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Evolutionary account for inter-modality differences in statistical learning 

Mikhail Ordin, Leona Polyanskaya, Arthur G. Samuel 

Significance summary: 

Our results show that the efficiency of statistical learning is severely compromised on linguistic material in the visual 

modality. In the auditory modality, on the contrary, the efficiency of statistical learning is higher on linguistic 

material. This pattern suggests that the speech faculty in human genus may have been sufficiently long and 

important for individual fitness to lead to adaptive use of statistical learning mechanisms in the linguistic domain in 

the auditory modality. Visual language, on the contrary, is a recent cultural invention. There is no evidence of 

adaptive changes in statistical learning mechanisms operating in the visual modality. This dataset sheds light on 

cognitive mechanisms underlying the evolution of speech and language faculties, and how these faculties enhanced 

individual fitness and influenced the same mechanisms which allowed their emergence. 

Abstract: 

The cognitive mechanisms underlying statistical learning are engaged for the purposes of speech processing and 

language acquisition. However, these mechanisms are shared by a wide variety of species that do not possess the 

language faculty. Moreover, statistical learning operates across domains, including non-linguistic material. Ancient 

mechanisms for segmenting the continuous sensory input into discrete constituents have evolved for general 

purpose segmentation of the environment, and have been re-adopted for processing linguistic input. Linguistic input 

provides a rich set of cues to the boundaries between sequential constituents. Such input engages a wider variety of 

more specialized mechanisms operating on these language-specific cues, thus potentially reducing the role of 

conditional statistics in tokenizing a continuous linguistic stream. We provide an explicit within-subject comparison 

of the utility of statistical learning in language vs. non-language domains across the visual and auditory modalities. 

The results showed that in the auditory modality statistical learning is more efficient on speech-like input, while in 

the visual modality efficiency is higher on non-language input. We suggest that the speech faculty has been 

important for individual fitness for an extended period, leading to the adaptation of statistical learning mechanisms 

for speech processing. This is not the case in the visual modality, in which linguistic material presents a less 

ecological type of sensory input.  

I. Introduction: 

The cognitive mechanisms that extract conditional statistics (including transitional probabilities between adjacent 

elements) are thought to be domain-general(1, 2). It is true that they are used for speech and language processing 

and acquisition(3), but it appears that they did not evolve for this purpose(4). At least in the auditory modality, they 

have been shown to operate in species that do not possess the language faculty or even the faculty of vocal learning 

(5), which is considered to be a pre-requisite for speech (and language) emergence. We suggest that the ancient 

mechanisms for segmenting the continuous sensory input into discrete constituents have evolved for general 

purpose segmentation of the environment, and were re-adopted for processing linguistic input. 

Speech processing relies on multiple mechanisms and multiple cues, with higher-level cues having more weight for 

segmenting the continuous input compared to lower-level cues(6). Natural speech, compared to the artificial 

languages usually used in segmentation experiments, provides more cues and engages more mechanisms in 

processing of the sensory input. When more cues are available, the relative weighting of each separate cue is 

diminished(7), with language-specific cues gaining more importance compared to general statistical cues. We 
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hypothesize that the role of the cognitive mechanisms that extract conditional statistics decreases as the sensory 

input becomes more language-like. Such input engages a wider variety of more specialized mechanisms operating on 

language-specific cues, thus reducing the role of conditional statistics in segmentation. Thus, the domain in which we 

often try to find practical application of these mechanisms is actually not the optimal domain, where these 

mechanisms function to their full potential.  

Tokenizing a continuous sensory input based on conditional statistics has most frequently been studied in the 

context of speech and language processing and acquisition(8–10). Thiessen et al.(10) provided a comprehensive 

review of existing theories related to the role of statistical learning mechanisms in splitting a continuous sensory 

input into discrete constituents, and suggested a broad framework of how statistical learning mechanisms are 

engaged in segmenting speech into words. They also discussed how different frameworks can be extended beyond 

word segmentation and be applied, for example, to extracting syntactic constituents in sentence processing.  

Despite some evidence favouring cross-modality transfer in statistical learning(11, 12), other studies have 

systematically failed to find this(13–16). Furthermore, possibly due to individual differences in encoding information 

in each modality, individual performance both during online testing and offline recognition tests does not correlate 

across modalities: one individual may perform well in the visual modality, but at chance in the auditory modality, 

while a different individual may exhibit the reverse pattern(17). Moreover, if two grammars are simultaneously 

presented in different modalities (e.g., visual and auditory), people can successfully learn both(13), but not when 

two grammars are presented within the same modality. However, Mitchell and Weiss (12) showed that 

segmentation of two simultaneously presented streams in different modalities is only possible when the constituent 

boundaries in the modalities are aligned, thus providing evidence for learning facilitation across modalities.  

Although statistical learning appears to be modality-specific, it may be domain-general(1, 18–20). For example, 

Marcus et al. (21) showed that infants are more successful at extracting rules from sequences of non-linguistic 

sounds (animal sounds, musical tones, environmental noises) if the same rules had been implemented in speech-like 

sequences, a transfer effect of acquired statistical regularities across domains.  

It has often been suggested that statistical learning mechanisms underlying rule learning are more efficient on 

linguistic material(20, 21). However, Saffran(9) did not observe a linguistic advantage in extracting and learning rule-

based hierarchical relations. In contrast, she did find better learning in the auditory modality than in the visual 

modality, consistent with what Conway and Christiansen(22) observed. The efficiency of rule extraction and/or 

learning and generalization can be modulated by the degree of familiarity with a particular type of sensory input(23) 

and by the ability of this type of sensory information to capture attention(24). Importantly, it is not known whether 

extraction and generalization of conditional statistical cues operate under the same constraints as rule learning.  

The fact that conditional statistics can be efficiently extracted by evolutionarily ancient neural mechanisms(4) that 

are shared across phylogenetically distant species(5, 25) suggests that statistical learning could have evolved to 

make sense of the environment(1, 26). If so, such learning might actually be more efficient for non-linguistic sensory 

input. In the current study, we used an artificial language learning paradigm to test this hypothesis in two different 

modalities – auditory and visual; auditory language is evolutionarily relative mature, whereas visual language 

(writing/reading) is quite recent.  

In each modality, we developed three stimulus types that differed in how linguistic they were, and tested the 

operation of statistical learning for each type. In Experiment 1, participants performed a task in the auditory 

modality. We prepared three types of stimuli: 1) linguistic material, i.e., speech-like sensory input exhibiting linguistic 

hierarchical structure and acoustic cues manifested in natural languages, in addition to conditional statistics cues; 2) 

semi-linguistic material, composed of speech-like sub-elements (i.e., syllables), but with acoustic cues that are not 

typically exploited for linguistic structuring; (3) non-linguistic material, composed of environmental sounds (e.g., 

water drops, footsteps, animal cries), which had the same conditional statistical cues. The elements in the stream 
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were organized into recurrent triplets, and we measured how well observers extracted the triplets using a 

recognition test in which participants were presented with either a triplet or a foil (a tri-syllabic sequence composed 

of the same syllables or environmental sounds in a sequence that had never occurred consecutively in the 

familiarization stream).  

In Experiment 2, the same participants were exposed to a continuous stream of printed syllables (linguistic material), 

fractal circles (non-linguistic and non-verbalizable material), and novel complex geometric forms (considered as 

semi-linguistic because they are not particularly language-like, especially for western participants, yet can be 

thought of as arbitrary signs of an unknown culture). The stimuli (syllables, circles or figures) were presented 

sequentially in the center of a screen. The elements in the stream were organized into recurrent triplets, and we 

measured how well observers extracted the triplets using a recognition test in which participants were presented 

with either a triplet or a foil. Our two core questions were whether statistical learning operates more/less effectively 

for linguistic input than for non-linguistic input (a) for evolutionarily mature auditory stimuli, and (b) for more-recent 

printed stimuli? 

II. Method: 

II.a. Participants 

We recruited 48 native Spanish speakers (18-40 years old) without speech or hearing disorders. They resided in San 

Sebastian (Spain); most also spoke Basque. 

II.b. Material: 

EXPERIMENT I: Statistical Learning Efficiency across Domains in the Auditory Modality 

We constructed an artificial language learning task(27) to use with three qualitatively different types of stimuli.  The 

properties for these three types are described in detail below. As an overview, one stimulus type was linguistic, one 

was semi-linguistic, and one was non-linguistic. The linguistic stimuli consisted of common Spanish/Basque syllables 

organized into triplets, with linguistic hierarchical structure and acoustic cues found in natural languages. The semi-

linguistic stimuli included less common syllables organized into triplets, with acoustic cues that are not typically used 

to produce linguistic structure. The non-linguistic stimuli were non-speech environmental sounds, also organized 

into triplets.  

LINGUISTIC INPUT 

A continuous stream of syllables was constructed using many presentations of 32 different syllables. One subset of 

the syllables (24 syllables) was used to create eight “words”, each of which was a syllabic triplet: /ko-fa-me/, /fo-na-

ku/, /mo-si-ke/, /ka-so-ni/, /sa-mu-pe/, /no-su-pi/, /po-fu-mi/, and /fe-nu-pa/. For these words, the transition 

probability (TP) from the first syllable (e.g., /ko/) to the second (e.g., /fa/) was 1.0, as was the TP from the second 

syllable to the third (e.g., /me/). The remaining eight syllables (/ma/, /fi/, /pu/, /se/, /ne/, /ki/, /li/, and /lu/) were 

used to make the syllabic stream more language-like, by separating the three-syllable words with single-syllable filler 

sounds (like most function words in a language). This was a modification of an approach by Gervain et al.(28), who 

introduced frequent syllables to model function words, thus making the input more language-like. 

The structure of the syllabic stream is represented in Figure 1. Orange squares represent syllabic triplets and blue 

squares represent filler syllables. Triplets model content words and fillers model high-frequency non-content words 

such as prepositions, articles, and morphological elements. While the TPs between adjacent syllables within triplets 

were 1.0, the TPs between filler syllables and syllables straddling the triplet boundaries were approximately 0.125. 
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The difference in TPs between syllables within triplets (whole constituents embedded in the continuous input) and 

TPs for syllables straddling the boundaries of the holistic units, provides a potential statistical basis to extract the 

triplets from the input. Each triplet was presented 80 times, with the syllable concatenation constrained to not 

produce real words of Spanish or Basque. 

INSERT FIGURE 1 SOMEWHERE HERE 

The triplets with their surrounding filler syllables represent phonological phrases (PPs). As in natural languages, they 

were defined by intonational contours with rising initial boundary tones and either rising or falling final boundary 

tones. Pairs of PPs were united into intonational phrases (IPs). This patterning imitates the hierarchical prosodic 

structuring that is typical in natural languages(29), using acoustic cues that are used for prosodic structuring in 

natural languages(30). PPs and IPs were defined by boundary tones imposed on the phrase-initial and phrase-final 

syllables, and by pauses (longer between IPs than between PPs within IPs). Triplet edges were not aligned with the 

edges of PPs (PP-initial and PP-final elements were represented by fillers), which did not allow using boundary cues 

for extracting them from a continuous input. Figure 2 shows a waveform, spectrogram and intonational contour of a 

PP pair within one IP. 

INSERT FIGURE 2 SOMEWHERE HERE 

MBROLA was used to synthesize the speech. We used the SP2 voice (Spanish), which produces phonemes in a 

Spanish-specific manner, making the input more speech-like for our participants. 

SEMI-LINGUISTIC INPUT 

For this type of input, we used a different set of syllables, including phonemes that are rare or non-existent in 

Spanish and Basque. Again, 24 syllables were used to create 8 triplets (/ba-go-dzi/, /gu-be-llu/, /to-tzu-di/, /ta-tse-

ga/, /dzo-da-tu/, /de-bi-lla/, /lle-du-bo/, /dza-gi-llo/) and 8 additional syllables were used for the fillers (/do/, /ge/, 

/bu/, /ti/, /te/, /lli/, /sha/, /sho/) (/ll/ is a palatal lateral sonorant, /ts/ and /dz/ are voiceless and voiced dental 

alveolar affricates). Syllable and pause durations were equal to those used in linguistic stimuli. The stimuli were 

synthesized using the Italian IT3 voice in MBROLA in order to make the phoneme realizations less familiar to our 

participants. Also, we inserted 1-ms pauses between each syllable. These pauses are not detectable by the human 

auditory system, but they blocked co-articulatory transitions between syllables, which were synthesized by the 

algorithm as if each syllable was pronounced isolation. The syllabic stream was synthesized with a constant (and thus 

unnatural) pitch (120Hz), and boundary cues were implemented by linear intensity ramping instead of the pitch and 

timing cues that are typical in natural language. We applied amplitude ramping on the edges of IPs (over 2 syllables) 

and PPs within IPs (over 1 syllable). Each triplet was presented 80 times.  

The stimuli were designed to be semi-linguistic because they included (linguistic) syllables, but also included features 

that were unnatural for the listeners.  These included the use of intensity fluctuations to mark prosodic boundaries, 

non-native realizations of atypical phonemes, and a lack of co-articulatory transitions. As described below, a test was 

implemented to verify that these stimuli were indeed perceived to be less linguistic than the “Linguistic” stimuli. 

NON-LINGUISTIC INPUT 

To create non-linguistic auditory input, we selected 32 natural environmental sounds (water drops, footsteps, 

squeaks, animal noises, etc.) from https://freesound.org. All sounds were equalized in duration to 300ms. Pause 

durations were equal to those used in linguistic stimuli. All sounds were normalized in intensity to 80dB. 24 sounds 

were used for triplets and 8 sounds for fillers, using the same statistical structure implemented in linguistic and semi-

linguistic stimuli. All the sounds had their amplitude normalized to the same average – to prevent some sounds 
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being louder than others – and then concatenated into a continuous stream in PRAAT(31). Ramping (using the same 

approach implemented in semi-linguistic stimuli) was used for hierarchical structuring (see Figure 3). Each triplet was 

presented 80 times. Short samples of linguistic, semi-linguistic and non-linguistic material can be found in 

supplementary material online. 

INSERT FIGURE 3 SOMEWHERE HERE 

EXPERIMENT II: Statistical Learning Efficiency across Domains in the Visual Modality 

As in the auditory modality, linguistic, semi-linguistic and non-linguistic continuous sensory inputs were prepared in 

the visual modality. Each contained recurrent triplets embedded into streams with filler elements. In the visual 

modality the construction of the stimuli was similar to that in the auditory modality, but several parameters were 

adjusted to accommodate differences in processing abilities in the two modalities.  

In the auditory modality statistical learning is more attuned to temporal regularities, and in the visual modality – to 

spatial regularities(32). As we only had temporal regularities in our design, we had to make complexity in the visual 

modality lower, in order to accommodate this difference. Also, the rate of presentation in the visual modality was 

slower because at the rate at which the sounds were presented, the TPs between images are not registered. Overall, 

statistical learning in the visual modality is efficient only at a slow rate, whereas efficiency is not strongly modulated 

by the rate of presentation of sequential elements in the auditory modality(33). As the presentation rate in the visual 

modality was slower, we had to reduce the number of triplets (which in turn reduces complexity); this also made the 

duration of the familiarization stream reasonable (otherwise, the visual stream would be too long). At the same 

time, we kept the TPs and the overall structure of the input equivalent across modalities (triplets were embedded 

into larger constituents, with fillers at the edges of the larger constituents). These methodological decisions were 

made to equilibrate statistical learning tasks across modalities, yet fundamental differences between modalities 

make it difficult to compare efficiency of statistical learning across modalities directly. Therefore, the analysis will 

focus of direct comparison between domains (linguistic vs. non-linguistic) within modalities, and on subject-based 

correlations of individual performance in different modalities and domains (in order to explore whether higher 

efficiency in one modality/domain is associated with a higher efficiency on a different modality/domain), without a 

direct across-modality comparison at the group level. 

LINGUISTIC INPUT 

For linguistic input, we selected 20 syllables. Of these, 12 syllables were used for recurrent triplets (TE-GU-BA, TA-

BO-FA, KA-BE-TO, GA-FO-BU), and 8 syllables were used for fillers (TU, GO, GE, KO, KU, FU, FE, KE). All stimuli were 

presented in upper case letters. Note that these syllables were different from those used in the auditory modality. 

The statistical structure of the visual input matched that implemented in the auditory modality (TPs set to 1.0 within 

triplets and around .0125 at the boundary of the constituents). In the stream, each triplet was presented 50 times. 

Instead of pauses, we used commas (within IPs) and dots (between IPs). The syllables were presented in the middle 

of the screen, one by one, and each syllable or punctuation mark stayed on the screen for 500ms. This duration is 

longer than the duration of syllables or sounds in the auditory modality.  

SEMI-LINGUISTIC INPUT 

For the semi-linguistic input, we used 20 geometric shapes organized into four triplets and eight fillers (see Figure 

4b) with the same statistical structure as syllables in the linguistic condition. Again, each triplet was presented 50 

times. For the boundary signals, we used grey squares (instead of commas) and white squares (instead of dots), each 

also presented for 500ms. Subjectively, white squares looked more prominent than grey squares, which was one 

tone lighter than the grey background, against which the shapes were displayed.  
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NON-LINGUISTIC INPUT 

For non-linguistic stimuli, we used fractals generated at http://sirxemic.github.io/ifs-animator/, and created 

continuous visual input with a statistical structure identical to that implemented for the semi-linguistic and linguistic 

visual input (see Figure 4a).  

We assumed that participants could potentially accept geometrical forms as symbols able to convey a message in a 

linguistic way (the assumption was later verified in a post-experiment test), as these are somewhat like hieroglyphs 

or cuneiforms. While these not familiar to our participants, they are elements of writing systems for natural 

languages. Elements like fractals have not been observed in human languages as linguistic symbols. As such, they are 

at the end of the continuum on a linguistic - non-linguistic spectrum. 

INSERT FIGURES 4a and 4b SOMEWHERE HERE 

II. c. PROCEDURE:  

People came to the laboratory twice, with an interval of at least one week between the sessions. Each time they 

performed the experiment in one of the modalities. During each session, participants were tested with linguistic, 

semi-linguistic and non-linguistic stimuli (in a counter-balanced order). The order of modalities was counterbalanced 

across participants. 

In the auditory modality, participants were told that they would have to train their ear to detect the recurrent 

sequences of sounds or syllables in the auditory stream, and that afterwards they would have to recognize the 

embedded sequences during a test. In the visual modality, participants were told that they would have to train their 

eyes to detect the recurrent sequences of images or syllables, presented one by one in the center of the screen, and 

that afterwards they would have to recognize the embedded sequences during a test. It is important to note that 

statistical learning is both intentional and automatic (34). Explicit instructions turn automatic processing into 

intentional learning, which requires attention to what is to be learnt. In statistical learning, attention itself is 

modulated as learning progresses(35, 36). Attention influences learning by facilitating encoding of particular aspects 

of the input (and explicit instructions provide participants with information about what aspects of the input they 

need to pay attention to – recurrence of sequences within a continuous stream). At the same time, learning affects 

attention by creating perceptual salience of such regularities, and drawing attention to violations of these 

regularities. Importantly, the question of whether explicit versus implicit instructions affect performance during the 

recognition test is still debated. Although some researchers found statistical learning to be more efficient when 

instructions are explicit(37–40), others did not observe performance differences between explicit and implicit 

conditions(41, 42). In our study, the choice of explicit conditions was determined by the within-subject design of the 

experiment. When participants receive implicit instructions for one type of familiarization stream, they will be 

consciously aware of what to look for after the test, and the type of instructions will not matter. Thus we decided to 

avoid this by giving participants explicit instructions from the start. 

Presentation of each type of continuous input was followed by a recognition test. In the auditory modality, on the 

recognition test participants listened to a triplet of syllables (F0 set to 120Hz throughout) or environmental sounds 

(normalized for intensity), with syllable/sound durations corresponding to those heard during the learning phase. For 

the test items, we presented either actual triplets, or foils. The syllables or sounds in the foils were ones that were 

used in actual triplets, but no actual triplets included two elements of any foil (i.e., both adjacent and non-adjacent 

TPs were zero). The foils were of two types. In type-1 foils (ordered foils), we preserved the order of elements 

(syllables or sounds). For example, if a particular syllable was used in the triplet-initial position in a learning stream, it 

was also used in the foil-initial position. Type-2 foils (random foils) violated the ordinal position of elements inside 

the triplets, and thus a triplet-initial element (during training) was presented in foil-medial or foil-final position in 

http://sirxemic.github.io/ifs-animator/
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type-2 foils only, avoiding positional matches. We created 8 random and 8 ordered foils. Participants were asked to 

listen to a test item and to indicate whether the item had been embedded in the continuous stream of 

syllables/sounds as a whole sequence (binary choice), and to indicate whether they were sure in their response 

(confidence ratings were collected for a different project and were not analyzed here). 

For the auditory modality, triplets and foils were used twice during the test, yielding 48 trials per stimulus type 

(linguistic, semi-linguistic and non-linguistic). The recognition test followed the learning stream immediately. After 

the test, participants were offered a short break before the next continuous input was presented for learning. After 

the third recognition test, participants listened to six 15-second passages from the learning streams, 2 passages per 

each type. They judged which sounds seemed most speech-like and which seemed least speech-like.  

Similarly, we created 4 random and 4 ordered foils in the visual modality per stimulus type. Each type of learning 

input was followed by a test with 24 trials. During the test, participants looked at either actual triplets extracted 

from the learning stream or foils; for each, they indicated whether the item had been embedded in the learning 

stream or not.  

After the third recognition test, a norming test was run to confirm that linguistic material was indeed perceived by 

participants as most speech- or language-like, non-linguistic material was perceived as least speech- and language-

like, and semi-linguistic material was perceived as intermediate between the two extremes. Participants watched six 

streams of alternating images from the learning phase, 2 per stimulus type, for 15 seconds each. They judged which 

type looked most language-like and which least language-like. In both modalities, all participants indicated that our 

linguistic stimuli looked or sounded the most language-/speech-like, and non-linguistic stimuli the least language-

/speech-like. 

III. Analysis: 

We calculated the sensitivity index (D') by considering the triplets correctly endorsed as sequences from the 

familiarization stream as hits and the foils (irrespective of whether the ordinal position of elements in the foils was 

maintained or not) as false alarms. Consequently, rejected foils were considered as correct rejections, and rejected 

triplets as misses. In the Appendix, we provide the analysis of D' for triplets relative to ordered foils and random foils 

separately. However, foil type made no difference in the result pattern, and therefore we do not report these 

analyses in the main manuscript. 

D' and bias (C) measures were calculated separately for linguistic, semi-linguistic and non-linguistic stimuli in each 

modality (Figure 5a for D' and 5b for C). Given the necessary differences across modalities in the amount of 

exposure, task difficulty (number of triplets) and different underlying cognitive mechanisms, the analyses focused on 

comparing sensitivity and bias across domains within each modality. 

INSERT FIGURES 5a and 5b SOMEWHERE HERE 

Sensitivity Analyses: The analyses were performed by constructing linear mixed models (in SPSS v.18) with subject as 

a random factor and domain (linguistic vs. semi-linguistic vs. non-linguistic) as a fixed factor. Models with different 

covariance types were constructed (including AR(1), Diagonal, Compound Symmetry, Scaled Identity and 

Unstructured types). The reported model (with Scaled Identity) was chosen as the one with the minimum 

parameters (n=5) and lowest 2LL information criterion. The model with Unstructured covariance type failed to 

converge and was thus not considered. Parameter estimation was done by a restricted maximum likelihood 

algorithm (threshold of 1000 iteration for model fitting).  
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In the auditory modality, the effect of domain was significant, F(2, 94)=5.469, p=.006. For linguistic material, 

β=.29(SE=.09), t(94)=3.27, p=.002 was larger than for non-linguistic material, β=.11(.09), t(94)=1.2, p=.233. D' was 

higher for linguistic and non-linguistic material than for semi-linguistic material, with a larger difference between 

linguistic and semi-linguistic than between non-linguistic and semi-linguistic stimuli. Paired t-tests (two-tailed, 

reported after Bonferroni correction) confirmed that sensitivity for semi-linguistic material (D'=.23, SD=.63) was 

significantly lower than on linguistic material, t(47)=3.337, p=.004, M=-.29, 95%CI[.116:.468]. Sensitivity was higher 

in the linguistic (D'=.52, SD=.66) than in the non-linguistic domain (D'=.34, SD=.61), although the difference was not 

significant, t(47)=2.164, p=.072, M=-.18, 95%CI[.013:.357].  

In the visual modality, the effect of domain was significant, F(2, 94)=5.469, p=.006. For linguistic material, β=-

.25(.15), t(94)=-1.65, p=.102 was lower than for non-linguistic material, β=.16(.15), t(94)=1.076, p=.285. D' was the 

highest on non-linguistic and lowest on linguistic material. Paired t-tests (2-tailed, corrected p values are reported) 

confirmed that in the visual modality, sensitivity in the linguistic domain (D'=.25, SD=.59) was significantly lower than 

in the non-linguistic domain (D’=.67, SD=.89), t(47)=-2.609, p=.024, M=-.42, 95%CI[-.744:-.096]. The difference in 

sensitivity between linguistic and semi-linguistic (D'=.5, SD=.87) material in the visual modality was not significant, 

t(47)=-1.541, p=.26, M=-.25, 95%CI[-.586:.0777].  

Overall, the results demonstrate that in the visual modality, statistical learning is more efficient for non-linguistic 

than for linguistic sensory input. In the auditory modality a reverse pattern is observed: efficiency is higher for 

linguistic than non-linguistic sensory input. The very poor performance on semi-linguistic material in the auditory 

modality might seem puzzling. However, it can be explained by the nature of these stimuli. Being composed of 

syllables, semi-linguistic stimuli may recruit mechanisms that are brought to bear while listening to natural speech, 

but these mechanisms are useless for material intentionally designed to be unprocessable as linguistic input (recall 

that these stimuli are composed of unusual sounds and inappropriate prosodic cues, which mismatch listeners’ 

expectations, and could even be argued to be closer to non-linguistic than linguistic material). Recruitment of speech 

processing mechanisms thus disrupts their processing rather than facilitates it).  

We calculated Pearson correlations (all p-values are two-tailed) for D' scores over subjects across modalities and 

across domains. We did not observe correlations of D' scores across modalities for linguistic (r=.06, p=.678), semi-

linguistic (r=-.074, p=.619) or non-linguistic (r=.111, p=.452) material. This is consistent with an extensive prior 

literature (see (17) for an overview) that suggests a cross-modality barrier in the transfer of statistical learning. 

Interestingly, we found a strong correlation of D' scores on linguistic vs. non-linguistic material (r=.572, p<.0005) in 

the auditory modality, but not in the visual modality (r=-.096, p=.516). The difference in correlation strength of D' 

scores across domains within modalities (r=-.096 and r=.572) is itself significant (z=3.542, p<.0005). Although 

statistical learning is often claimed to be modality-specific yet domain-general (Frost et al., 2015), we observed clear 

evidence for the former, and a more nuanced interpretation for the latter (domain-generality in the auditory but not 

in visual modality). The reliable correlation in the auditory modality likely reflects memory span differences among 

individuals. As auditory statistical learning is more tuned for processing sequential input, it may rely on echoic 

memory to keep auditory chunks ready for further processing. As noted above, visual statistical learning is more 

attuned to spatial regularities(13).  

Control for Bias:  

For the bias measure (C), the effect of domain was significant in the auditory modality, F(2,94)=12.172, p<.0005. 

Estimated β=.077(.06), t(94)=1.234, p=.22 for linguistic material and β=.3(.06), t(94)=4.754, p<.0005 for non-linguistic 

material showed a stronger tendency to accept non-linguistic tokens than on semi-linguistic and linguistic tokens. In 

the visual modality, the effect of domain was not significant, F(2,94)=.462, p=.631. Estimated β=.0036(.078), 

t(94)=.045, p=.964 for linguistic material and β=.067(.078), t(94)=.855, p=.395 showed that the bias to accept or 

reject presented tokens was not different between stimuli types. Importantly, we calculated Pearson correlations 

over subjects for bias measures across domains within modalities and across modalities within domains. All of the 
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correlations were significant (all p-values are below .001) and substantial (.388<r<.585), suggesting that if a 

participant tends to reject or accept test items in one modality/domain, that participant applies the same strategy 

for the other modalities / stimulus types.  

IV. Discussion: 

The current study provides an explicit, within-subject comparison of the utility of statistical learning in linguistic vs. 

non-linguistic domains in the visual and auditory modalities. Overall, the data showed that in the visual modality, 

statistical learning is more efficient for non-linguistic material, whereas in the auditory modality statistical learning 

was more effective for linguistic sounds. Individual performance was not correlated across modalities, consistent 

with prior research. Within modalities but across domains (language vs. non-language), performance was not 

correlated in the visual modality, while being strongly correlated in the auditory modality. This difference in 

correlations within modalities across domains was large and significant. 

This finding can be accounted for by considering historical differences between spoken and written language 

faculties. Despite a heated debate about when the speech faculty first emerged in the human genus, with estimates 

as short as 100,000 years(43) and as long as 2,000,000 years(44, 45), with a range of potential timepoints in-

between(46), it is clear that spoken language considerably preceded the invention of writing. Written language is a 

much more recent cultural invention, dating back to the early Neolithic period, around the 7th millennium B.C.(47, 

48). This early form of proto-writing was a hieroglyphic script, and even contemporary scripts of this type often 

represent whole concepts as orthographic entities (47, 48). The predictive power of different concepts is akin to the 

predictive power of one word to predict the following word, or the constituent-final syllable to predict the initial 

syllable of the following constituent. In the auditory modality, word boundaries are signaled by a dip in the stream of 

transitional probabilities(49). Consequently, the role of conditional statistics in processing visual language gained in 

importance only when syllabic/alphabetic writing was invented around the 5th century B.C. Moreover, the spread of 

reading and writing skills within populations was quite slow, further limiting the window of opportunities for 

efficiency of processing visual language to impact individual fitness. Consequently, the efficiency of statistical 

learning for language in the visual modality has not had very long to develop, as it has in the auditory modality. 

Speech provided a much wider window of opportunity for the adaptation of statistical learning mechanisms. Over 

time, speech, being pervasive and important, gained precedence and re-tuned these mechanisms from processing 

environmental sounds to speech.  

Statistical learning in the visual modality on linguistic material may be affected by reading and writing acquisition, 

and individual variation in reading skills. Statistical learning of non-linguistic material is shaped more by phylogenetic 

rather than ontogenetic influences. In the auditory modality, statistical learning both of speech-like material and of 

environmental sounds is influenced by phylogenetic factors. This is reinforced by the correlational analyses and 

provides additional support for the hypothesis that statistical learning in the auditory modality has been shaped by 

the speech faculty in the human genus and re-adapted for speech processing. In the visual modality, in contrast, 

statistical learning is not attuned for processing written text. Such text has not been an ecologically natural sensory 

input in the environment of the homo sapiens sapiens species for the very long time scale needed for evolutionary 

adaptation, and thus core statistical learning mechanisms have not (yet) been adapted for written input. 

An alternative hypothesis, which is also supported by the data and is based on historical differences between speech 

and written language faculties, is grounded in the effect of cultural evolution of the design of the communicative 

systems. It has been proposed that neither speech(50) nor writing/reading(51) benefits from evolutionary 

specialization for processing linguistic material. Enhanced efficiency of statistical learning mechanisms on speech-like 

stimuli is explained by the pressure of cultural selection on maintaining properties that are more easily processed by 

available neural circuitry and cognitive resources. Those aspects of signals that afford easier processing by available 

resources facilitate communication and are more easily transferred across generations and thus become more stable 
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in populations (50, 52, 53). As vocal communication has been subject to cultural selection for a longer time, the 

existing patterns of the vocal communicative system are more prone to be processed by existing mechanisms than 

environmental sounds. This argument suggests that it is not speech that affects statistical learning mechanisms in 

the auditory modality via natural selection, but rather those speech patterns which are processed more efficiently 

are then passed through generations by means of cultural evolution. Cultural evolution is a fast-paced process 

(sometimes requiring only several generations), and the effect of cultural selection should also be observed on 

linguistic material in the visual modality. The effect of enculturation via written language can be observed even at 

the timescale of individuals: literacy influences cortical maps and leads to re-organization of cognitive processing in 

ontogenesis(51, 54). Thus, we would need to understand why statistical learning in the visual modality is less prone 

to cultural selection pressure than in the auditory modality, or admit that the data is better accounted for by 

selection pressure on the cognitive system.  

Importantly, we do not postulate the existence of speech-specific cognitive or neural modules that have emerged 

under the pressure of natural selection. Rather, we are talking about an elevated recycling of existing neural circuitry 

and cognitive machinery, when speech has become essential for individual fitness. Re-adaptations of the existing 

machinery to process (and produce) speech-like input over the long term (at the time-scale of humanity) is 

supported by the fact that rapid presentation of non-speech sounds, at the rate of syllables, leads to merging these 

sounds into an acoustic stream of unrecognizable sounds and/or inability to perceive their sequential order. 

However, presentation of syllables at the same rate is perceived as intelligible speech (50, 55). At the same time, 

cognitive processes operating over long stochastic (statistically predictable but not deterministic) sequences of non-

linguistic sounds and sequences  of speech units (with corresponding durations) are similar (56), as is the underlying 

neural machinery(50). This suggests that long-term experience with a particular type of input leads to enhanced 

processing of this type.  

In the design of the current study, the auditory modality potentially had an advantage because we explored 

statistical learning in sequential presentation (i.e., in time); visual statistical learning works better in space(32). It is 

difficult to predict the results that might be obtained if both visual and auditory stimuli presentation were 

manipulated spatially. When several simultaneous auditory inputs are present (e.g., think of a party conversation, 

surrounded by many other interacting people), humans focus on a particular source, and focus on how it develops in 

time. In the visual modality, on the contrary, spatial patterns tend to be extracted. 

We should also note that the language relevance of our material is correlated with familiarity, and thus with ease of 

encoding. Linguistic stimuli are more familiar because people are more often exposed to streams of syllables than to 

streams of unrelated environmental sounds. Within the evolutionary perspective that we take, the development of 

any ability can be thought of as a response to a frequent need, so the evolutionary view is framed as being 

frequency-sensitive over a very long time (if a stimulus is rarely encountered, why would an ability to process it 

develop?) It is important is to separate very long term frequency effects (evolution) from just long term ones (i.e., 

within the individual's lifetime). On the timescale of humanity, the amount of exposure to spoken language is much 

larger than to written language, and this can explain adaptations in the auditory modality but not in the visual 

modality. From an ontogenetic perspective, in both modalities, individuals accumulate larger exposure to and thus 

familiarity with linguistic input. On these grounds, one would expect enhancement in statistical learning in both 

modalities due to ontogenetic factors, versus only in the auditory modality due to evolutionary adaptations. Our 

data thus highlight the evolutionary adaptation of statistical learning mechanisms on the timescale of humanity.  

References: 

1.  N. Z. Kirkham, J. A. Slemmer, S. P. Johnson, Visual statistical learning in infancy: Evidence for a domain general 
learning mechanism. Cognition 83 (2002). 



12 
 

2.  E. D. Thiessen, Domain General Constraints on Statistical Learning. Child Dev. 82, 462–470 (2011). 

3.  L. C. Erickson, E. D. Thiessen, Statistical learning of language: Theory, validity, and predictions of a statistical 
learning account of language acquisition. Dev. Rev. 37, 66–108 (2015). 

4.  Y. Kikuchi, W. Sedley, T. D. Griffiths, C. I. Petkov, Evolutionarily conserved neural signatures involved in 
sequencing predictions and their relevance for language. Curr. Opin. Behav. Sci. 21, 145–153 (2018). 

5.  A. E. Milne, C. I. Petkov, B. Wilson, Auditory and Visual Sequence Learning in Humans and Monkeys using an 
Artificial Grammar Learning Paradigm. Neuroscience 389, 104–117 (2018). 

6.  S. L. Mattys, L. White, J. F. Melhorn, Integration of multiple speech segmentation cues: A hierarchical 
framework. J. Exp. Psychol. Gen. 134, 477–500 (2005). 

7.  S. L. Mattys, J. Brooks, M. Cooke, Recognizing speech under a processing load: Dissociating energetic from 
informational factors. Cogn. Psychol. 59, 203–243 (2009). 

8.  Y.-H. Hung, S. J. Frost, K. R. Pugh, “Domain Generality and Specificity of Statistical Learning and its Relation 
with Reading Ability” in (2018), pp. 33–55. 

9.  J. R. Saffran, Constraints on statistical language learning. J. Mem. Lang. 47, 172–196 (2002). 

10.  E. D. Thiessen, A. T. Kronstein, D. G. Hufnagle, The extraction and integration framework: A two-process 
account of statistical learning. Psychol. Bull. 139, 792–814 (2013). 

11.  G. T. M. Altmann, Z. Dienes, A. Goode, “Modality Independence of Implicitly Learned Grammatical 
Knowledge” (1995). 

12.  A. D. Mitchel, D. J. Weiss, Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning. J. 
Exp. Psychol. Learn. Mem. Cogn. 37, 1081–1091 (2011). 

13.  C. M. Conway, M. H. Christiansen, Statistical learning within and between modalities: Pitting abstract against 
stimulus-specific representations. Psychol. Sci. 17, 905–912 (2006). 

14.  R. L. Gomez, L. Gerken, R. W. Schvaneveldt, The basis of transfer in artificial grammar learning. Mem. Cogn. 
28, 253–263 (2000). 

15.  M. Redington, N. Chater, Transfer in Artificial Grammar Learning: A Reevaluation. J. Exp. Psychol. Gen. 125, 
123–138 (1996). 

16.  R. J. Tunney, G. T. M. Altmann, The Transfer Effect in Artificial Grammar Learning: Reappraising the Evidence 
on the Transfer of Sequential Dependencies. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1322–1333 (1999). 

17.  N. Siegelman, L. Bogaerts, M. H. Christiansen, R. Frost, Towards a theory of individual differences in statistical 
learning. Philos. Trans. R. Soc. B Biol. Sci. 372 (2017). 

18.  R. Frost, B. C. Armstrong, N. Siegelman, M. H. Christiansen, Domain generality versus modality specificity: The 
paradox of statistical learning. Trends Cogn. Sci. 19, 117–125 (2015). 

19.  A. L. Gebhart, E. L. Newport, R. N. Aslin, Statistical learning of adjacent and nonadjacent dependencies among 
nonlinguistic sounds. Psychon. Bull. Rev. 16, 486–490 (2009). 

20.  E. D. Thiessen, Effects of Inter- and Intra-modal Redundancy on Infants’ Rule Learning. Lang. Learn. Dev. 8, 
197–214 (2012). 

21.  G. F. Marcus, K. J. Fernandes, S. P. Johnson, Infant Rule Learning Facilitated by Speech. Psychol. Sci. 18, 387–
391 (2007). 

22.  C. M. Conway, M. H. Christiansen, Modality-constrained statistical learning of tactile, visual, and auditory 
sequences. J. Exp. Psychol. Learn. Mem. Cogn. 31, 24–39 (2005). 



13 
 

23.  C. Dawson, L. A. Gerken, From domain-generality to domain-sensitivity: 4-Month-olds learn an abstract 
repetition rule in music that 7-month-olds do not. Cognition 111, 378–382 (2009). 

24.  A. Vouloumanos, J. F. Werker, Tuned to the signal: The privileged status of speech for young infants. Dev. Sci. 
7, 270–276 (2004). 

25.  T. Q. Gentner, K. M. Fenn, D. Margoliash, H. C. Nusbaum, Recursive syntactic pattern learning by songbirds. 
Nature 440, 1204–1207 (2006). 

26.  M. Ordin, L. Polyanskaya, D. Soto, Neural bases of learning and recognition of statistical regularities. Ann. N. 
Y. Acad. Sci., nyas.14299 (2020). 

27.  J. R. Saffran, R. N. Aslin, E. L. Newport, Statistical learning by 8-month-old infants. Science (80-. ). 274, 1926–
1928 (1996). 

28.  J. Gervain, M. Nespor, R. Mazuka, R. Horie, J. Mehler, Bootstrapping word order in prelexical infants: A 
Japanese-Italian cross-linguistic study. Cogn. Psychol. 57, 56–74 (2008). 

29.  M. Nespor, I. Vogel, Prosodic Phonology (DE GRUYTER, 2007) https:/doi.org/10.1515/9783110977790. 

30.  C. Gussenhoven, The phonology of tone and intonation (Cambridge University Press, 2004). 

31.  P. Boersma, Praat, a system for doing phonetics by computer. Glot Int. 5 (2002). 

32.  C. M. Conway, How does the brain learn environmental structure? Ten core principles for understanding the 
neurocognitive mechanisms of statistical learning. Neurosci. Biobehav. Rev. 112, 279–299 (2020). 

33.  C. M. Conway, M. H. Christiansen, Seeing and hearing in space and time: Effects of modality and presentation 
rate on implicit statistical learning. Eur. J. Cogn. Psychol. 21, 561–580 (2009). 

34.  N. B. Turk-Browne, J. A. Jungé, B. J. Scholl, The automaticity of visual statistical learning. J. Exp. Psychol. Gen. 
134, 552–564 (2005). 

35.  A. Alamia, A. Zénon, Statistical Regularities Attract Attention when Task-Relevant. Front. Hum. Neurosci. 10, 
42 (2016). 

36.  B. M. Hard, M. Meyer, D. Baldwin, Attention reorganizes as structure is detected in dynamic action. Mem. 
Cognit. 47, 17–32 (2019). 

37.  S. Kahta, R. Schiff, Implicit learning deficits among adults with developmental dyslexia. Ann. Dyslexia 66, 235–
250 (2016). 

38.  M. Laasonen, et al., Project DyAdd: Implicit learning in adult dyslexia and ADHD. Ann. Dyslexia 64, 1–33 
(2014). 

39.  A. S. Reber, F. F. Walkenfeld, R. Hernstadt, Implicit and Explicit Learning: Individual Differences and IQ. J. Exp. 
Psychol. Learn. Mem. Cogn. 17, 888–896 (1991). 

40.  R. Schiff, A. Sasson, G. Star, S. Kahta, The role of feedback in implicit and explicit artificial grammar learning: a 
comparison between dyslexic and non-dyslexic adults. Ann. Dyslexia 67, 333–355 (2017). 

41.  J. Arciuli, J. von K. Torkildsen, D. J. Stevens, I. C. Simpson, Statistical learning under incidental versus 
intentional conditions. Front. Psychol. 5, 747 (2014). 

42.  Z. Dienes, D. Broadbent, D. Berry, Implicit and Explicit Knowledge Bases in Artificial Grammar Learning. J. Exp. 
Psychol. Learn. Mem. Cogn. 17, 875–887 (1991). 

43.  P. Mellars, Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. 
Proc. Natl. Acad. Sci. U. S. A. 103, 9381–9386 (2006). 



14 
 

44.  A. Belfer-Cohen, N. Goren-Inbar, Cognition and Communication in the Levantine Lower Palaeolithic. World 
Archaeol. 26, 144–157. 

45.  F. d’Errico, et al., Archaeological evidence for the emergence of language, symbolism, and music - An 
alternative multidisciplinary perspective. J. World Prehistory 17, 1–70 (2003). 

46.  T. J. H. Morgan, et al., Experimental evidence for the co-evolution of hominin tool-making teaching and 
language. Nat. Commun. 6, 1–8 (2015). 

47.  H. Stephen D., The First Writing: Script Invention as History and Process. (Cambridge University Press, 2004). 

48.  M. Gross, The evolution of writing. Curr. Biol. 22, R981–R984 (2012). 

49.  M. Ordin, L. Polyanskaya, D. Soto, N. Molinaro, Electrophysiology of statistical learning: Exploring the online 
learning process and offline learning product. Eur. J. Neurosci., ejn.14657 (2020). 

50.  W. T. Fitch, The Biology and Evolution of Speech: A Comparative Analysis. Annu. Rev. Linguist. 4, 255–279 
(2018). 

51.  S. Dehaene, L. Cohen, Cultural recycling of cortical maps. Neuron 56, 384–398 (2007). 

52.  T. L. Griffiths, M. L. Kalish, S. Lewandowsky, Theoretical and empirical evidence for the impact of inductive 
biases on cultural evolution. Philos. Trans. R. Soc. B Biol. Sci. 363, 3503–3514 (2008). 

53.  K. Smith, S. Kirby, Cultural evolution: implications for understanding the human language faculty and its 
evolution. Philos. Trans. R. Soc. B Biol. Sci. 363, 3591–3603 (2008). 

54.  S. Dehaene, et al., How learning to read changes the cortical networks for vision and language. Science (80-. ). 
330, 1359–1364 (2010). 

55.  R. M. Warren, C. J. Obusek, R. M. Farmer, R. P. Warren, Auditory Sequence: Confusion of Patterns Other Than 
Speech or Music. Science (80-. ). 164, 586–587 (1969). 

56.  R. M. Warren, J. A. Bashford, J. M. Cooley, B. S. Brubaker, Detection of acoustic repetition for very long 
stochastic patterns. Percept. Psychophys. 63, 175–182 (2001). 

 

  



15 
 

/ma  pu  ka—so—ni  se   sa—mu—pe  lu         fi   no—su—pi   ne   li    po—fu—mi  ki    li/ 

 
Figure 1. A schematic representation of a syllabic stream, showing 4 triplets (orange squares, bold font), with fillers (blue 

squares, normal font), and a 50-ms within-IP between PPs pause.  

 

 

Figure 2. Waveform and spectrogram representing one IP, with a 50-ms pause between two PPs, defined by boundary tones. The spectrogram 

is displayed on the scale between 0 and 7000Hz, and the pitch contour is displayed on a scale between 50 and 250Hz.  
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Figure 3. Waveforms of non-linguistic stimuli, showing intensity ramping between PPs and IPs used to define the hierarchical structure. 

EXPERIMENT II: Statistical Learning Efficiency across Domains in the Visual Modality 

        
        

        
        

    

Figure 4a. Fractals used for non-linguistic material. Fractals in the 

upper row were used as fillers; fractals in the lower two rows were 

used in the triplets. 
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Figure 4b. Geometric shapes used for semi-linguistic material. 

Geometric shapes in the upper row were used as fillers; shapes in the 

lower two rows were used in the triplets. 

  
Figure 5a. Sensitivity to the embedded triplets across domains and 

modalities. 

Figure 5b. Bias in regard to endorsing (positive) or rejecting (negative) 

test items as sequences from the learning input, across domains and 

modalities. A score of 0 indicates no bias. 

 

 


