snRNA. 

Small Cajal body-associated RNA 
(scaRNA) 

200-300 nt A class of snoRNAs localised in Cajal bodies. Guide 
chemical modifications of RNA polymerase II 
transcribed spliceosomal RNAs (U1, U2, U4, U5 and 
U12). 

Small interfering RNA 
(siRNA) 

20-25 nt Double-stranded RNA molecules that interfere with 
complementary target RNA by degrading mRNA after 
transcription. 

Tranfer RNA 
(tRNA) 

70-90 nt Helps in the translation of mRNA into protein 
connecting an mRNA codon with its corresponding 
amino acid.  

Enhancer RNA 
(eRNA) 

50-2000 nt Transcribed from DNA enhancer regions, play a role in 
transcriptional regulation in cis and trans. Highly 
correlated proximal gene expression. 

microRNA-offset RNA 
(moRs/moRNA) 

   2̴3 nt Derived from miRNA precursor sequences. Function 
still unknown. 

Promoter-associated small RNA 
(PASR) 

20-200 nt Derived from promoter regions. May be involved in 
chromatin modifications within promoter regions, thus 
modulating their host gene. 

Terminus-associated small RNA 
(TASR) 

22-200 nt May play a role in increasing the copy number of the 
transcripts of their host genes. 

Circular RNAs 
(circRNAs) 

1-5 exons Circularized transcripts usually formed from coding 
segments. Play roles as miRNA sponges, form RNA-
protein complexes and may be translated into proteins. 

Natural antisense transcript 
(NAT) 

- Derived from both DNA strands at the same locus but 
in opposite direction from the gene. Precise role 
unknown, suspected to play a role in gene expression 
regulation. 
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1.4.1 microRNAs (miRNAs) 
 

MicroRNAs (miRNAs) are a class of short endogenous   2̴2 nt non-coding RNAs that play key roles 

in gene regulation through translational repression or mRNA decay. The biogenesis of miRNAs 

is tightly controlled and their dysregulation has been associated with different diseases. The first 

miRNA to be discovered was lin-4 in C. elegans in 1993 (131). In this first study, it was shown 

that lin-4 did not encode any protein and that two transcripts of different length, one of 22 nt 

(later known as the mature miRNA form) and other of 61 nt (later known as the pre-miRNA 

form), were being expressed. In addition, the conservation of this molecule in three other 

Caenorhabditis species and a complementary sequence element repeated seven times in the 

lin-14 3’UTR were found. It was proposed that lin-4 acted by negatively regulating the expression 

levels of lin-14 protein. After this initial report of a small non-coding molecule, it was needed 

some years until a new molecule resembling in structure to lin-4 to appear. In 2000, a 21-

nucleotide RNA which regulates developmental timing known as let-7 was reported in C. elegans 

(132). In this study, it was shown that let-7 has complementary sequences to elements in the 

3’UTRs of genes lin-14, lin-28, lin-41, lin-41 and daf-12, suggesting a regulatory role of let-7 on 

these genes. These short RNA sequences gained more attention from the scientific community 

and an increasing number of miRNAs were reported shortly after. In a popular miRNA database 

such as miRbase (Release 22), there are 1,917 entries for human miRNAs and 39,417 in total for 

all annotated species. A substantial number of those annotations has a dubious origin, probably 

being false positives. 

 

1.4.1.1 miRNA-seq 
 

Long ago it was though that DNA fragments that did not encode any protein was “junk”, with no 

known purpose. With the introduction of NGS technology, it was shown that the majority of the 

DNA was transcribed but not translated into proteins and that those non-coding RNAs had 

regulatory roles in multiple pathways. Among those non-coding RNAs, small molecules such as 

miRNAs, small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) have been studied 

in great detail. There are special library preparations for small non-coding RNA enrichment for 

subsequent sequencing, using the data to identify the sequence, structure, abundance and 

function of such molecules. Studies using these data have been focusing mainly on the detection 

and functional annotation of miRNAs, although it can be used for the analysis of other small non-

coding RNAs such as small nuclear/nucleolar RNAs (snRNAs) or endogenous siRNAs. Despite 

miRNA-seq analyses being nowadays common, being various studies in sheep, in a miRNA 

database such as miRbase [Release 22.1] there is only 153 mature miRNAs annotated for sheep. 

In one early miRNA-seq study in sheep, longissimus dorsi muscle of Texel and Ujumqin 

embryos and lambs through eight different time points were sequenced in a Solexa machine, 

covering all representative periods of growth and development during gestation (133). After 

comparing to other mammalian mature miRNAs and the sheep genome, 2,914 mature miRNAs 

representing 2,319 unique miRNAs were predicted. Among the main characteristics of those 

predicted sheep miRNAs, it was pointed that: 

 

• Few miRNAs account for nearly all the expression data. In their case, the 21 most 

expressed miRNAs accounted for 85.06% of the expression data. 
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• Highly expressed miRNAs are more stable, while lowly expressed ones are more easily 

influenced by development stages. 

 

• Almost all of the sequenced miRNAs were able to produce different isomiRs (miRNA 

sequences showing variations respect to the reference sequence). 

 

1.4.1.2 miRNA biogenesis 
 

The miRNA biogenesis process in animals usually starts with transcription by RNA polymerase II, 

although there are some exceptional cases transcribed by RNA polymerase III (83). Most of the 

transcribed primary miRNAs (pri-miRNAs), which may be up to 1kb long, are usually intragenic 

and processed from introns and a few exons of protein coding genes, while the remaining ones 

originate from intergenic regions (134). It has to been pointed out that in some cases clusters of 

miRNAs in close proximity to each other forms  polycistronic transcriptional units (135). All the 

miRNAs in such units are usually co-transcribed together and are individually regulated post-

transcriptionally. Typically, a pri-miRNA is formed by a stem loop of 33-35 nt, a terminal loop 

and single stranded RNA segments at both ends. After transcription, the pri-miRNA undergoes 

maturation in the cell nucleus prior to transportation into the cytoplasm.  

Following pri-miRNA formation, it matures into precursor miRNA (pre-miRNA) with the 

help of the microprocessor complex, which consist in the RNA binding protein DiGeorge 

Syndrome Critical Region 8 (DGCR8) and the ribonuclease III enzyme Drosha. DGCR8 is able to 

recognize some N6-methyladenilated motifs in the pri-miRNA, while Drosha cleaves the pri-

miRNA at the base of the hairpin structure, resulting a pre-miRNA (  7̴0 nt) with a 2 nt long 3’ 

overhang (134). Then, the pre-miRNA is exported to the cytoplasm, where the maturation 

process finish. This last step is done with the help of the complex formed by exportin 5 (EXP5) 

and RanGTP. Once in the cytoplasm, the pre-miRNA is further processed by the RNAase III 

endonuclease Dicer. In this step, Dicer cleaves the terminal loop, yielding a   2̴1 nt miRNA duplex 

with protruding 2-nucleotide 3’ ends (136). At first it was thought that only one strand of the 

duplex was selected for further processing, while the other was degraded. It has been shown 

that both strands from the duplex can be loaded into Argonaute proteins (AGO1-4 in humans) 

to act as mature miRNAs (134), forming what is known as miRNA-induced silencing complex 

(miRISC).  

In the case of plants, miRNA biogenesis varies slightly. The maturation process is 

executed completely in the nucleus and the pri-miRNA processing instead of being done by the 

complex formed by Drosha and DGCR8 (there are no homologous in plants), it is executed by 

DICER-LIKE 1 (DCL1), DAWDLE, the zinc-finger protein SERRATE (SE) and the double stranded 

RNA-binding protein Hyponastic Leaves 1 (HYL1) (135). Them, the pre-miRNA or mature miRNA 

is transported to the cytoplasm by HASTY (HST) and loaded into Argonaute proteins (usually 

AGO1). 

Apart from the canonical miRNA biogenesis pathway, multiple non-canonical pathways 

(see figure 1.10) has been described. This non-canonical biogenesis is grouped into 

Drosha/DGCR8-independent and Dicer-independent pathways (134,135). 
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Figure 1.10: Animal miRNA biogenesis. The majority of miRNAs are transcribed from DNA 
sequences into primary miRNAs and then are processed into precursor miRNAs and finally into 
mature miRNAs. Depending the molecules assisting the process, different pathways has been 
described (figure adapted from (134)). 
 

1.4.1.3 Mechanism of action 
 

Once the miRISC complex is formed, miRNAs usually bind by sequence complementarity to 3’ 

UTR sequence region of genes (although it has been reported cases binding to the coding 

regions, 5’ UTR or promoter regions of a gene) and can induce mRNA translational repression or 

mRNA decay. Furthermore, it has been reported that in some especial conditions miRNAs or 

components of the miRISC complex may be able to act as translational activators (136). In plants, 

miRNAs binds nearly with perfect complementarity to mRNAs, while in metazoan bind with 

imperfect base-pairing following some rules (136) (see figure 1.11 for examples of miRNA- mRNA 

pairing): 

 

• miRNA nucleotides 2 to 8, usually named the “seed” region, are essential for 

complementarity with the mRNA. This region usually binds with consecutive Watson-

Crick base-pairing, although imperfect complementarity may be allowed if other regions 

bind compensating any mismatch in the seed. An A nucleotide at position 1 or an A or U 
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at position 9 of the mRNA improve the efficiency, despite not being directly paired to 

the miRNA. 

 

• Bulges or mismatches must be present at the central region of the miRNA-mRNA duplex. 

 

• There may be some complementarity to the miRNA 3’ half (particularly nucleotides 13-

16). This base binding can compensate for a seed mismatch 

 

 
Figure 1.11: Types of miRNA-mRNA pairing. Vertical dashes indicate contiguous Watson-Crick pairing. 

(A-C) Canonical seed pairing. (D-E) 6 nt seed pairing. These 6mer sites have reduced efficacy and some 
target prediction algorithms discard them. (F-G) Imperfect seed pairing and a 3’-compensatory site 
(usually miRNA nucleotides 13-16) (figure adapted from (137)). 

Multiple algorithms to predict miRNA targets has been made, each one using different 

characteristics. In addition to the previously defined bindings,  it has been shown that multiple 

binding sites for the same miRNA in a 3’UTR can strengthen the regulation (138). Furthermore, 

it seems that many 6-8mer seed matches are evolutionary conserved, mainly 6mer (match of 6 

nt from the seed), 7mer-m8 (seed binding supplemented with an additional nucleotide pairing 

at position 8), 7mer-A1 (seed binding and an A at position 1) and 8mer sites (seed binding and 

supplemented by both m8 and A1) (139).  

The degree of complementarity between the miRNA and mRNA would determine 

whether there is an AGO2-dependent slicing of the mRNA (full complementarity) or translational 

inhibition and target mRNA decay (134). Most miRNA-mRNA interactions are partial, which 

results in the prevention of AGO2 endonuclease activity. In addition, it has to be stressed that 

the binding of a single miRNA is unlikely to produce a significant effect in the mRNA expression 

pattern (136). The formation of the silencing miRISC complex starts with recruitment of the 

GW182 family of proteins, which recruits other effector proteins such as PAN2-PAN3 and CCR4-
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NOT (see figure 1.10). Then, after miRNA-mRNA interaction, the mRNA is poly(A)-deadenylated 

with the collaboration of PAN2/3 and CCR4-NOT. Finally, the mRNA is decapped thanks to 

decapping protein 2 (DCP2) and degraded due to exoribonuclease 1 (XRN1) activity. The 

degradation or its final steps is thought to occur in P-bodies (cellular structures enriched in 

mRNA-catabolizing enzymes and translational repressors) (136). 

In addition to translational repression and mRNA decay, there have been multiple 

reports indicating that miRNAs can up-regulate translation under special conditions. It has been 

shown that miR369-3 and let-7 can activate translation under growth-arrest conditions and it 

has been proposed that miRNAs can oscillate between repression and activation depending of 

the cell cycle (140). Furthermore, it seems that miR-10a is able to interact with the 5’ UTR of 

ribosome protein-coding mRNAs to enhance ribosomal biogenesis and miR-328 indirectly up-

regulates the transcription factor CEBPA by binding to PCBP2 (141). It still needs to be addressed 

if this miRNA-related activation of protein translation is a general phenomenon or it is just some 

exception of the usual mechanism of action. 

 

1.4.1.4 Databases and nomenclature 
 

Over the last decade thousands of miRNAs have been reported in multiple species. As previously 

noted, most of the annotated miRNAs in public databases such as miRbase are not robustly 

supported, with many false positives. At first, the nomenclature used for annotation of new 

miRNAs was pretty chaotic and it passed some time until a uniform system for annotation of 

miRNAs was presented. The minimum requirements for miRNA annotation and some of the 

nomenclature used in databases such as miRbase are revised in (142). For miRNA annotation 

the following would be required: 

 

• An RNA stem consisting of two 20-26 nt long reads (with a median length of 22-23 nt) 

with 2 nt offsets between both arms need to be expressed. 

 

• At least a section of 16 nt showing complementarity between both arms. 

 

• 5’ end homogeneity (most of the reported reads start with the same nucleotide). 

 

• Both arms must be separated by a loop sequence of at least 8 nt and a maximum of 40 

nt in species with a single Dicer protein, with no maximum requirement is species with 

multiple Dicer proteins. 

 

As miRbase (http://www.mirbase.org/) is one of the most used miRNA databases, its 

nomenclature system will be explained briefly. One example of a miRbase miRNA would be oar-

mir-374b. The first three letters represent the organism (“oar” being ovis aries and “hsa” homo 

sapiens, for example). Then, the following three letters would be mir or miR and it represents 

the miRNA gene (with the stem-loop) or the mature miRNA sequence respectively. At the end a 

numerical value is given. The numbering is given in sequential order, therefore, assuming that 

the last mouse miRNA was mir-352, the next new discovered would be mir-353. In case of a 

lettered suffix, it represents closely related mature sequences (for example oar-miR-374a and 

oar-miR-374b). In addition, if different genomic loci express identical mature sequence, each 

locus is represented by a second numerical value of the form hsa-miR-121-1 and hsa-miR-121-

2. Finally, as each miRNA gene can generate two distinct mature sequences, the mature miRNA 

http://www.mirbase.org/
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identifier will have “-5p” or “-3p” to indicate the arm of origin (miR-142-5p and miR-142-3p, for 

example). It has to be pointed out that if the mature sequence of a new discovered miRNA is 

identical to a previously annotated miRNA in the database, it is suggested to name the new 

miRNA with the same identifier. In the database there are some exceptions to these rules, such 

as let-7 and lin-4, and these names have been retained for historical reasons. 

 

1.4.2 Circular RNAs (circRNAs) 
 

Circular RNAs (circRNAs) are a recent class of covalently closed circular single-stranded non-

coding RNAs, formed when a downstream 5’ splice donor and upstream 3’ splice acceptor from 

a linear RNA are linked together, a process also called backsplicing (143). circRNAs does not have 

terminal structures such as 5’ cap or 3’ end poly(A) tail (144). Due to their circular structure, 

circRNAs are more stable, resistant to RNAse R and have longer half-lives than linear RNAs (145), 

making them good candidates for disease biomarkers. Despite being discovered long ago, they 

were thought to be low abundance products derived from splicing errors (146). The first circular 

molecules (viroids) were discovered by electron microscopy in 1976 (147). Despite being other 

reports of circular RNAs without functional potential, it was not until 1991 that the first 

endogenous circRNA originating from the DCC tumour suppressor was reported in humans 

(148). Shortly after, in 1993, it was shown that Sry gene was circularized in mouse testis samples, 

being these molecules one of the most abundant transcripts (149). In addition, the presence of 

long inverted repeats flanking the mouse Sry gene were demonstrated to be necessary for the 

formation of the circular transcript (150). It not was until recently, with the recent increase in 

total RNA-seq-based studies, that it was shown that circRNAs were more common than initially 

thought and that some of them had important roles in different pathways. One of the first 

studies that reported the circularization of hundreds of transcripts by RNA-seq data was done in 

2012 (151). Since then, the circRNAs has gained the attention of the scientific community and 

multiple studies in different species have been reported. Despite the recent increase in circRNA 

studies, their functional role remains under constant debate and only a few circRNAs are well 

characterized. 

 

1.4.2.1 Total RNA-seq 
 

circRNAs are a more recently discovered class of non-coding RNAs, characterized by their closed 

circular form which gives them more stability and longer half-lives in comparison to other RNA 

classes. Their functions are not totally understood, but some circRNAs has been shown to act as 

miRNA sponges (e.g., the circRNAs related to CDR1-AS and SRY sequester miR-138 and miR-7, 

respectively) (152) , to have coding ability (e.g., circ-ZNF609) (153), although it remains to be 

probed actual translation into protein in vivo, or to have protein-binding activity (e.g., the circ-

FOXO3 forms a ternary complex with p21 and CDK2) (154). Total RNA libraries with rRNA 

depletion allow for their detection through RNA-seq. 

Being a new discovered molecule (or at least they have gained recently the attention of 

the scientific community due to their probed regulatory roles in gene expression), there are few 

studies of circRNA identification on sheep. Different studies taking pituitary gland samples 

(155,156) and longissimus dorsi muscle samples (157,158) from Kazakh sheep have identified 

multiple circRNAs. In the studies focused on the pituitary gland have been found numerous 

circRNAs interacting with miRNAs related to development and endocrine functions of the 

pituitary and other circRNAs enriched in neuromodulation pathways, such as dopaminergic 
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synapse and glutamatergic synapse. In contrast, in the studies focused on longissimus dorsi 

muscle, circRNAs involved in growth and development of muscle related signals such as positive 

regulation of myoblast differentiation, muscle fiber development and muscle organ 

development were identified. Such different functions of circRNAs in the tissues goes in 

agreement to what have been shown in human and mouse, that circRNA expression is tissue-

dependent. 

 

1.4.2.2 circRNA biogenesis 
 

circRNAs are formed by circularization of linear transcripts, bringing a downstream 5’ splice 

donor and upstream 3’ splice acceptor close to each other. Depending the composition of 

circRNAs, they can be divided in three main categories: exonic circRNAs (ecRNAs), intronic 

circRNAs (ciRNAs) and exon-intron circRNAs (EIciRNAs) (144). Although it must be taken into 

account that in archaea, such as haloferax volcanii, splicing of some tRNA has resulted in intron 

circularization (159), the circularization process related to the spliceosome machinery, which is 

the most common one, will be explained in more detail in this thesis. Two main models have 

been proposed for circularization of transcripts: intron-pairing-driven circularization (see figure 

1.12b) and lariat-driven circularization (for intronic circRNA see figure 1.12a and for circular 

product derived from exon skipping see figure 1.12c). 

In the intron-pairing-driven circularization model, the splicing donor and acceptor are 

put under close proximity thanks to reverse complementary sequences in the flanking introns. 

It has been shown that short inverted repeats of 30-40 nt (e.g., the Alu elements in primates) 

are sufficient for circularization (160). Up to 90% of predicted circRNAs in human have reverse 

complementary sequences in their flanking introns (161). In addition, there is an alternative 

mechanism by which the circularized ends are put under close proximity. There have been 

different reports of RNA-binding proteins recruited to flanking introns that dimerize, thereby 

putting each end in close proximity (160,161). Specifically, the regulators of linear splicing 

Quaking (QKI), Muscleblind (MBL) and Fused-in-sarcoma (FUS) have been shown to dimerize in 

flanking introns. 

In the lariat-driven circularization model, some exon-containing lariats formed due to an 

exon skipping event are further spliced. In this case, a mRNA without the spliced exons and a 

circRNA are expected to be generated, thus, a correlation between both transcripts is expected 

to some extent. This point remains under debate as many studies has corroborated the 

correlation, while others have not seen any trend at all or it is only limited to a few transcripts. 

It must be pointed out that both models of circularization are not mutually exclusive, since 

inverted repeats can facilitate the circularization inside an excised lariat. 

It has been shown that RNA circularization depends on multiple factors.  Some of the 

features that have been associated with circRNA formation at the gene level are (a) flanking 

introns longer than average, (b) single exon circRNAs are formed from unusually long exons, (c) 

circRNAs are typically composed of few exons (2-3 exons the most common) (d) circRNA-

producing genes are longer and contain more exons than average and (e) circRNA-producing 

genes are usually transcribed by RNA polymerase II at a faster rate (152,161). Furthermore, it 

has been shown in flies carrying a variant of the large subunit of the RNA polymerase II, which 

decrease the elongation capacity of the polymerase, that their circRNA production capacity was 

reduced significantly (162). Thus, it has been proposed that circRNA synthesis is dependent of 

the polymerase elongation rate and other factors that compromise the linear splicing. 
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Figure 1.12: circRNA biogenesis. The starting molecule is at the left and the circRNA products on 
the right. a) From conventional linear mRNA splicing 2’→5’-linked intronic lariats are formed. 
Normally these lariats are degraded, but in some cases are further processed giving rise to 
ciRNAs. b) Formation of 3’→5’-linked circRNAs by co-transcriptional backsplicing. The splicing 
donor and acceptor are put under close proximity thanks to reverse complementary sequences 
in the flanking introns or due to dimerization of RNA-binding proteins that binds to flanking 
introns. c) Formation of 3’→5’-linked circRNAs by post-transcriptional backsplicing. Due to an 
exon-skipping event, an exon containing lariat is formed. This lariat can be further processed to 
produce an EIciRNA or an ecRNA (if the intronic sequence is spliced in a second reaction). The 
circRNA products from co- and post-transcriptional splicing are molecularly identical (figure 
adapted from (161)). 
 

1.4.2.3 Mechanism of action 
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A 3’→5’ circRNA (produced by co- or post-transcriptional splicing) has an average lifetime of 19-

24h, in some cases reaching 48h, which is much longer compared to the average mRNA lifetime 

(4-9h) (161). These long-lived and stable molecules have been proposed to act through totally 

different mechanism depending their biogenesis and cellular localization (see figure 1.13). At 

first, the majority of circRNAs were thought to act as miRNA sponges, but with further research 

it has been shown that it is a rare function, since there are few circRNAs with multiple binding 

sites for a single miRNA or miRNA family. For now, most laboratories are focusing their attention 

in annotation of new circRNAs from total RNA-seq samples in multiple species and very few 

circRNAs have been studied in more detail, excluding bioinformatic predictions, to decipher their 

actual functional role. As a result, the functional role of few high-confidence circRNAs from 

public databases are well known. 

Many exonic circRNAs with retained introns (EIciRNAs) and intronic circRNAs (ciRNAs) 

are found predominantly expressed in the nucleus, where they regulate transcriptional activity 

in a direct manner interacting with RNA polymerase II or indirectly antagonizing colinear splicing. 

Interaction of EIciRNAs with RNA polymerase II has been shown to be dependent of the small 

nuclear U1 snRNA, which forms an EIciRNA:U1 complex that stimulates the transcription of both 

linear mRNA and EIciRNA in the same locus in a feed-forward loop (161). In addition, ciRNAs has 

been shown to have little enrichment for miRNA binding sites and their knockdown has led to 

reduced expression of their host gene (163). As an example, the ciRNA ci-ankrd52 has been 

shown to associate with the polymerase II elongation machinery and acts as a positive regulator 

of transcription. Apart from the direct regulation through RNA polymerase II interaction, 

circRNAs can indirectly reduce the pool of canonically spliced transcripts, since it seems that in 

some cases backsplicing and linear splicing are under competition. This splicing competition 

model is still under debate. It has been shown that depletion of the RNA A→I editing factor 

ADAR, which is able to associate to circRNA-generating intron:intron duplexes and antagonize 

base pairing, increased the circRNA pool, but in contrast, the canonical linear splicing did not 

decreased (161). In contrast, in (146) it has been reported that for 45% of the detected ecRNAs, 

the corresponding colinear transcript product of the exon skipping model was detected. A 

second direct regulation of circRNAs to control host gene linear splicing has been shown, in 

which some circRNAs are able to bind to their host gene DNA forming an R-loop (RNA:DNA 

hybrid). The circRNA derived from exon 6 of the SEPALLATA3 (SEP3) gene in Arabidopsis forms 

an R-loop with their cognate DNA locus, which results in transcriptional pausing, favouring the 

recruitment of splicing factors and increasing the abundance of the exon-skipped alternatively 

sliced variant (164). 

In addition to the nuclear regulation of alternative splicing or host canonical linear 

splicing of some circRNAs, it has been shown that circRNAs localized in the cytoplasm act 

through totally different pathways. One of the first functions discovered for circRNAs was their 

miRNA sponge activity. It was shown that some circRNAs has multiple binding sites for a unique 

miRNA or miRNA family and they act by sequestering the miRNA mature sequence, allowing the 

normal expression or stopping the degradation of the targeted mRNA. Two well-known miRNA 

sponges are the circRNAs originating from the CDR1-AS and SRY genes. The CDR1-AS related 

circRNA has been shown to have more than 60 binding sites for miR-7 (165,166), while the SRY 

related circRNA has 16 binding sites for miR-138 (167), both circRNAs with probed miRNA 

sponge activity. At first, it was though that the miRNA sponge activity was an extended function 

of circRNAs, but there are actually few circRNAs containing enough miRNA binding sites to act 

as sponges, while other circRNAs are only exceptions (144). 

Certain circRNAs has been shown to be able to interact with proteins in the cytoplasm, 

sequestering them or forming different complexes. One example is the FOXO3 related circRNA, 
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which has been shown to interact with senescence-related proteins ID1 and E2F1 and stress-

related proteins HIF1a and FAK (168), sequestering  them and avoiding their usual  biological 

activities. In addition, this circRNAs has been shown to form a ternary complex with p21 and 

CDK2, which results in arrested function of CDK2 and in blocked cell cycle progression (154). 

Another examples of protein binding circRNAs are the ANRIL and PABPN1 related ones. 

circANRIL was demonstrated to bind to members of the PeBoW complex, which functions in pre-

rRNA processing during 60S ribosome maturation, and results in reduced ribosome biogenesis, 

while circPABPN1 is thought to compete with its parental host gene for binding to HuR, which is 

a RNA-binding protein that augments stability of other mRNAs and can bind to introns to 

modulate splicing of pre-mRNAs (161). 

 

 
Figure 1.13: Mechanism of action and cellular localization of circRNAs. (a-b) Nuclear functions 
of circRNAs. (c-e) Cytoplasmatic functions of circRNAs. a) EIciRNAs and ciRNAs can stimulate 
RNA polymerase II transcriptional initiation at the transcription start site. b) circRNAs bind to 
DNA forming a DNA:RNA hybrid (R-loop) that impairs RNA polymerase II, which results in 
stimulation of parental exon skipping. In other cases, the circRNA production directly 
antagonizes the production of the colinear transcript. c) circRNAs can interact with proteins and 
inhibit their usual function. Two specific cases are shown. d)  circRNAs can act as miRNA sponges 
and impede the mRNA decay or translation inhibition of miRNAs. e) Some circRNAs are thought 
to be translated into proteins, but there is not in vivo demonstration of such capacity (figure 
adapted from (161)). 

After seeing that circRNAs lack both 5’ cap and poly(A) tail, they were considered to not 

undergo any translation and, thus, they were considered non-coding elements. But most 

circRNAs originate from coding genes and contain different exons, and therefore, some circRNAs 

have been shown to contain open-reading frames (ORFs) or internal ribosome entry sequences 

(IRES), so it would be a possibility that some circRNAs could be translated. In a recent study, it 

was shown by a recent technique named TrIP-seq (Transcript Isoforms in Polysomes 
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sequencing), which is a technique based on polysome profiling and RNA-seq to identify different 

populations of RNAs associated with different numbers of ribosomes (Briefly, ribosomes are 

stalled during elongation with cycloheximide and then different polyribosomal complexes are 

separated using sucrose density gradient fractionation to prepare later sequencing libraries), 

that multiple circRNAs co-sediment with translating ribosomes (152). In addition, N6-

methyladenosine (m6A) modifications have been previously related to cap-independent 

translation initiation and it has been shown that certain circRNAs with potential translational 

activity are highly methylated (160,168). Despite all that, the potential regulatory mechanism of 

circRNA translation is totally unknown, but some factors such as eukaryotic initiation factor 4 

gamma (elF4G2), methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) 

have been previously related to the circRNA translational activity (160). Further experimental 

validation is needed to test whether these circRNA candidates are truly translated or whether 

their association with ribosomes has other functionality. 

Finally, different studies have pointed out that some circRNAs could be reverse 

transcribed in cDNA and integrated again into the genome, generating circRNA-derived 

pseudogenes (144). Taking into account that a circRNA-derived pseudogene would need an 

exon-exon junction in reverse order (non-colinear), 33 pseudogenes were predicted to originate 

from the RFWD2 related circRNA (144). 

 

1.4.2.4 Databases and nomenclature 
 

In contrast to miRNAs, circRNAs does not have a clear structure, which makes them hard to 

annotate and predict their functionality. The two main databases for circRNAs are circBase 

(http://www.circbase.org/) and CIRCpedia (http://www.picb.ac.cn/rnomics/circpedia/) and 

each one has their one nomenclature system. There is no consensus nomenclature for the 

circRNAs in common. In addition, both databases only have human, mouse, fly and worm 

circRNAs for now (CIRCpedia has some additional rat and zebrafish circRNAs). Furthermore, 

different studies have pointed out that those databases based on circRNA predictions have a 

high percentage of false positives. Apart from circRNA annotation databases, there exist others 

recording miRNA-circRNA predicted interaction such as circRNABase 

(http://starbase.sysu.edu.cn/starbase2/mirCircRNA.php) and other recording circRNA-disease 

associations such as circ2Traits (http://gyanxet-beta.com/circdb/). 

 

1.5 Project origin 
 

In 2008, there was an outbreak of bluetongue virus (BTV), which causes the ruminant disease 

bluetongue, through Europe. BTV is a non-contagious insect-borne Orbivirus, which mainly 

affects sheep and with less frequency cattle and goats. Until recently at that time, there were 

only live attenuated vaccines developed against such disease, but the risks associated with such 

vaccines were enough to discourage their use in several countries. The first new case of BTV 

serotype 8 (BTV-8) in Europe during 2008 was probably detected in Cantabria, Spain (169). Early 

in 2008, several inactivated vaccines for BTV-8 were made commercially available. At the same 

time, the BTV serotype 1 (BTV-1) was spreading. A rapid development of an inactivated vaccine 

was possible as government and industry in Spain were already collaborating in the production 

of an inactivated vaccine against BTV serotype 4 (169). 

The re-emergence of the disease and the availability of inactivated vaccines made the 

European Union to decide to start a vaccination campaign. In Spain, animals received vaccines 

http://www.circbase.org/
http://www.picb.ac.cn/rnomics/circpedia/
http://starbase.sysu.edu.cn/starbase2/mirCircRNA.php
http://gyanxet-beta.com/circdb/
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against two serotypes of the virus (mainly BTV-1 and BTV-8) with prime inoculation and 

boosting, thus receiving a total of 4 vaccines in less than a month. After such vaccinations, both 

composed of aluminium hydroxide salts, a new syndrome with an acute nervous phase normally 

followed by a chronic cachectic phase was seen in some animals and it had severe consequences 

in the sheep industry in Spain (5). Such symptoms were thought to be caused by the repetitive 

inoculation of aluminium adjuvants and their accumulation in the organism, as there were 

previous reports of adverse effects caused by the repetitive inoculation of vaccines in other 

organisms, although such reports remain controversial and are under constate debate in the 

scientific community. The clear advantages of vaccination are well documented, whereas the 

risk of adverse effect is poorly documented or hypothetical in some cases. 

The project started in an attempt to check if the symptoms shown after vaccination were 

caused by the adjuvant, trying to reproduce the syndrome in a flock of sheep exposed to multiple 

vaccinations. The experiment would allow to study in more detail the mechanism of action of 

aluminium hydroxide as adjuvant, as it is not totally understood how the adjuvant perform its 

function in the organism. 

 

1.6 Aims and outline of the thesis 
 

For approximately 90 years, different aluminium compounds have been used as adjuvants in 
veterinary and human vaccines. Aluminium Hydroxide, Aluminium Phosphate and Aluminium 
Sulfate are the main forms of aluminium used as adjuvants. Despite its widespread use, the 
mechanism of how aluminium-based adjuvants exert their beneficial effects is not completely 
known. In addition, in some cases adverse effects have been described after inoculation. 

In 1998, a new inflammatory muscle disorder was described in which the presence of 
aluminium conglomerates in macrophages was demonstrated and was linked to the inoculation 
of vaccines with aluminium adjuvant, the disease is currently known as macrophagic Myofasciitis 
(MMF). Different studies with animal models have concluded that vaccines with aluminium 
hydroxide as an adjuvant can cause local tissue damage and behavioural neurological changes 
similar to those seen in MMF. In sheep, a form of adjuvant-induced autoimmune/ auto-
inflammatory syndrome (ASIA – Autoimmune /Autoinflammatory Syndrome Induced by 
Adjuvants) has been described in association with repeated inoculation of aluminium-based 
vaccines. This syndrome was detected in sheep after a mandatory vaccination in ruminants 
against the bluetongue virus in 2008 in Spain. 

Despite indications of negative effects after vaccinations in predisposed individuals, the 
need for vaccinations and the beneficial effects they have for the general population is 
undeniable. All this is a subject of great controversy in the scientific community. The fact of 
having been used for so long without fully knowing its mechanism of action does not help. More 
studies on vaccination are necessary to try to decipher how aluminium acts as an adjuvant, and 
it can be beneficial to improve future vaccine developments. 

In this thesis project, the study of the effect of repetitive vaccination (by means of 
vaccines with aluminium hydroxide as an adjuvant) with transcriptomics and bioinformatics 
technologies is being carried out, in an attempt to decipher aluminium hydroxide mechanism of 
action. RNA sequencing (total RNA-seq and miRNA-seq) is being used to study global gene 
expression. This technique has several basic advantages over other technologies. It has a large 
dynamic range of expression and is not limited to detecting transcripts that correspond to pre-
existing genomic sequences, which makes it particularly attractive for use in non-model 
organisms whose sequence is not completely determined, as is the case with sheep. The works 
carried out by RNA-seq in sheep are scarce, although they are increasing little by little thanks to 
the lowering of cost of the technology. In addition, there are still few works in which the new 
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RNA sequencing technologies have been applied to motorize the immune response to 
vaccination. 

Thus, the general aim of this work is the identification of genes and regulatory elements 
involved in the immune response induced by the repetitive inoculation of vaccines with 
aluminium hydroxide by genomic and bioinformatic techniques. It is intended to deepen the 
knowledge of the effect of aluminium hydroxide as an adjuvant, especially at the genomic level, 
which would allow us to understand the process in a more detailed manner. The hypothesis of 
this doctoral thesis work is that there are differentially expressed genes and regulatory elements 
in animals exposed to aluminium and that such effects can reach distant organs. These genes 
and the routes involved will allow us a better understanding of the body's response to 
aluminium. 

The specific objectives of this doctoral thesis work are: 
i) Quantification of the level of expression at the genomic level of mRNAs and miRNAs in 

healthy animal tissues (prior to the repetitive vaccination experiment) and that have 
been exposed to repetitive vaccinations during the experiment. Samples from two 
different tissues will be sequenced: peripheral blood mononuclear cells (PBMCs), with 
samples at the start and at the end of the experiment; and parietal lobe cortex, with 
only samples after the vaccination schedule. 

ii) Comparison of the expression, co-expression and interaction at the genomic level of 
mRNAs and miRNAs, which will be studied in parallel, in the groups of animals analysed. 

iii) Detection and characterization of new non-coding transcripts as circular RNAs, in 

addition to studying possible roles of these elements in the mechanism of action of 

aluminium. 
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Chapter 2 

2 Materials and methods 
 

 

Due to affordable tariffs and its ability to characterize without prior knowledge the 

transcriptomes of non-model organisms, RNA-seq technology (alone or in conjunction with 

other NGS technologies) has become the main choice for genome wide analyses. When working 

with this kind of data, laboratories must deal with storage of enormous quantities of data and 

analysis workflows that are not fixed and require high computational resources. 

This chapter briefly introduces a general background for each step of the analysis done 

in our data. First, a detailed description of the sampling procedure and the schedule followed 

during animal treatment will be given. Then, a brief description of parameters that must be 

taken into account for an RNA-seq experiment design will be presented, explaining the set-up 

of this thesis. Finally, the workflows executed in the data presented in this thesis will be given, 

explaining each step in detail and giving a brief description of the programs that can be used. A 

total of three different workflows will be explained: for both total RNA-seq and miRNA-seq 

differential expression analysis and another one for circRNA annotation. 

 

2.1 Sampling workflow 
 

The sampling procedure employed in this work is presented in figure 2.1. Briefly, twenty-one 

Rasa Aragonesa purebred lambs were selected from a single pedigree flock of certified good 

health at three months of age, with the condition of not having undergone any vaccination 

before the experiment. The flock analysed in this study was stablished at the experimental farm 

of the University of Zaragoza and was always maintained indoors, with ideal controlled 

conditions of housing, management and diet. Before the start of the experiment, the animals 

were care for two months to acclimatize to the new environment, so they were five months old 

when the experiment started. Then, all lambs were randomly distributed in different treatment 

groups, each consisting of 7 animals. One of the groups, from now on denominated vaccine 

group (Vac), received a subcutaneous treatment with commercial vaccines based on aluminium 

hydroxide adjuvant. Another group, denominated adjuvant group (Adj), received equivalent 

doses to the commercial vaccines of aluminium hydroxide only (Alhydrogel®, CZ Veterinaria, 

Spain) diluted in phosphate-buffered saline (PBS). Finally, PBS was administered to the control 

group (Control). Blood samples were taken at the start (before any vaccination) and at the end 

of the experiment, while for encephalon (parietal lobe cortex) and spleen only samples at the 

end were taken. A more detailed description of the samples from each tissue can be seen later 

in their corresponding chapter. 

It must be pointed that all experimental procedures were approved and licensed by the 

Ethical Committee of the University of Zaragoza (ref: PI15/14). Requirements of the Spanish 

Policy for Animal Protection (RED53/2013) and the European Union Directive 2010/63 on 

protection of experimental animals were always fulfilled. 
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Figure 2.1: Experimental design. Samples from three different groups were obtained for 
sequencing (total RNA-seq and miRNA-seq). 
 

2.2 Vaccination Schedule 
 

The complete experiment lasted 475 days, from February 2015 to June 2016. During that period 

of time, nine different vaccines were administered to each animal, which comprises a total of 

19 inoculations throughout 16 different inoculation dates. All vaccines, except for Heptavac P 

Plus which contains toxoid, are composed of inactivated bacteria or viruses, and they not contain 

purified antigens for a specific pathogen. As previously stated, sheep were divided in three 

different group, each receiving a different inoculum (see figure 2.1). The Vac group only received 

commercial vaccines with aluminium hydroxide as adjuvant. All commercial vaccines were 

administered following manufacturer recommendations and leaving between each inoculation 

the recommended time. For the Adj group, for each time of inoculation a solution was prepared 

with a concentration equivalent in aluminium in mg/g. To do so, Alhydrogel was diluted in PBS 

at the concentration of the commercial vaccine that was used each time. A total amount of 81.29 

mg of Al per animal was given in the Vac and Adj groups throughout all the experiment. A 

detailed list of the commercial vaccines used in this study can be seen in table 2.1, while in figure 

2.2 a detailed timeline with the followed vaccination schedule can be seen. 

 

2.3 RNA sequencing 
 

2.3.1 Experimental Design 
 

2.3.1.1 Parameters that must be taken into account 
 

When designing an RNA-seq experiment, multiple parameters must be taken into account. 

Depending of the organism under study or the main objectives of the experiment, different 

platforms or set ups could be chosen. If the main objective of the experiment is the annotation 

of new genes, understanding gene as any element of the DNA that is transcribed regardless of 
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whether it is protein coding or not, or a de novo transcriptome assembly of a non-model 

organism, a platform that returns longer fragments would be preferred. In contrast, if the 

objective of the experiment is a differential expression analysis of a well or partially annotated 

organism, a platform that returns more fragments at the cost of being shorter is preferred for 

an adequate quantification of lowly expressed transcripts. Apart from the platform selection, 

there are other parameters that must be chosen before the sequencing of libraries. Among the 

most important characteristics that would be explained in more detail below are: single-end or 

paired-end libraries, strand specificity, poly(A) or rRNA depleted libraries, sequencing depth, 

read length and number of replicates. 

 

Table 2.1: Commercial vaccines used on sheep in the experiment of this thesis. 

Vaccine 
number 

Commercial 
name Manufacturer Antigen/s 

Inoculation 
day 

mg of Al  
per dose 

1 Heptavac P Plus  MSD Animal 
Health S.L. 

Pasteurella multocida, 
Mannheimia haemolytica, 
Clostridium spp. 

0, 23, 233 7.5 

2 Autogenous vaccine Exopol Staphylococcus aureus  
spp. Anaerobius 

44, 69, 349 1.64 

3 Vanguard R  Zoetis Rabies virus 98 1.03 

4 Agalaxipra  Hipra Mycoplasma agalactiae 129, 146 6.76 

5 Ovivac CS  Hipra Chlamydophila abortus,  
Salmonella abortus ovis 

209, 233 5.60 

6 Autogenous vaccine Exopol Corynebacterium  
pseudotuberculosis 

254, 272 1.32 

7 Bluevac-1  CZ Veterinaria 
S.A. 

Bluetongue virus serotype 
1 

293, 329 4.18 

8 Bluevac-4  CZ Veterinaria 
S.A. 

Bluetongue virus serotype 
4 

293, 329 4.16 

9 Bluevac BTV 8 CZ Veterinaria 
S.A. 

Bluetongue virus serotype 
8 

449, 470 4.40 

 

 
Figure 2.2: Followed timeline with the vaccination dates. Nine different vaccines were 
administered to each animal, which comprises a total of 19 inoculations throughout 16 different 
inoculation dates. 

One of the most important parameters to take into account when designing an RNA-seq 

experiment is the sequencing depth or coverage (i.e. number of reads X read length / target 

size). Despite being thought at first that RNA-seq technology produced an unbiased 
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quantification of the transcriptome, now it is known that longer transcripts generate more reads 

than shorter ones of similar expression and that a great proportion of reads is concentrated on 

a few highly expressed transcripts (121). Thus, the sequencing depth would determine the ability 

to detect rare or lowly expressed transcripts, since higher sequencing rates would allow for a 

more accurate quantification of expression levels. Blencowe et al. (2009) estimated that for 

single-end sequencing   ̴700 million reads would be required to quantify >95% of transcripts, but 

with less than 10 million reads >80% of transcripts were accurately sequenced (170). If the main 

objective of the study is a differential expression analysis, it has been shown that with a 

moderate sequencing depth a stable detection of protein-coding genes can be achieved (121). 

In contrast, if the main objective is the detection of rare transcripts such as non-coding RNAs, 

higher depths are needed. In table 1.4 can be seen the recommended depths or the range of 

depth of other studies found for each analysis type. Such recommendations are not graved into 

stone, as such values can vary greatly depending on the organism under study or the platform 

used for sequencing between others. It must be pointed that there is no clear consensus in the 

required minimum depth in the case of long non-coding RNAs (lncRNAs) and circRNAs 

identification. It has been suggested that a minimum of 100 million reads may be needed for 

reliable lncRNA prediction (171), but  studies with a mean sequencing depth greater than 40 

million reads have been able to report lncRNAs (172,173). Furthermore, studies from rRNA 

depleted total RNA libraries with a mean sequencing depth of 30 million reads have been able 

to detect circRNAs (174,175), although higher sequencing depths may be recommended as only 

junction spanning reads are used to identify circRNAs (176). 

 

Table 2.2: Recommended sequencing depth for each RNA-seq application. 

Analysis type 
Recommended depth 

(million reads) References 

Differential expression (DE) 10-25M https://genohub.com/ngs/ 
Alternative splicing 50-100M https://genohub.com/ngs/ 
De novo assembly 100-200M https://genohub.com/ngs/ 
SNP discovery 50-100M https://genohub.com/ngs/ 
miRNA DE 1-2M https://genohub.com/ngs/ 
miRNA discovery 5-8M https://genohub.com/ngs/ 
lncRNA annotation 40-100M (171–173) 
circRNA annotation >30M (174,175) 

 

Other parameter that must be taken into account when designing RNA-seq libraries is 

whether a single-end (SE) or paired-end (PE) sequencing will be done. In SE sequencing, reads 

from one end of an RNA fragment are generated, while in PE sequencing, after the first read 

with a specified length is generated from one end, the opposite end of the fragment is 

sequenced. As the fragmentation step and size selection step during library construction 

produces RNA fragments of known length and the reads produced during sequencing are of a 

predetermined size, the distance between each paired read is known and this information can 

be used when aligning reads. Because of that, PE sequencing allows for a better detection of 

genomic rearrangements (insertions, deletions or inversions), repetitive regions and novel 

transcripts. Despite the clear advantage of PE sequencing, it must be pointed out that it is more 

expensive and depending of the interest of the study, a SE approach can be enough (e.g., as 

most small non-coding RNAs are short, some of them being shorter than the reads generated 

from the sequencing machine, a SE sequencing is enough). 

https://genohub.com/ngs/
https://genohub.com/ngs/
https://genohub.com/ngs/
https://genohub.com/ngs/
https://genohub.com/ngs/
https://genohub.com/ngs/
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In addition, at the library construction step, it must be chosen between a poly(A) 

selection or an rRNA depletion procedure. This step is necessary to remove some highly 

expressed transcripts without interest such as rRNAs (they can represent over 90% of the RNAs 

present in a cell (177)), which in case of keeping them during the sequencing, they would take 

the majority of reads, leaving the rest of the transcriptome underrepresented. In the poly(A) 

selection method, poly(dT) oligomers attached to a surface are used for selection of RNAs with 

poly(A) tails at the 3’ end, which results of selection of mature mRNA transcripts, ignoring most 

non-coding elements. In contrast, in the rRNA depletion method, oligomers complementary to 

rRNAs are used for removal of nearly all rRNA transcripts, which results in a full transcriptome 

sequencing (including non-coding elements). It has been shown that rRNA depletion libraries 

return more intronic reads than poly(A) selection ones, most of them originating from non-

spliced immature transcripts (178). If the main objective are protein-coding genes, a poly(A) 

selection is recommended. To achieve an exon coverage similar to a poly(A) library, a higher 

depth would be necessary in a rRNA depletion library. As a result of a broader fraction of the 

transcriptome being sequenced in rRNA depletion libraries, there is discrepancies between 

multiple genes in both methods, making the expression levels of both of them incompatible and 

hard to compare without a prior correction (179). 

Another consideration that must be taken into account is whether to generate a strand-

specific library, in which the orientation of the original RNA transcript is known. Without the 

strand information, the quantification of overlapping genes in opposite strands remains a 

challenge. Depending the alignment of the reads, two strand specific libraries can be 

distinguished (see figure 2.3 for more information). 

 

 
Figure 2.3: Library strandness. If read 1 (or single-end reads) comes from the forward strand 
(original RNA strand) and reads 2 comes from the reverse strand, the library is said to be 
“stranded”. At the contrary, if read 1 (or single-end reads) comes from the reverse strand and 
read 2 comes from the forward strand, it is said to be “reverse stranded”. In the case that both 
cases happen in a library in a similar proportion, it is said to be “unstranded”. The “reverse 
stranded” libraries originate from library preparations based on dUTP methods (like the Illumina 
TruSeq stranded libraries), while “stranded” libraries surge from less common library 
preparations (such as standard SOLID). 
 

Another consideration that must be taken into account when preparing libraries for 

sequencing is the desired read length, which would depend on the objectives of the experiment. 

It has been shown that reads of 50 bp are enough for differential expression analyses in well 

annotated organism, not being any substantial change with longer reads, while for splice 

junction detection, the longer the reads the better, showing 100 bp PE libraries the best 

performance (180). Illumina itself (https://emea.support.illumina.com/) recommends at least 

https://emea.support.illumina.com/
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SE 50-75 bp length reads for gene expression of the coding transcriptome, PE 75 bp reads for 

full transcriptome analysis, which would allow for de novo assembly or identification of novel 

variants and splice sites, and SE 50 bp reads for small RNA analysis. 

Finally, the number of replicates that should be included in an RNA-seq experiment is a 

crucial factor. There are two kind of replicates, technical and biological, and each one is used to 

address different questions. Technical replicates refer to repeated measurements of a sample 

and they are used to test the variability of a protocol or assay. These types of replicates evaluate 

the precision and reproducibility. In the case of RNA-seq experiments, it has been shown to have 

high technical reproducibility and there is no need of technical replicates (181). On the other 

hand, biological replicates refer to parallel measurements of biologically distinct and 

independently generated samples. These types of replicates are used to test the biological 

variation. The more samples available, a better improvement in the strength for making 

statistical inferences. Due to the high cost of RNA-seq studies, most laboratories restrict their 

inferences to small sample groups and try to balance the number of replicates and sequencing 

depth. Generally, more replicates are preferred than a higher sequencing depth for differential 

expression analyses, always taking into account that if the interest is the detection of lowly 

expressed genes or alternative-splicing, higher depths would be needed. Independent of the 

biological question of interest, it has been pointed out that to make inferences on the population 

a minimum of three biological replicates per group are required (89). 

 

2.3.1.2 Design Setup 
 

As previously stated, the main objective of this study is the differential expression between the 

different groups (described in the sampling workflow section) in an attempt to discern the 

mechanism of action of aluminium-based adjuvants. It must be pointed that the sheep reference 

genome (Oar v3.1), like other ruminant reference genomes, are assembled and with an 

extensive annotation in protein-coding genes, but they are constantly being improved and some 

pathways are still partially described. In addition to differential expression, we are also 

interested in annotation of non-coding elements (mainly miRNAs, circRNAs and lncRNAs) to 

check if they have any role in the adjuvant mechanism. Taking into account that such non-coding 

elements are poorly annotated in the reference genome (there is no database recording sheep 

circRNAs; there are   1̴55 sheep miRNAs in miRbase; and most of the annotated sheep lncRNAs 

in NCBI or ENSEMBL are predicted), it is clear that a PE stranded library would be required with 

a high sequencing depth and an rRNA depletion step. 

Total RNA-seq libraries were prepared according to the TruSeq Stranded Total RNA kit 

with Ribo-Zero (Illumina, San Diego, CA, USA) for encephalon samples and the TruSeq Stranded 

Total RNA kit with Ribo-Zero Globin (Illumina, San Diego, CA, USA) for PBMCs. Total RNA libraries 

were sequenced on a HiSeq2000 sequencer with a mean sequencing depth of 75 million and 70 

million 75 base-pair (bp) paired-end reads at CNAG (Centro Nacional de Análisis Genómico, 

Barcelona, Spain) for encephalon samples and PBMCs, respectively. miRNA libraries were 

sequenced in a Hiseq2500 sequencer with a mean sequencing depth of 19 million and 17 million 

50 bp single-end reads at CRG (Centro de Regulación Genónimca, Barcelona, Spain) for 

encephalon samples and PBMCs, respectively. A detailed description of the sequenced samples 

and summary statistics will be given later in the corresponding chapters for each tissue. 

 

2.3.2 Total RNA-seq differential expression  
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Once the RNA libraries have been prepared and sequenced, the returned huge files need to be 

analysed through multiple steps, which would depend on the main objective. The process begins 

with separate files for each sample (in FASTQ format) in which the sequenced fragments are 

recorded (in the case of PE samples, two files are returned, one for each end of the fragment). 

Briefly, for a differential expression (DE) analysis, the main scheme would be composed of the 

following steps: 

 

1. Quality control and pre-processing of reads. 

 

2. Alignment of reads to a reference genome (In case of a non-model organism or poorly 

annotated organism, a de novo assembly). 

 

3. Quantification of gene (or transcript or exon) expression levels. 

 

4. Differential expression analysis. 

 

5. Gene set enrichment analysis. 

 

In this section, a brief description of the major steps for a DE analysis of total RNA data 

will be provided, with a brief summary of the different programs that can be used in each step. 

At the end, the exact workflow used in the data presented in this thesis will be provided. 

 

2.3.2.1 Quality control and pre-processing 
 

Quality problems can arise from different sources, mainly the samples themselves (e.g., RNA 

degradation), at the library preparation step or at sequencing. Among the most common bias 

sources, incorrect base calling at sequencing, non-uniform transcript coverage (e.g., 

consequence of the sequence GC content), untrimmed adapters, sequence contamination (e.g., 

other organism) or duplicate sequences (due to PCR, RNA degradation or bad rRNA depletion, 

among others). Prior to any analysis step, the quality of the samples must be checked, since 

some biases can affect future steps, such as alignment or quantification. Some biases can be 

corrected by trimming programs (mostly bad quality base calls, adapters or repetitive 

sequences), others must be accounted by normalization or batch effect removal methods after 

gene quantification, while others are not possible to correct for and must be taken into account 

when interpreting the data. In table 2.3 can be seen a brief list of different quality control 

programs that can be applied to NGS data. Among them, FASTQC is one of the most used by 

laboratories, as it returns quality metrics at a fast pace. Since most of the tools returns similar 

metrics, the ones from FASTQC would be described in more detail, explaining what would be 

expected in presence of any kind of bias.  

All sequencing machines returns multiple fragments in which each base has an assigned 

quality measure called Phred score. Phred scores, Q, represents the estimated probability of a 

base being incorrect in Illumina sequencing and is determined based on base calling peaks. It 

would be interpreted as follow: 

 

𝑄 =  −10 𝑙𝑜𝑔10 𝑃 , being P the error probability. 
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Table 2.3: List of tools for quality control of RNA-seq samples (some of them are able to do trimming of samples), with their main characteristics 
and returned statistics and plots. For a more detailed description of the returned statistics by each program, their corresponding webpage is 
advised. Table based on tool references and corresponding webpages. 

Tool Last Version*1 Main Features Returned Statistics and Plots 

FastQC (182) v0.11.8 Developed in Java. Has a standalone version with a 
graphical user interface. Multithreading. Only SE 
reads*2.  

Per base sequence quality. Per base sequence content. Per base GC 
content. Per sequence GC content. Per base N content. Sequence length 
distribution. Duplicated Sequences. Overrepresented sequences. 
Overrepresented K-mers 

Fastp (183) v0.20.0 New version of AfterQC developed in C++. 
Multithreading. Can perform filtering and trimming of 
adapters and bad quality bases. Allows SE and PE reads. 

Adapters presence. Duplication rate. Inserts size estimation. Per base 
sequence quality. Per base sequence content. Overrepresented 
sequences. K-mer counting. 

Fastqp (184) V0.3.4 Developed in Python. Quite similar to FASTQC. Not 
multithreading. Only SE reads*2. 

Quality score heatmap. Per base sequence quality. Per base GC content. 
Per sequence GC content. Per base sequence content. Reference 
mismatches by cicle. K-mer content. Read length distribution. 

FASTX-Toolkit (185) v0.0.13 Web-based and command-line versions. Can perform 
filtering and trimming of adapters and bad quality 
bases. Only SE reads*2. 

Per base sequence quality. Per base sequence content. 

HTSeq (186) v0.11.2 Developed in Python. Not multithreading. Allows SE 
and PE  reads.  More focused  for post alignment 
quality. 

Per base sequence quality. Per base sequence content for aligned and 
non-aligned reads. Transcript coverage. 

KRAKEN (187) v13-274 Tool with three modules designed mainly for small RNA 
NGS data. Its Reaper module can be used for quality 
control and trimming. 

Per base sequence quality. Per base sequence content. Sequence length 
distribution. 

MultiQC (188) - Not being directly a program that calculates quality 
metrics, it can aggregate quality results (pre-processing 
ones and post alignment ones) from multiple samples 
from numerous bioinformatics tools. 

Generates aggregate reports from 77 different bioinformatic tools 
(FastQC, Cutadapt, Trimmomatic, Bowtie, STAR, HISAT2, TopHat, Salmon, 
StrinTie, feaureCounts, GATK, HTSeq, Picard, RSeQC, Samtools, SnpEff, 
etc.). 

*1 Last checked on 29/10/2019. 
*2 Each PE file must be executed separately. 
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Table 2.3: (continued). 
Tool Last Version*1 Main Features Returned Statistics and Plots 

NGS QC Toolkit 
(189) 

v2.3.3 Developed in Perl. Multithreading. Can perform 
filtering and trimming of reads. Allows SE and PE reads. 

Per base sequence quality. Per base sequence content. Per sequence GC 
content. Summary of quality check and filtering. 

PRINSEQ (190) v0.20.4 Developed in Perl. Web-based and command-line 
versions. Can perform filtering and trimming. Not 
multithreading. Allows SE and PE reads. 

Per base sequence quality. Per base sequence content. Sequence length 
distribution. Per sequence GC content. Per base N content. Duplicated 
Sequences. Sequence complexity (DUST and Entropy). Sequence 
contamination (PCA). 

RNA-SeQC (191) V2.3.4 Developed in Java. It is built on the GATK and Picard API. 
Not multithreading.  Allows SE and PE reads. 

Per base sequence quality. Per base GC content. Duplicated Sequences. 
Sequence length distribution. rRNA reads. Transcript coverage. Other 
plots related to alignment results. 

RSeQC (192) v3.0.1 Developed in Python. Allows SE and PE reads. Plotting 
modules for alignment quality. 

Per base sequence quality. Per base sequence content. Clipping profile. 
Deletion profile. Insertion profile. Mismatch profile. Transcript coverage. 
Calculates inner distance between read pairs. Junction annotation. 
Junction saturation. Duplicated Sequences. Per sequence GC content. 
Hexamer frequency. Transcript integrity number (TIN) calculation. 

SolexaQA++ (193) v3.1.7.1 Developed in C++. Support Illumina, Ion Torrent and 
454 data. Can be used in Windows systems. Can 
perform filtering and trimming. Allows SE and PE reads. 

Sequence quality heatmap. Mean quality distribution. Sequence length 
distribution. 

Trim Galore (194) V0.6.4 Developed in Perl. Wrapper tool around FastQC and 
Curadapt. For quality control and sequence trimming. 

Similar features to FastQC and Cutadapt. 

*1 Last checked on 29/10/2019. 

*2 Each PE file must be executed separately. 
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Thus, if a Phred quality score of a base is 30, the chance of that base being incorrectly assigned 

is 1 in 1000 (or has a 99.9% of being accurately assigned). Using the information given by these 

quality scores, bad quality bases can be trimmed off from the fragment to improve alignments 

to the reference genome. One of the most common plots from pre-processing tools such as 

FastQC or PRINSEQ is a box plot representing the median Phred quality for each base position. 

It gives an initial representation of the sequencing quality. In this kind of plots is common to see 

a linear decrease in base calling quality at the end of fragments, since most sequencing machines 

accumulate pre-phasing and post-phasing errors with long sequences (explained in more detail 

in the RNA-seq biases section in the Introduction). Other plot such as the average quality 

distribution can point if there is a subset of sequences with bad quality that need to be 

completely removed from the analysis. Furthermore, it is expected during library preparation a 

uniform sequence sampling from any long transcript, so if the sampling was truly random, the 

probability to found any base at each position would be constant. It has been shown that 

random hexamer priming introduces a bias in the first   1̴2 bases. Other plots such as GC content 

distribution or highly duplicated sequences can point for library contaminations (e.g., due to the 

presence of other organisms or deficient rRNA depletion). Finally, PRINSEQ calculates 

dinucleotide odds ratios and use that information to detect possible sequence contaminations 

through a principal component analysis (PCA). 

Once the quality of samples has been checked, adapter sequences, bad quality bases 

and low complexity sequences must be removed to improve the alignment to the reference 

genome or the de novo assembly. Apart from some tools listed in table 2.3 that can perform 

both quality checks and sequence filtering, in table 2.4 can be seen a brief list of some tools 

specifically designed for sequence filtering, base trimming or sequence correction. Generally, in 

RNA-seq data originating from long transcripts, it is uncommon to have adapter sequences in 

reads due to the limited sequenced lengt. In addition, it is always recommended to execute a 

length filtering step after quality trimming, since very short fragment can result from the 

trimming. Short reads can lead to ambiguously mapped reads. It should be noted that some 

biases (such as GC content) can not be corrected with these tools and must be addressed after 

sequence alignment. It has been shown da SolexaQA achieves the best performance (highest 

quality fragments while keeping  the highest number of aligned reads) in low quality RNA-seq 

datasets (195). In addition, in the same study, it has been pointed out that the best 

performances are always achieved when trimming using intermediate quality thresholds (Phred 

quality score between 20 and 30). Sequence trimming must be done with caution, since it has 

been shown that aggressive trimming strategies can lead to changes in gene expression 

estimates across multiple data sets and to a reduction in correlation with microarray data (196). 

 

2.3.2.2 Alignment to reference genome or transcriptome 
 

Once low-quality bases have been removed from the sequenced fragments, these sequences 

must be aligned or mapped to a reference genome to estimate the loci of origin. This step allows 

the determination of the exact coordinates of most reads, which would allow for novel transcript 

or gene discovery (if a transcriptome assembly is done after the alignment to the reference 

genome) or expression level quantification (at exon, transcript or gene level). In absence of a 

reference genome, fragments can be aligned against a reference transcriptome (In absence of 

both, a de novo assembly would be recommended). The alignment can be challenging due to 

several reasons: 1. Generally too short reads are aligned, but reference genomes can be large 

and with multiple repetitive regions (low complexity regions, repeats and pseudogenes), as a 
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consequence the sequence align to multiple places; 2. Aligners must cope with sequencing 

errors and variation; 3. Millions of reads must be aligned, a computationally intensive task; 4. 

Reference genomes from mammals and other organisms have intronic sequences, so some 

reads may align in a non-continuously manner and these reads must be spliced to determine 

correctly exon-intron boundaries; and 5. Sample specific attributes such as SNPs and INDELs. 

 

Table 2.4: List of tools for RNA-seq sequence filtering and trimming. All tools are compatible 

with paired-end data, unless otherwise stated. Table based on tool references and 

corresponding webpages. 

Tool Last Version*1 Main Features 

BBDuk (197) v38.70 Included in the BBMap package. In addition to usual quality-
related trimming and filtering, it can perform contaminant 
filtering via kmer matching, GC filtering, entropy-filtering 
and quality-score recalibration. A good choice for rRNA 
transcript filtering with a database such as SILVA, although 
other databases can be used if there is any suspected source 
of contamination of known origin. 

Cutadapt 
(198) 

v2.6 Adapter removal, quality trimming (if average quality below 
a pre-defined range), minimum length, discard reads 
containing more than a threshold of N bases. 

PRINSEQ 
(190) 

v0.20.4 Available as web application and command line. Quality 
trimming, minimum length, GC filtering (separate 
sequences in a bi-modal distribution of the GC content), N 
base filtering, entropy filtering, trim ends by quality scores. 

Scythe (199) v0.994 Tool using a Naive Bayesian approach to classify 
contaminant substrings for 3’-end adapter removal. It 
recommends to be executed to any other quality trimming 
tool. 

SEECER (200) v0.1.3 Tool for sequencing error correction, based on a hidden 
Markov Model. Removes mismatch and indel errors from 
the data. 

TagCleaner 
(201) 

v0.16 Tool for tag sequence (e.g. WTA tags) removal. 
Recommended to be run before any trimming. 

Trimmomatic 
(202) 

v0.39 Adapter removal. Multiple options for sequence trimming 
and cropping of Illumina data (sliding windows, minimum 
length, leading, trailing, average quality filtering). 

*1 Last checked on 30/10/2019. 
 

There are a great variety of tools for RNA-seq data alignment, each with its own strategy. 

These tools can be classified depending of their approach, mainly being two main categories: 

unspliced aligners and spliced aligners. Unspliced aligners align reads to the reference without 

any large gap and are limited to identify known exon and junctions, while spliced aligners can 

handle large gaps and are perfect for the detection of intron-spanning reads. Unspliced aligners 

can be further divided in “seed methods” and “Burrows-Wheeler transform methods”, while the 

spliced ones in “exon first” and “seed and extend” methods (203). In “seed methods” short sub-

sequences, called seeds, are aligned with perfect complementarity to the reference and, when 

a match is found, more sensitive methods are used to extend the seed alignment. In contrast, in 

“Burrows-Wheeler transform methods”, the reference is transformed in a structure that is 

efficient for searching complementary sequences. Among spliced aligners, “exon first” methods 

first map fragments in a continuously manner with an unspliced aligner and then, unmapped 
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reads are divided into shorter segments to try to align non-continuously. Alternatively, “seed 

and extend” methods directly split reads in shorter segments, seeds, and try to align with perfect 

complementarity and, when a match is found, more sensitive methods are used to extend and 

detect spliced alignments. The tool will be chosen depending the organism of interest and the 

main interest of the study. Each tool has its own benefits and drawbacks, some of them being 

faster or being more sensitive for splice junction detection, while others such as “exon first” 

based ones have been shown to be more deficient in some regions (Some spliced reads could 

be misaligned continuously to a pseudogene, instead of being aligned preferentially in a non-

continuously manner to the corresponding gene) (203). In addition, each aligner handles 

multimapping reads in a different manner, most of them discard such reads, while other allocate 

them randomly, based on an estimate of coverage or following a statistical model. In table 2.5 

can be seen a brief list of both unspliced and spliced aligners. In addition, in figure 2.4 can be 

seen a timeline with different aligner publication dates up to 2017. 

 

 
Figure 2.4: Timeline (up to 2017) with the publication date of different aligners (figure adapted 
from https://www.ebi.ac.uk/~nf/hts_mappers/). 

 

Among all the listed aligners, TopHat2, Hisat2 and STAR are one of the most popular 

seeing how many times their reference article has been cited by other researchers. In a study 

comparing different alignment protocols in 76-nucleotide (nt) PE data and simulated data with 

different alignment tools, among them GSNAP, MapSplice, STAR, TopHat and GEM, it was shown 

that MapSplice was quite a conservative aligner respect to mismatch frequency, indel and exon 

junction calls, while aligners such as GSNAP and STAR returned many false exon junctions if the  
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Table 2.5: List of tools for RNA-seq data alignment to some reference. Table based on tool 

references and corresponding webpages. 

Tool Last Version*1 Strategy Main Features 
Unspliced aligners 
Bowtie (204) v1.2.3 Burrows-Wheeler 

Transform (BWT) 
Index the reference genome with a Burrows-
Wheeler index based in the full-text minute-
space (FM) index. Mainly for short read (25-
50 bp) alignment. 

BWA (205) v0.7.17 Burrows-Wheeler 
Transform (BWT) 

Need to construct first a FM index. It not 
considers base qualities when evaluating hits. 
Perform Smith-Waterman alignment for 
unmapped reads. 

NovoAlign (206) v3.032.04 Hashtable of k-mers It uses Needleman-Wunsch algorithm and 
iteratively search the best alignment. 
Heuristics are used in calculation of alignment 
quality scores. Short read aligner that allows 
paired-end data. 

SHRiMP (207) v2.2.3 Smith-Waterman 
extension 

There is not support since 2014, although the 
code remains available. 

SOAP (208) - Seed and hash look-up 
table algorithms 

Appears as temporarily unavailable. 

Subread (209) v2.0.0 Seed-and-vote Use a large number of equi-spaced seeds 
(shorter than conventional ones), called 
subreads. All the seed in conjunction are used 
to obtain the optimal loci. Uses dynamic 
programming to complete the alignment. 

Spliced aligners 
Bowtie2 (210) v2.3.5.1 FM index (based on 

BWT) 
Improved version of Bowtie that support 
gapped and paired-end alignments. 

GEM3 (211) v3.6 Custom FM-index and 
adaptative gapped 
search 

Designed to obtain best results with 
alignment of long sequences (up to 1 Kb). 
Supports SE and PE modes. Also, supports 
both global alignment and local alignment 
models for different error models (i.e., 
hamming, edit, gap-affine). 

GMAP (212,213) 2019-09-12 Segment chaining using 
genomic hash tables, a 
greedy match-and-
extend algorithm using 
suffix arrays, hash 
tables, and nucleotide-
level dynamic 
programming 
procedures. 

Uses an oligomer chaining method that 
involves neither seeds nor extensions. It finds 
all matching 8-mers between the cDNA and 
genomic sequence, and then uses dynamic 
programming to find an optimal chain of 8-
mers. 

GSNAP (212,214) 2019-09-12 Segment chaining using 
genomic hash tables, a 
greedy match-and-
extend algorithm using 
suffix arrays, hash 
tables, and nucleotide-
level dynamic 
programming 
procedures. 

From the same authors of GMAP. Can align 
both SE and PE reads as short as 14 nt and 
arbitrarily long length. Can detect splicing, 
including interchromosomal, using 
probabilistic models or known splice junction 
databases. Allows for bisulfite-treated DNA 
alignment. 

HISAT2 (215) v2.1.0 Hierarchical indexing 
(Burrows-Wheeler and 
FM index) 

Same authors of TopHat. Uses an indexing 
scheme called Hierarchical Graph FM index 
(HGFM). It first does a short read alignment 
with bowtie2. 
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Table 2.5: (continued). 

Tool Last Version*1 Strategy Main Features 

MapSplice2 (216) v2.2.1 Bayesian regression First, it splits reads in shorter segments and 
align them with bowtie. Then, unmapped 
reads are aligned with gaps to infer splice 
junctions, with a quality score determined 
using a Bayesian regression. Supports PE and 
SE reads and can align reads of variable 
length. 

QPALMA (217) V0.9.3 Machine learning (uses 
extended Smith-
Waterman algorithm) 

Tool that exploits reads (including its quality 
information), splice site predictions, intron 
length and genome information. The only 
precondition is that there are genomic reads 
available that can be used to generate 
artificially spliced reads for training. 

RazerS 3 (218) v3.5.8 Based on counting q-
grams 

Searches for matches of reads with a percent 
identity above a given threshold, whereby it 
detects alignments with mismatches as well 
as gaps. Supports reads of arbitrary length 
with a large number of INDELs. An algorithm 
created with the sequencing of long 
fragments in mind, which usually have higher 
error rates. 

RNASequel (219) - - A tool that uses the spliced-read output of any 
aligner and de novo splice junction detection 
to perform an error-tolerant realignment. 
Recommended to use in combination with 
STAR by authors. 

RUM (220) V2.0.4 Burrows–Wheeler 
based algorithms, BLAT 

Reads are first mapped with Bowtie against 
the genome and transcriptome. Then, the 
information is merged and unmapped reads 
are sent to BLAT. Finally, Bowtie ans BLAT 
alignments are merged. It can be used for 
DNA sequencing (e.g., ChIP-Seq) and 
microarray probe mapping. 

STAR (221) v2.7 Maximal Mappable 
Prefix (MMP) 

The algorithm consists of two major steps: a 
seed searching step, in which a MMP is search 
for each read through an uncompressed suffix 
array, and a clustering, stitching and scoring 
step, in which alignments of the entire read 
are built by stitching all seed alignments 
trough a frugal dynamic algorithm. 
Recognised as fast aligner, but with high 
computational requirements. 

TopHat2 (222) v2.1.1 - It is in a low maintenance, low support state 
as it is superseded by HISAT2, which has the 
same core functionality, but in a more 
accurate and efficient way (said by its own 
authors). It first does a short-read alignment 
with bowtie. Then, with unmapped reads, it 

detects potential splice sites. It uses these 

candidate splice sites in a subsequent step to 
correctly re-align multiexon-spanning reads 
with bowtie2. For PE data, the process is run 
separately for each end and, at the final stage, 
both reads are analysed together. 

*1 Last checked on 04/11/2019. 
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junctions were not filtered out by the number of supporting reads (223). In that study, TopHat2 

and STAR were the fastest aligners, with STAR being the fastest one by a big difference. In other 

study, STAR, TopHat, GSNAP, RUM and MapSplice were compared in a simulated RNA-seq 

dataset and it was shown that all aligners exhibited desirable receiver operating characteristics 

(ROC) curves at high values of detection thresholds, while STAR exhibited the lowest false-

positive rate at the lowest detection threshold of 1 read per junction (221). In addition, in the 

same study, those aligners were compared to a real experimental RNA-seq dataset and it was 

shown that STAR and GSNAP achieved a higher percentage of reads aligned to the reference and 

that all aligners shown similar sensitivities to annotated junctions, while STAR, RUM and 

TopHat2 performed similarly for unannotated junctions. In other study using both simulated 

data and real data comparing STAR, GSNAP, OLego, TopHat2 and HISAT , it was shown that tools 

using a two-pass strategy (They do a first alignment and update the junction splice site 

information for in a second run achieve a better alignment of reads with short anchors) such as 

STAR, HISAT and TopHat2 had better alignment sensitivities (224). Futhermore, HISAT and STAR 

aligned the greatest number of reads. Despite simulated data allow for precise calculations of 

false-positive and -negative rates, it must be pointed that comparisons of aligners in simulated 

data may not reflect real experimental errors, and such comparisons must be taken with caution. 

 

2.3.2.3 Quantification 
 

Once a good quality alignment has been achieved, being the only interest of the study annotated 

genes, gene quantification (at exon, transcript or gene level) must be performed. In the case of 

any interest in novel genes, then a transcriptome assembly step would be necessary prior to 

quantification. With the quantification of genes, new quality measures such as sequencing depth 

saturation, read distribution between different genomic features, principal component analysis 

(PCA) for biases in data and coverage uniformity would be available. The simplest way to 

calculate expression levels would be at the gene and exon level, where each read is counted as 

an expression unit of a gene/exon if the reads is concordant with the annotated coordinates of 

the molecule of interest. In this case, only those genes with some genomic overlap (or genes 

located in opposing strands in the same locus in unstranded libraries) would be hard to count 

for. Quantification at the transcript level is harder due to different isoforms of a gene having a 

high proportion of genomic overlap. There are multiple gene quantification tools, each with a 

different way of dealing with multimapping reads (some ignoring these reads, others dividing 

them equally or with a probabilistic model) or with reads that overlaps with more than one 

molecule or partially falls in intronic sequence. In figure 2.5 can be seen different strategies to 

count reads implemented in the HTSeq tool, while in table 2.6 can be seen a brief list of 

quantification specific tools (some transcriptome assemblers are able to perform quantification 

at gene and transcript level) and their main characteristics. Despite the modes of action depicted 

in figure 2.5 are exclusive of HTSeq, it shows typical problems that most quantification tools 

must deal with: reads that spans intronic and exonic sequence (probably from pre-mRNA 

products), reads overlapping multiple genes and multimapping reads, among the most common 

features. While some quantification tools returns raw reads and leave bias correction for 

normalization procedures or batch effect correction programs, other tools try to account for 

such biases with probabilistic models as can be seen in table 2.6. 

In a recent paper, Sailfish, eXpress, Kallisto and RSEM were compared in simulated and 

real data and it was shown that all tools had similar accuracies, but Kallisto showed a higher 

performance on paralogs within a family and a higher run speed (225). In other study, 
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featureCounts and HTSeq-count were compared and it was shown that for SE data both tools 

returned quite identical counts, while for PE data there were more discrepancies mainly due to 

the way each tool handles those pairs that overlaps multiple genes (In the case that read1 aligns 

to gene A and gene B at the same time, but read2 only to gene B, feaureCounts assign that read 

to gene B, while HTSeq-count treats it as ambiguous) (226). In a more recent paper, seven 

different quantification tools (Cufflinks, RSEM, TIGAR2, eXpress, Sailfish, kallisto and Salmon) 

were compared in both experimental and simulated datasets, focusing on isoform quantification 

(227). It was shown that all methods, even with reasonable absolute abundances, have 

difficulties to quantify expression levels of isoforms whose relative abundance is low. 

 

 
Figure 2.5: Quantification modes implemented in HTSeq. It can be seen to which feature (gene) 
a read (green box) is assigned to in three different modes (union, intersection_strict and 
intersection_nonempty) depending of the read alignment. In the union mode a read is always 
assigned to a gene if the full read falls upon a gene unambiguously (independent if part of the 
read falls in intronic sequence). In the intersection_strict mode, a read must fall completely into 
the sequence of a gene unambiguously (those with intronic sequence are discarded). The 
intersection_nonempty mode is quite similar to the previous one, but allowing for intronic 
sequence overlap (figure adapted from https://htseq.readthedocs.io/en/release_0.11.1/count.html). 

https://htseq.readthedocs.io/en/release_0.11.1/count.html
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Table 2.6: List of tools for RNA-seq data quantification. Table based on tool references and 
corresponding web pages. 

Tool  Last 
Version*1 

Main Features 

Casper (228)  v2.20.0 Isoform level quantification for PE data through a Bayesian 
probabilistic model. Estimates probabilities of a read pair 
originating from an isoform by considering fragment 
length distribution and possible read non-uniformity 
coverage. 

EQP-QM 
(229) 

 v2.1.0 Gene, exon or junction quantification. The contribution of 
a read to a feature count is based on the read weight 
which is the inverse of the genome alignments of the read. 

eXpress (230)  v1.5.0 There is no longer development (last version 2017). 
Transcript-level quantification with a probabilistic 
assignment of ambiguously mapped sequences. 
Parameters for fragment length distribution, sequence 
bias and sequence read errors are used. Only known 
genes. 

featureCounts 
(226) 

 v2.0.0 From the Subread packge, quantification for genomic 
features such as genes, exons, promoters and genomic 
bins (user defined). Flexible in counting multimapping 
reads and reads overlapping multiple features (They can 
be excluded, fully counted or fractionally counted). Allows 
for chimeric read counting. A minimum number of 
overlapping bases and a minimum faction of overlapping 
bases to assign a read to a feature can be defined. 

HTSeq-count 
(186) 

 v0.11.1 Quantification to any given feature (see figure 2.5 for 
alignment modes). 

Kallisto (225)  v0.46.1 Transcript-level quantification through read 
pseudoalignment. Only k-mer length and the mean of the 
fragment length distribution are required for 
quantification (estimated during run time). Only known 
genes. 

RSEM (231)  v1.3.1 Gene and transcript quantification and credibility interval 
estimation. It aligns reads to features with Bowtie using 
parameters specifically chosen for quantification. After 
alignment, it computes maximum likelihood abundance 
estimates using the Expectation-Maximization algorithm 
for its statistical model. Only known genes. 

Salmon (232)  v1.0.0 Transcript-level aquantification. It can do the alignment of 
reads to reference (quasi-mapping) or take the output of 
other alignments against the transcriptome (not genome). 
It employs a new dual-phase statistical inference 
procedure and sample-specific bias models that account 
for sequence-specific, fragment GC-content, and 
positional biases. Also accounts for 5’- and 3’-sequence-
specific biases. Only known genes. 

Seal (197)  v38.71 From BBMap package, an alignment-free quantification 
tool, based on which reference sequences share the most 
k-mers with the query. Can handle ambiguous reads. 

*1 Last checked on 06/11/2019. 
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2.3.2.4 Normalization 
 

Once an expression table with all samples is obtained, data must be normalized to account for 

differences between libraries (different sequencing depths, transcript length, differences in GC 

content per sample or other biases such as non-uniform coverage). Multiple normalization 

methods have been developed, each one with different assumptions and objectives in mind. It 

must be pointed that some differential expression tools such as EdgeR and DESeq2 (in the 

following section described in more detail) expect raw counts and apply their own 

normalizations. The biases to normalize for can by classified as within-sample effects and 

between-sample effects. Within-sample effects refer to those features that affect comparison 

of read counts between different genes of a sample (e.g., length and GC content), while 

between-sample effects refer to those that affect comparisons of read counts of the same gene 

in different samples (e.g., sequencing depth). In this section some of the most used 

normalization methods will be described in more detail: 

 

1. Read per kilobase million (RPKM) and Fragment per kilobase million (FPKM) (233): 

Both methods are quite similar, being RPKM for SE reads and FPKM for PE reads. In PE 

data, two reads may correspond to a single fragment and it should be counted once. 

These metrics try to normalize for differences in sequencing depth and gene length. 

Supposing that ni (i=1,…,G) represents the number of reads (for SE data) or fragments 

(for PE data) aligned to gene i and that li represents the length of gene i, it is calculated 

as can be seen in formula (1): 

𝑅𝑃𝐾𝑀|𝐹𝑃𝐾𝑀𝑖 =
𝑛𝑖

𝑙𝑖×∑ 𝑛𝑗𝑗
× 109 (1) 

It must be pointed that for comparison of a gene in different samples, as in a differential 

expression analysis, there is no need of a normalization that takes into account the 

feature length, since such characteristic would be the same in different samples. 

 

2. Counts per million (CPM) (234): 

A normalization method similar to RPKM, but without a length normalization. It has 

been used in the EdgeR and limma differential expression packages. Using the same 

annotation, CPM is calculated as follow: 

𝐶𝑃𝑀𝑖 =
𝑛𝑖

∑ 𝑛𝑗𝑗
× 106 (2) 

3. Transcripts per kilobase million (TPM) (235): 

It was pointed that RPKM was an inconsistent measure for between sample comparison, 

having the potential to cause inflated statistical significance values (235), and TPM was 

proposed as an alternative, which measures the relative abundance of transcripts. 

𝑇𝑃𝑀𝑖 =
𝑛𝑖

𝑙𝑖
× (

1

∑
𝑛𝑗

𝑙𝑗
𝑗

) × 106 (3) 

With the development of new normalization methods, it has been noted that these “per 

million” methods are not optimal for differential expression analyses, since neither 

performs robust between-sample normalization. For example, TPM values are 
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dependent of the total number of different transcripts, which can vary greatly between 

samples, and thus makes it unsuitable for between sample comparisons. 

4. Upper Quartile (UQ) (236): 

It has been shown that in RNA-seq experiments few highly expressed transcripts 

originate most of the sequencing reads and the rest of genes remain underrepresented. 

The UQ normalization was presented in an attempt to account for such effect. Using the 

same annotation as before and defining 𝑞𝑖
75 as the 75th percentile of mapped reads of 

the genes in the sample after removing all genes with zero counts in all libraries and n 

as the total number of samples, UQ can be represented as: 

𝑈𝑄𝑖 =
𝑛𝑖

𝑞𝑖
75 ×

∑ 𝑞𝑗
75𝑛

𝑗=1

𝑛
 (4) 

5. GC normalization procedures (237): 

It has been shown that GC-rich and GC-poor segments tend to be underrepresented in 

RNA-seq data and, in addition, such effects can be lane specific. Three different 

normalization procedures were proposed and implemented in the EDAseq Bioconductor 

R package to deal with such biases. Using the same annotation as before and defining 

gci as the GC content (proportion of G and C nucleotides) in gene i and 𝑛𝑖
′ as the 

normalized expression measure, and normalizing the logarithms of gene counts (since 

regression in the log-scale is more robust to outliers), these three normalization 

procedures are defined in EDAseq as: 

 

- Regression normalization:  

Gene counts, 𝑙𝑜𝑔(𝑛𝑖), are regressed on gci using a loess robust local regression and 

normalized expression values 𝑛𝑖
′ are achieved by shifting the residuals to recover scale 

of raw counts, i.e.,  

𝑛𝑖
′ = 𝑙𝑜𝑔(𝑛𝑖) − �̂�𝑖 + 𝑇(𝑛1, … , 𝑛𝐺) (5) 

where �̂�𝑖 represents fitted values and T is a summary statistic such as the median. 

 

- Global-scaling normalization: 

In this case genes are stratified into K equally-sized bins based on GC-content and is 

calculated as follow: 

𝑛𝑖
′ = 𝑙𝑜𝑔(𝑛𝑖) − 𝑇(𝑛𝑗: 𝑗 ∈ 𝑘(𝑖)) + 𝑇(𝑛1, … , 𝑛𝐺)  (6) 

where k(i) represents the stratum to which gene i belongs. 

 

- Full-quantile normalization (FQ): 

Similar to global-scaling, genes are stratified based on GC content. The quantiles of read 

count distributions are then matched between bins, by sorting counts within bins and 

taking the median of quantiles across bins. 

 

6. Trimmed mean of M values (TMM) (238): 

It has been pointed that expression levels are not only dependent on depth and length; 

it can be affected by the composition of the RNA population that is being sequenced. 

Thus, if a gene is exclusively expressed (or highly expressed) in one condition, the rest 

of genes remains underrepresented as a consequence and, if such effect is not 
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corrected, the DE can be skewed towards one condition. For such bias correction, the 

TMM normalization was presented and implemented in the EdgeR Bioconductor R 

package. In this normalization method, scaling factors across several samples are 

estimated taking one sample as reference and calculating TMM factors for each non-

reference sample. Those factors can be used later in downstream statistical analyses. 

This strategy equates the overall expression levels of genes between samples under the 

assumption that the majority of them are not differentially expressed. Suppose that Yij 

represents the observed count value for gene i (i=1,…,G) and sample j (j=1,…,n), Nj the 

total number of reads in sample j and the sample r ∈ {1,…,n} is taken as reference. We 

define the gene-wise log-fold-change and absolute expression level respectively as: 

𝑀𝑖 = 𝑙𝑜𝑔2
𝑌𝑖𝑗 𝑁𝑗⁄

𝑌𝑖𝑗′ 𝑁𝑗′⁄
 (7) 

𝐴𝑖 =
1

2
𝑙𝑜𝑔2(𝑌𝑖𝑗 𝑁𝑗⁄ × 𝑌𝑖𝑗′ 𝑁𝑗′⁄ ) for Yi.≠o  (8) 

Then, the TMMi value is calculated taking a weighted mean of M values after removing 

the upper and lower 30% and 5% (those values can be adapted) of the Mi and Ai values, 

respectively. If G* represents the set of genes that are not trimmed, then: 

𝑙𝑜𝑔2 (𝑇𝑀𝑀𝑗
(𝑟)

) =
∑ 𝑤𝑔𝑗

(𝑟)
𝑀𝑔𝑗

(𝑟)
𝑔∈𝐺∗

∑ 𝑤
𝑔𝑗
(𝑟)

𝑔∈𝐺∗
  

 where 𝑀𝑔𝑗
(𝑟)

=
𝑙𝑜𝑔2(𝑌𝑔𝑗 𝑁𝑗⁄ )

𝑙𝑜𝑔2(𝑌𝑔𝑟 𝑁𝑟⁄ )
 and 𝑤𝑔𝑗

(𝑟)
=

𝑁𝑗−𝑌𝑔𝑗

𝑁𝑗𝑌𝑔𝑗
+

𝑁𝑟−𝑌𝑔𝑟

𝑁𝑟𝑌𝑔𝑟
  (9) 

7. Median of ratios (239): 

Other method that account for RNA composition is the one called median of ratios, 

which is implemented in the DESeq2 Bioconductor R package. Similar to TMM values, 

these values are calculated under the assumption that the majority of genes are not 

differentially expressed. Such size factors are calculated taking the median ratio of gene 

counts relative to the geometric mean per gene across all samples: 

𝑠𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑖

𝑌𝑖𝑗

(∏ 𝑌𝑖𝑣
𝑛
𝑣=1 )1 𝑚⁄  (10) 

 

In different studies comparing normalization methods, it has been noted that “per 

million” methods such as RPKM/FPKM perform poorly and several authors recommends to 

avoid their use for DE analyses (240). In a study comparing UQ, median of ratios, TMM and 

RPKM, among others, it was shown in simulated data that only TMM and median of ratios were 

able to maintain a reasonable false-positive rate without loss in power in the presence of highly 

expressed genes (241). Although it must be taken into account that those two methods are 

constructed under the assumption that most genes are non-DE, and that for those DE there is a 

balanced proportion of over- and under-expression. In other study, despite similarly showing 

that the median of ratios normalization performed satisfactorily, contradictory results in 

comparison to the previous study were achieved regarding TMM, in which the majority of 

studied cases showed a poor display (242). The differences in results may be explained by the 

chosen metrics for performance quality or the selected datasets (some of them being simulated) 

for comparisons. It is clear that there is no global normalization method applicable to all datasets 

and they must be selected with caution, since incorrect normalization can result in inflated false 

positives in DE analyses. 
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2.3.2.5 Batch effect removal 
 

Apart from the normalization methods described in the previous section to control for the 

variation caused by different artifacts (e.g., length, depth, RNA composition, …), there is 

sometimes the need of assessment and adjustment of technical sources of variation of unknown 

origin (in some cases it is exactly known and can be inserted directly into the model), also called 

batch effects. These technical effects can be complex to deal with if they are correlated with the 

biological factor under study. Thus, to avoid or soften such batches, it is recommended a good 

experimental design in which the batch, in case of not being able to avoid it, is evenly distributed 

in all groups. There are mainly two ways to correct these effects: 1. If the batch is known or 

estimated (e.g., through a PCA analysis), adding it to the statistical model (there are some tools 

that do not allow for such procedure); or 2. Estimate and remove the batch effect, creating a 

batch-free data, and then, perform the statistical analysis on the corrected data. The problem 

with this methodology is in the presence of unbalanced data (i.e., when the batch is not equally 

represented in all studied groups), since in that case group differences and batch effects are 

interdependent, and it would be needed to check if the batch removal does not introduce 

another batch in the data (or if the introduced batch has a lesser effect and represents an 

improvement over the not corrected data) (243). In table 2.7 can be seen a brief list of some 

batch-effect removal tools. 

To better understand what some of these principal components-based tools do, a brief 

explanation of SVA (Surrogate Variable Analysis) will be given in more detail. The idea behind it 

is to model the data as a combination of known variables of interests, known batches and 

unknown and unmeasured batch effects (244). Supposing that 𝑌𝑖𝑗  represents the expression for 

gene i (i=1,…,G) and sample j (j=1,…,n), 𝑦𝑗  the phenotype of sample j, 𝑎𝑗 known batch variables 

of sample j and 𝑢𝑗 unknown batch variables of sample j, a simple model with only one variable 

in each category would be: 

 

𝑌𝑖𝑗⏟
𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

= 𝑏𝑖0⏟
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

+ 𝑏𝑖1𝑦𝑗⏟
𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

+ 𝑐𝑖𝑎𝑗⏟
𝑘𝑛𝑜𝑤𝑛 𝑏𝑎𝑡𝑐ℎ

+ 𝑑𝑖𝑢𝑗⏟
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑏𝑎𝑡𝑐ℎ

+ 𝑒𝑖𝑗⏟
𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟

(11) 

As it is now, it is hard to estimate unknown batches from the data directly with so many 

parameters, but knowing that it must exists a subset of genes with no DE where bi=ci=0, the 

formula would be reduced to: 

 

𝑌𝑖𝑗⏟
𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

= 𝑏𝑖0⏟
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

+ 𝑑𝑖𝑢𝑗⏟
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑏𝑎𝑡𝑐ℎ

+ 𝑒𝑖𝑗⏟
𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟

 

It must be pointed that it is not necessary to exactly known 𝑑𝑖  and 𝑢𝑗 to make statistical 

inferences about bi1, just to known their linear combination 𝑑𝑖 × 𝑢𝑗 is enough. If all data from 

non-DE genes were collected and their mean extracted to remove the baseline effect, the matrix 

formula would have the following form (mu is the number of genes were bi=ci=0): 

 

𝐺⏟
𝑚𝑢×𝑛

= 𝑑⏟
𝑚𝑢×1

�⃗⃗�⏟
1×𝑛

+ 𝐸⏟
𝑚𝑢×𝑛

 

To this expression can be applied matrix decompositions like single value decomposition or PCA 

to estimate unknown batches in this subset of data and if this subset of data is large enough, 

consistent estimations for the more general 𝑢𝑗 can be made. 
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Table 2.7: Tools related to batch effect removal for RNA-seq data. Table based on tool 
references. 

Tool Last Version*1 Main Features 

ComBat (245) v3.34.0 Tool for directly removing known batch effects from the 
SVA R package. It uses an empirical Bayesian framework 
(by default a parametric one, though a nonparametric 
Bayesian adjustment is also available). Initially 
developed for microarray data, extended for RNA-seq. 
Assumes that phenomena resulting in batch effects 
often affect many genes in similar ways. 

gPCA (246) v1.0 An extension of a regular PCA to quantify the existence 
of batch effects. 

Harman (247) v1.14.0 Tool for removing unknown batch effects. It can process 
multiple different datasets (e.g., microarray, RNA-seq, 
methylation). First, the tool separates the data in its 
principal components and scans each component for 
variance arising from batches. Then, it removes the 
detected batches under a tolerance level defined by the 
user. Finally, the principal components after batch 
removal are recombined and transformed in the original 
dataset format, which can be used in downstream 
analyses. 

removeBatchEffect 
(248) 

v3.42.0 Function from the limma differential expression tool for 
known batch effect removal. The function fits a linear 
model, including treatment and batch variables, and 
remove the components due to the batch. 

RUVSeq (249) v1.20.0 Tool for removing unknown batch effects by performing 
factor analysis. To estimate the factors, it needs a set of 
genes assumed not to be influenced by the covariates of 
interest (e.g., housekeeping genes, spike-in controls). If 
such set of genes are not known a priori, the less 
significantly DE genes from a first-pass DE analysis can 
be used instead. 

svaseq 
(244,250,251) 

v3.34.0 Tool for removing unknown batch effects from the SVA 
R package. It estimates the batches by principal 
component or singular vectors. Then, the resulting 
components can be used in downstream analyses to 
correct the batch effect. 

*1 Last checked on 11/11/2019. 
 

To sum it up, these methods try to remove noise caused by technical artifacts (e.g., 

processing samples on different days, post-processing effects, samples sequenced at different 

lanes) at the risk of also removing the biological signal. Extra caution must be taken with 

unbalanced designs (independent of sample size), since it could lead to over-confidence in the 

results (243). In a recent study comparing some of these normalization approaches in simulated 

data, methods such as SVA, RUVSeq and PCA, it was shown that SVA outperformed other 

methods by correctly estimating the number of batch effects (252). In other study comparing 

Harman and ComBat, it was shown that there was always a setting for Harman with better noise 

rejection and signal preservation than ComBat (247). 
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2.3.2.6 Differential Expression (DE) analysis 
 

Once a normalized expression matrix is achieved (or raw counts in some tools for DE analysis, 

since they apply their own normalization), the next step would be to identify genes that are 

differently expressed in distinct group of samples (e.g., healthy vs. diseased, control vs. 

treatment, at different time points, different tissues), in an attempt to find relevant genes to the 

biological question under study. From now on we will always use the word “genes” when 

describing the differential expression analysis to simplify, but it should be borne in mind that 

such analyses can be performed on other genomic features such as transcripts and exons. In this 

type of analysis, thousands of genes from few samples in different groups are compared against 

each other. Such a problem dimensionality, where the expression of thousand genes are 

recorded in few samples, makes it hard to fit a statistical model that takes into account the 

expression of all genes at the same time (which would make sense, since the expression of one 

gene would be correlated or dependent of others in the same pathway or family or to other 

regulatory elements). At the end, DE analyses are normally performed for each gene 

independently, in a univariate way, and a multiple testing correction procedure is applied. 

When analysing RNA-seq data, it must be pointed that integer counts are being studied, 

a discrete variable, which would be totally different to microarray data where continuous 

intensity levels are recorded. When RNA-seq appeared for the first time, a great number of 

laboratories performed DE analysis by transforming the data to a continuous range (e.g., log 

transformation, voom function in limma) and using tools developed for microarray data, which 

usually requires a normal distribution. Later, specific tools for RNA-seq using discrete 

distributions such as Poisson and negative binomial or using non-parametric methods were 

developed. The choice of method would greatly depend on the number of biological replicates 

at hand. Non-parametric methods do not make any assumption about the statistical 

distribution, but they need multiple biological replicates per group (at least 5-10 samples per 

group) to have enough statistical power (83). In most cases, due to the high cost of RNA-seq 

among others, most studies are limited to a low number of biological replicates per group 

(usually in the range of 3-4 samples per group), in which non-parametric methods are 

underpowered and DE tools such as EdgeR and DESeq2 that use a negative binomial distribution 

are preferred. In table 2.8 can be seen a brief list of DE tools with their main characteristics. 

Despite being a great variety of tools for DE analysis, each one based on different 

distributions such as Poisson, negative binomial or non-parametric ones, the majority of 

laboratories have chosen EdgeR and DESeq2 as their main DE tools. These tools can be installed 

as R packages from Bioconductor. It is important to highlight that both tools are built under the 

assumption that most genes are not differentially expressed. Both tools follow a similar 

philosophy regarding the distributional choice, being their major differences: DESeq2 uses raw 

counts and models normalization, while EdgeR first normalize the data and then fits the model; 

the chosen normalization method (TMM in EdgeR and median of ratios in DESeq2); and DESeq2 

performs independent filtering. Since both tools are going to be used throughout this thesis, a 

brief explanation of their statistical model will be given in more detail. For a more detailed 

description, it is recommended their principal papers (253,254) and online manuals in 

Bioconductor (https://bioconductor.org/). Supposing that 𝑌𝑖𝑗  represent the expression level of 

gene 𝑖 (𝑖 = 1, ⋯ , 𝐺) for sample 𝑗 (𝑗 = 1, ⋯ , 𝑛), EdgeR uses for differential expression analysis 

the following generalized linear model: 

 

https://bioconductor.org/
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Table 2.8: List of tools for differential expression analysis of RNA-seq data. 

Tool Last Version*1 Approach Main Features 

ABSSeq (255) v1.41.0 Model counts differences between conditions 
through a Negative Binomial model. 

Can analyse complex experimental designs. Allows the calculation of 
fold change shrinkage to facilitate gene ranking and outlier detection. 
The authors affirm to be a robust method against outliers compared to 
other methods. 

Ballgown 
(256,257) 

v2.18.0 Log transformation and linear modelling. Allows for differential expression at the isoform level. The default 
parameters assume a modest sample size. Can analyse complex 
experimental designs such as time-course experiments. Similar to 
limma strategy. 

baySeq (258) v2.20.0 Negative Binomial model. Estimation of 
posterior probability through an empirical 
Bayes approach. 

Can analyse complex experimental designs, but not paired sample 
analysis. Computationally intensive, but takes advantage of parallel 
processing. Shows improvements in performance for large numbers of 
libraries compared to EdgeR. 

BitSeq (259) v1.30.0 Bayesian inference for expression levels. Log-
normal model of the estimates used to infer 
mean expression and ranking transcripts based 
on the likelihood of DE. 

Differential expression at the isoform level. Computationally intensive 
tool. Only pairwise comparisons. Incorporates RPKM/FPKM 
normalization. 

CuffDiff2 (260) v2.2.1 Isoform deconvolution + count-based test Differential expression at the gene and isoform level. Controls for both 
variability across replicates and uncertainty in abundance expression 
estimates caused by ambiguously mapped reads by using a model for 
fragment counts based on the beta negative binomial distribution. 
Only pairwise comparisons. 

*1 Last checked on 12/11/2019. 
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Table 2.8: (Continued) 

Tool Last Version*1 Approach Main Features 

DESeq2 (254) v1.26.0 Negative Binomial generalized linear model. Differential expression at gene level. Expects un-normalized counts, 
since its model internally corrects for library size. It performs 
independent filtering by default using the mean of normalized counts 
as filter statistic. Can analyse complex experimental designs. 

DEXSeq (261) v1.32.0 Negative Binomial generalized linear model. Differential expression at exon level. When fitting a model for an exon, 
it sums up the counts from all the other exon and use only the total, 
rather than the individual counts in the model. It uses the same 
normalization method as DESeq2. Can analyse complex experimental 
designs. Approach similar to DESeq2. 

EBSeq (262) v1.26.0 Negative Binomial distribution and empirical 
Bayes model. 

Differential expression at the gene and isoform level. Allows 
comparisons of multiple conditions. Authors point to be strong when 
outliers are present. 

EdgeR (253,263) v3.28.0 Negative Binomial generalized linear model. Differential expression at pre-defined genomic features (preferentially 
non-overlapping ones). Methodology similar to DESeq2, but EdgeR 
uses internally TMM normalization. Can analyse complex experimental 
designs. Can be used for differential methylation analysis. 

GPseq (264) - Two-parameter Generalized Poisson 
distribution. 

Not updated since 2011. Differential expression at the gene and exon 
level. Can analyse complex experimental designs. 

Limma 
(234,248) 

v3.42.0 Linear models of continuous data. Differential expression at the gene and isoform level. Originally 
developed for microarray data. Needs to process expression matrix to 
continuous values (log2(CPM) values). Then, the mean-variance 
relationship is modelled either with precision weights (“voom” 
method) or with an empirical Bayes prior trend (“limma-trend” 
method). Can analyse complex experimental designs. 

*1 Last checked on 12/11/2019. 
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Table 2.8: (Continued) 

Tool Last Version*1 Approach Main Features 

NBPSeq (265) v0.3.0 Over-parameterized version of the negative 
binomial model. 

Differential expression at the gene level. Only two-group comparisons. 

NOISeqBIO 
(266) 

v2.30.0 Non-parametric test. Implements an empirical 
Bayes approach to improve the handling of 
variability specific to each gene. 

Differential expression at pre-defined genomic features. Only two-
group comparisons. Allow application of external normalization 
procedures. It returns a DE probability that is equivalent to FDR 
adjusted P-values. It has implemented an optional batch effect 
removal tool denominated ARSyNseq. It has a great variety of plots for 
bias detection. 

SAMseq (267) v3.0 Non-parametric test. Uses the rank of the 
expression values in a Wilcoxon statistic. 

Can analyse complex experimental designs. With moderate sample 
size, this non-parametric method gives competitive results comparable 
to popular parametric methods. While parametric models can suffer at 
the presence of outliers, certain amount of outliers barely hurt the 
performance of this non-parametric method. 

TSPM (268) - Two-stage Poisson model. Relies on likelihood 
ratio and Pearson test statistics that have no 
exact distributions under a Poisson model. 
Therefore, it is relied on the fact that both 
follow asymptotic χ2 distributions. 

Can analyse complex experimental designs. It should only be used 
when there are at least six degrees of freedom to estimate dispersion. 
Otherwise, the TSPM may provide over-estimates of significance. 
Allow application of external normalization procedures.  

tweeDESeq 
(269) 

v1.32.0 Poisson-Tweedie distribution family. Differential expression at pre-defined genomic features. Only two-
group comparisons. Takes advantage of parallel processing. 

*1 Last checked on 13/11/2019. 
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𝑌𝑖𝑗~𝑁𝐵(µ𝑖𝑗, 𝛼𝑖)

µ𝑖𝑗 = 𝑁𝑗𝜋𝑖𝑗

𝑙𝑜𝑔 µ𝑖𝑗 = 𝑥𝑗
𝑇𝛽𝑖 + 𝑙𝑜𝑔𝑁𝑗

 (12) 

where 𝑌𝑖𝑗  counts are modelled using a negative binomial distribution with fitted mean µ𝑖𝑗  and a 

gene-specific dispersion parameter 𝛼𝑖.  𝜋𝑖𝑗 represents the fraction of fragments in sample j that 

originates from gene i (∑ 𝜋𝑖𝑗 = 1𝐺
𝑖=1 ), while 𝑁𝑗  denotes the total of aligned reads to sample j. 𝑥𝑗 

is a vector of covariates that specifies the treatment conditions of sample j, while 𝛽𝑖 is a vector 

of regression coefficients that gives the log2 changes for gene i for the corresponding covariate. 

The dispersion parameter defines the relationship between the variance and mean value: 

𝑉𝑎𝑟(𝑌𝑖𝑗) = µ𝑖𝑗 + 𝛼𝑖µ𝑖𝑗
2   (13) 

Then, the coefficient of variation (standard deviation divided by the mean) would be: 

𝐶𝑉2 = 1
µ𝑖𝑗

⁄ + 𝛼𝑖  

 

The dispersion parameters are estimated using expected mean values from the maximum 

likelihood estimate and the Cox-Reid profile-adjusted likelihood method. EdgeR has the option 

to specify how to calculate dispersion: a common dispersion for all genes, a trended dispersion 

dependent of gene expression values, or individual dispersions for each gene. 

In a study comparing EdgeR, DESeq, baySeq and TSPM, it was shown that EdgeR and 

DESeq performed similarly to baySeq, which was the one with best performance in term of 

ranking genes for smaller FDR values, while TSPM performed poorly in comparison when the 

sample size was small (270). In other study comparing EdgeR, DESeq and NBPSeq, it was shown 

that the performance was dependent of the number of samples available (271). DESeq was 

conservative in all scenarios, EdgeR overestimated DE detection for small sample scenarios and 

NBPSeq overestimated detection of DE in all scenarios. In (272) eight different DE tools 

(Cuffdiff2, SAMseq, baySeq, EBSeq, limma, NOIseq, DESeq and EdgeR) were compared and it 

was shown that under small numbers of replicates per group, DESeq and limma were the most 

conservative approaches, EdgeR showed variable results depending of the dataset and SAMseq 

had low power. It must be pointed that such comparisons have been done with early versions 

of these methods and since then, methods such as EdgeR, DESeq and limma have been updated. 

In a more recent study comparing different DE tools (baySeq, DESeq2, EBSeq, EdgeR, 

limma+voom, NOIseq, SAMseq and sleuth), it was shown that NOIseq, limma+voom and DESeq2 

were the most balanced ones regarding precision, accuracy and sensitivity and that a 

combination of multiple tools produce more precise and accurate results (273). There is no 

optimal DE tool under all circumstances, the choice would greatly depend of different 

characteristics of the data and the experimental design. 

 

2.3.2.7 Gene Set Enrichment 
 

The differential expression analysis usually ends with a large list of genes that must be 

interpreted by researchers to achieve biological meaningful results about the treatment or 

disease under study. Since the simultaneous interpretation of hundred DE genes is not 

affordable by the researcher itself, they are compared against databases that group genes into 

functional categories, in an attempt to find overrepresented biological functions that may 
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underlie the differences between condition in the data. Two of the most used databases are 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO database 

clusters genes in different biological functions with respect to three main domains: molecular 

function (molecular-level activities performed by gene products), cellular component (the 

location relative to cellular structures at which a gene performs its function) and biological 

process (large processes accomplished by multiple molecular activities). In contrast, the KEGG 

database is a collection of manually drawn pathway maps that links genes in a genome to gene 

products in complex networks of molecular interactions and reactions.  

In an enrichment analysis is tested if in the DE gene list there is more genes belonging 

to a functional category or pathway than one would expect from a random sample of all the 

“universe” or background (e.g, in an RNA-seq experiment, the “universe” refers to all expressed 

genes in the samples). There are multiple webpages and standalone tools, such as DAVID tools 

(274), PANTHER (275) and g:Profiler (276), that use GO term and KEGG pathway information 

(apart from their own databases) for the functional enrichment. The main difference of these 

tools is how they test for gene enrichment. In DAVID, a modified Fisher Exact p-value (EASE 

score) is used to measure gene-enrichment in annotation terms. In contrast, PANTHER uses the 

binomial test for each functional term to determine if there is overrepresentation or 

underrepresentation. In addition, g:Profiler uses the cumulative hypergeometric test. All the 

tools correct obtained p-values by multiple testing correction techniques (Bonferroni, Benjamini 

and FDR). 

When realizing such analysis, it must be taken into account different biases in an RNA-

seq data analysis. The transcriptome of a tissue is highly specialized, so it is obvious that if all 

annotated genes are used as background, the enrichment will be biased towards the functional 

role of the tissue itself and it will not tell much about the DE list (277). To avoid this bias, it is 

always recommended to use all sequenced genes as background, although it stills not reflect the 

true “universe” due to RNA-seq inherent bias (e.g., depending of read depth, some lowly 

expressed transcripts could not be sequenced). Furthermore, enrichment tests based on the 

Fisher’s exact test tend to select as significant large pathways, so it is recommended to put an 

upper limit of gene set size (278). In addition, non-coding molecules such as lncRNA, circRNAs 

and miRNAs lack any functional annotation and they must be studied separately. Finally, some 

enrichment analysis methods assume statistical independence among genes, something 

unrealistic since most genes in a pathway or term may be co-expressed. Thus, standard FDRs 

tend to be more or less conservative than expected, although they can still be used for 

exploratory analysis and hypothesis generation (278). 

 

2.3.2.8 Weighted correlation network analysis (WGCNA) 
 

As it has been mentioned before, genes belonging to a pathway are usually co-expressed. In an 

attempt to address the correlation patterns among genes, correlation networks can be 

constructed. In these networks the genes are represented by nodes and the edges that join the 

nodes will be calculated based on a measure that quantifies the strength of the co-expression 

between two nodes. There are multiple tools using different measures and methods. In this 

section the Weighted Correlation Network Analysis (WGCNA) R package (279) and some general 

terminology will be explained in detail, since it will be used later in the data presented in this 

thesis. 

A network can be fully described by an adjacency matrix 𝑎𝑖𝑗, a symmetric n x n matrix (if 

n is the total of genes sequenced) with values in [0,1] in which 𝑎𝑖𝑗  represents the connection 
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strength between nodes i and j. Different measures can be used to represent the connection 

strength. In WGCNA, the default measure is the absolute value of the correlation coefficient 

(Pearson correlation) between two gene expression profiles. The package gives the option to 

use alternative co-expression measures such as Spearman correlation and biweight 

midcorrelation (also called bicor). The bicor correlation is a median-based measure, which is less 

sensitive to the presence of outliers, and it has been shown that bicor coupled to topological 

overlap matrix transformation leads to more significantly enriched co-expression modules (280). 

Thus, if 𝑥𝑖 represent the expression profile of a gene in each sample, a weighted network 

adjacency can be defined as: 

𝑎𝑖𝑗 = |𝑏𝑖𝑐𝑜𝑟(𝑥𝑖, 𝑥𝑗)|
𝛽

 

with β>1. The parameter β is chosen in a way that the constructed network has a scale-free 

topology, i.e. a network whose degree distribution follows a power law, which translates in some 

nodes having a great number of connections to other nodes, while most of the nodes have only 

few connections. The choice of a scale-free network is based in the fact that Barabási and 

colleagues (281) showed that various protein-interaction networks of cells and a cellular 

metabolic network of 43 different organisms had a scale-free structure. And the more networks 

studied, the more scale-free topologies are discovered. 

Once the network has been constructed, clusters of interconnected genes (modules) are 

detected. Different metrics can be used for gene interconnectedness, but WGCNA uses the 

topological overlap measure (TOM): 

𝑇𝑂𝑀𝑖𝑗 = {

∑ 𝑎𝑖𝑢𝑎𝑢𝑗 + 𝑎𝑖𝑗𝑢≠𝑖,𝑗

𝑚𝑖𝑛{∑ 𝑎𝑖𝑢𝑢≠𝑖 , ∑ 𝑎𝑗𝑢𝑢≠𝑗 } + 1 − 𝑎𝑖𝑗

𝑖𝑓 𝑖 ≠ 𝑗

1 𝑖𝑓 𝑖 = 𝑗

 

Then, WGCNA identifies modules by unsupervised clustering. At this step, the user must select 

multiple parameters such as the minimum cluster size or a criterion to merge clusters that are 

quite similar. Finally, it can be checked if there is any module related to the treatment or variable 

of interest. This can be achieved by seeing how correlated are the variable of interest and the 

eigengene (which is a gene expression representing all the module and calculated from the first 

component of a PCA). 

Other terms that need to be described for later are module membership (MM), gene 

significance (GS) and hub genes. Module membership is the correlation between a gene and the 

eigengene of the module in which it is clustered in. Gene significance refers to the absolute value 

of the correlation between gene and the trait of interest. Finally, hub genes are defined as those 

with a high correlation/connectivity in each module and they are supposed to play key roles in 

the module. There are multiple ways to define hub genes, depending of the objectives and 

interest of the study. In this thesis, hub genes are defined as those belonging to the ≥85th 

percentile for both MM and GS in each module (282). 

 

2.3.2.9 Workflow 
 

In figure 2.6 can be seen the workflow used to analyse the data in this thesis. Briefly, a quality 

check was performed on the raw data files with FASTQC [v0.11.5] (182) to assess the most 

appropriate read quality filtering and trimming. The following criteria were used with 

Trimmomatic [v0.36] (202): (1) remove adaptor sequences with the “palindrome” mode for 

paired-end data, allowing up to two mismatches (It must be pointed that few adaptor sequences 
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are expected in total RNA-seq data, since read length is generally shorter than fragment length 

and, as a consequence, it is uncommon that the sequencer reads through the adaptor 

sequence); (2) remove reads in which the average Phred quality score within a sliding window 

of five nucleotides fall below 20; and (3) remove reads with a length <36 nucleotides. The data 

was checked again with FASTQC to ensure that the filtering was adequate. 

 

 
Figure 2.6: Pipeline followed for total RNA-seq data analysis. 
 

Then, the quality checked reads were aligned with the STAR algorithm [v2.5.2b PBMCs 

and v2.5.4a encephalon] (221) against the Ovis aries genome build Oar3.1 from Ensembl [version 

89.31] (97) using the 2-pass mode. In this mode, STAR does a first alignment to the reference 

genome and uses the new detected junction information in all the samples to update the archive 

of known junctions, to then make a second alignment using that information. Despite this 2-pass 

strategy is computationally demanding (since each samples is aligned twice with a program 

known for its high computational requirements), it allows for a better alignment of spliced reads, 

which would be necessary with an organism such as sheep whose reference genome is still not 

“complete” or with a quality similar to human or mouse. Once the alignment has ended, the 

featureCounts software from the SourceForge Subread package [v1.5.0-p1 PBMCs and v1.6.0 

encephalon] (226) was applied to each library to assign uniquely aligned fragments to annotated 

genes in a strand-specific manner. Then, the expression levels were evaluated by a set of plots 

from the NOISeq package [v2.20.0] (266) and by a principal component analysis (PCA) to detect 

potential biases and contamination. 

Although in this thesis is not going to be deepened, since it is still a work in progress, 

apart from annotated genes, one of the interests of our research group is to use total RNA data 

to find new lncRNAs and study their function in sheep. This would be done mainly for two 

reasons: (1) The majority of annotated lncRNAs in sheep are predicted and with unknown 

function, so it would improve greatly the sheep annotation; (2) Until now, there is no study that 

has tried to elucidate if lncRNAs have any role in aluminium adjuvancy. For that purpose, an 

additional step after mapping was necessary. The StringTie [v1.3.3b] (283) transcriptome 

assembler was used to reconstruct the transcriptome from the previous mapping. Briefly, the 

StringTie algorithm was run on each sample with the reference annotation from Ensembl and, 

in order to obtain a non-redundant set of transcripts, the –merge option was applied after the 

assembly to all samples. Then, StringTie was once again applied on each sample, but with the 

GTF transcript file obtained in the previous step in order to estimate transcript abundances. 
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From this assembly, only candidate lncRNAs were selected and their counts were added to the 

count matrix of annotated genes. The identification and functional annotation of lncRNAs is still 

in progress and it would be carried out and presented in another thesis of a fellow PhD student. 

Prior to the differential expression, the SVA package [v3.24.0 PBMCs and v3.26.0 

encephalon] (251) was applied to remove unwanted variation and the obtained surrogate 

variables were incorporated into the testing model. A PCA was obtained with the corrected data 

to check how the batch effect affected the data. Once batch effect bias was dealt with,  

differential gene expression analysis was performed using three different R packages within 

Bioconductor: edgeR [v3.18.1] (263), DESeq2 [v1.16.1 PBMCs and v1.18.1 encephalon] (254) and 

limma+voom [v3.32.2] (234). It must be pointed that not all the named tools were applied in 

both tissues. In PBMCs samples, due to the higher variability in gene expression, it was decided 

to apply the three tools and take the intersection as true differentially expressed genes, in an 

attempt to remove false positives from the results. In contrast, in encephalon samples, only the 

DESeq2 package was applied. The DESeq2 package performs independent filtering, but for 

edgeR and limma packages a cut-off for filtering lowly expressed genes was set at 2 CPM. A not 

too strict cut-off that eliminated a large number of genes that were barely expressed. 

RNA-seq counts were modelled by different generalized linear models in both tissues. 

In the case of PBMCs samples, since the experiment was carried as a time-series with two time 

points (samples at the start of the experiment before any vaccination (T0) and samples at the 

end after all vaccinations (Tf)), it must be kept in mind that not all samples are collected from 

independent subjects and it must be dealt with when fitting the model. The following variables 

were used in the model of PBMCs samples: time (T0 or Tf), treatment (commercial vaccine group 

[Vac] or adjuvant alone group [Adj]), sample (variable indicating the samples that comes from 

the same individual), and batch (surrogate variables calculated by svaseq from SVA package). 

The model included the treatment factor, the batch variable and the interactions treatment x 

sample (since there are different animals in each treatment) and treatment x time (to account 

for the treatment-specific time effects). Differential expression analyses were performed for the 

time points, considering the treatment group (Vac Tf vs. Vac T0 and Adj Tf vs. Adj T0), and for 

the treatments at the end of the experiment (Adj Tf vs. Vac Tf). In the case of encephalon 

samples, only samples at the end of experiment were analysed, so the differential expression 

analysis was performed using the following variables in the model: treatment (Control samples, 

Vac group and Adj group) and batch (surrogate variables calculated by svaseq from SVA 

package). Three different comparisons were made (Adj vs. Control, Vac vs. Control and Adj vs. 

Vac). In both tissues, the differentially expressed genes (DEGs) were selected as those with an 

adjusted p-value (using the Benjamini-Hochberg method) threshold of<0.05 and a fold change 

value of>1.5 or <0.667. In the specific case of PBMCs samples, only those genes that were 

identified as DEGs by all of the three programs were selected for further analysis. 

To search for overrepresented gene functions in the lists of DEGs, gene enrichment 

analyses were conducted using the Gene Ontology (GO) database with PANTHER [v12.0] (275) 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with DAVID [v6.8] (274). 

Enriched terms were considered statistically significant with an adjusted p-value threshold of 

<0.05. 

In addition to the DE analysis, a weighted gene co-expression network analysis was 

performed using the WGCNA [v1.63] (279) R package. Briefly, the similarity matrix was 

constructed from the normalized data using absolute values of the biweight midcorrelation, 

chosen for being more robust against outliers. Then, the adjacency matrix was defined by raising 

the similarity matrix to a power β. The parameter β was selected based on the minimum value 

required to get or approximate to a scale-free topology network (R2>0.8). Once the network 
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was constructed, module (clusters of densely interconnected genes) detection was the next 

step, setting a minimum module size of 30 genes. Finally, modules with similar expression 

profiles were merged based on a height cut-off threshold of 0.3. Next, we sought modules with 

strong correlations with the treatment groups. For that purpose, the treatment variable was 

dichotomized in all possible combinations (one group against the other two). For each of the 

identified modules, eigengene values (the first principal component of each module) were 

generated and were used as representation of the weighted average of the gene expression 

profile in the modules. Pearson correlations and their associated p-values were generated for 

all pairwise comparisons of the module eigengene expression values and the treatment 

parameters. All the p-values were used for estimation of the FDR (q-value) with the qvalue R 

package, selecting those modules with a q-value threshold <0.05. 

Modules exhibiting high correlation with the treatment were further studied for 

enrichment of GO terms and KEGG pathways, considering statistically significant those with an 

adjusted p-value threshold of <0.05. Apart from enrichment analysis, the hub genes of each 

module were obtained. For that purpose, the module membership (MM) and gene significance 

(GS) values were calculated. GS values are the Pearson correlations between the single 

expression value of each gene and the treatment parameter, whilst MM values are the Pearson 

correlations between the single expression value of each gene and module eigengene values. 

We defined hub genes as those belonging to the ≥85th percentile for both MM and GS in each 

module (282). Those genes are likely ‘key drivers’ and might play important roles in the 

treatment. 

 

2.3.3 miRNA-seq differential expression 
 

The procedure to analyse the miRNAs is similar to the one employed for total RNA-seq, with a 

lot of programs in common. The process begins with separate files for each sample (in FASTQ 

format) in which the sequenced fragments are recorded. In contrast to total RNA-seq libraries, 

since mature miRNAs are   2̴2 nt long, miRNA-seq libraries are composed of SE 50 nt long reads. 

Briefly, for a differential expression (DE) analysis, the main scheme would be composed of the 

following steps: 

 

1. Quality control and pre-processing of reads. 

 

2. Alignment of reads to a reference genome. Since mature miRNAs are shorter than read 

length, they are expected to be fully sequenced in a single read. As a consequence, an 

unspliced aligner such as bowtie is enough for alignment to the reference. 

 

3. Novel miRNA discovery. 

 

4. Quantification of miRNA expression levels. 

 

5. Differential expression analysis. 

 

6. Target gene prediction. 

 

7. Gene set enrichment analysis. 
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In this section, a brief description of the major steps for a DE analysis of miRNA data will be 

provided, with a brief summary of the different programs that can be used in each step. Since 

most of the steps (1,2,4,5 and 7) allow the use of similar methods to the ones seen in total RNA-

seq (which can be reviewed in the corresponding section), only miRNA-seq specific steps will be 

studied in more detail. Thus, novel miRNA discovery, target gene prediction tools and miRNA-

mRNA correlation analysis will be briefly explained. At the end, the exact workflow used in the 

data presented in this thesis will be provided. 

 

2.3.3.1 Novel miRNA discovery 
 

Most of the tools for novel miRNA discovery are wrapper tools that also includes: unspliced 

alignment to a reference with public available tools such as bowtie or with their own strategy; 

annotation of candidate miRNAs based on a miRNA database from different organisms (since 

miRNAs are highly evolutionary conserved); and annotation of novel miRNAs from unknown 

aligned reads, based on the prediction of the characteristic hairpin structure of the pre-miRNA 

around the read alignment locus. Since a brief review of unspliced alignment tools and miRNA 

databases have been given in their corresponding sections, we will review novel miRNA 

discovery. In table 2.9 can be seen a brief list of miRNA prediction tools and other wrapper tools. 

Despite each tool has different strategies to predict novel miRNAs (some directly 

evaluating the read alignment and predicting the precursor structure through some predefined 

parameters or classifying them with a machine learning-based method, while others search for 

blocks of reads mapping close to each other or directly search miRNA duplexes), some of the 

parameters used are common to all tools due to the well-known pre-miRNA structure. It is 

known that all reads originating from a miRNA hairpin should correspond to either one of the 

miRNA duplex or to loop sequences; that 5’ ends (the seed sequence) are required to be 

homogeneous; and that a canonical pre-miRNA secondary structure should be predicted with a 

minimum free energy, minimum of paired based between the miRNA and “sister” miRNA 

sequence, the formed duplex need to have a 2 nt overhang at both 3’ ends and there must be 

absence of branches and bulges outside of the loop (284). 

 

2.3.3.2 Target prediction 
 

It is necessary to predict the candidate mRNA targets to study the functional role of all detected 

miRNAs or a subset (e.g., the differentially expressed ones). Although it is not fully known how 

miRNAs interplay with their target mRNA, some key aspects have been elucidated. Some of the 

most used features by target prediction programs are the complementarity of the seed 

sequence and the thermodynamic stability of the miRNA-mRNA complex. For a more detailed 

description of the miRNA mechanism of action it is recommended to review section 1.4.1.3 from 

Chapter 1. It must be pointed that most target prediction tools has concentrated their efforts in 

predicting miRNA target sites at 3’ untranslated regions (3’ UTRs), but there has been evidence 

that they can also target 5’ UTRs and coding regions (CDSs) (285). In addition, those tools have 

been reported to return a significant number of false positives, so in an attempt to reduce them, 

it is recommended to execute multiple target prediction tools based on different methods and 

take their intersection. Furthermore, it has been pointed out that a single miRNA can target 

multiple different mRNAs and, conversely, a mRNA can be targeted by multiple different 

miRNAs. In table 2.10 can be seen a brief list of target prediction algorithms and their main 

features. 
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Table 2.9: List of tools for novel miRNA identification from miRNA-seq data. Table based on 
(284) and corresponding tool reference. 

Tool Last Version*1 Main Features 

BlockClust (286) v1.1.0 Tool available as a galaxy repository. Briefly, the tool 
partition the reads of an expression profile in a 
sequence of blocks and then discretize the statistics of 
the read distribution in each block. Then, such blocks 
are clustered by an unsupervised method and classified 
with built-in class specific discriminative models for 
C/D box snoRNA, H/ACA box snoRNA, miRNA, rRNA, 
snRNA, tRNA and Y_RNA.  

CoRAL (287) v1.1.1 Machine-learning based tool for classification of RNA 
molecules, using features such as fragment length and 
cleavage specificity. It needs a training set for the 
classifier generation, which could be complex in non-
model organisms. 

deepBlockAlign 
(288) 

v1.3.1 Overlapping mapped reads are merged into blocks and 
then closely spaced blocks are combined. Then, blocks 
are compared to determine similarity scores. In a 
second stage, block patterns are compared by a 
modified Sankoff algorithm. Finally, hierarchical 
clustering of blocks separates most miRNAs and tRNAs. 

miRanalyzer (289) - Tool that has been replaced by sRNAbench. 

miRDeep2 (290) v2.0.1.2 It uses bowtie for sequence alignment and RNAfold for 
secondary structure prediction. First, the tool does a 
quantification of known miRNAs if precursor and 
mature miRNA sequence files from miRbase are given. 
Then, potential miRNA precursors are excised from the 
genome using the read mappings as guidelines. Then, 
reads a realigned to known and excised precursors. 
Finally, the secondary structure is predicted by 
RNAfold. 

miRDeep-P2 (291) v1.1.4 Plant specific tool for miRNA analysis. Improved 
version of miRDeep-P, whose model was adapted from 
miRdeep, but taking into account plant specific miRNA 
characteristics such as more variable precursor lengths 
and more prevalent large paralogous families. 

miRDentify (292) v1.00 First, it aligns reads using Bowtie (no mismatches 
allowed). Then, it assembles duplex-forming reads 
within a 46-80 nt distance and evaluates different 
parameters from each candidate. A cut-off and FDR is 
selected based on annotated miRNAs. 

*1 Last checked on 20/11/2019. 
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Table 2.9: (Continued). 

Tool Last Version*1 Main Features 

MiRdup (293) v1.4 Two main functions: 
1) Given a miRNA and a pre-miRNA, it validates pre-
miRNAs predictions from other tools. To that purpose, 
it uses a trained model on a particular set of species in 
order to maximize species-specificity. The model is 
trained on 100 features with adaboost on random 
forest (miRbase of other sequence data can be used to 
train the model). 
2) Given a pre-miRNA and a model, it predicts a 
potential miRNA. 

miReader (294) v2.0 Tool to identify mature miRNAs without any 
dependence on reference genome or homologous 
references. 

MIReNA (295) v2.0 To identify pre-miRNA/miRNA pairs, it explores a 
multidimensional space defined by only five 
parameters (for more details check reference). These 
parameters characterize suitable pre-miRNA 
structures. 

miRExpress (296) v2.0 Generates miRNA expression profiles from high- 
throughput sequencing of RNA without the need for 
sequenced genomes. It align sequences directly to 
known miRNA databases and for reads not mapping to 
known miRNAs, a cross-species comparison is done. 

miRPlex (297) v0.1 Mature miRNAs are predicted through a multi-stage 
process, involving filtering, miRNA:miRNA* duplex 
generation and duplex classification using a support 
vector machine (one model for plants and nother for 
animals). 

miRSeqNovel (298) v1.3 An R based workflow. First, reads are mapped to a 
reference with an unspliced aligner such as Bowtie or 
BWA. Known miRNAs are identifies using miRbase 
database. For novel miRNA discovery, hairpin-like 
structures are searched in aligned reads, their 
secondary structure predicted with RNAfold and 
ranked according to different features. 

sRNAbench (299) v1.5 Module from the sRNAtoolbox. Uses bowtie for 
sequence alignment. Allows isomiR analysis. 

*1 Last checked on 20/11/2019. 

 

Most of target prediction tools need a mature miRNA sequence file and an additional 3’ 

UTR sequence file, whose boundaries may be not well defined in some non-model organisms. 

Once a list of predicted targets has been achieved, it can be further studied by functional 

annotation through enrichment analysis using the miRNA-target genes (assuming that miRNAs 

have similar functions of their target genes) or by correlation or other network methods to infer 

miRNA-mRNA regulatory modules, integrating sequence and expression profile data from 

mRNAs and miRNAs. It is though that single miRNAs, normally expressed at lower levels than 

their target mRNAs, are not enough to alter significantly mRNA expression levels by themselves. 
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Thus, it is necessary to study mRNA expression levels changes that are regulated by multiple 

miRNAs targeting them. 

 

Table 2.10: List of tools for miRNA target prediction. Table adapted from (300,301) and 
corresponding tool reference. 

Tool Last Version*1 Main Features 

EIMMo (302) - Not available anymore. It was a web-based tool with a 
Bayesian target prediction algorithm. 

microT-CDS 
(303,304) 

v5.0 Can identify binding sites on the 3’ UTRs and CDS 
regions. It checks how conserved are the binding sites: 
1) For CDSs: Calculates excess sequence conservation 
above the one required for amino acid conservation. 
2) For 3’UTRs: Asses evolutionary conservation across 
16 species and the conservation score is defined as the 
ratio of the number of species in which the binding 
position is conserved and the respective number using 
the maximal number of species having any 
conservation in the whole 3’-UTR region. 

miRanda (305) aug2010 Predict 3’ UTRs targets based on: 
1) Sequence complementarity. 
2) Binding energy (through Vienna package). 
3) Evolutionary conservation (PhastCons score). 

mirSVR (306) - Machine learning method for ranking miRNA target 
sites. It trains a regression model on features extracted 
from miRanda-predicted target sites. 

miRTar (307) - Web based system that can identify binding sites on 
the 3’ UTRs, 5’ UTRs and CDS regions. miRTar can 
analyze and highlight a group of miRNA-regulated 
genes that participate in particular KEGG pathways to 
elucidate the biological roles of miRNAs in biological 
pathways. 

psRNATarget (308) 2017 Update Plant sRNA (e.g., miRNAs and siRNAs) target prediction 
server. It evaluates: 
1) Sequence complementarity. 
2) Target site accessibility. 

PicTar (309) - Given a 3’ UTR file and miRNA mature sequences, it 
searches 7 base (seed) alignments that pass an optimal 
free energy filter and fall into overlapping positions in 
the alignments for all species under consideration. 
Each UTR in the alignment is scored with the central 
PicTar maximum likelihood procedure. 

PITA (310) v6 Predict 3’ UTRs targets using a non-parametric model 
that scores microRNA-target interactions by an energy 
score equal to the difference between the energy 
gained by binding of the microRNA to the target and 
the energy required to make the target region 
accessible for microRNA binding. 

RNA22 (311) v2 Pattern-based algorithm that not relies in cross-species 
conservation information. 

*1 Last checked on 21/11/2019. 
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Table 2.10: (Continued). 

Tool Last Version*1 Main Features 

RNAhybrid (312) v2.1.2 The program finds the energetically most favourable 
hybridization sites of a small RNA in a large RNA. 
Statistical significance of predicted targets is assessed 
with an extreme value statistics of length normalized 
minimum free energies, a Poisson approximation of 
multiple binding sites, and the calculation of effective 
numbers of orthologous targets in comparative studies 
of multiple organisms. 

TargetS (313) - Can identify binding sites on the 3’ UTRs, 5’ UTRs and 
CDS regions. It does not rely on evolutionary 
conservation 

TargetScan (314) v7.2 Can identify canonical binding sites on the 3’ UTRs and 
CDS regions. Uses a model (context++) which considers 
site type and another 14 features (e.g., 3′-
supplementary pairing, local AU content, structural 
accessibility, conservation, and distance from the 
closest 3′-UTR end) to predict the most effectively 
targeted mRNAs. 

*1 Last checked on 21/11/2019. 

 

Multiple studies have compared performance of target prediction algorithms and there 

is a consensus regarding how all tools usually returns a great number of false positives. In (137) 

is remarked that tools with an stringent seed pairing criteria such as TargetScan, PicTar, EMBL 

and EIMMo have a high degree of overlap, with TargetScan having the most robust target 

ranking. In a recent study comparing TargetScan, miRanda-mirSVR, PITA and RNA22 using the 

validated miRNA target database from miRTarBase (only a limited number of miRNAs were 

selected for the analysis) (315), it was shown that miRanda had the best performance with a 

balanced sensitivity, specificity and precision, while TargetScan and PITA showed a better 

precision with the lower number of false positives. It is clear that there is not program 

consistently superior to all others and it has become pretty common to execute multiple target 

prediction algorithms to take their intersection for further research. 

 

2.3.3.3 miRNA-mRNA correlation analysis 
 

Target prediction algorithms based only in sequence information return a high number of false 

positives. In order to achieve more reliable results, and if mRNA expression levels from the same 

samples are available, it is possible to combine both miRNA and mRNA expression levels to 

construct miRNA-mRNA interaction networks. Different approaches have been developed for 

that purpose, e.g. methods using directly the correlation of miRNAs and their corresponding 

targets such as MMIA, mirConnX, MAGIA and TargetMiner (316); methods using graph mining 

techniques such as iSubgraph (317); and other methods using bi-clustering algorithms and 

Bayesian network models (318). It must be pointed out that methods that use only pairwise 

correlations to infer networks do not consider miRNAs interactions. As it has been mentioned 

before, an mRNA may be regulated by multiple miRNAs and its expression would be affected by 

all targeting miRNAs. In addition, such methods are not able to distinguish between changes 
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produced by a direct interaction with the miRNA and changes produced as a secondary 

consequence of miRNA targeting (e.g., a miRNA that targets a transcription factor). 

Although methods that merge miRNA and mRNA expression profiles could increase our 

understanding on miRNA targeting, they are usually limited to the assumption that miRNAs 

negatively regulate their target mRNA and it may not be sufficient in some cases. Multiple 

miRNAs have been reported to not produce any mRNA expression change (319), but causes an 

expression change at the protein level. And inversely, full or partial inhibition of a mRNA does 

not mean that the protein expression levels would change substantially. In order to account for 

these cases, multiple studies have integrated miRNA, mRNA and protein expression profiles 

(318,320). Furthermore, adding complexity to miRNA targeting, it has been shown that some 

lncRNA can be targeted by miRNAs, while other lncRNAs can act as miRNA sponges (sequestering 

miRNAs and avoiding miRNA repression) or can produce miRNAs (321). In addition, some 

circRNAs have also been shown to act as miRNAs sponges (152). It is clear that miRNA 

interactions are quite complex, being multiple players at different levels (mRNAs, lncRNAs, 

circRNAs and transcription factors). In this thesis, only miRNA and mRNA interactions will be 

studied and some circRNA sponges will be defined for the first time in sheep. 

 

2.3.3.4 Workflow 
 

In figure 2.7 can be seen the workflow used to analyse the miRNA-seq data in this thesis. Briefly, 

a quality check was performed on the raw data files with FASTQC [v0.11.5] (182) to assess the 

most appropriate read quality filtering and trimming. The Trimmomatic [v0.36] (202) program 

was used to remove adaptor sequences (In contrast to total RNA sequencing, mature miRNA 

length is shorter that read length and, as a consequence, it is expected that the sequencer reads 

through the adaptor) and to filter reads shorter than 16 bp. The data was checked again with 

FASTQC. 

 

 
Figure 2.7: Pipeline followed for miRNA-seq data analysis. 
 

For subsequent analyses, some of the sRNAtoolboxVM (322,323) modules were applied. 

sRNAtoolbox is a set of interconnected tools for small RNA sequencing data analysis. First, the 

sRNAbench module was used to align sequences to the Ovis aries reference genome Oar3.1 from 

Ensembl [version 89.31] (97), to profile the expression of small RNAs and to predict novel 

miRNAs. The program uses bowtie (204) behind the scenes to map all the sequences to the 
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reference genome, and it searches in the miRBase [v21] (324) database for known miRNAs in 

sheep. Furthermore, Rfam data was used to identify other small RNAs originating from rRNA, 

tRNA, snRNA, and snoRNA and exclude them from the analysis. The remaining sequences were 

searched against the mature miRNAs of human and other species, including cow, goat and 

mouse, in miRBase to identify miRNA homologs. For the discovery of new miRNAs, the remaining 

sequences were used to predict their folding secondary structure and, if a hairpin structure was 

predicted, their free energy of hybridization. Ultimately, the predicted new miRNAs were 

searched in the RNACentral [v6] database with blastn to ascertain if they have been previously 

identified.  

Once a miRNA expression matrix is obtained, a differential expression analysis was 

performed with edgeR and DESeq2 for PBMCs and encephalon, respectively. The same model 

as for the total RNA-seq analysis was applied to each tissue, applying first the SVA package to 

remove unwanted variation. Similar to the total RNA-seq comparisons, differential expression 

analyses were performed for the time points, considering the treatment group (Vac Tf vs. Vac 

T0 and Adj Tf vs. Adj T0), and for the treatments at the end of the experiment (Adj Tf vs. Vac Tf) 

in PBMCs. In the case of encephalon samples, since only samples at the end of experiment were 

analysed, three different comparisons were made (Adj vs. Control, Vac vs. Control and Adj vs. 

Vac). In both tissues, the differentially expressed genes (DEGs) were selected as those with an 

adjusted p-value (using the Benjamini-Hochberg method) threshold of<0.05 and a fold change 

value of>1.5 or <0.667. 

In parallel to the differential expression analysis, the mRNAconsTarget module from 

sRNAtoolbox was used to predict potential miRNA target genes, which uses miRanda (305) and 

PITA (310) for its predictions. In addition, the target prediction algorithm TargetScan (314) was 

applied independently, making a total of three distinct target prediction algorithms. In a attempt 

to reduce false positives and select trustworthy target genes, the following criteria was used: in 

miRanda a pairing score > 150 and an energy score < −15; in PITA, an energy score < −15; and in 

TargetScan, a contex++ score < −0.7. Only those genes that were common across the three 

programs were selected for further analysis. 

Next, integrating total RNA and miRNA analyses, correlation between miRNA and target 

mRNA expression values were determined using the R statistical software [v3.4.1 PBMCs and 

v3.5.0 encephalon]. A test for association between paired samples using the Spearman’s rank 

correlation coefficient was applied with the R cor.test function. The obtained p-values were used 

for estimation of the FDR (q-value) with the qvalue R package and the Benjamini-Hochberg 

method, using a threshold of <0.05 to indicate significant miRNA-mRNA pairs. Apart from the 

correlation analysis, in an attempt to discover miRNA-gene patterns, a subgraph mining tool was 

applied. For that purpose, the iSubgraph (317) algorithm was used, which searches for frequent 

cooperative regulations of genes and miRNAs happening in a minimum group of samples. Briefly, 

iSubgraph transforms the sequencing data from miRNA and total RNA into graphs for each 

sample and uses the target prediction information to create a bipartite graph for each sample. 

From the sample graphs constructed in the first part, using graph mining algorithms, iSubgraph 

searches for frequent cooperative regulations of genes and miRNAs. The parameters were set 

as follow: the threshold for Up and Down tags was set at 0.75; and to report a pattern, that 

pattern needed to be found at least in three samples. 

 

2.3.4 circRNA analysis 
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Apart from the differential expression analysis, the data was used for circRNA identification and 

functional annotation, since total RNA libraries were prepared with a rRNA depletion strategy 

which retain most non-poly(A) ncRNAs (e.g., circRNAs and lncRNAs). The strategy for circRNA 

analysis is quite similar to the one followed for differential expression analysis. The main 

difference is that at the alignment step a tool that can detect topologically inconsistent split 

reads must be used. In addition, the counting strategy for circRNAs is different and will be 

explained in more detail bellow. 

 

2.3.4.1 Alignment to the reference and circRNA identification 
 

circRNA identification tools search for topologically inconsistent split reads, in which a 

downstream 3’ splice site and an upstream 5’ splice site is linked, formally known as backsplicing. 

The tools for circRNA annotation can be classified according to their dependency on genome 

annotation, being two different strategies (see figure 2.8 for more details): a pseudo-reference 

strategy, in which reads are aligned to all possible combinations of annotated exons in an 

attempt to detect inconsistent reads, and a fragment-based strategy, in which reads are split in 

segments and aligned to the reference genome. Tools based in the pseudo-reference strategy 

are limited to find circRNAs whose origin is an annotated exon junction, which makes them 

unsuitable for poorly or partially annotated organisms (160). In table 2.11 can be seen a brief 

list of tools for circRNA identification from total RNA-seq data. 

 

Figure 2.8: Two different strategies 

for circRNA detection: a) Pseudo-

reference-based strategy: Using 

genome annotation,  all pseudo-

references (all possible 

combinations of exons, including 

topologically inconsistent ones) are 

constructed. Then, all reads aligning 

to junctions of topologically 

inconsistent pseudo-references are 

regarded as circRNA candidates. b) 

Fragment-based strategy: Reads are 

directly aligned to the reference 

genome with an aligner that can 

split reads and align them in a non-

linear fashion. (figure adapted from 

(160)). 

 

Most circRNA annotation tools apply some filters after read alignment to distinguish 

between real circRNA candidates and other non-co-linear (NCL) products that can produce 

topologically inconsistent read alignments, such as trans-spliced RNAs and genetic 

rearrangements, or sequencing errors and other in vitro artifacts. Among the most used filters 

are: to select a minimum read counts to treat a circRNA as expressed; to detect a circRNA in 

multiple samples; and if paired end data is available, to check that both ends align in the 

predicted circRNA or that both ends are in the correct orientation. 
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Table 2.11: List of tools for circRNA identification. 

Tool Last Version*1 Main Features 

ACFS (325) v2.1 No need of annotation. Designed for SE data, but can 
deal with PE data with less sensitivity. First, it aligns 
reads with TopHat2 and, then, unmapped reads are 
aligned with BWA. Uses a maximal entropy model to 
pinpoint circRNAs. 

CIRCexplorer2 
(326) 

v2.3 Two modes: with annotation or annotation-free. 
Supports both SE and PE data. Supports multiple 
circRNA-aware aligners (TopHat2, STAR, MapSplice, 
BWA and segemehl) 

Ciri2 (327) v2.0.6 No need of annotation. Align reads with BWA-MEM. 
Allows multithreading. Uses an adapted maximum 
likelihood estimation based on multiple seed matching 
to identify back-spliced junction reads and to filter false 
positives derived from repetitive sequences and 
mapping errors. 

DCC (328) v0.4.7 No need of annotation. Supports both SE and PE data. 
Align reads with STAR with chimeric alignment detection 
activated. It returns two expression files: one for the 
detected circRNAs and another one for their 
corresponding linear counterparts. Only returns 
circRNAs from canonical GT/AG splicing sites and 
discards mitochondrial ones. Filters those whose origin 
is in a repetitive region. 

find_circ (329) Custom 
Script (2013) 

No need of annotation. First, reads are aligned 
contiguously to the genome. From the unmapped reads, 
20mers from both ends are extracted and aligned 
independently with Bowtie2 to detect circRNA spanning 
reads. Only returns circRNAs from canonical GT/AG 
splicing sites. 

KNIFE (330) v1.5 Need of annotation. Supports both SE and PE data (for 
PE data, each end is aligned independently as SE). Uses 
Bowtie2 for read alignment. Statistically based splicing 
detection for circular and linear isoforms. 

MapSplice2 (331) v2.2.1 No need of annotation. First, reads are aligned 
contiguously to the genome. In the second step, 
segments that do not have an exonic alignment are 
considered for spliced alignment using a splice junction 
search technique that starts from neighbouring 
segments already aligned. 

NCLScan (332) v1.6.5 Need of annotation. Detects NCL transcripts (fusion, 
trans-splicing, and circular RNA) from PE data. First, 
aligns reads contiguously with BWA and, then, 
unmapped reads are aligned again with Novoalign. 

*1 Last checked on 26/11/2019. 
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Table 2.11: (Continued). 

Tool 

Segemehl (333)  Spliced aligner that has circRNA detection. No need of 
annotation. Support SE and PE data. Allows 
multithreading. Has high computer requirements,  5̴0 
Gb, and high run times. For circRNA detection, it is 
recommended to use another spliced aligner first and 
pass unmapped reads to segemehl. 

TopHat-Fusion 
(334) 

v2.1.1 Included in TopHat2. It was designed for fusion gene 
discovery, which results from chromosome 
rearrangements, but can be adapted for circRNA 
discovery with the adequate filters. No need of 
annotation. Supports both SE and PE data 

UROBORUS (335) v2.0.0 Based on TopHat and Bowtie, it has a similar strategy to 
find_circ. Only for exonic circRNAs. 

*1 Last checked on 26/11/2019. 

 

Interest in circRNAs has recently raised and most circRNA detection tools are quite 

recent. Those tools for RNA-seq data report a great number of circRNAs, a lot of them being 

false positives. It has been shown that around 31-76% of the NCL events reported in rRNA 

depleted data are not detected in both poly(A)-depleted and RNase R-selected data (which 

depletes all linear RNAs) (160). In a recent study comparing the performance of 11 circRNA 

detection tools (among them Ciri, DCC, find_circ, MapSplice, NCLScan, segemehl, UROBORUS 

and KNIFE) on synthetic and real datasets (336), the following was was shown: 1) Ciri and KNIFE 

had a balanced performance regarding sensitivity and precision; 2) NCLScan and MapSplice were 

quite conservative, with less sensitivity compared to the previous ones; 3) Segemehl was 

sensitive, but returned many false positives; 4) There was no single tool that dominated the rest 

in all the used metrics. In other study comparing the performance of circRNA_finder, 

CIRCexplorer, MapSplice, Ciri and find_circ, it was shown that CIRCexplorer and MapSplice 

returned the most reliable results, which can be partially explained by the fact that both tools 

require a mandatory annotation file (337). In addition, they showed that the false positive rate 

(measured by the RNase R resistance of circRNA candidates) ranged from 12% to 28%. 

 

2.3.4.2 Quantification 
 

In the case of circRNA detection by rRNA depleted total RNA-seq data, only the backsplicing 

junction is being detected. It is not possible to infer the remaining structure of the circRNA (e.g., 

in case of an exonic circRNA, which exons compose the circRNA or if any intron is retained), since 

the origin of the remaining reads can be both the circRNA or the linear counterpart. Some tools 

have tried to infer their structure by statistical modelling, using a similar strategy of some 

transcriptome assemblers and, thus, with similar disadvantages. All the tools for circRNA 

detection previously listed only count reads aligning to the backsplicing junction. As a 

consequence, some tools also return the expression of the host linear isoform as the reads 

aligning to the linear junctions, to be able to compare circRNA and host linear expression. 

 

2.3.4.3 Differential expression 
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Since the circRNA quantification is totally different to the total RNA-seq, it is not clear if circRNA 

expression can be modelled in a similar fashion (e.g., using the negative binomial model from 

DESeq2 or edgeR). In general, circRNA expression has a totally different structure, mainly: 1) 

circRNAs are usually detected with a low quantity of assigned reads, lower than their linear 

counterparts (although there are some exceptions); 2) their expression varies greatly between 

samples; 3) there are a lot of samples with no expression of the corresponding circRNA. There 

is no study for now that has tried to address the circRNA expression modelling and most of the 

studies have limited themselves to tools such as DESeq2, edgeR2 and limma and to non-

parametric tests. As a consequence, circRNA differential expression results must be taken with 

caution. 

 

2.3.4.4 Workflow 
 

In figure 2.9 can be seen the workflow used to identify circRNAs in total RNA-seq data in this 

thesis. Briefly, a read quality filtering and trimming was performed with Trimmomatic [v0.38] 

(202) using the following criteria: 1) adaptor removal with the “palindrome” mode for paired-

end data; 2)  trimming of bases from the start or end of a read if their quality dropped below a 

Phred value of 20; 3) trimming of reads if the average quality within a sliding window of five 

nucleotides falls below 20; and 4) read filtering if their length was sorter than 40.  

 

 
Figure 2.9: Workflow followed for circRNA detection. 
 

As previously mentioned, circRNA identification tools search for topologically 

inconsistent split reads, in which a downstream 3’ splice site and an upstream 5’ splice site is 

linked, formally known as backsplicing. Since the sheep annotation is still in progress, two 

fragment-based circRNA identification tools were selected: segemehl [v0.3.4] (333) and DCC 

[v0.4.7] (328). In the case of segemehl, quality filtered reads were first aligned to the sheep 

reference genome (Oar_v3.1) with HISAT2 [v2.1.0] (224). Then, the set of non-aligned reads 

from the previous step were used to detect circRNAs in segemehl with default parameters. In 

contrast, for DCC, the quality filtered reads were first aligned to the reference genome with STAR 

[v2.6.1d] (338) following DCC author recommendations. Then, the chimeric.out.junction files 
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from the previous alignments and a file with repetitive regions in the sheep genome downloaded 

from the UCSC table browser (RepeatMasker and Simple Repeats tracks) were passed to DCC. 

DCC was run with default parameters, changing that a circRNA had to be expressed with one 

read in at least one sample to be reported. For further analysis, different filtering criteria were 

checked and different filters were applied to the tissues, as they had different experimental 

setups. In both tissues circRNAs needed a minimum of 2 read counts to be taken as expressed. 

In addition, in encephalon, circRNAs needed to be expressed at least in the same three samples 

in both tools, while in PBMCs needed to be expressed at least in the same three samples from 

one group in both tools. The intersection of both tools was taken to select trustworthy circRNAs. 

The expression counts for the detected circRNAs and host genes were taken as reference from 

DCC for further analysis. 

Once an expression matrix was achieved, different metrics and plots were checked in R 

with self-scripts and plotting functions from multiple packages. Multiple authors have pointed 

out that some circRNAs are tissue specific and evolutionary conserved (339). The main databases 

of circRNA annotation are focused in human, mouse, rat, zebrafish, fly and worm, being sheep 

circRNA data not submitted to any database to date. A literature search of articles in which 

circRNAs in sheep are detected and are given at least as supplementary material was done in an 

attempt to compare the circRNAs annotated in this study. Four different studies in different 

tissues were found: two from the pituitary gland (155,156) and another two from the 

longissimus dorsi muscle (157,158). In addition, as circRNAs are evolutionally conserved to some 

extent in different species, the detected circRNAs were compared to the ones annotated in 

CIRCpedia (340) for human. The following steps were carried: 

 

• The 5’ and 3’ flank coordinates of each circRNA found in sheep were converted 

to human coordinates with the liftOver tool from UCSC (341) with default 

parameters (min. ratio of remapped bases = 0.95). 

 

• The resulting coordinates were screened for overlap with human annotated 
circRNAs in CIRCpedia. Splice sites detected in +/- 2 nt intervals around the 
putative human sites were considered homologous. 
 

• Different categories were assigned to each circRNA: “not-aligned”, the sheep 
coordinates were not translated to human with liftOver; “no homologous”, No 
human circRNA detected near both splice sites; “5’ site utilized”, a human 
circRNA that only use the 5’ splice site is detected; “3’ site utilized”, a human 
circRNA that only use the 3’ splice site is detected; “Both sites utilized”, both 
splice sites are used by different circRNAs in human; and “homologous”, a 
human circRNA using both splice sites is detected. 

 

Then, detected circRNAs whose origin were in an annotated gene were further analysed. 

Supposing that circRNAs have functions related to their host genes, gene enrichment analyses 

were conducted using the GO and KEGG databases in g:Profiler (276). The tool computes the p-

values using a Fisher’s exact test and applies the Benjamini-Hochberg multiple test correction. 

The set of all expressed genes detected in the total RNA-seq libraries was set as background and 

related terms associated with the host genes of the circRNAs were checked for enrichment. 

Terms composed of more than 400 genes, due to limited interpretative value, or composed of 

less than 5 genes, due to the decrease in statistical power by multiple testing correction, were 

removed from the analysis. Those terms with an FDR less than 0.05 were selected for further 
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analysis. For visualization purposes, the list of enriched GO term was further analysed with 

Cytoscape using EnrichmentMap and Autoannotate plugins (278). Briefly, GO term information 

is inherently redundant, as genes often participate in multiple pathways, and collapsing 

redundant pathways into a single biological theme simplifies interpretation. EnrichmentMap 

generates a network in which pathways are visualized as nodes connected between them if the 

terms share many genes. Pathways with common genes often represent similar biological 

processes and are grouped together as sub-networks. Then, the clustering algorithm 

(clusterMaker2) automatically group similar pathways into major biological themes and then 

summarizes each cluster on the basis of word frequency within the pathway names (WordCloud 

app). Then, those words that were automatically selected were manually renamed to better 

explain groups. To note, clusters with less than 3 interconnected nodes were removed for 

visualization purposes. 

In an attempt to check circRNAs acting as sponges, a list of predicted miRNA sponges, 

identified as clusters of miRNA binding sites, previously reported in the human genome (hg19) 

was downloaded (342). The genomic coordinates of each sponge candidate were converted to 

hg38 with liftOver (min. ratio of remapped bases = 0.95) and intersected with those of the 

circRNAs identified in this study, already lifted from the sheep reference genome to hg38, with 

bedtools (min. fraction overlap = 75%). Results were then filtered by excluding circRNAs 

targeting miRNAs for which no orthologue sequence was reported in sheep according to 

Ensembl (release 97). All human miRNAs hairpins were screened for similarity with the Oar3.1 

genome with BLAST, requiring a minimum sequence identity of 90% on at least 95% of the 

hairpin. The sequences of the processed miRNAs were downloaded from miRbase (343) (Release 

22.1) and the corresponding sheep orthologous were extracted from the alignment provided by 

Ensembl. CircRNAs were screened for miRNA binding sites with RIsearch2 (344), using the 

following parameters: -s 1:8/6 -e -10 -l 20 -p2. In the same way we re-evaluated the clusters of 

miRNA binding sites identified in human 

Finally, a differential expression analysis was performed in both tissues. For the 

encephalon samples, the differential expression analysis was performed via two different 

methods. First, the analysis was done with DESeq2 and those circRNAs with an adjusted p-

value<0.05 were taken as cut-off. An alternative method was also applied, given that DESeq2 is 

not designed specifically to work on circRNA expression data. In this case, for normalization of 

the circRNA expression data, not only the circRNA counts were taken into consideration to 

calculate library sizes, the total amounts of reads aligned to the reference annotation was 

considered. The data was normalized by SRPBM (Spliced Reads per Billion Mapped Reads) (146) 

(see formula 14). After normalization, a Kruskal-Wallis test was done to check for differences 

between groups and the p-values were adjusted for multiple comparisons by the Benjamini & 

Hochberg method. Those circRNAs with an adjusted p-value<0.05 were taken as cut-off. For the 

PBMC samples, a batch effect removal program, harman [v1.12.0] (247), was applied after 

normalizing data by SRPBM. Then, the package limma and the Kruskal-Wallis test were applied 

to check for differential expression. Those circRNAs with an adjusted p-value<0.05 were taken 

as cut-off. 

 

𝑆𝑅𝑃𝐵𝑀 =
𝑐𝑖𝑟𝑐𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
×

106

𝑅𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ
 (14) 
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Chapter 3 

3 Response to Aluminium in PBMCs 
 

 

3.1 Introduction 
 

Aluminium hydroxide (AH) is one of the most used compounds as adjuvant in human and 

veterinary vaccines. Despite its widespread use, the mechanism of action is not fully known. 

Although aluminium adjuvants are extremely effective at enhancing antibody responses, are 

well tolerated and have the strongest safety record, recently some safety concerns have been 

raised: 1) It seems that the body is not able to discharge all injected aluminium; 2) It seems that 

it can reach distant organs; 3) It has a long-lasting biopersistence; 4) Some studies has related 

Al long-term exposure to multiple diseases in susceptible individuals. Independent of those 

concerns, which some remains quite controversial in the scientific community, it is clear that 

further research is need, preferentially in vivo to be able to capture the full picture of changes 

in the immune system after exposure to Al adjuvants. Understanding how Al adjuvants exert 

their role and the factors that affect them may lead to new and more efficient adjuvant 

formulations with better immunogenicity and safety profiles. 

An inflammatory muscle disorder was described in humans by Gherardi et al. (345) in 

which the presence of aggregates  of aluminium-containing macrophages was detected in 

intramuscular inflammation, which was linked at the same time to inoculation of aluminium-

containing vaccines. This disorder was later known as macrophagic myofasciitis (MFF). In recent 

years the ASIA syndrome (Autoimmune/Autoinflammatory Syndrome Induced by Adjuvants) has 

been defined (78). This syndrome encompasses four different medical conditions known by their 

hyperactive immune responses, namely the Gulf War syndrome, the MFF, siliconosis and post-

vaccination phenomena. These four conditions have been previously related to exposure to 

some kind of adjuvant, suggesting that a common denominator to them is adjuvant activity. In 

sheep, symptoms that can be related to ASIA has been described after a compulsory vaccination 

campaign against the bluetongue virus of ruminants in 2008 (5). The symptoms seen in sheep 

appeared in two different phases: an acute phase, which was seen in 25% of the flocks and 

affected to less than 0.5% of animals in a herd, characterized by a low response to external 

stimuli and acute meningoencephalitis; and an acute phase triggered by external stimuli (mainly 

low temperatures), which could be seen in 50-70% of flocks in a specific area and could affect to 

nearly 100% of animals in a herd, and characterized by an initial excitatory phase, followed by 

weakness, extreme cachexia, tetraplegia and death. 

There have been few in vivo sequencing studies on the effect of aluminium hydroxide 

adjuvant and its influence on the immune response after a long-term exposure to multiple Al-

based vaccines. Furthermore, the majority of studies have focused their efforts in brain changes 

caused by Al neurotoxicity and in using rat or mouse as models. In a recent study, male rats were 

exposed to intraperitoneal injections of a complex of aluminium chloride hexahydrate and 

maltolate every other day for 3 months and hippocampus samples were sequenced (53). Genes 

related to glial cell differentiation, neuronal transmission and vesicle trafficking were found 

differentially expressed. In other study comparing multiple adjuvants (Al among them) for an 
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inactivated rabies virus vaccine, blood samples from ICR mice inoculated intraperitoneally were 

sequenced (346). Alum-vaccinated mice were enriched in terms related to leukocyte 

differentiation and activated the antigen processing and presentation pathway. One drawback 

of these studies using mice is that researchers use intraperitoneal injections instead of 

subcutaneous or intramuscular injections, so any outcome regarding Al translocation to other 

tissues such as brain trough the intraperitoneal route would be hardly extended to any large 

mammal, in which vaccination is usually through the other routes. In addition, there are not 

commercial vaccines intended for use in mice, and most of these studies use generally the 

adjuvant alone or reduced versions of the human vaccines. Depending of the aluminium 

adjuvant and inactivated pathogen combination (and the proportion of both elements), the 

vaccine could take different conformations (mainly agglomerate size) that could cause different 

reactions. Therefore, it would be recommended to study Al adjuvancy in larger mammals to 

achieve more meaningful results that could be extrapolated to human. The use of farm animals 

or some domestic animals would be preferable, since there are vaccines specifically designed 

for them. Sheep is an attractive animal model to study adjuvants due to: 1. their low cost (at 

least compared to other farm animals); 2. Il8 has been identified, not in mice; 3. Large lifespan 

allowing long-term studies; and 4. their previous use as animal models for specific vaccines (e.g., 

to asses vaccines against the human respiratory syncytial virus designed for infants and to test 

the zoonotic pathogen Rift Valley fever virus) (347). Although there are some drawbacks when 

compared to mice, such as higher costs (food and facilities), worse state of reference genome 

and a smaller research community. 

In this study, lambs received a parallel subcutaneous treatment with either commercial 

vaccines containing aluminium hydroxide or an equivalent dose of only this compound with the 

aim of identifying the activated molecular signature. Blood samples were taken from each 

animal at the beginning and at the end of the experiment and PBMCs were isolated. Then, total 

RNA and miRNA libraries were prepared and sequenced. In an attempt to decipher AH adjuvant 

mechanism of action, three expression comparisons were made: vaccinated animals at the 

beginning and at the end of the treatment, adjuvanted animals at the same times, and animals 

of both treatments at the end of the experiment. 

The main aim of this sequencing study was to characterize the immune response to a 

long-term and intensive vaccination schedule and to check previously studied pathways related 

to AH adjuvant in an in vivo experiment in sheep. The hypothesis of this work was that a 

prolonged exposure to vaccine adjuvants, always following manufacture’s recommendations, 

would result in a hyperactivation of the immune system. For that purpose, two different 

sequencing libraries per sample were constructed, namely total RNA-seq and miRNA-seq. Thus, 

the objectives of this work were: 

1. to identify genes and regulatory elements involved in the immune response induced by 

the repetitive inoculation of vaccines with AH and to check the state of some pathways 

previously related to AH by others in literature. 

2. to predict potential targets of miRNAs that can be related to Al adjuvancy and test for 

correlation between both miRNA and predicted mRNA target expression data. 

 

3.2 Material and methods 
 

In this section only a brief description of animal samples, extraction method and validation by 

qPCR (quantitative polymerase chain reaction), also known as real-rime PCR, will be provided. 
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The analysis workflow for total RNA-seq and miRNA-seq data has been described in full detail in 

their corresponding section in Chapter 2 – Material and Methods. 

 

3.2.1 Animals 
 

All experimental procedures were approved and licensed by the Ethical Committee of the 

University of Zaragoza (ref: PI15/14). Requirements of the Spanish Policy for Animal Protection 

(RED53/2013) and the European Union Directive 2010/63 on the protection of experimental 

animals were always fulfilled. 

As previously stated, Rasa Aragonesa pure breed lambs were selected from a single 

pedigree flock of certified good health at 3 months old and with the requirement of not having 

undergone any vaccination before the experiment. For the purpose of the present work, they 

were randomly distributed in different treatment groups, n = 7 each. Each group received a 

parallel subcutaneous treatment with either commercial vaccines containing aluminium 

hydroxide as adjuvant (Group Vac) or aluminium hydroxide diluted in PBS (Group Adj; 

Alhydrogel, CZ Veterinaria, Spain), always inoculating with the equivalent dose of aluminium 

applied in the vaccinated group. Aluminium content was established by inductively coupled 

plasma atomic emission spectrometry and calculated per total dose. Nine different vaccines 

were used (see table 2.1 in Chapter 2), and a total of 19 inoculations were applied in each group 

throughout 16 different inoculation dates (see figure 2.2 in Chapter 2), thus entailing a total 

amount of 81.29mg of aluminium per animal. Intervals between inoculations ranged from 17 to 

100 days (mean = 31.3 ± 22.1 days). The complete study lasted 475 days, from February 2015 to 

June 2016. All injections were subcutaneous, in the area encompassing scapula and ribs. 16 out 

of 19 inoculations were performed in the right flank, and the rest, corresponding to double 

injection dates, were performed in the left flank. 

For total RNA-seq and miRNA-seq analysis, samples at the start and at the end of the 

experiment from the same 6 animals (3 sheep inoculated with vaccines and 3 sheep inoculated 

with the adjuvant alone) were used for library preparation. The rest of the animals from those 

two groups (4 sheep inoculated with vaccines and 4 sheep inoculated with the adjuvant alone) 

were used for validation of the sequencing data by qPCR. A list of the samples used in this 

experiment can be seen in table 3.1. 

 

Table 3.1: Samples used for sequencing and RT-qPCR. Vaccine refers to the group vaccinated 
with commercial vaccines, while adjuvant refer to the one inoculated with aluminium hydroxide 
diluted in PBS. In addition, T0 refers to the start of the experiment and Tf to the end. 

 

*Same RNA sample obtained with a conventional TRIzol extraction method. 

Treatment Animals Time Samples 

Sequencing 

Vaccine 121, 124, 125 
T0 121-A, 124-A, 125-A 

Tf 121-B, 124-B, 125-B, 125-B* 

Adjuvant 111, 114, 116 
T0 111-A, 114-A, 116-A 

Tf 111-B, 114-B, 116-B 

RT-qPCR 

Vaccine 122, 123, 126, 127 
T0 122-A, 123-A, 126-A, 127-A 

Tf 122-B, 123-B, 126-B, 127-B 

Adjuvant 112, 113, 115, 117 
T0 112-A, 113-A, 115-A, 117-A 

Tf 112-B, 113-B, 115-B, 117-B 
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3.2.2 Blood collection, RNA extraction and sequencing 
 

For the isolation of ovine peripheral blood mononuclear cells (PBMCs), blood was collected from 

the jugular vein of 14 Rasa Aragonesa sheep. Blood samples were taken from each animal at the 

beginning (day 0, T0), before any vaccination, and at the end of the treatment (day 475, Tf), 

which was 5 days after the last inoculation. Blood was collected into heparinized Vacutainer 

tubes (Becton, Dickinson and Company, Sparks, MD), transferred into 50-ml centrifuge tubes 

and diluted 1:2 in HBSS. Twenty-five millilitres of blood:HBSS were layered over 10ml of Ficoll-

Paque (1.084 g/cm3) (GE HealthCare Bio- Sciences, Uppsala, Sweden) in 50-ml centrifuge tubes. 

The cells were centrifuged at 900 × g for 30min to separate erythrocytes and polymorphonuclear 

cells from PBMCs. PBMCs were collected from the HBSS-Ficoll-Paque interface, washed with 

HBSS by centrifugation at 400 × g for 10min, lysed in 1ml of TRIzol and stored at −80℃ until 

further use. 

Total RNA was extracted from PBMCs using an RNA Clean & ConcentratorTM-5 kit (Zymo 

Research, Irvine, CA, USA) following manufacturer’s instructions and stored at −80℃. RNA 

quantity and purity were assessed with a NanoDrop 1000 Spectrophotometer (Thermo Scientific 

Inc., Bremen, Germany). The RNA integrity and concentration were assessed with a 2100 

Bioanalizer (Agilent Technologies, Santa Clara, CA, USA). Two numeric parameters concerning 

RNA integrity were estimated, the 28S/18S (ribosomal RNA) ratio and the RNA integrity number 

(RIN value). The RNA samples with a RIN value >7.5 and a 260/280 ratio >1.8 were used. A 

summary with the sample qualities can be seen in table 3.2. 

 

Table 3.2: Quality summary of sequenced samples with their 260/280 and 260/230 absorbance 
ratios and RIN values. Vac, group vaccinated with commercial vaccines; Adj, group inoculated 
with aluminium hydroxide diluted in PBS; T0, start of the experiment (day 0); Tf, end of the 
experiment (day 475). 

CNAG ID Sample name Group 260/280 
Absorbance ratio 

260/230 
Absorbance ratio 

RIN 

AD1395 121-A Vac T0 2 1.86 9,3 
AD1396 124-A Vac T0 1.94 1.27 9,3 
AD1397 125-A Vac T0 2.06 1.9 9,4 
AD1398 111-A Adj T0 2.1 2.11 7,8 
AD1399 114-A Adj T0 2.09 2.14 8,1 
AD1400 116-A Adj T0 2.06 2.2 9,3 
AD1401 121-B Vac Tf 2.05 2.05 9,6 
AD1402 124-B Vac Tf 1.98 1.64 9,2 
AD1407 125-B Vac Tf 1.94 1.79 9,2 
AD1403 125-B* Vac Tf 1.87 - 6.4 
AD1404 111-B Adj Tf 1.87 - 8,1 
AD1405 114-B Adj Tf 1.91 - 8,5 
AD1406 116-B Adj Tf 1.93 - 7,8 

*Same RNA sample obtained with a conventional TRIzol extraction method. Only used for total RNA-seq. 
 

Total RNA-seq libraries were prepared according to the TruSeq Stranded Total RNA kit 

with Ribo-Zero Globin (Illumina, San Diego, CA, USA) to deplete the samples of cytoplasmic rRNA 

and globin mRNA. The miRNA-seq libraries were prepared according to the TruSeq Small RNA 

library prep kit (Illumina). Total RNA and miRNA libraries were sequenced on a HiSeq2000 

sequencer and HiSeq2500 sequencer, respectively. RNA-seq was conducted for a total of 13 

samples, with a mean sequencing depth of 70 million 76 base pair (bp) paired-end reads at CNAG 
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(Centro Nacional de Análisis Genómico, Barcelona, Spain). miRNA-seq included 12 samples, with 

a mean sequencing depth of 17 million 50 bp single- end reads at CRG (Centro de Regulación 

Genómica, Barcelona, Spain). 

 

3.2.3 qPCR validation 
 

To validate changes that were identified by RNA-seq experiments, the relative expression levels 

of 9 genes (CNTLN, EGR2, GPRC5C, HGF, NRXN2, SAMD4B, SKAP2, TREM1, WDR5B) and 3 

miRNAs (oar-let-7b, oar-miR-19b, oar-miR-25) that were selected based on significant changes 

seen in the RNA-seq and miRNA-seq analyses were verified by qPCR. For quantification of mRNA 

transcripts, primers were designed using PrimerQuest and OligoAnalyzer tools of Integrated 

DNA Technologies (IDT). GAPDH, ATPase, ACTB and TFRC were used as reference genes. For 

quantification of miRNAs, primers were designed using Qiagen platform. U6 snRNA, oar-miR-

30d and oar-miR-191 were used as internal standards. These last two miRNAs were selected for 

their expression stability in our samples. Supplementary Table S3.1 and Table S3.2 shows the list 

of the amplified ovine genes and miRNAs and the corresponding primer sequences, respectively. 

The Real-time qPCR amplifications of cDNA pools was accomplished using PowerUp™ SYBR™ 

Green Master Mix (Applied Biosystem, Foster City, CA, USA) in a 10 µl final volume reaction, 

according to the manufacturer´s instructions. qPCR reactions were conducted on a 

QuantStudio® 3 detection system (Applied Biosystem) under the following conditions: 1 cycle of 

50℃ for 2 min, 1 cycle of 95℃ for 2 min, 40 cycles of denaturation at 95℃ for 15 s, annealing at 

60℃ for 60 s, and a dissociation curve to measure the specificity of the amplification. 

Appropriate controls (no template and no retrotranscription) were included. Primer 

concentrations that did not produce non-specific fragments or primer dimers and generated the 

lowest Ct value were selected for the final analysis. 

The expression study has been based on the analysis of mRNA and miRNA expression 

with Fludigm's BioMark HD Nanofluidic qPCR System technology combined with GE 48.48 

Dynamic Arrays IFC. qPCR was performed on a BioMark HD System using Master Mix SsoFastTM 

EvaGreen® Supermix with Low ROX (Bio-Rad Laboratories, Hercules, CA, USA). The expression 

analysis with the Fluidigm Biomark HD Nanofluidic qPCR system was performed at the Gene 

Expression Unit of the Genomics Facility, in the General Research Services (SGIKER) of the 

UPV/EHU. Ct values and real-time PCR analysis was carried out with Fluidigm Real-Time PCR 

Analysis Software [v3.1.3]. PCR efficiency calculation and correction, reference gene and miRNA 

stability analysis and normalization have been done with GenEx software of MultiD [v5.4]. Most 

of the genes and miRNAs showed high amplification efficiencies with a mean value of 96 % and 

99 % respectively. The stability of candidate reference genes and miRNAs was analysed using 

both NormFinder (348) and GeNorm (349) algorithms integrated in GenEx. The two most stable 

genes were ACTB and GAPDH and normalization has been performed using these two reference 

genes. The two most stable miRNAs were oar-miR-30d and oar-miR-191 and normalization has 

been performed using these two miRNAs. 

Changes in gene and miRNA expression (n-fold) or relative quantification (RQ) were 

determined by the Δ(ΔCt) method. Based on the sequencing results, three comparisons were 

done: Vac Tf vs Vac T0, Adj Tf vs Adj T0 and Adj Tf vs Vac Tf. The results are expressed as relative 

quantifications and fold changes, which was standardized by log2 transformation. Normal 

distribution was checked using the Shapiro-Wilk test in the IBM SPSS statistical package [v24]. 

Changes in expression between different groups (Vac Tf vs Vac T0, Adj Tf vs Adj T0 and Adj Tf vs 

Vac Tf) were compared with the Tukey HSD or Games-Howell post-hoc test (ANOVA) or with 
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non-parametric Kruskal-Wallis test of the SPSS package. In all analyses, differences were 

considered significant when p-values were <0.05. 

 

3.3 Results 
 

3.3.1 Total RNA-seq 
 

3.3.1.1 Sequencing quality 
 

After preparing 13 total RNA-seq libraries for sequencing, a mean value of 69.7 million 75 nt 

paired-end reads per library were achieved. After trimming of adaptor sequences and low-

quality fragments with Trimmomatic (chosen parameters can be seen in the corresponding 

section of Chapter 2 – Material and Methods), a mean of 68.5 (SD=6.95) million reads (98.33%) 

were considered as good quality segments for subsequent analyses. The average quality of the 

trimmed samples can be seen in figure 3.1. The drop in quality seen in the first bases is common 

in Illumina sequencing data due to random hexamer priming during the cDNA generation step 

(112). As it can be seen, all samples have good quality after trimming. 

 

 
Figure 3.1: Average quality per base for all sequenced samples for paired-end data. a) pair 1 and 
b) pair 2. The y-axis shows the average quality in Phred scale, while the x-axis is a representation 
of all bases in a sequencing read of 75 nt for each pair. The background of the graph is divided 
by different colours in three main section, with the green section indicating good quality bases, 
the orange reasonable quality bases and the red one poor quality bases. The per sample quality 
plots were produced by FASTQC and then, they were aggregated by MultiQC. 
 

3.3.1.2 Alignment to reference genome 
 

Trimmed reads were aligned to the Ovis aries reference genome Oar_v3.1 from Ensembl with 

STAR. The alignment yielded a mean value of 52.7 (SD=10.4) million read pairs (76.95%) mapping 

to a unique locus, 11.4 (SD=5.8) million read pairs (16.70%) mapping to multiple loci and 4.3 

(SD=2.6) million read pairs (6.32%) not mapping to any loci in the genome. A more detailed 

summary of the alignment can be seen for each sample in table 3.3. Only uniquely mapped reads 

were used for gene expression quantification by featureCounts in a strand-specific manner. A 

mean value of 36.1 million read pairs (68.42%) per sample were successfully assigned to sheep 

annotated genes. Once an expression matrix was achieved, different metrics were evaluated 

with the NOISeq R package from Bioconductor and RSeQC package. Among the checked features 

were a splice junction class pie chart (see figure 3.2), a “saturation plot” (see figure 3.3) and a 
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“sensitivity plot” (see figure 3.4). Only a junction class pie chart from sample 121-A is shown, 

but the rest of the samples follow a similar distribution of junctions. It can be seen that despite 

a great number of junctions are known (~50%), the sheep reference annotation is still in process 

and it suffers from a lack of annotation in some pathways since approximately 30% and 20% of 

the detected junction in our samples are completely novel or partially novel, respectively. 

 

 

 

The saturation plot shows how many features (in our case genes) are detected with 

more than a pre-defined count (more than 0 counts in our case) with the sequencing depth of 

the sample, and other sequencing depths are simulated from this total sequencing depth to see 

how many features would be detected with lower/higher depths. As it could be seen in figure 

3.3, there would be few gains with higher sequencing depths for our samples, at least for the 

annotated genes. In addition, in the “sensitivity plot” (figure 3.4) can be seen depicted for each 

sample the percentage of features with more than 0, 1 ,2,5 and 10 counts per million (CPM). 

This plot can be used to select a filtering criterion for lowly expressed features, which are less 

reliable and can introduce noise into the differential expression analysis. 

 

 
Figure 3.3: Saturation plot. The y-axis shows the number of detected features (genes) with more 
than 0 counts at different sequencing depths, x-axis, for each sample. Filled dots correspond to 
the values detected in our libraries, while the empty dots correspond to the simulated values. 

Figure 3.2: Detected splice 
junctions for sample 121-A. 
The junctions are divided 
as novel, partially novel 
(only one splice site is 
novel) and known (both 
splice sites are annotated 
in the reference genome). 
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Table 3.3: Summary statistics from the sequence alignment step for total RNA-seq data. 

ID Total Read-Pairs Read-Pairs Surviving 
Trimming 

Uniquely Mapped 
Read-Pairs 

Read-Pairs Mapping to 
Multiple Loci 

Unmapped Read-Pairs 

121-A 64357288 
63394838  
(98.50%) 

53552843 
(84.48%) 

6764150  
(10.67%) 

2884465  
(4.55%) 

124-A 68629982 
67702143  
(98.65%) 

56800802 
 (83.90%) 

7500326  
(11.08%) 

3202311  
(4.73%) 

125-A 61903639 
60920287  
(98.41%) 

51751591 
 (84.95%) 

6417402 
 (10.53%) 

2583020 
 (4.24%) 

111-A 85026279 
83827905  
(98.59%) 

71104450  
(84.82%) 

9181708  
(10.95%) 

3302819 
 (3.94%) 

114-A 68079080 
67073386  
(98.52%) 

56167786 
 (83.74%) 

7895668  
(11.77%) 

2830497 
 (4.22%) 

116-A 80035364 
78642855  
(98.26%) 

65954369 
 (83.87%) 

9596562 
 (12.20%) 

2870464  
(3.65%) 

121-B 73966873 
72364211  
(97.83%) 

60629956  
(83.78%) 

8062333 
 (11.14%) 

3422827  
(4.73%) 

124-B 70779453 
69135213  
(97.68%) 

58449065  
(84.54%) 

7472133 
 (10.81%) 

2993555  
(4.33%) 

125-B 60098045 
59571141  
(99.12%) 

50176958 
 (84.23%) 

7023235  
(11.79%) 

2162432 
 (3.63%) 

125-B* 68718234 
67334569  
(97.99%) 

38560204 
 (57.27%) 

20816453  
(30.91%) 

7352935  
(10.92%) 

111-B 69869296 
68584349  
(98.16%) 

42759051 
 (43.02%) 

17835426 
 (34.14%) 

11227258  
(16.37%) 

114-B 72223271 
71055465  
(98.38%) 

43208875  
(60.81%) 

20973868  
(29.52%) 

6323936 
 (8.90%) 

116-B 62221512 
61215065  
(98.38%) 

36354141 
 (59.39%) 

19189726  
(31.35%) 

5148187  
(8.41%) 
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Figure 3.4: Sensitivity plot. The bars show the percentage of annotated features within each 
sample with more than 0, 1, 2, 5 and 10 CPM. In the upper side of the plot, the sequencing depth 
of each sample (in millions) is given. The horizontal lines are the corresponding percentage of 
features with those CPM in at least one of the samples. 
 

It must be pointed that from 27,054 annotated genes in Ensembl, 21,274 (78.63%) were 

expressed with at least one sequence read count in one of the 13 RNA-seq libraries. Detected 

genes whose expression was lower than 2 CPM and could be found in less than 6 individual 

libraries were treated as lowly expressed genes and were removed from the differential 

expression analysis. These cut-offs were selected after checking that less stringent criteria 

introduced genes with high variability and expressed in only a few animals of each group. Those 

genes may not provide enough statistical evidence for reliable judgments and may confound the 

differential expression analysis if left in the data (350). After filtering lowly expressed genes, 

11,395 (42.12%) remained for subsequent analyses. 

 

3.3.1.3 Differential expression analysis 
 

Prior to the differential expression analysis, the svaseq function from the SVA package was 

applied to remove unwanted variation and accurately measure the biological variability. The 

obtained surrogate variables were incorporated into the testing model of the DE analysis. A 

principal component analysis (PCA) was done with the corrected data (see figure 3.5). The 

different groups in our data are clearly depicted separately by the main components, pointing 

towards differences in gene expression. It must be pointed that samples from the vaccine and 

adjuvant groups at the initial time are not expected to be too different (apart from animal 

specific differences), since both groups are samples before the inoculation of any vaccine 

component. 
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Figure 3.5: Principal Component Analysis (PCA) in total RNA-seq data from sheep PBMCs after 
the batch effect removal with SVA R package. 
 

After this first exploratory analysis, three different programs (edgeR, DESeq2 and limma) 

were selected for the differential expression analysis. The same design model, previously 

described in Chapter 2, was applied in all tools and those genes with an adjusted p-value<0.05 

and a fold-change>1.5 or <0.667 in all tools at the same time were designated as true DEGs. It 

must be pointed that, once the intersection of all the tools is done, the results from edgeR were 

taken as reference. As previously described in Chapter 2, edgeR and DESeq2 can estimate the 

dispersion of the model by three different manners: a common dispersion for all genes, a 

trended dispersion which depends mostly on the expression levels of each gene and a gene wise 

dispersion, in which a different dispersion is estimated for each gene. The estimated dispersion 

values by edgeR can be seen in Figure 3.6. This kind of plot can help to decide if the chosen fit 

model is good and if there is any suspicious data in our samples. Generally, for RNA-seq data, it 

is expected for the trended dispersion to decrease smoothly with abundance and to asymptotic 

to a constant value for highly expressed genes (350). For the DE analysis, the gene wise 

dispersion was used, which is the default and recommended choice in edgeR. 

 

 
Figure 3.6: Biological coefficient of variation (square root of the negative binomial dispersion) 
against gene abundance (in log2 count per million) in PBMC samples. The red line is the 
estimated common BCV, the blue line the estimated trended BCV and the black dots the gene 
wise (or Tagwise) BCV. 
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Three different comparisons were made, mainly: Vac Tf vs. Vac T0, Adj Tf vs. Adj T0 and 

Adj Tf vs. Vac Tf. Thus, 2,473 DEGs were identified in the Vac Tf vs. Vac T0 comparison (Figure 

3.7A), of which 1,208 and 1,265 displayed increased and decreased expression, respectively. 

Showing a similar pattern, 2,980 DEGs were identified in the Adj Tf vs. Adj T0 comparison (Figure 

3.7B), of which 1,474 and 1,506 were upregulated and downregulated, respectively. Finally, in 

the Adj Tf vs. Vac Tf comparison, 429 DEGs were identified (Figure 3.7C), of which 132 were 

upregulated and 297 were downregulated. The exact results by gene of the DE analysis are 

available as a supplementary table in a previously published publication (347). In addition, the 

achieved results can be seen as MA plots in Figure 3.8, which serves as a way to visualize the 

differences between counts from two groups. 

 

 
Figure 3.7:  Venn diagrams depicting the differentially expressed genes detected with edgeR, 
DESeq2 and limma in total RNA-seq data. A) Vac Tf vs. Vac T0 comparison. B) Adj Tf vs. Adj T0 
comparison. C) Adj Tf vs. Vac Tf comparison. 
 

Among the most significant DE genes in each comparison (Figure 3.9), there are factors 

that are clearly related to apoptosis (TP53BP2, CSRNP1, TEAD3, CDCA7, PPP1R15A), immune 

response (OSM, AMPD3, BTLA, SKAP2, IGSF6, LST1, FGR, MAPK13), regulation of inflammatory 

response (CD40, S100A12, ADGRE3, TREM1, STEAP4, NR4A3), DNA replication and repair (FEN1, 

HIST1H4L), cell growth (ARID5A, VPS37B, HGF, CSF3R), cell adhesion and cell signalling (NRXN2, 

CLEC12A, AREG), nervous system development (RAPGEF, CASZ1, EGR2, L1CAM), and a gene 

involved in the pathogenesis of Alzheimer’s disease (APBB1). 

 

3.3.1.4 Functional enrichment analysis 
 

In addition to check the most significant differentially expressed genes, in an attempt to 

decipher the functions of DEGs, a functional enrichment analysis was performed with PANTHER 

and DAVID tools. For the three main domains of the GO database (cellular component, molecular 

function and biological process), the PANTHER webtool was used for each list of DEGs (three in 

total).  In all  comparisons  clearly  appeared  different  terms  related  to  the  immune  system, 
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Figure 3.8: Scatter plots with the average expression (in log counts per million) of genes on the 
x-axis and the fold change (in log2) in the y-axis. These plots are named MA plots. Blue dots 
represent significant (in edgeR, DESeq2 and limma ) downregulated genes in their corresponding 
comparison, while red dots represent significant upregulated genes. Horizontal lines correspond 
to FC=1.5 and FC=0.667. a) Vac Tf vs. Vac T0. b) Adj Tf vs. Adj T0. c) Adj Tf vs. Vac Tf. 
 

 
Figure 3.9: Heatmap with the log2(Fold Change) of the top 10 significant up- and down-regulated 
genes in the Vac Tf vs. Vac T0, Adj Tf vs. Adj T0, and Adj Tf vs. Vac Tf comparisons. The genes 
were selected from those found differentially expressed in 3 different programs: limma, edgeR 
and DESeq2. 



 97 

 

apoptotic signalling pathway or response to DNA damage. In the Vac Tf vs. Vac T0 comparison, 

46 significantly over-represented GO terms were found in total. Among the terms from the 

Biological Process (BP) category (Figure 3.10), terms such as intracellular signal transduction 

(GO:0035556), cellular response to lipopolysaccharide (GO:0071222), regulation of cytokine 

production (GO:00018117), DNA repair (GO:0006281) and regulation of defense response 

(GO:0031347) were identified. In addition, 72 enriched GO terms were identified in the Adj Tf 

vs. Adj T0 comparison. Among the terms from the BP ontology (Figure 3.11), there were positive 

regulation of GTPase activity (GO:0043547), regulation of cellular response to stress 

(GO:0080135), cellular response to DNA damage stimulus (GO:0006974), positive regulation of 

proteolysis (GO:0045862), regulation of apoptotic process (GO:0042981), cellular response to 

chemical stimulus (GO:0070887), regulation of autophagy (GO:0010506) and regulation of 

immune system process (GO:0002682). Both treatments have terms related to DNA damage in 

common. Lastly, in the Adj Tf vs. Vac Tf comparison, 23 overrepresented terms were identified 

(Figure 3.12), including positive regulation of cytokine production (GO:0001819), positive 

regulation of immune system process (GO:0002684), inflammatory response (GO:0006954), 

immune response (GO:0006955), regulation of response to external stimulus (GO:0032101), 

cellular response to cytokine stimulus (GO:0071345), and neutrophil chemotaxis (GO:0030593). 

DAVID tools was used for the enrichment analysis of KEGG pathways, revealing 

overrepresented pathways related to the immune system, inflammatory response and some 

autoimmune diseases. The results were represented as networks with Cytoscape for each 

comparison: Vac Tf vs. Vac T0 (Figure 3.13), Adj Tf vs. Adj T0 (Figure 3.14) and Adj Tf vs. Vac Tf 

(Figure 3.15). In both treatment groups (adjuvant- and vaccine-treated animals), the NF-κB 

signaling pathway was enriched. Other pathways enriched exclusively in the Vac Tf vs. Vac T0 

comparison were: TNF signaling pathway, Toll-like receptor signaling pathway, p53 signaling 

pathway, DNA replication, purine metabolism and endocytosis. Furthermore, in the Adj Tf vs. Adj 

T0 comparison, immune related pathways such as T cell receptor signaling pathway and B cell 

receptor signaling pathway were enriched. Seeing the enriched GO terms and KEGG pathways, 

it is clear that the treatments, including the aluminium adjuvant without the presence of any 

antigen, are able to stimulate the immune response. Notably, as can be seen in the enriched 

KEGG pathway cytokine-cytokine receptor interaction in the Adj Tf vs. Vac Tf comparison, nearly 

all cytokines and cytokine receptors are downregulated in the adjuvanted animals, except CCR6.  

 

 

Figure 3.10: Enriched GO terms 
from the BP ontology in the Vac 
Tf vs. Vac T0 comparison in 
PANTHER. The significance is 
calculated with a Fisher’s exact 
test and adjusted for multiple 
comparison correction with 
Benjamini-Hochberg False 
Discovery Rate correction. The 
blue bars depict number of 
DEGs in the corresponding 
term, while the red line depicts 
the adjusted p-value (after -
log10 transformation). 
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Figure 3.11: Enriched GO terms 
from the BP ontology in the Adj 
Tf vs. Adj T0 comparison in 
PANTHER. The significance is 
calculated with a Fisher’s exact 
test and adjusted for multiple 
comparison correction with 
Benjamini-Hochberg False 
Discovery Rate correction. The 
blue bars depict number of DEGs 
in the corresponding term, while 
the red line depicts the adjusted 
p-value (after -log10 
transformation). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.12: Enriched GO terms from 
the BP ontology in the Adj Tf vs. Adj 
T0 comparison in PANTHER. The 
significance is calculated with a 
Fisher’s exact test and adjusted for 
multiple comparison correction with 
Benjamini-Hochberg False Discovery 
Rate correction. The blue bars depict 
number of DEGs in the corresponding 
term, while the red line depicts the 
adjusted p-value (after -log10 
transformation). 
 

 

 

In concordance with what have been seen in other studies, aluminium adjuvants are 

able to upregulate NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in both 

groups (351,352). NF-κB is a family of structurally-related transcription factors that regulates a 

great variety of genes from the innate and adaptative immune response. Among the functions 

of NF-κB targeted genes, there are processes such as immune and inflammatory response, 

cellular growth, stress response, proliferation, differentiation, development and apoptosis 

(353). The expression of NF-κB targeted genes which are differentially expressed in our study in 

at least  one comparison  can be seen as  a  radar plot  in figure 3.16A. Among  the NF-κB target 
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Figure 3.13: Enriched KEGG pathways in the Vac Tf vs. Vac T0 comparison in DAVID tools with EASE score (a modified Fisher’s exact test) and Benjamini-
Hochberg False Discovery Rate (FDR) correction. Black boxes represent enriched pathways and points differentially expressed genes in each pathway, up-
regulated ones in red and down-regulated ones in blue.  
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Figure 3.14: Enriched KEGG pathways in the Adj Tf vs. Adj T0 comparison in DAVID tools with 
EASE score (a modified Fisher’s exact test) and Benjamini-Hochberg False Discovery Rate (FDR) 
correction. Black boxes represent enriched pathways and points differentially expressed genes 
in each pathway, up-regulated ones in red and down-regulated ones in blue. 
 

Figure 3.15: Enriched KEGG 
pathways in the Adj Tf vs. Adj 
T0 comparison in DAVID tools 
with EASE score (a modified 
Fisher’s exact test) and 
Benjamini-Hochberg False 
Discovery Rate (FDR) 
correction. Black boxes 
represent enriched pathways 
and points differentially 
expressed genes in each 
pathway, up-regulated ones 
in red and down-regulated 
ones in blue. 
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Figure 3.16: Radar plots with the log2(Fold Change) of differentially expressed genes in multiple 
pathways. Each colour line represents log2(Fold Change) values in a different comparison: Vac 
Tf vs. Vac T0 (blue), Adj Tf vs. Adj T0 (red) and Adj Tf vs. Vac Tf (green). A) Differentially expressed 
genes that are targeted by NF-κB (list of target genes obtained from https://www.bu.edu/nf-
kb/gene-resources/target-genes/). * indicates that the gene has a κB site in the promoter, but 
the gene has not clearly been shown to be controlled by NF-κB. B) Differentially expressed genes 
related to the cytokine-cytokine receptor interaction pathway. 
 

genes are cytokines/chemokines and their modulators (IL1B, IL1RN, IL8 and TNF), 

immunoreceptors (CD80, CCR7, CD40, IL2RA, NOD2, TLR2, TREM1), acute phase proteins (PTX3, 

PLAU), stress response genes (PTGS2, SENP2, SOD2), regulators of apoptosis (TRAF2, CASP4), 

growth factors (HGF, PIGF), transcription factors and their modulators (REL, HIF1A, NFKBIE, 

NFKB2, RELB, STAT5A, TFEC), and enzymes (ABCB9, DPYD, DUSP1, NUAK2, SAT1, TGM1). 

Furthermore, within the DEGs related to the cytokine-cytokine receptor interaction pathway, 

there are chemokines (CXCR4, CCR6, CCR7, CCR5, CCR1, IL8), haematopoietins (IL6ST, CSF3R, 

IL4R, IL13RA1, IL12RB1, OSM) and genes belonging to the platelet-derived growth factor (PDGF) 

family (CSF2RA, CSF2RB, IL2RA, IL2RB, IL15RA, HGF), interferon family (IFNAR2, IFNGR1), tumour 

necrosis factor (TNF) family (TNFRSF21, TNFRSF1B, FAS, CD40, TNFRSF13C, TNF, LTB, TNFSF9, 

TNFSF13B), transforming growth factor beta (TGFB) family (ACVR1B, BMPR2, TGFB1), and 

interleukin-1 (IL1) family (IL1R1, IL18RAP, IL1B). 

The vaccination induced a clear upregulation of IL1B, IL2RA and PTX3. IL1B (interleukin-

1 beta) is a potent pro-inflammatory cytokine produced by activated macrophages who is able 

to induce neutrophil recruitment and activation (354), T/B cell activation and has a central role 

in the differentiation of TH17 cells (355). In addition, IL2RA (a subunit of the high affinity receptor 

for interleukin-2) expression is constitutive in regulatory T cells (Treg) (356), while PTX3 is 

expressed and released by cells of the monocyte-macrophage lineage exposed to inflammatory 

signals (357). Taken together, the expression of these genes is consistent with the induction of 

an ongoing immune response against the vaccine. In contrast, in the animals inoculated with 

aluminium alone (without any antigen), the expression of some proinflammatory gene mRNAs 

were downregulated (e.g., IL1B, IL8, TLR2, NOD2, IL2RA), suggesting a milder induction of the 

immune response. Cytokine receptor interaction in vaccinated animals evidenced the induction 

of IL18RAP, involved in sensing the proinflammatory IL18 cytokine, and CSF3R, which is the 

https://www.bu.edu/nf-kb/gene-resources/target-genes/
https://www.bu.edu/nf-kb/gene-resources/target-genes/
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receptor for granulocyte colony stimulation factor (G-CSF), a key cytokine that controls myeloid 

cell function. 

 

3.3.1.5 Weighted gene correlation network analysis (WGCNA) 
 

A weighted gene co-expression network analysis was performed with the WGCNA [v1.63] 

(279,358) R package. This kind of networks provide a way to account for the coordinated 

expression among genes and discern possible differences between individuals that may relate 

to differences in treatment group. It must be pointed that in addition to annotated gene data, 

expression data of detected new lncRNAs (data not shown) was used for network construction. 

Briefly, a similarity matrix was constructed from normalized data using the biweight 

midcorrelation, which was chosen for its robustness against outliers in comparison to Pearson 

correlation. Then, the similarity matrix was raised to a power β to calculate the adjacency matrix. 

The parameter β needs to be selected based on the minimum value required to get a scale-free 

topology network, which correspond to a scale-free topology fit index R2>0.8. If the index fails 

to reach values over 0.8 for reasonable powers (less than 15 for unsigned networks and less than 

30 for signed networks, by authors recommendation), it may be indicative of a subset of samples 

with strong differences from the rest of samples. As can be seen in figure 3.17, there is not a 

power β lower than 30 that achieves a R2>0.8. Taken the differential expression results (Figure 

3.7), it is clear that there are strong expression changes between conditions. The lack of a 

scale-free topology does not invalidate the data by itself and, if the cause is an interesting 

variable, the authors provide different soft-thresholding powers to achieve a conservative 

network based on the type of network and the number of samples in the data. For a signed 

network constructed from less than 20 samples, a β parameter of 18 is recommended. 

 

 
Figure 3.17: Summary network indices (y-axes) as functions of the soft thresholding power 
(x-axes). Numbers in the plots indicate the corresponding soft thresholding powers. For each 
power, the scale-free topology fit index (R2) is calculated (left panel) and returned along the 
network mean connectivity (right panel). 



 103 

 

 

Once an adequate β parameter was chosen and the network was constructed, different 

modules (clusters of densely interconnected genes) were detected by an unsupervised 

hierarchical clustering algorithm (hclust function in R). The TOM metric was used for the 

clustering as a dissimilarity matrix by subtracting it from 1. In addition, a minimum size of 30 

genes was required for a module to be reported. A total of 106 co-expressed gene modules were 

detected. Then, modules with similar expression profiles were merged based on a height cut-off 

threshold of 0.3. In the end, a total of 32 co-expressed gene modules were detected (figure 

3.18(a) and 3.18(b)), module size ranging from 39 to 1,956 genes. Each module was assigned a 

random colour name. Then, significant Pearson’s correlations among module eigengenes (the 

first principal component of each module) and treatment variables (all possible dichotomized 

combinations, in which one group is against the other two. Treat, samples at the start of the 

experiment against samples at the end; TreatVac, samples from the vaccine group at the end of 

the experiment against the rest of samples; and TreatAdj, samples from the adjuvant group at 

the end of the experiment against the rest of samples) were searched. After selecting a q-value 

of 0.05 as cut-off, the following modules were found significant for each dichotomized 

treatment variable (Figure 3.18(c)): lavenderblush3 (1956 genes, r=0.86, q-value=0.004), 

darkgreen (1066 genes, r=0.67, q-value=0.04), plum1 (125 genes, r=0.7, q-value=0.04), coral1 

(695 genes, r=-0.75, q-value=0.03), darkolivegreen2 (39 genes, r=-0.81, q-value=0.01), pink 

(1492 genes, r=-0.94, q-value=9e-05) and yellowgreen (1131 genes, r=-0.78, q-value=0.02) for 

Treat variable; plum3 (64 genes, r=-0.73, q-value=0.03), darkred (223 genes, r=-0.68, 

q-value=0.04), grey60 (751 genes, r=-0.71, q-value=0.03), thistle (188 genes, r=-0.67, 

q-value=0.04) and pink (1492 genes, r=-0.68, q-value=0.04) for TreatVac variable; and 

lavenderblush3 (1956 genes, r=0.69, q-value=0.04), salmon4 (280 genes, r=0.74, q-value=0.03), 

skyblue3 (126 genes, r=0.65- q-value=0.05), antiquewhite4 (254 genes, r=0.79, q-value=0.02) 

and lightpink4 (976 genes, r=-0.73, q-value=0.03) for TreatAdj. In addition, it was checked how 

many DEGs were inside each significant module and it was shown that all those modules had 

from 10 to 1111 DEGs. The most outstanding modules were lavenderblush3, coral1, pink, 

yellowgreen and lightpink4 with 1111 from 1956, 370 from 695, 803 from 1492, 434 from 1131 

and 349 from 976 differentially expressed genes, respectively. 

The obtained treatment associated modules were further studied for enrichment of GO 

terms and KEGG pathways. Among the modules correlated to both treatments (Treat), 

lavenderblush3 and darkgreen showed positive correlation, which indicates that genes 

belonging to those modules usually have higher expressions at the end of the experiment, while 

coral1, pink and yellowgreen showed negative correlation, which indicates a lower expression 

at the end of the experiment. Among terms from the BP ontology, lavenderblush3 module was 

enriched in thymic T cell selection (GO:0045061), interstrand cross-link repair (GO:0036297), T 

cell receptor signaling pathway (GO:0050852) and intrinsic apoptotic signaling pathway by p53 

class mediator (GO:0072332); darkgreen module was enriched in endoplasmic reticulum (ER) 

overload response (GO:0006983) and regulation of type I interferon production (GO:0032479); 

coral1 module was enriched in multiple processes such as immune response (immune response-

activating signal transduction (GO:0002757), positive regulation of innate immune response 

(GO:0045089) and positive regulation of cytokine production (GO:0001819)), T cell functions 

(regulation of T-helper 17 cell differentiation (GO:2000319)), inflammation (negative regulation 

of acute inflammatory response (GO:0002674)), MAPK and JNK cascades, cell proliferation and 

motility; the most correlated pink module (r=-0.94) was enriched in DNA repair (GO:0006281), 

methylation   (GO:0032259)   and  cellular  protein  modification  process  (GO:0006464); and the  
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Figure 3.18: Weighted gene expression co-variance network analysis (WGCNA) summary. (a) Gene dendrogram obtained by average linkage hierarchical 
clustering. The colour rows underneath the dendrogram shows the module assignment before (Dynamic Tree Cut) and after (Merged Dynamic) modules with 
similar expression profiles were merged. (b) Hierarchical clustering of samples used in the analysis. (c) Module-trait associations. Each row corresponds to a 
module eigengene, while the columns to a trait. Each cell contains the corresponding correlations (color-coded) and adjusted p-values. Only modules 
associated with at least one trait are shown (significant ones marked with and asterisk).  

Dynamic Tree Cut 

Merged Dynamic 
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yellowgreen module was enriched in terms related to mRNA processing and protein regulation 

such as ubiquitin-dependent ERAD pathway (GO:0030433), negative regulation of intracellular 

protein transport (GO:0090317), protein folding (GO:0006457), protein localization to organelle 

(GO:0033365), RNA splicing (GO:0008380) and mRNA processing (GO:0006397). Finally, the 

lightpink4 module, which was negatively correlated with adjuvant only inoculated animals 

(TreatAdj), was enriched in terms related to response to external stimuli, cytokines (cellular 

response to chemokine (G0:1990869), regulation of cytokine biosynthetic process (GO:0042035), 

cytokine-mediated signaling pathway (GO:0019221) and regulation of cytokine secretion 

(GO:0050707)) and immune cell regulation (negative regulation of leukocyte differentiation 

(GO:1902106), regulation of interferon-gamma production (GO:0032649), regulation of 

interleukon-6 production (GO:0032675), positive regulation of leukocyte differentiation 

(GO:1902107), regulation of inflammatory response (GO:0050727),…). Of all the modules 

related to a treatment variable, it is clear that lavenderblush3 and coral1 modules are composed 

of genes crucial for the correct function of the immune system and that those genes are similarly 

expressed in both treatments, indicating that aluminium hydroxide regardless of the presence 

of any antigen is capable to activating an immune response. In addition, a negatively regulated 

module to TreatAdj such as lightpink4 is composed of genes related to cytokines that were 

downregulated in the Adj Tf vs. Vac Tf comparison. The rest of trait-associated modules had 

almost no significant enrichment, probably due to the small number of annotated genes in them. 

Regarding KEGG pathway enrichment, few modules showed any significant results. The 

lavenderblush3 module was enriched in viral carcinogenesis (oas05203), the yellowdreen 

module in RNA transport (oas03013), Parkinson’s disease (oas05012), protein processing in 

endoplasmic reticulumoas (oas04141), ribosome biogenesis in eukaryotes (oas03008), RNA 

degradation (oas03018), spliceosome (oas03040), cell cycle (oas04110) and mRNA surveillance 

pathway (oas03015), and the lightpink4 module in osteoclast differentiation (oas04380), 

systemic lupus erythematosus (oas05322), HIF-1 signaling pathway (oas04066) and TNF 

signaling pathway (oas04668). 

 

3.3.2 miRNA-seq 
 

3.3.2.1 Sequencing quality 
 

For the same samples used in Total RNA-seq, 12 miRNA-seq libraries were prepared. After 

sequencing, a mean value of 17.2 million 50 nt single-end reads per library were achieved. 

Adaptor sequence trimming and low quality read filtering were done with Trimmomatic 

following criteria previously described (Chapter 2 – section 2.3.3.4), which resulted in a mean 

14.2 (SD=4.4) million reads (82.38%) of good quality reads. The average quality of the trimmed 

samples can be seen in figure 3.19. As it can be seen, all samples have good quality after 

trimming. 

Trimmed reads were aligned to the Ovis aries reference genome Oar_v3.1 from Ensembl 

with the sRNAbench module from sRNAtoolbox, which uses bowtie for read alignment. Up to 20 

multiple mappings per read were allowed. The alignment yielded a mean value of 12.9 (SD=4.2) 

million read pairs (91.40% of the filtered reads). A more detailed summary of the alignment can 

be seen for each sample in table 3.4. It must be pointed that for small RNA annotation, all 

sequences were searched in miRbase to identify annotated miRNAs and in Rfam to identify other 

small RNAs originating from rRNA, tRNA, snRNA and snoRNA. As can be seen in figure 3.20, 

39.43% of all successfully aligned reads were annotated miRNAs from the miRbase database, 
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10.87% were annotated sheep small nucleolar RNAs (snoRNAs), 3.10% to tRNAs, 22.95% to other 

RNAs of RNACentral and few reads were assigned to other small RNAs such as rRNAs and 

snRNAs. The detected miRbase miRNA expression values were taken for the expression matrix 

construction and the unassigned reads (23.32%) were used for novel miRNA prediction. 

 

Figure 3.19: Average quality per base for all 

sequenced samples. The y-axis shows the 

average quality in Phred scale, while the x-axis 

is a representation of all bases in a sequencing 

read of 75 nt for each pair. The background of 

the graph is divided by different colours in three 

main section, with the green section indicating 

good quality bases, the orange reasonable 

quality bases and the red one poor quality 

bases. The per sample quality plots were 

produced by FASTQC and then, they were 

aggregated by MultiQC. 

 

Table 3.4: Summary statistics from the sequence alignment step for miRNA-seq data. 

ID Total Reads Reads Surviving Trimming Mapped Reads 

121-A 12366489 10133595 (81.94%) 9186077 (90.65%) 
124-A 17380329 14569307 (83.83%) 13340726 (91.57%) 
125-A 16571561 13662699 (82.45%) 12384329 (90.64) 
111-A 18387274 15449821 (84.02%) 14029289 (90.80) 
114-A 24859612 21630010 (87.01%) 20245260 (93.60%) 
116-A 22502245 19329539 (85.90%) 18107867 (93.68%) 
121-B 18715220 14364474 (76.75%) 12924511 (89.97%) 
124-B 24297910 20905227 (86.04%) 18987581 (90.83%) 
125-B 14680915 11702300 (79.71%) 10534334 (90.02%) 
111-B 12209255 9430188 (77.24%) 8541387 (90.57%) 
114-B 11878265 9068630 (76.35%) 8111086 (89.44%) 
116-B 12913201 10094890 (78.17%) 9301333 (92.14%) 

 

 
Figure 3.20: Class of molecules to which miRNA sequencing reads align. 
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Apart from sequence alignment to the reference, the sRNAbench module is capable of 

new miRNA prediction from unassigned reads. In total, 56 annotated Ovis aries miRNAs were 

expressed with at least one sequence read count in at least one of the 12 sample libraries. 

Furthermore, 39 new miRNAs were predicted with at least one sequence read in one sample. 

These miRNAs were blasted against miRbase miRNAs from other species and miRNAs described 

in the RNACentral database, to verify if they have been previously described or if there are 

homologous sequences in other species. Of these 39 new miRNAs, 11 were completely 

homologous to other miRNAs described in miRbase for Bos Taurus, another 8 were previously 

described in other sheep studies from RNACental, other was described in Canis lupus and 

another one in Cervus elephus. The rest were completely new miRNAs. More information of the 

new miRNAs can be seen as supplementary material in the corresponding publication (359). The 

length distribution of all miRNAs was checked, and it was shown that the majority of reads has 

a size of 21-24 nt, a range distribution common in mammalian miRNAs (360). 

 

3.3.2.2 Differential expression analysis 
 

Those miRNAs with an expression lower than 1 CPM and detected in <6 individual libraries were 

treated as lowly expressed and they were filtered out for further analysis. In total, 64 miRNAs 

remained for the differential expression analysis. Prior to any other analysis, and similar to the 

total RNA-seq data, the svaseq function from the SVA package was applied to remove unwanted 

variation and accurately measure the biological variability. The obtained surrogate variables 

were incorporated into the testing model of the DE analysis. A principal component analysis 

(PCA) was done with the corrected data (see figure 3.21). It can be seen that that samples group 

together according to treatment condition. 

 

 
Figure 3.21: Principal Component Analysis (PCA) in miRNA-seq data from sheep PBMCs after 
the batch effect removal with SVA R package. 
 

After the surrogate variables where calculated, the differential expression analysis was 

performed with edgeR using the same testing model as in total RNA-seq data analysis. Those 

miRNAs with an adjusted p-value<0.05 and a fold-change>1.5 or <0.667 were taken. Thus, a total 

of 3, 6 and 1 differentially expressed miRNAs were identified in the Vac Tf vs. Vac T0, Adj Tf vs. 
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Adj T0 and Adj Tf vs. Vac Tf comparisons, respectively (Table 3.5). Among the differentially 

expressed miRNAs, there were molecules previously characterized in other studies: a cattle-

specific miRNA (miR-2284ab-5p) from the largest miRNA family in cattle, whose predicted 

targets have been related to the insulin signalling pathway (a pathway known to contribute to 

metabolic differences between ruminants and non-ruminants) (361); miR-125b, which has been 

related to primary B cell differentiation (362,363); miR-19b, which together with miR-19a, has 

been related to TH2 cytokine-promoting activity (364);and miRNA-99a, which has been related 

to inflammation (361). 

 

Table 3.5: List of differentially expressed miRNAs detected by edgeR with an adjusted p-value 
<0.05 and a fold-change >1.5 or <0.667. 

 
 

3.3.2.3 Target prediction and miRNA-mRNA data integration 
 

Three different target gene prediction programs (miRanda, PITA and TargetScan) were selected 

and applied to the differentially expressed miRNAs. The intersection of all tools was taken and 

treated as potential target candidates. miRNAs usually act via translational repression and/or 

mRNA cleavage, although there is evidence of miRNAs upregulating translation by diverse 

mechanism in specific situations (140,141). However, it must be determined whether activation 

of protein translation is a general phenomenon or is only an exception in the mechanism of 

miRNA action. For that reason, only those miRNA-target pairs with negative correlation were 

further studied. A total of 70 significant miRNA-target pairs with negative Spearman’s rank 

correlation coefficient (rho) value between -0.853 and -0.657 were predicted (Figure 3.22). 

Among the predicted interactions, oar-let-7b had 33 predicted targets, while oar-miR-25 and 

oar-miR-125b has 13 and 11 predicted targets, respectively. There were factors related to 

cellular response to DNA damage stimulus (STXBP4, RNF169, ZBTB4, NFATC2), positive 

regulation of cell migration (RDX, ATP8A1) and response to stimulus (HSPA14, MAP3K2, CHEK1, 

MKNK1, ANTXR2, NBEAL1, NFATC2). 

 

3.3.3  Validation by RT-qPCR 
 

For RNA-seq data validation, 9 mRNAs (CNTLN, EGR2, GPRC5C, HGF, NRXN2, SAMD4B, SKAP2, 

TREM1, WDR5B) were verified using the Fluidigm Biomark HD Nanofluidic qPCR system, while 

for miRNA-seq data 3 miRNAs (oar-let-7b, oar-miR-19b, oar-miR-25) were verified. Log2 fold 

changes (log2FC) in gene expression between the different groups calculated by RT-qPCR are 

shown in figure 3.23 for RNA-seq data and figure 3.24 for miRNA-seq data. In the case of RNA 

seq data, despite the log2FC values for the expression of some genes measured by RNA-seq or 

RT qPCR were different, in terms of log2FC direction, the gene expression patterns of most genes 

(6 in Vac Tf vs. Vac T0, 9 in Adj Tf vs. Adj T0, and 7 in Adj Tf vs. Vac Tf) (81.5%) were reproducible 

by the RT-qPCR analysis. In the case of miRNA-seq data, the results confirmed the upregulated 

miRNA logFC FDR miRNA logFC FDR miRNA logFC FDR

new-miR-2284ab-5p -8,613 1,063E-06 oar-miR-25 2,171 2,003E-03 new-miR-2284ab-5p 12,072 1,483E-03

oar-miR-125b 2,225 6,024E-04 oar-miR-379-5p -4,208 2,003E-03

oar-miR-99a 1,654 1,369E-02 oar-miR-411a-5p -6,556 6,028E-03

oar-miR-16b 1,732 2,023E-02

oar-miR-19b -1,799 2,635E-02

oar-let-7b 1,576 3,259E-02

Vaccine tf VS Vaccine t0 Adjuvant tf VS Adjuvant t0 Adjuvant tf VS Vaccine tf
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expression of 2 miRNAs (oar-let-7b and oar-miR-25) and downregulated expression of oar miR 

19b. The miRNA data and RT-qPCR showed a high degree of concordance. 

 
Figure 3.22: Significant negative correlation (with an adjusted p-value <0.05) between 
differentially expressed miRNAs and predicted targets represented as a network. Red points 
represent up-regulation in their corresponding comparison, while blue ones down-regulation. 
The grater the absolute value of the Spearman’s rank correlation coefficient (rho), the broader 
and darker is the line joining the miRNA and predicted target. 
 

 

 
Figure 3.23: Validation of the RNA-seq data for the selected mRNAs by RT-qPCR. Log2FC are 
shown for a) Vac Tf vs. Vac T0; b) Adj Tf vs. Adj T0; and c) Adj Tf vs. Vac Tf. 
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Figure 3.24: Validation of the miRNA-seq 
data for the selected miRNAs by RT-qPCR. 
Log2FC are shown in the Adj Tf vs. Adj T0 
comparison. 
 

 

 

 

3.4 Discussion 
 

Aluminium based adjuvants, especially those containing aluminium hydroxide, are the most 

widely used compounds in human and veterinary vaccines (361,362). Despite Al mineral salts 

have been used over a century, their mechanism of action is only partially understood. In an 

attempt to decipher its mechanism of action, multiple sheep were subjected to a vaccination 

schedule with commercial vaccines or with an equivalent quantity of aluminium hydroxide alone 

through 475 days. PBMCs samples were extracted at the start (day 0, before any inoculation) 

and at the end (day 475) of the experiment. 

The main objective of this study was to describe the RNA molecular patterns elicited 

upon vaccination mimicking a field practical situation, independently of the role of specific 

vaccine antigens/inactivated pathogens. The choice of commercial vaccines as the main 

treatment group was based in the idea that they are commercial products under strict 

evaluation, ensuring that immune stimulation has been proven. The rationale for the choice of 

a long-term response experiment was based on the field situation represented by the presence 

of unexplained adverse effects after an intensive vaccination campaign. This is the first long-

term in vivo study dealing with the molecular genetic basis of the immune response in sheep 

after repetitive inoculation with aluminium containing components. As already noted, and it 

should be highlighted, the experiment is in vivo, since most studies dealing with the immune 

response induced by Al adjuvants have been realized in vitro, on immune system cells. There 

have been contradictory results (mainly regarding the requirement of the NLRP3 inflammasome 

in Al adjuvancy), which in some cases may be explained with cell behavioural patterns and 

interactions with their environment that cannot be fully grasped in in vitro designs and 

differences in structure of adjuvants and absorbed antigens in commercial formulations used in 

different studies. In addition, Al adjuvants have a low dissolution rate and there have been 

multiple reports showing that low doses of Al remain in the organism after long periods of time 

(48). Taking all into consideration, there is a need for more long-term in vivo studies to address 

the discussed elements (47), as every year farm animals are exposed to multiple aluminium-

based vaccines. The selected study design is a fairly schematic approach for documenting 

aluminium-based adjuvants on whole animals in a real-life setting. 

There are some limitations inherent to the selected study design that must be taken into 

account when interpreting the results. First of all, the main profiles being compared are t=0 

versus t=475, and as a consequence, it is hard to determine if certain changes have been elicited 

by the overall administration schedule or by the last dose prior sample collection. Something 

that could be corrected with samples from middle time points, but due to funding limitations, 

only two time points were performed. This experiment was planned to study the pathology 

caused by administration of Al adjuvant-containing products, independently from the 
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identification of individual inoculations, the granuloma exact age or the role of specific vaccine 

antigens. We expect to see the cumulative effect of all inoculations, without ruling out that the 

latter has a greater effect on the response of the animals than the previous ones. In addition, 

animals that had been under treatment were analysed only, so that the final result of the 

repetitive experiment was appreciated with the initial situation in each animal. It must be 

pointed that the immune system is completely developed in 5-month-old lambs (365) and 

differences related to development should not account for the differences observed in this 

study. Moreover, the vaccines used in sheep are the same regardless of age, with the same dose 

quantity and the same administration protocols. Ideally, the process would be better seen in 

adult sheep, but it is quite difficult to find adult animals without any prior vaccine for conducting 

the experiment in an acceptable time. Priority has been given to the homogeneity of the animals 

analysed in the different groups, using young animals from the same herd, without any prior 

vaccination before the experiment and with a period of adaptation to the new environment 

under the best conditions of feeding and temperature. Finally, the number of animals analysed 

by RNA-seq is limited, but always over the minimum required for statistical inferences in this 

kind of data. 

Among the up- and down-regulated genes, there were some previously described in 

other studies dealing with alterations in expression caused by aluminium, namely: NLRP3, IL1B, 

IL8, TNF, NFKB2, RELA and RELB. NLRP3 is a member of the NLR (nucleotide-binding 

oligomerization domain and leucine-rich repeat-containing receptor) family and is part of the 

molecular platform called inflammasome (366). As previously stated, there is controversy 

regarding the involvement of the inflammasome in aluminium-adjuvant induced immune 

response. It has been shown in multiple in vitro studies that aluminium stimulation of IL1B is 

dependent on the NLRP3 inflammasome (35,36). In contrast, in in vivo experiments of 

aluminium adjuvant changes, multiple studies have found no involvement of the inflammasome 

in dendritic cell and lymphocyte activation (36–38), supporting an inflammasome-independent 

mechanism for aluminium adjuvant immune response. In addition, it is known that aluminium 

hydroxide induces a TH2-skewed response, whereas it has been shown that hyper-activation of 

the inflammasome in absence of any particulate produces TH17 and TH1 responses (367). Other 

studies in vivo have shown that the inflammasome is not required for aluminium-induced 

increase of serum IgG1/IgE antibody production (368). In our study in PBMCs samples, NLRP3 

was significantly downregulated in Adj-injected sheep, while maintained a constant expression 

in Vac-injected animals. Taken together, it seems that the inflammasome is not totally required 

to induce an immune response in this in vivo experiment. 

Another set of differentially expressed genes that seems to have an important role in 

aluminium-induced response, especially when the antigen is present, are those related to 

proinflammatory cytokines. Several reports have shown that secretion of inflammatory 

cytokines is induced by Al (36,369–371). The consequent increase in inflammatory signals led to 

the activation of the NF-κB signaling pathway. In our study, there were multiple genes from the 

NF-κB family, such as NFKB2, RELA and RELB, which had a greater expression in Vac-injected and 

Adj-injected animals. As previously stated, activation of NF-κB regulates a great variety of genes 

from the innate and adaptative immune response, including the cytokines TNF, IL1B and IL8. It 

has been shown that Al hydroxide upregulates TNF in human monocytes (372), while IL1B mRNA 

has been shown to have an increased expression in bovine PBMCs treated with Al (75). Both 

molecules were significantly upregulated in Vac-injected animals. In contrast, other 

proinflammatory cytokines (mainly TNF and IL16) were found upregulated in Adj-injected 

animals, supporting a non-specific induction of proinflammatory responses when the adjuvant 

is injected alone without any pathogen. 
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Apart from differentially expressed genes related to the proinflammatory response, 

there were genes from other pathways previously linked to Al adjuvancy. There were multiple 

genes related to apoptosis upregulated in Vac- or Adj-injected sheep, among them: TP53BP2, 

CSRNP1, TEAD, CDCA7 and PPP1R15A. This is in agreement with other studies showing apoptosis 

in human neuroblastoma cell lines (373) and pro-apoptotic gene expression in human brain cells 

(374) after aluminium stimulation. In addition, there were genes related to the immune 

response (SKAP2, IGSF6, LST1, FGR, MAPK13), inflammatory response (S100A12, ADGRE3, 

TREM1, STEAP4, NR4A3), cell growth (HGF, CSF3R) and cell-cell signaling (AREG) upregulated in 

Vac-injected sheep, but downregulated in Adj-injected sheep. In contrast, some genes related 

to DNA replication and repair (FEN1, HIST2H4A) and involved in RNA binding, synthesis and 

metabolism (IGF2BP3) were downregulated in Vac-injected animals, but upregulated in Adj-

injected animals. In fact, there have been multiple reports of danger signals released from 

necrotic or damaged cells at the inoculation site. In the case of Al hydroxide, release of host DNA 

and uric acid has been reported, which rapidly degrades RNA and DNA (32). 

Interestingly, two autoimmune processes appeared in the pathway analysis, but in 

different comparisons: rheumatoid arthritis in Vac-inoculated sheep and systemic lupus 

erythematosus in Adj-inoculated sheep. Therefore, it is possible that a previously described 

syndrome in sheep after inoculation of vaccines based on Al hydroxide (5) resembles these 

autoimmune diseases and that the autoimmune effect of the adjuvant alone differs slightly from 

that obtained in combination with the pathogens in vaccines. 

A co-expression analysis was also performed for mRNAs and lncRNAs with WGCNA 

software, and 32 different modules were obtained. Interestingly, 7 modules correlated with the 

treatment independent of presence of pathogens, 5 exclusively related to the vaccination of 

commercial vaccines and 5 exclusively related to the Adjuvant group. Some of the modules were 

in concordance to what have been seen in the differential expression analysis: lavenderblush3 

and coral1 modules were composed of genes crucial for the correct function of the immune 

system and that those genes were similarly co-expressed in both treatments, indicating that 

aluminium hydroxide regardless of the presence of any pathogen is capable of activating an 

immune response; lightpink4 module is composed of genes related to the cytokines that were 

downregulated in Adj-injected animals, indicating a milder immune response in the absence of 

pathogens. 

These results would be in concordance with the histopathological analyses done in an 

independent study in the same animals (375). Briefly, all Vac-injected sheep and nearly all Adj-

injected lambs presented injection site granulomas, mostly composed of activated 

macrophages. The presence of Al in macrophages was demonstrated by fluorescence 

microscopy with lumogallion staining and by electron microscopy. In addition, macrophage-

driven translocation of Al to regional lymph nodes was seen. It must be pointed that higher 

numbers of granulomas at the injection site and higher percentage of Al translocation to lymph 

nodes was seen in Vac-inoculated animals. The lower persistence of granulomas in Adj-

inoculated animals, which might indicate a quicker clearance of Al, might be caused by the 

milder immune reaction from the lack of pathogen seen in the differential expression analysis. 

Regarding the miRNA differential expression analysis, there were some miRNAs 

previously described in other studies related to expression changes induced by Al, namely: 

miR-19b (downregulated in Adj-injected animals) and miR-125b (upregulated in Vac-injected 

animals). miR-125b has been identified as a reactive oxygen species (ROS)- and NF-κB up-

regulated miRNA by aluminium-sulfate in human astroglial cells (376). In addition, this miRNA 

shows an expression pattern similar to those observed in Alzheimer’s disease (377,378). In 

contrast, dysregulation of miR-19b has been related to multiple nervous diseases, including 
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Parkinson’s disease (379,380), and its downregulation has been shown in PBMC patients with 

Alzheimer’s disease (381). Taken together, miRNA pattern analysis links central nervous system 

damage pathways seen in nervous diseases with the intensive vaccination employed in this 

study. Moreover, it has been shown in other studies that miR-99a expression, which is 

upregulated in our Vac-injected animals, is promoted by NF-κB (382). 

Within the mRNA-miRNA correlated pairs, there were factors related to cellular 

response to DNA damage stimulus (STXBP4, RNF169, ZBTB4, NFATC2), RNA binding (WDR75, 

SART3, LRPPRC, SYNE1, RDX, XRN1, ZC3H8,SUB1, MBNL3) and response to stimulus (HSPA14, 

MAP3K2, CHEK1, MKNK1, ANTXR2, NBEAL1, NFATC2). As previously stated, host DNA released 

from necrotic or damaged cells has been shown to act as a danger signal that modulates 

immunity via cytotoxic effects in Al hydroxide. It has been reported that Al adjuvants produces 

granulomatous inflammatory reactions and promotes local necrosis in muscle tissue (31) and in 

the peritoneum of mice (383), something completely concordant with the histopathological 

analyses of sheep from the vaccine group (375). 

In addition, some of the predicted and correlated miRNA targets have been previously 

linked to the immune system. Activation of NF-κB has been shown to be a biphasic process, a 

transient phase regulated by IκB-α and a persistent phase regulated by  IκB-β (384). MAP3K2 

(MEKK2), which is a predicted target of let-7b (upregulated in Adj-injected sheep), is a kinase 

that controls the persistent activation of NF-κB in response to stimulation with proinflammatory 

cytokines through the formation of the MAP3K2:IκB-β:NF-κB:IKK complex (385). This kinase has 

been shown to directly phosphorylate and activate IκB kinases. SNX27, which is a predicted 

target of miR-125b (upregulated in Vac-injected sheep), has been shown to cause NF-κB 

hyperactivation after its silencing in human Jurkat T cells (386). This would be in concordance to 

what have been seen in animals vaccinated with commercial vaccines, in which the SNX27 mRNA 

is downregulated and there is a general upregulation of NF-κB induced genes. Another 

interesting target gene is CHEK1, predicted to be targeted by miR-16b (upregulated in Adj-

injected animals). This gene has been shown to be involved in DNA damage response. In 

accordance with our study, Farasani et al. (387) showed reduced levels of this gene after 

exposition of aluminium chloride or aluminium chlorohydrate in MCF10A-immortalized non-

transformed human breast epithelial cells. This suggest that aluminium is not only able to 

damage DNA, but it can also compromise DNA repair systems. 

In summary, it has been shown for the first time in a sheep model that Al hydroxide is 

able to produce an immune response independent of the presence of pathogens, with a 

significant increase in expression of proinflammatory cytokines, NF-κB regulated genes and 

apoptotic genes. The absence of inactivated pathogens results in a milder immune response, as 

seen in Adj-injected animals and the general downregulation of genes associated with the 

cytokine-cytokine receptor interaction pathway. In addition, different mechanisms for the 

regulation of the NF-κB pathway through miRNAs (especially miR-125b and let-7b) has been 

proposed in the aluminium adjuvant activity. Furthermore, it has been shown that aluminium 

affects multiple genes related to DNA repair and cellular response to DNA damage stimulus, 

some of them by a probable miRNA-mediated regulation (e.g., miR-16b and its predicted target 

CHEK1). Moreover, at least in our samples, the inflammasome does not seem necessary for Al 

adjuvant to induce an immune response. Finally, miR-25, miR-16b and let-7b differential 

expression has been associated for the first time with Al adjuvancy. 
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3.5 Appendix 
 

Table S3.1: List of selected genes and the corresponding primer sequences for the validation of the 
total RNA-seq experiment in PBMCs. 

Gene GenBank ID Primer Code Location*1 
Exon 

Junction 
Sequence (5’-3’) 

Target Genes 
CNTLN XM_015093231.1 CNTLN-F 2541-2563 yes CACTGTTCTCAATCACTCCATC 

CNTLN-R 2616-2638 TTCAGAATCACTGCTTTCACTC 
EGR2 XM_004021395.3 EGR2-F 175-192 yes CACGTCGGTGACCATTT 

EGR2-R 242-261 TGTTGATCATGCCATCTCC  
GPRC5C XM_015098975.1 GPRC5C-F 2328-2345 yes AGTGCCAACTCCACCCT 

GPRC5C-R 2396-2414 GGGACTGAGCCTTCCTTG 
HGF XM_012176562.2 HGF-F 1052-1072 yes TCAAGTGCAAGGACCTAAGA 

HGF-R 1124-1145 CAACTCGGATGTTTGGATCAG 
NRXN2 XM_015103168.1 NRXN2-F 986-1007 yes GCATTATCTGGTGACCATCTC 

NRXN2-R 1047-1067 GAGCCCAGCATAGTGTAATC 
SAMD4B XM_015100576.1 SAMD4B-F 7164-7183 yes CAGCCCTCTTCTCACAGAT 

SAMD4B-R 7218-7239 TGACATTCTGAGACTCCAAGT 
SKAP2 XM_015095341.1 SKAP2-F 992-1012 yes ACCACACCACAGGAGATAAA 

SKAP2-R 1060-1082 ATGACAGTTCATCAGAAAGAGC 
TREM1 XM_012100643.2 TREM1-F 55-75 yes CTCTTCGTTCCAGCCAGAAG 

TREM1-R 111-130 CCTCTGTGATTGCCAGTGT 
WDR5B XM_004002975.3 WDR5B-F 1066-1086 no GCTCATTCTGACCCAGTTTC 

WDR5B-R 1132-1154 AGATTCGACAGACACCATCATA 
Reference Genes 
GAPDH NM_001190390.1 GAPDH-F*2 - yes GGCGTGAACCACGAGAAGTATAA 

GAPDH-R*2 - CCCTCCACGATGCCAAAGT 
ATP1A1 NM_ 001009360 ATP1A1-F*2 - yes GACTTGAACCGAGGCTTAACAAC 

ATP1A1-R*2 - TCTGGCTAGGATCTCAGCAGC 
ACTB NM_001009784.2 ACTB-F 453-474 yes ATGTTTGAGACCTTCAACACC 

ACTB-R 531-548 TCCATCACGATGCCAGT 
TFRC XM_004003001.2 TFRC-F 1888-1908 yes GAGCTGGACCTGAACTATGA 

TFRC-R 1962-1984 CAGACCCATATCCCTTATGTCT 

*1 Corresponding Start-End coordinates from NCBI gene annotation. 

*2 Primers from (388). All other primers have been newly designed. 

 

Table S3.2: List of selected miRNAs and the corresponding primer sequences for the validation of the 
miRNA-seq experiment in PBMCs. 

miRNA Assay product number (Qiagen) Sequence (5’-3’) 

Target miRNA 
oar-let-7b YP02115207 UGAGGUAGUAGGUUGUGUGGU 
oar-miR-19b YP00204450 UGUGCAAAUCCAUGCAAAACUGA 
oar-miR-25 YP02110541 AUUGCACUUGUCUCGGUCUGA 
Reference miRNA 
oar-miR-30d YP02110767 UGUAAACAUCCCCGACUGG 
oar-miR-191 YP00205972 CAACGGAAUCCCAAAAGCAGCU 
U6 snRNA YP00203907 ─ 
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Chapter 4 

4 Response to Aluminium in brain 
 

 

4.1 Introduction 
 

Aluminium salts, and especially aluminium oxyhydroxide based Alhydrogel, are the most 

predominant adjuvants in human and veterinary vaccines. Their safety record in human 

vaccinations, their effectiveness to enhance antibody responses and the fact that these 

adjuvants are well tolerated and do not cause pyrexia makes them the first choice when 

developing new vaccines against pathogens and TH2 responses are desired (aluminium salts are 

reported to rarely induce cellular immune responses) (389). Furthermore, any new adjuvant 

formulation is usually compared against Al hydroxide. However, their exact mechanism of action 

is under-studied and its importance has been under-appreciated for a long time (6). 

Despite their safety record, some minor side effects have been reported for Al 

hydroxide: formation of granulomas when the route of administration is subcutaneous or 

intradermal rather than intramuscular (389); injection site pain and tenderness, which may be a 

reflect of cell necrosis; post-immunization headache, arthralgia and myalgia; and increased risk 

of allergy and anaphylaxis due to the TH2 biased response and increased eosinophil and 

immunoglobulin E (IgE) production (390). In addition to those accepted rare adverse effects, 

there have recently been a large number of studies linking aluminium adjuvants and 

autoimmune reactions or transport of the material to the brain. In a research study with New 

Zealand White rabbits injected intramuscularly with labelled AH, it was determined by 

accelerator mass spectrometry that Al was detectable in blood one hour after vaccination and 

that the body was able to partially excrete through urine the Al absorbed from the adjuvant, but 

only a 6% of the AH adjuvant dose was eliminated after 28 days post vaccination (46). Aluminium 

is a non-essential element for the human body and is thought to serve no essential biological 

function, so the fact that the body is not able to excrete all injected Al in a short period of time, 

and that Al by itself is an element known to have cytotoxic properties (391–393) (although actual 

translocation of Al adjuvants to tissues such as brain remains to be probed), has raised some 

concerns regarding their safety in predisposed individuals in part of the research community. 

It is known that AH induces a strong innate immune response, and this results in 

infiltrating immune-responsive phagocytic cell types harvesting the complex of adjuvant and 

pathogens. AH is taken up by immature dendritic cells at the site of injection and transported 

via the afferent lymph vessels to the lymph node for presentation to T cells (394). The capability 

of APCs to endocytose significant amounts of Al without suffering toxicity has taken the interest 

of multiple investigators, since these cells may act as vehicles for the trafficking of Al adjuvants 

though the body (with transport to lymph nodes probed) (395). Multiple studies have focused 

their attention in the relationship between Al and some neurological and autoimmune diseases, 

but direct causality remains to be demonstrated. In addition, prior to any such study, Al adjuvant 

transport to the brain must be demonstrated in an in vivo experiment, discarding Al up take 

from other routes (e.g., drinking water or food). 
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The potential effect of this kind of compound on the nervous system has been tested 

mainly in animal models such as mouse. In CD1 mice, with a subcutaneously injected dose of 

100 µg/Kg of Alhydrogel adjuvant, cognitive alterations associated with death of motor neurons 

and an enormous increase of reactive astrocytic cells in an inflammatory response was reported 

(396). Moreover, with a dose of 300 µg/Kg, microglial and astroglial reactions were detected in 

the spinal cord of the same mice type, in addition to altered motor and cognitive functions (397). 

In other immunization experiment with fluorescently labelled oxyhydroxide particles in mice, an 

average of 15 solid Al particles were detected in mice brain at 21 days after immunization. In 

vitro studies performed in parallel confirmed the toxicity of Al adjuvant to neuronal cell cultures 

(398). 

In an attempt to check if Al adjuvant is able to translocate to brain and to induce 

molecular changes, a long-term in vivo experiment in a large mammal was carried out. In this 

study, lambs received a parallel subcutaneous treatment with commercial vaccines containing 

aluminium hydroxide, an equivalent dose of only this compound diluted in PBS or PBS only. 

Parietal lobe cortex samples were taken from each animal at the end of the experiment. Then, 

total RNA and miRNA libraries were prepared and sequenced. Three expression comparisons 

were made: vaccinated animals against control samples, adjuvanted animals against control 

samples, and animals of both treatments at the end of the experiment against each other. 

Very few studies have analysed the Al effects in the nervous system by RNA-seq 

technology. In a recent work, Xu et al. (53) identified by RNA-seq in hippocampus samples of Al 

treated rats 96 up-regulated and  652 downregulated mRNAs, in addition to 37 dysregulated 

lncRNAs. Among the most significant GO terms of dysregulated genes, there were terms related 

to glial cell differentiation, neural transmission and vesicle trafficking. Moreover, the results of 

this study pointed toward glial cell related genes having a relevant effect in the mechanism 

associated to Al neurotoxicity. 

In parallel to the RNA-seq analyses in brain samples carried out in this chapter, 

histopathological analyses from the same animals in lumbar spinal cord and parietal lobe 

samples were done (399). Briefly, those brain samples were analysed by transversely heated 

graphite furnace atomic absorption spectrometry and lumogallion staining for Al quantity 

measurement and Al localization, respectively. Sheep showed significantly higher Al content in 

lumbar spinal cord samples of both treatment groups (Vac- and Adj-injected samples), while in 

the parietal lobe samples there were no differences, only a tendency to higher Al content 

(p=0.074) in Adj-injected sheep. Al deposits were localized by lumogallion staining mainly in the 

gray matter of both tissues, with strikingly more abundant deposits in the lumbar spinal cord. 

The Al content and deposits were always more abundant in Adj-injected samples in comparison 

to Vac-injected samples. This could be related to the lower persistence of granulomas at the 

injection site in Adj-inoculated sheep (375). Al aggregates are notably larger when pathogens 

are adsorbed (400), and the smaller size of Al aggregates in Adj-injected sheep may explain the 

earlier mobilization and systemic distribution of the material to other tissues. It must be pointed 

that few animals of the adjuvant group showed high Al content, >2 µg/g, in the lumbar spinal 

cord, a value considered potentially pathologic in humans (401), while levels >3 µg/g are 

considered pathologically significant (402). Generally, Al content in parietal lobe was lower than 

1 µg/g. Lambs in this experiment underwent an accelerated vaccination schedule to mimic, in 

an acceptable time frame, the Al load that these animals receive during their productive life. 

Thus, the outcome might differ if the same amount of Al was given in a longer period of time. 

The main aim of this sequencing study was to characterize the molecular changes in 

brain after a repetitive vaccination schedule in an in vivo experiment in sheep, in the same group 

of animals as our previous work (359). The hypothesis of this work was that a prolonged 
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exposure to vaccine Al adjuvants, always following manufacture’s recommendations, would 

result in transport of the material to brain in predisposed individuals. For that purpose, two 

different sequencing libraries per sample were constructed, namely total RNA-seq and miRNA-

seq. Thus, the objectives of this work were: 

 

1. to identify genes and regulatory elements altered by Al from a repetitive 

inoculation experiment and to check the state of some pathways previously related to Al 

neurotoxicity by others in literature. 

 

2. to predict potential targets of miRNAs that can be related to Al neurotoxicity 

and test for correlation between miRNA and predicted mRNA target expression data. 

 

4.2 Material and methods 
 

In this section only a brief description of animal samples, extraction method and validation by 

qPCR will be provided. The analysis workflow for total RNA-seq and miRNA-seq data has been 

described in full detail in their corresponding section in Chapter 2 – Material and Methods. 

 

4.2.1 Animals 
 

All experimental procedures were approved and licensed by the ethical committee of the 

University of Zaragoza (ref: PI15/16). Methods were carried out under the following guidelines: 

Spanish Policy for Animal Protection (RED53/2013) and the European Union Directive 2010/63 

on protection of experimental animals. 

The animals studied in this work were previously analysed for a different tissue (PBMCs) 

(359). A detailed description of the experimental design can be found in the corresponding 

section in chapter 3 (3.2.1 Animals). For total RNA-seq and miRNA-seq analysis, parietal lobe 

cortex samples at the end of the experiment from 12 animals (4 sheep inoculated with vaccines, 

4 sheep inoculated with the adjuvant alone and 4 sheep from the control group) were used for 

library preparation. There was one more control sample for the miRNA-seq library preparation. 

The remaining 9 animals, 3 of each treatment group, were used for validation of the sequencing 

data by qPCR. A list of the samples used in this experiment can be seen in table 4.1. 

 

Table 4.1: Samples used for sequencing and RT-qPCR. Vaccine refers to the group vaccinated 
with commercial vaccines, adjuvant the one inoculated with aluminium hydroxide diluted in PBS 
and control the one inoculated with PBS. In addition, Tf refers to the end of the experiment. 

Treatment Time Samples 

Sequencing 
Vaccine Tf 121-E, 122-E, 124-E, 126-E 
Adjuvant Tf 114-E, 115-E, 116-E, 117-E 
Control Tf 131-E, 133-E*1, 135-E, 136-E, 137-E 
RT-qPCR*2 
Vaccine Tf 123-E, 125-E, 127-E 
Adjuvant Tf 111-E, 112-E, 113-E 
Control Tf 132-E, 133-E, 134-E 

*1Only sequenced for miRNA-seq data. 

*2Validation on total RNA-seq data only. 
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4.2.2 Tissue collection, RNA extraction and sequencing 
 

A sample from encephalon (parietal lobe cortex) was aseptically taken from each animal and 

tissue sections were preserved in RNAlater solution (Ambion, Austin, TX, USA) at −80 ⁰C. The 

experimental procedure to obtain RNA was similar to the one previously performed in the 

analysis of PBMCs (359). Total RNA was isolated from encephalon tissue using TRIzol Reagent 

(Invitrogen, Carlsbad, CA, USA) and PureLink RNA Mini Kit (Invitrogen). 60 mg tissue samples 

were homogenized in 1 ml of TRIzol Reagent using Precellys®24 homogenizer (Bertin 

Technologies, Montigny-le-Bretonneux, France) combined with 1.4 and 2.8 mm ceramic beads 

mix lysing tubes (Bertin Technologies). RNA isolation was performed following manufacturer 

instructions and RNA was suspended in RNase free water and stored at −80 ⁰C. RNA quantity 

and purity was assessed with NanoDrop 1000 Spectrophotometer (Thermo Scientific Inc, 

Bremen, Germany). RNA integrity was assessed on an Agilent 2100 Bioanalyzer with Agilent RNA 

6000 Nano chips (Agilent Technologies, Santa Clara, CA, USA), which estimates the 28S/18S 

(ribosomic RNAs) ratio and the RNA integrity number (RIN value). The samples presented an 

average RIN value of 8.06 and a 260/280 ratio >1.7. A summary with the sample qualities can be 

seen in table 4.2. 

 

Table 4.2: Quality summary of sequenced samples with their 260/280 and 260/230 absorbance 
ratios and RIN values. Vac, group vaccinated with commercial vaccines; Adj, group inoculated 
with aluminium hydroxide diluted in PBS; Control, group inoculated with PBS alone. 

CNAG ID Sample name Group 260/280 
Absorbance ratio 

260/230 
Absorbance ratio 

RIN 

AD1408 114-E Adj 1.71 1.72 8.6 
AD1409 115-E Adj 1.98 1.92 8.6 
AD1410 116-E Adj 2.05 0.81 7.6 
AD1411 117-E Adj 2.07 1.82 7.5 
AD1412 121-E Vac 2.05 1.87 7.6 
AD1413 122-E Vac 2.06 2.07 6.2 
AD1414 124-E Vac 2.06 1.65 8.7 
AD1415 126-E Vac 2.04 2.13 7.7 
AD1416 131-E Control 2.11 2.2 8.3 
AD1417 135-E Control 2.1 2.2 8.3 
AD1418 136-E Control 2.04 2.01 8.3 
AD1419 137-E Control 2.06 2.07 8.0 
AD1420 133-E* Control 2.06 1.93 8.6 

*Only sequenced for miRNA-seq data. 
 

For total RNA-seq libraries, the TruSeq Stranded Total RNA kit with Ribo-Zero (Illumina, 

San Diego, CA, USA) was used, while the TruSeq Small RNA library prep kit (illumine) was used 

for miRNA-seq. Total RNA libraries were sequenced on a HiSeq2000 with a mean sequencing 

depth of 75 million reads (75 bp paired-end reads) at CNAG (Centro Nacional de Análisis 

Genómico, Barcelona, Spain). miRNA libraries were sequenced on a HiSeq2500 with a mean 

sequencing depth of 19 million reads (50 bp single-end reads) at CRG (Centro de Regulación 

Genómica, Barcelona, Spain). 

 

4.2.3 qPCR validation 
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To validate changes identified by RNA-seq experiments, the relative expression levels of 13 

mRNAs that were selected based on significant changes seen in the RNA-seq analyses were 

verified by qPCR. The strategy followed was similar to the one previously done for PBMCs 

samples (359). Briefly, primers were designed using the PrimerQuest and OligoAnalyzer tools of 

Integrated DNA Technologies (IDT). Supplementary table S4.1 shows the list of amplified ovine 

genes and the corresponding primer sequences. Quantitative PCR amplifications were 

performed using PowerUp™ SYBR™ Green Master Mix (Applied Biosystem, Foster City, CA, USA) 

in a 10 µl final volume reaction on a QuantStudio® 3 detection system (Applied Biosystem). The 

conditions were as follows: 1 cycle of 50℃ for 2 min, 1 cycle of 95℃ for 2 min, 40 cycles of 

denaturation at 95℃ for 15 s, annealing at 60℃ for 60 s, and a dissociation curve to measure 

the specificity of the amplification. The stability of candidate endogenous control was analysed 

using GenEx software of MultiD [v5.4] (NormFinder (348) and GeNorm (349) algorithms). HPRT 

and ATP1A1 were the two most stable genes, so these two reference genes were used as an 

internal control to normalize the data. The expression level of mRNA transcripts was calculated 

using the 2-Δ(ΔCt) method. Statistical significance of the comparison between results obtained 

with RNA-seq and RT-qPCR was calculated by using t-test. In all analyses, differences were 

considered significant when p values were <0.05. 

 

4.3 Results 

 

4.3.1 Total RNA-seq 
 

4.3.1.1 Sequencing quality 
 

After sequencing 12 total RNA-seq libraries, an average depth of 74.1 million 75 nt paired-end 

reads per library were achieved. Then, after adaptor removal and quality filtering with 

Trimmomatic (chosen parameters can be seen in the corresponding section of Chapter 2 – 

Material and Methods), a mean of 68.8 (SD=6.95) million reads (92.80%) were considered as 

good quality segments for subsequent analyses. The average quality of the trimmed samples 

can be seen in figure 4.1. All samples had good quality after trimming. 

 
Figure 4.1: Average quality per base for all sequenced samples for paired-end data. a) pair 1 and 
b) pair 2. The y-axis shows the average quality in Phred scale, while the x-axis is a representation 
of all bases in a sequencing read of 75 nt for each pair. The background of the graph is divided 
by different colours in three main section, with the green section indicating good quality bases, 
the orange reasonable quality bases and the red one poor quality bases. The per sample quality 
plots were produced by FASTQC and then, they were aggregated by MultiQC. 
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4.3.1.2 Alignment to reference genome 
 

Trimmed reads were aligned to the Ovis aries reference genome Oar_v3.1 from Ensembl with 

STAR. The following results were achieved: a mean value of 60.7 (SD=6.25) million read pairs 

(88.33%) mapping to a unique locus, 5.9 (SD=0.74) million read pairs (8.54%) mapping to 

multiple loci and 2.1 (SD=0.28) million read pairs (3.13%) not mapping to any loci in the genome. 

A more detailed summary of the alignment can be seen for each sample in table 4.3. Only 

uniquely mapped reads were used for subsequent analyses. A mean value of 32.97 million read 

pairs (54.28%) per sample were successfully assigned to sheep annotated genes. Similar to 

PBMC samples, different metrics were evaluated with the NOISeq R package from Bioconductor 

and RSeQC package. Among the checked features were a splice junction class pie chart (see 

figure 4.2), a “saturation plot” (see figure 4.3) and a “sensitivity plot” (see figure 4.4). Only a 

junction class pie chart from sample 115-E is shown, but the rest of the samples follow a similar 

distribution of junctions. A similar distribution to PBMC samples can be seen in encephalon, with 

~47% of junctions known, but with a bit higher percentage of junctions (~40%) completely 

novel, pointing towards to a poorer brain sheep transcriptome annotation in comparison to the 

blood transcriptome. 

 

 

 
 

Figure 4.2: Detected splice junctions for 
sample 115-E. The junctions are divided 
as novel, partially novel (only one splice 
site is novel) and known (both splice 
sites are annotated in the reference 
genome). 
 

 

 

In addition, as it could be seen in figure 4.3, there would be few gains with higher 

sequencing depths for our samples, at least for the annotated genes. In addition, in the 

“sensitivity plot” (figure 3.4) can be seen depicted for each sample the percentage of features 

with more than 0, 1 ,2,5 and 10 counts per million (CPM). This plot can be used to select a 

filtering criterion for lowly expressed features, which are less reliable and can introduce noise 

into the differential expression analysis. 

It must be pointed that from 27,054 annotated genes in Ensembl, 21,487 (79.42%) were 

expressed with at least one sequence read count in one of the 12 RNA-seq libraries. Detected 

genes whose expression was lower than 1 CPM and could be found in less than 4 individual 

libraries were treated as lowly expressed genes and were removed from the differential 

expression analysis. These cut-offs were selected after checking that less stringent criteria 

introduced genes with high variability and expressed in only a few animals of each group. Those 

genes may not provide enough statistical evidence for reliable judgments and may confound the 

differential expression analysis if left in the data (350). After filtering lowly expressed genes, 

14,387 (53.18%) remained for subsequent analyses. 
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Table 4.3: Summary statistics from the sequence alignment step for total RNA-seq data. 

ID Total Read-Pairs Read-Pairs Surviving 
Trimming 

Uniquely Mapped 
Read-Pairs 

Read-Pairs Mapping to 
Multiple Loci 

Unmapped Read-Pairs 

114-E 79087585 
73799900 
(93.31%) 

66105547 
(89.57%) 

5557132 
(7.53%) 

2140197 
(2.90%) 

115-E 70719509 
65610966 
(92.78%) 

58456249 
(89.10%) 

5235755 
(7.98%) 

1915840 
(2.92%) 

116-E 68664277 
63870962 
(93.02%) 

55715005 
(87.23%) 

5761161 
(9.02%) 

2395161 
(3.75%) 

117-E 65386555 
60583932 
(92.66%) 

52304796 
(86.33%) 

6191678 
(10.22%) 

2084087 
(3.44%) 

121-E 80675987 
74931076 
(92.88%) 

66535255 
(88.80%) 

6204293 
(8.28%) 

2187987 
(2.92%) 

122-E 79248637 
74006266 
(93.38%) 

65046123 
(87.89%) 

6497750 
(8.78%) 

2457008 
(3.32%) 

124-E 66961909 
62429123 
(93.23%) 

55610270 
(89.08%) 

5106702 
(8.18%) 

1716800 
(2.75%) 

126-E 81037553 
75696789 
(93.41%) 

67277037 
(88.88%) 

5972477 
(7.89%) 

2452576 
(3.24%) 

131-E 83873049 
77940602 
(92.93%) 

68206294 
(87.51%) 

7178329 
(9.21%) 

2556458 
(3.28%) 

135-E 74942848 
70177373 
(93.64%) 

61568462 
(87.73%) 

6582637 
(9.38%) 

2028126 
(2.89%) 

136-E 75240320 
70257641 
(93.38%) 

62286220 
(88.65%) 

5803281 
(8.26%) 

2156909 
(3.07%) 

137-E 63437982 
55955752 
(88.21%) 

49842243 
(89.07%) 

4409313 
(7.88%) 

1706650 
(3.05%) 
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Figure 4.3: Saturation plot. The y-axis shows the number of detected features (genes) with more 
than 0 counts at different sequencing depths, x-axis, for each sample. Filled dots correspond to 
the values detected in our libraries, while the empty dots correspond to the simulated values. 
 

 
Figure 4.4: Sensitivity plot. The bars show the percentage of annotated features within each 
sample with more than 0, 1, 2, 5 and 10 CPM. In the upper side of the plot, the sequencing depth 
of each sample (in millions) is given. The horizontal lines are the corresponding percentage of 
features with those CPM in at least one of the samples. 
 

4.3.1.3 Differential expression analysis 
 

One sample from the adjuvant group (116-E) was treated as an outlier and was removed from 

the analysis. Despite having an adequate RIN value (7.6), it was observed a low 260/230 

absorbance ratio (a secondary measure of nucleic acid purity) of 0.81 for that sample. Lower 

ratios of 1.8 may indicate the presence of co-purified contaminants. Prior to the differential 

expression analysis, the svaseq function from the SVA package was applied to remove unwanted 

variation and accurately measure the biological variability. The obtained surrogate variables 

were incorporated into the testing model of the DE analysis. A principal component analysis 

(PCA) was done with the corrected data (see figure 4.5). 
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Figure 4.5: Principal Component 
Analysis (PCA) in total RNA-seq 
data from sheep encephalon 
after the batch effect removal 
with SVA R package. 
 

 

 

 

 

 

DESeq2 was applied for the differential expression analysis with the design model 

previously described in Chapter 2. Those genes with an adjusted p-value<0.05 and a fold-

change>1.5 or <0.667 were selected as significant. Three different comparisons were done, 

mainly: Vac vs. Control, Adj vs. Control and Adj vs. Vac. In the Adj vs. Control comparison 33 

differentially expressed genes were found, of which 20 were up-regulated and 13 were down-

regulated. In the Vac vs. Control comparison 6 DEGs were found, of which 2 and 4 were up-

regulated and down-regulated, respectively. Finally, in the Adj vs. Control comparison, 45 DEGs 

were identified, including 33 and 12 with increased and decreased expression, respectively. The 

exact results by gene of the DE analysis would be available as a supplementary table in the 

corresponding article that is under review. In addition, the DEGs can be seen as a heatmap in 

figure 4.6. 

Among the differentially expressed mRNAs, there are factor clearly related to neuronal 

development (NID2, VIM, NTN1, SEMA3, EYA1, CDH19), brain transport and neurotransmission 

(SLC13A3, SLC6A20, SLC6A12, MOCOS, TRPM4, KCNJ13, CUBN, MRASAL1), brain injury (FN1, 

BHMT2, PATL2, GDF10, GSN, FGL2, OTOF, VCAM1, PROS1, COL4A5, EFEMP1, NPFFR2, LAMA2, 

ADAM12, MYOF) and neurodegenerative diseases associated with Al like AD (ND6, STOML2, 

MRC1, KDR, NEIL2), Parkinson Disease (PD) (ATP13A5, HIST1H1C) and Amyotrophic Lateral 

Sclerosis (ALS) (ANXA2) (see figure 4.7). 

 

4.3.1.4 Functional enrichment analysis 
 

In addition to check the most significant differentially expressed genes, in an attempt to 

decipher the functions of DEGs, a functional enrichment analysis was performed with PANTHER 

and DAVID tools. For the three main domains of the GO database (cellular component, molecular 

function and biological process), the PANTHER webtool was used for each list of DEGs (three in 

total).  In the Adj vs. Control comparison, 27 significantly overrepresented GO terms (with an 

adjusted p-value <0.05) were identified in total. Among the top ranked Biological Processes were 

positive regulation of mitochondrial DNA replication (GO:0090297), stress-induced 

mitochondrial fusion (GO:1990046), mitochondrial ATP synthesis coupled proton transport 

(GO:0042776), positive regulation of cardiolipin metabolic process (GO:1900210), alpha-

ketoglutarate transport (GO:0015742), peptidyl-arginine methylation  to  symmetrical-dimethyl  



124 

 

 
Figure 4.6: Heatmap constructed with the differentially expressed gene expression data after 
SVA package correction and DESeq2 variance stabilizing transformation (vst) normalization. 
 

 

 

 

 

 

 

Figure 4.7: Radar 
plot with the 
log2(FC) for DEGs in 
each comparison. 
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Figure 4.8: GO enrichment term analysis of differentially expressed genes in the Adj vs. Control 
and Adj vs. Vac comparisons. The bubble plot shows in the Y-axis the enriched GO terms, while 
in the X-axis the rich ratio is represented (rich ratio=amount of differentially expressed genes in 
the term/all genes included in the term). Size and colour of the bubble represent the number of 
differentially expressed genes in the GO term and enrichment significance (FDR), respectively. 
 

arginine (GO:0019918), positive regulation of mitochondrial membrane potential (GO:0010918), 

mitochondrial protein processing (GO:0034982) and calcium ion transmembrane transport 

(GO:0070588) (Figure 4.8). Due to the few DEGs found in each comparison, there was no 

significant GO term or KEGG pathway in the remaining comparisons. Taken together, it is clear 

that terms related to mitochondria are being altered in the Adj-injected animals. 

 

4.3.1.5 Weighted gene correlation network 
 

A weighted gene co-expression network analysis was performed with the WGCNA [v1.63] 

(279,354) R package. It must be pointed that in addition to annotated gene data, expression 

data of detected new lncRNAs (data not shown) was used for network construction. Following a 

similar pipeline to the PBMC samples, the first step was to select an adequate parameter β based 

on the minimum value required to get a scale-free topology network, which correspond to a 

scale-free topology fit index R2>0.8. As can be seen in figure 4.9, a parameter β=28 was enough 

to achieve a scale-free topology. After network construction, a total of 255 co-expressed gene 

modules were detected. Then, modules with similar expression profiles were merged and, in the 

end, a total of 46 co-expressed gene modules were detected (figure 4.10(a) and 4.10(b)), module 

size ranging from 37 to 2,424 genes. Each module was assigned a random colour name. Then, 

significant Pearson’s correlations among module eigengenes (the first principal component of 

each module) and treatment variables (all possible dichotomized combinations, in which one 

group is against the other two. TreatControl, control samples against treated animals; TreatVac, 

samples from the vaccine group against the rest of samples; and TreatAdj, samples from the 

adjuvant group against the rest of samples) were searched. After selecting a q-value of 0.05 as 

cut-off, the following modules were found significant for each dichotomized treatment variable 

(Figure 4.10(c)): the mediumorchid4 module (189 genes, r=0.88, qvalue=0.01), the brown3 

module (377 genes, r=0.88, qvalue=0.01) and the palevioletred3 (275 genes, r=-0.95, 

qvalue=0.001) for Vac group and the maroon module (1325 genes, r=0.88, qvalue=0.01) and the  
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Figure 4.9: Summary network indices (y-axes) as functions of the soft thresholding power (x 
axes). Numbers in the plots indicate the corresponding soft thresholding powers. For each 
power, the scale-free topology fit index (R2) is calculated (left panel) and returned along the 
network mean connectivity (right panel). 
 

burlywood1 module (228 genes, r=-0.83, qvalue=0.04) for Adj group (Figure 4(c)). There were 

no co-expressed modules associated with the Control group. In addition, it was checked how 

many DEGs were inside each significant module and it was shown that all those modules had 

from 3 to 36 DEGs. The most outstanding module was the maroon with 36 DEGs, the remaining 

modules having an insignificant number of DEGs in comparison. 

The obtained treatment associated modules were further studied for enrichment of GO 

terms and KEGG pathways. Among the modules correlated to Adj-inoculated sheep (TreatAdj), 

maroon showed positive correlation, which indicates that genes belonging to this module 

usually have higher expressions, while burlywood1 showed negative correlation, which indicates 

a lower expression. Among terms from the BP ontology, the maroon module was enriched in 

regulation of interleukin-1 beta production (GO:0032651), negative regulation of extrinsic 

apoptotic signaling pathway (GO:2001237), negative regulation of canonical Wnt signaling 

pathway (GO:0090090), positive regulation of immune response (GO:0050778), phagocytosis 

(GO:0006909), receptor-mediated endocytosis (GO:0006898), cellular response to 

oxygen-containing compound (GO:1901701) and positive regulation of reactive oxygen species 

metabolic process (GO:2000379). A more detailed list of enriched terms from the Biological 

Process (BP) ontology for the maroon module can be seen in figure 4.11 (terms with more than 

50 genes were removed for visualization purposes, being these terms way too general to be of 

interest). The remaining modules did not show significant enrichment for any GO ontology, 

except the burlywood1 module that was enriched with some terms from the Cellular 

Component (CC) ontology such as histone methyltransferase complex (GO:0035097) and 

mitochondrion (GO:0005739). 

Regarding KEGG pathway enrichment, only the maroon module showed any significant 

results, mainly: ECM-receptor interaction (oas04512), amoebiasis (oas05146), focal adhesion 

(oas04510), PI3K-Akt signaling pathway (oas04151) and protein digestion and absorption 

(oas04974). In addition, there were two additional pathways with multiple genes that were 

nearly significant: sulfur metabolism (oas00920, adjusted p-value=5.05E-02) and NF-kappa B 

signaling pathway (oas04064, adjusted p-value=5.19E-02).  
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Figure 4.10: Weighted gene expression co-variance network analysis (WGCNA) summary. (a) Gene dendrogram obtained by average linkage hierarchical 
clustering. The colour rows underneath the dendrogram shows the module assignment before (Dynamic Tree Cut) and after (Merged Dynamic) modules with 
similar expression profiles were merged. (b) Hierarchical clustering of samples used in the analysis. (c) Module-trait associations. Each row corresponds to a 
module eigengene, while the columns to a trait. Each cell contains the corresponding correlations (color-coded) and adjusted p-values. Only modules 
associated with at least one trait are shown (significant ones marked with and asterisk). 

Dynamic Tree Cut 

Merged Dynamic 

* 

* 

* 

* 

* 
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Figure 4.11: GO enrichment term analysis from the Biological Process category in the maroon module. The bubble plot shows in the Y-axis the enriched GO 
terms, while in the X-axis the rich ratio is represented (rich ratio=amount of differentially expressed genes in the term/all genes included in the term). Size 
and colour of the bubble represent the number of differentially expressed genes in the GO term and enrichment significance (FDR), respectively.  
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Finally, treatment-related hub genes, which are defined as those belonging to the ≥85th 

percentile for both MM and GS, were checked (Table 4.4). To note the maroon module, in which 

17 of the hub genes (including a few lncRNAs that are not shown) are DEGs. Some of them, as 

previously detailed, had been related to brain injury (GSN, LAMA2, and PROS1), neuronal 

development (NTN1 and NID2) and different diseases in brain (MRC1 and ANXA2). In addition 

to DEGs, there were other hub genes related to insulin signaling (INSR, IGFBP2 and IGF2BP2), 

blood brain barrier (ADGRA2 and NTN1), ERK signaling (INSR, ITGA9, OSMR, COL18A1, LAMA2, 

BCL2L11, ADAM17, COL4A3, COL4A4, COL4A6, COL2A1 and BMP4) and calcium signaling 

(APOOL, HOMER3 and TMBIM1). It seems that the maroon module is composed of genes 

essential for the correct function of the brain. 

 

Table 4.4: Hub genes in the modules related to any treatment. 

Module Hub Genes 

mediumorchid4 SCML4, PROKR2, TTC25, HHLA2 

brown3 KRBA1, MAST2, RET, RUNDC1, FLRT1, ABLIM3, SMG5, PODN, TBR1, 
MROH2B, GABBR2, SIRT4, THRA, TENM2, NKAP, MCTP1, SOWAHB, 
CCKBR, ENSOARG00000001628, ENSOARG00000013353, 
ENSOARG00000017276 

palevioletred3 RARRES2, ATPAF2, AKR1A1, PDGFD, NQO1, RNF187, TYROBP, MTFR1L, 
IL6ST, NET1, TMEM186, ACAT1, GNE, NECAP2, SCARF1, GNG5, 
TCIRG1, CH25H, C2orf69, TTC32, HERPUD1, PLA1A, GNL2, 
ENSOARG00000010890 

maroon INSR, SLC22A6, ITGA9, ADGRA2, TFPI2, CAV1, SNX33, APOOL, MYOF, HPSE, 
NTN1, RASSF3, CSGALNACT1, ACSF2, KCNT1, TRIP10, 
STOX1, MOCOS, ZIC4, GSN, PLEKHH2, GHR, TIMELESS, COLEC12, DAB2, 
TNFRSF11B, OSMR, TTC23, HOMER3, MYOM1, SUCLG2,  
SPTLC3, SLC6A13, ISYNA1, MRC1, SLC4A5, COL18A1, C1orf115, NEXN, 
LAMA2, CROT, BCL2L11, SVIL, FIBIN, ADAM17, DSN1, PROS1, 
XPNPEP3, CILP, COL4A6, ALDH7A1, SNX24, COL2A1, KCNJ13, IGFBP2, 
TMBIM1, FSTL1, FAM43A, COL4A4, COL4A3, IGF2BP2, EHHADH, 
NID2, ANXA2, BMP4, L3HYPDH, ENSOARG00000002862, 
ENSOARG00000002951, ENSOARG00000003361, ENSOARG00000003373, 
ENSOARG00000008491, ENSOARG00000009919, ENSOARG00000016627, 
ENSOARG00000018242, ENSOARG00000018303 

burlywood1 RGS17, ST6GALNAC5, DPCD, ENSOARG00000001664, 
ENSOARG00000002028, ENSOARG00000002172, ENSOARG00000005831,  
ENSOARG00000013502, ENSOARG00000014615, ENSOARG00000019256 

 

4.3.2 miRNA-seq 
 

4.3.2.1 Sequencing quality 
 

The same 12 samples from Total RNA-seq, in addition to an extra sample in the control group 

(133-E), were prepared for miRNA sequencing. After sequencing, an average depth of 18.2 

million 50 nt single-end reads per library were achieved. Adaptor sequence trimming and low 

quality read filtering were done with Trimmomatic following criteria previously described 

(Chapter 2 – section 2.3.3.4), which resulted in a mean 16.3 (SD=3.4) million reads (89.55%) of 
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good quality reads. The average quality of the trimmed samples can be seen in figure 4.12. As it 

can be seen, all samples have good quality after trimming. 

 

Figure 4.12: Average quality per base 

for all sequenced samples. The y-axis 

shows the average quality in Phred 

scale, while the x-axis is a 

representation of all bases in a 

sequencing read of 75 nt for each pair. 

The background of the graph is divided 

by different colours in three main 

section, with the green section 

indicating good quality bases, the 

orange reasonable quality bases and 

the red one poor quality bases. The per 

sample quality plots were produced by 

FASTQC and then, they were 

aggregated by MultiQC. 

 

Trimmed reads were aligned to the Ovis aries reference genome Oar_v3.1 from Ensembl 

with the sRNAbench module from sRNAtoolbox, allowing up to 20 multiple mappings per read. 

An average of 13.1 (SD=3.1) million read pairs (80.21% of the filtered reads) were aligned to the 

reference per library. A more detailed summary of the alignment can be seen for each sample 

in table 4.5. It must be pointed that for small RNA annotation, all sequences were searched in 

miRbase to identify annotated miRNAs and in Rfam to identify other small RNAs originating from 

rRNA, tRNA, snRNA and snoRNA. As can be seen in figure 4.13, 42.91% of all successfully aligned 

reads were annotated miRNAs from the miRbase database, 3.01% were annotated sheep small 

nucleolar RNAs (snoRNAs), 12.96% to tRNAs, 24.71% to other RNAs from RNACentral and few 

reads were assigned to other small RNAs such as rRNAs and snRNAs. The detected miRbase 

miRNA expression values were taken for the expression matrix construction and the unassigned 

reads (15.60%) were used for novel miRNA prediction. 

 

Table 4.5: Summary statistics from the sequence alignment step for miRNA-seq data. 

ID Total Reads Reads Surviving Trimming Mapped Reads 

114-E 18593838 15731291 (84.60%) 12172383 (77.38%) 
115-E 20260075 17405047 (85.91%) 13730047 (78.89%) 
116-E 11367619 9594763 (84.40%) 6806110 (70.94%) 
117-E 13522424 11829370 (87.48%) 8497618 (71.83%) 
121-E 15423663 13756770 (89.19%) 11331974 (82.37%) 
122-E 16590429 14580150 (87.88%) 12064292 (82.74%) 
124-E 16239506 14851157 (91.45%) 11826273 (79.63%) 
126-E 19208637 17588010 (91.56%) 14479206 (82.32%) 
131-E 20848339 19413620 (93.12%) 16388368 (84.42%) 
135-E 19982899 18452005 (92.34%) 15215629 (82.46%) 
136-E 22059443 20165918 (91.42%) 16637673 (82.50%) 
137-E 23603819 21750993 (92.15%) 17744010 (81.58%) 
133-E 18996475 16838934 (88.64%) 13117106 (77.90%) 
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Figure 4.13: Class of molecules to which miRNA sequencing reads align. 

 

After identification of miRNAs from miRbase and new miRNA prediction, 299 miRNAs 

were detected in encephalon samples with at least one sequence read in at least one of the 13 

miRNA-seq libraries. From the detected 299 miRNAs, 141 were already annotated as Ovis aries 

miRNAs in miRbase, while others were previously annotated in other species (84 in Capra hircus, 

20 Bos taurus and 44 in others). Ten were completely new miRNAs. A detailed list of all detected 

miRNAs will be available as supplementary material in the corresponding article that is under 

review. 

 

4.3.2.2 Differential expression analysis 
 

Those miRNAs with an expression lower than 1 CPM and detected in <4 individual libraries were 

treated as lowly expressed miRNAs and were filtered out for the differential expression analysis. 

In total, 259 miRNAs remained after filtering lowly expressed ones. The same sample, as in the 

total RNA-seq analysis, from the adjuvant group (116-E) was treated as an outlier and was 

removed from the analysis. Prior to any other analysis, and similar to the total RNA-seq data, 

the svaseq function from the SVA package was applied to remove unwanted variation and 

accurately measure the biological variability. The obtained surrogate variables were 

incorporated into the testing model of the DE analysis. A principal component analysis (PCA) 

was done with the corrected data (see figure 4.14). 

 

 
Figure 4.14: Principal Component Analysis (PCA) in miRNA-seq data from sheep PBMCs after the 
batch effect removal with SVA R package. 
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The differential expression analysis was performed with DESeq2 with the same testing 

model used for total RNA-seq data. Those miRNAs with an adjusted p-value<0.05 and a 

fold-change>1.5 or <0.667 were taken. Thus, a total of 38, 2 and 7 DE-miRNAs were identified in 

the Adj vs. Control, Vac vs. Control and Adj vs. Vac comparisons, respectively. The DEGs can be 

seen as a heatmap in figure 4.15. Within the DE-miRNAs there are factors that have been 

previously related to brain injury (let-7b, miR-423-3p, miR-99b-3p, miR-874-3p, miR-29b/c, miR-

328-3p, miR-99a) and neurodegenerative diseases like AD (miR-181c-3p, miR-29b/c), PD (miR-

99b-3p, miR-29b/c), ALS (miR-181a, miR-30b) and Multiple Sclerosis (MS) (miR-369-5p, miR-370, 

let-7b/c) or autoimmune diseases like lupus erythematosus (miR-410-3p). 

 

 
Figure 4.15: Heatmap constructed with the differentially expressed miRNA expression data after 
SVA package correction and DESeq2 variance stabilizing transformation (vst) normalization. 
 

4.3.2.3 Target prediction and miRNA-mRNA data integration 
 

Three different target gene prediction programs (miRanda, PITA and TargetScan) were selected 

and applied to the differentially expressed miRNAs, taking the intersection of all tools as 

potential target candidates. Two different approaches were applied to integrate miRNA and 

mRNA data: a correlation analysis and the iSubgraph algorithm. In table 4.6 can be seen the list 

of correlated miRNA-mRNA pairs after multiple-testing correction. The majority of the 

significant miRNA-mRNA pairs were positively correlated, something not expected if the miRNA 

acts via translational repression and/or mRNA cleavage. However, there is evidence of miRNAs 

enhancing translation in special conditions like cell cycle arrest (140) or mitochondrial 

translation (403). Positive correlation may denote the existence of feed-forward regulations 

mediated by transcription factors (404). Among the negatively regulated targets, there were 

some genes related to mitochondria (ACTR10 and MRS2, both targeted by let-7 family 

members), to maintenance of neuronal polarity and axon growth (RUFY3 targeted by let-7b) and 

to apoptosis (NAA50 and UNC5D targeted by miR-197-3p and miR-410-3p, respectively). 



 133 

 

Table 4.6: Significant miRNA-targets correlations after multiple testing correction. rho, 
Spearman’s rank correlation coefficient; pvalue, significance level from the cor.test R function 
that test for association/correlation between paired samples; qvalue, false discovery estimation 
from the qvalue Bioconductor R package. 

miRNA Transcript rho pvalue qvalue 

let-7b ACTR10 -0,84 1,33E-03 0,0484 

let-7b CEP135 0,93 3,97E+08 0,0163 

let-7b GGH -0,86 6,12E-04 0,0377 

let-7b PALD1 0,85 8,07E-04 0,0415 

let-7b RUFY3 -0,90 1,60E-04 0,0247 

let-7c ACTR10 -0,85 8,07E-04 0,0415 

let-7c FBXL12 0,85 1,05E-03 0,0445 

let-7c MRS2 -0,84 1,33E-03 0,0484 

let-7c SLC20A1 -0,91 1,06E-04 0,0217 

miR-181c-3p ZDHHC2 0,89 2,33E-04 0,0262 

miR-197-3p GDF11 0,90 1,60E-04 0,0247 

miR-197-3p NAA50 -0,89 2,33E-04 0,0262 

miR-197-3p PM20D2 -0,89 2,33E-04 0,0262 

miR-197-3p RIN2 0,86 6,12E-04 0,0377 

miR-29c AP2B1 0,86 6,12E-04 0,0377 

miR-29c ASXL3 0,95 4,99E+08 0,0031 

miR-29c MARCH9 0,85 1,05E-03 0,0445 

miR-29c NAV3 0,85 8,07E-04 0,0415 

miR-29d-3p AP2B1 0,86 6,12E-04 0,0377 

miR-29d-3p ASXL3 0,95 4,99E+08 0,0031 

miR-29d-3p MARCH9 0,85 1,05E-03 0,0445 

miR-29d-3p NAV3 0,85 8,07E-04 0,0415 

miR-30b JOSD1 0,85 1,05E-03 0,0445 

miR-30f-3p FAM167A 0,84 1,33E-03 0,0484 

miR-30f-3p MRPS18C -0,86 6,12E-04 0,0377 

miR-30f-3p SIGLEC1 0,84 1,33E-03 0,0484 

miR-30f-3p SIRT2 0,88 3,30E-04 0,0313 

miR-323a-5p NAT10 0,87 4,55E-04 0,0377 

miR-379-3p LAP3 -0,84 1,33E-03 0,0484 

miR-379-3p NDST1 -0,86 6,12E-04 0,0377 

miR-410-3p UNC5D -0,88 3,30E-04 0,0313 

miR-485-5p MRPS27 -0,85 1,05E-03 0,0445 

miR-485-5p SEC61A1 0,91 1,06E-04 0,0217 

miR-485-5p SLC36A1 0,92 6,66E+09 0,0205 

 

Finally, the iSubgraph algorithm was applied to encephalon samples, a tool designed to identify 

miRNA-gene patterns, even if they occur only in some groups/samples, by graph mining 

methods. After applying the algorithm, only a network was found in the three Adj-injected sheep 

(Figure 4.16). All the miRNA-gene pairs detected were positively correlated. From the network 

the miR-29 family and their targets stand out, some of them previously related to 

neurodegenerative diseases (NAV3, a member of the neuron navigator family, and IREB2, which 

encodes a protein that is a regulator of the cellular iron metabolism). Both genes have been 

previously reported to be affected at protein level by the miRNA while their mRNA level 
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remained stable in brain samples (405,406). The positive correlation of the miR-29c/NAV3 pair 

was also detected in the previous correlation analysis. 

Figure 4.16: Subgraph 

detected by iSubgraph 

algorithm in the adjuvant 

samples. In red and blue the 

miRNAs with higher and 

lower expression in the 

adjuvant samples in 

comparison to the control 

group, respectively. All the 

pairs are positively 

correlated. miRNAs marked 

with an asterisk were no DE. 

 

4.3.3 Validation by RT-qPCR 
 

For RNA-seq data validation, 13 mRNAs (CUBN, GDF10, NDUFAF7, SLC13A3, SLC6A20, SPHKAP, 

ASZ1, ND6, RARRES2, EYA1, GNS, LAMA2 and VIM) were verified by RT-qPCR. Log2 fold changes 

(log2FC) in gene expression between the different groups calculated by RT-qPCR are shown in 

figure 4.17 for RNA-seq data. Data from RNA-seq and RT-qPCR showed a high degree of 

concordance (11/13, the gene expression patterns of most genes were reproducible) and there 

were no significant differences in fold change between RNA-seq and RT-qPCR (p-value>0.05), 

indicating that the sequencing results are reliable. 

 

 
Figure 4.17: Validation of the RNA-seq data for the selected mRNAs by RT-qPCR. Log2FC are 
shown for each comparison in the bars, while error bars depict the standard error of the mean 
(SEM), which is the precision by which the mean value has been determined. An asterisk 
indicates statistically significant differences between both groups. 
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4.4 Discussion 
 

Aluminium is a non-essential element and it has no physiological purpose in the human body 

(407). Nowadays, humans and animals are frequently exposed to multiple sources of Al, as it is 

being widely used in different fields, such as pharmaceuticals (e.g. in vaccines as adjuvants) and, 

to a lesser extent, in foods (e.g. in food additives or due to contaminants) and water (due to 

water treatment process or from weathering rocks and soils). In addition, Al is known to have 

cytotoxic properties and to be a biopersistent molecule, the body not being able to excrete all 

internalized Al in a short period of time. In a research study with New Zealand White rabbits 

injected intramuscularly with labelled AH, it was determined by accelerator mass spectrometry 

that Al was detectable in blood one hour after vaccination and that the body was able to partially 

eliminate through urine the Al absorbed from the adjuvant, but only a 6% of the AH adjuvant 

dose was eliminated after 28 days post vaccination (46). Taking all into account, in addition to 

multiple reports linking Al and some neurological diseases such as AD and PD (66) or some 

autoimmune diseases such as MMF and ASIA (5,52,77), some researchers have raised some 

concerns regarding the safety of Al-adjuvanted vaccines in pre-disposed individuals. The 

possibility of injected Al being able to reach distant organs is a topic of constant debate and 

further research in vivo is needed. 

The main objective of this project was to describe the RNA molecular patterns elicited 

upon vaccination mimicking a field practical situation, independently of the role of specific 

vaccine antigens/inactivated pathogens. In addition, it was tested the ability of Al particles to 

reach a distant organ such as brain (399). For that, encephalon samples from already analysed 

sheep in a different tissue (359) were used. Briefly, sheep were inoculated multiple times with 

either Al-containing commercial vaccines, equivalent doses of Al diluted in PBS or PBS only 

during 16 months. Then, after detection and characterization of mRNAs and miRNAs by RNA-seq 

technology, the molecular differences withing treatment groups were tested, mainly: 

Adj-inoculated vs control, Vac-inoculated vs control and Adj-inoculated vs Vac-inoculated. 

Few differentially expressed genes were found in each comparison, with nearly 5 times 

more DEGs in Adj-injected sheep than the Vaccine group when contrasted against control 

animals. Among the up-regulated genes, there were some previously described in other studies 

dealing with neurological disorders, namely: VCAM1, TRPM4, GDF10 and NTN1. The first three 

were significantly up-regulated in Adj-inoculated animals and the latter was up-regulated in the 

Adj vs. Vac comparison. VCAM1 (Vascular Cell Adhesion Molecule 1), member of the 

immunoglobulin superfamily, is a cellular adhesion molecule needed for the migration of 

immune cells across the blood brain barrier in inflammatory central nervous system diseases 

(408). It has been related with neuronal apoptosis after intracerebral haemorrhage, although 

the exact molecular mechanism for apoptosis regulation remains to be explored, and it may play 

a role in the development of rheumatoid arthritis (409,410). In addition, TRPM4 (Transient 

Receptor Potential Cation Channel Subfamily M 4) is a calcium-activated nonselective ion 

channel  permeable only to monovalent ions that contributes to inflammation-induced 

neurodegeneration and it may play a role in various neurological diseases like experimental 

autoimmune encephalomyelitis and MS (411). GDF10 had been seen to be induced in 

peri-infarct neurons in mice, non-human primates and humans (412). GDF10 is considered a 

stroke-induced signal that promotes axonal outgrowth and enhanced functional recovery after 

stroke. Finally, NTN1 (Netrin 1), which is included in a family of laminin-related secreted 

proteins, has been shown to be an important regulator of BBB and to protect the CNS against 

inflammatory conditions such as MS and experimental autoimmune encephalomyelitis (413). It 
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has been suggested that NTN1 acts reducing serum levels of pro-inflammatory mediators and 

limiting the entrance of immune cells into the CNS (414). 

In parallel to the analyses in brain samples carried out in this chapter, those samples 

were analysed by transversely heated graphite furnace atomic absorption spectrometry and 

lumogallion staining for Al quantity measurement and Al localization, respectively (399). Sheep 

showed significantly higher Al content in lumbar spinal cord samples of both treatment groups 

(Vac- and Adj-injected samples), while in the parietal lobe samples there were no differences, 

only a tendency to higher Al content (p=0.074) in Adj-injected sheep. More abundant Al deposits 

were found in the lumbar spinal cord. The Al content and deposits were always more abundant 

in Adj-injected samples in comparison to Vac-injected samples. It must be pointed that most of 

the Al accumulation measurements made in the parietal lobe were below 1 µg/g, a level 

considered safe. The limited quantity of aluminium that reached this tissue could explain the 

low number of DEGs, when compared to other tissues such as PBMCs. In other study, after 

intraperitoneal injection of AlCl3 in neonatal rats, significant higher concentrations of Al were 

found in the hippocampus, diencephalon and cerebellum (415). 

The functional enrichment analysis returned multiple GO terms related to mitochondria 

in the Adj-injected animals, among them: stress-induced mitochondrial fusion, mitochondrial 

ATP synthesis coupled proton transport, positive regulation of mitochondrial membrane 

potential, mitochondrial protein processing and positive regulation of mitochondrial DNA 

replication. Multiple reports have associated Al toxicity with the production of ROS, which could 

lead to mitochondrial bioenergetic impairment and to the generation of oxidative stress 

(416,417). Changes in mitochondrial functions produce oxidative stress, leading to DNA damage 

and cell death. In addition to mitochondria-related terms, positive regulation of cardiolipin 

metabolic process and alpha-ketoglutarate transport GO terms were enriched in Adj-injected 

sheep. Cardiolipin, a phospholipid located mainly in the inner mitochondrial membrane, is 

known to promote brain cell viability and to be associated with brain homeostasis, and reduced 

levels of this phospholipid can result in mitochondrial dysfunction (418). Alpha-ketoglutarate is 

a source of glutamate, a neurotransmitter that is involved in neurotoxicity (in which ROS takes 

place, likely due to calcium influx in the cytosol) (419) and the transport of calcium across the 

inner mitochondrial membrane plays an important role in neuronal physiology and pathology 

(420). 

Then, a co-expression analysis was performed for mRNA and lncRNAs (lncRNA data will 

be not show) with WGCNA, and 45 modules were achieved. Interestingly, 5 modules correlated 

with different treatment groups, that is, 3 modules correlated with Vac-injected sheep 

(mediumorchid4, brown3 and palevioletred3) and 2 with Adj-injected sheep (maroon and 

burlywood1). Among them, the maroon module was distinguished since it contained 36 DEGs 

and was enriched in the following KEGG pathways: ECM-receptor interaction, amoebiasis, focal 

adhesion, PI3K-Akt signaling pathway and protein digestion and absorption. In a recent study, 

male rats were exposed through intraperitoneal injections to a complex of aluminium chloride 

hexahydrate and maltolate, and enrichment analysis revealed terms such as ECM-receptor 

interaction, protein digestion and absorption, focal adhesion focal adhesion and PI3K-Akt 

signaling pathway (53). These terms are highly concordant to the terms found enriched in the 

maroon module, which indicates that the few changes seen in our parietal lobe samples may be 

caused by Al. Among these pathways, the PI3K-Akt signaling pathway is expressed during central 

nervous system development (421) and it is well known that this pathway is particularly 

important for mediating neuronal survival, differentiation and metabolism (422). In addition, 

focal adhesion and ECM-receptor interaction signalling are known to be involved in the 

regulation of synaptic plasticity (423) and NF-κB pathway plays a crucial role on neurogenesis, 

https://www.sciencedirect.com/topics/neuroscience/mitochondrion
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cellular responses to neurological injury and neuroinflammation (424,425). Currently, there are 

few reports regarding the role that these pathways play in the neurotoxicity caused by 

aluminium. 

Regarding the differential expression analysis of miRNA data, the miRNAome of 

Adj-inoculated animals was clearly dysregulated, while nearly no significant change was 

detected in Vac-inoculated sheep. Among all the differentially expressed miRNAs, there were 

some previously related to multiple neurological diseases. One of those was the let-7b miRNA, 

which was found upregulated in Adj-inoculated animals. It has been shown that extracellular let-

7b can act as activator of TLR7, which leads to neurodegeneration (426). In addition, miR-374b 

and miR-30b were downregulated in the adjuvant group. These miRNAs have been found with 

a decreased expression in serum samples of patients with sporadic ALS and have been correlated 

with disease progression (427,428), but their exact mechanism of action regarding ALS is 

unknown (miR-30b is involved with the ECM receptor pathway) . Apart from miRNAs related to 

neurodegenerative diseases, there were some previously described in studies related to brain 

injury. The expression levels of miR-874-3p and miR-423-3p were increased and the expression 

levels of miR-99a and miR-29c were decreased in the adjuvant group. miR-874-3p expression 

has been reported to increase after injury in neurons and his over-expression leads to increased 

stress and vulnerability, affecting inflammatory and apoptotic processes (429). In contrast, miR-

423-3p might be compensatorily over-expressed in response to apoptosis and exert anti-

apoptotic effects in chronic temporal lobe epilepsy (430). Both miR-99a and  miR-29c have been 

involved in oxidative stress and apoptosis (431,432). 

After integrating mRNA and miRNA expression profiles, there were genes related to 

mitochondria function, maintenance of neural polarity and DNA damage control within the 

negatively correlated pairs. Mitochondrial transport is crucial for the function of the nervous 

system due to the particular cellular morphology of neurons and the need to supply energy to 

remote regions (433). ACTR10, which is a negatively regulated and predicted target of let-7b, is 

part of the dynactin complex and absence of the protein encoded by this gene has been shown 

to disrupt mitochondrial retrograde transport, leading to accumulation of mitochondria in axon 

terminals (434). In addition, mitochondria are one of the major pools of intracellular Mg and its 

deficiency seems to be related to mitochondrial dysfunction. MRS2, which is other predicted 

target of let-7b, is a mitochondrial Mg transporter that has been related to defects in the 

organelle and apoptosis (435).  It should be pointed out that generally miRNAs function in the 

cell cytoplasm, but there is evidence of miRNAs located in other locations, being the let-7 family 

one of the miRNAs found in mitochondria cytoplasm (436). In adjuvant-only vaccinated animals 

Al might be causing an imbalance in metal ion levels, among them Mg2+, something that has 

been seen in rats treated with an intragastric administration of Al gluconate (437). Taken 

together, the results point towards a miRNA regulation of apoptotic pathways, mitochondrial 

dysfunction and ECM related pathways upon an intensive vaccination with the adjuvant alone. 
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4.5 Appendix 
 

Table S4.1: List of selected genes and the corresponding primer sequences for the validation of the total 
RNA-seq experiment in encephalon. 

Gene GenBank ID Primer Code Location*1 
Exon 

Junction 
Sequence (5’-3’) 

Target Genes 
CUBN XM_015099599.1 CUBN-F 975-998 yes ATCCAAATATGATGACTGTGAGG  

CUBN-R 1057-1074 CTGTACTCGGGCTCTCC 
GDF10 XM_004021551.3 GDF10-F 1486-1507 yes GGACATAGGGTGGAATGAGTG 

GDF10-R 1563-1581 GGACCATCTTGGGCATCG 
NDUFAF7 XM_004006018.3 NDUFAF7-F 433-451 yes GCAGCTTTCCAACTGGTG 

NDUFAF7-R 489-513 CCAAGTTGACTAAATACCCTCAAA 
SLC13A3 XM_004014618.3 SLC13A3-F 646-668 yes CTCAAGAGTTTCTTCCCACAGT 

SLC13A3-R 704-723 AGCAGCATGAGAGGAAAGG  
SLC6A20 XM_015102462.1 SLC6A20-F 1468-1485 yes CTGTCCCTGCTGCTCAT 

SLC6A20-R 1527-1547 GGTCGCTTTCAAATCTGCTC 
SPHKAP XM_012147712.2 SPHKAP-F 721-739 yes CGCTTCTGTCTGCTTTGT 

SPHKAP-R 786-807 GTGAAACACTGACCAACTTCT 
ASZ1 NM_001195309.2 ASZ1-F 985-1007 yes GCCCTTAAAGAACTGGAAGTAG 

ASZ1-R 1049-1070 GGAACTCATCACCACTGATTT 
ND6 DQ320083.1 ND6-F 270-292 no AGGGACGTTTATTACTGGTTTA 

ND6-R 324-347 CAATTTCCACCTCCTTATCTTTC 
RARRES2 XM_012143266.2 RARRES2-F 335-352 yes GGGCAGTTTGTGAGGCT  

RARRES2-R 408-426 CATTGGGCTTGACCTTGC 
EYA1 XM_012183841.2 EYA1-F 528-548 yes CCAATGGCACCGAAGTTAAA  

EYA1-R 606-627 CAATGGCTGAACCTGAGAAAT 
GSN NM_001246006.1 GSN-F 2041-2059 yes TCATGCTTCTGGACACCT 

GSN-R 2094-2117 GCTTCTGTCTTCTCTTCTTCTTG  
LAMA2 XM_015097399.1 LAMA2-F 736-756 yes ACCTTGAATGCCGATTTGAT 

LAMA2-R 804-827 CCTTGACCGAGTAGTAGTATCTT 
VIM XM_004014247.3 VIM-F 1361-1380 yes GGAGAGGAGAGCAGGATTT  

VIM-R 1433-1452 TGTCAACCAGAGGAAGTGA 
Reference Genes 
GAPDH NM_001190390.1 GAPDH-F*2 - yes GGCGTGAACCACGAGAAGTATAA 

GAPDH-R*2 - CCCTCCACGATGCCAAAGT 
ATP1A1 NM_ 001009360 ATP1A1-F*2 - yes GACTTGAACCGAGGCTTAACAAC 

ATP1A1-R*2 - TCTGGCTAGGATCTCAGCAGC 
HPRT NM_001034035 HPRT-F*2   TGGTGGAGATGATCTCTCAACTTTAA 

HPRT-R*2  TTCGACAATCAAGACATTCTTTCC 
ACTB NM_001009784.2 ACTB-F 453-474 yes ATGTTTGAGACCTTCAACACC 

ACTB-R 531-548 TCCATCACGATGCCAGT 
TFRC XM_004003001.2 TFRC-F 1888-1908 yes GAGCTGGACCTGAACTATGA 

TFRC-R 1962-1984 CAGACCCATATCCCTTATGTCT 

*1 Corresponding Start-End coordinates from NCBI gene annotation. 

*2 Primers from (388). All other primers have been newly designed. 

  



 139 

 

Chapter 5 

5 circRNA annotation 
 

 

5.1 Introduction 
 

Circular RNAs (circRNAs) are a new class of covalently closed circular non-coding RNAs, formed 

when a splice donor and upstream acceptor from a linear RNA are linked together, a process 

also called backsplicing (143). Due to their circular structure, circRNAs are more stable, resistant 

to RNAse R and have longer half-lives than linear RNAs (145), making them good candidates for 

disease biomarkers. Despite being discovered long ago, with the first circular molecules (viroids) 

revealed by electron microscopy in 1976 (147) and the first endogenous circRNA originating 

from the DCC tumour suppressor reported in humans in 1991 (148), for a long time circRNAs 

were thought to be low abundance products derived from splicing errors (146). With the recent 

increase in high-throughput sequencing studies, it was shown that these molecules are more 

common than initially thought and that some of them have important roles in different 

pathways (438,439). Although the biological function of most circRNAs remains unknown, some 

circRNAs have been shown to contain clusters of miRNA binding sites that function as miRNA 

sponges (e.g., the circRNAs related to CDR1 and SRY sequester miR-7 and miR-138, respectively) 

(152). Other circRNAs have been shown to contain sequences that can act as internal ribosome 

entry sites (IRESes), such as circ-ZNF609(153), thus can potentially code for proteins. However, 

their actual translation in vivo remains to be probed. Last, circRNAs can regulate a number of 

processes via protein-binding activity (e.g., the circ-FOXO3 forms a ternary complex with p21 

and CDK2) (154). 

Despite there have been a myriad of published articles for circRNA annotation in human 

and mouse, few have realised functional studies in candidate circRNAs. The brain has been one 

of the most studied tissues for circRNA annotation in human and mouse (440). In a recent study, 

it has been shown that the circRNA originating from the SLC45A4 gene (circSLC45A4), which is 

one of the highest expressed circRNAs in the human frontal cortex, is required to keep neural 

cells in a progenitor state (441). In another research, circHIPK2 has been shown to be involved 

in the differentiation of neuronal stem cells, in which overexpression of the circRNA reduced 

neuronal differentiation (442). In addition, multiple circRNAs has been related to neurological 

diseases. circZIP-2, which originates from the SLC39A2 gene, has been associated with 

aggregation of α-synuclein in a transgenic C. elegans model of PD and it may possibly sponge 

miR-60 (443). One of the most studied brain specific circRNAs is circCDR1as, also known as ciRS-7 

due to its ability to acts as a sponge for miR-7, which at the same time is known to downregulate 

the activity of ubiquitin protein ligase A (UBE2A) that is involved in clearance of toxic amyloid 

peptides in AD (444). circHDAC9 has been shown to act as a sponge for miR-138, with a 

subsequent reversion of SIRT1 suppression and excessive amyloid beta production in AD 

patients (445). Apart from neurological diseases, other studies have found circRNAs associated 

to a great variety of pathways such as neuronal apoptosis and BBB dysfunction. Function assay 

has shown that circPTK2 regulates microglia-induced neuronal apoptosis via sponging miR-29b, 

a miRNA known to induce SOC1, block JNK2/STAT3 signaling and inhibit IL-1β production (446). 
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Regarding BBB, it has been shown that circDLGAP4 acts as a sponge for miR-143 and 

overexpression of the circRNA results in inhibition of endothelial-mesenchymal transition (its 

activation contributes to BBB disruption) (447). 

Despite not being so well studied as brain, multiple studies has demonstrated that 

circRNAs are abundantly expressed in the bloodstream, with expression levels comparable to 

the cerebellum (448). Furthermore, due to their stability and longer half-lives, circRNAs have 

been proposed as promising biomarkers for diagnosis of human diseases (449). A recent study 

on mouse macrophage cells treated with lipid A (the active component of lipopolysaccharide 

(LPS)) identified the LPS-inducible circRNA mcircRasGEF1B, which was shown to regulate the 

stability of the mature ICAM-1 mRNA (an intracellular adhesion molecule that plays a role in 

immune response) (450). In other study with CD28(+)CD8(+) T cells and CD28(-)CD8(+) T cells 

from healthy elderly or adult control subjects, circRNA100783 was proposed to play a role in 

phosphoprotein-associated functions during CD28-related CD8(+) T cell ageing (451). circNR3C1 

has been shown to act as miR-382-5p sponge in blood serum of age-related macular 

degeneration samples and the miRNA sequestering resulted in PTEN expression increase and 

inhibition of the AKT/mTOR pathway (452).  

In sheep, a number of circRNAs were previously identified from RNA sequencing data. Li 

et al. detected 6,133 and 10,226 circRNAs in prenatal and postnatal muscle and pituitary glands 

of sheep, respectively (156,157). Interestingly, they observed an association of some circRNAs 

with economically important traits, such as the growth and development of muscle related 

signaling pathways in the first tissue and the regulation of hormone secretion in the second.  In 

addition to this, the same group identified 9,231 circRNAs differentially expressed in the estrus 

and anestrus pituitary system of sheep (155). Last, 886 circRNAs were detected in the skeletal 

muscle  by Cao et al., and some of them were reported to be involved in muscle cell development 

and signaling pathway (158). Characterizing the circRNA profiles of specific tissues and cell types 

is a promising way to reveal functional properties of circRNAs. 

Thus, seeing how circRNAs participates in a myriad of pathways in brain samples and 

that blood circRNAs may participate in the fine-tuning of immune responses (448), it would be 

interesting to address any function that those molecules may have in Al adjuvancy. In addition, 

this work would improve the still in progress circRNA annotation in sheep in two tissues not 

previously studied (regarding circRNA annotation). Thus, the objectives of this work were: 

 

1. to characterize circRNAs from ribosomal depleted RNA sequencing libraries in 

encephalon (parietal lobe cortex) and PBMCs, improving the sheep transcriptome. 

 

2. to address the functional role of circRNAs in Al adjuvancy (if any). 

 

5.2 Material and methods 
 

The samples employed to annotate circRNAs have been previously used for differential 

expression analyses. For a detailed summary of the samples and RNA extraction methods see 

the corresponding section, chapter 3 for PBMC samples (3.2 Material and methods) and chapter 

4 for parietal lobe cortex samples (4.2 Material and methods). In addition, a detailed description 

of the workflow for circRNA characterization can be seen in chapter 2 (2.3.4.4 Workflow). 

 

5.3 Results 
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5.3.1 circRNA characterization 
 

Ribosomal RNA depleted total RNA-seq datasets (parietal lobe cortex and PBMCs) from the 

previous studies were re-analysed to characterize circRNAs. Two bioinformatics tools, Segemehl 

(333) and DCC (328), were selected for circRNA identification, which resulted in 12,475 and 

60,375 candidate circRNAs in encephalon and 19,611 and 63,138 candidate circRNAs in PBMC 

samples by segemehl and DCC, respectively, in each tissues. It must be pointed that these tools 

only detect the backsplice junction in their search for topologically inconsistent reads 

(non-colinear splicing) and they do not make any assumptions on the retained exons or introns, 

since the remaining reads cannot be distinguished if they belong to the linear or circular 

transcript. Out of all the circRNAs detected in the encephalon, 4,996 had concordant coordinates 

in both tools. After filtering circRNAs based on their abundance and expression patterns among 

samples, 2,510 circRNAs were selected for subsequent analyses. In PBMCs, 10,414 circRNAs 

were concordant between tools. After filtering, 3403 circRNAs were retained for further 

analysis. The list of circRNAs and their details will be published as supplementary material in a 

research article. The naming of circRNAs in each tissue list was performed by assigning 

sequential unique numeric identifiers. From the 2,510 and 3,403 circRNAs detected in 

encephalon and PBMCs, 1,236 (49.24% of the encephalon circRNAs and 36.32% of the PBMC 

circRNAs) were present concordantly in both tissues (see figure 5.1). In other studies, it has been 

shown that approximately 30% of the detected blood circRNAs overlapped with circRNAs 

expressed in the cerebellum (448). The counts from DCC were taken as reference abundance 

values. 

 

 

 

 

Figure 5.1: Venn diagram with the number of 
circRNAs detected in each tissue after filtering for a 
minimum expression in at least three samples. 

 

 

 

 

In the available literature a number of studies have described the principal 

characteristics of circRNAs in human and mouse (152,161). In our sheep data, in both tissues, 

we observe that the longer the chromosome, the more circRNAs are detected (Figure 5.2a and 

5.2b). In addition, supposing that all exons between backsplice junction coordinates are 

conserved, the circRNAs are most commonly formed by two or three exons, being those 

composed of two exons the most prevalent ones (Figure 5.2c and 5.2d). This is in accordance 

with what was previously described in other species (152). A representation of the location of 

each circRNA in the reference genome is given in figure 5.3 for encephalon and figure 5.4 for 

PBMCs. In those figures can be seen regions with high concentrations of circRNAs, generally 

regions in which a few genes host multiple circRNAs. In the case of encephalon samples (Figure 

5.3), the regions chr1:188-189Mb, chr6:101-102Mb and chr25:10-11Mb contained 11, 10 and 

11 circRNAs respectively. The most outstanding region is the one from chromosome 25, in which  
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Figure 5.2: Plots depicting some characteristic circRNA properties. a) and b) Number of circRNAs 
identified in each chromosome in encephalon and PBMCs, respectively. c) and d) Number of 
exons inside each circRNA whose origin is an annotated gene in encephalon and PBMCs, 
respectively. On the x-axis the number of exons a circRNA has from start-end coordinates and 
on the y-axis the number of circRNAs that are composed of a determined number of exons. e) 
and f) Bar plots in which the x-axis represents how many circRNAs are from the same host gene 
and the y-axis shows the number of genes that host a specific number of circRNAs in encephalon 
and PBMCs, respectively. 
 

 
Figure 5.3: Location of detected circRNAs in encephalon. Each chromosome was divided in bins 
of 1Mb and the number of circRNAs was counted in each bin. The colour code represents the 
number of circRNAs detected in the bins. 
 



 143 

 

 
Figure 5.4: Location of detected circRNAs in PBMCs. Each chromosome was divided in bins of 
1Mb and the number of circRNAs was counted in each bin. The colour code represents the 
number of circRNAs detected in the bins. 
 

the 11 circRNAs surge from the same gene, ryanodine receptor 2 (RYR2). In a recent study, the 

RYR2 gene was predicted by bioinformatic tools to have 177 circRNA isoforms in human heart 

samples (453) , understanding as isoforms in circRNAs the multiple forms that host a single gene. 

The other two regions had multiple genes that hosted multiple circRNAs. The region of 

chromosome 1 had the genes ZNF148 (with 1 circRNA), SNX4 (with 7 circRNAs), LMLN (1) and 

TFRC (1), while the region in chromosome 6 had the genes PTPN13 (3), AFF1 (2) and SPARCL1 

(4). In addition, in the case of PBMC samples (Figure 5.4), the regions chr2:11-12Mb, chr2:231-

232Mb, chr6:66-68Mb and chr7:99-100Mb contained 12, 18, 17 and 12 circRNAs, respectively. 

Similar to the regions of encephalon samples, these regions had a few circRNAs that hosted 

multiple circRNAs, mainly: in chr2:11-12Mb, genes PTBP3 (4) and SUSD1 (4); in chr2:231-232Mb, 

genes SP110 (5), ENSOARG00000020646 (7) and SP100 (5); in chr6:66-68Mb, genes TEC (5) and 

SLAIN2 (5); and in chr7:99-100Mb, genes TTC7B (2), RP56KA5 (3), CASC4 (5) and CTDSPL2 (2). 

Out of the 2,510 candidate circRNAs detected in encephalon, 2,372 overlap with 1,642 

annotated sheep genes. Of those circRNAs that originated from an annotated gene, 1,927 were 

concordant with an annotated exon-intron boundary in both ends, while in the other cases, 

despite the overlap with an annotated gene, at least one end was not concordant with an 

annotated exon-intron boundary. Concerning the 3,403 circRNAs detected in PBMCs, 3,249 

were found to originate from 2,006 annotated sheep genes. Of these, 2,597 were concordant 

with an annotated exon-intron boundary in both ends. In some cases, the cause of the 

discrepancy between the annotated exon-intron boundaries and the circRNA backspliced 

junctions could be explained by the incomplete state of the sheep gene annotation. The majority 

of genes host only one circRNA in both tissues (Figure 5.2e and 5.2f). There were a few cases in 

which a gene hosted more than 6 isoforms in both tissues. In the encephalon samples, there 

were 3 genes (PANK2, DZIP3 and SNX4) that each one hosted 7 circRNAs and one gene (RYR2) 
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that hosted 11 different circRNA isoforms. In the PBMC samples, there were 5 genes (KMT2C, 

JCHAIN, COP1, KIF3A and ACAP2) that each one hosted 7 circRNAs, 2 genes (EFCAB3 and 

GPCPD1) hosting 8 isoforms and other 2 genes (PICALM and VPS13C) with 9 isoforms. In a recent 

study on genes of the MLL rearranged acute leukaemia in normal blood cells (454), 31 circRNA 

isoforms of the PICALM gene were reported in monocytes. 

Despite studies on circRNA annotation in different species are growing in number, there 

is a lack of functional characterization. One of the most well characterized circRNAs is the one 

related to the CDR1 gene, whose function as a sponge for miR-7 has been shown to be specific 

of neuronal tissue in mouse (455). Although CDR1 is not annotated in sheep, blasting the human 

sequence of this gene against the sheep reference genome results in a single hit, matching a 

region of circRNA4960, detected in our encephalon samples. We lifted the coordinates of the 

sheep backsplice junctions (sheep genome version Oar_3.1) to the human genome (version 

hg38) with the UCSC liftOver tool (341) and found that circRNA4960 is homologous to the human 

CDR1-AS. Interestingly, circRNA4960 was one of the most expressed in our cortex samples. 

Among the highly expressed circRNAs detected in encephalon (Table 5.1) other two were 

homologous to previously characterized human circRNAs, circRNA4266 and circRNA4357, which 

originate from HOMER1 and ZNF609 genes, respectively. Within the circRNAs with highest levels 

of expression detected in PBMCs (Table 5.2) there was no functionally characterized circRNA 

previously described in other species. 

 
Table 5.1: Top 10 highly expressed circRNAs in encephalon for each sample. “Sample”, number of samples 
in which the circRNA is detected among the 10 most expressed. 

Name Chr Start End Strand Gene Gene Name Samples 

circRNA4266 7 10226343 10245400 - ENSOARG00000017295 HOMER1 12 

circRNA1370 15 74333115 74346193 - ENSOARG00000003032 PHF21A 12 

circRNA4960 X 89513503 89514803 -  CDR1-AS 11 

circRNA22 1 10099323 10102102 + ENSOARG00000019470 ZMYM4 10 

circRNA1805 18 66676757 66681832 + ENSOARG00000005628 EIF5 9 

circRNA2718 23 35401154 35419026 + ENSOARG00000008819 ROCK1 7 

circRNA598 10 28577657 28578297 - ENSOARG00000010917 PDS5B 7 

circRNA2217 2 146153913 146169101 + ENSOARG00000005956 KCNH7 6 

circRNA1395 16 6732929 6736996 + ENSOARG00000004394 FAM169A 6 

circRNA4387 7 48356079 48359956 + ENSOARG00000020844 SLTM 6 

circRNA438 1 234794720 234799994 - ENSOARG00000004134 MED12L 5 

circRNA1840 19 9567084 9578895 + ENSOARG00000016371 ARPP21 5 

circRNA913 12 42986759 43003148 + ENSOARG00000009688 RERE*2 5 

circRNA2780 23 58208176 58223449 + ENSOARG00000005569 ZNF532 4 

circRNA2747 23 43282769 43284768 - ENSOARG00000001837 SPIRE1 2 

circRNA969 12 68716251 68720208 + ENSOARG00000009633 ANGEL2 2 

circRNA4225 7 3056580 3056998 + ENSOARG00000016256 KCNN2 2 

circRNA3977 5 85636228 85648776 - ENSOARG00000016099 MEF2C 2 

circRNA4357 7 42641887 42642760 - ENSOARG00000020735 ZNF609 1 

circRNA317 1 171863910 171882996 + ENSOARG00000019010 DZIP3 1 

circRNA1601 17 52116136 52117521 + ENSOARG00000006283 PITPNM2 1 

circRNA3748 4 86579656 86598085 - ENSOARG00000018580 AASS 1 

circRNA4708 9 14695072 14695957 - ENSOARG00000002124 ADGRB1 1 

circRNA2092 2 82728978 82746338 - ENSOARG00000013900 ZDHHC21 1 

circRNA666 10 77178839 77187483 - ENSOARG00000004729 NALCN 1 
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Table 5.2: Top 10 highly expressed circRNAs in PBMCs for each sample. “Sample”, number of samples in 

which the circRNA is detected among the 10 most expressed. 

Name Chr Start End Strand Gene Gene Name Samples 

circRNA1097 10 11535094 11536868 - ENSOARG00000006858 ELF1 13 

circRNA2237 13 32987272 33001090 -  ZEB1 13 

circRNA9166 7 43514992 43519072 - ENSOARG00000020780 USP3 11 

circRNA3570 18 1380967 1386808 - ENSOARG00000009094 UBE3A 10 

circRNA9195 7 48356079 48359956 + ENSOARG00000020844 SLTM 8 

circRNA4776 2 177871845 177873523 -   7 

circRNA2303 13 46999890 47008442 - ENSOARG00000017627 GPCPD1 7 

circRNA7862 4 112437200 112438114 - ENSOARG00000001140  5 

circRNA1078 1 273591055 273596954 - ENSOARG00000015604 SATB1 5 

circRNA5791 23 37284690 37289374 + ENSOARG00000009781 SMCHD1 5 

circRNA3022 15 74333115 74346193 - ENSOARG00000003032 PHF21A 5 

circRNA1811 12 24282247 24297165 - ENSOARG00000013880 AIDA 4 

circRNA7465 3 207812049 207812406 + ENSOARG00000007751 IFFO1 4 

circRNA3410 17 52116136 52117521 + ENSOARG00000006283 PITPNM2 4 

circRNA6610 3 25707012 25707671 - ENSOARG00000016596 SMC6 3 

circRNA6790 3 61888465 61889612 + ENSOARG00000000446 LIMS1 3 

circRNA3496 17 62670908 62672930 - ENSOARG00000013244 SPPL3 3 

circRNA2644 14 45143572 45144245 + ENSOARG00000004796 CD22 3 

circRNA8972 7 12355216 12355633 - ENSOARG00000018058 DENND4A 3 

circRNA5601 22 21584852 21595148 - ENSOARG00000016804 FBXW4 3 

circRNA6617 3 28061734 28076540 - ENSOARG00000017236 PUM2 2 

circRNA4121 19 59224897 59225941 - ENSOARG00000004600 EEFSEC 2 

circRNA8856 6 115601583 115611675 - ENSOARG00000015178 RNF4 2 

circRNA8583 6 66537573 66540717 -  SENP6 1 

circRNA9141 7 42256500 42256834 + ENSOARG00000020714 PTGDR 1 

circRNA7242 3 151073625 151077096 - ENSOARG00000001039 RAP1B 1 

circRNA4228 2 27958067 27961323 - ENSOARG00000008048 FAM120A 1 

circRNA5157 20 11010704 11011610 + ENSOARG00000014288 FGD2 1 

 

5.3.2 Conservation 
 

circRNAs have been reported to be evolutionary conserved and to be tissue specific to some 

extent. As previously stated, it has been shown that approximately 30% of the detected blood 

circRNAs overlapped with circRNAs expressed in the cerebellum of human and mouse data 

(448). In our samples, 1236 circRNAs (36.32% of all detected blood circRNAs) were detected in 

both tissues. As there is no actual circRNA database recording sheep circRNAs, a search of sheep 

circRNA characterization articles was done, requiring that the detected circRNAs were given at 

least as supplementary material. A total of 4 different articles in pituitary gland and longissimus 

dorsi muscle were found (155–158). Those circRNAs were compared to the ones described in 

our samples. Notably, only 175 circRNAs were consistently detected in all tissues at the same 

time, including ours (Figure 5.5). Such low concordance is in agreement with other studies, 

which showed that the expression of circRNAs can be tissue-dependent (456). In addition, our 
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results showed that 421 (16.77%) and 841 (24.71%) circRNAs were exclusive to the encephalon 

and PBMCs data. 

 

 
Figure 5.5: UpSet plot with the comparison of detected circRNAs in different studies. Encephalon 
and PBMCs refers to the circRNAs detected in this study, while Cunyuan_P (pituitary gland), 
Xiaoyue (pituitary gland), Cunyuan_M (longissimus dorsi muscle) and Cao (longissimus dorsi 
muscle) refers to the circRNAs detected in (155–158), respectively. Cells filled with a dot indicate 
the circRNA is in the corresponding database, while empty cells indicate that the circRNA is not 
present in the corresponding database. In red the circRNAs that are exclusively expressed in one 
database and in orange the circRNAs common to all databases. Intersections with less than 30 
elements were removed for visualization purposes. 
 

In addition to this, the detected circRNAs were compared to the human circRNAs 

annotated in CIRCpedia (340). First, sheep circRNA coordinates were translated to human ones 

with the UCSC liftOver tool (341) and classified based on their backsplice junction conservation. 

Out of the 2,510 detected circRNAs in encephalon, 52 splice sites coordinates could not be lifted. 

For the rest, nearly all had at least one reported human circRNA utilizing one of the splice sites. 

A total of 1,606 (63.98%) circRNAs were completely homologous to a human circRNA (Figure 

5.6a). In PBMCs, out of the 3,403 detected circRNAs, 93 splice sites coordinates were not lifted 

to human, while 2,114 (62.12%) circRNAs were found to be completely homologous to a human 

circRNA (Figure 5.6b). 

 

5.3.3 Functional enrichment analysis 
 

A functional enrichment analysis was conducted with g:Profiler (276) on the GO (457) and KEGG 

(458) databases for both tissues, by considering the terms annotated for the parental genes of 

the detected circRNAs and after setting as background all the genes expressed in the 

corresponding tissue. Terms with an FDR less than 0.05 were selected as significant. For 

visualization of the significant GO term clustering, the complete networks are represented in 

figures 5.7 and 5.8 for encephalon and PBMC, respectively. A more detailed zoom of some 

clusters can be seen in figures 5.9 and 5.10. The 20 most enriched KEGG pathways are shown in  
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Figure 5.6: Bar plot with the result of the conservation analysis. In the x-axis the different 
categories described in material and methods and in the y-axis the number of circRNAs in each 
category. a) Encephalon; b) PBMCs. 
 

figures 5.11a and 5.11b, for encephalon and PBMCs, respectively. Among the GO terms 

significantly enriched in encephalon, there are a number of terms related to synapse regulation, 

presynaptic endocytosis, behaviour, brain development and myelination, while among the KEGG 

pathways glutamatergic synapse, dopaminergic synapse and serotonergic synapse were 

enriched, suggesting an important role for some circRNAs in synaptic functions. This would be 

in concordance with brain circRNAs discovered in human and mouse, in which an enrichment of 

circRNAs in synapses has been shown and important roles in synaptic plasticity and neuronal 

function have been suggested (339,440). Instead, in PBMCs, we retrieved GO terms related to 

B- and T-cell proliferation, T-cell differentiation, activation and regulation of immune response 

and neutrophil degranulation. In addition, there were some clusters related to housekeeping 

functions such as DNA repair, DNA replication, cell cycle, mRNA splicing and telomere 

maintenance. In a recent study using datasets of human hematopoietic cells from the SRA 

repository, it was found that circRNA-hosting genes were enriched in housekeeping functions 

such as DNA repair, regulation of cell cycle and transcription (459). In both tissues, the KEGG 

T-cell receptor signaling pathway and B-cell receptor signaling pathway were enriched, 

suggesting that some circRNAs may be involved in basic immune system functions. 

 

5.3.4 circRNA sponges 
 

To identify circRNAs which could function as miRNA sponges, we compared all 2,510 

(encephalon) and 3,403 (PBMCs) predicted circRNAs with clusters of miRNA binding sites 

reported by Pan et al. (460) in the human genome, a dataset that comprises a total of 3,673 

predicted sponges for 1,250 miRNAs.  Only 3 (encephalon) and 4 (PBMCs) sheep circRNAs 

overlapped one or more candidate sponges-miRNA pairs, and those entries for which the 

predicted sponged miRNA does not have a homologous pre-miRNA in sheep were filtered out.  

As a result, one circRNA (circRNA4960) overlapping predicted sponges for two miRNAs (miR-7 

and miR-1224) was predicted in encephalon tissue, while two circRNAs, circRNA2342, which 

overlaps predicted sponges for miR-409, miR-383, miR-370, miR-369 and miR-212, and 

circRNA8181 for miR-124, were predicted for PBMC samples. Then, those sponge candidates in 

sheep and their overlapping human sponges were screened for miRNA binding sites with 

RIsearch2 (344). After removing overlapping binding sites as described in Pan et al. (460), 44 and 

65 binding sites were respectively found on circRNA4960  for miR-7 and miR-1224. Although the   
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Figure 5.7: Complete network 
from enriched GO terms by 
g:Profiler in encephalon and 
visualized in Cytoscape after 
clustering with Autoannotate. 
Node size correspond to 
number of genes expressed 
from the term; edge size 
represents the number of 
genes that overlap between 
different terms; and colour 
represents the significance 
level (FDR). 

  

FDR 
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Figure 5.8: Complete 
network from enriched 
GO terms by g:Profiler in 
PBMCs and visualized in 
Cytoscape after clustering 
with Autoannotate. Node 
size correspond to 
number of genes 
expressed from the term; 
edge size represents the 
number of genes that 
overlap between different 
terms; and colour 
represents the 
significance level (FDR). 

  

FDR 
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Figure 5.9: Sub-network from enriched GO terms by g:Profiler in encephalon and visualized in 

Cytoscape after clustering with Autoannotate. Node size correspond to number of genes 

expressed from the term; edge size represents the number of genes that overlap between 

different terms; node colour represents the significance level (FDR). 

 

 
Figure 5.10: Sub-network from enriched GO terms by g:Profiler in PBMCs and visualized in 
Cytoscape after clustering with Autoannotate. Node size correspond to number of genes 
expressed from the term; edge size represents the number of genes that overlap between 
different terms; node colour represents the significance level (FDR). 
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Figure 5.11: The 20 most enriched KEGG pathways by g:Profiler. The bubble plots show in the 
Y-axis the enriched KEGG pathways, while in the X-axis the rich ratio is represented (rich 
ratio=amount of differentially expressed genes in the term/all genes included in the term). Size 
and colour of the bubble represent the number of differentially expressed genes in the KEGG 
pathway and enrichment significance (FDR), respectively. a) Encephalon; b) PBMCs. 
 

sheep circRNA4960 (CDR1-AS in human) is shorter than the corresponding cluster of miRNA 

binding sites detected in human for miR-7 and miR-1224, the per-base binding sites ratio is 

higher in sheep, further underlying a possible functional role of this molecule in the sheep brain. 

Recent studies have shown that miR-671 has sufficient complementarity with CDR1-AS to induce 

AGO2 endonucleolytic cleavage and, based on this, an alternative function for this circRNA 

molecule as miRNA shuttle system, releasing its miR-7 cargo upon binding with miR-671, has 

been proposed (461). Interestingly, the binding pattern of miR-671 in sheep is identical to the 

human one and includes 13 canonical base pairs in the seed region, and only 1 mismatch over 

the entire sequence, therefore it is sufficient to obtain cleavage by AGO2. Hence, our results 

support both the miRNA sponge and the miRNA shuttle functions previously proposed for 

CDR1-AS in brain and suggest a possible similar mechanism for miR-1224, which is reported as 

highly expressed in brain according to the Genotype-Tissue Expression (GTEx) Project v8. 

In contrast, when the biding sites of sheep and human sponge sequences were 

reanalyzed in PBMCs by RIsearch2, it was shown that miRNA binding sites were scattered far 

away from one another over both the exonic and the much longer intronic regions of 

circRNA2342 and circRNA8181, with few bindings overlapping with the clusters of miRNA 

binding sites identified in human, hence we could not infer any sponge activity for these 

circRNAs. The complete list of binding sites identified for sheep circRNA-miRNA pairs in both 

encephalon and PBMCs candidate circRNA sponges is intended to be given as supplementary 

material in a future publication. 

 

5.3.5 Differential expression analysis 
 

A principal component analysis (PCA) was done with the circRNA expression data from 

encephalon and PBMCs (Figure 5.12). Similar to the differential expression analysis in Chapter 

4, the sample 116E from encephalon was treated as an outlier and it was removed from the 

analysis. Despite having an adequate RIN value (7.6), it was observed a low 260/230 absorbance  
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Figure 5.12: Principal component analysis (PCA) of the encephalon and PBMCs circRNA data. a) 
PCA plot for the encephalon samples. b) PCA plot for the PBMC samples after batch effect 
correction with the Harman package from R. 

 

ratio (a secondary measure of nucleic acid purity) of 0.81 for that sample. Lower ratios of 1.8 

may indicate the presence of co-purified contaminants. 

Then, the differential expression analysis was performed with the R package DESeq2 

(254). We did not detect any differentially expressed circRNA in any comparison after 

considering an adjusted p-value<0.05 as cut-off. We also performed differential expression 

analysis normalizing the data as spliced reads per billion mapping (SRPBM), and by applying a 

Kruskal-Wallis test before correcting for multiple comparison with the Benjamini & Hochberg 

method. Also in this case, there were no significant differences between groups when an 

adjusted p-value<0.05 was taken as cut-off. 

For the PBMCs samples, the Harman R package (247) was applied to remove any batch 

effect in the data after normalizing by SRPBM. Then, both the limma package (248) and Kruskal-

Wallis test were used to test for differential expression, but no circRNA was found to be 

differentially expressed in any comparison with an adjusted p-value<0.05. 

 

5.4 Discussion 
 

CircRNAs are a novel (or have at least recently been dropped from be treated as low abundance 

products derived from splicing errors) class of endogenous non-coding RNAs with a cyclic 

structure formed through a covalent bind of a linear transcript. Lately, circRNAs have gained 

more attention due to their abundance, their expression levels in specific tissues and their 

involvement in different biological functions, particularly studied in human and mouse (462–

464). Among all studied tissues in human and mouse, it has been shown that brain samples and 

blood samples are highly enriched in circRNAs (448). In the case of brain circRNAs, it has been 

shown that they are particularly enriched in synapses (440) and that they can have a great 

variety of functions, such as neuronal differentiation (442), neuronal apoptosis (446) and BBB 

dysfunction (447), while others have been related to some neurological diseases (443–445). In 

the case of blood circRNAs, the functional roles are not so well studied, but some have been 

related to immune functions (450), but most of them have been related to transcription 

regulation (448). In addition, studies on circRNAs in non-model organism, such as sheep, are still 

lacking, and there is no database recording such data yet. 

Taking all together, the main objectives of this study were twofold: first, to improve the 

annotation of circRNAs in sheep, studying two tissues still not used for circRNA annotation in 

sheep; secondly, to address any function that circRNAs may have in Al adjuvancy, since blood 
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circRNAs may participate in the fine-tuning of immune responses (448). For that, the samples of 

encephalon and PBMCs used in previous chapters (PMBC samples in chapter 3 and encephalon 

samples in chapter 4) were reanalysed to annotate novel circRNAs. 

A total of 2,510 and 3,403 circRNAs were detected in parietal lobe cortex and PBMCs, 

respectively, via in silico analysis of ribo-minus total RNA sequencing data. From these circRNAs, 

1,379 were completely novel circRNAs (841 exclusive to PBMC samples, 421 exclusive to 

encephalon samples and 117 expressed in both tissues). The annotation of sheep circRNAs was 

improved by adding relevant information such as conservation and potential function. Most of 

the identified circRNAs in both tissues are from annotated genes, generally formed by two or 

three distinct exons, in agreement with what has been previously reported in human and mouse 

data (465). In addition, we observe that circRNAs are widely expressed in both these tissues in 

sheep, which was somewhat expected since circRNAs are enriched in mammalian brain and 

human PBMCs (466). 

Some circRNAs have a tissue-dependent or developmental stage-dependent expression 
pattern (456). 1236 circRNAs (36.32% of all detected blood circRNAs) were detected in both 
tissues, which is concordant with approximately 30% of the detected blood circRNAs 
overlapping with circRNAs expressed in the cerebellum of human and mouse data (448). In 
addition, the circRNAs detected in this study were compared to other sheep circRNA identified 
in pituitary gland (155,156) and in longissimus dorsi muscle (157,158). Only 175 circRNAs were 
detected in all tissues at the same time, while several hundreds of circRNAs were exclusive to 
each tissue, which shows how some circRNAs have a tissue-dependent expression. Furthermore, 
given that numerous circRNAs have exhibited evolutionary conservation between human and 
mouse (467), the circRNAs detected in this study were analysed for backsplice site conservation, 
by comparing them to the human circRNAs available in CIRCpedia. We found that 1,606 (63.98%) 
and 2,114 (62.12%) sheep circRNAs had completely conserved backsplice sites between human 
and sheep in encephalon and PBMCs, respectively. Among the most expressed circRNAs, 
circRNA4266 and circRNA4357, in order originating from the HOMER1 and ZNF609 genes, had 
been previously characterized in other species. Consistent with this, it has been shown that the 
circRNA related to HOMER1 has a regulatory role in cell growth in human bronchial epithelial 
cells, as its silencing promotes cell proliferation (468). The circRNA originated from ZNF609 has 
been shown to adsorb miR-150-5p and to upregulate SP1 transcription factor, promoting the 
proliferation of nasopharyngeal carcinoma cells (469). In addition, this circRNA has been related 
to myoblast proliferation and the fact that its sequence includes an open reading frame and that 
a fraction of this circRNA is loaded into polysomes indicates that it may encode for proteins 
(153). 

It was previously proposed that the binding activity between circRNAs and RNA binding 
proteins (RBPs) can have regulatory effects (162), which suggests that circRNAs can impact the 
same functional processes in which the corresponding linear host gene is involved. Under the 
assumption that the function of a circRNA may be associated with the known function of its 
parental gene, GO analysis indicated that the circRNAs identified in encephalon are related to 
synapse regulation, behaviour, learning process and brain development, while KEGG pathway 
analysis also related these circRNAs to synapses and to pathways implicated in cell proliferation 
such MAPK/ERK pathways, the last ones being previously linked to circRNAs (465). In contrast, 
in the PBMCs samples, GO terms associated with the immune system such as B- and T-cell 
proliferation, neutrophil degranulation, the MAPK cascade and the NF-κB signaling were 
enriched, as well as DNA methylation and histone modification, supporting the possibility that 
circRNAs could be related to epigenetic alterations, as previously suggested (470). In both 
tissues the B- and T-cell receptor signalling pathways were enriched, in addition to Fc epsilon RI 
signaling pathway, Th17 cell differentiation and platelet activation in PBMCs samples, indicating 
a potential functional role for circRNAs in the immune system response. 
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In addition, it has been shown that circRNAs can act as miRNA sponges through 
abundant binding sites for miRNAs in their sequence and modulating the activity of miRNAs in 
their target genes (471). For that purpose, the circRNAs detected in encephalon and PBMCs were 
screened for the presence of clusters of miRNA binding sites. The circRNA CDR1-AS, which 
corresponds to circRNA4960 in this study, contains numerous binding sites for miR-7 and miR-
1224, both reported to be expressed in the mammalian brain. In agreement with our 
expectations, we observed that this circRNA is highly expressed only in our encephalon samples. 

After the characterization of the circRNAs, a differential expression analysis was 
performed, in an attempt of identifying any circRNA that may play a role in Al adjuvancy. We did 
not detect any differentially expressed circRNAs in any of the two tissues, which indicates that 
circRNAs may not be connected with aluminium adjuvant effects. Despite this, it should be noted 
that no differential expression analysis software has been specifically designed to handle 
circRNA data, in which expression levels are generally lower compared to mRNA and are 
subjected to greater variability. 
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Chapter 6 

6 General discussion and conclusions 
 

 

This chapter will provide a general discussion off all the work performed throughout this thesis, 

mainly: the differential expression analysis of PBMC and encephalon samples, and the 

annotation of circRNAs in both tissues. Some suggestions will be given regarding possible future 

works and the reached conclusions will be listed at the end. 

 

6.1 General discussion 
 

6.1.1 Experimental design 
 

The present work aimed to characterize the response of aluminium (Al) adjuvant-based 

vaccinations in sheep and to identify novel genes or regulatory elements that partake in the still 

partially unknown mechanism of action of Al adjuvants. For that purpose, Rasa Aragonesa sheep 

were subjected to repetitive inoculations of commercial vaccines composed of aluminium 

hydroxide (AH) or to equivalent doses of aluminium containing adjuvant diluted in phosphate-

buffered saline (PBS). 

It is well known that Al is a non-essential element for the human body and is thought 

that it lacks any essential biological function. Al by itself has been shown to have cytotoxic 

properties: at concentrations of 100 µg/ml, Alhydrogel was shown to increase cellular mortality 

in TH1 cells (391); in erythrocytes of common carp exposed to different concentrations of Al, it 

was shown that Al exposure produced oxidative stress, which induced DNA damage and gene 

modifications in cells (392); and in thymocytes and lymphocytes of young mice exposed to 

different concentrations of aluminium chloride, it was shown a dose- and time-dependent 

damage of the plasma membrane (but not causing acute cell death) (393). Most researches have 

studied Al adjuvancy in vaccines in short term experiments, in which a single or a few doses of 

the adjuvant are administered. The fact that the body is not able to execrate all injected Al in a 

short-term period of time through normal mechanisms such as urine (46), points towards a high 

persistence of the material in the body. Moreover, the fact that Al may be able to reach distant 

organs though translocation of the material by phagocytic immune cells from the monocytic cell 

line (472,473) or other unknown mechanism are among the most recent concerns. A long-term 

experiment would be helpful to study the fate of injected Al and to assess if the Al of multiple 

vaccinations accumulates in the body due to its high persistence. 

Different animal models can be used for that purpose. Despite the fact that mice models 

have a lower cost and have been extensively used for Al adjuvant experiments, they may fail to 

recreate some aspects of the mechanism at study. Some of those studies give the Al adjuvant 

through intraperitoneal injections (37,53), a route completely distinct from human or other large 

mammals, so the Al distribution and mechanism from those mouse models may differ from the 

animals that receive the inoculations through the subcutaneous or intramuscular route. Larger 

animals like sheep share more similarities to human regarding physiology, anatomy, 

metabolism, genetics and size, making them a good alternative (2–4). Furthermore, farm 
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animals have commercial vaccines for multiple diseases designed specifically for them. In 

contrast, mouse experiments of Al adjuvant usually use vaccines intended for human use, some 

by dilution with saline or buffer, which is not recommended since it can change the main 

properties of the adjuvant in the formulation (agglomerate size, adsorbed antigen,…), while 

others use a fraction of the human dose (around one-fifth or one-tenth, 0.1-0.05 ml) (19).  

Our experiment solves some of the problems that have been presented in other 

experiments. First, commercially approved AH-based vaccines that are usually given during their 

productive period to sheep were chosen for the experiment.  Second, an intensive vaccination 

schedule was planned, in which sheep received in 475 days, always following manufacturer 

recommendations, most of vaccines that would be expected throughout their lifespan. The Al 

load in the tissues under a longer vaccination schedule, and more similar to the field conditions, 

may differ to the one seen in these sheep. However, such a long experiment is not feasible. 

Other option would be to use adult animals, but it would be nearly impossible to find adult 

animals that have grown under controlled conditions, in addition to not be able to distinguish if 

the detected Al is from the vaccine or other source such as food, water or other probable 

exposures to the element throughout their life. 

In the experimental design, priority has been given to the homogeneity of the animals 

analysed in the different groups, using young animals from the same herd, without any prior 

vaccination before the experiment and with a period of adaptation to the new environment 

under the best conditions of feeding and temperature. Regarding vaccination in young sheep 

(the animals in this experiment started their vaccination at the age of 5-months old), It must be 

pointed that the immune system is completely developed in 5-month-old lambs (365) and 

differences related to development should not account for the differences observed in this 

study. Moreover, the vaccines used in sheep are the same regardless of age, with the same dose 

quantity and the same administration protocols. 

The tissues studied in this work,  peripheral blood mononuclear cells (PBMCs) and 

parietal lobe cortex, were chosen mainly to characterize the immune response elicited by the 

adjuvant in the case of PBMCs and to study any molecular changes in brain, in the case of 

detecting Al in said tissue, in cortex samples. The histopathological analyses and behavioural 

changes of the animals were studied by other research groups under the same project (399,474). 

As a novelty in comparison to other studies of Al adjuvant activity, our group applied RNA 

sequencing (RNA-seq) to characterize molecular changes in the transcriptome in the previously 

commented tissues. Therefore, libraries for total RNA-seq, which undergo ribosomal RNA 

depletion, retaining most non-polyadenylated non-coding RNA, and miRNA-seq were prepared. 

This work has a limited number of samples, mainly due to restricted funding and the 

experimental design. Despite of that, it meets the minimum required, which is three biological 

replicates per group, to make inferences on the population (89). It must be pointed that the 

profiles under study are at the beginning (t=0) and at the end of the experiment (t=475), and as 

a consequence, it is complex to determine if some changes are elicited by the overall 

administration schedule or if the last dose has a greater effect. This experiment was carried out 

to study the effects of repetitive inoculations of Al adjuvant-containing products and their 

expected accumulation in the organism, independently from the identification of individual 

inoculations, the granuloma exact age or the role of specific vaccine antigens. It is expected that 

the cumulative effect of the inoculations would be seen, but it cannot be discarded that the 

latter has a greater effect on the response of the animals than the previous ones. 
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6.1.2 Bioinformatic analysis 
 

So far, the sheep reference genome annotation (Oar_v3.1) is still a work in progress, being non-

coding elements poorly annotated. One example of this would be miRNAs. In the last release of 

miRbase (Release 22.1), 153 mature miRNAs can be found annotated for ovis aries, while other 

species such as bos taurus or homo sapiens have over 1045 and 2693, respectively. Other 

elements such as lncRNAs or circRNAs have nearly no annotation and despite there are already 

several research groups working on their annotation, there is no database with a clear 

nomenclature system recording them. The study of said molecules and their interactions with 

coding genes may help to improve the current annotation of the sheep refence genome, in 

addition to broad our knowledge of the mechanism of action of Al adjuvant. For the purpose of 

annotating novel non-coding elements in our sheep libraries, in addition to a high sequencing 

depth, a paired-end library was chosen to achieve a better alignment and characterization of 

those novel non-coding RNAs. 

The steps followed in the pipelines for the differential expression analyses of total 

RNA-seq and miRNA-seq datasets are well stablished, with a wide variety of tools to choose from 

for each step (89). The choice of tools would depend mostly of the objectives of the study, the 

species under study and the state of their reference genome, the type of sequencing library 

(paired-end or single-end, strand specificity, sequencing depth, etc.) and desired performance 

(variations in specificity and sensitivity). As previously mentioned, it must be taken into account 

that the sheep reference genome and annotation is still a work in progress and is lacking 

specifically in annotations of non-coding elements such as miRNAs, lncRNAs and circRNAs. 

The choice of aligner, STAR, was based mainly by the performance shown by multiple 

aligner comparisons (221,223,224). There are variations in performance depending on the 

dataset used for comparison, but generally STAR was always found to be among the best. In 

addition, this aligner has in favour to be very fast, to have implemented in its code a two-pass 

strategy in which a first alignment is done to update junction splice site information and to have 

an extensive and detailed documentation. 

In addition to the differential expression analysis, a weighted correlation network 

analysis was performed in data from both tissues. Taking into account that genes belonging to 

a pathway are usually co-expressed, genes are clustered by their correlation and represented as 

a network in tools such as WGCNA (279). These networks can help to broad the knowledge in 

the clinical trait of interest by correlation of the trait with module eigengenes (a representative 

gene expression of a module, calculated as the first component of a PCA). In addition, hub genes 

(highly connected genes) from those modules related to the clinical trait of interest may have 

key roles in the treatment under study. 

Regarding the miRNA-seq data analysis, miRNA target prediction tools use multiple 

features from the transcript sequence for their purpose. Nearly all tools use the 

complementarity of the seed sequence, the thermodynamic stability of the miRNA-mRNA 

complex and the predicted secondary structure of the miRNA, while other use in addition other 

specific information such as sequence evolutionary conservation and target site accessibility. 

Regardless of the tool used, there is a general consensus regarding how all these tools usually 

returns a great number of false positives (475). In addition, it has been reported that most 

predicted targets may be functionally insensitive to the miRNA repression (475). In an attempt 

to reduce the number of false positives returned by these tools, three tools (Miranda, PITA and 

TargetScan) using different features for target prediction were used and their intersection was 

taken as candidate miRNA targets. It must be pointed that these are predictions based on 
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sequence information and are further studied checking the correlation between miRNA-target 

pairs. For a precise dissection of a miRNA regulatory network further experiments will be 

required and it would be an interesting starting point for future work in Al mediated miRNA-

mRNA changes. Until recently, most researchers have done miRNA gain-of-function and loss-of-

function experiments to identify differentially expressed genes upon alteration of the expression 

of specific miRNAs. Recently, interrogation of specific miRNA-target interaction by a 

CRISPR/Cas9-mediated system has been shown (476), which allows to disrupt or restore 

individual interactions on demand. 

Completely different is the pipeline used for circRNA characterization based on total 

RNA-seq data, despite there are multiple tools for their characterization (325,327,331,333), it is 

still a work in progress. The major problems for their characterization in this kind of datasets are 

that circRNAs constitute a small fraction of reads in common cells lines and that most of them 

are lowly expressed (477). In addition, all tools for circRNA characterization developed so far 

rely in the detection of junction reads that align in a non-linear manner, also called backsplice 

junctions. Thus, most tools only return the counts detected in a fixed window (the backsplice 

junction) and they cannot discern if the remaining reads belong to the linear or circular isoform 

of a gene, not giving any information of the retained exons/introns between the backsplice 

junction coordinates. In an attempt to reduce false-positive calls, it was decided to use the 

intersection of two different circRNA characterization tools, segemehl and DCC, in addition to a 

filtering criterion in which a circRNA needed to be detected in multiple samples to be taken as a 

true circRNA candidate. Then, multiple characteristics of the detected circRNAs were retrieved, 

assuming that all exons along the backsplice junction coordinates were retained. Despite this 

limitation, this is a first step toward circRNA annotation in sheep, providing a general 

background on the functions that circRNAs may have in the studied tissues. For a more detailed 

characterization of the circRNA sequences, improvements in the experimental design have been 

proposed. Some researchers have started to use RNase R, which is an exonuclease that digest 

nearly all linear transcripts, to enrich for circRNAs before sequencing (477). However, it must be 

pointed  that some circRNAs have been shown to be sensitive to RNase R, in addition to some 

linear transcripts still remaining after RNase R treatment (478). 

 

6.1.3 Differential gene expression related to aluminium 

 

In this work, changes previously related to Al were observed in both tissues. In the PBMC 

samples, there was a clear modulation of the immune response caused by Al stimulation, with 

thousands of genes differentially expressed in Vac-inoculated and Adj-inoculated animals, while 

in encephalon samples only a few genes were found differentially expressed in Adj-inoculated 

animals only. This dissimilarity in gene expression in both tissues may be explained by the low 

levels of Al detected in the cortex samples (399), but most of the few differentially expressed 

genes in cortex were expressed in a similar manner to other Al exposure works. After the 

differential expression analysis in cortex samples, it was shown  nearly no differential expression 

in the animals vaccinated with commercial vaccines and the quantity of Al detected in parietal 

lobe samples from the Vac-inoculated sheep was similar to those of the control group (399), 

which indicate that commercial formulations are pretty safe under the conditions of this 

experiment. Completely different was the case of Adj-inoculated animals, in which a tendency 

to higher Al content was detected when compared to control samples (399). It must be pointed 

that most of the Al accumulation measurements made in the parietal lobe were below 1 µg/g, 

a level considered safe. With nearly 5 times more DEGs in Adj-injected sheep than the Vac-
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inoculated animals, among the differentially expressed genes there were terms usually found 

dysregulated in neurological diseases, namely: VCAM1, TRPM4, GDF10 and NTN1 (409–413). 

Taken together, it seems that under the terms of this experiment Al was able to reach the brain 

and induce molecular changes when is free from any antigen. Thus, it raises some concerns on 

the safety of a large number of vaccine trials, which uses Al adjuvant-containing placebo groups 

(479). 

Regarding the changes observed in PBMCs, a clear secretion of inflammatory cytokines, 

previously reported to be induced by Al (36,369–371), and activation of the NF-κB signalling 

pathway was observed in both adjuvant-treated groups. The main differences in both groups 

were in the expression of genes from the cytokine-cytokine receptor interaction pathway, which 

were clearly downregulated in Adj-injected animals. This may reflect what has been seen in the 

granulomas formed after inoculation in those animals (375), in which Adj-inoculated animals 

showed a lower persistency of granulomas, pointing towards a quicker clearance of Al at the 

injection site. Thus, explaining the milder immune response observed in those sheep. The fact 

that Al is cleared from the injection site at a faster pace in adjuvant only animals, in addition to 

the smaller size of Al particles when is free of antigen, may also explain why higher levels of Al 

is detected in lumbar spinal cord and a tendency to higher content in parietal lobe is observed 

(399). In addition, macrophages and other phagocytic immune cells may be the main players in 

the systemic distribution of Al seen in Adj-inoculated animals in this work. It was shown that 

macrophages at the injection site contained Al and that Al-containing macrophages tended to 

form aggregates in the lymph nodes (375). 

Finally, it must be pointed that after circRNA characterization in both tissues, there were 

not found circRNAs with striking roles in the Al adjuvant activity. There is no tool designed 

specifically for circRNA expression data based on rRNA depleted total RNA-seq libraries. Most 

researchers use tools such as DESeq2 and edgeR, which are based in a negative binomial 

distribution, but no study has been done to show if the negative binomial model is suitable for 

circRNA expression data, which only counts backsplice junction reads. At least in our samples, 

circRNA expression data has generally very low counts (a few highly expressed circRNAs 

originated most of the counts) and is zero-inflated. Due to the different structure of circRNA 

expression data and uncertainty of whether the methods used so far are adequate, multiple 

methods were applied to our data. Independent of the choice of method, we did not detect any 

differentially expressed circRNAs in any of the two tissues, which indicates that circRNAs may 

not be connected with aluminium adjuvancy. This is the first work characterizing circRNA 

expression levels after exposure to Al adjuvants to the date. 

 

6.1.4 Guidelines for future work 
 

As a first exploratory analysis, this study has returned some interesting miRNAs and novel 

predicted targets, mostly those related to mitochondria in encephalon and to NF-κB pathway in 

PBMC samples, that would be interesting to study in functional studies to understand better the 

Al mechanism of action and neurotoxicity capacity, mainly: let-7b/MAP3K2, miR-125b/SNX27 

and miR-16b/CHEK1 in PBMCs and let-7b/ACTR10 and let-7b/MRS2 in encephalon. One option 

to validate the importance of a miRNA/target pair would be a gain-of-function experiment by a 

miRNA mimic in the interrogated cell type and subsequent Western blot using a specific 

antibody of the changed protein (480). Recently, interrogation of specific miRNA-target 

interaction by a CRISPR/Cas9-mediated system has been shown (476), which allows to disrupt 

or restore individual interactions on demand, a more precise method for direct target validation. 
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In addition, a RT-qPCR analysis of some candidate circRNAs would be advisable for 

validation of the bioinformatic analyses. The main difference of RT-qPCR for circRNAs compared 

to linear transcripts is in the design of divergent primes which face away from each other in the 

linear RNA and the use of RNAse R treatment to enrich the circRNA population (481). 

 

6.2 Conclusions 
 

6.2.1 Experimental design and bioinformatic analysis 
 

1.1. Total RNA-seq libraries in this work had a mean sequencing depth greater than 70 

million reads in both tissues, while miRNA-seq libraries has a sequencing depth greater 

than 16 million reads. Thus, the high sequencing depths of the libraries in this study has 

allowed the discovery of 1,379 novel circRNAs in the studied tissues, in addition to 39 

and 148 novel sheep miRNAs (at least not annotated in the miRbase database) in 

PBMCs and cortex samples, respectively. 

1.2. Due to the limited number of samples, to improve the detection of differentially 

expressed genes, different DE tools have been applied to data analysis, mainly: edgeR, 

DESeq2 and limma. Their choice, especially for edgeR and DESeq2, was based mainly 

for the true positive identification rate and controlled FDR at lower fold changes shown 

by these tools when a low number of replicates are available. In addition, these tools 

allow for confounding factors to be added when modelling the dataset, which enable 

their use in complex datasets. It was completely necessary in the PBMC dataset, which 

was a longitudinal study with two time points (before any vaccination, t0; and after all 

vaccinations, tf). 

1.3. A weighted correlation network analysis (WGCNA) was performed in datasets from 

both tissues, PBMCs and cortex, to group in clusters co-expressed genes, which are 

supposed to belong to the same or related pathways. Thus, the constructed networks 

would allow to understand better complex interactions of genes in the sheep samples 

and see which pathways may be related to Al adjuvant treatment. It must be pointed 

that the results achieved must be interpreted with caution, as with any other analysis 

based in correlations, it is important to have a great number of samples per treatment 

for the correlation to be meaningful. However, the networks built in this work are a 

first exploratory analysis that will allow identifying elements related to Al adjuvancy.  

 

6.2.2 Expression changes due to aluminium in PBMCs 
 

2.1. The increase in inflammatory signals detected by RNA-seq analysis led to the activation 

of the NF-κB signaling pathway in both treatment groups, pathway that was enriched 

in the Vac tf vs. Vac t0 and Adj tf vs. Adj t0 comparisons. There were multiple genes 

from the NF-κB family, such as NFKB2, RELA and RELB, which were highly expressed in 

Vac- and Adj-inoculated animals simultaneously.  

2.2. Despite there were similarities in the immune response in both treatments, there were 

a few discrepancies. Commercial vaccines induced a clear upregulation of IL1B, IL2RA, 

and PTX3, consistent with the induction of an ongoing immune response against the 

vaccine. In contrast, inoculation with Al alone generally downregulated the mRNA 

expression of several proinflammatory genes, including IL1B, IL8, TLR2, NOD2, or IL2RA, 

suggesting a milder induction of the immune response. In concordance with a milder 
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immune response in Adj-inoculated sheep, it was shown that genes from the cytokine-

cytokine receptor pathway were downregulated compared to Vac-inoculated sheep. In 

addition to immune related genes, there were upregulated genes related to apoptosis 

in both treatment groups, among them: TP53BP2, CSRNP1, TEAD, CDCA7 and 

PPP1R15A.  This would be concordant with release of danger signals such as uric acid 

or host DNA from necrotic or damaged cells.  

2.3. The expression of the NLRP3 inflammasome has been previously related to Al adjuvant 

activity and it has been reported that IL1B activation is dependent of the expression of 

the inflammasome. In this work, the NLRP3 inflammasome had a constant expression 

when sheep that received commercial vaccines were compared to their initial stage, 

before any vaccination, while it was found downregulated in sheep that received the 

AH adjuvant diluted in phosphate-buffered saline. Thus, it seems that the 

inflammasome is not required for Al adjuvant activity in sheep under the conditions of 

this experiment, which point towards an inflammasome independent activation of the 

immune response. 

2.4. In the gene co-expression analysis of PBMC samples, it was shown that the 

lavenderblush3 and coral1 modules, which were related with both Vac- and Adj-

inoculated animals, were composed of genes crucial for the correct function of the 

immune system. Genes expressed in those pathways were similarly co-expressed in 

both treatments, showing that an immune response is elicited by Al adjuvants in both 

treatment groups, the one receiving commercial vaccines and the other one receiving 

equivalent doses of the adjuvant diluted in PBS. 

2.5. Among the differentially expressed miRNAs, let-7b (upregulated in Adj tf vs. Adj t0 

comparison), miR-125b and miR-99a (both upregulated in Vac tf vs. Vac t0 comparison) 

were found to be related to the NF-κB pathway. There is a broad activation of the NF-κB 

pathway in our samples and it seems that said pathway is highly regulated by multiple 

miRNAs in the immune response to Al adjuvants. 

 

6.2.3 Expression changes due to aluminium in encephalon 
 

3.1. It was shown nearly no differential expression in the animals vaccinated with 

commercial vaccines and the quantity of Al detected in parietal lobe samples from the 

Vac-inoculated sheep was similar to those of the control group, which indicate that 

commercial formulations are pretty safe under the conditions of this experiment.  

3.2. In contrast, with nearly 5 times more DEGs in Adj-injected sheep than the Vac-

inoculated animals, among the differentially expressed genes there were terms usually 

found dysregulated in neurological diseases, namely: VCAM1, TRPM4, GDF10 and 

NTN1. In the case of Adj-inoculated animals, a tendency to higher Al content was found 

in cortex samples. It seems that Al is able to reach the brain when is free of any antigen. 

3.3. Among the differentially expressed miRNAs in Adj-inoculated animals, multiple 

predicted targets related to mitochondria function (ACTR10 and MRS2, both targeted 

by let-7 family members), maintenance of neural polarity and axon growth (RUFY3, 

targeted by let-7b) and apoptosis (NAA50 and UNC5D targeted by miR-197-3p and miR-

410-3p, respectively) were found. MRS2, which is other predicted target of let-7b, is a 

mitochondrial Mg transporter that has been related to defects in the organelle and 

apoptosis. In adjuvant-only vaccinated animals Al might be causing an imbalance in 

metal ion levels, among them Mg2+. 
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3.4. The majority of the differentially expressed genes were found in the maroon module 

from the co-expression analysis, a module correlated with Adj-inoculated sheep 

enriched in terms such as ECM-receptor interaction, amoebiasis, focal adhesion, 

PI3K-Akt signaling pathway and protein digestion and absorption. The changes seen in 

our Adj-inoculated samples are quite similar to those observed in brain samples after 

Al exposure in other species such as rats. Among the hub genes of the maroon module, 

in addition to a great number of differentially expressed genes, there were terms 

related to blood brain barrier (ADGRA2 and NTN1), ERK signaling (INSR, ITGA9, OSMR, 

COL18A1, LAMA2, BCL2L11, ADAM17, COL4A3, COL4A4, COL4A6, COL2A1 and BMP4) 

and calcium signaling (APOOL, HOMER3 and TMBIM1). This module was composed of 

genes essential for the correct function of the brain and a more detailed study of these 

genes and related pathways may help to understand better the Al mechanism of action 

and how it is able to reach the brain. 

 

6.2.4 circRNAs and aluminium 
 

4.1. Circular RNAs (circRNAs) were characterized for the first time in sheep parietal lobe 

cortex samples and PBMCs. A wide expression of circRNAs was found in both tissues. A 

total of 2,510 and 3,403 circRNAs were detected in parietal lobe cortex and PBMCs, 

respectively, of which 1,379 were completely novel circRNAs (841 exclusive to PBMC 

samples, 421 exclusive to encephalon samples and 117 expressed in both tissues). This 

study broads the current sheep circRNA annotation with two tissues not previously 

used for circRNA characterization in sheep. 

4.2. 1236 circRNAs (36.32% of all detected blood circRNAs) were detected in both tissues, 

which is concordant with approximately 30% of the detected blood circRNAs 

overlapping with circRNAs expressed in the cerebellum of human and mouse data. 

Thus, it seems that some sheep circRNAs have a tissue-dependent or developmental 

stage-dependent expression pattern. 

4.3. The circRNAs detected in this work were compared to a human circRNA database, 

CIRCpedia. It was shown that approximately the 63% of circRNAs in both tissues had 

completely conserved backsplice sites when compared to human backsplice junctions. 

Thus, it seems that most circRNAs are evolutionary conserved between human and 

sheep. 

4.4. Under the assumption that the function of a circRNA may be associated with the known 

function of its parental gene, PBMC circRNAs were related to multiple immune 

functions such as B- and T-cell proliferation, neutrophil degranulation, the MAPK 

cascade and the NF-κB signaling, while parietal lobe cortex circRNAs were related to 

synapse regulation, behaviour, learning process and brain development. In this work, a 

homologous sheep circRNA to a human circRNA from the CDR1 gene locus was 

characterized exclusively in cortex samples and it was shown that the sheep sequence 

was enriched in binging sites for miR-7, supporting that the miRNA sponge activity 

demonstrated in humans for miR-7 was also retained in sheep. 

4.5. Independent of the choice of differential expression method (edgeR, DESeq2 or non-

parametric test such as Kruskal-Wallis), we did not detect any differentially expressed 

circRNAs in any of the two tissues, which indicates that circRNAs may not be connected 

with aluminium adjuvancy, or that we could not detect it with the planned 

experimental design. 
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