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General Introduction

The earth’s surface is composed of rocks, soils, as well as other materials that contain different

types of minerals. Minerals dissolve and precipitate when interact with water. As minerals dissolve,

chemicals in the solid phase transform into ions in water, resulting in a decrease of the mineral

mass and volume. Dissolution process is important in both natural and engineered processes. It

has influenced on water geochemistry, soil formation, contaminant transport, acid stimulation in

reservoir engineering, environmental remediation, and global carbon cycling. As an engineered

example, acid stimulation in oil reservoirs accelerates mineral dissolution, increasing reservoir

porosity and permeability and enhancing oil extraction. As a natural example, the CO2 consumption

during chemical weathering in a mineral dissolution reaction helps to regulate atmospheric CO2 and

maintain the conditions for life on earth.

Understanding the mechanisms involved in water-mineral interaction requires both experimental

and computational techniques. In this context, both experimental and computational works have aimed

at characterizing their interactions, highlighting the importance of their concomitant mechanism and

processes at the atomic scale.

At this scale, atomistic modelling has demonstrated to be an indispensable numerical instrument.

It allows to study the nanoscale of a material or molecule with detail. However, atomistic simulations

are often difficult to compare to experimental results due to its time and length limitations. Other

modelling tools, like the Kinetic Monte Carlo method, can help to bridge the gap between them.

This thesis has focused on the study of the mineral dissolution by using Kinetic Monte Carlo

method. In the following chapters we will describe the scientific contribution of the authors that can

be summarized in:

• Chapter 1: A revision of the state of the art of the water-mineral interaction, highlighting the

more relevant experimental techniques and modelling tools.

• Chapter 2: Extension and improvement of Kinetic Monte Carlo method and the kinetic model

from the bibliography, to reproduce the general behaviour of the mineral dissolution and to

xx



provide an explanation to experimental observations.

• Chapter 3: Presentation of KIMERA, a Kinetic Monte Carlo code developed to study the

dissolution of minerals.

• Chapter 4: A general parametric study of minerals with AB composition and different structures.

• Chapter 5: A specific study of the quartz dissolution in water, which serves also as a verification

of the proposed model in chapter 2.

• Chapter 6: A study of the dissolution phenomenology of alite due to its importance in the field

of cement.

Overall, this thesis presents an extension of the kinetic model and a powerful code based on it.

Both tools represent a great advance and provide continuity on deepening the knowledge on the field

of mineral dissolution.
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Chapter 1: State of the art

1.1 Introduction to mineral dissolution

A mineral is defined as a solid chemical compound that can be found in nature in pure form, usually as

aggregates in rocks [25]. They are crystalline compounds with a well defined chemical composition

and a specific crystal structure. If a chemical compound may occur naturally with different crystal

structures, each structure is considered a different mineral species. The interest of the minerals can

be commercial or ornamental. For example, muscovite (KAl2(AlSi3O10)(F,OH)2), can be used for

windows, as a filler or as an insulator [26]. Other minerals have a high concentration of a valuable

element. Examples are cinnabar (HgS), an ore of mercury, sphalerite (ZnS), an ore of zinc, or

cassiterite (SnO2), an ore of tin. Other minerals, known as gemstones, have an ornamental value

due to their beauty, durability, and usually rarity. Gemstone examples are sapphire (Al2O3) and ruby

(Al2O3:Cr).

The dissolution or hydration of minerals is a specific case of a branch of physical chemistry

named chemical kinetics, also known as reaction kinetics. The origin of this branch of science

dates back to 1884 when Van’t Hoff published his famous ‘Études de dynamique chimique’ [27]

and was awarded the first Nobel Prize in Chemistry in 1901. Since then, chemical kinetics deals

with the experimental determination of reaction rates from which rate laws are derived. Chemical

kinetics includes investigations of how experimental conditions influence the speed of the chemical

reactions as well as the construction of mathematical models that describe them. Chemical kinetics is

well complemented by thermodynamics. Although thermodynamics cannot tell anything about the

reaction rate, they deal with the direction in which a process occurs because of the nature’s tireless

pursuit of the equilibrium in a minimum energy state.

The mineral dissolution rate is defined as the quantity of dissolution reactions happening per unit
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time [28]. Usually, the mineral dissolution is a complex reaction involving several elementary ones at

molecular level. Therefore, an overall reaction represents the net result of a series of its elementary

reactions. The slowest step is the limitant of the reaction and is particularly important as it marks the

overall dissolution rate.

Researchers have focused on measure mineral dissolution rates in order to make predictions of the

evolution of our environment, and thus, their impact in the human activity and health [3,6]. Controlling

soil fertility, porosity in aquifers and oil reservoirs, transport and sequestration of contaminants and

CO2, cycling of metals and formation of ore deposits, building, etc are among its most significant

applications [29–37]. Works have been done over the years, improving the understanding in the

interaction between the solvent and the minerals [1] and improving the experimental techniques to

isolate the variables which influence their dissolution rate [2,12, 19, 21,38]. With the improvement of

computers, limitations on downscaling of experimental techniques were complemented by methods

such as ab initio calculations, molecular dynamics and molecular mechanics, bringing to light the role

played by the elementary reactions happening at the molecular level [39–45]. Other computational

methods such as Monte Carlo (MC) or Kinetic Monte Carlo (KMC) have helped the scientists to

bridge the properties obtained from these calculations to the experimental ones, upscaling the atomic

level energy barriers to the nanoscale to reproduce the experimental properties and dissolution rates.

1.2 The mineral dissolution rate

The characterization of a dissolving mineral is measured by the amount of material (in moles) released

per second and per surface area, that is, its dissolution rate rD (mol m�2 s�1). Such property is in

the first place influenced by the crystal structure and the chemical bonds of the mineral. At 300 K in

pure water, typical dissolution rates lies in a range between 10�13 and 10�6 mol m�2 s�1 for very

covalent minerals like for example quartz (SiO2), and very ionic minerals like calcite (CaCO3) (see

figure 1.1). A 1 mm spherical grain of these minerals would take about 1000 years and 1 hour to

dissolve respectively [31].
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Figure 1.1: Compilation of mineral dissolution rates. Logarithm of the dissolution rates for 78
minerals at 300 K [1]. Kyanite (Al2SiO5) and halite (NaCl) are respectively the lower and higher
limit cases.

The dissolution rate can be found in the bibliography as a negative or a positive magnitude

indistinctly. It depends on which reference point is taken; the mineral, or the solvent. In this work we

have taken preferably negative values unless a comparison with published plots with positive ones is

done. In general the experiments show a low reproducibility of the dissolution rate. A dispersion of

the results by an order of magnitude is usually found.

The more important factors affecting the dissolution rate are: temperature [1], pH [1, 3], Gibbs

free energy difference between solid and solution (DG) [6], solution chemistry [31], reactions of

transport [3, 6] and dislocation density [46]. Moreover and as a curiosity, some microorganisms

can influence on the previous factors to boost or inhibit the dissolution rate according to their

needs [47, 48].

Next step we explain the factors that affect dissolution one by one in the following order for

clarity purposes.

1.2.1 Variation of the mineral dissolution rate with DG

Considering a mineral immersed in water, in the surface of the mineral there are reactions of the

constituent atoms with water at the mineral surface, and then, diffusion of the dissolved atoms within

the water [3, 6]. The reactions taking place on the surface are closely related to the already dissolved

atoms within the closest water layer. The higher concentration, the lower the dissolution rate. This

driving force of the reaction, related to the concentration, is named Gibbs free energy difference DG

(J mol�1).
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Given an elementary reaction like:

aA+bB $ cC+dD (1.1)

DG is experimentally calculated from the ion activity product P of the dissolved material in water

divided by the thermodynamic solubility product Ks.

DG = R ·T · ln(P/Ks) (1.2)

R is the ideal gas constant (8.3145 J mol�1 K�1) and T the temperature (K). P/Ks is more

commonly known as saturation index b and sets the distance to equilibrium where no dissolution

happens. Therefore, Ks is defined as the activities P in which the reaction is in equilibrium. P is

experimentally obtained from:

P =
{C}c · {D}d

{A}a · {B}b (1.3)

where {A}, {B}, {C} and {D} represents the activity and a, b, c and d their respective stoi-

chiometric coefficients. The activity represent the effective concentration truly available to react.

The called activity coefficient g has values between 0 and 1 g 2 [0,1] to represent the available

concentration reacting (mM). For example {A}= gA · [A].

In the specific case in that the reaction is in equilibrium, P = Ks and thus DG = 0. If DG < 0, the

solution is undersaturated and dissolution happens, and if DG > 0, the solution is supersaturated and

the mineral grows by precipitation. In very diluted systems, instead of activities, concentrations can

be used since the dissolved components are spread far apart and interactions among them are very

weak thus g = 1:

DG = R ·T · ln(C/Ce) (1.4)

Where C is the concentration and Ce is the concentration in which the system is at equilibrium.
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As we will see in the next section, there is a discrepancy between the measured DG and the one at

very close to surface positions since the concentration is not the same as in the bulk water. Therefore,

from now on, we differentiate between macroscopic or apparent DG and superficial or local DG⇤.

The mineral dissolution rate is influenced by its distance from equilibrium. Some of the studied

minerals present a dissolution rate dependence with DG that increases sharply by getting away from

the equilibrium to reach gradually a plateau (see figure 1.2) [6].

rD = k
✓

1�
✓

P
Ks

◆p◆q

(1.5)

Where k is the dissolution rate at far from equilibrium conditions in the plateau, also named

dissolution rate constant. The parameters p and q are empirical and dimensionless. Expression 1.5,

without p and q , can be predicted by the Transition State Theory (TST) as we will see subsequently.

This curve shape has been overshadowed by experimental curves of some minerals following a

sigmoid function [31, 49, 50]. Different regions in the sigmoidal function are governed by different

dissolution mechanisms depending on the mineral bond energy and DG. These mechanisms can be

observed when vertical scanning interferometry (VSI), atomic force (AFM) or scanning electron

microscopy (SEM) are used to follow the surface topography during dissolution [21, 49–52] (see

sections 1.3.2.1, 1.3.2.2 and 1.3.2.3). In a typical curve like the one portrayed in figure 1.2, three

mechanisms with different dissolution rates can be distinguished:

- Mechanism I. At low negative DG, the superficial groups of atoms (terraces) and lonely atoms

(adatoms) on the mineral surface dissolve leading to flat and smooth areas. The dissolution rate

is very low due to the close position to equilibrium state.

- Mechanism II. As DG decreases, topographical defects of the mineral like vacancies and

dislocations become dissolution cores, which lead to pit opening and step retreat.

- Mechanism III. As DG becomes even lower, any surface atom can become a dissolution core.

However, this only occurs in minerals with low bond energy, like calcite.

5



D
is

so
lu

tio
n 

R
at

e 
(m

ol
m

-2
s-1

)

ΔG (kcal/mol)

00

IIIIII

ΔGcrit.

Mechanisms:

TST
Dissolution

pleteau

Figure 1.2: Dissolution rate with DG. Schematic representation of the mineral dissolution rate. The
typical curve predicted by the TST and the sigmoid function experimentally reported are represented.
Depending on the sigmoid curve region, the mineral presents three well diferentiated dissolution
mechanism; I) Flat surfaces II) Pit opening and step retreat III) Spontaneous pit opening.

The three dissolution mechanisms are additive and must coexist, that is, it is not possible to

have mechanism II without mechanism I, or mechanism III without II and I, and they take place

simultaneously. The value of DG where the onset of dissolution rate takes place due to mechanism

II is called critical DG (DGcrit). In figure 1.2, the topography observed for calcite in the different

dissolution mechanism and the schematic representation of the sigmoid function are highlighted.

From these experimental results it can be inferred that the mineral dissolution rate is closely

related to its topography. Over the years, several topographical models have focused on trying to

predict dissolution rates depending on the mechanism that is active [7, 10, 20, 31, 53–56]. As we will

see, a model was developed for relating the DGcrit to the elastic properties of the mineral, and thanks

to the TST, experimental curve fits with reasonable success were proposed [9, 10] (see section 1.4).
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In this thesis, part of the work is focused in the study of the dissolution rate dependence with DG.

Most of the important results obtained are the outcome of the study of this relation as we will show

in the subsequent chapters.

1.2.2 Variation of the mineral dissolution rate with the diffusion

The concentration of the dissolved material within the solvent is not constant. As it is shown in the

figure 1.3 with a schematic representation of a dissolving mineral grain, at close to surface distances

the concentration Cs is expected to be higher than the concentration at water bulk C, which is the

one usually measured by the experiments. The difference between both quantities is determined

by the dissolution rate and the diffusivity of the dissolved material into the water. Depending on

which one of those two factors is slower, the dissolution process is said to be limited by surface

reactions or limited by transport, respectively [6]. In figure 1.4 different scenarios are presented. It

shows the concentration profile with the distance from the surface. If the dissolution rate is very low,

like in quartz, every dissolved atom is immediately diffused and the concentration is very similar

as a function of the distance from the surface (see case 2 in figure 1.4). The other way around, if

the dissolution rate is high, like in calcite, the diffusion is not able to vacate the material and the

concentration in the surface Cs increases until reaching a concentration close to the equilibrium one

Ce where the dissolution is much lower (see case 3 in figure 1.4). In most cases, both effects are

balanced and the diffusion managed to vacate partly the dissolved material (see case 1 in figure

1.4). Case 4 would correspond to the concentration profile expected during growth, where thanks to

precipitation, the concentration close to the surface decreases.

As we will see in the next section, the dissolution rate changes with temperature. Diffusivity is also

affected by the temperature change because a reduction of the water density, but in much lower degree.

In a mineral, it may happen that the limiting step changes when increasing the temperature, as in the

case with brucite (Mg(OH)2) at 323 K [57]. It may also happen that the increase of the dissolution

rate due to the deviation from equilibrium is enough to produce this change, as demonstrated recently

in alite (Ca3SiO5) [21].

7
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Figure 1.3: Diffusive layer. Schematic representation of the diffusive layer of a dissolving mineral.
The concentration close to the surface is expected to be higher than the bulk concentration in the
water. Adapted from [2].

The concentration in the surface Cs (and so DG⇤) can be estimated by considering, instead of a

exponential decay, a linear one by getting far from the surface (Fick’s law) [2, 6, 58].

D · Cs �C
d

=
Sg

S
· k
✓

1� Cs

Ce

◆
(1.6)

where D is the diffusivity (m s�1), S is the diffusive layer surface (m2), Sg is the grain surface

(m2), and d is the size of the diffusive layer (m) (see figure 1.3). x =
Sg
S is the named roughness

factor, which depends on the specific grain shape in the experiment.

The size of the diffusive layer d can be estimated by [58]:

d =

✓
2 ·P
0.244

◆1/3
· v1/6 ·F�1/2

r ·D1/3 · x1/2 (1.7)

where v is the kinematic viscosity of the water (m2 s�1), Fr is the flow rate (m3 s�1) and x can be

considered to be the largest diameter of the dissolving grains (m). Typical values for experiments are

the following: v⇠ 10�7 m2 s�1, Fr ⇠ 10�9�10�8 m3 s�1 [59], D⇠ 10�13 m s�1 and x⇠ 10�3�10�4
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m leading to a d in the order of µm. This equation is suitable for most experimental devices generating

a laminar water flow, without turbulences. In a rotating disk experiment, which we will describe later

(see section 1.3.1.2), the expression is slightly different.

d = 1.61 ·D1/3 · v1/6 ·w�1/2 (1.8)

where w is the disk angular velocity (rad s�1).

We can then relate the ‘apparent’ dissolution rate k0 obtained from experiments to the ‘real’ one k:

k0 =
1

1

x · k+
d

D ·Ce

�
1

Ce

x · k+
d
D

·C (1.9)

This equations, apart from considering some geometric approximations, are based in a normal

behaviour of the TST (see figure 1.2). This means that minerals whose dissolution follows normal

TST trend with DG would get more accurate results. For the rest of the minerals, deeper study would

be needed but it represents a good first approach.

1.2.3 Variation of the mineral dissolution rate with T

The famous Arrhenius equation as it is known today was not the first law proposed to describe the

mineral dissolution rate dependence with temperature, but it has been one of the most extended [60].

k = A0 · exp
✓
� Ea

R ·T

◆
(1.10)

Where A0 is a constant (mol m�2 s�1) and Ea is the named dissolution activation energy (J mol�1)

and is related to the energy needed for the limiting reaction in the dissolution process.

In fact, modified Arrhenius equations reproducing the temperature behaviour were proposed,

which suggested a temperature dependent prefactor A0(T ) related with the vibrational frequencies of

the limiting reaction and whose contribution is marked when the activation energy is low [6].
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k = A0 ·T n · exp
✓
� Ea

R ·T

◆
(1.11)

Where n is a fitting parameter that usually lies between 1/2 and 3/2.

Nowadays, despite the prefactor may be temperature dependent, it is assumed to be constant.

All possible contributions of the prefactor are assumed to have its effects on the global or apparent

activation energy Eapp and therefore equation 1.10 is recovered by simply replace Ea by Eapp. Keeping

in mind this formalism, we use in this work the original Arrhenius equation 1.10 which is obtained

from the slope of representing the natural logarithm of the dissolution rate lnk versus the inverse of

the temperature 1/T .

Eapp ⌘�R
✓

∂ lnk
∂ (1/T )

◆

P
(1.12)

The overall activation energy is mainly determined by the limiting step of the reaction. As said in

the previous section, this step can be related to a surface reaction, or to the transport of the dissolved

material. As the surface reactions are more influenced by the temperature than the diffusion, the

activation energies in the first case are much greater than in the second. Typical activation energies

for a surface limited dissolution lies between 30 and 100 kJ mol�1 [1]. The activation energy when

the diffusion is the limiting factor is lower than 30 kJ mol�1 [6]. Figure 1.5 shows a schematic

representation of typical curve by representing the lnk versus 1/T and highlighting the two slope

regions corresponding to surface and transport reactions.

1.2.4 Variation of the mineral dissolution rate with pH and other catalytic

or inhibitory effects

pH is one of the factors that strongly affects the dissolution rate, and it has been one of the most

widely studied. Many minerals show a U-shaped relation (V-shaped on logarithmic plots) between

dissolution rates and pH. This trend is roughly in parallel with the mineral solubility and surface

charge [6]. For a given temperature, rates are slowest at the pH where the mineral surface has a
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Figure 1.5: Arrhenius plot. Schematic representation of an Arrhenius plot. The limiting reaction
generally changes with temperature. Adapted from [3].

neutral net charge, labeled pH of zero point charge , and usually shifted one or two pH units from the

neutral pH 7. As a general rule, at low pH, rates increase with decreasing pH catalyzed by H+, and at

high pH, rates increase with increasing pH, catalyzed by OH� [1]. This behaviour can be observed

in some minerals in figure 1.6, where the dissolution rate constant k is represented with pH at 300

K [31].

Based on this three regions of the curve, acid, neutral and basic, the dependence of the dissolution

rate with pH is usually written as follows:

k = kacid · {H+}n1 + kneut + kbase · {H+}n3 (1.13)

where {H+} is hydrogen ion activity and n1 and n3 are fitting parameters. Here, base contribution

is related to {OH�}, but in water {OH�} can be related to {H+} with a negative n3 [1]. kacid, kneut

and kbase represent the dissolution rate at far equilibrium condition in each region.

Other anions and cations also affect in the dissolution rate. In nature, mineral dissolution may

be affected by inorganic or organic solutes that can act as catalysts or inhibitors [31]. The effect

of them is very specific of each mineral since it is very related to the mechanisms involved at the

12



10-14

2 4 6 8 1210
pH

k
(m

ol
 m

-2
s-

1 )

Kaolinite
Quartz
Hornblende
Biotite
Albite
Anorthite
Diopsite
Basalt
Forsterite
Apatite

10-13

10-12

10-11

10-10

10-9

10-8

Figure 1.6: Dissolution rate dependence with pH. Some of them present the typical V shape curves.
Adapted from [3].

13



atomic scale in the surface reactions. Cations that enhance the dissolution in some minerals may

decrease it in some others. Fore example, Mg2+, Ca2+, Li+ Na+, K+ and Ba2+ cations increase the

dissolution of quartz, but decrease it in albite, K-feldspar (KAlSi3O8) and calcite [31]. The functions

which describes the dependence of the dissolution rate with the activity of the cations and anions are

numerous. One of the most extended is based on the named Lagmuir model [31] which considers the

surface as a network of empty sites that are occupied by the adsorbate reaching a saturation state. For

example, the inhibitory effect of salt on dissolution of K-feldspar and albite in acidic solution follows

the next expression:

f
�
{H+},{Mi}

�
=

{H+} ·Kads
sH

1+{H+} ·Kads
sH +Âi{Mi} ·Kads

sMi

(1.14)

where Mi refers to adsorbing cations, and Kads
sH ads and Kads

sMi
refer to the equilibrium constants for

adsorption of H+ and Mi on the surface site corresponding to the bridging oxygen between silicon

and aluminum.

1.2.5 Variation of the mineral dissolution rate with the mineral topography

and size

Other factors that may affect the dissolution rate are the grain shape and size, and the dislocation

density. Looking at the minerals from an atomistic point of view, it has been demonstrated that

the more bonds or coordination a chemical specie has, the more difficult for it to dissolve, either

because of the reduction of the accessibility of the water molecule to produce the hydrolysis reaction

or because the intrinsic change of energy by increasing the number of bonds [6]. Dislocations,

defects, corners and edges of a mineral produce a decrease of the coordination and therefore the

dissolution rate is enhanced. Experiments conducted for the same mineral with different density of

initial irregularities on the surface result on different dissolution rates. Not waiting long enough for

the mineral to reach the steady state when the surface has smoothed would also show discrepancies

between experiments. Note that the time needed to reach the steady state in a experiment for covalent
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minerals and low temperatures can be unaffordable.

Similar problems are found for the grain size. A big grain containing long perfect planes is

preferentially dissolved by the corners. When the grain little by little decreases in size, the fraction

of perfect planes is lower and the density of sites with lower coordination increases, and so its

dissolution rate. To overcome this effect, experiments are usually done within a period of time in

that the reduction of grain size is not significant. An example of this effect can be found in quartz. A

great difference for the activation energy in water has been experimentally found in several works,

Ea = 46�90 kJ mol�1 [19]. Such difference was explained by Tester et al. due to the existence of

small grains on the surface of the bigger samples. Naturally, the importance of this two effects in the

dissolution rate is closely related to the atomic structure of the mineral but it may affect in one or two

orders of magnitude [61].

Finally, the effect of dislocation density has been also widely studied [62]. Numerous works have

documented that dislocation density has an insignificant effect in the dissolution rates. For example,

in sanidine (AlSi3O8) no difference was found when dislocation density increased from 1010 to 1012

– 1013 m�2 [63]. In quartz, despite an increase from 1010 to 1015 m�2, the dissolution rate in distilled

water and HF solutions remained the same [46]. In calcic plagioclase (CaAl2Si2O8), rutile (TiO2)

and calcite, from 1010 to 1014 m�2 the increase was only three times greater [55, 64–66]. It looks

surprising that dislocations, which play a fundamental role in the dissolution rate onset with DG, have

such a low dependence with their density.

Some authors have suggested than the spontaneous pit opening or mechanism III in the perfect

planes are responsible of this dislocation density inaction (see section 1.2.1). As artificial ‘dislocations’

are produced during dissolution, it does not matter the existence or not of previous ones. We will

demonstrate that this idea is not misguided as we will see in following chapters. Nevertheless

mechanism III is not very common and is restricted only to low bond energy minerals. A possible

explanation will be presented for those minerals without such mechanism (see section 2.4.6).
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1.2.6 External stimuli of the dissolution rate

It may happen that the mineral dissolution rate is influenced by an external stimulus that is able

to change one or several of the factors described below. One of the most studied stimulus are the

microorganisms. Microorganisms can influence the dissolution rate of a mineral having either a

catalytic or inhibitory effect. In calcite for example, VSI measures in the presence of the bacteria

Shewanella oneidensis MR-1 shows no mechanism III, so typical of this mineral, and a dissolution

rate below the detection limit of the VSI method [47]. Other work has studied the impact of the

rhizosphere (region of the soil containing roots) in the dissolution of fluorapatite (Ca5(PO4)3F) and

labradorite ((Ca,Na)(Si,Al)4O8); minerals containing the Ca needed for the plants to grow. Results

have been compared with the dissolution in soil without roots, obtaining that rhizosphere can regulate

to its needs the dissolution rate by a factor of 3 or 4 by changing the solvent conditions [48]. As a

curiosity, a relatively new field of study is the named biomineralization [67, 68], and seeks for mimic

the microorganism ability to synthesize complex organic-inorganic hybrid structures such as teeth,

bones and shells.

Other external stimuli are the emission of x-ray radiation over the mineral surface during its

dissolution, inducing very far from equilibrium conditions [69], or the emission of the ultrasounds

which increase the dissolution rate by promoting the atomic interaction [70].

1.2.7 Compilation of the important factors within a single equation

The three more important contributions of T (equation 1.10), pH (equation 1.13) and distance to

equilibrium (equation 1.5) are collected in the following equation 1.15 [1].

16



rD
�
T,{H+},P/Ks

�
=k300

acid · exp
✓
�Eacid

R
·
✓

1
T
� 1

300

◆◆
· {H+}n1 · (1� (P/Ks)

p1)q1

+ k300
neut · exp

✓
�Eneut

R
·
✓

1
T
� 1

300

◆◆
· (1� (P/Ks)

p2)q2

+ k300
base · exp

✓
�Ebase

R
·
✓

1
T
� 1

300

◆◆
· {H+}n3 · (1� (P/Ks)

p3)q3

(1.15)

where the dissolution rate constant k is taken at 300 K to facilitate the comparison of the rates

between minerals. Eacid, Eneut and Ebase are the activation energy for each mechanism (J mol�1) and

kacid, kneut and kbase their dissolution rate constant (mol m�2 s�1).

This expression is general but presents some exceptions as described above. An experimental

setup with big diffusive layer or a sigmoid dependence instead of a normal TST curve are clear

candidates to spoil such predictive equation, though it would help to obtain a good first approximation.

1.2.8 Disagreement of field and laboratory dissolution rate measurements

Once we have compiled all the main factors affecting the dissolution in our laboratory experiments,

one could think that it is time to predict the mineral water interaction in the field. Nevertheless it

can be a gap up to 5 orders of magnitude lower in the dissolution rate in the field, depending on the

mineral. [71]. Gruber et al. demonstrated in their work in albite (NaAlSi3O8) that the origin of such

discrepancy lies, on the one hand, in the closeness to equilibrium of the field weathering, and on the

other hand, in a lower reactivity due to the lower amount of irregularities on the surface. In essence,

in the discrepancy of conditions between field and laboratory measurements.

1.3 Experimental devices for measuring the dissolution rate

To determine the dissolution rate, experimentalists have used two different approach. On the one

hand, chemical reactors in which mineral powders are weathering under controlled conditions of

pressure and temperature. On the other hand, direct microscopic examinations of the mineral surfaces.
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In the first case, the dissolution is obtained from the detected amount of one of the constituent

elements of the mineral divided by its stoichiometric coefficient. The chemical reactors used can

be further divided into two types depending on how the measurements are taken: the batch reactor,

and the mixed flow reactor [3]. Furthermore, other variants from these ones were subsequently

developed [5]. For the microscopic observations of the mineral surface, experimentalists have used

techniques such as atomic force microscopy (AFM) [49, 72–74], vertical scanning interferometry

(VSI) [10, 21, 47, 74], scanning electron microscopy (SEM), or more recently the digital holografic

miscroscopy (DHM) [2, 38, 75–77] and have revealed important details of nanoscale topography. The

dissolution rate in these cases is calculated from the surface retreat depth compared to a region of the

mineral where a ‘mask’, usually Polymethyl methacrylate (PMMA), has been set to avoid dissolution.

rD =
dz

dt
·V (1.16)

where dz is the average difference of height with the mask (m) and V is the molar volume of the

dissolving mineral (m3 mol�1).

The comparison between these two sets of experimental devices is difficult since microscopic

measurements are taken in one face, whereas powder-based measurements are an average value

over all crystal faces along with the contribution from sharp corners. In the next step, operation and

characteristic of the experimental devices are explained.

1.3.1 Reactors

Surface area

An estimation of the grains area of the mineral powder is needed to get the correct dissolution rates in

the experiments. Basically there are two methods: geometric basis, and BET. First one is intuitive. It

is based on calculate the area from the shape and size grain determined by microscopic observations

or sieving. It requires often a simplification such as considering the grain as a sphere, a cube or
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a rhombohedron. Besides, it does not consider any surface topography or roughness that would

increase the total surface. To solve this problem, a surface roughness factor x is usually introduced

which relates the total surface area with the geometric one [3].

x =
Sg

S
(1.17)

where Sg is the grain surface and S its geometrical one. This factor is usually estimated by looking

at the pits density in the surface with SEM images, thought it can be a difficult task since a deep pit

can contribute with surface as much as several smaller ones.

Second method, named after its developers, Brunauer, Emmett and Teller (BET) [78] is based

on measuring the quantity of a gas adsorbed by the surface. The used gas is usually an inert one,

like nitrogen, krypton, or argon, so the attachment to the surface is only produced by van der waals

forces and there is no change of the mineral chemistry. In general, two different techniques can be

distinguished for the adsorption analysis; the thermal conductivity detector (TCD), which only gives

information of the quantity of gas adsorbed, or the volumetric technique, which is based on pressure

measurements in an enclosed volume and it provides information about pore volume and pore size

distribution.

Plenty of works have discussed which one of the two method, the geometrical or BET, is

best to get the correct surface area [79]. Typically BET surface areas are larger than geometrical

estimations. The difference varies greatly between different minerals and is particularly sensitive to

microporosity effects that may vary between samples of the same mineral. Moreover, dissolution

within the micropores is expected to be much lower because of the high local concentration of the

pore solution. For example in quartz, the geometric basis seems to report better results since its pits

are nonreactive [14].

1.3.1.1 Batch reactor

Batch reactors are stirred tank reactors which run without flow (see figure 1.7a). These may be

open or closed to the atmosphere. The progress of the reaction can be known by monitoring the
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concentration of dissolution products as a function of time, and by correcting the removal of sample

during monitoring. If the fluid is not repeatedly sampled during the experiment, repeated runs of

increasing duration are required to characterize the rate of reaction advancement by removing fluids

and solids at different times. The advantage of its simple use is overshadowed by the disadvantage of

the interpretation of the results. The large diffusivity layer expected due to lack of flow (see section

1.2.2), the change of the solution chemistry over time, the back reactions including precipitation of

secondary phases, or the presence of cations and anions influence the dissolution rate and mechanisms.

The dissolution rate in batch reactor can be calculated from the equation 1.18 supposing a reaction as

in equation 1.1 (aA+bB $ cC+dD).

rD =
V

S · c ·
d[C]

dt
(1.18)

where V is the volume of water (m3), [C] the molar concentration of element C (mM) and c its

stoichiometric coefficient. In batch experiments, solid samples can only be recovered from apparatus

after the experiments are terminated. Batch apparatus that permit time sampling of solids are custom

made not available commercially [5].

Microreactor

The limitations of the batch reactor motivated the development of microreactors capable of in situ

monitoring of fluid rock interactions (1.7b) [5]. Only of few microlitres in size, they have transparent

windows constructed of diamond (C) or moissanite (SiC). In situ monitoring of reactions is performed

using methods such as X-Ray diffraction, X-ray fluorescence, Infrared or Raman techniques. Thought

this devices has been limited to mineral physics for high pressure, the development of low-pressure

reactors with an external control on the fluid opens new perspectives for the study of water-rock

interactions using a wider range of characterization tools. The main disadvantage of this reactor is

that the size of the window may require the use of synchrotron radiation in order to get the required

small resolution and beam intensity for analyzing such small volumes of minerals and fluids.
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1.3.1.2 Mixed flow reactor

In a mixed flow reactor, also named continuously stirred tank reactor (CSTR), a mineral sample is

placed in a reactor and the solvent is pumped through with a flow rate Fr. The fluid is stirred by a

propeller or by agitation (see figure 1.7c). The dissolution rate is calculated from the inlet [C]i and

outlet [C]o concentrations of a component released during dissolution of the mineral:

rD =
Fr ([C]o � [C]i)

S · c (1.19)

Dissolution rates are reported with respect to outlet solution chemistry when [C]o reaches a

constant steady-state value.

Fluidized bed reactor

A modification of the previous one, named fluidized bed reactor (FBR), is a stirred tank reactor that

apart from the main flow Fr uses a faster recirculating secondary one to suspend the grains to manage

a complete mixing (see figure 1.7d). Same equation 1.19 is used to determine the dissolution rate.

One criticism of fluidized bed reactors is the abrasion caused by turbulent collision of particles. This

abrasion could lead to production of fine particles resulting in misleading dissolution rate data.

Rotating disk

The rotating disk setup consists of placing in the center of the vessel the mineral with a disk shape

(see figure 1.7e). By rotating this disk some advantages are achieved; fluid motion is induced by the

disk rotation, large fluid volumes are not required and, more importantly, with enough rotating speed

w , the diffusive layer is negligible (see figure 1.7f and section 1.2.2) [4]. Same as before, equation

1.19 is used to determined the dissolution rate.
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1.3.2 Characterization techniques

1.3.2.1 Scanning electron microscope

A scanning electron microscopy (SEM) allows to get images of the mineral surface topography by

scanning it with a focused beam of electrons. The electron beam is scanned in a raster scan pattern,

and the position of the beam is combined with the intensity of the detected signal to produce an

image. It is also possible for SEM to ionize the atoms of the mineral and make them emit x-ray with a

wavelength that is specific of its composition. SEM achieves resolution on the order of the nanometer

and thank to its great depth of field, it can produce images that are good representations of the three

dimensional surface shape of the sample. Nowadays it is a widely used technique and almost every

experiment uses it to characterize at least the sample surface.

1.3.2.2 Vertical scanner interferometry

The vertical scanning interferometry (VSI) captures intensity data at a series of positions along the

vertical axis z for each x,y point, determining where the surface is located by using the shape of

the white light interferogram. The intensity data as a function of the optical path difference are

processed and converted to height information of the sample. This technique enables measuring

height differences with a vertical resolution in the nanometre range, though it is objective dependent,

and a lateral resolution typically in 0.5 µm [21]. Some minerals studied with this technique are

calcite [47], alite [21], dolomite [10] and flourite [74].

1.3.2.3 Atomic force microscopy

The atomic force microscopy (AFM) device is based on scanning the surface by the vertical displace-

ment of a cantilever placed in contact with it. The movement of the cantilever is detected by the

fluctuation of the reflection of a laser light which is pointing at it. This technique allows resolution on

the order of the nanometer. Some minerals studied with this technique are quartz [72, 73], albite [49]

and fluorite [74].

23



1.3.2.4 Digital holographic microscopy

The digital holographic microscopic (DHM) distinguishes itself from other microscopy methods by

not recording the projected image of the object. Instead, the light wave front information originating

from the object is digitally recorded as a hologram, from which a computer calculates the object image

by using a numerical reconstruction algorithm. Therefore, the image formed by lens in traditional

microscopy is replaced by a computer algorithm. This technique permits in situ measurements and

is able to obtain the surface concentration close to the mineral surface Cs and the diffusive layer

size from the local change of the water refractive index [2] (see section 1.2.2). Moreover, real time

measurements provide extra information about the dissolution rate of each specific site of the surface

(irregularities), obtaining the named dissolution rate spectra.

Very recent studies with DHM were done for gypsum (CaSO4·2H2O) [2, 75], calcite [76], belite

(Ca2SiO4) [38] and aluminate (Ca3Al2O6) [77] and doubtlessly this technique will provide more

information about the dissolution process in other minerals.

1.4 Modeling of mineral dissolution

Once we have seen how the mineral dissolution is studied experimentally, we go on to see the models

that during these past 70 years have been proposed to describe the processes behind it. The first

models were based on the macroscopic properties of the minerals. As the years went by and the

importance of the atomic mechanisms became evident thanks to ab intio calculations, dissolution

models have focused on describing the dissolution from the elementary reactions. The Transition

State Theory (TST) sets the necessary guidelines to upscale this elementary reactions from the atomic

scale to higher scales. Thanks to methods like MC and KMC, scientist have checked the evolution

of multiple reactions happening at the same time that would otherwise be impossible to visualize.

Nowadays, some authors continue exploring the dissolution process using general as well as specific

models from nanoscale properties, other works have focused on continuing bridging the gap between

experimental results and atomistic simulations. The Voronoi method for instance [80], which consists

24



of a geometrical approach able to bring KMC results to the macroscale, sets the step to follow in the

study of mineral dissolution.

Herein we will explain the three main dissolution models of the bibliography in order of ap-

pearance (see section 1.4.5): The BCF model [7, 53, 54], the stepwave model [10] and the kinetic

model [81]. Before moving to describe the models, four important tools are further explained which

will help to understand them: the Transition State Theory (TST), ab initio calculations, the Kinetic

Monte Carlo method (KMC) and the Kossel crystal system. The Kossel crystal is a simple and

general way to describe the mineral topographic features and is widely used to study the mineral

dissolution. In fact, all the three models use a Kossel crystal structure as first case of study. The other

three tools are specific of the kinetic model. The TST set the basis to handle the time evolution of

the reactions happening in a system. Ab initio simulations help to get the necessary parameters that

determine those reactions, and the KMC method gets results of the time evolution in scales that are

comparable to experiments. The kinetic model, in combination with the TST, ab initio calculations

and KMC method, has proven to have a greater potential, though some of its features are still subject

to discussion. In this thesis we have used and improved the kinetic model to describe the mineral

dissolution.

1.4.1 Transition state theory

The Transtion State Theory (TST) was developed simultaneously in 1935 by Henry Eyring at

Princeton University, and by Meredith Gwynne Evans and Michael Polanyi at the University of

Manchester. Before its development, the Arrhenius rate law was widely used to determine reaction

energy barriers (see section 1.2.3). Nevertheless, the Arrhenius equation was proposed from empirical

observations and ignores any mechanisms involved in the reactions. Thanks to the TST, it was stated

the origin of the two parameters in the Arrhenius equation (see equation 1.10) (see equation 1.10),

the prefactor A0 and the activation energy Ea.

TST is focused on explaining the reaction rate of the elementary chemical reactions that constitute

the global reaction process. For that, it assumes that every reaction has a quasi-equilibrium state
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Figure 1.8: Transition state theory. Schematic representation of a simple reaction AB+C ! A+BC.
Adapted from [6].

(‡) which needs to be overcome for it to happen, that is, the system needs enough energy to change

its state (see figure 1.8). This energy barrier EB depends on every single reaction in the system.

From the properties of the initial state along with the quasi-equilibrium one, it is possible to obtain

its elementary reaction rate. As we will see in the next section, ab initio calculations represent the

perfect tool to characterize the transition states and get the necessary parameters for the TST. Other

computational methods like molecular dynamics and mechanics with reactive empirical force fields

are also suitable for this task but they are in principle less accurate.

Assume that we have an elementary reaction as the following happening at the mineral surface.

AB+C ! A+BC (1.20)

In the quasi-equilibrium state, the system is in what is called the transition state or activated

complex [ABC]‡, which is in equilibrium with the reactants.

K‡
s =

{ABC}‡

{AB}{C} (1.21)

We can then express the reaction rate r (mol m�2 s�1) as the product of the frequency ff (s�1)

with which the system tries to activate, and the concentration of reactants [6, 82].
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r = ff · [ABC]‡ = ff ·
gABgC

g‡
ABC

·K‡
s · [AB][C] (1.22)

Herein the concentration is expressed in terms of surface area and not volume (mol m�2). The g

is the called activity coefficient, {A}= gA · [A] and represent the proportion of atoms truly available

to react in a time given by the frequency ff. The activity coefficient has values between 0 and 1

g 2 [0,1]. In a reaction of a mineral with water, values lower than 1 may be due to incapability of a

water molecule to reach a reactive site on the surface. ff is known as fundamental frequency.

ff =
kB ·T

h
(1.23)

where kB is the Boltzmann constant (1.38 ·10�23 J K�1), h is the Planck constant (6.626 ·10�34

J s). ff = 2.6 · 1012 s�1 at 300 K. Using standard thermodynamic conventions, K‡
s can be also

represented by

K‡
s = exp

✓
�DG‡

R ·T

◆
= exp

✓
DS‡

R

◆
· exp

✓
�DH‡

R ·T

◆
(1.24)

where DG‡, DS‡ and DH‡ are the Gibbs free energy, entropy and enthalpy change from reactants

to activated complex, expressed in the appropriate units of the concentration. Note that DH‡ = EB if

the pressure and volume of the system do not change [3]. Overall, we can write the reaction rate as:

r =
kB ·T

h
·

gABgC

g‡
ABC

· exp
✓

DS‡

R

◆
· exp

✓
�EB

R ·T

◆
(1.25)

or more typically, relating the entropy with the partition function q of each state of the reactants.

r =
kB ·T

h
·

gABgC

g‡
ABC

·
q‡/S

qA/S ·qB/S
· exp

✓
�EB

R ·T

◆
(1.26)

Here do not confuse the S for surface area and the S for entropy in equation 1.25.

From this expression we can identify the preexponencial factor A0, and the activation energy Ea in
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Figure 1.9: Compensation law. compilation of the A0 values with activation energy from [1].

the Arrhenius equation 1.10 by using the definition of equation 1.12.

A0 =
kB ·T

h
·

gABgC

g‡
ABC

· exp
✓

DS‡

R

◆
(1.27)

Ea = R ·T +EB (1.28)

These important results have two important implications. First, A0 value contains information

about the entropy of the constituent atoms of the mineral. In figure 1.9, a compilation of experimental

values of A0, in decimal logarithm, versus Ea is represented [1]. The observed lineal trend, known as

compensation law, may not be very surprising if it is understood that atoms, having stronger bonds

and therefore higher Ea, are expected to be more constrained in the transition state than as reactants,

which decreases the vibrational modes and thus increases the A0 values. Second, Ea has a term, R ·T ,

that may be important when EB is low. For example at 300 K, R ·T = 2.5 kJ mol�1. Remember that

for most minerals, Ea = 30�100 kJ mol�1.

Other important result of TST is the relation of the dissolution with DG. If consider the rate

of opposite reactions of dissolution rD and precipitation rP, and taking into account that both rates
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must at equilibrium be equal (rD = rP ! DG = 0), by computing rD � rP we reach the following

expression [6]:

rD = k
✓

1� exp
✓

DG
R ·T

◆◆
(1.29)

By considering expression 1.2, equation 1.29 matches the shape of the equation 1.5 experimentally

reported above (see figure 1.2).

Nevertheless, as explained in section 1.2.1, the TST presents some limitations to reproduce the

real mineral behaviour. The origin of this discrepancy has been explained based on two reasons.

First, the dislocations and other defects play an important role in the kinetics dissolution, and these

elements are not contemplated by the equilibrium in which the TST is based. Typical behaviour of

the dissolution rate with DG when dislocations are leading the dissolution is as in equation 1.5 with

p = 2 and q = 1. Secondly, TST is only adequate when there is only one limiting reaction in the

overall process. Competing reactions would report a combination of TST behaviours [31, 83–86].

This assumption has been used to propose a fitting equation like:

rD = k · f (I) ·’{ j}m j ·
✓

1� exp
✓

DG
s ·R ·T

◆◆
(1.30)

where f (I) is an equation describing the anion or cations activity like in equation 1.14, m j is the

stoichiometry coefficient of the j chemical species in each limiting reaction and s is the Temkin’s

coefficient, which is used to account for sequential or parallel steps [6, 31]. Another example of

fitting was used to describe parallel reaction activated with different DG, like in albite at 353 K at pH

8.8 [9, 31].

rD =k1

"
1� exp

 
�
✓

n1 · |DG|
R ·T

◆m1
!#

+ k2

"
1� exp

 
�
✓
|DG|
R ·T

◆m2
!# (1.31)
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where m1, m2 and n1 are fitting parameters and k1 and k2 the dissolution rate at far from equilib-

rium conditions of each reaction.

This fitting equations have been very handful to describe the dissolution of specific minerals.

As we will see, other fitting equations were proposed based on the evolution of the mineral surface

during dissolution. Nevertheless, a general dissolution rate law remains to be developed.

1.4.2 Ab initio calculations

The theories underlying atomistic simulation methods were independent from the existence of

computers. However, the mathematical complexity of the algorithms to be solved made the computers

indispensable in any atomistic simulation. Since computers became available for non-military

purposes in the 50’s, atomistic simulation methods have become essential in many different research

areas, such as drug design in organic chemistry, protein and DNA studies in biochemistry, or

magnetism, electronics and optics in material science [40].

Ab initio methods, also called first principles methods, owe their name to the fact that are derived

directly from theoretical principles, and do not need any empirical parameter during the calculation.

Just from the electronic interactions between atoms, they seek to solve the schrodinger equation for

the electrons. Different approximations have been used and, as it always happen, the accuracy is at

odds with calculation time. The simulations are based in the recursive calculations of the interatomic

forces to reach equilibrium states. Therefore, defining a system as simple as possible but that captures

the property to be studied is the critical part of planning a simulation. The fewer the atoms, the fewer

the iterations and so the calculation time. Another important part is the selection of the basis set

of functions used to describe the electron orbital of the atoms. The more functions, the higher the

accuracy but also the calculation time. It may happen that one simple and one complex basis set

reach the same results but with much higher computation time.

Ab initio simulations allows to study reaction pathways, transition states and electrostatic po-

tentials, which are very handy for the TST. Reactions taking place in the mineral surface can be

identified, as well as their energy barriers EB. Moreover, by studying the vibrational frequencies nl of
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the initial state of reactants (AB and C) and of the transition state (ABC‡), we can get their partition

function q [6, 24].

q = Pl

✓
1� exp

✓
� h ·nl

kB ·T

◆◆
(1.32)

Once we have all the needed parameters to characterize the reaction on the surface of the mineral,

we can use an upscaling methodology in order to describe them in larger length and time scales than

the provided by ab initio calculations and get some results comparable with experimental ones. This

method is named Kinetic Monte Carlo, a descendant of the famous Monte Carlo.

1.4.3 The Kinetic Monte Carlo method

1.4.3.1 History

The method commonly called Kinetic Monte Carlo (KMC) has a long history. Its ancestor, the

Monte Carlo (MC) method, dates back to 1946, and was proposed by Stanislaw Ulam and John von

Neumann [87]. Ulam, during an illness was playing solitaire and realized that it was much easier to

get an idea of the overall result of solitaire by making numerous tests with the cards and analyze the

probabilities of the results, rather than computing formally all the possible combinations. He realised

that the same procedure could be used in the study of electron scattering in which he was working at

Los Alamos, where he had to solve integro-differential equations with difficult analytical solutions.

Ulam mentioned the method to von Neumann, who after initial skepticism, welcomed the method

and began to apply it to trace isotropic generation from a variable composition of active material

along the radius of a sphere. One of the first applications of this method to a deterministic problem

was carried out in 1948 by Enrico Fermi, Ulam and von Neumann, when they solved the singular

values of its Schrödinger equation [88].

The KMC method as we know it today was developed in 1966 by Young and Elcock [89] for the

study of hole diffusion in a binary alloy. Independent of Young and Elcock’s work, Bortz, Kalos

and Lebowitz [90] developed a KMC algorithm which they called the N-fold way to simulate an
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Ising model, and applied it to study the growth of a material. The basis of their algorithm is the

same as in the case of Young and Elcock, although they provided much more detail on the method.

Nowadays KMC has numerous applications such as the study chemical reactions [91], colloidal

aggregation kinetics [92, 93], phase separation [94, 95], absorption and emission processes [94],

diffusive transport [96, 97], heterogeneous catalysts [98] and naturally growth and dissolution of

minerals and materials [99, 100], among others.

1.4.3.2 Theorical aspects

Now that we have the rate of transitions between states of a system from the TST in equation 1.26,

we can correlate them with its global time evolution. Within a system where one particle can only

evolve into close states, as it is the case here (see figure 1.10a), it can be mathematically probed

that the probability of having a transition between states is independent of its history. This is known

as the Markov property [101]. Physically speaking, we can assume that the previous reactions do

not interfere on the probability of the current reaction, since the time of residence in a state is much

longer than the period of vibration of the particle, and therefore it ‘forgets’ about the process that led

it to its current state. The Poisson processes are the ones that, in addition to satisfying the Markov

property, it is known the average time between them, as it is our case. The probability distribution of

the time between Poisson processes is an exponential decay.

Imagine a particle in a given state, trying to reach multiple states by means of a reaction. The

probability pstay that the particle remains in the same state is:

pstay(t) = exp
�
�r0tot · t

�
(1.33)

where r0tot is the total particle reaction rate. Note that we consider on the following the expressions

without mol m�2 normalization, r0 (s�1). Later the relation with r is direct.

We want to obtain the probability function p(t) for the first escape in a time t 0 since once this

happens, the system changes. Knowing that the integral of this function p(t) at t 0 must be equal

to 1� pstay(t 0) and taking into account the derivative of the equation 1.33, the expression 1.34 is
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obtained:

p(t) = r0tot.exp(�r0tot · t) (1.34)

The average escape time t is the average of this distribution:

t =
Z •

0
t.p(t)dt =

1
r0tot

(1.35)

It can be demonstrated that if we consider many particles, each of them with many possible

transitions and independent from each other, the result is the same. Therefore, the time increment

corresponding to one transition Dt does not depend on the probability for it to happen, but on the

probability of all the transitions in the system.

Once we know how is related the rate of the transitions (or events as commonly known in KMC)

with the system time evolution, it is time to see how to implement it in an algorithm.

1.4.3.3 Practical aspects

A typical KMC code follows the next implementation (see figure 1.10b):

1. The system is defined and initial time set to 0 (t = 0).

2. A list containing all possible events Nj of all the i particles is created.

3. A cumulative function R0
j of the rates r0 of all possible events is then calculated and stored in

an array (see figure 1.10c). R0
j = Â j

i=1 r0i for all j = 1, · · · ,Nj . The total rate is r0tot = R0(Nj).

4. A random number u with uniform distribution is generated u 2 (0,1]. This random number is

used to determine randomly the event to happen.

5. By comparing values in the stored array, we get the event j that is going to happen. The

condition to achieve is R0
j�1 < u · r0tot  R0

j. Two approaches are generally used to find it: the

lineal search or the binary search [102]. The lineal search compares the values one by one from
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one end of the array to the other. The binary search, which is more efficient, splits the search

range in two and discards one of them if the value to be searched is not in it. The search range

narrows until the value is found (see figure 1.10c).

6. The time increment is also random, yet it has to follow an exponential decay probability

function typical of Poisson processes (see equation 1.34). Therefore, we need a random number

within exponential distribution. One way to obtain it is to compute ln(1/u0) from a random

number u0 with uniform distribution. Time t is then updated. (t = t +Dt)

Dt =
1

r0tot
. ln
✓

1
u0

◆
(1.36)

7. The system is updated according to the found event, for example the removal of an atom from

the surface. The state of the system has changed and it is necessary to create a new list with all

possible events, that is, go back to point 2. Usually the transition affects only locally to a small

part of the whole system, which can save great computational time [103].

Some practical guidelines about the KMC method are the following:

• The way the computation time scales with the number of operations is named computational

complexity. The computational complexity associated to a KMC method is mainly related

to the method used to find the event to happen, the step 5. In lineal search the complexity is

O(Nj) (Nj number of events). In binary search, O
�
log(Nj)

�
. In the specific case of mineral

dissolution, events are going to happen only in the surface. There is no need for a description

of the events of the bulk atoms, which greatly reduces Nj.

• The KMC method is used to describe stochastic (or random) processes. In two different

simulations the results are different. Therefore, several simulations are needed to obtain

statically meaningful results.

• A typical disadvantage encountered with KMC method may arise when events have a great

difference of rate. It may happen that a fast event makes a great computational waste without
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Figure 1.10: KMC method. a) Schematic representation of the possible transition states or reactions.
b) Flowchart. c) Graphical explanation and binary search.

35



remarkable changes in the system. A clear example of this can be seen when studying the ion

diffusion within a material [104]. Imagine we have two kind of events, one with a high rate

(low EB) like the rotation of a ion around the same atom, and one with a low rate (high EB)

as the translation of the ion to another atom. A great quantity of computational resources are

wasted in the highly likely rotation events without actual net diffusion of the ion. The common

way to solve this problem is to increment artificially EB of the high rated event as far as the

net result is not being biased [105]. In our specific case of mineral dissolution, and as we will

see in chapter 2, we have developed a methodology to solve this problem without using this

approach and without efficiency loss.

• The KMC method, in theory, reports an exact description of a system. In practice, to make a

complete list of all events of the particles with their respective frequencies and energy barriers is

unreachable. The important point here is that the possible events take into account all possible

transitions relevant to the study of the desired property.

1.4.4 The Kossel crystal

Up to this point, thanks to the TST, we have seen the necessary elements to characterize a reaction,

we have seen how ab initio methods can obtain them, and we have seen a methodology capable of

observing properties on a larger temporal and spatial scale, the KMC method. The last necessary

point is to describe our system. The reader may ask, why do not use the atomic surface of a mineral

directly? Indeed, some examples of real surfaces studies have been done in recent years on minerals

such as quartz or calcite [16, 106, 107]. However, complex ab initio simulations are needed to obtain

all the vibrations and energy barriers of all possible reactions on the surface of a mineral. As we

will see in chapter 5, quartz, one of the most studied minerals, still presents unknown energy barrier

values. Therefore, in many works scientists have chosen to describe the surface of a mineral with a

simple model able to provide general results. The system is named Kossel crystal.

A Kossel crystal, or Terrace Ledge Kink system (TLK) is a simple mineral structure consisting of
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Figure 1.11: Kossel crystal. Simple model to describe the surface topography of a mineral. Dotted
lines represent an infinite hole. Each site has different amount of first neighbours. An adatom na = 1,
a step adatom nsa = 2, a kink atom nk = 3, a step atom nD = 4 and a surface atom nS = 5.

a cubic structure with six first neighbours [108] (see figure 1.11). This structure includes the different

topographic elements that can be found on the surface of the mineral. There may be lonely atoms

called adatoms, vacancies in the crystalline lattice, dislocations (represented by depth holes), terraces

with kink atoms, and perfect flat surfaces.

Usually, studies performed in a Kossel crystal consider some approximations. First, the partition

functions of the transition state and the reactants are the same, q‡/q = 1, and the value of the activity

coefficients is g = 1, letting the pre-exponential of equation 1.26 only with the fundamental frequency

term (equation 1.23). Secondly, the energy barrier is considered to be lineal with the number of first

neighbours n of each atom.

EB = n ·Eba (1.37)

where Eba is the energy barrier that an atom with one neighbour (an adatom) needs to react and

be detached from the mineral surface. The number of neighbours range from 1 to 5 depending on the

atom position in the surface (see figure 1.11). A bulk atom inside the mineral have nb = 6. This fits

with the idea that the more bonds an atom has, the harder to react.

Despite the simplicity of the Kossel crystal, it ensures enough topographical details so as to

reproduce the mechanisms attributed to the dissolution process. Some studies in mineral dissolution
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using this system are the presentation of the kinetic model [81] and the step retreat model [10] that

we will see subsequently, as an introduction to the Voronoi method [80], the effect of the dissolution

rate with the mineral size [61] and with the surface roughness [109], a study of calcite [110] and alite

dissolution [111], and many others.

1.4.5 Dissolution models

Once we know four important tools in the study of mineral dissolution, we continue to look at the

models that have been proposed and improved over the last 80 years that have benefited from them.

Several models, all of them focused on the processes happening at the nanoscale, have been proposed

but can be grouped in three main ones: The BCF model, the stepwave model, and the kinetic model.

Below, we briefly describe them in order of appearance.

1.4.5.1 BCF model

Developed by Burton, Cabrera and Frank, [53, 54] and later extended by Lasaga and Blum [7], this

model was the first attempt to describe the influence of DG in the dissolution.

They based their model on the observed in experiments that dissolution was produced preferably

around the dislocations. The model relates macroscopic properties of the mineral like the Poisson

ratio, the shear modulus, and the Burgers vector that defines a dislocation, with the free energy

needed for the dislocation to open DG0
crit. Note that we have previously defined the DGcrit as the

middle height value by convenience with the rest of our work (see figure 1.2), and here however, it is

considered at the beginning of the onset.

Consider a deep hole in the mineral surface (see figure 1.12). The change in the surface free

energy DGdis when the hole grows can be computed by the sum of three terms. The first one account

for the change of superficial energy by the volume of material dissolved. The second one accounts

for the released stress density produced by the dislocation. Stress density is higher the closer to the

dislocation. Finally, as opposite effect, the third term accounts for the increment of energy produced

by a large amount of atoms located at the edge of dislocation, in less energetically favourable

38



Mineral surface

εo
dε

L

Figure 1.12: BCF model. Schematic representation of a deep hole on the mineral surface, the starting
point for the development of the BCF model. L is the hole depth and eo its radius. Adapted from [7]

locations:

DGdis =
p · e2 ·a ·DG

V
� a · t ·b2

4 ·p ln
✓

e
eo

◆
+2 ·p · e ·a ·G (1.38)

where e0 and e is the dislocation initial and final radius (m), respectively, a is a geometric constant

(m) , b the Burgers vector, V is the molar volume (m3 mol�1), G is the energy of the water-crystal

interfacial energy (J m�2), t is an energy factor related with the shear modulus and Poisson ratio (J

m�1) and the dislocation type, edge or screw.

From the derivative of equation 1.38 against the radius, the expression that gives the energy at

which the dislocation would continuously open is obtanined.

DG0
crit =�2 ·p ·G2 ·V

t ·b2 (1.39)

Moreover, if considering that there is no dislocations by removing the second term in equation

1.38, we can get the energy needed to produce mechanism III (DG0
m.III), the spontaneous pit openning

(see section 1.2.1).

DG0
m.III =�p ·G2 ·V ·L

DG
(1.40)
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where L is the depth of the pit created. Note that, although the energy for the spontaneous pit

opening DG0
m.III is dependent of the solvent through DG, the energy for dislocation opening DG0

crit is

not.

Applications of the model predicts DG0
crit values ranging from -2 to -17 kJ mol�1 for a variety of

defects in different minerals. For example in quartz DG0
crit =�2.28 kJ mol�1 in pure water [31].

1.4.5.2 Stepwave model

This model was developed by Lasaga and Luttge [10]. It benefits from the results obtained by the

BCF model and relates the overall dissolution of the mineral with the dissolution of the atoms at the

edges of the dislocation. These atoms, forming steps, retreat layer by layer, as if they were a wave

over the mineral surface. The dissolution rate is related with DG as follows:

rD = B
✓

1� exp
✓

DG
R ·T

◆◆
· tanh


A

f (DG)

�
· f (DG) (1.41)

f (DG) = 1�

0

@
1� exp

⇣
DG0

crit
R·T

⌘

1� exp
� DG

R·T
�

1

A (1.42)

where A and B are the dissolution rate just before the dislocation opening at DG0
crit and at far from

equilibrium conditions respectively (B = k, the dissolution rate constant).

1.4.5.3 Kinetic model

Lasaga and Luttge proposed then a model from an atomistic point of view [81]. They describe the

dissolution process as a set of elementary reactions with different frequencies and energy barriers.

The properties in which the other models are based, if the reactions are detailed described, could arise

as results with this general model. They laid the foundation for the computational study by MC and

KMC methods of the minerals from the TST. Part of the results of this thesis are the product of an

extension of their kinetic model.

They describe in their model three different types of reactions interplaying on the mineral
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surface; dissolution, precipitation and diffusion over the surface. They applied it to an A-B Kossel

crystal consisting of two different types of atoms interspersed in the three directions of space, like a

three-dimensional chessboard. It is established that the probability of dissolution of an atom is the

conditional probability of breakage of every bond, which is known as the ‘flickering-bond’ model:

EB =
n

Â
i=1

Ebi (1.43)

where Ebi is the contribution from every single bond to the overall energy barrier and n the total

number of bonds. Note that if we consider this contribution is the same for each bond, the equation

1.37 is recovered.

In the presentation of the model, additional approximations were assumed. First, the breakage

and reforming of bonds is equally energetic (see equation 1.37). Second, the rate of precipitation is

constant and does not depend on the number of neighbors since it is supposed to happen exclusively

in a kink site n = 3 (see figure 1.11), which is the preferable site to react in a mineral [6]. Finally, the

diffusion of atoms is done diagonally over the surface of the Kossel crystal. This last approach is

taken to avoid that an atom of one type has to pass through a position with an atom of the same type

(like the bishop on a chess board).

The equations describing the model are the following:

r0D = ff · exp
✓
�n ·Eba

kB ·T

◆
(1.44)

r0PA = ff · exp
✓
�3 ·Eba �DGA

kB ·T

◆
(1.45)

r0PB = ff · exp
✓
�3 ·Eba �DGB

kB ·T

◆
(1.46)

r0Diff = ff · exp
✓
�(n�1)Eba +Eb.diff

kB ·T

◆
(1.47)

where DGA and DGB are the Gibbs free energies due to the concentration of A and B elements in

the solvent respectively, supposing the activity coefficient gA = gB = 1. Eb.diff is the energy barrier for
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the diffusion process and ff the fundamental frequency (see equation 1.23). The energy barrier for a

dissolution process and a precipitation process is the same, and the latter does not change with the

number of neighbours. The results of this model matches a normal TST behaviour (see section 1.2.1).

As we will see in chapter 2, the experimental sigmoid function arises by having different energy

barriers for dissolution and precipitation and doing this last one neighbourhood dependent. Moreover,

the study done for quartz in chapter 5 questions the validity of the ‘flickering-bond’ model (equation

1.43).

Two dimensional lattice model

Developed by Bandstra and Brantley shortly after [112], this simplification of the kinetic model

consist of two terms, dissolution and precipitation, and it is applied to a simple 2D Kossel crystal.

The time evolution is obtained using an Ising model [113] where each site, occupied or empty, has a

rate to change its state. Both rates ṙ0D and ṙ0P are normalized to an arbitrary time instead of seconds.

ṙ0D =
⇣

1� n
4

⌘k
(1.48)

ṙ0P =
⇣n

4

⌘b
· exp(DG+W) (1.49)

where k and b are adjustable parameters, and W is a constant whose value is chosen to yield zero

average net dissolution when DG = 0. Despite its simplicity the model highlights the importance of

making a difference in precipitation energy to reveal the sigmoid form with DG.

Analytical model

Another simplification of the kinetic model to describe dissolution was made by Nicoleau and

Bertolim [114]. As it is an analytical model, there is no need of additional computational tools to get

the time evolution of the system.

The model is based on the dissolution provoked by the step retreat of dislocations and it was

applied to a spherical Kossel crystal. The results obtained, though extensible to other minerals,
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were applied to the specific case of the alite dissolution to explain the calorimetric curve of cement

hydration.

The dissolution rate ṙD, with arbitrary time units, is as follows.

ṙD =
1
i

m

Â
j=0

A j,E j ·a0 ·h (1.50)

A j,E j = A j,E j�1

✓
1� 1

W j

◆
+1 (1.51)

Where A j,E j is the number of elements or cells E dissolved from layer j in a given i time step, W j

its remaining number of elements, and a0 and h are respectively, the surface area of an elementary

cell and the height of one layer.

It is highlighted that the coalescence of dislocations along with the progressive reduction of grain

size causes a decrease in the net dissolution. As we will see in chapter 6, although the grain size does

cause a reduction, the dislocation coalescence does not.

1.5 Conclusions and outlook

Both experiments and modeling work together to bridge the gap that divide them and understand the

processes taking place at nanoscale during the mineral dissolution. Gibbs free energy, temperature,

diffusion, pH, size or dislocations are some of the main parameters influencing the dissolution.

Experimentalists have focused on the improvement of experimental devices to get more accuracy

and resolution to isolate each contribution to dissolution. On the other side, modelers have worked

on understanding, based on the experimental results, the underlying processes. The BCF model,

the stepwave model, and the kinetic model are the three main theories developed to explain the

experimental results. The development of the TST, along with ab initio calculations and upscaling

methods like KMC have allowed the kinetic model to explain experimental results that the BCF and

stepwave models cannot.
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In the last years, the experiments have focused on minimizing the effect of diffusion and obtaining

dissolution rate spectra characteristic of each mineral and even crystallographic faces, and studies of

the dissolution rate with the concentration, surface topography, cations and anions on the solvent,

and other biological influences, all over in a wider temperature range. The computational work

has focused, on one hand, on continuing to extend the catalogue of possible reactions by ab initio

methods on various minerals, and on the other hand, on extending and improving the tools available

to take the results to larger scales.

This chapter provides the basis for understanding the work carried out in the following chapters,

which consists mainly on the extension and application of the kinetic model for the study of mineral

dissolution.
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Chapter 2: Dissolution Model

2.1 Introduction

As we have seen in the previous chapter, many models were proposed to reproduce the dissolution

of minerals as a function of their composition, topography and DG. One of them, the kinetic model

proposed by Lasaga and Luttge, is likely the most successful one, since it is able to explain the

dissolution process from a fundamental scale (see section 1.4.5.3). In their work they defined the

general considerations that would have to be taken to describe the dissolution of minerals, to later

apply them to specific cases.

Related studies using this model have captured the inherent topographies associated to the

dissolution mechanisms [10, 16, 106, 115], dislocations [10, 115], grain sizes [61], particular mineral

compositions [16, 106], and even it has allowed to reproduce the experimentally observed pulsating

dissolution frequency at the nanoscale [116].

However, some of the proposed approximations taken are not able to mimic the complexity of

dissolution processes near equilibrium conditions, and the model does not reproduce the sigmoid

dependence of the dissolution rate with the Gibbs free energy and its intrinsic mechanisms (see

section 1.2.1). Therefore, most of these studies are made at far from equilibrium conditions [16, 106]

where precipitation processes are very unlikely to happen.

In this chapter we will discuss the necessary considerations to extend the kinetic model proposed

by Lasaga and Luttge [81] to reproduce the dissolution rate dependence with the Gibbs free energy.

This extension is the main result of this thesis, and subsequent chapter shows side results of its

application in specific systems. In this chapter the model is tested in a simple Kossel crystal, but as

we will see later, it can be extended to specific studies of minerals, as we have done for quartz in the

chapter 5.
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The chapter is organized as follows. First, after presenting the model, the considerations taken

to apply it to a system are explained. Second, the net dissolution rate dependence with its main

parameters, i.e. the dissolution and precipitation energy barriers, is explored. Third, these microscopic

parameters are related to macroscopic parameters, like the dissolution onset DGcrit, the Gibbs free

energy in which the mechanism III is produced DGm.III, or the global activation energy Ea. Fourth,

experimental data for several minerals is fitted, finding a reasonably good agreement in spite of the

structural limits of using a simple Kossel crystal. Finally, side results such as the extension to a

diamond like mineral, dissolution rate dependence with dislocation density, or initial irregularities

over the surface are studied.

2.2 Extension of the Lasaga and Luttge Kinetic Model

KMC models based on Transition State Theory (TST) consider that the rate of a dissolution event, r0D,

depends on its dissolution reaction energy barrier ED and the frequency to overcome it (equations

1.26 and 1.44). As usual approximations, it is considered that the ion activities g = 1 and that the

entropy does not change between states DS‡ = 0, that is, the partition functions of initial and transition

state are the same q‡ = q [10, 16, 61, 106, 115, 116]. Besides, the dissolution energy barrier depends

linearly on the first neighbours ED = n ·Eda by considering a Kossel crystal system (see equation

1.37). Eda is the energy barrier needed to dissolve an atom with only 1 bond, an adatom (see figure

1.11). Same considerations are taken in our model. By simply considering the precipitation effect

symmetrically to the dissolution and the local Gibbs free energy DG⇤, the experimental sigmoid

function of the dissolution rate dependence with DG and the three mechanisms can be successfully

reproduced (see figure 1.2).

r0D =
kB ·T

h
· exp

✓
�n ·Eda

kB ·T

◆
(2.1)

r0P =
kB ·T

h
· exp

✓
�

n ·Epa �DG⇤

kB ·T

◆
(2.2)
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With this model both dissolution and precipitation are taken into account, and together they

describe the net dissolution process. Dissolution is assumed to be intrinsic for a mineral and its

topography, via Eda and n respectively, and it does not depend on DG⇤. Equation 2.2 accounts for

precipitation phenomenon. The rate of a precipitation process decreases with the solute concentration

by means of DG⇤, and similarly to the dissolution rate equation, the nature of the mineral and

topography is considered via Epa and n.

Two aspects of the model must be remarked. First, as expected, when the system is very far from

equilibrium (DG⇤ ! �•) the precipitation rate becomes negligible and the proposed model is then

reduced to the dissolution term. Second, if the net dissolution rate r0D � r0P is calculated and ED and

EP are equal and constant (no n dependence is considered), the general expression for the normal

TST is recovered (see equation 1.29).

This model, along with a code to easily define systems of minerals will be used in chapter 3 to

systematically get results of their dissolution.

2.2.1 Relating local DG⇤ and macroscopic DG

From the previous chapter we know the effect of the diffusivity on the Gibbs free energy (see section

1.2.2). A low diffusivity can produce a change in the local concentration over the mineral surface,

decreasing its dissolution rate. Besides, there is another effect involved that may also change it; the

charge. Usually during the dissolution there is a potential gradient between the surface and the closest

released ions. The layer where this happen is named electrical double layer or Stern layer (see figure

2.1). Although the experiments manage to remove all the diffusivity effect, the concentration gradient

because of the charge is inevitable due to the close range interaction.

We do not know what the concentration in this layer is, but we do know that in this layer the

dissolution and precipitation have to be equal when the system is at equilibrium, that is, r0D = r0P when

macroscopic DG = 0 (see equations 2.1 and 2.2). For that, the dissolution and precipitation rate for a

kink site is taken as a reference for the mineral dissolution [3, 6, 108] (see figure 1.11). It is a peculiar

position: independently of the mineral composition a kink atom is the one which dissolves the most.
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Figure 2.1: Stern layer. Schematic representation.

Besides, it has always half the number of bonds that in the bulk and therefore its energy is half, and it

is observed experimentally that the sublimation energy of a crystal corresponds to the change of the

internal energy when detaching it [3, 6, 108]. With this site as reference, the local DG⇤ in the Stern

layer and the macroscopic DG are related by the following expression [108, 112]:

DG = (DG⇤ �b) ·nk (2.3)

where nk is the coordination of a kink site; in a Kossel crystal nk = 3 . The constant b is the

deviation in energy related to the concentration difference. It can be determined by considering that

equilibrium is reached during dissolution when no kink atoms can dissolve r0D = r0P, and hence the

macroscopic DG = 0:

r0D(n = nk) = r0P(n = nk)! DG = 0 (2.4)

Expressing the result in kBT units, the constant b is:
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b = nk · (Epa �Eda) (2.5)

or by considering equation 1.2:

b = lnb ⇤ � 1
nk

· lnb (2.6)

Therefore, b constant can be seen as the superficial change of saturation index b ⇤ due to the

mineral susceptibility to dissolution or precipitation.

2.2.2 Differences with the previous kinetic model

The differences between this model, and the one proposed by Lasaga and Luttge (see section 1.4.5.3)

are basically two. On the one hand, the precipitation term has different energy barrier value and it is

neighbour dependent (see equations 1.45 and 1.46 and equation 2.2). On the other hand the effect of

the Stern layer has been introduced as a differentiation between DG and DG⇤ with the b parameter.

Nevertheless, they do consider atom diffusion where an atom can move randomly over the mineral

surface (do not confuse with diffusion within the solvent)(see equation 1.47). As we will see, it is not

necessary to explain the dissolution mechanisms, yet it can be implemented in future studies.

2.3 Application of the Proposed Model

In the next step the proposed model is applied to a Kossel crystal system with the KMC method

to check its validity. The system under study consists of a Kossel crystal with 240 x 240 x 8 sites

for a total of ⇠ 460800, with periodic boundary conditions (PBC). With a typical distance between

atoms of 2.5 Å [117], the system has a size of ⇠ 60 x 60 x 2 nm. Mineral topography and surface are

key factors in the dissolution mechanisms. To simulate a mineral as real as possible all the different

topographic defects showed in a Kossel crystal (see figure 1.11) have been included. On the surface,

a random number of terraces, vacancies, and adatoms have been introduced.
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The system has two dislocations. This equates, for the system size, to a dislocation density of

⇠ 5.5 ·1014 m�2. This value lies into the known dislocation density range for minerals: 1010 - 1014

m�2 [62]. We have considered the simplest case: the {001} plane with perpendicular dislocations as

it can be appreciated in figure 1.11, though results are extensible to {100} and {010} planes since

they are identical. Only surface atoms are supposed to react since they are in contact with the solvent,

therefore there are no possible events for a bulk atom. A KMC home code, described in detail in

chapter 3, has been developed in C++11 language to perform the simulations.

The next step is to set the values of the model parameters. The activation energy Ea for a

dissolution process of a typical mineral lies in the range of 30 . Ea . 100 kJ mol�1 [1]. Expressing

this in kBT units (kBT = 2.494 kJ mol�1 at 300 K), 12 . Ea . 40. In the model ED represents the

bond breaking energy barrier, which in a Kossel crystal with an average of three broken bonds during

a dissolution event, should correspond to Ea/3. Hence, simulations with Eda = 4.0, 7.0, 9.0, 12.0

kBT units have been done. Several DG values covering the three mechanism zones have been taken

starting from DG = 0 and with finer focus on the DGcrit onset. For the energy barrier of precipitation

events a value of Epa = 1.0 kBT units is taken. The presented results are the average of 5 simulations

for each condition unless the contrary is specified.

2.3.1 Methodology for accelerating simulations close to equilibrium with

KMC

As we discussed in the section 1.4.3, a major problem in simulations close to equilibrium conditions

is that atoms undergo dissolution and precipitation reactions rapidly. These fast events happen

continuously, inducing an exponential increase on the use of computing resources and blocking the

simulation. Therefore a methodology to unstuck it is necessary, skipping repeating and computing

consuming processes. There are several algorithms to avoid such issue [103, 105, 118], yet a new one

has been used based on Poisson processes statistics. For an atom attempting to dissolve, it is possible

to do an estimation of the probability for that atom to truly leave the mineral taking into account

both dissolution and precipitation rates. System time increment is then recalculated based on that
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probability and plenty of simulation time is saved depending on DG value and mineral dissolution

energy barrier. While far from equilibrium conditions this does not make any difference, close to it,

in minerals with high energy barrier, simulations are about 104 times faster.

Imagine that we have an atom trying to dissolve, but at close to equilibrium conditions with high

concentration, it may reprecipitate. Its dissolution rate gives us its characteristic time for the process

to happen tD = 1/r0D. In the same way, its characteristic precipitation time is given by tP = 1/r0P. We

can compute the effective time for the dissolution process to happen knowing that the dissolution and

precipitation events are Poisson processes (see section 1.4.3.2).

The effective time tDeff needed for the atom to leave with certain probability is:

tDeff =� ln(1�P) · tD (2.7)

where P is the probability of the event to happen. To ensure that the tDeff is captured, a P threshold

value of 99.9% was used. Given the characteristic time of precipitation tP, we can estimate the

effective probability P0 for an atom to dissolve.

P0 = exp
✓
�tDeff

tP

◆
(2.8)

If tP << tDeff , the exponent goes to �• and P0 = 0. It is impossible for an atom to dissolve since

it always comes back when it tries. The other way around, if tP >> tDeff , P0 = 1. Every single atom

trying to dissolve, manages it. The net dissolution rate r0net can be expressed as the product of this

probability P0 and the dissolution rate r0D to finally reach:

r0net = r0D · exp

0

B@
ln(1�P) · r0P

r0D

1

CA (2.9)

We check from this function that at far from equilibrium DG,DG⇤ ! �•, thus r0P = 0 and

r0net = r0D. When DG = 0, r0net = 0 by definition. This function may not have a TST shape. It depends

on the specific system, its coordination, and how this coordination evolves over time. KMC method
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helps us to obtain this time evolution.

2.4 Results

2.4.1 Dissolution rate as a function of DG

First, the effect of ED on the dissolution rate as a function of DG is tested. Simulations with

Eda = 4.0, 7.0, 9.0, 12.0 kBT units are shown in figure 2.2a. It is remarkable that the curves have

the sigmoidal shape found experimentally. To the best of our knowledge this is the first model that

reproduces the whole DG dependence and captures the inherent mechanism and its topography. Close

to DG = 0, in mechanism I region, very low dissolution takes place since only adatoms and terraces

are dissolved. Then dissolution slowly increases until DG is high enough to allow pit opening or

mechanism II, leading to a sharp increase of the rate. Finally a steady dissolution rate is obtained at

very high DG values, when mechanism III governs dissolution if Eda is low enough. It is important

to notice that the relationship between DGcrit and Eda matches what is seen in experiments; the

higher the Eda, the lower the DGcrit. Another point of agreement with experiments is the maximum

dissolution rate far from equilibrium: the higher the Eda, the lower the rate.

In figure 2.2a the cases Eda = 7.0 kBT with Epa = 7.0 kBT and Epa = 10.0 kBT are studied to

show how Epa affects mechanisms and to underline that the TST curve can also be reproduced by

the model. Two interesting phenomena should be emphasized. On one hand, mechanisms II and III

can take place very close to equilibrium conditions. On the other hand, if Epa is significantly higher

than Eda, spontaneous vacancies can be created and pit opening is more favourable than adatom

removal, provoking very irregular patterns. To our knowledge, this dissolution mechanism has not

been observed before and should deserve experimental validation.

In figure 2.2b dissolution patterns are represented in the three differentiated zones for the four

cases in figure 2.2a. First, at high dissolution energy barrier, Eda = 12.0 kBT and Eda = 9.0 kBT , two

dissolution mechanisms are easily differentiated. Close to equilibrium only terraces and adatoms

are dissolved (mechanism I). Once DGcrit is reached, dissolution is produced almost exclusively
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from step retreat (mechanism II). Mechanism III does not exist in these cases. Secondly, looking

at minerals with low dissolution energy barrier Eda = 7.0 kBT and Eda = 4.0 kBT , it can be seen

that, like in the previous case, at close to equilibrium conditions adatoms and terraces are the only

ones which are removed. Once DGcrit is reached pits start to open. But shortly after DGcrit value,

spontaneous opening of surface (mechanism III) happens, the more the farther from equilibrium. At

far from equilibrium conditions, differences in energy between more and less coordinated atoms are

not high enough to prevent them to dissolve almost randomly, so very irregular patterns appear.

The difference between mechanisms becomes more evident the lower the Eda is. Therefore, for

a better sighting, in figure 2.2c the dissolution pattern at three different times in the onset between

mechanism II and mechanism III for a Eda = 4.0 kBT mineral is shown. In minerals with low

dissolution energy barrier, in addition to the contribution to dissolution rate of the dislocation opening,

there is a small contribution from mechanism III.

2.4.2 Calculation of DGcrit and DGm.III as a function of Eda and Epa

Dislocations are key structural features for the mineral dissolution. In this work we have validated

that in all studied cases dislocations produce the onset in the dissolution rate at DGcrit [10,20,50,119].

Once the system is able to remove an atom close to dislocations, that is, with 4 neighbours in a

Kossel crystal, the dissolution probability of the atoms in that layer increases due to the appearance
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of 3-coordinated kink site atoms. It is possible to analytically relate the microscopic variables Eda

and Epa used in this model with the macroscopic DGcrit.

With the equations 2.9, 2.1 and 2.2 above, we calculate the net dissolution for an atom close to a

dislocation, with nD = 4, and relate it to the local DG⇤
crit in kBT units.

DG⇤
crit = a �nD ·

�
Eda �Epa

�
(2.10)

a = ln

0

B@
lnP0

ln(1�P)

1

CA (2.11)

To consider a low P0 value implies that a small proportion of the dislocations attempting to

open finally manage to do it, and therefore, the expression reports the beginning of the DGcrit onset.

Nevertheless, a clearer choice is to obtain the medium height value for a better sighting. For that,

it has been considered that half of the dislocations are able to open, meaning P0 = 0.5. Figure 2.3

shows the a value dispersion which allows to report an error of such an approximation. Final value

considered is a =�2.3±0.9 kBT , which corresponds to P0 = 0.5 and P = 0.999.

Using equation 2.3, the relation of DG⇤
crit with macroscopic DGcrit is (kBT units):

DGcrit ⇡
�
a +(nk �nD) · (Eda �Epa)

�
·nk (2.12)

Equation 2.12 allows to determine the theoretical DGcrit even in conditions where Epa is higher

than Eda and the onset is produced at positive DG. The accuracy of Equation 2.12 is checked in

table 2.1. There is an excellent match between the DGcrit obtained from simulations and the one

analytically derived when the transition between mechanism I and II is given at negative DG.

We can generalize equation 2.12 to any coordination in a Kossel crystal to get, for example, the

DG value when atoms with coordination ns = 5 on the surface start to dissolve and mechanism III

occurs (kBT units):
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Eda Epa
Simulation

DGcrit(kcal mol�1)
Analytical DGcrit

(kcal mol�1)
12.0 1.0 �24 �23.8
9.0 1.0 �18 �18.4
7.0 1.0 �15 �14.9
7.0 7.0 �2 �4.1
7.0 10.0 �7 1.3
4.0 1.0 �13 �9.5

Table 2.1: Validation of equation 2.12. DGcrit is obtained by applying the Equation 2.18, which is
later explained, to figure 2.2b. Eda and Epa are in kBT units. Error in analytical DGcrit is ± 1.6 kcal
mol�1.

DGn ⇡
✓

a +(nk �n) · (Eda �Epa)+ ln
✓

fD

fP

◆◆
·nk (2.13)

Where fD and fP have been introduced to account for a different pre-exponential factor between

dissolution and precipitation events (see equations 2.1 and 2.2). Note that equation 2.13 tells us where

the mechanism III happens if it is not overshadowed by mechanism II. Mechanisms II and III are

competing mechanisms and the former usually goes first hiding the other. By the time a surface atom

is able to dissolve, it is already dissolved by the step retreat provoked by the opening of a dislocation.

From the dislocation density we can do an estimation of the conditions where the mechanism III is

produced, considering that the rate for any atom in the surface with coordination nS has to be higher,

or in the same magnitude, than an atom close to a dislocation with nD. In a perfect surface, very few

atoms (4 in a Kossel crystal) surround a dislocation of radius e (m). The number of atoms in the

surface is much larger, and can be calculated by the the dislocation density r (m�2) and the distance

between atoms d (m) of the mineral. The condition to accomplish is (see equation 2.9):

rnet(n = nS) ·
1

d2 ·r � rnet(n = nD) ·
2 ·P · e

d
(2.14)

to finally reach (kBT units):
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Eda Epa Condition Simulation
DGm.III(kcal mol�1)

Analytical DGm.III
(kcal mol�1)

12.0 1.0 Eda  8.9 � �43.5
9.0 1.0 Eda  8.9 � �32.8
7.0 1.0 Eda  8.9 �25 �25.6
7.0 7.0 Eda  9.6 �6 �4.1
7.0 10.0 Eda  22.8 0 6.6
4.0 1.0 Eda  8.9 �15 �14.9

Table 2.2: Validation of equations 2.12. The condition to meet is equation 2.16. Simulation DGm.III
is obtained visually from simulations. Eda and Epa are in kBT units. Error in analytical DGm.III is
± 1.6 kcal mol�1.

DGm.III ⇡
✓

a +(nk �nS) · (Eda �Epa)+ ln
✓

fD

fP

◆◆
·nk (2.15)

if

ln
✓

1
2 ·P · e ·d ·r

◆
� (nS �nD) ·Eda � ln

✓
1
2

◆
+ ln

✓
1
2

◆
· exp

�
(nS �nD) · (Eda �Epa)

�
(2.16)

Note that the higher the Eda and the dislocation density, the more difficult for a mineral to present

mechanism III. Nevertheless, if Epa ⇠ Eda, the last right term gains importance and minerals with

high Eda can show mechanism III.

The validity of equations 2.15 and 2.16 is checked in table 2.2 for our simulations. Note that they

report the half height value, and colored regions in figure 2.2a reports the beginning of the mechanism.

If we take the middle point between the beginning of mechanism III and the point when the plateau

is reached, the equations show an excellent match. Moreover, they allow us to define DGm.III even

when it is produced at positive DG.

When Epa is significantly greater than Eda, mechanism III occurs before mechanism II, and

even before than mechanism I. Up to our knowledge this dissolution mechanism has not been

experimentally reported for any mineral. One possible explanation is that such hypothetical minerals

would not be found in nature, as it would be very difficult for them to precipitate into a solid. A
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clue that validates this hypothesis is the case of alite. This artificial and metastable mineral is one of

the essential components of cement. The fact that it presents spontaneous pit opening at very close

to equilibrium conditions indicates that its EP and ED are close in value. Other possible clue is the

dissolution patterns observed by Laanait et al. [69] in Calcite-water interfaces where they would be

decreasing ED artificially with X-ray. Though at present we cannot prove it and more experimental

validation is needed.

2.4.2.1 Comparison with the BCF model

In section 1.4.5.1 we have described the BCF model. It relates the DG0
crit with macroscopic parameters

like the shear modulus and Poisson ratio (see equation 1.39). Besides it also relates the DG0
m.III with

same macroscopic parameters along with the concentration in the solvent (see equation 1.40).

In our model, both parameters DG0
crit and DG0

m.III can be approximately obtained by changing the

a value to ⇠�1 kBT units (see figure 2.3). As we can see, DG0
crit and DG0

m.III are only dependent

of ED and EP. Nevertheless, ED and EP are related to the macroscopic parameters along with the

interaction with the solvent, though this relation may be very complex. Therefore, the kinetic model is

a generalization of the BCF model and represents a different approach, and in principle more accurate,

to describe mineral dissolution. The main disadvantage of the kinetic model is that a complete and

precise study of ED and EP in the proper mineral structure and conditions is required with ab initio

calculations to get accurate results.

2.4.3 Proposed empirical fitting

The sequential activation with DG of atoms from lower to higher coordination contributes to the

overall dissolution rate. Based on the major contributions, an empirical fitting function that differs

from the previously proposed ones in the literature [3, 9, 10] is shown (see equations 1.30, 1.31 and

1.41 and 1.42 ). The fitting function adds two logistic function terms [120] to the TST expression

reporting the activation of mechanism II at DGcrit and mechanism III at DGm.III.
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rD =A ·
✓

1� exp
✓

DG
kB ·T

◆◆
+

B ·
✓

1� 1
1+ exp(D · (�DG+DGcrit))

◆
+

C ·
✓

1� 1
1+ exp(E · (�DG+DGm.III))

◆
(2.17)

where A, B and C are the limiting dissolution rates for each mechanism, I, II and III respectively. D

and E are fitting parameters related to ED and topography. To reduce fitting parameters in most cases

we can remove the third term of mechanism III since it is very small comparing to the mechanism

II or it does not exist. For example, for the cases studied in figure 2.2, only Eda = 7, Epa = 1 kBT

units case shows a small contribution at ⇠ �18 kcal.mol�1. Eda = 4 and Epa = 1 case also shows

mechanism III, but it is so close to mechanism II that they overlap.

rD =A ·
✓

1� exp
✓

DG
kB ·T

◆◆
+

B ·
✓

1� 1
1+ exp(D · (�DG+DGcrit))

◆ (2.18)

Note that both this empirical equation and equation 2.12 report DGcrit at the middle height value.

We have used equation 2.18 to fit DGcrit for the simulations from figure 2.2a in table 2.1 by fixing A

and B values.

2.4.4 Relationship between ED and Ea

In this section we are going to relate the dissolution energy barrier with the activation energy (see

section 1.2.3).

In an idealized simulation model, the activation energy Ea can be written as Ea = nk ·Eda because

it is observed experimentally that the sublimation energy of a crystal corresponds to the change of

internal energy when detaching a kink atom. Nevertheless, as it is checked below, this relation is not
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Figure 2.4: Activation energy. a) Kossel crystal of Eda = 7.0 kBT and Epa = 1.0 kBT units. b)
Same values for a diamond like mineral. Points in black represent far from equilibrium conditions.
Points in orange represent close to equilibrium conditions. Error is smaller than the size of the points.
Arrhenius fitting parameters are represented in table 2.3.

true at the whole DG range [81]. Thus, the real link between macroscopic Ea and microscopic Eda is

explored to compare with experimental data.

Experimental studies usually report a single Ea, usually corresponding to far from equilibrium

conditions in powder samples. Nevertheless, in an infinite ideal surface system Ea actually depends on

the dissolution mechanism. In the mechanism I zone, dissolution is driven by removal of kink atoms

in terraces. In contrast, in mechanisms II/III zones dissolution is driven by step retreat. Therefore,

microscopically it is expected that Ea m.I ⇡ nk ·Eda and Ea m.II/III ⇡ nd ·Eda, where nk and nd are 3 and

4 respectively for a Kossel crystal.

In order to verify such relationship, Arrhenius equation has been used to fit the natural logarithm of

the dissolution rate, lnrD, as a function of 1/T for fixed DG conditions corresponding to mechanisms

I and III. For that, values of 7 kBT and 1 kBT units have been chosen for Eda and Epa respectively.

For the mechanism III, the Kossel crystal described before has been used, and the dissolution rate at

each T is taken as the plateau value at far from equilibrium conditions. However, to study mechanism

I, a limiting value of the dissolution rate is not reached. For this case, the beginning of the onset at

DG0
crit represents a good reference point since no contributions from other mechanisms are involved.

In addition, the Kossel crystal topography has been modified for a better quantification of the rate. As
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Kossel crystal Diamond like system

mech. III / f.f.e

lnA0 20.98±0.19 20.69±0.05
Ea
Eda

4.0 2.2

Ea 70.5±0.6 kJ mol�1 38.0±0.2 kJ mol�1

mech. I / c.e

lnA0 17.15±0.06 13.8±0.3
Ea
Eda

3.1 2.2

Ea 53.73±0.17 kJ mol�1 38.3±0.9 kJ mol�1

Table 2.3: Activation energy and fitting parameters. Reported values in figure 2.4 for both, a
Kossel crystal in mechanisms III and I, and a four coordinated diamond like mineral at far from
equilibrium (f.f.e) and close to equilibrium conditions (c.e). The latter is studied in section 2.4.8.

only terrace dissolution is the governing mechanism, a surface with a big terrace of 8 sites high has

been constructed without any other surface defect.

As it can be seen in figure 2.4a and table 2.3, there is good linear correlation of the dissolution

rate logarithm with the inverse of temperature for both mechanisms, which indicates that the systems

are following an Arrhenius process as expected. An important consequence is that the expected

values of Ea as a function of Eda are obtained (Ea m.I = 3.1 ·Eda and Ea m.II/III = 4.0 ·Eda). Therefore,

the macroscopic dissolution activation energy can be obtained directly from the computed dissolution

reaction energy in any DG conditions.

Note that, although the activation energy may change with DG, the consideration of taking kink

atoms as reference point to define DG = 0 is still valid since most atoms which dissolve are in kink

sites along all DG range.

2.4.5 Comparison with experimental dissolution rates

The next target is to apply the proposed model to describe the experimentally reported dissolution

for several minerals: albite [9, 10], smectite ((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O) [10, 11],

alite [12], labradorite [10, 13], K-feldspar [14] and belite [12]. Table 2.4 contains the obtained values

for the model parameters in equations 2.1 and 2.2, their activation energies, and the DGcrit.
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The initial values for the simulations have been set as follows. First the DGcrit value is obtained

from the empirical equation 2.18. Second, a guess Eda value is chosen based on the dissolution rate

limit value at far from equilibrium conditions. Finally, Epa is calculated from equation 2.12. With

these initial values simulations are run and the parameters are adjusted ad-hoc to obtain the best

possible fit according to the regression coefficient between the simulation results and an empirical fit

for the experimental data.

The experimental and computed dissolution rates as a function of DG are shown in figure 2.5.

It can be first noticed that the sigmoidal shape of the mineral dissolution rate as a function of DG

can be reproduced with the presented model. Furthermore, equation 2.12 provides a DGcrit in good

agreement with the experimental and computed values and helps to define the onset in cases in which

transition between mechanism I and II is not so clear, such as the case of K-feldspar.

The dissolution and precipitation energies Eda and Epa, the activation energies in mechanism

I and II regions, and the DGcrit obtained from the fitting are presented in table 2.4, together with

experimental dissolution activation energies. All the obtained values are in reasonable agreement with

the experiments, yet the experimental dissolution activation energies are consistently overestimated

by nearly a factor 2 for all minerals. Clearly, using a Kossel crystal with the same topography for

all the studied minerals will necessary lead to qualitative results. Other discrepancies in the values

can arise from considering a DG value independent of ion activities, the unknown initial surface

conditions, or the homogeneous pre-exponential value chosen for the study.

2.4.6 Dissolution rate dependence with dislocation density

In section 1.2.5 we have discussed about the experimental reported influence of the dislocation density

in the dissolution rate. Experiments in general report hardly any influence by increasing 4 orders of

magnitude the dislocation density.

Therefore, we have done simulations in our Kossel crystal with different dislocation densities to

check their dependence with dissolution rate at far from equilibrium conditions where mechanisms III

and/or II dominate. Simulations with 0,2,4,10,20,50,100 and 200 dislocations randomly distributed
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Figure 2.5: Comparison of the experimental data with the proposed dissolution theory. a)
Albite at pH 8.8 and 357 K [9, 10]. b) Smectite at pH 3 and 357 K [10, 11]. c) Alite at 300 K [12].
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Mineral T (K) Eda(kBT ) Epa(kBT )
Ea m.II/III

(kJ
mol�1)

Ea m.I
(kJ

mol�1)

Ea exp.
(kJ mol�1)

Simulation
DGcrit

(kcal mol�1)

Analytical
DGcrit

(kcal mol�1)

Albite 357 11.14 10.00 132 99

69.8 [1]
71±7
[121]

88.6 [84]
69±5
[122]

�8 �7.3±1.9

Smectite 357 11.73 4.00 139 104 52±4 [123] �23 �21.4±1.9
Alite 300 7.47 4.95 75 56 49 [21] �11 �8.6±1.6
Labradorite 300 11.40 8.8 114 85 45.2 [1] �9 �8.8±1.6
Feldspar 423 9.95 10.3 139 104 38.0 [1] �6 �5±2
Belite 300 11.43 9.0 114 86 - �9 �8.5±1.6

Table 2.4: Model parameters for minerals. Fitting values for figure 2.5 of the corresponding
activation energy in each mechanism and comparison with bibliographic ones. DGcrit value is
obtained by equation 2.18 and analytically by equation 2.12.

have been done for Eda = 4.0, 7.0, 9.0, 12.0 kBT units. In figure 2.6a, the dissolution rates of all the

systems are compared, taking as reference the system with two dislocations.

At far from equilibrium conditions, in minerals with low energy barrier (Eda = 4.0,7.0 kBT units)

the dissolution rate exhibits a small linear dependence with the number of dislocations. In this

conditions, corresponding to the mechanism III region, perfect planes are opened spontaneously, so

the dislocations hardly affect dissolution. On the opposite side, for minerals with high dissolution

energy barrier (Eda = 9.0,12.0 kBT units) the rate is more sensitive to dislocations since they represent

the only dissolution source. The increase is not lineal, approaching a limit value at high dislocation

density due to the coalescence of dissolution fronts.

Our simulations shows very small increase of dissolution rate for minerals with low dissolution

energy barrier. Nevertheless, in minerals with high dissolution energy barrier, like the quartz, the

variation would be higher than observed experimentally. The explanation of such discrepancy lies in

its specific structure, as we will see in section 2.4.8.
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Figure 2.6: Influence of the dislocation density and surface topography in the dissolution rate.
a) Relative dissolution rate versus the number of dislocations. 2 dislocation case has been chosen
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the mean of 8 values. Error bars are smaller than the point except of the Eda = 12.0 kBT case. b)
Dissolution rate with DG for two different systems. In black, the system considered along the chapter
and in red a more regular one.

2.4.7 Dissolution rate dependence with surface roughness

Surface initial topography of a mineral may have an important effect on the dissolution rate. Figure

2.6b shows the difference on the dissolution rate for a Kossel crystal with different initial topography.

Taking into consideration that initial irregularities are important in mechanism I, and initial step atoms

and vacancies are important in mechanisms II/III, both quantities are recorded per nm2. The system

considered in this work presents a density of 1.7436 nm�2 of atoms forming terraces or adatoms

and 0.0969 nm�2 step atoms. A more regular system presents a density of 0.225 nm�2 and 0.0411

nm�2 respectively. Both systems have Eda = 7.0 and Epa = 1.0 kBT . A difference in dissolution

rate is appreciated in the initial stages for the whole DG range, although is smaller than one order of

magnitude. If enough time is waited to reach an steady state, the dissolution rate for both cases at far

from equilibrium conditions would be identical.
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2.4.8 Four coordinated systems

Coordination number, as can be shown from the mechanisms described above, plays an important

role in the dissolution. This section looks for checking the extension of the proposed model to a

four coordinated mineral. For that, a diamond like structure system was used to simulate same cases

as the Kossel crystal study. The results in the figure 2.7 show a TST behaviour independently of

the value of Eda or Epa. Only one mechanism governs the dissolution characterized by a random

detachment of atoms in the surface without dislocation opening for any Eda or Epa value. The further

from the equilibrium, the more dissolution until a plateau is reached. In this sense, the study done by

Kurganskaya and Luttge for the quartz [16] meets this dissolution mechanism at far from equilibrium

conditions when only the first neighbours are considered.

Besides, from figure 2.4b and table 2.3 Ea ⇡ 2 ·Eda either at far from equilibrium conditions or

close to it. This agrees with the fact that kink atoms, with coordination two, are the only source of

dissolution. Dislocations do not enhance the dissolution rate.
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These results highlight the importance of mineral structure in dissolution mechanisms. Although

we have determined in table 2.4 that a similar ED and EP value is needed to recover a TST shape in

figure 2.5, it is more likely that such shape relies on a topographical feature.

2.5 Conclusions and outlook

In this chapter a new atomistic mineral dissolution model is presented. Based on the kinetic model,

the main novelty of the model consists of taking into account the microscopic reversibility of chemical

reactions by adding a new precipitation term to the kinetic model. As a result, it is possible for the

first time to reproduce the experimentally observed sigmoidal dependence of the dissolution rate over

the whole DG range by atomistic simulations. Indeed, as a proof of concept, the two main parameters

of the model (the dissolution and precipitation energy barriers) have been calibrated to correctly fit

the dissolution rates of several representative minerals. Besides, the model successfully captures the

proposed dissolution mechanisms and their activation. The three observed dissolution mechanisms

naturally emerge from the simulations depending on dissolution and precipitation energy barriers ED

and EP, and DG: initial irregularities dissolution (mechanism I) at close to equilibrium conditions, pit

opening and step retreat (mechanism II) when DGcrit is reached, and spontaneous vacancy opening

(mechanism III) at DGm.III if the ED and dislocation density are low enough. The model also confirms

the generally accepted idea that the onset for the dissolution rate increase is originated by the opening

of pits, which constantly supplies terraces for step retreat. Interestingly, according to the simulations,

when the dissolution and precipitation energies are sufficiently low and high respectively, there can

exist close-to-equilibrium dissolution modes where spontaneous vacancies creation and pit opening

can occur before adatom and terrace removal. These dissolution modes have not been previously

reported, and should deserve due experimental attention.

The fundamental role played by the specific atomic structure of each mineral has also been

highlighted. Thus future works will focus on building realistic mineral models beyond the current

implementation based on the simple Kossel crystal.
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In summary, the present model sheds new light on the subtle dissolution mechanisms and can

open the door to the development of a comprehensive theoretical framework for dissolution and other

surface-related phenomena like etching [124].
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Chapter 3: KIMERA. A KMC Code for Mineral

Dissolution

3.1 Introduction

In the previous chapters we have highlighted the importance of the computational tools to study

nanoscale properties. Atomic scale computational methods like DFT, molecular dynamics, molecular

mechanics, Monte Carlo (MC) and Kinetic Monte Carlo (KMC), which have been used by an

increasing number of authors [16, 42, 61, 80, 106, 109, 125–127], have gained a special interest to

complement and verify experimental results. Moreover, KMC method has stood out due to its

capacity to reach times comparable to experiments. The effect on dissolution of dislocations [10,115],

grain sizes [61] or surface roughness [109], the inherent topographies associated to the dissolution

mechanisms [10,16,106,115], the experimentally observed pulsating frequency at the nanoscale [116],

or more recently the dissolution rate dependence with DG (see chapter 2) are some of the milestones

achieved by KMC simulations.

Unfortunately, while many DFT, molecular dynamics and molecular mechanics programs are

available both commercially and with free license [128–131], this is not the case with KMC. KMC

simulations present the great advantage of being applicable in a multitude of fields, but also the

disadvantage of being too specific to be programmed in a flexible and general package. SPPARKS

[132] and MONTECOFFE [103] are two KMC tools that were created to provide researchers a tool

with which conduct studies in the fields of materials science. Grain growth in annealed system [133],

mesoscale evolution in electron beam welding [134], adsorption of methane in zeolites [103] or

oxidation of CO over Pt nanoparticles [103] are some examples of the studies performed with these

codes. In this sense, in the field of mineral dissolution there is not a general tool capable of studying

the dissolution of any mineral. With that aim, we have developed KIMERA.
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KIMERA, whose name is an acronym for Kinetic Monte Carlo for Mineral Dissolution, seeks for

being a helpful and efficient code which allows to any user with a basic knowledge on the field and

KMC to define and simulate the dissolution of a multitude of systems and minerals.

3.2 The KIMERA code

KIMERA aims to be broadly used either in big computer clusters or in personal computers. Therefore,

we payed special attention to the implementation of user-friendly commands, a good performance and

portability. It is written in the standard C++11 language, which ensures its portability. The program

recognizes as input data a wide list of commands explained deeply in the code repository https:

//mgp9999@bitbucket.org/mgp9999/kimera-publico.git. Thanks to these commands, the

user can define the simulated system and obtain output files for visualization and analysis as well as

restarting files. The program is based on the N-fold-way algorithm, which ensures a good efficiency

(see section 1.4.3) [90]. Moreover, to overcome the typical problem of KMC simulations of waste of

computer power in fast and repeating events [105], we have implemented a Poisson approximation to

handle opposite effects of dissolution and precipitation which shows no reduction of performance or

biased results (see section 2.3.1 and equation 2.9). If faster simulations were needed, KIMERA has

been parallelized using openMP library [135], which is an easy way to divide the workload of some

loops of the program between the number of cores available.

3.2.1 Organization

KIMERA is written in the object oriented language C++11. The main feature of these languages is

the division of the code into modules, named classes, for an easier organization. This way, subsequent

modifications or updates of the code are handled in a controlled fashion, knowing the related pieces

of code that may be affected by a change.

KIMERA is divided into 17 classes with a complex relation between them. The class diagram,

a scheme of these relations, is shown in figure 3.1. Moreover, a brief description of the classes is
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Figure 3.1: KIMERA class diagram. Numbers indicate the amount of objects or instances a class
can invoke. Blue diamonds indicate that the existence of the object of a class is subordinated to the
existence of one object of the other. For example a box is formed by 1 or more cells, but no cells can
exist unless a box is created. The asterisk (*) is equivalent to (0..N). Note that the existence of the
object of some classes are subordinated to the relation between classes, not to the class itself, like for
example the Tracker class.

explained below:

• Starting from the highest level of dependency, the Simulation class is the most complex class in

KIMERA. It unifies all the necessary elements to run a simulation. It is fed first by the Models

class, which contains information about the definition of the dissolution and precipitation rates

(equation 2.9). Secondly it is fed by the RandomGenerator class, critical in any KMC code. In

our case the mt19937 random generator is used, which ensures high quality random numbers

with high entropy [136]. Finally, Simulation class is feed by the Control class, other of the

main classes of the code and explained below.
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• Control class contains all the necessary parameters, physical constants and user specifications

to run a simulation. It is fed by the system box and by the system events which in turn are fed

by the reader of the input file via the Event_definition class.

• The box contains cells, and the cells contain atoms. Each atom keeps a record of the neighbour-

ing atom list. Besides, since some of the properties of the simulation box are printed during the

simulation steps, the Tracker class is in charge of saving the data from previous steps. On the

other side, the events of the KMC method are stored and sorted in stacks.

• Other classes have support purposes. Position and Linked_neighbour classes help in the

definition of the events. Util is a class used by the majority of the classes which contains

general utilities as for example geometric relationships like coordinate system changes.

3.2.2 Operation

The workflow of the program can be divided in three parts (see figure 3.2a):

System definition

The user defines the essential parameters of the simulation in an input file. The order of the commands

is important since some of them can overwrite previous ones, totally, or partially. In these cases

KIMERA always takes into account the last command. Some important steps are:

• The mineral structure. The program input can either read it from an external ‘.xyz’ file or

can be defined by commands, or a combination of both. The ‘.xyz’ file [137] is easily obtained

by tools such as VESTA [15] from downloadable ‘.cif’ files in mineralogical databases [138].

In principle, KIMERA is thought to construct mineral surfaces replicating a small unit cell.

Nevertheless it is also possible to define a complex system within a ’.xyz’ file and treat it as the

whole system box. Coarse grained systems can be also simulated.
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Figure 3.2: KIMERA features. a) Workflow b) 26 surroundings cells are checked to look for
neighbours, linked and affected atoms, instead of the whole system for performing purposes. c)
Example of lineal or specific definition of the energy barrier d) Program performance. Normalized
simulation time of the examples with the number of cores. The dissolution of the A-B Kossel crystal
case explained in next chapter (‘configuration B’ in section 4.3.2) is simulated with both lineal
search, in blue, and binary search, in green. A simulation time of 18885 s is obtained for both search
algorithms in our computer with 1 core. The total simulation time for the quartz grain example in red
2255 s with 1 core, and its preparation phase in orange 902 s
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• The system dimensions. The program repeats the unit cell in the three spatial directions.

Studies of different planes are possible by unit cell transformations with external programs

such as VESTA [139]. KIMERA can apply periodic boundary conditions (PBC) in the three

spatial directions.

• System shape. The program has commands to create different crystalline shapes of the system.

For the moment the available geometries are cubic, spherical, parallelepiped, ellipsoidal, tick

planes, or a combination of them. In order to build the initial system geometry, external tools

such as WOLFRAM ALPHA or GEODEBRA3D can be helpful [140, 141].

• Topographic defects. Insoluble regions, dislocations, impurities and vacancies can be defined

in the system . There are two ways of defining impurities; it is possible to define them in the

unit cell indicating their occupancy, or introducing them ex post once the system has been

defined.

• Event definition. The dissolution and precipitation energy barrier for the possible events, as

well as its pre-exponential factor, must be indicated (see equations 1.26 and 1.25). KIMERA

supports both a lineal and a specific contribution to the energy barriers of each neighbour (see

equations 1.37 and 1.43). Supposing n neighbours of an atom, KIMERA can set ED and EP as

a linear (equation 3.1) or a specific function (equation 3.2) of each neighbour j [16, 142] (see

figure 3.2c):

EDk = Ed ·n EPk = Ep ·n (3.1)

EDk = f ( j) EPk = g( j) (3.2)

Note that the ‘flickering bond’ model and its lineal simplification (equations 1.43 and 1.37 or

3.1) is a specific case of equation 3.2. Moreover, since the contribution to the energy barrier

can be determined for several types of neighbours, k represents each set of contributors with the
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same characteristics and EDk and EPk its contribution for dissolution and precipitation energy

barrier respectively (see figure 3.2c).

ED =
m

Â
k=1

EDk EP =
m

Â
k=1

EPk (3.3)

With these two ways of defining the energy barrier, two different approaches can be considered

to describe the dissolution events:

1 A bond by bond description: each linking bond breaks sequentially and when an atom

has no bonds surrounding, it is released from the mineral.

2 A site by site description: all bonds reactions are unified in only one event, and each site

dissolves with joint probability.

As an additional element, KIMERA supports the conditional event definition. ‘Linked’ are

atoms linked to the neighbour that must exist to take into account the contribution of the latest

to the energy barrier. ‘Affected’ are atoms that automatically dissolve when their parent atom

does. These features provide enough versatility to define complex systems, even allowing to

define nth order neighbours. Furthermore, it is possible to define the events, based on ghost

positions in the unit cell without physical meaning, to make a differentiation between atoms of

the same type; for example it is possible to split the atoms of silica into Si1, Si2, etc in the unit

cell and then define events for each sub-element.

• Physical parameters. Mineral dissolution rate is closely related to the temperature (see section

1.2.3). KIMERA accounts for the temperature directly in the energy barrier values since they

are given in kB ·T units . Other key parameter is the Gibbs free energy DG (J mol�1) that is

related to the concentration of the mineral in the solvent (see section 1.2.1). Later on in section

3.3, we will generalize the DG definition for multicomponent minerals within the specific

KIMERA framework. As DG is also an energy, it must be indicated also in kB ·T units. Other

important parameters in mineral dissolution are the pH and other catalytic and inhibitory effects
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(see section 1.2.4). These effects are reactions involving lower or higher energy barriers in

specific surface sites [6, 31]. Therefore, the way to account for them is defining special sites

with lower or higher ED and EP. These energy barrier values can be computed with ab initio

methods or obtained from the bibliography.

There are two options for the simulation to finish. The simplest option is to indicate the number

of simulation steps, that is, the number of events to accomplish. The other option is to specify

the target time (s) until the simulation is going to run. Predicting the time scale beforehand in a

complex system can be difficult. The user can request the program to do an estimation of it by

considering the initial possible events. Given s initial sorted groups of rates corresponding to

atom removals with different coordination r01 < r02 < · · ·< r0s, the program approximates the

total time for the system to dissolve as if all atoms Na had the same rate value; the previous to

the middle one.

tapprox =
Na

r0s
2�1

(3.4)

This approximation arises from considering as limiting step the removal of the atom which

leads to a kink atom, always with half of the mineral coordination (see section 2.2.1).

• Optional parameters related with the output files. As we will see, output files contain

information of the system time evolution like snapshots for visualization or the quantity of

dissolved atoms.

System preparation

Once KIMERA has read the input commands, taking into account the event definition and the PBC,

it elaborates for each atom a list with all the neighbours, linked and affected atoms. The program

searches and recognizes them in all the 26 surrounding cells (counting all the diagonal ones) and

in its own one (see figure 3.2b) . This consideration is set for performing purposes, in contrast to

checking the whole system.
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The program can use the output file from previous simulations as starting point to improve its

performance. If this file has been used, some previous commands have to be the same and some can

change. In general, commands that affect the neighbourhood such as the periodicity or the event

definition structure need to remain identical. In the repository of the code, compatible commands

with this feature are highlighted. Most common uses are changes in the DG, or changes in the energy

barriers.

From the neighbour data, the program elaborates a list with the reactive initial surface. Neverthe-

less, the surface can be modified ad-hoc by the user via commands since undesired surface sites can

arise in systems with internal vacancies and impurities.

Simulation

As seen before in section 1.4.3 a key step of the KMC algorithm is to find a random event from the

list of possible events looking at its rate [143] (see figure 1.10). This step is the most time consuming.

There are two possible methods, the binary or the lineal search. By default the binary search

method [102] is done, but the user can ask for the lineal search method. Despite the computational

complexity of the latest is higher, it can be parallelized. Later, it is discussed the performance of both

search methods in section 3.2.3 and figure 3.2d.

During the simulation the output files generated by KIMERA are:

• Initial KIMERA file of the system in its own format (see code repository) (‘.initialkimerabox’).

It is designed to save time in calculating neighbourhood, linked and affected atoms. A later

simulation which reads this file will not need to do the preparation step.

• Final KIMERA file of the system (‘.finalkimerabox’). When the simulation has finished, or has

encountered an error, the system is printed in KIMERA format.

• File with system snapshots (‘.box’) in LAMMPS format [131] for visualization. As this file

can contain a lot of data, it may be better to handle the surface file unless for checking reasons.

• File with surface snapshots (‘.surface’) in LAMMPS format.
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• File with the time evolution of the following parameters (‘.data’): the total number of atoms

dissolved of each type, its fraction, the surface dispersion, the gyradius (in no PBC systems) as

well as all their derivatives.

• File with the mean coordination for each type of atom that have the atoms when dissolving

(‘.meandiscoord’). This data is key to calculate correctly DG value as explained below.

• Files with the amount of atoms in each layer and each spatial direction (‘.alayer’, ‘.blayer’,

‘.clayer’). For example the ‘.clayer’ file contains the total number of atoms of the the cells in ab

plane, layer by layer in c direction.

3.2.3 Parallelization level

The parallelization level of a program is defined as the maximun speedup that the program can

have. The speedup of a program from parallelization is limited by how much of the program can be

parallelized [144]. For example, if 90% of the program can be parallelized, the theoretical maximum

speedup using parallel computing would be 10 times no matter how many processors are used.

We have used the openMP library [135] to parallelize our code. As we have seen, the program

presents three well differentiated parts: the system definition, the system preparation, and the

simulation itself. The last two are the more time consuming and thus define the total simulation

parallelization level. In figure 3.2d we have plotted the performance of the example studied afterwards

in a quartz grain (see section 3.5) and the performance of the simulations made for a AB Kossel

crystal shown in the next chapter. The preparation phase of the Kossel crystal is very quick and hardly

influences the total simulation time. Therefore, it is a good example to get the parallelization level of

the simulation phase. A decrease of 5% by increasing the used cores from 1 to 8 is obtained when

using binary search. With lineal search the decrease is higher, 16%. Such difference is due to the

former search method cannot be parallelized. Although lineal search seems to be more efficient, the

roles are expected to be swapped in simulations with bigger systems and a low number of cores. On

the other hand, the quartz grain example presents a long system preparation time, which has been
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tracked separately. Although the total time presents a reduction of 14% with 8 cores, the system

preparation phase shows a good parallelization level with a reduction of 61%. Therefore, best strategy

to reduce the simulation time in a study with the same system is to use several cores to print only the

initial Kimera file, to later use it in a set of subsequent simulations with only one processor and the

default binary search.

3.3 DG in a multicomponent mineral

KIMERA is the implementation of the dissolution model described in chapter 2. The model permits

to obtain the dissolution rate dependence of a mineral with the local Gibbs free energy DG⇤ which

is closely related with the concentration of the species of the mineral in the solvent. Nevertheless,

the DG⇤, which is the input parameter of KIMERA is not directly related with the experimental DG

since it depends specifically on the Stern layer of each mineral. Therefore, some calculus have to be

done thereupon to relate DG⇤ and DG. In equation 2.3 we calculated the DG for a single component

mineral. Hereunder, we extend it to a multicomponent mineral within the formalist of KIMERA, that

is, in its fashion to define the events and neighbours.

In a multicomponent mineral, macroscopic DG is given by coupling the concentration of each

constituent element [81]. Assuming a mineral with l atoms types, m sets of contributors, and nk

neighbours for each contributor set, the Gibbs free energy difference, DG, is related with local DG⇤

by considering that the net dissolution rate of the kink atoms of each type (nk for all k) is 0 when

DG = 0:

DG =
l

Â
i=1

ci ·Ni ·

0

B@DG⇤+

 
m

Â
k=1

EDk(nk)�EPk(nk)

!
� ln

fD

fP

1

CA (3.5)

where ci is the fraction of atoms of type i, Ni is its average amount of broken bonds to dissolve.

DG⇤ is introduced as input parameter in the code. nk is the average number of neighbours of each

contributor set to the atom type i in a bond breakage or formation, and ED(nk) and EP(nk) are their
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respective energy barrier values.

Both ci and nk can be obtained from the output data of KIMERA, from the ‘.data’ and ‘.mean-

discoord’ files respectively. As these values can change with the considered DG⇤ value, the relation

between DG⇤ and DG may not be constant. Nevertheless, in practice the deviation is not high and can

be considered as constant by calculating them from simulation at far from equilibrium conditions,

when DG⇤ ! �• and no precipitation events take place. The user must identify the value of Ni by

recognising the number of broken bonds during a dissolution process. This differentiation arises, for

example, if we want to group several bond breaking events in only one event of different ff and EB,

such as a coarse grain simulation. In the example of the following section and in the simulations of

the following chapters, the DG calculus is explicitly highlighted.

3.4 Code validation

As validation of our program, KIMERA is able to reproduce the models described in Kurkanskaya

and Luttge’s work [16] for quartz dissolution at far from equilibrium conditions. They consider each

SiO2 as a dissolution center with, a joint probability of dissolution within a single step. This can be

interpreted as a coarse grain of a SiO2 unit in each Si site. Moreover, by considering lineal (equation

1.37) or specific (equation 1.43) contribution to the site energy barrier from the number of the first

and second neighbouring Si atoms, different models were proposed. Hereunder we have checked

some of them.

The first coordination sphere model ‘FCS’ considers a lineal contribution to the energy barrier

with the first neighbours.

EB = n1 ·EBSi-Si1 (3.6)

By applying it to the {001} plane of quartz, a random peak-and-valley topography is obtained

(figure 3.3a corresponding to figure figure 3.4a). This topography was also obtained in our study in

the four coordinated mineral in chapter 2 (see figure 2.7).
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The second coordination sphere model ‘SCS-L1’ considers that the second neighbours contribute

to the activation energy. Similarly, the lack of them after its replacement by hydroxyl group after a

hydrolysis reaction also contributes in the same way.

EB = n1 ·EBSi-Si1 +(n2 +n3) ·EBSi-Si2 (3.7)

where n2 and n3 are respectively the second neighbouring positions occupied by silicon atoms

and by hydrogens. Note that n2 +n3 = 12 in quartz. The application of ‘SCS-L1’ model in the {001}

plane of quartz results in the formation of hexagonal etch pit (see figure 3.3b corresponding to figure

3.4b).

The ‘SCS-L2’ model is an extension of the previous one since there is a differentiation in the

hydroxyl contribution.

EB = n1 ·EBSi-Si1 +n2 ·EBSi-Si2 +n3 ·EBSi-OH (3.8)

In the {001} plane with EBSi-OH = 0, the dissolving surfaces are formed by molecular chains

oriented along the crystallographic directions [100], [010], and [110]. Secondly, when the contribution

of hydrogens is half of the value of a second silicon (2 ·EBSi-OH = EBSi-Si ), circular-like pits with rough

edges are formed. And finally, when the contribution is the same (EBSi-H = EBSi-Si), the SCS-L1 is

recovered and same hexagonal pits are reproduced (figures 3.3c, 3.3d and 3.3e corresponding to

figure 3.4c, 3.3d and 3.4e respectively).

Quartz presents a stabilization effect on its surface. The hydroxyl groups attached to silicon atoms

form a hydrogen bond network between them, increasing the dissolution energy barrier [16]. It can

be represented as all the atoms over the surface are initially insoluble in comparison with the ones

close to a dislocation. We named this stabilization effect as ‘S2’ according to the nomenclature given

by Kurganskaya and Luttge [16]. Figure 3.3f corresponding to 3.4f, is obtained in the {100} plane

with the SCS-L2 model and the S2 method reporting rectangular pits. The FCS model in {100} plane

with S2 method reports squared pits (figure 3.3g which correspond to figure 3.4g). Finally triangular
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Figure 3.3: KIMERA validation. Reproduction of patterns with different models reported in
Kurkanskaya and Luttge work [16]. a) Peak-and-valley topography in {001} plane, FSC model
(figure 3.4a). b) Hexagonal etch pit in {001} plane, SCS-L1 model (figure 3.4b). c) Molecular chains
along [100], [010], and [110] directions in {001} plane, SCS-L2 with no hydrogen contribution model
(figure 3.4c). d) Circular-like pits with rough edges in {001} plane, SCS-L2 with some hydrogen
contribution model (figure 3.4d). e) Hexagonal etch pit in {001} plane, SCS-L2 with total hydrogen
contribution or SCS-L1 model (figure 3.4e). f) Rectangular etch pit in {100} plane, SCS-L2 model
and S2 method (figure 3.4f). g) Squared etch pit in {100} plane, FCS model and S2 method (figure
3.4g). h) Triangular etch pit in {101} plane, FCS model (figure 3.4h).

pits are obtained in the {101} plane with FCS model (figure 3.3h which correspond to figure 3.4h).

Overall, KIMERA can reproduce all the tested models, which guarantees a correct implementation

of the code.

3.5 Example. Dissolution of an ellipsoidal grain of quartz

In this section, we will specifically indicate the steps needed to make a simulation in KIMERA. We

use SCS-L1 model in quartz dissolution, explained in the previous section. As extra ingredient, the

system under study consist of an ellipsoidal grain (see figure 3.5a). KIMERA reads the commands

from an input file containing the information of the simulation (see appendix A.1):

• System dimensions. A box in which we will define the ellipsoid is created with 50x40x30 unit

cells.

• The unit cell parameters. For a-quartz a = b = 5.01, c = 5.47, a = b = 90� and g = 120�.
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Figure 3.4: Dissolution patterns in Quartz in Kurkanskaya and Luttge work. Adapted from [16].

Inside the cell, we call a ‘.xyz’ file containing the positions, which has been converted from

a ‘.cif’ file downloaded from a mineral database [138]. Oxygen atoms can be removed for

performance purposes since they are not explicitly taken into account for the quartz dissolution

reaction in this case. Remember that the dissolution of a SiO2 is considered in a single step

with a joint probability (equation 3.7).

• Physical parameters. The local DG⇤ =�100 kBT units, which ensures far from equilibrium

conditions. The target time ttarget = 8.0 ·1022 s, which is defined ad-hoc after the KIMERA

time estimation (see equation 3.4).

• Topographic defects. An ellipsoid with radius in the three axes, rx = 65 Å, ry = 85 Å and

rz = 75 Å is chosen as the simulation system. A dislocation along the x axis is placed in the

middle.

• Event definition. The energy barrier with first neighboring silicon is EDSi-Si1 = 28 kBT units and

with second EDSi-Si2 = 4 kBT as considered by Kurkanskaya and Luttge work [16]. Precipitation

energies of EPSi-Si1 = 10 kBT and EPSi-Si2 = 1 kBT are considered as a first approximation. All

the four first silicon neighbours are at 3.09832 Å. If an atom is surrounded by the four first

neighbours, it is considered to be in bulk. 12 second silicon neighbours are at 5.01 Å. Finally,

the fundamental frequency values are fD = fP = 1.0 ·1012 s�1 [23].

The relation between DG⇤ and DG is calculated by the user using equation 3.5 looking at the
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Si-Si-3.09832 Si-Si-5.0100 Si-Si-5.66774 Si-Si-4.42416 DG
1.95 1.92 1.92 1.95 1.95 · (DG⇤+52.47)

Table 3.1: Average bond breakage in SCS-L1 model and DG⇤ and DG relation. Average breakage
value for each bond for the quartz grain example and the DG⇤ and DG relation.

‘.meandiscoord’ file to get the average breakage of atoms (see table 3.1).

DG =1.95 · (DG⇤+

(10.0 ·1.95+1.0 ·1.92+1.0 ·1.92+1.0 ·1.95)+

(28.0 ·1.95+4.0 ·1.92+4.0 ·1.92+4.0 ·1.95)) =

1.95 · (DG⇤+52.47)

(3.9)

Figure 3.5 reports the dissolution rate versus DG and the time evolution of the grain. The grain

dissolves maintaining an ellipsoidal shape with an irregular surface until its complete dissolution.

The dissolution rate changes constantly as the exposed surface decreases. Therefore, we report the

values when only half of the forming atoms remain. The surface area is taken as a geometrical

approximation in this point (see figure 3.5b), S1/2 = 4 ·10�16 m2.

The results show little influence of the dislocation in the dissolution rate . The local coordination

at the dislocation does not decrease with respect to other grain regions, so it is not a preferential spot

for dissolution. In this case the dissolution rate decreased gradually while getting close to equilibrium

following a typical TST curve [6].

This example input file and the ‘.xyz’ file needed are included in appendix A.1 or in the examples

folder of the code repository.
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Figure 3.5: Quartz grain dissolution study with DG. a) Initial grain. b) Grain after half of the
forming atoms have dissolved. c) 10 % of the atoms remain. d) Dissolution rate versus DG curve.
Blue point corresponds to the simulation of the topographies in a-c, though similar topography
evolution is obtained in any other point. The visual representation is done using OVITO program.

3.6 Conclusions and outlook

In this chapter we have introduced KIMERA, an open source KMC code to study the mineral

dissolution. The code offers portability thanks to its implementation in C++11 language, and a good

performance thanks to efficient algorithms and its parallelization feature. Besides, it ensures great

versatility thanks to the possibility of performing studies with specific atomistic structures or coarse

grains. As validation of our code we have successfully reproduced the topographies obtained for the

quartz dissolution in the bibliography [16] with three different models. Moreover, we have specified

the necessary steps in one example, though more examples will be shown in following chapters.

Future work will include: 1) an improvement and widening of the event definition, to even

consider a differentiation of DG⇤, fD and fP with positions, 2) an extension of the code to consider

growth and 3) the development of a tool, webpage or IDE to create and display the system of study.

KIMERA is available as open-source software under the GNU General Public License. Thus,

KIMERA can be used free of charge, everyone can contribute to the software, extend it to his own

needs and share newly developed plug-ins with other users. The C++ source code of KIMERA
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can be downloaded from the bitbucket repository https://mgp9999@bitbucket.org/mgp9999/

kimera-publico.git
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Chapter 4: Dissolution studies in AB Kossel crystals

4.1 Introduction

KIMERA is a flexible and powerful code that gives us a great versatility to study dissolution with

the complexity of a real mineral. If the microscopic parameters are known by means of ab initio

simulations, we can obtain the time evolution of the mineral dissolution and thus other related

macroscopic parameters like the activation energy or the surface topographies. Nevertheless, most of

the required parameters remain unknown and further ab initio investigations are needed. Therefore

despite general studies may not report quantitative values, they do provide an idea of the evolution of

the system and can reveal unexpected phenomena, as shown in chapter 2.

In this chapter we study the dissolution of a Kossel crystal formed by two atoms, A and B,

differently distributed within the system. From a systematic study of several configurations and

limit cases, a mapping of the dissolution rate dependence with DG and their respective topographical

features are revealed. Although the studied configurations and model parameters may not directly

correspond to any natural mineral, the results gathered in this chapter will help to foresee the expected

dissolution path in many of them and the phenomena arising from the impurities and other point

defects in the mineral structure. Besides, this study is expandable to greater scales with coarse grained

models, which can be of great interest in industrial applications.

4.2 Model and methods

The systems studied in this chapter are formed by two elements, A and B. By disposing them with

different distribution in the Kossel crystal, 5 configurations are built. Note that other configurations

are identical by symmetry. Moreover, the additional case of a random distribution of A and B atoms

is included. The unit cell of the 6 used configurations are shown in figure 4.1 (configurations A-F).
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Figure 4.1: Unit cells of studied cases. Cubes can represent both an atom or a group of 8 atoms each
in one corner. Red cubes represent A atoms and blue ones B atoms. Two colored cube represent that
the atom, or group of atoms, can be A or B with the same chance.

As additional element, we have included configurations with same unit cell but considering each cube

as a group of 2x2x2 atoms, each atom in each cube vertex. We have labeled all the configurations

according to their unit cell if figure 4.1. 2x2x2 systems are labeled as configurations A2-F2.

For each system, the unit cell is replicated in the three spatial directions to form a system of

120x120x30 atoms. If the typical distance between atoms is 2.5 Å [117], the systems have a surface

of ⇠ 30 x 30 nm. Periodic boundary conditions (PBC) in x and y axes are considered to threat them

as infinite slabs. Finally, a dislocation of 20 atoms depth and 2x2 atoms width is set in the center of

the system, which corresponds to a dislocation density of ⇠ 1.1 ·1015 m�2. The systems are exposed

to dissolution in the {001} plane.

We select the lineal model in equation 1.37 or 3.1, where Eda and Epa are the dissolution and

precipitation energy barriers for an adatom. We have chosen a dissolution energy barrier relation of

EdaA-A = 12 kBT units for A-A atoms and EdaB-B = 4 kBT units for B-B atoms, which are respectively

the higher and lower limit value for most of the minerals [115]. For the A-B interaction the energy

barrier is obtained from the Lorentz-Berthelot rule [145], EdaA-B =
p

EdaA-A ·EdaB-B = 6.92 kBT units.

These values are fixed in all cases. On the other hand, we have taken as precipitation energy barrier 8

different values for each case. In the higher limit case the same values as for the dissolution energy
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barrier are taken EpaA-A = EdaA-A = 12 kBT , EpaB-B = EdaB-B = 4 kBT and EpaA-B = EdaA-B = 6.92

kBT . In the lower limit case, EpaA-A = EpaB-B = EpaA-B = 1 kBT . The 6 left cases are all the possible

combinations between them. Therefore, we have for each configuration, 1 set of dissolution energies

and 8 sets of precipitation energies. Even though the choice of values is very unlikely to represent

any natural mineral, this systematic study allows to foresee the expected behaviour with other energy

barrier values or even in other configurations.

4.2.1 Input for the KIMERA code

In this section we show the necessary steps to create the simulations in the KIMERA program. We

describe the steps in a general way, indicating some of the particularities of each case. The input

KIMERA files for configuration B and F are included in the appendix A.2.

• The system dimensions are indicated; 60x60x15 unit cells. In the random case (configuration

F) the dimensions are 120x120x30 units cells. Since its unit cell is formed by only one atom,

the total system size is the same.

• The unit cell parameters. In the Kossel crystal a = b = g = 90� and if the interatomic distance

is 2.5 Å, which is a typical distance reported for minerals [117], a = b = c = 5 Å. Inside the

cell, we define the 8 positions of the atoms and later on is replicated. The positions in absolute

coordinates are: (0,0,0), (2.5,0,0), (0,0,2.5), (2.5,0,2.5), (0,2.5,0), (2.5,2.5,0), (0,2.5,2.5) and

(2.5,2.5,2.5) Å. In configurations A-E, each position is defined as A or B according to its unit

cell (see figure 4.1). In configuration F only one position is defined in the center of the unit cell

of a = b = c = 2.5 Å with an occupancy of 0.5 for each atom type. In configurations A2-B2 all

the positions are initially defined as A atoms to later redefine them as B type using additional

KIMERA commands.

• We set periodic boundary conditions (PBC) along x and y axes.

• Physical parameters of the simulation. As we see in equation 3.4, the target time varies in each

case due to each different dissolution rate. For example, in configuration B ttarget = 4.0 ·10�1 s
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and in configuration E2 ttarget = 4.0 ·102 s. Therefore, a better strategy is to indicate the total

number of steps for the system to completely dissolve, around 4 ·105. The local DG⇤ is initially

set to a very low value DG⇤ =�100 kBT units to ensure far from equilibrium conditions and

calculate the DG and DG⇤ relation (see section 3.3).

• Event definition. We specify the dissolution and precipitation energy barriers with the lineal

model (see equation 3.1). The fundamental frequency is 2.6 · 1012 s�1 at 300 K. KIMERA

also requires the number of neighbours that a bulk atom has to later define the initial reactive

surface, for both for A and B atoms. For example in configuration B, a bulk A atom has 2 A

and 4 B neighbours. A bulk B atom has 4 A and 2 B neighbours. In configuration B2, the

relation is swapped, a bulk A atom has 4 A and 2 B neighbours and a bulk B atom has 2 A and

4 B neighbours. In configuration E2, a bulk A or B atom has 3 A type neighbours and 3 B

neighbours.

• Topographic defects. We define the last plane z = 0 as insoluble and we include one finite

dislocation in the center with 20 atoms depth. Since there are atoms inside the dislocation that

have less coordination than the corresponding one to a bulk site, the program recognised them

as initial reactive surface. We make them insoluble as they are not accessible to the solvent.

• Finally, the output data is asked to the program, including the ‘.data’, and ‘.meandiscoord’,

needed to relate DG and DG⇤, and ‘.surface’ files for visualization purposes.

4.3 Results

For all the cases, an initial simulation far from equilibrium is done. Then, we can relate DG⇤ and DG

with equation 3.5 from the data reported in ‘.data’ and ‘.meandiscoord’ files. Table 4.1 shows the

relation for each configuration and each precipitation energy barrier set.

By changing the input DG⇤ parameter we obtain the dissolution versus DG dependence. The large

amount of data to be processed causes some curves to have low resolution. In general we have used
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a finer focus in the onset near DGcrit. As we will see below, the nature of the onset can be due to

topography, as we have seen in chapter 2, or to the activation of the dissolution of the constituent

elements.

4.3.1 Configuration A

By repeating the unit cell in figure 4.1a in the three spatial dimensions, a mineral consisting of

alternated atom chains of A and B type along y and z axes is produced. The compilation of the

dissolution rate dependence with DG is shown in figure 4.2d. All studied cases present a congruent

dissolution with a sigmoid shape except from the light green case with EdaA-A = EpaA-A, EdaB-B =

EpaB-B and EdaA-B =EpaA-B where the typical TST behaviour is recovered. The onset of the dissolution

rate is obtained at different DG values. The sorting of this DG value can be divided into two groups.

The first group on the right of the graph in figure 4.2d consists of the 4 greenish and blued coloured

cases. They are characterized by having a high precipitation energy for A atoms EpaA-A = 12 kBT

units. The onset of the members of this group are sorter in such a way that the higher the Epa values,

the closer to equilibrium. The second group, consisting of the blackish and brownish cases and

characterized by having a low precipitation energy for A atoms EdaA-A = EpaA-A = 1 kBT units, are

sorted in the other way around. The higher the Epa values are, the further to equilibrium the onset is.

Such sorting is presented in some cases, as we will see in following configurations.

Regarding to the topography, the dissolution is produced longitudinally in the direction of the

chains of B atoms, as expected, due to their easier dissolution. The onset in all the cases is produced

when the chains of A atoms start to dissolve. The dislocation induces a local and small increase of

the dissolution rate. Its effect is also longitudinal and it is determined by its initial size. A particular

topography is given at the beginning of the onset in cases where A and B atoms have similar likelihood

to dissolve (dark blue and dark green cases in figure 4.2c,d). In this case, the topographic effect of

the dislocation gains importance and the smooth layers are sequentially removed by step retreat. This

dissolution mode quickly disappears with a small deviation from equilibrium.
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Figure 4.2: Study in configuration A. a) Initial surface system. b) Typical dissolution pattern during
the dissolution at far from equilibrium conditions. c) Particular topography given in blue and green
cases at the beginning of the onset (blue and green points in the graphic) when B and A atoms
have similar dissolution likelihood. d) Dissolution rate versus DG for both A and B atoms. OVITO
program is used for visualization [8].
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4.3.2 Configuration B

By repeating the unit cell in figure 4.1b in the three spatial dimensions, a mineral consisting of

alternated atom chains of A and B type along x and y axes is produced. Note that this configuration

would correspond to the same system as configuration A, but the dissolution takes place in another

crystallographic direction. The compilation of the dissolution rate dependence with DG is shown

in figure 4.3e. Same as before, all studied cases present a congruent dissolution with a sigmoid

shape except from the light green case with EdaA-A = EpaA-A, EdaB-B = EpaB-B and EdaA-B = EpaA-B

where the typical TST behaviour is recovered. In this case, the sorting of the dissolution rate onset is

highly influenced by the EdaA-B and EpaA-B relation. This is because a A-B bond breakage is the most

frequent in this mineral. For an atom on the surface, 4 out of its 5 bonds are A-B. As a consequence,

the sorting of the onset is mixed as shown in the graph in figure 4.3e.

Regarding to the topography, the dissolution is produced similarly to a Kossel crystal with only

one element and Eda = 7 kBT units (see figure 2.2). The onset is produced by a circular opening of

the dislocation, which is the main source of dissolution. Moreover, by decreasing DG spontaneous

opening (mechanism III) is produced (see figure 4.3b). Particular topographies appear at the beginning

of the onset. If EpaA-A = 12 kBT units, the dislocation opening has a squared shape rotated 45o

around the z axis (see figure 4.3c and rounded red points in figure 4.3e). If EpaA-A = 1 kBT units,

the dislocation opening has also a squared shape but it is not rotated (see figure 4.3d and rounded

grey points in figure 4.3e). These dissolution modes quickly disappear with a small deviation from

equilibrium. The origin of these particular topographies resides in the difficulty of dissolution of

A and B atoms respectively. In the first case, once A atoms have dissolved, B quickly dissolves.

Therefore the dissolution topography is determined by the diagonal disposition of A atoms. In the

second case both kind of atoms dissolve with similar rate thus the patterns produced is not rotated.
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Figure 4.3: Study in configuration B. a) Initial surface system. b) Typical dissolution pattern during
the dissolution at far from equilibrium conditions. c) Particular topography given in blackish and
brownish cases at the beginning of the onset (red rounded points in the graphic) when A atoms
has lower dissolution likelihood. d) Particular topography given in blued and dark green cases at
the beginning of the onset (grey rounded points in the graphic) when A and B atoms has similar
dissolution likelihood. e) Dissolution rate versus DG for both A and B atoms.
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4.3.3 Configuration C

By repeating the unit cell in figure 4.1c in the three spatial dimensions, a mineral consisting of

alternated layers of A and B type along y axis is produced. The compilation of the dissolution rate

dependence with DG is shown in figure 4.4c,d.

This case has the particularity that the dissolution is incongruent [146] and B atoms dissolves

much faster than A atoms. According to the topography shown in figure 4.4b, B layers dissolve

quickly leaving alternating A layers exposed to dissolution. Such topography lacks of physical

meaning at atomic scales since a reconfiguration of remaining atoms is expected to happen, changing

the energy barriers. This reconfiguration is not considered in our model thus only the dissolution rates

at the very initial stages of the dissolution can be reported. Note that if higher scales are considered

by doing a coarse grained study, the configuration in 4.4b may be possible.

In figure 4.4c,d the dissolution rate for A and B atoms is respectively shown. Depending on the

atom type and energy barrier values, the dissolution rate onset is produced at different DG positions.

The origin of this onset is produced when the A or B layers start to dissolve. The dislocation represents

a local and small increase of the dissolution rate of both atom types. Its effect is longitudinal and it

is determined by the its initial size (figure 4.4b). At far from equilibrium in the dissolution plateau,

A atoms present a dissolution rate around four order of magnitude lower than B atoms. Among all

the cases there are three, the grey one, the light brown one and the light green one which are stable

and present no dissolution when DG = 0 for both atom types. The rest of the cases would dissolve as

soon as they are in contact with the solvent so minerals with such characteristics would be difficult to

be found in nature.

4.3.4 Configuration D

By repeating the unit cell in figure 4.1d in the three spatial dimensions, a mineral consisting of alter-

nated layers of A and B type along z axis is produced. Note that this configuration would correspond

to the same system as configuration C, but the dissolution takes place in another crystallographic
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Figure 4.4: Study in configuration C. a) Initial surface system. b) Typical dissolution pattern during
the dissolution at far from equilibrium conditions. Bottom view of the reactive surface is shown for
visualization purposes. c) Dissolution rate versus DG for A atoms and d) B atoms. Orange area shows
the dispersion of the dissolution plateau values for A atoms.
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direction. The compilation of the dissolution rate dependence with DG is shown in figure 4.5d. All

studied cases present a congruent dissolution with a sigmoid shape except from the light green case

with EdaA-A = EpaA-A, EdaB-B = EpaB-B and EdaA-B = EpaA-B where the typical TST behaviour is

recovered.

Similarly to configuration A (see section 4.3.1), the dissolution rate onset are divided into two

groups. A first group, with high precipitation energy for A atoms EpaA-A = 12 kBT units, has its onset

at low DG values. The second group, with low precipitation energy for A atoms EpaA-A = 1 kBT units

has its onset at higher DG values. The cases in both groups are sorted differently depending on the

EpaB-B and EpaA-B values.

Regarding to the topography, the dissolution is produced similarly to a Kossel crystal with only

one element and Eda = 12 kBT units (see figure 2.2). The onset is produced by the layer by layer

opening of the dislocation. Once A atoms are removed, B atoms quickly remove. A particular

topography is given at the beginning of the onset for dark blue and dark green cases. When A and B

atoms have similar likelihood to dissolve, the dislocation opening is not so sharp and the subsequent

layers opening happens before the complete dissolution of the layer (see figure 4.5c).

4.3.5 Configuration E

By repeating the unit cell in figure 4.1e in the three spatial dimensions, a mineral consisting of

alternated atoms of A and B type along the three axes is produced. This mineral consist only of

A-B bonds thus it would be like a mineral of only one atom type with Eda = 6.92 kBT units. As this

case has been previously studied in chapter 2 (see figure 2.2) with very close values of Eda = 7 and

Epa = 7, Epa = 1 kBT units, no further study is done here.

4.3.6 Configuration F

The random distribution of A and B atoms in a mineral is studied (see figure 4.1f). The compilation of

the dissolution rate dependence for both atom types with DG is shown in figure 4.6cd. The reported
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Figure 4.5: Study in configuration D. a) Initial surface system. b) Typical dissolution pattern during
the dissolution at far from equilibrium conditions. c) Particular topography given in blue and green
cases at the beginning of the onset (blue and green points in the graphic) when B and A atoms have
similar dissolution likelihood. d) Dissolution rate versus DG for both A and B atoms. Orange area
shows the dispersion of the dissolution plateau values.
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Figure 4.6: Study in random configuration F. a) Initial surface system. b) Typical dissolution
pattern during the dissolution at far from equilibrium conditions. Bottom view of the reactive surface
is shown for visualization purposes. c) Dissolution rate versus DG for A atoms and d) B atoms.
Orange area shows the dispersion of the dissolution plateau values for A atoms.

topography in figure 4.6b shows a random pattern with deeper dissolution spots where B atoms

density is higher. The dislocation does not affect the dissolution. As we cannot assure that this

topography is possible without reconfiguration, especially in cases where only B atoms are dissolving

leaving random A atom structures, we report the dissolution rate at the very initial stages.

All studied cases present an incongruent dissolution and most of them a sigmoid shape curve. B

atoms dissolution rate in the plateau is around 4-5 times higher than for A atoms. The activation of

the dissolution of each atom type sets the dissolution onset. A atoms present, for the two brownish

and the grey curves, two well differentiated onsets. Such effect arises from this specific configuration
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where each atom may have a wide range of possible bonds. First onset is related to a decrease of

coordination with B atoms due to an higher reactivity of A-B bonds. Second onset is related to

an higher reactivity of A-A bonds. This important two onset phenomena could be expected in the

dissolution of glasses and amorphous metal alloys, and to authors knowledge, it has not yet been

experimentally observed.

The blued cases present a dissolution of B atoms at DG = 0 and would dissolve as soon as they

are in contact with the solvent. Minerals with such characteristics would be difficult to be found in

nature.

4.3.7 Configuration A2

By repeating the unit cell in figure 4.1a in the three spatial dimensions, a mineral consisting of

alternated 2x2 squared atom chains of A and B type along y and z axes is produced. The compilation

of the dissolution rate dependence with DG is shown in figure 4.7c. All studied cases present a

congruent dissolution with a sigmoid shape except from the light green case with EdaA-A = EpaA-A,

EdaB-B = EpaB-B and EdaA-B = EpaA-B where the typical TST behaviour is recovered. The onset of the

dissolution rate is obtained at different DG values. Similarly to configuration A and D (see section

4.3.1 and 4.3.4), the dissolution rate onset are divided into two groups. A first group, with high

precipitation energy for A atoms EpaA-A = 12 kBT units, has its onset at low DG values. The second

group, with low precipitation energy for A atoms EpaA-A = 1 kBT units has its onset at higher DG

values. The cases in both groups are sorted differently depending on the EpaB-B and EpaA-B values.

Regarding to the topography, the dissolution is produced longitudinally in the direction of the

chains of B atoms, as expected, due to their easier dissolution (see figure 4.3.7b). The onset in all the

cases is produced when the chains of A atoms start to dissolve. The dislocation represents a local and

small increase of the dissolution rate. Its effect is also longitudinal and it is determined by the its

initial size.
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Figure 4.7: Study in configuration A2. a) Initial surface system. b) Typical dissolution pattern
during the dissolution at far from equilibrium conditions. Bottom view of the reactive surface is
shown for visualization purposes. c) Dissolution rate versus DG for both A and B atoms. Orange area
shows the dispersion of the dissolution plateau values
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Figure 4.8: Study in configuration B2 . a) Initial surface system. b) Typical dissolution pattern
during the dissolution at far from equilibrium conditions. Bottom view of the reactive surface is
shown for visualization purposes. c) Dissolution rate versus DG for B atoms.

4.3.8 Configuration B2

By repeating the unit cell in figure 4.1b in the three spatial dimensions, a mineral consisting of

alternated 2x2 squared atom chains of A and B type along x and y axes is produced. The topography

in figure 4.8b shows that only B atoms dissolve with a local effect of the dislocation. Since this is

unlikely to happen without mineral reconfiguration, only the dissolution rate at very initial stages is

reported. The compilation of the dissolution rate dependence of B atoms with DG is shown in figure

4.8c. All cases except from the light green and the light brown ones show dissolution at DG = 0 so

minerals with such characteristics would be difficult to be found in nature.
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Figure 4.9: Study in configuration C2 . a) Initial surface system. b) Typical dissolution pattern
during the dissolution at far from equilibrium conditions. Bottom view of the reactive surface is
shown for visualization purposes. c) Dissolution rate versus DG for B atoms.

4.3.9 Configuration C2

By repeating the unit cell in figure 4.1c in the three spatial dimensions, a mineral consisting of

alternated layers of 2 atoms length along the y axis is produced. Same as the previous case, the

topography in figure 4.9b shows that only B atoms dissolve with a local effect of the dislocation.

Since this is unlikely to happen without mineral reconfiguration, only the dissolution rate at very

initial stages is reported. The compilation of the dissolution rate dependence of B atoms with DG is

shown in figure 4.9c. All cases except from the light green and the light brown ones show dissolution

at DG = 0.
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4.3.10 Configuration D2

By repeating the unit cell in figure 4.1d in the three spatial dimensions, a mineral consisting of

alternated layers of 2 atoms length along the z axis is produced. The compilation of the dissolution

rate dependence with DG is shown in figure 4.10d. Topographies and dissolution curves follow a very

similar behaviour to configuration D studied before (see section 4.3.4). In the following three small

differences are pointed. First, the dissolution rate is lower, approaching closely to the one obtained in

the one element Kossel crystal case with Eda = 12 kBT units studied in chapter 2. This is because to

the limiting dissolution step has identical neighbourhood, and thus also the same ED, yet the number

of accessible atoms once this dissolves are greater. Secondly and related also with the small change

in neighbourhood, the onset obtained in this configuration is more separated in DG. Finally, the

particular configuration shown in figure 4.10c is given in all the four cases when EpaA-A = 12 kBT

units at the begining of the onset (red rounded points in figure 4.10d).

4.3.11 Configuration E2

By repeating the unit cell in figure 4.1e in the three spatial dimensions, a mineral consisting of

alternated groups of 2x2x2 atoms of A and B type along the three axes is produced. The compilation

of the dissolution rate dependence with DG is shown in figure 4.11d. All studied cases present a

congruent dissolution with a sigmoid shape except from the light green case with EdaA-A = EpaA-A,

EdaB-B = EpaB-B and EdaA-B = EpaA-B where the typical TST behaviour is recovered. As some

previous cases (see sections 4.3.1, 4.3.4 and 4.3.10) the dissolution rate onset are divided into two

groups. A first group, with high precipitation energy for A atoms EpaA-A = 12 kBT units, has its onset

at low DG values. The second group, with low precipitation energy for A atoms EpaA-A = 1 kBT units

has its onset at higher DG values. The cases in both groups are sorted differently depending on the

EpaB-B and EpaA-B values.

Regarding to the topography in general, the dissolution is produced randomly over the surface

with no effect of the dislocation. A atoms groups are the limiting factor and set the dissolution rate.
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Figure 4.10: Study in configuration D2. a) Initial surface system. b) Typical dissolution pattern
during the dissolution at far from equilibrium conditions. c) Particular topography given in blued and
greenish cases at the beginning of the onset (red rounded points in the graphic) when B and A atoms
have similar dissolution likelihood. d) Dissolution rate versus DG for both A and B atoms. Orange
area shows the dispersion of the dissolution plateau values.
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Figure 4.11: Study in configuration E2. a) Initial surface system. b) Typical dissolution pattern
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The onset in all the cases is produced when they start to dissolve. A particular topography is given at

the beginning of the onset in cases where A and B atoms has similar likelihood to dissolve. (dark

blue and dark green cases in figure 4.2c,d). In this case the topographic effect of the dislocation gains

importance and the smooth layers are sequentially removed by step retreat. This dissolution mode

quickly disappears with a small deviation from equilibrium.

4.3.12 Configuration F2

The random distribution of grains of 2x2x2 A or B atoms in a mineral is studied (see figure 4.1f).

The compilation of the dissolution rate dependence for B atoms with DG is shown in figure 4.6c. The

topography in figure 4.12b follows a similar behaviour to configuration F studied before (see section

4.3.6). It shows a random pattern produced by the dissolution of B atoms where the dislocation

has no influence. Nevertheless, A atoms do not dissolve in this case. As we cannot assure that this

topography is possible without reconfiguration, we only report the dissolution rate at the very initial

stages. Since dark coloured cases present dissolution at DG = 0, minerals with such characteristics

would be difficult to be found in nature.

4.4 Conclusions and outlook

In this chapter we have studied the dissolution of a general Kossel crystal consisting of two elements,

A and B. 12 different configurations, along with 8 different sets of energy barrier values, have been

considered in this systematic study to elaborate a mapping of the dissolution rate dependence with

DG and their topographical features. Some configurations show expected results by comparing them

with the study in a single element Kossel crystal in chapter 2. Results show that both the distribution

and the energy values determine the dissolution rate, which could differ between elements leading

to a incongruent dissolution. Moreover, the dissolution rate onset may be produced, apart from

the known dislocation opening effect, by the disparity of the activation of the dissolution of each

element at different DG conditions. In this sense, we have suggested that glasses and amorphous

108



-2

-1

0

-20 -10 0

a)

b)

c)

ΔG (kcal mol-1)

D
is

so
lu

tio
n 

ra
te

 (m
ol

 m
-2

s-
1 )

EpaA-A,EpaB-B,EpaA-B

1,1,6.92

1,4,6.92

12,1,6.92

12,4,6.92

1,1,1

1,4,1

12,1,1

12,4,1

Depth +-

B

A

B

Figure 4.12: Study in random configuration F2. a) Initial surface system. b) Typical dissolution
pattern during the dissolution at far from equilibrium conditions. Bottom view of the reactive surface
is shown for visualization purposes. c) Dissolution rate versus DG for B atoms. Orange area shows
the dispersion of the dissolution plateau values.
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alloys could present two (or more) well differentiated dissolution rate onsets. Finally, our model is

able to recognise the unfeasibility of some of the configurations and energy values.

Though there is place to improvement in more elaborated models with finer detail, the results of

this chapter are expected to serve as checking of the validity in future studies, or to foresee phenomena

emerging for other configurations or value sets. In this sense, a major concern relies on the effect

of impurities and other point defects in the mineral structure. Although we can get an idea of the

dissolution rate taking into account that B atoms could be treated as gaps in a limit case, a more

complete study can be performed with the defect and impurity densities, or with certain structures.

Moreover, the capability of KIMERA to elaborate coarse grained models will help to extend the

studies to greater scales, which are especially important in industrial applications.
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Chapter 5: The Dissolution of Quartz

5.1 Introduction

Silicates constitute the most abundant group of minerals in the Earth’s crust and their interface

with water covers a 71 % of the earth surface [107]. Besides, the wide use of the different silicate

polymorphs for industrial purposes such as semiconductors [147], construction [148], insulation [37]

or chemical catalysis [42, 149] has encouraged the study of its interaction with water [3, 6, 72]. In

this sense, several studies have focused on the hydration of one of the most abundant and ubiquitous

polymorph, quartz (see equation 5.1).

SiO2 (s) + 2H2O ! H4SiO4 (aq) (5.1)

Experimentally, the variation of dissolution rates with pH [1, 3, 150], temperature [1, 17, 19] or

Gibbs free energy (DG) [20, 46] have been widely studied thanks to the improvement of experimental

techniques such as atomic force microscopy (AFM) (see section 1.3.2.3) [20,72,151]. The dissolution

rate of quartz is low due to a high activation energy of 90.1±2.5 kJ mol�1 [6, 19] which remains

almost constant no matter the plane under consideration [17,151]. The dissolution rate varies with pH

follows a U shape curve with the minimum at pH ' 4.8 (see figure 1.6) [3]. Other effects have been

investigated, as the dissolution enhancement by salts of NaCl, KCl, LiCl or MgCl2 [59], the variety of

etch pit shapes depending on the plane and solvent [17,18,20,72,151–153] or the constant dissolution

rate with the dislocation density [46]. In general, experiments have identified the nanoscale as the

origin of the macroscopic dissolution dynamics. At this scale, atomistic simulations represent a

powerful tool to study and verify the specific mechanisms involved. Simulations have achieved

several milestones. First, ab initio calculations have been carried out to obtain the energy barrier of

the main reactive sites of quartz [22, 23, 32, 44, 45, 107, 154–158] and hence to identify the limiting
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reactions which govern the dissolution process according to the transition state theory (TST) [6].

Besides, they have revealed the importance of the structural network strength and stability provided

by the Si-O-Si [156] and by the hydrogen bonds formed at the quartz-water interface [44].

Second, Monte Carlo simulations have confirmed the stepwise mechanism (Q4 ! Q3 ! Q2

! Q1 ! Q0) as the preferential way for quartz dissolution [107]. Here the Qn notation represents

the number of bridging oxygen atoms a Si atom has. A bulk site with four bridging oxygen atoms

(Q4) loses them one by one in hydrolisys reactions until it is released in the form of free silicic acid

Si(OH)4 (Q0) (see figure 5.1). Kurganskaya and Luttge [16] gathered these effects and bibliography

energy barrier values to develop a KMC model able to reproduce the experimental topographies in

different planes and conditions by modifying certain mechanistic parameters (see section 3.4).

Unfortunately current KMC models are not able to reproduce jointly the experimental activation

energy and dissolution rate. An activation energy of Ea ⇠ 149 kJ mol�1 [45], much greater than the

experimental one of 87�92 kJ mol�1 [19], would be necessary to get the experimental dissolution rate

of ⇠ 10�13 mol m�2 s�1 at 300 K. The other way around, by considering the experimental activation

energy Ea ⇠ 90, the dissolution rate would be much higher ⇠ 10�2 mol m�2 s�1. Pelmenschikov et

al. [23] suggested the existence of a self healing effect, where a precipitation step could explain a

reduction of the net dissolution rate keeping the low activation energy.

The main objective of this chapter is to explain the inconsistency between the dissolution rate

and activation energy of a-quartz, altogether with the etch pit morphology on the surface. For that

we consider a sequential and independent breakage of bridging oxygen bonds. Moreover, using

the model described in chapter 2, we have obtained its dissolution rate dependence with Gibbs free

energy.

5.2 Theory

As explained in chapters 1 and 2, the reaction rate in KMC is computed using an Arrhenius equation

(see equation 1.26) [6]:
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r0D = fD · exp
✓
� ED

kB ·T

◆
(5.2)

where r0D is the rate for the dissolution reaction to happen (s�1), ED is the energy barrier (J

mol�1) and fD is a pre-exponential factor that represents the frequency with which the system tries to

overcome that barrier (s�1). The pre-exponential is determined by the amount of reactive sites and

the time needed to activate them, following the equation [6]:

fD =Cs ·XH2O ·
kB ·T

h
·

q‡

qP (5.3)

where Cs is the number of reactive sites on the surface, XH2O is the fraction of them occupied by

water molecules, kB ·T/h is the called fundamental frequency (see equation 1.23) with h the Planck

constant, and q are the partition functions of the transition state q‡ and the precipitated state qP (see

figure 5.1). Typically the partition function ratio for most minerals is equal to the unity since the

vibrational frequencies of the solid are similar to vibrational frequencies in the transition state and

therefore q‡ = qP. Nevertheless, for minerals with rigid frameworks like the quartz, where the motion

of the atoms is strongly constrained by the vicinity, the ratio may be much lower with q‡ << qP. For

quartz, an approximated partition function was obtained from the vibrational frequencies n (s�1) of

the activated complex (the transition state ‡) and the adsortion complex (the precipitated state P) of

disiloxane hydrolysis by ab initio calculations (see equation 1.32) [6, 24] .

q‡

qP =

Pl

0

B@1� exp

0

B@�
h ·nP

l

kB ·T

1

CA

1

CA

Pl

0

B@1� exp

0

B@�
h ·n‡

l

kB ·T

1

CA

1

CA

(5.4)

Equation 5.2 reports the dissolution at far from equilibrium conditions since no precipitation is

happening. Close to equilibrium, precipitation effect gain importance and therefore a precipitation

term needs to be considered to get the DG dependence (see section 2.2).
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r0P = fP · exp
✓
�EP �DG⇤

kB ·T

◆
(5.5)

which is analogous to equation 5.2 and it becomes important at close to equilibrium conditions

when local Gibbs free energy DG⇤ (kJ mol�1) is close to 0. The precipitation pre-exponential fP has

a similar expression to fD (equation 5.3), but may not be necessarily the same since dissolution and

precipitation states may have different vibrational frequencies (see figure 5.1). To recapitulate:

r0D =CS ·XH2O ·
kB ·T

h
·

q‡

qP · exp
✓
� ED

kB ·T

◆
(5.6)

r0P =CS ·XH2O ·
kB ·T

h
·

q‡

qD · exp
✓
�EP �DG⇤

kB ·T

◆
(5.7)

Quartz dissolution in pure water is a clear example of a surface limiting reaction over a wide range

of temperatures [57]. The concentration close to the surface is expected not to be influenced by a

macroscopic concentration gradient within the diffusive layer (see case 2 in figure 1.4). Nevertheless,

at positions on the surface, it is expected to be deviated by the quartz dissolution or precipitation

susceptibility, that is, the relation between ED and EP (see section 2.2.1). Local DG⇤ can be directly

related with the macroscopic DG by the expression 5.8 taking into account that the dissolution and

precipitation rates, r0D and r0P are equal when DG = 0.

DG = DG⇤+ED �EP � ln
fD

fP
(5.8)

The macroscopic DG is experimentally calculated from the ratio of the ion activity product P of

the dissolved material in water and the thermodynamic solubility product Ks. In the case of quartz

it is possible to use the concentration ratio because the activity of silicic acid is close to unity (see

section 1.2.1) [20, 24].

DG = R ·T · ln(P/Ks) = R ·T · ln(C/Ce) (5.9)
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where C and Ce are the measured and equilibrium concentration of H4SiO4 respectively (mM).

The final aspect to be considered is the determination of ED and EP. According to Lasaga and

Luttge the dissolution and precipitation energy barriers for a site in the surface ED and EP can be

written as the sum of the contribution of the n surrounding bonds (see equation 1.43) [81].

ED =
n

Â
i=1

Edi EP =
n

Â
i=1

Epi (5.10)

This equality arises from the ‘flickering-bond’ model to mimic the bond breakage-reformation

processes in one step; the net dissolution probability is the conditional probability of every single

bond breakage. As approximation, most works have considered to have a lineal contribution (see

equation 1.37 ) [16, 61, 81, 115, 142]

ED = Ed ·n EP = Ep ·n (5.11)

Kurkanskaya and Luttge’s work [16] studied the quartz dissolution with both models in equations

5.10 and 5.11 at far from equilibrium conditions and evinced the role played by the surface relaxation

and hydrogen network (tessellation) [44], adding to the surface an stabilization against dissolution

able to change the morphology of opening etch pits (see section 3.4). Nevertheless, such models

overestimate the activation energy. The approximation taken in the models of conditional probability

is not suitable for quartz dissolution since at far from equilibrium conditions there would not be the

effect of bond reformation. In the next section, a model with similar consideration as taken by Nangia

and Garrison [107] with sequential and independent detachment of bridging bonds is presented.

5.3 Model and methods

The mechanism of dissolution consists of the sequential hydrolysis of oxygen bond forming the Si-O-

Si network [107, 159] (see figure 5.1). Each oxygen atom reaction can be considered as independent

of the previous one. Thus, the possible event for a Qn-Qm bonding oxygen atom is to react forming

116



a) b)
O1

O2 O3
O4 O5

O6
O0

Si Si

Figure 5.2: Quartz bond structure. Si-O-Si bond distribution and surroundings within the a-quartz
structure.

two Si sites Qn�1 and Qm�1. Once the last oxygen atom surrounding a silicon atom has reacted,

the silicon atom is released in the form of silicic acid Si(OH)4. Ab initio calculations report a wide

range of energy values for the oxygen bond hydrolysis [22, 23, 154–158] . Despite the wide range of

values reported, three aspects can be inferred. First, there is a great difference between the energy

barriers computed for relaxed clusters, where the atoms positions and angles are let reach a minimum

energy state [154, 155], and non-relaxed clusters [22, 23, 156–158]. Secondly, there is a difference

depending on the connectivity of the silicate units. And finally, EP is approximately a 20% lower

than ED for Q1-Qm (m 2 [1,4]) and approximately equal to ED for Q2-Q4. Such differences highlight

the dependence of the hydrolysis energy barrier with the surroundings.

In this work, we consider the above mentioned connectivity by evaluating the number of unreacted

oxygen atoms around the oxygen atom of interest. All of them are in a cutoff distance of 2.58±0.01

Å. If one hydrolysis reaction occurs in one of these neighbouring linking oxygen atoms, the bond

breaks reducing the connectivity and, consequently, the energy barrier for the hydrolysis of the

oxygen atom of interest. To account for the breakage, in the simulation the linking oxygen atom

just disappears from the system. This way we can define the energy barrier for a hydrolysis as a

function of the surrounding oxygen atoms. We take the non-relaxed energy barrier values reported

by Pelmenschikov et al. [22, 23] since they represent the longest data set with self-consistency.

Bibliographic and model values are presented in table 5.1.

Two approximations are needed to solve the lack of certain values. First, a Q2-Q2 and a Q1-Q3

site, a Q1-Q4 and a Q2-Q3 site, and a Q3-Q3 and a Q2-Q4 site are energetically equivalent because
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Bond Bibliografic ED Bibliografic EP ED EP Surrounding oxygen atoms
Q1-Q1 71 [22] - - 0
Q1-Q2 157’ [154] 122’ [154] 75 60 1
Q1-Q3 102’ [155] 112 [156] 152’ [154] 116’ [154] 128’ [155] 85 70 2
Q1-Q4 92 [22] 94 [157] 100 [23] 155’ [154] 60 [157] 110 [23] 112’ [154] 95 80 3
Q2-Q2 138’ [155] 141’ [155] 85 70 2
Q2-Q3 206’ [155] 187’ [155] 95 80 3
Q2-Q4 105 [23] 131 [157] 110 [23] 131 [157] 105 105 4
Q3-Q3 162 [158] 105 105 4
Q3-Q4 138 [22] 135 135 5
Q4-Q4 200 [22] - - 6

Table 5.1: Model values. Energy barrier values with the bond surroundings in kJ mol�1. ’ indicates
values for relaxed configurations. There is a preference for Pelmenschikov et al. values [22, 23].

they have the same number of surrounding oxygen atoms. Second, to authors knowledge EP values

for Q3-Q3 and Q3-Q4 have not been reported, so the same values than for ED are taken.

Simulations are performed in a-quartz in {001}, {100} and {101} planes. Around 5 million atoms

are distributed in a system of 240x240x10 unit cells for the {001} plane, 70x100x70 for the {100}

plane and 80x80x80 for the {101} plane. The surface areas are ⇠ 1.25 ·10�14 m2, ⇠ 1.92 ·10�15

m2 and ⇠ 2.28 · 10�15 m2 respectively. With one dislocation per system, dislocation densities of

5.2 · 1014 m�2, 4.4 · 1014 m�2 and 8 · 1013 m�2 are respectively considered, which lay within the

range of experimental values (109 - 1014 m�2) [46, 160]. Finally, periodic conditions are considered

and only surface atoms can react. All the data visualization has been made using OVITO program [8].

As we said before, the surface relaxation and the formation of hydrogen bond network may

change drastically the energy barrier value of the hydrolysis reaction (see table 5.1) and provide an

extra stabilization able to change the morphology of the opening etch pits (see section 3.4) [16]. As

limit case for all the simulations, and following the work by Kurkanskaya and Luttge, the terrace

atoms, or atoms on the surface out of the dislocation, are considered not to react.

The ’.xyz’ file containing the quartz unit cell [161], and the input files needed to run the simulations

in {001} plane are included in appendix A.3.
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5.3.1 Input for the KIMERA code

In this section the necessary steps to create the simulations into KIMERA program are indicated. In

the following we describe the free dissolution case in {001} plane at 473 K (see appendix A.3.1):

• System dimensions. A box is created with 240x240x10 units cells is created with PBC along

a and b axes.

• The unit cell parameters. a = b = 5.01, c = 5.47, a = b = 90� and g = 120�. The ‘.xyz file

is called, but in this case, in contrast to the section 3.5 example, the oxygen atoms do play an

important role and they cannot be removed.

• We define a target step Starget = 1000000 which is approximately a quarter of the amount of

silicon and oxygen atoms forming the system and it is enough to get results of its evolution.

• Topographic defects. We define in the center of the plane a dislocation and inner atoms

removed from the initial surface.

• Event definition. The ED(n) and EP(n) for the linking oxygen bond is directly related with

the number of oxygen atoms within 2.585 Å (see table 5.1). The presence of 6 surrounding

oxygen atoms indicates that the considered one is in a bulk position and, therefore, it is not

reactive. Besides, a silicon atom must be automatically released if all of its four surrounding

oxygen atoms have reacted. Finally, the fundamental frequency values fD = fP = 2.45 ·1010

s�1 are used [24]. The DG⇤ =�200 kBT value sets very far from equilibrium conditions.

The next step is to determine the relation between DG⇤ and DG. From the ‘.meandiscoord’ file,

most oxygen atoms react when three oxygen atoms are around (n = 3). That means that the reference

position to determine the DG value is a Q1-Q4 site. The energy barrier for this site is ED = 24.1

and EP = 20.3 kBT units at 473 K (see table 5.1). Therefore, the relation between DG⇤ and DG is as

follows in equation 5.12
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DG(kBT ) = 1.0 · (DG⇤+(24.1�20.3)) = DG⇤+3.8 (5.12)

Note that with this model the number of broken bonds is Ni = 1 (see equation 3.5), not like in

the SCS-L1 model shown in section 3.5 where the broken bonds corresponded to the number of

surrounding silicon atoms.

5.4 Results

Three aspects of a-quartz are studied: the morphology of etch pits, the dissolution rate dependence

with temperature and the dissolution rate dependence with DG.

Before moving to them and in order to get the correct dissolution rate, calculating the pre-

exponential factors fD and fP (see equations 5.6 and 5.7) is necessary. Cs, or the density of reactive

sites, is implicitly considered in the simulation system. XH2O, or the fraction of sites that are attacked

by water molecules within a kB ·T/h · q‡/qP time, is related to the activity coefficient, thus, it is

expected to be close to the unity XH2O = 1 [20, 24]. q‡/qP or the ratio of frequencies between the

equilibrium and the activated complex can be calculated from the data reported by Casey for the

frequencies of disiloxane-water cluster [6, 24] and is presented in table 5.2.

An equivalent procedure has to be followed to calculate fP. Although this quantity is not important

at far from equilibrium conditions, the relation fD/ fP may determine the dissolution rate at close to

equilibrium ones (see equation 5.8). Up to authors’ knowledge q‡/qD have not been reported. As the

system is expected to be equally constrained by the rest of the structure in the dissolved state as in

the transition state (see figure 5.1b and 5.1c), this quantity should be close to the unity q‡/qD = 1.

Although we have used this ratio, we have also studied the limit case when q‡/qD = q‡/qP ( fP = fD)

for comparison.
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T (K)
q‡

qP ·10�3

300 7.84
400 3.74
473 2.48
500 2.18
600 1.45
700 1.05
800 0.81
900 0.65

Table 5.2: Partition function values with temperature. Values calculated with equation 5.4 and
table 1 in [24].

5.4.1 Dissolution patterns

Experimental dissolution patterns formed in a-quartz have been subject of study in several exper-

imental works [16–18, 20, 72, 151, 153] as they could be a way of recognising immediately the

crystallographic plane or the pH and temperature conditions to which dissolution takes place. It

must be taken into account that some patterns may be produced due to a higher scale effect, as

for example macroscopic fractures or a fluctuating concentration of material. Figure 5.3 reports

the dissolution patterns obtained from our simulation in free dissolution and with stabilization (no

reacting terraces) at far from equilibrium conditions and temperatures of 300 K and 900 K. Starting

from a perfect plane with one dislocation in the system, the snapshots are taken in the best time to

appreciate the characteristic topography. There is an excellent match between the patterns reported

with the considered model and the obtained experimentally. At 300 K in the {001} plane, the free

dissolution presents molecular chains oriented along the [100], [010], and [110] crystallographic

directions in a similar way than figure 3.3c or figure 3.4c. By applying the stabilization, V-shape

striations are produced along the [110] direction. By increasing the temperature the striations broaden.

Striations have been reported by Luttge in hydrothermal conditions though the recognition of its

plane or direction was not possible [16]. For the {100} plane, the dislocation slightly involves a

preferential site for the dissolution following a rectangular pyramidal shape with long sides along
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[010] direction. The stabilization clarifies this shape and it transforms into a circular one at high

temperature. This shape has been reported in the {100} plane both in KOH solution [17, 72, 151]

and in water [20]. Finally in the {101} plane similar effect to the previous one is produced but the

pit shape is distorted into a trapezoidal semipyramidal one with parallel sides along [010] direction,

which has been reported for the {101} plane in KOH solution [18, 153].

It has been checked in all cases that the selection of planes with Q2 or Q3 terminations with the

stabilization does not imply any change in the pit shape.

The increase of temperature provokes, on the one hand, randomness in free dissolution and, on the

other hand circular shapes with stabilization. These effects are expected since the difference between

exponential terms for the reactive atoms is reduced and, therefore, the dissolution is homogenized.

Besides, the tessellation effect has been demonstrated essential to reproduce the correct dissolution

patterns in quartz.

Other experimental topographies like V shape pits for {100} plane or triangular and pentagonal

ones for {101} plane are not found in our simulations [16], which suggests that they are due to

macroscopic conditions or effects not considered here like fractures or fluctuating ion concentrations

in the solvent.

One remarkable side effect of the pits topography, apart from the recognition of planes and

conditions of dissolution, is that it is possible to get an idea of energy barrier relation of the exposed

sites. For example, in the {100} case rectangular shapes are produce, because in the long sides

of the pit most of the oxygen atoms are in a Q3-Q4 position meanwhile in the short ones, most

of them are in a Q2-Q4 position. The closest the relation between the energy barrier of these two

sites, the more squared the shape of the pits (or circular if they have an equal low value). Similarly,

the higher the difference, the more elongated the rectangular pit is. In a extreme case, V-shaped

striations may be produced. This energy barrier change is expected in catalytic conditions or with

pH variations. [16, 45, 154]. We cannot say the same about the {101} case. All sides of the pit have

similar density of Q2-Q4 and Q3-Q4 sites and therefore no different energy barrier relation could

change the pit shape into a triangular or pentagonal one.
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5.4.2 Dissolution rate with temperature and activation energy

The global (or apparent [6]) activation energy for a dissolving mineral is calculated from the Arrhenius

equation as the slope of the natural logarithm of the dissolution constant (lnk) versus the inverse of

temperature (1/T ) (see section 1.2.3).

k = A0 · exp
✓
� Ea

R ·T

◆
(5.13)

In the case of quartz the activation energy is only affected by the limiting reactions taking place

in the surface since transport of the dissolved material does not act as limitant in a wide range of

temperatures (see figure 1.5) [57]. The energy barrier of this reactions changes locally depending on

the surroundings, as shown in the model section, and each surface may have a different activation

energy. Experiments have reported a narrow difference in between activation energy of 87 kJ mol�1 in

the {101} plane and 90 kJ mol�1 in the {100} plane in KOH solutions [17,151]. Usually experiments

are done using grains, where all the different planes contribute to the overall activation energy (see

section 1.2.5). In addition, it is necessary to highlight that the pre-exponential factor fD also affects it

since it changes with temperature (see table 5.2).

Before getting the activation energy results it is necessary to point out what criterion has been

taken for the dissolution rate measures since it is no constant. During dissolution there is a short period

of inactivity when first exposed Si-O-Si bonds break but no silicon atoms are released. After this

period, the silicon dissolution rate increases quickly to finally reach a steady state. The data is taken

from this steady slope (see red line in figure 5.4a). A different approach must be considered for the

dissolution with stabilization. Since only very few Si-O-Si bonds are initially exposed to dissolution,

the initial inactivity period is much smaller, almost nonexistent. Then the dissolution rate increases

gradually reaching a maximum rate value when the pit has coalesced. The surface stabilization

effect is lost and the dissolution rate converges on the free dissolution case. The quickness of the

coalescence is determined by the etch pit shape and the plane. In the {001} plane the lineal striations

coalesce slower than the rectangular or the trapezoidal pits in the {100} or {101} planes, since it
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Figure 5.4: Criteria to get the dissolution rate. Released silicon atoms with time in {100} plane at
300K. a) Free dissolution. The slope of the red line is the upper limit dissolution rate. b) Stabilized.
The slope of the blue line is the bottom limit dissolution rate. The slope of the red lines are the same.

takes more time to cover all the surface. Due to the impossibility to know when the experimental

measurements are taken, the case where the pits have just opened has been considered. The slope is

taken from the very first points when the silicon atoms have started to dissolve (blue line in figure

5.4b). Note that the needed time for the system to dissolve is in the order of years, hence it probably

represents a valid limit case to compare with experiments.

In figure 5.5a reported values of the dependence of dissolution rate with temperature at far from

equilibrium conditions for the three a-quartz planes, with and without stabilization, are compared

with the experimental rates reported in pure water (pH= 7) [19]. The values obtained in this work

for the activation, presented in table 5.3, are slightly higher than the experimental activation energy

Ea.exp. = 90.1± 2.5 kJ mol�1. The global activation energy has been taken as the middle value

between top and bottom ones; Ea = 94.7±1.9 kJ mol�1. As seen, there is a small difference among

the six cases. Besides, experimental rates are within the simulations range and change from {101} <

{100} < {001} to {001} < {100} < {101} when considering stabilization. This matches with the

change in the surface stabilization calculated by DFT [162]. However, this match may be accidental

since other works have found no relation between dissolution rate and surface energies in other

minerals like b -belite, g-belite and alite [43, 126, 127].
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Figure 5.5: Dissolution rate with temperature and DG. Comparison of the experimental data
with the proposed a-quartz dissolution model for {001}, {100} and {101} planes with and without
stabilization (S). a) Dissolution rate with temperature. Grey points are experimental ones at pH
= 7 [19]. From the slope of coloured triangular points is calculated the activation energy in each
case in table 5.3. b) Dissolution rate with DG. Grey points are experimental ones at pH = 5.7 and
T = 473 K [20].

Plane Simulation Ea
{001} 94.4±0.2
{001} S 94.9±0.3
{100} 96.4±0.2
{100} S 93.1±0.3
{101} 96.2±0.3
{101} S 94.6±0.2

Ea = 94.7±1.9

Table 5.3: Activation energies. Measured activation energies in each plane from figure 5.5a.
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The activation energy result has an important implication. The self healing effect suggested by

Pelminschekov et al. [23], although it is important at close to equilibrium conditions, is no needed

to explain the discrepancy between the experimental value and the reported for the limiting step of

Q2-Q4 breakage. According to their work, the fact that the Q2-Q4 site has the same energy barrier for

the formation than for its breakage and presumably with higher frequency ( fP > fD) would change

the limiting step to the breakage of a Q1-Q4 site. Nevertheless, by considering far from equilibrium

conditions, no bonds reformation or dehydroxylation is allowed, and such proposed mechanism does

not happen. Our simulations recognise in all cases the Q2-Q4 site with an energy barrier of 105 kJ

mol�1 as the limiting step. Yet the decay of the pre-exponential factor fD with temperature results in

a global activation energy of ⇠ 95 kJ mol�1 which is fortuitously very close to the Q1-Q4 breakage.

Despite the simulations lie in the reported range of experimental dissolution rates, two aspects

that could improve our results must be pointed out. First, the activation energy difference could be

explained by the dissolution boost from a small fraction (⇠ 5�18%) of deprotonated surface sites

due to pH with smaller energy barrier [45]. However, a lower activation energy would imply a higher

dissolution rate. Hence, and opposed to the above, fD value is expected to be smaller. The fD value

used in this work was calculated for a disiloxane-water cluster [24]. Such cluster does not have the

surrounding oxygen atoms presented in a silica one. In the latter, the movement or vibrational modes

of the transition state is expected to be more constrained and, therefore, the partition function should

be smaller. This would result in a lower dissolution rate, approaching to the experimental ones.

5.4.3 Dissolution rate with DG

Predicting the dissolution rate dependence with Gibbs free energy is still a hot topic in mineral

dissolution. The typical curve where the dissolution increases sharply from DG = 0 to reach gradually

the plateau predicted by the TST has been overshadowed by experimental curves following a sigmoid

function (see section 1.2.1) [31, 49, 50]. In chapter 2, it has been shown that such sigmoidal shapes

have a topographic origin, and some minerals like quartz may conserve the typical TST shape due to

its specific atomic structure or even because of the ED and EP relation.
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a-Quartz dissolution rate dependence with DG for our simulations is represented in figure 5.5b

at a temperature of 473 K. The experimental values from Dove’s work are included [20]. The

experimental pH = 5.7 ensures very low deprotonation effect [45]. The Dove’s curve follows

a typical TST trend which reaches the plateau when the SiO2 concentration is C ' 16 mM (the

concentration in equilibrium is Ce = 3.98 mM [20]). Our simulations report a higher dissolution rate

than the experiments, which strengthens the hypothesis of a fD overestimation, although the shape of

the curves follows similar TST behaviour. In our case the plateau is reached at a higher concentration,

when C ' 38 mM. Discrepancies may arise, on the one hand, because some processes may happen

due to higher scale fluctuation of the concentration. For example, at close to equilibrium conditions,

quartz may precipitate into hillocks in the {001} plane meanwhile the rest are dissolving [16]. On

the other hand, because the expected null dissolution rate at DG = 0 is not reproduced. This is due

to our implicit consideration of the precipitation as a diminution of the net dissolution rate. Such

approximation fails at very close to equilibrium conditions since the growth effect gains importance.

A symmetric equation to describe growth would report, at DG = 0, an opposed dissolution rate value,

resulting in a net 0 rate. Therefore, closest points to DG = 0 are expected to go sharply to 0, like the

experimental ones.

Although one could think that the consideration of perfect surfaces instead of a real grain would

change the global activation energy or dissolution rate due to a higher fraction of lower coordinated

atoms, this is not the case. Dove et al. [20] reported no increase in the dissolution rate with increase

in the surface roughness. Similarly, Blum et al. observed no increase in dissolution as the number

of dislocations increases [46]. These two facts can be explained since the limiting Q2-Q4 site is

always present, either at corners or at close to dislocation positions. The density of this site in the

surface is constant at a steady state of dissolution if the grain size effect is neglected. The number of

dislocations affect the quickness with which the steady state is reached [46]. Nevertheless, neither

the number of dislocations nor the generated pit shape have any impact afterwards.

As proof of this scenario, we have studied the dissolution of the wulff shape of quartz, which is

the geometry with minimum energy of a mineral. For quartz it is a prism with hexagonal section and
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Figure 5.6: Quartz wulff shape dissolution study with DG. a) Initial state. b) Wulff shape after half
of the forming atoms have dissolved. c) 25 % of the atoms remain. d) Dissolution rate versus DG curve.
Blue point corresponds to the simulation of the topographies in a-c, though similar topographies are
obtained in any other point. The visual representation is done using OVITO program.

pyramidal tips [163] (see figure 5.6a). As additional element, one dislocation is placed transversally

in the center of the {100} plane, and another one perpendicular to the previous and longitudinally to

the wulff shape. During dissolution, the initial wulff shape is distorted into an elongated grain which

reduces its size until the complete extinction, with no effect of the dislocations. The surface area and

the dissolution rate values are calculated at the time when the grain has lost half of its atoms (see

figure 5.6b). The estimated surface area is S1/2 = 3.3 ·10�16 m2. Results of dissolution rate with DG

at 473 K in free dissolution is shown in figure 5.6d. As expected, it shows same results than for the

three infinite plane cases in free dissolution (see figure 5.5b).

Finally, in figure 5.7 the limit case in which q‡/qD = q‡/qP ( fP = fD) for the free dissolution case

in {100} plane is compared with the simulation results when q‡/qD = 1, showing no change. Such

result is specific of a-quartz structure. Differences are expected in more complex minerals since the

mechanism activation (dissolution of initial irregularities, dislocation opening and spontaneous pits

opening) may be shifted to more negative DG values by increasing fP (see equation 2.13).
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Figure 5.7: fD and fP relation. Comparison of simulations with q‡/qD = q‡/qP and q‡/qD = 1 for
the free dissolution case in {100} plane.

5.5 Conclusions and outlook

In this chapter quartz dissolution has been studied by KMC simulations. A model where the Si-O-Si

bond is hydrolyzed with variable energy barrier as a function of the Si connectivity is proposed to

describe the dissolution. As a result, the obtained etch pit shapes during dissolution, dissolution rates,

activation energies and dissolution rate dependence with DG are in agreement with the experiments.

We found striations in the {001} plane along the [110] direction, rectangular pyramidal pits in the

{100} plane with the longest sides along the [010] direction and trapezoidal semipyramidal pits with

the two parallel sides along the [010] direction. A stabilization effect, which gives initial stability

to atoms on the surface that are not close to a dislocation, is needed to correctly reproduce them.

Secondly, the global activation energy, Ea = 94.7±1.9 kJ mol�1 , is in agreement with experimental

value, despite the dissolution rates are slightly higher. This suggests that vibrational modes calculated

by DFT for the disiloxane-water cluster, despite they represents a reasonable first estimation, are not

good enough and a more accurate calculation is needed in a proper silica cluster. Besides, since in the

simulations the Q2-Q4 bond breakage with 105 kJ mol�1 has been recognized as the limiting step

and yet the global activation energy is similar to a Q1-Q4 bond breakage (95 kJ mol�1), there is no
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need to invoke the existence of a self healing effect to explain such energy reduction [23]. Finally,

experimental dissolution rate dependence with DG follows a typical TST curve whose trend has been

reproduced with our simulations. Results support the model extension proposed in chapter 2, yet

further investigations are needed.

Despite the good results, there is still room to the improvement. Computationally, DFT future

works can be focused on obtaining better fD and fP values or filling in the blank spaces in energy

barrier values, also for deprotonated and protonated sites. Explicit consideration of precipitation

in KMC simulations would improve the points close to DG = 0, and could also allow to study

precipitation and growth. It would also be possible to repeat this study under catalytic conditions

by setting a fraction of the sites with smaller energy barrier. Experimental work could be focused

on measuring the dissolution rate dependence with temperature and DG in perfect planes without

any deprotonation effect, that is, at low pH [45]. For that, there are new promising experimental

methodologies like Digital holographic microscopy (DHM) which would be able to measure the local

concentration of the mineral in water close to the surface (see section 1.3.2.4).
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Chapter 6: The Dissolution of Alite

6.1 Introduction

Portland cement is the most used material by the mankind, just after water [40]. Its low cost in

comparison with its relatively low environmental impact and performance, its workability and its

worldwide availability make cement a major ingredient in almost any engineering work. In fact,

the production of the huge volume of cement consumed accounts for 5–8% of man-made CO2

emissions [50]. Among all the possible solutions, understanding the processes behind cement

hydration would improve its performance and reduce its environmental impact.

In the hydration process, cement powder is mixed with water to create a moldable phase which

hardens in a matter of hours. The calorimetric curve in figure 6.1 shows the typical evolution of

released heat during cement hydration, which is proportional to the hydration rate. Briefly, alite

(Ca3Si2O5), or C3S in cement chemistry notation (see appendix B), and other reactants in cement like

belite (C2S) and tricalcium aluminate (C3A) react with water to form later a calcium silicate hydrate

phase of variable composition, the C–S–H gel, and crystalline side products like portlandite (CH)

(see equation 6.1).

Ca3SiO5 + 5.3 H2O ! Ca1.7Si(OH)4 + 1.3 Ca(OH)2 (6.1)

The hydration process can be divided into 5 differentiated phases according to the evolution of

the calorimetry (see figure 6.1). Some of the knowledge behind each phase is as follows:

1) The dissolution phase. The quick dissolution of C3S releases Si(OH)4 and Ca(OH)2 ions to

solution. The concentration of Si(OH)4 reaches a maximum value and begins to reduce as the

first C-S-H gel is formed. C3A reacts very fast with water, even faster than alite. Nevertheless,

this process, known as flash setting, is not desired since it reduces the workability of cement at
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Figure 6.1: Cement hydration curve. Schematic representation of heat evolution versus the hydra-
tion time of ordinary Portland cement pastes.

early ages of the hydration process. To avoid the flash-setting, retardants such as gypsum are

added to the clinker [40].

2) The induction period or dormant phase. The reaction rate is low. During this period, the

water-cement mix remains moldeable and provides cement its important workability feature;

the named open window.

3) The acceleration phase. Portlandite starts to precipitate and C-S-H gel is produced forming a

colloidal three dimensional structure, which confers cement its strength [164].

4) Deceleration phase. After several hours, portlandite and C-S-H formation rate slowly decreases.

5) Steady phase. In this stage the microstructure of C-S-H gel becomes denser. It is considered

that the hydration is virtually finished after one year, though the process could continue over

years, as well as the evolution of C-S-H gel and cement paste microstructure [165]

Over the years, many theories have been proposed to explain the calorimetry curve of cement

hydration and particularly the origin of the dormant period [50]. All of them identify the released heat

with dissolution reactions of reactants like C3S and C3A or with precipitation reactions like portlandite
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or C-S-H formation. The possible explanations of the dormant period that involve a reduction of the

dissolution rate are: the existence of protective [166–172] and semi-permeable [173,174] membranes

that inhibit the dissolution rate, a change of the local or superficial concentration in the Stern

layer [175, 176], or a direct phenomenon related with the dislocations [177–180]. On the other hand,

other explanation includes a reduction of portlandite precipitation because of the poisoning effect of

silicates [176, 181], and another one relies the heat flow on the C–S–H growth, which is delayed by

the dissolution of products [50, 93, 164, 180, 182–184].

Based on mineral dissolution theory, the recent work by Nicoleau et al. [114, 185] described

briefly in section 1.4.5.3 has considered alite dissolution as the main responsible of the four last

phases (2-5) in the calorimetry curve, with no apparent contribution from portlandite precipitation,

C-S-H growth, or the change of the local concentration. After the initial peak, the origin of the

induction period would correspond to a small contribution of the dislocation opening effect, produced

even at close to equilibrium conditions [21, 34]. The acceleration stage would be produced by to the

gradual dislocation opening, increasing alite dissolution rate and thus the released heat. Finally, the

dissolution of alite would decrease in the deceleration phase due to the dislocation coalescence and

grain extinction.

We cannot overlook the existence of an alternative and very important current of thought about the

origin of the dissolution rate evolution of C3S. Many researchers have proposed that the dissolution is

controlled by the nucleation and growth of C-S-H, and to a less extent, Portlandite. A very schematic

explanation will be as follows: initially, the C-S-H gel nucleates mainly on favorable spots on the

clinker surfaces, nucleation seeds, or spontaneously in solution. The C-S-H grows in 3D since there

is a continuous increase of its formation rate until coalescence with the C-S-H growing from other

sites. At that point, the C-S-H growth rate starts to decrease due to the lack of free space. The

nucleation and growth of C-S-H is directly related to the ion concentration in the pore solution, and

the undersaturation state varies accordingly. Therefore, the more C-S-H is produced, the further from

equilibrium conditions, enhancing the alite dissolution. Many models have been developed following

this theory, mainly based on the Avrami model of heterogenous nucleation [186] and the Boundary
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nucleation and growth (BNG) of homogeneous nucleation [187], with different modifications and

extensions to take into account factors like confinement, pore solution chemistry, presence of seeds,

C-S-H morphology and densification, etc [93, 125, 164, 188–197].

In this chapter we will focus on the interpretation given by the mineral dissolution theory, without

considering the precipitation and growth of C-S-H. We will take mineral dissolution as the starting

point for a ‘computational experiment’ to investigate what would be the underlaying mechanism that

could explain the acceleration and deceleration of the alite dissolution rate. The results do not imply

that the mineral dissolution theory is correct and the nucleation and growth is not. It is plausible

that both theories are necessary to explain the hydration of alite. In fact, some authors suggest that

mineral dissolution is the main responsible of the acceleration period while C-S-H growth will be the

limiting mechanism for the deceleration [198].

6.2 Methods and Alite Dissolution Model

There is plenty of experimental information about alite dissolution in the bibliography [12, 21, 34,

50, 185]. Nevertheless, ab initio studies about the processes at atomic scale happening behind are

still subject of study [43]. Due to the lack of information of alite dissolution and precipitation energy

barriers, we choose to perform a general study within the framework of a Kossel crystal (see section

1.4.4). The dimension of the Kossel crystal under study are 200 x 200 x 80 sites for a total of ⇠

3200000, with periodic boundary conditions. Considering each site as a C3S unit, the distance

between them is ⇠ 4.9 Å [199], which leads to a system size of ⇠ 100 x 100 x 40 nm. One dislocation

is placed in the center of the xy plane, which results in a dislocation density of 1012 m�2 and lies into

the known dislocation density range for minerals 1010 �1014 m�2 [62]. The dissolution of the {001}

plane is studied, though results in {100} and {010} would be identical in a Kossel crystal.

The same model presented in chapter 2 is used here as implemented in KIMERA program. The

dissolution and precipitation events probability are given by equations 2.1 and 2.2:
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r0D = fD · exp
✓
� ED

kB ·T

◆
(6.2)

r0P = fP · exp
✓
�EP �DG⇤

kB ·T

◆
(6.3)

The first step is to determine the dissolution and precipitation energy barriers and their respective

pre-exponential factors fD and fP. As we lack these parameters, we do a guess of them based on

the experimental results and observations in the bibliography. First, we know that the experimental

activation energy is about 49-51 kJ mol�1 [21, 200]. Secondly, it is observed a diminution of the

activation energy when alite grains reduce their size from about 51 to 44 kJ mol�1 [200]. As we

know that the activation energy is related to the dissolution energy barrier ED (see section 2.4.4),

the diminution can be explained by an increase of the fraction of atoms in kink sites respect to

the atoms in perfect planes when the grain size is reduced. Therefore, we can directly relate these

activation energies to the ED of a kink position and to the ED of an atom close to a dislocation position,

with coordination 3 and 4 respectively (see figure 1.11 and table 6.1). The ED for the rest of the

positions are supposed to follow a linear trend with these two values. Thirdly, since the vibrational

frequencies of alite atoms are not highly constrained like in quartz (see sections 1.4.1 and 5.2), a

value of fD ⇠ 1013 s�1 at 300 K is expected [6]. Nevertheless alite dissolution rate experiments report

about 1�2 order of magnitude of the Arrhenius pre-exponential factor A0 higher than quartz (see

equation 1.10 and figure 1.9), which suggest that fD is below the 4.7 ·1010 s�1 considered at 300 K

for quartz in the previous chapter (see table 5.2 and equation 5.3). Such discrepancy may be explained

by the passivation produced in the alite surface at its initial stages of hydration [201]. The fraction

of reaction sites on the alite surface could be much lower due to a thin layer of hydration products

blocks the way to water molecules to react. Therefore the activity coefficient of alite hydration

reaction could be g << 1 (see section 1.2.1 and equation 1.25). A value around fD ⇠ 108�109 s�1 is

considered, though its exact determination will be done ad-hoc to better reproduce the experimental

data. Final step is to determine the EP and fP values. We have considered fP = fD, and have selected
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fD (s�1) fP (s�1) ED (kJ mol�1) EP (kJ mol�1) First neightbours
33 33 1
38 28.75 2

1.8 ·109 1.8 ·109 44 25.75 3
50 22.5 4
55 18.25 5
- - 6

Table 6.1: Alite dissolution model parameters. Proposed model parameters for alite dissolution.
Bulk atoms with 6 first neighbours do not react.

EP values according to the best fitting of the dissolution rate with DG curve to experiments. Note that

other combinations of values with the same experimental fitting would reproduce same experimental

phenomenology and distribution of dissolution mechanisms. In table 6.1 the model parameters to

reproduce alite dissolution rate and its activation energy are shown. Appendix A.4 contains the

necessary input file to perform the simulation in KIMERA program.

6.3 Results

6.3.1 Dissolution rate and activation energy with DG

Simulations using the parameters in table 6.1 are fitted to the experimental results in [21]. This

experimental dataset is obtained from vertical scanning interferometry (VSI) experiments on the

surface of alite (see section 1.3.2.2), as they compare better to simulations in a infinite plane than

experiments in powder samples. Results are shown in figure 6.2. The dissolution rate with DG follows

a sigmoid function equal to experiments. The simulations shows hardly any dissolution rate at close

to equilibrium conditions, where a perfect plane topography is obtained, typical of mechanism I. Once

we are far enough from equilibrium at DGcrit, the dislocation starts to open, producing typical patterns

of mechanism II and increasing the dissolution rate (see section 1.2.1). When the dissolution plateau

is reached, plenty of spontaneous pit opening is produced on the surface, leading to a pattern governed

by mechanism III. The empirical fitting proposed in equation 2.18 reports a critical DGcrit = �11
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Figure 6.2: Alite dissolution rate with DG. a) Dissolution pattern during the dissolution close
to DGcrit showing pit opening (mechanism II). The simulation corresponds to the green point. b)
Dissolution pattern at far from equilibrium conditions showing spontaneous pit opening (mechanism
III). The simulation corresponds to the blue point c) Dissolution rate versus DG fitted for the
experiment in [21].

kcal mol�1.

As we saw in section 2.4.4, the activation energy for a Kossel crystal depends on the dissolution

mechanism. If there is no change of fD with temperature, the activation energy for mechanism I is

given by the ED of an atom of a kink site Ea m.I = 44 kJ mol�1, the activation energy for mechanism

II is given by the ED of an atom close to a dislocation Ea m.II = 50 kJ mol�1, and similarly for

mechanism III, but with a slight influence of the ED of an atom in a perfect surface, thus Ea m.III ⇠ 51

kJ mol�1. The transition between mechanisms is gradual, so values between 44�51 kJ mol�1 are

expected along all the DG curve. In order to check this behaviour, in figure 6.3 we plot the natural

logarithm of the dissolution rate versus 1/T at far for equilibrium conditions and at DGcrit region

for five temperatures: 300, 350, 400, 450 and 600 K. In table 6.2 the activation energy results are

shown. As observed, they are the excepted ones. Moreover, the A0 values obtained in the lineal fitting
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Figure 6.3: Alite activation energy. Natural logarithm of the dissolution rate versus the inverse of
temperature at far from equilibrium conditions (f.f.e) and DGcrit values.

Ea (kJ mol�1) A0 (mol m�2 s�1)

DGcrit 49.8±0.9 (27±8) ·103

f.f.e 50.8±0.2 (28.1±1.5) ·103

Table 6.2: Activation energy and pre-exponential factor. Reported values in figure 6.3 at far from
equilibrium conditions (f.f.e) and DGcrit values.

is consistent with the experiments since logA0 = 4.3�4.5, as observed in figure 1.9.

Experiments report an unsuspected low activation energy of 13 � 26 kJ mol�1 at far from

equilibrium conditions, in the dissolution plateau [21]. Juilland et al. demonstrated that such low

values in the activation energy are obtained due to the diffusion is the limiting step of the dissolution

process and hence there is a change of limiting step when dissolution rate increases due to DG (see

section 1.2.2). In equation 1.9 we have shown that a higher diffusive layer produces a decrease in the

dissolution rate. Therefore, the ‘real’ dissolution rate by considering no diffusion effect is expected

to be higher in the dissolution plateau and thus our model values in table 6.1 slightly different.

Experimental determination of alite dissolution rate with digital holographic microscopic (DHM)
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(see section 1.3.2.4) or rotating disk techniques (see section 1.3.1.2), where the diffusion effect is

controlled, would help to adjust them.

6.3.2 Impact of the pits coalescence on the dissolution rate

Nicoleau et al. [12,114,185] have proposed that during cement hydration alite dissolves in conditions

close to equilibrium, because ion diffusion within cement matrix is not high enough to displace the

ions from close to surface positions [114]. Moreover, the conditions remain almost constant since

the diffusivity is not reduced by the formation of hydration products. Therefore, it is expected that

alite dissolves in cement matrix close to the DGcrit region, showing mechanism II with preferable

dissolution of the dislocations (see figure 6.2a). Besides, Nicoleau et al. have proposed alite

dissolution rate as the only responsible for the calorimetric curve shape of Portland cement hydration.

After the acceleration phase due to an increase of the dissolution rate of alite grains, the deceleration

phase is produced because of their gradual extinction along with the coalescence of the pits in their

surfaces. The former explanation is intuitive; the smaller the grain the smaller the surface able to

react. However, our study indicates that the coalescence of pits does not produce a decrease of the

dissolution rate, as demonstrated below.

In the black curve of figure 6.4, we have represented the time evolution of the dissolution rate of

our simulation highlighted with a green point at DGcrit in figure 6.2c. The dissolution rate is directly

related to the calorimetric curve [185]. As it can be seen, the dissolution rate increases gradually

until short beyond the coalescence region due to the initial inertia, which later stabilizes in a constant

value. Therefore, coalescence is not suitable as an explanation for the deceleration phase of cement

calorimetric curve. In order to check this statement with finer focus, figure 6.5 represents the time

evolution of the coordination of the surface sites, which it is directly related to the dissolution rate. At

the beginning of the simulation, all the sites on the surface except from the ones close to a dislocation

have coordination 5, as expected in a perfect plane. The number of sites in this position decreases

when the dislocation starts to open, increasing the number of sites with coordination 3 and 4. When

the dislocation coalesces, the number of sites with each coordination stabilises and remains constant.
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Figure 6.4: Dislocation coalescence and exhaustion in alite. Time evolution of the dissolution rate.
Black curve shows the evolution of a system with a infinite dislocation, corresponding to the green
point in figure 6.2c. Red curve corresponds to a system with a finite dislocation with a depth equal to
half of the system’s thickness. Both simulations in the coalescence region shows the same topography
observed in figure 6.2a.

Moreover, the sum of surface sites with all the different coordinations, which is related to the surface

area, keeps almost constant during all the dissolution process. Since the number of reactive sites and

the surface area do not change in the coalesce region, a dissolution rate diminution due to coalescence

is not possible. Note that this result is not unique for alite dissolution in this DG conditions but it is

extensible to any pit coalescence.

Another effect that may reduce the dissolution rate is the named dislocation exhaustion [202].

As dislocations are the preferable spot for dissolution, dislocation density decreases with time. We

can represent the dislocation exhaustion by considering that the dislocation placed in the middle

of our system has a depth equal to half of the system’s thickness. We do the same simulation with

same DGcrit value and compare it to the previous black curve in figure 6.4. Initial stages are similar

since the system is initially identical to the one considered before. Once the exhaustion region is
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reached, its dissolution rate decreases, as long as the steps created by the dislocation disappear (see

figure 6.2a), leading to a very flat surface. The dissolution rate is then determined by the pace of

the spontaneous pit opening, which at DGcrit is very slow; the lower the closer to the equilibrium.

Observing these results, we can suggest that dislocation exhaustion may be the another possible

explanation for the deceleration phase.

6.4 Conclusions and outlook

In this chapter alite dissolution has been studied using a Kossel crystal structure and the kinetic model

proposed in this thesis. In a first step, the model parameters have been fitted to the experimental

results and observations. As a result, the experimental activation energy Ea = 44� 51 kJ mol�1

and the pre-exponential Arrhenius factor A0 = 27± 8 · 103 mol m�2 s�1 have been successfully

reproduced, along with the experimental sigmoid function of the dissolution rate with DG.

In a second step, the variation with the coalescence and exhaustion of the dislocations has

been studied. It has been demonstrated that the coalescence does not imply a reduction of the

dissolution rate and thus it is not involved in the deceleration phase of cement hydration as proposed

in the bibliography. Nevertheless, the dislocation exhaustion involves an extra explanation to such

dissolution rate reduction.

The future experimental research may explore the validity of the dislocation exhaustion phe-

nomenon. On the other hand, though both the Kossel crystal and the kinetic model have demonstrated

to be useful to describe alite dissolution, ab initio simulations may focus on getting the necessary

parameters to describe alite hydration reaction with higher accuracy in the proper alite atomic

structure.
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Abstract

Mineral dissolution is a fundamental process in geochemistry and materials science. Numerous

experimental and computational works have aimed to understand the dissolution processes and the

mechanisms at atomic level to improve industrial applications and harness the nature processes. A

considerable number of models have been proposed to describe the factors influencing the mineral

dissolution rate, like temperature, pH, Gibbs free energy difference between the solid and the solution,

ionic diffusion or system topography and size, providing a great set of tools to foresee behaviours and

phenomena. Nevertheless, one of those factors, the mineral dissolution rate with Gibbs free energy

(DG) was in the spotlight because an unexpected sigmoidal function was observed in the experiments.

In this thesis, we have extended the kinetic model, that is one of the most recent and complete models

in the bibliography, and improve the Kinetic Monte Carlo (KMC) method, which suppose its perfect

complement due to its ability to bring the results to scales comparable to experiments, to demonstrate

that such sigmoid function was the result of the subtle interplay between dissolution and precipitation

reactions in the mineral surface. This important result has been checked in a Kossel crystal, a generic

system to represent the topography of any mineral. It has served as a starting point to study the

DG dependence within the specific atomic structure of any other mineral. Other side results are the

dissolution rate dependence with the dislocation density or the surface roughness, the demonstration

of the impossibility for minerals with simpler structure than a Kossel crystal to recreate such sigmoid

function, or the prediction of the possible existence of unreported dissolution mechanisms.

In a second part of the thesis in chapter 3, we have developed an efficient and complete KMC

computational program named KIMERA. If the possible elemental reactions in the mineral surface

and their respective model values are well known, which are available from atomistic simulations,

KIMERA is able to simulate the dissolution of any mineral at atomic scale at any condition of

temperature, pH or DG, obtaining parameters and mineral topographies comparable to experiments.

We have checked this powerful tool and the proposed dissolution model by studying the dissolution
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of quartz; one of the most studied minerals of the bibliography. We have reproduced perfectly its

mineral topography and dissolution rate dependence with temperature. Besides, we have confirmed

the experimentally reported invariability of the dissolution rate with quartz dislocation density or

grain morphology. In the dissolution rate dependence with DG, although more accurate results are

possible through finer model parameters, our simulations report the same function shape than in

experiments.

We have also used KIMERA program to elaborate a study of several configurations of a Kossel

crystal with two types of particles and different set of model values. Apart from recognising the

unfeasibility of some of the them, with this systematic study we have elaborated a map of the possible

topographies and phenomena, allowing to foresee results of future studies with other model values or

even configurations.

Finally, we have done a study of the dissolution of alite, one of the main components of Portland

cement and whose dissolution is the main responsible of its properties. After recognising parameters

of our model from experimental observations, we have proved wrong the assumption taken in the

bibliography that the dislocation coalescence reduces the mineral dissolution rate. Moreover, we have

proposed dislocation exhaustion as a plausible explanation to the deceleration phase in the cement

hydration process; although it requires experimental validation.

Atomistic simulations along with the KMC method have proved in this thesis to be a powerful

tool to study mineral dissolution and explain experimental results. The development of our model

and the publication of KIMERA represent two great advances and ensure us and other scientists

continuity on improving the knowledge in the field of mineral dissolution. Future work will focus,

firstly, on continuing the study of the dissolution of other minerals; Secondly, on extending the model

with another important factor in the dissolution rate, the effect of diffusivity; and finally, on improving

KIMERA to study precipitation.
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Appendix A: KIMERA input files

Below we show, in order of appearance, the necessary commands and some indications to perform

the simulations shown throughout the thesis in the KIMERA program.

A.1 Quartz. Model SCS-L1

DIMENSION_A 50
DIMENSION_B 40
DIMENSION_C 30

CELL_A 5.01
CELL_B 5.01
CELL_C 5.47
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 120

READ_POSITIONS_FROM_XYZ_FILE path-to-xyz-file/Quartz-without-O.xyz

DEFINE_DISSOLUTION_EVENT Si NEIGHBOUR Si 3.09832 28.0 10.0 4
NEIGHBOUR_LINKED Si 5.01000 LINK Si 3.09832 3.09832 4.0 1.0 0
NEIGHBOUR_LINKED Si 5.66774 LINK Si 3.09832 3.09832 4.0 1.0 0
NEIGHBOUR_LINKED Si 4.42416 LINK Si 3.09832 3.09832 4.0 1.0 0
FFD 1.0e12
FFP 1.0e12

DELTA_G* -100.0
TARGET_TIME 8.0e22

SURFACE_FRAMES 30
DATA_ANALYSIS 300
MEAN_DISSOLVED_ANALYSIS 30

REMOVE_CUBE 0.0 0.0 0.0 600.0
ADD_ELLIPSOID 75.0 85.0 80.0 65.0 85.0 75.0
ADD_YZ_DISLOCATION 80.0 80.0 3.1
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WORK_NAME Quartz-grain-modelSCS-L1

A.1.1 xyz quartz file

Moreover, the ‘.xyz’ file without oxygen atoms is needed:

7
Si O2
Si 2.50500 0.00000 0.00000
Si 2.50500 0.00000 5.47000
Si 0.00000 4.33879 0.00000
Si 0.00000 4.33879 5.47000
Si -1.25250 2.16939 3.64667
Si 3.75750 2.16939 3.64667
Si 1.25250 2.16939 1.82333

A.2 AB Kossel crystals

A.2.1 Configuration B

Simulation at far from equilibrium conditions DG⇤ =�100 and energy barrier values EdaA-A = 12,

EdaB-B = 4 and EdaA-B = 6.92 kBT units and EpaA-A = EpaB-B = EpaA-B = 1 kBT units

DIMENSION_A 60
DIMENSION_B 60
DIMENSION_C 15

CELL_A 5.0
CELL_B 5.0
CELL_C 5.0
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 90

----1----
POSITION B 0.0 0.0 0.0 1
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----2----
POSITION A 2.5 0.0 0.0 1
----3----
POSITION B 0.0 0.0 2.5 1
----4----
POSITION A 2.5 0.0 2.5 1
----5----
POSITION A 0.0 2.5 0.0 1
----6----
POSITION B 2.5 2.5 0.0 1
----7----
POSITION A 0.0 2.5 2.5 1
----8----
POSITION B 2.5 2.5 2.5 1

DEFINE_DISSOLUTION_EVENT A
NEIGHBOUR A 2.5 12.0 1.0 2
NEIGHBOUR B 2.5 6.92 1.00 4
FFD 4e13
FFP 4e13

DEFINE_DISSOLUTION_EVENT B
NEIGHBOUR B 2.5 4.0 1.0 2
NEIGHBOUR A 2.5 6.92 1.00 4
FFD 4e13
FFP 4e13

PERIODICITY A B

--change dG* below to deltaG study
DELTA_G* -100.0
TARGET_STEP 400000

SURFACE_FRAMES 20
DATA_ANALYSIS 100
LAYER_ANALYSIS C 100
MEAN_DISSOLVED_ANALYSIS 10

DEFINE_AB_INSOLUBLE_CELLS 0 0 0 60 60
REMOVE_AC_PLANE_BY_CELLS 30 30 5 1 9
REMOVE_AC_PLANE_BY_CELLS 30 30 14 1 1
REMOVE_CUBE_FROM_SURFACE 150.0 150.0 -80.0 152.49

WORK_NAME AB_KC_configurationB
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A.2.2 Configuration F

Simulation at far from equilibrium conditions DG⇤ =�100 and energy barrier values EdaA-A = 12,

EdaB-B = 4 and EdaA-B = 6.92 kBT units and EpaA-A = EpaB-B = EpaA-B = 1 kBT units

DIMENSION_A 120
DIMENSION_B 120
DIMENSION_C 30

POSITION A 0.5000 0.5000 0.5000 0.5
POSITION B 0.5000 0.5000 0.5000 0.5

DEFINE_DISSOLUTION_EVENT A
NEIGHBOUR A 2.5 12.0 1.0 6
NEIGHBOUR B 2.5 6.92 1.00 6
FFD 4e13
FFP 4e13

DEFINE_DISSOLUTION_EVENT B
NEIGHBOUR B 2.5 4.0 1.0 6
NEIGHBOUR A 2.5 6.92 1.00 6
FFD 4e13
FFP 4e13

SEED_BOX 20
PERIODICITY A B

CELL_A 2.5
CELL_B 2.5
CELL_C 2.5
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 90

--change dG* below to deltaG study
DELTA_G* -100.0
TARGET_STEP 400000

SURFACE_FRAMES 20
DATA_ANALYSIS 100
LAYER_ANALYSIS C 100
MEAN_DISSOLVED_ANALYSIS 10
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DEFINE_AB_INSOLUBLE_CELLS 0 0 0 120 120

REMOVE_AC_PLANE_BY_CELLS 60 60 10 2 19
REMOVE_AC_PLANE_BY_CELLS 60 60 29 2 1
REMOVE_AC_PLANE_BY_CELLS 60 61 10 2 19
REMOVE_AC_PLANE_BY_CELLS 60 61 29 2 1

REMOVE_CUBE_FROM_SURFACE 150.0 150.0 -80.0 152.49

WORK_NAME AB_KC_configurationF

A.3 Quartz

A.3.1 {001} plane

DIMENSION_A 240
DIMENSION_B 240
DIMENSION_C 10

READ_POSITIONS_FROM_XYZ_FILE path_to_xyzfile/quartz.xyz

--change energy barrier values and ffd and ffp below to temperature study
DEFINE_DISSOLUTION_EVENT O NEIGHBOUR_DIRECT_LIST O 2.585 LIST_LENGTH 6
19.02748414 15.22198732
21.56448203 17.7589852
24.10147992 20.29598309
26.6384778 26.6384778
34.24947146 34.24947146
50.73995772 50.73995772
6
NEIGHBOUR Si 1.58333 0.0 0.0 2
FFD 2.45E+10
FFP 2.45E+10
DG* -100.0

--change only dG above to deltaG study

DEFINE_DISSOLUTION_EVENT
Si NEIGHBOUR O 1.58333 100.0 0.0 4
FFD 2.45E+10
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FFP 2.45E+10
DG* -200.0

SET_MASS Si 28.08
SET_MASS O 16.0

CELL_A 5.01
CELL_B 5.01
CELL_C 5.47
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 120

PERIODICITY A B

BOX_FRAMES 10
SURFACE_FRAMES 50
DATA_ANALYSIS 500
LAYER_ANALYSIS C 50
MEAN_DISSOLVED_ANALYSIS 50

DISTANCE_ACCURACY 0.01
TARGET_STEP 1000000

REMOVE_AC_PLANE_BY_CELLS 120 120 0 1 10

DEFINE_AB_INSOLUBLE_CELLS 0 0 0 240 240

REMOVE_AB_PLANE_FROM_SURFACE 0 0 0 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 1 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 2 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 3 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 4 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 5 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 6 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 7 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 8 240 240

WORK_NAME Quartz_001plane
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A.3.2 {001} plane with stabilization

DIMENSION_A 240
DIMENSION_B 240
DIMENSION_C 10

READ_POSITIONS_FROM_XYZ_FILE path_to_xyzfile/quartz.xyz

--change energy barrier values and ffd and ffp below to temperature study
DEFINE_DISSOLUTION_EVENT O NEIGHBOUR_DIRECT_LIST O 2.585 LIST_LENGTH 6
19.02748414 15.22198732
21.56448203 17.7589852
24.10147992 20.29598309
26.6384778 26.6384778
34.24947146 34.24947146
50.73995772 50.73995772
6
NEIGHBOUR Si 1.58333 0.0 0.0 2
FFD 2.45E+10
FFP 2.45E+10
DG* -100.0

--change only dG above to deltaG study

DEFINE_DISSOLUTION_EVENT
Si NEIGHBOUR O 1.58333 100.0 0.0 4
FFD 2.45E+10
FFP 2.45E+10
DG* -200.0

SET_MASS Si 28.08
SET_MASS O 16.0

CELL_A 5.01
CELL_B 5.01
CELL_C 5.47
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 120

PERIODICITY A B

BOX_FRAMES 10
SURFACE_FRAMES 50
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DATA_ANALYSIS 500
LAYER_ANALYSIS C 50
MEAN_DISSOLVED_ANALYSIS 50

DISTANCE_ACCURACY 0.01
TARGET_STEP 1000000

REMOVE_AC_PLANE_BY_CELLS 120 120 0 1 10

DEFINE_AB_INSOLUBLE_CELLS 0 0 0 240 240

REMOVE_AB_PLANE_FROM_SURFACE 0 0 0 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 1 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 2 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 3 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 4 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 5 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 6 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 7 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 8 240 240
REMOVE_AB_PLANE_FROM_SURFACE 0 0 9 240 240

ADD_AB_PLANE_TO_SURFACE 119 119 9 3 1
ADD_AB_PLANE_TO_SURFACE 119 121 9 3 1
ADD_AB_PLANE_TO_SURFACE 119 120 9 1 1
ADD_AB_PLANE_TO_SURFACE 121 120 9 1 1

WORK_NAME Quartz_001plane_S

A.3.3 Wulff shape

DIMENSION_A 16
DIMENSION_B 16
DIMENSION_C 47

CELL_A 5.01
CELL_B 5.01
CELL_C 5.47
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 120
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READ_POSITIONS_FROM_XYZ_FILE path-to-xyz-file/Quartz.xyz

DEFINE_DISSOLUTION_EVENT O NEIGHBOUR_DIRECT_LIST O 2.585 LIST_LENGTH 6
19.02748414 15.22198732
21.56448203 17.7589852
24.10147992 20.29598309
26.6384778 26.6384778
34.24947146 34.24947146
50.73995772 50.73995772
6
NEIGHBOUR Si 1.58333 0.0 0.0 2
FFD 2.45E+10
FFP 2.45E+10
DG* -100.0

DEFINE_DISSOLUTION_EVENT Si
NEIGHBOUR O 1.58333 100.0 0.0 4
FFD 2.45E+10
FFP 2.45E+10
DG* -200.0

SET_MASS Si 28.08
SET_MASS O 16.0

BOX_FRAMES 2
SURFACE_FRAMES 50
DATA_ANALYSIS 300
MEAN_DISSOLVED_ANALYSIS 30

DISTANCE_ACCURACY 0.01
TARGET_STEP 62700

REMOVE_PLANE 726868.37 -419657.66 347.09998 -99105912 83.352005
REMOVE_PLANE 731025.25 -417257.66 994.50000 1.0343943e+08 88.528000
REMOVE_PLANE -187175.30 108065.70 173899.36 -86372176 152.25000
REMOVE_PLANE -187175.30 -108065.70 173897.84 -71101464 124.24800
REMOVE_PLANE 0.0000000 -216131.41 173897.11 -58946700 80.431999
REMOVE_PLANE 187175.30 -108065.70 173897.84 -81832440 135.88800
REMOVE_PLANE 187175.30 108065.70 173899.36 -84200872 117.38000
REMOVE_PLANE 0.0000000 216131.41 173900.09 -85376280 121.61600
REMOVE_PLANE -187175.30 -108065.70 173898.59 29434504 79.064003
REMOVE_PLANE -187175.30 108065.70 173898.59 17969432 64.776001
REMOVE_PLANE 0.0000000 216131.41 173898.59 12254965 71.220001
REMOVE_PLANE 187175.30 108065.70 173898.59 10416989 64.596001
REMOVE_PLANE 187175.30 -108065.70 173898.59 19110464 68.889999
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REMOVE_PLANE 0.0000000 -216131.41 173898.59 29767128 80.262001

ADD_XZ_DISLOCATION 19 149.682 3.1

REMOVE_XZ_DISLOCATION_FROM_SURFACE 19 149.682 6.0
FROM_Y_TO_Y 0.82 68.7

ADD_XY_DISLOCATION 2.128 45.6 3.1

REMOVE_XY_DISLOCATION_FROM_SURFACE 2.128 45.6 6.0
FROM_Z_TO_Z 27.6 226.56

WORK_NAME Quartz-wulff

A.3.4 xyz quartz file

Moreover, the ‘.xyz’ file with oxygen atoms is needed in all the three previous examples:

9
Si O2
Si 2.50500 0.00000 0.00000
Si -1.25250 2.16939 3.64667
Si 1.25250 2.16939 1.82333
O 1.59543 0.92112 0.91167
O 3.41457 0.92112 4.55833
O 2.50500 2.49654 2.73500
O 0.90957 3.41766 0.91167
O -0.90957 3.41766 4.55833
O 0.00000 1.84225 2.73500

A.4 Alite. Kossel crystal

DIMENSION_A 200
DIMENSION_B 200
DIMENSION_C 80

POSITION Any 0.5000 0.5000 0.5000 1
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DEFINE_DISSOLUTION_EVENT Any NEIGHBOUR_DIRECT_LIST Any 4.9 LIST_LENGTH 6
13.2 13.2
15.2 11.5
17.6 10.3
20.0 9.0
22.0 7.3
24.0 5.7
6
FFD 6e8
FFP 6e8
DG* -100.0

--change only dG above to deltaG study

PERIODICITY A B

CELL_A 4.9
CELL_B 4.9
CELL_C 4.9
CELL_ALPHA 90
CELL_BETA 90
CELL_GAMMA 90

SURFACE_FRAMES 50
DATA_ANALYSIS 500
LAYER_ANALYSIS C 10
MEAN_DISSOLVED_ANALYSIS 100

TARGET_STEP 3000000

DEFINE_AB_INSOLUBLE_CELLS 0 0 0 200 200
REMOVE_AC_PLANE_BY_CELLS 100 100 0 1 80

REMOVE_AC_PLANE_FROM_SURFACE 99 100 0 1 79
REMOVE_AC_PLANE_FROM_SURFACE 101 100 0 1 79
REMOVE_AC_PLANE_FROM_SURFACE 100 99 0 1 79
REMOVE_AC_PLANE_FROM_SURFACE 100 101 0 1 79

WORK_NAME KC_ALITA_MODEL3
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Appendix B: Cement chemistry notation

Cement chemistry notation is as follows:

C = CaO H = H2O Ŝ = SO3 F = Fe2O3 S = SiO2 M = MgO K = K2O A = Al2O3

N=Na2O P = P2O5
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