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A B ST R A C T

Out-of-hospital cardiac arrest (OHCA) is characterized by the
sudden loss of the cardiac function, and causes around 10% of the
total mortality in developed countries. The estimated average annual
incidence of OHCA is 55 cases per 100 000 persons, with low survival
rates of around 10%.

Survival from OHCA depends largely on two factors: early defib-
rillation (electrical shock) and early cardiopulmonary resuscitation
(CPR). The electrical shock is delivered using a defibrillator, an
electromedical device which includes a shock advice algorithm (SAA)
to detect if a shockable rhythm is present. Unfortunately, CPR must
be stopped for a reliable SAA analysis because chest compressions
introduce artefacts in the ECG. These interruptions in CPR have an
adverse effect on OHCA survival.

Since the early 1990s, many efforts have been made to reliably
analyze the rhythm during CPR. Strategies have mainly focused
on adaptive filters to suppress the CPR artefact. Once the artefact
is removed, SAAs of commercial defibrillators have been widely
used for the shock/no-shock decision. However, these solutions
did not meet the American Heart Association’s (AHA) accuracy
requirements for shock/no-shock decisions made analyzing artefact-
free ECGs. A recent approach, which replaces the commercial SAA
by machine learning classifiers, has demonstrated that a reliable
rhythm analysis during CPR is possible. However, defibrillation is
not the only treatment needed during OHCA, and depending on the
clinical context a finer rhythm classification is needed. Indeed, an
optimal OHCA scenario would allow the classification of the five
cardiac arrest rhythm types that may be present during resuscitation.
Unfortunately, multiclass classifiers that allow a reliable rhythm
analysis during CPR have not yet been demonstrated.



In all of these studies artifacts originate from manual compressions
delivered by rescuers. Mechanical compression devices, such as the
LUCAS or the AutoPulse, are increasingly used in resuscitation.
Thus, a reliable rhythm analysis during mechanical CPR is becoming
critical. Unfortunately, no AHA compliant algorithms have yet been
demonstrated during mechanical CPR.

The focus of this thesis work is to provide new or improved
solutions for rhythm analysis during CPR, including shock/no-
shock decision during manual and mechanical CPR and multiclass
classification during manual CPR. The work started with the
development of the first AHA compliant shock/no-shock decision
algorithm during mechanical CPR. The method consisted of an
adaptive filter to remove chest compression artefacts followed by
a multistage shock/no-shock classifier based on a commercial SAA.
These results were further improved in a second study where the
commercial SAA was replaced by a machine learning classifier.
Efforts were then focused on manual CPR. First, a reliable algorithm
for multiclass OHCA rhythm classification was introduced in the
presence of CPR artefacts. Second, deep learning techniques were
firstly introduced to improve the accuracy of the machine learning
based shock/no-shock algorithms proposed in the literature. The
thesis concludes with an additional study where the performance
of different mechanical CPR artefact suppression filters is evaluated
in terms of ECG waveform restoration, clinically relevant ECG
characteristics, and shock/no-shock diagnostic accuracy.
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1 T H E S I S OV E RV I E W

1.1 The heart

The heart is a hollow muscular organ that, by rhythmic contraction,
effectively pumps oxygenated blood throughout the circulatory
system. As shown in Figure 1.1, the heart consists of four chambers
split into two halves, the left and right sides. Each side contains an
upper chamber called the atrium responsible of picking up the blood
that comes into the heart, and a lower chamber called the ventricle
that pumps the blood out. The right side receives oxygen-depleted
blood from the circulatory system and delivers it to the lungs for
oxygenation. The left side of the heart receives oxygen-rich blood
from the lungs and pumps it out to the rest of the body tissues. These
two actions are conducted simultaneously in two different phases
which define the cardiac cycle: a filling phase called diastole, and a
pumping phase called systole.

The pumping action involves a muscle contraction which originates
from the electrical stimulation of the cardiac cells. This electrical
activity can be recorded on the surface of the body by placing two
electrodes, a signal known as the electrocardiogram (ECG). In a
healthy heart, the cardiac cycle is initiated by the sinoatrial (SA)
node, which is located in the upper part of the right atrium. The SA
is a natural pacemaker and therefore sets the basic pace for the heart
rate with a trigger rate of 60 to 100 impulses per minute. The electrical
impulse propagates from the SA node through both the right and
the left atria, causing their depolarization. The contraction induced
by the depolarization of atrial cells pumps blood into the ventricles.

1
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Figure 1.1. Formation of a QRS complex corresponding to a NSR in relation to the cardiac
conduction system. Figure extracted from www.textbookofcardiology.org

This impulse is responsible for the P-wave of the electrocardiogram
(see Figure 1.1) and, in turn, causes the atrioventricular (AV) node
to depolarize (contract). The main task of the AV node is to collect
and delay the propagation of the SA impulse so that the ventricles
can be completely filled with blood. This delay in the transmission
of the electrical impulse is reflected in the P-R interval of the ECG.
The impulse is then spread through the left and the right ventricles
using a fast conduction network composed of the bundle of His and
the Purkinje fibers. This causes the depolarization of the ventricles
and a rapid and coordinated mechanical contraction which generates
enough pressure to pump the blood to the lungs or the rest of
the tissues. As shown in Figure 1.1, the ventricular depolarization
appears as the QRS complex in the ECG. The ventricular cells are
then repolarized and returned back to their original state following a
refractory period, during which they cannot be depolarized again.
Ventricular repolarization produces the final deflection in the ECG
called T wave. There is no distinctly visible wave representing
atrial repolarization in the ECG because it occurs during ventricular
depolarization and it is therefore masked by the QRS complex.
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The aforementioned cardiac cycle sequence is continuously
repeated producing an uninterruped blood flow and constitues the
normal functioning of the heart, a state referred to as normal sinus
rhythm (NSR). An arrhythmia is a heart rhythm disturbance from the
NSR, either because the heart beats too fast (tachycardia), too slow
(bradycardia), or irregularly. Although most arrhythmia are harmless,
some can be dangerous and even lethal. The most life-threatening
arrhythmia originate in the ventricles and are known as ventricular
tachycardia (VT) and ventricular fibrillation (VF). During these lethal
arrhytmia blood pumping is inefficient causing damage to vital
organs. This is an emergency situation that requires immediate
intervention to revert the arrhythmia.

1.2 Out-of-hospital cardiac arrest (OHCA)

Sudden cardiac arrest (SCA) is defined by the unexpected cessation
of the mechanical activity of the heart, which leads to the abrupt loss
of spontaneous and effective blood circulation [1]. Death resulting
from a cardiac arrest occurs shortly after the onset of acute symptons
(< 1 h), and is known as sudden cardiac death (SCD) [2, 3]. The high
incidence, its sudden nature, and the low survival rates make SCD a
major public health problem. Most cardiac arrest are unexpected and
occur out of hospital, an event known as out-of-hospital cardiac arrest
(OHCA). The efforts to revert cardiac arrest and recover spontaneous
pulse are frequently referred to as resuscitation.

Coronary artery disease is the most common cause of sudden
cardiac death, accounting for up to 80% of all cases [4]. The remaining
20% corresponds to cardiomyopathies and genetic channelopathies [4,
5]. These heart disorders predispose patients to VF which frequenly
starts as VT [6, 7]. VF is characterized by rapid and irregular electrical
impulses which cause the loss of coordination in the contraction
of the ventricles. The pumping function is therefore lost leading
to an immediate cessation of the spontaneous blood circulation.
Electrical defibrillation is the only effective treatment to revert VF
and achieve pulse-generating rhythms (PR), i.e. organized cardiac
electrical and mechanical activity that generates blood flow [8]. A
critical factor to return to a PR, that is to achieve restoration of
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spontaneous circulation (ROSC), is the time from onset of VF to
defibrillation [9]. Untreated VF gradually deteriorates as time elapses
leading to either asystole (AS), i.e. the absence of electrical activity,
or pulseless electrical activity (PEA) characterized by the presence
of organized electrical activity without an effective mechanical
contraction that generates blood flow [10]. During AS and PEA
there is no oxygenation of the cardiac cells leading to myocardial
ischemia. Therefore, the probability of a successful defibrillation and
subsequent survival is quite low for this kind of rhythms [11, 12].
Figure 1.2 shows examples of the ECG for the five cardiac arrest
rhythm types that can be present during cardiac arrest.

The precise incidence of OHCA is unknown since it varies
depending on its definition and the inclusion criteria. The overall

Figure 1.2. Examples of the five different cardiac rhythms during resuscitation. The vertical
axes was equally scaled for every plot.



1. thesis overview 5

estimates per year range from 150 000 to 530 000 in the Unitated
States [2, 13] and 275 000 in Europe [14, 15], with an incidence of
55 and 38 cases per 100 000 person-years, respectively. Incidences
are similar in Spain with 29-40 cases per 100 000 persons every
year [16, 17]. Finally, the Basque Country has a reported incidence of
33.9 OHCA cases per 100 000 person-years [18].

Despite advances in resuscitation therapies, survival rates of both
in-hospital and OHCA remain poor. Rates ranging from 8.4% to
10.7% have been reported for OHCA [19, 14], and 10.4% for in-
hospital cardiac arrest (IHCA) [20]. OHCA survival rates are higher
for patients presenting VF as initial rhtyhm [19]. VF/VT is present
as the initial rhythm in 46% of OHCA cases, PEA in 17% and
AS in 37%, with respective survival rates of 27%, 3% and 1% [21].
However, prevalences for initial rhythms and reported outcomes
differ considerably depending on the study and on the geographic
region, ranging from less than 2% in some rural areas to more than
20% in certain cities with dedicated cardiopulmonary resuscitation
(CPR) training programs [22, 23, 24].

1.3 Key therapies for OHCA

The chain of survival metaphor is the standard of care used across
the world for OHCA victims. The latest version of the chain of
survival was published in the 2005 European Resuscitation Council
(ERC) [25] and American Heart Association (AHA) guidelines [26]. It
was based on a review of previous iterations, starting with the first
version in 1991 [27]. The chain of survival consists of 4 links:

• Early access: the first link in the chain of survival includes the
early recognition of the cardiac arrest and the rapid activation
of the Emergency Medical System (EMS) by calling the local
emergency number. The early identification of cardiac arrest
symptoms is critical, since EMS activation before the collapse
is associated with higher survival rates [29].

• Early CPR: CPR combines chest compressions and rescue
breathings in order to maintain a minimum blood flow
essential to oxygenate the vital organs until the delivery of
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an electrical shock. The immediate hands-on response of
bystanders to cardiac arrest is critical to increase the likelihood
of survival [30, 31, 32]. CPR and first aid training programs
are therefore of great importance to increase the number
of bystanders who know how to perform the basic CPR
manoeuvres. The AHA has suggested that a 20% prevalence of
CPR training among adults might significantly reduce mortality
from OHCA [33].

• Early defibrillation: Defibrillation is the only effective way
to revert VF and obtain ROSC. The time from onset of
VF to defibrillation is critical for OHCA survival [34, 35].
Public Access Defibrillation (PAD) programs play a very
important role in this step of the chain of survival [36]. They
make defibrillation accessible to the general public through
automated external defibrillators (AED) [36] in order to reduce
the time to defibrillation as much as possible.

• Early advanced cardiac life support (ACLS): The combination of
CPR and defibrillation is sometimes not enough to restore a
perfusing rhythm, and even less to sustain ROSC over time
and stabilise the patient. Therefore, treatment provided by
healthcare personnel is crucial to increase OHCA survival
after defibrillation. ACLS includes intubation, administration
of drugs and defibrillation as main interventions [37].

Figure 1.3. The four links of the chain of survival: early access, early CPR, rapid defibrillation
and post resuscitation care. Figure extracted from ERC guidelines 2015 [28].
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The mean time until the ambulance arrival and the first ACLS
shock after EMS activation varies widely between areas, but they
are within 5-9 min for ambulance arrival and 11 min for first ACLS
shock in most cases [38, 39]. During this time, bystander CPR and
defibrillation are determinant to increase the likelihood of survival.
When no bystander CPR is provided, the survival rate decreases by
10− 12 % for every minute delay in defibrillation [40, 41]. However,
this rate is reduced to 3− 4 % if CPR is provided [42, 43, 9]. Figure 1.4
shows the influence of early CPR and early defibrillation in OHCA
survival. If CPR starts more than 5 min (the average minimum time
of ambulance arrival) after the collapse and defibrillation is not
provided within the first 11 min (mean time until the first EMS
shock), the probability of survival is below 20%. Survival rates can
be doubled (above 40%) if bystander CPR starts within the first 4 min
from collapse and defibrillation is delivered within the first 8 min [44].
The role of the OHCA witness is therefore crucial for survival.

1.4 Cardiopulmonary Resuscitation

CPR consists of chest compressions interspaced with ventilations
to maintain a small but critical oxygenated blood flow to the
vital organs [45]. The positioning of the rescuer to provide chest

Figure 1.4. Percentage of survival to hospital discharge in OHCA, as a function of time to
CPR and defibrillation. Adapted from Eisenberg et al. [44].



8

compressions and ventilations during CPR is shown in Figure 1.5.
CPR should occur immediately after witnesses recognize a cardiac
arrest and simultaneously with their efforts to activate the EMS
system. CPR alone is unlikely to terminate VF and achieve ROSC, so
it must be followed quickly by defibrillation, intubation, and drug
administration.

Resuscitation guidelines describe how CPR should be provided,
both in basic life support (BLS) and in ACLS settings [28, 46].
BLS comprises the non-invasive emergency interventions intended
to assist the immediate survival of an OHCA victim until the
arrival of ACLS. It is usually provided by trained or untrained
cardiac arrest witnesses, emergency medical technicians or public
safety professionals [47]. ACLS-level prehospital care is tipically
implemented by physicians and include invasive interventions to
support the airway, breathing and circulation [48].

The basic BLS therapy that all rescuers, trained or not, should
perform are chest compressions [28]. Furthermore, if the rescuer is
trained in CPR, ventilations (mouth-to-mouth rescue breaths) should

Figure 1.5. Positioning of the rescuer to provide chest compressions and ventilations during
CPR. Source: ERC 2015 [28].
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also be performed, alternating series of 30 chest compressions with 2
ventilations. CPR should be continuously administered until an AED
is available. The AED analyzes the rhythm of the patient providing
an electrical shock if necessary.

ACLS healthcare professionals should attempt laryngoscopy and
intubation, minimizing interruptions of chest compressions during
its placement [46]. After intubation, the patient should be ventilated
at 10 breaths per minute whilst chest compressions are administered.
Rhythm assessment is performed every two minutes through
monitor-defibrillators which are able to provide an electrical shock if
the physician considers it necessary.

Resuscitation guidelines emphasize the importance of high-
quality chest compressions to improve outcome from OHCA [28, 46].
Optimal chest compressions imply rates and depths between 100-120
compressions per minute (cpm) and 5-6 cm, respectively [28, 49, 50].
Furthermore, a complete chest recoil should be allowed between each
compression and interruptions in compressions must be minimized.

High-quality CPR is associated with an increase in OHCA
survival [51]. Studies reveal that each 5 mm increase in compression
depth portends an approximate two-fold increase in the likelihood
of shock success [52]. However, compression depths exceeding 6 cm
increase the rate of injuries such as rib fractures [53]. Regarding chest
compression rate, Idris et al. [54] found that the likelihood of ROSC
peaks at a rate of ∼ 125 cpm during the first 5 minutes of CPR.
However, depth declined with higher compression rates decreasing
the effectiveness of CPR [54]. Patients receiving less than 75 cpm were
associated with decreased likelihood of ROSC [54].

Studies in OHCA have shown that providing high quality CPR
is very challenging for untrained first responders [55], but also for
health care professionals [20, 56, 57, 58]. In many cases, compressions
are not continued for long enough periods of time, and compressions
are too fast or too shallow, and with interruptions. Rescuer fatigue
due to prolonged CPR, the lack of feedback systems or unstable
conditions during ambulance transportation are the most important
factors explaining low quality CPR.
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Several mechanical chest compression devices have been
introduced in ACLS settings to optimize the delivery of CPR.
These devices deliver compressions at a constant rate and depth in
adherence with current resuscitation guidelines. There are two types
of automated compressors: pneumatically driven pistons like the
LUCAS-3 (Physio-Control Inc/Jolife, AB, Lund, Sweeden), and load
distributing bands like the AutoPulse (Zoll Circulation, Chelmsford,
Massachusetts, USA) [46]. Both the LUCAS-3 and the AutoPulse are
shown in Figure 1.6 and their technical specifications are detailed in
Table 1.1.

Mechanical compression devices provide high quality chest
compressions which are associated to higher OHCA survival.
However, the results of the main randomized control trials for

Table 1.1. Technical specifications of the LUCAS-3 and the AutoPulse devices.

LUCAS-3 AutoPulse

Compression rate 102± 2 min−1 80± 2 min−1

Compression depth
40− 55 mm

based on chest height
20% of chest depth

Duty cycle 50% 50%

Full chest recoil Yes Yes

Figure 1.6. The LUCAS-2 and AutoPulse devices. The LUCAS-2 uses a pneumatically driven
piston to compress the patient’s chest whereas the AutoPulse uses a distributing
band placed around the chest to deliver the chest compressions.
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mechanical CPR show inconclusive evidences on the effect of these
devices on survival [59, 60]. Rubertsson et al. [59] reported that there
was no significant difference in 4-hour survival between patients
treated with the LUCAS device or those treated with high-quality
manual CPR. Neurological outcomes after 6 months were also the
same for both groups. According to Wik et al. [60] there was also no
statistical difference in survival to hospital discharge and neurological
outcome between patients treated with the AutoPulse device and
patients treated with manual CPR. Since the use of mechanical CPR
devices is not associated to improved survival, the ERC guidelines
recommend the use of automated compressors in prolonged CPR,
and in scenarios where manual chest compressions are impractical
or compromise rescuer’s safety [46].

Treatment of the underlying cause of cardiac arrest is not always
possible at the scene, e.g. hypothermia or intoxication [61, 62, 63,
64]. In these situations, the patient should be transferred to the
hospital while receiving CPR therapy [65]. However, manual chest
compressions are risky for unbelted rescuers and ineffective due to
transport motion [66, 67]. Mechanical devices could therefore be a
suitable alternative to manual CPR for providing high quality chest
compressions during transport [68, 69, 70, 71, 72, 73].

Sometimes early CPR and defibrillation are not enough to achieve
ROSC. In these cases it is necessary to first deal with the underlying
source of the cardiac arrest. Coronary artery occlusion (CAO) is often
the responsible for not achieving a perfusing rhythm as it causes
recurrent VF or persistent PEA. Percutaneous coronary intervention
(PCI) is usually required to restore an effective circulation in patients
with CAO, but this must be performed whilst chest compressions
are continued. As the delivery of manual CPR is unfeasible during
this kind of interventions, mechanical devices have been extensively
used during PCI [74, 75, 76, 77].

1.5 Early defibrillation

In OHCA defibrillation is achieved through an electrical current
to the cardiac muscle which enables the SA node to regain control
and establish an organized perfusing rhythm. BLS provides electrical
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therapy using AEDs while ACLS makes use of more sophisticated
devices called monitor-defibrillators.

The AED is a portable, lightweight and easy-to-use device that
allows bystanders with no training to assist OHCA victims, guiding
them in CPR and defibrillation by visual and audio messages [78].
First, self-adhesive defibrillation patches need to be attached to
the chest of the victim. These pads are used to record the ECG
and transthoracic impedance (TI) signals, and to induce the current
needed for the electrical shock. Once the pads are correctly attached,
the AED automatically initiates the ECG rhythm analysis through
the use of a shock advice algorithm (SAA). If the SAA detects a VF
or a pulseless VT (i.e. a shockable rhythm) the AED prompts the
rescuer to provide an electrical shock. In case that other rhythms (i.e.
nonshockable rhythms) are detected, the AED will instruct rescuer
to continue CPR for the next 2 minutes, after which another rhythm
analysis will be done using the SAA of the device.

In 1997, the AHA published a statement which describes
the requirements that SAAs must meet to be safely integrated
into commercial AEDs [79]. This includes, among other items,
specifications about the database used in the development and
testing of the SAA, as well as minimum performance requisites
of the algorithm. This statement later led to the ANSI/AAMI/IEC
60601-2-04 standard [80], which specifies the requirements for the
safety of cardiac defibrillators and defines performance targets for
SAAs.

The AHA statement divided OHCA arrhythmia into three
categories:

• Shockable rhythms: lethal rhythms requiring prompt defibrilla-
tion to avoid SCD. These rhythms include coarse VF (peak-
to-peak amplitude > 200 µV) and rapid VT, with a heart rate
usually greater than 120 min-1 (depends on the manufacturer).

• Nonshockable rhythms: benign (or even normal) rhythms that
must not be shocked, especially in patients with a pulse,
because no benefit will follow and deterioration in rhythm may
result. Nonshockable rhythms include NSR, supraventricular
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tachycardia (SVT), sinus bradycardia (SB), atrial fibrillation
and flutter (AF), heart block, idioventricular rhythms (IV),
premature ventricular contractions (PVC), and other rhythms
accompanied by a palpable pulse and/or occurring in a
conscious patient. Asystole (peak-to-peak amplitudes below
100 µV) is unlikely to benefit from defibrillation [81]. Moreover,
the ERC guidelines discourage interrupting CPR for shock
delivery during asystole [46]. So, to maximize safety in the
event of misapplication of the device/electrode, asystole was
also included in this category.

• Intermediate rhythms: rhythms for which the benefits of
defibrillation are limited or uncertain. This category includes
slow or low-amplitude VF (peak to peak amplitudes within
100− 200 µV) and VT not fulfilling criteria for rapid VT.

The ECG rhythm databases to develop and test SAA algorithms
should contain rhythms annotated into these three categories. As
different physicians may differ in the annotation of certain rhythms,
the AHA recommends that classification requires agreement among
at least three qualified OHCA rhythm reviewers. Rhythm segments
on which reviewers fail to reach 100% agreement can be classified,
but the expert disagreement should be reported.

The performance of the SAA is evaluated by comparing its
shock/no-shock decisions with the annotations of the reviewers,
and defining shockable as the positive class. In this way, the number
of true positive (TP), false positive (FP), false negative (FN) and
true negative (TN) detections can be calculated. The AHA only
demands a minimum value in two performance metrics, sensitivity
(Se) and specificity (Sp), that is, the proportion of correctly classified
shockable and nonshockable rhythms, respectively. However, positive
and negative predictive values are also extensively used as SAA
performance metrics. PPV and NPV determine the probability that
a shock is needed when it is advised or not needed when it is not
indicated. Total (Acc) and balanced accuracy (BAC) are also typically
reported measures, although both can be derived from Se and Sp
values and rhythm prevalences. Mathematically, these performance
metrics are defined as:
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Se =
TP

TP + FN
PPV =

TP
TP + FP

(1.1)

Sp =
TN

TN + FP
NPV =

TN
TN + FN

(1.2)

Acc =
TP+TN

TP+FN+TN+FP
BAC =

1
2
(Se + Sp) (1.3)

Table 1.2 indicates the minimum number of ECG samples per
category required to test the algorithm, and the minimum values
of sensitivity and specificity for each rhythm type established by
the AHA. The SAAs implemented in commercial AEDs have been
extensively tested on adults [82, 83] and more recently on pediatric
patients [84, 85, 86, 87] and have reported sensitivities above 96% and
specificities around 100% [88, 89].

Table 1.2. Performance goals for SAAs. Extracted from Kerber et al. [79].

Rhythms
Minimum test

sample size
Performance

goal
90% lowerCI

Shockable

Coarse VF 200 > 90% Se 87%

Rapid VT 50 > 75% Se 67%

Non-shockable 300

NSR 100 > 99% Sp 97%

AF, SB, SVT, blocks, IV, PVC 30 > 95% Sp 88%

Asystole 100 > 95% Sp 92%

Intermediate

Fine VF 25 Report only -

Other VT 30 Report only -

1.6 Defibrillation and CPR

The mechanical activity from the chest compressions introduces
artefacts in the ECG that substantially lower the accuracy of SAAs
to values below those recommended by the AHA [90]. Therefore,
CPR must be interrupted for a reliable rhythm analysis. These
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interruptions, which take between 5.2 s and 28.4 s [91], adversely
affect the probability of shock success and subsequent survival [92, 93,
52, 94, 95]. As Figure 1.7 shows, successful defibrillation is associated
with shorter preshock pauses [52]: the probability of shock success is
greater than 90% for pre-shock pauses of less than 10 s, but drops to
38% if the pause is longer than 30 s. These findings are consistent with
those of Chestkes et al. [95] which showed an 18% and 14% decrease
in survival to hospital discharge for every 5 s increase in preshock
and perishock (preshock plus postshock) pause, respectively.

ACLS clinicians use monitor/defibrillators instead of AEDs to
analyze the ECG and provide defibrillation. Monitor/defibrillators
have two operating modes: manual and automatic/semiautomatic
mode, i.e. AED mode. They are mostly used in manual mode, in
which clinicians visually assess the ECG and decide whether the
patient should be shocked or not based on their knowledge. The
rhythm is assesssed every 2 min cycle of CPR, and chest compressions
are interrupted to view the ECG without artefacts.

The monitor/defibrillators allow a more comprehensive patient
monitoring through the acquisition of multiple signals in addition
to the ECG and TI, such as, pulse oximetry or capnography. Pulse

Figure 1.7. Probability of shock success as a function of the duration of the pre-shock pause.
Adapted from Edelson et al. [52].



16

oximetry measures the oxygen saturation of arterial blood making
use of a sensor typically attached to a finger, toe, or ear. It has been
used as an hemodynamic marker of CPR efficiency [96] and as an
indicator of ROSC [97, 98]. The capnogram is a continuous non-
invasive measure of the carbon dioxide (CO2) in respiratory gases.
Its use is recommended to confirm tracheal tube placement [99, 100,
101], to monitor CPR quality [102, 103, 104] and to detect ROSC [105,
106, 107]. Furthermore, monitor/defibrillators often include sternal
assist pads fitted with accelerometers and force sensors which allow
real time CPR feedback. These sensors enable the calculation of the
compression depth (CD) signal from which CPR quality measures,
such as, compression depth and rate can be calculated [108, 109, 110].
Figure 1.8 shows an example of ECG, TI, CD and capnography signals
recorded by a monitor/defibrillator.

Electronic files including signals extracted from AEDs and
monitor/defibrillators along with the associated clinical data are
often collected on centralized and multi-centre OHCA repositories.

Figure 1.8. Example of signals available from monitor/defibrillators. From top to bottom:
ECG, TI, CD and CO2 (capnogram).
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The clinical information needs to be compiled in the standard
cardiac arrest reporting format (Utstein style) [111], and includes
information from the emergency medical system’s coordination
centers, ambulances, and hospitals, and follow-up information
about the patients discharged alive from hospital. OHCA registries
play a vital role in the improvement of resuscitation therapy,
since they provide large and standardized databases that enable
communities to retrospectively compare patient populations, EMS
response times, treatments, and outcomes with the goal of identifying
factors associated with improved OHCA survival. The Resuscitation
Outcome Consortium (ROC) [112] constitutes the major OHCA
registry worldwide involving the efforts of eleven regional clinical
centers distributed in Canada and the United States. In Europe, the
European Registry of Cardiac Arrest (EuReCa) [113] is the largest
OHCA dabase which collects data from EMSs in more than 27
nations.

1.7 Automatic rhythm classification in OHCA

Many algorithms based on signal processing and machine learning
have been published in the scientific literature to improve OHCA
therapy. The objective of these algorithms is to automate difficult
clinical decisions in a reliable and accurate way. One of the critical
applications is the identification of the patient’s rhythm during
OHCA.

Considering the critical role of defibrillation in OHCA survival,
much of the research has focused on developing algorithms that
discriminate between shockable and nonshockable rhythms. The
ECG of shockable rhythms has some distinctive characteristics
such as: greater waveform irregularity, higher ventricular rates,
absence of QRS complexes and smaller bandwidths. Consequently,
initial studies focused on the development of ECG features to
identify shockable rhythms [114, 115, 116, 117, 118, 87, 119, 120, 121].
Although advanced signal processing techniques were used to
identify these features, classification was at first simply achieved by
means of a threshold. Consequently, the focus of research was later
moved to improve the classification stage by efficiently combining VF
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detection features through machine learning classifiers [122, 123, 124,
125, 126, 127]. Recently, the performance of VF detection algorithms
has been further improved by the use of deep learning algorithms
obtaining accuracies above 98.5% [128, 129].

However, defibrillation is not the only treatment needed during
OHCA, and depending on the clinical context a finer rhythm
classification is needed. One such setting would be the detection
of ROSC, that is the detection of pulse. In OHCA, pulse detection
is treated as a PEA/PR discrimination algorithm after an ECG
with visible QRS complexes is detected. Pulse detection is crucial
for early recognition of the cardiac arrest and early initiation of
post-resuscitation efforts. Therefore, several signal processing and
machine/deep learning algorithms have been developed for the
detection of ROSC based solely on the ECG [130, 131] or TI [132],
or on the combination of the ECG and TI [133] or the ECG, TI and
the capnogram [134]. Other secondary rhythm classifications have
also been studied, such as, the discrimination of VF/VT [135]. VT
treatment may benefit from synchronized electrical cardioversion
whereas VF will not [136].

General rhythm classification in OHCA should therefore address
the classification into the five cardiac arrest rhythms. Knowing the
patient’s cardiac rhythm during resuscitation is important for two
reasons. First, awareness of the patient’s rhythm would allow to
decide on the optimal OHCA treatment as well as to continuously
adequate the treatment to the patient response in rhythm. Second, in
retrospective analyses, the rhythm transitions of the patient during
CPR provide important information about the interplay between
therapy and patient response [137, 138, 139]. This can lead to the
identification of treatment patterns that improve OHCA survival.
However, a limiting factor in such analyses is that labeled OHCA
data are scarce, and obtaining quality controlled rhythm annotations
is time consuming. A multiclass classifier would allow the immediate
annotation of OHCA episodes. Rad et al. [140, 141, 142] developed
the first algorithms for 5-class OHCA rhythm classification, obtaining
an unweighted mean of sensitivities (UMS) of 75% [142].
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Signal processing and machine learning algorithms have also
been useful in other OHCA fields that are not related to rhythm
classification. For instance, tools for shock outcome prediction
instruct the rescuer to defibrillate only when the probability
of shock success is very high, thus avoiding unnecessary CPR
interruptions that decrease OHCA survival. The ECG has been
the most widely used signal to predict shock success [143, 144],
although there is evidence that the prediction could be improved
if the capnogram is used along with the ECG [145]. Finally, signal
processing techniques have also been necessary for the estimation of
CPR quality. The computation of CPR metrics is essential to monitor
CPR performance in real-time, as well as to retrospectively identify
CPR patterns associated with improved OHCA survival. The CD
signal provides the most reliable measures of chest compression
rate and depth [108, 109, 110]. The TI signal can also be used for the
computation of chest compression rate [146, 147, 110] but not for the
depth [148]. Metrics associated with ventilations are usually extracted
from the TI or the capnogram [149, 150].

1.8 Motivation

Artefacts introduced by the mechanical activity of chest
compressions make the aforementioned CPR support tools unreliable.
For instance, sensitivity/specificity values of 58.4%/90.8% and
81.5%/67.2% have been reported for SAAs in the presence of CPR
artefacts [151, 152]. In addition, the UMS of the multiclass algorithm
implemented by Rad et al. [142] dropped by more than 20 points
when it was tested in intervals during compressions. Therefore, chest
compressions must be interrupted for an accurate rhythm analysis.
But as described in Section 1.6, interruptions in CPR clearly decrease
the probability of survival. Consequently, the development of reliable
methods that eliminate these hands-off intervals would be of great
value.

During the last 15 years efforts have been made to allow a reliable
rhythm analysis during chest compressions, and in particular to
allow an accurate shock/no-shock diagnosis. At present algorithms
meeting AHA performance goals during chest compressions have
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been demonstrated, albait with accuracies lower than those for
artefact free ECGs [153, 154]. Moreover, all those algorithms were
demonstrated for manual CPR, but at the time this thesis started
no AHA compliant algorithm had been demonstrated during
mechanical CPR. Preliminary studies on shock/no-shock decision
during mechanical CPR had reported sensitivities and specificities of
97.9% and 84.1%, respectively [155]. In addition, no algorithms for
5-class rhythm classification during manual or mechanical CPR had
been demonstrated.

The objective of this thesis is to fill those unexplored topics in
rhythm analysis during CPR. The focus of this work is on the
systematic application of signal processing and machine learning
techniques to provide new or improved solutions for rhythm analysis
during CPR, including shock/no-shock decision during manual and
mechanical CPR and 5-class classification during manual CPR. The
methods developed are general and can be adapted to most context
in rhythm analysis during CPR. The demonstration of their validity
for the different CPR scenarios and rhythm classification problems
depended largely on the data available for research.



2 STAT E O F T H E A RT

2.1 Machine learning for OHCA classification

The central problem in cardiac arrest rhythm classification has
been the distinction of life-threatening arrhythmia (VF/VT) from
nonshockable rhythms. In other words, the design of shock/no-shock
decision algorithms for defibrillators.

The first studies on the topic proposed VF detection features
obtained from the ECG. The extracted features quantified the
distinctive characteristics of VF/VT rhythms and were obtained from
different domains, such as, the time domain [117, 118], waveform
morphology features [115], spectral features [114, 156], or measures
of signal complexity [157, 158, 159]. Jekova et al. [160] and Amann et
al. [157] conducted a comparative assessment of several single feature
based SAAs. However, VF/VT detection performance is limited
if only one feature is used [123]. Consequently, machine learning
classifiers that efficiently combine the information from various VF
features became common place [161, 162]. These classifiers need to
be preceded by feature selection algorithms to identify a subset of
features that optimize the classifier’s performance [163, 123, 124, 122].
The architecture of a machine learning based SAA is graphically
summarized in Figure 2.1. It consists of 4 stages: feature extraction,
feature selection and a shock/no-shock classification stage based on
a machine learning algorithm.

21
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Figure 2.1. Building blocks of a SAA: preprocessing filters, feature extraction and selection
stages and a machine learning based classifier for a shock/no-shock decision.

First, the ECG, s(n)1, is filtered to eliminate noise, such as baseline
wander or powerline interference. Then, features are extracted
from the filtered ECG, ŝ(n), to obtain a vector xi which contains
the values of K features, that is the signal is mapped into a K
dimensional feature space. Then the feature selection stage reduces
the dimensionality of xi to K′. Thus, an OHCA database composed
of N ECG signal segments could be represented as a set of instance-
label pairs {(x′1, y1), ..., (x′N , yN)} where yi are the class labels {0, 1}
for a shock/no-shock classification problem.

As shown in Figure 2.2, data should be divided into two subsets:
a training dataset which contains the examples used to fit the
parameters of the machine learning classifier, and the test set to
provide an unbiased evaluation of the final model. The training
set is usually further divided into two subsets: a training subset
to fit the model, and a validation subset to provide an unbiased
evaluation of the fitted model while tuning the hyperparameters of
the classifier. The selection of the features should also be computed
in the training/validation sets.

The following subsections review the main features, the feature
selection techniques and the shock/no-shock machine learning based
decision algorithms found in the literature.

2.1.1 Feature extraction

To date, a plethora of features (well exceeding 100) have been
described to discriminate fatal ventricular arrhythmia. These features
quantify the distinctive characteristics of the arrhythmia, which

1 In this manuscript we will denote digital signals as s(n). That is time is t = nTs,
where n is the sample index and Ts the sampling period.
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Figure 2.2. Train, validation and test sets in machine learning.

are usually better observed by transforming the ECG to a new
domain. For instance, in the frequency domain, narrower bandwidths
are observed for shockable than for nonshockable rhythms (see
Figure 2.3). However, the waveform irregularity of VF or the lower
content around the isoelectric line of VT is better identified in the time
domain. What follows is a brief summary of the features designed to
date in shock/no-shock classification problems, grouped by domain:

• Time domain: These features were designed to characterize the
amplitude, slope, sample distribution, periodicity or heart rate
of the rhythm. Calculations of heart rate and periodicitity
can be done using the autocorrelation function as proposed
by Chen et al. [116], or simply by analyzing time events or
threshold crossing intervals (TCI) as introduced by Thakor
et al [117]. An improved version of the TCI, the threshold
crossing sample count (TCSC) was later developed by Arafat
et al [118]. In 2005, Amman et al. [157] introduced two features
to estimate the heart rate based on exponentially decaying
functions: the Standard Exponential Algorithm (Exp) and its
modified version called the Modified Exponential Algorithm
(Expmod). In 2004, Jekova et al. [114] introduced three features
to quantify sample counts at different amplitude levels after
bandpass filtering. Later, Anas et al. [115] demonstrated that
distinguishable morphological characteristics of shockable and
nonshockable rhythms could be quantified using the mean of
the absolute value (MAV) of the signal. Absolute amplitudes
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Figure 2.3. From top to bottom: time domain, wavelet domain, frequency domain and the
PSR representation of a nonshockable (left panel) and a shockable (right panel)
rhythms.

corresponding to organized rhythms (ORG)2 are most of the
time low due to the isoelectric lines around QRS complexes,
whereas VF and VT rhythms present on average higher signal
amplitudes. Based on this observation Irusta et al. [87] designed
a feature (bWT) to calculate the proportion of samples falling
in a certain amplitude range around the isoelectric lines. More
recently, Irusta et al. [87] and Ayala et al. [153] introduced three
features based on the slope of the signal to exploit that rapid
variations of the ECG during QRS complexes cause large values

2 Rhythms with visible QRS complexes, regardless of being associated to effective
pulse or not. This category brings together PR and PEA rhythms in OHCA
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of the ECG slope. The first feature (bCP) [87] was defined as
the proportion of time the slope signal is below a predefined
threshold. The second feature, called slope baseline (x1), was
computed as the 10th percentile of the slope, and the last feature
(x2) corresponds to the number of peaks above a fixed threshold
in the slope [153].

• Frequency domain: The dominant frequency of ventricular
arrhytmia fall between 2.5 – 7.5 Hz with a total bandwidth rarely
exceeding 10 Hz. Rhythms with QRS complexes concentrate
their frequency components around the harmonics of the
cardiac frequency (1-2 Hz) and their bandwidth can reach
40 Hz due to fast-changing QRS complexes. The VF filter
leakage (VFleak) was one of the first VF detection features
and relies on approximating VF to a sinusoidal waveform
using a bandpass filter around its dominant frequency [119].
In 1989, Barro et al. [156] developed four features to measure
the energy content around the dominant frequency (M) and
different frequency bands (A1, A2, A3) by means of Fourier
analysis. Later, in 1999, Minami et al. [120] successfully detected
ventricular arrhythmia by analyzing the frequency content of
the QRS complex in five predefined frequency bands. In 2005,
bispectral analysis of the ECG was explored in order to preserve
phase coupling information between the frequency components
of the ECG [121]. More recently, Irusta et al. [87] estimated the
ECG bandwidth (bW) and included it as feature in the classifier.
More recently, Ayala et al. [164] designed a set of three features
that measured the location of the largest spectral peak in the
1-10 Hz band (x3), the power proportion around VF fibrillation
band (2.5 – 7.5 Hz) (x4), and in the high spectral bands (above
12 Hz) (x5).

• Time-frequency domain: In 1995, Afonso et al. [165] suggested that
the concomitant analysis of the spectral and temporal domains
could be useful for arrhytmia classification. They compared
the contour plots of different time-frequency distributions
and showed the superiority of the smoothed Wigner–Ville
and the cone-shaped kernel distributions over the short-time
Fourier transform. The smoothed Wigner-Ville distribution



26

was further explored by Clayton et al [166]. In 1997, Khadra
et al. [121] introduced the Raised-Cosine Wavelet Transform
(RCWT) for the time-frequency analysis of the ECG, and
compared the differences in density for various time-frequency
regions across rhythms. This work was extended by Fahoum et
al. [167] who extracted 6 energy descriptors from nine different
continuous and discrete wavelet transforms. The Discrete
Wavelet Transform (DWT) has also been used to characterize
the complexity of VF using features like Tsallis or Shannon
multiresolution entropy [168]. More recently, Arafat et al. [170]
proposed the empirical mode decomposition (EMD) as an
alternative to time-frequency distributions.

• Signal complexity: It is increasingly recognized that many cardiac
arrhythmia can be characterized using techniques from non-
linear dynamics [171]. Nonlinear signal analysis methods used
in OHCA rhythm classification include reconstructed phase
space analysis (PSR) [172, 173, 174], Lyapunov exponents [175],
correlation dimension [166, 176], detrended fluctuation analysis
(DFA) [177], recurrence plot [166], Poincaré plot [178], Hilbert
transform (HILB) [179, 157], Hurst indices [169] and different
type of entropies [180, 181, 182, 183, 184] among others.
However, the nonlinear analysis of ventricular arrhythmia is
computationally expensive, limiting their applicability in low-
end hardware AEDs. A computationally simpler method is the
complexity measure (CM) developed by Zhang et al. [158], a
measure obtained from the Lempel-Ziv analysis of a binarized
ECG. Jekova et al [163] further explored feature extraction from
binarized ECGs introducing the covariance (CVbin), area (abin),
frequency (Frqbin) and Kurtosis (Kurt) of the binarized ECG.

2.1.2 Feature selection

Given the large amount of available shock/no-shock decision
features, efficient feature selection (FS) methods are needed. The
performance of machine learning classifiers is strongly affected by
the feature subsets fed to the models. FS techniques look for an
optimal feature subset by removing non-informative, redundant or
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correlated variables from the model. These techniques fall into three
categories: filter, wrapper and embedded methods.

Filter-based FS techniques use statistical measures to score
the correlation or dependence between input variables and are
independent to the classification algorithm. Variables are ranked
according to a predefined relevance score, and low scoring variables
are removed.

Wrapper methods use the performance of a classification algorithm
as quality criterion for evaluating the relevant information derivable
from a subset of features. Thus, wrapper methods involve the
selection of a classification algorithm, a criteria to evaluate the
capacity of a given subset of features, and a searching procedure
in the space of all possible feature subsets. Since an exhaustive
search is not practical, heuristic search methods are used. These
methods can be broadly classified as deterministic and randomized
search algorithms. Determinisc methods include a set of sequential
search techniques like Sequential Forward Selection (SFS), Sequential
Backward Selection (SBS), Plus-` Minus-r Selection (PTA) or
Sequential Floating Selection (SFS). Randomized search algorithms
include techniques such as Genetic Algorithms or Simulated
Annealing.

Finally, embedded methods integrate the search for an optimal
subset of features into the classifier contruction. The best known
example of embedded FS is probably the feature importance
embedded in random forest (RF) classifiers.

A wide variety of FS techniques have been used for shock/non-
shock classification problems. In 2002, Rosado et al. [185] compared
the efficiency of 2 filter-based FS methods: principal component
analysis (PCA) and Self-organizing Maps (SOM-Ward). Later, in 2007,
Jekova et al.[163] used a filter-based method based on F-values to
stepwise add up to 10 features into a linear regression model [163].
More recently, Tripathy et al. [127] used a mutual information-
based feature selection method (filter-based method) to evaluate
the performance of the classifier as a function of the number of
features.
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Wrapper based FS methods were introduced in shock/no-shock
decision problems by Jekova et al [161], who used the SFS search
method using the accuracy of a K-nearest neighbour (KNN) classifier.
SFS starts with an empty set of features and sequentially adds the
feature (from the remaining ones) that improves accuracy the most.
The procedure is continued until the addition of a feature does
not improve the classification accuracy. Wrapper methods based on
randomized search have also been used to identify lethal arrhythmia,
and all of them rely on Genetic Algorithms [186, 187].

A widely used approach to improve the efficiency of FS techniques
is to use hybrid models which combine embedded or filter-based
FS techniques with wrapper methods. In these cases, SFS or SBS
search methods (wrappers) are used to find the optimal subset of
features, but the criterion to exclude or include a feature in the model
is based on a feature relevance ranking provided by filter-based
methods or by classifiers with intrinsic feature selection capability
(embedded FS methods). For instance, in 2012 Alonso et al. [162]
proposed the so-called Support Vector Machine (SVM) recursive
feature elimination (SVM-RFE) technique which uses the weights of a
linear SVM as exclusion criterion in each step of the SBS search. Later,
in 2014, they replaced the SVM-based feature relevance scoring by the
ranking obtained through a filter-based method [123]. More recently,
Figuera et al. [122] combined the embedding FS of regularized logistic
regression and boosting of decision trees with SBS.

Finally, nested architectures combining deterministic and
randomized wrapper search methods have also been explored. For
instance, Nguyen et al. [125] used a genetic algorithm-based feature
ranking as feature inclusion criterion in a SFS search method.

2.1.3 Machine learning classifier

A wide variety of machine learning classifiers have been used
to obtain a shock/no-shock decision algorithm, ranging from very
simple approaches like logistic regression to more complex ones such
as SVM or neural networks.

Logistic regression was used in two studies conducted by
Sharma et al. [188] and Figuera et al. [122]. Logistic regression is
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an extension of linear regression to solve classification problems and
its representation can be simply obtained by applying a logit function
to the linear regression model:

hθ(xi) =
1

1 + eθxT
i

where θxT
i =

K′

∑
k=1

θkxk
i (2.1)

The prediction of the model, ŷi, will be 1 if hθ(xi) ≥ 0.5 and 0
instead. The task in Equation 2.1 is to choose the best parameters
θ in order to minimize errors between the predicted values yi and
the true labels. For that purpose the following cost function must be
minimized:

J(θ) = − 1
m

[
m

∑
i=1

yi log hθ(xi) + (1− yi) log(1− hθ(xi))

]
(2.2)

This process could be extended for almost all machine learning
classifiers. First, the model is built as in Equation 2.1, then a cost
funtion is defined in order to find the hyperparameters (the weights
θ). Then the cost function J(θ) is minimized, thus minimizing the
errors between the predicted values ŷi and true labels in the training
set, yi. Once the model is trained the training data can be set aside.

Another simple approach to classification is the KNN classifier,
which was used by Sharma et al. [188] and Nguyen et al. [125]. In this
method, the sample to be classified is assigned to the majority class
among its K closest samples from the training set, and distances are
measured in the multidimensional feature space. Unlike the logistic
regression classifier, KNN classifiers need to store the samples from
the training data to evaluate their predictions, which are based on
distance comparisons to those samples.

Neural networks [189, 174, 120, 190] and SVM [191, 192, 123, 162,
124] have been by far the most widely used learners in shock/no-
shock classification problems. The structure of an ANN consists of a
set of interconnected units, or neurons that estimate the non-linear
correlations between variables. The input neurons, which represent
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predictor variables, xi, are connected to a single or multiple layer(s)
of hidden neurons, which are then linked to the output neurons
for the final classification, ŷi. The SVM classifier is a learner that
is designed to construct an optimal separating hyperplane, in the
feature space, between the various classes. In the case of binary
classification SVM detects the closest points between two classes
in the feature space, and assigns a margin based on the distance
between the hyperplane and the points. The margin between classes
is maximized by the support vectors (the optimal points that should
be lying on the boundary) in order to estimate an optimal separating
hyperplane between the two classes. The SVM applies a kernel trick
to transform the original feature space into a higher-dimensional
space using a polynomial, linear or a gaussian kernel. The kernel
trick is very important because in most cases data is not linearly
separable, but by transforming it into a higher dimensional space it
may become linearly separable.

Ensemble methods have also been implemented for ventricular
arrhythmia detection, and they were systematically applied in this
context by Figuera et al. [122]. The goal of ensemble methods is to
combine the predictions of several weak learners in order to improve
generalizability, and thus prediction performance. Figuera et al. [122]
explored three approaches for ensemble methods: bagging, random
forest and boosting. In bagging, B decision trees are built from B
bootstrap samples of the training database. The final decision is
the majority vote of those B trees. Random forest is a particular
implementation of bagging for decision trees, where only a random
subset of features is used at each tree split. Random Forest has
also been successfully applied in some other studies for ventricular
arrhythmia classification [192, 127]. Finally, boosting consists in
sequentially training several hm(xi) weak classifiers, each trying to
correct its predecessor, hm−1(xi). So hm(xi) focuses on those samples
misclassified by hm−1(xi). The final classification is obtained by a
weighted vote of the M classifiers:

y = sign

(
M

∑
m=1

αmhm(xi)

)
(2.3)
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2.2 CPR artefact

Mechanical and manual chest compressions introduce artefacts
in the ECG, substantially altering its waveform. Figure 2.4 shows
three examples of OHCA ECG segments recorded during manual
CPR (panel a) and mechanical CPR (panels b and c). During the
first 15 s the mechanical activity of the chest compressions masks
the underlying rhythm of the patient. This rhythm is revealed in the
last 5 s where no chest compressions are provided. OHCA rhythm
classification is therefore unreliable during chest compressions. For
instance, Figure 2.5 shows 3 examples of misclassified segments by
the SAA of an AED during manual (panel a) and mechanical chest
compressions (panels b and c). In panels a and b, chest compressions

Figure 2.4. Three ECG examples of 20 s recorded in patients in OHCA. The initial 15 s are
corrupted by chest compressions provided manually (a) and by the LUCAS-2 (b)
and the AutoPulse (c) devices. The last 5 s show the underlying rhythm of the
patient: VF (a), PEA (b) and AS (c).
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introduce fast and disorganized artefacts in the ECG that make the
nonshockable ORG rhythm resemble a VF. This leads to an erroneous
shock decision of the SAA. In panel c, the chest compression artefact
shows an organized activity locked to the compression frequency of
the mechanical device (80 cpm). This makes VF resemble an ORG
rhythm, thereby causing an incorrect no-shock decision. Therefore,
the accuracy of rhythm analysis algorithms substantially decreases
in the presence of chest compression artefacts. For instance, Se/Sp
values of 58.4%/90.8% and 81.5%/67.2% have been reported for
commercial SAAs during manual chest compressions [151, 152].
Aramendi et al. [155] reported Se/Sp values of 52.8%/81.5% for
SAAs during LUCAS-2 use. In addition, the UMS of the multiclass

Figure 2.5. Three ECG examples of classification errors in a SAA during compressions (first
15 s) provided by different sources: manually by a rescuer (a), LUCAS-2 (b) and
AutoPulse (c). In the first two panels nonshockable ORG rhythms (visible in the
last 5 s) are corrupted with fast and disorganized artefacts resulting in an incorrect
shock decision. In the last panel, the VF rhythm is completely masked by a slow
and organized artefact, thus making the SAA diagnose it as nonshockable.
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algorithm implemented by Rad et al. [142] for clean ECGs dropped
by more than 20 points when it was tested in corrupted ECGs.

Although manual and mechanical CPR artefacts affect the ECG,
their characteristics are very different both in time and frequency.
These differences are analyzed in the following paragraphs, and
the results presented here are derived from the datasets and results
presented in various studies conducted during the thesis work [155,
193].

Figure 2.6 shows the normalized power spectral density (PSD)
for manual CPR (panel a) and mechanical CPR (panels b and c)
artefacts. The PSD reveals a very stable compression frequency
( fcc) for the LUCAS-2 ( fcc = 1.694 Hz=101.7 cpm) and the AutoPulse
( fcc = 1.335 Hz = 80.1 cpm) devices, and a very clear concentration of
the power around its harmonics. In contrast, manual compressions
show a great variability in compression frequency that results
in a spread PSD. In addition, mechanical artefacts show higher
bandwidths than manual ones. In the time domain, there were
no significant differences in median (90% confidence interval, CI)
amplitude between artefacts generated by manual chest compressions
1.29 (0.86 – 2.13) mV and the LUCAS-2 device 1.22 (0.70-1.86) mV
according to Aramendi et al. [155]. However, artefacts generated
by the AutoPulse device presented significantly greater median (90%
CI) amplitudes 4.4 (1.0-16.7) mV and a higher variability between
episodes [193]. Finally, mechanical artefacts showed significantly
more stable waveforms (more periodic) than manual ones [155, 193].
The Pearson correlation coefficient (ρ) was similar for artefacts
generated by the AutoPulse and the LUCAS-2 devices with median
values of 0.983 (0.736 – 0.999) and 0.981 (0.585 – 0.999), respectively.
Manual artefacts showed correlation coefficients of 0.896 (0.305 –
0.989), significantly smaller (p < 3× 10−7 for the Wilcoxon Rank-Sum
test) than for the mechanical artefacts.

According to Aramendi et al. [155] artefact waveform patterns
induced by manual and mechanical chest compressions show a large
variability within and between resuscitation episodes. This variability
may be due to differences in chest characteristics, skin-electrode
contact and on the relative position of the compression point and the
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Figure 2.6. Normalized PSD for manual (a) and mechanical (b, c) artefacts recorded during
asystole. The errorbars represent the median (80% CI) of the proportion of power
concentrated in that harmonic.
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defibrillation pads [194, 195]. When chest compressions are delivered
manually, these variations may also be due to changes on how CPR
is administered by the rescuer, rescuer fatigue, or the intervention
of several rescuers [196]. In addition to this variability, both manual
and mechanical artefacts present, on average, an spectral overlap
with the different OHCA rhythm types. Figure 2.7 shows the PSD of
the different OHCA rhythms overlapped with the PSDs of manual
and mechanical artefacts shown in Figure 2.6. The overlap is larger
for non-shockable rhythms like PEA and PR. In addition, these
non-shockable rhythms present higher overlap with the spectrum
corresponding to manual chest compressions.

In conclusion, two key aspects should be adressed to obtain
a reliable rhythm analysis during CPR for both the manual and

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

Figure 2.7. Normalized PSD of mechanical/manual artefacts recorded during asystole and
the five OHCA rhythm types. Top panels correspond to shockable rhythms (VF,
VT) and bottom panels to nonshockable rhythms.
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mechanical cases: the time-frequency variability of the artefact and its
spectral overlap with OHCA rhythms. Filtering the chest compression
artefact to restore the underlying rhythm of the patient has been the
major approach to rhythm analysis during CPR. These techniques
are described in the following section.

2.3 Rhythm analysis during chest compressions

As stated in Section 1.7, the ideal rhythm analysis algorithm should
allow the classification into the five cardiac arrest rhythms without
the cessation of CPR therapy. However, considering the importance
of defibrillation in OHCA survival and that the widespread use
of mechanical CPR devices is recent, efforts in the last 15 years
have focused on accurate shock/no-shock diagnosis methods during
manual chest compressions.

Although different approaches to shock/no-shock decision during
CPR have been explored [197, 198], filtering the CPR artefact has
been the main line of study [196]. In early attempts, CPR artefacts
were successfully removed from porcine ECG by means of fixed
coefficient high-pass digital filters [199, 200]. In human data however,
the artefacts cannot be efficiently suppressed by high pass filters as
the spectral components of the CPR artefact overlap the dominant
frequency of the ECG signal (see Section 2.2). Since then, studies have
focused on the development of adaptive filters to model the CPR
artefact and remove it from the ECG.

2.3.1 Evaluation methodology

The methodology followed to test those adaptive filters depended
largely on the data available to the researchers. Early adaptive
filtering approaches were tested on databases obtained from the
artificial mixture of human ECG and CPR artefacts recorded during
asystole, either in humans or in pigs. The mixture model was
introduced early in 2000 by Langhelle et al. [194] and Aase et al. [201].
This model assumes that the CPR artefact, scpr(n), is an additive
noise independent of the underlying ECG, secg(n). Based on this
assumption filtering methods can be tested using independently
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recorded human ECG and CPR artefacts, added at different signal-
to-noise ratios (SNRs):

scor(n) = secg(n) + α · scpr(n), with α =

√
Pecg

Pcpr · 10SNR/10
(2.4)

The SNR in dB is adjusted in the artificial mixture, scor(n), using
the α coefficient, where Pecg and Pcpr are the power of the underlying
ECG and the CPR artefact, respectively. Typically, these mixtures are
formed with SNR values in the -10 dB (strong corruption) to 10 dB
(low corruption) range. Figure 2.8 shows an example of the corrupted
ECG, scor(n), obtained by mixing ORG (a) and VF (b) rhythms with
manual CPR at SNR = 0 dB and SNR = -10dB.

Figure 2.8. Examples of artificially mixed corrupted ECGs. From top to bottom: CPR artefacts,
scpr(n), recorded during asystole, clean ORG and VF rhythms, secg(n), and mixed
signals, scor(n), at SNR of 0 dB and -10 dB.

This testing method allowed a straight comparison between the
restored ECG signal after filtering, ŝecg(n), and the original signal,
secg(n). The increase in SNR caused by filtering (∆SNR) was the
first metric proposed to evaluate filtering performance on artificial
mixtures. Although ∆SNR gives a direct and interpretable measure of
filter performance useful to optimize the filter’s parameters, it does
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not give information about the final clinical decision, that is, whether
the patient should be shocked or not. To address this limitation,
Aase et al. [201] proposed to evaluate filtering techniques in terms of
the accuracy of a SAA, as shown in Figure 2.9. The shock/no-shock
decisions obtained by analyzing the filtered ECG using a SAA were
compared with the ground truth labels to obtain the accuracy of the
filtering method.

When human OHCA data became available to researchers, i.e. data
recorded during resuscitation efforts, the artificial mixture model
was virtually left aside due to two main drawbacks. First, the SNR in
real cardiac arrest data is not known, and how improvements in SNR
are translated to the more clinically relevant Se/Sp values is not fully
understood [202]. Second, the mixture model may not accurately
reflect the effect of CPR on heart dynamics. So in subsequent studies
based on OHCA data, the performance of adaptive filters was
evaluated through the accuracy of SAAs in commercial defibrillators,
as shown in Figure 2.9.

Adaptive
filter

scor(n)
SAA

ŝecg(n)

shock
no-shock

Figure 2.9. Main evaluation methodology of adaptive filters to remove CPR artefacts from
the ECG. The filtered ECG, ŝecg(n), is diagnosed as shock/no-shock by the SAA
of a commercial defibrillator designed for artefact-free ECGs.

2.3.2 Adaptive CPR artefact cancellers

Multichannel approaches

The first approaches to remove artefacts from the ECG were based
on the multichannel modeling of the chest compression artefact.
Figure 2.10 shows the typical block diagram of multichannel methods
in which the estimated artefact is:
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ŝcpr(n) =
P

∑
p=1

Kp−1

∑
k=0

hp(n− k)sref,p(k) (2.5)

where P is the number of reference channels and sref,p(n) is the p-
th channel, which must be correlated with the chest compression
artefact. For each reference channel, hp(n) and Kp are the filter
coefficients and the number of coefficients, respectively.

The objective of this approach is to find ŝcpr(n) as the best possible
estimate of the artefact in the corrupted ECG, scor(n). Then the clean
ECG can be obtained by subtracting the estimated artefact from the
corrupt ECG:

ŝecg(n) = scor(n)− ŝcpr(n) (2.6)

which assumes an additive noise model. This is a classical problem
in adaptive filtering and is commonly solved through finding the Kp

filter coefficients of hp(n) for each time instant n that minimize the
error between scor(n) and ŝcpr(n). Assuming no correlation between
the uncorrupted ECG, secg(n), and the artefact, scpr(n), this error,
ŝecg(n), would approach the underlying rhythm of the patient.

scor(n) ŝecg(n)

ŝcpr(n)

+
+

−

sref1 (n) h1(n) +

sref2 (n) h2(n) +

b
b
b

srefP (n)
hP (n)

Figure 2.10. Block diagram of a multi-channel CPR artefact canceller. Filter coefficients can
be estimated by different adaptive algorithms.
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The multichannel approaches proposed in the literature mostly
differ in the number and type of reference signals used to model
the artefact, and in the algorithmic approach or filter type to
find the optimal filter coefficients. The first multichannel approach
was proposed by Aase et al. [201]. They used a Wiener filter
and two reference signals, the TI and CD, to remove artefacts
from the corrupted ECG. The data used in this study were
obtained from the artificial mixture of human rhythms and
mechanical chest compression artefacts from animal recordings. Later,
Husøy et al. [203] proposed the Multi-Channel Recursive Adaptive
Matching Pursuit (MC-RAMP) algorithm. This method updated
filter coefficients using a Matching Pursuit algorithm, which in each
iteration finds the reference channel with the highest correlation
to the CPR artefact. The MC-RAMP substantially lowered the
computational demands of the Wiener filter and yielded comparable
SNR results in a similar database. In 2004, Eilevstjøn et al. [151]
pioneered the development of adaptive filters using real OHCA
data from human victims. They adapted the MC-RAMP filter to use
four reference signals to model the artefact: TI, ECG common mode,
acceleration and CD signals.

The main drawback of multichannel approaches is the need
to acquire multiple external channels, which demands important
defibrillator hardware modifications. Most defibrillators only record
the surface ECG together with the TI signal (used to check pad
placement), although possibilities to record compression depth or
acceleration from CPR feedback devices is becoming common place.
Moreover, multichannel schemes are computationally expensive,
which limits their implementation in low-end hardware devices.

Simplified architectures

Since the study published by Eilevstjøn et al. [151], researchers
have focused on reducing or eliminating the need for additional
reference signals. These studies can be roughly divided into two
main approaches: filters based solely on the ECG, and filters based on
the ECG with minimal information on CPR. In addition to adaptive
filters, methods based on the direct analysis of the corrupted ECG
have also been explored.
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The first attempts to reduce the complexity of multichannel filters
were based on methods that remove the chest compression artefact
using only the ECG signal. As shown in Figure 2.11, these filtering
schemes follow two steps. In a first stage, the fundamental frequency
of the chest compressions, f0, is directly estimated from the corrupted
ECG by means of spectral techniques. In a second stage, an adaptive
filter is used to suppress the frequency components of the artefact
by suppressing components at f0 and its harmonics. Three different
adaptive filters have been proposed in the literature for the second
stage: an adaptive band-stop filter [204], a Kalman filter [90], and a
coherent line removal algorithm [205].

The band-stop filter was proposed by Aramendi et al. [204] in
2007. This notch filter was centred on f0, which was estimated as
the frequency of the largest spectral component in the 1 – 3 Hz range.
The filter adapted to the time-varying characteristics of the artefact
by updating f0 every 4.8 s, which was the window size of the SAA
used to test the performance of the filter.

In 2008, Ruiz de Gauna et al. [90] presented a more complex filter
based on a more elaborate model of the artefact composed of two
harmonically related sinusoids:

ŝcpr(n) = c0(n) cos(ω0n + θ0(n)) + Kc1(n) cos(2ω0 + θ1(n)) (2.7)

Adaptive
filter

Frequency
analysis

scor(n)

ŝecg(n)

f0

Figure 2.11. Block diagram of single-channel adaptive filters. The fundamental frequency
of the artefact, f0, extracted from the corrupted ECG, scor(n), is the only
information used to characterize the artefact.
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where ω0 = 2π f0Ts is the discrete frequency and K is
a binary coefficient that controls whether or not the second
harmonic is considered. The time-varying amplitudes and phases
of the sinusoidal components (c0(n), c1(n), θ0(n) and θ1(n)) were
recursively estimated as the state variables of a four-state Kalman
filter.

In 2010, Amann et al. [205] studied the feasibility of a coherent
line removal algorithm for the suppression of the chest compression
artefacts using only the ECG. The chest compression frequency was
estimated from the sum of the power at each frequency f and its
harmonics, taking f0 as:

f0 = arg max
f

{
M

∑
k=1
|Xcor(k f )2|

}
(2.8)

where Xcor is the Fourier Transform of scor(n). Once f0 was estimated,
the coherent line removal algorithm removed the artefact, assuming
a periodic artefact of strong harmonic components.

The Kalman filter proposed by Ruiz de Gauna et al. [196] obtained
the best SAA performance in terms of Se and Sp. However, accuracies
were below those obtained by the MC-RAMP, underlying the
importance of using additional reference information to model the
CPR artefact.

In order to improve the poor performance obtained by ECG
only approaches, Irusta et al. [152] proposed a filter based on the
surface ECG with minimal additional information on CPR. Their first
hypothesis was that the frequency of the compressions was enough to
construct an accurate model of the CPR artefact. This would reduce
the hardware modifications demanded by multichannel approaches,
since recording the frequency of the compressions can be directly
obtained from CPR feedback devices.

The CPR artefact was modeled as a quasi-periodic interference
using a Fourier series truncated to N harmonics. The fundamental
frequency of the artefact, f0, was that of the chest compressions,
which was assumed constant during a chest compression but variable
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from compression to compression. This means that for an interval
between two successive compressions at time points, tk−1 and tk, the
frequency can be expressed as:

f0(n) =
1

tk − tk−1
tk−1 ≤ nTs < tk (2.9)

and the N-term Fourier series representations is then:

ŝcpr(n) = A(n)
N

∑
k=1

[
ak(n) cos(kφ(n)) + bk(n) sin(kφ(n))

]
(2.10)

where ak(n) and bk(n) are the time varying in-phase and
quadrature amplitudes of each harmonic, φ(n) = 2π f0(n)nTs, is the
instantaneous phase of the fundamental harmonic, and A(n) is an
amplitude envelope to model intervals with compressions, A(n) = 1,
and without compressions, A(n) = 0, such as hands-off intervals for
ventilations. The chest compression instants, tk, were automatically
identified through negative peak detection in the CD signal (see
bottom panel in Figure 2.12). An example of the intantaneous phase
and the amplitude envelope used in the model of the artefact is
shown in Figure 2.12. The CD signal is also visible with the chest
compression instants marked.

Figure 2.13 shows the structure of the adaptive filter proposed by
Irusta et al. [152]. In addition to the ECG, the only information fed
into the adaptive filter are the tk instants needed for the computation
of A(n) and f0(n). The time-varying ak(n) and bk(n) coefficients are
updated using the Least Mean Squares (LMS) algorithm to minimize
the error between scor(n) and ŝcpr(n) at the harmonics of f0.

Irusta et al. [152] showed that the multiharmonic modeling of the
CPR artefact based on the chest compression frequency can be as
accurate as the four reference channels used by the MC-RAMP filter.
Since then, several studies have been developed based on the Fourier
series modeling of the artefact. Ruiz et al. [206] estimated the time-
varying Fourier series coefficients by means of a Kalman filter. Later,
Aramendi et al. [207] demonstrated that the instantaneous frequency
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Figure 2.12. From top to bottom: the corrupted ECG, scor(n), the amplitude envelope, A(n),
the time-varying phase of the Fourier series model, cos φ(n), and the CD signal
with the chest compressions, tk , marked.

used by the LMS filter could also be derived from the TI signal, which
is recorded by most current AEDs. This was a big step forward, since
it demonstrated the possibility of incorporating the multiharmonic
model to any device without the need of sternal CPR assist pads.

A new approach to rhythm analysis during CPR was introduced by
Li et al. [197] in 2008, the direct analysis of the corrupted ECG. Li et
al. [197] proposed a shock/no-shock discrimination algorithm using
ECG features marginally affected by the artefact, that is filtering
was embedded in the feature extraction phase. These features were
obtained from the wavelet subband analysis of the ECG, and the
analysis of the correlation accross subbands. Shortly after, Krasteva et
al. [198] presented a second method. In this case, the shock/no-shock
decision features were extracted from the corrupted ECG and from
a reconstructed version of the ECG, which was equivalent to the
filtered ECG.
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scor(n) ŝecg(n)

ŝcpr(n)

+
+

−
b

ak(n), bk(n)A(n), w0(n)
tk

Figure 2.13. Block diagram of the adaptive filter proposed by Irusta et al. [152]. The filter
takes as reference the Fourier series model of the artefact built using the chest
compression instants, tk . The ak(n) and bk(n) coefficients of the model are
adaptively estimated using an LMS filter to minimize the error between the
corrupted and the filtered ECG at the harmonics of f0.

2.3.3 Summary of the results

Table 2.1 shows the results of the best performing studies within
each of the above-mentioned approaches. All these studies were
tested on human cardiac arrest data, so performances were reported
in terms of the Se and Sp of a SAA. Although it is not entirely fair
to compare these results due to differences in the database and the
SAA used for evaluation, these results provide an insight on which
could be the optimal approach to rhythm analysis during CPR.

The performance reported by Ruiz de Gauna et al. [90] for a filter
based only on the ECG is well below the performance presented
by other authors, particularly the sensitivity, which is 5 to 6 points
lower. The direct analysis of the corrupted ECG proposed by Li
et al. [197] improved those results but did not consider asystole.
Asystole is one of the causes of low Se and Sp values, since one of
the critical distinctions after filtering is between VF and AS [87, 90].
This underlines the importance of additional reference information
to obtain an accurate rhythm analysis. The multichannel MC-RAMP
filter used four reference channels directly fed to the adaptive
algorithm, obtaining better performance than ECG only approaches
on a representative OHCA database. The filter based only on chest
compression instants introduced by Irusta et al.[152], obtained similar
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results while substantially reducing the computational burden and
hardware requirements of the solution.

Table 2.1. Comparison of four representative approaches to rhythm analysis during CPR
tested with real OHCA data. In the nonshockable (NSh) column the proportion
in parenthesis refers to the prevalence of AS within the class.

Accuracy Datasets

Authors Method Se (%) Sp (%) Sh NSh

Eilevstjøn et al. [151] MC-RAMP 96.7 79.9 92 174 (30%)

Ruiz de Gauna et al [90] Kalman filter 90.1 80.4 131 347 (43%)

Irusta et al. [152] LMS filter 95.6 86.4 89 292 (30%)

Li et al. [197] Direct analysis 93.3 88.6 1256 964 (4%)

All the methods presented sensitivities above 90%, the minimum
value recommended by the AHA for SAA on artefact-free ECG.
However, the specificity was at best [152] 9 points below the 95%
recommended by the AHA. A low specificity would result in a
large number of false shock diagnoses during CPR, which would
unnecessarily increase the number of interruptions in CPR. The
main source of the low Sp are filtering residuals in nonshockable
rhythms. As shown in Figure 2.14a, these residuals often resemble a
disorganized rhythm and are frequently misdiagnosed as shockable
by commercial SAAs. Most of the false negatives are also due to
filtering residuals. In these cases (see Figure 2.14b), the filter is unable
to remove the spiky artefact introduced by each compression, and
these spikes are interpreted as the QRS complexes of an ORG rhythm
by the SAA.

In conclusion, the performance of the shock/no-shock decision
algorithms during CPR is limited by the use of SAAs from
commercial defibrillators. These SAAs were designed to classify
clean ECG, but filtering residuals act as a major confounding factor.
Recently, a new line of research has focused on developing ad-hoc
algorithms for shock/no-shock decision that analyze the filtered
ECG.
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Figure 2.14. Two examples in which the SAA incorrectly classifies the filtered ECG,
ŝecg(n). In both examples, the top panels show the ECG recorded by the
defibrillator, scor(n), and the bottom panels show the ECG after filtering the
chest compression artefact, ŝecg(n). In the top panels, the initial 15 s of the ECG
are corrupted by the chest compressions, whereas the following 15 s show the
underlying rhythm in an interval free of artefact. In both cases the SAA produces
an erroneous shock/no-shock analysis of the filtered ECG due to the strong
filtering residuals.

2.3.4 Analysis of the filtered ECG

In 2014, Ayala et al. [110] introduced a novel approach to improve
rhythm analysis during CPR. They proposed the use of machine
learning classifiers to design shock/no-shock algorithms using
information derived from the filtered ECG. Figure 2.15 summarizes
the architecture of this new approach which combines the adaptive
filtering stage with a machine learning based shock/no-shock
decision algorithm, a synthesis of the methods described in
sections 2.3.2 and 2.1. As shown in Figure 2.15, the machine learning



48

Adaptive
filters

scor(n) Feature
extraction
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Figure 2.15. New approach to rhythm analysis during CPR. It consists of two main stages:
an adaptive filter to suppress chest compression artefacts followed by a machine
learning shock/no-shock classification algorithm trained using information
derived from the filtered ECG.

based classifier is fed with the features extracted from the filtered
ECG. In this way, the SAA learns the characteristics of the filtered
ECG including those of the filtering residuals. Moreover, the SAA’s
feature selection stage provides the classifier with the feature set best
suited for classification, i.e. the feature subset that minimizes the
adverse effect of filtering residuals.

First, Ayala et al. [110] used the adaptive filter proposed by Irusta
et al. [152] to remove the chest compression artefact. Then, two
features were extracted from the filtered ECG and threholding was
used to identify rhythms with low electrical activity (LEA) like
asystole. Signal segments that were not identified as LEA were
further classified as VF or ORG using features obtained from the
time domain and the spectral domain. Finally, these features were
fed into a SVM classifier for the final shock/no-shock classification.

This method was the first to provide a shock/no-shock diagnosis
during CPR compliant with AHA recommendations, obtaining a
Se and a Sp of 91% and 96.6%, respectively. Although there was a
slight drop in Se, the algorithm corrected most of the false positives
which were common in previous solutions. This novel approach
provided a solid foundation for further improvements on rhythm
analysis during CPR, which should explore new approaches to
feature extraction, feature selection, and classification using machine
learning algorithms.



3 H Y P OT H E S I S A N D O B J E C T I V E S

At the time this thesis started, several knowledge gaps were
identified in rhythm analysis during CPR. The main hypothesis
of this thesis work was that given appropriate data, the systematic
use of machine learning and advanced signal processing techniques
could help cover those gaps. In an attempt to address those gaps the
following objectives were defined:

• Objective 1: The development of methods for a reliable
shock/no-shock decision during mechanical CPR, a field in
which no AHA compliant solutions existed. This objective was
divided into two secondary goals:

– To adapt filtering schemes to the suppression of
mechanical artefacts. The results associated to this goal
were published in a conference paper (C11) and in an
indexed journal, J11.

– To improve the results of decision algorithms during
mechanical CPR by introducing machine learning
classifiers. This secondary goal led to a conference and a
journal paper, C21 and J21.

• Objective 2: The introduction of a new method for the
classification of the five OHCA rhythm types during manual
CPR. This work was an extension of the multiclass OHCA
classifier developed by Rad et al. [141] for ECGs free of artefacts.
All the work done to reach this objective was published in an
international journal, J12.
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• Objective 3: The development of the first deep learning solution
to improve the accuracy of machine learning based shock/no-
shock classifiers during manual CPR. This goal led to two
conference papers, C13 and C23, and a journal paper, J13.

• Objective 4: To analyze the effectiveness of mechanical CPR
artefact supression filters in restoring clinically relevant ECG
information beyond the shock/no-shock decision. The results
related to this goal were published in an indexed paper, J14.



4 R E S U LT S A N D C O N C LU S I O N S

4.1 Results and discussion

This section discusses the results obtained in the studies conducted
to reach the goals defined in Chapter 4. We will focus on the results
obtained in the indexed journals, as they extend and improve the
contributions published preliminarly in conferences.

4.1.1 Results related to objective 1

Objective one was split into two secondary goals and each of them
led to a journal publication:

• J11: This solution proposed an improved filter for the
suppresion of LUCAS-2 artefacts based on the multiharmonic
modeling of the artefact proposed by Irusta et al. [152]. Two
features contributed to an increased decision accuracy. First,
the Generalized Goertzel algorithm was used to calculate the
number of harmonics N to be used in the Fourier Series model
individually for each ECG segment. Second, a Recursive Least
Squares (RLS) filter was used instead of the LMS filter. This
improved CPR artefact filter led to a Se and a Sp of 98.1% and
87.0% when evaluated using the SAA of a commercial AED.
Although this approach outperformed the results obtained in
preliminary studies [155], the algorithm did not meet AHA
performance goals. Thus, a more complex architecture named
multistage algorithm (MSA) was introduced to analyze the
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filtered ECG. The MSA was composed of three shock/no-shock
decision stages based on a commercial SAA and on an ECG-
slope decision stage. The method obtained a Se of 91.8% and a
Sp of 98.1%. Although the MSA method was computationally
demanding, it was the first method to give a shock/no-
shock diagnosis compliant with AHA recommendations during
piston-driven chest compressions.

• J21: In this study, the commercial SAA was replaced by a
machine learning based shock/no-shock decision algorithm.
This approach consisted of a high-resolution feature extraction
method based on the Stationary Wavelet Transform (SWT), a
wrapper-based feature selection algorithm and a SVM classifier
for the final shock/no-shock classification. The algorithm
obtained a Se and a Sp of 97.5% and 98.2%, improving by
3 points the BAC of the MSA solution. There were two main
reasons for this improvement. First, the feature extraction phase
based on the SWT resulted in new and improved discriminating
features. Second, extracting the features after removing the CPR
artefact and feeding those features to the SVM improved the
accuracy considerably, because the machine learning algorithm
was able to learn the characteristics of filtering residuals. Very
importantly, this improvement was achieved along with a
drastic reduction of the computation demands when compared
to the MSA.

4.1.2 Results related to objective 2

In J12 we introduced the first framework for multiclass OHCA
rhythm classification in the presence of manual CPR artefacts.
More than 93 state-of-the-art VF detection features were computed
from the SWT analysis of the filtered ECG, and a RF was used
for classification. A hybrid FS algorithm combining wrapper and
embedded FS methods was used to select the most discriminative
subset of features. The FS was based on a SBS approach using the
permutation importance provided by the RF classifier as a ranking
criterion. Four levels of clinical detail were studied: shock/no-shock,
shock/AS/ORG, VF/VT/AS/ORG, and VF/VT/AS/PEA/PR. The
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median UMS for the 2, 3, 4, and 5-class classifiers were: 95.4%,
87.6%, 80.6%, and 71.9%, respectively. For shock/no-shock decisions
sensitivities were 93.5% and 97.2%, meeting AHA standards and
outperforming the results obtained by Ayala et al. [110] (see
Section 2.3.4). Our 5-class classifier had a median UMS of 71.9%
during manual CPR, which is only 5.8-points lower than the 5-class
OHCA rhythm classifier on artefact-free ECG proposed by Rad et
al. [142]. Furthermore, when Rad et al. [142] used their algorithms
to annotate complete OHCA episodes, the UMS during artefact-free
segments was 75%, but dropped to 52.5% in intervals during chest
compressions, even after filtering the CPR artefact.

4.1.3 Results related to objective 3

The objective of J13 was to improve the accuracy of previous
methods by designing the first deep learning solution to discriminate
shockable from nonshockable rhythms during manual CPR. The
method comprised two stages, an adaptive RLS filter to remove
CPR artefacts from the ECG followed by a convolutional neural
network (CNN) to classify the ECG after filtering. The CNN was
composed of three convolutional blocks to extract the high level
features of the ECG, and two fully connected layers for shock/no-
shock classification. The CNN obtained a Se and a Sp of 95.8% and
96.1%, respectively. The algorithm outperformed the performance of
the clasical machine learning algorithm published in J12, showing the
potential of deep learning methods to provide a reliable shock/no-
shock diagnosis during manual chest compression therapy.

4.1.4 Results related to objective 4

This study, published as J14, evaluated the performance of the
best known adaptive filters during piston-driven chest compressions
in terms of ECG waveform restoration, clinically relevant ECG
characteristics and shock/no-shock diagnostic accuracy. The mixture
model was used to evaluate filter performance in terms of ECG
waveform restoration (see Section 2.3.1 for details). The preservation
of signal integrity is of vital importance during CPR since ALS
clinicians visually evaluate the ECG to decide suitable therapeutic
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interventions. The integrity of the filtered signal was measured in
terms of restored SNR and correlation-based similarity measures.
Moreover, it is important to know to what extent filters degrade the
features that are clinically relevant for different diagnostic scenarios
other than the shock/no-shock decision, such as, the prediction of
defibrillation success [143] or the detection of pulse [131]. For that,
the following ECG features were assessed before and after filtering:
heartbeat detection accuracy for ORG rhythms, and dominant
frequency (DF), mean amplitude (MA) and waveform irregularity
for VF. The RLS filter produced the largest correlation coefficient,
average increase in SNR and largest heartbeat detection accuracy.
The LMS filter best restored VF with lower errors in DF, MA and
waveform irregularity. This was the first time a mixture model was
used to make an exhaustive evaluation of adaptive filters during
mechanical CPR.

4.2 Conclusions

This thesis work has addressed the overall objective of designing
new strategies that allow a reliable rhythm analysis during manual
and mechanical CPR.

In the context of mechanical CPR, we introduced the first AHA
compliant shock/no-shock decision algorithm using an enhanced
adaptive filter and a multistage shock/no-shock decision algorithm
based on a commercial SAA. These results were further improved
when the commercial SAA was replaced by a machine learning
classifier. Moreover, the mixture model was used for the first time
to determine the most suitable adaptive filter for evaluating ECG
waveform restoration in diferent OHCA clinical contexts.

Regarding manual CPR, two main contributions were carried out:

• First, we introduced the first multiclass OHCA framework
which accounts for four levels of clinical detail: shock/no-shock,
shock/AS/ORG, VF/VT/AS/ORG and VF/VT/AS/PEA/PR.
The shock/no-shock algorithm improved the results of the
machine learning based classifier proposed by Ayala et al. [110].
The 5-class classifier, which was the main goal of the study,
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presented a performance similar to that of the multiclass
classifier proposed by Rad et al [142] for artefact free ECGs.

• Second, we improved the performance of classical machine
learning shock/no-shock decision algorithms by the introduc-
tion of deep learning techniques.

Although great progress has been made in the field of rhythm
analysis during CPR, there are still many challenges ahead. First,
methods that allow a reliable rhythm analysis during piston-
driven chest compressions should be recast to mechanical CPR
devices based on load distributing bands, like the AutoPulse.
As shown in 2.2 the artefact generated by the AutoPulse device
presents larger amplitudes and a higher variability between episodes
than the LUCAS-2 artefact. So, we foresee a more challenging
adaptive filtering problem. Second, the multiclass OHCA rhythm
classifiers should also be adapted to mechanical CPR. Finally,
based on the results reported in J13, we foresee that deep learning
models could improve the performance of machine learning based
multiclass classifiers and shock/no-shock decision algorithms during
mechanical CPR.
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Abstract

Piston-driven mechanical chest compression (CC)
devices induce a quasi-periodic artefact in the ECG,
making rhythm diagnosis unreliable. Data from 230
out-of-hospital cardiac arrest (OHCA) patients were
collected in which CCs were delivered using the piston
driven LUCAS-2 device. Underlying rhythms were
annotated by expert reviewers in artefact-free intervals.
Two artefact removal methods (filters) were introduced:
a static solution based on Goertzel’s algorithm, and an
adaptive solution based on a Recursive Least Squares
(RLS) filter. The filtered ECG was diagnosed by a
shock/no-shock decision algorithm used in a commercial
defibrillator and compared with the rhythm annotations.
Filter performance was evaluated in terms of balanced
accuracy (BAC), the mean of sensitivity (shockable) and
specificity (nonshockable). Compared to the unfiltered
signal, the static filter increased BAC by 20 points, and the
RLS filter by 25 points. Adaptive filtering results in 99.0%
sensitivity and 87.3% specificity.

1. Introduction

Early defibrillation and high-quality cardiopulmonary
resuscitation (CPR) are crucial to improve chances of
survival from out of hospital cardiac arrest (OHCA) [1].
Chest compressions (CCs) provided during CPR introduce
artefacts in the ECG, invalidating the diagnosis of any
rhythm analysis algorithm. Currently compressions are
interrupted for the analysis, but these hands-off intervals
compromise circulation and thus reduce the probability
of restoration of spontaneous circulation (ROSC) and
survival [2]. Although solutions to analyse the rhythm

during pauses in CC exist [3, 4], rhythm analysis during
CCs requires a filter to remove CC artefacts. Many such
filters have been proposed to permit a reliable diagnosis
during CCs [5, 6], but no effective solution has been
integrated into current defibrillators yet.

Piston-driven mechanical CC devices are increasingly
used in resuscitation. These devices deliver CCs with
a constant rate and depth ensuring CPR is delivered
according to resuscitation guidelines. Their use is
especially recommended during transportation, invasive
procedures or prolonged CPR. One such device is the
LUCAS 2 (Physio-Control/Jolife AB, Lund, Sweden). The
LUCAS 2 provides chest compressions in a fixed position,
constant depth (40-53 mm depending on chest height),
constant rate (102± 2 min−1, 1.694 Hz), 50% duty-cycle
and full chest recoil after each compression [7]. We should
expect the artefact caused by LUCAS 2 to have a periodical
pattern at the constant frequency of the CCs.

This study evaluates the feasibility of analyzing the
rhythm during mechanical CCs provided by LUCAS
2 on OHCA data. Two artefact removal alternatives
were compared: an adaptive filtering method based
on a Recursive Least Square (RLS) algorithm and
a non-adaptive (static) filtering method which uses
Goertzel’s algorithm to model the artefact.

2. Materials and methods

2.1. Materials

The data used for this study were gathered by the
emergency services of Oslo and Akershus (Norway)
with the LifePak 15 defibrillators (Physio-Control Inc.,
Redmond, WA, USA). The recorded ECG and thoracic
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Figure 1. A 20 s episode of a patient in ventricular fibrillation (VF), before filtering (top) and after filtering (bottom).
The initial 15 s show ECG records during CCs delivered by the LUCAS 2 (quasi-periodic artefact). The last 5 s show the
underlying VF, in an interval without CCs. Filtering (bottom pannel) reveals the underlying rhythm.

impedance (TI) signals were exported to Matlab using
the Codestat (Physio-Control Inc.) research tool, and
resampled to 250 Hz. Details on the dataset are further
described in [7].

The dataset contains 1045 segments of 20 s from 230
patients. The first 15 s included continuous CCs, the last
5 s were free of artefacts and were used by expert reviewers
to assess the underlying rhythm. The dataset contains 201
shockable and 844 nonshockable rhythms (270 asystole,
574 organized) [7].

2.2. Methods

ECG segments were band-pass filtered to a typical
automatic external defibrillator (AED) bandwidth, using
an order 8 Butterworth filter (0.5-40 Hz).

Model of the compression artefact

The CC artefact in the ECG is customarily modelled as
additive noise:

scor(n) = secg(n) + scc(n) (1)

where scor is the ECG corrupted by the CC artefact,
scc, and secg is the ECG which reflects the underlying
heart rhythm. For a piston-driven compression device the
artefact, scc, can be approximated by a (quasi)-periodic
signal in term of N harmonics of the fundamental
frequency, f0 = 1.694 Hz. Assuming a model with N
Fourier coefficients ck = |ck|ejθk , the artefact can be
simply written as:

scc(n) = A(n)
N∑

k=1

|ck| cos(kω0nTs + θk) = (2)

= A(n)

N∑

k=1

ak cos(kω0nTs) + bk sin(kω0nTs) (3)

where Ts is the sampling period, ω0 = 2πf0 and A(n) is
an amplitude envelope to differentiate intervals with (A =
1) and without compressions (A = 0).

The two methods proposed in this paper assume
different natures for the Fourier coefficients. In the static
solution, ck = |ck|ejθk are constant over time. In
the adaptive solution the coefficients are assumed to be
time-varying ck(n) = |ck(n)|ejθk(n), with small changes
every sample. Once scc is estimated, the underlying
rhythm secg is obtained by subtraction using equation (1),
and then fed to a shock/no-shock decision algorithm for
diagnosis.

Static solution

The static solution assumes the N Fourier coefficients
are constant. Since only just a few frequency components
of scor signal are of interest, Goertzel’s algorithm can
be used to estimate those spectral components instead of
analyzing all frequency components of the Discrete-Time
Fourier Transform (DTFT). However, since for an L point
signal the frequency resolution of Goertzel’s algorithm
is Δf = fs/L, the fundamental frequency of the signal
must be an integer multiple of Δf . This is not the case
for f0 = 1.694 Hz (LUCAS 2), so, the Generalized
Goertzel algorithm was used. This generalization allows
the calculation of spectral components at any frequency,
by extending the DTFT to any real frequency ω� = 2π�/L.
Then the frequency component is estimated as:

X(ω�) = e−j2π�
L−1∑

n=0

x(n)e−j2π�n−L
L (4)

to which the custom Goertzel’s algorithm is applied [8]:

s(n) = x(n) + 2 cos
(2π�

N

)
s(n− 1)− s(n− 2) (5)

y(n) =
(
s(n)− e−j 2π�

N s(n− 1)
)
e−j2π� (6)

and y(L − 1) = X(ω�). In our case the signal was
first windowed using a Kaiser window wβ(n), to form
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xw(n) = scor(n) · wβ(n), so the spectral component was
obtained as:

ck =
2

Wβ(0)
Xw(ω�), � ∈ R (7)

where Wβ is the Fourier transform of the Kaiser window,
and Xw(ω�) is the Fourier transform of xw(n) as shown in
equation (4) and computed using Goertzel’s algorithm. In
the Kaiser window the form factor β controlls the window
trade-off between side-lobe level and main-lobe width. For
each segment, the ck coefficients were estimated using an
interval of 5 s with uninterrupted CCs.

Adaptive solution

In the adaptive solution the time-varying Fourier
coefficients, ak(n), bk(n), were estimated using an RLS
filter that tracks the spectral components of the artefact [9].

The in-phase, ak(n), and quadrature, bk(n), components
model the artefact as described by equation (8), which is
equation (3) in vector notation:

scc(n) = ΘT
n−1Φn (8)

where,

Θn = [a1(n) b1(n) . . . aN (n) bN (n)]T (9)
Φn = [cos(ω0nTs) sin(ω0nTs) . . .

cos(Nω0nTs) sin(Nω0nTs)]
T (10)

The model of the artefact is updated through the ak(n)
and bk(n) coefficients in each iteration. The filtered secg
and the filter coefficients are computed as follows:

secg(n) = scor(n)− scc(n) (11)
Θn = Θn−1 + FnΦnsecg(n) (12)

Fn =
1

λ

[
Fn−1 −

Fn−1ΦnΦT
nFn−1

λ + ΦT
nFn−1Φn

]
(13)

where the forgetting factor λ is usually close to one,
and defines the convergence rate, the tracking power,
misadjustement and stability of the RLS filter.

2.3. Evaluation

The ECG filtered through both methods was diagnosed
by a shock/no-shock decision algorithm, the Matlab
version of the algorithm designed for the Reanibex
R-series defibrillators (Bexen Cardio, Ermua, Spain).
This algorithm diagnoses the ECG in less than 9.6 s
by analyzing 2 or 3 consecutive 3.2 s intervals of
the ECG [10]. The interval from 3.4 s to 13 s of

each segment was diagnosed in order to avoid filtering
transients. The diagnoses were compared with the rhythm
annotations to obtain the proportion of correctly classified
shockable (sensitivity, SE) and nonshockable (specificity,
SP) rhythms.

Filter performance was evaluated in terms of the
balanced accuracy (BAC), BAC = 0.5(SE + SP), within
the following working ranges: 10 < N < 30 and
0 < β < 15 for the static filter, and 10 < N < 30 and
0.965 < λ < 0.999 for the adaptive filter. Finally, within
those ranges a 100 bootstrapped patient-wise 5-fold cross
validation approach was used to obtain an estimate of the
statistical distribution of SE and SP. SE/SP values will be
reported as mean (CI, 95% confidence interval).

3. Results

Figure 2 shows the BAC for the static (left) and
adaptive (right) filters within the working ranges for three
significant values of N . As seen in figure 2, both filters
showed a working range in which the performance was
close to optimal in terms of BAC. In the case of the static
filter, the best results were obtained for 4 < β < 5 and
N > 20. The range for the RLS filter was 0.989 < λ <
0.993 and N > 20. In fact, for smaller values of N (see
figure 2) the BAC in the optimal β and λ ranges is smaller
in both cases.

Table 1 shows the bootstraped SE/SP and BAC after
filtering, compared to the values obtained before filtering.

unfilt Goertzel RLS

SE (%) 50.7 97.0 (95.5–97.5) 99.0 (97.0–99.5)
SP (%) 83.9 80.2 (79.5–81.0) 87.3 (86.5–87.6)
BAC (%) 67.3 88.6 (87.8–89.3) 93.0 (91.9–93.5)

Table 1. Accuracy before and after filtering.

Both filters resulted in an increase of over 30 points
in SE with a slight change in SP. The shock/no-shock
decision after applying the adaptive filter were more
accurate than those obtained after applying the static filter.

4. Discussion

This study introduces two different filtering techniques
to remove CPR artefact from the ECG during mechanical
compressions. Both methods represent the artefact as a
(quasi)-periodic signal with a fundamental frequency equal
to the frequency of the compressions and N harmonics.
Whereas the static method assumes that the artefact is
periodic, the adaptive method considers slow fluctuations
from cycle to cycle.

Mechanically delivered compressions have very stable
frequency, depth and duty cycle. We might assume little

Page 3 

  

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on June 04,2020 at 15:57:12 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15
85

90

95

B
A

C
 (%

)

(a) Static solution

N = 10
N = 20
N = 30

0.975 0.98 0.985 0.99 0.995
85

90

95

B
A

C
 (%

)

(b) Adaptive solution

N = 10
N = 20
N = 30

Figure 2. Performance of the static and the adaptive filtering methods in terms of N and β for the Goertzel filter (panel a),
and in terms of N and λ for the RLS filter (panel b).

change in the artefact from CC cycle to cycle, but the
results of this study show the need of an adaptive solution.
Both methods resulted in a significant increase in BAC
but the RLS filter produced better results than the static
solution (approximately 2 points more in SE and 7 points
more in SP). The adaptive solution was able to track the
small fluctuations of the artefact from cycle to cycle.

In conclusion, the results showed that the adaptive
filtering provided acceptable values for an acccurate
rhythm diagnosis during compressions, particularly for
shockable rhythms (SE>98%). However, further analysis
is recommended to increase the accuracy, mainly, for
nonshockable rhythms. The results reported in this
and in previous studies [7] are still below the 95%
recommended for nonshockable rhythms by the American
Heart Association.
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A Multistage Algorithm for ECG Rhythm Analysis
During Piston-Driven Mechanical

Chest Compressions
Iraia Isasi , Unai Irusta , Member, IEEE, Elisabete Aramendi, Unai Ayala , Erik Alonso ,

Jo Kramer-Johansen , and Trygve Eftestøl, Member, IEEE

Abstract—Goal: An accurate rhythm analysis during car-
diopulmonary resuscitation (CPR) would contribute to in-
crease the survival from out-of-hospital cardiac arrest.
Piston-driven mechanical compression devices are fre-
quently used to deliver CPR. The objective of this paper
was to design a method to accurately diagnose the rhythm
during compressions delivered by a piston-driven device.
Methods: Data was gathered from 230 out-of-hospital car-
diac arrest patients treated with the LUCAS 2 mechanical
CPR device. The dataset comprised 201 shockable and 844
nonshockable ECG segments, whereof 270 were asystole
(AS) and 574 organized rhythm (OR). A multistage algo-
rithm (MSA) was designed, which included two artifact fil-
ters based on a recursive least squares algorithm, a rhythm
analysis algorithm from a commercial defibrillator, and an
ECG-slope-based rhythm classifier. Data was partitioned
randomly and patient-wise into training (60%) and test (40%)
for optimization and validation, and statistically meaning-
ful results were obtained repeating the process 500 times.
Results: The mean (standard deviation) sensitivity (SE)
for shockable rhythms, specificity (SP) for nonshockable
rhythms, and the total accuracy of the MSA solution were:
91.7 (6.0), 98.1 (1.1), and 96.9 (0.9), respectively. The SP for
AS and OR were 98.0 (1.7) and 98.1 (1.4), respectively. Con-
clusions: The SE/SP were above the 90%/95% values rec-
ommended by the American Heart Association for shock-
able and nonshockable rhythms other than sinus rhythm,

Manuscript received January 29, 2018; accepted April 8, 2018. Date
of publication April 16, 2018; date of current version December 19, 2018.
This work was supported in part by the Spanish Ministerio de Economı́a y
Competitividad Project TEC2015-64678-R, in part by the Fondo Europeo
de Desarrollo Regional, in part by the University of the Basque Country
(UPV/EHU) via GIU17/031, and in part by the Basque Government under
Grant pre-2016-1-0012. (Corresponding author: Unai Irusta.)

I. Isasi and E. Aramendi are with the Department of Communications
Engineering, University of the Basque Country (UPV/EHU).

U. Irusta is with the Department of Communications Engineering, Uni-
versity of the Basque Country (UPV/EHU), Bilbao 48013, Spain (e-mail:
unai.irusta@ehu.eus).

U. Ayala is with the Department of Signal Processing and Communi-
cations, Mondragon University.

E. Alonso is with the Department of Applied Mathematics, University
of the Basque Country (UPV/EHU).

J. Kramer-Johansen is with the Norwegian National Advisory Unit
on Prehospital Emergency Medicine (NAKOS), with the Department of
Anaesthesiology, Oslo University Hospital, and also with the University
of Oslo.

T. Eftestøl is with the Department of Electrical Engineering and Com-
puter Science, University of Stavanger.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2018.2827304

respectively. Significance: It is possible to accurately di-
agnose the rhythm during mechanical chest compressions
and the results considerably improve those obtained by pre-
vious algorithms.

Index Terms—Artifact suppression, cardiac arrest,
cardiopulmonary resuscitation (CPR), electrocardiogram
(ECG), mechanical chest compressions, piston-driven
compressions, recursive least squares (RLS).

I. INTRODUCTION

EARLY electrical defibrillation and high-quality chest com-
pressions during cardiopulmonary resuscitation (CPR) are

key for the outcome of out-of-hospital cardiac arrest patients
[1]. Current treatment guidelines for cardiac arrest highlight the
importance of minimizing interruptions in compressions dur-
ing CPR [1]. However, for a reliable shock/no-shock decision,
current defibrillators require interrupting compressions to avoid
artifacts in the ECG. An accurate shock/no-shock decision dur-
ing CPR would improve therapy in two ways. For nonshock-
able rhythms it would do away with unnecessary interruptions
in CPR to check the rhythm. These interruptions, which com-
promise coronary perfusion pressure, worsen chest compression
fraction and may result in decreased survival [2]. For ventricular
fibrillation (VF) it would contribute to a quicker identification
of the need to shock the patient, which is important given the
high oxygen demands of VF [3].

Strategies to allow an accurate shock/no-shock decision with-
out interrupting CPR therapy include analyzing the rhythm dur-
ing pauses in compressions for ventilation, and using signal pro-
cessing techniques to allow a reliable shock/no-shock decision
during compressions. Pauses in compressions for ventilations
occur approximately every 20 s in 30:2 CPR, and an accurate
rhythm analysis during those pauses has already been demon-
strated [4], [5]. However, those techniques are inapplicable to
compression only CPR.

Solutions based on digital signal processing for a reliable
shock/no-shock decision during compressions have followed
two main approaches [6]: the design of adaptive filters to sup-
press the artifact followed by a defibrillator’s shock/no-shock
decision algorithm, and shock/no-shock decision algorithms
based on robust ECG features minimally affected by the ar-
tifact. Adaptive filters address the spectral overlap between

0018-9294 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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resuscitation cardiac rhythms and compression artifacts, and
the time-varying spectral characteristics of the artifact. How-
ever, these filters require additional reference signals correlated
to the artifact like compression force [7], thoracic impedance [8]
or blood pressure [9]. Several solutions based on these sig-
nals have been developed including Wiener filters [10], recur-
sive adaptive matching pursuit algorithms [11], [12] or Kalman
state-space models [13]. Given the quasi-periodic nature of CPR
artifacts, adaptive solutions to estimate a time-varying Fourier
series model of the artifact have also been proposed, including
Least Mean Squares (LMS) [14]–[16] or Kalman [17] solutions.
Filtering schemes that use only the ECG to both characterize
and remove the artifact include approaches based on coherent
line removal [18], LMS [19] and Kalman filters [20].

Finally, two types of algorithms based on robust ECG-features
have been proposed to classify the ECG during CPR: features
computed without filtering like the morphological consistency
algorithm [21], [22] and adaptive rhythm sequencing [23], or
after filtering the artifact [24], [25]. Despite progress, current
solutions do not allow a reliable rhythm analysis during CPR [6],
either because filtering residuals may resemble VF in patients
in asystole (AS), or because spiky residuals are interpreted as
the QRS complexes of organized rhythms (OR) in patients in
VF [15], [16].

In all of these studies artifacts originate from manual com-
pressions delivered by rescuers. Mechanical compression de-
vices are increasingly used in resuscitation although evidences
of improved survival are not conclusive [26], [27], and have
become popular in scenarios such as transportation, invasive-
procedures or prolonged CPR [28]–[31]. Mechanical devices
deliver compressions at a constant rate and depth in adher-
ence with current resuscitation guidelines. There are two types
of automated compressors available: pneumatically driven pis-
tons like the LUCAS 2 (Physio-Control Inc/Jolife AB, Lund,
Sweeden), and load distributing bands like the Auto Pulse (Zoll
Circulation, Chelmsford, Massachusetts, USA) [32]. Prelimi-
nary attempts to remove the LUCAS 2 artifact with simple comb
filters were promising on a limited dataset [33], even though fil-
tering was later shown to be as challenging as for manual CPR
artifacts when tested on a more comprehensive dataset [34]. Al-
though mechanical CPR artifacts have a fixed frequency, they
present larger amplitudes, significant filtering residuals, and
many harmonics that make filtering the artifact challenging [34].

This study introduces a new method for a reliable shock/no-
shock decision during piston-driven mechanical compressions.
The approach uses two recursive least-squares (RLS) filters to
reduce CPR artifacts, followed by three shock/no-shock deci-
sion stages based on a standard defibrillator algorithm and on
an ECG-slope decision stage. The complete solution is there-
fore named multistage algorithm (MSA). The manuscript is
organized as follows: Section II describes the study dataset;
Section III introduces the time-varying Fourier series model of
the artifact, an algorithm to estimate the order of the model,
and the adaptive filter to track the time-varying Fourier co-
efficients; Section IV describes the building blocks and the
general architecture of the MSA solution; Section V describes
the performance metrics, data partition and optimization/test

procedures; and the results, conclusions and discussion are pre-
sented in Sections VI to VIII.

II. DATA COLLECTION AND PREPARATION

Data from 263 out-of-hospital cardiac arrest patients treated
with the LUCAS 2 piston-driven chest compression device
(Physio-Control Inc., Redmond, WA, USA) were reviewed. The
cardiac arrest episodes were collected by the advanced life sup-
port responders of the emergency services of Oslo and Aker-
shus (Norway) during 18 months in 2012 and 2013. Responders
used Physio-Control’s Lifepack 15 defibrillators that continu-
ously record the ECG and impedance signals. The LUCAS 2
device delivers compressions in a fixed position, with constant
depth (40–53 mm depending on chest height), at a constant rate
(102 ± 2 min−1), with a 50% duty cycle, and allowing full chest
recoil after each compression [35].

Anonymized data from the defibrillators was exported to
Matlab (MathWorks Inc., Naick, MA) using Physio-Control’s
Code Stat data review software, and resampled to a sampling
frequency of 250 Hz. The data included the ECG and impedance
signals of each episode together with the compression instants
detected by the Code Stat software.

The start of use of the LUCAS-2 device was marked when
the compression rate stabilized at the device’s fixed rate of
102 min−1 [34]. Then, 20 s signal segments with the same
underlying rhythm were extracted during the device usage. The
segments contained an initial 15 s interval during compressions
to develop and evaluate our solution for the shock/no-shock de-
cision during chest compressions, followed by a 5 s interval
without compression artifacts to annotate the patient’s rhythm.
Fig. 1 shows two examples. Ground truth rhythm labels were
adjudicated by consensus among two independent reviewers,
a clinical researcher and a biomedical engineer, both special-
ized in resuscitation data science [34]. The rhythm annotators,
who were not involved in the conception and development of
the methods, examined the 5 s interval without artifacts (see
Fig. 1) to annotate the rhythms. Segments were annotated as:
VF and ventricular tachycardia (VT) in the shockable rhythm
category, and OR and AS in the nonshockable category. Pres-
ence of pulse could not annotated because patient charts with
clinical pulse annotations and/or capnography levels were not
available. So the OR category includes both pulseless electri-
cal activity and pulsed rhythms. Intermediate rhythms like fine
VF (amplitude< 200 μV) were discarded. The American Heart
Association (AHA) does not establish a shock/no-shock rec-
ommendation for intermediate rhythms because the benefits of
defibrillation are unclear for those rhythms [36].

The final annotated dataset consisted of 1045 segments from
230 patients, segments like the two examples shown in Fig. 1.
There were 201 shockable segments (5 VT and 196 VF) from
62 patients, 270 AS segments from 99 patients and 574 OR
segments from 160 patients. In what follows rhythms will be
grouped into three categories: shockable (VF/VT), OR and AS.
This is the typical rhythm class definition used in the literature
on shock/no-shock decisions during CPR [15], [23]–[25]. The
prevalence of VT in our dataset is low, although it is comparable
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Fig. 1. Two examples of 20 s ECG segments corresponding to a patient in VF [example (a)] and to a patient in OR [example (b)]. In both examples,
the top panels show the ECG recorded by the device (the corrupt ECG, scor), and the bottom panels show the ECG after filtering the compression
artifact (the estimated rhythm, ŝecg). In the top panels, the initial 15 s of the ECG are corrupted by the LUCAS 2 artifact. The last 5 s show the
underlying rhythm in an interval free of artifact. Filtering (bottom pannel in both examples) reveals the underlying rhythm.

to that of most similar studies [15], [16], [23], so a separate
analysis for VT would not be meaningful.

III. QUASI-PERIODIC MODEL OF THE ARTIFACT

A. Signal model

During chest compressions the ECG signal recorded by the
defibrillator, scor(n), is corrupted by additive chest compression
artifacts, scc(n), resulting in [11], [15]:

scor(n) = secg(n) + scc(n) (1)

where secg(n) is the patient’s clean ECG reflecting the actual
underlying heart rhythm. Methods focus on estimating the arti-
fact scc(n). An extensively used approach is to assume scc(n)
to be quasi-periodic and thus model the artifact as a truncated
Fourier series of N terms [14]–[16] with no DC-component.
The Fourier series can be expressed in terms of the amplitude
and phase coefficients, ck (n) and θk (n), or as a sine-cosine se-
ries with in-phase and cuadrature amplitudes, ak (n) and bk (n),
in the following way:

scc(n) = A(n)
N∑

k=1

ck (n) cos(kω0n + θk (n)) (2)

= A(n)

N∑

k=1

(
ak (n) cos(kω0n) + bk (n) sin(kω0n)

)

(3)

where A(n) is an amplitude term to model intervals with com-
pressions, A(n) = 1, and without compressions, A(n) = 0,

such as hands-off intervals for ventilations. Smooth transitions
between intervals were defined as described in [15], [37]. The
spectral components of the artifact, its Fourier coefficients, are
considered time-varying and will be tracked using an adaptive
RLS filter (see Subection III-C). The frequency ω0 is the fun-
damental discrete frequency of the compressions which for a
piston-driven compression device is constant:

ω0 = 2πfLUCASTs (4)

with fLUCAS = 1.694 Hz ≡ 101.6 min−1 [34], and Ts the sam-
pling period.

B. Estimating the number of harmonics N

Previous works have assumed the number of harmonics N
to be fixed for all cases. However, the spectral content of the
artifact is very variable from case to case both in manual [15]
and mechanical compressions [34], and depends on factors like
the rescuer, the patient or electrode placement. Estimating N in
manual CPR is unfeasible or inaccurate because compression
frequency changes with every compression. In mechanical CPR
the frequency is fixed and simple spectral methods can be used to
estimate the number of significant coefficients in (2). Assuming
constant ck coefficients, which suffices for approximate power
computations but not for rhythm analysis, we can express the
power of the artifact in short ECG intervals using Parseval’s
theorem:

Pcc ≈
N∑

k=1

c2
k =

N∑

k=1

(
a2

k + b2
k

)
(5)
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In this work we determined the number of significant harmon-
ics as the first integer N ≤ 30 for which the following inequality
holds:

100 · Pcc,N +3 − Pcc,N

Pcc,N
≤ γ with Pcc,K =

K∑

k=1

c2
k (6)

i.e., when the addition of 3 new harmonics increased the relative
power by less than the threshold γ, optimized in the simulation
phase. The problem then reduces to efficiently estimating the
amplitudes ck located at fixed frequencies kω0 .

The Fourier coefficients were estimated using the Generalized
Goertzel Algorithm. The standard Goertzel algorithm allows
the direct evaluation of isolated terms of the discrete Fourier
transform. Its generalization extends the method to compute
spectral components at any frequency [38], in our case the kω0

frequencies. Therefore, X(kω0), the spectral components of the
signal x(n) at our frequencies of interest were computed using
the following equations [38]:

s(n) = x(n) + 2 cos(kω0)s(n − 1) − s(n − 2) (7)

X(kω0) =
(
s(Lg ) − e−jkω0 s(Lg − 1)

)
e−jkω0 Lg (8)

where Lg is the length of the signal x(n). For mechanical chest
compression artifacts we assume that the ECG components at
kω0 are negligible when compared to the harmonics of the
artifact, and therefore x(n) = scor(n). We used the initial 5 s
window (Lg = 5 · fs ) with compressions to estimate the ck ,
and formed a windowed signal xw (n) = scor(n) · wβ (n), where
wβ (n) is a Kaiser window with form factor β = 4.5 to reduce
spectral leakage. The ck coefficients were obtained as:

ck = |X(kω0)| =

∣∣∣∣
2

W4.5(0)
Xw (kω0)

∣∣∣∣ (9)

Here W4.5(0) is the spectral component of the Kaiser window at
the origin, and Xw (kω0) are the spectral components of xw (n)
at the harmonic frequencies.

C. Estimation of the ak (n) and bk (n) Coefficients

Constant Fourier coefficients were assumed to determine N ,
the order of the model for each case. However, a proper rhythm
analysis requires tracking the time-varying characteristics of the
spectral components of the artifact, the coefficients in (3). These
were estimated using an RLS Fourier analyzer [39], adapted to
estimate mechanical CPR artifacts [40]. The RLS filter presents
improved convergence and adaptability characteristics when
compared to the LMS approach formerly used for CPR arti-
fact suppression [14]–[16]. First we define two vectors for the
coefficients and reference signals (the harmonic components):

Θ(n) = [a1(n) b1(n) . . . aN (n) bN (n)]T (10)

Φ(n) = [cos(ω0n) sin(ω0n) . . . cos(Nω0n) sin(Nω0n)]T

(11)

Then the estimated chest compression artifact, ŝcc(n), is:

ŝcc(n) = A(n)ΘT (n−1)Φ(n) (12)

Filter coefficients are updated using the RLS algorithm to min-
imize the error between the corrupt ECG and the estimated
artifact at the harmonics of the mechanical chest compression
frequency. The error signal is the ECG of the estimated under-
lying rhythm, ŝecg, and the update equations are:

ŝecg(n) = scor(n) − ŝcc(n) (13)

F(n) =
1

λ

[
F(n−1) − F(n−1)Φ(n)ΦT (n)F(n−1)

λ + ΦT (n)F(n−1)Φ(n)

]

(14)

Θ(n) = Θ(n−1) + F(n)Φ(n)ŝecg(n) (15)

where the gain matrix and coefficient vector were initialized to
F(0) = 0.03I2N and Θ(0) = 0T . The forgetting factor of the
RLS algorithm, λ, governs the performance of the filter and
is set very close to unity. The choice of the forgetting factor
is a compromise between the tracking capabilities and misad-
justment and stability. Forgetting factors very close to unity
(λ > 0.995) mean low misadjustments and good stability, but
reduced tracking capabilities. This is desirable when the under-
lying rhythm (error signal) presents abrupt changes like QRS
complexes, for instance in some OR rhythms. Smaller values
of λ (0.980 < λ < 0.995) produce fast tracking capabilities but
larger misadjustements and poorer stability. This may be desir-
able when the underlying rhythm is negligible, such as during
AS. The different qualitative behaviors of the filter will be ex-
ploited by the MSA solution that uses two configurations of the
RLS filter, as described in the following section.

IV. ARCHITECTURE OF THE SOLUTION

A. Rhythm Analysis

Filtering should reveal the underlying heart rhythm of the
patient, consequently ŝecg(n) was used to diagnose the rhythm
as shockable or nonshockable. Two different approaches were
used to diagnose the rhythm: an AHA compliant rhythm analysis
algorithm designed to diagnose clean ECG, and an ECG feature
designed to discriminate OR and VF rhythms after filtering the
CPR artifact.

The rhythm analysis algorithm used was originally designed
to diagnose artifact-free ECG, and uses 3 consecutive ECG in-
tervals of 3.2 s to give a shock/no-shock decision. Succinctly,
for an in depth description consult chapter 4 (pages 63-111)
of [41], the decision is performed in three different stages. The
first one discriminates asystole segments by identifying the ab-
sence of electrical activity based on the amplitude and power of
the ECG. In the second stage, three parameters that identify the
presence of QRS complexes are fed in a binary classifier based
on a multiple logistic regression model to discriminate OR and
shockable rhythms [42]. Finally a patch is added to discriminate
fast ventricular from supraventricular rhythms [43]. The code
for the computations of the features is avaliable through [44].
The algorithm was developed and tested following AHA rec-
ommendations for arrhythmia analysis algorithms in defibrilla-
tors [36], and is fully AHA compliant [41], [42]. Furthermore, it
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is currently in use in the Reanibex R-series defibrillator (Bexen
Cardio S. Coop., Ermua, Spain).

The algorithm was designed to diagnose artifact-free ECG,
and uses 9.6 s ECG intervals to give a shock/no-shock decision.
In this work we fed the rhythm analysis algorithm with a 9.6 s
interval of the filtered ECG (from 3.4 s to 13 s), the first 3.4 s
were left out to avoid RLS filter transients.

The OR/VF discrimination feature is based on the slope of
the filtered ECG [25], and was computed using the same signal
interval of ŝecg(n) fed to the rhythm analysis algorithm (from
3.4 s to 13 s). The slope was obtained as the first difference, it
was then squared and passed through a moving average filter of
M samples (80 ms) and normalized by its maximum value, to
obtain:

d(n) =
1

M

M −1∑

m=0

(ŝecg(n − m) − ŝecg(n − m − 1))2 (16)

d(n) =
d(n)

max{d(n)} n = 0, ..., La − 2 (17)

where La = 9.6 · fs is the length in samples of the interval.
The discrimination feature is called slope baseline (bS) [25]
and was obtained as the 10th percentile of d(n) in the analysis
interval. OR rhythms present large slopes only around QRS
complexes leading to low values of bS. In contrast, VF rhythms
present evenly distributed slopes, thus larger values of bS. The
averaging filter contributes to eliminate the effect of filtering
residuals [25].

B. Architecture of the MSA Solution

The general architecture of the MSA solution for the
shock/no-shock decision during mechanical chest compressions
is shown in Fig. 2, and is composed of three stages. The process
starts by determining the number of significant harmonics of the
artifact using the generalized Goertzel method (Section III-B).
In stage 1, the corrupt ECG is coarsely filtered using the RLS
filter with a λ1 ∼ 0.990, to identify AS segments. If the rhythm
analysis algorithm identifies a nonshockable rhythm the process
ends, otherwise stage 2 is activated. In stage 2, the corrupt ECG
is finely filtered using the RLS filter with a λ2 ∼ 0.999, in order
to preserve quick ECG variations like QRS complexes. Again
if the algorithm identifies a nonshockable rhythm the process
ends, otherwise stage 3 is activated. In stage 3, the finely filtered
ECG is used to compute bS and discriminate OR from VF. Four
free parameters were left to optimize the performance of the so-
lution: the threshold to determine the order of the CPR artifact
model (γ), the forgetting factors of the filters (λ1 and λ2), and
the bS threshold (ρ).

V. EVALUATION AND OPTIMIZATION

The performance of the method was evaluated by compar-
ing the shock/no-shock decisions of our method for the fil-
tered intervals with the clinicians’ rhythm annotations for the
artifact-free intervals. The following metrics were computed:
sensitivity (SE), the proportion of correctly identified shockable
segments; specificity (SP), the proportion of correctly identified

Fig. 2. Architecture of the MSA solution for shock (Sh) and no-shock
(NSh) decisions during mechanical compressions. The solution is com-
posed of three analysis stages: a first stage based on a coarse RLS adap-
tive filter (λ1 ∼ 0.99), a second stage with a fine RLS filter (λ2 ∼ 0.999),
and a third stage based on the slope analysis (bS) of the filtered ECG.
In stages 1 and 2, the decision is based on an AHA commpliant rhythm
analysis algorithm (RAA). The order N of the RLS filters is determined
using the generalized Goertzel algorithm (GGA). The stages are acti-
vated sequentially and the process ends when a no-shock decision is
reached in stages 1 or 2, or with any diagnosis at stage 3.

nonshockable segments; accuracy (Acc), the proportion of cor-
rect decisions; and balanced accuracy (BAC). The BAC is the
mean value of SE and SP,

BAC = 1
2 (SE + SP) (18)

and gives an unbiased measure of the method’s perfomance
which is desirable during optimization given the different preva-
lences of shockable and nonshockable segments in our dataset.
BAC can be interpreted as a particular case of the unbiased mean
of sensitivities for multiclass problems [45].

Data was partitioned patient-wise, 60% of patients were in-
cluded in the training dataset to optimize the values of γ, λ1 ,
λ2 , and ρ, and 40% of patients were left for testing to compute
SE, SP, BAC and Acc. Since the partition of the data can have
a significant impact on the results, the process was repeated for
500 random 60/40 patient-wise partitions to obtain statistically
meaningful results. We used 500 bootstrap replicas because in
our preliminary experiments a number of replicas above 300
ensured the repeatability and reliability of the estimates of the
statistical distributions of the performance metrics. These dis-
tributions of the performance metrics were tested for normality
using the Kolmogorov-Smirnov test, and were reported as mean
value and standard deviation since they followed normal distri-
butions.

For each of the 500 partitions the optimization process com-
prised three steps. First, the pair (γ, λ1) that maximized the
BAC for stage 1 of the training set was determined by doing
a greedy search in the 0 < γ < 0.07 and 0.985 < λ < 0.995
ranges. Second, the value λ2 that maximized the SP for OR in
stage 2 was determined by searching the 0.9950 < λ < 0.9999
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Fig. 3. Distribution of the number of harmonics as a function of the
harmonic selection threshold (γ). The graph shows the median value
and the 25–75 percentile range for the complete dataset. Data is shown
for all cases differentiated by rhythm type: OR, AS, and shockable.

range. Third, two values of ρ were determined using the training
segments that made it to stage 3. The first (ρ1) and second (ρ2)
values set the threshold of correctly detected VF segments at
99% (high SE) and 95% (high SP), respectively.

The results were compared to those obtained for the filtering
methods proposed in the literature to suppress chest compression
artifacts from piston-driven devices: the LMS filter [15], [34]
and the comb filter [33], [34]. For a fair comparative assessment,
the training/test procedure used for the RLS was replicated.
Therefore, the filters were optimized as in stage 1 of the solution
proposed in this paper, that is by adjusting (γ,BW ) in the comb
filter and (γ, μ) in the LMS filter. In the comb filter BW refers
to the bandwidth around each notch (multi-notch filter), and for
the LMS filter μ is the step size of the LMS algorithm. The
algorithmic details can be found in the original references [15],
[33], [34].

VI. RESULTS

The dependence of the order of the model, i.e., the num-
ber of harmonics N , with the power threshold γ is shown in
Fig. 3. For small values of the threshold, γ < 0.005, the me-
dian model order is above 20 but the variability is large. For
instance, for γ = 0.005 model orders ranged from 8–30, and in
90% of cases were in the 11–27 range. This indicates that al-
though many harmonics are required to accurately represent the
piston-driven chest compression artifact (N > 15), the variabil-
ity is large from case to case, and that it is important to adjust the
order of the model in the prefiltering stage. Furthermore, Fig. 3
shows differences in model order depending on the underlying
rhythm. Nonshockable rhythms (AS and OR) presented larger
orders than shockable rhythms, because in the latter Goertzel’s
coefficient estimation may be affected by the spectral overlap
of the underlying rhythm and the artifact.

Fig. 4 shows filtering examples for the three rhythm types,
and the two filter configurations, coarse (λ1 = 0.990) and fine

TABLE I
PERFORMANCE OF THE MSA SOLUTION PRESENTED STEP-WISE AND

COMPARED TO PREVIOUS PROPOSALS BASED ON LMS AND COMB FILTERS

filtering (λ2 = 0.999). Both filter configurations reveal the un-
derlying VF equally well in the example in panel (a). For non-
shockable rhythms, coarse filtering has a larger negative effect
on signal amplitude in OR rhythms, as shown by the lower
amplitude of the QRS complexes in the example of panel (b).
However, fine filtering leaves a larger filtering residual than can
mislead rhythm analysis during AS, as shown in the example of
panel (c). So a compromise between both filtering characteristics
is needed for an accurate rhythm analysis. For a better under-
standing of the filter characteristics (λ1/λ2) with OR rhythm
the reader can consult the additional filtering examples in the
supplementary materials, which also provide additional filter-
ing experiments that explain the differences observed for OR
rhythms for the two filter configurations.

The effectiveness of the RLS filter is summarized in Fig. 5,
which shows the SE, SP and BAC of the rhythm analysis al-
gorithm after filtering the chest compression artifact. This is
equivalent to using only stage 1 in the filtering solution. The
figure shows four implementations of the filter: for a fixed
order (N = 30, γ = 0), and for three case dependent orders,
with a small threshold (γ = 0.002, i.e., large N ), intermediate
treshold (γ = 0.070, i.e., intermediate N ) and large threshold
(γ = 0.400, i.e., small N ). In addition the filter’s optimal work-
ing range in the BAC sense is highlighted. The best results were
obtained for small γ, and the figure shows that a case dependent
order was particularly important to improve SP, which is where
CPR suppression filters are known to fail [6].

The performance metrics for the 500 random patient-wise
training/test partitions are shown in Table I. All metrics are re-
ported as mean (standard deviation). Metrics were computed for
different configurations of the filtering solution including only
one, two or all three stages described in Fig. 2. The results are
compared to the single stage LMS and comb filters proposed in
the literature, and to the results obtained for the unfiltered ECG.
Filtering increased the BAC by over 20-points in all cases. The
RLS filter was the best single stage method, its BAC was 1.2-
points above that of the LMS filter. Furthermore the addition of
stages 2 and 3 increased the overall BAC by around 3-points
and most importantly the SP by over 8-points. Stage 3 allows
a trade-off between the SE and SP of the solution. The 3-stage
MSA solution produced SE/SP pairs above the minimum 90/95
values recommended by the AHA [36] for rhythm analysis on
clean ECGs. As in previous works on shock/no-shock decision
during manual CPR, the performance goal for nonshockable
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Fig. 4. An example of unfiltered and filtered (a) VF, (b) OR, and (c) AS rhythms. The first graph of each panel shows the unfiltered ECG, whereas
the other two show the filtered ECG for both filtering stages, coarse filtering (λ1 = 0.990) in the middle and fine filtering (λ2 = 0.999) in the bottom
graphs.

rhythms was fixed at 95% specificity [9], [14]–[16], [24]. This
is the AHA performance goal for asystole and for rhythms other
than normal sinus rhythm. For safety reasons, the AHA recom-
mends a 99 % specificity for normal sinus rhythms. However,
organized rhythms during cardiac arrest are rarely normal sinus
rhythms, since restoration of a normal rhythm and pulse would
imply ceasing chest compression therapy.

The average characteristics of the optimal MSA solution
were λ1 = 0.9899 (0.0006), γ = 2.3 (1.3) · 10−3 , λ2 = 0.9990

(0.0003), ρ1 = 7.7 (4.3) · 10−3 and ρ2 = 16.7 (4.4) · 10−3 . On
average 70.7% of segments were diagnosed in stage 1, 5.4% in
stage 2 and 23.9% in stage 3. The drawback of an RLS based
solution is the processing time, and in particular the recursion
formula for the gain matrix which involves the multiplication of
2N × 2N matrices (14). Our Matlab implementation of the RLS
filter (single stage) on an i7 3.2 GHz single-core processor and
16 GB of memory took on average 85 ms, considerably more
than the 17 ms and 8 ms obtained for the LMS and the comb
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Fig. 5. Performance metrics for a single stage RLS filter. Data was obtained for the whole dataset and is shown as a function of the forgetting factor
of the filter (λ) for four thresholds: γ = 0 (N = 30 fixed), γ = 0.002 (large N ), γ = 0.07 (intermediate N ), and γ = 0.4 (small N ). The highlighted
region shows the optimal range of the filter in the BAC sense, and shows that the best results were obtained for small γ (red).

TABLE II
COMPARISON BETWEEN MSA SOLUTION BASED ON RLS, LMS AND COMB

FILTERS, INCLUDING PROCESSING TIMES

filters, respectively. The computational demands of the RLS
filter are acceptable for the implementation on current moni-
tor/defibrillators, but processing demands could be reduced by
an order of magnitude using an MSA solution based on the
comb filter, of five-fold using the LMS filter. We implemented
those solutions, by replicating the optimization process used
for the RLS filter and using for stage 2 a bandwidth range of
0.08 < BW < 0.2 Hz for the comb filter, and a step size range
of 0.0009 < μ < 0.002 for the LMS filter, which are equivalent
to the range of large forgetting factors in the RLS filter. Ta-
ble II compares the MSA solutions based on the RLS, LMS and

comb filters, and shows there is a trade-off between diagnos-
tic accuracy and computational demands. The table also shows
the classification per rhythm type, to describe the effect of each
stage of the MSA solution on the accuracy for each rhythm type.
In fact, the AHA’s requirements for all rhythm types were only
met by the 3-stage RLS based solutions.

VII. DISCUSSION

This paper introduces a MSA solution for an accurate
shock/no-shock decision during mechanical CPR. The solution
introduces and/or combines several features that contribute to
an increased decision accuracy: an improved CPR artifact fil-
ter with a per case filter order (genelarized Goertzel algorithm)
and better tracking characteristics (RLS filter), a two-stage fil-
tering approach to improve SP, and a final VF/OR discrimina-
tion algorithm to balance the SE and SP of the solution. It im-
proves the BAC, SP and Acc of previous solutions by more than
5-points, 12-points and 10-points, respectively. The MSA is the
first solution to meet AHA’s criteria for SE/SP during mechani-
cal compressions, with a specificity above the 95% AHA recom-
mendation for nonshockable rhythms other than sinus rhythm.

Mechanical compressions are delivered at a fixed frequency,
this allowed the realization of a simple and computationally ef-
ficient method to determine the order of the model. Previous
attempts to remove the LUCAS 2 artifact focused on the identi-
fication of an overall optimal model order [33], [34], but our re-
sults show that model orders vary considerably from case to case
and that a case dependent order contributes to an improved SP.
RLS Fourier analyzers present improved convergence, shorter
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transients and better tracking properties [39] than the previously
used LMS [14], [15], [19] or Kalman filters [17]. The RLS filter
improved the BAC of the LMS filter by 1.2-points, and the effect
was larger on the SP (see Table I). The last two characteristics
of the MSA solution were inspired by two recent solutions to
allow accurate shock/no-shock decisions during manual CPR.
Iterative artifact filtering was introduced within the enhanced
adaptive filter (EAF) [16]. In our case, two filtering stages were
sufficient, a coarse filter to maximize BAC (stage 1) and a fine
filter to improve the detection of OR rhythms (stage 2). The anal-
ysis of the slope, an approach introduced by Ayala et al. [25]
to classify the filtered ECG, improved the SP of our method
by 2–4 points depending on the configuration of the detection
threshold. These two additions boosted the SP above 95% and
were particularly important to increase SP for OR rhythms by
10 to 14-points (see Table II).

Mechanical chest compression devices are popular in emer-
gency services. Data from a US cardiac arrest registry indicated
that 45% of participating services routinely used mechanical
devices [46]. Current resuscitation guidelines for instance
recommend their use in situations where sustained high quality
manual chest compressions are impractical or unsafe [32]. It is
therefore important to devise methods to reduce the compression
artifact and allow an accurate shock/no-shock decision during
therapy. When compared to filtering manual compression
artifacts, mechanical compression artifacts present advantages
and challenges. Mechanical artifact filtering is easier because
the compression frequency is fixed and the artifact waveform
pattern more stable [34]. Challenges include larger artifact
amplitudes [33], [34], and larger harmonic content, producing
models with very large orders and increased computational
cost.

Many CPR artifact filters for manual chest compressions have
used additional reference signals to model the artifact [7], [9],
[11]–[13], [16]. The acquisition of signals like compression
depth, acceleration or force makes defibrillator hardware more
complex and expensive, so these reference signals are not uni-
versally available [6]. Irusta et al showed that chest compression
rate derived from the depth signal was sufficient to accurately
model the artifact [15]. In fact, when compared on the same data
and with the same shock/no-shock decision algorithm, adaptive
filters based only on chest compression rate were as accurate
as adaptive filters using four reference channels [47]. Piston-
driven mechanical chest compressions are delivered at a fixed
frequency, so the problem is further simplified because depth
or impedance are no longer needed to determine the chest com-
pression rate. Furthermore, for manual CPR computing chest
compression rate from signals like impedance, depth or force
requires algorithms that accurately identify compression related
fiducial points (maximum depth). These fiducial points cannot
be always accurately determined, and this negatively affects the
performance of the adaptive solutions based only on rate [14].
Our simulations for the MSA method on manual CPR data (see
Section I of the supplementary materials) confirm this hypothe-
sis. Artifact filtering during manual CPR based only on the ECG
involves an additional stage to determine compression frequency
for which methods using spectral analysis [20], [48], empirical

mode decomposition [19], or coherent line removal [18] have
been devised. Some of these methods could be adapted in the
future to implement a prefiltering stage to determine a case de-
pendent model for manual CPR artifacts. Increasing the SP of
shock/no-shock decisions during manual chest compressions re-
mains a challenge but future solutions should probably include
multistage filters and post-filtering stages such as spiky arti-
fact detectors [16] and ad-hoc solutions to discriminate rhythms
based on the filtered ECG [21], [24], [25].

This study has some limitations. First, the MSA method
is computationally demanding. The filtering stages could be
simplified using computationally efficient RLS Fourier analyz-
ers [39], LMS filters, or comb filters, but the cost would be
a lower accuracy. Second, compressions were delivered using
a piston-driven device, and artifact characteristics may differ
when load distribution bands are used. Third, data were gath-
ered using only one monitor/defibrillator model and extrapola-
tion of the results to other models may involve adjusting the
method for different sampling frequencies, voltage resolutions
and ECG acquisition bandwidth. And fourth, data was gathered
from a single emergency service, and there may be differences
in resuscitation protocols and device usage across services [46]
that may alter the characteristics of the CPR artifacts.

VIII. CONCLUSION

This paper introduces the first method to give a shock/no-
shock diagnosis compliant with AHA recommendations for
shockable (SE above 90%) and nonshockable rhythms (SP
above 95% for rhythms other than sinus rhythm) during me-
chanical chest compressions. The MSA method had an SE of
91.8% and an SP of 98.1%, for an accuracy of 96.9%. A two
stage filtering approach combined with an ad-hoc algorithm to
differentiate OR from VF were implemented to increase the
SP, which was well below 90% in all previous studies. This
new approach to rhythm diagnosis during chest compressions
may open the possibility of diagnosing the rhythm without
interrupting compression therapy.
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I. THE MSA ALGORITHM FOR RHYTHM ANALYSIS
DURING MANUAL CPR

The objective of this section is to describe the adaptations
of the MSA solution for manual CPR, and to test those
adaptations using out-of-hospital cardiac arrest data in which
manual CPR was delivered. The results are also compared to
previous solutions for rhythm analysis during CPR.

A. Data collection and preparation

The dataset used to optimize and test the performance
of the MSA solution on manual CPR is the one used to
introduce the LMS filter for manual CPR artifact [1], [2].
The interested reader can consult those references for further
details on data extraction and annotation. In brief, the data
was gathered from a prospective study conducted in Akershus
(Norway), Stockholm (Sweden) and London (UK) between
March 2002 and September 2004. ECG and compression
depth (CD) signals were acquired using a modified version
of Laerdal’s Heartstast 4000 defibrillator and downsampled to
250 Hz.

For our simulations we used ECG segments composed of
two consecutive 15.5 s intervals: an initial interval corrupted
by CPR artefacts, and a second interval used to annotate the
ground truth rhythm labels. Fig. 1 shows an example from
the database. Rhythm labels were adjudicated by consensus
among an anaesthesiologist and a biomedical engineer both
specialized in resuscitation [3], [4]. The database is composed
of 372 segments from 295 patients, of which 87 were
shockable, (5 VT and 82 VF), and 285 nonshockable (88 AS
and 197 OR).

B. Architecture of the MSA solution

The model of the artifact is the one described in section
III-A of the manuscript, i.e. a truncated Fourier series of N
harmonics:

scc(n) = A(n)
N∑

k=1

ck(n) cos(kω0(n)n+ θk(n)) = (1)

= A(n)
N∑

k=1

ak(n) cos(kω0(n)n) + bk(n) sin(kω0(n)n) (2)

For chest compressions delivered using the LUCAS-2
device ω0 = 2πfLUCAS is constant, and fixed by the device
to fLUCAS = 1.694 Hz. In manual CPR the frequency of
the compressions delivered by a human rescuer changes
from compression to compression and therefore it is time
varying: ω0 = 2πf0(n)Ts. In our model we assume f0(n)

is fixed during a compression cycle but variable from cycle to
cycle. We define the oscillation cycle as the interval between
consecutive chest compression instants. As shown in Fig. 1,
we denote as tk the instant in which the k-th compression
was delivered (maximum chest depletion), as measured in the
CD. Then, the instantaneous frequency for compression cycle
k can be calculated as:

f0(n) =
1

tk − tk−1
tk−1 < nTs ≤ tk (3)

During manual chest compressions the spectral components
of the artefact are not well localized since the frequency may
change in every cycle. Consequently the initial stage of the
MSA solution cannot be used, i.e. the per case estimation
of the model’s order (N ) using Goertzel’s Generalized
Algorithm. We decided instead to test the algorithm using the
same number of harmonics for all the cases, as done in [1],
[2]. The architecture of the MSA solution is the one shown
in Fig. 2, which is the same as the one used for mechanical
CPR artifacts but eliminating the per case estimation of N .
The rest of the processing blocks are the ones described in
the manuscript including the RLS filter, the Rhythm Analysis
Algorithm (RAA) and stage 3 based on the analysis of the
slope of the filtered ECG. The only adaptation needed for the
RLS filter equations are:

Θ(n) =[a1(n) b1(n) . . . aN (n) bN (n)]T (4)
Φ(n) =[cos(ω0(n)n) sin(ω0(n)n) . . .

cos(Nω0(n)n) sin(Nω0(n)n)]T (5)

ŝcc(n) =A(n)ΘT(n−1)Φ(n) (6)

where the Φ(n) vector is now composed of the sinusoidal
components of time-varying frequency, that accommodate a
time-varying chest compression frequency ω0(n).

C. Optimization and evaluation

The method was evaluated in terms of the performance
metrics defined in Section V of the manuscript: sensitivity for
shockable rhythms (SE), specificity for nonshockable rhythm
(SP), Balanced Accuracy (BAC) and total accuracy (Acc).
The optimization parameters of the MSA architecture were
the order of the model N , the two forgetting factors λ1 for
the coarse RLS filter and λ2 for the fine RLS filter, and
the threshold ρ of the VF/OR discriminator in stage 3. Data
was randomly partitioned patient-wise into training (60%) and
test (40%) for optimization and validation, and statistically
meaningful results were obtained repeating the process 500
times. For each partition the optimization process comprised
the following steps:
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Artefact filtering, rhythm analysis during chest compressions Rhythm annotation

Fig. 1. Example of the 31 s segments in the manual CPR dataset. The top panel shows the ECG of a patient in OR, the middle panel shows the filtered ECG,
and the bottom panel the CD signal. The chest compression instants are indicated by vertical lines in CD, the tk instants.
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Fig. 2. Architecture of the MSA solution for rhythm analysis during manual
CPR. In this case the order of the model N is fixed.

1) The pair (N,λ1) that maximized the BAC for stage 1 of
the training set was determined by doing a greedy search
in the 3 ≤ N ≤ 7 and 0.980 ≤ λ1 ≤ 0.990.

2) The value λ2 that maximized the SP for OR in stage 2
was determined by searching the 0.995 ≤ λ2 ≤ 1 range.

3) Two values of ρ were determined using the training
segments that made it to stage 3. The first (ρ1) and
second (ρ2) values set the threshold of correctly detected
VF segments at 99% (high SE) and 95% (high SP),
respectively.

As reference, the MSA method was also adapted to use the
LMS approach to estimate ak(n) and bk(n) [1], [2], which
were the studies that introduced the Fourier series model of the
artifact. The performance metrics were estimated using again
500 data partitions, and replicating the optimization procedure
used for the MSA based on the RLS filter. The ranges for N

and µ in the greedy search procedures of stages 1 and 2 were:
2 ≤ N ≤ 7 and 0.008 ≤ µ1 ≤ 0.06, and 0.0013 ≤ µ2 ≤
0.0080, respectively.

D. Results

The RLS filter performance for a single stage is shown in
Fig. 3. The figure shows the SE, SP and BAC of the RAA
after filtering the artifact for four different model orders: N =
1, 4, 5, 8. The results for model orders 1 and 8 are shown to
illustrate the effect of using few harmonics and an excessive
number of harmonics to estimate the manual CPR artefact.
Model orders 4-5 are the ones that have been previously been
identified as optimal using other filtering approaches [1], [2].
The best results in terms of BAC were obtained for 0.980 <
λ < 0.990 and 4 ≤ N ≤ 6. The optimal working range for λ
is similar to that obtained for mechanical CPR (figure 5 of the
manuscript). However, the optimal model order for the artifact
is significantly smaller, N ∼ 4 for manual CPR and N ∼ 25
for the LUCAS-2 device. In line with previous findings, our
results show that optimal CPR artifact filters for manual chest
compressions involve fewer harmonics [5], [6].

The average characteristics of the optimal MSA solution
using the RLS/LMS filter were:

stage 1: λ1 = 0.987 (0.002), µ1 = 0.019 (0.008)
stage 2: λ2 = 0.998 (0.002), µ2 = 0.005 (0.002)

stage 3, ↑ SE: ρ1 = 0.005 (0.001), ρ1 = 0.005 (0.002)
stage 3, ↑ SP: ρ2 = 0.009 (0.002), ρ2 = 0.009 (0.003)

In both cases, the order of the artifact model was between
3 an 5 in over 95% of the segments. Table I shows the
performance metrics for the 500 random partitions reported
as mean (standard deviation). Metrics were computed for
different configurations of the MSA solution: stage 1, stage
2 and stage 3. The results are compared with the performance
of the RAA before filtering, and are reported for both filtering
methods the RLS and the LMS filters. Using a single RLS
filtering stage the BAC is increased by around 12 points. The
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Fig. 3. Performance metrics for a single stage RLS filter. Data was obtained for the whole dataset and is shown as a function of λ for three values of the
order of the artefact model: N = 1, 4, 5, 8.

addition of the stages 2 and 3 increases the BAC by 1.2 and
2.6 points, and the overall accuracy by 1.8 and over 5 points,
respectively. This is because stages 2 and 3 boots the SP, which
in the MSA solution is increased by at least 6 points over a
single filtering stage.

Finally Fig. 4 shows three examples of manual CPR filtering
using the RLS filter. The examples represent the typical
situation for the three rhythm types, VF, AS and OR and also
illustrate the differences in filtered signal between coarse (λ1)
and fine (λ2) filtering. As with the LUCAS-2 device, coarse
filtering may over attenuate QRS complexes (OR), and fine
filtering may leave filtering residuals (AS).

TABLE I
PERFORMANCE OF THE MSA SOLUTION PRESENTED STEP-WISE AND

COMPARED WITH THE VALUES BEFORE FILTERING.

Method SE (%) SP (%) BAC (%) Acc (%)

Before filtering 74.7 80.9 77.8 79.6
MSA, with RLS

STG 1 95.1 (4.0) 84.3 (3.1) 89.7 (2.5) 86.9 (2.5)
STG 2 95.0 (4.0) 86.7 (3.2) 90.9 (2.4) 88.7 (2.5)
STG 3, high SE 93.0 (5.0) 91.0 (2.9) 92.0 (2.6) 91.4 (2.2)
STG 3, high SP 89.4 (6.0) 93.6 (2.4) 91.5 (3.0) 92.6 (1.9)

MSA, with LMS
STG 1 95.4 (4.0) 81.0 (3.2) 88.2 (2.3) 84.4 (2.4)
STG 2 95.2 (4.0) 84.6 (3.0) 89.9 (2.5) 87.1 (2.4)
STG 3, high SE 93.1 (5.0) 89.6 (3.1) 91.3 (2.5) 90.4 (2.2)
STG 3, high SP 89.8 (6.0) 93.0 (2.6) 91.4 (2.9) 92.2 (2.0)

E. Conclusions

The MSA solution improves the results presented in the past
for single stage filtering solutions [1], [7]. When compared
using the same dataset and RAA, the high MSA solutions
improved the BAC and Acc of a single stage filtering method
by over 2 and 4.5-points, respectively. Furthermore, we also
show that RLS filtering improves the accuracy of the past
LMS solution [1], [2] by at least 1-point. This difference
is smaller than for the LUCAS-2 artifact, the RLS filter is
more accurate for artifacts with harmonics of higher order.
Most importantly the MSA architecture provides a framework
to increase the SP of previous rhythm analysis solutions,
since the SP increased by 6.5-9 points over a single stage
solution. This is very important because the low SP has
been identified as the main limitation of most methods for
rhythm analysis during manual CPR [8]. Our SE/SP values
for the MSA solution, both in the high SE 93.6%/91.0%
or high SP 89.6%/93.8% configurations, are close to the
AHA performance recommendations [9]. Currently the AHA
recommends a 90 % SE for shockable rhythms (VF), and a
95 % SP for nonshockable rhythms other than normal sinus
rhythm [9].

Finally, the MSA solution and two filter configurations can
be further refined in the future by developing machine learning
algorithms to classify the filtered ECG signals, in line with
some recent developments [10], [11]. Such a research line is
promising and should be explored in the future, for it may
result in solutions that meet the AHA SE/SP recommendations
for cardiac arrest rhythms.
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Fig. 4. An example of unfiltered and filtered VF (a), OR (b) and AS (c) rhythms. The first graph of each panel shows the unfiltered ECG, whereas the other
two show the filtered ECG for both filtering stages (N = 4), coarse filtering (λ1 = 0.990) in the middle and fine filtering (λ2 = 0.999) in the bottom graphs.
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II. Additional examples and experiments for OR rhythms
This section provides additional filtering experiments and

examples during mechanical chest compressions. The section
was conceived to illustrate how the RLS filter solution, both
coarse (λ1) and fine (λ2), performs for the subset of organized
rhythms. These experiments and examples are important to
understand why a multi-stage solution is needed for an
accurate rhythm analysis during LUCAS-2 use, and thus
extend and complete the description in the main manuscript
of the rationale behind the solution. The section is divided in
two parts. First, an experiment was conducted using artificial
mixtures of LUCAS-2 CPR artifacts and ECG samples
from patients in normal sinus rhythms. Second, additional
time-domain traces of filtering examples are included for the
subset of OR rhythms during LUCAS-2 use.

A. The RLS filter for strongly corrupted normal sinus rhythms

This section describes a controlled experiment to shed light
into how the RLS filter performs with normal sinus rhythms.
First, we controlled the signal input to the filter by creating
artificial mixtures of artifact free ECGs during normal sinus
rhythm and pure CPR artifacts recorded during LUCAS-2 use.
This setup allows an a priory determination of the corruption
level, in terms of signal to noise ratio (SNR), and a posteriori
evaluation of how filtering improves the SNR, and of the SP
for normal sinus rhythm after filtering in terms of the input
corruption level.

1) Data preparation: data was gathered from two sources.
First, artifact free ECGs during normal sinus rhythm were
extracted from the MIT-BIH arrhythmia database [12]. The
database contains 48 cases of 30 minutes, with various
arrhythmias, and we extracted a sample per patient with 20 s
annotated as normal sinus rhythm. This resulted in 42 samples.
Second, we used the CPR artifacts from our LUCAS-2 dataset
with AS annotated as underlying rhythm. The assumption
in this case is that during the 15 s interval in which chest
compressions were delivered the only component of the ECG
signal was the CPR artifact, since there is no underlying
electrical activity of the heart during AS [13]. From the
complete dataset 50 samples were chosen at random, in this
way we could have over 2000 different mixtures of clean ECG
and CPR artifact for a particular corruption level.

Clean ECGs and CPR artifacts were artificially mixed
following a well established model [14], [15]. The artificial
mixture or corrupt ECG, scor(n), is formed by linearly mixing
the artifact free ECG, secg(n), and the mechanical CPR
artifact, scpr(n), in the following way:

scor(n) = secg(n) + αscpr(n) (7)

where the mixture coefficient α is used to fix the SNR in
decibel (dB) at the input of the filter, SNRi, using the following
equations:

SNRi =10 log10

Pecg

Pcpr
(dB)

α =

√
Pecg

10SNRi/10
(8)

where Pecg and Pcpr denote the power of the clean ECG and
the CPR artifact, respectively.

After filtering the estimated ECG signal, ŝecg(n), can be
compared to the actual underlying rhythm since in the mixture
model is controlled and known to be secg(n). The error signal,
e(n), or noise at the output of the filter, and consequently the
recovered SNR at the output are simply calculated as:

e(n) =secg(n)− ŝecg(n) (9)

SNRo =10 log10

Pecg

Pe
(dB) (10)

where Pe is the estimated noise power at the output of the filter.
The SNRo calculations were done in the interval spanning
from 3.4 s to 13 s to be consistent with the signal interval used
for the shock/no-shock decisions. This also avoids including
filter transients in the SNRo calculations, which as shown in
the first example of Figure 6 can be large for very low SNRi.

2) Experimental setup: Every ECG sample was mixed with
every CPR artifact at different corruption levels, resulting in
2100 different mixtures for each corruption level. In order to
test filter performance strong corruption levels were selected,
since rhythm analysis in the absence of artifacts is known
to be precise [16]. We tested the following corruption levels,
SNRi = −20, −15, −10, −5, 0 dB. That is, from very strong
corruption up to the level in which the ECG and the artifact
have the same power.

At each corruption level two filters were applied to obtain
the filtered ECG, ŝecg(n), the coarse RLS filter (λ1 = 0.990)
and the fine RLS filter (λ2 = 0.999). Figure 5 shows two
examples of how the corrupt signals were constructed for two
corruption levels, and how filtering revealed the underlying
normal sinus rhythm. The output SNR was determined using
equations (9) and (10), and the improvement in SNR due to
filtering as:

∆ SNR = SNRo − SNRi (dB) (11)

Finally both the corrupt mixtures and the filtered ECG signals
were fed to the RAA and the shock/no-shock decisions of the
algorithm were used to determine the specificity (SP) before
and after the filter was applied.

3) Results: Figure 6 shows ∆ SNR in terms of the
corruption level for the two filtering modes. In both cases the
filters recovered the underlying rhythm sufficiently well. The
worst case is that of the strongest input corruption level, but
even for SNRi = −20 dB the restored SNR was close to, or
above 0 dB. This means that in the estimated ECG, ŝecg, the
underlying rhythm and the artifact would have equal power,
despite the very high input corruption level. This results in a
recovered ECG with clear QRS complexes, since in the time
domain most ECG power is due to these complexes (or large
T-waves), as shown in the examples in Figure 5.

The recovered SNR is larger for very high corruption
levels (SNRi < −15 dB) when the coarse filter is used.
In this case over-filtering helps since the input signal is
dominated by the CPR artifact, as shown in Figure 5 (a). For
lower input corruption levels fine filtering produces a more
accurate estimate of the underlying rhythm, this is the case in
Figure 5 (b). And the difference in favor of fine filtering, in
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(a) SNRi = -20 dB

(b) SNRi = -5 dB

Fig. 5. Two examples of the construction of the artificial mixtures and the effects of RLS filtering for normal sinus rhythm. The top example shows the case
of a strong corruption level, while the bottom example corresponds to medium corruption. Coarse filtering (λ1, fourth subpanel) attenuates QRS amplitudes
more than fine filtering (λ1, fourth subpanel). Fine filtering however leaves a larger filtering residual between QRS complexes.

terms of ∆ SNR, increases as the corruption level decreases.
For very low corruption levels over-filtering may alter the
amplitudes and waveform of the QRS complexes. This is
shown in section II-B of these supplementary materials, with
actual OHCA examples from the dataset used in the main

manuscript.

Finally, table II shows the specificity results before and
after filtering for all the input corruption levels and for
both filters. As shown in the table there are practically no
differences in specificity when using coarse or fine filtering,
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Fig. 6. Improvement in SNR after applying RLS filtering to artificial mixtures
of normal sinus rhythm and mechanical CPR artifacts. The improvement is
shown for strong corruption levels of the input signal and for the two filter
configurations, coarse (λ1 = 0.990) and fine filtering (λ2 = 0.999).

and the specificity is above 95 % for SNRi > −15 dB. The
specificity meets the 99 % AHA recommendation for normal
sinus rhythms when SNRi > −10 dB. So even a single
filtering stage is enough to meet AHA recommendations on
normal sinus rhythms for most reasonable corruption levels.
However, during cardiac arrest normal sinus rhythms are
seldom observed during chest compressions, because a patient
presenting normal sinus rhythm has recovered circulation and
in those cases chest compression therapy is no longer needed.
Consequently, the organized rhythms observed during cardiac
arrest pose a bigger challenge for rhythm analysis during
CPR since they frequently correspond to rhythms with lower
heart rates and more aberrant QRS complexes. Figure 7 shows
four such examples of OR rhythms recorded during chest
compressions delivered by the LUCAS-2 device.

TABLE II
SPECIFICITY BEFORE/AFTER FILTERING.

specificity (%)

SNRi (dB) Before RLS-λ1 RLS-λ2

-20 82.7 89.9 90.2
-15 83.3 96.9 97.4
-10 84.7 99.6 99.7
-5 89.1 99.8 99.9
0 95.4 100 100

B. Filtering examples for OHCA cases

The aim of this subsection is to provide additional time
domain traces of filtering examples that add to the ones shown
in the main manuscript. These are examples extracted from the
OHCA database, and represent cases in which the LUCAS-2
device was used when the underlying rhythm was organized.
These examples show the differences between the coarse (λ1)
filtering used in stage 1 and the fine filtering (λ2) used in stage
2. It is important to stress that both fine and coarse filtering
preserve the VF waveform as was demonstrated in the main
manuscript, so the aim here is to show why two filtering stages
help improving the accuracy for OR rhythms.

Most frequently, fine filtering reveals the underlying rhythm
with smaller waveform and amplitude distortion of the QRS
complexes. In general the differences are not large, as can be
seen in the first two examples. In both examples the input
SNR was large, but filtering revealed the underlying QRS
complexes. However, occasionally coarse filtering may remove
some of the QRS complexes and result in a disorganized
filtered ECG that may be diagnosed as shockable by a RAA.
This is the case shown in the third example, in which the input
SNR is smaller than in the previous two examples. Finally,
when the artifact presents higher frequency harmonics and the
underlying OR rhythm has a low heart rate, fine filtering may
result in a disorganized filtering residual during the intervals
in which the heart rhythm returns to baseline. These residuals
may confound the RAA which may diagnose the rhythm as
shockable. This is shown in the fourth and last example.
Combining fine and coarse filtering, which leave VF unaltered,
helps to correctly identify OR in those limiting cases.

Finally, we briefly justify why coarse filtering is used
first. The first stage was conceived to maximize the balanced
accuracy using a single stage. In this sense, the best choice
of filter is the one that better handles both nonshockable
rhythm types jointly, that is OR and AS rhythms. The table
shows the performance of the coarse and fine filters for all
rhythm types when used in a single stage configuration, i.e.
the filter followed by the RAA. It also shows the large increase
in specificity, without compromising sensitivity, derived from
using a two stage filter configuration. Coarse filtering was
the best choice in stage 1 because for AS coarse it leaves
much smaller filtering residuals while being adequate for
most OR cases. In stage 2, once most AS cases have been
correctly identified as nonshockable, the fine filter is targeted
at identifying the limiting OR cases overfiltered by the coarse
filter.

TABLE III
ACCURACY PER RHYTHM TYPE FOR TWO SINGLE STAGE RLS FILTERS

AND THE TWO STAGE RLS FILTER CONFIGURATIONS.

SP (%)

stages (γ, λ) SE (%) AS OR TOT

1-stage (0.0023, 0.990) 98.5 93.7 85.2 87.8
1-stage (0.0023, 0.999) 98.5 78.5 85.7 83.4
2-stage 97.0 95.2 93.4 94.0
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Fig. 7. Four filtering examples extracted from patients in OR. For each example the top panel shows the ECG before filtering, the middle panel the ECG
after coarse filtering (λ1), and the bottom panel the ECG after fine filtering e filtering (λ2).
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Abstract

Mechanically delivered chest compressions induce
artifacts in the ECG that can lead to an incorrect
diagnosis of the shock advice algorithms implemented
in the defibrillators. This forces the rescuer to
stop cardiopulmonary resuscitation (CPR) compromising
circulation and thus reducing the probability of survival.
This paper introduces a new approach for a reliable
rhythm analysis during mechanical compressions which
consists of an artifact supression filter based on the
recursive least squares algorithm, and a shock/no-shock
decision algorithm based on machine learning techniques
that uses features obtained from the filtered ECG.
Data were collected from 230 out-of-hospital cardiac
arrest patients treated with the LUCAS CPR device.
The underlying rhythms were annotated in artifact-free
intervals by consesus of expert resuscitation rhythm
reviewers. Shock/no-shock diagnoses obtained through
the decision algorithm were compared with the rhythm
annotations to obtain the sensitivity (Se), specificity (Sp)
and balanced accuracy (BAC) of the method. The results
obtained were: 94.7% (Se), 97.1% (Sp) and 95.9% (BAC).

1. Introduction

High quality cardiopulmonary resuscitation (CPR)
and early defibrillation are the most influential factors
explaining survival from out of hospital cardiac arrest
(OHCA) [1]. Current advanced life support guidelines
state that minimum interruptions in chest compressions
(CCs) are required during CPR to improve the chances
of a successful defibrillation [1]. Unfortunately, current
defibrillators require interrupting CPR during rhythm

analysis because CCs produce artifacts in the ECG that can
lead to an incorrect shock/no-shock diagnosis.

Adaptive filtering of the CC artifact has been the
major approach to allow rhythm analysis during CCs,
ranging from filters that use additional reference signals
correlated with the artifact to simpler but less effective
filters that analyze the ECG alone [2]. Taking advantage
of the quasi-periodic nature of CC artifacts, adaptive
filters based on the multiharmonic modelling of the
artifact have also been explored [3]. Diagnosing the
filtered ECG by a commercial shock advice algorithm
(SAA) has become general practice to evaluate the
performance of these algorithms [2]. This allows the
estimation of the Sensitivity (Se) and Specificity (Sp),
that is the proportion of correctly identified shockable and
nonshockable rhythms, respectively. However, the SAAs
used were originally designed to analyze artifact-free ECG
and not to diagnose the filtered ECG.

Most rhythm analysis methods have been devoted to
manual CPR [2]. However recently methods to analyze
the rhythm during mechanical CCs delivered by piston
driven devices have been developed [4–6]. These methods
were based on the SAA of commercial AEDs [7, 8]
for the shock advise decision, and either showed poor
performance [4, 5] or involved several filtering stages and
excessive computational demands [6].

This study proposes a method for a reliable shock
advise during mechanical CCs provided by the LUCAS-2
(Physio Control/Jolife AN, Lund, Sweeden) piston driven
device. The method combines an adaptive filter based on
the recursive least-squares (RLS) algorithm to remove the
artifact and a shock/no-shock decision algorithm based on
a support vector machine (SVM) classifier to diagnose the
rhythm after filtering.
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2. Materials and methods
2.1. Materials

The data used for this study were gathered by the
emergency services of Oslo and Akershus (Norway) using
LifePak 15 defibrillators (Physio-Control Inc., Redmond,
WA, USA). ECG and thoracic impedance (TI) signals were
recorded and resampled to 250Hz (see [4] for a detailed
description of the data). The ECG was band limited to
0.5-40Hz using an order 8 Butterworth filter.

The dataset extracted from this data consisted of 1045
segments of 20 s from 230 patients, whereof 201 were
shockable rhythms and 844 nonshockable (270 asystole,
574 organized). The first 15 s of the segment included
continuous CCs and were used to develop our solution.
The last 5 s, free of artifact, were used by the expert
reviewers to annotate the patient’s underlying rhythm
as shockable/nonshockable and used as ground truth.
Figure 1 shows an example of a 20 s ECG segment
corresponding to an underlying nonshockable rhythm.

2.2. Methods
2.2.1. Filtering the CC Artifact

CC artifacts were removed from the ECG using a RLS
filter based on the multiharmonic Fourier modelling of the
artifact, the filter is described in detail in [5, 6]. In brief,
during CCs the artifact is modelled as an N -term Fourier
series with time varying coefficients (ak(n) and bk(n))
and a constant fundamental frequency, f0 = 1.694Hz
(about 101 compressions min−1), which is fixed by the
LUCAS-2:

scc(n) =
N∑

k=1

ak(n) cos(k2πf0nTs)+ (1)

bk(n) sin(k2πf0nTs) (2)

where Ts is the sampling period. The RLS filter
estimates the time-varying coefficients (ak(n) and bk(n))
and subtracts the estimated artifact from the corrupted
ECG (scor) to give the filtered ECG (ŝecg), see Figure 1.

In this paper we used the optimal configuration of
the filter as described in [6], which has two degrees of
freedom. First, a parameter to decide the number of
harmonics to be used in the method, γ = 0.0023 which
roughly corresponds to an average number of N = 23
harmonics. Second, the RLS solution’s forgetting factor,
λ = 0.9899.

2.2.2. Feature extraction

A set of 59 shock/no-shock decision features were
extracted from the filtered ECG. Only the interval from
4 s to 12 s (see the highlighted interval in figure 1) was
used for feature extraction. First 4 s were left out to
avoid RLS filtering transients. These features have been
comprehensively studied and described [9–11] to classify
OHCA rhythms. The features are:
• Time domain features. TCI, TCSC, Exp, Expmod,
MAV, count1, count2, count3, x1, x2 and bCP [9].
• Spectral domain features. vFleak, M, A1, A2, A3, x3,
x4, x5, bWT and bW [9]; FuzzEn [11, 12].
• Wavelet domain features. IQR (d3-7), Var (d3-7), first
quartile of d3-7 (FQ (d3-7)), IQR (s(n)), IQR (ṡ(n)),
IQR (s̈(n)), µ2-4,s, µ3-4,ṡ, a1-4 and σ2

v [10]; Li feature [9].
• Complexity features. CM, CVbin, abin, Frqbin, Kurt,
PSR, HILB and SamEn [11, 12].

2.2.3. Architecture of the model and evaluation

A 10-fold cross-validation (CV) architecture was
used for feature selection and model optimization and
assessment. Folds were partitioned patient-wise and
ensuring that the rhythm prevalences matched (to at least
90%) the prevalences for shockable and nonshockable

Figure 1. Example of a 20 s episode of the database. The top panel shows the ECG of a patient with a nonshockable
organized rhythm (OR): the first 15 s are corrupted by the CC artifact, and the last 5 s are free of artifact showing the
patient’s underlying rhythm. The bottom panel shows the filtered ECG which reveals the patient’s rhythm during CCs.
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rhythms seen in the whole dataset (quasi-stratified). The
main classifier used for the shock/no-shock decision was
optimized using the most relevant subset of k features
selected in the training data and used to classify the
test segments. These diagnoses were compared with the
ground truth to obtain the performance of the solution in
terms of Se, Sp and BAC (the mean value of Se and Sp).

2.2.4. Feature selection
We used the ReliefF [13] feature selection method

to choose the k features used in the main classifier.
This supervised filter-based method is an extension of
the well-known Relief [14] for multiclass and regression
problems. The key idea of Relief is to estimate the
relevance of features according to how well their values
distinguish between the instances of the same and different
classes that are near to each other (neighbours). Whereas
Relief only relies in a single neighbour to calculate
the importance of the features, RefliefF considers the
contribution of several neighbours, making the algorithm
more robust dealing with noisy data. In this study the
number of neighbours was fixed to 50. Feature selection
was performed for k = 1, ...59 so as to find which value
of k offered the best compromise between dimensionality
and performance.

2.2.5. Shock/no-shock classification algorithm

Support Vector Machine (SVM) classifier with a
gaussian kernel was used for the shock/no-shock decision.
Selecting an optimal SVM model involves selecting two
parameters: γ andC, the width of the Gaussian Kernel and
the flexibility of the decision boundary, respectively [15].
The values of C and γ that maximized the BAC were
determined in the 10-fold CV loop doing a 25x25
logaritmic grid search in the ranges 10−1 < C < 101.5

and 10−3 < γ < 10. The procedure was repeated 50 times
to estimate the statistical distributions of the performance
metrics and the optimal parameters of the SVM model.
These distributions will be reported as mean (95% CI,
confidence interval).

3. Results

Figure 2 shows the mean values of Se, Sp and BAC
obtained in the 50 random repetitions as a function
of the number of features (k) selected in the training
data. The best compromise between model simplicity
and performance was obtained for k = 24 as the mean
BAC slightly increases for a greater value of k. In this
working point (k = 24), the mean value of the optimal
configuration (C/γ) of the SVM classifier was 10.62/0.02
obtaining a Se, Sp and BAC of 94.7% (93.5-95.6), 97.1%

(95.5-97.8) and 95.9% (95.4-96.5), respectively. This is
a considerable improvement over using the RLS filter
followed by a commercial SAA [7, 8], which resulted in
a Se, Sp and BAC of 98.1%, 87.0%, 92.5% respectively.

B
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Figure 2. Mean values of the performance metrics as a
function of the number of features (k) used in the classifier.

However, as shown in Figure 2, American Heart’s
Association’s (AHA) requirements for a reliable rhythm
diagnosis (Se>90% and Sp>95%) are met with as few as
5 features. In fact, the distributions of Se, Sp and BAC for
k = 5 were: 93.1% (90.5-95.5), 95.1% (94.1-95.9) and
94.1% (92.7-95.4). Table 1 shows the 10 features selected
in the 50 random repetitions of the 10-fold CV for k = 5:

Feature N Feature Nf

x1 500 A1 169
vfleak 494 IQR (d3) 86
x2 491 count3 75
x4 414 IQR (d2) 24
FQ (d3) 246 IQR (d1 ) 1

Table 1. The features selected in 50 random repetitions
ranked by the number of times (Nf ) they were selected for
k = 5.

4. Discussion

This work introduces a new method for a reliable rhythm
analysis during mechanical CCs. It consists of an adaptive
RLS filter designed to remove the CC artifact and a
shock/no-shock decision algorithm using multiple ECG
features and a state of the art machine learning classifiers.
The results show that the best trade-off between model
dimensionality and performance was obtained using 24
features, obtaining a BAC of 95.9%. However, AHA
compliant performance was obtained with only 5 features.
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In our previous work [6] a single filtering stage followed
by a commercial SAA yielded Se, Sp and BACs of 98.1%,
87.0% and 92.5% in this same dataset. By using a machine
learning approach we were able to boost the BAC by
3.4 points with an increase in Se and Sp of -3.4 and
10.1 points respectively. This shows that it is possible
to accurately decide whether to shock the patient during
mechanical CCs using a single filtering stage. In the past
we obtained AHA compliant results using 2 filtering stages
and 3 decision stages [6], with lower BAC and higher
computational demands.

In conclusion, the method presented in this paper is, to
the best of our knowledge, the computationally cheapest
method for a reliable rhythm analysis during mechanical
CCs, according to AHA recommendations.
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A Machine Learning Shock Decision
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Erik Alonso , Jo Kramer-Johansen , and Trygve Eftestøl, Member, IEEE

Abstract—Goal: Accurate shock decision methods
during piston-driven cardiopulmonary resuscitation (CPR)
would contribute to improve therapy and increase car-
diac arrest survival rates. The best current methods are
computationally demanding, and their accuracy could be
improved. The objective of this work was to introduce
a computationally efficient algorithm for shock decision
during piston-driven CPR with increased accuracy. Meth-
ods: The study dataset contains 201 shockable and 844
nonshockable ECG segments from 230 cardiac arrest
patients treated with the LUCAS-2 mechanical CPR device.
Compression artifacts were removed using the state-of-
the-art adaptive filters, and shock/no-shock discrimination
features were extracted from the stationary wavelet trans-
form analysis of the filtered ECG, and fed to a support
vector machine (SVM) classifier. Quasi-stratified patient
wise nested cross-validation was used for feature selection
and SVM hyperparameter optimization. The procedure
was repeated 50 times to statistically characterize the
results. Results: Best results were obtained for a six-
feature classifier with mean (standard deviation) sensitivity,
specificity, and total accuracy of 97.5 (0.4), 98.2 (0.4), and
98.1 (0.3), respectively. The algorithm presented a five-fold
reduction in computational demands when compared to
the best available methods, while improving their balanced
accuracy by 3 points. Conclusions: The accuracy of the
best available methods was improved while drastically
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reducing the computational demands. Significance: An
efficient and accurate method for shock decisions during
mechanical CPR is now available to improve therapy and
contribute to increase cardiac arrest survival.

Index Terms—Support vector machine (SVM), machine
learning, stationary wavelet transform (SWT), cardiac ar-
rest, cardiopulmonary resuscitation (CPR), electrocardio-
gram (ECG), mechanical chest compressions, piston-driven
compressions, shock decision algorithm.

I. INTRODUCTION

H IGH quality cardiopulmonary resuscitation (CPR) and
early defibrillation are key for the survival of out-of-

hospital cardiac arrest (OHCA) patients [1]. During CPR, chest
compressions and ventilations should be delivered according to
international guidelines [1]. Interruptions in chest compressions
decrease coronary perfusion pressure [2], and may compromise
the survival of the patient [3]. Chest compressions induce an ar-
tifact in the ECG, so current defibrillators instruct the rescuers
to stop chest compressions for a reliable shock decision [4].

Many efforts have been made to allow a reliable shock
decision during CPR, with solutions that go from analyzing
the rhythm during ventilation pauses [5], [6] to ad-hoc algo-
rithms designed for a reliable shock decision in the presence
of chest compression artifacts [7]–[9]. The best known solu-
tions are based on adaptive filters that remove the CPR arti-
fact before using the shock decision algorithm of the defib-
rillator. These filters model the artifact using additional refer-
ence channels recorded by the defibrillator such as compres-
sion depth, thoracic impedance, chest acceleration, or chest
force/pressure. Several solutions have been proposed includ-
ing Wiener filters [10], Matching Pursuit algorithms [11], [12],
Kalman filters [13], [14], Gabor filters [15], Least Mean Squares
(LMS) filters [16]–[18] and Recursive Least Squares (RLS)
filters [19]. Reference channels are not always available and
may increase the cost of defibrillators, fortunately filters based
only on the frequency of chest compressions are as effective
as complex filters based on several reference channels [16],
[20]. For manual CPR, solutions based on adaptive filters fol-
lowed by the shock decision algorithms of commercial defibril-
lators do not meet the accuracy requirements of the American
Heart Association (AHA) [4]. The sensitivity (Se) for shockable
rhythms is above the minimum 90% recommendation, but the

0018-9294 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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specificity (Sp) for nonshockable rhythms is below the minimum
recommended value of 95%. Filtering residuals have been iden-
tified as the main confounding factor for the shock decision
algorithms of commercial defibrillators [12], [21], which are
designed to classify ECGs free of artifacts [22].

Mechanical CPR is becoming increasingly popular to treat
OHCA patients, even if it has not shown benefits in sur-
vival [23]–[25]. Mechanical devices guarantee high quality
chest compressions, and have become important in scenarios
where manual CPR is impractical, such as during transport
or invasive procedures [24], [26]–[28]. There are two fami-
lies of mechanical compressors available: pneumatically driven
pistons and load distributing bands. According to the resus-
citation guidelines the most popular/widespread devices are
the LUCAS-2 (Physio-Control Inc/Jolife AB, Lund, Sweeden)
piston-driven device and the Autopulse (Zoll Circulation,
Chelmsford, Massachusetts, USA) load distributed band [29].
This study focuses on the LUCAS-2 device, whose impact on
survival has been thoroughly studied on two of the three largest
randomized controlled trials on mechanical chest compression
devices [23], [25].

Mechanical chest compression artifacts have larger ampli-
tudes and more harmonics than manual CPR artifacts [30],
but their frequency is fixed and known [19]. So the methods
to remove manual CPR artifacts have to be recast for piston-
driven devices. In the last few years, methods based on comb
filters [30], [31], LMS filters [30] and RLS filters [19] have been
introduced. Unfortunately these filters followed by the shock
decision algorithms of commercial defibrillators were strongly
affected by filtering residuals and did not meet AHA goals [30].
Recently, a multi stage algorithm based on two RLS filters and
three decision algorithms has been proven to meet the AHA
Se/Sp goals [19], albeit with a complex solution and a high
computational cost. There is a need to simplify the algorithms
that allow an accurate shock decision during piston-driven chest
compressions.

This study introduces a new method for shock decision during
piston-driven compressions based on an adaptive filter followed
by a machine learning algorithm designed to classify the filtered
ECG. The machine learning algorithm learns the characteristics
of the filtered ECG, including those of the filtering residuals that
confound the shock decision algorithms designed for artifact
free ECGs. This solution considerably simplifies the best cur-
rent multistage solution, and improves its accuracy with a much
lower computational cost. The paper is organized as follows:
the study dataset is described in Section II; feature engineering
including CPR artifact filtering, the Stationary Wavelet Trans-
form (SWT) and feature extraction are described in Section III;
Section IV describes the architecture used for feature selection
and the optimization and evaluation of the classifier. Finally,
results, conclusions and discussion are presented in Sections V
to VI.

II. STUDY DATASET

The dataset used in this study was collected and annotated
for a previous study, so further details on data collection and

preparation are available in [19], [30]. In brief, data comes
from 263 OHCA patients treated with the LUCAS-2 device by
the Oslo and Akershus (Norway) emergency services between
July 2012 and December 2013. Signals including ECG and tho-
racic impedance were recorded using the Lifepak 15 monitor-
defibrillator (Physio Control, Redmond, WA, USA), exported to
an open matlab format for processing, and resampled to 250 Hz.
A 50 Hz notch filter was used to remove powerline interferences
from the ECG.

The complete episodes were reviewed and 20-s segments
were extracted for studies on mechanical CPR artifact removal.
These segments, like the ones shown in Fig. 1, contain an initial
15-s interval during LUCAS-2 use, followed by a 5-s inter-
val without compressions. Ground truth shock/no-shock deci-
sions were adjudicated by consensus between two specialists on
cardiac arrest data, a clinical researcher and a biomedical engi-
neer, who inspected the 5-s artifact-free intervals. Nonshockable
rhythms included organized rhythms (OR) and asystole (AS),
and shockable rhythms were ventricular fibrillation (VF) and
ventricular tachycardia (VT). The initial 15-s intervals were
used to develop and test the shock decision methods during me-
chanical compressions. The final dataset contained 1045 20-s
segments from 230 patients, whereof 201 were shockable (62
patients) and 844 were nonshockable (209 patients). For an ex-
tended description of the dataset and the annotation process
consult [19], [30].

III. FEATURE ENGINEERING

Shock/no-shock decision features were extracted in three
phases. First an adaptive CPR artifact filter was used to re-
move chest compression artifacts and obtain the filtered ECG,
ŝecg(n), then a wavelet analysis provided the denoised signal,
ŝden(n), and the subband decomposition. Finally features were
extracted from ŝden(n) and the subband components. Filtering
and wavelet analysis (denoising and the most relevant subband)
are illustrated in Fig. 1 for a shockable and a nonshockable
rhythm.

A. CPR Artifact Filtering

During compressions the corrupt ECG, scor(n), was assumed
to follow an additive artifact model [10], [32]:

scor(n) = secg(n) + scc(n) (1)

where secg(n) is the ECG containing the underlying rhythm and
scc(n) the chest compression artifact. Chest compressions given
by the LUCAS-2 device have a constant rate of 100 ± 2 min−1

(f0 = 1.694 Hz), and a depth of 4.0–5.3 cm (depending on the
chest height), with a 50% duty cycle at a fixed position on the
chest. The pattern of the artifact is therefore quasi-periodic and
can be represented as an N term Fourier series of fixed frequency
and slowly time varying amplitudes:

scc(n) = A(n)

N∑

k=1

ak (n) cos(kω0n) + bk (n) sin(kω0n) (2)
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Fig. 1. Two examples of 20-s ECG segments corresponding to a patient presenting a nonshockable rhythm (example a) and to a patient presenting
a shockable rhythm (example b). The top panel depicts the corrupt ECG, scor(n), and the panel below the ECG after adaptive filtering. The top panel
has two intervals, the initial 15-s in which the chest compression artifact is visible, and the last 5-s without artifact in which the underlying rhythm is
visible. Finally, the three panels at the bottom zoom in on the 8-s interval used by the shock decision algorithm, and show the filtered ECG, and two
significant components obtained from the wavelet analysis of the filtered ECG: the denoised ECG, ŝden(n), and the detail 3 coefficient, d3 .

where ω0 = 2πf0/fs is the fundamental frequency of the
LUCAS-2 device and fs the sampling frequency. The
amplitude envelope A(n) was introduced to differentiate in-
tervals with (A = 1) and without (A = 0) compressions.

In this work two adaptive methods, LMS [16] and RLS [19]
filters, were examined to estimate the time varying in-phase,
ak (n), and quadrature, bk (n), amplitudes. For each filter two
degrees of freedom were adjusted: N the number of harmonics
of the artifact model and μ/λ the coarseness of the filter [16],
[19]. N can also be interpreted as the order of the filter. It
determines the number of filter coefficients, which is 2N since
there are a cuadrature and in-phase coefficient per harmonic.
The coarseness of the filter is either μ, the step size of the
LMS filter, or λ the forgetting factor of the RLS filter. Both
these values offer a compromise between tracking capabilities
and misadjustment and stability of the filter. A small forgetting
factor in the RLS filter or a large step size in the LMS filter
mean that a bigger change can occur in the filter coefficients
for each new sample, i.e. a more coarse filter [16], [19]. This
produces adaptive filters that follow changes in the input signal
better, but also that filter coefficients can increase without bound
if changes accumulate, resulting in an unstable filter.

B. Stationary Wavelet Transform

Feature extraction was based on the wavelet decomposition
of the filtered ECG. Previous studies on OHCA rhythm classifi-
cation have successfully applied feature extraction based on the
Discrete Wavelet Transform (DWT) [33]. We chose instead a
Stationary Wavelet Transform (SWT) approach [34], [35]. Un-
like the DWT, the SWT is shift-invariant and better suited for
edge detection, fiducial point location or denoising [36], [37].
The SWT is based on the same dyadic decomposition as the
DWT, a typical architecture is shown in Fig. 2. Shift invariance
is achieved by upsampling the filters instead of sub-sampling
the signal at each level of decomposition. The DWT scaling and
wavelet filters for signal decomposition, g0(n) and h0(n), are

Fig. 2. SWT implementation for eight levels of decomposition.

a pair of quadrature mirror lowpass and highpass filters. The
filters at stage j are obtained by upsampling the original filters
by a factor of 2j , that is:

hj (n) = (h0 ↑ 2j )(n) =

{
h0

(
n
2j

)
n = k · 2j

0 n �= k · 2j
(3)

The detail, dj (n), and approximation, aj (n), coefficients at
all levels from j = 1, . . . , J are then recursively obtained:

a0(n) = ŝecg(n) (4)

aj+1(n) = gj (n) ∗ aj (n) (5)

dj+1(n) = hj (n) ∗ aj (n) (6)

where ∗ stands for convolution. The filter coefficients depend
on the mother wavelet used. In this work a Daubechies-2
mother wavelet was adopted because it produced the best
results (see supplementary materials). The filters for recon-
struction are obtained by time reversion: gj (n) = gj (−n) and
hj (n) = hj (−n). Therefore, the original signal can be recon-
structed from the level J coefficients (ISWT) by recursively
applying [35]:

aj−1(n) = 1
2

(
gj (n) ∗ aj (n) + hj (n) ∗ dj (n)

)
(7)

from j = J, . . . , 1.
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Eight decomposition levels (J = 8) were used to generate
nine sets of coefficients, a8 and d8 , . . . d1 . A signal interval of
M = 2048 samples was analyzed, for a sampling frequency of
fs = 250 Hz it included the 8-s interval of the filtered ECG
highlighted in Fig. 1. Since the analysis is based on a dyadic
decomposition in which the available bandwidth is split in two
at each successive decomposition level, and considering that
the bandwidth of interest in defibrillators is commonly between
0.5–30 Hz, only detail coefficients d3-d8 were kept and d1 , d2

and a8 were set to zero [33]. A soft denoising was then applied
to d3-d8 using a fixed treshold, ρ, and single estimation of level
noise based on first-level detail coefficients [38]:

ρ = 1.483 · MAD(d1)
√

2 ln M (8)

where MAD(d1) is the median absolute deviation of d1 . Finally,
the denoised d3-d8 coefficients were used in equation (7) to
reconstruct ŝden(n) in the 0.5–31.25 Hz frequency range.

C. Feature Extraction

The denoised signal, ŝden(n), and the detail coefficients, d3-
d8 , were used to obtain a set of 38 features for the shock de-
cision algorithm, selected from the literature on the topic [33],
[39]–[51].

The first 18 features were the interquartile range (IQR), first
quartile (FQR) and the sample entropy (SampEn) of the de-
tail coefficients d3-d8 [33]. The remaining 20 features were
computed from ŝden(n), and constitute a comprehensive set of
features from the available methods on shock decision algo-
rithms that included time domain, frequency domain and signal
complexity characterizations of the ECG. The extracted features
were TCSC [39], Expmod [40], MAV [41], count1-count3 [42],
x1-x2 [43], bCP and bWT [44], A1-A3 [45], VFleak [46], Sam-
pEn [47], [48], the number of peaks in the 8-s interval (Np) [33],
HILB [51], CM [50], Kurt and Frqbin [49]. A detailed descrip-
tion can be found in the references given above, and a Matlab
implementation of the features derived from the denoised ECG
is available in: https://github.com/FelipeURJC/ohca-vs-public-
dbs/tree/master/ecg parameterscomputation/parameters.

IV. ARCHITECTURE OF THE MODEL AND EVALUATION

A nested cross-validation (CV) architecture was used for fea-
ture selection, and classifier hyperparameter optimization, and
model assessment, as shown in Fig. 3. In the inner loop features
were selected using a wrapper approach in a 5-fold CV [52].
In the outer loop, 10-fold CV was used for hyperparameter op-
timization and model assessment. Both inner and outer folds
were partitioned patient-wise in a quasi-stratified way, by en-
suring that the shock/no-shock case prevalences matched to at
least 85% those of the whole dataset. The performance of the
method was evaluated by comparing the shock/no-shock deci-
sions of the classifier with ground truth labels in the outer test
set. The following metrics were computed: Se, Sp, accuracy
(Acc) and the Balanced Accuracy (BAC), i.e. the mean value of
Se and Sp.

Fig. 3. Nested cross-validation architecture used for feature selection
and for model optimization and evaluation.

A. Feature Selection

In the inner loop, a PTA(4, 3) (plus 4, take away 3) feature se-
lection algorithm was used [53], [54]. The criterion to include or
exclude a feature within each inner loop was the maximization
of the BAC of a Linear Discriminant Analysis (LDA) classi-
fier [33], see inner loop in Fig. 3. BAC values were obtained by
comparing the shock/no-shock decisions obtained through the
LDA classifier with ground truth labels of the inner test set. At
each step of the PTA(4, 3) four features were included in the
model using Sequential Forward Selection, and then three were
removed from the model using Sequential Backward Selection.
The feature selection method was run until K features were
included, several values of K were tested in the experiments. A
wrapper-based approach was adopted in order to address feature
dependencies and hence select K features that altogether are the
most discriminative ones. Finally, we chose the PTA algorithm
to avoid the nesting effects of sequential feature selection [53].

B. Shock Decision Algorithm

The decision algorithm was designed in the outer loop, de-
ploying a Support Vector Machine (SVM) classifier with a
Gaussian kernel [55]. Features were standardized to zero
mean and unit variance using the data in the training set,
and the K features from the inner feature selection loop
were used. This resulted in a training set of instance-label
pairs {(x1 , y1), ..., (xn , yn )} ∈ RK × {±1}, where yi = 1 for
shockable and yi = −1 for nonshockable rhythms. The deci-
sion function of the SVM is found by solving the following
maximization problem [55]:

W (α) =

N∑

i=1

αi − 1

2

N∑

i,j=1

αiαjyiyj exp(−γ‖xi − xj‖2) (9)

s.t. : 0 ≤ αi ≤ C ∀i, and
N∑

i

αiyi = 0 (10)

where the αi Lagrange multipliers are non-zero only for Ns

support vectors, C is the soft margin parameter and γ the width
of the gaussian kernel. Once the support vectors are determined
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the decision function is:

f(x) = sign

[
Ns∑

i=1

αiyi exp(−γ‖x − xi‖2) + b

]
(11)

where the threshold b is determined in the optimization phase.
A rhythm will be classified as shockable for f(x) = 1 or non-
shockable for f(x) = −1.

Hyperparameter optimization for a gaussian kernel SVM in-
volves selecting γ and C, and was carried out using the libsvm
library [56]. The soft margin parameter C represents a trade-
off between maximizing the margin and minimizing errors in
the training data, and γ controls the flexibility of the decision
boundary [57]. The values of C and γ that maximized the BAC
were determined in the outer loop doing a 25 × 25 logarithmic
grid search in the ranges 10−1 ≤ C ≤ 102 and 10−3 ≤ γ ≤ 101 ,
respectively. The nested CV procedure was repeated 50 times to
estimate the statistical distributions of the performance metrics
that will be reported as mean (standard deviation).

V. RESULTS AND DISCUSSION

This section provides the main results for the shock decision
algorithm; additional results are given in the supplementary
materials and referenced in the manuscript. First the LMS/RLS
filter was optimized; then the effect of two variables were an-
alyzed, the number of features used by the classifier (K), and
the length of the analysis segment used for the shock/no-shock
decision (L). Finally the results are compared to all available
solutions for shock decisions during piston-driven chest com-
pressions. The results are reported for the C/γ pair with best
average BAC in the 50 repetitions of the outer CV loop.

A. CPR Artifact Filter Configuration and
Processing Times

Fig. 4 shows the mean values of the BAC obtained in the
50 random repetitions of the nested CV procedure for different
configurations of the LMS and RLS filters, using an interval
of L = 8 s for feature extraction and an SVM classifier with
K = 6 features. Both filters showed near-optimal performance
with a BAC above 96.5% for a wide range of configurations,
that is, for different filter orders (N ) and coarseness levels (μ, λ):
N ≥ 10 and μ ∼ 3–12 ·10−3 for the LMS filter and N ≥ 10
and λ ∼ 0.970–0.990 for the RLS filter. The accuracy of the
solution is not very sensitive to the CPR artifact filter, so filters
can be considerably simplified by decreasing their order N to
reduce the computational cost. Table I shows the distribution
of the performance metrics and the average computation time
for different filter orders. The filters were configured at their
optimal coarseness, μ = 8 · 10−3 and λ = 0.99, as shown in
Fig. 4. The computation time t1 is the time required to suppress
the CPR artifact and t2 includes the wavelet decomposition,
feature calculations (K = 6), and the decision of the SVM clas-
sifier obtained through Eq (11). All calculations were done in
Matlab on an i7 3.2 GHz single-core processor and 16 GHz of
memory.

AHA performance goals were met with the RLS and LMS
filters with as few as N = 5 harmonics, but best results were
obtained with N = 20, as shown in Table I. For N = 5 the
computational demands of the complete algorithm were very
low, 16 ms for the LMS or 38 ms for the RLS filter. Feature
extraction including SWT/ISWT analysis and denoising con-
sumed on average 6 ms, so the LMS filter is computationally
very cheap and its computational cost negligible regardless of
its order, it uses up 10 ms for N = 5, and 18 ms for N = 30. The
RLS filter has a greater computational cost that increases con-
siderably with its order, from 30 ms for N = 5 to over 140 ms
for N = 30. This excessive computational cost is caused by
the RLS recursion formula for the gain matrix which involves
2N × 2N matrix multiplications for each signal sample [19].
The RLS filter has been shown to be more effective than the
LMS filter to remove piston-driven compression artifacts when
shock decision algorithms from commercial defibrillators are
used in the classification stage [19], [58] (see also Table III).
Shock decision algorithms in commercial defibrillators are de-
signed to classify artifact free ECGs, so an effective suppression
of the CPR artifact is critical. This is also important if the fil-
tered ECG (ŝecg in Fig. 1 and Fig. 7) is shown in the screen of
the monitor-defibrillator to serve as a decision support signal
for the emergency clinician. However, our results show that the
design of CPR artifact filters can be relaxed when a properly
designed machine learning algorithm trained with the filtered
ECG is used for classification. This is probably because the
classification algorithm now learns the characteristics of filter-
ing residuals that confound the shock decision algorithms of
commercial defibrillators.

For all the analyses hereafter an LMS filter with μ = 8 · 10−3

and N = 20 was used.

B. Classification Features and Feature Ranking

One of the pivotal aspects of a machine learning algorithm
is the design of the classification features. The method pro-
posed includes features extracted from the d3-d8 denoised SWT
components and their reconstructed signals. Table II shows the
ranking of the features by the number of times they were selected
using the PTA(4, 3) feature selection scheme in the inner loop
and 50 random repetitions of the outer CV loop (50 × 10 = 500
feature selection loops). This ranking was obtained for a so-
lution with K = 6 features. The features with the best rank-
ing are a mixture of those derived from the detail coefficients
and from the denoised signal, and represent a variety of signal
analysis approaches that comprise signal regularity/complexity
(SampEn, CM, Frqbin) [49], [50], [59], spectral analysis
(VFleak, A1-3, bWT) [44], [45], [60], time domain features
(MAV, Np, count2) [33], [41], [42], or the sample distribu-
tions of the denoised signal (Kurt) and its detail coefficients
FQR/IQR [33]. Additional results for the discriminative power
of the features using ROC curve analysis are available in the
supplementary materials.

Fig. 5 shows the accuracies (balanced and absolute) of the
shock decision system as a function of features allowed in the
SVM. For a good accuracy the number of features in the clas-
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Fig. 4. The mean values of BAC obtained in the 50 repetitions of the nested CV procedure when a LMS (left) or a RLS (right) filter is used to
remove the CPR artifact. The performance is given as a function of the coarseness (λ, μ) of the filter for 4 significant values of the filter order, N .

TABLE I
SHOCK DECISION ACCURACIES AND PROCESSING TIMES FOR FILTERING (t1 ) AND SHOCK DECISION (t2 ) FOR DIFFERENT FILTER ORDERS

TABLE II
FEATURES RANKED BY Nf , THE NUMBER OF TIMES THEY

WERE SELECTED IN THE 500 INNER LOOPS

sifier must be between 3 and 7, which gives an Acc and BAC
above 97.8%. A classifier with fewer features presented lower
BAC and Acc, with a more negative impact on Acc. This means
that the most prevalent class, the Sp for nonshockable rhythms,

Fig. 5. Mean values of BAC and Acc as a function of the number of
features, K , used in the classifier.
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Fig. 6. Distribution of the performance metrics as a function of the
length of the analysis segment (L). The graph shows the median values
and the 2.5-97-5 percentile range for Se, Sp and BAC.

is negatively affected by using a simpler classifer. Adding more
than 7 features sligthly reduces both accuracies, and makes the
classifier more complex.

C. Duration of the Analysis Segment

Fig. 6 shows how the performance metrics change as the
analysis segment is shortened. The perfomance of the algorithm
stabilizes at near-optimal values for analysis segments longer
than 4 s, and drops if shorter segments are used. However, for
segments as short as 2 s the algorithm still meets the minimum
AHA recommendations for Se and Sp, with values of 96.5 (94.9–
97.6) and 96.0 (95.1–96.7), respectively. Studies that have de-
veloped ad-hoc algorithms for cardiac arrest data have reported
minimum segment lengths for an accurate analysis around 3–4 s,
both for the analysis of the ECG without CPR artifacts [47], [61]
or after suppression of manual CPR artifacts [43]. Previous stud-
ies on shock decision during piston-driven chest compressions
relied on shock decision algorithms of commercial defibrilla-
tors. These algorithms require analysis segments in excess of
5 s in most devices [62]. For instance, in two previous studies
on shock decision during mechanical CPR the analysis segment
was either 6 s or 9 s long, because the algorithm applied a ma-
jority vote to three consecutive 3-s analysis subsegments [19],
[30]. Reducing the length of the analysis segments is not criti-
cal during compressions, since CPR therapy is not interrupted
for the analysis. However, if a rhythm transition analysis is to
be performed during CPR [63] short intervals would permit a
more accurate time-location of transitions between shockable
and nonshockable rhythms, and a reduction of computational
burden.

TABLE III
COMPARISON TO PREVIOUS METHODS USING THE SAME DATA

[†] Single stage filtering, shock decision of a commercial defibrillator.
[‡] Multistage filtering, shock decision of a commercial defibrillator.

D. Discussion on the Near-Optimal Solution

The accuracy for the (near)-optimal solutions using an RLS
and an LMS filter (see Table I) are compared in Table III
to the available methods for shock decision during piston-
driven compressions. Feature extraction was done with L = 8 s
and an SVM with K = 6 features was used. The optimal
(C, γ) pairs for the SVM were (17.8 · 10−2 , 6.8 · 10−2) and
(3.162, 1 · 10−2) for the LMS and RLS filter based solutions,
respectively.

The multistage solution introduced in [19] was the most accu-
rate shock decision algorithm for mechanical devices proposed
to date. As shown in Table III, the machine learning approach
proposed in this study increases the BAC of single filter solu-
tions by over 5-points, and that of the multistage solution by
3-points, and increases the sensitivity substantially, making the
solution very reliable for the detection of shockable rhythms.
The overall accuracy is also increased by around 1-point, which
is a considerable increase because the multistage solution had an
overall accuracy of 96.9%. A 1-point increase from that base-
line means that around 30% of the errors are now correctly
classified. Very importantly, this improvement was achieved to-
gether with a drastic reduction of the computation demands of
the algorithms. For a solution based on the LMS filter the mean
processing time per 8-s segments was 21 ms, an over five fold
improvement when compared to the 110 ms required by the
multistage solution. This reduction is very important in defib-
rillators with scarce computation resources.

Finally, Fig. 7 shows three illustrative examples of misclassi-
fied segments both for shockable and nonshockable rhythms. In
the two examples of nonshockable rhythms the denoised signal
and the d3 detail coefficient (best features) show a disorganized
signal, fast in the case of the AS example (middle) and slower
for the OR (top). These disorganized signals are interpreted as
shockable rhythm by the SVM classifier. In the example of the
missed VF, the filter is unable to remove the spiky artifact intro-
duced by the mechanical device at each compression, and these
spikes confound the decision algorithm. In any case misclassi-
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Fig. 7. Three examples of misclassified segments. Panels (a) and
(b) depict nonshockable rhythms, OR and AS, respectively, while panel
(c) represents a shockable (VF) rhythm. From top to bottom, each panel
shows the 20-s ECG segment, and the filtered ECG, the denoised ECG
and the detail 3 coefficient of the 8-s interval used by the shock decision
algorithm.

fications were very few, around 15 for nonshockable rhythms
(Sp ∼ 98.2%), and around 5 for VF (Se ∼ 97.5%).

VI. CONCLUSION

This study introduces a machine learning algorithm for shock
decisions during piston-driven chest compressions. The algo-
rithm improves the accuracy of the best known solutions to
date by 3 points in BAC with an additional 5-fold reduction in
computational cost. This makes this solution very accurate and
efficient. There are two main reasons for these advances. First,
the feature extraction phase based on the stationary wavelet

analysis resulted in new and improved discriminating features.
Second, extracting the features after removing the CPR artifact
and feeding those features to the SVM improves the accuracy
considerably, because the machine learning algorithm is able to
learn the characteristics of filtering residuals. Our results show
that this approach allows relaxing the characteristics of the com-
pression artifact filters.

The main limitations of this study are associated with the data.
The dataset came from a single type of monitor-defibrillator,
so the methods may need adjusting to encompass data from
other devices with different ECG acquisition characteristics like
bandwidth, sampling rates or A/D resolution. Furthermore, the
data were compiled from a single emergency service and the
LUCAS-2 device may be used differently across emergency
services, that may also enforce different resuscitation proto-
cols. Those differences may result in chest compression arti-
facts with different characteristics. Finally, the (near)-optimal
solutions presented in Table I were obtained following a train-
ing/validation data partition given the amount of samples avail-
able. If more data were available the results should be confirmed
using an independent test set.
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I. THE SELECTION OF THE MOTHER WAVELET

The coefficients of the Stationary Wavelet Transform
(SWT) represent the projection of the signal over a set of
basis functions, ψj,k generated as translation and dilatation
of a protype function, ψ, called mother wavelet. Detail
coefficients at different decomposition levels can be obtained
by convolving the signal with ψj,k, which for a discrete dyadic
decomposition is [1]:

ψj,k(t) =
1√
2j
ψ

(
t− k · 2j

2j

)
(1)

Where a = 2j is the scaling parameter associated to each
decomposition level j, and b = k · 2j is the translation
parameter.

The selection of the mother wavelet determines the
representation of the signal. Therefore, the mother wavelet
must carefully be selected so that the reconstructed signal
resembles the original ECG as closely as possible.

The aim of this section is to choose the mother wavelet
best suited for our machine learning shock decision algorithm.
There is no definitive rule for the selection of the mother

TABLE I
PERFORMANCE OF THE SHOCK DECISION ALGORITHMS FOR DIFFERENT

WAVELET FAMILIES, RLS FILTER WITH λ = 0.99, N = 25.

MW Se (%) Sp (%) BAC (%) Acc (%)

haar 97.0 (0.7) 95.7 (0.4) 96.3 (0.4) 96.0 (0.3)
db2 96.4 (0.5) 98.4 (0.3) 97.4 (0.3) 98.0 (0.3)
db3 95.8 (0.6) 98.2 (0.3) 97.0 (0.3) 97.7 (0.2)
db4 95.4 (0.7) 97.9 (0.3) 96.6 (0.4) 97.4 (0.3)
db5 96.2 (0.5) 97.6 (0.5) 96.9 (0.3) 97.3 (0.4)
db6 96.3 (0.5) 96.9 (0.5) 96.6 (0.3) 96.8 (0.4)
db7 96.8 (0.5) 96.8 (0.4) 96.8 (0.4) 96.8 (0.4)
db8 96.2 (0.7) 96.7 (0.5) 96.5 (0.5) 96.6 (0.4)
db9 96.8 (0.7) 96.1 (0.3) 96.5 (0.4) 96.3 (0.3)

db10 96.5 (0.7) 96.2 (0.4) 96.3 (0.4) 96.2 (0.3)
sym4 95.9 (0.3) 97.3 (0.4) 96.6 (0.3) 97.0 (0.4)
sym5 95.7 (0.8) 97.4 (0.4) 96.5 (0.4) 97.1 (0.4)
sym6 96.4 (0.4) 96.9 (0.4) 96.6 (0.3) 96.8 (0.3)
sym7 96.7 (0.7) 97.4 (0.4) 97.1 (0.4) 97.3 (0.3)
sym8 96.7 (0.7) 96.0 (0.4) 96.4 (0.4) 96.2 (0.3)
coif1 96.6 (0.5) 98.0 (0.2) 97.3 (0.3) 97.7 (0.2)
coif2 96.0 (0.6) 97.5 (0.3) 96.7 (0.3) 97.2 (0.2)
coif3 96.3 (0.7) 97.6 (0.3) 96.9 (0.3) 97.3 (0.2)
coif4 96.1 (0.6) 97.0 (0.3) 96.6 (0.3) 96.9 (0.2)
coif5 97.1 (0.6) 96.1 (0.4) 96.6 (0.3) 96.3 (0.3)
fk4 96.2 (0.9) 96.7 (0.5) 96.4 (0.6) 96.6 (0.5)
fk6 95.8 (0.6) 97.6 (0.4) 96.7 (0.2) 97.3 (0.3)
fk8 95.9 (0.9) 97.9 (0.4) 96.9 (0.5) 97.5 (0.4)
fk14 95.8 (0.9) 96.6 (0.4) 96.2 (0.4) 96.5 (0.3)
fk18 95.7 (0.7) 95.7 (0.3) 95.7 (0.3) 95.7 (0.3)
fk22 95.9 (0.7) 95.5 (0.6) 95.7 (0.5) 95.6 (0.5)
dmey 95.6 (1.0) 95.8 (0.5) 95.7 (0.5) 95.8 (0.4)

wavelet and many methodologies have been followed in the
literature, most of them based on the maximization of the
cross-correlation between the original and the reconstructed
ECG [2], [3]. In our work the criterion for mother wavelet
selection was the maximization of the BAC of the shock
decision algorithm. Six well-known mother families [4], [5]
were tested: Haar, Daubechies (db), Symmlet (sym), Coiflet
(coif), Fejer-Korovkin (fk) and discrete Meyer (dmey). The
analysis was done for the two adaptive filters, the RLS
and LMS filters, and results are reported as mean (standard
deviation) in Tables I and II, respectively.

The configuration of the filters, (N,λ) for the RLS
and (N,µ) for the LMS, was fixed to the optimal filter
configurations obtained in our previous works [6], [7]. The
model used for feature selection, optimization and evaluation
of the shock decision algorithm is the one described in the
main manuscript, although simplified to lower the computation
cost. In the outer loop a 5-fold cross validation (CV) was
used to optimize and evaluate the SVM classifier, incremental
feature selection was used to select the best subset of features
and only 20 repetitions of the nested CV procedure were

TABLE II
PERFORMANCE OF THE SHOCK DECISION ALGORITHM FOR DIFFERENT

WAVELET FAMILIES, LMS FILTER WITH µ = 0.008, N = 20.

MW Se (%) Sp (%) BAC (%) Acc (%)

haar 96.6 (0.8) 95.9 (0.4) 96.2 (0.5) 96.0 (0.4)
db2 97.8 (0.5) 97.8 (0.4) 97.8 (0.4) 97.8 (0.4)
db3 96.7 (0.4) 97.3 (0.4) 97.0 (0.3) 97.2 (0.3)
db4 96.6 (0.6) 97.1 (0.4) 96.9 (0.4) 97.0 (0.4)
db5 97.1 (0.5) 96.7 (0.5) 96.9 (0.4) 96.8 (0.5)
db6 96.6 (0.8) 96.9 (0.4) 96.8 (0.5) 96.8 (0.4)
db7 97.1 (0.5) 96.6 (0.4) 96.8 (0.3) 96.7 (0.3)
db8 97.2 (0.6) 96.3 (0.5) 96.7 (0.3) 96.5 (0.4)
db9 97.0 (0.7) 95.9 (0.4) 96.4 (0.4) 96.1 (0.3)

db10 96.3 (0.6) 96.1 (0.3) 96.2 (0.3) 96.2 (0.3)
sym4 96.8 (0.4) 97.4 (0.3) 97.1 (0.3) 97.3 (0.2)
sym5 96.1 (0.6) 97.5 (0.4) 96.8 (0.4) 97.2 (0.3)
sym6 97.1 (0.5) 97.2 (0.4) 97.1 (0.3) 97.1 (0.3)
sym7 97.1 (0.5) 96.9 (0.4) 97.0 (0.4) 96.9 (0.4)
sym8 96.9 (0.6) 96.6 (0.5) 96.8 (0.4) 96.7 (0.4)
coif1 97.0 (0.4) 98.1 (0.4) 97.6 (0.3) 97.9 (0.4)
coif2 96.3 (0.6) 97.4 (0.4) 96.8 (0.4) 97.2 (0.4)
coif3 97.2 (0.3) 96.8 (0.5) 97.0 (0.3) 96.8 (0.4)
coif4 96.9 (0.5) 96.7 (0.4) 96.8 (0.3) 96.8 (0.3)
coif5 96.4 (0.8) 97.0 (0.3) 96.7 (0.4) 96.9 (0.3)
fk4 96.6 (1.0) 96.5 (0.5) 96.6 (0.6) 96.6 (0.5)
fk6 96.4 (0.8) 96.9 (0.3) 96.7 (0.4) 96.8 (0.3)
fk8 97.5 (0.7) 97.1 (0.3) 97.3 (0.3) 97.2 (0.2)
fk14 96.6 (0.8) 96.3 (0.3) 96.4 (0.4) 96.3 (0.3)
fk18 96.2 (0.9) 95.9 (0.5) 96.1 (0.5) 96.0 (0.4)
fk22 95.9 (1.0) 95.3 (0.4) 95.6 (0.5) 95.4 (0.3)
dmey 95.5 (0.8) 95.8 (0.5) 95.7 (0.4) 95.8 (0.4)
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computed.
The best mother wavelet for both filters was the Daubechies

of order 2 (db2), followed by the Coiflet 1 wavelet. Therefore,
the db2 wavelet was the one used in the main article
for ECG decomposition, denoising and reconstruction. This
is consistent with findings in the literature in which the
Daubechies wavelet family has been shown to be the family
of mother wavelets that most closely resembles the ECG
morphology [3], [8], [9]. Fig. 1 shows the morphology of the
mother wavelets that achieved the best performance in each
family of mother wavelets.

0 1 2 3

-2

0

2

0 2 4 6

-2

0

2

0 2 4 6

-2

0

2

0 5 10

-2

0

2

0 2 4

-2

0

2

0 5 10 15

-2

0

2

0 2 4

-2

0

2

0 2 4 6

-2

0

2

0 0.5 1

-2

0

2

40 50 60

-2

0

2

Fig. 1. Mother wavelets of different families with best performance for the
shock decision algorithm.

II. DETAILED ANALYSIS OF THE FEATURES

The aim of this section is to analyze the discriminating
power of the 38 features used in the main manuscript. The
features were obtained after CPR artifact filtering, both from
the denoised ECG signal, ŝden, and from the wavelet detail
coefficients, d3 − d8.

Table III shows the receiver operating characteristic (ROC)
curve analysis of individual features after optimal RLS and
LMS filtering. The features are ordered by analysis domain,
and the Area Under the Curve (AUC) and the Se/Sp pair
for the optimal point in the ROC curve are reported. The
optimal working point was defined as the one maximizing
the Youden index [10], which is equivalent to maximizing the
balanced accuracy (BAC). As for the wavelet decomposition,

TABLE III
ROC CURVE ANALYSIS, AUC AND OPTIMAL POINT.

LMS RLS
N = 20, µ = 8 · 10−3 N = 20, λ = 0.99

Feature AUC Se Sp AUC Se Sp

Detail coeff
IQR, d3 87.7 91.5 76.2 88.8 91.0 78.2
IQR, d4 86.0 89.6 74.6 86.2 89.6 74.8
IQR, d5 81.3 89.1 65.0 81.2 88.6 64.8
IQR, d6 68.1 94.5 44.1 68.2 94.5 43.7
IQR, d7 53.8 91.5 33.3 52.1 93.5 28.9
IQR, d8 55.4 36.4 86.1 55.8 38.0 86.1
FQR, d3 87.8 74.5 92.5 88.8 76.4 91.5
FQR, d4 86.2 73.6 90.5 86.4 73.7 90.5
FQR, d5 81.0 59.5 93.5 80.8 63.7 89.1
FQR, d6 68.1 49.1 89.6 68.1 42.9 95.5
FQR, d7 54.3 32.1 92.5 52.5 30.3 92.0
FQR, d8 55.5 86.6 35.8 55.9 85.6 37.7
SampEn, d3 99.5 96.5 98.9 99.4 97.5 97.7
SampEn, d4 98.6 96.0 95.9 99.1 96.5 95.9
SampEn, d5 86.9 93.5 70.6 88.1 94.5 73.6
SampEn, d6 78.4 87.6 63.4 80.0 91.0 63.5
SampEn, d7 84.5 81.1 78.0 85.4 84.6 73.7
SampEn, d8 80.6 70.1 81.6 80.4 71.6 79.3

Denoised, ŝden
Time

Np 91.9 87.6 83.9 89.5 80.1 83.4
TCSC 88.5 93.0 78.8 86.7 93.5 75.1
Expmod 88.8 90.0 72.4 88.9 92.5 70.5
MAV 88.3 89.6 78.2 86.5 90.0 75.7
count1 94.3 93.0 85.4 94.7 91.5 85.8
count2 97.4 93.5 94.1 97.5 96.5 92.1
count3 96.1 95.5 87.9 96.3 93.5 90.8

Spectral
bWT 94.8 94.0 83.8 95.3 94.0 84.4
A1 61.5 89.6 37.6 68.2 86.6 48.1
A2 82.3 80.1 71.9 81.7 74.6 78.2
A3 82.6 80.2 73.6 83.2 82.3 74.6
VFleak 91.2 85.7 86.1 91.0 87.7 83.6

Slope
x1 97.8 98.0 92.3 97.8 96.0 94.0
x2 95.2 91.5 89.8 95.0 89.1 90.8
bCP 97.3 92.3 94.0 97.4 92.5 94.5

Complexity
HILB 89.1 89.6 75.6 88.3 81.6 82.5
CM 84.4 83.6 71.2 85.4 84.1 74.4
Kurt 86.2 75.1 87.6 84.3 78.4 82.1
Frqbin 84.8 96.0 60.2 85.8 86.6 72.5
SampEn 92.8 94.0 80.3 94.2 97.0 80.3
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features derived from the detail coefficients d3 − d5 were
the most discriminative ones, which confirms that for shock
decision algorithm the 3.9-31.25Hz frequency band contains
most of the relevant information. For the denoised signal, the
most discriminative features come from several domains of
analysis including the time domain (MAV, Np, count2), the
spectral analysis (bWT, VFleak, A1-3) and the complexity
of the signal (SampEn, CM, Frqbin). Interestingly, the most
discriminative features were obtained after applying SampEn
to the detail coefficients of the wavelet decomposition,
particularly to d3 and d4. For our sampling frequency, these
coefficients correspond to a frequency band of 7.81-31.25Hz,
where most of the spectral power of the QRS complexes is
concentrated [11]. This is an interesting result that should be
analyzed further since it could open a new way to design
shock decision algorithms for defibrillators. In our analyses,
before computing SampEn the input signals (dj or ŝden) were
resampled to 50Hz and an embedding dimension of m = 2
and a matching threshold of r = 0.2 ·σ(sin) were used, where

TABLE IV
FEATURES RANKED BY Nf , THE NUMBER OF TIMES THEY WERE

SELECTED IN THE 500 INNER LOOPS OF 50 RANDOM REPETITIONS OF THE
NESTED CROSS VALIDATION PROCEDURE.

LMS, N = 20, µ = 8 · 10−3 RLS, N = 20, λ = 0.99

Feature Nf Feature Nf

SampEn, d3 500 SampEn, d3 500
VFleak 321 FQR, d7 397
FQR, d7 236 VFleak 337
IQR, d7 217 A1 275
A2 183 CM 255
Kurt 157 Kurt 248
A3 148 A2 207
FQR, d6 119 bWT 146
Np 102 A3 86
FQR, d8 85 IQR, d7 65
cm 73 MAV 60
count2 67 Frqbin 52
SampEn, d6 64 Np 51
FQR, d5 58 FQR, d6 39
MAV 57 FQR, d8 38
bWT 53 HILB 33
FQR,D3 50 FQR, d5 29
TCSC 49 TCSC 27
Frqbin 49 SampEn 25
count3 42 x1 21
IQR, d6 41 FQR, d3 16
bCP 40 FQR, d4 15
HILB 32 SampEn, d4 13
SampEn, d4 28 count2 11
IQR, d8 28 SampEn, d6 8
FQR, d4 26 IQR, d8 7
x1 25 IQR, d6 7
A1 24 SampEn, d7 6
SamEn, d7 23 SampEn, d5 5
count1 23 Expmod 5
Expmod 16 count3 3
SampEn, d8 15 IQR, d4 3
IQR, d4 14 IQR, d3 3
IQR, d3 12 x2 2
IQR, d5 10 count1 2
x2 6 IQR, d5 2
SampEn 4 SampEn, d8 1
SampEn, d5 3

σ stands for the standard deviation.
Table IV shows the complete ranking of the features by the

number of times they were selected using the PTA(4,3) in the
50 random repetitions of the 10-fold CV procedure. Optimal
filter configurations were used and the procedure was stopped
once K = 6 features were selected on each inner loop. It is
important to stress that this feature ranking is not aligned with
the discrimination power of the features as measured through
their ROC curve analysis, compare for intance the AUCs in
Table III to the feature ranking in Table IV. Many individually
strong features are also very correlated and therefore add little
new information to the classifier. These feature dependencies
are addressed in the PTA feature selection stage. Finally,
the ROC curves of the top 6 features are shown in Fig. 2
(LMS) and Fig. 3 (RLS). These figures show the Se/Sp pairs
that could be achieved by varying the threshold for a single
shock/no-shock decision feature.

Fig. 2. ROC curves corresponding to the 6 top ranked features when the
LMS filter is used to remove the CPR artefact.

Fig. 3. ROC curves corresponding to the 6 top ranked features when the RLS
filter is used to remove the CPR artefact.
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ABSTRACT Electrocardiogram (EKG) based classification of out-of-hospital cardiac arrest (OHCA)
rhythms is important to guide treatment and to retrospectively elucidate the effects of therapy on patient
response. OHCA rhythms are grouped into five categories: ventricular fibrillation (VF) and tachycardia
(VT), asystole (AS), pulseless electrical activity (PEA), and pulse-generating rhythms (PR). Clinically
these rhythms are grouped into broader categories like shockable (VF/VT), non-shockable (AS/PEA/PR),
or organized (ORG, PEA/PR). OHCA rhythm classification is further complicated because EKGs are
corrupted by cardiopulmonary resuscitation (CPR) artifacts. The objective of this study was to demonstrate
a framework for automatic multiclass OHCA rhythm classification in the presence of CPR artifacts. In total,
2133 EKG segments from 272OHCA patients were used: 580 AS, 94 PR, 953 PEA, 479 VF, and 27 VT. CPR
artifacts were adaptively filtered, 93 features were computed from the stationary wavelet transform analysis,
and random forests were used for classification. A repeated stratified nested cross-validation procedure was
used for feature selection, parameter tuning, and model assessment. Data were partitioned patient-wise. The
classifiers were evaluated using per class sensitivity, and the unweighted mean of sensitivities (UMS) as a
global performance metric. Four levels of clinical detail were studied: shock/no-shock, shock/AS/ORG,
VF/VT/AS/ORG, and VF/VT/AS/PEA/PR. The median UMS (interdecile range) for the 2, 3, 4, and
5-class classifiers were: 95.4% (95.1-95.6), 87.6% (87.3-88.1), 80.6% (79.3-81.8), and 71.9% (69.5-74.6),
respectively. For shock/no-shock decisions sensitivities were 93.5% (93.0-93.9) and 97.2% (97.0-97.4),
meeting clinical standards for artifact-free EKG. The UMS for five classes with CPR artifacts was 5.8-points
below that of the best algorithms without CPR artifacts, but improved the UMS of latter by over 19-points
for EKG with CPR artifacts. A robust and accurate approach for multiclass OHCA rhythm classification
during CPR has been demonstrated, improving the accuracy of the current state-of-the-art methods.

INDEX TERMS Out-of-hospital cardiac arrest (OHCA), electrocardiogram (EKG), cardiopulmonary
resuscitation (CPR), adaptive filter, stationary wavelet transform (SWT), random forest (RF) classifier.

I. INTRODUCTION
Out-of-hospital cardiac arrest (OHCA) is a leading cause
of death in the industrialized world. In Europe the esti-
mated annual average incidence of ambulance treated cases

The associate editor coordinating the review of this manuscript and
approving it for publication was Nuno Garcia.

is 41 (range 19-104) per 100 000 persons [1]. Patients in
cardiac arrest lose their cardiac and respiratory function,
and die within minutes if not treated. Treatment consists of
highly time-sensitive interventions such as: recognition, call
for help, cardiopulmonary resuscitation (CPR), defibrillation,
and post-resuscitation care. Bystanders and lay rescuers can
provide CPR to maintain an artificial perfusion of the vital
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organs through chest compressions, and mouth to mouth
breaths for ventilations. Defibrillation by an automated exter-
nal defibrillator (AED) can be used to revert lethal ventricular
arrhythmia and restore the normal function of the heart. Upon
the arrival of the medicalized ambulance, specialized treat-
ment becomes available including continued high-quality
CPR and defibrillation, but also add intravenous pharma-
cological treatment (adrenaline and anti-arrhythmic drugs),
airway management, and assisted ventilation. If spontaneous
circulation is restored, the patient is transported to a hospital
for in-hospital treatment and post-resuscitation care [2].
Knowing the patient’s cardiac rhythm during resuscitation

is important for two reasons. First, awareness of the patient’s
rhythm may contribute to guide therapy. International guide-
lines describe treatment pathways based on cardiac rhythm
and elapsed time, i.e., rhythm analysis every 2 minutes with
defibrillation attempts for ventricular fibrillation (VF) or
tachycardia (VT), and consideration of intravenous drugs
such as adrenaline every 3-5 minutes for all non-perfusing
rhythms [2]. Second, in retrospective analyses, the rhythm
transitions of the patient during CPR provide important
information about the interplay between therapy and patient
response [3]–[5]. This may contribute to identify therapeutic
interventions or treatment patterns that improve OHCA sur-
vival. One of the limiting factors for such analyses is the lack
of datasets with cardiac rhythm annotations due to the manual
labor involved. Thus, there is a need for automatic methods
for cardiac rhythm annotation. InOHCA rhythms are grouped
into five categories [6], [7]: VF, VT, asystole (AS), pulseless
electrical activity (PEA), and pulse-generating rhythms (PR).
Often, PEA and PR are called organized rhythms (ORG),
or rhythms presenting visible QRS complexes in the electro-
cardiogram (EKG) [8]. PEA is characterized by a disassocia-
tion between themechanical (contraction of themyocardium)
and electrical (QRS complexes) activities of the heart, which
leads to no palpable pulse [4].
OHCA rhythm classification algorithms are based on the

analysis of the EKG, and in most cases address 2-class clas-
sification problems. A typical example is AED shock advice
algorithms [9]–[11], designed to discriminate shockable
(VF/VT) from nonshockable rhythms (AS/ORG). Depending
on the clinical context a finer detail is needed. VT treat-
ment may benefit from synchronized electrical cardioversion
[12]. Another clinically relevant problem is the detection
of spontaneous circulation or pulse, which is framed as a
PEA/PR discrimination algorithm once ORG rhythms are
identified [8], [13], [14]. So there is clearly a need for differ-
ent levels of detail in OHCA cardiac rhythm classification.
Five-class OHCA rhythm classification using the EKG was
introduced by Rad et al., [7], [15] using features obtained
from the discrete wavelet transform (DWT) sub-band decom-
position of an artifact-free EKG. Most OHCA rhythm clas-
sification algorithms consist of an EKG feature extrac-
tion stage followed by a machine learning classifier. EKG
feature extraction has been approached in the time [16],
[17], frequency [18], [19], time-frequency [15], [20], [21],

and complexity domains [22], [23]. The machine learn-
ing approaches explored in the classification stage include
K-nearest neighbors [15], [24], support vector machines
[10], [25], [26], artificial neural networks [13], [19], [27], and
ensembles of decision trees [11], [14].
OHCA rhythm classification is further complicated by

the presence of CPR artifacts in the EKG. Interruptions in
CPR to classify the rhythm lead to interrupted perfusion of
vital organs and lowers chances of survival [28]. Efforts
have been made to develop accurate OHCA rhythm analysis
methods during CPR [29]. The most popular approach is
the suppression of the CPR artifact using adaptive filters
[30]–[32], followed by an EKG feature extraction stage on
the filtered EKG. These approaches have been successfully
demonstrated to discriminate shockable (Sh) from nonshock-
able (NSh) rhythms both during manual CPR [33] and piston
driven mechanical CPR [21]. In fact, an improved feature
extraction based on the stationary wavelet transform (SWT)
sub-band decomposition has yielded improved classification
results for shock/no-shock decisions during mechanical CPR,
and is the basis for feature extraction in this work. However,
there are no studies on multiclass OHCA rhythm classifica-
tion during CPR. In fact, when 5-class OHCA rhythm classi-
fiers developed using artifact-free EKG were tested during
CPR their performance substantially degraded [15], [27].
So there is a need to develop algorithms for multiclass OHCA
rhythm classification during CPR.
This study introduces new methods for multiclass OHCA

rhythm classification during CPR, using features obtained
from the SWT analysis of the EKG after filtering CPR arti-
facts. The scope of the algorithms is gradually increased
from 2-class to 5-class rhythm classification to address
the different levels of clinical detail needed depending
on the application. The following classification problems
were studied: Sh/NSh, Sh/AS/ORG, VF/VT/AS/ORG, and
VF/VT/AS/PEA/PR. The paper is organized as follows.
The study dataset and its annotation are described in
Section II; feature engineering including CPR artifact fil-
tering is described in Section III; Section IV describes the
architecture used for the optimization and evaluation of the
classification algorithms. Finally, results, discussion, and
conclusions are presented in Sections V-VII.

II. DATA COLLECTION AND PREPARATION
Data were extracted from a large prospective OHCA clinical
trial designed tomeasure CPR-quality, and conducted in three
European sites between 2002 and 2004: Akershus (Norway),
Stockholm (Sweden) and London (UK) [34], [35]. Prototype
defibrillators based on the Heartstart 4000 (Philips Medical
Systems, Andover, Mass) were deployed in 6 ambulances at
each site. The defibrillators were fitted with an external CPR
assist pad that measured compression depth [36]. The raw
data for our study consisted of the EKG and transthoracic
impedance obtained from the defibrillation pads, and the
compression depth. All signals were originally sampled at
500Hz, and then downsampled to a sampling frequency of
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FIGURE 1. One 20-s segment from the dataset corresponding to a patient with an organized rhythm (ORG). In the first 5 s there is no
artifact and the ORG rhythm is visible, in the last 15 s the CPR artifact conceals the patient’s rhythm. After filtering ŝekg is obtained (middle
panel), and the underlying rhythm is again visible in the artifacted interval. The bottom panel shows the compression depth signal with the
chest compression instants (tk ) highlighted using vertical red lines.

fs = 250Hz (Ts = 4ms) for this study. A notch and a Hampel
filter were used to remove powerline interferences and spiky
artifacts, respectively. Chest compression instants (tk ), were
automatically marked in the depth signal using a negative
peak detector for depths exceeding 1 cm (see Fig. 1).
All recordings were annotated for the original study into

the five OHCA rhythm types, by consensus between an
experienced anesthesiologist trained in advanced cardiac life
support and a biomedical engineer specialized in resuscita-
tion [34]. VF was defined as an irregular ventricular rhythm
with peak-to-peak amplitudes above 100μV and a fibrillation
frequency above 2Hz. Regular ventricular rhythms with rates
above 120min−1 were annotated as VT. AS was annotated in
rhythms with peak-to-peak amplitude below 100μV and/or
rates below 12min−1, and ORG rhythms when the heart rate
was above 12 min−1. ORG rhythms were further classified
into PEA or PR by assessing the presence of blood flow,
indicated by clinical annotations of pulse done during resus-
citation, or by the presence of fluctuations in the thoracic
impedance aligned with the QRS complexes [13], [34].
For this study, we automatically extracted 20-s segments

with the following characteristics: unique rhythm type, ongo-
ing compressions during a 15-s interval, and a 5-s interval
without compressions either preceding or following chest
compressions (see Fig. 1). The interval during compres-
sions was used to develop and evaluate the OHCA rhythm
classifiers, and the interval without compression artifacts to
confirm the original rhythm annotation. All automatically
extracted segments were reviewed by 3 experienced biomedi-
cal engineers to discard segments with low signal quality and
noise, and to certify by consensus that the original annota-
tions in the dataset were correct. The final dataset contained

2133 segments from 272 patients, whereof 580 were AS
(139 patients), 94 PR (31), 953 PEA (167), 479 VF (103),
and 27 VT (11).

III. FEATURE ENGINEERING
Feature engineering consisted of 3 stages. First, chest com-
pression artifacts were removed using an adaptive filter.
Then, a multi-resolution analysis of the EKG was per-
formed using wavelet transforms, from which the denoised
EKG and its sub-band decomposition were obtained. Finally,
high-resolution features were extracted from the denoised
EKG and its sub-band components. In what follows n is the
sample index, so t = n · Ts.

A. CPR ARTIFACT FILTER
CPR artifacts were suppressed using a state-of-the-art method
based on a recursive least squares (RLS) filter [32] that
estimates the CPR artifact, scpr(n), as a quasiperiodic interfer-
ence [31]. The fundamental frequency of the artifact, ω0(n),
is the instantaneous frequency of the chest compressions. The
CPR artifact is represented as a truncated Fourier series of N
harmonically related components of frequencies ω� = � · ω0
and slowly time-varying Fourier coefficients [31]:

scpr(n) = A(n)
N∑

�=1

a�(n) cos(ω�n) + b�(n) sin(ω�n)

= A(n)�T(n)�(n) (1)

where

�(n = [cos(ω1n) sin(ω1n) . . . cos(ωNn) sin(ωNn)]T (2)

�(n) = [a1(n) b1(n) . . . aN (n) bN (n)]T (3)
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and A(n) = 1 during compressions, and A(n) = 0 oth-
erwise. The time-varying coefficients of the RLS filter are
the in-phase (a�) and quadrature (b�) components in vector
�(n). The instantaneous frequency of the compressions was
derived from the tk instants obtained from the depth signal
(see Fig. 1):

ω0(n) = 2π
1

tk − tk−1
tk−1 ≤ nTs < tk (4)

The RLS coefficients were adaptively estimated to min-
imize the mean square error between the corrupted EKG,
scor, and the estimated artifact, ŝcpr, at the frequency of the
harmonics. The error signal of the RLS filter is thus the
filtered EKG, ŝekg, which is used to identify the underlying
rhythm. The RLS update equations are [37]:

ŝekg(n) = scor(n) − A(n)�T(n− 1)�(n) (5)

F(n) = 1
λ

[
F(n−1) − F(n−1)�(n)�T(n)F(n−1)

λ + �T(n)F(n−1)�(n)

]
(6)

�(n) = �(n−1) + F(n)�(n)ŝekg(n) (7)

The gain matrix and coefficients vector were initialized to
F(0) = 0.03 · I2N and �(0) = 0, where I2N is the 2N × 2N
identity matrix. The forgetting factor of the RLS algorithm,
λ, and the number of harmonics, N , were set to 0.998 and 4,
as recommended in [32].

B. STATIONARY WAVELET TRANSFORM
EKG multiresolution analysis was done using the SWT,
which differs from the standard DWT in that at each decom-
position level the low-pass (approximation) and high-pass
(detail) components are not downsampled. Instead, the fil-
ters are upsampled so all detail and approximation coeffi-
cients have the length of the original signal, producing a
translation-invariant representation [38].
Each EKG segment was decomposed into its sub-bands

using a pair of quadrature mirror lowpass (hj) and highpass
(gj) filters, which for level 0 are related by:

g0(L − 1 − n) = (−1)nh0(n), (8)

where L is the length of the filters. At stage j the filters were
those of stage 0 upsampled by a 2j factor, hj(n) = h0(n)↑ 2j

.
The detail, dj(n), and approximation, aj(n), coefficients were
recursively obtained through convolution (∗):

a0(n) = ŝekg(n) (9)

aj(n) = hj−1(n) ∗ aj−1(n) (10)

dj(n) = gj−1(n) ∗ aj−1(n) (11)

The time-reversed version of the decomposition filters, that
is h(n) = h(L − 1 − n), were recursively used to reconstruct
the original signal [38]:

aj−1(n) = 1
2

(
hj(n) ∗ aj(n) + gj(n) ∗ dj(n)

)
(12)

from j = J , . . . , 1.
EKG features were extracted using a 2048-sample analysis

interval (8.192 s) of ŝekg centered in the 15 s during chest

compressions (see Fig. 1). A Daubechies 4 mother wavelet
and J = 7 decomposition levels were used to generate a7
and d7, . . . , d1. Only detail coefficients d3−d7 were used for
feature extraction, which is equivalent to retaining the spec-
tral components in the 0.98 − 31.25Hz band. Soft denoising
was applied to d3 − d7 with a universal threshold rescaled
by the standard deviation of the noise [39]. The denoised
d3 − d7 coefficients were used to obtain the denoised EKG,
ŝden, by recursively applying eq. (12). The whole decomposi-
tion and denoising (reconstruction) processes are illustrated
in Fig. 2 for two rhythms, a VF and an ORG.

C. FEATURE EXTRACTION
Ninety three features were extracted from ŝden and d3 − d7.
These features quantify the most distinctive characteristics
of OHCA rhythm subtypes, and encompass the collective
knowledge of over 25 years of active research in the field
(over 250 features from the available literature were initially
analyzed). In what follows, feature naming is that of the orig-
inal papers, and the MATLAB code for feature calculation is
available from (https://github.com/iraiaisasi/
OHCAfeatures). The features grouped by analysis domain
are:

• Time domain (5 features). These were only extracted
from ŝden and include: bCP [18], x1, x2 [33], and
the mean and the standard deviation of the heart rate
(MeanRate and StdRate) obtained from the QRS
detections of a modified Hamilton-Tompkins algorithm
[14], [40].

• Spectral domain (6 features). Including the classical x3,
x4, x5 [33], VFleak [41], and two new features,
Enrg, the relative energy content of the signal in the
4-8Hz frequency band, and SkewPSD, the skewness of
the power spectral density of the EKG. All features were
computed from ŝden.

• Complexity analysis (14 features), including CVbin
and Abin [42] of ŝden, and two measures of entropy
for ŝden and d3 − d7. The entropy measures were
the sample entropy (SampEn) of the signal, and the
Shannon entropy (ShanEn) of the sign of the first
difference [43].

• Statistical analysis (54 features). Nine features were
calculated to characterize the statistical distribution of
the signal amplitude: interquartile ranges (IQR) [15],
mean and standard deviation of the absolute value of
the amplitudes (MeanAbs and StdAbs) and slopes
(MeanAbs1 and StdAbs1), Skewness (Skew), Kurto-
sis (Kurt) [11], and the Hjorthmobility and complexity
(Hmb and Hcmp) [44]. All the features were computed
for ŝden and d3 − d7.

• Phase space features (14 features). Taken’s time-delay
embedding method [45] with a delay of τ = 2 samples
was used to create a two-dimensional phase space rep-
resentation for ŝden and d3 − d7 [46]. An ellipsoid was
fitted in the phase-space using the least squares criterion,
and its major axis (EllipPS), and the skewness of
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FIGURE 2. SWT sub-band decomposition and denoised EKG reconstruction for the 8.192-s analysis interval of the filtered EKG, ŝekg. The
left panel corresponds to an organized rhythm (ORG) and the right panel to a ventricular fibrillation (VF).

the distance distributions in the phase space (SkewPS)
were computed. Then a recurrence quantification anal-
ysis (RQA) was used to extract and quantify the tran-
sition structures of the system dynamics in the phase
space. Two RQAmeasures were computed only for ŝden,
the length of the longest diagonal line (RQA1), and the
recurrence period density entropy (RQA2) [47].

The dataset can thus be represented as a set of
instance-label pairs {(x1, y1), ..., (xN , yN )} where yi are the
class labels (for instance {0, 1} for a Sh/NSh classification
problem), the feature vector xi ∈ RK contains the values of
the K = 93 features for EKG segment i, and N = 2133 is the
number of EKG segments in the database.

IV. CLASSIFIER TRAINING AND EVALUATION
A repeated quasi-stratified nested cross-validation (CV)
architecture was used [21], [48], with an outer 10-fold CV
for feature selection and model assessment, and an inner
5-fold CV for classifier parameter optimization. First, for
each training set of the outer CV, features were selected using
recursive feature elimination (RFE) [49]. Then, these fea-
tures were used in the inner CV to optimize the parameters of
the classifier. Finally, the classifier was trained and assessed
in the outer loop. Data were always partitioned patient-wise

and in a quasi-stratified manner, by forcing the prevalence of
each rhythm in each fold to be at least 70% of the prevalence
of that rhythm in the whole set. In this way patient-wise and
stratified sampling could be done simultaneously.
Confusion matrices were used to evaluate the performance

of the classifiers [15], and four classification problems
were addressed: Sh/NSh (2-class), Sh/AS/ORG (3-class),
VF/VT/AS/ORG (4-class), andVF/VT/AS/PEA/PR (5-class).
For each class i the sensitivity (Sei) was computed, and the
unweighted mean of all sensitivities (UMS) was used as
summarizing metric:

Sei = TPi
TPi + FNi

, UMS = 1
P

P∑
i=1

Sei (13)

where TPi and FNi are the true positives and false negatives
for class i, and P is the number of classes. The nested CV
procedure was repeated 50 times to estimate the statistical
distributions of Sei and UMS, and to obtain the stacked
confusion matrices for each classification problem.

A. CLASSIFIER
Random forest (RF) classifiers [50] were used to decide the
EKG rhythm class. An RF is an ensemble of B decision
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FIGURE 3. Stacked confusion matrices for 50 runs of the nested CV procedure for the different models. The mean sensitivities for
each class and model are shown in the diagonals (mean and median sensitivities are slightly different, see table 1).

trees {T1(x), ...,TB(x)} that produces B nearly uncorrelated
predictions

{
ŷ1 = T1(x), ..., ŷB = TB(x)

}
of the rhythm type

for the EKG segment. Training an RF classifier comprises:
• Generating B training subsets from the original train-
ing data by bootstrapping (i.e., random sampling with
replacement). We choose each training subset to have
the same size as the original training data.

• A classification tree is grown for each training subset by
choosing the best split among a randomly selected subset
ofmtry features in each node. The criterion to choose the
split was to minimize the cross-entropy.

• The recursive binary splitting continues until each ter-
minal node has fewer than some minimum number of
observations, lsize.

• The decision of classifier, ŷj = FRF (xj), is obtained by
the majority vote of the B trees.

Once the models were trained, the predictions in the valida-
tion sets were obtained by comparing the predictions of the
model ŷj to the labels assigned by the clinicians yj, to obtain

the confusion matrix of the model and the metrics derived
thereof.
We considered three parameters of the RF classifier: B,

mtry, and lsize. The number of trees was initially fixed to
B = 500. This choice is not critical, a sufficiently large
number stabilizes the accuracy and further increasing B does
not overfit the model [50]. The number of predictors per
split was set to the default value

√
K . The minimum num-

ber of observations per leaf, lsize, controls the depth of the
trees, and was identified as critical in our preliminary tests.
We optimized lsize in the inner CV by doing a grid-search in
the range 1 ≤ lsize ≤ 200 with the UMS as the objective
function. Finally, uniform prior probabilities for each class
were assigned during training to address the class imbalance.

B. FEATURE SELECTION
Feature selection was based on an RFE approach using the
permutation importance as a ranking criterion [51]–[53].
Permutation importance is a built-in characteristic of the RF
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FIGURE 4. Median UMS and Se per class in the 50 repeats of the 10-fold outer CV, as a function of lsize.

classifier that ranks feature importance by permuting the
values of the feature in the training data and assessing the
out-of-bag error. Large errors mean the feature is important
for classification. At each iteration of the RFE algorithm,
features were ranked and the least important 3% of the fea-
tures were removed. The process was continued until Kcl
features were left for classification. The values decided for
the different models were: Kcl = 25 for 2-class, Kcl = 30 for
3-class, Kcl = 35 for 4-class, and Kcl = 40 for 5-class.

V. RESULTS
The results reported in this section are those obtained after
running the RFE feature selection algorithm in the 10-fold
outer CV untilKcl features were left, and fitting the classifiers
with the optimal parameters determined in the 5-fold inner
CV. The process was repeated in 50 random repetitions of
the nested CV procedure, there are thus 50 estimates of the
metrics for the whole dataset and 500 algorithmic runs on the
validation folds in the outer CV. The metrics are reported as
median (interdecile range, IDR) for those 50 evaluations.

A detailed analysis of the classification results for the
different class models are shown in Table 1 and Fig. 3.
Fig. 3 shows the confusion matrices obtained stacking the
predictions from the 50 random repetitions of the nested
CV procedure, and provide all the information needed to
accurately calculate the performance metrics for each rhythm
type and classifier. The median (IDR) of the sensitivities and
UMS for each classifier are shown in Table 1. The clinical
relevance of the classification results and classification errors
is addressed in section VI, the discussion.
As reference, we also computed the classification results

when the features were selected exclusively on the feature’s
permutation importance. That is, the RFE algorithm was
substituted by a single feature ranking based on importance
from which the Kcl most important features were selected.
Using a single feature ranking based on importance the
median (IDR) UMS for the 2, 3, 4 and 5-class classifiers were
95.3% (95.0-95.5), 87.3% (86.9-87.6), 81.1% (79.5-82.3),
and 67.8% (65.7-70.0), respectively. The classification results
for 2, 3, and 4 classes were similar to those obtained using
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TABLE 1. Median UMS and sensitivity per class for different classifiers.
The metrics are reported as median (IDR) for the 50 runs of the nested CV
procedure.

FIGURE 5. The median UMS (5-class) in the 50 random repetitions, as a
function of the number of trees, B, and the number of features per
split, mtry .

RFE feature selection, but an advanced feature selection
approach combining feature importance and sequential fea-
ture elimination boosted the 5-class classification results by
4-points.

A. SELECTION OF PARAMETERS
The most critical parameter in our RF classifiers was the
minimum number of observations in the terminal nodes, lsize,
which gives a compromise between bias and variance by con-
trolling how shallow the classification trees are. Larger values
of lsize produce shallower trees. Fig. 4 shows, for the different
classifiers, the median value of the performance metrics for
the evaluations of the 50 repeats of the 10-fold outer CV as a
function of lsize. In the cases where class imbalance is smaller
(2 and 3 class) deeper trees increase the UMS, however when
the class imbalance is large (4 and 5 class) shallower trees
produce better results (see Fig. 4). The median (IDR) value
of the optimal lsize for the 2 and 3-class classifiers were
3 (1.0-7.0) and 3 (1.0-5.0), but increased considerably to

FIGURE 6. Selection probability for the 40 most selected features in the
500 runs of feature selection (outer loop).

80 (30.0-150.0) and 125 (50.0-200.0) for the cases of 4 and
5-classes.
Fig. 4 also shows that the sensitivity for the classes with

lower prevalence (VT and PR) increases with shallower trees.
In the 4-class classifier the sensitivity for VT increased by
more than 40 points when lsize was raised from 1 to 100, while
the sensitivities of the most prevalent classes (AS, ORG, and
VF) decreased very slightly. A similar behavior was observed
for the sensitivities of VT and PR in the 5-class problem,
although in this case the sensitivity of PEA, the rhythm that
borders PR and VT, decreased considerably from 83.1%
to 25.1%. PEA sensitivity could be better addressed using
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FIGURE 7. Two examples of misclassified segments for the 3-class classifier. In the top panel an AS is classified as ORG, while the bottom
panel shows an ORG misclassified as AS.

multimodal analysis by adding information on perfusion from
other signals like pulse oximetry, invasive blood pressure,
brain oximetry or expired CO2 when available [54], [55].

Changing the number of trees, B, and the features per
split, mtry, had less impact on classification. Fig. 5 shows
the median UMS of the 50 random repetitions of the
5-class classifier for different choices of B and mtry, with
lsize = 125. The figure shows that our preliminary design
choices were sound, the UMS stabilizes for B > 250 and
the effect of mtry on the classification results was small
with the median UMS varying between 70.9% and 72.6%.
So the default mtry = √

K value was a very acceptable
choice.

B. FEATURE SELECTION AND RELEVANCE
Feature design is key in classical machine learning. In our
approach, we introduced the SWT for multi-resolution anal-
ysis because it allows a better amplitude and statistical char-
acterization of the features than the classical DWT used by
Rad et al. [15]. In addition soft denoising produced a recon-
structed signal from which many classical OHCA rhythm
classification features could be better estimated. Fig. 6 shows
the 40 features with the highest probability of selection (the
most important features) for each classification problem.
These probabilities were estimated by counting the num-
ber of times the features were selected in the 500 runs
of feature selection algorithm (50 repeats of 10-fold outer
CV). For the 2-class problem the most relevant features

are a mixture of those derived from the detail coefficients
and from the denoised signal and correspond to complex-
ity, frequency, time, and statistical domains. For the 3 and
4-class classifiers, features derived from the phase-space
reconstruction of the signals were also relevant. Finally, for
the most challenging 5-class classifier, the RQA analysis was
also needed to improve classification results. Features like
VFleak, SampEn (d3) and IQR (d7) were selected in all
feature selection runs corresponding to the 2, 3 and 4-class
classifiers and SampEn (d3) was also selected in all the runs
of the 5-class classifier. These results are consistent with
our previous findings on shock/no-shock decisions during
mechanical CPR [21]. Although CPR artifacts present very
different characteristics during mechanical and manual CPR,
features derived from the SWT decomposition of the filtered
EKG seem to be very robust and independent of the filtering
residuals, thus are able to capture the distinctive characteris-
tics of OHCA rhythms.

VI. DISCUSSION
The relevance of the detailed classification results presented
in Table 1 and Fig. 3 is better understood in the context of
the clinical importance of each classification problem, and by
providing illustrative examples of the classification errors that
show the limitations of our approach. For the Sh/NSh 2-class
problem, the median UMS was 95.4%, with median sensi-
tivity for the shockable and nonshockable rhythms of 93.5%
and 97.2%, respectively. This is a very important problem
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FIGURE 8. An example of a VT classified as VF by the 4-class classifier.

FIGURE 9. Two examples of misclassified PEA/PR rhythms. The last five seconds (clean intervals) of both panels show the difficulty of
pulse assessment based only on the EKG.

since it addresses shock advice decisions during CPR. Shock
advice algorithms for defibrillators are normally tested on
artifact-free data. In that scenario, the American Heart Asso-
ciation requires a minimum sensitivity for shockable and
nonshockable rhythms of 90% and 95%, respectively [56].
Our solution is above those requirements. Morevover, our
results improve by over 1.5-points the UMS reported for
the most accurate shock/no-shock algorithms during manual
chest compressions [33], [57].
A finer classification of NSh rhythms includes the distinc-

tion between AS and ORG rhythms, which can be impor-
tant to determine pharmacological treatment, or the effect
of adrenaline use and dosage during CPR [58]. The UMS
for the 3-class classifier was above 87.5%, and shockable

rhythms had a sensitivity of 93.9%. However, the distinction
between AS/ORG during CPR was difficult, 13% of AS
were incorrectly classified as ORG whereas a 10.8% of ORG
rhythms were classified as AS. These finding are in line with
those reported by Kwok et al., who on a limited set of patients
demonstrated the first 3-class rhythm classification algorithm
during CPR [20]. In scenarios without CPR artifact the dis-
tinction between AS/ORG is simple and can be addressed
using energy and heart-rate measures [33]. During chest
compressions spiky filtering residuals may be confounded as
QRS complexes during AS (Fig. 7, top panel). Conversely,
CPR artifact filtering may reduce R-peak amplitudes
in ORG rhythms producing erroneous AS classifications
(Fig. 7, bottom panel).
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Classifying shockable rhythms into VT or VF may allow
synchronized electrical cardioversion on VT, to avoid the
R on T phenomenon that may induce VF. However, the
sensitivity for VT dropped considerably in the 4-class prob-
lem, 19.7% of VT was classified as VF and 6.3% as ORG.
VT rhythms can be confounded as ORG (narrower monomor-
phic VT) or VF (more irregular Torsades de Pointes). CPR
artifacts further complicate the problem since filtering resid-
uals may resemble an irregular VF during VT (see Fig. 8).
In any case, the median UMS for the 4-class problem was
80.6%, more than 55-points higher than the 25% value
expected for a random guess.
In the 5-class problem, most of the errors were caused by

the PEA/PR distinction (presence of pulse in ORG rhythms).
Pulse assessment using only the EKG is hard, and deter-
mination of pulse during OHCA frequently relies on addi-
tional surrogate variables of perfusion like pulse oximetry
signals, invasive blood pressure measurements, or expired
CO2 [55], [59]. Fig. 9 shows two representative examples
of the difficulty of determining pulse using only the EKG.
However, our 5-class classifier had a median UMS of 71.9%
during CPR, which is only 5.8-points lower than the 5-class
OHCA rhythm classifier on artifact-free EKG proposed by
Rad et al. [15]. Furthermore, when Rad et al.used their algo-
rithms to annotate complete OHCA episodes (no data prun-
ing), the UMS during artifact-free segments was 75%, but
dropped to 52.5% in intervals during chest compressions,
even after filtering the CPR artifact [27]. Our architecture
would therefore substantially improve the accuracy of 5-class
classifiers during CPR.

VII. CONCLUSIONS
A robust methodology for OHCA rhythm classification dur-
ing CPR has been presented. The approach consists of an
adaptive CPR artifact suppression filter, followed by fea-
ture extraction based on the SWT multiresolution analy-
sis of the EKG, the features are finally fed to a random
forest to classify the cardiac rhythm. The approach was
successfully demonstrated for 2, 3, 4 and 5-class OHCA
cardiac rhythm classification, addressing the most impor-
tant clinical scenarios for rhythm assessment during CPR.
Our method improved the state-of-the-art methods in the
extensively studied 2-class shock/no-shock decision scenario,
meeting the criteria of the American Heart Association for
artifact-free EKG. To the best of our knowledge, we intro-
duced the first general framework for multi-class OHCA
rhythm classification during CPR with increasing levels of
clinical detail, and our approach substantially improved the
accuracy of 5-class OHCA cardiac rhythm classifiers during
CPR.
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Abstract

Interruptions in cardiopulmonary resuscitation (CPR)
decrease the chances of survival. However, CPR must be
interrupted for a reliable rhythm analysis because chest
compressions (CCs) induce artifacts in the ECG. This
paper introduces a double-stage shock advice algorithm
(SAA) for a reliable rhythm analysis during manual
CCs. The method used two configurations of the
recursive least-squares (RLS) filter to remove CC artifacts
from the ECG. For each filtered ECG segment over
200 shock/no-shock decision features were computed
and fed into a random forest (RF) classifier to select
the most discriminative 25 features. The proposed
SAA is an ensemble of two RF classifiers which were
trained using the 25 features derived from different filter
configurations. Then, the average value of class posterior
probabilities was used to make a final shock/no-shock
decision. The dataset was comprised of 506 shockable
and 1697 non-shockable rhythms which were labelled
by expert rhythm resuscitation reviewers in artifact-free
intervals. Shock/no-shock diagnoses obtained through
the proposed double-stage SAA were compared with
the rhythm annotations to obtain the Sensitivity (Se),
Specificity (Sp) and balanced accuracy (BAC) of the
method. The results were 93.5%, 96.5% and 95.0%,
respectively.

1. Introduction

Minimum “hands-of” intervals during cardiopulmonary
resuscitation (CPR) are required to improve the chances of
a successful defibrillation [1]. In current practice CPR is
interrupted every 2 minutes for a reliable analysis of the
heart rhythm. In fact, chest compressions (CCs) provided
during CPR induce artifacts in the ECG that impede a

reliable rhythm analysis of shock advice algorithms.

Over the last 15 years, many efforts have been
made to achieve a continuous rhythm analysis without
interruptions to CPR therapy. Different approaches
have been proposed, such as rhythm analysis during
ventilation pauses [2, 3], however the main approach has
been designing adaptive filters to suppress the artifact
and then diagnose using a SAA for artifact-free ECG [4].
Nevertheless, the accuracy of this approach is still poor.
Adaptive filters substantially reduce CC artifacts with high
SNR improvements, however filtering residuals frequently
resemble a disorganized rhythm. In these cases, SAAs may
produce a wrong shock diagnosis as the majority of the
SAAs used are designed for artifact-free ECGs. This is the
reason why current methods have a high capacity to detect
shockable rhythms, Sensitivity (Se), but a low capacity to
detect non-shockable rhythms, Specificity (Sp).

Recently, a multistage algorithm was introduced to
increase the Sp [5] (supp materials). In brief, this algorithm
uses two recursive least squares (RLS) filters and a SAA
of a commercial defibrillator in three decision stages.
Although this solution considerably improves the Sp of
previous approaches, it still does not meet American
Heart Association’s criteria for a reliable rhythm diagnosis
(Sp>95%, Se>90%) during manual CCs. Another
approach to increase the Sp was the use of machine
learning techniques to classify the ECG after using an
adaptive CPR artifact suppression filter [6].

In this paper, we propose a method for a reliable
shock advise during manual CCs, which combines the
both aforementioned approaches: a double stage RLS
filtering [5] and a SAA algorithm based on random forest
(RF) classifiers [6] which benefits from both filtering
configurations to reach a reliable shock/no-shock decision.
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2. Materials and methods

2.1. Dataset

The data were obtained from a prospective study of
out-of-hospital cardiac arrest (OHCA) patients gathered
between March 2002 and September 2004 by the
emergency services of London, Stockholm and Akershus
and coordinated by the Oslo University Hospital. The ECG
and the compression depth (CD) signals were acquired
using a modified version of Laerdal’s Heartstart 4000
defibrillator (4000SP) and were resampled to 250Hz. A
notch and a Hample filter were used to remove 50Hz noise
and spiky artifacts from the ECG, respectively. Finally, the
ECG was band limited to 0.5-40Hz. CC instants (tk) were
automatically marked in the CD signal using a negative
peak detector for depths above 1 cm, see figure 1.

The dataset used in this study contained 2203 records
obtained from 273 OHCA patients. Each record (see
figure 1) consisted of two consecutive intervals: a 15-sec
interval which includes continuous CCs, and a 5-sec
interval free of artifact. The latter interval was reviewed
by expert resuscitation rhythm reviewers to annotate the
patient’s underlying rhythm as shock/no-shock and use it
as ground truth. In total there were 506 shockable and
1697 non-shockable rhythms.

2.2. Filtering the CC Artifact

In this work, the used CC artefact suppression method
is based on a recursive least squares (RLS) filter
adapted to estimate periodic interferences [5]. The RLS
filter estimates the time-varying coefficients (ak(n) and
bk(n)) of a multiharmonic model of the artifact whose
fundamental frequency (f0(n)) is derived from the chest
compression instants (tk):

scc(n) =

N∑

k=1

ak(n) cos(k2πf0(n)nTs)+ (1)

bk(n) sin(k2πf0(n)nTs)

f0(n) =
1

tk − tk−1
tk−1 < nTs ≤ tk (2)

The CC artifact is iteratively estimated (ŝcc) and
subtracted from the corrupted ECG (scor), to obtain the
clean ECG (ŝecg), as shown in figure 1.

In the RLS filter there are two degrees of freedom, the
number of harmonics needed to model the artifact (N ) and
the forgetting factor (λ) which controls the coarseness of
the filter. In this paper, the corrupted ECG was filtered
for two configurations of the RLS filter (N/λ) following
the optimal configuration of the multistage algorithm
described in [5] for manual CCs. In the first stage, the
corrupted ECG was coarsely filtered (ŝecgλ1 ) using a λ
of 0.987 whereas in the second stage the ECG was finely
filtered (ŝecgλ2 ) with a λ fixed to 0.998. In both stages N
was set to 4.

2.3. Feature engineering

For each filtered ECG (ŝecgλ1
, ŝecgλ2

), a multi-resolution
analysis is employed to extract 244 features. Only the
interval from 4 s to 12 s was used to compute features.
First 4 s were left out to avoid RLS filtering transients.
The 8-second ECG segments were decomposed by discrete
wavelet transform (DWT) into its subbands with the
Daubechies 4 wavelet and 7 levels of decomposition
generating a set of approximation coefficients a7 and seven
sets of detail coefficients d1 to d7. The ECG was then
reconstructed, s(n), by using detail coefficients d3 − d7.
Reconstructed signals corresponding to each set of detail
coefficients (d3 to d7) were also generated: s3(n) to s7(n).

Artefact filtering, rhythm analysis during chest compressions Rhythm annotation

Figure 1. Example of a 20 s episode of the database. The top panel shows the ECG of a patient with a shockable rhythm
(Sh): the first 15 s are corrupted by the CC artifact and the last 5 s are free of artifact showing the patient’s underlying
rhythm. The second pannel shows the filtered ECG and the bottom panel the CD signal with the CC instants (tk).
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For each filtered signal 244 features were computed [7–
9] based on the multi-resolution analysis. The features
were ranked by importance in each random forest (RF)
classifier using the out-of-bag error [10]. For each set the
top ranked 25 features were selected for classification.

2.4. Classification

The last step in the proposed SAA is classification. An
ensemble of two RF classifiers were combined to reach
a shock/no-shock decision, as can be shown in the last
block of figure 2. The first classifier was trained using
the selected 25 features from ŝecgλ1

whereas the second
one was trained using the selected 25 features from ŝecgλ2

.
The final shock/no-shock decision was made based on the
average value of the class posterior probabilities of two RF
classifiers. The class with the higher average value of class
posterior probabilities was chosen for shock/no-shock
decision.

Both RF classifiers had 300 decision trees. Each tree
was trained using bootstrapped replicas of the training data
and the prior probabilities of each class (shock/no-shock)
were balanced for each tree by using resampling. The cost
function was defined to penalize the wrong diagnosis of
nonshockable rhythms by a factor of 95/90 based on the
AHA recommendation.

2.5. Model assessment

A 10-fold cross-validation (CV) scheme was used to
train and test the SAA. Folds were partitioned patient-wise
ensuring that the rhythm prevalences matched to at least
85% the prevalences for shockable and nonshockable
rhythms of the whole dataset (quasi-stratified).

Test segments were diagnosed as shock/no-shock based
on the average value of class posterior probabilities (see
section 2.4). These diagnoses were compared with the
rhythm annotations to obtain the following performance
metrics: Se, Sp and Balanced Accuracy (BAC), that is, the
mean value of Se and Sp. In order to obtain the statistical
distributions of these metrics the process was repeated
100 times. The results were compared to those obtained
using the classical approach, filtering followed by a SAA
designed for artifact-free ECG [11], in a single stage and

multistage configurations.

3. Results

The mean (95% confidence interval) Se, Sp and
BAC of the proposed double-stage SAA were 93.5%
(92.9-94.0), 96.5% (96.2-96.6) and 95.0% (94.7-95.3),
respectively. The classical approach in an optimal
multistage configuration, as described in [5], yielded a Se,
Sp and BAC of: 91.7%, 93.7% and 92.7%, far below the
obtained results using our proposed double-stage SAA.

A classical single stage solution produced an Se, Sp
and BAC of 96.3%, 81.3% and 88.8%, respectively. The
results for the best single RF-classifier (λ2) were 92.8%
(92.3-93.5), 96.5% (96.2-96.7) and 94.7% (94.4-95.0),
respectively. These results meet the minimum 90% Se and
95% Sp performance goals recommended by the American
Heart Association (AHA).

Table 1 shows the selected features for ŝecgλ1
and

for ŝecgλ2 , with the following notation: feature name
(signal/wavelet coefficient). The first nine features of both
columns are described by Figuera et al [7]. Features from
10 to 15 in the left column and from 10 to 12 in the right
column were introduced by Rad et al [8]. Fuzzy Entropy
(FuzzEn), the Signal Integral parameter (SignInt), the Peak
Power Frequency (PPF), the Smoothed Nonlinear Energy
Operator (SNEO) and the Hjorth Mobility parameter are
described in [9, 12], [13], [14], [15] and [16], respectively.
The remaining features were designed for this work: the
number of QRS-like peaks (Npeak) and the Euclidean
distance between the Hjorth Mobility and the Hjorth
Mobility of the second degree (Mx2).

4. Discussion

This work introduces a double-stage SAA for a reliable
rhythm analysis during CPR inspired by two solutions
proposed in the literature to increase the Sp for rhythm
analysis during CCs [5, 6]. Our proposed SAA algorithm
consists of a double-stage RLS filtering, multiresolution
analysis for feature extraction, and two RF classifiers.

A single filtering stage followed by a commercial SAA
yielded a Se and a Sp of 96.3% and 81.3% respectively.
Using an ad-hoc SAA designed to diagnose filtered ECGs

ŝcor(n)

Filtering

RLS1

RLS2

Multiresolution analysis

Extraction of 244
DWT features

Extraction of 244
DWT features

Selection of
25 features

Selection of
25 features

ŝecgλ1
(n)

ŝecgλ2
(n)

Classification

RF1

RF2

p1+p2
2 ≥ 0.5

25 feat

25 feat

p1

p2

Yes

No

Shock

No-Shock

Figure 2. Arquitecture of the proposed double-stage SAA.
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Feature ŝecgλ1 Feature ŝecgλ2

1 x1 (s(n)) 1 x1 (s(n))
2 x4 (s(n)) 2 x4 (s(n))
3 SamEn (d3) 3 SamEn (d3)
4 SamEn (s3(n)) 4 SamEn (s3(n))
5 SamEn (s4(n)) 5 SamEn (s4(n))
6 vfleak(s(n)) 6 vfleak(s(n))
7 count2 (s(n)) 7 count2 (s(n))
8 count3 (s(n)) 8 x3 (s(n))
9 bCP (s(n)) 9 bCP (s(n))
10 IQR (ḋ(5)) 10 First Quartile(d5)
11 IQR (d7) 11 Positive Area(s(n))
12 IQR (ḋ7) 12 Negative Area(s(n)
13 IQR (d̈5) 13 Mean(ḋ4)
14 Var (d5) 14 Mx(d6)
15 µ2(d7) 15 PPF(s(n))
16 FuzzEn(s(n)) 16 FuzzEn(s(n))
17 FuzzEn(s3(n)) 17 FuzzEn(s3(n))
18 Mx2(ŝecgλ1

) 18 FuzzEn(s4(n))
19 SNEO(s(n)) 19 SNEO(s(n))
20 SignInt(d7) 20 SignInt(d7)
21 SignInt(d5) 21 Mean(s(n))
22 Std(ḋ3) 22 Std(ḋ3)
23 Mean(d3) 23 Mean(d3)
24 Mean(ḋ3) 24 Mean(ḋ3)
25 Npeak(s(n)) 25 Npeak(s(n))

Table 1. The 25 features selected by the two RF classifiers.

the Sp was increased in 15.2 points although the Se was
reduced in 3.5 points. This significant increase in Sp
allowed the AHA requirements to be met with an overall
BAC of 94.7%. The results were further increased with the
addition of the double stage filtering, obtaining a BAC of
95.0%.

In conclusion, this study confirms that ad-hoc decision
algorithms for the filtered ECGs provide a reliable rhythm
analysis during CPR and that the results would be further
improved if the SAA combined the information derived
from differently filtered ECG signals.
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A Robust Machine Learning Architecture for
a Reliable ECG Rhythm Analysis during CPR

Iraia Isasi1, Unai Irusta1, Andoni Elola1, Elisabete Aramendi1, Trygve Eftestøl2,
Jo Kramer-Johansen3 and Lars Wik3

Abstract— Chest compressions delivered during
cardiopulmonary resuscitation (CPR) induce artifacts in
the ECG that may make the shock advice algorithms
(SAA) of defibrillators inaccurate. There is evidence that
methods consisting of adaptive filters that remove the CPR
artifact followed by machine learning (ML) based algorithms
are able to make reliable shock/no-shock decisions during
compressions. However, there is room for improvement in the
performance of these methods. The objective was to design a
robust ML framework for a reliable shock/no-shock decision
during CPR. The study dataset contained 596 shockable
and 1697 nonshockable ECG segments obtained from 273
cases of out-of-hospital cardiac arrest. Shock/no-shock labels
were adjudicated by expert reviewers using ECG intervals
without artifacts. First, CPR artifacts were removed from
the ECG using a Least Mean Squares (LMS) filter. Then,
38 shock/no-shock decision features based on the Stationary
Wavelet Transform (SWT) were extracted from the filtered
ECG. A wapper-based feature selection method was applied
to select the 6 best features for classification. Finally, 4
state-of-the-art ML classifiers were tested to make the
shock/no-shock decision. These diagnoses were compared
with the rhythm annotations to compute the Sensitivity (Se)
and Specificity (Sp). All classifiers achieved an Se above
94.5%, Sp above 95.5% and an accuracy around 96.0%.
They all exceeded the 90% Se and 95% Sp minimum values
recommended by the American Heart Association.

I. INTRODUCTION

High quality cardiopulmonary resuscitation (CPR) and
early defibrillation are the most important survival factors
in out-of-hospital cardiac arrest [1]. The mechanical activity
of chest compressions during CPR introduces artifacts into
the ECG. Therefore, current automated external defibrillators
require chest compressions to cease to perform a reliable
ECG analysis and make a shock/no-shock decision [2]. The
lack of myocardial and cerebral blood flow during these
“hands-off” periods significantly compromise the survival of
the patient [3]. If a reliable ECG rhythm diagnosis could be
achieved during compressions, CPR would only be stopped
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Competitividad, TEC2015-64678-R, jointly with the Fondo Europeo de
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when a shock is advised, avoiding “hands-off” intervals
almost completely.

Filtering the CPR artifact has been the major approach
to rhythm analysis during CPR [2]. The time-varying
characteristics of the chest compression artifact mandate
the use of adaptive filters. Recently solutions based on
Least Mean Squares (LMS) [4], [5] and Recursive Least
Squares (RLS) filters [6], [7] have been proposed. Once
the adaptive filters are applied, shock advice algorithms
(SAA) of commercial defibrillators have been widely used
for the shock/no-shock decision [2]. However, adaptive
filters combined with SAAs do not meet American Heart
Association’s (AHA) accuracy requirements. Commercial
SAAs were originally designed to analyze artifact-free ECGs,
so filtering residuals are therefore a confounding factor [2]. A
recent popular approach is to design machine learning (ML)
algorithms after the adaptive filtering stage. ML algorithms
learn the characteristics of the filtered ECG, including those
of the filtering residuals. These methods have met AHA
requirements both for manual [5], [8] and mechanical [6]
CPR.

This study proposes a robust ML framework for
a reliable shock/no-shock decision during CPR. This
framework consists of a high-resolution feature extraction
method based on the Stationary Wavelet Transform
(SWT), a wrapper-based feature selection algorithm and a
shock/no-shock decision classifier. For the shock/no-shock
decision 4 state-of-the-art ML were tested: Artificial Neural
Network (ANN), Support Vector Machine (SVM), Kernel
Logistic Regression (KLR) and Boosting of Decision Trees
(BDT). The paper is organized as follows: the dataset is
described in Section II; Section III explains the adaptive
CPR artifact filter and the feature extraction process; the
architecture of the model and the ML classifiers are explained
in Section IV and V. Finally, the results and the conclusions
are presented in Sections VI and VII, respectively.

II. STUDY DATASET

The data were obtained by the emergency services of
London, Stockholm and Akershus (Norway) between March
2002 and September 2004 using a modified version of
Laerdal’s Heartstart 4000 defibrillator. The recorded ECG
and the compression depth (CD) signals were exported to
Matlab and resampled to 250Hz. A notch and a Hampel filter
were used to remove powerline interference and the spiky
artifacts, respectively. Finally, chest compression instants

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 1903
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(tk), were automatically marked in the CD signal using a
negative peak detector for depths exceeding 1 cm.

The dataset contained 2203 segments from 273
out-of-hospital cardiac arrest patients. The first 15 s
included continuous chest compressions and the last 5 s
were free of artifacts and were used by expert reviewers to
asses the underlying rhythm. The dataset is comprised of
506 shockable and 1697 non-shockable rhythms.

III. FEATURE ENGINEERING

A. CPR artifact filtering

CPR artifacts were suppressed using a state-of-the-art
method based on a LMS filter. In this method, the CPR
artifact, scpr, is modeled as a quasiperiodic interference with
a time-varying fundamental frequency, f0(n), which is the
instantaneous frequency of the compressions [4]. A CPR
artifact composed of N harmonics can therefore be expressed
by the following Fourier series representation:

scpr(n) = A(n)

N∑
k=1

a`(n)cos(k2πf0(n)Tsn)+

b`(n)sin(k2πf0(n)Tsn) (1)

f0(n) =
1

tk − tk−1
tk−1 ≤ nTs < tk (2)

where A(n) is an amplitude envelope which differentiates
intervals with (A = 1) and without compressions (A = 0).

The in-phase, a`(n), and quadrature, b`(n), components
that model the artifact are adaptively estimated to minimize
the mean square error between the corrupted ECG, scor, and
the estimated artifact, ŝcpr, at the frequency of the harmonics
using the LMS algorithm. For further details consult [4].

The parameters governing the LMS filter are the number of
harmonics, N , and the step size, µ. The first one determines
the order of the filter which is 2N since there are a cuadrature
and in-phase coefficient per harmonic, whereas the second
one controls the coarseness of the filter.

B. Feature extraction

Features were extracted from the SWT [9] decomposition
of the filtered ECG, ŝecg, as we recently introduced for
mechanical CPR [6]. A signal interval of 8 s of the filtered
ECG, as highlighted in Fig. 1, was used for feature
extraction.

The 8-s ECG segments were decomposed into subbands
with the Daubechies 2 wavelet and 8 levels of decomposition.
At each level the SWT can be implemented by a pair of
quadrature mirror lowpass/highpass filters, g(n)/h(n), which
decompose the signal into the lower and upper halves of
the subband. The decomposition process of the filtered ECG
segment in j = 1, . . . , J leves can be therefore obtained by
the following equations:

a0(n) = ŝecg(n) (3)
aj+1(n) = gj(n) ∗ aj(n) (4)
dj+1(n) = hj(n) ∗ aj(n) (5)

where aj and dj are approximation and detail coefficients of
level j and gj+1/hj+1 are the up-sampled versions of hj/gj
achieved using a zero-padding interpolation (with factor 2).

The decomposition was performed into J = 8 subbands
generating nine sets of coefficients, a8 and d8 to d1.
For feature extraction only detail coefficients of levels 3-8
(d3-d8) were used, the remaining d1, d2 and a8 were
set to 0. Then, a soft denoising was performed in the
d3 − d8 coefficients using the universal tresholding rule
proposed by Donoho and Johnstone [10] rescaled by the
standard deviation of the noise (estimated from d1). Finally,
the Inverse Stationary Wavelet Transform (ISWT) was
applied to reconstruct the denoised ECG signal, ŝden, in the
0.5Hz-31.25Hz subband.

Thirty eight SWT features were extracted in this study
based on ŝden and the denoised detail coefficients, d3 −
d8. These features include time domain, frequency domain
and signal complexity characterizations of the ECG [11],

Fig. 1. Two examples of 20 s ECG segments corresponding to a patient with a shockable rhythm (example a) and with a non-shockable rhythm (example
b).The first panels show the ECG recorded by the device (the corrupted ECG, scor) whereas the second panels show the ECG after filtering the CPR
artifact, ŝecg. The first 15 s of the panel a) and the last 15 s of the panel b) are corrupted by the CPR artifact. The last 5 s of the panel a) and the first 5 s
of the panel b) are free of artifact showing the underlying rhythm of the patient. Filtering, (second panels in both examples) reveals the underlying rhythm
of the patient. Finally, the third panels show the CD signal, and the compression instants (tk) are highlighted using vertical red lines.
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[12] and are based on the literature on VF detection. The
nomenclature of the features used in section VI follows that
of [6].

IV. DESIGN AND EVALUATION OF THE SOLUTION

A nested cross-validation (CV) architecture was used
for feature selection, main classifier hyperparameter
optimization and the evaluation of the model [6], [11]. This
architecture involves the use of an inner loop (5-fold CV) for
feature selection, and an outer loop (10-fold CV) for the main
classifier’s optimization and the evaluation of the model.
Both inner and outer folds were partitioned patient-wise in
a quasi-stratified way, by ensuring that the shock/no-shock
case prevalences matched to at least 85% those of the whole
dataset. Finally, the performance of the method was evaluated
comparing the shock/no-shock diagnoses obtained by the
main classifier in the outer test set with ground truth labels.
The performance metrics were: Sensitivity (Se), Specificity
(Sp), Balanced Accuracy (BAC) and the overall accuracy
(Acc). The process was repeated 20 times to statistically
characterize these metrics.

A. Optimization of the main classifier and feature selection

The optimization of the hyperparameters of the main
classifier was performed in the outer loop doing a grid search
and taking BAC as objective function. Two hyperparameters
were optimized for each classifier and the optimal pair
of hyperparameters selected for the final model (Table II)
was the one that achieved the best averaged BAC in the
20 repetitions of the external loop. The results reported in
Table I are therefore obtained by training each classifier with
that configuration. The cost function of each classifier was
weighted to compensate the class imbalance and features
were standardized to zero mean and unit variance using the
data in the training set.

B. Feature selection strategy

The features used in the main classifier were selected
in the inner loop using a wrapper-based approach. In this
approach a linear discriminant analysis (LDA) classifier and
a PTA(4,3) (plus 4, take away 3) [11], [13] search strategy
were used to select the 6 features that maximized the BAC
in the 5-fold CV loop.

V. CLASSIFIER MODELS

1) Artificial Neural Network (ANN): A feedfordward
ANN was used for the shock/no-shock classification. This
network was composed of 6 input neurons (one per selected
feature) and 2 output neurons for the two-class classification
task. The hyperbolic tangent activation function was used
for the neurons. The number of hidden layers was fixed to
2 whereas the number of hidden neurons per layer, which
was the same in both layers, was determined in the outer
loop Nh = 10, 15, 20, 25...60. The number of epochs needed
to train the network was also optimized using the 10-fold
CV loop and the tested values were Ep = 20, 30, 40...100.
Finally, the strategy used to train the ANN was resilient

backpropagation and the learning rate used to train the net
was fixed to 0.01.

2) Support Vector Machine (SVM): Given a set of
instance-label pairs, {(x1, y1), ..., (xN , yN )} ∈ R6 × {±1},
where yi = 1 for shockable and yi = −1 for nonshockable
rhythm, fitting an SVM is equivalent to minimizing [14]:

1

N

N∑
i=1

(1− yif(xi))+ + λ‖f‖2Hk
(6)

with f = b + h, h ∈ Hk, b ∈ R. Here the subscript “+”
indicates the positive part, λ is the regularization term and
Hk is the Kernel Hilbert Spaces (RKHS) generated by the
kernel K. The optimal decision function f(x) is:

f(x) = b+

N∑
i=1

αiK(x,xi) (7)

Here αi are the Lagrange multipliers which are non-zero
only for the support vectors xi and b is the intercept term.
Once αi and b are optimized, the classification rule of the
SVM classifier is given by sign[f(x)].

A Gaussian kernel was used to find an optimal separating
hyperplane in a higher-dimensional feature space:

K(x,xi) = exp
(
− γ‖x− xi‖2

)
(8)

The two hyperparameters were the kernel width, γ, and

the soft margin, C =
1

λN
. The soft margin is a trade-off

between maximizing the margin and minimizing errors in
the training data.

The values of C and γ were determined in the outer loop
doing a 25×25 logarithmic grid search in the ranges 10−1 ≤
C ≤ 102 and 10−3 ≤ γ ≤ 10, respectively.

3) Kernel Logistic Regression (KLR): The minimization
problem of the KLR is obtained by replacing (1 − yf)+
in equation 6 with ln(1 + e−yf ) [14]. The fitted decision
function and classification rule are those of the SVM. KLR
gives an estimate of the probability (logistic function):

p(x) = 1/(1 + e−f(x)) (9)

A Gaussian kernel was used for the feature space
conversion, with the kernel with (γ) and regularization
parameter (λ) as hyperparameters. The ranges used for the
logarithmic grid search were: 10−3 ≤ γ ≤ 10 and 10−8 ≤
λ ≤ 10

1
2 .

4) Boosting of decision trees (BDT): Boosting consists
in sequentially training several hm(x) weak classifiers, each
trying to correct its predecessor, hm-1(x). So hm(x) focuses
on those samples misclassified by hm−1(x). We used the
AdaboostM1 reweighting strategy with weighted error for
hm(x) [15]:

εm =

∑N
i=1 dm(i)I

(
yi 6= hm(xi)

)∑N
i=1 dm(i)

(10)
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Here dm(i) is the weight of observation i at iteration m
and I is the indicator function. AdaBoostM1 increases the
weights of the misclassfied instances of hm(x) by:

dm+1(i) = dm(i) exp
[
αmI

(
yi 6= hm(xi)

)]
(11)

After training the prediction for new data is given by a
weighted vote of the weak learners:

f(x) = sign
[ M∑
m=1

αmhm(x)

]
(12)

The weights, αm, of the weak hypotheses are obtained in
each iteration by the following equation:

αm = λb log
1− εm
εm

(13)

We used decision trees as weak learners. The number of
features per split and the minimum leaf size of each tree were
fixed to 2 and 10, respectively. The learning rate, λb, of the
boosting algorithm and the number of boosting iterations,
M , were the hyperparameters optimized in the outer loop:
10−3 ≤ λb ≤ 1 and M = 200, 400, 600, 800.

VI. RESULTS

Fig. 2 shows the mean values of the BAC obtained in
the 20 random repetitions of the nested CV procedure for
the tested classifiers and different configurations of the LMS
filter. The best performance is obtained for N = 12 and
µ = 8 · 10−3 in all the classifiers, although a wide range
of configurations show a BAC above 95%. Table I shows
the mean (SD) of the performance metrics for the optimal
configuration (N = 12 and µ = 8 · 10−3). All the classifiers
obtained performances in compliance with AHA (Se >
90%, Sp > 95%). Furthermore, the results obtained for all
the classifiers are quite similar, with an accuracy close to
96% and fairly balanced Se and Sp values. This similarity
confirms the robustness of the SWT-based features and the
feature selection method applied in this work. The optimal
pairs of hyperparameters obtained for each classifier are
shown in Table II.

Fig. 3 shows the 15 features with higher probabilities of
being selected, estimated as the proportion of folds in which
they were selected in the inner FS loops. Sample entropy
of the detail coefficient d3 (SampEn, d3) and Npeak (the
number of peaks in the 8 s interval) were selected in all the
200 inner feature selection loops. The next best parameters
were VFleak and IQR, d7 with selection probabilities of
97% and 81.5% respectively. Interestingly, these results

Fig. 2. The mean values of BAC obtained in the 20 repetitions of the nested CV procedure in terms of the adjustable parameters of the LMS filter: the
number of harmonics of the CPR model, N , and the step size, µ.
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TABLE I
PERFORMANCE METRICS FOR DIFFERENT ML CLASSIFIERS

Performance metrics

Classifier Se (%) Sp (%) BAC (%) Acc (%)

ANN 96.2 (0.5) 95.9 (0.3) 96.1 (0.3) 96.0 (0.2)
SVM 96.7 (0.2) 95.6 (0.2) 96.1 (0.2) 95.9 (0.1)
KLR 96.4 (0.3) 95.8 (0.2) 96.1 (0.2) 96.0 (0.2)
BDT 94.6 (0.5) 96.5 (0.2) 95.6 (0.3) 96.1 (0.2)

TABLE II
THE OPTIMAL PAIRS OF HYPERPARAMETERS

Classifier Hyper. Opt. Val.

ANN Nh/Ep 35/80
SVM γ/C 6.8 · 10−2/1.0
KLR γ/λ 4.6/4.4 · 10−5

BDT λb/M 0.01/600

are consistent with our findings for mechanical CPR [6].
Although CPR artifacts are very different in mechanical
and manual CPR [16], the features derived from the SWT
decomposition seem to be very robust/independent of the
filtering residuals and capture the distinctive characteristics
of shockable and nonshockable rhythms [6].
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Fig. 3. Selection probability for the 15 most selected features in the 200
inner loops.

VII. CONCLUSIONS

This study introduces a robust ML architecture for
a reliable rhythm analysis during manual CPR. All
classifiers tested within this architecture obtained very
similar performances with a BAC and an Acc close to 96%.
Our method improves the BAC and the Acc of the best
known solution to date [8] by 1.3 and 0.5 points, respectively.
That solution consisted of a RLS filter followed by a Random
Forest (RF) classifier and the results are directly comparable
since the algorithm was applied on this same database [8].

The improvement in performance is mainly due to two
factors. Firstly, the SWT provides higher resolution features
than the DWT used in [8] due to the shift-invariance property.
Secondly, the wrapper-based approach selects the set of

6 features that maximize the most significant performance
metric (BAC), whereas the feature selection used in [8]
(based on the feature importance ranking of a RF-classifier)
independently evaluates each variable using the out-of-bag
error of a RF classifier.

In conclusion, the ML strategy proposed in this study
may open the possibility of a reliable shock/no-shock
decision without interrupting CPR therapy. Minimizing CPR
interruptions reduces no flow periods, and may contribute to
increase OHCA survival.
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Abstract: Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the
ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator.
The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions
during CPR using convolutional neural networks (CNN). A total of 3319 ECG segments of 9 s
extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable.
Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the
filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected
layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted
to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize
the performance. The proposed architecture was compared to the most accurate algorithms that
include handcrafted ECG features and a random forest classifier (baseline model). The median
(90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method
were 95.8% (94.6–96.8), 96.1% (95.8–96.5), 96.1% (95.7–96.4) and 96.0% (95.5–96.5), respectively.
The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new
approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac
rhythm without interrupting chest compression therapy.

Keywords: out-of-hospital cardiac arrest (OHCA); cardiopulmonary resuscitation (CPR);
electrocardiogram (ECG); adaptive filter; deep learning; machine learning; convolutional neural
network (CNN); random forest (RF) classifier

1. Introduction

Out of hospital cardiac arrest (OHCA) is one of the leading causes of death worldwide [1,2].
The two key life saving therapies are defibrillation (electric shock) when the cardiac rhythm
is ventricular fibrillation (VF) or tachycardia (VT), and cardiopulmonary resuscitation (CPR) [3].
The defibrillator monitors the electrocardiogram (ECG), and includes a shock/no-shock algorithm
that analyzes the patient’s ECG to detect VF/VT [4]. The American Heart Association (AHA) has
established the minimum accuracy requirements for these algorithms [5]. Shockable rhythms should
be detected with a minimum sensitivity (Se) of 90% to properly identify defibrillation treatment
conditions. The specificity (Sp) for detection of nonshockable rhythms must be above 95% to avoid
unnecessary shocks that may damage the myocardium or deteriorate the quality of CPR.

Entropy 2020, 22, 595; doi:10.3390/e22060595 www.mdpi.com/journal/entropy
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The mechanical activity of chest compressions during CPR induces artifacts in the ECG that
impede a reliable shock/no-shock decision by the defibrillator [6]. Therefore, defibrillators prompt
the rescuers to stop chest compressions for rhythm analysis every 2 minutes [7,8]. These hands off
(or no flow) intervals lead to intermittent periods with no cerebral and myocardial blood flow that
deteriorate the patient’s condition, and compromise survival [7,9–11]. Consequently, many biomedical
engineering solutions have been proposed over the years to allow an AHA compliant shock/no-shock
decision during CPR [12], but none of these solutions have yet a sufficient positive predictivity to be
implemented in commercial defibrillators. These methods are based on adaptive filters to remove CPR
artifacts. Adaptive filters are needed to address the time and frequency variability of the artifact and
its spectral overlap with OHCA rhythms [13]. These filters use signals recorded by the defibrillator
like compression depth (CD) or thoracic impedance (TI) to model the artifact [14,15]. Several adaptive
approaches have been demonstrated including Wiener filters [16], Matching Pursuit Algorithms [17],
Recursive Least Squares (RLS) [18], Least Mean Squares (LMS) [19], or Kalman filters [20,21]. Once the
artifact is removed the ECG is analyzed using the shock/no-shock algorithms in defibrillators,
or ad-hoc algorithms specially designed to analyze the filtered ECG [17,19,22]. The latter have shown
the highest Se/Sp values by exploiting recent advances in ECG feature extraction and classical machine
learning algorithms. ECG features are customarily computed in time, frequency or time-frequency
domains [23–26]. These features have been efficiently combined using classical machine learning
classification algorithms like support vector machines (SVM) or random forests (RF) [22,25,26].

Recently, deep learning approaches have proven to be superior to classical machine learning
algorithms in many biomedical signal applications [27,28], including arrhythmia classification based
on the ECG waveform [29–33]. Deep learning algorithms using convolutional neural networks (CNN)
are end-to-end solutions in which the algorithm learns efficient internal representations of the data
(features) and combines them to solve the classification task [34,35]. Deep learning algorithms have
already been shown to outperform classical machine learning algorithms in some OHCA applications,
such as detection of VF in artifact free ECG [30,36], or the detection of pulse [37]. However, deep
learning has not been applied to design algorithms that give accurate shock/no-shock decisions
during CPR.

The objective of this study was to design the first deep learning solution to discriminate shockable
from nonshockable rhythms during CPR. The method comprises two stages, an adaptive RLS filter
to remove CPR artifacts from the ECG followed by a CNN to classify the filtered ECG. The paper is
organized as follows: the study dataset is detailed in Section 2, Section 3 describes the methodology
including the CNN architecture and the evaluation procedure. The results are presented in Section 4,
discussed in Section 5 and the main conclusions are presented in Section 6.

2. Materials

Data were extracted from a large prospective clinical trial designed to measure CPR quality
during OHCA [38]. The study was conducted between March 2002 and September 2004 by the
emergency services of London, Stockholm and Akershus (Norway). CPR was performed using
prototype defibrillators based on HeartStart 4000 (Philips Medical Systems, Andover, MA, USA)
together with a sternal CPR assist pad fitted with an accelerometer (ADXL202e, AnalogDevice,
Norwood, Mass). The raw data for this study consisted of the ECG and TI signals acquired through
the defibrillation pads and the CD signal derived from accelerometer data [16]. Defibrillator data was
anonymized and converted to Matlab (MathWorks Inc, Natick, MA, USA) using a sampling rate of
250 Hz. The ECG had an amplitude resolution of 1.031 µV per least significant bit. A notch filter and
a Hampel filter were used to remove powerline interferences and spiky artifacts from the ECG [37].
Finally, chest compressions instants (tk) were automatically marked using a negative peak detector
with a 1 cm threshold on the CD signal (see Figure 1, peak detection Th) [15].
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Figure 1. A 70 s interval from an OHCA episode showing the ECG, CD and TI signals. Activity shows
CPR followed by a pause for rhythm analysis, the delivery of a defibrillation shock (Dfb) and immediate
resumption of CPR. The interval highlighted in grey corresponds to a 15.5 s segment in the dataset.
During the first 12.5 s of the segment chest compressions were delivered (see activity in TI and CD),
and in the last 3 s there were no compressions and the ground truth rhythm (VF) for the whole segment
could be annotated.

The rhythms in the OHCA episodes were originally annotated by two experienced resuscitation
researchers/practitioners, a biomedical engineer and an anesthesiologist [38]. For the purpose of this
study the rhythm annotations were grouped into shockable and nonshockable. Shockable rhythms
comprised lethal ventricular arrhythmia, predominantly VF but also pulseless VT. Non-shockable
rhythms included asystole (AS), the absence of electrical activity, and organized rhythms (ORG),
or rhythms with visible QRS complexes. The OHCA episodes had median (interquartile range,
IQR) durations of 26 min (17–33). From these episodes 15.5 s segments were automatically extracted
following these criteria: unique rhythm type in the segment and an interval of 12.5 s with ongoing
compressions followed or preceded by a 3 s interval without compressions. The 12.5 s interval with
ongoing compressions was used to develop the shock/no-shock decision algorithm, and the 3 s
segment was used to confirm the original rhythm annotation in an artifact free ECG. All the data
were visually revised (double blind process by authors UI and TE) to ensure compliance with the
extraction criteria and the correctness of the rhyhm annotations. The annotated dataset contained
3319 segments from 272 OHCA patients, whereof 586 were shockable and 2733 (1192 AS and 1541
ORG) were nonshockable.

3. Methods

The shock/no-shock decision algorithms proposed in this study are composed of two stages.
First, an adaptive RLS filter was used to remove chest compression artifacts from the ECG. Then
shock/no-shock decision algorithms were designed to classify the filtered ECG using CNNs. In what
follows t = n · Ts, where Ts = 4 ms is the sampling period ( fs = 250 Hz), and n is the sample index.

3.1. CPR Artifact Suppressing Filter

CPR artifacts were suppressed using a state-of-the-art method [26,39] based on a RLS filter
designed to remove periodic interferences [40]. The CPR artifact is modeled as a quasi-periodic
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interference using a Fourier series truncated to N terms (harmonics). The fundamental frequency of
the artifact is that of the chest compressions [19], which is assumed constant during a chest compression,
but variable from compression to compression. This means that for an interval between two successive
compressions at time points, tk−1 and tk (see Figure 2), the frequency can be expressed as

f0(n) =
1

tk − tk−1
tk−1 ≤ nTs < tk (1)

and the N-term Fourier series representation is then:

ŝcpr(n) = A(n)
N

∑
`=1

(
a`(n) cos(`2π f0(n)Tsn) + b`(n) sin(`2π f0(n)Tsn)

)
(2)

where A(n) is an amplitude envelope which differentiates intervals with (A = 1) and without
compressions (A = 0), N is the number of harmonics in the Fourier series and f0(n) is the instantaneous
chest compression frequency.

window 1 window 2 window 3

Figure 2. A 15.5 s segment from the study dataset corresponding to a patient in an organized rhythm
is shown. In the initial 3 s interval without compressions three QRS complexes are visible, and the
nonshockable rhythm annotation was confirmed. The following 12.5 s are corrupted by CPR artifacts
(top panel) that conceal the underlying rhythm. The output of the adaptive filter, ŝecg(n), reveals the
underlying rhythm during chest compressions. CPR activity and the chest compression instants (tk)
can be observed in the CD signal (bottom).

The RLS filter adaptively estimates the time-varying Fourier coefficients, a`(n) and b`(n), of the
CPR artifact, ŝcpr(n), by minimizing in each iteration the error between the corrupted ECG, scor(n),
and the estimated underlying ECG, ŝecg(n), only around the spectral components of the CPR artifact,
that is f0(n) and its harmonics. The underlying ECG is estimated assuming an additive noise model,
so ŝecg(n) = scor(n)− ŝcpr(n). A detailed description of the RLS filter equations is available in [39],
and the values recommended there to suppress CPR artifacts were used in this study, that is, N = 4
and a forgetting factor of λ = 0.999 [39].

The shock/no-shock algorithms trained and evaluated in this study comprise algorithms based
on CNNs (core methods of the paper), and a state of the art algorithm based on classical machine
learning techniques used as a baseline model for comparison. In both cases, the algorithms were
designed to analyze the filtered ECG in the interval from 3–12 s during compressions (see analysis
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interval in Figure 2). That is, the algorithms use 9 s of the filtered ECG for a decision, excluding the
initial 3 s to avoid RLS filtering transients [39]. The analysis interval was further divided into three
non-overlapping analysis windows of 3 s (see Figure 2) and the shock/no-shock decision was obtained
as the majority vote. The combination of consecutive analysis windows is a typical design practice
in shock/no-shock decision algorithms for defibrillators [41,42], because it increases the reliability of
the diagnosis by avoiding the effects of transient lower quality signal intervals, rhythm changes or
filtering miss-adjustments.

Algorithm Based on CNNs

Figure 3 shows the architecture of the shock/no-shock decision algorithms based on CNNs. First
the 3 s window of the filtered ECG is downsampled to 125 Hz, resulting in a 1-D signal of N = 375
samples, ŝecg(n). Then the CNN is composed of three convolutional blocks to extract the high level
descriptors of the ECG, and two fully connected layers for classification. The b-th convolutional block
consists of a convolutional layer with Jb filters of width Ib, followed by a batch normalization layer,
a rectified linear unit (ReLU), a max-pooling layer (K = 3) and a dropout layer.

...
FL

A
T

T
E

N
E

D

d1

d2

dT

d = (d1, ..., dT )T=13×J3

CNN-Block 1

Conv 1-D (J1, I1)
N = 375 × 1

Batch normalization

RELU

Max-pooling (3)

Dropout (0.04)

CNN-Block 2

Conv 1-D (J2, I2)
D = 125 × J1

Batch normalization

RELU

Max-pooling (3)

Dropout (0.04)

CNN-Block 3

Conv 1-D (J3, I3)
D = 41 × J2

Batch normalization

RELU

Max-pooling (3)

Dropout (0.04)

...

pSh

pNSh

Fully-Connected 1 Fully-Connected 2

Softm
ax

N = 375 × 1

D = 125 × J1 D = 41 × J2 D = 13 × J3

Figure 3. Architecture of the CNN-based shock/no-shock algorithm. It comprises two main stages:
a CNN composed of three identical blocks and a classification stage based on two fully connected and
a softmax layer.

3.2. Shock/No-Shock Decision Algorithms

Let us denote by sb−1(n, m) the output of block b− 1 (input to block b), where n is the time index
and m the filter index. In the first block the input is s0(n, 1) = ŝecg(n). The output of the Conv-1D
layer at block b can be expressed as

cb(n, m) = f
(

bm +
Jb−1

∑
`=1

Ib

∑
i=1

ωm
`,i sb−1(n + i− 1, `)

)
(3)

where ωm
`,i are the network weights (convolutional coefficients), and f (x) = max(x, 0) is the ReLU

activation function that makes the network non-linear. The max-pooling layer selects the largest
sample in blocks of K samples along the time index n to give the output of block b:

sb(n, m) = max{cb(k, m)}k=(n−1)·K,··· ,n·K (4)

Padding was applied before the convolutional and the max-pooling layers, so the only reduction of
the dimensionality occurs at the max-pooling layers (K = 3). This means that the dimensions of the
outputs at blocks b = 1, 2, 3 where (125, J1), (41, J2) and (13, J3), respectively and that the number of
learnable parameters (ω, b) at block b where Jb × Ib + Jb.

The dropout layer at the end of each block has a regularization effect, and is used only during
training to avoid overfitting. It temporarily deactivates a randomdly selected proportion of the
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network’s tunable parameters, and has been shown to improve performance by providing noisy inputs
to the fully connected layers that help avoid overfitting [43].

The classification stage takes as input the flattened 13 × J3 features and feeds them into
two fully-connected layers. The first one is composed by 10 hidden units whereas the second one uses
2 neurons for the 2-class classification task. In the second fully-connected layer a softmax function
is used to convert the output of the last two neurons into two values in the [0,1] range that can be
interpreted as the likelihood that the 3 s window is shockable (pSh) or nonshockable (pNSh).

The weights and biases of every layer were optimized using stochastic gradient descent with
a momentum of 0.8. The initial learning rate was fixed to 0.02 and it was reduced by a factor of 0.8 at
every epoch. The training data were fed into the CNN in batches of 256, and 20 epochs were used to
train the networks [44]. During training data was augmented by splitting each 9 s training segment into
overlapping 3 s windows with a linearly spaced start between 0 s and 6 s of the segment. To address
class imbalance the augmented number of windows per segment during training was fixed to 100 for
shockable and 40 for nonshockable rhythms, respectively. The binary cross entropy was used as loss
function during network optimization (training):

L = ∑
i

yi ln(pShi
) + (1− yi) ln(1− pShi

) (5)

where yi = {0 : NSh, 1 : Sh} corresponds to the rhythm label of 3 s training window i.

Classical Machine Learning Shock/no-Shock Decision Algorithm for Baseline Comparison

The baseline machine learning shock/no-shock algorithm is a state of the art solution described
in [25]. In short, the algorithm is based on multiresolution ECG analysis using the Stationary Wavelet
Transform (SWT) for feature extraction, followed by a random forest (RF) classifier. The SWT
decomposes the 3 s window into 7 sub-bands, and the denoised ECG is reconstructed using detail
coefficients d3 to d7, i.e. an analysis band of 0.98–31.25 Hz. The daubechies mother wavelet was
used for the analysis as recommended in [26]. The selection of the mother wavelet was not a critical
for this problem as shown in [26]. The denoised ECG, sden(n), and the detail coefficients d3-d7 were
used to obtain twenty five ECG features, selected using recursive feature elimination from a set of
over 200 features (consult [25] for the details). The most relevant features were classical VF detection
features like VFleak or x4 [22,45] computed from sden, and a rich set of features obtained from the detail
coefficients {di}i=3,··· ,7, such as: sample entropy (SampEn(di)), the mean and standard deviation of
the absolute value of the signal (|di|, σ(|di|)) and its slope (|∆di|, σ(|∆di|)), and the Hjorth mobility
(Hmb(di)) and complexity (Hmc(di)) indices [46]. A detailed description of the algorithm is found
in [25], with a detailed bibliography for the computation of the features.

The parameters of the RF classifier were fixed to those recommended in [25], that is B = 500 trees,
5 predictors per split (standard in RF), and the minimum observations per leaf to 3 (to avoid growing
excessively deep or overfit trees). To avoid class imbalance uniform priors were assigned and a cost
function was introduced to penalize false shock classifications with a factor of 2.5 (similar to the
shock/no-shock augmentation factor used in the CNN).

3.3. Evaluation

All the classification algorithms were trained/tested using 5-fold cross validation (CV). Folds
were partitioned patient-wise to avoid training/test data leakage, and in a quasi-stratified way by
ensuring that the shock/no-shock prevalences in all folds were at least 80% those of the whole dataset.
The performance of the method was evaluated using the standard metrics for binary classification
problems, taking the shockable class as positive and the nonshockable class as negative. For a 2× 2
confusion matrix with true positives (TP), true negatives (TN), false positives (FP) and false negatives
FN) the performance metrics were
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Se =
TP

TP + FN
PPV =

TP
TP + FP

(6)

Sp =
TN

TN + FP
NPV =

TN
TN + FN

(7)

Acc =
TP+TN

TP+FN+TN+FP
BAC =

1
2
(Se + Sp) (8)

The Balanced Accuracy (BAC) was used as target performance metric to ensure both shockable
and nonshockable rhythms were accurately identified (as recommended by the AHA) despite the large
class imbalance in the data.

4. Results

4.1. Parameters of the CNN Architecture

The effect of changing the main parameters of the CNN architecture was first studied taking the
BAC as target performance metric (see Figure 4). Three parameters were studied: the number of blocks
(B), the size of the filters (I), and the number of filters (L = (J1, ...JB)). Four filter configurations were
studied with decreasing number of filters (from dense to sparse): L4 = (40, 30, 20, 10), L3 = (32, 24, 16,
8), L2 = (24, 18, 12, 6) and L1 = (16, 12, 8, 4). The numbers in parentheses indicate the amount of filters
from block 1 to block 4, so for arquitectures with 3 blocks and 2 blocks and L2 the number of filters
would be (24,18,12) and (24,12), respectively.

The results of the analysis are shown in Figure 4, with the median BAC computed over the
5-fold CV partitions. The best classification results were obtained for 3 blocks. Adding a fourth block
increases the complexity (number of trainable parameters) and slightly decreases the performance.
Using only 2 blocks resulted in a large decrease in performance (over 1-point in BAC), or an overly
simplistic model. The best results for a CNN with 3 blocks were obtained with a filter width of I = 16,
and a filter configuration of L = (32, 24, 16). This was the CNN configuration adopted for the rest of
the analyses.

B
A

C
 (

%
)

B
A

C
 (

%
)

Figure 4. Performance of the CNN architecture for the configurable parameters of the network: the
number of blocks (B), the filter size (I), and the filter configuration (L). The left panel shows the effect
of the filter size for networks with L4 = (32, 24, 16, 8) filters. The right panel shows the effect of the
filter configurations from dense (L4) to sparse (L1) for I = 16.



Entropy 2020, 22, 595 8 of 17

4.2. Comparison with the Baseline Machine Learning Model

The shock/no-shock decision algorithms using CNNs and the classical machine learning model
were compared. Table 1 shows the results for all the performance metrics. The accuracies were
compared using McNemar’s test in all 5-fold CV partitions, and the results were considered significant
at the 95% level. The CNN model was significantly more accurate (median p < 0.05) than the baseline
model. As shown in Table 1, the CNN model designed for 9 s improves the best baseline models
in 0.6-points in BAC and Acc, and in both cases the algorithms presented balanced Se/Sp values
because they were trained to avoid class imbalance. The predictivity is higher for the CNN solution,
but the differences are only large for shockable rhythms (PPV) because shockable rhythms have
a much lower prevalence in the dataset (1 to 5). The table shows the results for the 3 s windows
(where CNN outperforms the baseline model), but also for the combination of three consecutive
analyses (9 s). For short windows the algorithms do not meet the minimum 95% value recommended
by the AHA for artifact free ECG, but combining diagnoses with a majority vote criterion considerably
improves performance and brings both the CNN solution and the baseline algorithm above AHA
specifications. The table also shows the shock/no-shock decision performance when the two subgroups
of nonshockable rhythms were evaluated separately, AS and ORG rhythms. The results show that
no-shock decisions were more inaccurate when the underlying rhythm was asystole. For 9 s segments
the CNN architecture yielded results slightly above the AHA’s 95% Sp goal for AS, but the baseline
model was marginally below.

Table 1. Performance metrics for the CNN and the baseline models. The results are shown as median
and 90% confidence interval (CI).

Metric 3 s 9 s

CNN Baseline CNN Baseline

Se 93.2 (92.2–94.0) 93.1 (92.6–93.6) 95.8 (94.6–96.8) 95.2 (94.7–95.7)
Sp 94.5 (94.1–94.9) 94.1 (93.9–94.3) 96.1 (95.8–96.5) 95.6 (95.2–95.9)

AS 93.1 (92.6–93.7) 92.5 (92.2–92.8) 95.4 (94.9–96.0) 94.5 (94.1–95.0)
ORG 95.6 (95.1–96.0) 95.3 (95.1–95.6) 96.8 (96.2–97.4) 96.4 (96.0–96.8)

BAC 93.8 (93.4–94.3) 93.6 (93.3–93.9) 96.0 (95.5–96.5) 95.4 (95.0–95.7)
Acc 94.3 (94.0–94.6) 93.9 (93.7–94.1) 96.1 (95.7–96.4) 95.5 (95.2–95.8)
PPV 78.5 (77.2–79.6) 77.2 (76.5–77.7) 84.3 (82.8–85.6) 82.2 (81.0–83.2)
NPV 98.5 (98.3–98.7) 98.5 (98.3–98.6) 99.1 (98.8–99.3) 98.9 (98.8–99.1)

4.3. Effect of the ECG Corruption Level on Classification

CPR artifacts during chest compressions present very different noise levels in the ECG
depending on variables like the position of the hands relative to the pads and cables, pad placement,
or environmental conditions [47,48]. These variables are difficult to control in a pre-hospital setting,
but it is important to know what the observed corruption levels are, and how these corruption levels
affect the shock/no-shock decisions. To estimate the signal-to-noise ratio (SNR) the underlying ECG
was assumed to be stationary over the 15 s segments, and thus the power of the clean signal (Pecg)
was estimated in the 3 s interval without artifacts used to confirm the rhythm annotations. Then, CPR
artifact estimated by the RLS filter was used to compute the power of the noise (Pcpr), and to obtain
the SNR as:

SNR = 10 · log10

(
Pecg

Pcpr

)
(dB) (9)

The noise levels were divided into bins from very large corruption levels (SNR < −18 dB) to
very low corruption levels (SNR > 6 dB). The distributions of noise levels and the classification
results for the different noise conditions are shown in Figure 5 for shockable (a) and nonshockable (b)
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rhythms. As expected the classification results improve as noise conditions improve, but noise affects
the classification of shockable and nonshockable rhythms very differently. Nonshockable rhythms are
detected with high specificity even in very noisy conditions, and the confidence in a nonshockable
diagnosis (NPV) is high because the prevalence of nonshockable rhythms is 5/1 that of shockable
rhythms. The sensitivity for shockable rhythms improves considerably as noise conditions improve,
and was above the 90% value recommended by the AHA for SNR > −10 dB. However, the confidence
on a shock diagnosis (PPV) is good only for SNR > −6 dB because of the lower prevalence of shockable
rhythms. The SNR was significantly higher for nonshockable than for shockable rhythms (p < 0.001,
Mann-Whitney U test), and in approximately 15% of shockable and nonshockable cases the noise
level was negligible (SNR > 25 dB, see Figure 5). Although noise levels were lower in nonshockable
rhythms, a high specificity was obtained regardless of the noise conditions. Even for the very noisy
segments (SNR < −12 dB) the specificity was above 94%.
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Figure 5. Median values of the performance metrics for shockable and nonshockable rhythms as
a function of the SNR. The SNR levels were divided into 6 dB bins for the analysis from high (<−18 dB)
to low (>6 dB) corruption levels. The lower panels show the SNR distributions for shockable (a) and
nonshockable rhythms (b).

4.4. Feature Extraction Using CNNs

For these experiments the 10 features at the output of the first fully connected layer were used
as the features learned by the algorithm, these features will be named { fi}i=1,··· ,10 . To evaluate feature
extraction two experiments were conducted [36], and the results were compared to those obtained
using the multiresolution features based on the SWT in the baseline model [25]. First, a dimensionality
reduction experiment was conducted by projecting the feature space into a 2-D space using the
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t-distributed stochastic neighbor embedding (t-SNE) algorithm [49]. The results were visually assessed,
and are shown in Figure 6 for the fi features and the handcrafted multiresolution features. The classes
are shown in colors and the nonshockable rhythms are further divided into AS and ORG. As shown
in the figure the CNN features produce better defined clusters than the handcrafted features in the
2D space. To numerically evaluate how the classes were clustered the Davies-Boudin index (DBi)
was computed to measure the separability of the clusters [50]. The experiment was repeated on
500 bootstrap replicas and the mean (standard deviation) BDi for the CNN and the handcrafted
features were 2.28 (0.06) and 4.95 (0.17), respectively (p < 0.05, for the paired t-test) [51]. That is,
the features learned by the CNN architecture resulted in a more efficient clustering of the classes,
and thus to a better separability.
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Figure 6. 2D map representation of the separability of the classes for the features learned by the CNN
(a) and the handcrafted features (b). These maps were obtained using the t-SNE algorithm.

Second, the discriminating power of each feature was computed using the area under the receiver
characteristics curve (AUC). The results were obtained over 500 bootstrap replicas to statistically
characterize the AUCs and compare the AUC distributions for each feature (paired t-test). The results
are shown in Table 2, which shows that the four top most discriminating features ( f6, f10, f1 and f5)
had significantly higher AUCs (p < 0.05) than any of the handcrafted features. These results confirm
the ability of the CNN to extract high quality discriminating features hidden in the signals.

Table 2. Mean (standard deviation) of the AUCs for the CNN features and the handcrafted features
obtained using 500 bootstrap replicas of the data.

CNN Features Handcrafted Features

Feature AUC Feature AUC

f6 97.2 (1.1) SampEn(d3) 90.6 (2.0)
f10 96.4 (1.6) σ(|∆d4|) 90.3 (1.7)
f1 95.2 (2.6) σ(|d4|) 87.7 (1.8)
f5 94.8 (2.3) σ(|d3|) 86.2 (2.3)
f9 90.7 (3.7) VFLeak 85.9 (2.7)
f3 81.2 (11.1) SampEn(d4) 84.8 (2.4)
f8 75.2 (10.6) |∆d3| 84.6 (2.8)
f4 73.9 (8.6) x4 82.5 (3.6)
f7 66.9 (6.2) σ(|sden|) 82.4 (2.0)
f2 59.3 (17.1) SampEn(d6) 80.6 (2.7)
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4.5. Mixed Architectures

To further improve the BAC and accuracy of the CNN model three mixed architectures were
also explored. First, the architecture of Figure 3 in which the softmax layer was replaced by a RF
classifier to combine the best feature extraction (CNN) and classification (RF) of the the algorithms
in Table 1, this solution was named CNN + RF . Second, a RF classifier fed with 25 handcrafted
features and the 10 fi features was tested to see if handcrafted features added information to the CNN
features, this was named All-Features. Finally, a basic stacking solution [52] in which the outputs of
the CNN+RF (based on fi) and the baseline model (handcrafted features) were used to form a majority
vote (6 analyses, two per window), this solution was called Stacked. The results for 9 s segments are
shown in Table 3, which shows that by using more elaborate solutions the BAC and Acc could be
further improved in 0.4 and 0.5-points, respectively, either using all features or stacking the classifiers.

Table 3. Performance metrics for 9 s segments of the mixed solutions. The results are shown as median
and 90% confidence interval (CI).

Metric CNN Mixed Classification Solutions

CNN + RF All-Features Stacked

Se 95.8 (94.6–96.8) 95.3 (93.9–96.2) 95.6 (94.6–96.4) 96.1 (95.1–96.8)
Sp 96.1 (95.8–96.5) 96.7 (96.3–97.1) 96.8 (96.5–97.1) 96.7 (96.3–97.1)

AS 95.4 (94.9–96.0) 95.9 (95.4–96.5) 96.1 (95.6–96.6) 95.9 (95.3–96.4)
ORG 96.8 (96.2–97.4) 97.2 (96.7–97.7) 97.3 (96.9–97.7) 97.4 (96.9–97.9)

BAC 96.0 (95.5–96.5) 96.0 (95.3–96.5) 96.2 (95.7–96.7) 96.4 (95.9–96.8)
Acc 96.1 (95.7–96.4) 96.4 (96.0–96.7) 96.6 (96.3–96.9) 96.6 (96.3–96.9)
PPV 84.3 (82.8–85.6) 86.0 (84.6–87.4) 86.5 (85.3–87.8) 86.3 (84.8–87.5)
NPV 99.1 (98.8–99.3) 99.0 (98.7–99.2) 99.0 (98.8–99.2) 99.1 (98.9–99.3)

4.6. Analysis of Classification Errors

To conclude the analyses, the classification errors for the CNN based algorithm were identified.
Some typical patterns leading to errors are shown in Figure 7. Most of the false positives are
caused by the inability of the RLS filter to properly remove artifacts, leading to very disorganized
filtering residuals that resemble a VF. Most false negatives occur at low SNR levels with compression
rates around 100 min−1. In these cases the filtered ECG still shows an organized activity locked
to the compression frequency, incompatible with fast ventricular arrhythmia and thus classified as
non-shockable. Interestingly, these errors can be related to the clustering analysis of Section 4.4.
Most errors cluster around borderline AS/VF rhythms which appear in the center-left region of the 2D
t-SNE map (Figure 6), and ORG/VF rhythms in a much lower proportion in the top-center.
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Figure 7. Examples of classification errors. The false positive examples (a,b) correspond to
nonshockable rhythms classified as shockable (ORG panel a and AS panel b). The false negative
examples (c,d) are shockable rhythms classified as nonshockable, and are shown in orange.

5. Discussion

This is, to the best of our knowledge, the first study that uses deep neural network models to
discriminate between shockable and nonshockable rhythms during CPR. This algorithm consists
of an adaptive RLS filter to remove CPR artifacts followed by a CNN to classify the filtered ECG.
The algorithm designed for 9 s improves the performance of the classical machine learning algorithms
by 0.6 points in BAC and Acc. This improvement is large considering that the best classical machine
learning algorithms had accuracies over 95% and that they are based on more than 20 years of expert



Entropy 2020, 22, 595 13 of 17

knowledge on ECG feature engineering. Moreover, mixed solutions, obtained by either stacking
classifiers or mixing handcrafted and CNN features, could yield further improvements in BAC and
Acc, as shown by the preliminary experiments of Section 4.5.

One of the advantages of deep learning solutions is the capacity of the algorithms to learn
discriminating features exploiting all information hidden in the ECG. This avoids the time-consuming
feature extraction processes and, most importantly, improves the quality of the extracted features.
The latter is well reflected by the AUCs on Table 2. Four of the ten features extracted by the deep
learning architecture show a higher discrimination capacity than SampEn(d3), which is the best
handcrafted feature for shock/no-shock decisions during CPR in the available literature [25,26].

Two factors were key to improve the performance of the CNN based methods from the preliminary
results communicated previously in [53]. First, the design and optimization of the parameters of the
CNN to obtain a better model for classification. Second, increasing the size of the database by adding
1186 new annotated samples (a 55% increase in dataset size). These led to 0.5-points and 0.3-points
increases in BAC and Acc respectively, of which 0.4-points and 0.1-points are attributable to the larger
dataset. And there is further room for improvement from combining the knowledge gained from
deep learning and handcrafted ECG feature extraction, basic examples are shown in Table 3 which
added an extra 0.5-points in Acc. The performance of deep learning solutions improves as they are
exposed to more data, whereas the accuracy of classical machine learning algorithms stagnate past
a given sample size. The model presented in this study overfits when more than 3 CNN blocks are
used (Figure 4) since from then on the number of trainable parameters is too large for the size of
the available dataset. Adding more data would help to develop deeper networks and thus to the
extraction of more sophisticated features. There is therefore room to improve the deep learning models
for rhythm analysis during CPR, as more and more data is recorded every day and made available in
centralized repositories. In research on OHCA, the Resuscitation Outcome Consortium (ROC) network
provides the largest OHCA data repository, which includes recordings of eleven regional clinical
centers. However, labeled OHCA data are scarce, and obtaining quality controlled rhythm annotations
from clinicians is expensive and time consuming. As an alternative, semi-supervised learning could be
an efficient way to augment training data and obtain better deep learning models in the future.

As Figure 6 shows, CNN features provide more separate clusters than the handcrafted features
for the shock/no-shock classes. Moreover, the deep learning model shows a quite high separability
between the features corresponding to AS, OR and shockable rhythms. Therefore, in the future CNN
models could improve the accuracy of classical machine learning-based multiclass rhythm classifiers.
These classifiers have been demonstrated for clean [24,52] and artifacted ECGs [25], and are multilabel
classification algorithms that classify the ECG into the 5 OHCA rhythm types. These algorithms are
important for research to analyze large sets of OHCA data [24], and could also help clinicians during
OHCA treatment as clinical support tools. The best OHCA multiclass algorithms have unweighted
mean sensitivities of 78% for clean ECG [24], and of 72% if the analysis is done during CPR [25].
There is therefore margin for improvement using methods based on deep learning if sufficiently large
quality controlled annotated datasets become available.

6. Conclusions

This paper introduces the first shock/no-shock decision algorithm during CPR based on deep
learning methods. This solution improves the accuracy of the best classical machine learning models
based on handcrafted features, and is able to give a shock/no-shock diagnosis compliant with AHA
recommendations for shockable and nonshockable rhythms. Moreover, deep learning algorithms have
room for improvement if larger annotated datasets become available allowing the design of deeper
networks. This may lead to the first practical solutions for rhythm analysis during CPR, eliminating
the no-flow intervals for rhythm analysis and contributing to improve OHCA survival rates.
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The following abbreviations are used in this manuscript:

CPR cardiopulmonary resuscitation
CNN convolutional neural network
RLS recursive least squares
OHCA out of hospital cardiac arrest
ECG electrocardiogram
VF ventricular fibrillation
VT ventricular tachycardia
ORG organized
AS asystole
AHA American Heart Association
CD compression depth
TI thoracic impedance
LMS least mean squares
SVM support vector machine
RF random forest
SWT stationary wavelet transform
TP true positive
TN true negative
FP false positive
FN false negative
Se sensitivity
Sp specificity
Acc accuracy
BAC balanced accuracy
PPV positive predictive value
NPV negative predictive value
SNR signal-to-noise ratio
t-SNE t-distributed stochastic neighbour embedding
DBi Davies-Bouldin index
AUC area under the receiver characteristics curve
ROC Resuscitaion Outcome Consortium
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Abstract.

Objective: An artefact-free electrocardiogram (ECG) is essential during cardiac arrest

to decide therapy such as defibrillation. Mechanical cardiopulmonary resuscitation

(CPR) devices cause movement artefacts that alter the ECG. This study analyzes the

effectiveness of mechanical CPR artefact suppression filters to restore clinically relevant

ECG information.

Approach: In total, 495 10-s ECGs were used, of which 165 were in ventricular

fibrillation (VF), 165 in organized rhythms (OR) and 165 contained mechanical

CPR artefacts recorded during asystole. CPR artefacts and rhythms were mixed at

controlled signal-to-noise ratios (SNRs), ranging from –20 dB to 10 dB. Mechanical

artefacts were removed using least mean squares (LMS), recursive least squares

(RLS) and Kalman filters. Performance was evaluated by comparing the clean and

the restored ECGs in terms of restored SNR, correlation-based similarity measures,

and clinically relevant features: QRS detection performance for OR, and dominant

frequency, mean amplitude and waveform irregularity for VF. For each filter, a

shock/no-shock support vector machine algorithm based on multiresolution analysis

of the restored ECG was designed, and evaluated in terms of sensitivity (Se) and

specificity (Sp).

Main results: The RLS filter produced the largest correlation coefficient (0.80), the

largest average increase in SNR (9.5 dB), and the best QRS detection performance.

The LMS filter best restored VF with errors of 10.3% in dominant frequency, 18.1%

in amplitude and 11.8% in waveform irregularity. The Se/Sp of the diagnosis of the

restored ECG were 95.1/94.5% using the RLS filter and 97.0/91.4% using the LMS

filter.

Significance: Suitable filter configurations to restore ECG waveforms during

mechanical CPR have been determined, allowing reliable clinical decisions without

interrupting mechanical CPR therapy.
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1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health problem claiming over

50 lives per 100 000 persons each year [1]. The latest guidelines from the European

Resuscitation Council and the American Heart Association (AHA) identify early

defibrillation and high quality cardiopulmonary resuscitation (CPR) as key therapies [2].

In particular, uninterrupted chest compressions, provided either by rescuers or through

mechanical devices, are of critical importance [3]. Whereas basic life support responders

rely on the defibrillator’s automated analysis of the ECG for a shock/no-shock decision,

advanced life support (ALS) clinicians visually evaluate the ECG to decide suitable

therapeutic interventions. In both cases, chest compressions must be stopped to avoid

the confounding effects of CPR artefacts on the ECG. However, such CPR interruptions

produce no-flow periods that deteriorate the circulatory state of the patient, reducing

the probability of successful defibrillation and subsequent survival [3].

Several adaptive filters have been designed to remove chest compression artefacts

during manual CPR so that the ECG is restored [4, 5]. The first solutions used

reference signals such as compression depth [6,7], thoracic impedance [6,7], compression

force [8] or blood pressure [9] to model CPR artefacts. The artefacts were estimated

using Wiener filters [7], recursive adaptive matching pursuit algorithms [10], Kalman

filters [11], recursive least squares (RLS) [8] and Gabor filters [9], among others. The

filters became considerably simplified with the introduction of a quasi-periodic CPR

artefact model in which the time-varying Fourier coefficients were estimated using

LMS, RLS or Kalman filters [12–14]. In this model, an estimate of the instantaneous

chest compression frequency during manual CPR is required, which must be estimated

from additional reference channels like depth [12], force [15] and impedance [16]. At

present, mechanical CPR devices are increasingly used in resuscitation by ALS

clinicians [2, 17, 18]. Such devices deliver chest compressions at a fixed rate and depth

and, consequently, no reference channels are needed for adaptive filters based on the

Fourier-series model [19,20].

The preferred approach to evaluating filter performance in terms of ECG waveform

restoration is to analyze artificial mixtures of artefact-free ECGs recorded during

OHCA and CPR artefacts obtained in the absence of electrical activity of the heart

(asystole) [6, 7]. Mixtures are formed at different signal-to-noise-ratios (SNRs), so that

the clean ECG and the restored ECG (obtained by filtering) can be compared in terms

of performance measures such as the restored SNR [11], or the diagnostic accuracy of

an automated shock/no-shock decision algorithm [8]. In the latter case, performance is

reported in terms of sensitivity (Se) and specificity (Sp), the proportion of correctly

classified shockable and non-shockable rhythms, respectively [14]. Studies based on

artificial mixtures, using ECGs recorded during OHCA, have only been conducted

during manual CPR, however, little is known on which filter configurations offer good

restoration of the ECG waveforms. Moreover, the mixture model is well-suited for

evaluating ECG waveform restoration in relation to other diagnostic OHCA scenarios
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such as the prediction of defibrillation success [21], the detection of pulse [22] and the

prediction of re-arrest [23]. The effect of filtering on ECG restoration for those scenarios

has not been yet thoroughly studied.

This study addresses the above-mentioned knowledge gaps by using a mixture model

to evaluate the performance of adaptive filters during mechanical CPR in terms of

ECG waveform restoration, clinically relevant ECG characteristics and shock/no-shock

diagnostic accuracy. The manuscript is organized as follows: Section II describes the

study dataset; Section III explains the mixture model, describes the adaptive filters and

proposes novel performance measures for filter evaluation; the results, discussion and

conclusions are presented in Sections IV and V.

2. Materials

The data were collected by the Dallas-Fort Worth Center for Resuscitation Research

between 2012 and 2016, as part of the Resuscitation Outcomes Consortium. A cohort

of 393 anonymized OHCA patient data files recorded by the MRx monitor–defibrillator

(Philips Medical Systems, Andover, MA, USA) during treatment were used. CPR

was administered manually or with the LUCAS-2 (Physio-Control Inc/Jolife AB,

Lund, Sweden) piston-driven mechanical CPR device. The LUCAS-2 delivers chest

compressions at a fixed rate of 100 min-1 with a fixed depth of 5 cm. The MRx acquires

the ECG with a resolution of 1.03 µV per least significant bit, a bandwidth defined

by 0 Hzand50 Hz, and a sampling frequency of 250 Hz. The ECG and the available

signals to monitor chest compression activity (compression depth and impedance)

were converted to Matlab (MathWorks Inc, Natick, MA, USA). Chest compressions

were automatically detected using standard algorithms on the compression depth or

impedance channels [15].

Signal segments of 10-s duration were extracted from the patient files to form

mixtures of clean ECG and mechanical CPR artefacts during asystole. Thus, all ECGs

(rhythms and CPR artefacts) come from real OHCA data recorded during treatment.

The clean ECG segments were extracted in intervals with confirmed absence of chest

compressions, and included 165 segments from 96 patients during shockable ventricular

fibrillation (VF) and 165 segments from 165 patients in non-shockable organized rhythms

(ORs). CPR artefact segments during asystole were obtained during confirmed use of

LUCAS-2, indicated by a fix compression rate of 100 min-1 without variability. Asystole

was confirmed during pauses in chest compressions whenever the clean ECG had a

peak-to-peak amplitude below 100µV [24]. A total of 165 CPR artefacts from 149

patients were used.

All segments (VF, OR and CPR artefacts) were band-pass filtered between

0.5 – 40 Hz to remove baseline wander and high frequency noise. A Hampel filter was

used to remove spiky artefacts.
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3. Methods

Figure 1 summarizes the procedure followed to evaluate the performance of the adaptive

filters. First, using a mixture model, noisy ECGs are formed at controlled SNRs.

Then, using different filter types and filter parameter settings, the ECGs are restored.

Finally, performance is evaluated in terms of measures quantifying the similarity between

the clean and the restored ECG, clinically relevant ECG waveform characteristics and

accuracy of shock/no-shock decision.

Adaptive filter

Evaluation

ak(n), bk(n)
cos(kω0n)

sin(kω0n)

Mixture
model

αscpr(n)

secg(n)

x(n)

ŝecg(n)

ŝcpr(n)

++
+

Automated
Diagnosis

Signal quality
evaluation

Figure 1. General architecture for CPR artefact removal and evaluation of the quality

of the restored ECG, ŝecg(n).

3.1. Mixture model with controlled SNR

The noisy ECG signal, x(n), is the mixture of a clean ECG signal, secg(n), and a signal

with CPR artefacts, scpr(n), recorded during asystole [6, 7]:

x(n) = secg(n) + αscpr(n). (1)

The SNR of x(n) is controlled by the positive-valued weight α [6]:

SNRin = 10 · log10

(
Pecg

α2Pcpr

)
(dB), (2)

where Pecg and Pcpr denote the power of secg(n) and scpr(n), respectively, which for a

segment of L samples are:

Pecg =
1

L

L∑

n=1

|secg(n)|2 Pcpr =
1

L

L∑

n=1

|scpr(n)|2 (3)

The subscript “in” indicates that the SNR applies to the filter input signal x(n). In

terms of signal power and SNRin, α is given by

α =

√
Pecg

Pcpr

· 10−SNRin
10 . (4)
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Seven different SNRin are tested, ranging from very low (−20 dB) to high (10 dB)

in steps of 5 dB. For each filter setting, a total of 330 · 165 · 7 = 3.8 · 105 combinations

are evaluated, together forming a comprehensive selection of ECGs, CPR artefacts and

SNRin. Figure 2 shows an example of x(n) formed using OR and VF rhythms mixed

with a CPR artefact at different SNRin.

Figure 2. Examples of CPR artefact removal in ECGs with OR (a) and VF (b),

using RLS filtering. CPR artefacts (panel 1), clean OR and VF signals (panel 2),

mixed signals at SNRin of 0 dB (panel 3) and −10 dB (panel 4) and restored ECGs

obtained at 0 dB (panel 5) and −10 dB (panel 6).

3.2. Adaptive filters

During mechanical CPR, the chest compression frequency is constant. The LUCAS-2

device delivers compressions at F0 = 1.67 Hz ≡ 100 min−1, which, for a sampling period

of Ts, corresponds to a discrete angular frequency of ω0 = 2πF0Ts. Under this condition,

the CPR artefact can be modeled as a truncated N -term Fourier series with slowly

varying amplitude [25,26]:
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scpr(n) =
N∑

k=1

ck(n) cos(kω0n+ θk(n)) (5)

=
N∑

k=1

(
ak(n) cos(kω0n) + bk(n) sin(kω0n)

)
. (6)

The Fourier coefficients, ak(n) and bk(n), define the adaptive filter that adjust to

the time-varying characteristics of the artefact [26]. The restored ECG is obtained by

subtracting the model estimate ŝcpr(n) from the observed signal x(n).

ŝecg(n) = x(n)− ŝcpr(n). (7)

The LMS, RLS and Kalman filters are explored for estimating ak(n) and bk(n). All

filter types employ criteria to minimize the error between x(n) and ŝcpr(n). A detailed

description of the filters can be found in [25–28]. Briefly, the LMS filter updates its

coefficients at each time n using increments proportional to the squared error and the

step-size µ [12]. The RLS filter extends the observation window of the squared error

by means of an exponential forgetting factor, λ [13]. The Kalman filter is based on

a state-variable model in which the variance of the observation noise, q, controls the

adjustment rate of the coefficients [14]. These three parameters control the coarseness

of the respective filters. A large forgetting factor (λ), a small step size (µ) and a small

noise variance (q) mean lower misadjustment and better filter stability, but reduced

tracking capabilities (“fine filtering”). The reverse choice of parameter values means

better tracking, but higher misadjustment and poorer stability (“coarse filtering”).

In this study, three different settings of the filter parameters µ, λ and q are

tested to evaluate the effect of fine, moderate and coarse filtering [14, 26], namely

λ = {0.9999, 0.995, 0.99}, µ = {15 · 10−4, 4 · 10−3, 8 · 10−3} and q = {5 · 10−6, 1 · 10−5, 5 ·
10−5} [14,20,25,26]. For all cases, a model with N = 20 harmonics was used [26] meaning

that the filters are composed of 2N coefficients since each harmonic is defined by a pair

of coefficients (ak, bk). Figure 2 shows an example of ŝecg(n), obtained after removing

CPR artefacts from x(n), formed at 0 dB and at 10 dB with VF and OR as underlying

rhythms.

3.3. Evaluation of filter performance

The performance is evaluated in two ways: First, by comparing secg(n) and ŝecg(n)

using similarity measures, and by studying the effect of filtering on clinically relevant

ECG waveform characteristics. Second, by building a machine learning shock advice

algorithm to classify ŝecg(n) and thus to evaluate the accuracy of an automated diagnosis

at different SNRin. To avoid the influence of filter transients, performance measures are

evaluated using the L samples in the interval [2.5, 9.5] s.
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3.3.1. Restored signal quality measures: Three measures are computed, namely the

SNR of the restored signal and two signal similarity measures. The restored SNR is

defined by [6]:

SNRres = 10 · log10

(
Pecg

Pe

)
, (8)

where Pecg and Pe are the power of secg(n) and e(n) = secg(n)− ŝecg(n), respectively.

Signal quality is quantified by Pearson’s correlation coefficient (PCC) computed

between secg(n) and ŝecg(n) (both signals assumed to be zero mean):

PCC =

∑L
n=1 secg(n) · ŝecg(n)√∑L

n=1 s
2
ecg(n) ·

√∑L
n=1 ŝ

2
ecg(n)

, (9)

which is a standard measure of morphological signal similarity. Values close to ± 1

indicate similarity, while values around 0 indicate dissimilarity. PCC is invariant to

differences in signal amplitude, being a disadvantage in our context because filtering

affects signal amplitude. For instance, VF waveform amplitude conveys important

information on the state of the myocardium during cardiac arrest [21].

The adaptive signed correlation index (ASCI) reflects the amplitude differences

between two signals and is defined by [29]:

ASCI =
1

L

L∑

n=1

secg(n)⊗ ŝecg(n), (10)

where ⊗ denotes the signed product of two dichotomized values:

secg(n)⊗ ŝecg(n) ≡
{
−1 |secg(n)− ŝecg(n)| ≤ β,

−1 |secg(n)− ŝecg(n)| > β.
(11)

where the threshold β determines whether the samples at time n are similar. The

threshold was set to 10% of the amplitude range of secg(n), as recommended in [30].

ASCI ranges from -1 (i.e. dissimilar signals) to 1 (i.e. similar signals). In this study,

ASCI is then normalized to the interval [0,1] to make it comparable to PCC.

3.3.2. Characteristic parameters of OR and VF: The most distinctive characteristic

of OR is the presence of QRS complexes. Accurate detection and characterization of

QRS complexes are clinically important in cardiac arrest, for example, when detecting

spontaneous pulse [31]. However, QRS detection in cardiac arrest is more challenging

due to frequently occurring aberrant QRS morphologies [31]. In this study, we evaluate

the performance of a wavelet-based QRS detector [32] on both secg(n) and ŝecg(n). As

ground truth, all QRS complexes in the 165 clean ORs are manually annotated. Finally,

the occurrence times are compared to those obtained from ŝecg(n) so that the probability

of detection (PD) and the probability of false alarm (PF) can be estimated:
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PD(%) = 100 · NTP

NTP +NFN

, (12)

PF(%) = 100 · NFP

NTP +NFP

, (13)

where NTP, NFP and NFN denote the number of true positive, false positive and false

negative detections, respectively.

Three characteristics of VF are studied: dominant frequency (DF) [33],

amplitude [34] and waveform irregularity [21], previously used to predict defibrillation

success [21, 35] and to detect VF in shock advice algorithms [13, 26, 36]. The DF is

obtained by the location of the largest spectral peak higher than 1.5 Hz. The mean

amplitude (MA) is obtained as the mean of |ŝecg(n)| [21, 33]. Waveform irregularity

is characterized by the sample entropy (SampEn). For the generic parameter K, the

absolute relative error, ε, is used to evaluate filter performance:

εK = 100× |K − K̂||K| % (14)

where K is computed from secg(n) and its estimate K̂ from ŝecg(n), respectively.

3.4. Accuracy of automated diagnosis

Filter performance is also evaluated in terms of Se for VF and Sp for OR of a shock advice

algorithm designed to classify ŝecg(n), using a recently introduced machine learning

approach for rhythm classification during mechanical CPR [26]. The algorithm is based

on high-resolution feature extraction from ŝecg(n) using the stationary wavelet transform

(SWT), a wrapper-based feature selection, and a radial basis function kernel support

vector machine (SVM) classifier. Details on the method for feature extraction and

feature selection can be found in [26].

Data is partitioned patient-wise and stratified into training (50%), validation (20%)

and test (30%) sets. The training and validation sets are used to select the most

discriminative subset of 6 features, and to optimize the hyperparameters of the SVM

classifier. The features are standardized to zero mean and unit variance using the

data in the training set. This resulted in a training set of M instance-labeled pairs

{(x1, y1), ..., (xM , yM)} ∈ R6 × {±1}, where xi is the feature vector and yi = 1 and

yi = −1 are the associated shockable and non-shockable rhythm labels, respectively.

The decision function of the SVM is found by solving the following maximization

problem [37]:

W (α) =
M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjyiyj exp(−γ‖xi − xj‖2) (15)

subject to the constraints:
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0 ≤ αi ≤ C ∀i, and
M∑

i=1

αiyi = 0, (16)

where αi are the Lagrange multipliers which are non-zero only for Ms support vectors, C

is the soft margin parameter and γ the width of the Gaussian kernel. Once the support

vectors are determined, the decision function is given by:

f(x) = sign

[
Ms∑

i=1

αiyi exp(−γ‖x− xi‖2) + b

]
, (17)

where the threshold b is determined in the optimization phase and x is the feature vector

under evaluation. A rhythm is classified as shockable when f(x) = 1 and nonshockable

when f(x) = −1. The hyperparameters C and γ are determined after feature selection

in the training and validation sets, using a 18 × 18 logarithmic grid search within

10−1 ≤ C ≤ 102 and 10−3 ≤ γ ≤ 101 to maximize the balanced accuracy (BAC), i.e.

the unweighted mean of Se and Sp.

Clean ECGs and CPR artefact segments were treated as two independent databases.

Each database was partitioned patient-wise and stratified into training (50%), validation

(20%) and test (30%) sets. This means that ≈ 0.5 · 330 clean ECGs (131 patients) and

≈ 0.5 · 165 CPR artefact segments (74 patients) were included in the training set. The

validation set consisted of ≈ 0.2 · 330 (52 patients) and ≈ 0.2 · 165 (30 patients) clean

ECGs and CPR artefact segments, respectively. Finally, in the test set ≈ 0.3 · 330 clean

ECGs (78 patients) and ≈ 0.3 · 165 CPR artefact segments (45 patients) were included.

Thus, for each filter setting, the training, validation and test sets consist of all possible

combinations of CPR artefacts and clean ECGs, mixed at the SNRin levels resulting in

a training set of ≈ 0.52 · 165 · 330 · 7, a validation set of ≈ 0.22 · 165 · 330 · 7 and a test

set of ≈ 0.32 · 165 · 330 · 7 signals. The performance on the test set is evaluated in terms

of Se, Sp and BAC.

4. Results

4.1. Signal quality

Figure 3 shows the signal quality measures as a function of SNRin for different filter

settings. Figure 3a shows, as expected, that ŝecg(n) and secg(n) become increasingly

similar as SNRin increases. The RLS filter leads to higher PCC and ASCI for almost

all SNRin when fine filters are used. However, for the Kalman and LMS filters, coarse

filtering leads to higher PCC and ASCI when the CPR artefact is large. In the LMS

filter, moderate filtering achieves the highest PCC and ASCI for SNRin ≤ −10 dB,

whereas coarse Kalman filtering gives the best results for SNRin ≤ −10 dB. Figure 3b

shows that coarse filtering leads to higher SNRres at low SNRin. However, for a low

SNRin, fine filtering better restores the ECG. The effect of fine and coarse filtering at a

high and a low SNRin is exemplified in Figure 4.
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PCC
ASCI

Figure 3. The mean of PCC and ASCI (a) and SNRres (b) for all possible mixing

combinations as a function of SNRin for different filter types and settings.

4.2. Waveform characteristics

The performance of the QRS detector on clean ECGs is PD = 95.9% and PF = 1.9%, a

result which serves as an upper bound for the results obtained when artefacts are added

at different SNRin. Figure 5 shows the QRS detection performance obtained on ŝecg(n).

The best performance at high SNRin is obtained for the Kalman filter, but the best

overall performance is obtained for the RLS filter, with PD exceeding 90% even for an

SNRin around −10 dB. As SNRin decreases, PF degrades considerably for any filter type

and setting. For fine RLS filtering, PF drops from around 10% for SNRin = 5 dB to over

30% for SNRin =−10 dB.

The effect of filtering on VF waveform characteristics is shown in Figure 6. The

absolute relative errors of DF, MA and SampEn are large at low SNRin, unless coarse
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Figure 4. Two examples of RLS filtering of OR at SNRin = −20 dB (a) and 0 dB

(b). Coarse filtering (λ3 = 0.99) attenuates QRS amplitude more than fine filtering

(λ1 = 0.9999) which, on the other hand, produces a larger residual between QRS

complexes.

Figure 5. The mean of PD as a function of the mean of PF for different filter types,

filter settings and SNRin. Different filter settings are indicated by marker type whereas

SNRin by line color. The 90% PD level is highlighted by a grey line.
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Figure 6. The mean absolute relative error of DF, MA and SampEn as a function of

λ, µ, q and SNRin for different filter types and settings.

filtering is used. The error of DF is lower than 30% for SNRin ≤ −5 when coarse filtering

is used. For large SNRin, the DF of the restored VF signal is best preserved using

moderate and fine filtering. The errors of MA and SampEn follow a similar pattern,

with the LMS filter being the best filter overall, especially for SNRin above −10 dB.

The RLS and Kalman filters show a degradation in the estimation of amplitude and

complexity for moderate and coarse filtering as SNRin increases, possibly caused by

spiky filtering residuals.
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Figure 7. Performance of the shock/no-shock diagnosis for different filter types and

settings.

Figure 8. Effect of filtering on the amplitude of secg(n) for OR (a) and VF (b) at

SNRin = −10 dB.

4.3. Shock/no-shock classification

The performance of the classifiers on the test set is shown in Figure 7 as a function of

SNRin. For most filter settings, Se and Sp are almost constant for SNRin above −5 dB.

Moderate filtering yields better classification of OR (higher Sp), whereas coarse filtering

yields better classification of VF (higher Se). The best overall performance in terms

of BAC is obtained for the RLS filter, though the differences between the three filter

settings are small. The Kalman filter is associated with the worst classification results,

suggesting that the state-space model may not be an efficient approach for estimating
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the CPR artefact model in (6). For all SNRin, the BAC of the coarse LMS filter is just

marginally lower (0.6-percentage points) than that of the best RLS filter.

The accuracy of the shock/no-shock decision algorithm was tested directly on the

165 CPR artefacts (with nonshockable asystole as the underlying rhythm). After

filtering the artefact with the RLS filter and λ = 0.995 (best configuration), the

specificity was found to be 99.4%.

Figure 9 shows four illustrative examples of misclassified segments for both

shockable (VF) and nonshockable (OR) rhythms. In Figure 9a and b the artefact

presents high frequency harmonics causing fast and disorganized filtering residuals in

ŝecg(n). Thus, the filtered OR rhythm resembles VF. Figure 9c and d shows spiky and

high-amplitude filtering residuals resembling an OR rhythm in patients with VF, leading

to a misdiagnosis in the shock/no-shock decision algorithm.

Figure 9. Examples of classification errors. Segments with OR rhythms (a,b) and

segments with VF (c,d).

5. Discussion and conclusions

To the best of our knowledge, the present study provides the first thorough evaluation

of ECG waveform restoration following adaptive mechanical CPR artefact cancellation



Author guidelines for IOP Publishing journals in LATEX 2ε 15

filtering. With this approach, signal quality indices and clinically relevant ECG

features can be determined, providing insights into how accurately the underlying

ECG rhythms can be restored with filtering. In addition to SNRres, we introduce

correlation-based similarity indices [30, 38] and typical OR and VF characteristics of

relevance in applications such as shock outcome prediction [21, 35] and detection of

pulse [22,31]. Since ALS clinicians decide on whether to shock the patient by observing

ŝecg(n), filters that provide the highest signal quality and preserve the salient features of

the rhythms are desirable. Moreover, for each filter setting, a 6-feature machine learning

algorithm was adjusted to evaluate the viability of an automated shock/no-shock

decision and the influence of SNRin on diagnostic accuracy during mechanical CPR.

The high values of SNRres (mean increase of 9.5 dB across all SNRin) presented in

Figure 3 show that adaptive filtering considerably reduces CPR artefacts, while the high

correlation coefficients indicate that the ECG waveforms are quite accurately preserved

in ŝecg(n). However, the ASCI values are slightly below the PCC values suggesting an

amplitude reduction in the ECG after filtering. This is illustrated in Figure 8 where

SNRres is large and both PCC and ASCI are above 0.8, but ASCI is 0.1 smaller than

PCC in both cases. The waveform amplitude is lower in ŝecg(n) than in secg(n).

Besides waveform alterations, this work shows for the first time that filtering

causes changes to the intrinsic properties of OR and VF. The performance of the

QRS detector applied to secg(n) is lower when compared to those obtained on standard

databases [32]. However, QRS detection in cardiac arrest patients presenting ORs is

known to be challenging [31], since QRS complexes may be wide and have aberrant

morphologies. As expected, the performance is lower when the QRS detector is applied

to ŝecg(n). As shown in Figure 5, true QRS complexes are accurately detected after

filtering regardless of SNRin. However, as SNRin decreases, the rate of false positives

soars due to spiky filtering residuals confounded as actual heartbeats. This may not be

a deleterious effect for shock decision algorithms since QRS presence may be enough

for a no-shock decision [39], but the effect may confound other algorithms dependent on

heart rate and QRS morphology such as the prediction of re-arrest [23] and the detection

of spontaneous pulse [31, 40–42]. As for the restoration of VF characteristics, the best

results are obtained for coarse filtering; all three types of filtering present a similar

trend. At low SNRin, fine filtering inefficiently removes the CPR artefact, causing the

dominant frequency of the filtered VF to match the LUCAS-2 rate (1.67 Hz) in about

one third of the cases when the best fine filtering is used (SNRin = −20 dB and RLS

with λ = 0.9999). This is a significant error considering that the mean (standard

deviation) DF for clean VF in our data is 5.1 (1.5) Hz. For MA and SampEn, errors are

also very large for fine filtering at low SNRin, with relative errors in MA and SampEn

in excess of 100% and 50%, respectively. The best overall filter to estimate SampEn

is the coarse LMS filter, with an error rate below 30% for SNRin ≥ −15 dB and an

error below 10% for SNRin ≥ −10 dB. These results may be of clinical importance

as the dominant frequency, amplitude and entropies have been used as predictors

of succesful defibrillations [21, 33–35, 43]. Our results suggest that the prediction of
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defibrillation success during mechanical CPR may be possible without interrupting

the chest compression therapy—a result in line with some recent findings on manual

CPR [44].

While an ALS setting requires accurate restoration of secg(n), the shock/no-shock

decision of ŝecg(n) is also crucial in automatic external defibrillators, used mainly by

non-medical personnel. The decision algorithm implemented in this study has Sp below

the 95% recommended by the AHA for SNRin < −5 dB. Moreover, Se is in compliance

with the 90% recommended by the AHA for SNRin ≥ −15 dB. For SNRin ≤ −15 dB

Se is very low, meaning many false negatives. This is mostly because spiky and

organized filtering residuals are interpreted as QRS complexes of organized rhythms

in VF patients [26]. As SNRin increases, a large portion of those false negatives are

recovered leading to a significant increase in Se. Specificity remains quite constant

for all SNRin. The algorithmic procedure followed for shock/no-shock decision during

mechanical CPR was recently demonstrated to have Se/Sp above 95% [26]. Our results

suggest that a plausible explanation for those results is that SNRin, in most cases, is

high (above −10 dB).

The SNRin is unknown in real cardiac arrest data, so a filter cannot be adjusted

to the SNRin. Thus, the filter that on average shows the best performance should be

preferred. Table 1 shows the mean performance across all SNRin for each filter and type

of filtering. The RLS filter offers the best preservation of waveform morphology (higher

PCC and ASCI), as well as QRS detection performance in terms of PD-to-PF ratio.

The VF waveform features are best preserved by the LMS filter, using either moderate

or coarse filtering, although the results are almost identical to those of moderate RLS

filtering. The best results on rhythm classification are obtained for moderate RLS

filtering.

In monitor–defibrillators, the computational demands are important to consider

because these devices use lower-end microprocessors and FPGAs which run many tasks

in parallel. The LMS filter has much lower computational demands than either the RLS

or Kalman filters because it only involves an error estimation at time n for the filter

update equations. The RLS filter has recursions that involve matrix products [25], and

so do the state-space equations. So the choice of adaptive filter should be a compromise

between diagnostic accuracy, waveform preservation and computational demands on the

monitor–defibrillator.

This study has certain limitations. Data obtained from a single piston driven device

were used (LUCAS-2). This is the most widespread mechanical CPR device, whose

impact on survival has been studied in two large randomized trials [2,17]. However, there

are other piston driven devices on the market [45,46], and even alternative technologies

based on load distribution bands [18]. Our results should generalize well to other piston

driven devices, whereas the effect of filtering would need to be studied separately for

devices based on load distribution bands for which the artefact characteristics are

different [20, 47]. Moreover, data were gathered using one type of monitor–defibrillator

and from a single EMS agency. The characteristics of the ECG acquisition circuitry,
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Table 1. Mean performance across all SNRin for different filter types and settings.

PCC ASCI PD/PF εDF εMA εSampEn Se Sp BAC

RLS

λ1 = 0.9999 0.80 0.71 4.9 14.9 24.7 17.4 92.7 93.2 93.0

λ2 = 0.9950 0.76 0.65 2.9 10.4 18.7 12.1 95.1 94.5 94.8

λ3 = 0.9900 0.68 0.59 2.8 12.0 29.2 17.3 95.8 90.6 93.2

LMS

µ1 = 0.0015 0.76 0.68 4.6 21.7 35.8 16.7 91.2 91.9 91.6

µ2 = 0.0040 0.77 0.67 3.0 10.3 18.7 12.1 94.4 93.5 93.9

µ3 = 0.0080 0.68 0.58 2.8 12.1 18.1 11.8 97.0 91.4 94.2

KALMAN

q1 = 5 · 10−6 0.70 0.62 4.4 28.2 51.1 18.7 91.0 88.4 89.7

q2 = 1 · 10−5 0.74 0.67 3.8 20.8 30.6 15.0 93.8 93.5 93.7

q3 = 5 · 10−5 0.75 0.64 2.9 10.4 25.2 18.0 94.5 93.3 93.9

including sampling frequency, voltage resolution and bandwidths, differ slightly between

devices, but should not alter our results substantially. Although different EMS agencies

may have different protocols and quality of CPR, the use of a mechanical CPR device

standardizes treatment. Finally, an additive mixture model was used to produce a noisy

ECG by adding a CPR artefact to a clean ECG at different SNRs. This type of model

was proposed in [7] and has since then been used in many studies [6,10,25,26]. However,

the model may not accurately reflect the effect of CPR on heart dynamics. Although the

additive mixture model is the best available model to evaluate the effect of filtering on

ECG characteristics, a better way to evaluate shock/no-shock decision algorithms would

be to use noisy ECGs recorded during OHCA. Therefore, a future study is justified

to validate the shock/no-shock decision algorithm on real ECGs corrupted by CPR

artefacts.
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D. González-Otero, “Reliable extraction of the circulation component in the thoracic impedance

measured by defibrillation pads,” Resuscitation, vol. 84, no. 10, pp. 1345–1352, 2013.

[43] L. D. Sherman, “The frequency ratio: an improved method to estimate ventricular fibrillation

duration based on Fourier analysis of the waveform,” Resuscitation, vol. 69, no. 3, pp. 479–486,

2006.

[44] J. Coult, J. Blackwood, L. Sherman, T. D. Rea, P. J. Kudenchuk, and H. Kwok, “Ventricular

fibrillation waveform analysis during chest compressions to predict survival from cardiac arrest,”

Circulation, vol. 12, no. 1, p. e006924, 2019.

[45] L. Zhang and H. Zhang, “Clinical application of Thumper in emergency cardiopulmonary

resuscitation,” Baotou Medical College, vol. 6, 2008.

[46] W. Wieczorek and H. Kaminska, “Impact of a corpuls CPR mechanical chest compression device

on chest compression quality during extended pediatric manikin resuscitation: a randomized

crossover pilot study,” Disaster Emerg. Med. J., vol. 2, no. 2, pp. 58–63, 2017.

[47] I. Isasi, U. Irusta, E. Aramendi, J. Age, and L. Wik, “Characterization of the ECG compression

artefact caused by the Autopulse device,” Resuscitation, vol. 118, p. e38, 2017.


	Dedication
	Acknowledgments
	Abstract
	Contents
	List of figures
	List of tables
	Abbreviations
	1 Thesis Overview
	1.1 The heart
	1.2 Out-of-hospital cardiac arrest (OHCA)
	1.3 Key therapies for OHCA
	1.4 Cardiopulmonary Resuscitation
	1.5 Early defibrillation
	1.6 Defibrillation and CPR
	1.7 Automatic rhythm classification in OHCA
	1.8 Motivation

	2 State of the art
	2.1 Machine learning for OHCA classification
	2.1.1 Feature extraction
	2.1.2 Feature selection
	2.1.3 Machine learning classifier

	2.2 CPR artefact
	2.3 Rhythm analysis during chest compressions
	2.3.1 Evaluation methodology
	2.3.2 Adaptive CPR artefact cancellers
	2.3.3 Summary of the results
	2.3.4 Analysis of the filtered ECG


	3 Hypothesis and objectives
	4 Results and conclusions
	4.1 Results and discussion
	4.1.1 Results related to objective 1
	4.1.2 Results related to objective 2
	4.1.3 Results related to objective 3
	4.1.4 Results related to objective 4

	4.2 Conclusions

	Bibliography
	A Published papers
	A.1 Publications associated to objective 1
	A.1.1 First conference paper: C11
	A.1.2 First journal paper: J11
	A.1.3 Second conference paper: C21
	A.1.4 Second journal paper: J21

	A.2 Publications associated to objective 2
	A.2.1 Journal paper: J12

	A.3 Publications associated to objective 3
	A.3.1 First conference paper: C13
	A.3.2 Second conference paper: C23
	A.3.3 Journal paper: J13

	A.4 Publications associated to objective 4
	A.4.1 Journal paper: J14



