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Summary 
 

 

The hypothesis of oncogene addiction postulates that the survival and growth of certain 

tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and 

epigenetic abnormalities. This phenomenon has provided the foundation for molecular targeted 

therapy and a rationale for oncogene-based stratification. The promyelocytic leukemia protein 

(PML) is overexpressed in triple negative breast cancer (TNBC) and it regulates cancer-initiating 

cell function, thus suggesting that this protein can be therapeutically targeted in combination with 

PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells 

remains poorly understood. In this thesis work we demonstrated that TNBC cells are addicted to 

the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined 

with features of senescence in vitro and in vivo. Mechanistically, we observed that growth arrest 

and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the 

subsequent accumulation of cyclin-dependent kinase inhibitor 1B (CDKN1B, p27), a trigger of 

senescence. In line with this notion, we found that PML is associated to the promoter regions of 

MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our 

results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC 

and encourage further study of PML-targeting strategies for the treatment of this breast cancer 

subtype. 
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I Cancer 
 

Cancer has been part of human life since the very beginning of their history. It 

encompasses a group of diseases in which an unrestrained proliferation of cells occurs leading to 

the formation of an abnormal cellular mass, denominated tumor. This term covers more than 100 

forms of the disease, as almost every tissue can develop one or even several types of these 

malignancies1. Tumors share the capability to sustain uncontrolled growth, but their heterogeneity 

enforces the necessity of specific molecular classifications that allow the diagnosis and treatment 

of tumors as unique entities2. Precision medicine aims to develop prevention and treatment 

strategies that will benefit tumors that share specific characteristics, taking into account individual 

variability in genes, environment, and lifestyle for each case. 

According to the World Health Organization (WHO, with data collected by the International 

Agency for Research in Cancer-IARC in the last Globocan 2018 report), cancer will be the leading 

cause of morbidity and mortality in the 21st century. In fact, 18 million new cases and 9.6 million 

cancer deaths were estimated for 2018. The most common cancers were those of the lung (11.6%), 

breast (11.6%), colorectal (10.2%), prostate (7.1%) and stomach (5.7%). All these data highlight 

the importance of cancer research nowadays3.  

 

I.1 Tumor progression and the hallmarks of cancer 
 

After decades of research the idea that cancer is a genetic disease has been extensively 

recognized4. Mutations can happen both in the germline, with inherited mutations that can shorten 

the time of onset of the disease, or in somatic cells, which results in sporadic tumors4. Different 

genetic and epigenetic modifications will continue accumulating in a stepwise manner during tumor 

progression, clonally expanding cell populations that ultimately acquire more aggressive 

phenotypes5. 

The process of tumor development frequently starts with the increased proliferation of 

normal cells harboring oncogenic mutations, thus leading to pre-malignant lesions, such as 

hyperplasia and dysplasia. Subsequent mutations will make cells continue growing uncontrollably. 

If the tumor cells remain in the tissue of origin it will be called in situ cancer. Cells can accumulate 

more mutations becoming more aggressive, invading adjacent tissues and reaching the 

bloodstream or lymph nodes, ultimately establishing disseminated tumors, also known as 

metastases (Fig. I1)1. 

The differentially altered genes in each cancer at the distinct stages of the disease 

illustrate the complexity of tumors. This heterogeneity increases with cancer progression and it is 

one of the main concerns in cancer treatment. 
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Figure I1. Representation of tumor progression. 

 

In tumorigenesis, alterations in three types of genes have been described to be relevant: 

oncogenes, tumor suppressors and genome stability genes. Mutations in oncogenes and tumor 

suppressors lead to a constitutive activation or to a reduced activity of the gene product, 

respectively. Finally, stability genes are responsible of maintaining mutation rate to the minimum. 

Thus, their inactivation leads to higher alterations in the first two gene types affecting their correct 

function4. 

Despite the complexity and the different genetic alterations involved in the multistep 

process of tumorigenesis, almost two decades ago Hanahan and Weinberg2 identified the six 

capabilities any cancer cell should acquire to develop a malignant phenotype: i) self-sufficiency in 

growth signals, ii) insensitivity to growth-inhibitory signals, iii) evasion of programmed cell death 

(apoptosis), iv) limitless replicative potential, v) sustained angiogenesis and vi) tissue invasion and 

metastasis (Fig. I2).  

Several mechanisms ensure the maintenance of the genome integrity, ensuring a low rate 

of mutations; they describe genome instability as an enabling characteristic for the acquisition of 

the six capabilities that allow cancer cells to survive, proliferate and disseminate. Some years later, 

with the gained knowledge in cancer field, the same authors proposed two emerging hallmarks6: 

evading immune destruction and reprogramming energy metabolism. In addition, tumor-promoting 

inflammation is described as an emerging enabling characteristic contributing to tumor growth by 

the secretion of growth-sustaining and cell death limiting survival factors, pro-angiogenic factors 

and extracellular matrix-modifying enzymes. Understanding tumor microenvironment and the role 

of the specialized cells that form carcinomas will open new ways of studying tumor biology. 

 

 

Hyperplasia Dysplasia In situ cancer Invasive cancer

Metastasis

Genetic alterations and 
environmental factors 
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Figure I2. Revisited hallmarks of cancer (adapted from Hanahan and Weinberg, 20116). 

 

II Breast cancer 
 

II.1 Anatomy of the normal breast 
 

Mammary glands are unique and specialized sweat glands that differentiate mammals 

from other animals. Their specific function is to synthesize and secrete milk for nourishing the 

newborns7. In humans, mammary glands are present in both females and males (Fig. I3A and Fig. 

I3B). Female breast development occurs in different stages, from embryonic development to the 

complete development during adulthood, undergoing dramatic changes induced by hormones and 

other signaling pathways8. Male breast is considered a vestigial organ, as it lacks the specialized 

structure since there is no physiologic need for milk production. 

Human mammary gland is structured into a tree-like network of branched ducts and lobes 

surrounded by adipose and connective tissue. The ductal system terminates in lobular units 

commonly known as terminal duct lobular units, the structures where milk is produced. Two types 

of cells comprise the mammary epithelium: an inner layer of polarized luminal epithelial cells and 

an outer layer of myoepithelial or basal cells, separated from the stroma by the basement 

membrane (Fig. I3C)9,10.  
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Figure I3. Anatomy of the human breast. A-B) Pictures showing the localization and structure of the different 

regions of the mammary gland in A) females and B) males. C) Scheme depicting the different cellular types of 

the mammary epithelium (adapted from Marshall, 201411). 

 

II.2 Breast cancer epidemiology and risk factors 
 

Breast cancer (BCa) is one of the most frequent cancers worldwide together with lung 

and colorectal cancer. Importantly, BCa is the most common malignancy among women. In 2018, 

approximately 2.1 million women were diagnosed of BCa and 626,679 died from the disease. In 

Spain, it was the most diagnosed neoplastic disease among women in 2018 with 32,825 cases3.  

Several factors have been linked with BCa development, including gender, age (it is highly 

related to increasing age), ethnicity, lifestyle (diet, alcohol consumption) and reproductive factors 

(early menarche, late menopause, late age at first pregnancy)12,13. Family history is also associated 

with increased BCa risk, accounting for the 5-10% of the BCa cases. Specifically, women with 

mutations in BRCA1 and BRCA2 are more likely to develop BCa by age of 7014,15. BCa incidence 

for BRCA mutation carriers starts to increase with age in early adulthood16. 
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II.3 Breast cancer initiation and progression 
 

Malignant tumors that originate from mammary epithelial cells are adenocarcinomas. BCa 

initiates due to transforming genetic and epigenetic events in a single cell. The accumulation of 

additional genetic changes combined with clonal expansion and selection will drive tumor 

progression17. The progression of BCa involves different stages, starting with pre-malignant lesions 

(ductal hyperproliferation and in situ lesions), continuing with invasive cancer and finalizing with 

metastatic spread. Ductal carcinoma in situ (DCIS) is thought to be the precursor of invasive 

lesions18. Progression to invasive carcinoma occurs when myoepithelial cell layer and basement 

membrane are lost. Upon the disruption of the normal breast tissue architecture, tumor cells can 

invade surrounding tissues and migrate to distant organs, leading to the formation of metastasis 

(Fig. I4). The most common sites of metastasis in BCa are lymph nodes, bone, lung, brain and 

liver19. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I4. Schematic representation of BCa progression. Description of normal, in situ, invasive and 

metastatic lesion development (adapted from Marshall, 201411). 

 

II.4 Breast cancer classification 
 

BCa is genetically and clinically a very heterogeneous disease with different disease 

courses and treatments20. Several BCa classifications have been developed based on the distinct 

histological, clinical and molecular phenotypes.  
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II.4.1 Histopathological classification 

 

Pathology classifies tumors based on their morphological and structural characteristics 

observed under the microscope. BCa is classified as either non-invasive (carcinoma in situ) or 

invasive. Invasive ductal carcinoma, not otherwise specified (IDC NOS) is the most common 

observed BCa type, with around the 75% of the cases. This group is comprised by tumors with no 

special characteristics of differentiation patterns. The next most frequent histologic type is invasive 

lobular carcinoma (ILC) with about the 10% of the cases. Other less common carcinomas are 

categorized as medullary, neuroendocrine, tubular, apocrine, metaplastic, mucinous, inflammatory, 

comedo, adenoid cystic and micropapillary subtypes21. Among the in situ lesions, which are thought 

to be the precursors of invasive carcinomas, ductal and lobular (LCIS) carcinomas are the best 

characterized22,23. 

 

II.4.2 Histological grade 

 

Histological grading is an important prognostic factor in BCa based on the degree of 

differentiation of the tumor tissue24. The most used grading system is known as Nottingham (Elston-

Ellis24) and it is a modification of the Scarff-Bloom-Richardson grading system25. In this system 

three parameters are evaluated: tubule formation, nuclear polymorphism and mitotic rate (Fig. I5). 

Each factor is evaluated individually and a numerical score (1-3) is given taking into account the 3 

characteristics: grade 1 tumors are well differentiated, grade 2 tumors are moderately differentiated 

and grade 3 tumors are poorly differentiated. 

 

 

 

 

 

 

 

 

 

Figure I5. BCa histological grading score system. Scheme describing the characteristics and the values of 

tubule formation, nuclear polymorphism and mitotic rate of the Elston-Ellis grading system. 
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II.4.3 TNM classification 

 

The TNM classification is a globally recognized tool in the clinical routine. This system 

describes the anatomic spread of the cancer: it separately classifies the tumor (T), lymph node (N), 

and metastatic (M) elements and then group them into stages. It provides clinicians information that 

helps in the evaluation of the most appropriate treatment options depending on the cancer stage. 

Stage I–III BCa (without distant metastasis) is considered curable, while stage IV BCa (with distant 

metastasis) is considered incurable26,27 (Fig. I6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I6. TNM grading system used for the evaluation of BCa. Table describing the extent of primary 

tumour, lymph node involvement and metastasis detection according to the TNM evaluation system (adapted 

from Simos et al., 201528). 

 

II.4.4 Receptor status classification 

 

The expression of estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2) are important determinants of BCa biology. Paraffin 

embedded BCa samples are routinely analyzed by immunohistochemical (IHC) analysis to detect 

ER, PR and HER2 expression. BCa tumors are classified into 3 clinically significant subtypes: 
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hormone receptor positive BCa and two different groups of ER negative (ER-) tumors, HER2 

positive BCa and triple negative breast cancer (TNBC).  

Around the 70% of human BCa express ER and may express PR, both predictive and 

prognostic biomarkers for this disease. ER expression is the main indicator of potential responses 

to hormonal therapy29. ER and PR are nuclear receptors that exert their biological activity upon the 

binding of estrogen and progesterone, respectively. They play important roles in proliferation and 

cell cycle regulation of BCa cells30,31. Overall survival, disease free survival and time to recurrence 

have been shown to be positively associated with ER expression32. Low or absent expression of 

PR in ER positive (ER+) breast tumors is associated with more proliferative and aggressive disease, 

poorer prognosis and recurrence when compared to PR positive (PR+)/ER+ tumors33.  

HER2 is a transmembrane tyrosine kinase involved in the regulation of cellular growth. 

HER2 is overexpressed/amplified in approximately the 15% of BCa and it is associated with a more 

aggressive phenotype34. HER2 is an important predictive biomarker of response to HER2-targeted 

therapies35. 

Triple negative tumors are characterized by the lack of the three receptors (ER, PR and 

HER2). Around 15% of BCa tumors belong to this subtype. TNBC affects more frequently younger 

patients and it is more prevalent in African-American women36. Despite its relatively small proportion 

among all BCa, TNBC is responsible for a relatively large proportion of BCa deaths. TNBC is 

significantly more aggressive and it shows poorer prognosis than tumors of the other subgroups37,38. 

TNBC patients do not benefit from any targeted therapy and the only available systemic treatment 

is chemotherapy39. Gene expression analysis of 21 BCa datasets identified six different TNBC 

subtypes: basal-like 1 and basal-like 2, immunomodulatory, mesenchymal, mesenchymal stem–

like and luminal androgen receptor subgroups40. 

Ki-67 is a nuclear protein used as a proliferation marker. It is active in all cell cycle phases 

except G0. Ki-67 is assessed routinely in clinical practice by IHC together with ER, PR and HER2, 

as proliferative activity determined by Ki-67 may reflect the aggressive behavior of BCa and provide 

further prognostic information41,42. 

BCa stratification based on receptor status is an important tool for clinicians to design a 

specific treatment strategy for each subtype, as ER, PR and HER2 presence or absence will be 

indicative of the prognosis and response to treatments. 

 

II.4.5 Molecular classification 

 

Microarray-based gene expression analysis of BCa tumors identified five distinct 

molecular subtypes, also known as BCa intrinsic subtypes: luminal A, luminal B, HER2-enriched, 

basal-like and normal-like (Fig. I7). Approximately 500 genes were described to cluster tumor 
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samples according to the similarities on their gene expression profiles. The five molecular subtypes 

are associated with different prognostic and therapeutic implications43-46. 

Both luminal groups express ER but in a different grade. Luminal A tumors express high 

levels of ER and are typically low grade. They show high expression of GATA3, forkhead box A1 

(FOXA1) and luminal cytokeratin 8 (KRT8) and 18 (KRT18). They show low mutation rate, with the 

most frequently mutated genes being phosphatidyl inositol-4,5-bisphosphate 3-kinase catalytic 

subunit α (PIK3CA), GATA3 and mitogen-activated protein kinase (MAPK) kinase kinase 1 

(MAP3K1). Tumors of the luminal B group are characterized by a lower expression of ER. They are 

more proliferative, of higher grade and with worse prognosis than luminal A tumors, probably due 

to the similarities with the ER negative subtypes (HER2-enriched and basal-like). Luminal B tumors 

frequently exhibit mutations in the tumor protein TP53 (p53, tumor protein 53) and PIK3CA genes, 

and alterations affecting the retinoblastoma and MAPK pathways. A proportion also shows 

overexpression of HER2. 

HER2-enriched subtype is characterized by high expression of ERBB2 and genes located 

closely in the same chromosome region. These tumors are commonly negative for expression of 

ER and luminal epithelial genes and show high expression of cell cycle associated genes. When 

compared with luminal tumors, HER2-enriched group shows less favorable overall and relapse-free 

survival. 

Tumors from basal-like subtype express neither ER nor PR and are negative for HER2. 

They are characterized by high expression of the basal cytokeratins 5 (KRT5) and 17 (KRT17), and 

other genes typically expressed in mammary basal/myoepithelial cells. Basal-like tumors usually 

overexpress epidermal growth factor receptor (EGFR) and mutations in TP53 are commonly 

described. Basal-likes subtype has the worst clinical outcome among all the subtypes, with shorter 

overall and relapse-free survival times47. 

Finally, tumors included in the normal breast-like group show expression of genes 

associated with other non-epithelial cells and adipose tissue. 

 

 

 

 

 

 

Figure I7. Molecular classification of breast cancer. Genetic expression analysis of breast carcinomas 

identified the five molecular subtypes that we know nowadays. Later studies failed to reproduce the luminal-C 

subtype and the luminal groups were divided into A and B subtypes (image of the first classification, adapted 

from Sørlie et al., 200144). 
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II.5 BCa diagnosis and treatment 
 

The vast majority of symptomatic BCa patients present a discrete breast lump at the time 

of diagnosis. A complete clinical evaluation integrates information from clinical examination (breast 

and lymph nodes), imaging (mammography, ultrasound, magnetic resonance imaging (MRI), 

positron emission tomography (PET)) and tissue biopsy (fine-needle aspiration cytology or core 

biopsy)48. 

Several microarray-based multigene assays have been developed and are already being 

used in the clinic with BCa patients. Based on different gene signatures, they give information about 

prognosis and treatment response: 

• Prosigna™ breast cancer prognostic gene signature: this test is a PAM50-based 

subtype classifier, a gene signature that measures the expression of 50 different 

genes. The Prosigna assay reports a risk of recurrence (ROR) score (0–100), an 

intrinsic subtype classification (luminal A, luminal B, HER2-enriched or basal-like) 

and risk categorization (low, intermediate, or high) for each tumor sample. 

Prosigna is indicated for use in postmenopausal women with hormone receptor-

positive, node-negative or node-positive early-stage (stages I, II and IIIA) BCa to 

be treated with endocrine therapy49,50. 

 

• MammaPrint™: this assay is focused on analyzing the risk (low or high) of relapse 

for newly diagnosed BCa patients. It is comprised by 70 genes associated with 

proliferation, invasion, metastasis, stromal integrity and angiogenesis. 

Mammaprint is indicated for women under the age of 55 with either ER+ or ER-, 

lymph node-negative BCa51. 

 

• OncotypeDX™: the assay quantifies gene expression of 21 genes. It predicts the 

10-year risk of BCa recurrence and if the patient will benefit from chemotherapy 

treatment in addition to hormone therapy. Oncotype DX™ is used in women with 

ER+, HER2-negative, early stage invasive BCa. It assigns a score between 0 and 

100 that will be analyzed depending on the age of the patient52. 

 

The treatment of BCa may include surgery, radiotherapy and systemic therapies 

(endocrine therapy, anti-HER2 therapies and chemotherapy). Nowadays, breast conservation is 

established as the standard of care surgical procedure for early stage BCa (without metastasis). If 

cancer cells are detected in lymph nodes, their surgical removal is also considered. Radiotherapy 

is administrated after surgery to reduce the risk of relapse48,53. The standard therapy for ER+ and/or 

PR+ tumors is endocrine therapy, with tamoxifen as the recommended hormone therapy drug. 

Patients with overexpression of HER2 are treated with drugs that specifically target and block its 



Introduction 

33 

function by inhibiting different domains. Trastuzumab (Herceptin) and Lapatinib are broadly used 

drugs to treat these patients. Trastuzumab is a monoclonal antibody that binds to the extracellular 

domain of HER2 preventing its intracellular tyrosine kinase activity54. Lapatinib binds to the kinase 

domain of both HER2 and EGFR, inhibiting their signaling55. Cytotoxic chemotherapy remains as 

the standard treatment for TNBC patients. HER2 tumors also benefit from preoperative 

chemotherapy56. 

 

III Promyelocytic leukemia protein 
 

Promyelocytic leukemia (PML, also known as TRIM19, RNF71 and MYL) protein was first 

discovered due to its oncogenic role in acute promyelocytic leukemia (APL). PML gene is located 

in chromosome 15q22. It was identified in the t(15;17) translocation with the gene of retinoic acid 

receptor α (RARα), which results in the expression of the fusion protein PML-RARα57,58. 

 The PML gene consists of 9 exons that will lead to several different isoforms through 

alternative splicing (Fig. I8A). All PML isoforms share an identical N-terminal region that contains 

cysteine-rich zinc binding domains (RING domain and B-boxes) and a coiled coil domain. Nuclear 

isoforms contain a nuclear localization signal (NLS) in exon 6 that is lacking in the cytoplasmic 

isoform (Fig. I8B)59,60. The C-terminal region is variable across the different isoforms and this 

appears to determine PML interactions61,62.  

 

 

 

 

 

 

 

 

 

 

Figure I8. Human cells express a variety of PML isoforms. A) Scheme of the distribution of exons and 

introns of PML gene. B) Structure of the different PML isoforms. Nuclear PML isoforms (I-VI) share exon 1 to 

6. The lack of exon 6 generates cytoplasmic PML (VI). NLS R: RING motif, B: B-box, CC: coiled-coil, NLS: 

nuclear localization signal. Adapted from Bernardi and Pandolfi, 200763.  

A 
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PML localizes to punctuate nuclear structures known as PML nuclear bodies (PML-NB). 

These structures are discrete nuclear foci that range in size from 0.2 to 1 µm and in number from 1 

to 30 bodies per nucleus, depending on the cell type64. PML-NBs are dynamic and heterogeneous 

structures that act as scaffolds for a high number of proteins, such as p53, retinoblastoma protein 

(pRB), CBP/p300, histone deacetylase 7 (HDAC7) and DAXX. These proteins can localize 

constitutively or transiently in PML-NBs61,65-67.  

 

III.1 Regulation of PML expression 
 

PML expression can be regulated in response to different stimuli at transcriptional, post-

transcriptional and post-translational level. This regulation not only controls PML protein levels but 

also the nuclear body formation process and the interaction with other proteins. 

 

III.1.1 Transcriptional regulation 

 

Interferons (IFN) can activate PML transcription through the binding of signal transducers 

and activators of transcription (STAT) to IFN-α/-β stimulated response element (ISRE) and an IFN-

γ activation site (GAS) in the first exon of PML68. Interferons can also induce the expression of the 

oncogenic fusion protein PML-RARα69. 

p53 can transcriptionally upregulate PML. The overexpression of RAS mutant in valine 12 

(RASV12) induces a senescence response that will increase PML-NB number and size by 

upregulating p5370,71. 

 

III.1.2 Post-transcriptional regulation 

 

PML expression is influenced by the cell or tissue of origin and also by the differentiation 

stage. One of the main contributors to these different expression patterns is alternative splicing, 

which results in the expression of different isoforms of PML60. The subcellular localization of the 

isoforms can affect the nuclear body formation and function72. 
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III.1.3 Post-translational regulation 

 

PML is subject to various post-translational modifications including SUMOylation, 

ubiquitination and phosphorylation. These modifications regulate PML protein levels, localization 

and activity. 

The most studied PML post-translational modification is SUMOylation. PML can be 

modified by SUMO1, SUMO2 and SUMO3. SUMOylation is essential for the proper assembly and 

function of PML-NBs. It has been demonstrated that this modification is necessary for the 

recruitment of SP100 and DAXX, two classical nuclear body components involved in transcriptional 

regulation67,73. In addition to PML, many proteins are SUMOylated in the PML-NBs. In fact, the 

RING domain of PML has been suggested to act as a SUMO E3 ligase, SUMOylating PML and 

other proteins74. 

PML is phosphorylated in multiple sites with each of them having a different response. 

Phosphorylation of PML by extracellular signal-regulated kinase 2 (ERK2) is directly linked to 

SUMOylation of PML in response to arsenic trioxide (ATO) treatment, inducing an apoptosis 

response75. In response to DNA-damage, PML is phosphorylated by the checkpoint kinase ataxia 

telangiectasia Rad-3 related (ATR) kinase and checkpoint kinase-2 (CHK2). The phosphorylation 

by ATR mediates the translocation of PML to the nucleolus76, while CHK2 phosphorylation triggers 

PML-induced apoptosis77. Finally, casein kinase 2 (CK2), an oncogenic kinase, phosphorylates 

PML and induces its proteasome-dependent degradation, decreasing PML tumor suppressive 

activity in lung cancer78. 

PML ubiquitination, in addition to its SUMOylation, is necessary for its degradation upon 

ATO treatment. RNF4 is a E3 ubiquitin-protein ligase that specifically targets poly-SUMO-modified 

PML for degradation79. 

 

III.2 Biological functions of PML 
 

PML interacts with a high number of proteins and it is able to modify their function. 

Therefore, PML has been described as a multi-faceted protein that plays pivotal roles in 

physiological and pathological conditions. 

 

III.2.1 Regulation of transcription 

 

PML has been described to act both as a co-activator80,81 and a co-repressor82,83 of 

transcription. The opposite effects in transcription by PML can be explained by several factors. The 

composition of the nuclear bodies by means of PML isoform will have a key role in the regulation84. 
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Many transcription factors (TF) are recruited to PML-NBs or their proximity, either to take part in 

transcription or to be modified. PML-NBs are heterogeneous entities that can also regulate the 

availability of the TFs by compartmentalizing or titrating them in the nucleus85. Interestingly, it has 

been proposed that PML can indirectly control transcription by remodeling chromatin structures into 

loop-like structures that will affect positively or negatively the transcription of the genes located 

there86. 

 

III.2.2 DNA damage response 

 

We have previously explained how ATR is able to phosphorylate PML upon DNA damage. 

In addition, it has been described that PML-NB can localize to DNA repair sites and many DNA 

repair proteins localize to PML-NBs87. Due to its role in targeting DNA damage pathways, PML has 

been linked to genomic stability. DNA helicase Bloom protein, a protein that when absent from the 

cell results in genomic instability and cancer predisposition, is localized into PML-NBs88. Several 

proteins of the DNA damage detection and repair machinery have been observed to dynamically 

localize to or out of PML-NBs under stress conditions64. 

 

III.2.3 Apoptosis 

 

PML is implicated in both p53-dependent and -independent apoptotic pathways. On one 

hand, PML activates p53 through different mechanisms: increasing its acetylation and 

phosphorylation89,90, inhibiting the negative regulator of p53 MDM291 or promoting p53 

deubiquitination92. In addition, in a positive feedback loop p53 induces the expression of PML71. All 

these interactions regulate the stress-induced apoptosis and senescence responses. On the other 

hand, PML can also induce apoptosis in a p53-independent manner through IFN93 and Fas94.  

 

III.2.4 Senescence 

 

The role of PML in senescence was first described with its implication in RASV12 induced 

senescence. In addition, PML is involved in the regulation of an important hallmark of senescence, 

the formation of senescence associated heterochromatin foci (SAHF). HIRA and ASF1a, two 

chromatin regulators, are essential in the process, as they drive the formation of macroH2A-

containing SAHF. HIRA enters PML-NBs and transiently colocalizes with HP1 heterochromatin 

proteins, before the incorporation of HP1 proteins into SAHF95. 
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III.2.5 Viral infection 

 

An important role for PML has been described in anti-viral defense. PML interacts with 

viral proteins and inhibits their function, conferring resistance against RNA viruses or inducing 

apoptosis of infected cells in a p53-dependent manner. This mechanism reduces the probabilities 

of viral DNA integration in the genome96. 

 

III.3 PML in cancer 
 

Since the discovery of its role in APL, a tumor suppressive role of PML has been observed 

in cancers of different origins. Many of its biological functions support this role, such as the induction 

of apoptosis and senescence. PML protein expression is reduced or absent in numerous cancers, 

such as prostate, lung, colon and lymphomas. PML loss is associated with high-grade tumors and 

tumor progression. Remarkably, PML gene is rarely mutated in these tumors97.  

Interestingly, in chronic myeloid leukemia (CML) PML is upregulated and its loss is 

predictive of favorable outcome. PML is indispensable for quiescent leukemia-initiating cell (LIC) 

function and its loss results in the depletion of both LIC and hematopoietic stem cells (HSC)98. PML 

exerts its role through the regulation of fatty acid oxidation (FAO) under the control of the 

peroxisome-proliferator activated δ (PPARD)99. In addition to CML, the analysis of BCa biopsies 

identified a subset of these tumors where the expression of PML was higher when compared to 

normal epithelium. Although PML protein expression was frequently low or absent in the majority 

of the samples, high PML mRNA and protein levels in TNBC were associated with high tumor grade 

and poor prognosis. Through the same PPARD-FAO pathway observed in CML, PML provides 

selective advantage under metabolic stress triggered by loss of attachment conditions100. In PML 

high-expressing ER- breast tumors, PML regulates aggressiveness and metastatic features through 

the control of the stem cell gene SRY-box transcription factor 9 (SOX9)101 and the hypoxia-inducible 

factor 1 alpha (HIF1α) signaling102. A summary of PML functions in cancer can be observed in Fig. 

I9.  

These discoveries revealed PML the two faces of PML function in cancer: it can act as a 

classical tumor suppressor in many cancers, but in a few cases, it facilitates cancer survival103.  
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Figure I9. Summary of the dual functions of PML in cancer. PML plays opposing activities depending on 

the cancer setting. In one hand, it activates pathways that negatively affect tumor growth. In the other hand, it 

regulates the activation of pathways that sustain growth. This “friend or foe” role will be further studied to 

categorize different tumor types and to develop compounds against its specific function. FAO: fatty acid 

oxidation. 

IV Senescence 
 

The initial description of cellular senescence was made by Hayflick and Moorhead104. 

They observed that normal cells, contrary to cancer cells, have a finite proliferative capacity 

characterized by cell cycle arrest. Two ideas raised from this discovery: in one hand, senescence 

is a beneficial mechanism because of its tumor suppressive role. It acts as a barrier in pre-malignant 

tumors and cancer progression105,106. In the other hand, senescence has a deleterious effect, as it 

negatively affects regenerative capacities. In normal conditions, transient induction of senescence 

is beneficial because in contributes to tissue remodeling. Nevertheless, in aged tissues, inefficient 

clearance and regeneration leads to the accumulation of senescent cells. This contributes to the 

development of many age-associated diseases, such as pulmonary fibrosis, sarcopenia, diabetes 

and obesity107. Paradoxically, the presence of senescent cells can also promote tumorigenesis 

through the secretion of numerous factors. These factors compose the senescence associated 

secretory phenotype (SASP), which will have differential effects depending on the physiological 

context. Inflammation, disruption of normal tissue structure and function and creation of a 

tumorigenic environment can be found among the deleterious effects of SASP. The beneficial 

effects of SASP include reinforcing the tumor suppression through the growth arrest, for facilitating 

tissue repair and for stimulating immune system for the clearance of senescent cells108 (Fig. I10). 

Nowadays, senescence is defined as a stress response that involves a stable cell growth 

arrest. It is an adaptive process to reduce energy consumption for cell division or differentiation 

characterized by the loss of proliferative capacity, despite continued viability and metabolic 

activity109. 
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Figure I10. Physiological consequences of senescence response. Senescence can have opposed effects 

in cellular biology. Senescent cells secrete several factors, known as SASP, that will play a key role defining 

the biological outcome (adapted from Lecot et al., 2016108).  

 

IV.1 Types of senescence 
 

The senescence phenotype is highly heterogeneous and dynamic, a consequence of the 

different stimuli that can induce it and the effectors involved in the different signaling pathways (Fig. 

I11).  

 

IV.1.1 Replicative senescence 

 

Replicative senescence arises from the progressive erosion of telomeres. Cells will sense 

this erosion as double-strand breaks (DSB), activating a DNA damage response (DDR) that will 

induce senescence. Several proteins localize to DNA damage foci such as ataxia telangiectasia 

mutated (ATM), ATR, CHK2 and γ-H2AX110. The DDR triggered upon telomere loss is similar to the 

one induced by ionizing radiation and several chemotherapeutic agents, such as bleomycin and 

doxorubicin111. Both damage- and telomere-dependent senescence responses strongly depend on 

p53 and p21 (also known as p21WAF1/Cip1, CDKN1A) signaling112,113. In addition, p16 (also known as 

p16INK4a, CDKN2A)  provides additional control to the senescence signaling pathway114. 
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IV.1.2 Oncogene-induced senescence 

 

Oncogene-induced senescence (OIS) was first observed in vitro upon the expression of 

an oncogenic form of RAS115. The senescence response counteracts the cell growth stimulation 

induced upon oncogene activation. After that, several other oncogenes have been shown to induce 

OIS116. OIS is triggered by a mechanism independent of telomere shortening but it also induces a 

robust DDR117. The p53/p21 pathway is the main effector of OIS with the help of p16/pRB pathway. 

Interestingly, the loss of tumor suppressor PTEN also elicits a senescence response that opposes 

tumorigenesis, known as PTEN-loss induced cellular senescence (PICS)118.  

 

IV.1.3 Stress and other inducers of senescence 

 

Many different types of stress inducers, such as chemotherapeutic drugs, oncogene 

activation and DNA damage increase the levels of reactive oxygen species (ROS), which contribute 

to the induction of senescence response119,120. 

Chronic stimulation by β-interferon, an anti-proliferative cytokine, increases ROS levels 

and elicits a p53-dependent DDR and senescence response121. 

Chemical inhibition of histone deacetylases, which causes perturbations in chromatin 

affecting gene expression, also induces senescence111,122,123.  

 

 

 

 

 

 

 

 

 

 

Figure I11. Causes of cellular senescence. Despite the several different stimuli that can induce senescence, 

p53/p21, p16/pRB and, in a lesser extent p27, are the common effectors of this response. 
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IV.2 Hallmarks of senescence 
 

Senescence response is characterized by both morphological and molecular changes 

(Fig. I12) that can be detected with the help of different methodologies. These features are present 

in other cellular contexts, which underlines the importance of the characterization of senescence 

phenotype. Some of the hallmarks and the detection methods will be further discussed in Results 

section.  

 

IV.2.1 Morphological alterations 

 

IV.2.1.1 Cell size and shape 

 

In vitro, senescent cells are characterized by an enlarged, flat and irregular cell body, with 

more vacuoles and sometimes multinucleated124. These changes are easily measured with either 

light or fluorescence microscopy. Although it is still unclear how the majority of the morphological 

changes occur, several plasma membrane proteins change their expression upon activation of 

senescence125.  

 

IV.2.1.2 Increased lysosomal content 

 

Senescence cells are characterized by the upregulation of several lysosomal proteins and 

increased lysosomal content126. The measurement of the activity of senescence-associated β-

galactosidase (SA-β-gal) lysosomal enzyme is one of the most commonly used markers of 

senescence127. Nevertheless, its use has some technical limitations: SA-β-gal detection cannot be 

used in paraffin-embedded tissues nor in live cells. 

 

IV.2.1.3 Nuclear changes 

 

Loss of LAMIN B1 and the formation of SAHF are the most studied changes in 

senescence at the nuclear level. LAMIN B1 is a structural component of the nuclear lamina and its 

loss has been reported to be a common mark of senescence128. SAHF are nuclear foci enriched in 

repressive epigenetic marks129. However, SAHF is not a universal marker and its importance is 

mainly restricted to OIS109.  
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IV.2.1.4 Mitochondria 

 

Senescent cells show an increased number of mitochondria130. Different mechanisms 

have been proposed to induce the accumulation of mitochondria: in one hand, the reduction of 

mitophagy leads to an increase in the number of old and dysfunctional mitochondria131. In the other 

hand, alterations in mitochondrial dynamics, such as fission and fusion processes, can trigger 

senescence132. 

 

IV.2.2 Signaling pathways involved in senescence response 

 

IV.2.2.1 Cell cycle arrest and cyclin-dependent kinase inhibitors 

 

Cell cycle is tightly regulated by a family of protein kinases known as cyclin-dependent 

kinases (CDKs), which are controlled by cyclins. Among the negative regulators, CDK inhibitors 

(CDKIs) are especially relevant in senescence response. CDKIs are divided into two families: the 

INK4 family and the Cip/Kip family. In one hand, the INK4 family is composed by p16INK4a, 

p15INK4b, p18INK4c and p19INK4d. They specifically bind and inhibit CDK4-6 kinases, acting in 

the CDKs that initiate progression through cell cycle. In the other hand, the Cip/Kip family is 

composed by p21Cip1, p27Kip1 and p57Kip2. The members of this family associate to both CDK4-

6/D and CDK2/E-A. Cip/Kip proteins activate CDK4-6/D kinases but they effectively inhibit CDK2/E-

A kinases133,134.  

p16, p21 and p27 are commonly used as markers of senescence135. p16/pRB pathway is 

often upregulated in senescence and p16 is used as a specific and unique marker for senescence 

both in vitro and in vivo136,137. In the case of p21, it is part of p53/p21 pathway and it is preferentially 

upregulated by p53 in senescence138,139. The role of p27 in senescence has been studied less than 

p16 and p21. p27 is also upregulated in senescence, preferentially when the other two pathways 

are not active106,140. 

 

IV.2.2.2 Secretory phenotype 

 

Despite senescence is described as a tumor suppressive mechanism, it is known that 

senescent cells develop altered secretory activities that may induce changes in the tissue 

microenvironment. The high heterogeneity of the SASP makes it a complicated characteristic to 

use as an unequivocal marker for senescence141. Moreover, the SASP changes over time adding 

complexity to a state that appears to play unique effects depending on the cellular context142  
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IV.2.2.3 Other molecular changes 

 

DNA damage induces the formation of γ-H2AX-positive nuclear foci, which are used as 

senescence markers143. Nevertheless, several stimuli can activate DDR and not all of them induce 

a senescence response. 

Some senescent cells acquire resistance to apoptosis by activating several pro-survival 

factors, such as BCL-2 family members144.  

 

 

 

 

 

 

 

 

 

 

Figure I12. Morphological and signalling pathway alterations as hallmarks of senescence. SA-β-gal 

activity, LAMIN B1 expression, SASP composition and levels of p16, p21 and p27 are preferentially used for 

the identification of senescent cells. SA-β-gal: senescence-associated beta-galactosidase, SASP: 

senescence-associated secretory phenotype, SAHF: senescence-associated heterochromatin foci. 

 

V Oncogene addiction 
 

The multistage process of cancer evolution is driven by the progressive accumulation of 

mutations and epigenetic changes. This will affect multiple genes with diverse functions. Despite 

the extensive changes that are observed, targeting only one of these abnormalities can profoundly 

affect the growth of cancer cells. This concept is termed as “oncogene addiction”145. It hypothesizes 

that cancer cells will be addicted to the expression of a specific gene and its targeting will have 

detrimental effects for the malignant phenotype, without affecting the cells that are not addicted to 

it. 

C-MYC146 is a proto-oncogene that together with N-MYC and L-MYC forms the MYC 

family of transcription factors. It was first identified due to its homology with the viral gene v-Myc. 
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C-MYC is implicated in the regulation of several cellular processes, such as cell proliferation, cell 

cycle, metabolism, apoptosis and differentiation147. To exert its functions, c-MYC dimerizes with 

Max and binds to DNA, regulating the expression of a large number of genes148. The study of the 

implication of c-MYC in cancer biology has been of utmost interest since its discovery. In fact, in 

many cancers c-MYC has been shown to be altered mainly due to gene overexpression, gene 

amplification and translocations149-151.  

In addition to being one of the most common oncogenic events in human cancer, c-MYC 

is a good example of oncogene addiction. Induction of MYC in the skin results in hyperplasia but 

upon its downregulation all the lesions regress152. In transgenic mouse models, the inactivation of 

MYC results in tumor regression in different types of cancer153-155.  

Similarly to c-MYC, switching off the BCR-ABL fusion gene results in rapid apoptosis of 

leukemic cells156. In melanoma, upon silencing of H-RAS cells rapidly underwent apoptosis and 

tumor regressed157. 

Oncogene addiction sets the basis for targeted cancer therapies. Nevertheless, to prevent 

the bypass of the state of oncogene addiction, combination therapy will be of utmost importance in 

cancer treatment. 
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BCa is the most diagnosed tumor type and first cause of death by cancer worldwide 

among women. Early in this century, the molecular characterization of a number of breast 

carcinomas lead to the classification of BCa into different subtypes. TNBC remains as one of the 

subtypes with the worst prognosis due to the lack of specific biomarkers and effective targeted 

therapies for this group of patients. PML has been described as a tumor suppressor for many years, 

but it is overexpressed in TNBC, where it plays a pro-survival role. This thesis project focuses on 

the study of PML activity in TNBC and its potential as a biomarker. It is based in the following 

hypothesis: PML is essential for the survival of TNBC cells and its deregulation could 

represent a new therapeutic opportunity. 

We based our work in the premise that TNBC cells are addicted to the expression of PML 

and that its inhibition will compromise their function. Our objective is to decipher the pathways 

sustaining PML function in TNBC taking advantage of cancer cell lines, xenograft models and in 

silico analyses. 

In order to test this hypothesis, we established the following specific aims: 

Aim 1: To ascertain the effect of PML silencing in the growth of TNBC cell lines. 

TNBC exhibits an overexpression of PML when compared to other BCa subtypes100. We have 

previously demonstrated that PML regulates cancer initiation and metastasis in this BCa subtype 

through the regulation of the stem cell factor SOX9101. Investigating the consequences of PML 

inhibition in non-cancer-initiating cells could give a more insightful perspective of its key role in BCa: 

1. Analysis of PML status in different publicly available datasets and in BCa cell lines. 

2. Generation of genetically modified cellular systems to study the role of PML in TNBC. 

3. Evaluation of the growth-inhibitory phenotypes in vitro and in vivo upon PML targeting. 

Aim 2: To decipher the molecular mechanism underlying the growth-inhibitory response in 

PML addicted BCa cell lines. 

The lack of biomarkers in TNBC has encouraged the search for essential pathways for cancer cells 

that can be targeted therapeutically. The idea that cells are addicted to the expression of a single 

oncogene opens new opportunities:  

1. Define the growth inhibitory mechanism triggered upon PML inhibition. 

2. Elucidate the selective requirement of PML in TNBC vs. non-TNBC cells.  

3. Study the effects of pharmacological inhibition of PML with arsenic trioxide. 
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I Materials 

I.1 Cell lines and culture conditions 
 

 Human breast carcinoma cell lines (MDA-MB-231, MCF7 and T47D) were obtained from 

the American Type Culture Collection (ATCC, Manassas, VA, USA) or from Leibniz-Institut-

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DMSZ), who provided an 

authentication certificate. MDA-MB-468, Cal51 and Cama-1 human breast carcinoma cell lines 

were generously provided by the laboratory of Dr. Maurizio Scaltriti. Virus packaging cell line 

HEK293FT was generously provided by the laboratory of Dr. Rosa Barrio. None of the cell lines 

used in this study was found in the database of commonly misidentified cell lines maintained by 

ICLAC and NCBI Biosample. MDA-MB-231, MCF7 and HEK293FT were cultured in Dulbecco's 

Modified Eagle Medium (Ref. 41966-029, Gibco), MDA-MB-468 and T47D were cultured in RPMI 

1640 Medium (Ref. 61870-010, Gibco; with GlutaMAX supplement) and Cal51 and Cama-1 cell 

lines were cultured in DMEM/F12 Medium (Ref. 31331-028, Gibco; with GlutaMAX supplement). 

See Table M1 for cell line specifications. 

Table M1. Detailed list of the different BCa cell lines used during this work. Mutation data was taken from 

COSMIC database (www.sanger.ac.uk/genetics/CGP/cosmic/). 

Cell line Cell type Derivation Subtype Mutations 

MDA-MB-231 
(DMSZ ACC-

732) 

Breast 
adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 50 year old 

Caucasian woman.  
TNBC 

BRAF; CDKN2A; 
KRAS; NF2; 

TP53; PDGFRA 

MDA-MB-468 
Breast 

adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 51 year old 
African-American woman. 

TNBC 
PTEN; RB1; 

SMAD4; TP53 

Cal51 
Breast 

adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 45 year old 

woman.  
TNBC PIK3CA, PTEN 

MCF-7 
(ACC115) 

Breast 
adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 69 year old 

Caucasian woman. 

ER+, PR+, 
HER2- 

PI3KCA; CDKN2A 

T47D 
Breast 

adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 54 year old 

woman. 

ER+, PR+, 
HER2- 

TP53;  
PTEN 

Cama-1 
Breast 

adenocarcinoma 

Derived from metastatic site: 
pleural effusion. 51 year old 

Caucasian woman. 

ER+, PR+, 
HER2- 

PI3KCA; TP53 

HEK293FT  
Human 

embryonic 
kidney cells 

From human primary 
embryonal kidney transformed 
by adenovirus type 5 Negative 

- - 

http://www.sanger.ac.uk/genetics/CGP/cosmic/
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All culture media were supplemented with 10% inactivated Fetal Bovine Serum (FBS) 

(Ref. F9665, Sigma), from same lot and previously analyzed to ensure experimental reproducibility, 

and 1% Penicillin/Streptomycin (Ref. 15140-122, Gibco) (complete media). All the experiments 

were performed with complete media unless otherwise specified. HEK293FT cell line was seeded 

on poly-lysine (Ref. P8920, Sigma) coated plates. All cell lines were routinely monitored by PCR 

for mycoplasma presence and replaced in case of positive result. Cell lines were grown at 37ºC in 

a humidified atmosphere of 5% CO2. Cells were regularly cultured in 100 mm dishes and split every 

3-4 days, maintaining them below 80-90% density, up to 30 passages maximum. To split the cells, 

they were incubated with trypsin-EDTA solution (Ref. 25200-056, Gibco) at 0.05% for 5 minutes at 

37ºC, and re-suspended in the corresponding fresh complete media. In order to do the cell counting, 

cells were diluted 1:1 in Trypan Blue Dye 0.4% (Ref. T8154-20ML, Sigma) and 10 μL were loaded 

in a Neubauer chamber to count viable cells by optical microscopy (Olympus CKX31). The Trypan 

Blue dye allows to determine cell viability based in the fact that dead cells show disrupted plasma 

membrane and allow the internalization of the dye staining their cytoplasm in blue, while alive cells 

remain non-stained thanks to their intact cell membrane.  

 

I.2 Drugs 
 

All the compounds used in this thesis were subjected to a dose response analysis in order 

to find the best concentration for their maximum activity without any cytotoxic effect. The information 

regarding the drugs is shown in Table M2. 

Table M2. Experimental specifications for the different drugs used during the thesis work. 

 

 

Drug Supplier Dose Function 

Puromycin Sigma (P8833) 2 µg/mL Cell selection after infection  

Blasticidine S 
hydrochloride 

Sigma (15205) 10 µg/mL Cell selection after infection  

Doxycycline Sigma (D9891) 150 ng/mL Gene-inducible system 

Ampicillin sodium salt Sigma (A0166-59) 50 µg/mL Bacterial selection 

Staurosporine 
Selleckchem 

(S1421) 
1 µM Apoptosis induction 

Arsenic (III) oxide 
(ATO) 

Sigma (A-1010) 150 nM PML degradation 
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II Methods 

II.1 Cloning 
 

Different cloning strategies were designed for PML, PIM1, MYC and p27 silencing and 

PML overexpression. These strategies are explained in detail below. All the primers used are 

summarized in Table M3. 

shRNA pLKO-Tet-On strategy 

The strategy provided by Dr. Dmitri Wiederschain158 was followed for this cloning 

(Addgene plasmid: 21915, Fig. M1) with the help of Dr. Ianire Astobiza. Validated short hairpin RNA 

(shRNA) sequences (for PML, PIM1, MYC and p27) were obtained from SIGMA (MISSION® 

shRNA). The tetracycline inducible pLKO (pLKO-Tet-On) vector is engineered to induce the shRNA 

expression upon doxycycline (dox) addition. Bottom or complementary primers were designed 

including an EcoRI restriction site at the 5’ end, while top or template primers carried an AgeI 

restriction sequence in their 5’ end. pLKO-Tet-On vector was then opened using AgeI (Ref. ER1462, 

Thermo Fisher) and EcoRI (Ref. ER0271, Thermo Fisher) restriction enzymes, the only cloning 

sites in the vector, and purified using a gel extraction kit (Ref. mi-GEL250, Metabion). Then, 11.25 

µL of each oligo (top and bottom for each shRNA at 100 µM) were mixed with 2.5 µL of 10X 

annealing buffer (1 M NaCl, 100 mM Tris-HCl, pH=7.4) in an eppendorf. This mix was placed in 

boiling water and left for 3-4 hours to naturally cool down. After that, 1 µL of the oligo mixture was 

diluted 1:400 in 0.5X annealing buffer. For the ligation 1.5 µL of the diluted oligo mixture, 100 ng of 

the digested pLKO-Tet-On vector, 2 µL of 5X ligase buffer, 1 µL of T4 DNA ligase (Ref. 100004917, 

Invitrogen) and water for a total volume of 10 µL were used. It is important to add a vector-only 

negative control. After an incubation of 1 hour at room temperature (RT), ligation was transformed 

into ultra-competent XL-10 Gold cells (10 µL of the ligation in 50 µL of competent cells). The mix 

was kept 20 minutes in ice, then it was heat shocked for 30 seconds at 42ºC and placed back into 

ice for 2 minutes. To ease the growth, LB Broth Lennox (Ref. 1231, Conda-Pronadisa) was added 

(with no antibiotic) and incubated at 37ºC with shaking for 30 minutes. Finally, the transformation 

mix was spread into LB agar plates containing the corresponding antibiotic, 50 µg/mL ampicillin in 

this case. The plates were incubated overnight at 37ºC. The resulting colonies were digested with 

XhoI (Ref. FD0694, Thermo Fisher) enzyme to screen for positive clones, which will show a pattern 

of 3 different bands (2 of them below 200 base pairs due to the restriction site included in the shRNA 

sequence), while the negative clones will have 2 fragments. Finally, they were sequenced to confirm 

that the inserted fragment was correct. 

Sub-cloning of scramble shRNA (shC), sh1PML, sh4PML, sh5PML and sh42MYC was 

done into pLKO-Tet-On-puromycin vector. Sub-cloning of shC, sh1p27, sh2p27 and sh18PIM1 into 

pLKO-Tet-On-blasticidin was done following the same procedure. Puromycin resistance cassette 

was replaced with blasticidin cassette following Gibson assembly strategy by Dr. James Sutherland 

(CIC bioGUNE) and Dr. Veronica Torrano (CIC bioGUNE). BamHI and SfiI were used to introduce 
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the selection cassette and lentiCas9-Blast (Addgene plasmid: 52962) plasmid as the source for 

blasticidin fragment. 

Figure M1. Schematic representation of Tet-pLKO-puro inducible vector. 

 

 

 

 

 

 

 

 

TRIPZ-HA-PML IV strategy 

The TRIPZTM vector from Dharmacon (Fig. M2) used to induce the expression of HA 

tagged PML is engineered to be inducible in the presence of doxycycline. This induction is enabled 

by 2 different components: the tetracycline response element (TRE) and the reverse tetracycline-

controlled transactivator 3 (rtTA3). In the presence of doxycycline, the transactivator will bind to and 

activate the expression from TRE promoters. HA-PML IV cloning was performed by Dr. James 

Sutherland (CIC bioGUNE). Briefly, PML IV together with the HA tag was amplified using PMLIV01 

and PMLIV02 from pLNCX-HA-PMLIV (from Dr. Pier Paolo Pandolfi´s lab), providing AgeI and AscI 

restriction sites; the PCR product was then isolated and digested with the mentioned enzymes. In 

parallel, TRIPZ vector was digested with AgeI and MluI. PML IV sequence contained a MluI 

restriction site which did not allow adding the restriction sequence for that enzyme to the primers 

used for its amplification. The similarity between AscI and MLuI restriction sequences allowed the 

use of different enzymes to digest the insert and the vector. Once the amplicon and the vector were 

digested and purified, ligation was performed using T4 ligase (Ref. 100004917, Invitrogen) and 

transformed into ultra-competent XL-10 Gold cells following the same protocol as in shRNA pLKO-

Tet-On subcloning. Colonies were digested with AgeI and MluI for positive colony screen and 

sequenced to confirm the inserted sequence. 

Figure M2. Schematic figure of TRIPZTM inducible vector. 
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Table M3. Information about the primers used for the different cloning strategies. 

Name Primers Purpose Sequence 

sh1PMLT01   sh1PML top 
To introduce the 

shRNA in the pLKO-
Tet-On-puro vector 

CCGGCACCCGCAAGACCAACA
ACATCTCGAGATGTTGTTGGTC

TTGCGGGTGTTTTT 

sh1PMLB01 
sh1PML 
bottom 

To introduce the 
shRNA in the pLKO-
Tet-On-puro vector 

AATTAAAAACACCCGCAAGACC
AACAACATCTCGAGATGTTGTT

GGTCTTGCGGGTG 

sh4PMLT01 sh4PML top 
To introduce the 

shRNA in the pLKO-
Tet-On-puro vector 

CCGGGCCAGTGTACGCCTTCT
CCATCTCGAGATGGAGAAGGC

GTACACTGGCTTTTTG 

sh4PMLB01 
sh4PML 
bottom 

To introduce the 
shRNA in the pLKO-
Tet-On-puro vector 

AATTCAAAAAGCCAGTGTACGC
CTTCTCCATCTCGAGATGGAGA

AGGCGTACACTGGCCCGG 

sh5PMLT01  sh5PML top 
To introduce the 

shRNA in the pLKO-
Tet-On-puro vector 

CCGGGTGTACCGGCAGATTGT
GGATCTCGAGATCCACAATCTG

CCGGTACACTTTTT 

sh5PMLB01 
sh5PML 
bottom 

To introduce the 
shRNA in the pLKO-
Tet-On-puro vector 

AATTAAAAAGTGTACCGGCAGA
TTGTGGATCTCGAGATCCACAA

TCTGCCGGTACACCCGG 

sh18PIM1T01 sh18PIM1 top 
To introduce the 

shRNA in the pLKO-
Tet-On-blasti vector 

CCGGACATCCTTATCGACCTCA
ATCCTCGAGGATTGAGGTCGA

TAAGGATGTTTTTT 

sh18PIM1B01 
sh18PIM1 

bottom 

To introduce the 
shRNA in the pLKO-
Tet-On-blasti vector 

AATTAAAAAACATCCTTATCGA
CCTCAATCCTCGAGGATTGAG

GTCGATAAGGATGT 

sh42MYCT01 sh42MYC top 
To introduce the 

shRNA in the pLKO-
Tet-On-puro vector 

CCGGCCTGAGACAGATCAGCA
ACAACTCGAGTTGTTGCTGATC

TGTCTCAGGTTTTTG 

sh42MYCB01 
sh42MYC 

bottom 

To introduce the 
shRNA in the pLKO-
Tet-On-puro vector 

AATTCAAAAACCTGAGACAGAT
CAGCAACAACTCGAGTTGTTGC

TGATCTGTCTCAGGCCGG 

sh1p27T01   sh1p27 top 
To introduce the 

shRNA in the pLKO-
Tet-On-blasti vector 

CCGGGTAGGATAAGTGAAATG
GATACTCGAGTATCCATTTCAC

TTATCCTACTTTTTG 

sh1p27B01 sh1p27 bottom 
To introduce the 

shRNA in the pLKO-
Tet-On-blasti vector 

AATTCAAAAAGTAGGATAAGTG
AAATGGATACTCGAGTATCCAT

TTCACTTATCCTAC 

sh2p27T01   sh2p27 top 
To introduce the 

shRNA in the pLKO-
Tet-On-blasti vector 

CCGGGCGCAAGTGGAATTTCG
ATTTCTCGAGAAATCGAAATTC

CACTTGCGCTTTTTG 

sh2p27B01 sh2p27 bottom 
To introduce the 

shRNA in the pLKO-
Tet-On-blasti vector 

AATTCAAAAAGCGCAAGTGGAA
TTTCGATTTCTCGAGAAATCGA

AATTCCACTTGCGC 

PMLIV01 
Age1.KozHA.P

ML.for 

To produce a PCR 
product with AgeI site 

in the 5´end 

gatcaccggtgccaccATGTACCCAT
ACGATGTTCCAGATTACGCTGG
CTCCatggagcctgcacccgcccgatc 

PMLIV02 
Asc1.PMLv4.r

ev 

To produce a PCR 
product with Asc1 site 

in the 3´end 

gatcggcgcgccCTAAATTAGAAAG
GGGTGGGGGTAGC 
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II.2 Stable cell line generation 
 

Virus generation was carried out in a BSL-2 laboratory, under the appropriate safety 

measurements. For the virus production HEK293FT packaging cell line was used; for the stable 

cell line generation, different target cell lines in which the transgene was intended to be introduced 

were used. In this thesis work all the cell lines were generated through lentiviral infection following 

this general protocol (Fig. M3): 

Day 1 

• Morning: seed HEK293FT at high density (3x106 cells/100 mm plate). 

• Afternoon: transfect HEK293FT cells. 

 

Day 2 

• Refresh medium of the transfected HEK293FT. In the case the virus was concentrated, 

less volume was added. 

• Seed target cell line (at least 300.000 cells per 100 mm plate, depending on the cell line 

used). 

 

Day 3 

• First infection: virus-containing supernatant from HEK293FT was filtered using a 0.45 µm 

filter; fresh medium was added to the collected supernatant. To increase the infection 

efficiency, protamine sulfate (8 µg/mL) was supplemented. Fresh medium was added to 

packaging cells for the second infection next day. 

 

Day 4 

• Second infection: it was performed as the previous day. Packaging cells were discarded 

following biosafety rules. 

 

Day 5 

• Selection: fresh medium was added to target cell lines supplemented with the 

corresponding selection antibiotic. Puromycin (2 µg/mL) selection took between 48 and 72 

hours, while blasticidin (10 µg/mL) needed 5 days. A positive control (non-infected cells) 

was used to confirm that selection was working. 
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Figure M3. Timeline of the experimental protocol for virus production using HEK293FT cells. 

 

 

 

 

 

 

 

 

 

 

II.2.1 Lentivirus production and target cell infection 

 

For the lentivirus production, packaging cells were transfected with the packaging 

plasmids and the vector with the construct of interest (Fig. M4). Second generation lentivirus 

production was used for PML IV overexpression, while third generation lentivirus production was 

used to silence PML, PIM1, MYC and p27 in BCa cell lines. 

Figure M4. Figure showing the packaging system and lentivirus production in HEK293FT cells. 
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II.2.1.1 Second generation lentivirus production  

 

 HA-PML IV was cloned in an inducible TRIPZ vector. Second generation lentivirus 

production consists in 3 plasmids: the vector bearing the construct of interest and all the cis-acting 

sequences required, and two packaging vectors, pVSV-G and psPAX2, which provide the trans-

acting factors (Gag/Pol/Rev/Tat). The separation of cis-acting and trans-acting sequences reduces 

the probability of recombination producing replication-competent viral particles. Due to the 

backbone of TRIPZ vector, another vector was needed to help in the transcription: pTAT (Table 

M4). Second generation lentivirus production was performed as described in II.2, using MDA-MB-

231 as target cells, which were subjected to puromycin selection for 48-72 hours. 

Table M4. Specific vectors used for second generation lentivirus production (quantities for 100 mm plates). 

Vector 
name 

Role 
Encoding 

Sequences 
Function Origin 

Amount 
transfected 

psPAX2 
Packaging 

vector 

Gag-Pol 
Integrase, reverse 
transcriptase, and 
structural proteins 

Dr. James D. 
Sutherland 

1.66 µg 
 

RRE Rev-responsive element 

Rev 
Enhancer of unspliced 

viral genomic RNA 
nuclear export 

pVSV-G 
Packaging 

vector 
VSV-G Envelope protein 

Dr. James D. 
Sutherland 

1.66 µg 

pTAT 
Helper 
vector 

TAT 
Enhances trancription 

efficiency 
Dr. James D. 
Sutherland 

1.66 µg 

TRIPZ-HA-
PML IV 

Transfer 
vector 

PML IV Gene to overexpress 
Dr. James D. 
Sutherland 

5 µg 

 

 

II.2.1.2 Third generation lentivirus production  

 

Third generation virus were used for silencing of PML, MYC, PIM1 and p27, using both 

puromycin- and blasticidin-resistance bearing pLKO vectors. For the constitutive silencing of PML, 

MYC and p27 shRNA sequences were purchased from SIGMA (MISSION® shRNA Bacterial 

Glycerol Stock) (Table M5). 

The different sets of shRNAs were validated and chosen for further experiments based 

on the silencing dynamics and knockdown levels. PML, p27 and MYC shRNAs were also subcloned 

into doxycycline inducible pLKO-Tet-On vector; PIM1 shRNA was only tested in the inducible 

system. Third generation lentivirus require three packaging vectors (pRRE, pREV and pVSV-G; this 

system decreases recombination probability and makes them more secure to handle compared to 

second generation) and the transfer vector (Table M5). 
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Table M5. Specific vectors used for third generation lentivirus production (quantities for 100 mm plates). 

 

 

 

 

 

Vector 
name 

Role 
Encoding 

Sequences 
Function 
Sequence 

Origin 
Amount 

transfected 

pRRE 
Packaging 

vector 

Gag-Pol 
Integrase, reverse 
transcriptase, and 
structural proteins 

Dr. James D. 
Sutherland 

1.66 µg 
 

RRE Rev-responsive element 

pREV 
Packaging 

vector 
Rev 

Enhancer of unspliced 
viral genomic RNA 

nuclear export 

Dr. James D. 
Sutherland 

1.66 µg 

pVSV-G 
Packaging 

vector 
VSV-G Envelope protein 

Dr. James D. 
Sutherland 

1.66 µg 

Scramble 
pLKO-Tet-

On 

Transfer 
control 
vector 

Control 
shRNA  

CCGGCAACAAGATGAA
GAGCACCAACTCGAGT
TGGTGCTCTTCATCTT
GTTG 

- 5 µg 

sh1PML 
pLKO-Tet-

On   

Transfer 
vector 

shRNA 
against PML 

CCGGCACCCGCAAGA
CCAACAACATCTCGAG
ATGTTGTTGGTCTTGC
GGGTGTTTTT 

SIGMA 
TRCN0000003

865 
5 µg 

sh4PML 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against PML 

CCGGGCCAGTGTACG
CCTTCTCCATCTCGAG
ATGGAGAAGGCGTACA
CTGGCTTTTTG 

SIGMA 
TRCN0000003

867 
5 µg 

sh5PML 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against PML 

CCGGGTGTACCGGCA
GATTGTGGATCTCGAG
ATCCACAATCTGCCGG
TACACTTTTT 

SIGMA 
TRCN0000003

868 
5 µg 

sh18PIM1 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against PIM1 

CCGGACATCCTTATCG
ACCTCAATCCTCGAGG
ATTGAGGTCGATAAGG
ATGTTTTTT 

SIGMA 
TRCN0000320

587 
5 µg 

sh42MYC 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against MYC 

CCGGCCTGAGACAGAT
CAGCAACAACTCGAGT
TGTTGCTGATCTGTCT
CAGGTTTTTG 

SIGMA 
TRCN0000039

642 
5 µg 

sh1p27 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against p27 

CCGGGCGCAAGTGGA
ATTTCGATTTCTCGAG
AAATCGAAATTCCACTT
GCGCTTTTTG 

SIGMA 
TRCN0000039

928 
5 µg 

sh2p27 
pLKO-Tet-

On 

Transfer 
vector 

shRNA 
against p27 

CCGGGCGCAAGTGGA
ATTTCGATTTCTCGAG
AAATCGAAATTCCACTT
GCGCTTTTTG 

SIGMA 
TRCN0000039

930 
5 µg 
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II.2.1.3 Lentivirus concentration 

 

In order to optimize the infection procedure, viruses were submitted to concentration steps 

in some experiments. Concentrated virus aliquots were generated following the time-schedule 

described in Fig. M2 until day 3. At this point, filtered supernatant from HEK293FT was combined 

at 3:1 proportion with Lenti-XTM Concentrator (Ref. 631232, Clontech). After mixing it by inversion 

carefully, it was stored at 4º overnight. The next day the procedure was repeated and after at least 

30 minutes of incubation at 4º, the supernatant was mixed with the one from the previous day and 

centrifuged at 1,500 rcf for 45 minutes at 4ºC. The pellet was resuspended in medium and 

distributed in 50 µL aliquots (150 µL were added per 100 mm plate). Target cell lines were infected 

for two consecutive days and the selection added on day 3. 

In two different situations was this procedure used to keep consistency between the 

different experiments performed: first, for the experiments using the PML and p27 constitutive 

silencing. All shRNAs against PML showed a high silencing efficiency, and due to the dramatic 

decrease in their growth capacity new infections were needed for each experiment. And second, 

when different cell lines were going to be infected with the same construct. 

 

II.3 Cellular analysis 
 

All the experiments performed with cell lines carrying inducible silencing constructs, were 

subjected to a chronic induction with doxycycline (150 ng/mL) as explained in Figure M5. In the 

case of PML overexpression, doxycycline was added for 3 days (50 ng/mL).  

The concentration of doxycycline used in both cases was determined in previous assays. 

Figure M5. Schematic representation of experiment plating with doxycycline induction (150 ng/mL). 
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The number of cells used for each cell line and experiment is depicted in Table M6. 

Table M6. Approximate number of cells seeded for the different experiments with inducible silencing systems 

after 3 days of pre-induction in 100 mm plates. 

 

 

II.3.1 Proliferation assay by crystal violet staining 

 

Cells were seeded in 12-well plates for different time points. Each plate was washed with 

phosphate buffered saline (PBS), fixed with 10% formalin and stored at 4ºC; the plate from the last 

day of the experiment was fixed for at least 15 minutes at RT. All plates were processed at the 

same time once the experiment was finished. Plates were washed again with PBS and stained with 

crystal violet [0.1% crystal violet (Ref. C3886, Sigma) and 20% methanol] for 1 hour. After washing 

with distilled water (dH2O), plates were air dried and precipitates were dissolved in 10% acetic acid 

for 30 minutes. Absorbance was measure in 96-well plates in the spectrophotometer at 595 nm. 

 

II.3.2 DNA synthesis rate analysis by bromodeoxyuridine  

 

To analyze cell proliferation, we measured the incorporation of the pyrimidine 

deoxynucleoside thymidine analogue 5-bromodeoxyuridine (BrdU) into newly replicated DNA, 

based on the direct correlation between DNA replication and cell division. 

 

 

 

Assay 
Cellular density per well for 3 days 

Plate type 
MDA-MB-231 MDA-MB-468 MCF7 Cama-1 

Protein and 
RNA 

1x105 no dox 
1.2x105 dox 

1x105 no dox 
1.2x105 dox 

75,000 90,000 6 well plate 

FACS analysis 90,000    6 well plate 

Senescence 15,000 15,000 15,000 15,000 24 well plate 

Growth curves 
(up to 6 days) 

7,500 8,500 5,000 8,500 12 well plate 

Secretome 
4x106 no dox 
5x106 no dox 

  
4x106 no dox 
5x106 no dox 3x150 mm 

BrdU/IF 20,000    24 well plate 

ROS 150,000    6 well plate 
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BrdU incorporation 

BrdU is a thymidine analogue that gets incorporated into DNA during its replication159. 

Since monoclonal antibodies were developed to detect and bind to incorporated BrdU160, it has 

been extensively used to estimate cell proliferation by immunofluorescence. In this thesis work, 

BrdU incorporation was performed in asynchronic cell cultures. Cells were seeded on coverslips 

(12 mm). BrdU (Ref. B5002, Sigma) was added to culture medium to a final concentration of 0.2 

μg/mL and incubated for 6 hours at 37ºC in the incubator. After incubation, cells were washed with 

PBS and fixed with 4% paraformaldehyde (PFA; Ref. 15710, Electron Microscopy Sciences) 

solution in PBS for 15 minutes. Cells were washed twice to eliminate remaining PFA and coverslips 

were stored in PBS at 4ºC until processing. 

DNA exposure and detection by immunofluorescence 

For BrdU to be detected DNA must be exposed, allowing the binding of monoclonal 

antibodies. To this end, coverslips were incubated with HCl 2 M for 5 minutes and quickly washed 

twice with PBS to further neutralize the acid with Borax (sodium tetraborate 0.1 M, pH 8.5) for 5 

minutes. Cells were then permeabilized with Triton X100 0.1%/Glycine 0.1 M for 5 minutes and 

10% goat serum (in PBS) was employed as blocking reagent for 30 minutes at RT. Primary antibody 

against BrdU (Ref. B35128, Invitrogen) was incubated at 1:100 dilution in 10% goat serum overnight 

at 4ºC in a humidification chamber. The next day, secondary anti-mouse antibody [anti-mouse 

Alexa594 (Ref. A11005), Invitrogen-Molecular Probes] was incubated at 1:1000 dilution in 10% 

goat serum for 1 hour in the dark. Finally, cells were stained with DAPI (4',6-diamidino-2-fenilindol; 

Ref. D1306, Thermo Fisher) (1:10,000 dilution in PBS) for nuclear staining and coverslips were 

mounted onto slides with ProLong Gold antifade reagent (Ref. P36930, Invitrogen). The slides were 

stored at 4ºC in the dark until analysis with the upright fluorescent microscope AxioImager D1 (Carl 

Zeiss). 

 

II.3.3 Cell size analysis by flow cytometry 

 

To address the differences in the morphology of the cells, a BD FACSCantoTM II (BD 

Biosciences) flow cytometer was used for the analysis using forward scatter (FSC) and side scatter 

(SSC) properties. Live cells were trypsinized and resuspended in PBS and directly analyzed using 

the flow cytometer. Data were analyzed using the FlowJo software: cell populations of live cells 

were selected based on the “no dox” condition of each shRNA and differences were quantified 

taking this condition as control. 
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II.3.4 Senescence associated β-Galactosidase assay 

 

To detect senescent cells, we analyzed the activity of senescence associated-β-

galactosidase using a senescence detection kit (Ref. QIA117, Calbiochem). After fixing the cells for 

10 minutes with the fixing solution, an overnight incubation with the staining mix staining solution, 

X-Gal at 20 mg/ml in N,N-dimethylformamide (DMF; Ref. 227056, Sigma) and staining supplement] 

was performed. X-Gal is a chromogenic substrate that when added to the cells is cleaved by the 

lysosomal β-galactosidase enzyme giving a blue staining only to senescent cells. SA-β-Gal activity 

was revealed and quantified the next day. Plates were stored in glycerol 70% at 4ºC. The number 

of senescent cells in each area was relativized to the number of total cells counted in the same 

area. Cells were seeded in plates or glass cover slips to acquire images with EVOS® cell imaging 

station (20x magnification objective).  

 

II.3.5 Immunofluorescence 

 

For immunofluorescence experiments, cells were seeded on 12 mm glass coverslips in 

24-well plates. Cells were washed with PBS and fixed with 4% PFA solution in PBS for 15 minutes. 

Wells were washed twice to eliminate remaining PFA and coverslips were stored in PBS at 4ºC 

until processing. 

Cells were then permeabilized with Triton X100 0.1%/Glycine 0.1 M for 5 minutes and 

10% goat serum (in PBS) was employed as blocking reagent for 30 minutes at RT. Primary 

antibodies were incubated in 10% goat serum overnight at 4ºC in a humidification chamber (Table 

M7). The next day, secondary antibodies [anti-rabbit Alexa488 (Ref. A11034), anti-rabbit Alexa594 

(Ref. A32740), anti-mouse Alexa488 (Ref. A11001) and anti-mouse Alexa594 (Ref. A11005); 

Invitrogen-Molecular Probes] were incubated at 1:1000 dilution in 10% goat serum for 1 hour in the 

dark. Finally, cells were stained with DAPI (1:10,000 dilution in PBS) for nuclear staining and 

coverslips were mounted onto slides with ProLong Gold antifade reagent. The slides were stored 

at 4ºC in the dark until analysis with the upright fluorescent microscope AxioImager D1 (Carl Zeiss). 

Table M7. References and preparation of the antibodies used for immunofluorescence. 

 

Antibody Reference Species Dilution 

CDKN1B, p27 Ref.: 610242, BD Biosciences Mouse 1:100 

PML 
Ref.: A301-167A, Bethyl 

laboratories 
Rabbit 1:100 

macroH2A1.1 
(D5F6N) 

Ref.: 12455, Cell Signaling Rabbit 1:100 
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II.3.6 ROS production measurement 

 

To measure the redox state of the cells 2',7'-dichlorofluorescin diacetate (DCF-DA) was 

used161. Upon cleavage by esterases and oxidation, this non-fluorescent molecule is converted into 

DCF, a very fluorescent product that will be measured by flow cytometry. It is excited at 495 nm 

and emits at 520 nm. 30 minutes before the analysis, 10 μM of DCF-DA (Ref. 35845, Sigma) 

reactive was added to the cells, and 5 minutes prior to harvesting H2O2 (1 M) was added to the 

positive control well. Cells were washed twice with PBS, harvested using TrypLE™ Select Enzyme 

(Ref. 12563-011, Gibco) and resuspended in PBS for the analysis using BD FACSCantoTM II (BD 

Biosciences). 

 

II.4 Molecular analysis 

II.4.1 Gene expression analysis 

 

II.4.1.1 RNA extraction 

 

For in vitro gene expression analysis, cells were seeded in 6-well plates for a final density 

of around 70-80% (following the times explained in figure M5). Plates were washed with PBS and 

processed or snap-frozen in liquid-nitrogen for later RNA extraction, unless otherwise specified. 

RNA was extracted using NucleoSpin RNA isolation kit from Macherey-Nagel (Ref. 740955.250) 

according to manufacturer´s protocol. The RNA concentration was determined by using the 

NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific). 

For RNA extraction from xenografts of human cancer cell lines, samples were incubated 

overnight at -20ºC with 200 µL of RNAlaterTM-ICE (Ref. AM7030, Invitrogen), which was kept at -

80ºC until it was used. The following day, tissues were transferred to a new tube with 800 µL of TRI 

Reagent (Ref. TR-118, MRC) with 2.8 mm ceramic beads (Ref. 13114-50, MO BIO Laboratories). 

Precellys machine was used to homogenize the tissue at 6,000 rpm during 30 seconds (step 

repeated twice). Then, 160 µL of chloroform (Ref. 34854, Sigma) were added and, after vortexing, 

the mix was centrifuged at 12,000 rcf during 15 minutes at 4ºC. The aqueous phase was collected 

and mixed with the corresponding volume of ethanol. The same protocol used for RNA extraction 

from cell lines was followed after this step. 

 

II.4.1.2 RNA retrotranscription 

 

For RNA retrotranscription, 1 or 0.5 µg of the obtained RNA were used for complementary 

DNA (cDNA) synthesis using Maxima™ H Minus cDNA Synthesis Master Mix (Ref. M1682, 
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Invitrogen). Resulting cDNA was diluted in fresh milli Q water and 3 µL were used for real time 

quantitative PCR (RT-Q-PCR) reaction. 

 

II.4.1.3 Real time quantitative PCR  

 

RT-Q-PCRs were performed using either Viia7 or QS6 systems (Life Technologies). The 

following program was used for this approach: 2 minutes at 50 ºC and 10 minutes at 95ºC (hold 

stage) followed by 40 cycles of 15 seconds at 95ºC (denaturalization) and 1 minute at 60ºC 

(annealing and elongation). Gene expression was analyzed with primers and probes from Universal 

Probe Library from Roche. The Universal Probe Library Assay Design Center is available online 

(https://lifescience.roche.com/en_es/brands/universal-probe-library.htmL). This tool allows the 

designing of primers and also assigns the corresponding probe needed for each reaction in order 

to perform a TaqMan assay. For the reaction, 0.3 µL of primer mix (20 µM), 3 µL of TaqMan 

universal master mix II with UNG (Ref. 4440046, Applied Biosystems) and 0.05 µL of the 

corresponding probe were used. For the analysis of both the house-keeping gene, GAPDH and 

PML gene, commercial TaqMan probes (Life technologies) were used. Comparative Ct method was 

selected for the quantification of gene expression changes. See Table M8 for specific primer 

sequences and references. 

Table M8. Specifications of primer sequences and probe numbers from Universal Probe Library (Roche). 

 

 

 

 

Gene Forward 5´-3´ Reverse 5´-3´ Probe 

CDKN1B ccctagagggcaagtacgagt agtagaactcgggcaagctg 39 

MYC gctgcttagacgctggattt taacgttgaggggcatcg 66 

PIM1 atcaggggccaggttttc gggccaagcaccatctaat 13 

CDK2 aaagccagaaacaagttgacg gtactgggcacaccctcagt 77 

CDK4 gtgcagtcggtggtacctg aggcagagattcgcttgtgt 25 

E2F3 ggtttcggaaatgcccttac gatgaccgctttctcctagc 40 

AURKA gcagattttgggtggtcagt tccgaccttcaatcatttca 79 

CDC25A cgtcatgagaactacaaaccttga tctggtctcttcaacactgacc 67 

PML Hs00971694m1   

GAPDH Hs02758991_g1    
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II.4.2 Protein expression analysis 

 

II.4.2.1 Protein extraction 

 

For in vitro protein expression analysis, cells were seeded as for gene expression 

analysis. All the steps were performed on ice. Cells were lysed using RIPA buffer [50 mM TrisHCl 

pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.10% SDS, 1% Sodium Deoxycholate, 1% NP-40, 1 pill of 

Complete EDTA-free Protease inhibitor cocktail tablet (Ref. 04693132001, Roche) per 50 mL of 

buffer, and 1 mM of the phosphatase inhibitors sodium fluoride, sodium orthovanadate and -

glycerophosphate]. Lysates were maintained at 4ºC with rotation for 20 minutes and then 

centrifuged at 13,500 rpm for 12 minutes. Protein containing supernatant was collected in new 

Eppendorf tubes. Protein concentration was determined with a Pierce BCA protein assay kit (Ref. 

23227, Thermo Scientific).  

For protein extraction from xenografts, the homogenization was performed in the 

presence of 400uL of modified RIPA lysis buffer, containing twice the concentration of inhibitors 

used for protein extraction from cell lines (2 mM phosphatase inhibitors and two pills of protease 

inhibitor cocktail). 

 

II.4.2.2 Western blotting (WB) 

 

Protein lysates (which were previously loaded with Laemmli buffer 5X) were boiled at 

95ºC for 5 minutes for protein denaturalization, and resolved either in NuPAGE Novex 4-12% 

Bis-Tris Midi Protein gels (Ref. NG1403BOX, Invitrogen) or mini protein gels (Ref. NP0322BOX, 

Invitrogen) at 180 V in MES SDS buffer (Ref. K856-500ML, VWR) or NuPAGE™ MOPS SDS 

Running Buffer (Ref. NP0001-02, Invitrogen). Pink Prestained Protein Marker (Ref. MWP02, 

Nippon) was used as protein weight marker (weighted in kilodalton, KDa). Proteins were transferred 

to nitrocellulose membranes at 100 V for 1 hour. Then, membranes were blocked with 5% non-fat 

milk prepared in Tris-buffered saline solution containing 0.01% Tween-20 (TBS-T). Primary 

antibodies were prepared in TBS-T with 0.002% sodium azide to allow long storage, and 

membranes were incubated with the antibodies either overnight at 4ºC or for 2 hours at RT. After 

primary antibody incubation, membranes were washed 3 times with TBS-T for 10 minutes and 

incubated with the secondary antibody (1:4000 in 5% milk) for, at least, 1 hour at RT. After that, 

membranes were again washed three times and developed with home-made ECL solution A: 10% 

Tris pH 8.5, 90% H2O, 0.2 mM p-coumaric acid (Ref. 9008, Sigma) and 1.25 mM luminol (Ref. 

09253, Sigma) and solution B: 10% H202 (3 µL of solution B were used per 1 mL of solution A). 

Proteins were visualized using Medical X-Ray films (Konika Minolta) or iBright™ CL1000 Imaging 

System (Ref. A32749, Invitrogen). Densitometry-based quantification was performed using ImageJ 

software. See Table M9 for references of antibodies used for Western Blotting. 
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Table M9. References and preparation of primary and secondary antibodies employed for Western Blotting. 

 

 

II.4.3 Chromatin immunoprecipitation (ChIP) 

 

ChIP was performed using the Simple ChIP Enzymatic Chromatin IP Kit (Ref. 9003, Cell 

Signaling Technology). Briefly, MDA-MB-231 cells (2.5x107 cells) were grown in 150 mm dishes 

either with or without 50 ng/ml doxycycline during 3 days. To crosslink the proteins to the DNA, 

35% formaldehyde (Ref. F8775-500ML, Sigma) was added to the cells for 10 min at RT. Glycine 

was added to dishes, and cells incubated for 5 min at RT. They were then washed twice with ice-

cold PBS, and scraped into PBS plus PMSF (phenylmethylsulfonyl fluoride). Pelleted cells were 

lysed and nuclei were collected following manufacturer’s instructions. Nuclear lysates were 

digested with micrococcal nuclease for 20 min at 37ºC and then sonicated into 500 ml aliquots on 

ice for three pulses of 15 seconds using a Branson sonicator. Cells were held on ice for at least 1 

minute between sonications. Lysates were clarified at 11,000 rcf for 10 min at 4ºC, and chromatin 

was stored at 80ºC. HA-Tag polyclonal antibody (Ref. C29F4, Cell Signaling Technology) and IgG 

antibody (Ref. 2729, Cell Signaling Technology), were incubated overnight (4ºC) with rotation and 

then incubated 2 h (4ºC) with protein G magnetic beads. Finally, chromatin was eluted from protein 

G magnetic beads. Washes and elution of chromatin were performed following manufacturer’s 

instructions.  

Antibody Reference Species Dilution 

PML 
A301-167A, Bethyl 

laboratories 
Rabbit 1:1000 

Cleaved PARP 
(Asp214) (D64E10) 

Cat: 5625, Cell Signaling Rabbit 1:1000 

Cleaved caspase-3 
(Asp175) 

Cat:  9661, Cell Signaling Rabbit 1:1000 

CDKN1B, p27[Kip1] Cat:610242, BD Biosciences Mouse 1:1000 

Phospho Rb 
(Ser780) 

Cat: 9307, Cell Signaling Rabbit 1:1000 

MYC Cat: 13987, Cell Signaling Rabbit 1:1000 

PIM1 (D8D7Y) Cat: 54523, Cell Signaling Rabbit 1:1000 

Lamin B1 ab133741, Abcam Rabbit 1:1000 

Tubulin T9026, Sigma Mouse 1:1000 

Hsp90 Cat: 4874, Cell Signaling Rabbit 1:2000 

β-actin Cat: 3700, Cell Signaling Mouse 1:2000 

Secondary Rabbit 
Ab  

111-035-144, Jackson 
ImmunoResearch  

Rabbit  1:4000  

Secondary Mouse 
Ab  

315-035-045, Jackson 
ImmunoResearch  

Mouse  1:4000  
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DNA quantification was carried out using a Viia7 Real-Time PCR System (Applied 

Biosystems) with SybrGreen reagents and primers that amplify the predicted PML binding region 

(based on ENCODE data) to MYC promoter (chr8:128748295-128748695) as follows: left primer: 

CCGGCTAGGGTGGAAGAG, right primer: GCTGCTATGGGCAAAGTTTC and PIM1 promoter 

(chr6:37137097-37137612) as follows: left primer: ACTCCCTCCGTGACTCATGT, right primer: 

ACGAGGGTGGTCTTTCTGTG. 

 

II.4.4 Senescence associated secretome analysis 

 

The senescence associated secretome analysis was carried out by Ariane Schaub in 

collaboration with Josep Villanueva and Francesc Canals from the Vall d´Hebron Institute of 

Oncology (VHIO)162.  

For this purpose, MDA-MB-231 sh4PML-Tet-On and Cama-1 sh4PML-Tet-On cells were 

pre-induced as described in figure M5. Three 150 mm plates where seeded per condition: 4x106 

cells per plate of non-induced cells and 5x106 cells per plate of doxycycline induced cells. After two 

days, cell supernatants where removed and cells where washed 5 times: the first two washes were 

performed with PBS and the last three were made with serum-depleted DMEM. Cells where left to 

grow for 24 hours in DMEM depleted of FBS but supplemented with Penicillin/Streptomycin. 

Doxycycline was added to the induced cells.  

After 24 hours, conditioned media (CM) was collected and one plate of each condition 

was trypsinized, cells were counted and stored for protein extraction. The CM was first centrifuged 

at 1,000 rpm for 5 minutes followed by a filtration step through 0.2 μm filtering bottles. After this, 

CM was concentrated using 10 kDa Amicons. First, 15 mL Amicons (Ref. UCF901024, Merck) were 

used, followed by 0.5 mL Amicons (Ref. UCF501069, Merck) to get final volumes close to 80 μL. 

The concentrated secretome was frozen at -20ºC. Protein concentration was determined with a 

Pierce BCA protein assay kit. All samples were digested with trypsin in-solution prior to analysis by 

liquid chromatography−mass spectrometry (LC−MS). Tryptic digests were analyzed by shotgun 

proteomics using an LTQ Velos-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany). The RAW files of each MS run were processed using Proteome Discoverer (Thermo 

Fisher Scientific), and MS/MS spectra were searched against the human database of Swiss-Prot 

using the MASCOT (Matrix Science, London, U.K) algorithm. The results files generated from 

MASCOT (.DAT files) were then loaded into Scaffold (Proteome Software, Portland, OR), resulting 

in a nonredundant list of identified proteins per sample achieving a protein false discovery rate 

(FDR) under 1.0%, as estimated by a search against a decoy database. 
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II.5 Subcutaneous xenograft experiments in nude mice 

 

All mouse experiments were carried out following the ethical guidelines established by 

the Biosafety and Animal Welfare Committee at CIC bioGUNE. The procedures employed were 

carried out following the recommendations from AAALAC. Mice were housed under controlled 

environmental conditions, such as time-controlled lighting on standard 12:12 light: dark cycles, 

controlled temperature at 22 ± 2ºC and 30-50% relative humidity. 

MDA-MB-231 sh4PML-Tet-On cells in suspension were inoculated subcutaneously into 

immunocompromised 8-12-week-old female nude mice (Hsd:Athymic Nude-Foxn1 nu/nu). For this 

experiment 12 mice were used: 3x106 cells per tumor were injected, two injections per mouse, one 

per flank. 19 days post-injection and once tumors were stablished (25-130 mm3), mice were fed 

with chow or doxycycline diet (Ref. D12100402, Research diets) until the ethical end point of the 

experiment at day 31.  

 

II.5.1 Pathological analysis of xenograft samples 

 

At the experimental end-point of the xenograft experiment, when tumors were harvested, 

a third part of the tumor was fixed in 10% neutral buffered formalin, another third part was frozen 

and kept for molecular analysis (protein and/or RNA extraction) and the last part was embedded in 

OCT (Q Path®, Cat: 00411243, VWR). 

The tissue processing steps were performed by Sonia Fernández (CIC bioGUNE). After 

24 hours of fixation in formalin at 4ºC, samples were washed with PBS, ethanol 50% and 70% (10 

minutes each wash). Samples were dehydrated and infiltrated with paraffin following the steps in 

Table M10 (automatic tissue processor Leica TP1020). Then, infiltrated tissues were embedded in 

paraffin blocks (Leica EG1150C heated embedding module and cold block). 3 μm sections were 

done (Leica RM2245 microtome) and adhered to slides for staining and analysis (in water bath at 

60ºC). 

 

II.5.2 Slide processing for immunohistochemistry: antibody staining 

 

Tissues were deparaffinized using the standard procedure and unmasking/antigen 

retrieval was performed using pH 6.0 solution for 20 min at 98ºC in water bath. Tissue sections were 

stained for p-HP1γ using primary antibody Phospho-HP1γ (Ser83) (Ref. 2600, Cell Signaling 

technologies, 1:200) and secondary antibody Biotinylated antibody Anti-Rabbit (Ref. BP-9100, 

Vector Laboratories, 1:200). This was followed by Vectastain ABC solution incubation (Ref. PK-

6100, Vector laboratories, 1:150) and DAB staining (Ref. SK-4105, Vector laboratories) as per the 
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manufacturer’s protocol. Stained slides were scanned using Leica Aperio AT2 slide scanner. This 

procedure was performed by Dr. Ajinkya Revandkar from Dr. Andrea Alimonti’s group. 

Table M10. Steps followed to process xenograft tissues in the automatic processor. 

 

II.5.3 Sample evaluation 

 

The criteria for senescent staining used for quantification was a very prominent 

nuclear staining in which the nucleus was bigger in size and its staining was darker brown than the 

other cells. 

 

II.6 Tumor growth analysis using chicken chorioallantoic membrane 

model 
 

We followed the protocol published by Piero Crespo and Berta Casar163 for the study of 

tumor growth of MDA-MB-231 sh4PML-Tet-On cells in the chorioallantoic membrane (CAM). 

Briefly, after 10 days of development, CAM is dropped by vacuuming from a small hole made in the 

air sack. A bigger aperture was made in the eggs near the allantoic vein, where cells were seeded 

carefully. The cells of the doxycycline induced group were pre-induced for 3 days before inoculation; 

1x106 cells were inoculated per egg and doxycycline induction was maintained by adding 150 ng/mL 

to the inoculated pre-induced cells every day until the end of the experiment (at day 14 of 

development, 5 days after inoculation). Growth was measured by the weight of the primary tumor. 

A total number of 31 eggs was used. 

 

Tray Time Reagent Function 

T1  10 min  50 % Ethanol  Dehydration  

T2  1h 30 min  70 % Ethanol  Dehydration  

T3  1h 30 min  80 % Ethanol  Dehydration  

T4  1h 30 min  96 % Ethanol  Dehydration  

T5  1h 30 min  100 % Ethanol  Dehydration  

T6  1h 30 min  100 % Ethanol  Dehydration  

T7  1h 30 min  100 % Ethanol  Dehydration  

T8  45 min  Citrosol or Xylene 
substitute  

Rinse, replace the ethanol with citrosol  

T9  2h  Paraffin  Replace the citrosol with paraffin  

T10  2h  Paraffin  Replace the citrosol with paraffin  
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III Bioinformatic analysis 

III.1 Depmap 
 

Gene expression data for PML, p27, MYC and PIM1 was downloaded from Cancer 

Dependency Map Project at the Broad Institute (DepMap, Public 19Q3) and filtered for BCa cell 

lines. Cell lines with available data were classified into the different BCa subtypes based on the 

information available in the bibliography. Depending on the analysis different groups were made: in 

one hand, they were divided into ER negative and ER positive groups and in the other hand, into 

triple negative and rest. RNA-Seq expression data is given as Log2 transformed TPM (Transcripts 

Per Kilobase Million).  

Pearson correlation test was applied to analyze the relationship between paired genes. 

 

III.2 Patient samples 
 

Database normalization: all the datasets used for the data mining analysis were 

downloaded from Gene Expression Omnibus (GEO)164-168 and The Cancer Genome Atlas (TCGA) 

and subjected to background correction, log2 transformation and quartile normalization. In the case 

of using a pre-processed dataset, this normalization was reviewed and corrected if required. 

Status by ER: violin plots depicting the expression of the gene of interest between ER- 

and ER+ breast cancer specimens in the indicated datasets. A Student T-test is performed in order 

to compare the mean gene expression between two groups. 

Status by subtype: violin plots depicting the expression of the gene of interest among 

breast cancer subtypes in the indicated datasets. An ANOVA test is performed in order to compare 

the mean gene expression among groups. 

Correlation analysis: Pearson correlation test was applied to analyze the relationship 

between paired genes. From this analysis, Pearson coefficient (R) indicates the existing linear 

correlation (dependence) between two variables X and Y, giving a value between +1 and −1 (both 

included), where 1 is total positive correlation, 0 is no correlation, and −1 is total negative 

correlation. The p-value indicates the significance of this R coefficient. 

IV Statistical analysis 
 

All experiments were performed a minimum of three times (biological replicates) to ensure 

adequate statistical power, with at least two technical replicates for each independent experiment. 
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The xenograft, secretome and CAM experiments were done once, but with independent biological 

replicates.  

Unless otherwise stated, data is represented by the mean ± s.e.m. of pooled experiments. 

n values represent the number of independent experiments performed or the number of tumors 

from the different xenograft mice. 

For in vitro experiments, normal distribution was assumed and Student’s t-test was 

applied for two component comparisons. With fold change representations, one sample t-test with 

the corresponding hypothetical value (1 or 100) was used for statistical analysis. For in vivo 

experiment, a non-parametric Mann-Whitney U test was used. The confidence level used for all the 

statistical analyses was of 95% (alpha value = 0.05). Two-tail statistical analysis was used with 

experiments without a predicted result, and one-tail for the validation of hypothesis-driven 

experiments. 

 

IV.1 Secretome statistical analysis 
 

Relative spectral counting-based protein quantification analysis was performed on the 

different samples analyzed using Scaffold. Files containing all spectral counts for each sample and 

its replicates were generated and then exported to R software for normalization and statistical 

analysis169. All statistical computations were done using the open-source statistical package R. The 

data were assembled in a matrix of spectral counts, where the different conditions are represented 

by the columns and the identified proteins are represented by the rows. An unsupervised 

exploratory data analysis (EDA) by means of principal components analysis and hierarchical 

clustering of the samples on the SpC matrix was first performed. Then, the generalized linear model 

(GLM) based on the Poisson distribution was used as a significance test169. Finally, the Benjamini 

and Hochberg multitest correction was used to adjust the p values with control on the FDR. 
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I Analysis of the pro-survival role of PML in triple negative breast 

cancer  
 

The first aim of this thesis work was to decipher the contribution of PML to the growth of 

TNBC cells where it is overexpressed.  

 

 

 

 

Since the discovery of its role in the pathogenesis of acute promyelocytic leukemia58,170, 

deciphering the role of PML in cancer has become of major interest. Although it was originally 

described as a tumor suppressor90,94,97, PML exhibits pro-survival activity in a variety of cancers 

based on recent reports98-102,171-173.  

 

I.1 Analysis of PML status in patient and cell line datasets 
 

Pandolfi’s group demonstrated for the first time that PML plays a pro-survival role in BCa 

by providing a selective advantage through the activation of FAO to cells that undergo metabolic 

stress. When analyzing PML levels in normal breast epithelium and in BCa samples, they showed 

that a subset of BCa exhibited higher levels of PML. Interestingly, triple negative or basal like BCa 

was selectively enriched within this subset100.  

PML regulates SOX9101 and HIF1α102 signaling selectively in PML high-expressing BCa, 

thus controlling aggressiveness and metastatic characteristics. This function was demonstrated in 

the cancer-initiating cell compartment of TNBC cells, but the impact of this protein on the bulk of 

tumor cells is still poorly understood.  

The increasing availability of OMICs data is an important source of information that can 

be used towards precision medicine174. The problems in managing, extracting and analyzing the 

information that is accessible in the different datasets has encouraged the development of user 

friendly tools for basic cancer researchers, such as cBioportal175 and Cancertool176. With the help 

of bioinformatics, research questions can be first studied in silico, working with tumor derived data 

that would be inaccessible otherwise.  

 

HYPOTHESIS 

PML plays a growth sustaining role in TNBC and its targeting has an inhibitory effect in high 

PML expressing cells  
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In order to further support the results described in the previous BCa studies100, we took 

advantage of publicly available datasets in Cancertool to investigate the levels of PML mRNA in 

tumor samples. As different characteristics of BCa are used for their classification, we first analyzed 

PML gene expression in ER+ and ER- groups. We confirmed that PML expression was significantly 

higher in ER- tumors when compared with ER+ tumors (significant in 4 out of 5 datasets Fig. R1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R1. PML mRNA expression based on ER status. Expression levels of PML in Ivshina, Lu, Metabric, 

TCGA and Wang datasets. Sample size: Ivshina (n=245; ER-=34, ER+=211), Lu (n=118; ER-=49, ER+=69), 

Metabric (n=1973; ER-=472, ER+=1501), TCGA (n=512; ER-=114, ER+=398), Wang (n=285; ER-=77, 

ER+=208). 

 

Since the information about the different molecular subtypes43,44 was available in these 

datasets, we next classified the tumors into the 5 different subtypes. Samples from the different 

datasets were separated into basal-like, HER2-enriched, luminal A, luminal B and normal-like BCa. 

In one of the datasets (Lu166), all luminal tumors were grouped and there was no data available of 

normal-like samples. We analyzed the mRNA levels of PML across 4 datasets and found that PML 

expression was significantly altered among the subtypes in 3 out of 4 datasets (Fig. R2).  
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Figure R2. PML mRNA expression among the molecular subtypes. PML expression in basal-like (BL), 

HER2-enriched (HE), Luminal (L), Luminal A (LA), Luminal B (LB) and Normal-like (NL) subtypes. Sample 

size: Lu (n=124; BL=32, HE=31, L=61), Metabric (n=1974; BL=329, HE=240, LA=718, LB=488, NL=199), 

Pawitan (n=139; BL=25, HE=15, LA=39, LB=23, NL=37), TCGA (n=519; BL=95, HE=58, LA=231, LB=127, 

NL=8). 

 

To analyze whether PML expression levels were specifically higher in basal-like 

tumors100, we grouped the non-basal like tumors (data from the same datasets) and compared with 

the basal group. We confirmed that PML was significantly overexpressed in basal-like samples in 

3 out of 4 datasets (Fig. R3). 

For many years, research efforts have been focused into classifying and characterizing 

different cancer types with the aim of searching for biomarkers that could help in the treatment of 

those tumors177-179. BCa classifications have been widely used to stratify BCa patients and to treat 

them accordingly23,43,44,164,180. Nonetheless, the lack of biomarkers is one of the main obstacles for 

targeted therapies in TNBC patients. These tumors lack ER expression and HER2 

overexpression/amplification. In addition, several cancer genes that appear commonly mutated 

(BRCA1181, p5344,182) or overexpressed (EGFR183) have been studied as potential targets. Yet, no 

targeted therapies have been developed for these tumors, which are associated with poor 

prognosis and more aggressive phenotypes. The results obtained from the different datasets with 

PML mRNA expression data available further support the importance of studying the function of 

PML in BCa, with a particular focus in basal-like/TNBC subtypes. 
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Figure R3. PML mRNA expression in basal-like subtype and non-basal tumors. Comparison of PML 

expression between basal-like subtype and the rest of the subtypes (HE, L, LA, LB, NL) grouped from Fig. R2. 

 

To characterize the function of PML in BCa in vitro, it was important to use reliable 

systems capable of recapitulating the PML status observed in patient samples. For that purpose, 

we first took advantage of the Cancer Dependency Map project (https://depmap.org/portal/) to 

analyze PML mRNA expression across multiple available BCa cell lines (doi: 10.1038/ng.3984). 

The aim of DepMap is to keep updated datasets with genomic information and sensitivity to genetic 

or pharmacological perturbations of hundreds of cancer cell line models. BCa cell lines were 

classified into the different subtypes based on the information available in the bibliography (Annex 

Table 1). We performed two different comparisons based on the groups used for the analysis with 

patient data: ER- versus ER+ and TNBC versus Rest. We observed that PML expression was 

remarkably higher in ER- cell lines (Fig. R4A) and TNBC (Fig. R4B) when compared to ER+ and 

Rest groups, respectively. The cell lines available in our laboratory, MDA-MB-231, MDA-MB-468 

and Cal51 are described as TNBC cell line models, while MCF-7, Cama-1 and T47D are derived 

from ER positive tumors184-186. We analyzed specifically the expression of PML in these cell lines, 

MDA-MB-231 and MDA-MB-468 showed the highest PML gene expression levels across the panel 

of cell lines (shown in Fig. R4 in purple and green, respectively). Surprisingly, Cal51 cell line (in 

orange in Fig. R4) exhibited PML mRNA expression levels comparable to the three ER positive cell 

lines (shown in red, blue and pink in Fig. R4). 

Lu 
p-value=0.1741 

Metabric 
p-value<0.0001 

TCGA 
p-value<0.0001 

Pawitan 
p-value=0.0201 
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Figure R4. PML mRNA expression in cell lines from DepMap. Samples were classified by A) ER status 

(sample size: 48; ER-=32, ER+=16) or B) subtype (sample size: 48; TNBC=24, Rest= 24). 

 

 The second step was to validate PML expression in the 6 available cell lines by western 

blot (Fig. R5). In agreement with DepMap data, MDA-MB-231 and MDA-MB-468 were the most 

representative models for high-PML expressing TNBC cell lines, as PML levels were significantly 

higher when compared to the rest of the cell lines. Cal51 cell line did not follow the direction of the 

other two TNBC cell lines, with significantly lower PML protein levels. In the ER positive group, PML 

expression was similar in all the cell lines available.  

 

 

 

 

 

Figure R5. PML protein expression in cell lines. Western Blot showing PML protein expression in the panel 

of available breast cancer cell lines. Molecular weight markers (kDa) are shown to the right (n=1). 

 

Martín-Martín et al.101 described that a subset of BCa tumors presented high PML levels 

and highlighted the stratification potential of PML in this cancer. In this thesis work we observe that, 

in both patient and cell line datasets, a subset of TNBC shows higher PML expression levels when 

compared to the rest of the tumors or cell lines. The evaluation of the distinct molecular alterations 

present in each of these tumors with different PML levels would help in their characterization and 

classification. Therefore, analyzing the role of PML in BCa needs further investigation for a robust 

patient stratification based on its expression. 

Owing to the high PML expression levels in TNBC, we next aimed to silence PML in the 

cell lines to further characterize the role of PML in BCa. 
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I.2 Generation of the working cellular systems 
 

Cell lines represent a valuable tool in cancer research. MDA-MB-231 cell line was one of 

the first BCa cell lines isolated187 and it has been widely used in cancer research as a TNBC model.  

The first approach was to silence PML with different shRNAs, using both constitutive and 

doxycycline-inducible lentiviral systems. Compared to other silencing methods such as siRNAs, 

shRNAs have demonstrated higher specificity and, therefore, less off-target effects188. Two different 

constitutive shRNAs were used (Fig. R6A), while for the inducible system a third shRNA (Fig. R6B, 

induction scheme in Fig. M5) was generated together with the two used for the constitutive silencing 

of PML. We observed a robust silencing of PML with all the shRNAs tested, with different silencing 

efficacy.  

 

 

 

 

 

Figure R6. PML silencing in MDA-MB-231 cell line. Western Blot (representative of at least 3 experiments) 

showing PML protein expression after PML silencing with A) constitutive and B) inducible shRNAs. Molecular 

weight markers (kDa) are shown on the right. 

 

The detection of different PML isoforms and modifications by Western Blot depends on 

the antibody used for the analysis. There are 6 different nuclear PML isoforms and all of them 

undergo post-translational modifications that will affect their function. The antibody used in this 

thesis work (Bethyl) detects several bands at different molecular weights. Still, it is not possible to 

assert if all the bands correspond to the different isoforms or are due to post-translational 

modifications of the protein, such as SUMOylation74,189. During this thesis work we focused on the 

most abundant immunoreactive bands when analyzing PML protein levels, the ones with highest 

molecular weight. We confirmed that some of the immunoreactive bands with lower molecular 

weight showed an equivalent silencing degree (Fig. R7). 
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Figure R7. Detection of PML isoforms at protein level by 

Bethyl antibody. Western Blot showing PML protein 

expression after inducible PML silencing. Molecular weight 

markers (kDa) are shown on the right. 
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To further validate our results, we took advantage of different cell lines available in the 

laboratory: two additional TNBC and three ER+ cell lines. Surprisingly, and after several infections, 

it was not possible to silence PML in Cal51 cell line. In contrast, PML protein levels were significantly 

decreased in MDA-MB-468, equivalent to what we previously observed with MDA-MB-231 cell line 

(Fig. R8A). In the case of the ER+ cell lines, it is important to underline that their basal PML protein 

levels are lower than in TNBC cell lines (Fig. R4 and Fig.R5). We observed a remarkable silencing 

in all the three ER+ cell lines, proportional to that observed in TNBC cell lines (Fig. R8B and R8C). 

We decided to work with MCF-7, since it is widely used as a model of hormone positive cell line, 

and Cama-1, as the silencing of PML in this cell line, compared to T47D, showed more consistency 

between experiments.  

 

 

 

 

 

Figure R8. Effect of inducible sh4PML in breast cancer cell lines. Western Blot (representative of at least 

3 experiments) showing PML protein expression after inducible PML silencing in A) Cal51 and MDA-MB-468, 

B) MCF-7 and Cama-1 and C) T47D cell lines. Molecular weight markers (kDa) are shown on the right. 

 

Extending the analysis to different cell lines ensures the robustness of the study. 

Established cell lines carry different mutational background that should be taken into account when 

working with them. In fact, several mutations have been identified in MDA-MB-231 cell line, 

including TP53, BRAF, CDKN2A and KRAS. TP53 tumor suppressor has been widely studied and 

mutations in this gene have been described in a broad range of different cancer types190. In BCa, 

TP53 mutations are associated with poor prognosis and more aggressive tumors. Interestingly, 

around the 80% of TNBC45 carry mutations in this gene and aberrations in p53 are correlated with 

PML expression in this subgroup100. Thus, it is of utmost importance a good characterization of the 

molecular background of the cell lines used in cancer research. This would allow to recapitulate the 

heterogeneity present in BCa tumors and to work with models that resemble more accurately what 

it is observed in patient samples. 

 

I.3 Consequences of PML silencing in cell growth  
 

Due to its function in APL and its loss in multiple cancers, the tumor suppressive role of 

PML has been deeply studied. Interestingly, PML regulates a broad range of cellular processes that 

are relevant in cancer, such as proliferation191, apoptosis77,192, DNA damage response64 and 

senescence70,90. In contrast to its tumor suppressive role, Ito et al. in leukemia98 and Carracedo et 
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al. in BCa100, described a pro-survival role of PML. We have described that a subset of BCa express 

high levels of PML, both in patients and cell lines, with an overrepresentation of TNBC cases. We 

next focused on characterizing the consequences of PML silencing in the bulk of cells in vitro.  

 

I.3.1 Effect of PML silencing on cell number 

 

To tackle this question, we first aimed to study the effect of targeting PML on the cell 

growth in TNBC cell lines. We observed an impairment in the growth of MDA-MB-231 cells, with a 

significant decrease on cell number of about the 70% with constitutive PML silencing (Fig. R9A) 

and about 45% in the case of doxycycline inducible PML silencing (Fig. R9B). Inducible silencing 

provides reversible and temporal control of the shRNA expression. It allows to titrate the silencing 

and follow the dynamics of PML levels during the days of induction. When working with genes that 

challenge the survival of the cells, inducible silencing also provides the time needed for the 

establishment of xenografts tumors in vivo. We performed the first approaches with the constitutive 

system and confirmed the results with the inducible silencing. Since PML silencing remarkably 

affected cell growth, we decided to continue working with inducible system to ease the manipulation 

and experimental setting. 

To further analyze the proliferation of the cells, we studied the incorporation of BrdU into 

the newly synthesized DNA of replicating cells upon PML silencing. We observed that DNA 

replication was reduced upon decreased levels of PML by means of BrdU positivity (Fig. R9C).  

A feasible explanation for the reduced cell number is apoptosis, a programmed cell death 

process where caspases play a key role. Caspases are synthesized as inactive zymogens and can 

be classified into initiator and effector caspases. Caspase-3 belongs to the effector caspases group 

and its activation is a hallmark of apoptosis193. Another marker is the cleavage of poly (ADP-ribose) 

polymerase-1 (PARP-1), a substrate of caspases in the apoptotic pathway194. To study whether the 

cells were undergoing apoptosis, we treated the MDA-MB-231 cells with staurosporine, a well-

known apoptosis inductor, for 4 hours as a positive control for cleaved caspase-3 and PARP. We 

collected the supernatant together with the cells that were still attached to the plate to ensure that 

all the cells that could have activated the apoptotic cascade were being analyzed (whether they 

were already dead and floating or still attached but with the signaling cascade activated). 

Nevertheless, no signs of apoptosis were observed upon PML silencing (Fig. R9D). 
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Figure R9. PML silencing decreases growth of MDA-MB-231 cell line. A-B) Impact of A) constitutive (n=12) 

and B) doxycycline-inducible (sh1 and sh5, n=4, sh4, n=7) PML silencing on cell number. C) Effect of inducible 

PML silencing in BrdU incorporation (n=4). D) Western Blot (representative of 3 experiments) of the effect of 

PML inducible silencing on apoptosis. Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001), 

for figure a and b (* sh4 vs shC or no dox; $ sh5 vs shC or no dox; # sh1 vs no dox). One-tailed one sample t-

test (a-b) and one-tailed Student´s t-test (c) was used for cell line data analysis. shC: Scramble shRNA, sh1, 

sh4 and sh5: shRNA against PML, dox: doxycycline, Stp: staurosporine. Molecular weight markers (kDa) are 

shown on the right. 

 

These results support our notion that PML is essential for the proliferation of TNBC cells 

and that its loss leads to a decrease in their ability to grow. Due to the classical definition of PML 

as a tumor suppressor, other functions may have been overlooked for many years in some tumors. 

In line with our observations, Liu et al.172 demonstrated that in ovarian cancers with high PML levels 

its silencing led to an inhibition of proliferation. These results open new questions about the anti- or 

pro-tumorigenic role of PML depending on the cancer context. 

 

I.3.2 Effect of PML silencing on the activation of senescence in vitro 

 

In vitro, cells that enter into senescence suffer morphological changes characterized by a 

larger shape, with a flatter or “fried egg-like” morphology and also appear commonly multinucleated 

and with more vacuoles195,196. When we first observed the cells under the microscope, we could 

see a remarkable change in their cellular morphology. Both with the constitutive (Fig. R10A) and 

with the inducible PML silencing (Fig. R10B) the morphology of the cells resembled the senescence 

features described above.  
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Figure R10. Effect of PML silencing in the morphology of MDA-MB-231 cells. Representative images of 

the morphological changes upon PML inhibition with A) constitutive and B) inducible shRNAs. Scale bar, 

50 μm. sh1, sh4 and sh5: shRNA against PML, dox: doxycycline. 

 

To further analyze these changes, we followed up by flow cytometry the alterations 

occurred to the cells with the inducible silencing of PML. Using the SSC and the FSC in FACS it is 

possible to acquire information about the complexity (i.e. granularity) and the size of the analyzed 

event, respectively. These are two of the main morphological features that change in senescent 

cells. One of the main advantages of the FACS analysis is that single cells can be analyzed 

separately, getting a more accurate measurement of the changes happening in the whole cell 

population. Cell populations were selected for each shRNA in no dox condition and compared dox 

conditions for increased size and granularity. Four different groups were identified as Q1, Q2, Q3 

and Q4: the main population was assigned to Q4, cells with an increase in granularity were assigned 

to Q1, cells with an increase in both size and granularity to Q2 and cells with only an increase size 

to Q3. We confirmed that PML loss led to a change in the morphology of the cells characterized by 

an increase in the number of bigger and more complex cells (Q1+Q2+Q3) (Fig. R11A and Fig. 

R11B). 
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Figure R11. FACS analysis of the morphological changes of MDA-MB-231 cells upon PML loss. A) 

Schematic representation of one representative experiment of the defined populations represented in B upon 

PML inducible silencing. B) Effect of doxycycline-inducible PML silencing on cell size and granularity (sh1 and 

sh4, n=4, sh5, n=5). Error bars represent s.e.m. p, p-value (*p< 0.05, ***p< 0.001). One-tailed Student´s t-test 

(a) was used for cell line data analysis. sh1, sh4 and sh5: shRNA against PML, Dox: doxycycline. 

 

The detection of SA-β-gal has been used in a variety of biological situations, both in vitro 

and in vivo118, to detect senescent cells. It is considered as one of the few robust and consistent 

senescence markers. Nevertheless, the use of additional markers is recommended to overcome 

some technical limitations. On the one hand, a very confluent plate can give false positives in vitro, 

as cells will enter senescence independently of the oncogenic insult. On the other hand, the 

quantification of an enzymatic activity requires a correct manipulation of the samples.  

β-galactosidase metabolizes X-Gal giving as a result a blue precipitate that can be 

detected and quantified. Interestingly, at pH 6 its activity will be specifically detected in senescent 

cells, but not in proliferating cells127. As we could predict from the morphological changes observed, 

SA-β-gal staining levels increased upon PML silencing with all the shRNAs. The constitutive 

silencing of PML with the sh4 induced senescence in around the 20% of the cells (Fig. R12A and 

R12B), while with the inducible knockdown it was around the 12% (Fig. R12C and R12D). 

Nevertheless, the levels of senescence detected could not completely explain the decrease 

observed in growth. Thus, the implication of additional pathways that may be deregulated upon 

PML loss cannot be excluded. 
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Figure R12. SA-β-gal staining increases after PML silencing. A-B) Effect of constitutive PML silencing 

(n=13) on the number of senescent cells (A, representative images of SA-β-Gal assay, scale bar 50 μm). C-

D) Effect of inducible PML silencing (n=3) on the number of senescent cells (C, representative images of SA-

β-Gal assay, scale bar 50 μm). Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001). One 

tailed Student's t-test was used for cell line data analysis (b, d). sh1, sh4, and sh5: shRNA against PML, dox: 

doxycycline, SA-β-Gal: senescence associated beta-galactosidase. 
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To further characterize the senescence response, we analyzed other cellular and 

molecular markers that have been described as indicatives of senescence. Lamins (A, B1, B2 and 

C) are major structural proteins for the nuclear lamina and they help maintaining the nuclear 

architecture and integrity, controlling chromatin organization. It has been demonstrated that LAMIN 

B1 expression declines in senescence128,197, in coherence with the morphological changes that 

occur in senescent cells. We checked the expression levels of LAMIN B1 upon PML inhibition and 

we observed a significant decrease in the protein levels (Fig. R13A and R13B). This data supports 

the results obtained with SA-β-Gal.  

  

 

 

 

 

 

 

Figure R13. PML silencing affects nuclear lamina protein levels. A-B) Levels of Lamin B1 protein upon 

PML inducible silencing in MDA-MB-231 cells (A, representative of 5 experiments) and protein quantification 

(B, n=5). Error bars represent s.e.m. p, p-value (*p< 0.05). One-tailed one sample t-test (b) was used for cell 

line data analysis. dox: doxycycline. Molecular weight markers (kDa) are shown on the right. 

 

PML has been depicted to act as a sensor for ROS, which act as drivers of OIS130. PML 

loss has been described to both induce an increase198 and a decrease199 in ROS levels, depending 

on the context. When increased, Niwa-Kawakita et al.198 described that senescence was induced. 

We excluded the possibility of ROS increase as a driver of senescence as PML loss did not induce 

its accumulation in MDA-MB-231 cells (Fig. R14).  
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Figure R14. PML and ROS. Effect on ROS production (n=4) 

after inducible PML silencing in MDA-MB-231 cells. Error 

bars represent s.e.m. p, p-value (**p< 0.01). One-tailed one 

sample t-test was used for cell line data analysis. dox: 
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SAHF are heterochromatin domains enriched in repressive marks. They contribute to the 

silencing of several proliferation related genes and are relatively specific of OIS200. They are 

enriched in several heterochromatin proteins that participate in SAHF formation or maintenance: 

lysine 9-trimethylated histone H3 (H3K9Me3), HIRA and ASF1 proteins, heterochromatin protein 1 

(HP1), high-mobility group A (HMGA) proteins and pRB95,201. It has also been described that SAHF 

are enriched in macroH2A proteins95. Specifically, macroH2A1 variants are described to have an 

anti-proliferative function202,203. Experimentally, SAHF can be recognized as punctate structures 

that can be detected by DAPI. Upon PML loss, we were not able to confirm the formation of SAHF 

neither by heterochromatin condensation neither with DAPI staining nor by macroH2A1.1 

accumulation (Fig. R15), suggesting that SAHF are not essential in the senescence response upon 

PML loss.  

  

 

 

 

 

 

Figure R15. SAHF do not appear upon PML silencing. Immunofluorescence of macroH2A1.1 and DAPI 

upon inducible silencing of PML in MDA-MB-231 cells. dox: doxycycline, DAPI: 4′,6-diamidino-2-phenylindole. 

 

Upon senescence induction cells remain metabolically active115,204 and secrete a variety 

of factors that are defined as SASP. The canonical SASP has been described to be composed by 

soluble signaling factors (interleukins, chemokines and growth factors), secreted proteases and 

extracellular matrix components141,142. We carried out a proteomic analysis to identify the 

differentially secreted factors upon PML silencing. First, protein expression was analyzed by 

western blot in both cells and secretome (Fig. R16A) to confirm the correct function of the shRNA 

and the absence of contamination on the secretome fraction. In the era of “omics”, principal 

component analysis (PCA) eases the interpretation of large data sets by capturing the most relevant 

information in few components. PCA analysis of the secretome confirmed the difference in the cells 

based on the perturbation of PML (Fig. R16B). The next step was to identify the proteins that were 

differentially expressed in the secretome of PML expressing and PML silenced cells. For this 

purpose, samples were clustered into “no dox” and “dox” conditions and proteins enriched upon 

PML silencing analyzed (Fig. R16C and Annex Table 2). Of notice, no canonical SASP could be 

identified but interestingly, proteins belonging to the TGF-β1 pathway were enriched in the 

secretome of the cells upon PML silencing (Fig. R16D). 
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Figure R16. Proteomics analysis of the secretome of MDA-MB-231 cells upon PML inducible silencing. 

A) PML and tubulin levels in both cells extracts and secretome samples (dash lines indicate samples used in 

the analysis). B) Unsupervised exploratory data analysis by means of principal component analysis. C) Heat 

maps representing the proteins that were significantly over- and under-secreted upon PML silencing in MDA-

MB-231 cells. Data analysis was based on spectral count data after exporting it from Scaffold software into R. 

The GLM model based on the Poisson distribution was used to test significance. Only the proteins with spectral 

counts of 2, Log2FC of 0.8 and adjusted p-value of 0.05 are present in the heatmap. Columns represent 

samples; rows are proteins. Red represents proteins that are over-secreted and green represents proteins that 

are under-secreted. The data rows are centered and scaled to 1 standard deviation prior to produce the heat 

map. Dox: doxycycline.  

PML

TUBULIN

- + - + - + - + - + - + - + - +

SecretomeCells
dox

(150 ng ml-1)

MDA-MB-231 sh4PML

55

80

140

A 

B 

C 
MDA-MB-231 sh4PML 

X
4
 –

 s
h
4
 n

o
 d

o
x
 

X
5
 –

 s
h
4
 n

o
 d

o
x

 

X
6
 –

 s
h
4
 n

o
 d

o
x

 

X
1
0
 –

 s
h
4
 n

o
 d

o
x

 

X
1
1
 –

 s
h
4
 n

o
 d

o
x

 

X
1
2
 –

 s
h
4
 n

o
 d

o
x

 

X
9
 –

 s
h
4
 d

o
x

 

X
7
 –

 s
h
4
 d

o
x

 

X
8
 –

 s
h
4
 d

o
x

 

X
3
 –

 s
h
4
 d

o
x
 

X
1
 –

 s
h
4
 d

o
x

 

X
2
 –

 s
h
4
 d

o
x

 

MDA-MB-231 sh4PML

X4 – sh4 no dox

X5 – sh4 no dox

X6 – sh4 no dox

X10 – sh4 no dox

X11 – sh4 no dox

X12 – sh4 no dox

X9 – sh4 dox

X7 – sh4 dox

X8 – sh4 dox

X3 – sh4 dox

X1 – sh4 dox

X2 – sh4 dox

200 150 100 50 0

PC1 47.03% var

P
C

2
 1

5
.7

%
 
va

r

D 
VASN, LTBP3, LTBP4



Results and discussion 

90 

Different studies showed that PML plays a role in senescence induction through p5370,90. 

Here we describe how the loss of PML triggers a senescence response characterized by an 

increase in SA-β-gal activity and the decrease of the levels of the nuclear lamina protein LAMIN 

B1, two well described hallmarks of senescence. In our senescence phenotype no formation of 

SAHF was detected. This observation is not surprising as this feature has been associated 

preferentially with OIS. Finally, the analysis of the secretome of the differentially expressed proteins 

after PML silencing described a non-canonical SASP induction, enriched with proteins of TGF-β1 

pathway. In fact, senescence without signs of inflammatory SASP has also been characterized205, 

supporting the idea that SASP may be cellular context or senescence type dependent. This should 

be further studied to decipher the role that these secreted factors are playing in the context of PML 

silencing. Altogether, we have characterized the senescence phenotype that is activated upon PML 

loss in TNBC. 

 

I.3.3 Effect of PML silencing in tumor growth and senescence in vivo 

 

We have previously described that PML controls the properties of cancer initiating cells, 

such as tumor initiation and recurrence in aggressive BCa through the modulation of SOX9101. To 

demonstrate its effect in vivo, two different approaches were performed: limiting dilution assays to 

study how PML knockdown affects breast tumor initiation and tail vein injections to show how PML 

loss has an impact on the establishment of the metastasis.  

Here, we found that PML silencing results in the activation of senescence in vitro. With all 

the data in mind, we hypothesized that PML perturbation would have a growth suppressive activity 

in the bulk of the tumor cells in vivo. For this purpose, MDA-MB-231 cells with the inducible shRNA 

#4 against PML were injected in the flank of immunocompromised mice. Once tumors were 

established (reaching a volume of 25-130 mm3), mice were randomly separated into two different 

groups and doxycycline was administered in the diet in one of the groups to induce PML 

knockdown. In accordance with the results observed in vitro, PML silencing (Fig. R17A) led to a 

decrease in tumor growth by means of volume (Fig. R17B) and growth rate (Fig. R17C) measured 

by the slopes of each individual tumor. The rate was inferred from the linear regression calculated 

for the progressive change in tumor volume of each individual tumor during the period depicted in 

Fig. R17B. Tumor weight was also remarkably decreased upon PML silencing (Fig. R17D). 
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Figure R17. Tumor growth of MDA-MB-231 xenografts is curbed upon PML loss in vivo. A) PML protein 

expression of MDA-MB-231 xenografts with inducible sh4PML. B-D) Effect of PML silencing on tumor growth 

(sh4 no dox, n=10; sh4 dox, n=12) represented as: B) the volume of the tumors from doxycycline addition until 

day 31 of the experiment, C) the growth rate of each tumor and D) weight of the individual tumors. Error bars 

represent s.e.m. p, p-value (*p < 0.05, **p < 0.01). One-tailed Mann–Whitney U-test was used for xenografts 

(b-d). dox: doxycycline. Molecular weight markers (kDa) are shown on the right. 

 

For the quantification of senescence in vivo, samples were stained against phospho-

heterochromatin protein-1 gamma (p-HP1γ), a marker that has been widely used in this 

context95,206-209. In vivo, p-HP1γ staining increased upon the activation of the shRNA against PML, 

indicative of the induction of senescence (Fig. R18A and Fig.R18B).  

 

 

 

 

 

 

 

Figure R18. Analysis of p-HP1γ levels in vivo. A-B) Analysis of senescence by means of p-HP1γ staining 

in PML silenced xenografts (sh4 no dox, n=4; sh4 dox, n=4) (B, representative images of p-HP1γ positive cells, 

scale bar 100 μm). Error bars represent s.e.m. p, p-value (*p < 0.05). One-tailed Mann–Whitney U-test was 

used for xenografts (a). dox: doxycycline, p-HP1γ: phospho-heterochromatin protein-1 gamma.  
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To further analyze the consequences of PML silencing in tumor growth in vivo, we 

performed a chicken CAM assay. The chick embryo model allows the study of the different stages 

of cancer development210,211. At early stages of the development, the chick embryo is 

immunodeficient, sustaining the growth of grafted cells212. Cells are inoculated in the CAM, which 

allows primary tumor formation that will be surrounded by blood vessels. Cells were pre-induced 

for 3 days before inoculation and doxycycline added every day once the cells are inoculated. After 

5 days of growth, we confirmed that cells with silenced PML grew less by means of weight of the 

primary tumor (Fig. R19). 

 

 

 

 

 

 

Figure R19. Primary tumor growth of MDA-MB-231 is decreased upon PML loss in CAM model. A) 

Primary tumor weight of MDA-MB-231 cells inoculated in the CAM upon PML inhibition (sh4 no dox, n=14; sh4 

dox, n=17). Error bars represent s.e.m. p, p-value (***p< 0.001). One-tailed Mann–Whitney U-test was used. 

dox: doxycycline. 
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SUMMARY  

▪ PML is overexpressed in TNBC/basal tumors. 

 

▪ Senescence is an antitumorigenic consequence of PML inhibition. 

 

▪ PML silencing in TNBC leads to a senescence response characterized in vitro by 

an increase in SA-β-gal activity and decreased LAMIN B1 levels, without a 

canonical SASP or SAHF formation.  

 

▪ The effect of PML silencing is recapitulated in vivo, with the reduction in tumor 

growth and the increase in senescence confirmed by an increment of p-HP1γ 

staining. 
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FUTURE PERSPECTIVES 

▪ Develop a CRISPR/Cas9 inducible system to decipher the effect of PML 

knockout. This system would allow to address how the complete depletion of PML 

affects TNBC cells compared to the partial loss obtained with shRNAs. 

 

▪ Evaluate the contribution of PML loss induced SASP to the cellular phenotype, 

focusing on the distinctly expressed proteins in PML silenced cells. 

 

▪ The use of PDX and patient samples to further study the role of PML. Confirming 

the senescence phenotype in models closer to a real scenario would add clinical 

value to the results obtained in this study. 
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II Elucidation of the molecular mechanism underlying the 

antiproliferative effect upon PML silencing  

 

The data obtained in the section I of the results describes how PML sustains growth in 

TNBC and its silencing leads to a senescence response. The second aim of this thesis was to 

elucidate the signaling pathways that were responsible of driving the senescence response induced 

after PML loss.  

 

 

 

 

 

II.1 Analysis of PML loss-induced molecular signaling changes 
 

II.1.1 Deciphering the molecular driver of the senescence phenotype 

 

Senescence can be induced by different stimuli that through common effectors will drive 

this response. This occurs predominantly through p53-p21 and/or p16-Rb axes213, and to a lesser 

extent through inhibitors such as p27 that has also been described to drive senescence106,140,208. 

The regulation of cyclins, CDKs and CDKIs is of utmost importance for the progression of cell cycle. 

MDA-MB-231 cell line has p53 mutated and it is null for p16214, two effectors on the main 

senescence driving pathways. Therefore, we evaluated the levels of p21 and p27 protein after PML 

inhibition in our TNBC cell line. We observed a significant increase of p27 with all the shRNAs 

generated against PML, both in vitro (Fig. R20A and Fig. R20B) and in vivo (Fig. R20C). 

Conversely, p21 levels were not affected upon PML silencing (Fig. R20D). 

p27 has been has been described to be deregulated in different types of cancer, such as 

lung215, prostate216, ovarian217 and breast cancer218. In epithelial cancers, p27 has been correlated 

with poorly differentiated and high-grade tumors. In BCa, its prognostic potential has been widely 

studied with distinct results. The first studies218-220 identified p27 as a prognostic marker but some 

discrepancies appeared with subsequent analysis. They failed to assess its prognostic significance 

but confirmed that low p27 levels are correlated with higher tumor grade and ER negative 

status221,222. Regarding its status on BCa subtypes, decreased p27 immunoreactivity has been both 

correlated with HER2 overexpression223 and with TNBC224. Interestingly, it has been demonstrated 

that targeting different molecules involved in tumorigenesis impairs cell growth by increasing p27 

levels in TNBC225,226. All these studies support the notion that p27 plays an important role in BCa 

and it encouraged us to further study p27 function in PML loss induced senescence. 

HYPOTHESIS 

PML controls a growth-sustaining signalling program that is impaired upon its loss in PML 

addicted cells 
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Figure R20. PML silencing increases p27 levels. A-B) Western Blot (representative of at least 3 

experiments) showing the effect on PML and p27 expression after A) constitutive and B) doxycycline-inducible 

PML silencing. C) Impact of doxycycline-inducible PML silencing (sh4) on p27 and PML protein expression on 

established MDA-MB-231 xenografts. D) Western Blot (representative of at least 3 experiments) showing the 

effect on PML, p27 and p21 expression after doxycycline-inducible PML silencing. Error bars represent s.e.m. 

p, p-value (**p< 0.01, ***p< 0.001). shC: Scramble shRNA, sh1, sh4 and sh5: shRNA against PML, dox: 

doxycycline. #: Unspecific band. Molecular weight markers (kDa) are shown to the right. 

 

A previous doxycycline titration allowed us to set the best concentration needed for a 

chronic silencing in which PML levels progressively decrease during the days of induction. Each 

shRNA targets a different sequence and they will have a different silencing efficiency. We aimed at 

clarifying how PML silencing dynamics affected the levels of p27 along the time to further 

understand the senescence response. For this purpose, PML and p27 protein levels were 

monitored for 6 consecutive days. Surprisingly, we observed that after 2 days of doxycycline 

induction, together with PML reduction, p27 levels started to increase. The sh1PML had a robust 

effect on PML levels at early time points (Fig. R21A and R21B) and p27 reached the highest protein 

levels at day 5 in sh4PML (Fig. R21C and R21D), followed by sh5PML (Fig. R21E and R21F). 

Despite the differences in the silencing dynamics, the phenotype was recapitulated with all the 

shRNAs. Working with a complex protein like PML implies that many processes and molecules 

work cooperatively for the correct assembly and function of the PML nuclear bodies63. 

Understanding how the silencing dynamics can differentially affect their behavior could give insights 

that could be useful for the development or identification of new compounds that target PML. 
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Figure R21. p27 levels start to increase 2 days after doxycycline addition. A-F) Quantification of p27 and 

PML protein levels along 6 days of doxycycline-inducible PML silencing on MDA-MB-231 cells with A) sh1 (B, 

representative western blot, n=3), C) sh4 (D, representative western blot, n=3) and E) sh5 (F, representative 

western blot, n=3). Error bars represent s.e.m. p, p value (*/$p< 0.05, **/$$p< 0.01, ***/$$$p< 0.001). One-

tailed one sample t-test (a, c, e) was used for cell line data analysis. dox: doxycycline. Molecular weight 

markers (kDa) are shown to the right. 

 

p27 is rarely mutated in human cancers, but rather it appears to be deregulated at 

transcriptional and post-translational levels, along with changes in its compartmentalization within 

the cell. Our data demonstrates that PML knockdown increases p27 levels so we hypothesized that 

p27 was being accumulated in the nucleus inhibiting cell growth upon PML inhibition. We quantified 

the nuclear p27 positivity and PML levels in single cells by immunofluorescence. Our first analysis 

was performed in a pooled culture, which does not take into account the heterogeneity of the whole 
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population. The analysis of single cells allows the identification of functions and patterns that would 

not be otherwise uncovered. 

We confirmed that p27 was being accumulated in the nucleus of the cells from the PML 

silenced conditions (Fig. R22A and Fig.R22E, bottom left). Different phosphorylation sites have 

been identified to be key in the regulation of p27227,228. Some of them affect the nuclear localization 

of the protein or its degradation in the same compartment. It was described that in some BCa, when 

phosphorylated by Akt/PKB in the threonine 157, p27 is excluded from the nucleus providing the 

tumor an advantage to grow229-231. Another study in TNBC232 analyzed the status of three additional 

phosphorylation sites to decipher the mechanism through which p27 was being accumulated in the 

nucleus. It would be interesting to further characterize how PML silencing affects the 

phosphorylation levels of p27. This would help identifying if additional molecules are responsible of 

this modification, thus deepening in the PML dependent p27 regulation in TNBC. 

We further investigated the correlation between the nuclear p27 positive cells and PML 

levels. For the quantification, we established an immunofluorescence score based on previous 

studies100,101 (PML low= 0-4 dots; PML high= more than 4 dots per cell nucleus). As expected, we 

observed an inverse correlation between PML levels and p27 nuclear staining (Fig. R22B, R22C 

and R22D; representative image in Fig. R22E).  

pRB plays critical roles in many cellular contexts, both in physiological and oncogenic 

situations. It is a master regulator of cell cycle, where it acts through its interaction with the E2F 

family of transcription factors (Fig. R23A). CKDIs, such as p27, inhibit cyclin-CDK complexes 

allowing the binding of pRB to E2F factors. This results in the blockade of E2F transcriptional 

program and cell cycle progression. When p27 levels decrease, p27 can no longer inhibit cyclin-

CDK complexes and pRB is hyperphosphorylated by CDKs, inactivating pRb activity and promoting 

G1/S entry by E2F factors. To further characterize the growth inhibitory response, we studied how 

the increase in p27 levels affects the regulation of cell cycle. We first observed that the 

phosphorylation levels of pRB were decreased upon PML silencing (Fig. R23B). The CDKIs from 

Kip/Cip family, to which p27 belongs, have the capacity to bind and inhibit various CDKs, although 

they seem to bind to CDK2 with a higher affinity than other CDKs. The expression of several genes 

implicated in cell cycle regulation was validated by RT-Q-PCR upon PML silencing (Fig. R23C). 

We observed that p27 was not only being upregulated at protein level, but also at gene expression 

level. E2F3 was significantly downregulated upon PML silencing, together with CDK2 and to a 

lesser extent, CDK4. Aurora kinase A (AURKA) is a kinase important for processes involved in 

mitosis and has been described to be regulated by p27233,234. Cell division cycle 25 homolog A 

(CDC25A) is a phosphatase that can dephosphorylate CDKs and thus control cell cycle 

progression235. Both AURKA and CDC25A are downregulated upon PML silencing. 
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Figure R22. p27 is accumulated in the nucleus upon PML loss. A) Immunofluorescence quantification of 

nuclear p27 positive cells upon PML inducible silencing on MDA-MB-231 cells (n=4). B-D) 

Immunofluorescence quantification of the correlation of p27 positive cells and PML levels (B: sh1, C: sh4 and 

D: sh5). E) Representative images of p27 and PML staining upon doxycycline-inducible PML silencing in MDA-

MB-231 cells. Error bars represent s.e.m. p, p value (*p< 0.05, **p< 0.01, ***p< 0.001). One-tailed Student´s 

t-test was used for cell line data analysis (b-d). dox: doxycycline. 
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Altogether, our results demonstrate that PML silencing and subsequent increase in both 

p27 protein and mRNA levels lead to a global deregulation in cell cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R23. The increase of p27 levels deregulates cell cycle. A) Schematic representation of the p27-

pRB protein interaction and regulation. B) Effect of doxycycline-inducible PML silencing on pRB 

phosphorylation (Ser780) (representative of 3 experiments) on MDA-MB-231 cells. C) Expression of p27-

related cell cycle genes upon PML inducible silencing in MDA-MB-231 cells (n=3). Error bars represent s.e.m. 

p, p value (*p< 0.05, **p< 0.01, ***p< 0.001). One-tailed one sample t-test (c) was used for cell line data 

analysis. pRB: retinoblastoma protein, CDK: cyclin dependent kinases, AURKA: aurora kinase A, CDC25: cell 

division cycle 25 homolog A, dox: doxycycline. Molecular weight markers (kDa) are shown to the right. 

 

 

The role of PML nuclear bodies in senescence has been extensively studied. Due to the 

function of pRB and E2F in cell proliferation their implication in senescence has also been of great 

interest. The classical tumor suppressor role of PML led to the study of how its overexpression 

induced a senescence response70,90,236,237. Interestingly, many of the molecular changes associated 

to the senescence response are reproduced upon PML silencing in BCa as we have seen in this 

thesis work. Thus, it is not surprising that both PML overexpression and silencing repress the 
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transcription of E2F target genes238,239. Vernier and colleagues239 described how during 

senescence pRB and E2F factors are recruited into PML-NBs to control E2F activity. We cannot 

discern whether the increase of p27 is the main driver of the cell cycle deregulation through the 

inhibition of CDK function or if PML and PML-NB biogenesis may also play a direct role in the 

silencing of E2F target genes, enhancing the action of p27 levels on cell cycle regulation. Therefore, 

deciphering the interactions of PML with different regulatory elements would help to further 

characterize its cellular context-dependent behavior and facilitate the design of strategies for a 

successful targeting of PML. 

To determine the causal relationship between p27 accumulation and senescence 

induction upon PML silencing we performed a rescue experiment. The design of the rescue 

experiments is an improvement regarding specificity and reduction of off-target effects. For this 

purpose, we silenced p27 concomitantly with PML using both constitutive (Fig. R24A and R24B) 

and inducible (Fig. R24C, R24D and R24E) systems. We used two different p27 shRNAs, each of 

them with a different p27 silencing potency (Fig. R24A, lanes 7-9 and lanes 13-15; Fig.R24E, lanes 

9-12), allowing us to study the rescue of the senescence phenotype with different p27 protein levels. 

When silencing PML and p27 together (Fig. R24A, lanes 10-12 and 16-18; Fig.R24E, lanes 21-

24), we observed that decreased p27 levels prevented senescence in a dose-dependent manner 

(Fig. R24B and R24D). The sh1p27 slightly decreased p27 protein, while the sh2p27 totally 

prevented its accumulation, showing final p27 levels comparable to the expression of the control 

samples. This was reflected in the number of senescent cells of the double silencing samples, with 

senescence levels comparable between control conditions and the ones with the double silencing. 

Surprisingly, when we analyzed the growth capacity of the cells in the rescue experiment, 

we observed that cells with the double silencing were not able to resume their growth levels to the 

non-silenced ones, neither with the constitutive (Fig. R25A) nor the inducible (Fig. R25B) shRNA 

systems. Strikingly, the silencing of p27 alone already had an effect on the growth of the cells that 

was firstly observed by changes in the morphology of the cells.  

Altogether, these results prove that PML inhibition induces a senescence response that 

is mediated by an increase in p27 levels. We confirmed that p27 increase and senescence induction 

were a direct consequence of PML silencing by checking the lower PML expression of p27 positive 

individual cells. This was accompanied by a global deregulation of the cell cycle. The rescue 

experiment confirmed the causal contribution of PML silencing to p27 increase and to the induction 

of the senescence response. 
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Figure R24. Double silencing of PML and p27 rescues the senescence phenotype. A) p27 and PML 

protein levels after constitutive silencing of either p27 or PML or both (representative of 4 experiments). B) 

Effect on the number of senescent cells (n=4) after constitutive p27 and/or PML silencing. C) Experimental 

design for inducible p27 silencing (sh1p27 and sh2p27, B: blasticidin selection) alone or in combination with 

inducible PML silencing (sh4, P: puromycin selection). D) Effect on the number of senescent cells (n=4) upon 

p27 and/or PML inducible silencing. E) p27 and PML protein levels upon doxycycline inducible silencing of 

either p27 or PML or both (representative of 3 experiments). Error bars represent s.e.m. p, p-value (*p< 0.05, 

**p< 0.01). One-tailed Student´s t-test (b, d) was used for cell line data analysis. shC: Scramble shRNA, dox: 

doxycycline, SA-β-gal: Senescence-associated beta-galactosidase. Molecular weight markers (kDa) are 

shown to the right. 
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Although senescence is a major driver of the growth arrest, the levels obtained in cell 

number were not comparable to the amount of SA-β-Gal positivity obtained upon PML silencing 

(Fig. R9A and Fig. R9B compared with Fig. R12B and Fig. R12D, respectively). This is an 

important characteristic of the phenotype observed upon PML silencing, as it may imply that PML 

is regulating additional signaling pathways which deregulation leads to a defect in growth of the 

cancer cells.  

 

 

 

 

 

 

 

 

 

 

Figure R25. Cell growth is not rescued upon PML and p27 silencing. A) Effect on the relative cell number 

(n = 3) upon p27 and/or PML constitutive silencing in MDA-MB-231 cells. B) Effect on the relative cell number 

(n = 4) upon p27 and/or PML inducible silencing in MDA-MB-231 cells. Error bars represent s.e.m. p, p-value 

(*p< 0.05, ***p< 0.001, ns: not significant). One-tailed one-sample t-test (a, b) was used for cell line data 

analysis. shC: scramble shRNA, dox: doxycycline. 

 

II.1.2 Effect of PML loss on a large growth-sustaining signaling program 

 

Not being able to rescue the growth arrest after blunting senescence made us wonder if 

additional mechanisms were involved in the PML loss induced phenotype. We hypothesized that 

PML should be governing a larger growth-regulatory program that induces growth arrest, p27 

increase and senescence upon its loss.  

In BCa, c-MYC is associated with more aggressive tumors and with a poorer prognosis. 

Remarkably, c-MYC is specifically overexpressed in basal-like subtype44,45 and confers resistance 

to therapies240,241. Previous studies have demonstrated how PML provides an advantage to BCa 

cells by promoting FAO under stress conditions. Interestingly, two different studies242,243 have 

shown that targeting FAO in c-MYC-overexpressing TNBC inhibited tumor growth in a c-MYC-

dependent manner. Furthermore, senescence is induced upon c-MYC downregulation155 and its 

pharmacological inhibition depletes TNBC of cancer stem cells and also induces senescence244. 

Thus, the description of functions dependent on c-MYC that were first attributed to PML, pushed us 

to further study the link between them in TNBC. 
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PIM proteins comprise a family (PIM1, PIM2 and PIM3) of proto-oncogenic 

serine/threonine kinases that contribute to tumor formation and development. Proviral integration 

site for Moloney murine leukemia virus-1 (PIM1) was first described in hematological cancers, 

where a potential link with c-MYC was found for the first time245. PIM1 is known to be overexpressed 

in several solid tumors and it has been demonstrated that in prostate cancer it cooperates with c-

MYC246-248. Interestingly, few years ago two studies described that PIM1 was overexpressed in 

TNBC with high c-MYC levels232,249. The lack of drugs that specifically target c-MYC and the synergy 

demonstrated between both proteins postulated PIM1 as a promising target for this subtype of BCa. 

We hypothesized that due to the similarities the axis formed by c-MYC and PIM1 has 

shown with the functions described for PML in TNBC, they may be collaborating in the tumor biology 

of high PML expressing TNBC.  

In an effort to understand the relationship between PML, c-MYC and PIM1, we first 

evaluated their association at mRNA level in BCa patient samples. We checked if there was any 

correlation between PML and c-MYC or PIM1 taking all BCa subtypes into account. We found a 

significant direct correlation between PML and c-MYC in 2 out of 4 datasets. In the case of PIM1, 

the direct correlation with PML was significant in all the datasets (Fig. R26A).  

The annotation of the characteristics of the different subtypes from patient derived 

samples is not always the same between the datasets. In this case, the information for the different 

intrinsic subtypes is not available in all the datasets analyzed in Fig. R26A. Therefore, we 

questioned if the correlation was recapitulated in the ER negative group, since PML, c-MYC and 

PIM1 are overexpressed specifically in TNBC. We observed a significant direct association for PML 

and c-MYC and PML and PIM1 in 2 out of 4 datasets (Fig. R26B). The presence of tumors from 

HER2 subtype could mask, at least in part, the results obtained with an analysis of the basal type 

alone. 

We next aimed to corroborate the relevance of this correlation in TNBC cell lines. In this 

scenario, we did not find a remarkable correlation between PML and c-MYC (Fig. R27A). 

Conversely, a significant direct correlation between PML and PIM1 was observed (Fig. R27B). Of 

note, MDA-MB-231 and MDA-MB-468 cell lines showed high levels of both c-MYC and PIM1, which 

were correlated with high PML levels. 
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Figure R26. Correlation analysis of PML mRNA expression with MYC and PIM1 in patient datasets. A) 

Correlation analysis between PML and MYC (top panels) and between PML and PIM1 (bottom panels) mRNA 

levels in all breast cancer subtypes of tumor specimens of the indicated breast cancer datasets. Sample sizes: 

Ivshina (n=249), Lu (n=131), TCGA (n=522) and Wang (n=286). B) Correlation analysis between PML and 

MYC (top panels) and between PML and PIM1 (bottom panels) mRNA levels in ER negative tumor specimens 

of the indicated breast cancer datasets. Sample sizes: Ivshina (n = 34), Lu (n = 49), TCGA (n = 117) and Wang 

(n = 77).  
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Figure R27. Correlation analysis of PML with c-MYC and PIM1 in cell lines from DepMap. A-B) 

Correlation analysis between A) PML and MYC (n=24) and B) PML and PIM1 (n=24). 

 

Next, we aimed to molecularly understand the regulation of growth by PML, c-MYC and 

PIM1 in TNBC. Although PML and c-MYC have been described to interact under defined 

conditions250, little is known about how PML could regulate c-MYC in cancer. Interestingly, both 

have been described to be key in TNBC biology as promoters of tumor growth. Therefore, we 

decided to first evaluate c-MYC levels in PML-p27 double silenced cells. We hypothesized that c-

MYC was being downregulated upon PML silencing and that could explain the impossibility to 

resume growth. We found that c-MYC protein levels were decreased when p27 was silenced 

concomitantly with PML to levels comparable to the ones observed with the silencing of PML alone 

(Fig. R28). This data also supports the notion that PML regulates a larger signaling program that 

could explain the decrease on growth capacity that are not reached only by meanings of 

senescence induction. 

 

 

 

 

 

 

 

 

Figure R28. C-MYC levels are decreased when PML and p27 are silenced together. PML, c-MYC and p27 

protein levels upon doxycycline inducible silencing of either p27 or PML or both (representative of 3 

experiments). dox: doxycycline. Molecular weight markers (kDa) are shown to the right. 
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To deconstruct the regulation of PML and c-MYC, we studied the impact of PML silencing 

on c-MYC abundance at both protein and mRNA levels. We observed a significant decrease at 

protein level that was accompanied by the aforementioned increase in p27 (Fig. R29A and Fig. 

R29B). At gene expression level in vitro, PML targeting also induced a remarkable decrease in c-

MYC gene expression (Fig. R29C). We also checked the mRNA expression in stablished 

xenografts in vivo, confirming not only the decrease in c-MYC levels, but also a significant increase 

in p27, as observed before at the in vitro level (Fig. R29D). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure R29. PML silencing decreases c-MYC protein and mRNA levels. A-B) Analysis of MYC, p27 and 

PML protein levels upon PML inducible silencing: A) Western Blot (representative of 3 experiments) and B) 

quantification of the protein (n=3). C) c-MYC gene levels after inducible silencing of PML in MDA-MB-231 cells 

(n=3). D) PML, p27 and MYC mRNA levels upon doxycycline-inducible PML silencing (sh4) of established 

MDA-MB-231 xenografts. Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01). One-tailed one sample 

t-test (b, c, d) was used for cell line data analysis. dox: doxycycline. Molecular weight markers (kDa) are shown 

to the right. 

 

Transcriptional regulation by PML has been studied for many years but still little is known 

about the specific mechanism through which PML can regulate the transcription of different genes. 

Strikingly, PML does not have a DNA binding domain but it acts as a scaffold for many molecules85. 

In fact, it has been demonstrated that PML co-activates or co-represses transcription by interacting 
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with other factors61,81,83,251. Furthermore, we demonstrated that PML is in close proximity of SOX9 

promoter and regulates its transcription in TNBC101. Taking this into account, we wondered if PML 

could regulate c-MYC transcription. We first searched in ENCODE for the ChIP-seq data of MYC 

promoter. We restricted the analysis with the information from H3K27 acetylated regions and 

classified the transcription factors based on their binding score. Surprisingly, we found that PML 

was among the proteins with the highest DNA-binding score (Fig. R30A, cluster score: 527) in MYC 

promoter in silico. To confirm this interaction, we performed a ChIP experiment with exogenously 

expressed PML IV protein (Fig. R30B) and demonstrated that PML was in the close proximity of 

MYC promoter (Fig. R30C).  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure R30. PML is in the vicinity of MYC promoter. A) Cluster score of DNA-binding proteins in MYC 

promoter region using ENCODE database. B) Western Blot (representative of at least three experiments) of 

exogenously expressed HA-PMLIV. C) MYC promoter region abundance in chromatin immunoprecipitation of 

exogenous HA-PMLIV using HA-tag antibody in MDA-MB-231 cells after induction with 50 ng ml−1 doxycycline 

for 3 days (n=3). Data were normalized to IgG (negative-binding control). Error bars represent s.e.m. p, p-

value (*p< 0.05). One-tailed one sample t-test (c) was used for cell line data analysis. dox: doxycycline. 

 

We next aimed to study whether c-MYC silencing was able to recapitulate the senescence 

phenotype we observed upon PML loss and confirm that the effect was, at least in part, induced by 

c-MYC downregulation. We first confirmed the increase in p27 abundance upon c-MYC shRNA 

activation with no changes in PML at protein level (Fig. R31A and Fig. R31B). As expected by the 
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increase in p27 levels, the silencing of c-MYC induced the aforementioned senescence response 

(Fig. R31C and Fig. R31D). Finally, we observed that the growth capacity of the cells was also 

compromised when c-MYC was silenced (Fig. R31E).  

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure R31. C-MYC silencing recapitulates the phenotype induced by PML loss. A-B) PML, c-MYC, and 

p27 protein levels upon doxycycline inducible silencing of MYC in MDA-MB-231 cells: A) Western Blot 

(representative of 3 experiments) and B) protein quantification (n=3). C-D) Effect on the number of senescent 

cells (n=3) (D) representative images, scale bar 50 μm) upon MYC inducible silencing in MDA-MB-231 cells. 

E) Impact on cell number (n=3) of inducible MYC silencing in MDA-MB-231 cells. Error bars represent s.e.m. 

p, p-value (**p< 0.01, ***p< 0.001, ns: not significant). One-tailed one sample t-test (b, e) and one-tailed 

Student’s t-test (c) were used for cell line data analysis. sh42: shRNA against MYC, dox: doxycycline. 

Molecular weight markers (kDa) are shown to the right. 
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The increasing body of work about PIM1 has heightened the interest on this kinase. Two 

studies postulated PIM1 as a druggable target in TNBC due to its anti-tumorigenic role exerted by 

downregulating c-MYC pathway and increasing p27 levels232,249. In agreement with our previous 

data, we hypothesized that PML loss would affect PIM1 as it did with c-MYC. We first analyzed the 

effect PML silencing was having in PIM1 expression. We confirmed by ChIP analysis that PML was 

in the proximity of PIM1 promoter (Fig. R32A, cluster score: 383 in ENCODE) and that PIM1 mRNA 

expression was also significantly decreased upon PML silencing (Fig. R32B). 

 

 

 

 

 

 

 

Figure R32. PML regulates PIM1 at the transcriptional level. A) PIM1 promoter region abundance in 

chromatin immunoprecipitation of exogenous HA-PML IV using HA-tag antibody in MDA-MB-231 cells after 

induction with 50 ng ml−1 doxycycline for 3 days (n=4). Data were normalized to IgG (negative- binding control). 

B) PIM1 gene levels after PML inducible silencing in MDA-MB-231 (n=3). Error bars represent s.e.m. p, p-

value (*p< 0.05). One tailed one sample t-test (a, b) was used for cell line data analysis. dox: doxycycline. 

 

The study of transcriptional regulation by PML has been of utmost interest for researchers. 

Both transcriptional activation and repression have been described for PML, but mechanistically it 

is still unclear how this function is mediated. Here we demonstrate that PML is in the close proximity 

of the promoter of both c-MYC and PIM1. Due to the lack of a DNA binding domain, we hypothesize 

that PML should regulate the transcription through the recruitment and/or modulation of other 

transcriptional factors that can bind DNA regions. 

Due to the function of PIM1, we speculated that its inhibition would recapitulate the 

previously described senescence phenotype, by further impairing c-MYC function. We silenced 

PIM1 and confirmed the decrease in c-MYC together with the increase in p27 at protein level (Fig. 

R33A and Fig. R33B). When analyzing gene expression levels, p27 was significantly increased, 

but no downregulation on c-MYC was observed (Fig. R33C). It has been described that PIM1 can 

phosphorylate c-MYC in vitro249,252. Therefore, it is more likely that PIM1 regulates c-MYC post-

translationally by phosphorylating different residues, without observing changes at mRNA level. We 

further confirmed the key role of PIM1 by a remarkable decrease on the growth capacity of the 

TNBC cells (Fig. R33D). Finally, as expected by the decrease in growth capacity and the increase 

in p27 abundance, the increase in the number of senescent cells was recapitulated with PIM1 

silencing (Fig. R33E and Fig. R33F). 
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Figure R33. PIM1 silencing further impacts in the senescence phenotype induced by PML loss. A-B) 

p27, MYC, PIM1, and PML protein levels upon doxycycline inducible silencing of PIM1 in MDA-MB-231 cells: 

A) representative Western Blot out of three experiments and B) protein quantification (n=3). C) Gene 

expression levels of PIM1, MYC and p27 upon PIM1 silencing. D) Impact in cell number (n=3) of inducible 

PIM1 silencing in MDA-MB-231 cells. E-F) Effect on the number of senescent cells (F) representative images, 

scale bar 50 μm) upon PIM1 inducible silencing in MDA-MB-231 cells. Error bars represent s.e.m. p, p-value 

(*p< 0.05, **p< 0.01, ***p< 0.001). One tailed one sample t-test (b, c, d) and one-tailed student's t-test (e) were 

used for cell line data analysis. shC: Scramble shRNA, dox: doxycycline, SA-β-gal: senescence-associated 

beta-galactosidase. Molecular weight markers (kDa) are shown to the right. 
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C-MYC is a key regulator of cell cycle and cell proliferation and p27 is one of its most 

important target genes253,254. Interestingly, in samples of TNBC patients a significant association 

between p27 loss and c-MYC overexpression has been observed224. In addition, PIM1 is a key 

regulator of cell cycle by downregulating p27 levels255. Taken together, our results strongly suggest 

that c-MYC and PIM1 play a key role supporting PML-elicited TNBC growth and preventing p27 

accumulation and senescence response. 

 

II.2 Deciphering PML addiction of TNBC cells vs non-TNBC cells 
 

The concept of oncogene addiction postulates that the survival of tumor cells depends on 

a single oncogene regardless other genetic or epigenetic modifications, which makes it an 

interesting approach for targeted therapies. The data presented in this thesis supports the idea that 

high PML-expressing BCa cells are addicted to its elevated expression. In order to further confirm 

this notion, we took advantage of another TNBC cell line with high PML levels, MDA-MB-468, and 

two ER positive cell lines with low levels of PML, MCF-7 and Cama-1 (Fig. R5 for protein levels). 

We first checked the growth capacity of the three cell lines after inducible PML silencing and we 

observed a remarkable growth arrest in MDA-MB-468 cell line (Fig. R34A), that was not due to 

apoptosis (Fig. R34B) in concordance with MDA-MB-231 cell line data. Conversely, no changes 

were observed in the non-TNBC cell lines (Fig. R34C and Fig. R34D).  

 

 

 

 

 

 

 

 

 

 

 

Figure R34. PML silencing differentially affects TNBC and non-TNBC cell growth. A-B) Impact of PML 

inducible silencing on A) cell number and in B) apoptosis in MDA-MB-468 cell line. C-D) Effect on cell number 

of inducible PML silencing in ER positive C) MCF-7 and D) Cama-1 cell lines. Error bars represent s.e.m. p, 

p-value (*p< 0.05, **p< 0.01). One tailed one sample t-test (a, c, d) was used for cell line data analysis. dox: 

doxycycline, Stp: staurosporine. Molecular weight markers (kDa) are shown to the right. 
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We next studied the senescence phenotype associated to PML loss. At the morphological 

level the TNBC cell line MDA-MB-468 was the only one affected by PML silencing, showing a 

completely disrupted cellular morphology. Conversely, no changes were observed in the 

morphology of non-TNBC cells (Fig. R35A). To confirm the presence of senescent cells we 

measured SA-β-gal activity. As expected, MDA-MB-468 cell line showed a significant increase in 

SA-β-gal positivity while ER positive cell lines did not exhibit changes in the number of senescent 

cells (Fig. R35B and Fig. R35C). 
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C Figure R35. PML loss induces a senescence phenotype in 

high PML expressing TNBC cell lines but not in ER + cells. 

A) Impact of PML inducible silencing (sh4) on cell morphology 

in MDA-MB-468, MCF-7 and Cama-1 cell lines. B-C) Effect of 

doxycycline-inducible PML silencing (sh4) on senescence: B) 

representative images of SA-β-galactosidase positive cells 

(scale bar 50 μm) and C) number of senescent cells (MDA-MB-

468 and Cama-1, n=3, MCF7, n=4). Error bars represent s.e.m. 

p, p-value (**p< 0.01). One tailed Student's t-test was used for 

cell line data analysis. dox: doxycycline, SA-β-gal: 

senescence-associated beta-galactosidase. 
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At the molecular level, the senescence response induced upon PML silencing in MDA-

MB-231 cell line was p27 dependent. In lane with the results obtained, a remarkable increase of 

p27 levels was observed in MDA-MB-468 upon PML loss. In the case of ER+ cell lines, we did not 

detect an induction of p27 expression (Fig. R36). 

 

 

 

 

 

 

Figure R36. PML loss induced p27 increase is limited to the MDA-MB-468 cell line. A) Effect of 

doxycycline-inducible PML silencing on PML and p27 protein expression (representative of three experiments). 

dox: doxycycline. Molecular weight markers (kDa) are shown to the right. 

 

We analyzed the effect of PML loss in the expression of several genes implicated in cell 

cycle regulation in MDA-MB-468 cell line. At the transcriptional level E2F3, CDK4. AURKA and 

CDC25A were remarkably deregulated (Fig. R37A). In contrast, p27 gene expression was not 

significantly affected by PML silencing. We have described how PML regulates PIM1 and c-MYC. 

We further confirmed this notion in MDA-MB-468 cell line, where both c-MYC and PIM1 gene 

expression levels were significantly downregulated upon PML silencing (Fig. R37B and Fig. R37C).  

 

 

 

 

 

 

 

Figure R37. Growth regulatory pathways are deregulated in MDA-MB-468 cell line upon PML silencing. 

A) Expression of cell cycle genes upon PML inducible silencing in MDA-MB-468 cells (n=3). B) MYC gene 

levels after inducible silencing of PML in MDA-MB-468 cells (n=3). C) PIM1 gene levels after PML inducible 

silencing in MDA-MB-468 cell line (n=3). Error bars represent s.e.m. p, p value (*p< 0.05, **p< 0.01). One-

tailed one sample t-test (a, b, c) was used for cell line data analysis. CDK: cyclin dependent kinases, AURKA: 

aurora kinase A, CDC25A: cell division cycle 25 homolog A, dox: doxycycline.  
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MDA-MB-468 cell line is wild-type for p16214 and deficient for pRB256,257, key effectors in 

some senescence responses. It would be necessary to determine if PML loss impacts p16 levels 

in this context. This could give a feasible explanation to the lack of upregulation of p27 at the 

transcriptional level at day 6 of experiment, as the implication of the p16-pRB pathway could 

accelerate the senescence response. It could also explain the slightly exacerbated senescence 

response observed in MDA-MB-468 cell line when compared to MDA-MB-231 cells. 

In concordance with the previous results, at protein level in MDA-MB-468 cell line c-MYC 

was remarkably decreased and accompanied by the p27 increase (Fig. R38A and Fig. R38B), 

while no changes were observed neither in MCF-7 (Fig. R38C and Fig. R38D) nor in Cama-1 (Fig. 

R38E and Fig. R38F) cell lines.  

  

 

 

 

 

 

 

 

 

 

 

Figure R38. C MYC levels are only decreased in TNBC cell line. A-F) p27, MYC and PML protein levels 

and protein quantification of PML inducible silencing in A-B) MDA-MB-468, C-D) MCF-7 and E-F) Cama-1 cell 

lines. Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001). One tailed one sample t-test 

(b, d, f) was used for cell line data analysis. dox: doxycycline. Molecular weight markers (kDa) are shown to 

the right. 

 

We analyzed the SASP of Cama-1 cells to further characterize the effect of PML silencing 

in the senescence response of an ER+ cell line (Fig.R39A). Contrary to what we observed with 

MDA-MB-231 cell line, PCA was not able to segregate the non-induced and induced experimental 

conditions (Fig. R39B) in Cama-1 cell line. When observing the differentially secreted proteins, no 

secretory proteins or pathways were identified to be enriched in the PML silenced group (Fig. R39C 

and Annex Table 3). This further confirmed the lack of a growth inhibitory effect of PML loss as a 

senescence response in ER+ cell lines. 
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Figure R39. Secretome of Cama-1 cell line is not 

affected by PML silencing. A) PML and tubulin 

levels in both cells extracts and secretome samples 

(dash lines indicate samples used in the analysis). 

B) Unsupervised exploratory data analysis by means 

of principal component analysis. C) Heat map 

representing the proteins that were significantly 

over- and under-secreted, upon PML silencing in 

Cama-1 cells. Data analysis was based on spectral 

count data after exporting it from Scaffold software 

into R. The GLM model based on the Poisson 

distribution was used to test significance. Only the 

proteins with spectral counts of 2, Log2FC of 0.8 and 

adjusted p-value of 0.05 are present in the heat map. 

Columns represent samples; rows are proteins. Red 

represents proteins that are over-secreted and green 

represents proteins that are under-secreted. The 

data rows are centered and scaled to 1 standard 

deviation prior to produce the heatmap. sh4: shRNA 

against PML. Dox: doxycycline. Molecular weight 

markers (kDa) are shown to the right. 
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Overall, we confirmed that PML is only essential for the growth of high PML-expressing 

cells and that its loss does not result in a growth inhibitory response on the cells that are not addicted 

to its expression. The dependence on the expression of PML, specifically in the TNBC subtype, 

sets the rationale for the development of targeted therapies.  

 

II.3 Arsenic trioxide as a pharmacological inhibitor of PML in TNBC 
 

Arsenic is one of the oldest known medicines. In the 1990’s, several studies reported that 

compounds containing high levels of arsenic trioxide (ATO, also known as Trisenox) were efficient 

in treating APL258,259. Nowadays, it is used to cure these patients. ATO is able to induce both PML 

and PML/RARα degradation. Mechanistically, E3-ubiquitin ligase RNF4 specifically targets 

ubiquitylated PML leading to proteasome mediated degradation79,260. Until now, ATO is the only 

drug described to impair PML function. In addition to APL, the antitumorigenic effect of ATO has 

been demonstrated in glioma and TNBC, where the degradation of PML affected specifically stem 

cell capacity and metastatic potential101,102,173. To further understand the effect in the bulk of cells, 

we treated MDA-MB-231 cells with a low ATO concentration. Even if the growth capacity of the 

cells was compromised upon treatment (Fig. R40A), no changes were observed neither in the 

number of senescent cells (Fig. R40B) nor in p27 or c-MYC protein levels (Fig. R40C and Fig. 

R40D). 

 

 

 

 

 

 

 

 

 

 

 

Figure R40. Pharmacological inhibition of PML by ATO does not recapitulate the effect of genetic PML 

silencing. A-D) Effect of 6 days of 150 nM arsenic trioxide treatment in MDA-MB-231 cell line: A) in cell 

number, B) on the number of senescent cells and C-D) in MYC, p27 and PML protein levels (D) quantification 

of the protein, n=5). Error bars represent s.e.m. p, p-value (**p< 0.01, ***p< 0.001, ns: not significant). One 

tailed one sample t-test (a, d) and one-tailed student's t-test (b) were used for cell line data analysis. VC: 

vehicle, ATO: arsenic trioxide. Molecular weight markers (kDa) are shown to the right. 
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The inability of ATO to recapitulate the senescence phenotype could be explained by the 

dynamics of PML degradation. Some studies have reported that in very early time points after the 

treatment, ATO first induces the aggregation of PML molecules forming bigger PML nuclear bodies 

that will be subsequently degraded261. In vivo, we have observed that after ATO treatment a fraction 

of cells showed increased nuclear body formation (data not shown). Understanding the molecular 

mechanism of action of ATO could shed some light for its use as a pharmacological PML inhibitor 

in TNBC patients. It also underlines the importance of finding additional drugs for targeted therapies 

against PML that could improve the treatment of high PML expressing breast cancer tumors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY 

▪ p27 is the driver in PML induced senescence and it accumulates in the nucleus 

upon PML loss. 

 

▪ PML is in the close proximity of c-MYC and PIM1 promoters and regulates their 

expression.  

 

▪ PML governs a larger growth regulatory pathway of which c-MYC and PIM1 are 

essential players and senescence phenotype is recapitulated upon both c-MYC 

and PIM1 silencing. 

 

▪ Downregulation of PML only exerts a growth inhibitory effect on high PML 

expressing TNBC cells that are addicted to its expression. 

 

▪ Pharmacological degradation of PML with ATO does not recapitulate the 

phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUTURE PERSPECTIVES 

▪ Further confirm the causal contribution of c-MYC and PIM1 to the senescence 

phenotype activated upon PML loss. For this purpose, rescue experiments 

overexpressing c-MYC or PIM1 together with PML silencing should be performed. 

 

▪ Study the prognostic value of PML, PIM1, c-MYC and p27 for BCa patients due 

to their key role in the biology of TNBC. 

 

▪ Identification of combined therapies with ATO or new compounds that specifically 

target PML and its partners for their use in the clinic. 
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I Understanding the basis of breast cancer for an improved 

personalized medicine 
 

Breast cancer stratification: when is a positive truly a positive? 
 

Breast cancer is the most common cancer detected among women and is characterized 

by a high degree of both inter- and intra-tumoral heterogeneity. Despite the differences found 

among the tumors, they share a number of characteristics that have allowed their classification 

based in different markers (both at molecular or immunohistochemical level). BCa classification has 

improved along the years by integrating the most recent knowledge of their biology. From a clinical 

perspective, it is important to classify tumors in order to adapt therapeutic strategies according to 

their specific characteristics. Adding molecular profiling to the clinical routine improves the 

limitations of immunohistochemical analysis. Nevertheless, it is still challenging to implement the 

genetic screening due to time consumption and costs, despite the studies that support their clinical 

use for a better evaluation of prognosis and treatment choice262. 

Several studies have conducted molecular analysis of TNBC tumors trying to decipher 

unique features of these tumors. Unfortunately, and regardless the efforts put on characterizing 

TNBC, this group of tumors remains as a challenge due to its complexity. TNBC is defined based 

on what it lacks rather than on what it expresses. In moving towards personalized and precision 

medicine, it is of utmost importance to identify factors that would help in the identification, prognosis 

and targeted treatment of these patients. The description of the 5 intrinsic molecular subtypes by 

Perou et al.43 and Sørlie et al.44 opened new opportunities on the identification of specific 

characteristics of BCa tumors. Both basal-like and TNBC show the poorest prognosis and highest 

aggressiveness when compared to other subtypes. Due to the similarities found in both groups, 

basal-like and TNBC have been used as synonymous in different contexts263. It is important to note 

that TNBC is not a surrogate of basal-like subtype. Nonetheless, a high percentage of TNBC tumors 

show a basal-like phenotype and the majority of the tumors classified as basal-like are triple 

negative (around 80% in both cases)47,264,265. Thus, validating markers that specifically identify the 

TNBC and basal-like cancers will open new opportunities for the targeted treatment of these tumors. 

The results obtained in this thesis work further support the data from Martín-Martín et 

al.101 and Carracedo et al.100 and encourage us to strengthen the translational research in PML as 

a potential biomarker for TNBC and basal-like breast cancers. In clinical routine, the gold standard 

for the detection of the different markers is IHC, a technique that could be applied for the detection 

of PML in patient samples. For this purpose, it is important to set a threshold of positivity in order 

differentiate the patients that could benefit from a future treatment. The best example of the 

importance of assessing correctly the positivity is the detection of ER, as it defines which patients 

will benefit from the endocrine therapy. Nonetheless, nowadays there is still controversy in the value 
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that should be used as the ER positive threshold. On one hand, the American Society of Clinical 

Oncology (ASCO) recommended to set the ER positivity in >1% in an effort to extend the possibility 

to receive hormonal therapy266. On the other hand, clinicians have generally used 10% as the cut-

off for patients that would benefit from endocrine therapy. Tumors with low ER staining (1-9%) are 

less common267 and it has been shown that this group of patients has a lower response rate to 

endocrine treatment268. This debate in the cut-off value of a well-defined marker as ER underlines 

the importance of patient monitorization and tumor analysis during and after the treatment.  

PML as a biomarker for BCa stratification offers a promising path that should be further 

explored. In this thesis work and in previous publications100,101, we have proposed a score based 

on the staining percentage and number and size of punctate nuclear structures. This has helped in 

the identification and stratification of high PML expressing breast tumors, using patient samples, 

PDX and cell lines. We have described two different semiquantitative scoring schemes: low/high 

PML or a four-category classification based on PML expression. This second method was applied 

with patient samples, which could give a closer view of the clinical application. When PML positivity 

is set in 30%, around the 70% of the samples classified in this category belong to the TNBC 

subtype100. This points the threshold of 30% as a promising value for the identification of PML 

positive tumors. Nevertheless, it cannot be ruled out that the group with PML staining from 10% to 

30% (or lower) could contain tumors that may be dependent on the expression of this protein. This 

underlines the importance of defining the relationship between PML positivity and the dependence 

of the tumors on its expression for growth, as this would establish the rationale for PML targeted 

therapies. Therefore, it is a methodology that could be automatized for a rapid analysis of the 

samples, but still needs to increase the number of samples analyzed to set the PML positivity 

threshold. We have also started a collaboration with Cell Signaling Technologies for the 

development of an anti-PML antibody in line with our efforts to advance in PML-based research. 

 

Targeted therapies: searching for the Valyrian steel against TNBC 
 

Personalized and precision medicine are the ultimate objective of cancer research. The 

availability of highly effective therapies against ER+ and HER2+ BCa has dramatically improved 

the clinical outcome of these patients. However, the absence of targeted therapies for TNBC leaves 

chemotherapy as the only systemic treatment option nowadays (Fig. D1). The identification of 

potential drivers in TNBC would provide the opportunity to develop targeted therapies against this 

subset of tumors.  
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Figure D1. The ability to stratify breast cancer patients into different subtypes implies different treatment 

opportunities for those patients. 

 

Molecular profiling has identified several promising targets with compounds that are or 

have been in clinical trials: 

• Mutations in BRCA1 and BRCA2 are found in ≈20% of TNBC269, which are 

necessary for homologous recombination and DNA repair. PARP-1 is responsible 

of DNA repair of single stranded DNA breaks270. In 2005, two different studies 

demonstrated the potential of PARP-1 as a synthetic lethal therapy for BRCA 

mutant TN tumors271,272. Several clinical trials have tested various PARP 

inhibitors (Olaparib273,274, Talazoparib275, Veliparib276) with promising results. 

Additional genetic determinants of PARP inhibitor sensitivity should be 

investigated. 

• When compared to other types of cancer such as melanoma, BCa has not been 

considered as an immunogenic cancer. Nevertheless, the importance of tumor 

immune microenvironment in cancer progression277 has increased the interest on 

immune checkpoint elements, such as programmed death-1 (PD-1) and/or 

programmed death-ligand 1 (PD-L1). It has been demonstrated that a subset of 

TNBC patients could be benefited of an anti-PD-L1 treatment278-281.  

• EGFR overexpression correlates with basal-like breast cancer282. Various agents 

targeting EGFR have undergone preclinical evaluation with differing results283,284.  

• The PI3K/AKT/mTOR pathway is more commonly activated in TNBC than in other 

breast cancer subtypes45 and encouraging results have been observed in cell 

lines and clinical trials285,286.  
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Despite all the promising data, the aforementioned studies highlight the limitations of 

these treatments. In addition to therapy resistance, the heterogeneity present in TNBC and basal-

like breast cancers is likely to be the reason for therapy failure. Certainly, a single treatment is 

unlikely to work for all the patients, being the most effective treatment a combination of targeted 

therapies. 

In this thesis work we have deciphered a signaling axis formed by PML, c-MYC, PIM1 

and p27 that is essential for the growth of TNBC cells with high PML expression. In the case of 

pharmacological PML targeting, ATO is employed in the clinical routine to treat APL patients, which 

would ease the repurposing process for other diseases. In addition, the viability of PML knockout 

mice287 makes PML targeting a safe treatment. Nevertheless, we have not been able to recapitulate 

the senescence response elicited upon PML silencing with ATO treatment. Strikingly, ATO has 

demonstrated its antitumorigenic effect in TNBC in a stem cell and metastatic context101. We do not 

contemplate a senescence response by increasing ATO concentration, as we can observe that 

growth capacity is already being compromised. The mode of action of ATO involves several 

molecules and post-translational modifications that may be affecting the responses upon PML 

inhibition (Fig. D2). In fact, it has been demonstrated that UBC9, the SUMO-conjugating enzyme, 

can delay the senescence response288. This is a simplification of the model of ATO-induced PML 

degradation and its consequences, but it points out the necessity of further studying its cellular 

context-dependent mechanism of action. In collaboration with Kaertor Foundation (continuing the 

work with Innopharma) we have tried to identify new drugs able to inhibit or degrade PML. 

 

 

 

 

 

 

 

 

 

Figure D2. Mode of action of arsenic trioxide induced PML degradation (image modified from Lallemand-

Breitenbach et al., 2012289). 

 

The key role of MYC and PIM1 in the biology of high PML expressing TNBC gives the 

opportunity to target them. Due to its central role in cancer biology as a master regulator of gene 

expression, MYC is one of the most valuable targets in cancer. Diverse strategies have been used 

to inhibit MYC, both direct and indirect: blockade of MYC transcription, MYC protein stability and 
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MYC partners or interactors. BET bromodomain inhibitors have demonstrated the highest efficacy 

by inhibiting MYC transcription in different malignancies290. In addition, the study by Beaulieu et 

al.291 described a promising direct inhibitor that should be further studied. Nevertheless, due to 

difficulties in inhibiting transcription factors like MYC successfully in the clinic, efforts have been put 

in discovering novel targets that are synthetic lethal with MYC, such as PIM1 in TNBC232,249 and 

prostate cancer292. After demonstrating the effectivity of PIM1 inhibitors both in vitro and in vivo, 

various compounds have entered clinical trials293. The main challenge with PIM1 inhibitors is their 

toxicity293. The increasing research in targeted therapies against the pathway we have described in 

this thesis work encourages us to further study and collaborate for the development of potential 

therapeutic options for a subset of TNBC patients. 

Many steps have to be taken before reaching clinical application with novel drugs that 

arise from the discovery of druggable targets. Patient-derived organoid cultures are progressively 

being implemented for personalized medicine and drug screening in cancer, as they can closely 

recapitulate the tumor architecture and its specific molecular information294. Organoids may be 

helpful for medical applications, as it has been observed that they can model the patient response 

to treatment295. It is necessary to closely work with clinical researchers in order to increase sample 

availability for molecular characterization and drug testing. This would dramatically improve the 

research we have made and facilitate the PML, MYC and PIM directed drug screenings for a fastest 

application in the future. 

 

II Senescence: good or evil 
 

Senescence has been classically recognized as a tumor suppressive mechanism, since 

one of its hallmarks is irreversible cell cycle arrest. Nevertheless, the increasing information about 

the context dependent pro-tumorigenic role of secretory phenotype of senescent cells has turned 

the concept of senescence into a double-edged sword in oncology.  

Depending on the cell type, the factors secreted by senescent cells will vary. It has been 

described that these factors can promote tumor development by inducing proliferation and 

invasiveness. For example, senescent human fibroblasts can stimulate the growth of premalignant 

and malignant mammary epithelial cells296. Moreover, the remodeling of the extracellular matrix by 

metalloproteinases might create a favorable microenvironment for tumor growth297. Interestingly, 

IL-6 and IL-8, two of the main components of the canonical SASP, have been described to promote 

tumorigenesis142 and to reinforce the senescence phenotype298,299. The SASP also has an 

important effect by controlling the response of the immune system. It has been demonstrated that 

secreted factors can promote the clearance of the senescent cells by the immune system and 

therefore contribute to tumor regression142,300,301. 
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PML was first associated with senescence by its upregulation upon mutant RAS 

expression in a p53-dependent manner70,90. Conversely, in non-transformed fibroblasts, 

senescence is activated upon PML depletion, adding complexity to all the PML activities302. In 

addition, in this thesis work we have demonstrated that in breast cancer cells with high PML 

expression its inhibition triggers senescence. The phenomenon is characterized by the lack of a 

canonical SASP and SAHF formation. Nevertheless, we have seen an enrichment in proteins 

belonging to TGF-β1 pathway in secretome studies. Interestingly, TGF-β1 shows antagonistic 

effects in cancer biology. On one hand, it has been described that TGF-β can induce a potent 

antiproliferative response in early stages of tumors303-306. On the other hand, it is also described its 

participation in metastasis and angiogenesis. It is widely accepted that in the later steps of tumor 

progression the growth inhibitory function of TGF-β is lost307-310. In the context of senescence, it is 

suggested that TGF-β has a senescence promoting role311-313. Interestingly, in a lymphoma mouse 

model, p53-induced apoptosis of cancer cells activates macrophages that will secrete TGF-β1, 

inducing senescence in tumor cells314.  

In an effort to develop targeted therapeutics, different strategies based on senescence 

have been evaluated. As we have explained, despite its tumor suppressive function, senescence 

can exacerbate tumorigenesis through the factors that are secreted by senescent cells. In addition, 

the accumulation of senescent cells can be detrimental due to its contribution to organismal 

aging315. Based on these characteristics of senescence, two different approaches have been 

proposed: senolytics, which specifically eliminate senescent cells and senostatics, therapies that 

are focused on modulating the SASP. Interestingly, senolytics have been proposed to improve 

cancer therapy as a follow up treatment after chemotherapy316,317. Nevertheless, there is a need of 

discovering new senolytics and setting the best dosing and timing to minimize the side effects 

associated to some of these compounds318-320.  

All this data shows the need of further studying the senescence phenotype in a more 

complex setting. We need to take into account the effect of these molecular and cellular alterations 

in cancer cells and the tumor microenvironment to further exploit this pathway in TNBC after PML 

inhibition. 

 

 

 

 

 

 

 

 



Conclusions 

 

127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 



 

128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions 

 

129 

The results obtained throughout this thesis work confirm our initial hypothesis and 

demonstrate that PML sustains the growth of a subset of TNBC. The results are summarized as 

follows: 

 PML is specifically overexpressed in TNBC. 

 

 PML silencing in TNBC cell lines leads to a growth arrest combined with features of 

senescence. This senescence response is characterized by increased SA-β-galactosidase 

in vitro and intense p-HP1γ staining in xenografts in vivo. 

 

 Mechanistically, the senescence response is triggered by an increase in p27 levels. 

 

 c-MYC and PIM1 support the PML-elicited TNBC growth and prevent the accumulation of 

p27 and the senescence response. 

 

 ER+ cell lines with lower levels of PML expression are not affected by its silencing. 

 

 The pharmacological inhibition of PML with ATO does not recapitulate the senescence 

response despite negatively affecting the growth capacity of the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL CONCLUSION 

High PML expressing TNBC are addicted to the expression of this gene and its inhibition 

has an antitumorigenic effect. We propose a mechanism that could be further exploited in 

the clinic. 
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II Annex 
 

Table A1. DepMap cell line expression values and classification based on ER, PR and Her2 status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell line TPM (log2) ER PR Her2 

BT20_BREAST 5,033863 - - - 

BT549_BREAST 4,960697 - - - 

CAL120_BREAST 3,808385 - - - 

CAL148_BREAST 3,654206 - - - 

CAL51_BREAST 3,600508 - N/A - 

CAL851_BREAST 4,519793 - - - 

DU4475_BREAST 3,349082 - - - 

HCC1143_BREAST 5,829088 - - - 

HCC1187_BREAST 5,475409 - - - 

HCC1395_BREAST 5,46107 - - - 

HCC1599_BREAST 5,640679 - - - 

HCC1806_BREAST 3,64039 - - - 

HCC1937_BREAST 4,759688 - - - 

HCC2157_BREAST 4,341274 - - - 

HCC38_BREAST 5,154211 - - - 

HCC70_BREAST 5,032101 - - - 

HDQP1_BREAST 4,910733 - - - 

HMC18_BREAST 3,785551 - - - 

HS578T_BREAST 4,655924 - - - 

MDAMB157_BREAST 4,715344 - - - 

MDAMB231_BREAST 5,16792 - - - 

MDAMB436_BREAST 4,689299 - - - 

MDAMB453_BREAST 2,185867 - - - 

MDAMB468_BREAST 4,851999 - - - 

AU565_BREAST 3,343408 - - + 

HCC1419_BREAST 2,990955 - - + 

HCC1569_BREAST 5,082362 - - + 

HCC1954_BREAST 4,643279 - - + 

HCC202_BREAST 3,532317 - - + 

HCC2218_BREAST 3,145677 - - + 

JIMT1_BREAST 5,482203 - - + 

SKBR3_BREAST 3,139142 - - + 

UACC893_BREAST 2,330558 - - + 

BT474_BREAST 2,722466 + + + 

BT483_BREAST 3,320485 + + - 

CAMA1_BREAST 3,221877 +  - 

EFM19 3,314697 + + - 

EFM192A 3,294253 + + - 

HCC1428_BREAST 2,914565 + + - 

HCC1500_BREAST 3,068671 + + - 

KPL1_BREAST 3,874797 +  - 

MCF7_BREAST 3,873813 + + - 

MDAMB134VI_BREAST 3,061776 + - - 

MDAMB175VII_BREAST 3,560715 + - - 

MDAMB361_BREAST 3,795975 + + + 

MDAMB415_BREAST 4,401221 +  - 

T47D_BREAST 3,612352 + + - 

UACC812_BREAST 3,415488 + - + 

ZR751_BREAST 3,41007 + - - 

ZR7530_BREAST 3,404631 + - + 
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Table A2. List of differentially secreted proteins upon silencing the PML protein in MDA-MB-231 cells. 

Gene Name Positivea Negativeb Log2FC adj p-valuec 

ACTB 65,3 15 2,168 2,65E-45 

ACTG1 13,3 63,2 -2,199 3,79E-43 

KRT16 9 0 37,7 8,28E-16 

TUBA1C 2,2 16 -2,84 2,54E-14 

KRT6C 7,3 0 30,09 7,02E-13 

EEF1A1P5 6,8 0 28,27 5,16E-12 

MMP1 0,2 7,7 -5,477 3,08E-11 

BMP1 8 0,7 3,629 2,41E-09 

MAN2A1 0 4 -32,68 1,34E-06 

CLSTN3 7,5 1,2 2,729 1,45E-06 

ITGB1 4 13,5 -1,71 2,59E-06 

TNFRSF21 0,5 5,8 -3,5 2,66E-06 

COL5A1 14,2 4,8 1,596 2,74E-06 

FBN1 22,8 10,5 1,165 2,74E-06 

TLN1 23,2 42,2 -0,8189 2,74E-06 

SPARC 3,2 0 32,36 1,41E-05 

KRT6A 3 0 28,98 2,93E-05 

LTBP4 10 3 1,783 3,01E-05 

SQSTM1 2,7 9,8 -1,837 3,43E-05 

L1CAM 4 12,2 -1,56 4,20E-05 

FRAS1 2,8 0 33,7 4,77E-05 

SERPINE2 0,3 4,3 -3,656 5,65E-05 

KRT7 8,5 2,3 1,909 5,90E-05 

CPD 0,2 3,7 -4,414 7,44E-05 

LUM 3,3 0,2 4,371 0,0001401 

CPE 10,7 3,8 1,522 0,0001518 

FAT1 3,8 0,3 3,568 0,0001518 

TIMP3 0,3 4 -3,543 0,000152 

NEU1 0,7 4,8 -2,813 0,0002139 

ENPP1 1,7 7 -2,024 0,0002601 

EPS8L2 2,3 0 30,54 0,0002992 

ITGA3 0 2,3 -33,33 0,000455 

PROS1 9 3,2 1,553 0,0005347 

AKR1C1 3,5 10 -1,473 0,0005644 

LTBP3 2,2 0 33,24 0,0005681 

GALC 2,2 0 31,58 0,0005681 

CD81 0,8 4,8 -2,492 0,0006621 

IL6 0 2,2 -30,34 0,000793 

ECHS1 0,3 3,3 -3,28 0,001325 

SEC23A 3,2 0,3 3,295 0,001366 

CFH 7,8 2,8 1,513 0,002035 

SUMF2 0,3 3,2 -3,204 0,002174 

EPHA2 2,7 7,8 -1,51 0,002632 

KRT19 11,8 5,7 1,106 0,003352 

GAS6 12,7 6,3 1,045 0,003882 

LFNG 2,8 0,3 3,131 0,00403 

SDCBP 0,8 4,2 -2,278 0,004093 

UBE2K 2,3 0,2 3,852 0,004193 

BMP4 2,3 0,2 3,851 0,004193 

PYGL 3,5 8,8 -1,293 0,005184 

IGFBP1 4,5 10,3 -1,151 0,006241 

SAA1 0,5 3,2 -2,616 0,007954 

MXRA8 3 0,5 2,629 0,008305 

JAG1 3,2 8 -1,291 0,009363 

CST4 2 6 -1,537 0,01085 
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Notes: a: Average normalized spectral counts from cells where PML is silenced. b: Average normalized spectral counts 

from cells where PML is expressed. c: the adjusted p-values have been corrected for multiple hypothesis testing 

according to Benjamini and Hochberg. 

 

HIST1H1C 1,5 5 -1,69 0,01406 

SDC4 6,2 12,2 -0,9348 0,0169 

BTF3 0,5 2,8 -2,463 0,0203 

DSG2 8,2 3,8 1,136 0,0203 

VASN 4 1,2 1,82 0,0205 

SEMA3C 4,8 1,7 1,579 0,02166 

MMP14 0,8 3,5 -2,024 0,02305 

CANX 0,3 2,3 -2,76 0,02583 

BSG 0,5 2,7 -2,371 0,03072 

HIST2H2AA3 4,3 1,5 1,57 0,03543 

HRNR 2,8 0,7 2,128 0,03625 

SORT1 4,8 1,8 1,442 0,03753 

COL4A2 9,3 5 0,9451 0,04005 

PSMD3 1,8 5 -1,403 0,04453 

SLC3A2 3,3 7,3 -1,093 0,04517 

SF3B3 1 3,5 -1,765 0,04646 

PIK3IP1 2 0,3 2,631 0,0493 

THBS1 194,7 129 0,6395 1,69E-19 

MYH9 96,3 66 0,591 2,89E-08 

FLNB 138,8 107,5 0,4142 2,74E-06 

KRT9 51,7 35,3 0,5922 0,0001426 

HSPA5 71,3 96,3 -0,3876 0,0006753 

GSN 32,2 21,2 0,6494 0,001826 

AP1G1 1,8 0 30,19 0,002035 

AHNAK 38 26,2 0,5821 0,002174 

MATN2 0 1,8 -32,96 0,00267 

CNN2 1,7 0 32,94 0,003784 

PDIA4 19 30,3 -0,6292 0,004491 

CTSC 12,3 21,3 -0,7452 0,006266 

HYOU1 13,2 22,3 -0,7174 0,007086 

HSP90AA1 71,5 92,3 -0,3232 0,008745 

NAMPT 18,8 28,8 -0,5686 0,01708 

KRT1 73,2 59,8 0,3355 0,01783 

EFEMP1 23,2 15,5 0,625 0,01818 

HSPG2 56,8 45,2 0,3767 0,0205 

KRT8 21,3 14,2 0,6362 0,02239 

ACBD3 1,2 0 30,92 0,02398 

SEMA3B 1,2 0 32,42 0,02398 

ASPH 1,2 0 28,09 0,02398 

ALDH9A1 1,2 0 30,92 0,02414 

KRT13 1,2 0 32,73 0,02431 

HSP90B1 30,7 42,5 -0,425 0,03072 

KRT2 32,5 44,3 -0,3999 0,04114 

LOXL4 1 0 30,73 0,04517 

SEMA7A 12,3 19,5 -0,6165 0,04517 

F3 1 0 35,49 0,04517 

KRT4 1 0 32,57 0,04517 

GGH 12 19 -0,6172 0,04882 
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Table A3. List of differentially secreted proteins upon silencing the PML protein in Cama-1 cells. 

Gene Name Positivea Negativeb Log2FC adj p-valuec 

KRT16 7,5 0,2 5,853 4,92E-14 

CPVL 3,5 0,2 4,754 3,52E-06 

CTSB 8,3 0,5 4,343 8,77E-13 

KRT6C 4,7 0,3 4,169 2,01E-07 

GNPTG 2 0 34,96 0,0001193 

MELTF 2 0 34,96 0,0001193 

ADGRG6 3,5 0 34,14 5,65E-07 

PAM 3,5 0 34,07 1,44E-07 

IGF1 2 0 31,67 0,00018 

DLST 2,2 0 31,57 6,54E-05 

MAN2B1 2 0 30,46 0,0002208 

ATP6AP1 3,8 0,3 3,795 1,23E-05 

AGT 5,2 0,5 3,665 3,20E-07 

IGSF8 3,2 0,3 3,464 0,0002133 

PCSK1N 5 0,5 3,458 2,89E-06 

GM2A 3,5 0,5 3,09 0,0001814 

PPT1 5,2 0,8 2,752 2,70E-05 

LAMB2 23,7 4 2,736 9,95E-23 

ANXA2 2 0,3 2,691 0,01643 

CTSA 6 1,2 2,552 9,97E-06 

PROS1 2,2 0,5 2,381 0,01638 

KLK6 2 0,5 2,361 0,01909 

LGMN 3 0,7 2,335 0,00539 

CD109 4,8 1,3 2,219 0,0002133 

CTSL 28,7 7,3 2,217 2,94E-22 

SEMA3C 4,2 1 2,108 0,002333 

GBA 5,3 1,5 2,107 0,0002133 

CD9 3,7 1 2,068 0,004037 

THRAP3 2 0,5 2,066 0,04868 

SUMF2 4,5 1,3 2,05 0,001021 

SCG3 2,2 0,7 2,017 0,03138 

PLOD1 15,2 4,5 2,006 2,10E-10 

ATP5F1B 8,3 2,5 1,954 9,74E-06 

HSPG2 3,2 1 1,947 0,009834 

SPP1 2 0,7 1,946 0,04365 

CTSC 2,5 0,8 1,927 0,02292 

HEXA 12,2 3,8 1,906 7,51E-08 

IGSF3 4 1,3 1,861 0,004482 

PTPRF 4,8 1,3 1,832 0,003419 

MEGF10 2,8 1 1,83 0,01909 

HSPA9 6,3 2 1,81 0,0004584 

SPINT1 6 1,7 1,798 0,001198 

RCN1 2,7 1 1,776 0,02639 

LTBP1 5,8 1,8 1,686 0,002117 

GLUD1 3,8 1,5 1,679 0,009834 

LAMA5 19 6,2 1,674 2,21E-09 

COL3A1 3,8 1,2 1,666 0,01794 

GANAB 9,5 3,7 1,641 2,57E-05 

IGFBP4 2,8 1 1,638 0,04167 

NUCB1 5,5 2 1,636 0,002646 

GDF15 7,8 3,2 1,609 0,0001871 

ACTG1 43,3 16,2 1,6 6,02E-21 

ECM1 51,7 21,2 1,534 7,62E-24 

HRNR 4,8 2,2 1,482 0,00792 

CTSD 15,3 6,5 1,467 7,27E-07 
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SDF4 11,3 4,8 1,452 3,21E-05 

HEXB 6,8 2,8 1,446 0,002174 

ENPP2 40,8 18,2 1,441 1,75E-17 

CALU 19,7 8,8 1,398 4,65E-08 

CLEC11A 5 2,3 1,398 0,01062 

PLOD3 33,2 15 1,358 1,05E-12 

HSPD1 14 6,7 1,323 1,40E-05 

THBS1 35 15,3 1,307 3,41E-12 

MCAM 4,8 2,5 1,268 0,0204 

SORT1 6,2 3 1,234 0,01181 

LMAN2 20,7 9,8 1,202 1,39E-06 

CDSN 7 3,2 1,144 0,01516 

GPNMB 6,7 3,7 1,108 0,01568 

C1QBP 6,8 3,7 1,107 0,01516 

PSAP 56,5 30,5 1,101 1,77E-15 

NCAM2 6,3 3 1,081 0,02957 

PTPRJ 6,5 3,8 1,078 0,01799 

QSOX1 22,3 11,5 1,072 5,86E-06 

AGRN 97 52 1,043 1,42E-23 

AZGP1 23 11,8 1,04 8,44E-06 

IGF2R 29 16,8 1,036 1,70E-07 

GOLM1 7,7 4 0,9976 0,02236 

CPE 11,7 6 0,9855 0,004482 

CLSTN3 7,5 3,8 0,9683 0,03092 

TIMP1 13,3 8,2 0,9474 0,002032 

BTD 9 5,5 0,9192 0,01694 

VGF 42,2 26 0,9144 1,42E-08 

COL4A2 11,7 7,3 0,9044 0,006328 

THBS2 80,3 50,8 0,896 9,74E-16 

KRT14 8 5,5 0,8674 0,03104 

CLU 20,3 11,8 0,8597 0,0005396 

SRSF1 16,3 10,2 0,8183 0,003198 

CNDP1 31 20,8 0,8156 1,48E-05 

ACTB 0,5 33,2 -6,02 6,27E-52 

PYGB 0,2 6,3 -4,887 7,52E-08 

PARP1 0,2 5,8 -4,857 1,49E-07 

CHL1 0,2 4,5 -4,523 7,05E-06 

UBA2 0,2 4,7 -4,51 6,86E-06 

VAT1 0,2 4 -4,261 5,99E-05 

SSRP1 0,2 3,5 -4,094 0,0002133 

ATIC 0,5 10 -4,033 3,55E-11 

PSAT1 0 4,5 -36,74 7,31E-07 

AKR1B1 0 3,7 -33,64 9,89E-06 

HIST1H1B 0 7 -32,8 1,44E-10 

TLN1 0 5,2 -31,98 7,81E-08 

TOP1 0 2,8 -31,6 0,0001068 

ADH5 0 3 -31,46 7,01E-05 

SHMT1 0 2,2 -31,35 0,0008571 

NOLC1 0 2 -31,26 0,001397 

IPO7 0 2,2 -31,14 0,000962 

PFAS 0 3,3 -30,64 1,66E-05 

DPYSL2 0,2 3,2 -3,933 0,0006571 

CCT7 0,2 2,7 -3,719 0,002311 

TSNAX 0,2 2,5 -3,603 0,004076 

CAND1 0,3 4 -3,442 0,0001235 

NANS 0,3 4,2 -3,383 0,0001604 

PRPF19 0,2 2,2 -3,372 0,01097 

ZRANB2 0,2 2 -3,224 0,01799 
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SMAP 0,3 3,2 -3,152 0,001197 

HDAC2 0,3 3,3 -3,043 0,001811 

EEF1A1P5 0 5,5 -29,57 3,63E-08 

HIST1H1E 0 4,8 -29,43 2,50E-07 

HIST1H1C 0 2,7 -28,73 0,0002133 

HIST1H2BL 0 2,3 -28,58 0,0001179 

HIST1H2AA 0 2,7 -28,57 0,0002133 

FSCN1 0,8 7,7 -2,84 2,44E-06 

ESD 0,3 2,8 -2,797 0,006854 

CLIC4 0,3 2,7 -2,639 0,0132 

NUMA1 0,5 3,7 -2,637 0,002174 

PACSIN2 0,5 3,8 -2,629 0,002095 

NRDC 0,3 2,5 -2,625 0,01517 

SAE1 0,3 2,3 -2,557 0,0203 

PPP4R2 0,3 2,2 -2,542 0,02364 

EIF3D 0,3 2,2 -2,457 0,0309 

LMNB2 0,3 2,2 -2,457 0,0309 

PAICS 0,7 4,3 -2,399 0,001846 

TPP2 0,7 4,5 -2,393 0,001765 

GBE1 0,3 2,2 -2,339 0,04252 

EIF3L 0,7 3,8 -2,324 0,003465 

HNRNPR 1,2 6,7 -2,312 6,75E-05 

ZC3H18 0,5 2,7 -2,28 0,01704 

H2AFZ 1,3 7,7 -2,269 2,55E-05 

CSE1L 0,7 3,5 -2,238 0,006362 

SCIN 1,7 9 -2,216 5,22E-06 

EIF3C 0,8 4,2 -2,19 0,002799 

EIF3A 1 5 -2,153 0,001198 

H2AFY 1 5 -2,13 0,001397 

TNFRSF19 0,7 3,3 -2,124 0,01156 

PRMT1 0,8 4 -2,096 0,005129 

CAP1 2 10 -2,083 4,13E-06 

DENR 0,7 3,3 -2,071 0,01433 

EIF3I 0,8 4 -2,067 0,006012 

IDH1 1 5 -2,059 0,002165 

DCPS 0,5 2,3 -2,015 0,04841 

VIM 3,8 19 -1,997 3,06E-10 

OTUB1 0,8 3,5 -1,986 0,01097 

TPR 1 4,3 -1,877 0,00792 

TSN 1 4,2 -1,852 0,009796 

XPNPEP1 0,7 2,8 -1,789 0,04868 

G3BP1 1,5 5,7 -1,756 0,002762 

HMGA1 1,3 4,8 -1,694 0,00792 

TNC 16,3 58 -1,692 2,38E-26 

RPS3A 0,8 3 -1,692 0,04379 

HNRNPL 2,3 8,5 -1,689 0,0002561 

TCP1 1,5 5,7 -1,678 0,004677 

CCT3 1,2 4,2 -1,663 0,01643 

RPS19 1 3,7 -1,653 0,0287 

ACAT2 1,2 4,2 -1,598 0,02225 

XRCC6 5,5 18,7 -1,591 6,95E-08 

PLEC 1,3 4,3 -1,589 0,01643 

PPM1G 1,3 4,3 -1,589 0,01643 

UCHL3 1,2 4,2 -1,571 0,02521 

EIF6 1,3 4,5 -1,566 0,01736 

SYNCRIP 1 3,5 -1,543 0,04675 

RCC2 4,3 14,3 -1,541 5,86E-06 

AARS 2 6 -1,53 0,004646 
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Notes: a: Average normalized spectral counts from cells where PML is silenced. b: Average normalized spectral counts 

from cells where PML is expressed. c: the adjusted p-values have been corrected for multiple hypothesis testing 

according to Benjamini and Hochberg. 

 

 

 

 

 

NUCKS1 4 12,5 -1,485 4,02E-05 

H3F3A 1,5 4,8 -1,485 0,01799 

TARS 4,8 15,5 -1,475 5,64E-06 

MYH9 2,5 7,8 -1,466 0,002039 

FAM49B 2 6,2 -1,447 0,007708 

PGM1 3,7 12,3 -1,425 0,0001585 

IPO5 4,8 15,2 -1,418 1,48E-05 

YWHAH 1,8 5,5 -1,39 0,01637 

PCNA 2,3 6,7 -1,374 0,007232 

HMGB2 5,3 15,2 -1,371 1,67E-05 

GNPDA1 1,8 5,5 -1,351 0,01965 

NQO1 2,2 6 -1,35 0,01232 

PPP2R1A 2,2 5,8 -1,331 0,01433 

HNRNPD 4 11,2 -1,321 0,0005241 

EEA1 1,8 5,7 -1,306 0,02458 

CLTC 7,5 18,7 -1,222 9,97E-06 

GSTO1 3,2 9,2 -1,196 0,00643 

AHCY 5,3 13 -1,162 0,0006619 

TXNRD1 2,7 6,5 -1,14 0,025 

IQGAP1 5,8 14,3 -1,129 0,0005241 

GARS 3,8 9,3 -1,095 0,008559 

PA2G4 6,3 14,8 -1,083 0,0006207 

EEF1G 4,8 11,2 -1,063 0,004244 

NUDC 3,2 7,3 -1,058 0,02508 

PMEL 4,5 10,8 -1,05 0,006328 

ILF2 3 6,7 -1,037 0,03557 

CCT8 5,8 13,3 -0,9941 0,003239 

RACK1 7,3 16,5 -0,9925 0,0008948 

YWHAQ 11 24,8 -0,9853 2,97E-05 

HIST1H4A 11,3 25,7 -0,9827 2,32E-05 

PTMA 10 20,5 -0,9753 0,0001375 

RAN 3,8 8,7 -0,9632 0,02611 

ACLY 8,8 18,2 -0,9353 0,0007296 

HMCN1 5,2 11,5 -0,9167 0,01312 

UBE2I 4 8,7 -0,9107 0,03503 

VCL 6,3 12,5 -0,9043 0,00775 

NPEPPS 4,8 9,7 -0,8469 0,03442 

UBA1 7,8 15 -0,8357 0,006505 

XRCC5 9,5 18,8 -0,8244 0,002539 

CPOX 0 2,2 -36 0,001081 
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Abstract
Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one
oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular
targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic
Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function,
thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the
effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are
addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of
senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and
PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we
found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast
cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and
PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.

Introduction

Breast cancer exemplifies the potential of gene expression
profiling to classify the disease into molecular subtypes
[1–3]. However, these classifications do not inform about
the molecular mediators of tumor progression and metas-
tasis in each subtype of breast cancer. To address this
question, we and others have defined genes and pathways
that are relevant to breast cancer progression, metastasis,
and resistance to therapy [4–6]. The Promyelocytic Leu-
kemia protein (PML), the essential component of the PML
nuclear bodies (PML-NBs), induces apoptosis and inhibits
angiogenesis and cell cycle progression in cancer, thus
complying with the definition of a tumor suppressor [7, 8].
Paradoxically, PML exerts a prosurvival role conferring a
selective advantage in chronic myeloid leukemia and spe-
cific solid tumors [6, 9–15]. In breast cancer, PML regulates
aggressiveness and metastatic features through the control
of the stem cell gene, SOX9, and the Hypoxia-inducible
factor 1 alpha (HIF1α) signaling [13, 15]. Moreover, the
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regulation of cancer-initiating cell (CIC) and metastatic
potential is restricted to PML high-expressing estrogen
receptor-negative breast tumors, predominantly triple
negative breast cancer (TNBC).

The concept that the perturbation of a driver cancer gene
can exert an exacerbated tumor suppressive response in
tumor cells is defined as “oncogene addiction” and provides
a rationale for molecular targeted therapy [16]. Senescence
is a stress response that involves a stable cell growth arrest
as well as an adaptive process to reduce energy consump-
tion for cell division or differentiation and therefore assure
the survival and viability of the cell [17, 18]. Senescence is
induced in vitro by different stimuli including DNA
damage, oxidative stress, oncogene activation, mitochon-
drial dysfunction, or chemotherapy [17, 18]. Cyclin-
dependent kinase inhibitor family (CDKi) is a key reg-
ulator of the senescence response, predominantly through
p53-p21 and/or p16-RB axes [17, 18]. To a lesser extent,
CDKN1B (p27) has been reported to participate in the
activation of the senescence response, in conditions where
p21 and/or p16 are not active [19, 20]. Of note, PML is
required for a fully functional senescence response upon
oncogene activation in tumors where it functions as a tumor
suppressor. In addition, the PML-NBs coordinate the acti-
vation of p53 and the formation of the senescence-
associated heterochromatin foci (SAHF) [21–23].

TNBC exhibits increased levels and activity of various
oncogenes, including MYC and PIM1 [24–27]. Impor-
tantly, these genes regulate metabolic and signaling activ-
ities in this breast tumor subtype, and they represent an
attractive therapeutic vulnerability [24, 26–28]. Whereas
similarities exist among the reported activities of MYC,
PIM1, and PML, their functional association remains
obscure. In this study, we demonstrate that TNBC cells that
express high PML levels are addicted to the nuclear protein,
and its targeting elicits a growth suppressive response that
encompasses MYC and PIM1 downregulation and the
activation of p27-dependent senescence.

Results

PML silencing induces senescence and prevents
tumor growth in vivo

The identification of PML as a novel target in aggressive
breast cancer tumors [13, 15] prompted us to investigate the
molecular consequences of its inhibition in an established
cell culture. To this end, we generated and validated three
PML-targeting doxycycline-inducible and two constitutive
short hairpin RNAs (shRNAs) (Fig. 1a and Supplementary
Fig. 1a) [15]. PML silencing triggered a robust morpholo-
gical change in PML-high expressing cells, MDA-MB-231

(Fig. 1b and Supplementary Fig. 1b), characterized by a
significant increase in size (FSC-A) and granularity
(SSC-A) analyzed by FACS (Fig. 1c and Supplementary
Fig. 1c). These changes in morphology were indicative of a
senescence response. Indeed, the evaluation of senescence-
associated β-galactosidase (SA-β-gal) activity in both
inducible and constitutive systems confirmed this notion
(Fig. 1d, e and Supplementary Fig. 1d, e) in MDA-MB-231
cells. Senescence is defined as an irreversible cell cycle
arrest. Indeed, we could confirm the cell cycle arrest upon
PML genetic inhibition, by means of BrdU analysis
(Fig. 1f) and crystal violet cell number assay (Supplemen-
tary Fig. 1f, g) and that it was not due to an increase in
apoptosis (Supplementary Fig. 1h). Of note, arsenic trioxide
(ATO) did not elicit a senescence phenotype (Supplemen-
tary Fig. 1i). This compound exerts a biphasic effect on
PML; first favors the formation of the PML NBs and then
the degradation of PML. Therefore, the inability of ATO to
recapitulate PML silencing could be due to its molecular
mode of action.

We monitored additional features that were reported for
certain types of oncogene-induced senescence [29]. On the
one hand, proteomics analysis of the supernatant of these
cells indicated that PML silencing resulted in a distinct
secretome, without signs of a canonical SASP (senescence-
associated secretory phenotype) (Supplementary Fig. 1j–l
and Supplementary Table 1). On the other hand, we
ascertained the formation of SAHF. We could not confirm
the existence of SAHF neither at the level of chromatin
condensation nor the formation of macroH2A1.1 foci
(Supplementary Fig. 1m). Lamin B1 loss is a senescence-
associated biomarker [30, 31]. We demonstrated that in our
system PML loss induced a decrease in Lamin B1 protein
levels (Supplementary Fig. 1n–o).

Of note, PML regulates oxidative stress responses
[7, 32]. We ruled out that reactive oxygen species (ROS)
elevation drives senescence in our system since PML loss
does not induce its accumulation (Supplementary Fig. 1p).

Breast CIC capacity is reduced upon PML knockdown in
TNBC cells (with high PML expression), as we demon-
strated in limiting dilution assays with MDA-MB-231 cells
[15]. Here, we hypothesized that the activation of senes-
cence would result in a tumor suppressive response in
established tumors, where the contribution of CIC is neg-
ligible. To test this notion, MDA-MB-231 cells were
injected in the flank of immunocompromised mice, and
once the tumors were established (reaching a volume of
25–130 mm3) doxycycline was administered in the food
pellets to induce PML silencing. In agreement with the
response observed in vitro, xenograft growth was curbed
upon PML knockdown (Fig. 1g, h and Supplementary
Fig. 1q–r) and senescence increase was confirmed by means
of p-HP1γ staining (Fig. 1i, j) [33]. Our data suggest that

Targeting PML in triple negative breast cancer elicits growth suppression and senescence 1187



PML silencing in a PML-high expressing TNBC cell line
triggers a senescence response with a partial presence of
classical markers of this process.

p27 is the driver in PML loss-induced senescence

Senescence is executed and sustained at the molecular level
through the activation of growth suppressors, including p53
and the cyclin-dependent kinase (CDKs) inhibitors p21,
p16, and p27 [17, 20, 29]. Since MDA-MB-231 cells harbor
loss of p16 and p53 mutation [34, 35], we proposed p27 as a
candidate to drive PML silencing-induced senescence in our
cell system. Importantly, p27 protein levels were increased

upon both inducible (Fig. 2a and Supplementary Fig. 2a)
and constitutive (Supplementary Fig. 2b) PML silencing
with all the shRNA tested in MDA-MB-231 cells. More-
over, we observed that the induction of p27 protein levels
occurred as soon as 2 days following PML inactivation and
it was maintained up to 6 days of PML silencing (Fig. 2b, c
and Supplementary Fig. 2c–f).

The function of p27 is controlled by changes in its levels
along with its compartmentalization within the cell [36]. To
confirm the functionality of accumulated p27 in PML-
silenced cells, we quantified p27 nuclear localization by
immunoflourescence. As predicted, PML silencing elicited
an increase of nuclear p27 in cells with the three inducible
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Fig. 1 PML silencing induces senescence. Effect of doxycycline-
inducible (150 ng ml−1; 3+ 3 days) PML silencing (sh1, sh4, and sh5)
on PML protein expression (a, representative of at least three
experiments), on the morphology (b, representative images, scale bar,
50 μm), on cell size and granularity (c, FACS analysis, sh1 and sh4,
n= 4, sh5, n= 5), on the number of senescent cells (d; n= 3, repre-
sentative images of SA-β-Galactosidase assay, scale bar 50 μm (e)) and
on the number of BrdU positive cells (f, n= 4) in MDA-MB-231 cells.
Impact of doxycycline-inducible PML silencing (sh4) of established
MDA-MB-231 xenografts on PML protein expression (g), on tumor
growth rate represented as the growth rate of each tumor (h, sh4 no
dox, n= 10; sh4 dox, n= 12; growth rate was inferred from the linear

regression calculated for the progressive change in tumor volume of
each individual tumor during the period depicted in Supplementary
Fig. 1p) and on number of senescent cells measured by p-HP1γ
staining (i, sh4 no dox, n= 4; sh4 dox, n= 4); representative images
of p-HP1γ positive cells, scale bar 100 μm (j) of the tumors. Error bars
represent s.e.m. p, p-value (*p < 0.05, **p < 0.01, ***p < 0.001). One-
tailed Student's t-test was used for cell line data analysis (c, d, f) and
one-tailed Mann–Whitney U-test for xenografts (h, i). sh1, sh4, and
sh5: shRNA against PML, dox: doxycycline, SA-β-gal: senescence-
associated beta-galactosidase, BrdU: bromodeoxyuridine, p-HP1γ:
phospho-heterochromatin protein-1 gamma, molecular weight markers
(kDa) are shown to the right
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shRNA tested (Fig. 2d and Supplementary Fig. 2g). Since
the effect of shRNAs was analyzed in a pooled culture, it is
plausible that there would be heterogeneity in PML levels
across cells within the culture dish. We therefore evaluated
whether the increase in nuclear p27 was ascribed to cells
with a profound decrease in PML immunoreactivity. We
established an immunofluorescence score based on previous
studies [6, 15] (PML low= 0–4 dots; PML high=more
than 4 dots per cell nuclei). In line with our previous results,
we observed a significant inverse association between PML
immunoreactivity and p27 nuclear staining (Fig. 2e–g and
Supplementary Fig. 2h). Moreover, the elevated activity of
p27 upon PML silencing was consistent with the increase in
its mRNA levels, the blockade of Retinoblastoma protein
(Rb) phosphorylation and the reduced transcription of
downstream regulated cell cycle-related genes (Fig. 2h, i
and Supplementary Fig. 2i). In agreement with the results
observed in vitro, p27 accumulation was recapitulated upon
PML knockdown in vivo (Fig. 2j).

Our results reveal that PML silencing in TNBC cells with
high expression of the nuclear protein triggers a senescence
response associated to p27 accumulation. To ascertain the
causal contribution of p27 to the execution of the senes-
cence response, we silenced p27 in MDA-MB-231 cells
concomitantly with PML silencing, using inducible (Fig. 3a,
b) or constitutive (Supplementary Fig. 3a) shRNA systems.
Preventing p27 accumulation upon PML loss hampered the
induction of senescence in a dose-dependent manner
according to the potency of the shRNA against p27 (Fig. 3c
and Supplementary Fig. 3b). Our results demonstrate that
PML loss elicits a senescence response mediated by the
upregulation of p27 in PML high expressing TNBC cells.

Although senescence is a major driver of growth arrest,
we noticed that the amount of SA-β-Gal positivity upon
PML silencing was not comparable to the extent of growth
arrest detected (Fig. 1 and Supplementary Fig. 1). Taking
advantage of our capacity to ablate senescence by silencing
p27, we ascertained the contribution of this response to the
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cell number reduction. Importantly, the growth arrest
caused by PML silencing was not recovered by blunting
senescence (Fig. 3d and Supplementary Fig. 3c), thus sug-
gesting that an additional mechanism may be involved.

MYC and PIM1 are regulated by PML in TNBC

Our data demonstrate that preventing p27 accumulation is
not sufficient to rescue the growth arrest caused by PML
loss. We reasoned that the mechanism through which
PML was regulating growth arrest, p27 accumulation and
senescence might depend on a larger growth-regulatory
program. Interestingly, the oncogenic axis comprised with
MYC and PIM1 kinase shares many similarities with
PML concerning its activity in TNBC. MYC and PIM1
are upregulated in TNBC [24, 26, 27] and inhibit p27
accumulation and function [37]. In addition, MYC reg-
ulates metabolic functions attributed to PML, including
fatty acid β oxidation [6, 10, 38, 39] and its inhibition
induces cellular senescence in lymphoma, osteosarcoma,
and hepatocellular carcinoma [40]. With this data in mind,
we first evaluated the association of PML, MYC, and
PIM1 in breast cancer. We found a significant direct
correlation in various breast cancer transcriptomics data-
sets. This association was evident in two out of four
datasets for MYC-PML and four out of four for

PIM1-PML, when accounting all breast cancer subtypes
(Supplementary Fig. 4a). Since the effect of these genes is
restricted to tumors that lack hormone receptors, we
refined the analysis by focusing on estrogen receptor (ER)
negative tumors. In this scenario, the correlation was
recapitulated in various datasets (Fig. 4a).

We next aimed at deconstructing the molecular regula-
tion of PML, MYC, and PIM1. First, we monitored the
impact of PML silencing on MYC abundance. As predicted,
inducible PML shRNA activation resulted in a remarkable
decrease in MYC protein and mRNA levels in vitro and
in vivo (Supplementary Fig. 4b–h) in two PML high
expressing cells, MDA-MB-231 and MDA-MB-468. Of
note, in line with our senescence results (Supplementary
Fig. 1i), ATO did not alter the abundance of p27 and MYC
(Supplementary Fig. 4i–j).

We next asked to which extent MYC downregulation
was retained in cells devoid of p27-dependent senescence
response. To address this question, we checked MYC
expression upon PML/p27 double silencing in MDA-MB-
231 cells. The decrease in MYC expression upon PML loss
was not recovered with p27 silencing (Fig. 4b), thus pro-
viding a feasible explanation for the lack of rescue in
growth capacity.

We have previously shown that PML can regulate gene
expression in line with its association with discreet
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promoter regions [15]. Since PML silencing resulted in
reduced MYC mRNA levels (Supplementary Fig. 4d, h), we
interrogated MYC promoter in silico using ENCODE [41].
We found PML among the proteins with highest confidence
DNA-binding score in MYC promoter region (Fig. 4c,
cluster score: 527). We performed chromatin immunopre-
cipitation (ChIP) analysis of ectopically expressed PML and

confirmed that PML is in the vicinity of MYC promoter
(Fig. 4d). To ascertain if MYC silencing recapitulated the
effect of PML inhibition, we used a validated shRNA tar-
geting this oncogene (sh42) [42, 43] and confirmed that
MYC silencing resulted in increased p27 levels (Fig. 4e and
Supplementary Fig. 4k), senescence (Fig. 4f, g) and growth
arrest (Supplementary Fig. 4l).
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In the last few years, an important body of work has
demonstrated that PIM1 is an important partner of MYC
function in prostate cancer and TNBC [24, 26]. Moreover,
PIM1 can regulate MYC transcriptional signature and p27
[24, 26]. We monitored the impact of PML on PIM1
expression and function. PML loss resulted in a decrease
in PIM1 gene expression in two PML high expressing
cells, MDA-MB-231, and MDA-MB-468 (Supplementary
Fig. 4m–n). Importantly, we confirmed that PML is in close
proximity to PIM1 promoter by ChIP analysis (Fig. 4h,
cluster score: 383 in ENCODE). We hypothesized that loss
of PIM1 would further impact on MYC function and
recapitulate the aforementioned PML and MYC phenotype.
We silenced PIM1 using a validated shRNA (sh18) [24] and
corroborated that the targeting of PIM1 led to decrease in
MYC abundance, increase in p27 levels, senescence, and
growth arrest in MDA-MB-231 cells (Fig. 4i–k and Sup-
plementary Fig. 4o–q). Altogether, our results provide
strong support for the role of MYC-PIM1 axis supporting
PML-elicited TNBC growth and preventing the accumula-
tion of p27 and senescence.

PML loss-elicited growth suppression in breast
cancer is selective of high PML expressing TNBC

The inactivation of a single oncogene can compromise the
development and survival of tumor cells despite their

genetic or epigenetic abnormalities [16]. We have pre-
viously reported that high PML levels in TNBC are required
for adequate CIC function [15]. Here, the data presented
support the notion that the bulk of tumor cells in a TNBC
with elevated PML is “addicted” to the expression of the
protein. In turn, acute depletion of the nuclear protein
results in growth arrest and senescence. To ascertain whe-
ther the “addiction” was restricted to TNBC cells, we took
advantage of various breast cancer cell lines belonging to
distinct subtypes with differing levels of PML. A second
TNBC cell line (MDA-MB-468) that presented high levels
of PML protein was compared with ER+ cells [15]
(Fig. 5a). Silencing of PML in MDA-MB-468 cells elicited
a remarkable growth arrest, which was not detected in the
ER+ cells Cama-1 and MCF7 (Fig. 5b and Supplementary
Fig. 5a–c). In line with this notion, Cama-1 and MCF7 cells
did not exhibit neither the reduction in MYC expression nor
the induction of p27-dependent senescence, as compared
with MDA-MB-468 cells (Fig. 5c, d and Supplementary
Fig. 5d–g). Moreover, the morphological changes induced
by the loss of PML were only present in TNBC cells
(Supplementary Fig. 5h). Since PML silencing resulted in
a distinct secretory phenotype (albeit not a canonical
SASP), we monitored the secretome of the ER+ cell line
Cama-1. In agreement with our prior data, unsupervised
clustering based on the secretome was ineffective in seg-
regating experimental conditions according to PML status.
Similarly, principal component analysis and hierarchical
clustering reinforced the notion that Cama-1 are refractory
to PML level perturbation (Supplementary Fig. 5i–k and
Supplementary Table 2).

Discussion

PML has been a paradigmatic tumor suppressor since its
discovery [7, 8, 44]. A variety of molecular activities
directly support its reported capacity to prevent many of
the hallmarks of cancer, including the induction of
apoptosis and the inhibition of proliferation or angio-
genesis [7]. Molecular partners such as p53 have rein-
forced this notion. However, the discovery of tumoral
contexts, where the presence of PML is required has
broadened the picture of the roles of this nuclear protein in
disease. Depletion of PML impairs the self-renewal
activity in the leukemic stem cell from chronic myeloid
leukemia [9, 10]. This phenotype is the consequence of
both cell autonomous (the hyper-activation of mTOR
complex1 and the reduction in PPARδ-fatty acid oxida-
tion activity [9, 10]) and non-cell autonomous activities
(regulation of the mesenchymal stem cell in the leukemic
niche [45]), which trigger symmetric commitment and the
loss of the CIC compartment.

Fig. 4 PML regulates MYC and PIM1 expression in TNBC. a Cor-
relation analysis between PML and MYC (top panels) and between
PML and PIM1 (bottom panels) mRNA levels in ER negative tumor
specimens of the indicated breast cancer datasets. Sample sizes:
Ivshina (n= 34), Lu (n= 49), TCGA (n= 117) and Wang (n= 77). b
p27, MYC, and PML protein levels upon doxycycline inducible
silencing of either p27 or PML or both in MDA-MB-231 cells
(representative of three experiments). c Cluster score of DNA-binding
proteins in MYC promoter region using ENCODE database. d MYC
promoter region abundance in chromatin immunoprecipitation (ChIP)
of exogenous HA-PMLIV using HA-tag antibody in MDA-MB-231
cells after induction with 50 ng ml−1 doxycycline for 3 days (n= 3).
Data were normalized to IgG (negative-binding control). e p27, MYC,
and PML protein levels upon doxycycline inducible silencing of MYC
(sh42) in MDA-MB-231 cells (representative of three experiments).
Effect on the number of senescent cells (n= 3) (f) and representative
images, scale bar 50 μm, (g) upon MYC inducible silencing in MDA-
MB-231 cells. h PIM1 promoter region abundance in chromatin
immunoprecipitation (ChIP) of exogenous HA-PMLIV using HA-tag
antibody in MDA-MB-231 cells after induction with 50 ng ml−1

doxycycline for 3 days (n= 4). Data were normalized to IgG (nega-
tive-binding control). i p27, MYC, PIM1, and PML protein levels
upon doxycycline inducible silencing of PIM1 (sh18) in MDA-MB-
231 cells (representative of three experiments). j–k Effect on the
number of senescent cells (n= 3) and representative images, scale bar
50 μm, (k) upon PIM1 inducible silencing in MDA-MB-231 cells.
Error bars represent s.e.m. p, p-value (*p < 0.05, ***p < 0.001). One-
tailed one sample t-test (d, h) and one-tailed student's t-test (f, j) were
used for cell line data analysis. shC: Scramble shRNA, Dox: dox-
ycycline, SA-β-gal: senescence-associated beta-galactosidase. Mole-
cular weight markers (kDa) are shown to the right
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The regulation of CIC activity was recently translated to
solid tumors. To date, glioma and a subset of breast cancers
exhibit PML-dependent self-renewal activity [14, 15],
whereas other tumors, such as ovarian cancers or some
experimental models of hepatocarcinoma development,
exhibit a broad tumor suppressive response upon PML
inhibition [11, 12]. PML expression is selectively exacer-
bated in a subset of breast tumors (TNBC) [6, 13, 15]. Yet,
we lack basic understanding around the impact of PML on
the function of this cell subtype. In this study, we demon-
strate that PML depletion in the bulk of TNBC cells in
culture and in vivo triggers a tumor suppressive response

consisting on growth arrest and the activation of
senescence.

PML has been previously related to the regulation of the
senescence response [21]. However, the majority of studies
associate PML expression to the execution of this growth
suppressive response upon the activation of oncogenes or
replicative stress [11]. Experimentally, ectopic PML
expression triggers senescence, and, conversely, PML
deletion bypasses the senescence response elicited by the
oncogenic form of RAS, thus enabling transformation [46–
48]. Mechanistically, PML supports p53 activity and par-
ticipates in the formation of SAHF [21]. In turn, PML loss
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Fig. 5 The antiproliferative program elicited by PML loss is restricted
to PML-high expressing TNBC cells. Effect of doxycycline-inducible
(150 ng ml−1; 3+ 3 days) PML silencing (sh4) on PML and p27
protein expression (a, representative of three experiments), on cell
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the number of senescent cells (c, MDA-MB-468 and Cama-1, n= 3,
MCF7, n= 4; representative images of SA-β-galactosidase positive

cells (d)) in MDA-MB-468, MCF-7, and Cama-1 cells, scale bar 50
μm. Error bars represent s.e.m. p, p-value (*p < 0.05, **p < 0.01, ***p
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bypasses the senescence response. Paradoxically, our results
indicate that, in cancer cells with high dependence on PML
expression, its inhibition also triggers a senescence response
that lacks canonical SASP and SAHF. This phenomenon
might have been overlooked in prior studies due to the lack
of data at the time on the role of PML favoring cancer cell
function in specific tumor subsets. Of note, the activation of
senescence in non-transformed fibroblasts upon PML
depletion adds complexity to already extensive portfolio of
PML activities [49].

Oncogene addiction [16] is perceived as an attractive
opportunity in the era of targeted therapies. Our results are
consistent with PML addiction in TNBC cells, even if this
protein cannot be formally considered an oncogene. The
data produced by us and others [6, 13, 15] argue in favor of
a molecular make up in this subtype of breast cancer that
requires the presence of PML in high doses, as opposed to
estrogen receptor-positive tumor cells. In this regard, the
control of MYC and PIM1 expression by PML provides a
feasible explanation for the accumulation of p27 and the
induction of senescence when PML is silenced. To which
extent the relationship between PML, MYC, and PIM1 is
operative in other tumor types becomes now an exciting
question to address. Since PML lacks a dedicated domain to
recognize and bind discreet DNA sequences, the existence
of yet unidentified PML-interacting transcription factors
that enable this regulatory mode warrants further research.

The results obtained in this study represent a conceptual
leap in how we perceive the role of PML in TNBC, and
suggest that targeting this nuclear protein can be beneficial
at multiple levels, including impairing the CIC function
[15], blunting hypoxia signaling [13], and triggering a
senescence response. The quantification of the relative
relevance of each PML effector pathway in the overall
activity of PML could open new opportunities to apply the
biology of PML-regulated TNBC function for breast cancer
treatment.

Materials and methods

Cell culture

MDA-MB-231, MDA-MB-468, MCF-7, and Cama-1 cell
lines were obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA, USA) or from Leibniz-
Institut—Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DMSZ) who provided an authentica-
tion certificate. None of the cell lines used in this study was
found in the database of commonly misidentified cell lines
maintained by ICLAC and NCBI Biosample. Cell lines
were routinely monitored for mycoplasma contamination
and quarantined while treated if positive. MDA-MB-231

and MCF-7 cells were maintained in DMEM media, MDA-
MB-468 were maintained in RPMI media, and Cama-1
were maintained in DMEM-F12 media, all supplemented
with 10% (v/v) foetal bovine serum and 1% (v/v) penicillin-
streptomycin.

Generation of stable cell lines

293FT cells were used for lentiviral production. Lentiviral
vectors expressing shRNAs against human PML and p27
from the Mission® shRNA Library were purchased from
Sigma‐Aldrich. Cells were transfected with lentiviral vec-
tors following standard procedures, and viral supernatant
was used to infect cells. Selection was done using pur-
omycin (2 μg ml−1; P8833, Sigma) for 48 h or blasticidin
(10 μg ml−1; Cat. 15205, Sigma) for 5 days. As a control, a
lentivirus with scrambled shRNA (shC) was used. Short
hairpins sequence: shC: CCGGCAACAAGATGAAGAG
CACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTT
TT; sh1PML (TRCN0000003865): CCGGCAATACAAC
GACAGCCCAGAACTCGAGTTCTGGGCTGTCGTTGT
ATTGTTTTT; sh4PML (TRCN 0000003867): CCGGG
CCAGTGTACGCCTTCTCCATCTCGAGATGGAGAAG
GCGTACACTGGCTTTTT; sh5PML (TRCN 0000003868):
CCGGGTGTACCGGCAGATTGTGGATCTCGAGATCC-
ACAATCTGCCGGTACACTTTTT; sh1p27 (TRCN
0000039928): CCGGGTAGGATAAGTGAAATGGATA
CTCGAGTATCCATTTCACTTATCCTACTTTTTG;
sh2p27 (TRCN 0000039930): CCGGGCGCAAGTGGAA
TTTCGATTTCTCGAGAAATCGAAATTCCACTTGCGC
TTTTTG. sh42MYC (TRCN0000039642): CCGGCCTGA
GACAGATCAGCAACAACTCGAGTTGTTGCTGATCT
GTCTCAGGTTTTTG. sh18PIM1 (TRCN0000010118):
CCGGACATCCTTATCGACCTCAATCCTCGAGGATT
GAGGTCGATAAGGATGTTTTTT.

Sub-cloning of shC, sh1PML, sh4PML, sh5PML, and
sh42myc into pLKO-Tet-On-Puromycin vector was done
introducing AgeI and EcoRI in the 5′end of top and bottom
shRNA oligos respectively (following the strategy provided
by Dr. Dmitri Wiederschain [50], Addgene plasmid:
21915). Sub-cloning of shC, sh1p27, sh2p27, and
sh18PIM1 into pLKO-Tet-On-Blasticidin was done fol-
lowing the same procedure. Puromycin resistance cassette
was replaced by Blasticidin cassette following Gibson
assembly strategy.

Reagents

Doxycycline (Cat. D9891, Sigma) was used at 150 ng ml−1

to induce the expression of shRNA from pLKO-Tet-On
vectors. Doxycycline-mediated inducible shRNA expres-
sion was performed by treating cell cultures for 72 h with
the antibiotic (150 ng ml−1) and then seeding for cellular or
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molecular assays in the presence of doxycycline for three
more days (unless otherwise specified). ATO (Cat. A1010,
Sigma-Aldrich) was prepared at a concentration of 100 mM
in NaOH 1 N and subsequently diluted to 0.1 mM in PBS
for a working solution. ATO was used at 150 nM for 6 days
as indicated in figure legends.

Cell growth analysis and size measurement by FACS

Cell number quantification was done with crystal violet as
reported [5]. For FACS analysis MDA-MB-231 cells were
trypsinized and resuspended in PBS to be analysed based on
their size (FSC) and granularity (SSC) using a BD FACS-
CantoTM II (BD Biosciences) flow cytometer upon PML
doxycycline-inducible silencing. Data represented in Fig. 1c
correspond to the sum of Q1+Q2+Q3 populations
selected as in Supplementary Fig. 1c. Data were analysed
using the FlowJo software; cell populations were selected
for each shRNA (no dox condition) and differences quan-
tified for increasing size and granularity.

Senescence associated-β-galactosidase detection

To quantify the number of senescent cells, constitutive or
inducible PML/MYC/PIM1/p27 silencing cells was per-
formed as described previously and cells were seeded in
24-well plates in duplicate. An overnight incubation with
the senescence detection kit (QIA117, Calbiochem) was
performed and SA-β-Gal activity was revealed and
quantified (three areas per well, more than 200 cells per
condition). The number of senescent cells in each area
was relativized to the number of total cells counted per
area. Cells were seeded in plates or glass cover slips to
acquire images with EVOS® cell imaging station (×20
magnification objective).

Western blotting, immunofluorescence and BrdU

Western blot analysis was carried out as previously
described [5]. Briefly, cells were seeded on six-well plates.
Cell lysates were prepared with RIPA buffer (50 mM
TrisHCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% SDS,
1% Nonidet P40, 1% sodium deoxycholate, 1 mM Sodium
Fluoride, 1 mM sodium orthovanadate, 1 mM beta-
glycerophosphate and protease inhibitor cocktail; Roche).
The following antibodies were used for Western blotting:
rabbit polyclonal anti-PML, 1:1000 dilution (Cat:
A301–167A, Bethyl laboratories), mouse monoclonal anti-
p27[Kip1], 1:1000 dilution (Cat: 610242, BD Biosciences),
mouse monoclonal anti-beta-ACTIN, 1:2000 dilution (Cat:
3700, Cell Signaling), rabbit polyclonal Hsp90, 1:2000
dilution (Cat: 4874, Cell Signaling), rabbit polyclonal
c-Myc, 1:1000 dilution (Cat: 13987, Cell Signaling), rabbit

polyclonal PIM1, 1:1000 dilution (ab75776, Abcam), rabbit
polyclonal Lamin B1 (ab133741, Abcam), rabbit mono-
clonal anti-cleaved PARP (Asp214), 1:1000 dilution (Cat:
5625, Cell Signaling), rabbit polyclonal anti-cleaved cas-
pase 3 (Asp175), 1:1000 dilution (Cat: 9661, Cell Signal-
ing), mouse monoclonal anti-α-Tubulin (66031–1-Ig,
Proteintech), 1:2500 dilution, rabbit monoclonal anti-
phospho-Rb (Ser780) 1:1000 dilution (Cat: 9307, Cell
Signaling). After standard SDS-PAGE and Western blotting
techniques, proteins were visualized using the ECL on
iBright™ CL1000 Imaging System (Cat: A32749, Invitro-
gen). Densitometry-based quantification was performed
using ImageJ software. Uncropped scans are provided in
Supplementary Fig. 6.

For immunofluorescence, cells were seeded on glass
cover slips in 24-well plates, cells were fixed with 4%
para-formaldehyde (15 min), PBS (three times wash), 1%
Triton X-100 (5 min), PBS (three3 times wash), 10% goat
serum (1 h) and anti-PML antibody 1:100 dilution (cata-
log A301–167A; Bethyl laboratories), anti-p27[Kip1]
antibody 1:100 dilution (Cat: 610242, BD Biosciences)
and anti-macroH2A1.1 antibody 1:100 (Cat: 12455, Cell
Signaling) were added ON (4 °C) in goat serum. Cover
slips were washed with PBS three times and incubated
with secondary antibodies (anti-rabbit Alexa488, anti-
rabbit Alexa594, anti-mouse Alexa488, and anti-mouse
Alexa594; Invitrogen-Molecular Probes) for 1 h (room
temperature). Cover slips were washed with PBS three
times, and DAPI added to stain nuclei (10 min), followed
by mounting with ProLong™ Gold Antifade Mountant
(Cat: P36930, Invitrogen). Immunofluorescence images
were obtained with AxioImager D1 microscope (Zeiss) or
with a confocal microscopy (Leica SP8) with ×63 objec-
tives. At least three different areas per cover slip were
quantified.

For BrdU analysis cells were seeded as for immuno-
fluoresce. Prior to fixing, cells were incubated in the pre-
sence of BrdU (3 ug ml−1). Cells were fixed with 4% para-
formaldehyde (15 min), PBS (three times wash) and DNA
exposed with 2M HCl (5 min), PBS (3 times wash) and 0,1
M sodium borate. After that, PBS (three times wash), 1%
Triton X-100 (5 min), PBS (three times wash), 10% goat
serum (1 h), and monoclonal anti-BrdU (MoBU-1) antibody
1:100 dilution (Cat: B35128, Invitrogen) was added ON (4 °
C) in goat serum. Cover slips were washed three times with
PBS and incubated with secondary antibodies (anti-mouse
Alexa594; Invitrogen-Molecular Probes) for 1 h (room
temperature). Cover slips were washed three times with
PBS and DAPI added to stain nuclei (10 min), followed by
mounting with ProLong™ Gold Antifade Mountant (Cat:
P36930, Invitrogen). Images were obtained with an AxioI-
mager D1 microscope (Zeiss). At least three different areas
per cover slip were quantified.
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Quantitative real-time PCR

Cells were seeded as for western blot. Total RNA was
extracted from cells using NucleoSpin RNA isolation kit
from Macherey-Nagel (ref: 740955.250). Complementary
DNA was produced from 1 µg of RNA using Maxima™ H
Minus cDNA Synthesis Master Mix (Cat# M1682, Invi-
trogen). Taqman probes were obtained from Applied Bio-
systems. Amplifications were run in a Viia7 or QS6 Real-
Time PCR Systems (Applied Biosystems) using the fol-
lowing probes: PML (Hs00971694_m1, cat: 4331182). For
p27 (CDKN1B), MYC, PIM1, CDK2, CDK4, E2F3,
AURKA, and CDC25A amplification, Universal Probe
Library (Roche) primers and probes were employed (p27,
For: ccctagagggcaagtacgagt, Rev: agtagaactcgggcaagctg,
probe: 39; MYC, For: gctgcttagacgctggattt, Rev: taacgtt-
gaggggcatcg, probe: 66; PIM1, For: atcaggggccaggttttc,
Rev: gggccaagcaccatctaat, probe: 13; CDK2, For: aaagc-
cagaaacaagttgacg, Rev: gtactgggcacaccctcagt, probe 77;
CDK4, For: gtgcagtcggtggtacctg, Rev: aggcaga-
gattcgcttgtgt, probe 25; E2F3, For: ggtttcggaaatgcccttac,
Rev: gatgaccgctttctcctagc, probe 40; AURKA, For: gca-
gattttgggtggtcagt, Rev: tccgaccttcaatcatttca, probe 79;
CDC25A, For: cgtcatgagaactacaaaccttga, Rev:
tctggtctcttcaacactgacc, probe 67). All quantitative PCR with
reverse transcription data presented were normalized using
GAPDH (Hs02758991_g1, cat: 4331182) from Applied
Biosystems as housekeeping.

Mice

Xenograft experiments were carried out following the
ethical guidelines established by the Biosafety and Welfare
Committee at CIC bioGUNE. The procedures employed
were carried out following the recommendations from
AAALAC. Xenograft experiments were performed as pre-
viously described [5], injecting 3·106 cells per tumor, two
injections per mouse, one per flank. All mice (female Hsd:
Athymic Nude-Foxn1 nu/nu) were inoculated at
8–12 weeks of age. Nineteen days post injection, once
tumors were stablished (25–130 mm3), mice were fed with
chow or doxycycline diet (Research diets, D12100402)
until the experimental endpoint.

p-HP1γ immunohistochemistry

After sacrifice, formalin-fixed paraffin embedded xenograft
tissues were stained for p-HP1γ. Tissues were depar-
affinized using the standard procedure and unmasking/
antigen retrieval was performed using pH 6.0 solution for
20 min at 98 °C in water bath. Tissue sections were stained
for p-HP1γ using primary antibody Phospho-HP1γ (Ser83)
(Cat. No: 2600, Cell Signaling technologies, 1:200) and

secondary antibody Biotinylated antibody Anti-Rabbit (BP-
9100, Vector Laboratories, 1:200). This was followed by
Vectastain ABC solution incubation (PK-6100, Vector
laboratories, 1:150) and DAB staining (SK-4105, Vector
laboratories) as per the manufacturer’s protocol. Stained
slides were scanned using Leica Aperio AT2 slide scanner.
The criteria for senescent staining used for quantification
was a very prominent nuclear staining in which the nucleus
was bigger in size and its staining was darker brown than
the other cells.

ChIP

ChIP was performed using the SimpleChIP® Enzymatic
Chromatin IP Kit (Cat #9003, Cell Signaling Technology,
Inc) as reported [15]. DNA quantification was carried out
using a Viia7 Real-Time PCR System (Applied Biosystems)
with SybrGreen reagents and primers that amplify the pre-
dicted PML binding region to MYC promoter
(chr8:128748295–128748695) as follows: left primer:
CCGGCTAGGGTGGAAGAG, right primer: GCTGCTA
TGGGCAAAGTTTC and PIM1 promoter (chr6:
37137097–37137612) as follows: left primer: ACTCCCTC
CGTGACTCATGT, right primer: ACGAGGGTGG
TCTTTCTGTG.

Secretome analysis

Secretomes were prepared as previously described [51].
MDA-MB-231 sh4 PML tet on and Cama-1 sh4 PML tet on
cells were pre-induced with doxycycline (150 ng ml−1) for
3 days. Three 150 cm2 plates where seeded per condition:
4 × 106 cells per plate of non-induced cells and 5 × 106 cells
per plate of doxycycline induced cells. After two days, cell
supernatants were removed and cells were washed five
times: the first two washes were performed with PBS and
the last three were made with serum-depleted DMEM. Cells
were left to grow for 24 h in serum-depleted DMEM.
Doxycicline was maintained (150 ng ml−1). Two biological
replicates, each with three technical replicates were
processed.

After 24 h supernatant was collected and one dish per
condition was trypsinized and counted to check cell number
and PML expression. The supernatant was first spun at
1000 rpm for 5 min followed by filtration through 0.2 μm
filtering bottles. After this, it was concentrated using 10 kDa
Amicons; first, 15 mL Amicons (Ref. UCF901024, Merck)
were used, followed by 0.5 mL Amicons (Ref. UCF501069,
Merck) to get final volumes close to 80 μL. The con-
centrated secretome was frozen at −20 °C until proteomics
analysis. Protein concentration was determined with a
Pierce BCA protein assay kit (Thermo Scientific). All
samples were digested with trypsin in-solution prior to
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analysis by liquid chromatography−mass spectrometry (LC
−MS). Tryptic digests were analysed by shotgun pro-
teomics using an LTQ Velos-Orbitrap mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). The RAW
files of each MS run were processed using Proteome Dis-
coverer (Thermo Fisher Scientific), and MS/MS spectra
were searched against the human database of Swiss-Prot
using the MASCOT (Matrix Science, London, U.K) algo-
rithm. The results files generated from MASCOT (.DAT
files) were then loaded into Scaffold (Proteome Software,
Portland, OR), resulting in a nonredundant list of identified
proteins per sample achieving a protein false discovery rate
(FDR) under 1.0%, as estimated by a search against a decoy
database.

Secretome statistical analysis

Relative spectral counting-based protein quantification
analysis was performed on the different samples analyzed
using Scaffold. Files containing all spectral counts for each
sample and its replicates were generated and then exported
to R software for normalization and statistical analysis [52].
All statistical computations were done using the open-
source statistical package R. The data were assembled in a
matrix of spectral counts, where the different conditions are
represented by the columns and the identified proteins are
represented by the rows. An unsupervised exploratory data
analysis by means of principal components analysis and
hierarchical clustering of the samples on the SpC matrix
was first performed. Then, the GLM model based on the
Poisson distribution was used as a significance test [52].
Finally the Benjamini and Hochberg multitest correction
was used to adjust the p-values with control on the FDR.

Full information regarding the proteins detected in the
secretome analysis can be found in Supplementary Tables 1
and 2.

ROS analysis

MDA-MB-231 cells with inducible shRNA against PML
(sh4) were pre-induced with doxycycline (150 ng ml−1) for
3 days. Then, cells were seeded in a six-well plate in tri-
plicate (1.5 × 105 cells/well) maintaining the doxycycline
concentration. Two additional wells with non-induced cells
were used for positive and negative ROS controls
respectively.

After 72 h, 10 µM of 2′, 7′-Dichlorofluorescin diacetate
(DCF-DA) (Sigma-Aldrich Ref: 35845) reactive was added
to each well and cells were incubated for 30 min. In the last
5 min of the incubation time, 1 M hydrogen peroxide
(H2O2) was added to the positive control well.

Subsequently, cells were washed with PBS and raised
from plates employing 500 µL of trypLE reactive (Gibco™

ref: 12563–011). After that, cells were washed twice with
abundant PBS to eliminate the excess of DCF-DA reactive
and pellets were re-suspended in 500 µL PBS for FACS
analysis. Samples were analyzed in FACS CANTO II for
green fluorescence.

Datasets

Database normalization

All the datasets used for the data mining analysis were
downloaded from GEO and TCGA, and subjected to
background correction, log2 transformation, and quartile
normalization. In the case of using a pre-processed dataset,
this normalization was reviewed and corrected if required.

Correlation analysis

Pearson correlation test was applied to analyse the rela-
tionship between paired genes. From this analysis, Pearson
coefficient (R) indicates the existing linear correlation
(dependence) between two variables X and Y, giving a value
between +1 and −1 (both included), where 1 is total
positive correlation, 0 is no correlation, and −1 is total
negative correlation. The p-value indicates the significance
of this R coefficient.

Statistical analysis

No statistical method was used to predetermine sample size.
The experiments were not randomized. The investigators
were not blinded to allocation during experiments and
outcome assessment. Data analysed by parametric tests are
represented by the mean ± s.e.m. of pooled experiments
unless otherwise stated. n values represent the number of
independent experiments performed or the number of
individual mice. For each in vitro independent experiment,
technical replicates were used and a minimum number of
three experiments were performed to ensure adequate sta-
tistical power. In the in vitro experiments, normal dis-
tribution was assumed and one sample t-test was applied for
one component comparisons with control and Student’s t-
test for two component comparisons. For in vivo experi-
ments, a non-parametric Mann–Whitney U-test was used.
Two-tailed statistical analysis was applied for experimental
design without predicted result, and one-tail for validation
or hypothesis-driven experiments. The confidence level
used for all the statistical analyses was of 0.95 (alpha value
= 0.05).
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Supplementary Figure legends 

Supplementary Figure 1. (a-b) Effect of PML constitutive silencing (sh4, sh5) on PML protein 

expression (a, representative of at least 3 experiments) and on the morphology (b, representative 

images, scale bar 50m). (c) Schematic representation of one representative experiment of the 

defined populations represented in main Fig.1c upon inducible PML silencing on MDA-MB-231 

cells. (d-e) Effect on the number of senescent cells upon constitutive PML silencing (d; n=13) and 

representative images of SA-β-Galactosidase assay in MDA-MB-231 cells, scale bar 50m (e). 

(f-g) Impact on cell number upon either constitutive (f, n=12) or inducible (g, sh1 and sh5, n=4, 

sh4, n=7) PML silencing in MDA-MB-231 cells. (h) Effect of PML inducible silencing (sh4) on 

apoptosis using staurosporine (Stp) as a positive control. (i) Effect on the number of senescent 

cells after 150 nM arsenic trioxide treatment during 6 days in MDA-MB-231 cells. (j-l) Proteomics 

analysis of the secretome of MDA-MB-231 cells upon PML inducible silencing: (j) PML and tubulin 

levels in both cells extracts and secretome samples (dash lines indicate samples used in the 

analysis), (k) unsupervised exploratory data analysis by means of principal component analysis 

and (l) heat maps representing the proteins that were significantly over- and under-secreted upon 

PML silencing in MDA-MB-231 cells. Data analysis was based on spectral count data after 

exporting it from Scaffold software into R. The GLM model based on the Poisson distribution was 

used to test significance. Only the proteins with spectral counts of 2, Log2FC of 0.8 and adjusted 

p-value of 0.05 are present in the heatmap. Columns represent samples; rows are proteins. Red 

represents proteins that are over-secreted and green represents proteins that are under-secreted. 

The data rows are centred and scaled to 1 standard deviation prior to produce the heat map. (m) 

Immunofluorescence of macroH2A1.1 and DAPI upon inducible silencing of PML in MDA-MB-231 

cells. (n-o) Levels of Lamin B1 protein upon PML inducible silencing in MDA-MB-231 cells (n, 

representative of 5 experiments) and (o) protein quantification (n=5). (p) Effect on ROS production 

(n=4) after inducible PML silencing in MDA-MB-231 cells. (q-r) Impact of inducible PML silencing 



on tumour growth (q) and tumour weight (r) of established MDA-MB-231 xenografts (sh4 no dox, 

n=10; sh4 dox, n=12). Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001) 

for figure f and g (* sh4 vs shC or dox; $ sh5 vs shC; # sh1 vs shC). One-tailed Student´s t-test 

(d, i) and one-tailed one sample t-test (f-g, o-p) were used for cell line data analysis, and one-

tailed Mann-Whitney U-test for xenografts (q-r). shC: Scramble shRNA, sh1, sh4 and sh5: shRNA 

against PML, Dox: doxycycline, SA--gal: Senescence-associated beta-galactosidase, VC: 

vehicle control, ATO: arsenic trioxide, ROS: reactive oxygen species. Molecular weight markers 

(kDa) are shown to the right. 

Supplementary Figure 2. (a-b) Protein levels of p27 and PML after either inducible (sh1) (a) or 

constitutive (b) PML silencing in MDA-MB-231 cells (representative of 3 experiments). (c) 

Quantification of p27 and PML protein levels along 6 days of doxycycline-inducible PML silencing 

on MDA-MB-231 cells (n=3) with sh1. (d-f) Representative western blots of inducible PML 

silencing with the 3 different short hairpins during 6 days of induction graphed on main Fig. 2b-c 

and Suppl. Fig. 2c. (g-h) Immunofluorescence quantification of nuclear p27 positive cells (g) and 

correlation of p27 positive cells and PML levels (h) (upon PML inducible silencing on MDA-MB-

231 cells with sh1). (i) Schematic representation of the p27-Rb protein interaction and regulation. 

Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001). One-tailed Student´s t-

test (g-h) and one-sample t-test (c) were used for cell line data analysis. shC: Scramble shRNA, 

sh1, sh4 and sh5: shRNA against PML, Dox: doxycycline, D: day, RB: retinoblastoma protein. 

CDK: cyclin dependent kinases. Molecular weight markers (kDa) are shown to the right. 

Supplementary Figure 3. (a) p27 and PML protein levels after constitutive silencing of either p27 

or PML or both in MDA-MB-231 cells (representative of 4 experiments). (b-c) Effect on the number 

of senescent cells (n=4) (b) and cell growth (n=3) (c) after constitutive p27 and/or PML silencing. 

Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 0.01, ***p< 0.001 compared with shC or as 

indicated, ns: not significant). One-tailed Student´s t-test (b) and one-tailed one-sample t-test (c) 



were used for cell line data analysis. shC: Scramble shRNA, SA--gal: Senescence-associated 

beta-galactosidase. Molecular weight markers (kDa) are shown to the right. 

Supplementary Figure 4. (a) Correlation analysis between PML and MYC (top panels) and 

between PML and PIM1 (bottom panels) mRNA levels in all breast cancer subtypes of tumor 

specimens of the indicated breast cancer datasets. Sample sizes: Ivshina (n=249), Lu (n=131), 

TCGA (n=522) and Wang (n=286). (b-d) MYC, p27 and PML protein levels (representative of 3 

experiments) (b), quantification of the protein (n=3) (c) and MYC gene levels (d) after inducible 

silencing of PML (sh4) in MDA-MB-231 cells (n=3). (e) PML, p27 and MYC mRNA levels upon 

doxycycline-inducible PML silencing (sh4) of established MDA-MB-231 xenografts. (f-h) MYC, 

p27 and PML protein levels (representative of 3 experiments) (f), quantification of the protein 

(n=3) (g) and MYC gene levels (h) after inducible silencing of PML (sh4) in MDA-MB-468 cells 

(n=3). (i-j) MYC, p27 and PML protein levels (representative of 5 experiments) (i) and 

quantification of the protein (n=5) (j) after 150 nM arsenic trioxide treatment during 6 days in MDA-

MB-231 cells. (k-l) Protein quantification from Fig. 4e (k) and impact in cell number (n=3) (l) of 

inducible MYC silencing (sh42) in MDA-MB-231 cells. (m-n) PIM1 gene levels after PML inducible 

silencing in MDA-MB-231 (n=3) (m) and MDA-MB-468 (n=3) (n) cells. (o-q) Protein quantification 

from Fig. 4i (o), gene expression levels of PIM1, MYC and p27 (p) and impact in cell number 

(n=3) (q) of inducible PIM1 silencing (sh18) in MDA-MB-231 cells. Error bars represent s.e.m. p, 

p-value (*p< 0.05, **p< 0.01, ***p< 0.001, ns: not significant). One-tailed one sample t-test (c-d, 

g-h, j-q) was used for cell line data analysis and one-tailed Mann-Whitney U-test for xenografts 

(e). sh4: shRNA against PML, sh42: shRNA against MYC, sh18: shRNA against PIM1. Dox: 

doxycycline. VC: vehicle control. ATO: arsenic trioxide. Molecular weight markers (kDa) are 

shown to the right. 

Supplementary Figure 5. (a-c) Impact of PML inducible silencing (sh4) on cell number in MDA-

MB-468 (a), MCF-7 (b) and Cama-1 (c) cell lines. (d-e) p27, MYC and PML protein levels (d) and 



protein quantification (e) of PML inducible silencing in MCF-7 cells. (f-g) p27, MYC and PML 

protein levels (f) and protein quantification (g) of PML inducible silencing in Cama-1 cells. (h) 

Impact of PML inducible silencing (sh4) on cell morphology in MDA-MB-468, MCF-7 and Cama-

1 cell lines, scale bar 50m. (i-k) Proteomics analysis of the secretome of Cama-1 cells upon 

PML inducible silencing: (i) PML and tubulin levels in both cells extracts and secretome samples 

(dash lines indicate samples used in the analysis), (j) unsupervised exploratory data analysis by 

means of principal component analysis and (k) heat maps representing the proteins that were 

significantly over- and under-secreted, upon PML silencing in Cama-1 cells. Data analysis was 

based on spectral count data after exporting it from Scaffold software into R. The GLM model 

based on the Poisson distribution was used to test significance. Only the proteins with spectral 

counts of 2, Log2FC of 0.8 and adjusted p-value of 0.05 are present in the heat map. Columns 

represent samples; rows are proteins. Red represents proteins that are over-secreted and green 

represents proteins that are under-secreted. The data rows are centered and scaled to 1 standard 

deviation prior to produce the heatmap. Error bars represent s.e.m. p, p-value (*p< 0.05, **p< 

0.01, ***p< 0.001). One-tailed one sample t-test was used for cell line data analysis (a-c, e, g). 

sh4: shRNA against PML. Dox: doxycycline. Molecular weight markers (kDa) are shown to the 

right. 

Supplementary Figure 6. Uncropped scans. 

Supplemental Table 1. List of differentially secreted proteins upon silencing the PML protein in 

MDA-MB-231 cells. 

Supplemental Table 2. List of differentially secreted proteins upon silencing the PML protein in 

Cama-1 cells. 
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Supplemental Table 1. List of differentially secreted proteins upon silencing the PML protein in MDA‐MB‐231 cells.

Gene Name Positivea Negativeb Log2FC adj p‐value
c

ACTB 65,3 15 2,168 2,65E‐45

ACTG1 13,3 63,2 ‐2,199 3,79E‐43

KRT16 9 0 37,7 8,28E‐16

TUBA1C 2,2 16 ‐2,84 2,54E‐14

KRT6C 7,3 0 30,09 7,02E‐13

EEF1A1P5 6,8 0 28,27 5,16E‐12

MMP1 0,2 7,7 ‐5,477 3,08E‐11

BMP1 8 0,7 3,629 2,41E‐09

MAN2A1 0 4 ‐32,68 1,34E‐06

CLSTN3 7,5 1,2 2,729 1,45E‐06

ITGB1 4 13,5 ‐1,71 2,59E‐06

TNFRSF21 0,5 5,8 ‐3,5 2,66E‐06

COL5A1 14,2 4,8 1,596 2,74E‐06

FBN1 22,8 10,5 1,165 2,74E‐06

TLN1 23,2 42,2 ‐0,8189 2,74E‐06

SPARC 3,2 0 32,36 1,41E‐05

KRT6A 3 0 28,98 2,93E‐05

LTBP4 10 3 1,783 3,01E‐05

SQSTM1 2,7 9,8 ‐1,837 3,43E‐05

L1CAM 4 12,2 ‐1,56 4,20E‐05

FRAS1 2,8 0 33,7 4,77E‐05

SERPINE2 0,3 4,3 ‐3,656 5,65E‐05

KRT7 8,5 2,3 1,909 5,90E‐05

CPD 0,2 3,7 ‐4,414 7,44E‐05

LUM 3,3 0,2 4,371 0,0001401

CPE 10,7 3,8 1,522 0,0001518

FAT1 3,8 0,3 3,568 0,0001518

TIMP3 0,3 4 ‐3,543 0,000152

NEU1 0,7 4,8 ‐2,813 0,0002139

ENPP1 1,7 7 ‐2,024 0,0002601

EPS8L2 2,3 0 30,54 0,0002992

ITGA3 0 2,3 ‐33,33 0,000455

PROS1 9 3,2 1,553 0,0005347

AKR1C1 3,5 10 ‐1,473 0,0005644

LTBP3 2,2 0 33,24 0,0005681

GALC 2,2 0 31,58 0,0005681

CD81 0,8 4,8 ‐2,492 0,0006621

IL6 0 2,2 ‐30,34 0,000793

ECHS1 0,3 3,3 ‐3,28 0,001325

SEC23A 3,2 0,3 3,295 0,001366

CFH 7,8 2,8 1,513 0,002035

SUMF2 0,3 3,2 ‐3,204 0,002174

EPHA2 2,7 7,8 ‐1,51 0,002632

KRT19 11,8 5,7 1,106 0,003352

GAS6 12,7 6,3 1,045 0,003882

LFNG 2,8 0,3 3,131 0,00403

SDCBP 0,8 4,2 ‐2,278 0,004093

UBE2K 2,3 0,2 3,852 0,004193

BMP4 2,3 0,2 3,851 0,004193

PYGL 3,5 8,8 ‐1,293 0,005184

IGFBP1 4,5 10,3 ‐1,151 0,006241

SAA1 0,5 3,2 ‐2,616 0,007954

MXRA8 3 0,5 2,629 0,008305

JAG1 3,2 8 ‐1,291 0,009363

CST4 2 6 ‐1,537 0,01085



HIST1H1C 1,5 5 ‐1,69 0,01406

SDC4 6,2 12,2 ‐0,9348 0,0169

BTF3 0,5 2,8 ‐2,463 0,0203

DSG2 8,2 3,8 1,136 0,0203

VASN 4 1,2 1,82 0,0205

SEMA3C 4,8 1,7 1,579 0,02166

MMP14 0,8 3,5 ‐2,024 0,02305

CANX 0,3 2,3 ‐2,76 0,02583

BSG 0,5 2,7 ‐2,371 0,03072

HIST2H2AA3 4,3 1,5 1,57 0,03543

HRNR 2,8 0,7 2,128 0,03625

SORT1 4,8 1,8 1,442 0,03753

COL4A2 9,3 5 0,9451 0,04005

PSMD3 1,8 5 ‐1,403 0,04453

SLC3A2 3,3 7,3 ‐1,093 0,04517

SF3B3 1 3,5 ‐1,765 0,04646

PIK3IP1 2 0,3 2,631 0,0493

THBS1 194,7 129 0,6395 1,69E‐19

MYH9 96,3 66 0,591 2,89E‐08

FLNB 138,8 107,5 0,4142 2,74E‐06

KRT9 51,7 35,3 0,5922 0,0001426

HSPA5 71,3 96,3 ‐0,3876 0,0006753

GSN 32,2 21,2 0,6494 0,001826

AP1G1 1,8 0 30,19 0,002035

AHNAK 38 26,2 0,5821 0,002174

MATN2 0 1,8 ‐32,96 0,00267

CNN2 1,7 0 32,94 0,003784

PDIA4 19 30,3 ‐0,6292 0,004491

CTSC 12,3 21,3 ‐0,7452 0,006266

HYOU1 13,2 22,3 ‐0,7174 0,007086

HSP90AA1 71,5 92,3 ‐0,3232 0,008745

NAMPT 18,8 28,8 ‐0,5686 0,01708

KRT1 73,2 59,8 0,3355 0,01783

EFEMP1 23,2 15,5 0,625 0,01818

HSPG2 56,8 45,2 0,3767 0,0205

KRT8 21,3 14,2 0,6362 0,02239

ACBD3 1,2 0 30,92 0,02398

SEMA3B 1,2 0 32,42 0,02398

ASPH 1,2 0 28,09 0,02398

ALDH9A1 1,2 0 30,92 0,02414

KRT13 1,2 0 32,73 0,02431

HSP90B1 30,7 42,5 ‐0,425 0,03072

KRT2 32,5 44,3 ‐0,3999 0,04114

LOXL4 1 0 30,73 0,04517

SEMA7A 12,3 19,5 ‐0,6165 0,04517

F3 1 0 35,49 0,04517

KRT4 1 0 32,57 0,04517

GGH 12 19 ‐0,6172 0,04882

Notes:
a: Average normalized spectral counts from cells where PML is silenced
b: Average normalized spectral counts from cells where PML is expressed 
c: the adjusted p-values have been corrected for multiple hypothesis testing according to Benjamini and Hochberg



Supplemental Table 2. List of differentially secreted proteins upon silencing the PML protein in CAMA1 cells.

Gene Name Positivea Negativeb Log2FC adj p‐valuec

KRT16 7,5 0,2 5,853 4,92E‐14

CPVL 3,5 0,2 4,754 3,52E‐06

CTSB 8,3 0,5 4,343 8,77E‐13

KRT6C 4,7 0,3 4,169 2,01E‐07

GNPTG 2 0 34,96 0,0001193

MELTF 2 0 34,96 0,0001193

ADGRG6 3,5 0 34,14 5,65E‐07

PAM 3,5 0 34,07 1,44E‐07

IGF1 2 0 31,67 0,00018

DLST 2,2 0 31,57 6,54E‐05

MAN2B1 2 0 30,46 0,0002208

ATP6AP1 3,8 0,3 3,795 1,23E‐05

AGT 5,2 0,5 3,665 3,20E‐07

IGSF8 3,2 0,3 3,464 0,0002133

PCSK1N 5 0,5 3,458 2,89E‐06

GM2A 3,5 0,5 3,09 0,0001814

PPT1 5,2 0,8 2,752 2,70E‐05

LAMB2 23,7 4 2,736 9,95E‐23

ANXA2 2 0,3 2,691 0,01643

CTSA 6 1,2 2,552 9,97E‐06

PROS1 2,2 0,5 2,381 0,01638

KLK6 2 0,5 2,361 0,01909

LGMN 3 0,7 2,335 0,00539

CD109 4,8 1,3 2,219 0,0002133

CTSL 28,7 7,3 2,217 2,94E‐22

SEMA3C 4,2 1 2,108 0,002333

GBA 5,3 1,5 2,107 0,0002133

CD9 3,7 1 2,068 0,004037

THRAP3 2 0,5 2,066 0,04868

SUMF2 4,5 1,3 2,05 0,001021

SCG3 2,2 0,7 2,017 0,03138

PLOD1 15,2 4,5 2,006 2,10E‐10

ATP5F1B 8,3 2,5 1,954 9,74E‐06

HSPG2 3,2 1 1,947 0,009834

SPP1 2 0,7 1,946 0,04365

CTSC 2,5 0,8 1,927 0,02292

HEXA 12,2 3,8 1,906 7,51E‐08

IGSF3 4 1,3 1,861 0,004482

PTPRF 4,8 1,3 1,832 0,003419

MEGF10 2,8 1 1,83 0,01909

HSPA9 6,3 2 1,81 0,0004584

SPINT1 6 1,7 1,798 0,001198

RCN1 2,7 1 1,776 0,02639

LTBP1 5,8 1,8 1,686 0,002117

GLUD1 3,8 1,5 1,679 0,009834

LAMA5 19 6,2 1,674 2,21E‐09

COL3A1 3,8 1,2 1,666 0,01794

GANAB 9,5 3,7 1,641 2,57E‐05

IGFBP4 2,8 1 1,638 0,04167

NUCB1 5,5 2 1,636 0,002646

GDF15 7,8 3,2 1,609 0,0001871

ACTG1 43,3 16,2 1,6 6,02E‐21

ECM1 51,7 21,2 1,534 7,62E‐24

HRNR 4,8 2,2 1,482 0,00792

CTSD 15,3 6,5 1,467 7,27E‐07

SDF4 11,3 4,8 1,452 3,21E‐05



HEXB 6,8 2,8 1,446 0,002174

ENPP2 40,8 18,2 1,441 1,75E‐17

CALU 19,7 8,8 1,398 4,65E‐08

CLEC11A 5 2,3 1,398 0,01062

PLOD3 33,2 15 1,358 1,05E‐12

HSPD1 14 6,7 1,323 1,40E‐05

THBS1 35 15,3 1,307 3,41E‐12

MCAM 4,8 2,5 1,268 0,0204

SORT1 6,2 3 1,234 0,01181

LMAN2 20,7 9,8 1,202 1,39E‐06

CDSN 7 3,2 1,144 0,01516

GPNMB 6,7 3,7 1,108 0,01568

C1QBP 6,8 3,7 1,107 0,01516

PSAP 56,5 30,5 1,101 1,77E‐15

NCAM2 6,3 3 1,081 0,02957

PTPRJ 6,5 3,8 1,078 0,01799

QSOX1 22,3 11,5 1,072 5,86E‐06

AGRN 97 52 1,043 1,42E‐23

AZGP1 23 11,8 1,04 8,44E‐06

IGF2R 29 16,8 1,036 1,70E‐07

GOLM1 7,7 4 0,9976 0,02236

CPE 11,7 6 0,9855 0,004482

CLSTN3 7,5 3,8 0,9683 0,03092

TIMP1 13,3 8,2 0,9474 0,002032

BTD 9 5,5 0,9192 0,01694

VGF 42,2 26 0,9144 1,42E‐08

COL4A2 11,7 7,3 0,9044 0,006328

THBS2 80,3 50,8 0,896 9,74E‐16

KRT14 8 5,5 0,8674 0,03104

CLU 20,3 11,8 0,8597 0,0005396

SRSF1 16,3 10,2 0,8183 0,003198

CNDP1 31 20,8 0,8156 1,48E‐05

ACTB 0,5 33,2 ‐6,02 6,27E‐52

PYGB 0,2 6,3 ‐4,887 7,52E‐08

PARP1 0,2 5,8 ‐4,857 1,49E‐07

CHL1 0,2 4,5 ‐4,523 7,05E‐06

UBA2 0,2 4,7 ‐4,51 6,86E‐06

VAT1 0,2 4 ‐4,261 5,99E‐05

SSRP1 0,2 3,5 ‐4,094 0,0002133

ATIC 0,5 10 ‐4,033 3,55E‐11

PSAT1 0 4,5 ‐36,74 7,31E‐07

AKR1B1 0 3,7 ‐33,64 9,89E‐06

HIST1H1B 0 7 ‐32,8 1,44E‐10

TLN1 0 5,2 ‐31,98 7,81E‐08

TOP1 0 2,8 ‐31,6 0,0001068

ADH5 0 3 ‐31,46 7,01E‐05

SHMT1 0 2,2 ‐31,35 0,0008571

NOLC1 0 2 ‐31,26 0,001397

IPO7 0 2,2 ‐31,14 0,000962

PFAS 0 3,3 ‐30,64 1,66E‐05

DPYSL2 0,2 3,2 ‐3,933 0,0006571

CCT7 0,2 2,7 ‐3,719 0,002311

TSNAX 0,2 2,5 ‐3,603 0,004076

CAND1 0,3 4 ‐3,442 0,0001235

NANS 0,3 4,2 ‐3,383 0,0001604

PRPF19 0,2 2,2 ‐3,372 0,01097

ZRANB2 0,2 2 ‐3,224 0,01799

SMAP 0,3 3,2 ‐3,152 0,001197

HDAC2 0,3 3,3 ‐3,043 0,001811

EEF1A1P5 0 5,5 ‐29,57 3,63E‐08

HIST1H1E 0 4,8 ‐29,43 2,50E‐07



HIST1H1C 0 2,7 ‐28,73 0,0002133

HIST1H2BL 0 2,3 ‐28,58 0,0001179

HIST1H2AA 0 2,7 ‐28,57 0,0002133

FSCN1 0,8 7,7 ‐2,84 2,44E‐06

ESD 0,3 2,8 ‐2,797 0,006854

CLIC4 0,3 2,7 ‐2,639 0,0132

NUMA1 0,5 3,7 ‐2,637 0,002174

PACSIN2 0,5 3,8 ‐2,629 0,002095

NRDC 0,3 2,5 ‐2,625 0,01517

SAE1 0,3 2,3 ‐2,557 0,0203

PPP4R2 0,3 2,2 ‐2,542 0,02364

EIF3D 0,3 2,2 ‐2,457 0,0309

LMNB2 0,3 2,2 ‐2,457 0,0309

PAICS 0,7 4,3 ‐2,399 0,001846

TPP2 0,7 4,5 ‐2,393 0,001765

GBE1 0,3 2,2 ‐2,339 0,04252

EIF3L 0,7 3,8 ‐2,324 0,003465

HNRNPR 1,2 6,7 ‐2,312 6,75E‐05

ZC3H18 0,5 2,7 ‐2,28 0,01704

H2AFZ 1,3 7,7 ‐2,269 2,55E‐05

CSE1L 0,7 3,5 ‐2,238 0,006362

SCIN 1,7 9 ‐2,216 5,22E‐06

EIF3C 0,8 4,2 ‐2,19 0,002799

EIF3A 1 5 ‐2,153 0,001198

H2AFY 1 5 ‐2,13 0,001397

TNFRSF19 0,7 3,3 ‐2,124 0,01156

PRMT1 0,8 4 ‐2,096 0,005129

CAP1 2 10 ‐2,083 4,13E‐06

DENR 0,7 3,3 ‐2,071 0,01433

EIF3I 0,8 4 ‐2,067 0,006012

IDH1 1 5 ‐2,059 0,002165

DCPS 0,5 2,3 ‐2,015 0,04841

VIM 3,8 19 ‐1,997 3,06E‐10

OTUB1 0,8 3,5 ‐1,986 0,01097

TPR 1 4,3 ‐1,877 0,00792

TSN 1 4,2 ‐1,852 0,009796

XPNPEP1 0,7 2,8 ‐1,789 0,04868

G3BP1 1,5 5,7 ‐1,756 0,002762

HMGA1 1,3 4,8 ‐1,694 0,00792

TNC 16,3 58 ‐1,692 2,38E‐26

RPS3A 0,8 3 ‐1,692 0,04379

HNRNPL 2,3 8,5 ‐1,689 0,0002561

TCP1 1,5 5,7 ‐1,678 0,004677

CCT3 1,2 4,2 ‐1,663 0,01643

RPS19 1 3,7 ‐1,653 0,0287

ACAT2 1,2 4,2 ‐1,598 0,02225

XRCC6 5,5 18,7 ‐1,591 6,95E‐08

PLEC 1,3 4,3 ‐1,589 0,01643

PPM1G 1,3 4,3 ‐1,589 0,01643

UCHL3 1,2 4,2 ‐1,571 0,02521

EIF6 1,3 4,5 ‐1,566 0,01736

SYNCRIP 1 3,5 ‐1,543 0,04675

RCC2 4,3 14,3 ‐1,541 5,86E‐06

AARS 2 6 ‐1,53 0,004646

NUCKS1 4 12,5 ‐1,485 4,02E‐05

H3F3A 1,5 4,8 ‐1,485 0,01799

TARS 4,8 15,5 ‐1,475 5,64E‐06

MYH9 2,5 7,8 ‐1,466 0,002039

FAM49B 2 6,2 ‐1,447 0,007708

PGM1 3,7 12,3 ‐1,425 0,0001585

IPO5 4,8 15,2 ‐1,418 1,48E‐05



YWHAH 1,8 5,5 ‐1,39 0,01637

PCNA 2,3 6,7 ‐1,374 0,007232

HMGB2 5,3 15,2 ‐1,371 1,67E‐05

GNPDA1 1,8 5,5 ‐1,351 0,01965

NQO1 2,2 6 ‐1,35 0,01232

PPP2R1A 2,2 5,8 ‐1,331 0,01433

HNRNPD 4 11,2 ‐1,321 0,0005241

EEA1 1,8 5,7 ‐1,306 0,02458

CLTC 7,5 18,7 ‐1,222 9,97E‐06

GSTO1 3,2 9,2 ‐1,196 0,00643

AHCY 5,3 13 ‐1,162 0,0006619

TXNRD1 2,7 6,5 ‐1,14 0,025

IQGAP1 5,8 14,3 ‐1,129 0,0005241

GARS 3,8 9,3 ‐1,095 0,008559

PA2G4 6,3 14,8 ‐1,083 0,0006207

EEF1G 4,8 11,2 ‐1,063 0,004244

NUDC 3,2 7,3 ‐1,058 0,02508

PMEL 4,5 10,8 ‐1,05 0,006328

ILF2 3 6,7 ‐1,037 0,03557

CCT8 5,8 13,3 ‐0,9941 0,003239

RACK1 7,3 16,5 ‐0,9925 0,0008948

YWHAQ 11 24,8 ‐0,9853 2,97E‐05

HIST1H4A 11,3 25,7 ‐0,9827 2,32E‐05

PTMA 10 20,5 ‐0,9753 0,0001375

RAN 3,8 8,7 ‐0,9632 0,02611

ACLY 8,8 18,2 ‐0,9353 0,0007296

HMCN1 5,2 11,5 ‐0,9167 0,01312

UBE2I 4 8,7 ‐0,9107 0,03503

VCL 6,3 12,5 ‐0,9043 0,00775

NPEPPS 4,8 9,7 ‐0,8469 0,03442

UBA1 7,8 15 ‐0,8357 0,006505

XRCC5 9,5 18,8 ‐0,8244 0,002539

CPOX 0 2,2 ‐36 0,001081

Notes:
a: Average normalized spectral counts from cells where PML is silenced
b: Average normalized spectral counts from cells where PML is expressed 
c: the adjusted p-values have been corrected for multiple hypothesis testing according to Benjamini and Hochberg
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P
atient stratification for cancer therapy is an excellent
illustration of precision medicine, and biomarker-based
treatment selection has tremendously aided in the success

of current cancer therapies1. In this sense, the current ability to
molecularly define and differentiate breast cancer (BCa) into
molecular subtypes2,3 has allowed the identification of patients at
risk of relapse4 and has led to biomarker signatures used to spare
low-risk patients from aggressive chemotherapy5.

Tumours are heterogeneous entities and most cancers retain a
differential fraction of cells with increased self-renewal capability
(cancer stem or initiating cells)6. Cancer-initiating cells (CICs)
exhibit a unique spectrum of biological, biochemical and
molecular features that have granted them an important role in
disease recurrence and metastatic dissemination in BCa7,8.
Despite the accepted relevance of CICs in cancer progression,
the molecular cues governing their activity and function remain
largely unknown. The sex determining region Y Box 9 (SOX9)
is a recently described regulator of cell differentiation and
self-renewal9–11 and is found upregulated in BCa12–14.

The promyelocytic leukaemia (PML) protein negatively
regulates survival and proliferation pathways in cancer, functions
that have established it as a classical pro-apoptotic and
growth inhibitory tumour suppressor15,16. PML is the essential
component of multi-protein sub-nuclear structures commonly
referred to as the PML nuclear bodies. PML multimerizes to
function as a scaffold critical for the composition and assembly
of the entire complex, a process that is regulated by Small
Ubiquitin-like Modifier (SUMO)-mediated modifications and
interactions15,16. Despite the general perception of being PML a
bona fide tumour suppressor in cancer, a series of recent studies
have demonstrated that PML exhibits activities in cancer that go
far and beyond tumour suppression17. The work in chronic
myeloid leukaemia has evidenced that PML expression can be
promoted in certain cancers, providing a selective advantage to
tumour cells18,19. Moreover, PML is found upregulated in a
subset of BCa20. However, to which extent PML targeting could
be a valuable therapeutic approach in solid cancers remains
obscure.

In this study, we reveal the therapeutic and stratification
potential of PML in BCa and the molecular cues, underlying the
therapeutic response unleashed by PML inhibition.

Results
PML silencing hampers BCa-initiating cell capacity. The
elevated expression of PML in a subset of BCa17,20 strongly
suggests that it could represent an attractive target for therapy. To
ascertain the molecular and biological processes controlled by
PML in BCa, we carried out short hairpin RNA (shRNA)
lentiviral delivery-mediated PML silencing in different cellular
systems. Four constitutively expressed shRNAs exhibited activity
against PML (Fig. 1a; Supplementary Fig. 1a–d). PML knockdown
elicited a potent reduction in the number of ALDH1-positive cells
and in oncosphere formation (OS, readout of self-renewal
potential7,21), in up to three PML-high-expressing basal-like
BCa (BT549 and MDA-MB-231) or immortalized (HBL100) cell
lines tested (Fig. 1b–d; Supplementary Fig. 1e–g). This phenotype
was recapitulated with a doxycycline-inducible lentiviral shRNA
system targeting PML (sh4; Fig. 1e,f; Supplementary Fig. 1h).

Self-renewal capacity is a core feature of CICs7. On the basis of
this notion, we hypothesized that PML could regulate tumour
initiation in BCa. We performed tumour formation assays
in immunocompromised mice, using MDA-MB-231 cells
(PML-high-expressing triple-negative breast cancer (TNBC))
transduced with non-targeting (shRNA Scramble: shC) or
PML-targeting shRNAs. PML silencing exhibited a profound

defect in tumour formation capacity, resulting in a decrease in the
frequency of tumour-initiating cells from 1/218 (shC) to 1/825
(sh5) and completely abolished (1/infinite) in sh4 (Fig. 1g;
Supplementary Fig. 1i).

To extrapolate these observations to the complexity of human
BCa, we characterized a series of patient-derived xenografts
(PDXs; Table 1; Supplementary Fig. 1j). The distribution of
PML expression in the different subtypes of engrafted tumours
was reminiscent of patient data, with a higher proportion
of PML-high-expressing tumours in basal-like/triple-negative
subtype20. Taking advantage of the establishment of a
PML-high-expressing PDX-derived cell line (PDX44), we
sought to corroborate the results obtained in the PML-high-
expressing cell lines. As with MDA-MB-231 cells, PML silencing
was effective in the PDX44-derived cell line (Fig. 1h) and resulted
in a significant decrease in OS formation (Fig. 1i). In vivo, PML
silencing decreased tumour-forming capacity of PDX44 cells
(tumour-initiating cell frequency was estimated of 1/39.6 in shC,
1/100 in sh5 and 1/185 in sh4; Fig. 1j; Supplementary Fig. 1k).

These data demonstrate that PML expression is required for
BCa-initiating cell function in TNBC cells.

PML sustains metastatic potential in BCa. CIC activity is
associated with tumour initiation and recurrence7,22. We have
previously shown that PML expression is associated to early
recurrence20, which we validated in an independent data set23

(Supplementary Fig. 2a). The development of metastatic lesions is
based on the acquisition of novel features by cancer cells24. On
the basis of our data, we surmised that the activity of PML on
CICs could impact on the survival and growth in distant organs.
To test this hypothesis, we measured metastasis-free survival
(MFS) in two well-annotated large messenger RNA (mRNA) data
sets3,25,26. First, we evaluated the impact of high PML expression
in MFS in the MSK/EMC (Memorial Sloan Kettering Cancer
Center-Erasmus Medical Center) data set25,26. As predicted,
PML expression above the mean was associated with reduced
MFS (Fig. 2a). Second, we validated this observation in the
METABRIC data set, focusing on early metastasis (up to
5 years)3. On the one hand, we confirmed the MSK/EMC data
(Fig. 2b; hazard ratio (HR)¼ 1.31, log-rank test P¼ 0.006).
On the other hand, a Cox continuous model demonstrated an
association of PML expression with the increased risk of
metastasis (HR¼ 2.305, P¼ 0.002). Of note, we tested the
expression of PML in patients with complete pathological
response or residual disease after therapy27, but could not find
a significant association of these parameters in two data sets
(Supplementary Fig. 2b).

The molecular alterations associated to metastatic capacity can
be studied using BCa cell lines, in which metastatic cell sub-clones
have been selected through the sequential enrichment in
immunocompromised mice28. If PML is a causal event in the
acquisition of metastatic capacity, then changes in its expression
should be observed in this cellular system. As predicted,
PML mRNA and protein expression were elevated in three
distinct metastatic sub-clones compared with their parental
counterparts25,26 (Fig. 2c; Supplementary Fig. 2c).

Metastasis surrogate assays provide valuable information about
the capacity of cancer cells to home and colonize secondary
organs29. TNBC cells exhibit metastatic tropism to the lung30,
and the molecular requirements of this process have begun to be
clarified through the generation of highly metastatic sub-clones31.
Our patient analysis suggests that PML expression is favoured in
primary tumours, with higher capacity to disseminate. Moreover,
cell sub-clone analysis further reveals that PML expression is
selected for in the process of metastatic selection. With this data
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in mind, we asked to which extent PML would be responsible for
the enhanced metastatic capacity. To address this question,
we silenced PML in a highly metastatic sub-clone derived from
MDA-MB-231 and injected these cells in the tail vein of nude
mice. We chose tail vein injection due to the fact that other
metastasis models based on the orthotopic implantation of cells in
the mammary fat pad25 are influenced by primary tumour
formation, which we reported to be altered by PML (Fig. 1). The
reduction of PML was confirmed in the injected cells (Fig. 2d).
Strikingly, PML silencing led to a significant reduction in lung
metastatic foci formation (Fig. 2e). When evaluating the
immunoreactivity of PML in the metastatic lesions (Fig. 2e–g),
we observed a direct association between PML silencing at the
time of injection (Fig. 2d) and the immunoreactivity of PML in

metastatic foci (Fig. 2g). We evaluated whether the lack of
PML could be limiting metastatic growth capacity by eliciting
an apoptotic response, rather than CIC capacity. However,
no differential apoptosis was detected by the means of cleaved
caspase-3 staining (Supplementary Fig. 2d–e).

These data demonstrate that the genetic targeting of PML
results in a tumour-suppressive response, characterized by
decreased BCa-initiating cell function and consequently, reduced
tumour initiation and metastasis.

STAT3 participates in the regulation of PML expression. Our
data demonstrate that PML is transcriptionally regulated in BCa.
PML gene expression is regulated upon various external stimuli,
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including type I and II interferons and interleukin 6, which are
mediated by interferon regulatory factors and signal transducers
and activators of transcription (STATs), respectively32–35.
Specifically, it has been reported that activated STAT3 but not
STAT1 correlates with PML mRNA and protein levels in
fibroblasts, HeLa and U2OS cell lines34. Since, STAT3 is
activated in oestrogen receptor (ER)-negative BCa36, we
hypothesized that this transcription factor may be responsible
for the transcriptional activation of PML in this tumour type. We
silenced STAT3 with two different short hairpins (sh41 and sh43),
and showed that this approach led to the decrease in PML protein
and gene expression in the different cell lines tested (Fig. 3a;
Supplementary Fig. 3a–b). Moreover, pharmacological inhibition
of the Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway at two different levels
(SI3-201, an inhibitor of STAT3 phosphorylation and
activation; TG1013148, a potent and highly selective ATP-
competitive inhibitor of JAK2) decreased PML levels (Fig. 3b,c).
In coherence with the activity of PML, genetic and
pharmacological inhibition of STAT3 in MDA-MB-231 cells
reduced the primary OS formation capacity (Fig. 3d–f).
Importantly, PML gene expression levels in a cohort of 448
patients (MSK/EMC) correlated with the activity of STAT3, as
confirmed with two different STAT3 signatures (Fig. 3g; ref. 37;
http://software.broadinstitute.org/gsea/msigdb/cards/V$STAT3_01).
In addition, immunohistochemical analysis confirmed an
association between the PML immunoreactivity and phospho-
rylated STAT3 levels in the Marseille cohort (Fig. 3h). Our results
provide strong support for the role of STAT3 as an upstream
regulator of PML in BCa.

Elevated PML expression predicts response to arsenic trioxide.
PML can be pharmacologically inhibited with arsenic trioxide
(Trisenox, ATO), which induces SUMO-dependent ubiquityla-
tion and proteasome-mediated degradation of the protein38,39.
Similar to our results obtained by knocking down PML via

shRNA, low doses of ATO decreased PML levels and exerted a
negative effect on the OS formation capacity both in MDA-MB-
231 and PDX44 cells (Fig. 4a,b). Moreover, ATO reduced the
tumour formation capacity in a xenograft model derived from
MDA-MB-231 cells in full coherence with the genetic approach
(tumour-initiating cell frequency was estimated of 1/279 in
vehicle and 1/703 in ATO; Fig. 4c; Supplementary Fig. 4a).

We hypothesized that cells with elevated PML would be
‘addicted’40 to the expression of the protein and hence be more
sensitive to the action of PML inhibitors. To prove this notion, we
studied additional cell lines with high (BT549, HBL100) or low
(MCF7, T47D) PML expression. With this approach, we could
demonstrate that the effect of PML silencing on the OS formation
was exquisitely restricted to PML-high-expressing cells (Fig. 4d).
This effect was recapitulated with ATO (Fig. 4e), where PML-low
cells remained refractory to the drug in terms of the OS formation
capacity.

Our results open a new avenue for the treatment of tumours
that exhibit elevation in PML expression. PML elevation is
predominant in ER-negative tumours (Supplementary Fig. 4b),
which also present worse prognosis than ER-positive BCa2,41.
Whereas luminal subtypes present better overall prognosis, there
is a subset of patients within this subtype that exhibits aggressive
disease42. We hypothesized that within this PML-low-expressing
subtypes, the worse prognosis subgroup would exhibit increased
PML levels. Indeed, MFS analysis within each intrinsic subtype
confirmed that ER-positive BCa (luminal A and luminal B)
contained a subset of patients with higher PML and worse
prognosis (Supplementary Fig. 4c–g).

Our results in ER-positive tumours indicate that the PML
expression is enriched in patients harbouring tumours of poor
prognosis2,3. These results are coherent with our data in
metastatic clone selection (Fig. 2c), suggesting that the
acquisition of aggressive features is accompanied by the
elevation of PML expression and ‘addiction’ to the protein. We
therefore sought to study whether metastatic ER-positive cell
sub-clones, which present elevated PML expression, would
exhibit sensitivity to PML inhibition, in contrast to the parental
cells. Indeed, ATO reduced the OS formation selectively in
PML-high-expressing metastatic cells derived from MCF7,
whereas the parental cells remained refractory to the drug
(Fig. 4f,g). Our results strongly suggest that PML elevation in BCa
is associated to a dependence on its expression and hence
enforces the need for patient stratification based on PML levels
before the establishment of PML-directed therapies.

PML regulates BCa-initiating cell function through SOX9.
To ascertain the molecular mechanism by which PML regulates
BCa-initiating cell function, we first evaluated the expression
levels of this gene in a sorted population of ALDH1-positive
versus -negative MDA-MB-231 cells (Fig. 5a,b), and in adherent
cultures versus OS (CIC-enriched cultures) (Fig. 5c). Strikingly,
PML expression increased in both experimental approaches
(Fig. 5b,c), together with the levels of well-established stem cell
regulators (Fig. 5c). On this basis, we hypothesized that PML
might control the expression of stem cell factors, as a mean to
regulate BCa-initiating cell function. SOX9 is a recently described
regulator of cell differentiation and self-renewal9,10,11 and is
upregulated in BCa12–14. Constitutive (Fig. 5d; Supplementary
Fig. 5a–b) and inducible (Fig. 5e) PML silencing exerted an
inhibitory effect on SOX9 expression that correlated with the OS
formation capacity (Fig. 5f). PML pharmacological inhibition also
induced a decrease on SOX9 expression (Fig. 5g; Supplementary
Fig. 5c–d). This regulatory activity was corroborated in the
PDX44 cell line (Fig. 5h,i; Supplementary Fig. 5e), and in a

Table 1 | PDX characterization based on BCa subtype
(intrinsic subtype is presented in brackets).

PDX Subtype PML

31 TNBC (HER2 enriched) �
102 ERþ (basal like) �
131 ERþ (luminal B) �
156 ERþ (basal like) �
197 TNBC (basal like) �
4 ERþ (luminal B) þ
6 ERþ (luminal A) þ
10 HER2þ (HER2 enriched) þ
39 ERþ (luminal B) þ
60 ERþ (basal like) þ
98 ERþ (basal like) þ
136 TNBC (basal like) þ
137 TNBC (basal like) þ
161 ERþ (luminal B) þ
93 TNBC (NA) þ þ
179 TNBC (NA) þ þ
44 TNBC (basal like) þ þ þ
88 TNBC (basal like) þ þ þ
89 TNBC (NA) þ þ þ
94 TNBC (basal like) þ þ þ
124 TNBC (basal like) þ þ þ
127 TNBC (basal like) þ þ þ
167 TNBC (basal like) þ þ þ

ER, oestrogen receptor; NA, not applicable; TNBC, triple-negative breast cancer.
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correlative manner in the PDX data set (Fig. 5j), as well as in the
aforementioned Marseille data set (Fig. 5k).

We next ascertained the molecular cues regulating SOX9
expression downstream PML. Since the regulation was observed
at the mRNA level, we interrogated SOX9 promoter in silico and
in public datasets. The ENCODE project has provided a vast

amount of information about regulators and binding sites43.
SOX9 promoter exhibited a 2 kb region of acetylated H3K27
(H3K27Ac), which would indicate the proximal regulatory
region. To our surprise, we found PML among the 10 proteins
with highest confidence DNA-binding score in SOX9 promoter
region (Fig. 5l; cluster score¼ 527 (refs 44–46)). There is limited
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evidence of the capacity of PML to regulate gene expression
in concordance with transcription factors through association
with DNA47–49. We performed chromatin immunoprecipitation
(ChIP) analysis of ectopically expressed and endogenous PML,
as well as SOX9 expression analysis in these conditions.
We confirmed that PML is in close proximity to SOX9
promoter region and that its ectopic expression upregulates
SOX9 transcript and protein levels (Fig. 5m; Supplementary
Fig. 5f–j). It is worth noting that PML does not present a
canonical DNA-binding domain, and it is therefore plausible that
it lies in close proximity to SOX9 promoter through the
interaction with intermediary DNA-binding proteins.

The regulation of SOX9 led us to hypothesize that this
transcription factor mediated the effects of PML on the regulation
of CIC function. On the one hand, we ascertained whether SOX9
silencing would recapitulate the effects of PML inhibition. We set
up two shRNAs targeting SOX9 (Fig. 6a) that exhibited a potent
effect on primary (Fig. 6b) and secondary (Supplementary Fig. 6a)
OS formation. Moreover, SOX9 silencing in MDA-MB-231 cells
reduced the tumour formation capacity in vivo (tumour-initiating
cell frequency was estimated of 1/71.7 in shC, completely abolished
(1/infinite) in sh9.1 and 1/4145.5 in sh9.2; Fig. 6c; Supplementary
Fig. 6b–c), in agreement with other reports12.

On the other hand, we evaluated the capacity of ectopically
expressed SOX9 to bypass the effects of PML silencing on CIC
function. Ectopic SOX9-expressing BCa cells were refractory to
PML genetic inhibition in terms of the OS formation (Fig. 6d,e)
and tumour formation (tumour-initiating cell frequency was
estimated of 1/139.8 in shC/Mock, 1/57.5 in shC/SOX9, 1/1506 in
sh4/Mock and 1/270.8 in sh4/SOX9; Fig. 6f; Supplementary
Fig. 6d). Importantly, the in vitro observation was recapitulated in
ATO-treated cells (Fig. 6g).

These data reveal a novel molecular mechanism by which
PML controls the expression of the stem cell factor SOX9 to
regulate BCa-initiating cell function (Fig. 6h). It is worth
noting that we found PML at the promoter region of other stem
cell genes, such as LGR5 (Supplementary Fig. 6e–g), indicating
that the capacity of this protein to regulate CIC function
could involve a larger and more complex transcriptional
program.

Discussion
Finding successful targeted treatment strategies for women at risk
of metastatic BCa is of outstanding clinical interest. Our data
unveil the therapeutic potential of targeting PML in combination

STAT3

shC

shSTAT3 shSTAT3

PML

BT549MDA-MB-231

100

150

PML

p-STAT3

VC 10 μM 20 μM

SI3-201

100

100

50

VC
R

el
at

iv
e 

nu
m

be
r 

of
 O

S

0

50

37

VC 0.5 μM 1 μM

TG101348

R
el

at
iv

e 
nu

m
be

r 
of

 O
S

0

50

100

150

PML

p-STAT3

140
80

45
80

VC

100

150

**
***

100

75

shC sh41 sh43
0

50

***

shSTAT3

100

50

37

75

*

0

2

4
R=0.358
P<0.0001

–2

0

2

4
R=0.217
P<0.0001

20 μM SI3

2.5

–2
–4

–2

–1 0 1
STAT3_AZARE

–4
–1 0 1

V$STAT3_01

**

P<0.0001

%
 p

Y
70

5 
S

T
A

T
3 

st
ai

ni
ng

1.5

0.5

0

1.0

2.0

0.5 μM TG PML
negative

PML low
(0–100)

PML high
(101–200)

β-Actin

shSTAT3

sh43sh41 shC sh43sh41 shC sh43sh41

HBL100

R
el

at
iv

e 
nu

m
be

r 
of

 O
S

β-Actin

P
M

L 
m

R
N

A
(m

ed
ia

n 
ce

nt
er

ed
 L

og
2)

β-Actin

a

b

c

d

e

f

g

h

Figure 3 | STAT3 regulates PML expression in breast cancer. (a) Representative western blot out of three independent experiments showing STAT3 and

PML protein expression upon STAT3 silencing with two different shRNA (sh41 and sh43). (b,c) Representative western blot out of three independent

experiments, showing STAT3 and PML protein expression upon STAT3 inhibition using SI3-201 (b) and TG101314 (c) in MDA-MB-231 cells. (d–f) Effect

of STAT3 inhibition on primary OS formation using sh41 and sh43 against STAT3 (n¼ 7) (d), SI3-201 (SI3; n¼4) (e) and TG101314 (TG; n¼ 3) (f) in

MDA-MB-231 cells. (g) Correlation of two different STAT3 gene signatures with PML gene expression in the MSK/EMC data set. (h) Immunoreactivity of

pY705 STAT3 protein in patient biopsies with varying expression of PML in the Marseille cohort (n¼ 737). Error bars represent s.e.m., P value (*Po0.05;

**Po0.01; ***Po0.001 compared with shC or VC as indicated). Statistics test: one-tail unpaired t-test (d,e,f), Pearson correlation (g) and analysis of

variance (h). OSI, primary oncospheres; shC, Scramble shRNA; sh41 and sh43, shRNA against STAT3; VC, vehicle control.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12595

6 NATURE COMMUNICATIONS | 7:12595 | DOI: 10.1038/ncomms12595 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


with a stratification companion that identifies patients harbouring
PML-high-expressing BCa.

We demonstrate that PML targeting impacts on BCa-initiating
cell function, and hence on cancer initiation and dissemination.
In addition, we observed that PML expression is increased in
BCa-initiating cells, highly metastatic sub-clones and in BCa
patients at risk of metastasis. These data suggest that, in a subset
of BCas, PML sustains the function of BCa-initiating cells and in
turn supports the metastatic dissemination capacity6.

We show that PML-directed therapies are efficient in BCa cells
with elevated expression of the protein. Such phenomenon has
been defined as ‘addiction’40,50,51, and it represents an exciting
avenue in the establishment of novel therapeutic initiatives.
Importantly, targeted therapies have been particularly successful
when combined with a predictive biomarker. The availability of a
clinically validated protocol to detect PML immunoreactivity52

offers a unique opportunity to define the patients that would
benefit from therapies based on PML inhibition. In addition, our

PML

b

PML

ATOVC

0 100 200 300
Number of cells

400 500

Lo
g 

fr
ac

tio
n

no
nr

es
po

nd
in

g

VC
ATO

*

c

e

*

PML

ATO
(150 nM) +– +– +– +–

β-Actin

*

***

Dox
(150ng ml–1) +– +– +– +–

g

ATO
(150 nM)

+

PML

+ +––+––

VC ATO

***
100

80

60

40

20

0R
el

at
iv

e 
nu

m
be

r 
of

 O
S 120

VC ATO

*

100

80

60

40

20

0R
el

at
iv

e 
nu

m
be

r 
of

 O
S 120

PDX44

150

100

50

0R
el

at
iv

e 
nu

m
be

r 
of

 O
S 200

BT549 HBL100 MCF7 T47D

*
100

50

0R
el

at
iv

e 
nu

m
be

r 
of

 O
S 150

BT549 HBL100 MCF7 T47D

100

50

0R
el

at
iv

e 
nu

m
be

r 
of

 O
S 150

***

VC
ATO

***

140

45

PML

β-Actin

150

37

50

150

37

50

PML

β-Actin

140

45

35

100

37

50

140

45
35

β-Actin

MCF7-MetMCF7-Par

MDA-MB-231 0.0

–0.5

–1.0

–1.5

–2.0

P value=0.0184

MCF7-MetMCF7-Par

β-Actin
β-Actin

a

d

f

Figure 4 | PML inhibition selectively targets PML-high-expressing breast cancer cells. (a,b) Effect of 150 nM ATO treatment on OSI formation (top

panels) in MDA-MB-231 (n¼4) (a) and PDX44 cells (n¼ 3) (b) and PML protein expression (3-day treatment, lower panels, representative western blot

out of four—MDA-MB-231—or three—PDX44—independent experiments). (c) Limiting dilution experiment after xenotransplantation. Nude mice were

inoculated with 500,000 or 50,000 MDA-MB-231 cells (n¼ 20 injections per experimental condition). ATO cells were pre-treated with 150 nM ATO

2 days before injection. Tumour-initiating cell number was calculated using the ELDA platform. A log-fraction plot of the limiting dilution model fitted to the

data is presented. The slope of the line is the log-active cell fraction (solid lines: mean; dotted lines: 95% confidence interval; circles: values obtained in

each cell dilution). A PML western blot from cells at the time of injection is presented in lower panel. (d,e) OSI formation in cell lines with high (BT549 and

HBL100) and low (MCF7 and T47D) PML expression upon PML genetic silencing (MCF7 and T47D n¼ 3, and BT549 and HBL100 n¼ 6) (d) and 150 nM

ATO (BT549 n¼ 3, HBL100 n¼ 5, MCF7 n¼ 7 and T47D n¼4) (e). A representative PML western blot out of three independent experiments is presented

in lower panels. (f,g) Effect of 150 nM ATO on OSI formation (n¼4) (f) and on PML levels (a representative western blot is presented out of four

independent experiments) (g) in MCF7 parental cells and MCF7 metastatic sub-clone. Error bars represent s.e.m., P value (*Po0.05; ***Po0.001

compared with each control). Statistics test: one-tail unpaired t-test (a,b,d,e,f), w2-test (c). ATO, arsenic trioxide; Met, metastatic; OSI, primary

oncospheres; Par, parental; VC, vehicle control.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12595 ARTICLE

NATURE COMMUNICATIONS | 7:12595 | DOI: 10.1038/ncomms12595 |www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


proof-of-concept demonstration of the therapeutic efficacy of
PML pharmacological inhibition with ATO indicates that
(1) repositioning of ATO (that is currently used in the
treatment of acute PML) for BCa therapy is a viable approach,
(2) there is strong support for the development of novel and more
effective PML inhibitors and (3) the identification of combined

therapies with PML inhibitors in BCa is a novel and exciting area
of investigation.

Mechanistically, our data demonstrate that PML is in close
proximity to the promoter region of SOX9, and positively
regulates the expression of the gene. SOX9 has been recently
established as a central regulator of normal and cancer stem
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cells9–13,53–61. This activity is executed in part through the
functional interplay with epithelial-to-mesenchymal transition
regulators such as SLUG12,53,56. In BCa, SOX9 is found
overexpressed in the TNBC subtype, and regulates the
WNT/beta-catenin pathway14. In addition, this transcription
factor is a main driver of the transcriptional signature of this
subtype of BCa62. All these features make SOX9 an ideal target
for BCa therapy. However, development of small molecules
targeting transcription factors has been an outstanding challenge
with limited success63. Our data demonstrating that PML sustains
SOX9 expression in aggressive BCa opens the possibility to bypass
this limitation and inhibit the function of the transcription factor
through upstream PML targeting.

In summary, our data provide proof-of-concept demonstration
of the fact that PML-inhibiting compounds could exhibit strong
potential for BCa therapy upon PML-based stratification.

Methods
Cell culture. MDA-MB-231, BT594, HBL100, MCF7 and T47D cell lines were
obtained from the American Type Culture Collection (Manassas, VA, USA)
or from Leibniz-Institut—Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DMSZ, Germany), who provided an authentication
certificate. None of the cell lines used in this study was found in the database of
commonly misidentified cell lines maintained by ICLAC and NCBI biosample.
PDX44-derived cell line was generated by Dr Ibrahim and Dr Serra starting from
xenograft tumours. Cell lines were routinely monitored for mycoplasma
contamination and quarantined, while treated if positive. All cell lines were
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maintained in DMEM media supplemented with 10% (v/v) foetal bovine serum
and 1% (v/v) penicillin–streptomycin. OS formation assays were carried out as
previously described64. In brief, single-cell suspensions were plated in six-well
tissue culture plates covered with poly-2-hydroxyethyl-methacrylate (Sigma,
St Louis, MO) to prevent cell attachment, at a density of 3,000 cells per ml in
serum-free DMEM supplemented with 1% penicillin/streptomycin, 1% B27
(Invitrogen, Carlsbad, CA, USA), 10 ngml� 1 epidermal growth factor (EGF)
(Sigma, St. Louis, MO) and 2 ngml� 1 fibroblast Growth Factor, basic (FGFb)
(Invitrogen, Carlsbad, CA, USA). After 6 days in culture, OS were counted using a
light microscope. For secondary OS formation, following the same protocol,
100,000 cells were plated in 100mm dishes and collected by gentle centrifugation
(200g) and dissociated enzymatically (5min in 1:1 TrypLE solution at 37 �C, Life
Technologies, cat: 12604013) and single cells were re-plated at a density of 3,000
cells per ml in six-well tissue culture plates for 6 days.

Generation of stable cell lines. 293FT cells were used for lentiviral production.
Lentiviral vectors expressing shRNAs against human PML, STAT3 and SOX9 from
the Mission shRNA Library were purchased from Sigma-Aldrich or Addgene. Cells
were transfected with lentiviral vectors following standard procedures, and viral
supernatant was used to infect cells. Selection was done using puromycin
(2mgml� 1) for 48 h. As a control, a lentivirus with scrambled shRNA (shC) was
used. Short hairpins sequence: sh1PML (TRCN0000003865): CCGGCAATACAA
CGACAGCCCAGAACTCGAGTTCTGGGCTGTCGTTGTATTGTTTTT,
sh2PML (TRCN0000003865): CCGGCAATACAACGACAGCCCAGAACTC
GAGTTCTGGGCTGTCGTTGTATTGTTTTT; sh4PML (TRCN 0000003867):
CCGGGCCAGTGTACGCCTTCTCCATCTCGAGATGGAGAAGGCGTACACT
GGCTTTTT; sh5PML (TRCN 0000003867): CCGGGTGTACCGGCAGATTGT
GGATCTCGAGATCCACAATCTGCCGGTACACTTTTT; shC: CCGGCAACAA
GATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG. sh41STAT3
(TRCN0000020841): CCGGGCTGAAATCATCATGGGCTATCTCGAGATAGC
CCATGATGATTTCAGCTTTTT; sh43STAT3 (TRCN0000020843): CCGGGCAA
AGAATCACATGCCACTTCTCGAGAAGTGGCATGTGATTCTTTGCTTTTT.
sh1SOX9 (Addgene, GenBank ID: RHS3979-9587792; GCATCCTTCAATTTCTG
TATA); sh2SOX9 (TRCN0000342824): CCGGCTCCACCTTCACCTACATGAAC
TCGAGTTCATGTAGGTGAAGGTGGAGTTTTTG. Sub-cloning of shC and
sh4PML into pLKO-Tet-On vector was done introducing AgeI and EcoRI in the
50-end of top and bottom shRNA oligos, respectively (following the strategy
provided by Dr Dmitri Wiederschain65, Addgene plasmid: 21915). HA-PMLIV was
sub-cloned into a TRIPZ vector using Age1–Mlu1 sites.

Immunoassays. Western blot analysis was carried out as previously described20.
Uncropped scans are provided as part of the Supplementary Information
(Supplementary Fig. 7). In brief, cells were seeded on six-well plates and 4 days
(unless otherwise specified) after seeding cell lysates were prepared with RIPA
buffer (50mM TrisHCl pH 7.5, 150mM NaCl, 1mM EDTA, 0.1% SDS, 1%
Nonidet P40, 1% sodium deoxycholate, 1mM sodium fluoride, 1mM sodium
orthovanadate, 1mM beta-glycerophosphate and protease inhibitor cocktail;
Roche). The following antibodies were used for western blotting: rabbit polyclonal
anti-PML, 1:1,000 dilution (cat: A301-167A; Bethyl laboratories), rabbit polyclonal
anti-phospho-STAT3 (Tyr705) 1:1,000 dilution and total STAT3 1:1,000 dilution
(cat: 9145, 9132 respectively; Cell Signaling), rabbit polyclonal anti-SOX9 1:2,000
dilution (cat: AB5535; CHEMICON International), HA-Tag polyclonal antibody
1:2,000 dilution (cat: C29F4, Cell Signaling Technology, Inc) and mouse
monoclonal anti-beta-ACTIN 1:2,000 dilution (clone: AC-74, catalogue: A5316,
Sigma-Aldrich). After standard SDS–polyacrylamide gel electrophoresis and
western blotting techniques, proteins were visualized using the enhanced
chemiluminescence (ECL) system.

For immunofluorescence, cells were seeded on glass cover slips in 24-well plates
and 4 days after seeding, cells were fixed with 4% paraformaldehyde (15min), PBS
(three times wash), 1% Triton X-100 (5min), PBS (three times wash), 10% goat
serum (1 h) and anti-PML antibody 1:100 ditution (catalogue A301-167A; Bethyl
laboratories) was added overnight (4�C) in goat serum. Cover slips were washed
with PBS three times and incubated with secondary antibody (anti-rabbit Alexa488;
Invitrogen-Molecular Probes) for 1 h (room temperature). Cover slips were washed
with PBS three times, and 4,6-diamidino-2-phenylindole added to stain nuclei
(10min), followed by mounting with Mowiol. Immunofluorescence images were
obtained with an AxioImager D1 microscope.

For immunohistochemistry, tissues were fixed in 10% neutral-buffered formalin
and embedded in paraffin according to standard procedures. Three to four
mm-thick sections were stained for PML (clone PG-M3 Santa Cruz Biotechnology
Inc, sc-966, 1:200 dilution), and vimentin (1:1,000, NCL-L-VIM-V9, Novocastra).
Antigen retrieval was performed with citrate buffer (pH 6). Detection was
performed with the ABC Kit from Vector Laboratories and 3,30-diaminobenzidine
(DAB)-based development. Sections were counterstained with haematoxylin. The
PML general immunoreactivity scoring system (used in Fig. 1h) is described in ref.
20. For the Marseille data set, PML (1:200), SOX9 (1:400, Millipore) and phospho-
STAT3 (Tyr705) (1:100, Cell Signalling: M9C6) immunostaining was performed as
reported11,20. The percentage of PML-high (Ph) and -low (Pl) immunoreactive
tumour cells in the Marseille data set was quantified separately and the h-score was
calculated, attributing a relative value of 1� to Pl and 2� to Ph intensity nuclear

signal (h¼ (1� Pl)þ (2�Ph)). For SOX9 automated quantification and
construction of tissue microarrays (TMAs) in the Marseille data set was carried
out as reported23. In brief, cores were punched from the selected paraffin blocks,
and distributed in new blocks including two cores of 0.6 mm diameter for each
tumour. All the TMA blocks were stored at 4 �C. TMA serial tissue sections were
prepared 24 h before immunohistochemistry processing and stored at 4 �C. The
immunoperoxidase procedures were performed using an automated Ventana
Benchmark XT auto-stainer. This device allowed identical well-controlled
procedures for antigen retrieval and Ventana kits.

Quantitative real-time PCR. Cells were seeded as for western blot. Total RNA was
extracted from cells using NucleoSpin RNA isolation kit from Macherey-Nagel
(ref: 740955.240C). Complementary DNA was produced from 1 mg of RNA using
qScript cDNA SuperMixt (Quanta Bioscience, ref: 95048). Taqman probes were
obtained from Applied Biosystems. Amplifications were run in a Viia7 Real-Time
PCR System (Applied Biosystems) using the following probes: PML
(Hs00971694_m1, cat: 4331182) and SOX9 (Hs01001343_g1, cat: 4331182). For
STAT3, SOX2 and LGR5 amplification, Universal Probe Library (Roche) primers
and probes were employed (STAT3, For: cccttggattgagagtcaaga, Rev: aagcggctatac
tgctggtc; probe: 14; SOX2, For: gggggaatggaccttgtatag, Rev: gcaaagctcctaccgtacca;
probe: 65; LGR5, For: accagactatgcctttggaaac, Rev: ttcccagggagtggattctat; probe: 78).
b-actin (Hs99999903_m1, cat: 4331182) and GAPDH (Hs02758991_g1, cat:
4331182) housekeeping assays from Applied Biosystems showed similar results
(all quantitative PCR with reverse transcription data presented were normalized
using GAPDH).

ALDH1 activity by FACS. To measure the ALDH1 activity present in the cells,
the ALDEFLUOR assay was carried out according to manufacturer’s (Stemcell
Technologies) guidelines. In brief, dissociated MDA-MB-231 cells were
resuspended in ALDEFLUOR assay buffer at a final concentration of 1.106ml� 1.
ALDH substrate, bodipyaminoacetaldehyde was added to the cells at a final
concentration of 1.5mM. Immediately, half of the cells were transferred to an
Eppendorf tube containing a two fold molar excess of the ALDH inhibitor,
diethylaminobenzaldehyde. Both tubes were incubated for 45min at 37 �C,
and after this incubation cells were centrifuged at 250g for 5min at 4 �C and
resuspended in ice-cold ALDEFLUOR assay buffer. Cells were analysed using a
FACSAria1 (Becton Dickinson) flow cytometer. DRAQ7 (BiostatuS) was added
prior analysis to each tube for dead cell exclusion. FACSAria1 was also used for
sorting cells. Data were analysed using the FACSDiva software.

Reagents. For in vitro experiments, SI3-201 (Sigma-Aldrich, SML0330) was
prepared at 10mgml� 1 in dimethylsulfoxide and used at the indicated con-
centrations. TG101348 (Santa Cruz, sc-364740) was prepared 100mgml� 1 in
dimethylsulfoxide and used at the indicated concentrations. ATO (Sigma-Aldrich)
was prepared at a concentration of 100mM in NaOH 1N and subsequently diluted
to 0.1mM in PBS for a 1,000� working solution. ATO was used at 150 nM either
3 or 6 days as indicated in figure legends. For in vivo experiments a dose of
5mg kg� 1 per day was intraperitoneally administered.

Mice. Xenograft experiments were carried out following the ethical guidelines
established by the Biosafety and Welfare Committee at CIC bioGUNE and
Biodonostia Institute. The procedures employed were carried out following the
recommendations from AAALAC. Xenograft experiments were performed as
previously described66, injecting either 5.105 or 5.104 cells per condition (unless
otherwise specified), four injections per mouse. Metastasis experiment was
approved by the institutional animal care and use committee of IRB-Barcelona. For
tail vein injections, cells were resuspended in PBS and injected into tail vein of mice
using a 26G needle (1.2� 105 cells per mouse), as previously described25. Cell lung
colonization capacity was scored 21 days post inoculation by human vimentin.
PML expression was scored as undetectable (PML 0) and detectable (PML 1þ ,
2þ and 3þ ). All mice (female Hsd:Athymic Nude-Foxn1 nu/nu) were inoculated
at 8–12 weeks of age.

ChIP. ChIP was performed using the SimpleChIP Enzymatic Chromatin IP Kit
(cat: 9003, Cell Signaling Technology, Inc). MDA-MB-231 cells were grown in
150mm dishes either with or without 50 ngml� 1 doxycycline during 3 days.
Cells from three 150mm dishes (2.5� 107 cells) were cross-linked with 35%
formaldehyde for 10min at room temperature. Glycine was added to dishes, and
cells incubated for 5min at room temperature. Cells were then washed twice with
ice-cold PBS, and scraped into PBSþ PMSF. Pelleted cells were lysed and nuclei
were collected following manufacturer’s instructions. Nuclear lysates were digested
with micrococcal nuclease for 20min at 37 �C and then sonicated in 500 ml aliquots
on ice for three pulses of 15 s using a Branson sonicator. Cells were held on ice for
at least 1min between sonications. Lysates were clarified at 11,000g for 10min at
4 �C, and chromatin was stored at � 80 �C. HA-Tag polyclonal antibody (cat:
C29F4, Cell Signaling Technology), rabbit polyclonal anti-PML (cat: A301-167A;
Bethyl laboratories) and IgG antibody (cat: 2729, Cell Signaling Technology, Inc),
were incubated overnight (4 �C) with rotation and protein G magnetic beads were
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incubated 2 h (4 �C). Washes and elution of chromatin were performed following
manufacturer’s instructions. DNA quantification was carried out using a Viia7
Real-Time PCR System (Applied Biosystems) with SybrGreen reagents and
primers that amplify the predicted PML binding region to SOX9 promoter
(chr17:70117013-70117409) as follows: left primer: ccggaaacttttctttgcag and right
primer: cggcgagcacttaggaag.

Patient data sets, bioinformatics and statistical analysis. All studies involving
human subjects were approved by the corresponding committees with informed
consent as stated in the original publications3,23,25. The use of MSK/EMC and
Marseille cohorts were previously described23,25. For MSK/EMC, MFS curves were
plotted using Kaplan–Meier estimates and compared using the Gehan–Breslow–
Wilcoxon test. Two groups were compared using mean PML expression values as
the cutoff between PML high and low. Kaplan–Meier survival and correlation
analysis in patient samples: publicly available and clinically annotated BCa cohorts
with gene expression profiles (GSE2603, GSE2034, GSE5327 and GSE12276) were
pooled as described above. To remove systematic biases, before merging the
expression measurements were converted to z scores for all genes. For intrinsic
subtype classification, we carried out the following analysis: for luminal genes,
ESR1 and PGR1 presented a bimodal distribution. We used package mclust to fit a
mixture of normal distributions with two components and obtain the posterior
probability that each patient belongs to the luminal low and luminal high
components. A patient was considered luminal low if the posterior probability of
belonging to this group was 480%. The same criterion was used for luminal high.
When a patient was neither luminal high nor luminal low, it was considered
luminal intermediate. Proliferation status (Prol) and ERBB2 expression did not
present a bimodal distribution. Therefore, half of the patients with lowest mean
values were considered proliferation low. The rest were considered proliferation
high. After defining high and low populations for each parameter, the subtypes
were constructed as follows: luminal A: Prol low, ESR1 intermediate or high,
luminal intermediate or high; luminal B: Prol high, ESR1 intermediate or high,
luminal intermediate or high; HER2 enriched: Prol high, ESR1 intermediate or low,
luminal intermediate or low; ERBB2 high; basal like: Prol high, ESR1 low, luminal
low; ERBB2 low, PGR1 low. Sixty-four patients could not be assigned to any
subtype according to PAM50’s classification. A Cox proportional hazards model
was fitted to compute HR. Likelihood ratio tests were performed to compute
P values. The HR was checked for constancy over time, fulfilling Cox model
assumptions.

For Curtis data set patients, RNA was extracted from 1,980 tumours as
described3. RNA hybridizations were performed using Illumina HT-12 v3 platform
and analysed using the bioconductor bead array package67. The BASH algorithm68

was applied to correct for spatial artefacts in the arrays. Bead-level data were
summarized and re-annotated as described in ref. 3. Log-intensity values for PML
expression were scaled to z scores. Probe selection was performed on the basis of
probe quality, 30-position, no other genomic matches and no single-nucleotide
polymorphisms in the region. On the basis of these criteria, PML probe
ILMN_1731299 was selected for analysis. Survival analysis was done using as
endpoints MFS at 5 years (distant metastasis as event). Two groups were compared
using mean PML expression values as the cutoff between PML high and low.
We used the log-rank test as implemented in the survival R package69.

For therapy response analysis, publicly available data sets (GSE22093 and
GSE23988) were downloaded from Gene Expression Omnibus (GEO), and
subjected to background correction, log2 transformation and quartile
normalization.

For correlation analysis with STAT3 signatures, gene sets were extracted (ref. 37,
and http://software.broadinstitute.org/gsea/msigdb/cards/V$STAT3_01) and
average signal value in the MSK/EMC data set was calculated. These values were
used to perform the correlation analysis with PML signal values (Pearson
correlation).

No statistics were applied to determine sample size. The experiments were not
randomized. The investigators were not blinded to allocation during experiments
and outcome assessment. Data analysed by parametric tests are represented by the
mean±s.e.m. of pooled experiments unless otherwise stated. n values represent the
number of independent experiments performed or the number of individual mice
or patient specimens. For each independent in vitro experiment, at least three
technical replicates were used and a minimum number of three experiments were
performed to ensure adequate statistical power. Analysis of variance test was used
for multi-component comparisons and Student’s t-test for two-component
comparisons. In the in vitro experiments, normal distribution was confirmed or
assumed (for no5) and Student’s t-test was applied for two-component
comparisons. Two-tailed statistical analysis was applied for experimental design
without predicted result, and one tail for validation or hypothesis-driven
experiments. The confidence level used for all the statistical analyses was of 0.95
(alpha value¼ 0.05). Tumour-initiating cell frequency was estimated using ELDA
software as previously described70.

Data availability. Data from public repositories analysed throughout this
manuscript (see the ‘Patient data sets, bioinformatics and statistical analysis’
section) is available as indicated in the referenced publications.
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mTORC1-dependent AMD1 regulation sustains 
polyamine metabolism in prostate cancer
Amaia Zabala-Letona1,2*, Amaia Arruabarrena-Aristorena1*, natalia Martín-Martín1,2, Sonia Fernandez-Ruiz1,2, 
James D. Sutherland1, Michelle Clasquin3, Julen tomas-Cortazar1, Jose Jimenez4, Ines torres5, Phong Quang3,  
Pilar Ximenez-Embun6, Ruzica Bago7, Aitziber Ugalde-olano8, Ana Loizaga-Iriarte9, Isabel Lacasa-Viscasillas9, Miguel Unda9, 
Verónica torrano1,2, Diana Cabrera1, Sebastiaan M. van Liempd1, Ylenia Cendon6,10, Elena Castro6, Stuart Murray3, 
Ajinkya Revandkar11,12, Andrea Alimonti11,12, Yinan Zhang13, Amelia Barnett3, Gina Lein3, David Pirman3, Ana R. Cortazar1, 
Leire Arreal1, Ludmila Prudkin4, Ianire Astobiza1, Lorea Valcarcel-Jimenez1, Patricia Zuñiga-García1, Itziar Fernandez-Dominguez1, 
Marco Piva1, Alfredo Caro-Maldonado1, Pilar Sánchez-Mosquera1, Mireia Castillo-Martín14,15, Violeta Serra4, naiara Beraza1†, 
Antonio Gentilella16,17, George thomas16, Mikel Azkargorta1,18, Felix Elortza1,18,19, Rosa Farràs20, David olmos6,21, 
Alejo Efeyan6, Juan Anguita1,22, Javier Muñoz6,18, Juan M. Falcón-Pérez1,19,22, Rosa Barrio1, teresa Macarulla2,4, Jose M. Mato1,19, 
Maria L. Martinez-Chantar1,19, Carlos Cordon-Cardo14, Ana M. Aransay1,19, Kevin Marks3, José Baselga23, Josep tabernero2,4, 
Paolo nuciforo4, Brendan D. Manning13, Katya Marjon3 & Arkaitz Carracedo1,2,22,24

Activation of the PTEN–PI3K–mTORC1 pathway consolidates 
metabolic programs that sustain cancer cell growth and 
proliferation1,2. Here we show that mechanistic target of rapamycin 
complex 1 (mTORC1) regulates polyamine dynamics, a metabolic 
route that is essential for oncogenicity. By using integrative 
metabolomics in a mouse model3 and human biopsies4 of prostate 
cancer, we identify alterations in tumours affecting the production 
of decarboxylated S-adenosylmethionine (dcSAM) and polyamine 
synthesis. Mechanistically, this metabolic rewiring stems from 
mTORC1-dependent regulation of S-adenosylmethionine 
decarboxylase 1 (AMD1) stability. This novel molecular regulation 
is validated in mouse and human cancer specimens. AMD1 is 
upregulated in human prostate cancer with activated mTORC1. 
Conversely, samples from a clinical trial with the mTORC1 
inhibitor everolimus5 exhibit a predominant decrease in AMD1 
immunoreactivity that is associated with a decrease in proliferation, 
in line with the requirement of dcSAM production for oncogenicity. 
These findings provide fundamental information about the complex 
regulatory landscape controlled by mTORC1 to integrate and 
translate growth signals into an oncogenic metabolic program.

Alterations in the phosphoinositide 3-kinase (PI3K) pathway have 
been reported in a high percentage of human cancers6,7. We sought 
to identify metabolic requirements of prostate cancer taking advan-
tage of a faithful genetically engineered mouse model of this disease 
driven by loss of Pten3, a negative regulator of the PI3K pathway 
that is frequently downregulated in this tumour type6,8. First, we 
performed high-throughput quadrupole time-of-flight mass spec-
trometry (q-TOF-MS) to examine metabolic alterations at two time 
points (3 and 6 months, onset of prostate intraepithelial neoplasia 
(PIN) and invasive prostate carcinoma, respectively) (Extended Data 
Fig. 1a, b) in two different prostate lobes (Extended Data Fig. 1c).  

From 7,722 ions, we assigned metabolite identification (Human 
Metabolome Database score ≥  40) to 632 (Supplementary Table 1).  
We did not observe significant influence of the prostate lobe or the 
time point of analysis, and after precluding significant alterations in 
candidate metabolic pathways, we focused on metabolites consistently 
and significantly altered in all conditions (Extended Data Fig. 1d, e 
and Supplementary Table 2). We identified 72 unique metabolites  
(73 assigned ions) fulfilling the criteria (Fig. 1a and Supplementary 
Table 1). Pathway enrichment analysis in this set did not show 
 significantly altered pathways including a considerable  number of 
 metabolites (Supplementary Table 3). Strikingly, representation in 
waterfall plot revealed an increase in  polyamine-synthesis-related 
metabolites in Ptenpc−/− mice (Fig. 1b). These results were validated 
in this genetically engineered mouse model and human prostate can-
cer tissues by quantitative liquid  chromatography (LC)/MS (Extended 
Data Fig. 1f, g and Supplementary Table 4).

To determine how metabolic rewiring affects polyamine  dynamics, we 
set up 13C-labelling metabolic analysis to trace the fate of l-methionine- 
derived carbons in vivo (Extended Data Fig. 2a). Next, we injected 
[U-13C5]l-methionine intravenously in Ptenpc+/+ and Ptenpc−/− mice 
(Extended Data Fig. 2b). Prostate tissue analysis revealed an eleva-
tion in 13C-labelled decarboxylated S-adenosylmethionine (dcSAM), 
together with increased synthesis and fractional labelling of polyam-
ines (Fig. 1c, Extended Data Fig. 2c, d and Supplementary Table 5).  
Importantly, the increase of SAM decarboxylation  (elevated 
dcSAM/SAM ratio) in both mouse and human pathological  
tissues strongly suggested that the enzyme that catalyses this reaction 
(S-adenosylmethionine decarboxylase 1, AMD1) is potentially respon-
sible for the metabolic changes observed in prostate cancer (Fig. 1d–f).

To address the contribution of dcSAM production to cell oncogenicity  
in prostate cancer, we ectopically expressed AMD1 in cell lines from 
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Figure 2 | Genetic and pharmacological AMD1 modulation affects 
prostate cancer oncogenicity. a–c, Impact of ectopic Myc-AMD1–HA 
expression (a, representative of three independent experiments) on 
dcSAM abundance (b, n =  5 independent experiments) and anchorage-
independent growth (c, n =  4 independent experiments) in DU145 cells 
in vitro. Mock, empty vector. Myc-AMD1–HA, Myc and haemagglutinin 
(HA)-tagged AMD1 ectopic expression. Mean ±  s.e.m. d, Impact 
of ectopic Myc-AMD1–HA expression on tumour mass in DU145 
xenografts grown for 43 days (mock, n =  8 tumours; Myc-AMD1–HA, 
n =  7 tumours). Box-and-whisker plot. e–g, Effect of doxycycline (dox)-
inducible (100 ng ml−1; a minimum of 72 h) AMD1 silencing (sh3–sh5) 
on AMD1 protein expression (e, representative of three independent 
experiments), dcSAM abundance (f, n =  3 independent experiments), 
and anchorage-independent growth (g, n =  4 independent experiments) 
in DU145 cells. Dashed line in g indicates relative cell number of non-
induced cells. No dox, without doxycycline treatment; Dox, doxycycline-
induced (100 ng ml−1) condition; sh, short hairpin RNA. Mean ±  s.e.m.  
h, Impact of inducible AMD1 silencing on tumour growth rate of 

established DU145 xenografts (tumour numbers: sh3 no dox, n =  12; sh3 
dox, n =  14; sh4 no dox, n =  10; sh4 dox, n =  7; sh5 no dox, n =  10; sh5 dox, 
n =  11). Growth rate was inferred from the linear regression calculated 
for the progressive change in tumour volume of each individual tumour 
during the period depicted in Extended Data Fig. 3q–s. Box-and-whisker 
plot. i, j, Effect of pharmacological AMD1 inhibition with SAM486A 
on anchorage-independent growth (i, n =  3 independent experiments) 
and dcSAM abundance (j, n =  3 independent experiments) in DU145 
cells. Mean ±  s.e.m. k, Impact of SAM486A treatment for 14 days (5 mg 
per kg (body weight) per day, 5 days per week) on tumour growth rate 
of established DU145 xenografts (vehicle, n =  11 tumours; SAM4856A, 
n =  10 tumours). Growth rate was inferred from the linear regression 
calculated for the progressive change in tumour volume of each individual 
tumour during the period depicted in Extended Data Fig. 4i. Box-and-
whisker plot. * P <  0.05; * * P <  0.01; * * * P <  0.001. One-tailed Student’s  
t-test was used for cell line data analysis (b, c, f, g, i, j) and one-tailed 
Mann–Whitney U-test for xenografts (d, h, k).
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Figure 1 | Integrative metabolomics in prostate cancer reveals a 
rewiring from methionine metabolism towards polyamine synthesis.  
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(DLP)) (a) and waterfall plot (b) of altered metabolites from q-TOF-MS 
metabolomic analysis performed in Ptenpc−/− and Ptenpc+/+ (6 months 
Ptenpc+/+anterior prostate, n =  4 mice; remainder of conditions, n =  5 mice) 
mouse prostate samples at the indicated age. Values in b represent the 
average of the log2(fold change) with the s.e.m. of the two lobes and two time 
points (3 and 6 months of age) per metabolite. c, Incorporation of carbon-13 
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U-test was used for data analysis.

b

a

e

d
cS

A
M

/S
A

M
 (a

.u
.)

BPH
PCa

d
cS

A
M

/S
A

M
 (a

.u
.)

d

f
*0.10

0.05

0

40

20

0

** 100

50

0

*
6 Months 3 Months

Ptenpc–/–
Ptenpc+/+

Ptenpc–/–Ptenpc+/+c

MTASAH

Met

SAM

Spermidine

Spermine

Putrescine

N-acetyl-spermidine

N-acetyl-spermine

13C 12C

P
ea

k 
ar

ea

P
ea

k 
ar

ea

P
ea

k 
ar

ea

10 h1 h

10 h1 h

10 h1 h 10 h1 h

10 h1 h

10 h1 h 10 h1 h 10 h1 h 10 h1 h 10 h1 h

P = 0.05

P = 0.05

P = 0.05

P = 0.05 P = 0.05 P = 0.05

P = 0.05

8.0 × 106

4.0 × 106

0

P
ea

k 
ar

ea 1.2 × 106

6.0 × 105

0 P
ea

k 
ar

ea 2.4 × 105

1.2 × 105

0

8.0 × 104

4.0 × 104

0

P
ea

k 
ar

ea 8.0 × 104

4.0 × 104

0 P
ea

k 
ar

ea

P
ea

k 
ar

ea

P
ea

k 
ar

ea4.0 × 105

2.0 × 105

0

2.4 × 104

1.2 × 104

0

3.0 × 104

1.5 × 104

0

1.2 × 106

6.0 × 105

0

1.0 × 106

5.0 × 105

0

*

*

*

*
*

* *

0
5

10

15
*20

–10

–5

0

5

lo
g 2(

fo
ld

ch
an

ge
 P

te
np

c–
/–

ve
rs

us
 P

te
np

c+
/+

)

Methionine/polyamine pathway metabolites

dcSAM
N-acetyl-spermine

N-acetyl-spermidine

d
cS

A
M

/S
A

M
 (a

.u
.)

dcSAM

Ptenpc–/– versus Ptenpc+/+

3 months AP 6 months DLP

20

44 1

12
4

2

73

4 7

3 32

9 6

Ptenpc–/–
Ptenpc+/+

6 m
onths AP

3 
m

on
th

s D
LP

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



0 0  M o n t h  2 0 1 7  |  V o L  0 0 0  |  n A t U R E  |  3

Letter reSeArCH

this tumour type. AMD1 is produced as a pro-enzyme (proAMD1), 
which is subject to self-cleavage and heterotetramerization, resulting 
in the active enzyme9. After validation of a polyclonal antibody for 
the detection of proAMD1 and AMD1 (Extended Data Fig. 3a, b), we 
generated prostate cancer cells over-expressing AMD1, which resulted 
in increased dcSAM abundance (Fig. 2a, b). Interestingly, this per-
turbation increased foci formation, anchorage-independent growth, 
and in vivo tumour growth (Fig. 2c, d and Extended Data Fig. 3c–f).

If AMD1 activity is essential for prostate cancer cell function, tar-
geting this enzyme would represent an attractive therapeutic strategy. 
To test this notion, we generated and validated three AMD1-targeting  
doxycycline-inducible and two constitutive short hairpin RNAs  
(shRNAs) (Fig. 2e and Extended Data Fig. 3g–j), which resulted in a pro-
found reduction in dcSAM levels, the inhibition of two- imensional and 
anchorage-independent growth, and tumour growth in vivo (Fig. 2f–h 
and Extended Data Fig. 3k–t). We excluded  doxycycline-dependent 
(Extended Data Fig. 3u, v) and off-target effects of the shRNA (by 
ectopic expression of shRNA-resistant wild type and non-processable 
(S229A10) AMD1 mutants) (Extended Data Fig. 4a–c). Of note, we did 
not observe a contribution of MTAP11–14 or 5′ -methylthioadenosine 
(MTA, a product of dcSAM metabolism to produce polyamines) to the 
effect of AMD1 inhibition (Extended Data Fig. 4d–f).

A pharmacological inhibitor of AMD1, SAM486A, has been 
designed and evaluated in pre-clinical and clinical settings15–18. 
Pharmacological AMD1 inhibition recapitulated the biological 
 consequences of genetic silencing, in the absence of overt toxicity  
in vivo (Fig. 2i–k, Extended Data Fig. 4g–k and Supplementary Table 6).  
Our results collectively demonstrate that AMD1 activity is required for 
prostate cancer oncogenicity.

We next sought to elucidate the mechanism underlying the 
 production of dcSAM. Interestingly, AMD1 protein levels were 
increased in prostate tissue from Ptenpc−/− mice in the absence of 
transcriptional modulation, consistent with messenger RNA (mRNA) 
analysis in human prostate cancer data sets (Fig. 3a and Extended 
Data Fig. 5a–c). To ascertain whether this phenotype was a direct con-
sequence of the loss of PTEN, we analysed PTEN-deficient  prostate 
cancer cells (LNCaP). Re-expression of yellow fluorescent protein 
(YFP)–PTENWT, but not catalytically inactive YFP–PTENC124S, 
in these cells resulted in the reduction in AMD1 protein levels 
(Extended Data Fig. 5d)19. Further dissection of the PI3K–mTORC1 
 pathway revealed that only mTORC1 blockers among various signal-
ling  inhibitors decreased proAMD1 and AMD1 protein abun-
dance (without  consistent effects on mRNA expression; Fig. 3b and  
Extended Data Fig. 5e–h). The regulation of this enzyme by mTORC1 
was validated upon genetic modulation of positive and negative regula-
tors of the complex, RAPTOR and TSC2, respectively (Extended Data 
Fig. 5e, i, j). Importantly, mTORC1 inhibitor-elicited AMD1 down-
regulation was accompanied by a decrease in dcSAM production and 
 polyamine  synthesis (Fig. 3c, d). Of interest, spermidine supplementa-
tion in  rapamycin-treated PC3 cells (PTEN-deficient) elicited a signi-
ficant (albeit small) increase in cell number (Extended Data Fig. 6a).

To ascertain the requirement of mTORC1 activation for 
dcSAM accumulation in vivo, we treated Ptenpc−/− mice with the 
 rapamycin-derivative RAD001 and found that Amd1 and dcSAM 
abundance was reduced in line with the inhibition of mTORC1 in 
 prostate tissue (Fig. 3e, f and Extended Data Fig. 6b, c). Of note, a 
second genetically engineered mouse model of prostate cancer based 
on the expression of the TRAMP transgene20, which presented low 

45 kDa

ba

d

c

d
cS

A
M

p
ea

k 
ar

ea
 (a

.u
.)

*
*

1

0

2

1

0

2
541UD3CP

**

LNCaP

***

V R T V R T V R T

*
*1

0

2

pc+/+ pc–/–

3 
m

on
th

s
6 

m
on

th
s

Pten

Amd1

-Actin

RpS6S240/244

RpS6S240/244

AMD1

RpS6

β-Actin

β-Actin

DU145PC3

V R T

LNCaP

V R TV R T

proAMD1

AMD1

proAMD1

45 kDa

35 kDa

25 kDa

35 kDa

25 kDa

f

*

Amd1

RpS6

proAmd1

RAD001V  

25 kDa 35 kDa

35 kDa

45 kDa

50 kDa
50 kDa

Lo
ng

ex
p

os
ur

e
S

ho
rt

ex
p

os
ur

e

35 kDa

35 kDa

35 kDa

25 kDa

Vehicle
RAD001

d
cS

A
M

 p
ea

k 
ar

ea
 (a

.u
.)

*

45 kDa

25 kDa

50 kDa
50 kDa

Amd1

AktS473

AktS473

β-Actin

e

P
ea

k 
ar

ea
 (a

.u
.)

1.0

0

1.5

0.5

1.0

0

1.5

0.5

1.0

0

1.5

0.5

V R V R V R

Spd 13C Spd 13C Spd 13C 
(M + 3) (M + 3) (M + 6)

*** ***
**

DU145 Ptenpc–/–

3

2

1

0

Figure 3 | mTORC1 regulates AMD1 expression, dcSAM production, 
and polyamine dynamics. a, Amd1 protein abundance in Ptenpc−/− and 
Ptenpc+/+ prostate tissue from mice of the indicated age (n =  3 mice). 
AKTS473 is shown as control of PI3K pathway over-activation. 3 months, 
3-month-old mouse prostate analysis; 6 months, 6-month-old prostate 
analysis. b, Representative western blot (out of three) depicting the 
changes in expression of the indicated proteins upon 24 h treatment 
of PC3, DU145, and LNCaP cells with vehicle (V, dimethylsulfoxide 
(DMSO)), rapamycin (R, 20 nM), and Torin-1 (T, 250 nM for PC3 and 
DU145, 125 nM for LNCaP). c, dcSAM abundance in PC3, LNCaP, and 
DU145 (n =  4 or 5 independent experiments as indicated by dots), upon 
24 h treatment with vehicle (DMSO), rapamycin (20 nM), and Torin-1 

(250 nM for PC3 and DU145, 125 nM for LNCaP). Mean ±  s.e.m.  
d, Incorporation of carbon-13 (13C) from [U-13C5]l-methionine  
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indicate specific bands. One-tailed Student’s t-test (c, d, f) was used.
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mTORC1 activation, did not exhibit an increase in Amd1 or dcSAM 
abundance, in support of our postulated mTORC1–AMD1 regulation 
(Extended Data Fig. 6d, e and Supplementary Table 7).

Mechanistically, we excluded the contribution of ornithine decar-
boxylase 1 (ref. 21) (ODC1; Extended Data Fig. 7a–e) and canonical 
mTORC1 downstream effectors and pathways1,22,23, including trans-
lation initiation, p70S6K, 4EBP, and macro-autophagy (since DU145 
cells lack functional ATG5 (ref. 24) but retain the mTORC1-depend-
ent regulation of AMD1) (Extended Data Fig. 7f–i). Interestingly, we 
found that mTORC1 inhibition-dependent decrease in AMD1 (wild 
type and S229A) protein levels was rescued by the proteasome inhib-
itor MG132 (Fig. 4a and Extended Data Fig. 8a, b). To elucidate the 
molecular link between mTORC1 activity and proAMD1 stability, 
we performed a phosphoproteomic analysis on ectopic proAMD1/
AMD1 and identified a single phosphorylated residue (S298) on the 
pro-enzyme and enzyme (TVLApSPQKIEGFK) (Extended Data Fig. 
8c) that was compatible with a consensus mTORC1 site25. Importantly, 
treatment for 6 h with rapamycin or Torin-1 reduced the phosphoryl-
ation of S298 in the pro-enzyme (and the ratio phospho-proAMD1/
total proAMD1) but not the enzyme, leading us to hypothesize that 
S298 phosphorylation could be controlled by mTORC1 and promote 
proAMD1 stability (Fig. 4b and Extended Data Fig. 8d–f). We eval-
uated the stability of proAMD1 after treatment for 2 h with Torin-1 
(before the detection of any effect on pro-enzyme abundance) and 
found reduced half-life upon mTORC1 inhibition (Extended Data 
Fig. 8g–k). To establish the contribution of S298 phosphorylation  
in the regulation of proAMD1 stability, we inactivated this 

phosphorylation site (S298A). As predicted, non-phosphorylated 
proAMD1S298A exhibited decreased half-life, and this parameter 
was augmented upon inhibition of the  proteasome (Extended Data  
Fig. 9a–c). These results support the notion that mTORC1 activity 
promotes proAMD1 stability, at least in part, through the regulation 
of its phosphorylation in S298, hence allowing enzyme processing and 
activity. In vitro mTORC1 kinase assay with glutathione S-transferase 
(GST)–proAMD1S229A did not show significant activity towards 
proAMD1 phosphorylation in these conditions, suggesting either that 
mTORC1 does not directly phosphorylate S298, or that additional 
cellular conditions (for example, biochemical conditions,  adaptor or 
intermediary proteins, subcellular compartments) are required for 
mTORC1 to phosphorylate proAMD1 (Extended Data Fig. 9d). It is 
worth noting that our data do not rule out additional mechanisms 
downstream of mTORC1 regulating proteasome-mediated protein  
degradation23,26. To extend this mechanistic link to human prostate 
cancer, we extracted protein from well-diagnosed benign prostate 
hyperplasia (BPH) and prostate cancer specimens4 (Supplementary 
Table 4). The results revealed that AMD1 was selectively more abun-
dant in prostate cancer specimens exhibiting high mTORC1  activity, 
and that the phosphorylation of p70S6K significantly correlated with 
the levels of AMD1 (correlation coefficient R =  0.81; Fig. 4c and 
Extended Data Fig. 9e).

mTORC1 inhibitors are currently used to treat certain tumours 
(despite the unpredicted inefficacy in many others)27, and previous 
work by us has contributed to defining the pharmaco-dynamic prop-
erties of everolimus in individuals with advanced cancers of different 

Figure 4 | mTORC1 regulates AMD1 stability and this molecular 
regulation is recapitulated in vivo. a, Representative western blot  
(out of three) of DU145 cells expressing Myc-AMD1–HA treated with 
vehicle or Torin-1 (250 nM, 6 h) in the presence or absence of MG132 
(5 μ M, 6 h). b, Extracted ion chromatogram of the TVLASPQKIEGFK 
phosphorylated proAMD1 peptide upon 6 h treatment with vehicle  
(V, DMSO), rapamycin (R, 20 nM), and Torin-1 (T, 250 nM) in DU145 
cells. c, Western blot analysis (individual tissue specimens are presented) 
of AMD1 and p70S6KT389 in prostate tissue samples of BPH and prostate 
cancer. Densitometry values of AMD1 and p70S6KT389are provided  
below the scans (corrected by HSP90 immunoreactivity). p70S6KT389 
prostate cancer status was defined as normal (Nor; PCaS6K Nor) when  
the densitometry values of the prostate cancer sample were lower  

than (mean ±  s.d.) of the BPH specimens, and high (Hi, PCaS6K Hi)  
when greater. The statistical analysis related to differential AMD1 
immunoreactivity was done by analysing PCaS6K Nor (n =  7) and PCaS6K Hi  
(n =  8) versus the BPH specimens (n =  6) separately. d, Representative 
AMD1 immunoreactivity images of three specimens from patients before 
(Pre-treatment) or after (On treatment) therapy with everolimus (n =  14 
specimen pairs). e, Box-and-whisker plot of the immunoreactivity of 
KI67 and AMD1 in cancer patients with (Δ H score for KI67 <  0) or 
without (Δ H score for KI67 ≥  0) anti-proliferative tumour response upon 
treatment with everolimus. * P <  0.05; * * P <  0.01. Arrows indicate specific 
immunoreactive bands. Red asterisk in western blot indicates non-specific 
band. Mann–Whitney U-test (c, e).
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 origin5,28,29. Strikingly, we observed a predominant decrease (64% of 
cases) in AMD1 immunoreactivity in 14 biopsies obtained from patients 
treated with this drug relative to a biopsy of the same lesion before 
treatment (Fig. 4d, Extended Data Fig. 9f and Supplementary Table 8).  
When we stratified patients on the basis of the anti- proliferative 
response achieved after everolimus therapy (responders: differential 
KI67 H score, Δ H <  0, n =  6 specimen pairs; non-responders: differ-
ential KI67 H score, Δ H ≥  0, n =  4 specimen pairs; where Δ H =  (H 
score on therapy) – (H score pre-therapy)), we found that only AMD1 
(among all targets analysed) presented significantly decreased immu-
noreactivity in responders (Fig. 4e and Extended Data Fig. 9g).

Polyamine production is a hallmark of highly proliferating cells30, 
but their regulation by oncogenic signals remains largely unknown. 
Our results demonstrate that increased polyamine synthesis is asso-
ciated with oncogenic signalling in prostate cancer. The regulation of 
AMD1 production and dcSAM synthesis downstream of mTORC1 
described herein provides a mechanistic explanation for the  control 
of this  metabolic program (Extended Data Fig. 9h). AMD1 is an 
 unprecedented metabolic target of this protein complex and supports 
its role in cancer cell proliferation. Importantly, the control of dcSAM 
and polyamine synthesis is relevant beyond the cancer scenario, and 
suggests that physiological and developmental processes that require 
active cell proliferation might be tightly associated with the regulation 
of AMD1 and polyamine synthesis downstream of mTORC1.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Patient samples. All prostate specimens were obtained upon informed consent and 
with evaluation and approval from the corresponding ethics committee (Comité de 
Ética en Investigación Clínica (CEIC) codes OHEUN11-12 and OHEUN14-14)4. 
Clinico-pathological information is included as Supplementary Table 4. The details of 
the clinical trial with everolimus are described in ref. 5 and in Supplementary Table 8.
Animals. All mouse experiments were performed following the ethical guidelines 
established by the Biosafety and Animal Welfare Committee at CIC bioGUNE, 
Derio, Spain (under protocol P-CBG-CBBA-0715). The procedures used followed 
the recommendations from the Association for Assessment and Accreditation 
of Laboratory Animal Care International (AAALAC). Xenograft experiments 
were performed as previously described (maximum total tumour volume per 
mouse 1.5 cm3)31, injecting 4 ×  106 (AMD1 silencing) or 4 ×  106 (AMD1 ectopic 
expression) cells with Matrigel (BD Biosciences) per condition in two flanks per 
mouse. Doxycycline was administered in vivo in the food pellets (Research diets, 
D12100402). Genetically engineered mouse model experiments were performed 
in a mixed background as reported32. The Ptenlox conditional knockout allele has 
been described elsewhere3. Prostate epithelium-specific deletion was effected by 
the Pb-Cre4 (ref. 3). Mice were fasted for 6 h before tissue harvest (9:00–15:00) to 
prevent metabolic alterations due to immediate food intake. The TRAMP mice 
strain was originally obtained from The Jackson Laboratory repository. Animals 
were maintained at the Animal Facility (awarded with AAALAC accreditation) 
of the Spanish National Cancer Research Centre (CNIO) in accordance with the 
guidelines stated in the International Guiding Principles for Biomedical Research 
Involving Animals, developed by the Council for International Organizations 
of Medical Sciences. All animal experiments were approved by the Competent 
Authority of the Comunidad de Madrid. The generation and characterization of 
TRAMP mice have been previously described20. At CNIO, TRAMP mice originally 
provided in FVB/NJ genetic background were backcrossed to a C57BL/6 back-
ground by successive mating of (T/+ ) male-mice to (+ /+ ) C57BL/6 female-mice 
and then maintained in a C57BL/6 background.

To address the potential undesirable effects of systemic AMD1 inhibition, we 
administered SAM486A intraperitoneally (5 mg per kg (body weight) per day,  
5 days per week) for 17 days in immunocompetent C57BL/6 mice. We meas-
ured body and organ weight, blood biochemistry, haematocrit, and white blood 
cell count (information provided in Supplementary Table 6). Terminal blood 
harvest was performed intracardially after CO2inhalation-based euthanasia. 
For non- terminal harvest, a facial vein blood sample was obtained by puncture 
with a sterile 4 mm lancet (MEDIpoint, USA). For plasma preparation, blood 
was deposited in tubes with dipotassium EDTA (Microtainer, Becton Dickinson, 
Franklin, New Jersey, USA) (for haematocrit and FACS analysis) or heparinized 
tubes (10 μ l, 1 U μ l−1) (for plasma metabolomics). For haematocrit analysis, blood 
samples were  analysed using an Abacus Junior Vet analyser (Diatron, Hungary) 
according to the manufacturer’s guidelines. For blood biochemistry, a Selectra 
Junior Spinlab 100 analyser (Vital Scientific, Dieren, The Netherlands) was used. 
A calibrated control was run before each use and was within established ranges 
before analysing samples. For white blood cell analysis, the spleen of SAM486A 
or saline-treated mice was grinded by using a syringe plunger and passing the 
cells through a 70 μ m cell strainer; cellular composition was evaluated by flow 
cytometry, using the following antibodies: CD4, CD8, B220, Ly6C, F4/80, GR-1, 
CD25, CD11b, CD44, CD73, FR4, Nrp-1 (Miltenyi Biotec).
Purification and activation of mouse splenic CD4+ T cells. To address the 
 toxicity of SAM486A, we purified CD4 T cells from the spleen of C57BL/6 mice 
by negative selection using a CD4 purification kit following the manufacturer’s 
instructions (Miltenyi Biotec, Auburn, California, USA). Five hundred thousand 
CD4 T cells were activated in TexMACS Medium (Miltenyi Biotec) with plate-
bound anti-CD3 (5 μ g ml−1) and soluble anti-CD28 (1 μ g ml−1) in the presence 
of vehicle or SAM486A (1 μ M) for 16 and 96 h and assessed for interleukin(IL)-2 
 production by capture enzyme-linked immunosorbent assay (ELISA) (R&D 
Systems, MAB702). To analyse the effect of SAM486A on T-cell proliferation, 
purified CD4 T cells were recovered 4 days after activation and treatment and 
counted in a haemocytometer chamber.
Immunization with ovalbumin. To address the effect of SAM486A on immune 
cell proliferation in vivo, we administered SAM486A intraperitoneally (5 mg per kg 
(body weight) per day, 5 days per week) for 17 days in immunocompetent C57BL/6 
mice, and then immunized them subcutaneously with 50 μ g ovalbumin in complete 
Freund’s adjuvant and kept on treatment. After 2 weeks, the mice were analysed for 
ovalbumin-specific serum immunoglobulin-G(IgG) andimmunoglobulin-M(IgM) 
levels by ELISA33.
Reagents. Cell lines were purchased from Leibniz-Institut Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ) and tested negative for 
 mycoplasma. An authentication certificate was provided by DSMZ for cell lines. 
Rapamycin (prepared in DMSO, final concentration 20 nM), Torin-1 (prepared 

in DMSO, final concentration 125–250 nM), dimethylfluorornithine (DFMO, 
prepared in water, final concentration 50 μ M), PF-4708671 (PF47, prepared in 
DMSO, final concentration 10 μ M), hydroxychloroquine (HCQ, prepared in water, 
final concentration 30 ng ml−1), MG132 (5 μ M, prepared in DMSO), PD0325901 
(100 nM, prepared in DMSO), SB203580 (5 μ M, prepared in DMSO), SP600125 
(10 μ M, prepared in DMSO), spermidine (0.5–1 μ M, prepared in water), 5′-deoxy-
5′-(methylthio)adenosine (MTA, final concentration 25 μM), and cycloheximide 
(CHX, prepared in ethanol, final concentration 5 μ g ml−1) were purchased from 
LC Laboratories (rapamycin, PD0325901), Sigma (CHX, PF47, HCQ, spermidine, 
MTA), Calbiochem (SB203580), and Tocris (Torin-1, DFMO, SP600125). RAD001 
was purchased from Selleckchem and administered 6 days per week by oral gavage 
(prepared in 1.5% NMP/98.5% PEG) at 10 mg per kg (body weight). SAM486A was 
provided by Novartis and prepared in water (in vitro) or saline solution (in vivo, 
5 mg per kg (body weight) per day intraperitoneally Monday–Friday). [U-13C5]
l-methionine was purchased from Cambridge Isotope Laboratories and admin-
istered intravenously at a final concentration of 100 mg kg−1in vivo and at 30 μ 
g ml−1in vitro (with dialysed FBS). Doxycycline was purchased from Sigma and 
used at 500 ng ml−1 for overexpression of YFP–PTEN, 100 ng ml−1 for silencing 
of AMD1, and 250 ng ml−1 for silencing of RAPTOR and TSC2. shRNAs against 
AMD1 were purchased from Sigma (TRCN0000078462: sh3; TRCN0000078460: 
sh4, TRCN0000078461: sh5) and the control shRNA sequence i nc lu ded ( CCGGC
AACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG)34.  
shRNAs against 4EBP1 and 4EBP2 were provided by N. Sonenberg35. Sub-cloning 
of shRNA AMD1 into pLKO-Tet-On vector was done by introducing AgeI and 
EcoRI in the 5′  end of top and bottom shRNA oligonucleotides respectively 
(TET-pLKO puro was a gift from D. Wiederschain36, Addgene plasmid 21915). 
Myc-AMD1–HA-expressing vector was generated starting from the open read-
ing frame obtained from PlasmID Harvard (https://plasmid.med.harvard.edu/
PLASMID/Home.xhtml) and cloned into a modified retroviral pLNCX vector 
harbouring BglII–SalI sites (cloned with BamHI–SalI). RNA interference (RNAi)-
resistant versions of AMD1 were generated using overlap extension PCR and 
cloned into a lentiviral backbone derived from vector pLenti-Cas9-blast (Cas9 
removed; lentiCas9-Blast was a gift from F. Zhang, Addgene 52962; ref. 37)  
using a HiFi Assembly Kit (NEB). The resulting vectors expressed AMD1–HA-
2A-blast (wild type or S229A) with the AMD1–HA portion being excisable using 
BshT1–BamH1. The target of AMD1 shRNA3 (5′-gtctccaagagacgtttcatt-3′ )  
was changed to an RNAi-resistant version (5′-gtGAGcaaACGTAGAttTatCtt-3′ ).  
Cloning details are available upon request. All clones were sequence-validated. 
Site-directed mutagenesis for generation of AMD1S229A and AMD1S298A was 
performed using an Agilent QuikChange II Site-Directed Mutagenesis Kit.  
YFP–PTEN-expressing lentiviral constructs were described in ref. 19.
Cellular and molecular assays. Cell number quantification was done with crystal 
violet29. Doxycycline-mediated inducible shRNA expression was performed by 
treating cell cultures for 72–96 h with the antibiotic (100–250 ng ml−1) and then 
seeding for cellular or molecular assays in the presence of doxycycline. Western blot 
was performed as previously described38 and run in Nupage gradient  precast gels 
(Life Technologies) in MOPS or MES buffer (depending on the proteins  analysed; 
note that the migration pattern of molecular mass markers varies in these two 
buffers). Anti-AMD1 was from Proteintech (11052-1-AP). Anti-RpS6S240/244, 
anti-RpS6, anti-p70S6KT389, anti-p70S6K, anti-LC3B, anti-HSP90, anti-PTEN, 
anti-AKTS473, anti-AKT, anti-4EBP1, and anti-RAPTOR antibodies were from Cell 
Signalling Technologies. Anti-β -actin antibody was from Sigma and anti-TSC2 
from Thermo Scientific (MA5-15004). Densitometry-based quantification was 
performed using ImageJ software. For half-life assays, DU145 cells stably  expressing 
the indicated constructs were challenged with CHX (5 μ g ml−1) and protein was 
extracted at the indicated time points (cells were treated with vehicle (DMSO), 
MG132 (5 μ M), or Torin-1 (250 nM) 120 min before CHX challenges when 
 indicated). Anchorage-independent growth assays were performed as previously 
described39, seeding 3000 (PC3) or 5000 (DU145) cells per well. RNA was extracted 
using a NucleoSpin RNA isolation kit from Macherey-Nagel (740955.240C). One 
microgram of total RNA was used for complementary DNA (cDNA) synthesis 
using qScript cDNA Supermix from Quanta (95048). Quantitative PCR (qPCR) 
was performed as previously described38. Applied Biosystems TaqMan probes 
were as follows: Amd1/AMD1 (Mm04207265, Hs00750876s1), β-ACTIN/β- 
Actin (Hs99999903_m1/Mm00607939_s1), and GAPDH/Gapdh (Hs02758991_
g1/Mm99999915_g1). Universal Probe Library (UPL, Roche) probes were as 
 follows: AMD1 (probe 72, primer F: CAGACCTCCTATGATGACCTGA; primer  
R: TCAGGTCACGAATTCCACTCT), Odc1 (probe 80, primer F: GCTAAGTCG 
ACCTTGTGAGGA; primer R: AGCTGCTCATGGTTCTCGAT), ODC1  
(probe 34, primer F: AAAACATGGGCGCTTACACT; primer R: TGGAATTGC 
TGCATGAGTTG), and Mtap (probe 12, primer F: CCATGGCAACCGACT 
ATGAT; primer R: AAACCCCATCCACTGACACT). Foci assays were performed 
seeding 500 cells per well (six-well plate) and staining and counting them by crystal 
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violet after 10 days. Lentiviral and retroviral transductions were performed as 
previously described34,38.
Kinase assay. Human AMD1 variants (carboxy-terminal HA tag, non- processing 
mutant S229A; S298 (wild type) or S298A; details available upon request) were 
 prepared by overlapping PCR and cloned as BamH1–Not1 into pGEX-6P-1 
(GE Healthcare). Sequence-confirmed clones were induced with 1 mM IPTG 
(isopropyl-β -d- thiogalactoside) for 16 h at 20 °C in C41 (DE3) pLysS (Lucigen). 
GST fusion  proteins were purified first by glutathione affinity chromatography 
(eluted in 40 mM reduced glutathione; 25 mM HEPES pH 8; 50 mM KCl; 0.1% 
BME buffer) and then separated by gel filtration chromatography. Proteins were 
concentrated by ultrafiltration (Vivaspin 5K MWCO cut-off; Sartorius) and used 
for kinase assays.

Endogenous mTORC1 complex was immunoprecipitated from HEK293 
cells using anti-Raptor antibody (S682B, fourth bleed, https://mrcppureagents. 
dundee.ac.uk/) coupled to Protein G Sepharose beads (Amersham). The cells 
were stimulated with IGF (50 ng ml−1) for 20 min before lysis in mTORC1 lysis 
buffer (40 mM HEPES pH 7.4, 120 mMNaCl, 1 mM EDTA, 0.3% (w/v), CHAPS, 
10 mM Na-pyrophosphate, 10 mM Na-glycerophosphate, 1 mM Na-orthovanadate, 
 protease inhibitor cocktail (Roche)). The immunoprecipitate was washed twice 
with mTORC1 lysis buffer, containing 0.5 M NaCl, twice with mTORC1 lysis buffer, 
and twice with mTORC1 kinase assay buffer (25 mM HEPES pH 7.4, 50 mMKCl). 
The substrates were added to immunoprecipitate in kinase assay buffer (15 μ l) 
before adding the 10 μ l of the ATP mixture (10 mM MnCl2, 100 μ M ATP, 1 μ Ci  
[γ -32P]ATP in kinase buffer). The reaction was performed in a thermomixer at 
30 °C for 30 min and was terminated by adding the 4×  sample buffer (NuPAGE 
LDS sample buffer, Life Technologies). The reaction mixture was loaded on gel. 
Dried gel was exposed to X-ray films (Amersham). One microlitre of reaction 
mixture was loaded on gel for immunoblot analysis. GST–S6KD236A (DU32609, 
https://mrcppureagents.dundee.ac.uk/) was purified from HEK293 cells pre-
treated with 0.1 μ M AZD-8055. The protein was purified using GST–Sepharose 
beads (Amersham) according to the manufacturer’s instructions. Anti-Raptor 
(S682B, fourth bleed, https://mrcppureagents.dundee.ac.uk/), anti-phospho-
S6K1 T389 (9205, Cell Signaling Technology), anti-GST (S902A, third bleed,  
https://mrcppureagents.dundee.ac.uk/).
Immunohistochemical analysis. Histochemical analysis by haematoxylin  
and eosin, anti-RpS6S235/6, anti-AktS473 (Cell Signaling Technology), and 
Pten (51-2400) immunostaining was performed as previously described40,41. 
Immunohistochemical analysis of AMD1 (Proteintech, dilution 1/100) was 
 performed using DAKO EnVision FLEX High pH (DAKO). The scoring system 
was based on the quantification of the percentage of cells’ negative, low (1+ ), 
medium (2+ ), or high (3+ ) immunoreactivity. Subsequently, the H score was 
calculated as follows: H =  (percentage of cells 1+ ) +  (2 ×  (percentage of cells  
2+ )] +  [3 ×  (percentage of cells 3+ )). Differential H score was calculated as  
Δ H =  Hon treatment −  Hpre-treatment.
Metabolomic analysis. For in vitro metabolomic analysis, growing cells were 
washed with ammonium carbonate pH 7.4 and snap-frozen in liquid nitrogen. 
Metabolites were extracted from cells or tissues with cold 80/20 (v/v) methanol/
water. Samples were then dried and stored at − 80 °C until MS analysis. High-
throughput time-of-flight analysis was conducted using flow injection analysis 
as previously described42. In short, samples were re-suspended and injected on 
an Agilent 1100 coupled with an Agilent 6520 QToF mass spectrometer with an 
 electrospray ionization source. The mobile phase consisted of 60/40 methanol/
water with 0.1% formic acid and was used to deliver 2 μ l of each sample to the MS, 
flowing at 150 μ l min−1. Data were collected in positive mode with 4 GHz HiRes 
resolving power with internal lock masses. Data processing was  conducted with 
Matlab R2010b. Relative cell number or protein amount was used for  normalization.

Quantitative LC/MS was conducted as previously described43. A ThermoAccela 
1250 pump delivered a gradient of 0.025% heptafluorobutyric acid, 0.1% formic 
acid in water and acetonitrile at 400 μ l min−1. The stationary phase was an Atlantis 
T3, 3 μ m, 2.1 mm ×  150 mm column. A QExactive mass spectrometer was used 
at 70,000 resolving power to acquire data in full-scan mode. Data analysis was 
 conducted in MAVEN44 and Spotfire. Peak areas derived from stable isotope 
labelling experiments were corrected for naturally occurring isotope abundance.

For plasma [13C]methionine analysis, blood samples from mice were extracted 
at the indicated times, transferred at room temperature to heparinized collection 
tubes, and centrifuged at 13,000 r.p.m. and 4 °C for 10 min. Plasma was transferred 
to fresh tubes and processed for ultra-high-performance LC coupled to mass 
 spectrometry (UPLC–MS) analysis. Briefly, to 40 μ l aliquots of mouse plasma, 40 μ l  
of water/0.15% formic acid was added. Subsequently, proteins were  precipitated 
by addition of 120 μ l of acetonitrile. To optimize extraction, after addition 
of  acetonitrile, the samples were sonicated for 10 min at 4 °C and agitated at 
1,400 r.p.m. for 30 min at 4 °C. Next, the samples were centrifuged at 14,000 r.p.m. 
for 30 min at 4 °C. The supernatant was transferred to a fresh vial and measured 

with a UPLC system (Acquity, Waters, Manchester, UK) coupled to a time-of-
flight mass spectrometer (SYNAPT G2, Waters). A 2.1 mm ×  100 mm, 1.7 μ m BEH 
AMIDE column (Waters), thermostated at 40 °C was used for the assay. Solvent A 
(aqueous phase) consisted of 99.5% water, 0.5% formic acid, and 20 mM ammo-
nium formate, while solvent B (organic phase) consisted of 29.5% water, 70% 
MeCN, 0.5% formic acid, and 1 mM ammonium formate. To obtain a good sep-
aration of the analytes, the following gradient was used: from 5% A to 50% A in 
2.4 min in curved gradient (number 8, as defined by Waters), from 50% A to 99.9% 
A in 0.2 min constant at 99.9% A for 1.2 min, back to 5% A in 0.2 min. The flow rate 
was 0.250 ml min−1 and the injection volume was 2 μ l. All samples were injected 
randomly and analytes were measured in enhanced duty cycle mode,  optimized 
for the mass of the analyte in question. Methionine and [13C5]l-methionine were 
measured in scan function 1 (enhanced duty cycle at 152), SAH and 13C4-SAH 
were measured in scan function 2 (enhanced duty cycle at 387), and SAM and 13C5-
SAM were measured in scan function 3 (enhanced duty cycle at 402). Extracted 
ion traces were obtained for methionine (m/z =  150.0589), [13C5]l-methionine 
(m/z =  155.0756), SAH (m/z =  385.1294), [13C4]SAH (m/z =  389.1428), SAM 
(m/z =  399.145), and [13C5]SAM (m/z =  404.1618) in a 20 mDa window and sub-
sequently smoothed (two points, two iterations) and integrated with QuanLynx 
software (Waters). For quantitation, stock solutions of 10 mM in water for each of 
the analytes were prepared. Stock solutions were pooled and diluted to obtain a 
mixture including all analytes. The mixture was further diluted in water to obtain 
the concentrations as used in the calibration curve. The calibration range for all 
analytes included the following concentrations: 100, 50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 
0.1, 0.05, and 0.025 μ M.
Targeted metabolomics. Levels of dcSAM in cell cultures and tissues were  analysed 
by UPLC–MS. Briefly, extraction and homogenization were done in methanol/ 
acetic acid (80/20% v/v). Speed-vacuum-dried metabolites were  solubilized in 100 μ l  
of a mixture of water/acetonitrile (40/60% v/v) and injected onto the UPLC–MS 
system (Acquity and SYNAPT G2, Waters). The extracted ion traces were obtained 
for dcSAM (retention time =  3.0minutes, m/z 355.16). Corrected signals were 
 normalized to relative cell number.
Polysome profiling. Distribution of mRNAs across sucrose gradients was 
 performed as described earlier45, except for minor modifications.
Phosphoproteomic analysis of AMD1. DU145 cells stably expressing Myc-
AMD1–HA were plated in two or three 150 mm plates per condition to ensure 
a final density no higher than 50–60% and sufficient protein amounts to immu-
noprecipitate ectopic AMD1 (using agarose HA-beads, Sigma, according to the 
manufacturer’s instructions). Cells were treated for 6 h with rapamycin (20 nM) 
and Torin-1 (250 nM) before immunoprecipitation. Protein eluates from the immu-
noprecipitated samples were separated by SDS–PAGE. The bands corresponding 
to AMD1 and the pro-enzyme were visualized using Sypro-Ruby (Invitrogen), 
excised, and in-gel digested with trypsin. The resulting peptides were analysed 
by LC–MS/MS using an LTQ Orbitrap Velos mass spectrometer (Thermo 
Scientific). Raw files were searched against a Uniprot Homo sapiens database 
(20,187 sequences) using Sequest-HT as the search engine through the Proteome 
Discoverer 1.4 (Thermo Scientific) software. Peptide identifications were filtered by 
Percolator at a false discovery rate of 1% using the target-decoy strategy. Label-free 
quantification was performed with MaxQuant, and extracted ion chromatograms 
for AMD1 phosphopeptides were manually validated in Xcalibur 2.2 (Thermo).
Bioinformatic analysis. All the data sets used for the data mining analysis46–49 were 
downloaded from the Gene Expression Omnibus, and subjected to background 
correction, log2 transformation, and quartile normalization. In the case of using a 
pre-processed data set, this normalization was reviewed and corrected if required.
Statistical analysis. No statistics were applied to determine sample size. The 
 experiments were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment. Data analysed by parametric tests 
are represented by the mean ±  s.e.m. of pooled experiments; for non-parametric  
tests, the median with interquartile range is depicted, unless otherwise stated. 
Values of n represent the number of independent experiments performed or the 
number of individual mice or patient specimens. For each independent in vitro 
experiment, at least three technical replicates were used and a minimum number 
of three experiments were performed to ensure adequate statistical power. Analysis 
of variance was used for multi-component comparisons and Student’s t-test for 
two-component comparisons. In the in vitro experiments, normal distribution was 
confirmed or assumed (for n <  5). Two-tailed statistical analysis was applied for 
experimental design without predicted result, and one-tailed analysis for validation 
or hypothesis-driven experiments. The confidence level used for all the statistical 
analyses was 0.95 (α =  0.05).
Data availability. The authors declare that data supporting the findings of this 
study are available within the paper and its supplementary information files. Source 
data for unprocessed scans and Fig. 2d and Extended Data Figs 3d, q–s and 4i are 
provided with the paper.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Metabolomics characterization of mouse and 
human prostate cancer. a, Incidence of pathological alterations observed 
in Ptenpc+/+ and Ptenpc−/− mice. Number of mice as indicated. LG-PIN, 
low-grade prostatic intraepithelial neoplasia; HG-PIN: high-grade 
prostatic intraepithelial neoplasia; Focal Adc, focal adenocarcinoma.  
b, Representative immunohistochemical images of prostate tissue stained 
with haematoxylin and eosin (H&E), Pten, AktS473, and RpS6S235/6 
from mice at 3 and 6 months of age (representative of three mice per 
condition). c, Experimental design of the TOF-MS metabolomics analysis. 
AP, anterior prostate; DLP, dorsolateral prostate. d, e, Volcano plot (d) 
and principal component analysis (PCA, e) from altered metabolites in 
TOF-MS metabolomic analysis performed in Ptenpc−/− and Ptenpc+/+ 

mouse prostate samples at the indicated age (6 months Ptenpc+/+anterior 
prostate, n =  4 mice; remainder of conditions, n =  5 mice). Grey dots: not 
significantly altered; red dots: significantly increased in Ptenpc−/− prostate 
extracts; blue dots: significantly decreased in Ptenpc−/− prostate extracts.  
f, LC/MS analysis of methionine cycle and polyamine pathway metabolites 
from Ptenpc−/− versus Ptenpc+/+ mouse prostate samples at the indicated 
age (anterior prostate 3 months, n =  5 mice; 6 months, n =  4 mice). 
Median ±  interquartile range. g, LC/MS analysis of methionine cycle and 
polyamine pathway metabolites from prostate cancer versus BPH human 
specimens (six prostate specimens per condition). Median ±  interquartile 
range. * P <  0.05; * * P <  0.01; * * * P <  0.001. One-tailed Mann–Whitney  
U-test (f, g) was used for data analysis.
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Extended Data Figure 2 | Metabolic tracing of [13C]l-methionine in 
Pten-prostate specific knockout mice. a, Plasma LC/MS analysis of the 
indicated metabolite concentration after intravenous injection of [U-13C5]
l-methionine (100 mg kg−1) in C57BL/6 mice at 3 months of age (time 
0 min, n =  7 mice; time 10 min/60 min, n =  6 mice). The unlabelled (M +  0, 
12C) and major labelled (13C, M +  4 or M +  5) metabolite concentration is 
presented in the histogram. Error bars, s.e.m. b, Experimental design of 
the [U-13C5]l-methionine (100 mg kg−1) in vivo. U-13C5-Met,  
l-methionine labelled with13C in five carbons;1 h, prostate samples 

extracted after 1 h pulse with [U-13C5]l-methionine; 10 h, prostate  
samples extracted after 10 h pulse with [U-13C5]l-methionine;  
c, Summary schematic of the alterations observed in the metabolomic 
analysis in Ptenpc−/− versus Ptenpc+/+. Spm, spermine; spd, spermidine; 
ODC1, ornithine decarboxylase 1; SpdS, spermidine synthase; SpmS, 
spermine synthase. d, Fractional labelling of the indicated metabolites 
from Fig. 1c. Median ±  interquartile range (1 h (top), n =  4; 10 h (bottom), 
n =  3). FC, fold change. One-tailed Mann–Whitney U-test (d) was used for  
data analysis.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Genetic modulation of AMD1 in prostate 
cancer cells. a, Technical setup of anti-AMD1 antibody using the indicated 
constructs or shRNAs in DU145 cells. AMD1S229A mutant lacks processing 
ability and is expressed exclusively as a pro-enzyme (representative 
western blot out of three independent experiments). b, Schematic 
representation of tagged ectopic AMD1 processing. c, Impact of ectopic 
Myc-AMD1–HA expression on foci number in DU145 cells in vitro  
(n =  3 independent experiments). d–f, Impact of ectopic Myc-AMD1–HA 
expression on tumour volume (d, n =  8 tumours per condition), AMD1 
protein levels (e, n =  3 tumours per condition), and dcSAM abundance 
(f, n =  5 tumours per condition) in DU145 xenografts grown for 43 days. 
Data in d are represented as box-and-whisker plot. f, Dot plot with the 
median and the interquartile range. g–o, Effect of constitutive silencing of 
AMD1 (g, i, mRNA levels; h–j, protein expression) on cell number (k, n), 
anchorage-independent growth (l, o), and dcSAM abundance (m) with 
two different hairpins in DU145 (g, h, k, l, m) and PC3 (i, j, n, o) cells 
(n =  3 or 4 independent experiments as indicated by dots). shSC, scramble 

short hairpin; sh3 and sh4, two different short-hairpins targeting AMD1. 
Mean ±  s.e.m. p, Effect of doxycycline-inducible (100 ng ml−1) AMD1 
silencing on cell number in DU145 cells (sh3, n =  4; sh4 and sh5, n =  3 
independent experiments as indicated by dots). q–s, Impact of AMD1-
inducible silencing in tumour volume from DU145 xenografts (tumours 
analysed: sh3 no doxycycline, n =  12; sh3 doxycycline, n =  14; sh4  
no doxycycline, n =  10; sh4 doxycycline, n =  7; sh5 no doxycycline, n =  10; 
sh5 doxycycline, n =  11). Box-and-whisker plot. t, Impact of AMD1-
inducible silencing in dcSAM abundance in DU145 xenografts from  
q to s (n =  5 tumours). Median ±  interquartile range. u, v, Dose-dependent 
effect of doxycycline on cell number in DU145 (u) and PC3 (v) cells (cell 
number measured at day 6) (n =  3 independent experiments as indicated 
by dots). * P <  0.05; * * P <  0.01; * * * P <  0.001. Error bars, mean ±  s.e.m. 
Red asterisk in western blots indicates non-specific band. Dashed lines 
indicate cell numbers in scramble short-hairpin-transduced cells.  
One-tailed t-test (c, g, i, k–p, u, v), and one-tailed Mann–Whitney  
U-test (d, f, q–t).
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Extended Data Figure 4 | Genetic and pharmacological manipulation 
of AMD1 in prostate cancer cells. a–c, DU145 cells carrying doxycycline-
inducible shRNA against AMD1 (sh3) were transduced with empty 
(Mock), sh3-resistant wild type (AMD1sh3R), or processing-deficient 
(AMD1sh3R/S229A) AMD1 constructs. AMD1 protein (a, representative 
experiment out of four), dcSAM abundance (b), and cell number 
expression (c) in the aforementioned cells (n =  4 independent experiments 
as indicated by dots). Asterisks indicate significant differences compared 
with the corresponding DU145 cells in the absence of doxycycline, and 
hash symbol indicates significant differences in the indicated comparison. 
Mean ±  s.e.m. d, Effect of MTA (25 μ M) on AMD1 silencing (sh3)-
elicited anti-proliferative activity. MTA was administered at day 0 and 
cells were analysed at day 3 (n =  3 independent experiments as indicated 
by dots). e, Mtap gene expression levels in Ptenpc+/+and Ptenpc−/− mice 
at the indicated time points (see Extended Data Fig. 1a) (3 months, n =  3 
mice; 6 months, n =  6 mice). Median ±  interquartile range. f, MTAP gene 
expression analysis in publicly available data sets (see Methods;  

N, normal; number of patients analysed: ref. 48, normal n =  29, prostate 
cancer n =  150; ref. 46, normal n =  12, prostate cancer n =  76; ref. 47, 
normal, n =  9, prostate cancer, n =  17). g, h, Effect of pharmacological 
AMD1 inhibition with SAM486A on cell number (g and left h; DU145, 
n =  5; PC3, n =  4 independent experiments as indicated by dots), and 
anchorage-independent growth (right h, n =  3 independent experiments 
as indicated by dots) in PC3 or DU145 cells as indicated. Mean ±  s.e.m.  
i, Effect of pharmacological AMD1 inhibition with SAM486A in 
established DU145 xenograft tumour volume (vehicle, n =  11 tumours; 
SAM486A, n =  10 tumours). Box-and-whisker plot. j, k, Effect of 
pharmacological AMD1 inhibition with SAM486A in activated T CD4 
cell number (96 h (j), n =  3 independent experiments as indicated by dots) 
or IL-2 production (k, n =  3–6 independent experiments as indicated 
by dots). * /#P <  0.05; * * /##P <  0.01; * * * P <  0.001. Dashed line indicates 
cell number (g, h left) or IL-2 abundance (j, k) in vehicle-treated cells. 
Student’s t-test (b–d, f–h, j, k) and one-tailed Mann–Whitney test (e, i).
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | PTEN–PI3K–mTORC1-dependent regulation 
of AMD1 in prostate cancer. a, b, Amd1 protein quantification from 
Fig. 3a (a, n =  3 mice) and mRNA expression (b, n =  5 or 6 mice as 
indicated by dots) in Ptenpc−/− and Ptenpc+/+ mice of the indicated age. 
Median ±  interquartile range. c, AMD1 gene expression analysis in 
publicly available data sets (see Methods; number of patients analysed: 
ref. 48, normal n =  29, prostate cancer n =  150; ref. 46, normal n =  12, 
prostate cancer n =  76; ref. 47, normal n =  9, prostate cancer n =  17). 
d, Representative western blot showing the expression of the indicated 
proteins upon doxycycline-inducible expression (24 h) of YFP–PTENWT or 
catalytically inactive YFP–PTENC124S in PTEN-deficient LNCaP prostate 
cancer cells (n =  3 independent experiments). e, Schematic representation 
of the PI3K signalling pathway and the pharmacological/genetic tools 
used in this study. f, ProAMD1 and AMD1 protein quantification from 
Fig. 3b (sample number as indicated by dots). g, AMD1 gene expression 
upon treatment (24 h) with vehicle (V, DMSO), rapamycin (R, 20nM) and 

Torin-1 (T, 250 nM for PC3 and DU145, 125 nM for LNCaP)  
(LNCaP, n =  8 for Torin-1 and n =  6 for rapamycin; PC3 and DU145,  
n =  6 independent experiments as indicated by dots). Mean ±  s.e.m.  
h, Representative western blot analysis of AMD1 levels upon 24-h 
treatment of DU145 cells with vehicle, Torin-1 (mTORC1/2 inhibitor; 
250 nM), PD032901 (ERK-MAPK inhibitor, PD; 100 nM), SP600125  
(JNK-SAPK inhibitor, SP; 10 μ M), and SB203580 (p38-MAPK inhibitor, 
SB; 5 μ M) (n =  3 independent experiments). i, Impact of inducible 
RAPTOR silencing in DU145 cells on proAMD1 protein levels 
(doxycycline-induced, 250 ng ml−1) (representative experiment out of 
n =  6). j, Impact of inducible TSC2 silencing in DU145 cells on proAMD1 
protein levels (doxycycline-induced, 250 ng ml−1) (representative 
experiment out of n =  6). * P <  0.05; * * P <  0.01; * * * P <  0.001. Red asterisk 
in western blots indicates non-specific band. Arrows indicate specific 
immunoreactive bands. Student’s t-test (c, f, g) and Mann–Whitney  
test (a, b).
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Extended Data Figure 6 | mTORC1-dependent AMD1 regulation  
in vivo. a, Effect of spermidine (Spd, 0.75 μ M) on PC3 cell number upon 
rapamycin treatment (1 nM, outcome measured 72 h after treatment). 
Drugs were administered at day 0 and only spermidine was additionally 
administered at day 1 (n =  4 independent experiments as indicated by 
dots). b, Effect of RAD001 treatment on prostate pathological features 
and mTORC1 activity (haematoxylin and eosin and RpS6S235/6 staining 
by immunohistochemistry) (n =  3 mice). c, ProAmd1 and Amd1 protein 
abundance quantification from Fig. 3e (left; number of mice as indicated 

by dots). d, Representative immunohistochemical images of prostate 
tissue from wild-type or TRAMP mice (+ /T, 28–32 weeks old) stained 
with haematoxylin and eosin (top) and RpS6S235/6 (bottom, Ptenpc+/+ 
and Ptenpc−/− prostate tissues are presented as a comparison of the RpS6 
phosphorylation levels) (n =  3 mice). e, Evaluation of AMD1 expression  
by western blot in prostate tissues from wild-type or TRAMP mice  
(+ /T, 28–32 weeks old) (n =  4 mice). * P <  0.05; * * P <  0.01. Error bars, 
mean ±  s.e.m. Arrows indicate specific immunoreactive bands. Student’s 
t-test (a) and Mann–Whitney test (c, e).
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Extended Data Figure 7 | Contribution of mTORC1 effector pathways 
and targets on the regulation of AMD1. a, ODC1 gene expression upon 
treatment (24 h) of vehicle (DMSO), rapamycin (20 nM) and Torin-1 
(250 nM for PC3 and DU145, 125 nM for LNCaP) in PC3, LNCaP, and 
DU145 cells (n =  5 independent experiments as indicated by dots). 
Mean ±  s.e.m. b, Putrescine abundance upon treatment (24 h) of vehicle 
(DMSO), rapamycin (20 nM), and Torin-1 (250 nM) in DU145 and PC3 
cells (n =  3 independent experiments as indicated by dots). Mean ±  s.e.m. 
c, Odc1 gene expression in 3- and 6-month-old Ptenpc+/+ and Ptenpc−/− 
mice (n =  3–6 as indicated by dots). Median ±  interquartile range.  
d, Putrescine abundance in 12-week-old Ptenpc−/− mice upon treatment 
with vehicle or RAD001 (10 mg per kg (body weight), 6 days per week) 
for 4 weeks (n =  5 mice). Mean ±  s.e.m. e, Representative western blot 
(n =  3 independent experiments) depicting the changes in expression 
of the indicated proteins upon 24 h treatment of DU145 cells with 
rapamycin (20 nM) and/or DFMO (an inhibitor of ODC1, 50 μ M) with 

the corresponding vehicles. f, Representative western blot showing LC3 
lipidation in HCQ-treated (6 h) DU145 and PC3 cells, as a readout of 
macro-autophagy (n =  3 independent experiments). Arrow indicates 
LC3-II. g, For the analysis of translation initiation, polysome profiling 
analysis of AMD1 and L11 as positive control in DU145 cells treated with 
vehicle or rapamycin (20 nM, 8 h) is shown. Error bars, s.d. from technical 
replicates. h, Effect of pharmacological p70S6K inhibition with PF4708671 
(10 μ M) on AMD1 protein expression in DU145 cells (representative 
experiment out of five). i, Effect of 4EBP1/2 silencing on proAMD1 and 
AMD1 protein expression (upper panels) (representative experiment out 
of three). Lower panels show 4EBP1 (n =  5 independent experiments) 
and 4EBP2 (n =  4 independent experiments) gene expression in shRNA-
transduced DU145 cells. * P <  0.05; * * P <  0.01; * * * P <  0.001. Red asterisks 
in western blots indicate non-specific band. Arrows indicate specific 
immunoreactive bands. Student’s t-test (a, b, d, i) and Mann–Whitney  
U-test (c).
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Extended Data Figure 8 | See next page for caption.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterreSeArCH

Extended Data Figure 8 | Regulation of proAMD1 stability by 
mTORC1. a, ProAmd1 (left) and Amd1 (right) protein abundance 
quantification from Fig. 4a (n =  3 independent experiments as indicated 
by dots). Error bars, mean ±  s.e.m. b, Representative western blot of 
DU145 cells expressing Ser-229-Ala (S229A) mutant Myc-AMD1–HA 
treated with vehicle or Torin-1 (250 nM, 6 h) in the presence or absence 
of MG132 (5 μ M, 6 h) (n =  3 independent experiments). Quantification 
is provided in the right panel. c, Representative MS/MS spectrum of 
the TVLASPQKIEGFK peptide in proAMD1 and AMD1, in which 
phosphorylation was unambiguously assigned to the S298 residue.  
d, Calculated areas under the curves from extracted ion chromatogram  
in Fig. 4b of the TVLASPQKIEGFK peptide for phosphorylated 
(highlighted in red in the sequence, left) and total (right) proAMD1.  
e, Calculated areas under the curves from extracted ion chromatogram of 
the TVLASPQKIEGFK peptide for phosphorylated (highlighted in brown 
in the sequence, left) and total (right) AMD1. f, Schematic representation 

of the working hypothesis of proAMD1 regulation by mTORC1-dependent 
phosphorylation. g, Effect of Torin (250 nM) on proAMD1 and AMD1 
protein at different time points in Myc-AMD1–HA-expressing DU145 
cells (representative western blot out of three independent experiments; 
right, densitometric quantification). Error bars, s.e.m. h, i, Representative 
western blot depicting the stability of ectopic proAMD1 and AMD1 in 
DU145 cells challenged with vehicle or Torin-1 (250 nM, 2 h) upon CHX 
treatment (densitometry of proAMD1 and AMD1 levels is represented in 
right panels (h) and half-life reduction in proAMD1 (i) (n =  4 independent 
experiments). j, k, Representative western blot depicting the stability of 
S229A mutant Myc-AMD1-HA construct in DU145 cells challenged with 
vehicle or Torin-1 (250 nM, 2 h) upon CHX treatment (densitometry of 
proAMD1 is represented in the right panel (j) and half-life reduction in 
proAMD1 (k) (n =  3 independent experiments). Mean ±  s.e.m. NS, not 
significant. * P <  0.05; * * P <  0.01; * * * P <  0.001. Student’s t-test.
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Contribution of proAMD1 phosphorylation 
downstream mTORC1 to the stability of the enzyme. a, b, Representative 
western blot depicting the stability of wild type and S298A phospho-
mutant Myc-AMD1-HA constructs in DU145 cells upon cycloheximide 
treatment (densitometry of proAMD1 and AMD1 is represented in right 
panels (a) and half-life reduction in proAMD1 (b) (n =  3 independent 
experiments). Mean ±  s.e.m. c, Representative western blot depicting 
the stability of S298A phospho-mutant Myc-AMD1-HA construct in 
DU145 cells challenged with vehicle (V) or MG132 (5 μ M) upon CHX 
treatment (densitometry of proAMD1 is represented in right panel, n =  3 
independent experiments). Mean ±  s.e.m. d, mTORC1 kinase activity 
(by means of RAPTOR immunoprecipitation from HEK293 cells) on 
GST–proAMD1S229A or GST–proAMD1S229A/S298A, using bacteria-purified 
proteins. GST–p70S6K is presented as positive control. AZD8055 is 
used as control of mTORC1 inhibition. e, Correlation analysis between 

p70S6KpT389 and AMD1 densitometry values in prostate cancer specimens 
from Fig. 4c (n = 15 patient specimens). f, Quantification of AMD1 
immunoreactivity in response to everolimus in tumour biopsies, on 
the basis of the Δ H score (n =  14 specimen pairs). g, Box-and-whisker 
plot of the immunoreactivity of mTOR downstream effectors (AKTS473, 
RpS6pS240/244, 4EBP1/2pT70, eIF4GpS1108) in cancer patients with (Δ H score 
for KI67 <  0; n =  6 specimen pairs) or without (Δ H score for KI67 ≥  0; 
n =  4 specimen pairs) anti-proliferative tumour response upon treatment 
with everolimus. h, Schematic representation of the main findings of 
this study. Orn, ornithine; Put, putrescine; Spm, spermine; ODC1, 
ornithine decarboxylase 1; PIP2, phosphatidyl inositol bisphosphate; 
PIP3, phosphatidyl inositol triphosphate; * P <  0.05; * * P <  0.01; NS, not 
significant. Arrows indicate specific immunoreactive/autoradiographic 
bands. One-tailed Student’s t-test (a–c), two-tailed Mann–Whitney test 
(g), and Spearman’s correlation analysis (e).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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PPARd Elicits Ligand-Independent Repression of
Trefoil Factor Family to Limit Prostate Cancer
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Abstract

The nuclear receptor PPAR-b/d (PPARD) has essential roles in
fatty acid catabolism and energy homeostasis as well as cell
differentiation, inflammation, and metabolism. However, its con-
tributions to tumorigenesis are uncertain and have been disputed.
Here, we provide evidence of tumor suppressive activity of PPARD
inprostate cancer throughanoncanonical and ligand-independent
pathway. PPARDwas downregulated in prostate cancer specimens.
In murine prostate epithelium, PPARD gene deletion resulted in
increased cellularity. Genetic modulation of PPARD in human
prostate cancer cell lines validated the tumor suppressive activity of
this gene in vitro and in vivo. Mechanistically, PPARD exerted its
activity in a DNA binding-dependent and ligand-independent

manner. We identified a novel set of genes repressed by PPARD
that failed to respond to ligand-mediated activation. Among these
genes, we observed robust regulation of the secretory trefoil factor
family (TFF) members, including a causal and correlative associ-
ation of TFF1 with prostate cancer biology in vitro and in patient
specimens. Overall, our results illuminate the oncosuppressive
functionofPPARDandunderstandingof thepathogenicmolecular
pathways elicited by this nuclear receptor.

Significance: These findings challenge the presumption that
the function of the nuclear receptor PPARb/d in cancer is dictated
by ligand-mediated activation. Cancer Res; 78(2); 399–409. �2017
AACR.

Introduction
In the process of cellular transformation, cancer cells exhibit

profound changes in nutrient uptake and utilization as a way to
generate substrates for the production of biomass. Thismetabolic
switch in cancer cells involves rewiring of cellular signaling and
reprogramming of metabolic pathways. One of the main triggers
formetabolic reprogramming is the alteration in cancer genes that
remodel the signaling landscape (1). Seminal investigations have
demonstrated that most cancer cells reprogram their metabolism
to increase glucose uptake for glycolysis and decrease the

flux toward TCA cycle and oxidative phosphorylation, using
additional nutrients for anabolism.We have recently demonstrat-
ed that the regulation of metabolism downstream nuclear recep-
tors affects prostate cancer progression and metastasis (2). More
importantly, this study demonstrates for the first time that genetic
events such as PGC1a alteration can triggermetabolic reprogram-
ming inprostate cancer. Prostate cancer is thefifth leading cause of
death by cancer worldwide (3), second in the male population,
and it has been related to changes in glucosemetabolismand lipid
biosynthesis. However, the contribution of fatty acid oxidation
(FAO) pathways to the pathogenesis and progression of prostate
cancer remained obscure.

The family of peroxisome proliferator-activated receptors
(PPAR) plays a central role in metabolic regulation, but their
role in cancer is yet to be clarified (4, 5). In particular, PPAR b/d
(PPARd, PPARD) is a transcription factor that belongs to this
family of nuclear receptors that control target gene expression
in response to endogenous and exogenous ligands (6, 7).
PPARd is constitutively expressed in tissues (7), and its canon-
ical transcriptional activity relies on heterodimeric binding to
PPAR response elements (PPRE) with a retinoid X receptor
(RXR) moiety (8, 9). This activity is relevant for cell differen-
tiation, macrophage activation, and cancer (10). The contribu-
tion of PPARd in tumor biology through the regulation of
multiple pathways (i.e., proliferation, apoptosis, wound heal-
ing, invasion, or migration) remains controversial and has been
summarized in recent reviews (10, 11). Three primarily modes
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of regulation by PPARd have been described (12, 13): (i)
canonical ligand-induced activation and/or derepression by
PPARd, (ii) ligand-independent repression by PPARd, and (iii)
ligand-independent activation by PPARd.

In the current study, we ascertained the biological activity of
PPARd in prostate cancer. Our results reveal that PPARd exerts a
tumor suppressive activity that is independent of ligand-mediated
activation. Furthermore, we show that repression of trefoil factor
family (TFF)member 1 (TFF1) is causal to the biological function
of PPARd. This study opens a new avenue in the biological activity
of PPARd that might lead to the identification of novel patho-
physiologic functions of this nuclear receptor.

Materials and Methods
Reagents

Doxycycline (Sigma) was used at different doses to induce the
expression of cDNAor shRNA fromTRIPZ. GW501516 (Enzo Life
Sciences; ALX-420-032-M001) was dissolved in DMSO and used
at 0.1 mmol/L concentration. GW0742 and L165,041 (Tocris, refs.
2229 and1856, respectively)were dissolved inDMSOandused at
1mmol/L concentration. Etomoxir (Sigma) dissolved inwater and
used at 200 mmol/L concentration. Recombinant human TFF1
protein (R andDsystems)was dissolved inPBS at 100mmol/L and
used at 1 mmol/L final concentration.

Patient samples
All sampleswere obtained from theBasqueBiobank for research

(BIOEF, Basurto University Hospital) upon informed consent and
with evaluation and approval from the corresponding ethics
committee (CEIC-E code OHEUN11-12 and OHEUN14-14). The
patient studies were conducted in accordance with the ethical
guidelines from the Declaration of Helsinki.

Cell culture
DU145, PC3, LNCAP, PWR1E, VCAP, C4-2, and 22RV1 cell

lines were obtained from the ATCC or from Leibniz-Institut—
Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbH (DMSZ), who provided an authentication certificate,
and the identity was validated by microsatellite analysis. None
of the cell lines used in this study was found in the database of
commonly misidentified cell lines maintained by ICLAC and
NCBI Biosample. All cell lines were routinely monitored for
mycoplasma contamination and quarantined while treated if
positive. DU145, PC3, and VCAP cell lines were maintained
in DMEM media supplemented with 10% (v/v) fetal bovine
serum (FBS) and 1% (v/v) penicillin–streptomycin. The 22RV1,
LNCAP, and C4-2 cell lines were maintained in RPMI media
supplemented with 10% (v/v) FBS and 1% (v/v) penicillin–
streptomycin.

Generation of stable cell lines
293FT cells were used for lentiviral production. Lentiviral

vectors expressing shRNAs against human PPARD and human
TFF1 from the Mission shRNA Library were purchased from
SigmaAldrich. Cells were transfected with lentiviral vectors fol-
lowing standard procedures, and viral supernatant was used to
infect cells. Selection was done using puromycin (2 mg/mL) for 48
hours. As a control, a lentivirus expressing scrambled shRNA
(shC) was used. Short hairpins sequence: shC: CCGGCAACAA-
GATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG;

sh#64 against PPARD: CCGGCCGCAAACCCTTCAGTGA-
TATCTCGAGATATCACTGAAGGGTTTGCGGTTTTT and sh#50
against TFF1: CCGGTATCCTAATACCATCGACGTCCTCGAGG-
ACGTCGATGGTATTAGGATATTTTTG. pBabe-puro was a gift
fromHartmut Land & JayMorgenstern & BobWeinberg; Addgene
plasmid #1764 (14), pBabe puro PPAR delta was a gift fromBruce
Spiegelman; Addgene plasmid #8891 (15). Point mutations of
PPARDDNAbindingmotif (two conserved cysteine residues, Cys-
90 and Cys-93, were mutated to alanines) were created by site-
directedmutagenesis by using a Quick change site-directed muta-
genesis kit (Stratagene) as reported (16). HA-PPARD inducible
system was constructed by cloning PPARD into TRIPZ vector as
reported (2). Briefly, HA-PPARD was subcloned using Age1 and
Mlu1 sites into a TOPO cloning vector and then transferred to
TRIPZ vector. PPARD targeting shRNA was subcloned from
pSM2c (Open Biosystems, #5467) using XhoI andMluI sites into
a TRIPZ vector. TFF1 was amplified from human cDNA pool
(heart/thyroid mix) using primers TZ.Age.TFF1.for and TZ.Mlu.
pA.TFF1.rev, and inserted into TRIPZ (Age1-Mlu1) using Gibson
cloning. Final clone was confirmed by Sanger sequencing.
Sequences are available by request.

Western blotting
Western blot analysis was carried out as previously described

(17). Briefly, cells were seeded on 6-well plates and 4 days (unless
otherwise specified) after seeding cell lysates were prepared with
RIPA buffer (50 mmol/L TrisHCl pH 7.5, 150 mmol/L NaCl,
1 mmol/L EDTA, 0.1% SDS, 1% Nonidet P40, 1% sodium deox-
ycholate, 1 mmol/L sodium fluoride, 1 mmol/L sodium orthova-
nadate, and 1 mmol/L beta-glycerophosphate and protease inhib-
itor cocktail; Roche). The following antibodies were used for
Western blotting: mouse monoclonal anti-PPARd, 1:500 dilution
(Santa Cruz Biotechnology, F7, sc-74440) for detection of endog-
enous PPARd, rabbit polyclonal anti-PPARd, 1:1,000 dilution
(Santa Cruz Biotechnology, K20: sc-1987) for exogenous protein,
rabbit polyclonal anti-caveolin-1, 1:2,000 (BD Biosciences, Cat.
No.610059), rabbitmonoclonal anti-TFF1, 1:1,000 (Cell Signaling
Technology, 15571), rabbitpolyclonal anti-HSP-90, 1:1,000(Santa
Cruz Biotechnology, sc-4874), rabbit polyclonal anti-GAPDH,
1:1,000 (Santa Cruz Biotechnology, sc-2118) and mouse mono-
clonal anti-beta-Actin 1:2,000 dilution (clone: AC-74, catalog:
A5316, Sigma-Aldrich). After standard SDS-PAGE and Western
blotting techniques, proteins were visualized using the ECL system.

Histopathologic analysis
After euthanasia, histologic evaluation of a hematoxylin and

eosin (H&E)–stained section from formalin-fixed paraffin-
embedded prostate tissues was performed. After histopatho-
logic evaluation, quantitative assessment of the prostate glan-
dular structures by counting the number of epithelial cells in 5
high power fields (total area of 0.431 mm2) of representative
zones of the prostate was performed. Mean number of cells per
mm2 was compared between wild-type and PPARDpc�/�mice at
different ages (9 PPARDpc�/� mice with ages: 9–12 months; 10
PPARDpc�/� mice with ages: 18–20 months; 16 wild-type mice
with ages: 9–12 months; 11 wild-type mice with ages: 18–20
months).

Quantitative real-time PCR
Cells were seeded as for Western blot. Total RNA was extracted

from cells using a NucleoSpin RNA isolation kit from Macherey-
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Nagel (ref: 740955.240C). cDNAwas produced from 1 mg of RNA
using qScript cDNA SuperMix (Quanta Bioscience, ref: 95048).
Taqman probes were obtained from Applied Biosystems. Ampli-
fications were run in a Viia7 or QS6 Real-Time PCR System
(Applied Biosystems) using the following probes: PPARD
(Hs04187066_g1, cat: 4331182). For ADFP, PDK4, ANGPTL4,
Caveolin-1, TFF1, TFF2 and TFF3 amplification, Universal Probe
Library (Roche) primers and probes were used (ADFP, For:
tcagctccattctactgttcacc, Rev: cctgaattttctgattggcact; probe: 72;
PDK4, For: cagtgcaattggttaaaagctg, Rev: ggtcatctgggcttttctca; probe:
31; ANGPTL4, For: gttgacccggctcacaat, Rev: ggaacagctcctggcaatc;
probe: 44; CAV-1 For: aacacgtagctgcccttcag, Rev: ggatgggaacggtg-
tagagat, probe: 24; TFF1, For: gatccctgcagaagtgtctaaaa, Rev:
cccctggtgcttctatccta, probe: 35; TFF2, For: ccagatgcatcctctggaac,
Rev: ggaagtgctgcttctccaac, probe: 37; TFF3, For: tggaggtgcctca-
gaaggt, Rev: gctgctgctttgactccag, probe: 4). b-Actin
(Hs99999903_m1, cat: 4331182) andGAPDH (Hs02758991_g1,
cat: 4331182) housekeeping assays from Applied Biosystems
showed similar results (all qRT-PCR data presented were normal-
ized using GAPDH).

Cellular assays
FAO and soft-agar colony formation were performed as

previously described (2). Relative invasive growth experiments
were carried out plating 700 cells upside down in suspension in
20% methylcellulose medium drops. A sphere was formed in
every individual drop, and thus was considered a biological
replicate. After 3 days, when the spheres were formed, they were
embedded in a collagen based medium (55% collagen I, 20%
DMEM 5�, 21.3%H2O and 3% 0.1 N NaOH), and photos were
taken after collagen polymerization (0-hour time point). After
16 hours, photos were taken again and the relative invasive
growth was calculated with the relative area increase.

Mice
Xenograft experiments were carried out following the ethical

guidelines established by the Biosafety and Welfare Committee
at CIC bioGUNE and in accordance with an Institutional
Animal Care and Use Committee. The procedures used were
carried out following the recommendations from AAALAC.
Xenograft experiments were performed as previously described
(2), injecting either 3�106 (PPARD silencing and TFF1 ectopic
expression) or 3�105 (PPARD ectopic expression) cells per
condition (unless otherwise specified), two to four injections
per mouse. All mice (male Hsd:Athymic Nude-Foxn1 nu/nu)
were inoculated at 8 to 12 weeks of age. The PpardFloxed con-
ditional knockout allele has been described elsewhere (18).
Prostate epithelium-specific deletion was effected by the Pb-
Cre4 (19). Mice were fasted for 6 hours prior to tissue harvest (9
am–3 pm) in order to prevent metabolic alterations due to
immediate food intake.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed using

the SimpleChIP Enzymatic Chromatin IP Kit (Cat: 9003, Cell
Signaling Technology, Inc.). PC3 cells were grown in 150-mm
dishes either with or without 500 ng/mL doxycycline during
3 days. Cells from three 150 mm dishes (2.5 � 107 cells) were
cross-linked with 35% formaldehyde for 10 minutes at room
temperature. Glycine was added to dishes, and cells incubated for
5 minutes at room temperature. Cells were then washed twice

with ice-cold PBS and scraped into PBS þ PMSF. Pelleted cells
were lysed and nuclei were harvested following the manufac-
turer's instructions. Nuclear lysates were digested with micrococ-
cal nuclease for 20 minutes at 37�C and then sonicated in 500 mL
aliquots on ice for 3 pulses of 15 seconds using a Branson
sonicator. Cells were held on ice for at least 1 minute between
sonications. Lysates were clarified at 11,000� g for 10 minutes at
4�C, and chromatin was stored at �80�C. HA-Tag polyclonal
antibody (Cat: C29F4, Cell Signaling Technology) and IgG anti-
body (Cat: 2729, Cell Signaling Technology) were incubated
overnight (4�C)with rotation and protein Gmagnetic beads were
incubated 2 hours (4�C). Washes and elution of chromatin were
performed following themanufacturer's instructions. DNA quan-
tification was carried out using a Viia7 Real-Time PCR System
(Applied Biosystems) with SybrGreen reagents and primers that
amplify the predicted PPARd binding region to TFF1 or TFF3
promoter or to region of the promoter of PPARD canonical target
genes containing the canonical PPARD DNA binding domain (as
shown in Supplementary Table S1).

Transcriptomic analysis
For transcriptomic analysis in empty-vector–transduced PC3

cells and PPARD-expressing counterparts, the Illumina whole-
genome -HumanHT-12_V4.0 (DirHyb, nt) method was used as
reported previously (2). Probes not detected in at least one
sample (P > 0.01) were excluded for subsequent analyses as
they are considered to represent transcripts that are not
expressed. For the detection of differentially expressed genes,
a linear model was fitted to the data, and empirical Bayes
moderated t-statistics were calculated using the limma package
from Bioconductor. Adjustment of P values was done by the
determination of false discovery rates (FDR) using Benjami–
Hochberg procedure. Establishment of differentially expressed
genes was based on fold change (fc) �1.5 or ��1.5 and
adjusted P value � 0.05.

Data availability
Transcriptomics data are available at GEO (GSE95054). The

link for the reviewers is provided At https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token¼glcvicamrtelngd&acc¼GSE95054.

Statistics and reproducibility
No statistical method was used to predetermine sample size.

The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assess-
ment. Unless otherwise stated, data analyzed by parametric tests
are represented by the mean � SEM of pooled experiments and
median � interquartile range for experiments analyzed by non-
parametric tests. N values represent the number of independent
experiments performed, the number of individualmice or patient
specimens. For each independent in vitro experiment, at least three
technical replicates were used and a minimum number of three
experiments were performed to ensure adequate statistical power.
In the in vitro experiments, normal distribution was assumed and
one sample t test was applied for one-component comparisons
with control and Student t test for two-component comparisons.
For in vivo experiments as well as for experimental analysis of
human biopsies (from Basurto University Hospital), a nonpara-
metric Mann–Whitney exact test was used. Spearman rank cor-
relation coefficient was applied for correlation analysis for sam-
ples not following a normal distribution. The confidence level
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used for all the statistical analyses was of 95% (alpha value ¼
0.05). Two-tailed statistical analysis was applied for experimental
design without predicted result, and one-tail for validation or
hypothesis-driven experiments.

Results
PPARd inhibits prostate cancer aggressiveness

In order to elucidate the contribution of PPARd to prostate
cancer biology, we first undertook an in vivo approach. We
evaluated PPARD mRNA (11 benign prostate hyperplasia and
16 primary prostate cancer tissue extracts harvested following the
guidelines reported; ref. 20) in human specimens. The results
revealed a significant downregulation of PPARD in cancerous
tissues compared with benign disease (Fig. 1A). Importantly,
these results were corroborated in publicly available datasets
using Oncomine (21; Supplementary Table S2). Next, we deleted
Ppard conditionally in the mouse prostate epithelium using
Probasin-Cre4 promoter (19), which led to increased cellularity

both in adult (9–12 months old) and aged (18–20 months old)
mice (Fig. 1B–D).

These results are supportive of an oncosuppresive role of
PPARd in prostate cancer and prompted us to characterize the
biological and molecular consequences of PPARD manipulation
in experimental systems. Using benign immortalized prostate
cells (PWR1E) as a baseline, we identified prostate cell lines
with elevated (DU145) or reduced (PC3, LNCAP) expression of
PPARd, so we chose these to genetically manipulate PPARd levels
(Supplementary Fig. S1A–S1C). DU145 cells were subject to
PPARD silencing by means of constitutive (pLKO, sh64; Supple-
mentary Fig. S1D–S1F) or inducible (TRIPZ-shPPARD) expres-
sion of short hairpin (sh) RNAs against PPARD gene (different
hairpin sequences were used to exclude off-target effects; Supple-
mentary Fig. S1G). In coherence with the in vivo data, PPARD
silencing resulted in increased aggressiveness features of DU145
cells, namely soft-agar colony formation and invasive growth
(Fig. 1E and F; Supplementary Fig. S1H). Importantly, PPARD
silencing-induced prostate cancer aggressivenesswas confirmed in

Figure 1.

PPARd exhibits tumor suppressor activity. A, PPARD expression in prostate cancer (PCa; n ¼ 16) and benign prostate hyperplasia (BPH; n ¼ 11) patients.
B, Representative images of H&E-stained tissues of wild-type (WT) and PPARD knock out (PPARD cKO) of 12-month-old mice. C and D, Quantitative assessment
of the prostate glandular structures by counting the number of epithelial cells. Mean number of cells permm2 is represented as 9- to 12- and 18- to 20-month-oldmice
(9 months, n ¼ 16; 12 months, n ¼ 9; 18 months, n ¼ 11; 20 months, n ¼ 10). E and F, Effect of PPARD silencing with a short hairpin (sh64) in DU145 cells on
anchorage independent growth (n¼ 11;E) and on the invasive growth capacity after 16 hours (n¼ 3; in each individual experiment, amean of 20 colonieswas counted
and is represented in F). G and H, Impact of PPARD silencing in DU145 cells on tumor weight (G) and tumor growth rate (n ¼ 5 mice; two injections per mouse; H).
I and J, Effect of PPARD ectopic expression in PC3 cells on anchorage-independent growth (n ¼ 7; I) and on the invasive growth capacity after 16 hours (n ¼ 3;
in each individual experiment, a mean of 20 colonies was counted and is represented in J. K and L, Impact of PPARD ectopic expression in PC3 cells on
tumor weight (K) and tumor growth rate (n¼ 5mice; four injections permouse; L). Scale bar, 50 mm. Error bars, SEM. � , P <0.05; �� , P < 0.01; ��� , P <0.001 compared
with control. Statistics test: two-tailed Student t test (A), one-tailed Mann–Whitney U test (C, D, F–H, J–L), one-sample t test (E and I). a.u., arbitrary units; shC,
scramble shRNA.
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vivo. Using subcutaneous xenografts, we observed that PPARD
silencing in DU145 cells led to elevated tumor growth rate and
tumor mass (Fig. 1G and H). Conversely, we overexpressed
this gene with constitutive (pBabe-PPARD; Supplementary
Fig. S1I–S1K) or inducible (TRIPZ-HA-PPARD) viral vectors (Sup-
plementary Fig. S1L) and we evaluated the biological conse-
quences. PPARD ectopic expression in PC3 cells resulted in
reduced soft-agar colony formation and invasive growth
(Fig. 1I and J; Supplementary Fig. S1M). Moreover, inoculation
of PPARd-expressing PC3 cells in the flank of immunocompro-
mised mice resulted in reduced tumor growth rate and mass
(Fig. 1K and L). It is worth noting a recent report that presented
evidence of positive regulation of caveolin-1 (CAV1) downstream
PPARd leading to prostate cancer growth (22). However, we
could not corroborate the biological nor the molecular results
reported (Fig. 1; Supplementary Fig. S1N–S1P). Taken together,
our results reveal that PPARd expression decreased the aggres-
siveness of prostate cancer cells in vitro and in vivo, in line with the
decrease in PPARD expression observed in human prostate cancer
specimens.

The prostate tumor suppressive activity of PPARd is ligand
independent

PPARs exist in ligand-free and ligand-bound states. Unliganded
PPARs have been reported to operate as a transcriptional repressor
through the interaction with histone deacetylase complexes
(HDAC), whereas ligand binding favors the release of HDACs
and the interactionwith histone acetyltransferases (HAT), leading
to transcriptional activation (9, 23). One of the biochemical
routes regulated by the transcriptional program downstream
PPARD is FAO (24, 25).We evaluated the expression of canonical
PPARd target genes (ADFP, ANGPTL4, PDK4; ref. 26) and FAO.
Interestingly, endogenous PPARD silencing increased both read-
outs (Fig. 2A and B, Supplementary Fig. S2A). Conversely, PPARd
overexpression in PC3 and LNCaP cells reduced the expression of
these targets (Fig. 2C; Supplementary Fig. S2B–S2F) and inhibited
FAO (Fig. 2D). We sought to validate these results in human
specimens. Taking advantage of the previously presented sample
set (Fig. 1A),we evaluated themRNA levels of the aforementioned
PPARd targets and observed a significant upregulation (Fig. 2E–
G). Furthermore, the negative correlation of PPARd with these
targets and the strong correlation among themselves supported
the repressive activity reported in vitro (Fig. 2H–J; Supplementary
Table S3). These results indicate that PPARD functions as a
transcriptional repressor in prostate cancer probably owing to
the lack of endogenous ligands in sufficient concentration, in
agreement with other reports (27).

To ascertain whether ligand-bound PPARd would switch to a
transcriptional activator mode in prostate cancer, we treated
control or PPARD-expressing PC3 cells with the synthetic
agonist GW501516 (GW; ref. 24). GW treatment did not alter
PPARD levels (Supplementary Fig. S2G) but switched the
activity on its canonical targets from transcriptional repression
to activation (Fig. 2K), which was accompanied by elevation
of FAO (Fig. 2L). These results were validated with structur-
ally unrelated synthetic PPARD ligands (Supplementary Fig.
S2H–S2J). Of note, the direct regulation of these target genes
by PPARd was confirmed by ChIP analysis (Supplementary
Fig. S2K–S2M).

Our results show that canonical PPARd target regulation
switches from transcriptional repression to activation based on

ligand availability. Because we have shown that PPARD opposes
prostate cancer growth, we asked whether PPARD agonists would
also revert this tumor suppressive activity. Strikingly, PPARD-
expressing PC3 cells treated with GW did not recover their ability
to grow in anchorage-independent conditions (Fig. 2M). Overall,
our results strongly suggest that the tumor suppressive activity of
PPARd in prostate cancer relies on an unprecedented ligand-
independent function of the nuclear receptor.

The prostate tumor suppressive activity of PPARd is DNA
binding dependent

Because PPARd regulates the vast majority of its biological
activities through binding to DNA, we next studied to which
extent the DNA binding capacity of this nuclear receptor was
required for its biological activity. We generated a DNA binding
mutant (DNAmut) PPARd (16), which we transduced into PC3
cells. As predicted, PPARd-DNAmut failed to mimic the activity of
itsWT counterpart on the regulation of canonical targets and FAO
(Supplementary Fig. S3A–S3E). With regard to the biological
activity, PPARd-DNAmut did not reduce soft-agar colony forma-
tion nor invasive growth (Fig. 3A and B). In vivo, PPARd-DNAmut

expressing PC3 cells did not exhibit reduced tumor growth rate
and mass compared with empty-vector transduced cells, and
showed a significant recovery in these parameters compared with
WT PPARd-expressing counterparts (Fig. 3C and D). These data
show that the tumor suppressive activity of PPARd, which we
report to be ligand independent, requires binding of the nuclear
receptor to DNA.

PPARd represses trefoil factor family gene expression to inhibit
prostate cancer aggressiveness

Our results reveal that PPARd exerts a tumor suppressive
activity that is ligand-independent and DNA-binding dependent.
Thus, we developed an experimental design to identify the tran-
scriptional targets of this nuclear factor that would be potentially
associated with this biological activity (Fig. 4A), based on two
premises: (i) that their expression is regulated in PPARD over-
expressing cells; (ii) that the type of regulation elicited by PPARD
is not reverted in the presence of an agonist (thus ligand inde-
pendent). On the one hand, we performed transcriptomics anal-
ysis with empty-vector transduced PC3 cells and PPARD-
expressing counterparts. From this comparison, we focused on
PPARd-regulated genes. On the other hand, this approach was
carriedoutwithPPARD-expressing cells in the absence or presence
of GW, which would allow us to rule out those genes regulated
upon ligand binding.We therefore selected genes that presented a
significant difference in expression upon PPARD expression
(PC3-PPARD vs. PC3-pBabe, P < 0.05; �1.5 > fold change >
1.5) that was retained also upon ligand treatment (PC3-PPARDþ
GW vs. PC3-pBabe, P < 0.05; �1.5 > fold change > 1.5) as
illustrated in Fig. 4A. This analysis led to the identification of
candidate genes to mediate the ligand-independent activity of
PPARd. Surprisingly, the TFF stood among the top 10 genes
downregulated by PPARD, which expression was not reverted by
ligand treatment (Fig. 4B and Supplementary Table S4). We
validated the repression of TFF1 and 3 upon PPARD expression
by real-time quantitative PCR, whereas TFF2 expressionwas at the
limit of detection (Fig. 4C; Supplementary Fig. S4A). As predicted
from the experimental design, the repression of TFF1 and 3
elicited by PPARd expression was not reverted by the treatment
with structurally unrelated ligandsof thenuclear receptor (Fig. 4C;
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Supplementary Fig. S4A–S4C). Conversely, PPARD silencing in
DU145 cells resulted in increased TFF1 expression (Fig. 4D).
Importantly, TFF1 and 3 were significantly upregulated in our
cohort of prostate cancer specimens compared with benign pros-
tate hyperplasia (Fig. 4E; Supplementary Fig. S4D). Deeper anal-
ysis of PPARD and TFF expression in patient-derived specimens
revealed a significant inverse correlation between the expression
of the nuclear factor and TFF1, but not TFF3 (Fig. 4F; Supple-
mentary Fig. S4E).

Our data show that PPARd regulates the expression of TFFs in a
ligand-independent manner. To elucidate whether this effect was
direct on the promoter of the candidate genes, we performedChIP
with HA-tagged PPARD (Supplementary Fig. S4F and S4G). The
analysis showed that this nuclear factor binds to the proximal
regionofTFF1 andalso to a large regionof theTFF3promoter (Fig.
4G; Supplementary Fig. S4H). It is worth noting that the distal R6
region of TFF1 promoter did not exhibit any significant PPARD
binding, thus acting as an internal negative control of the assay.

Figure 2.

PPARd tumor suppressive activity is ligand independent. A, Expression of PPARD canonical target genes (n ¼ 15) upon PPARD silencing with a short hairpin
(sh64) in DU145 cells. B, Effect of PPARD silencing on FAO (n ¼ 8) in DU145 cells. C, Expression of PPARD canonical target genes (n ¼ 15) upon PPARD
ectopic expression in PC3 cells. D, Effect of PPARD ectopic expression cells on FAO (n¼ 10) in PC3 cells. E–G, PPARD target gene expression, ADFP (E), PDK4 (F),
and ANGPTL4 (G) in prostate cancer (PCa; n ¼ 16) and benign prostate hyperplasia (BPH; n ¼ 11) patients. H–J, Correlation analysis of PPARD expression
with ADFP (n ¼ 15; H), PDK4 (n ¼ 16; I), and ANGPTL4 (n ¼ 13; J) in prostate tissue used in E–G and Fig. 1A. K–M, Effect of PPARD synthetic ligand
GW506015 (GW, 0.1 mmol/L, 48 hours) on PPARD canonical target genes expression (ADFP, n ¼ 7; PDK4, n ¼ 10; ANGPTL4, n ¼ 6; K), on FAO (n ¼ 3; L),
and on anchorage-independent growth (n¼ 4;M) upon PPARD ectopic expression in PC3 cells. Error bars, SEM. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001 comparedwith
control. Statistics test: one sample t test when compared with control (A–D and K–M) and Student t test in two-component comparisons (K–M), one-tailed
Mann–Whitney U test (E–G), and Spearman correlation (H–J). shC, scramble shRNA; a.u., arbitrary units.
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TFFs are secreted proteins that act on cellular signaling through
poorly defined mechanisms (28). In order to elucidate the con-
tribution of TFF1 to prostate cancer, we overexpressed TFF1 in
DU145 cells using an inducible (TRIPZ-TFF1) viral vector (Sup-
plementary Fig. S5A and S5B) and observed increased soft-agar

colony formation in vitro (Fig. 5A) and tumor growth rate and
mass in vivo (Fig. 5B and C).

Next, we ascertained the requirements of TFF1 regulation for
the tumor suppressive activity of PPARd. On the one hand, we
treated PPARD-expressing cells with recombinant human TFF1

Figure 3.

PPARd acts as a cis transcriptional repressor. A, Effect of PPARD synthetic ligand GW506015 (GW, 0.1 mmol/L, 48 hours) on anchorage independent
growth (n ¼ 5) upon PPARD and PPARD DNAmut (DNAmut) ectopic expression in PC3 cells. B–D, Effect of PPARD DNAmut on the invasive growth
capacity (n ¼ 3, in which in each individual experiment, a mean of 20 colonies was counted and is represented in B), on tumor weight (C), and tumor growth
rate (n ¼ 3 mice; four injections per mouse; D) upon PPARD and PPARD DNAmut (DNAmut) ectopic expression in PC3 cells. Error bars, SEM. � , P < 0.05;
�� , P < 0.01; ��� , P < 0.001 as indicated; #, compared with pBABE; $, compared with. pBABE þ GW. Statistics test: one sample t test when compared with
control (A) and Student t test in two-component comparisons (A) and one-tailed Mann–Whitney U test (B–D). ns, not significant.

Figure 4.

PPARd represses TFF1 independently of ligand.A,Data processing diagram from themicroarray analysis carried out in pBabe, PPARD, andPPARDþGW(0.1mmol/L,
48 hours) PC3 cells (n ¼ 3 per group). B, Fold change (FC) expression of PPARd upregulated and downregulated genes independently of ligand obtained in
A. Arrows, members of the TFF. C, Effect of PPARD synthetic ligand GW506015 (GW, 0.1 mmol/L, 48 hours) on TFF1 gene expression (n ¼ 6) in
PC3 cells upon PPARD ectopic expression. D, TFF1 gene expression (n ¼ 5) upon PPARD silencing with a short hairpin (sh64) in DU145 cells. E, TFF1 gene
expression in prostate cancer (PCa; n ¼ 15) and benign prostate hyperplasia (BPH; n ¼ 10) patients. F, Correlation analysis of TFF1 and PPARD gene expression
in cancer and benign prostate hyperplasia patients (n¼ 25). G, ChIP of exogenous HA-PPARD on TFF1 promoter using HA-tag antibody in PC3 cells after induction
with 0.5 mg/mL doxycycline for 3 days (n ¼ 3). Data were normalized to IgG (negative-binding control). Bottom, the different regions (R1-R6) chosen for the
analysis of PPARD occupancy. R6, negative binding control. Error bars, SEM. � , P < 0.05; ��� , P < 0.001 compared with control. Statistics test: one
sample t test when compared with control (C and D) and Student t test in two-component comparisons (C), one-tailed Mann–Whitney U test (E), Spearman
correlation (F), and one-tailed Student t test (G). ns, not significant; a.u., arbitrary units; dox, doxycycline.

PPARd Blocks Prostate Cancer through a Noncanonical Pathway

www.aacrjournals.org Cancer Res; 78(2) January 15, 2018 405



(rhTFF1) protein. As predicted, rhTFF1 partially rescued the defect
of PPARD-expressing cells in anchorage-independent growth
(Fig. 5D) and invasive growth (Fig. 5E). On the other hand, we
transduced DU145 cells carrying constitutive scramble or
PPARD shRNAs with TFF1 shRNA-expressing lentivirus (or
scramble shRNA expressing controls; the efficacy of TFF1 silenc-
ing was tested in the TFF1 high-expressing PC3 cell line;
Supplementary Fig. S5C and S5D). The results confirmed that
TFF1-silenced cells exhibited reduced colony forming ability
and tumor growth, and, importantly, failed to show the ele-
vation in this parameter elicited by PPARD shRNA (Fig. 5F–H).
Overall, our data provide evidence of a tumor suppressive

activity of PPARd stemming from the ligand-independent reg-
ulation of TFF1 in prostate cancer.

Discussion
The physiological activity of PPARd has been described in great

detail (9–11).However, its role in cancer remains controversial. In
addition, conclusions of PPARd activity based on the use of
synthetic agonists have added complexity to its biological activity.
It has been reported that activation of PPARd by synthetic
ligands such as GW501516 or GW0742 promotes oncogenesis
in prostate, thyroid, breast cancer, or liposarcoma cells, whereas

Figure 5.

TFF1 downregulation contributes to the tumor suppressive activity of PPARd in prostate cancer. A, Effect of TFF1 ectopic expression (induction
with 0.5 mg/mL doxycyclin) in DU145 cells on anchorage-independent growth (n ¼ 4). B and C, Effect of TFF1 conditional overexpression in established
prostate tumors of DU145 cells on tumor weight (B) and tumor growth rate (n ¼ 6 mice; two injections per mouse; C). Doxycycline diet was given to
the treatment group on day 12 after xenograft injection when tumors reached 100 mm3. D and E, Effect of recombinant human TFF1 protein (rhTFF1) on
anchorage-independent growth (n ¼ 3; D) and on the invasive growth capacity (n ¼ 3; in each individual experiment, a mean of 10 colonies was counted
and is represented in E) upon PPARD ectopic expression in PC3 cells. F–H, Effect of TFF1 silencing with a short hairpin (shTFF1) upon PPARD silencing with
a short hairpin (shPPARD, previously identified as sh64) in DU145 cells in vitro on anchorage-independent growth (n ¼ 3; F) and in vivo in tumor growth and mass
(n ¼ 5 mice; two flanks per mouse; G and H). shC, pLKO lentiviral vector expressing scramble shRNA; VC, vehicle control. Error bars, SEM; �/#/$, P < 0.05; ��/##/$$,
P < 0.01; ���/###/$$$, P < 0.001. For G: �, shPPARD-shC vs. shC-shC; #, shTFF1-shC vs. shC-shC; $, shPPARD-shC vs. shC-shC; for H: � , indicated condition
vs. shC-shC; #, indicated condition vs. shPPARD-shC. Statistics test: one-sample t test when compared with control (A, D, F) and Student t test in two-component
comparisons (D and F), one-tailed Mann–Whitney U test (B, C, E, G, H); ns, not significant; a.u., arbitrary units; dox, doxycycline.
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antagonizing PPARd inhibits tumorigenesis in lung, liver, breast,
or prostate cell lines (29–31). Conversely, various studies have
demonstrated that the activation of PPARd by agonists reverts or
inhibits tumorigenesis in colorectal, liver, skin, breast, testicular,
pancreatic cancer, or neuroblastoma cells (32–39), in line with
the notion that the deregulation of this nuclear receptor promotes
oncogenesis in Ppard-deficient mice and colorectal cancer cells
(40, 41). The expression status of PPARd in cancer has been
evaluated by different groups with contrasting results, which may
be related to the tissue of origin and themethod for quantification
of PPARD levels (42–44). Importantly, the publication of the
Human Protein Atlas portal (44) allowed a comprehensive anal-
ysis of PPARd protein expression in different tissues and demon-
strated a lower expression of this nuclear receptor in prostate,
colorectal, urethral, liver, breast or ovarian cancer, among others.
Our results provide evidence for a decrease of PPARd expression in
prostate cancer that has consequences on the biology of the
disease, suggesting that tumor suppression could be a major role
for this nuclear receptor in the prostate epithelium.

The vastmajority of effects elicitedbyPPARd dependon specific
ligands binding to the ligand binding domain (LBD) of the
nuclear factor (9). However, recent studies report transcriptional
activity of PPARd that does not require ligand challenge. First,
PPARd-regulated transcriptional repression of ANGPTL4 med-
iates tumor suppression in breast cancer (27). Interestingly, the
authors identify in this study105genes that are sensitive toPPARD
silencing but not to the effect of agonists or inverse agonists.
Second, an extensive study on the transcriptional regulation by
PPARd in keratinocytes identified differentmodes of action of this
nuclear receptor (13). Importantly, a significant number of genes
in this studypresented a regulationbyPPARd thatwas constitutive
and ligand independent, suggesting that this factor could cross-
talkwith other transcriptional regulators (13).Our results provide
evidence for a repressive and ligand-independent activity of
PPARd in prostate cancer that drives tumor suppression.

The TFF comprises three members that were identified as
secreted factors produced by cells in mucosa. Interestingly,
the function of TFFs has been related to inflammation, prolif-
eration, and invasiveness, and these factors have been catego-
rized as growth factor-like molecules. The alteration of TFF
expression has been widely studied and reviewed (28, 45), and
there is an overall consensus that these proteins are overex-
pressed in tumors, with a few exceptions. In prostate cancer TFF1
and 3 are upregulated and have been proposed as tissue and
body fluid cancer biomarkers (46–52). Moreover, experimental
evidence demonstrate that expression of TFF1 and 3 in prostate
cancer increases oncogenicity by means of proliferation, surviv-
al, anchorage-independent growth, and invasiveness (53, 54),
whichwe validate in our experimental systems in vitro and in vivo.
Yet, little is known about their regulation. The upregulation has
been addressed at different levels, and hypomethylation of the
promoter has been postulated as amechanism in prostate cancer
(45, 55). Our results show that PPARd is a negative regulator of
TFF expression, which could contribute the upregulation of TFFs
observed in prostate cancer.

TFF regulation by PPARd in a ligand-independent manner
would allow the uncoupling of its ligand-dependent physiolog-
ical activities from tumor-suppressive constitutive functions of
the nuclear factor. This new perspective opens new and exciting
opportunities to elucidate the dualities of this family of nuclear
receptors in cancer.
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ABSTRACT
Prostate cancer is diagnosed late in life, when co-morbidities are frequent. 

Among them, hypertension, hypercholesterolemia, diabetes or metabolic syndrome 
exhibit an elevated incidence. In turn, prostate cancer patients frequently undergo 
chronic pharmacological treatments that could alter disease initiation, progression 
and therapy response. Here we show that treatment with anti-cholesterolemic 
drugs, statins, at doses achieved in patients, enhance the pro-tumorigenic activity 
of obesogenic diets. In addition, the use of a mouse model of prostate cancer and 
human prostate cancer xenografts revealed that in vivo simvastatin administration 
alone increases prostate cancer aggressiveness. In vitro cell line systems supported 
the notion that this phenomenon occurs, at least in part, through the direct action on 
cancer cells of low doses of statins, in range of what is observed in human plasma. In 
sum, our results reveal a prostate cancer experimental system where statins exhibit 
an undesirable effect, and warrant further research to address the relevance and 
implications of this observation in human prostate cancer.
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INTRODUCTION

The initiation, progression and therapeutic 
eradication of cancer is largely associated to the evolving 
mutational landscape of the tumor [1]. However, tissue-
specific factors, the tumor microenvironment and the 
immune activation status are determinant factors of 
cancer cell survival and progression [2]. Critically, 
systemic metabolic alterations, nutrition, obesity and 
comorbidity-derived long-term therapies in elderly 
population shape the incidence and aggressiveness 
of cancer in our society [3-6]. Prostate cancer (PCa) is 
among the most frequent tumor type in men, and the 
main risk factors include family history, race and age 
[7]. Importantly, due to its predominant diagnosis in men 
above 60 years old, comorbidities are frequent. These 
include obesity, metabolic syndrome, arterial hypertension 
and diabetes [8]. In turn, PCa patients at the time of 
diagnosis are commonly subject to chronic therapies. 
Anti-hypercholesterolemic treatment is prescribed to 
millions of individuals around the globe in the form of 
statins, and their benefits and harms have been studied 
[9]. Due to their extensive and chronic use, it is of the 
utmost importance to carefully evaluate the impact of this 
long-term therapy on the biology of cancer, at doses and 
administration modes achieved in human subjects. In this 
study, we evaluated the impact of statin treatment in the 
pathogenesis and progression of PCa. Through the use of 
PCa mouse models, cellular systems and observational 
studies in patients we demonstrate that treatment with 
these compounds is associated to increased aggressive 
features in this disease.

RESULTS

Anti-hypercholesterolemic treatments are often 
prescribed in the context of overweight or obesity [16]. 
Therefore, in order to evaluate the impact of statins (the 
main family of anticholesterolemic compounds, inhibitors 
of the mevalonate pathway enzyme Hydroxymethyl 
glutaryl CoA reductase - HMGCR) in PCa biology, 
we first evaluated the effect of statin exposure in the 
context of obesity in Pten prostate-specific heterozygous 
mice (Ptenpc+/-), which exhibit a weak, non-cancerous 
phenotype [10, 17]. We focused on the predominant statin 
used in the clinic, simvastatin. It is worth noting that the 
hydrophilic nature differs among statins, which could 
lead to distinct biological consequences in vivo [18]. We 
queried the available bibliography (Supplementary Table 
1) and determined a low dose of simvastatin with proven 
biological activity [19]. Simvastatin was loaded in food 
pellets and provided ad libitum, thus enabling the uptake of 
simvastatin in an administration mode and concentration 
comparable to human subjects, including the activation of 
the drug in the liver [20]. We established an experimental 
design in which we induced obesity by feeding the mice 

with western diet (containing high fat and carbohydrates) 
[21], and once the obesity was achieved, simvastatin was 
loaded to the obesogenic diet (Figure 1a for experimental 
design). At the end of the experiment, the weight of the 
mice on western diet was significantly increased compared 
to mice on standard diet (45.44 ± 1.34 gr versus 40.72 
± 2.15 gr, p = 0.04), whereas simvastatin addition to 
western diet did not have an impact on this parameter 
(46.83 ± 1.05 gr, p = 0.43). The combination of obesity 
and statin treatment increased prostate mass (Figure 1b). 
At the histological level, obese Ptenpc+/- mice exhibited 
50% incidence of prostate intraepithelial neoplasia (PIN) 
at 11 months of age, without the appearance of invasive 
carcinoma lesions (Figure 1c, d). Strikingly, simvastatin 
treatment administered after the onset of obesity (Figure 
1a) led to invasive cancerous lesions with an incidence 
of 45%, a phenotype only achieved in this mouse model 
when both copies of Pten are lost in the prostate epithelium 
[10, 13] (Figure 1c, 1d). Molecular analysis of these 
prostates revealed that simvastatin treatment exacerbated 
cell proliferation, accounted by Ki67 positivity (Figure 
1d, 1e). These results provide unprecedented evidence for 
an undesired consequence of the treatment with statins in 
obese individuals with genetic predisposition to develop 
PCa.

We next evaluated the impact of statin treatment 
on PCa initiation using a Pten prostate-specific knockout 
(Ptenpc-/-), which allows the study of proliferative burst 
under oncogenic signalling [13, 17]. Four-week statin 
treatment in Ptenpc-/- at the time of Pten excision and 
disease onset (8 weeks of age) resulted in an increased 
prostate mass and proliferation, without overt histological 
changes (Figure 2). 

PCa initiation, progression and resistance to therapy 
depend on distinct molecular mechanisms. Advanced PCa 
is currently treated with androgen-deprivation therapy 
[22]. Previous reports have documented that Ptenpc-/- 
mice subject to orchiectomy exhibit overall pathological 
response [23]. Therefore, we performed surgical castration 
in order to address effects of statins on cancer cell biology 
beyond proliferation (Supplementary Figure 1a). In line 
with the undesirable effect of statin treatment observed 
in the other experimental systems, we observed a trend 
towards increased prostate mass and castration resistance 
in simvastatin-treated mice (Supplementary Figure 
1b-d), in the absence of a significant alteration in cell 
proliferation (Supplementary Figure 1d, e). 

In sum, the use of a faithful mouse model of PCa 
uncovers an unexpected effect of simvastatin that is 
associated to the increase of PCa cell proliferation, cancer 
initiation and resistance to therapy. 

Our data provides evidence of the undesirable effect 
of simvastatin in murine PCa. To extrapolate these results 
to human PCa, we took advantage of a human PCa cell 
line, PC3, and evaluated the impact of simvastatin feeding 
on tumor growth in subcutaneous xenografts. In line 
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with our previous results, simvastatin fed mice exhibited 
significantly heightened tumor growth rate (Figure 3a). 

Multiple reports have documented the antitumoral 
effect of statins in vitro. The majority of these studies 
rely on doses of these compounds in the micromolar 
range [24-45] (Supplementary Table 2). However, the 
concentration of statins found in plasma of patients 
subject to anti-cholesterolemic treatments is in the 
nM range [46]. Therefore, we sought to establish an in 
vitro experimental model that would recapitulate the 
concentration of statins achieved in patients. To this 
end, we first corroborated the reported effects of high 
simvastatin doses. Micromolar doses of simvastatin 
elicited an anti-proliferative and cytotoxic response in PCa 
cells (Supplementary Table 2; Supplementary Figure 2a, 

b). Next, we designed an experimental approach aimed at 
ascertaining the cell autonomous biological consequences 
of low simvastatin doses in PCa cells. We pre-treated 
PC3 cells with 50 nM simvastatin for a minimum of 7 
days, which did not result in any sign of toxicity in two-
dimensional growth assays (Figure 3b, Supplementary 
Figure 2c). This treatment schedule did not affect cell 
migration (Supplementary Figure 2d), but surprisingly 
resulted in elevated self-renewal capacity and anchorage-
independent growth (Figure 3c, 3d). Of note, the effect of 
simvastatin in vitro was recapitulated in other cell lines 
(LNCaP and 22RV1, Figure 3d) and with an alternative 
HMGCR inhibitor (fluvastatin, Supplementary Figure 
2e). Moreover, moderate genetic inhibition of HMGCR 
with two independent doxycycline-inducible shRNAs 

Figure 1: Simvastatin administration cooperates with obesogenic diets to drive prostate cancer. a. Schematic representation 
of the experimental design. 4-6 week-old prostate-specific Pten-heterozygous (Ptenpc+/-; pc+/-) mice were fed with western diet (WD) to 
induce obesity. At 6 months of age, mice were randomly assigned to WD or WD loaded with simvastatin (WD + SIM) and fed for 5 months, 
and tissues were harvested and analysed. b. Prostate lobes weights of Pten-heterozygous (Ptenpc+/-; pc+/-) mice fed with WD (n = 16) or 
WD + SIM (n = 11). VP, DLP, AP refer to ventral, dorsolateral and anterior prostates, respectively. c. Histopathological characterization 
of the prostate (Normal: no lesions; LGPIN: Low-grade prostatic intraepithelial neoplasia; HGPIN: High-grade prostatic intraepithelial 
neoplasia; Cancer: prostate adenocarcinoma) (WD, n = 16, WD+SIM, n = 11). d. Representative histological images of the prostate. Left, 
H&E (Haematoxylin-eosin) and right, Ki67 staining. WD shows non-cancerous tissue, WD+SIM shows adenocarcinoma. e. Quantification 
of Ki67 positive nuclei (%), indicating proliferating cells (WD, n = 5; WD SIM, n = 5). Statistical analysis: Mann-Whitney statistic test (b, 
e) and Chi Square test with 3 degree freedom (c). Error bars represent median with interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Supplementary Figure 2f, g) elicited an effect comparable 
to simvastatin in anchorage-independent growth. 
Conversely, subtle HMGCR over-expression elicited the 
predicted opposing effect (Supplementary Figure 2f, h). 

Since anchorage-independent growth and self-
renewal capacity are required steps in tumor re-initiation 
and metastatic seeding [47], we evaluated whether PC3 
cells treated for 7 days with 50 nM simvastatin would 
harbour elevated metastatic capacity. To this end, we 
injected PC3 cells pre-treated with vehicle or simvastatin 
in the tail vein of immunocompromised mice, and analysed 
the appearance of lung metastatic lesions (Supplementary 
Figure 2i right). Simvastatin treatment did not reduce 
metastatic burden, but rather resulted in increased rate of 

lung metastasis, which did not reach statistical significance 
(p = 0.1) probably owing to the low number of mice 
(Supplementary Figure 2i). In sum, our results support the 
existence of a biological context where statin treatment 
could promote features of PCa aggressiveness. 

The effect of statins could be associated to the 
alteration in major oncogenic signalling pathways 
sustaining PCa function. Therefore, we evaluated 
the levels and/or activity of androgen receptor (AR), 
Phosphoinositide 3-kinase (PI3K, using as a readout 
serine 473 phosphorylation of AKT) and mitogen 
activated protein kinase (MAPK, using as a readout 
tyrosine 202/204 phosphorylation of ERK - extracellular 
signal regulated kinase) in AR-expressing LNCaP (AR-

Figure 2: Simvastatin administration increases feature of aggressiveness in prostate cancer initiation. a. Schematic 
representation of the experimental design. 8 week-old Pten-deficient (Ptenpc-/-; pc-/-) mice were fed with simvastatin-loaded (SIM) diet or 
chow for four weeks, and tissues were harvested and analysed. b. Prostate lobe weights of Pten-deficient mice fed chow (pc-/- Chow, n 
= 18) and SIM diet (pc-/- SIM, n = 9). VP, DLP, AP refer to ventral, dorsolateral and anterior prostates respectively. c. Histopathological 
characterization of the prostate. (LGPIN: Low-grade prostatic intraepithelial neoplasia; HGPIN: High-grade prostatic intraepithelial 
neoplasia; Cancer: prostate adenocarcinoma) (Chow, n = 9; SIM, n = 6). d. Representative histological images of the prostate. Left, H&E 
(Haematoxylin-Eosin) and right, Ki67 staining, showing prostate intraepithelial neoplasia (PIN) in Pten-deficient mice fed with SIM or 
chow. e. Quantification of Ki67 positive nuclei (%), indicating proliferating cells, in pc-/- Chow (n = 5) and pc-/- SIM (n = 6). Statistical 
analysis: Mann-Whitney statistic test (b, e) and Chi Square test with 2 degree freedom (c). Error bars represent median with interquartile 
range. N.S.: Non-significant. *p < 0.05, **p < 0.01.
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dependent) and 22RV1 (AR-independent) cell lines. None 
of these parameters (AR protein levels or activity by 
means of the mRNA abundance of its target KLK3; AKT 
or ERK phosphorylation) was consistently altered neither 
in vitro nor in vivo, thus precluding their involvement 
as a major component of the mechanism of action of 
statins (Supplementary Figure 3; unprocessed scans in 
Supplementary Figure 5). Of note, we also monitored 

the expression of cholesterol transporters and metabolic 
enzymes that could be altered as a consequence of statin 
treatment [48, 49]. We did not observe consistent changes 
neither in low density lipoprotein receptor (LDLR) nor in 
other enzymes and transporters (Apolipoprotein (APO) 
genes, ACAT1 (acetyl CoA cholesterol acyl transferase) 
and 2 and lipoprotein lipase (LPL)), precluding a major 
involvement of such alterations in the biological effect of 

Figure 3: Low-dose simvastatin enhances features of prostate cancer aggressiveness in vitro and in vivo. a. Tumor 
growth rate from PC3 cell xenografts upon feeding nude mice with chow or simvastatin-loaded (SIM) diet. 5 mice for condition were 
used, 4 tumors per mouse. 100.000 PC3 cells were injected. Mice were fed with simvastatin loaded chow starting 72h before injections. 
Box plot representation. b. Schematic representation of simvastatin treatment in vitro in PC3 cells. Cells were pre-treated for 7 days with 
50 nM simvastatin, and biological effects were evaluated. c. Effect of simvastatin pre-treatment on clonal self-renewal capacity (n = 5) in 
PC3 cells. d, Effect of 50 nM simvastatin pre-treatment on anchorage-independent growth in PC3, 22RV1 and LNCaP cell lines. Statistical 
analysis: Mann Whitney test (a), one sample t test (c, d. Error bars represent standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001.
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these compounds (Supplementary Figure 4).
Observational studies have evaluated the 

association of statins to PCa risk and aggressiveness 
(Supplementary Table 3) [50, 51]. Our data suggests 
that there could be a subset of PCa patients where statins 
could exert undesirable effects. We analyzed data from a 
prospective study conducted in Vall d´Hebron Research 
Institute [15]. To carry out this analysis, 2408 men were 
selected, after excluding those men who were undergoing 
5-α-reductase inhibitors treatment and those men who 
had been using statins for less than three years. In this 
cohort, the impact of statins was previously evaluated as 
part of a multivariate analysis with other factors such as 
age, PSA or serum cholesterol levels; or in combination 
with plasma cholesterol or aspirin treatment [15, 40]. 
37.2% of patients passed the statin treatment criteria 
beyond 3 years. In the multivariate study, statins were 
not associated to PCa risk. PCa was detected in 848 men 
(35.2%), and 297 of them (35%) were classified as high 
grade (HGPCa, Gleason score >7; as compared to Low 
Grade PCa (LGPCa; Gleason score ≤7)). In line with 
previous reports, treatment with this family of compounds 
reduced the risk of suffering from PCa (overall risk (OR) 
= 0.717; p = 0.006). However, 41.8% of patients treated 
with statins were diagnosed with HGPCa, whereas 
aggressive disease was less prevalent among patients 
not taking the cholesterol-lowering drug (32.5% of statin 
non-treated patients presented HGPCa, p = 0.012, OR 
1.495 (1095-2.039)) (Supplementary Table 4). To which 
extent the effect of statins is a predominant selective effect 
reducing the incidence of LGPCa, or whether it has an 
activity promoting the appearance of HGPCa remains to 
be studied, since both scenarios could lead to the results 
obtained in our analysis. In addition, our observational 
study does not account for statin dose, which, according 
to our experimental data, could be an important factor. Of 
note, these results are in line with the increased risk of 
high grade cancer reported in patients subject to statins 
that show normalized serum cholesterol levels [15], or 
patients with combined treatment of statins and aspirin 
[40]. Importantly, these results were corroborated in a 
multivariate analysis with other chronic pharmacological 
treatments (Supplementary Table 5). It should be noted 
that the controversy in observational studies with statins 
remains high [52], and additional analysis in well-
annotated cohorts is granted. 

DISCUSSION

Systemic metabolic alterations impact on the 
function and cross-talk of cells in our body. Indeed, 
the incidence and aggressiveness of cancer is in part 
associated to non-cell autonomous factors, such as 
nutrition, obesity or chronic therapeutic regimes [3, 
53]. Statins are administered to millions of people 
worldwide. In turn, their consequences on tumor biology 

have become a research field of great interest. We have 
studied the consequences of statin treatment in PCa 
biology, and demonstrated through the use of a wide array 
of pre-clinical and experimental approaches that these 
compounds promote features of disease aggressiveness. 
It should be noted that our experimental systems might 
reflect the existence of a sub-population of PCa patients 
for whom statins have undesirable effects, in line with 
other studies [54, 55]. Interestingly, a large study of 47294 
individuals focused on the study of coronary heart disease 
observed that patients treated with low-dose simvastatin 
(5-10 mg/day) and achieving low total serum cholesterol, 
presented increased risk of developing cancer (OR = 
3.16 for serum cholesterol < 160; OR = 1.85 for serum 
cholesterol = 160-179) [56]. The analysis of the available 
observational studies supports the existence of a context 
where statins could increase the aggressiveness of the 
disease in PCa patients. Overall, current epidemiological 
studies [15, 40, 50, 51, 54-68] would benefit of re-analysis 
taking into account this new information. 

Experimental cancer systems often serve for the 
validation and causal demonstration of observations 
originated in patient studies. However, these approaches 
can also be employed to predict the consequences of 
societal or lifestyle changes. Our experimental systems 
provide very provocative results that still lack full clinical 
validation to demonstrate the potential existence of a 
subset of PCa patients in which statins exert an undesired 
activity. Our results warrant further analysis of the cell 
autonomous and systemic impact of statin treatment in 
PCa and other cancers in order to understand the biological 
context associated to a protective or detrimental activity of 
these compounds. 

MATERIALS AND METHODS

Cellular and molecular assays

Human prostate carcinoma cell lines (PC3, 
LNCaP and 22RV1) were purchased from Leibniz-
Institut - Deutsche Sammlung von Mikroorganismen und 
Zellkulturen GmbH (DSMZ, Germany), who provided 
authentication certificate. In addition, we validated 
their identity by microsatellite analysis. Cell lines were 
routinely monitored for mycoplasma contamination. 
Simvastatin and mevalonate (Sigma-Aldrich) for in vitro 
purposes were activated by heating (50 ºC) with NaOH 
(0.1N) for two hours. Fluvastatin (Sigma-Aldrich) was 
used following manufacturers’ indications. 

For clonogenicity assay, PC3 cells expressing GFP 
were plated in poly-HEMA pretreated 384 plates at 1 cell 
per well in DMEM/F12 (Gibco) plus EGF (100 mg/ml), 
bFGF (10 mg/ml), B27 (Thermo Fisher), 8% BSA (Sigma-
Aldrich). Wells with 0, 1, or >1 cells were annotated. 7 
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days after plating, sphere formation from wells with 
single cells was quantified. Crystal violet-based cell 
number quantification, soft-agar anchorage independent 
growth and western blotting were performed as previously 
described [10]. Antibodies used for western blotting: 
androgen receptor (clone D6F11, Cell Signaling #5153), 
phosphorylated ERK (T202/204; extracellular signal 
regulated kinase, clone 20G11, Cell Signaling #4376), 
phosphorylated AKT (S473; clone 736E11, Cell Signaling 
#3787), ERK (clone 3A7, Cell Signalling #9107), AKT 
(Cell Signalling #9272), β-Actin (clone AC-74; Sigma 
#A5316), LDLR (EP1553Y; Abcam #ab52818) and 
HSP90 (Heat Shock Protein 90, Cell Signaling #4874). 

RNA was extracted using NucleoSpin® RNA 
isolation kit from Macherey-Nagel (ref: 740955.240C). 
For RNA harvesting from mouse tissue, we introduced 
a prior step consisting on the incubation of the tissue 
in RNAlater ICE (Thermo Fisher) overnight at -20ºC 
and phenolic extraction with TRIreagent (TR118, 
MRC). In all cases, 1μg of total RNA was used for 
cDNA synthesis using qScript cDNA Supermix from 
Quanta (ref. 95048). Quantitative Real Time PCR 
(qRTPCR) was performed as previously described [10]. 
Universal Probe Library (Roche) primers and probes 
employed in human samples: HMGCR, primers: Fw: 
gttcggtggcctctagtgag, Rv: gcattcgaaaaagtcttgacaac; 
Probe: 65. KLK3, primers: Fw: gtgcttgtggcctctcgt 
Rv: agcaagatcacgcttttgttc; Probe: 44. LDLR, primers: 
Fw: gatagtgacaatgtctcaccaagc, Rv: cctcacgctactgggcttc; 
Probe: 6. APOD, primers: Fw: gagaggccagtcaccaagac, 
Rv: gagaagggacctggagcttt; Probe: 8. APOA2, primers: 
Fw: gagaaggtcaagagcccaga, Rv: ccttcttgatcaggggtgtc; 
Probe: 68. APOC1, primers: Fw: gccttggataagctgaagga, 
Rv: gaaatgtctctgaaaaccactcc; Probe: 47. LPL, primers: 
Fw: caggcctttgagatttctctgt, Rv: gaaggagtaggtcttatttgtggaa; 
Probe: 13. Universal Probe Library (Roche) primers 
and probes employed for mice: Ldlr, primers: Fw: 
gatggctatacctacccctcaa, Rv: tgctcatgccacatcgtc; Probe: 
64. ApoD, primers Fw: aatttccatcttgggaaatgc, Rv: 
ggatcttctcaatttcgtaccatc; Probe: 63. ApoC1, primers 
Fw: tgggaacactttggaagaca, Rv: actttgccaaatgcctctga; 
Probe: 46. ApoA2, primers Fw: tgctggtcaccatctgtagc, 
Rv: catatccggtccgtctgc; Probe: 12. ApoE, primers Fw: 
ttggtcacattgctgacagg, Rv: agcgcaggtaatcccagaa; Probe: 32. 
Lpl, Fw: tttgtgaaatgccatgacaag, Rv: cagatgctttcttctcttgtttgt; 
Probe: 47. Acat1, Fw: ggctgaactcagtaaccacaca, 
Rv: ttggcttctagccgattcc; Probe: 71. Acat2, Fw: 
attccagccataaagcaagc, Rv: tttagctattgccgcagaca; Probe: 88. 
β-ACTIN and GAPDH housekeeping assays from Applied 
Biosystems (β-ACTIN, Hs99999903_m1; GAPDH, 
Hs02758991_g1; Mm99999915_g1); showed similar 
results (all qRTPCR data presented was normalized using 
GAPDH).

Lentiviral shRNA sequences targeting HMGCR 
(TRCN0000262852 and TRCN0000262856, Sigma 
Mission Library) were cloned into TET-pLKO puro vector 

(gift from Dr. Dmitri Wiederschain [11], Addgene plasmid 
#21915). HMGCR over-expressing lentiviral plasmid 
(pLX304) was obtained from https://plasmid.med.harvard.
edu (HsCD00412328). 

Animals

All mouse experiments were carried out following 
the ethical guidelines established by the Biosafety and 
Welfare Committee at CIC bioGUNE. The procedures 
employed were carried out following the recommendations 
from AAALAC. Xenograft experiments were performed 
as previously described [12], injecting 105 cells per 
condition in two flanks per mouse (male Hsd:Athymic 
Nude-Foxn1 nu/nu). For metastasis experiment, 6x105 

cells in 200 µl were injected by tail vein [12]. When 
possible, mice were injected randomly and xenografts 
measured blindly to reduce bias due to caging. Western 
diet (SSNIFF, D12079 mod.) with high carbohydrates 
and fat (50% carbohydrates, 21% fat) was compared with 
the 4% fat of the control diet. Simvastatin was provided 
in the diets (both standard diet and western diet) at 12 
mg/kg chow. The supplied concentration of simvastatin 
in mice was equivalent to 12 mg/day in humans, which 
corresponded to low doses for anticholesterolemic 
treatment (the standard dose being 40 mg/day). 

The PtenloxP conditional knockout alleles have been 
described elsewhere [13]. Prostate epithelium specific 
deletion was effected by the Pb-Cre4. Mice were fasted 
for 6 h prior to tissue harvest in order to prevent metabolic 
alterations due to immediate food intake.

Histopathological analysis

Samples of prostate gland or lungs were fixed 
overnight in 10% neutral buffered formalin, embedded 
in paraffin and sectioned 5 µm thick and dried. Slides 
were dewaxed and re-hydrated through a series of graded 
ethanol until water and were stained with hematoxilin-
eosin (H-E). Histopathological lesions of the prostate were 
classified according to current histological criteria [14].

Detection of PC3 in lungs metastatic foci of 
immunocompromised mice in the metastasis assay 
was assessed by immunohistochemical staining of 
Vimentin (NCL-L-VIM-572, Leica biosystems) using the 
streptavidin-biotin-peroxidase complex.

Proliferation was evaluated in paraffin embedded 
prostate samples by using Ki67 antibody (MA5-14520, 
Thermo Scientific). Five fields, at least 400 cells each field 
from the AP (anterior prostate) lobe were counted. 

Immunohistochemical stainings of AR, pERK, 
pAKT and LDLR (references as in western blot analysis) 
were performed on deparaffinized prostate sections using 
the streptavidin-biotin-complex peroxidase method. 
Antigen retrieval was carried out by heating sections in 
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10 mM sodium citrate, pH 6.0. Immunodetection was 
performed with the Polink-2 HRP Plus Rabbit Detection 
System (D39-110, GBI Labs, Bothell, WA, USA) and 
slides were developed with the peroxidase substrate kit 
(SK-4105, Vector Laboratories, Burlingame, CA, USA). 
Staining score 0 to 3 was given by two independent 
investigators based on the % of stained cells and the 
intensity of the staining.

Patients

We analysed data from a prospective study 
conducted in Vall d’Hebron Research Institute [15]. To 
carry out this analysis, 2408 men were selected, after 
excluding those men who were undergoing 5-α-reductase 
inhibitors treatment and those men who had been using 
statins for less than three years. Prostate cancer (PCa) was 
detected in 848 men (35.2%), and 240 (28.3%) were high 
grade prostate cancer (HGPCa) (Gleason score > 7). The 
overall demographics and clinical characteristics of the 
men enrolled, as well as the methodological aspects have 
been previously reported [15]. 

Statistics

For patient analysis, quantitative variables were 
expressed as medians + semi-interquartile range. 
Qualitative variables were expressed as rates. Univariate 
analysis included the Chi-square test to analyse the 
association between qualitative variables and the Cochran 
test to evaluate their strength. Multivariate analysis 
using the binary logistic regression was carried out to 
examine the independent predictors of PCa risk and tumor 
aggressiveness. Odds ratios (OR) and 95% coefficient 
interval (CI) were calculated.

For in vivo studies, in the absence of normal 
distribution, a non-parametric Mann Whitney U test 
was applied for two-group comparisons. For frequency 
analysis, Chi-square test was used when there were more 
than 2 variables and Fisher F test was used for 2 variables. 
For in vitro experiments, normal distribution was assumed 
and one sample t-test was applied for one component 
comparisons with control. Error bars represent mean ± 
SEM (standard error of the mean) in vitro, and median 
with interquartile range in vivo, unless otherwise specified. 
We considered p < 0.05 to be statistically significant.
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