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Resumen

En la era de la información y las redes, no hay duda de que la vida diaria no puede
separarse de los dispositivos electrónicos, como televisores, teléfonos inteligentes u
ordenadores. En las últimas décadas hay una demanda creciente de la tecnología
de la información, en particular para resolver los inevitables problemas del alto con-
sumo de energía y los aquellos asociados con la miniaturización.

Para superar estos problemas técnicos, cada vez más científicos y técnicos se
han dedicado a buscar nuevas funcionalidades a la electrónica convencional. Te-
niendo en cuenta que, además de la carga, el electrón posee otro grado de libertad
conocido como espín. Este último está asociado al momento angular intrínseco del
electrón, cuyo momento magnético puede tomar dos valores: +h̄/2 y −h̄/2, deno-
tados como spin up y spin down, respectivamente, donde hbar es la constante de
Planck reducida. El espín como portador de información es el ingrediente básico de
la espintrónica, cuyo objetivo es aprovechar el grado de libertad del espín en las cor-
rientes eléctricas para transmitir y manipular información. La espintrónica, como
tecnología muy prometedora en la electrónica, tiene muchas ventajas destacadas,
como gran capacidad de almacenamiento, equipos ultrarrápidos y bajo consumo de
energía. Sin embargo, tiene otros problemas. Por ejemplo, es bien sabido que el
grado interno de libertad de giro se aprovecha para almacenar, manipular y leer.
Por lo tanto, merece la pena buscar una alternativa a la espintrónica. Además de
los grados de libertad de carga y espín, los electrones están dotados de un grado de
libertad de valle en muchos materiales bidimensionales, cuyas estructuras de ban-
das electrónicas ofrecen dos mínimos locales distintos (valles), K y K’ dentro de la
primera zona de Brillouin. Por lo tanto, naturalmente se puede esperar la existencia
de valleytronics, que apunta a la manipulación del grado de libertad del valle para
la nueva electrónica. En contraste con la espintrónica, las notables superioridades
de la valleytronics son la insensibilidad al campo magnético, la larga vida útil del
valle y la facilidad de manipulación eléctrica y óptica.

En esta tesis, nuestro objetivo es estudiar el transporte dependiente del espín y
valle en sistemas híbridos y materiales bidimensionales. Por este motivo, dividimos
la tesis en dos partes.

Parte I. Transporte de espín en heteroestructuras metal no magnético/material mag-
nético aislante

En la Parte I (Capítulos 2-5), nos concentramos en el estudio del transporte de
espín en heteroestructuras de aislante magnético/metal no magnético. Presentamos
una teoría microscópica completa de la magnetorresistencia de spin Hall en tales
estructuras. La teoría es general y se aplica a cualquier tipo de fase magnética (para-
magnética, ferromagnética, antiferromagnética, etc.). Como ejemplos, lo aplicamos
para describir la magnetorresistencia Hall de espín (SMR, por sus siglas en inglés,
spin Hall magnetoresistance) en un aislante paramagnético y un aislante ferromag-
nético, específicamente platino/Gd3Ga5O12 (Pt/GGG) y platino/sulfuro de europio
(Pt / EuS), respectivamente. Podemos extraer los parámetros en la intercara, por
ejemplo, la densidad de los momentos magnéticos y el acoplamiento de intercambio
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de espín entre los electrones itinerantes en metales no magnéticos y los momentos
magnéticos en el aislante magnético, así como cuantificar la conductancia dependi-
ente del espín, parámetros clave en la SMR. La conductancia dependiente del espín
tiene distintas componentes, y se clasifica como conductancia de absorción de espín
(Gs) y conductancia de mezcla de giro G↑↓ = Gr + iGi con Gr y Gi en relación con el
torque de transferencia de espín y el torque de tipo campo, respectivamente. Particu-
larmente Gi, parametriza el campo de intercambio efectivo en la interfaz magnética,
y es muy relevante en el área de superconductores con división de espín en las prox-
imidades del aislante magnético. Además, si el metal no magnético se reemplaza por
un metal normal en la proximidad del superconductor por debajo de la temperatura
crítica, podemos investigar la interacción de los efectos de proximidad magnéticos
y superconductores. Los nanocables semiconductores en las proximidades de ais-
lantes ferromagnéticos y superconductores son fundamentales para la creación de
un estado superconductor topológicamente no trivial.

• En el Capítulo 2, presentamos una teoría microscópica de la SMR de metales
normales en contacto con aislantes magnéticos. Nuestra teoría proporciona
una herramienta útil para comprender los experimentos sobre metales pesados
en contacto con aislantes magnéticos de diferentes tipos, y permite utilizar el
efecto de SMR como técnica para estudiar el magnetismo en las interfaces. Los
principales resultados de este capítulo son: Primero, expresamos la conductan-
cia de mezcla de espín, que gobierna la fenomenología del efecto, en términos
de los parámetros microscópicos de la intercara y las funciones de correlación
espín-espín de los momentos locales en la superficie del aislante magnético.
En segundo lugar, la dependencia del campo magnético y la temperatura de
la conductancia de mezcla de espín dando lugar un comportamiento de la re-
sistencia debido a una interacción entre el efecto Hanle y la mezcla de espín
en la intercara. En tercer lugar, describimos una magnetorresistencia negativa
inusual originada por un efecto Hanle no local.

• En el Capítulo 3, analizamos teóricamente la primera observación de SMR en
una película de Pt sobre un aislante paramagnético Gd3Ga5O12 (GGG). Hay
tres hallazgos clave para la comunidad de la espintrónica: primero, la señal
SMR exhibe un claro comportamiento de saturación al aplicar grandes campos
magnéticos a baja temperatura, lo cual es consistente con su curva de mag-
netización similar a un material paramagnético. En segundo lugar, hacemos
uso de la teoría microscópica de SMR para relacionar la señal observada con
la conductancia de mezcla de espín en la interfaz, donde encontramos que la
contribución deltorque de tipo campo (Gi) es tan importante como la contribu-
ción de torque transferencia de espín (Gr) en la interfcara Pt/GGG. En tercer
lugar, podemos cuantificar la interacción de intercambio entre los electrones
de conducción en el Pt y los espines localizados 4f en Gd 3+. Nuestro análisis
experimental de SMR utilizando la teoría microscópica nos permite cuantificar
los parámetros clave en la intercara del metal no magnético y el aislante mag-
nético, demostrando el poder de dicha técnica.

• En el Capítulo 4, presentamos la primera medición y descripción teórica SMR
en Pt sobre un aislante puramente ferromagnético, el sulfuro de europio (EuS).
Al ajustar las medidas de SMR con nuestra teoría micrsocópica, extrajimos la
dependencia de la temperatura de la conductancia dependiente del espín (Gs,
Gr y Gi), obteniendola contribución del torque de tipo campo (Gi), el torque
de transferencia de espín (Gr) y - la conductancia de absorción de espín (Gs).
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El valor obtenido de Gi es al menos tres veces mayor que Gr por debajo de
la temperatura de Curie del EuS. A partir de Gi, encontramos que el campo
de intercambio interfacial que actúa sobre los electrones de conducción de Pt
del orden de 1 meV. Nuestro trabajo proporciona un método fácil para cuan-
tificar este campo de división de espín interfacial, que juega un papel clave en
campos emergentes como la espintrónica superconductora y la caloritrónica
(Linder and Robinson, 2015; Giazotto, Heikkilä, and Bergeret, 2015) y la super-
conductividad topológica (Virtanen et al., 2018; Liu et al., 2019a).

• En el Capítulo 5, se estudian los de proximidad magnética y superconductivi-
dad en un nanohilo (NW por sus siglas en inglés, nanowire) semiconductor
desordenado en contacto a un superconductor y un aislante ferromagnético
(FI por sus siglas en inglés, ferromagnetic insulator). Mostramos que surge
una polarización de espín de equilibrio considerable en el NW debido a la
interacción entre las correlaciones superconductoras y el campo de intercam-
bio en el FI. La magnetización resultante tiene una contribución no local que
se extiende en el NW durante la longitud de coherencia superconductora y
es de signo opuesto a la polarización de espín local inducida por el efecto de
proximidad magnética en el estado normal. Para la configuración de unión de
Josephson, mostramos que la magnetización no local puede ser controlada por
la polarización de fase superconductora a través de la unión. Nuestros hallaz-
gos son relevantes para la implementación de estados ligados de Majorana en
estructuras híbridas de última generación.

Parte II. Transporte de espín y valle en materiales Dirac bidimensionales

En la Parte II (Capítulos 6-7), trabajamos sobre los efectos Hall de espín y valle y
la resistencia no local en materiales de Dirac bidimensionales. Investigamos los posi-
bles mecanismos responsables de las versiones clásicas de los efectos Hall de espín
y valle, y proponemos los esquemas para la detección experimental de estos efec-
tos mediante medidas de resistencia no local. La comprensión de las propiedades
magnéticas de la resistencia no local es significativa para la reciente controversia so-
bre el origen físico de la resistencia no local medida en dispositivos de barra Hall de
grafeno con absorbentes, donde la presencia de gran resistencia no local y la ausencia
de oscilación de Hanle, es decir , una oscilación de la resistencia no local con campo
magnético en el plano, sugieren la posibilidad del nuevo origen de la resistencia no
local insensible al campo magnético.

• En el Capítulo 6, estudiamos el efecto Hall de valle clásico de la deforma-
ción no uniforme. El grafeno sujeto a altos niveles de deformación por ciza-
llamiento conduce a fuertes campos pseudo-magnéticos que dan como resul-
tado la aparición de niveles de pseudo-Landau. Aquí mostramos que, con
niveles modestos de tensión, el grafeno también puede sostener un efecto Hall
de valle clásico (VHE por sus siglas en inglés, valley Hall effect) que se puede
detectar en mediciones de transporte no local. Proporcionamos una teoría del
VHE inducido por deformación a partir de la ecuación cuántica de Boltzmann.
Esto nos permite mostrar que promediar configuraciones de impurezas de
corto alcance destruye la coherencia cuántica entre valles, dejando el tiempo de
dispersión elástica y la tasa de dispersión entre valles como los únicos parámet-
ros que caracterizan la teoría del transporte. Usando esta teoría, calculamos la
resistencia no local de un dispositivo de barra Hall en el régimen de difusión.
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Nuestra teoría también es relevante para el estudio de los efectos de deforma-
ción moderada en las propiedades de transporte (no locales) de otros materi-
ales bidimensionales y heteroestructuras de van der Waals.

• En el Capítulo 7, estudiamos la interacción del efecto Hall de espín y valle en
materiales 2D de Dirac. Eliminaré esta oración: además del espín, los elec-
trones en muchos materiales poseen un grado de libertad de pseudo-espín
adicional conocido como ’valle’. En materiales donde los grados de libertad
de espín y valle están débilmente acoplados, ambos pueden excitarse y con-
trolado de forma independiente. En este capítulo, estudiamos un modelo que
describe la interacción de los efectos Hall de espín y valle en estos materiales
bidimensionales. Demostramos la aparición de una corriente longitudinal neu-
tra adicional que está polarizada tanto en espín como en valle. Esta corriente
neutra se puede usar para controlar la densidad de espín ajustando la magni-
tud del efecto Hall del valle. Además, la interacción de los dos efectos puede
suprimir el efecto Hanle. La última observación proporciona una posible expli-
cación de la ausencia del efecto Hanle en varios experimentos recientes (Völkl
et al., 2018; Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey, 2015). Fi-
nalmente, enfatizamos que nuestro trabajo también abre la posibilidad de dis-
eñar la conversión entre el valle y los grados de libertad de espín en materiales
bidimensionales.
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Abstract

Living in the era of information and networks, there is no doubt that our daily lives
can not be separated from electronic devices, such as televisions, smartphones, or
computers. In the last decades, there is an increasing demand for information tech-
nology, in particular, to solve the inevitable high-energy consumption and the issues
associated with miniaturization.

To surmount these technical bottlenecks, more and more scientists and techni-
cians have devoted themselves to searching for new functionalities to conventional
electronics. Note that, in addition to the charge degree of freedom, electrons possess
a spin degree of freedom. The latter is the intrinsic angular momentum, whose mag-
netic moment can take two values: +h̄/2 and −h̄/2, denoted as spin up and spin
down, respectively, where h̄ is the reduced Planck constant. Spin, as an informa-
tion carrier, is the basic ingredient of spintronics, which aims at exploiting the spin
degree of freedom in electronic currents to transmit and manipulate information.
Spintronics, as an up-and-coming technology in electronics, has many preeminent
advantages, such as super-large storage capacity, super-fast equipment, and low-
energy consumption. However, it suffers from some other problems. For instance,
it is well-known that the internal degree of freedom of spin is harnessed to store,
manipulate, and readout. Hence, it is worth finding an alternative to spintronics. In
addition to charge and spin degrees of freedom, electrons are endowed with a valley
degree of freedom in many two-dimensional materials, whose electronic band struc-
tures offer two distinct local minima (valleys), K and K′ within the first Brillouin
zone. Thus, one can naturally expect the existence of valleytronics, which aims to
manipulate the valley degree of freedom for new electronics. Contrasted with spin-
tronics, the remarkable superiorities of valleytronics are insensitivity to a magnetic
field, long valley lifetime, as well as easily electrical and optical manipulation.

This thesis aims to study the spin- and valley-dependent transport in the hybrid
system and two-dimensional materials. For this sake, we divide the whole thesis
into two parts. The structure of the thesis is as follows:

Part I. Spin transports in normal metal/magnetic insulator heterostructures

In Part I (Chapters 2-5), we concentrate on the study of the spin transport in non-
magnetic metal/magnetic insulator heterostructure. We present a fully microscopic
theory of the spin Hall magnetoresistance in such structures. The theory is rather
general and applies to any magnetic phase (paramagnetic, ferromagnetic, antifer-
romagnetic, etc.). As examples, we apply it to describe the spin Hall magnetore-
sistance in paramagnetic and ferromagnetic spin Hall magnetoresistance, specifi-
cally Platinum/Gd3Ga5O12 (Pt/GGG) and Platinum/Europium sulfide (Pt / EuS),
respectively. We can extract the interfacial parameters, for instance, the density of
magnetic moments and the spin exchange coupling between the itinerant electron in
non-magnetic metal and magnetic moments in the magnetic insulator, and quantify
the spin-dependent conductance, which is on the heart of spin Hall magnetoresis-
tance, and is classified as spin-sink conductance (Gs) and spin-mixing conductance
G↑↓ = Gr + iGi with Gr and Gi relative to spin-transfer torque and field-like torque,
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respectively. Particularly Gi, it parameterizes the effective exchange field at a mag-
netic interface and is very relevant in the area of spin-split superconductors in prox-
imity to a magnetic insulator. Furthermore, if the non-magnetic metal is replaced
by normal metal in proximity to the superconductor below the critical temperature,
we can investigate the interplay of magnetic and superconducting proximity effects.
Semiconducting nanowires in proximity with ferromagnetic insulators and super-
conductors are central to creating a topologically non-trivial superconducting state.

• In Chapter 2, we present a microscopic theory of the spin Hall magnetoresis-
tance of normal metals in contact with magnetic insulators. Our theory pro-
vides a useful tool for understanding the experiments on heavy metals in con-
tact with magnetic insulators of different kinds, and it enables the spin Hall
magnetoresistance effect to be used as a technique to study magnetism at in-
terfaces. This chapter’s main results are: First, we express the spin mixing
conductance, which governs the phenomenology of the effect, in terms of the
microscopic parameters of the interface and the spin-spin correlation functions
of the local moments on the surface of the magnetic insulator. Second, the mag-
netic field and temperature dependence of the spin mixing conductance lead
to a rich resistance behavior due to an interplay between the Hanle effect and
the spin mixing at the interface. Third, we describe an unusual negative mag-
netoresistance originating from a non-local Hanle effect.

• In Chapter 3, we report and theoretically analyze the first observation of the
spin Hall magneto-resistance (SMR) in a Pt film on top of a paramagnetic insu-
lator Gd3Ga5O12 (GGG). There are three key findings for the spintronics com-
munity: First, the SMR signal exhibits the clear saturation behavior with ap-
plying large magnetic fields at low temperature, which is consistent with its
paramagnet-like magnetization curve. Second, we use the microscopic theory
of SMR to relate the observed signal to the spin-mixing conductance at the
interface, where we find that the field-like torque contribution (Gi) is as impor-
tant as the spin-transfer torque contribution (Gr) in Pt/GGG interface. Third,
we can quantify the exchange interaction between conduction electrons in Pt
and 4f localized spins in Gd3+. Our experimental analysis of SMR using the
newly developed microscopic theory allows us to quantify key parameters at
the interface of heavy metal/magnetic insulator, demonstrating the power of
such a technique.

• In Chapter 4, we report the first measurement and theoretical description of
the spin Hall magneto-resistance (SMR) of Pt on top of a purely ferromag-
netic insulator, Europium sulfide (EuS). By fitting the SMR measurements with
our microscopic theory, we extracted the temperature dependence of the spin-
dependent conductance (Gs, Gr and Gi), disentangling the contribution of field-
like torque (Gi), spin-transfer torque (Gr), and spin-sink conductance (Gs). The
obtained value of Gi s at least three times larger than Gr below the Curie tem-
perature of EuS. From Gi, We find an interfacial exchange field acting upon the
conduction electrons of Pt of the order of 1 meV. Our work provides an easy
method to quantify this interfacial spin-splitting field, which plays a key role in
emerging fields such as superconducting spintronics and caloritronics (Linder
and Robinson, 2015; Giazotto, Heikkilä, and Bergeret, 2015), and topological
superconductivity (Virtanen et al., 2018; Liu et al., 2019a).
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• In Chapter 5, we study the magnetic and superconducting proximity effects
in a disordered or metallic semiconducting nanowire (NW) attached to super-
conducting leads and a ferromagnetic insulator (FI). We show that a sizable
equilibrium spin polarization arises in the NW due to the interplay between
the superconducting correlations and the exchange field in the FI. The result-
ing magnetization has a nonlocal contribution that spreads in the NW over the
superconducting coherence length and is opposite in sign to the local spin po-
larization induced by the magnetic proximity effect in the normal state. For
a Josephson-junction setup, we show that the nonlocal magnetization can be
controlled by the superconducting phase bias across the junction. Our findings
are relevant for the implementation of Majorana bound states in state-of-the-
art hybrid structures.

Part II Spin and valley transport in two-dimensional Dirac materials

In Part II (Chapters 6-7), we work on the spin and valley Hall effects and non-
local resistance in two dimensional Dirac materials. We investigated the possible
mechanisms responsible for the classical versions of spin and valley Hall effects
and proposed the schemes for experimental detection of these effects by nonlocal
resistance measurements. The understanding of the magnetic properties of nonlo-
cal resistance is significant for the recent controversy about the physical origin of
nonlocal resistance measured in Hall bar devices made of graphene decorated with
absorbates, where the presence of large nonlocal resistance and the absence of Hanle
oscillation, that is, an oscillation of the nonlocal resistance with the in-plane mag-
netic field, suggest the possibility of the new origin of nonlocal resistance insensitive
to the magnetic field.

• In Chapter 6, we study the classical valley Hall effect from the non-uniform
strain. Graphene subject to high levels of shear strain leads to strong pseudo-
magnetic fields resulting in the emergence of pseudo-Landau levels. Here we
show that, with modest levels of strain, graphene can also sustain a classical
valley Hall effect (VHE) that can be detected in nonlocal transport measure-
ments. We provide a theory of the strain-induced VHE starting from the quan-
tum Boltzmann equation. This allows us to show that averaging over short-
range impurity configurations destroys quantum coherence between valleys,
leaving the elastic scattering time and inter-valley scattering rate as the only
parameters characterizing the transport theory. Using the theory, we compute
the nonlocal resistance of a Hall bar device in the diffusive regime. Our theory
is also relevant for studying moderate strain effects in the (nonlocal) transport
properties of other two-dimensional materials and van der Walls heterostruc-
tures.

• In chapter 7, we study the interplay of spin and valley Hall effect in 2D Dirac
materials. I will remove this sentence: In addition to spin, electrons in many
materials possess an additional pseudo-spin degree of freedom known as ‘val-
ley.’ In materials where the spin and valley degrees of freedom are weakly cou-
pled, they can be both excited and controlled independently. In this chapter,
we study a model describing the interplay of the spin and valley Hall effects in
such two-dimensional materials. We demonstrate the emergence of an addi-
tional longitudinal neutral current that is both spin and valley polarized. This
additional neutral current can control the spin density by tuning the magni-
tude of the valley Hall effect. Besides, the interplay of the two effects can sup-
press the Hanle effect. The latter observation provides a possible explanation
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for the absence of the Hanle effect in several recent experiments (Völkl et al.,
2018; Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey, 2015). Finally, we
emphasize that our work also opens the possibility to engineer the conversion
between the valley and spin degrees of freedom in two-dimensional materials.
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Chapter 1

Introduction

This chapter is divided into six sections, which introduce the basic concepts related
to this thesis topic. I begin with general motivations for spintronics and valleytron-
ics. Sections 1.2 (1.3) review spin (valley) Hall effects and spin (valley) relaxation,
with special emphasis on the microscopic origins of spin-(valley-)orbit coupling, re-
spectively. Next, I discuss the spin-dependent transport in normal metal/magnetic
insulator heterostructures in section 1.4 and the spin- and valley-dependent trans-
port in two-dimensional (2D) Dirac materials in section 1.5. The chapter ends with
an outline of the thesis.

1.1 Motivations

Many people may have asked themselves what will happen if all the electronic de-
vices stopped working? Indeed, all aspects of our lives nowadays are greatly influ-
enced by electronic technology. In the last decades, significant progress in electronic
industries benefits from the development of electronics, which exploits the charge
degree of freedom of the electron for reading, writing, transporting, and storing
information. However, with the increasing demand for information technology, tra-
ditional electronic industries are suffering from many difficulties. They are i) more
and more expensive manufacturing costs, ii) inevitable high-energy consumption, as
well as iii) smaller and smaller units in integrated circuits so that the Moore’s Law
fails.

To overcome these difficulties, scientists and technicians have been paying at-
tention to the spin degree of freedom of electron. Note that the spin of the electron
can be an alternative to usual electronics, and hence logical levels 0 and 1 can be
encoded by different values of magnetic moments. We then reach the spintronics
area, which relies upon the spin degree of freedom of electronic currents to realize
the manipulation, transmission, storing, and read-out of information. Indeed, some
spintronic devices are nowadays widely used in electronics, due to many remark-
able advantages, for instance, super-large storage capacity, super-fast equipment,
and low-energy consumption.

The birth of spintronics stems from the pioneering works of the groups led by
Albert Fert [Baibich et al., 1988] and Peter Grünberg [Binasch et al., 1989]. In two
almost simultaneous but independent experiments on ferromagnet/normal-metal
multilayers, revealed simultaneously, they found a new and revolutionary effect:
the giant magnetoresistance (GMR). It is a sizable change of resistance when the
magnetic moments of adjacent ferromagnetic layers are changed from a parallel to
an antiparallel alignment in a configuration denoted as a spin valve. Both were
awarded the Nobel prize in Physics in 2007 because of this discovery (Fert, 2008;
Fullerton and Schuller, 2007). In spintronics, the logical levels 0 and 1 can be respec-
tively encoded by high and low magnetoresistance states, which correspond to the
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antiparallel and parallel orientation of magnetic layers in a spin valve. Thus, it can
be used for the reading process in hard disk drives (Berg et al., 2013). Moreover,
the GMR effect can be applied in information storage technologies, such as magne-
toresistive random-access memory (Zhu, 2008; Apalkov, Dieny, and Slaughter, 2016;
Bhatti et al., 2017). It supports a non-volatile memory with near-zero leakage power
consumption (Umesh and Mittal, 2019). In addition to GMR, another ingredient
of spintronics is spin-transfer torque (STT). It describes the phenomenon by which
the orientation of a magnetic layer embedded in a magnetic tunnel junction or spin
valve can be control by injecting a spin-polarized current. This effect can be utilized
to switch between logic 0 and 1 in magnetic random-access memory (Brataas, Kent,
and Ohno, 2012), and hence it is also essential for the writing process (Kawahara
et al., 2012).

Though spintronics has obvious advantages mentioned above, as the internal
degree of freedom of electron, it is harnessed to manipulate spin. It is generally
linked to strong magnetic fields, which introduces additional technical limitations
on the application of spintronics. The spin is also electrically insensitive to gate
voltage and hence makes it hard to interface conventional electronics. Moreover,
due to magnetic impurities and spin-orbit disorder, the spin lifetime is short (0.1-
1ns), and hence in some cases, electrons lose their spin states before one can perform
the operation that one intends. To avoid these problems, further alternatives are
needed.

In two-dimensional (2D) materials, such as silicon inversion layers (Sham et al.,
1978; Bloss, Sham, and Vinter, 1979), graphene (Rycerz, Tworzydło, and Beenakker,
2007), and transition metal dichalcogenide (TMD) (Zeng et al., 2012), in which elec-
tronic band structures possess two distinct local minima, K and K′ within the first
Brillouin zone, (see Fig. 1.1), electrons are endowed with valley degree of freedom
in addition to charge and spin. As a result, the logical levels 0 and 1 can be encoded
by different discrete values of the crystal momentum. As a twin of spintronics, val-
leytronics aims to manipulate the valley degree of freedom for new electronics. Like
spintronics, valleytronics also provides a tremendous advantage in storing and pro-
cessing information (Schaibley et al., 2016). On the other hand, compared to spin-
tronics, the remarkable advantages of valleytronics are i) valley degree of freedom
is generally insensitive to a magnetic field (Zhang, Huang, and Cazalilla, 2017); ii)
the intervalley scattering in 2D materials, in general, is weak in the material, which
leads to a long valley lifetime.

There is increasing attention paid to valleytronics as an alternative or comple-
ment to electronics. The early studies of valley degree of freedom can stem from
the works of Sham et al., 1978; Bloss, Sham, and Vinter, 1979, which focused on the
valley degeneracy and inter-valley coupling in 2D electron gases in silicon inversion
layers. Bloss, Sham, and Vinter, 1979 predicted that the intravalley exchange and
correlation could generate spontaneous valley ferromagnetism, in analogy to spin
ferromagnetism. Thus, Xu et al., 2014 suggested that the valley might also be ex-
ploited for non-volatile information storage. Besides, Isberg et al., 2013 proposed
that the valley degree of freedom in diamond enables valleytronic information pro-
cessing as a new route to quantum computing. On the other hand, valleytronics is
currently under intensive research in graphene (Jiang et al., 2013; Gradinar et al.,
2013; Cosma et al., 2014; Beconcini, Taddei, and Polini, 2016; Gorbachev et al., 2014)
and other 2D materials (Xiao, Chang, and Niu, 2010; Shimazaki, Yamamoto, and
Borzenets, 2015; Sie and McIver, 2015; Lee, Mak, and Shan, 2016).

In both spintronics and valleytronics, the generation of spin and valley currents
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FIGURE 1.1: Illustration of valley degree of freedom. (a) Sketch of the
energy spectrum of pristine graphene. (b) Indication of valley K and K’ in the

first Brillouin zone. Panel (a) comes from Castro Neto et al., 2009

with high quality is pivotal in developing functional devices. One of the most ef-
ficient and convenient ways of generation, is by means of the spin (valley) Hall ef-
fect, that is, the conversion from longitudinal charge current to transverse spin (valley)
current, respectively. The mechanism responsible for this conversion is spin-(valley-
)orbit coupling, which will be introduced in subsections 1.2.1 (1.3.1), respectively.

1.2 Spin Hall effect and spin relaxation

In this section, I begin with the introduction of the origins of spin-orbit coupling
(SOC) and discuss its contributions to spin Hall effect (SHE) and to spin relaxation
in subsections 1.2.2 and 1.2.3, respectively.

1.2.1 Spin-orbit coupling

I first discuss the origin of SOC. The motion of electrons depends on the electric and
magnetic fields that are applied to them. The magnetic field in the coordinate system
which moves with the velocity of itinerant electrons, ~v, reads

~Bmove =
~Bstatic − ~v

c2
0
× ~Estatic√

1− v2

c2
0

, (1.2.1)

where c0 is the velocity of light. ~Estatic, ~Bstatic are the electric and magnetic field in
the static coordinate system. Eq. (1.2.1) reveals that a particle moving in an electrical
field perceives an additional magnetic field directed perpendicularly to the electrical
field and perpendicularly to the particle movement direction. As I will explain soon,
this is the origin of SOC and the spin Hall effect introduced in subsection 1.2.2.

Read from Eq. (1.2.1), SOC is a relativistic effect arising from a spatially inhomo-
geneous potential, V(~r), which induces a static electric field, ~Estatic = −(1/q)∇V(~r)
(see Winkler, 2003 and reference therein contained), where q is the charge of con-
duction particle. In the rest frame of the free electrons, they suffer from an effective
magnetic field, which can be obtained from Eq. (1.2.1) in the non-relativistic limit
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(v� c0)

~BSOC = − 1
c2

0
~v× ~Estatic . (1.2.2)

Consequently, an electron which moves in a static electrical field ~Estatic, perceives
an effective magnetic field ~BSOC in its own reference frame. It is well-known that
electrons possess an intrinsic spin magnetic moment

~µ =
gqh̄
8m

~̂s, (1.2.3)

and its interaction with effective magnetic field (1.2.2) is described by

HSOC = −~µ · ~BSOC = − gh̄
8m2c2

0
~s · ~p× ~∇V(~r), (1.2.4)

where g is g-factor, m is the mass of conduction particle, and ~̂s is Pauli matrix in
spin space. In this subsection, I will introduce two different origins of this static
electric field. They are i) nuclear potential, ii) conformal, and crystal potential in 2D
materials.

In atoms, in which the static electric field is generated from nuclear potential
VAT(~r) = −qZ/r. Thus, one reaches ~Estatic(~r) = Z~̂r/r2, where q and Z are the charge
of electron and nucleus, respectively. Note that electrons undergo cyclotron motion
around nucleus with velocity ~v, that is, the orbital rotation of an electron around
nuclear. Its interaction with effective magnetic field (1.2.2) is described by

HSOC =
gh̄

8m2c2
0

dVAT(r)
rdr

~̂s ·~L. (1.2.5)

Obviously, Eq. (1.2.5) depicts an interaction between spin magnetic moment h̄~̂s/2
and angular moment~L =~r×~p. The effective magnetic field ~BSOC affects the electron
spin. Hence the spectrum of the electron become spin-dependent. This is the origin
of the fine structure of energy levels of atoms.

Next, I discuss SOC in a 2D material contained in the x− y plane. The remarkable
properties are the spatial restriction in z direction. Bychkov and Rashba, 1984 have
shown that there exists a SOC as a direct result of inversion symmetry breaking in
the direction perpendicular to the two-dimensional (2D) plane. For instance, the
conformal potential always induces a static electric field towards the bulk direction.
This out-of-plane electric field breaks inversion symmetry and can be approximately
described by a spatially inhomogeneous potential V2D(~r) = −qEzz. This is the origin
of Rashba SOC

HR
SOC = −αR(ŝxky − ŝykx), (1.2.6)

where αR is the constant of Rashba SOC. It can explain the anisotropic magnetore-
sistance (Schliemann and Loss, 2003) and provide the possibility of manipulating
electron spins by electric fields (Datta and Das, 1990).

In addition to out-of-plane static electric field, there also exist in-plane one. Bernevig
and Zhang, 2006 suggested a spatially inhomogeneous SOC in graphene

HBZ
SOC = −αB(xky − ykx)ŝz, (1.2.7)
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where αB is the constant of Benevig-Zhang SOC. It can be treated as non-abelian
spin gauge fields (Raimondi et al., 2012; Gorini et al., 2010). Linear to kinetic mo-
mentum~k, Benevig-Zhang SOC (1.2.7) can be combined with pristine Hamiltonian
of 2D electron gas

H0 =
h̄2k2

2m
+ gµBB

ŝz

2
, (1.2.8)

where magnetic field ~B is assumed to be in z direction. Then, we reach the Hamilto-
nian of Benevig-Zhang model

ĤBZ = H0 + HBZ
SOC =

h̄2

2m

[(
kx −

q
h̄

Ax,z
SOC ŝz

)2
+
(

ky −
q
h̄

Ay,z
SOC ŝz

)2
]
+ gµBB

ŝz

2
,

(1.2.9)

where the Benevig-Zhang SOC is described by spatially inhomogeneous spin gauge
field

Âx,z
SOC ŝz = +ŝz mαB

h̄q
αBy, (1.2.10)

Ây,z
SOC ŝz = −ŝz mαB

h̄q
αBx. (1.2.11)

This spin gauge field ~Az
SOC ŝz will induces a spin magnetic field defined by ŝz~∇ ×

~Az
SOC(x) and pointing in z direction

B̂z
SOC = Bz

SOC ŝz =
mαB

h̄q
αBŝz . (1.2.12)

Finally, the Benevig-Zhang SOC is described by a spin magnetic field along the z-axis
direction, which point in opposite direction for different spins.

I also briefly introduce here the Kane-Mele SOC, which will be used in Chapter
7. It is spatially homogeneous and is independent of kinetic momentum. To discuss
this kind of SOC, I are required to briefly introduce graphene model, whose pristine
Hamiltonian is given by

H0(~k) = h̄vF
(
τ̂zσ̂xkx + σ̂yky

)
, (1.2.13)

where vF is the Fermi velocity and σx, σy are the Pauli matrices in sublattice space.
Kane and Mele, 2005 proposed a spatially homogeneous one, in monolayer graphene

HK
SOC = αKŝzτ̂zσ̂z, (1.2.14)

where αK is the constant of Kane-Mele SOC. Compared to Rashba and Dresselhaus
SOC, Kane-Mele one is independent of kinetic momentum. The physics of the spa-
tially homogeneous SOC should be understood by ways of Berry curvature density.
This is also the spin magnetic field, which has opposite sign for different spins.

In addition to SOC in 2D systems due to inversion symmetry breaking, 3D heavy
metals exhibit large SOC, which is also addressed in this thesis. Its origin is material
dependent, but extrinsic in several cases that is due to the presence of impurities.

The SOC has many interesting effects, such as the spin Hall effect, spin relaxation,
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spin precession, spin-dependent scatterings, spin-transfer torque, and the enhance-
ment of the applied magnetic field. Here I focus on the spin Hall effect and spin
relaxation, which will be explained in subsections 1.2.2 and 1.2.3, respectively.

1.2.2 The Spin Hall effect

In spintronics, it is essential to generate spin currents. The SHE is one of the most
important and convenient methods to generate them.

Before introducing the SHE, I discuss the ordinary Hall effect (OHE). It was first
discovered by Hall, 1879 and explained using the Drude model, which was intro-
duced by Drude, 1900 to explain the transport properties of electrons in normal
metal with imperfections. It is well-known that the linear response of a normal
metal to a weak electric field ~E is a charge current density in the electric field di-
rection. In the presence of a weak magnetic field, ~H perpendicular to the electron
velocity ~v, the resulting Lorentz force q~v× ~H is in the transverse direction and have
an opposite direction for carriers with different signs of charge (such as negative for
electrons and positive for holes). By weak, I here mean small enough magnetic fields
so that the radius of the cyclotron motion Rc is much larger than mean-free path l,
i.e., Rc � l. In this case, the system is in the diffusive regime, and the charge car-
riers are pushed towards the edges of the conductor and accumulate on the lateral
boundaries, which results in the build-up of an electric field, ~Eb in the transverse
direction. In the steady-state, the electronic motion (~v) is described by the equation
of motion

~v
τ
=

q
m

(
~E +~v×~zB

)
, (1.2.15)

where ~v, q and m, are drift velocity, charge, and mass of the carrier, respectively, and
τ is the mean-free time between collisions with impurities. c0 is the speed of light.
Without losing generality, I set the magnetic field in the z-direction in this section.
Note that, in the presence of a perpendicular magnetic field, carriers with a different
sign of charge will be spatially separated and accumulate on opposite boundaries,
as shown in FIGURE 1.2 (a).

In analogy to OHE, the spin degree of freedom of itinerant electrons indicates the
existence of SHE. The mechanism responsible for SHE is the SOC mentioned above,
which can be vividly described by a figure of merit, namely the spin magnetic field in
z direction, B̂z

SOC = ŝzBz
SOC, pointing upwards for spin-up electrons and downwards

for spin-down electrons. It was first predicted by Dyakonov and Perel, 1971, and
re-discovered by Hirsch, 1999, who introduced the name of ”spin Hall effect”. The
spin-dependent extrinsic Mott scattering is at the heart of the emergence of SHE. As a
result, a transverse spin current appears in response to passing a longitudinal electric
current through the material. This leads to spin accumulation (i.e., magnetization)
at the lateral boundaries and happens in the absence of any magnetic field.

One can describe the SHE in similar terms as the OHE. It is well-known that the
SOC linear to kinetic momentum can be combined with kinetic energy and hence
alternatively described by the spin gauge field as depicted in the work of Tokatly,
2008; Bernevig and Zhang, 2006; Berche et al., 2009. Hence, the spin transport asso-
ciated with SOC, in general, can be vividly understood by a figure of merit, namely
the spin magnetic field, which points in opposite directions for particles with different
spins. Using this picture, in the steady-state, the SHE can be effectively described by
the following extension to the Drude model:

~v±
τ

=
q
m

[
~E±~v± ×~zBz

SOC

]
, (1.2.16)
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FIGURE 1.2: Members of the Hall effect family. (a) Classical Hall ef-
fect. (b) Quantum Hall effect. (c) Spin Hall effect. (d) Quantum Spin
Hall effect. Numbers in parentheses indicate the years of each discov-
ery. H is the external magnetic field. Figures come from Chang and

Li, 2016.

where ~v± is an drift velocity for the electrons with spin s (s = 1 for spin-up and
s = −1 for spin-down electrons). The spin transport is described in FIGURE 1.2(c).
Compared to the OHE, described by Eq. (1.2.15), the effective Lorentz force propor-
tional to BSOC in Eq. (1.2.16) has an opposite sign for carriers of different spins, which
leads to the aforementioned spin accumulation at the lateral boundaries.

Phenomenologically, both OHE and SHE can be described by the time evolution
of charge and spin current densities, J j

c and J ja
s , in steady state

D∂jµc + θOHεjlinl Ji
c + θa

SHεjai Jia
s = −J j

c + σEj, (1.2.17)

D∂jµ
a
s −Dεabc e

h̄
Ab

j µc
s + θOHεjlinl Jia

s + θa
SHεjai Ji

c = −J ja
s , (1.2.18)

where the conversion efficiency from longitudinal charge current to transverse charge
and spin currents can be characterized by a figure of merit, namely the ordinary and
spin Hall angles, respectively,

θOH =
evFBτ

h̄kF
, (1.2.19)

θa
SH =

evFBa
SOCτ

h̄kF
. (1.2.20)
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Here, the spin magnetic field, Ba
SOC, can be derived from both intrinsic and extrinsic

SOC from a microscopic perspective (Tokatly, 2008; Zhang, Huang, and Cazalilla,
2019). τ is the Drude relaxation time. D is diffusion coefficient, σ is Drude conduc-
tivity, ν(µ) is density of state at chemical potential µ. θC and θa

C are ordinary and
spin Hall angles, respectively, which are induced by the real and spin magnetic field
in ~n and ~na direction. For the sake of simplicity, I first switch off real magnetic field
and begin with uniform case. Then Eqs. (1.2.17) and (1.2.18) reduce into

~J j
c = ∑

a
θa

SH~a×~Ja
s + σ~E, (1.2.21)

~Ja
s = θa

SH~a×~Jc. (1.2.22)

Eqs. (1.2.22) and (1.2.21) correspond to spin Hall effect and inverse spin Hall effect,
respectively.

Being electrically neutral, direct detection of spin current is not easy, and their ex-
istence must be inferred in indirect ways. Averkiev and Dyakonov, 1983 proposed
an indirect method to detect the SHE under optical spin orientation in semiconduc-
tors, which has been experimentally demonstrated by Bakun et al., 1984. The direct
observation of SHE was realized more than 30 years later it was predicted. Electri-
cally induced electron-spin polarization near the edges of a semiconductor channel
was detected and imaged using Kerr rotation microscopy by Kato et al., 2004. Also,
Wunderlich et al., 2005 reported the experimental observation of the spin-Hall effect
in a 2D hole system, which allows an angle-resolved polarization detection at oppo-
site edges. Moreover, Valenzuela and Tinkham, 2006 reported a direct and electri-
cal measurement of the SHE in a diffusive metallic conductor, in which an induced
voltage was observed, that results exclusively from the conversion of the injected
spin current into charge imbalance through the inverse SHE. See more experimental
demonstration in the review article of Sinova et al., 2015 and the references therein.

In addition to SHE, the SOC is also responsible for spin relaxation. In the next
section, I discuss this issue.

1.2.3 Spin relaxation

Spintronics usage requires that the spin polarization of the electron ensemble in the
device (such as a spin valve) can be retained sufficiently long. This is parameterized
by the so-called spin-relaxation time characterizing the decay of spin polarization.
At the end of this section, I discuss the origins of spin relaxation.

The time evolution of charge and spin densities, µc and µa
s , can be described by

phenomenological equations

∂tµc + ∂j J
j
c = 0, (1.2.23)

∂tµ
a
s + ∂j J

ja
s = − 1

τa µa
s + ωLεabcnbµc

s, (1.2.24)

where τa is spin-relaxation time, and ωL = gµBB/h̄ is Larmor frequency describing
the Hanle precession. The later is sketched in FIGURE 1.3, and describes a spin pre-
cession along the direction of magnetic field, as shown in the inset, when diffusing
along the channel. It will induce a modulation of magnetoresistance and nonlocal
resistance as I will explain in Sections 1.4 and 1.5, respectively.
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FIGURE 1.3: Hanle effect. Illustration of Hanle precession. Figure comes
from Garcia et al., 2018.

The spin relaxation is caused by spin-flip processes and should be derived from
a microscopic theory. Different mechanisms are responsible for spin relaxation (or
spin-flip), as shown in FIGURE 1.4. Elliott, 1954; Yafet, 1963 revealed that itinerant
electrons would undergo a spin-flip after many collisions with impurities induc-
ing local SOC, as plotted in panel (a). In the materials without a center of sym-
metry, there exist sizable SOC, which, as I explained in subsection 1.2.1, is equiv-
alent to a momentum-dependent spin magnetic field. In the presence of impurities
inducing local scalar potential, the momentum is altered during the scattering, and
hence the spin magnetic field changes as well. Consequently, the precession axis and
frequency change randomly, as described by the panel (b). The contributions of
the combination of SOC and scalar impurities to spin relaxations is referred to as
the Dyakonov–Perel mechanism (D’yakonov and Perel, 1971; Dyakonov and Perel,
1972). Also, the mechanism proposed by Bir, Aronov, and Pikus, 1975 is sketched
in panel (c). It origins from the efficient spin exchanges between electrons and holes
in p-doped semiconductors. Note that the spin of a hole can relax very fast, and
hence this exchange offers an indirect spin relaxation of conduction electrons. Fur-
thermore, spin can also be flipped due to hyperfine interaction with the atomic nu-
clei, as shown in panel (d). Whereas SOC fundamentally causes the Elliott-Yafet,
Dyakonov–Perel, and Bir-Aronov-Pikus spin relaxation. Another spin relaxation
mechanism, which will be discussed in detail in Chapter 2, stems from the spin-
exchange between itinerant electrons and local moments in magnetic insulators.

We now turn our focus on the valley degree of freedom. Specifically on the valley
Hall effect.
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FIGURE 1.4: Four mechanisms of electron spin relaxation in semicon-
ductors resulting from spin-flip processes. This figure was from Band and

Avishai, 2013.

1.3 Valley Hall effect and valley relaxation

In this section, I introduce the origins of valley-orbit coupling (VOC) and discuss
its contributions to the valley Hall effect (VHE) and valley relaxation in subsections
1.3.2 and 1.3.3, respectively.

1.3.1 Valley-orbit coupling

Xiao, Yao, and Niu, 2007; Yao, Xiao, and Niu, 2008 have theoretically predicted
that the coupling between valley and orbit angular momentum can be realized in
graphene when the sub-lattice inversion symmetry is broken. Experimentally, Gor-
bachev et al., 2014 first achieved this asymmetry by aligning graphene on top of
hexagonal boron nitride. The presence of the substrate, breaking the sub-lattice
inversion symmetry globally induces an energy difference between A and B sub-
lattices

H2D
G = αGσ̂z . (1.3.25)

Consequently, an energy gap opens at the Dirac point, where the conduction and
valence bands meet (Castro Neto et al., 2009; Katsnelson, 2012). We will see that the
spatially homogeneous gap can be recognized as VOC, an analogy to the spatially
homogeneous Kele Mele model to SOC introduced in subsection 1.2.1. Following
the same way as the Kane-Mele SOC, we can obtain the Berry connection and Berry
curvature density, which have an opposite sign for different valleys. The skewed
motion induced by Berry curvature density is plotted in FIGURE 1.5 (a), where a fi-
nite Berry curvature density with an opposite sign at opposite valleys endows elec-
trons with an anomalous velocity and leads to a valley-polarized current in bulk
transverse to the applied electric field (Haldane, 2004; Xiao, Chang, and Niu, 2010).

Both SOC and VOC also have Berry curvature versions; the existence of spatially
inhomogeneous Bernevig-Zhang SOC leads to the natural question if there is an in-
homogeneous VOC. Here, I engineer this inhomogeneous VOC from shear strain in
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FIGURE 1.5: The mechanisms responsible for valley-orbit coupling
(VOC). (a) Berry curvature and anomalous velocity induced by substrate. (b)
The SU(2) valley magnetic field generated by the non-uniform strain. Panels
(a) and (b) are adapted from Gorbachev et al., 2014 and Chaves et al., 2010,

respectively.

graphene. Within the~k ·~p approximation to the band structure of graphene (see e.g.
Katsnelson, 2012), the nonuniform (shear) strain can be described as a valley gauge
field which takes opposite signs at opposite valleys (see e.g. Guinea, Katsnelson, and
Geim, 2010; Vozmediano, Katsnelson, and Guinea, 2010; Katsnelson, 2012; Amorim
et al., 2016):

H0

[
~k− q

h̄
~Az

VOCτ̂z

]
= h̄vF

[
τ̂zσ̂x(kx −

q
h̄

Ax,z
VOCτ̂z) + σ̂y(ky −

q
h̄

Ay,z
VOCτ̂z)

]
. (1.3.26)

The valley-gauge field ~Az
VOC(~r) field which describes the (strain-induced) local dis-

placement of the Dirac points at the two valleys, is given by the following expression:

~Az
VOC(~r) = (Ax,z

VOC, Ay,z
VOC) =

β
a

(
uxx − uyy,−2uxy

)
, (1.3.27)

where β = d log t
d log a ' 2, t being the nearest neighbor hopping amplitude, a is the

carbon-carbon distance, and

uij =
1
2
(∂iuj + ∂jui), (1.3.28)

is the strain tensor. Note that, since uij is invariant (i.e. even) under time reversal
and τ̂z ~Az

VOC is even under time reversal (recall that τz → −τz under time reversal).
It can be combined with a linear energy spectrum and hence described by the valley
gauge (magnetic) field. This is different from a real magnetic field, for which the
gauge field is odd under time reversal. The pseudo-magnetic field that determines
the valley Lorentz-like force, ~Fv

~k
can be obtained from the standard expression:

~Bz
VOCτ̂z = ∇× ~Az

VOC(~r)τ̂z = τ̂z(∂x Ay,z
VOC − ∂y Ax,z

VOC)
~̂z . (1.3.29)
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Thus, as mentioned above, the pseudo-magnetic field τ̂z~Bv induced by nonuniform
strain has opposite signs at opposite valleys as required by the fact that strain does
not break time-reversal invariance. In what follows, for the sake of simplicity, I shall
assume that the pseudo-magnetic field τ̂z~Bv is spatially uniform, which requires par-
ticular configurations of nonuniform strain (Guinea, Katsnelson, and Geim, 2010;
Amorim et al., 2016; Zhang, Huang, and Cazalilla, 2017).

1.3.2 Valley Hall effect

In this subsection, I introduce the VHE in detail. As I discussed in subsection 1.3.1,
there are two kinds of valley magnetic field, which results from spatially inhomo-
geneous and homogeneous VOC, respectively. The non-uniform strain causes the
former. In contrast, the latter can be understood from the Berry curvature point of
view.

In this subsection, I introduce the VHE in 2D materials. The mechanism respon-
sible for VHE is the VOC mentioned above, which can be vividly described by a
figure of merit, namely the valley magnetic field in z direction, Bz

VOC = τzBz
VOC, point-

ing upwards for valley-K electrons and downwards for valley-K′ electrons in a two-
dimensional electron gas (Mak et al., 2014; Zhang, Huang, and Cazalilla, 2017). In
analogy to SHE, the VHE in graphene should also be captured by the following ex-
tension to the Drude model

~v±
τ

=
q
m

[
~E±~v± ×~z(Bz

VOC)
]

, (1.3.30)

where ~v± is an drift velocity for the electrons with valley v (v = 1 for valley-K and
v = −1 for valley-K′ electrons). Here, the VOC is described by an effective valley
magnetic field along the z-axis direction, which is described by τBz

VOC. The cor-
responding physics are plotted in FIGURE 1.5 (b). For the real magnetic field, the
cyclotron motion is merely happening on the left-hand side. For the valley magnetic
field induced by the nonuniform strain, electrons with different valleys will undergo
cyclotron motion on opposite sides. This is because in graphene and other 2D mate-
rials (Cazalilla, Ochoa, and Guinea, 2014; Pearce, Mariani, and Burkard, 2016) strain
can be described as the valley gauge field, which induces an (Aharonov-Bohm-like)
phase in real space. Thus, a direct consequence of the strain-induced gauge fields is
the emergence of pseudo-Landau levels, whose experimental observation has been
reported in both real (Levy et al., 2010; Shioya et al., 2015; Li et al., 2015) and artificial
graphene systems (Gomes et al., 2012; Rechtsman et al., 2013). At the end of this sub-
section, I emphasize that the time evolutions of charge and valley current densities,
J j
c and J ja

v , in steady-state are similar to Eqs. (1.2.17) and (1.2.18), respectively, where
J ja
s , µa

s and θSH are replaced by J ja
v , µa

v and θVH. The latter is determined by the valley
magnetic field BVOC.

1.3.3 Valley relaxation

In this subsection, I briefly discuss the valley relaxation. As with spintronics, val-
leytronics’ applications rely on the valley current and the decay of valley polariza-
tion, limited by valley relaxation. There are two main mechanisms responsible for
valley relaxation. They are VOC and short-range disorders (Zhang, Huang, and
Cazalilla, 2017). The mechanism associated with SOC is similar to spin relaxation
induced by SOC. The latter can be understood from uncertainty principle in n di-
mensional system, ∆~r ·∆~p ≥ h̄n

2n . The short-range disorder means small ∆~r and hence
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large ∆~p to realized the valley-flip processes. Here, I emphasize that the time evolu-
tion of charge and valley densities, µc and µa

v, are described by similar equations as
the spin ones, Eqs. (1.2.23) and (1.2.24), where µa

s and J ja
s are replaced by µa

v and J ja
v ,

respectively.
Being electrically neutral, direct detection of spin and valley Hall currents (ef-

fects) is impossible, and indirect methods must infer their existences. I discuss the
experimental observations of Hall effects in heavy metal (HM)/magnetic insulator
(MI) heterostructures and 2D Dirac materials in section 1.4 and section 1.5, respec-
tively.

1.4 Spin-dependent transport in hybrid structures

In the first part of the thesis (Chapter 2-5), I will mainly study spin-dependent phe-
nomena in hybrid HM/MI structures. A key effect in these systems is the spin Hall
magnetoresistance (SMR) in HM/MI heterostructures, which I introduce in the next
subsection 1.4.1, and which is addressed in detail in Chapters 2-4. In this intro-
duction, I also discuss, subsection 1.4.2, the interplay between superconducting and
magnetic proximity effects in hybrid nanowires (NWs) attached to superconductors.
This will be the main focus of Chapter 5.

1.4.1 Spin Hall magnetoresistance in heavy metal/magnetic insulator het-
erostructures

This subsection aims to introduce the experimental detection of SHE using SMR.
Because experiments are carried out in finite magnetic fields, it is unavoidable to
address the interplay between SMR and other effects as the OHE and the Hanle
precession.

Magnetoresistance (MR), just as its name implies, is the modulation of resistance
by the magnetic field, ~B. There are different mechanisms responsible for MR. The
simplest origin of MR is the OH, explained in Section 1.2.2. The correction to the
longitudinal charge current caused by the combination of OHE and inverse OHE
reads

δ~Jc = −θ2
OH

~J0
c . (1.4.1)

The minus sign indicates that the OHE leads to an enhancement of the resistivity.
The ordinary Hall angle, θOH, given by Eq. (1.2.19) is proportional to the magnetic
field, and hence the correction is quadratic in the magnetic field.

The magnetic effect also couples to the spin of the electrons via the Zeeman effect.
These effects may lead to a spin precession around the direction of the magnetic field;
see FIGURE 1.3. However, the Zeeman term itself can not generate an MR effect
because the charge current in a non-magnetic metal is not spin-polarized. Thus, to
induce the MR effect from a magnetic field, the first and vital step is to create a spin
current. There are two conventional ways to do that: i) by spin injection or ii) by
spin Hall effect (SHE).

In this section, I focus on the SHE, whose physical picture was introduced in
subsection 1.2.2. In a non-magnetic heavy metal (HM) with strong SOC, the spin
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Hall current induced by the SHE, reads from (1.2.18)

~Ja
s (~r) = − D~∇µa

s(~r)︸ ︷︷ ︸
di f f usive current

+ θSH~a×~Jc︸ ︷︷ ︸
dri f t current

. (1.4.2)

The first term on the right-hand side is the diffusive spin current stemming from a
spatially inhomogeneous spin density. The second term describes the spin Hall cur-
rent from SOC. Need to say, the origin of SOC in heavy metal is rather complicated.
There are so many possibilities of nonuniform potentials. For instance, the periodic
crystal potential leads to intrinsic SOC, and the external potential from the imper-
fections induces extrinsic SOC (Sagasta et al., 2016). Independently of its origin, the
SOC can be properly included by a single phenomenological parameter, the spin
Hall angle, θSH, which enters the second term in the right-hand side of Eq. (1.4.2).
The resulting spin Hall current, as shown in Eq. (1.2.17), can be converted back into
charge current by the inverse SHE,

~Jc(~r) = ~Jc + θSH~a×~Ja
s (~r) = (1− 2θ2

SH)~Jc︸ ︷︷ ︸
dri f t current

− θSHD~a× ~∇µa
s(~r)]︸ ︷︷ ︸

di f f usive current

. (1.4.3)

Let us consider a HM which is homogeneous in the (x, y) plane and is assumed to
be thin enough in z direction. We thus, can average expression (1.4.3) over the z
direction

~Jc =
1

dN

∫ dN

0
dz~Jc(z), (1.4.4)

where dN is the thickness of the HM. By substitution of Eq. (1.4.3), Eq. (1.4.4) be-
comes

Jx
c = (1− 2θ2

SH)σDE− θSH
D
dN

[µ
y
s (dN)− µ

y
s (0)], (1.4.5)

Jy
c = θSH

D
dN

[µx
s (dN)− µx

s (0)], (1.4.6)

where the electric field is assumed to be in x direction. I find in this way that the
MR can be expressed in terms of the edge spin accumulation (Dyakonov, 2007). Ul-
timately, we build the connection between longitudinal (transverse) charge currents
and spin accumulation at both edges µ

y
s (0, dN) and µx

s (0, dN), respectively. Here I
emphasize that Eqs. (1.4.5) and (1.4.6) are general and valid for any nanostructures
with the above planar symmetry.

Thus, in order to obtain the resistivity, one needs to solve the diffusion equation
for the non-equilibrium spin bias ~µs

∇2
~r µυ

s (~r) = `−2
S δυνµν

s (~r)− `−2
B ευκνnκµν

s (~r) . (1.4.7)

`S =
√
DτS and `B =

√
D/ωB are the spin-diffusion and magnetic-field lengths,

respectively, where τS is spin relaxation time and ωB is Larmor frequency.
A simple way of modulating the edge-spin accumulation is by an external mag-

netic field by the Hanle precession. The corresponding MR effect is the so-called
Hanle magnetoresistance (HMR). It was experimental demonstrated in Platinum
(Pt) by Vélez et al., 2016b, and will be carefully explained in Chapter 2.
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FIGURE 1.6: Spin-transfer torque (STT) and field-like torque (FLT) at
heavy metal/paramagnetic insulator (HM/PMI) interface. The blue arrow
in panel (a) and red arrow panel (b) represent the torque direction related to
the STT and FLT, respectively. Obviously, STT keeps the spin polarization of
itinerant electrons in NM, while FLT will changes similar to magnetic field.
Here, H and S represent the applied magnetic field and the localized spin in

PMI, respectively. Figures are adapted from Oyanagi et al., 2020.

The spin accumulation at edges can also be tuned by magnetic moments local-
ized at an interface. I focus on the MR effect originated from the spin-dependent
scattering of electrons at local magnetic moments from, for example, a MI. Such
spin-dependent scattering is at the origin of many phenomena, from spin pump-
ing (Burrowes et al., 2012; Heinrich et al., 2011; Mosendz et al., 2009) to spin See-
beck effect (Uchida et al., 2010a; Uchida et al., 2010b; Uchida et al., 2014) and spin
Hall magnetoresistance ( Isasa et al., 2016; Marmion et al., 2014; Vélez et al., 2016a;
Nakayama et al., 2013; Kosub et al., 2018; Althammer et al., 2013; Vlietstra et al.,
2013a; Ganzhorn et al., 2016; Hahn et al., 2013; Isasa et al., 2014; Hou et al., 2017).
Theoretically, the spin transport at the HM/MI can be captured by the widely used
boundary condition (Brataas, Nazarov, and Bauer, 2001):

− e~Js,z = Gr ~M× ( ~M×~µs) + Gi ~M×~µs. (1.4.8)

where ~µs is the electron spin of the HM, induced for example from SHE, and ~M
is the magnetization of the MI. Here the spin current at magnetic interface is de-
scribed by the phenological parameter, spin-mixing conductance G↑↓ = Gr + iGi
(Brataas, Bauer, and Kelly, 2006a; Jia et al., 2011). The real and imaginary parts of
the spin-mixing conductance originate from torques that the electron spins of the
HM exert to the magnetization of the MI when both are noncollinear. On the one
hand, Gr is determined by the spin-transfer torque (STT), which is collinear to the
spin polarization of injected electrons as depicted in FIGURE 1.6 (a). It is an impor-
tant quantity in STT magnetic random-access memory devices, currently ready for
mass production (Liu and Yu, 2019). On the other hand, Gi describes the interfacial
exchange field of the electron spins of the NM induced by the magnetic moments
of the MI, which behaves as a field-like torque (FLT), as sketched FIGURE 1.6 (b).
The interfacial exchange field (or magnetic proximity effect) is very relevant in dif-
ferent areas of spintronics. For instance, when the NM is a superconductor below
its critical temperature, the exchange field leads to a spin-split density of states, as
shown in FIGURE 1.9, even without an external magnetic field (Moodera et al., 1988;
Li et al., 2013; Strambini et al., 2017; Rouco et al., 2019). Such spin splitting in su-
perconductors are subjected to intense research (Bergeret et al., 2018; Heikkilä et al.,
2019) because of their possible applications in cryogenic memories (De Simoni et
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FIGURE 1.7: Spin absorption and Hanle precession at HM/MI interface.
Illustration of spin reflection and absorption of spin currents, which are indi-
cated by the straight and curved arrows, respectively. The later is due to the
spin-dependent scattering from the local magnetic moments. In addition, the

spins will process when they are propagating inside b layer.

al., 2018), thermoelectric detectors (Heikkilä et al., 2018), superconducting spintron-
ics and caloritronics (Linder and Robinson, 2015; Giazotto, Heikkilä, and Bergeret,
2015). This interfacial exchange field has also been used to induce ferromagnetism
in graphene (Wei et al., 2016; Leutenantsmeyer et al., 2016).

As discussed above, the spin-mixing conductance is of significance in many fields
of spintronics. Then, a natural question that arises is how to quantify the interfacial
spin-mixing conductance in a HM/MI heterostructure? For this sake, the spin Hall
magnetoresistance (SMR) is a simple yet powerful technique. Adjacent to a MI, the
HM with a sizable SOC can inject spin Hall current into HM/MI interface via the
SHE. The SMR then manifests as a modulation of the HM resistivity with the rela-
tive orientation between the magnetization in the MI and the spin accumulation at
the HM/MI interface (Nakayama et al., 2013; Chen et al., 2013). We can observe the
typical oscillation of SMR, which is plotted in FIGURE 1.8 (b-c,e-f).

The SMR can be explained by the reflection and absorption of spin current at
HM/MI interface. Though the itinerant electrons can not flow into the MI, they will
experience a spin-dependent scattering caused by the local moments at NM/MI in-
terface. To qualitatively understand these spin-dependent scattering, one can as-
sume a thin enough b layer between HM and MI as plotted in FIGURE 1.7, in which
itinerant electrons and magnetic moment of MI coexist (Zhang, Bergeret, and Golo-
vach, 2019). The spin current at HM/MI interface is described by the spin-mixing
conductance as shown in Eq. (1.4.8) and is equal to the reflected spin current plus
injected spin current. The latter is induced by the SHE in the HM. When ~µs ‖ ~M,
as shown in Eq. (1.4.8), the spin current at HM/MI interface is zero, i.e., ~Js,z = 0,
which means spin current is fully reflected back into NM and converted back into
longitudinal charge current. Thus, the SMR exhibits a minimum. On the contrary,
when ~µs ⊥ ~M, as shown in Eq. (1.4.8), the spin current at HM/MI interface is finite,
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i.e., ~Js,z 6= 0, which means only part of the spin current is reflected into HM and
hence partially converted into charge current. Thus, in this case, the SMR exhibits
a maximum. As a result, the SMR appears as an oscillation of the HM resistivity,
which follows the relative orientation between the magnetization in the MI and the
spin-Hall induced spin accumulation in the HM, as shown in FIGURE 1.8. This mod-
ulation is a direct manifestation of the SHE in a NM in contact with a MI in NM/MI
structures (Isasa et al., 2016; Althammer et al., 2013; Huang et al., 2012).

Although the theory of SMR is well established by Nakayama et al., 2013; Chen
et al., 2013, and provides an accurate qualitative description of the effect, it does
not describe the dependence of the resistivity on the strength of the applied mag-
netic field B, nor on the temperature T. The spin mixing conductance components,
entering Eq. 1.4.8, are at the heart of the SMR effect and have been regarded as phe-
nomenological parameters in each experiment. Recent experiments by Meyer et al.,
2014; Vélez et al., 2019b; Das et al., 2019 show, however, that the SMR effect strongly
depends both on B (Vélez et al., 2019b) and on T (Meyer et al., 2014; Vélez et al.,
2019b; Das et al., 2019, see FIGURE 1.8), and that the magnetic state of the MI plays a
crucial role. Furthermore, the magnetic field alone leads to the Hanle magnetoresis-
tance (HMR) (Dyakonov, 2007; Vélez et al., 2016b), which has an identical angular
dependence to SMR Vélez et al., 2016b, but does not require a MI. Even though
SMR and HMR have different origins, they cannot always be easily separated in
experiments, which adds to the uncertainties of interpreting the experimental data.
In Chapter 2, I will present a fully microscopic theory of the SMR in HM/MI het-
erostructures, which provides a full description of MR experiments. I will apply this
model to explore the SMR in different situations, including paramagnetic and ferro-
magnetic insulators attached to heavy metal. Specifically, I will present the results
for Platinum/Gd3Ga5O12 (Pt/GGG) in Chapter 3 and Platinum/Europium sulfide
(Pt/EuS) in Chapter 4.

Finally, it is important to emphasize that the sizable interfacial exchange field is
responsible for the magnetic proximity effect in superconductor/magnetic insulator
structures. This effect is very relevant in search of a topological non-trivial supercon-
ducting state in hybrid structures (Virtanen et al., 2018; Liu et al., 2019a; Vaitiekėnas
et al., 2020), which should read to Majorana bound states. In the next section, I pro-
vide a brief introduction to the magnetic proximity effect in superconducting layers.
A detailed discussion of this topic is presented in Chapter 5.

1.4.2 Superconducting and magnetic proximity effects in nanowires

Replacing the HM by the nanowire (NW) in proximity to a superconductor (SC), we
reach the state-of-the-art hybrid structures for the implementation of Majorana zero
modes (MZM). This subsection focuses on introducing the coexistence of supercon-
ducting and magnetic proximity effects in proximitized NWs and films.

Semiconducting NWs in proximity with SCs are crucial to the generation of topo-
logical superconductivity, which is demonstrated by the appearance of MZMs at the
edges of the NWs (Lutchyn, Sau, and Sarma, 2010; Oreg, Refael, and Oppen, 2010;
Mourik et al., 2012; Rokhinson, Liu, and Furdyna, 2012; Das et al., 2012; Finck et al.,
2013; Albrecht et al., 2016; Deng et al., 2016; Suominen et al., 2017; Nichele et al.,
2017; Takei et al., 2013; Chang et al., 2015; Lutchyn, Stanescu, and Sarma, 2011). The
keys to the topologically non-trivial phase are the SOC, superconducting correla-
tions, and Zeeman splitting (Qi and Zhang, 2011; Elliott and Franz, 2015; Beenakker,
2013; Alicea, 2012; Lutchyn et al., 2018; Sarma, Freedman, and Nayak, 2015; Stanescu
and Tewari, 2013).. In contrast, SOC and superconductivity are intrinsic properties of
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FIGURE 1.8: Spin Hall magnetoresistance. The modulation of SMR
with the direction of magnetic fields rotating around (a,d) y, (b,e) x
and (c,f) z directions. Panels (a-c) correspond to temperature T =
100K, while the panels (d-f) correspond to temperature T = 70K. Fig-

ure comes from Vélez et al., 2019b.

the materials, the Zeeman splitting is usually generated by applying a rather large
magnetic field (Lutchyn, Sau, and Sarma, 2010; Oreg, Refael, and Oppen, 2010),
which introduces technical limitations on the use of superconducting elements.

Alternatively, such a spin splitting can be generated without applying an exter-
nal field by the magnetic proximity effect from a magnetic insulator (Bergeret et
al., 2018; Giazotto and Taddei, 2008; Yang et al., 2013; Eremeev et al., 2013; Virta-
nen et al., 2018; Wei et al., 2016; Katmis et al., 2016). As shown in FIGURE 1.9, a
Zeeman-like splitting at zero magnetic field has been observed in superconducting
Al layers in contact with the ferromagnetic insulator (FI) EuS (Hao, Moodera, and
Meservey, 1991; Meservey, Tedrow, and Fulde, 1970; Hao, Moodera, and Meservey,
1990; Strambini et al., 2017; Moodera et al., 1988; Rouco et al., 2019). Furthermore,
Liu et al., 2019b reported the first hybrid epitaxial growth of InAs NWs in proximity
with EuS and Al. Even though the experiment is inconclusive concerning Majorana
physics, the NWs show the coexistence of the proximity-induced superconducting
gap and spin splitting. Recently, Vaitiekėnas et al., 2020 have reported the exper-
imental measurement of zero-field topological superconductivity in ferromagnetic
hybrid NWs. These proximitized NWs are pivotal in the study of the topological
superconductivity (Sau et al., 2010; Lee, Alicea, and Refael, 2012; Livanas, Sigrist,
and Varelogiannis, 2019).

The emergence of MZMs at a certain critical value of a control parameter is nec-
essarily accompanied by closing the bulk gap, which requires the demanding control
of spin split induced by a magnetic field or the interfacial exchange field. In Chapter
5, I will explore NW and films in proximity to both SCs and MIs. I will study the
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FIGURE 1.9: Spin-splitting field in superconductor/ferromagnetic in-
sulator heterostructure. (a) Sketch of the cross bar forming the
EuS/Al/Al2O3/Al vertical tunnel junction. (b) Evolution of the differential
conductance, obtained from the numerical derivative of the curves, as a func-
tion of the voltage drop V and in-plane magnetic field B. (c) Comparison
between the differential conductance of the tunnel junction measured at zero
field before (black curve) and after (red curve) the magnetization of the EuS
layer. All the measurements were taken at 25 mK. Adapted from Strambini

et al., 2017.

nonlocal magnetization induced by the interplay of superconducting and magnetic
proximity effects in terms of the interface parameters presented in chapter 2. I will
also explore the possibility of controlling the exchange field in the NW by tuning the
phase difference between two superconductors.

1.5 Spin- and valley-dependent transport in 2D Dirac mate-
rials

In the second part of the thesis (Chapter 6-7), I will concentrate on the spin- and
valley-dependent transport in 2D Dirac materials, for instance, graphene, TMDs,
and van der Wassls heterostructures. These materials provide a platform for the
experimental observations of SHE and VHE using nonlocal transport measurements
(Qian et al., 2014; Xu et al., 2014; Gorbachev et al., 2014).

Let us start with the definition of nonlocal resistance (NLR) in the 2D Hall bar
device plotted in FIGURE 1.10. Driving an electric current between the two opposite
right-hand side contacts of the device, transverse spin (valley) current is generated
via SHE (VHE) (see detailed explanations of SHE and VHE in Subsections 1.2.2 and
1.3.2, respectively). The spin (valley) current diffuses in the direction perpendicular
to the applied electric field, and they are converted back into electric current through
inverse SHE (VHE), which leads to charge accumulation and a nonlocal voltage on
the left-hand side of the device. The nonlocal resistance (NLR) is defined as the ratio
of the nonlocal voltage, Vnl to the external current applied to the device, I (Abanin
et al., 2009).
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FIGURE 1.10: Detection of nuetural currents. The sketch of a Hall-bar de-
vice used for measuring nonlocal resistance, Rnl. It is defined as the ratio of
the (non local) voltage Vnl detected in the right side and the injection current

in the left side I, i.e., Rnl ≡ Vnl/I.

NLR’s earlier experiments on 2D Dirac materials concentrate on the phenomena
associated with the spin degree of freedom (Balakrishnan et al., 2014; Balakrishnan
et al., 2013). During the propagation in the channel, the spin of electrons undergoes
a Hanle precession along the direction of the magnetic field, as plotted in FIGURE
1.3. A manifestation of the SHE in Hall-bar device is Hanle oscillation, that is, the
oscillation of the NLR as a function of an in-plane magnetic field shown in FIGURE
1.11. It is considered to be the hallmark of the existence of spin currents (Balakr-
ishnan et al., 2014; Balakrishnan et al., 2013; Huang, Chong, and Cazalilla, 2017;
Abanin et al., 2009). Using this setup, the SHE has been experimentally observed in
graphene decorated with absorbates (Balakrishnan et al., 2014; Balakrishnan et al.,
2013; Weeks et al., 2011; Ma, Li, and Yang, 2012), TMD with sizable intrinsic SOC
(Qian et al., 2014) and graphene-TMDs heterostructures (Avsar et al., 2014; Safeer
et al., 2018; Benítez et al., 2018).

1.5.1 The controversy of the origin of nonlocal resistance

However, as indicated in FIGURE 1.12 (a), the absence of the Hanle effect in some
experiments in which a large enhancement of the NLR was observed (Völkl et al.,
2018; Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey, 2015) hints at the ex-
istence of additional contributions to the NLR that are insensitive to the magnetic
field. Furthermore, some recent simulations of Van Tuan et al., 2016 indicate the
existence of a non-local signal in the absence of SOC, as shown in FIGURE 1.12 (b).

One candidate that can contribute to the NLR is a valley current. In Chapter 6,
I will investigate the NLR induced by the VHE from the nonuniform strain present
in the Hall bar device. Modest strain could generate huge VHE, as I explained in
1.3.1. Additionally, it is worth mentioning that the strain-induced valley Hall cur-
rents predicted here are neutral currents that do not couple to external magnetic
fields. Therefore, unlike spin currents (Abanin et al., 2009; Balakrishnan et al., 2014),
valley currents will not display Hanle precession. Indeed, a nonuniform strain may
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FIGURE 1.11: Hanle oscillation. Nonlocal resistance as a function of in-
plane magnetic field. Figure comes from Balakrishnan et al., 2013.

have been introduced unintentionally during device preparation in the studies re-
ported by Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey, 2015.

1.5.2 The indivisibility of spin and valley transport

Previous theoretical studies of nonlocal transport have concentrated either on the
VHE (Beconcini, Taddei, and Polini, 2016; Zhang, Huang, and Cazalilla, 2017; Song
and Vignale, 2018) or on the SHE (Abanin et al., 2009; Huang, Chong, and Cazalilla,
2017). However, symmetry considerations imply that spin and valley are coupled in
materials with broken spin-rotation and/or inversion symmetry (Xiao et al., 2012).
For instance, in order to obtain the VHE, we are required to break inversion (or sub-
lattice) symmetry, which also lifts the spin degeneracy of energy bands and hence
results in the presence of both Rashbar and Dresselhaus SOC (Rashba and Sheka,
2015; Dresselhaus, 1955). On the other hand, with the knowledge of time-reversal
symmetry, the spin splitting in different valleys must be the opposite. Hence, the
valley carriers can also be distinguished by their spin moments (Feng et al., 2012).
This is the basis of coupled spin and valley physics, and hence one is inevitably
required to study the interplay between VHE and SHE.

Furthermore, the coexistence of SHE and VHE can be realized in an extrinsic
way. To generate SHE by heavy adatoms inducing extrinsic SOC, the strain is un-
avoidable, which, as I discussed in the last subsection, is the ingredient of VHE. In
Chapter 7, we will study the interplay of SHE and VHE in graphene with strain
(VHE) and adatoms (SHE). It has emerged as one of the most promising platforms
to integrate both spintronics and valleytronics.

1.6 Overview of this thesis

For the sake of consistency, I divided the thesis into two parts. The results presented
in this thesis are divided into two parts. In Part I (Chapters 2-5), I work on the spin
transports in a hybrid structure. While, in Part II (Chapters 6-7), I study the spin and
valley transports in two dimensional materials.
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FIGURE 1.12: The controversy about the origin of non-local resistance.
(a) NLR as a function of basis for different in-plane magnetic field. (b) Exact
numerical calculation of NLR for SOC= 0 and SOC 6= 0. Panels (a) and (b) are
adapted from Kaverzin and Wees, 2015 and Van Tuan et al., 2016, respectively.

• In Chapter 1, I begin with a general introduction from electronics to spintronics
and valleytronics. Next, I review a few significant Hall effects, for instance, the
ordinary Hall effect (OH), the spin and valley Hall effects (SHE/VHE). Then,
we introduce the background and motivations of spin Hall magnetoresistance
(SMR) in heavy metal (HM) and nonlocal resistance (NLR) in 2D Dirac mate-
rials.

Part I. Spin transports in non-magnetic metal/magnetic insulator heterostructure

• In Chapter 2, I develop a microscopic theory of the SMR of metals in con-
tact with magnetic insulators. First, I express the spin mixing conductance,
which governs the phenomenology of the effect, in terms of the microscopic
parameters of the interface and the spin-spin correlation functions of the lo-
cal moments on the magnetic insulator’s surface. Second, the magnetic field
and temperature dependence of the spin mixing conductances leads to a rich
resistance behavior due to an interplay between the Hanle effect and the spin
mixing at the interface. Third, I describe an unusual negative magnetoresis-
tance originating from a non-local Hanle effect.

• In Chapter 3, we report the first observation of the SMR in a Pt film on top
of a paramagnetic insulator Gd3Ga5O12 (GGG). First, the SMR signal exhibits
clear saturation behavior by applying large magnetic fields at low tempera-
tures, consistent with its paramagnet-like magnetization curve. Second, we
use the microscopic theory of SMR to relate the observed signal to the spin-
mixing conductance at the interface, where we find that the field-like torque
contribution (Gi) is as important as the spin-transfer torque contribution (Gr)
in Pt/GGG interface. Third, we can quantify the exchange interaction between
conduction electrons in Pt and 4f localized spins in Gd3+.

• In Chapter 4, we report the first measurement of the spin Hall magnetoresis-
tance (SMR) of Pt on top of a purely ferromagnetic insulator Europium sul-
fide (EuS). First, we have demonstrated SMR measurements in a wide range
of temperatures and fitted the results using a microscopic model. Second,
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we extracted the temperature dependence of the spin-dependent conductance
(Gs, Gr and Gi), disentangling the contribution of field-like torque (Gi), spin-
transfer torque (Gr), and spin-sink conductance (Gs). Third, an interfacial ex-
change field of the order of 1 meV acting upon the conduction electrons of Pt
can be estimated from Gi, which is at least three times larger than Gr below the
Curie temperature.

• In Chapter 5, I study the magnetic and superconducting proximity effects in a
nanowire (NW) and film attached to superconducting leads and a ferromag-
netic insulator (FI). I show that a sizable equilibrium spin polarization arises
in the NW and film due to the interplay between the superconducting correla-
tions and the FI’s exchange field. The resulting magnetization has a nonlocal
contribution that spreads in the NW and film over the superconducting coher-
ence length and is opposite in sign to the local spin polarization induced by the
magnetic proximity effect in the normal state. For a Josephson-junction setup,
I show that the nonlocal magnetization can be controlled by the superconduct-
ing phase bias across the junction.

Part II Spin and valley Hall effects in two dimensional Dirac materials

• n Chapter 6, I study the classical valley Hall effect from the non-uniform strain.
First, I provide a theory of the strain-induced VHE starting from the quantum
Boltzmann equation. This allows us to show that averaging over short-range
impurity configurations destroys quantum coherence between valleys, leaving
the elastic scattering time and inter-valley scattering rate as the only param-
eters characterizing the transport theory. Second, I show that, with modest
levels of strain, graphene can also sustain a classical valley Hall effect (VHE)
that can be detected in nonlocal transport measurements. Third, I compute
the nonlocal resistance of a Hall bar device in the diffusive regime using our
theory.

• In chapter 7, I study the interplay of spin and valley Hall effect in 2D Dirac
materials. First, I demonstrate the emergence of an additional longitudinal
neutral current that is both spin and valley polarized. Second, I prove that
this additional neutral current allows the spin density control by tuning the
magnitude of the valley Hall effect. Third, the interplay of the two effects can
suppress the Hanle effect, that is, the oscillation of the nonlocal resistance in
an in-plane magnetic field.
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Chapter 2

Microscopic Theory of Spin Hall
Magneto-resistance

2.1 Introduction

The spin-orbit coupling (SOC), as discussed in subsection 1.2.1, leads to a conver-
sion between the charge and spin currents in metals and semiconductors, which re-
sults in the spin Hall effect (SHE) and its inverse effect (D’Yakonov and Perel, 1971;
Dyakonov and Perel, 1971; Hirsch, 1999; Sinova et al., 2004; Valenzuela and Tin-
kham, 2006; Kimura et al., 2007; Kato et al., 2004; Sih et al., 2005; Wunderlich et al.,
2005; Zhou et al., 2018; Maekawa and Kimura, 2017; Sinova et al., 2015; Nakayama et
al., 2016). A manifestation of the SHE in a normal metal (NM) is a modulation of the
magnetoresistance (MR) concerning the direction of the applied magnetic field when
the metal is in contact with a magnetic insulator (MI) in NM/MI structures (Isasa et
al., 2016; Althammer et al., 2013; Huang et al., 2012). This effect, called the spin Hall
magnetoresistance (SMR), has been observed in several experiments (Weiler et al.,
2012; Nakayama et al., 2013; Avci et al., 2015; Hahn et al., 2013; Dejene et al., 2015).
As explained in subsection 1.4.1, the origin of the SMR is the absorption and reflec-
tion of spin current at the NM/MI interface, which depends on the angle between
the polarization of spin Hall current and the magnetization of the MI (Nakayama
et al., 2013; Chen et al., 2013). The latter can be controlled by an external magnetic
field.

The previous theory of SMR, established by Nakayama et al., 2013; Chen et al.,
2013 and discussed in subsection 1.4.1, merely offers a qualitative description of
the effect, where spin-mixing conductance, which is at the heart of the SMR effect,
have traditionally been regarded as phenomenological parameters. The microscopic
mechanisms of the spin-mixing conductance are still not well understood, and their
calculations were thought to be a formidable task, which could only be carried out
by ab initio methods (Jia et al., 2011; Carva and Turek, 2007; Zhang, Hikino, and
Yunoki, 2011; Xia et al., 2002; Dolui, Bajpai, and Nikolic, 2019). In addition, this the-
ory can not describe the dependence of the resistivity on the strength of the applied
magnetic field B, nor on the temperature T. However, recent experiments of Meyer
et al., 2014; Vélez et al., 2019b; Das et al., 2019 show that the SMR effect strongly de-
pends both on B (Vélez et al., 2019b) and on T (Meyer et al., 2014; Vélez et al., 2019b;
Das et al., 2019), and that the magnetic state of the MI also plays an important role
in SMR. Moreover, the magnetic field alone leads to the Hanle magnetoresistance
(HMR) (Dyakonov, 2007; Vélez et al., 2016b), discussed in subsection ??, which con-
tributes further to the measured signal. Obviously, HMR has an identical angular
dependence to SMR (Vélez et al., 2016b; Vélez et al., 2019b), but do not require an
MI. Despite the fact that SMR and HMR have totally different origins, they cannot
always be easily separated in experiments because they can only work on angular
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FIGURE 2.1: Sketch of a Hall bar fabricated from a thin metallic
film (blue) deposited on the surface of a magnetic insulator (brown).
The longitudinal (VL) and Hall (VH) voltages are sensitive to varia-
tions of the charge current occurring under the influence of the spin-
dependent scattering at the interface. The inset shows the basic pro-
cess responsible for SMR: an electron with charge −e and Fermi ve-
locity vF moving randomly in the metal scatters off the surface of the
magnetic insulator and interacts with a local moment ~Si. The SMR
corrections are expressed in terms of the interfacial exchange field,
the spin-flip rate, and the spin dephasing rate, which all depend on
the magnetic state of the local moments, and thus, can be controlled

by magnetic fields and temperature.

dependence. Consequently, the interplay of HMR and SMR adds to the uncertain-
ties of interpreting the experimental data. Therefore, it is desirable to have a theory
of SMR that has predictive power about the dependence of the spin mixing conduc-
tances on B and T and can cover a wide range of the magnetic system, from classical
to quantum magnets.

In this chapter, we present a general theory of the electronic transport in NM/MI
structures based on a microscopic model to describe the spin-dependent scattering at
the NM/MI interface. Our model assumes a sd-coupling between local moments on
the MI surface and itinerant electrons in the NM. The temperature and magnetic field
dependence of the interfacial scattering coefficients are then obtained by expressing
these coefficients in terms of spin-spin correlations. The latter are determined by the
magnetic behavior of the MI layer and hence depend on temperature and magnetic
field. We first apply our theory to study the MR of a metallic film adjacent to either a
paramagnet (PM) or a Weiss ferromagnet (FM) in a large range of temperatures and
applied fields. At low temperatures, we find a hitherto unknown non-monotonic
behavior of the MR as a function of B, which we explain in terms of an interplay
between the SMR and HMR effects. We apply our theory to describe experiments on
NM/MI structures with different material combinations in subsequent chapters.
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2.2 Model and Method

2.2.1 Model

We consider an NM in contact with an MI, as shown in FIGURE 2.1. For the sake
of simplicity, we assume both layers to be homogeneous in the (x, y) plane and the
NM/MI interface to be located at z = 0.

The general Hamiltonian of the NM/MI heterostructure can be divided into
three parts

H = HNM + Vsd + HMI . (2.2.1)

In the NM layer, the dynamic of itinerant electrons can be described by the Hamil-
tonian

HNM = ∑
~k,s

h̄2k2

2m
c†
~ks

c~ks + gµBB ∑
~k,s,s′

~sss′ ·~nc†
~ks

c~ks′ + VSO ∑
~k,s,s′

(~E×~k) ·~sss′c†
~ks

c~k, (2.2.2)

where m is the mass of electron. g is the Landé g-factor and µB is the Bohr magneton.
c†
~ks

, and c~ks are, respectively, the creation and annihilation operators for the electron

with kinetic momentum ~k and spin s = (↑, ↓), where spin is defined by choosing
quantization axis along z direction. ~s = (sx, sy, sz) is a set of matrices representing
the spin 1/2 of the itinerant electron, and~n is the unit vector pointing in the direction
of the magnetic field ~B. The last term of the right-hand side of Eq. (2.2.2) is the
SOC, whose strength is parameterized by VSO. It is the ingredient of the SHE, which
is used to generate spin Hall current injecting into MI. The spin dynamics of MI,
takeing into account the interaction between the local moments, can be modeled by
the Heisenberg Hamiltonian

HMI = gµB ∑
j

~Sj · ~B−∑
〈ij〉

Jij~Si · ~Sj, (2.2.3)

where ~Sj is the operator of the local moment at position ~Rj in the MI and the second
sum in equation (2.2.3) is taken over pairs of interacting spins without repetition,
and 〈. . . 〉 means the nearest neighbor coupling Jij. For example, a paramagnetic
insulator (PMI) corresponds to Jij = 0, whereas Jij > 0/Jij < 0 describes a fer-
romagnet/antiferromagnet insulator. To assesses the spin transport in the FI/NW
interface, we here assume a region of thickness b in which the local moments of FI
and the itinerant electrons of NW interact via a spin-exchange coupling

Vsd = −Jsd ∑
i0

~Si0 ·~s(~Ri0), (2.2.4)

where the superscript 0 of i indicates magnetic moments are localized at the NM/MI
interface. The coupling constant Jsd arises from the s-d hybridization between the
localized d -orbitals of the impurity and the extended s-orbitals of the metal host.
~s
(
~Ri0

)
is the spin density of itinerant electrons at the site of the local moment

~s
(
~Ri0

)
=

1
V ∑

~k~k′ss′
~sss′e

i(~k′−~k)·~Ri0 c†
~ks

c~k′s′ , (2.2.5)

where V is the volume of the considered metal layer. For simplicity, the local mo-
ments of MI are treated as a quantum bath in an equilibrium situation that is weakly
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coupled to the statistical environment, and hence we do not consider here the feed-
back effect of the itinerant electrons on the local moments. Furthermore, the thermal
properties of interfacial moments ~Si0 are the same as those inside the MI layer.

2.2.2 Method

In this subsection, I systematically introduce the method used to obtain the field and
temperature dependence of spin-dependent conductances and NM’s resistivity.

To utilize the well-developed methods of quantum transport in a diffusive regime,
we here assume that the metal is strongly disordered, such that the mean-free path
l is much smaller than the thin-film thickness dN and the spin-relaxation length λs.
For such a diffusive motion of the electron in the thin film, the events of interaction
with the local moments located on the surface of the MI appear as spikes of short du-
ration, randomly distributed along the semiclassical trajectory of the electron. The
precise positions of the spikes on the trajectory is clearly unimportant because the
trajectory is sufficiently random. In this diffusive limit, we may allow ourselves to
displace the local moments in a random fashion on the scale of l without any con-
sequence for the disorder-averaged quantities, as long as we are interested in the
dependence of those quantities on a larger scale, set by λs. Thus, we arrive at con-
sidering a fictitious layer of thickness b in which both the itinerant electrons and the
local moments coexist, with the latter being randomly distributed but maintaining
their spin-spin coupling plotted in FIGURE 2.2. We apply the Born-Markov approx-
imation to H in this b-layer, with Vsd in Equation (2.2.4) as perturbation (see details
in Appendix 2.5.1). Although the thickness b should be kept small (b ∼ l), we obtain
physically meaningful results by sending first l → 0 in the diffusive limit, and only
in a second step b → 0, going thus through an intermediate stage of the calculation
in which l � b� λs. This order of taking the limits represents a significant simplifi-
cation in the derivation because powerful disorder-averaging techniques devised for
homogeneously distributed impurities in the metal can be applied here to calculate
the spin-relaxation tensor inside the b-layer in a local continuum approximation. It is
important to remark that the coupling in Equation (2.2.4) acts more efficiently when
the spin ~Si is embedded in the metal as compared to the case when it is at the sur-
face and interacts only with the tail of the electron wave function appearing in~s(~ri).
We should, therefore, reduce Jsd in Equation (2.2.4) by a factor n(z > λF)/n(z = 0),
where n(~r) is the average charge density in the metal and λF is the Fermi wave-
length. However, this suppression factor is expected to be on the order of unity in
well-coupled systems, for which the local moments at the surface form bonds with
the metal. We absorb this suppression factor into Jsd hereafter.

To simplify the magnetic problem, we further employ the Weiss mean-field the-
ory for HMI. In this approximation, the state of the magnetic system is a product
state of individual local moments, yielding

〈Si
α(t)S

j
γ〉 = δij〈Si

α(t)S
i
γ〉+ (1− δij)〈Si

α〉〈S
j
γ〉 . (2.2.6)

The equilibrium properties of the local moments are determined by the spin expec-
tations 〈Sα〉 and 〈S2

α〉 (α = x, y, z), which depend on T and B.
In this approach, we arrive at the usual continuity equation for the non-equilibrium

spin bias ~µs in the metal (including the b-layer) following a standard derivation
of Dyakonov, 2017

µ̇α
s −

1
eνF

∂i Jα
s,i −ωLεαγκnγµκ

s = −Γακµκ
s , (2.2.7)
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FIGURE 2.2: The sketch of b layer. We assume a fictitious layer of thickness
b in which both the itinerant electrons (short blue arrows) and the local mo-
ments (long black arrows) coexist, with the latter being randomly distributed.

where superscript Greek indices denote spin projections (α = {x, y, z}) and sub-
script Latin indices denote current directions (i = {x, y, z}), ~n = ~B/B is the unit
vector of the B-field, e is the elementary charge (e > 0), νF is the density of states
per spin species at the Fermi level, εαβγ is the antisymmetric tensor, and repeated in-
dices are implicitly summed over. The spin current Jα

s,i has units of electrical current,
with −Jα

s,i/2e giving the amount of spin with polarization α transported in direction
i through a unit cross-section and per unit of time. Both the Larmor precession fre-
quency, ωL, and the spin relaxation tensor, Γακ are inhomogeneous in space due to
the b-layer insertion. Specifically, for the geometry in FIGURE 2.1, we have

ωL(z) = ωB −
n2D

imp Jsd

h̄
〈Ŝ‖〉δb(z), (2.2.8)

where ωB = gµBB/h̄, with g ≈ 2 being the electron g-factor and µB the Bohr mag-
neton, n2D

imp is the number of local moments per unit area at the MI/NM interface,

Ŝ‖ = ~̂S ·~n is the longitudinal spin operator of a representative local moment, and
δb(z) equals to 1/b in the b-region and zero elsewhere. In the limit b→ 0, δb(z) tends
to the Dirac δ-function. The second term on the right-hand side in Equation (2.2.8)
describes the interfacial exchange field. For instance, this field is particularly well
pronounced in Al/EuS bilayers, leading to a directly measurable splitting of the
density of states in the superconducting regime (Hao, Moodera, and Meservey, 1990;
Strambini et al., 2017), which will be discussed in chapter 3.

The spin relaxation tensor in Equation (2.2.7) reads

Γακ(z) =
δακ

τs
+

[
δακ

τ⊥
+

(
1
τ‖
− 1

τ⊥

)
nαnκ

]
δb(z), (2.2.9)
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where τs is the spin relaxation time in the NM. We assume the spin relaxation in the
NM to remain isotropic for the experimentally relevant magnetic fields, B . 10 T.
Indeed, the Pauli paramagnetism has a weak effect on the SOC-induced spin relax-
ation at the Fermi level, because the density of states is almost spin-independent,
ν↑F ≈ ν↓F ≡ νF, owing to the large Fermi energy of the NM. In Equation (2.2.9), τ‖
and τ⊥ denote, respectively, the longitudinal and transverse spin relaxation times
per unit length for the itinerant electron in the b-region. In our notations, T1 = bτ‖ is
the relaxation time of the longitudinal spin component µ‖ = ~µs ·~n, and T2 = bτ⊥ is
the decoherence time of the transverse spin components ~µ⊥ = ~n× (~µs ×~n). Within
the Born-Markov and Weiss-field approximations (see the detailed derivations in
Appendix 2.5.1), we obtain

1
τ‖

=
2π

T
n2D

impνF J2
sdωm

L nB (ω
m
L ) [1 + nB (ω

m
L )] |〈Ŝ‖〉|, (2.2.10)

1
τ⊥

=
1

2τ‖
+

π

h̄
n2D

impνF J2
sd〈Ŝ2

‖〉, (2.2.11)

where nB(ω) = 1/(eh̄ω/T − 1) is the Bose-Einstein distribution function and ωm
L =

ωB − 〈Ŝ‖〉∑j Jij/h̄, with Jij being the coupling constant of the Heisenberg ferromag-
net. In deriving Equations (2.2.10) and (2.2.11), we used the Weiss theory approxima-
tion in Equation (2.2.6) and have additionally assumed that the correlator 〈ŜαŜβ〉(ω)
for a spin on the MI surface can be approximated by the corresponding correlator for
a spin deep in the bulk of the MI. We remark that 1/τ‖ is due to spin-flip processes in
which the itinerant electron is scattered, say, from a state~k ↑ to a state~k′ ↓ and a spin
excitation is created in the MI. This spin excitation is actually a magnon in general,
although it is equivalent to a local moment excitation in the Weiss theory, because
the magnon band is flat (Einstein model). The spin-flip correlators 〈Ŝ±Ŝ∓〉(ω) have
been expressed through the spin expectation value 〈Ŝ‖〉, see Supporting Information.
Furthermore, we remark that 1/τ⊥ contains two distinct terms. One term (1/2τ‖) is
again due to spin-flip processes, whereas the other is due to spin dephasing. The
dephasing contribution comes from scattering processes during which the electron
spin, being in a superposition of spin-up and spin-down, acquires a precession phase
about the ~n-direction. Notably, it is the term Si

‖s‖(~ri) in the scalar product ~Si ·~s(~ri)

in Equation 2.2.4 that is responsible for such random kicks of the spin precession
phase, i.e. for dephasing. Therefore, the magnetic state of the MI is not changed
in the Weiss-theory approximation since it is an eigenstate of Si

‖. It is important to
note also that the difference between 1/τ‖ and 1/τ⊥ is entirely due to the ordered
magnetic state of the local moments at the interface. In the unordered state, we have

1/τ‖ = 1/τ⊥ = 2πn2D
impνF J2

sdS(S + 1)/3h̄, (2.2.12)

and no distinction between dephasing and spin-flip processes can be made.
To derive the boundary condition for the NM/MI interface, we integrate Equa-

tion (2.2.7) over z in the b-layer (−b < z < 0, see geometry in FIGURE 2.2), assuming
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that ~µs = (µx
s , µ

y
s , µz

s) is almost constant and independent of time,

− 1
eνF

Jυ
s,z
∣∣z=0
z=−b = bωLευγκnγµκ

s −
(

b
τs

+
1

τ⊥

)
µυ

s

−
(

1
τ‖
− 1

τ⊥

)
nυ(~n ·~µs). (2.2.13)

Next we take the limit b → 0 and write the boundary condition in a customary
way (Brataas, Nazarov, and Bauer, 2001; Dejene et al., 2015)

− e~Js,z(0) = Gs~µs + Gr~n× (~n×~µs) + Gi~n×~µs, (2.2.14)

with ~Js,z = (Jx
s,z, Jy

s,z, Jz
s,z), where we set ~Js,z = 0 at z = −b, because, by construction,

the electron does not penetrate into the MI beyond the b-layer. The spin dependent
conductance read

Gs = −e2νF
1
τ‖

, (2.2.15)

Gr = e2νF

(
1

τ⊥
− 1

τ‖

)
, (2.2.16)

Gi = −
e2

h̄
n2D

impνF Jsd〈Ŝ‖〉. (2.2.17)

It is customary to call the complex quantity G↑↓ = Gr + iGi spin-mixing conduc-
tance (Brataas, Nazarov, and Bauer, 2001), whereas Gs is sometimes called spin-sink
conductance (SSC) (Dejene et al., 2015). We note that Gs originates entirely from
spin-flip processes and can, therefore, be unambiguously associated with magnon
emission and absorption. In contrast, Gr does not have a physical meaning on its
own. However, the combination Gr − Gs is proportional to the spin decoherence
rate (1/τ⊥) of the itinerant electron at the NM/MI interface. It follows from Equa-
tion (2.2.11) that a part of Gr − Gs is due to spin-flip processes (1/2τ‖), and hence is
identical in nature to Gs, whereas the other part is due to spin dephasing. The purely
dephasing contribution is Gr − 1

2 Gs ∝ 〈Ŝ2
‖〉 and it originates from almost elastic spin-

scattering processes, which do not involve any exchange of angular momentum with
the MI. Thus, Gs and Gr − 1

2 Gs correspond to different physical processes and have,
therefore, distinct dependences on B and T. Finally, Gi is a measure of the interfacial
exchange field, and it is proportional to the MI magnetization.

In addition, we can also understand the above three spin-dependent conduc-
tance from torques. The real and imaginary parts of the spin-mixing conductance,
G↑↓ = Gr + iGi (Brataas, Bauer, and Kelly, 2006a; Jia et al., 2011), originate from
torques that the electron spins of the NM exert to the magnetization of the MI when
both are noncollinear. On the one hand, Gr is determined by the STT, which is
collinear to the spin polarization of injected electrons as depicted in FIGURE 1.6
(a). On the other hand, Gi quantifies the interfacial exchange field between the
electron spins of the NM and the magnetic moments of the MI, which induces a
field-like torque (FLT), as described by FIGURE 1.6 (b). Furthermore, we find the
negative SSC Gs also describes the STT just like the Gr as shown by the FIGURE 1.6
(a), which quantifies the interfacial spin current, when the electron spins of the NM
are collinear with the magnetization of the MI (Flipse et al., 2014; Cornelissen et al.,
2016; Das et al., 2019).

Having these pictures in mind, let us consider the real physics happening at
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FIGURE 2.3: The spin dependent conductances Gx (x = s, r, i) ar-
ranged in combinations of − 1

2 Gs, Gr − Gs, and Gi to describe, respec-
tively, the spin flips (magnon emission), the spin dephasing (no spin
transfer to MI), and the interfacial exchange field. (a) The dependence
on B for a PM insulator at T = 1 K. (b) The dependence on T for an
FM insulator with a Curie temperature of TC = 100 K. The conduc-
tances are measured in units of G0 = π

h̄ n2D
imp(eνF Jsd)

2. The sd-coupling

constant is Jsda−3
c = 0.2 eV (Wahl et al., 2007), which is parameterized

by the lattice constant of the NM, ac = 0.4 nm. Other parameters:
S = 2, νF Jsd ' 0.08, and n2D

impa2
c = 0.5.

NM/MI interface. The interfacial spin current at NM/MI interface is described by
three spin-dependent conductance, as shown in Eq. (2.2.14) and is equal to reflection
spin current plus injection spin current. The later induced by the CSHE in NM is as-
sumed to be constant. When ~µs ‖ ~M, as shown in Eq. (2.2.14), the interfacial spin
current at NM/MI interface ~Js,z = (|Gs|/e)~µs is small, which means the majority
of the spin current is reflected into NM and converted back into longitudinal charge
current. Thus, SMR exhibits a minimum. On the contrary, when~µs ⊥ ~M, as shown in
Eq. (2.2.14), the interfacial spin current at NM/MI interface~Js,z = (|Gs|/e + Gr/e)~µs
is large, which means the minority of spin current is reflected into NM and con-
verted back into charge current. Thus, SMR exhibits a maximum. As a result, the
SMR appears as a modulation of the NM resistivity, governed by Gr and Gs, which
follows the relative orientation between the magnetization in the MI and the spin-
Hall induced spin accumulation in the NM, as shown in FIGURE 1.8.

2.3 Results and Discussion

2.3.1 Spin-dependent conductance

In this subsection, we sketch the field and temperature of spin-dependent conduc-
tances. As two typical examples, hereafter, we deal with paramagnetic and ferro-
magnetic insulators.

To highlight the physical picture of the spin-dependent conductance, we plot the
quantities Gi, Gr − 1

2 Gs, and − 1
2 Gs as functions of B for a PM in FIGURE 2.3 (a)

and as functions of T for a FM in FIGURE 2.3 (b), respectively. If we consider the
low-field limit of PM and high-temperature case of FM, we will reach the isotropic
regime (τ‖ = τ⊥), where Gr = Gi = 0, and Gs = − 2

3 G0S(S + 1), and hence the SMR
is governed by the spin-flipping process. If we consider the high-field regime of PM
and low temperature situation of PM, the spin of itinerant electrons are fully frozen
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and hence spin flipping is forbidden. Ultimately, we arrive the strongly magnetized
regime (τ‖ � τ⊥), and we have Gr = G0S2, Gi = G0S/(πνF Jsd), and Gs ≈ 0. Here,
G0 = π

h̄ n2D
imp(eνF Jsd)

2 is a characteristic scale of the spin-dependent conductances.
We estimate a value of G0 ≈ 3.8× 1013Ω−1m−2 for a typical n2D

imp = 5× 1018m−2 and
νF Jsd = 0.1. This estimate is compatible with values of spin mixing conductances
reported in experiments of Vlietstra et al., 2013a; Dejene et al., 2015; Das et al., 2019.

Next, we consider a ferrimagnet consisting of two species of local moments (Sa

and Sb). In the mean-field approximation, no interference terms occur between dif-
ferent species and our results above are modified only by selectively weighting each
species by its concentration on the surface (n2D

a and n2D
b ) and taking into account its

possibly different coupling strength (Ja
sd and Jb

sd). It is possible to obtain a situation in
which the interfacial exchange fields of the two local-moment species closely com-
pensate each other, resulting in Gi � Gr-a condition which is believed to hold for
Pt thin films deposited on Y3Fe5O12 (YIG) Vlietstra et al., 2013a and which would
otherwise not be possible in a simple ferromagnet, because Gi is the largest spin
mixing conductance for νF Jsd � 1. The Gi-compensation condition for a ferrimag-
net, thus, reads n2D

a Ja
sdSa − n2D

b Jb
sdSb = 0, which differs from the magnetization com-

pensation condition, n3D
a Sa − n3D

b Sb = 0, and allows for the possibility of having a
finite magnetization even when Gi = 0. And vice versa, the Néel order parameter
of an antiferromagnet can manifest itself as an interfacial exchange field, provided
the Gi-compensation condition is not fulfilled. We remark that, for YIG, we have
Sa = Sb = 5/2 and n3D

a /n3D
b = 3/2. And for the Pt/YIG-[001] interface, we have

n2D
a = n2D

b and Ja
sd ≈ Jb

sd. A small difference between Ja
sd and Jb

sd may originate from
different crystal fields for the Fe3+ cation on the tetrahedral (a) and octahedral (b)
sublattice of the garnet.

Even though YIG has been the material of choice in most experimental studies
of SMR, recent experiments started also studying other MIs (Isasa et al., 2014; Isasa
et al., 2016; Vélez et al., 2019b; Lammel et al., 2019; Fontcuberta et al., 2019). Here, we
would like to draw attention to an effect due to Gi, which, to the best of our knowl-
edge, has been overlooked theoretically. Moreover, it could appear rather puzzling
when observed experimentally. This effect consists of a negative, linear-in-B mag-
netoresistance, which arises from an interplay between SMR and HMR, featuring a
non-local Hanle effect. Furthermore, although the novel effect is primarily due to
Gi, we keep Gr and Gs in the expressions below for completeness.

2.3.2 The interplay of HMR and SMR

In this subsection, we explore the interplay of HMR and SMR. As two typical exam-
ples, hereafter, we deal with paramagnetic and ferromagnetic insulators.

We make use of the boundary condition in Equation (2.2.14) and follow closely
the derivation of the SMR and HMR effects (Nakayama et al., 2013; Chen et al., 2013;
Vélez et al., 2016b; Vélez et al., 2019b), obtaining the corrections to the longitudinal
(ρL) and transverse (ρT) resistivity of the Hall-bar setup in FIGURE 2.1

ρL ' ρD + ∆ρ0 + ∆ρ1

(
1− n2

y

)
, (2.3.1)

ρT ' −ρDωcτnz + ∆ρ1nxny + ∆ρ2nz, (2.3.2)

where ρD is the Drude resistivity and ωcτ is the Hall angle, with ωc = eB/mc being
the cyclotron frequency and τ being the momentum relaxation time. The combined
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SMR+HMR resistivity corrections read (see detailed derivation in Appendix 2.5.4)

∆ρ0 = θ2
SHρD[2−R(Gs, λs)], (2.3.3)

∆ρ1 = θ2
SHρD

{
R(Gs, λs)− Re

[
R(Gs − G↑↓, Λ)

]}
, (2.3.4)

∆ρ2 = θ2
SHρDIm

[
R(Gs − G↑↓, Λ)

]
, (2.3.5)

where θSH is the spin Hall angle, λs =
√
Dτs, with D = 1/2e2νFρD being the dif-

fusion constant, G↑↓ = Gr + iGi is the complex spin mixing conductance, 1/Λ =√
1/λ2

s + iωB/D, and the auxiliary functionR(G, `) is defined as

R(G, `) =
2`
dN

tanh
(

dN

2`

) 1− ρDG` coth
(

dN
2`

)
1− 2ρDG` coth

(
dN
`

) . (2.3.6)

For Λ = λs, we recover the SMR corrections (Nakayama et al., 2013; Chen et al.,
2013), whereas for Gs = Gr = Gi = 0, we recover the HMR corrections (Dyakonov,
2007; Vélez et al., 2016b). We remark that, in general, it is important to take into
account Gs (Dejene et al., 2015; Vélez et al., 2019b), which is not negligible in the
paramagnetic regime, see FIGURE 2.3. The corrections in Equation (2.3.5) were used
in Ref. Vélez et al., 2019b to explain the unusual behavior of SMR in Pt/LaCoO3 in
the high-temperature limit.

For a PM or FM at sufficiently low temperatures, the scale to reach saturation
represents only a relatively small portion of the experimentally accessible B-field
range. The SMR effect develops quickly with increasing B and saturates as shown
by the blue solid line in FIGURE 2.4a. The SMR effect is dominated by Gi for

Gr − Gs � G2
i λsρD coth (dN/λs), (2.3.7)

which requires that

n2D
imp � (h̄/e2ρDλs) tanh (dN/λs). (2.3.8)

At the same time, the HMR effect develops gradually and becomes relevant only
for large B as shown by the red solid line in Figure 2.4a. In the experiment, the
HMR effect is well pronounced at relatively large magnetic fields, B . 10 T (Vélez
et al., 2016b). In the region of intermediate B, denoted as “interference region” in
Figure 2.4a, the interplay between the SMR and HMR effects can lead to negative
differential MR (∂ρL/∂B < 0). This behavior would not be so surprising if it occurred
solely when Gi and ωB had opposite signs. Indeed, Gi is a measure of the interfacial
exchange field, which is a singular field created at the NM/MI interface by the sd
coupling in Equation (2.2.4). The signs of Gi and ωB are equal to each other for Jsd >
0 and opposite for Jsd < 0. For electrons diffusing over a characteristic length scale
` ∼ min(dN , λs), the interfacial exchange field can be smeared near the interface
over ` and superimposed onto ωB, obtaining an average Larmor frequency ωL =
ωB + Gi/e2νF`. One could naïvely expect that the HMR effect, which is proportional
to ω2

B for all experimentally relevant B-field values, to become proportional to ω2
L =(

ωB + Gi/e2νF`
)2, generating, thus, after squaring a cross term proportional to ωBGi.

For Jsd < 0, this term would then naturally lead to a negative MR. Quite surprisingly,
we find a negative MR even for Jsd > 0, provided Gi exceeds a certain critical value.
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(d)< 0Jsd

Jsd> 0

FIGURE 2.4: (a) Interplay between SMR and HMR effects for Jsd > 0
and MI in the paramagnetic regime. The blue and red solid lines
show, respectively, the SMR and HMR effects in the absence of one
another. Between the SMR regime (small B) and the HMR regime
(large B) an intermediate “interference” region occurs, where anoma-
lous behavior, marked by the straight black line, is possible due to a
non-local Hanle effect and its interplay with SMR. The dashed line À
shows the qualitative behavior of ∆ρ1(B) for the non-local interfer-
ence, whereas line Á shows it for the local interference. (b) Same as
in (a), but for Jsd < 0 and with lines Â and Ã corresponding, respec-
tively, to the non-local and local regimes of interference. (c) Separa-
tion of the parameter space (dN , Gi) into different regimes of inter-
ference. The red dashed line shows the critical value of Gi in Equa-
tion (2.3.9) as a function of dN . The regions À-Ã correspond to the
four kinds of behavior shown in (a) and (b). The color code shows
the sign of ∂ρL/∂ωB at constant Gi and ωB → 0. (d) Sketch of the spin
accumulation at the thin-film interfaces as created by the SHE and
altered by the SMR effect. The SMR effect suppresses the spin den-
sity at NM/MI interface and rotates it by a finite angle, θSMR, about
the magnetization direction. In the absence of overlap between the
two spin accumulations (orange and green), the Hanle effect acts lo-
cally at each interface and alters the spin accumulation in an expected
manner, quite similarly to the SMR effect, see text. The overlap be-
tween the two spin accumulations makes it possible for the Hanle
effect from the NM/vacuum interface to affect significantly the spin
accumulation at the NM/MI interface, especially when the latter is
strongly suppressed due to SMR. With applying a B field, the compo-
nent µ

y
s (z = 0) can exhibit an increase instead of the decrease which

one could naïvely expect from the local Hanle effect.

To investigate the origin of the anomalous behavior of the MR, we expand ∆ρ1 in
Equation (2.3.5) in powers of ωB at constant Gi and set, for simplicity, Gr = Gs = 0.
The coefficient in front of the linear-in-ωB term changes sign at the critical value of
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Gi given by

G2
i,c =

sinh2(dN/2λs)

2λ2
s ρ2

D cosh(dN/λs)

[
λs

dN
sinh

(
dN

λs

)
− 1
]

. (2.3.9)

We find several qualitatively different behaviors of the MR, illustrated by the dashed
lines in FIGURE 2.4a-b. The lines À–Ã correspond to the regions in the parameter
space (dN , Gi) shown in FIGURE 2.4c, obtained by plotting the magnitude of the
linear-in-ωB term. The critical value in Equation (2.3.9) as a function of dN is shown
in Figure 2.4c by the red dashed line. Thus, for Jsd > 0, the anomalous behavior
manifests itself in a segment of negative MR on line À, marked by the black straight
line in FIGURE 2.4a. The dependence shown by line Á is consistent with the the
physical picture, given above, in which the Zeeman and exchange fields can be su-
perimposed locally with one another, giving rise to a shifted-to-the-left parabolic
B-field dependence for ∆ρ1(B), on top of the fully developed SMR gap. The depen-
dence, shown by line À cannot be understood in terms of a local interplay between
the SMR and HMR effects occurring at the NM/MI interface. We remark that no
anomalous behavior occurs in a semi-infinite space, at one interface. Therefore, it
is essential to involve in the explanation of the NM/vacuum interface, which has a
spin accumulation oriented predominantly opposite to, but not strictly anti-aligned
with the spin accumulation at the NM/MI interface.

We illustrate the spin accumulations occurring in the SMR effect at both inter-
faces in Figure 2.4d. Since the SMR effect suppresses significantly the spin accumu-
lation ~µs(0) at the NM/MI interface, the Hanle effect occurring near that interface
induces a rather small change of spin accumulation, which represents mainly a ro-
tation about the B-field axis, such as δ~µs(0) ∝ ωB [~n×~µs(0)]. In contrast, the Hanle
effect occurring near the NM/vacuum interface induces, in the same fashion, a rel-
atively larger change of spin accumulation, δ~µs(dN) ∝ ωB [~n×~µs(dN)]. By means
of diffusion or, in other words, when the film is so thin that the spin accumulations
of both interfaces overlap with each other (see orange and green parts of µ

y
s in Fig-

ure 2.4d), a non-local interplay between SMR and HMR effects takes place. In par-
ticular, for a magnetic field along z as shown in Figure 2.4d, the Hanle effect at the
NM/vacuum interface brings in a µx

s component generated from a µ
y
s component of

opposite sign (green part of µ
y
s ). After diffusing across the thin film thickness, the µx

s
component is converted back into a µ

y
s component at the NM/MI interface due to the

interfacial exchange field. The longitudinal resistivity correction is governed by the
change in the y-component of the spin bias across the sample (Chen et al., 2013; Vélez
et al., 2016b), ∆ρL ∝ µ

y
s (dN)− µ

y
s (0). A negative MR is obtained when the difference

µ
y
s (0)− µ

y
s (dN) grows with applying a magnetic field, i.e. when the spin bias across

the sample increases with B. This usual behavior is obtained also for the quantity
µ

y
s (0) alone, although we find that the difference µ

y
s (0)− µ

y
s (dN) begins to increase

with B at a smaller critical Gi than the value at which µ
y
s (0) begins to increase. Nev-

ertheless, the physical picture leading to such a striking effect is common to both
quantities: The µx

s component generated from a large negative spin accumulation at
the NM/vacuum interface is converted into a µ

y
s component at the NM/MI interface

due to Gi, obtaining a non-local contribution δµ
y
s (0) ∝ −ωBGie−dN/λs µ

y
s (dN). This

non-local contribution competes with the one generated locally by the Hanle effect
at the NM/MI interface, δµ

y
s (0) ∝ ωBµx

s (0). Notably, µx
s (0) is suppressed for large Gi

as ∝ 1/Gi, which makes the correction generated locally small. From the balance of
the local and non-local corrections to µ

y
s (0), we recover the exponential dependence

of the critical Gi in Equation (2.3.9) for large dN � λs, namely Gi,c ∝ e−dN/2λs . Thus,
we conclude that the transition from positive to negative MR for Jsd > 0 occurs when
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the non-local interplay between HMR and SMR dominates over the local one.
In the case of Jsd < 0, see Figure 2.4b, a negative MR is not unusual since the

Zeeman and exchange fields have opposite signs and can compensate each other to
some extent. In this case, one would expect a shifted-to-the-right parabolic B-field
dependence for ∆ρ1(B), on top of the fully developed SMR gap. This expectation
is, indeed, met when the magnitude of Gi is smaller than the critical value in Equa-
tion (2.3.9), see line Ã in Figure 2.4b. As for line Â, which corresponds to a large
negative Gi (Gi < Gi,c < 0), its behavior resembles qualitatively that of line Ã, and
can not be reliably identified in the absence of the reference curves showing the pure
SMR and pure HMR separately. Nevertheless, the anomalous behavior originating
from the the non-local interplay between SMR and HMR consists herein having a
positive slope at the beginning of the interference region, as marked by the straight
black line in Figure 2.4b.

With the help of our theoretical model, we explore further several examples that
illustrate the non-monotonic behavior of the MR in a realistic system and show how
it evolves with temperature. Specifically, we assume that the MI can be described
as a Weiss ferromagnetic insulator. It exhibits a spontaneous finite average magne-
tization, 〈Ŝ‖〉, at temperatures below the Curie-Weiss temperature Tc. The B- and
T-dependence of 〈Ŝ‖〉 is obtained by solving the transcendental equation (see more
discussion in Appendix 2.5.3),

〈Ŝ‖〉 = −SBS

[
S
T

(
h̄ωB − 〈Ŝ‖〉∑

j
Jij

)]
, (2.3.10)

where BS(X) is Brillouin function. Equation (2.3.10) also describes a PM insulator
after setting Jij = 0. We remark that, for sufficiently small values of Jij (including
the case of a PM insulator), the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion Majlis, 2007 between local moments on the MI surface may dominate the sur-
face magnetism. The RKKY coupling constant, JRKKY

ij ∼ νF J2
sd, becomes on average

exponentially suppressed over distances larger than the mean-free path De Gennes,
1962, although the fluctuations of this coupling constant remain long-ranged Zyuzin
and Spivak, 1986; Bulaevskii and Panyukov, 1986. It is important to note, however,
that this interaction leads to an effectively two-dimensional Heisenberg model on
the surface of the MI and that the Weiss mean-field theory can then be applied only
for sufficiently large temperatures, T � ∑j JRKKY

ij , to avoid discrepancies with the
Mermin-Wagner theorem of Mermin and Wagner, 1966.

We compute the longitudinal resistivity from Eqs. (2.3.2-2.3.6). The spin-dependent
conductances, Equations (2.2.15-2.2.17), are determined from the relaxation times in
Equations (2.2.10-2.2.11), which can be obtained after substitution of magnetization
〈Ŝ‖〉 from Equation (2.3.10) and spin-spin correlation function 〈S2

‖〉 from the relation
(see detailed derivation in Appendix 2.5.3)

〈S2
‖〉 = S(S + 1) + coth[(h̄ωB − 〈Ŝ‖〉∑

j
Jij)/2T]

〈
S‖
〉

. (2.3.11)

Figure 2.5 summarizes our results for PM and FM insulators. The dashed lines in
Figure 2.5a-d correspond to a field applied in y-direction, whereas the solid lines
to a field in z-direction. It is in the latter situation that the predicted anomalous
behavior becomes evident.

As one might anticipate, the non-monotonic behavior is best pronounced at low
temperatures for which the spin-dependent conductances Gs, Gr, and Gi saturate
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FIGURE 2.5: (a-d) Relative longitudinal resistivity, [ρL(Bi)− ρL(By →
0)]/ρD, as a function of magnetic field B applied along main direc-
tions (B ≡ Bi with i = x, y, z). Solid lines show the case B ≡ Bz (or
B ≡ Bx, which is equivalent), whereas dashed lines shows the case
B ≡ By. Panels (a,b) correspond to a PM insulator, whereas panels
(c,d) to a FM insulator with a Curie temperature of TC = 100 K. Pan-
els (a,c) and (b,d) correspond, respectively, to positive and negative
sd-coupling constant, Jsda−3

c = ±0.1 eV (Wahl et al., 2007; Myers et
al., 2005), respectively. The NM thickness is chosen as dN = 2 nm and
the different curves correspond to different temperatures. (e-f) Dif-
ferent to above, relative longitudinal resistivity, [ρL(Bz) − ρL(Bz →
0)]/ρD, as a function of magnetic field B applied in z-direction, for
a FM insulator which couples to NM with a coupling constant: (e)
Jsda−3

c = +0.1 eV and (f) Jsda−3
c = −0.1 eV. The temperature is cho-

sen as T = 10 K and the different curves correspond to different thick-
ness. In all panels we have chosen the following values of other pa-
rameters: θSH = 0.1, λs = 3.0 nm, ρD = 1.0× 10−6 Ωm, n2D

impa2
c = 0.5,

S = 2, |νF Jsd| ' 0.04, and ac = 0.4 nm.

after applying a relatively small magnetic field. We have chosen the parameters
such that the solid curves in Figure 2.5a-d correspond to the predicted anomalous
behaviors À and Â in Figure 2.4a-b. In the PM case, Figure 2.5a-b, the anomalous
differential MR starts at finite fields when Gi is sufficiently large, cf. Figure 2.3a. In
contrast, in the FM case, Gi is large enough even in small fields due to the sponta-
neous magnetization, and the anomalous behaviors are already seen for B → 0 and
over a larger range of temperatures below Tc, see Figure 2.5c-d. In the FM case, one
also obtains the SMR gap, defined as

∆G := ρL(B ≡ Bz → 0)− ρL(B ≡ By → 0). (2.3.12)

In Figure 2.5e-f, we show ρL(B) in the FM case for a field in z-direction and dif-
ferent values of the NM thickness, dN . Following Equation 2.3.9, by changing dN ,
one tunes the critical value of Gi and hence the behavior of the MR changes. For the
chosen parameters in Figure 2.5e-f, the thickest film exhibits the normal behavior,
see red solid lines in Figure 2.5e-f, whereas thinner films show the anomaly in the
MR, blue and green dashed lines. Thus, our modeling shows that the anomalous
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behavior is expected to be observed in MIs with sufficiently large values of Gi. This
can be achieved, for example, in insulating FMs with large local moments, for ex-
ample, in EuS or EuO (Müller, Miao, and Moodera, 2009; Strambini et al., 2017; Wei
et al., 2016).

2.4 Conclusions

We have presented a theory of the SMR effect from a microscopic perspective, in
which SMR relates to the microscopic processes of spin relaxation at the NM/MI
interface. Our theory covers a wide range of MIs and can be used to investigate the
effect of a magnetic field and temperature on MR in NM/MI Hall-bar setups and
beyond. We found a non-local interplay between SMR and HMR, which gives rise
to a negative linear-in-magnetic-field MR. Our theory provides a useful tool for un-
derstanding present and future experiments, and it has the potential to evolve into a
full-fledged technique to measure the magnetic properties of the NM/MI interfaces,
focusing exclusively on probing the very surface of the MI.

2.5 Appendix

2.5.1 Spin relaxation tensor in equations (2.2.10) and (2.2.11)

In this section, we show how to obtain the different terms of the spin relaxation
tensor used in our kinetic equation. We define spin states at the Bloch sphere with
arbitrary coordinates (θ, φ), where θ ∈ [0, π] and φ ∈ [0, 2π),

|⇑〉 = cos(
θ

2
) |↑〉 − e−iφ sin(

θ

2
) |↓〉 , (B.5.1)

|⇓〉 = cos(
θ

2
) |↓〉+ e+iφ sin(

θ

2
) |↑〉 , (B.5.2)

where |↑〉(|↓〉) correspond to spin up(down) projections with respect to the quantiza-
tion axis along the magnetic field. We set thw latter as the z direction. Noth that the
sd coupling is SU(3) invariant. We can rewrite it in any rotated spin basis defined
by a rotation R(θ, φ) : (Ax, Ay, Az)→ (Ax, Ay, Az) with ~A =~s,~Sj:

R =

 cos θ cos φ − cos θ sin φ sin θ
sin φ cos φ 0

− sin θ cos φ sin θ sin φ cos θ

 . (B.5.3)

Thus, |⇑〉(|⇓〉) are the spin “up”(“down”) with quantization Pauli matrix sz. The sd
coupling in the rotated spin basis reads

Vsd = −Jsd ∑
i

{
1
2

[
Si,z
+ sz
−(~r) + Si,z

− sz
+(~r)

]
+ Si

zsz(~r)
}

, (B.5.4)

where

Si,z
+ = Si

x + iSi
y, sz

+(~r) = sx(~r) + isy(~r), (B.5.5)

Si,z
− = Si

x − iSi
y, sz
−(~r) = sx(~r)− iσy(~r). (B.5.6)
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The first term of the right hand side of equation (B.5.4) describes spin “exchange”
(“split”) for spin “up”(“down”), i.e., | ⇑〉(| ⇓〉) with quantization Pauli matrix sz.
Here we emphasize that the pure spin exchange (flip) without double quotes de-
scribe the spin up (down), i.e., | ↑〉(| ↓〉), with quantization Pauli Matrix sz, i.e.,
along the magnetic field.

We turn now to calculating the spin relaxation times in the Born-Markov approx-
imation Slichter, 2013. The rate for electron transition from |~k,⇑〉 into momentum
|~k′,⇓〉 reads

W⇓⇑(~k′,~k) =
(

Jsd

2h̄V

)2

∑
ij

ei(~k′−~k)·~Rj′ j

∫ ∞

−∞
dte−i

(
ω~k′⇓−ω~k⇑

)
tDz
−+(~Rj′ j, t), (B.5.7)

where Dz
−+(~Rj′ j, t) = 〈Sj′,z

− (t)Sj,z
− 〉 is spin-spin correlation function. The spin relax-

ation time induced by the spin “flip” described by the first term of the right hand
side of equation (B.5.4) reads

1
tz

=
2

kBTVνF
∑
~k~k′

W⇓⇑
(
~k′,~k

)
f
(

h̄ω~k⇑

) [
1− f

(
h̄ω~k′⇓

)]
, (B.5.8)

where kB is Boltzman constant, T is the tempeature and νF is the density of state.
f (E) = 1/(e(E−µ)/kBT + 1) is Fermi-Dirac distribution function with chemical po-
tential µ.

To calculate the above rate (B.5.7), we make two approximations. They are i)
single scattering, which assumes the contributions of different local moments in an
incoherent fashion,

Dz
−+(~Rj′ j, t) = δjj′Dz

−+(t) + (1− δjj′)〈S
j′,z
− (t)〉〈Sj,z

− 〉. (B.5.9)

ii) Weiss theory, which means the interaction between local moments amounts only
to a renormalization of the Zeeman term. Hence, the scattering rate (B.5.7) reduces
into compact form

W⇓⇑(~k′,~k) = 2πM
(

Jsd

2h̄V

)2

Dz
−+(ω~k↑ −ω~k′↓), (B.5.10)

where M is the number of magnetic moments within magnetic interface, and Dz
−+(ω)

is the Fourier transformation of Dz
−+(t).

With loss of generality, the longitudinal spin relaxation time corresponds to θ =
0, φ = 0 of equation (B.5.3). Hence we have

S‖+ = Sx + iSy, S‖− = Sx − iSy. (B.5.11)

And the correlation function becomes

D‖−+(ω) = δ(ω−ωW)
(
〈S2

x〉+ 〈S2
y〉 − 〈Sz〉

)
, (B.5.12)

where ωW = ωB − ∑j Jij
〈
S‖
〉

/h̄ is the frequency of Weiss field. Then we obtain
longitudinal spin relaxation time

1
τ‖

=
2π

h̄
n2D

impνF J2
sdβh̄ωm

L nB (ω
m
L ) [1 + nB (ω

m
L )] |〈Ŝz〉|, (B.5.13)
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where we have written t‖ = bτ‖ by changing n3D
imp to n2D

imp. For the case of transverse
spin relaxation time, we take θ = π/2, φ = π of equation (B.5.3). Then we have

S⊥+ = Sz − iSy, S⊥− = Sz + iSy. (B.5.14)

And the correlation function becomes

D⊥−+(ω) = +
1
4

[
D‖+−(ω) + D‖−+(ω)

]
+ δ(ω)〈S2

z〉. (B.5.15)

Then we obtain transverse spin relaxation time

1
τ⊥

=
1

2τ‖
+

1
τφ

, (B.5.16)

with

1
τφ

=
π

h̄
n2D

impνF J2
sd〈Ŝ2

z〉. (B.5.17)

2.5.2 Periodic Magnetic Moments

Strictly speaking, the expressions (B.5.8) are general and can be used for situations
beyond the Weiss-field and single scattering approximations. Now let us show how
to calculate the more exact expression for spin relaxation time. For periodic magnetic
moments, the spin-spin correlation is a function of relative coordinate ~Rj′ j = ~Rj′ −~Rj:
It can be represented as a Fourier series

Dz
−+(~Rj′ j, t) =

1
M ∑

~q
ei~q·~Rj′ j

∫ +∞

−∞
dωe−iωtDz

−+(~q, ω). (B.5.18)

Hence, we reach

W⇓⇑(~k′,~k) =
πMJ2

sd

2h̄2V2 ∑
~K

Dz
−+(~k−~k′ + ~K, ω~k↑ −ω~k′↓). (B.5.19)

where we have used the relation

1
M ∑

j′
ei(~k′−~k+~q)·~Rj′ j = ∑

~K

δ~q,~k−~k′+~K. (B.5.20)

The sum over ~K describes umklapp processes and runs over the reciprocal (mag-
netic) lattice until one value is found for which~q =~k−~k′+ ~K lies in the first Brillouin
zone of the magnetic lattice. Hence, (B.5.8) becomes

1
tz

=
πn3D

imp J2
sd

h̄2kBTV2

1
νF

∑
~k~k′

∑
~K

Dz
−+(~k−~k′ + ~K, ω~k↑ −ω~k′↓) f

(
h̄ω~k⇑

) [
1− f

(
h̄ω~k′⇓

)]
.

(B.5.21)
This is the general expression for all kinds of magnetic configuration for the periodic
magnetic moments. However, it is too complicated. The calculation of spin-spin
correlation functions Dz

−+(~q, ω), itself, is an exciting challenge, which thousands of
scientists devote themselves to after quantum mechanics was built.
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2.5.3 Weiss theory

In Weiss theory, the interaction between local moments amounts only to a renormal-
ization of the Zeeman term in equation (2.2.3),

gµB ∑
j

~Sj · ~B→ gµB ∑
j

~Sj · ~Hj. (B.5.22)

The Weiss field ~Hj acting on the local moment becomes

~Hj = ~B− 1
gµB

∑
i

Jij〈~Si〉, (B.5.23)

where the sum is taken over the nearest neighbor. Since all spins have equal averages〈
~Sj

〉
=
〈
~S
〉

and equal Weiss fields ~Hj = ~H, all oriented co-linear with the magnetic

field ~B. It is convenient to introduce the following notation S‖ = ~n · ~S. Hence,

H = B− J(~0)
gµB
〈S‖〉, (B.5.24)

with

J(~q) = ∑
j

Jije+i~q·~Rij . (B.5.25)

By self-consistency, the average spin is determined by this Weiss field,〈
S‖
〉
= −SBS

[
βS
(

h̄ωB − J(~0)
〈
S‖
〉)]

, (B.5.26)

with ωB = gµBB/h̄, where BS(x) is the Brillouin function and β = 1/kBT. This can
be simply solved to obtain the magnetic field and temperature dependence of spin
expactation.

Next, we show some important relations for spin-spin correlation function de-
fined as Dαβ(t) = 〈Sα(t)Sβ〉, which can be expressed as a function of spin expecta-
tion, 〈S‖〉 within Weiss theory. For longitudinal spin relaxation time induced by the
spin-flip, we require correlators

D∓±(ω) =
1

2π

∫ +∞

−∞
dteiωtD∓±(t). (B.5.27)

With Weiss theory, we reach

D∓±(ω) = 〈S∓S±〉δ(ω∓ωW), (B.5.28)

i.e.,

D−+(ω) = [S(S + 1)− 〈S2
‖〉 − 〈S‖〉]δ(ω−ωW), (B.5.29)

D+−(ω) = [S(S + 1)− 〈S2
‖〉+ 〈S‖〉]δ(ω + ωW). (B.5.30)

where ωW = ωB − J(~0)
〈
S‖
〉

/h̄ is the frequency of Weiss field. By the virtue of the
fluctuation-dissipation theorem (Giuliani and Vignale, 2005), we have

D−+(ω) = eβh̄ωD+−(−ω). (B.5.31)
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Substituting equations (B.5.29) and (B.5.30) in to equation (B.5.31), we obtain

〈S2
‖〉 = S(S + 1) + coth(βh̄ωW/2)〈S‖〉. (B.5.32)

Substituting equation (B.5.32) into equations (B.5.29) and (B.5.30), we reach

D−+(ω) = [coth(βh̄ωW/2) + 1]|〈S‖〉|δ(ω−ωW), (B.5.33)

D+−(ω) = [coth(βh̄ωW/2)− 1]|〈S‖〉|δ(ω + ωW). (B.5.34)

2.5.4 Diffusion Equation

Let’s start with the continuity equation and constitutive equation for the spin accu-
mulation in NM

µ̇υ
s (z) +

1
eνF

∂z Jυ
s (z)−ωBευνκnνµκ

s (z) = −τ−1
S µν

s (z), (B.5.35)

Jυ
s,i(z) = −

σD

2e
∂iµ

υ
s (z) + θSHεiυκσDEκ . (B.5.36)

For the simplicity, we have assume that both layers are translation invariant in the
(x, y) plane. If the NM/MI interface is located at z = 0, integrating continuity equa-
tion (B.5.35) over [−b, 0] leads to boundary condition at NM/MI interface

eJυ
s,z
∣∣z=0
z=−b = bωLευνκnνµκ

s −
(

b
τS

+
1

τ⊥

)
µυ

s −
(

1
τ‖
− 1

τ⊥

)
nυ(~n ·~µs). (B.5.37)

The boundary conditions require that spin current Jυ
s,i(~r) is continuous at both mag-

netic interface and vacuum interface. For vacuum interface (z = dN), the spin cur-
rent should vanish, i.e., Jυ

s,i(dN) = 0. It implies that no spin current can enter or exit
the 2D conductive channel in ẑ-direction. Read from constitutive equation (B.5.36),
we obtain first boundary condition:

0 = −σD

2e
∂zµυ

s |z=dN
− J0

SHδυy, (B.5.38)

where J0
SH = θSHσDEx is the uniform spin Hall current, i.e., the spin current gener-

ated directly by the SHE. At magnetic interface (z = 0), we have the second bound-
ary condition

e~Js,z(0) = Gs~µs + Gr~n× (~n×~µs) + Gi~n×~µs, (B.5.39)

Substituting (B.5.35) into ∇ · (B.5.36), one obtains the spin-diffusion equation in
the NM (Chen et al., 2013; Vélez et al., 2016b), which in the stationary case simply
reads

∇2
~r µυ

s (~r) =Mυνµν
s (~r), (B.5.40)

with
Mυν = `−2

S δυν − `−2
B ευκνnκ. (B.5.41)

Here `S =
√
DτS and `B =

√
D/ωB, where D = σD/

(
2νFe2) is the diffusion coeffi-

cient. The electrons are diffused by eigen-modes of diffusion matrixM. It is easy to
get the eigenvalues and eigenvectors of diffusion matrixM, i.e., `−2

a Eυa = MυνEνa
with eigenvalues

`−2
a = [`−2

S + i`−2
B , `−2

S − i`−2
B , `−2

S ], (B.5.42)
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and eigenvectors

E =


m̂2

1−1√
2Nr

m̂2
1−1√
2Nr

m̂1
+im̂3+m̂1m̂2√

2Nr

−im̂3+m̂1m̂2√
2Nr

m̂2
−im̂2+m̂1m̂3√

2Nr

+im̂2+m̂1m̂3√
2Nr

m̂3

 , (B.5.43)

with Nr =
√
(1− m̂2

1). Here we also present the inverse of eigenvectors

E−1 =


m̂2

1−1√
2Nr

−im̂3+m̂1m̂2√
2Nr

+im̂2+m̂1m̂3√
2Nr

m̂2
1−1√
2Nr

+im̂3+m̂1m̂2√
2Nr

−im̂2+m̂1m̂3√
2Nr

m̂1 m̂2 m̂3

 . (B.5.44)

The solution of diffusion equation (B.5.40) can be assume that

µυ
s = ∑

ν

Eυν[Aνe+z/`ν + Bνe−z/`ν ]. (B.5.45)

Substituting (B.5.45) into BCs (B.5.38), we obtain

∑
ν

σD

`ν

(
A′ν − B′ν

)
Eυν = −δυy2eJ0

SH, (B.5.46)

which leads into
A′ν

2eJ0
SH
− B′ν

2eJ0
SH

= −E−1
νy

`ν

σD
, (B.5.47)

with

A′ν = Aνe+dN/`ν , B′ν = Bνe−dN/`ν . (B.5.48)

So that we obtain µυ
s = µυ

CH + µυ
SH with

µυ
CH = ∑

ν

Eυν A′ν2 cosh
(

z− dN

`ν

)
, (B.5.49)

µυ
SH = 2eJ0

SH ∑
ν

EυνE−1
ν2

`ν

σD
e−(z−dN)/`ν . (B.5.50)

Substituting the above solutions (B.5.49) and (B.5.50) into BCs (B.5.39), we obtian

eJυ
b = ∑

ν

Eυν A′ν (gν − Gν) 2 cosh
(

dN

`ν

)
, (B.5.51)

with

gν =
σD

2`ν
tanh

(
dN

`ν

)
, (B.5.52)

Gν =
[
G+

s , G−s , Gs
]

, G±s = Gs − (Gr ± iGi) . (B.5.53)

Here we used the relation

nυ = Eυ3 = E−1
3υ , (B.5.54)

ηaEυa = −ευκνnκEνa, (B.5.55)
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with ηa = [+i,−i, 0]. The current Jυ
b composes of two parts eJυ

b = δυyeJ0
SH + eJυ

SH
with

Jυ
SH

J0
SH

= ∑
ν

EυνE−1
νy

(
−1 + 2Gν

`ν

σD

)
e+dN/`ν . (B.5.56)

Finally we obtain

A′ν (gν − Gν) 2 cosh
(

dN

`ν

)
= ∑

υ

E−1
νυ eJυ

b , (B.5.57)

which leads to
µυ

CH

eJ0
SH

= ∑
ν

EυνE−1
νy

cosh [(z− dN)/`ν]

Gν cosh (dN/`ν)
, (B.5.58)

with

G−1
ν =

2`ν
σD

tanh
(

dN
2`ν

)
1− Gν

2`ν
σD

coth
(

dN
`ν

) − 2
`ν

σD
e+dN/`ν . (B.5.59)

Final we obtain the total solutions

µυ
s (z)

eJ0
SH

= 2 ∑
ν

EυνE−1
νy

`ν

σD

 cosh
(

z−dN
`ν

)
Xν cosh

(
dN
`ν

) − sinh
(

z
`ν

)
cosh

(
dN
`ν

)
 . (B.5.60)

with

X−1
ν =

tanh
(

dN
2`ν

)
1− Gν

2`ν
σD

coth
(

dN
`ν

) . (B.5.61)

For magnetic field in z-axis direction, we have

E =


−1√

2
−1√

2
0

+i√
2

−i√
2

0
0 0 1

 , E−1 =


−1√

2
−i√

2
0

−1√
2

+i√
2

0
0 0 1

 . (B.5.62)

Hence, the spin densities reduce into

µx
s (z)

eJ0
SH

= −2Im

 Λ
σD

 cosh
(

z−dN
Λ

)
X cosh

(
dN
Λ

) − sinh
( z

Λ

)
cosh

(
dN
Λ

)
 , (B.5.63)

µ
y
s (z)

eJ0
SH

= +2Re

 Λ
σD

 cosh
(

z−dN
Λ

)
X cosh

(
dN
Λ

) − sinh
( z

Λ

)
cosh

(
dN
Λ

)
 , (B.5.64)

with

X−1 =
tanh

(
dN
2Λ

)
1− [Gs − (Gr + iGi)]

2Λ
σD

coth
(

dN
Λ

) . (B.5.65)

In the presence of SMR and HMR, we define the correction of charge current as

∆~Jc = −
θSHσD

2edN

∫ dN

0

[
~̂x×~̂z∂zµx

s (z) + ~̂y×~̂z∂zµ
y
s (z)

]
dz. (B.5.66)
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For the electric field in x-axis direction, the total longitudinal (along x̂) and trans-
verse or Hall (along ŷ) charge currents become

∆JL
c

JD
c

= −θ2
SH

σD

2dN

[
µs2 (dN)

eJ0
SH

− µs2 (0)
eJ0

SH

]
(B.5.67)

= +θ2
SH ∑

ν

E2νE−1
ν2 R(Gν, `ν),

∆JT
c

j0c
= +θ2

SH
σD

2dN

[
µs1 (dN)

ej0sH
− µs1 (0)

ej0SH

]
(B.5.68)

= −θ2
sH ∑

ν

E1νE−1
ν2 R(Gν, `ν),

with
R(Gν, `ν) = RHMR(`ν)RSMR(Gν, `ν), (B.5.69)

where

RHMR(`ν) =
2`ν

dN
tanh

(
dN

2`ν

)
, (B.5.70)

RSMR(Gν, `ν) =
1− Gν`ν

σD
coth

(
dN
2`ν

)
1− Gν`ν

σD
2 coth

(
dN
`ν

) , (B.5.71)

Substituting eigenvectors (B.5.43) and (B.5.44) into (B.5.67) and (B.5.68), we obtain

JL
c

j0c
= 1 + θ2

sH
{
R(Gs, `S) +

[
Re
(
R(Gs − G↑↓, `+)

)
−R(Gs, `S)

] (
1− m̂2

1
)}

,

(B.5.72)
JT
c
j0c

= −θ2
sH
{[
R(Gs, `S)− Re

(
R(Gs − G↑↓, `+)

)]
m̂1m̂2 − Im

(
R(Gs − G↑↓, `+)

)
m̂3
}

,

(B.5.73)
which lead to

ρL ' ρD + ∆ρ0 + ∆ρ1

(
1− n̂2

y

)
, (B.5.74)

ρT ' −ρDωcτDn̂z + ∆ρ1n̂xn̂y + ∆ρ2n̂z, (B.5.75)

but now the different contributions are given by

∆ρ0

ρD
= θ2

SH [2−R(Gs, `S)], (B.5.76)

∆ρ1

ρD
= θ2

SH{R(Gs, `S)− Re
[
R(Gs − G↑↓, `+)

]
}, (B.5.77)

∆ρ2

ρD
= θ2

SHIm
[
R(Gs − G↑↓, `+)

]
, (B.5.78)

where we have included the correction of resistivity induced by SHE in ∆ρ0.
It is instructive to expand the HMR effect in powers of ωL,

`S

`+
=
√

1 + iωBτS ≈ 1 +
i
2

ωBτS +
1
8
(ωBτS)

2. (B.5.79)

The expansion parameter here is ωBτS � 1. For most experimental needs, expansion
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of HMR to the second-order in this small parameter is sufficient. Without any G’s
(more precisely for Gi = 0 and R = RHMR), the linear in ωB term drops out when
expanding and taking the real part in Eq. (B.5.77). Then, only the quadratic term
remains, and it leads to the characteristic quadratic dependence of the HMR effect,
seen in the longitudinal resistivity as a function of the magnetic field applied along
z or x. Gr and Gs are assumed to be constant here.

In the presence of Gi, the liner in ωB term does not drop out when taking the real
part in Eq. (B.5.77). Since the expansion coefficient is rather cumbersome, we further
expand it for dN � `S and dN � `S. However, before that, we write out the zeroth
order in ωB term by replacing `+ → `S in Eq. (B.5.77),

∆ρ1(0)
ρD

= θ2
SH{R(Gs, `S)− Re

[
R(Gs − G↑↓, `S)

]
}, (B.5.80)

which represents SMR only without any HMR. The linear in ωL term for dN � `S
reads

∆ρ1 ≈ ∆ρ1(0)−
θ2

SHd3
NGiωB

4D`2
S

[
G2

i + (Gr − Gi)
2
] . (B.5.81)

Interestingly, the parameter σD drops out from the absolute correction in this limit.
In the limit dN � `S, we obtain

∆ρ1 ≈ ∆ρ1(0) +
2θ2

SH`
4
SGiωB

(
1 + 2`S

Gr−Gs
σD

)
DdNσ2

0

[(
1 + 2`S

Gr−Gs
σD

)2
+

4`2
SG2

i
σ2

D

]2 .

(B.5.82)

Interestingly, there is a change of sign of the linear in ωB term, when going from the
limit dN � `S to the limit dN � `S. Also, in this limit, the correction depends on σD.
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Chapter 3

Observation of paramagnetic spin
Hall magnetoresistance in Pt/GGG

This work was performed in collaboration with Prof. Eiji Saitoh and Prof. Felix
Casanova and their Ph.D. students Dr. Koichi Oyanagi and Dr. Juan M Gomez-
Perez, respectively. My contribution to this work is the theoretical analysis and the
numerical fitting to their experimental data.

3.1 Introduction

Spintronics (Maekawa and Kimura, 2017) aims to add new functionalities to the
conventional electronics using interconversion of spin angular momentum between
different carriers in solids (Otani et al., 2017). Especially, the spin exchange between
conduction electron spins in a normal metal (NM), and magnetization, M, in a ferro-
magnet (FM) is a central topic (Tserkovnyak et al., 2005) to manipulate M for devel-
oping new types of magnetic memory devices (Liu and Yu, 2019). When spin angu-
lar momentum is transferred into a FM through a NM/FM interface, it modifies the
transverse dynamics of M by exerting two types of torque, known as spin-transfer
torque (Slonczewski, 1996) and field-like torque (Xia et al., 2002), while it hardly cou-
ples to the longitudinal component. This is because the magnetic susceptibility in
spin order, such as FM, is anisotropic due to the broken rotational symmetry reflect-
ing spontaneous M; the magnetic susceptibility is large (small) along the transverse
(longitudinal) direction, resulting in anisotropy into the spin injection.

The spin-mixing conductance G↑↓ has characterized the efficiency of the trans-
verse spin injection (Tserkovnyak, Brataas, and Bauer, 2002). Its evaluation is of
crucial importance in spintronics as G↑↓ governs the device performance (Weiler
et al., 2013). To this end, the spin Hall magnetoresistance (SMR) can be a power-
ful tool (Nakayama et al., 2013; Chen et al., 2013). As we explained in Subsection
1.4.1, SMR is a modulation of resistance to the relative orientation of the magne-
tization in the MI, which smoothly follows the direction of the external magnetic
field and the spin polarization of spin Hall current generated by spin Hall effect
(SHE) in HM. Prior experimental research of SMR has thoroughly investigated the
interface between HM and ferrimagnetic insulators, such as Tm3Fe5O12 (Vélez et al.,
2019a; Avci et al., 2017) and Y3Fe5O12 (YIG) (Isasa et al., 2016; Marmion et al., 2014;
Nakayama et al., 2013; Kosub et al., 2018; Althammer et al., 2013; Vlietstra et al.,
2013a; Hahn et al., 2013; Isasa et al., 2014; Meyer et al., 2014). However, little has been
conducted to investigate other MIs, such as paramagnetic, ferromagnetic, and anti-
ferromagnetic insulators, which are also attracting more and more attention due to
the new physics and phenomena to be studied by SMR (Zhang, Bergeret, and Golo-
vach, 2019). To be specific, a paramagnetic insulator (PMI) allows an efficient spin
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FIGURE 3.1: The sketches of the transfer of angular momentum from the
heavy metal (HM) to ferromagnetic insulator (FMI). Figure comes from the

PhD thesis of Dr. Koichi Oyanagi.

transport at the interface induced by spin-flip scattering in high-temperature and
low field limit (Zhang, Bergeret, and Golovach, 2019), revealing that the spin-sink
conductance Gs associated with STT as depicted in FIGURE 1.6 (a), can be pivotal
in the HM/PMI interface, in addition to spin-mixing conductance Gr and Gi whose
torques are plotted in FIGURE 1.6 (a) and (b), respectively. In contrast to a ferromag-
netic insulator (FMI) as plotted in FIGURE 3.1, the magnetization of paramagnets is
free from the exchange stiffness, and hence can be well controlled by the wide range
of magnetic field. Moreover, in Chapter 2, we have expected the existence of an ad-
ditional FLT, which is due to the interfacial Hanle precession induced by the local
moments in the HM/PMI interface. It has the same role as the Gi in the SMR sce-
nario, which stems from the interfacial SOC (Chen et al., 2013; Vlietstra et al., 2013b;
Althammer et al., 2013; Meyer et al., 2015). In the case of YIG, Gi is at least one order
of magnitude smaller than Gr, leading to a small contribution. Consequently, ∆ρ2/ρ
is 100 times smaller than ∆ρ1/ρ (Althammer et al., 2013; Vlietstra et al., 2013b; Jia
et al., 2011; Meyer et al., 2015). However, in the case of a PMI, this phenomenon
could be different. In the high-field and low-temperature limits, the local moments
at HM/PMI interface can acquire a sizable magnetization in the direction of the ex-
ternal magnetic field. Finally, the spin exchange coupling between the interfacial
magnetic moment and the conduction electrons around HM/PMI interface might
lead to a larger interfacial exchange field, i.e., a larger Gi.

In this chapter, we demonstrate spin Hall magnetoresistance (SMR) in anisotropic
paramagnetic insulator (PI) Gd3Ga5O12 (GGG), with an NM (Pt) contact. Unlike
FMs, a paramagnet has no spontaneous magnetization and shows huge longitu-
dinal susceptibility. At the interface, conduction electron spins in NM couple to
the transverse component (spin-transfer and field-like torque) and the longitudinal
component of spins in PI through the interfacial spin-flip process, whose efficiency
is characterized by the spin-sink conductance Gs. Both G↑↓ and Gs can be crucial
for the spin transport at NM/MI heterostructure. First, we show the evidence of
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FIGURE 3.2: The temperature and field dependence of the magnetization
in GGG. (a) The magnetization of GGG, M as a function of temperature T
at field H = 0.1 T. The inset shows the temperature dependence of 1/M,
where the red line indicates the linear fit showing the Curie-Weiss temper-
ature TCW = −2 K. (b) M as a function of field H curves at different tempera-

ture T.

the paramagnetic SMR in Pt/GGG through transverse resistivity measurements. By
combining experimental and theoretical results, we then evaluate G↑↓ and Gs, and
demonstrate that the conductance is controllable with external magnetic fields B,
which is realized by changing B. Such controllability in paramagnets is distinct from
SMR in FMs, highlighting the novelty of the paramagnetic SMR.

3.2 Experimental details

In this section, we briefly introduce the details of the SMR experiment in HM/PMI
heterostructure, such as the thermal and magnetic properties of PMI and the device
parameters.

Here, the paramagnetic insulator is chosen as Gd3Ga5O12 (GGG). It has a lattice
constant aGGG = 12.38 A, an electric band gap of 6 eV (Ghimire et al., 2015), and
a short-range magnetic order (Cornelissen et al., 2017). It is well known that GGG
shows a textbook-like paramagnetic behavior down to low temperatures due to its
small Curie-Weiss temperature TCW = −2 K (Kinney and Wolf, 1979). FIGURE 3.2
(a) plots the temperature T dependence of the magnetization in GGG, M, which
is measured by a vibrating sample magnetometer (Foner, 1959). M increases with
decreasing T following the Curie-Weiss law. The inset of FIGURE 3.2 (a) plots the
1/M of GGG as a function of temperature, T, which clearly indicates the Curie-
Weiss temperature TCW of −2K. The field dependence of M is depicted in FIGURE
3.2 (b) for different temperatures. Obviously, we find that M increases linearly with
the field at high-temperature case; whereas, at low-temperatures regime, M shows
saturation behavior as a function of B. The magnetization of GGG arises from Gd3+

ions with spin 7/2, which couple with each other by the weak nearest-neighbor
exchange interaction with strength Jex ∼ 0.1 K (Schiffer et al., 1995). Because of the
half-filled 4f−shell in Gd3+, the orbital angular momentum is zero, and thus GGG
shows a small magnetic anisotropy of 0.04 K (Schiffer et al., 1994; Overmeyer et al.,
1963).

The devices consist of a 5-nm-thick Pt film deposited by magnetron sputtering
in Ar atmosphere on top of the GGG (111) obtained from CRYSTAL GmbH. After
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the Pt deposition, a Hall bar (width wN = 100µm and length lN = 800µm) was
defined by photolithography and Ar-ion milling process. The strong SOC in Pt can
be recognized as the spin magnetic field and generates spin Hall current via SHE,
which is then injected into the Pt/GGG interface. For Pt with Drude resistivity of
ρ = 34µΩ·cm, the SHE can be parameterized by spin Hall angle θSH = 0.104 and
spin diffusion length λs = 2 nm (Sagasta et al., 2016). The latter is shorter than
the thickness of HM, dN , but is longer than the mean-field length l = vFτ, with vF
being Fermi velocity and τ being momentum relaxation time. If we further assume
that the local moments at Pt/GGG interface are dilute and randomly distributed.
Therefore, Pt is in a diffusive regime, with momentum scattering rate τ−1 is larger
enough, EFτ � 1, and the quantities we are interested in are required to be much
larger than the scale of mean-field length, l. Additionally, the g-factor is set to be
g = 2, and the Fermi energy is tuned to be EF = 1.0 eV, in Pt.

3.3 Results and discussions

We measured the Pt resistivity using direct current reversal method (Casanova et
al., 2009) to exclude thermal effects, with a static magnetic field B up to 9 T in the
temperature range from 2 K to 300 K. As discussed in Chapter 2, SMR appears in
both longitudinal and transverse resistivity. The transverse resistivity is relative to
the edge-spin-x accumulation, while the longitudinal resistivity is associated with
the edge-spin-y accumulation. However, the longitudinal resistivity measurement,
at low-temperature (T < 50 K) and high-field regime, posses an extra contribution
due to the weak anti-localization in Pt, which is much larger than SMR (Gomez-
Perez et al., 2020). To avoid it, we mainly focus on the transverse resistivity, which
was derived in Chapter 2. Here, we show it again for the sake of convenience

ρT ' −ρωcτnz + ∆ρ1nxny + ∆ρ2nz, (3.3.1)

with

∆ρ1 = θ2
SHρ

{
R(Gs, λs)− Re

[
R(Gs − G↑↓, Λ)

]}
, (3.3.2)

∆ρ2 = θ2
SHρDIm

[
R(Gs − G↑↓, Λ)

]
, (3.3.3)

where weak anti-localization does not contribute to the magnetoresistance measure-
ments. As shown in Eqs. (3.3.2) and (3.3.3), the feild and temperature dependence
of spin-dependent conductance is hidden in SMR amplitudes ∆ρ1 and ∆ρ2.

3.3.1 Quantification of SMR amplitude ∆ρ1/ρ

Read from Eq. (3.3.1), the quantification of SMR amplitude ∆ρ1/ρ can be easily ob-
tained by measuring the transverse resistivity ρT with the external magnetic field
applied in xy−plane, whose direction is described by angle α. First of all, we per-
formed angle-dependent MR at T = 2 K and µ0H = 3.5 T, which is plotted in FIG-
URE 3.3 (a). It exhibits a clear sinα·cosα dependence as expected from Eq. (3.3.1),
with a maximum and minimum at α = 45o and α = 135o, respectively. FIGURE 3.3
(b) presents the field-dependent MR curve of the normalized ρT at 2 K for different
directions of fields. At α = 45o, ρT increases up to µ0H = 5 T and saturates above
this value. On the other hand, at α = 135o, ρT decreases with field, being consistent
with the SMR symmetry in the work of Althammer et al., 2013; Vélez et al., 2016a.
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FIGURE 3.3: Quantification of SMR amplitude ∆ρ1/ρ. (a) Transverse
angular-dependence MR at 2 K and 3.5 T. The solid line is the sinα·cosα fitting
to extract the SMR amplitude ∆ρ1/ρ. (b) Transverse field-dependent MR at

α = 45o and α = 135o at 2 K.

By fitting the transverse angle-dependent MR at different magnetic fields, we
can obtain the SMR amplitude ∆ρ1/ρ as a function of the magnetic field. We can
see clearly that the SMR amplitude extracted from the transverse angle-dependent
MR is the same as the difference between the transverse field-dependent MR at 45o

and 135o at the same field, as shown by the dash lines in FIGURE 3.3. The satura-
tion of the field-dependent MR above 5 T, as depicted in FIGURE 3.3 (a), cannot be
explained by HMR (Vélez et al., 2016), which has the very same angle-dependent
MR symmetry as the SMR but depends on the square of the field. Therefore, the
observed trend can only be due to SMR because of the field-induced magnetization
in GGG.

3.3.2 Quantification of SMR amplitude ∆ρ2/ρ

Read from Eq. (3.3.1), the quantification of SMR amplitude ∆ρ2/ρ should be con-
ducted by measuring the transverse resistivity ρT to the external magnetic field in
z direction. It inevitably includes the contribution from OHE, i.e., the first term of
the right-hand side of Eq. (3.3.1). The inset of FIGURE 3.4 plots the total transverse
resistivity ρT/ρ at T = 2 K. In a large-field regime, one can observe a clear linear
dependence with H, which is obviously related to the CHE in Pt. In a weak mag-
netic field, we find a non-linear dependence concerning H, which is exactly what we
want. To study this signal, we are required to subtract the linear response of OHE
from ρT/ρ.

FIGURE 3.4 plots the field dependence of ρT/ρ after excluding the background
from the CHE, i.e., ∆ρ2/ρ vs µ0H. It is negative for positive H, changing the sign
for positive H, which is consistent with the symmetry of the anomalous Hall effect
(AHE)-like expected from SMR theory, see Eq. 3.3.1 (Chen et al., 2013). As depicted
by the purple curve, ∆ρ2/ρ saturates at H ∼ 3.5 T for temperature T = 2 K. Notably,
in contrast to YIG, the saturation value of ∆ρ2/ρ ∼ 3 × 10−5 is in the same order
of magnitude as that of ∆ρ1/ρ ∼ 5 × 10−5. We can also observe this behavior at 5
K and 10 K, with a larger saturation field, which is the same behavior as that of the
GGG magnetization presented in FIGURE 3.2(b). Therefore, we can infer that the
observed AHE-like behavior corresponds to the component induced by the param-
agnetic moments.
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FIGURE 3.4: Quantification of SMR amplitude ∆ρ2/ρ. AHE-like term as
a function of the magnetic field at 2.5 K, 5 K and 10 K, after subtracting the

linear term related to the OHE (inset shows the raw data).

3.3.3 Calculation of the spin-dependent conductance

The spin transport at the Pt/GGG surface is sketched by the exchange interaction be-
tween the spin of itinerant electrons in the Pt,~s(~Ri) and the spin of local moments in
the GGG, ~Sj, which is modeled by Hamiltonian (2.2.4) in chapter 2. The strength of
spin-exchange coupling is parameterized by Js f , which describes the hybridization
of between 1s electrons in Pt and 4f electrons in GGG. In addition, there is another
important parameter delimiting how many local moments participate in the spin
transport of itinerant electrons, i.e., the density of magnetic moments in Pt/GGG
surface n2D

imp. Equipped with these two surface parameters and the expressions for
spin-dependent conductance given by Eqs. (2.2.15)-(2.2.17) in chapter 2, we can per-
form the theoretical fitting of the experimental data ∆ρ1/ρ and ∆ρ2/ρ, quantified in
last two subsections with the help of Eqs. (3.3.2) and (3.3.3). For the sake of simplic-
ity, we exclude the feedback effect of the itinerant electrons in Pt on local moments
in GGG. The latter are treated as a quantum bath, and hence the magnetic and ther-
mal properties of that are assumed to be independent of itinerant electrons. Based
on this assumption, one can acquire the compact expressions for spin-dependent
conductance within the Curie-Weiss theory approximation (Zhang, Bergeret, and
Golovach, 2019). Furthermore, we will make the molecular field approximation for
GGG magnetization, as explained in Appendix 3.5.1.

During the theoretical fitting, the Curie-Weiss temperature TCW , and the surface
parameters Js f and n2D

imp are treated as free parameters so that we can optimize the
theoretical fitting of experimental data. This choice of free parameters is experi-
mentally reasonable since the interfacial properties are complicated and are largely
depended on the conditions of crystal growth, crystal face cutting, and so on. FIG-
URE 3.5 (a) plots the field dependence of theoretical fittings, where purple and blue
lines, respectively, correspond to SMR amplitudes ∆ρ1/ρ and ∆ρ2/ρ. The corre-
sponding experimental data for ∆ρ1/ρ and ∆ρ2/ρ are indicated in the same panel
by the purple circles and blue circles, respectively. The optimized theoretical fitting
for both SMR amplitudes perfectly reproduces the field dependence of the signals,
and the corresponding spin-dependent conductance is shown in FIGURE 3.5 (b). In
the low-field limit, the spin orientation of local moments does not prefer any special
direction, and hence spin relaxation of itinerant electrons is isotropic, and there is
no interfacial exchange field induced by local moments. Consequently, both the real
and imaginary parts of spin-mixing conductance Gr and Gi vanish. On the contrary,
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FIGURE 3.5: Spin Hall magnetoresistance amplitudes and spin-
dependent conductance. (a) ∆ρ1/ρ (purple circles) and ∆ρ2/ρ (blue circles)
as a function of H, with the corresponding fitting to Eqs. (3.3.2) and (3.3.3)
using the Curie-Weiss model (purple lines and blue line, respectively) at 2
K for the H > 0 range. (b) Spin-dependent conductance obtained from the
fittings in panel (a). The red, blue and green lines represent Gr, Gi and Gs,

respectively.

a spin-flip happens so easily without any limit from the external magnetic field. As a
result, spin-sink conductance Gs takes its maximum value 8 × 1012 Ω−1m−2. On the
other hand, when H increases, the spins of magnetic moments prefer aligning in the
direction of the external field. The itinerant electrons can feel the anisotropic spin
relaxation and a sizable exchange field. Thus, spin-mixing conductance Gr and Gi
increase and tend to saturate to Gr ∼ 1 × 1013 Ω−1m−2 and Gi ∼ 7 × 1012 Ω−1m−2,
respectively. However, the spin-sink conductance Gs monotonically decreases to
zero at large H, where the spin of the itinerant electron is fully frozen, and hence no
spin-flip happens anymore.

Next we explore the detailed mechanisms behind SMR amplitudes ∆ρ1/ρ and
∆ρ2/ρ. FIGURE 3.6 (b) shows the comparison between the real part of spin-mixing
conductance Gr and the SMR amplitude ∆ρ1/ρ as a function of field, H. We find that
∆ρ1/ρ is directly proportional to Gr, which is responsible for the STT. This perfect
agreement shown in FIGURE 3.6 (b) indicates that ∆ρ1/ρ is definitely driven by the
STT in Pt/GGG surface, , which is sketched in FIGURE 3.6 (a). On the other hand,
FIGURE 3.6 (d) shows the comparison between the imaginary part of spin-mixing
conductance Gi and SMR amplitude |∆ρ2|/ρ as a function of field, H. We observe
that |∆ρ2|/ρ is also directly proportional to Gi, which is relative to the FLT. Again,
the good agreement shown in FIGURE 3.6(b) reveals that ∆ρ2/ρ is associated with
FLT, which is depicted in FIGURE 3.6 (c). We can also notice that the saturation
of ∆ρ2/ρ occurs at lower field than that of ∆ρ1/ρ. This is because Gi is directly
proportional to 〈Ŝ‖〉 (see Eq. (2.2.17)), whereas Gr is associated with 〈Ŝ2

‖〉 as shown
in Eqs. (2.2.16). Extracting the value of the spin-mixing conductance in Pt/GGG
interface, we find that both spin-transfer and FLTs are equally important in the spin
tranposrt at Pt/GGG heterostruncture. To be specific, we can compare the values
extracted from Pt/GGG structrue with that of Pt/YIG in the work of Kosub et al.,
2018: Gr ∼ 1× 1013 Ω−1m−2 in Pt/GGG is about 7 times smaller than Gr ∼ 6.6× 1013

Ω−1m−2 in Pt/YIG. However, the imaginary part of the spin-mixing conductance is
dramatically opposite. Gi ∼ 7× 1012 Ω−1m−2 in Pt/GGG is about 3 times larger
than Gi ∼ 2.2× 1012 Ω−1m−2 in Pt/YIG. In other words, whereas Gr/Gi ≈ 30 in
Pt/YIG, Gr/Gi ≈ 1 in Pt/GGG.
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FIGURE 3.6: The spin-transfer (field-like) torques, the real (imaginary)
parts of spin-mixing conductance (spin-mixing conductance), and SMR
amplitudes ∆ρ1/ρ (∆ρ2/ρ). (a,b) Sketch of the mechanism of STT in panel
(a), which is parameterized by real part of spin-mixing conductance Gr in
panel (b), where the corresponding SMR amplitude ∆ρ1/ρ is indicated by
purple circles. (c,d) Sketch of the mechanism of FLT in panel (c), which is
parameterized by the imaginary part of spin-mixing conductance Gi in panel
(d), where the corresponding SMR amplitude ∆ρ2/ρ is indicated by blue cir-

cles.

More importantly, from the fitting, we can also extract the Curie-Weiss temper-
ature TCW , and microscopic parameters n2D

imp and Js f , where the spin exchange cou-
pling is parameterized by a dimensionless parameter νF Js f with νF being density of
state at Fermi energy. To obtain the great agreements shown in FIGURE 3.5 (a), the
free parameters are chosen as TCW = −0.66 K, n2D

imp = 6.7 × 1016 atoms/m2, and
νF Js f = 0.13. Even though the bulk TCW for GGG is −2 K, as shown in the inset
of FIGURE 3.2 (a), we extracted a smaller values of −0.66 K. It is well known that
SMR is only sensitive to the magnetic properties around the Pt/GGG surface. As a
result, the estimated TCW indicates that the effective exchange interaction between
the Gd moments at the interface is smaller than that in the bulk. We also find that
n2D

imp is only 1% of the ideal value (n2D
Gd = 6.9× 1018 atom/m2). The last parameter

extracted is the s-f exchange interaction between the conduction electron of Pt and
the localized spins in the 4f shell of Gd at the Pt/GGG interface, which is Js f /a3

Gd = 2
meV, where aGd = 0.38 nm is the atomic distance between the Gd moments. Up to
now, the interface exchange coupling between conduction electron and 4f electron
has been assumed to be small. Js f represents the overlap between the conduction
electron and the localized spin, and it can be smaller for Pt/GGG than for Pt/YIG.
This is expected because the strongly localized 4f electrons in Gd3+ (responsible for
the GGG magnetic moments) overlap less with the conduction electrons in Pt in
comparison to the 3d electrons in Fe3+ (responsible for the YIG magnetic moments).
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However, the estimated Js f is the same as that of Pt/YIG interface extracted in the
work of Kajiwara et al., 2010. Kajiwara et al., 2010, assumed the ideal density Fe3+

at the interface, which could lead to an underestimation of Js f . Another example
is the work of Schlitz et al., 2018, where they already suggested the weak exchange
coupling in Pt/GGG. The interfacial s-f exchange interaction is also assumed to be
small in the experiments of spin Seebeck effect by Geprägs et al., 2016.

3.4 Conclusions

In summary, we demonstrate the presence of SMR in a Pt film on top of a para-
magnetic insulator GGG. The observed SMR signal shows the clear saturation be-
havior by applying large magnetic fields at low temperatures, consistent with its
paramagnet-like magnetization curve. Our microscopic theory reproduces the SMR
signal as a B and T function and provides the spin mixing conductance at the Pt/GGG
interface. The large imaginary part of spin mixing conductance indicates the FLT
drives SMR using paramagnetic insulators. The smaller SMR signal in Pt/GGG than
that in Pt/YIG is attributed to the small interface exchange interaction between 1s
electrons in Pt and 4f electrons in GGG. Using a simple ferromagnet with strong in-
terfacial exchange interaction is promising to enhance SMR by combining the spin-
transfer and FLTs.

3.5 Appendix

3.5.1 Molecular field approximation for magnetization of GGG

GGG is an ideal Curie-paramagnet with a weak exchange interaction between spins
of neighboring Gd ions. Using the molecular field approximation, the thermal aver-
age of spin m is calculated by the self-consistent equation

〈m〉 = −SBS (SC1Beff/T) , (C.5.1)

where S is the electron spin angular momentum of Gd ions, BS(x) is the Brillouin
function of spin S as a function of X, C1 = gµB/kB, g is the g-factor, µB is the
Bohr magneton, Beff = B + NPImJex/gµB is the effective field including the applied
magnetic field B and the Weiss molecular fields, kB is the Boltzmann constant, T is
the temperature, NPI is the number of the nearest neighbor of the interfacial mag-
netic moments, and Jex is the strength of the antiferromagnetic exchange interaction
among Gd ions. We used the effective (renormalized) Curie-Weiss temperature Θeff

CW
for taking all the correlation effects on a Gd ion into account, which gives the ef-
fective field as Beff = BT(T −Θeff

CW). The Θeff
CW should recover the bare Curie-Weiss

temperature ΘCW in the limit B → 0 and 3TΘCWC1(S + 1)B in the limit B → ∞, re-
spectively. For practical purposes it is convenient to match these limiting cases into
a crossover function for the effective Curie-Weiss temperature:

Θeff
CW(B) =

3ΘCW

S + 1
BS(Sη)

ξ
≈
{

ΘCW (gµBB/kBT � 1)
3T

C1(S+1)B ΘCW (gµBB/kBT � 1) , (C.5.2)

with the ansatz

ξ = −a0 + a1|B|+
√

a2
0 + (a2B)2, (C.5.3)
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FIGURE 3.7: The field dependence of the magnetization in GGG. The red
and blue lines represent the self-consistent solution and the approximation
with the effective Curie-Weiss temperature solution for Eq. (C.5.2), respec-

tively.

where

a0 = −3ΘCW/(S + 1)T, (C.5.4)

a1 = C1/(T −ΘCW), (C.5.5)

a2 = C1/T(1− T/ΘCW). (C.5.6)

FIGURE 3.7 shows the plots of Eq. (C.5.1) solved self-consistently (red line) and
using with Θeff

CW given as Eq. (C.5.2) (the blue line). We find a good agreement
between both curves, justifying the use of Θeff

CW . In the following discussion and the
main text, the approximate form of Beff = BT(T−Θeff

CW) is used to analyze the data.
In this case, the expressions for spin-mixing conductance reduce into

Gr = A1

{
S(S + 1)−

[
coth(ξ/2) +

ξ

4 sinh2(ξ)

]
SBS(Sξ)

}
, (C.5.7)

Gi = A2SBS(Sξ), (C.5.8)

Gs = −A1
ξ

2 sinh2(ξ/2)
SBS(Sξ), (C.5.9)
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where

A1 = (π/h̄)nPI (eJint)
2 , (C.5.10)

A2 = (π/h̄)nPI (eJint) . (C.5.11)
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Chapter 4

Observation of ferromagnetic spin
Hall magnetoresistance in Pt/EuS

This work was performed in collaboration with Prof. Felix Casanova and his Ph.D.
student Dr. Juan M Gomez-Perez. My contribution to this work is the theoretical
analysis and the numerical fitting to their experimental data.

4.1 Introduction

Spin-dependent transport at the heavy metal (HM)/magnetic insulator (MI) het-
erostructure has been pushed to the forefront spintronics, due to its contributions
to many novel phenomena, from spin pumping (Burrowes et al., 2012; Heinrich et
al., 2011; Mosendz et al., 2009) to spin Seebeck effect (Uchida et al., 2010a; Uchida
et al., 2010b; Uchida et al., 2014) and spin Hall magneto-resistance (Isasa et al., 2016;
Marmion et al., 2014; Vélez et al., 2016a; Nakayama et al., 2013; Kosub et al., 2018;
Althammer et al., 2013; Vlietstra et al., 2013a; Ganzhorn et al., 2016; Hahn et al.,
2013; Isasa et al., 2014; Hou et al., 2017). The latter has been introduced in subsec-
tion 1.4.1. Thus, proper quantification of the spin-dependent conductance at differ-
ent magnetic interfaces is vital for many future applications based on all these fancy
phenomena. Spin Hall magneto-resistance (SMR) as a simple, but powerful tool, can
give essential information about spin transport at the magnetic interface, in which
spin-mixing conductance (G↑↓), at the heart of the SMR effect, quantifies both STT
and FLT at HM/MI interface, as explained in subsection 1.4.1.

Recently, SMR effects have been extensively studied in different MIs, for instance,
ferrimagnetic insulators, basically YIG (Isasa et al., 2016; Marmion et al., 2014; Hahn
et al., 2013; Isasa et al., 2014; Nakayama et al., 2013; Althammer et al., 2013; Vlietstra
et al., 2013b; Meyer et al., 2014), antiferromagnetic insulators such as NiO, Cr2O3
and CoO (Hoogeboom et al., 2017; Baldrati et al., 2018; Ji et al., 2017; Wang et al.,
2017; Fischer et al., 2018), as well as compensated ferrimagnetic insulators such as
Gd3Fe5O12 (Ganzhorn et al., 2016) or spiral ferrimagnets such as CuOSeO2 (Aqeel et
al., 2016). Furthermore, potential candidates can be a low dimensional ferromagnets
(Vélez et al., 2019b) or, paramagnetic insulators (Aqeel et al., 2015; Lammel et al.,
2019; Schlitz et al., 2018; Oyanagi et al., 2020). However, so far there are still no re-
ports in SMR characterizing purely ferromagnetic insulators (FMI). In 2006, Brataas,
Bauer, and Kelly, 2006b suggested that, at the interface of a FMI, such as europium
chalcogenides, Gi might dominate over Gr.

We know from chapter 2 and the original SMR theory of Chen et al., 2013 that
there exist an AHE-like SMR amplitude, ∆ρ2/ρ, which is governed by Gi. This AHE-
like contribution has been poorly studied so far, mainly because of the minority of
FMIs with large enough Curie temperature (TC). As a potential candidate for FMI,
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FIGURE 4.1: Magnetization of EuS and transmission electron microscopy
image of the EuS/Pt heterostructure (a) Temperature dependence of the EuS
magnetization measured at µ0H = 0.01 T. (b) TEM image of the SiO2/Pt/EuS
heterostructure. The solid lines on the right side represent the composition
profile along the sample thickness. The colors correspond to Si (blue), O

(green), Pt (purple), Eu (red), and S (yellow).

Europium sulfide (EuS) has a sizable TC typically around 16.5 K (Müller and Nolting,
2002). This FMI, in combination with conventional superconductors, such as Al, has
been studied for decades in the context of the magnetic proximity effect by Meyer
et al., 2014; Li et al., 2013; Strambini et al., 2017; Rouco et al., 2019. The exchange
interaction between the conduction electrons of the superconductor and the local-
ized magnetic moments of the EuS leads to a spin-splitting field in Al, even in the
absence of an external magnetic field. Such spin-split in superconductors are sub-
jected to intense research (Bergeret et al., 2018; Heikkilä et al., 2019) because of their
possible applications in cryogenic memories (De Simoni et al., 2018), thermoelectric
detectors (Heikkilä et al., 2018), superconducting spintronics and caloritronics (Lin-
der and Robinson, 2015; Giazotto, Heikkilä, and Bergeret, 2015), and in the field of
the topological superconductivity induced in the superconducting hybrid structures
(Virtanen et al., 2018; Liu et al., 2019a). All these applications require a spin-splitting
field induced in the superconductor adjacent to a FMI. Such field is proportional to
the Gi, which quantifies the interfacial exchange field and, therefore, knowledge of
the latter is crucial.

In this chapter, we report the SMR in a HM such as Pt on top of EuS. The temper-
ature dependence of the SMR amplitudes can be fitted by using either random phase
approximation (RPA) or Weiss field theory (WFT) model in the microscopic theory
for SMR introduced in Chapter 2. From the fittings, we can quantify the exchange
interaction between the conduction electrons of Pt and the localized moments of Eu
(∼18 meV), as well as the values of Gs, Gr and Gi as a function of temperature. In
a FMI where there is no compensation of magnetic moments at the interface, we
demonstrated that Gi is larger than Gr. The precise quantification of the interfacial
exchange field from Gi is relevant in many fields where this quantity plays a crucial
role.

4.2 Experimental details

In this section, we briefly introduce the SMR experiment’s details in HM/FMI het-
erostructure, such as the thermal and magnetic properties of FMI and the device
parameters.
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Here, the FMI is chosen as EuS. It has a lattice constant aEuS = 6.0 A, a gap
Eg = 1.6 eV and a sizable Curie temperature TC = 16.5 K (Müller and Nolting,
2002), which dramatically increases into about 160 K in proximity to Co (Fumagalli,
Schirmeisen, and Gambino, 1998). A respectable Curie temperature is necessary to a
large sensitive regime, in which the field and temperature dependence of SMR mea-
surements are obvious. Consequently, EuS is a potential candidate to study the SMR
effect. First of all, we evaluate the Pt/EuS interface quality by transmission electron
microscopy and scanning transmission electron microscopy. FIGURE 4.1(b) sketches
the stack of Pt/EuS grown on top of SiO2 substrate. In principle, we grew a 14-nm-
thick layer of EuS. However, from the transmission electron microscope image and
the energy dispersive X-ray analysis, we find that the upper-4-nm zone of the EuS is
oxidized, and there exists an amorphous structure. Fortunately, close to the Pt, the
EuS has the right composition and crystalline structure, which means that the inter-
face between the Pt and EuS, which participates in the spin-dependent scattering of
SMR, is of good quality. Have this structural characterization in mind, and we next
study the magnetization of the EuS film, which can be measured by a superconduct-
ing quantum interference device. FIGURE 4.1(a) plots the temperature dependence
of M at small enough field H = 10 mT. Apparently, EuS exhibits a ferromagnetic be-
havior with Courier temperature TC = 25 K. Below this temperature, EuS behaves
like a ferromagnetic compound and exhibits simple paramagnetic properties above
it. The growth of TC with respect to the text-book one of 16.5 K (Müller and Nolting,
2002) is due to the adulteration of little EuO in EuS layer, in agreement with previ-
ous reports of Mauger and Godart, 1986; Hao, Moodera, and Meservey, 1990. On the
other hand, we observed no saturation behavior down to 4 K, which can be related
to the two magnetic layers present in the stack. A similar M(T) behavior has been
reported in an evaporated 10-nm-thick EuS film by Muduli et al., 2018.

EuS/Pt samples were prepared by patterning a Pt Hall bar (width W = 500 µm,
length L = 900 µm, and thickness dN = 5 nm) on top of SiO2(150 nm)/Si by pho-
tolithography process and magnetron-sputtering deposition. EuS was evaporated
by our collaborators from the Material Physics Center. EuS layer was ex-situ evapo-
rated on top of the Pt film: the sample was inserted in a UHV preparation chamber
(base pressure 10−9 mbar) and left for twelve hours at room temperature. EuS was
grown employing sublimation of a stoichiometric EuS powder (99.9% purity) in a
commercial e-beam evaporator. The growth rate calibrated with a quartz microbal-
ance was 0.5 nm/min (total thickness of 14 nm). During preparation, the substrate
was kept at room temperature. Unlike the PMI situation in chapter 3, where the Pt
layer was deposited on top of the GGG, in the case of FMI, we had to change the
order of the stack in order to not damage the EuS during the Pt deposition.

4.3 Results and discussion

4.3.1 Angular dependence of magnetoresistance

In this subsection, we present some typical behavior of SMR, which is the oscillation
of longitudinal and transverse resistivity with the change of the relative orientation
of the magnetization of FMI and the spin of itinerant electron generated by SHE.

The longitudinal (∆ρL/ρ) and transverse (∆ρT/ρ) resistivity are measured us-
ing the standard Hall bar devices sketched on the right-side insets of FIGURE 4.2,
where the rotations along three main planes are parameterized by three angles α, β
and γ, respectively. First of all, let us consider the low-field and low-temperature
case. FIGURE 4.2 (a) plots the angular dependence of MR at field µ0H = 0.1 T and
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FIGURE 4.2: Relative longitudinal resistivity and sketch of the devices
(a) Normalized longitudinal (∆ρL/ρ) and transverse (ρT/ρ) ADMR at 2.5 K
along the three relevant H−rotation planes (α,β,γ), see sketches on the right
side, for different applied magnetic fields: (a) µ0H = 0.1 T and (b) µ0H = 2 T.

T = 2.5 K. We can clearly see that the out-of-plane magnetization as shown by the
blue curve in FIGURE 4.2 (a) is not well built, and only in-plane magnetization is
well built and saturates. The latter confirms the soft magnetic behavior in α plane.
Hence, the angular dependence of longitudinal (transverse) MR shows the typical
cos2α (cosα·sinα) modulation related to the SMR geometry (Isasa et al., 2016; Isasa
et al., 2014; Althammer et al., 2013; Vélez et al., 2019b). To build or even saturate the
out-of-plane magnetization, we are required to apply a larger field µ0H = 2 T. In this
case, the cos2 β modulation, as described by FIGURE 4.2 (b), is clear with the same
SMR amplitude ∆ρ1/ρ as the angular dependence of both longitudinal and trans-
verse MR in α−plane. The physical picture is explained as follows. When spins
polarization of itinerant electrons and the magnetic moments are parallel, the spins
are fully reflected at the interface and converted back into a charge current by the
inverse spin Hall effect, decreasing the overall Pt resistance. However, when the
spin polarization of itinerant electrons and the magnetic moments of MI are perpen-
dicular, the spin polarization of itinerant electrons exerts a torque to the magnetic
moments of MI, and part of the spin angular momentum is absorbed by the MI,
resulting in an increase of the Pt resistance.

In the case of γ−plane, the rotation along the direction of spin polarization of
itinerant electrons, no modulation is expected, as shown by the red curve in FIG-
URE 4.2 (a). This is because the Hanle precession of the spin of itinerant electrons
at Pt/EuS interface keeps the same spin y component, which determines the longi-
tudinal resistivity as shown in Eq. (1.4.5). Nonetheless, there is a small modulation
not related to SMR neither to AMR (Pippard, 1989; Zou et al., 2016) due to MPE in Pt
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FIGURE 4.3: Field dependence of magnetoresistance (a) Normalized field
dependence of transverse MR performed in α−plane in α = 45o and α = 135o.
The red arrow shows the amplitude corresponding to ∆ρ1/ρ. (b) Hall config-
uration measurements. Dash purple lines correspond to the linear fit per-
formed at large magnetic fields and extrapolated to zero. The red arrow

shows the amplitude corresponding to ∆ρ2/ρ.

(Hauser, 1969; Antel et al., 1999; Weiler et al., 2012; Huang et al., 2012; Lu et al., 2013;
Miao et al., 2014). This modulation is likely relative to the weak anti-localization
that appears in Pt at low T, and large H applied out-of-plane (Shiomi et al., 2014). To
exclude the influence of the weak anti-localization, the quantification of SMR ampli-
tudes, ∆ρ1/ρ, and ∆ρ2/ρ, are performed in the transverse direction.

4.3.2 Field dependence of transverse magnetoresistance

Following the same procedure of Chapter 3, we can first quantify the SMR ampli-
tudes ∆ρ1/ρ and ∆ρ2/ρ from transverse resistivity without weak anti-localization.
FIGURE 4.3 (a) plots the field dependence of transverse MR in α plane, where the
soft magnetic behavior demonstrates the correct modulation in the low-field regime.
The red and blue curves, respectively, correspond to the magnetic field applied in α
= 45o and α = 135o, which correspond to the maximum and minimum values, re-
spectively, as shown in FIGURE 4.2. One can also confirm that the magnetization
reversal occurs around ∼ 5 mT. While, for the magnetic field in z direction Hz, this
magnetization reversal occurs at larger H (∼ 1.5 T) as shown in FIGURE 4.3 (b), be-
cause the out-of-plane z axis happens to be the hard axis of the EuS film. On the
other hand, in the high-field region, we can clearly observe a perfect linear depen-
dence of transverse resistivity to the magnetic field that corresponds to the CHE of
Pt. In comparison, there is a clear non-linearity in the low-field regime. Therefore,
we can measure the AHE-like term from the Hz-field dependence of transverse re-
sistivity, which gives us the ∆ρ2/ρ amplitude from the intercept of the linear fittings
at large (positive and negative) magnetic fields, as shown in FIGURE 4.3 (b).

4.3.3 Temperature dependence of the spin-dependent conductance

We have already discussed, in last chapter, that ∆ρ1/ρ and ∆ρ2/ρ are the SMR am-
plitudes and depended on spin-mixing conductance G↑↓ = (Gr + iGi), where the
real and imaginary parts correspond to STT and FLT at Pt/EuS interface. In the case
of a ferrimagnetic insulator, with compensated magnetic moments, Gi is at least one
order of magnitude smaller compared to Gr, giving rise to a minimal AHE-like effect
in this kind of materials, such as YIG (Althammer et al., 2013; Vlietstra et al., 2013b;
Jia et al., 2011). Therefore, it is usually difficult to measure in the Hall configuration
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FIGURE 4.4: Temperature dependence of the spin Hall magnetoresistance
amplitudes and the spin conductances. (a) Temperature dependence of the
normalized SMR amplitudes ∆ρ1/ρ (extracted from the ADMR in α−plane at
H = 0.1 T) and ∆ρ2/ρ (extracted from from the AHE-like contribution in the
Hall configuration measurement. The open dots represent the experimental
data and the solid (dashed) lines are the best fits obtained with the RPA (WFT)
model and the microscopic theory Zhang, Bergeret, and Golovach, 2019. (b)
Temperature dependence of the real part (Gr), imaginary part (Gi) of the spin-
mixing conductance and the SSC (Gs). The solid (dashed) lines are calculated

values from the best fits obtained with the RPA (WFT) model.

due to the huge Hall effect background compared to the contribution of the AHE-
like amplitude, ∆ρ2/ρ. Nonetheless, in the EuS/Pt sample, we can see a clear ∆ρ2/ρ
signals as shown in FIGURE 4.3(b). By changing the temperature from 0 to 30 K,
we can quantify SMR amplitudes ∆ρ1/ρ and ∆ρ2/ρ by means of the method pre-
sented in FIGURE 4.3. FIGURE 4.4 (b) plots the temperature dependence of ∆ρ1/ρ
and ∆ρ2/ρ. We find that ∆ρ2/ρ is larger than ∆ρ1/ρ at all temperatures. In addition,
both amplitudes disappears close to the Tc of our EuS film.

Next, we investigate the evolution of the different spin conductance terms with
the temperature. For that purpose, we make use of the microscopic theory of SMR
in chapter 2. We perform two kinds of fittings to our experimental data by using
two different models for the ferromagnetism of EuS. They are random phase ap-
proximation (RPA) and Weiss field theory (WFT). In RPA method, we first fits the
EuS magnetization in order to extract both spin-spin correlation function 〈Ŝ2

‖〉 and

spin expectation 〈Ŝ‖〉. The latter is plotted by the yellow curve in FIGURE 4.4 (a).
While, in WFT method, we uses the experimental magnetization as a input of 〈Ŝ‖〉
as indicated by the blue boxes in FIGURE 4.4 (a) and, from which the 〈Ŝ2

‖〉 can be
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calculated from Zhang, Bergeret, and Golovach, 2019. For the fitting of the temper-
ature dependence of the two SMR amplitudes as shown in FIGURE 4.4(b), we are
required to provide with the values of λs (∼ 1.3 nm) and θSH (∼ 0.19), which can
be extracted from the Pt resistivity at each temperature by Sagasta et al., 2016. FIG-
URE 4.4 (b) shows the fitting curves for the SMR amplitudes ∆ρ1/ρ (purple line)
and ∆ρ2/ρ (blue line) as a function of T, with Js f , n2D

imp, J1 and J2 being the fitting pa-
rameters for RPA model, whereas in WFT the free parameters are Js f and n2D

imp only,
because we use the experimental magnetization as an input of the model and, thus,
J1 and J2 are not needed. Here, Js f describes the hybridization of between 1s elec-
trons in Pt and 4f electrons in Eu2+ localized at Pt/EuS interface, while, J1 and J2 are
the exchange couplings in the EuS for first neighbors (12 first neighbors) and second
neighbors (6 second neighbors), respectively. With quite an accuracy, the simula-
tion reproduces the obtained experimental data for both RPA and WFT models. The
fitting parameters used for the simulations are n2D

imp(RPA) = 0.12/a2 with a = 5.94
Åthe EuS lattice parameter (n2D

imp(WFT) =0.14/a2) and Js f (RPA) = 4 meV (Js f (WFT)
= 3 meV). EuS exchange constants extracted from the fitting J1 = 0.2kB (ferromag-
netic exchange interaction of 4f electrons in EuS) and J2 = −0.1kB (antiferromagnetic
exchange interaction with the second neighbors) are in very good agreement with
previous theoretical reports of Meyer et al., 2014 and experimental values extracted
by neutron scattering by Bohn et al., 1980; Bohn, Kollmar, and Zinn, 1984. FIGURE
4.4(b) shows that both models reproduce quite accurately the experimental data and
that the best fitting parameters are similar for both models, which strengthen the
reliability of the obtained values. The obtained Js f here is much smaller than other
experimental accessible values, for instance, 350 meV for Co/Cu, but it is similar to
the one extracted for Pt/GGG in the previous chapter. n2D

imp values are 12−14% of
the ideal value, but n2D

imp values depend on the slicing of the lattice surface and the
quality of HM/FMI surface.

Utilizing the same fitting parameters obtained from FIGURE 4.4 (b), we can cal-
culate the temperature dependence of spin-dependent conductance, Gr, Gi, and Gs
with the aid of Eqs. (2.2.15)-(2.2.17). They are plotted in FIGURE 4.4 (c). At low
enough temperature so that the magnetization of EuS saturates, Gr and Gi are max-
imum, whereas Gs becomes zero due to the reduction of the spin-flip scattering. At
higher temperatures and close to Tc, with the absence of net magnetization due to
the randomized spins (〈Ŝ‖〉 → 0), Gr and Gi vanish to zero, because of the isotropic
relaxation time as shown in Eqs. (2.2.16)-(2.2.15). Whereas, Gs becomes maximum.
This observed behavior is equivalent (or similar) to the field dependence of the spin
conductance in Pt/GGG described in chapter 3. The key point of the temperature
dependence of the spin conductivity is that we experimentally demonstrate for the
first time that in a FMI such as EuS, Gi is larger than Gr, up to 4 times larger at the
lowest temperatures (T = 2.5 K), as predicted by Brataas, Bauer, and Kelly, 2006b
for europium chalcogenides. The small differences between the model used and the
experimental data can arise from the small defects at the interface and the higher Tc
(for the case of RPA fits), as shown in FIGURE 4.1 (a). According to our results, we
can confirm that the FLT plays an important role in Pt/EuS, not negligible than in
other MIs (Althammer et al., 2013; Vlietstra et al., 2013b; Jia et al., 2011), where there
is a compensation of the magnetic moments.

From the value obtained for Gi from the SMR measurements, we can calculate the
effective interfacial exchange hex that is related to Gi using the following expression
(Zhang, Bergeret, and Golovach, 2019): hex = Gi/πG0νFb, where G0 is the quantum
of conductance, νF is the density of states of the HM at the Fermi level and b is
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a length of the order of the mean free path (l). By assuming νF ≈ 3 − 4 × 1028

m−3eV−1 and l ≈ 10−9 m and taking the value of Gi from SMR measurements, Gi ≈
7.65 × 1012 Ω−1m−2, we obtain hex = 0.7 meV. If we assume this value of hex for
an EuS/Al bilayer, then the effective spin-splitting field induced in Al is given by
he f f = hexb/dAl , where dAl is the thickness of the Al layer. For dAl ≈ 2 − 10 nm
(Strambini et al., 2017; Liu et al., 2019a), we calculate he f f ≈ 0.1− 0.35 meV, whereas
the superconducting gap for Al at low temperatures is approximately ∆ ≈ 0.2 meV.
In order to observe coexistance between superconductivity and the spin-splitting
field, he f f < 0.7∆ and hence for the observation of a clear spin-split BCS density of
states, special care should be taken in the fabrication of EuS/Al bilayers.

4.4 Conclusions

In summary, the SMR in a Pt/EuS bilayer has been observed and explained within
our model. EuS is a ferromagnetic insulator below 25 K. The SMR is observed by
ADMR and FDMR measurements, in which the magnetization reversal of EuS is
observed. Furthermore, from the measured AHE-like contribution to the SMR, we
can extract microscopic parameters such as the exchange interaction between the 1s
electrons of Pt and the 4f electrons of Eu (Js f ∼ 17−19 meV). We study the temper-
ature dependence of the Pt/EuS interface’s spin conductances, showing for the first
time experimentally a field-like torque (Gi) larger than the spin-transfer torque (Gr)
at the HM/MI interface. The effective exchange field associated with Gi is expected
to be ∼ 1 meV. SMR measurements, combined with our theory, offer a simple way
to quantify effective interfacial fields, which are of interest in different applications.
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Chapter 5

Phase-Controllable Nonlocal Spin
Polarization in Proximitized
Nanowires

5.1 Introduction

Semiconducting NWs in proximity with SCs are central to the creation of a topolog-
ically non-trivial superconducting state, which manifests itself through the MZMs
at the edges of the NWs (Lutchyn, Sau, and Sarma, 2010; Oreg, Refael, and Oppen,
2010; Mourik et al., 2012; Rokhinson, Liu, and Furdyna, 2012; Das et al., 2012; Finck
et al., 2013; Albrecht et al., 2016; Deng et al., 2016; Suominen et al., 2017; Nichele et
al., 2017; Takei et al., 2013; Chang et al., 2015; Lutchyn, Stanescu, and Sarma, 2011).
The basic ingredients needed for the topological phase are the SOC, superconduct-
ing correlations, and Zeeman splitting (Qi and Zhang, 2011; Elliott and Franz, 2015;
Beenakker, 2013; Alicea, 2012; Lutchyn et al., 2018; Sarma, Freedman, and Nayak,
2015; Stanescu and Tewari, 2013). Whereas SOC and superconductivity are intrinsic
properties of the materials, the Zeeman splitting is usually generated by applying a
rather large magnetic field (Lutchyn, Sau, and Sarma, 2010; Oreg, Refael, and Op-
pen, 2010), which introduces technical limitations on the use of superconducting
elements.

Additionally, such a spin splitting can be generated by the magnetic proximity
effect from a MI, rather than an external field (Bergeret et al., 2018; Giazotto and
Taddei, 2008; Yang et al., 2013; Eremeev et al., 2013; Virtanen et al., 2018; Wei et al.,
2016; Katmis et al., 2016). Indeed, a zero-field spin split has been observed in su-
perconducting Al layers in contact with the ferromagnetic insulator (FI) EuS (Hao,
Moodera, and Meservey, 1991; Meservey, Tedrow, and Fulde, 1970; Hao, Moodera,
and Meservey, 1990; Strambini et al., 2017; Moodera et al., 1988; Rouco et al., 2019).
Furthermore, Liu et al., 2019b have reported the first hybrid epitaxial growth of InAs
NWs in proximity with EuS and Al. Even though the experiment is inconclusive
with regard to Majorana physics, the NWs show clear signs of the coexistence of the
minigap and the spin split from the superconducting and magnetic proximity effects,
respectively. Recently, Vaitiekėnas et al., 2020 have reported the experimental mea-
surement of zero-field topological superconductivity in ferromagnetic hybrid NWs.
These proximitized NWs are pivotal in the study of the topological superconductiv-
ity (Sau et al., 2010; Lee, Alicea, and Refael, 2012; Livanas, Sigrist, and Varelogiannis,
2019).

In this Chapter, motivated by the recent experiment by Liu et al., 2019b, we study
theoretically a multiband NW in the diffusive regime proximitized by FIs and SCs,
see the sketch in FIGURE 5.1(a). We show that, apart from the local spin polarization
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FIGURE 5.1: (Color online.) (a) Sketch of a nanowire (NW) in proxim-
ity with superconductors (SCs) and ferromagnetic insulators (FIs). (b)
Spin-resolved density of state (DoS) of a spin-split SC. (c) Magnetiza-
tions induced in a SC in an homogeneous Zeeman field h. The dot
black line describes Pauli magnetization, MPauli and the solid lines
plot the total magnetization, M for zero (red) and finite (blue) spin
relaxation (SR). The dashed lines show the nonlocal magnetization,
MNL given by the difference between M and MPauli, displayed for

zero (red) and finite (blue) SR.

induced by the FI, a nonlocal electronic spin polarization emerges in the NW as a re-
sult of an interplay between the magnetic and superconducting proximity effects.
The magnetic proximity effect occurs at the FI/NW interface, where the conduction
electrons in the NW interact with the FI’s local moments via the spin-exchange cou-
pling. This interaction leads to a Pauli paramagnetic response of the conduction
electrons, which is manifested as a locally induced magnetization in the NW at the
FI. In addition, the superconducting proximity effect at the NW/SC interface allows
for leakage of Cooper-pair correlations into the NW. The Cooper pairs become polar-
ized by the FI exchange field, admixing the usual singlet pairing a triplet component
of the superconducting correlations. As a result, the Pauli paramagnetic response at
the NW/FI interface becomes screened by a spin polarization, which spreads in the
NW over large distances, on the order of the superconducting coherence length. This
long-ranged component of magnetization is opposite in sign to the Pauli magneti-
zation, and its strength is proportional to the condensate density in the NW. In this
letter, we calculate this nonlocal magnetization as a function of the system parame-
ters, demonstrate its control by the phase difference in a loop geometry, and propose
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a way of measuring it via spin-dependent spectroscopy.
It is illustrative to review the response of a conventional SC to a Zeeman or ex-

change field h(~r) (Abrikosov and Gor’kov, 1962; Larkin and Varlamov, 2005; Fulde
and Ferrell, 1964). In normal state, the response is local and leads to a Pauli mag-
netization MPauli(~r) = gµBνFh(~r), dot-black curve in FIGURE 5.1(c). Here, g is g-
factor, µB is Bohr magneton, and νF is the normal density of states (DoS) at the Fermi
level for each spin. When the temperature, T is below the critical superconduct-
ing temperature, there exists an additional nonlocal contribution to magnetization,
MNL(~r) (dashed-red curve in FIGURE 5.1c), from the superconducting condensate.
In a homogeneous SC at zero temperature, this contribution exactly compensates
the Pauli one, MNL = −MPauli, for fields h smaller than the superconducting gap, ∆
. This explains the zero magnetic susceptibility of a SC (Yosida, 1958). In the pres-
ence of a spin relaxation (SR), the full magnetization cancellation fails, according to
Abrikosov and Gorkov’s theory of the Knight shift in SCs (Abrikosov and Gor’kov,
1962). In FIGURE 5.1(c), we include the SR due to the SOI and static disorder (blue
curves). For h > ∆, the compensation is incomplete and the total magnetization
reads M = MPauli

√
h2 − ∆2/h (Bergeret, Volkov, and Efetov, 2005; Karchev et al.,

2001; Shen et al., 2003). One can draw a connection between the nonlocal magne-
tization and the modified spectrum of the SC (FIGURE 5.1b). The exchange field
h leads to both a splitting of the quasi-particle DoS and a reduction of the super-
conducting gap. As far as the latter is finite, the total magnetization is zero. For
h > ∆, the gap closes and a finite magnetization appears as a consequence of an
incomplete compensation |MNL| < MPauli (see more discussions in Appendix 5.5.1).
The previous discussion has been introduced for pedagogical purposes, as it is use-
ful when presenting our main results. Strictly speaking, for a large enough field h,
the superconducting gap has to be determined self-consistently, and an inhomoge-
neous superconducting phase may appear (Larkin and Varlamov, 2005; Fulde and
Ferrell, 1964). The situation is simpler when superconductivity is induced in a non-
superconducting material via the proximity effect. In this case, the self-consistency
is not needed, and the exchange field can be arbitrarily large. This is the case con-
sidered in the rest of the manuscript.

5.2 Model and Theory

We now focus on an inhomogeneous system, as shown in FIGURE 5.1(a). It consists
of a NW in contact with SCs and FIs. To describe the superconducting proximity
effect, we use the quasiclassical equations and assume the diffusive regime in the
NW. The characteristic length over which the Cooper-pair correlations decay in the
NW is denoted as ξN . To describe the magnetic proximity effect in the FI/NW in-
terface, we follow the approach of Zhang, Bergeret, and Golovach, 2019 and assume
a region of thickness b where the local magnetic moments of FI and the itinerant
electrons of NW interact via a spin-exchange coupling. This interaction leads to an
interfacial exchange field hex acting on the itinerant electrons. Because b � ξN , the
exchange field can be described in the quasiclassical equations by hb(y) = hexbδ(y),
where we denote with y the coordinate axis perpendicular to the FI/NW interface
(Bergeret, Efetov, and Larkin, 2000). At this stage, we can already anticipate the ap-
pearance of a nonlocal magnetization in the opposite direction to the one localized at
the FI/NW interface. The Cooper pairs in the NW consist of electrons with opposite
spins (singlet state).
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Energetically it is favorable that one electron of the pair with spin parallel to
the local exchange localizes at the interface, while the other with opposite spin re-
mains in the NW. Thus, a nonlocal magnetization opposite to the interfacial one
is induced in the NW and extends over the characteristic Cooper size, ξN . This
physical picture resembles the inverse proximity effect in metallic superconductor-
ferromagnetic junctions predicted by Bergeret, Volkov, and Efetov, 2004b; Bergeret,
Volkov, and Efetov, 2004a; Dahir, Volkov, and Eremin, 2019 and experimentally ver-
ified by Xia et al., 2009; Salikhov et al., 2009a; Salikhov et al., 2009b.

To quantify this effect we calculate the nonlocal electronic equilibrium spin po-
larization, MNL, induced in the NW. This is given by

MNL(X)

gµBνF
=

1
2

∫ +∞

−∞
dω f (ω)[N↑(ω, X)− N↓(ω, X)], (5.2.1)

where f (ω) = 1/(eω/T + 1) is equilibrium Fermi distribution function, and N↑/↓(ω, X),
are the local DoS for spin-up and -down electrons. The exchange field at the FI/NW
leads to N↑ 6= N↓ and hence to a finite MNL. In addition to the nonlocal term there
is the Pauli magnetization localized at the FI/NW interface MPauli = gµBνFhexbδ(y).
Thus, the total magnetization equals MPauli + MNL.

We consider the SC/NW-FI/SC setup sketched in the inset of FIGURE 5.2(c). The
NW is in contact with a FI and sandwiched between two SCs. The phase difference
between the SCs, φ, can be tuned by a magnetic flux when the junction is part of a su-
perconducting loop. We assume a diffusive NW in order to use the well-established
Usadel equation (Usadel, 1970). In this respect, our results apply straightforwardly
to metallic NW like Cu. In semiconducting NWs, the degree of the disorder depends
on doping. For example, the InAs wires studied in the experiments of Giazotto et
al., 2011; Tiira et al., 2017; Iorio et al., 2018; Strambini et al., 2020 are in a metallic
regime and are good candidates for the verification of our predictions. We denote
with x the axis of the NW of length LN . The NW-FI interface is orthogonal to the y-
axis, and the NW width in this direction is WN . In this first example, we assume that
WN , LN � ξN , and integrate the quasiclassical equations over the volume of the NW.
The integration in y direction results in an effective exchange field hF = hexb/WN ,
whereas the integration over x can be performed with the help of the Kupriyanov-
Lukichev boundary conditions (Kuprianov and Lukichev, 1988) and accounts for the
superconducting proximity effect. In this way, we obtain a compact expression for
the DoS (see detailed derivations in Appendix 5.5.2):

Ns(ω) =

∣∣∣∣∣∣Re

 ωr + shF√
(ωr + shF)

2 − (∆r)
2


∣∣∣∣∣∣ , (5.2.2)

where s = ±1 for spin ↑/↓. This expression has the same structure as the BCS
DoS of a spin-split superconductor with renormalized frequency, ωr = ω + 2iεbGS
and order parameter ∆r = 2εb cos(φ/2)FS, where GS = −iω/

√
∆2 −ω2, FS =

∆/
√

∆2 −ω2. εb = D/(LNσN R�) is an energy proportional to the tunneling rate
across the NW/SC interface, where R� is the interface resistance per area, D is
the diffusion coefficient, and σN is the conductivity of the NW. Equation (5.2.2) is
the generalization of the short-junction limit expression for the DoS (Seviour and
Volkov, 2000; Börlin, Belzig, and Bruder, 2002; Bezuglyi, Bratus, and Shumeiko,
2011) in the presence of a FI. With its help we provide below a clear physical pic-
ture of the main effect by making a connection between the spectrum of the junction
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and the spectral properties of the bulk system.

5.3 Result and Discussion

From Eq. (5.2.2), one can calculate the gap induced in the NW by the superconduct-
ing proximity effect. In the limit of transparent contact, εb � ∆, this gap is of the
same order as the SC gap, and the spin splitting is negligibly small. In the case of
a finite NW/SC barrier, when εb � ∆, Eq. (5.2.2) describes a NW with an induced
mini gap, ∆N = ∆0

N cos(φ/2), with ∆0
N = 2εb, and a spin splitting in the DoS due

to the effective exchange field, hF. In all cases the minigap induced in the NW is
maximum when φ = 0 and vanishes at φ = π. By substituting Eq. (5.2.2) into Eq.
(5.2.1), we obtain the nonlocal magnetization, MNL plotted in FIGURE 5.2. As far
as hF < ∆N , nonlocal magnetic moments, MNLWN A compensates the Pauli ones,∫

b MPauli = gµBνFhexbA localized at the FI/NW interface, with A being the area of
FI/NW interface. At hF = ∆N , MNL reaches a maximum value, gµBνF∆N and decays

as hF −
√

h2
F − ∆2

N for hF > ∆N (Bergeret, Volkov, and Efetov, 2005; Karchev et al.,
2001; Shen et al., 2003). This is the same behaviour as the bulk superconductor dis-
cussed in FIGURE 5.1(c), after identifying ∆ and h with the induced minigap ∆N and
effective exchange field hF, respectively. This analogy is clearly seen if we plot the
curves of FIGURE 5.2(a) as a function hF/∆N . In this case, all curves collapse into
one (inset of FIGURE 5.2a), coinciding with the behavior shown in FIGURE 5.1(c).
In FIGURE 5.2(b) we show the dependence of MNL on the phase difference φ for
different values of hF. When hF ≤ ∆0

N , MNL remains constant for all phases smaller
than arccos hF/∆0

N (red curve in FIGURE 5.2b). In other words, as far as hF is smaller
than the induced gap ∆N = ∆0

N cos(φ/2), the MNL(φ) curve shows a plateau at the
value opposite to MPauli. Interestingly, the value of MNL is proportional to the dis-
tance between the coherent peaks in the spin-splitting DOS, similar to those shown
in FIGURE 5.1(b). Indeed, in the present case when ∆N � ∆, according to Eq. (5.2.2),
the peaks at positive energies occur at ω↑,↓ ≈ ∆N(φ)± hF (See Appendix 5.5.2). The
maximum modulation is achieved for hF = ∆0

N (green curve in FIGURE 5.2b) in
which the full screening of MNL only occurs at φ = 0. For larger values of hF, the
NW is gapless and MNL(φ) is overall reduced (blue curve).

In the presence of SOI, electron spin channels are mixed. In this case the DoS of
the NW is described by Eq. (5.2.2), after replacing ωr and ∆r by ωs

r = ω + i∆0
NGS +

2iεsoG−s
N and ∆s

r = ∆NFS + 2εsoF−s
N , respectively. Here, Fs

N and Gs
N are the normal

and anomalous parts of the retarded Green‘s function of the NW, respectively. εso is
the spin-relaxation rate due to SOI. The effect of a finite SR is shown in FIGURE 5.2(c-
d). As expected from the analogy with the bulk SC, FIGURE 5.1(c), the main effect of
the SR is the uncompensated screening of the Pauli magnetization, −MNL < MPauli,
as shown by the green and blue curves in panel 5.2(c). In addition, the SR leads to a
shift of the maximum of the MNL(hF) curves towards larger values of hF, such that,
for hF > ∆N , MNL is enhanced by the SR. This is due to the reduction of the effective
exchange field, which results in the right shift of MNL with respect to hF in analogy
with the bulk case shown by the dot-dash-blue curve of FIGURE 5.1(c).

So far, we have analyzed a short NW sandwiched between two SCs. In a more
realistic setup, the NW’s length, LN can be larger than the ξN . Moreover, in typical
lateral structures, the NW is partially covered by the SCs films of length LS. Such a
lateral setup is sketched in FIGURE 5.3(a). We assume that the NW is grown on top
of a FI substrate and that its cross-section dimensions are smaller than ξN . In this
case, one can integrate the Usadel equation over the cross-section and reduce the
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(a) (b)

(d)(c)

N
L

FIGURE 5.2: (Color online.) Nonlocal magnetization, MNL induced
in the NW in a SC/NW-FI/SC setup (see inset of panel (c)). Panels
(a,b) show MNL as a function of (a) hF/∆0

N and (b) φ, respectively, in
the absence of SR. Panels (c,d) shows the same dependencies in the
presence of SR caused by static disorder and SOI. We have set φ = 0
in panel (c) and hF = 0.75∆0

N in panel (d). Other parameters: T = 0
and ∆0

N = 0.02∆.

problem to an effective 1D geometry (details are given in Appendix 5.5.2). Hereafter,
we assume a symmetric setup with LS = LN/3 and LF = LN (other situations are
analyzed in Appendix 5.5.2), such that the distance between the SCs is L = LN/3,
and solve the Usadel equation numerically. We neglect the effect of SOI. This is a
good approximation if the NM is a metal such as Cu, for which the SR rate is much
smaller than the gap (Villamor et al., 2013). But also in InAs, the typical SR time is
τs ' 0.02− 1.00 ns (Murzyn et al., 2003; Song and Kim, 2002; Murdin et al., 2005),
which corresponds to εso = h̄/τs ' 1− 30µeV. Whereas the induced gap may reach
150 µeV or even larger (Chang et al., 2015; Kjærgaard et al., 2016), such that the ratio
εso/∆ < 1.

Once induced, the mini gap is constant in all the NW (Le Sueur et al., 2008).
Its value depends on the distance between the superconducting electrodes and the
characteristic barrier energy εb = D/(WN R�σN). In the short limit, LN � ξN , MNL
is almost constant in the NW and the results are similar to those shown in FIGURES
5.2(a) and (b) (See FIGURE 5.5 (a) and (b) in Appendix 5.5.2). More interesting is
the case when LN is of the order of ξN . Numerical results of the spatial dependence
MNL(X) for LN = 4.7ξ0 and different values of hF, are shown in FIGURE 5.3(d).
Remarkably, the shape of the MNL(X) curve depends on the strength of hF. These
different behaviours can be explained in light of Eq. (5.2.1). The integrand in this
expression can be well approximated by replacing the exact DoS, N(ω, X) by a BCS-
like one, NBCS(ω, ∆∗N(X)) with a position-dependent pseudogap ∆∗N(X), defined as
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(a)

(c)

x
y

z

(b)

(d)

FIGURE 5.3: (Color online.) (a) Sketch of SC-FI-SC NW structure with
a tunneling probe (bright-blue) (b) DoS of the NW with L = 4.7ξ0.
Here, the orange and magenta curves correspond to DoS at the cen-
ter (X = LN/2) and the end (X = LN/6) of the NW, respectively.
The dotted lines show the BCS-like DoS with a gap equal to ∆∗(X).
The latter is defined by the intersection point between the actual DoS
and the one in the normal state. (c,d) Nonlocal magnetization, MNL,
induced in the NW, as a function of (c) phase difference, φ and (d)
position, X. We have set L = 2.1ξ0 and X = 0 in panel (c), while
L = 4.7ξ0 and φ = 0 in panels (b) and (d). In all panels, other param-
eters are chosen as follows: T = 0, εso = 0, εb = ∆/2, ξ0 =

√
D/∆,

and LS/LN = 1/3.

the energy where N(ω) intersects with the one in the normal state N0(ω) = 1, as
shown in FIGURES 5.3(b). Whereas the real mini gap, ∆N , is position independent,
∆∗N is not. In fact, the pseudogap is smaller in the middle of the wire, becoming
larger in the regions below the SCs (see also FIGURE 2d in Appendix 5.5.2). The
shape of the MNL(X) is determined by the ration hF/∆∗N(X), in the same way as in
the short junction limit hF/∆0

N determines MN , see FIGURE 5.2 (a,c). Indeed, for
a given hF with hF < ∆∗N(X) for all X, the values of |MNL| increases towards the
middle of the wire (blue curve in FIGURE 5.3(d)). In contrast, if ∆∗(−L/2) > hF >
∆∗(0) then a double-minima curve is obtained (green curve). Larger values of hF
leads to |MN(X)| with a minimum at X = 0 (red curve). The actual shape of the
curve can be inferred from the X dependence of ∆∗, which is shown in FIGURE
5.3(d) in the Appendix 5.5.2. Finally, FIGURE 5.3(c) shows the phase dependence
of MNL calculated in the center of the wire for different values of hF. The result at
low temperatures is qualitatively similar to the one obtained for the simpler setup
analyzed in FIGURE 5.2(b): for values of hF smaller than the pseudogap ∆∗N , MNL(φ)
remains almost constant up to the value of ϕ for which ∆∗N(φ) = hF (red curve in
FIGURE 5.3c).
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Finally, we discuss possible ways of detecting MNL via its dependence on the
phase-difference in a Josephson junction geometry. As discussed above, the mag-
netic moment MNL depends crucially on the spectral properties of the proximitized
NW, which in turn can be controlled by tuning the phase difference. This has been
demonstrated experimentally in spectroscopy measurements, for example, by using
a superconducting quantum interference proximity transistor (SQUIPT) (Giazotto et
al., 2010; Meschke et al., 2011; Giazotto and Taddei, 2011; Ronzani, Altimiras, and
Giazotto, 2014), sketched in FIGURE 5.3(a), or by combining STM/AFM techniques
(Le Sueur et al., 2008). In these experiments, the phase difference, hence the mini
gap, is controlled by the magnetic flux through a superconducting loop (Strambini
et al., 2016; Ronzani et al., 2017). In the present case, the wire is in contact with
a FI, and hence the DoS in the NW is spin-split due to the exchange field at the
FI/NM interface. This should manifest as a splitting of the peaks at the edge of the
gap. According to our predictions, if the SR is negligibly small, the observed split-
ting of the peaks remains almost constant, as far as the phase-dependent pseudogap
∆∗N , is larger than the effective exchange field (see red curves in FIGURE 5.2b and
5.3c). The splitting in the DoS of the NW can be detected by measuring the differen-
tial conductance with a tunneling probe attached to the NW, as shown in FIGURE
5.3(a). When the phase difference is larger than arccos (hF/∆0

N), then we predict a
rapid suppression of the splitting as the phase difference is further increased. The
results of FIGURE 3 are obtained when SOI is negligible. If it is not, all sharp fea-
tures will vanish, and the red curve in FIGURE 5.3(c) will be modified similarly to
those in 5.2(d) when increasing εso. It is also interesting to note that the tuning of
a mini gap with the phase difference can lead to a phase-tuned topological super-
conductivity (Fornieri et al., 2019). Moreover, a comparison of experimental results
with the curves in FIGURE 5.2b and 5.3c may provide useful information about the
proximity-induced gap and field in the NW.

More direct measurement of MNL and its phase-dependence can be achieved
by using a ferromagnetic probe tunnel-coupled to NW, as shown in FIGURE 5.3(a)
setup. We assume that the probe’s polarization and the FI can be tuned between par-
allel (P) and antiparallel (AP) configurations. The measured differential conductance
at low temperature is proportional to the DoS in the NW. The difference between the
conductances in the P and AP configurations is proportional to the spectral mag-
netization induced in the NW. Namely, GP(V) − GAP(V) = pG0[N↑(V) − N↓(V)],
where p is the polarization of the probe/NW tunnel junction and G0 is normal-state
tunneling conductance. The total induced magnetization can then be obtained from
Eq. (5.2.1) by knowing the normal state properties of the tunneling contact. By using
the SQUIPT setup of FIGURE 5.3(a), one can tune the phase difference by an exter-
nal magnetic field and measure the NNL(φ) curve. From a material perspective, our
theoretical description is based on the diffusive approach, and therefore our find-
ings can be best verify in metallic NM, like Cu, or highly doped semiconducting
nanowires, like those used by Giazotto et al., 2011; Tiira et al., 2017; Iorio et al., 2018;
Strambini et al., 2020. For the FI, EuS is the best candidate. Interfacial exchange
fields of the order of tens of Tesla has been reported in system combing EuS with
metals and graphene (Wei et al., 2016; Strambini et al., 2017), which would lead to
effective hF ∼ 10−2 − 10−1meV such that one can reach all regimes studied above.
Moreover, the strength of the effective exchange field can be tuned by an external
magnetic field (Xiong et al., 2011).
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5.4 Conclusion

In conclusion, we predict the appearance of a nonlocal magnetization MNL in a NW
when proximitized to SCs and a FI. This magnetization appears as a consequence of
the interplay between the long-range superconducting correlations induced in the
NW and the exchange field localized at the FI/NW interface. The sign of MNL is
opposite to the local Pauli spin polarization right at the FI/NW interface, and its
value can be controlled by the phase difference between superconducting electrodes
in a Josephson junction setup.

5.5 Appendix

The fundamental equation describing diffusive systems with superconducting cor-
relations is the Usadel equation for the quasiclassical Green’s functions (GFs) ǧ(~r) in
the Keldysh-Nambu-spin space,

D~∇[ǧ(~r)~∇ǧ(~r)] +
[
i(ω +~̂s ·~h(~r))κ̂3 − ∆(~r)(cos φ(~r)κ̂1

− sin φ(~r)κ̂2), ǧ(~r)
]
= εso

[
~̂sǧ(~r)~̂s, ǧ(~r)

]
. (E.5.1)

ŝk(κ̂k) with k = 1, 2, 3 are the Pauli matrix for spin and Nambu spaces, respectively.
D is the diffusion coefficient. ∆(~r) is the gap of superconductor with phase, φ(~r).
~h(~r) is an exchange or Zeeman field. In this work, the order parameter, ∆(~r) phase,
φ(~r) and Zeeman or exchange field,~h(~r) can be position-dependent. The right hand
side of Eq. (E.5.1) describes the effect of spin-orbit-induced spin relaxation (SR)
caused by scattering off static impurities, where εso is the corresponding SR rate,
which is measured in units of energy and introduced in Subsection 1.2.3. For the
sake of simplicity, both Planck and Boltzmann constants have been set to one, i.e.
h̄ = 1 and kB = 1.

To described hybrid interfaces between different materials we used the Kupriyanov-
Lukichev boundary conditions from Hammer et al., 2007; Kuprianov and Lukichev,
1988:

σL ǧL(n∇)ǧL|int = σR ǧR(n∇)ǧR|int =
1

R�
[ǧL, ǧR]|int , (E.5.2)

where gL,R are the Green’s functions at the left and right side of the interface, σL,R
the corresponding conductivities, R� the interface resistance per unit area, and n
a vector normal to the interface. The first equality in Eq. (E.5.2) corresponds to the
current conservation at any interface. In particular if the interface is between a metal
and vacuum the right hand side equlas to zero and the boundary condition reduces
to

ǧ(n∇)ǧ|int = 0. (E.5.3)

In what follows, we solve Eq. (E.5.1) and determine the local density of states in
different situations addressed in the main text. Because we are only interested in an
equilibrium situation, it is enough to consider the retarded block of Eq. ( E.5.1).

5.5.1 Homogeneous Superconductors

We review first some basic features of the response of SC to a Zeeman field in the
presence of SOI (Abrikosov and Gor’kov, 1962; Larkin and Varlamov, 2005; Fulde
and Ferrell, 1964). In spatially homogeneous situation the Usadel equation ((E.5.1))
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for the retarded component reduces to

[−i(ωδ + sh)κ̂3 + ∆κ̂1, ǧs
S] + 2εso

[
ǧ−s

S , ǧs
S
]
= 0. (E.5.4)

Here ωδ = ω + iδ, with delta being an infinitesimal small positive real number.
s = ±1, correspond to the spin anti-parallel and parallel to the direction of exchange
field,respectively. Thus, ǧs

S are matrices in the Nambu space. Hereafter, we consider
only the retarded Green’s function and omit δ for simplicity. The last term of the left-
hand side of Eq. (E.5.4) describes the SR due to SOI and static disorder. The general
solution of Eq. (E.5.4) is

ĝs
S = Gs

Sκ̂3 + Fs
Sκ̂1, (E.5.5)

where GS is the normal and FS the anomalous component. They can be written in a
self-consistent form:

Gs
S =

−i(ωs
r + sh)√

(∆s
r)

2 − (ωs
r + sh)2

, (E.5.6)

Fs
S =

∆s
r√

(∆s
r)

2 − (ωs
r + sh)2

. (E.5.7)

Here spin flipping causes a spin-dependent renormalization of both, the frequency

ωs
r = ω + 2iεsoG−s

S , (E.5.8)

and the order parameter

∆s
r = ∆ + 2εsoF−s

S . (E.5.9)

Once the Greens’ function is determined the DoS can be obtained from its normal
part, i.e., Eq. (E.5.6)

Ns(ω) =

∣∣∣∣∣∣Re

 ωs
r + sh√

(ωs
r + sh)2 − (∆s

r)
2


∣∣∣∣∣∣ . (E.5.10)

In the absence of SR, the solution can be explicitly written

ĝs
S = Gs

Sκ̂3 +F s
Sκ̂1, (E.5.11)

with

Gs
S =

−i(ω + sh)√
∆2 − (ω + sh)2

, (E.5.12)

F s
S =

∆√
∆2 − (ω + sh)2

. (E.5.13)
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Therefore, the DoS (E.5.10) reduces to

Ns
BCS(ω, ∆) =

∣∣∣∣∣∣Re

 ω + sh√
(ω + sh)2 − ∆2


∣∣∣∣∣∣ , (E.5.14)

which is nothing but the spectrum of a spin-split superconductor with coherent
peaks in the DoS at:

ωs
± = ±∆− sh. (E.5.15)

The (homogenoeus) nonlocal magnetization originated from the superconducting
condensate is then given by

MNL

gµBνF
=

1
2

∫ +∞

−∞
dω f (ω)[N↑BCS(ω, ∆)− N↓BCS(ω, ∆)], (E.5.16)

where µB is Bohr magneton, νF is the normal DoS at the Fermi level, and the electron
g-factor is set to be 2. f (ω) = 1/(eω/T + 1) is equilibrium distribution function
for frequency, ω and temperature, T. N↑/↓(ω) are the DoS for spin-up and -down
electrons. By substitution of Eq. (E.5.14) in Eq. (E.5.16) we obtain

MNL

gµBνF
=

1
2

∫ +∞

−∞
dω f (ω)Re

 |ω + h|√
(ω + h)2 − ∆2

(E.5.17)

− |ω− h|√
(ω− h)2 − ∆2

 .

Hereafter, we consider the limit of T → 0. The Fermi-Dirac distribution function re-
duces a step function, i.e., f (ω) = θ(−ω). For h < ∆, we obtain MNL = −gµBνFh =
−MPauli, i.e. opposite to the Pauli spin response. Thus, the total magnetization be-
comes zero. In general we find a compact expression for magnetization:

M
gµBνF

= θ(h− ∆)
√

h2 − ∆2. (E.5.18)

In the presence of the SR, the spin-dependent renormalization of frequency, as
shown in Eqs. (E.5.8), reveals that Zeeman field might be renormalized by normal
Green function (E.5.6). For the sake of simplicity, let us consider the case of a low SR
rate, εso � ∆. The first-order correction of normal Green function can be obtained
by replacing the GFs, Gs

S and Fs
S on the right hand side of Eq. (E.5.6), by the GFs, Gs

S
and F s

S in Eqs. (E.5.12) and (E.5.13)

Gs
S '

−i(ωs
r + shs

r)√
(∆s

r)
2 − (ωs

r + shs
r)

2
. (E.5.19)

Therefore, in this limit, the effect of SR is a further renormalization of the frequency,
order parameter, and Zeeman field

ωs
r = ω

[
1 +

2εso

Λ(sh)

]
, (E.5.20)



82
Chapter 5. Phase-Controllable Nonlocal Spin Polarization in Proximitized

Nanowires

∆s
r = ∆

[
1 +

2εso

Λ(sh)

]
, (E.5.21)

hs
r = h

[
1− 2εso

Λ(sh)

]
, (E.5.22)

with

Λ(sh) =
√

∆2 − (ω− sh)2. (E.5.23)

The DoS of SC, to first order of SR rate, can be derived from Eq. (E.5.19)

Ns '

∣∣∣∣∣∣Re

 |ωs
r + shs

r|√
|ωs

r + shs
r|2 − (∆s

r)
2


∣∣∣∣∣∣ . (E.5.24)

Now the coherent peaks are shifted according to:

ωs
± = ±∆− sh

(
Λ±(sh)− 2εso

Λ±(sh) + 2εso

)
, (E.5.25)

with

Λ±(sh) =
√

∆2 − (ωs
± − sh)2. (E.5.26)

In the present case, εso � ∆, we can approximately replace the ωs
± in the right hand

side of Eq. (E.5.25) by Eq. (E.5.15). Then, we obtain

ωs
± ' ±∆− sh

(√
±s∆h− h2 − εso√
±s∆h− h2 + εso

)
. (E.5.27)

The peaks at negeative energy are then given by

ω+
− ' −∆− h

(
i
√

∆h + h2 − εso

i
√

∆h + h2 + εso

)
, (E.5.28)

ω−− ' −∆ + h

(√
∆h− h2 − εso√
∆h− h2 + εso

)
. (E.5.29)

and therefore the effective Zemman field becomes

he f f =
h
2

Re

{
i
√

∆h + h2 − εso

i
√

∆h + h2 + εso
+

√
∆h− h2 − εso√
∆h− h2 + εso

}
. (E.5.30)

For h < ∆, we find

he f f

h
' 1− ε2

so
∆h + h2 + ε2

so
− εso√

∆h− h2 + εso
. (E.5.31)
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For h > ∆, we reach

he f f

h
' 1− ε2

so
∆h + h2 + ε2

so
− ε2

so
h2 − ∆h + ε2

so
. (E.5.32)

The latter result explains the suppression of the effective Zeeman field in the pres-
ence of the SR, which manifests as a shift of the δMS(h) curve in the FIGURE 1(c) of
the main text.

5.5.2 Hybrid Superconductor Structures

In this section, we consider hybrid structures with inhomogeneous fields. In partic-
ular, we focus on the case when the exchange field is spatially localized, originated
from the interaction between localized moments in the FI and the conduction elec-
trons of the NW, and the superconducting correlations are induced in the NW via the
proximity effect. The Usadel equation, Eq. (E.5.1), determines an energy-dependent
length over which the pair correlations decay in the NW. We denote this length as
ξN .

To describe the magnetic proximity effect in the FI/NW, we follow the approach
developed by Zhang, Bergeret, and Golovach, 2019 and assume a region of thickness
b in which the local magnetic moments of FI and the itinerant electrons of NW co-
exist and interact via a sd-exchange coupling. This interaction leads to an interfacial
exchange field hex acting on the latter, which is localized at the interface. Because
b� ξN the exchange field can be included in the quasiclassical equations as a local-
ized field, hb(y) = hexbδ(y), where y is the coordinate perpendicular to the FI/NW
interface (Bergeret, Efetov, and Larkin, 2000).

The SC/NW-FI/SC structure

We first focus on the setup, depicted in the inset of FIGURE 2(c) of the main text.
Here the FI is grown along with one of the facets of the NW. In principle, we are
dealing with a 3D problem. We simplify by assuming that the NW’s transverse
dimensions are smaller than ξN , such that we can assume the GFs being independent
of y and z. We can then integrate the Usadel equation, (E.5.1), first over z-direction,
where the zero current BC at both Vacuum/NW interfaces applies, Eq. (E.5.3), and
second over the y-direction where at y = 0 there is a local exchange field from the
FI. After these integrations, the Usadel equation in the NW region reduces to a 1D
equation:

D∂x[ǧs
N(x)∂x ǧs

N(x)] +
[
i (ω + shF) κ̂3, ǧs

N(x)
]

(E.5.33)
= 2εso

[
ǧ−s

N (x), ǧs
N(x)

]
.

The magnetic proximity effect results in an effective exchange field hF = hexb/WN ,
where WN is the width of NW in y direction.

In this example, for the sake of clarity, we also assume that the length of the wire,
LN , is smaller than ξN such that we also integrate the above Usadel equation over x.
At the interfaces with the superconducting leads, we use the BC in Eq. (E.5.2) and
assume that the superconductors are massive and are not modified by the inverse
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proximity effect. This results in a matrix algebraic equation:

2εb(GS[κ̂
3, ǧs

N ] +FS cos (φ/2) [κ̂1, ǧs
N ]) (E.5.34)

= i(ω + shF)[κ̂
3, ǧs

N ]− 2εso
[
ǧ−s

N , ǧs
N
]

.

The superconducting proximity effect is described by the barrier energy

εb = D/(LNσN R�). (E.5.35)

and ǧS is the bulk BCS GF:

ǧS(x)|x=± LN
2
= GSκ̂3 +FS

[
cos

(
φ

2

)
κ̂1 ∓ sin

(
φ

2

)
κ̂2
]

, (E.5.36)

with

GS(ω) =
−iω√

∆2 −ω2
, (E.5.37)

FS(ω) =
∆√

∆2 −ω2
, (E.5.38)

and φ the corresponding phase-difference between the superconductors.
The solution of Eq. (E.5.34) together with the normalization condition g2

N = 1 for
each spin block s = ±, can be written as

ĝs
N = Gs

N τ̂3 + Fs
N τ̂1, (E.5.39)

with

Gs
N =

−i(ωs
r + shF)√

(∆s
r)

2 − (ωs
r + shF)

2
, (E.5.40)

Fs
N =

∆s
r√

(∆s
r)

2 − (ωs
r + shF)

2
. (E.5.41)

These soluctions have the same form as the BCS GFs with a renormalized frequency

ωs
r = ω + 2iεbGS + 2iεsoG−s

N , (E.5.42)

and an induced gap

∆s
r = 2εb cos(φ/2)FS + 2εsoF−s

N . (E.5.43)

The DoS of NW can be obtained from the normal part of the retarded Green function,
i.e., Eq. (E.5.40)

Ns(ω) =

∣∣∣∣∣∣Re

 |ωs
r + shF|√

(ωs
r + shF)

2 − (∆s
r)

2


∣∣∣∣∣∣ . (E.5.44)
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In the absence of SR, the solutions in Eqs. (E.5.39)-(E.5.43) reduce to

ĝs
N = Gs

N κ̂3 +F s
N κ̂1, (E.5.45)

with

Gs
N =

−i(ω + 2iεbGS + shF)√
4ε2

b cos2(φ/2)F 2
S − (ω + 2iεbGS + shF)

2
, (E.5.46)

F s
N =

2εb cos(φ/2)FS√
4ε2

b cos2(φ/2)F 2
S − (ω + 2iεbGS + shF)

2
, (E.5.47)

and the corresponding DoS for each spin block, s = ± from Eq. (E.5.46)

Ns =

∣∣∣∣∣∣Re

 |ω + 2iεbGS + shF|√
(ω + 2iεbGS + shF)2 − 4ε2

b cos2( φ
2 )F 2

S


∣∣∣∣∣∣ . (E.5.48)

Thus, we obtain the coherent peaks in the spin-splitting DOS

ωs
± = ±2εb cos(φ/2)FS(ω

s
±)− shF − 2iεbGS(ω

s
±). (E.5.49)

Let us study the renormalization effect of a mini gap and spin splitting from the
superconducting proximity effect, in the limit of εb, hF � ∆. The zero-order effect
can be obtained by setting ωs

± = 0 on the right-hand side of Eq. (E.5.49). Thus, we
obtain the coherent peaks with the spin splitting of 2hF:

ωs
± ' ±∆N(φ)− shF. (E.5.50)

with

∆N(φ) = 2εb cos(φ/2), (E.5.51)

where ∆N(φ) is the mini gap of NW in the absence of SR, which depends on the
phase difference φ between the two SCs. Clearly, ∆N(φ) is zero at φ = π, while
reaches its maximum value, ∆0

N = 2εb at φ = 0. Next, we consider the first-order
effect, which can be obtained by substituting Eq. (E.5.50) on the right-hand side of
Eq. (E.5.49). Hence we reach

ωs
± = ±∆N(φ)− she f f , (E.5.52)

with

∆N(φ) ' 2εb cos(φ/2)
(

1− 2εb

∆

)
, (E.5.53)

he f f ' hF

(
1− 2εb

∆

)
. (E.5.54)

We find both minigap and spin splitting decrease with increasing εb. The later cor-
responds to the weakening of spin screening.

FIGURE 5.4 (a) shows the field dependence of MNL. The magnetization is given
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FIGURE 5.4: (Color online.) Nonlocal magnetization, MNL of
SC/NW-FI/SC structure. Panel (a) plots the field, hF dependence of
MNL, in the unit of gµBνFhF, and hence the full spin screening means
value of −1. The corresponding DoS are plotted in panel (b), where

hF = 0.05∆. Other parameters: T = 0, εso = 0 and φ = 0.

in units of gµBνFhF, and hence the full spin screening corresponds to the value −1
in the curves. Here, different curves correspond to different choices of the barrier
energies, εb. The maximum effect occurs for hmax

F = 2εb cos(φ/2). In the limit εb �
∆, hmax

F ' ∆N (Eq. E.5.51, red curves in FIGURE 5.4). On the other hand, we find
the weakening of spin screening with increasing the barrier energy, εb or mini gap,
∆0

N . This can be understood from the spin resolved DoS in FIGURE 5.4(b). Here,
N↑(ω) and N↓(ω), are related to each other by a BCS-like DoS, NBCS(ω, ∆N) with
a renormalized minigap, ∆N (Eq. E.5.53). Thus, N↑(ω) = NBCS(ω − αrhF, ∆N) and
N↓(ω) = NBCS(ω + αrhF, ∆N), where αr = (1− 2εb/∆) < 1 in the limit of εb � ∆
(Eq. E.5.54). The full spin screening corresponds to αr = 1 (FIGURE 1b of main text).
However, the failure of full screen is a result of the reduction of the spin-splitting
due to the superconducting proximity effect. It becomes more obvious for larger ∆N
(εb), (Eq. E.5.54 and blue curves in FIGURE 5.4).

In the presence of the SR, we find a spin-dependent renormalization of the fre-
quency (see Eq. (E.5.42)). This implies a renormalization of the effective exchange
field. For the sake of simplicity, let us consider the case of a small SR rate, εso, εb �
∆N , and hence ∆0

N ' 2εb. The first-order correction to the normal Green function can
be included by replacing the GFs, Gs

N and Fs
N on the right-hand side of Eq. (E.5.40),

by the GFs, Gs
N and F s

N in Eqs. (E.5.46) and (E.5.47). Then, we reach

Gs
N =

−i(ωs
r + shs

r)√
(∆s

r)
2 − (ωs

r + shs
r)

2
. (E.5.55)

In the present limit, εso � ∆N , the SR then leads to the following renormalization of
frequency, mini gap, and effective exchange field:

ω + i∆0
NGS → ωs

r ' (ω + i∆0
NGS)

(
1 +

2εso

Λ(shF)

)
, (E.5.56)

∆NFS → ∆s
r ' ∆NFS

(
1 +

2εso

Λ(shF)

)
, (E.5.57)



5.5. Appendix 87

hF → hs
r ' hF

(
1− 2εso

Λ(shF)

)
, (E.5.58)

with

Λ(shF) =

√
(∆NFS)

2 −
(
ω + i∆0

NGS − shF
)2. (E.5.59)

Thus, the DoS of NW in the first order of SR reads

Ns '

∣∣∣∣∣∣Re

 |ωs
r + shs

r|√
|ωs

r + shs
r|2 − (∆s

r)
2


∣∣∣∣∣∣ , (E.5.60)

For spin block s, the coherent peaks in the spin-splitting DOS are given by

ωs
± = ±∆NFS(ω

s
±)− i∆0

NGS(ω
s
±) (E.5.61)

− sh
(

Λ±(shF)− 2εso

Λ±(shF) + 2εso

)
,

with

Λ±(shF) =

√
(∆NF s

±)
2 −

(
ωs
± + i∆0

NGs
± − shF

)2. (E.5.62)

In the limit of ∆N � ∆, we have GS(ω
s
±) ' 0 and FS(ω

s
±) ' 1. Hence, Eq. (E.5.61)

reduces into

ωs
± = ±∆N − sh

(
Λ±(shF)− 2εso

Λ±(shF) + 2εso

)
. (E.5.63)

with

Λ±(shF) '
√
(∆N)

2 − (ωs
± − shF)

2. (E.5.64)

For a small SR rate, εso � ∆N , we can approximately replace the ωs
± in the right

hand side of Eq. (E.5.63) by Eq. (E.5.50). Thus, we arrive at

ωs
± ' ±∆N − shF


√
±∆NshF − h2

F − εso√
±∆NshF − h2

F + εso

 . (E.5.65)

For zero temperature, we are only interested in the spin splitting of negative fre-
quency

ω+
− ' −∆N − hF

 i
√

∆NhF + h2
F − εso

i
√

∆NhF + h2
F + εso

 , (E.5.66)

ω−− ' −∆N + hF


√

∆NhF − h2
F − εso√

∆NhF − h2
F + εso

 . (E.5.67)
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Thus the effective exchange field reads

he f f =
hF

2
Re

 i
√

∆NhF + h2
F − εso

i
√

∆NhF + h2
F + εso

(E.5.68)

+

√
∆NhF − h2

F − εso√
∆NhF − h2

F + εso

 .

For hF < ∆N , we reach

he f f

hF
' 1− ε2

so

∆NhF + h2
F + ε2

so
− εso√

∆NhF − h2
F + εso

. (E.5.69)

For hF > ∆N , we reach

he f f

hF
= 1− ε2

so

∆NhF + h2
F + ε2

so
− ε2

so

h2
F − ∆NhF + ε2

so
. (E.5.70)

Clearly, we find that the effective exchange field decreases in the presence of the SR.
This causes a shift to the right of the nonlocal magnetization curve as a function of
the exchange field (see the blue dashed curve in FIGURE 2(c) of the main text).

The SC-FI-SC NW structure

In this section, we consider a more realistic setup, the lateral SC-FI-SC NW structure
depicted in FIGURE 3(a) of the main text. Here, an arbitrary long normal wire (NW)
is grown on the top of FI. Two superconductors (SCs) with phase difference, φ cover
partially the NW. The starting point is again the Usadel equation for the retarded
quasiclassical Green’s function in the NW:

D~∇[ǧs
N(~r)~∇ǧs

N(~r)] + i
[
(ω + shb(~r)) κ̂3, ǧs

N(~r)
]
= 0, (E.5.71)

where we have neglected the SR. The magnetic proximity effect of FI can be de-
scribed by a localized exchange field at FI/NW interface, hb(~r) = bhexθF(x)δ(y),
with

θF(x) =
{

1, LN
2 −

LF
2 < x < LN

2 + LF
2 ;

0, otherwise,
(E.5.72)

where LF is the length of FI. On the other hand, the proximity effect of SCs is cap-
tured by the Kupriyanov-Lukichev boundary conditions (E.5.2) at two NW/SC in-
terfaces, which can be written in a compact form

σN [ǧN(~r) ∂y ǧN(~r)]
∣∣
y=WN

=
1

R�
[θL(x) + θR(x)]

× [ǧN(~r), ǧS(~r)]|y=WN
. (E.5.73)
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The positions of the left and right superconducting electrodes, in x direction, are
respectively described by two step-like functions

θL(x) =
{

1, 0 < x < LS;
0, otherwise,

(E.5.74)

θR(x) =
{

1, LN − LS < x < LN ;
0, otherwise,

(E.5.75)

with LS being the length of both SCs. We do not consider the inverse proximity effect
of FI on SCs and hence their GFs are the BCS ones

ǧS(~r)|y=WN
= θR(x)

{
GSκ̂3 +FS[cos(

φ

2
)κ̂1 − sin(

φ

2
)κ̂2]

}
+ θL(x)

{
GSκ̂3 +FS[cos(

φ

2
)κ̂1 + sin(

φ

2
)κ̂2]

}
, (E.5.76)

where we introduce phase difference, φ between SCs.
Because the transverse dimensions of the NW are smaller than the characteristic

length ξN , we can assume that the GFs do not depend on y and z. We can then inte-
grate the Usadel equation, (E.5.71), first over z-direction, where the zero current BC
at both vacuum/NW interfaces applies, Eq. (E.5.3), and second over the y-direction.
In the second integration, the local exchange field at the NW/FI at y = 0 results
in an effective spin-splitting field hF, whereas at the SC/NW interface, y = WN ,
the boundary condition, Eq. (E.5.73) introduces a term in the Usadel equation de-
scribing the induced superconducting condensate. The final 1D equation after these
integrations reads:

D∂x[ǧs
N(x)∂x ǧs

N(x)] + i
[
(ω + θF(x)shF) κ̂3, ǧs

N(x)
]

= εb[θL(x) + θR(x)] [ǧS(~r), ǧs
N(x)]|y=WN

. (E.5.77)

The strength of the superconducting proximity effect is parametrized by the energy:

εb = D/(WNσN R�). (E.5.78)

Eq. (E.5.77) is complemented by the normalization condition, ǧ2
N(x) = 1. In

order to solve numerically these two matrix equations it is convenient to use the
Riccati parameterization to express the GFs in terms of two coherent functions γ
and γ̃ as follows:

ǧ = Ň
[

1− γγ̃ 2γ
2γ̃ γ̃γ− 1

]
=

[
G F
F̃ G̃

]
, (E.5.79)

with

Ň =

[
(1 + γγ̃)−1 0

0 (1 + γ̃γ)−1

]
. (E.5.80)
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(a)

(c)

(b)

(d)

FIGURE 5.5: (Color online.) Nonlocal magnetization, MNL of SC-FI-
SC NW structure. Panels (a,b) plot the MNL of as a function of (a)
hF/∆ and (c) φ, respectively, where X = 0, εb = 0.05∆ and L = ξ0/3.
Panel (c) shows MNL as a function of hF/∆ and X/LN , where φ = 0,
εb = 0.5∆ and L = 4.7ξ0. While panel (d) shows the corresponding
local DoS, N(ω, X). The red curve represents the pseudogap, ∆∗N(X).
Other parameters: T = 0, εso = 0, εb = 0.5∆, φ = 0, ξ0 =

√
D/∆,

LF = LN and LS = LN/3.

whereF and F̃ describe the Cooper pairs penetrating from both S regions. In Riccati
parameterization, Usadel equation (E.5.77), for each spin block s = ±, reads

γ′′s = γ′sF̃sγ
′
s − 2i[ωr(l) + shFθF(l)]γs (E.5.81)

− αNFS(l) + αNF̃S(l)γ2
s ,

γ̃′′s = γ̃′sFsγ̃
′
s − 2i[ωr(l) + shFθF(l)]γs (E.5.82)

− αNF̃S(l) + αNFS(l)γ̃2
s ,

with

ωs
r(l) = ω + iαNGS[θL(l) + θR(l)], (E.5.83)

FS(l) = FS[θL(l)e−iφ/2 + θR(l)e+iφ/2], (E.5.84)

F̃S(l) = FS[θL(l)e+iφ/2 + θR(l)e−iφ/2], (E.5.85)

where αN = L2
N/(WNσN R�), and we have made the position coordinate dimension-

less by introducing l = x/LN and energy is in the unit of εth = D/L2
N .
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(b)(a)

FIGURE 5.6: (Color online.) Nonlocal magnetization of the long NW
partially covered by FI. Panels (a,b) show MNL as a function of (a)
X/L and (b) φ. We set φ = 0 in panel (a) and X = 0 in panel (b).
Other parameters: T = 0, εso = 0, εb = 0.5∆, ξ0 =

√
D/∆, L = 2.4ξ0,

LF = LN/4 and LS = LN/3.

In a more realistic setup, the length of the NW, LN can be larger than the char-
acteristic length ξN . Moreover, the NW can be partially covered by the SCs films of
length, LS. We assume that the NW is grown on top of a FI substrate with length, LF.
Hereafter, we assume a symmetric setup with LS = LN/3, and hence the distance
between the SC leads is L = LN/3. The mini gap induced in the NW, ∆N depends
on this distance, and the NW/SC barrier resistance.

Let us begin with the case of weak superconducting proximity, εb = 0.05∆ and
short NW, L = ξ0/3, where ξ0 =

√
D/∆. FIGURE 5.5(a) shows the hF dependence of

MNL at the center of NW for different values of the phase difference, φ. As far as hF <
∆N , MNLWN A compensates the Pauli magnetic moment

∫
b MPauli = gµBνFhexbA

localized at the FI/NM interface, with A being the area of FI/NW interface. At hF =

∆N , MNL reaches a maximum value, gµBνF∆N and decays as hF −
√

h2
F − ∆2

N for
hF > ∆N (Bergeret, Volkov, and Efetov, 2005; Karchev et al., 2001; Shen et al., 2003).
In FIGURE 5.4(b), we show the phase difference, φ dependence of MNL at the center
of NW for different values of hF. The maximum minigap is about ∆0

N ' 0.032∆.
When hF ≤ ∆0

N , MNL remains constant for all phases smaller than arccos hF/∆0
N

(red curve in FIGURE 5.4b). In other words, as far as hF is smaller than the induced
gap ∆N = ∆0

N cos(φ/2), the MNL(φ) curve shows a plateau at the value opposite to
MPauli. The maximum modulation is achieved for hF = ∆0

N (green curve in FIGURE
5.4 b). For larger values of hF, MNL the NW is gapless and MNL(φ) is overall reduced
(blue curve).

Let us now go beyond the limits of weak superconducting proximity and short
NW. The results are plotted in FIGURE 5.5 , where εb = 0.5∆ and L = 4.7ξ0. In this
case, the local DoS, N(ω, X) strongly depends on X (FIGURE 5.5d here and FIGURE
3b of main text). The induced mini gap, ∆N , though, is spatially constant, as shown
by the green line in FIGURE 5.5(d). The local pseudogap, ∆∗N(X) defined by the
energy in which the exact DoS, N(ω, X) coincide with the DOS in the normal state,
N0(ω, X) = 1, is position-dependent, as shown by the red curves in FIGURE 5.5(d).
It is smallest at the center, ∆∗N(0) ' ∆N , and becomes bigger closer to both ends.
At zero temperature, the calculation of the local MNL(X), Eq. (1) of the main text,
can be well approximated by replacing the exact DoS, N(ω, X) by a BCS-like one,
NBCS(ω, ∆∗N(X)) with the position-dependent gap, ∆∗N(X).
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Panel 5.5(c) depicts MNL as a function of hF/∆ and X/LN . We find an interesting
transition from a maximum to a minimum at X = 0 in the MNL(X) dependence. For
small hF, the shape with a minimum is due to the weakening of spin screening with
increasing pseudogap, ∆∗N(X) from the center to both ends.

In FIGURE 5.6 we show the nonlocal magnetization in a setup when the FI is
in contact only to a certain portion of the NW, for example, if LF/LN = 1/4. In
FIGURE 5.6 (a), we show the spatial dependence of MNL for different values of hF
and in panel (b) the phase-dependence at x = 0.
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Part II

Spin and valley transports in
two-dimensional materials
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Chapter 6

Valley Hall effect and nonlocal
transport in strained graphene

6.1 Introduction

The manipulation of the valley degree of freedom, i.e. the field of valleytronics, is
currently under intensive research, not only concerning graphene (Jiang et al., 2013;
Gorbachev et al., 2014; Gradinar et al., 2013; Cosma et al., 2014; Beconcini, Taddei,
and Polini, 2016) but also other two dimensional (2D) materials (Xiao, Chang, and
Niu, 2010; Shimazaki, Yamamoto, and Borzenets, 2015; Sie and McIver, 2015; Lee,
Mak, and Shan, 2016). Indeed, the generation of valley currents has been recently
demonstrated (Gorbachev et al., 2014) in graphene devices deposited on a hexagonal
Boron Nitride (hBN) substrate, as discussed in subsection 1.3.1. This phenomenon,
known as the valley Hall effect (VHE), which was introduced in subsection 1.3.2,
can be detected as a large enhancement of the nonlocal resistance in a Hall bar de-
vice (Gorbachev et al., 2014; Abanin et al., 2009; Beconcini, Taddei, and Polini, 2016).

Here, we report a different approach to generate valley-polarized currents in
graphene, which relies on the nonuniform strain, as presented in subsection 1.3.1.
Since strain can be controlled more easily than the magnitude of the hBN-induced
gap, it will allow for a larger tunability of the effect, thus providing a novel link
between valleytronics and straintronics (Guinea, Katsnelson, and Geim, 2010; Voz-
mediano, Katsnelson, and Guinea, 2010; Amorim et al., 2016; Gradinar et al., 2013;
Cosma et al., 2014; Mikkel Settnes, 2016). Furthermore, the strain also provides a
“dual counterpart” to the VHE emerging from Berry curvature in momentum space
(Xiao, Chang, and Niu, 2010; Gorbachev et al., 2014). This is because in graphene
and other 2D materials, the strain can be described as a (pseudo) gauge field, which
induces a (Aharonov-Bohm-like) phase in real space (Cazalilla, Ochoa, and Guinea,
2014; Pearce, Mariani, and Burkard, 2016).

A direct consequence of the strain-induced gauge fields is the emergence of pseudo-
Landau levels, whose experimental observation has been reported in both real (Levy
et al., 2010; Shioya et al., 2015; Li et al., 2015) and artificial graphene systems (Gomes
et al., 2012; Rechtsman et al., 2013). Nevertheless, the observation of quantized val-
ley edge currents (i.e., the quantum VHE), which was predicted by Guinea, Katsnel-
son, and Geim, 2010, has not yet been reported. Indeed, the requirements for the
latter are rather stringent, involving devices under relatively high shear strain, low
temperatures, and high mobility graphene, which is free of atomic-size defects and
armchair-like edges (Cosma et al., 2014). On the other hand, bulk valley Hall cur-
rents can be generated in graphene nanoresonators by applying the pulsed strain, as
predicted by Jiang et al., 2013.

In this chapter, an alternative for creating valley currents is discussed. It does not
require either pulsed strain or highly strained, neither high-mobility devices. The
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strain-induced VHE that we predict should be observable with fairly modest strain
levels in Hall bar devices. By “modest strain”, we mean strain levels lower than
those required for the observation of pseudo-Landau levels. In a Hall (H-shaped)
device, such strain can be achieved by applying, for instance, uniaxial strain in the
direction perpendicular to the channel direction, i.e., by stretching one edge while
clamping the other. Furthermore, unlike recent works along similar lines (Milo-
vanovic and Peeters, 2016; Carrillo-Bastos et al., 2016; Jiang et al., 2013; Gradinar et
al., 2013; Cosma et al., 2014), which focuses on nanometer-size devices and ballistic
transport, our results apply to much larger and disordered devices in the microme-
ter scale, where conduction occurs in the diffusive regime, and hence it is potentially
more interesting from the application point of view.

The hallmark of the strain-induced VHE is the emergence of a large nonlocal re-
sistance in Hall bar devices (Gorbachev et al., 2014; Beconcini, Taddei, and Polini,
2016). The nonlocal resistance can be computed from the diffusion equations for the
valley polarization. Extending previous treatments of the VHE (Gorbachev et al.,
2014; Abanin et al., 2009; Beconcini, Taddei, and Polini, 2016), which have relied on
a phenomenological treatment of the diffusion equations, here we provide a micro-
scopic derivation of the diffusion equations starting from the linearized quantum
Boltzmann equation derived by Huang et al., 2016. The latter allows us to account
for the full quantum coherence of the valley (pseudo-spin) degree of freedom. We
are thus able to show that, upon averaging over all the possible equilibrium im-
purity configurations, the diffusion equations depend on only two scattering rates:
the inverse of the mean scattering time and the inter-valley scattering rate. For the
latter, we provide expressions that can be used to extract the scattering rates from
first-principle calculations of a single impurity potential.

Finally, it is worth mentioning that the strain-induced valley Hall currents pre-
dicted here are neutral currents that do not couple to external magnetic fields. There-
fore, unlike spin currents (Abanin et al., 2009; Balakrishnan et al., 2014), valley
currents will not display Hanle precession (i.e., modulation of the nonlocal resis-
tance as a function of the strength of the in-plane magnetic field). Thus, our find-
ings are relevant for the interpretation of some of the nonlocal transport measure-
ments in graphene decorated with hydrogen (Kaverzin and Wees, 2015) and gold
adatoms (Wang, Cai, and Reutt-Robey, 2015), for which Hanle precession was not
observed. Indeed, the nonuniform strain may have been introduced unintention-
ally during device preparation in the studies reported by Kaverzin and Wees, 2015;
Wang, Cai, and Reutt-Robey, 2015 . The application of the present theory to such ex-
periments and the study of the interplay with other neutral currents will be explored
in Chapter 7. (Zhang, Huang, and Cazalilla, 2019).

This chapter is organized as follows. In the next section, we describe the model’s
details and discuss the range of validity. In Sec. 6.3, we compute the linear response
of strained graphene and, in particular, the doping and temperature dependence of
the valley Hall conductivity. The derivation of the diffusion equation for the valley
polarization is provided in Sec. 6.4. In Sec. 6.5, we compute the nonlocal resistance
of a Hall bar device, which provides a convenient way to detect the VHE. In Sec. 6.6,
we provide a summary of our results.
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6.2 Model

Semiclassically, the electron motion in non-uniformly strained graphene is described
using the following set of equations:

~̇r = ~uk, ~̇k =
(

e~E + τz~̇r× ~Bs

)
, (6.2.1)

where ~r and ~k are the average position and momentum of a narrow wave packet
of Bloch states, εk = λvF|~k| the electron dispersion (λ = +1 for the conduction
and λ = −1 for the valence band, respectively), and ~uk = ~∇kεk = λvF~k/|~k| the
carrier group velocity (henceforth we set h̄ = 1). In addition, ~E is the applied electric
field, e < 0 the electron charge, and τz~Bs is the strain-induced pseudo-magnetic
field (Guinea, Katsnelson, and Geim, 2010; Vozmediano, Katsnelson, and Guinea,
2010; Amorim et al., 2016; Katsnelson, 2012). Note that, because strain does not
break time-reversal invariance (unlike a real magnetic field), the sign of the magnetic
field is opposite at opposite valleys. In terms of the strain tensor uαβ (Vozmediano,
Katsnelson, and Guinea, 2010; Amorim et al., 2016; Katsnelson, 2012), ~Bs = ∇× ~As
where ~As = β

a

(
uxx − uyy,−2uxy

)
is the pseudo gauge field. Here a = 1.42 Å is

the carbon-carbon distance and β ' 2 (Guinea, Katsnelson, and Geim, 2010). In the
absence of an electric field (i.e. ~E = 0), Eq. (6.2.1) predicts that a wave packet of mean
momentum~k0 6= 0 moves in a circular orbit and in opposite directions depending on
whether~k0 lies closer to the K or K′ valley. Such a valley-dependent circular motion
of electron wavepackets has been obtained numerically by Costa et al., 2012

When quantized, the circular orbits lead to pseudo-Landau levels (pLLs) (Kat-
snelson, 2012; Guinea, Katsnelson, and Geim, 2010; Mikkel Settnes, 2016) with en-

ergy dispersion εn = ±Ωc
√

n, where Ωc =
√

2v2
F|Bs| is the cyclotron frequency of

graphene. Here we explore the semiclassical regime, for which pLL are absent due to
the broadening induced by disorder and/or temperature (T). This is the case when
the distance between consecutive Landau levels, i.e. ∆n = εn+1 − εn, is smaller or
comparable to max{kBT, τ−1

D }, where τ−1
D is the impurity scattering rate (see below).

For large pLL filling factor, i.e. for µ � Ωc, where µ = vFkF is the Fermi energy
(at T = 0) and kF the Fermi momentum, we have ∆n ' Ωcn−1/2. Taking into ac-
count that

√
n ' µ/Ωc, the condition ∆nτD . 1 translates into ωcτD . 1, where

ωc = Ω2
c /µ = vF|eBs|/kF. Below, we shall see that the modified cyclotron frequency

ωc naturally emerges when the Boltzmann kinetic equation is applied to describe
doped graphene.

Besides the low pseudo-magnetic field (i.e., low strain) limit, our results are also
applicable in high field limit where ωcτD � 1 provided the temperature T � ωc/kB
(where kB is Boltzmann’s constant). A rough estimate of the limits of applicability
of the present semiclassical theory is displayed in FIGURE 6.1(b), in the temperature
(T), and chemical potential (µ) plane. The blue curves correspond (for typical system
parameters) to kBT = τ−1

D , and separate the regime where the pseudo-Landau levels
are dominantly broadened by disorder from the regime where thermal broadening
dominates. At low temperatures, the semiclassical condition ∆n . τ−1

D translates
into ωc . τ−1

D (i.e., ωcτD . 1). Two vertical lines, determined by the condition
that ωcτD = 1 (µ ' −0.07 eV and µ ' 0.13 eV), separate the disorder-dominated
regime into two additional regimes, where regime (1) corresponds to the semiclassi-
cal regime. The regions shaded regimes (in red and yellow) cannot be described by
the present semiclassical approach, and our theory is not reliable there.
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Under the conditions stated above, we can use the following linearized Boltz-
mann equation (BE) to describe a doped layer of strained graphene (Huang et al.,
2016)

∂tδnk +~̇r · ∇rδnk +
~̇k · ∇k

[
n0

k + δnk
]
= I [δnk], (6.2.2)

where δnk is deviation of the electron distribution from the equilibrium distribution,
i.e. δnk = nk − n0

k , where n0
k = n0(εk − µ), being n0(ε) =

[
eε/kBT + 1

]−1
the Fermi-

Dirac distribution at temperature T and chemical potential µ. Note that, in order to
correctly account for the quantum entanglement between the two valleys within the
~k · ~p theory, Katsnelson, 2012 δn~k must be treated as a 2× 2 density matrix acting on
the space of valley pseudo-spinors.

In Eq. (6.2.2), the collision integral I
[
δn~k
]

describes the effect of disorder. Its
form has been derived by Huang et al., 2016, extending the work of Luttinger and
Kohn, 1958 in order to account for the effects of disorder on the electron internal
degrees of freedom, such as the valley pseudo-spin. To leading order in the impurity
density, nimp, we have

I [δn~k] = 2πnimp ∑
~p

δ(εk − εp)
[

T+
kpδnpT−pk

−1
2

{
δnkT+

kpT−pk + T+
kpT−pkδnk

}]
, (6.2.3)

where T±kp is the scattering matrix for a single impurity (the system area is assumed
to be unity).

At low temperatures, the dominant mechanism that limits the diffusion of bulk
valley currents is the inter-valley scattering caused by atomic-size impurities and de-
fects. Here we consider a random ensemble of atomic-size impurities, which are as-
sumed to reside on the honeycomb lattice sites (e.g., vacancies). Our considerations
can be generalized to the other types of impurity potentials classified on symmetry
grounds in the work of Cheianov et al., 2009. The effect of random strain fluctua-
tions, which dominate transport in high-quality devices on substrates like hBN, has
been studied elsewhere (Couto et al., 2014) and will be neglected here. Within the
~k · ~p theory, the potential for one such impurity takes the following form (Basko,
2008; Cheianov et al., 2009; Kopylov et al., 2011)

V(~r) = [v01 + svzσz] δ(~r)
+vxy (1 + sσz)

(
uxτx + iuyσzτy

)]
δ(~r), (6.2.4)

where the Pauli matrices σα and τα (α = x, y, z describe the sublattice and valley
pseudo-spin, respectively. In the above expression, the terms in the first line (∝
v0, vz) conserve the valley pseudo-spin τz while the terms in the second line induce
inter-valley scattering. The Ising variable s = +1 (s = −1) when the impurity sits
on the A (B) sublattice. The vector ~u = (ux, uy) ∈ S = {(1, 0), (− 1

2 ,
√

3
2 ), (− 1

2 ,−
√

3
2 )}

parametrizes the inter-valley scattering potential (Basko, 2008; Cheianov et al., 2009;
Kopylov et al., 2011). The impurities are assumed to form a completely disordered
ensemble, which is the most stable configuration at high doping and temperatures
of interest here (Cheianov et al., 2009; Kopylov et al., 2011. Thus, the configura-
tional variables (sl = ±1,~ul ∈ S) can take all the six possible values allowed by
symmetry with equal probability. Hence, upon solving the scattering problem, the
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band-projected (on shell) T-matrix can be obtained, and it takes the general form,
T+

kp = Akp1 + ~Bkp ·~τ, where ~Bkp = ~B‖kp +
~̂z B⊥kp, describes the valley-dependent scat-

tering with ~̂z · ~B‖kp = 0, and

Akp = γ0(k) cos
θ

2
, (6.2.5)

B⊥kp = isτzγz(k) sin
θ

2
, (6.2.6)

~B‖kp = λγxy(k)
[

s
(

ux cos
φ

2
+ uy sin

φ

2

)
~̂x

+

(
−ux sin

φ

2
+ uy cos

φkp

2

)
~̂y
]

, (6.2.7)

where θ = ϕk − ϕp and φ = ϕk + ϕp, and ϕk = tan−1(ky/kx). The functions
γ0(k), γz(k) and γxy(k) depend on k = |~k| (where ~k is the momentum of the in-
coming electron) and the potential parameters v0, vz, vxy (see e.g. Basko, 2008; Yang
et al., 2016 for details of such scattering calculations).

Next, we average over the impurity configurations and find that the only non-
vanishing scattering rates of the theory are given by the total current relaxation (i.e.,
Drude scattering rate, τ−1

D ) and the intervalley scattering rate τ−1
v . Other terms in the

collision integral, such as those proportional to AkpB⊥kp or Akp~B
‖
kp, change sign under

sublattice inversion, as dictated by the group theory that determines the structure
of the scattering potential, Eq. (6.2.4), and the corresponding T-matrix (Basko, 2008).
Thus, their contribution to the collision integral vanishes when impurities occupy
both sublattices with equal probability, as we have assumed. This can be most easily
understood if we neglect intervalley scattering (which corresponds to the terms in
the second line of Eq. 6.2.4). The term proportional to sσz gives rise to valley current
perpendicular to the incident electron current, whose sign is determined by the Ising
variable s = ±1. Upon taking impurity average, the valley current generated by im-
purities in sublattice A (s = +1) and B (s = −1) cancel each other. A similar (albeit
slightly more complicated) cancellation occurs for other scattering rates resulting
from the quantum interference of intervalley scattering potential. The intravalley
scattering amplitude, B⊥kp depends linearly on the Ising variable s, while the inter-

valley scattering potential, ~B‖kp depends both on s and ux, uy. Therefore, the B⊥kp
~B‖kp

contributions are ~u-dependence, which will also vanish after impurity average of
equal probability of each configuration (s,~u). Physically, this means that a random
impurity ensemble cannot lead to phenomena like anisotropic spin precession (ASP)
scattering discussed in the context of spin transport in the work of Huang et al., 2016.
It was shown that ASP leads to a direct coupling between (non-equilibrium) spin po-
larization and charge current.

6.3 Linear Response

In order to obtain the response of the system, we parametrize δnk = ρk1 + ~Pk ·~τ,
where ρk describes the charge fluctuations and ~Pk = ~P‖k +~̂z Pk (with ~̂z · ~P‖k = 0) the
valley pseudo-spin fluctuations of the electron distribution, δnk. Summing over the
impurity configurations, the kinetic equations for ρk, Pv on one side, and ~P⊥v , on the
other side, decouple. Thus, in what follows, we focus on the equations for ρk, Pv,
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which describe the valley Hall effect of interest here. In addition, as described above,
the collision integral for the latter is found to be parametrized by two scattering
rates: the Drude scattering rate τ−1

D =
nimpk
4vF

(|γ0|2 + 3|γz|2 + 4|γxy|2) , and the inter-

valley scattering rate τv =
nimpk
4vF

(8|γxy|2).
In the steady state, we employ the ansatz proposed by Huang et al., 2016

ρk =
(

δµ + ~uc ·~k
) [
−∂µn0

k
]

, (6.3.8)

~Pk =
[

hv~̂n0 + ~̂n1

(
~uv ·~k

)] [
−∂µn0

k
]

, (6.3.9)

which allows us to obtain the constitutive relations by multiplying Eq. (6.2.2) by
~uk(1, τz), and tracing over~k, λ and valley pseudo-spin. Thus,

~J = −D~∇rδn(~r) + ωcτD

(
~̂z× ~J

)
+ σD~E (~r) , (6.3.10)

~J = −D~∇rP(~r) + ωcτD

(
~̂z×~J

)
, (6.3.11)

where δn = gseTr ∑k δnk and~J = egsTr ∑k [~ukδnk] are the particle density and charge
current, respectively. P = gseTr ∑k [τzδnk] and ~J = egsTr [~ukτzδnk] are the valley
polarization and current, respectively (gs is the spin degeneracy). In the above ex-
pression σD = ne2τD/(mF) (mF = kF/vF and n is the carrier density) is the Drude
conductivity and D = v2

FτD/2 the diffusion coefficient. The last equation describes
the classical VHE, while the second term on the right-hand side of Eq. (6.3.10) de-
scribes the inverse VHE.

We can solve Eq. (6.3.10) and (6.3.11) for the charge~J and valley current ~J :

~J = −D‖~∇rδn (~r) +D⊥~̂z× ~∇rP (~r) + σ‖~E (~r) , (6.3.12)
~J = −D‖~∇rP (~r) +D⊥~̂z× ~∇rδn (~r)

+ σ⊥ ẑ× ~E (~r) , (6.3.13)

where the longitudinal (transverse) diffusion constant D‖ (D⊥) and longitudinal
(transverse) conductivity σ‖ (σ⊥) are given by the following expressions (at T = 0)

D‖ =
D

1 + ω2
c τ2

D
, D⊥ =

ωcτDD
1 + ω2

c τ2
D

, (6.3.14)

σ‖ =
σD

1 + ω2
c τ2

D
, σ⊥ =

ωcτDσD

1 + ω2
c τ2

D
. (6.3.15)

Note that, for a uniform electric field, both ~∇rδn (~r) and ~∇rP (~r) vanish, and one
obtains the linear response relations, ~J = σ‖~E and ~J = σ⊥

(
~̂z× ~E

)
. According to

Eq. (6.3.15), the longitudinal charge conductivity σ‖ is reduced by the strain pseudo-
magnetic field in a way similar to a real magnetic field. Similar to the conventional
Hall effect, both the inverse and direct VHE can be characterized by a figure of merit,
namely the valley Hall angle θ, which is defined as follows

tan θ(T) =
σ⊥(T)
σ‖(T)

. (6.3.16)
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The expressions for the charge (σ‖) and spin Hall (σ⊥) conductivities at temperature
T > 0 read

σ‖(T) =
e2

2π

∫
dε |ε|

τD
[
−∂µn0 (ε− µ)

](
1 + ω2

c τ2
D

) , (6.3.17)

σ⊥(T) =
e2

2π

∫
dε |ε|

ωcτ2
D

[
−∂µn0 (ε− µ)

](
1 + ω2

c τ2
D

) . (6.3.18)

where both τD and ωc are energy (i.e. Fermi momentum) dependent. Eq. (6.3.16)
reduces to tan θ(T ' 0) ' ωcτD at low enough temperature (i.e. T ' 0). The de-
pendence of θ(T) on the chemical potential µ at different temperatures is shown in
FIGURE 6.1(a). We find that the valley Hall angle can approach π

2 at low doping and
low temperatures. This is because the pseudo cyclotron frequency ωc is inversely
proportional to µ and τD is resonantly enhanced in the neighborhood of the Dirac
point. However, the semiclassical theory becomes less reliable close to the Dirac
point where µ = 0, especially for low temperatures. Indeed, θ → π

2 at low doping
and low temperature, which implies that ωcτD � 1, meaning that the semiclassi-
cal theory ceases to be valid, as discussed above. However, as explained above, at
sufficiently high temperatures, the pseudo-Landau levels are broadened by thermal
fluctuations, and the semiclassical theory can describe the system. Although ther-
mal fluctuations slightly suppress the magnitude of θ(T)(< θ(T = 0)), fairly sizable
valley Hall angles can be reached θ(T) & π/4 in high-temperature semiclassical
regime for T ' 100K and µ ' 0.05 eV, as shown in FIGURE 6.1(a).

6.4 Diffusion of the valley polarization

The above quantum Boltzmann equation also allows us to obtain the continuity
equations for the charge and the valley current. After multiplying Eq. (6.2.2) by
(1, τz) and taking the trace after summing over λ and ~k, we obtain (in the steady
state) ~∇ ·~J = 0, for the charge current and ~∇r · ~J +P/τv = 0, for the valley current.
By combining the last equation with Eq. (6.3.13), the diffusion equation for the valley
polarization is obtained:

D‖∇2
rP (~r)− P (~r)

τv
= S (~r) , (6.4.19)

where S (~r) = ~̂z · ~∇r ×
[
σ⊥ (~r) ~E (~r)

]
is the source of the diffusion. For uniform

pseudo-magnetic field, Bs, it is only where the strain-induced pseudo-magnetic field
vanishes abruptly, i.e., at the device boundary, that the source term is not zero.
Eq. (6.4.19) indicates the existence of the following length scale that controls the dif-
fusion of valley polarization:

`v =
√
D‖τv = Lv(1 + ω2

c τ2
D)
−1/2, (6.4.20)

where Lv =
√
Dτv. In FIGURE 6.2(a), we have plotted the length scale `v against the

chemical potential for different values of strength of the pseudo-magnetic field. We
find that the magnitude of `v decreases with the magnitude of the pseudo-magnetic
field, as expected from Eq. (6.4.20). For the present choice of parameters, note that
the resulting valley diffusion length `v (i.e. about 5 µm at µ = 0.1 eV) is, in most
regimes, larger than the width of the device, W = 1 µm. However, as shown in
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FIGURE 6.1: (color online) (a) The valley Hall angle, θ(T) is plot-
ted against chemical potential µ for different temperatures T =
0, 100, 300K. (b) Limit of applicability of semiclassical theory in the
plane of absolute temperature, T, and chemical potential µ as deter-
mined from the condition ωc ' max{kBT, τ−1

D } (τ−1
D is the elastic im-

purity scattering rate). The parameters used are: Bs = 0.3 T, nimp =

1.0× 1012 cm−2, the impurity (vacancy) potential is parametrized by
v0 = 100 eV, vz = vxy = 3 eV, impurity radius R = 0.142 nm, and

cut-off momentum kc = 2/R (Basko, 2008).

the next section, the decay of the nonlocal resistance along the channel direction is
controlled by Lv rather than `v.

6.5 Nonlocal resistance

Following Beconcini, Taddei, and Polini, 2016, we solve the diffusion equation for a
Hall bar device geometry, consisting of a channel of width W, which we assume to be
infinitely long. Thus, the solution of the diffusion equations can be found by impos-
ing suitable boundary conditions (BCs): i) On the charge current: Jy (x, y = ±W/2) =
Iδ (x). This BC describes the current injection (extraction) along the y direction ii)
On the valley current: Jy (x, y = ±W/2) = 0, implying that no valley current flows
across the device boundary.

The solution can be simplified by taking δn (~r) ' 0, which amounts to assuming
complete screening of the electric field in the device (Beconcini, Taddei, and Polini,
2016). Thus, the electrostatic potential φ(~r) obeys the Laplace equation,∇2φ(~r) = 0.
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FIGURE 6.2: (color online) (a) `v, in µm, versus the chemical potential
µ. (b) Nonlocal resistance RNL (in units of ρc) evaluated at x = 1 µm
as a function of chemical potential µ. (c) Nonlocal resistance RNL (in
logarithmic scale) as a function of chemical potential x/Lv for fixed
chemical potential µ = 0.15 eV (Lv ' 5µ m), where the Ohmic nonlo-
cal resistance corresponds to the black imaginary line. Note that the
decay is controlled by the same length scale Lv for all values of the
pseudo-magnetic field. The latter is induced by applying along the y
direction an average (uniaxial) strain of 0.4%, 1.2% and 2.0%, respec-
tively, to a ribbon of width W = 1 µm. The parameters are the same

as for FIGURE 6.1 and temperature is T = 0.

Using Eq. (6.3.12) and (6.3.13), the BCs can be recast as:

Iδ (x) =
[
−D⊥∂xP (~r)− σ‖∂yφ (~r)

]
y=±W

2
, (6.5.21)

0 =
[
−D‖∂yP (~r)− σ⊥∂xφ (~r)

]
y=±W

2
, (6.5.22)

where we have dropped the terms contaning δn (~r). We see that the BCs couple the
Laplace equation for φ(~r) with the diffusion equation for P (~r). Eq. (6.4.19) together
with the Laplace equation can be solved using Eq. (6.5.21) and (6.5.22) as BCs. Thus,
we obtain:

φ (~r) = −Iρc

∫ +∞

−∞

dk
2πk

e+ikx

F (k)
ω(k) sinh (ky)

sinh
(

kW
2

) , (6.5.23)

P (~r) =
I tan (θ)

iD‖

∫ +∞

−∞

dk
2π

e+ikx

F (k)
cosh (ω(k)y)

sinh
(

ω(k)W
2

) , (6.5.24)
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with

F (k) = tan2(θ) k coth
(

ω(k)W
2

)
+ ω(k) coth

(
kW
2

)
(6.5.25)

where ρc = 1/σ|| and ω (k) =
√

k2 + `−2
v .

Hence, the nonlocal resistance can be obtained from

RNL (x) = [φ (x,−W/2)− φ (x, W/2)] /I. (6.5.26)

Substituting Eq. (6.5.23) yields (Beconcini, Taddei, and Polini, 2016):

RNL (x) = 2ρc

∫ +∞

−∞

dk
2πk

e+ikx ω(k)
F (k)

. (6.5.27)

For θ = 0, the nonlocal resistance reduces to the ohmic contribution:

R0
NL (x) =

2ρc

π
ln
∣∣∣coth

( πx
2W

)∣∣∣ . (6.5.28)

FIGURE 6.2 shows the results of numerically integrating Eq. (6.5.27). At a fixed
distance x = 1 µm away from the current injection point, FIGURE 6.2(b) shows the
nonlocal resistance RNL versus the chemical potential, for different values of the
pseudo-magnetic field strength, Bs. The nonlocal resistance arising from the com-
bined effect of VHE and inverse VHE is enhanced at low doping. At large doping,
i.e. far from µ = 0, the ratio of nonlocal resistance to the resistivity ρc flattens out
to a constant value (' 0.055 in FIGURE 6.2(b)). This flattening is due to the sharp
decrease of the Hall angle away from µ = 0 (cf. FIGURE 6.1). Taking the θ → 0 limit
of Eq. (6.5.27), we retrieve the expression for Ohmic contribution, Eq. (6.5.28), which
scales as RNL ∝ ρc for fixed x and W (For W = 1 µm, 2

π ln
∣∣coth

(
π
2

)∣∣ ' 0.055, which
explains the numerical value reached by RNL in FIGURE 6.2(b).

Panel (c) in FIGURE 6.2 shows the dependence of the nonlocal resistance RNL(x)
with x/Lv at fixed chemical potential µ = 0.15 eV. Nonuniform strain enhances the
nonlocal resistance relative to its ohmic value. At large |x|, and for W � `v, RNL
decays according to:

RNL (x) = ρc
W

2Lv

tan2(θ)

1 + tan2(θ)
e−|x|/Lv , (6.5.29)

which agrees well with the numerical results for |x| � `v � W (cf. FIGURE 6.2,
showing that the ohmic contribution, cf. Eq. (6.5.28) is also much smaller in this
limit). Note that, in this regime, the decay is controlled by Lv rather than the length
scale `v introduced in Eq. (6.4.20). This can be understood from the fact that Eq. (6.5.27)
is obtained by solving the coupled diffusion and Laplace equations, which takes into
account the buildup of electrostatic potential (due to the inverse valley Hall effect)
along the channel. The latter modifies the decay of RNL (x) by effectively replacing
`v = Lv(1 + ω2

c τ2
D)

1/2 by Lv =
√
Dτv.

6.6 Summary and outlook

In this chapter, we have presented a theory of the strain-induced classical valley
Hall effect (VHE). Specifically, using the quantum Boltzmann equation, we have
provided a microscopic derivation of the equations governing valley polarization
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diffusion. The latter has been solved for a Hall bar device geometry, subject to
nonuniform strain leading to the uniform pseudo-magnetic field. The observable
nonlocal resistance of the device has been obtained. We found that for low doping,
the figure of merit of the VHE, namely the valley Hall angle, θ(T) can be of order
unity, even at room temperature. The nonlocal resistance of the device decays expo-
nentially. Moreover, the usage of the present theory to these nonlocal experiments
and the study of the interplay with other neutral currents (spin and spin-valley cur-
rents) will be explored in Chapter 7.

Finally, it is interesting to consider a strain configuration’s effect leading to a
slowly varying (on the scale of the Fermi wavelength) pseudo-magnetic field. The
equations derived here are also applicable in this case, with the caveat that in such a
case, ωcτD becomes space dependent. This complicates the solution of the diffusion
equation, Eq. (6.4.19), as the source term on the right-hand side S(~r) will not be a
boundary term. In addition, the diffusion coefficient D‖ = D‖(~r) is now a function of
the position in the device. However, qualitative, one can still expect a nonlocal signal
to exist even if the pseudo-magnetic field fluctuates in space because the nonlocal
resistance depends quadratically on the valley Hall angle θ ∼ ωcτD as it arises from
the combination of the direct and inverse valley Hall effects.
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Chapter 7

The interplay of spin and valley
Hall effects in graphene with strain
and adatoms

7.1 Introduction

Spintronics (Xiao, Chang, and Niu, 2010; Sinova et al., 2015; Nagaosa et al., 2010;
Sinova et al., 2004; Huertas-Hernando, Guinea, and Brataas, 2006) and valleytronics
(Xu et al., 2014; Cao et al., 2012; Rycerz, Tworzydło, and Beenakker, 2007; Sie and
McIver, 2015), as mentioned in Chapter 1, aim at manipulating internal degrees of
freedom of Bloch electrons, which can have promising applications in low-energy
consumption electronics and quantum computation. Previous theoretical studies of
nonlocal transport have focused either on the VHE (Beconcini, Taddei, and Polini,
2016; Zhang, Huang, and Cazalilla, 2017; Song and Vignale, 2018) or on the SHE
(Abanin et al., 2009; Huang, Chong, and Cazalilla, 2017).However, symmetry con-
siderations imply that spin and valley are coupled in materials with broken spin-
rotation and/or inversion symmetry (see more discussions about the indivisibility
of spin and valley transport in subsection 1.5.2).

Being electrically neutral, direct detection of spin and valley currents is not pos-
sible, and their existence must be inferred by indirect means such as nonlocal trans-
port measurements performed on a Hall bar device as depicted in FIGURE 7.1(a). In
this setup, spin/valley currents are generated by driving an electric current between
the two opposite right-hand side contacts of the device. The neutral (spin/valley)
currents diffuse in the transverse direction to the applied electric current (field), lead-
ing to charge accumulation and a nonlocal voltage on the left-hand side of the de-
vice. The nonlocal resistance (NLR) is defined as the ratio of the nonlocal voltage,
Vnl to the external current applied to the device, I. Using this setup, the VHE has
been experimentally observed in devices made by depositing monolayer graphene
on hexagonal boron nitride (hBN) (Gorbachev et al., 2014), bilayer graphene in a
perpendicular displacement field (Shimazaki, Yamamoto, and Borzenets, 2015), as
well as optically pumped TMDs (Mak et al., 2014; Lee, Mak, and Shan, 2016; Zeng
et al., 2012; Lee et al., 2017). Likewise, the SHE has been experimentally observed in
graphene decorated with absorbates (Balakrishnan et al., 2014; Balakrishnan et al.,
2013; Weeks et al., 2011; Ma, Li, and Yang, 2012) and graphene-TMDs heterostruc-
tures (Avsar et al., 2014; Safeer et al., 2018; Benítez et al., 2018).

In connection to the observation of the SHE, the Hanle effect (HE), i.e., the mod-
ulation of the NLR as a function of an in-plane magnetic field, is considered to be
the hallmark of the existence of spin currents (Balakrishnan et al., 2014; Balakrishnan
et al., 2013; Huang, Chong, and Cazalilla, 2017; Abanin et al., 2009). However, the
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FIGURE 7.1: (a) Sketch of a Hall-bar device used for measuring the
nonlocal resistance Rnl : A current I is injected on one side and a (non
local) voltage Vnl is detected in the opposite side. The nonlocal re-
sistance is defined as Rnl ≡ Vnl/I. In this work, we assume that the
spin and valley Hall effect coexist in the device. (b) Sketch of the
four types of current response described by our model. Unlike the
longitudinal electric (charge) current (Jc), the transverse spin (Js) and
valley (Jv) currents and the longitudinal spin-valley (Jsv) current are
all electrical neutral and therefore cannot be detected by all electrical
means. In the absence of SHE (VHE), ωvτ (ωsτ) determines the con-
version rate from Jc to Jv (Js). However, when both SHE and VHE are
present, Jsv mediates a coupling between Js and Jv, which has impor-
tant consequences for the spin-diffusion as shown on the spin density

of FIGURE 7.2(a).

absence of HE in some experiments in which a large enhancement of the NLR was
observed (Völkl et al., 2018; Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey,
2015) hints at the existence of additional contributions to the NLR that are insensi-
tive to the magnetic field. One candidate that can contribute to the NLR is a valley
current, which, as we have shown elsewhere (Zhang, Huang, and Cazalilla, 2017),
can arise from a modest amount of nonuniform strain present in the Hall bar device.

This chapter studies the nonlocal transport caused by the interplay of both spin
and valley Hall effects, which are induced by adatoms and strain, respectively. In
connection with the experiments described above, we show that this interplay can
have nontrivial consequences for spin transport in 2D materials. For instance, we
find that spin density along the Hall bar can be modulated by the coupling be-
tween spin and valley currents, which can be controlled by applying a non-uniform
strain to the device (Zhang, Huang, and Cazalilla, 2017). This provides an ex-
citing link between spintronics and straintronics (Guinea, Katsnelson, and Geim,
2010; Vozmediano, Katsnelson, and Guinea, 2010; Amorim et al., 2016; Cazalilla,
Ochoa, and Guinea, 2014). Besides, we find that the HE may be strongly suppressed
by the interplay with the VHE and even absent under some circumstances. This
finding can reconcile the apparently contradictory experimental results of various
groups (Kaverzin and Wees, 2015; Avsar et al., 2015; Wang, Cai, and Reutt-Robey,
2015), some of which have observed a large enhancement of the NLR but failed to
observe the HE (Kaverzin and Wees, 2015; Wang, Cai, and Reutt-Robey, 2015). Thus,
the study reported here can guide future studies of nonlocal transport in graphene,
TMDs, and other 2D materials.
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This chapter is organized as follows. In the next section, we describe the the-
ory’s details for the coexistence of the spin and valley Hall effects in graphene with
strain and adatoms. In Sec. 7.3, we demonstrate the control of spin diffusion through
strain. In Sec. 7.4, we study the nonlocal resistance of a Hall bar device and prove
the suppression of the Hanle effect. In Sec. 7.5, we provide a summary and outlook
of our work. Detailed mathematical expressions and derivations are relegated to the
Appendix.

7.2 Coexistence of spin and valley Hall effects

We shall work in the diffusive regime where kF` � 1, kF being the Fermi momen-
tum of the electrons, and ` the elastic mean-free path. This is the relevant regime
to the devices that are experimentally studied (e.g., Balakrishnan et al., 2014; Bal-
akrishnan et al., 2013; Kaverzin and Wees, 2015; Avsar et al., 2015; Wang, Cai, and
Reutt-Robey, 2015). In this regime, the transport of spin and valley degrees of free-
dom can be described by a set of diffusive equations. The latter can be derived
microscopically from the Boltzmann equation (Huang, Chong, and Cazalilla, 2016;
Zhang, Huang, and Cazalilla, 2017; Huang, Chong, and Cazalilla, 2017) or the Kubo
formalism (Burkov, Núñez, and MacDonald, 2004; Burkov and Hawthorn, 2010). In
the steady state, the diffusion equations describing the diffusion of spin and valley
take the following generic structure (see detailed derivation in Appendix 7.6.1 and
7.6.2):

D∂iNµ − σDEµ
i =

[
−δ

µ
ν δij + (RH)

µ
ν εij

]
Jν
j . (7.2.1)

In the above set of equations, we have used the convention that repeated indices are
summed over. The Latin indices correspond to the spatial component of the cur-
rent, or field, i.e., {i, j} ∈ {x, y} and εij is the antisymmetric 2D Levi-Civita tensor.
The Greek indices of the currents, ~Jµ, and densities, Nµ, take values from the set
{c, sv, v, s}. The latter stands for for charge (c), spin-valley (sv), valley (v), and spin
(s) current (density) respectively. Note that the spin-valley current ~Jsv and density
Nsv must be included in the above hydrodynamic description as they can be excited
when the spin splitting energy is much smaller than h̄/τ, where τ is the elastic scat-
tering time.

The left hand side of Eq. (7.2.1) contains the driving terms that result from spatial
non-uniformity of the densities ∝ ∂iNµ and the generalized electric fields ∝ Eµ

i (to
describe real devices, we shall set Eµ

i = 0 for all µ 6= c). The Drude conductivity
σD = ne2τ/m and the diffusion constantD = v2

Fτ/2, which for the sake of simplicity,
we shall assume to be equal for all types of currents. The right-hand side of Eq. (7.2.1)
describes the effective Lorentz forces as well as current relaxation. We shall assume
that all currents’ relaxation rates are the same and equal to the Drude relaxation time
τ (which is related to the mean-free path by ` = vFτ where vF is the Fermi velocity).
This, together with the assumption of equal diffusion coefficients, can be relaxed
and will not alter our conclusions qualitatively. Next, we introduce the coupling
between different currents via the Hall resistivity matrix RH, which describes both
SHE and VHE. The latter couples the charge (c, 1st row) and spin-valley currents (sv,
2nd row) to valley (v, 3rd row) and spin (s, 4th row) currents:

RH =


0 0 ωvτ ωsτ
0 0 ωsτ ωvτ

ωvτ ωsτ 0 0
ωsτ ωvτ 0 0


c

sv
v
s

(7.2.2)
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The SHE (VHE) can be regarded as emerging from an effective spin (valley) depen-
dent Lorentz force (Shen, 2005; Huang et al., 2016; Mak et al., 2014; Zhang, Huang,
and Cazalilla, 2017). In RH, the magnitude of such forces is parameterized by the
“cyclotron” frequencies ωs and ωv, for spin and valley, respectively. These forces can
have their origin in intrinsic or extrinsic SOC for the SHE (Sinova et al., 2015), and
in nonuniform strain (Zhang, Huang, and Cazalilla, 2017) or skew scattering with
impurities in gapped (monolayer/bilayer) graphene (valley) (Ando, 2015; Ishizuka
and Nagaosa, 2017). In the latter case, we neglect intrinsic Berry-curvature contribu-
tions to the valley current, as they are subdominant in the limit where impurities are
dilute (Ishizuka and Nagaosa, 2017). Note that when the valley and spin Hall effects
coexist, the effective Lorentz force driving the VHE (SHE) current will act on the spin
(valley) current. This is described by the additional entries in the RH, which are not
present when only the SHE or the VHE exists in the material (see FIGURE 7.1(b)).

In order to describe spin-valley transport with the above equations, we invert the
resistivity matrix RH in the right hand side of Eq. (7.2.1) and solve for the currents
Jµ
i :

Jµ
i = −

(
Dij
)µ

ν
∂jNν +

(
σij
)µ

ν
Eν

j . (7.2.3)

Note that the diffusion matrix is a rank-2 tensor in the Latin indices i, j, and therefore
it can be split into a symmetric (∝ δij) and antisymmetric (∝ εij) part according to
Dij = D0δij + DHεij, where

D0 = Dr


1 η 0 0
η 1 0 0
0 0 1 η
0 0 η 1

 , (7.2.4)

DH = Dr


0 0 θv θs
0 0 θs θv
θv θs 0 0
θs θv 0 0

 , (7.2.5)

Dr = D
1 + (ωvτ)2 + (ωsτ)2

[1 + (ωvτ)2 + (ωsτ)2]2 − 4ωsωvτ2 . (7.2.6)

Similarly, a decomposition of conductivity matrix as σij = σ0δij + σHεij can be ob-
tained by replacing in the above expressions the diffusion constantDwith the Drude
conductivity σD. Note that the diffusion equation (7.2.3) involves an off-diagonal
diffusion coefficient (cf. Eqs. 7.2.4 to 7.2.6) and conductivity, which reduces to the
well known limits. Thus, it yields the spin diffusion equations for a 2D electron
gas (Raimondi et al., 2012; Huang et al., 2016) when the second and third rows and
columns of the diffusion matrix D vanish. However, when the entries of the sec-
ond and fourth rows and columns of D vanish, Eq. (7.2.3) describes the diffusion of
valley polarization.

In order to understand some of the important consequences of the coupling of
spin and valley Hall effect, let us first solve Eq. (7.2.3) in the spatial uniform case
where ∂jNµ = 0. The ratios of the induced current (spin-valley ~Jsv, valley ~Jv, spin
current ~Js) over charge current ~Jc are the figures of merit for the various effects and
they are denoted respectively as η, θs, θv; in particular, θs and θv are the spin Hall and
valley Hall angles; η describes the conversion efficiency of the electric current to the
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spin-valley current, and it is given by the following expression:

η = − 2 (ωvτ) (ωsτ)

1 + (ωvτ)2 + (ωsτ)2 . (7.2.7)

Note that η is proportional to the product of ωvτ and ωcτ, meaning it is not zero
provided that both SHE and VHE coexist. As shown in FIGURE 7.1(b), the gener-
ation of the spin-valley current is a two-stage process requiring the generation of a
spin (valley) current from driving electric current via the SHE (VHE). The resulting
transverse current is then again deflected by the effective Lorentz force that causes
the VHE (SHE), resulting in a longitudinal spin-valley current. The factor of two in
Eq. (7.2.7) stems from the two possible routes by which this spin-valley conversion
can take place: charge to spin to spin-valley and charge to the valley to spin-valley
(see FIGURE 7.1(b)).

Furthermore, due to the spin-valley interplay, the valley (θv) and spin Hall (θs)
angles are modified as follows:

θv =
1 + (ωvτ)2 − (ωsτ)2

1 + (ωvτ)2 + (ωsτ)2 ωvτ, (7.2.8)

θs =
1 + (ωsτ)2 − (ωvτ)2

1 + (ωvτ)2 + (ωsτ)2 ωsτ. (7.2.9)

As expected, the spin (valley) Hall angle reduces to the familiar form θs = ωsτ
(θv = ωvτ) only when η ∝ ωsωv = 0. However, in general θs (θv) deviates from
their “bare” values due to the interplay of the spin and valley Hall effects. In typical
spintronic materials, ωsτ � 1 (Sinova et al., 2015). However, nonuniform strain in
graphene (Zhang, Huang, and Cazalilla, 2017), for instance, can yield large values of
the (bare) Hall angles for which |ωvτ| ∼ 1. In this case, |θs| ∼ |ωsτ|3 � 1 implying
that the spin current will be strongly suppressed.

7.3 Control of spin diffusion by means of strain

Next, we study the consequences of the interplay between spin and valley Hall ef-
fects for the spin transport. We first derive the drift-diffusion equations by supple-
menting Eq. (7.2.1) with the steady-state continuity equations for the currents, i.e.
∂i J

µ
i = −δ

µ
ν (τ

ν)−1Nν, where the limit τµ → +∞ for µ = c must be taken since the
electric current is strictly conserved. Hence,[

(D0)
µ
ν ∇

2 − δ
µ
ν

τν

]
Nν = Sµ. (7.3.10)

In the above equations, τν are the relaxation times of the various currents. We have
also assumed that spin-charge conversion mechanisms like the Edelstein effect or the
direct magnetoelectric coupling (Raimondi et al., 2012; Huang, Chong, and Cazalilla,
2017) can be neglected in a first approximation. Sµ is a source term given by

Sµ = εij

[
−∂i (DH)

µ
ν ∂jNν + ∂i (σH)

µ
ν Eν

j

]
. (7.3.11)

Note that Sµ vanishes in the bulk of the Hall bar device, and it is only nonzero
wherever DH and σH are discontinuous, i.e., at the boundary. Thus, away from
the boundaries, DH and σH become homogeneous, and Eq. (7.3.10) can be written as
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FIGURE 7.2: (Color online) (a) Spin polarization, Ns(x) at x = 2 µm
for a Hall bar device of width w = 0.5 µm versus ωvτ, which is con-
trolled by the non-uniform strain applied to the device (τ is mean
elastic collision time). The red dotted line is plotted by artificially set-
ting the coupling η that controls the interplay of spin and valley to
zero. The inset shows the spin Hall angle θs from Eq. (7.2.9) normal-
ized to ωsτ ' −0.12. Panels (b) and (c) show the nonlocal resistance
Rnl(x, H) (normalized to Rnl(x, H = 0)) plotted versus the in plane
magnetic field H for two different values of the ratio of the valley to
spin diffusion lengths: (b) for `v = `s and (c) for `v = 2`s. Parameters:

`s = 0.53 µm, x = 2.00 µm and y = 0.25 µm.

follows:
∇2Nµ −Mµ

ν Nν = 0, (7.3.12)

where

Mµ
ν =

1
1− η2

[
`−2

v −η`−2
s

−η`−2
v `−2

s

]
v
s. (7.3.13)

Only spin and valley densities are considered in the above equations because they
are the only responses in the transverse direction to the applied electric field. In this
expression, `v =

√
Drτv (`s =

√
Drτs) is valley (spin) relaxation length and Dr is

the (renormalized) diffusion constant (cf. Eq. 7.2.6). Note that the off-diagonal term
η mixes the spin and valley densities. Eq. (7.3.12) are solved by diagonalizing the
diffusion matrix, such that Mµ

ν |~̂eν
a〉 = L−2

a |~̂e
µ
a 〉, where La (a = 1, 2) corresponds to

the diffusion length of the eigenmode |~̂eµ
a 〉.
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In order to illustrate the properties of the solution to the above diffusion equa-
tions, we consider a non-uniformly strained graphene device decorated with ab-
sorbates that locally induce SOC (see details in Appendix 7.6.1). As mentioned
above, this system can be relevant to the experiments reported by Wang, Cai, and
Reutt-Robey, 2015; Kaverzin and Wees, 2015. In the long-wavelength limit, the effect
of nonuniform strain can be described by an out-of-plane (orbital) pseudo-magnetic
field, which takes opposite signs at opposite valleys (Guinea, Katsnelson, and Geim,
2010; Vozmediano, Katsnelson, and Guinea, 2010; Zhang, Huang, and Cazalilla,
2017). In earlier work, we have shown that modest amounts of nonuniform strain
can lead to a sizable VHE (Zhang, Huang, and Cazalilla, 2017). Besides, skew scat-
tering with the absorbates induces the SHE (Ferreira et al., 2014; Balakrishnan et al.,
2014; Yang et al., 2016; Huang et al., 2016). Thus, in this system, both VHE and SHE
coexist, and the spin and valley transport is described by Eq. (7.3.12), whose solution
we shall analyze in what follows.

For the sake the simplicity, we take the Hall bar to be an infinitely long conduct-
ing channel of width w (Abanin et al., 2009; Beconcini, Taddei, and Polini, 2016). The
solution of the coupled diffusion equations is simplified by setting Nc(~r) = 0, which
results from assuming the complete screening of the electric field inside the metal.
Thus, the electrostatic potential Φ (~r) obeys the Laplace equation, i.e. ∇2Φ (~r) = 0.
Using the appropriate boundary conditions proposed by Beconcini, Taddei, and
Polini, 2016; Zhang, Huang, and Cazalilla, 2017, the valley and spin densities, at the
edge (y = ±w/2), are given by the following expression (see detailed derivations in
Appendix 7.6.2):

Nµ(x) =
iI
Dr

∑
ν,b

~̂eµ
b (
~̂e−1)b

νθν

∫ ∞

−∞

dk
2πk

eikxFb (k)
1 + ∑

a
Θ2

aFa (k)
,

Fa(k) =
k tanh(kw/2)

κa tanh(κaw/2)
, (7.3.14)

with a, b = (1, 2). µ = v, s correspond to valley and spin densities, respectively.
κa =

√
k2 + L−2

a and Θ2
a =

[
~̂eµ

a θµ

]
[(~̂e−1)ν

aθν].
In FIGURE 7.2(a), we plot the spin polarization Ns(x, y) (taking x = 2 µm and

y = 0.25 µm) as a function of the ωvτ, which is determined by the strength of the
pseudo-magnetic field induced by the nonuniform strength applied to device (Zhang,
Huang, and Cazalilla, 2017). Notice that a modest nonuniform strain can lead to a
large valley Hall effect (Zhang, Huang, and Cazalilla, 2017), ωvτ(& 1). ωvτ = 1 can
be induced by e.g. applying a nonuniform (uniaxial) strain of 2.0% to a ribbon of
width w = 0.50µm. Interestingly, the spin polarization does not vanish even when
the strain is tuned to make the effective spin Hall angle (cf. Eq. (7.2.9)) θs = 0 (see red
circle in the inset of FIGURE 7.2(a)). This is a dramatic consequence of the coupling
between the SHE and VHE, whose strength is measured by η (cf. Eq. (7.2.7)). Due
to this coupling, the valley density accumulation induced by VHE can be converted
to spin density. Note that if we solve the diffusion equations by ignoring the spin-
valley coupling (i.e., by artificially setting the parameter η = 0), the behavior of the
spin polarization (red line in FIGURE 7.2(a)) would be very different.
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7.4 Suppression of the Hanle effect

Finally, we show that the interplay between the SHE and VHE can lead to the HE’s
suppression. As mentioned above, the quantity of experimental interest is the NLR
of the Hall bar measured at a distance x from the current injection point. The HE
results in the appearance of an oscillatory component in the NLR as a function of the
external magnetic field H applied in the device’s plane. The oscillation results from
the precession of the electron spin in the external magnetic field H.

By solving the coupled diffusion and Laplace equations, the NLR can be obtained
from:

Rnl (x, H) =
1
I

[
Φ
(

x,−w
2

, H
)
−Φ

(
x,

w
2

, H
)]

, (7.4.15)

where Φ(x, y, H) is the electrostatic potential for an in-plane magnetic field H. In
the absence of both SHE and VHE, the NLR is given by the van der Paw law: R0

nl '
4

πσc e−|x|/L0 , for |x| � L0 = w/π. However, experimentally it is found that the
NLR is greatly enhanced with respect to the Ohmic signal (Balakrishnan et al., 2014;
Balakrishnan et al., 2013; Huang, Chong, and Cazalilla, 2017; Kaverzin and Wees,
2015). When the spin-diffusion length `s is shorter than the valley-diffusion length,
`v, a suppression of the HE is expected. This is because the valley currents, which
diffuse much farther and therefore will yield the dominant contribution to Rnl(x, H),
are completely insensitive to the in-plane magnetic field. Strikingly, we find that for
`v and `s take comparable values, the HE can be suppressed by a moderate amount
of nonuniform strain present in the device.

In order to compute Rnl(x, H) we add to the diffusion equations (7.3.10), a Zee-
man term, which induces precession. A sufficiently strong magnetic field ~H ∝ ŷ
converts the out-of-plane spin polarization, Ns(x), into an in-plane spin polariza-
tion (along the x-direction). Since the nonlocal voltage is determined by the mag-
nitude Ns(x) at the location of the voltage probes (see Appendix 7.6.3), this results
in the NLR developing an oscillatory component. When the SHE and VHE coexist,
describing precession requires that we account for the diffusion of the components
of the spin and spin-valley densities in the plane perpendicular to ~H. The resulting
diffusion equations’ solution becomes more involved, and the details are provided
in Appendix 7.6.4. Here we focus on discussing the result for the NLR, which is
shown in FIGURE 7.2(b,c).

In FIGURE 7.2(b), the NLR versus the applied magnetic field H has been plot-
ted for `v = `s. Setting ωvτ = 0, we recover the result obtained by Abanin et
al., 2009, showing the characteristic oscillatory component in Rnl(x, H) associated
with the HE. By applying an increasing amount of nonuniform strain to the Hall
bar (i.e., increasing ωvτ), the amplitude of the oscillatory component in the NLR
is suppressed. It almost disappears for ωvτ ∼ 0.5, which, for typical experimen-
tal parameters (Kaverzin and Wees, 2015), corresponds to a nonuniform (uniaxial)
strain of ≈ 1% applied to a Hall bar 0.5 µm wide. Thus, the HE’s suppression hap-
pens due to the competition between the spin and valley Hall effects. As mentioned
above, when ωvτ ∼ 1, the spin Hall angle θs (cf. Eq. 7.2.9) is strongly reduced, see
Eq. (7.2.9). Since the magnitude of θs determines the HE, the existence of a sizable
VHE resulting from strain can suppress the HE. For larger valley diffusion length
(`v = 2`s), the suppression of the HE becomes even more obvious and happens
for a smaller amount of strain, as shown in FIGURE 7.2(c). In Appendix 7.6.4, we
show that the suppression of the HE is not affected by charging the carrier density
or sign. Notice that the moderate amounts of strain considered here could be unin-
tentionally introduced during the process of device fabrication. Thus, our findings
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are relevant for the interpretation of some of the nonlocal transport measurements
in graphene decorated with hydrogen (Wang, Cai, and Reutt-Robey, 2015) and gold
adatoms (Kaverzin and Wees, 2015), where a large enhancement of the NLR was
detected without HE.

Before concluding, it is worth commenting on other possible causes for the sup-
pression of the HE. Indeed, suppression of the effect may also arise from a sizable
spin-valley locking, such as the one present in the band structure of TMDs (Suzuki
et al., 2014). Effectively, this type of spin-valley locking can be described as a Zee-
man coupling to an out-of-plane magnetic field, which takes opposite signs at oppo-
site valleys. However, in graphene devices, such type of spin-valley would require
breaking the sublattice symmetry, induced by either the substrate or the absorbates
decorating the device. However, such a strong sublattice symmetry breaking was
not experimentally observed by Kaverzin and Wees, 2015.

7.5 Summary and outlook

This chapter explores several important consequences of the coexistence of spin and
valley Hall effects in a two-dimensional material: We show the latter leads to the
emergence of neutral longitudinal spin and valley polarized current. Furthermore,
we have shown that spin polarization diffusing in the material can be controlled
through non-uniform strain. Finally, we show the Hanle effect in response to an
in-plane magnetic field can be strongly suppressed due to the competition of the
two effects. We believe the suppression of the Hanle effect noticed here will shed
light on experimental controversies concerning the origin of the enhancement of the
nonlocal resistance in various types of graphene devices (Balakrishnan et al., 2013;
Balakrishnan et al., 2014; Kaverzin and Wees, 2015; Avsar et al., 2015; Wang, Cai, and
Reutt-Robey, 2015). The theory presented here can also be extended in various other
directions, such as accounting for other spin-charge conversion mechanisms beyond
the SHE (such as the inverse spin-galvanic effect) and a weak spin-valley (Zeeman)
coupling, which is present in hybrid graphene-TMD structures. Both effects are ex-
pected to be important when spatial inversion symmetry is broken.

7.6 Appendix

7.6.1 Kinetic theory

Boltzmann equation

We first introduce the quantum Boltzmann equation (QBE) capable of describing a
system in which both spin (SHE) and valley Hall (VHE) effects co-exist:

ṅ~k +~v~k · ∇~rn~k + ~F~k · ∇~kn~k + iωL
[
n~k,~s · ~m

]
= Ir

[
n~k
]

. (G.6.16)

In the above expression, the function n~k is the density-matrix distribution function
of the carriers (electrons or holes) in the Bloch state characterized by (crystal) mo-
mentum~k. Thus, it is a 4× 4 matrix in spin-valley space. The force ~F driving the
carrier motion can be split into three terms:

~F~k = ~Fl
~k
+ ~Fs

~k
+ ~Fv

~k
, (G.6.17)
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where

~Fl
~k
= ~FE

~k
+ ~FB

~k
≡ e~E + e~v~k × ~B, (G.6.18)

~Fs
~k
= e~v~k × (ŝz~Bs), (G.6.19)

~Fv
~k
= e~v~k × (τ̂z~Bv). (G.6.20)

The Fl
~k

is the electromagnetic Lorentz force due to external (in-plane) electric and

(out-of-plane) magnetic fields (~E ⊥ ~̂z and ~B ‖ ~̂z, respectively). While Fs/v
~k

are the ef-
fective (Lorentz-like) forces for effective (out-of-plane) spin/valley magnetic field
(~Bs ‖ ~̂z and ~Bv ‖ ~̂z, respectively), from which the SHE and VHE originate. In
Eq. (G.6.18), e(< 0) is the charge of the electron, ~v~k = h̄−1∇~kε~k is the velocity of
electron with (crystal) momentum~k, and ε~k is the band dispersion. We assume that
there is no Berry curvature in the band and therefore anomalous velocity vanishes.
ŝa, τ̂a (a = o, x, y, z) are Pauli matrices describing the spin and valley (pseudo-spin),
respectively. The matrix so (τo) corresponds to the spin (valley) unit matrix.

The magnitude of the SHE (VHE) has been parameterized in the above equations
by the effective spin (valley) magnetic field ŝz~Bs (τ̂z~Bv), which points in opposite di-
rections for electrons of different spins (valleys). The last term of the left hand side
of Eq. (G.6.16) describes spin precession with a Larmor frequency ωL = gµBH/h̄,
which is proportional to the magnitude of the total applied (Zeeman) magnetic field
~H (g is the gyromagnetic factor and µB is the Bohr magneton). In Eq. (G.6.16),
~m = ~H/H denotes the direction of the total magnetic field and ~B in Eq. (G.6.18)
denotes the component of the magnetic field perpendicular to the plane of the mate-
rial. In what follows, we shall assume that the external magnetic field (when present)
is applied in the plane of the 2D system, which means ~B = 0 and therefore the mag-
netic field part of Lorentz force ~FB

~k
= 0.

On the right hand side of Eq. (G.6.16) Ir
[
n~k
]

is the (dissipative) collision in-
tegral. Strictly speaking, the force terms proportional to ~Fs/v

~k
can arise from the

collision integral as a result of skew scattering (see 7.6.1 below and e.g. Huang
et al., 2016; Zhang, Huang, and Cazalilla, 2017). Alternatively, a weak uniform (i.e.
intrinsic) Rasbha-type SOC can also give rise to a Lorentz-like force term like ~Fs

~k
in the QBE (Raimondi et al., 2012; Huang, Milletarì, and Cazalilla, 2017). Further-
more, nonuniform strain can give rise to a force like ~Fv

~k
(see below, 7.6.1, and Zhang,

Huang, and Cazalilla, 2017).

Linearized Boltzmann equation

For small applied electric field, ~E, the solution to the QBE (G.6.16), can be obtained
by using the following ansatz for electron density-matrix distribution function:

n~k(~r, t) = n0
[
εk − µF − γν(µ

ν (~r, t) +~vν (~r, t) · ~k)
]

. (G.6.21)

In the above equation, n0(ε) is Fermi-Dirac distribution at the absolute temper-
ature T and global chemical potential µF. The convention of summing over re-
peated Greek indices like ν has been used, with matrix γν belonging to the set of
4 × 4 matrices {ŝo, ŝz} ⊗ {τ̂o, τ̂z} = {ŝoτ̂o, ŝoτ̂z, ŝzτ̂o, ŝzτ̂z}, which are a set of 4 × 4
matrices in spin-valley space. The index ν runs over the combinations for charge
(c = oo), spin-valley (sv = zz), valley (v = oz) and spin (s = zo) indices. The fields
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~vν(~r, t) and µν (~r, t) correspond to the drift velocity of the electron fluid and the local
chemical potential, respectively. Both are proportional to applied electric field, i.e.,
|~vν(~r, t)| ∝ |~E| and µν (~r, t) ∝ |~E|. To linear order in~vν(~r, t) and µν (~r, t), the deviation
of distribution function from its equilibrium, δn~k = n~k − n0

k reads:

δn~k(~r, t) ' γν

[
µν (~r, t) +~vν (~r, t) ·~k

] [
−∂εn0

ε

]
ε=µF

, (G.6.22)

with ν = (c, sv, v, s). Hence,

∇~kδn~k(~r, t) ' γν~vν (~r, t)
[
−∂εn0

ε

]
ε=µF

. (G.6.23)

Thus, to linear order in ~E, linearization of QBE yields:

δṅ~k +~v~k · ∇~rδn~k + e
(
~E +~v~k × ~B

)
· ∇~kn0

~k
+ ~Fs

~k
· ∇~kδn~k + ~Fv

~k
· ∇~kδn~k (G.6.24)

+ iωL
[
δn~k,~s · ~m

]
= Ir

[
δn~k
]

,

where we have used:

~Fs
~k
· ∇~kn0

~k
∝ (~̂k× ẑ) ·~̂k = 0, (G.6.25)

~Fv
k · ∇~kn0

~k
∝ (~̂k× ẑ) ·~̂k = 0, (G.6.26)

together with the vanishing of the collision integral for the equilibrium distribution
n0

k .

Example of a microscopic model

The above linearized QBE can be obtained for various types of microscopic models.
In this subsection, we study an instance of much experimental interest describing a
monolayer of graphene subject to nonuniform strain and decorated with adatoms.
The nonuniform strain was explained in Subsection 1.3.1, which can be charaterized
by the pseudo-magnetic field that determines the valley Lorentz-like force, ~Fv

~k
can

be obtained from the standard expression:

τ̂z~Bv = τ̂z∇× ~A(~r) = τ̂z(∂xAy − ∂yAx)~̂z. (G.6.27)

On the other hand, the adatoms induce spin-orbit coupling (SOC) by proximity to
the graphene layer. For the sake of simplicity, the spatial dependence of SOC is ap-
proximated by a Dirac delta potential, but more complicated dependence will not al-
ter our results qualitatively (Ferreira et al., 2014). The spin-dependence corresponds
to the so-called Kane-Mele SOC, which is known to lead to extrinsic SHE (Huang
et al., 2016; Ferreira et al., 2014). The spin transport properties of graphene can
be modified by the presence of adatom impurities (Weeks et al., 2011; Ferreira et
al., 2014; Yang et al., 2016; Huang et al., 2016). In the dilute impurity limit, the
dominant mechanism for the spin-charge conversion via the extrinsic SHE is skew
scattering (Nagaosa et al., 2010), which effectively gives rise to a spin-dependent
Lorentz-like force (Huang et al., 2016).

Within the ~k · ~p theory, the potential for a single-impurity takes the following
form:

V(~r) = (Vc ŝoτ̂oσ̂o + Vs ŝzτ̂zσ̂z)R2δ (~r) . (G.6.28)
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In the above expression, R is a length scale of the order of the impurity radius. We
shall assume that R � a, that is, much larger than the inter-carbon separation so
that inter-valley scattering can be safely neglected (Basko, 2008) but R . 10 nm,
so that the potential can be approximated by a Dirac δ-function. This approxima-
tion should be a good description of a monolayer of graphene decorated by adatom
clusters (Ferreira et al., 2014; Balakrishnan et al., 2013). Hence, upon solving the scat-
tering problem, the on-shell T-matrix projected on the carrier band can be obtained
and reads:

T+
~k~p

= tc(k)ŝo cos(θ~k~p/2) + ts(k)ŝz sin(θ~k~p/2). (G.6.29)

The functions tc(k) and ts(k) depend on momentum k of the incoming electron and
the impurity potential parameters, i.e. Vc,Vs, in our model. See e.g. Refs.Huang,
Chong, and Cazalilla, 2016 and Zhang, Huang, and Cazalilla, 2017 for the detailed
expressions of these functions.

The effect of impurities is described by the collision integral I
[
δn~k
]
. The com-

plete form of the latter (which includes the dissipative Ir[δn~k] introduced in Eq. (G.6.16)
has been derived by Huang, Chong, and Cazalilla, 2016, extending earlier work of
Kohn and Luttinger in order to account for the effects of disorder on the electron
internal degrees of freedom such as spin and valley pseudo-spin. To leading order
in the density of impurities, ni, the collision integral reads:

I [δn~k] =
2π

h̄
ni ∑

~p
δ(εk − εp)

[
T+
~k~p

δn~pT−
~p~k

(G.6.30)

−1
2

{
δn~kT+

~k~p
T−
~p~k

+ T+
~k~p

T−
~p~k

δn~k
}]

,

which is determined by the scattering data of a single scatterer. Using the above
ansatz, Eq. (G.6.22), the collision integral (G.6.30) reduces to:

I
[
δn~k
]
=

π

h̄
ni ∑

~p
δ
(
εp − εk

)
2T̂+

~k~p
T̂−~k~p(δn~p − δn~k), (G.6.31)

where

2T̂+
~k~p

T̂−~k~p =
[
|tc|2 (1 + cos θ) + |ts|2 (1− cos θ)

]
γc

+ 2Im (tct∗s ) sin θγs (G.6.32)

δn~p − δn~k =
[
−∂εn0 (ε)

]
ε=µF ∑

ν

γν~vν (~r) · h̄(~p−~k). (G.6.33)

Substituting Eqs. (G.6.32) and (G.6.33) into Eq. (G.6.30), the collision integral takes
the following form:

I
[
δn~k
]
=
[
∂εn0 (ε)

]
ε=µF

h̄~k ·
{

γc

τ ∑
ν

γν~vν (~r)

+ γsωs ∑
ν

γν~vν (~r)×~̂z
}

, (G.6.34)
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where

1
τ(k)

=
kni

4h̄2vF

[
|tc(k)|2 + 3 |ts(k)|2

]
, (G.6.35)

ωs(k) =
kni

4h̄2vF
[−2Im{tc(k)ts(k)}] . (G.6.36)

The above collision integral can be rewritten as

I
[
δn~k
]
= − h̄~k

τ
· ∇~kδnk − ~Fs

~k
· ∇~kδnk, (G.6.37)

with

~Bs = −
h̄kωs

evF
~̂z. (G.6.38)

Thus, as anticipated in 7.6.1 (cf. Eqs. (G.6.16) and (G.6.19)), an effective Lorentz-
like force driving the SHE emerges from skew scattering with adatom impurities.
This Lorentz-like force term needs to be factored out of the collision integral, and
the remaining terms are grouped in the dissipative part of the the collision integral,
Ir
[
n~k
]
, which we introduced in Eq. (G.6.16), See 7.6.1 .

7.6.2 Diffusion equations

In order to derive the diffusion equations that we have employed in the main text,
let us first consider the simpler case where there is no applied magnetic field and
therefore the Larmor frequency vanishes, i.e. ωL = 0 in Eq. (G.6.24).

First of all, let us the define currents and generalized polarization densities as
follows:

Jν
i = ∑

~k

ev~ki Tr
[
γνδn~k

]
, (G.6.39)

Nν = ∑
~k

eTr
[
γνδn~k

]
. (G.6.40)

At zero temperature, Jν
i and Nν reduce to:

Jν
i (~r) = eνFµFvν

i (~r) , (G.6.41)
Nν (~r) = 2eνFµν (~r) , (G.6.42)

where νF = k2
F/ (πµF) is the total density of states at the Fermi energy µF = h̄vFkF

at zero temperature, where kF is the Fermi momentum.

Continuity and constitutive equations

The constitutive and continuity equations in steady state, can be obtained by trac-
ing the linearized QBE (G.6.24), i.e. by taking ∑~k e~v~kTr [γµQBE] for the constitutive
equations and ∑~k eTr [γµQBE]) for the continuity relations, respectively. The latter
procedures yield the following expressions:

D∂iNµ − σDEµ
i =

[
−δ

µ
ν δij + (RH)

µ
ν εij
]

Jν
j , (G.6.43)

∂i J
µ
i = 0. (G.6.44)
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HereD = v2
Fτ/2 is diffusion constant and σD = ne2τ/m (n is carrier density and m is

mass) is Drude conductivity. In the above expression, repeated indices are summed
and εij is the antisymmetric 2D Levi-Civita tensor (i, j = x, y). The Greek super-
scripts of the currents ~Jµ and the densities Nµ take values over the set {c, sv, v, s},
which stand for for charge, spin-valley, valley, and spin currents (densities), respec-
tively. The coupling between spin and valley currents naturally leads to the existence
of spin and valley polarized currents that are longitudinal, i.e. have the same direc-
tion as charge current ~Jc(external electric field ~Ec = ~E). On the other hand, the spin
and valley currents are transverse, i.e. perpendicular to~Jc (~E).

The left hand side of Eq. (G.6.43) contains the driving forces for the currents,
which are the results of spatial nonuniformity of the densities ∝ ~∇Nµ and the appli-
cation of the generalized electric fields ~Eµ (in order to describe real devices, we shall
set ~Eµ = 0 for all µ 6= c). The right hand side of Eq. (G.6.43) describes the effective
Lorentz forces as well as current relaxation. The relaxation rates for all currents are
the same and equal to the Drude relaxation time τ (which is related to the mean-free
path by ` = vFτ where vF is the Fermi velocity). The Hall resistivity matrix RH de-
scribes SHE and VHE, and couples longitudinal charge and spin-valley currents to
transverse spin and valley currents:

RH =


0 0 ωvτ ωsτ
0 0 ωsτ ωvτ

ωvτ ωsτ 0 0
ωsτ ωvτ 0 0

 . (G.6.45)

The magnitude of the SHE and VHE has been parameterized in the above equations
by the effective “cyclotron” frequencies

ωs = vFeBs/h̄kF (G.6.46)
ωv = vFeBv/h̄kF. (G.6.47)

The latter arise from effective Lorentz forces that deflect the electrons (according to
their spin and valley orientations, respectively).

In order to describe spin-valley transport with the above equations, we need to
invert the resistivity matrix RH and solve Eq. (G.6.43) for the currents Jµ

i , which
yields the following set of equations:

Jµ
i = −

(
Dij
)µ

ν
∂jNν +

(
σij
)µ

ν
Eν

j . (G.6.48)

Note that the diffusion matrix is a rank-2 tensor in the Latin indices i, j, and therefore
it can be split into a symmetric (∝ δij) and antisymmetric (∝ εij) part according to
Dij = D0δij + DHεij, where

D0 = Dr


1 η 0 0
η 1 0 0
0 0 1 η
0 0 η 1

 , (G.6.49)

DH = Dr


0 0 θv θs
0 0 θs θv
θv θs 0 0
θs θv 0 0

 , (G.6.50)
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Dr = D
1 + (ωvτ)2 + (ωsτ)2

[1 + (ωvτ)2 + (ωsτ)2]2 − 4ωsωvτ2 . (G.6.51)

Similarly, a decomposition of conductivity matrix as σij = σ0δij + σHεij can be ob-
tained by replacing in the above expressions the diffusion constantDwith the Drude
conductivity σD. (See exact expressions for η, θv, θs in manuscript. )

Diffusion of spin and valley polarization

Next, we derive the drift-diffusion equations for the spin and valley polarizations.
To this end, we supplement the constitutive relations in Eq. (G.6.43) with the steady
state phenomenological continuity equations,

∂i J
µ
i = − δ

µ
ν

τν
Nν, (G.6.52)

where we take τc → +∞ since the charge current is strictly conserved. In the above
expressions, τν are phenomenological relaxation times which need to be ad hoc in
the present derivation, but whose existence can be rigorously derived in a more com-
plete treatment (Huang, Chong, and Cazalilla, 2016; Zhang, Huang, and Cazalilla,
2017). Hence, we arrive at the following set of diffusion equations:[

(D0)
µ
ν ∂2

i −
δ

µ
ν

τν

]
Nν = Sµ, (G.6.53)

where the source term is given by

Sµ = εij

[
−∂i(DH)

µ
ν ∂jNν + ∂i(σH)

µ
ν Eν

j

]
. (G.6.54)

In deriving the above diffusion equations, we used εij∂i∂jNµ = 0 and that the gen-
eralized electric field is curl and divergence-free, i.e. εij∂iE

µ
j = 0 and ∂iE

µ
i = 0, that

is, we have neglected any relativistic corrections to the electrodynamics.
Note that the source term on the right hand side of (G.6.53) takes a non-zero

values only at the boundary of the device. In other words, it describes the driving
force for the electron diffusion arising from the abrupt change of the Hall angle at
the device boundaries (Beconcini, Taddei, and Polini, 2016). However, in the bulk
the above set of differential equations (G.6.53), becomes a homogeneous one:

∂2
i Nµ −Mµ

ν Nν = 0, (G.6.55)

where

Mµ
ν =

1
1− η2

[
`−2

v −η`−2
s

−η`−2
v `−2

s

]
. (G.6.56)

Here µ, ν ∈ {v, s} denote the transverse valley (spin) response, with diffusion lengths
`v =

√
Drτv (`s =

√
Drτs). The choice where µ, ν = {c, sv} corresponds to the longi-

tudinal charge (spin-valley) response, which decouples from transverse modes and
will be omitted in what follows. The parameter η, which arises from the interplay of
SHE and VHE, mixes the valley and spin responses.

As described in the main text, in order to solve Eq. (G.6.55), we first need to
diagonalize the matrix M and therefore obtain the eigenvalues and eigenvectors.
Thus, in what follows we shall assume this has been carried out, so that L−2

a |~̂e
µ
a 〉 =

Mµ
ν |~̂eν

a〉, where La is the eigenvalue, which corresponds to the diffusion length for
the eigenmode |~̂eµ

a 〉.
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Next, following Beconcini, Taddei, and Polini, 2016, we solve the diffusion equa-
tion for a Hall bar device geometry, assuming the latter to be an infinitely long
metallic channel of width w contacted by noninvasive current and voltage probes
(see FIGURE 1(a) in the manuscript). We shall assume the complete screening of the
electric field in the bulk of device, which amounts to take charge density into zero,
i.e., Nc (~r) = 0. Hence, the electrostatic potential, Φ (~r) obeys the Laplace equation:

∇2Φ (~r) = 0. (G.6.57)

The Laplace equation (G.6.57) and the above system of partial differential equations
(G.6.55), need to be supplemented by the following boundary conditions (BCs):

Jc
y(x; y = ±w/2) = Iδ(x) (G.6.58)

Jν
y (x; y = ±w/2) = 0, (G.6.59)

for ν = v, s. I is charge current injected on right hand side of Hall bar device. Finally,
in order to solve the problem posed by Eq. (G.6.55) and Eq. (G.6.57), we use Fourier
transformation along the infinitely long channel direction, x. Thus, using (G.6.48),
the BCs approximately become:

I '
[
−Dr (ik) Nν (k, y) θν − σc∂yΦ (k, y)

]∣∣
y=± w

2
, (G.6.60)

where the sum over the repeated index ν in the expression above runs over the set
{s, v} only. σc is charge conductivity. In addition,

0 '
[
−σc (ik)Φ (k, y) θν −Dr∂yNν (k, y)

]∣∣
y=±w

2
. (G.6.61)

By “approximately”, we mean that we omit the boundary contributions of the lon-
gitudinal modes Nc and Nsv in Eq. (G.6.48) by setting Nc, Nsv = 0 and η = 0.
Including them, merely leads to a small correction to the diffusion length of the spin
and valley eigenmodes.

In order to solve the above system of 2nd order differential equations, i.e. Eq. (G.6.55),
we first turn it into a 1st order set of equations by defining N′ν (k, y) = ∂yNν (k, y),
rendering (G.6.55) to the form:[

∂yNν (k, y)
∂yN′µ (k, y)

]
=

[
0 δν

µ

k2δ
µ
ν +Mµ

ν 0

] [
Nν (k, y)
N′µ (k, y)

]
. (G.6.62)

Let L−2
a and |~̂eµ

a 〉 are the eigenvalues and eigenvectors of diffusion matrix, respec-
tively. Hence, [

~0 1

k21 +M ~0

]  ∣∣∣~̂ea

〉
±κa

∣∣∣~̂ea

〉 = ±κa

 ∣∣∣~̂ea

〉
±κa

∣∣∣~̂ea

〉 , (G.6.63)

with κa =
√

k2 + L−2
a . Therefore,±κa is the eigenvalue of the matrix of (G.6.62) with

eigenvector

|±κa〉 =
1

(1 + |κa|2)1/2

[
|ea〉
±κa |ea〉

]
. (G.6.64)
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Considering the symmetry of BCs in (G.6.60) and (G.6.61), the solution of the
above system of differential can be solved by the following ansatz:

Nν = ∑
a=1,2

Aa~̂eν
a
(
e+κay + e−κay) , (G.6.65)

Φ = Ao

(
e+ky − e−ky

)
. (G.6.66)

Substitution of these ansatz into the BCs, Eq. (G.6.60) and (G.6.61) yields:

I = −σc
[

Aok
(

e+kw/2 + e−kw/2
)]
−Dr ∑

ν,a
θν (ik)

[
Aa~̂eν

a

(
e+κaw/2 + e−κaw/2

)]
,

(G.6.67)
0 ' −σcθν (ik) Ao

(
e+kw/2 − e−kw/2

)
−Dr ∑

a
Aa~̂eν

aκa

(
e+κaw/2 − e−κaw/2

)
. (G.6.68)

From Eq. (G.6.68), it is found that

Aa

Ao
' (−i)

σc

Dr
∑
µ

k sinh (kw/2)
κa sinh (κaw/2)

(~̂e−1)
µ
a θµ, (G.6.69)

Hence, upon substitution of this result into Eq. (G.6.67), we obtain:

I
Ao

= −2k cosh
(

k
W
2

)[
1 + ∑

a
Θ2

aFa (k)

]
σc, (G.6.70)

where
Θ2

a = [θµ~̂e
µ
a ][(~̂e−1)a

νθν], (G.6.71)

Fa (k) =
k tanh (kw/2)

κa tanh (κaw/2)
. (G.6.72)

Hence,

Nν (~r) =
iI
Dr

∑
a,µ

~̂eν
a(~̂e
−1)a

µθµ

∫
dk

eikx

2π

tanh (kw/2)
κa sinh (κaw/2)

cosh (κay)[
1 + ∑b Θ2

bFb (k)
] , (G.6.73)

for the generalized polarization densities and

Φ (~r) = − I
σc

∫
dk

eikx

2πk
sinh (ky)

cosh (kW/2)
[
1 + ∑b Θ2

bFb (k)
] . (G.6.74)

for the electrostatic potential.

7.6.3 Nonlocal Resistance

In this section, we compute the nonlocal resistance (NLR) in the absence of magnetic
field, which is defined as

Rnl (x) =
1
I
[Φ (x,−w/2)−Φ (x,+w/2)]. (G.6.75)
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Substituting the electrostatic potential (G.6.74) into (G.6.75), we obtain the following
integral form for the NLR:

Rnl(x)
Rxx

=
1
π

∫ ∞

−∞
dk

eikx

k
tanh (kw/2)

1 + ∑b Θ2
bFb (k)

, (G.6.76)

with Rxx = 1/σc. The above result for the NLR can be expanded as follows

Rnl(x)
Rxx

=
∞

∑
n=0
Rn (x) , (G.6.77)

Rn (x) = ∑
~an

R~an (x) , (G.6.78)

with~an = (a1, a2, · · · , an). The expression forR~an (x) is given by:

R~an(x) =
1
π
(−1)n

∫ +∞

−∞

dk eikx

k coth (kw/2)

n

∏
ı=1

Θ2
aı
Faı (k) . (G.6.79)

Next, we obtain asymptotic expressions for the various terms in the above expan-
sion. For n = 0,R0 (x) reduces to the Ohmic NLR:

R0(x) =
2
π

ln
∣∣∣coth

(πx
2w

)∣∣∣ . (G.6.80)

Explicitly, it is van der Paw resistance, which behaves asRvdP ' 4
π e−|x|/L0 for |x| �

w where L0 = w/π. At large |x|, and for w � `ν, the n = 1 term is R1 = ∑aR1
a,

where
R1

a (x) ' Θ2
a

w
2La

e−|x|/La . (G.6.81)

In earlier work of Zhang, Huang, and Cazalilla, 2017, we showed that a modest
nonuniform strain can result in rather large valley Hall angles θv ∼ 1. Thus, in
order to accurately describe the NLR we need to consider high order terms in the
expansion, i.e. those with n > 1. But we here just pick out terms R~an with same
eigenmode aı = a i.e., Rnl/Rxx ' R0 + ∑aRa, being

Ra(x) =
∫ +∞

−∞

dk
πk

eikx

coth (kw/2)

∞

∑
n=1

(−1)n [Θ2
aFa (k)

]n

=
Θ2

a
1 + Θ2

a

W
2Lr

a
e−|x|/L

r
a , (G.6.82)

where Lr
a =

√
1 + Θ2

aLa is renormalized decay lengths of each eigenmode (Zhang,
Huang, and Cazalilla, 2017). Finally, we obtain total NLR Rnl/Rxx = R0 + δRnl

Rnl(x)
Rxx

'

R0︷ ︸︸ ︷
4
π

e−|x|/L0 +

δRnl︷ ︸︸ ︷
∑

a

Θ2
a

1 + Θ2
a

w
2Lr

a
e−|X|/L

r
a︸ ︷︷ ︸

Ra

, (G.6.83)

The first term is the Ohmic contribution,R0, and the second term contains the sum of
the exponentially decaying contributions for each eigenmode, Ra. Near the current
injection point (|x| . L0), Rnl is dominated by the ohmic contribution, R0, which
will become negligible at sufficiently large distances (i.e. for |x| � L0).
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Here we focus on the behavior of Rnl , when contribution of the eigenmodes of
the diffusion equation dominate over the Ohmic contribution, i.e. when δRnl � R0.

7.6.4 Suppression of the Hanle effect

In this appendix, we provide the details of the derivation and solution of the diffu-
sion equations in the presence of an in-plane magnetic field. Note that the Larmor
frequency ωL � µF, where µF is the Fermi level. The in-plane magnetic field, which
we shall take parallel to the direction of the electric field applied to the device, in-
duces precession of the spin-degree of freedom, whilst the valley is not affected. This
mixes the out-of-plane spin component along z with the spin in-plane components
along the x and y axes. Thus, our ansatz for the density-matrix distribution function
in the QBE must be now expanded in terms of γν matrices taken from the larger set
{ŝoτ̂o, ŝoτ̂z, ŝxτ̂o, ŝyτ̂o, ŝzτ̂o, ŝxτ̂z, ŝyτ̂z, ŝzτ̂z}.

In order to simplify the calculations described below, the deviation of the dis-
tribution function from equilibrium, i.e. δn~k = n~k − n0

~k
, will be slit into two parts,

δn~k = δn+
~k
+ δn−~k , with

δn+
~k
'∑

i
γi

[
µi (~r) +~vi (~r) · h̄~k

] [
−∂εn0 (ε)

]
ε=µF

, (G.6.84)

δn−~k '∑
j

γj

[
µj (~r) +~vj (~r) · h̄~k

] [
−∂εn0 (ε)

]
ε=µF

, (G.6.85)

where i ∈ {c, sv, v, s} and j ∈ {xo, yo, xz, yz}.
The form of the collision integral (G.6.30) is determined by the ansatz for density

matrix δn~k, which in turn follows from the forms of the T-matrix (∝ {ŝo, ŝz}), the
pseudo-magnetic field arising from nonuniform strain (∝ {τ̂o, τ̂z}), and the (Zeeman)
magnetic field ({ŝo, ŝy}). To compute the collision integral, it is convenient to also
split the T-matrix into two parts, i.e., T~k~p = To

~k~p
+ Tz

~k~p
, with

To
~k~p

= tc1 cos
(

θ

2

)
, (G.6.86)

Tz
~k~p

= its ŝz sin
(

θ

2

)
, (G.6.87)

which obey: [
δn−~k , Tz

~k~p

]
+
= 0, (G.6.88)[

δn−~k , To
~k~p

]
−
= 0, (G.6.89)[

δn+
~k

, T~k~p
]
−
= 0, (G.6.90)
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where [A, B]± = AB ± BA. Next, using the above ansatz, the collision integral
(G.6.30) reduces to:

I
[
δn~k
]
=

π

h̄
ni ∑

~p
δ [ε (p)− ε (q)] 2T̂~k~pT̂∗~k~p(δn+

~p − δn+
~k
) (G.6.91)

+
π

h̄
ni ∑

~p
δ [ε (p)− ε (q)] 2T̂~k~pT̂o∗

~k~p
(δn−~p − δn−~k )

− π

h̄
ni ∑

~p
δ [ε (p)− ε (q)] 2T̂~k~pT̂z∗

~k~p
(δn−~p + δn−~k ).

Hence,

2T̂+
~k~p

T̂∗~k~p =
[
|tc|2 (1 + cos θ) + |ts|2 (1− cos θ)

]
γc

+ 2Im (tct∗s ) sin θγs (G.6.92)

2T̂~k~pT̂o∗
~k~p

= |tc|2 (1 + cos θ) γc + itst∗c sin θγs, (G.6.93)

2T̂~k~pT̂z∗
~k~p

= |ts|2 (1− cos θ) γc − itct∗s sin θγs, (G.6.94)

In addition, we need to compute the differences and sums:

δn−~p − δn−~k =
[
−∂εn0 (ε)

]
ε=µF ∑

j
γj~vj (~r) · h̄(~p−~k), (G.6.95)

δn+
~p − δn+

~k
=
[
−∂εn0 (ε)

]
ε=µF ∑

i
γi~vi (~r) · h̄(~p−~k), (G.6.96)

δn−~p + δn−~k =
[
−∂εn0 (ε)

]
ε=µF ∑

j
γj~vj (~r) · h̄(~p +~k)

+
[
−∂εn0 (ε)

]
ε=µF ∑

j
2γjµj (~r) . (G.6.97)

Substituting Eqs. (G.6.92)-(G.6.97) into the collision integral (G.6.91), the explicit
form of the collision integral is split into three contributions: I

[
δn~k
]
= I+

[
δn~k
]
+

I0 [δn~k
]
+ I−

[
δn~k
]
, with

I+
[
δn~k
]
=
[
∂εn0 (ε)

]
ε=µF

h̄~k ·
{

γc

τ ∑
i

γi~vi (~r)

+ γsωs ∑
i

γi~vi (~r)×~̂z
}

, (G.6.98)

I0 [δn~k
]
=
[
∂εn0 (ε)

]
ε=µF

γc

τs,xy
∑

j
γjµj (~r) , (G.6.99)

I−
[
δn~k
]
=
[
∂εn0 (ε)

]
ε=µF

h̄~k ·
{

γc

τ̃ ∑
j

γj~vj (~r)

+ iγsωs ∑
j

γj~vj (~r)×~̂z
}

, (G.6.100)
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where i = (c, sv, v, s), j = (xo, yo, xz, yz) and we define other two kinds of relaxation
times to describe the collision of electrons:

1
τs,xy(k)

=
kni

4h̄2vF

[
4 |ts(k)|2

]
, (G.6.101)

1
τ̃(k)

=
kni

4h̄2vF

[
|tc(k)|2 + |ts(k)|2

]
, (G.6.102)

Notice that, in the presence of an in-plane magnetic field the term I0 [δn~k
]

in the
colission integral introduces an additional relaxation time, τs,xy(k).

In addition to spin (spin-valley) current, the in-plane magnetic field couples the
out-of-plane and in-plane components of the spin current, ~Jxo and ~Jyo (spin-valley
currents, ~Jxz and ~Jyz). Here we take the magnetic field to be parallel to the applied
electric field, i.e. ~H ‖ ~̂y, and thus the following generalized density N and current ~J
appear in our diffusion equations:

~J =

[
~J‖
~J⊥

]
,~J‖ =


~Jc

~Jsv

~Jxz

~Jyo

 ,~J⊥ =


~Jv

~Js

~Jxo

~Jyz

 , (G.6.103)

N =

[
N‖
N⊥

]
, N‖ =


Nc

Nsv

Nxz

Nyo

 , N⊥ =


Nv

Ns

Nxo

Nyz

 , (G.6.104)

where we have divided the longitudinal and transverse modes. Let us first focus on
the continuity equations. In the steady state, they read:

∂i J
µ
i = −(τ−1

sr )
µ
ν Nν + ω

µ
ν Nν, (G.6.105)

which is obtained by tracing the linearized QBE, i.e. taking gsgv
4 ∑~k eTr [γµ (QBE)]. In

the above expression

τ−1
sr =

[
τ−1

0 0
0 τ−1

0

]
, τ−1

0 =


0 0 0 0
0 0 0 0
0 0 τ−1

s,xy 0
0 0 0 τ−1

s,xy

 , (G.6.106)

ω =

[
ω0 0
0 ω0

]
, ω0 =


0 0 0 0
0 0 +ωL 0
0 −ωL 0 0
0 0 0 0

 . (G.6.107)

The matrix τ−1
sr describes the spin relaxation for spin polarized in the x-y plane. In

our microscopic model, sz is a good quantum number and there is no relaxation. The
second term describes the spin precession induced by an in-plane magnetic field in
y-axis direction. We parameterize the strength of the in-plane magnetic field H by
the Larmor frequency ωL = gµBH/h̄.

The constitutive relations for the generalized currents, Jµ
i is given by following

equations:

D∂iNµ − σDEµ
i =

[
−δ

µ
ν δij + τω

µ
ν δij + (RH)

µ
ν εij
]

Jν
j , (G.6.108)
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where

RH =

[
0 R0

H
R0

H 0

]
, R0

H =


ωvτ ωsτ 0 0
ωsτ ωvτ 0 0

0 0 ωvτ ωsτ
0 0 ωsτ ωvτ

 . (G.6.109)

For the sake of simplicity, we have assumed that the relaxation rates for all currents
are the same and equal to Drude relaxation time (τ̃ ' τ) (See expressions for τ̃ in
Eq. (G.6.102) for i = (xo, yo, xz, yz) and τ in Eq. (G.6.36) for i = (c, sv, v, s). Thus,
we take D = v2

Fτ/2 (σD = ne2τ/m) to be the same for all types of currents. These
assumptions can be relaxed, and will not alter our conclusions qualitatively. RH is
the coupling matrix that couples the different currents with each other due to the
local impurities and the strain pseudo-magnetic field.

Solving the constitutive equations (G.6.108) for the currents Jµ
i we obtain:

Jµ
i = −(Dij)

µ
ν ∂jNν + (σij)

µ
ν Eν

j . (G.6.110)

As pointed out in the main text, the diffusion matrix is a rank-2 tensor in the space
indices i, j = x, y, and therefore it can be split into a symmetric (∝ δij) and antisym-
metric (∝ εij) parts according to Dij = D0δij + DHεij where

D0 =

[
D0

0 0
0 D0

0

]
, D0

0 = Dr


ηc ηsv ηxz ηyo
ηsv ηc ηyo ηxz
ηxz ηyo ηc ηsv
ηyo ηxz ηsv ηc

 , (G.6.111)

DH =

[
0 D0

H
D0

H 0

]
, D0

H = Dr


θv θs θxo θyz
θs θv θyz θxo
θxo θyz θv θs
θyz θxo θs θv

 . (G.6.112)

Dr, ηµ, θµ are rather complicated functions of ωvτ, ωsτ and ωLτ, and are not given
here. Similarly, the conductivity matrix can be obtained by replacing the diffusion
constant D with the Drude conductivity σD.

In the presence of an in-plane magnetic field, the system response consists of
eight types of currents. Recall that the magnetic field acts only as a Zeeman term
that induces precession, and does not introduce a Lorentz force (i.e. ~FB

~k
= 0 in

Eq. (G.6.24), as mentioned above). Accounting (phenomenologically) for spin re-
laxation, the constitutive and continuity equations in the presence of the magnetic
field read:

Jµ
i = −(Dij)

µ
ν ∂jNν + (σij)

µ
ν Eν

j , (G.6.113)

∂i J
µ
i = − δ

µ
ν

τν
Nν + ω

µ
ν Nν, (G.6.114)

where

D0 =

[
D0

0 0
0 D0

0

]
, D0

0 = Dr


1 η 0 0
η 1 0 0
0 0 1 η
0 0 η 1

 , (G.6.115)
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FIGURE 7.3: (Color online) Nonlocal resistance Rnl(H), in the unit of
Rnl(0), are plotted against magnetic field H for different chemical po-
tential (a) µF = 0.15 eV and (b) µF = −0.10 eV. Drude conductivity
σD, Drude relaxation time τ and the scattering rate of spin, ωsτ, can
be obtained from the parameters of a microscopic scattering model
(Huang et al., 2016): impurity density nimp = 5.0× 1010cm−2, scalar
potential VD = 50 meV, SOC potential VS = 5 meV (Balakrishnan
et al., 2014), defect size R = 20 nm, and associated momentum cutoff
kc = 2/R. On the other hand, fairly modest strain can sustain a large
valley Hall effect (Zhang, Huang, and Cazalilla, 2017), ωvτ(& 1).
ωvτ = 1 can be induced by applying along the y direction an av-
erage (uniaxial) strain of 2%. Parameters: `s = 0.53µm, `v = 0.53µm,

w = 0.50µm, x = 2.00µm and y = 0.25µm.

DH =

[
0 D0

H
D0

H 0

]
, D0

H = Dr


θv θs 0 0
θs θv 0 0
0 0 θv θs
0 0 θs θv

 . (G.6.116)

Substituting continuity equations (G.6.114) into the divergence of constitutive equa-
tions (G.6.113), the diffusion equations away from the boundaries take again a form
similar to Eq. (G.6.55),

∂2
i Nµ −Mµ

ν Nν = 0. (G.6.117)

However, this time the diffusion matrix is 4× 4 in order to accommodate the addi-
tional response modes introduced by the precession term:

M'


`−2

v −η`−2
s +η`−2

L 0
−η`−2

v `−2
s −`−2

L 0
0 +`−2

L `−2
s −η`−2

v
0 −η`−2

L −η`−2
s `−2

v

 . (G.6.118)

The eigenvalues of the above diffusion matrix are

Eη
± =

`−2
v + `−2

s ∓ i`−2
L

2
+

η

2

√
∆±. (G.6.119)

with
∆± =

(
`−2

v − `−2
s ± i`−2

L
)2

+ 4η2
zz`
−2
v
(
`−2

s ∓ i`−2
L
)

. (G.6.120)
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Hence, following the same procedure to find the solution as in the case with H = 0,
we arrive at the following result for the NLR:

Rnl(x, H)

Rxx
=

1
π

∫ ∞

−∞
dk

eikx

k
tanh (kw/2)

1 + ∑b Θ2
bFb (k)

, (G.6.121)

where we sum over four transverse eigenmodes {v, s, xo, yz} in the denominator of
the above integral. The above equation is the basis of the analysis about the suppres-
sion of the Hanle effect described in the main text.

FIGURE 7.3 shows the NLR, Rnl(x, H) normalized to its value at zero in-plane
magnetic field, Rnl(x, H = 0) versus H, for different chemical potentials [(a) µF =
0.15 eV and (b) µF = −0.10 eV]. As noticed in the main text, by setting ωvτ = 0,
the result of Abanin et al., 2009 is recovered. In this case, the diffusion lengths of the
(spin) eigenmodes, `s± = (`−2

s ± i`−2
L )−1/2 become complex (with imaginary part

`−2
L ∝ H), which leads to the development of an oscillatory component in the NLR

(Hanle effect). Upon increasing the amount of nonuniform strain, we find that the
oscillating part of the NLR is suppressed and even disappears for strains of the order
of ∼ 1%. This shows that our result concerning the suppression of the Hanle effect
for nonuniform strain of the order of a few percents maximum is robust against the
change of the carrier density and sign.
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Chapter 8

Summary and outlook

This thesis addresses transport phenomena related to the spin- and valley-dependent
transport in 2D Dirac materials and hybrid systems. Experimentalists and theorists
have paid the detection of neutral currents, and the demonstration of Hall effects
much attention in condensate mater physics due to their promising applications in
spintronics and valleytronics. In this thesis, I investigate these effects using spin
Hall magnetoresistance (SMR) and nonlocal resistance (NLR) in Part I and Part II,
respectively. Besides, I have a chapter to study the nonlocal magnetization (NLM) in
nanowires (NWs) and films proximity to both superconductors (SCs) and magnetic
insulators (MIs).

Part I. Spin transport in normal metal/magnetic insulator heterostructures

In Part I of this thesis, I concentrate on the spin transport in normal metal/magnetic
insulator (NM/MI) heterostructures. The modulation of the magnetoresistance with
respect to the direction of the applied magnetic field can demonstrate the existence
of the spin Hall effect (SHE). Replacing the NM by the NWs and films in proxim-
ity to SCs, I also study the NLM induced by the interplay of superconducting and
magnetic proximity effects.

• In Chapter 2, I present a theory of the SMR effect from a microscopic perspec-
tive. In subsection 2.2.2, SMR relates to the microscopic processes of spin relax-
ation at the NM/MI interface. Our theory covers a wide range of MIs and can
be used to investigate the effect of a magnetic field and temperature on MR in
NM/MI Hall-bar setups and beyond. In subsection 2.3.2, we find a non-local
interplay between SMR and HMR, which gives rise to a negative linear-in-
magnetic-field MR. Our theory provides a useful tool for understanding trans-
port experiments. The combination of our model with experimental data has
the potential to evolve into a complete technique to reveal the interfacial mag-
netic properties of MIs by standard transport measurements.

• In Chapter 3, we explore the SMR in Platinum (Pt) on a paramagnetic insula-
tor Gd3Ga5O12 (GGG). The observed SMR with GGG will open a new research
direction of spintronics with 4f electron systems in rare-earth compounds, Gd.
We clarify the quantitative values of the microscopic spin parameters at the
interface to GGG in section 3.3, which gives a useful piece of information for
simulating spintronic functions with realistic conditions and accelerating ma-
terial science.

• In Chapter 4, we investigate the SMR in a Platinum/Europium sulfide (Pt /
EuS) bilayer, where EuS is a pure ferromagnetic insulator below 25 K. The
SMR is observed by the measurements of angular and field dependencies of
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magnetoresistance in subsection 4.3.1, in which the magnetization reversal of
EuS is observed. Furthermore, we also measure the anomalous-Hall-effect-like
contribution of the SMR in subsection 4.3.2, driven by a large imaginary part
of the spin-mixing conductance. We can extract microscopic parameters such
as the exchange interaction between the 1s electrons of Pt and the 4f electrons
of Eu (Js f ∼ 3−4 meV). We study the temperature dependence of the spin con-
ductance of the Pt / EuS interface in subsection 4.3.3, showing for the first time
experimentally a larger field-like torque (Gi) than spin-transfer torque (Gr) in
an HM/MI interface. The effective exchange field associated with Gi is ex-
pected to be ∼ 1 meV. Therefore, SMR measurements offer a simple way to
quantify effective fields, which are of interest in different areas, such as super-
conducting applications.

• In Chapter 5, I predict the appearance of a NLM, MNL in a NW (or film) when
proximitized to SCs and a ferromagnetic insulator (FI). In section 5.2, I show
this magnetization appears as a consequence of the interplay between the su-
perconducting correlations induced in the NW (or film) and the exchange field
localized at the FI/NW interface. As explained in section 5.3, the sign of MNL is
opposite to the local Pauli spin polarization right at the FI/NW interface, and
its value can be controlled by the phase difference between superconducting
electrodes in a Josephson junction setup.

Part II Spin and valley Hall effects in two dimensional Dirac materials

In Part II of this thesis, we have investigated the spin- and valley-dependent
transport in 2D Dirac materials with sizable spin-orbit coupling (SOC) and valley-
orbit coupling (VOC). The long spin and valley diffusion lengths make it possible to
indirectly detect the spin and valley Hall effects through NLR in Hall bar devices.

• In Chapter 6, I develop a theory of the strain-induced classical valley Hall effect
(VHE). Specifically, using the quantum Boltzmann equation, we have provided
a microscopic derivation of the equations governing the diffusion of valley po-
larization in section 6.4. The latter has been solved for a Hall bar device ge-
ometry, subject to nonuniform strain leading to the uniform pseudo-magnetic
field. The observable NLR of the device has been obtained in section 6.5. I find
that for low doping, the figure of merit of the VHE, namely the valley Hall
angle, can be of order unity even at room temperature. We demonstrate that
the NLR of the device decays exponentially.

• In chapter 7, I explore several important consequences of the coexistence of
SHE and VHE in a two-dimensional material. I have shown the latter leads
to the emergence of neutral longitudinal spin and valley polarized current in
section 7.2. Furthermore, I have shown the spin polarization diffusing in the
material can be controlled utilizing non-uniform strain in section 7.3. Finally,
I have shown the Hanle effect in response to an in-plane magnetic field can
be strongly suppressed due to the competition of the two effects in section
7.4. I believe the suppression of the Hanle effect noticed here will shed light
on experimental controversies concerning the origin of enhancing the NLR in
various types of graphene devices. The theory presented here can also be ex-
tended in various other directions, such as accounting for other spin-charge
conversion mechanisms beyond the SHE (such as the inverse spin-galvanic
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effect) and a weak spin-valley (Zeeman) coupling, which is present in hy-
brid graphene/transition-metal dichalcogenides structures. Both effects are
expected to be important when spatial inversion symmetry is broken.

I foresee several interesting further research on the topics addressed in this thesis.
For example, the SMR theory developed in Chapter 2 can be extended to other mag-
netic orders. Indeed, we are at the moment collaborating with experimental groups
studying the SMR in Pt/MnO, which presumably has an antiferromagnetic order-
ing. A further perspective of this theory is extending it to study the magnetoresis-
tance effect of magnetized metal or magnet. The magnetic and thermal properties of
those can arise from the field and temperature dependence of spin diffusion length
and effective Larmor frequency. One may also include new origins of interfacial
spin-dependent scattering, for instance, Dzyaloshinskii-Moriya (Caretta et al., 2020;
Xia et al., 2020), Elliott-Yafet (Elliott, 1954; Yafet, 1963), Dyakonov-Perel (D’yakonov
and Perel, 1971; Dyakonov and Perel, 1972), and Bir-Aronov-Pikus (Bir, Aronov,
and Pikus, 1975) interaction. The results in Chapter 5 on the nonlocal magnetiza-
tion induced by the interplay of superconducting and magnetic proximity effects
can be extended to study the superconducting phase-coherent control of the qubit
frequency in proximitized quantum dot.

Regarding the topics of Part II, I foresee interesting physics from the interplay
of the intrinsic and extrinsic SOC, the VOC from strain and substrate, with mag-
netic and superconducting proximity effects stemming from magnets and supercon-
ductors attached to the 2D material. The interplay of magnet and strain leads to
the emergence of the spin-valley Hall effect. Second, we explore the coexistence of
quantum SHE and VHE in graphene, arising from Berry curvature from Kane-Mele
SOC and the global energy difference between A and B sublattices (σz), respective.
We can predict the existence of quantum spin-valley Hall effect from the interplay
of quantum SHE and VHE. The emergence of classical spin Hall effect induced by
the local Kane-Mele SOC reveals the possibility of extrinsic ordinary and valley Hall
effects from the local τzσz and σz coupling. Fourth, the SHE generated by the spa-
tially homogeneous Rashba and Dresselhaus SOC leads to the natural guess about
the VHE from the uniform strain. Finally, the quantum SHE from spatially homo-
geneous Kane-Mele SOC indicates the possibility of quantum spin-valley Hall effect
form spatially homogeneous szσz coupling. The interplay of spin and valley trans-
port will be bound to integrate the spintronics and valleytronics. The methodology
developed in this thesis may serve to address all these exciting problems.
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