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Abstract: A new discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is pro-
posed, and its properties of non-negativity and (both local and global) asymptotic stability of the
solution sequence vector on the first orthant of the state-space are discussed. The calculation of the
disease-free and the endemic equilibrium points is also performed. The model has the following
main characteristics: (a) the exposed subpopulation is infective, as it is the infectious one, but their re-
spective transmission rates may be distinct; (b) a feedback vaccination control law on the Susceptible
is incorporated; and (c) the model is subject to delayed partial re-susceptibility in the sense that a
partial immunity loss in the recovered individuals happens after a certain delay. In this way, a portion
of formerly recovered individuals along a range of previous samples is incorporated again to the
susceptible subpopulation. The rate of loss of partial immunity of the considered range of previous
samples may be, in general, distinct for the various samples. It is found that the endemic equilibrium
point is not reachable in the transmission rate range of values, which makes the disease-free one
to be globally asymptotically stable. The critical transmission rate which confers to only one of the
equilibrium points the property of being asymptotically stable (respectively below or beyond its
value) is linked to the unity basic reproduction number and makes both equilibrium points to be
coincident. In parallel, the endemic equilibrium point is reachable and globally asymptotically stable
in the range for which the disease-free equilibrium point is unstable. It is also discussed the relevance
of both the vaccination effort and the re-susceptibility level in the modification of the disease-free
equilibrium point compared to its reached component values in their absence. The influences of
the limit control gain and equilibrium re-susceptibility level in the reached endemic state are also
explicitly made viewable for their interpretation from the endemic equilibrium components. Some
simulation examples are tested and discussed by using disease parameterizations of COVID-19.

Keywords: discrete epidemic model; feedback vaccination control; transmission rate of the exposed;
transmission rate of the infectious; delayed re-susceptibility (or immunity loss); COVID-19 pandemic

1. Introduction

Epidemic models have received much attention in the last decades. Many formula-
tions used to describe them are based on either differential or difference equations leading
to significant numbers of existing continuous-time and discrete-time epidemic models.
For instance, the relevance of the basic reproduction number is discussed in [1] by ob-
taining related threshold theorems and applications to pertussis and measles descriptions.
Feedback vaccination laws have been proposed by employing feedback control concepts
and techniques as sliding-mode control or linear or impulsive feedback vaccination. See,
for instance [2,3] and references therein. It has been described in the mentioned research
how the various vaccination laws can affect the basic reproduction number, or the disease
transmission rate, and then the stability of both the disease-free equilibrium point and
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the endemic one. The transient evolution of epidemic diseases is focused on in [4] to
approximately predict the dates of maximum hospital occupancy of beds according to
different epidemic models of continuous type, and the dates can be monitored to some
extent under vaccination controls. The stability analysis and bifurcation control for a frac-
tional order Susceptible-Infectious-Recovered (SIR) epidemic model with delay is focused
on in [5]. The discretization of continuous-time epidemic models and the derivation of
purely discrete epidemic models has also received much attention. See, for instance, [6–12]
and references therein. It can be pointed out that, since the significant periods in a dis-
ease dynamics are relatively long, typically for instance on the orders of days or weeks,
discrete-oriented epidemic models might be appropriate for the disease evolution effi-
cient description and also to efficiently perform the computational studies to predict and
eventually to control its transmission. A way of controlling the disease transmission is
an appropriate programming of the vaccination campaigns. The above consideration is
reinforced since the public vaccination policies are typically programmed for their man-
agement and administration to the population along coming periods of days or weeks,
which are considered long periods for modelling discretization purposes and concerns
that facilitate the decision implementations. Discretization techniques are in fact very
useful in practical situations to accommodate the data acquisition from the disease evo-
lution to its concrete use, interpretation and public decisions about the disease control
when running through time mathematical epidemic models. In particular, an extended
Susceptible-Exposed-Infectious-Recovered (SEIR) model which incorporates asymptomatic
and dead infective subpopulations to the classical SEIR model has been discussed in [6]
where the properties of stability of the equilibrium points and model positivity have been
investigated in detail. Regular and impulsive feedback controls have been incorporated
to the basic model. Such a model has been claimed to be of potential usefulness for Ebola
evolution description. A multi-staged epidemic discrete model has been discussed in [7].
Although the exposed subpopulation is not included in such a model, it considers several
coupled layers of the infectious subpopulation where the infection is transmitted from each
layer to the adjacent ones. Discrete Susceptible-Infectious-Recovered-Susceptible (SIRS)
models have also been studied in heterogeneous networks [8] with related bifurcation
and stability studies. On the other hand, some epidemic models consider the vaccination
actions as a generator of a new subpopulation, the vaccinated one, which is dynamically
coupled to the remaining ones in the model rather than as a specific forcing control. See, for
instance, [9]. In addition, discretized Susceptible-Infectious-Recovered (SIR)-type models,
or Susceptible-Infectious-Susceptible (SIS)-type ones with stability formulations have been
proposed in [10–13] and some of the references therein.

Over the last year, a lot of research has been developed concerning the recent COVID-
19 pandemic. Since the authorities of the different countries supply very frequently disease
registered data, typically day-to-day, such as infection and detection tests, hospital bed
occupancies and, in particular, intensive unity care occupancies and mortality-related data,
discrete epidemic models have been seen to be appropriate in the related research. See,
for instance, [14–30], and some related references therein. The existing analysis of data
is abundant for different countries or regions such as, for instance, Saudi Arabia [16,17],
Madrid and the surrounding administrative area [18,19], India [23,24], Italy [25], United
Sates [26], Canada and several of its provinces [28], Switzerland, [29], Brazil [30], etc. See
also [31,32] for other recent studies on the spread of COVID-19. In addition, the analysis
of data has been sometimes accompanied with mathematical analysis techniques on the
pandemic evolution related to public interventions or mathematically founded analysis of
the obtained data. The COVID-19 disease is currently evolving with alternate intensive
growing-up periods of time followed by damping periods and vice-versa, which have
regional characteristics and are typically governed by public interventions, such as isola-
tions, total or partial quarantines, movement restrictions, social distance keeping, mask
use duties, lock down of commerce, teaching and non-essential activities, etc. In this way,
the impact of lockdowns is investigated in [17]. The effects of total or partial quarantines is
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investigated in [18] for a SEIAR model, which incorporates the asymptomatic subpopula-
tion to the SEIR model by considering the isolated population as removed either from the
infectious individuals or from the susceptible ones through impulsive control actions from
the infection chain. The approach in [18] is formulated in the continuous-time framework
rather than in a discrete-time one. The whole extended SEIR model under consideration
includes the asymptomatic individuals as a separate subpopulation with its own transition
from the exposed individuals. In addition, in [19], a general model with three different
infectious subpopulations, namely, the slightly infections, the hospitalized ones and those
in the intensive care unit, are considered. Each one of the above subpopulations as well
as the asymptomatic ones have their own transitions from the exposed subpopulation,
and vaccination and treatment controls are also considered to satisfy a priori established
hospitalization constraints for the seriously infectious individuals on availability of beds
and specific needed hospital means for intensive treatment. On the other hand, the im-
plementation of control strategies oriented to reduce the number of exposed individuals
or to increase the number of treated individuals is proposed and discussed in [20], while
impulsive optimal control techniques are developed in [21]. In particular, the proposal
of [20] relies on the fact that the pandemic is now endemic. In [23], the inadequacy of
open-loop controls is emphasized in contrast to closed-loop controls like, for instance, slid-
ing mode-based control laws. On the other hand, it is proven in [27] that the suppression
strategies might work if they are sufficiently strong and taken through early decisions,
while the mitigation strategies can fail because of unfavourable combinations of delays,
unstable dynamics and uncertainties.

The new discrete SEIR model, which is proposed and discussed in this paper, includes
linear feedback vaccination efforts on the susceptible, partial re-susceptibility (or partial
loss of immunity) of previously recovered individuals and infectivity (transmission rate)
in the Exposed-Susceptible contagious contacts which may be potentially distinct from
its counterpart related to the Infectious-Susceptible contagious contacts. It can be pointed
out that in some later periods of the disease incubation the exposed individuals (still
without exhibiting external symptoms) can produce contagious contacts with susceptible
individuals what can translate into an uncontrolled disease transmission along that phase of
the disease evolution due to the difficulty of performing tests for those individuals (basically,
due to their absence of symptoms), [33–35]. This circumstance is known to happen, for
instance, in the COVID-19 pandemic evolution. So, this is an important motivating reason
to consider infectivity levels not only in the Infectious-Susceptible contacts but in the
Exposed-Susceptible ones as well. It is also known that some diseases like influenza,
common viral cough, and very probably COVID-19 do not generate permanent immunity
in the recovered subpopulation that was previously infected. Therefore, the proposed
discrete model considers also a partial loss of immunity in the recovered subpopulation,
which increases the current susceptible levels after a certain delay from the recovery
date. The incorporation of a term to take account of potential re-susceptibility, which is
subtracted from the recovered subpopulation and added to the susceptible one, is made
in a versatile way in the sense that the weights for each considered interval of loss of
immunity can be affected from distinct weights, and such an interval itself is parameterized
by modeling delays.

The paper is organized as follows. Section 2 is devoted to present the new mentioned
proposed discrete Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model with
eventual linear feedback vaccination and partial re-susceptibility (or partial loss of immu-
nity) subject to a certain minimum threshold discrete delay and which weights such a lost
on a set of consecutive delayed samples related to the current sample and previous to such
a threshold delay. Three kinds of loss of immunity are discussed that evolve, respectively,
either at exponential or lower than exponential rates, and also loss of immunity is consid-
ered a constant rate. Section 3 discusses the non-negativity of the solution for bounded
non-negative initial conditions and the disease-free and endemic equilibrium points that
are unique and calculated explicitly. It is proven that the endemic equilibrium point does
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not exist for the transmission rates for which the disease-free one is locally asymptotically
stable, which coincides with the basic reproduction number having values below unity. In
addition, the endemic one is only reachable (i.e., all its components are non-negative) as
the disease- free one is unstable. The existence of a critical transmission rate corresponding
to the basic reproduction number having the unity critical value (critical basic reproduction
number) is also proven, where both equilibrium points coincide. The basic reproduction
number, critical transmission rate and equilibrium points are seen to be dependent on
the limit vaccination gains. In particular, if the vaccination gain increases, then the basic
reproduction number decreases. Section 4 is devoted to the stability properties. Essentially,
it is proven that there are no limit oscillations, and that the conditions of local asymptotic
stability around the equilibrium points imply that those stability properties are also global
since no limit oscillations exist. It is also proven that there is only a global asymptotic
attractor (being either the disease-free equilibrium point or the endemic one) depending on
the transmission rate being under or over its critical value. Section 5 presents and discusses
some examples of the proposed model related to the evolution of the COVID-19 pandemic.
Finally, conclusions end the paper.

2. Discrete SEIR Epidemic Model with Vaccination Control and Re-susceptibility

It can be first pointed out that the use of a discrete epidemic model allows a direct
acquisition of recorded data, and it is easier to implement related to continuous-time
models from a computational point of view. Note that the rationale of the sampling period
interpretation is that it is unity, typically, either one day or one week for a correct practical
use of the model. The model parameters should be expressed in values of dimensionality
being the inverse of the sampling period units. Consider the following Susceptible-Exposed-
Infectious-Recovered (SEIR)-type discrete model with vaccination effort and partial loss of
immunity (or re-susceptibility) given by

Si+1 = (1− βIi − βeEi) Si −Vi + LI
(

R̂i
)

(1)

Ei+1 = (1− µ)Ei + (βIi + βeEi)Si (2)

Ii+1 = (1− γ)Ii + µEi (3)

Ri+1 = Ri + γIi + Vi − LI
(

R̂i
)

(4)

for any integer i ∈ Z0+ = Z+ ∪ {0} where {Si}∞
i=0, {Ei}∞

i=0, {Ii}∞
i=0 and {Ri}∞

i=0 are,
respectively, the susceptible, exposed, infectious and recovered sequences. {Vi}∞

i=0 ⊂ R0+

and
{

LI
(

R̂i
)}∞

i=0 ⊂ R0+ are, respectively, the vaccination and partial loss of immunity

sequences, where R̂i =
{

Rj
}max(0 , i−d1)

j=max(0 , i−d1−d2)
reflects that the immunity is lost for a certain

range of d2 + 1 previous recovered values ranging until the d1 back-step sample before the
current sample. Consider any finite initial conditions S0 ≥ 0, E0 ≥ 0, I0 ≥ 0 and R0 ≥ 0. In
the above model, note the following:

(a) β and βe are, respectively, the transmission rates of the infectious and exposed sub-
populations, γ is the recovery rate and µ is the incubation rate The consideration
of infectivity to the Susceptible from both the Exposed and the Infectious is consid-
ered since recent studies from the COVID-19 pandemic have established that the last
period of the incubation stage and the former period of the infectious one are both
contagious. In this paper, we consider that both transmission rates might be distinct
in general.

(b) The term LI
(

R̂i
)
, where R̂i =

{
Rj
}max(0 , i−d1)

j=max(0 , i−d1−d2)
, which is subtracted from the

contribution to the recovered subpopulation while added to the susceptible subpopu-
lation, takes into account the partial loss of immunity in the recovered subpopulation.
Its calculation involves a range of previous samples of the discrete model that can be
adjusted from d1 + d2 samples to d1 samples prior to the current sampling time instant.
The sampling period can be typically one day, but this is not a restriction of the model.
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The delays d1 and d2 parameterize the model, and they can be varied or monitored
for different model evaluations. Some ideas about how to implement the term of loss
of immunity are discussed later on in Remark 2 with several possible weights that
relate the loss of immunity with the time elapsed since recovery. The basic idea is
the that the degree of re-susceptibility or of loss of immunity might be gradual so
that the effective loss of immunity increases as time increases since recovery. This
modeling proposal is introduced in the discrete epidemics framework in this paper.
In the continuous framework, re-susceptibility has been considered in several papers.
See, for instance, [36–39]. In particular, in [36], the contribution of re-susceptibility to
the Susceptible and Recovered dynamics is formulated through integrals that involve
delays in their integration limits. For generality purposes, we can consider that the
period of loss of immunity can be parameterized by two delay parameters, and the
effective loss of immunity along its duration period can be weighted, if desired, with
different average weights for each sample depending on how far is it from the current
sample under consideration.

On the other hand, note that the given non-negativity conditions are set for the general
mathematical setting. For a proper spread of the infection, S0 > 0, since otherwise, Si = 0;
∀i ∈ Z0+, even in the presence of initial infection, that is, even if min(E0 , I0) > 0, in the
event that there is no loss of immunity in the recovered subpopulation.

It is argued that this model may be of interest for the evaluation of the COVID-19
middle-term or long-term disease propagation under eventual potential feedback vaccina-
tion in its blowing-up phase because of the following facts:

- It is of simple structure and of a discrete nature and, therefore, very appropriate for
computational experiments. Furthermore, it does not need the incorporation of a
modulation discretization parameter to guarantee the non-negativity of the sequence
solution as other epidemic discrete models usually need. See, for instance, [1,2] and
some references therein.

- It has two eventual potentially distinct coefficient transmission rates βe and β for
the exposed and infectious subpopulations, which allow to consider infectivity to
the susceptible subpopulation from both infective subpopulations. This might be
potentially advantageous for its use for description of COVID-19 since it is now
known that this disease has an infective period at the end of the incubation period
and another one along the first days of the symptomatic infectious period.

- It might be relevant for the forthcoming studies related to COVID-19 to evaluate the
possible existence of an endemic steady-state. Note that the disease is now behaving in
blowing-up phases, which follow the different intervention measures of confinement,
isolations and other measures like social distancing, leisure control measures, etc.,
which are being taken in most of the countries. However, vaccination is starting
to progress, and it is foreseen that its influence can reduce the disease force and
the appearance of an endemic steady state, for which infection, susceptibility and
immunity levels can depend on the vaccination effort and the transmission rate.

- It is seen later on from the mathematical study of this model that the susceptible
subpopulation is a decreasing sequence and that the exposed and infectious sub-
populations increase for consecutive samples under certain conditions of the disease
parameters and upper-bounds for the susceptible subpopulation. This behavior is also
of interest for the use of the model as the disease blows-up along a transient period
of time.

Remark 1. Note that by summing-up Equations (1)–(4), one gets directly that the total population
is constant, then satisfying Ni = Si + Ei + Ii + Ri = N0 for any integer i ∈ Z0+. As a result, if
the total population is initially unity then the model remains as a normalized model for all samples
with the total population remaining unity through time.
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3. Non-Negativity of the Solution Sequence and Equilibrium Points

The following result gives sufficiency-type conditions for the non-negativity of the
solution sequence of Models (1)–(4) under non-negative bounded initial conditions. The
proof is based on a complete induction method from the non-negativity assumption for the
initial conditions.

Theorem 1. Assume that Vi = KiSi with {Ki}∞
i=0 ⊂ [0 , 1] and, furthermore, the following

constraints hold:

(1) µ ∈ (0 , 1], γ ∈ (0 , 1] and β/βe ≤ γ/µ with β > 0 and βe > 0.
(2) The initial conditions are subject to 0 ≤ S0 ≤ µ/(2βe), R0 ≥ 0, 0 ≤ E0 ≤ 1/(2βe) and

0 ≤ I0 ≤ 1/(2β).
(3) LI

(
R̂i
)
/Si ≤ Ki ≤ 1 if Si 6= 0 and if Si = 0 then LI

(
R̂i
)
= 0 and Ki = 0; ∀i ∈ Z0+.

Then, the vector sequence solution is non-negative for all samples. In addition, the sequences
of all the subpopulations and that of the total population are bounded.

Proof. Note that from Condition 3, one concludes from (1)–(4) that

Si+1 = (1− Ki − βIi − βeEi)Si + LI
(

R̂i
)
≤ (1− βIi − βeEi) Si (5)

Ri+1 = Ri + γIi + KiSi − LI
(

R̂i
)
≥ Ri + γIi (6)

The proof goes ahead by complete induction. Assume that there exists an integer k ≥ 0
such that min(Si , Ei , Ii , Ri) ≥ 0, Si ≤ µ/2βe, Ei ≤ 1/2βe, Ii ≤ 1/2β; i = 0, 1, . . . , k. Such
an integer k ≥ 0 always exists since the above constraints hold from the given hypotheses
on the initial conditions (at least) for k = 0. It has to be proven that the constraints still
hold for k + 1. First, note that, since Ek ≤ 1/2βe, Ik ≤ 1/2β and Sk ≥ 0, it follows that

Sk+1 = (1− Kk − βIk − βeEk)Sk + LI
(

R̂k
)
≥ 0 (7)

and, since Ek ≥ 0 and Ik ≥ 0, one has that

Ik+1 = (1− γ)Ik + µEk ≥ 0 (8)

where γ ∈ (0 , 1] has been used. On the other hand, since Ek ≤ 1/2βe, Ik ≤ 1/2β,
0 ≤ Sk ≤ µ/(2βe), γ ∈ (0 , 1], µ ∈ (0 , 1] and β/βe ≤ γ/µ, one has that

0 ≤ Ek+1 = (1− µ)Ek + (βIk + βeEk)Sk

≤ 1−µ
2βe + Sk ≤

1−µ
2βe + µ

2βe = 1
2βe

(9)

0 ≤ Ik+1 = (1− γ)Ik + µEk ≤
1− γ

2β
+

µ

2βe ≤
1− γ

2β
+

γ

2β
=

1
2β

(10)

where β/βe ≤ γ/µ has been used. In addition, since Sk ≤ µ/(2βe) and 1− βIk − βeEk ≥ 0
since 0 ≤ Ek ≤ 1/2βe; 0 ≤ Ik ≤ 1/2β, it follows that

0 ≤ Sk+1 = (1− βIk − βeEk) Sk −Vk + LI
(

R̂k
)
≤ Sk ≤

µ

2βe (11)

Additionally, since Rk ≥ 0, Ik ≥ 0 and γ > 0 then Rk+1 ≥ 0. It has been proven that

(min(Si , Ei , Ii , Ri) ≥ 0; i = 0, 1, . . . , k)⇒ (min(Si , Ei , Ii , Ri) ≥ 0;
i = 0, 1, . . . , k + 1)

(Sk ≤ µ/(2βe) , Ek ≤ 1/2βe, Ik ≤ 1/2β ; i = 0, 1, . . . , k)
⇒ (Sk ≤ µ/(2βe) , Ek ≤ 1/2βe, Ik ≤ 1/2β ; i = 0, 1, . . . , k + 1)

(12)
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As a result, the proof is complete since

(min(S0 , E0 , I0 , R0) ≥ 0)⇒ (min(Si , Ei , Ii , Ri) ≥ 0; ∀i ∈ Z+)
(S0 ≤ µ/(2βe), E0 ≤ 1/2βe, I0 ≤ 1/2β)

⇒ (Si ≤ µ/(2βe), Ei ≤ 1/2βe, Ii ≤ 1/2β; ∀i ∈ Z+

(13)

which implies also that the sequences of all the subpopulations and that of the total
population are bounded. �

Note that the above result also holds in the particular cases of absence of vaccination
and re-susceptibility. In particular, it can be concluded that, in the case of absence of
vaccination and partial immunity loss, that is, if {Vi}∞

i=0 ≡ 0 and
{

LI
(

R̂i
)}∞

i=0 ≡ 0, one
has that, under Constraints 1 and 2 of Theorem 1, and because of the inequality of (5), it
follows that 0 ≤ Si ≤ µ/(2βe), Ri ≥ 0, 0 ≤ Ei ≤ 1/(2βe) and 0 ≤ Ii ≤ 1/(2β); ∀i ∈ Z0+
so that, in view of (5)–(6), those boundedness and non-negativity solution conditions still
hold in this particular case.

Three simple conditions on the evaluation of the amount LI
(

R̂i
)

describing the partial
immunity loss, and some of their respective implications related to the vaccination gain Ki
and the solution non-negativity conditions, are now discussed in the subsequent remark.

Remark 2. Some claimed mechanisms of losing the temporary immunity are now discussed:

(1) Exponentially fast partial immunity loss with delay: if LI
(

R̂i
)
= ∑i−d1

j=i−d1−d2
ajRj with

ai−d1−k = a(i)k+1 for 0 ≤ k ≤ d2 with some given delays d1 > 0 and 0 ≤ d2 ≤ ∞ and
suppose that a = a(i) ∈ [0 , 1); ∀i ∈ Z0+, which describes an exponentially fast partial
immunity loss after a certain delay d1. If the partial immunity loss parameter a is zero, this
means that the immunity is permanent. Otherwise, the immunity is lost at exponential rate
after the d1 preceding samples to the current one, while for the d1 − 1 immediately previous
samples the immunity is maintained. Thus, one has

0 ≤
a
(

1− ad2+1
)

1− a
min

max(i−d1−d2,0)≤j≤max(i−d1,0)
Rj ≤ LI

(
R̂i
)
=

i−d1

∑
j=i−d1−d2

ajRj

≤
a
(

1− ad2+1
)

1− a
max

max(i−d1−d2,0)≤j≤max(i−d1,0)
Rj ≤

a
(

1− ad2+1
)

1− a
Ri−d1

Since from Condition 3 of Theorem 1 in (4), the sequence{Ri}∞
i=0 is non-decreasing so that

Ri−d1 = max
i−d1−d2≤j≤i−d1

Rj and

a + a2 + · · ·+ ad2+1 =
∞

∑
j=1

aj − ad2+2
∞

∑
j=0

aj = a
∞

∑
j=0

aj − ad2+2
∞

∑
j=0

aj =
a

1− a
− ad2+2

1− a
=

a
(

1− ad2+1
)

1− a

Thus, Condition3ofTheorem1isguaranteed foranormalizedmodel if Ki ∈
[

a(1−ad2+1)Rmax (i−d1, 0)

(1−a)Si
, 1
]

provided that
a(1−ad2+1)Ri−d1

(1−a)Si
≤ 1 with Ri−d1 ≤ RM = sup

0≤i≤∞
Ri ≤ 1; ∀i ∈ Z0+, which

requires in turn as necessary condition compatible with the non-negativity conditions of The-

orem 1 that µ
2βe ≥ Si ≥

a(1−ad2+1)
1−a Rmax (i−d1, 0) subject in turn to the necessary condition

βe ≤ µ(1−a)
2a(1−ad2+1)RM

, which is guaranteed if βe ≤ µ(1−a)
2a(1−ad2+1)

since RM ≤ 1. If d2 = ∞ (i.e., the

immunity is lost backward in time after a delay); then, the above condition reduces to βe ≤ µ(1−a)
2a .

(2) Constant partial immunity loss with delay: If ai−d1−k = a for d1 > 0, 0 ≤ k ≤ d2 < ∞ and
a ∈ [0 , 1); ∀i ∈ Z0+ then
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0 ≤ LI
(

R̂i
)
=

i−d1

∑
j=i−d1−d2

ajRj ≤ a(d2 + 1)Rmax

Thus, Condition 3 of Theorem 1 is guaranteed if Ki ∈
[

a(d2+1)Rmax (i−d1, 0)
Si

, 1
]

; ∀i ∈ Z0+

under the necessary condition compatible with the non-negativity conditions of Theorem 1
that µ

2βe ≥ Si ≥ a(d2 + 1)Rmax (i−d1, 0) ; ∀i ∈ Z0+ subject in turn to the necessary condition
βe ≤ µ

2a(d2+1)Rmax (i−d1, 0)
, which is guaranteed if βe ≤ µ

2a(d2+1) .

(3) Non-constant partial immunity loss at a smaller rate than exponential: It can be deduced
in a similar way to the above situation with ai−d1 = ai ∈ [0, 1) and ai−d1−k = ai − εi−d1

for k ∈ [1, d2] ∩ Z and
{

εi−d1−k
}k=max(d2 , i−d1)

k=0 being a strictly increasing finite sequence;
∀i, k(≤ i− d1) ∈ Z0+. If the parameterizing sequences are constant, i.e., and εi = ε ∈ (0, a);
∀i, k(≤ i− d1) ∈ Z0+ then ∑i−d1

j=i−d1−d2
ajRj ≤ (a(d2 + 1)− εd2)Rmax.

The disease-free and endemic equilibrium points are now calculated provided that the vacci-
nation gains converge asymptotically to non-negative limits that can be, in general, distinct for

the disease-free and endemic equilibrium points. Note that A ≡ Ae =
a(1−ad2+1)

1−a in the case of
exponentially fast partial immunity loss with delay, A ≡ Ac = a(d2 + 1) in the case of constant
partial immunity loss with delay and A ≡ Anc = (a− ε)d2 + a in the case of non-constant
immunity loss at a smaller rate than exponential if the parameterizing sequences are constant.

Proposition 1. (Disease-free equilibrium point). Assume that A > 0, that there is a partial
immunity loss and that Vi = KiSi; ∀i ∈ Z0+, where {Ki}∞

i=0(⊂ [0, 1])→ Kd f ∈ [0 , 1] . Then,
there is a unique disease- free equilibrium point

xd f =

(
A

A + Kd f
, 0 , 0,

Kd f

A + Kd f

)
T

Proof. Note that the following equilibrium equations hold:

Sd f = (1− βIi − βeEi) Sd f −Vd f + LI
(

Rd f

)
(14)

Ed f = Id f = 0 (15)

LI
(

Rd f

)
= ARd f = Vd f (16)

with Vd f = Kd f Sd f = Kd f

(
1− Rd f

)
with Kd f = lim

i→∞
Ki > 0. It follows that

Sd f =
A

A + Kd f
; Rd f =

Kd f

A + Kd f
(17)

provided that a < 1, that is a < min
(

1, 1−a
1−ad2+1

)
= 1−a

1−ad2+1 if A = Ae and a < 1
d2+1 if

A = Ac. �

Remark 3. The subsequent observations have an interesting biological concern:

(a) Note from Proposition 1 Rd f /Sd f = Kd f /A, that is, the relation limit Recovered to Suscepti-
ble improves as the vaccination gain increases, and the partial immunity loss level decreases,
as expected.

(b) Note also that the disease-free equilibrium point given in Proposition 1 stands for that A > 0
and Kd f ∈ [0 , 1]. In particular, if Kd f = 0 then Sd f = 1 and Rd f = 0, which implies
that the Susceptible are not asymptotically removed, while the total population becomes
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asymptotically susceptible if the vaccination effort is removed and there is a permanent level of
partial immunity loss. On the other hand, if A = Kd f = 0 then the susceptible and recovered
subpopulations at the disease-free equilibrium point are both indeterminate in the form 0/0
according to Proposition 1. However, the inspection of (1) concludes that, in this case, {Si}∞

i=0
is non-increasing so that lim

i→∞
(Si+1 − Si) = 0 and {Si}∞

i=0 → Sd f ≥ 0 for some existing

limit Sd f , eventually a residual nonzero limit susceptibility amount, depending on each given
set of non-negative initial conditions, so that Rd f = 1− Sd f as a result.

Generally speaking, the vaccination injection reduces the values of the susceptible
at the disease-free equilibrium and increases the equilibrium values of the recovered.
Contrarily, the equilibrium values of the susceptible increase as the re-susceptibility force
increases at the disease-free equilibrium point.

Proposition 2. (Endemic equilibrium point). Assume that A > 0, that there is a partial immunity
loss and that Vi = KiSi; ∀i ∈ Z0+, where {Ki}∞

i=0(⊂ [0, 1])→ Kend ∈ [0 , 1] . Thus, there is a
unique endemic equilibrium point xend = (Send , Eend , Iend, Rend)

T , where

Send =
γµ

βµ + βeγ
(18)

Eend =
γ

γ(µ + A) + µA
Aµ(β− γ) + γ(Aβe − µKend)

βµ + βeγ
(19)

Iend =
µ

γ(µ + A) + µA
Aµ(β− γ) + γ(Aβe − µKend)

βµ + βeγ
(20)

Rend =
µγ [µ(β− γ) + γβe] + Kendγµ(γ + µ)

[γ(µ + A) + µA] (βµ + βeγ)
(21)

which exists, that is, its components are positive, provided that β > βc =
µγ

µ+γλe

(
1 + Kend

A

)
, where

λe = βe/β, and equivalently, if the basic reproduction number R0 defined by R0 = βA(µ+γλe)
µγ(A+Kend)

=

A
Send(A+Kend)

satisfies the constraint R0 > R0c =
βc A(µ+γλe)
µγ(A+Kend)

= 1.

Proof. The proof of the endemic equilibrium components (18)–(21) follows by direct
calculations by noting that the following equilibrium equations hold. From (3), one gets
Iend = µ

γ Eend which replaced in (2) yields µEend =
(

βµ
γ + βe

)
EendSend = β

(
µ
γ + λe

)
EendSend

which yields, since Eend > 0, Send = γµ
βµ+βeγ = γµ

β (µ+λeγ)
. Now, one gets from (4) with

LI
(

R̂end
)

= ARend, Iend = µ
γ Eend, Send = γµ

βµ+βeγ , Rend = 1 − Send − Eend − Iend and
Kend = lim

i→∞
Ki > 0 that

ARend = γIend + Vend = γIend + KendSend= µEend +
Kendγµ
βµ+βeγ

= A
[
1−

(
1 + µ

γ

)
Eend −

γµ
βµ+βeγ

] (22)

By comparing the two last equalities, one gets

γµ + Aγ + µA
γ

Eend =
A(βµ + βeγ)− Aγµ− Kendγµ

βµ + βeγ
(23)

which leads directly to (19) and is positive if the right-hand-side is positive, that is if
A[µ(β− γ) + γβe] > µγKend, which requires, in turn, if λe = βe/β, that β > βc =

µγ
µ+γλe

(
1 + Kend

A

)
, equivalently, that the basic reproduction number R0 = βA(µ+γλe)

µγ(A+Kend)
=

A
Send(A+Kend)

> R0c = 1 and the critical basic reproduction number is R0c =
βc A(µ+γλe)
µγ(A+Kend)

= 1
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as a result. On the other hand, one gets (20) from (19) since Iend = µ
γ Eend. Finally, note from

(4) with Rend = Ri = Ri+1; ∀i ∈ Z0+ leading to

Rend = µ
A Eend +

Kendγµ
A(βµ+βeγ)

= µ
A

γ
γ(µ+A)+µA

Aµ(β−γ)+γ(Aβe−µKend)
βµ+βeγ + Kendγµ

A(βµ+βeγ)

= µγ [Aµ(β−γ)+γ(Aβe−µKend)]+Kendγµ[γ(µ+A)+µA]
A[γ(µ+A)+µA] (βµ+βeγ)

(24)

which can be rewritten as (21) after simplification in the numerator and cancellation
of the coefficient A in the numerator and denominator. �

Note from (18)–(21) that the endemic equilibrium susceptible subpopulation gradu-
ally extinguishes as the transmission rate increases irrespective of the limit vaccination
control and the re-susceptibility level. However, the limit vaccination gain decreases the
equilibrium exposed and infectious levels, while the re-susceptibility force value at the
equilibrium increases them. At the same time, the recovered equilibrium value increases as
the equilibrium vaccination effort increases, while it decreases as the re-susceptibility force
at the equilibrium increases. The above qualitative results agree, which is expected from
the vaccination control and the re-susceptibility levels.

Note also by summing-up (18)–(21) and both expressions in (17) that Ni = Nend = Nd f = 1;
∀i ∈ Z+ if N0 = 1 as expected from the normalization of the model (see Remark 1).
Proposition 2 relies on the case that the endemic equilibrium point has positive components.
The next result is concerned with the case when the endemic equilibrium point coincides
with the disease-free one. It is shown that this happens for the critical values of the disease-
free transmission rate, equivalently, and the basic reproduction number equalizes its critical
unity value.

Proposition 3. Assume that there exists some partial loss of immunity level, that is A > 0,
and β = βc for a vaccination law Vi = KiSi; ∀i ∈ Z0+, and any limit given vaccination gain
K ∈ [0 , 1], with K = Kend = Kd f , such that {Ki}∞

i=0 → K . Then, the disease-free and endemic

equilibrium points are confluent, that is, xend = xd f =
(

A
A+K , 0 , 0, K

A+K

)
T .

Proof. Note from (19)–(20) that if β = βc = µγ
µ+γλe

(
1 + K

A

)
then Eend = Iend = 0. The

relation µEend = β
(

µ
γ + λe

)
EendSend derived in the proof of Proposition 2 for Eend > 0,

used to calculate the susceptible subpopulation at the equilibrium, is now indeterminate
since Eend = 0 and (18) is not valid. So, for Eend = Iend = 0, the equilibrium point is
xd f =

(
A

A+K , 0 , 0, K
A+K

)
T for K = Kd f (Proposition 1), which implies in turn from (19)–(20)

with K = Kend = Kd f that Aµ(β− γ) + γ(Aλeβ− µK) = 0 so that xend = xd f , provided

that A > 0, if and only if β = βc = µγ
µ+γλe

(
1 + K

A

)
for any given limit vaccination gain

K ∈ [0 , 1]. �

Remark 4. From Propositions 2 and 3, important biological conclusions might be derived from
the critical disease transmission rate βc = µγ

µ+γλe

(
1 + Kend

A

)
, its associate (critical) basic re-

production number R0c = βc A(µ+γλe)
µγ(A+Kend)

= 1 and the basic reproduction number R0 defined by

R0 = βA(µ+γλe)
µγ(A+Kend)

= A
Send(A+Kend)

as follows:

(a) If β < βc, equivalently if R0 < R0c, then the endemic equilibrium point is not reachable since
it has some negative components incompatible with the non-negativity of the solution sequence.

(b) If β ≥ βc, equivalently if R0 ≥ R0c, then the endemic equilibrium point is reachable since it
has no negative component.

(c) If β = βc, equivalently if R0 = R0c, then the disease-free equilibrium point and the endemic
one are confluent.
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(d) The basic reproduction number has an inverse proportionality ratio (so it decreases) with the
endemic susceptible level.

(e) The critical disease transmission rate increases with the vaccination gain, while the critical
basic reproduction number decreases in parallel. That means the vaccination effort increases
the range of potential transmission rate values for which the endemic equilibrium point is not
reachable, that is, the only equilibrium point for such an increased range of potential values is
the disease-free one.

(f ) From (18)–(21), it is seen that the susceptible endemic equilibrium value does not depend
on the vaccination effort. However, the recovered endemic equilibrium value increases as the
vaccination limit gain increases while the exposed and infectious endemic equilibrium values
both decrease as the vaccination effort increases. On the other hand, the recovered endemic
equilibrium decreases as the partial loss of immunity becomes increased, as intuitively expected.

4. Stability Results

This section relies on the main stability results on the epidemic model linked to the
two existing equilibrium points.

4.1. Stability around the Disease-Free Equilibrium Point

The local stability of the disease-free equilibrium point for sufficiently small state
perturbations is addressed in the subsequent result:

Theorem 2. (Local asymptotic stability of the disease-free equilibrium point). Assume that
λe ∈

[
0 , µ

2−γ

]
,Vi = KiSi ∈ [0, 1]; ∀i ∈ Z0+ with {Ki}∞

i=0 → K with K = Kd f = Kend. Then,
the disease-free equilibrium point is locally asymptotically stable in some neighborhood centred at
itself if β ∈ [0 , βc), it is critically stable if β = βc and it is instable if β > βc.

Proof. The linearized model around the disease-free equilibrium point of the infective
Equations (2) and (3) becomes[

∆Ei+1
∆Ii+1

]
=

[
1− µ + βλeSd f βSd f

µ 1− γ

][
∆Ei
∆Ii

]
(25)

where ∆Ei and ∆Ii denote the first-order incremental values of the exposed and infectious
related to the equilibrium levels. The characteristic equation of (25) is

z2 +
(

γ + µ− 2− βSd f λe
)

z +
(

µ− 1− βSd f λe
)
(γ− 1)− µβSd f = 0 (26)

whose roots are

z1,2 =
2 + βSd f λe − γ− µ±

√(
2 + βSd f λe − γ− µ

)2
+ 4
(

µβSd f −
(

µ− 1− βSd f λe
)
(γ− 1)

)
2

(27)

The radicand in (27) is β2S2
d f λe2

+ 2βSd f λe(γ− µ) + (γ− µ)2 + 4µβSd f ≥ 0 so that
both roots are real. It follows then that z1,2 ∈ (−1, 1) so that (25) is an asymptotically stable
discrete linear system if and only if

±
√(

2 + βSd f λe − γ− µ
)2

+ 4
(

µβSd f −
(

µ− 1− βSd f λe
)
(γ− 1)

)
∈
(

γ + µ − βSd f λe − 4, γ + µ − βSd f λe
)

(28)

Using the trivial identity γ + µ − βSd f λe = 2−
(

2− γ− µ + βSd f λe
)

in (28), one
obtains that largest root is less than one if(

2− γ− µ + βSd f λe
)2
− 4(µ− 1)(γ− 1) + 4βSd f λe(γ− 1) + 4µβSd f <

[
2−

(
2− γ− µ + βSd f λe

)]
2 (29)
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and, equivalently, if and only if

β < βc =
µγ

(µ + λeγ)Sd f
=

µγ

(µ + λeγ)

(
1 +

Kd f

A

)
(30)

On the other hand, the smaller root is larger than minus one if and only if√(
2 + βSd f λe − γ− µ

)2
+ 4
(

µβSd f −
(

µ− 1− βSd f λe
)
(γ− 1)

)
+ γ + µ − βSd f λe < 4 (31)

which holds for β ∈ [0 , βc) where βc = µγ−2(µ+γ)+4
Sd f [µ+λe(γ−2)] . Note that, since λe ≤ µ

2−γ ,

β ∈ [0 , βc) so that β ∈ [0 , βc) guarantees the stability of both z1,2. Then, the linearized sys-
tem around the disease-free equilibrium point is locally asymptotically stable if β ∈ [0 , βc),
critically stable if β = βc and instable if β > βc. It has been proven that ∆Ei → 0 and
∆Ii → 0 as i→ ∞ for some sufficiently small initial perturbations of the disease- free
equilibrium point.

It remains to be proven that the substate of the susceptible and recovered subpop-
ulations of the linearized system for small perturbations around the disease-free equi-
librium point also converges asymptotically to zero. From (1) and (4), one gets for
LI
(

R̂i
)
= ∑i−d1

j=i−d1−d2
ajRj, by assuming that Ki = Kd f ∈ [0 , 1] as i→ ∞ , the following

incremental auxiliary discrete system:

∆Si+1
∆Ri+1

∆Ri
...

∆Ri−d1+1
...

∆Ri−d1−d2+1


=



1− K 0 0 · · · 0 ai−d1 · · · ai−d1−d2
K 1 0 · · · 0 − ai−d1 · · · −ai−d1−d2
0
0
0

1
0
0

0
1
0

0
0
0

0
0
0

0
0

0
0

0
0

1 0
1

0
0





∆Si
∆Ri

∆Ri−1
...

∆Ri−d1
...

∆Ri−d1−d2


+ ∆vi (32)

where {vi}∞
i=0 is a sequence that depends on the sequences {∆Ei}∞

i=0 and {∆Ii}∞
i=0 via

(1)–(4) such that {vi}∞
i=0 → 0 . If the state vector sequence and the matrix of dynamics of

the above system are denoted by {∆xi}∞
i=0 and AL, it follows that

∆xn+m = Am
L ∆xn +

m−1

∑
i=0

Am−i−1
L ∆vn+i (33)

Now, for any given integer and real constants m and ε > 0, there exists a non-
negative integer N = N(ε, m) such that

∣∣∆xn+m − Am
L ∆xn

∣∣ = ∣∣∣∑m−1
i=0 Am−i−1

L ∆vn+i

∣∣∣ ≤ ε;

∀n ≥ N and there is also a strictly decreasing positive real subsequence
{

εnk

}∞
k=0, with

εnk = εnk (Nk), ∀k ∈ Z0+, for a strictly increasing sequence of non-negative integers
{Nk}∞

k=0 such that∣∣∆xnk+m − Am
L ∆xnk

∣∣ = ∣∣∣∣∣ m−1

∑
i=0

Am−i−1
L ∆vnk+i

∣∣∣∣∣ ≤ εnk ; ∀nk ∈ [Nk , Nk+1) ∩ Z0+, ∀k ∈ Z0+ (34)

lim
k→∞

∣∣∆xnk+m − Am
L ∆xnk

∣∣ = lim
k→∞

∣∣∣∣∣ m−1

∑
i=0

Am−i−1
L ∆vnk+i

∣∣∣∣∣ = 0 (35)

Since the solution sequence is bounded, the sequences {∆xi}∞
i=0 and

{
Am

L ∆xnk

}∞
k=0

cannot diverge with opposed signs so that they are either oscillatory or they converge to
some limits. Note that the eigenvalues of AL are all real of values 0, 1− K and 1, so that the
limit steady-state solution sequence verifies the following:

(a) It cannot diverge; and
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(b) It cannot be oscillatory for any period of m samples either. This occurs in spite of
the matrix of dynamics AL is critically stable with one (respectively, two) positive
unity eigenvalue(s) if K ∈ (0 , 1] (respectively, if K = 0). Therefore,{∆xi}∞

i=0 and{
Am

L ∆xnk

}∞
k=0 both converge to limit values of opposed sign. Those limit values

cannot be nonzero since then the disease-free equilibrium point would be non-unique,
contradicting Proposition 2. As a result, those limits are both zero, and the susceptible
and recovered subpopulations are locally asymptotically stable around the disease-
free equilibrium point. It has been fully proven that the linearized system is locally
asymptotically stable around the disease-free equilibrium point. �

Remark 5. Note that Theorem 2 excludes the presence of steady-state oscillations around the disease-
free equilibrium point so that it is locally asymptotically stable. The infective sub-state has been
proven to be locally asymptotically stable in the first part of the proof. The second part excludes that
the linearized susceptible-recovered substate might exhibit an asymptotically oscillatory steady-state
since its matrix of dynamics have no complex conjugate eigenvalues and the disease-free equilibrium
point is unique.

Remark 6. Note that the critical value of the transmission rate βc and the corresponding unity
critical basic reproduction number R0c = 1 guaranteeing the local asymptotic stability in Theorem 2
are identical to those which give the coincidence of the endemic equilibrium point and the disease-free
one in Proposition 2. As a result, it is ensured that, for ranges of corresponding values smaller than
those critical values, the disease-free equilibrium point is locally asymptotically stable while the
endemic one is not reachable.

The above asymptotic stability is also global for β < βc since the endemic equilibrium
point is not reachable, so that the only attractor is the disease-free equilibrium point, and
the existence of non trivial oscillations is excluded. By trivial oscillations we understand the
constant solutions corresponding to the disease equilibrium points and the zero solution.
A more precise formulation of this concern follows:

Theorem 3. (Global asymptotic stability of the disease-free equilibrium point). Assume that Vi = KiSi ∈
[0, 1]; ∀i ∈ Z0+ with {Ki}∞

i=0 → K with K = Kd f = Kend and that lim inf
i→∞

(
KiSi− LI

(
R̂i
))
≥ 0.Then,

the disease-free equilibrium point has no non-trivial limit periodic oscillation, and it is globally
asymptotically stable for any bounded initial conditions in the first orthant of the phase space if
β ∈ [0 , βc).

Proof. Note from Proposition 1 that Sd f /Rd f = A/K, which implies in (1) that β ∈ [0 , βc),
{Ki}∞

i=0 → K and lim inf
i→∞

(
KiSi − LI

(
R̂i
))
≥ 0 implies that {Si}∞

i=0 → Sd f since {Si}∞
i=0

is non-negative and asymptotically non-increasing, so that it cannot tend asymptoti-
cally to a non-trivial periodic oscillation, irrespective of the finite initial conditions in
the first orthant of the state space, and then lim inf

i→∞
(Si+1 − Si) ≤ 0. Note that to con-

clude this global property to hold for the susceptible, it is not considered to be global
the local property of Theorem 2 that lim

i→∞
Ei = lim

i→∞
Ii = 0 for small initial conditions

in a neighborhood of the disease-free equilibrium point. Now, assume that there is a
non-trivial limit oscillation of some period p(≥ 1) in the infectious subpopulation of val-
ues lim

n→∞
Inp+i = lim

n,j(≤n−1)→∞
I(n−j)p+i = lim

n,`(≤n−1)→∞
I(n−j)p+i = Îi; ∀i ∈ {0 , 1, · · · , p− 1}.

Thus, one gets for (3) that

lim
n→∞ ,1≤n−`<∞

Inp+i −
µ

1− (1− γ)`p

 np+i−1

∑
j=(n−`)p+i

(1− γ)np+i−1−jEj

 = 0; ∀i ∈ {0 , 1, · · · , p− 1} (36)
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lim
n,`(≤n−1)→∞

Inp+i −
µ

1− (1− γ)`p

 np+i−1

∑
j=(n−`)p+i

(1− γ)np+i−1−jEj

 = 0 (37)

irrespective of ` with 1 ≤ n − ` < ∞ as n→ ∞ and also as n, `(≤ n− 1)→ ∞ . As a
result, lim

n→∞
Enp+i = lim

n,`(≤n−1)→∞
E(n−`)p+i = Êi; ∀i ∈ {0 , 1, · · · , p− 1} concluding that if

{Ii}∞
i=0 has a non-trivial limit oscillation of any period of p samples, then {Ei}∞

i=0 has also
a non-trivial limit oscillation of the same period. Until now, it has been proven that {Si}∞

i=0
has no non-trivial limit oscillation, and that if {Ii}∞

i=0 has a non-trivial limit oscillation of
any period, then {Ei}∞

i=0 has also a non-trivial oscillation of the same period. By using the
same argument, it might be proven from (2) that if {Ei}∞

i=0 has a non-trivial limit oscillation
of any period, then {Ii}∞

i=0 has also a non-trivial limit oscillation of the same period since
{Si}∞

i=0 has no limit non-trivial oscillation, and it has a limit. Until now, we have proven
that {Si}∞

i=0 has no limit non-trivial oscillation and {Si}∞
i=0 → Sd f and that {Ii}∞

i=0 and
{Ei}∞

i=0 either (a) they have both jointly non-trivial limit oscillations of some period, or
(b) they do not have both such jointly non-trivial limit oscillations, while they converge
both asymptotically to zero as time tends to infinity for any given non-negative and not
all zero finite initial conditions. In Case a, {Si}∞

i=0 → Sd f = 0 from (1), but by inspecting
(2) and (3) with {Si}∞

i=0 → Sd f = 0 , one concludes that, for any given strictly decreasing
sequence {εi}∞

i=0 ⊂ R+, there is a strictly increasing sequence {Ni(εi)}∞
i=0 ⊂ Z0+ such that

SNi+k ≤ εi; ∀k ∈ Z0+ and one gets from (2) that

ENi+k ≤ (1− µ)kENi + ∑Ni+k−1
j=Ni

(1− µ)
Ni+k−1−j(

βIj + βeEj
)

Ij

≤ (1− µ)kENi + εiβ(1 + λe)∑Ni+k−1
j=Ni

(1− µ)
Ni+k−1−j

max
Ni≤j≥Ni+k−1

(
Ej, Ij

)
≤ (1− µ)kENi + εiβ(1 + λe)∑Ni+k−1

j=Ni
(1− µ)

Ni+k−1−j

= (1− µ)kENi + εiβ(1 + λe)∑k−1
j=0 (1− µ)

j

= (1− µ)kENi + εiβ(1 + λe)
1−(1−µ)k

µ < ENi

(38)

since εi << 1 so that lim
i,k→∞

ENi+k = 0 and lim sup
i→∞

(
ENi+k − (1− µ)kENi

)
≤ 0. Furthermore,

ENi+k ≤ (1− µ)kENi +
1−(1−µ)k

1−µ εiβ(1 + λe) < ENi ; k = 0, 1, . . . , Ni+1 − Ni − 1;
∀i ∈ Z0+

(39)

provided that εi <
µENi

β(1+λe)
; ∀i ∈ Z0+ and, under the choice εi < min

(
εi−1 ,

(1−µ)µENi(
1−µNi+1+1

)
(1+βλe)

)
,

then
{

EN0+k
}∞

k=0 → 0 . Thus, {Ei}∞
i=0 → 0 . In the same way, {Ii}∞

i=0 → 0 so that {Ri}∞
i=0

→ Rd f = 1. In Case b, one has {Si}∞
i=0 → Sd f ≥ 0 , {Ei}∞

i=0 → 0 and {Ii}∞
i=0 → 0 so that

{Ri}∞
i=0 → Rd f = 1− Sd f . In both Case a and Case b there are no non-trivial oscillations of

the solution for any given non-negative finite initial conditions, and the proof is complete. �

If the local asymptotic stability condition of Theorem 2, being also global asymptotic
according to Theorem 3 in the bounded first orthant, is changed under an alternative
simpler proof to a more restrictive one under a smaller critical transmission rate, then
the disease-free equilibrium point is ensured to be globally asymptotically stable. An
alternative related sufficiency-type condition for it is discussed in the subsequent result.
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Theorem 4. (Stronger conditions for global asymptotic stability of the disease-free equilibrium point).
The disease-free equilibrium point is globally asymptotically stable if β < βcg = sup

α∈(1,∞)

βcg(α), for

some real constant α ∈ (0 , 1] and where βcg(α) = min
(

γα , (1−α)µ
λe

)
.

Proof. Take any parameterized Lyapunov sequence candidate {V(α)i}
∞
i=0 on the infec-

tive subsystem defined by Vi(α) = Ei + αIi for the parameter α ∈ (0 , 1]. Then, since
{Si}∞

i=0 ⊂ [0 , 1], one gets that (βIi + βeEi)Si ≤ βIi + βeEi; ∀i ∈ Z0+ so that

∆Vi(α) = Vi+1(α)−Vi(α) = −(αγ− βSi)Ii − (µ(1− α)− βλeSi)Ei
≤ −(αγ− β)Ii − (µ(1− α)− βλe)Ei ≤ 0

(40)

with the above inequality being strict if Ei + Ii > 0 provided that β < βcg(α) for any
given α > 1. The proof is completed since it suffices that β < βcg(α) holds for some
α ∈ (0 , 1] to ensure that the candidate {Vi(α)}∞

i=0 is a Lyapunov sequence, which ver-
ifies {Vi(α)}∞

i=0 → 0 , so that {Ei}∞
i=0 → 0 and {Ii}∞

i=0 → 0 , irrespective of the given fi-
nite non-negative initial conditions in (1)–(4). It has been proven that {Ei}∞

i=0 → 0 and
{Ii}∞

i=0 → 0 provided that β < βcg. The convergences of the sequences {Si}∞
i=0 → Sd f and

{Ri}∞
i=0 → Rd f follow under the same condition using similar arguments to those of the

second part of the proof of Theorem 2 on the uniqueness of the disease-free equilibrium
point, the lack of complex eigenvalues in the dynamics of a formally similar auxiliary system
to (32) by replacing for all samples ∆Ei → Ei , ∆Ii → Ii and the convergence to a limit of its
forcing term as a result of the convergence to zero of the infective subpopulations. �

Remark 7. In practice, Theorem 4 can be checked for convenient design values of the test param-
eter α ∈ (0 , 1] giving sufficiently large critical values βcg(α) or critical values easily testable.
For instance:

(1) The choice α = 1− λe. gives β < min((1− λe)γ , µ) provided that λe ∈ (0 , 1).

(2) If µγ ≤ 1, then the choice α = µγ yields β < µmin
(

γ2 , 1−µγ
λe

)
.

(3) If the assumption for non-negativity of the solution sequence λe = βe

β > µ−µ0
γ > µ

γ (Theorem
1) for some real constant µ0 ∈ (0 , µ) is incorporated then β < γmin(α , 1− α) and, under
the choice α = 1− λe, Theorem 4 is satisfied for β < γmin(λe , 1− λe) if λe ∈ (0 , 1).

4.2. Stability around the Endemic Equilibrium Point

The subsequent result addresses the global asymptotic stability of the endemic equilib-
rium point excluding the presence of oscillations when the disease-free equilibrium point
is unstable.

Theorem 5. (Global stability of the endemic equilibrium point). Assume that Vi = KiSi ∈ [0, 1];
∀i ∈ Z0+ with {Ki}∞

i=0 → K with K = Kd f = Kend and that lim inf
i→∞

(
KiSi − LI

(
R̂i
))
≥ 0.

Then, the endemic equilibrium point has no non-trivial limit periodic oscillation, and it is globally
asymptotically stable for any bounded initial conditions in the first orthant of the phase space if
β ∈ (βc , ∞).

Proof. From (1), since β ∈ (βc , ∞) and {Ki}∞
i=0 → K and lim inf

i→∞

(
KiSi − LI

(
R̂i
))
≥ 0

one gets that {Si}∞
i=0 → Send ≥ 0 since {Si}∞

i=0 is non-negative and asymptotically non-
increasing, so that it cannot tend asymptotically to a non-trivial periodic oscillation, ir-
respective of the finite initial conditions in the first orthant of the state space, and then
lim inf

i→∞
(Si+1 − Si) ≤ 0. By summing-up (1) and (2), one gets that

(Si+1 + Ei+1)− (Si + Ei) = −Vi + LI
(

R̂i
)
− µEi ≤ 0; ∀i ∈ Z0+ (41)
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and then {Si + Ei}∞
i=0 is asymptotically non-increasing and {Si + Ei}∞

i=0 → Send + Eend
so that it cannot have an asymptotic limit oscillation. Since, furthermore, {Si}∞

i=0 does
not oscillate asymptotically, then {Ei}∞

i=0 does not oscillate asymptotically either. Thus,
{Ii}∞

i=0 does not oscillate asymptotically since {Ei}∞
i=0 does not oscillate asymptotically

(see proof of Theorem 3). Since the total population is constant then {Ri}∞
i=0 cannot have an

asymptotic oscillation. As a result the endemic equilibrium point is globally asymptotically
stable for any finite initial conditions in the first orthant since the disease-free one is
unstable if β ∈ (βc , ∞). �

Remark 8. The absence of oscillations and the global stability of the endemic equilibrium point
of Theorem 5 requiring K ∈ [0 , 1] and lim inf

i→∞

(
KiSi − LI

(
R̂i
))
≥ 0 needs not to overpass a

minimum value of the constant A affecting as a multiplicative factor the term describing the partial
loss of immunity in the susceptible and recovered in view of the endemic values of the equilibrium
steady state. Note from (18) that the limit vaccination effort satisfies Vend = KendSend ≤ 1 if
K ≤ β(µ+λeγ)

γµ . On the other hand, the constraint requires that KendSend ≥ ARend to guarantee
lim inf

i→∞

(
KiSi − LI

(
R̂i
))
≥ 0. Then, one gets from (18) and (21) that

K
[

1− A(γ + µ)

γ(µ + A) + µA

]
≥ Aµ(β− γ) + Aγλeβ

γ(µ + A) + µA
=

A[β(µ + γλe)− µγ]

γ(µ + A) + µA
(42)

since the left-hand-side is non-negative. One gets from (42) that

K ≥ min
(
[β(µ + γλe)− µγ]A

γµ
, 0
)

(43)

which, together with the former non-negativity constraint of the vaccination gain yields

min
(
[β(µ + γλe)− µγ]A

γµ
, 0
)
≤ K ≤ β(µ + λeγ)

γµ
(44)

Note that the left hand-side constraint requires β ≥ βcv f = µγ
µ+γλe , which is the critical

vaccination-free transmission rate associated with the basic reproduction number in the absence of
vaccination effort.

5. Numerical Examples

This section contains some numerical simulation examples aimed at illustrating the
theoretical results discussed in the previous sections. The simulation results are divided
into two examples. The first one is a numerical theoretical example, while the second one
is related to the COVID-19 pandemic. Each example is split into different cases in order to
show the effect of different parameter values in the model dynamics.

5.1. Example 1. Numerical Theoretical Example

The parameters of the model in the absence of vaccination and loss of immunity are
given by

β = 0.5, βe =
β

3
, µ =

1
6

, γ =
1
2

so that λe = 1
3 . The sampling time is one day so that the units of the above parame-

ters are in days accordingly. The initial conditions are given by S0 = 0.5 , E0 = 0.3 ,
I0 = 0.1 , R0 = 0.1. It can be noticed that the total population has been normalized to unity,
Sk = Ek = Ik + Rk = S0 + E0 + I0 = R0 = 1, for all k ≥ 0 without loss of generality. The
simulation example is split into a number of cases. The above set of parameters and initial
values are used in all the cases except otherwise indicated.
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Case 1.1. There is no vaccination nor loss of immunity. It can be readily verified that
the defined model satisfies Theorem 1 conditions, since

µ ∈ (0 , 1], γ ∈ (0 , 1],
β

βe ≤
γ

µ
,

β

βe > 0 (45)

and

0.5 = S0 ≤
µ

2βe = 0.5, 0.3 = E0 ≤
µ

2βe = 0.5, 0.1 = I0 ≤
µ

2β
= 0.17, R0 ≥ 0 (46)

As a result of Theorem 1, all the sequences of populations are non-negative and
bounded for all samples as Figure 1 shows. It is observed in Figure 1 that the system
reaches a disease-free equilibrium point with a nonzero number of susceptible and im-
mune individuals.
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Figure 1. Sequences of populations for Case 1.1 conditions.

Case 1.2. There is vaccination but not loss of immunity. The vaccination gain is set to
Kd f = 0.2 and Kd f = 0.5 to show the effect of this control action on the dynamics of the
system. Since Theorem 1 conditions are still met, all the sequences of populations are non-
negative and bounded for all time, as it can be seen in Figure 2 for both vaccination gains.

Moreover, it is observed in Figure 2 that the model converges to the disease-free
equilibrium point given by the coordinates Sd f = Ed f = Id f = 0, Rd f = 1 in both
cases, as Proposition 1 predicts. It is also observed from Figures 1 and 2 that the effect of
vaccination when there is no loss of immunity is to make the whole population immune
asymptotically while accelerating the convergence to the disease-free equilibrium point.
The effect of changing the vaccination gain is slight; the susceptible vanish at a higher pace
for larger values of the gain, while the shape of the exposed and infectious does not change
significantly with vaccination. Figure 3 displays the vaccination function for both gains.
As expected, a larger vaccination gain results in a higher vaccination control action.

Furthermore, according to Theorem 3, the obtained disease-free equilibrium points are
globally asymptotically stable. Figure 4 shows the dynamics of the system for perturbed
initial conditions and Kd f = 0.5. It is seen in Figure 4 how all the system trajectories
converge to the globally asymptotically stable disease-free equilibrium point regardless of
the initial values.

Case 1.3. The vaccination gain is set to Kd f = 0.1, and an exponentially fast partial
loss of immunity with delay is considered. The parameters of the lost are given by d1 = 10
and d2 = 5 days and α = 0.001 with A = 0.001 > 0. The dynamics of the system are
depicted in Figure 5. Moreover, in addition to Conditions (1) and (2) from Theorem 1 we
now need to check that Constraint (3) holds. This condition can be equivalently written as
LI
(

R̂i
)
≤ KiSi = Vi. Figure 6 shows that this constraint is also met in this example so that
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all the population sequences are guaranteed to remain non-negative and bounded at all
times, as is shown in Figure 5.
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Figure 2. Sequences of populations for Case 1.2 conditions. The vaccination gains Kd f = 0.2 and
Kd f = 0.5 are employed in this simulation.

Furthermore, the system trajectories converge to the disease-free equilibrium point

given by Sd f =
A

A+Kd f
= 0.0099, Ed f = Id f = 0 and Rd f =

Kd f
A+Kd f

= 0.9901, in accordance
with Proposition 1, which is globally asymptotically stable according to Theorem 3 since
β = 0.5 < βc = 25.225 from (30).
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Figure 3. Vaccination control action for Kd f = 0.2 and Kd f = 0.5.
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Figure 4. Sequences of populations for Case 1.2 conditions, Kd f = 0.5 and perturbed initial values.

Case 1.4. The vaccination gain is set to Kd f = 0.1, and a constant loss of immunity
with delay is considered. The parameters of the lost are given by d1 = 4 and d2 = 2 days
and a = 0.0005 with A = 0.0015. The dynamics of the system are depicted in Figure 7. As it
happened before, in addition to Conditions (1) and (2) from Theorem 1 we need to check
that Constraint (3) holds, which is performed in the same way as done for Case 1.3. Figure 8
depicts how Condition 3 from Theorem 1 is met. Furthermore, the system trajectories
converge to the disease-free equilibrium point Sd f =

A
A+Kd f

= 0.0566, Ed f = Id f = 0 and

Rd f =
Kd f

A+Kd f
= 0.9434, which is globally asymptotically stable according to Theorem 3

since β = 0.5 < βc = 3.5 from (30).
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Figure 5. Sequences of populations for Case 1.3 conditions. The vaccination gain Kd f = 0.1 is
employed in this simulation with exponentially fast partial loss of immunity with delay.
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Figure 6. Satisfaction of Condition 3 from Theorem 1 in Case 1.3 conditions.
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Figure 7. Sequences of populations for Case 1.4 conditions. The vaccination gain Kd f = 0.1 is
employed in this simulation with constant loss of immunity with delay.
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Figure 8. Satisfaction of Condition 3 from Theorem 1 in Case 1.4 conditions.

Case 1.5. There is no vaccination nor loss of immunity, but the initial populations
do not meet Theorem 1 conditions. This case is aimed at showing that the Theorem 1
conditions are sufficient to guarantee the boundedness and positivity of the populations
but are not necessary. Thus, the following initial conditions are used in this case S0 = 0.99,
E0 = 0.01, I0 = 0 and R0 = 0 for which 0.99 = S0 > µ

2βe = 0.5, not satisfying Condition (2).
The dynamics of the system are displayed in Figure 9. As it can be observed in Figure 9 all
populations remain nonnegative and bounded for all time. In addition, the disease-free
equilibrium point is also globally asymptotically stable as Theorem 3 states.
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Figure 9. Sequences of populations for Case 1.5 conditions.

Case 1.6. There is no vaccination, and a constant loss of immunity with delay is
considered. The parameters of the lost are given by d1 = 180, d2 = 10 days and a = 0.0007
with A = 0.0077. The value of β is increased to β = 2 so that the endemic equilibrium point
is now reachable and stable since β = 2 > βc = 0.25. The system trajectories are depicted
in Figure 10.

It is observed in Figure 10 how after 180 days the loss of immunity makes some former
immune individuals become susceptible again. In the end, an endemic equilibrium point
is reached. From the numerical simulation we can obtain the location of the endemic
equilibrium point and compare it with the theoretical values given in Proposition 2. The
comparison is performed in Table 1, which shows agreement between them.
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Table 1. Comparison of the theoretical values predicted by Proposition 2 and the numerically
obtained ones for the location of the endemic point.

Theoretical Numerical

Send 0.1250 0.1249
Eend 0.0381 0.0380
Iend 0.0127 0.0127
Rend 0.8242 0.8243

Furthermore, according to Theorem 5 the endemic equilibrium point is globally asymp-
totically stable, as Figure 11 shows for different initial conditions. Moreover, Figure 10
shows that the convergence to the endemic point exhibits a transient oscillation, but the
trajectory does not have a steady-state periodic oscillation.
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Figure 10. Sequences of populations for Case 1.6 conditions.

Case 1.7. The vaccination gain is Kd f = 0.1, and a constant loss of immunity with
delay is considered. The parameters of the loss of immunity are given by d1 = 180, d2 = 10
days and a = 0.0007 with A = 0.0077. The value of β = 2 is used now as well. The system
trajectories are depicted in Figure 12. It is observed in Figure 12 how the vaccination
changes the dynamics of the system with respect to the vaccination-free case. Thus,
vaccination is able to lessen the impact of loss of immunity so that the endemic equilibrium
point is avoided and the system converges and remains in the disease-free equilibrium one.
Therefore, the implementation of adequate vaccination campaigns throughout the year may
act as a powerful tool to counteract the possibility of loss of immunity. This may be the case
for the COVID-19 pandemic. Thus, Example 2 is devoted to study the application of the
proposed model to COVID-19. From a mathematical point of view, the effect of vaccination
is to change the critical beta value so that Condition (30) becomes β = 2 > βc = 3.5.
Consequently, the disease-free equilibrium point is globally asymptotically stable while
the endemic one is not reachable. Figure 13 displays the vaccination action to be applied
through time. It is seen that vaccination does not vanish now asymptotically since it has to
cope with the new susceptible appearing due to the loss of immunity. Finally, Theorem
3 requires the condition inf

(
KiSi − LI

(
R̂i
))
≥ 0 asymptotically in order to guarantee the

global stability. This condition is shown in Figure 14. As it is observed in Figure 14 this
condition may be violated within some time intervals, but it is achieved asymptotically.
Thus, all conditions of Theorem 3 are achieved, and the disease-free equilibrium point is
asymptotically stable.
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Figure 11. Global asymptotical stability of the endemic equilibrium point for Case 1.6 conditions.
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Figure 12. Sequences of populations for Case 1.7 conditions.
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Figure 13. Vaccination action for Case 1.7 conditions.
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Figure 14. Condition to guarantee the global asymptotic stability of the disease-free equilibrium
point for Case 1.7.

5.2. Example 2. Application to the COVID-19 Pandemic

This example is devoted to study the application of the proposed model to the COVID-
19 pandemic. To this end, the case of Italy will be considered. Thus, the model is parame-
terized by

β = 0.2 , βe =
β

1.3
, µ =

1
6

, γ = 0.04

while λe = 0.7692. The sampling time is one day so that the units of the above parameters
are in days−1. The initial conditions are given by S0 = 240, 000, E0 = 0, I0 = 240 and
R0 = 0. These populations have been normalized to unity in the simulation examples,
without loss of generality. The number of infectious, however, will be presented with
actual data. This example has been divided into a number of cases in order to illustrate the
dynamics of the model under different circumstances.

Case 2.1. There is no vaccination nor loss of immunity. Figure 15 displays the dynamics
of the model along with the number of real cases reported in Italy from 26 February 2020
(which corresponds to the first day of simulation) for 145 consecutive days. This example
for the COVID-19 pandemic has been considered previously in [31,32].
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Figure 15. Dynamics of the model for the COVID-19 pandemic in Italy for Case 2.1.

In the absence of loss of immunity, all the population becomes immune asymptotically.
The following cases discuss the effects of loss of immunity and vaccination on the COVID-
19 dynamics.

Case 2.2. There is no vaccination, and an exponentially fast loss of immunity with
delay is considered. The parameters of the loss of immunity are given by d1 = 180, d2 = 10
days and a = 0.009 with A = 0.0091. The dynamics of the models are depicted in Figure 16.

In Figure 16, a substantial change in the system dynamics due to the loss of immunity
is observed. Therefore, the asymptotically stable disease-free equilibrium point gives way
to an endemic equilibrium point, whose location is given by Proposition 2 as Send = 0.1688,
Eend = 0.0353, Iend = 0.1473 and Rend = 0.6486, in normalized units. Thus, in the steady-
state there is always a number of infectious individuals. Moreover, the endemic equilibrium
point is globally asymptotically stable since β = 0.2 > βc = 0.034 according to Theorem 5.

Case 2.3. There is no vaccination, and a constant loss of immunity with delay is
considered. The parameters of the loss of immunity are given by d1 = 180, d2 = 10 days
and a = 0.0007 with A = 0.0077. The dynamics of the models are depicted in Figure 17.

As it happened in Case 2.2, the dynamics of the system changed substantially, and an
endemic equilibrium point appears. This situation is not recommendable at all, and human
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intervention is necessary to avoid it. Consequently, the next Case 2.4 will study the effect
of vaccination when loss of immunity occurs.

Case 2.4. The vaccination gain is Kd f = 0.1, and a constant loss of immunity with
delay is considered. The parameters of the loss of immunity are given by d1 = 180, d2 = 10
days and a = 0.0007 with A = 0.0077. The vaccination is only applied 180 days after the
first day. This situation has been considered in order to discuss the effect of vaccination
to counteract the loss of immunity. The dynamics of the system are depicted in Figure 18,
while the vaccination is displayed in Figure 19.

Mathematics 2021, 9, 520 29 of 34 
 

 

Case 2.2. There is no vaccination, and an exponentially fast loss of immunity with delay 
is considered. The parameters of the loss of immunity are given by 1801 =d , 102 =d  days 
and 0090.a =  with A = 0.0091. The dynamics of the models are depicted in Figure 16. 

 

 
Figure 16. Dynamics of the model for the COVID-19 pandemic in Italy for Case 2.2. There is no 
vaccination, and there is an exponentially fast loss of immunity with delay. 

In Figure 16, a substantial change in the system dynamics due to the loss of immun-
ity is observed. Therefore, the asymptotically stable disease-free equilibrium point gives 
way to an endemic equilibrium point, whose location is given by Proposition 2 as

16880.Send = , 03530.Eend = , 14730.I end =  and 64860.Rend = , in normalized units. 
Thus, in the steady-state there is always a number of infectious individuals. Moreover, the 
endemic equilibrium point is globally asymptotically stable since 034020 .. c =>= ββ  
according to Theorem 5. 

Case 2.3. There is no vaccination, and a constant loss of immunity with delay is consid-
ered. The parameters of the loss of immunity are given by 1801 =d , 102 =d  days and 

00070.a =  with A = 0.0077. The dynamics of the models are depicted in Figure 17. 

0 500 1000 1500 2000 2500
time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

la
tio

ns

S
E
I
R

0 500 1000 1500 2000 2500
time (days)

0

2

4

6

8

10

12

14

Po
pu

la
tio

ns

104

I
real cases

Figure 16. Dynamics of the model for the COVID-19 pandemic in Italy for Case 2.2. There is no
vaccination, and there is an exponentially fast loss of immunity with delay.

It is deduced from Figure 18 that the vaccination, even with as low a percentage as 10%,
allows avoiding the endemic state caused by the loss of immunity and makes the total pop-
ulation be either susceptible or immune asymptotically. The mathematical explanation for
this is that vaccination generates a new critical value for beta so that β = 0.2 < βc = 0.4723.
Therefore, the disease-free equilibrium point is globally asymptotically stable, while the
endemic equilibrium point is no longer reachable. Overall, the proposed model is useful
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to describe the COVID-19 pandemic, study the effect of loss of immunity and assess the
impact of vaccination in the epidemic spread.
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proposed model is useful to describe the COVID-19 pandemic, study the effect of loss of 
immunity and assess the impact of vaccination in the epidemic spread. 
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Figure 17. Dynamics of the model for the COVID-19 pandemic in Italy for Case 2.3. There is no
vaccination, and there is a constant loss of immunity with delay.
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Figure 18. Model dynamics with vaccination and a constant loss of immunity with delay. The
vaccination gain is set to Kd f = 0.1 and it is applied after 180 days.
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Figure 19. Vaccination for Case 2.4, where a constant loss of immunity with delay is considered. The
vaccination gain is set to Kd f = 0.1 and it is applied after 180 days.



Mathematics 2021, 9, 520 30 of 32

6. Conclusions

A new discrete SEIR model has been presented in this paper subject to linear feedback
vaccination controls on the susceptible and delayed partial loss of immunity of previously
recovered individuals. It has also been considered that there is infectivity power in the
Exposed-Susceptible contacts being, in general, of distinct transmission rate than that
related to the Infectious-Susceptible contacts. The above idea is based on the knowledge
that the later periods in the asymptomatic incubation phase of the infection in some
infectious diseases, like for instance COVID-19, are also infective. It is considered that the
partial loss of immunity in the recovered subpopulation increases the susceptibility after a
certain delay depending on the period of the recovery immunity maintenance. Such an
immunity loss is considered to take place in a range of samples previous to the current
sample being active in the model, and both the duration of such a time interval where
immunity is lost and the particular force per sample of such a loss can be adjusted with
different weights in the proposed model to include the effect that the immunity loss is
usually gradual through time. The proposed model considers also the use of feedback
vaccination on the susceptible subpopulation. Furthermore, both the disease-free and the
endemic equilibrium points are calculated explicitly as being dependent on the vaccination
control gains. The stability of both equilibrium points is also discussed. It is proven that
when the disease-free equilibrium point is asymptotically stable, the endemic one is not
attainable, and when the endemic one is reachable then the disease-free one is unstable. In
this way, it is proven that there is only a global attractor depending on the reproduction
number or, equivalently, on its associate critical transmission rate. The proposed model
has been tested through numerical examples based on COVID-19 parameterizations.
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