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Summary 

Since the necessity of pharmaceutical industries to commercialize enantiopure compounds, the 

synthesis of enantiomerically pure molecules has gained much interest over the years. Although different 

strategies such as the resolution of racemates or the chiral pool strategy have been widely exploited, 

asymmetric synthesis has constituted a breakthrough in this area. Within the field of asymmetric 

synthesis, the asymmetric induction can be performed by the use of chiral auxiliaries or catalysts, being 

the catalysis employing small organic molecules as reaction promoters the one which has been most 

exploited in recent years. This catalysis, known as organocatalysis, employs a large variety of 

organocatalysts which can be classified by its mode of action as Brønsted acids, Brønsted bases, Lewis 

acids and Lewis bases. The work complied in this manuscript is focused on the development of novel 

transformations promoted by Lewis bases.  

In this sense, we first evaluated 2-vinyl cyclopropylacetaldehydes as suitable substrates for the 

development of an enantioselective organocatalyzed vinylcyclopropane-cyclopentene (VCP-CP) 

rearrangement. We established the capability of chiral secondary amine catalysts to promote the ring-

opening reaction of the vinylcyclopropanes leading to the formation of a wide variety of differently 

substituted cyclopentenes in good yields and enantiocontrol.  

Secondly, the metal-free activation of bis(pinacolato)diboron and its reactivity towards allenylamides, 

unexplored compounds in the field of borylation reactions, was studied. The alkoxide activation of B2pin2 

afforded a nucleophilic boryl moiety which could react with different electrophilic positions of 

allenylamides. The stereoselective metal-free borylation of allenylamides gave access to trisubstituted 

olefins, valuable building blocks for further transformations such as metal-catalyzed cross-coupling 

reactions. 

Finally, as part of a short stay in the group of Prof. Nuno Maulide in the University of Vienna (Austria), 

research in the triflic anhydride-mediated activation of amides was carried out. The objective of the short 

stay was to extend the scope of the asymmetric version of [3,3]-sigmatropic rearrangement previously 

developed by the group, which involved an amide activation step. The induction of chirality was obtained 

by the use of 2-substituted pyrrolidines as chiral auxiliaries. 

  



Resumen 

Dada la necesidad por parte de las empresas farmacéuticas de comercializar compuestos 

enantiomericamente puros, la síntesis de moléculas enantiopuras ha atraído mucho interés en los últimos 

años. Aunque estrategias tales como la resolución de mezclas racémicas y la estrategia chiral pool han sido 

muy explotadas, la síntesis asimétrica constituye hoy en día uno de los principales métodos para la 

obtención de compuestos enantiomericamente puros. Ésta puede llevarse a cabo mediante el uso de 

auxiliares quirales o mediante catálisis asimétrica. Dentro de esta última, el empleo de moléculas 

orgánicas de pequeño tamaño como catalizadores ha adquirido una importante relevancia en las últimas 

dos décadas. Este tipo de catálisis, conocida como organocatálisis, emplea una gran variedad de 

organocatalizadores que pueden clasificarse en función de su modo de activación en ácidos de Brønsted, 

bases de Brønsted, ácidos de Lewis y bases de Lewis. El trabajo presentado en este manuscrito se centra 

en el desarrollo de nuevas transformaciones promovidas por bases de Lewis. 

En este sentido, en primer lugar se evaluaron ciclopropanoacetaldehidos sustituidos con un grupo 

vinilaceptor como sustratos susceptibles de ser sometidos a una reacción de reagrupamiento 

vinilciclopropano-ciclopenteno (VCP-CP) organocatalítica enantioselectiva. Se estudió la capacidad de 

llevar a cabo la reacción de apertura del vinilciclopropano por parte de aminas secundarias quirales para 

promover el acceso a ciclopentenos sustituidos con buenos rendimientos y alto grado de enantiocontrol. 

En segundo lugar, se estudió la activación del bis(pinacolato)diboro y su reactividad frente a 

alenilamidas, compuestos no explorados en el campo de reacciones de borilación, en ausencia de metales. 

La activación del B2pin2 a través de un alcóxido generó una especie de boro nucleófila capaz de reaccionar 

con las posiciones electrófilas de las alenilamidas. Esta borilación organocatalítica estereoselectiva de 

alenilamidas permitió el acceso a olefinas trisustituidas, que pueden actuar como excelentes “building 

blocks” en futuras transformaciones como reacciones de acoplamiento cruzado catalizadas por metales. 

Finalmente, como parte de una estancia breve en el grupo del Prof. Nuno Maulide en la Universidad 

de Viena (Austria), se trabajó en la activación de amidas mediante el uso de anhídrido tríflico. El objetivo 

de la estancia consistió en la extensión del alcance de la versión asimétrica de un reagrupamiento 

sigmatrópico [3,3] descubierto previamente por el grupo, el cual incluía un paso de activación de amidas. 

La inducción de quiralidad se llevó a cabo mediante el empleo de pirrolidinas 2-sustituidas como auxiliares 

quirales. 



Laburpena 

 

Konposatu enantiomerikoki puruak komertzializatzeko enpresa farmazeutikoen nahia ikusita, azken 

urteotan molekula enantiopuruen sintesiak arreta handia jaso du. Nahiz eta nahaste errazemikoen 

erresoluzioa eta chiral pool estrategiak asko erabiliak izan diren, gaur egun,  konposatu enantiomerikoki 

puruak lortzeko metodorik erabilienetarikoa sintesi asimetrikoa da, bai laguntzaile kiralak erabiliz zein 

katalisi asimetrikoaren bidez. Azken honetan, katalizatzaile moduan molekula organiko txikiek garrantzi 

handia lortu dute azken bi hamarkadetan. Katalisi mota honetan, organokatalisis moduan ezaguna, 

hainbat organokatalizatzaile erabili ohi dira, zeinak haiek aktibatzeko moduaren arabera Brønsted 

azidoetan, Brønsted baseetan, Lewis azidoetan eta Lewis baseetan sailka daitezkeen. Eskuizkribu honetan 

aurkezten den lana Lewisen baseetan sustatutako eraldaketa berrien garapenean zentratzen da. 

Horri dagokionez, binilhartzaile taldeaz ordezkatutako ziklopropanoazetaldehidoak ebaluatu ziren 

substratu modura binilziklopropano-ziklopenteno (BZP-ZP) berrantolaketa erreakzio organokatalitiko eta 

enantioselektibo batean. Amina sekundario kiralen bidez, binilziklopropanoaren irekiera-erreakzioaren 

gaitasuna ikertu zen, ziklopenteno desberdinak etekin onekin eta enantiokontrol handiarekin isolatzen. 

Beste alde batetik, bis(pinakolato)diboroaren metalik gabeko aktibazioa eta haren erreaktibitatea 

alenilamideekin ikertu ziren, zeinak ez diren aztertu borilazio erreakzioetan. Alkoxido baten formazioaren 

bitartez aktibatutako B2pin2, alenilamidaren posizio elektrofilikoekin erreakzionatzeko gai zen, sortutako 

boro espezie nukleofilikoaren bidez. Alenilamiden borilazio erreakzio organokataliko eta 

enantioselektiboak, olefina triordezkatuen lorpena bermatu zuen. Hauek, “building block” modura joka 

dezakete metalek, adibidez, katalizatutako akoplamendu gurutzatutako erreakzioetan. 

Azkenik, Vienako Unibertsitateko (Austria) Prof. Nuno Maulideren taldean egindako egonaldi labur 

baten parte gisa, amidak aktibatzeko anhidrido triflikoaren erabilpenean lan egin zen. Egonaldiaren 

helburua “berrantolaketa” [3,3]-sigmatropikoaren bertsio asimetrikoaren hedapenean zatzan, zeina aldez 

aurretik ikerkuntza taldean aurkitu zen. Kiralitatearen indukzioa, laguntzaile kiral moduan pirrolidina 

2-ordezkatuen bidez burutu zen. 
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1. ASYMMETRIC SYNTHESIS 

The necessity of synthesizing enantiopure compounds has gained more and more attention 

over the years since in 1992 the FDA (Food and Drug Administration) banned the marketing of 

racemates in which both enantiomers present different physiological effects.1 Due to the 

necessity of pharmaceutical industries to commercialize enantiopure compounds, much effort 

has been made in the last decades in the preparation of enantioenriched molecules.2 Three are 

the general methodologies which can be taken for that purpose: the resolution of racemates, 

chiral pool strategy and asymmetric synthesis. The resolution of racemic mixtures consists on 

the separation of both enantiomers through simple methods such as crystallization, or 

differences on reactivity.3 On the other hand, the chiral pool strategy is based on the use of 

enantiomerically pure natural products as starting materials which introduce the initial 

stereogenic centers and induce enantiocontrol in the final product.4 Asymmetric synthesis 

allows the chirality transfer through a chiral element present in the molecule or a reagent 

present in the media, therefore converting an achiral starting material into an enantioenriched 

product. This methodology comprises the use of the stereocontrolling element either in 

stoichiometric (chiral auxiliaries strategy) or substoichiometric (enantioselective catalysis) 

amount. Regarding their chemical composition, chiral catalysts can be enzymatic, metallic or 

organic in nature (Figure 1.1). 

 

                                                           
1  (a) Stinson, S. C. Chem. Eng. News 1992, 70, 46. (b) Stinson, S. C. Chem. Eng. News 1993, 71, 38. 
2  Seebach, D.; Hungerbüler, E. Synthesis of Enantiomerically Pure Compounuds (EPC-Synthesis) in Modern 

Synthetic Methods, (Eds.: Scheffold, R.), Salle & Sauerländer, Frankfurt, 1980. 
3  Faber, K. Chem. Eur. J. 2001, 7, 5004. 
4  Hanessian, S. Total Synthesis of Natural Products: The ‘Chiron’ Approach, Pergamon Press, Oxford, 1983. 
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Figure 1. 1. Methods for the synthesis of enantiomerically pure compounds 

Although the use of metals has implied the development of a wide range of novel catalytic 

transformations in the synthesis of enantiopure compounds, in the last two decades a new 

area, known as organocatalysis, has emerged as a very important tool in the development of 

asymmetric transformations. 

 

2. ORGANOCATALYSIS 

Organocatalysis consists on the use of substoichiometric amounts of small organic 

molecules as highly selective catalysts in stereocontrolled reactions. Over the years a wide 

range of transformations have been developed using this methodology allowing the access to 

complex enantiomerically pure molecules in an easy manner. The term “organocatalysis” was 

introduced in 2000 by Prof. MacMillan and since then, an enormous breakthrough was 

achieved both in the design of novel catalysts and in the development of new catalytic 

methodologies. A lot of types of catalysts have been used in this area involving different 

activation modes for the formation of new C-C bonds. In 2005, List reported a classification of 
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organocatalysts categorizing them as Brønsted base, Brønsted acid, Lewis acid and Lewis base 

catalysts according to its participation in the mechanism (Figure 1.2).5,6  

 

Figure 1. 2. Mechanistic classification of organocatalysts 

In the following pages, a short overview of the field according to each catalyst category will 

be discussed. 

 

 

                                                           
5  Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. 
6  For some reviews on organocatalysis, see: (a) Yang, J. W.; List, B. Science 2006, 1584. (b)  MacMillan, D. W. C. 

Nature 2008, 455, 304. (c) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. (d) Jacobsen, E. N.; 
MacMillan, D. W. C. Proc. Natl. Acad. Sci. USA 2010, 107, 20618. (e) Marqués-Lopez, E.; Herrera, R. P.; 
Christmann, M. Nat. Prod. Rep. 2010, 27, 1138. (f) Marson, C. M. Chem. Rev. 2012, 41, 7712. 
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2.1. Brønsted bases 

Brønsted bases activate the substrate through a partial deprotonation process generating a 

new species with enhanced nucleophilicity due to the formation of an ion-pair which is able to 

react with an electrophile furnishing the reaction product after the release of the catalyst 

(Scheme 1.1).7 

 

Scheme 1. 1. Brønsted base catalysis 

Cinchona alkaloids are one of the most employed Brønsted base catalysts nowadays 

promoting a wide range of enantioselective transformations, such as, conjugate additions, 

cycloaddition reactions, epoxidations or hydrogenations.8 Mechanistically, they are categorized 

as Brønsted bases when the nitrogen moiety abstracts a proton resulting in a chiral 

intermediate species which determines the facial selectivity of the transformation. The 

commercially available pseudoenantiomeric forms of several cinchona alkaloids convert them 

in one of the most chirality inducers, among which quinine and quinidine (pseudoenantiomer) 

or cinchonine and cinchonidine (pseudoenantiomer) stand out in asymmetric synthesis. 

Moreover, they present a bifunctional activity due to the presence of quinuclidine nitrogen and 

the hydroxyl group which present a basic character and Brønsted acidic character, respectively. 

The 1,2-aminoalcohol functionality is the responsible of the catalytic activity acting the 

quinuclidine as a base.  As an example of this type of Brønsted base organocatalysts, a (4+2) 

cycloaddition of ortho-quinone methides (o-QMs) and malononitrile was reported by Han and 

                                                           
7  (a) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632. (b) Ting, A.; Goss, J. M.; McDougal, N. T.; 

Schaus, S. E. Top. Curr. Chem. 2010, 291, 145. 
8  (a) Tian, S.-K.; Chen, Y.; Huang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (b) Park, H.-G.; 

Jeong, B.-S. Cinchona Alkaloids in Synthesis and Catalysis: Cinchona-catalyzed nucleophilic α-substitution of 
carbonyl derivatives. (Eds.: Song, C. E.), WILEY-VCH, pp 131-169, 2009. (c) Jang, H. B.; Lee, J. W.; Song, C. E. 
Cinchona Alkaloids in Synthesis and Catalysis: Cinchona-catalyzed nucleophilic 1,2-addition to C=O and C=N 
bonds. (Eds.: Song, C. E.), WILEY-VCH, pp 197-247, 2009. (d) Liu, Y.-K.; Chen, Y.-C. Cinchona Alkaloids in 
Synthesis and Catalysis: Cinchona-catalyzed cycloaddition reactions. (Eds.: Song, C. E.), WILEY-VCH, pp 297-324, 
2009. (e) Marcelli, T.; Hiemstra, H. Synthesis 2010, 8, 1229. (f) Gui, Y.-Y.; Yang, J.; Qi, L.-W.; Wang, X.; Tian, F.; 
Li, X.-N.; Peng, L.; Wang, L.-X. Org. Biomol. Chem. 2015, 13, 6371. 
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coworkers.9 They provided a novel approach for the synthesis of 4H-chromenes in excellent 

yields and enantioselectivities employing quinine as reaction promoter (Scheme 1.2). 

 

Scheme 1. 2. Quinine-catalyzed (4+2) cycloaddition  

Sometimes, Brønsted bases are not able to activate less acidic substrates. In this case, the 

incorporation of other active functionality in the catalyst can overcome the pka issues. Thus, 

bifunctional catalysts were extended, which by combination of a Brønsted base character site 

and another site with hydrogen-bond donor ability, both electrophilic and nucleophilic 

counterparts of the reactions would be activated in the transition state, making the catalyst 

more selective. Michael reaction is the most common transformation carried out by these 

catalysts, being the enantioselective Michael reaction of malonates and nitroolefins carried out 

by the group of Takemoto one of the pioneers works in this field.10 They proposed that both 

the nitroolefin and the malonate could be activated by the introduction of an additional basic, 

nucleophile-activating group in the catalyst, leading to a synergistic interaction between the 

functional groups. While diethyl malonate was activated by the tertiary amine, the thiourea 

activated the nitroolefin by hydrogen bond interactions. By the application of the bifunctional 

catalyst, Michael addition adducts were obtained in high yields and high enantiocontrol 

(Scheme 1.3). 

                                                           
9  Adili, A.; Tao, Z.-L.; Chen, D.-F.; Han, Z.-Y. Org. Biomol. Chem. 2015, 13, 2247. 
10 Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. 
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Scheme 1. 3. Bifunctional organocatalyst-catalyzed enantioselective Michael reaction 

 

2.2. Brønsted acids 

Brønsted acids interact with substrates through non-covalent interactions increasing the 

electrophilicity of the substrates and making them more susceptible towards the nucleophilic 

attack. Depending on the strength of the acid, the activation can be performed by protonation 

or by hydrogen-bonding interactions. In the case of strong acids, the substrate is protonated by 

the catalyst and the conjugate base stays next to the proton due to ionic interactions, being 

the conjugate base the responsible of inducing chirality. On the other hand, weaker acids can 

establish hydrogen-bonding interactions with the substrate, increasing its negative charge 

density and inducing the enantioselectivity. The main difference between the two activation 

modes relies on the bond distance, which is longer in the case of hydrogen-bonding 

interactions (Scheme 1.4). 

 

Scheme 1. 4. Brønsted acid catalysis  

Among all the most employed chiral Brønsted acids, chiral phosphoric acids, chiral triflyl 

phosphoramides and chiral sulfonic acids stand out.11 Chiral phosphoric acids are the 

archetypical chiral Brønsted acids used as catalysts in the last decade due to the wide range of 

enantioselective transformations which have been carried out with them. One of the most 

                                                           
11  (a) Kampen, D.; Reisinger, C. M.; List, B. Top. Curr. Chem. 2010, 291, 395. (b) Cheon, C.-H.; Yamamoto, H. Chem. 

Commun. 2011, 47, 3043. (c) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277. (c) Akiyama, T. Hydrogen 
Bonding in Organic Synthesis, (Eds.: Pihko, P. M.) Wiley-VCH, Weinheim, 2009. 
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important properties of phosphoric acids is their bifunctionality. Apart from the acidic nature 

given by the hydroxyl group, the oxygen lone pair electrons of the P=O bond make the catalyst 

act also as a Brønsted base. Thus, they act as proton donors and acceptors, accelerating the 

reaction and increasing its selectivity. Nowadays, BINOL-derived chiral phosphoric acids are 

considered the most important Brønsted acid catalysts.12 They are axially chiral with C2 

symmetry and are able to prevent free rotation. Moreover, both enantiomers of BINOL are 

commercially available and the possibility of modulating their structure by the incorporation of 

substituents in 3 and 3´ positions, gives us the possibility of synthesizing a wide range of 

structurally similar catalysts with different electronic and steric properties. The group of 

Akiyama reported the first enantioselective Mannich-type reaction of silyl enolates with 

aldimines in which the C-N double bond was activated by a strong Brønsted acid (Scheme 

1.5).13 Both aromatic groups in 3 and 3´ positions, which were not coplanar with the BINOL 

structure, lead to an excellent asymmetric induction.  

 

Scheme 1. 5. Chiral phosphoric acid-catalyzed enantioselective Mannich-type reaction 

However, chiral phosphoric acids present some limitations towards some substrates such 

as carbonyl compounds. In these particular cases, BINOL-derived phosphoric acids are not acid 

                                                           
12  Selected examples: (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. (b) Uraguchi, D.; Sorimachi, 

K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (c) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 
126, 10558. (d) Matsubara, R.; Nakamura, Y.; Kobayashi, S. Angew. Chem. Int. Ed. 2004, 43, 1679. (e) 
Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424. (f) Guo, Q.-X.; Liu, H.; Guo, C.; Luo, 
S.-W.; Gu, Y.; Gong, L.-Z. J. Am. Chem. Soc. 2007, 129, 3790. (g) Zhang, G.-W.; Wang, L.; Nie, J.; Ma, J.-A. Adv. 
Synth. Catal. 2008, 350, 1457. (h) Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 5652. (i) 
Ortega, A.; Manzano, R.; Uria, U.; Carrillo, L.; Reyes, E.; Tejero, T.; Merino, P.; Vicario, J. L. Angew. Chem. Int. 
Ed. 2018, 57, 8225. (j) Zabaleta, N.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J. L. Chem. Commun. 2018, 54, 8905. 
(k) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142. 

13  Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566. 



12  Chapter 1 

 

enough to activate them. To solve this limitation, in 2006, Yamamoto suggested that the use of 

phosphoramide as functional group could enhance the acidity of the catalyst significantly 

(Scheme 1.6).14 

 

Scheme 1. 6. Enhancement of the acidity of a Brønsted acid: N-Triflylphosphoramide vs phosphoric acid 

 

2.3. Lewis acids 

Compounds containing carbocations, silyl or phosphonium cations present Lewis acid 

catalytic properties, as well as phase transfer catalysts. However the number of asymmetric 

transformations catalyzed by a Lewis acid organocatalyst is limited, not observing high levels of 

enantiocontrol, being the majority of the transformations carried out by achiral catalysts.15 

Lewis acids activate the substrates through electrostatic interactions by pulling away electrons 

making the substrate more electrophilic. As consequence, the nucleophilic attack is favored, 

generating the new species as reaction product (Scheme 1.7). 

 

Scheme 1. 7. Lewis acid catalysis 

                                                           
14  Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626. For more transformations involving 

N-Triflylphosphoramides, see: (a) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.; Nachtsheim, B. J. Angew. 
Chem. Int. Ed. 2007, 46, 2097. (b) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem. Int. Ed. 
2008, 47, 593. (c) Jiao, P.; Nakashima, D.; Yamamoto, H. Angew. Chem. Int. Ed. 2008, 47, 2411. (d) Enders, D.; 
Narine, A. A.; Toulgoat, F.; Bisschops, T. Angew. Chem. Int. Ed. 2008, 47, 5661. (e) Rueping, M.; Theissmann, T.; 
Kuenkel, A.; Koenigs, R. M. Angew. Chem. Int. Ed. 2008, 47, 6798. (f) Held, F. E.; Grau, D.; Tsogoeva, S. B. 
Molecules, 2015, 20, 16103. (g) Villar, L.; Uria, U.; Martinez, J. I.; Prieto, L.; Reyes, E.; Carrillo, L.; Vicario, J. L. 
Angew. Chem. Int. Ed. 2017, 56, 10535. 

15  Sereda, O.; Tabassum, S.; Wilhelm, R. Top. Curr. Chem. 2010, 291, 349. 
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Chiral silane Lewis acid catalysts have acquired importance in organocatalysis due to their 

compatibility with many carbon nucleophiles which gives them the possibility to be part of 

nucleophilic additions or cycloaddition reactions, among others.16 Jørgensen and coworkers 

were the pioneers synthesizing the first chiral silyl cation and reporting its application in an 

enantioselective Diels-Alder reaction.17 The acidity of these catalysts comes from vacant d 

orbitals at silicon atom, which give to it capability of valence shell expansion. Lewis bases 

interact with the vacant d orbitals on tetravalent silicon, with the consequent expansion of its 

coordination number to five. The formal hybridization on silicon changes from tetravalent (sp3) 

to pentavalent (sp3d). After this interaction an increasement of the electron density at ligands 

and the silicon atom takes place, making the silicon be more positively charged, acting as a 

Lewis acid. The authors suggested that polar solvents contributed to the improvement of the 

catalytic system. By performing the reaction in deuterated acetonitrile, the solvent coordinated 

too strongly to the silyl cation allowing the reaction to take place stereoselectively (Scheme 

1.8). 

 

Scheme 1. 8. Axial chiral silyl salt-catalyzed Diels-Alder reaction 

 

 

 

 

                                                           
16  (a) Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621. (b) Shirakawa, S.; Berger, R.; Leighton, J. L. J. 

Am. Chem. Soc. 2005, 127, 2858. (c) Tang, Z.; Mathieu, B.; Tinant, B.; Dive, G.; Ghosez, L. Tetrahedron 2007, 63, 
8449. 

17  Johannsen, M.; Jørgensen, K. A.; Helmchen, G. J. Am. Chem. Soc. 1998, 120, 7637. 
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2.4. Lewis bases 

The majority of the organocatalysts are classified as Lewis bases. They can activate 

substrates by the formation of a covalent bond converting them in activated nucleophiles or 

electrophiles, and promote the reaction in an enantioselective manner (Scheme 1.9). Among 

all Lewis base organocatalysts, enamine, iminium, carbene catalysis and catalysis via ylides 

stand out as the most developed ones.  

 

Scheme 1. 9. Lewis base catalysis 

One of the pioneer examples in enamine catalysis was reported by List, Lerner and Barbas 

III.18 It was the first example of the use of an organocatalyst for the intramolecular asymmetric 

aldol reaction. Proline was used as catalyst in the aldol reaction between acetone and 

differently substituted aromatic aldehydes, obtaining the corresponding aldol products in high 

yields and high enantioselectivities (Scheme 1.10). The mechanism of the reaction can be 

explained by an initial condensation of proline with ketone generating an iminium ion which is 

easily deprotonated rendering a nucleophilic enamine species. This enamine reacts with 

aromatic aldehyde electrophiles, furnishing an iminium ion species which is then hydrolyzed to 

                                                           
18  List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395. 
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the final aldol product.19 Enamine formation is facilitated by the dramatic increase in C-H 

acidity of the alfa-proton upon initial conversion of the carbonyl compound into an iminium 

ion. This is due to the catalyst-substrate iminium-type adduct has a LUMO lower in energy 

compared to the carbonyl compound. As consequence, an enamine with a HOMO higher in 

energy is formed which presents a major nucleophilicity than the corresponding enol. This 

strategy has been employed for the α-functionalization of aldehydes and ketones.20 

 

Scheme 1. 10. Enamine catalysis 

In iminium catalysis the active species consists on an iminium ion which is generated after 

the condensation of the amine with α,β-unsaturated aldehydes.21 In this field, Macmillan 

developed a variety of chiral secondary amine catalysts which participate in asymmetric 

iminium activation of enals and enones. One of the first examples in this field was the 

enantioselective organocatalytic amine conjugate addition to α,β-unsaturated aldehydes.22 

This chemo- and stereoselective transformation led to the formation of enantioenriched 

β-amino aldehydes in high yields (Scheme 1.11). The reaction starts by the condensation of the 

catalyst with the carbonyl compound generating an iminium ion which posseses an 

electrophilic character. The iminium intermediate is very reactive at β position due to the 

                                                           
19  List, B. Acc. Chem. Res. 2004, 37, 548. 
20 (a) Mukherjee, S.; Woon Yang, J.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (b) Sulzer-Massé, S.; 

Alexakis, A. Chem. Commun. 2007, 3123. (c) Kano, T.; Maruoka, K. Chem. Sci. 2013, 4, 907. 
21 (a) Lelais, G.; MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79. (b) Erkkilä, A.; Mojander, I.; Pihko, P. M. Chem. 

Rev. 2007, 107, 5416. 
22  Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 9328. 
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LUMO energy lowering effect being able to react with nucleophiles, such as 

N-silyloxycarbamates. After the nucleophilic addition, an enamine species is formed which 

after enamine/iminium tautomerism and hydrolysis furnishes the final β-functionalized 

product. 

 

Scheme 1. 11. Iminium catalysis 

As it can be observed, both mechanistic cycles present common species such as enamine 

and iminium ion intermediates. The reaction presents the ability of moving from one 

intermediate to the other which led to the combination of both mechanistic cycles promoting 

iminium/enamine cascade catalysis.23 The generated enamine species formed after the 

β-functionalization of the iminium ion, can react with an electrophile leading to 

α,β-difunctionalized compounds. 

                                                           
23  For reviews on organocatalytic iminium/enamine cascade catalysis, see: (a) Pellisier, H. Adv. Synth. Catal. 2012, 

354, 237. (b) Pellisier, H. Chem. Rev. 2013, 113, 442. (c) Volla, C. M. R.; Atodiresei, L.; Rueping, M. Chem. Rev. 
2014, 114, 2390. (d) Vetica, F. de Figueriedo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139. 
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N-heterocyclic carbenes (NHC) have been also considered Lewis base catalysts.24 These 

singlet carbenes present a higher stability due to the presence of at least one nitrogen atom 

adjacent to the open shell atom. This nitrogen atom is able to donate electron density to the 

unoccupied p-orbital (LUMO) while it removes electron density from the carbine carbon 

through a σ-bond.25 N-heterocyclic carbenes have gained much attention in organocatalysis 

due to their capability of generating reaction intermediates, such as Breslow intermediate, 

with the potential to interact with additional reagents. In this field, Enders described the 

synthesis of a bicyclic chiral triazolium salt as a novel precatalyst to promote an asymmetric 

version of the benzoin condensation (Scheme 1.12).26 The authors synthesized a variety of 

aromatic α-hydroxyketones in moderate to good yields and high values of enantioselectivity. 

The nucleophilic addition of the catalyst to the aldehyde generated a tetrahedral intermediate 

which furnished the Breslow intermediate after a proton shift. This nucleophilic intermediate 

was able to react with a second molecule of the aldehyde leading to an alkoxide intermediate, 

which after a proton transfer furnished the final product releasing the catalyst. The high 

asymmetric induction observed could be resulted from the conformational rigidity of the 

bicyclic nucleophilic catalyst and the shielding of the Breslow intermediate by the tert-butyl 

group. 

                                                           
24  For selected reviews on the use of NHCs as organocatalyst, see: (a) Marion, N.; Díez-González, S.; Nolan, S. P. 

Angew. Chem. Int. Ed. 2007, 46, 2988. (b) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (c) 
Biju, A. K.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182. (d) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 
41, 3511. (e) Grossmann, A.; Enders, D. Angew. Chem. Int. Ed. 2012, 51, 314. (f) Ryan, S. J.; Candish, L.; Lupton, 
D. W. Chem. Soc. Rev. 2013, 42, 4906. (g) Chen, X.-Y.; Ye, S. Org. Biomol. Chem. 2013, 11, 7991. (h) Flanigan, D. 
M.; Romanov-Michaidilis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307. (i) Wang, M. H.; Scheidt, K. A. 
Angew. Chem. Int. Ed. 2016, 55, 14912. (j) Walden, D. M.; Ogba, O. M.; Johnston, R. C.; Cheong, P. H. Acc. 
Chem. Res. 2016, 49, 1279. (k) Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. Synthesis 2017, 49, 451. 

25  (a) Cazin, C. S. J. N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis; Springer: London, 
2011. (b) Díez-Gónzalez, S. From Laboratory Curiosities to Efficient Synthetic Tools; RSC Publishing: Cambridge, 
2011. (c) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485. 

26  Enders, D.; Kallfass, U. Angew. Chem. Int. Ed. 2002, 41, 1743. 
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Scheme 1. 12. NHC-catalyzed enantioselective benzoin condensation 

Phosphanes can also act as Lewis base catalysts being their contribution to this field 

remarkably over the years.27 An example of phosphane-catalyzed transformation is the Morita-

Baylis-Hillman (MBH) reaction which has been widely studied in the last decades. In the field of 

asymmetric synthesis, Lu and coworkers developed a bifunctional phosphane-thiourea 

organocatalyst which could promote the MBH reaction between acrylates and aromatic 

aldehydes (Scheme 1.13).28 The reaction mechanism is explained by the reversible conjugate 

addition of the phosphane catalyst to the acrylate generating a phosphonium enolate 

intermediate. This structurally well-defined intermediate underwent an intermolecular aldol 

reaction with the aromatic aldehyde in a high stereochemically selective manner, being the 

responsible of the high enantioselectivity observed. The generated intermediate furnished the 

final MBH adduct after a proton transfer process and a β-elimination, regenerating the catalyst. 

                                                           
27  (a) Marinetti, A.; Voituriez, A. Synlett, 2010, 2, 174. (b) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 

2018, 118, 10049. 
28 Han, X.; Wang, Y.; Zhang, F.; Lu, Y. Org. Biomol. Chem. 2011, 9, 6734. 
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Scheme 1. 13. MBH reaction between acrylates and aromatic aldehydes 

 

As it can be appreciated in this section, catalysis promoted by Lewis bases constitutes 

nowadays one of the most important features for the construction of new C-C, C-N or other 

bonds in an enantioselective fashion by the use of structurally different catalysts such as 

amines, phosphanes or carbenes. The work complied in this manuscript will be focused on the 

development of novel stereoselective transformations promoted by Lewis bases. 

 

 

 

 

 

 

 



20  Chapter 1 

 

3. GENERAL OBJECTIVES  

The work summarized in this thesis has been developed in line with the current research 

activity of the group, focused on the study of novel transformations within the field of 

organocatalysis. This research work will be present in different parts. 

In the first part and based on the experience achieved by the group in the field of 

aminocatalysis and the use of this activation manifold in reactions involving the ring-opening of 

strained cyclopropanes containing molecules, the aminocatalyzed vinylcyclopropane-

cyclopentene rearrangement will be studied (Scheme 1.14). This is an underdeveloped 

reaction that typically requires harsh conditions and long reaction times. Remarkably, there is 

not any catalytic enantioselective example of this reaction. For this purpose, we have 

envisaged the possibility of using cyclopropylacetaldehydes with a vinyl substituent as suitable 

substrates for this transformation. Our hypothesis relies on the formation of a donor-acceptor 

cyclopropane after the condensation of a chiral aminocatalyst with the formyl group. Donor-

acceptor cyclopropane would undergo a ring-opening reaction leading to a zwitterionic 

intermediate which would go through a ring-closing process furnishing the corresponding 

cyclopentene product. The enantioselection of the reaction is planned to be controlled by the 

geometry of the catalyst. 

 

Scheme 1. 14. Aminocatalyzed vinylcyclopropane-cyclopentene rearrangement 

In the second part, the transition metal-free borylation of allenylamides will be presented. 

Joining with the experience of Prof. Elena Fernández of University Rovira i Virgilli in Tarragona 

the metal-free activation of B2pin2 and its reactivity towards allenylamides will be studied. The 

borylation will be developed by alkoxide activation of B2pin2 which afford a nucleophilic boron 

moiety which can be added to the different electrophilic positions of the allenylamide system 

(Scheme 1.15). 
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Scheme 1. 15. Transition metal-free boylation of allenylamides 

Finally a research performed during a short stay at the University of Vienna under the 

supervision of Prof. Nuno Maulide will be discussed. This chapter deals with the use of triflic 

anhydride for the activation of amides which is nowadays one of the main research lines of the 

group. Besides, the group has previously developed a [3,3]-sigmatropic rearrangement of 

keteniminium salts and different variants of this rearrangement were carried out over a wide 

variety of substrates. The main objective of this short stay was extending the scope of the 

asymmetric version of this [3,3]-sigmatropic rearrangement which involved an amide 

activation step (Scheme 1.16), using chiral auxiliaries in order to control the stereochemical 

outcome of the reaction. 

 

Scheme 1. 16. Amide activation/[3,3]-sigmatropic rearrangement 
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1. INTRODUCTION 

Cyclopropanes are considered privileged structures in organic synthesis due to they can 

participate in many different transformations, playing an important role in the chemical 

synthesis. Since Freund first synthesized cyclopropane in 1882,1 it has become an important 

scaffold, especially from the point of view of its structural features that is also present in a 

wide number of natural products and pharmaceuticals. These three-membered rings present a 

ring strain of 115 KJ/mol which can be attributed to both angular and torsional strain.2 On the 

one hand, the angular strain makes cyclopropanes to have a bond angle of 60° (C-C-C) instead 

of 109.5° corresponding to a sp3 hybridized carbon atom and, on the other the torsion strain 

derived from the eclipsed conformation of the hydrogen atoms due to the planar structure of 

the cyclopropane. Furthermore, cyclopropane presents shorter C-H and C-C bonds than 

propane, and present higher reactivity than their acyclic analogues.   

Despite the high ring strain of cyclopropanes, their C-C bonds are kinetically inert and 

therefore, cyclopropanes must be activated towards a ring-opening reaction using different 

approaches which widens the number of potential reactions in which these compounds can be 

involved in. Thereby, cyclopropanes can be activated placing acceptor substituents 

(electrophilic cyclopropanes), donor substituents (nucleophilic cyclopropanes), or both donor 

and acceptor substituents (donor-acceptor cyclopropanes) (Scheme 2.1). An electrophilic 

cyclopropane is generated when an electron-withdrawing group is located in the cyclopropane, 

which can stabilize the negative charge generated after the ring-opening event, showing the 

typical reactivity as homo-Michael acceptor (Scheme 2.1 a).3 On the other hand, the 

introduction of a donor substituent in the cyclopropane moiety generates a nucleophilic 

cyclopropane being the ring-opening process initiated by an electrophile generating a positive 

charged intermediate (Scheme 2.1 b).4 This chemical behavior can be visualized as if the 

nucleophilic cyclopropane could be considered as an homo-enolate equivalent. Finally, it is also 

possible to place substituents with different electronic properties in vicinal positions of the 

                                                           
1  Freund, A. J. Prakt. Chem. 1882, 26, 367. 
2  De Meijere, A. Angew. Chem. Int. Ed. 1979, 18, 809. 
3  Reviews on acceptor cyclopropanes: (a) Verhé, R.; de Kimpe, N. In the Chemistry of Cyclopropyl Group, (Eds.: 

Rappoport, Z.), Wiley, pp 445-564, Great Britain, 1987. (b) de Simone, F.; Waser, J. Synthesis 2009, 3353. (c) 
Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.  

4  Reviews on donor cyclopropanes: (a) Gibson, D. H.; DePuy, C. H. Chem. Rev. 1974, 74, 605. (b) Salaun, J. Chem. 
Rev. 1983, 83, 619. (c) Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597. (d) Guijarro, D.; Yus, M. Curr. Org. Chem. 
2005, 9, 1713.  
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cyclopropane, leading to donor-acceptor cyclopropanes.5 Vicinally substituted donor-acceptor 

cyclopropanes present a synergistic effect inducing high polarization to the C-C bond (Scheme 

2.1 c). This leads to a weaker bond that has increased kinetic tendency to undergo ring-

opening, generating a 1,3-zwitterionic species (1,3-dipole), in which the positive charge is 

stabilized by the donor and the negative charge is stabilized by the acceptor moiety. Typically, 

the 1,3-dipole makes the donor-acceptor cyclopropane to take part in cycloaddition reactions6 

acting as a dipole and reacting with dipolarophiles or substrates bearing nucleophile and 

electrophile in the same molecule, this case affording five- ((3+2) cycloaddition), six- ((3+3) 

cycloaddition), or seven- ((3+4) cycloaddition) membered cyclic structures. It has to be 

mentioned that computational and experimental studies in several particular cases have 

demonstrated that the effect of the electron-donating substituents on the polarization of the 

C-C bond of the donor-acceptor cyclopropanes is more relevant than the effect of electron-

withdrawing substituents.7 Cyclopropanes substituted by both electron-withdrawing and 

electron-donating groups, known as donor-acceptor (D-A) cyclopropanes, are nowadays 

powerful reagents that can be used in a wide range of chemical transformations.  

                                                           
5  Reviews on donor-acceptor cyclopropanes: (a) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321. (b) 

Mel´nikov, M. Y.; Budyna, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendelv. Commun. 2011, 21, 293. (c) Cavitt, M. 
A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804. (d) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. 
Biomol. Chem. 2015, 13, 655. (e) Gharpure, S. J.; Nanda, L. N. Tetrahedron Lett. 2017, 58, 711.  

6  Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504. 
7  Schneider, T. F. Werz, D. B. Org. Lett. 2011, 13, 1848. 
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Scheme 2. 1. Reactivity modes of differently activated cyclopropanes 

 The chemistry of vinylcyclopropanes deserves special attention.8 The combination of the 

alkene moiety with the presence of the strained cyclopropane scaffold provides a very 

particular reactivity pattern to these compounds. In addition, the principle of vinylogy 

anticipates that the nucleophilic or electrophilic character of the cyclopropane moiety is 

transmitted across the π bond of the alkene, providing different reactivity patterns and 

possibilities for other chemical reactions.9 In fact, vinylcyclopropanes present an s-trans-

gauche conformation which allows the maximum orbital overlap of the asymmetric component 

of cyclopropane orbitals with the π or π* orbitals of the ethylene unit (Figure 2.1). This 

behavior together with the high strain energy of 27.5 kcal/mol makes them present diverse 

modes of reactivity, and in some cases, different to those presented before.10 

                                                           
8  For selected reviews on vinylcyclopropanes: (a) Willcott, M. R.; Cargle, V. H. J. Am. Chem. Soc. 1967, 89, 723. 

(b) Sarel, S.; Jovell, J.; Sarel-Imber, M. Angew. Chem. Int. Ed. Engl. 1968, 7, 5. (c) Willcot, M. R.; Cargill, R. L.; 
Sears, A. B. Prog. Phys. Org. Chem. 1972, 9, 25. (d) Dolbier, W. R. Acc. Chem. Res. 1981, 14, 195. (e) 
Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229. (f) Thakur, A.; Louie, J. Molecular Rearrangements 
in Organic Synthesis, (Eds.: Rojas, C. M.), Wiley & Sons, pp 323-362, Utah, 2016. (g) Vshyvenko, S.; Reed, J. W.; 
Piers, E. Comprehensive Organic Synthesis II, (Eds.:Trost, B.), Elsvevier, pp 999-1076, Canada, 2014. 

9  (a) Fuson, R. C. Chem. Rev. 1935, 16, 1. (b) Curti, C.; Battistini, L.; Sartori, A.; Zanardi, F. Chem. Rev. 2020, 120, 
2448. 

10  Hudlicky, T.; Reed, J. W. Comprehensive Organic Synthesis. Selectivity, Strategy & Efficiency in Modern Organic 
Chemistry: Rearrangements of vinylcyclopropanes and related systems. (Eds.: Trost, B.; Paquette, L. A.), 
Elsevier, pp 899-970, Oxford, 1991,. 
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Figure 2. 1. Vinylcyclopropane 

Different reactivity modes can be observed depending on the substituents located in the 

cyclopropane ring and/or in the vinyl moiety. The ring-opening reaction of the 

vinylcyclopropane can be mediated by an electrophile or a nucleophile (Scheme 2.2). 

Vinylcyclopropanes bearing an electron-donating substituent undergo electrophile-promoted 

ring-opening reaction, which involves the cleavage of the cyclopropane C-C bond to form a 

carbocation stabilized by the EDG group (Scheme 2.2 a). On the other hand, vinylcyclopropanes 

with electron-withdrawing groups in their structure undergo a nucleophile-promoted ring-

opening process, generating an electron-withdrawing group-stabilized carbanion (Scheme 2.2 

b).  

 

Scheme 2. 2. Electrophile- and nucleophile-promoted vinylcyclopropane ring-opening reactions 

Apart from ring-opening reactions, vinylcyclopropanes can take part in other 

transformations (Scheme 2.3). On the one hand, cis-disubstituted vinylcyclopropanes can 

undergo a concerted [1,5]-H shift to 1,4-dienes. On the other hand, trans-disubstituted 

vinylcyclopropanes can suffer from a [1,3]-sigmatropic alkyl shift to form cyclopentenes. The 

latter process, which is known as the vinylcyclopropane-cyclopentene (VCP-CP) rearrangement, 

can be easily performed due to the lower energy associated to the structure of cyclopentenes. 

Apart from the vinylcyclopropane-cyclopentene rearrangement, other related rearrangements 
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have been also reported, such as the heteroatom variants, the Cloke-Wilson rearrangement11 

and the rearrangement of vinylaziridines and vinyloxiranes12 and its vinylogous version, the 

divinylcyclopropane-cycloheptadiene rearrangement (DVCPR) (Scheme 2.3).13 

 
Scheme 2. 3. Rearrangement processes of vinylcyclopropanes 

As mentioned, the vinylcyclopropane-cyclopentene (VCP-CP) rearrangement, which is the 

most developed mode of reactivity of vinylcyclopropanes, consists on a [1,3]-sigmatropic 

carbon shift involving the formation of a cyclopentene from the ring expansion of the 

                                                           
11  For some examples of Cloke-Wilson rearrangement, see: (a) Stevens, R. V. Acc. Chem. Res. 1977, 10, 193. (b) 

Howell, A. R.; Martin, W. R.; Sloan, J. W.; Smith, W. T. J. Heterocyclic Chem. 1991, 28, 1147. (c) Funke, C.; 
Es-Sayed, M.; De Meijere, A. Org. Lett. 2000, 2, 4249. (d) Ydav, U. K.; Balamurugan, R. Org. Lett. 2001, 3, 2717. 
(e) Pinnick, H. W.; Chang, Y.-H. Tetrahedron Lett. 2001, 3, 2717. (f) Honda, M.; Naitou, T.; Hoshino, H; Takagi, 
S.; Segi, M.; Nakajima, J. Tetrahedron Lett. 2005, 46, 7345. (g) Gräbe K; Zwafelink, B.; Doye, S. Eur. J. Org. 
Chem. 2009, 5, 565. (h) Tomilov, Y. V.; Platonov, D. N.; Frumkin, A.-E.; Lipilin, D. L.; Salikov, R. F. Tetrahedron 
Lett. 2010, 51, 5120. (i) Saha, S.; Reedy, U. R.; Patro, B. Tetrahedron Lett. 2011, 52, 4014. (j) Gropi, E.; 
Namboothiri, I. N. N. J. Org. Chem. 2013, 78, 910. (k) Kaschel, J.; Schneider, T. F.; Schirmer, P.; Maaβ, C.; Stalke, 
D.; Werz, D. B. Eur. J. Org. Chem. 2013, 4539. (l) Cai, J.; Li, F.; Deng, G.-J.; Ji, X.; Huang, H. Green Chem. 2016, 
18, 3503. (m) Zhang, J.; Jang, Y.; Wei, W.; Wu, Y.; Li, Y.; Zhang, J.; Zheng, Y.; Xu, S. Org. Lett. 2017, 19, 3043. 

12 For some examples of heteroatom containing VCP-CP rearrangement, see: (a) Atkinson R. S.; Rees, C. W. Chem. 
Commun. 1967, 1232. (b) Mishra, A.; Rice, S. N.; Lwowski, W. J. Org. Chem. 1968, 33, 481. (c) Paladini, J. C.; 
Chuche, J. Tetrahedron Lett. 1971, 12, 4383. (d) Batory, L. A.; McInnis, C. E.; Njardarson, J. T. J. Am. Chem. Soc. 
2006, 128, 16054. (e) Brichacek, M.; Lee, D.; Njardarson J. T. Org. Lett. 2008, 10, 5023. (f) Brichacek, M.; 
Njardarson, J. T. Org. Biomol. Chem. 2009, 7, 1761. (g) Brichacek, M.; Villalobos, M. N.; Plichta, A.; Njardarson, 
J. T. Org. Lett. 2011, 13, 1110. 

13  For some examples of DVCPR, see: (a) Arai, M.; Crawford, R. J. Can. J. Chem. 1972, 50, 2158. (b) Hudlicky, T.; 
Fan, R.; Reed, J. W.; Gadamasetti, K. G. Org. React. 1992, 1. (c) Gaydou, M.; Miller, R. E.; Delpont, N.; Ceccon, J.; 
Echavarren, A. M. Angew. Chem. Int. Ed. 2013, 52, 6396. (d) Wu, J.; Jong, Y.; Wei, W.; Wu, Y.; Li, Y.; Xhang, J.; 
Zheng, Y.; Xu, S. Angew. Chem. Int. Ed. 2018, 57, 6284. (e) Apel, C.; Hartmann, S. S.; Lentz, D.; Christmann, M. 
Angew. Chem. Int. Ed. 2019, 58, 5075.  
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vinylcyclopropane via C-C bond cleavage. Through this transformation it is possible to access in 

a selective manner to cyclopentene building blocks which are presented in a wide range of 

natural products.14 This reaction was discovered by Neureiter in 1959 who synthesized 

4,4-dichlorocyclopentenes from 1,1-dichloro-2-vinylcyclopropane under thermal conditions 

(Scheme 2.4 a).15 One year later, Vogel16 and Overberger and Borchert17 described 

independently the conversion of simple vinylcyclopropanes into cyclopentenes under similar 

conditions as those used by Neureiter (Scheme 2.4 b).  

 

Scheme 2. 4. Pioneering works in vinylcyclopropane-cyclopentene rearrangements  

Since the discovery of these pioneering examples of the vinylcyclopropane-cyclopentene 

rearrangement, thermal conditions were the selected method for overcoming the high energy 

barrier associated to the process. Despite the wide range of examples of VCP-CP 

rearrangement presented in the last century, the necessary drastic conditions showed poor 

functional group compatibility and in most of the cases unfunctionalized substrates should be 

used for performing this rearrangement. In order to widen the scope of this transformation, a 

lot of efforts have been made over the years which have ended up in the development of new 

strategies for carrying out the transformation in mild conditions. Thus, photochemical or 

transition metal-catalyzed rearrangements have been developed. In the following pages, an 

overview of the most relevant examples of VCP-CP rearrangements will be provided.  

 

                                                           
14  (a) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247. (b) Hudlicky, T.; Reed, J. W. Angew. 

Chem. Int. Ed. 2010, 49, 4864. 
15  Neureiter, N. P. J. Org. Chem. 1959, 24, 2044. 
16  Vogel, E. Angew. Chem. 1960, 72, 4. 
17  Overberger, C. G.; Borchert, A. E. J. Am. Chem. Soc. 1960, 82, 1007. 
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1.1. Thermal VCP-CP rearrangement  

1.1.1. Mechanism 

Generally, it is thought that thermal vinylcyclopropane-cyclopentene rearrangement takes 

place by two different mechanistic pathways: homolytic fission or a pathway involving a 

concerted, orbital symmetry-controlled process (Scheme 2.5).8e,14a,18  

 

Scheme 2. 5. Mechanistic pathways for thermal VCP-CP rearrangement 

Distinguishing between the two mechanistic pathways is not trivial because the activation 

energy for the concerted rearrangement is not low enough to exclude a non concerted 

biradical mechanism. While kinetic studies support a biradical mechanism, the stereoespecific 

nature of most of the VCP-CP rearrangements reported, lead to the idea that thermal VCP-CP 

rearrangement could be considered a concerted process. The bond-dissociation energy of the 

cyclopropane ring cleavage is 65 kcal/mol, which decrease up to 50 kcal/mol in the case of 

vinylcyclopropanes. This fact would propose the participation of a biradical intermediate due 

to the resonance stabilization energy of the allyl radical is 13 kcal/mol.  

As a consequence, it can be concluded that nowadays the mechanism for the thermal 

vinylcyclopropane-cyclopentene rearrangement is not clear. It is mostly believed that the 

rearrangement takes place through a biradical pathway; however, there are some cases in 

which the concerted pathway might operate as well. 

                                                           
18  (a) Baldwin, J. E. Chem. Rev. 2003, 103, 1197. (b) Baldwin, J. E.; Leber, P. A. Org. Biomol. Chem. 2008, 6, 36. 
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1.1.2. Scope of the reaction 

After its discovery in the early 60s, the first example of a vinylcyclopropane-cyclopentene 

thermal rearrangement for synthetic purposes was reported by Corey in 1972. He described 

the rearrangement of thioacetals derived vinylcyclopropanones to the corresponding 

substituted cyclopentenes in benzene refluxing solution (Scheme 2.6).19  

 

Scheme 2. 6. Thermal rearrangement of vinylcyclopropanone dithioacetals 

One year later, the thermolysis of silyloxy substituted vinylcyclopropanols was reported 

by Trost leading to the quantitative formation of the corresponding cyclopentenes.20 The role 

of this protecting group was to decrease the bond-dissociation energy for the 

vinylcyclopropane from 51 kcal/mol to 42 kcal/mol. This methodology enabled the synthesis of 

differently substituted cyclopentanones after hydrolysis of the silyl enol ether moiety (Scheme 

2.7).21 

 

Scheme 2. 7. VCP-CP rearrangement of silyloxycyclopropanes 

One of the drawbacks of thermal rearrangements is the high temperature that reaction 

requires to take place. Some progress regarding the reaction temperature has been made over 

the years. The group of Danheiser demonstrated that the reaction rate would be enhanced by 

the use of lithium salts of vinylcyclopropanols. This brought the possibility of decreasing the 

                                                           
19  Corey, E. J.; Walinsky, S. W. J. Am. Chem. Soc. 1972, 94, 8932. 
20  Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, 95, 5311. 
21  Trost, B. M.; Keeley, D. E. J. Am. Chem. Soc. 1976, 98, 248. 



Aminocatalytic Enantioselective Vinylcyclopropane-cyclopentene (VCP-CP) Rearrangement     35 

 

reaction temperature up to room temperature, obtaining cyclopentenols in good yields in a 

two-step synthesis starting from 1,3-dienes (Scheme 2.8).22 

 

Scheme 2. 8. Thermal rearrangement of lithium vinylcyclopropanolates 

Further progress in the thermal VCP-CP rearrangement involves the use of donor-

acceptor cyclopropanes. By the incorporation of an electron-withdrawing group, the C-C bond 

of the corresponding cyclopropane weakens, not requiring extremely high temperatures for 

the rearrangement to take place. In this sense, Hudlicky and coworkers were able to carry out 

the rearrangement of fused cyclopropanes at lower temperatures.23 By treating the 

cyclopropanes with TBAF or TMSI in the presence of HMDS the rearrangement took place at 

room temperature or -20ᵒC affording fused cyclopentenes in good yields. The obtained 

bicycloalkane structures can be considered precursors of cyclopentanoids such as 

prostaglandins (Scheme 2.9). 

 

Scheme 2. 9. Rearrangement of 1-(silyloxyvinyl)cyclopropane derivatives 

                                                           
22  Danheiser, R. L.; Martinez-Davila, C.; Morin, J. J. Org. Chem. 1980, 45, 1340. 
23  Hudlicky, T.; Heard, N. E.; Fleming, A. J. Org. Chem. 1990, 55, 2570. 
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In this field, the group of Ichikawa extended the methodology by the incorporation of two 

geminal fluorine atoms in the vinylcyclopropane structure under the hypothesis that fluorine 

substitution would increase the ring strain, elongating the C-C distal bond to the geminal 

fluorine substituents. In this sense, a sequential difluorocyclopropanation/VCP-CP 

rearrangement of silyl dienol ethers was performed, which afforded synthetically useful 

derivatives of di- and monofluorinated cyclopentanones and cyclopentenones in good yields.24 

They were able to carry out the rearrangement spontaneously over in situ generated 

vinylcyclopropanes after a Ni-catalyzed difluorocyclopropanation reaction in a domino process 

(Scheme 2.10).  

 

Scheme 2. 10. Domino cyclopropanation/VCP-CP rearrangement of silyl enol ethers 

 

1.2. Photochemical VCP-CP rearrangement  

1.2.1 Mechanism 

Vinylcyclopropanes have the absorption maxima for the ππ* olefin band in the 189-201 

nm region, which indicates that to undergo photochemically induced vinylcyclopropane-

cyclopentene rearrangement, the vinylcyclopropane may bear additional chromophoric 

functional groups extending its absorption to 254 nm. Photochemical rearrangements can take 

place by both direct and sensitized methods. While direct irradiation in n-π* systems of the 

vinylcyclopropane involves low energy excitations, more selective processes can be achieved, 

                                                           
24  Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J. Org. Lett. 2015, 17, 5736. 
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converting this pathway very useful from a synthetic point of view. However, sensitized 

methods imply higher energy due to the formation of the triplet states (80 kcal/mol) so that 

they involve lower conversions and reaction yields at the expense of the formation of some 

by-products.8f 

The more extended mechanism of many photochemical vinylcyclopropane-cyclopentene 

rearrangements generally involves singlet-excited vinylcyclopropanes intercrossing to T1 that 

lead to a ring-opened diradical species which generates the final cyclopentene product upon 

ring closure.8e,14a These initially found T1 intermediate can also generate a 

bicyclo[2.1.0]pentane that is itself photolabile and can isomerize to a cyclopentene (Figure 2.2). 

 

Figure 2. 2. Biradical-mediated photochemical VCP-CP rearrangement 

 

1.2.2. Scope of the reaction 

The first example of photochemical vinylcyclopropane-cyclopentene rearrangement was 

reported by Frey.25 He studied the photolysis of ketene and diazomethane in the presence of 

butadiene at 65ᵒC, observing that after decomposition of both reagents, methylene was 

generated. This extremely endothermic carbene, reacted rapidly with the diene generating a 

vinylcyclopropane molecule, which subsequently evolved to a mixture of different products 

among which cyclopentene was detected (Scheme 2.11).  

                                                           
25  Frey, H. M. Trans. Faraday Soc. 1962, 58, 516. 
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Scheme 2. 11. First example of photochemical VCP-CP rearrangement 

Since this discovery, different examples of photochemical vinylcyclopropane-cyclopentene 

rearrangements were published. One of the first examples reported was the isomerization of 

isopropenylcyclopropane to methylcyclopentene described by Cooke in 1970.26 It was 

suggested that the reaction proceeded through a singlet state, being the electronic excitation 

localized in the vinylcyclopropane because triplet-sensitized conditions did not turn to be 

efficient in the formation of the cyclopentene, regardless the employed sensitizer (Scheme 

2.12). 

 

Scheme 2. 12. Photochemical rearrangement of isopropenylcyclopropane  

Sonawane and coworkers reported years later a photolytic approach for the synthesis of 

bicyclo[3.2.0]heptene derivatives starting from bicyclo[4.1.0]heptenes.27 A solution of 

cyclopropane in toluene, the last also acting as the photosensitizer, was irradiated with 200 W 

high pressure lamp, affording two diastereomeric cyclobutane fused cyclopentene products. 

The authors proposed that the transformation occurred via biradical intermediates where the 

diastereomeric distribution was controlled by both the nature of R substituent and the 

interactions between R substituent and the adjacent methyl group. This methodology was 

appealing from a synthetic point of view, since it brought the possibility of synthesizing 

products with bicyclo[3.2.0]heptenes core which is a framework present in different families of 

natural products such as grandisol (Scheme 2.13). 

                                                           
26  Cooke, R. S. Chem. Commun. 1970, 454. 
27  Sonawane, H. R.; Nanjundiah, B. S.; Kumar, M. V. Tetrahedron Lett. 1985, 26, 1097. 
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Scheme 2. 13. Photochemical rearrangement of fused vinylcyclopropanes  

Years later, Armesto and coworkers developed a deep study about the vinylcyclopropane-

cyclopentene photorearrangement employing 1-substituted-2-vinylcyclopropanes as model 

substrates.28 They explained that the diphenyl substitution pattern at the vinyl unit would favor 

the generation of the biradical intermediate, resulting from photoinduced homolytic cleavage 

of the allylic cyclopropane C-C bonds. This fact would enable carrying out the reaction both 

under direct irradiation and triplet-sensitized conditions. Direct irradiation of this type of 

vinylcyclopropanes with a Pyrex glass filtered light at λ > 300 nm yielded the corresponding 

cyclopentenes in a very low yield and only when the R substituent was a formyl group. On the 

other hand, by m-methoxyacetophenone-sensitized irradiation of differently substituted 

vinylcyclopropanes, the corresponding five-membered rings were obtained in low yields 

broadening the scope of the reaction to cyclopentenes bearing acyl, hydroxyl and carboxylate 

groups. In view of these results they concluded that the substituent in position 1 of the 

cyclopropane was crucial for the stabilization of the biradical intermediate (Scheme 2.14). 

                                                           
28  Armesto, D.; Ortiz, M. J.; Agarrabeitia, A. R. J. Org. Chem. 1999, 64, 1056. 
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Scheme 2. 14. Photochemical rearrangement of 1-substituted 2-vinylcyclopropanes 

Better performance was obtained by Paquette and coworkers during the synthesis of 

bicycle[3.3.0]octanones by the rearrangement of bicyclic VCPs using both direct and sensitized 

reaction conditions.29 Although singlet state of the vinylcyclopropane was able to undergo C-C 

bond cleavage due to the thermal behavior of the ketone, pyrolisis of pentane solution of the 

vinylcyclopropane through a Pyrex filter (λ > 280 nm) rendered the photoproduct in a 

moderate 60% yield. However, photorrearrangement of fused vinylcyclopropane under 

sensitized conditions employing acetone as sensitizer lead to a high 82% yield of the bicycle 

(Scheme 2.15). 

 

Scheme 2. 15. Photochemical rearrangement of bicyclic VCP under both direct and sensitized conditions 

 

 

                                                           
29  Paquette, L. A.; Henzel, R. P.; Eizember, R. F. J. Org. Chem. 1973, 38, 3250. 
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1.3. Transition metal-catalyzed VCP-CP rearrangement  

1.3.1. Mechanism 

The ability of a transition metal to undergo insertion in the C-C bond of cyclopropanes can 

be used to activate vinylcyclopropanes towards rearrangement to form cyclopentenes. 

The mechanism that explains the vinylcyclopropane-cyclopentene rearrangement under a 

transition metal catalyst is based on the formation of η2-alkene complex of the metal which is 

followed by an oxidative addition leading to a η1-alkyl/η3-allyl metal complex in a direct way. 

This allyl metal complex can also happen through the formation of an allyl metallacyclobutane. 

Afterwards, the rearrangement takes place together with a reductive elimination process, 

which can occur over the allyl metal complex, either directly or via a metallacyclohexene 

intermediate (Scheme 2.16).30 Literature shows that transition metals such as Rh(I), Ni(0) and 

Pd(0) are proficient catalysts for the vinylcyclopropane-cyclopentene rearrangement. 

 

Scheme 2. 16. Mechanism of metal-catalyzed vinylcyclopropane-cyclopentene rearrangement 

In particular, Tantillo performed kinetic and computational studies to understand the 

mechanism of the rearrangement of vinylcyclopropanes to cyclopentenes catalyzed by a 

Ni(0)-NHC complex.31 The data are in line with the general mechanism proposed before, 

demonstrating that the reaction starts with the complexation of the vinylcyclopropane with 

the metal to generate a η2-alkene complex, which next forms a vinyl nickellacyclobutane after 

                                                           
30  Wang, S. C.; Tantillo, D. J. J. Organomet. Chem. 2006, 691, 4386. 
31  Wang, S. C.; Troast, D. M.; Conda-Sheridan, M.; Zuo, G.; LaGarde, D.; Louie, J.; Tantillo, D. J. J. Org. Chem. 2009, 

74, 7822. 
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oxidative addition. This complex rearranges to a nickellacyclohexene intermediate via a 

η1-alkyl, η3-allyl-nickel complex, which after a reductive elimination step affords the 

cyclopentene product (Scheme 2.17). 

 

Scheme 2. 17. Mechanism for Ni(0)/IPr-catalyzed VCP-CP rearrangement 

 

1.3.2. Scope of the reaction 

The first two examples in transition metal-mediated vinylcyclopropane-cyclopentene 

rearrangement were made by the groups of Aris and Hudlicky, independently.32 In both 

publications the authors reported the rhodium-mediated vinylcyclopropane-cyclopentene 

rearrangement of differently substituted fused vinylcyclopropanes. Aris and coworkers 

synthesized some Rh based catalysts and studied their effect in the rearrangement reaction 

observing the formation of tetrahydropentalene derived product which came from a concerted 

mechanism (Scheme 2.18 a). Employing the same catalyst, Hudlicky and coworkers performed 

the VCP-CP rearrangement being this process a suitable methodology for larger complex 

                                                           
32 (a) Aris, V.; Brown, J. M.; Conneely, J. A.; Golding, B. T.; Williamson, D. H. J. Chem. Soc. Perkin Trans. 2, 1975, 4. 

(b) Hudlicky, T.; Koszyk, F. F.; Kutchan, T. M.; Sheth, J. P. J. Org. Chem. 1980, 45, 5020. 
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molecules. It was suggested that the presence of a carbonyl group would avoid the 

regiochemistry problems that thermal methods eventually presented (Scheme 2.18 b).  

 

Scheme 2. 18. First examples of Rh-catalyzed VCP-CP rearrangement 

The group of Murakami reported in 1979 the ability of a Ni(0)/PBu3 catalytic system to 

perform the rearrangement of vinylcyclopropanes with dienyl or styrenyl substituents (Scheme 

2.19).33 The reaction proceeded through the formation of a butadiene-nickel (0) complex which 

underwent a ring-opening reaction involving the coordinative interaction of the 

vinylcyclopropane moiety with the metal and generating a cisoid σ,π-allyl complex which was 

required for cyclopentene formation. This transformation could be considered 

diastereoconvergent due to whatever the conformation of the diene was, the same reaction 

product was obtained as consequence of an isomerization process which took place prior to 

the rearrangement. The role of the phosphane was explained in terms of the stabilization of 

the Ni(II) intermediate by its σ-donating ability. 

                                                           
33  Murakami, M.; Nishida, S. Chem. Lett. 1979, 927. 
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Scheme 2. 19. Ni(0)/PBu3-catalyzed rearrangement of dienyl-substituted vinylcyclopropanes 

Although all these examples show that Rh and Ni allow performing VCP-CP rearrangement 

under milder conditions, in most of the cases activated substrates are needed to undergo the 

required transformation. As a possible solution to overcome this limitation, the group of Louie 

suggested that a metal with higher electron density would present a higher nucleophilicity, 

favoring the attack to the corresponding vinyl moiety, and facilitating the ring-opening 

reaction. To accomplish with their proposal, they performed the isomerization of 

vinylcyclopropanes employing N-heterocyclic carbenes as ligands for the nickel catalyst due to 

the higher σ-donating ability of these ligands and their high affinity for nickel. Using this type of 

Ni-NHC complexes, differently substituted cyclopentenes were obtained in high yields from 

activated and non-activated vinylcyclopropanes using mild reaction conditions (Scheme 2.20).34 

 

Scheme 2. 20. Ni(0)/IPr-catalyzed rearrangement of vinylcyclopropanes 

It should be mentioned that through the use of transition metals it is also possible to carry 

out other previously reported transformations in milder conditions. One example was the 

                                                           
34  Zuo, G.; Louie, J. Angew. Chem. Int. Ed. 2004, 43, 2277. 
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rearrangement of 1-silyloxy-1-vinylcyclopropanes to 1-silyloxycyclopentenes which was 

previously described under thermal conditions involving very high temperatures. Ryu and 

Sonoda studied this particular vinylcyclopropane-cyclopentene rearrangement using different 

transition metal complexes as catalysts.35 While Pd and Pt complexes resulted ineffective for 

the transformation, and Rh complexes only afforded traces of the desired products, Ni(0) 

catalysts showed a high selectivity for the reaction under refluxing toluene or xylene (Scheme 

2.21). 

 

Scheme 2. 21. Ni(0)/PPh3-catalyzed rearrangement of  1-silyloxy-1-vinylcyclopropane  

Palladium-mediated vinylcyclopropane-cyclopentene rearrangement requires activated 

vinylcyclopropanes to take place, usually requiring two electron-withdrawing groups at the 

cyclopropane moiety. In this field, the Pd(0)-catalyzed rearrangement of dienyl substituted  

cyclopropane-1,1-dicarboxylates was reported by Oshima and coworkers.36 The authors 

suggested that the presence of both electron-withdrawing groups and the dienyl substituent 

were crucial for the rearrangement to take place. After the nucleophilic attack of the Pd(0) to 

the dienyl moiety, a π-pentadienyl palladium zwitterionic intermediate was generated. The W 

type conformation acquired by this pentadienyl group resulted to be crucial for the process to 

proceed with a high regioselectivity, observing the exclusive formation of cyclopentene 

derivatives (Scheme 2.22). 

                                                           
35  Ryu, I.; Ikura, K.; Tamura, Y.; Maenaka, J.; Ogawa, A.; Sonoda, N. Synlett 1994, 11, 941. 
36  Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 2871. 
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Scheme 2. 22. Pd(0)-catalyzed VCP-CP rearrangement of dienyl-substituted cyclopropanes 

In the same line, the group of Hiroi studied the possibility of developing the first transition 

metal-catalyzed asymmetric rearrangement of chiral vinylcyclopropanes into cyclopentene 

derivatives.37 Despite the use of a chiral sulfonyl group as auxiliary, it did not influence in the 

stereochemical control observed in the cyclopentene formation, being this determined by the 

chirality of starting cyclopropyl sulfoxides. The transformation was performed with high levels 

of stereospecificity being the nucleophilic attack of the carbanion from the back side of the 

transition metal catalyst in the π-allylic transition metal complex (Scheme 2.23). 

 

Scheme 2. 23. Pd(0)-catalyzed VCP-CP rearrangement of chiral vinylcyclopropanes 

More recently, the group of Shanmugan described a Pd-catalyzed synthesis of 

3-spirocyclopentene-2-oxindoles in good yields from 3-vinylcyclopropane-2-oxindoles.38 As in 

the previous cases, the presence of two electron-withdrawing groups and an aromatic 

substituent in the cyclopropane structure were found to be necessary to stabilize the 

zwitterionic enolate/π-allyllpalladium complex formed during the progress of the reaction. The 

stabilization of the π-allylpalladium complex led to the exclusive formation of a single 

diastereoisomer as reaction product (Scheme 2.24). 

                                                           
37  Hiroi, K.; Arinaga, Y. Tetrahedron Lett. 1994, 35, 153. 
38  Lingam, K. A. P.; Shanmugan, P. Tetrahedron Lett. 2013, 54, 4202. 
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Scheme 2. 24. Pd-catalyzed VCP-CP rearrangement of indole-derived vinylcyclopropanes 

Saigo and coworkers extended the methodology and reported for the first time the 

selective rearrangement of allenylcyclopropanes to methylenecyclopentenes under Rh 

catalysis.39 The reaction was proposed to provide two isomeric cyclopentenes depending on 

the substitution pattern of the allenylcyclopropane. When an alkyl substituent was placed in 

the cyclopropane, a 4-substituted 1-alkylidene-2-cyclopentene product was formed through 

the oxidative addition of Rh across the C-CH2 bond of the cyclopropane. On the other hand, 

aryl substituents in the cyclopropane moiety contributed to an ionic ring-opening process 

through the oxidative insertion of the metal center across the C-CHAr bond forming an acyclic 

stabilized cation (Scheme 2.25).  

                                                           
39  Hayashi, M.; Ohmatsu, T.; Meng, Y.-P.; Saigo, K. Angew. Chem. Int. Ed. 1998, 37, 837. 
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Scheme 2. 25. Rh-catalyzed rearrangement of allenylcyclopropanes 

 

1.4. Acid mediated VCP-CP rearrangement  

1.4.1. Mechanism 

Lewis acids enable carrying out the vinylcyclopropane-cyclopentene rearrangement under 

mild conditions, provided that some functionalities in the cyclopropane ring are able to interact 

with the Lewis acid. For instance, carbonyl functionalities placed at the adjacent position to the 

vinyl moiety enable the coordination with the Lewis acid increasing the C-C bond polarization 

and facilitating the formation of the acidic zwitterionic intermediate which undergoes the final 

ring-closing process. Hence, the Lewis acid-mediated vinylcyclopropane-cyclopentene 

rearrangement is not a stereoespecific transformation (Scheme 2.26).40,41  

 

Scheme 2. 26. Mechanism for the Lewis acid-promoted rearrangement of donor-acceptor VCPs 

                                                           
40  Trost, B. Comprehensive Organic Synthesis II: Combining C-C π-bonds, Pergamon, Oxford, 1991. 
41  Satyanarayana, J.; Rao, M. V. B.; Ila, H.; Junjappa, H. Tetrahedron Lett. 1996, 37, 3565. 
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1.4.2. Scope of the reaction 

The first Lewis acid-promoted VCP-CP rearrangement was reported by Suzukamo.42 They 

synthesized 2-arylcyclopent-3-enecarboxylates from racemic 2-styrylcyclopropanecarbonyl 

chlorides in good yields but with limitations regarding the substrate scope. Electron-

withdrawing groups in the aromatic ring made the cyclopropane not reactive enough to 

undergo the rearrangement, being electron-donating groups necessary since they favored the 

stability of the zwitterionic carbocation/enolate intermediate. The interaction between the 

cationic phenyl moiety and the anionic carbonyl moiety in the opened intermediate resulted in 

the major formation of the cis diastereosisomer over the trans during the cyclization step. 

Moreover, the starting material could be used as a mixture of diastereoisomers, leading to a 

single diastereoisomer of the final product because of the formation of this achiral 

intermediate (Scheme 2.27). 

 

Scheme 2. 27. First VCP-CP rearrangement promoted by Lewis acids 

The incorporation of two electron-withdrawing groups in the structure of the 

vinylcyclopropane makes them more reactive towards the rearrangement. For example, 

Ivanova and coworkers developed in 2018 a Lewis acid-mediated isomerization of donor-

acceptor cyclopropanes into substituted cyclopentenes.43 The reaction allowed the 

                                                           
42  Sakito, Y.; Suzukamo, G. Chem. Lett. 1986, 621. 
43  Ivanova, O. A.; Chagarovskiy, A. O.; Shumsky, A. N.; Krasnobrov, V. D.; Levina, I. I.; Trushkov, I. V. J. Org. Chem. 

2018, 83, 543. 
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incorporation of aryl and heteroaryl substituents as electron-donor groups at the vinyl unit 

(Scheme 2.28). 

 

Scheme 2. 28. SnCl4-promoted VCP-CP rearrangement of vinylcyclopropanecarboxylates 

The group of Srinivasan studied the ring-opening reaction of substrates with different EWG 

in vicinal positions. Thus, trans-2-aroyl-3-styrylcyclopropane-1,1-dicarboxylates react in the 

presence of different Lewis acids observing different reactivity modes depending on the 

catalyst.44 When tin (IV) chloride was employed, the vinylcyclopropane-cyclopentene 

rearrangement took place smoothly, isolating differently substituted cyclopentenes in 

moderate to good yields and as a single regioisomer. However, when titanium tetrachloride 

was employed, a ring-opening process followed by an E2-like elimination of a proton took place 

affording 1,3-dienes (Scheme 2.29). 

 

Scheme 2. 29. SnCl4-promoted vinylcyclopropane-cyclopentene rearrangement of vinylcyclopropyl ketones 

1-vinylcyclopropanecarboxylates, this case with an alkoxy donor group at C2 can also 

undergo the vinylcyclopropane-cyclopentene rearrangement efficiently. In this field, the group 

of Davies developed a vinylcyclopropane-cyclopentene rearrangement catalyzed by 

diethylaluminium chloride.45 The mechanism involving these substrates consists on the 

coordination of the Lewis acid to the acceptor group (normally carbonyl group of the ester), 

followed by a ring-opening process which is facilitated by the donor group. Then, a zwitterionic 

species is generated as consequence of the cleavage of the cyclopropane bond between the 

                                                           
44  Thangamani, M.; Srinivasan, K. J. Org. Chem. 2018, 83, 571. 
45  (a) Davies, H. M. L.; Hu, B. J. Org. Chem. 1992, 57, 4309. (b) Harvey, D. F.; Brown, M. F. Tetrahedron Lett. 1991, 

32, 2871. 
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ester and the donor group, which suffer from a ring-closing event affording the final 

cyclopentenes (Scheme 2.30). 

 

Scheme 2. 30. Et2AlCl-promoted vinylcyclopropane-cyclopentene rearrangement 

The same group published years later the asymmetric synthesis of cyclopentenes through 

the VCP-CP rearrangement starting from enantioenriched vinylcyclopropanes.46 From the 

studied examples, it can be concluded that fused cyclopropanes were needed to avoid the loss 

of enantioenrichment as it happened in enantioenriched cyclopropanes containing two or 

three stereogenic centers. The explanation given by the authors justify the presence of an 

extra stereogenic center present in fused systems as the one preserving the 

enantioenrichment (Scheme 2.31).  

 

Scheme 2. 31. Et2AlCl-promoted rearrangement of chiral cyclic and bicyclic VCPs 

                                                           
46  Davies, H. M. L.; Konog, N.; Churchill, M. M. J. Org. Chem. 1998, 63, 6586. 
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On the other hand, Lewis acids containing a highly nucleophilic counterion, such iodide in 

MgI2 and LiI, can promote the rearrangement proceeding by another reaction mechanism. That 

is the particular case of the vinylcyclopropane-cyclopentene rearrangement developed by the 

group of Lambert in 2009.47 The key VCP-CP rearrangement was promoted by MgI2 which acted 

as a coordinating Lewis base (Mg2+) and as a nucleophile (I-) in a homoconjugate addition to the 

vinyl moiety of the cyclopropane, thus forming an allyl iodide enolate intermediate which 

cyclized to fused cyclopentenes in high yields. The stereochemistry of the olefin intermediate 

played an important role in this reaction: while the (Z)-isomer leads to the final cyclopentene 

through an intramolecular SN2 alkylation, (E)-isomer undergoes SN2´reaction reverting back to 

the starting cyclopropane. 

 

Scheme 2. 32. MgI2-promoted rearrangement of vinylcyclopropanes  

 

1.5. Application to the synthesis of natural products  

Over the years many synthetic methodologies have been applied to the synthesis of natural 

products. Likewise, the vinylcyclopropane-cyclopentene rearrangement has also been 

employed as key step in the synthesis of a wide range of them. Although several examples of 

the synthesis of natural products involving rearrangements under photochemical and acidic 

conditions have been reported in literature, the majority of them involved thermal conditions.  

The ability of vinylcyclopropanes to undergo easy rearrangements under thermal 

conditions has been used by Trost and coworkers for the synthesis of aphidicolin, a terpenoid 

tetraol which shows in vitro activity against herpes virus.48 They faced the synthesis of vinyl 

cyclopropane through a condensation of a cyclohexanone with diphenylsulfonium 

                                                           
47  Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496. 
48  Trost, B. M.; Nishimura, Y.; Yamamoto, K.; McElvain, S. S. J. Am. Chem. Soc. 1979, 101, 1328. 
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cyclopropylide affording oxaspiropentane followed by a substitution-elimination process 

employing sodium phenylselenide which rendered the key 1-vinylcyclopropanol quantitatively 

silylated. VCP-CP rearrangement under thermal conditions via flash vacuum pyrolysis furnished 

the desired cyclopentene as a 2:1 mixture of epimers. Aphidicolin was next obtained after a 

6-step sequence (Scheme 2.33).  

     

Scheme 2. 33. Synthesis of Aphidicolin 

Piers reported an 11-step total synthesis of (±)-zizaene, the parent hydrocarbon of the 

zizaene family of interesting sesquiterpenoids isolated from vetiver oil.49 They started the 

synthesis with a five-membered ring annelation process based on the thermal rearrangement 

of 3-(1-methylcyclopropyl)cyclohex-2-enone, which furnished the annelated ketone in 87% 

yield at 450ᵒC. After 10-step sequence they isolated the 2:1 mixture of epimers of a tricyclic 

compound previously described as an intermediate in the synthesis of (±)-zizaene50 (Scheme 

2.34). 

                                                           
49  Piers, E.; Banville, J. J. Chem. Soc. Chem. 1979, 1138. 
50  Coates, R. M.; Sowerby, R. L. J. Am. Chem. Soc. 1972, 94, 5386. 
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Scheme 2. 34. Total synthesis of (±)-zizaene 

Vetispirene, a spirocyclo[4.5]decane sesquiterpene, was also synthesized by the group of 

Paquette using a thermal vinylcyclopropane-cyclopentene rearrangement as key step of the 

synthesis in five steps with an overall yield of 38%.51 The synthesis started from a silylated 

dienylcyclopropane which upon heating at 65ᵒC in anhydrous tetra-n-butylammonium fluoride 

and acetone generated a pentadienyl anion that reacted with acetone to produce the required 

vinylcyclopropane.  Thermal rearrangement at 440ᵒC produced a quantitative 1:5 mixture of 

diastereomeric cyclopentenes. A final treatment of the major diastereoisomer with 

p-toluenesulfonic acid in benzene rendered (±)-α-vetispirene in quantitative yield (Scheme 

2.35). 

Scheme 2. 35. Total synthesis of (±)-α-vetispirene 

 

                                                           
51  Yan, T.-H.; Paquette, L. A. Tetrahedron Lett. 1982, 23, 3227. 
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Bicyclic systems containing a vinylcyclopropane subunit have also been studied in the 

vinylcyclopropane-cyclopentene rearrangement directed to the synthesis of triquinane 

sesquiterpenes natural products. In this field, Hudlicky and coworkers carried out the total 

synthesis of (±)-hirsutene, a coriolin class of sesquiterpenes containing a 

tricyclo[6.3.0.02,6]undecane ring system in its structure in 38% global yield.52 The key steps of 

the synthesis involved an intramolecular cyclopropanation step previously reported by the 

group followed by a VCP-CP rearrangement. The aforementioned rearrangement was 

performed under thermal conditions evaporating vinylcyclopropane through a lead carbonate 

tube at 0.1 mmHg (Scheme 2.36). The same group reported years later a versatile strategy for 

the construction of triquinane sesquiterpenes, involving an intramolecular cyclopentene 

annulation under conditions of pyrolysis. The obtained product was directly subjected to the 

synthesis of pentalenic acid, pentalenene and derived compounds (Scheme 2.36).53   

 

Scheme 2. 36. Total synthesis of (±)-hirsutene and pentalenic acid 

The synthesis of retigeranic acid, a sesterterpene monocarboxylic acid with a 

tricyclo[6.3.0.02,6]undecane skeleton,  was also carried out through the vinylcyclopropane-

cyclopentene rearrangement under thermal conditions by Hudlicky and coworkers after 

                                                           
52  Hudlicky, T.; Kutsan, T. M.; Wilson, S. R.; Mao, D. T. J. Am. Chem. Soc. 1980, 102, 6351. 
53  Hudlicky, T.; Sinai-Zingde, G.; Papadopoulos, P. Tetrahedron 1987, 43, 5685. 
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obtaining the necessary cyclopentene in 75% yield by evaporation of the endo/exo mixture of 

isomers of vinylcyclopropanes through a Vycour tube conditioned with PbCO3 (Scheme 2.37).54a 

Scheme 2. 37. Total synthesis of (-)-retigeranic acid 

Application of photochemical vinylcyclopropane-cyclopentene rearrangements in the 

synthesis of natural products has been less developed over the years. However, it is possible to 

find some interesting examples of natural products in the literature, such as the previously 

mentioned total synthesis of grandisol reported by Sonowane and coworkers (Scheme 2.13).55 

Some years later, the same group reported the total synthesis of enantiomerically pure 

(-)-Δ9(12)-capnellene and (+)-lineatin employing the same methodology.56 Thus, starting from 

Δ3-carene, a key optically pure secondary alcohol was obtained by an epoxidation step 

followed by base-induced isomerization and ring-opening reaction. This was next used as the 

common starting intermediate for the synthesis of both natural products. When R group was 

H, a diastereomeric mixture of allylic alcohols was obtained in 75% yield after a toluene-

sensitized photolysis which was converted in (-)-capnellene after some chemical manipulations. 

On the other hand, if the hydroxyl group was protected as benzylic ether, the photochemical 

VCP-CP rearrangement led to a single product which was submitted to different 

transformations rendering (+)-lineatin, an aggregation pheromone of the bark beetle 

tryptodendron lineatum (Scheme 2.38). 

                                                           
54  (a) Corey, E. J.; Desai, M. C.; Engler, T. A. J. Am. Chem. Soc. 1985, 107, 4339. (b) Hudlicky, T.; Radesca-Kwart, L.; 

Li, L.; Bryant, T. Tetrahedron Lett. 1988, 29, 3283. 
55 Sonowane, H. R.; Nanjundiah, B. S.; Kumar, M. U. Tetrahedron Lett. 1984, 25, 2245. 
56  (a) Sonawane, H. R.; Naik, V. G.; Bellur, N. S.; Shah, V. G.; Purohit, P. C.; Kumar, M. U.; Kulkarni, D. G.; Ahuja, J. 

R. Tetrahedron 1991, 47, 8259. (b) Sonawane, H. R.; Bellur, N. S.; Shah, V. G.; Kulkarni, D. G.; Ahuja, J. R. 
Tetrahedron Lett. 1991, 32, 1107. (c) Sonawane, H. R.; Nandjundiah, S. B.; Kulkarni, D. G.; Ahuja, J. R. Synlett, 
1993, 875. 
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Scheme 2. 38. Total synthesis of Δ9(12)-(-)-capnellene and (+)-lineatin 

Although the predominance of thermal conditions, some natural products have been 

prepared employing acid catalysis. One example was described by the group of Corey, which 

reported the total synthesis of (+)-antheridic acid, the major antheridiogen from Anemia 

phyllitidis, using a 10-step sequence.57 The key step of the synthetic route involved the Et2AlCl-

promoted vinylcyclopropane-cyclopentene rearrangement which afforded the desired 

cyclopentene in 93% yield, easily transformed after some chemical manipulations into (+)-

antheridic acid (Scheme 2.39). 

Scheme 2. 39. Enantioselective total synthesis of (+)-antheridic acid 

 

 

 

 

                                                           
57  Corey, E. J.; Kigoshi, H. Tetrahedron Lett. 1991, 32, 5025. 
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2. SPECIFIC OBJECTIVES AND WORK PLAN 

As it has been outlined in previous section, donor-acceptor cyclopropanes take part in 

numerous reactions described in literature. Specifically, vinylcyclopropanes and their 

rearrangements are appealing strategies to synthesize a wide range of interesting compounds 

in nature. Remarkably, when a final chiral cyclopentene product is required in an 

enantioenriched form, all the examples of vinylcyclopropane-cyclopentene rearrangements 

described in the literature rely on enantiospecific versions (Scheme 2.40).37,58 However, there is 

no example in the literature of an enantioselective version of the vinylcyclopropane-

cyclopentene rearrangement that converts racemic vinylcyclopropane substrates into 

enantioenriched cyclopentenes. 

 

Scheme 2. 40. Enantiospecific VCP-CP rearrangements 

Hence, and in view of the lack of enantioselective VCP-CP rearrangements hitherto 

reported, we turned our attention to develop an enantioselective organocatalyzed 

vinylcyclopropane-cyclopentene rearrangement. For this reason, we envisaged the possibility 

of employing a cyclopropylacetaldehyde with a 2-vinyl electron-withdrawing group substituent 

                                                           
58  Clergue, S.; Rousseau, O.; Delaunay, T.; Dequirez, G.; Tran, T.-V.; El Aakchioui, S.; Barozzino-Consiglio, G.; 

Robiette, R. Chem. Eur. J. 2018, 24, 11417. 
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as suitable substrate for the reaction and the use of a chiral secondary amine as catalyst. In 

particular, we expected that a chiral secondary amine should condense with the aldehyde 

generating an enamine moiety which converts the substrate in situ into a donor-acceptor 

cyclopropane with potential to undergo a ring-opening reaction furnishing a chiral 

intermediate that would undergo a ring-closing process yielding the desired enantioenriched 

cyclopentene (Scheme 2.41). Thus, starting from a racemic substrate and operating through 

the mechanism depicted in the scheme it would be possible to obtain enantioselectively 

cyclopentene adducts. 

Scheme 2. 41. Our hipothesis 

There are two examples in the literature where the opening process in a cyclopropane is 

carried out through this type of activation with a chiral amine. Prof. Jørgensen and coworkers 

were the pioneers in developing a novel organocatalytic enamine-based activation of 

cyclopropanes.59 In the reported study, an asymmetric [2+2] cycloaddition between 

cyclopropylacetaldehydes and 3-alkyliden oxindoles was developed giving access to 

spirocyclobutaneoxindoles in good to excellent yields and enantioselectivitites (Scheme 2.42).  

 

                                                           
59  Halskov, K. S.; Kniep, F.; Lauridsen, V. H.; Iversen, E. H.; Donslund, B. S.; Jørgensen, K. A. J. Am. Chem. Soc. 

2015, 137, 1685. 
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Scheme 2. 42. Organocatalytic cycloaddition between cyclopropylacetaldehydes and 3-olefinic oxindoles 

Later on, our group presented an easy and straightforward procedure for the synthesis of 

highly enantioenriched quinolines in which the ring-opening mechanism was identical. In this 

particular case, the organocatalytically generated donor-acceptor cyclopropane would undergo 

a one-pot process that comprised the aforementioned cyclopropane ring-opening reaction and 

a domino aza-Michael/aldol reaction (Scheme 2.43).60 

 

Scheme 2. 43. Synthesis of dihydroquinolines by the in situ generation of a donor-acceptor cyclopropane 

In view of these precedents, our general objective is developing an aminocatalytic 

enantioselective vinylcyclopropane-cyclopentene rearrangement, for which the ring-opening 

reaction will take place by the formation of a donor-acceptor cyclopropane (Scheme 2.44). 

 

                                                           
60  Sanchez-Diez, E.; Vesga, D. L.; Reyes, E.; Uria, U.; Carrilllo, L.; Vicario, J. L. Org. Lett. 2016, 18, 1270. 



Aminocatalytic Enantioselective Vinylcyclopropane-cyclopentene (VCP-CP) Rearrangement     61 

 

 

Scheme 2. 44. General objective 

To accomplish the aforementioned objective, the subsequent work plan was outlined: 

- Proof of concept: the viability of the envisioned reaction will be tested using the 

2-nitrovinyl substituted cyclopropylacetaldehyde shown in Scheme 2.45. Using this 

model substrate, the standard conditions for the reaction to take place towards the 

formation of the product will be examined.  

 

Scheme 2. 45. Envisioned model reaction 

- Optimization of the reaction conditions: once the target rearrangement product have 

been found, a variety of chiral catalysts will be evaluated in the enantioselective 

version of the reaction trying to obtain the highest enantioselectivity in this model 

reaction. In the same way, different experimental parameters like solvents, 

temperature and additives will be modified in order to find optimal conditions to 

obtain the desired product in high yield and high diastereo- and enantioselectivities 

(Scheme 2.46).  

 

Scheme 2. 46. VCP-CP rearrangement reaction: optimization of the reaction conditions 
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- Scope of the reaction: the scope and limitations of the developed method will be 

examined for structurally different substrates. Alkyl substituents will be introduced in 

the cyclopropane structure as well as different electron-withdrawing groups on the 

vinyl moiety (Scheme 2.47).  

 

Scheme 2. 47. Scope of the reaction 
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3. RESULTS AND DISCUSSION 

3.1. Proof of concept 

We started our work evaluating the ability of cyclopropane 4a to undergo 

vinylcyclopropane-cyclopentene rearrangement under chiral secondary amine catalysis. In 

order to accomplish this research, we first started synthesizing the necessary starting material, 

which was carried out in an eight-step sequence as shown in Scheme 2.48.  

 

Scheme 2. 48. Synthesis of cyclopropane 4a 

The synthesis started with the preparation of allylic alcohol 1a through a three-step 

sequence starting from commercially available 3-buten-1-ol. The reactions consisted in a 

protection step of the alcohol as tert-butyldiphenylsilyl ether affording (but-3-en-1-yloxy)(tert-

butyl)diphenylsilane in 99% yield, a cross-metathesis employing crotonaldehyde as the 

coupling partner and second generation Grubbs catalyst leading to the corresponding 

α,β-unsaturated aldehyde in 65% yield and a sodium borohydride-mediated reduction which 

rendered the allylic alcohol 1a in 68% yield. The formation of the cyclopropane moiety was 

performed through the Furukawa modification of the Simmons-Smith cyclopropanation, in 
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which Et2Zn is employed instead of metallic zinc obtaining (2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)methanol in 90% yield. Next step consisted on the 

oxidation of the alcohol to the corresponding aldehyde employing pyridinium chlorochromate, 

furnishing 2a in an 87% yield. Then, incorporation of nitrovinyl group in the cyclopropane 

moiety was faced. For that purpose, it was decided to perform a Henry condensation with 

nitromethane under Knoevenagel conditions yielding 3a in 65% yield. Finally, a deprotection 

and IBX-promoted oxidation steps afforded the target substrate 4a. 

Once the starting material was synthesized, we started studying the viability of the 

projected VCP-CP rearrangement using (S)-diphenylprolinol trimethylsilyl ether 5a (also known 

as Jørgensen-Hayashi catalyst) as catalyst, which is an archetypical chiral secondary amine 

catalyst used in the literature for reactions under enamine activation.61 We also chose 

chloroform as solvent and worked at room temperature as standard reaction conditions 

previously used by our group in the ring-opening of related cyclopropylacetaldehyde 

substrates.60 An immediate change of color was observed when the substrate was added to a 

solution of the catalyst and the complete disappearance of the starting material was observed 

by thin layer chromatography. Afterwards, the reaction was set up adding a solution of the 

catalyst over a solution of the aldehyde observing the exclusive formation of two products 

after short reaction time (one minute), which were identified as the diastereomeric 

cyclopentenes cis-6a and trans-6a after flash column chromatography. The structural 

assignment of cis and trans relative configuration was made through the analysis of 1H-NMR 

coupling constants. Those products, cis and trans cyclopentenes, were obtained in excellent 

combined yield, and promising enantioselectivity (Scheme 2.49).  

                                                           
61  (a) Mukherjee, S.; Yag, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (b) Nielsen, M.; Worgull, D.; 

Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632. (c) Palomo, C.; Mielgo, 
A. Angew. Chem. Int. Ed. 2006, 45, 7876. 
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Scheme 2. 49. Preliminary study of the reaction 

As these cyclopentenes cis-6a and trans-6a were not crystalline compounds, both were 

independently subjected to further chemical manipulation in order to obtain a crystalline 

material which would help us assign the absolute stereochemistry. We faced the challenge of 

reducing the nitro group of cyclopentenes cis-6a and trans-6a independently. Thus, the 

Zn-mediated reduction of nitro to amino group in the presence of ammonium chloride in EtOH 

at 30ᵒC was carried out separately over cis and trans diastereoisomers. While the reaction did 

not work for the diastereoisomer trans-6a, when diastereoisomer cis-6a was employed, it 

could be observed the total disappearance of starting material by 1H-NMR analysis and the 

formation of a new bicyclic compound identified as the dihydropyrrolocyclopentane adduct, 

which could not be isolated. Subsequent tosylation of the enamine with p-toluenesulfonyl 

chloride led to the formation of 7 in a 37% global yield (Scheme 2.50). Taking advantage of its 

solid nature, bicyclic 7 could be crystallized, and hence, the absolute stereostructure of the 

product could be determined at this point by single crystal X-Ray analysis showing a (R,R) 

configuration which led to a (S,R) configuration in cis-6a.  

Scheme 2. 50. Zn-mediated reduction/cyclization of cis-6a and X-ray structure of 7 

With these initial experiments, it was demonstrated the feasibility of carrying out the 

vinylcyclopropane-cyclopentene rearrangement under mild conditions, using a chiral 
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secondary amine as Lewis base catalyst. However, the reaction conditions needed to be further 

optimized in order to obtain the cyclopentene adducts in the highest possible yield and 

enantiomeric excess. 

 

3.2. Optimization of the reaction conditions 

Considering previous results as evidence of the feasibility of the reaction, next efforts were 

directed to the optimization of the reaction conditions. In this sense, we initially focused on the 

identification of the best catalyst in terms of both the yield and diastereo- and 

enantioselectivity. In view that the reaction proceeded well employing Jørgensen-Hayashi 

catalyst 5a we started testing other structurally related diarylprolinol-based chiral secondary 

amines (Table 2.1). 
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Table 2. 1. Evaluation of secondary amine catalysts 

 

Entry
a 

Catalyst time Yield (%)
b 

d.r.
c
 e.e. cis (%)

d
 e.e. trans

 
(%)

d
 

1 5a 1 min 92 2.5:1 72 87 
2 5b 24 h

f
 32 1.5:1 5 22 

3 5c
e
 30 min 90 1.7:1 73 94 

4 5d 30 min 80 1:1 73 77 
5 5e 24 h

f
 57 2.5:1 3 30 

6 5f 1 h 32 1:5.5 50 34 
7 5g 24 h

f
 55 1.9:1 16 27 

8 5h
e
 5 days

f
 18 1.5:1 4 7 

9 5i 5 days
f
 24 3.8:1 n.d.

g
 n.d.

g
 

aReactions were carried out at 0.06 mmol scale of 4a, using 10 mol% of catalyst in 0.6 mL of solvent 
at rt. bYields refer to isolated pure products cis-6a and trans-6a. cDiastereomeric ratios values were 
determined in the reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral stationary 
phase. eAr = 3,5-(CF3)2C6H3. 

fNot full conversion observed. gn.d.: not determined. 

The non-protected diphenylprolinol catalyst 5b rendered cyclopentenes cis-6a and trans-6a 

in 32% yield and very low enantioselectivities (Table 2.1, entry 2) in comparison with 

Jørgensen-Hayashi catalyst 5a, previously tested (Table 2.1, entry 1). The lower yield could be 

attributed to the possibility of the aminoalcohol to interact with the formyl group and leading 

to an unreactive hemiaminal intermediate also deactivating the catalyst. In addition, the low 

enantiomeric excess could be due to the lower steric bulk that the side chain of the catalyst 

presents which is not able to effectively block one of the faces of the substrate. Hence, we 
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continued working with O-protected diarylprolinoles increasing the steric bulk of the catalyst. 

For that purpose, we selected bis-[3,5-bis(trifluoromethyl)phenyl]prolinol (catalyst 5c) and 

dihexylprolinol (catalyst 5d) analogues, in which steric rather than electronic properties of the 

substituent can influence in the enantioselectivity of the process.62 We could observe in both 

cases a notable decrease in the diastereomeric ratio (Table 2.1, entries 3-4). However, in spite 

of the low value of diastereomeric ratio, both catalysts rendered the reaction products in 

excellent yields and moderate enantioselectivities. In view of these results, we next moved to 

other structurally different pyrrolidine-containing catalysts. L-proline 5e was able to render 

adducts cis-6a and trans-6a in moderate yield after 24 hours of reaction, although the 

enantioselectivity was low (Table 2.1, entry 5). (S)-(+)-2-(1-pyrrolidinylmethyl)pyrrolidine 

catalyst 5f turned not to be efficient enough to perform the reaction with good results (Table 

2.1, entry 6). Next, other catalysts with architectures that could show other secondary 

interactions apart from the steric shielding were surveyed. However, all these catalysts did not 

provide full conversion being the yields and the enantioselectivities lower than in the previous 

cases. For instance, Ley catalyst63 5g was tested affording moderate yield and low enantiomeric 

excess for both diastereoisomeric products of the reaction (Table 2.1, entry 7). The reaction 

was also surveyed with bifunctional pyrrolidine-squaramide catalyst 5h developed by 

Jørgensen64 which could afford a dual activation approach for both the aldehyde and 

nitroalkene by using the combination of the amine and the thiourea which was expected to 

engage in selective hydrogen bonding with nitroalkene. However, this catalyst resulted not to 

be especially active in this transformation, observing low conversion and very low 

enantioselectivity after 5 days of reaction (Table 2.1, entry 8). Finally, MacMillan 

imidazolidinone 5i was also tested affording the cyclopentenes cis-6a and trans-6a with very 

low yield and enantiomeric excess (Table 2.1, entry 9).   

In view that the best results were obtained when the reaction was carried out employing 

Jørgensen-Hayashi catalyst 5a, some analogues with different silyl groups were tested 

                                                           
62  Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 

13860. 
63  (a) Cobb, A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808. (b) Cobb, A. J. A.; 

Shaw, D. M.; Ley, S. V. Synlett, 2004, 558. 
64  (a) Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.; Rodríguez-Escrich, C.; Davis, R. L.; Jørgensen, K. A. J. Am. Chem. 

Soc. 2012, 134, 2543. (b) Roca-López, D.; Uria, U.; Reyes, E.; Carrillo, L.; Jørgensen, K. A.; Vicario, J. L.; Merino, 
P. Chem. Eur. J. 2016, 22, 884. See also: Orue, A.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J. L. Angew. Chem. Int. 
Ed. 2015, 54, 3043. 
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(catalysts 5j-5n) since the steric bulk of the side chain seemed to play a crucial role in the 

enantioselectivity (Table 2.2). Whatever the nature of the silyl substituents was, the obtained 

enantioselectivities were higher than those obtained with the other catalysts tested before. In 

addition, it was also found that in all cases the minor trans diastereoisomer trans-6a was 

obtained with higher value of enantiomeric excess than the major cis diastereoisomer cis-6a. It 

is noteworthy to highlight that in all the cases the reaction took place in much shorter times 

than when other catalysts were employed. Yields from moderate to high were observed with 

all these catalysts, being 5k and 5l which afforded the highest yields and similar e.e. values 

(Table 2.2, entries 2-3). We could conclude that when bulkier silyl substituents were placed in 

the diphenylprolinol structure, better were the results in terms of both yield and diastereo- 

and enantioselectivities.  

Table 2. 2. Evaluation of pyrrolidinemethanol-derived catalysts 

 

Entry
a 

Catalyst time Yield (%)
b 

d.r.
c
 e.e. cis (%)

d
 e.e. trans

 
(%)

d
 

1 5j 15 min 73 4:1 79 95 
2 5k 1 min 85 3:1 71 91 
3 5l 1 min 83 5:1 79 94 
4 5m 1 min 62 3.7:1 79 94 
5 5n 1 min 64 2.8:1 76 91 

aReactions were carried out at 0.06 mmol scale of 4a, using 10 mol% of catalyst in 0.6 mL of solvent at rt. 
bYields refer to isolated pure products cis-6a and trans-6a. cDiastereomeric ratios values were 
determined in the reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral stationary phase.  
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Encouraged by the promising results obtained with catalysts 5a, 5j-n in both yield and 

diastero- and enantioselectivities, and not observing a clear tendency of the three parameters 

under study with any catalyst, we next decided to continue working with all of those five 

catalysts. Their performance at lower temperatures was evaluated to check whether the 

hitherto obtained results could be improved (Table 2.3). Decreasing the temperature from 

25ᵒC to 0ᵒC led to a remarkably improvement in both the diastereomeric ratio and the 

enantiomeric excess in all cases (Table 2.3, entries 1-6). Furthermore, to our delight, the yield 

of the reaction was not affected by the temperature. From all the catalysts tested, catalyst 5l 

provided the best results in overall, considering yield, diastereomeric ratio and enantiomeric 

excess (Table 2.3, entry 4). Finally, this catalyst was tested at a lower temperature but, 

unfortunately, at -30ᵒC the reaction stopped and only a 56% of conversion was obtained after 

three days of reaction time (Table 2.3, entry 7). 

Table 2. 3. Evaluation of best catalysts at low temperatures  

 

Entry
a 

Catalyst time Yield (%)
b 

d.r.
c
 e.e. cis (%)

d 
e.e. trans

 
(%)

d
 

1 5a 1 h 50 4.3:1 73 93 
2 5j 1 min 73 4.3:1 81 95 
3 5k 1 h 85 4.7:1 79 97 
4 5l 1 min 83 7:1 81 92 
5 5m 30 min 68 4.2:1 81 95 
6 5n 15 min 77 1.9:1 80 97 
7

e
 5l 24 h

 f
 56 n.d.

g
 80 92 

aReactions were carried out at 0.06 mmol scale of 4a, using 10 mol% of catalyst in 0.6 mL of solvent 
at 0ᵒC. bYields refer to isolated pure products cis-6a and trans-6a.  cDiastereomeric ratios values 
were determined in the reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral 
stationary phase. eThe reaction was carried out at -30ᵒC, fNot full conversion observed. gn.d.: not 
determined 

At this point, catalyst 5l and a temperature of 0ᵒC were selected for evaluating other 

experimental parameters of the reaction. In this sense, we moved to study the effect of the 

solvent in order to achieve the products cis-6a and trans-6a with the highest possible yield and 

diastereo- and enantioselectivities (Table 2.4). When the reaction was performed employing 
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polar aprotic solvents like THF, cyclopentenes cis-6a and trans-6a were obtained in excellent 

yields with moderate to good enantiocontrol, but the diastereomeric ratio remained being 

moderate (Table 2.4, entry 2). On the other hand, solvents like diethyl ether and toluene were 

tested providing low to moderate yields in both cases and moderate enantioselectivities (Table 

2.4, entries 3-4). Ethyl acetate did not result to be an appropriate solvent to carry out the 

reaction due to the moderate yield obtained (Table 2.4, entry 5). Protic solvents like MeOH, 

although increased the diastereomeric ratio notably, did not provide full conversion, furnishing 

the desired products cis-6a and trans-6a in only 20% yield (Table 2.4, entry 6). Finally, the 

highly polar acetonitrile or acetone afforded the reaction products with moderate to excellent 

yields and excellent diastereo- and enantioselectivities (Table 2.4, entries 7-8).  

Table 2. 4. Evaluation of different solvents 

 

Entry
a 

Solvent time Yield (%)
b 

d.r.
c
 e.e. cis (%)

d 
e.e. trans

 
(%)

d
 

1 CHCl3 1 min 83 7:1 81 92 
2 THF 24 h 97 3.5:1 79 96 
3 Et2O 24 h

e
 49 2.5:1 76 84 

4 Toluene 24 h
e
 42 5.0:1 68 n.d.

f
 

5 EtOAc 24 h
e
 59 4.6:1 74 87 

6 MeOH 24 h
e
 20 13:1 63 n.d.

f
 

7 MeCN 24 h
e
 75 7.2:1 84 88 

8 Acetone 24 h 97 6.4:1 81 95 
9 CH2Cl2 1 min 78 8.3:1 84 96 

10 1,2-dichloroethane 1 min 95 6:1 87 97 
11 1,1,2-trichloroethane 1 min 99 7:1 87 96 
12 CCl4 1 min 35 3:1 68 79 

aReactions were carried out at 0.06 mmol scale of 4a, using 10 mol% of catalyst in 0.6 mL of solvent at 0ᵒC. 
bYields refer to isolated pure product cis-6a and trans-6a. cDiastereomeric ratios values were determined in 
the reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral stationary phase. eNot full conversion 
observed  fn.d.: not determined  

As employing chloroform as solvent the best results up to date had been obtained (Table 

2.4, entry 1), other chlorinated solvents were tested rendering excellent results in all cases 

unless when carbon tetrachloride was used (Table 2.4, entry 12) probably due to its apolar 
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character. A more polar solvent such as dichloromethane furnished the products with a higher 

78% yield, being the enantiomeric excess very similar (Table 2.4, entry 9). Employing 1,2-

dichloroethane and 1,1,2-trichloroethane, the reaction products cis-6a and trans-6a were 

obtained quantitatively and the enantiomeric excess of both diastereoisomers was very high 

(Table 2.4, entries 10-11). To sum up, we could conclude that the reaction proceeded in shorter 

reaction times when chlorinated solvents were employed. Other polar solvents rendered also 

good results in terms of the yield and enantioselectivities but the reaction times were longer. 

Moreover, it could be observed that diastereomeric ratios were higher when chlorinated 

solvents were employed. Thus, the best results in terms of the yield and diastereo- and 

enantioselectivities were obtained with chlorinated solvents, selecting 1,2-dichloroethane as 

the optimal one for further screening.  

Finally, with the best catalyst, temperature and solvent in hand, we examined if any 

additive would be able to improve the results obtained so far. Many aminocatalyzed reactions 

in the literature are performed in the presence of Brønsted acids as cocatalyst, due to their 

ability to favor the condensation of the aldehyde with the catalyst increasing the amount of 

active species present in the reaction.65 For this reason, we decided to evaluate the 

performance of the reaction by incorporating a variety of benzoic acids in 20 mol% loading 

(Table 2.5). Therefore, the addition of benzoic acid resulted in a high improvement of the 

diastereomeric ratio but a notably decrease of the reaction yield was observed (Table 2.5, 

entry 3). With this result in hand, we selected a variety of benzoic acids of different pka to 

check if the acidity of the acids could affect to the reaction outcome. In general, the less acidic 

benzoic acids bearing electron-donating groups in their structure made the reaction to proceed 

in shorter times (Table 2.5, entries 2, 4-5). In particular, when para-methoxybenzoic acid was 

employed the yield was moderate but the enantioselectivity remained high (Table 2.5, entry 2). 

Ortho-methoxybenzoic acid furnished cyclopropanes in 84% yield, being the diastereomeric 

ratio and the enantiomeric excess the same than when para-methoxybenzoic acid was used 

(Table 2.5, entry 4). When methoxyl group was incorporated in both ortho positions of the 

aromatic ring, a remarkably increase of the diastereomeric ratio was observed, although the 

yield decreased together with the enantiomeric excess of the major cis diastereoisomer (Table 

2.5, entry 5). On the other hand, when the acidity of benzoic acids was increased by the use of 

electron-withdrawing group-substituted benzoic acids, we could not observe a clear tendency. 

                                                           
65  Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Chem. Rev. 2016, 116, 4006. 
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The use of ortho- and ortho,para-substituted dinitrobenzoic acids as additives, provided 

rearrangement product cis-6a in a completely diastereoselective manner, obtaining the cis 

diastereoisomer as a single product (Table 2.5, entries 7-8). However it was obtained in a very 

low yield and moderate enantioselectivity. Otherwise, the incorporation of 20 mol% loading of 

para-nitrobenzoic acid provided the mixture of diastereoisomers in high yields and high 

enantioselectivities (Table 2.5, entry 6). Finally, other acids like trifluoroacetic acid, acetic acid 

and p-toluensulfonic acid monohydrate were tested (Table 2.5, entries 9-11), but none of these 

additives were able to improve our best results. 

Table 2. 5. Evaluation of different additives 

 

Entry
a 

Additive 
pka 

(H2O) 
time 

Yield 
(%)

b d.r.
c
 

e.e. cis 
(%)

d 
e.e. trans 

(%)
d
 

1 None - 1 min 95 6:1 87 97 
2 4-MeOC6H4COOH 4.47 1 min 58 6.5:1 87 96 
3 C6H5COOH 4.2 30 min 68 13:1 82 96 
4 2-MeOC6H4COOH 4.09 30 min 84 6.7:1 88 97 
5 2,6-(MeO)2C6H3COOH 3.98 1 min 65 14:1 79 94 
6 4-NO2C6H4COOH 3.44 15 min 82 9:1 85 97 
7 2-NO2C6H4COOH 2.17 24 h 14 >20:1 74 n.d.

e
 

8 2,4-(NO2)2C6H3COOH 1.43 24 h 38 >20:1 76 n.d.
e
 

9 TFA 0.23 24 h 13 n.d.
e
 72 n.d.

e
 

10 CH3COOH 4.75 1 h 78 11:1 82 95 
11 TsOH·H2O -2.8 24 h 42 4.5:1 67 60 

aReactions were carried out at 0.06 mmol scale of 4a, using 10 mol% of catalyst and 20 mol% of additive in 
0.6 mL of solvent at 0ᵒC  bYields refer to isolated pure products cis-6a and trans-6a.  cDiastereomeric ratios 
values were determined in the reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral stationary 
phase. en.d.: Not determined. 

Once the most important reaction parameters had been evaluated, it was concluded that 

the optimal reaction conditions for performing the vinylcyclopropane-cyclopentene 

rearrangement reaction implied the use of 10 mol% of (S)-2-

{diphenyl[(triphenylsilyl)oxy]methyl}pyrrolidine catalyst 5l in 1,2-dichloroethane (0.1 M) as 

solvent at 0ᵒC performing the reaction for one minute, obtaining under these conditions a 6:1 
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mixture of diastereomeric cyclopentenes cis-6a and trans-6a in 95% yield, with an 

enantiomeric excess of 87% and 97%, respectively (Scheme 2.51). 

 

Scheme 2. 51. Optimized conditions for enantioselective vinylcyclopropane-cyclopentene rearrangement 

In view of the results regarding the diastereomeric ratios, we next evaluated the possibility 

of converging the two diastereoisomers in a single product. For that purpose, we thought to 

perform a Nef reaction, which would allow the conversion of the nitro group into a ketone 

moiety removing one stereocenter. It should be noted that cis- and trans-6a are epimers at C2 

as it will be shown thereafter. After first unfruitful attempts reproducing some standard Nef 

reaction conditions over a mixture of cis-6a and trans-6a,66 we decided to reduce the formyl 

group and then protect it with a robust silyl group such as TBS. With the new substrate 8 in 

hand, after performing the Nef reaction with 1,1,4,4-tetramethylguanidine (TMG) and 

2-iodoxybenzoic acid (IBX) in dichloromethane as solvent,66a we were able to isolate the 

α,β-unsaturated cyclopentenone 9 in a promising 50% yield and a 80% enantiomeric excess 

(Scheme 2.52). 

                                                           
66  (a) Barton, D. H. R.; Motherwell, W. B.; Zard, S. Z. Tetrahedron Lett. 1983, 24, 5227. (b) Aizpurua, J. M.; 

Oiarbide, M.; Palomo, C. Tetrahedron Lett. 1987, 28, 5361. (c) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; 
Epifano, F.; Rosati, O. Synth. Comm. 1998, 28, 3057. (d) Ballini, R.; Bosica, G.; Fiorini, D.; Petrini, M. Tetrahedron 
Lett. 2002, 43, 5233. (e) Metz, A. E.; Kozlowski, M. C. J. Org. Chem. 2013, 78, 717. (f) VanGelder, K. F.; 
Kozlowski, M. C. Org. Lett. 2015, 17, 5748.  
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Scheme 2. 52. Preliminary results of Nef reaction 

 In view of this encouraging result, we turned to evaluate diverse reaction conditions with 

different bases and changing the molar ratio of the reagents in order to get best reaction 

performance (Table 2.6). First of all, the same conditions were tested both at lower and higher 

temperatures. Performing the reaction at 0ᵒC did not provide full conversion even after 

running the reaction for seven days (Table 2.6, entry 2). Increasing the temperature up to 40ᵒC 

did not improve the yield of the reaction (Table 2.6, entry 3) being the enantiomeric excess in 

both cases lower than when the reaction was performed at room temperature. By decreasing 

the equivalents of both the base and the oxidant employed in the reaction, the α,β-

unsaturated ketone 9 was obtained in 26% yield (Table 2.6, entry 4). Other tertiary amine 

bases were evaluated observing that triethylamine was the best one, rendering 9 in a high 89% 

yield (Table 2.6, entry 8). When DIPEA, DBU or piperidine were used the yield of the reaction 

turned to be from low to moderate (Table 2.6, entries 5-7), observing a noteworthy decrease in 

the enantioselectivity when DBU was employed (Table 2.6, entry 6). With triethylamine as the 

best base to carry out the transformation, we reevaluated whether lowering the temperature 

the enantiomeric excess could be improved but an important decrease of the yield was 
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observed (Table 2.6, entry 9). The reaction was also performed with less equivalents of both 

the base and the oxidant, but the reaction product was isolated in lower yield (Table 2.6, entry 

10). After all these experiments, we could conclude that 4.4 equivalents of triethylamine and 

2.7 equivalents of IBX in dichloromethane at room temperature were the optimal conditions 

for performing the Nef reaction, obtaining the α,β-unsaturated cyclopentenone 9 in 89% yield 

and 81% enantiomeric excess. 

Table 2. 6. Evaluation of the Nef reaction conditions 

 

Entry
a 

Base (eq)
b
 T (ᵒC) Time 

 
Yield (%)

c 
e.e. (%)

d 

1 TMG (4.4) rt 2.5 h 50 80 
2 TMG (4.4) 0 168 h

f
 38 72 

3 TMG (4.4) 40 2.5 h 29 65 
4

e
 TMG (2.2) rt 3 h 26 75 

5 DIPEA (4.4) rt 4.5 h  37 82 
6 DBU (4.4) rt 0.5 h 55 7 
7 Piperidine (4.4) rt 4.5 h 14 74 
8 Et3N (4.4) rt 4.5 h 89 81 
9 Et3N (4.4) 0 4 h 56 78 

10
e
 Et3N (2.2) rt 2.5 h 40 82 

aReactions were carried out at 0.04 mmol scale of 8 in 0.6 mL of solvent (0.075 M). bpka (TMG) = 15.2; pka 
(DIPEA) = 10.7; pka (DBU) = 13.5; pka (piperidine) = 11.2; pka (Et3N) = 10.8 (All the pka values in H2O) cYields 
refer to isolated pure product 9. dCalculated by HPLC on chiral stationary phase. eIBX 1.35 eq fNo full 
conversion observed. 
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3.3. Scope of the reaction 

Once the optimal experimental conditions for the reaction were found, we proceeded to 

explore other cyclopropylacetaldehydes with different substitution patterns in the 

cyclopropane moiety in order to get further insight into the scope of the organocatalytic 

reaction. We proceeded to synthesize a variety of cyclopropylacetaldehydes with different 

alkyl substituents at the same carbon atom in which the nitrovinyl substituent was placed (C2 

at cyclopropane). The synthetic route is depicted in Table 2.7 and is closely related to the 

synthetic approach used for the synthesis of the model compound 4a. 

Table 2. 7. Synthesis of substituted cyclopropylacetaldehydes 

 

 Metathesis 
Reduction 

HWE 
Reduction 

Cyclopropanation 
Oxidation 

Henry
 Deprotection 

Oxidation
 

R Yield (%) Yield (%) Yield (%) Yield (%) Yield (%) 

CH3 1b (55%) - 2b (63%) 3b (35%) 4b (37%) 
CH2CH3 1c (31%) - 2c (82%) 3c (23%) 4c (46%) 
CH2CH2CH3 - 1d (39%) 2d (39%) 3d (77%) 4d (63%) 
CH2CH2CH=CH2 - 1e (17%) 2e (37%) 3e (40%) 4e (30%) 
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The synthesis started from the same starting material (but-3-en-1-yloxy)(tert-

butyl)diphenylsilane which was subjected first to cross-metathesis reaction with methacrolein 

or 2-ethylacrolein as coupling partners, and second, to a sodium borohydride-mediated 

reduction obtaining the corresponding allylic alcohols 1b-c in 55% and 31% yield, respectively. 

For the incorporation of larger R substituents, the approach to 1d-e had to be changed, using 

3-[(tert-butyl)dimethylsilyloxy]propanal as starting material and carrying out a Horner-

Wadsworth-Emmons reaction with the corresponding propyl and but-3-enyl substituted 

phosphonates 10a-b. The corresponding α,β-unsaturated esters were obtained, which after a 

DIBAL-H-promoted reduction furnished propyl- and but-3-enyl-substituted allylic alcohols 1d-e. 

The cyclopropanation and the following oxidation steps were performed using the reaction 

conditions employed with the model substrate, obtaining 2a-e in moderate yields. The 

incorporation of the nitrovinyl moiety was achieved by a Henry condensation with 

nitromethane. For compounds 3d-e, the Henry reaction had to be performed using a modified 

procedure: methoxyl propylamine acetate ionic liquid was employed as it is described to be 

used for Henry reactions under solvent-free conditions.67 Finally, after deprotection and IBX-

mediated oxidation steps differently substituted cyclopropylacetaldehydes 4b-e were obtained 

(Table 2.7). 

Once cyclopropanes 4b-e were synthesized, these were submitted to the 

vinylcyclopropane-cyclopentene rearrangement under previously optimized conditions (Table 

2.8). When a methyl group was introduced in the cyclopropane, the corresponding 

cyclopentenes cis-6b and trans-6b were obtained with a slightly decrease in the yield (Table 

2.8, substrate 4b). The yield was not affected when increasing the size of the substituent from 

methyl to ethyl group, obtaining adducts cis-6c and trans-6c in 83% yield in a 76% and 86% 

enantiomeric excess, respectively. Nevertheless, when we further increased the length of the 

alkyl chain introducing a propyl substituent, the yield fell up to 64%. Unfortunately, the 

enantiomeric excess was also affected and a notable decrease was observed (Table 2.8, 

products cis-6d and trans-6d). Finally, in the case of but-3-enyl substituent nor the yield nor 

the enantiomeric excess were good observing a remarkably fall of both experimental 

parameters (Table 2.8, products cis-6e and trans-6e). 

                                                           
67 Wang, W.; Cheng, W.; Shao, L.; Liu, C. H.; Yang, J. Kinet Catal, 2009, 2, 186.  
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Table 2. 8. Scope of the reaction: substituted nitrocyclopentenylacetaldehydes.a 

 

 

 
 

aReactions were carried out at 0.1 mmol scale of substrates 4a-e, using 10 mol% of catalyst in 1.0 mL of 
solvent until consumption of starting material was observed (TLC analysis). Yields refer to isolated pure 
products cis-6a-e and trans-6a-e, d.r. values were determined in the reaction mixture by 1H-NMR 
analysis and e.e. was calculated by HPLC on chiral stationary phase. n.d.: not determined. 

Next, we decided to explore the effect of introducing two substituents in the methylene 

moiety of the model cyclopropylacetaldehyde. We envisaged a simple route such as the one 

shown in Scheme 2.53 in which the cyclopropane with two geminal alkoxycarbonyl 

substituents can be easily accessed through a Michael-initiated intramolecular alkylation 

between (E)-5-[(tert-butyldiphenylsilyl)oxy]pent-2-enal and dialkyl bromomalonate. This 

reaction was carried out using the iminium activation approach, this case employing DL-proline 

as catalyst.68 Under these conditions, gem-disubstituted formylcyclopropanes 2f-g were 

obtained in 88% and 37% yield. The nitrovinyl group was incorporated by using same Henry 

reaction methodology as before rendering the corresponding products 3f-g which after 

deprotection and oxidation steps furnished cyclopropanes 4f-g. 

                                                           
68  (a) Mansen, H. N.; Longbottom, D. A.; Ley, S. V. Chem. Commun. 2006, 4838. (b) Xie, H.; Zu, L.; Li, H.; Wang, J.; 

Wang, W. J. Am. Chem. Soc. 2007, 129, 10886. (c) Ibrahem, I.; Zhao, G.-L.; Rios, R.; Vesely, J.; Sundén, H.; 
Dziedzic, P.; Córdova, A. Chem. Eur. J. 2008, 14, 7867. (d) Uria, U.; Vicario, J. L.; Badía, D.; Carrillo, L.; Reyes, E.; 
Pesquera, A. Synthesis 2010, 4, 701. 
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Scheme 2. 53. Synthesis of gem-disubstituted cyclopropylacetaldehydes 

These two new cyclopropanes 4f-g were submitted to the catalytic enantioselective VCP-CP 

rearrangement reaction under the optimal conditions, isolating the corresponding 

cyclopentenes 6f-g in good yields as a mixture of diastereoisomers but with excellent 

enantioselectivities (Table 2.9) as the only products of the reaction. Cis diastereoisomer was 

again the major diastereoisomer formed during the reaction, although now the two 

diastereoisomers were isolated with the same excellent enantiomeric excesses.  
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Table 2. 9. Scope of the reaction: gem-disubstituted nitrocyclopentenylacetaldehydes.a 

 

 

 
 

aReactions were carried out at 0.1 mmol scale of substrates 4f-g, using 10 mol% of catalyst in 1.0 mL 
of solvent until consumption of starting material was observed (TLC analysis). Yields refer to isolated 
pure products cis-6f-g and trans-6f-g, d.r. values were determined in the reaction mixture by 
1H-NMR analysis and e.e. was calculated by HPLC on chiral stationary phase. 

Finally, we explored the possibility of extending the methodology to vinylcyclopropanes 

with other electron-withdrawing groups at the vinyl moiety. The incorporation of different 

electron-withdrawing groups was carried out from compound 2a through a Knoevenagel 

condensation with diethyl malonate, malononitrile or ethyl cyanoacetate obtaining 3h in 60% 

yield, 3i in 32% yield and 3j in the highest 78% yield. Then, after a deprotection and a final 

oxidation steps, cyclopropanes 4h-j were isolated (Table 2.10). 
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Table 2. 10. Synthesis of cyclopropylacetaldehydes with two EWG 

 
 

 Knoevenagel Deprotection/Oxidation 

EWG
1
 EWG

2
 Yield (%) Yield (%) 

CO2Et CO2Et 3h (60%) 4i (45%) 
CN CN 3i (32%) 4i (14%) 
CN CO2Et 3j (78%) 4j (67%) 

In general, none of these substrates were found to be suitable materials for the reaction 

(Table 2.11). Substrate 4h, with two ethoxycarbonyl substituents, rendered the cyclopentene 

6h in 34% yield and a low 43% enantiomeric excess. The incorporation of two nitrile groups as 

electron-withdrawing groups yielded a racemic cyclopentene 6i in 56% yield. Finally, the 

combination of both substituents only furnished cyclopentene 6j in moderate yield and 

enantioselectivity. 

Table 2. 11. Scope of the reaction: disubstituted cyclopentenylacetaldehydes.a 

 

 

 
a Reactions were carried out at 0.1 mmol scale of substrates 4h-j, using 10 mol% of catalyst in 1.0 mL 
of solvent until consumption of starting material was observed (TLC analysis). Yields refer to isolated 
pure products 6h-j and e.e. was calculated by HPLC on chiral stationary phase. 
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In view that these results were not as good as we expected we faced the incorporation of 

one electron-withdrawing group in the vinyl moiety of the cyclopropane. On the one hand, an 

ethoxycarbonyl substituent was introduced through a Wittig reaction employing ethyl 

(triphenylphosphoranylidene)acetate as wittig ylide obtaining 3k in 92% yield. On the other 

hand, two different ketones were synthesized following the same methodology. Phenyl ketone 

and para-chlorophenyl ketone were synthesized by a Wittig reaction with the corresponding 

ylide obtaining 3l and 3m in 78% and 85% yield, respectively. Once again, a deprotection and a 

final oxidation steps were carried out obtaining cyclopropanes 4k-m (Table 2.12).  

Table 2. 12. Synthesis of cyclopropylacetaldehydes with one EWG 

 
 

Wittig Deprotection/Oxidation 

EWG Yield (%) Yield (%) 

CO2Et 3k (92%) 4k (44%) 
PhCO 3l (78%) 4l (62%) 
4-ClC6H4-CO 3m (85%) 4m (44%) 

Cyclopropane 4k was not reactive towards the vinylcyclopropane-cyclopentene 

rearrangement but it resulted in the formation of ethyl cyclohepta-1,3,6-triene-1-carboxylate 

11 as a result of a 7-exo-cyclization of the ring-opening intermediate (Table 2.13). On the other 

hand, substrates 4l and 4m that incorporated a α,β-unsaturated ketone moiety in their 

structure, were capable of undergoing the rearrangement reaction in moderate yields and 

good enantiocontrol (Table 2.13, products cis-6l-m and trans-6l-m).  
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Table 2. 13. Scope of the reaction: monosubstituted cyclopentenylacetaldehydes.a 

 

 

 
 

a Reactions were carried out at 0.1 mmol scale of substrates 4k-m, using 10 mol% of catalyst in 1.0 
mL of solvent until consumption of starting material was observed (TLC analysis). Yields refer to 
isolated pure products cis-6k-m and trans-6k-m, d.r. values were determined in the reaction 
mixture by 1H-NMR analysis and e.e. was calculated by HPLC on chiral stationary phase. 

This fact gave us the possibility of extending the scope of the reaction to ketones of 

different stereoelectronic properties. However, notwithstanding the excellent enantomeric 

excesses which cis and trans cyclopentenes were obtained with, the yield of the reaction 

remained being moderate. For this reason, we decided to reevaluate the reaction conditions 

employing 4m as a model substrate trying to improve the performance of the reaction. As it 

can be appreciated in Table 2.14, a short screening of catalysts, solvents and temperatures was 

performed.  
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Table 2. 14. Reevaluation of reaction conditions over compound 4m 

 

Entry
a 

Catalyst Solvent T (ᵒC) 
Yield 
(%)

b d.r.
c
 

e.e. cis 
(%)

d 
e.e. trans 

(%)
d
 

1 5a 1,2-dichloroethane 0 44 1.4:1 58 92 
2 5l 1,2-dichloroethane 0 56 2.5:1 84 96 
3 5m 1,2-dichloroethane 0 70 2.6:1 85 96 
4 5m 1,2-dichloroethane rt 81 2.2:1 63 95 
5 5m CHCl3 0 51 2.5:1 81 96 
6 5m Toluene 0 53 3.1:1 70 94 
7 5m 1,2,3-trichloroethane 0 54 2.6:1 80 94 
8 5m CH2Cl2 rt 61 2.7:1 77 95 

aReactions were carried out at 0.06 mmol scale of 4m, using 20 mol% of catalyst in 0.6 mL of solvent. bYields 
refer to isolated pure products cis-6m and trans-6m. cDiastereomeric ratios values were determined in the 
reaction mixture by 1H-NMR analysis dCalculated by HPLC on chiral stationary phase. 

First of all, three catalysts with different silyl groups were reevaluated performing the 

reaction in 1,2-dichloroethane at 0ᵒC (Table 2.14, entries 1-3), observing that catalyst 5m 

furnished cyclopentenes cis-6m and trans-6m with better yield and similar levels of diastereo- 

and enantioselectivity (Table 2.14, entry 3). Next, the reaction was performed at room 

temperature; although the final rearrangement products were obtained in 81% yield, the 

enantiomeric excess dropped significantly (Table 2.14, entry 4). Thereby, we decided to 

perform the reaction in other solvents (Table 2.14, entries 5-8). Although the enantiocontrol 

was good in all the cases, the yield remained being moderate when chloroform, toluene or 

1,2,3-trichloroethane were employed (Table 2.14, entries 5-7). However, when 

dichloromethane was employed the yield resulted slightly improved with only a minor 

decrease in the e.e. for the cis diastereoisomer cis-6m (Table 2.14, entry 8). It was concluded 

that 5m was the most suitable catalyst for carrying out the rearrangement in 

1,2-dichloroethane at 0ᵒC. 

In view of these results and taking into account that the scope of the reaction can be 

further increased by using enones as acceptor groups, we next proceeded to synthesize a 
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family of cyclopropylacetaldehydes incorporating α,β-unsaturated ketone lateral chains which 

could be evaluated in the VCP-CP rearrangement using these new optimized conditions. These 

substrates were synthesized as described before starting from 2a through a sequential Wittig 

olefination followed by deprotection and oxidations steps (Table 2.15).  

Table 2. 15. Synthesis of cyclopropylacetaldehydes incorporating α,β-unsaturated ketone lateral chain 

 
 

Wittig Deprotection/Oxidation 

R Yield (%) Yield (%) 

p-CF3C6H4 3n (48%) 4n (46%) 
p-FC6H4 3o (80%) 4o (46%) 
p-BrC6H4 3p (71%) 4p (46%) 
m,p-diClC6H3 3q (56%) 4q (51%) 
p-CNC6H4 3r (59%) 4r (39%) 
o-BrC6H4 3s (52%) 4s (13%) 
m-OMeC6H4 3t (88%) 4t (51%) 
p-PhC6H4 3u (87%) 4u (22%) 
2-Naphtyl 3v (93%) 4v (54%) 
p-MeC6H4 3w (88%) 4w (47%) 
p-OMeC6H4 3x (76%) 4x (59%) 
Me 3y (61%) 4y (71%) 
t
Bu 3z (48%) 4z (26%) 

With the new family of cyclopropylacetaldehydes in hand, we performed the 

vinylcyclopropane-cyclopentene rearrangement reaction. First of all, aromatic ketones with 

substituents in para position were tested (Table 2.16). By the incorporation of para-substituted 

aromatic α,β-unsaturated ketone lateral chain we could not observe a clear tendency. 

Cyclopropanes 4m,o-p with a halogen in para-position of the aromatic ring lead to 

rearrangement cycloadducts cis-6m,o-p and trans-6m,o-p in moderate yields observing the 

highest yield with the most electron-withdrawing fluorine halogen (Table 2.16, products cis-6o 

and trans-6o). However, both the diastereomeric ratio and enantiomeric excess were very 

similar. When other electron-withdrawing groups were placed in the para position of the 

α,β-unsaturated aromatic ketone, different results were observed. Both trifluoromethyl and 
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nitrile substituents were not suitable substituents for the efficient performance of the 

rearrangement. The corresponding cyclopentenes cis/trans-6n and cis/trans-6r were obtained 

in very low 32% and 24% yields, although the enantioselectivity was good for both 

diastereoisomers (Table 2.16, products 6n, 6r). On the other hand, when electron-donating 

substituents were located in the para-position of the α,β-unsaturated aromatic ketone, 

cyclopentene adducts were isolated in lower yield. 4w and 4x rendered the corresponding 

cyclopentenes in moderate 57% and 48% yield and moderate to good enantiocontrol (Table 

2.16, products cis/trans-6w and cis/trans-6x). Finally, when para-phenyl-substituted α,β-

unsaturated aromatic ketone moiety was incorporated to the cyclopropane a remarkably 

increase of the yield was observed isolating the cyclopentenes cis-6u and trans-6u in an overall 

63% yield, being the enantioselectivity of the reaction also good, similar to other substrates 

(Table 2.16, substrate 4u). A very similar result was observed when the reaction was carried 

out over no substituted aromatic α,β-unsaturated ketone 4l. The corresponding cyclopentenes 

cis-6l and trans-6l were isolated in a 68% yield with good enantiocontrol (Table 2.16). 

However, cyclopropane 4v yielded the corresponding cyclopentenes cis-6v and trans-6v in 

slightly lower yield and an enantiomeric excess of 78% and 97% for cis and trans 

diastereoisomers, respectively (Table 2.16). 

A remarkably improvement of the reaction outcome was appreciated when two electron-

withdrawing groups were incorporated in the aromatic ring of the α,β-unsaturated ketone. 

This is the case of cyclopropane 4q which furnished the corresponding cyclopentenes cis-6q 

and trans-6q in a good 72% yield and 76% and 94% enantiomeric excess for the cis and trans 

cycloadducts respectively, when the reaction was performed in dichloromethane as solvent at 

room temperature (Table 2.16). When the electron-withdrawing group was incorporated in 

ortho position of the aromatic ring, the reaction did not take place, probably due to the steric 

hindrance between the ortho substituent and the catalyst (Table 2.16, substrate 4s). On the 

other hand, the incorporation of an electron-donor substituent in metha position of the 

aromatic α,β-unsaturated aromatic ketone, such as methoxyl group,  provided the 

cyclopentenes cis-6t and trans-6t in moderate yield, although the enantiomeric excess 

remained being good (Table 2.16). 
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Table 2. 16. Scope of the reaction: aryloylcyclopentenylacetaldehydes.a 

 

 

 
 
a Reactions were carried out at 0.1 mmol scale of substrates 4l-z, using 10 mol% of catalyst in 1.0 mL of 
solvent until consumption of starting material was observed (TLC analysis). Yields refer to isolated pure 
products cis-6l-z and trans-6l-z, d.r. values were determined in the reaction mixture by 1H-NMR analysis 
and e.e. was calculated by HPLC on chiral stationary phase. b Catalyst 5m (20 mol%), CH2Cl2 (0.1 M), rt. 
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Table 2. 16. Scope of the reaction: aryloylcyclopentenylacetaldehydes.a (continued) 

 

 

 
 

a Reactions were carried out at 0.1 mmol scale of substrate 4l-z, using 10 mol% of catalyst in 1.0 mL of 
solvent until consumption of starting material was observed (TLC analysis). Yields refer to isolated pure 
products cis-6l-z and trans-6l-z, d.r. values were determined in the reaction mixture by 1H-NMR analysis 
and e.e. was calculated by HPLC on chiral stationary phase. b Catalyst 5m (20 mol%), CH2Cl2 (0.1 M), rt. 

 

Finally, we also surveyed the performance of cyclopropanes 4y and 4z that presented an 

alkyl group as the R substituent of the enone moiety. Substrate 4y provided cyclopentenes cis-

6y and trans-6y in an excellent 79% yield and excellent enantioselectivity with a diastereomeric 

ratio of 3:1 (Scheme 2.54). When tert-butyl group was incorporated in the α,β-unsaturated 

ketone, the cyclopropane turned to be not efficient for the rearrangement (Scheme 2.54). In 
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this case, the starting material 4z led to the polyunsaturated aldehyde product 12 which could 

be isolated. This by-product was not able to undergo closing reaction to provide the 

corresponding cyclopentenes under several conditions tested. 

 

Scheme 2. 54. Scope of the reaction: acylcyclopentenylacetaldehydes 69  

All these products 6l-z were found to be oils and therefore their absolute configuration 

could not be determined at this stage. For this reason, we selected cyclopentene cis-6p, which 

presented a heavy atom in its structure as suitable compound to undergo chemical 

modification with the aim of obtaining a crystalline derivative in order to determine the 

absolute configuration by X-ray analysis. For this reason, compound cis-6p was reacted with 

NaBH4, leading to the formation of compound 13 in which both carbonyl moieties had been 

reduced, being isolated as a single diastereoisomer. This compound was also found to be an oil, 

so we performed an esterification reaction in order to obtain 14 as a solid sample an so, after a 

crystallization process, its fully characterization by means of single-crystal X ray diffraction 

could be performed (Scheme 2.55). 

                                                           
69  Reactions were carried out at 0.06 mmol scale of 4y-z, using 20 mol% of catalyst in 0.6 mL of solvent until 

consumption of starting material was observed (TLC analysis). Yields refer to isolated pure products cis/trans-
6y and 12, d.r. values were determined in the reaction mixture by 1H-NMR analysis and e.e. was calculated by 
HPLC on chiral stationary phase. 
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Scheme 2. 55. Transformation of aldehyde cis-6p and X-ray analysis of 14 

Finally, in view of the low diastereomeric ratios that have been obtained with almost all 

the tested substrates, we faced the challenge of converting the cis diastereoisomer cis-6t into 

the thermodynamically more stable trans adduct trans-6t through the epimerization of the 

acidic center at the α-position to the ketone moiety. After several experiments, we were able 

to isolate pure trans diastereoisomer trans-6t in 85% yield and an enantiomeric excess of 81% 

from the mixture of diastereoisomers after being stirring two days at room temperature in 

MeOH with a 20 mol% of triethylamine (Scheme 2.56). 

 
Scheme 2. 56. Base-mediated isomerization of diastereoisomers cis-6t/trans-6t 

 With this successful result in hand, we decided to carry out the vinylcyclopropane-

cyclopentene rearrangement followed by epimerization using some selected substrates (Table 

2.17). Trans diastereoisomers could be isolated in a very similar yield that those obtained in the 

rearrangement step due to the isomerization process took place in a quantitative manner. 

Thus, this methodology allowed us to isolate trans diastereoisomers as a single reaction 

product with the same efficiency as before. Furthermore, we could not appreciate any 

racemization event during this sequence. 
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Table 2. 17. Scope of reaction: VCP-CP rearrangement/isomerization of aryloylcyclopentenylacetaldehydes.a 

 

 

 
 

a Reactions were carried out at 0.1 mmol scale of substrates 4m, o-p, t, v-x, using 20 mol% of catalyst in 
1.0 mL of solvent until consumption of starting material was observed (TLC analysis). After isolation by 
FC chromatography, 20 mol% Et3N was added in 1.0 mL of MeOH. Yields refer to isolated pure products 
trans-6m, o-p, t, v-x after an aqueous work-up and e.e. was calculated by HPLC on chiral stationary 
phase. 
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3.4. Mechanistic insights  

In view of all the experimental data, the catalytic cycle shown in the Scheme 2.57 can be 

proposed. First, the chiral amine would condense with the cyclopropylacetaldehydes 4a-z to in 

situ generate the donor-acceptor cyclopropane I. The enamine counterpart would promote the 

ring-opening step that leads to the formation of zwitterionic iminium ion II, where the negative 

charge is stabilized by the electron-withdrawing group. Next, the system would undergo a 

subsequent 5-exo-trig cyclization between the nucleophilic dienolate moiety as the 

electrophilic α,β-unsaturated iminium ion that leads to the final cyclopentene product. Finally, 

the catalyst is released, furnishing cis and trans diastereoisomers of the corresponding 

cyclopentenes 6a-z. 

Scheme 2. 57. Catalytic cycle of the vinylcyclopropane-cyclopentene rearrangement 

The absolute configuration of the C1 stereocenter in the cyclopentenylacetaldehyde 

adduct is in good agreement with the formation of a E,E iminium ion and the reaction of the 
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nucleophile through the less hindered face of this α,β-unsaturated iminium ion in a s-trans 

conformation, which is also in line with the stereochemical outcome of other similar reactions 

using the same type of intermediates.61b Finally, stereochemistry at C2 results from the 

thermodynamic cis/trans mixture because of the acidic nature of the proton present at this 

stereogenic center (Scheme 2.58). 

 
Scheme 2. 58. Stereochemical model 

In addition, while this project was ongoing, Christmann and coworkers published a 

dienamine-induced divinylcyclopropane-cycloheptadiene rearrangement which can be 

considered as a vinilogous version of that presented in this research.13e In their reaction, a 

donor-acceptor cyclopropane with a cis relationship between the substituents was employed 

as substrate. The generation of 1,5-diene was proposed to take place through dienamine 

formation followed by a [3,3]-sigmatropic rearrangement. In this case the presence of a chiral 

catalyst did not have any influence on the stereochemical outcome of the reaction, this 

proceeding under complete substrate control. In fact, starting from an enantiopure substrate, 

chirality transfer from the cyclopropane to cycloheptadiene was observed (Scheme 2.59). 
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Scheme 2. 59. [3,3]-sigmatropic rearrangement of in situ generated donor-acceptor cyclopropanes 

With this precedent in mind, and in view of the similarity with our system, we turned our 

efforts to synthesize some examples of a vinylcyclopropylacetaldehyde substrate with a cis 

relative configuration to be evaluated in the VCP-CP rearrangement. For the synthesis of the 

cis-vinylcyclopropylacetaldehydes, we followed the methodology described by Christmann and 

coworkers with some modifications. The route started with the protection of commercially 

available 3-butyn-1-ol as a silyl ether followed by a chain elogation reaction employing 

paraformaldehyde and a Lindlar catalyst-mediated hydrogenation affording allylic alcohol 15. 

15 was submitted to a Simons-Smith cyclopropanation and a PCC-mediated oxidation 

furnishing cyclopropanecarbaldehyde 16. Next, both nitrovinyl and α,β-unsaturated phenyl 

ketone moieties were introduced in the cyclopropane structure through a Henry and a Wittig 

reaction in 70% and 76% yield, respectively. Finally, after a deprotection and a final oxidation 

steps, cis-cyclopropylacetaldehydes 18a and 18l were obtained (Scheme 2.60). 
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Scheme 2. 60. Synthesis of cis-vinylcyclopropylacetaldehydes 

These newly synthesized cis-vinylcyclopropylacetaldehydes were evaluated in the 

vinylcyclopropane-cyclopentene rearrangement under the optimized conditions and their 

results were compared with those obtained with trans derivatives 4a,l (Table 2.18). As it can be 

observed, for cis-cyclopropylacetaldehyde 18a with a nitrovinyl moiety, the rearrangement 

provided cyclopentenes cis-6a and trans-6a in a slightly lower 62% yield. However, the 

diastereomeric ratio increased remarkably, being cis diastereoisomer again the major one. The 

enantioselectivity of the transformation resulted to be similar for trans-6a and slightly slower 

for cis-6a. On the other hand, cis-cyclopropylacetaldehyde 18l with a α,β-unsaturated ketone 

moiety led to cyclopentenes cis-6l and trans-6l in similar yield, and the same diastereomeric 

ratio and enantiomeric excess than the corresponding trans-cyclopropylacetaldehyde 4l. 

Hence, we can conclude that cyclopentenes obtained from racemic cis and/or trans 

cyclopropylacetaldehydes were not obtained as racemates, such as in the research developed 

by Christmann, which would indicate that the developed vinylcyclopropane-cyclopentene 

rearrangement is not a [3,3]-sigmatropic process. The stereochemistry of the overall process 

may be controlled in this case by the chiral catalyst, and not by the substrate, as it is observed 

in the rearrangement developed by Christmann and coworkers. 
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Table 2. 18. Vinylcyclopropane-cyclopentene rearrangement over cis and trans cyclopropylacetaldehydes.a 

 

 
 

From 18a,l
 

From 4a,l 

EWG Yield d.r. e.e. Yield d.r. e.e. 

NO2 62% 12:1 69% / 92% 95% 6:1 87% / 97% 
PhCO 60% 2.7:1 73% / 97% 68% 2.6:1 72% / 95% 

a Reactions were carried out at 0.1 mmol scale of substrates 18a,l or 4a,l, using 10 mol% of catalyst 5l 
(for 4a and 18a) and 20 mol% of catalyst 5m (for 4l and 18l) in 1.0 mL of solvent until consumption of 
starting material was observed (TLC analysis). Yields refer to isolated pure products cis-6a,l and trans-
6a,l, d.r. values were determined in the reaction mixture by 1H-NMR analysis and e.e. was calculated by 
HPLC on chiral stationary phase. 
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4. CONCLUSIONS 

Given the results presented in this chapter, the following conclusions can be outlined: 

- We have been able to design a suitable methodology for carrying out a catalytic 

enantioselective vinylcyclopropane-cyclopentene (VCP-CP) rearrangement under 

enamine activation, providing enantioenriched cyclopentenes. 

- Vinylcyclopropylacetaldehydes have demonstrated to be suitable substrates for this 

rearrangement, converting the substrate into donor-acceptor cyclopropanes and 

undergoing a ring-opening reaction yielding a chiral intermediate which is able to 

undergo a ring-closing process in an enantioselective fashion.  

- The methodology has demonstrated to have a wide scope regarding the electron-

withdrawing group in the cyclopropane. Incorporation of substituents in the 

cyclopropane skeleton turns to be limited.  

- Experimental studies support that the reaction takes place stepwise. Starting from 

racemic vinylcyclopropylacetaldehydes enantiopure cyclopentenes are obtained 

through an intermediate in which the stereogenic centers present in the starting 

material have disappeared. 
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1. INTRODUCTION 

1.1. Diboron compounds 

Organoboranes are essential compounds in organic chemistry due to their versatility and 

their high value as reagents in synthetic chemistry.1a In the last decades a lot of efforts have 

been made in the area of organoborane chemistry due to their possibility of easy-transforming 

the C-B bond into other valuable functionalities.1b Apart from their versatility, organoboranes 

can be also considered ideal candidates for green chemistry since they are typically not toxic 

and easy to handle.  Moreover, these reagents present an excellent functional group tolerance 

allowing carrying out a wide range of synthetic transformations.2 Different types of diboron 

compounds are summarized in Table 3.1 which will be explained in detail in the following 

paragraphs. 

Table 3. 1. Diboron compounds: structure and applicability 

Diboron compound
 

Structure Applications
 

Diboron tetrahalide  B2X4 Diborylation of alkenes/alkynes 
Tetraaminodiboron B2(NR2)4 Diborylation of alkenes 
Tetraalkoxydiboron B2(OR)4 Hydroborylation reactions 

Diborylation reactions 
Gem-diborylalkanes RB-C-BR Cross-coupling reactions 

Functional group transformations 
Asymmetric synthesis 

 

The synthesis of a diboron compound was first reported in 1925. Stock, Brandt and Fischer 

prepared for the first time the boron subhalide B2Cl4, using an electric discharge between zinc 

electrodes immersed in liquid boron trichloride.3 However, this diboron tetrachloride was 

obtained in a very low yield, which made this methodology not efficient enough for the 

synthesis of these compounds. Later on, other methodologies such as performing the reaction 

in gas phase using a mercury arc4 or employing microwave excitation of gaseous boron 

                                                           
1  (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 11700. (b) 

Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481. 
2  Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Chem. Rev. 2016, 116, 9091. 
3  Stock, A.; Brandt, A.; Fischer, H. Ber. Dtsch. Chem. Ges. B, 1925, 58, 643. 
4  (a) Holiday, A.; Massey, A. G. J. Am. Chem. Soc. 1958, 80, 4744. (b) Holliday, A.; Massey, A. G. Chem. Rev. 1962, 

62, 303.  
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trichloride5 were developed but all of them provided low yields or involved harsh reaction 

conditions. It was not until 1961 when diboron tetrachloride was synthesized in an efficient 

manner by reaction of boron trichloride with boron monoxide at 200ᵒC (Scheme 3.1 a).6 The 

other product obtained in the reaction was probably boron trioxide or a mixed compound of 

boric oxide and boron trichloride, but it was not isolated. Once diboron tetrachloride was 

synthesized, its analogues were prepared employing similar methodologies. For example, 

diboron tetrabromide species was isolated by reaction of tetramethoxydiboron and boron 

tribromide (Scheme 3.1 b),7 while diboron tetraiodide was synthesized by reduction of BI3 using 

electrodeless radiofrecuency discharge (Scheme 3.1 c).8 However, these species are rarely used 

in synthesis. Diboron tetrafluoride was not prepared until the late 50s, when diboron 

tetrachloride was reacted with SbF3.
9 Years later, Timms reported that co-condensation of BF 

with BF3 at -196ᵒC afforded B2F4 (Scheme 3.1 d).10 

 

Scheme 3. 1. Synthesis of tetrahalodiboranes (B2Cl4, B2Br4, B2I4 and B2F4) 

                                                           
5  Frazer, J. W.; Holzmann, R. T. J. Am. Chem. Soc. 1958, 80, 2907. 
6  McCloskey, A. L.; Brotherton, R. J.; Boone, J. L. J. Am. Chem. Soc. 1961, 83, 4750. 
7  Dembitsky, V. M.; Ali, H. A.; Srabnik, M. Recent Chemistry of Diboron Compounds. Advances in Organometallic 

Chemistry, Academic Press, pp 193-250, Cambridge, 2004. 
8  Schumb, W. C.; Gamble, E. L.; Banus, M. D. J. Am. Chem. Soc. 1949, 71, 3225. 
9  Finch, A.; Schlesinger, H. I. J. Am. Chem. Soc. 1958, 80, 3573. 
10  Timms, P. L. Acc. Chem. Res. 1973, 6, 118. 
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The discovery of tetrakis(dimethylamino)diboron B2(NMe2)4 represented an important 

breakthrough in diboron chemistry.11 This species, although moisture sensitive, resulted to be 

chemically stable under air. Its stability can be attributed to extensive N-B π-bonding and the 

steric crowding provided by the dimethylamino groups. The first synthesis of B2(NMe2)4 was 

carried out by Urry and coworkers after replacing diboron tetrachloride by dimethylamino 

groups.12 Later on, Brotherton and coworkers developed an improved methodology for the 

preparation of these diboron species by the addition of halobis(dimethylamino)boranes to 

dispersed liquid sodium.11 They also reported the transamination with a number of secondary 

amines, providing the corresponding aminodiboron species (Scheme 3.2). 

 

Scheme 3. 2. Synthesis of tetrakis(dimethylamino)diboron 

Tetraalkoxydiboron compounds are relatively easy to prepare, air-stable and easy to 

manipulate. Brotherton and coworkers developed a general route to the synthesis of these 

diboron compounds based on the addition of alcohols to B2(NMe2)4 (Scheme 3.3 a).13 Decades 

later, Hartwig published a synthetic route for the preparation of substituted 

bis(catecholato)diboron by the reaction of a sodium/mercury amalgam with the corresponding 

halocatecholborane (Scheme 3.3 b).14 More recently, some publications from the group of 

Braunschweig and Guethlein showed that bis(pinacolato)diboron B2pin2 and 

bis(cathecolato)diboron B2cat2 could be synthesized by the metal-catalyzed dehydrogenative 

coupling of the starting boranes HBpin and HBcat, respectively (Scheme 3.3 c).15 

                                                           
11  Brotherton, R. J.; McCloskey, A. L.; Petterson, L. L.; Steinberg, H. J. Am. Chem. Soc. 1960, 82, 6242. 
12  Urry, G.; Wartik, T.; Moore, R. E.; Schlesinger, H. I. J. Am. Chem. Soc. 1954, 76, 5293. 
13  Brotherton, R. J.; McCloskey, A. L.; Boone, J. L.; Manasevit, H. M. J. Am. Chem. Soc. 1960, 82, 6245. 
14  Anastasi, N. R.; Waltz, K. M.; Weerakon, W. L.; Hartwig, J. F. Organometallics 2003, 22, 365. 
15 (a) Braunschweig, H.; Guethlein, F. Angew. Chem. Int. Ed. 2011, 50, 12613. (b) Braunschweig, H.; Claes, C.; 

Guethlein, F. J. Organomet. Chem. 2012, 706-707, 144. (c) Braunschweig, H.; Brenner, P.; Dewhurst, R. D.; 
Guethlein, F.; Jimenez-Halla, J. O. C.; Radacki, K.; Wolf, J.; Zöllner, L. Chem. Eur. J. 2012, 18, 8605. 
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Scheme 3. 3. Synthesis of tetraalkoxydiboron compounds 

In the development of new tetraalkoxydiboron species, bis(pinacolato)diboron B2pin2, 

bis(neopentylglycolato)diboron B2neop2 and bis(hexyleneglycolato)diboron B2hex2 have 

resulted to be powerful tools in borylation reactions. Moreover, non-symmetrical diboron 

reagents such as BpinBdan (dan = 1,8-diaminonaphtalene)16, BpinBMes2, BpinBdab (dab = 1,2-

diaminobenzene)17 or PDIPA (pinacolato diisopropanolaminato diboron) are being used as well 

in recent years (Figure 3.1).  

 

                                                           
16  Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548. 
17  Borner, C.; Keeberg, C. Eur. J. Inorg. Chem. 2014, 15, 2486. 
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Figure 3. 1. Common di- and tetraalkoxydiboron compounds 

Nonetheless, alkoxydiboron compounds are not able themselves to be added to an 

unsaturated system needing to be activated by an external catalyst. This could be attributed to 

the strong and covalent nature of the C-B bond, which will be polarized in the presence of a 

catalyst inducing its cleavage and the following addition to the unsaturated system. 

 

1.2. Activation of diboron compounds 

Alkoxydiboron compounds have been used as useful new reagents for the diborylation of 

alkenes and alkynes over the years. However, these diboron compounds generally present a 

high stability due to the π-type overlap with the oxygen atoms which make these compounds 

specially air and water stable. As consequence of the less acidic B-B system and due to their 

high B-B bond energy (104 kcal/mol), they show a low reactivity towards the addition to 

unsaturated systems. Hence, an activation step is required to achieve the addition of 

tetraalkoxydiboron compounds to double or triple bonds.  

The activation of these reagents can be performed in the presence of metals or in a 

transition metal-free environment. Transition metals can activate organoboranes via oxidative 

addition or via transmetallation, while Lewis bases are also suitable to activate 
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tetraalkoxydiboronates through their addition to the B centre that triggers the formation of a 

trialkylborate-Lewis base complex with a nucleophilic dialkoxyboron anion (Scheme 3.4).18  

 

Scheme 3. 4. Activation modes for B2pin2 

The oxidative addition of diboranes to transition metals such as Pd, Pt or Rh allows the 

catalytic transfer of organoboranes to unsaturated systems due to the formation of boryl-

metal complexes.19 When this type of transition metal complex, characterized by a low-valent 

metal, interacts with the tetraalkoxydiboron species, an intramolecular homolytic B-B bond 

cleavage takes in an oxidative addition process. After the oxidative addition, coordination of 

the unsaturated substrate with the boryl-metal complex occurs. The dialkoxyboron metal 

moiety will be syn selectively inserted in the unsaturated system which will furnish the 

diborylated product after a reductive elimination step regenerating the active catalytic species 

(Scheme 3.5).  

                                                           
18  (a) Westcott, S. W.; Fernández, E. Singular Metal Activation of Diboron Compounds. Advances in 

Organometallic Chemistry, Elsevier, pp 39-89, 2015. (b) Fernández, E. An. Quím. 2017, 113, 170. 
19  Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2000, 611, 392. 
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Scheme 3. 5. Activation of B2pin2 via oxidative addition 

The first catalytic diborylation of alkynes was performed by Miyaura and coworkers in 

1993.20 The addition of bis(pinacolato)diboron to terminal and internal alkynes catalyzed by 

tetrakis(triphenylphosphine)platinum (0) was developed. In fact, the authors were the first 

ones to propose a mechanism involving oxidative addition of B2pin2 to Pt as the initial step, 

followed by the coordination of the alkyne to the metal complex. Differently substituted cis-

1,2-bis(boryl)alkenes were obtained in excellent yields and a complete syn selectivity during 

the addition was observed (Scheme 3.6). 

 

Scheme 3. 6. Platinum-catalyzed diborylation reaction of alkynes employing B2pin2 

Non-symmetric diboron compounds can also be used to borylate unsaturated systems, 

allowing to carry out regioselective transformations of the diborylated adducts successfully. 

Thus, the regioselective diborylation of alkynes with BpinBdan affording 1,2-diborylated 

                                                           
20  Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. 
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alkenes was reported by Suginome.16 The reaction proceeded well when a platinum or iridium 

catalyst was employed, rendering diborylated products with high yields and high 

regioselectivities. The diborylated products were subjected to different chemoselective 

transformations involving the more reactive Bpin moiety, such as Suzuki-Miyaura cross-

coupling (Scheme 3.7). 

Scheme 3. 7. Platinum-catalyzed diborylation reaction of alkynes employing BpinBdan  

Stereocontrolled borylation of alkenes can also be carried out using chiral ligands at the 

diboron reagents in order to achieve enantiocontrol. This leads to the formation of 

enantioenriched organoboranes which can be subsequently employed in further stereospecific 

transformations for the construction of enantioenriched complex molecules. In this field, 

Marder and coworkers developed the first platinum-catalyzed diastereoselective diborylation 

of styrenes by the use of chiral diboron reagents derived from (S,S)-diphenylethane-1,2-diol.21 

Substituted vinylarenes were synthesized in high yields and moderate diastereoselectivities 

(Scheme 3.8). 

 

Scheme 3. 8. Platinum-catalyzed diborylation reaction of styrenes employing chiral diboron reagents 

                                                           
21  Marder, T. B.; Norman, N. C.; Rice, R. Tetrahedron Lett. 1998, 39, 155. 
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However, the use of metal complexes with chiral ligands in a catalytic fashion directed to 

generate enantioenriched organoboranes has been a breakthrough in the chemistry of boron 

allowing carrying out a wide range of transformations.22  Morken and coworkers opened a new 

era in this field by modifying rhodium complexes with (R)-QUINAP, describing the first example 

of a catalytic enantioselective diborylation reaction of alkenes.23 The methodology was valid for 

trans alkenes observing high enantiocontrol when both alkyl and aryl substituents were placed 

in the alkene. Furthermore, they were able to transform differently substituted olefins into 

optically active synthetic building blocks. On the one hand, a transesterification reaction was 

performed employing pinacol furnishing bis(pinacol)boronates in moderate yield, and on the 

other hand, enantiopure diols were synthesized by an oxidation step using hydrogen peroxide 

(Scheme 3.9). 

 

Scheme 3. 9. Rhodium-catalyzed enantioselective diborylation reaction of alkenes employing B2cat2 

On the other hand, many examples have been described involving the addition of diboron 

compounds to α,β-unsaturated carbonyl substrates. One example of the conjugate addition of 

B2pin2 to a Michael acceptor was described by Marder and coworkers, in which it was reported 

for the first time the diborylation reaction of α,β-unsaturated ketones employing platinum 

                                                           
22  For recent literature in the use of chiral ligands, see: (a) Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Beilstein J. 

Org. Chem. 2015, 11, 2007. (b) Reyes, R. L.; Harada, T.; Taniguchi, T.; Monde, K.; Iwai, T.; Sawamura, M. Chem. 
Lett. 2017, 46, 1747. (c) Su, B.; Zhou, T.-G.; Xu, P.-L.; Shi, Z.-J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2017, 129, 
7311. (d) Miwa, Y.; Kamimura, T.; Satu, K.; Shishido, D.; Yoshido, D.; Yoshida, K. J. Org. Chem. 2019, 84, 14291. 
(e) Shen, C.; Zeidan, N.;  Wu, Q.; Breuers, C. B. J.; Liu, R.-R.; Jia, Y.-X.; Lautens, M. Chem. Sci. 2019, 10, 3118. (f) 
Shi, Y.; Gao, Q.; Xu, S. J. Am. Chem. Soc. 2019, 141, 10599. (g) Iwamoto, H.; Endo, K.; Ozawa, Y.; Watanabe, Y.; 
Kubota, K.; Imamoto, T.; Ito, H. Angew. Chem. Int. Ed. 2019, 58, 11112. 

23  Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702. 
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complexes.24 The catalyzed diborylation reaction was believed to proceed by the oxidative 

addition of diboron compounds to the metal by a 1,4-addition affording a boron enolate 

intermediate, which after an aqueous work-up afforded the corresponding β-borylated 

carbonyl compound (Scheme 3.10). 

Scheme 3. 10. Platinum-catalyzed diborylation reaction of α,β-unsaturated ketones employing B2R´2 

 

Other metals such as Cu, Ag and Au can be also used to activate diboron reagents. This 

methodology implies the reaction of these metals with tetraalkoxydiboranes through a σ-bond 

metathesis between the diboron reagent and the metal complex including a M-X bond (X being 

OR group, generally), promoting the heterolytic cleavage of the B-B bond with the formation of 

a M-boryl species and the resulting X-B(OR)2. Next, the metal-boron complex interacts with the 

olefin promoting the formation of a β-boryl organometallic intermediate that after a second 

transmetallation step provides the final diborylated product with the regeneration of the active 

catalytic species (Scheme 3.11). 

                                                           
24  Lawson, Y. G.; Gerald Lesley, M. J.; Marder, T. B.; Norman, N. C.; Rice, C. R. Chem. Commun. 1997, 2051. 
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Scheme 3. 11. Activation of B2pin2 via σ-bond metathesis 

Following the previously explained mechanism, Marder and coworkers were the pioneers 

in developing catalytic diborylation methods of alkenes with metal complexes based on metals 

of group 11. They developed a gold-catalyzed diborylation reaction of terminal alkenes using 

the catalytic system [Au(PEt3)Cl]/1,2-bis(diciclohexylphosphino)ethane (dcpe) observing the 

exclusive formation of the 1,2-diborylated product.25 It should be mentioned that an electron-

rich phosphane additive was needed for the reversible B-B bond activation by the monovalent 

gold center and to start the catalytic cycle (Scheme 3.12). 

 

Scheme 3. 12. Gold-catalyzed diborylation reaction of alkenes employing B2cat2 

                                                           
25  Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem. Int. Ed. Engl. 1995, 34, 1336. 
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Using a more earth-abundant metal, Fernández and coworkers described the first copper-

mediated diborylation reaction of alkynes and alkenes.26 It should be mentioned that copper 

resulted to be a cheaper metal in comparison with gold and silver which provided an evident 

advantage of this methodology compared to others. They demonstrated that a catalytic system 

formed by a Cu(I) complex modified with N-heterocyclic carbenes was able to carry out 

hydroborylation and diborylation reactions. The reaction between styrene and 

bis(cathecolato)diboron furnished the corresponding diborylated adduct in excellent yield, 

being the only limitation the use of other diboranes such as B2pin2 which was not tolerated 

(Scheme 3.13).  

 

Scheme 3. 13. Copper-catalyzed diborylation reaction of alkenes employing B2cat2 

Ag(I) salts have been also employed as catalysts for diborylation of alkenes in a very limited 

number of examples in the literature.27 A common aspect of these methodologies is that strong 

σ-donor ligands such as N-heterocyclic carbenes are needed, as it can be seen in the example 

reported by Fernández and coworkers. This methodology used Ag(I)-NHC complexes for the 

catalytic diborylation reaction of styrenes proceeding with moderate conversions.28 

Notwithstanding the use of a chiral catalyst, no asymmetric induction was observed in the final 

diols which were obtained as racemates (Scheme 3.14).  

                                                           
26  Lillo, V.; Fructos, M. R.; Ramirez, J.; Braga, A. A. C.; Maseras, F.; Diaz-Requejo, M. M.; Perez, P. J.; Fernández, E. 

Chem. Eur. J. 2007, 13, 2614. 
27 (a) Corberán, R.; Ramírez, J.; Poyatos, M.; Peris, M.; Fernández, E. Tetrahedron: Asymmetry 2006, 17, 1759. (b) 

Yoshida, H.; Kageyuki, I.; Takaki, K. Org. Lett. 2014, 16, 3512. 
28  Ramirez, J.; Corberán, R.; Sanaú, M.; Peris, E.; Fernández, E. Chem. Commun. 2005, 3056. 
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Scheme 3. 14. Silver-catalyzed enantioselective diborylation reaction of alkenes employing B2cat2 

The concept behind the nucleophilic diborylation of non-activated alkenes in a metal-free 

environment consists on a combination of a base and an alcohol. It provides an alkoxide anion 

which is generated in situ from an alcohol (generally, methanol) and a catalytic amount of 

base, being the responsible of activating the diboron reagent. A Lewis acid-base adduct is 

formed (MeO-
Bpin-Bpin) where the initially acidic sp2 boron is now quaternized, becoming a 

σ-nucleophile that reacts with an olefin acting as an electrophile. While the sp3 boron atom 

loses negative charge density after interacting with the Lewis base, the sp2 boron atom gains 

electron density. These structural changes polarize the B-B bond, weakening it and making the 

sp2 boron become nucleophile. The boron atom of the activated diboron reagent interacts with 

the double bond of the unsaturated system. After the nucleophilic attack, there will be an 

interaction between the strongly polarized B-B σ bond (HOMO) of the activated diboron 

reagent and the antibonding π* orbital (LUMO) of the alkene (Scheme 3.15).  
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Scheme 3. 15. Activation of B2pin2 by Lewis bases 

The first diborylation reaction in the absence of transition metal complexes was again 

reported by Fernández and coworkers in 2011.29 The addition of B2pin2 over a wide range of 

differently substituted olefins, such as terminal cyclic and acyclic alkenes, cis and trans internal 

alkenes and vinylarenes, was performed (Scheme 3.16).  

 

Scheme 3. 16. Lewis base-catalyzed diborylation reaction of alkenes employing B2pin2 

Metal-free diborylation reaction can be also carried out employing non-symmetrical 

organoborane compounds, being important the control of the regioselectivity of the process. 

This is what happened in the example published by Fernández and coworkers in 2015 where 

the diborylation reaction of alkenes in a metal-free context was performed using Bpin-Bdan as 

borylating agent.30 In this case, the methoxide anion interacts selectively with the Bpin moiety 

due to its more Lewis acidic character (the π-donation from the lone pair of nitrogen to the 

                                                           
29  Bonet, A.; Pubill-Ulldemolins, C; Bo, C.; Gulyás, G.; Fernández, E. Angew. Chem. Int. Ed. 2011, 50, 7158. 
30  Miralles, N.; Cid, J.; Cuenca, A. B.; Carbó, J. J.; Fernández, E. Chem. Commun. 2015, 51, 1693. 
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empty orbital of boron made the Bdan moiety not susceptible to alkoxide attack). The reaction 

was fully regioselective, observing the addition of the activated Bpin moiety to the less 

hindered carbon of the olefin. On the other hand, when vinylarenes were employed only the 

hydroborylated product with Bdan moiety in the terminal position was observed. Cyclic olefins 

were also tested observing the syn addition of BpinBdan to cyclic systems (Scheme 3.17). 

 

Scheme 3. 17. Base-catalyzed diborylation reaction of alkenes employing BpinBdan 

An important breakthrough in metal-free activation of diboron compounds was the 

possibility of synthesizing enantiomerically pure products. Fernández and coworkers developed 

in 2012 an organocatalytic asymmetric diborylation reaction of alkenes by the use of chiral 

alcohols as reaction promoters.31 Despite the wide range of tested chiral alcohols such as 

BINOL, pyranose and furanose derivatives, very low enantioselectivities were achieved in all 

cases (Scheme 3.18).  

                                                           
31  Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Org. Biomol. Chem. 2012, 10, 6621. 
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Scheme 3. 18. Base-promoted diborylation reaction of alkenes employing B2pin2 and chiral alcohols 

An alternative for overcoming this poor enantioselectivity and in order to obtain 

enantioenriched organoboranes, the same group designed the conjugate addition to 

α,β-unsaturated esters and ketones.32 By the use of chiral phosphanes the synthesis of 

enantiopure β-borylated carbonyl compounds was achieved in moderate yields and 

enantioselectivities. They proposed that the heterolytic cleavage of the B-B bond took place 

due to the interaction of the phosphane with the empty orbital of one of the boron atoms, 

converting, as presented before, the boron moiety in a nucleophile.  The observed asymmetric 

induction could be explained in terms of the proximity of the formed chiral phosphane-boryl 

intermediate to the carbonyl compound in the 1,4-addition reaction (Scheme 3.19). 

                                                           
32 Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem. Int. Ed. 2010, 49, 5130. 
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Scheme 3. 19. BINAP-catalyzed asymmetric borylation reaction of α,β-unsaturated substrates employing B2pin2 

A closely related methodology to obtain enantioenriched organoboranes was reported by 

the group of Hoveyda and consisted on the use of enantiomerically pure N-heterocyclic 

carbenes as Lewis base catalysts for performing the conjugate borylation reaction of 

α,β-unsaturated carbonyls.33 This methodology accepted a broad scope regarding the substrate 

and allowed carrying out the reaction with acyclic and cyclic ketones, acyclic esters, aldehydes 

and Weinreb amides. β-boryl carbonyl compounds were isolated in high yields and 

enantioselectivities (Scheme 3.20).  

                                                           
33  Wu, H.; Radomkit, S.; O´Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277. 
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Scheme 3. 20. NHC-catalyzed asymmetric borylation reaction of α,β-unsaturated compounds employing B2pin2 

Thus, it can be concluded that diboron compounds play nowadays an important role in 

organic chemistry towards the synthesis of complex molecules. However, they generally take 

part in reactions involving simple unsaturated systems such as not functionalized olefins or 

simple alkynes. Their participation in more complex systems has been less studied and few 

examples have been hitherto reported. As an example of more complex systems, there are 

allenes, whose role in borylation reactions will be reported in the following section.  

 

1.3. Borylation of allenes 

With regard to the borylation of allenes, a variety of examples have been reported in the 

last decades, involving these methodologies the use of a metal catalyst as reaction promoter. 

Allenes present different reactive points towards the activated boryl reagent, since one of the 

boron atoms can be added to the proximal, central or distal positions, being the other function 

attached to another position (Scheme 3.21). The regioselectivity of the reaction could be 

determined by steric effects of both the substituents on the allene and the ligands employed 

during the reaction. 
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Scheme 3. 21. Regioselection in the diborylation reactions of allenes 

With regard to diborylation reactions of allenes, examples involving different 

regioselectivities have been described.34 A representative example of a diborylation reaction of 

allenes at the proximal and central positions reported by Ding and coworkers is shown in 

Scheme 3.22.35 Products containing a chiral tertiary boronic ester were synthesized in excellent 

yields and high enantioselectivities by the use of phosphorous chiral ligands. DFT studies 

proposed a concerted mechanism for the oxidative addition of B2pin2 and allene insertion 

which would explain the observed regioselectivity. 

 

Scheme 3. 22. Palladium-catalyzed proximal and central diborylation reaction of allenes employing B2pin2 

There can be also found examples of diborylation reactions involving the central and distal 

positions of allenes. For example, in 2001 the palladium-catalyzed diborylation reaction of 

allenes employing organic iodides such 3-iodo-2-methylcyclohex-2-en-1-one as cocatalyst was 

published by the group of Cheng.36 (2,3)-Diborylated Z olefins were obtained in a regioselective 

and high stereoselective manner. The key of this transformation was the oxidative addition of 

the I-B bond to the Pd center being a palladium iodide the catalytic active species, in contrast 

                                                           
34  Some examples of diborylation reactions involving central and distal positions: (a) Guo, X.; Nelson, A. K.; 

Slebodnick, C.; Santos, W. L. ACS Catal. 2015, 5, 2172. (b) Zhao, W.; Montgomery, J. J. Am. Chem. Soc. 2016, 
138, 9763. (c) Kidonakis, M.; Stratakis, M. ACS Catal. 2018, 8, 1227. (d) Chen, J.; Gao, S.; Gorden, J. D.; Chen, 
M. Org. Lett. 2019, 21, 4638.  Some examples of diborylation reactions involving proximal and central 
positions: (a) Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505. (b) Liu, J.; Nie, 
M.; Zhou, Q.; Gao, S.; Jiang, W.; Chung, L. W.; Tang, W.; Ding, K. Chem. Sci. 2017, 8, 5161. 

35 Liu, J.; Nie, M.; Zhou, Q.; Gao, S.; Jiang, W.; Chung, L. W.; Tang, W.; Ding, K. Chem. Sci. 2017, 8, 5161. 
36  Yang, F.; Cheng, C. J. Am. Chem. Soc. 2001, 123, 761. 
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with other methodologies which implies the oxidative addition of a B-B bond to the metal 

(Scheme 3.23). 

 

Scheme 3. 23. Palladium-catalyzed central and distal diborylation reaction of allenes employing B2pin2 

Hydroborylation reactions can be also performed locating the boryl moiety in the central or 

distal position of the allene, but no examples involving proximal position have been reported.37 

Ma and coworkers published in 2016 an example of a copper-catalyzed hydroborylation 

reaction of 1,2-allenylsilanes.38 The boronate scaffold ended up in the distal position with 

complete regioselectivity, furnishing 3-sillylallyl boronates in high yields. The reaction 

proceeded through a vinylcopper intermediate which showed a trans orientation of the C-CuL 

bond and C-Si bond due to steric effects (Scheme 3.24).  

                                                           
37 An example of hydroborylation reaction involving distal position: (a) Semba, K.; Shinomiya, M.; Fujihara, T.; 

Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 7125. Some examples of hydroborylation reaction involving central 
position: (a) Jang, H.; Jung, B.; Hoveyda, A. H. Org. Lett. 2014, 16, 4658. (b) Fujihara, T.; Tsuji, Y. Synthesis 2018, 
50, 1737. 

38  Yuan, W.; Song, L.; Ma, S. Angew. Chem. Int. Ed. 2016, 55, 3140. 
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Scheme 3. 24. Copper-catalyzed distal borylcupration reaction of allenylsilanes employing B2pin2 

In a similar context, Hoveyda and coworkers reported in 2013 a ligand-controlled 

regioselective hydroborylation of allenes catalyzed by a Cu-NHC complex providing selectively 

1,2 or 2,3-addition during the borylcuprate addition.39 In all cases, the boryl unit was added to 

the central carbon of the allene, and the hydrogen atom was placed in the proximal or distal 

position depending on the bulkiness of the employed N-heterocyclic carbene, leading to 

disubstituted or trisubstituted alkenylboronates (Scheme 3.25). Smaller catalysts led to an 

easier protonation of the proximal position, while bulkier catalysts generated little 1,3-diaxial 

repulsion between the allene substituent and the Bpin and NHC-Cu unit, favoring the 

protonation of the distal position. 

                                                           
39  Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A. H. Org. Lett. 2013, 15, 1414. Asymmetric example: Jang, H.; Jung, 

B.; Hoveyda, A. H. Org. Lett. 2014, 16, 4658. 
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Scheme 3. 25. Ligand-controlled regioselective hydroborylation reaction of allenes employing B2pin2 

Electrophilic allenes such as allenoates are also suitable reagents for hydroborylation 

reactions being able to change the regioselectivity of the transformation in comparison to 

simple allenes. Santos and coworkers described the addition of pinacolato 

diisopropanolaminato diboron (PDIPA) to these substrates which were converted into 

(Z)-vinylboronates in a regioselective and diastereoselective fashion.40 The boryl moiety was 

located on the central position of the allene in all cases, being Z isomer favored due to the 

presence of unstabilizing 1,3-allylic strain in the E isomer (Scheme 3.26). 

 

Scheme 3. 26. Copper-catalyzed central hydroborylation reaction of allenoates employing PDIPA 

 

 

                                                           
40 Thorpe, S.; Guo, X.; Santos, L. W. Chem. Commun. 2011, 47, 424. 
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In summary, it can be concluded that allenes are considered excellent substrates to take 

part in borylation reactions affording important building blocks in synthetic chemistry. 

However, this chemistry is poorly explored with respect to the possibility of using allene 

scaffolds with different functionalities. In particular, other systems like allenylamides, which 

should be regarded as electron-rich allenes, have not been explored in borylation reactions. 

Research in this chapter will be focused in these unexplored systems and their reactivity 

towards diboron reagents. 
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2. SPECIFIC OBJECTIVES AND WORK PLAN 

As it has been outlined in previous section, organoborane compounds constitute important 

synthetic intermediates in organic chemistry due to their possibility of constructing complex 

molecules. Regarding the borylation reaction of allenes, few examples can be found in the 

literature and none involved metal-free conditions. The π-donating ability of the nitrogen atom 

in allenylamines makes them more electron-rich compared with simple allenes, and hence they 

are more prone to electrophilic activation. As mentioned, allenylamides have not been 

explored as substrates in borylation reactions (Figure 3.2). 

 

Figure 3. 2. Allene vs allenoate vs allenylamide 

With these precedents in mind, we turned our attention to the construction of 

polisubstituted olefins by the borylation of these substrates. Taking advantage that the metal-

free activation of diboron compounds is emerging in the last years, in this work we planned to 

conduct the borylation of allenylamides in absence of transition metal complexes as catalyst. 

This is conceptually based on the B-B bond activation by alkoxides and the subsequent 

nucleophilic boryl attack to the allene, as reported by the group of Fernández.29 Our goal was 

to study the behavior of allenylamides towards the nucleophilic boron intermediate and to 

study the regio- and diastereoselectivity of the process (Scheme 3.27). 

 

Scheme 3. 27. Study of the nucleophilic boron addition to allenylamides 

It should be mentioned that after the publication of our work in 2018, which will be 

summarized in this chapter, a palladium-catalyzed regiocontrolled hydroarylation of 
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allenylamides was reported by Liu and coworkers which constituted an excellent methodology 

for the synthesis of polisubstituted alkenes.41 They employed the system H2O/B2pin2, being 

water an ideal hydrogen source which was activated by bis(pinacolato)diboron for its addition 

to the unsaturated system. A one-pot sequence was performed involving the borylation and a 

cross-coupling reaction, which furnished allylamines and enamines in moderate to good yields 

(Scheme 3.28).  

 

Scheme 3. 28. Pd-catalyzed regiocontrollable hydroarylation reaction 

This research represented an straightforward method for the central borylation reaction 

using metal activation. Our objective was, however, the use of metal-free activation for 

performing borylation reactions. In order to accomplish our objective, the subsequent work 

plan was outlined: 

- Reactivity studies: we will survey the reaction of allenylamide 21a as model substrate 

in the presence of B2pin2, a base and MeOH, as standard reaction conditions, and will 

observe the possible addition products that can be formed. The nucleophilic boryl 

moiety can be added to the proximal, central and distal positions of allenylamide 

furnishing 1,2 and/or 2,3 addition products (Scheme 3.29). 

                                                           
41  Cui, J.; Meng, L.; Chi, X.; Liu, Q; Zhao, P.; Zhang, D.; Chen, L.; Li, X.; Dong, Y.; Liu, H. Chem. Commun. 2019, 55, 

4355. 
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Scheme 3. 29. Envisioned model reaction 

- Optimization of the reaction conditions: once the viability of the reaction has been 

demonstrated a variety of organoborane compounds (B2R2), bases and temperatures 

will be evaluated with the same model substrate 21a using methanol as the most 

appropriate solvent, in order to obtain the desired product in high yield, regio- and 

diastereoselectivity (Scheme 3.30).  

 

Scheme 3. 30. Studied borylation reaction 

- Scope of the reaction: the scope and limitations of the developed method will be 

studied through the evaluation of structurally different substrates. First of all, N-aryl-

N-allenylacetamides (EWG = Ac) will be studied with both EWG and EDG in the other 

position (R1) of the nitrogen atom. Later on, substrates containing other electron 

withdrawing groups (EWG) will be evaluated under the optimized reaction conditions. 

Finally, differently substituted allenylamides (R2, R3 ≠ H) will be also tested (Scheme 

3.31).  
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Scheme 3. 31. Scope of the reaction 
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3. RESULTS AND DISCUSSION 

Once the objectives of the project have been determined and the work plan has been well 

defined, the most significant results during the development of this research will be presented 

in the following pages. 

3.1. Proof of concept 

We started our work with the synthesis of the model allenylacetamide 21a. This was 

carried out in a two-step sequence, starting with the incorporation of the propargylic chain to 

4-methoxyacetanilide 19a which was carried out in 92% yield. Then, a base-mediated 

isomerization of 20a was performed, rendering 21a in 60% yield (Scheme 3.32).42  

 
Scheme 3. 32. Synthesis of allenylacetamide 21a 

With this substrate in hand, we tested the borylation reaction with B2pin2, and MeOH/ 

KOtBu running the reaction for 16 hours, which constitute standard reaction conditions used in 

the Lewis base activation of B2pin2 as developed in the group of Prof. Fernández.43 The reaction 

was carried out employing 1.2 eq of bis(pinacolato)diboron, 30 mol% of  KOtBu and methanol 

as solvent at 70ᵒC. After that time, the reaction crude was analyzed by 1H-NMR employing 

naphthalene as internal standard. It was possible to observe the complete disappearance of 

the starting material and the appearance of signals corresponding to a single product. After 

purification by flash column chromatography we could isolate 22a as an only product in 71% 

yield through a complete regioselective process (Scheme 3.33). It should be mentioned that 

although a complete transformation of the starting material to the product could be observed 

in the 1H-NMR spectra, the yield decreased during the purification step due to 

organoboronates are strongly retained in silica. Product 22a showed the boryl moiety located 

                                                           
42

  Li, Y.; Chen, J.; Qiu, R.; Wang, X.; Long, J.; Zhu, L.; Au, C.; Xu, X. Tetrahedron Lett. 2015, 56, 5504. 
43  Cuenca, A. B.; Shishido, R.; Ito, H.; Fernández, E. Chem. Soc. Rev. 2017, 46, 415. 
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at the central carbon of allenylamide (11B-NMR = 31.8 ppm) after a hydroborylation process 

along the terminal double bond. A trans-arrangement between the amide and the boryl moiety 

along the trisubstituted alkene was also observed. 

 

Scheme 3. 33. Preliminary study of the reaction44 

Next, we verified whether the substrate 21a needed 16 hours to be completely converted 

in the borylated product 22a. Thus, the reaction mixture was analyzed by 1H-NMR at different 

times, evaluating the disappearance of starting material 21a and the formation of the reaction 

product 22a. As it could be observed, the reaction needed more than two hours to start. It was 

not until five hours that formation of the adduct 22a started to be observed, although the 

conversion was very low. After eight hours of reaction, the conversion still remained low, 

concluding that sixteen hours were strictly necessary to observe a complete conversion of the 

starting material 21a into the borylated adduct 22a. 

 

3.2. Optimization of the reaction conditions 

Considering previous results as evidence of the feasibility of the reaction, next efforts were 

directed to the evaluation of the best conditions to carry out the borylation reaction. In this 

sense, we first proceeded to test different bases to analyze whether the yield of the reaction 

                                                           
44  Reactions were carried out at 0.2 mmol scale of 21a, using 30 mol% of KOtBu and 1.2 eq of B2pin2 in 0.5 mL of 

solvent. Conversions measured by 1H-NMR in crude reaction mixtures using naphthalene as internal standard 
based on the consumption of substrate 21a. Isolated yield of pure material after flash column chromatography 
purification. 
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could be improved (Table 3.2). As potassium tert-butoxide resulted to be a convenient base to 

carry out the reaction (Table 3.2, entry 1), we decided to evaluate the effect of sodium tert-

butoxide. When the sodium base was employed, the conversion of the reaction was lower and 

there was unreacted starting material left (Table 3.2, entry 2). On the other hand, cesium 

carbonate was also tested but it did not turn to be a good base for the reaction and a 

moderate conversion was observed after 16 hours (Table 3.2, entry 3). Thus, potassium tert-

butoxide still remained as the best base to further optimization.   

Table 3. 2. Evaluation of different bases 

 

Entry
a 

Base Conv (%)
b 

Yield 22a (%)
c
 

1 KO
t
Bu 98 71 

2 NaO
t
Bu 60 n.d.

d
 

3 Cs2CO3 46 n.d.
d
 

aReactions were carried out at 0.2 mmol scale of 21a, using 30 mol% of base and 1.2 eq of B2pin2 in 0.5 mL of 
solvent. bConversions measured by 1H-NMR in crude reaction mixtures using naphthalene as internal 
standard based on the consumption of substrate 21a. cIsolated yield of pure material after flash column 
chromatography purification. dn.d.: Not determined 

At this point, we also evaluated the effect of the temperature in the reaction. When the 

reaction was performed at room temperature, the starting material was recovered, observing 

only traces of the borylated product 22a (Table 3.3, entry 1).  At higher temperatures, both at 

70ᵒC and 100ᵒC the same results were observed both with respect to conversion and isolated 

yield (Table 3.3, entries 2-3), being a temperature of 70ᵒC selected for further screening. At this 

point, we also evaluated the effect of the addition of one equivalent of a polar aprotic 

cosolvent as THF. This combination of solvents has demonstrated good performance in several 

previous borylation reactions.29 However, in our case, performing the reaction in MeOH and 

one equivalent of THF did not improve the reaction performance observing the 



Transition metal-free stereoselective borylation of allenylamides     133 

 

monodiborylated product 22a in a slightly lower 55% yield (Table 3.3, entry 4). Thus, we 

selected 70ᵒC and MeOH as solvent as the optimal conditions for further screening. 

Table 3. 3. Evaluation of different temperatures 

 

Entry
a 

T (ᵒC)
 

Conv (%)
b 

Yield 22a (%)
c
 

1 25 10 n.d.
e
 

2 70 98 71 
3 100 99 70 
4

d
 70 62 55 

aReactions were carried out at 0.2 mmol scale of 21a, using 30 mol% of KOtBu and 1.2 eq of B2pin2 in 0.5 mL 
of solvent. bConversions measured by 1H-NMR in crude reaction mixtures using naphthalene as internal 
standard based on the consumption of substrate 21a. cIsolated yield of pure material after flash column 
chromatography purification. d1 eq of THF was employed.  en.d.: Not determined. 

Finally, we proceeded to survey different commercially available diboron reagents  with the 

hitherto optimized conditions (Table 3.4). It was observed that the bulkier the diboron reagent 

was, the lower the yield of the adduct 22a was obtained, being bis(pinacolato)diboron B2pin2 

the one which gave the best results (Table 3.4, entry 1). In contrast, 

bis(neopentylglycolato)diboron B2neop2, considered more efficient and reactive than its 

analogues, provided a moderate yield of the borylated product 22a, although the conversion of 

the reaction was high (Table 3.4, entry 2). When bis(hexyleneglycolato)diboron B2hex2 was 

employed, traces of the product were observed (Table 3.4, entry 3). Finally, non-symmetrical 

diboron reagent BpinBdan (dan = 1,8-diaminonaphtalene) was also tested but it failed to 

provide any borylation product even at higher temperatures (Table 3.4, entries 4-5).  
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Table 3. 4. Survey of different diboron reagents 

 

Entry
a 

B2R2 T (ᵒC) Conv (%)
b 

Yield 22a (%)
c 

1 B2pin2 70 99 71 
2 B2neop2 70 80 35 
3 B2hex2 70 10 n.d.

e
 

4 BpinBdan 70 n.r.
d
 n.d.

e
 

5 BpinBdan 110 90 <5 
aReactions were carried out at 0.2 mmol scale of 21a, using 30 mol% of KOtBu and 1.2 eq of B2R2 in 0.5 mL of 
solvent. bConversions measured by 1H-NMR in crude reaction mixtures using naphthalene as internal 
standard based on the consumption of substrate 21a. cIsolated yield of pure material after flash column 
chromatography purification. dNo reaction eNot determined  

Once the most important parameters had been evaluated, it was concluded that the 

optimal conditions for carrying out the borylation reaction implied the use of 

bis(pinacolato)diboron as diboron reagent, 30 mol% of potassium tert-butoxide as base in 

MeOH (0.4 M) at 70ᵒC, running the reaction for 16 hours (Scheme 3.34). 
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Scheme 3. 34. Optimal reaction conditions for the borylation reaction of N-allenylacetamide 21a 

 

3.3. Scope of the reaction 

Once the optimal experimental procedure for the transition metal-free stereoselective 

borylation reaction of allenylamides had been established, we proceeded to extend the 

methodology to other structurally different allenylamides. 

First of all, we carried out the borylation reaction of a series of N-allenyl-N-arylacetamides 

under optimal conditions (70ᵒC, 16 h) (Table 3.5). We changed the electron properties of the 

para-substituents of the aryl group in the allenylamide substrates and tested both electron-

withdrawing and electron-donating substituents. It was observed that electron-donating para-

substituents led to quantitative conversions with complete stereoselectivity towards the 

formation of the Z-isomer. Both products 22a and 22b were obtained in a 71% and 78% yield, 

respectively. When a para-methyl group, which presents less donating ability, was 

incorporated in the aromatic ring, the yield of the reaction remained high (Table 3.5, product 

22c). Instead, when the aromatic ring presented no substitution, product 22d was only 

detected in a moderate 52% NMR yield, and it was isolated with a low 24% yield. Finally, an 

electron-withdrawing group in para-position made the allenylamide less reactive towards the 

nucleophilic boron, observing its formation with a low 25% NMR yield and isolating it as traces 

(Table 3.5, product 22e).  
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Table 3. 5. Scope of the reaction using N-allenyl-N-arylacetamides.a 

 

 

 
 

aReactions were carried out at 0.2 mmol scale of substrates 21a-e, using 30 mol% of KOtBu, 1.2 
eq of B2pin2 in 0.5 mL of MeOH at 70ᵒC in 16 h. NMR Yields calculated from 1H-NMR spectra 
with naphthalene as internal standard. Isolated yield of pure material after flash column 
chromatography purification. 

The reaction also tolerated the incorporation of other acyl substituents. Maintaining para-

methoxyphenyl group as substituent in the nitrogen atom, we studied the influence of other 

alkanoyl and aryloyl groups (Table 3.6). Replacement of the acetyl group by a pivaloyl group did 

not influence the reaction outcome, and the product 22f was obtained in quantitative NMR 

yield and 65% isolated yield as a single Z-isomer from 21f (Table 3.6). Next, we proceeded with 

the evaluation of benzoyl derived allenylamides incorporating both electron-donating and 

electron-withdrawing substituents in para position of the benzoyl substituent. Electron-
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donating groups favored the borylation reaction, as it could be observed in the case of para-

methylbenzoyl substituted allenylamide 21g which rendered 22g in a 74% yield. The results 

were similar with benzoyl substituted allenylamide 21h, which rendered 22h in 72% yield. In 

both cases the NMR yields were almost quantitative. On the other hand, electron-withdrawing 

substituents made allenylamides unreactive towards the nucleophilic boron moiety isolating 

only traces of 22i, in the case of para-bromobenzoyl substituted allenylamide 21i. Finally, we 

incorporated a heterocycle containing chain in the acetyl substituent of the allenylamide, 

which turned not to be a suitable substrate for the borylation reaction due to the low 

conversion observed in 22j.  
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Table 3. 6. Scope of the reaction using N-allenyl-N-(para-methoxyphenyl)amides.a 

 

 

 
 

a Reactions were carried out at 0.2 mmol scale of substrates 21f-j, using 30 mol% of KOtBu, 1.2 
eq of B2pin2 in 0.5 mL of MeOH at 70ᵒC in 16 h. NMR Yields calculated from 1H-NMR spectra 
with naphthalene as internal standard. Isolated yield of pure material after flash column 
chromatography purification. n.d.: not determined 

At this point, the exclusive formation of 22h in the case of allenylamide 21h gave us the 

opportunity of performing its fully characterization by means of single-crystal X-ray diffraction. 

Figure 3.3 shows the E-stereoselectivity observed for the amide and boryl moieties along the 

trisubstituted alkene.  



Transition metal-free stereoselective borylation of allenylamides     139 

 

  

Figure 3. 3. X-Ray structure of 22h 

 

The reaction showed a limitation for the α- and γ-substituted allenylamides 23 and 24, 

respectively, probably due to the steric hindrance offered by the substrates in the nucleophilic 

attack of the Bpin moiety (Scheme 3.35). 

 

Scheme 3. 35. α- and γ-substituted N-allenyl-N-(para-methoxyphenyl)benzamides45 

Next, we moved to study the nature of the electron-withdrawing substituents in the 

nitrogen atom and its influence in the borylation reaction. So, we tested N-Ts and N-Boc 

substituted allenylamides. When performing the reaction with N-allenyltosylamide 21k under 

the optimal conditions, surprisingly we observed a very low conversion of the reaction (Scheme 

3.36). In view of that result, we performed the reaction at higher temperatures (90ᵒC and 

110ᵒC) observing that those temperatures favored the major conversion towards a mixture of 

two hydroborylated products. In both of these products, the boryl moiety was located at the 

central carbon of the allenylamide but with a 2:1 (22:25) ratio in favor of the hydroborylation 

along the terminal double bond. tert-butylallenylcarbamate 21l showed the same behavior.  It 

                                                           
45  Reactions were carried out at 0.2 mmol scale of substrates 23 and 24, using 30 mol% of KOtBu, 1.2 eq of B2pin2 

in 0.5 mL of MeOH at 70ᵒC in 16 h. 
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was necessary a temperature of 110ᵒC to observe the two hydroborylated products since at 

70ᵒC the reaction did not take place. 

 

Scheme 3. 36. Borylation reaction over N-allenyltosylamide 21k and tert-butylallenylcarbamate 21l46 

With these new conditions in hand, we focused on the study of the performance of 

allenyltosylamides and tert-butylallenylcarbamates with different N-aryl substituents (Table 

3.7). In the case of N-Ts allenylamides, no significant differences were detected in the reaction 

outcome nor in the regioselectivity of the process when the aryl substituent presented no 

substitution, or was substituted by electron-rich or electron-poor substituents (Table 3.7, 

entries 1, 3). When the allenyltosylamide incorporated a phenyl group, the yield of the 

products 22m and 25m remained being high as the proportion of the both borylated products 

(Table 3.7, entry 2). When the aryl substituent was replaced by a methyl group in the nitrogen 

atom of the allenyltosylamide the reaction was less efficient detecting 22o and 23o in 60% 

NMR yield, although the ratio between the two borylated products remains being the same 

(2:1) (Table 3.7, entry 4). Replacement of Ts by Boc electron-withdrawing group, led to the 

conclusion that electron-withdrawing groups in the para position of the aromatic substituent 

favored the reaction obtaining the mixture of products with excellent NMR yield (Table 3.7, 

entry 6). On the other hand, para-electron-donating substituents in the aromatic ring, made 

                                                           
46 Reactions were carried out at 0.2 mmol scale of substrates 21k-l, using 30 mol% of KOtBu and 1.2 eq of 
B2pin2 in 0.5 mL of solvent. Conversions measured by 1H-NMR in crude reaction mixtures using naphthalene 
as internal standard based on the consumption of substrate 21k-l. Isolated yield of pure material after flash 
column chromatography purification.  
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the tert-butylallenylcarbamate less reactive towards the attack of the nucleophilic boron 

moiety resulting in a lower yield (Table 3.7, entry 5). Tert-butylallenylcarbamates with no 

substituents in the phenyl substituent placed at nitrogen atom or with a dimethylamino 

substituent in para position performed the reaction with very low yield (Table 3.7, entries 7-8).  

Table 3. 7. Scope of the reaction of N-allenyltosylamides and tert-butylallenylcarbamates 

 

Entry
a 

EWG R Product 
NMR Yield 

(%)
b Yield 22 (%)

c 
Yield 25 (%)

c
 

1 Ts p-OMeC6H4 22k/25k 82 53 28 
2 Ts Ph 22m/25m 86 48 9 
3 Ts p-BrC6H4 22n/25n 84 47 28 
4 Ts CH3 22o/25o 60 20 11 

5 Boc 3,4,5-(MeO)3C6H2 22l/25l 74 41 12 
6 Boc p-BrC6H4 22p/25p 90 51 25 
7 Boc Ph 22q/25q 8 - - 
8 Boc p-(NMe2)C6H4 22r/25r 12 - - 

aReactions were carried out at 0.2 mmol scale of substrates 21k-r, using 30 mol% of KOtBu, 1.2 eq of B2pin2 in 
0.5 mL of MeOH at 110ᵒC in 16 h. bNMR Yields calculated from 1H-NMR spectra with naphthalene as internal 
standard. cIsolated yield of pure material after flash column chromatography purifications. 

The new developed borylation reaction of allenylamides and allenylcarbamates afforded a 

wide range of substituted olefins with a boryl moiety in the double bond. With the aim of 

demonstrating their potential in synthesis, we decided to carry out the functionalization of 

these borylated compounds through a Pd-catalyzed Suzuki-Miyaura cross-coupling reaction 

with 4-iodotoluene in a one-pot process. All the reactions provided the corresponding 

borylation/coupling adducts with excellent conversions as it is shown in Table 3.8. 

N-allenylacetamide 21a furnished the corresponding adduct in a good 72% yield (Table 3.8, 

product 26a). However, replacing the acetyl group by a pivaloyl group, product 26b was 

isolated in very low yield. On the other hand, the use of benzamides provided the 

borylation/coupling adduct in very good yields, as it is the case of N-allenylbenzamides 21h and 

21g (Table 3.8, products 26c, 26d). Finally, the replacement of para-methoxyphenyl substituent 

of the N-allenylacetamide by a para-dimethylaminophenyl substituent provided the reaction 

product in good yield (Table 3.8, product 26e).  
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Table 3. 8. Sequential transition metal-free borylation and Pd-catalyzed Suzuki-Miyaura cross-coupling of 
N-allenyl-N-arylamides.a 

 

 

 
 

aReactions were carried out at 0.2 mmol scale of substrates 21a-b, f-h, using KOtBu (30 mol%), 
B2pin2 (1.2 eq), MeOH (0.4 M), 70ᵒC, 16h; Pd(PPh3)4 (3 mol%), 1-iodo-4-methylbenzene (3 eq), 3 
M KOH, 90ᵒC, 16h. NMR Yields calculated from 1H-NMR spectra with naphthalene as internal 
standard. Isolated yield of pure material after flash column chromatography purification. 
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3.5. Mechanistic insights  

As it has been outlined in the introduction of this chapter, the generally accepted 

mechanism for the transition metal-free borylation of unsaturated systems consists on the 

alkoxide activation of B2pin2 which forms the nucleophilic boryl moiety in the acid-base Lewis 

aduct [MeO-Bpin-Bpin]-[Hbase]+. The nucleophilic sp2 boron unit reacts then with the double 

bond of the unsaturated system after the overlapping between the highly polarized B-B σ 

orbital of the diboron reagent and the C–C π* orbital of the olefin. Afterwards, the B-B bond 

weakens increasing the negative charge density of the olefin and a boracycle-type intermediate 

is formed. After a protonation step, TS II furnishes diborylated product regenerating the 

catalytic species (Scheme 3.37). 

Scheme 3. 37. Mechanism for the transition metal-free borylation of alkenes 

This example of transition metal-free borylation of allenylamides consists on an umpolung 

of the natural reactivity trend of the allenylamide reagent. According with the literature, 

allenylamides bearing electron-withdrawing groups are known to undergo electrophilic 

activation assisted by transition metal complexes or Brønsted acids.47 This activation generates 

a stabilized carbocation that reacts with nucleophilic reagents involving the proximal (attack in 

α position) or distal (attack in γ position) C=C bond.48 However, computational studies 

performed by Dr. J. J. Carbó concluded that in our transition metal-free system, a nucleophilic 

Bpin moiety is in situ generated which is able to attack the central carbon of the allenylamide 

system. Afterwards, two anionic boracyclic intermediates are generated, which undergo a ring-

opening process to form a more stable allylic anion which can be protonated in both α and γ 

positions yielding the final hydroborated products (Scheme 3.38). 

                                                           
47  Lu, T.; Lu, Z.; Ma, Z-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862. 
48  Romano, C.; Jia, M.; Monari, M.; Manoni, E.; Bandini, M. Angew. Chem. Int. Ed. 2014, 53, 10854. 
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Scheme 3. 38. Umpolung reactivity of allenylamides through nucleophilic activation 

To check this mechanistic proposal and to explain the observed stereoselectivity, DFT 

calculations on the key intermediates were also performed employing substrates 21a and 21k 

as examples (Scheme 3.39).49 After locating the two boracycle intermediates formed after the 

borylation of the proximal and distal double bonds, it is possible to conclude that the 

functionalization of the distal C=C bond is thermodynamically preferred for the N-Ac 

substituted allenylamide due to the boracycle formed after the borylation of the distal position 

is energetically more stable (-20.4 kcal/mol vs -16.2 kcal/mol). However, in the case of N-Ts 

substituted allenylamide, both regioisomers are isoenergetic, as we appreciate in the energy 

values for both intermediates (-19.6 kcal/mol and -20.0 kcal/mol for the proximal and distal 

positions respectively). Nevertheless, in the case of both N-substituted allenylamides, the 

allylic species formed afterwards, bearing the Bpin moiety attached to the central position, is 

thermodynamically preferred due to the stabilization of the negative charge by conjugation 

with the exocyclic C=C bond (relative Gibbs free energies of -35.0 kcal/mol for 21k and -30.0 

kcal/mol for 21a). Besides, through the low free-energy barrier involved in the formation of the 

allylic intermediate from the distal boracycles (1.7 kcal/mol and 5.1 kcal/mol for N-Ts and N-Ac-

substituted allenylamides, respectively), it can be concluded that at high reaction 

temperatures, the process is a fast transformation. Finally, the protonation process takes place 

over the allylic intermediate, being the selectivity of the overall process determined in this 

step. In the structure of the allylic anion intermediate it can be observed an anti configuration 

of the amine which yields a trans configuration between the amine and the Bpin moiety as we 

see in the experimental part. 

                                                           
49  Calculations were performed using Gaussian 09 (M06-2X functional) and the 6-311G(d,p) basis set. Energies 

include free energy corrections and the solvent effect of methanol (ε = 32.613) by SMD continuum solvent 
model. 
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With the aim of understanding the difference in reactivity between the α and γ positions 

of allenylamide, a charge distribution analysis was performed. The calculations showed that 

the Cγ is more reactive towards electrophiles since it is more negatively charged, as we can see 

in the values for electrostatic-based atomic charges for both positions, shown in Scheme 3.39. 

The products resulted from the protonation in Cγ are more stable than those obtained from 

protonation in Cα as the relative Gibbs free energy values indicates (7 kcal/mol and 2.6 

kcal/mol for allenylamides 21k and 21a, respectively). However, the selectivity of the process is 

assumed to be kinetically controlled by the irreversible protonation step. 

Scheme 3. 39. Proposed mechanism for the hydroborylation of allenylamides 21a and 21k.50 

 

 

                                                           
50  Relative Gibbs free energies and barriers (ΔGǂ) in kcal/mol. Electrostatic-based atomic charges for the α and γ 

carbons of allyl species in a.u. 
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4. CONCLUSIONS 

Given the results presented in this chapter, the following conclusions can be outlined: 

- N-allenylamides and N-allenylcarbamates have been demonstrated to undergo a 

hydroborylation reaction of distal double bond with B2pin2 under Lewis base 

activation with complete stereocontrol, providing exclusively Z-isomers. 

- The acetyl group results to be crucial for the total stereoselectivity of the reaction, 

obtaining a mixture of two borylated product when other electron-withdrawing 

groups are located in the nitrogen atom.  

- The scope of the methodology has been demonstrated with a variety of substituents 

at the nitrogen atom, obtaining a wide range of borylated products in moderate to 

good yields. 

- The value of the synthesized borylated products as building blocks has been 

demonstrated through the in situ one-pot metal-free borylation of the adducts 

followed by a Pd-catalyzed Suzuki-Miyaura cross-coupling reaction. 

- Mechanistic studies suggested the formation of a 3-membered boracycle 

intermediate formed after the nucleophilic attack of the Bpin moiety to the C=C 

double bond, which undergoes a protonation step leading to the hydroborylated 

product. 
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1. INTRODUCTION 

Due to the lack of electrophilicity of amides compared to parent functional group such as 

esters, much effort has been made concerning the activation and functionalization of amides 

for their use as reagents in synthesis during the last century. The classic methods of activation 

of amides use reagents like POCl3 as it is found in Bischler-Napieralski1 and Vilsmeier-Haack 

reactions.2 Other methodologies imply the activation of amides by the use of strong 

electrophiles such as Lewis acids, generating in situ an iminium ion which could undergo a 

reduction step rendering the corresponding amine.3 Transition-metals can also promote the 

amide activation process by its insertion into the C-N bond.4  Other transformations allow the 

conversion of amides into different functional groups, such as Hofmann rearrangement which 

converts primary amides into primary amines through an isocyanate intermediate (Scheme 

4.1).5 

 

Scheme 4. 1. General methods for activation of amides 

                                                           
1  Bischler, A.; Napieralski, A. Ber. Dtsch. Chem. Ges. 1893, 26, 1903. For a review, see: Cox, E. D.; Cook, J. M. 

Chem. Rev. 1995, 1797. 
2  Vilsmeier, A.; Haack, A. Ber. Dtsch. Chem. Ges. 1927, 60, 119. For some reviews, see: (a) Su, W.; Weng, Y.; 

Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z.; Li, J. Org. Prep. Proced. Int. 2010, 42, 503. (b) Rajput, AP.; Girase, P. 
D. Int. J. Pharm., Chem. Biol. Sci., 2012, 3, 25. 

3  Ravinder, B.; Rajeswar, R. S.; Panasa Reddy, A.; Bandichor, R. Tetrahedron Lett. 2013, 54, 4908. 
4  (a) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. 

Nature 2015, 524, 79. (b) Kono, M.; Harada, S.; Hamada, Y.; Nemoto, T. Tetrahedron 2016, 72, 1395. (c) 
Chaudhari, M. B.; Gnanaprakasam, B. Chem Asian J. 2019, 14, 76. 

5  Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1881, 14, 2725. 
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In recent years the use of trifluoromethanesulfonic anhydride (triflic anhydride) as amide 

activator has been exploited by different research groups successfully.6 Through reaction with 

this reagent, amides are converted in situ into O-trifluoromethanesulfonyloxyiminium 

trifluoromethanesulfonates (iminium triflates) which are active electrophiles that can evolve to 

different species depending on the substitution pattern of the substrate and the employed 

reaction conditions (Scheme 4.2).7 

 

Scheme 4. 2. Activation of amides employing Tf2O 

Through the reaction of secondary and tertiary amides with triflic anhydride in the 

presence of various pyridine bases, it is possible to understand the mechanism and equilibria 

taking place (Scheme 4.3). After the reaction of amide with Tf2O as the triflating agent iminium 

triflate II is formed which can undergo three reaction pathways depending on the substitution 

pattern of the amide. When R4 and R5 are not hydrogen, pyridine is added to the electrophilic 

center, eliminating the triflate and forming the dicationic pyridinium intermediates III or IV, 

depending on the substitution of the nitrogen atom in the amide, which are in equilibrium with 

nitrilium ion V (Pathways A and B). These structures can be employed in several reactions such 

as in the reduction to amines or carbonyl compounds with hydrides and/or organometallic 

reagents. On the other hand, if the substrate presents enolizable protons, the base abstracts 

                                                           
6  (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc, 2006, 128, 14254. (b) Movassaghi, M.; Hill, M. D.; Ahmad, D. K. 

J. Am. Chem. Soc. 2007, 129, 10096. (c) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18. (d) Pelletier, 
G.; Bechara, W. S.; Charette, A. B. J. Am. Chem. Soc. 2010, 132, 12817. (e) Xiao, K.-J.; Wang, A.-E.; Huang, Y.-H.; 
Huang, P.-Q. Asian. J. Org. Chem. 2012, 1, 130. (f) Xiao, K.-J.; Wang, A.-E.; Huang, P.-Q. Angew. Chem. Int. Ed. 
2012, 51, 8314. (g) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J.; Wang, Y.; Xia, X.-E. J. Org. Chem. 2015, 80, 2861. (h) 
Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. Tetrahedron Lett. 2015, 56, 2397. (i) Lumbroso, A.; 
Behra, J.; Kolleth, A.; Dakas, P.-Y.; Karadeniz, U.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. Tetrahedron 
Lett. 2015, 56, 6541. (j) Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. 
Tetrahedron Lett. 2016, 57, 2697. (k) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J. J. Org. Chem. 2016, 81, 9020. (l) 
Tona, V.; de la Torre, A.; Padmanaban, M.; Ruider, S.; González, L.; Maulide, N.  J. Am. Chem. Soc. 2016, 138, 
8348. (m) Di Mauro, G.; Maryasin, B.; Kaiser, D.; Shaaban, S.; González, L.; Maulide, N. Org. Lett. 2017, 19, 
3815. (n) Shaaban, S.; Tona, V.; Peng, B.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 10938. (o) Tona, V.; 
Maryasin, B.; de la Torre, A.; Sprachmann, J.; González, L.; Maulide, N. Org. Lett. 2017, 19, 2662. 

7  Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4221. 
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the α proton, eliminating the triflate anion and N,N-dialkyl keteniminium VI is formed, which 

lays in equilibrium with pyridinium adduct VII (Pathway C). By the selection of the proper 

nucleophile (some examples are shown in the Scheme 4.3), it can be accessed to different 

functional groups containing products. 

 

Scheme 4. 3. Different pathways during activation of amides with Tf2O and a pyridine base 

The possibility provided by this activation manifold to make amides reactive enough to take 

part in organic transformations has opened a new era in organic synthesis and gives chemists 

numerous opportunities to develop new chemical transformations among which nucleophilic 

addition to amides, the α-functionalization of amides and rearrangement processes deserve 

special mention (Figure 4.1).8  

                                                           
8  Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899. 
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Figure 4. 1. Reactivity of amides 

 

1.1. Nucleophilic addition to amides 

While the addition of nucleophiles to different carbonyl functionalities is considered an 

easy transformation nowadays, the addition of nucleophiles to amides has been less explored. 

This could be attributed to the low electrophilicity of the amide carbonyl, as well as the high 

possibility of the hemiaminal intermediate to hydrolyze, and the possibility to suffer from over-

reactions, as a consequence of the higher reactivity of the iminium ion intermediate towards 

the first organometallic reagent (Scheme 4.4). However, despite all the mentioned drawbacks, 

the nucleophilic addition to amides is thought to be a very important transformation these 

days both in the synthesis of pharmacologically active drugs and in the total synthesis of 

diverse natural products. Special mention deserves Weinreb and Comins-Meyers amides that 

have been intensively used in the last decades. Both amides avoid the over-addition 

phenomena of the organometallic reagent by the formation of a stabilized intermediate by the 

chelation of the metal at low temperatures.9 

                                                           
9  (a) Comins, D.; Meyers, A. I. Synthesis 1978, 5, 403. (b) Weinreb, S. M.; Nahm, S. Tetrahedron Lett. 1981, 22, 

3815. 
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Scheme 4. 4. Nucleophilic addition to amides, Weinreb amide and Comins-Meyers amide 

Out of all the amide activation methods, the use of triflic anhydride has allowed to carry 

out the synthesis of a wide number of products by the addition of different nucleophiles to the 

amide functionality. As it can be seen in the example developed by Charette and coworkers, 

the nucleophilic addition of Grignard or diorganozinc reagents to amides is possible through 

the generation of a highly electrophilic imidoyl triflate intermediate.10  This intermediate 

played a dual role: on the one hand, it made the 1,2-addition of the organometallic reagent to 

take place faster than with other functionalities, and on the other hand, it prevented further 

addition reactions by the formation of a less electrophilic ketenimine intermediate (Scheme 

4.5). 

 

                                                           
10  Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228. 
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Scheme 4. 5. Nucleophilic addition of Grignard and organozinc reagents to amides 

 

1.2. Nucleophilic α-functionalization of amides 

The α-functionalization of carbonyl compounds has been traditionally carried out by 

enolate chemistry. In this field, the chemoselective α-functionalization of amides is still 

considered a challenging transformation. However, as a consequence of the inherent 

electronegativity that the oxygen- and nitrogen-based nucleophiles show, its addition to the α 

position of a carbonyl compound requires a prior oxidation step. Due to the requirements that 

enolate chemistry presents, such as the use of strong bases and the presence of over-

reactions, other approaches have been performed over the years. In order to solve these 

issues, some methods have been developed such as the prefunctionalization of the α-position 

with a leaving group which makes the amide more sensitive for the SN2-type substitution, and 

therefore for its functionalization.  

The activation of amides with triflic anhydride has allowed carrying out the synthesis of a 

wide number of branched amides by the addition of different nucleophiles through an 

umpolung process. By the amide activation with triflic anhydride followed by the addition of an 

oxidant (a suitable O-nucleophile, generally pyridine N-oxides), it is possible to convert the 

amide (d2) into an enolonium intermediate (a2).11 This intermediate is electrophilic in nature, 

being able to react with a wide range of nucleophiles (Scheme 4.6).  

                                                           
11  For a recent approach to the chemoselective α-functionalization of amides, see: Gonçalves, C. R.; Lemmerer, 

M.; Teskey, C. J.; Adler, P.; Kaiser, D.; Maryasin, B.; González, L.; Maulide, N. J. Am. Chem. Soc. 2019, 141, 
18437. 
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Scheme 4. 6. Amide activation through an umpolung process: generation of electrophilic enolonium species 

This umpolung event opened a new era in the chemoselective α-functionalization of 

amides employing mild conditions involving nucleophiles of different nature. Maulide and 

coworkers have applied this strategy in the construction of 1,4-dicarbonyl compounds by the 

chemoselective intermolecular cross-coupling of amides.12 The electrophilic enolonium species 

is generated by the reaction of the amide with triflic anhydride and 2,6-lutidine-N-oxide (LNO) 

as oxidant. By the addition of enolates derived from malonates, ketones, esters and amides to 

the enolonium species, 1,4-dicarbonyl compounds could be synthesized in short times under 

mild conditions (Scheme 4.7). As an advantage of this strategy it can be highlighted the 

absence of side products formed after the attack of the nucleophiles to other electrophiles 

sites of the molecule. Years later, the methodology was extended carrying out the first direct 

α-fluorination of amides employing tetrabutylammonium difluorotriphenylsilicate (TBAT) as 

nucleophilic fluorine source which gave access to α-fluorinated amides (Scheme 4.7).13 

 

Scheme 4. 7. α-functionalization of amides through enolonium intermediates 

                                                           
12  Kaiser, D.; Teskey, C. J.; Adler, P.; Maulide, N. J. Am. Chem. Soc. 2017, 139, 16040. 
13  Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Sitte, H. H.; Maulide, N. Nat. Chem. 2019, 11, 329. 
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1.3. Rearrangement reactions 

In addition to the nucleophilic additions and α-functionalization of amides, rearrangement 

reactions have been also reported in the field of amide activation by Tf2O. In 2010, the group of 

Maulide developed a “Claisen-like” rearrangement of keteniminium salts during their work in 

the total synthesis of a natural product.14 This [3,3]-sigmatropic rearrangement afforded 

substituted lactones after an hydrolysis process (Scheme 4.8).  

 

Scheme 4. 8. [3,3]-sigmatropic rearrangement of amides 

The mechanism of this transformation could be explained as follows: first of all, the 

activation of the amide by triflic anhydride takes place forming the keteniminium ion. Then, the 

nucleophilic attack of the lone pair of the oxygen atom of the ether to the central carbon of 

keteniminium generates a vinyl allyl oxonium intermediate which is ideal to suffer from a 

[3,3]-sigmatropic rearrangement, leading to a stabilized carbenium, which leads to the final 

lactone after an hydrolysis step (Scheme 4.9). 

 

Scheme 4. 9. Proposed reaction mechanism for the [3,3] rearrangement 

                                                           
14  Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem. Int. Ed. 2010, 49, 1583. 
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Taking advantage of this novel reactivity, in the following years, different variants of this 

unexpected rearrangement were developed. For example, when an arene was incorporated 

within the alkyl tether, which restricted the conformational freedom and facilitated the 

cyclization/rearrangement of the starting amide, the transformation took place in very mild 

conditions.15 Besides, a “benzyl variant” of the reaction was also developed by replacing the 

allyl moiety by a benzyl group. This transformation furnished synthetically useful α-arylated 

lactones in short times under microwave irradiation (Scheme 4.10).16 

 

Scheme 4. 10. [3,3]-sigmatropic rearrangements of diverse substituted amides 

Alternatively, a formal chemoselective α-arylation of amides through the application of a 

related strategy was developed by the same group in 2014,17 a transformation which is 

considered a challenge in synthetic chemistry. This method resulted to be a breakthrough due 

to the advantages it presented over similar methodologies which employed strong bases or 

transition metals constituting the first arylation of amides in the presence of enolizable 

functional groups. In this process the preformation of the activated amide resulted to be 

crucial, being this process very sensitive towards some reaction parameters, such as the base. 

The base presented a dual role: on the one hand, it had to be nucleophilic and basic enough to 

convert the iminium triflate into the enamine, and on the other hand, it had to be a good 

                                                           
15  Peng, B.; Donovan, D. H. O.; Jurberg, I. D.; Maulide, N. Chem. Eur. J. 2012, 18, 16292. 
16  Valerio, V.; Madelaine, C.; Maulide, N. Chem. Eur. J. 2011, 17, 4742. 
17  Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462. 
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enough leaving group to be replaced by the sulfoxide furnishing the O-protected enamine 

which would undergo the [3,3] rearrangement (Scheme 4.11). 

 

Scheme 4. 11. [3,3]-sigmatropic rearrangement directed to α-arylation of amides 

In view of all the transformations that can be carried out through the novel Claisen-like 

rearrangement developed by the group of Maulide by the use of amide activation concept, 

more efforts are been doing in the development of more challenging methodologies, some of 

them will be explained in this chapter. 
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2. SPECIFIC OBJECTIVES AND WORK PLAN 

The literature precedents presented in this chapter have clearly stated the capability of 

triflic anhydride to activate amides and allow them to participate in a wide range of synthetic 

transformations. Moreover, the unexpected [3,3]-sigmatropic rearrangement developed by the 

group has given the access to molecules difficult to prepare to date (Scheme 4.12). In this 

context, the group of Prof. Maulide in University of Vienna became interested in developing 

this rearrangement reaction in an asymmetric fashion.  

 

Scheme 4. 12. Previously developed non-asymmetric rearrangement 

The induction of chirality will be carried out by the employment of chiral auxiliaries. These 

molecules consist on optically or enantiomerically pure compounds which are attached to 

substrates and influence the course of the reaction. This strategy is based on the 

transformation of the enantiotopic faces of the achiral substrate into diastereotopic by the 

introduction of chirality by an auxiliary. Thus, the overall process turned to be enantioselective 

proceeding through diastereoselective transformations which usually involve recovering the 

chiral auxiliary after the reaction takes place. In order to carry out the facial discrimination of 

the starting material, the auxiliary can play two different roles: on the one hand, it could act as 

a stereodirecting element by preventing sterically the approach of the reagent from one of the 

faces and on the other hand, it can direct the entry of the reagent by its coordination. Out of all 

developed chiral auxiliaries, such as Evans oxazolidinones,18 Oppolzer sultam19 or Myers 

pseudoephedrine,20 the induction of chirality in the amide activation/[3,3]-sigmatropic 

rearrangement will be carried out employing chiral enantiopure substituted pyrrolidines as it is 

closely related to the previous works developed in the group.  

                                                           
18  Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737. 
19  Oppolzer, W.; Chapuis, C.; Bernardelli, G. Helv. Chim. Acta, 1984, 67, 1397. 
20  Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361. 
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In view of these precedents, the goal of this short stay was continuing with the 

enantioselective version of amide activation/[3,3]-sigmatropic rearrangement reaction with 

the optimal reaction conditions previously optimized by the group (Scheme 4.13).  

 

Scheme 4. 13. Proposed amide activation/asymmetric [3,3]-rearrangement 

 To achieve this objective, the following work plan was established: 

- Synthesis of the starting materials: first of all, the synthesis of new substrates with 

different substitution pattern will be faced with the optimized synthetic route 

developed by the group (Scheme 4.14). Achiral substrates will be initially prepared by 

incorporation of pyrrolidine, while the use of 2-substituted enantiopure pyrrolidines 

will render chiral substrates for further evaluation. 

 

Scheme 4. 14. Synthesis of the starting materials 

- Scope of the reaction: once we have the starting materials in hand, they will be tested 

in the amide activation/[3,3]-sigmatropic rearrangement sequence. The scope and 

limitations of the developed method will be studied through the evaluation of 

structurally different substrates (Scheme 4.15). 
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Scheme 4. 15. Scope of the reaction 
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3. RESULTS AND DISCUSSION 

3.1. Previous work 

First attempts in developing the asymmetric version of the amide 

activation/[3,3]-sigmatropic rearrangement were carried out by Dr. Daniel Kaiser. Among the 

substrates studied, substrates of increased rigidity were chosen to carry out the stated 

objective since when linear substrates were employed, high values of enantioselectivity were 

not achieved. The initial studies for this reaction were based on the optimization of different 

parameters such as chiral pyrrolidines, bases, temperatures and a hydrolysis process, 

concluding that 2-(diphenylmethyl)pyrrolidine was the best auxiliary and 2-iodopyridine the 

best base (Scheme 4.16). The rearrangement was almost instantaneous at 23ᵒC which was 

followed by a hydrolysis step performed in potassium dihydrogen phosphate at 30ᵒC during 15 

hours which enabled the removal of the chiral auxiliary. With these conditions in hand, model 

allyl isochromanone was obtained in 63% yield and 90% enantiomeric excess. These conditions 

were tested in other different substrates such as those with substitution at allylic moiety or in 

the aromatic ring, having moderate yields and good enantioselectivities in all cases, but 

unfortunately, additional substrates, such as those with alkylic or electron-withdrawing 

substituents at the allylic moiety, could not be transformed into the desired products. 
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Scheme 4. 16. Previous results 

 

3.2. Synthesis of starting materials 

With the optimal conditions in hand and in view of the substrates which were able to carry 

out the reaction, we initiated our work synthesizing substrates with substitution in the allylic 

moiety. For that purpose, both achiral and chiral substrates were prepared through a synthesis 

consisting first on the introduction of the auxiliary by a nucleophilic substitution which 

proceeded with a ring-opening reaction of the isochromanone and second, on the 

incorporation of the allylic moiety by a nucleophilic substitution with allyl bromides (Scheme 

4.17).  
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Scheme 4. 17. Synthesis of starting amides 29 and 30 

As it could be noticed in the previous work, due to the acidic proton to carbonyl, a possible 

epimerization process could be observed in the desired product. In order to avoid that 

problem, we also focused our attention into the synthesis of α-substituted amides that would 

generate a non-epimerizable quaternary stereocenter. For these reagents, 

(R)-2-methylpyrrolidine was selected as it was found to be the best auxiliary in some 

preliminary experiments (Scheme 4.18). 

 

Scheme 4. 18. Synthesis of α-substituted starting amides 34 and 35 
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3.3. Amide activation/[3,3]-sigmatropic rearrangement 

With all the substrates in hand, we moved to test the amide activation/[3,3]-sigmatropic 

rearrangement sequence. First of all, we tested substrates 30a-c without a substituent in alfa 

position to carbonyl under the developed conditions (2.00 equivalents of 2-iodopyridine, 1.05 

equivalents of triflic anhydride in CH2Cl2 running the reaction from -78ᵒC to room 

temperature). In all cases, the reaction took place after 10 minutes with full conversion of the 

starting material to the iminium intermediate (Table 4.1). However, the hydrolysis step took 

place with low yields. As it happened during the optimization of the reaction conditions carried 

out by Dr. Daniel Kaiser, the enantiomeric ratio of the obtained isochromanones was lower 

than the enantiomeric ratio obtained on the iminium intermediate, which was attributed to 

epimerization in the basic media of the reaction. However, neither doing a very quick 

purification in flash column chromatography, neither deactivating the silica with triethylamine, 

nor doing the purification step in basic alumina could the problem of epimerization be solved. 

As a solution, it was decided to use the reaction crudes to determine the e.e. values. However, 

due to the low conversion observed in the hydrolysis step, the enantiomeric excesses could not 

be precisely determined due to low UV-Vis absortion of obtained products. 
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Table 4. 1. Scope of the reaction using amides 30a-c 

 

 

 
 

aReactions were carried out at 0.1 mmol scale of substrates 30a-c, using 0.2 mmol of 2-I-py, 
0.105 mmol of Tf2O in 0.5 mL of CH2Cl2 at -78ᵒC. Isolated yield of pure material after flash 
column chromatography purification. 

In view of the epimerization problems that these substrates presented, we focused our 

attention in amides with a methyl group in alfa position to carbonyl to perform the amide 

activation/[3,3]-sigmatropic rearrangement in which this epimerization event cannot take 

place. When triflic anhydride was added to the substrates 35a-d, after microwave heating at 

80ᵒC for 10 minutes, formation of the iminium intermediate generated after the 

rearrangement step was observed. However, when the hydrolysis process was set up, no 

isochromanone could be isolated. In view of these results, the hydrolysis step was carried out 

at higher temperature although without success (Scheme 4.20).  
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Scheme 4. 19. Amide activation/[3,3]-sigmatropic rearrangement using amides 35a-d 

At this point, diverse hydrolysis conditions were tested with different substituted 

substrates with unfruitful results in all the cases (Table 4.2). 

Table 4. 2. Tested hydrolysis conditions 

Entry R
 

Substrate Hydrolysis Conditions
 

T (ᵒC)
 

1 CN 35a EtOAc/KH2PO4 aq. 30 

2 

CH2Cl 35b 

NaOAc/AcOH 25 

3 NaOAc/AcOH 50 

4 HCl 1 M 25 

5 
CH2OAc 35c 

KOH, MeOH/H2O 25 

6 NaOAc/AcOH 60 

7 

CH2OMe 35d 

EtOAc/KH2PO4 aq. 80 

8 EtOAc/KH2PO4 aq., LiBr 60 

9 EtOAc/KH2PO4 aq., LiBr 80 

10 LiOH, MeOH/H2O 60 

None of the tested hydrolysis conditions indicated in Table 4.2 succeeded in the synthesis 

of tetrasubstituted isochromanones. When two electron-withdrawing groups were introduced 

at the allyl substituent (substrates 35a, 35b, 35c), the desired product was not observed. 

However, when different hydrolysis conditions were tested over the ether 35d, the product 

could be detected by HRMS, but only traces could be isolated. Development of a proper 

methodology for the synthesis of tetrasubstituted chiral isochromanones and further 

investigations are now in progress. 
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4. CONCLUSIONS 

From the work presented in this chapter, the following conclusions can be outlined: 

- Triflic anhydride is a convenient reagent for the activation of amides, allowing them 

to take part in a wide range of transformations. 

- “Claisen-like” [3,3]-sigmatropic rearrangement constitutes an excellent methodology 

for the construction of substituted isochromanones, representing an alternative 

methodology to classical methods. 

- 2-substituted pyrrolidines are useful chiral auxiliaries with promising results in terms 

of the yield and enantioselectivity. 

- Exploration of the scope of the reaction with non-substituted and α-substituted 

amides shows variable yields and enantiomeric ratios. Further optimization will be 

done in due course. 
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FINAL CONCLUSIONS 

The present work covers the study and development of novel stereoselective 

transformations under Lewis base catalysis relying on the use of organocatalysts as efficient 

promoters of these processes. Experimental results collected during the accomplishment of the 

present work lead to the following conclusions: 

Aminocatalytic enantioselective vinylcyclopropane-cyclopentene (VCP-CP) 

rearrangement. It has been demonstrated the ability of chiral secondary amines as suitable 

promoters for the development of the organocatalytic enantioselective version of 

vinylcyclopropane-cyclopentene (VCP-CP) rearrangement. 2-vinyl-substituted 

cyclopropylacetaldehydes were employed as substrates in this reaction, leading to a wide 

variety of cyclopentenes in good yields and good enantiocontrol. Experimental studies 

showed that the reaction proceeded stepwise.  

Transition metal-free stereoselective borylation of allenylamides. It has been shown that 

allenylamides can be stereoselectively borylated through the metal-free activation of 

bis(pinacolato)diboron. N-substituted allenylamides undergo regioselective 

hydroborylation reaction of distal double bond under Lewis base activation of B2pin2. The 

reaction proceeded with a complete stereocontrol in the case of allenylacetamides, 

providing exclusively Z-isomers. When other electron-withdrawing groups were located in 

the allenamides system, a mixture of two borylated diastereoisomeric products was 

obtained. DFT studies demonstrated that this reaction constituted an umpolung reactivity 

of allenylamides, leading to a nucleophilic activation of these substrates.  

Amide activation: synthesis of chiral isochromanones. The study of the asymmetric [3,3]-

sigmatropic rearrangement has been carried out in the research group of Prof. N. Maulide 

in University of Vienna (Austria). By the use of 2-substituted pyrrolidines as chiral 

auxiliaries, asymmetric [3,3]-sigmatropic rearrangement was performed under amide 

activation conditions giving access to a variety of α-substituted isochromanones in 

moderate yields.  
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1. GENERAL METHODS AND MATERIALS
1
 

Monodimensional and/or bidimensional nuclear magnetic resonance proton, carbon and boron 

spectra (
1
H NMR, 

13
C NMR, 

11
B NMR) were acquired at 25ᵒC on a Bruker AC-300 spectrometer (300 

MHz for 
1
H, 75.4 MHz for 

13
C, 128.3 MHz for 

11
B) or a Bruker AC-500 spectrometer (500 MHz for 

1
H 

and 125.7 MHz for 
13

C) at the indicated temperature. Chemical shifts (δ) are reported in ppm 

relative to residual solvent signals
2
 (CHCl3, 7.26 ppm for 

1
H NMR, CDCl3, 77.16 ppm for 

13
C NMR) and 

coupling constants (J) in hertz (Hz). The following abbreviations are used to indicate the multiplicity 

in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; app, apparent; m, multiplet; br s, broad 

signal. 
13

C NMR spectra were acquired on a broad band decoupled mode using DEPT experiments 

(Distorsionless Enhancement by Polarization Transfer) for assigning different types of carbon 

environment. Selective n.O.e., NOESY, COSY, HSQC and HMBC experiments were acquired to 

confirm precise molecular configurations and to assist in deconvoluting complex multiplet signals.
3
 

Infrared spectra (IR) were measured in a Jasco FT/IR 4100 (ATR) in the interval between 4000 and 

600 cm
-1

 with a 4 cm
-1

 resolution. Only characteristic bands are given in each case. Mass spectra 

(MS) were recorded on an Agilent 7890A gas chromatograph coupled to an Agilent 5975 quadrupole 

mass spectrometer under electronic impact ionization (EI) 70 eV. The obtained data is presented in 

mass units (m/z) and the values found in brackets belong to the relative intensities comparing to the 

base peak (100%). High-resolution mass spectra (HRMS) were recorded on an Acquity UPLC coupled 

to a QTOF mass spectrometer (SYNAPT G2 HDMS) using electrospray ionization (ESI
+
 or ESI

-
). Melting 

points (M.p.) were measured in a Stuart SMP30 apparatus in open capillary tubes and are 

uncorrected. The enantiomeric excess (e.e.) of the products was determined by High Performance 

Liquid Chromatography (HPLC) on a chiral stationary phase in a Waters chromatograph coupled to a 

Waters photodiode array detector. Daicel Chiralpak IA, IC, AD-H, ASH and IE-3 and Chiralcel OD3 and 

ID3 columns (0.46 × 25 cm) were used; specific conditions are indicated for each case. Specific 

optical rotations ([α]D 
20

) were measured at 20ᵒC on a Jasco P-2000 polarimeter with sodium lamp at 

589 nm and a path of length of 1 dm. Solvent and concentration are specified in each case. X-ray 

data collections were performed in an Agilent Supernova diffractometer equipped with an Atlas CCD 

area detector, and a CuKα micro-focus source with multilayer optics (λ = 1.54184 Å, 250 µm FWHM 

beam size). The sample was kept at 150 K with an Oxford Cryosystems Cryostream 700 cooler. The 

quality of the crystals was checked under a polarizing miscroscope, and a suitable crystal or 

                                                           
1   SGIker technical support (MEC, GV/EJ and European Social Fund) is gratefully acknowledged (NMR and X-ray 

analysis). 
2   Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512. 
3   Kinss, M.; Sanders, J. K. M. J. Mag. Res. 1984, 56, 518. 
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fragment was mounted on a Mitegen Micromount
TM

 using Paratone N inert oil and transferred to 

the diffractometer. 

Analytical grade solvents and commercially available reagents were used without further 

purification. Anhydrous solvents were purified and dried with activated molecular sieves prior to 

use.
4
 For reactions carried out under inert conditions, the argon was previously dried through a 

column of P2O5 and CaCl2. All the glassware was dried for 12 hours prior to use in an oven at 140ᵒC, 

and allowed to cool under a dehumidified atmosphere. Reactions were monitored using analytical 

thin layer chromatography (TLC), in pre-coated silica-backed plates (Merck Kiesegel 60 F254). These 

were visualized by ultraviolet irradiation, p-anisaldehyde, phosphomolybdic acid or potassium 

permanganate stains.
5
 For flash chromatography Silicycle 40-63, 230-400 mesh silica gel was used.

6
 

For the removal of the solvents under reduced pressure Büchi R-210 rotatory evaporators were 

used. For precision weighing Sartorius Analytical Balance Practum 224-1S was used (± 0.1 mg). 

 

  

                                                           
4  (a) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 7th ed.; Elsevier: Oxford, 2012. (b) 

Williams, D. B. G.; Lawton, M. J. Org. Chem. 2010, 75, 8351. 
5  Stahl, E. Thin Layer Chromatography, Springer Verlag: Berlin, 1969. 
6  Still, W. C.; Kahn, H.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923. 
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2. AMINOCATALYTIC ENANTIOSELECTIVE VINYLCYCLOPROPANE-CYCLOPENTENE 

(VCP-CP) REARRANGEMENT 

2.1. Synthesis of starting materials 

 

 

SI1 and SI3 were reported compounds and they were prepared following the procedure 

described in the literature. Spectroscopic data were consistent with those reported in the 

literature.
7
 

 

 

 

 

                                                           
7 (a) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (b) Zhou, Y.; Gupta, A. 

K.; Mukherje. M.; Zheng, L.; Wulff, W. D. J. Org. Chem. 2017, 82, 13121. 
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2.1.1. Synthesis of SI2a-c 

 

General procedure A: To a solution of SI1 (8.0 mmol, 1.0 eq) in CH2Cl2 (33 mL, 0.24 M), 
corresponding aldehyde (16.0 mmol, 2.0 eq) was added. Then, a solution of 2

nd
 generation Grubbs 

catalyst (0.02 mmol, 2.5 mol%) in CH2Cl2 (5 mL, 1.5 M) was added in portions, and the reaction 
mixture was heated to reflux for 2 hours. Once the reaction was finished, the solvent was removed 
and the crude was then purified by flash column chromatography to afford pure SI2a-c. 

 

(E)-5-((tert-butyldiphenylsilyl)oxy)pent-2-enal (SI2a). Following the 
general procedure A, SI2a (2.10 g, 6.2 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 65% yield as a 

yellow oil starting from SI1 (3.00 g, 9.7 mmol), crotonaldehyde (1.60 mL, 19.3 mmol), 2
nd

 generation 
Grubbs catalyst (0.14 g, 0.2 mmol) and CH2Cl2 (47 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.49 (d, J 

= 7.9 Hz, 1H, CHO), 7.84-7.55 (m, 4H, Carom-H), 7.50-7.33 (m, 6H, Carom-H), 6.85 (dt, J = 15.7, 6.9 Hz, 
1H, CH=CH), 6.16 (ddt, J = 15.7, 7.9, 1.4 Hz, 1H, CH=CH), 3.84 (t, J = 6.1 Hz, 2H, SiOCH2CH2), 2.56 (qd, 
J = 6.2, 1.4 Hz, 2H, SiOCH2CH2), 1.06 (s, 9H, 3 x CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 194.1 

(CHO), 155.6 (CH=CH), 135.7 (Carom-H), 134.5 (CH=CH), 133.5 (Carom-Si), 129.9 (Carom-H), 127.9 
(Carom-H), 62.1 (SiOCH2CH2), 36.0 (SiOCH2CH2), 27.0 (3 x CH3), 19.3 (SiC(CH3)3). IR (ATR): 1699 (C=O 
st), 822 (C=CH2 δ oop) cm

-1
. MS (EI) m/z (%): 281 (M

+
-

t
Bu, 19), 251 (30), 199 (100), 173 (32), 143 (14), 

123 (14), 105 (15), 77 (19), 53 (15). 

(E)-5-((tert-butyldiphenylsilyl)oxy)-2-methylpent-2-enal (SI2b). 
Following the general procedure A, SI2b (2.00 g, 5.7 mmol) was isolated 
by FC (petroleum ether/EtOAc gradient from 49:1 to 9:1) in 65% yield as 

a brown oil starting from SI1 (2.70 g, 8.6 mmol), methacrolein (1.40 mL, 17.1 mmol), 2
nd

 generation 
Grubbs catalyst (0.13 g, 0.4 mmol) and CH2Cl2 (36 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.41 (s, 

1H, CHO), 7.78-7.59 (m, 4H, Carom-H), 7.49-7.39 (m, 6H, Carom-H), 6.55 (t, J = 7.3 Hz, 1H, CH=C), 3.87 (t, 
J = 6.3 Hz, 2H, SiOCH2CH2), 2.62 (q, J = 6.6 Hz, 2H, SiOCH2CH2), 1.75 (s, 3H, CH3), 1.10 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 195.1 (CHO), 151.2 (CH=C), 140.6 (CH=C), 135.6 (Carom-H), 133.5 
(Carom-Si), 129.8 (Carom-H), 127.8 (Carom-H), 62.2 (SiOCH2CH2), 32.4 (SiOCH2CH2), 26.9 (3 x CH3), 19.2 
(SiC(CH3)3), 9.4 (CH3). IR (ATR): 2930 (C-H st), 1684 (C=O st), 1648 (C=C st) cm

-1
. MS (EI) m/z (%): 295 

(M
+
-

t
Bu, 75), 265 (37), 255 (M

+
-OTBDPS, 1), 217 (26), 199 (100), 181 (34), 97 (M

+
-C6H9O, 1), 78 (21), 

57 (14). HRMS: Calculated for [C22H29O2Si]
+
: 353.1937 [(M+H)

+
]; found: 353.1934. 

(E)-5-((tert-butyldiphenylsilyl)oxy)-2-ethylpent-2-enal (SI2c). Following 
the general procedure A, SI2c (0.50 g, 1.3 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 49:1 to 9:1) in 40% yield as a yellow 

oil starting from SI1 (1.00 g, 3.2 mmol), ethylacrolein (0.66 mL, 6.4 mmol), 2
nd

 generation Grubbs 
catalyst (0.14 mg, 0.2 mmol) and CH2Cl2 (16 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes 

minor diastereoisomer resonances, d.r.: 1:2.8): 10.13* (s, 1H, CHO), 9.39 (s, 1H, CHO), 7.88-7.62 (m, 
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4H, Carom-H), 7.50-7.40 (m, 6H, Carom-H), 6.52 (dt, J = 14.8, 7.7 Hz, 1H, CH=C), 3.87 (dt, J = 11.3, 6.2 Hz, 
2H, SiOCH2CH2), 2.83* (q, J = 6.8 Hz, 2H, CH2CH3), 2.64 (q, J = 6.6 Hz, 2H, CH2CH3), 2.28 (qd, J = 7.6, 
2.5 Hz, 2H, SiOCH2CH2), 1.13 (s, 9H, 3 x CH3), 0.99-0.96 (t, J = 7.6 Hz, 3H, CH2CH3). 

13
C NMR (75.4 

MHz, CDCl3) (δ, ppm): 194.8 (CHO), 191.1* (CHO), 150.9 (CH=C), 146.4* (Carom-Si), 144.3 (CH=C), 
143.2* (CH=C), 135.6 (Carom-H), 133.5 (Carom-Si), 129.9 (Carom-H), 127.8 (Carom-H), 62.8* (SiOCH2CH2), 
62.4 (SiOCH2CH2), 32.1 (SiOCH2CH2), 29.9* (SiOCH2CH2), 26.9 (3 x CH3), 26.8* (3 x CH3), 23.3* 
(CH2CH3), 19.2 (SiC(CH3)3), 17.4 (CH2CH3), 13.4 (CH2CH3), 13.1* (CH2CH3). IR (ATR): 2972 (C-H st), 
1738 (C=O st) cm

-1
. MS (EI) m/z (%): 295 (30), 265 (26), 227 (14), 199 (100), 181 (23), 147 (10), 123 

(12), 105 (10), 78 (19), 57 (12). HRMS: calculated for [C23H31O2Si]
+
: 367.2093 [(M+H)

+
]; found: 

367.2099. 

 

2.1.2. Synthesis of SI4d-e 

 

General procedure B: To a solution of phosphonate 10a-b
8
 (80.0 mmol, 2.0 eq) in THF (250 mL, 

0.16 M) at 0ᵒC, NaH (60 wt.% in mineral oil, 80.0 mmol, 2.0 eq) was added and the solution was 

stirred at room temperature for 45 minutes. The reaction mixture was then cooled to 0ᵒC and a 

solution of the aldehyde SI3 (40.0 mmol, 1.0 eq) in THF (150 mL, 0.27 M) was added dropwise, 

stirring at that temperature for 2 hours. Once the reaction was finished, it was quenched with H2O 

(20 mL), diluted with Et2O (20 mL) and the aqueous layer was extracted with Et2O (3 x 20 mL). 

Combined organic extracts were washed with brine (2 x 20 mL), dried over Na2SO4 and concentrated 

in vacuo. The crude was then purified by flash column chromatography to afford pure SI4d-e. 

 

Ethyl 5-((tert-butyldimethylsilyl)oxy)-2-propylpent-2-enoate (SI4d). 
Following the general procedure B, SI4d (6.00 g, 20.0 mmol) was isolated by 
FC (petroleum ether/EtOAc gradient from 19:1 to 9:1) in 40% yield as a 
yellow oil starting from SI3 (9.45 g, 50.0 mmol), ethyl 

2-(diethoxyphosphoryl)pentanoate 10a (26.50 g, 100.0 mmol), NaH (4.00 g, 100.0 mmol) and THF 
(275 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances; d.r.: 

1:0.9): 6.74 (t, J = 7.4 Hz, 1H, CH=C), 5.89* (t, J = 7.1 Hz, 1H, CH=C), 4.21-4.11 (m, 2H, OCH2CH3), 
3.70-3.63 (m, 2H, SiOCH2CH2), 2.68-2.35 (m, 2H, CH2CH2CH3), 2.32-2.16 (m, 2H, SiOCH2CH2), 1.46-
1.34 (m, 2H, CH2CH2CH3), 1.31-1.17 (m, 3H, OCH2CH3), 0.86 (s, 9H, 3 x CH3, CH2CH2CH3), 0.02 (s, 6H, 2 

                                                           
8  10a and 10b were reported compounds and they were prepared following the procedure described in the 

literature. Spectroscopic data were consistent with those reported in the literature. (a) Gastl, C.; Laschat, S. 
Synthesis 2010, 15, 2643. (b) Pieroni, M.; Annunziato, G.; Beato, C.; Wouters, R.; Benoni, R.; Campanini, B.; 
Pertinhez, T. A.; Bettati, S.; Mozarelli, A.; Constantino, G. J. Med. Chem. 2016, 59, 2567. 
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x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 168.2 (C=O), 167.9* (C=O), 138.7 (CH=C), 137.7* (CH=C), 
134.0 (CH=C), 133.6* (CH=C), 62.7 (SiOCH2CH2), 62.1* (SiOCH2CH2), 60.3 (OCH2CH3), 60.1* 
(OCH2CH3), 36.7 (SiOCH2CH2), 33.3* (SiOCH2CH2), 32.4 (CH2CH2CH3), 28.9* (CH2CH2CH3), 26.0 (3 x 
CH3), 22.6 (CH2CH2CH3), 22.2* (CH2CH2CH3), 18.4 (SiC(CH3)3), 18.3* (SiC(CH3)3), 14.4 (OCH2CH3), 14.3* 
(OCH2CH3),  14.1 (CH2CH2CH3), 13.7* (CH2CH2CH3), -5.2 (2 x CH3), -5.2* ( 2 x CH3). IR (ATR): 2959 (C-H 
st), 2878 (C-H st), 1713 (C=O st), 1099 (Si-O st) cm

-1
. MS (EI) m/z (%): 257 (M

+
-C3H7, 2), 243 (M

+
-

t
Bu, 

100), 197 (24), 169 (M
+
-OTBS, 7), 131 (M

+
-C10H17O2, 1), 103 (21), 89 (27), 75 (54), 73 (39). 

Ethyl 2-(3-((tert-butyldimethylsilyl)oxy)propylidene)hex-5-enoate (SI4e). 
Following the general procedure B, SI4d (3.35 g, 10.7 mmol) was isolated by 
FC (petroleum ether/EtOAc gradient from 19:1 to 9:1) in 30% yield as a 
yellow oil starting from SI3 (6.74 g, 35.8 mmol), ethyl 
2-(diethoxyphosphoryl)hex-5-enoate 10b (19.90 g, 71.5 mmol), NaH (2.86 g, 
71.5 mmol) and THF (200 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm) (* 

denotes minor diastereoisomer resonances; d.r.: 1:0.6): 6.78 (t, J = 7.4 Hz, 1H, CH=C), 5.95* (t, J = 7.2 
Hz, 1H, CH=C), 5.86-5.70 (m, 1H, CH2CH2CH=CH2), 5.06-4.89 (m, 2H, CH2CH2CH=CH2), 4.26-4.12 (m, 
2H, OCH2CH3), 3.72-3.61 (m, 2H, SiOCH2CH2), 2.70-2.58 (m, 2H, SiOCH2CHaHb), 2.44-2.29 (m, 3H, 
SiOCH2CHaHb, CH2CH2CH=CH2), 2.22-2.09 (m, 2H, CH2CH2CH=CH2), 1.33-1.22 (m, 3H, OCH2CH3), 0.87 
(s, 9H, 3 x CH3), 0.04 (s, 6H, 2 x CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 167.9 (C=O), 167.7* (C=O), 

139.3* (CH=C), 138.7 (CH=C), 138.1* (CH2CH2CH=CH2), 138.0 (CH2CH2CH=CH2), 133.3* (CH=C), 132.8 
(CH=C), 115.0 (CH2CH2CH=CH2), 115.0 (CH2CH2CH=CH2), 62.6 (SiOCH2CH2), 62.1* (SiOCH2CH2), 60.4* 
(OCH2CH3), 60.2 (OCH2CH3), 34.2 (CH2CH2CH=CH2), 33.5 (SiOCH2CH2), 33.4* (SiOCH2CH2), 33.3 
(CH2CH2CH=CH2), 32.4* (CH2CH2CH=CH2), 26.0 (3 x CH3), 18.4* (SiC(CH3)3), 18.4 (SiC(CH3)3), 14.4 
(OCH2CH3), 14.4* (OCH2CH3), -5.2 (2 x CH3), -5.2 (2 x CH3). IR (ATR): 2926 (C-H st), 2861 (C-H st), 1716 
(C=O st), 1095 (Si-O st) cm

-1
. MS (EI) m/z (%): 257 (M

+
-C4H7, 6), 255 (M

+
-

t
Bu, 100), 239 (M

+
-C3H5O2, 

1), 197 (42), 181 (M
+
-OTBS, 5), 131 (M

+
-C11H17O2, 1), 103 (18), 89 (25), 75 (46), 73 (39). 

 

2.1.3. Synthesis of 1a-e 

 

General procedure C: To a solution of the corresponding aldehyde SI2a-c (4.0 mmol, 1.0 eq) in 

MeOH (20 mL, 0.2 M) at 0ᵒC, NaBH4 (4.4 mmol, 1.1 eq) was added portionwise and the reaction 

mixture was stirred at 0ᵒC for 5 minutes. Once the reaction was finished, it was quenched with H2O 

(20 mL) and diluted with EtOAc (20 mL). HCl 1 M (20 mL) was added and the aqueous layer was 



Experimental section  185 

 

extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (2 x 20 mL), 

dried over Na2SO4 and concentrated in vacuo. The crude was then purified by flash column 

chromatography to afford pure 1a-c.  

 

(E)-5-((tert-butyldiphenylsilyl)oxy)pent-2-en-1-ol (1a). Following the 

general procedure C, 1a (1.40 g, 4.1 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 7:3) in 68% yield as a yellow oil starting from SI2a (2.00 

g, 6.0 mmol), NaBH4 (0.25 g, 6.6 mmol) and MeOH (30 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.76 

(dt, J = 6.3, 1.7 Hz, 4H, Carom-H), 7.40 (ddt, J = 8.7, 7.5, 4.6 Hz, 6H, Carom-H), 5.72-5.62 (m, 2H, CH=CH), 

4.07 (dd, J = 3.0, 1.7 Hz, 2H, CH2OH), 3.71 (t, J = 6.6 Hz, 2H, SiOCH2CH2), 2.38-2.24 (m, 2H, 

SiOCH2CH2), 1.49-1.62 (br s, 1H, OH), 1.05 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

135.2 (Carom-H), 133.5 (Carom-Si), 130.9 (CH=CH), 129.3 (Carom-H), 128.3 (CH=CH), 127.4 (Carom-H), 63.4 

(CH2OH), 62.7 (SiOCH2CH2), 35.3 (SiOCH2CH2), 26.6 (3 x CH3), 18.9 (SiC(CH3)3). IR (ATR): 3347 (O-H st), 

1741 (C=C st), 1103 (Si-O st) cm
-1

. MS (EI) m/z (%): 283 (M
+
-

t
Bu, 1), 265 (M

+
-
t
Bu-H2O, 11), 229 (19), 

199 (100), 181 (9), 129 (7), 105 (4), 78 (15), 51 (4). 

(E)-5-((tert-butyldiphenylsilyl)oxy)-2-methylpent-2-en-1-ol (1b).  

Following the general procedure C, 1b (0.67 g, 1.9 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 9:1 to 8:2) in 85% yield as a 

yellow oil starting from SI2b (0.80 g, 2.2 mmol), NaBH4 (0.92 g, 2.4 mmol) and MeOH (11 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 7.75-7.66 (m, 4H, Carom-H), 7.42-7.35 (m, 6H, Carom-H), 5.42 (tq, J = 

7.3, 1.4 Hz, 1H, CH=C), 3.98 (s, 2H, CH2OH), 3.72 (t, J = 6.9 Hz, 2H, SiOCH2CH2), 2.43-2.29 (m, 2H, 

SiOCH2CH2), 1.64 (s, 3H, CH3), 1.61-1.55 (br s, 1H, OH), 1.10 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 136.7 (CH=C), 135.7 (Carom-H), 134.1 (Carom-Si), 129.7 (Carom-H), 127.7 (Carom-H), 122.2 

(CH=C), 68.8 (CH2OH), 63.6 (SiOCH2CH2), 31.3 (SiOCH2CH2), 27.0 (3 x CH3), 19.3 (SiC(CH3)3), 13.8 

(CH3). IR (ATR): 3346 (O-H st), 2937 (C-H st), 1738 (C=C st) 1105 (Si-O st) cm
-1

. MS (EI) m/z (%): 279 

(M
+
-

t
Bu-H2O, 6), 229 (18), 199 (100), 181 (11), 152 (3), 135 (6), 105 (5), 77 (9), 57 (7). HRMS: 

Calculated for [C22H30O2SiNa]
+
: 377.1913 [(M+Na)

+
]; found: 377.1913. 

(E)-5-((tert-butyldiphenylsilyl)oxy)-2-ethylpent-2-en-1-ol (1c).  

Following the general procedure C, 1c (0.45 g, 1.2 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 77% yield as a 

yellow oil starting from SI2c (0.60 g, 1.6 mmol), NaBH4 (0.65 g, 1.3 mmol) and MeOH (8 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances, d.r.: 1:2.8): 7.74-7.63 (m, 

4H, Carom-H), 7.48-7.33 (m, 6H, Carom-H), 5.34 (dt, J = 15.7, 6.7 Hz, 1H, CH=C), 4.08* (d, J = 13.8 Hz, 1H, 

CHaHbOH), 4.00 (d, J = 13.8 Hz, CHaHbOH), 3.73-3.60 (m, 2H, SiOCH2CH2), 2.36 (dq, J = 14.1, 7.0 Hz, 

2H, SiOCH2CH2), 2.24-2.11* (m, 2H, CH2CH3), 2.06 (q, J = 7.6 Hz, CH2CH3), 1.06 (s, 9H, 3 x CH3), 1.07* 

(s, 9H, 3 x CH3), 0.95 (td, J = 7.5, 1.6 Hz, 3H, CH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 143.3* 

(CH=C), 142.6 (CH=C), 135.7 (Carom-H), 134.1 (Carom-Si), 133.6* (Carom-Si) 129.8* (Carom-H), 129.7 

(Carom-H), 127.8* (Carom-H), 127.7 (Carom-H), 123.7* (CH=C), 122.1 (CH=C), 66.8 (CH2OH), 63.9* 

(CH2OH), 63.6 (SiOCH2CH2), 60.6* (SiOCH2CH2), 31.0 (SiOCH2CH2), 28.8* (SiOCH2CH2), 27.0 (3 x CH3), 



186  Chapter 6 

 

26.9* (3 x CH3), 21.2 (CH2CH3), 19.3 (SiC(CH3)3), 19.2* (SiC(CH3)3), 13.4 (CH2CH3), 12.9* (CH2CH3). IR 

(ATR): 3468 (O-H st), 2972 (C-H st) cm
-1

. MS (EI) m/z (%): 311 (M
+
- 

t
Bu, 1), 293 (M

+
-

t
Bu-H2O, 5), 229 

(15), 199 (100), 18 (11), 78 (11), 57 (6). HRMS: Calculated for [C23H33O2Si]
+
: 369.2250 [(M+H)

+
]; 

found: 369.2257. 

 

General procedure D: To a solution of the corresponding ester SI4d-e (15.0 mmol, 1.0 eq) in toluene 

(75 mL, 0.2 M) at -78ᵒC, DIBAL-H (30.0 mmol, 2.0 eq) was added dropwise and the reaction mixture 

was stirred at that temperature for 1 minute. Once the reaction was finished, it was quenched with 

H2O (20 mL) and a solution of NaOH 15% (20 mL) was added at -78ᵒC. The reaction mixture was 

stirred at room temperature for 1 hour, before filtering by celite®. It was extracted with CH2Cl2 (3 x 

20 mL) and combined organic extracts were washed with brine (2 x 20 mL), dried over Na2SO4 and 

concentrated in vacuo. The crude was then purified by flash column chromatography to afford pure 

1d-e. 

 

5-((tert-butyldimethylsilyl)oxy)-2-propylpent-2-en-1-ol (1d). Following the 

general procedure D, 1d (4.95 g, 19.2 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 8:2 to 1:1) in 96% yield as a yellow oil starting 

from SI4d (6.00 g, 20.0 mmol), DIBAL-H (16.63 mL, 40.0 mmol), and toluene (100 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances; d.r.: 1:0.9): 5.43 (t, J = 7.0 Hz, 

1H, CH=C), 5.29* (t, J = 8.0 Hz, 1H, CH=C), 4.03 (d, J = 7.3 Hz, 2H, CH2OH), 3.66-3.59 (m, 2H, 

SiOCH2CH2), 2.40-2.25 (m, 2H, SiOCH2CH2), 2.08 (t, J = 6.9 Hz, 2H, CH2CH2CH3), 1.65 (s, 1H, OH), 

1.52-1.23 (m, 5H, CH2CH2CH3), 0.89 (s, 9H, 3 x CH3), 0.06 (s, 6H, 2 x CH3).
 13

C NMR (75.4 MHz, CDCl3) 

(δ, ppm): 142.4 (CH=C), 142.1* (CH=C), 125.0 (CH=C), 122.7* (CH=C), 67.1 (SiOCH2CH2), 63.2* 

(SiOCH2CH2), 62.5 (CH2OH), 60.3* (CH2OH), 38.8 (CH2CH2CH3), 31.5 (SiOCH2CH2), 31.3* (SiOCH2CH2), 

30.3* (CH2CH2CH3), 27.1 (3 x CH3), 21.9 (CH2CH2CH3), 21.5* (CH2CH2CH3), 18.8 (SiC(CH3)3), 18.5* 

(SiC(CH3)3), 14.3 (CH2CH2CH3), 13.9 (CH2CH2CH3), -5.1 (2 x CH3), -5.1 (2 x CH3). IR (ATR): 3357 (O-H st), 

2926 (C-H st), 2861 (C-H st), 1095 (Si-O) cm
-1

. MS (EI) m/z (%): 201 (M
+
-

t
Bu, 3), 131 (M

+
-C8H15O, 1), 

127 (M
+
-OTBS, 2), 109 (35), 105 (79), 75 (100), 73 (28), 67 (15). 

2-(3-((tert-butyldimethylsilyl)oxy)propylidene)hex-5-en-1-ol (1e). 

Following the general procedure D, 1e (1.60 g, 5.9 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 55% yield as a yellow 

oil starting from SI4e (3.35 g, 10.7 mmol), DIBAL-H (17.88 mL, 17.8 mmol), 

and toluene (54 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (*denotes minor diastereoisomer 

resonances; d.r.: 1:0.7): 5.85-5.69 (m, 1H, CH2CH2CH=CH2), 5.40* (t, J = 7.3 Hz, 1H, CH=C), 5.26 (t, J = 

8.0 Hz, 1H, CH=C), 5.06-4.83 (m, 2H, CH2CH2CH=CH2), 3.99 (d, J = 7.6 Hz, 2H, CH2OH), 3.64-3.55 (m, 

2H, SiOCH2CH2), 2.83-2.60 (br s, 1H, OH), 2.35-2.20 (m, 2H, SiOCH2CH2), 2.20-2.05 (m, 4H, 

CH2CH2CH=CH2), 0.85 (s, 9H, 3 x CH3), 0.02 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

141.2* (CH=C), 140.2 (CH=C), 138.3 (CH2CH2CH=CH2), 138.2* (CH2CH2CH=CH2), 124.7 (CH=C), 122.5* 

(CH=C), 114.5* (CH2CH2CH=CH2), 114.4 (CH2CH2CH=CH2), 66.3 (CH2OH), 62.9* (SiOCH2CH2), 62.4 
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(SiOCH2CH2), 59.7 (CH2OH), 35.4 (SiOCH2CH2), 32.7* (CH2CH2CH=CH2), 32.4 (CH2CH2CH=CH2), 31.3* 

(CH2CH2CH=CH2), 31.0 (CH2CH2CH=CH2), 27.5* (SiOCH2CH2), 25.9 (3 x CH3), 25.8* (3 x CH3), 18.4 

(SiC(CH3)3), 18.2 (SiC(CH3)3), -5.3 (2 x CH3), -5.5 (2 x CH3). IR (ATR): 3357 (O-H st), 2926 (C-H st), 2861 

(C-H st), 1095 (Si-O) cm
-1

. MS (EI) m/z (%): 213 (M
+
-

t
Bu, 1), 131 (M

+
-C9H15O, 1), 121 (25), 105 (91), 93 

(32), 89 (21), 79 (28), 75 (100), 73 (41). 

 

2.1.4. Synthesis of SI5a-e 

 

General procedure E: Et2Zn (20.0 mmol, 2.0 eq) was added dropwise to a solution of 1a-e (10.0 

mmol, 1.0 eq) in dry CH2Cl2 (130 mL, 0.076 M) at -10ᵒC, followed by the addition of CH2I2 (20.0 

mmol, 2.0 eq) in one portion under Ar and dark. The solution was then warmed to 0ᵒC and it was 

stirred at that temperature for 2 hours. Once the reaction was finished, it was quenched with 

saturated NH4Cl solution (20 mL) and stirred for 10 minutes. HCl 1 M (20 mL) was then added to 

dissolve the resultant precipitate and the aqueous layer was extracted with CH2Cl2 (3 x 20 mL). 

Combined organic layers were washed with brine (2 x 20 mL), dried over Na2SO4 and concentrated in 

vacuo. The crude was then purified by flash column chromatography to afford pure SI5a-e.  

 

(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)methanol (SI5a).   

Following the general procedure E, SI5a (0.96 g, 2.7 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 90% yield as a 

yellow oil starting from 1a (1.00 g, 2.9 mmol), Et2Zn (6.00 mL, 6.0 mmol), CH2I2 (0.48 mL, 6.0 mmol) 

and CH2Cl2 (38 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.73-7.66 (m, 4H, Carom-H), 7.49-7.34 (m, 6H, 

Carom-H), 3.75 (t, J = 6.4 Hz, 2H, SiOCH2CH2), 3.43 (dd, J = 7.1, 2.9 Hz, 2H, CH2OH), 1.62-1.38 (m, 3H, 

SiOCH2CH2, OH), 1.07 (s, 9H, 3 x CH3), 0.94-0.81 (m, 1H, CHCH2CH), 0.73 (dtdd, J = 8.4, 6.9, 5.2, 4.4 

Hz, 1H, CHCH2CH), 0.36 (ddt, J = 19.0, 8.1, 4.8 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 135.7 (Carom-H), 134.1 (Carom-Si), 129.7 (Carom-H), 127.8 (Carom-H), 67.2 (CH2OH), 64.1 

(SiOCH2CH2), 36.6 (SiOCH2CH2), 27.0 (3 x CH3), 21.0 (CHCH2CH), 19.3 (SiC(CH3)3) 14.2 (CHCH2CH), 9.8 

(CHCH2CH). IR (neat): 3370 (O-H st), 1106 (Si-O st) cm
-1

. MS (EI) m/z (%): 297 (M
+
-

t
Bu, 1), 279 

(M
+
-

t
Bu-H2O, 9), 229 (14), 199 (100), 181 (10), 139 (6), 105 (6), 78 (20), 51 (6). HRMS: Calculated for 

[C22H30O2SiNa]
+
: 377.1913 [(M+H)

+
]; found: 377.1919. 
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(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-1-methylcyclopropyl)methanol 

(SI5b). Following the general procedure E, SI5b (0.67 mg, 1.8 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 83% 

yield as a yellow oil starting from 1b (0.67 g, 1.9 mmol), Et2Zn (3.80 mL, 3.8 

mmol), CH2I2 (0.31 mL, 3.8 mmol) and CH2Cl2 (25 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.86-7.71 

(m, 4H, Carom-H), 7.51-7.42 (m, 6H, Carom-H), 3.82 (t, J = 6.7 Hz, 2H, SiOCH2CH2), 3.35 (d, J = 2.4 Hz, 2H, 

CH2OH), 2.24-2.12 (br s, 1H, OH), 1.68 (dh, J = 27.7, 6.9 Hz, 2H, SiOCH2CH2), 1.16 (s, 9H, 3 x CH3), 1.14 

(s, 3H, CH3), 0.75 (dt, J = 12.9, 6.3 Hz, 1H, CHCH2C), 0.59 (dd, J = 8.8, 4.4 Hz, 1H, CHCHaHbC), 0.04 (t, J 

= 5.0 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 135.4 (Carom-H), 133.8 (Carom-Si), 129.4 

(Carom-H), 127.5 (Carom-H), 71.9 (SiOCH2CH2), 64.1 (CH2OH), 32.0 (SiOCH2CH2), 26.7 (3 x CH3), 21.7 

(CHCH2C), 19.0 (SiC(CH3)3) 18.1 (CH3), 16.3 (CHCH2C), 15.3 (CHCH2C). IR (ATR): 3386 (O-H st), 2937 

(C-H st), 1105 (Si-O st) cm
-1

. MS (EI) m/z (%): 311 (M
+
-

t
Bu, 2), 309 (41), 293 (M

+
-

t
Bu-H2O, 8), 255 (M

+
-

C7H13O, 10), 231 (20), 199 (100), 183 (42), 139 (25), 105 (24), 91 (16), 78 (25), 57 (19). HRMS: 

Calculated for [C23H32O2SiNa]
+
: 391.2069 [(M+Na)

+
]; found: 391.2071. 

(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-1-ethylcyclopropyl)methanol 

(SI5c). Following the general procedure E, SI5c (0.48 g, 1.21 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 99% 

yield as a yellow oil starting from 1c (0.45 g, 1.2 mmol), Et2Zn (2.40 mL, 2.4 

mmol), CH2I2 (0.19 mL, 2.4 mmol) and CH2Cl2 (16 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes 

minor diastereoisomer resonances; d.r.: 1:2.8): 7.76-7.68 (m, 4H, Carom-H), 7.48-7.36 (m, 6H, 

Carom-H), 3.76 (t, J = 6.6 Hz, 2H, CH2OH), 3.48-3.24 (m, 2H, SiOCH2CH2), 1.90* (tt, J = 15.4, 7.9 Hz, 2H, 

SiOCH2CH2), 1.82-1.64 (m, 2H, SiOCH2CH2), 1.59-1.26 (m, 2H, CH2CH3), 1.10* (s, 9H, 3 x CH3), 1.09 (s, 

9H, 3 x CH3), 0.98 (td, J = 7.3, 2.5 Hz, 3H, CH2CH3), 0.72 (dtt, J = 22.7, 8.6, 5.6 Hz, 1H, CHCH2C), 0.49 

(dq, J = 7.3, 2.7 Hz, 1H, CHCHaHbC), 0.05* (t, J = 4.9 Hz, 1H, CHCHaHbC), -0.01 (t, J = 5.1 Hz, 

CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 135.7* (Carom-H), 135.6 (Carom-H), 134.1 (Carom-Si), 

133.3* (Carom-Si), 133.2 (Carom-Si), 129.8 (Carom-H), 129.7* (Carom-H), 127.8 (Carom-H), 127.7 (Carom-H), 

69.1 (CH2OH), 65.3* (CH2OH), 64.4 (SiOCH2CH2), 63.8* (SiOCH2CH2), 31.8 (SiOCH2CH2), 31.7* 

(SiOCH2CH2), 28.4 (CH2CH3), 28.1* (CH2CH3), 27.2 ((SiC(CH3)3), 27.0 (3 x CH3), 26.9* (3 x CH3), 21.7 

(CHCH2C), 19.3* (CHCH2C), 19.1 (CHCH2C), 15.7 (CHCH2C), 15.0* (CHCH2C), 11.2 (CH2CH3), 10.7* 

(CH2CH3). IR (neat): 3461 (O-H st), 2969 (C-H st), 1109 (Si-O st) cm
-1

. MS (EI) m/z (%): 307 

(M
+
-

t
Bu-H2O, 12), 255 (M

+
-C8H15O, 4), 200 (18), 199 (100), 183 (26), 181 (17), 135 (16), 127 

(M
+
-OTBDPS, 1), 109 (22), 107 (26), 91 (19), 79 (18), 78 (25), 77 (28), 67 (15). 

(2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-1-propylcyclopropyl)methanol 

(SI5d). Following the general procedure E, SI5d (3.38 g, 11.9 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 62% yield 

as a colorless oil starting from 1d (4.90 g, 19.2 mmol), Et2Zn (31.90 mL, 47.9 

mmol), CH2I2 (3.85 mL, 47.9 mmol) and CH2Cl2 (252 mL). 
1
H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances, d.r.: 1:1.3) (δ, ppm): 3.85-3.41 (m, 4H, CH2OH, SiOCH2CH2), 3.24-3.10 

(br s, 1H, OH), 1.95-1.17 (m, 9H, SiOCH2CH2, CH2CH2CH3), 0.91 (s, 9H, 3 x CH3), 0.88* (s, 9H, 3 x CH3), 

0.72-0.62* (m, 1H, CHCH2C), 0.55-0.39 (m, 3H, CHCH2C, CHCH2C), 0.09 (s, 9H, 3 x CH3), 0.04* (s, 6H, 2 

x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 69.7 (CH2OH), 64.9* (CH2OH), 63.9 (SiOCH2CH2), 63.7* 
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(SiOCH2CH2), 38.3 (CH2CH2CH3), 31.9* (CH2CH2CH3), 31.7 (SiOCH2CH2), 31.6 (SiOCH2CH2), 26.2 (3 x 

CH3) 26.1* (3 x CH3), 22.0 (CHCH2C), 20.2 (CH2CH2CH3), 19.7 (CH2CH2CH3), 19.1* (CHCH2C), 18.7 

(SiC(CH3)3), 18.5* (SiC(CH3)3), 15.9 (CHCH2C), 14.8* (CHCH2C), 14.7 (CH2CH2CH3), 14.5* (CH2CH2CH3), 

-5.2 (2 x CH3), -5.4* (2 x CH3). IR (ATR): 3357 (O-H st), 2930 (C-H st), 2861 (C-H st), 1091 (Si-O st) cm
-1

. 

MS (EI) m/z (%): 215 (M
+
-

t
Bu, 1), 131 (18), 141 (M

+
-OTBS, 2), 131 (M

+
-C9H17O, 18), 129 (21), 123 (24), 

105 (58), 101 (34), 89 (19), 81 (69), 75 (100), 73 (38), 67 (27), 57 (18), 55 (17). 

(1S,2R)-1-(but-3-en-1-yl)-2-(2-((tert-

butyldimethylsilyl)oxy)ethyl)cyclopropyl)methanol (SI5e). Following the 

general procedure E, SI5e (1.00 g, 3.5 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 9:1 to 7:3) in 74% yield as a colorless oil starting 

from 1e (1.28 g, 4.7 mmol), Et2Zn (7.88 mL, 11.8 mmol), CH2I2 (0.95 mL, 11.8 mmol) and CH2Cl2 (62 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances) (d.r.: 1:0.8): 

5.94-5.71 (m, 1H, CH2CH2CH=CH2), 5.05-4.82 (m, 2H, CH2CH2CH=CH2), 3.91-3.37 (m, 5H, SiOCH2CH2, 

CH2OH), 2.29-1.23 (m, 7H, SiOCH2CH2, CH2CH2CH=CH2, CHCH2C), 0.91 (s, 9H, 3 x CH3), 0.88* (s, 9H, 3 

x CH3), 0.57-0.42 (m, 2H, CHCH2C), 0.09 (s, 6H, 2 x CH3), 0.04* (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 139.4 (CH2CH2CH=CH2), 139.2* (CH2CH2CH=CH2), 114.4 (CH2CH2CH=CH2), 114.2 

(CH2CH2CH=CH2), 69.7* (CH2OH), 64.7 (CH2OH), 63.8 (SiOCH2CH2), 63.6* (SiOCH2CH2), 35.6 

(CH2CH2CH=CH2), 31.9 (CH2CH2CH=CH2), 31.6* (CH2CH2CH=CH2), 31.4 (SiOCH2CH2), 31.1 (SiOCH2CH2), 

28.9* (CH2CH2CH=CH2), 27.1 (SiC(CH3)3), 26.2 (3 x CH3), 26.1* (3 x CH3), 22.3 (CHCH2C), 19.4* 

(CHCH2C), 18.8 (CHCH2C), 18.5* (CHCH2C), 16.0 (CHCH2C), 14.9* (CHCH2C), -5.1 (2 x CH3), -5.1 (2 x 

CH3). IR (ATR): 3357 (O-H st), 2930 (C-H st), 2861 (C-H st), 1091 (Si-O st) cm
-1

. MS (EI) m/z (%): 203 

(M
+
-

t
Bu-H2O, 3), 153 (M

+
-OTBS, 1), 131 (M

+
-C10H17O, 17), 129 (22), 107 (20), 105 (55), 101 (32), 93 

(44), 89 (20), 81 (20), 79 (27), 75 (100), 73 (40), 67 (22), 55 (M
+
-C12H25O2Si, 14). 

 

2.1.5. Synthesis of 2a-e, f-g 

 

General procedure F: To a solution of the corresponding alcohol SI5a-e (8.0 mmol, 1.0 eq) and 

celite® (2g, g alcohol) in CH2Cl2 (80 mL, 0.1 M), PCC (16.0 mmol, 2.0 eq) was added at 0ᵒC. The 

solution was stirred at 0ᵒC for 30 minutes, warmed to room temperature and stirred at that 
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temperature for 1 hour. Once the reaction was finished, it was filtered and concentrated in vacuo. 

The crude was then purified by flash column chromatography to afford pure 2a-e.  

 

2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropane-1-carbaldehyde 

(2a). Following the general procedure F, 2a (0.87 mg, 2.4 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 87% 

yield as a yellow oil starting from SI5a (1.00 g, 2.8 mmol), PCC (1.20 g, 5.6 mmol), celite® (2.00 g) and 

CH2Cl2 (28 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.01 (d, J = 5.3 Hz, 1H, CHO), 7.75-7.59 (m, 4H, 

Carom-H), 7.55-7.32 (m, 6H, Carom-H), 3.74 (t, J = 5.8 Hz, 2H, SiOCH2CH2), 1.69-1.54 (m, 4H, SiOCH2CH2, 

CHCH2CH), 1.29 (dd, J = 8.9, 4.6 Hz, 1H, CHCHaHbCH), 1.06 (s, 9H, 3 x CH3), 0.92 (tdd, J = 7.2, 4.0, 1.9 

Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.0 (CHO), 135.7 (Carom-H), 133.8 

(Carom-Si), 133.7 (Carom-Si), 129.8 (Carom-H), 127.8 (Carom-H), 63.3 (SiOCH2CH2), 35.7 (SiOCH2CH2), 30.2 

(CHCH2CH), 27.0 (3 x CH3), 19.9 (CHCH2CH), 19.3 (SiC(CH3)3), 14.7 (CHCH2CH). IR (ATR): 1710 (C=O st), 

1031 (Si-O st) cm
-1

. MS (EI) m/z (%): 295 (M
+
-

t
Bu, 36), 265 (9), 237 (11), 217 (37), 199 (100), 181 (35), 

161 (17), 139 (33), 105 (24), 78 (21), 51 (6). 

2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-1-methylcyclopropane-1-

carbaldehyde (2b). Following the general procedure F, 2b (0.50 g, 1.4 

mmol) was isolated by FC (petroleum ether /EtOAc gradient from 9:1 to 

7:3) in 75% yield as a yellow oil starting from SI5b (0.67 g, 1.8 mmol), PCC 

(0.78 g, 3.6 mmol), celite® (1.00 g) and CH2Cl2 (18 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.63 (s, 

1H, CHO), 7.83-7.61 (m, 4H, Carom-H), 7.48-7.38 (m, 6H, Carom-H), 3.77 (t, J = 6.4 Hz, 2H, SiOCH2CH2), 

1.81-1.63 (m, 2H, SiOCH2CH2), 1.49 (dq, J = 8.9, 6.9 Hz, 1H, CHCH2CH), 1.36-1.27 (m, 1H, CHCHaHbC), 

1.19 (s, 3H, CH3), 1.09 (s, 9H, 3 x CH3), 0.64 (dd, J = 6.7, 4.7 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 202.6 (CHO), 135.5 (Carom-H), 133.8 (Carom-Si), 133.7 (Carom-Si), 129.8 (Carom-H), 127.8 

(Carom-H), 63.5 (SiOCH2CH2), 31.6 (CHCH2C), 31.4 (SiOCH2CH2), 26.9 (3 x CH3), 21.9 (CHCH2C), 19.8 

(CHCH2C), 19.3 (SiC(CH3)3), 11.2 (CH3). IR (ATR): 2934 (C-H st), 1701 (C=O st) cm
-1

. MS (EI) m/z (%): 

309 (M
+
-

t
Bu, 41), 255 (M

+
-C7H11O, 1), 231 (20), 199 (100), 183 (42), 161 (11), 139 (25), 123 (12), 111 

(M
+
-OTBDPS, 1), 105 (24), 91 (16), 78 (25). HRMS: Calculated for [C23H34NO2Si]

+
: 384.2359 

[(M+NH4)
+
]; found: 384.2363. 

2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-1-ethylcyclopropane-1-

carbaldehyde (2c). Following the general procedure F, 2c (0.40 g, 1.0 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) in 

83% yield as a yellow oil starting from SI5c (0.50 g, 1.3 mmol), PCC (0.60 g, 

2.5 mmol), celite® (0.80 g) and CH2Cl2 (13 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes minor 

diastereoisomer resonances, d.r.: 1:2): 9.19* (s, 1H, CHO), 8.70 (s, 1H, CHO), 7.75-7.67 (m, 4H, 

Carom-H), 7.48-7.36 (m, 6H, Carom-H), 3.73 (dt, J = 17.0, 6.3 Hz, 2H, SiOCH2CH2), 1.88-1.15 (m, 6H, 

CH2CH3, CHCHaHbC, CHCH2C, SiOCH2CH2), 1.08 (s, 9H, 3 x CH3), 0.98 (td, J = 7.4, 3.8 Hz, 3H, CH2CH3), 

0.62 (dd, J = 6.8, 4.7 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.9* (CHO), 202.6 

(CHO), 135.7 (Carom-H), 133.9 (Carom-Si), 129.8 (Carom-H), 127.8 (Carom-H), 63.9* (SiOCH2CH2), 63.7 
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(SiOCH2CH2), 37.3* (CHCH2C), 37.1 (CHCH2C), 37.3* (SiC(CH3)3), 37.1 (SiC(CH3)3), 31.5 (SiOCH2CH2), 

31.3* (SiOCH2CH2), 27.0 (3 x CH3), 23.0 (CHCH2C), 19.4* (CH2CH3), 19.3 (CH2CH3), 18.4 (CHCH2C), 12.1 

(CH2CH3), 11.7* (CH2CH3). IR (ATR): 2969 (C-H st), 1741 (C=O st) cm
-1

. MS (EI) m/z (%): 323 (M
+
-

t
Bu, 

14), 245 (15), 200 (19), 199 (100), 183 (26), 139 (16). HRMS: Calculated for [C24H32O2SiNa]
+
: 

403.2069 [(M+Na)
+
]; found: 403.2069. 

2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-1-propylcyclopropane-1-

carbaldehyde (2d). Following the general procedure F, 2d (1.95 g, 6.9 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 8:2) in 63% 

yield as a brown oil starting from SI5d (3.00 g, 10.9 mmol), PCC (4.72 g, 21.9 

mmol), celite® (6.00 g) and CH2Cl2 (110 mL). 
1
H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances; d.r.: 1:1.05) (δ, ppm): 9.23* (s, 1H, CHO), 9.72 (s, 1H, CHO), 3.66 (t, J = 

6.5 Hz, 2H, SiOCH2CH2), 3.59* (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.87-1.02 (m, 9H, SiOCH2CH2, 

CH2CH2CH3), 0.92-0.84 (m, 11H, 3 x CH3, CHCH2C), 0.70-0.61 (m, 1H, CHCH2C), 0.02 (s, 9H, 3 x CH3), 

0.01 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.7* (CHO), 202.6 (CHO), 63.0* 

(SiOCH2CH2), 62.8 (SiOCH2CH2), 36.1* (CHCH2C), 35.9 (CHCH2C), 35.4* (CH2CH2CH3), 31.8 

(SiOCH2CH2), 31.4* (SiOCH2CH2), 28.5 (CH2CH2CH3), 28.1 (CHCH2C), 26.0 (3 x CH3), 23.0* (3 x CH3), 

21.7* (CHCH2C), 20.8 (CH2CH2CH3), 20.6* (CH2CH2CH3), 18.6 (CHCH2C), 18.4 (SiC(CH3)3), 14.5 

(CH2CH2CH3), 14.3* (CH2CH2CH3), -5.2 (2 x CH3), -5.3 (2 x CH3). IR (ATR): 2959 (C-H st), 2857 (C-H st), 

1724 (C=O st), 1092 (Si-O st) cm
-1

. MS (IE) m/z: 213 (M
+
-

t
Bu, 31), 139 (M

+
-OTBS, 3), 131 (M

+
-C9H15O, 

7), 101 (17), 89 (20), 79 (17), 75 (100), 73 (42), 59 (17). 

1-(but-3-en-1-yl)-2-(2-((tert-butyldimethylsilyl)oxy)ethyl)cyclopropane-

1-carbaldehyde (2e). Following the general procedure F, 2e (0.50 g, 1.7 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

8:2) in 50% yield as a brown oil starting from SI5e (1.00 g, 3.5 mmol), PCC 

(1.50 g, 7.0 mmol), celite® (2.00 g) and CH2Cl2 (35 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes 

minor diastereoisomer resonances) (d.r.: 1:0.8): 9.18 (s, 1H, CHO), 8.66* (s, 1H, CHO), 5.76 (ddq, J = 

16.8, 10.2, 6.6 Hz, 1H, CH2CH2CH=CH2), 5.05-4.78 (m, 2H, CH2CH2CH=CH2), 3.62 (dt, J = 18.4, 6.1 Hz, 

2H, SiOCH2CH2), 2.20-2.05 (m, 2H, SiOCH2CH2), 1.80-1.47 (m, 4H, CH2CH2CH=CH2), 1.08-1.00 (m, 1H, 

CHCH2C), 0.85* (s, 9H, 3 x CH3), 0.84 (s, 9H, 3 x CH3), 0.72-0.54 (m, 1H, CHCHaHbC), 0.38-0.31 (m, 1H, 

CHCHaHbC), 0.01* (s, 6H, 2 x CH3), 0.00 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.3 

(CHO), 202.1* (CHO), 138.3* (CH2CH2CH=CH2), 138.2 (CH2CH2CH=CH2), 114.8 (CH2CH2CH=CH2), 62.9 

(SiOCH2CH2), 62.7* (SiOCH2CH2), 35.7* (CHCH2C), 35.6 (CHCH2C), 31.9* (SiOCH2CH2), 31.7 

(SiOCH2CH2), 28.1 (SiC(CH3)3), 26.0 (3 x CH3), 20.7 (CH2CH2CH=CH2), 20.6* (CH2CH2CH=CH2), 18.4* 

(CH2CH2CH=CH2), 18.3 (CH2CH2CH=CH2), 11.1 (CHCH2C), 10.9 (CHCH2C), 4.6 (CHCH2C), 4.5 (CHCH2C), 

-5.3 (2 x CH3), -5.3 (2 x CH3). IR (ATR): 2959 (C-H st), 2857 (C-H st), 1724 (C=O st), 1092 (Si-O st) cm
-1

. 

MS (EI) m/z (%): 225 (M
+
-

t
Bu, 31), 87 (16), 85 (94), 83 (100), 73 (26), 55 (19). 

 

 

 



192  Chapter 6 

 

General procedure for G: A mixture of aldehyde SI2a (5.0 mmol, 1.0 eq), the corresponding 
dialkyl bromomalonate (6.0 mmol, 1.2 eq), triethylamine (5.0 mmol, 1.0 eq) and (±)-Pyrrolidine-2-
carboxylic acid (1.0 mmol, 0.2 eq) in CHCl3 (20 mL, 0.25 M) was stirred at room temperature for 2 
hours. Once the reaction was finished, the solvent was removed and the crude was then purified by 
flash column chromatography to afford pure 2f-g. 

 
 

Dimethyl 2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-3-formylcyclopropane-

1,1-dicarboxylate (2f). Following the general procedure G, 2f (3.36 g, 7.2 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 

7:3) in 88% yield as a orange oil starting from SI2a (2.75 g, 8.1 mmol), 

dimethylbromomalonate (1.30 mL, 9.8 mmol), Et3N (1.10 mL, 8.1 mmol), (±)-Pyrrolidine-2-carboxylic 

acid (0.19 g, 1.6 mmol) and CHCl3 (32 mL). 
1
H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances; d.r.: 1:4) (δ, ppm): 9.46-9.41* (m, 1H, CHO), 9.31-9.25 (m, 1H, CHO), 

7.67-7.62 (m, 4H, Carom-H), 7.43-7.30 (m, 6H, Carom-H), 3.80 (s, 6H, 2 x OCH3), 3.69-3.65 (m, 2H, 

SiOCH2CH2), 2.80-2.65 (m, 2H, SiOCH2CH2), 1.88-1.76 (m, 1H, CHCCH), 1.76-1.62 (m, 1H, CHCCH), 

1.04 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 196.4 (CHO), 195.9* (CHO), 166.7 (C=O), 

166.4 (C=O), 135.5 (Carom-H), 135.5* (Carom-H), 133.3 (Carom-Si), 133.3* (Carom-Si), 129.7 (Carom-H), 

129.7* (Carom-H), 127.7 (Carom-H), 127.7* (Carom-H), 62.8* (SiOCH2CH2), 62.3 (SiOCH2CH2), 53.9 (OCH3), 

53.0* (OCH3), 42.4 (SiC(CH3)3), 41.6 (CHCCH), 40.0 (CHCCH), 29.7 (SiOCH2CH2), 26.7 (3 x CH3), 19.1 

(CHCCH). IR (ATR): 2955 (C-H st), 1738 (C=O st), 1105 (Si-O st) cm
-1

.  

Diethyl 2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-3-formylcyclopropane-

1,1-dicarboxylate (2g). Following the general procedure G, 2g (0.14 g, 0.2 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 

7:3) in 37% yield as a yellow oil starting from SI2a (0.24 g, 0.7 mmol), 

diethylbromomalonate (0.16 mL, 0.9 mmol), Et3N (0.10 mL, 0.7 mmol), (±)-Pyrrolidine-2-carboxylic 

acid (0.02 g, 0.1 mmol) and CHCl3 (3 mL). 
1
H NMR (300 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances; d.r.: 1:6) (δ, ppm): 9.44* (d, J = 4.9 Hz, 1H, CHO), 9.26 (d, J = 4.6 Hz, 1H, 

CHO), 7.69-7.63 (m, 4H, Carom-H), 7.47-7.33 (m, 6H, Carom-H), 4.34-4.07 (m, 4H, OCH2CH3), 3.78-3.66 

(m, 2H, SiOCH2CH2), 2.80-2.68 (m, 2H, SiOCH2CH2), 1.90-1.79 (m, 1H, CHCCH), 1.74-1.61 (m, 1H, 

CHCCH), 1.35-1.18 (m, 6H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 196.7 (CHO), 166.4 (C=O), 

166.1 (C=O), 135.6 (Carom-H), 135.6* (Carom-H), 133.5 (Carom-Si), 133.5* (Carom-Si), 129.8 (Carom-H), 

129.8* (Carom-H), 127.8 (Carom-H), 127.8* (Carom-H), 62.5 (SiOCH2CH2), 62.3 (OCH2CH3), 42.6 (CHCCH), 

40.2 (CHCCH), 29.9 (SiOCH2CH2), 29.6 (CHCCH), 26.9 (3 x CH3), 19.2 (SiC(CH3)3), 14.2 (OCH2CH3), 14.1* 

(OCH2CH3). IR (ATR): 2934 (C-H st), 2861 (C-H st), 1726 (C=O st) cm
-1

. MS (EI) m/z (%): 440 (32), 439 

(100), 255 (M
+
-C12H18O5, 3), 241 (M

+
-OTBDPS, 1), 227 (32), 200 (18), 199 (95), 197 (26), 183 (38), 181 

(20), 139 (20), 135 (27). 
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2.1.6. Synthesis of 3a-z 

 

 

General procedure H: To a solution of the corresponding aldehyde 2a-c, f-g (4.0 mmol, 1.0 eq) in 

CH2Cl2 (10 mL, 0.4 M) under argon at room temperature, 4 Å molecular sieves, the active hydrogen 

compound (4.0 mmol, 1.0 eq) and piperidine (2.4 mmol, 0.6 eq) were added and the reaction 

mixture was stirred at that temperature for 15 hours. Once the reaction was finished, it was filtered 

by celite® and concentrated in vacuo. The crude was then purified by flash column chromatography 

to afford pure 3a-c, f-j. 

 

trans-(E)-tert-butyl(2-(2-(2-

nitrovinyl)cyclopropyl)ethoxy)diphenylsilane (3a). Following the 

general procedure H, 3a (1.50 g, 3.8 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 49:1 to 8:2) in 65% yield as a yellow oil starting from 2a (2.00 

g, 5.8 mmol), nitromethane (0.34 mL, 6.3 mmol), piperidine (0.35 mL, 3.5 mmol), M.S. and CH2Cl2 

(14 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.69-7.61 (m, 4H, Carom-H), 7.49-7.33 (m, 6H, Carom-H), 

7.02 (d, J = 13.2 Hz, 1H, CH=CH), 6.80 (dd, J = 13.2, 10.5 Hz, 1H, CH=CH), 3.73 (t, J = 6.1 Hz, 2H, 

SiOCH2CH2), 1.71-1.50 (m, 2H, SiOCH2CH2), 1.41-1.22 (m, 2H, CHCH2CH), 1.06 (s, 9H, 3 x CH3), 0.95 

(dd, J = 8.0, 5.7 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 148.2 (CH=CH), 136.9 

(CH=CH), 135.5 (Carom-H), 133.6 (Carom-Si), 133.5 (Carom-Si), 129.7 (Carom-H), 127.7 (Carom-H), 63.1 

(SiOCH2CH2), 36.2 (SiOCH2CH2), 26.8 (3 x CH3), 21.7 (CHCH2CH), 19.1 (SiC(CH3)3), 18.7 (CHCH2CH), 

16.6 (CHCH2CH). IR (ATR): 1637 (C=C st), 1512 (NO2 st as), 1339 (NO2 st sim), 1110 (Si-O st) cm
-1

. MS 

(EI) m/z (%): 338 (M
+
-
t
Bu, 18), 308 (8), 199 (100), 181 (20), 155 (6), 141 (M

+
-OTBDPS, 1), 139 (14), 
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135 (19), 105 (13), 77 (13), 51 (5). HRMS: Calculated for [C23H30NO3Si]
+
: 396.1995 [(M+H)

+
]; found: 

396.1993. 

(E)-tert-butyl(2-(2-methyl-2-(2-

nitrovinyl)cyclopropyl)ethoxy)diphenylsilane (3b). Following the 

general procedure H, 3b (0.60 g, 1.3 mmol) was isolated by FC 

(pentane/Et2O gradient from 49:1 to 8:2) in 35% yield as a yellow oil starting from 2b (1.40 g, 3.7 

mmol), nitromethane (0.22 mL, 4.1 mmol), piperidine (0.23 mL, 2.2 mmol), M.S. and CH2Cl2 (10 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.73-7.69 (m, 4H, Carom-H), 7.50-7.36 (m, 6H, Carom-H), 6.97 (d, J = 

13.3 Hz, 1H, CH=CH), 6.86 (d, J = 13.3 Hz, 1H, CH=CH), 3.78 (t, J = 6.4 Hz, 2H, SiOCH2CH2), 1.76 (qd, J = 

6.7, 3.3 Hz, 2H, SiOCH2CH2), 1.40-1.28 (m, 2H, CHCHaHbC, CHCH2C), 1.18 (s, 3H, CH3), 1.11 (s, 9H, 3 x 

CH3), 0.71 (dd, J = 6.7, 4.8 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 153.7 (CH=CH), 

136.1 (CH=CH), 135.6 (Carom-H), 133.7 (Carom-Si), 133.6 (Carom-Si), 129.7 (Carom-H), 127.7 (Carom-H), 63.4 

(SiOCH2CH2), 31.9 (SiOCH2CH2), 26.9 (3 x CH3), 26.2 (CHCH2C), 23.6 (CHCH2C), 20.7 (SiC(CH3)3), 19.2 

(CHCH2C), 15.1 (CH3). IR (ATR): 2940 (C-H st), 1634 (C=C st), 1428 (NO2 st as), 1339 (NO2 st sim) cm
-1

. 

MS (EI) m/z (%): 352 (M
+
-

t
Bu, 6), 255 (M

+
-C8H13NO2, 18), 200 (19), 199 (100), 197 (36), 183 (17), 155 

(M
+
-OTBPS, 6), 139 (15), 135 (29), 91 (16), 77 (15). HRMS: Calculated for [C24H32NO3Si]

+
: 410.2151 

[(M+H)
+
]; found: 410.2148. 

(E)-tert-butyl(2-(2-ethyl-2-(2-

nitrovinyl)cyclopropyl)ethoxy)diphenylsilane (3c). Following the 

general procedure H, 3c (0.10 g, 0.2 mmol) was isolated by FC 

(pentane/Et2O gradient from 49:1 to 7:3) in 23% yield as a yellow oil starting from 2c (0.40 g, 1.0 

mmol), nitromethane (0.11 mL, 2.1 mmol), piperidine (0.06 mL, 0.6 mmol), M.S. and CH2Cl2 (3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.73-7.60 (m, 4H, Carom-H), 7.49-7.34 (m, 6H, Carom-H), 6.90 (s, 

2H, CH=CH), 3.74 (t, J = 5.8 Hz, 2H, SiOCH2CH2), 1.90-1.79 (m, 1H, OSiCH2CH2), 1.71-1.20 (m, 5H, 

SiOCH2CH2, CHCH2C, CHCHaHbC, CH2CH3), 1.07 (s, 9H, 3 x CH3), 0.97 (t, J = 7.1 Hz, 3H, CH2CH3), 0.63 

(dd, J = 6.8, 4.7 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 152.1 (CH=CH), 136.5 

(CH=CH), 135.7 (Carom-H), 133.8 (Carom-Si), 133.7 (Carom-Si), 129.8 (Carom-H), 127.8 (Carom-H), 63.6 

(SiOCH2CH2), 32.0 (SiOCH2CH2), 27.7 (CHCH2C), 27.0 (3 x CH3), 26.4 (SiC(CH3)3), 22.8 (CH2CH3), 22.7 

(CHCH2C), 19.3 (CHCH2C), 11.5 (CH2CH3). IR (ATR): 2926 (C-H st), 2857 (C-H st), 1738 (C=C st), 1515 

(NO2 st as), 1347 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 296 (27), 295 (100), 225 (24), 217 (55), 199 (76), 

197 (20), 187 (21), 183 (59), 181 (28), 175 (16), 135 (18), 105 (15). 
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Dimethyl (E)-2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-3-(2-

nitrovinyl)cyclopropane-1,1-dicarboxylate (3f). Following the general 

procedure H, 3f (0.68 g, 1.3 mmol) was obtained and it was used in 

the next step without further purification. 

Diethyl (E)-2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)-3-(2-

nitrovinyl)cyclopropane-1,1-dicarboxylate (3g). Following the 

general procedure H, 3g (0.68 g, 1.3 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 69% yield as a 

yellow oil starting from 2g (0.91 g, 1.8 mmol), nitromethane (0.2 mL, 3.6 mmol), piperidine (0.2 mL, 

1.8 mmol), M.S. and CH2Cl2 (5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.66-7.62 (m, 4H, Carom-H), 

7.46-7.32 (m, 6H, Carom-H), 7.11 (d, J = 13.3 Hz, 1H, CH=CH), 6.94 (dd, J = 13.3, 10.0 Hz, 1H, CH=CH), 

4.37-4.06 (m, 4H, OCH2CH3), 3.73 (t, J = 6.1 Hz, 2H, SiOCH2CH2), 2.69 (app t, J = 5.3 Hz, 1H, CHCCH), 

2.59-2.43 (m, 1H, CHCCH), 1.88-1.77 (m, 1H, SiOCH2CHaHb), 1.67-1.54 (m, 1H, SiOCH2CHaHb), 1.32-

1.18 (m, 6H, OCH2CH3), 1.06 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances) (δ, ppm): 166.8 (C=O), 166.5 (C=O), 140.9 (CH=CH), 138.5 (CH=CH), 

135.5 (Carom-H), 133.3* (Carom-Si), 133.2 (Carom-Si), 129.8* (Carom-H), 129.7 (Carom-H), 127.7 (Carom-H), 

62.2 (OCH2CH3), 62.1* (OCH2CH3), 61.4 (SiOCH2CH2), 61.1* (SiOCH2CH2), 51.5* (SiOCH2CH2), 42.5 

(CHCCH), 31.5 (CHCCH), 30.7 (SiOCH2CH2), 30.4 (CHCCH), 26.8 (3 x CH3), 19.1 (SiC(CH3)3), 14.0 

(OCH2CH3). IR (ATR): 3012 (C-H st), 1726 (C=C st), 1526 (NO2 st as), 1390 (NO2 st sim), 1105 (Si-O st) 

cm
-1

. MS (EI) m/z (%): 483 (25), 482 (79), 284 (M
+
-OTBDPS, 2), 255 (M

+
-C13H19NO6, 2), 227 (37), 207 

(30), 200 (17), 199 (100), 197 (31), 183 (39), 181 (19), 139 (17), 135 (36), 105 (22), 91 (15), 78 (15), 

77 (21).  

Diethyl 2-((2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)methylene)malonate 

(3h). Following the general procedure H, 3h (0.96 mg, 5.7 mmol) 

was isolated by FC (pentane/Et2O gradient from 19:1 to 8:2) in 60% yield as a yellow oil starting from 

2a (0.50 g, 1.4 mmol), diethyl malonate (0.24 mL, 1.4 mmol), piperidine (0.09 mL, 0.9 mmol), M.S. 

and CH2Cl2 (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (coelutes with diethyl malonate in a ratio 2:1): 

7.55-7.51 (m, 4H, Carom-H), 7.31-7.20 (m, 6H, Carom-H), 6.27 (d, J = 11.3 Hz, 1H, CH=C), 4.20-4.02 (m, 

6H, OCH2CH3, CH2CH3CO2CH2CO2CH2CH3), 3.60 (t, J = 6.3 Hz, 2H, SiOCH2CH2), 3.23 (s, 1H, 

CH2CH3CO2CH2CO2CH2CH3), 1.66-1.47 (m, 2H, SiOCH2CH2), 1.38 (dt, J = 13.8, 6.8 Hz, 1H, CHCH2CH), 

1.18-1.12 (m, 10H, OCH2CH3, CHCH2CH, CH2CH3CO2CH2CO2CH2CH3), 0.91 (s, 9H, 3 x CH3), 0.79 (t, J = 

6.8 Hz, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 166.7 (CH2CH3CO2CH2CO2CH2CH3), 165.8 

(C=O), 164.5 (CH=C), 155.7 (CH=C), 135.6 (Carom-H), 133.9 (Carom-Si), 133.8 (Carom-Si), 129.7 (Carom-H), 

127.7 (Carom-H), 125.1 (CH=C), 63.3 (SiOCH2CH2), 61.6 (CH2CH3CO2CH2CO2CH2CH3), 61.1 (OCH2CH3), 

41.7 (CH2CH3CO2CH2CO2CH2CH3), 36.4 (SiOCH2CH2), 26.9 (3 x CH3), 21.5 (CHCH2CH), 20.5 (CHCH2CH), 

19.3 (SiC(CH3)3), 17.1 (CHCH2CH), 14.2 (OCH2CH3), 14.0 (OCH2CH3). IR (ATR): 2972 (C-H st), 1734 (C=C 

st), 1724 (C=O st) cm
-1

. MS (EI) m/z (%): 438 (34), 437 (M
+
-

t
Bu, 100), 255 (M

+
-C11H15NO2, 1), 227 (24), 

199 (59), 197 (24), 193 (M
+
-OTBDPS, 1), 183 (28), 181 (19), 147 (15), 135 (35). HRMS: Calculated for 

[C15H20NO4]
+
: 495.2567 [(M+H)

+
]; found: 495.2577. 
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2-((2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)methylene)malononitrile 

(3i). Following the general procedure H, 3i (0.28 g, 0.7 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) in 32% yield as a yellow oil starting 

from 2a (0.77 g, 2.2 mmol), malononitrile (0.16 g, 2.4 mmol), piperidine (0.13 mL, 1.3 mmol), M.S. 

and CH2Cl2 (5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.72-7.59 (m, 4H, Carom-H), 7.50-7.36 (m, 6H, 

Carom-H), 6.60 (d, J = 11.3 Hz, 1H, CH=C), 3.81.3.71 (m, 2H, SiOCH2CH2), 1.88 (ddt, J = 11.5, 7.9, 3.9 Hz, 

1H, CHCH2CH), 1.73-1.52 (m, 3H, SiOCH2CH2, CHCH2CH), 1.34-1.25 (m, 1H, CHCHaHbCH), 1.21 (dt, J = 

9.2, 4.6 Hz, 1H, CHCHaHbCH), 1.07 (s, 9H, 3 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 173.2 

(CH=C), 135.6 (Carom-H), 133.6 (Carom-Si), 133.5 (Carom-Si), 129.9 (Carom-H), 127.9 (Carom-H), 112.8 (CN), 

111.7 (CN), 84.4 (CH=C), 62.9 (SiOCH2CH2), 36.0 (SiOCH2CH2), 27.0 (3 x CH3), 25.2 (CHCH2CH), 24.6 

(CHCH2CH), 19.9 (CHCH2CH), 19.3 (SiC(CH3)3). IR (ATR): 2233 (C-N st), 1591 (C=C st), 1103 (Si-O st) 

cm
-1

. MS (EI) m/z (%): 343 (M
+
-

t
Bu, 100), 313 (23), 199 (37), 181 (23), 146 (M

+
-OTBDPS, 1), 135 (18), 

105 (13), 91 (8), 77 (12). HRMS: Calculated for [C25H28N2OSiNa]
+
: 423.1869 [(M+Na)

+
]; found: 

423.1862. 

Ethyl (Z)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-2-

cyanoacrylate (3j). Following the general procedure H, 3j (1.00 g, 

2.2 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 78% yield as a yellow oil starting from 2a (1.00 g, 2.8 mmol), ethyl cyanoacetate 

(0.33 mL, 3.1 mmol), piperidine (0.17 mL, 1.7 mmol), M.S. and CH2Cl2 (7 mL). 
1
H NMR (300 MHz, 

CDCl3) (δ, ppm): 7.76-7.69 (m, 4H, Carom-H), 7.47-7.38 (m, 6H, Carom-H), 7.08 (d, J = 11.4 Hz, 1H, 

CH=C), 4.30 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.79 (t, J = 6.0 Hz, 2H, SiOCH2CH2), 1.90 (ddt, J = 11.6, 8.0, 

4.2 Hz, 1H, CHCH2CH), 1.67 (q, J = 6.3 Hz, 2H, SiOCH2CH2), 1.56 (dt, J = 13.6, 4.7 Hz, 1H, CHCH2CH), 

1.34 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.19-1.15 (m, 2H, CHCH2CH), 1.11 (s, 9H, 3 x CH3). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 167.7 (CH=C), 161.5 (C=O), 135.3 (Carom-H), 133.4 (Carom-Si), 133.3 (Carom-Si), 

129.6 (Carom-H), 127.5 (Carom-H), 114.4 (CN), 105.0 (CH=C), 62.9 (SiOCH2CH2), 61.8 (OCH2CH3), 35.9 

(SiOCH2CH2), 26.7 (3 x CH3), 23.5 (CHCH2), 23.4 (CH2CHCH=C), 19.2 (SiC(CH3)3), 18.7 (CHCH2CH), 14.2 

(OCH2CH3). IR (ATR): 2930 (C-H st), 2226 (C-N st), 1726 (C=C st), 1612 (C=O st) cm
-1

. MS (EI) m/z (%): 

391 (31), 390 (M
+
-

t
Bu, 100), 255 (M

+
-C11H15NO2, 1), 199 (45), 197 (19), 193 (M

+
-OTBDPS, 1), 183 (22), 

181 (20), 135 (25). HRMS: Calculated for [C27H37N2O3Si]
+
: 465.2573 [(M+NH4)

+
]; found: 465.2573. 

 

General procedure I: To a solution of cyclopropane carbaldehyde 2d-e (4.0 mmol, 1.0 eq) in ionic 

liquid
9
 (metoxyl propylamine, 1.0 eq/acetic acid, 5.0 mmol, 1.25 eq) (10.0 eq), nitromethane (40.0 

mmol, 10.0 eq) was added and the reaction mixture was stirred at 50ᵒC for 15 hours. The crude was 

filtered by celite® and it was concentrated in vacuo. The crude was then purified by flash column 

chromatography to afford pure 3d-e. 

                                                           
9  Wang, W.; Cheng, W.; Shao, L.; Liu, C. H.; Yang, J. Kinet Catal, 2009, 2, 186. 
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(E)-tert-butyldimethyl(2-(2-(2-nitrovinyl)-2-

propylcyclopropyl)ethoxy)silane (3d). Following the general procedure I, 

3d (1.66 g, 5.3 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 49:1 to 19:1) in 77% yield as a brown oil starting from 2d (1.87 g, 6.9 mmol), MeNO2 

(3.74 mL, 69.0 mmol) and ionic liquid (8.00 mL, 69.0 mmol). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.20-6.85 (m, 2H, CH=CH), 3.71-3.61 (m, 2H, SiOCH2CH2), 1.89-1.06 (m, 9H, SiOCH2CH2, CH2CH2CH3), 

0.96-0.89 (m, 11H, 3 x CH3, CHCH2C), 0.76-0.63 (m, 1H, CHCH2C), 0.06 (s, 6H, 2 x CH3). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm) (*denotes minor diastereoisomer resonances, d.r.: 1:1.3): 152.4 (CH=CH), 

148.3* (CH=CH), 138.2* (CH=CH), 136.4 (CH=CH), 62.7 (SiOCH2CH2), 62.7* (SiOCH2CH2), 38.8 

(CH2CH2CH3), 33.0* (CH2CH2CH3), 32.4 (SiOCH2CH2), 32.2* (SiOCH2CH2), 28.0* (CHCH2C), 27.5 

(CHCH2C), 26.0 (3 x CH3), 25.8 (SiC(CH3)3), 25.3* (SiC(CH3)3), 23.5* (CHCH2C), 22.8 (CHCH2C), 20.5 

(CH2CH2CH3), 19.9* (CH2CH2CH3), 18.4 (CHCH2C), 18.4* (CHCH2C), 14.4 (CH2CH2CH3), 14.2* 

(CH2CH2CH3), -5.3 (2 x CH3), -5.3* (2 x CH3). IR (ATR): 2926 (C-H st), 2851 (C-H st), 1515 (NO2 st as), 

1095 (Si-O st) cm
-1

. MS (EI) m/z (%): 267 (M
+
-NO2, 4), 225 (23), 183 (M

+
-OTBS, 26), 143 (28), 140 (38), 

135 (26), 131 (M
+
-C10H17NO2, 6), 117 (30), 107 (20), 105 (30), 104 (87), 103 (24), 93 (74), 91 (42), 79 

(59), 77 (34), 75 (100), 73 (69), 67 (26). 

(E)-(2-(2-(but-3-en-1-yl)-2-(2-nitrovinyl)cyclopropyl)ethoxy)(tert-

butyl)dimethylsilane (3e). Following the general procedure I, 3e (0.15 g, 

0.4 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

49:1 to 19:1) in 40% yield as a yellow oil starting from 2e (0.30 g, 1.1 mmol), MeNO2 (0.60 mL, 10.6 

mmol) and ionic liquid (2.00 mL, 10.6 mmol). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.21-6.86 (m, 2H, 

CH=CH), 5.92-5.68 (m, 1H, CH2CH2CH=CH2), 5.11-4.87 (m, 2H, CH2CH2CH=CH2), 3.74-3.39 (m, 2H, 

SiOCH2CH2), 2.22-2.07 (m, 2H, CH2CH2CH=CH2), 1.70-1.40 (m, 5H, SiOCH2CH2, CH2CH2CH=CH2, 

CHCH2C), 0.90-0.88 (m, 9H, 3 x CH3), 0.76-0.69 (m, 2H, CHCH2C), 0.05 (app d, J = 3.2 Hz, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances; d.r.: 1:0.8): 

152.0 (CH=CH), 148.0* (CH=CH), 138.4* (CH2CH2CH=CH2), 137.6 (CH=CH), 136.6 (CH2CH2CH=CH2), 

115.4 (CH2CH2CH=CH2), 115.3* (CH2CH2CH=CH2), 62.8* (SiOCH2CH2), 62.7 (SiOCH2CH2), 34.3 

(CH2CH2CH=CH2), 33.1* (SiOCH2CH2), 32.3 (SiOCH2CH2), 31.4 (CH2CH2CH=CH2), 31.0* 

(CH2CH2CH=CH2), 28.2* (CHCH2C), 27.6 (CHCH2C), 27.0 (3 x CH3), 25.6 (SiC(CH3)3), 25.0* (SiC(CH3)3), 

23.6* (CHCH2C), 22.8 (CHCH2C), 18.5 (CHCH2C), 18.4 (CHCH2C), -5.2* (2 x CH3), -5.2 (2 x CH3). IR 

(ATR): 2926 (C-H st), 2861 (C-H st), 1511 (NO2 st as), 1099 (Si-O st) cm
-1

. MS (EI) m/z (%): 223 (M
+
-

t
Bu-NO2, 2), 195 (M

+
-OTBS, 2), 131 (M

+
-C11H17NO2, 29), 115 (18), 105 (53), 104 (24), 91 (46), 89 (80), 

79 (25), 77 (24), 75 (100), 73 (96), 59 (21). 

 

General procedure J: To a solution of 2a (2.0 mmol, 1.0 eq) in toluene (31 mL, 0.064 M) the 

corresponding ylide
10

 (4.0 mmol, 2.0 eq) was added and the reaction was heated to reflux for 15 

hours. Once the reaction was finished, it was concentrated in vacuo and the crude was then purified 

by flash column chromatography to afford pure 3k-x, z. 

                                                           
10 The ylides were prepared according procedures described in the literature. It will be shown in each case. 
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Ethyl (E)-3-((1S,2R)-2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)acrylate (3k). Following 

the general procedure J, 3k (0.34 g, 0.9 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 9:1) in 92% yield as 

a yellow oil starting from 2a (0.40 g, 1.1 mmol), (carbethoxymethylene)triphenylphosphorane (0.79 

g, 2.2 mmol) and toluene (3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.70-7.64 (m, 4H, Carom-H), 

7.44-7.35 (m, 6H, Carom-H), 6.47 (dd, J = 15.4, 10.0 Hz, 1H, CH=CH), 5.81 (d, J = 15.4 Hz, 1H, CH=CH), 

4.23-4.14 (m, 2H, OCH2CH3), 3.75-3.70 (m, 2H, SiOCH2CH3), 1.64-1.51 (m, 2H, SiOCH2CH2), 1.33-1.26 

(m, 4H, OCH2CH3, CHCH2CH), 1.17-1.11 (m, 1H, CHCH2CH), 1.06 (s, 9H, 3 x CH3), 0.88-0.69 (m, 2H, 

CHCH2CH).  

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-1-

phenylprop-2-en-1-one (3l). Following the general procedure J, 

3l (0.30 g, 0.7 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 19:1 to 8:2) in 78% yield as a yellow oil starting 

from 2a (0.30 g, 0.8 mmol), 1-phenyl-2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

11
 (0.65 g, 1.6 

mmol) and toluene (13 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.99-7.89 (m, 2H, Carom-H), 7.76-

7.64 (m, 4H, Carom-H), 7.59-7.34 (m, 10H, Carom-H), 6.96 (dd, J = 15.1, 0.8 Hz, 1H, CH=CH), 6.64 (ddd, J 

= 15.1, 10.2, 0.8 Hz, 1H, CH=CH), 3.77 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.63 (appq, J = 6.4 Hz, 2H, 

SiOCH2CH2), 1.49 (dp, J = 12.2, 4.3 Hz, 1H, CHCH2CH), 1.33-1.20 (m, 1H, CHCH2CH), 1.09 (s, 9H, 3 x 

CH3), 0.98-0.83 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 190.0 (C=O), 154.8 (CH=CH), 

138.3 (Carom-C), 135.7 (Carom-H), 133.9 (Carom-Si), 133.8 (Carom-Si), 132.5 (Carom-H), 129.7 (Carom-H), 

128.6 (Carom-H), 127.8 (Carom-H), 127.7 (Carom-H), 122.6 (CH=CH), 63.5 (SiOCH2CH2), 36.7 (SiOCH2CH2), 

27.0 (3 x CH3), 23.0 (CHCH2CH), 21.1 (CHCH2CH), 19.3 (SiC(CH3)3), 16.4 (CHCH2CH). IR (ATR): 2934 

(C-H st), 2855 (C-H st), 1738 (C=O st) cm
-1

. MS (EI) m/z (%): 397 (47), 255 (M
+
-C14H16O, 1), 207 (15), 

200 (17), 199 (M
+
-OTBDPS, 89), 197 (20), 183 (22), 181 (27), 135 (29), 115 (24), 105 (M

+
-C23H29OSi, 

55), 91 (27), 78 (100), 77 (83), 56 (20), 52 (21), 51 (38). 

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-

1-(4-chlorophenyl)prop-2-en-1-one (3m). Following the 

general procedure J, 3m (0.71 g, 1.4 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) in 85% 

yield as a yellow oil starting from 2a (0.60 g, 1.7 mmol), 1-(4-chlorophenyl)-2-(triphenyl-λ
5
-

phosphanylidene)ethan-1-one
13

 (1.41 g, 3.4 mmol), and toluene (26 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 7.90-7.78 (m, 2H, Carom-H), 7.70-7.65 (m, 4H, Carom-H), 7.46-7.31 (m, 8H, Carom-H), 6.89 (d, J 

= 15.1 Hz, 1H, CH=CH), 6.63 (dd, J = 15.0, 10.2 Hz, 1H, CH=CH), 3.75 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 

1.62 (q, J = 4.8, 3.2 Hz, 2H, SiOCH2CH2), 1.52-1.44 (m, 1H, CHCH2CH), 1.29-1.20 (m, 1H, CHCH2CH), 

1.06 (s, 9H, 3 x CH3), 0.96-0.83 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 188.6 (C=O), 

155.5 (CH=CH), 138.9 (Carom-C), 136.7 (Carom-C), 135.7 (Carom-H), 134.0 (Carom-Si), 133.9 (Carom-Si), 

129.9 (Carom-H), 129.7 (Carom-H), 128.9 (Carom-H), 127.8 (Carom-H), 122.1 (CH=CH), 63.5 (SiOCH2CH2), 

                                                           
11 Xie, P.; Fu, W.; Sun, Z.; Wu, Y.; Li, S.; Gao, C.; Yang, X.; Loh, T.-P. Org. Lett. 2019, 21, 7055. 
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36.7 (SiOCH2CH2), 27.0 (3 x CH3), 23.1 (CHCH2CH), 21.3 (CHCH2CH), 19.3 (SiC(CH3)3), 18.6 (CHCH2CH). 

IR (ATR): 2930 (C-H st), 2857 (C-H st), 1734 (C=C st), 1609 (arC-C), 1091 (Si-O st) cm
-1

. 

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-

1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (3n). 

Following the general procedure J, 3n (0.35 g, 0.7 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 

19:1 to 8:2) in 48% yield as a yellow oil starting from 2a (0.50 g, 1.4 mmol), 1-(4-

(trifluoromethyl)phenyl)-2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

12
 (1.27 g, 2.8 mmol), and 

toluene (22 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.99 (d, J = 8.1 Hz, 2H, Carom-H), 7.72-7.65 (m, 

5H, Carom-H), 7.45-7.32 (m, 7H, Carom-H), 6.91 (d, J = 15.1 Hz, 1H, CH=CH), 6.66 (dd, J = 15.1, 10.2 Hz, 

1H, CH=CH), 3,77 (t, J = 6.2 Hz, 1H, SiOCH2CH2), 1.63 (qd, J = 6.3, 1.9 Hz, 2H, SiOCH2CH2), 1.56-1.47 

(m, 1H, CHCH2CH), 1.35-1.22 (m, 1H, CHCH2CH), 1.07 (s, 9H, 3 x CH3), 1.01-0.83 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.0 (C=O), 156.3 (CH=CH), 141.3 (Carom-C), 135.7 (Carom-H), 

133.9 (Carom-C), 131.3 (q, JCF = 280.0 Hz, CF3), 129.8 (Carom-H), 128.7 (Carom-H), 127.8 (Carom-H), 125.6 

(q, 
3
JCF = 3.8 Hz, CHaromCCF3), 122.2 (CH=CH), 63.5 (SiOCH2CH2), 36.7 (SiOCH2CH2), 27.0 (3 x CH3), 23.3 

(CHCH2CH), 21.5 (CHCH2CH), 19.3 (SiC(CH3)3), 16.7 (CHCH2CH). IR (ATR): 2937 (C-H st), 1605 (C=C st), 

1322 (C-F st), 761 (CF3) cm
-1

. MS (EI) m/z (%): 466 (35), 465 (M
+
-

t
Bu, 100), 349 (M

+
-C8H4F3O, 1),  267 

(M
+
-OTBDPS, 1), 255 (M

+
-C15H14F3O, 2), 225 (17), 213 (22), 200 (17), 199 (97), 197 (32), 183 (38), 181 

(30), 173 (M
+
-C23H29OSi, 30), 145 (39), 135 (30), 78 (24), 77 (23). 

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-1-

(4-fluorophenyl)prop-2-en-1-one (3o). Following the general 

procedure J, 3o (0.53 g, 1.1 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 80% 

yield as a yellow oil starting from 2a (0.50 g, 1.4 mmol), 1-(4-fluorophenyl)-2-(triphenyl-λ
5
-

phosphanylidene)ethan-1-one
13

 (1.13 g, 2.8 mmol), and toluene (22 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 8.00-7.89 (m, 2H, Carom-H), 7.71-7.66 (m, 4H, Carom-H), 7.44-7.34 (m, 6H, Carom-H), 7.16-7.10 

(m, 2H, Carom-H), 6.91 (d, J = 15.1 Hz, 1H, CH=CH), 6.63 (dd, J = 15.0, 10.2 Hz, 1H, CH=CH), 3.76 (t, J = 

6.2 Hz, 2H, SiOCH2CH2), 1.62 (appq, J = 6.4 Hz, 2H, SiOCH2CH2), 1.53-1.44 (m, 1H, CHCH2CH), 1.30-

1.20 (m, 1H, CHCH2CH), 1.07 (s, 9H, 3 x CH3), 0.96-0.81 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 188.2 (C=O), 165.5 (d, 
1
JC-F = 254.0 Hz, C-F) 155.1 (CH=CH), 135.7 (Carom-H), 134.6 (d, 

4
JC-F = 2.9 Hz, CCHCHCF), 134.0 (Carom-Si), 133.9 (Carom-Si), 131.0 (d, 

3
JC-F = 9.3 Hz, CCHCHCF), 129.7 

(Carom-H), 127.8 (Carom-H), 122.2 (CH=CH), 115.8 (d, 
2
JC-F = 21.9 Hz, CCHCHCF), 63.5 (SiOCH2CH2), 36.7 

(SiOCH2CH2), 27.0 (3 x CH3), 23.1 (CHCH2CH), 21.2 (CHCH2CH), 19.3 (SiC(CH3)3), 16.5 (CHCH2CH). IR 

(ATR): 2972 (C-H st), 1741 (C=O st), 1368 (C-F st) cm
-1

. MS (EI) m/z (%): 415 (M
+
-

t
Bu, 32), 199 (45), 

197 (21), 181 (23), 135 (18), 123 (M
+
-C23H29OSi, 65), 95 (35), 91 (25), 77 (20), 57 (100). 

 

                                                           
12 Farley, C. M.; Zhou, Y.; Banka, N.; Uyeda, C. J. Am. Chem. Soc. 2018, 140, 12710. 
13 Wu, J.-Q.; Yang, Z.; Zhang, S.-S.; Jiang, C.-Y.; Li, Q.; Huang, Z.-S.; Wang, H. ACS Catal. 2015, 5, 6543. 
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(E)-1-(4-bromophenyl)-3-(2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)prop-2-en-1-one 

(3p). Following the general procedure J, 3p (0.64 g, 1.2 

mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 19:1 to 8:2) in 71% yield as a yellow oil starting from 2a (0.60 g, 1.7 mmol), 1-(4-bromophenyl)-

2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

13
 (1.56 g, 3.4 mmol), and toluene (26mL). 

1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.83-7.75 (m, 2H, Carom-H), 7.75-7.65 (m, 4H, Carom-H), 7.62-7.58 (m, 2H, 

Carom-H), 7.46-7.35 (m, 6H, Carom-H), 6.90 (d, J = 15.1 Hz, 1H, CH=CH), 6.65 (dd, J = 15.2, 10.2 Hz, 2H, 

CH=CH), 3.78 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.67-1.57 (m, 2H, SiOCH2CH2), 1.54-1.46 (m, 1H, 

CHCH2CH), 1.33-1.24 (m, 1H, CHCH2CH), 1.09 (s, 9H, 3 x CH3), 0.97-0.83 (m, 2H, CHCH2CH). 
13

C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 188.6 (C=O), 155.5 (CH=CH), 137.0 (Carom-C), 135.6 (Carom-H), 133.9 

(Carom-Si), 133.8 (Carom-Si), 131.8 (Carom-H), 130.0 (Carom-H), 129.7 (Carom-H), 127.7 (Carom-H), 127.5 

(Carom-C), 122.0 (CH=CH), 63.5 (SiOCH2CH2), 36.7 (SiOCH2CH2), 27.0 (3 x CH3), 23.1 (CHCH2CH), 21.3 

(CHCH2CH), 19.3 (SiC(CH3)3), 16.5 (CHCH2CH). IR (ATR): 2934 (C-H st), 1734 (C=O st), 1662 (C=C st), 

757 (C-Br st) cm
-1

.  

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-

1-(3,4-dichlorophenyl)prop-2-en-1-one (3q). Following the 

general procedure J, 3q (0.41 g, 0.8 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 56% 

yield as a yellow oil starting from 2a (0.50 g, 1.4 mmol), 

1-(3,4-dichlorophenyl)-2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

14
 (1.28 g, 2.8 mmol), and 

toluene (22 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.01 (d, J = 2.0 Hz, 1H, Carom-H), 7.76-7.64 (m, 

5H, Carom-H), 7.53 (d, J = 8.3 Hz, 1H, Carom-H), 7.45-7.34 (m, 6H, Carom-H), 6.86 (d, J = 15.0 Hz, 1H, 

CH=CH), 6.66 (dd, J = 15.0, 10.2 Hz, 1H, CH=CH), 3.76 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.67-1.59 (m, 2H, 

SiOCH2CH2), 1.50 (ddt, J = 10.1, 8.2, 4.3 Hz, 1H, CHCH2CH), 1.28 (dqd, J = 13.2, 6.7, 3.8 Hz, 1H, 

CHCH2CH), 1.07 (s, 9H, 3 x CH3), 0.98-0.85 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

187.3 (C=O), 156.4 (CH=CH), 137.9 (Carom-C), 136.9 (Carom-C), 135.7 (Carom-H), 133.9 (Carom-Si), 133.8 

(Carom-Si), 133.2 (Carom-C), 130.7 (CH=CH), 130.5 (Carom-H), 129.7 (Carom-H), 127.8 (Carom-H), 127.5 

(Carom-H), 121.6 (Carom-H), 63.5 (SiOCH2CH2), 36.7 (SiOCH2CH2), 27.0 (3 x CH3), 23.3 (CHCH2CH), 21.5 

(CHCH2CH), 19.3 (SiC(CH3)3), 16.7 (CHCH2CH). IR (ATR): 3016 (C-H st), 1734 (C=O st) cm
-1

. 

(E)-4-(3-(2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)acryloyl)benzon

itrile (3r). Following the general procedure J, 3r (0.40 g, 

0.8 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 19:1 to 8:2) in 59% yield as a yellow oil 

starting from 2a (0.50 g, 1.4 mmol), 4-(2-(triphenyl-λ
5
-phosphanylidene)acetyl)benzonitrile

12
 (1.15 g, 

2.8 mmol), and toluene (22 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.99-7.93 (m, 2H, Carom-H), 

7.78-7.73 (m, 2H, Carom-H), 7.72-7.63 (m, 4H, Carom-H), 7.44-7.34 (m, 6H, Carom-H), 6.87 (d, J = 15.1 Hz, 

1H, CH=CH), 6.66 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.76 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.67-1.59 (m, 

                                                           
14  Yang, X.-Y.; Tay, W. S.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Organometallics, 2015, 34, 5196. 
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2H, SiOCH2CH2), 1.56-1.47 (m, 1H, CHCH2CH), 1.35-1.22 (m, 1H, CHCH2CH), 1.06 (s, 9H, 3 x CH3), 0.98-

0.88 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 188.4 (C=O), 157.1 (CH=CH), 141.7 

(Carom-C), 135.6 (Carom-H), 133.9 (Carom-Si), 133.8 (Carom-Si), 132.4 (Carom-H), 129.7 (Carom-C), 128.8 

(Carom-C), 127.8 (Carom-H), 121.9 (CH=CH), 118.2 (CN), 115.7 (Carom-C), 63.5 (SiOCH2CH2), 36.6 

(SiOCH2CH2), 27.0 (3 x CH3), 23.4 (CHCH2CH), 21.7 (CHCH2CH), 19.3 (SiC(CH3)3), 16.9 (CHCH2CH). IR 

(ATR): 3012 (C-H st), 1738 (C=O st) cm
-1

.  

 (E)-1-(2-bromophenyl)-3-((1S,2R)-2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)prop-2-en-1-one (3s). 

Following the general procedure J, 3s (0.52 g, 0.9 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) 

in 52% yield as a yellow oil starting from 2a (0.65 g, 1.8 mmol), 1-(2-bromophenyl)-2-(triphenyl-λ
5
-

phosphaneylidene)ethan-1-one (1.70 g, 3.7 mmol) and toluene (29 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 7.47-7.35 (m, 14H, Carom-H), 6.50 (dd, J = 15.6, 1.7 Hz, 1H, CH=CH), 6.28 (ddt, J = 15.7, 9.9, 

1.6 Hz, 1H, CH=CH), 3.76 (t, J = 6.3 Hz, 2H, SiOCH2CH2), 1.66-1.58 (m, 2H, SiOCH2CH2), 1.45 (ddt, J 

13.4, 10.3, 4.7  Hz, 1H, CHCH2CH), 1.25-1.19 (m, 1H, CHCH2CH), 1.11 (s, 9H, 3 x CH3), 0.88 (dd, J = 7.8, 

5.8 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 194.3 (C=O), 157.7 (CH=CH), 141.3 

(Carom-C), 135.6 (Carom-H), 134.9 (Carom-H), 133.4 (Carom-Si), 129.7 (Carom-C), 129.0 (CH=CH), 127.8 

(Carom-H), 119.4 (Carom-Si), 63.4 (SiOCH2CH2), 36.6 (SiOCH2CH2), 27.0 (3 x CH3), 22.8 (CHCH2CH), 21.5 

(CHCH2CH), 19.3 (SiC(CH3)3), 16.8 (CHCH2CH). IR (ATR): 3023 (C-H st), 1644 (C=O st) cm
-1

. MS (EI) m/z 

(%): 200 (18), 199 (100), 155 (M
+
-C24H29O2Si, 1), 78 (25), 77 (23), 57 (62), 51 (24). 

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-1-

(3-methoxyphenyl)prop-2-en-1-one (3t). Following the general 

procedure J, 3t (0.60 g, 1.2 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 88% yield 

as a yellow oil starting from 2a (0.50 g, 1.4 mmol), 1-(3-

methoxyphenyl)-2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

13
 (1.17 g, 2.8 mmol), and toluene (22 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.71-7.66 (m, 4H, Carom-H), 7.53-7.45 (m, 2H, Carom-H), 7.45-

7.32 (m, 7H, Carom-H), 7.10 (ddd, J = 8.2, 2.6, 1.2 Hz, 1H, Carom-H), 6.93 (d, J = 15.1 Hz, 1H, CH=CH), 

6.63 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.86 (s, 3H, OCH3), 3.76 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.62 

(app q, J = 6.5 Hz, 2H, SiOCH2CH2), 1.48 (ddt, J = 10.1, 8.2, 4.3 Hz, 1H, CHCH2CH), 1.32-1.19 (m, 1H, 

CHCH2CH), 1.07 (s, 9H, 3 x CH3), 0.97-0.79 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

189.7 (C=O), 159.9 (Carom-C), 154.9 (CH=CH), 139.8 (Carom-C), 135.7 (Carom-H), 133.9 (Carom-Si), 133.9 

(Carom-Si), 129.7 (CH=CH), 129.5 (Carom-H), 127-8 (Carom-H), 122.6 (Carom-H), 121.0 (Carom-H), 119.1 

(Carom-H), 112.8 (Carom-H), 63.5 (SiOCH2CH2), 55.5 (OCH3), 36.7 (SiOCH2CH2), 27.0 (3 x CH3), 23.0 

(CHCH2CH), 21.1 (CHCH2CH), 19.3 (SiC(CH3)3), 16.4 (CHCH2CH). IR (ATR): 3012 (C-H st), 1738 (C=O st) 

cm
-1

.  
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(E)-1-([1,1'-biphenyl]-4-yl)-3-(2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)prop-2-en-1-

one (3u). Following the general procedure J, 3u (1.64 g, 

3.1 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 19:1 to 8:2) in 87% yield as a yellow oil 

starting from 2a (1.25 g, 3.6 mmol), 1-([1,1'-biphenyl]-4-yl)-2-(triphenyl- λ
5
-phosphanylidene)ethan-

1-one
15

 (3.24 g, 7.1 mmol), and toluene (47 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.03-7.97 (m, 

2H, Carom-H), 7.76-7.62 (m, 10H, Carom-H), 7.44-7.35 (m, 7H, Carom-H), 6.99 (d, J = 15.1 Hz, 1H, CH=CH), 

6.65 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.76 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.66-1.59 (m, 2H, 

SiOCH2CH2), 1.49 (ddt, J = 10.1, 8.3, 4.3 Hz, 1H, CHCH2CH), 1.25 (dtd, J = 13.2, 5.5, 5.0, 2.6 Hz, 

CHCH2CH), 1.08 (s, 9H, 3 x CH3), 0.98-0.83 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

189.5 (C=O), 154.8 (CH=CH), 145.3 (Carom-C), 140.2 (Carom-C), 137.0 (Carom-C), 135.7 (Carom-H), 134.9 

(Carom-H), 134.0 (Carom-C), 133.9 (Carom-C), 129.8 (Carom-H), 129.1 (Carom-H), 129.0 (Carom-H), 127.8 

(Carom-H), 127.7 (Carom-H), 127.4 (Carom-H), 127.3 (Carom-H), 122.5 (Carom-H), 63.6 (SiOCH2CH2), 36.8 

(SiOCH2CH2), 27.0 (3 x CH3), 23.1 (CHCH2CH), 21.1 (CHCH2CH), 19.3 (SiC(CH3)3), 16.5 (CHCH2CH). IR 

(ATR): 2926 (C-H st), 2858 (C-H st), 1738 (C=O st), 1659 (C=C st) cm
-1

 

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-

1-(naphthalen-2-yl)prop-2-en-1-one (3v). Following the 

general procedure J, 3v (0.63 g, 1.3 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) in 

93% yield as a yellow oil starting from 2a (0.50 g, 1.4 mmol), 1-(naphthalen-2-yl)-2-(triphenyl-λ
5
-

phosphanylidene)ethan-1-one
12

 (1.22 g, 2.8 mmol), and toluene (22 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 8.48 (s, 1H, Carom-H), 8.08 (dd, J = 8.6, 1.7 Hz, 1H, Carom-H), 8.03-7.87 (m, 3H, Carom-H), 7.82-

7.71 (m, 4H, Carom-H), 7.65-7.53 (m, 2H, Carom-H), 7.49-7.38 (m, 6H, Carom-H), 7.16 (d, J = 15.1 Hz, 1H, 

CH=CH), 6.75 (dd, J = 15.0, 10.2 Hz, 1H, CH=CH), 3.82 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.67 (appq, J = 

6.4 Hz, 2H, SiOCH2CH2), 1.61-1.57 (m, 1H, CHCH2CH), 1.36-1.26 (m, 1H, CHCH2CH), 1.14 (s, 9H, 3 x 

CH3), 1.03-0.82 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.6 (C=O), 154.7 (CH=CH), 

135.6 (Carom-C), 135.4 (Carom-H), 134.9 (Carom-C), 133.9 (Carom-C), 133.8 (Carom-C), 132.6 (Carom-H), 129.7 

(Carom-H), 129.6 (Carom-H), 129.5 (Carom-H), 128.4 (Carom-H), 128.2 (Carom-H), 127.8 (Carom-H), 127.7 

(Carom-H), 126.7 (Carom-H), 124.6 (Carom-H), 122.5 (CH=CH), 63.5 (SiOCH2CH2), 36.7 (SiOCH2CH2), 27.0 

(3 x CH3), 23.1 (CHCH2CH), 21.1 (CHCH2CH), 19.3 (SiC(CH3)3), 16.4 (CHCH2CH). IR (ATR): 3016 (C-H st), 

1734 (C=O st) cm
-1

.  

(E)-3-(2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-

1-(p-tolyl)prop-2-en-1-one (3w). Following the general 

procedure J, 3w (0.70 g, 1.5 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 19:1 to 8:2) in 88% 

yield as a yellow oil starting from 2a (0.60 g, 1.7 mmol), 1-(p-tolyl)-2-(triphenyl-λ
5
-

phosphanylidene)ethan-1-one
13

 (1.35 g, 3.4 mmol), and toluene (26mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 7.85-7.81 (m, 2H, Carom-H), 7.69-7.64 (m, 4H, Carom-H), 7.45-7.33 (m, 6H, Carom-H), 7.27-7.24 

                                                           
15  Jadhav, S. B.; Thopate, S. B.; Nannubolu, J. B.; Chegandi, R. Org. Biomol. Chem. 2019, 17, 1937. 
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(m, 2H, Carom-H), 6.93 (d, J = 15.1 Hz, 1H, CH=CH), 6.60 (dd, J = 15.1, 10.1 Hz, 1H, CH=CH), 3.74 (t, J = 

6.3 Hz, 2H, SiOCH2CH2), 2.42 (s, 3H, CH3), 1.65-1.54 (m, 3H, SiOCH2CH2, CHCH2CH), 1.50-1.43 (m, 1H, 

CHCH2CH), 1.06 (s, 9H, 3 x CH3), 0.94-0.78 (m, 2H, CHCH2CH).  
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

189.6 (C=O), 154.3 (CH=CH), 143.3 (Carom-C), 135.7 (Carom-H), 134.0 (Carom-Si), 133.9 (Carom-Si), 129.7 

(Carom-H), 129.3 (Carom-H), 128.7 (Carom-H), 127.8 (Carom-H), 122.6 (CH=CH), 63.6 (SiOCH2CH2), 36.8 

(SiOCH2CH2), 27.0 (3 x CH3), 23.0 (CH3), 21.8 (CHCH2CH), 21.0 (CHCH2CH), 19.3 (SiC(CH3)3), 16.4 

(CHCH2CH). IR (ATR): 3012 (C-H st), 2947 (C-H st), 1741 (C=O st) cm
-1

. 

(E)-3-(2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-1-(4-

methoxyphenyl)prop-2-en-1-one (3x). Following the 

general procedure J, 3x (0.61 g, 1.3 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 19:1 to 8:2) in 76% yield as a yellow oil starting from 2a 

(0.60 g, 1.7 mmol), 1-(4-methoxyphenyl)-2-(triphenyl-λ
5
-phosphanylidene)ethan-1-one

11
 (1.40 g, 3.4 

mmol) and toluene (26 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.99-7.91 (m, 2H, Carom-H), 7.73-

7.66 (m, 4H, Carom-H), 7.47-7.34 (m, 6H, Carom-H), 7.00-6.91 (m, 3H, Carom-H, CH=CH), 6.61 (dd, J = 

15.0, 10.2 Hz, 1H, CH=CH), 3.87 (s, 3H, OCH3), 3.76 (t, J = 6.3 Hz, 2H, SiOCH2CH2), 1.66-1.58 (m, 2H, 

SiOCH2CH2), 1.52-1.42 (m, 1H, CHCH2CH), 1.33-1.20 (m, 1H, CHCH2CH), 1.07 (s, 9H, 3 x CH3), 0.94-

0.80 (m, 2H, CHCH2CH).  
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 188.2 (C=O), 163.2 (Carom-C), 153.7 

(CH=CH), 135.7 (Carom-H), 134.0 (Carom-Si), 133.9 (Carom-Si), 130.7 (Carom-H), 129.7 (Carom-H), 127.7 

(Carom-H), 122.3 (CH=CH), 113.8 (Carom-H), 63.6 (SiOCH2CH2), 55.5 (OCH3), 36.8 (SiOCH2CH2), 27.0 (3 x 

CH3), 22.9 (CHCH2CH), 20.9 (CHCH2CH), 19.3 (SiC(CH3)3), 16.2 (CHCH2CH).  IR (ATR): 2930 (C-H st), 

1666 (C=O st), 1605 (C=C st), 1105 (Si-O st) cm
-1

. MS (EI) m/z (%): 294 (81), 293 (62), 185 (47), 184 

(16), 183 (100), 139 (22), 135 (M
+
-C23H29OSi, 2), 77 (15), 51 (15). 

(E)-1-((1S,2R)-2-(2-((tert-

butyldiphenylsilyl)oxy)ethyl)cyclopropyl)-4,4-dimethylpent-1-en-

3-one (3z). Following the general procedure J, 3z (0.32 g, 0.7 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

19:1 to 8:2) in 48% yield as a yellow oil starting from 2a (0.54 g, 1.5 mmol), 3,3-dimethyl-1-

(triphenyl-λ
5
-phosphaneylidene)butan-2-one

11
 (1.00 g, 2.8 mmol) and toluene (24 mL). 

1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.71-7.66 (m, 4H, Carom-H), 7.45-7.34 (m, 6H, Carom-H), 6.59-6.40 (m, 2H, 2H, 

CH=CH), 3.73 (t, J = 6.2 Hz, 2H, SiOCH2CH2), 1.62-1.53 (m, 3H, SiOCH2CH2, CHCH2CH), 1.39-1.32 (m, 

1H, CHCH2CH), 1.15 (s, 9H, 3 x CH3), 1.06 (s, 9H, 3 x CH3), 0.94-0.70 (m, 2H, CHCH2CH). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 203.7 (C=O), 152.4 (CH=CH), 147.5 (Carom-C), 135.7 (Carom-H), 133.9 (Carom-Si), 

129.7 (Carom-H), 127.7 (Carom-H), 124.3 (Carom-Si), 121.1 (CH=CH), 63.5 (SiOCH2CH2), 42.7 (C(CH3)), 36.7 

(SiOCH2CH2), 27.0 (3 x CH3), 26.5 (3 x CH3), 22.5 (CHCH2CH), 20.6 (CH-CH2-CH), 19.3 (SiC(CH3)3), 15.9 

(CHCH2CH). MS (EI) m/z (%): 377 (M
+
-

t
Bu, 52), 255 (M

+
-C12H20O, 2), 200 (19), 199 (100), 197 (30), 183 

(28), 181 (25), 180 (M
+
-C16H19OSi, 6), 135 (46), 121 (15), 105 (18), 91 (17), 85 (M

+
-C23H29OSi, 1), 77 

(19), 57 (52). 
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Synthesis of (E)-4-((1S,2R)-2-(2-((tert-butyldiphenylsilyl)oxy)ethyl)cyclopropyl)but-3-en-2-one (3y) 

 

To a cooled (0ᵒC) stirring suspension of NaH (60 wt.% in mineral oil, 0.11 g, 2.8 mmol, 2.0 eq) in 

THF (5 mL, 0.3 M), dietyl (2-oxopropyl)phosphonate (0.57 mL, 2.8 mmol, 2.0 eq) was added and the 

reaction mixture was stirred at room temperature for 30 minutes. Then, 2a (0.50 g, 1.4 mmol, 1.0 

eq) was added at 0ᵒC dropwise and the reaction was stirred ar toom temperature for 1 hour. The 

crude was quenched with H2O (10 mL) and aqueous phase was extracted with EtOAc (3 x 20 mL). 

Organic extract were dried over Na2SO4 and concentrated in vacuo. The crude was then purified by 

flash column chromatography (petroleum ether/EtOAc gradient from 19:1 to 8:2) to afford pure 3y 

in 61% yield as a yellow oil (0.34 g, 0.9 mmol).
 1

H NMR (300 MHz, CDCl3) (δ, ppm): 7.72-7.66 (m, 4H, 

Carom-H), 7.49-7.33 (m, 6H, Carom-H), 6.34 (dd, J = 15.7, 9.7 Hz, 1H, CH=CH), 6.12 (d, J = 15.7 Hz, 1H, 

CH=CH), 3.74 (t, J = 6.3 Hz, 2H, SiOCH2CH2), 2.19 (s, 3H, CH3), 1.64-1.55 (m, 2H, SiOCH2CH2), 1.38-

1.27 (m, 1H, CHCH2CH), 1.26-1.11 (m, 1H, CHCH2CH), 1.07 (s, 9H, 3 x CH3), 0.88-0.79 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 197.8 (C=O), 153.0 (CH=CH), 135.6 (Carom-H), 133.9 

(Carom-Si), 133.8 (Carom-Si), 129.7 (Carom-H), 128.0 (CH=CH), 127.7 (Carom-H), 63.5 (Si-O-CH2-CH2), 36.6 

(SiOCH2CH2), 27.1 (CH3), 26.9 (3 x CH3), 22.1 (CHCH2CH), 20.9 (CHCH2CH), 19.3 (SiC(CH3)3), 16.1 

(CHCH2CH). IR (ATR): 3012 (C-H st), 1734 (C=O st), 1109 (Si-O st) cm
-1

. MS (EI) m/z (%): 335 (M
+
-

t
Bu, 

29), 255 (M
+
-C9H13O, 2), 213 (18), 200 (19), 199 (100), 183 (28), 181 (25), 137 (M

+
-OTBDPS, 5), 135 

(25), 105 (16), 91 (19), 78 (23), 77 (24). 

 

 

2.1.7. Synthesis of SI6a-z 
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General procedure K: To a solution of 3a-k (1 mmol, 1.0 eq) in MeOH or EtOH (2 mL, 0.5 M) at 

room temperature, a solution of HCl in dioxane 4 M (2.5 mmol, 2.5 eq) in MeOH or EtOH (2 mL, 0.5 

M) was added dropwise, and the reaction was stirred at that temperature for 4 hours. Once the 

reaction was finished, it was quenched with H2O (20 mL), the aqueous layer was extracted with 

EtOAc (3 x 20 mL) and the combined organic extracts were dried over Na2SO4 and concentrated in 

vacuo. The crude was then purified by flash column chromatography to afford pure SI6a-k. 

 

(E)-2-(2-(2-nitrovinyl)cyclopropyl)ethan-1-ol (SI6a). Following the general 

procedure K, SI6a (0.96 g, 5.7 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 3:7) in 80% yield as a yellow oil starting 

from 3a (1.20 g, 3.0 mmol), HCl in dioxane (1.90 mL, 7.5 mmol) and MeOH (6 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.05 (d, J = 13.2 Hz, 1H, CH=CH), 6.77 (dd, J = 13.1, 10.7 Hz, 1H, CH=CH), 3.63 

(t, J = 6.4 Hz, 2H, OHCH2CH2), 2.46-2.57 (br s, 1H, OH), 1.55 (appt, J = 6.5 Hz, 2H, OHCH2CH2), 1.43-

1.31 (m, 1H, CHCHaHbCH), 1.23 (ddtd, J = 13.7, 10.0, 6.9, 3.5 Hz, 1H, CHCHaHbCH), 1.01-0.91 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 148.6 (CH=CH), 136.8 (CH=CH), 61.8 (OHCH2CH2), 

36.1 (OHCH2CH2), 21.4 (CHCH2CH), 18.7 (CHCH2CH), 16.6 (CHCH2CH). IR (ATR): 3357 (O-H st), 1627 

(C=C st), 1512 (NO2 st as), 1339 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 140 (M
+
-H2O, 4), 119 (7), 111 

(M
+
-NO2, 3), 110 (20), 91 (41), 85 (M

+
-C2H2NO2, 18), 79 (100), 66 (81), 53 (75), 51 (41). HRMS: 

Calculated for [C7H12NO3]
+
: 158.0817 [(M+H)

+
]; found: 158.0811. 

(E)-2-(2-methyl-2-(2-nitrovinyl)cyclopropyl)ethan-1-ol (SI6b). Following 

the general procedure K, SI6b (0.96 g, 5.7 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 3:7) in 65% yield as a yellow 

oil starting from 3b (0.40 g, 0.9 mmol), HCl in dioxane (0.54 mL, 2.2 mmol) and MeOH (2 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 6.94 (d, J = 13.2 Hz, 1H, CH=CH), 6.81 (d, J = 13.2 Hz, 1H, CH=CH), 

3.67 (t, J = 6.5 Hz, 2H, OHCH2CH2), 2.32-2.16 (br s, 1H, OH), 1.84-1.55 (m, 2H, OHCH2CH2), 1.33-1.10 

(m, 5H, CH3, CHCH2C, CHCHaHbC), 0.73 (dd, J = 6.5, 4.6 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 153.9 (CH=CH), 136.2 (CH=CH), 62.2 (OHCH2CH2), 31.9 (OHCH2CH2), 25.9 (CHCH2C), 

23.6 (CHCH2C), 20.7 (CHCH2C), 15.2 (CH3) IR (ATR): 3457 (O-H st), 2972 (C-H st), 1630 (C=C st), 1505 

(NO2 st as), 1349 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 214 (20), 213 (100), 183 (33), 181 (16), 82 (12). 

 (E)-2-(2-ethyl-2-(2-nitrovinyl)cyclopropyl)ethan-1-ol (SI6c). Following the 

general procedure K, SI6c (0.28 g, 0.2 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 3:7) in 65% yield as a yellow oil starting 

from 3c (0.10 g, 0.2 mmol), HCl in dioxane (0.15 mL, 0.6 mmol) and MeOH (1 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.04-6.85 (m, 2H, CH=CH), 3.78-7.67 (m, 2H, OHCH2CH2), 1.98-1.81 (m, 1H, 

CHCH2C), 1.74-1.43 (m, 4H, CH2CH3), 1.36-1.21 (m, 2H, OHCH2CH2), 1.15 (dd, J = 9.0, 4.8 Hz, 1H, 

CHCHaHbC), 1.02 (t, J = 7.4 Hz, 3H, CH2CH3), 0.71 (dd, J = 6.7, 4.8 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 151.7 (CH=CH), 136.7 (CH=CH), 62.6 (OHCH2CH2), 31.9 (OHCH2CH2), 27.3 

(CHCH2C), 26.3 (CHCH2C), 23.0 (CH2CH3), 22.5 (CHCH2C), 11.5 (CH2CH3). IR (ATR): 3012 (C-H st), 1630 

(C=C st), 1511 (NO2 st as), 1372 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 207 (72), 168 (M
+
-H2O, 2), 156 



206  Chapter 6 

 

(M
+
-C2H5, 2), 139 (M

+
-NO2, 2), 113 (M

+
-C2H2NO2, 2), 107 (32), 105 (34), 93 (35), 91 (84), 81 (28), 80 

(28), 79 (100), 78 (33), 77 (69), 67 (41), 65 (41), 57 (48), 55 (53), 53 (44), 51 (42). 

(E)-2-(2-(2-nitrovinyl)-2-propylcyclopropyl)ethan-1-ol (SI6d). Following the 

general procedure K, SI6d (0.68 g, 3.4 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 2:8) in 97% yield as a yellow oil starting 

from 3d (1.10 g, 3.5 mmol), HCl in dioxane (2.20 mL, 8.8 mmol) and MeOH (14 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.20-6.87 (m, 2H, CH=CH), 3.73-3.62 (m, 2H, SiOCH2CH2), 2.05-1.78 (m, 1H, 

CH-CH2-C), 1.73-1.51 (m, 2H, SiOCH2CH2), 1.49-1.07 (m, 5H, CH2CH2CH3), 0.98-0.66 (4H, CH2CH2CH3, 

CHCH2C). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm) (* denotes minor diastereosimer resonances; d.r.: 

1:1.05): 152.3* (CH=CH), 148.2 (CH=CH), 138.3 (CH=CH), 138.5 (CH=CH), 62.3 (SiOCH2CH2), 38.7 

(CH2CH2CH3), 32.7* (CH2CH2CH3), 32.2 (SiOCH2CH2), 31.9* (SiOCH2CH2), 27.7 (CHCH2C), 27.1* 

(CHCH2C), 25.8 (CHCH2C), 25.2* (CHCH2C), 23.4 (CCH2C), 22.7* (CCH2C), 20.4* (CH2CH2CH3), 20.0 

(CH2CH2CH3), 14.3* (CH2CH2CH3), 14.2 (CH2CH2CH3). 
 
IR (ATR): 3361 (O-H st), 2934 (C-H st), 2876 (C-H 

st), 1511 (NO2 st as). MS (EI) m/z (%): 182 (M
+
-H2O, 2), 153 (M

+
-NO2, 3), 135 (18), 127 (M

+
-C2H2NO2, 

2), 109 (29), 107 (22), 105 (20), 93 (69), 91 (57), 81 (42), 79 (100), 77 (57), 71 (18), 69 (39), 67 (81), 

65 (20), 55 (69), 57 (39), 53 (26). 

(E)-2-(2-(but-3-en-1-yl)-2-(2-nitrovinyl)cyclopropyl)ethan-1-ol (SI6e). 

Following the general procedure K, SI6e (0.05 g, 0.2 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 7:3 to 2:8) in 60% yield as a 

yellow oil starting from 3e (0.13 g, 0.4 mmol), HCl in dioxane (0.23 mL, 0.9 mmol) and MeOH (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm):

 
7.20-6.92 (m, 2H, CH=CH), 5.90-5.67 (m, 1H, CH2CH2CH=CH2) 

5.13-4.93 (m, 2H, CH2CH2CH=CH2), 3.72 (dt, J = 16.4, 6.4 Hz, 2H, OHCH2CH2), 2.27-2.12 (m, 2H, 

CH2CH2CH=CH2), 1.95-1.84 (m, 1H, CHCH2C), 1.77-1.51 (m, 4H, CH2CH2CH=CH2, OHCH2CH2), 0.91-0.85 

(m, 1H, CHCHaHbC), 0.79-0.72 (m, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (* denotes minor 

diastereoisomer resonances; d.r.: 1:0.8) (δ, ppm):
 
151.6 (CH=CH), 147.5 (CH2CH2CH=CH2), 138.5* 

(CH=CH), 137.6 (CH=CH), 137.5* (CH=CH), 136.8* (CH2CH2CH=CH2), 115.5 (CH2CH2CH=CH2), 115.4* 

(CH2CH2CH=CH2), 62.6 (OHCH2CH2), 62.5* (OHCH2CH2), 36.0 (CH2CH2CH=CH2), 32.8* 

(CH2CH2CH=CH2), 32.0 (OHCH2CH2), 31.4* (OHCH2CH2), 30.9 (CH2CH2CH=CH2), 29.6* 

(CH2CH2CH=CH2), 27.7 (CHCH2C), 27.2* (CHCH2C), 25.5 (CHCH2C), 24.9* (CHCH2C), 23.4 (CHCH2C), 

22.7 (CHCH2C). IR (ATR): 3386 (O-H st), 2937 (C-H st), 2865 (C-H st), 1511 (NO2 st as) cm
-1

. MS (EI) 

m/z (%): 194 (M
+
-H2O), 1), 165 (M

+
-NO2, 1), 199 (21), 139 (M

+
-C

2
H

2
NO

2
, 1), 105 (68), 93 (40), 92 (24), 

91 (100), 83 (23), 81 (29), 80 (20), 79 (91), 78 (24), 77 (73), 67 (35), 65 (25), 55 (58), 53 (27). 

Dimethyl (E)-2-(2-hydroxyethyl)-3-(2-nitrovinyl)cyclopropane-1,1-

dicarboxylate (SI6f). Following the general procedure K, SI6f (0.19 g, 0.7 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 7:3 to 

1:1) in 64% yield as a yellow oil starting from 3f (0.57 g, 1.1 mmol), HCl in 

dioxane (0.7 mL, 2.8 mmol), and MeOH (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.28-7.12 (m, 1H, 

CH=CH), 6.97-6.85 (m, 1H, CH=CH), 3.80-3.69 (m, 8H, 2 x OCH3, OHCH2CH2), 2.61-2.49 (m, 1H, 

OHCH2CHaHb), 2.40-2.29 (m, 1H, OHCH2CHaHb), 1.81-1.69 (m, 1H, CHCCH), 1.66-1.53 (m, 1H, CHCCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 167.4 (C=O), 167.1 (C=O), 141.1 (CH=CH), 138.3 (CH=CH), 61.2 
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(OHCH2CH2), 53.4 (OCH3), 53.3 (OCH3), 42.2 (CHCCH), 31.8 (CHCCH), 30.6 (OHCH2CH2), 28.2 (CHCCH).  

IR (ATR): 3436 (O-H st), 2947 (C-H st), 1730 (C=O st), 1343 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 242 

(27), 227 (20), 227 (M
+
-NO2, 3), 214 (M

+
-CO2Me, 20), 213 (29), 201 (M

+
-C2H2NO2, 4), 195 (31), 194 

(48), 183 (50), 181 (28), 167 (45), 163 (66), 157 (M
+
-C4H6O4, 5), 156 (22), 155 (M

+
-2 CO2Me, 4), 153 

(45), 152 (57), 139 (61), 135 (61), 95 (47), 94 (52), 77 (56), 59 (100). 

Diethyl (E)-2-(2-hydroxyethyl)-3-(2-nitrovinyl)cyclopropane-1,1-

dicarboxylate (SI6g). Following the general procedure K, SI6g (0.11 g, 0.4 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 7:3 to 

1:1) in 43% yield as a yellow oil starting from 3g (0.45 g, 0.8 mmol), HCl in 

dioxane (0.52 mL, 2.1 mmol), and EtOH (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.20 (d, J = 13.3 

Hz, 1H, CH=CH), 6.95 (dd, J = 13.3, 10.5 Hz, 1H, CH=CH), 4.36-4.12 (m, 4H, OCH2CH3), 3.74 (t, J = 6.0 

Hz, 2H, OHCH2CH2), 2.61-2.46 (m, 1H, CHCCH), 2.38-2.29 (m, 1H, CHCCH), 1.84-1.63 (m, 2H, 

OHCH2CH2), 1.62-1.54 (br s, 1H, OH), 1.28 (q, J = 7.3 Hz, 6H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 167.0 (C=O), 167.0 (C=O), 141.1 (CH=CH), 138.5 (CH=CH), 62.5 (OCH2CH3), 62.4 (OCH2CH3), 

61.4 (OHCH2CH2), 42.6 (CHCCH), 31.5 (CHCCH), 30.5 (OHCH2CH2), 30.3 (CHCCH), 14.3 (OCH2CH3), 14.2 

(OCH2CH3). IR (ATR): 3541 (O-H st), 2980 (C-H st), 1726 (C=O st), 1648 (C=C st), 1522 (NO2 st as), 

1353 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 283 (M
+
-H2O, 1), 256 (60), 255 (M

+
-NO2, 26), 228 (M

+
-CO2Et, 

2), 207 (45), 167 (43), 163 (67), 155 (M
+
-2CO2Et, 32), 138 (43), 137 (84), 135 (54), 125 (48), 121 (55), 

110 (36), 108 (33), 107 (38), 97 (30), 96 (31), 95 (48), 94 (59), 83 (38), 81 (56), 79 (100), 77 (83), 67 

(57), 66 (47), 55 (44), 53 (63). 

Diethyl 2-((2-(2-hydroxyethyl)cyclopropyl)methylene)malonate (SI6h). 
Following the general procedure K, SI6h (0.18 g, 0.7 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 7:3 to 3:7) in 65% yield as a 

yellow oil starting from 3h (0.53 g, 1.0 mmol), HCl in dioxane (0.67 mL, 2.7 mmol) and EtOH (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.30 (d, J = 11.2 Hz, 1H, CH=C), 4.20 (q, J = 7.2 Hz, 2H, OCH2CH3), 

4.10 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.58 (t, J = 6.3 Hz, 2H, HOCH2CH2), 3.0-2.65 (br s, 1H, OH), 1.71-

1.52 (m, 2H, OHCH2CH2), 1.46-1.35 (m, 1H, CHCH2CH), 1.12-1.09 (m, 7H, OCH2CH3, CHCH2CH), 0.87 (t, 

J = 6.8 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 166.0 (C=O), 164.3 (C=O), 155.5 

(CH=C), 125.2 (CH=C), 62.1 (OHCH2CH2), 61.2 (OCH2CH3), 61.1 (OCH2CH3), 36.3 (OHCH2CH2), 21.2 

(CHCH2CH), 20.2 (CHCH2CH), 16.8 (CHCH2CH), 14.2 (OCH2CH3), 14.1 (OCH2CH3). IR (ATR): 3465 (O-H 

st), 2984 (C-H st), 1724 (C=O st), 1630 (C=C st) cm
-1

. MS (EI) m/z (%): 239 (M
+
-H2O, 3), 210 (14), 184 

(57), 183 (M
+
-CO2Et, 17), 156 (100), 128 (66), 110 (84), 98 (M

+
-C7H10O4, 1), 91 (30), 79 (69), 65 (20), 

53 (29). HRMS: Calculated for [C13H21O5]
+
: 257.1389 [(M+H)

+
]; found: 257.1393. 

2-((2-(2-hydroxyethyl)cyclopropyl)methylene)malononitrile (SI6i). 

Following the general procedure K, SI6i (0.96 g, 5.7 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 7:3 to 3:7) in 68% yield as a 

yellow oil starting from 3i (0.21 g, 0.5 mmol), HCl in dioxane (0.32 mL, 1.3 mmol) and MeOH (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer resonances; d.r.: 1:7.8): 6.99* 

(d, J = 11.7 Hz, 1H, CH=C), 6.70 (d, J = 11.3 Hz, 1H, CH=C), 3.66 (t, J = 5.9 Hz, 2H, OHCH2CH2), 2.45-

2.26 (br s, 1H, OH), 1.90 (ddt, J = 11.5, 7.9, 3.9 Hz, 1H, CHCH2CH), 1.73-1.46 (m, 3H, OHCH2CH2, 
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CHCH2CH), 1.28 (dddd, J = 19.1, 14.8, 9.1, 5.5 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 173.8 (CH=C), 112.8 (CN), 111.7 (CN), 83.8 (CH=C), 61.4 (OHCH2CH2), 35.7 (OHCH2CH2), 24.8 

(CHCH2CH), 24.6 (CHCH2CH), 19.7 (CHCH2CH). IR (ATR): 3386 (O-H st), 2230 (C-N st), 1591 (C=C st) 

cm
-1

. MS (EI) m/z (%): 162 (M
+
, 1), 145 (M

+
-H2O, 3), 141 (100), 131 (79), 118 (31), 105 (86), 98 

(M
+
-C3N2, 1), 77 (62), 65 (28), 57 (23), 51 (27). HRMS: Calculated for [C9H9NO2]

-
: 161.0715 [(M-H)

-
]; 

found: 161.0716. 

Ethyl (Z)-2-cyano-3-(2-(2-hydroxyethyl)cyclopropyl)acrylate (SI6j). 

Following the general procedure K, SI6j (0.42 g, 2.0 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 7:3 to 3:7) in 90% yield as a 

yellow oil starting from 3j (1.00 g, 2.2 mmol), HCl in dioxane (1.34 mL, 5.6 mmol) and EtOH (4.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.93 (d, J = 11.4 Hz, 1H, CH=C), 4.13 (q, J = 7.1 Hz, 2H, OCH2CH3), 

3.55 (t, J = 6.2 Hz, 2H, OHCH2CH2), 3.35-3.05 (br s, 1H, OH), 1.79-1.70 (m, 1H, CHCH2CH), 1.57-1.46 

(m, 2H, OHCH2CH2), 1.44-1.35 (m, 1H, CHCH2CH), 1.18 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.13-1.06 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 168.1 (CH=C), 161.5 (C=O), 114.4 (CN), 104.7 

(CH=C), 61.8 (OHCH2CH2), 61.3 (OCH2CH3), 35.7 (OHCH2CH2), 23.3 (CHCH2CH), 23.1 (CHCH2CH), 18.4 

(CHCH2CH), 14.0 (OCH2CH3). IR (ATR): 3453 (O-H st), 2972 (C-H st), 2252 (C-N st), 1724 (C=O st), 1605 

(C=C st) cm
-1

. MS (EI) m/z (%): 209 (M
+
, 8), 178 (24), 163 (26), 146 (49), 136 (M

+
-CO2Et, 23), 133 (84), 

119 (94), 106 (100), 91 (62), 77 (82), 67 (34), 52 (45). HRMS: Calculated for [C11H16NO3]
+
: 210.1130 

[(M+H)
+
]; found: 210.1136. 

ethyl (E)-3-((1S,2R)-2-(2-hydroxyethyl)cyclopropyl)acrylate (SI6k). 

Following the general procedure K, SI6k (0.12 g, 0.7 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 1:1 to 3:7) in 64% yield as 

yellow oil starting from 3k (0.44 g, 1.0 mmol), HCl in dioxane (0.66 mL, 2.7 mmol) and EtOH (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.46 (dd, J = 15.4, 10.0 Hz, 1H, CH=CH), 5.83 (d, J = 15.4 Hz, 1H, 

CH=CH), 4.21-4.12 (m, 2H, OCH2CH3), 3.71 (t, J = 6.5 Hz, 2H, SiOCH2CH2), 1.69-1.62 (br s, 1H, OH), 

1.58 (q, J = 6.6 Hz, 2H, OCH2CH2), 1.36 (ddd, J = 9.8, 8.2, 4.3 Hz, 1H, CHCH2CH), 1.27 (t, J = 7.1 Hz, 3H, 

OCH2CH3), 1.08 (dddd, J = 13.3, 8.3, 6.7, 4.0 Hz, 1H, CHCH2CH), 0.90-0.77 (m, 2H, CHCH2CH).  

 

General procedure L: To a solution of 3l-z (1.5 mmol, 1.0 eq) in THF (15 mL, 0.1 M), TBAF (1 M in 

THF, 1.6 mmol, 1.1 eq) was added and the reaction was stirred at room temperature for 1 hour. 

When the reaction was finished, the solvent was removed and the crude was then purified by flash 

column chromatography to afford pure SI6l-z.  

 

(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-phenylprop-2-en-1-one 

(SI6l). Following the general procedure L, SI6l (0.11 g, 0.5 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 1:1 to 3:7) in 

74% yield as a yellow oil starting from 3l (0.30 g, 0.7 mmol), TBAF 

(0.73 mL, 0.7 mmol) and THF (7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.96-7.88 (m, 2H, Carom-H), 
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7.76-7.30 (m, 3H, Carom-H), 6.97 (d, J = 15.1 Hz, 1H, CH=CH), 6.59 (dd, J = 15.1, 10.1 Hz, 1H, CH=CH), 

3.71 (t, J = 6.5 Hz, 2H, OHCH2CH2), 2.35-2.08 (br s, 1H, OH), 1.61 (q, J = 6.8 Hz, 2H, OHCH2CH2), 1.56-

1.43 (m, 1H, CHCH2CH), 1.21-1.12 (m, 1H, CHCH2CH), 0.97-0.81 (m, 2H, CHCH2CH). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 190.1 (C=O), 154.5 (CH=CH), 138.2 (Carom-C), 132.6 (Carom-H), 129.6 (Carom-H), 

128.6 (Carom-H), 128.5 (Carom-H), 127.7 (Carom-H), 122.7 (CH=CH), 62.4 (OHCH2CH2), 36.6 (OHCH2CH2), 

22.8 (CHCH2CH), 20.7 (CHCH2CH), 16.2 (CHCH2CH). IR (ATR): 3453 (O-H st), 1738 (C=O st), 1655 (C=C 

st) cm
-1

.  

(E)-1-(4-chlorophenyl)-3-(2-(2-hydroxyethyl)cyclopropyl)prop-2-

en-1-one (SI6m). Following the general procedure L, SI6m (0.26 g, 

1.0 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 1:1 to 3:7) in 73% yield as a yellow oil starting from 3m (0.70 

g, 1.4 mmol), TBAF (1.50 mL, 1.5 mmol) and THF (14 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.90-

7.83 (m, 2H, Carom-H), 7.46-7.40 (m, 2H, Carom-H), 6.94 (d, J = 15.1 Hz, CH=CH), 6.62 (dd, J = 15.1, 10.2 

Hz, 1H, CH=CH), 3.74 (t, J = 6.4 Hz, 2H, OHCH2CH2), 1.68-1.57 (m, 2H, OHCH2CH2), 1.57-1.46 (m, 2H, 

CHCH2CH, OH), 1.27-1.15 (m, 1H, CHCH2CH), 1.01-0.89 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 188.6 (C=O), 155.0 (CH=CH), 139.0 (Carom-C), 136.6 (Carom-C), 129.9 (Carom-H), 128.9 

(Carom-H), 122.3 (CH=CH), 62.6 (OHCH2CH2), 36.6 (OHCH2CH2), 22.9 (CHCH2CH), 20.8 (CHCH2CH), 16.4 

(CHCH2CH). IR (ATR): 3453 (O-H st), 2972 (C-H st), 1738 (C=O st) cm
-1

.  

(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-(4-

(trifluoromethyl)phenyl)prop-2-en-1-one (SI6n). Following the 

general procedure L, SI6n (0.02 g, 0.06 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 1:1 to 3:7) in 67% yield as 

a yellow oil starting from 3n (0.05 g, 0.1 mmol), TBAF (0.11 mL, 0.1 mmol) and THF (1 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 8.00 (d, J = 8.1 Hz, 2H, Carom-H), 7.72 (d, J = 8.1 Hz, 2H, Carom-H), 6.95 (d, J 

= 15.1 Hz, 1H, CH=CH), 6.64 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.75 (t, J = 6.4 Hz, 2H, OHCH2CH2), 

1.73-1.46 (m, 4H, OHCH2CH2, CHCH2CH, OH), 1.28-1.19 (m, 1H, CHCH2CH), 1.04-0.90 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.0 (C=O), 156.0 (CH=CH), 141.2 (Carom-C), 137.7 

(q, JCF = 271.0 Hz, CF3), 128.8 (Carom-H), 125.7 (q, 
3
JCF = 3.9 Hz, Carom-H), 122.5 (CH=CH), 62.5 

(OHCH2CH2), 36.6 (OHCH2CH2), 23.0 (CHCH2CH), 21.1 (CHCH2CH), 16.6 (CHCH2CH). IR (ATR): 3461 

(O-H st), 2972 (C-H st), 1738 (C=O st), 1368 (C-F st), 776 (CF3) cm
-1

. MS (EI) m/z (%): 284 (M
+
. 2), 281 

(27), 265 (18), 253 (17), 225 (65), 215 (M
+
-CF3, 2), 212 (29), 209 (21), 208 (19), 207 (100), 199 (29), 

193 (16), 173 (76), 145 (64), 78 (18), 77 (20). 

(E)-1-(4-fluorophenyl)-3-(2-(2-hydroxyethyl)cyclopropyl)prop-2-

en-1-one (SI6o). Following the general procedure L, SI6o (0.17 g, 

0.7 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 1:1 to 3:7) in 64% yield as a yellow oil starting from 3o (0.53 

g, 1.1 mmol), TBAF (1.24 mL, 1.2 mmol) and THF (11 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.96-

7.87 (m, 2H, Carom-H), 7.14-7.03 (m, 2H, Carom-H), 6.92 (d, J = 15.1 Hz, 1H, CH=CH), 6.57 (dd, J = 15.0, 

10.2 Hz, 1H, CH=CH), 3.69 (t, J = 6.5 Hz, 2H, OHCH2CH2), 2.39-2.22 (br s, 1H, OH), 1.66-1.54 (m, 2H, 

OHCH2CH2), 1.53-1.42 (m, 1H, CHCH2CH), 1.23-1.12 (m, 1H, CHCH2CH), 0.96-0.84 (m, 2H, CHCH2CH). 
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13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 188.4 (C=O), 165.4 (d, 
1
JC-F = 254.0 Hz, CCHCHCF), 154.9 

(CH=CH), 131.0 (d, 
3
JC-F = 9.2 Hz, CCHCHCF), 122.1 (CH=CH), 115.6 (d, 

2
JC-F = 21.8 Hz, CCHCHCF), 62.3 

(OHCH2CH2), 36.5 (OHCH2CH2), 2.8 (CHCH2CH), 20.8 (CHCH2CH), 16.3 (CHCH2CH). IR (ATR): 3411 (O-H 

st), 1659 (C=O st), 1601 (C=C st), 1228 (C-F st) cm
-1

. 

(E)-1-(4-bromophenyl)-3-(2-(2-hydroxyethyl)cyclopropyl)prop-2-

en-1-one (SI6p). Following the general procedure L, SI6p (0.25 g, 

0.8 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 1:1 to 3:7) in 70% yield as a yellow oil starting from 3p (0.64 

g, 1.2 mmol), TBAF (1.30 mL, 1.3 mmol) and THF (12 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.81-

7.77 (m, 2H, Carom-H), 7.59-7.56 (m, 2H, Carom-H), 6.93 (d, J = 15.1 Hz, 1H, CH=CH), 6.61 (dd, J = 15.1, 

10.2 Hz, 1H, CH=CH), 3.74 (t, J = 6.3 Hz, 2H, OHCH2CH2), 1.67-1.58 (m, 2H, OHCH2CH2), 1.56- 1.47 (m, 

2H, CHCH2CH), 1.24-1.17 (br s, 1H, OH), 1.01-0.88 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 188.8 (C=O), 155.1 (CH=CH), 137.0 (Carom-C), 131.9 (Carom-H), 130.0 (Carom-H), 127.7 (Carom-C), 

122.3 (CH=CH), 62.6 (OHCH2CH2), 36.6 (OHCH2CH2), 22.9 (CHCH2CH), 20.8 (CHCH2CH), 16.4 

(CHCH2CH). IR (ATR): 3465 (O-H st), 1741 (C=O st), 765 (C-Br st) cm
-1

.  

(E)-1-(3,4-dichlorophenyl)-3-(2-(2-

hydroxyethyl)cyclopropyl)prop-2-en-1-one (SI6q). Following the 

general procedure L, SI6q (0.15 g, 0.6 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 1:1 to 3:7) in 78% yield as a 

yellow oil starting from 3q (0.41 g, 0.8 mmol), TBAF (0.87 mL, 0.9 

mmol) and THF (8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.99 (d, J = 2.0 Hz, 1H, Carom-H), 7.74 (dd, 

J = 8.3, 2.0 Hz, 1H, Carom-H), 7.52 (d, J = 8.3 Hz, 1H, Carom-H), 6.90 (d, J = 15.0 Hz, 1H, CH=CH), 6.63 

(dd, J = 15.0, 10.2 Hz, 1H, CH=CH), 3.73 (t, J = 6.4 Hz, 2H, OHCH2CH2), 1.73 (br s, 1H, OH), 1.67-1.57 

(m, 2H, OHCH2CH2), 1.55-1.48 (m, 1H, CHCH2CH), 1.27-1.18 (m, 1H, CHCH2CH), 1.02-0.89 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 187.3 (C=O), 156.0 (CH=CH), 137.8 (Carom-C), 137.1 

(Carom-C), 133.2 (Carom-C), 130.7 (CH=CH), 130.5 (Carom-H), 127.5 (Carom-H), 121.7 (Carom-H), 62.5 

(OHCH2CH2), 36.5 (OHCH2CH2), 23.0 (CHCH2CH), 21.1 (CHCH2CH), 16.6 (CHCH2CH). IR (ATR): 3540 

(O-H st), 1738 (C=O st) cm
-1

.  

(E)-4-(3-(2-(2-hydroxyethyl)cyclopropyl)acryloyl)benzonitrile 

(SI6r). Following the general procedure L, SI6r (0.10 g, 0.4 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 1:1 to 

3:7) in 51% yield as a yellow oil starting from 3r (0.40 g, 0.8 

mmol), TBAF (0.91 mL, 0.9 mmol) and THF (8 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 8.01-7.95 (m, 2H, Carom-H), 7.78-7.73 (m, 2H, Carom-H), 6.92 (d, J = 15.1 Hz, 1H, 

CH=CH), 6.64 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.73 (t, J = 6.4 Hz, 2H, OHCH2CH2), 1.69-1.49 (m, 4H, 

OHCH2CH2, CHCH2CH, OH), 1.31-1.17 (m, 1H, CHCH2CH), 1.04-0.91 (m, 2H, CHCH2CH). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 188.5 (C=O), 156.7 (CH=CH), 141.6 (Carom-C), 132.5 (Carom-H), 128.9 (Carom-H), 

122.1 (CH=CH), 118.2 (CN), 115.8 (Carom-C), 62.5 (OHCH2CH2), 36.5 (OHCH2CH2), 23.1 (CHCH2CH), 21.2 

(CHCH2CH), 16.7 (CHCH2CH). IR (ATR): 3501 (O-H st), 3009 (C-H st), 1741 (C=O st) cm
-1

. 
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 (E)-1-(2-bromophenyl)-3-((1S,2R)-2-(2-

hydroxyethyl)cyclopropyl)prop-2-en-1-one (SI6s). Following the 

general procedure L, SI6s (0.18 g, 0.6 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 1:1 to 3:7) in 42% yield as a 

yellow oil starting from 3s (0.78 g, 1.5 mmol), TBAF (1.61 mL, 1.6 mmol) and THF (15 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.58-7.55 (m, 1H, Carom-H), 7.35-7.31 (m, 1H, Carom-H), 7.30-7.24 (m, 2H, 

Carom-H), 6.50-6.46 (m, 2H, CH=CH), 6.24-6.18 (m, 1H, CH=CH), 3.71 (m, 2H, OHCH2CH2), 1.95-1.71 (br 

s, 1H, OH), 1.67-1.50 (m, 2H, OHCH2CH2), 1.49-1.42 (m, 1H, CHCH2CH), 1.15-1.08 (m, 1H, CHCH2CH), 

0.92-0.85 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 194.3 (C=O), 157.3 (CH=CH), 141.2 

(Carom-C), 133.4 (Carom-H), 131.1 (Carom-H), 129.0 (Carom-H), 127.3 (Carom-H), 127.1 (CH=CH), 119.4 

(Carom-C), 62.4 (OHCH2CH2), 36.5 (OHCH2CH2), 22.7 (CHCH2CH), 21.1 (CHCH2CH), 16.6 (CHCH2CH). MS 

(EI) m/z (%): 237 (25), 235 (25), 224 (28), 185 (59), 183 (69), 182 (M
+
-C7H4O, 4), 157 (50), 155 (29), 

115 (40), 111 (M
+
-C7H4BrO, 4), 91 (36), 81 (30), 79 (29), 77 (89), 76 (52), 75 (51), 74 (40), 65 (26), 63 

(35), 53 (45), 51 (81), 50 (100). 

(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-(3-methoxyphenyl)prop-2-

en-1-one (SI6t). Following the general procedure L, SI6t (0.18 g, 0.7 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 1:1 

to 3:7) in 53% yield as a yellow oil starting from 3t (0.69 g, 1.4 

mmol), TBAF (1.55 mL, 1.5 mmol) and THF (14 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.52-7.41 (m, 2H, Carom-H), 7.34 (t, J = 7.9 Hz, 1H, Carom-H), 7.07 (ddd, J = 8.2, 

2.6, 0.9 Hz, 1H, Carom-H), 6.95 (d, J = 15.1 Hz, 1H, CH=CH), 6.59 (dd, J = 15.1, 10.1 Hz, 1H, CH=CH), 

3.84 (s, 3H, OCH3), 3.71 (t, J = 6.4 Hz, 2H, OHCH2CH2), 1.96 (br s, 1H, OH), 1.66-1.54 (m, 2H, 

OHCH2CH2), 1.53-1.46 (m, 1H, CHCH2CH), 1.25-1.11 (m, 1H, CHCH2CH), 0.97-0.84 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.7 (C=O), 159.9 (Carom-C), 154.5 (CH=CH), 139.6 (Carom-C), 

129.5 (CH=CH), 122.7 (Carom-H), 121.0 (Carom-H), 119.1 (Carom-H), 112.9 (Carom-H), 62.5 (OHCH2CH2), 

55.5 (OCH3), 36.6 (OHCH2CH2), 22.8 (CHCH2CH), 20.7 (CHCH2CH), 16.2 (CHCH2CH). IR (ATR): 3451 (O-

H st), 3016 (C-H st), 1734 (C=O st) cm
-1

. 

(E)-1-([1,1'-biphenyl]-4-yl)-3-(2-(2-

hydroxyethyl)cyclopropyl)prop-2-en-1-one (SI6u). Following 

the general procedure L, SI6u (0.52 g, 1.8 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 1:1 to 3:7) in 57% 

yield as a yellow oil starting from 3u (1.64 g, 3.1 mmol), TBAF 

(3.41 mL, 3.4 mmol) and THF (31 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) 8.03-7.98 (m 2H, Carom-H), 

7.68-7.66 (m, 2H, Carom-H), 7.64-7.60 (m, 2H, Carom-H), 7.46 (dd, J = 8.4, 6.8 Hz, 2H, Carom-H), 7.42-7.36 

(m, 1H, Carom-H), 7.03 (d, J = 15.0 Hz, 1H, CH=CH), 6.65 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.74 (t, J = 

6.4 Hz, 2H, OHCH2CH2), 2.21-1.99 (br s, 1H, OH), 1.69-1.58 (m, 2H, OHCH2CH2), 1.54 (ddt, J = 10.1, 

8.3, 4.3 Hz, 1H, CHCH2CH), 1.24-1.19 (m, 1H, CHCH2CH), 0.97 (dt, J = 8.9, 4.7 Hz, 1H, CHCHaHbCH), 

0.91 (ddd, J = 8.2, 6.2, 4.8 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.5 (C=O), 

154.4 (CH=CH), 145.3 (Carom-C), 140.1 (Carom-C), 136.9 (Carom-C), 129.1 (Carom-H), 129.0 (Carom-H), 128.2 

(CH=CH), 127.3 (Carom-H), 122.6 (Carom-H), 62.5 (OHCH2CH2), 38.6 (OHCH2CH2), 22.8 (CHCH2CH), 20.7 

(CHCH2CH), 16.3 (CHCH2CH). IR (ATR): 3489 (O-H st), 3016 (C-H st), 1738 (C=O st) cm
-1

.  
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(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-(naphthalen-2-yl)prop-

2-en-1-one (SI6v). Following the general procedure L, SI6v (0.23 

g, 0.8 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 1:1 to 3:7) in 66% yield as a yellow oil starting from 3v (0.63 

g, 1.3 mmol), TBAF (1.44 mL, 1.4 mmol) and THF (13 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.44 

(d, J = 1.7 Hz, 1H, Carom-H), 8.06-7.83 (m, 4H, Carom-H), 7.55 (pd, J = 7.1, 1.5 Hz, 2H, Carom-H), 7.15 (d, J 

= 15.1 Hz, 1H, CH=CH), 6.67 (dd, J = 15.1, 10.2 Hz, 1H, CH=CH), 3.74 (t, J = 6.4 Hz, 2H, OHCH2CH2), 

1.95-1.78 (br s, 1H, OH), 1.71-1.51 (m, 3H, OHCH2CH2, CHCH2CH), 1.30-1.14 (m, 1H, CHCH2CH), 1.03-

0.85 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 189.8 (C=O), 154.4 (CH=CH), 135.5 

(Carom-C), 135.4 (Carom-C), 132.6 (Carom-C), 129.8 (Carom-H), 129.5 (Carom-H), 128.5 (Carom-H), 128.3 

(Carom-H), 127.9 (Carom-H), 126.8 (Carom-H), 124.6 (Carom-H), 122.7 (CH=CH), 62.5 (OHCH2CH2), 36.6 

(OHCH2CH2), 22.9 (CHCH2CH), 20.7 (CHCH2CH), 16.3 (CHCH2CH). IR (ATR): 3451 (O-H st), 3009 (C-H t), 

1738 (C=O st), 1655 (=C st) cm
-1

. 

(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-(p-tolyl)prop-2-en-1-one 

(SI6w). Following the general procedure L, SI6w (0.22 g, 1.0 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

1:1 to 3:7) in 62% yield as a yellow oil starting from 3w (0.70 g, 

1.5 mmol), TBAF (1.60 mL, 1.6 mmol) and THF (15 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.88-7.79 

(m, 2H, Carom-H), 7.29-7.21 (m, 2H, Carom-H), 6.98 (d, J = 15.0, 1H, CH=CH), 6.58 (dd, J = 15.1, 10.2 Hz, 

1H, CH=CH), 3.72 (t, J = 6.5 Hz, 2H, OH-CH2-CH2), 2.40 (s, 3H, CH3), 1.95-1.82 (br s, 1H, OH), 1.65-1.56 

(m, 2H, OHCH2CH2), 1.53-1.46 (m, 1H, CHCH2CH), 1.23-1.12 (m, 1H, CHCH2CH), 0.98-0.84 (m, 2H, 

CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm) 189.6 (C=O), 153.9 (CH=CH), 143.4 (Carom-C), 135.6 

(Carom-C), 129.3 (Carom-H), 128.6 (Carom-H), 122.7 (CH=CH), 62.5 (OHCH2CH2), 36.6 (OHCH2CH2), 22.7 

(CHCH2CH), 21.7 (CH3), 20.6 (CHCH2CH), 16.1 (CHCH2CH). IR (ATR): 3465 (O-H st), 2969 (C-H st), 1741 

(C=O st) cm
-1

.  

(E)-3-(2-(2-hydroxyethyl)cyclopropyl)-1-(4-

methoxyphenyl)prop-2-en-1-one (SI6x). Following the general 

procedure L, SI6x (0.25 g, 1.0 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 1:1 to 3:7) in 77% yield 

as a yellow oil starting from 3x (0.61 g, 1.3 mmol), TBAF (1.40 mL, 1.4 mmol) and THF (13 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 7.99-7.90 (m, 2H, Carom-H), 7.01-6.91 (m, 3H, Carom-H, CH=CH), 6.58 

(dd, J = 15.0, 10.1 Hz, 1H, CH=CH), 3.86 (s, 3H, OCH3), 3.73 (t, J = 6.4 Hz, 2H, OHCH2CH2), 1.72-1.88 

(br s, 1H, OH), 1.65-1.57 (m, 2H, OHCH2CH2), 1.56-1.44 (m, 1H, CHCH2CH), 1.22-1.12 (m, 1H, 

CHCH2CH), 1.00-0.82 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 188.3 (C=O), 163.3 

(Carom-C), 153.3 (CH=CH), 131.0 (Carom-C), 130.8 (Carom-H), 122.4 (CH=CH), 113.8 (Carom-H), 62.6 

(OHCH2CH2), 55.6 (OCH3), 36.6 (OHCH2CH2), 22.7 (CHCH2CH), 20.5 (CHCH2CH), 16.1 (CHCH2CH). IR 

(ATR): 3443 (O-H st), 2930 (C-H st), 1741 (C=O st), 1605 (C=C st) cm
-1

. 
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((E)-4-(2-(2-hydroxyethyl)cyclopropyl)but-3-en-2-one (SI6y). Following 

the general procedure L, SI6y (0.12 g, 0.8 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 1:1 to 3:7) in 87% yield as a 

yellow oil starting from 3y (0.34 g, 0.9 mmol), TBAF (0.96 mL, 0.9 mmol) and THF (9 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.32 (dd, J = 15.7, 9.6 Hz, 1H, CH=CH), 6.14 (d, J = 15.7 Hz, 1H, CH=CH), 

3.72 (t, J = 6.4 Hz, 2H, SiOCH2CH2), 2.19 (s, 3H, CH3), 1.66-1.56 (m, 2H, SiOCH2CH2), 1.42-1.33 (m, 1H, 

CHCH2CH), 1.18-1.07 (m, 1H, CHCH2CH), 0.92-0.85 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 197.9 (C=O), 152.6 (CH=CH), 128.2 (CH=CH), 62.5 (OHCH2CH2), 36.6 (OHCH2CH2), 27.1 (CH3), 

22.0 (CHCH2CH), 20.4 (CHCH2CH), 16.0 (CHCH2CH). IR (ATR): 3451 (O-H st), 2937 (C-H st), 1738 (C=O 

st), 1655 (C=C st) cm
-1

.  

(E)-1-((1S,2R)-2-(2-hydroxyethyl)cyclopropyl)-4,4-dimethylpent-1-en-3-

one (SI6z). Following the general procedure L, SI6z (0.11 g, 0.5 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 1:1 to 3:7) in 

73% yield as a yellow oil starting from 3z (0.32 g, 0.7 mmol), TBAF (0.81 

mL, 0.8 mmol) and THF (7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.56 (dd, J = 15.0, 1.2 Hz, 1H, 

CH=CH), 6.42 (ddd, J = 15.0, 9.8, 1.2 Hz, 1H, CH=CH), 3.70 (t, J = 6.5 Hz, 2H, SiOCH2CH2), 1.79-1.68 (br 

s, 1H, OH), 1.69-1.47 (m, 2H, SiOCH2CH2), 1.39 (ddt, J = 12.9, 8.4, 4.0 Hz, 1H, CHCH2CH), 1.13 (s, 9H, 3 

x CH3), 1.11-1.03 (m, 1H, CHCH2CH), 0.90-0.77 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 203.9 (C=O), 152.0 (CH=CH), 121.3 (CH=CH), 62.6 (OHCH2CH2), 42.8 (C(CH3)3), 36.6 

(OHCH2CH2), 26.5 (3 x CH3), 22.3 (CHCH2CH), 20.2 (CHCH2CH), 15.8 (CHCH2CH).  

 

2.1.8. Synthesis of 4a-z 

 

 

General procedure M: To a solution of the corresponding alcohol SI6a-k (1.5 mmol, 1.0 eq) in 

EtOAc (15 mL, 0.1 M), IBX (3.0 mmol, 2.0 eq) was added in one portion and the reaction mixture was 

heated to reflux for 3 hours. Once the reaction was finished, it was filtered by celite® and 

concentrated in vacuo. The crude was dissolved in Et2O (20 mL) and it was washed with saturated 

NaHCO3 solution (3 x 20 mL). Organic extract were dried over Na2SO4 and concentrated in vacuo. 

The crude was then purified by flash column chromatography to afford pure 4a-k. 
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trans-(E)-2-(2-(2-nitrovinyl)cyclopropyl)acetaldehyde (4a). Following the 

general procedure M, 4a (0.33 g, 2.1 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 70% yield as a yellow solid starting 

from SI6a (0.48 g, 3.1 mmol), IBX (1.70 g, 6.1 mmol) and EtOAc (30 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 9.79 (s, 1H, CHO), 7.11 (d, J = 13.2 Hz, 1H, CH=CH), 6.83 (dd, J = 13.2, 10.2 Hz, 1H, CH=CH), 

2.53 (dt, J = 6.7, 1.6 Hz, 2H, CHOCH2), 1.51-1.42 (m, 2H, CHCH2CH), 1.12 (dt, J = 8.6, 5.3 Hz, 1H, 

CHCHaHbCH), 1.05 (dt, J = 8.0, 5.7 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.9 

(CHO), 146.5 (CH=CH), 137.9 (CH=CH), 47.1 (CHOCH2), 18.3 (CHCH2CH), 17.0 (CHCH2CH), 16.0 

(CHCH2CH). IR (ATR): 2855 (C-H st), 1713 (C=O st), 1637 (C=C st), 1511 (NO2 st as), 1393 (NO2 st sim) 

cm
-1

. MS (EI) m/z (%): 109 (M
+
-NO2, 9), 108 (24), 81 (31), 80 (23), 79 (100), 78 (24), 77 (67), 69 (21), 

67 (18), 66 (39), 65 (28), 55 (24), 53 (42), 52 (21), 51 (30). HRMS: Calculated for [C7H8NO3]
-
: 154.0504 

[(M-H)
-
]; found: 154.0509. m.p. (CH2Cl2) = 34-37ᵒC. 

(E)-2-(2-methyl-2-(2-nitrovinyl)cyclopropyl)acetaldehyde (4b). Following 

the general procedure M, 4b (0.66 g, 0.3 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 3:7) in 57% yield as a yellow oil 

starting from SI6b (0.10 g, 0.6 mmol), IBX (0.33 g, 1.2 mmol) and EtOAc (6 mL). 
1
H NMR (300 MHz, 

CDCl3) (δ, ppm): 9.80 (s, 1H, CHO), 6.98 (d, J = 13.4 Hz, 1H, CH=CH), 6.85 (d, J = 13.4 Hz, 1H, CH=CH), 

2.75-2.51 (m, 2H, CHOCH2), 1.59-1.45 (m, 1H, CHCH2C), 1.29 (dd, J = 9.2, 5.2 Hz, 1H, CHCHaHbC), 1.20 

(s, 3H, CH3), 0.77 (t, J = 5.9 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.1 (CHO), 

152.1 (CH=CH), 137.0 (CH=CH), 43.3 (CHOCH2), 22.9 (CHCH2C), 21.6 (CHCH2C), 20.2 (CHCH2C), 15.5 

(CH3). IR (ATR): 2965 (C-H st), 1734 (C=O st), 1622 (C=C st), 1372 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 

214 (21), 213 (100), 183 (34), 154 (M
+
-CH3, 1), 78 (8). m.p. (CH2Cl2) = 50-53ᵒC. 

(E)-2-(2-ethyl-2-(2-nitrovinyl)cyclopropyl)acetaldehyde (4c). Following the 

general procedure M, 4c (0.02 g, 0.1 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 3:7) in 70% yield as a yellow oil starting 

from SI6c (0.03 g, 0.2 mmol), IBX (0.11 g, 0.4 mmol) and EtOAc (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.82 (t, J = 1.4 Hz, 1H, CHO), 6.97 (s, 2H, CH=CH), 2.75-2.51 (m, 2H, CHOCH2), 1.30-1.20 (m, 

3H, CH2CH3, CHCH2C), 1.01 (t, J = 7.4 Hz, 3H, CH2CH3), 0.86 (d, J = 7.5 Hz, 1H, CHCHaHbC), 0.73 (t, J = 

6.0 Hz, 1H, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.0 (CHO), 150.0 (CH=CH), 100.1 

(CH=CH), 43.2 (CHOCH2), 25.7 (CHCH2C), 23.4 (CH2CH3), 22.6 (CHCH2C), 21.8 (CHCH2C), 11.4 (CH2CH3). 

IR (ATR): 2922 (C-H st), 1734 (C=O), 1375 (NO2 st sim) cm
-1

. HRMS: Calculated for [C9H12NO3]
-
: 

182.0817 [(M-H)
-
]; found: 182.0836. 

(E)-2-(2-(2-nitrovinyl)-2-propylcyclopropyl)acetaldehyde (4d) Following the 

general procedure M, 4d (0.40 g, 1.9 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 65% yield as a brown oil starting 

from SI6d (0.60 g, 3.0 mmol), IBX (1.68 g, 6.0 mmol) and EtOAc (30 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm) (* denotes minor diastereoisomer resonances; d.r.: 1:0.7): 9.75 (dd, J = 1.5 Hz, 1H, CHO), 

9.70* (t, J = 1.4 Hz, 1H, CHO), 7.07-6.82 (m, 2H, CH=CH), 2.73-2.40 (m, 2H, CHOCH2), 1.56-1.29 (m, 

5H, CH2CH2CH3, CHCH2C), 1.29-1.11 (m, 1H, CHCHaHbC), 0.95-0.67 (m, 4H, CH2CH2CH3, CHCHaHbC). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.4 (CHO), 200.2* (CHO), 150.6 (CH=CH), 145.4* (CH=CH), 
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138.9 (CH=CH), 137.0 (CH=CH), 43.6 (CHOCH2), 42.9* (CHOCH2), 38.5 (CH2CH2CH3), 32.3* 

(CH2CH2CH3), 25.1 (CHCH2C), 24.5* (CHCH2C), 22.8 (CHCH2C), 22.4* (CHCH2C), 21.9 (CHCH2C), 21.7* 

(CHCH2C), 20.1 (CH2CH2CH3), 19.6* (CH2CH2CH3), 14.1 (CH2CH2CH3), 14.0* (CH2CH2CH3). IR (ATR): 

2965 (C-H st), 1734 (C=O st), 1368 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 167 (100), 166 (20), 165 (60), 

152 (37), 151 (M
+
-NO2, 22),91 (51). HRMS: Calculated for [C10H15NO3Na]

+
: 220.0950 [(M+Na)

+
]; 

found: 220.0948. 

(E)-2-(2-(but-3-en-1-yl)-2-(2-nitrovinyl)cyclopropyl)acetaldehyde (4e). 

Following the general procedure M, 4e (0.03 g, 0.1 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 1:1) in 50% yield as a brown oil 

starting from SI6e (0.05 g, 0.2 mmol), IBX (0.13 g, 0.4 mmol) and EtOAc (2 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes minor diastereoisomer 

resonances; d.r.: 1:1): 9.76 (s, 1H, CHO), 7.07-6.88 (m, 2H, CH=CH), 5.84-5.68 (m, 1H, 

CH2CH2CH=CH2), 5.07-4.97 (m, 2H, CH2CH2CH=CH2), 2.69-2.51 (m, 2H, CHOCH2), 2.37-2.06 (m, 4H, 

CH2CH2CH=CH2), 1.77-1.48 (m, 3H, CHCH2C). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.9 (CHO), 

199.6* (CHO), 150.0 (CH=CH), 145.8* (CH=CH), 139.4 (CH2CH2CH=CH2), 139.4* (CH2CH2CH=CH2), 

119.5 (CH2CH2CH=CH2), 115.7* (CH=CH), 115.5 (CH=CH), 94.6* (CH2CH2CH=CH2), 43.9 (CHOCH2), 

43.3* (CHOCH2), 36.8* (CH2CH2CH=CH2), 36.0 (CH2CH2CH=CH2), 31.2* (CH2CH2CH=CH2), 30.8 

(CH2CH2CH=CH2), 25.0 (CHCH2C), 24.4* (CHCH2C), 22.9 (CHCH2C), 22.5* (CHCH2C), 22.1 (CHCH2C), 

21.9* (CHCH2C). IR (ATR): 2930 (C-H st), 2868 (C-H st), 1724 (C=O st), 1511 (NO2 st as) cm
-1

. MS (EI) 

m/z (%): 151 (M
+
-NO2, 22), 150 (21), 121 (29), 109 (18), 108 (20), 107 (100), 105 (18), 93 (25), 91 

(66), 81 (44), 79 (99), 78 (20), 77 (57), 67 (31), 65 (18). 

Dimethyl (E)-2-(2-nitrovinyl)-3-(2-oxoethyl)cyclopropane-1,1-dicarboxylate 

(4f). Following the general procedure M, 4f (0.12 g, 0.4 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 7:3 to 1:1) in 50% yield as a 

yellow oil starting from SI6f (0.25 g, 0.9 mmol), IBX (0.50 g, 1.8 mmol) and 

EtOAc (9 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.71 (s, 1H, CHO), 7.19 (d, J = 13.3 Hz, 1H, CH=CH), 

6.95-6.84 (m, 1H, CH=CH), 3.76 (app d, J = 2.6 Hz, 6H, 2 x OCH3), 2.78-2.62 (m, 2H, CHOCH2), 2.55-

2.47 (m, 2H, CHCCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 198.2 (CHO), 167.0 (C=O), 166.7 (C=O), 

141.7 (CH=CH), 137.2 (CH=CH), 53.5 (OCH3), 53.4 (OCH3), 41.5 (CHOCH2), 41.1 (CHCCH), 30.2 

(CHCCH), 27.2 (CHCCH).  IR (ATR): 2959 (C-H st), 1726 (C=C st), 1436 (NO2 st as) cm
-1

. MS (EI) m/z 

(%): 271 (M
+
, 1), 242 (M

+
-CHO, 6), 225 (M

+
-NO2, 6), 212 (M

+
-CO2Me, 7), 153 (M

+
-2 x CO2Me, 8), 151 

(15), 105 (17), 77 (71), 59 (100), 53 (24), 51 (45). 

Diethyl (E)-2-(2-nitrovinyl)-3-(2-oxoethyl)cyclopropane-1,1-dicarboxylate 

(4g). Following the general procedure M, 4g (0.09 g, 0.3 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 7:3 to 1:1) in 80% yield as a 

yellow oil starting from SI6g (0.11 g, 0.4 mmol), IBX (0.20 g, 0.7 mmol) and 

EtOAc (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.73 (s, 1H, CHO), 7.23-7.17 (m, 1H, CH=CH), 6.99-

6.86 (m, 1H, CH=CH), 4.35-4.08 (m, 4H, OCH2CH3), 2.70-2.67 (m, 1H, CHCCH), 2.66-2.62 (CHCCH), 

2.54-2.47 (m, 2H, CHOCH2), 1.30-1.22 (m, 6H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 198.2 

(CHO), 166.6 (C=O), 166.3 (C=O), 141.6 (CH=CH), 137.4 (CH=CH), 62.6 (OCH2CH3), 41.5 (CHOCH2), 
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41.5 (CHCCH), 30.0 (CHCCH), 26.9 (CHCCH), 14.1 (OCH2CH3). IR (ATR): 2982 (C-H st), 1725 (C=O st), 

1525 (NO2 st as), 1350 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 285 (39), 253 (M
+
-NO2, 3), 226 (M

+
-CO2Et, 

8), 181 (17), 179 (16), 165 (28), 153 (M
+
-2 x CO2Et 26), 151 (29), 137 (33), 135 (45), 134 (19), 123 

(43), 109 (37), 107 (100), 105 (19), 103 (17), 95 (22), 81 (28), 79 (59), 78 (20), 77 (52), 67 (17), 65 

(18), 55 (18), 53 (29), 51 (16). HRMS: Calculated for [C13H16NO7]
+
: 298.0927 [(M-H)

-
]; found: 

298.0927. 

Diethyl 2-((2-(2-oxoethyl)cyclopropyl)methylene)malonate (4h). 
Following the general procedure M, 4h (0.10 g, 0.4 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 7:3 to 3:7) in 69% yield as a 

yellow oil starting from SI6h (0.15 g, 0.6 mmol), IBX (0.33 g, 1.2 mmol) and EtOAc (6 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 9.71 (s, 1H, CHO), 6.34 (d, J = 11.1 Hz, 1H, CH=C), 4.20 (q, J = 7.1 Hz, 2H, 

OCH2CH3), 4.15 (d, J = 7.2 Hz, 2H, OCH2CH3), 2.42 (qdd, J = 17.6, 7.0, 1.7 Hz, 2H, CHOCH2), 1.81 (ddt, J 

= 12.0, 8.5, 4.4 Hz, 1H, CHCH2CH), 1.38 (ddd, J = 10.5, 8.5, 5.3 Hz, 1H, CHCH2CH), 1.24 (dt, J = 14.3, 

7.1 Hz, 6H, OCH2CH3), 0.99 (ddt, J = 19.5, 8.1, 5.2 Hz, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 200.4 (CHO), 165.5 (C=O), 164.2 (C=O), 153.8 (CH=C), 126.1 (CH=C), 61.2 (OCH2CH3), 61.1 

(OCH2CH3), 47.0 (CHOCH2), 19.7 (CHCH2CH), 16.9 (CHCH2CH), 16.3 (CHCH2CH), 14.1 (OCH2CH3), 14.0 

(OCH2CH3). IR (ATR): 3012 (C-H st), 1741 (C=O st), 1620 (C=C st) cm
-1

. MS (EI) m/z (%): 254 (M
+
, 1), 

225 (M
+
-CHO, 1), 181 (M

+
-CO2Et, 15), 162 (47), 136 (17), 110 (92), 108 (M

+
-2 x CO2Et, 17), 79 (100), 

53 (35). HRMS: Calculated for [C13H19O5]
+
: 255.1233 [(M+H)

+
]; found: 255.1235. 

2-((2-(2-oxoethyl)cyclopropyl)methylene)malononitrile (4i). Following the 

general procedure M, 4i (0.02 g, 0.07 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 21% yield as a yellow solid starting 

from SI6i (0.06 g, 0.3 mmol), IBX (0.2 g, 0.7 mmol) and EtOAc (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.72 (s, 1H, CHO), 6.72 (d, J = 11.2 Hz, 1H, CH=C), 2.59 (d, J = 6.8 Hz, 2H, CHOCH2), 1.97-1.83 

(m, 1H, CHCH2CH), 1.79-1.66 (CHCH2CH), 1.36-1.23 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 199.4 (CHO), 172.4 (CH=C), 112.5 (CN), 111.4 (CN), 85.0 (CH=C), 46.3 (CHOCH2), 23.8 

(CHCH2CH), 19.8 (CHCH2CH), 18.5 (CHCH2CH). IR (ATR): 2233 (C-N st), 1720 (C=O st), 1595 (C=C st) 

cm
-1

. MS (EI) m/z (%): 160 (M
+
, 1), 142 (57), 133 (36), 115 (56), 104 (89), 91 (100), 77 (38), 67 (31), 51 

(31). HRMS: Calculated for [C9H7N2O]
-
: 159.0560 [(M-H)

-
]; found: 159.0558. 

Ethyl (Z)-2-cyano-3-(2-(2-oxoethyl)cyclopropyl)acrylate (4j). Following 

the general procedure M, 4j (0.18 g, 0.9 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 3:7) in 74% yield as a yellow 

oil starting from SI6j (0.25 g, 1.2 mmol), IBX (0.67 g, 2.4 mmol) and EtOAc (12 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 9.69 (s, 1H, CHO), 6.97 (d, J = 11.3 Hz, 1H, CH=C), 4.18 (q, J = 7.1 Hz, 2H, 

OCH2CH3), 2.63-2.42 (m, 2H, CHOCH2), 1.83 (ddt, J = 12.0, 8.3, 4.3 Hz, 1H, CHCH2CH), 1.66-1.51 (m, 

1H, CHCH2CH), 1.30-1.11 (m, 5H, OCH2CH3, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.7 

(CHO), 166.4 (CH=C), 161.3 (C=O), 114.3 (CN), 106.0 (CH=C), 62.0 (OCH2CH3), 46.5 (CHOCH2), 22.5 

(CHCH2CH), 18.6 (CHCH2CH), 17.4 (CHCH2CH), 14.0 (OCH2CH3). IR (ATR): 2987 (C-H st), 2362 (C-N st), 

1720 (C=O st), 1609 (C=C st) cm
-1

. MS (EI) m/z (%): 391 (31), 390 (100), 207 (M
+
, 3), 199 (30), 183 
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(15), 181 (M
+
-CN, 14), 178 (M

+
-CHO, 1), 135 (11), 134 (M

+
-CO2Et, 1). HRMS: Calculated for 

[C11H13NO3Na]
+
: 230.0793 [(M+Na)

+
]; found: 230.0792. 

Ethyl (E)-3-((1S,2R)-2-(2-oxoethyl)cyclopropyl)acrylate (4k). Following 

the general procedure M, 4k (0.30 g, 1.6 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 1:1) in 69% yield as a yellow 

oil starting from SI6k (0.43 g, 2.3 mmol), IBX (1.30 g, 4.6 mmol) and EtOAc (23 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 9.75 (s, 1H, CHO), 6.45 (dd, J = 15.5, 9.8 Hz, 1H, CH=CH), 5.82 (d, J = 15.4 Hz, 

1H, CH=CH), 4.38-4.06 (m, 2H, OCH2CH3), 2.42 (td, J = 7.3, 1.8 Hz, 2H, CHOCH2), 1.45-1.36 (m, 1H, 

CHCH2CH), 1.25-1.20 (m, 3H, OCH2CH3), 0.95 (dd, J = 8.6, 5.5 Hz, 1H, CHCH2CH), 0.84 (ddd, J = 8.3, 

5.7, 4.6 Hz, 2H, CHCH2CH).  

 

General procedure N: To a solution of the corresponding alcohol SI6l-z (1.5 mmol, 1.0 eq) in 

CH2Cl2 (6 mL, 0.24 M), Dess-Martin periodinane (2.2 mmol, 1.5 eq) was added and the reaction was 

stirred at the same temperature for 1 hour. When the reaction was finished, the solvent was 

removed and the crude was then purified by flash column chromatography to afford pure 4l-z.  

 

(E)-2-(2-(3-oxo-3-phenylprop-1-en-1-yl)cyclopropyl)acetaldehyde (4l). 

Following the general procedure N, 4l (0.09 g, 0.4 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 7:3 to 1:1) in 84% yield as 

a yellow oil starting from SI6l (0.11 g, 0.5 mmol), Dess-Martin 

periodinane (0.31 g, 0.7 mmol) and CH2Cl2 (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.73 (s, 1H, 

CHO), 7.88 (dq, J = 8.8, 2.1 Hz, 2H, Carom-H), 7.54-7.34 (m, 3H, Carom-H), 6.96 (d, J = 15.1 Hz, 1H, 

CH=CH), 6.57 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 2.52-2.34 (m, 2H, CHOCH2), 1.58-1.45 (m, 1H, 

CHCH2CH), 1.41-1.30 (m, 1H, CHCH2CH), 1.04-0.96 (m, 1H, CHCHaHbCH), 0.92-0.84 (m, 1H, 

CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.8 (CHO), 189.8 (C=O), 152.8 (CH=CH), 137.9 

(Carom-C), 132.6 (Carom-H), 128.5 (Carom-H), 128.4 (Carom-H), 123.4 (CH=CH), 47.1 (CHOCH2), 22.1 

(CHCH2CH), 16.4 (CHCH2CH), 15.6 (CHCH2CH). IR (ATR): 3012 (C-H st), 1730 (C=O st), 1666 (C=C st) 

cm
-1

. MS (EI) m/z (%): 281 (22), 214 (M
+
, 1), 208 (22), 207 (93), 106 (28), 105 (90), 96 (15), 94 (16), 83 

(16), 79 (24), 78 (72), 77 (100), 73 (16), 52 (27), 51 (57). HRMS: Calculated for [C14H15O2]
+
: 215.1072 

[(M+H)
+
]; found: 215.1081. 

(E)-2-(2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4m) Following the general procedure 

N, 4m (0.16 g, 0.6 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 60% yield as a yellow oil 

starting from SI6m (0.26 g, 1.0 mmol), Dess-Martin periodinane (0.67 g, 1.6 mmol) and CH2Cl2 (4 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.74 (t, J = 1.7 Hz, 1H, CHO), 7.85-7.78 (m, 2H, Carom-H), 

7.42-7.34 (m, 2H, Carom-H), 6.91 (d, J = 15.1 Hz, 1H, CH=CH), 6.57 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 

2.53-2.34 (m, 2H, CHOCH2), 1.56-1.47 (m, 1H, CHCH2CH), 1.43-1.32 (m, 1H, CHCH2CH), 1.02 (dt, J = 
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8.7, 4.9 Hz, 1H, CHCHaHbCH), 0.91 (dt, J = 8.3, 5.6 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 200.6 (CHO), 188.3 (C=O), 153.3 (CH=CH), 138.9 (Carom-C), 136.2 (Carom-C), 129.8 (Carom-H), 

128.8 (Carom-H), 122.8 (CH=CH), 47.2 (CHOCH2), 22.3 (CHCH2CH), 16.5 (CHCH2CH), 15.7 (CHCH2CH). IR 

(ATR): 3019 (C-H st), 1724 (C=O st), 1666 (C=C st), 1088 (C-Cl st) cm
-1

. MS (EI) m/z (%): 248 (M
+
, 3), 

219 (M
+
-CHO, 1), 141 (34), 139 (100), 137 (M

+
-C6H4Cl, 1), 111 (42), 109 (M

+
-C7H4OCl, 10), 94 (50), 81 

(15), 75 (18). HRMS: Calculated for [C14H13N3O2ClNa]
+
: 271.0502 [(M+Na)

+
]; found: 271.0507. 

(E)-2-(2-(3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-en-1-

yl)cyclopropyl)acetaldehyde (4n). Following the general 

procedure N, 4n (0.06 g, 0.2 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 69% yield as a yellow oil 

starting from SI6n (0.08 g, 0.3 mmol), Dess-Martin periodinane (0.18 g, 0.4 mmol) and CH2Cl2 (1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (t, J = 1.7 Hz, 1H, CHO), 7.99 (d, J = 8.1 Hz, 2H, Carom-H), 7.70 

(d, J = 8.2 Hz, 2H, Carom-H), 6.96 (d, J = 15.1 Hz, 1H, CH=CH), 6.63 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 

2.49 (dt, J = 6.9, 1.9 Hz, 2H, CHOCH2), 1.57 (ddt, J = 10.0, 8.5, 4.4 Hz, 1H, CHCH2CH), 1.52-1.37 (m, 

1H, CHCH2CH), 1.08 (dt, J = 8.6, 4.9 Hz, 1H, CHCHaHbCH), 1.02-0.92 (m, 1H, CHCHaHbCH). 
13

C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 200.6 (CHO), 188.9 (C=O), 154.3 (CH=CH), 140.9 (Carom-C), 135.0 (q, JCF = 

275.0 Hz, CF3), 131.9 (Carom-C), 128.8 (Carom-H), 125.7 (q, 
3
JCF = 3.6 Hz, Carom-CF3), 123.2 (CH=CH), 47.3 

(CHOCH2), 22.5 (CHCH2CH), 16.8 (CHCH2CH), 16.0  (CHCH2CH). IR (ATR): 2972 (C-H st), 1741 (C=O st), 

1368 (C-F st), 776 (CF3) cm
-1

. HRMS: Calculated for [C15H14O2F3]
+
: 283.0946 [M

+
]; found: 283.0948. 

(E)-2-(2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4o). Following the general procedure 

N, 4o (0.12 g, 0.5 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 72% yield as a yellow oil starting from 

SI6o (0.17 g, 0.7 mmol), Dess-Martin periodinane (0.46 g, 1.1 mmol) and CH2Cl2 (3 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 9.79 (t, J = 1.7 Hz, 1H, CHO), 8.00-7.90 (m, 2H, Carom-H), 7.18-7.08 (m, 2H, 

Carom-H), 6.98 (d, J = 15.1 Hz, 1H, CH=CH), 6.61 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 2.56-2.38 (m, 2H, 

CHOCH2), 1.62-1.51 (m, 1H, CHCH2CH), 1.47-1.36 (m, 1H, CHCH2CH), 1.10-1.04 (m, 1H, CHCHaHbCH), 

0.99-0.92 (m, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.7 (CHO), 188.1 (C=O), 165.6 

(d, 
1
JC-F = 254.0 Hz, CCHCHCF), 152.9 (CH=CH), 134.4 (d, 

4
JC-F = 3.1 Hz, CCHCHCF), 131.1 (d, 

3
JC-F = 9.3 

Hz, CCHCHCF), 123.1 (CH=CH), 115.9 (d, 
2
JC-F = 21.9 Hz, CCHCHCF), 47.4 (CHOCH2), 22.4 (CHCH2CH), 

16.6 (CHCH2CH), 15.8 (CHCH2CH). IR (ATR): 3016 (C-H st), 1738 (C=O st), 1605 (C=C st), 1368 (C-F st) 

cm
-1

. HRMS: Calculated for [C14H13O2FNa]
+
: 255.0797[(M+Na)

+
]; found: 255.0801. 

(E)-2-(2-(3-(4-bromophenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4p). Following the general procedure 

N, 4p (0.16 g, 0.5 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 66% yield as a yellow oil starting from 

SI6p (0.25 g, 0.8 mmol), Dess-Martin periodinane (0.53 g, 1.3 mmol) and CH2Cl2 (4 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 9.73 (s, 1H, CHO), 7.78-7.70 (m, 2H, Carom-H), 7.59-7.50 (m, 2H, Carom-H), 6.91 

(d, J = 17.5 Hz, 1H, CH=CH), 6.57 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 2.53-2.35 (m, 2H, CHOCH2), 1.57-

1.47 (m, 1H, CHCH2CH), 1.44-1.32 (m, 1H, CHCH2CH), 1.02 (dt, J = 8.3, 4.9 Hz, 1H, CHCHaHbCH), 0.91 
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(dt, J = 7.9, 5.5 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.6 (CHO), 188.5 (C=O), 

153.4 (CH=CH), 136.7 (Carom-C), 131.8 (Carom-H), 129.9 (Carom-H), 127.6 (Carom-C), 122.8 (CH=CH), 47.2 

(CHOCH2), 22.3 (CHCH2CH), 16.5 (CHCH2CH), 15.7 (CHCH2CH). IR (ATR): 3012 (C-H st), 1734 (C=O st), 

1666 (C=C st), 1070 (C-Br st), 1001 (C-Br st) cm
-1

. HRMS: Calculated for [C14H13O2BrNa]
+
: 314.0997 

[(M+Na)
+
]; found: 314.9998. 

(E)-2-(2-(3-(4-bromophenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4q). Following the general procedure 

N, 4q (0.16 g, 0.5 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 66% yield as a yellow oil starting from 

SI6q (0.25 g, 0.8 mmol), Dess-Martin periodinane (0.53 g, 1.3 mmol) 

and CH2Cl2 (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.73 (s, 1H, CHO), 7.78-7.70 (m, 2H, Carom-H), 

7.59-7.50 (m, 2H, Carom-H), 6.91 (d, J = 17.5 Hz, 1H, CH=CH), 6.57 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 

2.53-2.35 (m, 2H, CHOCH2), 1.57-1.47 (m, 1H, CHCH2CH), 1.44-1.32 (m, 1H, CHCH2CH), 1.02 (dt, J = 

8.3, 4.9 Hz, CHCHaHbCH), 0.91 (dt, J = 7.9, 5.5 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 200.6 (CHO), 188.5 (C=O), 153.4 (CH=CH), 136.7 (Carom-C), 131.8 (Carom-H), 129.9 (Carom-H), 

127.6 (Carom-C), 122.8 (CH=CH), 47.2 (CHOCH2), 22.3 (CHCH2CH), 16.5 (CHCH2CH), 15.7 (CHCH2CH). IR 

(ATR): 3012 (C-H st), 1734 (C=O st), 1666 (C=C st), 1070 (C-Cl st) cm
-1

. HRMS: Calculated for 

[C14H13O2BrNa]
+
: 314.0997 [(M+Na)

+
]; found: 314.9998. 

(E)-4-(3-(2-(2-oxoethyl)cyclopropyl)acryloyl)benzonitrile (4r). 

Following the general procedure N, 4r (0.08 g, 0.3 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 7:3 to 1:1) in 

77% yield as a yellow oil starting from SI6r (0.10 g, 0.4 mmol), 

Dess-Martin periodinane (0.27 g, 0.6 mmol) and CH2Cl2 (2 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (t, J = 1.6 Hz, 1H, CHO), 8.01-7.92 (m, 2H, Carom-H), 7.78-7.72 

(m, 2H, Carom-H), 6.94 (d, J = 15.1 Hz, 1H, CH=CH), 6.64 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 2.50 (dd, J 

= 7.0, 1.6 Hz, 2H, CHOCH2), 1.61-1.52 (m, 1H, CHCH2CH), 1.50-1.37 (m, 1H, CHCH2CH), 1.09 (dt, J = 

8.7, 4.9 Hz, 1H, CHCHaHbCH), 0.98 (dt, J = 8.2, 5.6 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 200.5 (CHO), 188.3 (C=O), 155.0 (CH=CH), 14.4 (Carom-C), 132.5 (Carom-H), 128.8 (Carom-H), 122.8 

(CH=CH), 118.1 (CN), 115.8 (Carom-C), 47.3 (CHOCH2), 22.6 (CHCH2CH), 16.9 (CHCH2CH), 16.1 

(CHCH2CH). IR (ATR): 1734 (C=O st), 1616 (C=C st) cm
-1

. HRMS: Calculated for [C15H14NO2]
+
: 

240.1025[(M+H)
+
]; found: 240.1821. 

 2-((1R,2S)-2-((E)-3-(2-bromophenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4s). Following the general procedure N, 4s 

(0.13 g, 0.4 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 7:3 to 1:1) in 30% yield as a yellow oil starting from SI6s (0.18 g, 

1.5 mmol), Dess-Martin periodinane (0.93 g, 2.2 mmol) and CH2Cl2 (6 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 9.71 (t, J = 1.7 Hz, 1H, CHO), 7.53-7.51 (m, 1H, Carom-H), 7.32-7.20 (m, 3H, Carom-H), 6.46 

(dd, J = 15.6, 1.4 Hz, 1H, CH=CH), 6.18 (ddd, J = 15.6, 9.9, 2.8 Hz, 1H, CH=CH), 2.50-2.27 (m, 2H, 

CHOCH2), 1.53-1.43 (m, 1H, CHCH2CH), 1.34-1.29 (m, 1H, CHCH2CH), 0.98-0.86 (m, 2H, CHCH2CH). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm) 200.6 (CHO), 194.1 (C=O), 155.5 (CH=CH), 141.0 (Carom-C), 133.4 
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(Carom-H), 131.2 (Carom-H), 129.0 (Carom-H), 127.8 (Carom-H), 127.3 (CH=CH), 119.3 (Carom-C), 47.2 

(CHOCH2), 22.1 (CHCH2CH), 16.8 (CHCH2CH), 16.0 (CHCH2CH). MS (EI) m/z (%): 185 (48), 183 (64), 

182 (M
+
-C7H9O, 2), 157 (40), 155 (40), 109 (M

+
-C7H4BrO, 3), 105 (19), 94 (53), 81 (40), 78 (19), 77 

(100), 76 (60), 75 (59), 74 (51), 66 (21), 65 (24), 63 (35), 53 (24), 52 (26), 51 (68), 50 (82).  

(E)-2-(2-(3-(3-methoxyphenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4t). Following the general procedure N, 

4t (0.17 g, 0.7 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 97% yield as a yellow oil starting from SI6t 

(0.18 g, 0.7 mmol), Dess-Martin periodinane (0.47 g, 1.1 mmol) and 

CH2Cl2 (3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 (t, J = 1.8 Hz, 1H, CHO), 7.51-7.41 (m, 2H, 

Carom-H), 7.34 (t, J = 7.9 Hz, 1H, Carom-H), 7.07 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H, Carom-H), 6.96 (d, J = 15.1 

Hz, 1H, CH=CH), 6.59 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 3.83 (s, 3H, OCH3), 2.56-2.36 (m, 2H, 

CHOCH2), 1.59-1.50 (m, 1H, CHCH2CH), 1.46-1.35 (m, 1H, CHCH2CH), 1.05 (dt, J = 8.6, 4.9 Hz, 1H, 

CHCHaHbCH), 0.92 (ddd, J = 8.2, 6.0, 5.0 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

200.8 (CHO), 189.5 (C=O), 159.9 (Carom-C), 152.7 (CH=CH), 139.4 (Carom-C), 129.6 (CH=CH), 123.5 

(Carom-H), 121.0 (Carom-H), 119.2 (Carom-H), 112.8 (Carom-H), 55.5 (OCH3), 47.3 (CHOCH2), 22.3 

(CHCH2CH), 16.5 (CHCH2CH), 15.7 (CHCH2CH). IR (ATR): 3009 (C-H st), 1738 (C=O st) cm
-1

. HRMS: 

Calculated for [C15H17O3]
+
: 245.1178[(M+H)

+
]; found: 245.1182. 

(E)-2-(2-(3-([1,1'-biphenyl]-4-yl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4u) Following the general 

procedure N, 4u (0.20 g, 0.7 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 1:1) in 39% yield 

as a yellow oil starting from SI6u (0.52 g, 1.8 mmol), Dess-

Martin periodinane (1.13 g, 2.7 mmol) and CH2Cl2 (7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.81 (t, 

J = 1.8 Hz, 1H, CHO), 8.04-7.99 (m, 2H, Carom-H), 7.70-7.66 (m, 2H, Carom-H), 7.66-7.62 (m, 2H, 

Carom-H), 7.47 (dd, J = 8.4, 6.8 Hz, 2H, Carom-H), 7.44-7.37 (m, 1H, Carom-H), 7.06 (d, J = 15.1 Hz, 

CH=CH), 6.65 (dd, J = 15.1, 10.0 Hz, 1H, CH=CH), 2.58-2.41 (m, 2H, CHOCH2), 1.59 (ddd, J = 9.9, 8.4, 

4.4 Hz, 1H, CHCH2CH), 1.44 (dqd, J = 8.7, 6.8, 4.0 Hz, 1H, CHCH2CH), 1.09 (dd, J = 8.7, 4.9 Hz, 1H, 

CHCHaHbCH), 0.97 (dt, J = 8.3, 5.6 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.8 

(CHO), 189.3 (C=O), 152.6 (CH=CH), 145.5 (Carom-C), 140.1 (Carom-C), 136.8 (Carom-C), 129.2 (Carom-H), 

129.1 (Carom-H), 128.3 (CH=CH), 127.4 (Carom-H), 123.6 (Carom-H), 47.4 (CHOCH2), 22.4 (CHCH2CH), 16.6 

(CHCH2CH), 15.8 (CHCH2CH). IR (ATR): 1727 (C=O st), 1655 (C=C st) cm
-1

. HRMS: Calculated for 

[C20H18O2Na]
+
: 313.1205 [M+Na]

+
; found: 313.1207. 

(E)-2-(2-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4v). Following the general procedure 

N, 4v (0.19 g, 0.7 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 82% yield as a yellow oil 

starting from SI6v (0.23 g, 0.8 mmol), Dess-Martin periodinane (0.55 g, 1.3 mmol) and CH2Cl2 (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.79 (t, J = 1.8 Hz, 1H, CHO), 8.44 (d, J = 1.7 Hz, 1H, Carom-H), 

8.06-7.81 (m, 4H, Carom-H), 7.64-7.49 (m, 2H, Carom-H), 7.17 (d, J = 15.1 Hz, 1H, CH=CH), 6.67 (dd, J = 
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15.1, 10.0 Hz, 1H, CH=CH), 2.60-2.37 (m, 2H, CHOCH2), 1.66-1.56 (m, 1H, CHCH2CH), 1.48-1.37 (m, 

1H, CHCH2CH), 1.16-1.03 (m, 1H, CHCHaHbCH), 1.02-0.92 (m, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 200.8 (CHO), 189.5 (C=O), 152.6 (CH=CH), 135.5 (Carom-C), 135.4 (Carom-C), 132.6 

(Carom-C), 129.9 (CH=CH), 129.5 (Carom-H), 128.5 (Carom-H), 128.4 (Carom-H), 127.9 (Carom-H), 126.8 

(Carom-H), 124.5 (Carom-H), 123.5 (Carom-H), 47.4 (CHOCH2), 22.3 (CHCH2CH), 16.5 (CHCH2CH), 15.8 

(CHCH2CH). IR (ATR): 1724 (C=O st), 1656 (C=C st) cm
-1

. HRMS: Calculated for [C18H17O2]
+
: 

265.1229[(M+H)
+
]; found: 265.1234. 

(E)-2-(2-(3-oxo-3-(p-tolyl)prop-1-en-1-

yl)cyclopropyl)acetaldehyde (4w). Following the general 

procedure N, 4w (0.18 g, 0.7 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 76% yield as a yellow oil 

starting from SI6w (0.25 g, 1.0 mmol), Dess-Martin periodinane (0.64 g, 1.5 mmol) and CH2Cl2 (4 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.73 (t, J = 1.8 Hz, 1H, CHO), 7.84-7.76 (m, 2H, Carom-H), 

7.27-7.16 (m, 2H, Carom-H), 6.97 (d, J = 15.1 Hz, 1H, CH=CH), 6.57 (dd, J = 15.1, 9.9 Hz, 1H, CH=CH), 

2.48-2.29 (m, 5H, CH3, CHOCH2), 1.57-1.45 (m, 1H, CHCH2CH), 1.45-1.28 (m, 1H, CHCH2CH), 1.01 (dt, 

J = 8.6, 4.9 Hz, 1H, CHCHaHbCH), 0.90 (dq, J = 8.4, 6.2, 5.2 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 200.9 (CHO), 189.3 (C=O), 152.3 (CH=CH), 143.4 (Carom-C), 135.3 (Carom-C), 129.2 

(Carom-H), 128.5 (Carom-H), 123.3 (CH=CH), 47.2 (CHOCH2), 22.1 (CHCH2CH), 21.6 (CH3), 16.3 

(CHCH2CH), 15.6 (CHCH2CH). IR (ATR): 1724 (C=O st), 1666 (C=C st) cm
-1

. MS (EI) m/z (%): 228 (M
+
, 3), 

119 (100), 109 (M
+
-C8H7O, 1), 94 (28), 91 (42), 65 (16). HRMS: Calculated for [C15H16O2Na]

+
: 

251.1048 [(M+Na)
+
]; found: 251.1049. 

(E)-2-(2-(3-(4-methoxyphenyl)-3-oxoprop-1-en-1-

yl)cyclopropyl)acetaldehyde (4x). Following the general 

procedure N, 4x (0.18 g, 0.7 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 76% yield as a yellow oil 

starting from SI6x (0.25 g, 1.0 mmol), Dess-Martin periodinane (0.64 g, 1.5 mmol) and CH2Cl2 (4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.71 (t, J = 1.8 Hz, 1H, CHO), 7.90-7.81 (m, 2H, Carom-H), 6.96 (d, J 

= 15.0 Hz, 1H, CH=CH), 6.90-6.84 (m, 2H, Carom-H), 6.53 (dd, J = 15.0, 9.9 Hz, 1H, CH=CH), 3.78 (s, 3H, 

OCH3), 2.50-2.29 (m, 2H, CHOCH2), 1.54-1.41 (m, 1H, CHCH2CH), 1.36-1.29 (m, 1H, CHCH2CH), 0.98 

(dt, J = 8.6, 4.8 Hz, 1H, CHCHaHbCH), 0.85 (dt, J = 8.3, 5.5 Hz, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) 

(δ, ppm): 200.8 (CHO), 187.9 (C=O), 163.2 (Carom-C), 151.6 (CH=CH), 130.6 (Carom-H), 122.9 (CH=CH), 

113.7 (Carom-H), 55.4 (OCH3), 47.1 (CHOCH2), 22.0 (CHCH2CH), 16.2 (CHCH2CH), 15.4 (CHCH2CH). IR 

(ATR): 3012 (C-H st), 1730 (C=O st), 1605 (C=C st) cm
-1

. MS (EI) m/z (%): 244 (M
+
, 2), 137 (M

+
-C7H7O, 

1), 109 (M
+
-C8H7O2, 1), 94 (25), 77 (22). HRMS: Calculated for [C15H17O3]

+
: 245.1178 [(M+H)

+
]; found: 

248.1178. 
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(E)-2-(2-(3-oxobut-1-en-1-yl)cyclopropyl)acetaldehyde (4y). Following the 

general procedure N, 4y (0.09 g, 0.6 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) in 82% yield as a yellow oil starting 

from SI6y (0.12 g, 0.8 mmol), Dess-Martin periodinane (0.48 g, 1.1 mmol) and CH2Cl2 (3 mL).
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 9.75 (t, J = 1.7 Hz, 1H, CHO), 6.31 (dd, J = 15.7, 9.4 Hz, 1H, CH=CH), 6.13 

(d, J = 15.7 Hz, 1H, CH=CH), 2.52-2.34 (m, 2H, CHOCH2), 2.17 (s, 3H, CH3), 1.47-1.26 (m, 2H, 

CHCH2CH), 0.97 (dt, J = 8.6, 5.0 Hz, 1H, CHCHaHbCH), 0.88 (ddd, J = 8.2, 6.1, 5.1 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.8 (CHO), 197.9 (C=O), 151.1 (CH=CH), 128.8 (CH=CH), 47.3 

(CHOCH2), 21.1 (CH3), 21.5 (CHCH2CH), 16.2 (CHCH2CH), 15.4 (CHCH2CH). IR (ATR): 2972 (C-H st), 

1738 (C=O st) cm
-1

. HRMS: Calculated for [C11H15O4]
+
: 3211.0970 [(M-H)

-
]; found: 211.0974. 

2-((1R,2S)-2-((E)-4,4-dimethyl-3-oxopent-1-en-1-

yl)cyclopropyl)acetaldehyde (4z). Following the general procedure N, 4z 

(0.04 g, 0.2 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 7:3 to 1:1) in 36% yield as a yellow oil starting from SI6z (0.10 g, 

0.5 mmol), Dess-Martin periodinane (0.34 g,0.8 mmol) and CH2Cl2 (2 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 9.72 (t, J = 2.0 Hz, 1H, CHO), 6.59-6.51 (m, 1H, CH=CH), 6.46-6.33 (m, 1H, CH=CH), 2.51-

2.27 (m, 2H, CHOCH2), 1.48-1.36 (m, 1H, CHCH2CH), 1.34-1.23 (m, 1H, CHCH2CH), 1.11-1.08 (m, 9H, 3 

x CH3), 0.96-0.90 (m, 1H, CHCHaHbCH), 0.88-0.79 (m, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 203.5 (CHO), 200.9 (C=O), 150.3 (CH=CH), 122.1 (CH=CH), 47.3 (CHOCH2), 42.7 (C(CH3)3), 26.3 

(3 x CH3), 21.8 (CHCH2CH), 16.0 (CHCH2CH), 15.3 (CHCH2CH). MS (EI) m/z (%): 202 (18), 201 (100), 

109 (M
+
-C5H9O, 1), 85 (M

+
-C7H9O, 2).  

 

 

2.1.9. Synthesis of cis-cyclopropanes 18a and 18l 
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15 was reported compound and it was prepared following the procedure described in the 

literature. Spectroscopic data were consistent with those reported in the literature.
16

 For the 

preparation of SI7 and 16, the same methodology previously described was followed. Spectroscopic 

data were consistent with those reported in the literature.
16 

tert-butyldimethyl(2-((1R,2R)-2-((E)-2-

nitrovinyl)cyclopropyl)ethoxy)silane (17a). Following the general 

procedure H, 17a (1.00 g, 3.7 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 19:1 to 7:3) in 70% yield as a yellow oil starting from 16 (1.20 g, 5.3 

mmol), nitromethane (0.57 mL, 10.5 mmol), piperidine (0.21 mL, 2.1 mmol), M.S. and CH2Cl2 (26 

mL).
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.10 (dq, J = 13.1, 1.4 Hz, 1H, CH=CH), 7.00 (tt, J = 11.4, 1.4 

Hz, 1H, CH=CH), 3.64 (t, J = 6.0 Hz, 2H, SiOCH2CH2), 1.71-1.57 (m, 3H, SiOCH2CH2, CHCH2CH), 1.49 (tt, 

J = 8.6, 6.8 Hz, 1H, CHCH2CH), 1.32-1.25 (m, 1H, CHCHaHbCH), 0.85 (s, 9H, 3 x CH3), 0.70-0.64 (m, 1H, 

CHCHaHbCH), 0.001 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 146.0 (CH=CH), 138.3 

(CH=CH), 62.6 (SiOCH2CH2), 32.7 (SiOCH2CH2), 25.9 (3 x CH3), 19.9 (CHCH2CH), 18.3 (SiC(CH3)3), 16.4 

(CHCH2CH), 16.2 (CHCH2CH), -5.4 (2 x CH3).  IR (ATR): 2930 (C-H st), 1734 (C=O st), 1518 (NO2 st as), 

1343 (NO2 st sim) cm
-1

. 

(E)-3-((1R,2R)-2-(2-((tert-

butyldimethylsilyl)oxy)ethyl)cyclopropyl)-1-phenylprop-2-en-1-

one (17l). Following the general procedure J, 17l (0.31 g, 0.9 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 19:1 to 

7:3) in 76% yield as a yellow oil starting from 16 (0.28 g, 1.2 mmol), 1-phenyl-2-(triphenyl-λ
5
-

phosphanylidene)ethan-1-one (0.90 g, 2.4 mmol) and toluene (19 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 7.97-7.90 (m, 2H, Carom-H), 7.60-7.38 (m, 3H, Carom-H), 7.05 (d, J = 15.1 Hz, 1H, CH=CH), 6.84 

(dd, J = 15.0, 10.4 Hz, 1H, CH=CH), 3.68 (td, J = 6.4, 1.5 Hz, 2H, SiOCH2CH2), 1.85-1.74 (m, 1H, 

CHCH2CH), 1.72-1.63 (m, 2H, SiOCH2CH2), 1.48-1.35 (m, 1H, CHCHaHbCH), 1.26-1.17 (m, 1H, 

CHCH2CH), 0.89 (s, 9H, 3 x CH3), 0.65 (dt, J = 6.4, 4.8 Hz, 1H, CHCHaHbCH), 0.001 (s, 6H, 2 x CH3). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 189.7 (C=O), 152.1 (CH=CH), 138.3 (Carom-C), 132.5 (CH=CH), 128.7 

(Carom-H), 128.6 (Carom-H), 125.0 (Carom-H), 63.0 (SiOCH2CH2), 32.9 (SiOCH2CH2), 26.1 (3 x CH3), 20.3 

(CHCH2CH), 19.4 (SiC(CH3)3), 18.5 (CHCH2CH), 16.1 (CHCH2CH), -5.2 (2 x CH3).  

2-((1R,2R)-2-((E)-2-nitrovinyl)cyclopropyl)ethan-1-ol (SI8a). Following the 

general procedure K, SI8a (0.18 g, 1.1 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 1:1) in 62% yield as a yellow 

oil starting from 17a (0.50 g, 1.8 mmol), HCl in dioxane (1.15 mL g, 4.6 mmol) and MeOH (4 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 7.11 (d, J = 13.1 Hz, 1H, CH=CH), 6.99 (dd, J = 13.1, 11.0 Hz, 1H, 

CH=CH), 3.64 (t, J = 6.5 Hz, 2H, OHCH2CH2), 2.57-2.41 (br s, 1H, OH), 1.73-1.59 (m, 3H, OHCH2CH2, 

CHCH2CH), 1.47 (dp, J = 15.2, 7.3 Hz, 1H, CHCH2CH), 1.29 (td, J = 8.1, 5.0 Hz, 1H, CHCHaHbCH), 0.69 

(dt, J = 6.6, 5.0 Hz, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 146.1 (CH=CH), 138.3 (CH=CH), 

                                                           
16 Apel, C.; Hatmann, S. S.; Letz, D.; Christtmann, M. Angew. Chem. Int. Ed. 2019, 58, 5075. 
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62.1 (OHCH2CH2), 32.4 (OHCH2CH2), 19.7 (CHCH2CH), 16.4 (CHCH2CH), 16.2 (CHCH2CH). IR (ATR): 

3447 (O-H st), 2972 (C-H st), 1734 (C=O st), 1634 (C=C st), 1511 (NO2 st as), 1347 (NO2 st sim) cm
-1

. 

(E)-3-((1R,2R)-2-(2-hydroxyethyl)cyclopropyl)-1-phenylprop-2-en-1-

one (SI8l). Following the general procedure L, SI8l (0.07 g, 0.3 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 1:1 to 3:7) 

in 47% yield as a yellow oil starting from 17l (0.22 g, 0.7 mmol), TBAF 

(0.75 mL, 0.7 mmol) and THF (7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.94-7.89 (m, 2H, Carom-H), 

7.55-7.48 (m, 1H, Carom-H), 7.48-7.39 (m, 2H, Carom-H), 7.05 (d, J = 15.0 Hz, 1H, CH=CH), 6.81 (dd, J = 

15.0, 10.5 Hz, 1H, CH=CH), 3.67 (t, J = 6.5 Hz, 2H, SiOCH2CH2), 2.57-2.36 (br s, 1H, OH), 1.84-1.63 (m, 

3H, SiOCH2CH2, CHCH2CH), 1.43-1.32 (m, 1H, CHCHaHbCH), 1.26-1.15 (m, 1H, CHCH2CH), 0.64 (dt, J = 

6.4, 4.9 Hz, 1H, CHCHaHbCH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 18.5 (C=O), 152.3 (CH=CH), 138.0 

(Carom-C), 132.6 (CH=CH), 128.6 (Carom-H), 128.5 (Carom-H), 124.8 (Carom-H), 62.6 (OHCH2CH2), 32.6 

(OHCH2CH2), 20.2 (CHCH2CH), 19.2 (CHCH2CH), 15.9 (CHCH2CH). IR (ATR): 3440 (O-H st), 3012 (C-H 

st), 1738 (C=O st), 1659 (C=C st) cm
-1

.  

2-((1R,2R)-2-((E)-2-nitrovinyl)cyclopropyl)acetaldehyde (18a). Following 

the general procedure N, 18a (0.17 g, 1.0 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 7:3 to 1:1) in 96% yield as a yellow 

oil starting from SI8a (0.18 g, 1.1 mmol), Dess-Martin periodinane (0.72 g, 1.7 mmol) and CH2Cl2 (5 

mL).
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (t, J = 1.2 Hz, 1H, CHO), 7.18-7.08 (m, 1H, CH=CH), 6.93 

(m, 1H, CH=CH), 2.61 (ddd, J = 7.0, 3.1, 1.3 Hz, 2H, CHOCH2), 1.42 (td, J = 8.1, 5.3 Hz, 2H, CHCH2CH, 

CHCH2CH), 0.80-0.68 (m, 2H, CHCH2CH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 200.2 (CHO), 144.0 

(CH=CH), 139.3 (CH=CH), 43.5 (CHOCH2), 15.7 (CHCH2CH), 15.6 (CHCH2CH), 15.4 (CHCH2CH). IR (ATR): 

3020 (C-H st), 1741 (C=O st), 1516 (NO2 st as), 1372 (NO2 st sim) cm
-1

. HRMS: Calculated for 

[C7H10NO3]
+
: 156.0661 [(M+H)

+
]; found: 156.0655.  

2-((1R,2R)-2-((E)-3-oxo-3-phenylprop-1-en-1-

yl)cyclopropyl)acetaldehyde (18l). Following the general procedure N, 

18l (0.07 g, 0.3 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 98% yield as a yellow oil starting from SI8l 

(0.07 g, 0.3 mmol), Dess-Martin periodinane (0.20 g, 0.5 mmol) and CH2Cl2 (1 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 9.78 (t, J = 1.4 Hz, 1H, CHO), 7.95-7.88 (m, 2H, Carom-H), 7.58-7.49 (m, 1H, 

Carom-H), 7.48-7.42 (m, 2H, Carom-H), 7.08 (d, J = 15.1 Hz, 1H, CH=CH), 6.73 (dd, J = 15.0, 10.2 Hz, 1H, 

CH=CH), 2.59 (dt, J = 7.2, 1.0 Hz, 2H, CHOCH2), 1.95-1.86 (m, 1H, CHCH2CH), 1.66-1.53 (m, 1H, 

CHCH2CH), 1.32 (td, J = 8.2, 5.1 Hz, 1H, CHCHaHbCH), 0.68 (dt, J = 6.4, 5.2 Hz, 1H, CHCHaHbCH). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 200.1 (CHO), 184.4 (C=O), 149.7 (CH=CH), 137.9 (Carom-C), 132.8 

(CH=CH), 128.6 (Carom-H), 128.5 (Carom-H), 125.9 (Carom-H), 43.7 (CHOCH2), 19.4 (CHCH2CH), 15.2 

(CHCH2CH), 14.9 (CHCH2CH). IR (ATR): 3016 (C-H st), 1741 (C=O st), 1659 (C=C st) cm
-1

. HRMS: 

Calculated for [C14H14O2Na]
+
: 237.0892 [(M+Na)

+
]; found: 237.0886.  
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2.2. Organocatalytic enantioselective VCP-CP rearrangement 

 

General procedure O: An oven-dried 5 mL screw-capped test tube containing a stirring bar was 

charged with the corresponding cyclopropane 4a-z (0.1 mmol, 1.0 eq) and dissolved in the 

appropriate solvent (0.5 mL, 0.2 M). The mixture was cooled to the desired temperature, and a 

solution of the catalyst (0.01 mmol, 10-20 mol%) in the appropiate solvent (0.5 mL, 0.2 M) was 

quickly added to the mixture. When the reaction was judged complete (monitored by TLC), solvent 

was evaporated and the crude was directly subjected to flash column chromatography to afford 

pure cis-6a-z and trans-6a-z. 

 

2-((1R,2S)-2-nitrocyclopent-3-en-1-yl)acetaldehyde (cis-6a). Following the general 

procedure O, cis-6a (10.10 mg, 0.065 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 9:1 to 1:1) in 84% yield starting from aldehyde 4a 

(12.00 mg, 0.077 mmol), catalyst 5l (4.00 mg, 0.008 mmol) and 1,2-dichloroethane 

(0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.79 (s, 1H, CHO), 6.45 (dt, J = 5.3, 2.4 Hz, 1H, H4), 5.88 

(dtd, J = 5.6, 2.6, 1.6 Hz, 1H, H3), 5.52 (dtd, J = 7.6, 2.4, 0.7 Hz, 1H, H2), 3.07 (h, J = 7.6, 1H, H1), 2.88-

2.57 (m, 3H, CHOCH2, H5a), 2.35 (ddq, J = 16.9, 8.2, 2.3 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 199.5 (CHO), 143.0 (C4), 126.0 (C3), 93.7 (C2), 44.0 (CHOCH2), 37.4 (C5), 36.7 (C1). IR (ATR): 

2915 (C-H st), 1720 (C=O st), 1544 (NO2 st as), 1378 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 109 (M
+
-NO2, 

25), 108 (20), 79 (100), 78 (26), 77 (65), 66 (33), 65 (20), 53 (30), 51 (22). HRMS: Calculated for 

[C7H10NO3]
+
: 156.0661 [(M+H)

+
]; found: 156.0657 and for [C7H8NO3]

-
: 154.0504 [(M-H)

-
]; found: 

154.0506. [α]D
rt

: -143.8 (c = 0.5, CH2Cl2). 

2-((1R,2R)-2-nitrocyclopent-3-en-1-yl)acetaldehyde (trans-6a). Following the 

general procedure O, trans-6a (1.30 mg, 0.011 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 11% yield starting from 

aldehyde 4a (12.00 mg, 0.077 mmol), catalyst 5l (4.00 mg, 0.008 mmol) and 

1,2-dichloroethane (0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.81 (t, J = 1.1 Hz, 1H, CHO), 6.26-

6.19 (m, 1H, H4), 5.88 (dq, J = 5.8, 2.2 Hz, 1H, H3), 5.21 (dq, J = 4.0, 2.0 Hz, 1H, H2), 3.26 (tdd, J = 8.2, 

6.0, 4.1 Hz, 1H, H1), 2.99 (ddq, J = 17.4, 8.2, 2.4 Hz, 1H, H5a), 2.93-2.66 (m, 2H, CHOCH2), 2.13 (ddq, J 

= 17.3, 4.3, 2.1 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.8 (CHO), 139.6 (C4), 125.6 

(C3), 96.2 (C2), 48.0 (CHOCH2), 38.6 (C5), 37.4 (C1). IR (ATR): 2922 (C-H st), 2851 (C-H st), 1720 (C=O 

st), 1548 (NO2 st as), 1379 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 109 (M
+
-NO2, 23), 108 (19), 84 (54), 83 

(100), 81 (63), 79 (52), 78 (23), 77 (38), 66 (26), 65 (22), 53 (28), 51 (20), 53 (28), 51 (20). HRMS: 
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Calculated for [C7H10NO3]
+
: 156.0661 [(M+H)

+
]; found: 156.0656 and for [C7H8NO3]

-
: 154.0504 

[(M-H)
-
]; found: 154.0503. [α]D

rt
: +81.0 (c = 0.25, CH2Cl2). 

2-((1R,2S)-4-methyl-2-nitrocyclopent-3-en-1-yl)acetaldehyde (cis-6b). Following 

the general procedure O, cis-6b (6.08 mg, 0.040 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 44% yield starting from 

aldehyde 4b (15.00 mg, 0.090 mmol), catalyst 5l (4.60 mg, 0.009 mmol) and 

1,2-dichloroethane (0.9 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (s, 1H, CHO), 5.56-5.42 (m, 2H, 

H2, H3), 3.12 (h, J = 7.6 Hz, 1H, H1), 2.67 (dd, J = 9.8, 7.3 Hz, 2H, CHOCH2), 2.62-2.44 (m, 2H, H5), 

1.90 (s, 3H, CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.6 (CHO), 154.6 (C4), 120.3 (C3), 95.0 (C2), 

44.3 (CHOCH2), 41.5 (C5), 37.1 (C1), 17.1 (CH3). IR (ATR): 2972 (C-H st), 1738 (C=O st), 1544 (NO2 st 

as), 1364 (NO2 st sim) cm
-1

. HRMS: Calculated for [C8H10NO3]
-
: 168.0661 [(M-H)

-
]; found: 168.0647. 

[α]D
rt

: -216.2 (c = 0.3, CH2Cl2). 

2-((1R,2R)-4-methyl-2-nitrocyclopent-3-en-1-yl)acetaldehyde (trans-6b). 

Following the general procedure o, trans-6b (5.20 mg, 0.031 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 34% yield starting from 

aldehyde 4b (15.00 mg, 0.090 mmol), catalyst 5l (4.60 mg, 0.009 mmol) and 

1,2-dichloroethane (0.9 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.80 (appd, J = 1.2 Hz, 1H, CHO), 

5.51 (s, 1H, H3), 5.14 (s, 1H, H2), 3.33-3.20 (m, 1H, H1), 2.99-2.61 (m, 4H, H5, CHOCH2), 1.85 (s, 3H, 

CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.9 (CHO), 150.7 (C4), 119.6 (C3), 96.8 (C2), 48.3 

(CHOCH2), 42.5 (C5), 37.9 (C1), 16.8 (CH3). IR (ATR): 2965 (C-H st), 1738 (C=O st), 1547 (NO2 st as), 

1368 (NO2 st sim) cm
-1

. HRMS: Calculated for [C8H10NO3]
-
: 168.0661 [(M-H)

-
]; found: 168.0644. [α]D

rt
: 

+89.0 (c = 0.2, CH2Cl2). 

2-((1R,2S)-4-ethyl-2-nitrocyclopent-3-en-1-yl)acetaldehyde (cis-6c). Following 

the general procedure o, cis-6c (11.50 mg, 0.063 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 61% yield starting from 

aldehyde 4c (20.00 mg, 0.100 mmol), catalyst 5l (6.00 mg, 0.010 mmol) and 

1,2-dichloroethane (1.0 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (s, 1H, CHO), 5.53-5.42 (m, 2H, 

H2, H3), 3.09 (h, J = 7.9 Hz, 1H, H1), 2.72-2.16 (m, 6H, CH2CHO, H5, CH2CH3), 1.11 (t, J = 7.5 Hz, 3H, 

CH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.7 (CHO), 160.4 (C4), 118.2 (C3), 94.7 (C2), 44.3 

(CH2CHO), 39.9 (C5), 36.8 (C1), 24.6 (CH2CH3), 11.8 (CH2CH3). IR (ATR): 3012 (C-H st), 1741 (C=O st), 

1443 (NO2 st as), 1372 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 199 (76), 183 (M
+
, 43), 154 (M

+
-CHO, 6), 

135 (20), 105 (16), 91 (25), 78 (67), 77 (32), 57 (100), 55 (19), 53 (25), 51 (26). HRMS: Calculated for 

[C9H12NO3]
-
: 182.0817 [(M-H)

-
]; found: 182.0814. [α]D

rt
: -129.2 (c = 0.56, CH2Cl2). 

2-((1R,2R)-4-ethyl-2-nitrocyclopent-3-en-1-yl)acetaldehyde (trans-6c). 

Following the general procedure O, trans-6c (5.00 mg, 0.027 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 22% yield 

starting from aldehyde 4c (20.00 mg, 0.100 mmol), catalyst 5l (6.00 mg, 0.010 

mmol) and 1,2-dichloroethane (1.0 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.79 (s, 1H, CHO), 5.52-

5.48 (m, 1H, H3), 5.14 (s, 1H, H2), 3.26 (s, 1H, H1), 2.99-2.61 (m, 3H, CH2CHO, H5a), 2.24-1.96 (m, 3H, 
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H5b, CH2CH3), 1.09 (t, J = 7.4 Hz, 3H, CH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.9 (CHO), 

156.6 (C4), 117.7 (C3), 96.6 (C2), 48.3 (CH2CHO), 40.9 (C5), 37.5 (C1), 24.3 (CH2CH3), 11.8 (CH2CH3). 

IR (ATR): 3020 (C-H st), 1734 (C=O st), 1440 (NO2 st as), 1364 (NO2 st sim) cm
-1

. HRMS: Calculated for 

[C9H12NO3]
-
: 182.0817 [(M-H)

-
]; found: 182.0816. [α]D

rt
: +66.3 (c = 0.39, CH2Cl2). 

2-((1R,2S)-2-nitro-4-propylcyclopent-3-en-1-yl)acetaldehyde (cis-6d). 

Following the general procedure O, cis-6d (12.50 mg, 0.063 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 42% yield 

starting from aldehyde 4d (30.00 mg, 0.150 mmol), catalyst 5l (7.70 mg, 

0.015 mmol) and 1,2-dichloroethane (1.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 (s, 1H, CHO), 

5.56-5.40 (m, 2H, H2, H3), 3.12-3.04 (m, 1H, H1), 2.78-2.62 (m, 2H, CH2CHO), 2.62-2.48 (m, 1H, H5a), 

2.38-2.15 (m, 3H, H5b, CH2CH2CH3), 1.59-1.49 (m, 2H, CH2CH2CH3), 0.93 (t, J = 7.3 Hz, 3H, 

CH2CH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.7 (CHO), 158.8 (C4), 119.3 (C3), 94.8 (C2), 

44.3 (CH2CHO), 39.7 (CH2CH2CH3), 36.8 (C1), 33.4 (C5), 20.6 (CH2CH2CH3), 13.9 (CH2CH2CH3). IR (ATR): 

2937 (C-H st), 2859 (C-H st), 1724 (C=O st), 1547 (NO2 st as) cm
-1

. MS (EI) m/z (%): 154 (M
+
-C3H7, 1),  

151 (M
+
-NO2, 26), 121 (19), 109 (20), 108 (16), 107 (100), 93 (20), 91 (46), 81 (50), 79 (82), 77 (44), 

67 (34). HRMS: Calculated for [C10H14NO3]
+
: 196.0974 [(M+H)

+
]; found: 196.0974. [α]D

rt
: -168.2 (c = 

0.1, CH2Cl2).  

2-((1R,2R)-2-nitro-4-propylcyclopent-3-en-1-yl)acetaldehyde (trans-6d). 

Following the general procedure O, trans-6d (6.60 mg, 0.033 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 22% yield 

starting from aldehyde 4d (30.00 mg, 0.150 mmol), catalyst 5l (7.70 mg, 

0.015 mmol) and 1,2-dichloroethane (1.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.79 (s, 1H, CHO), 

5.43-5.42 (m, 1H, H3), 5.14 (s, 1H, H2), 3.31-3.18 (m, 1H, H1), 2.96-2.59 (m, 2H, CH2CHO), 2.16-1.97 

(m, 3H, H5a, CH2CH2CH3), 1.57-1.41 (H5b, CH2CH2CH3), 0.97-0.84 (m, 3H, CH2CH2CH3). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 199.9 (CHO), 155.1 (C4), 118.7 (C3), 96.6 (C2), 48.3 (CH2CHO), 40.9 

(CH2CH2CH3), 37.5 (C1), 33.2 (C5), 20.6 (CH2CH2CH3), 13.9 (CH2CH2CH3). IR (ATR): 2937 (C-H st), 2859 

(C-H st), 1724 (C=O st), 1547 (NO2 st as) cm
-1

. MS (EI) m/z (%): 151 (M
+
-NO2, 32), 121 (21), 109 (21), 

108 (18), 107 (100), 93 (23), 91 (48), 81 (48), 79 (83), 77 (44), 67 (31). HRMS: Calculated for 

[C10H14NO3]
+
: 196.0974 [(M+H)

+
]; found: 196.0981. [α]D

rt
: -16.8 (c = 0.5, CH2Cl2). 

2-((1R,2S)-4-(but-3-en-1-yl)-2-nitrocyclopent-3-en-1-yl)acetaldehyde (cis-

6e). Following the general procedure O, cis-6e (5.60 mg, 0.027 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 34% 

yield starting from aldehyde 4e (17.60 mg, 0.080 mmol), catalyst 5l (4.30 

mg, 0.008 mmol) and 1,2-dichloroethane (0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (s, 1H, 

CHO), 5.81 (dd, J = 17.1, 10.2 Hz, 1H, CH2CH2CH=CH2), 5.54 (s, 1H, H3), 5.46 (d, J = 7.6 Hz, 1H, H2), 

5.10-4.96 (m, 2H, CH2CH2CH=CH2), 3.09 (h, J = 7.6 Hz, 1H, H1), 2.72-2.51 (m, 3H, CH2CHO, H5a), 2.41-

2.21 (m, 5H, H5b, CH2CH2CH=CH2). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.6 (CHO), 158.1 

(CH2CH2CH=CH2), 137.4 (C4), 119.6 (C3), 115.5 (CH2CH2CH=CH2), 94.6 (C2), 44.3 (CH2CHO), 39.9 (C5), 

36.8 (CH2CH2CH=CH2), 31.4 (CH2CH2CH=CH2), 30.7 (C1). IR (ATR): 2937 (C-H st), 2859 (C-H st), 1724 

(C=O st), 1547 (NO2 st as) cm
-1

. MS (EI) m/z (%): 166 (M
+
, 3), 148 (53), 132 (40), 128 (65), 115 (38), 
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104 (71), 91 (100), 79 (53), 68 (35), 55 (65). HRMS: Calculated for [C11H14NO3]
+
: 208.0974 [(M+H)

+
]; 

found: 208.0990. [α]D
rt

: +60.2 (c = 0.5, CH2Cl2).  

2-((1R,2R)-4-(but-3-en-1-yl)-2-nitrocyclopent-3-en-1-yl)acetaldehyde 

(trans-6e). Following the general procedure 0, trans-6e (3.20 mg, 0.015 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

1:1) in 19% yield starting from aldehyde 4e (17.60 mg, 0.080 mmol), 

catalyst 5l (4.30 mg, 0.008 mmol) and 1,2-dichloroethane (0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.79 (s, 1H, CHO), 5.79 (dd, J = 15.9, 9.1 Hz, 2H, CH2CH2CH=CH2), 5.7-4.96 (m, 3H, 

CH2CH2CH=CH2, H2, H3), 3.29-3.22 (m, 1H, H1), 2.99-2.63 (m, 4H, CH2CHO, H5), 1.28-1.16 (m, 4H, 

CH2CH2CH=CH2). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.9 (CHO), 154.3 (CH2CH2CH=CH2), 137.4 

(C4), 119.1 (C3), 115.6 (CHCH2CH=CH2), 96.5 (C2), 48.3 (CH2CHO), 40.9 (C5), 37.5 (CH2CH2CH=CH2), 

31.4 (CH2CH2CH=CH2), 30.4 (C1). IR (ATR): 2937 (C-H st), 2859 (C-H st), 1724 (C=O st), 1547 (NO2 st 

as) cm
-1

. MS (EI) m/z (%): 166 (M
+
, 3), 148 (53), 132 (40), 128 (65), 115 (38), 104 (71), 91 (100), 79 

(53), 68 (35), 55 (65). HRMS: Calculated for [C11H14NO3]
+
: 208.0974 [(M+H)

+
]; found: 208.0987. [α]D

rt
: 

+34.7 (c = 0.3, CH2Cl2). 

Dimethyl (4R,5S)-4-nitro-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarboxylate (cis-6f). 

Following the general procedure O, cis-6f (5.50 mg, 0.021 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 37% yield starting from 

aldehyde 4f (15.00 mg, 0.060 mmol), catalyst 5l (2.80 mg, 0.006 mmol) and 

1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.81 (s, 1H, CHO), 

6.52 (d, J = 5.9 Hz 1H, H2), 6.20-6.14 (m, 1H, H3), 5.68-5.61 (m, 1H, H4), 3.81 (s, 3H, OCH3), 3.77 (s, 

3H, OCH3), 3.66-3.57 (m, 1H, H5), 3.21 (dd, J = 19.3, 4.9 Hz, 1H, CHaHbCHO), 2.86 (dd, J = 19.4, 10.3 

Hz, 1H, CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.2 (CHO), 168.0 (C=O), 135.1 (C3), 128.1 

(C2), 91.2 (C4), 66.8 (C1), 53.7 (OCH3), 53.1 (OCH3), 42.4 (CH2CHO), 29.6 (C5). IR (ATR): 2969 (C-H st), 

1738 (C=O st), 1436 (NO2 st as), 1368 (NO2 st sim) cm
-1

. HRMS: Calculated for [C11H12NO7]
-
: 270.0614 

[(M-H)
-
]; found: 270.0606. [α]D

rt
: -178.6 (c = 0.5, CH2Cl2). 

Dimethyl (4S,5S)-4-nitro-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarboxylate (trans-

6f). Following the general procedure O, trans-6f (3.80 mg, 0.014 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 25% yield 

starting from aldehyde 4f (15.00 mg, 0.060 mmol), catalyst 5l (2.80 mg, 0.006 

mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.76 

(t, J = 1.3 Hz, 1H, CHO), 6.30 (dd, J = 5.8 Hz, 2.0 Hz, 1H, H2), 6.18 (dd, J = 5.8, 2.0 Hz, 1H, H3), 5.41 (dt, 

J = 7.2, 1.9 Hz, 1H, H4), 3.93-3.86 (m, 1H, H5), 3.82 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 3.09-2.82 (m, 

2H, CH2CHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.0 (CHO), 168.9 (C=O), 136.1 (C2), 130.9 (C3), 

94.0 (C4), 68.8 (C1), 53.5 (CH3), 53.5 (CH3), 43.7 (C5), 43.6 (CH2CHO). IR (ATR): 2972 (C-H st), 1738 

(C=O st), 1440 (NO2 st as), 1214 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 165 (15), 161 (15), 137 (15), 133 

(19), 105 (50), 91 (22), 79 (25), 78 (21), 77 (71), 59 (100), 51 (35). HRMS: Calculated for [C11H12NO7]
-
: 

270.0614 [(M-H)
-
]; found: 270.0610. [α]D

rt
: +131.4 (c = 0.008, CH2Cl2).  
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Diethyl (4R,5S)-4-nitro-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarboxylate (cis-6g). 

Following the general procedure O, cis-6g (6.30 mg, 0.021 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 42% yield starting from 

aldehyde 4g (15.00 mg, 0.050 mmol), catalyst 5l (2.20 mg, 0.005 mmol) and 

1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.82 (s, 1H, CHO), 

6.51 (d, J = 5.8 Hz, 1H, H3), 6.17 (dd, J = 5.8, 2.8 Hz, 1H, H3), 5.63 (dd, J = 7.3, 2.8 Hz, 1H, H4), 4.30-

4.16 (m, 4H, OCH2CH3), 3.64 (ddd, J = 10.3, 7.4, 4.7 Hz, 1H, H5), 3.19 (dd, J = 19.4, 4.7 Hz, 1H, 

CHaHbCHO), 2.87 (dd, J = 19.3, 10.3 Hz, 1H, CHaHbCHO), 1.28 (td, J = 7.1, 2.7 Hz, 6H, OCH2CH3). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 199.2 (CHO), 168.9 (C=O), 167.6 (C=O), 140.6 (C2), 128.5 (C3), 91.1 

(C4), 67.1 (C1), 62.7 (OCH2CH3), 62.4 (OCH2CH3), 42.1 (C5), 41.2 (CH2CHO), 14.1 (OCH2CH3), 14.1 

(OCH2CH3). IR (ATR): 2969 (C-H st), 1738 (C=O st), 1558 (NO2 st as), 1368 (NO2 st sim) cm
-1

. MS (EI) 

m/z (%): 270 (M
+
-CHO, 1), 254 (M

+
-NO2, 1), 207 (21), 226 (M

+
-CO2Et, 1), 161 (43), 153 (M

+
-2 x CO2Et, 

3), 151 (19), 135 (57), 134 (26), 133 (32), 123 (26), 107 (27), 106 (18), 105 (68), 93 (16), 92 (17), 79 

(100), 78 (41), 77 (80), 65 (20), 51 (32). HRMS: Calculated for [C9H16NO7]
-
: 298.0927 [(M-H)

-
]; found: 

298.0915. [α]D
rt

: -97.9 (c = 0.5, CH2Cl2). 

Diethyl (4R,5S)-4-nitro-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarboxylate (trans-

6g). Following the general procedure O, trans-6g (3.90 mg, 0.013 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 26% yield 

starting from aldehyde 4g (15.00 mg, 0.050 mmol), catalyst 5l (2.20 mg, 0.005 

mmol) and 1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 

(s, 1H, CHO), 6.31 (dd, J = 5.8, 1.9 Hz, 1H, H2), 6.17 (dd, J = 5.8, 1.9 Hz, 1H, H3), 5.39 (dt, J = 7.3, 1.9 

Hz, 1H, H4), 4.32-4.15 (m, 4H, OCH2CH3), 3.89 (td, J = 7.5, 5.6 Hz, 1H, H5), 3.09-2.84 (m, 2H, 

CH2CHO), 1.34-1.22 (m, 6H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.0 (CHO), 168.4 

(C=O), 136.3 (C2), 130.7 (C3), 94.2 (C4), 68.9 (C1), 62.8 (OCH2CH3), 62.6 (OCH2CH3), 43.7 (CH2CHO), 

43.6 (C5), 14.1 (OCH2CH3), 14.1 (OCH2CH3). IR (ATR): 2972 (C-H st), 1738 (C=O st), 1432 (NO2 st as), 

1364 (NO2 st sim) cm
-1

. MS (EI) m/z (%): 299 (M
+
, 1), 270 (M

+
-CHO, 2), 254 (M

+
-NO2, 3), 226 

(M
+
-CO2Et, 1), 207 (36), 155 (M

+
-2 x CO2Et, 2), 105 (26), 85 (51), 83 (100), 81 (16), 77 (24), 52 (16), 51 

(17). HRMS: Calculated for [C9H16NO7]
-
: 298.0927 [(M-H)

-
]; found: 298.0927. [α]D

rt
: +5.3 (c = 0.3, 

CH2Cl2). 

Diethyl (R)-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarboxylate (6h). Following the 

general procedure O, 6h (6.70 mg, 0.030 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 8:2 to 1:1) in 34% yield starting from aldehyde 4h 

(20.00 mg, 0.800 mmol), catalyst 5l (4.00 mg, 0.008 mmol) and 

1,2-dichloroethane (0.8 mL).  
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.78 (t, J = 1.6 Hz, CHO), 6.02 (dt, J 

= 5.4, 2.5 Hz, 1H, H2), 5.84 (dd, J = 5.0, 2.8 Hz, 1H, H3), 4.27-4.11 (m, 4H, OCH2CH3), 3.35 (ddd, J = 

11.8, 9.7, 5.9 Hz, 1H, H5), 2.88-2.72 (m, 2H, H4), 2.56 (ddd, J = 17.3, 10.1, 1.9 Hz, 1H, CHaHbCHO), 

2.16 (ddt, J = 16.3, 7.2, 2.2 Hz, 1H, CHaHbCHO), 1.26 (t, J = 7.1 Hz, 6H, OCH2CH3). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 201.1 (CHO), 170.5 (C=O), 169.9 (C=O), 135.3 (C2), 129.5 (C3), 69.0 (C1), 61.7 

(OCH2CH3), 61.7 (OCH2CH3), 45.8 (CH2CHO), 39.0 (C5), 38.5 (C5), 38.5 (C4), 14.2 (OCH2CH3), 14.1 

(OCH2CH3). IR (ATR): 3016 (=CH st), 1741 (C=O st) cm
-1

. MS (EI) m/z (%): 254 (M
+
, 2), 225 (M

+
-CHO, 

2), 208 (46), 182 (M
+
-CO2Et, 2), 162 (20), 135 (89), 134 (43), 110 (M

+
-2 x CO2Et, 2), 107 (38), 93 (20), 
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85 (28), 83 (38), 79 (100), 77 (46). HRMS: Calculated for [C13H18O5Na]
+
: 277.1052 [(M+Na)

+
]; found: 

277.1062. [α]D
rt

: +14.5 (c = 0.5, CH2Cl2). 

(R)-5-(2-oxoethyl)cyclopent-2-ene-1,1-dicarbonitrile (6i). Following the general 

procedure O, 6i (6.50 mg, 0.041 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 7:3 to 1:1) in 56% yield starting from aldehyde 4i (11.60 mg, 0.070 

mmol), catalyst 5l (3.70 mg, 0.007 mmol) and 1,2-dichloroethane (0.7 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 9.85 (s, 1H, CHO), 6.29 (dt, J = 5.4, 2.5 Hz, 1H, H2), 5.80 (dt, J = 5.6, 2.2 

Hz, 1H, H3), 3.34 (qd, J = 8.3, 5.6 Hz, 1H, H5), 3.14 (dd, J = 18.8, 5.6 Hz, 1H, CHaHbCHO), 2.99 (dtt, J = 

11.0, 8.8, 4.0 Hz, 2H, H4), 2.27 (ddt, J = 17.3, 8.3, 2.4 Hz, 1H, CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) 

(δ, ppm) 197.9 (CHO), 139.7 (C2), 124.6 (C3), 115.1 (CN), 112.8 (CN), 45.6 (C4), 43.8 (CH2CHO), 37.6 

(C5). IR (ATR): 2855 (C-H st), 2244 (C-N st), 1724 (C=O st) cm
-1

. MS (EI) m/z (%): 133 (40), 131 

(M
+
-CHO, 29), 117 (21), 105 (34), 104 (100), 91 (40), 78 (26), 77 (33), 51 (17). HRMS: Calculated for 

[C9H7N2O]
-
: 159.0558 [(M-H)

-
]; found: 159.0556. [α]D

rt
: +3.5 (c = 0.25, CH2Cl2). 

 Ethyl (5R)-1-cyano-5-(2-oxoethyl)cyclopent-2-ene-1-carboxylate (6j). Following 

the general procedure O, 6j (16.20 mg, 0.078 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 9:1 to 1:1) in 54% yield starting from aldehyde 4j (30.00 

mg, 0.150 mmol), catalyst 5l (7.40 mg, 0.015 mmol) and 1,2-dichloroethane (1.5 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.82 (s, 1H, CHO), 6.13 (dt, J = 5.4, 2.5 Hz, 1H, H2), 5.73 

(ddd, J = 5.7, 2.7, 1.7 Hz, 1H, H3), 4.37-4.25 (m, 2H, OCH2CH3), 3.30 (qd, J = 8.1, 6.6 Hz, 1H, H5), 3.08 

(dd, J = 18.7, 6.6 Hz, 1H, H4a), 3.00-2.80 (m, 2H, CH2CHO), 2.23 (ddt, J = 16.9, 8.4, 2.4 Hz, 1H, H4b), 

1.34 (td, J = 7.2, 2.4 Hz, 3H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 199.4 (CHO), 168.1 

(C=O), 137.4 (C4), 127.2 (C3), 116.6 (CN), 63.4 (OCH2CH3), 57.8 (C1), 46.5 (CH2CHO), 40.6 (C5), 38.3 

(C4), 14.1 (OCH2CH3). IR (ATR): 2969 (C-H st), 1738 (C=O st) cm
-1

. MS (EI) m/z (%): 135 (M
+
-CO2Et, 8), 

134 (20), 106 (25), 105 (16), 104 (26), 92 (100), 79 (47), 78 (18), 77 (42), 51 (15). HRMS: Calculated 

for [C11H14NO3]
+
: 208.0974 [(M+H)

+
]; found: 208.0978. [α]D

rt
: -68.9 (c = 0.02, CH2Cl2). 

2-((1R,2S)-2-benzoylcyclopent-3-en-1-yl)acetaldehyde (cis-6l). Following the 

general procedure O, cis-6l (7.20 mg, 0.030 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 9:1 to 1:1) in 48% yield starting from aldehyde 4l 

(15.00 mg, 0.070 mmol), catalyst 5m (6.30 mg, 0.014 mmol) and 

1,2-dichloroethane (0.7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.64 (s, 1H, 

CHO), 8.04-7.94 (m, 2H, Carom-H), 7.65-7.42 (m, 3H, Carom-H), 5.98 (dq, J = 4.7, 2.3 

Hz, 1H, H3), 5.79 (dq, J = 6.2, 2.2 Hz, 1H, H4), 474 (dt, J = 8.2, 2.1 Hz, 1H, H2), 3.17 (dtd, J = 14.5, 8.0, 

6.5 Hz, 1H, H1), 2.76-2.67 (m, 1H, CHaHbCHO), 2.63 (t, J = 7.0 Hz, 2H, H5), 2.36-2.25 (m, 1H, 

CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.8 (CHO), 201.0 (C=O), 137.3 (Carom-C), 133.5 

(C3), 133.4 (C4), 129.8 (Carom-H), 128.9 (Carom-H), 128.5 (Carom-H), 55.0 (C2), 45.7 (CH2CHO), 39.1 (C5), 

36.1 (C1). IR (ATR): 3019 (=CH st), 2972 (C-H st), 1734 (C=O st) cm
-1

. MS (EI) m/z (%): 214 (M
+
, 2), 194 

(15), 185 (M
+
-CHO, 8), 172 (M

+
-CH2-CHO, 1), 165 (24), 105 (100), 77 (61), 51 (22). HRMS: Calculated 

for [C14H15O2]
-
: 215.1072 [(M+H)

+
]; found: 215.1078. [α]D

rt
: -82.7 (c = 0.5, CH2Cl2). 
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2-((1R,2R)-2-benzoylcyclopent-3-en-1-yl)acetaldehyde (trans-6l). Following the 

general procedure O, trans-6l (2.80 mg, 0.010 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 20% yield starting from 

aldehyde 4l (15.00 mg, 0.070 mmol), catalyst 5m (6.30 mg, 0.014 mmol) and 

1,2-dichloroethane (0.7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 (t, J = 2.0 

Hz, CHO), 8.02-7.95 (m, 2H, Carom-H), 7.62-7.54 (m, 1H, Carom-H), 7.51-7.46 (m, 2H, 

Carom-H), 5.86 (dq, J = 5.0, 2.4 Hz, 1H, H3), 5.70 (dq, J = 4.8, 2.2 Hz, 1H, H4), 4.20 (dt, J = 5.2, 2.6 Hz, 

1H, H2), 3.37 (h, J = 6.9 Hz, 1H, H1), 2.93-2.80 (m, 1H, CHaHbCHO), 2.66-2.60 (m, 2H, H5), 2.14 (ddd, J 

= 16.8, 5.3, 2.5 Hz, CHaHbCHO, 1H). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.9 (CHO), 199.3 (C=O), 

136.6 (Carom-C), 133.3 (C3), 133.0 (C4), 128.8 (Carom-H), 128.7 (Carom-H), 60.0 (C2), 49.6 (CH2CHO), 38.8 

(C5), 33.9 (C1). IR (ATR): 3030 (=CH st), 2972 (C-H st), 1741 (C=O st) cm
-1

. MS (EI) m/z (%): 214 (M
+
, 

1), 105 (100), 77 (43), 51 (16). HRMS: Calculated for [C14H15O2]
-
: 215.1072 [(M+H)

+
]; found: 

215.1078. [α]D
rt

: +132.1 (c = 0.2, CH2Cl2). 

2-((1R,2S)-2-(4-chlorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6m). 

Following the general procedure O, cis-6m (7.10 mg, 0.030 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 48% yield starting 

from aldehyde 4m (15.00 mg, 0.060 mmol), catalyst 5m (5.40 mg, 0.012 mmol) 

and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.64 (s, 

1H, CHO), 7.97-7.89 (m, 2H, Carom-H), 7.50-7.41 (m, 2H, Carom-H), 6.00-5.96 (m, 

1H, H3), 5.77-5.73 (m, 1H, H4), 4.71-4.66 (m, 1H, H2), 3.13 (h, J = 7.6 Hz, 1H, 

H1), 2.73-2.63 (m, 3H, CH2CHO, H5a), 2.35-2.25 (m, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

201.7 (CHO), 199.9 (C=O), 140.0 (Carom-C), 135.5 (Carom-C), 133.7 (C3), 129.9 (Carom-H), 129.6 (C4), 

129.3 (Carom-H), 54.8 (C2), 45.6 (CH2CHO), 39.0 (C5), 36.1 (C1). IR (ATR): 3023 (=CH st), 1741 (C=O st) 

cm
-1

. MS (EI) m/z (%): 248 (M
+
, 2), 228 (23), 219 (M

+
-CHO, 5), 165 (40), 141 (36), 139 (100), 137 

(M
+
-C6H4Cl, 2), 111 (32), 109 (M

+
-C7H4OCl, 2), 75 (16). HRMS: Calculated for [C14H13O2ClNa]

+
: 

271.0502 [(M+Na)
+
]; found: 271.0504. [α]D

rt
: -36.8 (c = 0.2, CH2Cl2). 

2-((1R,2R)-2-(4-chlorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6m). 

Following the general procedure O, trans-6m (3.20 mg, 0.010 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 22% yield 

starting from aldehyde 4m (15.00 mg, 0.060 mmol), catalyst 5m (5.40 mg, 

0.012 mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.76 (t, J = 1.9 Hz, CHO), 7.94-7.90 (m, 2H, Carom-H), 7.48-7.42 (m, 2H, 

Carom-H), 5.89-5.85 (m, 1H, H3), 5.68-5.64 (m, 1H, H4), 4.16-4.11 (m, 1H, H2), 

3.38-3.29 (m, 1H, H1), 2.91-2.80 (m, 1H, H5a), 2.62 (dd, J = 7.2, 1.9 Hz, 2H, CH2CHO), 2.19-2.09 (m, 

1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.7 (CHO), 198.1 (C=O), 139.8 (Carom-C), 134.9 

(Carom-C), 133.4 (C3), 130.1 (Carom-H), 129.2 (Carom-H), 128.3 (C4), 68.0 (C2), 49.5 (CH2CHO), 38.8 (C5), 

33.8 (C1). IR (ATR): 2851 (C-H st), 1726 (C=O st), 1676 (C=C st), 1091 (C-Cl st) cm
-1

. MS (EI) m/z (%): 

248 (M
+
, 1), 219 (M

+
-CHO, 1), 141 (32), 139 (100), 111 (26), 109 (M

+
-C7H4OCl, 1). HRMS: Calculated 

for [C14H13O2ClNa]
+
: 271.0502 [(M+Na)

+
]; found: 271.0508. [α]D

rt
: +1502.0 (c = 0.03, CH2Cl2). 
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2-((1R,2S)-2-(4-(trifluoromethyl)benzoyl)cyclopent-3-en-1-yl)acetaldehyde 

(cis-6n). Following the general procedure O, cis-6n (3.90 mg, 0.010 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 28% yield 

starting from aldehyde 4n (15.00 mg, 0.050 mmol), catalyst 5m (4.80 mg, 

0.011 mmol) and 1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.65 (s, 1H, CHO), 8.09 (d, J = 8.0 Hz, 2H, Carom-H), 7.75 (d, J = 8.2 Hz, 

2H, Carom-H), 6.01 (dq, J = 5.9, 2.3 Hz, 1H, H3), 5.76 (dq, J = 6.1, 2.2 Hz, 1H, H4), 

4.75 (dp, J = 8.1, 2.1 Hz, 1H, H2), 3.14 (h, J = 7.5 Hz, 1H, H1), 2.75-2.63 (m, 3H, CH2CHO, H5a), 2.33 

(ddq, J = 16.4, 6.8, 2.3 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.7 (CHO), 200.2 (C=O), 

135.1 (Carom-C), 134.0 (C3), 130.3 (Carom-C), 129.3 (C4), 128.8 (Carom-H), 128.1 (CF3), 126.0 (q, 
3
JCF = 3.7 

Hz, CHaromCaromCF3), 55.1 (C2), 45.6 (CH2CHO), 39.0 (C5), 36.1 (C1). IR (ATR): 2966 (C-H st), 1738 (C=O 

st), 1368 (C-F st), 768 (CF3) cm
-1

. HRMS: Calculated for [C15H13O2F3Na]
+
: 305.0765 [(M+Na)

+
]; found: 

305.0775. [α]D
rt

: -105.5 (c = 0.3, CH2Cl2). 

2-((1R,2R)-2-(4-(trifluoromethyl)benzoyl)cyclopent-3-en-1-yl)acetaldehyde 

(trans-6n). Following the general procedure O, trans-6n (0.70 mg, 0.002 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 

4% yield starting from aldehyde 4n (15.00 mg, 0.050 mmol), catalyst 5m (4.80 

mg, 0.011 mmol) and 1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 9.78 (t, J = 1.7 Hz, 1H, CHO), 8.08 (d, J = 8.0 Hz, 2H, Carom-H), 7.75 (d, 

J = 8.3 Hz, 2H, Carom-H), 5.89 (dq, J = 4.9, 2.4 Hz, 1H, H3), 5.66 (dt, J = 5.9, 2.3 

Hz, 1H, H4), 4.18 (dt, J = 5.2, 2.6 Hz, 1H, H2), 3.43-3.29 (m, 1H, H2), 2.87 (ddq, J = 16.3, 8.2, 2.5 Hz, 

H5a), 2.65 (dd, J = 7.4, 1.7 Hz, 2H, CH2CHO), 2.16 (ddd, J = 16.6, 5.2, 2.4 Hz, 1H, H5b). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm) 201.6 (CHO), 201.1 (C=O), 135.6 (Carom-C), 135.0 (Carom-C), 133.6 (C3), 129.0 

(Carom-H), 127.9 (C4), 127.2 (CF3), 125.9 (q, 
3
JCF = 3.5 Hz, CHaromCaromCF3), 60.3 (C2), 49.5 (CH2CHO), 

38.9 (C5), 33.7 (C1). IR (ATR): 2972 (C-H st), 1735 (C=O st), 1368 (C-F st), 772 (CF3) cm
-1

. MS (EI) m/z 

(%): 282 (M
+
, 1), 238 (17), 173 (100), 145 (50), 81 (16). HRMS: Calculated for [C15H13O2F3Na]

+
: 

305.0765 [(M+Na)
+
]; found: 305.0775. [α]D

rt
: +71.6 (c = 0.2, CH2Cl2). 

2-((1R,2S)-2-(4-fluorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6o). 

Following the general procedure O, cis-6o (10.60 mg, 0.050 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 52% yield starting 

from aldehyde 4o (20.00 mg, 0.090 mmol), catalyst 5m (7.70 mg, 0.018 mmol) 

and 1,2-dichloroethane (0.9 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.65 (s, 

1H, CHO), 8.08-7.87 (m, 2H, Carom-H), 7.21-7.08 (m, 2H, Carom-H), 5.99 (dq, J = 

5.8, 2.3 Hz, 1H, H3), 5.76 (d, J = 6.1, 2.2 Hz, 1H, H4), 4.70 (dp, J = 8.2, 2.1 Hz, 1H, 

H2), 3.13 (p, J = 7.4 Hz, 1H, H1), 2.76-2.59 (m, 3H, CH2CHO, H5a), 2.31 (dd, J = 16.3, 6.6, 2.2 Hz, 1H, 

H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm) 201.7 (CHO), 199.5 (C=O), 166.1 (d, 
1
JC-F = 255.0 Hz, 

CCHCHCF), 135.2 (d, 
3
JC-F = 15.5 Hz, CCHCHCF), 133.6 (C3), 131.2 (d, 

4
JC-F = 9.4 Hz, CCHCHCF), 129.7 

(C4), 116.1 (d, 
2
JC-F = 22.0 Hz, CCHCHCF), 54.8 (C2), 45.7 (CH2CHO), 39.1 (C5), 36.1 (C1). IR (ATR): 

3020 (=CH st), 1734 (C=O st), 1368 (C-F st) cm
-1

. HRMS: Calculated for [C14H13O2FNa]
+
: 255.0797 

[(M+Na)
+
]; found: 255.0804. [α]D

rt
: -85.3 (c = 0.7, CH2Cl2). 
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2-((1R,2R)-2-(4-fluorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6o). 

Following the general procedure O, trans-6o (3.80 mg, 0.020 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 19% yield 

starting from aldehyde 4o (20.00 mg, 0.090 mmol), catalyst 5m (7.70 mg, 0.018 

mmol) and 1,2-dichloroethane (0.9 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 

9.77 (t, J = 1.9 Hz, 1H, CHO), 8.09-9.97 (m, 2H, Carom-H), 7.22-7.12 (m, 2H, 

Carom-H), 5.93-5.82 (m, 1H, H3), 5.68 (dt, J = 5.7, 2.2 Hz, 1H, H4), 4.18-4.09 (m, 

1H, H2), 3.41-3.30 (m, 1H, H1), 2.86 (ddq, J = 16.9, 8.4, 2.4 Hz, 1H, CHaHbCHO), 2.63 (dd, J = 7.2, 1.9 

Hz, H5), 2.15 (ddt, J = 16.9, 5.4, 2.4 Hz, 1H, CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.7 

(CHO), 197.7 (C=O), 165.9 (d, 
1
JC-F = 254.0 Hz, CCHCHCF), 133.3 (C3), 133.0 (d, 

4
JC-F = 3.3 Hz, 

CCHCHCF), 131.3 (d, 
3
JC-F = 9.3 Hz, CCHCHCF), 128.5 (C4), 116.0 (d, 

2
JC-F = 22 Hz, CCHCHCF), 59.9 (C2), 

49.5 (CH2CHO), 38.8 (C5), 33.9 (C1). IR (ATR): 3016 (=CH st), 2969 (C-H st), 1368 (C-F st) cm
-1

. HRMS: 

Calculated for [C14H13O2FNa]
+
: 255.0797 [(M+Na)

+
]; found: 255.0803. [α]D

rt
: +129.4 (c = 0.3, CH2Cl2). 

2-((1R,2S)-2-(4-bromobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6p). 

Following the general procedure O, cis-6p (4.70 mg, 0.020 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 37% yield starting 

from aldehyde 4o (15.00 mg, 0.040 mmol), catalyst 5m (3.90 mg, 0.009 mmol) 

and 1,2-dichloroethane (0.4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.64 (s, 

1H, CHO), 7.88-7.82 (m, 2H, Carom-H), 7.65-7.56 (m, 2H, Carom-H), 6.01-5.96 (m, 

1H, H3), 5.77-5.73 (m, 1H, H4), 4.73-4.62 (m, 1H, H2), 3.13 (h, J = 7.4 Hz, 1H, 

H1), 2.74-2.59 (m, 3H, CH2CHO, H5a), 2.35-2.25 (m, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

201.7 (CHO), 200.1 (C=O), 153.9 (Carom-C), 133.7 (C3), 132.3 (Carom-H), 130.0 (Carom-H), 129.5 (C4), 

128.8 (Carom-C), 54.8 (C2), 45.6 (CH2CHO), 39.0 (C5), 36.1 (C1). IR (ATR): 3020 (=CH st), 1720 (CO st), 

1674 (C=C st) cm
-1

. MS (EI) m/z (%): 274 (23), 272 (21), 263 (M
+
-CHO, 3), 185 (100), 183 (68), 165 

(47), 163 (16), 157 (26), 155 (25), 109 (M
+
-C7H4BrO, 3), 76 (15). HRMS: Calculated for 

[C14H13O2BrNa]
+
: 314.9997 [(M+Na)

+
]; found: 315.0001. [α]D

rt
: -140.75 (c = 0.4, CH2Cl2). 

2-((1R,2R)-2-(4-bromobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6p). 

Following the general procedure O, trans-6p (2.90 mg, 0.010 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 23% yield 

starting from aldehyde 4p (15.00 mg, 0.400 mmol), catalyst 5m (3.90 mg, 0.009 

mmol) and 1,2-dichloroethane (0.4 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 

9.76 (s, 1H, CHO), 7.86-7.81 (m, 2H, Carom-H), 7.64-7.59 (m, 2H, Carom-H), 5.88-

5.84 (m, 1H, H3), 5.68-5.63 (m, 1H, H4), 4.15-4.11 (m, 1H, H2), 3.40-3.27 (m, 

1H, H1), 2.92-2.78 (m, 1H, H5a), 2.64-2.60 (m, 2H, CH2CHO), 2.18-2.09 (m, 1H, H5b). 
13

C NMR (75.4 

MHz, CDCl3) (δ, ppm): 201.7 (CHO), 198.3 (C=O), 135.3 (Carom-C), 133.4 (C3), 132.2 (Carom-H), 130.2 

(Carom-H), 128.5 (Carom-C), 128.3 (C4), 60.0 (C2), 49.5 (CH2CHO), 38.8 (C5), 33.8 (C1). IR (ATR): 3026 

(=CH st), 1738 (C=O st) cm
-1

. MS (EI) m/z (%): 263 (M
+
-CHO, 3), 207 (15), 185 (100), 183 (96), 157 

(18), 155 (24), 109 (M
+
-C7H4BrO, 2), 79 (16), 66 (17). HRMS: Calculated for [C14H13O2BrNa]

+
: 

314.9997 [(M+Na)
+
]; found: 315.0001. [α]D

rt
: +79.8 (c = 0.2, CH2Cl2). 
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2-((1R,2S)-2-(3,4-dichlorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6q). 

Following the general procedure O, cis-6q (7.90 mg, 0.030 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 56% yield starting 

from aldehyde 4q (14.00 mg, 0.050 mmol), catalyst 5m (4.70 mg, 0.010 mmol) 

and CH2Cl2 (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.65 (s, 1H, CHO), 8.06 

(d, J = 2.1 Hz, 1H, Carom-H), 7.81 (dd, J = 8.4, 2.1 Hz, 1H, Carom-H), 7.56 (d, J = 8.4 

Hz, 1H, Carom-H), 6.00 (d, J = 6.5, 2.3 Hz, 1H, H3), 5.73 (dq, J = 6.1, 2.2 Hz, 1H, 

H4), 4.66 (dp, J = 8.1, 2.1 Hz, 1H, H2), 3.11 (h, J = 7.5 Hz, 1H, H1), 2.75-2.60 (m, 3H, CH2CHO, H5a), 

2.31 (ddq, J = 16.3, 6.8, 2.2, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.6 (CHO), 198.9 

(C=O), 138.1 (Carom-C), 136.7 (Carom-C), 135.1 (Carom-C), 134.1 (Carom-H), 131.0 (C3), 130.4 (C4), 129.3 

(Carom-H), 127.5 (Carom-H), 54.8 (C2), 45.6 (CH2CHO), 39.0 (C5), 36.1 (C1). IR (ATR): 3005 (=CH st), 

1741 (C=O st) cm
-1

. HRMS: Calculated for [C14H12O2Cl2Na]
+
: 305.0112 [(M+Na)

+
]; found: 305.0114. 

[α]D
rt

: -125.2 (c = 0.2, CH2Cl2). 

2-((1R,2R)-2-(3,4-dichlorobenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-

6q). Following the general procedure O, trans-6q (2.20 mg, 0.008 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 16% yield 

starting from aldehyde 4q (14.00 mg, 0.050 mmol), catalyst 5m (4.70 mg, 0.010 

mmol) and CH2Cl2 (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 (t, J = 1.7 

Hz, 1H, CHO), 8.05 (d, J = 2.0 Hz, 1H, Carom-H), 7.80 (dd, J = 8.4, 2.1 Hz, 1H, 

Carom-H), 7.57 (d, J = 8.4 Hz, 1H, Carom-H), 5.89 (dq, J = 4.9, 2.4 Hz, 1H, H3), 5.64 

(dq, J = 6.0, 2.3 Hz, 1H, H4), 4.10 (dp, J = 5.0, 2.4 Hz, 1H, H1), 3.41-3.27 (m, 1H, H1), 2.86 (ddq, J = 

16.4, 8.1, 2.5 Hz, 1H, CHaHbCHO), 2.64 (dt, J = 7.4, 1.3 Hz, 2H, H5), 2.21-2.08 (m, 1H, CHaHbCHO). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 201.6 (CHO), 197.1 (C=O), 137.9 (Carom-C), 136.2 (Carom-C), 133.7 

(Carom-H), 133.6 (Carom-C), 131.0 (C3), 130.7 (C4), 127.9 (Carom-H), 127.7 (Carom-H), 60.0 (C2), 49.5 

(CH2CHO), 38.8 (C5), 33.8 (C1). IR (ATR): 3026 (=CH st), 1741 (C=O st) cm
-1

. HRMS: Calculated for 

[C14H12O2Cl2Na]
+
: 305.0112 [(M+Na)

+
]; found: 305.0119. [α]D

rt
: +94.1 (c = 0.08, CH2Cl2). 

4-((1S,5R)-5-(2-oxoethyl)cyclopent-2-ene-1-carbonyl)benzonitrile (cis-6r). 

Following the general procedure O, cis-6r (2.80 mg, 0.012 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) after 10 min in 19% 

yield starting from aldehyde 4r (15.00 mg, 0.060 mmol), catalyst 5m (5.60 mg, 

0.012 mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.65 (s, 1H, CHO), 8.13-8.02 (m, 2H, Carom-H), 7.82-7.75 (m, 2H, Carom-H), 

6.01 (dq, J = 6.6, 2.3 Hz, 1H, H3), 5.73 (d, J = 6.3, 2.2 Hz, 1H, H4), 4.73 (dt, J = 

7.8, 1.6 Hz, 1H, H2), 3.11 (p, J = 7.5 Hz, 1H, H1), 2.74-2.72 (m, 3H, CH2CHO, H5a), 2.33 (ddq, J = 16.2, 

6.9, 2.2 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.6 (CHO), 200.0 (C=O), 140.2 (Carom-C), 

134.3 (C3), 132.8 (Carom-H), 132.4 (Carom-C), 129.1 (C4), 128.9 (Carom-H), 118.0 (CN), 55.0 (C2), 45.6 

(CH2CHO), 39.0 (C5), 36.2 (C1). IR (ATR): 3016 (=CH st), 1734 (C=O st) cm
-1

. HRMS: Calculated for 

[C17H16NO4]
-
: 298.1079 [(M+CH3CO)

-
]; found: 298.1069. [α]D

rt
: +32.7 (c = 0.04, CH2Cl2). 
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4-((1R,5R)-5-(2-oxoethyl)cyclopent-2-ene-1-carbonyl)benzonitrile (trans-6r). 

Following the general procedure O, trans-6r (0.80 mg, 0.003 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 5% yield 

starting from aldehyde 4r (15.00 mg, 0.060 mmol), catalyst 5m (5.60 mg, 0.012 

mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 

9.77 (s, 1H, CHO), 8.09-8.02 (m, 2H, Carom-H), 7.83-7.75 (m, 2H, Carom-H), 5.90 

(dq, J = 4.9, 2.4 Hz, 1H, H3), 5.68-5.59 (m, 2H, H4), 4.15 (dt, J = 5.2, 2.6 Hz, 1H, 

H2), 3.42-3.28 (m, 1H, H1), 2.93-2.80 (m, 1H, CHaHbCHO), 2.66 (ddd, J = 7.4, 2.9, 1.7 Hz, 2H, H5), 2.16 

(ddd, J = 16.7, 5.2, 2.4 Hz, 1H, CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.5 (CHO), 198.1 

(C=O), 144.6 (Carom-C), 133.9 (C3), 132.7 (Carom-H), 129.1 (Carom-H), 127.6 (C2), 100.1 (CN), 99.1 

(Carom-C), 60.3 (C2), 49.5 (CH2CHO), 38.9 (C5), 33.8 (C1). IR (ATR): 3020 (=CH st), 1741 (C=O st) cm
-1

. 

HRMS: Calculated for [C15H12NO2]
-
: 238.0868 [(M-H)

-
]; found: 238.0868. [α]D

rt
: +85.3 (c = 0.2, 

CH2Cl2). 

2-((1R,2S)-2-(3-methoxybenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6t). 

Following the general procedure O, cis-6t (3.60 mg, 0.015 mmol) was isolated by 

FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 40% yield starting from 

aldehyde 4t (40.00 mg, 0.160 mmol), catalyst 5m (14.70 mg, 0.030 mmol) and 

CH2Cl2 (1.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.65 (s, 1H, CHO), 7.58 (dt, J 

= 7.7, 1.3 Hz, 1H, Carom-H), 7.50 (dd, J = 2.7, 1.6 Hz, 1H, Carom-H), 7.39 (t, J = 7.9 Hz, 

1H, Carom-H), 7.12 (dd, J = 8.2, 2.7, 1.0 Hz, 1H, Carom-H), 5.97 (dq, J = 6.5, 2.3 Hz, 

1H, H3), 5.78 (dq, J = 6.1, 2.1 Hz, 1H, H4), 4.70 (dt, J = 8.1, 2.1 Hz, 1H, H2), 3.86 (s, 3H, OCH3), 3.16 

(qt, J = 8.1, 6.4 Hz, 1H, H1), 2.75-2.58 (m, 3H, CH2CHO, H5a), 2.30 (ddq, J = 16.3, 6.5, 2.2 Hz, H5b). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 201.8 (CHO), 200.8 (C=O), 160.1 (Carom-C), 138.6 (Carom-C), 133.4 

(C3), 129.9 (C4), 129.8 (Carom-H), 121.1 (Carom-H), 120.0 (Carom-H), 112.6 (Carom-H), 55.6 (OCH3), 55.1 

(C2), 45.7 (CH2CHO), 39.1 (C5), 36.2 (C1). IR (ATR): 3016 (=CH st), 1738 (C=O st), 1429 cm
-1

. MS (EI) 

m/z (%):  224 (24), 213 (M
+
-OCH3, 1), 185 (16), 175 (22), 170 (23), 153 (23), 152 (20), 144 (20), 135 

(24), 128 (20), 113 (20), 110 (16), 101 (20), 89 (19), 77 (56), 67 (22), 51 (100). HRMS: Calculated for 

[C15H16O3Na]
+
: 267.0997 [(M+Na)

+
]; found: 267.1001. [α]D

rt
: -125.3 (c = 0.6, CH2Cl2). 

2-((1R,2R)-2-(3-methoxybenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6t). 

Following the general procedure O, trans-6t (2.60 mg, 0.011 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 17% yield starting from 

aldehyde 4t (40.00 mg, 0.160 mmol), catalyst 5m (14.70 mg, 0.030 mmol) and 

CH2Cl2 (1.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.77 (t, J = 1.9 Hz, 1H, CHO), 

7.56 (dt, J = 7.7, 1.3 Hz, 1H, Carom-H), 7.50 (dd, J = 2.7, 1.6 z, 1H, Carom-H), 7.39 (t, J 

= 7.9 Hz, 1H, Carom-H), 7.12 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H, Carom-H), 5.85 (dq, J = 5.8, 

2.4 Hz, 1H, H3), 5.75-5.66 (m, 1H, H4), 4.17 (dp, J = 5.1, 2.5 Hz, 1H, H2), 3.86 (s, 3H, OCH3), 3.35 (ddt, 

J = 13.4, 7.3, 5.3 Hz, 1H, H1), 2.94-2.79 (m, 1H, CHaHbCHO), 2.67-2.57 (m, 2H, H5), 2.22-2.07 (m, 1H, 

CHaHbCHO). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.8 (CHO), 199.1 (C=O), 160.1 (Carom-C), 138.0 

(Carom-C), 133.0 (C3), 129.8 (C4), 128.8 (Carom-H), 121.2 (Carom-H), 119.8 (Carom-H), 113.0 (Carom-H), 60.1 

(OCH3), 55.6 (C2), 49.6 (CH2CHO), 38.8 (C5), 34.0 (C1). IR (ATR): 3026 (=CH st), 1741 (C=O st), 1720 
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(C=C st) cm
-1

 HRMS: Calculated for [C15H17O3]
+
: 245.1178 [(M+H)

+
]; found: 245.1179. [α]D

rt
: +153.6 (c 

= 0.2, CH2Cl2). 

2-((1R,2S)-2-([1,1'-biphenyl]-4-carbonyl)cyclopent-3-en-1-yl)acetaldehyde 

(cis-6u). Following the general procedure O, cis-6u (7.05 mg, 0.020 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 47% 

yield starting from aldehyde 4u (15.00 mg, 0.050 mmol), catalyst 5m (4.70 

mg, 0.010 mmol) and 1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, 

CDCl3) (δ, ppm) 9.67 (t, J = 1.0 Hz, 1H, CHO), 8.09-8.05 (m, 2H, Carom-H), 

7.72-7.67 (m, 2H, Carom-H), 7.66-7.61 (m, 2H, Carom-H), 7.52-7.44 (m, 2H, 

Carom-H), 7.44-7.38 (m, 1H, Carom-H), 6.00 (dq, J = 4.7, 2.3 Hz, 1H, H3), 5.84-

5.79 (m, 1H, H4), 4.77 (dp, J = 8.3, 2.1 Hz, 1H, H2), 3.23-3.15 (m, 1H, H1), 2.76-2.63 (m, 3H, H5a, 

CH2CHO), 2.33 (ddq, J = 16.3, 6.5, 2.2 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.9 

(CHO), 200.6 (C=O), 146.2 (Carom-C), 139.9 (Carom-C), 135.9 (Carom-C), 133.4 (C3), 129.9 (C4), 129.1 

(Carom-H), 129.0 (Carom-H), 128.4 (Carom-H), 127.6 (Carom-H), 127.4 (Carom-H), 55.0 (C2), 45.8 (CH2CHO), 

39.1 (C5), 36.2 (C1). IR (ATR): 3016 (=CH st), 2969 (C-H st), 1734 (C=O st) cm
-1

. HRMS: Calculated for 

[C20H19O]
+
: 291.1385 [(M+H)

+
]; found: 291.1380. [α]D

rt
: -206.6 (c = 0.1, CH2Cl2). 

2-((1R,2R)-2-([1,1'-biphenyl]-4-carbonyl)cyclopent-3-en-1-yl)acetaldehyde 

(trans-6u). Following the general procedure O, trans-6u (2.35 mg, 0.008 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) 

in 16% yield starting from aldehyde 4u (15.00 mg, 0.050 mmol), catalyst 5m 

(4.70 mg, 0.010 mmol) and 1,2-dichloroethane (0.5 mL). 
1
H NMR (300 MHz, 

CDCl3) (δ, ppm): 9.79 (t, J = 1.9 Hz, 1H, CHO), 8.08-8.04 (m, 2H, Carom-H), 

7.72-7.70 (m, 2H, Carom-H), 7.68-7.59 (m, 2H, Carom-H), 7.49-7.47 (m, 2H, 

Carom-H), 7.41 (t, J = 7.4 Hz, 2H, Carom-H), 5.88 (dq, J = 4.8, 2.1 Hz, 1H, H3), 

5.74 (dq, J = 4.5, 2.1 Hz, 1H, H4), 4.23 (dq, J = 4.8, 2.4 Hz, 1H, H2), 3.43-3.34 (m, 1H, H1), 2.93-2.82 

(m, 1H, CHaHbCHO), 2.69-2.60 (m, 2H, H5), 2.16 (ddd, J = 17.0, 5.6, 2.7 Hz, 1H, CHaHbCHO). 
13

C NMR 

(75.4 MHz, CDCl3) (δ, ppm) 201.9 (CHO), 198.9 (C=O), 146.0 (Carom-C), 139.9 (Carom-C), 135.3 (Carom-C), 

133.0 (C3), 129.3 (Carom-H), 129.1 (Carom-H), 128.8 (Carom-H), 128.4 (Carom-H), 127.5 (Carom-H), 127.4 

(Carom-H), 60.0 (C2), 49.6 (CH2CHO), 38.9 (C5), 33.9 (C1). IR (ATR): 3012 (=CH st), 1734 (C=O st) cm
-1

. 

HRMS: Calculated for [C20H19O2]
+
: 291.1385 [(M+H)

+
]; found: 291.1377. [α]D

rt
: +323.3 (c = 0.02, 

CH2Cl2). 

2-((1R,2S)-2-(2-naphthoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6v). Following 

the general procedure O, cis-6v (6.10 mg, 0.020 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 40% yield starting from 

aldehyde 4v (15.00 mg, 0.060 mmol), catalyst 5m (5.10 mg, 0.011 mmol) and 

1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.63 (s, 1H, 

CHO), 8.53 (d, J = 1.8 Hz, 1H, Carom-H), 8.08-7.96 (m, 2H, Carom-H), 7.96-7.84 (m, 

2H, Carom-H), 7.59 (dddd, J = 14.8, 8.4, 7.0, 1.5 Hz, 2H, Carom-H), 6.01 (dt, J = 6.4, 

2.3 Hz, 1H, H3), 5.84 (dq, J = 6.1, 2.1 Hz, 1H, H4), 4.91 (dp, J = 8.2, 2.1 Hz, 1H, 

H2), 3.24 (qt, J = 8.0, 6.4 Hz, 1H, H1), 2.80-2.58 (m, 3H, CH2CHO, H5a), 2.34 (ddq, J = 16.3, 6.4, 2.2 Hz, 
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1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.8 (CHO), 200.9 (C=O), 135.8 (Carom-C), 134.6 

(Carom-C), 133.4 (Carom-H), 132.7 (Carom-C), 130.3 (C3), 128.9 (C4), 128.8 (Carom-H), 127.9 (Carom-H), 

127.0 (Carom-H), 124.1 (Carom-H), 54.9 (C2), 45.8 (CH2CHO), 39.1 (C5), 36.2 (C1). IR (ATR): 3016 (=CH 

st), 1734 (C=O st) cm
-1

. HRMS: Calculated for [C18H16O2Na]
+
: 287.1048 [(M+Na)

+
]; found: 287.1051. 

[α]D
rt

: -111.8 (c = 0.5, CH2Cl2). 

2-((1R,2R)-2-(2-naphthoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6v). 

Following the general procedure O, trans-6v (2.30 mg, 0.010 mmol) was isolated 

by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 16% yield starting 

from aldehyde 4v (15.00 mg, 0.060 mmol), catalyst 5m (5.10 mg, 0.011 mmol) 

and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.79 (t, J = 

2.0 Hz, 1H, CHO), 8.50 (s, 1H, Carom-H), 8.08-7.79 (m, 2H, Carom-H), 7.68-7.53 (m, 

2H, Carom-H), 7.48-7.31 (m, 2H, Carom-H), 5.93-5.85 (m, 1H, H3), 5.82-5.73 (m, 1H, 

H4), 4.40-4.36 (m, 1H, H2), 3.51-3.37 (m, 1H, H1), 2.90 (ddt, J = 16.3, 8.4, 2.5 Hz, 

1H, CHaHbCHO), 2.67 (dt, J = 7.5, 2.0 Hz, 2H, H5), 2.26-2.11 (m, 1H, CHaHbCHO). 
13

C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 201.9 (CHO), 201.7 (C=O), 135.1 (Carom-C), 133.1 (Carom-C), 130.3 (Carom-H), 128.9 

(C3), 128.7 (C4), 128.1 (Carom-C), 127.9 (Carom-H), 127.5 (Carom-H), 127.0 (Carom-H), 124.4 (Carom-H), 60.0 

(C2), 49.6 (CH2CHO), 38.9 (C5), 34.0 (C1). IR (ATR): 3016 (=CH st), 1738 (C=O st) cm
-1

. HRMS: 

Calculated for [C18H17O2]
-
: 265.1229 [(M+H)

+
]; found: 265.1233. [α]D

rt
: +199.9 (c = 0.2, CH2Cl2). 

2-((1R,2S)-2-(4-methylbenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6w). 

Following the general procedure O, cis-6w (12.10 mg, 0.050 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 40% yield 

starting from aldehyde 4w (30.00 mg, 0.130 mmol), catalyst 5m (11.80 mg, 

0.030 mmol) and CH2Cl2 (1.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.63 (s, 

1H, CHO), 7.93-7.82 (m, 2H, Carom-H), 7.28-7.22 (m, 2H, Carom-H), 5.99-5.95 (m, 

1H, H3), 5.80-5.76 (m, 1H, H4), 4.73-4.88 (m, 1H, H2), 3.22-3.10 (m, 1H, H1), 

2.75-2.55 (m, 3H, CH2CHO, H5a), 2.41 (s, 3H, CH3), 2.29 (ddt, J = 16.3, 6.4, 2.1 Hz, 1H, H5b). 
13

C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 201.9 (CHO), 200.6 (C=O), 144.4 (Carom-C), 134.8 (Carom-C), 133.2 (C3), 

129.9 (C4), 129.6 (Carom-H), 128.6 (Carom-H), 54.8 (C2), 45.7 (CH2CHO), 39.10 (C5), 36.1 (C1), 21.8 

(CH3). IR (ATR): 2926 (C-H st), 1724 (C=O st), 1674 (C=C st) cm
-1

. MS (EI) m/z (%): 228 (M
+
, 2), 208 

(35), 199 (M
+
-CHO, 6), 185 (35), 165 (31), 119 (100), 109 (M

+
-C7H7O, 1), 91 (42), 65 (16). HRMS: 

Calculated for [C15H16O2Na]
+
: 251.1048 [(M+Na)

+
]; found: 251.1053. [α]D

rt
: -86.1 (c = 0.7, CH2Cl2). 

2-((1R,2R)-2-(4-methylbenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-6w). 

Following the general procedure O, trans-6w (5.00 mg, 0.020 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 17% yield 

starting from aldehyde 4w (30.00 mg, 0.130 mmol), catalyst 5m (11.80 mg, 

0.030 mmol) and CH2Cl2 (1.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 9.76 (t, J 

= 2.0 Hz, 1H, CHO), 7.92-7.84 (m, 2H, Carom-H), 7.29-7.26 (m, 2H, Carom-H), 5.87-

5.82 (m, 1H, H3), 5.71-5.67 (m, 1H, H4), 4.20-4.16 (m, 1H, H2), 3.41-3.30 (m, 

1H, H1), 2.86 (ddd, J = 16.8, 8.4, 2.6 Hz, 1H, H5a), 2.63-2.59 (dt, J = 7.5, 1.8 Hz, 2H, CH2CHO), 2.42 (s, 

3H, CH3), 2.13 (ddd, J = 16.8, 5.5 2.4 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.9 (CHO), 
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198.9 (C=O), 144.2 (Carom-C), 134.1 (Carom-C), 132.8 (C3), 129.5 (Carom-H), 128.9 (C4), 128.8 (Carom-H), 

59.8 (C2), 49.6 (CH2CHO), 38.8 (C5), 33.9 (C1), 21.8 (CH3). IR (ATR): 2915 (C-H st), 1738 (C=O st) cm
-1

. 

MS (EI) m/z (%): 648 (45), 647 (100), 316 (83), 281 (20), 208 (16), 207 (60), 199 (M
+
-CHO, 1), 191 

(28), 109 (M
+
-C8H7O, 2), 57 (64). HRMS: Calculated for [C15H16O2Na]

+
: 251.1048 [(M+Na)

+
]; found: 

251.1055. [α]D
rt

: +57.0 (c = 0.3, CH2Cl2). 

2-((1R,2S)-2-(4-methoxybenzoyl)cyclopent-3-en-1-yl)acetaldehyde (cis-6x). 

Following the general procedure O, trans-6x (5.00 mg, 0.020 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 33% yield 

starting from aldehyde 4x (15.00 mg, 0.060 mmol), catalyst 5m (5.50 mg, 

0.012 mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.63 (s, 1H, CHO), 8.01-7.91 (m, 2H, Carom-H), 7.00-6.86 (m, 2H, 

Carom-H), 5.98-5.94 (m, 1H, H3), 5.79-5.75 (m, 1H, H4), 4.71-4.66 (m, 1H, H2), 

3.87 (s, 3H, OCH3), 3.21-3.09 (m, 1H, H1), 2.74-2.54 (m, 3H, CH2CHO, H5a), 2.29 (ddq, J = 16.3, 6.5, 

2.3 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm) 201.9 (CHO), 199.4 (C=O), 163.9 (Carom-C), 

133.1 (C3), 130.8 (Carom-H), 130.3 (Carom-C), 130.0 (C4), 114.1 (Carom-H), 55.6 (OCH3), 54.6 (C2), 45.8 

(CH2CHO), 39.1 (C5), 36.1 (C1). IR (ATR): 3012 (=CH st), 1738 (C=O st) cm
-1

. MS (EI) m/z (%): 224 (23), 

216 (27), 215 (M
+
-CHO, 20), 207 (27), 185 (22), 153 (23), 152 (23), 135 (100), 109 (M

+
-C8H7O2, 3), 77 

(21). HRMS: Calculated for [C15H16O3Na]
+
: 267.0097 [(M+Na)

+
]; found: 267.1005. [α]D

rt
: -141.5 (c = 

0.3, CH2Cl2). 

2-((1R,2R)-2-(4-methoxybenzoyl)cyclopent-3-en-1-yl)acetaldehyde (trans-

6x). Following the general procedure O, trans-6x (2.20 mg, 0.009 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 15% yield 

starting from aldehyde 4x (15.00 mg, 0.060 mmol), catalyst 5m (5.50 mg, 

0.012 mmol) and 1,2-dichloroethane (0.6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 9.76 (t, J = 2.0 Hz, 1H, CHO), 7.99-7.94 (m, 2H, Carom-H), 6.98-6.92 (m, 

2H, Carom-H), 5.87-5.82 (m, 1H, H3), 5.71-5.67 (m, 1H, H4), 4.18-4.11 (m, 1H, 

H2), 3.88 (s, 3H, OCH3), 3.44-3.27 (m, 1H, H1), 2.85 (ddt, J = 16.2, 8.0, 2.4 Hz, 1H, H5a), 2.62-2.57 (m, 

2H, CH2CHO), 2.13 (ddq, J = 16.7, 4.7, 2.3 Hz, 1H, H5b). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.0 

(CHO), 197.8 (C=O), 163.7 (Carom-C), 132.8 (C3), 131.0 (Carom-H), 129.6 (Carom-C), 129.1 (C4), 114.0 

(Carom-H), 59.6 (OCH3), 55.6 (C2), 49.5 (CH2CHO), 38.8 (C5), 34.0 (C1).  IR (ATR): 3012 (=CH st), 1738 

(C=O st) cm
-1

. MS (EI) m/z (%): 135 (100), 77 (13). HRMS: Calculated for [C15H16O3Na]
+
: 267.0097 

[(M+Na)
+
]; found: 267.1004. [α]D

rt
: +97.8 (c = 0.3, CH2Cl2). 

 

ethyl cyclohepta-1,3,6-triene-1-carboxylate (11). Following the general procedure O, 

11 (4.8 mg, 0.03 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 

to 1:1) in 24% yield starting from aldehyde 4x (21.5 mg, 0.12 mmol), catalyst 5m (6.1 

mg, 0.012 mmol) and 1,2-dichloroethane (1.2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 7.69 (d, J = 6.0 Hz, 1H, H2), 6.73 (d, J = 9.6 Hz, 1H, H7), 6.34 (dd, J = 9.4, 6.0 Hz, 
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1H, H3), 5.74-5.60 (m, 1H, H4), 5.54-5.40 (m, 1H, H6), 4.29 (q, J = 7.1 Hz, 2H, OCH2CH3), 2.30 (t, J = 

6.8 Hz, 2H, H5), 1.35 (t, J = 7.1 Hz, OCH2CH3). 
 

 

2.3. Derivatization of the adducts  

 

General Procedure P: To a solution of cis/trans-6a-z (0.05 mmol, 1.0 eq) in THF (0.8 mL, 0.064 

M), carbethoxymethylene)triphenylphosphorane (0.1 mmol, 2.0 eq) was added and the reaction 

mixture was stirred at room temperature for 15 hours. Once the reaction was finished, the solvent 

was removed and the crude was directly subjected to FC to afford pure I-XXII. 

 

Ethyl (E)-4-((1R,2R)-2-nitrocyclopent-3-en-1-yl)but-2-enoate (trans-I). 

Following the general procedure P, trans-I (7.60 mg, 0.034 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 59% yield 

starting from aldehyde cis-6a (9.00 mg, 0.058 mmol), 

(carbethoxymethylene)triphenylphosphorane (40.00 mg, 0.120 mmol) and THF (0.9 mL) for cis 

diastereoisomer. The same procedure was carried out for trans diastereoisomer (1.10 mg, 0.005 

mmol) in 54% yield starting from aldehyde trans-6a (1.40 mg, 0.009 mmol), 

(carbethoxymethylene)triphenylphosphorane (6.00 mg, 0.018 mmol) and THF (0.2 mL). 
1
H NMR (300 

MHz, CDCl3) (δ, ppm): 6.88 (dt, J = 15.6, 7.1 Hz, 1H, H3), 6.23 (dtd, J = 5.9, 2.4, 1.5 Hz, 1H, H4´), 5.97-

5.80 (m, 2H, H3´, H2), 5.15 (dtt, J = 3.9, 2.5, 1.4 Hz, 1H, H2´), 4.19 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.00 

(tdt, J = 8.0, 6.1, 3.9 Hz, 1H, H1´), 2.86 (ddq, J = 17.3, 8.1, 2.4 Hz, 1H, H5´a), 2.53 (dddd, J = 14.8, 7.3, 

6.2, 1.6 Hz, 1H, H4a), 2.38 (dtd, J = 14.9, 8.4, 7.9, 1.5 Hz, 1H, H4b), 2.24-2.08 (m, 1H, H5´b), 1.29 (t, J 

= 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak AS-H column [n-

hexane/i-PrOH (95:05)]; flow rate 1.0 mL/min; τmajor = 13.22 min, τminor = 14.55 min (87% e.e. for the 

cis diastereomer) and τmajor = 13.26 min, τminor = 14.57 min (97% e.e. for the trans diastereomer). 

Ethyl (E)-4-((1S,2R)-4-methyl-2-nitrocyclopent-3-en-1-yl)but-2-enoate 

(trans-II). Following the general procedure P, trans-II (6.80 mg, 0.028 mmol) 

was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 51% 

yield starting from aldehyde cis-6b (9.40 mg, 0.055 mmol), 

(carbethoxymethylene)triphenylphosphorane (38.00 mg, 1.100 mmol) and THF (0.8 mL) for cis 

diastereoisomer. The same procedure was carried out for trans diastereisomer (6.60 mg, 0.027 
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mmol) in 96% yield starting from aldehyde trans-6b (4.80 mg, 0.028 mmol), 

(carbethoxymethylene)triphenylphosphorane (20.00 mg, 0.056 mmol) and THF (0.4 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm) 6.87 (dt, J = 15.4, 7.1 Hz, 1H, H3), 5.89 (dt, J = 15.8, 1.5 Hz, 1H, H2), 5.49 

(s, 1H, H3´), 5.10 (s, 1H, H2´), 4.10 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.99 (d, J = 6.1 Hz, 1H, H1´), 2.89-2.68 

(m, 1H, H5´a), 2.44 (ddd, J = 37.2, 14.8, 7.4 Hz, 2H, H4), 2.05 (d, J = 16.7 Hz, 1H, H5´b), 1.29 (t, J = 7.1 

Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IE-3 column [n-hexane/i-PrOH 

(90:10)]; flow rate 0.8 mL/min; τmajor = 29.27 min, τminor = 23.81 min (76% e.e. for the cis 

diastereomer) and τmajor = 20.83 min, τminor = 26.71 min (90% e.e. for the trans diastereomer). 

Ethyl (E)-4-((1S,2R)-4-ethyl-2-nitrocyclopent-3-en-1-yl)but-2-enoate 

(trans-III). Following the general procedure P, trans-III (7.20 mg, 0.028 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

7:3) in 66% yield starting from aldehyde cis-6c (7.90 mg, 0.043 mmol), 

(carbethoxymethylene)triphenylphosphorane (30.00 mg, 0.086 mmol) and THF (0.7 mL) for cis 

diastereoisomer. The same procedure was carried out for trans diastereisomer (3.80 mg, 0.015 

mmol) in 63% yield starting from aldehyde trans-6c (4.50 mg, 0.024 mmol), 

(carbethoxymethylene)triphenylphosphorane (17.00 mg, 0.048 mmol) and THF (0.4 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.87 (dt, J = 15.6, 7.2 Hz, 1H, H3), 5.89 (dt, J = 15.6, 1.6 Hz, 1H, H2), 5.51-

5.44 (m, 1H, H3´), 5.11-5.09 (m, 1H, H2´), 4.19 (q, J = 7.2 Hz, 2H, OCH2CH3), 3.01-2.96 (m, 1H, H1´), 

2.79 (dd, J = 16.8, 8.1 Hz, 1H, H4a), 2.57-2.29 (m, 2H, H5´), 2.28-2.01 (m, 3H, H4b, CH2CH3), 1.29 (t, J 

= 7.1 Hz, 3H, CH2CH3), 1.09 (t, J = 7.4 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a 

Chiralpak IC column [n-hexane/i-PrOH (95:05)]; flow rate 0.8 mL/min; τmajor = 39.07 min, τminor = 

49.93 min (76% e.e. for the cis diastereomer) and τmajor = 54.82 min, τminor = 70.84 min (86% e.e. for 

the trans diastereomer). 

Ethyl (E)-4-((1S,2R)-2-nitro-4-propylcyclopent-3-en-1-yl)but-2-enoate 

(trans-IV). Following the general procedure P, trans-IV (12.10 mg, 0.045 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

7:3) in 72% yield starting from aldehyde cis-6d (12.50 mg, 0.060 mmol), 

(carbethoxymethylene)triphenylphosphorane (44.00 mg, 0.130 mmol) and THF (0.6 mL) for cis 

diastereoisomer. The same procedure was carried out for trans diastereisomer (3.80 mg, 0.020 

mmol) in 66% yield starting from aldehyde trans-6d (5.80 mg, 0.033 mmol), 

(carbethoxymethylene)triphenylphosphorane (23.00 mg, 0.066 mmol) and THF (0.3 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.87 (dt, J = 15.7, 7.1 Hz, H3), 5.89 (dt, J = 15.6, 1.5 Hz, H2), 5.50-5.48 (m, 

1H, H3´), 5.16-5.07 (m, 1H, H2´), 4.20 (q, J = 7.1 Hz, 3H, OCH2CH3), 3.05-2.90 (m, 1H, H1´), 2.79 (dd, J 

= 16.7, 8.2 Hz, 1H, H5´a), 2.58-2.29 (m, 2H, H4), 2.14 (t, J = 7.7 Hz, 2H, CH2CH2CH3), 2.09-2.02 (m, 1H, 

H5´b), 1.57-1.47 (m, 2H, CH2CH2CH3), 1.35-1.21 (m, 3H, CH2CH2CH3), 0.96-0.88 (m, 3H, OCH2CH3). 

The e.e. was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:05)]; flow rate 

0.8 mL/min; τmajor = 8.38 min, τminor = 9.53 min (44% e.e. for the cis diastereomer) and τmajor = 8.43 

min, τminor = 13.21 min (79% e.e. for the trans diastereomer). 
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Ethyl (E)-4-((1S,2R)-4-(but-3-en-1-yl)-2-nitrocyclopent-3-en-1-yl)but-

2-enoate (trans-V). Following the general procedure P, trans-V (3.80 

mg, 0.014 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 9:1 to 7:3) in 53% yield starting from aldehyde cis-6e 

(5.60 mg, 0.030 mmol), (carbethoxymethylene)triphenylphosphorane (19.00 mg, 0.050 mmol) and 

THF (0.3 mL) for cis diastereoisomer. The same procedure was carried out for trans diastereisomer 

(2.40 mg, 0.009 mmol) in 59% yield starting from aldehyde trans-6e (3.20 mg, 0.020 mmol), 

(carbethoxymethylene)triphenylphosphorane (10.00 mg, 0.030 mmol) and THF (0.2 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.95-6.79 (m, 1H, H3), 5.92-5.71 (m, 2H, CH2CH2CH=CH2), 5.52 (s, 1H, H2), 

5.30 (s, 1H, H3´), 5.09 (d, J = 9.9 Hz, 1H, CH2CH2CH=CH2), 5.00 (d, J = 10.5 Hz, H2´), 4.24-4.10 (m, 2H, 

OCH2CH3), 3.02-2.84 (m, 1H, H1´), 2.83-2.66 (m, 1H, H4a), 2.07 (d, J = 15.3 Hz, 1H, H4b), 1.26-1.18 

(m, 4H, CH2CH2CH=CH2), 0.88-0.84 (m, 3H, OCH2CH3).  The e.e. was determined by HPLC using a 

Chiralpak ID-3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min; τmajor = 15.12 min, τminor = 

16.05 min (32% e.e. for the cis diastereomer) and τmajor = 15.39 min, τminor = 16.36 min (47% e.e. for 

the trans diastereomer). 

Dimethyl (4S,5S)-5-((E)-4-ethoxy-4-oxobut-2-en-1-yl)-4-nitrocyclopent-2-

ene-1,1-dicarboxylate (trans-VI). Following the general procedure P, trans-VI 

(3.00 mg, 0.009 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 45% yield starting from aldehyde cis-6f (5.50 mg, 0.020 

mmol), (carbethoxymethylene)triphenylphosphorane (14.00 mg, 0.040 

mmol) and THF (0.3 mL) for cis diastereoisomer. The same procedure was carried out for trans 

diastereisomer (2.40 mg, 0.007 mmol) in 51% yield starting from aldehyde trans-6g (3.80 mg, 0.014 

mmol), (carbethoxymethylene)triphenylphosphorane (9.00 mg, 0.028 mmol) and THF (0.2 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 6.88 (ddd, J = 15.2, 8.4, 6.4 Hz, 1H, H3), 6.30 (dd, J = 5.8, 1.8 Hz, 1H, 

H3´), 6.12 (dd, J = 5.8, 2.1 Hz, 1H, H4´), 5.90 (d, J = 15.6 Hz, 1H, H2), 5.32-5.24 (m, 1H, H2´), 4.19 (q, J 

= 7.1 Hz, 2H, OCH2CH3), 3.81 (s, 3H, CH3), 3.76 (s, 3H, CH3), 3.73-3.62 (m, 1H, H1´), 2.75-2.63 (m, 1H, 

H4a), 2.43-2.37 (m, 1H, H4b), 1.26 (t, J = 7.1 Hz, 2H, O-CH2-CH3). The e.e. was determined by HPLC 

using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 22.02 min, 

τminor = 33.25 min (90% e.e. for the cis diastereomer) and τmajor = 22.78 min, τminor = 38.29 min (97% 

e.e. for the trans diastereomer). 

Diethyl (4S,5S)-5-((E)-4-ethoxy-4-oxobut-2-en-1-yl)-4-nitrocyclopent-2-ene-

1,1-dicarboxylate (trans-VII). Following the general procedure P, trans-VII 

(4.30 mg, 0.012 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 36% yield starting from aldehyde cis-6g (9.50 mg, 0.032 

mmol), (carbethoxymethylene)triphenylphosphorane (22.00 mg, 0.060 

mmol) and THF (0.5 mL) for cis diastereoisomer. The same procedure was carried out for trans 

diastereisomer (2.30 mg, 0.006 mmol) in 33% yield starting from aldehyde trans-6g (5.30 mg, 0.018 

mmol), (carbethoxymethylene)triphenylphosphorane (12.00 mg, 0.040 mmol) and THF (0.3 mL). 
1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 6.90 (ddd, J = 14.9, 8.4, 6.3 Hz, 1H, H3), 6.31 (dd, J = 5.7, 1.8 Hz, 1H, 

H3´), 6.11 (dd, J = 5.7, 2.2 Hz, 1H, H2´), 5.89 (dt, J = 15.6, 1.6 Hz, 1H, H2), 5.26 (dt, J = 6.1, 2.0 Hz, 1H, 

H4´), 4.32-4.15 (m, 6H, OCH2CH3), 3.67 (dt, J = 9.5, 5.7 Hz, 1H, H1´), 2.70 (dt, J = 13.9, 5.9 Hz, 1H, 
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H4a), 2.44 (dt, J = 14.6, 9.0 Hz, 1H, H4b), 1.32-1.21 (m, 9H, OCH2CH3). The e.e. was determined by 

HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (98:02)]; flow rate 0.8 mL/min; τmajor = 54.00 

min, τminor = 47.24 min (90% e.e. for the cis diastereomer) and τmajor = 52.98 min, τminor = 43.38 min 

(92% e.e. for the trans diastereomer). 

Diethyl (R,E)-5-(4-ethoxy-4-oxobut-2-en-1-yl)cyclopent-2-ene-1,1-

dicarboxylate (VIII). Following the general procedure P, VIII (14.20 mg, 

0.043 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 

to 7:3) in 84% yield starting from aldehyde 6h (13.30 mg, 0.052 mmol), 

(carbethoxymethylene)triphenylphosphorane (36.00 mg, 0.100 mmol) and 

THF (0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.92 (ddd, J = 15.6, 8.1, 6.3 Hz, 1H, H2´), 5.99 (dt, J 

= 5.2, 2.4 Hz, 1H, H2), 5.88-5.79 (m, 2H, H3´, H3), 4.27-4.08 (m, 8H, OCH2CH3), 3.02 (ddd, J = 11.1, 

6.8, 4.0 Hz, 1H, H5), 2.69-2.48 (m, 2H, H4), 2.24-2.15 (m, 2H, H1´), 1.33-1.20 (m, 12H, OCH2CH3). The 

e.e. was determined by HPLC using a Chiralpak IE-3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 

mL/min; τmajor = 16.69 min, τminor = 14.57 min (43% e.e.).  

Ethyl (R,E)-4-(2,2-dicyanocyclopent-3-en-1-yl)but-2-enoate (IX). Following 

the general procedure P, IX (5.90 mg, 0.026 mmol) was isolated by FC 

(petroleum ether/EtOAc gradient from 9:1 to 7:3) in 63% yield starting from 

aldehyde 6i (6.50 mg, 0.041 mmol), 

(carbethoxymethylene)triphenylphosphorane (28.00 mg, 0.080 mmol) and THF (0.7 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.90 (dt, J = 15.0, 7.2 Hz, 1H, H3), 6.29 (dt, J = 5.4, 2.4 Hz, 1H, H3´), 6.02 

(dt, J = 15.7, 1.6 Hz, 1H, H2), 5.81 (dt, J = 5.0, 2.0 Hz, 1H, H4´), 4.21 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.04-

2.90 (m, 1H, H1´), 2.90-2.71 (m, 2H, H5´), 2.71-2.53 (m, 1H, H4a), 2.35 (ddt, J = 17.1, 8.5, 2.3 Hz, 1H, 

H4b), 1.30 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IE-3 

column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min; τmajor = 39.12 min, τminor = 48.41 min (6% 

e.e.).  

Ethyl (5R)-1-cyano-5-((E)-4-ethoxy-4-oxobut-2-en-1-yl)cyclopent-2-ene-1-

carboxylate (X). Following the general procedure P, X (16.90 mg, 0.061 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) 

in 73% yield starting from aldehyde 6j (14.70 mg, 0.084 mmol), 

(carbethoxymethylene)triphenylphosphorane (58.00 mg, 0.170 mmol) and THF (1.3 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 6.87 (dt, J = 15.0, 7.3 Hz, 1H, H2´), 6.13 (dt, J = 5.3, 2.5 Hz, 1H, H2), 5.95 

(d, J = 15.5 Hz, 1H, H3´), 5.73 (dt, J = 5.2, 2.1 Hz, 1H, H3), 4.27 (q, J = 7.2 Hz, 2H, OCH2CH3), 4.18 (q, J 

= 7.1 Hz, 2H, OCH2CH3), 2.93 (td, J = 8.7, 6.3 Hz, 1H, H5), 2.79-2.63 (m, 2H, H4), 2.54 (dt, J = 15.2, 8.3 

Hz, 1H, H1´a), 2.27 (ddt, J = 16.8, 8.3, 2.4 Hz, 1H, H1´b), 1.30 (dt, J = 11.6, 7.1 Hz, 6H, OCH2CH3). The 

e.e. was determined by HPLC using a Chiralpak IE-3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 

mL/min; τmajor = 28.40 min, τminor = 26.59 min (39% e.e.).  
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Ethyl (E)-4-((1R,2S)-2-benzoylcyclopent-3-en-1-yl)but-2-enoate (cis-XI). 

Following the general procedure P, cis-XI (7.00 mg, 0.021 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 65% 

yield starting from aldehyde cis-6l (7.20 mg, 0.033 mmol), 

(carbethoxymethylene)triphenylphosphorane (23.00 mg, 0.066 mmol) and 

THF (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.03-7.95 (m, 2H, Carom-

H), 7.51-7.45 (m, 3H, Carom-H), 6.76 (dt, J = 14.7, 7.1 Hz, 1H, H3), 6.01-5.94 (m, 1H, H3´), 5.83-5.78 (m, 

1H, H4´), 5.67 (d, J = 15.4 Hz, 1H, H2), 4.64 (d, J = 8.0 Hz, 1H, H2´), 4.11 (q, J = 7.0 Hz, 2H, OCH2CH3), 

2.94-2.81 (m, 1H, H1´), 2.59 (dd, J = 16.1, 7.5 Hz, 1H, H4a), 2.32 (d, J = 16.1 Hz, 1H, H4b), 2.23-2.05 

(m, 2H, H5´), 0.92-0.81 (m, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 14.31 min, τminor = 24.18 min (79% 

e.e.). 

Ethyl (E)-4-((1R,2R)-2-benzoylcyclopent-3-en-1-yl)but-2-enoate (trans-XI). 

Following the general procedure P, trans-XI (6.00 mg, 0.021 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 64% 

yield starting from aldehyde trans-6l (7.00 mg, 0.033 mmol), 

(carbethoxymethylene)triphenylphosphorane (23.00 mg, 0.066 mmol) and 

THF (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.01-7.94 (m, 2H, 

Carom-H), 7.62-7.54 (m, 1H, Carom-H), 7.54-7.43 (m, 2H, Carom-H), 6.92 (dt, J = 15.6, 7.2 Hz, 1H, H3), 

5.89-5.80 (m, 2H, H3´, H4´), 5.72-5.64 (m, 1H, H2), 4.30-4.10 (m, 3H, H2´, OCH2CH3), 3.09-2.98 (m, 

1H, H1´), 2.80-2.65 (m, 1H, H4a), 2.44-2.32 (m, 2H, H5´), 2.14 (ddd, J = 16.8, 5.0, 2.8 Hz, H4b), 1.34-

1.21 (m, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-hexane/i-

PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 16.77 min, τminor = 17.82 min (98% e.e.). 

Ethyl (E)-4-((1R,2S)-2-(4-chlorobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XII). Following the general procedure P, cis-XII (6.00 mg, 

0.019 mmol) was isolated by FC (petroleum ether /EtOAc gradient from 

9:1 to 7:3) in 42% yield starting from aldehyde cis-6m (11.10 mg, 0.044 

mmol), (carbethoxymethylene)triphenylphosphorane (32.00 mg, 0.092 

mmol) and THF (0.7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.96-7.89 

(m, 2H, Carom-H), 7.47-7.44 (m, 2H, Carom-H), 6.75 (dt, J = 14.7, 7.2 Hz, 1H, 

H3), 5.98 (dd, J = 5.8, 2.4 Hz, H3´), 5.78 (dd, J = 5.7, 2.2 Hz, H4´), 5.66 (d, J = 15.5 Hz, 1H, H2), 4.57 (d, 

J = 8.1 Hz, 1H, H2´), 4.12 (q, J = 7.1 Hz, 2H, OCH2CH3), 2.89-2.85 (m, 1H, H1´), 2.68-2.55 (m, 2H, H4), 

2.36-2.31 (m, 2H, H5´), 1.26-1.21 (m, 3H, OCH2CH3). The e.e. was determined by HPLC using a 

Chiralpak IC column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 11.97 min, τminor = 

19.76 min (85% e.e.). 
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Ethyl (E)-4-((1R,2R)-2-(4-chlorobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XII). Following the general procedure P, trans-XII (6.20 mg, 

0.019 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 42% yield starting from aldehyde trans-6m (11.40 mg, 0.046 

mmol), (carbethoxymethylene)triphenylphosphorane (32.00 mg, 0.092 

mmol) and THF (0.7 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.94-7.89 

(m, 2H, Carom-H), 7.48-7.43 (m, 2H, Carom-H), 6.90 (dt, J = 15.7, 7.2 Hz, 1H, 

H3), 5.92-5.84 (m, 2H, H3´, H2), 5.66-5.62 (m, 1H, H4´), 4.27-4.03 (m, 3H, OCH2CH3), H2´), 3.06-2.97 

(m, 1H, H1´), 2.74 (ddt, J = 16.8, 8.3, 2.5 Hz, 1H, H4a), 2.46-2.32 (m, 2H, H5´), 2.20-2.08 (m, 1H, H4b), 

1.34-1.21 (m, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 14.46 min, τminor = 13.70 min (96% e.e.). 

Ethyl (E)-4-((1R,2S)-2-(4-(trifluoromethyl)benzoyl)cyclopent-3-en-1-

yl)but-2-enoate (cis-XIII). Following the general procedure P, cis-XIII 

(1.70 mg, 0.005 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 9:1 to 7:3) in 46% yield starting from aldehyde cis-6n 

(3.10 mg, 0.011 mmol), (carbethoxymethylene)triphenylphosphorane 

(7.60 mg, 0.022 mmol) and THF (0.2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 8.10 (d, J = 7.9 Hz, 2H, Carom-H), 7.75 (d, J = 8.1 Hz, 2H, Carom-H), 

6.82-6.67 (m, 1H, H3), 6.01 (dd, J = 5.8, 2.4 Hz, 1H, H3´), 5.79 (dd, J = 5.8, 2.1 Hz, 1H, H4´), 5.69-5.62 

(m, 1H, H2), 4.69-4.54 (m, 1H, H2´), 4.10 (q, J = 7.1 Hz, 2H, OCH2CH3), 2.92-2.87 (m, 1H, H1´), 2.68-

2.55 (m, 1H, H4a), 2.42-2.35 (m, 1H, H4b), 2.28-2.09 (m, 2H, H5´), 1.22 (t, J = 7.1 Hz, 3H, OCH2CH3). 

The e.e. was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH (90:10)]; flow rate 

0.8 mL/min; τmajor = 12.16 min, τminor = 9.68 min (88% e.e.). 

Ethyl (E)-4-((1R,2R)-2-(4-(trifluoromethyl)benzoyl)cyclopent-3-en-1-

yl)but-2-enoate (trans-XIII). Following the general procedure P, cis-XIII 

(2.00 mg, 0.006 mmol) was isolated by FC (petroleum ether/EtOAc 

gradient from 9:1 to 7:3) in 75% yield starting from aldehyde cis-6n 

(2.30 mg, 0.008 mmol), (carbethoxymethylene)triphenylphosphorane 

(6.00 mg, 0.016 mmol) and THF (0.1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 8.07 (d, J = 8.1 Hz, 2H, Carom-H), 7.75 (d, J = 8.2 Hz, 2H, Carom-H), 

6.99-6.83 (m, 1H, H3), 5.92-5.80 (m, 2H, H3´, H2), 5.65 (dd, J = 5.8, 2.3 Hz, 1H, H4´), 4.20-4.12 (m, 3H, 

H2´, OCH2CH3), 3.06-2.99 (m, 1H, H1´), 2.82-2.68 (m, 1H, H5´a), 2.43-2.34 (m, 2H, H4), 2.16 (ddd, J = 

17.0, 4.8, 2.3 Hz, 1H, H5´b), 1.26 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using 

a Chiralpak IC column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min; τmajor = 12.51 min, τminor = 

10.96 min (93% e.e.). 
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Ethyl (E)-4-((1R,2S)-2-(4-fluorobenzoyl)cyclopent-3-en-1-yl)but-2-enoate 

(cis-XIV). Following the general procedure P, cis-XIV (6.00 mg, 0.020 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

7:3) in 60% yield starting from aldehyde cis-6o (7.80 mg, 0.034 mmol), 

(carbethoxymethylene)triphenylphosphorane (23.00 mg, 0.068 mmol) and 

THF (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.08-7.97 (m, 2H, 

Carom-H), 7.20-7.11 (m, 2H, Carom-H), 6.75 (ddd, J = 15.6, 7.6, 6.7 Hz, 1H, 

H3), 5.98 (d, J = 6.6, 2.3 Hz, 1H, H3´), 5.78 (d, J = 6.0, 2.1 Hz, 1H, H4´), 5.67 (dt, J = 15.6, 1.5 Hz, 1H, 

H2), 4.58 (dt, J = 8.2, 2.1 Hz, 1H, H2´), 4.12 (q, J = 7.1 Hz, OCH2CH3), 2.85 (ddt, J = 13.4, 8.0, 3.9 Hz, 

1H, H1´), 2.65-2.51 (m, 1H, H4a), 2.40-2.27 (m, 1H, H4b), 2.26-2.05 (m, 2H, H5´), 1.23 (t, J = 7.1 Hz, 

3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH 

(95:05)]; flow rate 0.8 mL/min; τmajor = 24.29 min, τminor = 42.72 min (75% e.e.). 

Ethyl (E)-4-((1R,2R)-2-(4-fluorobenzoyl)cyclopent-3-en-1-yl)but-2-enoate 

(trans-XIV). Following the general procedure P, trans-XIV (2.70 mg, 0.009 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

7:3) in 52% yield starting from aldehyde trans-6o (4.00 mg, 0.017 mmol), 

(carbethoxymethylene)triphenylphosphorane (12.00 mg, 0.034 mmol) and 

THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.05-7.97 (m, 2H, 

Carom-H), 7.19-7.10 (m, 2H, Carom-H), 7.00-6.82 (m, 1H, H3), 5.89-5.80 (m, 

2H, H3´, H4´), 5.65 (dq, J = 4.7, 2.2 Hz, 1H, H2), 4.23-4.07 (m, 3H, H2´, OCH2CH3), 3.02 (qd, J = 7.7, 3.8 

Hz, 1H, H1´), 2.74 (ddt, J = 16.9, 2.5 Hz, 1H, H4a),  2.42-2.32 (m, 2H, H5´), 2.14 (ddd, J = 16.9, 4.9, 2.7 

Hz, 1H, H4b), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IA 

column [n-hexane/i-PrOH (95:05)]; flow rate 0.8 mL/min; τmajor = 13.88 min, τminor = 12.40 min (98% 

e.e.). 

Ethyl (E)-4-((1R,2S)-2-(4-bromobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XV). Following the general procedure P, cis-XV (7.30 mg, 

0.012 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 69% yield starting from aldehyde cis-6p (8.60 mg, 0.029 

mmol), (carbethoxymethylene)triphenylphosphorane (20.00 mg, 0.058 

mmol) and THF (0.5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.89-7.81 

(m, 2H, Carom-H), 7.66-7.58 (m, 2H, Carom-H), 6.75 (dt, J = 15.8, 7.2 Hz, 1H, 

H3), 5.98 (dd, J = 5.6, 2.7 Hz, 1H, H3´), 5.82-5.73 (m, 1H, H4´), 5.66 (dt, J = 15.6, 1.5 Hz, H2), 4.56 (dt, 

J = 7.4 Hz, 1H, H2´), 4.12 (q, J = 7.1 Hz, 2H, OCH2CH3), 2.92-2.78 (m, 1H, H1´), 2.64-2.50 (m, 1H, H5a), 

2.40-2.26 (m, 1H, H5b), 2.13 (tq, J = 15.2, 7.1 Hz, 2H, H4), 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. 

was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 

mL/min; τmajor = 12.98 min, τminor = 21.99 min (80% e.e.). 

 

 



246  Chapter 6 

 

Ethyl (E)-4-((1R,2R)-2-(4-bromobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XV). Following the general procedure P, trans-XV (1.50 mg, 

0.005 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 57% yield starting from aldehyde trans-6p (2.00 mg, 0.009 

mmol), (carbethoxymethylene)triphenylphosphorane (6.00 mg, 0.018 

mmol) and THF (0.2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.90-7.86 

(m, 2H, Carom-H), 7.29-7.26 (m, 2H, Carom-H), 6.92 (dt, J = 15.2, 7.7, 7.2 Hz, 

1H, H3), 5.91-5.80 (m, 2H, H3´, H2), 5.67 (dd, J = 5.6, 2.4 Hz, 1H, H4´), 4.20-4.11 (m, 3H, OCH2CH3, 

H2´), 3.05-3.01 (m, 1H, H1´), 2.80-2.67 (m, 1H, H4a), 2.47-2.32 (m, 5H, CH3, H5´), 2.19-2.07 (m, 11H, 

H4b), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IE-3 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 14.92 min, τminor = 13.62 min (97% 

e.e.).  

Ethyl (E)-4-((1R,2S)-2-(3,4-dichlorobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XVI). Following the general procedure P, cis-XVI (4.00 mg, 

0.010 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3 in 55% yield starting from aldehyde cis-6q (5.60 mg, 0.020 

mmol), (carbethoxymethylene)triphenylphosphorane (14.00 mg, 0.040 

mmol) and THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.06 (d, J = 

2.1 Hz, 1H, Carom-H), 7.81 (dd, J = 8.4, 2.1 Hz, 1H, Carom-H), 7.56 (d, J = 8.4 

Hz, 1H, Carom-H), 6.75 (dt, J = 15.6, 7.2 Hz, 1H, H3), 6.00 (dd, J = 5.8, 2.3 Hz, 1H, H3´), 5.79-5.72 (m, 

1H, H4´), 5.66 (dt, J = 15.6, 1.5 Hz, 1H, H2), 4.53 (dt, J = 8.1, 2.1 Hz, 1H, H2´), 4.12 (q, J = 7.1 Hz, 2H, 

OCH2CH3), 2.90-2.81 (m, 1H, H1´), 2.64-2.56 (m, 1H, H4a), 2.33 (ddd, J = 16.3, 5.5, 2.2 Hz, 1H, H4b), 

2.27-2.02 (m, 2H, H5´), 1.24 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a 

Chiralpak IC column [n-hexane/i-PrOH (95:05)]; flow rate 0.8 mL/min; τmajor = 22.21 min, τminor = 

26.96 min (76% e.e.). 

Ethyl (E)-4-((1R,2R)-2-(3,4-dichlorobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XVI). Following the general procedure P, trans-XVI (1.50 

mg, 0.004 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 61% yield starting from aldehyde trans-6q (2.00 mg, 

0.007 mmol), (carbethoxymethylene)triphenylphosphorane (5.00 mg, 

0.014 mmol) and THF (0.1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.04 

(d, J = 2.0 Hz, 1H, Carom-H), 7.79 (dd, J = 8.4, 2.1 Hz, 1H, Carom-H), 7.56 (d, J 

= 8.4 Hz, 1H, Carom-H), 6.90 (dt, J = 15.6, 7.2 Hz, 1H, H3), 5.92-5.79 (m, 2H, H3´, H2), 5.68-5.59 (m, 1H, 

H4´), 4.17 (q, J = 7.1 Hz, 2H, OCH2CH3), 4.06 (dt, J = 4.8, 2.5 Hz, 1H, H2´), 3.09-2.96 (m, 1H, H1´), 2.80-

2.68 (m, 1H, H4a), 2.42-2.30 (m, 2H, H5´), 2.15 (ddd, J = 17.0, 5.0, 2.3 Hz, 1H, H4b), 1.27 (t, J = 7.1 Hz, 

3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak OD3 column [n-hexane/i-PrOH 

(95:05)]; flow rate 1.0 mL/min; τmajor = 12.27 min, τminor = 14.01 min (94% e.e.). 
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Ethyl (E)-4-((1R,2S)-2-(4-cyanobenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XVII). Following the general procedure P, trans-XVII (2.20 

mg, 0.007 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 76% yield starting from aldehyde cis-6r (2.20 mg, 

0.009 mmol), (carbethoxymethylene)triphenylphosphorane (0.006 g, 

0.018 mmol) and THF (0.2 mL) for cis diastereoisomer. The same 

procedure was carried out for trans diastereoisomer (0.08 mg, 0.02 

mmol) in 80% yield starting from aldehyde trans-6r (0.80 mg, 0.003 mmol), 

(carbethoxymethylene)triphenylphosphorane (0.02 mg, 0.007 mmol) and THF (0.05 mL). 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 8.05 (d, J = 8.4 Hz, 2H, Carom-H), 7.78 (d, J = 8.4 Hz, 2H, Carom-H), 6.99-6.82 

(m, 1H, H3), 5.94-5.79 (m, 2H, H2, H3´), 5.62 (dd, J = 5.7, 2.4 Hz, 1H, H4´), 4.21-4.09 (m, 3H, H2´, 

OCH2CH3, 3.06-3.00 (m, 1H, H1´), 2.81-2.68 (m, 1H, H4a), 2.38 (t, J = 7.2 Hz, 2H, H5), 2.26-2.11 (m, 

1H, H4b), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IA 

column [n-hexane/i-PrOH (95:05)]; flow rate 0.7 mL/min; τmajor = 31.47 min, τminor = 34.51 min (68% 

e.e. for the cis diastereomer) and τmajor = 33.94 min, τminor = 37.50 min (95% e.e. for the trans 

diastereomer). 

Ethyl (E)-4-((1R,2S)-2-(3-methoxybenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XVIII). Following the general procedure P, cis-XVIII (0.50 mg, 

0.002 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 

to 7:3) in 14% yield starting from aldehyde cis-6t (2.60 mg, 0.011 mmol), 

(carbethoxymethylene)triphenylphosphorane (7.00 mg, 0.021 mmol) and 

THF (0.2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.58 (dt, J = 7.7, 1.2 Hz, 

1H, Carom-H), 7.51 (dd, J = 2.7, 1.6 Hz, 1H, Carom-H), 7.39 (t, J = 7.9 Hz, 1H, 

Carom-H), 7.12 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H, Carom-H), 6.76 (ddd, J = 15.5, 7.6, 

6.7, 1H, H3), 5.96 (dq, J = 6.6, 2.3 Hz, 1H, H3´), 5.79 (dq, J = 6.0, 2.1 Hz, 1H, H4´), 5.68 (dt, J = 15.6, 1.5 

Hz, 1H, H2), 4.61 (dp, J = 8.3, 2.1 Hz, 1H, H2´), 4.12 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.86 (s, 3H, OCH3), 

2.94-2.81 (m, 1H, H1´), 2.65-2.52 (m, 1H, H4a), 2.38-2.27 (m, 1H, H4b), 2.21-2.08 (m, 2H, H5´), 1.23 

(t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-

hexane/i-PrOH (95:05)]; flow rate 1.0 mL/min; τmajor = 59.86 min, τminor = 51.54 min (81% e.e.). 

Ethyl (E)-4-((1R,2R)-2-(3-methoxybenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XVIII). Following the general procedure P, trans-XVIII (0.30 

mg, 0.001 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 14% yield starting from aldehyde trans-6t (1.70 mg, 0.007 

mmol), (carbethoxymethylene)triphenylphosphorane (5.00 mg, 0.014 

mmol) and THF (0.1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.56 (dt, J = 

7.7, 1.2 Hz, 1H, Carom-H), 7.49 (dd, J = 2.7, 1.6 Hz, 1H, Carom-H), 7.39 (t, J = 7.9 

Hz, 1H, Carom-H), 7.12 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H, Carom-H), 6.92 (dt, J = 15.6, 7.2 Hz, 1H, H3), 5.88-

5.81 (m, 2H, H3´, H4´), 5.72-5.64 (m, 1H, H2), 4.23-4.09 (m, 3H, H2´, OCH2CH3), 3.86 (s, 3H, OCH3), 

3.09-2.95 (m, 1H, H1´), 2.73 (ddq, J = 16.1, 8.1, 2.5 Hz, 1H, H4a), 2.46-2.27 (m, 2H, H5´), 2.14 (ddt, J = 

16.8, 5.0, 2.3 Hz, 1H, H4b), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using 
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a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min; τmajor = 11.69 min, τminor = 

10.47 min (72% e.e.). 

Ethyl (E)-4-((1R,2S)-2-([1,1'-biphenyl]-4-carbonyl)cyclopent-3-en-1-

yl)but-2-enoate (cis-XIX). Following the general procedure P, cis-XIX 

(2.60 mg, 0.007 mmol) was isolated by FC (petroleum ether /EtOAc 

gradient from 9:1 to 7:3) in 46% yield starting from aldehyde cis-6u 

(4.90 mg, 0.017 mmol), (carbethoxymethylene)triphenylphosphorane 

(11.00 mg, 0.034 mmol) and THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) 

(δ, ppm): 8.10-8.04 (m, 2H, Carom-H), 7.74-7.68 (m, 2H, Carom-H), 7.68-

7.60 (m, 2H, Carom-H), 7.51-7.36 (m, 3H, Carom-H), 6.79 (dt, J = 15.6, 7.2 

Hz, 1H, H3), 5.99 (dd, J = 5.8, 2.4 Hz, 1H, H3´), 5.87-5.79 (m, 1H, H4´), 5.70 (dt, J = 15.6, 1.5 Hz, 1H, 

H2), 4.67 (dt, J = 8.2, 2.1 Hz, 1H, H2´), 4.11 (q, J = 7.1 Hz, 2H, OCH2CH3), 2.92-2.85 (m, 1H, H1´), 2.61 

(ddd, J = 16.3, 7.7, 2.2 Hz, 1H, H4a), 2.34 (ddd, J = 16.3, 4.9, 2.2 Hz, 1H, H4b), 2.23-2.12 (m, 2H, H5´), 

1.21 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-

hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 20.11 min, τminor = 29.28 min (89% e.e.). 

Ethyl (E)-4-((1R,2R)-2-([1,1'-biphenyl]-4-carbonyl)cyclopent-3-en-1-

yl)but-2-enoate (trans-XIX). Following the general procedure P, trans-

XIX (0.90 mg, 0.002 mmol) was isolated by FC (petroleum ether 

/EtOAc gradient from 9:1 to 7:3) in 38% yield starting from aldehyde 

trans-6u (1.70 mg, 0.006 mmol), 

(carbethoxymethylene)triphenylphosphorane (4.00 mg, 0.011 mmol) 

and THF (0.1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.06 (d, J = 8.4 

Hz, 2H, Carom-H), 7.72-7.60 (m, 4H, Carom-H), 7.52-7.38 (m, 3H, Carom-H), 

6.97-6.88 (m, 1H, H3), 5.90-5.82 (m, 2H, H3´, H4´), 5.76-5.66 (m, 1H, H2), 4.21-4.13 (m, 3H, H2´, 

OCH2CH3), 3.18-2.96 (m, 1H, H1´), 2.78-2.61 (m, 1H, H4a), 2.42-2.38 (m, 2H, H5´), 2.22-2.15 (m, 1H, 

H4), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column 

[n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 25.49 min, τminor = 20.38 min (64% e.e.). 

Ethyl (E)-4-((1R,2S)-2-(2-naphthoyl)cyclopent-3-en-1-yl)but-2-enoate (cis-

XX). Following the general procedure P, cis-XX (5.20 mg, 0.016 mmol) was 

isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) in 78% 

yield starting from aldehyde cis-6v (5.40 mg, 0.020 mmol), 

(carbethoxymethylene)triphenylphosphorane (14.00 mg g, 0.040 mmol) 

and THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.53 (s, 1H, Carom-H), 

8.09-7.96 (m, 2H, Carom-H), 7.96-7.85 (m, 2H, Carom-H), 7.68-7.52 (m, 2H, 

Carom-H), 6.76 (dt, J = 15.0, 7.2 Hz, 1H, H3), 6.01 (dd, J = 5.8, 2.3 Hz, 1H, 

H3´), 5.92-5.81 (m, 1H, H4´), 5.72-5.60 (m, 1H, H2), 4.89-4.76 (m, 1H, H2´), 4.04 (qd, J = 7.1, 2.0 Hz, 

2H, OCH2CH3), 2.97-2.90 (m, 1H, H1´), 2.71-2.56 (m, 1H, H4a), 2.42-2.31 (m, 2H, H5´), 2.29-2.09 (m, 

1H, H4b), 1.15 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 20.87 min, τminor = 33.97 min (78% 

e.e.). 
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Ethyl (E)-4-((1R,2R)-2-(2-naphthoyl)cyclopent-3-en-1-yl)but-2-enoate 

(trans-XX). Following the general procedure P, trans-XX (2.10 mg, 0.006 

mmol) was isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 

7:3) in 70% yield starting from aldehyde trans-6v (2.50 mg, 0.009 mmol), 

(carbethoxymethylene)triphenylphosphorane (7.00 mg, 0.018 mmol) and 

THF (0.1 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.50 (s, 1H, Carom-H), 

8.07-7.94 (m, 2H, Carom-H), 7.95-7.84 (m, 2H, Carom-H), 7.68-7.49 (m, 2H, 

Carom-H), 6.96 (dt, J = 14.8, 7.3 Hz, 1H, H3), 5.93-5.83 (m, 2H, H2, H3´), 5.74 

(dd, J = 5.7, 2.2 Hz, 1H, H4´), 4.39-4.30 (m, 1H, H2´), 4.14 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.16-3.04 (m, 

1H, H1´), 2.85-2.69 (m, 1H, H4a), 2.46-2.39 (m, 2H, H5´), 2.24-2.11 (m, 1H, H4b), 1.15 (t, J = 7.1 Hz, 

3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH 

(98:02)]; flow rate 0.7 mL/min; τmajor = 47.96 min, τminor = 40.76 min (97% e.e.). 

Ethyl (E)-4-((1R,2S)-2-(4-methylbenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XXI). Following the general procedure P, cis-XXI (5.10 mg, 

0.017 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 32% yield starting from aldehyde cis-6w (13.60 mg, 0.058 

mmol), (carbethoxymethylene)triphenylphosphorane (37.00 mg, 0.126 

mmol) and THF (0.8 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.95-7.85 

(m, 2H, Carom-H), 7.32-7.21 (m, 2H, Carom-H), 6.76 (ddd, J = 14.1, 10.3, 6.5 

Hz, 1H, H3), 5.96 (dq, J = 5.9, 2.3 Hz, 1H, H3´), 5.79 (dq, J = 6.0, 2.1 Hz, 1H, H4´), 5.67 (dt, J = 15.6, 1.6 

Hz, 1H, H2), 4.61 (dq, J = 6.2, 2.2 Hz, 1H, H2´), 4.12 (q, J = 7.2 Hz, 2H, OCH2CH3), 2.990-2.80 (m, 1H, 

H1´), 2.65-2.52 (m, 1H, H4a), 2.42 (s, 3H, CH3), 2.31 (ddt, J = 16.2, 4.7, 2.1 Hz, 1H, H4b), 2.24-2.02 (m, 

2H, H5´), 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC 

column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 18.28 min, τminor = 34.58 min (79% 

e.e.). 

Ethyl (E)-4-((1R,2R)-2-(4-methylbenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XXI). Following the general procedure P, trans-XXI (1.50 

mg, 0.005 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 57% yield starting from aldehyde trans-6w (2.00 mg, 

0.009 mmol), (carbethoxymethylene)triphenylphosphorane (6.00 mg, 

0.018 mmol) and THF (0.2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) 7.90-

7.86 (m, 2H, Carom-H), 7.29-7.26 (m, 2H, Carom-H), 6.92 (dt, J = 15.2, 7.7, 

7.2 Hz, 1H, H3), 5.91-5.80 (m, 2H, H3´, H2), 5.67 (dd, J = 5.6, 2.4 Hz, 1H, H4´), 4.20-4.11 (m, 3H, 

OCH2CH3, H2´), 3.05-3.01 (m, 1H, H1´), 2.80-2.67 (m, 1H, H4a), 2.47-2.32 (m, 5H, CH3, H5´), 2.19-2.07 

(m, 11H, H4b), 1.27 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak 

IE-3 column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 24.89 min, τminor = 22.91 min 

(77% e.e.).  
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Ethyl (E)-4-((1R,2S)-2-(4-methoxybenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (cis-XXII). Following the general procedure P, cis-XXII (3.50 mg, 

0.011 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 

9:1 to 7:3) in 65% yield starting from aldehyde cis-6x (4.20 mg, 0.017 

mmol), (carbethoxymethylene)triphenylphosphorane (12.00 mg, 0.034 

mmol) and THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 8.03-7.94 

(m, 2H, Carom-H), 6.98-6.90 (m, 2H, Carom-H), 6.84-6.70 (m, 1H, H3), 5.95 

(dd, J = 5.8, 2.5 Hz, 1H, H3´), 5.83-5.75 (m, 1H, H4´), 5.68 (dt, J = 15.6, 1.5 Hz, 1H, H2), 4.63-4.54 (m, 

1H, H2´), 4.18-4.06 (m, 2H, OCH2CH3), 3.88 (s, 3H, OCH3), 2.86-2.83 (m, 1H, H1´), 2.62-2.53 (m, 1H, 

H4a), 2.37-2.25 (m, 1H, H4b), 2.23-2.04 (m, 2H, H5´), 1.24 (t, J = 7.1 Hz, 3H, OCH2CH3). The e.e. was 

determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; 

τmajor = 30.27 min, τminor = 51.70 min (80% e.e.). 

Ethyl (E)-4-((1R,2S)-2-(4-methoxybenzoyl)cyclopent-3-en-1-yl)but-2-

enoate (trans-XXII). Following the general procedure P, trans-XXII (1.30 

mg, 0.004 mmol) was isolated by FC (petroleum ether/EtOAc gradient 

from 9:1 to 7:3) in 25% yield starting from aldehyde trans-6x (3.90 mg, 

0.016 mmol), (carbethoxymethylene)triphenylphosphorane (11.00 mg, 

0.032 mmol) and THF (0.3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 

8.01-7.92 (m, 2H, Carom-H), 6.98-6.86 (m, 3H, Carom-H, H3), 5.88-5.77 (m, 

2H, H2, H3´), 5.68-5.64 (m, 1H, H4´), 4.20-4.13 (m, 3H, OCH2CH3), H2´), 3.88 (s, 3H, OCH3), 3.09-2.97 

(m, 1H, H1´), 2.80-2.66 (m, 1H, H4a), 2.41-2.33 (m, 2H, H5´), 2.19-2.06 (m, 1H, H4b), 1.27 (t, J = 7.1 

Hz, 3H, OCH2CH3). The e.e. was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 46.46 min, τminor = 38.29 min (94% e.e.). 

Ethyl (E)-4-((1R)-2-acetylcyclopent-3-en-1-yl)but-2-enoate (cis/trans-XXIII). 

cis/trans-XXIII (6.50 mg, 0.029 mmol) was isolated by FC (petroleum 

ether/EtOAc gradient from 9:1 to 7:3) in 29% yield starting from aldehyde 4y 

(15.00 mg, 0.099 mmol), catalyst 5m (8.90 mg, 0.198 mmol),  

(carbethoxymethylene)triphenylphosphorane (68.00 mg, 0.200 mmol) and 

CDCl3 (1.0 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm) (* denotes trans diastereoisomer resonances; 

d.r.: 3:1): 6.97-6.79 (m, 1H, H3), 6.00-5.97* (2H, H3´, H4´), 5.89-5.80 (m, 2H, H3´, H4´), 5.76-5.73* 

(m, 1H, H2), 5.70-5.66 (m, 1H, H2), 4.18 (q, J = 7.1 Hz, 2H, OCH2CH3), 3.66* (d, J = 8.4 Hz, H2´), 3.28-

3.26 (m, 1H, H2´), 2.82-2.49 (m, 2H, H4), 2.42-2.19 (m, 2H, H5´), 2.13-2.01 (m, 1H, H1´), 1.28 (t, J = 

7.1 Hz, 3H, OCH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 208.5 (C=O), 166.5 (C=O), 147.4* (C3), 

146.7 (C3), 134.3* (C3´), 133.4 (C3´), 129.4* (C4´), 127.6 (C4´), 123.1 (C2), 122.9* (C2), 65.4 (C2´), 

61.2* (OCH2CH3), 60.4 (OCH2CH3), 40.8 (C1´), 38.4*(C4), 38.3 (C4), 38.0* (C5´), 33.5 (C5´), 30.8* (C5´), 

28.4 (CH3), 14.4 (OCH2CH3). IR (ATR): 3016 (=CH st), 1738 (C=O st) cm
-1

. MS (EI) m/z (%): 222 (M
+
, 1), 

180 (M
+
-C2H3O, 1), 133 (22), 114 (100), 105 (61), 91 (16), 86 (29), 79 (23), 77 (16), 68 (20), 66 (19). 

HRMS: Calculated for [C13H18NaO3]
+
: 245.1154 [(M+Na)

+
]; found: 245.1161. The e.e. was determined 

by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:05)]; flow rate 1.0 mL/min; τmajor = 7.75 

min, τminor = 8.81 min (85% e.e. for the cis diastereomer) and τmajor = 11.33 min, τminor = 5.97 min 

(96% e.e. for the trans diastereomer). 
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2.4. Transformation of the adducts 

2.4.1. Synthesis of (3aR,6aR)-1-tosyl-1,3a,4,6a-tetrahydrocyclopenta[b]pyrrole 7 

 

 To a stirred solution of cis-6a (0.05 g, 0.3 mmol, 1.0 eq) in EtOH (3 mL, 0.1 M) was added zinc 

powder (0.10 g, 1.5 mmol, 5.0 eq) and ammonium chloride (0.08 g, 1.5 mmol, 5.0 eq) at room 

temperature and it was stirred at 30ᵒC for 15 hours. The reaction mixture was filtered and the 

solvent was removed in vacuo. The crude was dissolved in CH2Cl2 (3 mL, 0.1 M) and triethylamine 

(0.36 mmol, 1.2 eq) and p-Toluenesulfonyl chloride (0.36 mmol, 1.2 eq) were added. The reaction 

mixture was stirred at room temperature for 1 hour. Once the reaction was finished, the reaction 

mixture was quenched with H2O (10 mL) and it was extracted with CH2Cl2 (3 x 20 mL). The combined 

organic phases were washed with brine (2 x 20 mL) dried over Na2SO4 and concentrated in vacuo to 

give 7 (0.02 g, 0.1 mmol) in 37% yield. 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.73-7.71 (m, 2H, Carom-H), 

7.31 (d, J = 8.2 Hz, 2H, Carom-H), 5.84-5.80 (m, 1H, H6), 5.75-5.71 (m, 1H, H5), 4.58-4.54 (m, 1H, H2), 

3.36 (ddd, J = 9.9, 6.8, 4.5 Hz, 1H, H3), 3.26-3.18 (m, 1H, H6a), 2.62 (td, J = 8.0, 2.1 Hz, 1H, H3a), 2.43 

(s, 3H, CH3), 2.10 (dq, J = 16.6, 2.1 Hz, 1H, H4a), 1.85 (dddd, J = 12.6, 8.1, 6.4, 4.6 Hz, 1H, H4b). 
13

C 

NMR (75.4 MHz, CDCl3) (δ, ppm): 143.4 (Carom-C), 135.0 (Carom-C), 132.0 (C6), 131.4 (C2), 129.7 

(Carom-H), 127.8 (Carom-H), 127.2 (C5), 70.2 (C6a), 48.4 (C4), 40.0 (C3a), 21.7 (CH3).  IR (ATR): 2922 (C-

H st), 1741 (C=C st) cm
-1

. [α]D
rt

: +35.6 (c = 0.2, CH2Cl2). The e.e. was determined by HPLC using a 

Chiralpak IE3 column [n-hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min; τmajor = 58.64 min, τminor = 

67.92 min (80% e.e.). 

 

2.4.2. Synthesis of 9 by a Nef reaction 

 

To a stirred solution of cis/trans-6a (0.05 g, 0.3 mmol, 1.0 eq) in MeOH (3 mL, 0.1 M), NaBH4 

(0.012 g, 0.3 mmol, 1.1 eq) was added at 0ᵒC and the reaction mixture was stirred at that 

temperature for 10 minutes. The reaction mixture was diluted with EtOAc (10 mL) and H2O (10 mL) 

was added. Once the phases were separated, the aqueous phase was extracted with EtOAc (3 x 10 
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mL). The combined organic phases were washed with brine (2 x 20 mL), dried over Na2SO4 and 

concentrated in vacuo. The crude was dissolved in CH2Cl2 (2 mL, 0.17 M), DMAP (0.02 g, 0.2 mmol, 

0.4 eq), Et3N (0.21 mL, 1.5 mmol, 4.05 eq) and tert-butyldimethylsilyl chloride (0.09 g, 0.6 mmol, 1.5 

eq) were added and the reaction mixture was stirred at room temperature for 15 hours. When the 

reaction was completed, the crude was diluted with H2O (20 mL) and the phases were separated. 

The aqueous phase was extracted with CH2Cl2 (3 x 10 mL) and the combined organic extracts were 

dried over Na2SO4 and concentrated in vacuo. The crude was then purified by flash column 

chromatography (petroleum ether/EtOAc gradient from 19:1 to 9:1) to afford pure 8 (0.02 g, 0.08 

mmol) in 28% yield. 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 6.23-6.20 (m, 1H, H2), 5.85-5.80 (m, 1H, 

H3), 5.31-5.28 (m, 1H, H4), 3.75-3.69 (m, 2H, OTBSCH2CH2CH), 3.01-2.92 (m, 1H, H1a), 2.90-2.80 (m, 

1H, H1b), 2.21-2.13 (m, 1H, OTBSCH2CH2CH), 1.89-1.78 (m, 1H, OTBSCH2CH2-CH), 1.75-1.64 (m, 1H, 

OTBSCH2CH2CH), 0.89 (s, 9H, 3 x CH3), 0.04 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 

139.8 (C2), 125.7 (C3), 97.2 (C4), 61.2 (OTBSCH2CH2CH), 40.8 (OTBSCH2CH2CH), 38.6 (C1), 37.4 

(OTBSCH2CH2CH), 26.1 (3 x CH3), 18.4 (SiC(CH3)3), -5.3 (2 x CH3). IR (ATR): 2926 (C-H st), 2855 (C-H st), 

1741 (C=C st), 1547 (NO2 st as), 1372 (NO2 st sim), 1103 (O-Si st) cm
-1

. MS (EI) m/z (%): 183 (15), 167 

(39), 93 (100), 92 (24), 91 (36), 89 (17), 77 (26), 75 (40), 73 (28). [α]D
rt

: +81.3 (c = 0.7, CH2Cl2). 

To a stirred solution of 8 (8.00 mg, 0.030 mmol, 1.0 eq) in CH2Cl2 (0.4 mL, 0.075 M), Et3N (0.016 

mL, 0.132 mmol, 4.4 eq) and IBX (22.00 mg, 0.080 mmol, 2.7 eq) were added and the reaction 

mixture was stirred at room temperature for 4.5 hours. Once the reaction was completed, the 

reaction mixture was poured into NaOH 0.5 N (5 mL) and the organic layer was washed with HCl 1 M 

(5 mL) and H2O (5 mL). It was dried over Na2SO4 and concentrated in vacuo. The crude was then 

purified by flash column chromatography (petroleum ether/EtOAc gradient from 19:1 to 8:2) to 

afford pure 9 (6.40 mg, 0.027 mmol) in 89% yield. 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.67 (dd, J = 

5.7, 2.9 Hz, 1H, H3), 6.18 (d, J = 5.8 Hz, 1H, H2), 3.78-3.72 (m, 2H, OTBSCH2CH2), 2.93-2.84 (m, 1H, 

H5), 2.52-2.41 (m, 2H, H4), 2.13-2.02 (m, 2H, OTBSCH2CH2), 0.89 (s, 9H, 3 x CH3), 0.05 (s, 6H, 2 x CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 212.6 (C1), 163.6 (C3), 133.9 (C2), 61.6 (OTBSCH2CH2), 42.6 

(C5), 36.2 (C4), 34.3 (OTBSCH2CH2), 29.8 (SiC(CH3)3), 26.1 (3 x CH3), -5.2 (CH3), -5.3 (CH3). IR (ATR): 

2969 (C-H st), 1741 (C=O st) cm
-1

. MS (EI) m/z (%): 184 (10), 183 (73), 109 (M
+
-OTBS, 4), 75 (100), 59 

(10), 56 (22), 55 (13), 53 (10). HRMS: Calculated for [C13H25O2Si]
+
: 241.1624 [(M+H)

+
]; found: 

241.1628. [α]D
rt

: +35.6 (c = 0.2, CH2Cl2). The e.e. was determined by HPLC using a Chiralpak ASH 

column [n-hexane/i-PrOH (99:01)]; flow rate 0.7 mL/min; τmajor = 10.58 min, τminor = 11.49 min (81% 

e.e.). 
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2.4.3. Synthesis of 14 for the determination of absolute configuration 

 

To a stirred solution of cis-6p (6.00 mg, 0.020 mmol, 1.0 eq) in MeOH (0.1 mL, 0.2 M) NaBH4 

(4.00 mg, 0.300 mmol, 5.0 eq) was added at 0ᵒC and the reaction mixture was stirred at that 

temperature for 5 minutes. The reaction mixture was diluted with EtOAc (2 mL) and H2O (2 mL) was 

added. Once the phases were separated, the aqueous layer was extracted with EtOAc (3 x 10 mL). 

The combined organic phases were washed with brine (2x 10 mL) dried over Na2SO4 and 

concentrated in vacuo  and the crude was then purified by flash column chromatography (petroleum 

ether/EtOAc gradient from 7:3 to 1:1) to afford pure 13 (0.004 g, 0.016 mmol) in 73% yield. 
1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.48-7.44 (m, 2H, Carom-H), 7.22-7.17 (m, 2H, Carom-H), 5.74-5.67 (m, 1H, 

H3), 4.99-4.92 (m, 1H, H4), 4.50 (d, J = 9.3 Hz, 1H, OHCH), 3.88 (dt, J = 10.2, 4.6 Hz, 1H, 

CH2CHaHbOH), 3.70 (td, J = 9.8, 5.3 Hz, 1H, CH2CHaHbOH), 3.02-2.96 (m, 1H, H2), 2.52-2.46 (m, 2H, 

H5), 2.40-2.37 (m, 1H, H1), 2.24-2.14 (m, 2H, CH2CH2OH). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 143.2 

(Carom-C), 132.5 (C3), 131.5 (C4), 131.5 (Carom-H), 128.8 (Carom-H), 121.5 (Carom-C), 73.2 (OHCH), 63.4 

(OHCH2CH2), 54.9 (C2), 40.0 (C1), 38.3 (C5), 32.2 (OHCH2CH2). IR (ATR): 3461 (O-H st), 3020 (=CH st), 

2972 (C-H st), 1741 (C=C st), 772 (C-Br st) cm
-1

 HRMS: Calculated for [C14H17O2BrNa]
+
: 319.0310 

[(M+Na)
+
]; found: 319.0310.  [α]D

rt
: -24-4 (c = 0.3, CH2Cl2).  

To a stirred solution of 13 (4.00 mg, 0.016 mmol, 1.0 eq) in CH2Cl2 (0.3 mL, 0.05 M) Et3N (2.30 

mg, 0.017 mmol, 1.1 eq) and 4-bromobenzoyl chloride (3.6 mg, 0.017 mmol, 1.1 eq) were added at 

room temperature and it was stirred for 15 hours. The reaction mixture was quenched with H2O (5 

mL). Once the phases were separated, the aqueous layer was extracted with EtOAc (3 x 10 mL). The 

combined organic phases were washed with brine (2 x 10 mL) dried over Na2SO4 and concentrated 

in vacuo  and the crude was then purified by flash column chromatography to afford pure 14 (3.30 

mg, 0.007 mmol) in 46% yield. 
1
H NMR (300 MHz, CDCl3) (δ, ppm) 7.94-7.88 (m, 2H, Carom-H), 7.61-

7.56 (m, 2H, Carom-H), 7.50-7.45 (m, 2H, Carom-H), 7.25-7.20 (m, 1H, Carom-H), 5.74 (dd, J = 5.9, 2.3 Hz, 

1H, H3), 5.03 (dq, J = 6.1, 2.1 Hz, 1H, H4), 4.56 (d, J = 9.2 Hz, 1H, CHOH), 4.49-4.35 (m, 2H, CH2CH2O), 

3.06-3.00 (m, 1H, H2), 2.66-2.56 (m, 1H, H5a), 2.54-2.43 (m, 1H, H5b), 2.41-2.29 (m, 1H, CHaHbCH2O), 

2.27-2.16 (m, 1H, CHaHbCH2O), 1.92-1.90 (m, 1H, H1). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 166.2 

(C=O), 143.2 (Carom-C), 131.9 (C3), 131.8 (Carom-H), 131.7 (Carom-H), 131.6 (C3), 131.3 (Carom-H), 129.5 

(Carom-C), 128.6 (Carom-H), 128.1 (Carom-C), 121.7 (Carom-C), 73.7 (CH-OH), 65.2 (CH2CH2O), 55.0 (C2), 

38.1 (C1), 37.7 (C5), 29.3 (CH2CH2O) . IR (ATR): 2922 (C-H st), 1741 (C=O st) cm
-1

 [α]D
rt

: -32.6 (c = 0.2, 
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CH2Cl2). The e.e. was determined by HPLC using a Chiralpak IC column [n-hexane/i-PrOH (95:05)]; 

flow rate 0.8 mL/min; τmajor = 16.48 min, τminor = 18.73 min (79% e.e.). 

 

 

3. TRANSITION METAL-FREE STEREOSELECTIVE BORYLATION OF ALLENYLAMIDES 

3.1. Synthesis of allenylamides 21a-r, 23, 24 

 

 

 

Compounds 19a-r were prepared following the procedure described in the literature. 
Spectroscopic data were consistent with those reported in the literature.

17
 

General Procedure Q: To a cooled (0ᵒC) solution of the corresponding protected amines 19a-r 
(20.0 mmol, 1.0 eq) in dry DMF (60 mL, 0.33 M), NaH (60 wt.% in mineral oil, 24.0 mmol, 1.2 eq) was 
added in one portion. After stirring for 30 min at 0ᵒC, the corresponding propargyl bromide (28.0 
mmol, 1.4 eq) was added and the mixture was stirred at room temperature for 15 hours. The 
resulting mixture was quenched with a saturated aqueous solution of NH4Cl (20 mL) and extracted 
with Et2O (3 x 20 mL). Organic extracts were washed with brine (2 x 20 mL), dried over Na2O4 and 
concentrated in vacuo. The crude was then purified by flash column chromatography to afford pure 
20a-r. 

 
 
 
 
 

 

                                                           
17  (a) Tayama, E.; Sugai, S. Tetrahedron Lett. 2007, 48, 6163. (b) Murayama, T.; Shibuya, M.; Yamamoto, Y. J. Org. 

Chem. 2016, 81, 11940. (c) Xiong, X.; Yeung, Y. Angew. Chem. Int. Ed. 2016, 55, 16101. (d) Panahi, F.; Khajeh 
Dongolani, S.; Khalafi‐Nezhad, A. ChemistrySelect, 2016, 1, 3541. (e) Obata, A.; Ano, Y.; Chatani, N. Chem. Sci. 
2017, 8, 6650. (f) Kathiravan, S.; Nicholls, I. A. Tetrahedron Lett. 2017, 58, 1. (g) Ballenbach, M.; Aquino, P. G. 
V.; de Araújo‐Junior, J. X.; Bourguignon, J.; Bihel, F.; Salomé, C.; Wagner, P.; Schmitt, M. Chem. Eur. J. 2017, 23, 
13676. (h) Nie, Q.; Yi, F.; Huang, B.; Adv. Synth. Catal. 2017, 359, 3968. (i) Youn, S. W.; Ko, T. Y.; Jang, Y. H. 
Angew. Chem. Int. Ed. 2017, 56, 6636.   
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N-(4-methoxyphenyl)-N-(prop-2-yn-1-yl)acetamide (20a). Following the general 
procedure Q, 20a (4.70 g, 23.0 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 8:2 to 1:1) in 92% yield as a yellow oil starting from amide 19a (4.00 
g, 25.0 mmol), NaH (1.20 g, 30.0 mmol), propargyl bromide (4.00 mL, 35.0 mmol) 
and DMF (75 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.18 (d, J = 8.8 Hz, 2H, 

Carom-H), 6.91 (d, J = 8.8 Hz, 2H, Carom-H), 4.42 (d, J = 2.4 Hz, 2H, CH2), 3.81 (s, 3H, 
OCH3), 2.17 (t, J = 2.4 Hz, 1H, C≡CH), 1.83 (s, 3H, CH3C=O). 

13
C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 170.6 (C=O), 159.4 (Carom-C), 135.0 (Carom-C), 129.3 (Carom-H), 114.9 (Carom-H), 79.4 
(C≡CH), 72.0 (C≡CH), 55.6 (OCH3), 38.4 (CH2), 22.4 (CH3C=O). HRMS (ESI) for C12H14NO2 [M]

+
: 

calculated: 204.1025, found: 204.1030. 
 

N-(4-(Dimethylamino)phenyl)-N-(prop-2-yn-1-yl)acetamide (20b). Following the 
general procedure Q, 20b (3.70 g, 17.0 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 72% yield as a brown solid starting from 
amide 19b (4.30 g, 24.0 mmol), NaH (1.15 g, 29.0 mmol), propargyl bromide (3.74 
mL, 34.0 mmol) and DMF (73 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.13-7.06 

(m, 2H, Carom-H), 6.73-6.65 (m, 2H, Carom-H), 4.42 (d, J = 2.5 Hz, 2H, CH2), 2.98 (s, 6H, 
NCH3), 2.17 (t, J = 2.5 Hz, 1H, C≡CH), 1.85 (s, 3H, CH3C=O). 

13
C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 171.1 (C=O), 150.2 (Carom-C), 131.1 (Carom-C), 128.7 (Carom-H), 112.7 (Carom-H), 79.8 
(C≡CH), 71.7 (C≡CH), 40.6 (CH2), 38.5 (NCH3), 22.4 (CH3C=O). HRMS (ESI) for C13H17N2O [M+H]

+
: 

calculated: 217.1341, found: 217.1354. 
 

N-(Prop-2-yn-1-yl)-N-(p-tolyl)acetamide (20c). Following the general procedure Q, 
20c (3.90 g, 20.0 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 
8:2 to 1:1) in 63% yield as a yellow solid starting from amide 19c (5.00 g, 33.0 
mmol), NaH (1.60 g, 40.0 mmol), propargyl bromide (5.20 mL, 46.0 mmol) and DMF 
(100 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.17 (d, J = 8.4 Hz, 2H, Carom-H), 7.12-

7.07 (m, 2H, Carom-H), 4.38 (d, J = 2.5 Hz, 2H, CH2), 2.32 (s, 3H, CH3C=O), 2.14 (t, J = 
2.5 Hz, 1H, C≡CH), 1.79 (s, 3H, Carom-CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 

170.0 (C=O), 139.5 (Carom-C), 138.2 (Carom-C), 130.2 (Carom-H), 127.7 (Carom-H), 79.2 (C≡CH), 71.9 
(C≡CH), 38.1 (CH2), 22.3 (CH3C=O), 21.0 (Carom-CH3). HRMS (ESI) for C12H14NO [M+H]

+
: calculated: 

188.1075, found: 188.1086. 
 

N-Phenyl-N-(prop-2-yn-1-yl)acetamide (20d). Following the general procedure Q, 
20d (2.80 g, 16.0 mmol) was isolated by FC (petroleum ether/EtOAc gradient from 
8:2 to 1:1) in 70% yield as a brown solid starting from amide 19d (3.00 g, 24.0 
mmol), NaH (1.10 g, 28.0 mmol), propargyl bromide (3.70 mL, 33.6 mmol) and DMF 
(73 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.49-7.32 (m, 3H, Carom-H), 7.32-7.19 

(m, 2H, Carom-H), 4.47 (d, J = 2.6 Hz, 2H, CH2), 2.19 (t, J = 2.6 Hz, 1H, C≡CH), 1.86 (s, 
3H, CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 170.1 (C=O), 142.3 (Carom-C), 129.7 (Carom-H), 128.4 

(Carom-H), 128.1 (Carom-H), 79.2 (C≡CH), 72.0 (C≡CH), 38.3 (CH2), 22.5 (CH3). HRMS (ESI) for C11H12NO 
[M+H]

+
: calculated: 174.0923, found: 174.0919. 
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N-(4-Bromophenyl)-N-(prop-2-yn-1-yl)benzamide (20e). Following the general 
procedure Q, 20e (6.00 g, 23.0 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 8:2 to 1:1) in 99% yield as a brown oil starting from amide 19e (5.00 
g, 23.0 mmol), NaH (1.10 g, 27.6 mmol), propargyl bromide (3.60 mL, 32.2 mmol) 
and DMF (70 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.49 (d, J = 8.4 Hz, 2H, 

Carom-H), 7.17-7.06 (m, 2H), 4.37 (d, J = 2.5 Hz, 2H, Carom-H), 2.17 (t, J = 2.5 Hz, 1H, 
C≡CH), 1.78 (s, 3H, CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 169.5 (C=O), 141.0 

(Carom-C), 132.8 (Carom-H), 129.7 (Carom-H), 122.2 (Carom-C), 78.8 (C≡CH), 72.4 (C≡CH), 37.9 (CH2), 22.3 
(CH3). HRMS (ESI) for C11H11NOBr [M+H]

+
: calculated: 252.0024, found: 252.0029. 

 
N-(4-Methoxyphenyl)-N-(prop-2-yn-1-yl)pivalamide (20f). Following the general 
procedure Q, 20f (5.40 g, 22.0 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 8:2 to 1:1) in 49% yield as a brown oil starting from amide 19f 
(9.30 g, 45.0 mmol), NaH (2.16 g, 54.0 mmol), propargyl bromide (5.61 mL, 63.0 
mmol) and DMF (136 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.18 (d, J = 8.3 Hz, 

2H, Carom-H), 6.86 (d, J = 8.3 Hz, 2H, Carom-H), 4.29 (s, 2H, CH2), 3.79 (s, 3H, OCH3), 
2.15 (s, 1H, C≡CH), 0.99 (s, 9H, 3 x CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 

177.7 (C=O), 159.3 (Carom-C), 135.5 (Carom-C), 130.9 (Carom-H), 114.1 (Carom-H), 79.9 (C≡CH), 71.8 
(C≡CH), 55.4 (OCH3), 42.2 (CH2), 40.8 (C(CH3)3), 29.3 (3 x CH3). HRMS (ESI) for C15H20NO2 [M+H]

+
: 

calculated: 246.1494, found: 246.1496. 
 

N-(4-Methoxyphenyl)-4-methyl-N-(prop-2-yn-1-yl)benzamide (20g). 
Following the general procedure Q, 20g (2.40 g, 8.7 mmol) was isolated 
by FC (petroleum ether/EtOAc gradient from 8:2 to 1:1) in 62% yield as a 
yellow solid starting from amide 19g (3.35 g, 13.9 mmol), NaH (0.67 g, 
16.7 mmol), propargyl bromide (2.17 mL, 19.5 mmol) and DMF (42 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.22 (d, J = 8.2 Hz, 2H, Carom-H), 7.10-

6.98 (m, 2H, Carom-H), 6.94 (d, J = 8.2 Hz, 2H, Carom-H), 6.80-6.68 (m, 2H, 
Carom-H), 4.60 (d, J = 2.5 Hz, 2H, CH2), 3.70 (s, 3H, OCH3), 2.21 (m, 4H, Carom-CH3, C≡CH). 

13
C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 170.2 (C=O), 158.3 (Carom-C), 140.0 (Carom-C), 135.8 (Carom-C), 132.3 
(Carom-C), 128.9 (Carom-H), 128.4 (Carom-H), 114.3 (Carom-H), 79.3 (C≡CH), 72.2 (C≡CH), 55.3 (OCH3), 40.0 
(CH2), 21.3 (Carom-CH3). HRMS (ESI) for C18H18NO2 [M+H]

+
: calculated: 280.1338, found: 280.1348. 

 
 

N-(4-Methoxyphenyl)-N-(prop-2-yn-1-yl)benzamide (20h). Following the 
general procedure Q, 20h (0.90 g, 3.4 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 90% yield as a brown solid starting 
from amide 19h (1.00 g, 3.7 mmol), NaH (0.18 g, 4.5 mmol), propargyl bromide 
(0.60 mL, 5.2 mmol) and DMF (12 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.34 (d, J = 7.4 Hz, 2H, Carom-H), 7.21 (m, 3H, Carom-H), 7.06 (d, J = 8.5 Hz, 2H, 
Carom-H), 6.76 (d, J = 8.5 Hz, 2H, Carom-H), 4.64 (d, J = 2.6 Hz, 2H, CH2), 3.75 (s, 

3H, OCH3), 2.25 (t, J = 2.6 Hz, 1H, C≡CH). 
13

C NMR (300 MHz, CDCl3) (δ, ppm): 170.4 (C=O), 158.6 
(Carom-C), 135.7 (Carom-C), 135.4 (Carom-C), 129.9 (Carom-H), 129.1 (Carom-H), 128.9 (Carom-H), 127.9 
(Carom-H), 114.5 (Carom-H), 79.3 (C≡CH), 72.3 (C≡CH), 55.5 (OCH3), 40.1 (CH2). HRMS (ESI) for 
C17H16NO2 [M+H]

+
: calculated: 266.1181, found: 266.1183. 
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4-Bromo-N-(4-methoxyphenyl)-N-(prop-2-yn-1-yl)benzamide (20i). 
Following the general procedure Q, 20i (0.55 g, 1.6 mmol) was isolated by 
FC (petroleum ether/EtOAc gradient from 8:2 to 1:1) in 88% yield as a grey 
solid starting from amide 19i (0.55 g, 1.8 mmol), NaH (0.90 g, 2.2 mmol), 
propargyl bromide (0.30 mL, 2.5 mmol) and DMF (6 mL).  

1
H NMR (300 

MHz, CDCl3) (δ, ppm): 7.23 (d, J = 8.2 Hz, 2H, Carom-H), 7.14 (d, J = 8.2 Hz, 
2H, Carom-H), 6.99 (d, J = 8.3 Hz, 2H, Carom-H), 6.70 (d, J = 8.3 Hz, 2H, 

Carom-H), 4.54 (d, J = 2.5 Hz, 2H, CH2), 3.64 (s, 3H, OCH3), 2.22 (t, J = 2.5 Hz, 1H, C≡CH). 
13

C NMR (75.4 
MHz, CDCl3) (δ, ppm): 168.6 (C=O), 158.4 (Carom-C), 134.9 (Carom-C), 134.0 (Carom-C), 130.8 (Carom-H), 
130.3 (Carom-H), 128.8 (Carom-C), 124.1 (Carom-H), 114.3 (Carom-H), 78.8 (C≡CH), 72.4 (C≡CH), 55.1 
(OCH3), 39.8 (CH2). HRMS (ESI) for C17H15NO2Br [M+H]

+
: calculated: 344.0286, found: 344.0295. 

 
3-(furan-2-yl)-N-(4-methoxyphenyl)-N-(prop-2-yn-1-yl)propanamide 

(20j). Following the general procedure Q, 20j (0.58 g, 2.5 mmol) was 
isolated by FC (petroleum ether/EtOAc gradient from 8:2 to 1:1) in 99% 
yield as a yellow oil starting from amide 19j (0.50 g, 2.0 mmol), NaH (0.98 
g, 2.5 mmol), propargyl bromide (0.32 mL, 2.9 mmol) and DMF (6 mL). 

1
H 

NMR (300 MHz, CDCl3) (δ, ppm): 7.21 (d, J = 1.8 Hz, 1H, CH=CH-CH), 7.08 
(d, J = 8.7 Hz, 2H, Carom-H), 6.88 (d, J = 8.7 Hz, 2H, Carom-H), 6.20 (t, J = 2.5 

Hz, 1H, CH=CHCH), 5.90 (d, J = 3.1 Hz, 1H, CH=CHCH), 4.42 (d, J = 2.5 Hz, 2H, CH2C≡CH), 3.79 (s, 3H, 
OCH3), 2.90 (t, J = 7.6 Hz, 2H, CH2CH2C=O), 2.35 (t, J = 7.6 Hz, 2H, CH2CH2C=O), 2.18 (t, J = 2.5 Hz, 1H, 
C≡CH). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 171.6 (C=O), 159.4 (Carom-C), 154.7 (Carom-C), 140.9 

(CH=CH-CH), 134.1 (Carom-C), 129.3 (Carom-H), 114.8 (Carom-H), 110.1 (CH=CHCH), 105.2 (CH=CHCH), 
79.3 (C≡CH), 72.0 (C≡CH), 55.4 (OCH3), 38.5 (CH2C≡CH), 32.6 (CH2CH2C=O), 23.7 (CH2CH2C=O). HRMS 
(ESI) for C17H18NO3 [M+H]

+
: calculated: 284.1287, found: 284.1293. 

 
N-(4-Methoxyphenyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (20k). 
Following the general procedure Q, 20k (1.10 g, 3.6 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 8:2 to 1:1) in 90% yield as a white solid 
starting from amide 19k (1.13 g, 4.0 mmol), NaH (0.20 g, 4.8 mmol), propargyl 
bromide (0.62 mL, 5.6 mmol) and DMF (12 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.54 (d, J = 8.0 Hz, 2H, Carom-H), 7.22 (d, J = 8.0 Hz, 2H, Carom-H), 7.10 (d, J = 8.8 Hz, 
2H, Carom-H), 6.80 (d, J = 8.5 Hz, 2H, Carom-H), 4.39 (d, J = 2.3 Hz, 2H, CH2), 3.77 (s, 3H, OCH3), 2.40 (s, 
3H, Carom-CH3), 2.16 (t, J = 2.3 Hz, 1H, C≡CH). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 159.4 (Carom-C), 

143.7 (Carom-C), 135.6 (Carom-C), 131.7 (Carom-C), 130.1 (Carom-H), 129.3 (Carom-H), 128.1 (Carom-H), 114.2 
(Carom-H), 78.2 (C≡CH), 73.8 (C≡CH), 55.4 (OCH3), 41.4 (CH2), 21.6 (Carom-CH3). HRMS (ESI) for 
C17H18NO3S [M+H]

+
: calculated: 316.1007, found: 316.1009. 

 
tert-butyl prop-2-yn-1-yl-(3,4,5-trimethoxyphenyl)carbamate (20l). Following 
the general procedure Q, 20l (2.40 g, 7.3 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 99% yield as an orange solid starting 
from carbamate 19l (2.10 g, 7.5 mmol), NaH (0.36 g, 8.9 mmol), propargyl 
bromide (1.15 mL, 10.4 mmol) and DMF (25 mL). 

1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 6.47 (s, 2H, Carom-H), 4.21 (d, J = 2.5 Hz, 2H, CH2), 3.72 (s, 6H, OCH3), 3.71 
(s, 3H, OCH3), 2.21 (t, J = 2.4 Hz, 1H, C≡CH), 1.36 (s, 9H, 3 x CH3). 

13
C NMR (75.4 
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MHz, CDCl3) (δ, ppm): 153.7 (C=O), 152.7 (Carom-C), 137.6 (Carom-C), 136.2 (Carom-C), 103.9 (Carom-H), 
80.7 (C(CH3)3), 79.9 (C≡CH), 76.6 (C≡CH), 60.4 (OCH3), 55.7 (OCH3), 39.7 (CH2), 28.0 (3 x CH3). HRMS 
(ESI) for C17H24NO5 [M+H]

+
: calculated: 322.1654, found: 322.1660. 

 
4-Methyl-N-phenyl-N-(prop-2-yn-1-yl)benzenesulfonamide (20m). Following the 
general procedure Q, 20m (1.30 g, 4.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 95% yield as a white solid starting from 
amide 19m (1.20 g, 5.0 mmol), NaH (0.24 g, 6.0 mmol), propargyl bromide (0.78 mL, 
7.0 mmol) and DMF (15 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.55 (d, J = 8.2 Hz, 

2H, Carom-H), 7.34-7.29 (m, 3H, Carom-H), 7.26-7.22 (m, 4H, Carom-H), 4.44 (d, J = 2.5 Hz, 2H, CH2), 2.42 
(s, 3H, CH3), 2.17 (t, J = 2.5 Hz, 1H, C≡CH). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 143.8 (Carom-C), 139.5 

(Carom-C), 135.7 (Carom-C), 129.4 (Carom-H), 129.2 (Carom-H), 128.6 (Carom-H), 128.3 (Carom-H), 128.2 
(Carom-H), 78.2 (C≡CH), 73.9 (C≡CH), 41.2 (CH2), 21.7 (CH3). HRMS (ESI) for C16H16NO2S [M+H]

+
: 

calculated: 286.0902, found: 286.0910. 
 

N-(4-Bromophenyl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (20n). 
Following the general procedure Q, 20n (1.20 g, 3.2 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 8:2 to 1:1) in 93% yield as a white solid 
starting from amide 19n (1.10 g, 3.5 mmol), NaH (0.17 g, 4.2 mmol), propargyl 
bromide (0.54 mL, 4.9 mmol) and DMF (11 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.52 (d, J = 8.0 Hz, 2H, Carom-H), 7.46-7.40 (m, 2H, Carom-H), 7.26-7.22 (m, 2H, 
Carom-H), 7.13-7-08 (m, 2H, Carom-H), 4.40 (d, J = 2.5 Hz, 2H, CH2), 2.40 (s, 3H, CH3), 2.18 (t, J = 2.5 Hz, 
1H, C≡CH). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 144.2 (Carom-C), 138.5 (Carom-C), 135.2 (Carom-C), 

132.4 (Carom-H), 130.1 (Carom-H), 129.6 (Carom-H), 128.1 (Carom-H), 122.3 (Carom-C), 77.8 (C≡CH), 74.4 
(C≡CH), 41.0 (CH2), 21.7 (CH3). HRMS (ESI) for C16H15NO2SBr [M+H]

+
: calculated: 364.0007, found: 

364.0015. 
 

tert-butyl (4-bromophenyl)(prop-2-yn-1-yl)carbamate (20p). Following the 
general procedure Q, 20p (0.54 g, 1.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 47% yield as a yellow solid starting 
from carbamate 19p (1.00 g, 3.7 mmol), NaH (0.20 g, 4.4 mmol), propargyl 
bromide (0.57 mL, 5.1 mmol) and DMF (12 mL). 

1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 7.42 (d, J = 8.4 Hz, 2H, Carom-H), 7.18 (d, J = 8.4 Hz, 2H, Carom-H), 4.30 (d, J 
= 2.5 Hz, 2H, CH2), 2.23 (t, J = 2.5 Hz, 1H, C≡CH), 1.42 (s, 9H, 3 x CH3). 

13
C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 153.6 (C=O), 141.1 (Carom-C), 131.7 (Carom-H), 127.9 (Carom-H), 119.6 
(Carom-C), 81.4 (C(CH3)3), 79.6 (C≡CH), 72.2 (C≡CH), 39.6 (CH2), 28.2 (3 x CH3). HRMS (ESI) for 
C14H16NO2BrNa [M+Na]

+
: calculated: 332.0262, found: 332.0261. 

 
N-(4-Methoxyphenyl)-N-(pent-2-yn-1-yl)benzamide (20s). Following the 
general procedure Q, 20s (0.35 g, 1.2 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 8:2 to 1:1) in 50% yield as a yellow oil starting 
from amide 19h (0.67 g, 2.4 mmol), NaH (0.12 g, 2.9 mmol), propargyl 
bromide (0.35 mL, 3.4 mmol) and DMF (8 mL).  

1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 7.33 (d, J = 7.3 Hz, 2H, Carom-H), 7.23-7.14 (m, 3H, Carom-H), 7.05 (d, J = 
8.6 Hz, 2H, Carom-H), 6.75 (d, J = 8.6 Hz, 2H, Carom-H), 4.60 (s, 2H, CH2), 3.75 (s, 
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3H, OCH3), 2.16 (qt, J = 7.5, 2.2 Hz, 2H, CH2CH3), 1.09 (t, J = 7.5 Hz, 3H, CH2CH3). 
13

C NMR (75.4 MHz, 
CDCl3) (δ, ppm): 170.2 (C=O), 158.3 (Carom-C), 135.7 (Carom-C), 129.5 (Carom-H), 129.1 (Carom-H), 128.7 
(Carom-H), 127.7 (Carom-C), 114.1 (Carom-H), 86.0 (C≡C), 74.6 (C≡C), 55.3 (OCH3), 40.3 (CH2), 13.8 
(CH2CH3), 12.4 (CH2CH3). HRMS (ESI) for C19H20NO2 [M+H]

+
: calculated: 294.1494, found: 294.1507. 

 
 
Synthesis of N,4-dimethyl-N-(prop-2-yn-1-yl)benzenesulfonamide (20o)

18
 

 

 
To a solution of p-toluenesulfonyl chloride (0.76 mL, 4.0 mmol) in CH2Cl2 (10 mL, 0.4 M) at 0ᵒC, 

N-methylpropargylamine (0.33 mL, 4.0 mmol) was added. Then, Et3N (1.11 mL, 8.0 mmol) was 
added dropwise at the same temperature. The reaction mixture was stirred at room temperature 
for 36 hours. Wen the reaction was finished, H2O (20 mL) and CH2Cl2 (20 mL) were added. The 
phases were separated and the organic layer was washed with brine (2 x 20 mL), dried over Na2SO4 
and concentrated in vacuo. The crude was then purified by flash column chromatography FC 
(petroleum ether/EtOAc gradient from 8:2 to 1:1) to afford pure 20o (0.90 g, 4.0 mmol) in 99% yield 
as a white solid.  

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.68 (d, J = 8.1 Hz, 2H, Carom-H), 7.29 (d, J = 8.1 

Hz, 2H, Carom-H), 3.99 (d, J = 2.5 Hz, 2H, CH2), 2.80 (s, 3H, NCH3), 2.41 (s, 3H, CH3), 2.08 (t, J = 2.5 Hz, 
1H, C≡CH). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 143.8 (Carom-C), 134.2 (Carom-C), 129.6 (Carom-H), 

128.0 (Carom-H), 76.4 (C≡CH), 74.1 (C≡CH), 39.8 (CH2), 34.4 (NCH3), 21.6 (CH3). HRMS (ESI) for 
C11H14NO2S [M+H]

+
: calculated: 224.0745, found: 224.0755. 

 
 

General Procedure R: Corresponding propargyl amide 20e-f, h, j-p (5.0 mmol, 1.0 eq) was 
dissolved in THF (15 mL, 0.33 M). The mixture was cooled to 0ᵒC and KO

t
Bu (1.5 mmol, 30 mol%) 

was added in three portions. It is observed that the reaction turned dark. The reaction was 
monitored by TLC after 15 hours and more base was added if necessary. It was diluted with Et2O (20 
mL) and filtered by celite®. After removal of the solvent the residue was purified by flash column 
chromatography to afford pure 21e-f, h, j-p.

19
 

 
 

General Procedure S: Corresponding propargyl amide 20a-d, g, i (5.0 mmol, 1.0 eq) was dissolved 
in CH3CN (50 mL, 0.1 M) and CsOH·H2O (1.0 mmol, 0.2 eq) was added. The reaction mixture was 
stirred at 60ᵒC for 15 hours hours. The solvent was evaporated and the residue was purified by flash 
column chromatography to afford pure 21a-d, g, i.

20
 

 
 

                                                           
18  Zhou, Y.; Porco, J. A.; Snyder, J. K. Org. Lett. 2007, 9, 393. 
19  Ballesteros, A.; Morán‐Poladura, P.; González, J. M. Chem. Commun. 2016, 52, 2905. 
20  Li, Y.; Chen, J.; Qiu, R.; Wang, X.; Long, J.; Zhu, L.; Au, C.; Xu, X., Tetrahedron Lett. 2015, 56, 5504. 
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N-(4-Methoxyphenyl)-N-(propa-1,2-dien-1-yl)acetamide (21a). Following the 
general procedure S, 21a (1.60 g, 8.0 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 60% yield as a brown solid starting from 
propargyl amide 20a (2.70 g, 13.0 mmol), CsOH·H2O (0.45 g, 2.7 mmol) and CH3CN 
(130 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.66 (t, J = 6.3 Hz, 1H, CH=C=CH2), 

7.07 (d, J = 8.7 Hz, 2H, Carom-H), 6.91 (d, J = 8.7 Hz, 2H, Carom-H), 4.99 (d, J = 6.3 Hz, 
2H, CH=C=CH2), 3.82 (s, 3H, OCH3), 1.88 (s, 3H, CH3C=O). 

13
C NMR (75.4 MHz, CDCl3) 

(δ, ppm): 202.8 (CH=C=CH2), 169.0 (C=O), 159.4 (Carom-C), 133.0 (Carom-C), 129.5 (Carom-H), 114.6 
(Carom-H), 101.2 (CH=C=CH2), 86.4 (CH=C=CH2), 55.5 (OCH3), 23.0 (CH3C=O). HRMS (ESI) for C12H14NO2 
[M+H]

+
: calculated: 204.1025, found: 204.1028. 

 
N-[4-(dimethylamino)phenyl]-N-(propa-1,2-dien-1-yl)acetamide (21b). Following 
the general procedure S, 21b (0.70 g, 3.9 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 70% yield as a orange solid starting from 
propargyl amide 20b (1.00 g, 5.6 mmol), CsOH·H2O (0.28 g, 1.9 mmol) and CH3CN 
(56 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.66 (t, J = 6.4 Hz, 1H, CH=C=CH2), 

7.04-6.90 (m, 2H, Carom-H), 6.77-6.64 (m, 2H, Carom-H), 5.00 (d, J = 6.4 Hz, 2H, 
CH=C=CH2), 2.98 (s, 6H, N(CH3)2), 1.88 (s, 3H, CH3C=O). 

13
C NMR (75.4 MHz, CDCl3) 

(δ, ppm): 203.0 (CH=C=CH2), 169.5 (C=O), 150.1 (Carom-C), 129.0 (Carom-C), 128.9 (Carom-H), 112.3 
(Carom-H), 101.4 (CH=C=CH2), 86.1 (CH=C=CH2), 40.5 (N(CH3)2), 22.9 (CH3C=O). HRMS (ESI) for 
C13H17N2O [M+H]

+
: calculated: 217.1341, found: 217.1344. 

 
N-(Propa-1,2-dien-1-yl)-N-(p-tolyl)acetamide (21c). Following the general 
procedure S, 21c (0.67 g, 3.6 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 9:1 to 1:1) in 68% yield as a pink solid starting from propargyl amide 
20c (1.00 g, 5.3 mmol), CsOH·H2O (0.27 g, 1.6 mmol) and CH3CN (53 mL). 

1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.66 (t, J = 6.4 Hz, 1H, CH=C=CH2), 7.25-7.15 (m, 2H, 
Carom-H), 7.09-6.98 (m, 2H, Carom-H), 4.98 (d, J = 6.4 Hz, 2H, CH=C=CH2), 2.37 (s, 3H, 
CH3C=O), 1.87 (s, 3H, Carom-CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.8 

(CH=C=CH2), 168.9 (C=O), 138.6 (Carom-C), 137.7 (Carom-C), 130.2 (Carom-H), 128.3 (Carom-H), 101.1 
(CH=C=CH2), 86.5 (CH=C=CH2), 23.1 (CH3C=O), 21.4 (Carom-CH3). HRMS (ESI) for C12H13NONa [M+Na]

+
: 

calculated: 210.0895, found: 210.0896. 
 

N-Phenyl-N-(propa-1,2-dien-1-yl)acetamide (21d). Following the general 
procedure S, 21d (0.23 g, 1.3 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 9:1 to 1:1) in 46% yield as a orange oil starting from propargyl amide 
20d (0.50 g, 2.9 mmol), CsOH·H2O (0.15 g, 0.9 mmol) and CH3CN (29 mL).  

1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.64 (br s, J = 6.3 Hz, 1H, CH=C=CH2), 7.44-7.27 (m, 3H, 
Carom-H), 7.14 (dd, J = 7.0, 2.0 Hz, 2H, Carom-H), 4.93 (d, J = 6.3 Hz, 2H, CH=C=CH2), 

1.85 (s, 3H, CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.6 (CH=C=CH2), 168.4 (C=O), 140.0 
(Carom-C), 129.4 (Carom-H), 128.5 (Carom-H), 128.4 (Carom-H), 100.9 (CH=C=CH2), 86.3 (CH=C=CH2), 22.9 
(CH3). HRMS (ESI) for C11H12NO [M+H]

+
: calculated: 174.0919, found: 174.0927. 
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N-(4-Bromophenyl)-N-(propa-1,2-dien-1-yl)acetamide (21e). Following the general 
procedure R, 21e (1.62 g, 6.4 mmol) was isolated by FC (petroleum ether/EtOAc 
gradient from 9:1 to 1:1) in 80% yield as a brown solid starting from propargyl 
amide 20e (2.00 g, 7.9 mmol), KO

t
Bu (0.27 g, 2.4 mmol) and THF (24 mL). 

1
H NMR 

(300 MHz, CDCl3) (δ, ppm): 7.68-7.59 (br s, 1H, CH=C=CH2), 7.55 (d, J = 8.5 Hz, 2H, 
Carom-H), 7.06 (d, J = 8.5 Hz, 2H, Carom-H), 5.02 (d, J = 6.5 Hz, 2H, CH=C=CH2), 1.90 (s, 
3H, CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.5 (CH=C=CH2), 168.2 (C=O), 

139.2 (Carom-C), 132.8 (Carom-H), 130.3 (Carom-H), 122.5 (Carom-C), 100.9 (CH=C=CH2), 87.0 (CH=C=CH2), 
23.0 (CH3). HRMS (ESI) for C11H11NOBr [M+H]

+
: calculated: 252.0024, found: 252.0033. 

 
N-(4-Methoxyphenyl)-N-(propa-1,2-dien-1-yl)pivalamide (21f). Following the 
general procedure R 21f (1.40 g, 5.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 94% yield as a brown oil starting from 
propargyl amide 20f (1.50 g, 6.1 mmol), KO

t
Bu (0.21 g, 1.8 mmol) and THF (19 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.68 (t, J = 6.4 Hz, 1H, CH=C=CH2), 7.14-

7.04 (m, 2H, Carom-H), 6.90-6.81 (m, 2H, Carom-H), 4.89 (d, J = 6.4 Hz, 2H, 
CH=C=CH2), 3.82 (s, 3H, OCH3), 1.06 (s, 9H, 3 x CH3). 

13
C NMR (75.4 MHz, CDCl3) 

(δ, ppm): 203.0 (CH=C=CH2), 176.2 (C=O), 159.3 (Carom-C), 133.3 (Carom-C), 131.3 (Carom-H), 113.8 
(Carom-H), 104.6 (CH=C=CH2), 86.0 (CH=C=CH2), 55.5 (OCH3), 41.2 (C(CH3)3), 29.4 (3 x CH3). HRMS (ESI) 
for C15H20NO2 [M+H]

+
: calculated: 246.1494, found: 246.1498. 

 
N-(4-Methoxyphenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzamide (21g). 
Following the general procedure S, 21g (0.17 g, 0.6 mmol) was isolated by 
FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 33% yield as a 
yellow oil starting from propargyl amide 20g (0.50 g, 1.8 mmol), CsOH·H2O 
(0.15 g, 0.9 mmol) and CH3CN (18 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.66 (t, J = 6.5 Hz, 1H, CH=C=CH2), 7.23 (d, J = 8.1 Hz, 2H, Carom-H), 6.97 (dd, J 
= 8.1, 5.0 Hz, 4H, Carom-H), 6.78-6.68 (m, 2H, Carom-H), 5.05 (d, J = 6.5 Hz, 2H, 

CH=C=CH2), 3.72 (s, 3H, OCH3), 2.24 (s, 3H, Carom-CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.8 
(CH=C=CH2), 167.6 (C=O), 157.5 (Carom-C), 139.2 (Carom-C), 132.3 (Carom-C), 131.3 (Carom-C), 128.5 
(Carom-H), 128.0 (Carom-H), 127.5 (Carom-H), 113.0 (Carom-H), 101.4 (CH=C=CH2), 85.7 (CH=C=CH2), 54.3 
(OCH3), 20.5 (Carom-CH3). HRMS (ESI) for C18H18NO2 [M+H]

+
: calculated: 280.1338, found: 280.1335. 

 
 

N-(4-Methoxyphenyl)-N-(propa-1,2-dien-1-yl)benzamide (21h). Following the 
general procedure R, 21h (0.18 g, 0.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 36% yield as a brown solid starting 
from propargyl amide 20h (0.50 g, 1.9 mmol), KO

t
Bu (0.06 g, 0.6 mmol) and 

THF (6 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.75-7.60 (br s, 1H, CH=C=CH2), 

7.34 (d, J = 6.9 Hz, 2H, Carom-H), 7.28-7.16 (m, 3H, Carom-H), 6.99 (d, J = 8.9 Hz, 
2H, Carom-H), 6.75 (d, J = 8.9 Hz, 2H, Carom-H), 5.08 (d, J = 6.4 Hz, 2H, CH=C=CH2), 

3.74 (s, 3H, OCH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 202.9 (CH=C=CH2), 168.7 (C=O), 158.6 
(Carom-C), 135.4 (Carom-C), 133.2 (Carom-C), 130.0 (Carom-H), 129.6 (Carom-H), 129.0 (Carom-H), 127.9 
(Carom-H), 114.1 (Carom-H), 102.4 (CH=C=CH2), 86.8 (CH=C=CH2), 55.4 (OCH3). HRMS (ESI) for 
C17H16NO2 [M+H]

+
: calculated: 266.1181, found: 266.1181. 
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4-Bromo-N-(4-methoxyphenyl)-N-(propa-1,2-dien-1-yl)benzamide (21i). 
Following the general procedure S, 21i (0.26 g, 0.7 mmol) was isolated by 
FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 52% yield as a 
orange oil starting from propargyl amide 20i (0.50 g, 1.4 mmol), CsOH·H2O 
(0.24 g, 1.4 mmol) and CH3CN (15 mL). 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 

7.69-7.56 (br s, 1H, CH=C=CH2), 7.32 (d, J = 8.7 Hz, 2H, Carom-H), 7.20 (d, J = 
8.7 Hz, 2H, Carom-H), 7.02-6.91 (m, 2H, Carom-H), 6.82-6.72 (m, 2H, Carom-H), 

5.09 (d, J = 6.4 Hz, 2H, CH=C=CH2), 3.77 (s, 3H, OCH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 203.1 
(CH=C=CH2), 167.6 (C=O), 159.0 (Carom-C), 134.4 (Carom-C), 133.0 (Carom-C), 131.3 (Carom-H), 130.7 
(Carom-H), 129.7 (Carom-H), 124.7 (Carom-H), 114.4 (Carom-C), 102.4 (CH=C=CH2), 87.1 (CH=C=CH2), 55.6 
(OCH3). HRMS (ESI) for C17H15BrNO2 [M+H]

+
: calculated: 344.0286, found: 344.0290. 

 
3-(furan-2-yl)-N-(4-methoxyphenyl)-N-(propa-1,2-dien-1-yl)propanamide 
(21j). Following the general procedure R, 21j (0.07 g, 0.02 mmol) was 
isolated by FC (petroleum ether/EtOAc gradient from 9:1 to 1:1) in 69% 
yield as a brown oil starting from propargyl amide 20j (0.10 g, 0.3 mmol), 
KO

t
Bu (0.01 g, 0.1 mmol) and THF (1 mL). 

1
H NMR (300 MHz, CDCl3) (δ, 

ppm): 7.68 (t, J = 6.5 Hz, 1H, CH=C=CH2), 7.24 (s, 1H, CH=CH-CH), 7.03-
6.94 (m, 2H, Carom-H), 6.92-6.85 (m, 2H, Carom-H), 6.23 (dd, J = 3.2, 2.9 Hz, 

1H, CH=CHCH), 5.93 (d, J = 3.2 Hz, 1H, CH=CHCH), 4.99 (d, J = 6.5 Hz, 2H, CH=C=CH2), 3.81 (s, 3H, 
OCH3),  2.93 (t, J = 7.5 Hz, 2H, CH2CH2C=O), 2.40 (t, J = 7.5 Hz, 2H, CH2CH2C=O). 

13
C NMR (75.4 MHz, 

CDCl3) (δ, ppm): 202.3 (CH=C=CH2), 170.3 (C=O), 159.4 (Carom-C), 154.7 (CH=CH-CH=C), 141.1 
(Carom-C), 132.2 (CH=CHCH=C), 129.6 (Carom-H), 114.7 (Carom-H), 110.3 (CH=CHCH=C), 105.4 
(CH=CHCH=C), 101.4 (CH=C=CH2), 86.4 (CH=C=CH2), 55.4 (OCH3), 33.3 (CH2CH2C=O), 23.8 
(CH2CH2C=O). HRMS (ESI) for C17H18NO3 [M+H]

+
: calculated: 284.1287, found: 284.1296. 

 
N-(4-Methoxyphenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (21k). 
Following the general procedure R, 21k (0.13 g, 0.4 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 63% yield as a brown solid 
starting from propargyl sulfonamide 20k (0.20 g, 0.6 mmol), KO

t
Bu (0.02 g, 0.2 

mmol) and THF (2 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.55 (d, J = 8.0 Hz, 2H, 

Carom-H), 7.27 (d, J = 8.0 Hz, 2H, Carom-H), 7.12 (t, J = 6.2 Hz, 1H, CH=C=CH2), 6.93-6.85 
(m, 2H, Carom-H), 6.82-6.74 (m, 2H, Carom-H), 5.03 (d, J = 6.2 Hz, 2H, CH=C=CH2), 3.79 (s, 3H, OCH3), 
2.44 (s, 3H, Carom-CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.0 (CH=C=CH2), 159.6 (Carom-C), 143.9 

(Carom-C), 135.4 (Carom-C), 130.9 (Carom-H), 129.7 (Carom-C), 129.6 (Carom-H), 127.9 (Carom-H), 114.0 
(Carom-H), 102.9 (CH=C=CH2), 87.6 (CH=C=CH2), 55.5 (OCH3), 21.7 (Carom-CH3). HRMS (ESI) for 
C17H18NO3S [M+H]

+
: calculated: 316.1018, found: 316.1019. 

 
tert-butyl propa-1,2-dien-1-yl(3,4,5-trimethoxyphenyl)carbamate (21l). 
Following the general procedure R, 21l (0.32 g, 1.0 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 65% yield as a yellow solid 
starting from propargyl amide 20l (0.50 g, 1.5 mmol), KO

t
Bu (0.05 g, 0.5 mmol) 

and THF (5 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.12 (t, J = 6.4 Hz, 1H, 

CH=C=CH2), 6.34 (s, 2H, Carom-H), 4.98 (d, J = 6.4 Hz, 2H, CH=C=CH2), 3.75 (s, 3H, 
OCH3), 3.74 (s, 6H, OCH3), 1.39 (s, 9H, 3 x CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, 
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ppm): 201.2 (CH=C=CH2), 152.8 (Carom-C), 152.1 (C=O), 136.9 (Carom-C), 134.7 (Carom-C), 105.5 
(Carom-H), 101.9 (CH=C=CH2), 86.3 (CH=C=CH2), 81.4 (C(CH3)3), 60.7 (OCH3), 56.0 (OCH3), 28.1 (3 x 
CH3). HRMS (ESI) for C17H24NO5 [M+H]

+
: calculated: 322.1654, found: 322.1660. 

 
4-Methyl-N-phenyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (21m). Following 
the general procedure R, 21m (0.20 g, 0.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 67% yield as a brown solid starting from 
propargyl sulfonamide 20m (0.30 g, 1.1 mmol), KO

t
Bu (0.04 g, 0.3 mmol) and THF (3 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.56 (d, J = 8.3 Hz, 2H, Carom-H), 7.32-7.22 

(m, 5H, Carom-H), 7.11 (t, J = 6.3 Hz, 1H, CH=C=CH2), 7.06-6.96 (m, 2H, Carom-H), 5.02 (d, J = 6.4 Hz, 2H, 
CH=C=CH2), 2.44 (s, 3H, CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.2 (CH=C=CH2), 144.0 

(Carom-C), 137.3 (Carom-C), 135.4 (Carom-C), 129.7 (Carom-H), 129.6 (Carom-H), 128.8 (Carom-H), 128.7 
(Carom-H), 127.8 (Carom-H), 102.5 (CH=C=CH2), 87.6 (CH=C=CH2), 21.7 (CH3). HRMS (ESI) for 
C16H15NO2SNa [M+Na]

+
: calculated: 308.0721, found: 308.0727. 

 
N-(4-Bromophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (21n). 
Following the general procedure R, 21n (0.27 g, 0.7 mmol) was isolated by FC 
(petroleum ether/EtOAc gradient from 9:1 to 1:1) in 89% yield as a white solid 
starting from propargyl sulfonamide 20n (0.30 g, 0.8 mmol), KO

t
Bu (0.03 g, 0.2 

mmol) and THF (3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.58-7.51 (m, 2H, 

Carom-H), 7.44-7.38 (m, 2H, Carom-H), 7.32-7.25 (m, 2H, Carom-H), 7.08 (t, J = 6.3 Hz, 1H, 
CH=C=CH2), 6.90-6.84 (m, 2H, Carom-H), 5.05 (d, J = 6.3 Hz, 2H, CH=C=CH2), 2.44 (s, 3H, CH3). 

13
C NMR 

(75.4 MHz, CDCl3) (δ, ppm): 200.9 (CH=C=CH2), 144.3 (Carom-C), 136.7 (Carom-C), 135.0 (Carom-C), 132.2 
(Carom-H), 131.3 (Carom-H), 129.8 (Carom-H), 127.8 (Carom-H), 122.8 (Carom-C), 102.3 (CH=C=CH2), 88.0 
(CH=C=CH2), 21.8 (CH3). HRMS (ESI) for C16H15NO2SBr [M+H]

+
: calculated: 364.0007, found: 

364.0012. 
 

N,4-Dimethyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide (21o). Following the 
general procedure R, 21o (0.27 g, 0.7 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 88% yield as a white solid starting from 
propargyl sulfonamide 20o (0.30 g, 0.8 mmol), KO

t
Bu (0.03 g, 0.2 mmol) and THF (3 

mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.65 (d, J = 8.3 Hz, 2H, Carom-H), 7.30 (d, J = 8.0 Hz, Carom-H), 

6.87 (t, J = 6.2 Hz, 1H, CH=C=CH2), 5.28 (d, J = 6.2 Hz, 2H, CH=C=CH2), 2.69 (s, 3H, NCH3), 2.41 (s, 3H, 
Carom-CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.5 (CH=C=CH2), 143.9 (Carom-C), 133.7 (Carom-C), 

129.8 (Carom-H), 127.4 (Carom-H), 101.7 (CH=C=CH2), 87.8 (CH=C=CH2), 33.3 (NCH3), 21.6 (Carom-CH3). 
HRMS (ESI) for C11H14NO2S [M+H]

+
: calculated: 224.0745, found: 224.0756. 

 
tert-butyl (4-bromophenyl)(propa-1,2-dien-1-yl)carbamate (21p). Following 
the general procedure R, 21p (0.19 g, 0.6 mmol) was isolated by FC (petroleum 
ether/EtOAc gradient from 9:1 to 1:1) in 63% yield as a yellow solid starting 
from propargyl amide 20p (0.30 g, 1.0 mmol), KO

t
Bu (0.03 g, 0.3 mmol) and THF 

(3 mL). 
1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.46 (d, J = 8.5 Hz, 2H, Carom-H), 7.22 

(t, J = 6.4 Hz, 1H, CH=C=CH2), 7.06 (d, J = 8.5 Hz, 2H, Carom-H), 5.05 (d, J = 6.4 Hz, 
2H, CH=C=CH2), 1.44 (s, 9H, 3 x CH3). 

13
C NMR (75.4 MHz, CDCl3) (δ, ppm): 201.4 

(CH=C=CH2), 152.1 (C=O), 138.5 (Carom-C), 132.0 (Carom-H), 129.9 (Carom-H), 120.8 (Carom-C), 102.0 
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(CH=C=CH2), 87.0 (CH=C=CH2), 82.0 (C(CH3)3), 28.3 (3 x CH3). HRMS (ESI) for C14H16NO2BrNa [M+Na]
+
: 

calculated: 332.0262, found: 332.0264. 
 
 
 
Synthesis of N-(buta-2,3-dien-2-yl)-N-(4-methoxyphenyl)benzamide (23)

21
 

 
To a solution of iPr2NH (0.35 mL, 2.5 mmol, 2.2 eq) in THF (5 mL, 0.2 M) at 0ᵒC was added 

dropwise nBuLi (0.90 mL, 2.3 mmol, 2.01 eq). After being stirred at 0ᵒC for 30 minutes, the solution 
was cooled to -78ᵒC. To this solution was added a solution of allenylamide 21h (0.30 g, 1.1 mmol, 1.0 
eq) in THF (8 mL, 0.14 M), and the resultant solution was stirred at -78ᵒC for 1 hour. To this solution 
was added dropwise MeI (0.35 mL, 5.6 mmol, 4.98 eq) and it was stirred at -78ᵒC for 4 hours. It was 
quenched with H2O (20 mL) and the aqueous layer was extracted with EtOAc (3 x 20 mL), washed 
with brine (2 x 20 mL), dried over Na2SO4 and concentrated in vacuo. The crude was then purified by 
flash column chromatography FC (petroleum ether/EtOAc gradient from 9:1 to 7:3) to afford pure 23 
(0.20 g, 0.7 mmol) in 64% yield as a brown oil. 

1
H NMR (300 MHz, CDCl3) (δ, ppm): 7.59-7.40 (m, 3H, 

Carom-H), 7.37-7.24 (m, 2H, Carom-H), 7.14 (d, J = 8.6 Hz, 2H, Carom-H), 6.90-6.76 (m, 2H, Carom-H), 4.79-
4.58 (br s, 2H, C=C=CH2), 3.76 (s, 3H, OCH3), 1.97-1.89 (m, 3H, CH3C). 

13
C NMR (75.4 MHz, CDCl3) (δ, 

ppm): 209.0 (C=C=CH2), 170.5 (C=O), 158.1 (Carom-H), 136.8 (Carom-C), 130.0 (Carom-H), 128.1 (Carom-H), 
127.9 (Carom-H), 120.6 (Carom-C), 114.3 (Carom-H), 109.4 (C=C=CH2), 80.3 (C=C=CH2), 55.4 (OCH3), 18.3 
(CH3C). HRMS (ESI) for C18H18NO2 [M+H]

+
: calculated: 280.1338, found: 280.1351. 

 
 
 
 
Synthesis of N-(4-Methoxyphenyl)-N-(penta-1,2-dien-1-yl)benzamide (24)

22
 

 

                                                           
21  Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214. 
22 Villar, L.; Uria, U.; Martinez, J. I.; Prieto, L.; Reyes, E.; Carrillo, L.; Vicario, J. L. Angew. Chem. Int. Ed. 2017, 56, 

10535. 



Experimental section  265 

 

Propargyl amide 20s (0.30 g, 1.0 mmol, 1.0 eq) was dissolved in dry THF (5 mL, 0.2 M) and cooled 
to -78ᵒC. LiHMDS (1.0 M in THF, 1.50 mL, 1.5 mmol, 1.5 eq) was added dropwise and the reaction 
mixture was stirred at 0ᵒC for 4 hours. The solvent was evaporated and the residue was purified by 
flash column chromatography on deactivated silica gel (acetone) (petroleum ether/EtOAc gradient 
from 9:1 to 7:3) to afford pure 24 (0.10 g, 0.3 mmol) in 35% yield as a brown oil.  

1
H NMR (300 MHz, 

CDCl3) (δ, ppm): 7.56-7.68 (br s, 1H, CH=C=CH), 7.34 (d, J = 7.4 Hz, 2H, Carom-H), 7.30-7.11 (m, 3H, 
Carom-H), 6.98 (d, J = 8.3 Hz, 2H, Carom-H), 6.74 (d, J = 8.3 Hz, 2H, Carom-H), 5.52 (q, J = 6.1 Hz, 1H, 
CH=C=CH), 3.74 (s, 3H, OCH3), 1.88 (pd, J = 7.4, 2.8 Hz, 2H, CH2CH3), 0.82 (t, J = 7.4 Hz, 3H, CH2CH3). 
13

C NMR (75.4 MHz, CDCl3) (δ, ppm): 196.4 (CH=C=CH), 168.7 (C=O), 158.6 (Carom-C), 135.7 (Carom-C), 
133.6 (Carom-C), 129.8 (Carom-H), 129.7 (Carom-H), 128.9 (Carom-H), 127.9 (Carom-H), 114.0 (Carom-H), 
104.7 (CH=C=CH), 103.0 (CH=C=CH), 55.4 (OCH3), 23.0 (CH2CH3), 12.9 (CH2CH3). HRMS (ESI) for 
C19H20NO2 [M+H]

+
: calculated: 294.1494, found: 294.1509. 

 
 

 

3.2. Metal-free borylation of allenylamides 

 

 
 

General Procedure T: An oven-dried Schlenk tube, sealed with a rubber septum and equipped 
with a magnetic stirring bar, was charged with KO

t
Bu (0.06 mmol, 0.3 eq) and bis(pinacolato)diboron 

(0.24 mmol, 1.2 eq) under argon followed by methanol (0.5 mL, 0.4 M). Then, allenylamide 21a-r 
(0.2 mmol, 1.0 eq) was added and the reaction mixture was allowed to heat for 16 hours. The 
solvent was evaporated in vacuo and the NMR yield was calculated through comparison to an 
internal standard (naphthalene). The crude was then purified by flash column chromatography to 
afford pure 22a-r, 25k-r. 

 
 

N-(4-Methoxyphenyl)-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- 
yl)prop-1-en-1-yl]acetamide (22a). Following the general procedure T, 22a 
(47.00 mg, 0.140 mmol) was isolated by FC (pentane/EtOAc 4:1) in 71% yield 
as a colorless oil starting from allenylamide 21a (41.00 mg, 0.200 mmol), 
B2pin2 (61.00 mg, 0.24 mmol), KO

t
Bu (6.70 mg, 0.06 mmol) and MeOH (0.5 

mL). 
1
H NMR (400 MHz, toluene) (δ, ppm): 7.97 (s, 1H, CH=C), 6.76 (m, 2H, 

Carom-H), 6.54 (m, 2H, Carom-H), 3.25 (s, 3H, OCH3), 1.71 (s, 3H, CH3C=O), 1.35 
(d, J = 1.6 Hz, 3H, CH=CCH3), 1.08 (s, 12H, 4 x CH3). 

13
C NMR (100 MHz, 
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CDCl3) (δ, ppm): 169.4, 137.4, 125.1, 114.3, 83.2, 54.7, 24.8 22.7, 13.2. 
11

B NMR (128.3 MHz, 
toluene) (δ, ppm): 31.8 (br s). HRMS (ESI) for C18H26BNNaO4 [M+Na]

+
: calculated: 354.1852, found: 

354.1850. 
 

N-(4-(Dimethylamino)phenyl)-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)prop-1-en-1-yl]acetamide (22b). Following the general 
procedure T, 22b (54.00 mg, 0.160 mmol) was isolated by FC 
(pentane/EtOAc 4:1) in 78% yield as a colorless oil starting from allenylamide 
21b (43.00 mg, 0.200 mmol), B2pin2 (37.00 mg, 0.240 mmol), KO

t
Bu (6.70 

mg, 0.060 mmol) and MeOH (0.5 mL). 
1
H NMR (400 MHz, CDCl3) (δ, ppm): 

7.49 (br s, 1H, CH=C), 7.02 (t, J = 6.0 Hz, 2H, Carom-H), 6.66 (t, J = 7.3 Hz, 2H, 
Carom-H), 2.96 (s, 6H, NCH3), 1.91 (s, 3H, CH3C=O), 1.22 (s, 12H, 4 x CH3), 1.15 

(d, J = 7.2 Hz, 3H, CH=CCH3). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 170.9, 149.5, 128.6, 127.9, 114.0, 
112.4, 83.2, 40.5, 24.8, 22.9, 22.6, 12.0. 

11
B NMR (128.3 MHz, CDCl3) (δ, ppm): 31.4 (br s). HRMS 

(ESI) for C19H29BN2NaO3 [M+Na]
+
: calculated: 367.2163, found: 367.2168. 

 
N-[(1Z)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl]-N-

(p-tolyl)acetamide (22c).  Following the general procedure T, 22c (39.00 mg, 
0.120 mmol) was isolated by FC (pentane/EtOAc 6:1) in 62% yield as a 
colorless oil starting from allenylamide 21c (41.00 mg, 0.200 mmol), B2pin2 
(37.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.46 (m, 1H, CH=C), 7.18 (d, J = 8.2 Hz, 

2H, Carom-H), 7.10 (d, J = 8.3 Hz, 2H, Carom-H), 2.37 (s, 3H, Carom-CH3), 1.94 (br 
s, 3H, CH3C=O), 1.27 (s, 3H, CH=CCH3), 1.25 (s, 12H, 4 x CH3). 

13
C NMR (100 

MHz, CDCl3) (δ, ppm): 170.6, 130.5, 129.5, 129.4, 129.0, 128.6, 119.9, 109.1, 83.1, 24.5, 21.1, 15.0. 
11

B NMR (128.3 MHz, CDCl3) (δ, ppm): 30.9 (br s). HRMS (APCI-FIA-TOF) for C18H27BNO3 [M+H]
+
: 

calculated: 316.2079, found: 316.2079. 
 

N-phenyl-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-
en-1-yl]acetamide (22d). Following the general procedure T, 22d (15.00 mg, 
0.050 mmol) was isolated by FC (pentane/EtOAc 4:1) in 25% yield as a 
colorless oil starting from allenylamide 21d (35.00 mg, 0.200 mmol), B2pin2 
(37.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 MHz, toluene) (δ, ppm): 7.98 (br s, 1H, CH=C), 6.89 (m, 3H, 

Carom-H), 6.80 (m, 2H, Carom-H), 1.67 (s, 3H, CH3C=O), 1.29 (s, 3H, CH=CCH3), 
1.07 (s, 12H, 4 x CH3). 

13
C NMR (100 MHz, toluene) (δ, ppm): 169.3, 143.1, 139.3, 138.1, 137.5, 

127.5, 83.6, 25.2, 23.0, 13.6. 
11

B NMR (128.3 MHz, toluene) (δ, ppm): 31.2 (br s). HRMS (APCI-FIA-
TOF) for C17H25BNO3 [M+H]

+
: calculated: 302.1927, found: 302.1924. 

 
N-(4-Methoxyphenyl)-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)prop-1-en-1-yl]pivalamide (22f). Following the general procedure T, 
22f (42.00 mg, 0.110 mmol) was isolated by FC (pentane/EtOAc 4:1) in 
65% yield as a colorless oil starting from allenylamide 21f (50.00 mg, 
0.200 mmol), B2pin2 (37.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 

mmol) and MeOH (0.5 mL). 
1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.20 (s, 
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1H, CH=C), 7.05 (d, J = 8.9 Hz, 2H, Carom-H), 6.78 (d, J = 9.0 Hz, 2H, Carom-H), 3.74 (s, 3H, OCH3), 1.19 (s, 
12H, 4 x CH3), 1.17 (s, 9H, 3 x CH3), 1.14 (s, 3H, CH=CCH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 178.5, 

158.3, 141.0, 135.3, 129.9, 113.9, 83.4, 55.4, 41.1, 28.8, 25.0, 24.7, 13.2. 
11

B NMR (128.3 MHz, 
CDCl3) (δ, ppm): 30.5 (br s). HRMS (ESI) for C21H32BNaNO4 [M+Na]

+
: calculated: 396.2318, found: 

396.2322. 
 

N-(4-methoxyphenyl)-4-methyl-N-[(1Z)-2-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl]benzamide (22g). 
Following the general procedure T, 22g (30.00 mg, 0.070 mmol) 
was isolated by FC (pentane/EtOAc 7:1) in 74% yield as a colorless 
oil starting from allenylamide 21g (56.00 mg, 0.200 mmol), B2pin2 
(37.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH 

(0.5 mL). 
1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.66 (br s, 1H, CH=C), 

7.23 (d, J = 7.6 Hz, 2H, Carom-H), 6.99 (m, 4H, Carom-H), 6.75 (d, J = 
8.7 Hz, 2H, Carom-H), 3.75 (s, 3H, OCH3), 2.26 (s, 3H, Carom-CH3), 1.25 (br s, 12H, 4 x CH3), 1.21 (br s, 
3H, CH=CCH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 168.5, 158.4, 140.2, 133.3, 132.2, 130.1, 129.4, 

129.0, 128.7, 128.4, 113.9, 83.5, 55.3, 29.7, 25.0, 21.4. 
11

B NMR (128.3 MHz, CDCl3) (δ, ppm): 30.5 
(br s). HRMS (ESI) for C24H30BNNaO3 [M+Na]

+
: calculated: 430.2164, found: 430.2165. 

 
(Z)-N-(4-methoxyphenyl)-N-(2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)prop-1-en-1-yl)benzamide (22h). Following the 
general procedure T, 22h (57.00 mg, 0.140 mmol) was isolated by FC 
(pentane/EtOAc 1:1) in 72% yield as a colorless oil starting from 
allenylamide 21h (53.00 mg, 0.200 mmol), B2pin2 (37.00 mg, 0.240 
mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 

MHz, CDCl3) (δ, ppm): 7.43 (d, J = 5.2 Hz, 2H, Carom-H), 7.31 (t, J = 3.6 Hz, 
1H, CH=C), 7.22 (d, J = 3 Hz, 2H, Carom-H), 7.17 (s, 1H, Carom-H), 7.02 (d, J 

= 5.2 Hz, 2H, Carom-H), 6.76 (d, J = 1.0 Hz, 2H, Carom-H), 3.76 (s, 3H, OCH3), 1.25 (s, 3H, CH=CCH3), 1.24 
(s, 12H, 4 x CH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 170.1, 157.8, 139.6, 135.7, 135.0, 130.2, 129.1, 

128.5, 127.7, 114.1, 83.4, 55.3, 24.7, 13.8. 
11

B NMR (128.3 MHz, CDCl3) (δ, ppm): 30.6 (br s). HRMS 
(APCI-FIA-TOF) for C23H29BNO4 [M+H]

+
: calculated: 394.2188, found: 394.2184. 

 
(Z)-3-(furan-2-yl)-N-(4-methoxyphenyl)-N-(2-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)propanamide (22j). 
Following the general procedure T, 22j (14.00 mg, 0.050 mmol) was 
isolated by FC (pentane/EtOAc 1:1) in 20% yield as a colorless oil 
starting from allenylamide 21j (57.00 mg, 0.200 mmol), B2pin2 
(37.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH 

(0.5 mL). 
1
H NMR (400 MHz, toluene) (δ, ppm): 8.17 (br s, 1H, 

CH=C), 6.96-6.97 (s, 1H, CH=CH-CH), 6.64 (br s, 2H, Carom-H), 6.46-
6.49 (m, 2H, Carom-H), 5.98-6.0 (t, J =2.5 Hz, 1H, CH=CHCH), 5.61-5.83 (d, J = 3.0 Hz, 1H, CH=CHCH), 
3.17 (s, 3H, OCH3), 2.96-3.0 (t, J = 7.5 Hz, 2H, CH2CH2C=O), 2.29-2.35 (br s, 2H, CH2CH2C=O), 1.36-
1.38 (m, 3H, CH=CCH3), 1.07 (s, 12H, 4 x CH3). 

13
C NMR (100 MHz, toluene) (δ, ppm): 170.6, 154.9, 

140.6, 134.1, 129.7, 114.1, 110.0, 105.3, 82.8, 82.5, 54.3, 33.1, 30.0, 24.7, 24.5, 23.7, 12.8. 
11

B NMR 
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(128.3 MHz, toluene) (δ, ppm): 31.1 (br s) HRMS (ESI) for C46H60B2N2NaO10 [2M+Na]
+
: calculated:  

845.4332, found: 845.4328.  
 

N-(4-methoxyphenyl)-4-methyl-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)prop-1-en-1-yl)]benzenesulfonamide (22k). Following the 
general procedure T, 22k (47.00 mg, 0.100 mmol) was isolated by FC 
(pentane/Et2O 4:1) in 53% yield as a colorless oil starting from allenylamide 
21k (63.00 mg, 0.200 mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 

0.060 mmol) and MeOH (0.5 mL). 
1
H NMR (400 MHz, toluene) (δ, ppm): 7.89 

(s, 1H, CH=C), 7.46 (d, J = 8.4 Hz, 2H, Carom-H), 6.97 (d, J = 8.4 Hz, 2H, Carom-H), 
6.59 (d, J = 8.2 Hz, 2H, Carom-H), 6.46 (d, J = 8.2 Hz, 2H, Carom-H), 3.17 (s, 3H, 

OCH3), 1.84 (s, 3H, Carom-CH3), 1.38 (s, 3H, CH=CCH3), 1.07 (s, 6H, 2 x CH3), 1.01 (s, 6H, 2 x CH3). 
13

C 
NMR (100 MHz, toluene) (δ, ppm): 158.9, 142.8, 138.7, 135.7, 132.2, 130.8, 129.0, 127.8, 113.6, 
82.9, 82.5, 54.3, 24.7, 24.6, 13.0 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 31.5 (br s). HRMS (ESI) for 

C23H30BNaNO5S [M+Na]
+
: calculated: 466.1835, found: 466.1834. 

 
N-(4-methoxyphenyl)-4-methyl-N-[2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)allyl]benzenesulfonamide (25k). Following the general 
procedure T, 25k (25.00 mg, 0.050 mmol) was isolated by FC (pentane/Et2O 
4:1) in 28% yield as a colorless oil starting from allenylamide 21k (63.00 mg, 
0.200 mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) 

and MeOH (0.5 mL). 
1
H NMR (400 MHz, toluene) (δ, ppm): 7.50 (d, J = 8.3 Hz, 

2H, Carom-H), 7.00-6.96 (m, 2H, Carom-H), 6.68 (d, J = 8.9, 2H, Carom-H), 6.51 (d, J 
= 8.9 Hz, 2H, Carom-H), 6.19-6.09 (m, 2H, C=CH2), 4.52 (s, 2H, CH2), 3.19 (s, 3H, 

OCH3), 1.91 (s, 3H, Carom-CH3), 1.01 (s, 12H, 4 x CH3). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 158.7, 
143.1, 132.2, 132.1, 130.1, 129.3, 127.8, 125.7, 113.9, 83.6, 55.3, 54.0, 24.7, 21.9. 

11
B NMR (128.3 

MHz, toluene) (δ, ppm): 29.9 (br s). HRMS (ESI) for C23H30BNNaO5S [M-Na]
+
: calculated: 466.1835, 

found: 466.1837. 
tert-Butyl [(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-
en-1-yl](3,4,5-trimethoxyphenyl)carbamate (22l). Following the general 
procedure T, 22l (37.00 mg, 0.080 mmol) was isolated by FC 
(pentane/Et2O 4:1) in 41% yield as a colorless oil starting from 
allenylamide 21l (64.00 mg, 0.200 mmol), B2pin2 (61.00 mg, 0.240 mmol), 
KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 MHz, 

toluene) (δ, ppm): 7.99 (br s, 1H, CH=C), 6.44 (s, 2H, Carom-H), 3.75 (s, 3H, 
OCH3), 3.28 (s, 6H, OCH3), 1.53 (s, 3H, CH=CCH3), 1.37 (s, 9H, 3 x CH3), 

1.09 (s, 12H, 4 x CH3). 
13

C NMR (100 MHz, toluene) (δ, ppm): 13.2, 24.8, 28.0, 55.6, 60.4, 80.9, 83.1, 
106.6, 129.1, 137.1, 139.5, 153.8, 153.3, 153.8. 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 32.2 (br s). 

HRMS (ESI) for C23H36BNNaO5 [M+Na]
+
: calculated: 472.2482, found: 472.2480. 
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tert-Butyl [2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl](3,4,5-
trimethoxyphenyl)carbamate (25l). Following the general procedure T, 
25l (11.00 mg, 0.020 mmol) was isolated by FC (pentane/Et2O 4:1) in 12% 
yield as a colorless oil starting from allenylamide 21l (64.00 mg, 0.200 
mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and 

MeOH (0.5 mL).  
1
H NMR (400 MHz, toluene) (* denotes product 22l) (δ, 

ppm): 7.96* (s, 1H), 6.59 (s, 2H, Carom-H), 6.44* (s, 2H), 6.20 (s, 1H, 
C=CHaHb), 5.98 (s, 1H, C=CHaHb), 4.61 (s, 2H, CH2), 3.75 (s, 3H, OCH3), 

3.74* (s, 3H), 3.41 (s, 6H, OCH3), 3.28* (s, 6H), 1.44 (s, 9H, 3 x CH3), 1.37* (s, 9H), 1.09* (s, 12H), 1.03 
(s, 12H, 4 x CH3). 

13
C NMR (100 MHz, CDCl3) (* denotes product 22l) (δ, ppm): 12.9*, 24.2, 24.5*, 

27.8*, 28.0, 53.8, 55.2*, 55.3, 59.9, 60.0*, 79.1, 80.6*, 80.8*, 83.1, 106.1, 128.7*, 136.7*, 137.6, 
139.1*, 152.9*, 153.2, 153.4. 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 31.9 (br s). HRMS (ESI) for 

C23H36BNNaO5 [M-Na]
+
: calculated: 472.2482, found: 472.2484. 

 
4-methyl-N-phenyl-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)prop-1-en-1-yl]benzenesulfonamide (22m). Following the general 
procedure T, 22m (33.00 mg, 0.080 mmol) was isolated by FC (pentane/Et2O 
4:1) in 44% yield as a colorless oil starting from allenylamide 21m (57.00 mg, 
0.200 mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) 

and MeOH (0.5 mL). 
1
H NMR (400 MHz, toluene) (δ, ppm): 7.84 (s, 1H, CH=C), 

7.43 (d, J = 7.9 Hz, 2H, Carom-H), 7.06-7.08 (m, 2H, Carom-H), 7.83-7.91 (m, 3H, 
Carom-H), 6.52-6.57 (m, J = 7.9 Hz, 2H, Carom-H), 1.81 (s, 3H, Carom-CH3), 1.04 (d, J = 1.6 Hz, 3H, 
C=CCH3), 1.06 (s, 12H, 4 x CH3). 

13
C NMR (100 MHz, toluene) (δ, ppm): 142.8, 139.9, 138.5, 135.6, 

129.3, 129.0, 128.5, 128.4, 127.7, 127.1, 83.0, 24.7, 24.4, 13.2. 
11

B NMR (128 MHz, toluene) (δ, 
ppm): 31.3 (br s). HRMS (ESI) for C44H56B2N2O8S2Na [2M+Na]

+
: calculated: 849.3562, found: 

849.3563. 
 

4-methyl-N-phenyl-N-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)allyl]benzenesulfonamide (25m). Following the general procedure T, 25m 
(7.45 mg, 0.018 mmol) was isolated by FC (pentane/Et2O 4:1) in 9% yield as a 
colorless oil starting from allenylamide 21m (57.00 mg, 0.200 mmol), B2pin2 
(61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL).  

1
H NMR (400 MHz, toluene) (* denotes product 22m) (δ, ppm): 7.82* (s, 1H), 

7.43-7.40 (m, 2H*+2H, Carom-H), 7.10-6.84 (m, 5H*+5H, Carom-H), 6.70-6.64 
(m, 2H, Carom-H), 6.59-6.55* (m, 2H), 6.12 (s, 1H, C=CHaHb), 6.04 (s, 1H, C=CHaHb), 4.51 (s, 2H, CH2), 
1.92-1.90 (s, 3H, OCH3), 1.83* (s, 3H), 1.33* (s, 3H), 1.02* (s, 12H), 1.0 (s, 12H, 4 x CH3). 

13
C NMR 

(100 MHz, CDCl3) (* denotes product 22m) (δ, ppm): 142.9*, 139.9*, 138.5*, 135.5, 132.1*, 129.2, 
129.0, 128.9, 128.4*, 128.3, 127.1*, 83.0, 29.9, 24.7, 24.4, 24.3*, 13.2*. 

11
B NMR (128.3 MHz, 

toluene) (δ, ppm): 30.3 (br s). HRMS (ESI) for C44H56B2N2O8S2Na [2M-Na]
+
: calculated: 849.3562, 

found: 849.3565. 
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N-(4-bromophenyl)-4-methyl-N-[(1Z)-2-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-

yl]benzenesulfonamide (22n) and N-(4-
bromophenyl)-4-methyl-N-[2-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)allyl]benzenesulfonamide 

(25n). Following the general procedure T, 22n and 
25n (74.00 mg, 0.150 mmol) were isolated by FC 
(pentane/Et2O 4:1) in 47% (22n) and 28% (25n) yield 

as a colorless oil starting from allenylamide 21n (73.00 mg, 0.200 mmol), B2pin2 (61.00 mg, 0.240 
mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 MHz, toluene) (* denotes 

product 22n; 
+
 denotes product 25n) (δ, ppm): 7.68* (s, 1H, CH=C), 7.56* (d, J = 8.4 Hz, 2H, Carom-H), 

7.50
+
 (d, J = 8.3 Hz, 2H, Carom-H), 7.10* (d, J = 8.4 Hz, 2H, Carom-H), 7.00-6.96

+
 (m, 4H, Carom-H), 6.85* 

(d, J = 8.2 Hz, 2H, Carom-H), 6.68
+
 (d, J = 8.9 Hz, 2H, Carom-H), 6.64

+
 (d, J = 8.2 Hz, 2H, C=CH2), 4.40

+
 (s, 

2H, CH2), 2.09
+
 (s, 3H, Carom-CH3), 1.91

+
 (s, 3H, Carom-CH3), 1.82* (s, 3H, Carom-CH3), 1.30* (s, 3H, 

CH=CCH3), 1.06* (s, 6H, 3 x CH3), 1.04* (s, 6H, 3 x CH3), 1.03
+
 (s, 6H, 3 x CH3), 1.02

+
 (s, 6H, 3 x CH3). 

11
B NMR (128 MHz, toluene) (δ, ppm): 31.6 (br s). HRMS (ESI) for C22H27BBrNO4SNa [M+Na]

+
: 

calculated: 514.0834, found: 514.0849. 
 

N,4-dimethyl-N-[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)prop-1-en-1-

yl]benzenesulfonamide (22o) and N,4-dimethyl-N-
[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)allyl]benzenesulfonamide (25o). Following the 
general procedure T, 22o and 25o (22.00 mg, 0.060 mmol) were isolated by FC (pentane/Et2O 4:1) in 
20% (22o) and 11% (25o) yield as a colorless oil starting from allenylamide 21o (44.00 mg, 0.200 
mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR 

(400 MHz, toluene) (* denotes product 22o; 
+
 denotes product 25o) (δ, ppm): 7.62-7.57*

+
 (m, 4H, 

Carom-H), 7.16* (s, 1H, CH=CCH3), 6.78-6.75* (m, 2H, Carom-H), 6.71-6.69
+
 (m, 2H, Carom-H), 6.15

+
 (s, 

1H, C=CHaHb), 5.91
+
 (s, 1H, C=CHaHb), 3.82

+
 (s, 2H, CH2), 2.73*

+
 (s, 6H, NCH3), 2.46

+
 (s, 3H, Carom-CH3), 

1.94*(s, 3H, Carom-CH3), 1.83* (s, 3H, CH=CCH3), 1.05*
+
 (s, 24H, 8 x CH3). 

13
C NMR (100 MHz, toluene) 

(* denotes product 22o) (δ, ppm): 14.0*, 24.7*, 24.8, 25.1, 34.7, 36.1*, 53.8, 83.4*, 83.7, 127.6, 
127.9, 129.5, 129.7, 131.3*, 136.1, 139.5*, 143.1. 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 31.6 (br 

s). HRMS (ESI) for C34H52B2N2O8S2Na [2M+Na]
+
: calculated: 725.3249, found: 725.3262. 

 
tert-butyl (4-bromophenyl)[(1Z)-2-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)prop-1-en-1-yl]carbamate (22p). Following the 
general procedure T, 22p (45.00 mg, 0.100 mmol) was isolated by FC 
(pentane/Et2O 4:1) in 51% yield as a colorless oil starting from 
allenylamide 21p (62.00 mg, 0.200 mmol), B2pin2 (61.00 mg, 0.240 
mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and MeOH (0.5 mL). 

1
H NMR (400 

MHz, toluene) (δ, ppm): 7.75 (s, 1H, CH=C), 7.05 (d, J = 7.0 Hz, 2H, 
Carom-H), 6.77 (d, J = 6.7 Hz, 2H, Carom-H), 1.41 (s, 3H, CH=C-CH3), 1.30 (s, 

9H, 3 x CH3), 1.08 (s, 12H, 4 x CH3). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 13.5, 24.5, 27.5, 80.9, 82.9, 
119.0, 129.0, 131.3, 131.5, 139.0, 140.5, 152.3. 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 30.3 (br s). 

HRMS (ESI) for C20H29BBrNO4Na [M-Na]
+
: calculated: 460.1270, found: 460.1277. 
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tert-butyl (4-bromophenyl)[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)allyl]carbamate (25p). Following the general procedure T, 25p 
(22.00 mg, 0.050 mmol) was isolated by FC (pentane/Et2O 4:1) in 25% 
yield as a colorless oil starting from allenylamide 21p (62.00 mg, 0.200 
mmol), B2pin2 (61.00 mg, 0.240 mmol), KO

t
Bu (6.70 mg, 0.060 mmol) and 

MeOH (0.5 mL). 
1
H NMR (400 MHz, toluene) (* denotes product 22p) (δ, 

ppm): 7.72* (s, 1H), 7.04* (d, J = 8.0 Hz, 2H, Carom-H), 7.06 (d, J = 8.0 Hz, 
2H, Carom-H), 7.76* (d, J = 8.7 Hz, 2H), 6.12 (s, 1H, C=CHaHb), 5.99-5.95 (s, 

2H, CH2), 5.78 (s, 1H, C=CHaHb), 1.36 (s, 9H, 3 x CH3), 1.29* (s, 9H), 1.32* (s, 3H), 1.08* (s, 12H), 1.05 
(s, 12H, 4 x CH3). 

13
C NMR (100 MHz, CDCl3) (* denotes product 22p) (δ, ppm): 13.8 *, 24.88*, 24.9, 

27.9*, 28.2, 53.6, 81.3, 79.9*, 83.2*, 83.5, 116.5, 119.4*, 129.3, 131.5, 131.7, 132.0, 139.3*, 140.8*, 
142.7, 152.8*, 153.8. 

11
B NMR (128.3 MHz, toluene) (δ, ppm): 31.3 (br s). HRMS (ESI) for 

C20H29BBrNO4Na [M-Na]
+
: calculated: 460.1270, found: 460.1283. 

 
 
 

3.3. One-pot metal-free borylation/Pd-catalyzed Suzuki-Miyaura cross-coupling 

reaction 

 
 

 
 
General procedure U: An oven-dried Schlenk tube, sealed with a rubber septum and equipped 

with a magnetic stirring bar, was charged with KO
t
Bu (0.15 mmol, 0.3 eq) and bis(pinacolato)diboron 

(0.6 mmol, 1.2 eq) under argon followed by methanol (1.2 mL, 0.4 M). Then, allenylamide 21a-b, f-h 
(0.5 mmol, 1.0 eq) was added and the reaction mixture was heated to 70ᵒC for 16 hours. The solvent 
was evaporated in vacuo and the crude was dissolved in toluene (0.6 mL, 0.8 M). A solution of 
Pd(PPh3)4 (0.015 mmol, 0.03 eq) in toluene, 1-iodo-4-methylbenzene (1.5 mmol, 3.0 eq) and a KOH 3 
M solution (3.0 mmol, 6.0 eq) were added in sequence and the reaction was heated to 90ᵒC for 16 
hours. After completion, the mixture was cooled to room temperature and diluted with CH2Cl2 (5 
mL). The mixture was filtered through a small pad of Celite® and anhydrous MgSO4. Afterwards, the 
solvent was concentrated in vacuo and the resulting crude was purified by flash column 
chromatography to afford pure 26a-e. 
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N-(4-methoxyphenyl)-N-[(1E)-2-(p-tolyl)prop-1-en-1-yl]acetamide (26a). 
Following the general procedure U, 26a (0.11 g, 0.4 mmol) was isolated by 
FC (pentane/EtOAc 4:1) in 72% yield as a yellow oil starting from 
allenylamide 21a (0.10 g, 0.5 mmol), B2pin2 (0.15 g, 0.6 mmol), KO

t
Bu (0.02 

g, 0.2 mmol), MeOH (1.2 mL), Pd(PPh3)4 (0.002 g, 0.02 mmol), 1-iodo-4-
methylbenzene (0.33 g, 1.5 mmol), KOH 3 M (1.00 mL, 3.0 mmol) and 
toluene (0.6 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.44 (m, 1H, C=C), 

7.06 (d, J = 8.9 Hz, 2H, Carom-H), 6.96 (d, J = 8.9 Hz, 2H, Carom-H), 6.74 (d, J = 8.9 Hz, 2H, Carom-H), 6.65 
(d, J = 8.7 Hz, 2H, Carom-H), 3.84 (s, 3H, OCH3), 3.74 (s, 3H, Carom-CH3), 1.83 (s, 3H, CH3C=O), 1.61 (d, J 
= 5.1 Hz , 3H, CH=CCH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 168.5, 159.4, 152.8, 139.6, 132.6, 

129.8, 129.2, , 116.5, 115.0, 114.8, 109.1, 55.5, 29.7, 23.2, 15.1. HRMS (APCI-FIA-TOF) for C19H22NO2 
[M+H]

+
: calculated: 296.1646, found: 296.1645. 

 
N-(4-methoxyphenyl)-N-[(1E)-2-(p-tolyl)prop-1-en-1-yl]pivalamide (26b). 
Following the general procedure U, 26b (0.04 g, 0.1 mmol) was isolated by 
FC (pentane/EtOAc 4:1) in 26% yield as a yellow oil starting from 
allenylamide 21f (0.12 g, 0.5 mmol), B2pin2 (0.15 g, 0.6 mmol), KO

t
Bu 

(0.02 g, 0.2 mmol), MeOH (1.2 mL), Pd(PPh3)4 (0.002 g, 0.02 mmol), 
1-iodo-4-methylbenzene (0.33 g, 1.5 mmol), KOH 3 M (1.00 mL, 3.0 
mmol) and toluene (0.6 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.29 (d, J 

= 8.2 Hz, 2H, Carom-H), 7.15 (m, 4H, Carom-H), 6.87 (d, J = 9.0 Hz, 2H, Carom-H), 6.75 (br s, 1H, CH=C), 
3.80 (s, 3H, OCH3), 2.34 (s, 3H, Carom-CH3), 1.87 (d, J = 1.4 Hz, 3H, CH=CCH3), 1.29 (s, 3H, 3 x CH3), 1.28 
(s, 6H, 3 x CH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 178.9, 157.8, 137.7, 137.1, 131.3, 129.3, 128.5, 

128.2, 126.0, 122.0, 114.1, 55.6, 40.8, 28.4, 28.2, 21.2, 16.2. HRMS (APCI-FIA-TOF) for C22H28NO2 
[M+H]

+
: calculated: 338.2116, found: 338.2115. 

 
N-(4-methoxyphenyl)-N-[(1E)-2-(p-tolyl)prop-1-en-1-yl]benzamide 

(26c). Following the general procedure U, 26c (0.04 g, 0.1 mmol) was 
isolated by FC (pentane/EtOAc 4:1) in 94% yield as a yellow oil starting 
from allenylamide 21h (0.13 g, 0.5 mmol), B2pin2 (0.15 g, 0.6 mmol), 
KO

t
Bu (0.02 g, 0.2 mmol), MeOH (1.2 mL), Pd(PPh3)4 (0.002 g, 0.02 

mmol), 1-iodo-4-methylbenzene (0.33 g, 1.5 mmol), KOH 3 M (1.00 mL, 
3.0 mmol) and toluene (0.6 mL). 

1
H NMR (400 MHz, toluene) (δ, ppm): 

7.56 (m, 2H, Carom-H), 7.45 (d, J = 6.4 Hz, 1H, CH=C), 7.27 (m, 1H, Carom-H), 7.12 (d, J = 7.7 Hz, 2H, 
Carom-H), 7.04 (m, 2H, Carom-H), 6.94 (m, 2H, Carom-H), 6.91 (d, J = 7.9 Hz, 2H, Carom-H), 6.58 (d, J = 8.8 
Hz, 2H, Carom-H), 3.24 (s, 3H, OCH3), 2.12 (s, 3H, Carom-CH3), 1.77 (s, 3H, CH=CCH3). 

13
C NMR (100 

MHz, toluene) (δ, ppm): 168.8, 157.5, 138.1, 136.6, 135.9, 130.3, 128.9, 128.8, 127.4, 126.5, 125.8, 
124.1, 114.2, 113.8, 54.3, 15.9, 12.2. HRMS (APCI-FIA-TOF) for C24H24NO2 [M+H]

+
: calculated: 

358.1801, found: 358.1803. 
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N-(4-methoxyphenyl)-4-methyl-N-[(1E)-2-(p-tolyl)prop-1-en-1-
yl]benzamide (26d). Following the general procedure U, 26d (0.12 g, 0.3 
mmol) was isolated by FC (pentane/EtOAc 6:1) in 65% yield as a yellow oil 
starting from allenylamide 21g (0.14 g, 0.5 mmol), B2pin2 (0.15 g, 0.6 
mmol), KO

t
Bu (0.02 g, 0.2 mmol), MeOH (1.2 mL), Pd(PPh3)4 (0.002 g, 0.02 

mmol), 1-iodo-4-methylbenzene (0.33 g, 1.5 mmol), KOH 3 M (1.00 mL, 
3.0 mmol) and toluene (0.6 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.60 (br s, 1H, CH=C), 7.37 (m, 

2H, Carom-H), 7.20 (m, 8H, Carom-H), 6.96 (m, 2H, Carom-H), 3.79 (s, 3H, OCH3), 2.34 (d, J = 5.3 Hz, 6H, 2 
x Carom-CH3), 1.80 (s, 3H, CH=CCH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 203.0, 157.5, 140.6, 137.8, 

137.3, 132.9, 130.18, 129.1, 128.7, 128.4, 127.2, 125.9, 122.1, 114.4, 114.1, 55.4, 21.5, 21.1, 16.2. 
HRMS (ESI) for C25H26NO2 [M+H]

+
: calculated: 371.1889, found: 371.1885. 

 
N-[4-(dimethylamino)phenyl]-N-[(1E)-2-(p-tolyl)prop-1-en-1-yl]acetamide 

(26e). Following the general procedure U, 26e (0.11 g, 0.4 mmol) was 
isolated by FC (pentane/EtOAc 1:1) in 74% yield as a yellow oil starting from 
allenylamide 21b (0.11 g, 0.5 mmol), B2pin2 (0.15 g, 0.6 mmol), KO

t
Bu (0.02 

g, 0.2 mmol), MeOH (1.2 mL), Pd(PPh3)4 (0.002 g, 0.02 mmol), 1-iodo-4-
methylbenzene (0.33 g, 1.5 mmol), KOH 3 M (1.00 mL, 3.0 mmol) and 
toluene (0.6 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.29 (d, J = 7.9 Hz, 1H, 

CH=C), 7.17 (m, 2H, Carom-H), 7.10 (d, J = 6.3 Hz, 2H, Carom-H), 6.85 (m, 2H, 
Carom-H), 6.70 (d, J = 8.7 Hz, 2H, Carom-H), 2.99 (s, 6H, NCH3), 2.32 (s, 3H, Carom-CH3), 2.01 (s, 3H, 
CH3C=O), 1.72 (s, 3H, CH=CCH3). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 171.4, 149.3, 139.0, 136.6, 

129.1, 128.9, 128.3, 126.4, 126.0, 112.5, 40.5, 22.8, 21.0, 16.0. HRMS (ESI) for C20H24N2NaO [M+Na]
+
: 

calculated: 308.1889, found: 308.1887. 
 
 
 
 

4. AMIDE ACTIVATION: SYNTHESIS OF CHIRAL ISOCHROMANONES 

4.1. Synthesis of starting materials 
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Synthesis of 4-methylisochromanone (31) 

 

Into a solution of lithium hexamethyldisilazide (LiHMDS, 1M in THF, 8.40 mL, 8.4 mmol, 1.2 eq) 
at -78ᵒC, a cooled solution of 3-isochromanone (1.05 g, 7.0 mmol, 1.0 eq) in THF (30 mL, 0.25 M) was 
cannulated dropwise. After completion of the addition, the reaction mixture was stirred at -78ᵒC for 
30 minutes, after which methyl iodide (1.76 mL, 4.0 mmol, 4.0 eq) was added in one portion. The 
resulting mixture was allowed to warm to room temperature and stirred at that temperature for 15 
hours. Once the reaction was finished, excess of base was quenched by the addition of HCl 1 M (20 
mL) and the resulting biphasic mixture was extracted with EtOAc (2 x 10 mL). The combined organic 
phases were washed with a saturated aqueous solution of brine (2 x 20 mL) and subsequently dried 
over anhydrous Na2SO4. The dried solution was filtered and the filtrate was concentrated under 
reduced pressure. The crude residue was purified by flash column chromatography on silica gel 
(heptane/EtOAc 7:1) to afford 31 (0.55 g, 3.4 mmol) in 48% yield. 

1
H NMR (400 MHz, CDCl3) (δ, 

ppm): 7.42-7.37 (m, 1H, H4), 7.34-7.28 (m, 2H, H6, H7), 7.26-7.23 (m, 1H, H5), 5.36-5.26 (m, 2H, H9), 
3.64 (q, J = 7.0 Hz, 1H, H2), 1.65 (d, J = 7.0 Hz, 3H, H10). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 173.6 

(C1), 135.7 (C8), 132.1 (C3), 129.1 (Carom-C), 127.2 (Carom-C), 124.8 (Carom-C), 124.9 (Carom-C), 69.4 (C9), 
39.5 (C2), 13.0 (C10). FTIR (neat), ν max cm

-1
: 1739 (C=O st). HRMS (ESI

+
): exact mass calculated for 

[M+Na]
+
 (C10H10O2Na) requires m/z 185.0573, found m/z 185.0573. 

 
 

General procedure V: Corresponding isochromanone (5.0 mmol, 1.0 eq) was dissolved in a 
mixture of pyrrolidine (10.0 mmol, 2.0 eq) and triethylamine (15 mmol, 3.0 eq) and the resulting 
solution was heated to 75ᵒC for 15 hours. After this time, the reaction was quenched by the addition 
of HCl 0.5 M (20 mL) and the resulting biphasic mixture was extracted with EtOAc (3 x 20 mL). The 
combined organic phases were dried over anhydrous Na2SO4, filtered and the filtrate was 
concentrated under reduced pressure to afford pure 27, 28, 32, 33. 

 

2-(2-(Hydroxymethyl)phenyl)-1-(pyrrolidin-1-yl)ethan-1-one (27).
23 Following 

the general procedure V, 27 (1.04 g, 4.7 mmol) was isolated in 95% yield as a 

yellow oil starting from 3-isochromanone (0.74 g, 5.0 mmol), pyrrolidine (0.82 

mL, 10.0 mmol) and Et3N (2.09 mL, 15.0 mmol), and it was used in the next 

step without further purification. 
1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.41 (dd, 

                                                           
23  Padmanaban, M.; Carvalho, L. C. R.; Petkova, D.; Lee, J.-W.; Santos, A. S.; Marques, M. M. B.; Maulide, N. 

Tetrahedron 2015, 71, 5994. 
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J = 7.1, 1.8 Hz, 1H, Carom-H), 7.27-7.24 (m, 2H, Carom-H), 7.15 (dd, J = 7.2, 1.6 Hz, 1H, Carom-H), 4.60 (s, 

2H, H9), 3.77 (s, 2H, H2), 3.65 (t, J = 6.9 Hz, 2H, H10), 3.47 (t, J = 6.8 Hz, 2H, H10), 2.04-1.85 (m, 4H, 

H11). 

2-(2-(hydroxymethy)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (32). 
Following the general procedure V, 32 (1.14 g, 4.9 mmol) was isolated by 
FC (heptane/EtOAc gradient from 7:3 to 1:1) in 98% yield as a yellow oil 
starting from 31 (0.81 g, 5.0 mmol), pyrrolidine (0.82 mL, 10.0 mmol) and 
Et3N (2.09 mL, 15.0 mmol).  

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.52-7.26 

(m, 4H, Carom-H), 7.26-7.13 (m, 4H, Carom-H), 4.89 (t, J = 6.1 Hz, 1H, OH), 
4.71 (ddd, J = 31.7, 12.6, 5.2 Hz, 2H, H9), 4.59 (d, J = 6.0 Hz, 2H, H9), 4.59 (d, J = 6.0 Hz, 2H, H9), 4.08 
(q, J = 6.9 Hz, 1H, H2), 3.65 (t, J = 6.9 Hz, 1H, H2), 3.65 (t, J = 6.9 Hz, 2H, H10), 3.52 (ddd, J = 18.3, 
11.0, 5.7 Hz, 1H, H10), 3.46 (t, J = 6.9 Hz, 2H, H10), 3.44-3.38 (m, 2H, H10), 3.34-3.28 (m, 1H, H10), 
2.99 (t, J = 10.0, 6.7 Hz, 1H, H2), 2.01-1.98 (m, 2H, H11), 1.91-1.86 (m, 2H, H11), 1.85-1.64 (m, 4H, 
H11), 1.41 (d, J = 6.9 Hz, 3H, H12). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.8 (C1), 170.3 (C1), 140.4 

(C8), 140.3 (C8), 137.8 (C3), 133.9 (C3), 130.7 (Carom-H), 130.4 (Carom-H), 128.9 (Carom-H), 128.5 
(Carom-H), 128.2 (Carom-H), 127.7 (Carom-H), 127.3 (Carom-H), 126.9 (Carom-H), 63.7 (C9), 63.1 (C9), 47.5 
(C10), 46.3 (C10), 46.2 (C10), 46.1 (C10), 40.8 (C2), 26.2 (C11), 26.1 (C11), 24.4 (C11), 24.2 (C11), 19.7 
(C12). FTIR (neat): 3340 (O-H st), 2979 (C-H st), 1617 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass 

calculated for [M+Na]
+
 (C14H19NO2Na) requires m/z 256.1416, found m/z 256.1303.  

(R)-1-(2-benzhydrylpyrrolidin-1-yl)-2-(2-(hydroxymethyl)phenyl)ethan-1-
one (28). Following the general procedure V, 28 (0.08 g, 0.3 mmol) was 
isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 15% yield as a 
yellow oil starting from 3-isochromanone (0.30 g, 4.0 mmol), (R)-(+)-2-
(Diphenylmethyl)pyrrolidine (0.90 mL, 10.0 mmol) and Et3N (0.84 mL, 6.0 
mmol). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.51-6.99 (m, 14.3H, Carom-H), 

6.81-6.74 (m, 0.4H, Carom-H), 5.05 (ddd, J = 8.0, 5.1, 3.0 Hz, 0.6H, H13), 4.83 
(dd, J = 9.9, 6.6 Hz, 0.4H, H13), 4.64 (t, J = 9.0 Hz, 1H, H14), 4.42 (dt, J = 
28.8, 14.7 Hz, 3H, H2), 3.89-3.65 (app q, J = 12.1 Hz, 2H, H9), 3.64-3.48 (m, 
1H, H10), 3.30 (ddd, J = 30.3, 14.8, 9.8 Hz, 1H, H10), 2.18-1.65 (m, 4H, H11, 

H12). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 171.3 (C1), 170.6 (C1), 142.0 (Carom), 141.8 (Carom), 141.5 
(Carom), 140.7 (Carom), 140.6 (Carom), 140.5 (Carom), 134.1 (Carom), 134.0 (Carom), 131.0 (Carom), 130.8 
(Carom), 130.7 (Carom), 130.3 (Carom), 129.9 (Carom), 129.3 (Carom), 129.1 (Carom), 129.0 (Carom), 128.9 
(Carom), 128.8 (Carom), 128.3 (Carom), 128.2 (Carom), 128.1 (Carom), 127.9 (Carom), 127.7 (Carom), 127.3 
(Carom), 127.2 (Carom), 126.8 (Carom), 126.3 (Carom), 63.9 (C9), 63.6 (C9), 62.9 (C13), 60.3 (C13), 54.4 
(C14), 51.4 (C14), 48.0 (C10), 45.4 (C10), 39.4 (C2), 37.5 (C2), 30.7 (C12), 27.4 (C12), 23.8 (C11), 21.3 
(C11). FTIR (neat): 2924 (C-H st), 1745 (C=C st), 1634 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass 

calculated for [M+Na]
+
 (C26H27NO2Na) requires m/z 408.2042, found m/z 408.1932. 

 
2-(2-(hydroxymethyl)phenyl)-1-((S)-2-methylpyrrolidin-1-yl)propan-1-one 

(33). Following the general procedure V, 33 (0.05 g, 2.0 mmol) was isolated 
by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 49% yield as a yellow oil 
starting from 31 (0.30 g, 4.0 mmol), (R)-(+)-2-(Diphenylmethyl)pyrrolidine 
(0.90 mL, 10.0 mmol) and Et3N (0.84 mL, 6.0 mmol). 

1
H NMR (400 MHz, 

CDCl3) (δ, ppm): 7.39-7.31 (m, 1.6H, Carom-H), 7.31-7.15 (m, 2.4H, Carom-H), 
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4.83-4.65 (m, 2H, H9), 4.31-3.97 (m, 2H, H12), 3.54-3.31 (m, 1H, H13), 3.07-2.91 (m, 1H, H2), 1.94-
1.51 (m, 4H, H10, H11), 1.47-1.34 (m, 3H, H15), 1.24-1.17 (m, 2H, H14), 1.13 (t, J = 12.2 Hz, 1H, H14). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 172.6 (C1), 172.5 (C1), 140.8 (C8), 140.4 (C8), 137.7 (C3), 137.4 
(C3), 129.3 (Carom-H), 129.1 (Carom-H), 129.0 (Carom-H), 128.9 (Carom-H), 127.7 (Carom-H), 127.5 (Carom-H), 
127.3 (Carom-H), 127.0 (Carom-H), 63.5 (C9), 63.4 (C9), 53.5 (C13), 46.2 (C10), 41.3 (C2), 41.0 (C2), 31.9 
(C12), 31.7 (C12), 24.0 (C11), 23.9 (C11), 19.8 (C14), 19.7 (C14), 19.6 (C15), 18.9 (C15). FTIR (neat): 
3385 (O-H st), 2972 (C-H st), 1619 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 

(C15H21NO2Na) requires m/z 270.1572, found m/z 270.1465. 

 

General procedure W: 27-28, 32-33 (3.0 mmol, 1.0 eq) was dissolved in THF (6 mL, 0.5 M) and 
cooled to 0ᵒC. NaH (60 wt.% in mineral oil, 6.0 mmol, 2.0 eq) was added and the resulting mixture 
was brought to 23ᵒC and stirred at this temperature. After 30 minutes, the corresponding allyl 
bromide (6.0 mmol, 2.0 eq) was added and the reaction mixture was stirred at the same 
temperature for 15 hours. After this time, excess sodium hydride was carefully quenched by the 
addition of HCl 1 M (20 mL). The resulting biphasic mixture was extracted with EtOAc (3 x 20 mL), 
and the organic phases were combined and subsequently dried over anhydrous Na2SO4. The dried 
solution was filtered, the filtrate was concentrated under reduced pressure and the crude residue 
was purified by flash column chromatography to afford pure 29/30/34/35a-b.  

2-(((2-(2-oxo-2-(pyrrolidin-1-yl)ethyl)benzyl)oxy)methyl)acrylonitrile 
(29a).  Following the general procedure W, 29a (0.02 g, 0.1 mmol) was 
isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 16% yield as a 
yellow oil starting from 27 (0.11 g, 0.5 mmol), NaH (0.04 g, 1.0 mmol), 
2-(bromomethyl)acrylonitrile (0.15 g, 1.0 mmol) and THF (1 mL). 

1
H NMR 

(400 MHz, CDCl3) (δ, ppm): 7.30-7.13 (m, 4H, Carom-H), 5.96 (t, J = 4.1 Hz, 
1H, H12cis), 5.93 (t, J = 1.3 Hz, 1, H12trans), 4.57 (s, 2H, H9), 4.02-3.99 (m, 

2H, H10), 3.70 (s, 2H, H2), 3.42 (td, J = 6.8, 4.2 Hz, 4H, H13), 1.96- 1.86 (m, 2H, H14), 1.86-1.75 (m, 
2H, H14). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 169.2 (C1), 135.4 (C8), 134.7 (C3), 131.9 (C12), 130.5 

(Carom-H), 129.8 (Carom-H), 128.7 (Carom-H), 127.0 (Carom-H), 129.5 (C11), 117.3 (C15), 71.5 (C9), 69.4 
(C10), 46.9 (C13), 46.0 (C13), 39.0 (C2), 26.2 (C14), 24.5 (C14). FTIR (neat): 2971 (C-H st), 2872 (C-H 
st), 1721 (C=C st), 1630 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C17H20N2O2Na) 

requires m/z 307.1325, found m/z 307.1415. 
 

2-(2-(((2-(chloromethyl)allyl)oxy)methyl)phenyl)-1-(pyrrolidin-1-yl)ethan-
1-one (29b). Following the general procedure W, 29b (0.19 g, 0.6 mmol) 
was isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 40% yield as 
a yellow oil starting from 27 (0.31 g, 1.5 mmol), NaH (0.12 g, 3.0 mmol), 
3-chloro-2-(chloromethyl)-1-propene (0.46 mL, 3.0 mmol) and THF (4 mL). 
1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.38-7.15 (m, 4H, Carom-H), 5.30 (s, 1H, 

H12cis), 5.24 (d, J = 1.1 Hz, 1H, H12trans), 4.56 (s, 2H, H9), 4.10 (s, 2H, C10), 
4.08 (s, 2H, H15), 3.75 (s, 2H, H2), 3.50 (t, J = 6.8 Hz, 2H, H13), 3.43 (t, J = 6.8 Hz, 2H, H13), 1.98-1.79 
(m, 4H, H14). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 169.5 (C1), 142.1 (C11), 136.2 (C8), 134.5 (C3), 

130.1 (Carom-H), 129.7 (Carom-H), 128.5 (Carom-H), 127.0 (Carom-H), 116.9 (C12), 71.3 (C10), 70.3 (C9), 
47.0 (C13), 46.1 (C13), 45.4 (C15), 39.0 (C2), 26.3 (C14), 24.5 (C14). FTIR (neat): 2971 (C-H st), 2873 



Experimental section  277 

 

(C-H st), 1722 (C=C st), 1636 (C=O st) cm
-1

. HRMS (ESI
+
) exact mass calculated for [M+Na]

+
 

(C17H22
35

ClNO2Na) requires m/z 330.1339, found m/z 330.1226. 
 

2-(((2-(1-oxo-1-(pyrrolidin-1-yl)propan-2-
yl)benzyl)oxy)methyl)acrylonitrile (34a). Following the general procedure 
W, 34a (0.06 g, 0.2 mmol) was isolated by FC (heptane/EtOAc gradient 
from 7:3 to 1:1) in 10% yield as a yellow oil starting from 32 (0.43 g, 1.9 
mmol), NaH (0.15 g, 3.7 mmol), 2-(bromomethyl)acrylonitrile (0.54 g, 3.7 
mmol) and THF (4 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.35-7.27 (m, 

3H, Carom H), 7.25-7.20 (m, 1H, Carom-H), 6.06 (s, 1H, H12cis), 6.01 (t, J = 1.4 
Hz, 1H, H12trans), 4.70 (dd, J = 10.1, 5.6 Hz, 1H, H9), 4.57 (dd, J = 12.1, 3.4 Hz, 1H, H9), 4.11 (s, 2H, 
H10), 4.07-4.02 (m, 1H, H12), 3.58-3.47 (m, 2H, H13), 3.47-3.33 (m, 2H, H13), 1.87-1.70 (m, 4H, H14), 
1.42 (d, J = 6.8 Hz, 3H, H16). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.4 (C1), 141.5 (C8), 133.5 (C12), 

132.0 (C3), 130.3 (Carom-H), 129.7 (Carom-H), 127.8 (Carom-H), 126.9 (Carom-H), 120.5 (C11), 117.3 (C15), 
71.4 (C9), 69.7 (C10), 46.3 (C13), 46.2 (C13), 40.9 (C2), 26.2 (C14), 24.3 (C14), 19.9 (C16). FTIR (neat): 
2978 (C-H st), 1636 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C18H22N2O2Na) 

requires m/z 321.1681, found m/z 321.1572. 
 

2-(2-(((2-(chloromethyl)allyl)oxy)methyl)phenyl)-1-(pyrrolidin-1-
yl)propan-1-one (34b). Following the general procedure W, 34b (0.12 g, 0.4 
mmol) was isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 21% 
yield as a yellow oil starting from 32 (0.43 g, 1.8 mmol), NaH (0.09 g, 3.7 
mmol), 3-chloro-2-(chloromethyl)-1-propene (0.43 mL, 3.7 mmol) and THF 
(4 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.34 (dd, J = 7.7, 1.0 Hz, 1H, 

Carom-H), 7.26 (ddd, J = 7.6, 7.0, 1.3 Hz, 2H, Carom-H), 7.19 (td, J = 7.4, 1.3 Hz, 
1H, Carom-H), 5.29 (d, J = 0.7 Hz, 1H, H12cis), 5.22 (d, J = 1.2 Hz, 1H, H12trans) 4.62 (d, J = 11.6 Hz, 1H, 
H9), 4.50 (d, J = 11.6 Hz, 1H, H9), 4.12-4.06 (m, 4H, H10,15), 4.03 (q, J = 6.8 Hz, 1H, H2), 3.55-3.46 (m, 
1H, H13), 3.46-3.31 (m, 2H, H13), 2.95-2.87 (m, 1H, H13), 1.84-1.63 (m, 4H, H14), 1.39 (d, J = 6.8 Hz, 
3H, H16). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.5 (C1), 141.9 (C8), 141.2 (C3), 134.0 (C11), 130.0 

(Carom-H), 129.1 (Carom-H), 127.3 (Carom-H), 126.7 (Carom-H), 116.9 (C12), 70.9 (C10), 70.4 (C9), 46.2 
(C13), 46.0 (C13), 45.3 (C15), 40.7 (C2), 26.1 (C14), 24.2 (C14), 19.9 (C16). FTIR (neat): 2973 (C-H st), 
2872 (C-H st), 1636 (C=O st), 1080 (C-Cl st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 

(C18H24
35

ClNO2) requires m/z 344.1496, found m/z 344.1388. 
 

(R)-2-(((2-(2-(2-benzhydrylpyrrolidin-1-yl)-2-
oxoethyl)benzyl)oxy)methyl)acrylonitrile (30a). Following the general 
procedure W, 30a (0.04 g, 0.1 mmol) was isolated by FC (heptane/EtOAc 
gradient from 7:3 to 1:1) in 47% yield as a yellow oil starting from 28 (0.08 
g, 0.2 mmol), NaH (0.02 g, 0.4 mmol), 2-(bromomethyl)acrylonitrile (0.06 g, 
0.4 mmol) and THF (1 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.33-6.96 

(m, 22H, Carom-H), 5.94 (s, 1H, H12cis), 5.90 (td, J = 6.7, 3.4 Hz, 1H, 
H12trans), 5.01 (dt, J = 12.9, 3.7 Hz, 1H, H17), 4.66-4.52 (m, 1H, H16), 4.51-
4-43 (m, 2H, H10), 4.42-4.26 (m, 2H, H2), 4.00-3.91 (m, 2H, H13), 3.63 (app 
q, J = 29.0, 14.3 Hz, 2H, H9), 2.02-1.62 (m, 4H, H15, H14). 

13
C NMR (100 

MHz, CDCl3) (δ, ppm): 170.1 (C1), 169.6 (C1), 142.3 (Carom), 142.1 (Carom), 
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141.9 (Carom), 141.8 (Carom), 140.9 (Carom), 136.5 (Carom), 135.4 (Carom), 135.3 (Carom), 134.8 (Carom), 
134.7 (Carom), 131.9 (C12), 131.8 (C12), 130.8 (Carom), 130.7 (Carom), 130.5 (Carom), 129.9 (Carom), 129.9 
(Carom), 129.6 (Carom), 129.3 (Carom), 129.3 (Carom), 129.1 (Carom), 129.1 (Carom), 129.0 (Carom), 128.8 
(Carom), 128.8 (Carom), 128.8 (Carom), 128.7 (Carom), 128.5 (Carom), 128.4 (Carom), 128.3 (Carom), 128.1 
(Carom), 128.1 (Carom), 127.1 (Carom), 127.1 (Carom), 127.1 (Carom), 126.9 (Carom), 126.7 (Carom), 126.3 
(Carom), 120.7 (C11), 117.4 (C22), 71.6 (C10), 71.3 (C10), 69.4 (C9), 69.2 (C9), 62.4 (C16), 60.1 (C16), 
54.3 (C17), 52.4 (C17), 47.2 (C13), 45.1 (C13), 39.3 (C2), 37.5 (C2), 30.6 (C15), 27.8 (C15), 23.7 (C14), 
21.4 (C14). FTIR (neat): 2924 (C-H st), 1743 (C=C st), 1638 (C=C st) cm

-1
. HRMS (ESI

+
) exact mass 

calculated for [M+Na]
+
 (C30H30N2O2Na) requires m/z 473.2307, found m/z 473.2193. 

 
(R)-1-(2-benzhydrylpyrrolidin-1-yl)-2-(2-(((2-

(chloromethyl)allyl)oxy)methyl)phenyl)ethan-1-one (30b). Following the 
general procedure W, 30b (0.24 g, 0.5 mmol) was isolated by FC 
(heptane/EtOAc gradient from 7:3 to 1:1) in 53% yield as a yellow oil 
starting from 28 (0.37 g, 0.9 mmol), NaH (0.08 g, 1.9 mmol), 3-chloro-2-
(chloromethyl)-1-propene (0.22 mL, 1.9 mmol) and THF (2 mL). 

1
H NMR 

(400 MHz, CDCl3) (δ, ppm): 7.39-7.13 (m, 22H, Carom-H), 7.09-7.03 (m, 1H, 
Carom-H), 6.91-6.83 (m, 1H, Carom-H), 5.32- 5.29 (m, 1H, H12cis), 5.24 (d, J = 
1.4 Hz, 1H, H12trans), 5.11 (ddd, J = 8.2, 5.9, 2.8 Hz, 1H, H16), 4.58 (d, J = 
6.0 Hz, 1H, H17), 4.52 (app q, J = 11.4 Hz, 2H, H9), 4.11 (s, 2H, H22), 4.06 (s, 
2H, H10), 3.70 (d, J = 3.9 Hz, 2H, H2), 3.43 (dt, J = 10.2, 8.0 Hz, 1H, H13), 

3.18 (ddd, J = 10.1, 8.8, 4.1 Hz, 1H, H13), 2.01-1.77 (m, 4H, H14, H15). 
13

C NMR (100 MHz, CDCl3) (δ, 
ppm): 170.3 (C1), 169.8 (C1), 142.3 (Carom), 142.2 (Carom), 142.1 (Carom), 141.8 (Carom), 140.9 (Carom), 
136.2 (Carom), 136.0 (Carom), 134.6 (Carom), 134.5 (Carom), 130.4 (Carom), 130.0 (Carom), 129.8 (Carom), 
129.6 (Carom), 129.2 (Carom), 129.2 (Carom), 129.1 (Carom), 129.0 (Carom), 128.8 (Carom), 128.7 (Carom), 
128.4 (Carom), 128.3 (Carom), 128.1 (Carom), 127.1 (Carom), 127.1 (Carom), 127.0 (Carom), 126.8 (Carom), 
126.7 (Carom), 126.2 (Carom), 116.9 (C12), 116.8 (C12), 71.2 (C10), 70.8 (C10), 70.2 (C9), 70.1 (C9), 62.4 
(C16), 60.5 (C16), 54.3 (C17), 52.4 (C17), 47.6 (C13), 45.4 (C22), 45.1 (C13), 39.2 (C2), 37.4 (C2), 30.5 
(C15), 27.7 (C15), 23.8 (C14), 21.4 (C14). FTIR (neat): 2983 (C-H st), 1638 (C=C st), 1078 (C-Cl st) cm

-1
. 

HRMS (ESI+) exact mass calculated for [M+Na]
+
 (C30H32

35
ClNO2Na) requires m/z 496.2122, found m/z 

496.2010. 
 

2-(((2-(1-((S)-2-methylpyrrolidin-1-yl)-1-oxopropan-2-
yl)benzyl)oxy)methyl)acrylonitrile (35a). Following the general procedure 
W, 35a was isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 26% 
yield as a yellow oil. 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.80-7.74 (m, 

0.3H, Carom-H), 7.59-7.18 (m, 4.5H, Carom-H), 6.08-6.04 (m, 1H, H12cis), 6.03-
5.98 (m, 1H, H12trans), 4.69 (dt, J = 15.8, 7.9 Hz, 1H, H9), 4.55 (dd, J = 11.6, 
2.8 Hz, 1H, H9), 4.28-4.14 (m, 1.5H, H13), 4.13-4.20 (m, 1H, H10), 4.10-4.06 
(m, 1H, H10), 3.58-3.33 (m, 1.5H, H13, H2), 3.09-2.87 (m, 1H, H16), 1.96-

1.73 (m, 3H, H14, H15), 1.53-1.46 (m, 1H, H15), 1.45-1.35 (m, 3H, H19), 1.23-1.20 (m, 1.5H, H17), 
1.15-1.09 (m, 1.5H, H17). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.1 (C1), 172.0 (C1), 144.4 (C8), 

143.8 (C8), 142.2 (C3), 141.8 (C12), 141.7 (C3), 141.4 (C12), 135.1 (Carom-H), 134.9 (Carom-H), 134.5 
(Carom-H), 134.5 (Carom-H), 133.5 (Carom-H), 133.5 (Carom-H), 132.0 (Carom-H), 131.9 (Carom-H), 130.3 
(Carom-H), 130.2 (Carom-H), 129.6 (Carom-H), 129.6 (Carom-H), 128.6 (Carom-H), 128.5 (Carom-H), 127.6 
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(Carom-H), 127.4 (Carom-H), 127.2 (Carom-H), 126.8 (Carom-H), 120.4 (C11), 117.2 (C18), 117.2 (C18), 71.4 
(C9), 71.3 (C9), 69.7 (C10), 69.6 (C10), 62.6 (C16), 53.4 (C13), 53.1 (C13), 46.4 (C2), 46.2 (C2), 41.1 
(C15), 40.9 (C15), 24.0 (C14), 24.0 (C14), 19.9 (C17), 19.7 (C17), 18.9 (C19). FTIR (neat): 2970 (C-H st), 
2871 (C-H st), 1692 (C=O st), 1630 (C=C st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 

(C19H24N2O2Na) requires m/z 335.1838, found m/z 335.1731. 
 

2-(2-(((2-(chloromethyl)allyl)oxy)methyl)phenyl)-1-((S)-2-
methylpyrrolidin-1-yl)propan-1-one (35b). Following the general 
procedure W, 35b was isolated by FC (heptane/EtOAc gradient from 7:3 to 
1:1) in 26% yield as a yellow oil. 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.50-

7.05 (m, 4H, Carom-H), 5.37-5.18 (m, 2H, H12), 4.68-4.58 (m, 1H, H9), 4.53- 
4.45 (m, 1H, H9), 4.30-4.14 (m, 1H, H10), 4.14-4.06 (m, 3H, H10, H18), 4.05-
3.94 (m, 0.7H, H13), 3.59-3.30 (m, 1.2H, H13), 2.98-2.84 (m, 1H, H2), 1.96-
1.53 (m, 4H, H14, H15), 1.44-1.34 (m, 3H, H19), 1.23-1.18 (m, 1.6H, H17), 

1.18-1.14 (m, 0.4H, H17), 1.12 (d, J = 6.3 Hz, 1H, H17). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 172.2 
(C1), 172.1 (C1), 160.7 (C11), 141.9 (C8), 141.6 (C8), 134.4 (C3), 134.4 (C3), 130.0 (Carom-H), 129.9 
(Carom-H), 129.2 (Carom-H), 129.2 (Carom-H), 127.2 (Carom-H), 127.1 (Carom-H), 126.7 (Carom-H), 126.7 
(Carom-H), 116.9 (C12), 71.0 (C10), 70.9 (C10), 70.5 (C9), 70.4 (C9), 63.6 (C16), 63.5 (C16), 53.4 (C13), 
53.1 (C13), 46.3 (C18), 46.1 (C18), 41.0 (C2), 40.8 (C2), 31.9 (C15), 31.7 (C15), 24.0 (C14), 23.9 (C14), 
19.9 (C17), 19.8 (C17), 19.7 (C19), 18.9 (C19). FTIR (neat): 2972 (C-H st), 2872 (C-H st), 1720 (C=C st), 
1618 (C=C st), 1085 (C-Cl st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C19H26

35
ClNO2Na) 

requires m/z 358.1652, found m/z 358.1545. 
 
 
 

 
 

General procedure X: To a solution of 29/30/34/35b (1.0 mmol, 1.0 eq) in DMF (2.5 mL, 0.4 M) 
KOAc (1.1 mmol, 1.1 eq) was added and the solution was stirred at 65ᵒC for 15 hours. After that 
time, the reaction was quenched with H2O (10 mL) and it was diluted with Et2O (10 mL). The layers 
were separated and the organic layer was washed with H2O (2 x 20 mL), dried over Na2SO4, filtered 
and concentrated under reduced pressure. The resulting crude material was purified by flash column 
chromatography to afford 29c/30c/34c/35c. 
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2-(((2-(2-oxo-2-(pyrrolidin-1-yl)ethyl)benzyl)oxy)methyl)allyl acetate 
(29c). Following the general procedure X, 29c (0.07 g, 0.2 mmol) was 
isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 71% yield as a 
yellow oil starting from 29b (0.96 g, 0.3 mmol), KOAc (0.03 g, 0.3 mmol) 
and DMF (1 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.33-7.17 (m, 4H, 

Carom-H), 5.25-5.14 (m, 2H, H12), 4.59 (s, 2H, H9), 4.53 (s, 2H, H15), 3.98 (s, 
2H, H10), 3.72 (s, 2H, H2), 3.48 (t, J = 6.8 Hz, 2H, H13), 3.41 (t, J = 6.8 Hz, 2H, H13), 2.04 (s, 3H, H17), 
1.98-1.76 (m, 4H, H14). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 170.7 (C16), 169.4 (C1), 140.7 (C11), 

136.2 (C8), 134.5 (C3), 130.0 (Carom-H), 129.6 (Carom-H), 128.3 (Carom-H), 126.9 (Carom-H), 115.2 (C12), 
71.0 (C10), 70.7 (C9), 64.7 (C15), 46.9 (C13), 46.0 (C13), 38.9 (C2), 26.2 (C14), 24.5 (C14), 20.9 (C17). 
FTIR (neat): 2982 (C-H st), 1738 (C=O st), 1637 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for 

[M+Na]
+
 (C19H25NO4Na) requires m/z 354.1784, found m/z 354.1680. 

 
2-(((2-(1-oxo-1-(pyrrolidin-1-yl)propan-2-yl)benzyl)oxy)methyl)allyl 

acetate (34c). Following the general procedure X, 34c was isolated by FC 
(heptane/EtOAc gradient from 7:3 to 1:1) in 9% yield (over 3 steps) as a 
yellow oil. 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.36-7.33 (m, 1H, 

Carom-H), 7.30-7.24 (m, 2H, Carom-H), 7.20 (td, J = 7.4, 1.2 Hz, 1H, Carom-H), 
5.23 (s, 2H, H12), 4.64-4.59 (m, 3H, H9, H10) 4.50 (d, J = 11.7 Hz, 1H, 
H9), 4.08-3.99 (m, 3H, H2, H10), 3.55- 3.49 (m, 1H, H13), 3.46-3.33 (m, 

2H, H13), 2.94-2.88 (m, 1H, H13), 2.07 (s, 3H, H17), 1.87-1.64 (m, 4H, H14), 1.40 (d, J = 6.9 Hz, 3H, 
H18). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.5 (C1), 141.3 (C8), 140.6 (C3), 134.4 (C11), 130.1 

(Carom-H), 129.2 (Carom-H), 127.4 (Carom-H), 126.7 (Carom-H), 115.4 (C12), 71.0 (C10), 70.7 (C9), 64.7 
(C15), 46.2 (C13), 46.1 (C13), 40.8 (C2), 26.1 (C14), 24.2 (C14), 21.0 (C17), 19.9 (C18). FTIR (neat): 
2974 (C-H st), 2873 (C-H st), 1748 (C=O st), 1687 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for 

[M+Na]
+
 (C20H27NO4Na) requires m/z 368.1940, found m/z 368.1828. 

 
(R)-2-(((2-(2-(2-benzhydrylpyrrolidin-1-yl)-2-

oxoethyl)benzyl)oxy)methyl)allyl acetate (30c). Following the general 
procedure X, 30c (0.08 g, 0.2 mmol) was isolated by FC (heptane/EtOAc 
gradient from 7:3 to 1:1) in 71% yield as a yellow oil starting from 30b 
(0.11 g, 0.2 mmol), KOAc (0.03 g, 0.3 mmol) and DMF (0.5 mL). 

1
H NMR 

(400 MHz, CDCl3) (δ, ppm): 7.41-7.11 (m, 22H, Carom-H), 7.08-7.02 (m, 
1H, Carom-H), 6.92-6.81 (m, 0.6H, Carom-H), 5.26-5.20 (m, 2H, H12), 5.11 
(ddd, J = 8.2, 6.0, 2.8 Hz, 1H, H16), 4.64-4.58 (m, 2H, H22), 4.58 (d, J = 
6.0 Hz, 1H, H17), 4.45 (app q, J = 12.9 Hz, 2H, H9), 3.99 (s, 2H, H10), 3.90 
(d, J = 4.3 Hz, 2H, H2), 3.49-3.13 (m, 2H, H13), 2.06 (d, J = 3.2 Hz, 3H, 
H24), 2.04-1.83 (m, 4H, H14, H15). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 

170.7 (C23), 170.3 (C23), 169.8 (C1), 169.2 (C1), 142.3 (C11), 142.2 (C11), 140.9 (Carom), 140.8 (Carom), 
136.2 (Carom), 136.0 (Carom), 134.5 (Carom), 134.4 (Carom), 130.3 (Carom), 130.3 (Carom), 130.0 (Carom), 
129.7 (Carom), 129.6 (Carom), 129.2 (Carom), 129.2 (Carom), 129.1 (Carom), 129.0 (Carom), 128.9 (Carom), 
128.8 (Carom), 128.7 (Carom), 128.4 (Carom), 128.3 (Carom), 128.3 (Carom), 128.2 (Carom), 128.1 (Carom), 
128.0 (Carom), 127.2 (Carom), 127.1 (Carom), 127.0 (Carom), 126.9 (Carom), 126.7 (Carom), 126.2 (Carom), 
115.4 (C12), 115.3 (C12), 70.9 (C10), 70.6 (C10), 70.6 (C9), 70.5 (C9), 64.8 (C16), 62.4 (C22), 60.0 
(C22), 54.3 (C17), 52.3 (C17), 47.1 (C13), 45.1 (C13), 39.2 (C2), 37.5 (C2), 30.6 (C15), 30.2 (C15), 27.7 
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(C14), 23.7 (C14), 21.4 (C24), 21.1 (C24. FTIR (neat): 2980 (C-H st), 1739 (C=O st), 1640 (C=O st) cm
-1

. 
HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C32H35NO4Na) requires m/z 520.2566, found m/z 

520.2469. 
 

2-(((2-(1-((S)-2-methylpyrrolidin-1-yl)-1-oxopropan-2-
yl)benzyl)oxy)methyl)allyl acetate (35c). Following the general 
procedure X, 35c was isolated by FC (heptane/EtOAc gradient from 7:3 
to 1:1) in 18% yield (over 3 steps) as a yellow oil. 

1
H NMR (400 MHz, 

CDCl3) (δ, ppm): 7.49-7.13 (m, 4H, Carom-H), 5.21 (s, 2H, H12), 4.63-4.57 
(m, 3H, H18, H19), 4.50-4.44 (m, 1H, H9), 4.27-4.12 (m, 1H, H10), 4.09-
3.92 (m, 3H, H10, H13), 3.45-3.30 (m, 1H, H16), 2.96-2.86 (m, 1H, H2), 
1.94-1.42 (m, 4H, H14, H15), 1.38 (td, J = 8.8, 4.4 Hz, 3H, H21), 1.20 (d, J 

= 6.4 Hz, 1.6 H, H17), 1.14 (d, J = 6.4 Hz, 0.4H, H17), 1.11 (d, J = 6.4 Hz, 1H, H17). 
13

C NMR (100 MHz, 
CDCl3) (δ, ppm): 172.1 (C1), 170.7 (C19), 141.2 (C11), 140.6 (C11), 130.2 (Carom), 130.1 (Carom), 130.0 
(Carom), 130.0 (Carom), 129.2 (Carom), 129.1 (Carom), 129.0 (Carom), 127.2 (Carom), 127.1 (Carom), 127.1 
(Carom), 126.7 (Carom), 115.3 (C12), 71.0 (C10), 70.9 (C10), 70.7 (C9), 70.6 (C9), 64.7 (C18), 64.7 (C18), 
53.3 (C16), 53.0 (C16), 46.3 (C13), 46.1 (C13), 41.0 (C2), 40.8 (C2), 31.9 (C15), 31.7 (C15), 24.0 (C14), 
23.9 (C14), 20.9 (C20), 19.9 (C17), 19.7 (C17), 19.6 (C21), 18.8 (C21). FTIR (neat): 2970 (C-H st), 2871 
(C-H st), 1740 (C=O st), 1637 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 

(C21H29NO4Na) requires m/z 382.2097, found m/z 382.1988. 
 
 

 
 
General procedure Y: To a solution of 29c/30c/34c/35c (0.5 mmol, 1.0 eq) in MeOH (2.5 mL, 0.2 

M) a solution of K2CO3 (0.5 mmol, 1.0 eq) in water (0.3 mL, 1.7 M) was added. The mixture was 
stirred at room temperature for 15 hours before being quenched by the addition of saturated 
aqueous NH4Cl (10 mL). The solution was then extracted with EtOAc (3 x 20 mL). The combined 
organic fractions were dried with Na2SO4, filtered and concentrated under reduced pressure. The 
resulting crude was added to a stirred solution of powdered KOH (2.0 mmol, 4.0 eq) in DMSO (1 mL, 
0.5 M), followed by iodomethane (1.0 mmol, 2.0 eq). The reaction mixture was stirred at room 
temperature for 15 hours before being quenched with a saturated aqueous solution of NH4Cl (10 
mL). Aqueous phase was extracted with EtOAc (3 x 20 mL) and the combined organic phases were 
washed with H2O (2 x 20 mL), dried over Na2SO4 and concentrated under reduced pressure. The 
resulting crude material was purified by flash column chromatography on silica gel to afford pure 
29d/34d/35d. 
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2-(2-(((2-(methoxymethyl)allyl)oxy)methyl)phenyl)-1-(pyrrolidin-1-
yl)ethan-1-one (29d). Following the general procedure Y, 29d was isolated 
by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 5% yield (over 5 steps) as 
a yellow oil. 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.40-7.14 (m, 4H, Carom-H), 

5.23-5.16 (m, 2H, H12), 4.54 (s, 2H, H9), 3.99 (s, 2H, H15), 3.93 (s, 2H, H10), 
3.75 (s, 2H, H2), 3.50 (t, J = 6.8 Hz, 2H, H13), 3.42 (t, J = 6.8 Hz, 2H, H13), 

3.32 (s, 3H, H16), 1.99-1.77 (m, 4H, H14). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 169.4 (C1), 142.6 
(C11), 136.3 (C8), 134.4 (C3), 129.8 (Carom-H), 129.5 (Carom-H), 128.3 (Carom-H), 126.8 (Carom-H), 114.0 
(C12), 73.4 (C15), 71.0 (C10), 70.7 (C9), 58.1 (C16), 46.8 (C13), 45.9 (C13), 38.8 (C2), 26.2 (C14), 24.4 
(C14). FTIR (neat): 2872 (C-H st), 1720 (C=O st), 1633 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass 

calculated for [M+Na]
+
 (C18H25NO3Na) requires m/z 326.1834, found m/z 326.1726. 

 
2-(2-(((2-(methoxymethyl)allyl)oxy)methyl)phenyl)-1-(pyrrolidin-1-

yl)propan-1-one (34d). Following the general procedure Y, 34d was 
isolated by FC (heptane/EtOAc gradient from 7:3 to 1:1) in 10% yield (over 
5 steps) as a yellow oil. 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.34 (d, J = 7.7 

Hz, 1H, Carom-H), 7.30-7.24 (m, 2H, Carom-H), 7.19 (t, J = 7.4 Hz, 1H, Carom-H), 
5.19 (s, 2H, H12), 4.62 (d, J = 11.6 Hz, 1H, H9), 4.51 (d, J = 11.6 Hz, 1H, H9), 
4.08-3.99 (m, 3H, H2,15), 3.93 (s, 2H, H10), 3.55-3.49 (m, 1H, H13), 3.45-

3.36 (m, 2H, H13), 3.32 (s, 3H, H16), 2.91 (dt, J = 10.3, 6.5 Hz, 1H, H13), 1.84-1.63 (m, 4H, H14), 1.39 
(d, J = 6.9 Hz, 3H, H17). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.6 (C1), 142.5 (C8), 141.3 (C3), 134.6 

(C11), 130.0 (Carom-H), 129.1 (Carom-H), 127.3 (Carom-H), 126.7 (Carom-H), 114.3 (C12), 73.5 (C15), 71.0 
(C10), 70.8 (C9), 58.2 (C16), 46.2 (C13), 46.1 (C13), 40.7 (C2), 26.1 (C14), 24.2 (C14), 19.9 (C17). FTIR 
(neat): 2973 (C-H st), 2929 (C-H st), 1635 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for 

[M+Na]
+
 (C19H27NO3Na) requires m/z 340.1991, found m/z 340.1885. 

 
2-(2-(((2-(methoxymethyl)allyl)oxy)methyl)phenyl)-1-((S)-2-

methylpyrrolidin-1-yl)propan-1-one (35d). Following the general 
procedure Y, 35d was isolated by FC (heptane/EtOAc gradient from 7:3 to 
1:1) in 11% yield (over 5 steps) as a yellow oil. 

1
H NMR (400 MHz, CDCl3) 

(δ, ppm): 7.42-7.16 (m, 4H, Carom-H), 5.20 (s, 2H, H12), 4.67-4.59 (m, 1H, 
H9), 4.51 (t, J = 8.4 Hz, 1H, H9), 4.31-4.16 (m, 1H, H10), 4.08-3.98 (m, 3H, 
H18, H10), 3.94 (s, 2H, H13), 3.48-3.38 (m, 1H, H16), 3.33 (s, 3H, H19), 
2.97-2.87 (m, 1H, H2), 1.97-1.69 (m, 3H, H15, H14), 1.67-1.53 (m, 1H, 

H14), 1.43-1.35 (m, 3H, H20), 1.22 (d, J = 6.4 Hz, 1.6 H, H17), 1.17 (d, J = 6.4 Hz, 0.4H, H17), 1.13 (d, J 
= 6.3 Hz, 1H, H17). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 172.3 (C1), 172.2 (C1), 142.5 (C11), 141.7 

(C8), 141.2 (C8), 134.7 (C3), 134.6 (C3), 130.0 (Carom-H), 130.0 (Carom-H), 129.1 (Carom-H), 129.0 
(Carom-H), 127.1 (Carom-H), 127.0 (Carom-H), 126.7 (Carom-H), 126.7 (Carom-H), 114.3 (C12), 73.5 (C18), 
71.1 (C10), 71.0 (C10), 70.8 (C9), 70.8 (C9), 58.2 (C19), 53.4 (C16), 53.0 (C16), 46.3 (C13), 46.1 (C13), 
41.0 (C2), 40.8 (C2), 32.0 (C15), 31.8 (C15), 24.0 (C14), 23.9 (C14), 20.0 (C17), 19.8 (C17), 19.7 (C20), 
18.9 (C20). FTIR (neat): 2978 (C-H st), 1639 (C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for 

[M+Na]
+
 (C20H29NO3Na) requires m/z 354.2147, found m/z 354.2040. 
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4.2. Synthesis of α-chiral isochromanones  

 

 
 

General procedure Z: A flame-dried Schlenk flask containing a solution of amide 30a-c (0.1 mmol, 
1.0 eq) and 2-iodopyridine (0.2 mmol, 2.0 eq) in CH2Cl2 (0.5 mL, 0.2 M) was cooled to -78ᵒC. To the 
cooled mixture, triflic anhydride (0.105 mmol, 1.05 eq) was added dropwise and the resulting 
solution was subsequently stirred at the same temperature for 10 min. After this time, the flask was 
brought to room temperature (23ᵒC) and kept at this temperature for another 10 min, before EtOAc 
was added. The resulting solution was treated with a saturated aqueous solution of NH4Cl (3 mL), 
the phases were separated and the organic phase was washed once more with a saturated aqueous 
solution of NH4Cl (3 mL). The washed solution was dried over anhydrous sodium sulfate, filtered and 
the filtrate was concentrated under reduced pressure. The crude residue was redissolved in a 
mixture of EtOAc and a saturated aqueous solution of KH2PO4 (3 mL/1 mL, 0.025 M). The biphasic 
resulting mixture was stirred vigorously at 30ᵒC for 15 hours, after which the phases were separated 
and the organic phase was washed twice with HCl 1 M (2 x 5 mL). The washed solution was dried 
over anhydrous sodium sulfate, filtered and the filtrate was concentrated under reduced pressure. 
The crude residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate) 
to afford pure isochromanones 36a-c. 
 
 

2-((3-oxoisochroman-4-yl)methyl)acrylonitrile (36a).  Following the general 
procedure Z, 36a was isolated (7.00 mg, 0.030 mmol) by FC (heptane/EtOAc 
gradient from 7:3 to 1:1) in 30% yield as a yellow oil starting from 30a (45.00 mg, 
0.100 mmol), 2-iodopyridine (0.020 mL, 0.200 mmol), Tf2O (0.02 mL, 0.100 mmol) 
and CH2Cl2 (0.5 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.43-7.32 (m, 2H, 

Carom-H), 7.30-7.26 (m, 2H, Carom-H), 6.03 (d, J = 1.0 Hz, 1H, H12cis), 5.88 (t, J = 1.5 
Hz, 1H, H12trans), 5.38 (s, 2H, H9), 3.91 (t, J = 7.0 Hz, 1H, H2), 3.10 (ddt, J = 15.0, 

6.7, 1.2 Hz, 1H, H10), 2.91 (ddt, J = 14.7, 7.2, 1.2 Hz, 1H, H10). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 
171.0 (C1), 133.7 (C8), 132.6 (C3), 131.9 (C12), 129.2 (Carom-H), 128.1 (Carom-H), 125.7 (Carom-H), 125.3 
(Carom-H), 119.9 (C11), 118.0 (C13), 69.7 (C9), 43.5 (C2), 33.7 (C10). FTIR (neat): 2921 (C-H st), 1742 
(C=O st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C13H11NO2Na) requires m/z 236.0790, 

found m/z 236.0682. 
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4-(2-(chloromethyl)allyl)isochroman-3-one (36b). Following the general 
procedure Z, 36b was isolated (3.00 mg g, 0.010 mmol) by FC (heptane/EtOAc 
gradient from 7:3 to 1:1) in 20% yield as a yellow oil starting from 30b (30.00 mg, 
0.060 mmol), 2-iodopyridine (0.013 mL, 0.100 mmol), Tf2O (0.011 mL, 0.060 
mmol) and CH2Cl2 (0.3 mL). 

1
H NMR (400 MHz, CDCl3) (δ, ppm): 7.34 (tdt, J = 

17.4, 7.4, 1.6 Hz, 2H, Carom-H), 7.28-7.22 (m, 2H, Carom-H), 5.44 (d, J = 14.1 Hz, H1, 
H9), 5.33 (d, J = 14.1 Hz, H1, H9), 5.28 (s, 1H, H12cis), 4.98 (s, 1H, H12trans), 4.13 

(qd, J = 11.9, 1.0 Hz, 2H, H13), 3.87 (t, J = 7.3 Hz, 1H, H2), 2.92 (ddd, J = 15.6, 7.1, 1.2 Hz, 1H, H10), 
2.83 (ddt, J = 15.7, 7.7, 1.1 Hz, H10). 

13
C NMR (100 MHz, CDCl3) (δ, ppm): 171.9 (C1), 141.5 (C11), 

134.1 (C8), 131.6 (C3), 129.0 (Carom), 127.6 (Carom), 126.6 (Carom), 124.9 (Carom), 117.5 (C12), 69.7 (C9), 
48.3 (C13), 44.1 (C2), 33.1 (C10). FTIR (neat): 2925 (C-H st), 1740 (C=O st), 1646 (C=C st), 1031 (C-Cl 
st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]

+
 (C13H13

35
ClO2Na) requires m/z 259.0604, 

found m/z 259.0499. 
 

2-((3-oxoisochroman-4-yl)methyl)allyl acetate (36c). Following the general 
procedure Z, 36c was isolated (10.00 mg, 0.036 mmol) by FC 
(heptane/EtOAc gradient from 7:3 to 1:1) in 36% yield as a yellow oil 
starting from 30c (0.050 g, 0.100 mmol), 2-iodopyridine (0.020 mL, 0.200 
mmol), Tf2O (0.018 mL, 0.1 mmol) and CH2Cl2 (0.5 mL). 

1
H NMR (400 MHz, 

CDCl3) (δ, ppm): 7.38-7.28 (m, 2H, Carom-H), 7.25-7.19 (m, 2H, Carom-H), 5.43 
(d, J = 14.0 Hz, 1H, H9), 5.31 (d, J = 14.0 Hz, 1H, H9), 5.19 (td, J = 1.4, 0.7 Hz, 

1H, H12cis), 4.93 (td, J = 1.4, 0.7 Hz, 1H, H12trans), 4.59 (q, J = 13.2 Hz, 2H, H13), 3.85 (dd, J = 8.2, 
6.1 Hz, 1H, H2), 2.88 (ddd, J = 15.7, 6.4, 1.2 Hz, 1H, H10), 2.76- 2.56 (m, 1H, H10), 2.09 (s, 3H, H15). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 172.1 (C14), 170.8 (C1), 140.1 (C11), 134.1 (C8), 131.6 (C3), 
128.9 (Carom-H), 127.6 (Carom-H), 126.8 (Carom-H), 124.9 (Carom-H), 116.1 (C12), 69.7 (C9), 66.9 (C13), 
44.2 (C2), 33.3 (C10), 21.0 (C15). FTIR (neat): 2926 (C-H st), 1733 (C=O st), 1654 (C=C st) cm

-1
. HRMS 

(ESI
+
) exact mass calculated for [M+Na]

+
 (C15H16O4Na) requires m/z 283.1049, found m/z 283.0939. 

 
4-(2-(methoxymethyl)allyl)isochroman-3-one (36d).

24
 

1
H NMR (400 MHz, 

CDCl3) (δ, ppm): 7.32 (dqd, J = 9.0, 7.3, 1.6 Hz, 2H, Carom-H), 7.26-7.20 (m, 2H, 
Carom-H), 5.44 (d, J = 14.1 Hz, 1H, H9), 5.30 (d, J = 14.1 Hz, 1H, H9), 5.15 (dt, J = 
1.5, 0.8 Hz, 1H, H12cis), 4.91 (q, J = 1.0 Hz, 1H, H12trans), 4.00-3.78 (m, 3H, 
H2, H13), 3.32 (s, 3H, H14), 2.93-2.75 (m, 1H, H10), 2.75-2.56 (m, 1H, H10). 
13

C NMR (100 MHz, CDCl3) (δ, ppm): 172.3 (C1), 142.2 (C11), 134.5 (C8), 131.6 
(C3), 128.8 (Carom-H), 127.4 (Carom-H), 126.8 (Carom-H), 124.8 (Carom-H), 115.1 

(C12), 75.6 (C13), 69.7 (C9), 58.2 (C14), 44.4 (C2), 33.3 (C10). FTIR (neat): 2922 (C-H st), 1738 (C=O 
st) cm

-1
. HRMS (ESI

+
) exact mass calculated for [M+Na]+ (C14H16O3Na) requires m/z 255.1099, found 

m/z 255.0990. 
 
 

                                                           
24  The yield of the reaction with racemic substrate was 50%. 
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Abbreviations, acronyms and symbols
1
 

acac- Acetylacetonate anion 

Ac Acetyl group 

Ar Aryl group 

ATR Attenuated total reflectance 

BA Brønsted acid 

BB Brønsted base 

BI-DIME (S)-3-(tert-Butyl)-4-(2,6-dimethoxyphenyl)-2,3-

dihydrobenzo[d][1,3]oxaphosphole 

BINOL 1,1′-Binaphthalene-2,2′-diol 

Boc tert-Butyloxycarbonyl 

BSA N,O-Bis(trimethylsilyl)-acetamide 

c Concentration (measured in g/100 mL) 

Carom Aromatic carbon 

cat Cathecol 

Cat. Catalyst 

CBz Benzyloxycarbonyl 

COD Cyclooctadiene 

Conv. Conversion 

D-A Donor-acceptor 

dab 1,2-diaminobenzene 

dan 1,8-diaminonaphtalene 

dba Dibenzylideneacetone 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

dcpe Bis(dicyclohexylphosphino)ethane 

DFT Density functional theory 

DIBAL Diisobutylaluminum hydride 

DIPEA N,N-Diisopropylethylamine 

DMAP 4-(Dimethylamino)pyridine 

DMP Dess-Martin periodinane 

dppf 1,1´-bis(diphenylphosphino)ferrocene 

d.r. Diastereomeric ratio 

DVCPR Divinylcyclopropane-cycloheptadiene rearrangement 

                                                           
1  For Standard Abbreviations and Acronyms, see: “Guidelines for Authors” J. Org. Chem. 2017. 
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E Electrophile 

EDG Electron-donating group 

e.e. Enantiomeric excess 

Ent. Enantiomer 

Eq Equivalent 

EWG Electron-withdrawing group 

FC Flash column chromatography 

Fmoc 9-Fluorenylmethoxycarbonyl 

gem Geminal 

HMPA Hexamethylphosphoramide 

HOMO Highest Occupied Molecular Orbital 

IBX 2-Iodoxybenzoic acid 

IL Ionic liquid 

IPr 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene 

J Coupling constant 

L Ligand 

LA Lewis acid 

LB Lewis base 

LDA Lithium diisopropylamide 

LNO 2,6-lutidine N-oxide 

LUMO Lowest Unoccupied Molecular Orbital 

HDMS Hexamethyldisilazane 

hex Hexyleneglycolato 

HPLC High Performance Liquid Chromatography 

HRMS High Resolution Mass Spectroscopy 

M Metal 

MBH Morita-Baylis-Hillman 

mCPBA meta-chloroperbenzoic acid 

mentimid 1-methyl-3-(+)-methylmenthoxide imidazolidene 

Mes 1,3,5-trimethylbenzene 

M.p. Melting point 

MS Mass spectrometry 

M.S. Molecular sieves 

nbd Norbornadiene 

nBu n-butyl 
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n.d. Not determined 

neop Neopentylglycolato 

NHC N-heterocyclic carbene 

n.r. No reaction 

Nu Nucleophile 

o-QMs Ortho-quinone methides 

PCC Pyridinium chlorochromate 

PDIPA Diisopropanolaminato diboron 

PG Protecting group 

Pin Pinacol 

PMP para-Methoxyphenyl group 

p-TSA p-toluenesulfonic acid 

py Pyridine 

QUINAP 1-(2-Diphenylphosphino-1-naphtyl)isoquinoline 

pyr Pyridine 

QTOF Quadrupole-time of flight 

R Alkyl group or substituent 

r.r. Regioisomer ratio 

rt Room temperature 

TBAF Tetra-n-butylammonium fluoride 

TBAT Tetrabutylammonium difluorotriphenylsilicate 

TBDPS tert-Butyldiphenylsilyl 

TBS tert-Butyldimethylsilyl 

TFA Trifluoroacetic acid 

TFDA Trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)-acetate 

Tf Trifluoromethanesulfonate group 

TLC Thin Layer Chromatography 

TMG 1,1,4,4-Tetramethylguanidine 

TMP Tetramethylpiperidine 

TMSI Iodotrimethylsilane 

TMS Trimethylsilyl 

TPFPB Tetrakis(pentafluorophenyl)borate 

Ts Tosyl 

TS Transition state 

UV Ultraviolet 
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VCP-CP Vinylcyclopropane-cyclopentene 

vs Versus 

X Halogen or heteroatom 

Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene 

δ Chemical shift 

W Watt 

WHE Horner-Wadsworth-Emmons 

τ1 Retention time for first enantiomer 

τ2 Retention time for second enantiomer 
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Resumen extendido 

La necesidad de comercializar compuestos enantioméricamente puros por parte de las 

industrias farmacéuticas ha hecho que el número de metodologías para llevar a cabo 

transformaciones enantioselectivas haya ido en aumento en los últimos años. De entre todas 

las metodologías para la obtención de moléculas enantiopuras, entre las que se incluyen la 

resolución de mezclas racémicas y la estrategia del Chiral Pool, la síntesis asimétrica constituye 

uno de los mayores avances de este campo. En concreto, la organocatálisis asimétrica, que 

mediante el uso de pequeñas moléculas orgánicas quirales que no incorporan metales en 

estructura permite llevar a cabo un gran número de transformaciones de manera 

enantioselectiva, se ha convirtido en una herramienta de gran utilidad en el campo de la 

síntesis de moléculas enantiopuras. Los organocatalizadores pueden clasificarse en ácidos y 

bases de Brønsted y ácidos y bases de Lewis. En el trabajo de investigación recogido en la 

presente memoria se han desarrollado nuevas transformaciones en el ámbito de la catálisis por 

bases de Lewis. 

El principal proyecto de la tesis doctoral consiste en el estudio de la versión 

organocatalítica enantioselectiva del reagrupamiento viniciclopropano-ciclopenteno. En vista 

de la ausencia de versiones organocatalíticas enantioselectivas de dicha transformación y dada 

la experiencia del grupo en el ámbito de la aminocatálisis y en el empleo de moléculas cíclicas 

altamente tensionadas, se decidió estudiar dicho reagrupamiento empleando como sustratos 

ciclopropilacetaldehidos sustituidos por un grupo vinilo aceptor de electrones. Estos 

ciclopropanos pueden activarse mediante el empleo de aminas secundarias quirales a través de 

la formación de una enamina, tal y como está descrito en trabajos anteriores realizados 

independientemente por el Prof. Jørgensen y el Prof. Vicario. La formación de la enamina, 

transformará al ciclopropano inicial en un ciclopropano dador-aceptor contribuyendo a la 

polarización del enlace C-C entre los sustituyentes dador y aceptor, y por lo tanto a la ruptura 

del enlace y consiguiente apertura de ciclo. La apertura del ciclopropano dará lugar a la 

formación de un intermedio zwitteriónico, en el que la carga negativa estará estabilizada por el 

sustituyente aceptor del ciclopropano. Dicho intermedio experimentará una reacción de cierre 

de anillo a través de un proceso 5-exo-trig dando lugar a la formación enantioselectiva de 

ciclopentenos (Esquema 1). 
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Esquema 1. Reagrupamiento vinilciclopropano-ciclopenteno catalizado por aminas secundarias 
quirales 

Una vez probada la viabilidad de la reacción, y tras un proceso de optimización de las 

condiciones experimentales para conseguir la formación de los aductos ciclopenténicos cis y 

trans con el mayor rendimiento y enantiocontrol posible, se pudo llevar a cabo la extensión de 

la metodología, la cual permitió la síntesis de ciclopentenos con diferente patrón de 

sustitución. La metodología permitió la incorporación de cetonas α,β-insaturadas como grupo 

aceptor, dando lugar a los correspondientes ciclopentenos con buenos rendimientos y 

excelentes enantioselectividades. Otros grupos aceptores como esteres y nitrilos dieron lugar a 

los productos deseados con rendimientos moderados y bajo control enantiomérico. La 

metodología también permitió introducir sustituyentes en la estructura ciclopropánica, 

obteniendose los ciclopentenos correspondientes con rendimientos de buenos a moderados 

(Esquema 2). Por último, mediante estudios experimentales, se concluyó que la reacción de 

reagrupamiento vinilciclopropano-ciclopenteno llevada a cabo en el presente trabajo tenía 

lugar a través de un mecanismo por pasos y no de una manera concertada. 

 

Esquema 2. Reagrupamiento vinilciclopropano-ciclopenteno desarollado 
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Por otro lado, en el tercer capítulo de la presente tesis doctoral se recoge el trabajo llevado 

a cabo en colaboración con el grupo de la Prof. Elena Fernández de la Universidad Rovira i 

Virgili en Tarragona. En dicho trabajo se ha llevado a cabo el estudio de la activación del 

bis(pinacolato)diboro en ausencia de metales, y su reactividad frente a alenilamidas, sustratos 

inexplorados en este campo, estudiando la regio- y la diastereoselctividad del proceso. 

Mediante la activación del B2pin2 a través de la formación de un alcóxido, se genera una 

especie nucleófila de boro que es capar de reaccionar con las posiciones electrófilas de las 

alenilamidas (Esquema 3). 

 

Esquema 3. Activación del B2pin2 y su reactividad frente a alenilamidas 

Inicialmente se probó como sustrato modelo una alenilamida con un grupo acetilo como 

sustituyente aceptor y un sustituyente para-metoxifenilo. Tras la reacción con B2pin2, tBuOK y 

MeOH, como condiciones estándar para la activación organocatalítica del 

bis(pinacolato)diboro, se observó la formación de un único producto de reacción con un alto 

rendimiento. Este producto presentaba la unidad Bpin en la posición central de la alenilamida, 

con el consiguiente proceso de hidroboración a lo largo del enlace terminal, observándose una 

disposición trans entre la amina y el grupo Bpin (Esquema 4). 

 

Esquema 4. Estudios preliminares de la reacción 
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Tras comprobar la viabilidad de la reacción y tras un proceso de optimización de las 

condiciones experimentales, se extendió la metodología a otras alenilamidas. En primer lugar, 

se modificó el grupo arilo y se incorporaron sustituyentes en el grupo acetilo de las 

alenilamidas obteniéndose en todos los casos un único producto de reacción. Sin embargo, al 

introducir otros grupos aceptores como los grupos p-toluenosulfonilo y terc-butiloxicarbonilo 

se observó la formación de dos productos borilados. En ambos productos el grupo Bpin se 

localizaba en la posición central de la alenilamida, dándose el proceso de hidroboración a lo 

largo de los enlaces distal y proximal, obteniéndose en una relación 2:1 a favor de la 

hidroboración en el enlace distal (Esquema 5). 

 

Esquema 5. Borilación de alenilamidas diferentemente sustituidas 

Además, se demostró la utilidad sintética de estos aductos mediante el desarrollo de una 

secuencia one-pot de borilación de alenilamidas/reacción de acoplamiento cruzado de Suzuki, 

que permitía la formación de olefinas trisustituidas de una manera rápida y eficaz (Esquema 6). 

 

Esquema 6. Reaccion one-pot borilación de alenilamidas/reacción de acoplamiento de Suzuki 

Finalmente, mediante estudios computacionales se comprobó que la reacción de borilación 

de alenilamidas desarrollada constituía un proceso umpolung de la reactividad típica de las 

alenilamidas. Así, en vez de producirse una activación electrófila, tal y como está descrito en la 

bibliografía, en nuestro sistema tenía lugar una activación nucleófila, generándose dos 

intermedios boracíclicos que daban lugar a un intermedio alílico aniónico que, a través de un 
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proceso de protonación en las posiciones α y γ, daba lugar a los productos observados 

(Esquema 7). 

 

Esquema 7. Activación nucleófila de las alenilamidas 

Finalmente, en un último capítulo, se recogen los resultados más relevantes obtenidos 

durante la estancia predoctoral de tres meses de duración llevada a cabo en la Universidad de 

Viena (Austria) bajo la supervisión del Prof. Nuno Maulide. El trabajo de investigación 

desarrollado ha estado enfocado en la activación de amidas mediante el empleo de anhídrido 

tríflico. El objetivo de dicho trabajo constituía la continuación del estudio del alcance de la 

versión enantioselectiva de una reacción de agrupamiento sigmatrópico [3,3] previamente 

desarrollada por el grupo. La inducción de quiralidad se realizó a través del empleo de 

auxiliares quirales, en concreto mediante pirrolidinas quirales sustituidas en posición dos. A 

pesar de los esfuerzos realizados, no se consiguieron buenos resultados en cuanto a los 

rendimientos de reacción y los excesos enantioméricos no pudieron determinarse (Esquema 

8). 

Esquema 8. Estudio de la versión asimétrica de la activación de amidas/reacción de reagrupamiento 

[3,3] 

 



 
 

 



 


