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Abstract

The topics of this dissertation are framed in the area of geometric group theory, that is the
study of finitely generated groups through the exploration of its geometric and topological aspects.
More precisely, we focus on a class of groups called hierarchically hyperbolic groups. Hierarchical
hyperbolicity is a very recent but powerful notion whose goal is to provide a unifying framework to
study large classes of groups having features reminiscent of non-positive and negative curvature.
We include an introduction to this class of groups in the first chapter.

The first original results of this thesis appear in Chapter [2] where a number of structural results on
hierarchically hyperbolic spaces are proved. In addition, two notions are presented here: the inter-
section property and concreteness. These key conditions are used in numerous places throughout
the rest of the thesis and are crucial for understanding the main results that follow.

The first main contribution of the thesis is the establishing of a combination theorem for the class
of hierarchically hyperbolic groups. We usually refer to a result as a combination theorem on a
class of groups C if it provides an answer to the following question: Let G be a group acting on
a simplicial tree T with vertex and edge stabilizers in C, under what conditions can we conclude
that the group G is itself in C? In our case, the conditions that we identified are the intersection
property and clean containers. As an application of this theorem we obtain that graph products of
hierarchically hyperbolic groups with the intersection property and clean containers are themselves
hierarchically hyperbolic.

In the last chapter of the thesis we focus on the class of groups that act on a simplicial tree such
that the vertex stabilizers are hyperbolic and edge stabilizers are virtually cyclic. We call this
class hyperbolic-2-decomposable groups. We obtain a characterization of groups of this type that
allows us to provide a hierarchical hyperbolic structure on them. More precisely, we obtain that
a hyperbolic-2-decomposable group is hierarchically hyperbolic if and only if it is balanced. Even
more, we show that this is equivalent to the group itself not containing non-euclidean Baumslag-
Solitar subgroups. As an immediate corollary we obtain that free products with amalgamation of

hyperbolic groups over virtually cyclic groups are hierarchically hyperbolic.
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Resumen

Los temas de esta tesis se enmarcan en el area de la teoria geométrica de grupos, que es el estudio de
grupos finitamente generados a través de la exploracién de sus aspectos geométricos y topoldgicos.
Maés precisamente, nos centramos en una clase de grupos denominados grupos jerarquicamente
hiperbdlicos. La hiperbolicidad jerarquica es una nocién muy reciente pero poderosa cuyo objetivo
es proporcionar un marco unificador para estudiar grandes clases de grupos que tienen carac-
teristicas similares a curvatura negativa y no positiva. Incluimos una introduccion a ésta clase de
grupos en el primer capitulo.

Los primeros resultados originales de esta tesis aparecen en el capitulo [2, donde se prueban una
serie de resultados estructurales sobre espacios jerfquicamente hiperbolicos. Se presentan, ademas,
dos nociones: intersection property y concreteness. Estas condiciones se utilizan en varios lugares
a lo largo del resto de la tesis y son cruciales para comprender los principales resultados que siguen.
La primera contribucin principal de la tesis es el establecimiento de un teorema de combinacién
para la clase de grupos jerarquicamente hiperbdlicos. Por lo general, nos referimos a un resultado
como un teorema de combinacién en una clase de grupos C si responde a la siguiente pregunta:
Sea G un grupo que actia sobre un arbol simplicial T' cuyos estabilizadores de vértices y aristas
pertenecen a C, bajo qué condiciones podemos concluir que el grupo G estd en C? En nuestro caso,
las condiciones que identificamos son intersection property y clean containers. Como aplicacion de
este teorema obtenemos que los productos bajo grafos de grupos jerarquicamente hiperbdlicos con
intersection property y clean containers son en si mismos jerarquicamente hiperbélicos.

En el dltimo capitulo de la tesis nos centramos en la clase de grupos que actiian sobre un arbol
simplicial de manera que los estabilizadores de aristas son virtualmente ciclicos. Llamamos a
esta clase grupos hyperbolic-2-decomposable. El principal resultado de éste 1ltimo capitulo es
una caracterizacién de grupos de este tipo que nos permiten aportar una estructura hiperbdlica
jerarquica sobre ellos. Més precisamente, obtenemos que un grupo hyperbolic-2-decomposable es
jerarquicamente hiperbdlico si y solo si es equilibrado. Ain méas, mostramos que esto es equivalente
a que el grupo en si no contenga subgrupos de tipo Baumslag-Solitar no equilibrados. Como
corolario inmediato obtenemos que los productos libres amalgamados de grupos hiperbdlicos sobre

grupos virtualmente ciclicos son jerarquicamente hiperbédlicos.
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Introduction

Hierarchically hyperbolic spaces and groups (HHSs and HHGs) were introduced by Behrstock,
Hagen and Sisto in a series of papers [12,/14]. This is a broad class that includes an impressive
amount of spaces and groups naturally occurring from geometric considerations. Mapping class
group of surfaces; CAT(0)-cube complexes; Teichmuller space with the Teichmuller and Weil-
Petersson metric and fundamental groups of 3-manifolds with no Nil nor Sol component are among
the most famous objects admitting a hierarchical hyperbolic structure.

Several generalizations of hyperbolic groups have been introduced over the years to describe groups
of geometric origin that exhibit some notion of negative curvature. Relative hyperbolicity (|22}
37]) recovers fundamental groups of 3-manifolds with cusps, whereas mapping class groups are
examples of acylindrically hyperbolic groups [69], and raags (that is right-angled Artin groups) are
among the groups acting properly and cocompactly on CAT(0) cube complexes, that is cubulable
groups [761/91]. Moreover, mapping class groups are not relatively hyperbolic (unless they are
already hyperbolic 8, Theorem 1.2]). The notion of hierarchical hyperbolicity emerges as a class
that generalizes hyperbolicity, engulfs many of the above mentioned groups and also maintains
many of their algebraic features.

Being a hierarchically hyperbolic group presents a wide range of both algebraic and geometric
consequences. Some of these are a quadratic isoperimetric inequality; finite asymptotic dimension;
a version of the Tits alternative; rank ridigity theorems and a controlled way in which quasi-flats
are distributed in the group.

The key insight to define hierarchically hyperbolic groups is the axiomatization of the Masur-
Minsky machinery developed for mapping class groups for general groups. Efforts in this direction
are not a novelty in certain classes of groups. For instance, in [80] the author presents a way of
characterizing relative hyperbolicity in terms of projections similar to that of subsurface projections
in the curve graph and develops a distance formula. Moreover, in [46], the author introduces the
contact graph for cubical groups, an analog of the contact graph for cube complexes.

A hierarchical hyperbolic structure on a geodesic metric space X is composed of the following data:
1. An index set &;
2. a collection of §-hyperbolic spaces;
3. a collection of projections {my : X - CV}yes.

This data must satisfy a set of axioms. The full definition is included in Section [1.6
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Organization of the thesis

This thesis is divided into four chapters. Chapter [1]is expository and recollects basic concepts on
coarse geometry and geometry of groups. The main topics included in this chapter are hyperbolic
groups (Section , Bass-Serre theory (Section , and relatively hyperbolic groups (Section
. We also give an introduction to the definition of hierarchically hyperbolic spaces and groups
(Section, which are the main object of study throughout the rest of the work. The final section
of this first chapter (Section deals with examples of hierarchically hyperbolic groups, and is
intended as an introduction and motivation for the original work that is presented in this thesis.
The reader that is well-versed in hierarchical hyperbolicity may wish to start the reading of the
thesis in this section. The remaining chapters comprise the original contributions of the author,
with Chapters [2| and [3| being part of a joint work with Federico Berlai ([15]) and Chapter |4 part
of a joint work with Davide Spriano ([71]).

Chapter [2] concentrates on structural properties of hierarchically hyperbolic spaces and hieromor-
phisms (i.e morphisms in the class of HHGs). We introduce the notions of intersection property, of
e-support, and of concreteness of a hierarchically hyperbolic space (see Definition Definition
and Deﬁnition. All of these will be necessary for Chapter The main theorem of this
chapter is Theorem [2:2.T] which is then used in the proofs of Theorem [2:3.3|and Lemma[2:3:4] These
results will be applied repeatedly in Chapter [3] which is devoted to the proof of Theorem [3.0.1

Chapter [3| we present and prove a combination theorem on hierarchically hyperbolic spaces (The-
orem . Section is concerned with trees of hierarchically hyperbolic spaces, which is an
extension of the notion of trees of spaces to the class of HHSs. In Subsection we introduce a
trick, which we call the decoration of a tree of hierarchically hyperbolic spaces T, which is funda-
mental for our approach to prove Theorem [3.0.1} To a tree of HHSs 7 we associate a total space
X(T) that, in Section we prove that can be endowed with a hierarchical hyperbolic structure.
Section [3.3]is concerned with two applications of Theorem The first one, Corollary is
a combination theorem for hierarchically hyperbolic groups. As a byproduct of Theorem we
extend the results of [2] to show that clean containers are not only preserved by taking free and

direct products, but also by graph products.

Chapter [ is devoted to the application of the combination theorem developed in the previous
chapter to groups that split as graphs of groups with hyperbolic vertex groups and 2-ended edge
subgroups. To abbreviate, if P is a property of a group, we say that a group is P-2-decomposable
if it splits as a graph of groups with 2-ended edge groups and vertex groups satisfying property
P. The main result of this chapter is that a hyperbolic-2-decomposable group has a hierarchical
hyperbolic structure if and only if it is balanced (Corollary. If the group is further assumed
to be virtually torsion-free, we obtain that a hyperbolic-2-decomposable group is hierarchically
hyperbolic if and only if contains no non-euclidean Baumslag-Solitar subgroup (Corollar.
In Section [4.1] we introduce the notion of linear parametrization (Definition[4.1.11]) on (2-ended)-2-
decomposable groups and use this to prove the main result of this chapter for that class (Theorems
[4.1.25| and [4.1.24)). In Section we prove Theorem which allows us to extend the results
developed in Section to the more general class of hyperbolic-2-decomposable groups.




Chapter 1

Preliminaries

This chapter is meant as an introduction to the main aspects of geometric group theory, aimed at
presenting hierarchically hyperbolic spaces and groups and how they fit into the area. We begin
by recalling the basic definitions and objects that will appear throughout the section.

1.1 Geometry of groups

Definition 1.1.1. Let G be a group and let X be a metric space such that G acts on X by

isometries. We say that the action is
1. properly discontinuous if for all compact K € X,|{ge G | gK n K # @}| < 0.
2. cocompact if X /G is compact in the quotient topology.

3. The metric space X is proper if closed balls are compact.

We often use the abbreviation of geometric action to refer to a properly discontinuous and cocom-
pact action of G on X. From now on, when we say that a group G acts on a metric space X we

assume that the action is by isometries, unless otherwise stated.

Definition 1.1.2 (Cayley graph). If G is a group generated by a finite set S = {s1,...,8,} we
associate a graph X to the pair (G, S) where the underlying vertex set is G and two elements g, h
are at distance one in X if and only if g~'h belongs in S. This graph X is known as the Cayley
graph of G with respect to S.

Associating a Cayley graph to a finitely generated group can be viewed as a process that converts
groups to metric spaces. Further, it is straightforward to check that a finitely generated group acts
geometrically on any of its Cayley graphs. We use X = Cay(G, S) to denote the Cayley graph of
a group with respect to a generating set S.

A crucial observation says that the large-scale structure of a Cayley graph does not depend on the

choice of generating set. This observation is usually referred to as the Milnor-Svarc lemma:
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Lemma 1.1.3 (Milnor-Svarc lemma). Let X' be a proper geodesic metric space. Let G act
properly and cocompactly on X. Then G is finitely generated by a set S and, for any xo € X, the
map Cay(G,S) — X that sends g to g - xo is a quasi-isometry.

Definition 1.1.4. A map ¢ between metric spaces X,Y is a quasi-isometry if there exist constants

K > 1 and C > 0 such that the following are satisfied:
L K™ tdx(2,y) — C < dy(8(2),6(y)) < Kdx(z,y) + C,  Va,yeX;
2. Y € Ne(o(X)) (i.e ¢ is coarsely surjective).

If the map ¢ only satisfies the first condition, then we say that ¢ is a quasi-isometric embedding
of X into Y. We say that ¢ is a coarse-Lipschitz map if only the second inequality of the first

condition is satisfied.
To shorten many of the proofs in this work, we adopt the following notation:

Notation. For real-valued functions A and B, we write A =g ¢) B if there exist constants C' and
K such that
K™ 'B(z) - C < A(z) < KB(z) +C

for all z in the domain of the functions. With A =< B we intend that there exist real numbers C

and K such that A = ¢) B.

Lemma 1.1.5. Composition of quasi-isometric embeddings (resp. quasi-isometries) is a quasi-

isometric embedding (resp. quasi-isometry).

Lemma 1.1.6. If ¢ : X — Y is a quasi-isometry, then there exists a quasi-isometry ¢ : Y — X

and C = 0 such that ¢ o ¢(x) < C and ¢ o ¢(y) < C for everyre X,yeY.

Notation. If ¢ : X — Y is a quasi-isometry we call quasi-inverse of ¢ to the function ¢ in the

previous lemma.

By Corollary [I.1.3] if G is a finitely generated group and S, S’ are finite generating sets, then there
exists a quasi-isometry Cay(G,S) — Cay(G,S’). In other words, every finitely generated group is
a metric space, well-defined up to quasi-isometry. We say that a homomorphism G — H between
finitely presented groups is a quasi-isometry if for some (any) generating sets Sg, Sy of G and H

respectively the induced map Cay(G, Sg) — Cay(H, Sg) is a quasi-isometry.

Examples/Properties 1.1.7. 1. Let f : G — H be a homomorphism between finitely pre-
sented groups. Then, f is a quasi-isometry if and only if |Ker(f)| < o0 and |H : Im(f)| < o

2. If G is a finitely generated group and H is a finite index subgroup of G (noted H <;; G)

then G and H are quasi-isometric.
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1.2 Hyperbolic groups

While the connection between geometric and algebraic properties in groups is already present in
the work of Stallings, Wall and Serre [77,[85,/89] (amont others) , geometric group theory as a
separate field is usually traced back to the introduction of hyperbolic groups by M. Gromov in his
seminal work [44]. In there, the author identifies a robust conditions that encapsules the idea of a
finitely generated group having negative curvature, baptizing them as hyperbolic groups.

A remarkable feature of hyperbolic groups is that they are defined purely in terms of the geometry
of the associated Cayley graph and, at the same time, forms an extremely rich class of groups,
with strong algebraic and geometric consequences. In [44], Gromov showed that hyperbolicity is
preserved under quasi-isometries and asked to what extent can the characteristics of a group be
recovered from the large-scale geometry of its Cayley graph. More precisely: what properties of
infinite, finitely generated groups are preserved under quasi-isometries? Such properties are usually

referred to as geometric.

We recall that if X is a geodesic metric space and x1, 2 and x3 are elements in X, we can form a
triangle joining x; to x; via geodesics in X. We call the resulting triangle a geodesic triangle and

denote it by A(z1, z2, x3).

Definition 1.2.1 (6-Slim triangle). If X
is a geodesic metric space and x1, 3 and x3
are elements in X we say that the geodesic

triangle A(z1, 22, 23) is 6-slim if

[2i, 2] = Ns([i, 2x]) v Ns([2g, 7;])

for all ¢,j and k in {1, 2, 3}.

Ns([z2, z3])

Definition 1.2.2. Let X be a geodesic metric space and let § > 0. We say that X is é-hyperbolic

if for every geodesic triangle A in X the d-slim triangle condition of Definition [1.2.1]is satisfied.

Definition 1.2.3 (Hyperbolic group). Let G be a finitely generated group and let § > 0.
We say that G is d-hyperbolic if there exists a generating set S of G such that every triangle in
Cay(G, S) is 6-slim. A group G is hyperbolic if it is d-hyperbolic for some ¢ = 0.

The constant § is called the hyperbolicity constant. Note that it is not unique, as any constant ¢’
larger than ¢ also works.

We now include some examples and properties of hyperbolic spaces and groups:

Examples/Properties 1.2.4. 1. Metric spaces of bounded diameter are hyperbolic;

2. the hyperbolic plane H? is a d-hyperbolic space (where § = log(1 + v/2));
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3. recall that if S is a connected, compact surface without boundary then the universal cover
of S is isometric to H2. Then, the action of 71(S) on H? by deck transformations is proper

and cocompact. This shows that 71(S5) is a hyperbolic group;

4. if Fy, is a free group of finite rank then X = Cay(Fy) is a tree. That is to say, X is 0-
hyperbolic. This shows that Fj is a hyperbolic group;

5. a group is hyperbolic if and only if it contains a hyperbolic subgroup of finite index;

Proposition 1.2.5. Let X,Y be metric spaces and q : X — 'Y be a (K, C)-quasi-isometry. Then
X is dx -hyperbolic if and only if Y is dy -hyperbolic. Moreover, §y depends on §x, K and C.

Proof. See |26] for a detailed proof. O

The most basic examples of non-hyperbolic groups are free abelian groups of finite rank: that is
to say Z" with n > 1. Indeed, it is an elementary exercise in any geometric group theory course
to convince oneself that for any prescribed § > 0, no triangle in Cay(Z",S) can be é-slim, where
S={e1,...,ep}and e; = (0,..., 1 ,---,0). A more general result holds:

K3
Lemma 1.2.6. 30, Corollary 6.6] Let G be a hyperbolic group and g € G an infinite order element.
If he G is such that hg"h~' = g™ for some n,m # 0 then h has finite order.

In particular, a hyperbolic group cannot contain Z2? as a subgroup. This is one of the main
obstructions to hyperbolicity in a group. A direct consequence of this fact is that the direct

product of two groups G x H is hyperbolic if and only if G, H are finite.

To end the subsection, we now state a few of the main properties of hyperbolicity. If a group G is

hyperbolic, then:
1. G is virtually solvable or it contains a non-abelian free group (Tits alternative);
2. G has a solvable word, conjugacy and isomorphism problem:;
3. G is finitely presented;

4. @ satisfies a linear isoperimetric inequality.

1.2.1 Quasiconvexity
We recall the notion of quasiconvexity on metric spaces:
Definition 1.2.7 (Quasiconvex subspace). A subspace ) of a geodesic metric space X is

quasiconvez if there exists K such that, for all y;,y2 € Y and for all z € [y;,y2] we have that

d(z,Y) < K.
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In other words, geodesics joining elements of ) stay K-close to ).
The importance of quasiconexity in hyperbolic groups is twofold: Firstly, a quasiconvex subspace
of a hyperbolic space is again hyperbolic. Secondly, quasiconvexity describes which subgroups of

a finitely generated group are undistorted (i.e quasiisometrically embedded).
Theorem 1.2.8. Let G be a hyperbolic group and let H < G be a finitely generated subgroup.

1. If Cay(H,S) is quasiconvez in Cay(G, S) for some generating set S of G then Cay(H,S’) is
quasiconvez in Cay(G,S’) for any generating set S" of G.

2. H < G is quasiconvex if and only if it is quasi-isometrically embedded.
Proposition 1.2.9. A quasiconvex subgroup of a hyperbolic group is hyperbolic.

Lemma 1.2.10 (Closest-point projection). Let Y be a quasiconvex subspace of a hyperbolic
space X and let py be the function that assigns to each x € X the closest point y in'Y to x. This

map is well-defined up to a uniformly bounded constant.

1.3 Graph of groups and Bass-Serre Theory
In this section we recollect basic definitions and results on graph of groups and Bass-Serre theory.

Definition 1.3.1. A graph T consists of sets V(I"), E(T") and maps

ET) - V() x V(I); ET) — E()
e (eT,e7) e— €
satisfying € =e, €2 eand e” =e™.

The elements of V(T') are called vertices, the ones of E(T") are called edges, the vertex e™ is the
source of e, et is the target and € is the reverse edge. A graph T is finite if both V(T'), E(T') are
finite sets. A subgraph of T' is a graph I" such that V(I') < V(T') and E(IV) < E(I"). Given a
graph T, it is standard to associate to it a A—complex |['|. We say that T is connected if |T'| is.
We say that a graph T is a ¢ree if |['| is simply connected. We say that a subgraph T of T is a
spanning tree it V(T) = V(') and T is a tree.

Definition 1.3.2. A graph of group G consists of a finite graph T, a collection of groups {G, | v €
V(I)}, {Ge | e € E(T')} and injective homorphisms ¢+ : G. — G+ such that

1. Ge = Gé;

2. ¢e+ = (bé*-

We will often use the notation V(G) to denote V(T') and similarly for E(G).
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Definition 1.3.3. Let G = (I, {G,}, {Ge}, {®.+ }) be a graph of groups. We define the group FG

o= ( x o)« (5 w).
veV (D) ecE(I)

Let T be a spanning tree of I'. Then the fundamental group of G with respect to T', denoted by

as:

m1(G,T), is the group obtained adding the following relations to FG:

1.t =t

2. te=1ifee E(T);
3. totesr (2)t;1 = ¢ (z) for all z € GL.

Remark 1.3.4. The group m1(G,T) does not depend on the choice of the spanning tree, meaning
that for different spanning trees T, T’ there is an isomorphism m(G,T) — m1(G,T"). For this
reason, we will often denote 71 (G, T) simply by 71(G) (see, for instance |19, Corollary 16.7]).

Unless otherwise specified, we will represent the elements of 71 (G) in the alphabet Uuev(g) Gy U
UeeE(g)<t€>' That is, we write each element g € m(G) as g = w1 ...z, where either z; € G,
for some v, or z; = tI" for some e € E(G). Moreover, we will assume that if 1 # z; € G,, then
xiy1 ¢ Gy, and similarly if 1 # x; € (t.), then t;11 ¢ {t.). Note that this is not a restrictive
assumption as if z;,z;,1 € G,, then we replace them by the element 2’ = z;z;,1 € G,, and
similarly for (t.). Finally, we will assume that if x; has the form ¢, then € > 0. Indeed, otherwise
substitute t$ with ¢Z°.

For many purposes it is convenient to choose a way to write elements of m1(G) that takes the

geometry of the graph in account.

Definition 1.3.5. A word w is written in path form if

€ €
w = gote; 91 - - -t gn,
where we require g; € G_- and g; € G_+, whenever defined, and go, g, € G, for some v. As a
i+1 [

consequence, eq, ..., e, form a closed path in I". We say that the path form is based at v.

Remark 1.3.6. Let u be any word in the alphabet | J Gy U {tc}eep(g)- Then it is always possible
to replace u with some p written in path form such that u and p represent the same element of
m1(G,T). Moreover, the loop of edges associated can be based at any vertex of G. Indeed, suppose
that the beginning of u is of the form ggg;, with go € G, g1 € G4,- Choose a path ey, ... ey, in T
between v and w. This is always possible since T is a spanning tree. Then replace the beginning
of w with gote, lte, . . .1te, g1, where 1 represents the trivial element. The case where one (or both)
of go, g1 were stable letters is analogous. Since we added only stable letters corresponding to edges

in the spanning tree, we did not change the group element represented. Proceeding in this way
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we obtain a word p’ written in path for that represents the same element of u. Suppose that the
loop associated to p’ is based at some vertex v, and we want to have a word based at some other
vertex w. Again, by considering a path ey, ..., e, connecting v and w in the spanning tree T', we

can conjugate p’ by t., 1t., ...t., to obtain the desired word p.

In particular, every element g € m1(G) can be written in path form.

Theorem 1.3.7 (Normal form). Let G be a graph of groups and let g = gotg} ...te" gn be written
in path form. Then if g =1 in m1(G), there is i such that e; = €41 and g; € ¢e,+ (Ge,).

Proof. This is a well known result. For a detailed proof see |19, Theorem 16.10]. O

Definition 1.3.8. Let G be a graph of groups. A path word g = got¢l ...tg" gn is written in
reduced form if for each i such that e; = €;1 it follows that g; ¢ (Z)T(te?)(Gei).

Corollary 1.3.9. For every g € m1(G,T) and v € V(G) it is possible to write g in a reduced form

based at the verter v.

A handy application of the normal form Theorem is the following.

Lemma 1.3.10. Let G be a graph of groups, let v,w € V(G) and x € G, — {1}, y € G, —{1}. Then
x,y are conjugate in w1 (G, T) if and only if there is a sequence of edges e1, ..., e, between v and
w and elements g; satisfying g; € G +,g9; € G- , whenever defined, such that:

53 “i41

(gotetgn ..t gn)z(goteigr ...t gn) " = y.

Moreover, for each g; we have ¢ - 1(Geprl) N gip+(Gey)gi t # {1}
it i

Proof. One implication is clear, we need to show the other. Suppose x,y are conjugate and let
h € m(G) be such that hzh~! = y. By Corollary there is a reduced path word u =

upteius ... tgmu, based at the vertex v that represents h. Choose a shortest path f1,..., fs

1

of T that connects w and v and let p = ty 1ts, ...t5,. Then we have (pu)z(pu)™' = y, where

1

both sides of the equations are path words based at w. If we multiply by y~", we have that

1

(pu)x(pu)~ty~! = 1, where both sides of the equation are path words. Spelling it out we have:

[t ttgs oty (woteun -tz ) | (ot ur e o) (105 ) |yt = 1

Up to exchange t. with tz we can assume that €; > 0 for all i.
By the normal form Theorem (Theorem [1.3.7)), in the left hand side of the equation there is a
subword of the form t.gts, with g € ¢.+(G.). Our goal is to perform reductions to assume that

every such occurrence contains the x. So, suppose this is not the case. Without loss of generality
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the subword must appear in [(ts,1tg, ...t5,) (uotéiuy ... t&" uy)]. Since u was assumed to be
reduced and fi,..., fs is a shortest path, the subword must be ¢f, uot}, where ug = ¢+ (z) for
some z € Gy,. Then replace ty upt;l by ¢ - (z), and perform the symmetric change on the other
side of the x. Note that this process reduces the length of the path f1,..., fs by one. In particular,
it has to terminate.

So, assume that no reduction can be performed in pu = [(ts,1tg, ... t5,) (uotuy .. . t&" um)|. If

pu = hg € G, and hence z,y € G, are conjugate in G,,, we are done. So suppose this is not the

1_ 4+

€m

case. We need to have that u,,zu,, (z) for some z € G.,,. Substitute t& umau, ;" with

€m "

tem Tt p, (2)tom* If €, > 1, add a path contained in the spanning tree and repeat the process

€m

using the normal form theorem again, until we obtain a reduction of the form

ten = 1 Zot gt
for some Zy € ¢, (Ge, ). Again, we must have u,—1Zou,,; € ¢+ (G, ,, that is to say,
m m—1
Umn—19,— (Ge, urt 1N e, (Ge, ) # {1}. Proceeding as above, we get the claim for each u;. [

Whenever we are working on a graph of groups, it is often the case that we are interested in

studying a subgraph of groups. For that we adopt the following notation.

Notation. Let G be a graph of groups and I' its underlying graph. If A < T' is a connected
subgraph, then we can define the subgraph of groups G|, where the underlying graph is A, every
vertex and edge in A has the same associated groups as in G and the maximal subtree of I is an
extension of the maximal subtree of A.

We call G| the subgraph of groups spanned by A.

Lemma 1.3.11. Let G be a graph of groups and let A S T be a subgraph. Let T = A be a spanning
tree of A such that T’ can be extended to the spanning tree T in I'. Then, there exists a group

ingection w1 (G|a, T") — m(G,T).

Remark 1.3.12. 1. If T consists of a single vertex v and a single edge e, then 71 (G) is isomor-

phic to the HNN extension G #4, .

2. If T consists of two vertices v, w and a single edge e joining them, then m1(G) is isomorphic

to the free product with amalgamation G, *¢, G-
3. Whenever T is a tree, we will call m1(G) a tree product.

Definition 1.3.13. We say that a group G splits non-trivially if there exists a graph of groups G
such that G = 7;(G) and such that G is not isomorphic to G, or G, for any v € V(T') and e € E(T").

We now recall the fundamental theorem relating splittings of a group with groups acting on trees.

This is also known as the fundamental Bass-Serre theorem.
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Theorem 1.3.14. Let G be a group that splits non-trivially as G = m1(G). Then, there exists
a tree T on which G acts without edge inversion such that the factor graph T/G is equal to T'g.
Moreover, the stabilizers of vertices and edges of this action are conjugate to vertex and edge groups

in G respectively.
Proof. See, for instance, [19, Theorem 12.1] and [19, Theorem 15.1]. O

Note that the tree T" depends on the splitting of the group G. Conversely, the splitting of a group

G is determined in terms of both the tree on which G acts and the action.

Definition 1.3.15. We call the tree T associated to a splitting G of G the Bass-Serre tree.

1.4 Relatively hyperbolic groups

As already stressed by Gromov, some natural groups of geometric origin do not fit into the hy-
perbolicity picture: Kleinian groups and fundamental groups of 3-manifolds with cusps are exam-
ples of this fact. He also noticed that even spaces which are not hyperbolic may present some
hyperbolic-like features in its geometry. More precisely, in [44], he describes a family of spaces
where the absence of hyperbolicity is restricted to an isolated finite collection of subgroups. In
a group theoretical language, these are groups where the Cayley graph is hyperbolic outside of a
finite collection of subgroups. These groups are known as relatively hyperbolic groups, a class that
generalizes hyperbolic groups.

Relative hyperbolicity was formally introduced independently by B. Farb and B. Bowditch in
[22,37]. Ever since, relatively hyperbolic groups has been extensively studied and shown to be an
extremely rich object to analyse from multiple points of view. To name a few, relatively hyperbolic
groups have been studied in relation with algorithmic properties ([68]); asymptotic cones ([34]);
and quasi-flats (|27]). Moreover, a characterization of relative hyperbolicity in terms of projections

has been developed in [80].

There are multiple definitions of relatively hyperbolic groups in the literature (see, for instance
[22,/37,/44]). In this chapter we include the one due to Bowditch in [22].

Definition 1.4.1. Let G be a finitely generated group and let Hy, Hs, ..., H; be a subgroup of
G. We say that G is hyperbolic relative to Hy, ..., H if G acts on a hyperbolic graph X with the

following conditions:
1. The number of orbits of edges is finite;
2. finite edge stabilizers;
3. vertex stabilizers are either finite or conjugate to some Hj;

4. the graph X is fine: for every n € N and any edge of X is contained in finitely many circuits

of length n. Here, by circuit we mean a cycle without self-intersection).
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Figure 1.1: Coned-off Cayley graph of G with respect to H.

We call a peripheral subgroup to each one of the subgroups H;.

Examples/Properties 1.4.2. 1. If Hy, Hy are hyperbolic groups and F' is a common finite
subgroup then G = Hy #p H is hyperbolic relative to {H1, H2}. Indeed, the action of G on

X the Bass-Serre tree corresponding to Hy = Ho satisfies the conditions of Definition [1.4.1}

2. The group Z? = {a, b | [a,b]) is weakly hyperbolic with respect to (a) but it is not hyperbolic
relative to it. Indeed, if that were the case, then (a) would stabilize a vertex v in X and {(a)"
would stabilize a vertex w joined by an edge to v. Thus, {a) n {(a)® = (a) would stabilize

that edge. This contradicts condition 2 of Definition [1.4.1

3. If G is hyperbolic relative to a subgroup H then H is almost malnormal in G (i.e |[HINH| < ®©
for every g € G\H).

4. Let G be hyperbolic relative to a subgroup H < G. If H is hyperbolic, then G is hyperbolic.

A useful construction when studying relative hyperbolicity is the coning-off of a group with re-
spect to a collection of subgroups. This will be particularly helpful when we consider the relative

hyperbolicity in terms of the associated Cayley graph itself instead of an abstract graph.

Definition 1.4.3. [Coned-off Cayley graph] Let G be a finitely generated group and let H be
a finitely generated subgroup of G. Fix a set of generators S of G. In the Cayley graph Cay(G, S)
add a vertex v(gH) for each left coset gH of H, and connect v(gH) with each x € gH by an edge of
length 1/2. The obtained graph C/a\y(G, S) is called a coned-off graph of G with respect to H. We
give this graph the path metric. We say that G is weakly hyperbolic relative to H if é-a\y(G, S) is
a d-hyperbolic metric space for some § as in Definition Note that C/a\y(G, S) is not a proper

metric space, as closed balls are not necessarily compact.
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Remark 1.4.4. It is easy to see that éa\y(G,S) is quasi-isometric to the graph obtained from
Cay(G, S) by collapsing each left coset of H to a point. However, the coned-off Cayley graph
C/a\y(G, S) with respect to H is quite different from the graph Cay(G, S)/H obtained from quoti-
enting the action of H on Cay(G,S). This is due to the difference between left and right cosets of
H in G. If H is normal in G then 6:1\}/'(67'7 S) and Cay(G, S)/H are quasi-isometric.

Lemma 1.4.5. If G is hyperbolic relative to a collection P then the hyperbolic graph X can be
taken to be the coned-off Cayley graph of G with respect to P.

Lastly, we include two results on relative hyperbolic groups that anticipate much of the following

chapter.

Lemma 1.4.6. [Projections/[34, Lemma 4.11] Let G be a group hyperbolic relative to a finite
collection of subgroups {Hq, ..., Hy}. If P is the set of left cosets of peripherals in G. For each

P € P the closest-point projection wp : G — P is a coarsely Lipschitz map.

Theorem 1.4.7. There exists sg so that for every s = sg there exists K,C so that for every
z,yeG

d(z,y) =(x.c) Z {d(mp(z), mp(y)}s + da(z,y).
PeP

1.5 Hierarchically hyperbolic spaces: introduction

Despite its success, relative hyperbolic groups are far from completing the picture of groups with
hyperbolic-like features. Perhaps the most well-known evidence of this fact are Mapping class
groups of surfaces. Indeed, it has been shown in [6}/8] that mapping class group of a surface of
complexity at least one can never be hyperbolic relative to any collection of finitely generated
subgroups. However, the powerful Masur-Minsky machinery ([63}/64]) developed for these groups
is a clear indicative of the manifestation of hyperbolicity in it. Therefore, one is brought to find a
set of properties that would generalize hyperbolicity, include mapping class groups, and still have
strong algebraic consequences for groups satisfying them.

These conditions have been identified by Behrstock, Hagen, and Sisto, who isolated the notions of
hierarchically hyperbolic spaces and of hierarchically hyperbolic groups |12,/14]. Again, the geometric
approach that is undertaken reflects into strong algebraic and asymptotic properties: hierarchically
hyperbolic groups are finitely presented |14, Corollary 7.5], they satisfy a quadratic isoperimetric
inequality [14, Corollary 7.5], they are coarse median 14, Theorem 7.3], and they have finite
asymptotic dimension [10].

The definition of hierarchically hyperbolic spaces is quite technical and lengthy. Thus, before we
present the full definition we would like to devote some space to properly motivate and introduce
every significant aspect of this class. The emphasis of this section is put on a heuristic approach
to the construction of hierarchical hyperbolic structures rather than a technical overview of the

theory. The experienced reader may wish to skip this section.
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1.5.1 Projections and coordinate system

A hierarchical hyperbolic structure on a geodesic metric space X consists of the following data:
1. A collection of d-hyperbolic spaces {CV'};
2. a set G that indexes the various hyperbolic spaces;
3. for every V € G, a (K, K)-coarsely Lipschitz map 7y : X — CV.

The set of indices along with the various hyperbolic spaces endow X with a coordinate system
that allows to investigate the geometric aspects of X by means of its projections. Following this
spirit, a hierarchically hyperbolic space can be roughly thought of as a metric space that can be
decomposed into building blocks that are hyperbolic metric spaces. The most basic example of a
space with this characteristics is R?, as it can clearly be decomposed as a direct product of two
infinite lines.

The defining structure of a hierarchically hyperbolic space also contains three relations that encode
how do various elements in the index set relate to each other. These are called nesting (denoted
by C); transversality (denoted by M) and orthogonality (denoted by L1). Each one of this relations
impose conditions in which the way the hyperbolic building blocks fit in X.

1.5.2 Constructing structures in main examples
Here we describe the hierarchical hyperbolic structure in different classes of groups.

Right-angled Artin groups Let I be a simplicial graph. We recall that the Right-angled Artin

group associated to I' is defined as the group given by the presentation
Ar = V(D) | [v,w] = 1 < {v,w} € E(T')).

The space Cay(Ar) can be endowed with a hierarchically hyperbolic structure as follows.

(Index set) Let Pr be the collection of all full subgraphs of I'. For each A € Pr we say that
two cosets gAa, hAy are parallel if [gh™!, Ap] = 1. Note that parallelism defines an equivalence
relation on the set of cosets of {Ax | A € Pr}. We use [gA] to denote the parallelism class of the
coset gAp for each A € Pp. We set the index set & to be {[gA] | A € Pr,g € Ar}.

(Hyperbolic spaces) To each [gA] € & we associate the hyperbolic space C[gA] defined as gAn,
where Ay is the Cayley graph of A with Sy = V(I') U {Ax < Ax | A’ < A} as generating set.

Theorem 1.5.1. [12] The space C[gAp] = gAa is quasi-isometric to a tree, in particular it is
hyperbolic.
(Projections) For each [gA] € & we associate the projection 7p : Ap — C[gA] as the composition

topp. Here, py denotes the closest-point projection onto gA, in the Cayley graph of Ar with the
standard generating set and ¢ is the inclusion Cay(Ax; V(A)) — Cay(Ap; Sa) -
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Graph of multicurves

We would now like to outline the hierarchical hyperbolic structure on a graph of multicurve. Let
us first recall some notions.

Let S = S, denote the connected, oriented surface of genus g with n punctures. The complex
of curves CS associated to S was originally introduced by Harvey [50]. It is defined as a complex

where the 1-skeleton is given by the following:

1. Vertices: There is one vertex for each isotopy class of essential simple closed curve in S.

2. Edges: There is an edge between pair of vertices in CS whenever the corresponding isotopy

class of curves can be realized disjointly.

We assume that every edge in C.S has length one, making it a metric space. This means that if «, 8
are curves in S such that deg([e], [5]) = n then there exist curves @ = ay,...,a, = f§ such that
[o;] and [e;11] can be realized disjointly for every . While the mapping class group of surfaces
are almost never hyperbolic, the following groundbreaking result by Masur and Minsky evidences

a connection between the mapping class group of a surface and negative curvature.

Theorem 1.5.2. [63] There exists & such that CS is §-hyperbolic, where & depends on S.

We now recall an important tool developed by Masur and Minsky. For any subsurface S’ of S
we define the subsurface projection map wg : CS — 205" as follows. Let a be a curve realized
in minimal position with dgS’( that is to say, the number of points in the intersection o n 05’ is
minimal in terms of isotopy). If « is contained in S’, we define 7g/ («) as a. If v is disjoint from S’,
we define g/ () as @. Otherwise, for each arc w of intersection of a with S, we take the boundary
component of a small regular neighbourhood of w U 955’ which are non-peripheral in S’. Then,
we set mgr(«r) as the union of these curves over all such w.

The above projection system can be extended to various types of so-called graphs of multicurves
in S. A graph of multicurves is defined as a graph associated to a surface where each vertex
corresponds to a collection of isotopy class of curves in S. This notion extends the one of curve
graph of a surface and, over the past decades it has attracted significant attention. In [88] the
author shows that a wide range of examples of curves of this type are hierarchical hyperbolic.

We now focus on the hierarchically hyperbolic structure on a specific graph of multicurves called
the pants decomposition graph, which we denote by G(S). Each vertex in G(S) corresponds to a
multicurve on S that defines a pant decomposition. Two vertices v, w in the pants decomposition
graph are joined by an edge if one of the curves «, in v can be replaced by a curve oy, in w.
(Index set) We define the index set & as the collection of isotopy classes of all possible subsurfaces
of S.

(Hyperbolic spaces) We associate to every S’ € & the curve graph CS’.

(Projections) For each S € & we associate the map 7g : G(S) — CS defined as the subsurface
projection described above.

For an explicit proof of the hierarchical hyperbolicity of many graphs of multicurves we refer to
[88].
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The two examples above illustrate one of the most remarkable features in the theory of hierarchi-
cally hyperbolic spaces: it is a class of spaces that engulfs various objects that seem to be inherently
different from a geometric viewpoint. For instance, a Cayley graph of a right-angled Artin group
is an example of a CAT(0)-cube complex, whereas the mapping class group of a surface is almost
never a CAT(0) metric space (|25/55])).

Groups hyperbolic relative to hierarchically hyperbolic groups

If G is a group which is hyperbolic relative to a collection of hierarchically hyperbolic groups
{(H;,6p,)}", then Cay(G) can be endowed with a hierarchically hyperbolic group structure.
For each i = 1...,n and each left coset of H; in G, fix a representative gH;. Let g&; be a copy of
GS;. Let G be the hyperbolic space obtained by coning-off G with respect to the peripherals {H;}.
(Index set) We define the index set as & = {G} U Lyes Ll S,

(Hyperbolic spaces) For each copy gV of an element V € Gy, we associate a copy of CV as
CgV.

(Projections) 74 : G — @ is the inclusion, which is coarsely surjective and hence has quasiconvex
image. For each U € G4y, let ggu,: G — gH; be the closest-point projection onto gH; and let
Wg = wgi oggH,, to extend the domain of 7y from gH; to G. Since each ﬂgi was coarsely Lipschitz
on CU with quasiconvex image, and the closest-point projection in G is uniformly coarsely Lipschitz

(Lemma [1.4.6)), the projection 7T[Cj is uniformly coarsely Lipschitz and has quasiconvex image.

1.6 Hierarchically hyperbolic spaces: full definition

The definition of Hierarchically hyperbolic spaces and groups can be found in [12] and [14]. Tt is
also worth mentioning that in [82] a very accessible and friendly introduction can be found.
We now present the definition of hierarchically hyperbolic spaces and groups in its full generality

and subsequently examine the various ingredients in detail.
Definition 1.6.1. A g-quasigeodesic metric space (X, dy) is hierarchically hyperbolic if there exist

d > 0, an index set &, and a set {CW | W € &} of §-hyperbolic spaces (CU,dy), such that the

following conditions are satisfied:

1. (Projections) There is a set {7y : X — 2°W | W € &} of projections that send points in X
to sets of diameter bounded by some £ > 0 in the hyperbolic spaces CW € &. Moreover, there
exists K so that all W € &, the coarse map 7y is (K, K)-coarsely lipschitz and Ww(X)E is

K-quasiconvex in CW.

2. (Nesting) The index set & is equipped with a partial order = called nesting, and either &
is empty or it contains a unique E-maximal element. When V & W, V is nested into W.
For each W € &, W £ W, and with Gy we denote the set of all V € & that are nested in
W. For all VW € & such that V = W there is a subset pl‘//V c CW with diameter at most &,
and a map p¥ : CW — 2¢V.

If Ac X, by my(A) we mean |, 4 mv(a).
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. (Orthogonality) The set & has a symmetric and antireflexive relation L called orthogonal-

ity. Whenever VE W and W L U, then V L U as well. For each Z € G and each U € &4
for which {V € &z | V L U} # (&, there exists cont?U € Gz\{Z} such that whenever V 1 U
and V E Z, then V C cont4U.

. (Transversality and Consistency) If VW € & are not orthogonal and neither is nested

into the other, then they are transverse: VhW. There exists ko = 0 such that if VAW, then

there are sets pl;, € CW and pl¥ < CV, each of diameter at most ¢, satisfying
min{dw (mw (), piy,), dv (7v (z), p)/ )} < ko, VazelX.
Moreover, for V = W and for all z € X we have that
min{dw (mw (2), pyy ), diamey (v (z) U p}Y (1w (2)))} < Ko.

In the case of V = W, we have that dy(p), pty ) < ko whenever U € & is such that either

WoU,or WAU and U £ V.

. (Finite complexity) There is a natural number n > 0, the complexity of X with respect

to &, such that any set of pairwise =-comparable elements of & has cardinality at most n.

. (Large links) There exist A > 1 and E > max{¢, ko} such that, given any W € & and

z,2’ € X, there exists {T;},—1,. |n] © Sw\{W} such that for all T € Sy \{W} either T' € &1,
for some i, or dr(mr(z),nr(z')) < E, where N = Ay (7w (), 7w (2)) + A\. Moreover,

dw (tw (), pip) < N for all 4.

. (Bounded geodesic image) For all W € &, all V € Sy \{W} and all geodesics vy of CW,

either diamey (p¥ (7)) < E or v n Ne(ply) # &.

. (Partial realization) There is a constant a satisfying: let {V;} be a family of pairwise

orthogonal elements of &, ad let p; € my, (X)) < CV;. Then there exists x € X’ such that

e dy,(my,(z),p;) < a for all j;

e for all j and all V € G such that VAV, or V; £V we have dv(wv(a:),pg’) < a.

. (Uniqueness) For each x > 0 there exists 6, = ,,(k) such that if z,y € X and d(z,y) = 0,

then there exists V € & such that dy (z,y) = k.

The inequalities of the fourth axiom are called consistency inequalities.

Remark 1.6.2. The element contYU appearing in Axiom of Definition is called the

orthogonal container (or the container of the orthogonal complement) of U in Z. If Z is the
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E-maximal element of &, then we might suppress it from the notation, write cont ;U and call it
higher container. If Z is not the E-maximal, then we will talk about lower containers.

A hierarchically hyperbolic space has clean containers if U L cont?U for all U, Z € &, as originally
defined in [2, Definition 3.4].

For a hierarchically hyperbolic space (X, &) and a subset {4 € &, we define
(1.1) Ut :={Ve& |V LU for every U € 4}.

We usually use the tuple (X', &) to denote a hierarchically hyperbolic space, where X" is a metric
space and & is the collection of §-hyperbolic spaces. Before diving deeper into the theory, let us

show a few basic examples of hierarchically hyperbolic spaces.

Examples/Properties 1.6.3. 1. If X is hyperbolic, then (X, {X}) is a hierarchically hyper-

bolic space structure, where the projection 7wy is tdy;

2. If Z? = {a,b | [a,b]) then we can endow Z? has a hierarchically hyperbolic structure where
the associated hyperbolic spaces are the cosets of the subgroups {(a),{b) and the coned-off
space S = (fa\y(ZQ) with respect to {(ay and {b). The following relations are imposed:

o Cay L (b)
e (ayt Sand byc S

3. If (X1, 64), (Xa, S2) are HHS, then (&) x X, &1 U G,) is a hierarchically hyperbolic space;

4. |14 Theorem 9.1] Let G be a group hyperbolic relative to a finite collection P of peripheral
subgroups. If each P € P is a hierarchically hyperbolic group then G is a hierarchically
hyperbolic group.

Remark 1.6.4. By [14, Remark 1.3], the projections 7y of a hierarchically hyperbolic space
(X,6) can always be assumed to be uniformly coarsely surjective. Without loss of generality, we

will always assume this.

Remark 1.6.5. If (X, S) is a hierarchically hyperbolic space and there exists a metric space )
and a quasi-isometry g : X — ) then ) can be endowed with the hierarchical hyperbolic space
structure (), &). Indeed, to do so it is enough to keep every element in the index set & and define

projections to every W € G as my o g, where g denotes a quasi-inverse of q.

Definition 1.6.6 (Hieromorphism). Let (X, &) and (X', &) be hierarchically hyperbolic spaces.
A hieromorphism is a triple ¢ = (gb, @, {d)z}}Ue@), where ¢: X — X’ is a map, ¢¢: & — &' is an
injective map that preserves nesting, transversality and orthogonality, and, for every U € &, the

maps ¢ : CU — C¢®(U) are quasi-isometric embeddings with uniform constants.
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Moreover, the following two diagrams coarsely commute (again with uniform constants), for all

U,V € &G such that U = V or UAV:

%
(1.2) x— s cU—— . coow)
rrul lﬂ'q&(u) pgl J{piiégz
CU ——= Co°(U) CV = Co%(V)

1.7 Hierarchically hyperbolic groups

Definition 1.7.1 (Hierarchically hyperbolic group). We say that a group G is hierarchically
hyperbolic if it acts on a hierarchically hyperbolic space (X, &) satisfying the following conditions:

1. The action of G on X is proper and cobounded;
2. G acts cofinitely on & (i.e: with finitely many orbits), preserving the relations =, 1 and ;

3. for each V € G and g, h € G, we have an isometry g : CV — CgV such that gh : CV — CghV

is the composition of the isometries g and h;

4. for all g1, g2 € G we have associated isometries g; : CV — Cg;V such that gny (z) = mgv (gz)

for every z € X and gp§) = pgg whenever U = V or UAV.

Remark 1.7.2. By definition, if (G, &) is a hierarchically hyperbolic group and g € G, multipli-
cation by g coarsely satisfies the two diagrams of Equation (|1.2). However, it is always possible to
modify the structure to obtain commutativity on the nose, as described in [36, Section 2.1]. This

is the reason why the fourth item in Definition [1.7.1] assumes equality.

We end this section with a remark/warning:

Remark 1.7.3. A hierarchically hyperbolic space may admit several structures. Consider the
free group on two generators G = Fs(a,b). Since Fy is hyperbolic, (Fo, {F2}) is a hierarchically
hyperbolic structure. On the other hand, G splits as {a) * (b) and therefore Fy is hyperbolic
relative to {(a),{b)}. Following the previous theorem we obtain a non-trivial hierarchical hyperbolic

structure on [Fs.

To end the chapter, we include various notions and tools exclusive to hierarchically hyperbolic

spaces that are are needed to develop the rest of the thesis.
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1.7.1 Hierarchical quasiconvexity and gate maps

Similar to the case of hyperbolic groups, various classes of spaces and groups extending hyperbol-
icity have a some notion of quasiconvexity describing undistorted subspaces in an ambient space.
Quasiconvexity in a class of spaces can be thought of as a property that allows a subspace of a

class to be in that class. Here we describe a notion specific to hierarchically hyperbolic spaces.

Definition 1.7.4 (Hierarchical quasiconvexity). Let (X,&) be a hierarchically hyperbolic
space. A subspace Y € X is k-hierarchically quasiconvez, for some function k: [0, +0) — [0, 4+00),

if:
1. for all U € & the image 7y ()) is a k(0)-quasiconvex subspace of the hyperbolic space CU;
2. forall k = 0, if z € X is such that dy (ny (z), 7y (Y)) < s for all U € &, then dx(z,Y) < k(k).

Remark 1.7.5. It is important to note that the notion of hierarchical quasiconvexity depends
strongly on the index set with which the space X is endowed. To illustrate this point, recall
Example Z? = {a,b | [a,b]) where the index set is & = {{a), (b), éa\y(ZQ)}.

If Y is the subspace {(a) or {b) in X, then Y is hierarchically quasiconvex in X, as it clearly
satisfies the first and second condition of Definition If, however, we were to pick )V to
be (ba) then the second condition would not be satisfied. Indeed, for any x € Z* we have that
diay(Tay (), meay (aby)) = 0. To show that this contradicts condition 2 of Definition set x to
be an element in Cay(Z?) sufficiently far apart from (ab).

Theorem 1.7.6. Let (X,S) be a hierarchically hyperbolic space and Y < X be hierarchically qua-
siconver. Then (¥, S) is a hierarchically hyperbolic space, where Y is equipped with the restriction

metric from X .

An important remark to make is that, contrary to what happens in hyperbolic groups (Theo-
rem m ), hierarchical quasiconvexity and quasiisometrically embedded subspaces are not equiv-
alent in hierarchically hyperbolic spaces. The following example provided to us by M. Hagen

illustrates this point.

Example 1.7.7. Here we describe a hierarchical quasiconvex hieromorphism (i.e a hieromorphism
such that its image is hierarchical quasiconvex) between hierarchically hyperbolic spaces which is
not coarsely lipschitz.

Let us first construct ¢: (R, {R}) — (X , 6) here, where X is the Cayley graph of the free group
Fy = F(a,b) with respect to the free generating set {a,b}. The structure & on X is given by the

family & of all axes of conjugates of a and of b, and a =-maximal element M:

&= { | Axis(a?)} v { | ] Axis(v)} U {M},

gEF, geFs
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where the axis Axis(z) of an element x is defined to be the set of vertices of X with minimal
displacement with respect to x, that is Axis(z) := {y € F5 | dx(y, zy) is minimal}.

In & any two different axes are transverse, and everything is nested into M. The hyperbolic spaces
associated to the axes are their corresponding lines in X, and CM is obtained from X by coning
off all these axes.

The projections mayig(ze): F2 — 24xis(2%) are given by closest-point projections, for all # = a, b and
g € Fy, as well as the p maps between two axes. The sets p?fs(xg) are the inclusion of the axis

into the coned-off Cayley graph.

The map ¢ is defined as follows. At the level of metric spaces, ¢ maps R homeomorphically into
X in the following way. For n € §, the segment [n,n + 1] € R is mapped to the geodesic path that

connects a™b" to " T1pnH!

in X. For this reason the map ¢ is not coarsely lipschitz, because the
segment [n,n + 1] € R, which has length one, is mapped to a geodesic path of length 2n + 2 in X.
The map ¢°: {R} — & is defined as ¢°(R) = Axis(a), whilst the map ¢%: R — Axis(a) is the
isometry such that ¢ (0) = e and ¢}(1) = a.

It can be checked that ¢ is a hieromorphism, and that ¢(R) is hierarchically quasiconvex in (X, &).
Even more, the map ¢ is full.

In Chapter [2] we prove a series of results to fill the gap between hierarchically quasiconvex and
quasi-isometrically embedded subspaces. For those results, we need the key notion of a full hiero-
morphism:

Definition 1.7.8. Following the notation of Definition we say that the hieromorphism
¢ (X,6) - (X', &) is full if:

1. there exists ¢ such that the maps ¢} : CU — C¢®(U) are (€, £)-quasi-isometries, for all U € &;

2. if S denotes the C-maximal element of &, then for all U’ € &' nested into ¢ (S) there exists
U € & such that U’ = ¢°(U).

Remark 1.7.9. It is important to stress that, in [14], a hieromorphism ¢: (X,8) — (X', &) is
called k-hierarchically quasiconvex if ¢(X) is a k-hierarchically quasiconvex subspace of X’ - in the
sense of Definition m - and ¢ is a quasi-isometric embedding (compare [14, Definition 8.1]).

In this work, by k-hierarchically quasiconvex hieromorphism we just mean a hieromorphism whose
image is a k-hierarchically quasiconvex subspace.

In practice, this will not produce diverging notions of hierarchical quasiconvexity: in this paper,
whenever we consider a hierarchically quasiconvex hieromorphism ¢, this map ¢ is always also
assumed to be coarsely lipschitz, and full. By what we will prove in Theorem these hy-
potheses imply that ¢ is a quasi-isometric embedding. Therefore, a k-hierarchically quasiconvex
hieromorphism in the sense of [14] is equivalent to a k-hierarchically quasiconvex full, coarsely

lipschitz hieromorphism in the sense of this paper.
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We will often require that the induced maps at hyperbolic level of a full hieromorphism to be

isometries. We call such hieromorphisms full hieromorphisms.

Definition 1.7.10. Let (H,S&p) and (G,S¢) be hierarchically hyperbolic groups. A glueing
hieromorphism between H and G is an group homomorphism ¢: H — G which can be realized as
a full hieromorphism (¢, ¢, ¢7;) such that the image ¢(H) is hierarchically quasi-convex in G and
the maps ¢7: CU — CoPU are isometries for each U € Gp.

1.7.2 Gate maps

Hierarchically quasiconvexity prompts the notion of a closest-point projection in the class of hier-
archically hyperbolic spaces. Let (X,&) be an HHS and ) € X be a hierarchically quasiconvex
subspace. Informally speaking, a gate map is a function that behaves as a closest-point projection
onto ) with the additional property that, after composing with the projection to a hyperbolic

space CU we obtain a closest-point projection in CU.

Definition 1.7.11. (Gate map)|14, Definition 5.4
A coarsely Lipschitz map gy : X — ) is called a gate map if for each x € X it satisfies that
gy(z) is a point y € Y such that for all U € &, the set 7y () uniformly coarsely coincides with the

projection of 7y () to 7y (YY) in CU.

Gate maps can always be defined onto hierarchical quasiconvex subspaces, as the following Propo-

sition shows.

Proposition 1.7.12. If (X, &) is a hierarchically hyperbolic space and Y S X is a hierarchically

quasiconvez subspace, then there exists a gate map gy : X — Y with the following properties:
1. gy is (K, K)-coarsely Lipschitz;
2. dx(y,9y(y)) < K forallyeY;
3. my(gy(x)) coarsely coincides with pr, (y)(mv(x)) for all x € X.

Theorem 1.7.13. Let G be a hierarchically hyperbolic group and (X,8&) be the hierarchically
hyperbolic space on which G acts. Let Y < X be hierarchically quasiconvex. There exists K such

that for every g€ G and v € X

99y () =K 94(97)

1.8 Product regions

As we have seen, the definition of a hierarchically hyperbolic space relies on multiple axioms
that describe how the various hyperbolic pieces (i.e elements of &) interact with each other and

what consequences these interactions have on the geometric structure of X. In this subsection we
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describe how the relations imposed on the index set & (L, A and =) show up in various examples
and what geometric properties can be deduced from them. We begin with the notion of product
T€gLONS.

Important examples of hierarchically quasiconvex subspaces are standard product regions [14, Sec-

tion 5]. To define them, we need the notion of consistent tuple |14 Definition 1.16].

Definition 1.8.1 (k-consistent tuple). Fix x > 0, and consider a tuple b = (by )yes € [Tyes 2€Y

such that for each coordinate U € & the coordinate by is a subset of CU with diameter bounded

by . The tuple b is k-consistent if whenever VAW

min{dW(bw, pgv), dy (bv, P\V;/)} < K,

and whenever V T W

min{dW(bW,pXV),diamcw(bv U pl‘/}/(bw))} < K.

These inequalities generalize the consistency inequalities of the definition of hierarchically hyper-

bolic space.

Let (X, &) be a hierarchically hyperbolic space. For a given U € &, let
Sy:={Ves|VCU}L

Given Kk = kg, define Fyy to be the set of k-consistent tuples in HVGGU 2¢V and Ey to be the set

. . CU
of k-consistent tuples in | |V665\{A} 2% where
Gt ={Ve&|VCU}u{A

and A is a E-minimal element such that V & A for all V' L A.

The most important feature of consistent tuples is that they can be pulled back to an element in
X:

Theorem 1.8.2. |14 Theorem 3.1] For each k = 1 there exist 0.,0, = 0 such that the following
holds. Let b e [Tiwes 2€V be k-consistent. Then there exists x € X so that dw (bw, 7w (2)) < 0.

for all CW. Moreover, the element x is coarsely unique.

Definition 1.8.3. These sets Fy and Ey can be canonically identified as subspaces of X'. Indeed,
by [14, Construction 5.10] there are coarsely well-defined maps ¢=: Fy — X and ¢*: Eyy — X
with hierarchically quasiconvex image, and by an abuse of notation we set that Fyy = Im¢= and
Ey = Imot.

Then, if Fy and Ey are endowed with the subspace metric, the spaces (Fy, &y) and (Ey, 65) are

hierarchically hyperbolic. The maps ¢= and ¢ extend to ¢y : Fy x Ey — X. Call Py = Imey
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the standard product region in X associated to U (compare |14, Definition 5.14]). This space is

coarsely equal to Fyy x Ey.

Proposition 1.8.4. Let (X, &) be a hierarchically hyperbolic space and let U € &. Then, Py is

hierarchically quasiconvex in (X, ).

As Theorem[1.8.2]shows, the elements in a hierarchically hyperbolic space X are in ‘coarse’ bijection
with k-consistent tuples
zeX «—— b=(w)e [] 2V
We6

Where the correspondence goes one way sending = — (mw (z))wes and the converse is obtained
by Theorem This correspondence should not be regarded as a quasi-isometry between those
metric spaces, but rather as the formalization of what we referred to as ‘coordinate system’ for X
at the beginning of the chapter. Though not a quasi-isometry, the above correspondence encodes

important geometric information. The following theorem is the key to illustrate this point.

Distance Formula for hierarchically hyperbolic spaces (|14, Theorem 4.5]). Let (X,S) be
a hierarchically hyperbolic space. There exists sg such that for all s = sg there exist constants

K,C > 0 such that

dx(@,y) =0y O, Adv(mv (@), 7v(y))}s, Vi,yed,
Ve&

where the symbol {a}s means that a is added to the sum only if a > s, and a =k ¢y b stands for

L-C<a<Kb+C.

Note that the right-hand side of the coarse equality above makes sense only when the number
summands is finite (i.e when the number of elements V € & such that dy (my(z),7v(y)) > s
is finite). This is indeed the case for every hierarchically hyperbolic space. One of the main
applications of the large link axioms in Definition [I.6.1] is the following lemma. It roughly says
that for any two elements z,y in X and a domain W € & such that z,y project sufficiently far

apart then they also project sufficiently far apart on some domain of higher complexity:

Lemma 1.8.5. [14] Lemma 2.5] For every C = 0 there exists N with the following property. Let
Ve&,z,ye X, and {S;}Y, € & such that S; =V and satisfy that ds,(z,y) = E. Then there
exists S € & such that STV and i such that S; = S and dg(z,y) = C.

Combined with the finite complexity axiom in Definition [1.6.1] we obtain that only a finite number

of domains W € G satisfy that dw (7w (z), 7w (y)) > s.
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1.9 Constructing examples of hierarchical hyperbolicity

In this last section we would like to introduce and motivate the main results and ideas of the work
carried out in the remaining chapters, which comprise the original contributions of the author.
The reader that is well-versed in hierarchical hyperbolicity may wish to use this section as starting

point.

In a nutshell, hierarchical hyperbolicity is a sturdy machinery with which a big deal of geometric and
algebraic information from a group can be obtained. The price to pay, however, is the rather long
and cumbersome set of axioms of Definition [1.6.1} Despite this, several hierarchically hyperbolic
structures can be constructed very naturally in a hands-on way by inductively combining the

following facts:

1. If G is a 0-hyperbolic group, then it admits the hierarchically hyperbolic structure (G, {G})

(we usually refer to this as the ”trivial” structure);
2. direct products of hierarchically hyperbolic spaces are hierarchically hyperbolic (Example(1.9.1));
3. free products of hierarchically hyperbolic groups are hierarchically hyperbolic (Example|1.9.2]).

Let us describe the structure of the second and third items:

Example 1.9.1 (Direct product of hierarchically hyperbolic groups). Let (G,,&,) and
(Gw, 64 ) be hierarchically hyperbolic groups. The direct product G = G,, x G, is a hierarchically
hyperbolic group [14, Proposition 8.25], and its hierarchical structure is described as follows.

The index set & for G is defined to be the disjoint union of &, with &,,, inheriting the associated
hyperbolic spaces, along with the following elements whose associated hyperbolic spaces are defined
to be points. For each U € G, add an element Vi, into which every element of &, orthogonal to
U, and every element of &,,, is nested. Analogously, for every W € &,, include an element Vi into
which every element of &,, orthogonal to W, and every element of &, is nested. Finally, include
a C-maximal element S into which each of the previous elements is nested.

Nesting, orthogonality, and transversality agree with the ones of (G,,&,) and (G, &,,) on the
subsets &, and S,, of &, and any element of &, is orthogonal to any element of &,,. For any

A, Be S, u6, we impose that

A Vg, whenever A | B;

Ve & Vy, whenever A T B;
Al Vg, whenever A £ B;

Vi Vg, otherwise.
A A Vg, otherwise;

In particular, A 1 V4 for any element A e &, u &,.
Projections to the hyperbolic spaces are either defined to be trivial, for elements with trivial

hyperbolic space, or defined as the compositions my; o p,, (respectively mw o p,,) for every U € &,
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(respectively for every W € &,,), where p,,: G — G, is the canonical projection on the first direct
factor, and 7y : G, — 2€Y is the projection given in (G, &,).

It follows that for every U € &, the set 7y (Gy) is uniformly bounded, and analogously for every
W e &, the set my (G,) is uniformly bounded. Moreover, the inclusions of the subgroups G, and
G, into G are full, hierarchically quasiconvex hieromorphisms that induce isometries at the level

of hyperbolic spaces.

Example 1.9.2 (Free product of hierarchically hyperbolic groups). Let (G,,&,) and
(Gw, Sy) be hierarchically hyperbolic groups. The free product G, * G, is a hierarchically hyper-
bolic group.

One way of seeing this is to recall that G, = G,, is hyperbolic relative to {G.,G,} and using
the following theorem which shows that groups that are hyperbolic relative to a collection of

hierarchically hyperbolic subgroups are hierarchically hyperbolic. The proof is already presented

in [14, Theorem 9.1}, but we describe the structure here to help with the exposition.

Theorem 1.9.3. [14] Theorem 9.1] Let G be a group relative to a finite collection of peripheral
subgroups {Hy, ..., Hy}. If each H; can be endowed with a hierarchically hyperbolic group structure,
then G is a hierarchically hyperbolic group.

Proof. For each i = 1...,n and each left coset of H; in G, fix a representative gH;. Let ¢&; be
a copy of &; with its associated hyperbolic spaces and projections in such a way that there is
a hieromorphism H; — gH; equivariant with respect to the conjugation isomorphism H; — H.
Let G be the hyperbolic space obtained by coning-off G with respect to the peripherals {H;},

and let & = {G} U Ll,co Ll; ©gm,. The relation of nesting, orthogonality or transversality between

9€g
hyperbolic spaces belonging to the same copy S,p, are the same as in Spy,. Further, if U, V' belong
in two different copies of different cosets, then we impose transversality between them. Finally, for
every U € G,p, we declare that U is nested into G.

The projections are defined as follows: 75 : G — G is the inclusion, which is coarsely surjective
and hence has quasiconvex image. For each U € &gy, let ggp,: G — gH; be the closest-point
projection onto gH; and let wg = wg © ggH,, to extend the domain of 7y from gH; to G. Since
each ng was coarsely Lipschitz on CU with quasiconvex image, and the closest-point projection in
G is uniformly coarsely Lipschitz (Lemma, the projection 71'5 is uniformly coarsely Lipschitz
and has quasiconvex image. For each U,V € G,p,, the various pg and p‘[f are already defined. If
UeGyy, and V e &yp;, then Y = v (gg 1, (9H;)). Finally, for U # é, we define pg to be the
cone-point over the unique gH; with U € G4p,, and pgz G — CU is defined as follows: for z € G,
let pg(x) =n5(z). fre G is a cone point over g'H; # gH;, let pg(x) = pingj, where Sy p; is
the E-maximal element of &, 5,. The cone-point over gH; may be sent anywhere in CU.

By [14, Theorem 9.1], the construction above endows (G, &) with a hierarchically hyperbolic group
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structure. O
Remark 1.9.4. In Theorem we readapt this theorem to a more general statement.

A special type of groups that can be built inductively through direct and free products are known

as graph products of groups:

Definition 1.9.5. [Graph products] Let I be a graph and G = {G,},ev () be a collection of
groups. The graph product I'G with respect to G is defined as

I'g = <*v€V(I‘)G'u | [Gv,Gw] =1 < {v,w} e E(T))

If G is assumed to be a collection of d-hyperbolic groups, then by the preceding discussion it
is natural to expect that the graph product I'G is hierarchically hyperbolic. This is indeed the
case, and we show a proof of this in Theorem [3.3.7] Even more, we show that graph products
of hierarchically hyperbolic groups which have some very natural extra properties (intersection
property and clean containers) are hierarchically hyperbolic. We would also like to mention that
that in [16], Berlyne and Russel give an independent proof that graph products of hierarchically
hyperbolic groups are hierarchically hyperbolic that improves Theorem [3.3.7] by removing the extra

assumptions.

1.9.1 Hierarchically hyperbolic structures on groups acting on trees

The main contributions of this thesis is the introduction of a wide variety of new examples of
hierarchically hyperbolic groups. These are achieved by establishing a combination theorem in this
class. If C is a class of groups, we usually refer to a result as a combination theorem in C if it
provides sufficient conditions ensuring that the fundamental group of a graph of groups in C is again
in C. The Bestvina-Feighn combination theorem [17] for hyperbolic groups is such an example:
given a finite graph G of hyperbolic groups satisfying certain conditions, the resulting fundamental
group is again hyperbolic. Their strategy of proof was to consider a metric space (more precisely,
a tree of metric spaces obtained from the Bass-Serre tree of the graph and the vertex/edge groups
of G) and study the action of the fundamental group on such space. This approach turned out
to be very successful, and was later applied in several other related contexts. This is the case
for the combination theorem of [66] in the class of strongly relatively hyperbolic groups, or for
the Hsu-Wise combination theorem in the context of groups acting on cube complexes [51], or
Alibegovié¢’s combination theorem for relatively hyperbolic groups [5]. On the other hand, a more
dynamical approach is undertaken by Dahmani [29] to obtain another combination theorem for
relatively hyperbolic groups.

In Chapterwe present a combination theorem for hierarchically hyperbolic groups (T heorem.
As with the main definition of hierarchical hyperbolicity, understanding the full statement of The-
orem requires the understanding of certain tools and technicalities. Chapter [3] and [2] are
dedicated to the development of said tools. We thus postpone the full formulation of the combi-
nation theorem to Chapter
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We now review Example from a Bass-Serre theory perspective.

Example 1.9.6. Let G = G, * G, be the free product of two hyperbolic groups. We describe
here an alternative hierarchically hyperbolic structure on G from that in Example [1.9.2]

Let G4 and G,, be endowed with the trivial hierarchically hyperbolic structure. Recall that each
vertex v in the Bass-Serre tree T' associated to G, * G, corresponds to the set of cosets P of G,
and Gy, in G, * Gy,. Let X, X,, denote the K (G, 1)-spaces associated to G, and G,, respectively
(i.e the CW-complexes such that m (X,) = G, and 71 (X,) = G,). Recall that the join space
X =X, v X, is the K(G, 1)-space of G, * G,,.

m1(Xy) = G m1(Xo) = Gu

v
7T1(Xu \/Xw) = Gu *Gw

The universal cover X of X can be described as a space which has a combinatorial pattern of
an infinite tree. The tree is bipartite with vertices labeled by the symbols X,, and X,,, ( i.e, the
Bass-Serre tree of () as indicated in Figure Moreover, the number of edges incident on a
vertex labelled with X, are in bijection with m (X,) and likewise with X, and m;(X,,). To each
vertex labeled with X, (respectively X,,) we associate the metric space X, (respectively 3(\;)

This description of X can be thought of as a tree of spaces:

Definition 1.9.7. [Tree of spaces| Let T' be a simplicial tree and let V = V(T),E = E(T)

denote its vertex and edge set respectively. A tree of spaces consists of the quadruple

T = (T, { X}, {Xe}, {Pet Dveviecr

where the maps ¢.+ : X, — X+ are injective functions.

If 7 is a tree of spaces, we define X(7T) the total space of T as the metric space where the
underlying set is | |, ., X, and adding edges of length one as follows: if x € X, we declare ¢, (z)
to be joined by an edge to ¢+ (x). We define the distance on X as follows: if x, 2’ are elements
on the same vertex space X,, then we say that dy(x,2') = dx, (z,2’). If z,2’ are joined by an
edge, we define dy(z,z’) = 1. Given a sequence z1,...,x, of points either joined by an edge or

living in the same vertex space, we define its length to be ), dx(z;,2;41). For general elements
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Figure 1.2: Covering space of X, v X,

z,2’ in X, we define the distance dx (z,z’) as the infimum between all lengths of sequences such
that x = g, ...,z = 2.

It is not hard to convince oneself that the total space X(7) is quasi-isometric to X. Indeed, if we
collapse each pair of points in X(7) joined by an edge to a point we obtain X. This is clearly
a quasi-isometry, as all that we have done is collapse uniformly bounded subspaces of X(7T) to a

point.

We now show that G has a hierarchical hyperbolic group structure obtained through the action of
G on X. We begin by describing a hierarchically hyperbolic space structure on X.
(Index set) If T is the tree of spaces of X we define the index set as & = {T} U Lper { X0}
(Hyperbolic spaces) We declare that CT = T and that CX,, = X, for every vertex v in T.
(Projections) Note that there is a well-defined map pr : X(T) — T obtained by collapsing each
vertex space to a point. Moreover, it is straightforward to check that this is a coarsely Lipschitz
map. We then define the projection pr to be the projection 7y from X (7) to T
For each 2 € X(T) and each X, we define the closest-point projection p, : X(7T) — X, as follows.
Let x € X be an arbitrary element. If x € X, then define p,(z) := x. If x ¢ X,, then we define
py () inductively. Let w be the vertex such that x € X, suppose that dr(v,w) = n = 1, and
that p,(—) is defined on all vertex spaces that are at distance strictly less than n from v. Let
v be the geodesic in T connecting w to v, let e be its first edge, with e~ = v. It follows that
dr(et,v) =n—1. Then

Po(@) = py (¢e+ 0 ho (Pe- (w))) :

where ¢, is a quasi-inverse of ¢, .

The various projections pg are defined as follows: First, if U, V correspond to vertex spaces X, X,
respectively, then p{ is defined as p,(X,) and p}; as p,(X,). Note that these are points, as the
edge spaces in T are trivial. If U corresponds to 7" and V to a vertex space X, we define pg as v.
(Relations) For every pair of different vertices v, w we impose that X, nX,, and that X, = T for

everyveT.
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With this structure, all of the axioms of Definition [1.6.1| can be verified. We skip this verification
because the structure is simple enough so that all of the axioms are either automatically satisfied

or straightforward to prove.

Remark 1.9.8. Recall that if we collapse every coset in P to a point we obtain the coned-off
Cayley graph G with respect to {Gy, Gy }. Thus, if we define the map G->T by sending a coset
of Gy or G, to its corresponding vertex in T, then we have a (coarsely)-well defined map. It
follows from [67, Lemma 3.1] that this map yields a quasi-isometry between G and T. Then, we
can simply switch the element 7' in the structure defined above by G. By doing so, we obtain the

same structure described in Example on G.

Let us now show that the action of G on X satisfies the axioms of Definition [L71l The first
axiom is straightforward to check, as the quotient X/G is equal to X, v X,,, which is a compact
space. The second one follows from the fact that every vertex space in A" is a copy of either X, or
X, which means that there are only finitely many orbits of elements in &. For the third axiom
consider g € G and X, a vertex space. Then, g-v = gv is a vertex in T, and the associated
vertex space is X4, is an isometric copy of X,. To check the last item, let g be an element in
G and let x € X. In particular, there is some v € T such that x € X,». If X, is a vertex
space, then there is a unique path between v and v’ in T that we call [v,v’]. Let p, denote the
closest-point projection onto a vertex space described above. If e is the last vertex in [v,v] then
po(T) = P+ (%), where X, = #. On the other hand, if we apply g to [v,v’] we obtain the path
[gv, gv'] and therefore py,(92) = ¢(gey+ (¥) = goe+(*) = gpy(x). One can argue analogously to
obtain that gp,(X,) = pgy(Xge) and, thus, gp¥l = pgg for every U,V in | |, oy, Xo. U =T and
V = X, then p}; = v and, therefore, gp}; = p?g“ = pgg.

Remark 1.9.9. The reader may have already noticed that the group G = G, * G, was known
to be hierarchically hyperbolic from the beginning simply because the free product of hyperbolic

groups is hyperbolic. This is indeed the case, but we chose to describe this specific structure

because Theorem [3.0.1f generalizes this idea. In that sense, the example above is the most basic

case possible of Theorem

1.9.2 A characterization of hierarchical hyperbolicity in hyperbolic-2-
decomposable groups

In the same way as the presence of Z? as a subgroup of G prevents it from being hyperbolic, the
presence of the so-called unbalanced Baumslag—Solitar subgroups prevents G from being hierar-

chically hyperbolic. The following remark shows this fact:

Remark 1.9.10. If G is a hierarchically hyperbolic group, then G cannot have a subgroup isomor-
phic to BS(n,m) = {a,t | ta™t~! = a™), with |n| # |m|. Indeed, suppose there is an embedding
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t: BS(n,m) — G. We have that ¢(a) is an infinite order element of G. By [35, Theorem 7.1] and

[36, Theorem 3.1], ¢(a) is undistorted, which is a contradiction.

This prompts the question: is the absence of unbalanced Baumslag—Solitar subgroups in a group
G enough to show that G is hierarchically hyperbolic? This is indeed a very big question without
assuming anything on the group. Instead, in this thesis we propose a more reasonable one that
assumes that G splits over virtually cyclic groups. More precisely, we consider groups that split as
graphs of groups with 2-ended edge groups. For the sake of brevity, if P is a property of a group,
we say that a group is P-2-decomposable if it splits as a graph of groups with 2-ended edge groups
and vertex groups satisfying property P.

Considering groups of this form is not a novelty in geometric group theory. An important example
is the class of Z-2-decomposable groups, also known as generalized Baumslag—Solitar groups (GBS
groups). Although we will not dive deeply in the theory of GBS groups from a traditional viewpoint,
it is worth noting that this class has been extensively studied and shown to be an extremely
rich object to analyse from multiple points of view. To name a few, GBS groups have been
studied in relation with JSJ decompositions ([39]), quasi-isometries (|70]), automorphisms ([58])
and cohomological dimension ([57]). For a general overview of results on GBS groups we refer to
the survey by Robinson ([72]).

One way to avoid unbalanced Baumslag—Solitar subgroup in G is to impose a technical condition
on G called balancedeness. A group G is said to be balanced if for every g € G of infinite order,
whenever hg'h™! = ¢’ for some h € G it follows that |i| = |j|. The notion of balancedness
played an important role in the theory of graphs of groups. In [90|, the author shows that a
free-2-decomposable group is subgroup separable if and only if it is balanced. In [7§], the authors
extend Wise’s result to (virtually-free)-2-decomposable groups, obtaining quasi-isometrical rigidity
for certain balanced groups. In [28] the author studies the relation between possible acylindrical
actions of (torsion-free)-2-decomposable groups in connection with balancedness of such groups.
A naive conjecture to make is that a hyperbolic-2-decomposable group G is hierarchically hyper-
bolic if and only if it is balanced. The last chapter of this thesis is dedicated to prove that, up
to some issues with torsion on vertex groups, the conjecture holds (Theorem . In order to

formulate the results expressly we introduce the notion of almost Baumslag—Solitar groups:

Definition 1.9.11. Let G be a group. We say that G is an almost Baumslag—Solitar group if
it can be generated by two infinite order elements a,b € G such that the equality ba™b~! = b"
holds for some n, m. In the particular case where |n| # |m| we say that G is an unbalanced almost

Baumslag—Solitar group.

Note that every almost Baumslag—Solitar group is the quotient of some Baumslag—Solitar group.

However, such quotient map may not be an isomorphism.

We now recall two results due to Bestvina and Feighn that relate hyperbolicity with almost

Baumslag—Solitar subgroups:
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Theorem 1.9.12 (Amalgams over virtually cyclic groups). Suppose that G = G; ¢ G
is an amalgamated free product where G; is hyperbolic and C' is virtually cyclic. The following

conditions are equivalent
1. C is malnormal in either G1 or Ga;
2. G 1is word hyperbolic;
3. G does not contain BS(1,1) = Z? as a subgroup.

Theorem 1.9.13 (HNN extensions over virtually cyclic groups). Let H be a hyperbolic
group and let G be the HNN extension G = (H,ty over the virtually cyclic subgroups A and B
where tAt™" = B. Then the following are equivalent

1. G is word hyperbolic;
2. G contains no almost Baumslag—Solitar subgroup;

3. for allhe H, |An B"| < o0 and either A or B is malnormal in H.

Using the almost Baumslag—Solitar group terminology, in Section [£.1.4] we present the following

generalization of the above theorems to the class of hierarchically hyperbolic groups:

Theorem 1.9.14. Let G be a hyperbolic-2-decomposable group. Then, G is hierarchically hyper-

bolic if and only if it contains no unbalanced almost Baumslag—Solitar subgroups.

Detecting almost Baumslag—Solitar subgroups: In general, checking whether a given graph
of groups contains an almost Baumslag—Solitar subgroup may be challenging. For this reason, we
introduce the notion of balanced edges. An edge e of a graph of groups G is a balanced edge if for

every infinite order element g € G, and h € m1(G — €)
if hg'h™! = g7 then |i| = |3].
We then have the following criterion to detect almost Baumslag—Solitar subgroups.

Theorem 1.9.15. Let G be a graph of groups where none of the vertex groups contain distorted
cyclic subgroups. Then m1(G) contains a non-Euclidean almost Baumslag—Solitar subgroup if and

only if G has an unbalanced edge.

The proof of Theorem [I.9.14] and [1.9.15] can be found in Theorem [£.1.23]

1.9.3 A note on torsion

The reader will find that Chapter [4] deals with hyperbolic-2-decomposable groups in two separate

settings. Namely, when the group has torsion and when it does not.
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It is perhaps worth noting that the fundamental group of a graph of virtually torsion-free groups
may not be virtually torsion free (even when the edge groups are cyclic), as the following example
provided by A. Minasyan showsﬂ

Example 1.9.16. Let H be a group isomorphic to BS(2,3) = {a,b | ba?b~! = a®). Since H is
not residually finite, its finite residual Res(H) = ngH,|K:H|<oo K is non-trivial.

Let a € K be non-trivial and let G be constructed as G = (H,b | [b, H] = 1,b%> = 1). Note that
G is virtually torsion free. We then construct the HNN extension I' = (G,t | tat™! = ab). We
now show that I' is not virtually torsion-free. First, as H < I', we have that Res(H) < Res(T").
Therefore, Res(I') must be non-trivial. Since Res(T") is a normal subgroup of T', we have that
tat=' = ab € Res(T"). We thus obtain that a=!(ab) = b € Res(I'). We conclude that b, an element

of order two, belongs in every finite index subgroup of I' and therefore I' is not virtually torsion-free.

For this reason, the main result of Chapter 4] has two formulations depending on the case:
Theorem 1.9.17. Let G be a hyperbolic-2-decomposable group. The following are equivalent.
1. G admits a hierarchically hyperbolic group structure.
2. G does not contain a distorted infinite cyclic subgroup.
8. G does not contain a non-Fuclidean almost Baumslag—Solitar group.
Moreover, if G is virtually torsion-free, condition (3) can be replaced by

8’. G does not contain a non-Euclidean Baumslag—Solitar group.
A straightforward corollary of this theorem is the following.
Corollary 1.9.18. Let G = H; *¢ Hy where H; are hyperbolic and C' is virtually cyclic. Then G
is a hierarchically hyperbolic group.

As final remark, we believe that Item (3’) of Theorem [1.9.17] should be true even without the
assumption of G being virtually torsion-free. We refer the reader to the Questions section in

Chapter [ for further discussion.

2https://mathoverflow.net/questions/330632/is-an-hnn-extension-of-a-virtually-torsion-free-group-virtually-
torsion-free.
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Chapter 2

Structural results

The objective of this chapter is to obtain structural results that will be necessary for the devel-
opment of Chapter [3] Moreover, this chapter introduces a number of tools to analyze hierarchical
hyperbolic spaces. The first one is the intersection property (see Definition and the discus-
sion after the statement of Theorem , which in turn leads to the notion of concreteness. We
introduce the latter notion to exclude artificial examples of hierarchically hyperbolic spaces that
carry some undesirable features. As we will see in this chapter, the intersection property has a
very natural definition, and we conjecture that all hierarchically hyperbolic spaces admit a hier-
archically hyperbolic structure with the intersection property (see Question below). On the
other hand, concreteness is more technical, but nevertheless we prove in Proposition that
any hierarchically hyperbolic space with the intersection property can be supposed to be concrete.
These properties are of independent interest, and we expect them to be of further use.

Clean containers (see Remark 7 a notion introduced originally by Abbott, Behrstock, and
Durham [2], is a technical condition that in the graph of multicurves setting (see Subsection [1.5.2))
translates into the following: if V' < S is a subsurface of the surface S, then V and S\V are disjoint,
and any subsurface disjoint from V is contained into S\V. On the other hand, the intersection
property is a condition that we introduce, and in the mapping class group setting means that,
given two subsurfaces V,U < S, the subsurface V n U is the biggest subsurface of S that is
contained in both V' and U. The intersection property gives to the index set & the structure of a
lattice. At this point, it is instructive to notice that both V' n U and S\V could be non-connected
subsurfaces of S, and indeed the hierarchically hyperbolic structure with clean containers and the
intersection property of the pants decomposition graph G(S) is obtained considering all, possibly
non-connected, subsurfaces of S.

We are inclined to believe that any hierarchically hyperbolic space admits a hierarchically hyper-

bolic structure with the intersection property and clean containers:

Question 2.0.1. Let (X, dx) be a hierarchically hyperbolic space. Does there exist a hierarchically
hyperbolic structure & such that (X, &) is a hierarchically hyperbolic space with the intersection

property and clean containers?

33
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2.1 Intersection property and concreteness

We begin with the definition of a hierarchically hyperbolic spaces satisfying the intersection prop-
erty.

Definition 2.1.1 (Intersection property). A hierarchically hyperbolic space (X, &) has the
intersection property if the index set admits an operation A: (& U {J}) x (Eu {F}) - & v {T}

satisfying the following properties for all U, V, W € &:
(") VAD = AV =;

(he) UAV =V AU,

(A3) (UAVIAW =UA(V AW);

(Ag) UAV EU and U AV EV whenever U AV € 6;

(rs) WU and WEV, then WEU A V.

We call U AV the wedge between U and V. Notice that U AV € Sy n Gy assoonas U AV # &,
by property (A4). Therefore, whenever U L V it follows that U A V = &, as the intersection
Sy N Gy is empty. Moreover, it follows that U A V = V if and only if V £ U, and that for all

U,V € G the set Gy n Gy either is empty or has a unique maximal element U A V.

Hyperbolic groups satisfy the intersection property, since the index set consists of one element.
Mapping class groups, raags, and the cubulable groups known to be hierarchically hyperbolic
also satisfy the intersection property. In these cases, the operation A corresponds respectively to
considering (the curve complex associated to) the intersection of two subsurfaces, the intersection
of two parabolic subgroups, and the coarse projection (using gate maps [47]) of one hyperplane
onto another.

Let (X, &) be a hierarchically hyperbolic space with the intersection property, let U,V € &, and
define

(2.1) UvV:i= N\{Wee|UcW, VeWw}

We call U v V the join between U and V. The operations A and v give to the set G a lattice
structure.

Notice that the set W = {W e & |U £ W, V = W} appearing in Equation is never empty,
because at least the =-maximal element of & belongs to it. Even if W is infinite, finite complexity
of the hierarchically hyperbolic space implies that there exists a natural number n, not greater
than the complexity of the hierarchically hyperbolic space, such that U v V = Wi A -+ A W,
where W; € W for all i. Indeed, if this were not the case, one could find elements W; € W for

i=1,...,7r, where r is strictly bigger than the finite-complexity constant, such that

WiaoWiAaWezo---aWi A AW, #J,
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contradicting the fifth axiom of the definition of hierarchically hyperbolic space. By definition,
U v V is the E-minimal element of & in which both U and V' are nested.
In raags, the join of two parabolic subgroups is the subgroup they generate, and in mapping class

groups the join of two subsurfaces is their union (which might be disconnected).

In the following lemma we prove that direct product of hierarchically hyperbolic spaces/groups
with the intersection property continues to satisfy the intersection property. As a consequence of
Theorem [3:3.7] the intersection property is preserved also by graph products, and in particular by
free products, when in presence of clean containers.

The intersection property for free products of hierarchically hyperbolic groups is preserved also
without assuming clean containers, by deducing it from 14, Theorem 8.6], but we elected not to

write down the details, as clean containers is such a natural hypothesis to make.

Lemma 2.1.2. The intersection property is preserved by direct products. If a group is hyper-
bolic relative to a finite collection of hierarchically hyperbolic spaces (respectively: groups) with
the intersection property, then it is a hierarchically hyperbolic space (respectively: group) with the

intersection property.

Proof. Given two hierarchically hyperbolic spaces (X1,&;) and (X3, S3) with the intersection
property, we endow the space X7 x X5 with the hierarchically hyperbolic structure & described in
Example (for hierarchically hyperbolic groups).

Let Ay and Ao be the wedge maps on (X7,61) and (X, Ss), respectively, and let us define
A (GU{Bh) x (GuU{d}) > Gu{T}. IfU € &1,WW € G5 then U L W and therefore U AW = (.
On the other hand, A coincides with A7 or Ag if both arguments belong to &, or G5 respectively.
IfWe 6 U6,y and Vy, for U € G; U Gy, is an element with trivial associated hyperbolic space,
as described in Example[1.9.1] then we have the following exhaustive disjoint cases: either W L U,
or W and U are C-related, or WhU. In the first case W = Vy, and therefore W A Viy = W. In
the other two cases, it must be that U and W belong to the same index factor, say &;. Therefore,
W A Vy =W Aqpcont U, where cont | U is the orthogonal container of U in &;. Finally, if S is

the =-maximal element then S A U = U for every U € &1 U Gs.

To conclude, we now prove the statement for groups hyperbolic relative to hierarchically hyperbolic
groups. The same argument works if the parabolic subgroups {H1, ..., H,} are assumed to be hier-
archically hyperbolic spaces, with the difference that the resulting group would be a hierarchically
hyperbolic space.

Let G be a group hyperbolic relative to a finite collection of subgroups {Hj,..., H,} that are
hierarchically hyperbolic groups with the intersection property. Let Gy, be the hierarchically
hyperbolic structure on H;, and let A g, be the wedge operation of &p,. Any coset gH; admits a
hierarchically hyperbolic structure &,x, with wedge operation Ayg, (compare Theorem .
By Theorem the group G is a hierarchically hyperbolic group with index set & = {CA?} v
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L] giiec; OgH,, where G is obtained from G by coning off all left cosets of all the subgroups H;.
By Theorem the element G is the C-maximal element, for all U € &4y, and V € &4 H; with
gH; # ¢’H; we have that UhV, and finally if U,V € Gy, < & then the elements U and V are
transversal (respectively orthogonal, C-related) if and only if they are transversal (respectively
orthogonal, C-related) in & ;.

If U,V € Gy, < 6, then define U A V to be U Agy, V. If U,V belong to different cosets and in
particular they are orthogonal, define U A V = . Finally, for every U € & define U A G=U.
Thus, G admits a hierarchically hyperbolic group structure with the intersection property. O

Lemma 2.1.3. Let ¢: (X, 6) — (X’, 6’) be a full hieromorphism between hierarchically hyperbolic
spaces with the intersection property, and let U,V € &. Then

¢ (U A V) = ¢°(U) A ¢°(V), ¢*(U v V) =¢°(U) v (V).

Proof. We prove the lemma for the wedge U A V. The proof for U v V follows the same strategy.
Let UAV = A, and ¢®(A) = A’ € &'. We need to show that ¢@(U) A ¢? (V) = A’. As ¢° preserves
nesting, we have that A’ = ¢®(U) A ¢%(V). As ¢ is full and ¢°(U) A ¢°(V) is nested into both
#°(U) and ¢°(U), there exists B € & such that ¢®(B) = ¢%(U) A ¢°(V) and B is nested into
both U and V.

By maximality of U A V', we conclude that B = U A V, and it follows that

(U AV) =¢%(B) = ¢°(U) A ¢°(V).

O

The next lemma is an example of why clean containers is a very natural property, and should be
assumed without any hesitation. In the mapping class group setting the lemma just proves that if

two subsurfaces U and V are disjoint from W, then W is also disjoint from the subsurface U u V.

Lemma 2.1.4. Let (X, G) be a hierarchically hyperbolic space with the intersection property and
clean containers. IfU LW and V- L W, then (U v V) L W.

Proof. Both the elements U and V are nested into the orthogonal container cont; W, and by
definition of join, it follows that U v V & cont; W as well. By clean containers we have that
W L cont; W, and therefore (U v V) L W.

Notice that we need the clean containers hypothesis for the case U v V = cont W. O

Lemma 2.1.5. Let (X, &) be a hierarchically hyperbolic space with the intersection property and

clean containers. For all U,V € & we have that cont{V = U A cont V.
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Proof. If cont, V = F, then also contHV is empty, and the equality is trivially satisfied.

If cont | V is not empty, but cont{V = ¢, then there does not exist an element nested into both
U and into cont | V. Indeed, assume that there esists W € & such that W = U and W E cont, V.
Then, W & contYV by definition of orthogonal containers, contradicting the assumption that
contYV is empty. Therefore, also in this case the equality is trivially satisfied.

Suppose now that both cont| V and cont{V are non-empty. By definition, we have that cont{V &
U. By clean containers V L cont{V, and thus cont{V = cont, V. Therefore, cont{V = U A
cont | V. On the other hand, as V L cont; V and U Acont V £ U, we conclude that U Acont V T

cont{ V.

Definition 2.1.6 (e-support). For A € X and a constant € > 0, define the e-support to be
supp (A) := {W € & | diamew (7w (4)) > £}.

Notice that if supp.(4) = &, then A < X has uniformly bounded diameter: indeed, by the
Uniqueness Axiom of Definition it follows that diamx(A) < 6,(¢).

In the following lemma, we make use of a relevant feature of a given standard product region Py
associated to a given U € & as defined in Definition m For each e € Eyy we denote Fyy x {e} a
parallel copy of Fyy in X. By construction of Py there exists a constant o which depends only on X
and &, such that for every z € Py we have that dy (my (z), p¥) < « for all U € & satisfying either
UMV or U = V. Moreover, we can choose « so that, if V' L U, then diamey (7v (Fy x {e})) < a
(see |10, Definition 1.15] and [14} Section 5] for more information).

We recall that ¢ is the constant that uniformly bounds the sets p¥ for U,V € & such that UhV
orUcCV.

Lemma 2.1.7. Let ¢ > 3max{{,a}. If W € supp.(Fy x {e}) then W = U, and therefore
supp.(Fy x {e}) € &y.

Proof. If U is either transverse to V € & or properly nested into V, then dy (my(z), p¥) < « for

every © € Fyy x {e}. As the diameter of the set p¥ is at most £, we obtain that

dy (my (x), v (y)) <dv (mv(x),p(rv(z))) + dv (p(mv (2)), p(Tv (y)))+

+dv(p(my (y)), v (y)) < 20+ € <,

for every x,y € Fy x {e}, where p: CV — p¥ denotes the closest point projection. Therefore, we
conclude that V' ¢ supp.(Fy x {e}). On the other hand, whenever U L V we have that my (Fy x {e})
is a set of diameter bounded by «, and again V' ¢ supp.(Fy x {e}).

Therefore, by the choice of &, we have that supp.(Fy x {e}) € &p. O
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Convention. From now on, even if not explicitly stated, we assume that € > 3max{¢, a}.

Remark 2.1.8. For an element U € &, the set supp.(Fy x {e}) defined in Definition is
independent of the parallel copy of Fy; x {e} that we consider, that is

supp.(Fu x {e}) = supp.(Fu x {€'})

for any two elements e, ¢’ € Eyy. Indeed, my (FU X {e}) uniformly coarsely coincides with p% when
either W 2 U or WU, or its diameter is bounded by « if W L U. Therefore, for ¢ > 3max{¢, a},
it follows that W € supp.(Fy x {e}) if and only if W € supp,(Fy x {e'}).

Notation. For every ¢ > 3max{{, a} we denote by supp,(Fy) the set supp,(Fy x {e}) for any

GEEU.

Lemma 2.1.9. Let ¢ : (X,6) — (X', &) be a full hieromorphism and let € > 0. There exists

€0 > 0 such that for every ' = &g

@ (supps/ (X)) C supp, (¢(X)) )

Proof. The hieromorphism ¢ is full, and the maps ¢}; omy uniformly coarsely coincides with 7y 0 ¢
for all U € & (here U’ denotes ¢©(U)). Therefore, there exists K > 0 such that for all z,y € X,
forall U e &

(2.2) K 'dy(ny(z),mu(y) — K < du (70 (8(2)), 700 (6(y))).

Let g9 := Ke + K?. For ¢’ > €, consider W € supp_.(X): we prove that ¢ (W) € supp, (¢(X)).
Indeed, let x,y € X be such that dw (7w (z), 7w (y)) > ¢’. By Equation (2.2)) and the definition of
€0 we have that

dw (mw(¢(x)), mw ($(y))) > &,

that is W' = ¢® (W) € supp, ($(X)). O

Definition 2.1.10 (Concreteness). Let (X, &) be a hierarchically hyperbolic space with the
intersection property. We say that the hierarchically hyperbolic structure is e-concrete if either

the space X' is bounded, or the E-maximal element S of G is equal to

\/{V € & |V esupp,.(X)}.

We say that the hierarchically hyperbolic space is concrete if it is e-concrete for some e greater

than 3 max{¢, a}.
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Remark 2.1.11. Given a hierarchically hyperbolic group (X, &) with E-maximal element S, we
have that supp.(Fg) € supp.(X), because Fg < X.

Notice that the other inclusion is not guaranteed, in general. Nevertheless, if the hierarchical struc-
ture on X is normalized |35, Definition 1.15], that is if the projections 7y are uniformly coarsely
surjective for all U € &, then it follows that Fg = X, and in particular that supp, (Fg) = supp,(X).
As specified in Remark [1.6.4] we are assuming this.

By (35l Proposition 1.16], any hierarchically hyperbolic space (X, &) admits a normalized hierar-
chically hyperbolic structure (X, &’) and a hieromorphism ¢: (X,&) — (X, &’) where ¢: X — X
is the identity and ¢¢: & — &’ is a bijection. Therefore, up to considering normalized hierarchi-
cally hyperbolic spaces, an unbounded hierarchically hyperbolic space (X, &) is e-concrete and its

C-maximal element S is equal to \/{V € & | V € supp.(Fs)}.

Note that in Definition [2.1.10] we are not asking that the maximal element S already belongs to
supp, (X): for instance, this is not the case for direct products of hierarchically hyperbolic spaces
and groups, where the hyperbolic space associated to this E-maximal element is bounded.

We are interested in concrete hierarchically hyperbolic spaces for the following proposition:

Proposition 2.1.12. Let (X, &) be an unbounded hierarchically hyperbolic space with the inter-
section property and let € > 3max{{, a}. There exists G, € & such that (X, &) is an unbounded,

e-concrete hierarchically hyperbolic space with the intersection property.

Proof. Let S be the E-maximal element of &. If

(2.3) S=\/{Ve&|Vesupp.(X)},

then G, = G and there is nothing to prove.

If the equality of Equation ([2.3)) is not satisfied, then \/{V € & | V € supp.(X)} is properly nested
into the E-maximal element S. Let S, :=\/{V € & | V € supp,.(X)} and &, := S&g_.
We now claim that there exists C' = C(e) such that X = Ng(Fg.). Let z € X and consider the

tuple ¢ defined as follows:

v (z), VVeGg;
cv=7my(e), VVebg;
Py VVAS. or VoS
where e € Eg_ is a fixed, arbitrarily chosen element.

The tuple ¢is a k-consistent tuple, where x depends only on € and the constants of the hierarchically

hyperbolic space (X,&). By [14, Theorem 3.1], there exists z € X such that 7y (z) =< 7y (¢) for
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every U € &, and by Definition the element z belongs to Fg_ x {e}. Let so be the constant
associated to the Distance Formula Theorem for the space (X, &), and consider s > max{e, so}.

There exist K,C > 0 such that

d(z,z) < K 2 {du(nu(z), 7y (2)}s + C
UeG

(2.4) =K | Y Adu(ru(@),mu(2)}s + Y, A{du(mu(@),mu(2)}s | +C

UeGs, UeG\Ss,

=K ) A{du(ru(x),mu(2))}s +C.
UeG\&s,
Note that dy (7y (z), 7y (2)) < € for every U € G\S,. Since s > ¢, from Equation we conclude
that d(z,2) < C.
To complete the proof, notice that Fg. x {e} can be endowed with the hierarchical hyperbolic
structure &g,. Since X = Ng(Fg, x {e}), the space (X,8g.) is hierarchically hyperbolic, being
quasi isometric to (Fse x {e}, 68), and it is concrete by construction.

The intersection property in (X, &g, ) follows from the intersection property in (X, S). O

Concreteness will play an important role in Lemma [2.3.2] and Theorem [2.3.3] after the proof of
Theorem 2.2.11

Lemma 2.1.13. Given a full hieromorphism ¢: (X,8) — (X', &), there exist constants K,C = 0

and s,s' > 0 such that

D Adv(ru (@), mo)ys <K Y, Adu(ro(d(@),mo($y))}y +C Va,ye X.

Ues U'ep0 (&)

Proof. For U € &, we denote ¢©(U) by U’. As the hieromorphism is full, there exists a uniform

constant & such that

(2.5) dy (T (), 70 (y)) < &dvr (mo/ (9(2)), 7o/ (9(y))) + &, VUEG, Vo,ye X.

Choose s and s’ such that

Suppose that s < dy (WU(m), ﬂU(y)) for a given U € &. Then, using Equation (2.5)), we obtain that

(2.6) 1< s < dy (v (6(@), 70/ (6(y)) = Lduv (7v (6(2)), 707 (6(y))) hor-

As s < dy (ﬂ'U(x), WU(y)) we have that {dy (WU(Z‘),ﬂ'U(y))}}S =dy (ﬂU(x),ﬂU(y)). It then follows
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that

{dv (7u(x), 70 (y)) }s = dv (7u (z), 70 (y)) < &dvr (Tor(P(2)), TU (D(Y))) + &
< du (mu ((x)), 7o (D(y))) }sr + €.

(2.7)

Therefore, using Equation (2.6) and Equation (2.7)), we obtain

{dv (v (2), 70 (y)) }s < E{dvr (7o (D)), T (6(Y))) }or + €
(2.8) < dv (rv(6(x)), 70 (6(y)) }o + Edv (mu (d(x)), 700 (8(y))) } s
= 2e{dy (mu (d(x)), mur (D(y))) }sr-

On the other hand, if s > dy (WU(x),ﬂU(y)) then
(2.9) {dv (mu(2), 70 (y)) }s = 0 < 2{du (wu7 (P(x)), Tur (D(y))) Yo,

so the inequality of Equation (2.8)) is satisfied also in this case.
Concluding, we use Equation (2.8) and Equation (2.9) to obtain that

Y du(mu (@), 7o)} < . 26{du (07 (), 70 (6(y))) }or

Ues Ues
= 2¢ Y {dv (mo ($(x), 700 (6(y))) Yo
Ues
=26 Y, Adv (7o (6(2)), 7 (b)) b,
U’e¢©(6)
and therefore the lemma is satisfied with K = 2§ and C = 0. O

Remark 2.1.14. The argument of Lemma [2.1.13| can be used to show that there exist constants

K,C >0 and 5,5 > 0 such that

Y, Mdu(ru(6(2)), 70 (8() s < K Y {du(mu (@), mu@m)}s +C VayeX.
U'ed® (&) Ue&

Lemma 2.1.15. Let ¢: (X,8) — (X', &) be a full hieromorphism and S be the E-mazimal

element in &. If §' = ¢°(S) and Fs: x {e} is a parallel copy of Fs, then my+(Fg x {€}) is coarsely

equal to my/ (@(X)) for all V' € &,.

Proof. Let z € Fg and consider the tuple b = (va(z)) As z € Fg/, the tuple b is k-

Vie&’,”
consistent. The hieromorphism ¢ is full, therefore &, = ¢?(&) and

(v (Z))V'eg’sl = (mv/(2) yrego (&)
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As the full hieromorphism ¢ induces uniform quasi isometries (5;", CV’' — CV at the level of
hyperbolic spaces, we obtain a tuple @ = (av)ves, where ay := ¢f (mv/(2)) < CV.

The tuple @ is k’-consistent, and therefore there exists x € X that realizes it, by |14, Theorem 3.1].
Exploiting the fact that the maps ¢}, o 7y uniformly coarsely coincide with the my o ¢ (compare
Definition and in particular Equation (I.2)), we conclude that the element ¢(x) realizes the
tuple b:

(2.10) (7TV’ (Z))V'e¢<>(6) = (WV’ (¢(z))) Viep? (&))"

That is, there exists a constant 77 depending only on the realization Theorem [14] Theorem 3.1]
and the hieromorphism ¢ such that dy- (my/(z), 7y (6(2))) < Ty for every V' € &%,.
Conversely, let ¢(z) € ¢(X) and consider the tuple ¢

7TV/(¢(SC))7 VV'e 6(9/;
cv = Ay (e), VV'e 6’547;

o3, VV'AS or V' 2 8.

Since ¢ is a k-consistent tuple, there exists z € X such that 7wy (z) = 7y (¢ ), and z belongs to
Fg x {e} by Definition Therefore there exists Th such that dy (my(2), my(¢(z))) < Ty for
every V' € &,. O

Proposition 2.1.16. If ¢: (X,8) — (X', &) is a full hieromorphism between hierarchically hy-
perbolic spaces, then the spaces X and Fg are quasi isometric, where S’ is the image in &' of the

E-mazimal element of G.

Proof. We define a map ¢: Fg — & and we prove that it is a quasi isometry. Let z € Fg/, and

consider the tuple b= (va(z)) . As z € Fg/, the tuple b is K—consistent. The hieromorphism

V'e&y,
¢ is full, so that &', = ¢°(&) and

(WV’<Z))er6'S, = (W(@)yiepo o)

As the full hieromorphism ¢ induces uniform quasi isometries ¢f: CV' — CV at the level of
hyperbolic spaces, we obtain a tuple @ = (ay )ves, where ay := ¢}, (my/(2)) = CV.

The tuple @ is x’-consistent, and therefore there exists x € X that realizes it by |14, Theorem
3.1]. Exploiting the fact that the maps ¢, uniformly coarsely commute with the projections 7y

(compare Definition and in particular Equation (1.2))), we conclude that the element ¢(z)
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realizes the tuple b:

(2.11) (7TV’ (Z))V/€¢o(6) = (WV’ (¢(m))) ViedO (&)

Define ¥(z) := x. The element x is not uniquely determined by the tuple 5, but it is up to uniformly
bounded error.

Let us prove that 1 is a quasi isometry. Indeed, let z1, 2o € Fg.. Using, in this order, the Distance
Formula in X’, Remark and the fact that ¢ is a full hieromorphism combined with the

Distance Formula in Fg/, we have that

dx($(21),9(22)) < K Y {du(ru (@ (1)), 7o ((z2)) }s + C

Ue&

(2.12) < K<K1 Z {dU/(ﬂ'U/(Zl),ﬂ'U/(,Q))Bg+Cl) +C
U'ed®(6)

< K(Kl (KQdX/(Zl, 22) +Cs) + C1) +C.

On the other hand, we have that

dxr (21, 22) < K3 Z {dv (7 (z1), 70/ (22)) }s + Cs
U'egp®(6)

(2.13) < K5 (Ka Y Ado (ro (9(0)), 70 (6(22))) b ) + C
UeG
< Kj5 (K4(K5dx(¢(21),¢(22)) + 05) + 04) +Cs.

Equation (2.12]) and Equation (2.13]) prove that 1 is a quasi-isometric embedding.
Moreover, 1 is coarsely surjective. Indeed, given an element € X, the tuple (my/(¢(2))ych0(e)
is consistent, and therefore there exists a point z € F g/ coarsely realizing it, that is uniformly close

to x.

We are now ready to prove the main result of this chapter.

2.2 Proof of the main Theorem

Theorem 2.2.1. Let ¢: (X, 8) — (X', &) be a full hieromorphism with hierarchically quasiconver

image, and let S be the E-maximal element of &. The following are equivalent:
1. ¢ is coarsely lipschitz;

2. ¢ is a quasi-isometric embedding;
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3. the maps gg(x): Fgo(sy — ¢(X) and 9F,05) ¢(X) — Fuo(g) are quasi-inverses of each

other, and in particular quasi isometries;

4. the subspace ¢(X) S X', endowed with the subspace metric, admits a hierarchically hyperbolic

structure obtained from the one of X by composition with the map ¢;

5. mw(p(X)) is uniformly bounded for every W e &"\¢°(&).

Proof. The implications 3 < 5= 1< 2 =4 =1 and 2 = 3 are enough to prove the theorem.

By the Distance Formula applied in (X’,&’), there exists sg such that for every s > s
there exists K’,C’ > 0 for which

(2.14) dx(¢(x),6(y)) < K' Y {dv (mv($()), mv (6())}s +C' Va,ye X.

Ves’

Also, the Distance Formula applied in (X, &) implies that there exists s; such that for every s > s

there exist K, C = 0 for which

(2.15) dx(z,y) > K~ Y {du(ru(@),mu(y)}s —C Va,yeX.
UeS

Now let x,y € X. By hypothesis my (¢(X)) is uniformly bounded for every W e &\¢%(&). Let

M Dbe this uniform bound, and choose s such that s > max{M, so}. Therefore

2 Hdv (mv(@@), v (@) = Y, Adv (mur(9()) mo ($(y)}s

Ves’ U'ep® ()

and Equation (2.14]) implies that

da(6(x),6(y)) <K' D, {dv (mur(6(x)), 70 (6(y)))}s + C'.

U'ed?(6)

Using Remark we can choose 5,5 > s; and K,C > 0 for which
> Adv (wo (8(@)), 7o ($W)}s < K D {du (v (), 7o (y)}s + C.
Ue&

U'ed®(6)

By taking § = max{sg, 5} we get

Y, Ado (ro(d@) mo (@W))ks < Y, Advr (mo(é(2), 7or ($(y) s

U'eg® (&) U’eg®(6)

<K Z {dv (nu(2), 70 (y)}s + C.

UeS
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As § > s1, by the Distance Formula, Equation (2.14) and Equation (2.15) we obtain

dx(6(2),0(y) <K' > {dv (mu(¢(x)), 7o (6(y) 5 + C’

U'eg? (&)

<K'K ) {dv (rv(x), 70 (y)}e + K'C + C'
UeS

< K'K (Kdx(z,y) + KC) + K'C + C' = Rdx(z,y) + R’

for appropriate constants R and R’. Therefore, ¢ is a coarsely lipschitz map.

If ¢ is a quasi-isometric embedding, then it is a coarsely lipschitz map.
Suppose now that ¢ is a coarsely lipschitz map. To conclude that it is a quasi-isometric embedding,
we need to prove that there exist constants K,C' > 0 such that dx(z,y) < Kdx (¢(x),o(y)) + C
for every z,y € X.
By the Distance Formula applied in (X, &), there exists sg so that for every s > so there exist

K1,C1 = 0 so that

dx(z,y) < K3 Z {dv(mu(x),7u(y))}s + Ch, Vx,ye X.
UeS

Also by the Distance Formula applied to (X', &'), there exists s; so that for every s > s; there
exist Ko, Cy = 0 so that

da (d(x),0(y) = Ky' Y {dw (mw (¢(2), 7w (6(y)))}s — Ca,  Va,ye X

Wes!

By Lemma [2.1.13] we can choose 3,5 > s; and K,C > 0 such that

Y ldu (mo(@),ro)ls < K ) Adu (mor(6(2)), 7o (6(y))}s + C

UeS U'ed®(6)

<K ) dw(mw (@), mw(éy))}s +C. Va,ye X
Wes’

Let s = max{sg, §}. Since s = 59 and s > 3, for any z,y € X we obtain that

dx(z,y) < Ky ) {du(mo(@),mu(y)}s + O < K1 Y {du(mu (@), 7o (y)}s + Ca
Ues Ues

< K (K >, ddw (mw (d(@), 7w (6(y) }s + C> +C

Wes’

< KoK (Kada (6(), 6(y)) + KCa) + KiC + Cy = Sda (6(2), 6(y)) + 5

for appropriate constants S and S’. Therefore, ¢ is a quasi-isometric embedding.
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If the map ¢ is a quasi-isometric embedding then (4) is automatically satisfied, because
hierarchical hyperbolicity is preserved under quasi isometries (compare with the remark before

[12, Theorem GJ).

As the hieromorphism is full, every induced map ¢f: CU — C(¢°(U)) is a (&, &)-quasi

isometry, where ¢ is independent of U € &, that is

&y (ny (), 70 (y)) — € < dyow) (88 (Tu (2)), ¢ (o (¥))) < &du (Tu(x), 7u (y)) + &

for all U € G and for all z,y € X.
By the Distance Formula applied in (X, &), there exists so such that for every s > sg there exist

K1, Cy = 0 satisfying

(2.16) dx(z,y) = K'Y {dy(mu(z),m7u(y)}s — C1,  Va,yeX.
Ues
We apply now the Distance Formula to the hierarchically hyperbolic space (¢(X), ¢%(&)). There-

fore, there exists s; such that for every s > s; there exist Ko, Cy > 0 satisfying

(2.17) dx($(x), $(y) < Ko Y, Adv(mo(d(@), 7o ($(y))}s + Cay  Vaye X.
U'eg© (&)

By Remark [2.1.14, we can choose 5,5 > sy and K,C > 0 for which

(218) > Afdu (7 (d(2)), 7o (d(W)}s < K D {dv (ru (@), 7u(y)}e +C,  Va,ye X,
U/ep(S) Ues

For s = max{si, §}, combining Equation (2.16]), Equation (2.17), and Equation (2.18)), we obtain
that
da($(@),0(y) < Ko Y, Adur(wur (@), 7o (6(y)))}s + Co

U’egp®(6)

< Ko (K Z {dU(ﬂ'U(x),ﬂ'U(y))}g/ + C) + Cy

UeS

< KoK (Kidx(z,y) + K1C1) + KoC + Cy = Tdx (z,y) + T’

for appropriate constants 7' and T”. Therefore, ¢ is a coarsely lipschitz map.

By hypothesis, gr,, : #(X) — Fg and gyx) : Fsr — ¢(&X) are quasi inverses of each other,
and by construction of gate maps they are also coarsely lipschitz. Therefore Fg/ and ¢(X) are
quasi-isometric, where the quasi-isometry is given by gr,,, and in particular there exists C' > 0

such that



2.2. PROOF OF THE MAIN THEOREM 47

d(X) € No(ggx)(Fs))-

Let W e &\¢?(S). By the previous inclusion, there exists C’ > 0, depending on C and on 7y,
such that

(2.19) Tw (P(X)) = Nov (7w (gox) (Fsr)))-

Since the hieromorphism ¢ is full, ¢®(&) = &’,. Moreover, by construction of gate maps, the
set mw (gg(x)(Fs)) is uniformly coarsely equal to pr,, sx)) (mw (Fs)), where pr, (sx)) is the
closest-point projection in CW to the quasiconvex subspace my (¢(X)). Since W € &'\&%,, we
have that diam(mw (Fg)) < a by [14, Construction 5.10] and, as a consequence, that there exists

o such that diam(mw (g¢(x)(Fsr))) < o'. The first condition of the theorem follows from this, and

Equation (2.19).

We claim that there exists M > 0 such that
dar(gFg, © 8px)(2),2) S M, dx(ggx) 0 0F, (¥),y) S M,  VzeFg, Vye o(X).

By applying the Distance Formula to the space (X', &’), there exists s¢ such that for every s = s
there exist K1,C; > 0 such that

(g7, © 9o(x)(2),2) S K1 Y, {du(mu(gry, © 9ox)(2), 70 (2))}s + C1,  VzeFg.
Ues’

By Lemma diam (7w (Fg/)) < € for every W € &\&'g for an appropriate ¢ > 0. For

s = max{sg, e} and the previous equation, it follows that

(2:20) dr(gr, 08(x)(2),2) < K1 Y {dvr(mur(gr, 09o(x)(2), 700 (2))}s +C1,  VzeFg.
Ures,

For z € Fg, using the fact that gr_, (2) = 2, we obtain

duyr (707 (9F 4, © 8g(x)(2)), 07 (2)) = dv (T0 (9, © 8p(x) (2)), U7 (9F 4, (2))) <
(2.21) < du (p(mor 0 gy (2)), p(mor(2))) + 2k

< Kdy (7TU/ (g¢(;‘g)(z), WU/(Z)) +cd + 2k,

where p: CU" — 7y (Fg) is the closest-point projection to the quasiconvex subspace 7wy (Fg/) S
CU’, and k',¢ denote the multiplicative and additive constants associated to the coarsely lips-

chitz map p, and k denotes the Hausdorff distance between the (uniformly) coarsely equal sets



48 CHAPTER 2. STRUCTURAL RESULTS

7w (gF, (7)) and p(mw (x)), for every z e A’

By Lemma [2.1.15|there exists a constant 7' > 0 such that for every z € F g/ there exists ¢(z) € ¢(X)
for which dy (7 (¢()), Tv/(2)) < T for every U' € &,. Since my:(gex)(2)) coarsely equals
Py (6(x)) (Tu7(2)), we obtain that

dU/(wU/(g¢(X) (Z))JTU/(Z)) <71 VU e€@&.

By choosing an adequate s in Equation (2.20]), we conclude that
dx(gFg © () (2),2) < Ch.

In order to show that dx/(gs(x) © 9Fg (¥),y) is uniformly bounded for every y € ¢(X) let p > 0
denote the constant such that diam(my ((X))) < p for every W € &\¢?(6) = &'\&,. By the

Distance Formula there exists s > 0 such that for all s > sy there exists Ko, Cy such that

(2.22) dar(gpx)°0r (1),y) < Ko Z {du: (v (8p(x) 0875 (1) 70 (1)) }s+Co, VyepX).
U'es’

Since 77 © @y(x) = Pryi(g(x)) © Tuv, it follows that mpr(gg(x) © 9F,) = Pry.(s(x) (TU7 © OF,)-
Moreover, if U" & 5, it follows that 7y o gr,, = 7y, because 7y (Fs/) = 7wy (X') for every
U’ £ 8. Therefore, we conclude that 7/ (g4(x)09F,, ) = P, (s(x)) OTu- For any y € ¢(X) we have
that pr_,(s(x)) © 7o' (y) = v (y) and, therefore, Ty (gg(x) © gF, (v)) = Tu (y) for every U’ € &,
that is for all U’ € &’ and for all y € $(X'), we have that dy(7v/(g4(x) © 974 (v)), 77 (y)) < [ for
some constant ji.

For s > max{so, i1, fi}, Equation (2.22)) yields that d(gysx) © g¥,, (¥),v) < C5, that is the distance

is uniformly bounded.

We claim that (¢(X), &’ g/) is a hierarchically hyperbolic space. Since (X, &) is a hierarchi-
cally hyperbolic space and ¢(X) is quasi isometric to X', we can endow ¢(X’) with the hierarchically
hyperbolic structure given by the index set &. For V € &, the projections 7y : ¢(X) — CV in this
latter hierarchically hyperbolic space are defined to be my 0 ¢!, where ¢! is a fixed quasi inverse
of ¢: X - ¢(X), and 7wy are the projections in the space (X, S).

Moreover, we can define the hierarchically hyperbolic space (¢(X), $?(&)). For V' € ¢°(&), that
is for V/ = ¢9 (V) with V € &, the projections Ty : ¢(X) — CV' are defined to be ¢¥ o my 0 ¢,
where ¢! and my are as before, and ¢¥,: CV — CV’ are the (uniform) quasi isometries provided
by the hierarchically hyperbolic space (X, S).

By Definition we have that ¢}, o my = my o ¢, where my~ is the projection in the space

(X', &"). Therefore Ty = my: 0 ¢ o ¢~ 1, which uniformly coarsely coincides with 7y, being ¢ and
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#~1 quasi inverses of each other. Thus (#(X),¢®(&)) is a hierarchically hyperbolic space, where
we can take the projections to be my/ for all V’ € ¢9 (&), instead of Ty

From this point, the argument to prove that there exists M > 0 such that

dx(gFg © 9(x)(2),2) < M, dx(gex) © OF, (¥),y) < M VzeFg,yep(X)

is exactly the same as the one used in the previous implication 5 = 3, and it is omitted. O

2.3 Main structural results
Theorem has several consequences. We start with the following;:

Remark 2.3.1. The combination theorem of Behrstock, Hagen, and Sisto [14, Theorem 8.6] holds
without the first part of their fourth hypothesis, that is

if e is an edge of T" and S, is the E-maximal element of &, then for all V € &+, the

elements V' and ¢§i (S.) are not orthogonal in &+ .

Indeed, this hypothesis is used (compare |14, Definition 8.23]) to define the uniformly bounded
sets p%VVV]] when [IW] and [V] are transverse equivalence classes whose supports do not intersect.

By Theorem [2:2.3] instead of defining

W 6%, (5)
Prv] = v o Py,

as done in |14} Definition 8.23], we can impose that

w
P%V]] =tv (7TV6+ (¢e+ (Xe)))a
where e is the last edge in the geodesic connecting Tjy) to Tjyq, with et e Tivy, and cy is the
comparison map from CV,+ to the favorite representative of [V]. We will exploit this fact in the
proof of Theorem [3.0.1] (compare Subsection and Equation (3.14)). The proof of |14, Theorem

8.6], after this modification, is not altered.

Lemma 2.3.2. Let ¢: (X,8) — (X', &) be a full, coarsely lipschitz hieromorphism between hi-
erarchically hyperbolic spaces such that ¢(X) is hierarchically quasiconver in X', and let S be the
E-maximal element of &.

There exist € and gg such that for all e’ = g, if (X, &) is '-concrete, with the intersection property
and clean containers, then for any element W € &' we have that W L supp, ((b()()) if and only if
W L ¢°(S).
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Proof. Let ¢ > max{3q, 3¢, 1u}, where p is the uniform bound given by Theorem on the
diameters of my(¢(X)) for all U € 6"\¢°(6), and gy and & be as in Lemma Suppose
that W L ¢°(S), so that W L 6;}0(3). By the choice of € and by Theorem we have that
supp, (¢(X)) < 6;0( s)» because the hieromorphism if full, coarsely lipschitz, and with hierarchi-
cally quasiconvex image. Thus W L supp, ((/ﬁ(X ))

Assume now that W L supp, (gb(X)) As the hierarchically hyperbolic space (X, &) is ¢’-concrete,
we have that S = \/ supp. (X), and therefore

(2:23) 6°(8) = 6% (\/ supp..(2)).

The hieromorphism ¢ is full and (X , (‘5) satisfies the intersection property, therefore by Lemma

and Equation we obtain that

(2.24) ¢°(S) = \/ ¢° (supp (X)),
and by Lemma [2.1.9 we have that

(2.25) ¢° (supp.: (X)) < supp. (¢()).

Combining Equation (2:24) and Equation (2.25), we conclude that ¢(S) = \/ supp.(¢(X)). As
W L supp.(¢(X)), by clean containers and Lemma it follows that W L \/supp,(¢(X)).

Therefore W L ¢°(S). O

Theorem 2.3.3. Let ¢: (X,6) — (X', &) be a full, coarsely lipschitz hieromorphism with hi-
erarchically quasiconvexr image, and assume that X is unbounded and concrete. There exists a
constant n = 0, depending only on the hierarchical structures and the hieromorphism ¢, such that

dx(Fs, ¢(X)) <, where S = ¢°(S) and S is the T-maximal element of S.

Proof. Let kg and E be the constants coming from the hierarchically hyperbolic space X', and let
@ be the uniform constant on the diameters of the sets my (¢(X)), for all W e &"\¢® (&), provided
by Theorem [2.2.1

Let V' € supp(¢(X)), take k such that

k > max{2kg, 2E, E + p}

and consider z,y € X for which

(2.26) dy (v (6(2)), T (6(y))) > 2.
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Let W e &"\¢® (&) be such that either VAW or V' = W. We claim that either

/ /

(2.27) dw (rw (@) ply ) <26 o dw (Tw (o). ol ) < 2%

Indeed, assume that Equation (2.27)) is not satisfied and that WA V’. By consistency, as 2k > ko,

we have that

dy (WV’(QS(x))vaV/"/’) < kg and dy (WV/(¢(3J)),P\V/V/) < Ko-

This leads to a contradiction with Equation (2.26]).

Assume now that V' = W. Again by consistency, we have that

diamey (mv:(6(x)) U py (Tw (¢(2)))) < ko and  diameys (mv: (d(y)) U pvt (7w (6(y)))) < Ko
Let o be the geodesic in CW with endpoints 7y (¢(x)) and 7w (¢(y)). By the Bounded Geodesic
Axiom there are two possibilities:
1. diameys (pV (o)) < E, or
2. 0 " Nelply) # J.

In the first case, applying the triangle inequality we conclude that
dy: (v (@(x), Ty (d(y)) < ko + E + ko = 2k + E < 2k,

which contradicts Equation (2.26]).
For the second case, since W € &'\¢®(&) we know that my (¢(&)) is bounded by the uniform
constant p. This means that dy (7w (¢(2)), 7w (¢(y))) < p. Furthermore, since there exists z € o

such that dy (z, p},/[,,) < F, using the triangle inequality we have that

dw (mw(6(@).ply ) S B+ and  dw (mw(6(y). oy ) < B+

Using the triangle inequality we obtain that

dw (mw (&), 7w (6()) < dw (mw (6(2)), oy ) + dw (mw (D)), ol ) < 2(E + p) < 25,

contradicting the assumption that the conditions in Equation are not satisfied. Therefore,
Equation follows.

We have shown that for every V' € supp,,.(¢(X)) and every W € &"\¢® (&) such that W 2 V' or
WhV' we have that dw (mw (6(X), plyy) < 2x. For S' = ¢°(S), let U € &' be such that U 2 5’
or UhS' (in particular, U € &"\¢®(&)). By Lemma there exists V' € supp,, (#(X)) for
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which U £ V’. Since U £ S’ and V' = 9’, it follows that U & V'. Therefore, either U = V' or
UAV’, and by the above argument dy (7 (¢(X)), p¥ ) < 2r. Since dy(pf, pt) ) < ko, it follows
that dy (p2 , v (6(X))) < 3k.

We now claim that there exists some constant v such that dyr (Fg, #(X)) < /. Fix 29 € X, and

let z € Fg be the realization point of the consistent tuple

Tu(9(x0)), YV UEGg;
mu(d(w0)), VU e &g,

o YUANS or U2 S

By the above argument and the choice of the realization point z, if follows that the distance
dy(my (2), 7 (¢(X)) is uniformly bounded, for all U € &'. Since ¢(X) is a hierarchical quasiconvex
subspace of X”’, there exists a constant 1 depending only on the hierarchically hyperbolic structure
of (X', &) for which dx:(z, (X)) <. Therefore dx'(Fg/, 9(X)) < n and the proof is complete.
O

We end the chapter with the following corollary of the previous theorem:

Corollary 2.3.4. Let ¢: (X,8) — (X',&") be a full, coarsely lipschitz hieromoprhism, assume
that X is unbounded and concrete, and let S' = ¢°(S), where S € & is the S-mazimal element.

For all U € &' such that either S' = U or 8'&U, the sets pf and 7y (¢(X)) coarsely coincide.

Proof. For any U € &' such that either 8" & U or S’AU, we have that my(Fg/) = p[S]/ by [14,
Construction 5.10]. Moreover, the distance dy (my (Fg/), 7y (¢(X))) is at most Kn+ K by Theorem
233

Since diamey (1 (4(X))) < p and diamey (pS) < &, any pair of elements in the sets pf =

7 (d(X)) and 7y (Fg/) is at uniform bounded distance from each other. O



Chapter 3

A Combination theorem

In this chapter we introduce a combination theorem for hierarchically hyperbolic groups. Before we
begin, we would like to point out that there have been previous efforts in establishing combination
theorems on this class. In |14, Section 8], Behrstock, Hagen and Sisto impose strict conditions on
a tree of hierarchically hyperbolic spaces (something completely analogous to the trees of hyper-
bolic groups considered by Bestvina and Feighn, and mentioned previously - see Definition
that ensure that the resulting space is again hierarchically hyperbolic. From this, they deduce
[14] Corollary 8.24] the hierarchical hyperbolicity of fundamental groups of finite graph of groups
satisfying related strict conditions. In [84] Theorem 4.17], Spriano shows that certain amalgamated
products of hierarchically hyperbolic groups are hierarchically hyperbolic, building on results from
his previous work [83].

We now state the main theorem of this chapter.

Theorem 3.0.1. Let T be a tree of hierarchically hyperbolic spaces. Suppose that:
1. each edge-hieromorphism is hierarchically quasiconvex, uniformly coarsely lipschitz and full;
2. comparison maps are uniform quasi isometries;
3. the hierarchically hyperbolic spaces of T have the intersection property and clean containers.

Then the metric space X(T) associated to T is a hierarchically hyperbolic space with clean con-

tainers and the intersection property.

We devote Section 3.1 and Section to introduce the necessary ingredients and prove the main
theorem. Section [3.3]of this chapter is devoted to corollaries following from Theorem [3.0.1

The second condition of Theorem [3.0.1] cannot be further relaxed. A counterexample of Theorem
[3:0:1] without the second hypothesis is given by Bass-Serre trees of Baumslag-Solitar groups. In-
deed, non-abelian Baumslag-Solitar groups are HNN extensions Zxyz, that is graph of groups of
hierarchically hyperbolic groups, and they are not hierarchically hyperbolic (recall Remark.
See Remark [3.3:8|for a detailed discussion relating Baumslag—Solitar groups with comparison maps.

53
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3.1 Trees of hierarchically hyperbolic spaces

In Subsection [1.9.1| we introduced the notion of tree of spaces. We saw that tree of spaces are
particularly useful when considering a complicated group that is known to act on a tree by isome-
tries (which, as we have seen in subsection is equivalent to saying that the group splits). In
short, a graph of spaces is analogous to a graph of groups; the difference being that in the latter
notion we associate groups and monomorphisms to vertices and edges whereas in the former we
associate metric spaces and injective functions. We now recall the more general definition of tree
of hierarchically hyperbolic spaces, originally introduced in [14].

A tree of hierarchically hyperbolic spaces T is a graph of spaces, but we further require the attaching
maps associated to edges to be hieromorphisms (Definition . There are several benefits to
considering trees of hierarchically hyperbolic spaces in this way: for instance, a given element V in
the index set associated to a vertex can be propagated across the underlying tree of 7, providing
a subtree that witnesses the presence of V' in other vertex spaces. We call such a subtree a support
tree (Equation ) We devote this section to explore trees of hierarchically hyperbolic spaces

and the behaviour of its various support subtrees.

Definition 3.1.1. Let T' = (V| E) be a tree. A tree of hierarchically hyperbolic spaces is a quadruple
T = (T7 {X’U}’UEV7 {XE}EEE7 {¢€i . Xe g Xei}eeE) SuCh that

1. {X,} and {X.} are families of uniformly hierarchically hyperbolic spaces with index sets {&,}
and {&.} respectively;
2. all ge, 1 (Xe,6.) — (X, , 6, ) and ¢e_: (X, S.) — (Xe_,S._) are hieromorphisms with

ey

all constants bounded uniformly by some £ > 0

To a tree of hierarchically hyperbolic spaces 7 we can associate the metric space X(7) :=
Ll,ey (Xy,d) in the following way. If z € X., then add an edge between ¢._ (x) and ¢, ().
Given z, 2’ € X in the same vertex space X, then define d'(x,2’) to be dx, (x,2’). Given z,2' € X
joined by an edge, define d’'(z,2’) = 1. If 2, 21, ..., 2, € X is a sequence with consecutive points

either joined by an edge or in a common vertex space, then define
m
xOv xm 2 ‘T’L 1, x1

Finally, given z,2’ € X, define
d(z,2') = inf{d (x,2") | ©=x9,...,2,m =2’ asequence}.

Following [14, Section 8], for each edge e and each W._ € &._  and We, € 6., we write
We_ ~q We, if there exists W, € &, such that 9 (W) = W,_ and qﬁ& (We) = We, . Then, the

transitive closure of ~4 defines a equivalence relation in | |, &,, denoted by ~.
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The support of an ~-equivalence class [V] is
(3.1) Tiv) = {v € T | there exists V, € &, such that [V] = [V,]}.

By definition of the equivalence ~, supports are trees.

Lemma 3.1.2. Let T be a tree of hierarchically hyperbolic spaces with full edge hieromorphisms.
If [U] = [V] then T[V] = T[U]

Proof. As [U] & [V], there exist a vertex u € T and representatives U,,V, € &, of [U] and [V]
respectively such that U, E V. Let v € T}y/: we will prove that v € Tj).

Let o be the geodesic connecting u to v in the tree T, with consecutive edges eq, ..., ek, so that
e;] =u and e,:r = v. Since u,v € Ty} and supports are connected, we conclude that eii € 1y for
alli =1,...,k. Therefore, there exist representatives ‘/;'L_ and Ve:r = Vei_+1 of [V] in each index set

i

&, +, and there exist representatives V., € &, in each edge space on ¢ such that d)fi (Ve,) = V,+.

Since U, EV, =V, - = #°_(V.,), by fullness of ¢,- (compare Definition |1.7.8) we know that there
1 el 1

exists some U,, € &,, such that 6253— (Ue,) = U, and U,, = V,,. Thus there exists a representative
1

Uy = ¢§1+(Uel) of [U]in &,

As hieromorphisms respect nesting, we know that Uef = VE;r. Applying the same argument to

the other edges e; of o, we conclude that there exists a representative U, of [U] in &, such that

Uy, E V,. Therefore T}y < Ty O

Definition 3.1.3 (Gate maps in trees of hierarchically hyperbolic spaces). Let 7 be a
tree of hierarchically hyperbolic spaces and assume that the image of the hieromorphism ¢, :
(Xe, &) — (X, 6,) is hierarchically quasiconvex (recall Definition for every e € E and
v € V connected to e. The gate map g,: X — X, is defined as follows. Let x € X be an arbitrary
element. If z € X,, then define g,(z) := x. If x ¢ X, then we define g, (z) inductively. Let w
be the vertex such that x € X, suppose that dr(v,w) = n > 1, and that g,(—) is defined on all
vertex spaces that are at distance strictly less than n from v. Let v be the geodesic in T' connecting

w to v, let e be its first edge, with e~ = v. It follows that dr(et,v) = n — 1. Then

8,(2) = 8 (6e 2 G- (84, (x)(@)) )

where ¢, : X .- — X, is a quasi-inverse of ¢.-: X — X,-.

Definition 3.1.4 (Comparison maps). Let T be a tree of hierarchically hyperbolic groups, [V]
be an equivalence class, and let u # v be two vertices in the support of [V]. The comparison map
¢: CV,, — CV, between the hyperbolic spaces associated to the representatives V,, and V,, of the

class [V'] is defined as follows.
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Assume first that v and v are vertices connected by a single edge e such that u = e~ and v = e*.

Then, the comparison map is defined as
¢:= ¥, o@ : CV, — CV,,.

Where the maps ¢*, : CV, — CV,+ and ¢*_ : CV, — CV,- are the quasi-isometries induced by the
hieromorphisms ¢+ : X, — X+ and ¢.- : X, — X,- respectively and @ denotes a quasi inverse
of ¢¥*_.

For the general case, let v be the geodesic in T connecting u to v, let u; be the i-th vertex of
this geodesic (so that u = ug and v = w, for some natural number n > 0), and let ¢’ be the
edge connecting u;_1 to u;. For all ¢ = 1,...,n consider the hieromorphisms ¢6¢_ t X, = Xy,
and ¢+ : X, — Xy, and the induced quasi-isometries ¢:_, :CV,, » CV,,_, and ¢:_+ : CV,, —» CV,,
from the hyperbolic space associated to the representati\;e of [V] in &, to the h};perbolic spaces
associated to V,,, , and V,,, respectively. Finally, let @ CVy,_, — CV,, be a quasi-inverse of the
map ¢:Z’ for all 7. 1

Then, the comparison map ¢ is defined to be the composition of the previous quasi isometries:
(3.2) ci= ¢:‘; o¢2‘; ---o¢>:1, o¢:;: CVyy — CV,.

Remark 3.1.5. It is a fact |14, Lemma 8.18] that if the cardinality of supports is uniformly
bounded, then comparison maps are (£, £)-quasi-isometries, for some uniform (not depending on

the two vertices u and v) constant & > 1.

Remark 3.1.6. If the edge hieromorphisms {¢.+ }.cr of the tree of hierarchically hyperbolic spaces
T induce isometries at the level of hyperbolic spaces, then we can choose inverse isometries for the
maps ¢¥, . Therefore, from Equation (3.2) it follows that comparison maps in this particular case

are isometries.

We record now the following lemma, which is implicitly used in [14]. Its proof follows by applying
repeatedly the (coarsely commutative) second diagram of Equation (|1.2)).

Lemma 3.1.7. Let T be a tree of hierarchically hyperbolic spaces, and let [U],[V] be two equiv-
alence classes such that either [U|M[V] or [U] = [V]. If comparison maps are uniform quasi
isometries, then for all vertices u,v € Ty N Ty the set c(pg;) is coarsely equal to p%’, where

¢: CV,, — CV, is the comparison map.
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3.1.1 Trees with decorations

Recall that a tree of hierarchically hyperbolic spaces (as defined in Definition [3.1.1]) is a tuple
(3.3) T = (T (X0, 8 hoev (X, 8 beer) 100 (X 60) = (X, 6},

where T = (V) E) is a tree, {(X,,Sy)}vev} and {(Xe, G¢)}ecr} are families of uniformly hierar-
chically hyperbolic spaces, and ¢o+: (X, S.) — (Xo+,8.+) and ¢p—: (X, Se) = (X—,E,-) are
hieromorphisms with constants all bounded uniformly.

Recall that, on | |, &, one defines the following equivalence class: given an edge e = {v,w} € E
and U € &,, impose ¢%(U) to be equivalent to ¢%(U), and take the transitive closure of this to
obtain the desired equivalence relation. Given U € | | .\, G, its equivalence class is denoted by

[U].

In general, in a tree of hierarchically hyperbolic spaces T it might happen that two distinct equiva-
lence classes [U] # [V] are supported on exactly the same vertices of the tree T', that is Ty = Tjvy.
This is not desirable, and in this subsection we describe a slight modification of the tree 7 (and
therefore of the metric space X(7) associated to it) that ensures that [U] = [V] if and only if
Tivy = Tjv)- We achieve this by attaching to each vertex v of T' a tree of uniformly bounded
diameter, and refer to these attached trees as decorations. We denote the tree that is obtained
with this process by T. As a consequence, the new support trees IN“[U] will become larger than the
original ones (i.e. Tjy) S YN“[U] for each equivalence class [U]).

All the hypotheses of Theorem are preserved by adding these decorated trees (furthermore, the
metric spaces associated to the two trees of hierarchically hyperbolic spaces are quasi-isometric),
and therefore for the proof of the theorem we will assume without loss of generality that equivalence

classes are discriminated by their supports.

We now describe how to decorate the tree T of hierarchically hyperbolic spaces of Equation ,
to ensure that [U] = [V] if and only if Tjyy = Tjvy.

For any vertex v € T, let S, be the =-maximal element in &,, let U be any S-maximal element of
G, \{S,} and let Fy x {f} be a parallel copy of the Fy inside of X,. For any such choice, we add
a new vertex v and a new edge € connecting v and v. The metric spaces Xy and X are defined to
be Fy x {f}, with the induced metric.

It follows from |14, Proposition 5.11] that (Xg,GU) and (Xg,GU) are hierarchically hyperbolic
spaces, of complexity strictly lower than (Xv, GU). We refer to these index sets as Gg’f and Gg’f
respectively, where the exponent is added to keep track of the choices of the E-maximal element
U e &,\{S,}, and of the parallel copy Fyy x {f}.

The hieromorphisms ¢z+ and ¢z- are defined as follows. At the level of metric spaces, ¢g+: Xz —
X is the identity map and ¢3- : Xs — A, is the subspace inclusion. The map q§§+ : Gg’f — Gg’f is
the identity of the set Gy, and gbg, : Gg’f — &, is the inclusion. At the level of hyperbolic spaces,
the maps ¢§_7W,¢§+7W: CW — CW are the identity for each W € Gg’f. It is straightforward
to check that the commutative diagrams of Definition [1.6.6] are satisfied. Furthermore, since

¢§+,¢§, and ¢%, ., 9%, are identity maps or inclusions, it follows that ¢z+ and ¢z- are full



o8 CHAPTER 3. A COMBINATION THEOREM

hieromorphism. Moreover, they are quasiconvex.

We repeat this process for any newly produced vertex, until the complexity of the resulting hi-
erarchically hyperbolic spaces is one. In particular, given a new vertex v with associated hierar-
chically hyperbolic space (FU x {f}, GU) not of complexity one, consider a E-maximal element
V € 6y\{U}. Consider moreover a parallel copy Fy x {f'} of Fy in Fy x {f}, and repeat the
process to construct a new vertex with associated hierarchically hyperbolic space (Fy x {f}, &v).
We stress that Fy, is defined in the hierarchically hyperbolic space (FU x {f}, GU), and not in the
space (Xv,Gv) for which U € &,,.

We denote by 7 the tree of hierarchically hyperbolic spaces obtained from 7 following this process.
Notice that X (7)) can be naturally seen as a subspace of X(7), that is X(7) < X(7). Moreover,
as the complexity of the hierarchically hyperbolic spaces of 7 is uniformly bounded and each step
of the described process reduces the complexity by one, there exists a uniform constant C' such
that N (X(T)) = X (7). In particular, the inclusion map 1: X(T) — X(7) is a quasi isometry,
and therefore the two spaces X(7) and X (7) are quasi isometric.

In X(7), we denote by ~, the equivalence relation described in Subsection by [U]. the
equivalence class of U € | |5 ;- 63 with respect to ~,, and by ZN“[U]* the support of [U].. Notice
that IN“[U]* NT = Ty forallU € | |,y &, and that for all Ve L Gy thereexists Ve | | o Sy

such that V ~. V.

e\7\V

Remark 3.1.8. In the context of hierarchically hyperbolic groups, decorating a tree 7 amounts
to the following. Let v be a vertex in 7 with associated group G, and consider the Bass-Serre tree
of G +y H, where H is a hierarchically quasiconvex subgroup of G of maximal, strictly smaller
complexity, and the two edge-embeddings are given by the identity map idg: H — H and by the
inclusion ¢: H — G. This Bass-Serre tree has one vertex vg with associated group G, and [G : H]
vertices v; whose associated groups are the G-cosets of the subgroup H, and edges e; connecting
Vg to v;.

In the tree 7, we replace the vertex v by vy, and we add new vertices v; and edges e; connecting
vo to v;. To these new vertices vy and v;, we associate the groups given by the Bass-Serre tree of
the splitting G *y H.

For any new vertex v; added in such way, we repeat the process unless the vertex group H has

complexity one.

Lemma 3.1.9. In the tree of hierarchically hyperbolic spaces T we have that [U], = [V]. if and

only Zf T’[UL = T[V]* .

Proof. One implication is trivial. Assume now that JN“[V]* = YN“[W]*. If the complexity of the two
equivalence classes [V], and [U], is different, then the decorations added to the tree T' are trees of
different diameter, and therefore we cannot have that T[V]* = T[W]*. Thus, the equivalence classes
have the same complexity, so neither cannot be properly nested into the other.

By construction, in the tree T there are vertices & and ¥ such that U and V are C-maximal
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elements of G5 and Gy, respectively. As T[U]* = Tﬂ[v]*, the equivalence class [U], must have a
representative in Gy, and [V],. must have a representative in G5. As neither equivalence class can

be properly nested into the other, it must then be that [U]. = [V].. O

If the tree T satisfies the hypotheses of Theorem m then also 7 does. We prove this in the

following lemmas.

Lemma 3.1.10. In the tree of hierarchically hyperbolic spaces T the edge hieromorphisms are full,

coarsely lipschitz, and hierarchically quasiconvex.

Proof. Let e be an edge in T. Two cases can occur: either e is an edge already in the tree T, or it
was added with the decoration of T

If e was already an edge in 7', then the edge hieromorphisms are full, coarsely lipschitz, and
hierarchically quasiconvex by the hypotheses of Theorem On the other hand, if e is a new
edge then the two maps ¢._ and ¢, are full, hierarchically quasiconvex isometric embeddings

(one is actually an isometry), by construction. O

Lemma 3.1.11. The hierarchically hyperbolic spaces of% have the intersection property and clean

containers.

Proof. Let v be a vertex of T. If ¥ € T then G5 has the intersection property and clean containers,
by the hypotheses of Theorem m Ifve JN“\T, then G = g,f coincides with &y, for some
U € |lyey ©v. Therefore, G5 has in intersection property. Let v € T be the vertex such that
Ueg6,.

g,f = Gy does not have clean containers. Therefore, there exists W €

Suppose that Gz =
Sy\{U} such that the set {Z € &y | Z L W} is not empty, and W & cont{W. By Lemma
we know that contEW = U A cont; W, where cont; W is the orthogonal container of W in
&,. Moreover W L cont W by clean containers in &,, and therefore we reach a contradiction, as

cont{ W £ cont, U. Thus, Gg“f has clean containers.

The argument for edge spaces is similar. O
Lemma 3.1.12. Comparison maps in T are uniformly quasi-isometries.

Proof. Let v, w be two vertices in T and let [V']« be an equivalence class supported on both vertices,
with representatives V,, and V,, respectively. Consider the comparison map ¢: CV, — CV,,, as
defined in Equation . If both vertices already belong to T < i then the map c¢ is a uniform
quasi-isometry by the hypotheses of Theorem [3.0.1]

If one vertex, say w, belongs in YN”\T, and v € T, consider the geodesic ¢ in T connecting v to
w. Let v = vg,...v, = w be the vertices of o, such that v; is joined by an edge to v;;; for all

i =0,...,n —1. Then, there exists a maximal index i, such that v;, € T and v;, 11 € f\T; let
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Vi be the representative of [V] in &,, . From Equation we see that ¢ is the composition of
¢1: CVy — CV,,, with ¢o: CV,,,, — CV,,. As noticed in the previous case, the map ¢; is a uniform
quasi-isometry. Moreover, by construction, the map ¢y is an isometry, and therefore ¢ is a uniform
quasi-isometry, being the composition of these two maps.

The last case to consider is when both vertices belong to T \T. Depending on whether the geodesic
o does not intersect T', or does intersect it, the map ¢ will be an isometry, or a composition of
three maps, two of which isometies and the remaining a uniform quasi isometry.

Therefore, all comparison maps are uniform quasi isometries. O

In view of this, for the whole proof of Theorem [3.0.1| we assume without loss of generality that
equivalence classes are differentiated by their supports already in the tree of hierarchically hyper-
bolic space T, that is [U] = [V] if and only if Ty = Tpyy.

On the other hand, for the proof of Corollary that is the application of Theorem [3.0.1
to hierarchically hyperbolic groups, we will not decorate the tree 7. This is because, even if a
hierarchically hyperbolic group (G7 6) acts on the index set &, the set of product regions {FU X
{f}|UeG, fe EU} might not be G-invariant. Therefore, it might happen that the hierarchically
hyperbolic space (X(7), &), where & denotes the index set associated to the decorated tree T,
does not admit a non-trivial action of G onto &. We refer to Section for the complete treatment
of this delicate point.

We now define the hierarchically hyperbolic structure on this tree of hierarchically hyperbolic

spaces.

3.2 Endowing a tree of HHS with an HHS structure

As we have seen, whenever we are presented with a tree of metric spaces 7T, it is possible to associate
a metric space X (T) to it called the total space of T. T heorem gives sufficient conditions under
which the total space of a tree of hierarchically hyperbolic spaces has a hierarchically hyperbolic
space structure. This section is dedicated to the proof of Theorem and is divided into three
subsections. In the first section we show how the index set is built; the second one describes what
the hyperbolic spaces associated to each element in the index set are. Finally, in the last subsection

we prove Theorem [3.0.1] with the newly-developed elements.

3.2.1 Construction of index set

Remark 3.2.1 (Concreteness of the edge spaces). In the proof of Theorem we will
need to exploit concreteness of the edge spaces, which is not an hypothesis of the theorem. We
now explain why we can suppose, without loss of generality, that all the hierarchically hyperbolic
edge-spaces of T are e-concrete.

Let € > 3max{q,&} as in Lemma If the edge spaces are not all e-concrete, then we apply
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Proposition to each edge space &, of 7 to obtain a sub-index set &.. & &, such that
(Xe, Se,c) is e-concrete. Notice that if &, is already e-concrete, then &, . = Se.

Similarly to what is defined in Subsection define ~, to be the transitive closure of ~4.: for
any edge e and any U € &, ., we have that ¢, (U) ~q,c ¢c_(U).

Doing so (and not defining equivalence classes with respect to the equivalence class ~ of Subsection
will be crucial to be able to apply Lemma during the proof of Theorem Moreover,
this does not affect the hypotheses of the theorem, that continue to be satisfied. Indeed, edge spaces
continue to be uniformly hierarchically quasiconvex in vertex spaces, with edge hieromorphisms
being full and uniformly coarsely lipschitz. Comparison maps are not affected by this change (but
there might be fewer of them, as we are considering possibly smaller edge-space index sets). Finally,

the intersection property is preserved by Proposition [2.1.12] and clean containers are preserved by

Lemma 2.1.51

In view of Remark from now on we assume without loss of generality that all edge spaces are
e-concrete for some appropriate €, that is that the equivalence relations ~. and ~ are the same.

Let T be the result of coning off the underlying tree associated to the tree of spaces 7 with respect
to every support tree Tjy. We define the index set & associated to the tree of hierarchically

hyperbolic spaces T as
(3.4) S =6,u6,u T}
The set 67 is

(3.5) S = (|_| GU)/ ~,

veV

as defined in Subsection [B.1]

Elements of G4 correspond to supports of elements in &y:
(36) 62 = {T[V] | [V] € 61}

We stress that all these elements are subtrees of the tree T, the tree attached to the tree of

hierarchically hyperbolic spaces 7. By the following lemma, the set &5 is closed under intersections.

Lemma 3.2.2. Suppose that Ty 0 Ty is not empty. Then there exists [A] € &y for which
T[A] = T[U] N T[V] and [U], [V] = [A]

Proof. Let V,, and U, be the representatives of [V] and [U] in the index set &,, for all v €

T[U] [ T[V] .
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For all v € Tjy) N T}y, consider the set
Ay={We&,|V,,U, EW},

which is non-empty since it contains the maximal element of &,.

Since V,, v W, is, by definition, the E-minimal element of &, containing both V,, and W, it is the
unique E-minimal element of A,, which we denote also by A,. If Ty} N T}y consists of just one
vertex v, then [A] = [V, v U,] is the desired equivalence class: as [V,] and [U,] are nested into
[A], it follows that 1741 S Tty N Tipy. Therefore Tiay = Tivy 0 Tion-

If Ty N Ty has more than one vertex, analogously to what constructed in the index sets of the
vertices, there is a unique S-minimal element in the edge-index set S, that we denote by A., where
e is any edge that contains representatives of both [U] and [V].

Assume now that v, w € Ty N T}y and that there is an edge e that connects these two vertices.

Then ¢9(A.) = A, and ¢%(A.) = A,. Therefore
d)g(Ae) = ¢S(Ve vUe) = d’g(%) v ¢S(Ue) =VovU, = A,

by Lemma|2.1.3

Thus A, ~ A, for all v,w € Tjy) N Tjy, and we denote by [A] the equivalence class of (any of
the) [A,]. By construction, [A] has a representative where both [V] and [U] have, and hence
Tiwy 0 Tivy < Tiay:

On the other hand we have that [V] and [U] are nested in [U, v V,] = [A], and therefore T} 4
Ty N Iy by Lemma Thus, the lemma is proved. O

Corollary 3.2.3. Let [V],[W] be equivalence classes. Then, [V] € [W] if and only if Ty < Tivy-

Proof. 1f [V] € [W] then Ty € Tjvy, by Lemma On the other hand, if Tiy S Tpyy we can
see that Tiy) = Tiw) N Tjy)- By Lemma there exists [A] € &, for which Tj4) = Tiw) N Ty
and [V],[W] £ [A]. Tt follows that T}y = Tja), and therefore that [W] = [A], because we are
assuming that the tree 7 is decorated (compare Lemma [3.1.9). Thus [V] = [W]. O

To define nesting, orthogonality, and transversality, we proceed as follow. The element T is the
C-maximal element.

Relations in &; are as in [14]: two ~-equivalence classes [V] and [W] are nested (respectively
orthogonal), [V] £ [W] (respectively [V] L [W]), if there exist a vertex v € T and representatives
Vo, Wy € &, such that [V] = [V,], [W] = [W,] and V,, & W, (respectively V,, L W,) in &,. If
[V] and [W] are not orthogonal and neither is nested into the other, then they are transverse:
[V]A[W].
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Relations in &, are as follows. For two elements T}y, T[] € Gz, if Ty is contained as a set in
Tivy then Ty E Ty, and vice versa. Otherwise they are transverse, Tiy1hT(o-

Relations between an equivalence class [W] and an element T[V] € G5 are as follows:
(c1) if [W] € [V] we declare [W] L Tjyy;

(c2) if [W] L [V] we declare [W] E Tiyy;

(c3) otherwise, we declare [W]hTjy;

Notice that [W] L Tjyq if and only if T}y < Tjwq, by Corollary

3.2.2 Hyperbolic spaces associated to the index set and projections

Let CT = T, which is produced from the tree T' by coning-off each subtree Ty € Ga.

Remark 3.2.4. Assoon as there exists a vertex space (X, S,) and two orthogonal elements U L V
in &,, then the decoration trick of Subsection implies that all supports trees Tiy) € G2 are
properly contained into the tree 7. Indeed, if Tjy) = T' for some equivalence class, it must then be
that Ty and Tjyq are properly nested into Tiy/, and thus [W] £ [U] and [W] = [V] by Lemma
This contradicts the fact that [U] L [V], and in particular that there is no equivalence class
nested into both.

To each equivalence class [V'] we associate a favorite vertexr v € Ty and the favorite representative
V, € 6, so that [V] = [V,]. Then, define C[V] to be CV,,. By assumption, there exists a uniform
constant & > 1 such that for all vertices w such that there exists W € &, with W ~ V,,, the
comparison map c: V,, — W is a (&, £)-quasi-isometry.

For Tiywy € G2, let CTyy = f[W] be the hyperbolic space obtained from the tree 7]y} by coning-off
each subtree T}y € G2 properly contained in Ty, that is Tjy) & Tiwy-

Define 77: X(T) — T as follows: for = € X, define 74 (x) = v. Notice that 74 is the composition
of the projection X — T of X on its Bass-Serre tree with the inclusion of the tree 7" into T. For
all Tiw) € G2 the projection 7y, is defined analogously: for x € X, consider the closest-point
projection of the vertex v onto the subtree Ty in the tree T'. The image of this point under the
inclusion map T < T is T () € CTiw) = f[W]. These projection maps 77y, and the projection
map 74 are uniformly coarsely surjective, being surjective on the set of non-cone points.

Given [V] € & with favorite representative V; € &5, we define mpyq: & — C[V] as follows. If
7s(x) = v is a vertex in the support of [V], then there exists a representative V, € &, of the class
[V], and 7py(7) is defined to be

(3.7 mvy(x) == comy, (x) € CVy = C[V],

where ¢: CV,, — CVj is the comparison map.
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If 75(x) = v is not in the support of [V], let e be the last edge in the geodesic connecting v to

Ty, so that e™ € Tjyq. Define
(3.8) mvy(x) == co v, (¢e+ (Xe)) c CVy =C[V],

where ¢: CV,+ — CVj is the comparison map.

Lemma 3.2.5. The projections defined in Equation (3.7) and Equation (3.8) are uniform coarsely

lipschitz maps. Moreover, they are uniformly coarsely surjective.

Proof. In Equation the projections are defined as a composition of a uniform quasi isometry
with a uniform coarsely lipschitz map. Therefore, it suffices to show that the projections in
Equation are uniformly coarsely lipschitz too.

To prove so, notice that the edge e connects the vertex e~, which lies outside of Ty, with the
vertex e’ € Tiy, and notice that there exists a representative V,+ € &+ of [V]. This means that
Vo+ # U for any U € &, that is V+ € G4\, (X.).

As all hieromorphisms are full and coarsely lipschitz, invoking Theorem [2.2.1] we know that the set
Ty (Pet (X,)) are uniformly bounded. Therefore the projections as defined in Equation are
uniformly coarsely lipschitz, because the comparison maps ¢ are uniform quasi-isometries and the
sets on which they are applied to are uniformly bounded.

These projections are uniformly coarsely surjective, because the projections of the vertex spaces

are, following the assumption of Remark O

3.2.3 Projections between hyperbolic spaces

v
A~ 7’\1 -~ A~

which is uniformly bounded in T because it is coned-off. Define p[TV]: T — C[V] as follows. For

Given an equivalence class [V], define p 1 to be the support Ty of the equivalence class [V],
w € T\T}yq, consider the geodesic connecting w to Ty, and let e be its last edge, so that et e Trvy-
Define

(3.9) ph(w) = comy, (der (X)) € CVs = C[V],

where ¢: CV.+ — CVj is the comparison map. If w € T}y, then pfv](w)Acan be ch0§en arbitrarily.
On the other hand, if w € T\T, that is w is a cone point, then define p%m (w) = p%m (w’), where
w’ is an arbitrarily chosen vertex in the support tree associated to the cone-point w.

For an element Tjy € G2, define p:ITq[W] to be Ty}, and p%w] T — f[W] as follows. For v € T,
let p%[w] (v) be the closest-point projection (in the tree T') of v onto Tjy7. On the other hand, if
vE YA”\T7 that is v is a cone point, then define p%w] (v) = p?[w] (v"), where v’ is any of the points
in the support tree associated to the cone-point v.

To define the projections p%w] between (~-classes of) hyperbolic spaces, we proceed as follows.
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If [V] £ [W] or [V]A[W], then we define the projections as in |14, Theorem 8.6]. In particular,
if [V] & [W] there exist vertices v, w, v’ such that V,, W,, are the favorite representatives of [V]
and [W] respectively, V,» and W, are representatives of [V] and [W] (possibly different from the
favorite ones), and V., = W,,. Moreover, let ¢y : CV,y — CV,, and ¢y : CW,y — CW,, be comparison

maps. Define
(3.10) p%gv]] o (pW' ) c CW,, =C[W],

which is a uniformly bounded set in C[W], and define p{g/]] : C[W] - C[V] as

(3.11) pR//V]] =cy op{//[ij' oy,

where ¢y is a quasi inverse of ¢y and p&i’f': CW, — CV, is the projection provided by the
hierarchical hyperbolicity of the vertex space (X, S,).

Analogously, if [V]A[W] and there exists a vertex w’ € T such that &, contains representatives
Vi & Wy of [V] and [W], then define

(3.12) Pl = ew (pL’V/ ) c W, = C[W]
and

W
(3.13) vaV]] =y (pvj )

If there is no common vertex for the supports of [V'] and [W], let v, w be the closest pair of vertices
such that &,,&,, contain representatives V,, of [V] and W,, of [W] respectively, and let e be the

last edge of the geodesic starting at w and ending at v = e*. Define

(3.14) P = comy (Ger (X)),

where ¢: CV,, — CVj is the comparison map to the favorite representative. In a completely sym-
metrical way we also define p%l‘//v]].

For two elements Ty and Ty of &g, if Tjyy & T}y then define pgzﬂ] to be YA“[V], which is
uniformly bounded in f[vf] since it is coned-off. Define pg;] : IA”[V,] — A[V] as the closest-point
projection.

If TpyyhT}y1, then pg“i;] and pg:ﬂ] are either the closest-point projections (if Tty and Ty do
not intersect), or are defined to be YA’[V] N f[v/], which by (the proof of) Lemma is equal to
Tiv,vvs), where V,, and V; are representatives of [V] and [V'] in a vertex v € T}y n Tjy+). Notice
that if T}y » Ty is not empty, then it is properly contained in both T}y and T}y, and therefore
will be coned-off in both f[v] and f[vl].

Finally, we define projections between an equivalence class [W] and an element Ty € & as
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follows. The relations between [W] and Ty were described at the end of Subsection as

follows:

(c1) if [W] € [V] then [W] L Tjyy;

(c2) if [W] L [V] then [W] & Tjyy;

(c3) in any other case, [W]hTjy.

The projections are defined according to each case:

c1) in this case [W] and Ty are orthogonal, and no projection needs to be defined;
V]

(c2) define the set p%]/]] to be Try N Tiwq, which is uniformly bounded in YA’[V] because it is coned

off, being properly contained in T}y. Define the map p[TV[“,/]] : ZA’[V] — 2€IW] as follows. For

T € f[v]\f[w], define p[TIE“,/]] (z) =comw , (¢pe+ (Xe)), where the edge e is the last edge on the

geodesic connecting x to the support Ty, the vertex et isin Tiw, the element Wt € S+

is the representative of [W], and ¢: CW,+ — CW, is the comparison map to the favorite
representative of [W]. For x € f[w], define p[TIE‘Y]] (z) arbitrarily;

(W]

T 10 be Ty nTiw) (the intersection Tjy1 N 1w

(c3) assume first that Ty Ty # . Define p

must be properly contained in Tfyq, if not we would fall in case (c1)), and define p?IEI‘//]] =

[VvW]
wl -

(W]

Trvy to be the closest-point

On the other hand, suppose T[y| N Tiy) = . Define the set p
projection from Tjy to T}y, and the set p[TV[‘y]] C C[W] as follows: let e be the last edge on
the geodesic (in the tree T) connecting Tjyq to Tiy), and define p[T‘E[‘,/]] =comw,_, (¢e+ (Xe)),

where ¢: CW,+ — CW, is the comparison map to the favorite representative of [W].

Lemma 3.2.6. All the maps and sets p} between hyperbolic spaces defined in this subsection are

uniformly bounded sets and well-defined maps, for all ¢, x € &.

Proof. The case when Ty & Ty is immediate.

7]
~ T ~

in T, and the map p{w] is well defined: if w € T\T}yy), then pFW] (w) is defined in terms of the

For any equivalence class [W], the set p = Tjw is uniformly bounded because it is coned off
closest-point projection in the tree T' of w onto Tjy. Suppose now that w is a cone point of a
support which is not 7y, nor contained in 7jy1. By definition p[fw] (w) = pfw] (w"), where w' is
a chosen vertex in the support whose cone point is w. If w is a vertex in Ty}, or a cone point of
a support contained in Ty, then pfw] (w) is defined arbitrarily. Analogously, for a support T}y,
the set p;[v] is uniformly bounded and the map pg:[v] is well defined.

The sets and maps pR//V]] between two equivalence classes are uniformly bounded sets and well-

defined maps because comparison maps are quasi isometries, and by Theorem m (compare

also Remark . For instance, the set p%‘v/v]] of Equation (3.14) is uniformly bounded, because
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comparison maps are uniform quasi isometries by hypotheses, and because the set 7y, (q§6+ (Xe))

happearing in the equation is uniformly bounded by Theorem [2.2.1]

V1

The set P,

= Tivy 0 Tiwy defined in item (cz) is uniformly bounded, because Tjyy N Ty is
properly contained in Ty, and therefore it is coned off, and an analogous argument proves that
the sets defined in item (c3) are uniformly bounded. The map p[T‘[/V]V] of item (c2) is also well defined

because T is a tree, and therefore for x € f[v] \f[w] the image p?‘;"]v] (z) is well-defined.

O

3.2.4 Proof of the main theorem

We verify that the axioms for hierarchically hyperbolic spaces hold for (X, &).

The set of uniform hyperbolic spaces is described in Subsection [3.2.1] along with the projections
from X onto these hyperbolic spaces. These are uniformly coarsely lipschitz maps, as proved in
Lemma The projections p; between hyperbolic spaces are uniformly bounded sets, and well
defined maps, by Lemma [3.2.6]

Nesting, orthogonality, and transversality are defined in Subsection [3.2.1

(Nesting) The only non-immediate condition to check is the transitivity of the nesting we defined,
and in particular that if [U] £ [V] and [V] © Tjwy, then [U] € Tiyy. If [V] € T, by definition
[V] L [W]. Furthermore, since [U] & [V] then [W] L [U], which implies that [U] © Tjy/]. heorem
Assume now that [U] = Tjyq and Tjyy E Tiwy. By Corollary it follows that [W] £ [V]. By
definition we get [U] L [V]. Therefore [W] L [U], which implies that [U] & Tiy.

(Intersection property) We construct the wedges between elements of &, for all possible cases.

V] A [W]|Let [V] and [W] be two equivalence classes. If Tjy1 n Ty is non-empty, then there
V] (W]

exists a vertex v and representatives V, and W, of the two classes in &,. We have that
VI A W] =[Ve A W],

where we define [V, A W, = Jif V, AW, = &.

If the supports Ty and T}y do not intersect, then [V] and [W] are transverse. If Sy 1nSy = I
then we define [V] A [W] = &. On the other hand, suppose that &y N Sy is non-empty, and
suppose that it has more than one E-maximal. Call these maximals [U;], for i € I. As [U;] £ [V]
and [U;] = [W], the supports Tjy and Tjy) are both contained into Tjy,, for all i. As supports
are connected, each Tjy,) contains the geodesic o that connects T}y to Tiy). Therefore, each (U]
has representatives in all edge-spaces in the geodesic o, which by abuse of notation we also denote
by U;.

Let U, := \/iE ; Us. Notice that U, is nested into each =-maximal element of each edge-space on
o. Moreover, [U;] £ [U,] for all i € I, which leads to a contradiction if |I| > 1. Therefore, there

is only one C-maximal element [U;] in &y n Sy, and [V] A [W] = [Uy].
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[V] A Tt | Let [V] be an equivalence class and Tjyp be a support. We have that

= \/{IU1 | [U] € [V] and [U] € Tyw}
= [V] A [cont, W, ],

(3.15)

where v € Tjyy] is the favorite vertex of [W].

The only non-immediate point of Equation is to check that if two equivalence classes [U]
and [U’] are nested into Ty, then so is their join [U] v [U’]. This is indeed the case, by clean
containers, as proved in Lemma [2.1.4]

Therefore, [V] A Ty is nested into both [V] and Ty, and by construction is the =-maximal of

such elements.

Tivy A Tiwy | Let Ty and Ty be two distinet supports. If Tjyp n Ty # &, then the support
Trvy 0 Tiwn is nested in both T v] and Ty We prove that

(316) T[V] A T[W] = T[V] N T[W]

To prove that Equation (3.16]) defines the wedge between T}y and Ty, it needs to be shown that
if [U] is nested into both T[V] and Ty, then it is also nested into T[V] N Tw-

By definition of nesting, we have that [U] L [V] and [U] L [W], and therefore, by Lemma [2.1.4
we have that [U] L ([V] v [W]) = [V v W], that is [U] = Tjvyw) = Ty 0 Tiw)-

If Tyyy » Thwy = &, then there is no element S € &y (compare Equation ) that is nested in
both Ty and Tjyp. The wedge between these two elements of the index set is

= \/{IU1 | [U] € Ty and [U] € Ty}
= [cont  V,] A [cont W,]

(3.17)

Notice that any [U] as in Equation (3.17) will be supported on the geodesic o connecting Tjyq to

(Orthogonality) We first prove that if Tjy) E Ty and Ty L [U], then Ty L [U]. As
[U] L Tiwy, we have that Ty S Tjy). Therefore Tiyy < Tiyy, that is [U] L Tjyq. The analogous
case of three equivalence classes satisfying the relations [V] = [W] and [W] L [U] is proved in
[14, Lemma 8.9].

We now construct the (upper) orthogonal containers for elements of &. Consider Tjy € &s.
definition, there is no orthogonality between elements of G2. We have that cont | Tjy = [V ]. ThlS
follows from the definition of orthogonality between equivalence classes and supports.

We claim that cont [V] = T}yq. To prove this claim, first notice that a support Tpy) is orthogonal
to [V] if and only if Tjy S Tjyp. Consider now an equivalence class [IW] orthogonal to [V]. By
definition, [W] = Ty, thus all elements orthogonal to [V] are nested into T}y, proving the claim
cont | [V] = Tpyy.

To conclude, exploiting the fact that & has a wedge operation and just constructed upper orthog-
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onal containers, we notice that the argument of Lemma [2.1.5| proves that the lower orthogonal

containers are cont{V = U A cont, V, for all U,V € &.

(Consistency) We verify the various cases for this Axiom.

(W] e T'| Choose a vertex z ¢ Tiw) and let x € X,. Let e be the last edge in the geodesic

connecting the vertex z to TJy, so that et =we Tiw-

As mp(z) = 2z, we have that p?w](ﬂ'T(Z‘)) = ¢y o Tw,, (Pw(Xe)), where ¢y is the comparison map
from CW,, to the favorite representative of [IW]. On the other hand, mpy(z) = cw omw,, (Pw(Xe))-
This means that

plw (T () = mpw (2) = ew © T, (Pu(Xe))

is a uniformly bounded set by Theorem [2.2.1} and therefore

diameqw) (w1 (@) U pfiy (o (2))) = diam (ew 0 mw, (60(X.)))

is uniformly bounded.

If z € T, then
dp(r3(x), 1) = dg (2, Tiwy) = 0.

Therefore, there exists a uniform bound N such that

min{df (771:(3:)) p[fW])7 diamc[w] (ﬂ'[W] () v P?W] (Wf(x)))} <N

for all x € X and for all [IW] € &.
Tiw) E T | Let Ty € G2 and z € X. If 2 € X, for some z € Tpyy, then ms(z) € p?w], and
therefore dTA(wTA(a:),p;[W]) = 0. On the other hand, if dT(ﬂT(ac),p?W]) > 1, and in particular

x € Xy, where v ¢ Ty, then 77y, (7) = p%w] (m(z)), and therefore

diamgy,, (WT[W] (z) u p%w] (7TT(:17))) = diamyy,, (WT[W] (:U)) =0.

This concludes consistency for this case.
[U]h[V]|Let [U],[V] € 6 and assume that [U]h[V]. We need to prove that there exists some
uniform constant k such that either

(3.18) dioy (7o (w),p%) <k or dy(myy (w)m%g%) SH

for each x € X. We proceed by induction on dT(T[U],T[V]).

If dr(Tjyy, Tvy) = 0, then these two finite sets intersect. Therefore, there exists a vertex w such
that &,, contains representatives U, hV,, of [U] and [V] respectively. Since consistency holds in
each hierarchically hyperbolic vertex space, it follows that there exists k¢ that satisfies Equation
(13.18).

Suppose now that dr (T, Tjvy) > 0, and consider the geodesic v in T' connecting Ty to Ty,
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with initial vertex u and final vertex v, so that u € Ty and v € Tjyy. Let z € X be so that
x € X, for some vertex z € T. There are three possible configurations: either dr(u,z) < dr(v, z),
or dr(u, z) > dr(v,z), or dr(u, z) = dr(v, 2).

If one of the geodesics in T' connecting z either to Tj) or to T}y has a vertex that lies in Tjyq or
Tiv, then Equation is trivially satisfied. Indeed, suppose that the geodesic connecting the
vertex z to Tjyj passes through Tjyq. In this case, it follows from the definitions that 7y (z) € p%ﬂ,
and thus dpyq(mpvy(z), pgﬂ) =0.

Therefore, it remains to check the case in which the geodesics o and o’ connecting z to Ty and
to Tty respectively have that v no # & and v n o’ # &, but v & 0 and v & o’. Let e and € be
the first and the last edges (possibly equal) of v, so that e~ = u € T}y and et =ve Ty

The first two cases are symmetric, so suppose that dr(u, z) < dr(v, z). In particular, z ¢ Ty, for
otherwise we would have dr(u,z) = dr(v, z). Let w € T}y be the favorite vertex of the class [V],

and V,, € 6, be its the favorite representative. By definition

Ty () = ey oy, (¢ (Xe)),

where ¢y : CV,, — CV,, is the comparison map. We obtain that

dpvy (i (2), ) = dvs, (ev 0 v, (60(Xe)), v 0 7, (0 (X2))) = 0.

If dr(u, z) > dr(v, z), the same argument shows that

dpy (mny (@), plp]) = 0.

We consider now the case dr(u,z) = dr(v,z). As z ¢ Ty U Tiyy, we have that

mvy(z) = cv omy, (9u(Xz))  and  my(z) = cv o Ty, (Pu(Xe)).

It follows that
dpvy (Pl mpvy (@) =0 and  dpy (plp] 7oy (@) = 0.

Therefore, consistency holds for every [U]h[V] € &.

[U] £ [V] | Consistency for the pair [U] & [V] is immediate: by definition there exist a vertex v
and representatives U, E V,, of [U] and [V'] respectively. As Consistency holds in all vertex spaces,
the statement follows.

Suppose now that [W7] is such that either
1. [V] = [W], or
2. [V]h[W] and [U] £ [W].

We claim that dpy (p%w],p%gv]]) is uniformly bounded.
As [U] & [V], let Uy, V, € &, be representatives of [U] and [V] such that U, E V,,. We now check

all the possible cases.
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Suppose that Tj; n Tiwy # & and Ty N Tiw) # &: this can happen either if [U] = [W] or if
[U]A[W] and there exist transverse representatives of [U] and [V]. Let v,w € T be such that there
exist representatives V,,, Wy, € &,, satisfying V,, & W,, (respectively V,,hW,,), and representatives
U,,W, € &, such that U, £ W, (respectively U,hW,).

Let m € T be the median of u,v,w. As u,w belong to the support of [U] and [W], then so does
m, since supports are connected trees. Likewise, m lies in the support of [V]. Let Uy, Vi, and W,
be representatives of [U], [V] and [W] in &,,. Since edge-hieromorphisms are full, we have that
Un E Vi, and Uy, £ Wy, and V,,, = W, (respectively V,,AW,,). Because consistency holds in
each vertex space, and in particular in (X, S,,), we conclude that dy,, (pgvm, p“,/[}") is uniformly
bounded. Applying the appropriate comparison maps (that are uniform quasi isometries), it follows
that dpy (p%gv]], p%“jv]]) is uniformly bounded.

If Ty n Tiwy # & and Tjy) n Tiw) = &, let w be a vertex such that there are transverse
representatives U, MW, of [U] and [W]. Moreover, let e be the edge separating Ty from Tpyy,
so that e™ € Tjy). We have that pR,/V]] = tw o w,_, (¢e+ (Xe)) and p%gv]] = cw (p‘[,][}ju , where
cw : CWy, — C[W] and Ty : CW+ — C[W] are the comparison maps to the favorite representative
of the equivalence class [W].

Let S, denote the =-maximal element of the index set &, and S, = ¢§+ (Se). Recall that the con-
stant ko denotes the constant coming from the consistency axiom of Definition [1.6.1] and £ denotes
the constant which uniformly bounds the multiplicative and additive constant of comparison maps
(see Definition and the second hypothesis of Theorem [3.0.1)). Recall that, by definition

|4 U _
diw) (P%W]],P%W]D = dpw) (CW(WWC+ (Pe+ (Xe))), ew (P%}“)) :
Applying triangle inequality,

dowy (ol o) < dow (T (o, (@ (X)) 7w (037, ))

(3.19) < dw (fW(WWE+ (fe+ (e

By hypothesis [U] £ [V], so T}y € Tjy). Moreover, since Tiywy N Tiyy # &, Tiw) 0 Tiv) = & and
e is the last in the geodesic connecting T7yq to Ty, we have that et e Ty N Tiwy- Therefore, by

Lemma |3.1.7| we have that EW(p%i) = cW(pg‘};), and so the last term dpy (EVI/(,og[,‘:Jr+ ), cW(pg[}{’w))
of Equation (3.19) is uniformly bounded by some J. Therefore

|4 U S! s’ U
dwy (ol pliny) < Sdw,, (mw. (@ (X))o, ) + €+ €dw, (o, ol ) + €+

(3.20) o
< €dw. (mw,, (6o (X)).pi, ) + €+ Ero+E+ .
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Notice that

S’

dw, (7TWe+ (fe+ (Xe)), PW+) =dw,. (1w, (¢et (Xe)), Tw,, (Fs;))
< Kd(¢e+ (Xe), Fgy) + K,

and so, by Theorem [2.3:3] we have that
(3.21) dw,, (Tw,, (6 (X))o, ) < K+ K.

Combining Equation and Equation we obtain that dpy (p%w],p%}]) is uniformly
bounded.

Assume now that Tjy) N Tjwy = &: in particular [U]A[W]. By Lemma we know that
Tryy € Tyy- Therefore, there exists an edge e separating Tjy) (and Tpyp) from Tpyq, so that
et € Tiw.

As defined in Equation , we have that

Pl = ew o mw_ (der (X)) = piig).

Therefore p[w] = %w], and dy (p%%]],pgjv]]) = 0 is uniformly bounded.
Tiw, N ws) | Let Tiw,, Tiw,) € G2 satistying Ty, 1N [w,], and let x € X. In this case, we always
have that

. T
min{dzy,,, ) (71, (), pTW ]) Ay (T, (2), pTEXS)} =0,

T . L .
because pT 1] and pTEZ’"} are defined as closest-point projections if Tjy, N Tiw,) = <, or as the
1

(coned-off) mtersection, if it is non-empty.
Tiw,1 E Tiw, | Let Tiw,, Tiw,) € G2 satisfying Tiw,] E Tjw,)- Consistency follows, because for

all z € X we have that

Ttwo]
7TT[W1]( ) = pT[xz]( T[WZ](I)).

. T ~ .
Therefore diameryyy, | (773, () U 'OTEXT} ("1, (%)) = 0, where CTjyy = Tjyy, and the consistency
inequality is satisfied.
Let Tiw,) € G2 be such that either

1. T[Wl] = T[WQ] - T[Ws]a or

2. T[WQ] mT[WSJ .

Tiw,)
T[W )

Let now [V] € &1 be such that [V ]rhT[W2 and [V] £ Ty,1. We want to prove that dpy(p ?‘Tl] ) p[v‘ivz])

is uniformly bounded. We now check every possible case. If the support of [V [ ] does not intersect

Trw) T[WQJ)

In either case we have that Wl] c
P, P PTiw,) P,

and therefore dryy,, (

Tiw,) (and therefore, does not intersect Tiw,; S Tiw,]), then p[VV]VI] = f [?/2 and the claim is
satisfied. If the support T}y intersects both Tjy, | and Ty, then also in this case we have that

T T . .
p[‘[/‘ivl] = p[‘[/‘iVQ]. Finally, if T}y intersects Tjy,; but not Tjy,j, then p[‘[/] J—¢o v, (q/)e+ (Xe)),
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where e is the last edge in the geodesic connecting Tjyw,] to Ty, the vertex e lies in T] v], and
V.+ is the representative of [V] in &,+. On the other hand, p[T‘[,v]m = p{yf], and [Wa]h[V]. As

[W2]
V]

both classes [V] and [W2] are supported on the vertex et, we have that py|” = ¢€o p“;vi”, where

Wae+ is the representative of [W2] in that vertex.

By Lemma [2.3.4) we have that v, (¢pe+ (Xe)) is coarsely equal to p‘S;:, where S+ = ¢;>+ (Se) and

Se is the E-maximal element of &.. Therefore d[y (p[TX[/v]Vl] , p[T‘[,V]VZ]) is uniformly bounded.

[V](ﬁT[W] Let T[W] €6, If T[V] N T[W] = @, then

. T
min{dpy) (v (2), o) Ay (e (2), P00 )} =0, YV ae X,

Thus, suppose that the intersection is non-empty. Since [V ]hTjy it follows that [V]h[W]. Sup-

pose that dr,, (WT[W] (z), pgq‘[/v]v]) is big, so that in particular = ¢ Tryy N Tiw) = pgp‘[/v]v] and the
geodesic connecting z to 1]y passes through the s;t Tiw-
By definition, 7y (z) = ¢ o my, (¢e+ (Xe)), and p[‘[/?’] = p%‘v/v]] = c(p&i‘f), where e™ is the vertex

of the edge e that belongs to Tjyy N Trwy, while e € Tiw\Tfyy, and V+ and Wi are the
representatives of [V] and [W] respectively at the vertex et.

Let S. be the =-maximal element of G.. As the equivalence class [V] is not supported in the
vertex e, it follows that V,+ is not nested into (bil (Se) = S.. On the other hand W,+ = S,.
Therefore, pg/[:e: and p‘g,; coarsely coincide by Definition [1.6.1)|4)), and by Lemma [2.3.4] we obtain

that

v, (fer (X)) = P = py

that is, 7pyp(2) and p[T‘[,V]V] coarsely coincide. Thus, dpyy(mpv) (), p[T‘[/V]V]) is uniformly bounded.

V]

[V] £ Tiwy | If the distance dry,, (71, (m),pT[W]) > Ko, it follows in particular that wr(z) ¢

p[T‘[/JV] = Ty » Tiwy, and that the geodesic in T connecting = to p[T‘[/V]V] passes through the set
. . T
Trw)\T1v). In this case, we have that mpy(z) = 7 (’/TT[W] (z)) is equal to p[‘[/v]v] (WT[W] ().

Therefore the consistency inequality is satisfied also in this case.

(Finite complexity) It is enough to show finite complexity in &; and &5 independently.
Finite complexity in &; follows from [14, Lemma 8.11]. For &9, notice that any chain of proper
nestings

Tioy 2 Ty 2 -+ 2 1w,

induces the chain of proper nestings [U;] € [Uz] & ... & [U,] in &1, by Corollary

As only equivalence classes are allowed to be nested into an intersection of supports, and not vice
versa, finite complexity is proved.

In particular, it follows that the complexity of (X (T), 6) is twice the complexity of &; plus one,
and the complexity of &, is max, X, + 1, where X, is the complexity of the vertex space (X,,S,).

(Large links) Let [W] € &, and z,2’ € X. Suppose that z € X, and 2’ € X, for some v,v' € T,
and let w be the favorite vertex for [W]. Let E denote the maximal of the constants E, of the

Bounded Geodesic Axiom of the hierarchically hyperbolic space (X,,S,).
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Suppose that, for some [V] & [W], we have djy(mvq(z), mvi(2')) = E', where E' depends on E
and on the quasi-isometry constants of the edge hieromorphisms. Then dy, (comy, (z), comy, (2')) =
E, for arepresentative V,, € &, of [V]. As the large links axiom holds in &,,, we have that V,, & T,
where {T; € 6,}/, is a set of N elements in &, where N = |dpy1(mpwy(2), 7wy (2'))] and each
T; satisfies T; & W,,. Moreover, the Large Links Axiom in &, implies that dpy (7w (), pPV;/]]) =
dw,, (ewomw, (z)), pgjw) < Nforalli =1,...,N. Thus the large links axiom for elements [V] € &
and [U] € &y follows.

We now consider the case of Tjy € &2, and X € Sryy,,,. This can happen both when X is an
equivalence class, or when X € ©&5. We deal with the case X € S5 in the following lemma, whilst

the case X = [V] € &; is considered after the lemma.
Lemma 3.2.7. Let z,2/ € X and S € &y U {T}. The set
Y ={Xe&y | X8, dx(nx(z),nx(z") > 4}

is finite. Moreover, the set of E-mazimal elements in Y has cardinality bounded linearly in terms

of the distance dg(mg(z), m5(2’)).

Proof. Let o be the geodesic in T connecting v = 7w (z) to v/ = wp(z’). We begin by noticing
that, if X no = ¢, then dx(mx(x),mx(z')) = 0 because these two sets coincide, and therefore
X ¢ Y. In particular, as nesting between elements of {f} U &5 is inclusion, if o does not intersect
S then Y will be empty, and the lemma is trivially satisfied.

Suppose now that o intersects S, and consider the map ¢: Y — P(0) defined as ¢(X) = X n o,
where P(o) is the set of subpaths of o. We first prove that ¢ is an injective map. Let X, X' e Y
be such that X # X’ and, looking for a contradiction, suppose that ¢(X) = ¢(X’), so that
X no=X'no and therefore X no =X nX'no.

Since X intersects o, we have that 7x (z) and 7mx (2") are vertices of o. Therefore mx (z) and mx (z')
liein X no < X nX’. Since X n X’ is properly contained in both X and X, it will be coned-off
in both CX and CX’ by construction. Therefore dx(mx(x), mx(2")) < 2, which contradicts the

definition of the set Y. Therefore the map ¢ is injective, and the set Y is finite.

We now claim that, for elements X, X’ € Y, we have that ¢(X) & ¢(X’) if and only if X & X'.
Indeed, if X & X’, that is X € X', then ¢(X) < ¢(X’). On the other hand, suppose that
©(X) < ¢(X’), and let X = Tjyy and X' = T}y, for some equivalence classes [V] and [V']. Since
o(X)=Xno < e(X') =X'no, we have that

(3.22) Xno=XnXno.
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Moreover, as X n X' = Ty 0 Tiyq = Tjy o v, from Equation (3.22) we obtain that

As[V] e [VvV'], Lemma implies that T}y v E Tyy. If Tjy v is properly nested into Tjyq,
then Ty v is coned off in CTjyy = YA“[V]. Equation implies that dr,,, (771, (), 71, (¥)) =
2, which is a contradiction since T}y € Y by hypothesis. Therefore, T}y, v+ = Ty, which implies
that Ty < Ty, as desired.

We now show that Y,4. = {X1,..., X} €Y, the set of =-maximal elements in Y, has cardinality
at most dg(ms(x),ms(z")). Since every element of Yy, is properly nested into S, it follows that
its support is coned off in CS = S. We now prove that X; no ¢ (Xg, U -+ U Xy, ) n o for any
pairwise distinct elements X;, X, ,..., X}, all belonging to Y44

The claim was just proved for r = 1. Indeed, if X; n o € X}, no then X; £ Xj,, and this
contradicts the fact that X; and X}, are distinct =-maximal elements of Y. Suppose that X;no <
(X, U Xk,) o, and let Tjy, 1, Ty, | and Tjy, ) denote X, X, and Xy, respectively. In this case,
there exists a path in CXj; from 7y, (z) to mx, (2') that passes through the cone points of Tjy, , v, ]
and Ty, v v,,], Which are properly nested into X;. Then, dx, (7x;(z),7x,(2")) < 4, contradicting
the assumption that X; € Yi,qz.

On the other hand, assume that X; no € (Xi, U Xk, U ... U X, ) no where r > 2, k; # j for all
i, kq # kp for all a # b, and there does not exist k; # k; such that X; no < (X, u ij) Nno. We
claim that there exists s such that X, no < X; no.

Indeed, assume without loss of generality that the endpoints of X; n o are contained in X3, no
and X}, n o respectively. By hypothesis, X; n o cannot be entirely contained in (Xj, v Xj.) no.
Therefore, there exists v € X; n o\(Xg, U X,) N o, that is ve Xy, no for 1 < s < r. Note that
Xk, N o cannot contain either of the endpoints of X; n o, since that would imply that X; n o
is contained in either (X, U X;. ) no or (X;, u Xi,) no. As a consequence we obtain that
X, no < X; no, which is a contradiction, since X}, is maximal with respect to nesting.

From here we can conclude that |Y,,4z| < ds(7ws(z), ms(z")). Indeed, given any =-maximal element
X, € Yihae and its cone point v;, the following dichotomy holds: either v; is a vertex in the geodesic
path &, or not, where & is a geodesic path in CS connecting wg(x) to mg(x’). In the latter case,
it must be that & contains either one or two edges of the support X;. Therefore, the bound is

proved. O

Therefore, if dry,,, (71y,,, (), 71,5, (27)) > 4 for some i) € G5\{S}, that is Tjy) € Y, then Ty £ X
for some C-maximal element X of the set Y.

We now address the case when X is an equivalence classes X = [V] € &ry,,. By definition,
[V] € Twy if and only if [V] is orthogonal to [W]. In particular, it follows that Tjyy N Trwy # .
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If T}y does not intersect the geodesic o then the distance dpy(mpvy(z), mvy(2’)) is equal to zero
by Equation (3.8)), because the edge e appearing in the cited equation will be the same for both x
and z’.

Now assume that T}y n o # . As a fist sub-case, suppose that o N TJyy) is empty, let
(3.24) I:={[V] = Tiw) | Tyv) n o # &},

and notice that Z could be infinite. Consider the geodesic a connecting T}y to o in the tree T,
and notice that a has at least one edge, being Ty and o disjoint. For [V] € Z, we have that T}y
intersects both Ty and o, and therefore « is contained in Ty, being T' is a tree. Thus the set
Tiwy N ﬂ[v]ez Tty is not empty, because (at least) the initial vertex on the geodesic a belongs to
this intersection.

Let the set I index Z, that is Z = {[V;]}ie;. Without loss of generality, we can suppose that each V;
is the representative of [V;] in the vertex space (X,,&,). Let S, € &, be the E-maximal element,
and notice that [V;] = [S,] for all ¢ € I. Furthermore, note that [V] = [\/,.; Vi] for all [V] € 7 and
let [V, ] denote [\/,.; Vi]. Therefore, in this first sub-case, Large Links is satisfied by the family
Y U {[V,]} for the elements Tjy € & and z,2" € X.

For the second sub-case, suppose that o n Tjy is not empty, and let {vi,...,v,} be the finitely
many vertices of o N Ty (there can be only finitely many such vertices because o is a geodesic).
Analogously to Equation , for all v; € o N Ty define

Z,, = {[V]1 € Tywy | vi € Tyyy n o},
and notice that Z = | JZ,,. As in the previous case, for each Z,, consider [S,,], and notice that
[V]E [S,,] for all [V] e, for all i = 1,...,n. Therefore, Large Links for an element Ty € &2
is satisfied considering the set Y u {[V'],...,[Vi~]}.

Notice that, in both sub-cases, we bounded the cardinality of the sets Y u {[V,]} and Y U
{[Vit],..., [VIr]} in terms of o, that is in terms of dr(z,2'). As dry, (71, (), 713y, (7)) 18
bounded from above by dr(z,z’), we obtained the desired bound on the cardinality of these sets.
Combining these bounds with Lemma we conclude the proof of Large Links for the case
X & Trwy.

Finally, we prove Large Links for the E-maximal element 7. From Lemma applied with
S=T , there are only finitely many (and the number depends only on the distance in T from z to
2') elements X € G5 such that dx(rx(z), 7x(2')) is big. On the other hand, for an equivalence
class [V] f, the distance dpy(mv(z), 7pyp(2')) can be big only if the support T}y intersects
the geodesic o connecting v to v’ (otherwise, it would be zero). Let Si,..., S, be the =-maximal
elements of all the finitely many edges in o n T}y). We have that [V] £ [S;] for all i = 1,...,n.
Therefore, the set Y U {S1,...,S,} is the set of significant elements for the Axiom.

Let E’' be the constant that satisfies the Large Links Axiom of the (uniformly) hierarchically
hyperbolic vertex spaces (see Definition [1.6.1)), and let £ > max{2, E'}. Then Large Links is
satisfied with this constant F.
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(Bounded geodesic image) Consider [W] & T, and let v be a geodesic in 7. If v N Ty =
&, let e be the last edge in the geodesic connecting v to T}y, and suppose e* € Tjy). Then
p[TV]( ) = cw oy, (¢e+ (Xe)) is a uniformly bounded set. If not, then 7 intersects p[A I, The cases

[V]E Tiw,), Tiwy) E Tiw,s and Tiw,) & T, where Tiw,)> Tiw,) € G2, are analogous.

Let [W] € &, let [V] £ [W], and let v be a geodesic in C[W] = CW,, (where w is the favorite
vertex of [W] and W,, € &,, is the favorite representative). Let V,, be the representative of [V]

supported in the vertex w, so that p%w] = pv[}’

The Bounded Geodesic Image Axiom in this
case follows because it holds in the vertex space (X, S,,) (notice that the constant F changes

according to the quasi-isometry constant of the comparison maps).

(Partial realization) Notice that two elements Tpy,; and Ty, of &, are never orthogonal.
Consider k + 1 pairwise orthogonal elements [V1],...,[Vi], Tw) € 6, and let p; € mpy,1(X) < C[Vi],
fori=1,...,k, and vg ef[w].

By definition of orthogonality, Tfv,} n Tjv,) # & for all @ # j, Tiw) € Ty, for all i = 1,...,n,

and in particular Ty ﬂl 1 Tiv,)- Consider a vertex v € Ty that is not a cone point and
has distance at most one from vg, that is v € T n Tjw) and dry, (v,vs) < 1. As v € Tjy
for all i = 1,...,k, without loss of generality we can suppose that V; is an element of &,, by
choosing representatives. We have that V; L V; for all + # j. Comparison maps are uniform quasi-
isometries, and p; € mpy,1(X), therefore the element ¢;(p;) is uniformly close to the set my, (X’) for
all i =1,...,k, where ¢;: C[V;] — CV; is the comparison map. For i = 1,...,k, let p¥ € my, (X)) be
a point such that dy, (pf, i (pl)) is uniformly bounded.

By Partial realization in the vertex space (X,, &,), there exists x € X, such that dy, (7, (), p})
is uniformly bounded for all . As comparison maps are uniform quasi-isometries, we obtain that
dv,) (v, (@), pi) is uniformly bounded for all i. Moreover, dry,,, (71, (), vs) = d7yy, (v,v5) < 1.
If [V;] € [U], then [U] has a representative U, € &, such that V; = U,. Therefore djy(7v(z), p{gi]])
is uniformly bounded, because x is a realization point for {Vi}f:l, and comparison maps are uniform
quasi isometries.

If [V;] € Tjy), then p[T‘[/}i;]] = Ty, 0 Ty and 7y, (z) € pg}/ﬁ] . Therefore, dry,, (71, (:z:),p[T‘[/:]]]) =

(W]

0. Analogously, for Tiy E Tjy; we have that dry, (WT[U]( ), pT[U]) = 0. This argument also

applies when considering the =-maximal element, therefore proving that dz (77 (), pA ") = 0and
dg (mp(2), P27y = 0.

Let now [V;]h[U]. Either Tjyy n Tjy,) = &, in which case the distance d[i (W[U](:v),p%i]]) is
uniformly bounded, or Ty N Tiy,] # &, in which case [U] has a representative U, € &, that is
transverse to V;. Therefore, in the latter case the distance dpy(mo(2), p{gi]]) is again uniformly
bounded, because it is in the vertex space X, and comparison maps are uniform quasi-isometries.
If [Vi]dTy) then mry, (z) € p%/;]], and therefore dyy,, (71, (x),pgw‘[/u]]) = 0. For the last case,
suppose that T[ 1h[U] for some [U] € &;. If the support of [U] does not intersect Tyy/, then

() € p . So, suppose that iy intersects Tjy. Again using Lemma [2.3.4) we can conclude.
If Tiw AT and Tiwy N Ty # J, then the subtree T[W] N Ty = Tiw vy 1s strictly contained

in Tjy). Therefore, Tiyy N T[U] is coned-off in CTjyy) = T[U]. Since 71y, (z) € Tiwy N Tiuy, we
obtain that dr,, (71, (x),p;%]) < 2. On the other hand, if Tjy) N Tjy) = & then 77, () =



78 CHAPTER 3. A COMBINATION THEOREM

p%g/]] =ecte Ty, where e is the last edge in the geodesic separating T}y from iy, and therefore

ATy, (T(T[U] (z), p%tvjv]]) = 0. By definition, no element of &; can be nested into an element of Ss.

Therefore, all the relevant cases have been considered.

(Uniqueness) Suppose z,y € X are such that dg(mr(z),7r(y)) < K, for all R € &. In partic-
ular, we have that dz(m7(2), 72(y)) < K, that ds(ms(z),ms(y)) < K for all S € &5, and that
divy (T (@), 7 () < K f0£ all [V] e ;.

Suppose that the distance in T from 74 (x) to 74 (y) is realized by a path only consisting of vertices
of T'c YA“, and let

vo = mp(2),v1, ..., Vp—1, 77 (Yy) = Uk,

be these vertices, where k < K. In particular, no four consecutive vertices can belong to the same
support tree, because this would produced a shorter path in T joining x to y.

We have that dx(z,y) < Zf:o dx,, (80: (%), 8v, (y)) + k. Moreover, for all i = 0,...,k we have
that the distance dy, (go,(z), 8, (y)) is uniformly bounded. Indeed, if this is not the case, by
Uniqueness in the hierarchically hyperbolic space (X,,,S.,,), there exists V € &,, such that
dv (mv (gu, (2)), Tv (gv, (v))) is not bounded. By [14, Lemma 8.18] and Theorem we have
that dy (7 (gu, (2)), 7v (8w, (v))) and dpyy(mp(z), 7 (y)) coarsely coincide, and therefore the
latter is not bounded. This contradicts the fact that dpyy(mpy(z), 7 (y)) < K, and thus
dx,, (9v: (%), 80, (y)) < ¢ = ¢(K) is uniformly bounded, as claimed. Therefore, dx(z,y) < ('(K),

for some uniform bound ¢'(K).

Suppose now that in the geodesic o in 7' connecting m(x) to mp(y) there is a cone point. There-
fore, there exists an element Tjy,] € &2 containing two points 1 and y; in this geodesic (that,
therefore, have distance two in 7' since Tiw) is coned-off in f) As Tiw,) € G2, we have that
ATy, (WT[WIJ(.’L‘l),WT[WI](yl)) = dT[Wﬂ(xl,yl) < K. Either the geodesic o1 in CTjy,) = IA“[Wl]
connecting these two points only consists of vertices of T, or there are cone points, and therefore
an element Ty, € G2 containing two elements 3, ya of the geodesic oy.

As complexity in &s is finite and nesting coincides with inclusion, this process must end after a
finite number of steps (that depends only on K'). Therefore, there exists a geodesic in T’ connecting
m4(x) to m4(y), whose length is bounded from above by a function in K. Repeating the argument

given before, we conclude that dx(z,y) is uniformly bounded.

This concludes the proof of hierarchical hyperbolicity of the space (X (T),S).

3.3 Applications

Theorem has two main applications. The first one is a combination theorem on hierarchi-
cally hyperbolic groups (Corollary [3.3.1]). The second one is for graph products of hierarchically
hyperbolic groups (Theorem [3.3.7]). We now show their proofs.
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3.3.1 Graph of hierarchically hyperbolic groups

Corollary 3.3.1. Let G = (I',{Gy}vev,{Gelecr: {det : Ge = Gz }ecr) be a finite graph of hier-

archically hyperbolic groups. Suppose that:

1.

2.

3.

each edge-hieromorphism is hierarchically quasiconvez, uniformly coarsely lipschitz and full;
comparison maps are isometries;

the hierarchically hyperbolic spaces of G have the intersection property and clean containers.

Then the group associated to G is itself a hierarchically hyperbolic group.

We begin with the following lemma, in which we use the notation of Section [3.1.1

Lemma 3.3.2. Let T be a tree of hierarchically hyperbolic spaces and T be the corresponding

decorated tree. Then

3.

. for every support tree Tjy) € G2 T,

- (X(T)) is isometric to CIjyy, and quasi-isometric to

CT[V]*, for all support trees ;

- vy, (X(T)) is isometric to wpy (X (T)), and quasi-isometric to W[V]*(X(%)), for all equiv-

alence classes [V] € &1;

X(T) is hierarchically quasiconvez in X (T).

Proof. 1. The first assertion of this item follows from the fact that the projections to hy-

perbolic spaces for elements in X(7) are not modified by decorating the tree 7. Fur-
thermore, by the construction of Section [3.1.1] there exists a constant C' > 0 such that
CT[V]* =MN¢ (FT[V]* (X(T))), and therefore Ty, (X(T)) is quasi-isometric to Cf[v]

.

As the favorite representative of the equivalence class [V], is the same as of the class [V],
it follows that 7y, (X' (7)) is isometric to 7y 1(X'(T)). The second assertion of this item
follows from the equality X(7) = Ne (X(T)).

. By what was just proved in the previous points, 7y (X(7)) is k(0)-quasiconvex in 7y (X (7)),

for all U € &, for some fixed number %(0).
Moreover, let b be a r-consistent tuple such that by € mx (X (7)) for every X € & and let
2 € X(T) be a realization point of b. Since X (7) = Ng(X(T)) there exists 2/ € X(T) such

that dx(%) (z,2') < C, and therefore the proof is complete.
O

As already mentioned in Section to construct the hierarchically hyperbolic structure of
the graph of hierarchically hyperbolic groups G of Corollary we do not consider directly a
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decorated tree, because there might not be a non-trivial action of the fundamental group of G on

that hierarchically hyperbolic space. Instead, we proceed as follows. Let

(3.25) T = (T AHybwev, {Hypes, 1655}

be the tree of hierarchically hyperbolic groups associated to G, as described in |14} Section 8.2]. In
particular, T = (V, E) is the Bass-Serre tree associated to the finite graph I', each H,, is conjugated
in the total group G to Gy, where w maps to v via the quotient map 7" — I', analogously Hy is
conjugated to G., and the edge maps ¢+ agree with these conjugations of edge and vertex groups
to give the embeddings in the tree of hierarchically hyperbolic groups. Let X(T) be the associated
metric space, and let & denote the index set associated to X(T), as described in Section
Associated to this, we consider the decorated tree T of hierarchically hyperbolic groups, as de-
scribed in Section By Theorem m the metric space X (7~') admits a hierarchically hy-
perbolic space structure, that we denote by S. By Lemma the metric space X(7) is
hierarchically quasiconvex in X (7~‘), and therefore (X (T), é) is a hierarchically hyperbolic space
by [14, Proposition 5.5], where the hyperbolic spaces associated to an element U € S is defined
as my (X (T)) € CU. From Remark we are assuming that every 7y is uniformly coarsely
surjective, so in fact there is no harm in considering CU instead of 7y (X (T)) As & and & coincide
as sets of indices (what changes are the hyperbolic spaces associated to each index, as detailed
in Section , the above substitution is equivalent to equipping the metric space X(7) with
the hierarchically hyperbolic structure given by &. That is to say, (X (7), (‘5) is a hierarchically
hyperbolic space.

We now set to prove Corollary Before showing the full proof we discuss how the index
set constructed in Section [3.2] on a tree of hierarchically hyperbolic spaces can be applied to the
hierarchical hyperbolic group structure of a graph of groups G on the tree of spaces obtained by
considering its Bass-Serre tree.

We first describe the hierarchical hyperbolic space structures involved in each vertex space associ-
ated to the tree of spaces described in Equation (3.25).

Remark 3.3.3. Recall that each vertex in the Bass-Serre tree T corresponds to a coset gG,,, where
G, is a vertex group corresponding to the graph of groups G. We endow the metric space gG, with
a copy of the index set &, denoted by ¢&, such that there is a hieromorphism ¢, : (G,, &,) —
(9Gv, 96,) equivariant with respect to the conjugation isomorphism G, — GY. If U € &, we

denote by ¢§U) the isometry at hyperbolic space level making the following diagram commute:

Gy & 9G,

TVy l \L”ng

CV, ——=CgqV,

¢§]Vv)

We recall here the notion of T-coherent bijections, where T is the tree of hierarchically hyperbolic
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spaces. A bijection of the index set & given in Equation (3.4)) is said to be T-coherent if:
e it induces bijections on the sets &7 and Gs;
e it preserves the relation ~ on &q;

e it induces a bijection b of the underlying tree T that commutes with f: | |, ., &, — T, where
f sends each V € G, to the vertex v. That is, fb = bf.

Notice that the composition of T-coherent bijections is T-coherent. Therefore, let P < Aut(S)
be the group of T-coherent bijections.

To produce the index set & in a Py-equivariant manner, we proceed as follows. Notice that GG acts
on | |,cy Sy, so that for any V,, € &, we have that ¢.V, € &,,. This extends to an action of &;
defining g.[V'] = [¢g.V]. For any [W] € &, choose a left transversal Spy of the subgroup

Stab([W]) = {ge G | g[W] = [W]},

and impose that eg € Spyp. For each Pr-orbit in &; choose a representative [V] of the orbit, a
favorite vertex v for [V], and a favorite representative V,, € &, for [V]. For any element g € G,
there is a unique element I € Spyp such that g € [ - Stabg([V]). We declare lv to be the favorite
vertex of g[V], and gV, € &, to be the favorite representative of the equivalence class g.[V].
This definition is consistent, that is that if g, g € G, then the favorite vertex of (gg).[V] coincides
with the favorite vertex of g.(g.[V]). Indeed, suppose that § € [ - Stabg([V]), that gj € p -
Stabg([V]), and that g € I, - Stabg(g[V]), for unique elements I,p € Spvy and [, € Sgpyp. Thus,
the favorite vertex of gg[V'] is p.v, and its representative is V., € &,,. On the other hand, the
favorite vertex of [V is l.v, with favorite representative I[V], and consequently the favorite vertex
of g(g[V]) is (1.D).v, with favorite representative V.o As g € L-Stabg(g[V]) and Stabg (g[V]) =
GStabg ([V])g~", we have that gg € (1,§)-Stabg([V]) = (I.1)-Stabg([V]). Therefore, as gj belongs
to a unique coset of Stabg([V]), we have that p - Stabg([V]) = (I.]) - Stabg ([V]), which implies
that L,I[V] = pp~'L.I[V] = p[V]. As a consequence, the favourite vertices and representatives of
99[V] and g(g[V]) are equal.

From the definition of the action of P7 on &g, it follows that Cg.Tjy) = CTy [0

Lemma 3.3.4. Let G = (T, {Gy}vev, {Ge}eer, {det : Ge — Get}ecr) be a finite graph of hierar-
chically hyperbolic groups satisfying the hypotheses of Corollary[3.3.1l Further, let T be the tree
of hierarchically hyperbolic spaces associated to G as in Equation . If g e G = m1(G) such
that g[V'] = [W] then for every v € Ty and representative Vi € &y of [V] there exist an isometry

gv; : CVy — CWy 5 making the following diagram uniformly coarsely commute

G _9 Gys

TV i lﬂwg.ﬁ

CV{, — CWg,a
vy
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Proof. For each v € T, the group Stab(?) acts on the hierarchically hyperbolic space G by auto-
morphisms of hierarchically hyperbolic groups (Definition[L.7.1]). Observe that Stab(?) is conjugate
in the total group G to Stab(v) = G, where ¥ — v under the covering map T' — I'. Choose, for
each vertex v’ € T in the G-orbit of v, a representative ¢’ in G, such that v’ = g'v.

If g is an element of Stab(?), then gy, can be taken as the isometry of Definition If g ¢
Stab(?), write g = ¢’ - h, where h € Stab(?) and ¢’ is the described above representative of the
element ¢gv. If h[V] = [U], and Wy is the representative of [W] in &4 then the hyperbolic
space CWy 3 of [W] in &4 3 is an isometric copy of CU; induced by the map (bé(,]’ﬁ) described in
Remark @ Let ¢ : CU, — CW ,, be the map providing the isometry between CU, and CW .
Then, we define gy, as qbéiLU“) ohy,.

To complete the proof, consider the following diagram

Gy —" > Gy

s
TV, \L TUg l l Wyt v

CVy —CUy ——=CWyy
hy- (hU3)

v ] g’

The leftmost diagram uniformly coarsely commutes by definition of hierarchically hyperbolic
groups. Recall that, by definition, for every g € G,V, € &, the map my, , equals gb( )o Tw,. As

a consequence, the rightmost diagram commutes. O

Remark 3.3.5. The maps gy, defined in the previous lemma provide an action by isometries
on the hyperbolic spaces associated to | Jy.p ©5. That is to say, if [V],[U] € &' are such that
glV] = [U], then (kg)v, = ku,,ogv,. By definition, gy, equals d)( Vo) ohy, where g = g'h" for some

h" e Stab(v) and ¢’ is the chosen representative of gv. Further, the map ky,, equals zj)k, Usv) o hy,s,

where k' is the chosen representative of kg'¥ such that k = k'h and h € Stab(¢'?) = ¢/Stab(¥)g’ !

As a consequence, kg’ equals k'g’h’ for some h' € Stab(?¥) and kg = k'¢g’h'h”. By definition,

(3.26) (]{jg)v~ _ ¢k’,l h” V“ (hlhll)va _ I(Cglh’hllvﬁ) o ¢!(]’}'hﬂv‘7) o (h/h”)vﬁ

. (g W' "V (hU, . (hU,
Since ¢'h'h" = hg, we have that ¢,, 'w) ¢k, "’ Moreover, since ku,,, = gbk, v ohu,,,

Equation (3.26) yields that
(kg)Vf, _ kUg/,; o (hUy/5)71 o ¢§€L/h//%~,) o (h/h//)v17

Recall that the hieromorphism d)g]ﬁ) are defined to be equivariant with respect to the conjugation

isomorphism Stab(N) — ¢'Stab(v)g'~!. Therefore, since h = g’h'g’~! € ¢’Stab(?)g'~* we have that
—1

(hgw)™ o¢ ¢ (WIW) o(hly)~! for every W € &;. By using this fact considering W = h'h"V;



3.3. APPLICATIONS 83

and Equation ([3.26]) we obtain that
(3.27)  (kg)v, = ku,, 0 0% 0 (W)™ 0 (R )y, = ky,, 0 65 o (W)v;, = kv, © gv,,

and the claim follows.

As we have seen, the collection of maps gy, provide an action by isometries of G on | ;. 65. In
order to descend this action to the quotient &; = ;. S5/ ~, in Corollary we will have to

make use of comparison maps.

Before the proof of Corollary we prove a useful result on comparison maps.

Lemma 3.3.6. Let G = (I, {Gy}vev, {Ge}eer, {@et : Ge = Get}ecr) be a finite graph of hierar-
chically hyperbolic groups satisfying the hypotheses of Corollary|3.3.1. Let [V] € &1,v,w € Tv
and g € m(G). If V,, Vi are the representatives of [V] in &,,8,, respectively and g[V] = [W]

- W, vV, 1 . ) -
then the comparison map Cwi equals gv,, © ¢y’ © gy, where gy, , gv, are the isometries defined in

Lemma[3.37)

Proof. If v, w € T}y are joined by a single edge e, then gv, gw are joined by the edge ge in T'. Recall

that the map ¢g4.+ in the tree of spaces 7T is equal to g¢.+ g~ ! for every edge e in T. Moreover, by

Lemma the map induced by g¢.+g~! at hyperbolic space level is equal to gy, o gzﬁi‘f) o g;vl.
.. Wyy Ve 1 : :

Therefore, by Definition we have that Gyl = gv, Oy O gy, An inductive argument on the

number of edges separating v from w proves the general case. O

We are now ready to show Corollary

Proof of Corollary Let 7 be the tree of hierarchically hyperbolic spaces constructed from
the finite graph of hierarchically hyperbolic groups, as done in Equation . Choose & following
the constraints of Subsection We begin the proof by modifying the hierarchically hyperbolic
space structure on each (X,,&,) in the tree of spaces as follows. If V,, denotes the representative
of [V] in &, and C[V] = CV,, denotes the favourite representative of [V'], then we replace the
hyperbolic space CV;,, with the hyperbolic space C[V']. We define the projection 7y : X, — C[V]

as ¢’

v omy,. Since comparison maps are isometries by assumption and the projections my, are

uniformly coarsely Lipschitz, we obtain that the projection [y is uniformly coarsely Lipschitz.
We repeat this process for every equivalence class [V] and every (&, &,) where v € Tjy.

By Theorem the metric space X (7T) associated to T admits a hierarchical hyperbolic structure
S. The group G acts on X(7T) in the following way. At the level of the metric space g.x = gz €
X(T) for all x € X(T). The action at the level of the index set & is defined by g.[V] = [¢V] € &,
for all [V] € &1, and g.Tjyy = Ty [v) € 62 for all Ty € Ga.

To define the action of G at the level of hyperbolic spaces we proceed as follows. If [V] € & and, as
described previously in Section [3.3] v, ¥ are the favourite vertices of [V'] and g[V] respectively, then
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we define the map gpyy: C[V] — Cg[V] as gjvy := ¢’ o gy, , where gy, : CV,, — CVj, is the isometry
induced by g, and ¢ : CV,,, — CVj is a comparison map, which is an isometry by hypothesis. Note
that this definition provides an action of G' on the hyperbolic spaces associated to & by isometries.
Indeed, if g, ¢’ € G and [V], [W] € &1 such that [W] = g[V] then g{y0g[v] = (cg;ﬁog%)o(cgvog%).
By Lemma if ¥’ is the favourite representative of ¢'[W] then gy, o " = cZ:g” ° gy, and,
therefore, gy, © gjv) = 7 o (¢ 9)v, = (9'9)v)-

In order to show that G is a hierarchically hyperbolic group we now show that the action defined
above of G on X(T) satisfies the axioms of Definition [.7.1] The first axiom is straightforward to
check. Indeed, if T' is the underlying tree of 7 we have that the quotient of X via the action of G
is a finite graph of spaces where each space is the K(G, 1) of a vertex group in G. That is to say,
X /G is a compact space. Moreover, since for every vertex group G, in G the action of G, on &,
is cofinite, we have that the action of the total space G on | ;. G is also cofinite. Therefore, we
obtain that the action of G on &; = |y G5/ ~ is cofinite.

It remains to show that the two last axioms of Definition hold. That is, we have to show that

for every g € G the following diagrams coarsely commute

(3.28) ¢—Lsqa cU Y CgU
”Ul i”gU Pgl lpig
CU ——CgU cv CgV

for every U,V such that UAV or U & V.
Let [V] € &1 and let v be the favourite representative of [V] and v’ be the favourite representative

of [W] = ¢g[V']. We consider the following diagram:

— g —

Ggw Ggw

o OV = CWoy = CWoy

The center square of the diagram commutes by Lemma Moreover, the right and left square

coarsely commute by definition of 7y} and 7ypy1. By Lemma we have that ¢}’ o gy, o =

¢ o gv, = g[vi-
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To tackle the general case we consider the following diagram:

G G

971v) l JJQQT[V]
w
ClV] ——

G
ml

Here, if x € G, then gry,, (7) is defined as g, (), where w is the closest point to w’ in T}y. Note

g[v

that if w is the closest point to w’ in T}y, then gw is the closest point in g7}y to gw’ and so
the upper square commutes. The bottom square commutes by the previous case. Recall that if
y € Gy such that w’ ¢ Tpyq, then 7y (y) = c&f o7y, (¢pe+ (Ge)), where e is the edge separating
w' from Tjy). Therefore, gry,, (y) = ge+ (y) and 7y, (ge+ (y)) = 7y, (de+ (Ge)). As a result we
obtain that mv(y) = 7y © 911, (y)-

We now show that for any two index set elements in U,V € &; u G4 such that U £ V' the second
diagram in (4.3) commutes. We first tackle the case [U],[V] € &;. We consider two disjoint
cases: either Tjy) n Ty = & or Tiy) n Ty # & and U, £V, for some v € Tjyy n Tjyp. 1If

Tivy A Ty = @ then plid = cv o v, (6e+(Ge)) and ply] = cv 0wy, | (6 (Ger)). Note that
ifxe Gw where w € T}y, then by definition my(z) = p%g% and 7g[y(g7) = pi%g. By the above
vl _ V]

argument 7,[¢1(92) = gu] © mv)(w) and therefore pi[U] = 9[u1 © Py

Recall that, by Lemma if v, w € Ty N Tjyy such that Vi, MUy, then cﬁj’(p&“ﬂ) = pg’j Moreover,

for every g € G, we have that gy, (pg:’) = pgg“’ If g € G, then by definition of ¢4, we have that

¢ opr _ pgvgw
We now consider the case where Ty N Ty # & and UyhVy, or Uy E Vy, in the index set

G- If v and v' are the favourite representatives of [U] and [V] respectively then, by definition,

pﬁﬂ =c)o pV Recall that if ¥ is the favourite representative of g[V] then g[ ] is coarsely equal

to ¢ o gy, o ¢’ and, therefore, grviocw o pg:;’ =" ogy, o pg“’ =cf"o ng = pgﬂ

Let us now consider the case [V]h Ty 0 [V] C Tiu). Recall that pgp[] = T N Tyvy if Ty Ty #
5. In this case, gpg}[/i] =Ty NIy = pgT . On the other hand, if Tjy) N Tjy = &, then pg,[]]

is defined as closest point projection of Ty on Tjy. It follows that the closest prOJectlon of Ty

. \%
on Ty is gp[T[l]/].

If [V] L [U], then [V] = T p[T‘%] () = ¢ omy o (e (X)) for every v € Tiyp\Tjyy, where e is the

edge separating v from Tjy. Note that if v € T\ Ty, then p[T‘[,] (v) = mvy(x) for any = € A,

Therefore, gy o p[V] M(v) = myp(g2) = pg[ [t{] (gv).

If [V]A[U], two cases may ocurr, either Ty n Ty # & or Tiyy 0 Trvy = & If Ty 0 Ty = &,
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then p[T‘[/[]]] = cffr omy (¢e+ (X)), where e is the edge separating Tjy) from T}y). Note that if
v € Tiyy, then p[T‘[/L]I] = 7y (z) for any x € X, and therefore, gpyq o p[T‘[/‘i] = Tyv)(97) = pg[T‘[/[]]]. If
Tivy [V AU]

Tivy 0 Ty # & then Prv) = Pvi

Moreover, G < Pg, because the action is given by T-coherent automorphisms. As in |14, Corollary
8.22], this action is cocompact and proper. The action of G on G is cofinite if and only if the
induced actions on &7 and &5 are cofinite, and this is indeed the case. The action on &7 coincides

with the action considered in [14, Corollary 8.22] and therefore is cofinite, and the action on
Sy = {Tjyy [ [V] € &1}

is cofinite because the action on & is.
This proves that G is a hierarchically hyperbolic group. It has the intersection property and clean
containers because (X (T), (‘5) has these properties. O

3.3.2 Graph products

Theorem 3.3.7. Let T be a finite simplicial graph, G = {Gy}vev be a family of hierarchically
hyperbolic groups with the intersection property and clean containers. Then the graph product

G = TG is a hierarchically hyperbolic group with the intersection property and clean containers.

Proof. Throughout the proof, if G denotes the graph product I'G and A is a subgraph of T", we
denote with Ga the subgroup of G generated by the family of subgroups {G, | v € A}. This is
canonically isomorphic to the graph product AGa, where Ga is the subfamily of G indexed by
elements in A. Given vertex groups {Gy},ev, we fix once and for all word metrics on them, and
we always consider the graph product metric on I'G, so that the (infinite) generating set of the
graph product I'G consists of all vertex-groups elements. In particular, for a full subgroup H of
the graph product G, that is a subgroup conjugated to a Ga as above, the inclusion map H — G

is an isometric embedding.

We show by induction on the number of vertices that every graph product G of hierarchically
hyperbolic groups with the intersection property and clean containers is again a hierarchically
hyperbolic group with the intersection property and clean containers, and that for any full subgroup
H of G, hierarchically hyperbolic group structures (with intersection property and clean containers)
can be given to H and G so that the canonical inclusion H < G is a full, hierarchically quasiconvex
hieromorphism, inducing isometries at the level of hyperbolic spaces.

The case n = 1 is trivial, so let us suppose that V' = {v,w}. If the vertices are connected by
an edge, then the graph product is the direct product of the two vertex groups, its hierarchically
hyperbolic structure is described in Example and it satisfies the inductive statement we want
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to prove.

On the other hand, if the two vertices are not connected by an edge, then the graph product is the
free product of the two vertex groups, and also in this case the inductive statement is satisfied.
Let us suppose that the graph T" has n vertices, that is |[V| = n, and that the lemma is satisfied by
graph products on at most n — 1 vertices. If the graph product splits non-trivially as a direct or
free product, then either G = Ga X Gg or G = Ga * Gg, where A and © are proper non-trivial
subgraphs of I'. In both cases the inductive statement is satisfied, by induction and by recalling that
free products and direct products of hierarchically hyperbolic groups are hierarchically hyperbolic.
Therefore, suppose that G does not split non-trivially as a direct nor as a free product. Consider

any (non-central and non-isolated) vertex v € V' and the splitting
(3.29) G~ GF\{v} *Glink(v) (Glink(v) X GU)

We now check that all the hypotheses of Corollary are satisfied.

By the inductive hypotheses the groups Gr\(,} and Gk admit a hierarchically hyperbolic
group structures with the intersection property and clean containers, and we call &,y and
Glink(v) their index sets, respectively. By Lemma @ the direct product Gy x Gy is a
hierarchically hyperbolic group with the intersection property, and it also satisfies clean containers
by |2, Lemma 3.6]. Moreover, also by inductive hypotheses, the inclusions ¢;: Glink(v) = G1\{v}
and t2: Glink(v) = Glink(v) X Gy are full, hierarchically quasiconvex hieromorphisms, and L;‘jU are
isometries for i = 1,2 and for all U € Gy (v)-

Moreover, ¢; and ¢y are isometric embeddings. By choosing inverse isometries for the maps L;’"U
for i = 1,2 and all U € &jji(y), we conclude that comparison maps, as defined in Definition
[3:14] are again isometries. Therefore, all of the hypotheses of Corollary [3.3.1] are satisfied, and
we apply it to the graph of groups appearing in Equation . Thus, the group G admits a
hierarchically hyperbolic group structure with the intersection property and clean containers. To
conclude the proof, it is enough to prove that the embedding GaA < G is a full, hierarchically
quasiconvex hieromorphism, and that induces isometries at the level of hyperbolic spaces, where

A is any proper subgraph of I'.

Let us first consider the case A = I'\{v}, and let us show that Gp\¢,; is hierarchically quasiconvex
in G. Recall that the index set & constructed in Corollary for Gr is 61 U Gy U {f}, as fully
described in Equation and Equation .

Any element of &; is an equivalence class [V], equipped with a favourite representative V,, in the
Bass-Serre tree T' for which C[V] = CV,,. On the other, any element of &, is a support tree Ty,
and the metric space C1[y is the tree 7]y} in which all properly contained support trees T}y are

coned-off.
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For each [V] € &1, the projection [y, as defined in Equation (3.7) and Equation (3.8), is

Cw o Ty, (), Vo e X, ve Ty
V] (z) =
Cet OTY_, (¢e+ (Xe))a Vo e Xy, v ¢ T[V]a

where e = e(v) is the last edge in the geodesic connecting v to Tjyq such that e € Tjyq, and the
maps ¢, and ¢+ denote the appropriate comparison maps to the favorite representative of [V].
Let z € X, € X and let Tjy] € G2. Then, 77y, (z) is defined as the composition of the closest
point projection of v to T}y in the Bass-Serre tree T', with the inclusion of T}y into the coned-
oft CTjyy = f[v].

To prove that Gr\¢,y is hierarchically quasiconvex in Gr, we need to check the two conditions of
Definition m For each element T|y € G2 we have that w7y, (Gr\{v}) is a point in CTjyy = f[v]
and, therefore, it is quasiconvex in CTjy.

Suppose that [V] € &1, and assume that [V] has a representative in ¢g.&,,, where &, is the index
set associated to the vertex group G,. In particular [V] = {V'}, and mv1(Gr\(v}) S T (9-Glink(v))-
Since V' ¢ 9.Gjink(v), the set 7y (9.Glink(v)) is uniformly bounded, and therefore 7y (Gp\fy}) is
quasiconvex in C[V].

On the other hand, assume that the group orbit G.[V] intersects & ¢,,;. Without loss of generality,
as the group acts isometrically on the hyperbolic spaces, we can assume that [V] has a represen-
tative V € Sr\{v}. By definition 7y(Gry\py) = ¢ 0y (Gry\qo}), where ¢ is the comparison map
from V to the favourite representative of [V]. By Axiom (I of Deﬁnition the set 7 (G (0})
is quasiconvex in CV, and therefore v (Gr\v}) 18 quasiconvex in C[V], being ¢ an isometry. It
follows that for every element [V] € &1, the set 7y} (Gr\(yy) is quasiconvex in C[V].

To conclude the proof of hierarchical quasiconvexity, consider a consistent tuple b in (G, &) such
that by € v (Gr\(vy) and by, € m1y,,(Gr\(}) for every [V] € &;1. The sets 77y, (Gr\(vy) are
uniformly bounded, being points, for all T}y € &2. Moreover, m[y)(Gr\(.}) are uniformly bounded
for every equivalence class [V] € &; which has a representative in g.&,,.

Let a denote the vertex of the Bass-Serre tree in which the subgroup Gr (.} is supported. Let
i : Gr\{y} — GT be the hieromorphism defined as follows. At the metric-space level define it to be
the natural inclusion. At the level of index sets i®(U) = [U] and, at the level of hyperbolic spaces,
if;: CU — C[U] is the comparison map ¢: CU, — C[U], which is an isometry.

For each [V] € &1, we have that

Ca O Ty, (GF\{’l/})? if e T[V];
v (Gre}) =
Cet © 7TV6+ (¢e+ (Xe))7 if o ¢ T[V]
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By Theorem the set Ty, (@e+ (Xe)) is uniformly bounded, and thus c.+ o Ty, (¢e+ (AXe)) is
uniformly bounded. For each [V] € &; such that a € T}y, let ¢y denote ¢(byyq), where the maps
¢ denote the comparison maps (which are isometries) from the favourite representative of [V'] to
the representative V,, (therefore, the maps ¢ change with respect to different equivalence classes).

Consider the consistent tuple

¢= I aw
[V]EG 1,
OLET[V]

By induction hypothesis, Gr ) is a hierarchically hyperbolic group. Therefore, the consistent tuple
¢ admits a realization point z € G\ (.}, and thus we obtain that 7y (2) = by for every [V] e &;.
Furthermore, since 77y, (Gr\(v}) is a point, we also have that 77, (2) = bry,,, = 71, (Gr\(v}) for
every 1y € G3. That is, the second condition of hierarchical quasiconvexity is proved, and the
inclusion Gr\(,; = Gr is a hierarchically quasiconvex hieromorphism.

Moreover, for each V € &p\(,) the map CV — C[V] is an isometry. Note that, if an element
[V] € i®(U) = [U], where U € S\ (v}, then Ty € Tpyy. By assumption o € Tjyp, and therefore
o € Tjyy and there exists V € &g,y such that i9(V) = [V].

Thus, we proved that all induction hypotheses are satisfied by the inclusion G\ (,; — G, that is
that the embedding is a full, hierarchically quasiconvex hieromorphism, which induces isometries

at the level of hyperbolic spaces.

To deduce the same for an arbitrary Ga, we proceed as follows. If A = I'\{u} for some (other)
vertex u € V, then the above argument, where in Equation we consider the splitting over
the subgroup Giink(u), proves that the inclusion Ga — G satisfies the desired properties. If not,
then A is a proper subgraph of I'\{u}, for some u € V. Induction proves that the embedding
Ga — G\ satisfies said properties, and again the above argument proves the claim for the
inclusion Gp\¢,} < G. As fullness, hierarchical quasiconvexity, and inducing isometries at the level
of hyperbolic spaces, are all properties preserved by composition of hieromorphisms, we conclude

that the inclusion Ga < G satisfies the inductive statement, and the proof is thus complete. [

We end the chapter with a remark that anticipates what the following chapter is about. In short,
it shows the limits of application of Theorem to general graphs of groups.

Example 3.3.8. [Baumslag—Solitar groups] Let us consider more in detail non-euclidean Baumslag—
Solitar groups BS(1,k) = {a,t | tat™! = a*), where k # +1. Let T = (V, E) be the Bass—Serre
tree associated to the HNN extension BS(1,%), so that V = {¢{a) | g € BS(1,k)}. Two distinct
vertices g{ay and h{a) are joined by an edge e € E if and only if there exists b € (a) such that either
h(a)y = gbt*'{a), or h(a) = gbt~'{a). For a vertex g(ay = v € V let (X,,&,) = (g{a), {{a)})
be the hierarchically hyperbolic space associated to the vertex, and for any edge e € FE let

(Xe,Se) := (a),{{a)}) be the hierarchically hyperbolic space associated to the edge. Given
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{g{a), h{(a)} = e € E, consider the hieromorphisms ¢., : ((a),{(a)}) — (g{a),{{a)}) be defined as
Pe. (a) = ga, and ¢e_: ({a), {{a)}) — (ha), {(a)}) be defined as ¢._(a) = ha".
We have that

T = (LA S0} g { (X 8N e {0

is a tree of hierarchically hyperbolic spaces. The vertex-spaces and edge-spaces all have the in-
tersection property and clean containers, because their index set consists of only one element.
Moreover, hieromorphisms are hierarchically quasiconvex, uniformly coarsely lipschitz, and full.

Let us prove that comparison maps are not uniform quasi isometries. First notice that, as each
hierarchically hyperbolic space has an index set of cardinality one, there is only equivalence class
that spans the whole tree 7. Let v and u be two vertices in T, at distance d. Then, the comparison
map ¢, : {ay — {a) is a (|k|%,0)-lipschitz map. Therefore, as |k| > 1 and we cannot bound the
distance d between two vertices in the unbounded tree T, comparison maps cannot be uniform

quasi isometries, as claimed.

The above remark shows that Theorem [3.0.1| cannot be applied to show that non-euclidean Baum-
slag Solitar groups are hierarchically hyperbolic. The following result is an analog of Lemma [T.2:6]

it shows that hierarchically hyperbolic groups cannot contain infinite distorted cyclic subgroups.

Remark 3.3.9. If G is a hierarchically hyperbolic group, then G cannot have a subgroup isomor-
phic to BS(n,m) = {a,t | ta™t~! = a™), with |n| # |m|. Indeed, suppose there is an embedding
t: BS(n,m) — G. We have that ¢(a) is an infinite order element of G. By [35, Theorem 7.1] and

[36, Theorem 3.1], ¢(a) is undistorted, which is a contradiction.

More generally, if a group G has a hierarchical hyperbolic structure, then it cannot be unbalanced,
as it cannot contain infinite distorted cyclic subgroups.

After examining the above remark, one would be tempted to think that the only way that a
Baumslag Solitar group BS(m,n) has a hierarchically hyperbolic structure precisely when |m| =
|n|. This is indeed, the case, and we devote the last chapter of this thesis to study hierarchical
hyperbolicity for a much broader class of groups that we choose to call hyperbolic-2-decomposable

groups.



Chapter 4

Hierarchical hyperbolicity of
hyperbolic-2-decomposable groups

In this chapter we will consider groups that split as graphs of groups with 2-ended edge groups.
Recall that, if P is a property of a group, we say that a group is P-2-decomposable if it splits as a
graph of groups with 2-ended edge groups and vertex groups satisfying property P.

We now state the main result of the chapter.

Theorem 4.0.1. Let G be a hyperbolic-2-decomposable group. The following are equivalent.
1. G admits a hierarchically hyperbolic group structure.
2. G does not contain a distorted infinite cyclic subgroup.
3. G does not contain a non-Fuclidean almost Baumslag—Solitar group.

Moreover, if G is virtually torsion-free, condition (3) can be replaced by

8’. G does not contain a non-Euclidean Baumslag—Solitar group.

Before we begin with the chapter, we state a few questions and possible future directions.

4.0.1 Questions

The non virtually torsion-free case: our results are stated differently for the case of vir-
tually torsion-free groups. The main problem being that we could not determine in the class
of hyperbolic-2-decomposable groups whether all non-Euclidean almost Baumslag—Solitar groups

contain a Baumslag—Solitar subgroup.

Question 4.0.2. Does every non-Euclidean almost Baumslag—Solitar subgroup of a hyperbolic-2-

decomposable group contain a non-Euclidean Baumslag—Solitar subgroup?

91
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We stress that this question has a positive answer for certain torsion-free groups. In [59, Proposi-
tion 7.5] the author shows that the question has a positive answer for GBS groups. In [28, Propo-
sition 9.6] the author extends the result to (torsion-free hyperbolic)-2-decomposable groups. How-
ever, the results appearing in those papers rely heavily on the absence of torsion. As we will see in
Section it is enough to assume that G is virtually torsion-free. Moreover, recall that a graph

of virtually torsion-free groups may not have a virtually torsion-free fundamental group (Example
1.9.16)).

Generalization to HHG-2-decomposable In our proofs, hyperbolicity of the edge groups is
used only in Theorem [£:2.2] and Lemma [£.2.6] Thus we expect that finding appropriate replace-
ments for the two results above will yield a sufficient condition for a (hierarchically hyperbolic)-2-
decomposable group to be hierarchically hyperbolic. However, the question becomes harder when
asking for a full characterization. As remarked before, all hierarchically hyperbolic groups are

balanced, hence balancedness is surely a necessary condition in Question 2.

Question 4.0.3. Under which conditions a (hierarchically hyperbolic)-2-decomposable group is
hierarchically hyperbolic?
A possible strategy to answer this question would be to extend the tools developed in Section

to the class of hierarchically hyperbolic groups. That is to say, provide conditions guaranteeing

that the hierarchically hyperbolic structure of edge groups can be included in the one of the vertex
group.

However, we don’t think this strategy would work in the general case. For instance, consider Z2-
2-decomposable groups (also known as tubular groups). If one vertex has three incoming edges,
defining pairwise linearly independent lines, there is no straightforward way of defining a hierar-

chically hyperbolic group structure on Z? that contains each edge group.

4.0.2 Balanced groups

A fundamental notion throughout the chapter is the notion of balanced group.

Definition 4.0.4. Let G be a group and g € G. We say that g is balanced either if g has finite
order, or if whenever g™ is conjugate to ¢, it must follow |n| = |m|. We say that a group G is

balanced if every element is balanced.

Lemma 4.0.5 (|90, Lemma 4.14]). Let G be a group and assume that there exists a balanced
subgroup H of G of finite index. Then, G is balanced.

We are now going to study how balanced groups behave under amalgamated products and HNN
extension over virtually cyclic groups. A key property of virtually cyclic groups that will be used
throughout the chapter is that if a,b are infinite order elements of a virtually cyclic group, then
there are N, M such that o’V = bM.

Lemma 4.0.6. Let C be a virtually cyclic group and G = A+¢c B. Then G is balanced if and only
if A, B are.
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Proof. One implication is clear. To show the converse, let g € G be an infinite order element and
let h € G be such that hg"h~! = g™ for |n| # |m|. If g is acts hyperbolically on the Bass-Serre tree
T corresponding to G, then the translation length ¢5(g) is positive. Moreover, £;(g") = |n|la(g)
and £g(hgh™') = g(g). Thus, if hg"h~! = g™ then |n| = |m|, which is a contradiction. Thus, we
can assume that g acts elliptically on T

Therefore, there exists 2 such that xgz~! belongs in A or B. Assume without loss of generality

that 2gz~! € A. We have
(4.1) (zha™ ") (xge™ )" (xha™ ") = (zgz™")™.

If we write a = (rgx~!) € A and k = xha~!, Equation (4.1)) becomes ka"k~! = a™. Write k in

normal form kg --- ks, where k; € A —1 or B — 1. We have
(ko ks)aT™ (ko - kg) ta™T™ = 1.

There are now two cases. First, assume that no powers of a can be conjugated into C, for instance,
this happens whenever |C| < o0. Then by the normal form theorem, s = 0 kg € A and hence A
was not balanced.

So suppose that there is some power a¢ of a that can be conjugated into C'. Up to conjugating a
and k and taking powers of a, we can assume that a € C and ka"k~! = a™ holds. Again, consider
the normal form k = kg ... ks;. We will proceed by induction on s.

Case s = 0. In this case we have koa”ko_l =a™. Since a € C, if ky € A (resp. B), we have that A
(resp. B) is unbalanced.

Induction step. Suppose that the claim holds for k& with normal-form length s — 1. We will show
that it holds for length s. Consider the equation ka”k~! = a™ and assume that k has normal-form
length s. Observe that for each T the equation ka”"k~' = a”7™ still holds. We will show that, for
T large enough, we can write kaT"k~' = aT™ as K'¢™ (k')~' = ¢™ with c € C, |n/| # |m’| and ¥’
with normal-form length at most s — 1. Then we are done by induction hypothesis.

We have

By the normal form theorem, b = k,a"k; ! € C. Since C is 2-ended, there is c € C and Py, Ps, P3, Py

such that ™ = ¢f> and b = ¢, Let K = ko -- - ks—1. Then we have

(4.2) KhkyaP Pk =t = gD Pom
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Let’s focus on the left-hand side only, conjugating it by K. We have

kSCPng'rLk,s—l — ksaPIPSnks_l — bP1P3 — CP1P4.

Since ks belongs to either A or B, all the elements of the above series of equations are in one
between A, B, say A. Since A is balanced, we need to have |P,Psn| = |P; Py|. Thus, up to possibly
substituting n with —n, we can write the left-hand-side of Equation as KcPPsmK—1. Now,
applying the equality a’* = ¢ to the right-hand-side of Equation 7 we have

KCP1P4K—1 _ KchPgnK—l _ CP2P37”.

We are now done by induction hypothesis. O
By applying repeatedly the previous lemma, we obtain the following corollary.

Corollary 4.0.7. If G is a balanced-2-decomposable group such that the underlying graph is a tree,
then G is balanced.

It is straightforward to check that HNN extensions of balanced groups are not balanced in general:
Simply consider BS(2,3) as the HNN extension {a,t | ta’t=! = a®) = {a)*421_gs.

To finish this subsection we include results that give sufficient conditions for an HNN extension
over a balanced group to be balanced. We stress that these results are modified versions of

[28, Proposition 6.3] and |28, Theorem 6.4]. They have been modified as to allow torsion.

Proposition 4.0.8. Let H be a balanced group, A, B < H be virtually cyclic subgroups and
¢: A — B be a isomorphism. Let G = H#y. Then.

1. If g € H but no power of g is conjugate in H into A U B then g is still balanced in G.
2. If A and B are non-commensurable in H, then G is also a balanced group.

Proof. Suppose g was not balanced in G. Hence there is h € G — H such that hgPh~! = ¢ for some
Ip| # |g|. Since h € G — H, we can write h = hyt°' ... h,_1t°"h, in reduced form. By assumption
h.gh, ! does not belong to A nor B, and hence hg?h~! cannot represent an element of H. Thus,
h € H and since H is balanced |q| = |p|.

For the second item, we only need to check the balancedeness of elliptic elements in G, since a
translation length argument similar to that of Lemma[4.0.6]rules out unbalancedeness of hyperbolic
elements. Thus, if G is unbalanced, by the first item there must exist an unbalanced infinite order
element h € H such that some power of h can be conjugated into A U B. Therefore, we can assume
without loss of generality that h € A U B. Assume that h = a € A. Since a is unbalanced, there

is some g € G such that ga’g~! = a7 with |i| # [j|. Let g = hit®' ... h,t* be the reduced form
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expression in G. Since gh’g~! = h’ has normal form length 1, there must exist some possible
reduction in (A1t ... h,t5")hi(hitet ... h,t*")~L. There are two possible ways that this could
happen: Either ¢, = 1 and h.h'h;! € A or ¢, = —1 and h,h'h ! € B. If the latter occurs,
then the proof is complete, as h,h'h; ! is an infinite order element in A" ~ B. Assume now
that the former case occurs. Since A is a 2-ended balanced group, there must exist k& such that
hra?*h -t = a. Therefore, t*h,a*h 1t~ = tat*t=! = b  Again, as before, we have two
possibilities: Either hr,lbiikh;ll belongs in B and ¢,_1 = —1 or hr,lbiikhil belongs in A and
er—1 = 1. If the latter occurs, the proof is complete. If the former occurs, since B is a 2-ended
balanced group, then h,_1bT#** b1 = b*#* for some k’. We can continue performing reductions

in the expression of ga’g™!

and at each step we have the same dichotomy where either the proof is
complete or we can continue reducing. Note that at some point of the reduction we obtain h; such
that A" n B or A~ B" is infinite. Indeed, otherwise for some K # 0 the equality ga®’g~—" = a7

would hold for |Ki| = |Kj|, contradicting the assumption. O

Corollary 4.0.9. Let G be an HNN extension of the balanced group H with stable letter t and
2-ended associated subgroups A and B of H. Let a € A,b € B be infinite order elements such that
tat™! = b. Moreover, suppose that there is h € H conjugating a power of a to a power of b, so

that ha'h™' = /. Then G is balanced if and only for every pair of elements a,b as above we have
il = 131

Proof. One implication is clear, we now show that G is balanced provided that for every h € H
such that hah~! = b7 for some i, j it follows that |i| = |j|.

Assume that G is an unbalanced group. Therefore, by the second assertion in the previous propo-
sition, there must exist some h’ € H such that A n h/Bh/~! is infinite. Since HNN extensions
are defined up to conjugation of the corresponding embedding maps, by conjugating by h’ we can
assume that A n B is infinite in H. By the first assertion in the previous proposition, the only
elements that can be unbalanced are those h € H that can be conjugate in H into A u B. Thus,
we can assume without loss of generality that the unbalanced elements in G belong in A U B.

Therefore, if G is unbalanced, we can assume that for some a € A there is some g € G such that

ga"g~! = a™ for some |n| # |m|. We will induct on the length of the reduced form of g to show

1 m

that ga™g~* = a™ implies |n| = |m/|, obtaining a contradiction.

Let g = hot®*hy ...t°"h, be the reduced expression of g. Let us say that r denotes the reduced form
length of g. Assume that r» = 0. That is to say, g € H. Since H is balanced, we have |n| = |m|.
Assume now that the claim holds for elements of reduced form length r» — 1, and let g of reduced

form length 7 be such that ga™g~! = a™. We denote by b € B the element such that tat™ = b.

Note that if the equation ga™g~! = a™ holds in G, then for every T we have that ga’"g~! = a™™

1

for every T' > 0. Since the element ga™g~ = a" belongs in H, by the normal form theorem,
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ga™g~' must admit some reduction in its reduced form. There are two ways that this reduction

can occur: Either £, = 1 and h,a"h, ! belongs in A or &5 = —1 and h,.a"h, ! belongs in B.
Note that in the former case, since A is 2-ended and balanced, there must exist some k& such
that h,a*"h ! = atk". Therefore, tSh,a*"h 't = bT*"  In the latter case we have that
hra™h;! = € B. Since B is a 2-ended group, there must exist Iy, l; such that (¥)"* = b2, Thus,
hra™h -t = (b')1 = bl2. By assumption, we must have that |nl;| = |lz|. Therefore, in the latter
case we have that t~'h,.a™ h 't = t71pt2t = gtl2 = g7l In both cases, we use the induction
step to conclude |kn| = |km/| or |l1n| = |lym| respectively. In particular, since k # 0 # Iy, we

conclude |n| = |m|. O

4.0.3 Convexity

In this chapter, we will make use of two notions of convexity. The first one, called hierarchical
quasiconvexity, heavily relies on the hierarchical structure. For instance, it is not quasi-isometric
invariant. For a more precise account, we refer to [73].

To detect hierarchical quasiconvexity sometimes it is convenient to check a stronger property.

Definition 4.0.10 (Strong quasiconvexity). A subset Y of a quasigeodesic space X is said to
be strongly quasiconvez if there is a function M : [1,00) — R such that every A-quasigeodesic in

X with endpoints in Y stays M (\)—close to Y.

Theorem 4.0.11 (|73, Theorem 6.3]). Let (G, &) be a hierarchically hyperbolic group andY < G
be a subset. Then if Y is strongly quasiconvex, it is hierarchically quasiconvex, where the constants

determine each other.

A special case of strongly quasiconvex subsets is given by peripheral subgroups of relatively hy-

perbolic groups.
Lemma 4.0.12 ([34, Lemma 4.15]). Let P be a peripheral subgroup in the relatively hyperbolic
group G. Then P is strongly quasiconvez.

In the case of hyperbolic spaces, relative hyperbolicity and strong quasi-convexity are intimately

related.
Definition 4.0.13. We say that a collection of subgroups {H;}?_; of G is almost-malnormal if
H,n gng_1 is finite unless i = j and g € H;.

Theorem 4.0.14 (|22, Theorem 7.11]). Let G be a hyperbolic group and {H;}?_, be a finite family
of subgroups of G. Then G is hyperbolic relative to {H;} if and only if {H;} is an almost-malnormal

family of strongly quasiconvex subgroups.

Definition 4.0.15 (Glueing hieromorphism). Let (H,&;) and (G, S2) be hierarchically hy-

perbolic groups. A glueing hieromorphism between H and G is a group homomorphism ¢: H — G
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that can be realized as a full hieromorphism (¢, ¢, ¢#) such that the image ¢(H) is hierarchically
quasi-convex in G' and the maps ¢f;: CU — Co°U are isometries for each U € &;. If the map

¢: H — G is injective, we say that the glueing hieromorphism is injective.

4.1 Hierarchical hyperbolicity of (2-ended)-2-decomposable
groups

In this section, we focus on (2-ended)-2-decomposable groups. That is to say, graphs of groups
where every vertex and edge group is 2-ended. We begin the section by recalling some useful results

on 2-ended groups.

4.1.1 Two-ended groups

In this subsection, we recall basic results and remarks on the structure of two-ended groups. An
important result of these type of groups is known as the structure theorem for infinite virtually

cyclic groups. Throughout the chapter, we will make use of this fact on many occasions.
Lemma 4.1.1 ([89, Lemma 4.1]). If G is an infinite virtually cyclic group, then either
1. G admits a surjection with finite kernel onto the infinite cyclic group Z, or

2. G admits a surjection with finite kernel onto the infinite dihedral group Dy,

We recall that the infinite dihedral group is the group defined by the presentation Dy = (r,s |
srs = r~1 52). Note that every element of Dy, can be written as sr%, for € € {0,1} and k € Z.
Moreover, every element of the form sr* has order 2, and an element of the form r* has infinite

order precisely when k£ # 0. Using those observations, we have the following Lemma.

Lemma 4.1.2. Let G be a virtually cyclic group. Let ®1, ®o: G — Dy, be homomorphisms with
finite kernel and finite index image. Then Ker(®1) = Ker(Ps).

Proof. As before, Dy, = (a,b | bab = a~!,b?). Suppose that there is g € G such that g € Ker(®;)
and g ¢ Ker(®3). Since g € Ker(®4), we conclude that ¢ has finite order, otherwise |Ker(®;)| = oo.
Since ®5(G) has finite index in Dy, there exists ¢ € G such that ®3(c) has infinite order. In
particular there exist k; € Z, ks € Z — {0} such that ®3(g) = ba** and ®5(c) = a*2, and so
®y(gc) = bak1+*2. Again, ge has to have finite order to not contradict |Ker(®,)| < oo . However,
since g € Ker(®1) we have that ®1(gc) = ®1(c¢), and so gc cannot have finite order. From this we

conclude Ker(®1) < Ker(®3). The symmetric argument yields the claim. O

Remark 4.1.3. Note that an infinite virtually cyclic group G cannot surject onto both Z and Dy,

with finite kernel. Indeed, assume that two surjective homomorphisms ® : G — Z and @' : G — Dy,
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exist. Since Z embeds into Dy, with finite index image, we can regard ® as a homomorphism from
G to Dy, with finite kernel and finite index image. Let s € Dy, be the generator of order two
and let g € G be an element such that ®(g) = s. Since s?> = 1, we have that g? € Ker(®'); by
Lemma we have that g% € Ker(®). Since Z is torsion-free, ®(g)? = 1 if and only if ®(g) = 1.
Since Ker(®) = Ker(®'), it follows that ®'(g) = 1, which is a contradiction.

4.1.2 Pulling back hierarchical structures

Recall that GBS groups are (infinite cyclic)-2-decomposable groups.

Definition 4.1.4. We say that a group G is a Generalized Baumslag-Solitar group if there exists
a finite graph of infinite cyclic groups G for which G =~ m(G).

Lemma 4.1.5. Let G be a (2-ended)-2-decomposable group and let H < G. If H is torsion-free,

then H is either a GBS group or a free group.

Proof. Let G, be a vertex group in G. Since H is torsion-free, there are two possibilities: either
H n G, is trivial or it is infinite cyclic. Since every edge group has finite index in its neighbouring
vertex groups, if H n G, is trivial, then H n G, is trivial for every other vertex w. Then H acts
on the Bass-Serre tree corresponding to G with trivial stabilizers. This is equivalent to H being a
free group.

If H n G, is non trivial, then it is of finite index in G,, since G, is two-ended. Therefore, since the
Bass-Serre tree of G is locally finite, the group H acts with infinite cyclic stabilizers on a locally
finite tree. That is to say, H splits as a finite graph of groups with infinite cyclic vertex groups

and the result follows. O

Definition 4.1.6. Let G, H be finitely generated groups and let Sg, Sy be generating sets of
G and H respectively. We say that a group homomorphism f : H — G is a quasi-isometric

homomorphism if f: (G,ds.) — (H,ds,,) is a quasi-isometry.

Remark 4.1.7. Recall that a group homomorphism f : G — H yields a quasi-isometry for some

(hence, any) generating sets Sy, Sg if and only if |[Ker(f)| < oo and |H : Im(f)| < co.

As we have seen in Remark the hierarchically hyperbolic structure on geodesic metric spaces
can be pushed out and pulled back via quasi-isometries. For hierarchically hyperbolic groups,
however, this is not true, as a group actions are in general not equivariant with respect to any quasi-
isometry. The next lemma describes how to pull back hierarchically hyperbolic group structures

on a group H via quasi-isometric homomorphisms. Recall the definition of glueing hieromorphism

(Definition 4.0.15]).
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Lemma 4.1.8 (Pulling back hierarchical structures). Let (G, S¢) be a hierarchically hyper-
bolic group and let f: H — G be a quasi-isometric homomorphism. Then H can be endowed with

a hierarchically hyperbolic structure Sy defined as follows.

1. The set &y coincides with S, and the hyperbolic spaces associated also coincide.

2. The projections 7l : H — CU are defined as the composition 75 o f, where 7§ : G — CU s

the projection associated to (G,S¢).
3. The relations between the elements of &y are unchanged, and so are the maps pY.
Moreover, f is a glueing hieromorphism between H and G.

Proof. Since f has finite kernel and finite index image, it is clear that f induces a quasi-isometry.
Thus (H,S&pg) is a hierarchically hyperbolic space. In order to show that it is a hierarchically
hyperbolic group, we now show that the structure induced above is H-equivariant. Since G acts
on &g, we obtain that H acts on & as well via f. Since f(H) has finite index in G, we obtain
that the action has finitely many orbits. We now show that every h € H and U € Gy there exists

an isometry hy : CU — ChU such that the following diagram commutes

(4.3) H—" g

WU\L iﬂ'hU

CU ——ChU
hu

Indeed, if we define hy as the isometry induced by f(h) on CU we obtain that hy o 7 (K') =
f()E onG o f(h') = a5y (f(h) - f(R)) = wh (k- 1) for every h' € H. O

Definition 4.1.9. If f: H — G is as in Lemma [£.1.8] we say that Sy is the pullback of the
hierarchical structure on G and denote it by f*(Sq).

From the above we get a immediate lemma:

Lemma 4.1.10. Let (G,S) be a hierarchically hyperbolic group and let H, K be groups such that
there exist quasi-isometric homomorphisms f1: K — H and fo: H — G. Let f = foo f1. Then
f*6 = ff (f+6), and the map [ is a glueing homomorphism.

4.1.3 Linearly parametrizable graph of groups

Definition 4.1.11. Let G be a graph of groups. We say that G is linearly parametrized if there
is a map ®: m1(G) — Dg such that for each vertex or edge group G, the restriction ®|g has finite

kernel and finite-index image (i.e ®|¢ is a quasi-isometric homomorphism).
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Theorem 4.1.12. Let G be a linearly parametrized graph of groups and let G = w1(G). Then, G

admits a hierarchically hyperbolic group structure.

Proof. Let ®: G — Dy be the map witnessing the linear parametrization of G. Equip Dy, with
the trivial hierarchically hyperbolic group structure (Dy,,¥), where ¥ contains a single element T
and CT coincides with a Cayley graph for D,. Endow every vertex G, with the pullback structure
(G, ®|@,*(F)), and endow analogously the edge groups. We claim that turns G into a graph of
groups that satisfies the hypothesis of Theorem Since the HHG structure on each vertex
group consists of a single element, it satisfies the intersection property and clean containers. Let
e be an edge, v a vertex incident to e, and let ¢p: G, — G, be an injective homomorphism. Since
both G, and G, are infinite virtually cyclic, we have that ¢ is a quasi-isometric homomorphism.
Thus, by Lemma[£.1.10] it induces a glueing hieromorphism. Since e and v were generic, the result

follows. O

Thus, from now on we will focus on determining which graphs of 2-ended groups can be linearly
parametrized. We begin by showing which amalgams and HNN extensions of linearly parametriz-

able groups can be linearly parametrized.

Lemma 4.1.13. Let G; and Gy be linearly parametrized graphs of groups, and let G be a graph
of groups obtained connecting G1 and Gy with an edge such that the corresponding edge group is

2-ended. Then, G is linearly parametrized.

Proof. Let e be the added edge and let G be the associated group. We want to show that there
are maps ®1: m1(G1) — Dy, and Py: m1(Gs) — Dy that agree on G, such that their restriction to
vertex/edges subgroups has finite kernel and finite index image. Then the universal property of
the amalgamated product yields the desired map ®: m(G) — Dy.

Let @1: m1(G1) — Dy be the function parametrizing G, and let @5 be the one for Go. Consider the

two restrictions ®;|¢, , for i € {1,2}. Since G, is an infinite group by assumption, its image has finite

index in the vertex groups adjacent to it. In particular, the restrictions ®;

and finite index image. By Lemma we conclude Ker(®|g,) = Ker(®2|g.). We concentrate

@, have finite kernel

now on the images ®;(Ge) which, by the previous argument, are isomorphic. An infinite index
subgroup of the dihedral group has to have the form (s*) or (s* rs'), for some k,l € Z — {0}.
Suppose that the subgroups ®;(G.) have the form (s*: ra") respectively (the case where they are
both cyclic is analogous). Note that the map p;: Dy, — Dy, which sends s — s and 7 — rs! is
an isomorphism. Thus, up to postcomposing ®; with p_;, we can assume that the images ®;(G.)
have the form (s*,r) respectively.

Let 7;: Doy — Dy, be the map that sends s — s and r — r. Note that 74 is an injection with

finite index image, thus postcomposing with 7, does not alter the fact that a map has finite kernel



4.1. HIERARCHICAL HYPERBOLICITY OF (2-ENDED)-2-DECOMPOSABLE GROUPS 101

and finite index image. It is now straightforward to verify that the maps ®; := 7, o ®; and

Dy 1= 7, 0 Py satisfy the desired requirements. O
A result of this type in HNN extensions does not hold in general, as the following example shows:

Example 4.1.14. Let H = {a) be an infinite cyclic group. Therefore, it can be linearly parametrized
via @ : H — Dy, by sending a — r. Let us construct an HNN extension over H by adding a stable
letter ¢ that conjugates a? to a®. That is to say, G = H¥p2-1_g3.

Assume that ® can be extended to & : G — Dy, that linearly parametrizes G. As a consequence
we obtain that the relation &)(t)@(a)Q&)(t)_l = &)(a)g holds in Dy,. As virtually cyclic groups are
balanced, ®(¢) must be trivial. Since ®(a) = ®(a) = r, we obtain as a consequence that r? = r3

in Dy, which is a contradiction. Thus, ¢ cannot be extended to a linear parametrization of G.

To determine which HNN extensions of linearly parametrizable groups can be linearly parametrized,

we introduce the notion of balanced edge.

Definition 4.1.15 (Balanced edge). Let G be a graph of groups and e be an edge of G. We
say that e is balanced if the following holds. Let H = G — e, and let ¢4, d_: G, — 71 (H) be the
morphisms associated to e. Then for every infinite order element a € G, if there exists h € w1 (H)

such that
(4.4) ho(a)'h™" = ¢_(a),

it follows that |i| = |j|.

Remark 4.1.16. Note that if an edge e in a graph of groups G is unbalanced then m(G) is
unbalanced. Moreover, by Corollary [£.0.7] we have that unbalanced edges can never exist in a

graph of groups where the underlying graph is a tree.

Lemma 4.1.17. Let H be a linearly parametrized graph of groups and let G be obtained from H by
adding an edge e with infinite associated edge group. Then G is linearly parametrized if and only

if e is balanced.

Proof. Let A, B be the images of the edge group, and let 1): A — B be the induced isomorphism.
Let ®: H = m1(H) — Dy be the map that linearly parametrizes H. As usual, we use the
presentation Dy, = (r,s | srs™! = r~1 52 = 1). We start by showing that the second condition
implies the first.

Consider the subgroups ®(A), ®(B) < Dy,. Note that every infinite order element of A has to be
sent to r™ for some n € Z — {0}. Indeed, those are the only infinite order elements of D, and

since ®|4 has finite kernel, infinite order elements cannot be mapped to torsion ones. A similar

argument applies for B. Thus, ®(A) n {r) has finite index in {r).



102 CHAPTER 4. HYPERBOLIC-2-DECOMPOSABLE GROUPS THAT ARE HHG

Let |n| and |m| be the index of (P(A)) N {r) in {r) and of (P(B)) n {r) in {r) respectively. We
now show that |n| = |m|. Let a € A be such that ®(a) generates P(A) N {r). Observe that there
exists h € H and i > 0 such that ha'h™! = 1 (a)?, for some j > 0. Indeed, since H is linearly
parametrized, all its vertices and edges groups are infinite virtually cyclic, and the underlying graph
is connected. Thus, G, and G, are commensurable. By assumption, we need to have |i| = |j].
Thus, ha'h~! = (a)’ and, therefore, ®(a)’ = ®((a))*?. By mutiplicativity of index of subgroups
we obtain [(®(a)) : (r)| = [{P(¥(a))) : {r)|. This shows that |n| < |m|. The symmetric argument
obtained choosing b € B such that ®(b) generates ®(B) n {r) and considering 1! () provides the
other inequality. Thus |n| = |m|.

Define a map ¢’ : ®(A) — ®(B) as ¢/(®(z)) = ®(¢(z)). By Lemma [1.1.2] Ker(®)|4 = Ker(®)|p.
Thus, ¢’ is a well defined, injective homomorphism. Since 1) is surjective, so is 1)’, showing that
¥’ is an isomorphism. Since ®(a) cyclically generates ®(A) n {r) and ¢’ (P(a)) cyclically generates
®(B) n {r), we have ®(a) = r™, ®(¢(a)) = r"™ with |m| = |n|.

In particular, ® extends to a homomorphism ® : G — (Dg)#y . Consider the presentation
(Doo )ty = (s,m,t | srs™t =171 5% = 1t/ (P(x))t ™! = ®(x) Vo e A). Let p: Dyxy — Dy, be
defined as p(s) = s, p(r) = r and p(t) = sl"=™//2nl Then the map ® = po & : G — Dy, linearly
parametrizes G.

To show that the first condition implies the second one, we argue by contradiction. Consider the
presentation G' = (H, t|tgt™! = 1(g),Vg € A) and assume that for some h € H and infinite order
a € A we have ha’h™! = y(a)? with |i| # [j|. Therefore, ta’t™! = ai. Applying ® we have
P(e)D(a)id(e)"t = d(a)!. However, since Dy, is virtually cyclic, by Lemma it follows that

|i| must be equal to |j|, which is a contradiction. O
Combining the above two lemmas we obtain the following.

Corollary 4.1.18. Let G be a graph of groups with 2-ended vertices and edges. Then G is linearly

parametrizable if and only if all edges are balanced.

Proof. Assume that G is linearly parametrizable by a map ® and let e € E(G). If e belongs in
a spanning tree of G then e is a balanced edge by Remark Assume now that e does not
belong in a spanning tree. Note first that the subgraph of groups G — e of G is also linearly
parametrizable, as we can use the restricted map P = |, (g—e) as linear parametrization. If e is
unbalanced, then by Lemma we obtain that ® cannot be extended to 71 (G — €)#,, = m(G),
which is a contradiction. Thus, every edge e must be balanced.

To show the converse, let T' be a spanning tree in G. Since every vertex group is 2-ended, we can
repeatedly apply Lemmato show that the subgraph of groups G| is linearly parametrizable.
If every edge in G is balanced, then we can add one by one the remaining edges in G to T' and

apply Lemma at each step to obtain the result. O
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4.1.4 Characterizations of hierarchical hyperbolicity

With the following lemma, we establish a relation between those graphs of groups that can be

linearly parametrized and those which have balanced fundamental group.

Lemma 4.1.19. Let G be a graph of groups with balanced vertex groups. Then 71(G) is unbalanced

if and only if it contains an unbalanced edge.

Proof. By definition, if G contains an unbalanced edge then 71 (G) is unbalanced. Assume now that
m1(G) is unbalanced. Let T be a spanning tree of the underlying graph I' of G. Start adding edges
in I\T to T until we obtain a subgraph A of T" such that m1(G|a) is unbalanced and 71 (G|a—.) is
balanced. Split m1(G|a) as m1(G|a—e)#*:,, and let A, B € m1(G|a—e) be the subgroups associated to
the HNN extension. By Corollary there is an infinite order element a € A and h € 71 (G|pa—e¢)
such that

ha’h™" = ta®t™!,
for |p| # |q|, showing that e is an unbalanced edge. O

The final ingredient for the proof of the main theorem of this section is the so-called almost

Baumslag-Solitar group, which we now introduce.

Definition 4.1.20. [Almost Baumslag-Solitar] A group G is called an almost Baumslag-Solitar
group if there are non-trivial elements a, s € G such that a has infinite order, {a,s) = G and the

—1

relation sa’s~! = a’ holds, for i,j # 0. An almost Baumslag-Solitar subgroup is non-Euclidean if

i # 13-

Remark 4.1.21. Note that an almost Baumslag-Solitar group can be obtained as a quotient of
some Baumslag-Solitar group, but such quotient is not, in general, an isomorphism. An interesting
question to ask is under which conditions does an almost Baumslag-Solitar group contain BS(m, n)
for some m, n.

In [59, Proposition 7.5] it is shown that if a non-Euclidean almost Baumslag-Solitar group G can
be embedded into a GBS group, then G will contain some BS(m,n) for |m| # |n|.

In [28, Corollary 9.6] it is shown that if a non-Euclidean almost Baumslag-Solitar group G can be
embedded into the fundamental group of a graph of torsion-free balanced groups with cyclic edge
subgroups then G will contain some BS(m,n) for |m| # |n|

Following the same spirit, in Corollary we show equivalent conditions under which a non-

Euclidean almost Baumslag-Solitar group contains some BS(m,n) for |m| # |n|.
Corollary 4.1.22. Let G be a graph of groups containing an unbalanced edge. Then

1. m(G) contains a non-Euclidean almost Baumslag-Solitar subgroup;
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2. if m1(G) is virtually torsion-free then 1 (G) must contain a non-Euclidean Baumslag-Solitar

subgroup.

Proof. By definition of balanced edges (Definition , if e is unbalanced and ¢4 are the
monomorphisms associated to the edge e, then there exists an infinite order element a’ € G,
and h € 7 (G — e) such that ho, (a’)'h™! = ¢_(a’)? for some |i| # |j|. Let a denote ¢, (a’)
and s denote t.h for short. By assumption, a has infinite order, and so s # 1. Then {a,s) is a
non-Euclidean almost Baumslag-Solitar group.

If, in addition, 71 (G) is virtually torsion-free then there exists N > 1 such that o’V and s belongs

in a torsion-free subgroup of 71(G). Note that

N NN _—-N _ stl(s(ai)N-iN_lsfl)sf(Nfl) _

_ SN72(S(ai)JN-iN*2371)Sf(N72) _

-N
— ... =gV

Therefore, the relation sV (aNiN)s_N Ni™ g satisfied in a torsion-free subgroup Q of m1(G).

By Lemma [4.1.5] Q is a generalized Baumslag-Solitar group. Since NiV¥/NjN = (i/j)N # +1,

= a

by [59, Proposition 7.5] the subgroup {a'¥,s") contains some non-Euclidean Baumslag-Solitar

group. O
Combining Lemma with Corollary we obtain Theorem [1.9.15[ from the introduction:

Theorem 4.1.23. Let G be a graph of groups where none of the vertex groups contain distorted
cyclic subgroups. Then m1(G) contains a non-Euclidean almost Baumslag-Solitar subgroups if and

only if G has an unbalanced edge.

Proof. It G = 71(G) contains a non-Euclidean almost Baumslag-Solitar subgroup then it is unbal-
anced. By Lemma we obtain that G must contain some unbalanced edge. Corollary

shows the converse. O

We are now ready to prove the main result of this section.

Theorem 4.1.24. Let G be a graph of groups, where all vertex and edge groups are two-ended.

Assume moreover that m1(G) is virtually torsion-free. Then the following are equivalent.
1. m(G) admits a hierarchically hyperbolic groups structure.
2. G 1is linearly parametrizable.

3. m(G) is balanced.



4.1. HIERARCHICAL HYPERBOLICITY OF (2-ENDED)-2-DECOMPOSABLE GROUPS 105

4. m1(G) does not contain BS(m,n) with |m| # |n|.
5. m(G) does not contain a distorted infinite cyclic subgroup.
Proof.
By Corollary 4.1.18 we have that 71 (G) is linearly parametrizable if and only if every edge
e in G is balanced. Moreover, by Lemma [4.1.19 we have that every edge in G is balanced if and
only if 71(G) is balanced.

Assume that m1(G) is unbalanced. Therefore, by Lemma [4.1.19| there is an edge e, an

infinite order element a € G, and an element h € m1(G — e) such that
hos(@)'h™" = ¢-(a)’,

with |i| # |j|. Let x = ¢4 (a) and y = ¢_(a). Since e is unbalanced, there is a spanning tree that
does not contain e. In particular, we can assume there is a stable letter ¢ associated to the edge e
such that tyt~! = 2. We claim that () is distorted. Note that x is of infinite order. To simply

notation, we will write A %" B if |A — B| < r. We have:
d (Lwa‘) ~28 g (1’ th~z'h—1) —d (LyN.j) 20t g (LxN.j) '

This is to say, for each N we have |d (1,#"7) — d (1,2N7)| < 2(|h| + |t]). Since |i| # [j], it is now
a standard argument to show that {(z) is distorted. Indeed, restating the argument before for a
general exponent M we have d (xM, J;HJTl‘MJ) < |h|+ |t| 4 i. Assuming that |i| > |j|, we can iterate
the inequality above to obtain that d(1, X™) is comparable to 1og%(M) - (|h] + |t| + 7). That is

to say, d(1, XM) grows logarithmically, showing that the map n + 2™ cannot be a quasi-isometric

embedding.

Assume that 71(G) is unbalanced. Therefore, by Lemma [4.1.19} G must contain an unbal-
anced edge. The second item of Corollary [4.1.22] concludes the proof.

H Follows from [35, Theorem 7.1] and [36, Theorem 3.1].
2 = 1| Follows from Theorem }4.1.12
Since non-Euclidean Baumslag-Solitar groups contains distorted cyclic subgroups if G' con-

tains some non-Euclidean Baumslag-Solitar subgroup we obtain the result.

O

Theorem 4.1.25. Let G be a graph of groups, where all verter and edge groups are two-ended.

Then the following are equivalent.

1. m(G) admits a hierarchically hyperbolic groups structure.
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2. G is linearly parametrized.

3. m(G) is balanced.

4. m1(G) does not contain a non-Euclidean almost Baumslag-Solitar subgroup.
5. m(G) does not contain a distorted infinite cyclic subgroup.

Proof. Assume that 71(G) is unbalanced. Therefore, by Lemma [4.1.19] G must contain an un-
balanced edge. The first item of Corollary shows the implication 4 = 3. The rest of the
implications are the same as in Theorem [£.1.24] O

4.2 Hierarchical hyperbolicity of hyperbolic-2-decomposable
groups

In this section, we give a necessary and sufficient condition for the fundamental group of a graph
of groups with hyperbolic vertex groups and virtually cyclic edge groups to be a hierarchically
hyperbolic group. We do so by extending the tools introduced in the previous section. To that
end, we make use of Theorem to induce a hierarchically hyperbolic group structure on the
groups G, .

We begin by showing the following lemma. This allows us, without loss of generality, to restrict

our attention to graphs of hyperbolic groups with infinite virtually edge groups.

Lemma 4.2.1 (Dealing with finite vertices/edges). Let G be a graph of groups such that
m1(G) is infinite and G has hyperbolic vertez groups and virtually cyclic edge groups. Then there
exists a finite graph of groups G' with infinite hyperbolic vertex groups and 2-ended edge groups
such that m(G") = 71(G).

Proof. Given a graph of groups H let F(H) be the set of edges with finite associated edge group,
that is {e € E(H) | |Ge| < 0}. Let Gy = G. We will produce a sequence of graph of groups
G; such that 71(G;) =~ m1(G), G; has hyperbolic vertex groups and virtually cyclic edge groups
and |F(G;)| < |F(Gi—1)|. Since the graph of groups is finite, eventually we will find G,, such that
F(G,) = . In particular, if G,, has at least one edge, then the associated edge group is infinite.
Hence, the vertex groups needs to be infinite and we are done. If there are no edges, then there is
a single vertex labelled by 71 (G), which is hyperbolic by construction. Since, by assumption 71(G)
is infinite, we are done.

Suppose G; is defined. Firstly, suppose that there is e € F(G;) such that there exists a spanning tree
T, of G; containing e (recall that 71(G) does not depend on the choice of spanning tree, as pointed
out in Remark . Then the subgroup G.+ *g, G.- is hyperbolic by Theorem |17, Corollary
Section 7). Then let G;11 be defined from G; by replacing the edge e and the incident vertices by
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a single vertex with associated group G.+ *g, G-, and leaving the other edge maps unchanged.
By doing this, we still have hyperbolic vertex groups and virtually cyclic edge groups.

So, suppose that no element of F(G;) can be included in a spanning tree. This is to say that
all elements of F(G;) are loops. Let e € F(G;), and let v be the vertex incident to it. Then by
[18, Corollary 2.3], the HNN extesion G, #¢, is hyperbolic. Then we define G;;1 as the graph of

groups obtained from G; by removing the edge e and changing the vertex group of v to Gy*g,. O

From now on, whenever we state a result on a graph of hyperbolic groups G we will always assume
that the associated edge groups G, are virtually cyclic and infinite. In other words, from now on
we assume that the groups considered are hyperbolic-2-decomposable.

Given a vertex group G,, one of the main challenges that we have to face in this setting is the
fact that the incoming edge groups do not necessarily form an almost-malnormal collection in G|,
(Definition . As a consequence, these edge groups may not be geometrically separated so as
to include them in the hierarchical hyperbolic structure of G,. The following theorem solves this
problem, and it is pivotal in the proof of the main theorem in this section. We also stress that it

is a consequence of [14, Theorem 9.1].

Theorem 4.2.2. Let G be a group hyperbolic relative to a family of hierarchically hyperbolic groups
{(H;,&;)},. Suppose that there is a finite family of subgroups {Ks}aen and homomorphisms
o : Ko — G such that for each a there exists i and g € G such that ¢ (K,) has finite index in
HY. Finally, suppose that each group K, is equipped with a hierarchically hyperbolic structure R,
such that ¢g[1 i (Ko, Ra) — (H;,6;) is a glueing hieromorphism.

Then there is a hierarchically hyperbolic structure (G, &) on G such that ¢, is a glueing hieromor-
phism for every oo. Moreover, if all (H;,S;) satisfy the intersection property, so does (G, &), and

similarly for clean containers.

Proof. This theorem is an adaptation of Theorem We will follow almost verbatim the part
of the proof that describes such a structure on G, but we will not verify the axioms as it will not
add clarity to the current proof. We will conclude the proof by showing that the maps ¢, can be
realized as glueing hieromorphisms.

The structure: For each i = 1...,n and each left coset of H; in G, fix a representative gH;. Let
g6, be a copy of &; with its associated hyperbolic spaces and projections in such a way that there
is a hieromorphism H; — gH; equivariant with respect to the conjugation isomorphism H; — HY.
Let G be the hyperbolic space obtained by coning-off G with respect to the peripherals {H;},

and let & = {G} U], ; ©4m,. The relation of nesting, orthogonality or transversality between

9€g
hyperbolic spaces belonging to the same copy &, p, are the same as in Sp,. Further, if U, V' belong
in two different copies of different cosets, then we impose transversality between them. Finally, for
every U € G4p, we declare that U is nested into G.

The projections are defined as follows: 75: G — G is the inclusion, which is coarsely surjective
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and hence has quasiconvex image. For each U € &4y, let gym,: G — gH; be the closest-point
projection onto gH; and let 75 = wg" © ggH,, to extend the domain of 7y from gH; to G. Since
each Wg ¢ was coarsely Lipschitz on CU with quasiconvex image, and the closest-point projection in
G is uniformly coarsely Lipschitz (Lemma, the projection Wg is uniformly coarsely Lipschitz
and has quasiconvex image. For each U,V € &,y,, the various py; and p{, are already defined. If
Ue&yny, and V e &yp,;, then Py = v (9g m; (9H;)). Finally, for U # é’, we define pg to be the
cone-point over the unique gH; with U € G4p,, and pgz G — CU is defined as follows: for z € G,
let pg(x) =r5(z). Ifx e G is a cone point over g'H; # gH;, let ,05(33) = p[S]ngj, where Syp; is
the E-maximal element of &y 5. The cone-point over gH; may be sent anywhere in CU.

By [14] Theorem 9.1], the construction above endows (G, &) with a hierarchically hyperbolic group
structure.

Hieromorphisms: Fix a. By assumption there exists i and g € G such that ¢,(K,) < HY.
Moreover, &, = d)?{l i (Ko, Ra) — (H;, S;) is a glueing hieromorphism. Our goal is to show that
¢: (Ka,Ra) — (G, 6) can be equipped with a glueing hieromorpism structure.

To simplify notation we will drop the « and i subscript and denote (K, R) = (Kq,84), @ = dq,
(H,6y) = (H;,S;) and so on.

For every V € 8, define ¢ (V) = g®©(V) and ¢y = g* o ®F,, where g* is the isometry associated
to the multiplication g € G. By assumption, the maps ®3: CV — CHOV are isometries, and for

each U € &y, the space CyU and the space CogU are isometric. Thus, the maps ¢f, are isometries.

We need to show that the following two diagrams coarsely commute.

¢ &%

K—* _a CV —— = Co®(V)
ﬂgl \LWSO(V) P[‘;l lpzzgl‘;;
CV ——Co¥(V) U ——— = Co®(U)

¢U 43;[;

This is a matter of unwinding the definitions. We will check the first one, the second is analogous.
So, let x € K. Recall that ¢(x) = g®(z)g~! € gH;g~!. Then

1

(45) 75 ) (B(@)) = g* o7 0 97 0 = g% 0w | (g, (B(2)g ™).

Note that d(®(x)g~t, gH;) < |g|. Since all the map are coarsely Lipschitz, there is a uniform bound
between Wgé(v) (9o, (®(z)g™ 1)) and wgg(v) (®(z)). That is, up to a uniformly bounded error, we

can write Equation [4.5] as

(4.6) 7o (0(2)) = g (7l (@(2)) )
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On the other hand, we have
(4.7) ¢} o (x) = g* (OF o i (2)) -

Since ¢g* is an isometry, Equations and give the result. Note that the constant of the
coarse commutativity depend on g. However, since there are only finitely many pairs (K, H;),
we obtain uniformity. Hence, the map ¢ can be equipped with a hieromorphism structure. By
construction, the maps ¢f; are isometries, and the hieromorphism is full. To see that it has
hierarchically quasiconvex image, observe that its image is at finite Hausdorff distance from a
peripheral subgroup, hence it is strongly quasiconvex (Lemma [4.0.12)). Then it is hierarchically
quasiconvex by Theorem [73, Thorem 6.3].
Intersection property and clean containers: We start by checking clean containers, that is
to check that for each U = T' € & we have U LcontTU. If U = @ there is nothing to check. Hence,
assume U € g6, and let ¢.5; be the T—maximal element of ¢&;. Recall that the relations on & are
defined such that if U,V € & — {G} are not transverse, then there is i € {1,...,n} and g € G such
that U,V € ¢g&;. In particular, ULV implies U,V € ¢&;. Hence, conth = contﬂ_siU. Moreover,
ifUcTand T # é’, it follows T' € ¢&;. Since we assumed that (H;, &;) has clean containers, we
have U Lcont? U for all T € g&;, completing the proof.
Consider now the intersection property. By hypothesis, for each ¢&; the map A9 is defined.
Then define A: (G U {T}) x (Gu{T}) — (6 u{F}) by considering the symmetric closure of the
following:
U ifvV=3a
UAV =SUAH:V  ifU,V e g8, for some i, g

%] otherwise.

The only property to verify that does not follow directly is to check that if U € ¢&; and V € ¢'G;
with ¢&; # ¢'S;, then there is no W nested in both U, V. But if such a W existed, then it needs

to belong to both ¢&; and ¢’S;, a contradiction. O

4.2.1 Commensurability and conjugacy graph

In this subsection we extend the results obtained in Section to the general setting. The key
object that will allow us to do this is the conjugacy graph (Definition 4.2.10). This is a graph of
groups that, combined with Theorem provides vertex groups with a hierarchical hyperbolic
structure realizing edge maps as glueing hieromorphisms.

As the vertex groups in the graphs of groups considered are not 2-ended, the whole graph of groups
cannot be linearly parametrized. Moreover, the edge groups do not necessarily embed into vertex

groups in an almost malnormal way. To overcome those problems, we will consider the elementary
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closure of subgroups. A systematic study of elementary closures of WPD subgroups (which include
cyclic subgroups of hyperbolic groups as a special case) is carried on in [30], where the authors
show such subgroups needs to be hyperbolically embedded in the ambient group. For the sake of

self-containment, we recall some useful properties of the elementary closure.

Definition 4.2.3 (Elementary closure). Let G be a group and let H be a subgroup of G. We

define the elementary closure of H in G as the subgroup

Eq¢(H) ={g9€ G| duaus(9H, H) < o0}.

Lemma 4.2.4. Let H, K be subgroups of G such that H n K has finite index in both H and K,
then K < Eq(H).

Proof. Let k € K and h € H. Our goal is to uniformly bound d(kh, H). Since H n K has finite
index in H, there is kg € H n K at uniformly bounded distance from h. Note that kky € K. Since
H n K has finite index in K, there is hg € H n K at uniformly bounded distance from kky. By

triangular inequality, we get a uniform bound on d(kh, hg). O

Recall that two groups H, K are said to be commensurable if H n K is of finite index in both H

and K. In this chapter we adopt a different, more broad notion of commensurability.

Definition 4.2.5. Let G be a group and A, B < G be subgroups. We say that A and B are
commensurable if there exists g € G such that gAg~! n B has finite index in B and A n g~ 'Byg
has finite index in A.

Moreover, we say that two elements a,b € G are non-commensurable if {(a) and (b) are non-
commensurable in G.

Note that, in general, H will not have finite index in Eg(H). A simple example of this is given by
considering the subgroup {a) in {a)@®(b) = Z2. Indeed, in this case we would have Ey2((a)) = Z>.

This is not the case, however, for 2-ended subgroups of hyperbolic groups.

Lemma 4.2.6 (|30, Lemma 6.5]). Let G be a hyperbolic group and H be a 2-ended subgroup. Then
Eq(H) is 2-ended.

In particular, observe that Eq(H) has to be the maximal cyclic subgroup containing H. This

yields the following useful lemma.
Lemma 4.2.7. Let Hy,...,H, be 2-ended subgroups of a hyperbolic group G. Then

1. H; and H; are commensurable in G if and only if Eq(H;) and Eg(H;) are conjugate to each

other.

2. {Eq(H1),...,Eq(H,)} is an almost malnormal collection if and only if H; and H; are non-

commensurable for every i # j;
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Proof. Since H; has finite index in E¢(H;), we have that Eq(H;) and Eg(H;) are commensurable
if and only if H; and H; are. In particular, this shows one implication. Suppose that Eg(H;) and
Eq(H;j) are commensurable. Up to conjugate one of them we have that gEq(H;)g™' n Ec(H;)
has infinite index in both gEg(H;)g™ ', and Eg(H;). By Lemma we have gEg(H;)g™! <
Ec(Eg(Hj)) = Eg(H;) and, by symmetry, Eg(H;) < gEg(H;)g~'. Hence, Eg(H;) and Eg(H;)
are conjugate.

For the second item, observe that if Eq(H;) and Eg(H;) are not commensurable, since they are
2-ended groups it must follow |Eq(H;) n gEc(H;)g™"| < o for all g € G. Hence they are almost

malnormal. 0

We now introduce the conjugacy graph associated to an edge group.

Definition 4.2.8 (Commensurability class). Let G be a group and let P be a collection of 2-
ended subgroups of G. We denote by ~ the equivalence relation on P induced by commensurability.
That is to say, P; ~ Py whenever P;, Py are commensurable (as in Definition|4.2.5)). For each P € P

we use [P] to denote its commensurability class.

Definition 4.2.9 (Equivalence class). Let G be a graph of groups with 2-ended edge groups.
Consider the multiset

U= {(be"' (Ge)7 Ge- (Ge) | €€ E<F)}

of all the images of edge groups into vertex groups counted with repetitions.
Let ~g be the relation on U defined by imposing H; ~¢ Hs whenever either there exists e such
that Hy = ¢+ (Ge) and Hy = ¢, (Ge), or Hy, Hy € G, for some v and H; ~ Hy in G,. Extend
~p to an equivalence relation ~ on U by taking the transitive closure of ~j.

For a vertex group H, we denote by [H] its equivalence class with respect to ~.

Definition 4.2.10 (Conjugacy graph). Let G be a graph of groups with 2-ended edge groups
and let [H] be the equivalence class of an edge group in G. We define the conjugacy graph associated
to [H] as the graph of groups Apg defined as follows.

For each vertex group G, € G, let [H|, = {H' € [H] | H < G,}.

Vertices: For each vertex v of the original graph G and commensurability class [K] of [H],, add
one vertex vr to Apgy. Choose once and for all a representative K € [K] and define Eg, (K) to
be the vertex group associated to vg.

Edges: For each edge e € T such that ¢.+(G.) € [H], add an edge between [¢.+(G.)] and
[pe- (G.)], with associated edge group G.. To define the edge maps, let K be the chosen repre-
sentative of [¢e+ (Ge)]. Then there is h € G+ such that ¢o+ (Ge)" € Eq_, (K). If ¢or : Ge — Gt
was the edge map of G, let the attaching map of Ay be defined as ¢Z+ : Ge — Eg_, (K). Note
that, by Remark this map is well defined.
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Remark 4.2.11. In this chapter, we consider only graphs of groups with 2-ended edge groups. In
particular, by Lemma [£.2.6] the vertex groups of the conjugacy graphs are 2-ended. As the edge
groups of the conjugacy graphs are the same as the original edge groups, the conjugacy graphs

have 2-ended vertex and edge groups. construction.

Example 4.2.12. Let Fy = {a,b) be the free group of rank 2 and consider the group G to be
m1(G) = Fao#yg3;-1_pa2p-1. By construction, the splitting of G has one vertex v with associated
vertex group G, = Fy and one edge e with associated cyclic edge group G.. We now construct
the conjugacy graph Arq j associated to [G.]. Note first that the images of the single edge group
are commensurable in the vertex group, as b(a®)b=1 n (ba®b~1') is infinite. Thus, there is a single
conjugacy class of [G.] in Fy and, therefore, a single vertex in Ag). The associated vertex group
of Arpy is bEg, (a®)b™" = b{apb™". There is also a single edge group in Ay with associated edge
group equal to the one in G. The associated attaching maps are ¢.+ and d)g,. The conjugacy
graph associated to [G,] results in the group {a)#;,2¢-1_43.

In the following two lemmas, we describe how is the linear parametrization in a graph of 2-ended

groups extended to the general setting using the conjugacy graph.

Lemma 4.2.13. Let G =~ 71(G) be a graph of hyperbolic groups with 2-ended edge subgroups and
let e be an edge in the underlying graph of G. If A|g,) denotes the conjugacy graph associated to
[Ge], then e is unbalanced in G if and only if m(Aq,) is unbalanced.

Proof. Assume first that G contains an unbalanced edge e. Therefore, there exists an infinite
order element a € G, and h € m (G — €) such that h¢.+ (a)’h™! = ¢, (a)? for some [i| # |j|. By
Lemma |1.3.10] there is a path ey, ..., e; in the graph of G — e with A,y = Ga, Bery = G such
hy;
that Bt/ n A

e;+1 18 mon-trivial for every j = 1,...,k —1 (i.e EGcf (Be,)" = EGCT (Ae,,,)) and

elements hg € G, and h; € Gy, satisfying
(48) (tek hk et h1h0)¢)e+ (a)i(tek hk tee hlh())i1 = d)e* (a)jv

for some [i| # |j].

This means that the conjugacy graph Ag,  splits as m1(Ag,] — €)#,. Recall that by definition
the attaching maps in Ag, ) are defined as conjugates (Z):,i in G+ of the attaching maps ¢+ in
G. Therefore, since ¢q+(g), do-(¢') are conjugate in 71 (G), following Equation we obtain that
P+ (9)" = ¢e-(9)7 in M1 (Ag,) — ) where [i] # |j].

Assume now that, 71 (Apg,]) is unbalanced. We can apply Lemma to obtain,

(4.9) (hitek - hatét ho)aP (hatek "'hltzllho)_l = al,

for some |p| # |q|. Here, a is of infinite order, the various elements h; and a belong to vertex
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groups and at least one ¢; is non zero. Our goal is to modify the above equation to obtain an
analogous one that holds in 71 (G). Let Hy be the vertex group of Arg j that contains a and let H;
be the other vertex group adjacent to e; in A, (possibly, Ho = Hy). Let x € Hy be such that
(t& ho)aP (te ho) ™' = = in m1(A[g,)). By definition of conjugacy graphs, there are vertex groups
G, G1 of G such that H; < G;. Since the attaching maps in the conjugacy graph are defined as a
conjugates of the attaching maps of G, there exists k; € G; such that the following holds in m (G):

(kltzll hoko)ap(kltg hoko)il =X
Let y1 = (k1tg hoko). Proceeding in this way, we find an element y, = y of 71 (G — e) such that

yaly ' = al

with |p| # |¢|, showing that e is unbalanced in G. O

Lemma 4.2.14. Let G be a graph of groups with hyperbolic vertices and 2-ended edge subgroups.
Suppose, moreover, that for each edge e the conjugacy graph Aq,) is linearly parametrizable. Then

m1(G) admits a hierarchically hyperbolic group structure.

Proof. For each vertex v € V(G) let {e;} be the set of incoming edges and let E(Ge:r) be the
elementary closure of the images of the edge groups in G,. Choose representatives {FE;} of the
commensurability classes {[F (Gej)ﬂ}' Note that, by Remark {E;} forms an almost malnor-
mal collection of subgroups. In particular, G, is hyperbolic relative to {E;} by Theorem
By assumption, the conjugacy graph A[¢, ] associated to [G.] is linearly parametrizable for every e.
That is to say, for every edge e there exists @, : 71(A[g,7) — ]D)gg) such that @[ 1lc, : Gz — ]D)S,?
is a quasi-isometry, where G, is either a vertex or edge group of Ajg,};. We endow the various
groups G, with the hierarchical hyperbolic structure (G, {Dgg)}) as described in Lemma
In particular, this allows to equip with a hierarchically hyperbolic group structure every edge
group of G and every group E; < G, as before. Note that this is well defined. Indeed, suppose
that e, f are edges incoming in v and E(¢.+(G.)), E(¢s+(Gy)) are conjugate. Then e ~ f and
hence E(¢.+(Ge)) and E(¢s+(Gy)) are identified in the conjugacy graph. Thus the hierarchically
hyperbolic structure of the representative E does not depend on choices. Finally, note that since
the trivial hierarchically hyperbolic structure on Dy, satisfy the intersection property and clean
containers, so do all the hierarchically hyperbolic structures considered thus far.

Note that we are now in the hypotheses of Theorem [.2:2] allowing us to equip every vertex
group with a hierarchically hyperbolic structure (G,,&,) that turn the edge maps into glueing
hieromorphisms (G, S.) — (Gy,&,). Moreover (G,,S,) satisfy the intersection property and
clean containers. Applying Theorem we obtain that 71(G) is a hierarchically hyperbolic
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group. O

We now show the proof of the main results of the section and the chapter.

Corollary 4.2.15. Let G be a graph of groups with hyperbolic vertices and 2-ended edge subgroups.

Assume that G = m1(G) is virtually torsion-free. The following are equivalent:

1. G is a hierarchically hyperbolic group;
2. the conjugacy graph associated to every equivalence class of edges is linearly parametrizable;
3. G does not contain BS(m,n) for |n|# |m|;

4. G is balanced;

5. G does not contain an infinite distorted cyclic subgroup.
Proof.
Follows from [35, Theorem 7.1] and [36, Theorem 3.1].

If G is non-balanced, then by Corollary |4.1.19) G contains an unbalanced edge and hence

a non-Euclidean Baumslag-Solitar subgroup. Since these subgroups contain an infinite distorted

subgroup we obtain the implication.

4 = 3| By definition, a balanced group cannot contain a non-Euclidean Baumslag-Solitar subgroup.

Assume that Ag,) is not linearly parametrizable for some edge e. Theorem |4.1.24 implies
that there exists an edge e € I'\T' which is unbalanced in Ayg, . Moreover, Lemma [4.2.13| ensures

that there exists an unbalanced edge in G. By Lemma we obtain that G must contain some

non-Fuclidean Baumslag-Solitar group.

2 = 1| Follows from Lemma [4.2.14 O

Corollary 4.2.16. Let G be a graph of groups with hyperbolic vertices and 2-ended edge subgroups.

The following are equivalent:
1. G is a hierarchically hyperbolic group;
2. the conjugacy graph associated to every equivalence class of edges is linearly parametrizable;
3. G does not contain a non-FEuclidean almost Baumslag-Solitar group;
4. G is balanced;
5. G does not contain an infinite distorted cyclic subgroup.

Proof. The implications are the same as in Corollary except for 4 = 3 and 3 = 2, which

we now show.
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4 = 3| By definition, a balanced group cannot contain a non-Euclidean almost Baumslag-Solitar
group.
Assume that A j is not linearly parametrizable for some edge e. Since A, is a graph of
2-ended groups (Remark [4.2.11)), Theorem [4.1.25|implies that w1 (Afq,7) is unbalanced. Therefore,
Lemma [4.2.13] ensures that there exists an unbalanced edge in G. By Corollary [4.1.22] we obtain

that G must contain some non-Euclidean almost Baumslag-Solitar group. O

As a consequence of this we obtain the following corollary that was included in the introduction:

Corollary 4.2.17. Let G = Hy *¢ Hs where H; are hyperbolic and C is 2-ended. Then G is a
hierarchically hyperbolic group.

Proof. Tt follows from Lemma [£.0.6] that G is balanced. From the previous Corollary, we obtain
the result. O
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