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Abstract

This thesis consists of three parts, each of them devoted to different aspects of the theory
of finite p-groups and pro-p groups.

The first part is concerned with the study of the following problem: under which
conditions on a group G does the verbal subgroup for a given word w coincide with the
set of w-values? We will analyse this problem for different words lying in the derived
subgroup of the free group, namely, the commutator word, the lower central words and
general outer commutator words, under the hypothesis that G is a finite p-group.

The second part is aimed to the study of the Hausdorff dimension function. In recent
decades, this fractal dimension has provided interesting and fruitful applications in the
context of profinite groups, all of them based on the pioneering formula by Barnea and
Shalev, according to which the Hausdorff dimension of a closed subgroup H of a profinite
group G can be regarded as the “logarithmic density” of H in G. Thus, we will focus on
the notion of normal Hausdorff spectrum of G with respect to a given filtration series,
giving the first example of a finitely generated pro-p group with full normal Hausdorff
spectra.

Finally, in the third part of the thesis, we will introduce two new classes of power-
ful p-groups: the powerfully solvable groups and the powerfully simple groups. These
are powerful p-groups that somehow fulfil the “role” that finite solvable groups and fi-
nite simple groups have in the class of all finite groups, respectively. We will provide
some results and classification concerning these groups, including a Jordan-Hölder type
theorem. For this purpose, a bijective correspondence between the category of certain
powerful groups and the category of alternating algebras over Fp will be of particular
interest.
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Laburpena

Tesi hau hiru zatitan banatuta dago, horietako bakoitzak p-talde finituen eta pro-p
taldeen teoriaren hainbat alderdi lantzen dituelarik.

Lehenengo zatian, ondorengo problema aztertzen da: izan bitez G taldea eta w hitza;
zein baldintzatan dator bat G-ren w-rekiko hitzezko azpitaldea w-balioen multzoarekin?
Problema hori talde askearen azpitalde deribatuko zenbait hitzentzat aztertuko da, kom-
mutadore hitzarentzat, hitz zentral beherakorrentzat eta kanpo kommutadore orokor-
rentzat alegia, hipotesi gehigarri batekin: G p-talde finitu bat izatea.

Bigarren zatian, Hausdorffen dimentsio funtzioa aztertzen da. Azken hamarkadetan,
dimentsio fraktal horrek aplikazio interesgarriak eman ditu talde profinituen testuingu-
ruan, horiek guztiak Barnea eta Shalev-en formula aitzindarian oinarrituta. Formula
horren arabera, G talde profinitu baten H azpitalde itxi baten Hausdorffen dimentsioa
H-k G-n duen “dentsitate logaritmikotzat” har daiteke. Horrela, G-ren filtrazio serie
batekiko Hausdorffen espektro normalaren nozioan jarriko dugu arreta, espektro osoko
pro-p talde finituki sortu baten lehen adibidea emanez.

Azkenik, tesiaren hirugarren zatian, bi talde mota berri aurkezten dira: p-talde
boteretsuki ebazgarriak eta p-talde boteretsuki bakunak. Talde horiek p-talde botere-
tsuak dira eta, nolabait, talde ebazgarri finituek eta talde bakun finituek talde finitu
guztien klasean duten “papera” betetzen dute, hurrenez hurren. Talde horiei buruzko
emaitza eta sailkapen batzuk emango ditugu, Jordan-Hölder motako teorema bat barne.
Horretarako, interes berezia izango du talde boteretsu jakin batzuen kategoriaren eta
Fp-ren gaineko aljebra alternatuen kategoriaren arteko korrespondentziak.
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Sommario

Questa tesi consta di tre parti, ciascuna delle quali dedicata a diversi aspetti della teoria
dei p-gruppi finiti e dei pro-p gruppi.

La prima parte analizza le condizioni che un gruppo deve soddisfare affinché il sotto-
gruppo verbale di una parola data coincida con l’insieme dei valori che la parola assume
nel gruppo. Si studierà questo problema per parole contenute nel sottogruppo derivato
del gruppo libero. Ad esempio, si considereranno la parola commutatore, le parole
centrali inferiori e le parole esterne nei p-gruppi finiti.

La seconda parte è incentrata sullo studio della funzione della dimensione di Haus-
dorff. Negli ultimi decenni, si è dimostrato che questa funzione fornisce interessanti e
utili applicazioni nel contesto dei gruppi profiniti, tutti basati sulla formula di Barnea
e Shalev che afferma che la dimensione di Hausdorff di un sottogruppo chiuso H su
un gruppo profinito G può essere riguardata come la densità logaritmica di H in G. Si
analizzerà la nozione di spettro normale di Hausdorff di G rispetto a specifiche filtrazioni
e si darà il primo esempio di un pro-p gruppo finitamente generato con spettro normale
di Hausdorff completo.

Nella terza parte, infine, si introdurranno due nuove classi di gruppi powerful: i
gruppi powerful risolubili e i gruppi powerful semplici. Questi gruppi, in un certo qual
modo, si comportano come i gruppi risolubili e semplici nella classe di tutti i gruppi
finiti. Verranno, poi, fornite classificazioni di questi gruppi, tra cui un teorema del tipo
Jordan-Hölder. A tale scopo, particolare rilevanza è rappresentata dalla corrispondenza
biunivoca tra la categoria di specifici gruppi powerful e la categoria di algebre alternate
su Fp.
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che si può avere; di Giuseppina, la mia seconda mamma; di Andrea, che mi ha fatto i
regali migliori che io abbia mai ricevuto; di Daniele (Marconi), che nonostante tutto,
spero venga a farci una visita ai Paesi Baschi; di Mariapia, che è stata sempre gentile
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Notation

N,Z,R The set of natural/integer/real numbers
Rě0 The set of the real numbers that are greater than or equal to 0
Fp The field of p elements
Zp The ring of p-adic integers
Qp The field of p-adic numbers
a ”n b a P Z is congruent to b P Z modulo n P Z
φpgq The image of g under the map φ
r¨s The ceiling function
t¨u The floor function
Ď,Ă Subset/proper subset
ď,ă Subgroup/proper subgroup
ďo,ďc,ăo,ăc Open/closed subgroup/proper subgroup
Ĳ,Ÿ Normal subgroup/proper subgroup
Ĳo,Ĳc,Ÿo,Ÿc Open/closed normal subgroup/proper subgroup

X The topological closure of X
xXy The group generated by X

S˚n ts1
n
¨ ¨ ¨sn | si P S for all i “ 1, . . . , nu

dpGq Minimal number of generators of G
exppGq The exponent of G
ZpGq The center of G
AutpGq The group of automorphisms of G
GLpn,Kq The general linear group of degree n over K
MnpKq The ring of square matrices of degree n over K
H ”N K H ” K pmod Nq, i.e., H,K ď G are congruent modulo N Ĳ G
xy The conjugate of x by y, i.e., y´1xy
xG The conjugacy class of x in G
HG The normal closure of H in G
CGpxq The centraliser of x in G
CGpHq The centraliser of H in G
rx, ys The commutator of x and y, i.e., x´1y´1xy
rx, Ss xrx, ss | s P Sy, where x P G and S Ď G
rR,Ss xrr, ss | r P R, s P Sy, where R,S Ď G
G1 The derived subgroup or the commutator subgroup of G
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KpGq The set of commutators of G, i.e., KpGq “ trx, ys | x, y P Gu
KxpSq trx, ss | s P Su, where x P G and S Ď G
rx1, . . . , xrs rrx1, . . . , xr´1s, xrs
rS1, . . . , Srs rrS1, . . . , Sr´1s, Srs
rx,n ys rx, y, n. . ., ys
rH,nGs rH,G, n. . ., Gs
γr The rth lower central word
γrpGq The rth term of the lower central series of G, i.e., rγr´1pGq, Gs,

where γ1pGq “ G
δr The rth derived word

Gprq The rth derived subgroup of G, i.e., rGpr´1q, Gpr´1qs,

where Gp1q “ G
Gw The set of w-values of G
wpGq The verbal subgroup of w in G
H ˆN The direct product of H and N
H ˙N The semidirect product of H and N , via the action of H in N
A‘B The direct sum of A and B
AkB The direct orthogonal sum of A and B
lim
ÐÝn

Gn The inverse limit of the inverse system tGnunPN

x¨, ¨y A bilinear form
V K The orthogonal complement of V
ΦpGq The Frattini subgroup of G

Gp
i

xgp
i
| g P Gy

ΩipGq xg P G | gp
i
“ 1y

L The Lower p-series
D The dimension subgroup series
P The p-power series
P˚ The iterated p-power series
F The Frattini series

bdimS,µ
G pXq The Billingsely dimension of X Ď G in G with respect to S and µ

dimS
BpXq The lower box dimension of X Ď G in G with respect to S

hdimS
GpXq The Hausdorff dimension of X Ď G in G with respect to S

hspecSpGq The Hausdorff spectrum of G with respect to S
hspecSĲpGq The normal Hausdorff spectrum of G with respect to S



Summary of the thesis

This thesis is split into three parts, where different aspects of finite p-groups and pro-p
groups will be studied.

In Part I of the thesis, the most extensive one, we will study an old question regarding
verbal subgroups of commutators words. This study started soon after the introduction
of the commutator word on the eve of the 20th century, when it was observed that the
product of two commutators of a group G need not be a commutator. It was then asked
the following: which are the groups in which the product of two commutators is again a
commutator? In other words, when does the derived subgroup G1 of a group G coincide
with the set of all the commutators of G? Actually, this question can be formulated for
any group word w, just replacing the set of commutators with the set Gw of w-values
and the derived subgroup G1 with the verbal subgroup wpGq “ xGwy of G. That is:

Problem. Let w be a word and G a group. Is wpGq “ Gw?

We will motivate and introduce this problem in more detail in Chapter 1. The words
for which this problem will be studied in this thesis are the commutator word, lower
central words and general outer commutator words. The groups that we will consider
will be finite p-groups and pro-p groups.

Before we start analysing the problem for the aforementioned words and groups,
we spend some time establishing some preliminary results in Chapter 2. Apart from
developing some technical and fundamental commutator calculus, the class of powerful
p-groups will be defined. These groups are, without any doubt, one of the main protag-
onists of this dissertation. They are usually seen as a generalisation of abelian groups,
as they share many properties with them. Among other results, we will show that in
almost all the groups that we will work with in the next chapters, the verbal subgroups
of the words that we will consider are powerful. This gives us the opportunity to use all
the tools that the theory of powerful groups provides. This is, in fact, a completely new
approach to the problem, and will allow us to prove a number of results in the area.

In this setting, we will start in Chapter 3 analysing the problem for the commutator
word and for finite p-groups. In this context, a great deal of results has been given over
the years. One of the most celebrated one is the proof by Liebeck, O’Brien, Shalev and
Tiep of the so-called Ore conjecture, according to which every element of a non-abelian
finite simple group is a commutator. Sharp bounds on the order of the group and on the
order of the derived subgroups have also been found, showing that all the elements of
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the derived subgroup G1 of a group G are commutators whenever G or G1 satisfy these
bounds.

However, we will focus on restrictions involving the number of generators of the
derived subgroup (and in general, in the next chapters, of the verbal subgroup). In this
direction, we will generalise some results due to Guralnick. In these results, Guralnick
always works under the condition that the derived subgroup G1 of a group G is abelian.
We will show in the following two theorems that the condition that G1 is abelian is not
necessary (these results are published in the Israel Journal of Mathematics [18] and in
the Journal of Algebra [32] respectively, and they correspond to Theorems 3.9 and 3.18).

Theorem. Let G be a finite p-group. If G1 can be generated by 2 elements, then G1 “
trx, gs | g P Gu for a suitable x P G.

Theorem. Let G be a finite p-group with p ě 5. If G1 can be generated by 3 elements,
then G1 consists only of commutators.

Moreover, it was shown by Guralnick himself that these results are no longer true
if G1 can be generated by 3 elements with p “ 2 or 3; or if the minimal number of
generators of G1 exceeds 3, whatever prime we choose. Since the result for cyclic derived
subgroups was already shown to hold by Rodney in another paper, this means that the
study of this problem in terms of the number of generators of the derived subgroup
for finite p-groups is already complete. We get, furthermore, some partial results if G1

is generated by more than 3 elements, adding the condition that the action of G on
G1 is uniserial modulo pG1qp (this is published in the Journal of Algebra [32], and it
corresponds to Theorem 3.19).

Theorem. Let G be a finite p-group and write d “ logp |G
1 : pG1qp|. If d ď p ´ 1

and the action of G on G1 is uniserial modulo pG1qp, then there exists x P G such that
G1 “ trx, gs | g P Gu.

In Chapter 4, following with finite p-groups, we consider lower central words instead
of the common commutator word. It was proved, again by Guralnick, that a finite p-
group G with p ě 5 and with γrpGq abelian and generated by 2 elements for some r ě 2
satisfies that

γrpGq “ trg1, . . . , grs | gi P G for all i “ 1, . . . , ru.

Besides that, he also proved that the result is not true anymore if p “ 2, while the case
p “ 3 remained unsolved. We will again show that this result remains true if we drop
the assumption that γrpGq is abelian. Moreover, we show that the result is also satisfied
for p “ 3, closing in that way the gap between the primes 2 and 5. More precisely, we
prove the following (this result will appear in the journal Publicacions Matemàtiques
[34], and it corresponds to Theorem 4.10).

Theorem. Let G be a finite p-group and let r ě 3. If γrpGq is cyclic or if p is odd and
γrpGq can be generated with 2 elements, then there exist x1, . . . , xj´1, xj`1, . . . , xr P G
with 1 ď j ď r such that

γrpGq “ trx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gu.

For every r ě 3, we will also modify an existing example to produce a finite p-group,
for arbitrary p, with γrpGq central and generated by 3 elements such that

γrpGq ‰ trg1, . . . , grs | gi P G for all i “ 1, . . . , ru,
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showing in this way that, again, we have completed the study of this property for lower
central words in finite p-groups in terms of the number of generators of the verbal
subgroup.

The next natural step is considering outer commutator words. We will devote the last
part of Chapter 4 to the study of these words. Unfortunately, the only result achieved
in this context is the following (this is Theorem 4.17).

Theorem. Let G be a finite p-group with G2 cyclic. Then there exist x1, x2, x3 P G
such that

G2 “ trrx1, x2s, rx3, gss | g P Gu.

In other words, nothing is known neither for words other than the second derived
word or the lower central words, nor for finite p-groups with 2-generator verbal subgroup.
Nevertheless, the above theorem could provide a basis for an inductive hypothesis to
solve the following problem which, as we will see, could be a key step in order to go
further in the study of this property for general outer commutator words.

Problem. Let G be a finite p-group such that Gprq is cyclic for some r ě 3. Is then
Gprq “ Gδr , were δr denotes the rth derived word?

To end with the first part of the thesis, we will dedicate Chapter 5 to generalising
all the results we have proved so far from finite p-groups to pro-p groups. Indeed,
after making a basic introduction to these groups, the following will be proved (this is
Theorem 5.8).

Theorem. Let w be a word in r variables and let G be a profinite group such that
wpG{Nq “ pG{Nqw for every open normal subgroup N of G. Then wpGq “ Gw. More-
over, if for every open normal subgroup N of G there exist 1 ď jN ď r and x1, . . . , xjN´1,
xjN`1, . . . , xr P G{N such that

wpG{Nq “ twpx1, . . . , xjN´1, g, xjN`1, . . . , xrq | g P G{Nu,

then there exists 1 ď j ď r and x1, . . . , xj´1, xj`1, . . . , xr P G such that

wpGq “ twpx1, . . . , xj´1, g, xj`1, . . . , xrq | g P Gu.

This result can be directly applied to all of our results, obtaining in this way a
generalised version of them for pro-p groups.

After all this, and once profinite groups have been defined, Part II of the thesis is
devoted to the analysis of some aspects of the theory of Hausdorff dimension in profinite
groups.

In the last decades, the concept of Hausdorff dimension has provided interesting re-
sults in the theory of countably based profinite groups. This started with the pioneering
work of Barnea and Shalev where, based on Abercrombie’s work, they found a group
theoretic formula to compute explicitly the Hausdorff dimension hdimS

GpHq of a closed
subgroup H of a countably based profinite group G with respect to a filtration series
S : G “ G0 ě G1 ě ¨ ¨ ¨ of G. More precisely, they showed that

hdimS
GpHq “ lim inf

nÑ8

log |HGn : Gn|

log |G : Gn|
P r0, 1s.
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Thus, for a profinite group G and a filtration series S, it is natural to consider what
is called the Hausdorff spectrum hspecSpGq of G with respect to the filtration series S.
This is a subset of the real unit interval r0, 1s that reflects the range of the values of
the Hausdorff dimensions that the closed subgroups of a profinite group take. We will
give in Chapter 6 a brief review of the most important results concerning the Hausdorff
spectra of G, introducing some related open problems. We will put special attention
on the Hausdorff dimension of p-adic analytic groups with respect to the five standard
filtration series, namely: the lower p-series L, the dimension subgroup series D, the
p-power series P, the iterated p-power series P˚ and the Frattini series F .

We will focus more, however, on the so-called normal Hausdorff spectrum. For
a profinite group G and a filtration series S of G, the normal Hausdorff spectrum
hspecSĲpGq of G with respect to the filtration series S is the subset of the (usual) Haus-
dorff spectrum hspecSpGq that arises when considering closed normal subgroups instead
of just closed subgroups. In a recent paper, Klopsch and Thillaisundaram asked whether
there exists a finitely generated pro-p group whose normal Hausdorff spectrum with re-
spect to any of the five standard filtration series covers the full unit interval r0, 1s. Thus,
in Chapter 7, we will produce the first example of a finitely generated pro-p group that
gives an affirmative answer to this question. More precisely, we show the following (this
result, for p odd, will appear in the journal Mathematische Nachrichten [33], and it
corresponds to Theorem 7.7. The case p “ 2 is in preparation [35] and it corresponds
to Theorem 7.20).

Theorem. For every prime p, there exists a 2-generator pro-p group G with full normal
Hausdorff spectra with respect to the five standard filtration series, that is,

hspecSĲpGq “ r0, 1s

for every S P tL,D,P,P˚,Fu.

Apart from the question by Klopsch and Thillaisundaram, this theorem also answers
a question by Shalev.

As said before, the theory of powerful groups has a great importance in the first part
of the thesis. Thus, in Part III we will deepen in this topic, introducing two new classes
of powerful groups, namely, the powerfully solvable groups and the powerfully simple
groups. This is motivated by the recent work of Traustason and Williams where they
defined what they called the class of powerfully nilpotent groups.

In Chapter 9 different questions about powerfully solvable groups will be studied.
On the one hand we will give an explicit classification of all powerful groups or rank
2 and all powerful groups of order up to p5. In particular, we will see that there are
22 ` 2p powerfully solvable groups of order p5. On the other hand, we will show that
the growth of the number of powerfully solvable groups of order pn and exponent p2 is

pαn
3`opn3q, where α “ ´1`

?
2

6 .

While the powerful nilpotence and the powerful solvability have good behaviour
when considering homomorphic images, we will see that this is not the case when taking
subgroups. This problem disappears, though, if we consider a rich class of powerful
groups, namely, the class of powerful groups of type p2, r. . ., 2q for some r ě 0. We will
show in Chapter 10 that there exists a bijective correspondence between the category of
these well-behaved groups and the category of alternating algebras of dimension r over
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Fp. With this, the notion of powerfully simple groups will be defined and, in close analogy
to general finite groups, we also define powerful composition series. Thus, a Jordan-
Hölder type theorem will be proved (this is pending acceptance and it is prepublished
on the arXiv [36]; it corresponds to Theorem 10.19):

Theorem. Let G be a powerful p-group of type p2, . . . , 2q with two powerful composition
series, say

1 “ H0 ŸP H1 ŸP ¨ ¨ ¨ ŸP Hn “ G

and
1 “ K0 ŸP K1 ŸP ¨ ¨ ¨ ŸP Km “ G.

Then m “ n and the powerfully simple factors H1{H0, H2{H1, . . . ,Hn{Hn´1 are iso-
morphic to K1{K0, K2{K1, . . . ,Kn{Kn´1 (in some order).

Finally, we end Chapter 10 with the classification of all powerful groups of type
p2, 2, 2q. This will be done by classifying all the possible combinations of the symmet-
ric and anti-symmetric bilinear forms in the alternating algebras of dimension 3. In
particular, we show that there are 2p ` 10 such groups, of which p ` 3 are powerfully
simple.





Part I

Commutator words in finite
p-groups





Chapter 1

Introduction

A group word w in k ě 0 variables is an element of the free group Fk on k generators.
For any group G, this word defines a map (that abusing notation we still call w) from the
Cartesian product of k copies of G to the group G itself by substituting group elements
for the variables. More precisely, if Fk “ xx1, . . . , xky and

w “
s
ź

j“1

x
εj
ij

with i1, . . . , is P t1, . . . , ku and each εj “ ˘1, then

w : Gˆ
k
¨ ¨ ¨ ˆG ÝÑ G

pg1, . . . , gkq ÞÝÑ
s
ź

j“1

g
εj
ij
.

Thus, we can consider the set Gw of all values taken by this function, that is,

Gw “ twpg1, . . . , gkq | gi P G for all i “ 1, . . . , ku.

This set is called the set of w-values of w in G, and the subgroup generated by it is
called the verbal subgroup of w in G, denoted by wpGq.

Example 1.1. (i) The word in 0 variables is called the empty word. For any group
G, its verbal subgroup is just the trivial subgroup of G.

(ii) For any n ě 0, the power word πn is the word in 1 variable defined as πnpxq “ xn.
The verbal subgroup of πn in a group G is denoted by Gn. These groups are
usually called the power subgroups of G.

(iii) The commutator word γ2 is a word in 2 variables defined as γ2px, yq “ rx, ys “
x´1y´1xy. Its verbal subgroup in a group G is just the derived subgroup γ2pGq “
G1 of G (also called the commutator subgroup of G).

3
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(iv) More generally, for r ě 1, the r-th lower central word γr is a word in r variables
defined recursively by the rule γ1px1q “ x1 and

γrpx1, . . . , xrq “ rγr´1px1, . . . , xr´1q, xrs.

Its verbal subgroup in a group G is precisely the r-th term of the lower central
series of G. The words γr for r ě 3 are also known as higher commutator words.

(v) Another way to generalise commutator words is by considering derived words. For
r ě 1, the r-th derived word δr is a word in 2r variables defined recursively by the
rule δ1px1, x2q “ rx1, x2s and

δrpx1, . . . , x2rq “ rδr´1px1, . . . , x2r´1q, δr´1px2r´1`1, . . . , x2rqs.

Its verbal subgroup in a group G is the r-th derived subgroup δrpGq “ Gprq.

(vi) The words in (iii), (iv) and (v) are particular instances of outer commutator words,
also known under the name of multilinear commutator words. These are words
obtained by nesting commutators, but using always different variables. More for-
mally:

• The word wpxq “ x in one variable is an outer commutator word.

• If α and β are outer commutator words involving r and s different variables
respectively, then the word w “ rα, βs is an outer commutator in r ` s
variables.

In addition, all outer commutators are constructed in this way.

(vii) For n ě 1, the n-th Engel word en is a word in 2 variables defined as enpx, yq “
rx, y, n. . ., ys. Although this word is obtained by nesting commutators, it is not an
outer commutator word if n ě 2, as in that case the variable y appears more than
once.

It is well known that, in general, the set of w-values Gw of a group G need not be
a subgroup. In other words, we may have Gw Ă wpGq. This is because the product of
two word values or the inverse of a word value may not be a word value again. Thus,
the following longstanding problem arises naturally.

Problem 1.2. Let G be a group and let w be a word. Is wpGq “ Gw?

If the group G is abelian, then it is immediate to see that Problem 1.2 is satis-
fied for any word w. Indeed, word maps are homomorphisms in abelian groups, so if
wpg1, . . . , gkq and wph1, . . . , hkq are two word values of G, then we have

wpg1, . . . , gkq
´1 “ wpg´1

1 , . . . , g´1
k q

and
wpg1, . . . , gkqwph1, . . . , hkq “ wpg1h1, . . . , gkhkq.

However, for some words w, one can easily find examples of groups G such that wpGq ‰
Gw (see, for instance, Example 3.1 below).

In this first part of the thesis we will study this problem for several words that lie
inside the commutator subgroup of the free group. Among all the results that we will see
or prove, with some exceptions like Theorem 3.2, the problem is almost always reduced,
in one way or another, to finite p-groups. A typical argument for that purpose is the
following.
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Proposition 1.3. Let w be a word and let G be a (not necessarily finite) nilpotent
group such that wpGq is finite. Then, there exists a finite nilpotent group H and an
isomorphism φ : wpGq Ñ wpHq such that φpGwq “ Hw.

Proof. Suppose w is a word in k variables. Since wpGq is finite, it contains, in particu-
lar, finitely many w-values, say wpg1, . . . , gkq, wpgk`1, . . . , g2kq and wpgnk`1, . . . , gpn`1qkq

with n ě 0 and g1, . . . , gpn`1qk P G. Define K “ xg1, . . . , gpn`1qky, and note that
Kw “ Gw and wpKq “ wpGq. Now, K is nilpotent since so is G, and being finitely
generated, it follows that K is residually finite. Hence, since wpKq is finite, there exists
a normal subgroup N of K such that wpKq X N “ 1. Consider now the factor group
H “ K{N and let φ be the natural homomorphism from K to H. Clearly we have

wpKq “ wpKq{pwpKq XNq – wpKqN{N “ wpK{Nq “ wpHq,

where the isomorphism is given by the restriction map φ |wpKq. Then we have

φpwph1, . . . , hkqq “ wpφph1q, . . . , φphkqq

for every h1, . . . , hk P K, which shows that φpKwq “ Hw.

If G is a finite nilpotent group, then we have G “ P1 ˆ ¨ ¨ ¨ ˆ Pn, where P1, . . . , Pn
are the Sylow subgroups of G. Let w be a word in k variables and take h1, . . . , hk P G.
Then, for every 1 ď i ď k there exist gi1 P P1, . . . , gin P Pn such that hi “ gi1 ¨ ¨ ¨ gin,
and it is easy to see that

wpg11 ¨ ¨ ¨ g1n, . . . , gk1 ¨ ¨ ¨ gknq “ wpg11, . . . , gk1q ¨ ¨ ¨wpg1n, . . . , gknq.

This shows that the study of Problem 1.2 for finite nilpotent groups is clearly reduced to
finite p-groups. Thus, in view of Proposition 1.3 and because of the fact that there are
a number of useful structural results regarding finite p-groups, almost all of our analysis
of Problem 1.2 will be focused on them.

Before we give our main results, we will present some preliminaries in Chapter 2,
some of which will be used more than once along the dissertation. Among other things,
we will develop some theory concerning powerful groups, which will allow us to introduce
a completely new approach in this topic. As a matter of fact, this new point of view will
be essential in our proofs, since as we will see, the behaviour of the commutator map is
much better when the verbal subgroup in consideration is powerful.

In Chapter 3 we will start our study of the commutator word. Our main results
in this chapter are proved in Sections 3.2 and 3.3, where we will study finite p-groups
with derived subgroup generated by 2 and 3 elements, respectively. Thus, we will solve
Problem 1.2 in both cases, showing that G1 “ trx, ys | x, y P Gu. Moreover, since this
property is already known to hold for finite p-groups with cyclic derived subgroups, and
since it is already known to fail for finite p-groups with derived subgroup generated by
more than 3 elements, our results complete the study of this problem for finite p-groups
when imposing conditions on the number of generators of the derived subgroup.

We will then dedicate Chapter 4 to more general words, namely, to lower central
words and, in the end of the chapter, to general outer commutator words. Thus, being a
good platform to work, we will continue analysing the problem in finite p-groups. Here
we will give, on the one hand, a simple proof of the fact that γrpGq “ Gγr whenever G
is a finite p-group and the verbal subgroup γrpGq is cyclic, which was already proved by
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Dark and Newell in [12], and, on the other hand, we will prove the same result for finite
p-groups such that γrpGq is generated by 2 elements. In this way, and using Proposition
1.3 to deduce from an existing example that the problem is no longer true for finite
p-groups with verbal subgroups generated by more than 2 elements, we again complete
the study of this property in terms of the number of generators of the verbal subgroup
in the context of finite p-groups.

The next natural step is to consider general outer commutator words. For these
words the problem looks much harder and nothing can be found in the existing literature,
even if the verbal subgroup is cyclic. Yet, we break new ground and show that for a
finite p-group G we have G2 “ Gδ2 whenever G2 is cyclic.

Finally, we will extend in Chapter 5 all the results achieved in the previous chapters
from finite p-groups to pro-p groups. Actually the argument we will give to generalise
all these results is quite general and works for all words and for all profinite groups in
general.

Notation. Let G be a group, and let H ď G and N Ĳ G. We write H maxG to
denote that H is maximal in G, and H maxG N to denote that H is maximal among
the proper subgroups of N that are normal in G. We set KpGq “ trx, ys | x, y P Gu and
if x P G then we write KxpHq “ trx, hs | h P Hu and rx,Hs “ xKxpHqy. If G is finitely
generated, dpGq stands for the minimum number of generators of G. Finally, we write
rG,nN s for rG,N, n. . ., N s, where n ě 0.



Chapter 2

Preliminaries

Before we prove the main results we have achieved regarding Problem 1.2, we spend
some time establishing some preliminary results. In fact, many of these results are of
independent interest and one may apply them in a more general context than that of
this topic.

First we recall in Section 2.1 some basic facts about commutator calculus and finite
p-groups that will be frequently used along the thesis.

Without any doubt, one of the main important concepts in this thesis is that of a
powerful group. We will define these groups in Section 2.2, where we will also introduce
the notion of potent groups. We will thus exhibit some well-known facts and prove some
easy results about such groups.

Then we study in Section 2.3 the connection between verbal subgroups and powerful
groups. Indeed, we show that if the verbal subgroup of an outer commutator word in a
finite p-group G is generated by “few” elements, then it must be powerful. As said in
the introduction, this gives a completely new approach to the problem. Actually, this is
key to prove our main results, as it allows us to use all the machinery of powerful groups
presented in Section 2.2.

We follow in Section 2.4 with some technical results about outer commutator words.
These results will be particularly helpful to show that certain quotients of a finite p-group
consist only of word values. For instance, we show that the property that a section of a
group consists only of commutators of certain type is closed under extensions (Lemma
2.23), and we will give special attention to finding conditions under which a pth power
can be introduced inside a lower central commutator (Section 2.4.1).

Finally, in Section 2.5, different subsets (most of them, actually, subgroups) of a
finite p-group are defined. These subsets will be of great importance, as the position of
them in the group will provide information not only about the presence of some specific
commutators in some specific subgroups, but also general information about the group
structure itself.

2.1 Basic properties

We start with a well-known fact about finite p-groups, which, in some cases, allows us
to assume that certain subgroups of a group are trivial.

7
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Lemma 2.1. Let G be a finite p-group and N,K normal subgroups of G. If N ď

KNprN,Gs, then N ď K.

Proof. Factor out K and just note that if N is non-trivial, then NprN,Gs is a proper
subgroup of N , which is a contradiction.

The following standard commutator identities will be freely used along the thesis
(for the proofs see, for instance, [67, 5.1.5]).

Lemma 2.2. Let x, y, z be elements of a group. Then:

(i) rx, ys “ ry, xs´1.

(ii) rxy, zs “ rx, zsyry, zs, and rx, yzs “ rx, zsrx, ysz.

(iii)
“

x, y´1
‰

“ ry, xsy
´1

, and
“

x´1, y
‰

“ ry, xsx
´1

.

(iv) rx, y´1, zsy ry, z´1, xsz rz, x´1, ysx “ 1 (the Hall-Witt identity).

As a consequence of the identities above one deduces the next well-known properties.
For the reader’s convenience we collect them in a lemma.

Lemma 2.3. Let G be a group. Then:

(i) If N and L are two normal subgroups of G and n P Z, then

rNn, Ls ď rN,LsnrN,L,N s.

(ii) Let X,Y, Z ď G and N Ĳ G. If rX,Y, Zs, rY, Z,Xs ď N , then rZ,X, Y s ď N .
This is known as the three subgroup lemma.

(iii) As a consequence, if N is a normal subgroup of G, then rN, γnpGqs ď rN,nGs for
every n ě 1.

The previous lemmas will be used tacitly, as well as the fact that for each n ě 0,
if N ď L are two normal subgroups of a finite p-group G such that |L : N | “ pn, then
rL,n Gs ď N . In particular, if L{N is cyclic then rL,n Gs ď Lp

n
N .

The following lemma, probably the most used tool in the thesis, is known as the Hall-
Petresco identity. It was introduced by Hall and Petresco in [29] and [66] respectively,
and it can be proved using the so-called commutator collecting process (for a more
modern proof see, for example, [8, Appendix A.1]).

Lemma 2.4. Let F2 “ xx, yy be the free group on 2 generators. Then, there exist words
di P γipGq for all i ě 2 such that for every n ě 0 we have

xnyn “ pxyqnd
pn2q
2 d

pn3q
3 ¨ ¨ ¨ d

p n
n´1q
n´1 dn.

In particular, there exist words ci P γipxpy
´1qx, yyq “ γipxrx, ys, yyq for all i ě 2 such

that for every n ě 0 we have

rx, yns “ rx, ysnc
pn2q
2 c

pn3q
3 ¨ ¨ ¨ c

p n
n´1q
n´1 cn.

Since these formulas hold in the free group F2, they apply to any two elements g, h in
any group G.
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On some occasions a more explicit version of the Hall-Petresco identity will be re-
quired. In order to state it, we first need the following notion.

Definition 2.5. Let G be a group and S Ď G. Let also c P G and s P S. Then:

• If c P S, then we say that c is a commutator in S and that the weight of c in S
is 1. In addition, if c “ s, then the weight of c in s is 1, while if c ‰ s then the
weight of c in s is 0.

• If c R S but c “ rx, ys, where x and y are commutators in S, then c is also a
commutator in S and the weight of c in S (in s) is the sum of the weights of x
and y in S (in s).

The proof of the next lemma can be found in [55, Proposition 1.1.32].

Lemma 2.6. Let G be a finite p-group, x, y P G and n P N. Let Kpu, vq denote the
normal closure in G of (i) all commutators in tu, vu of weight at least pn that have
weight at least 2 in v, together with (ii) the pth powers of all commutators in tu, vu of
weight less than pn and of weight at least 2 in v. Then:

pxyqp
n
”Kpx,yq x

pnyp
n
ry, xsp

pn

2 qry, x, xsp
pn

3 q ¨ ¨ ¨ ry, x, p
n´2. . . , xsp

pn

pn´1qry, x, p
n´1. . . , xs,

rxp
n
, ys ”Kpx,rx,ysq rx, ys

pnrx, y, xsp
pn

2 q ¨ ¨ ¨ rx, y, x, p
n´2. . . , xsp

pn

pn´1qrx, y, x, p
n´1. . . , xs.

In most of the cases, it will be essential knowing when a power of p divides the
binomial coefficients

`

pn

i

˘

that appear in both the Hall-Petresco Identity and in Lemma
2.6. The following classical theorem, which will be loosely used, gives an answer to this.

Theorem 2.7 ([53]). Let s and t be integers with 0 ď s ď t. If α is a positive integer
and p a prime, then pα divides

`

t
s

˘

if and only if α carries are needed when adding s and
t´ s in base p.

It is thus easy to see that if t “ pn and s “ pαr with p - r, then pn´α is the biggest
power of p that divides

`

pn

pαr

˘

. In particular, if p is odd then pn´pi´2q divides
`

pn

i

˘

for

2 ď i ď n` 2, while if p “ 2 then pn´pi´1q divides
`

pn

i

˘

for 2 ď i ď n` 1.

2.2 Powerful and potent groups

Powerful groups are a special type of finite p-groups that were defined by Lubotzky and
Mann in [57], even if they were first considered in [38] by Hobby, and some of their
results had already been anticipated by other authors (see, for example, [4] and [61]).
A finite p-group G is said to be powerful if the commutator subgroup G1 is contained
in Gp “ xgp | g P Gy for p odd or in G4 “ xg4 | g P Gy if p “ 2. Note that if p is odd,
then a finite p-group G is powerful if and only if ΦpGq “ Gp, as happens with abelian
groups. Indeed, these groups are usually seen as a generalisation of abelian groups, as
they share many structural features with them.

While quotients of powerful groups are again powerful, it is not true in general that
the subgroups of powerful groups are powerful. There are some subgroups H, however,
that are not only powerful subgroups of G, but are powerfully embedded in G, meaning
that rH,Gs ď Hp if p is odd or rH,Gs ď H4 if p “ 2. Most of the important subgroups
of a powerful group G are powerfully embedded in G. Indeed, G is obviously powerfully
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embedded in G, and if H and K are powerfully embedded subgroups of G, then Hp,
HK and rH,Ks are also powerfully embedded in G (see [48, Theorem 11.4]).

The reason why these groups are called powerful is in (i) of the next proposition, as
it is shown that these groups are somehow “full of powers”. A proof of this proposition
can be found in [48, Theorems 11.10, 11.11, and 11.15].

Proposition 2.8. Let G be a powerful group. Then:

(i) Gp
i
“ xgp

i
| g P Gy “ tgp

i
| g P Gu for every i ě 0.

(ii) pGp
i
qp
j
“ Gp

i`j
for every i, j ě 0.

(iii) If G “ xx1, . . . , xry, then Gp
i
“ xxp

i

1 , . . . , x
pi
r y for every i ě 0.

(iv) The power map g ÞÑ gp induces an epimorphism from Gp
i
{Gp

i`1
to Gp

i`1
{Gp

i`2

for every i ě 0.

Remark 2.9. By (iv) of the previous proposition, the power map g Ñ gp
i

induces an
epimorphism from G{Gp to Gp

i
{Gp

i`1
for every i ě 0. This, in particular implies that

if Gp ď N ď L ď G, then
|Lp

i
: Npi | ď |L : N |

(and hence |N : Npi | ď |L : Lp
i
|), and if L{N “ xx1, . . . , xnyN , then

Lp
i
{Npi “ xxp

i

1 , . . . , x
pi

n yN
pi .

In respect of the generating sets of powerful groups, the following abelian-like prop-
erties are really helpful. For the proofs see [13, Corollary 2.8, Theorem 2.9, and Exercise
9 of Chapter 2].

Proposition 2.10. Let G be a powerful group with dpGq “ d. Then:

(i) dpHq ď d for every H ď G.

(ii) If G “ xx1, . . . , xdy for some x1, . . . , xd P G, then G “ xx1y ¨ ¨ ¨ xxdy.

(iii) G has a basis, meaning that there exist x1, . . . , xd P G such that G “ xx1y ¨ ¨ ¨ xxdy
and opx1q ¨ ¨ ¨ opxdq “ |G|. Hence, the elements of G are precisely xi11 ¨ ¨ ¨x

id
d , where

0 ď ij ď opxjq ´ 1 for every j “ 1, . . . , d, without repetitions.

Other important characteristic subgroups are the so-called omega subgroups of G,
defined by

ΩipGq “ xg P G | opgq ď piy.

These are analogous to the power subgroups Gp
i

(in fact, the power subgroups Gp
i

are sometimes called agemo subgroups and denoted by 0ipGq). It is clear that if G is
abelian, then ΩipGq “ tg P G | opgq ď piu. Again, for powerful groups, at least if p is
odd, the same result can be deduced. Parts (i), (ii) and (iii) of the following proposition
are proved by Wilson in [82] and [83] and by Héthelyi and Lévai in [37] respectively (a
short proof of these facts is given by Fernández-Alcober in [17]).

Proposition 2.11. Let G be a powerful group. Then:

(i) If p is odd, then exppΩipGqq ď pi for every i ě 0.
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(ii) If p “ 2 then, unlike for abelian groups, we have exppΩipGqq ď 2i`1 for every
i ě 0.

(iii) |G : Gp
i
| “ |ΩipGq| for every i ě 0.

To end with powerful groups, we formulate what is known as Shalev’s interchanging
lemma.

Lemma 2.12 ([72, Lemma 3.1]). Let G be a powerful group and let H and K be pow-
erfully embedded subgroups of G. Then rHpi ,Kpj s “ rH,Ksp

i`j
for every i, j ě 0.

A more extensive background on powerful groups can be found in [13, Chapter 2] or
[48, Chapter 11].

We can generalise the concept of powerful groups even more with the notion of potent
p-group, which will also have an important role in Section 3.3. Indeed, as we will see
in the proof of Theorem 3.19, if a group satisfies the conditions of the theorem, then
its derived subgroup must be potent. These groups where considered for the first time
by Arganbright in [4], even if they were not called potent until González-Sanchez and
Jaikin-Zapirain did it in [23]. A finite p-group G is said to be potent if γp´1pGq ď Gp

for odd p or if G1 ď G4 for p “ 2 (note that if p “ 2 or 3, then potent groups are defined
in the same way as powerful groups). Potent p-groups are thus a further generalisation
of abelian groups. Indeed, it is shown in [23] that if G is a potent p-group with p odd,
then the following holds.

(i) Gp
i
“ tgp

i
| g P Gu for all i ě 0.

(ii) ΩipGq “ tg P G | opgq ď piu for all i ě 0.

(iii) |G : Gp
i
| “ |ΩipGq| for all i ě 0.

A group satisfying these three properties is called power abelian. In this context, the fol-
lowing lemma, which is a reduced version of the main theorem in [23], will be particularly
helpful.

Lemma 2.13 ([23, Theorem 1.1]). Let G be a potent p-group with p ě 3. Then:

(i) If N Ĳ G, then N is power abelian.

(ii) If N ď Gp and N Ĳ G, then N is powerful.

If p is odd, then Remark 2.9 can be stated in a more general way. Indeed, if G is a
potent p-group with p odd, then the indices of the power subgroups of the subgroups of
G have a particularly good behaviour.

Lemma 2.14. Let G be a potent p-group with p ě 3. If N ď L are two normal subgroups
of G, then |N : Npi | ď |L : Lp

i
| for all i ě 0. In particular |Lp

i
: Npi | ď |L : N |.

Proof. By Lemma 2.13, the subgroups N and L are power abelian, so in particular
|N : Npi | “ |ΩipNq| and |L : Lp

i
| “ |ΩipLq|. Since obviously |ΩipNq| ď |ΩipLq|, the

result follows.

For p “ 2, though, we have a much weaker result.
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Lemma 2.15. Let G be a powerful group and H a powerful subgroup of G. Then
|Gp

i
: Hpi | ď |G : H| for all i ě 0.

Proof. Since G is powerful, we have dpHq ď dpGq by Proposition 2.10. Since H is also
powerful, this amounts to |H : Hp| ď |G : Gp|, which yields the result for i “ 1. Now
Gp and Hp are again powerful, and we have Gp

i
“ pGpqp

i´1
and similarly for H, so the

general case follows immediately by induction on i.

In view of Theorem 2.18 below, we will deal several times with 2-generator powerful
groups (see Sections 3.2 and 4.2). In those cases, next lemma will be really useful.

Lemma 2.16. Let G be a powerful group. If dpGq “ 2, then every subgroup of G is also
powerful.

Proof. By induction on the group order, it suffices to show that every maximal subgroup
M of G is powerful. Now since G is powerful and dpGq “ 2, we have |M : Gp| “ p.
Since Gp is powerfully embedded in G, it follows from [48, Lemma 11.7] that M is
powerful.

2.3 Powerful verbal subgroups

In our study of Problem 1.2, our main goal will be generalising some results that are
already known to hold when the verbal subgroup of the corresponding word w is abelian.
According to the last section, a reasonable way to generalise this condition is requiring
the verbal subgroup to be not abelian, but powerful. Actually, we will see that almost
all the groups we will consider turn out to have powerful verbal subgroups. The main
result we have obtained in this direction is a generalised version of the following theorem
by Blackburn, where a presentation of the derived subgroup G1 of a finite p-group G is
given, provided that dpG1q “ 2.

Lemma 2.17 ([9, Theorem 1]). Let G be a finite p-group such that dpG1q ď 2. Then
either G1 is abelian or it can be generated by two elements a and b with defining relations
ap

m
“ bp

n`k
“ 1 and ra, bs “ bp

n
, with k ą 0 and n ě m ě 2k. In particular,

G2 ď pG1qp
2

and G1 is powerful.

We extend this to more general normal subgroups other than the derived subgroup
in the following theorem.

Theorem 2.18. Let G be a finite p-group and N a normal subgroup of G. If dpNq “ n,
then:

(i) If N ď γ2n´1pGq, then N 1 ď Np2. In particular N is powerful.

(ii) If p is odd and N ď γnpGq, then N is powerful.

Proof. (i) In order to show that N 1 ď Np2 we may assume that Np2 “ 1, and by Lemma
2.1, that rN 1, Gs “ pN 1qp “ 1. Since dpNq “ n we have |N : ΦpNq| “ pn, and so
rN,nGs ď ΦpNq. First, observe that

rΦpNq, N s “ rNpN 1, N s ď pN 1qprN 1, N s “ 1,
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so in particular ΦpNq is abelian and ΦpNqp “ pNpqppN 1qp “ Np2 “ 1. Moreover, we
have

rΦpNq,nGs “ rN
pN 1,nGs “ rN

p,nGs

ď rN,nGs
p
n
ź

i“0

rN,n´iG,N,iGs

“ rN,nGs
prN,nG,N s

ď ΦpNqprΦpNq, N s “ 1,

(2.1)

where the first inclusion follows since pN 1qp “ 1 and the third equality follows repeatedly
using that rN 1, Gs “ 1.

If rN,n´1Gs ď ΦpNq, then by (2.1) we have

N 1 “ rN,N s ď rN, γ2n´1pGqs

ď rN,2n´1Gs ď rΦpNq,nGs “ 1,

as desired.
Suppose then rN,n´1Gs ď ΦpNq, and observe that in this case the quotient group

N{rN,GsΦpNq

must be cyclic since dpNq “ n. Hence, again by (2.1)

N 1 “ rN, rN,GsΦpNqs “ rN, rN,Gss

ď rN,2nGs ď rΦpNq,nGs “ 1,

and the proof of part (i) is complete.
(ii) The proof is very similar to the previous one. In this case, by Lemma 2.1, we

may assume that Np “ rN 1, Gs “ 1. Thus, we have ΦpNq “ N 1. Since dpNq “ n we
have |N : N 1| “ pn, and so rN,nGs ď N 1.

Now, if rN,n´1Gs ď N 1, then we have

N 1 “ rN,N s ď rN, γnpGqs

ď rN,nGs ď rN
1, Gs “ 1,

as desired.
If rN,n´1Gs ď N 1, then the quotient N{rN,Gs must be cyclic. Thus, we have

N 1 “ rN, rN,Gss ď rN,n`1Gs

ď rN 1, Gs “ 1.

The theorem follows.

Remark 2.19. Part (ii) of Theorem 2.18 can be deduced from [55, Theorem 6.1.14].
Though, we have provided a proof for it that follows the same ideas as the proof of part
(i).

The following example, taken from [41, Example 14.24, page 376] and extended to
all primes, shows that the condition N ď γnpGq in (ii) of Theorem 2.18 is best possible,
in the sense that the result is no longer true if N “ G1 and dpG1q “ 3.
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Example 2.20. Let p ě 5 and consider the groups A “ xa1yˆxa2yˆxa3y – CpˆCpˆCp
and B “ xb1y ˆ xb2y – Cp ˆ Cp. Define Y “ A¸B via the automorphisms

ab11 “ a1a
´1
3 , ab12 “ a2a3, ab13 “ a3,

ab21 “ a1a
´1
3 , ab22 “ a2, ab23 “ a3.

Now, consider X “ xxy – Cp and define G “ Y ¸X via the automorphism

ax1 “ a1a
´1
2 , ax2 “ a2, ax3 “ a3,

bx1 “ b1b
´1
2 , bx2 “ b2a

´1
1 .

The group G is a p-group of class 5, order p6 and exponent p such that dpG1q “ 3 and
G2 “ γ5pGq ‰ 1, so G1 is not powerful.

If p “ 3, then the same construction works, but taking X “ xxy – C9. Thus we get
a group with similar properties but of order 37.

If p “ 2, then we take A “ xa1y ˆ xa2y – C4 ˆ C2 and write a3 “ a2
1. We also take

X “ xxy – C8, and we construct the group in the same way as before. In this case the
order of G is 28.

2.4 Commutator calculus

For a group G, the standard property in (ii) of Lemma 2.2 shows that the commutator
map γ2 from G ˆ G to G is not bilinear in general, and this fact immediately extends
to all outer commutator words. We give a generalised version of (ii) of Lemma 2.2
reaffirming this.

Lemma 2.21. Let G be a group and let w be an outer commutator word in r variables.
Let x1, . . . , xj´1, h, xj`1, . . . , xr P G. Then there exist h1, . . . , hr P xhy

G such that for
every g P G,

wpx1, . . . , xj´1, gh, xj`1, . . . , xrq

“ wpxh11 , . . . , x
hj´1

j´1 , g
hj , x

hj`1

j`1 , . . . , x
hr
r qwpx1, . . . , xj´1, h, xj`1, . . . , xrq.

Proof. We proceed by induction on the number of variables appearing in the outer
commutator word w. If such number is 1, i.e. if w “ x, then the result is obvious.
Hence, assume w “ rα, βs, where α and β are outer commutator words involving k and
r ´ k variables with k ă r, respectively. Assume also that j ą k, so that

wpx1, . . . , xj´1, gh, xj`1, . . . , xrq

“ rαpx1, . . . , xkq, βpxk`1, . . . , xj´1, gh, xj`1, . . . , xrqs.

By induction, we have

βpxk`1, . . . , xj´1, gh, xj`1, . . . , xrq

“ βpx
hk`1

k`1 , . . . , x
hj´1

j´1 , g
hj , x

hj`1

j`1 , . . . , x
hr
r qβpxk`1, . . . , xj´1, h, xj`1, . . . , xrq,

where hk`1, . . . , hr P xhy
G.

For simplicity, write

z1 “ βpx
hk`1

k`1 , . . . , x
hj´1

j´1 , g
hj , x

hj`1

j`1 , . . . , x
hr
r q
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and
z2 “ βpxk`1, . . . , xj´1, h, xj`1, . . . , xrq,

and notice that

rαpx1, . . . , xkq, z1z2s “ rαpx1, . . . , xkq, z2srαpx1, . . . , xkq, z1s
z2

“ rαpx1, . . . , xkq, z1s
z
αpx1,...,xkq
2 rαpx1, . . . , xkq, z2s.

Since clearly z2 P xhy
G, the result follows.

The case j ď k is similar.

Repeatedly applying Lemma 2.21 we obtain Corollary 2.22 below, where it is shown
that the commutator map, even if it is not multilinear in general as we have seen before,
it does have a multilinear nature. This is also proved in [73, Proposition 1.2.1].

Corollary 2.22. Let G be a group. Then, for every i “ 1, . . . , n and for every g, x1, . . . ,
xi´1, xi`1, . . . xn P G, h P γspGq we have

rx1, . . . , xi´1, gh, xi`1, . . . , xns ”

rx1, . . . , xi´1, g, xi`1, . . . , xnsrx1, . . . , xi´1, h, xi`1, . . . , xns pmod γn`spGqq.

In particular, if h P G1 then

rx1, . . . , xi´1, gh, xi`1, . . . ,xns ”

rx1, . . . , xi´1, g, xi`1, . . . , xns pmod γn`1pGqq.

We now introduce one of the principal tools of this part. It shows how to extend
the covering of a subgroup with w-values from a factor group to the whole group, where
w is an outer commutator word. This somehow reflects the strategy we will mainly
follow when proving that the verbal subgroup wpGq consists only of w-values. Indeed,
we will construct a series from wpGq to 1 with the property that every element of each
factor group of two consecutive subgroups in the series can be written as a w-value in a
suitable way. Lemma 2.23 below will then allow us to go up in this series, proving that
actually all the subgroups in the series consist of w-values, until we reach wpGq.

Lemma 2.23. Let G be a group and w an outer commutator word on r variables. Let
N ď L ď G with N normal in G and suppose that for some x1, . . . , xj´1, xj`1, . . . , xr P
G, the following two conditions hold:

(i) L Ď
Ť

gPGNwpy1, . . . , yj´1, g, yj`1, . . . , yrq for every yi P x
G
i .

(ii) N Ď twpy1, . . . , yj´1, g, yj`1, . . . , yrq | g P Gu for every yi P x
G
i .

Then, L Ď twpy1, . . . , yj´1, g, yj`1, . . . , yrq | g P Gu for every yi P x
G
i .

Proof. Take an arbitrary coset Nwpy1, . . . , yj´1, h, yj`1, . . . , yrq of N in L, with yi P x
G
i

and h P G. Take h1, . . . , hr as in Lemma 2.21 and let z be an arbitrary element of N .

By assumption, there exists u P G such that z “ wpyh11 , . . . , y
hj´1

j´1 , u, y
hj`1

j`1 , . . . , y
hr
r q and

we may write u in the form u “ ghj with g P G.
So, by Lemma 2.21 our arbitrary element zwpy1, . . . , yj´1, h, yj`1, . . . , yrq of the

above coset can be written as

wpyh11 , . . . , y
hj´1

j´1 ,g
hj , y

hj`1

j`1 , . . . , y
hr
r qwpy1, . . . , yj´1, h, yj`1, . . . , yrq

“ wpy1, . . . , yj´1, gh, yj`1, . . . , yrq,

as desired.



16 Chapter 2. Preliminaries

Remark 2.24. As a matter of fact, Lemma 2.23 can be stated in a slightly more general
way. Indeed, if we relax condition (i) and just put

L Ď
ď

gPG

Nwpx1, . . . , xj´1, g, xj`1, . . . , xrq,

then, following the same proof, we obtain

L Ď twpx1, . . . , xj´1, g, xj`1, . . . , xrq | g P Gu.

However, the way in which we have stated it allows us to apply the lemma in an ascending
series of subgroups ofG, as if we apply it in two subgroups of the series, then the resulting
inclusion is precisely the condition we need to continue applying it in the subgroups
above.

For the commutator word this remark is not necessary, as Corollary 2.25 shows.

Corollary 2.25. Let G be a group and let N ď L ď G, with N normal in G. Suppose
that for some x P G the following two conditions hold:

(i) L{N Ď KxN pG{Nq.

(ii) N Ď KxpGq.

Then L Ď KxpGq.

Proof. Just note that since N is normal in G, then for every g P G we have

N “ Ng “ KxpGq
g “ KxgpG

gq “ KxgpGq,

and thereby condition (ii) of Lemma 2.23 holds. The result follows now from Remark
2.24.

The previous corollary will be often used in combination with the following result,
whose proof is straightforward.

Lemma 2.26. Let G be a group and let N ď L ď G, with N normal in G. If L{N “

xrx, ssN | s P Sy for some x P G and some S Ď G with rL, Ss Ď N , then L{N Ď

KxN pxSyN{Nq Ď KxN pG{Nq.

Proof. It follows immediately since for every s, t P S we have

rx, sts “ rx, ssrx, tsg

for some g P rx, S, Ss ď rL, Ss Ď N .

2.4.1 Introducing powers in lower central words

As pointed out at the beginning of Section 2.4, outer commutator words are not multilin-
ear in general. In particular, for a finite p-group G and for x, g P G, it is not always true
that rx, gsp

i
“ rx, gp

i
s, with i ě 1. In the following three sections we will see that under

certain conditions we can ensure that the power pi can be introduced in a commutator
modulo some subgroups. This will ensure that certain sections of a group consist only
of commutators of a certain type, so it will be essential in order to use Lemma 2.23.
We will deal with three different cases, namely, with finite p-groups with a 2-generator
powerful subgroup; finite p-groups with p ě 3 such that dppG1qp

k
q is “small” for some

k ě 0; and finite p-groups such that dpγrpGqq ď 2 for some r ě 2.
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Finite p-groups with a 2-generator powerful subgroup

The next lemma is the key to our proof of Theorem 3.9. As said, it shows that under
a specific hypothesis we can introduce powers in commutators but, apart from that, it
also shows that, with some additional conditions, covering a factor group L{Lp with
commutators of a given element x is enough to cover the whole subgroup L.

Lemma 2.27. Let G be a finite p-group and let N ď L be normal subgroups of G, with
L powerful and dpLq ď 2. Then the following hold:

(i) If there exist x, g P G such that L{N “ xrx, gsNy and rx, g, gs P Np, then
Lp

i
{Npi “ xrx, gp

i
sNpiy for every i ě 1.

(ii) Assume furthermore that Lp ď N and |L : N | “ p. If there exist x, g, h P G such
that L{N “ xrx, gsNy and N{Lp “ xrx, hsLpy with rx, g, gs P Np and rx, h, hs P
Lp

2
, then L Ď KxpGq.

Proof. (i) We argue by induction on i. Assume first i “ 1. Since L is powerful and
L “ xrx, gs, Ny, it follows that Lp “ xrx, gsp, Npy, and thus Lp{Np “ xrx, gspNpy. Now,
from the hypothesis rx, g, gs P Np we get

rx, gps ” rx, gsp pmod Npq, (2.2)

and consequently Lp{Np “ xrx, gpsNpy.

Now let i ą 1. By Lemma 2.16, N is also powerful. If we prove that rx, gp, gps P Np2 ,
then we can apply the induction hypothesis with Lp and Np playing the role of L and
N , and gp playing the role of g, and we are done. Observe that |Np : Np2 | ď p2,
since Np is powerful and dpNpq ď dpLq ď 2. Since N is normal in G, it follows that
rNp, G1s ď rNp, G,Gs ď Np2 . As a consequence,

rNp, Gps ď rNp, GsprNp, G,Gs ď Np2

and then (2.2) yields that

rx, gp, gps ” rrx, gsp, gps pmod Np2q.

On the other hand, since rx, g, gs P Np implies that rx, g, gps P Np as well, it follows
that rrx, gs, gp, rx, gss P rNp, G1s ď Np2 , and we obtain as desired that

rx, gp, gps ” rrx, gsp, gps ” rx, g, gpsp ” 1 pmod Np2q.

(ii) Consider the following normal series of G:

L ě N ě Lp ě Np ě Lp
2
ě Np2 ě ¨ ¨ ¨ ě 1. (2.3)

By hypothesis, we have |L : N | “ p. Also, since L is powerful and dpLq ď 2, we have
|L : Lp| ď p2, and therefore |N : Lp| ď p. As a consequence, if R and S are two
consecutive terms of (2.3) then |R : S| ď p, by using Lemma 2.15. Hence the section
R{S is central in G. On the other hand, by (i), R{S “ xrx, ysSy for some y P G.
Then R{S Ď KxSpG{Sq by Lemma 2.26, and by going up in the series (2.3) and using
Corollary 2.25, we conclude that L Ď KxpGq.
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Finite p-groups where dppG1qp
k
q is “small”

Similarly, we now give a result concerning finite p-groups with p ě 3 such that pG1qp
k

is

powerful and dppG1qp
k
q ď pk`1 ´ pk ´ 1.

Lemma 2.28. Let G be a finite p-group with p ě 3 and pG1qp
k

powerful for some k ě 0,

and let L,N be two normal subgroups of G such that ppG1qp
k
qp ď N ď L ď pG1qp

k
.

Write d “ dppG1qp
k
q and suppose d ď pk`1 ´ pk ´ 1. If L{N “ xrx, gsNy where x P G

and g P Gp
k
, then

rx, gsp
i
” rx, gp

i
s pmod Npiq,

and Lp
i
{Npi “ xrx, gp

i
sNpiy for every i ě 0.

Proof. We will argue by induction on i. If i “ 0 then the result follows trivially, so
assume i ě 1 and suppose

rx, gsp
i´1
” rx, gp

i´1
s pmod Npi´1

q

and Lp
i´1
{Npi´1

“ xrx, gp
i´1
sNpi´1

y. By Lemma 2.13, L and N are power abelian, so

pLp
i´1
qp “ Lp

i
and pNpi´1

qp “ Npi . Since ppG1qp
k
qp
i´1

is powerful, Remark 2.9 yields

Lp
i
{Npi “ xrx, gp

i´1
spNpiy.

Thus, we only have to prove that

rx, gp
i´1
sp ” rx, gp

i
s pmod Npiq.

By the Hall-Petresco identity,

rx, gp
i´1
sp “ rx, gp

i
sc
pp2q
2 c

pp3q
3 ¨ ¨ ¨ cp,

where cj P γjpxrx, g
pi´1

s, gp
i´1
yq ď rLp

i´1
,j´1G

pks for every 2 ď j ď p. Note that L{N is

cyclic of exponent p, so |L : N | ď p and again by Remark 2.9 we have |Lp
i´1

: Npi´1
| ď p,

so that rLp
i´1
, Gs ď Npi´1

. Hence, since N is power abelian, if 2 ď j ď p ´ 1 we have

c
ppjq
j P Npi .

If j “ p, then cp P rL
pi´1

,p´1G
pks. Recall that pG1qp

k
is powerful, so we have

|ppG1qp
k
qp
i´1

: ppG1qp
k
qp
i
| ď pd, and hence |Npi´1

: Npi | ď pd. If k “ 0, since d ď p ´ 2,
we get

cp P rL
pi´1

,p´1Gs ď rL
pi´1

,d`1Gs ď rN
pi´1

,dGs ď Npi .

If k ě 1, then it can be proved using again the Hall-Petresco identity that for every
normal subgroup H of G we have

rH,Gp
k
s ď rH,GsprH,pk Gs,

so

cp P rL
pi´1

,p´1G
pks ď rLp

i´1
, GsprLp

i´1
,pp´1qpk Gs

ď NpirNpi´1
,pp´1qpk´1Gs ď Npi ,

where the last equality holds since d ď pk`1 ´ pk ´ 1. The result follows.
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Thus, combining Corollary 2.25, Lemma 2.26 and Lemma 2.28 we get the following
useful result. Recall that if L,N Ĳ G, then L{N is a chief factor of G if it is a minimal
normal subgroup of G{N .

Lemma 2.29. Let G be a finite p-group with p ě 3 and pG1qp
k

powerful for some

k ě 0. Write dppG1qp
k
q “ d and suppose d ď pk`1 ´ pk ´ 1. If there exist x P G,

g0, . . . , gd´1 P G
pk and a series from pG1qp

k
to ppG1qp

k
qp

ppG1qp
k
qp “ Nd ă Nd´1 ă ¨ ¨ ¨ ă N0 “ pG

1qp
k

in which each factor Nj{Nj`1 is a chief factor of G generated by the commutator

rx, gjsNj`1, then pG1qp
k
“ KxpGq.

Proof. Since pG1qp
k

is powerful we have |pG1qp
k

: ppG1qp
k
qp| “ pd. By Remark 2.9, we

have |Npi

j {N
pi

j`1| ď p for every i ě 0, and furthermore, by Lemma 2.28, this quotient is

generated by rx, gp
i

j sN
pi

j`1 for every i and j. Therefore, it follows from Lemma 2.26 that

Npi

j {N
pi

j`1 Ď K
xNpi

j`1

pG{Npi

j`1q.

In this way, we have a series from pG1qp
k

to 1 in which all factors are chief factors
of G and all elements of each chief factor are images of commutators of the form rx, gs
with g P G. The result follows by applying Corollary 2.25 again and again.

Remark 2.30. Lemma 2.29 (and hence also Lemma 2.28) will be used with k ‰ 0 only
when proving Theorem 3.18, where we use it with k “ 1. The general result has been
proved for completeness.

Finite p-groups with dpγrpGqq ď 2

Unlike the previous cases, one must be much more thorough when introducing powers
in lower central words. In this case we deal with finite p-groups such that dpγrpGqq ď 2
if p is odd and γrpGq cyclic if p “ 2. Because of the high level of technicality required
in the proof of Lemma 2.33, though, we prove it step by step, proving first Lemma 2.31
and Lemma 2.32.

Lemma 2.31. Let G be a finite p-group such that for some r ě 2 we have dpγrpGqq ď 2
if p is odd or dpγrpGqq “ 1 if p “ 2. Then, for every 2 ď j ď r and every normal
subgroup R of G contained in γjpGq we have

ry, xj`1, . . . , xrs
pk ” ryp

k
, xj`1, . . . , xrs pmod rR,r´j Gs

pk`1
q

for all y P R, xj`1, . . . , xr P G and k ě 0. Moreover,

rR,r´j Gs
pk “ rRp

k
,r´j Gs.

Proof. We will proceed by induction on r ´ j. If r “ j then there is nothing to prove,
so assume j ă r and that the result holds for all r ´ i with j ă i ď r. Fix a normal
subgroup R ď γjpGq of G and y P R. Thus, since rR,Gs normal in G, by induction we
have

ry, xj`1, . . . , xrs
pk ” rry, xj`1s

pk , xj`2, . . . , xrs pmod rR,r´j Gsq.
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Now, by the Hall-Petresco identity, we obtain

ry, xj`1s
pk “ ryp

k
, xj`1sc

pp
k

2 q
2 ¨ ¨ ¨ cpk

with cn P γnpxry, xj`1s, yyq for 2 ď n ď pk, and since j ě 2 and y P R ď γjpGq, it follows
that

cn P rR,jpn´1q`1 Gs ď rR,2pn´1q`1 Gs

for every n. Note that pk´pn´2q divides
`

pk

n

˘

if p is odd and that pk´pn´1q divides
`

pk

n

˘

if
p “ 2. So, if p is odd, we get

c
pp
k

n q
n P rR,2pn´1q`1 Gs

rpk´pn´2qs,

and if p “ 2 we get

c
p2
k

n q
n P rR,2pn´1q`1 Gs

r2k´pn´1qs

(note that here, the ceiling function is used since k ´ pn´ 2q (or k ´ pn´ 1q) could be
negative, in which case we want the power pk´pn´2q (or the power 2k´pn´1q) to be 1).
Since dpγrpGqq ď 2, it follows by Theorem 2.18 that γrpGq is powerful. From Lemma 2.16
we then deduce that for all m ě 0, rR,r´j Gs

pm is also powerful and dprR,r´j Gs
pmq ď 2,

so
|rR,r´j Gs

pm : rR,r´j Gs
pm`1

| ď p2

for all m ě 0. This implies, in particular, that

rrR,r´j Gs
pm , G,Gs ď rR,r´j Gs

pm`1

for all m ě 0, and therefore

rR,r´j`2pn´1q Gs
rpk´pn´2qs ď rR,r´j Gs

pk`1
.

Now, if p is odd, using the inductive hypothesis we have

rrR,2pn´1q`1 Gs
rpk´pn´2qs,r´j´1 Gs

“ rR,r´j`2pn´1qGs
rpk´pn´2qs

ď rR,r´j Gs
pk`1

.

(2.4)

If p “ 2 then we argue in the same way, taking into account the fact that, in this case,
γrpGq is cyclic and hence

rrR,r´j Gs
2m , Gs ď rR,r´j Gs

2m`1
.

Thus, the first assertion follows.
For the second assertion, just observe that rRp

k
,r´j Gs is generated by elements of

the form ryp
k
, xj`1, . . . , xrs with y P R and xj`1, . . . , xr P G, and

ryp
k
, xj`1, . . . , xrs ” ry, xj`1, . . . , xrs

pk pmod rR,r´j Gs
pk`1

q.
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Lemma 2.32. Let G be a finite p-group such that for some r ě 2 we have dpγrpGqq ď 2
if p is odd and dpγrpGqq “ 1 if p “ 2. Assume that H and K are normal subgroups of
G, with K generated by γj´1-values, where 1 ď j ď r. Then for every k ě 0 we have

rK,Hpk ,r´j Gs ď rK,H,r´j Gs
pk .

Proof. We use induction on k. The case k “ 0 is trivial, so assume k “ 1 first, and
suppose p ě 3 (if p “ 2 the proof follows in the same way). As p divides

`

p
i

˘

for 2 ď i ă p
and γ3pxrK,Hs, Hyq ď rK,H,H,Hs, the Hall-Petresco identity yields

rK,Hps ď rK,HsprK,H,H,Hs.

Note that rK,Hs is generated by elements of the type rx1, . . . , xj´1, xjs, where x1, . . . ,
xj´1 P G and xj P H, so by Lemma 2.31, we have

rrK,Hsp,r´j Gs “ rK,H,r´j Gs
p.

On the other hand, γrpGq is powerful by Theorem 2.18. Thus, it follows from Lemma
2.16 that

|rK,H,r´j Gs : rK,H,r´j Gs
p| ď p2,

so we obtain

rK,H,H,H,r´j Gs ď rrK,H,r´j Gs, G,Gs

ď rK,H,r´j Gs
p.

Hence,

rK,Hp,r´j Gs ď rrK,Hs
prK,H,H,Hss,r´j Gs ď rK,H,r´j Gs

p,

as desired.

Assume now k ě 2. Then, by induction,

rK,Hpk ,r´j Gs ď rK, pH
pqp

k´1
,r´j Gs

ď rK,Hp,r´j Gs
pk´1

ď prK,H,r´j Gs
pqp

k´1
,

and since rK,H,r´j Gs is powerful by Lemma 2.16, we conclude

prK,H,r´j Gs
pqp

k´1
“ rK,H,r´j Gs

pk .

Thus, the proof is complete.

Lemma 2.33. Let G be a finite p-group and let N,L be normal subgroups of G such
that γrpGq

p ď N ď L ď γrpGq with r ě 2 and |L : N | “ p. Assume that there exist
some j with 1 ď j ď r and x1, . . . , xj´1, h, xj`1, . . . , xr P G such that

L “ xrx1, . . . , xj´1, h, xj`1, . . . , xrsyN.

Let H be the normal closure of xhy in G and assume also that one of the following
conditions holds:
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(i) p is odd, dpγrpGqq ď 2 and the subgroup

rγj´1pGq, H,H,r´j Gs

is central of exponent p modulo Np.

(ii) p “ 2, the subgroup γrpGq is cyclic and

rx1, . . . , xj´1, h, xj`1, . . . , xrs
2

” rx1, . . . , xj´1, h
2, xj`1, . . . , xrs pmod N2q.

Then,

rx1, . . . , xj´1, h, xj`1, . . . , xrs
pk

” rx1, . . . , xj´1, h
pk , xj`1, . . . , xrs pmod Npkq

for every k ě 0. In particular,

Lp
k
“ xrx1, . . . , xj´1, h

pk , xj`1, . . . , xrsyN
pk .

Proof. We use induction on k. If k “ 0 there is nothing to prove and, if p “ 2 and
k “ 1, then the result follows from the hypothesis. Thus, assume k ě 1 if p is odd or
k ě 2 if p “ 2, and suppose, by induction, that

rx1, . . . , xj´1, h, xj`1, . . . , xrs
pk´1

“ rx1, . . . , xj´1, h
pk´1

, xj`1, . . . , xrsy

for some y P Npk´1
.

Write u “ rx1, . . . , xj´1, h
pk´1

, xj`1, . . . , xrs P γrpGq and note that puyqp “ upypc

where c P rNpk´1
, γrpGqs ď rN

pk´1
, G,Gs ď pNpk´1

qp “ Npk . Thus,

prx1, . . . , xj´1, h
pk´1

, xj`1, . . . , xrsyq
p

” rx1, . . . , xj´1, h
pk´1

, xj`1, . . . , xrs
p pmod Npkq.

Moreover, by Lemma 2.32, we have

rγj´1pGq, H
pk´1

,r´j Gs
p2 “ rγj´1pGq, H,r´j Gs

pk`1

ď γrpGq
pk`1

ď Npk ,

so using Lemma 2.31 with R “ rγj´1pGq, H
pk´1

s we obtain

rx1, . . . , xj´1,h, xj`1, . . . , xrs
pk

” rx1, . . . , xj´1, h
pk´1

, xj`1, . . . , xrs
p

” rrx1, . . . , xj´1, h
pk´1

sp, xj`1, . . . , xrs pmod Npkq.

Suppose now p is odd. We first prove that

rγj´1pGq, H
pk´1

, Hpk´1
,r´j Gs is central of exponent p modulo Npk . (2.5)
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Recall that L, N and rγj´1pGq, H,H,r´j Gs are powerful by Theorem 2.18 and
Lemma 2.16. From Lemma 2.32 and hypothesis (i) of the statement we then get

rγj´1pGq, H
pk´1

, Hpk´1
,r´j`1 Gs

ď rγj´1pGq, H,H,r´j`1 Gs
pk´1

ď pNpqp
k´1

“ Npk

and

rγj´1pGq, H
pk´1

, Hpk´1
,r´j Gs

p

ď prγj´1pGq, H,H,r´j Gs
pk´1

qp

ď pNpqp
k´1

“ Npk .

This proves (2.5).
By the Hall-Petresco identity, since p ě 3, we get

rx1, . . . , xj´1, h
pk´1

sp “ rx1, . . . , xj´1, h
pkszp2z3,

where zi P γipxrγj´1pGq, H
pk´1

s, Hpk´1
yq for i “ 2, 3. Write

R “ rγj´1pGq, H
pk´1

, Hpk´1
s,

so that z2 P R and z3 P rR,Gs.
On the one hand, by (2.5) we have

rz3, xj`1, . . . , xrs P rR,r´j`1 Gs ď Npk .

On the other hand it follows from Lemma 2.32 with H “ R and K “ G and from
(2.5) that

rzp2 , xj`1, . . . , xrs P rR,r´j Gs
p ď Npk .

Therefore, by Lemma 2.21,

rx1, . . . , xj´1, h, xj`1, . . . , xrs
pk ” rrx1, . . . , xj´1, h

pkszp2z3, xj`1, . . . , xrs

” rx1, . . . , xj´1, h
pk , xj`1, . . . , xrs pmod Npkq

as we wanted.
If p “ 2, since γrpGq is cyclic, we have L “ γrpGq, N “ γrpGq

2 and the inductive
step easily follows from the Hall-Petresco identity. Namely,

rx1, . . . , xj´1, h
2k´1

s2 “ rx1, . . . , xj´1, h
2ksz2,

where z2 P rγj´1pGq, G
2k´1

, G2k´1
s. By Lemma 2.32 and since k ě 2 we have

rγj´1pGq, G
2k´1

, G2k´1
,r´j Gs ď γr`1pGq

22k´2
ď γrpGq

2k`1
“ N2k ,

so the result follows as above.
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2.5 Some significant subgroups

In this last section of Chapter 2 we define some subgroups (or subsets) that will play a
fundamental role in Chapters 3 and 4. As mentioned at the beginning of the chapter,
these subgroups (or subsets) are interesting on their own, as they provide information
about the group structure itself.

The following subgroups were essential in [24], and so are in our results.

Definition 2.34. Let G be a finite p-group. For r ě 2, we define

CrpGq “ CGpγrpGq{γrpGq
pq.

If p is odd and if γrpGq is powerful, then, by definition, γrpGq is powerfully embedded
in CrpGq, and so all power subgroups γrpGq

pi are also powerfully embedded in CrpGq.
In other words, we have rγrpGq

pi , CrpGqs ď γrpGq
pi`1

. As it turns out, if γrpGq is
powerful, this is true for all primes, and similar inclusions hold for other commutator
subgroups involving CrpGq. We collect these and other properties in Proposition 2.36
below. Before, however, we need a lemma that, actually, generalises the “powerfully
embeded” condition.

Lemma 2.35. Let G be a finite p-group and let N be a powerful normal subgroup of G.
Write Ci “ CGpN{N

piq. Then,

rNpk , Cp
j

i s ď Npi`j`k ,

with i ě 1 and j, k ě 0.

Proof. We argue by induction on j. Assume first j “ 0, and consider the factor group
G{Npi`k . Thus, we have to check that the subgroups Npk{Npi`k and Ci{N

pi`k commute,
or equivalently, that their generators commute. Take g P N and h P Ci. The Hall-
Petresco identity yields

rgp
k
, hs “ rg, hsp

k
c
pp
k

2 q
2 c

pp
k

3 q
3 ¨ ¨ ¨ cpk ,

where
cn P γnpxg, rg, hsyq ď rN,Ci, N, n´1. . . , N s ď rNpi , N, n´1. . . , N s.

Recall that N is powerful, so if p “ 2, this subgroup lies in N2i`2n´2
, while if p ą 2 it

lies in Npi`n´1
. In any case, c

pp
k

n q
n P Npi`k , and since

rg, hsp
k
P rN,Cis

pk ď pNpiqp
k
“ Npi`k ,

we conclude that rgp
k
, hs P Npi`k , as we wanted.

Consider now a general j. Again, we consider the factor group G{Npi`j`k , and we

have to see that the generators of Npk{Npi`j`k and Cp
j

i {N
pi`j`k commute. Take g P G

and h P Ci and observe that

rgp
k
, hp

j
s “ rgp

k
, php

j´1
qps “ rgp

k
, hp

j´1
spd
pp2q
2 ¨ ¨ ¨ dp

where
dn P γnpxrg

pk , hp
j´1
s, hp

j´1
yq ď rNpk , Cp

j´1

i , Cp
j´1

i s ď Npk`2j`2i´2

by induction. Since i, j ě 1 we have k` 2j ` 2i´ 2 ě i` j ` k, and since rgp
k
, hp

j´1
sp P

pNpi`j`k´1
qp, the theorem follows.
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Proposition 2.36. Let G be a finite p-group with γrpGq powerful for some r ě 2. Then:

(i) We have rγrpGq
pi , CrpGqs ď γrpGq

pi`1
for all i ě 0.

(ii) rγr´1pGq, CrpGq
pis ď γrpGq

pi for every i ě 0.

Moreover, if dpγrpGqq “ 2, then:

(iii) |G : CrpGq| ď p.

(iv) We have G “ CrpGq if and only if γr`1pGq ď γrpGq
p. In this case, all subgroups

U such that γrpGq
p ă U ă γrpGq are normal in G. Otherwise, CrpGq ‰ G and

there is only one normal subgroup U of G such that γrpGq
p ă U ă γrpGq, namely

U “ γr`1pGqγrpGq
p.

Proof. (i) It follows immediately from Lemma 2.35 taking N “ γrpGq and i “ 1.
(ii) We argue by induction on i, the case i “ 0 being obvious. If i ą 0 then

rγr´1pGq, CrpGq
pis ď rγr´1pGq, CrpGq

pi´1
sprγr´1pGq, CrpGq

pi´1
, CrpGq

pi´1
s

ď pγrpGq
pi´1

qprγrpGq
pi´1

, CrpGqs ď γrpGq
pi ,

where the last inclusion follows from (i).
(iii) Since γrpGq is powerful, the quotient γrpGq{γrpGq

p is an elementary abelian
p-group of rank 2. The result follows from the fact that the quotient group G{CrpGq
embeds in a Sylow p-subgroup of the automorphism group of γrpGq{γrpGq

p, which has
order ppp2 ´ 1qpp´ 1q.

(iv) The first assertion follows immediately from the definition of CrpGq. Now, if
CrpGq “ G, then for U max γrpGq we clearly have rU,Gs ď rγrpGq, Gs ď γr`1pGq, so
U is normal in G. However, note that there are p ` 1 subgroups that are maximal in
γrpGq, so if there exists a non-normal subgroup U of G with γrpGq

p ă U ă γrpGq then,
the conjugacy class of U has size p, and it follows that γr`1pGqγrpGq

p is the only normal
subgroup of G which is maximal in γrpGq.

We now draw our attention to another type of subgroups (or subsets). The impor-
tance of these will become clear soon.

Definition 2.37. Let G be a finite p-group and let U maxG γrpGq for some r ě 2. We
define

DrpUq “ Cγr´1pGqpG{Uq.

In other words, for x P γr´1pGq we have x P DrpUq if and only if rx,Gs ď U .

Definition 2.38. Let G be a finite p-group and let U maxγr´1pGq γrpGq for some r ě 2.
We define

ErpUq “ tx P G | rx, γr´1pGqs ď U s.

Remark 2.39. The subset ErpUq may not be a subgroup of G if U is not normal in G.
Nevertheless, if U is normal in G, then ErpUq is also normal in G as it coincides with
the subgroup CGpγr´1pGq{Uq.

The significance of these subgroups (or subsets) lies on the fact that one can extract
useful information about the group if there exists an element avoiding them, as the next
lemma shows.
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Proposition 2.40. Let G be a finite p-group and let r ě 2. Then, for x P γr´1pGq, we
have γrpGq “ rx,Gs if and only if

x R
ď

tDrpUq | U maxG γrpGqu.

Similarly, γrpGq “ rγr´1pGq, ys if and only if

y R
ď

tErpUq | U maxγr´1pGqγrpGqu.

Proof. Let x P γr´1pGq. First note that rx,Gs is normal in G since

rx, gsh “ rx, hs´1rx, ghs

for every g, h P G. Consequently we have rx,Gs ă γrpGq if and only if x P DrpUq
for some U maxG γrpGq, and the first assertion follows. Similarly, since rγr´1pGq, ys is
normalised by γr´1pGq, we have rγr´1pGq, ys ă γrpGq if and only if y P ErpUq for some
U maxγr´1pGq γrpGq.

We now present some properties of the subgroups DrpUq. These will be used when
r “ 2 and dpG1q “ 2, but we prove them in more generality for completion.

Proposition 2.41. Let G be a finite p-group and U maxG γrpGq with r ě 2. Then:

(i) γr´1pGq
pγrpGq ď DrpUq. In particular ΦpGq ď D2pUq.

(ii) If r “ 2, then logp |G : D2pUq| is even.

(iii) If dpγrpGqq ď r, then DrpUq ď CrpGq.

(iv) If dpG1q ď 2, then
Ť

tD2pV q | V maxG G
1u is a proper subset of G.

Proof. (i) We have

rγr´1pGq
pγrpGq, Gs “ rγr´1pGq

p, Gsγr`1pGq ď γrpGq
pγr`1pGq ď U,

and so γr´1pGq
pγrpGq ď DrpUq.

(ii) By (i), the quotient G{D2pUq can be seen as a vector space over Fp. Thus, since
G1{U – Fp, the commutator map in G{U induces a non-degenerate alternating form on
G{D2pUq. Then, dimFp G{DpUq must be even by [40, Proposition 1].

(iii) We have

rDrpUq, γrpGqs ď rDrpUq,rGs ď rU,r´1Gs ď γrpGq
p

since |U : γrpGq
p| ď pr´1, and consequently DrpUq ď CrpGq.

(iv) Write D “
Ť

tD2pV q | V maxG G
1u and assume for a contradiction that D “ G.

If |G1 : pG1qp| “ p then D “ DppG1qpq and consequently G1 “ rD,Gs ď pG1qp, a
contradiction. Thus |G1 : pG1qp| “ p2. Let x P G be arbitrary. Then x P DpW q for some
W maxG G

1 and the image of rx,Gs in G “ G{pG1qp has order at most p. It follows that
all conjugacy class lengths in G are either 1 or p, so by [8, Lemma 2.12] this implies

that |G
1
| ď p, which is again a contradiction.
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Remark 2.42. By the previous proposition, if dpG1q ď 2 then there always exists x P G
such that G1 “ rx,Gs. Since |G : C2pGq| ď p by Proposition 2.36 and

ď

tD2pUq | U maxG G
1u Ď C2pGq

by Proposition 2.41, we can choose x R YtD2pUq | U maxG G
1u such that G “ xxyC2pGq,

and then we get G1 “ rx,C2pGqs.

We end this chapter with some properties that the subgroups and subsets DrpUq
and ErpV q have in common.

Proposition 2.43. Let G be a finite p-group and let r ě 2. Let U, V,W maxG γrpGq
with V ‰W and R,S, T maxγr´1pGq γrpGq with S ‰ T . Then:

(i) DrpUq ‰ γr´1pGq and ErpRq ‰ G.

Moreover, if dpγrpGqq “ 2, then:

(ii) DrpV q XDrpW q ď DrpUq and ErpSq X ErpT q Ď ErpRq.

(iii) If U ‰ R, then rDrpUq, ErpRqs ď γrpGq
p.

Proof. (i) It is obvious, since DrpUq “ γr´1pGq implies that γrpGq ď U , and similarly
ErpRq “ G implies that γrpGq ď R. In both cases we have a contradiction.

(ii) As dpγrpGqq “ 2, the subgroup γrpGq is powerful by Theorem 2.18, so γrpGq
p “

ΦpγrpGqq. Hence, V XW ď γrpGq
p ď U and S X T ď γrpGq

p ď R. Then, the result
follows from the fact that x P DrpV q X DrpW q if and only if rx,Gs ď V X W and
y P ErpSq X ErpT q if and only if ry, γr´1pGqs ď S X T .

(iii) We have rDrpUq, ErpRqs ď U XR ď γrpGq
p.





Chapter 3

Commutators

We are finally ready to study Problem 1.2 for several words inside the commutator
subgroup of the free group. Being the simplest one, we will start with the common
commutator word γ2.

The definition of this word is attributed to Dedekind; according to Frobenius [21],
and in modern notation, Dedekind proved in 1880 that the derived subgroup G1 of a
group G is normal in G and that G1 ď N for every N Ĳ G such that G{N is abelian.
These results, though, were first published by Miller in [62]. Miller himself was the first
labelling these elements as “commutators” in [63] and [64], where he dealt with them
as objects that are of interest in their own right. Moreover, in [64], he found a criterion
to ensure that the product of two commutators is again a commutator (property (ii)
of Lemma 2.2), and with the help of this identity he showed that every element of the
alternating group An with n ě 5 is a commutator, a result rediscovered over 50 years
later by Ito [42] and Ore [65] (in fact, Ore stated his famous conjecture, which will be
addressed later, in this paper).

The first explicit statement of Problem 1.2 for commutators can be found in Weber’s
1899 textbook [78], which was the first textbook to introduce commutators and the
commutator subgroup. It was Fite, however, who provided in [20] the first example of a
group whose derived subgroup is strictly bigger that the set of commutators. As we show
now, [60, Lemma 1] provides a great deal of groups G for which the derived subgroup
G1 does not coincide with the set of commutator KpGq of G (much more information of
the origin of the commutator can be found in the introduction of [47]).

Example 3.1. Let G “ Fd{γ3pFdqF
p
d , where Fd is the free group on d ě 6 generators

and p ą 2 is a prime. This group, even if it has exponent p and is nilpotent of class

2, does not satisfy the equality G1 “ KpGq. Indeed, note that |G1| “ pp
d
2q, while

|G : ZpGq| ď pd. Thus, since d ě 6, we have 2d ă
`

d
2

˘

, so from [60, Lemma 1], the
inequality holds.

Actually, it is shown in [47, Example 5.2] that G1 ‰ KpGq holds even if d ě 4.
Moreover, for d “ 4, one can find a suitable subgroup N ď G1 of order p2 such that
the quotient group H “ G{N satisfies H 1 ‰ KpHq with H – Cp ˆ Cp ˆ Cp ˆ Cp [47,
Example 5.4].

29
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We need, then, to restrict our choice of the group G to some particular family of
groups if we want it to satisfy the desired property. A remarkable result is the proof by
Liebeck, O’Brien, Shalev, and Tiep in 2010 of the so-called Ore Conjecture.

Theorem 3.2 (Ore Conjecture, [56]). Let G be a non-abelian finite simple group. Then
G “ KpGq.

Another typical approach to the problem is considering small groups or groups with
small derived subgroup. The main two results in this context are Theorem 3.3 and
Theorem 3.4 below.

Theorem 3.3 ([24, Theorem 1]). Let G be a group and suppose one of the following
conditions hold.

(i) G1 is abelian and either |G| ă 128 or |G1| ă 16.

(ii) G1 is non-abelian and either |G| ă 96 or |G1| ă 24.

Then G1 “ KpGq. Moreover, these bounds are best possible.

For p-groups of order pn the situation is much better, as one only needs to consider
bounds on the exponent n, regardless of the prime p. In this way, as there is no bound
on the prime, there is no bound on the order of the group either.

Theorem 3.4 ([45, Theorems 3.4 and 4.2]). Let G be a p-group of order pn. Then
G1 “ KpGq if n ď 5 for odd p and n ď 6 for p “ 2.

We will focus, though, on restrictions regarding the number of generators of the
derived subgroup. Thus, we will deal separately with three cases: G1 cyclic, dpG1q “ 2
and dpG1q ě 3.

A wealth of additional information about the condition G1 “ KpGq can be found in
[47].

3.1 Cyclic derived subgroups

In this case, Macdonald proved in [58] that even if G1 is cyclic then Problem 1.2 may
have a negative answer. Actually, much more is true.

Theorem 3.5 ([58, Theorem]). For every n P N there exists a group G such that G1 is
cyclic but cannot be generated by less than n commutators.

This theorem shows how delicate the equality G1 “ KpGq can be. The situation,
fortunately, is much better for the cyclic case if G1 is infinite or if G is nilpotent. We
will see, actually, that in general, nilpotent groups behave specially well when it comes
to Problem 1.2.

Theorem 3.6 ([68, Corollary]). Let G be a group. If G1 is cyclic and either G is
nilpotent or G1 is infinite, then G1 consists of commutators.

In this theorem, once it is shown that the result holds for groups with infinite derived
subgroup, one can reduce the problem, as seen in Proposition 1.3, to the case in which
G is finite and nilpotent. Furthermore, as said before, the study of this property for
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finite nilpotent groups is obviously reduced to finite p-groups. We will thus limit our
focus to them in the following chapters (and to pro-p groups in Chapter 5).

As an easy illustration of our methods, let us give an easy proof of Theorem 3.6 for
finite p-groups. Let C “ CGpG

1{pG1qp
2
q. Then |G : C| ď p since |G1 : pG1qp

2
| ď p2, and

so G1 “ rG,Cs. By the Burnside basis theorem, we have G1 “ xrx, ysy for some x P G
and y P C. Then rx, y, ys P rG,C,Cs ď rG1, Cs ď pG1qp

2
and we can apply Lemma 2.27

with L “ G1 and N “ pG1qp to get G1 “ KxpGq.

3.2 Derived subgroup with 2 generators

If G is a finite p-group with 2-generator derived subgroup, then Guralnick showed the
following.

Theorem 3.7 ([25, Theorem A]). Let G be a finite group and let P P SylppGq with
P ˚ “ P XG1 abelian and dpP ˚q ď 2. Then P ˚ Ď KpGq.

For the proof of Theorem 3.7 Guralnick uses a reduction argument that allows him
to assume that the group G is a finite p-group. In that case, the theorem translates to
the following.

Corollary 3.8. Let G be a finite p-group with 2-generator and abelian derived subgroup.
Then G1 “ KpGq.

We have generalised Corollary 3.8, showing that the condition that G1 is abelian can
be dropped. Moreover, we show that all the commutators in G1 have a particular form.

Theorem 3.9 ([18, Theorem A]). Let G be a finite p-group. If G1 can be generated by
2 elements, then G1 “ trx, gs | g P Gu for a suitable x P G.

We split the proof of Theorem 3.9 into two parts, proving first the result for p odd
and then for p “ 2.

3.2.1 Finite p-groups with p odd

The result for odd primes can be easily proved using Corollary 2.25.

Theorem 3.10. Let G be a finite p-group, where p is an odd prime, and assume that
dpG1q ď 2. Then G1 “ KxpGq for a suitable x P G.

Proof. The theorem follows from Theorem 3.6 if G1 is cyclic, so assume dpG1q “ 2. We
write for simplicity C “ C2pGq. Thus, by Remark 2.42 we have G1 “ rx,Cs for some
x P G and so, by Lemma 2.26,

G1{pG1qp “ trx, uspG1qp | u P Cu.

By Corollary 2.25, we only need to prove that pG1qp Ď KxpGq. Hence we may assume
that pG1qp ‰ 1.

Since G1 is powerful by Lemma 2.17, the map gpG1qp ÞÝÑ gppG1qp
2

is an epimorphism
from G1{pG1qp to pG1qp{pG1qp

2
by Proposition 2.8. Thus pG1qp{pG1qp

2
consists of the

cosets rx, usppG1qp
2

with u P C. Now if u P C then, by the Hall-Petresco identity,
rx, ups “ rx, uspw for some w P pH 1qpγppHq, where H “ xpu´1qx, uy “ xu, rx, usy. Then
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H 1 ď rG,C,Cs ď pG1qp and pH 1qp ď pG1qp
2
, and since p is odd, also γppHq ď rpG

1qp, Cs ď

pG1qp
2

by Proposition 2.36. Hence rx, usp ” rx, ups pmod pG1qp
2
q for every u P C. It

follows that every element of pG1qp is of the form rx, ups modulo pG1qp
2

for some u P C.

Now let us choose a subgroup T between pG1qp and pG1qp
2

with |pG1qp : T | “ p. Thus
both pG1qp{T and T {pG1qp

2
are cyclic, generated by the image of some commutator rx, ups

with u P C. By Proposition 2.36, we have rx, up, ups P rG,Cp, Cps ď rpG1qp, Cps ď
pG1qp

3
. Thus we can apply (ii) of Lemma 2.27 with L “ pG1qp and N “ T to get

pG1qp Ď KxpGq, as desired.

3.2.2 Finite 2-groups

Now we are concerned with the proof of Theorem 3.9 for finite 2-groups, which is quite
more involved. The main difficulty arises when C2pGq “ G, and in order to deal with
that case, we introduce the following subgroups.

Definition 3.11. Let G be a finite 2-group such that pG1q2 ‰ 1. For every U maxG pG
1q2

we define the subgroup RpUq by the condition

RpUq{U “ CG{U pG
2{Uq.

In other words, RpUq is the largest subgroup of G satisfying rRpUq, G2s ď U . We set
R “ YtRpUq | U maxG pG

1q2u.

Lemma 3.12. Let G be a finite 2-group with dpG1q ď 2. Assume furthermore that
C2pGq “ G and that pG1q2 ‰ 1. Then the following hold:

(i) rG,G2s “ pG1q2.

(ii) rx,G2s “ pG1q2 if and only if x R R.

(iii) G2 ď RpUq ă G for every U maxG pG
1q2.

(iv) RpUq XRpV q ď RpW q for every U, V,W maxG pG
1q2 with U ‰ V .

Proof. (i) The subgroups rG,G2s and pG1q2 coincide modulo γ3pGq. Since groups of
exponent 2 are abelian, we have G1 ď G2, which implies that γ3pGq ď rG,G

2s. On the
other hand, C2pGq “ G implies that γ3pGq ď pG

1q2. We conclude that

rG,G2s “ rG,G2sγ3pGq “ pG
1q2γ3pGq “ pG

1q2.

(ii) If rx,G2s “ pG1q2 then obviously x R R. On the other hand, if rx,G2s ‰ pG1q2

then rx,G2s ă pG1q2 by (i). Let N “ rx,G2spG1q4. Then N is a proper subgroup of
pG1q2, and normal in G, since rpG1q2, Gs ď pG1q4 by (i) of Proposition 2.36. If we consider
U maxG pG

1q2 containing N , then x P RpUq Ď R. This proves the result.

(iii) By (i), RpUq is a proper subgroup of G. On the other hand, we have

rG2, G2s ď rG,G2s2rG,G2, Gs “ pG1q4rpG1q2, Gs “ pG1q4.

Since pG1q4 ď U , it follows that G2 ď RpUq.

(iv) Notice that G1 is powerful by Theorem 2.18, so in particular dppG1q2q ď 2. Hence
we have U X V “ pG1q4 ďW , so the result follows from the definition of RpW q.
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The next result will allow us to complete easily the proof of Theorem 3.9 in the case
when p “ 2 and C2pGq “ G. Its proof is long and technical, and it requires a careful
analysis of the relative positions of the subgroups DpT q and RpUq, where T maxG G

1

and U maxG pG
1q2.

Proposition 3.13. Let G be a finite 2-group with dpG1q “ 2 and C2pGq “ G. Then
there exists x P G such that G1 “ rx,Gs and pG1q2 “ rx,G2s.

Proof. We know by Remark 2.42 that G1 “ ra,Gs “ xra, bs, ra, csy for some a, b, c P G.
If we set H “ xa, b, cy then H 1 “ G1, and the result immediately follows for G once it is
proved for H, taking into account that rG2, Gs “ pG1q2 by Lemma 3.12. Thus we may
assume that dpGq ď 3 and, by Remark 2.42, also that pG1q2 ‰ 1.

In the remainder of the proof, let Z{pG1q2 be the centre of G{pG1q2. Observe that
|G : Z| ą 4, since otherwise the derived subgroup of G{pG1q2 is cyclic, and consequently
G1 is cyclic. Since, again by Lemma 3.12, we have ΦpGq “ G2 ď Z, it follows that
|G : G2| “ 8 and that Z “ G2.

Write D “ YtD2pT q | T maxG G
1u. By Proposition 2.40 and Lemma 3.12, it suffices

to show that DYR does not cover the whole of G, since then any x P GrpDYRq satisfies
both G1 “ rx,Gs and pG1q2 “ rx,G2s. Since G2 ď D2pT q, RpUq for all T maxG G

1 and
U maxG pG

1q2, we can prove the non-covering property by working in the group G{G2

of order 8. Thus, if we use the bar notation in this factor group, then we need to prove
that |D Y R| ď 7. We do this by first determining the order of D and then analysing
the position of the subgroups RpUq with respect to D and among themselves. Before
proceeding, observe that G1 is powerful by Theorem 2.18, and so the sections G1{pG1q2

and pG1q2{pG1q4 are central in G by Proposition 2.36, since C2pGq “ G. Hence the
conditions T maxG G

1 and U maxG pG
1q2 are equivalent in this case to T maxG1 and

U maxpG1q2, respectively.
We claim that |D| “ 4 and that D is a (maximal) subgroup of G. Let us consider

an arbitrary T maxG G
1, and observe that there are three choices for T , since dpG1q “ 2.

First of all, note that |D2pT q| “ 2, since log2 |G : D2pT q| is even and D2pT q is proper in
G by Proposition 2.41. Thus D2pT q

1 “ rD2pT q, G
2s ď pG1q2. Now let SmaxG G

1 with
S ‰ T . Then rD2pSq, D2pT qs ď SXT ď pG1q2, and as a consequence xDy1 ď pG1q2. Also,
if D2pSq “ D2pT q then rD2pT q, Gs ď pG

1q2 and D2pT q ď Z “ G2. Hence |D2pT q| “ 1,
which is a contradiction. Thus D is the union of three different subgroups of order 2,
and |D| “ 4. Since D Ď xDy ď G and xDy1 ‰ G1, it follows that D is a (maximal)
subgroup of G, as claimed.

Now we start the analysis of the position of the subgroups of the form RpUq. Since
G1 is a 2-generator powerful group, we have |pG1q2 : pG1q4| ď 4. Hence pG1q2 has at
most 3 maximal subgroups, and the intersection of two different maximal subgroups is
pG1q4. By Lemma 3.12, all the RpUq are proper in G, and if none of them is maximal
in G, we immediately get |D Y R| ď 7. The same conclusion holds if RpUq “ D
whenever RpUqmaxG. Thus we may assume that there exists U maxG pG

1q2 such that
RpUqmaxG, i.e. such that |RpUq| “ 4, and furthermore RpUq ‰ D.

Then |DYRpUq| “ 6, and we may also assume that there exists another V maxG pG
1q2

such that RpV q Ę D Y RpUq. This implies in particular that dppG1q2q “ 2, and pG1q2

has exactly 3 maximal subgroups. Also, since G1 is powerful, the square map induces
an isomorphism between G1{pG1q2 and pG1q2{pG1q4. As a consequence,

g P G1 r pG1q2 ùñ g2 P pG1q2 r pG1q4, (3.1)
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and also all three maximal subgroups of pG1q2 are of the form T 2, where T maxG G
1.

Let W be the third maximal subgroup of pG1q2, apart from U and V . If RpW q “ 1
then, since RpUq X RpV q ď RpW q by Lemma 3.12, it follows that |RpV q| ď 2 and
consequently |D YR| ď 7. Hence we may assume that |RpW q| ě 2.

Now we consider two separate cases:

Case 1: RpW q ď RpUq.

Again by Lemma 3.12, we get RpW q “ RpUqXRpW q ă RpV q, with proper inclusion
since RpV q ď RpUq. In particular, |RpW q| “ 2 and |RpV q| “ 4, which implies that
|R| “ 6.

Assume first that D X RpUq ‰ D X RpV q. In this case we have |D X R| ě 3 and
hence |D YR| ď 7, as desired.

G

D RpUq RpV q

D XRpUq D XRpV q RpW q

G2

Figure 3.1: The case D XRpUq ‰ D XRpV q.

Suppose now that D X RpUq “ D X RpV q, so that this intersection coincides with
RpW q. Now, by the fourth paragraph of the proof, D has three subgroups of order 2,
which are all of the form D2pT q. Thus RpW q “ D2pT q for some T maxG G

1.

G

D RpUq RpV q

RpW q “ D2pT q

G2

Figure 3.2: The case D XRpUq “ D XRpV q.

Choose g P RpW q r G2. Then rg,Gs is contained in T , but since Z “ G2, it is not
contained in pG1q2. Since G “ xRpUq, Dy and rg,Ds ď D1 ď pG1q2, there exists h P RpUq
such that rg, hs P T r pG1q2. Now, we have

rg, h2s P rRpW q, G2s ď rRpUq, G2s X rRpV q, G2s ď U X V ď pG1q4,

and, on the other hand,
rg, h2s “ rg, hs2rg, h, hs,

where rg, hs2 P T 2rpG1q4 by (3.1), and rg, h, hs P rh,G1s ď rh,G2s ď U . Thus necessarily
U “ T 2. Since the same argument can be applied with V in the place of U , we deduce
that U “ V , which is a contradiction.
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Case 2: RpW q ď RpUq.

We are going to prove that this case is impossible. Choose an element x P RpV q r
pD Y RpUqq. Then G “ RpUq Y xRpUq. Since RpW q ď RpUq, there exists y P RpUq
such that xy P RpW q. Note that y R G2, since otherwise xy P RpV q X RpW q ď RpUq.
Now rxy, x2s “ ry, x2s PW X U “ pG1q4, and then

ry, xs2 “ ry, x2sry, x, xs´1 P V,

since ry, x, xs P rG2, xs. By using that ryx, y2s “ rx, y2s and that yx “ pxyqx P RpW q,
we obtain in the same way that ry, xs2 P U . Hence ry, xs2 P pG1q4 and then, by (3.1), we
get ry, xs P pG1q2.

On the other hand, x R D yields

G1 “ rx,Gs “ rx, xxyRpUqs “ rx,RpUqs.

Since y R G2 and |RpUq| “ 4, we can write RpUq “ xy, z,G2y for some z. Now, since
rx, ys P pG1q2 and rx,G2s ď pG1q2, it follows that G1 “ xrx, zs, pG1q2y. This implies that
G1 is cyclic, which is a contradiction.

Example 3.14. Let A “ xay ˆ xby ˆ xvy – C4 ˆ C4 ˆ C4 and xuy – C4. Define the
semidirect product U “ xuy ˙A via the automorphism

au “ a3b2, bu “ b, vu “ vba.

Let also xxy – C4 and define the group G “ xxy ˙ U via the automorphism

ax “ ab2, bx “ b3, ux “ ua3, vx “ vb3.

Then G1 “ xa, by and G2 “ xx2, u2, v2y, and the group G{G2 has the same subgroup
structure as the group in Figure 3.1.

Similar examples can be constructed showing that all lattices that we have in the
other cases that we have considered in the proof of Proposition 3.13 are actually possible.

We can now proceed to prove Theorem 3.9 for the prime 2.

Theorem 3.15. Let G be a finite 2-group, and assume that dpG1q ď 2. Then G1 “
KxpGq for a suitable x P G.

Proof. We may assume that dpG1q “ 2 and we write C “ C2pGq for simplicity. Recall
that G1 is powerful by Theorem 2.18. We split the proof into two cases:

Case 1: C ‰ G.

Let T “ γ3pGqpG
1q2. We know from (iv) of Proposition 2.36 that T maxG G

1 and
that it is the unique normal subgroup of G which is maximal in G1. Hence if N Ĳ G
and N ă G1 then N ď T . On the other hand,

rG,C 1s ď rG,C,Cs ď rG1, Cs ď pG1q2,

while rG,G1s ď pG1q2. It follows that C 1 ă G1, and consequently C 1 ď T .
Since T is the unique subgroup such that T maxG G

1, by Proposition 2.41, we have
G1 “ rx,Gs for every x R D2pT q. We are going to show that Lemma 2.27 can be applied
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either with L “ G1 and N “ T or with L “ T and N “ pG1q2, depending on the values of
some commutator subgroups. In the latter case, Corollary 2.25 will complete the proof.

Suppose first that rG1, Cs ď T 2. Then we take x R C, which by Proposition 2.41
implies x R D2pT q. Hence G “ xxyC and G1{T “ xrx, ysT y for some y P C. Also,
observe that T {pG1q2 “ xrx, rx, ysspG1q2y. Now we have rx, y, ys P rG1, Cs ď T 2 and
rx, rx, ys, rx, yss P rG1, G1s ď pG1q4, since G1 is powerful. Thus we are done in this case.

Therefore we assume that rG1, Cs ď T 2 in the remainder. Observe that T is powerful
by Lemma 2.16 and hence |pG1q2 : T 2| ď |G1 : T | “ 2 by Lemma 2.15. Since rG1, Cs is
contained in pG1q2 but not in T 2, we have |pG1q2 : T 2| “ 2. Also |T 2 : pG1q4| ď 2.

If rT,Gs ď T 2 then since G “ xG r Cy we can choose x R C and t P T such that
pG1q2{T 2 “ xrx, tsT 2y. Since rx, t, ts P rpG1q2, G1s ď pG1q8 ď T 4 and we can argue with
the chief factor T {pG1q2 as in the case rG1, Cs ď T 2, the result follows also in this case.

Suppose finally that rT,Gs ď T 2. Since rG1, Cs ď T 2 and

rG1, D2pT qs ď rD2pT q, G,Gs ď rT,Gs ď T 2,

there exist x P C rD2pT q and g P G1 such that pG1q2{T 2 “ xrx, gsT 2y. Then rx, g, gs P
rpG1q2, G1s ď T 4. On the other hand, there exists y P G such that G1{T “ xrx, ysT y.
Since C 1 ď T , we have y R C and then T {pG1q2 “ xrx, y, yspG1q2y “ xrx, y2spG1q2y. Now

rx, y2, y2s P rT,G2s ď rT,Gs2rT,G,Gs ď rT,Gs2rT 2, Gs ď pG1q4,

which completes the proof in this case.

Case 2: C “ G.

By Proposition 3.13, there exists x P G such that G1 “ rx,Gs and pG1q2 “ rx,G2s.
Since C “ G implies by Proposition 2.36 that the sections G1{pG1q2 and pG1q2{pG1q4 are
central in G, it follows from Lemma 2.26 that

G1{pG1q2 “ KxpG1q2pG{pG
1q2q

and
pG1q2{pG1q4 “ KxpG1q4pG

2{pG1q4q.

On the other hand, by Proposition 2.36, we have

rx,G2, G2s “ rpG1q2, G2s ď pG1q8.

Hence we can apply Lemma 2.27 with L “ pG1q2 and any N maxG pG
1q2, getting pG1q2 Ď

KxpGq. Now we are done by applying Corollary 2.25.

Combining Theorem 3.10 and Theorem 3.15 we establish Theorem 3.9.

3.3 Derived subgroup with 3 or more generators

We now study groups with 3-generator derived subgroup. In this context, Rodney
started addressing the easiest cases.

Theorem 3.16 ([69, Theorems A and B]). Let G be a group with dpG1q “ 3. Suppose
one of the following conditions holds.
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(i) G is nilpotent of nilpotency class 2.

(ii) G is finite and G1 is elementary abelian of order p3.

Then G1 “ KpGq.

Notice that Rodney’s results in Theorem 3.16 involve only groups for which G1 is
abelian. Thus, Guralnick generalised these results to groups whose derived subgroup is
an abelian and finite p-group with p ě 5.

Theorem 3.17 ([25, Theorem B]). Let G be a group and suppose G1 is an abelian finite
p-group with p ě 5. If dpG1q ď 3, then G1 “ KpGq.

Moreover, he found counterexamples showing that the result is false for p “ 2 or
p “ 3, even if G1 is abelian ([25], Example 3.5 and Example 3.6). In Theorem 3.18,
as we have done in Theorem 3.9, we generalise Guralnick’s result to finite p-groups in
which G1 need not be abelian (we will prove this result later on).

Theorem 3.18 ([32, Theorem A]). Let G be a finite p-group with p ě 5. If G1 can be
generated by 3 elements, then G1 consists only of commutators.

In this case, it is not true, in general, that there exists a fixed element x P G
such that G1 “ KxpGq, as we had in Theorem 3.9 or in Theorem 3.19 below. Indeed, let
G “ F3{γ3pF3qF

p
3 , where F3 is the free group on 3 generators and p ě 3 is a prime. Note

that G1 is 3-generator and that |G : ZpGq| “ p3. Now, if x P ZpGq, then KxpGq “ 1,
and if x R ZpGq, then |G : CGpxq| ď p2 since xZpGq, xy ď CGpxq. In particular,
|KxpGq| “ |G : CGpxq| ď p2.

On the other hand, as shown in Example 2.20, G1 need not be powerful if it is
generated by 3 elements. However, we will see that the finite p-groups with 3-generator
non-powerful derived subgroup are a very special type of p-group, and with this, the
proof of the result for such groups will follow easily. Thus, the theory of powerful groups
will be essential also in this case.

Regarding groups whose derived subgroup is generated by more than 3 elements,
Macdonald ([59, Exercise 5, page 78]) and Kappe and Morse ([47, Example 5.4]) showed
that for every prime p there exist finite p-groups with 4-generator abelian derived sub-
group such that G1 ‰ KpGq. These examples show that the property may fail if the
derived subgroup has more than 3 generators. Therefore, with Theorem 3.9 and Theo-
rem 3.18, we close the gap between the case when G1 is abelian and can be generated by
3 elements and the case when G1 is generated by more than 3 elements. With this, the
study of the condition G1 “ KpGq in terms of the number of generators of the derived
subgroup is complete for finite p-groups.

A natural continuation to Theorems 3.9 and 3.18 would be considering finite p-
groups with 4-generator derived subgroup. This has been done recently in [46], where a
classification,, up to isoclinism (see [30]), of finite p-groups such that |G1| “ p4, pG1qp “ 1
and G1 ‰ KpGq is given.

In Theorem 3.19 we show that with some additional restrictions, groups with dpG1q ě
4 do satisfy the desired equality.

Recall that the action of a finite p-group G on a normal subgroup N of G is uniserial
if

|rN,G, i. . ., Gs : rN,G, i`1. . ., Gs| ď p

for every i ě 0.
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Theorem 3.19 ([32, Theorem B]). Let G be a finite p-group and write d “ logp |G
1 :

pG1qp|. If d ď p ´ 1 and the action of G on G1 is uniserial modulo pG1qp, then there
exists x P G such that G1 “ trx, gs | g P Gu.

Before proving Theorem 3.18 we will first establish Theorem 3.19 in Section 3.3.1,
as it is required in the proof of Theorem 3.18. We will then split the proof of Theorem
3.18 into two parts, dealing separately in Sections 3.3.2 and 3.3.3 with the case in which
G1 is powerful and the general case, respectively.

3.3.1 Groups acting uniserially on their derived subgroup

For a uniserial action of a group G on G1, the so-called two-step centralisers are defined
as the centralisers in G of the factors γipGq{γi`2pGq, where i ě 2 and γi`1pGq ‰ 1 (see
[10]). In view of the statement of Theorem 3.19, we will define the following subgroups,
which are just the two-step centralisers modulo pG1qp.

Definition 3.20. Let G be a finite p-group such that the action of G on G1 is uniserial
modulo pG1qp. Then, we define

SipGq “ CGpγipGqpG
1qp{γi`2pGqpG

1qpq

for every i ě 2 such that γi`1pGq ď pG
1qp.

Remark 3.21. In the situation above, the subgroups SipGq are all maximal in G since
|γipGqpG

1qp : γi`2pGqpG
1qp| “ p2 and rγipGqpG

1qp, Gs ď γi`2pGqpG
1qp.

With this in mind, we can now establish Theorem 3.19.

Proof of Theorem 3.19. If d “ 1, then G1 is cyclic and the result follows from Theorem
3.6, so assume d ě 2 (and in particular p ě 3). For the sake of simplicity we will write
Gi “ γipGqpG

1qp, so that

pG1qp “ Gd`2 ď Gd`1 ď . . . ď G3 ď G2 “ G1

is a series from G1 to pG1qp such that |Gi : Gi`1| “ p for all 2 ď i ď d ` 1. Note that
if N maxG G

1 then G3 ď N . Therefore, N “ G3 and G3 is the unique subgroup which
is maximal in G1 and normal in G. Moreover, note that the index of D2pG3q in G is
strictly greater than p by Proposition 2.41. Note also that there are only d´ 1 ď p´ 2
two-step centralisers, which are all maximal by Remark 3.21. Thus, we can take

x P GzpD2pG3q Y S2pGq Y . . .Y SdpGqq. (3.2)

By Proposition 2.40 we have G1 “ rx,Gs and since S2pGq is maximal in G we have
G1 “ rx,Gs “ rx, xxyS2pGqs “ rx, S2pGqs. In particular G1{G3 “ xrx, g1sG3y for some
g1 P S2pGq. Furthermore, since x R SipGq for 2 ď i ď d, we also have Gi`1{Gi`2 “

xrx, gisGi`2y for a suitable gi P Gi. It follows from Lemma 2.26 and Corollary 2.25 that
G1{pG1qp Ď KxpG1qppG{pG

1qpq.

Recall that γd`2pGq ď pG1qp, and since d ď p ´ 1, it follows that γp´1pG
1q ď

γ2pp´1qpGq ď γ2dpGq. Thus, since 2d ě d ` 2 we have γp´1pG
1q ď pG1qp, so that G1

is potent. In this case the power map from G1{pG1qp to pG1qp{pG1qp
2

induced from the
map x ÞÑ xp need not be a homomorphism. However, we can restrict its domain and
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codomain in order for it to be so. We claim that the map from Gi{Gi`1 to Gpi {G
p
i`1

sending gGi`1 to gpGpi`1 is an epimorphism for every 2 ď i ď d` 1.

Take x, y P Gi. By the Hall-Petresco identity we have

pxyqp “ xpypc
pp2q
2 c

pp3q
3 ¨ ¨ ¨ cp

with cj P γjpGiq. Obviously if 2 ď j ď p ´ 1 then c
ppjq
j P Gpi`1. Besides, if j “ p, since

Gi ď G1, we have

cp P rGi,
p. . ., Gis ď rGi, G,

2pp´1q. . . , Gs ď Gpi`1,

where the last inequality holds since by Lemma 2.14 we have

|Gi : Gpi`1| “ |Gi : Gpi ||G
p
i : Gpi`1| ď pd`1

and d ` 1 ď 2pp ´ 1q. This proves that the map is a homomorphism. Moreover, since
G1 is potent it follows that Gi is power abelian, so the map must be an epimorphism.
The claim is proved.

Thus, from Lemma 2.14 it follows that we have a series

ppG1qpqp “ Gpd`2 ď Gpd`1 ď ¨ ¨ ¨ ď Gp3 ď Gp2 “ pG
1qp

in which each factor Gpi`1{G
p
i`2 has order less than or equal to p and is generated by the

image of rx, gis
p for every 1 ď i ď d. Now, in order to apply Lemma 2.29 let us prove

that

rx, gis
p ” rx, gpi s pmod Gpi`2q

for every i. Assume first i “ 1. We will use again the Hall-Petresco identity so that

rx, g1s
p “ rx, gp1sc

pp2q
2 c

pp3q
3 ¨ ¨ ¨ cp

with cj P γjpxrx, g1s, g1yq ď rG,S2pGq,
j. . ., S2pGqs. If 2 ď j ď p ´ 1 then c

ppjq
j P Gp3. If

j “ p, we have

cp P rG,S2pGq,
p. . ., S2pGqs ď rG4, S2pGq,

p´2. . . , S2pGqs.

Lemma 2.14 yields |G4 : Gp3| ď pd´1, and since d´ 1 ď p´ 2, we conclude cp P G
p
3. For

i ě 2 we have gi P G
1, so the claim follows more easily applying the same method.

Now, d ď p ´ 1 ď p2 ´ p ´ 1, so we apply Lemma 2.29 with j “ 1 and we get
pG1qp Ď KxpGq. Since G1{pG1qp Ď KxpG1qppG{pG

1qpq, we conclude by Corollary 2.25.

Remark 3.22. If the exponent of G1 is p, that is, if pG1qp “ 1, then, following the same
method, Theorem 3.19 can be stated for d ď p ` 1. Indeed, if G is the union of p ` 1
proper subgroups, then all of them must be maximal. Hence, since |G : D2pG3q| ą p,
we can take x as in (3.2) and conclude in the same way as in the first paragraph of the
proof.
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3.3.2 Groups with 3-generator and powerful derived subgroup

In order to prove Theorem 3.24 we first need the following technical lemma, which will
be very helpful when using induction on the order of the group.

Lemma 3.23. Let G be a finite p-group with p ě 5, G1 powerful and dpG1q “ 3.
Assume there exist x, u, v P G such that G1 “ xru, vs, rx, us, rx, vsy, G1 ‰ rx,Gs and
rx,G,Gs ď pG1qp. Then, there exists a family of proper subgroups of G such that
rx,GspG1qp equals the union of their derived subgroups. Moreover, each of these derived
subgroups is powerful.

Proof. Consider the subgroups Hi “ xx, uv
i, vpy for 0 ď i ď p ´ 1 and Hp “ xx, v, u

py.
Let us prove that H 1i “ xrx, uv

isypG1qp for 0 ď i ď p´ 1 and that H 1p “ xrx, vsypG
1qp.

Suppose first i ‰ p. Since G1 “ xru, vs, rx, us, rx, vsy and G1 ‰ rx,Gs, we have
|G1 : rx,GspG1qp| “ p, and since rx,G,Gs ď pG1qp, the map

G ÝÑ rx,GspG1qp{pG1qp

g ÞÝÑ rx, gspG1qp

is a homomorphism. Therefore, we can write

G1 “ xru, vs, rx, uvis, rx, vsy.

Thus, since G1 is powerful, we have

pG1qp “ xru, vsp, rx, uvisp, rx, vspy.

The subgroups rx,GspG1qp and xrx, vsypG1qp are normal in G since rx,G,Gs ď pG1qp, so
since p ě 5, taking k “ 0 in Lemma 2.28 it follows that

ru, vsp ” ruvi, vps pmod prx,GspG1qpqpq

and
rx, vsp ” rx, vps pmod pG1qp

2
q.

Hence,
pG1qp “ xruvi, vps, rx, vps, rx, uvispy ď H 1i,

so that xrx, uvisypG1qp “ H 1i, as asserted. Similar arguments imply H 1p “ xrx, vsypG
1qp.

It is easy to see now that rx,GspG1qp “
Ťp
i“0H

1
i (just observe that theH 1i are precisely

the subgroups between rx,GspG1qp and pG1qp). Finally, notice that |H 1i : pG1qp| “ p for
every i, so since pG1qp is powerfully embedded in G1, it follows from [48, Lemma 11.7]
that H 1i is powerful. Thus, the proof is complete.

We are now in a position to prove Theorem 3.18 in the case that G1 is powerful.

Theorem 3.24. Let G be a finite p-group with G1 powerful, dpG1q ď 3 and p ě 5. Then,
G1 “ KpGq.

Proof. We proceed by induction on the order of G. For dpG1q ď 2 the result follows
from Theorem 3.6 and Theorem 3.9. Now assume that dpG1q “ 3 and note that we have
|G1 : pG1qp| “ p3. We will consider three different cases depending on the position of the
subgroup Γ “ pG1qpγ3pGq.
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Case 1 . |G1 : Γ| “ p.

If |Γ : γ4pGqpG
1qp| “ p, then the action of G on G1 is uniserial modulo pG1qp and the

result follows from Theorem 3.19.
Assume then γ4pGq ď pG

1qp. If G1 “ KxpGq for some x P G, then, of course, we are
done, so assume G1 ‰ KxpGq for every x P G. We claim that there exist u, v P G such
that G1 “ xru, vs, ru, v, us, ru, v, vsy. For that purpose we can suppose that pG1qp “ 1.
As seen in the proof of Theorem 3.19, the subgroup Γ is the unique subgroup such that
Γ maxG G

1. Since both C2pGq and D2pΓq are proper subgroups of G by Propositions 2.36
and 2.43 respectively, we can take u R C2pGqYD2pΓq. Then, G1 “ ru,Gs by Proposition
2.40 and CG{ΓpuΓq ‰ G{Γ. Let us write C˚{Γ “ CG{ΓpuΓq.

Since u R C2pGq we have ru,G1s ‰ 1. If ru,G1s “ Γ, then, we can find a series
of normal subgroups of G from G1 to pG1qp such that all factors have order p and are
generated by images of elements of the form ru, gs for some suitable g P G. Thus, Lemma
2.29 implies G1 “ KupGq, which is a contradiction. Therefore, we have |ru,G1s| “ p and
hence CGpG

1{ru,G1sq ‰ G. Take thus v P GzpCGpG
1{ru,G1sq Y C˚q. Then, G1{Γ “

xru, vsΓy (because v R C˚q, and again, as we have seen for u, we also have |rv,G1s| “ p.
It follows that ru, v, us, ru, v, vs ‰ 1. Furthermore, since v R CGpG

1{ru,G1sq, we have
ru,G1s ‰ rv,G1s, and we conclude that G1 “ xru, vs, ru, v, us, ru, v, vsy. This proves the
claim.

Remove now the assumption of pG1qp “ 1 and observe that rru, vs, G,Gs ď pG1qp, so
we are in the situation of Lemma 3.23. It follows then that Γ is the union of the derived
subgroups of some proper subgroups of G. These derived subgroups are all powerful, and
since dpG1q “ 3, they all can be generated by 3 elements. So, by induction, Γ Ď KpGq.

Take now g P G1zΓ arbitrary. We claim that g is a commutator modulo Γp
i

for every
i ě 0 (and hence that g is a commutator). We proceed by induction on i. Clearly, we
have g “ rx, ysz for some x, y P G, z P Γ, so the case i “ 0 is satisfied. Assume then
that i ě 1 and g “ rx, ysz1 where x, y P G and z1 P Γp

i´1
.

Note that G1{Γ “ xrx, ysΓy, so since rΓ, Gs ď pG1qp, we have

Γ{pG1qp “ trx, y, hspG1qp | h P Gu.

Besides, since G1 is powerful, the power map from G1{pG1qp to pG1qp
i´1
{pG1qp

i
is an

epimorphism, so that Γp
i´1
{pG1qp

i
“ trx, y, hsp

i´1
pG1qp

i
| h P Gu. By Lemma 2.28 we

have
Γp

i´1
{pG1qp

i
“ trx, y, hp

i´1
spG1qp

i
| h P Gu.

Thus,
g “ rx, ysrx, y, h˚sz2 “ rx

h˚ , yh
˚

sz2

for some h˚ P G and z2 P pG
1qp

i
. We rewrite, in order to simplify the notation, x instead

of xh
˚

and y instead of yh
˚

, so that g “ rx, ysz2.
Note again that G1{Γ “ xrx, ysΓy, so it follows that

pG1qp
i
{Γp

i
“ xrx, ysp

i
Γp

i
y.

Therefore,
g “ rx, ysrx, ysjp

i
z3 “ rx, ys

1`jpiz3

with j ě 0 and z3 P Γp
i
. Now, the last theorem in [39] asserts that KpGqs Ď KpGq for all

integer s such that p - s. Therefore, there exist x1, y1 P G such that rx, ys1`jp
i
“ rx1, y1s,

so g “ rx1, y1sz3 with z3 P Γp
i
, as claimed.
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Case 2. |G1 : Γ| “ p2.

Write D “ YtD2pUq | U maxG G
1u. We first claim that C2pGq Y D ‰ G. On the

one hand, as seen before, Γ ď N for all N maxG G
1, and since |G1 : Γ| “ p2, there are

exactly p ` 1 subgroups between G1 and Γ, say U1, . . . , Up`1. Furthermore, since they
are central over Γ, they are all normal in G. Thus, D “ D2pU1q Y ¨ ¨ ¨ YD2pUp`1q. In
addition, it follows from Proposition 2.41 that |G : D2pUiq| ě p2 for every i.

On the other hand, observe again that C2pGq ‰ G. As a consequence, if we write
|G| “ pn, then we have

|C2pGq YD| ď |C2pGq| ` |D| ď

p`1
ÿ

i“1

|D2pUiq| ` |C2pGq|

ď pp` 1qpn´2 ` pn´1 “ 2pn´1 ` pn´2 ă pn,

as we wanted. Take now x R C2pGq Y D. Since x R D we have G1{Γ “ rx,GsΓ{Γ by
Proposition 2.40, and since x R C2pGq we have Γ{pG1qp “ rx,G1spG1qp{pG1qp. Thus, since
all subgroups between G1 and Γ are central and hence normal in G, we can construct
a series from G1 to pG1qp where all factors have order p and are generated by images of
commutators of the form rx, gs with g P G. Again, the result follows from Lemma 2.29.

Case 3. γ3pGq ď pG
1qp.

If G1 “ rx,GspG1qp for some x, again, all the subgroups between G1 and pG1qp are
normal in G, so we could construct a series from G1 to pG1qp in such a way that we
would be done by Lemma 2.29. Therefore, assume rx,GspG1qp ă G1 for every x P G.
By Theorem 3.16 the result is satisfied for G{pG1qp, so we have G1 “

Ť

xPGrx,GspG
1qp.

Thus, it suffices to prove that rx,GspG1qp Ď KpGq for every x P G.

Suppose first |rx,GspG1qp : pG1qp| “ p. We claim that there always exists y P G
such that rx,GspG1qp ď ry,GspG1qp maxG1. For that purpose, we assume pG1qp “
1. Note that |G1{rx,Gs| “ p2, so by Theorem 3.9, there exists u P G such that
G1{rx,Gs “ ru,Gsrx,Gs{rx,Gs. Hence G1 “ ru,Gsrx,Gs with |ru,Gs| “ p2. Observe
that CGpuq, CGpxq ‰ G, so take y R CGpuq Y CGpxq. Thus, rx,Gs “ xrx, ysy, and
ru, ys ‰ 1. If ru, ys P xrx, ysy, then rx, ys P ru,Gs, a contradiction. Observe that
rx, ys, ru, ys P ry,Gs though, so |ry,Gs| “ p2. Since rx,Gs ď ry,Gs, the claim is proved.

Hence, we only have to consider the case |rx,GspG1qp : pG1qp| “ p2. We claim
now that there exist u, v P G such that G1 “ xru, vs, rx, vs, rx, usy. Assume again that
pG1qp “ 1. Since |rx,Gs| “ |trx, gs | g P Gu| “ p2, we have |G : CGpxq| “ p2, and
we can consider a maximal subgroup M such that CGpxq ă M ă G. Observe that
G1 “ rG,Gs “ rG,M s, G “ xGzMy and M “ xMzCGpxqy. Hence, there exist u P GzM
and v P MzCGpxq such that ru, vs R rx,Gs. Furthermore, rx,Gs “ xrx, us, rx, vsy, so
G1 “ xru, vs, rx, us, rx, vsy, as claimed.

Remove now the assumption of pG1qp “ 1 and note that we are in the situation of
Lemma 3.23 since rx,G,Gs ď γ3pGq ď pG

1qp. Hence we have rx,GspG1qp Ď KpGq, as we
wanted.

Remark 3.25. Case 2 can be generalised for p ě 3 using a slightly different version of
Lemma 2.29, but one must be more selective in the choice of x.
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3.3.3 Groups with 3-generator but non-powerful derived subgroup

As said before, G1 need not be powerful if it is generated by 3 elements. We will start,
hence, analyzing which kind of groups may arise when G1 is non-powerful. Actually, we
will see that in such a case, G{pG1qp must be a very special kind of p-group, namely, a
CFpm, pq-group. These groups are a generalisation of groups of maximal class and were
introduced by Blackburn in [10]. They are defined as follows.

Definition 3.26. Let m ě 3. A finite p-group G is said to be a CFpm, pq-group if the
nilpotency class of G is m´ 1 and the action of G on G1 is uniserial.

In particular, if G is a CFpm, pq-group, then |G1| “ pm´2. We next define the degree
of commutativity on CF(m, p)-groups exactly in the same way as for groups of maximal
class (compare [10, Page 57]).

Definition 3.27. Let G be a CFpm, pq-group. The degree of commutativity of G is
defined as

maxtk ď m´ 2 | rGi, Gjs ď Gi`j`k for all i, j ě 1u,

where G1 “ S2pGq and Gi “ γipGq for all i ě 2.

Lemma 3.29 below shows that if G1 is non-powerful, then G is a very particular group,
namely a CF(6, p)-group modulo pG1qp. The key part of the proof is the following lemma
due to Blackburn.

Lemma 3.28 ([10, Theorem 2.11]). Let G be a CFpm, pq-group with m odd and 5 ď
m ď 2p` 1. Then G has degree of commutativity greater than 0.

Lemma 3.29. Let G be a finite p-group with p ě 3, dpG1q “ 3 and G1 non-powerful.
Then G{pG1qp is a CFp6, pq-group.

Proof. Clearly we can assume pG1qp “ 1 and G2 ‰ 1. Thus, the Frattini subgroup of
G1 is G2, and since dpG1q “ 3, then |G1 : G2| “ p3. Note that G2 ď γ4pGq, so the only
possibilities for γ3pGq are |G1 : γ3pGq| “ p2 or |G1 : γ3pGq| “ p.

Suppose first, for a contradiction, that |G1 : γ3pGq| “ p2. Then, since G2 ď γ4pGq
and |G1 : G2| “ p3 we have G2 “ γ4pGq. In addition, G1 has 2 generators modulo γ3pGq,
which implies that |G2 : γ5pGq| “ p (recall that pG1qp “ 1). Consider the subgroup S3pGq
and recall it is maximal by Remark 3.21. In the same way as in Case 2 of Theorem
3.24, it can be seen that there are only p` 1 maximal subgroups of G1 that are normal
in G. Hence, making the same computations, it follows that D Y S3pGq ‰ G, where
D “ YtD2pUq | U maxG G

1u.

Thus, we can pick x P GzpD Y S3pGqq, and we have

G1 “ rx,Gs “ rx, xxyS3pGqs “ rx, S3pGqs.

We can then find y, z P S3pGq such that G1 “ xrx, ys, rx, zs, γ3pGqy. We write a “ rx, ys
and b “ rx, zs for simplicity. Thus, γ4pGq “ xra, bs, γ5pGqy, and we write, again for
simplicity, d “ ra, bs.

On the one hand,

rb, ysx “ rbrb, xs, ya´1s ” rb, ysd pmod γ5pGqq,
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so that rb, y, xs ” d pmod γ5pGqq. Similarly we get

rz, asx ” rz, asd pmod γ5pGqq

and so rz, a, xs ” d pmod γ5pGqq. In particular rb, ys, rz, as R γ4pGq, and since the
quotient γ3pGq{γ4pGq is of order p, we have rz, as ” rb, ysi pmod γ4pGqq for some 1 ď
i ď p´ 1. Note, however, that

rz, a, xs ” rrb, ysi, xs ” rb, y, xsi ” di pmod γ5pGqq,

so we get i “ 1 and thus

1 ı rb, ys ” rz, as pmod γ4pGqq. (3.3)

On the other hand, we have rG1, S3pGq
1s ď rG1, S3pGq, S3pGqs ď γ5pGq. Let Z be the

subgroup of G defined by Z{γ5pGq “ ZpG1{γ5pGqq. We have |G1 : Z| ě p2, and since
rG1, γ3pGqs ď γ5pGq, we get Z “ γ3pGq. In particular, we obtain S3pGq

1 ď γ3pGq, and
the nilpotency class of S3pGq is less than or equal to 2. Now,

ry, zsx “ rya´1, zb´1s ” ry, zsrb, ysrz, asd pmod γ5pGqq,

so that ry, z, xs ” rb, ysrz, asd pmod γ5pGqq. This is a contradiction, since (3.3) and
p ą 2 implies rb, ysrz, as P γ3pGqzγ4pGq, but ry, z, xs, d P γ4pGq as S3pGq

1 ď γ3pGq.
Therefore we must have |G1 : γ3pGq| “ p. Thus

G2 “ rG1, G1s “ rG1, γ3pGqs ď γ5pGq,

and since |G1 : G2| “ p3, we have |γ3pGq : γ4pGq| “ |γ4pGq : γ5pGq| “ p and G2 “ γ5pGq.
Let us write G “ G{γ7pGq. Note that

γ3pG
1q “ rG2, G1s “ rγ5pGq, G

1s ď γ7pGq,

so γ3pG1q “ 1 and since dpG
1
q “ 3, then dpG

2
q ď 2. Indeed, we can write G1 “ xa, b, cy

with a P G1zγ3pGq, b P γ3pGqzγ4pGq and c P γ4pGqzγ5pGq, and so the generators of G
2

are
ra, bs P γ5pGq and ra, cs P γ6pGq (note that rb, cs P γ7pGq “ 1). Hence |γ5pGq : γ6pGq| “ p
and |γ6pGq| ď p.

If |γ6pGq| “ 1 then γ6pGq “ γ7pGq “ 1 and we are done, so assume |γ6pGq| “ p. In
this way, G is a CF(7, p)-group, and since p ě 3, by Lemma 3.28 it follows that the degree

of commutativity of G is greater than 0. In particular we have G
2
“ rγ2pGq, γ3pGqs ď

γ6pGq, which is a contradiction. The lemma follows.

With all this, the second part of the proof of Theorem 3.18 follows easily.

Theorem 3.30. Let G be a finite p-group with G1 non-powerful, dpG1q “ 3 and p ě 5.
Then, G1 “ KpGq.

Proof. By Lemma 3.29 the action of G on G1 is uniserial modulo pG1qp and, in addition,
|G1 : pG1qp| “ p4 ď pp´1 since p ě 5. The result follows directly from Theorem 3.19.

Thus, combining Theorem 3.24 and Theorem 3.30 we establish Theorem 3.18.
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Lower central words and general
outer commutator words

Much less is known about Problem 1.2 for general outer commutator words than for the
commutator word. All the results that one can find in the literature for these words
consist of generalisations of some of the theorems that work for the commutator word
to lower central words. Following this line of thinking, we will generalise, to the extent
possible, the results we have proved in the previous chapter to lower central words.
Nevertheless, for outer commutator words in general, even if we will only consider groups
with cyclic verbal subgroup, the results that we obtain are less satisfactory, as we will
not go further than the second derived word.

As we have seen, the equality G1 “ KpGq works particularly well for finite p-groups.
For this reason, and in view of Proposition 1.3 as well, we will continue working with
finite p-groups.

We will start, as in the previous chapter, by dealing separately with different cases,
depending on the number of generators of the verbal subgroup γrpGq: in Section 4.1
we study finite p-groups with γrpGq cyclic for some r ě 2, while in Section 4.2 finite
p-groups with dpγrpGqq “ 2 for some r ě 2 are studied. Finally, in Section 4.3, outer
commutator words in general are considered.

4.1 Lower central words with cyclic verbal subgroup

The first result for lower central words was due to Kappe in [44], where she, among
other results, generalised Macdonald’s counterexamples in Theorem 3.5.

Theorem 4.1 ([44, Theorem 1]). Let r ě 2. For any n P N, there exists a group G in
which γrpGq is cyclic and generated by no set of less than n γr-values.

Based on Kappe’s work in [44], Dark and Newell generalised Rodney’s results in
Theorem 3.6 from commutator words to lower central words.

Theorem 4.2 ([12, Theorems 4 and 5]). Let G be a group and r ě 2. If γrpGq is cyclic
and either G is nilpotent or γrpGq is infinite, then γrpGq consists only of γr-values.

45
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As with Theorem 3.6, once we show that Theorem 4.2 works for groups with γrpGq
infinite, we can assume that G is a finite p-group by Proposition 1.3. For such groups,
we will give an alternative simpler proof than that of [12]. In particular we will prove
the case p “ 2 in Theorem 4.5 below, which was omitted in [12] since it was pointed out
to be very technical. In fact, even if Theorem 4.5 can be modified so that it works for
all primes, we will prove the case in which p is odd separately in Theorem 4.4, as the
proof turns out to be much shorter in this case. First, however, we need the following
simple but very helpful lemma.

Lemma 4.3. Let N be a cyclic normal subgroup of a group G. Then, rN,G1s “ 1.

Proof. Since N is cyclic, the automorphism group AutpNq of N is abelian. Hence,
G{CGpNq is abelian as well, which implies that G1 ď CGpNq.

Theorem 4.4. Let G be a finite p-group with p odd and γrpGq cyclic. Then there exist
x1, . . . , xr´1 P G such that

γrpGq “ trx1, . . . , xr´1, gs | g P Gu.

Proof. Let γrpGq “ xrx1, . . . , xrsy with x1, . . . , xr P G. Then,

γrpGq
pk “ xrx1, . . . , xrs

pky

for every k ě 1. The Hall-Petresco identity gives

rx1, . . . , xrs
pk “ rx1, . . . , x

pk

r sc
pp
k

2 q
2 ¨ ¨ ¨ cpk

with ci P γipxrx1, . . . , xrs, xryq. When i ă pk, we have ci P γr`i´1pGq ď γrpGq
pi´1

, and

so c
pp
k

i q
i P γrpGq

pk`1
since p ě 3. If i “ pk, then cpk P γr`pk´1pGq ď γrpGq

pp
k´1

ď

γrpGq
pk`1

. Therefore,

γrpGq
pk “ xrx1, . . . , x

pk

r sy

for every k ě 0. Moreover, since rx1, . . . , x
pk
r , Gs ď γrpGq

pk`1
, the result follows from

Lemma 2.26 and Corollary 2.25.

Theorem 4.5. Let G be a finite 2-group with γrpGq cyclic. Then there exist x1, . . .,
xj´1, xj`1, . . . , xr P G with 1 ď j ď r such that

γrpGq “ trx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gu.

Proof. Define C “ CGpγrpGq{γrpGq
4q. Since γrpGq is cyclic, then the quotient group

γrpGq{γrpGq
4 has order at most 4, so that |G : C| ď 2. Let γrpGq “ xrx1, . . . , xrsy with

x1, . . . , xr P G and let j be the maximum number such that xj P C. Observe that we
may assume j ě 2 since G1 “ rG,Cs. Suppose, in addition, that rx1, . . . , xrs is, among
all γr-values which are generators of γrpGq, the one with maximum j.

For every i “ 1, . . . , r consider an arbitrary element yi P x
G
i , so that yi “ xirxi, gs

for some g P G. Since γr`1pGq ď γrpGq
2, it follows from Corollary 2.22 that

ry1, . . . , yrs ” rx1, . . . , xrs pmod γrpGq
2q,
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and since γrpGq
2 “ ΦpγrpGqq, we have

γrpGq “ xry1, . . . , yrsy.

Therefore
γrpGq

2k “ xry1, . . . , yrs
2ky

for every k ě 1. We claim that

ry1, . . . , yrs
2k ” ry1, . . . , y

2k

j , . . . , yrs pmod γrpGq
2k`1

q

for every yi P x
G
i and k ě 1. Take k “ 1 first. By Lemma 2.31 we have

ry1, . . . , yrs
2 ” rry1, . . . , yjs

2, yj`1, . . . , yrs pmod γrpGq
4q,

and observe that

ry1, . . . , y
2
j , . . . , yrs “ rry1, . . . , yjs

2ry1, . . . , yj , yjs, yj`1, . . . , yrs.

If ry1, . . . , yj , yj , yj`1, . . . , yrs R γrpGq
4, then

γr`1pGq “ γrpGq
2 “ xry1, . . . , yj , yj , yj`1, . . . , yrsy,

and so
γrpGq “ xry1, . . . , yj , yj , yj`1, . . . , yr´1sy,

which contradicts the maximality of j in the choice of the generator rx1, . . . , xrs.
Hence,

ry1, . . . , yj , yj , yj`1, . . . , yrs P γrpGq
4,

and it is easy to see by Lemma 2.21 that

ryg11 , . . . , y
gj
j , y

gj`1

j , y
gj`2

j`1 , . . . , y
gr`1
r s P γrpGq

4

for every g1, . . . , gr`1 P G. Therefore, again by Lemma 2.21 we obtain

ry1, . . . , yrs
2 ” ry1, . . . , y

2
j , . . . , yrs pmod γrpGq

4q.

The claim follows now from Lemma 2.33 with L “ γrpGq, N “ γrpGq
2.

Now we can conclude our proof in the usual way. Let 2m be the order of γrpGq. We
will prove by induction on m´ k that

γrpGq
2k Ď try1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gu.

The result is true when k “ m, so assume k ă m and

γrpGq
2k`1

Ď try1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gu.

We apply Lemma 2.23 with L “ γrpGq
2k´1

and N “ γrpGq
2k . As

L “ ry1, . . . , y
2k

j , . . . , yrsN YN Ď
ď

gPG

γrpy1, . . . , yj´1, g, yj`1, . . . , yrqN

for every yi P x
G
i , by Lemma 2.23 we get

γrpGq
2k Ď try1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gu.

In particular, when k “ 0 we obtain

γrpGq Ď try1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gu,

for every yi P x
G
i , as we wanted.

Thus, combining Theorem 4.4 and Theorem 4.5 we get the result for all primes when
γrpGq is cyclic.
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4.2 Lower central words with non-cyclic verbal subgroup

The study of Problem 1.2 for 2-generator verbal subgroups was initiated by Dark and
Newell in [12] and followed by Guralnick in [26], where, as Rodney did for the commu-
tator word in Theorem 3.16, they proved the result for the easiest cases, namely, the
cases in which the verbal subgroup is central or elementary abelian.

Theorem 4.6 ([12, Theorem 2]). Let G be a group and r ě 2. If γr`1pGq “ 1 and
γrpGq is a finite group with 2 generators. Then γrpGq “ Gγr .

Theorem 4.7 ([26, Theorem 3.2]). Let G be a group and r ě 2. If γrpGq is elementary
abelian of order p3, then γrpGq “ Gγr .

These theorems were again generalised by Guralnick himself. Indeed, the most im-
portant result until this point was due to him.

Theorem 4.8 ([27, Theorem A]). Let G be a group, p ě 5 a prime and r ě 2. Suppose
γrpGq is finite and P P SylppγrpGqq is generated by 2 elements. If P is abelian, then
P Ď Gγr .

Thus, for finite p-groups this theorem reduces to the following.

Corollary 4.9. Let G be a finite p-group with p ě 5 and let r ě 2. Suppose γrpGq is
abelian of rank 2. Then γrpGq Ď Gγr .

In addition, he found an example of a finite 2-group with dpγrpGqq “ 2 such that
γrpGq ‰ KrpGq, but the case p “ 3 remained unknown.

In this chapter we will generalise again Guralnick’s result for finite p-groups, showing
that the condition that γrpGq is abelian is not necessary. Moreover, we prove that the
result is also true if p “ 3, closing in that way the gap between the primes 2 and 5.

Theorem 4.10. Let G be a finite p-group and let r ě 2. If γrpGq is cyclic or if p is odd
and γrpGq can be generated with 2 elements, then there exist x1, . . . , xj´1, xj`1, . . . , xr P
G with 1 ď j ď r such that

γrpGq “ trx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gu.

Before proving Theorem 4.10 we point out that if γrpGq is generated by more than
2 elements then the result is no longer true. Indeed, as shown in [12, Example 2], for
every prime p and every r ě 3, there exists an infinite metabelian group G of nilpotency
class r such that γrpGq is elementary abelian or order p3 and γ3pGq ‰ Gγr . Even if
these groups are infinite, Proposition 1.3 ensures that such examples do also exist for
finite p-groups. This means that, as we have done with the commutator word, we have
completed the study of Problem 1.2 for lower central words in finite p-groups in terms
of the number of generators of the verbal subgroup.

We now prove Theorem 4.10 in two different sections dealing separately with two
different cases, namely, CrpGq “ G and CrpGq ‰ G.

4.2.1 Finite p-groups with CrpGq “ G

In order to apply Lemma 2.33 we will first need to find suitable generators for the verbal
subgroup γrpGq. We will do so now in Lemma 4.11 below. Then, as mentioned before,
we will be able to conclude by applying Lemma 2.23.
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Lemma 4.11. Let G be a finite p-group with dpγrpGqq “ 2 for some r ě 2. If CrpGq “
G, then there exist an integer j with 1 ď j ď r and x1, . . . , xj´1, xj`1, . . . , xr P G such
that

γrpGq “ xry1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gy

for every yi P x
G
i .

Proof. We may assume that ΦpγrpGqq “ 1, so using Proposition 2.36 we also have
γr`1pGq ď γrpGq

p “ 1. Notice that it suffices to find an integer j and x1, . . ., xj´1,
xj`1, . . ., xr P G such that

γrpGq “ xrx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gy,

since if yi P x
G
i , then yi “ xihi for some hi P G

1, which by Corollary 2.22 implies that

ry1, . . . , yj´1, g, yj`1, . . . , yrs “ rx1, . . . , xj´1, g, xj`1, . . . , xrs. (4.1)

We will proceed by induction on r. If r “ 2, then the result is true by Theorem 3.9.
Now, if there exists x P Gγr´1 such that γrpGq “ rx,Gs then we are done. Hence,

suppose rx,Gs ă γrpGq for every x P Gγr´1 . Observe that all subgroups V such that
γrpGq

p ď V ď γrpGq are normal in G by Proposition 2.36, so we have

V maxG γrpGq for every V max γrpGq.

If

D “
ź

V max γrpGq

DrpV q ă γr´1pGq,

then we could choose a γr´1-value not belonging to D, which contradicts Proposition
2.40. Therefore, assume D “ γr´1pGq.

Now, observe that there exists U max γrpGq such that rDrpUq, Gs “ U . Indeed,
otherwise, rDrpUq, Gs ď γrpGq

p for all U max γrpGq, and so DrpUq “ DrpV q for all
V max γrpGq, which is a contradiction by (i) and (ii) of Proposition 2.43. Now, by (iii)
of Proposition 2.43, we have rDrpUq, ErpV qs “ 1 for all V ‰ U , and so, since by Remark
2.39 all the subsets ErpV q are actually normal subgroups of G, we obtain

ź

V max γrpGq
U‰V

ErpV q ‰ G.

Hence, as G cannot be the union of two proper subgroups, we can choose

xr P Gz
´

ErpUq
ď ź

V max γrpGq
U‰V

ErpV q
¯

,

and thus Proposition 2.40 yields

γrpGq “ rγr´1pGq, xrs.

Define now Cxr “ Cγr´1pGqpxrq and notice that Cxr is normal in G since

rCxr , G, xrs ď rγr´1pGq, G, xrs ď γr`1pGq “ 1.
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Thus, we consider the quotient group G{Cxr . Since γr`1pGq “ 1 the map

η : γr´1pGq ÝÑ γrpGq

g ÞÝÑ rg, xrs

is a group epimorphism whose kernel is Cxr , so

|γr´1pG{Cxrq| “ p2.

Furthermore, since γrpGq ď Cxr , we have Cr´1pG{Cxrq “ G{Cxr . By inductive hypoth-
esis, there exist an integer j with 1 ď j ď r ´ 1 and x1, . . . , xj´1, xj`1, . . . , xr´1 P G
such that

γr´1pGq “ xrx1, . . . , xj´1, g, xj`1, . . . , xr´1s | g P GyCxr .

Finally,

γrpGq “ rγr´1pGq, xrs

“ rxrx1, . . . , xj´1, g, xj`1, . . . , xr´1s | g P GyCxr , xrs

“ xrx1, . . . , xj´1, g, xj`1, . . . , xr´1, xrs | g P Gy,

where the last equality holds by (4.1). This concludes the proof.

Theorem 4.12. Let G be a finite p-group with p odd and dpγrpGqq “ 2. If CrpGq “ G,
then there exist an integer j with 1 ď j ď r and x1, . . . , xj´1, xj`1, . . . , xr P G such that

γrpGq “ trx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gu.

Proof. By Lemma 4.11, there exist an integer j with 1 ď j ď r and x1, . . ., xj´1,
xj`1, . . ., xr P G such that

γrpGq “ xry1, . . . , yj´1, g, yj`1, . . . , yrs | g P Gy

for every yi P x
G
i . Choose arbitrarily yi P x

G
i for all i so that

γrpGq “xry1, . . . , yj´1, g1, yj`1, . . . , yrs, ry1, . . . , yj´1, g2, yj`1, . . . , yrsy

for some g1, g2 P G. Observe that γrpGq is powerful by Theorem 2.18, and let

U “ xry1, . . . , yj´1, g2, yj`1, . . . , yrsyγrpGq
p.

Notice also that U is normal in G since CrpGq “ G. Observe that γr`1pGq ď γrpGq
p,

and γrpGq
p is central of exponent p modulo γrpGq

p2 by Proposition 2.36. Therefore, we
apply Lemma 2.33 to both quotients

γrpGq{U and U{γrpGq
p

and we get

γrpGq
pk “ xry1, . . . , yj´1, g

pk

1 , yj`1, . . . , yrsyU
pk

and

Up
k
“ xry1, . . . , yj´1, g

pk

2 , yj`1, . . . , yrsyγrpGq
pk`1
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for every k ě 0. Furthermore, as γr`1pGq ď γrpGq
p, it follows from Corollary 2.22 that

ry1, . . . , yj´1, g1, yj`1, . . . , yrs
s ” ry1, . . . , yj´1, g

s
1, yj`1, . . . , yrs pmod Uq

and

ry1, . . . , yj´1, g2, yj`1, . . . , yrs
s ” ry1, . . . , yj´1, g

s
2, yj`1, . . . , yrs pmod γrpGq

pq

for each integer s. Thus, using Lemma 2.33 and Proposition 2.8 it can be easily proved
that

ry1, . . . , yj´1, g
pk

1 , yj`1, . . . , yrs
s

” ry1, . . . , yj´1, g1, yj`1, . . . , yrs
spk

” pry1, . . . , yj´1, g
s
1, yj`1, . . . , yrsuq

pk

” ry1, . . . , yj´1, g
spk

1 , yj`1, . . . , yrs pmod Up
k
q,

where u P U , and similarly

ry1, . . . , yj´1, g
pk

2 , yj`1, . . . , yrs
s

” ry1, . . . , yj´1, g
spk

2 , yj`1, . . . , yrs pmod γrpGq
pk`1

q.

Hence, for each k ě 0 we have

γrpGq
pk Ď

ď

gPG

γrpy1, . . . , yj´1, g, yj`1, . . . , yrqU
pk

for every yi P x
G
i , and similarly

Up
k
Ď

ď

gPG

γrpy1, . . . , yj´1, g, yj`1, . . . , yrqγrpGq
pk`1

for every yi P x
G
i .

The result now follows by repeatedly applying Lemma 2.23 to the subgroups of the
series

1 “ γrpGq
pe ď Up

e´1
ď γrpGq

pe´1
ď ¨ ¨ ¨ ď γrpGq

pi ď Up
i´1
ď ¨ ¨ ¨ ď γrpGq,

where pe is the exponent of γrpGq.

4.2.2 Finite p-groups with CrpGq ‰ G

To end the proof of Theorem 4.10, we need a further technical definition.

Definition 4.13. Let G be a finite p-group and let r ě 2. We define Crr pGq “ γrpGq
p

and
Cri pGq “ CγipGqpG{C

r
i`1pGqq

for all 2 ď i ď r ´ 1. In other words, for x P γipGq we have x P Cri pGq if and only if
rx,Gs ď Cri`1pGq.

As done in the previous section, we start by finding suitable generators for γrpGq.
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Lemma 4.14. Let G be a finite p-group with dpγrpGqq “ 2 for some r ě 2 and CrpGq ‰
G. Let U “ γr`1pGqγrpGq

p. Then, there exist an integer j with 2 ď j ď r, x1, . . . , xj´1 P

G and c P CrpGq such that

γrpGq “ xry1, . . . , yj´1, c, gj`1, . . . , grsyU

for every yk P x
G
k with k “ 1, . . . , j ´ 1 and every gj`1, . . . , gr P GzCrpGq. Moreover,

rγipGq, CrpGqs ď Cri pGq for every i P tj, j ` 1, . . . , ru.

Proof. Recall that γrpGq is powerful by Theorem 2.18. We will proceed by induction on
r. Suppose first r “ 2 and take an arbitrary x P GzC2pGq. Since C2pGq is maximal in
G by Proposition 2.36, we have G “ xxyC2pGq. Also, as D2pUq ď C2pGq by Proposition
2.41, we have x R D2pUq. Moreover, by Proposition 2.36 it follows that U is the unique
subgroup such that U maxG γrpGq, so Proposition 2.40 gives G “ rx,G1s. Thus we get

G1 “ rx,Gs “ rx, xxyC2pGqs “ rx,C2pGqs “ xrx, csyU

for some c P C2pGq. In addition, rG1, C2pGqs ď pG
1qp “ C2

2 pGq, as desired.
Take then r ě 3 and write C “ CrpGq for simplicity. We may assume γrpGq

p “

Crr pGq “ 1. Suppose first there exist x1, . . ., xr´1 P G such that

γrpGq “ rx1, . . . , xr´1, Cs.

Since rγrpGq, Cs “ 1 and since xgi “ xirxi, gs for every g P G, it follows from Corollary
2.22 that

γrpGq “ ry1, . . . , yr´1, Cs

for all yi P x
G
i . Hence, we may assume there are no such elements. In other words, if

x P Gγr´1 , then rx,Cs ‰ γrpGq. Note, however, that rx,Cs is normal in G since, as
above, rx,Csg “ rxg, Cs “ rx,Cs. Since U is the only non-trivial normal subgroup of G
properly contained in γrpGq, we get rx,Cs ď U for every γr´1-value x. Since γr´1pGq
is generated by all γr´1-values, we have, then, rγr´1pGq, Cs ď U . This, in particular,
implies that C ď ErpUq. As U is normal in G, it follows that ErpUq is a subgroup by
Remark 2.39, and since ErpUq ‰ G by Proposition 2.43, we deduce that C “ ErpUq.
Note that we have V maxγr´1pGq γrpGq for every V max γrpGq since

rγrpGq, γr´1pGqs ď rγrpGq, G
1s ď rγrpGq, G,Gs “ 1.

On the other hand, U “ γr`1pGq, so for every V max γrpGq with V ‰ U we have
rγrpGq, ErpV qs ď U X V “ 1, and then, ErpV q ď C. Therefore,

ď

tErpV q | V max γrpGqu Ď C

and thus, Proposition 2.40 yields

γrpGq “ rγr´1pGq, gs

for every g P GzC.
As rγrpGq, γr´1pGqs “ 1, the map

ηg : γr´1pGq ÝÑ γrpGq

x ÞÝÑ rx, gs
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is a group epimorphism for every g P GzC whose kernel is Cγr´1pGqpgq. Choose an
arbitrary g P GzC, write Cg “ Cγr´1pGqpgq for simplicity and note that

rCg, Gs “ rCg, xgyCs “ rCg, Cs ď rγr´1pGq, Cs ď U ď Cg,

where the last equality holds since U ď ZpGq. Thus, the subgroups Cg are all normal in
G, and we can consider the groups G{Cg. Now, γr´1pG{Cgq “ γr´1pGq{Cg is isomorphic
to γrpGq, so it has order p2 and exponent p. In addition γrpGq ď Cg since otherwise
rγrpGq, gs “ 1, which contradicts the fact that g R C. Thus,

G{Cg ‰ Cr´1pG{Cgq.

Moreover, since rγr´1pGq, Cs ď U ď Cg, it follows that

Cr´1pG{Cgq “ C{Cg

for all g P GzC. By Proposition 2.36, there is only one normal subgroup R of G with
Cg ă R ă γr´1pGq, so R “ CgγrpGq.

We apply now the inductive hypothesis to all groups G{Cg. It follows that for each
g P GzC, there exist jg ě 1, x1,g, . . . , xjg´1,g P G and cg P C such that

γr´1pGq “ xry1,g, . . . , yjg´1,g, cg, gjg`1, . . . , gr´1syCgγrpGq

for every yi,g P x
G
i,g, i “ 1, . . . , jg ´ 1 and every gjg`1, . . . , gr´1 P GzC. Moreover, if we

define
Ci,g{Cg “ Cr´1

i pG{Cgq,

then we have rγipGq, Cs ď Ci,g for all jg ď i ď r ´ 1.
Define now

U˚ “ γrpGq
ź

gPGzC

Cg,

which is, of course, normal in G.
We claim that U˚ “ CgγrpGq for all g P GzC. For that purpose, fix g P GzC and

take h P GzC arbitrary. Then CgCh is normal in G, so either CgCh “ γr´1pGq or
Ch ď CgγrpGq. In the first case we would have

γrpGq “ rγr´1pGq, hs “ rChCg, hs “ rCg, hs ď Cg,

which is a contradiction since rγrpGq, gs ‰ 1. Hence, Ch ď CgγrpGq, and so CgγrpGq “
ChCgγrpGq. Since this holds for all h P GzC, it follows that CgγrpGq “ U˚, and the
claim is proved.

Take now j “ maxtjg | g P GzCu. Then, there exist x1, . . . , xj´1 P G and c P C such
that

γr´1pGq “ xry1, . . . , yj´1, c, gj`1, . . . , gr´1syU
˚

for every yi P x
G
i , i “ 1, . . . , j´ 1 and every gj`1, . . . , gr´1 P GzC. Moreover, because of

the choice of j, we have
rγipGq, Cs ď

č

gPGzC

Ci,g

for all j ď i ď r ´ 1. Let us prove that
č

gPGzC

Ci,g ď Cri pGq
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for every i such that j ď i ď r ´ 1.

We proceed by induction on r ´ i. If r ´ i “ 1, that is, if i “ r ´ 1, then Cr´1,g “

Cg “ Cγr´1pGqpgq, and since G “ xGzCy, it follows that

č

gPGzC

Cg “ Cγr´1pGqpGq “ Crr´1pGq.

Assume now i ď r ´ 2. Then,

”

č

gPGzC

Ci,g , G
ı

ď
č

gPGzC

Ci`1,g ď Cri`1pGq

by the inductive hypothesis, and so,

č

gPGzC

Ci,g ď Cri pGq

as claimed.

Since rγrpGq, Cs “ 1 “ Crr pGq, we have rγipGq, Cs ď Cri pGq for every i such that
j ď i ď r.

Finally, take gr P GzC arbitrary. Observe that

rU˚, grs “ rCgrγrpGq, grs “ rγrpGq, grs “ U,

where the last equality holds since 1 ‰ rγrpGq, grs ď γr`1pGq. Hence,

γrpGq “ rγr´1pGq, grs

“ rxry1, . . . , yj´1, c, gj`1, . . . , gr´1syU
˚, grs

“ rxry1, . . . , yj´1, c, gj`1, . . . , gr´1sy, grsU

“ xry1, . . . , yj´1, c, gj`1, . . . , grsyU,

and the proof is complete.

Theorem 4.15. Let G be a finite p-group with p odd and dpγrpGqq “ 2 for some r ě 2.
If CrpGq ‰ G, then there exist an integer j with 1 ď j ď r and x1, . . . , xj´1, xj`1, . . .,
xr P G such that

γrpGq “ trx1, . . . , xj´1, c, xj`1, . . . , xrs | c P CrpGqu.

Proof. Let U “ γr`1pGqγrpGq
p and write C “ CrpGq for simplicity. By Lemma 4.14,

there exist an integer j with 1 ď j ď r, x1, . . . , xj´1 P G and c P C such that

γrpGq “ xry1, . . . , yj´1, c, gj`1, . . . , grsyU

for every yi P x
G
i , i “ 1, . . . , j ´ 1 and every gj`1, . . . , gr P GzC. Moreover, rγipGq, Cs ď

Cri pGq for every j ď i ď r.

Write x “ ry1, . . . , yj´1s. It follows from the Hall-Witt identity and standard com-
mutator calculus that

rx, c, gj`1s “ rc, gj`1, xs
´1rgj`1, x, cs

´1z
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for some z P γj`2pGq. On the one hand, we have

rz, gj`2, . . . , grs P γr`1pGq ď U.

On the other hand,

rgj`1, x, cs P rγjpGq, Cs ď Crj pGq X γj`1pGq,

and since rCri pGq, Gs ď Cri`1pGq for every i ď r ´ 1, we have

rCrj pGq X γj`1pGq, gj`2, . . . , grs ď Crr´1pGq X γrpGq ď U,

where the last inequality holds since Crr´1pGq X γrpGq is normal in G but γrpGq ď
Crr´1pGq. Thus,

rx, c, gj`1, . . . , grs ” rx, rc, gj`1s, gj`2, . . . , grs pmod Uq,

so in particular
γrpGq “ xrx, rc, gj`1s, gj`2, . . . , grsyU.

Take now gr`1 P GzC arbitrary. Since, clearly, we have rU, gr`1s ď γrpGq
p, it follows

that
U “ xrx, rc, gj`1s, gj`2, . . . , gr`1syγrpGq

p.

Now, observe that on the one hand we have

rγj´1pGq, C, C,r´j Gs ď rγjpGq, C,r´j Gs

ď rCrj pGq,r´j Gs

ď Crr pGq “ γrpGq
p,

which is central of exponent p modulo Up, and on the other hand we have

rγj´1pGq, G
1, G1,r´j Gs ď γr`3pGq ď Up,

which is central of exponent p modulo γrpGq
p2 . Therefore, we can apply Lemma 2.33 to

both quotients
γrpGq{U and U{γrpGq

p.

As the gj`1, . . . , gr are all arbitrary in GzC, wich is a normal subset of G, we can
conclude in the same way as in the proof of Theorem 4.12.

4.3 Outer commutator words

There is nothing regarding this topic in the existing literature if we consider outer
commutator words w that are not lower central words. Hence, being the simplest case,
and as it has been done in the previous chapters, we start by assuming that the verbal
subgroup wpGq is cyclic. Nevertheless, even if solving the problem when the verbal
subgroup is cyclic was not too complicated for lower central words, this is not the
case when dealing with general outer commutator words. As a matter of fact, our
only achievement in this direction is that if G is a finite p-group with G2 cyclic, then
G2 “ Gδ2 . A simple lemma is required before we proceed to the proof.
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Lemma 4.16. Let G be a group with G2 cyclic and let x1, x2, x3 P G and g P G1. Then,

rrx1, x2s, rx3, gss
n “ rrx1, x2s, rx3, g

nss

for every n ě 0.

Proof. By Lemma 4.3, the nilpotency class of G1 is 2, so

rrx1, x2s, rx3, gss
n “ rrx1, x2s, rx3, gs

ns.

Note also that rx3, gs
n “ rx3, g

nsc with c P G2, whence

rrx1, x2s, rx3, gs
ns “ rrx1, x2s, rx3, g

nscs

“ rrx1, x2s, csrrx1, x2s, rx3, g
nssc

“ rrx1, x2s, rx3, g
nss,

and the result follows.

Theorem 4.17. Let G be a finite p-group with G2 cyclic. Then there exist x1, x2, x3 P G
such that

G2 “ Gδ2 “ trrx1, x2s, rx3, gss | g P Gu.

Proof. By Lemma 4.16 we can assume that for every x1, x2, x3, x4 P G such that G2 “
xrrx1, x2s, rx3, x4ssy we have x1, x2, x3, x4 R G

1. Thus, fix a generator rrx1, x2s, rx3, x4ss

of G2, and it follows from Lemma 2.21 that rry1, y2s, ry3, y4ss is also a generator of G2

for every yi P x
G
i with i “ 1, 2, 3, 4. Recall that Lemma 4.3 yields γ3pG

1q “ 1, so

rrx1, x2s, rx3, x4ss
n “ rrx1, x2s

n, rx3, x4ss “ rrx1, x2s, rx3, x4s
ns

for every n ě 0. Now, let k be the maximum number such that for every j ď k, every
0 ď r ď p´ 1 and every ys P xxsy

G with s “ 1, 2, 3, 4 we have

rry1, y2s, ry3, y4ss
pjr ” rryp

jr
1 , y2s, ry3, y4ss pmod pG2qp

j`1
q,

rry1, y2s, ry3, y4ss
pjr ” rry1, y

pjr
2 s, ry3, y4ss pmod pG2qp

j`1
q,

rry1, y2s, ry3, y4ss
pjr ” rry1, y2s, ry

pjr
3 , y4ss pmod pG2qp

j`1
q,

rry1, y2s, ry3, y4ss
pjr ” rry1, y2s, ry3, y

pjr
4 ss pmod pG2qp

j`1
q.

(4.2)

Thus, we may assume that

rrx1, x2s, rx3, x4ss
pk`1

ı rrx1, x2s, rx
pk`1

3 , x4ss pmod pG2qp
k`2
q.

From Lemma 2.6 we obtain

rxp
k`1

3 , x4s “ rx3, x4s
pk`1

rx3, x4, x3s
pp
k`1

2 q ¨ ¨ ¨ rx3, x4, x3,
pk`1´1. . . , x3sc

with c P G2. If

rrx1, x2s, rx3, x4, x3, i´1. . ., x3s
pp
k`1

i qs ď pG2qp
k`2

for every 2 ď i ď pk`1, then

rrx1, x2s, rx3, x4ss
pk`1

” rrx1, x2s, rx
pk`1

3 , x4ss pmod pG2qp
k`2
q,
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which is a contradiction. Hence, there exist 2 ď i ď pk`1 and j ď k ` 1 such that

pG2qp
j
“ xrrx1, x2s, rx3, x4, x3, i´1. . ., x3ss

pp
k`1

i qsy

“ xrrx1, x2s, rx3, rx3, x4, x3, i´2. . ., x3sss
pp
k`1

i qy.

In particular it follows that

pG2qp
l
“ xrrx1, x2s, rx3, rx3, x4, x3, i´2. . ., x3ssy

for some 0 ď l ď j. Now Lemma 4.16 yields

pG2qp
l
Ď trrx1, x2s, rx3, css | c P G

1u,

and in particular

pG2qp
k`1

Ď trrx1, x2s, rx3, css | c P G
1u.

Observe that from Lemma 2.23 and from the congruences in (4.2) we have

G2{pG2qp
k`1

“ trrx1, x2s, rx3, gss | g P Gu,

and thus, for a general element h of G2 there exist g P G and c P G1 such that

h “ rrx1, x2s, rx3, cssrrx1, x2s, rx3, gss.

Now, since γ3pG
1q “ 1, we have

rrx1, x2s, rx3, cssrrx1, x2s, rx3, gss “ rrx1, x2s, rx3, cssrrx1, x2s, rx3, gs
cs

“ rrx1, x2s, rx3, csrx3, gs
cs

“ rrx1, x2s, rx3, gcss,

so that h P trrx1, x2s, rx3, gss | g P Gu, as desired.

A key step for the sake of proving the result for all outer commutators words would
be solving the following.

Problem 4.18. Let G be a finite p-group such that Gprq is cyclic for some r ě 3. Is
then Gprq “ Gδr?

Indeed, if one manages to give an affirmative answer to this problem, then it looks
reasonable to think that a similar procedure as the one introduced by Fernández-Alcober
and Morigi in [19] could be applied. If w “ rα, βs is an outer commutator word, they
define the height of w as the maximum of the heights of α and β plus 1, where the height
of the word x in one variable is assumed to be 0. Thus, for r ě 1, the words γr and δr
have heights r ´ 1 and r, respectively. Intuitively, one can see for a fixed height r that
the derived word δr is the “heaviest” outer commutator word of height r, as it is the one
with more variables, while the word γr`1 would be the “lightest” one. Following this
intuition, they introduce the notion of defect of an outer commutator word, which we
will not define here, according to which the word δr has defect 0, while the word γr`1

is the one with biggest defect among all outer commutator words of height r.
With this in mind, once the result holds for all the derived words, one could, following

the ideas in [19], fix a height and then try to apply induction of the defect of the word,
so that the result would hold for all outer commutator words.





Chapter 5

Profinite groups

A topological group G is a group endowed with a topology such that the function

GˆG ÝÑ G

pg, hq ÞÝÑ gh´1

is a continuous function with respect to the topology. Thus, topological groups are
mathematical objects with both algebraic and topological structures. The following
basic properties of topological groups can be proved easily.

Proposition 5.1. Let G be a topological group. Then:

(i) If H is an open (resp. closed) subgroup of G, then gH is an open (resp. closed)
subset of G for every g P G.

(ii) If H is an open subgroup of G, then H is closed in G.

(iii) If G is compact and H is an open subgroup of G, then H has finite index in G.

Part (iii) of the previous proposition shows how the topological properties of a topo-
logical group can give information about its algebraic structure.

A large part of this thesis, specially Part II, is devoted to the study of a special
kind of topological groups, namely, the profinite groups. These groups arise naturally in
many different fields of mathematics such as Galois theory and algebraic geometry.

Definition 5.2. A topological group is said to be profinite if it is compact, Hausdorff
and totally disconnected.

Therefore, by Proposition 5.1, every open subgroup of a profinite group G has finite
index in G. Actually, it can be proved that the collection of all open normal subgroups
of G forms an open base of the neighborhoods of the identity. This, in particular, implies
that the collection of the cosets of all open normal subgroups of G forms an open base
of G.

In Part II we will mainly work with countably based profinite groups. These groups
can be characterised in the following way.
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Theorem 5.3 ([81, Proposition 4.1.3]). Let G be a profinite group. Then the following
are equivalent:

(i) G is countably based.

(ii) G has countably many open normal subgroups.

(iii) G has a chain G “ G0 ě G1 ě ¨ ¨ ¨ of open normal subgroups such that Xiě0Gi “
1. Moreover, the family tGiuiě0 forms an open base of the neighborhoods of the
identity.

The most studied countably based groups are the finitely generated profinite groups.
However, in the context of profinite groups, one needs to redefine what finitely gener-
ated means. Indeed, it is a well-known result that a profinite group is either finite or
uncountable. Therefore, if a profinite group G is finitely generated (in the usual sense)
by a finite subset S of G that is closed under taking inverses, then

G “
ď

ně0

S˚n,

where S˚n “ th1 ¨ ¨ ¨hn | hi P S for all i “ 1, . . . , nu. In particular G is countable, and
so finite. This problem disappears with the following definition.

Definition 5.4. A profinite group G is said to be topologically finitely generated or,
abusing terminology, just finitely generated, if there exists a finite subset S of G such
that G “ xSy.

A well-understood type of finitely generated profinite groups are the so-called p-
adic analytic pro-p groups. These are pro-p groups with the structure of an analytic
manifold over Qp, the field of p-adic numbers. We will study these groups in more detail
in Section 6.3. A typical example of a p-adic analytic pro-p group is the group Zp of
p-adic integers, which is defined as the inverse limit of all the cyclic groups of order pn

for n ě 0, endowed with the discrete topology.
As a matter of fact, a profinite group is also characterised as the inverse limit of an

inverse system of finite discrete groups. In this sense, these groups are usually seen as a
generalisation of finite groups, as they share many properties with their finite quotients.
More generally, we define the following.

Definition 5.5. Let C be a class of finite groups closed under taking subgroups and
direct products. A pro-C group is a group which is the inverse limit of an inverse system
of groups in C endowed with the discrete topology.

When C is the class of all finite groups, then a pro-C group is just a general profinite
group. Other typical examples of the class C are the class of finite p-groups, the class of
finite cyclic groups, the class of finite nilpotent groups, the class of finite solvable groups,
etc. In those cases the pro-C groups that we obtain are called pro-p groups, procyclic
groups, pronilpotent groups and prosolvable groups.

We end this introduction with a standard result of profinite groups that will be
frequently used.

Proposition 5.6. Let G be a profinite group and let K be a subset of G. Then

K “
č

NĲoG

KN.
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Since profinite groups are Hausdorff, it can be seen that the subset t1u is closed. As
a consequence we get the following.

Corollary 5.7. Profinite groups are residually finite.

A good and much more extensive background on these groups can be found in [13]
or in [81].

5.1 Generalisation to pro-p groups

We will show in this section that all the results we have achieved in the previous chapters
can be extended from abstract finite p-groups to pro-p groups. In fact, the following
theorem works for any word and for profinite groups in general.

Theorem 5.8. Let w be a word in r variables and let G be a profinite group such that
wpG{Nq “ pG{Nqw for every N Ĳo G. Then wpGq “ Gw. Moreover, if for every
N Ĳo G there exist 1 ď jN ď r and x1, . . . , xjN´1, xjN`1, . . . , xr P G{N such that

wpG{Nq “ twpx1, . . . , xjN´1, g, xjN`1, . . . , xrq | g P G{Nu,

then there exists 1 ď j ď r and x1, . . . , xj´1, xj`1, . . . , xr P G such that

wpGq “ twpx1, . . . , xj´1, g, xj`1, . . . , xrq | g P Gu.

Proof. The word map w from G ˆ
r
¨ ¨ ¨ ˆ G to G is a continuous map, and so, since

Gˆ
r
¨ ¨ ¨ ˆG is compact, it follows that Gw is a closed subset of G.

Thus, for the first assertion, just note that

wpGq “ XNĲoG wpGqN “ XNĲoG GwN “ Gw “ Gw,

and so wpGq “ Gw.
For the second assertion, we first claim that there exists 1 ď j ď r not depending on

any open subgroup such that for every N Ĳo G there exist xN,1, . . ., xN,j´1, xN,j`1, . . .,
xN,r P G such that

wpGqN{N “ twpxN,1, . . . , xN,j´1, g, xN,j`1, . . . , xN,rqN | g P Gu.

Thus, for every N Ĳo G, write jN for the smallest integer such that there exist xN,1, . . .,
xN,jN´1, xN,jN`1, . . ., xN,r P G such that

wpGqN{N “ twpxN,1, . . . , xN,jN´1, g, xN,jN`1, . . . , xN,rqN | g P Gu.

Note that the existence of jN is guaranteed by the hypothesis.
Let M be an open normal subgroup of G for which jM is maximal in the set tjN |

N Ĳo Gu. We will prove that j “ jM has the required property. Indeed, take N Ĳo G
arbitrary and consider the intersection NXM , which is also open and normal in G. Now,
as N XM ď M , we have jM ď jNXM , and by maximality, it follows that jM “ jNXM .
Again, since N XM ď N , we have

wpGqN{N “ twpxN,1, . . . , xN,jM´1, g, xN,jM`1, . . . , xN,rqN | g P Gu,

and the claim is proved.
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Now, for every N Ĳo G, write

XN “
 

px1, . . . , xj´1, xj`1, . . . , xrq P Gˆ r´1. . . ˆG |

wpGqN{N “ twpx1, . . . , xj´1, g, xj`1, . . . , xrqN | g P Gu
(

.

Observe that if M,N Ĳo G such that M ď N , then XM Ď XN . Hence, if tNiuiPI is a
finite family of open normal subgroups of G, it follows that

č

iPI

XNi Ě XXiPINi ,

and since XiPINi is non-empty by assumption, we deduce that the family tXNuNĲoG

has the finite intersection property. Therefore, since Gˆ
r´1
¨ ¨ ¨ ˆG is compact, we have

č

NĲoG

XN ‰ ∅.

Thus, if px1, . . . , xj´1, xj`1, . . . , xrq belongs to this intersection, write

KpGq “ twpx1, . . . , xj´1, g, xj`1, . . . , xrq | g P Gu,

so that we have
wpGqN{N “ KpGqN{N

for all N Ĳo G.
Now, in a similar way as Gw, note that KpGq is also closed in G, being the image of

a continuous function from G to G. Thus,

wpGq “
č

NĲoG

wpGqN “
č

NĲoG

KpGqN “ KpGq “ KpGq,

and it follows that wpGq “ KpGq.

In particular, applying this to our results, we obtain the following.

Corollary 5.9. Let G be a pro-p group. Then:

(i) If G1 can be generated topologically by 2 elements, then there exists x P G such
that G1 “ KxpGq.

(ii) If p ě 5 and G1 is topologically generated by 3 elements, then G1 “ KpGq.

(iii) Suppose G1 is topologically finitely generated and write d “ logp |G
1 : pG1qp|. If

d ď p ´ 1 and the action of G on G1 is uniserial modulo pG1qp, then there exists
x P G such that G1 “ KxpGq.

(iv) For r ě 2, if γrpGq can be generated topologically by 2 elements, then there exist
x1, . . . , xj´1, xj`1, . . . , xr P G with 1 ď j ď r such that

γrpGq “ trx1, . . . , xj´1, g, xj`1, . . . , xrs | g P Gu.

(v) If G2 is procyclic, then there exist x1, x2, x3 P G such that

G2 “ trrx1, x2s, rx3, gss | g P Gu.

Proof. Just apply Theorem 5.8 to Theorems 3.9, 3.18, 3.19, 4.10 and 4.17.
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Hausdorff dimension in profinite
groups





Chapter 6

Hausdorff dimension and
Hausdorff spectra in profinite
groups

Even if there is not a formal definition for the concept of the dimension of a geometrical
object in general, we understand it as the space that the object covers around a point,
or in other words, the number of coordinates that we need to describe it. Indeed,
intuitively, we can say that the dimension of the unit disc D, for example, is 2 because
it can be described with 2 coordinates, while the dimension of its boundary S2 is 1, as
locally it is the same as a line.

Thus, while we can talk about the area of D or the length of S2, it does not make
sense to talk about the length of D (which intuitively would be 8), or about the area
of S2 (which would be 0). Nevertheless, there are some pathological objects in which
the concept of dimension is not as clear as in the cases of D and S2. A good example
of such an object is the so-called Koch snowflake, defined by Von Koch in [52]. This is
a curve that encloses a finite area but has infinite length, somehow suggesting that its
dimension should be greater than 1, but also less than 2, as it does not cover the plane.

Because of this, the concept of topological dimension was generalised to what is
called fractal dimension, so that some objects may not have integer dimension. The
problem, however, is that the way in which one can define fractal dimensions is not
unique. The fractal dimension that we will mainly study in this second part of the
thesis is the so-called Hausdorff dimension. This is one of the oldest and more common
fractal dimensions in the literature and was introduced in 1918 by Felix Hausdorff (see
[31]).

Even if this fractal dimension was originally defined for euclidean spaces, one can
see in its definition that the only requirement for the base space is to be a metric space.
As we will see, certain profinite groups, namely, the countably based profinite groups,
can always be naturally equipped with a metric and, consequently, this notion can also
be defined in such groups. The constructions of the Hausdorff dimension function that
comes next in Section 6.1 will be directed to countably based profinite groups, but one
can easily extend their definitions to general metric spaces.
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6.1 Hausdorff dimension in profinite groups

For the constructions of the Hausdorff dimension function that we will give in this
section, the following definition is required.

Definition 6.1. Let G be a profinite group. A filtration series S of G is a descending
chain of open normal subgroups G “ G0 ě G1 ě G2 ě ¨ ¨ ¨ such that Xiě1Gi “ 1.

Let G be a countably based profinite group. By Theorem 5.3 this is equivalent to G
having a filtration series. Thus, suppose S : G “ G0 ě G1 ě ¨ ¨ ¨ is a filtration series of
G. Then, the subgroups of S form an open base of neighborhoods of the identity, and
thus, the family B consisting of all cosets of the subgroups of S forms an open basis
of G. Moreover, the filtration series S induces a translation-invariant metric dS on G
defined as

dSpx, yq “ inft|G : Gn|
´1 | xy´1 P Gnu,

where x, y P G. Then, the Hausdorff dimension function hdimS
G of G with respect to

the filtration series S can be defined in the following way.
Let X be a subset of G. We say that C is a ρ-covering of X, where ρ P Rě0, if C is

a covering of X such that for every B P C we have diampBq ď ρ, where the diameter is
defined with respect to the distance dS . For each δ, ρ P Rě0 we define

Hδ
ρpXq “ inf

#

ÿ

BPC
diampBqδ | C is a ρ-covering of X such that C Ď B

+

,

and we write

HδpXq “ lim
ρÑ0

Hδ
ρpXq.

Now, according to [16, Page 31], there exists a real number ∆ such that HδpXq “ 8 if
δ ă ∆ and HδpXq “ 0 if δ ą ∆. This number ∆ is called the Hausdorff dimension of
X with respect to the filtration series S and we denote it by hdimS

GpXq.

6.2 The Hausdorff dimension of closed subgroups

In the last decades, based on the pioneering work of Abercrombie in [1] and Barnea
and Shalev in [6], the concept of Hausdorff dimension has led to interesting and fruitful
applications in the context of countably based profinite groups. In this work, Barnea
and Shalev gave a group theoretic formula to compute the Hausdorff dimension of the
closed subgroups of G.

Theorem 6.2 ([6, Theorem 2.4]). Let G be a countably based profinite group and let
S : G “ G0 ě G1 ě ¨ ¨ ¨ be a filtration series of G. If H is a closed subgroup of G, then

hdimS
GpHq “ lim inf

nÑ8

log |HGn : Gn|

log |G : Gn|
P r0, 1s.

Thus, the Hausdorff dimension of a closed subgroup H of G can be regarded as a
“logarithmic density” of H in G. At this point, it is completely natural to ask which is
the range of Hausdorff dimensions of all closed subgroups of G. The following notion
reflects this.
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Definition 6.3. Let G be a countably based profinite group and S : G “ G0 ě G1 ě ¨ ¨ ¨

a filtration series of G. Then, the Hausdorff spectrum of G with respect to S is

hspecSpGq “ thdimS
GpHq | H ďc Gu.

Even for comparatively well-behaved groups, such as p-adic analytic pro-p groups,
the Hausdorff dimension function, and hence also the Hausdorff spectrum, is known
to be sensitive to the choice of the underlying filtration series. The following example
shows that even if the Hausdorff dimension of a closed subgroup H of a group G lies
in the open interval p0, 1q for a certain filtration series, there exist other filtration series
for which the Hausdorff dimension of H is 0 or 1.

Example 6.4. Let p be a prime and G “ Zp ‘ Zp. Consider the closed subgroup

H “ t0u ‘ Zp. If we define S1 : G “ G0 ě G1 ě ¨ ¨ ¨ where Gn “ Zp
n

p ‘ Zp
n

p , then

hdimS1
G pHq “ lim inf

nÑ8

log |HGn : Gn|

log |G : Gn|
“ lim inf

nÑ8

n

2n
“

1

2
.

However, if S2 : G “ G0 ě G1 ě ¨ ¨ ¨ where Gn “ Zp
n

p ‘ Zp
n2

p , then

hdimS2
G pHq “ lim inf

nÑ8

n2

n` n2
“ 1,

while if S3 : G “ G0 ě G1 ě ¨ ¨ ¨ where Gn “ Zp
n2

p ‘ Zp
n

p , then

hdimS3
G pHq “ lim inf

nÑ8

n

n` n2
“ 0.

For a finitely generated pro-p group G, however, there are natural choices for S that
encapsulate group-theoretic properties of G. These are the lower p-series L of G, the
dimension subgroup series D of G, the p-power series P of G, the iterated p-power series
P˚ of G and the Frattini series F of G, and are defined recursively by:

L : P1pGq “ G and PipGq “ Pi´1pGq
prPi´1pGq, Gs for i ě 2,

D : D1pGq “ G and DipGq “ Dri{pspGq
p
ź

1ďjăi
rDjpGq, Di´jpGqs for i ě 2,

P : πipGq “ Gp
i
“ xgp

i
| g P Gy for i ě 0,

P˚ : π˚0 pGq “ G and π˚i pGq “ π˚i´1pGq
p for i ě 1,

F : Φ0pGq “ G and ΦipGq “ Φi´1pGq
prΦi´1pGq,Φi´1pGqs for i ě 1.

Being G finitely generated ensures that all the terms of these filtration series have
finite index in G, while being G a pro-p group implies that their intersections are trivial.
We refer to these filtration series loosely as the five standard filtration series.

6.3 p-adic analytic groups and finite Hausdorff spectra

We will now focus on p-adic analytic pro-p groups. The structure of these groups is well
understood, as there exist a number of characterisations of such groups. We include
some of them in the following theorem. For the proofs and definitions see [13, Interlude
A].
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Theorem 6.5. Let G be a pro-p group. Then the following are equivalent:

(i) G is p-adic analytic.

(ii) G has finite rank.

(iii) G is finitely generated and has an open normal powerful subgroup.

(iv) G is finitely generated and has an open normal uniform subgroup.

(v) G has polynomial subgroup growth.

(vi) G is the product of finitely many procyclic subgroups.

It is natural to ask, at this point, whether there is a characterisation of p-adic
analytic pro-p groups that involves Hausdorff dimension or the Hausdorff spectra with
respect to a certain filtration series. The following theorem will motivate a possible
characterisation involving the Hausdorff spectra. It was first proved by Barnea and
Shalev in [6] for the p-power filtration. The result for the other filtration series was
proved by Klopsch, Thillaisundaram and Zugadi-Reizabal in [51].

Theorem 6.6 ([6, Theorem 1.1] and [51, Proposition 1.5]). Let G be an infinite p-adic
analytic group and H a closed subgroup of G. Then, for S P tD,P,P˚,Fu, we have

hdimS
GpHq “

dimpHq

dimpGq
,

where dimpHq and dimpGq stand for the analytic dimension of H and G respectively.

Observe that closed subgroups of p-adic analytic pro-p groups are always p-adic
analytic (this is clear from some of the characterisations of such groups in Theorem 6.5),
so it makes sense to talk about the analytic dimension of closed subgroups. Theorem
6.6, in particular, shows that if G is a p-adic analytic pro-p group, then

hspecSpGq Ď

"

0,
1

dimpGq
, . . . ,

dimpGq ´ 1

dimpGq
, 1

*

(6.1)

for any S P tD,P,P˚,Fu.
If S “ L, then the behaviour of the Hausdorff dimension and the Hausdorff spectra

is not clear. It is shown in [51, Example 4.1] that there exists a family of p-adic analytic
pro-p groups Gpm, dq, where m, d ě 0, such that

| hspecLpGpm, dqq|

dimpGpm, dqq
Ñ d` 1 as mÑ8,

which is unbounded as d tends to infinity.

Problem 6.7. Let G be a p-adic analytic pro-p group. Is then hspecLpGq finite?

Turning back to (6.1), one of the main questions in the theory of Hausdorff dimension
in profinite groups is whether this fact can actually be turned into a characterisation of
p-adic analytic pro-p groups. More formally:

Problem 6.8. Let G be a finitely generated pro-p group. Suppose that S P tL, D, P,
P˚, Fu and | hspecSpGq| ă 8. Does it follow that G is p-adic analytic?
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This problem was resolved by Klopsch, Thillaisundaram and Zugadi-Reizabal for
finitely generated solvable pro-p groups in [51], but the general answer is not known
yet. We do have, however, some structural results regarding p-adic analytic groups
and Hausdorff dimension that, in fact, characterise these groups. Again, the following
theorem was first proved by Barnea and Shalev for the p-power filtration and extended
to other filtrations in [51].

Theorem 6.9 ([51, Theorem 1.9]). Let G be a finitely generated pro-p group, and let
S P tD,P,P˚,Fu. Then the following are equivalent:

(i) The group G is p-adic analytic.

(ii) There exists a constant c P p0, 1s such that every infinite closed subgroup H ď G
satisfies hdimS

GpHq ě c.

(iii) Every infinite closed subgroup H ď G satisfies hdimS
GpHq ą 0.

(iv) The group G is finite, or there exists a closed subgroup H ď G such that H – Zp
and hdimS

GpHq ą 0.

6.4 Infinite Hausdorff spectra

All the examples of non p-adic analytic pro-p groups that have been found so far have
infinite Hausdorff spectra with respect to the five standard filtration series (and also with
respect to other filtration series that arise naturally in some specific profinite groups).
A much-studied example of a group with infinite Hausdorff spectra is the so-called
Nottingham group (see [6, Theorem 1.6], [5], [14], [15]). Nevertheless, the Nottingham
group has not full Hausdorff spectrum, meaning that its Hausdorff spectrum does not
cover the full unit interval r0, 1s. Even if Barnea and Shalev did construct in [6, Lemma
4.1, Lemma 4.3] some profinite groups with full Hausdorff spectrum, these were all
infinitely generated. Therefore, they asked whether there exists a finitely generated pro-
p group with full Hausdorff spectrum with respect to the p-power filtration series. Of
course, this problem can be adjusted to any of the five standard filtration series:

Problem 6.10 ([6, Problem 5]). Does there exist a finitely generated pro-p group with
full Hausdorff spectrum with respect to any of the five standard filtration series?

The first example of a finitely generated pro-p group that solves this problem was
the group

W “ Cp ô Zp ” lim
ÐÝ
n

Cp o Cpn .

This group can be regarded as the “minimal” finitely generated non p-adic analytic pro-p
group.

Theorem 6.11 ([71, Proposition 4.5] and [49, VIII, §7]). Let S P tD,P,P˚,Fu. Then

hspecSpW q “ r0, 1s.

Nevertheless, for the filtration series L, the Hausdorff spectrum does not cover the
full interval r0, 1s. Indeed, as shown in [50, Corollary 2.11], we have

hspecL “ r0, 1{2s Y

"

1

2
`

m

2pn
| n ě 0 and 1 ď m ď pn ´ 1

*

Y t1u.
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The group W will be studied in more detail in the next chapter.
It was also shown by Klopsch in [49] that all branch profinite groups have full Haus-

dorff spectrum with respect to the natural congruence filtration, so, in particular, finitely
generated branch groups have full Hausdorff spectrum. More complicated examples of
profinite groups with full Hausdorff spectra can be found, for example, in [2],[7] and
[22].



Chapter 7

Normal Hausdorff spectra of
profinite groups

As pointed out by Shalev in [71, §4.7], it is natural to consider the subset of the Hausdorff
spectrum of a profinite group G that stems from considering closed normal subgroups
of G instead of just closed subgroups. More formally, we define the following.

Definition 7.1. Let G be a countably based profinite group and S : G “ G0 ě G1 ě ¨ ¨ ¨

a filtration series of G. Then, the normal Hausdorff spectrum of G with respect to S is

hspecSĲpGq “ thdimS
GpHq | H Ĳc Gu.

In this way, the normal Hausdorff spectrum of G provides a snapshot of the normal
subgroup structure of G. While plenty of examples of groups with infinite Hausdorff
spectra are known, this is not the case for the normal Hausdorff spectra. Indeed, if
we consider the examples of the finitely generated profinite groups with full Hausdorff
spectra in the previous chapter, then all of them have finite normal Hausdorff spectra
(actually in almost all of the cases the normal Hausdorff spectrum is just t0, 1u).

Thus, already twenty years ago, Shalev [71, Problem 16] put up the challenge to
construct finitely generated pro-p groups with infinite normal Hausdorff spectra and he
asked whether the normal Hausdorff spectra could even contain infinite real intervals.
Recently, Klopsch and Thillaisundaram in [50] succeeded in constructing such examples
with respect to the five standard filtration series. However, even though the normal
Hausdorff spectra of their groups each contain infinite intervals, none of the spectra
covers the full interval r0, 1s. They thus presented the following problems.

Problem 7.2 ([50, Problem 1.2]). Does there exist a finitely generated pro-p group G

(i) with countably infinite normal Hausdorff spectrum hspecSĲpGq,

(ii) with full normal Hausdorff spectrum hspecSĲpGq “ r0, 1s,

(iii) such that 1 is not an isolated point in hspecSĲpGq,

for one or several of the standard filtration series S P tL,D,P,P˚,Fu?

71
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In this chapter we will modify the construction of Klopsch and Thillaisundaram to
produce the first example of a finitely generated pro-p group with full normal Hausdorff
spectrum r0, 1s with respect to any of the five standard filtration series, solving in this
way (ii) and (iii) of Problem 7.2 and also Problem 6.10 for all five standard series (as
we have seen in Theorem 6.11, the latter problem was already solved previously for the
series D, P, P˚ and F).

Section 7.2 will be devoted to producing such a pro-p group when p is odd and Section
7.3 when p “ 2. First, we introduce in Section 7.1 some technical results that will be
really helpful. From now on, all subgroups of profinite groups are tacitly understood to
be closed subgroups to simplify the notation.

7.1 A criterion for a full normal Hausdorff spectra

The main ingredient of the proof of Theorems 7.7 and 7.20, where it is proved that
the groups that we will construct have full normal Hausdorff spectra, is Proposition 7.6
below. For the proof we first establish two lemmas. The first one is a variation of [51,
Proposition 5.2].

Lemma 7.3. Let G be a countably based pro-p group, and let Z Ĳc G be infinite. Let
S : Z0 ě Z1 ě . . . be a filtration series of Z consisting of G-invariant subgroups Zi Ĳo Z.
Let η P r0, 1s be such that the normal closure in G of every finite collection of elements
z1, . . . , zm P Z satisfies hdimS

Zpxz1, . . . , zmy
Gq ď η. Then there exists H ďc Z with

H Ĳ G such that hdimS
ZpHq “ η.

Proof. The claim can be verified in close analogy to the proof of [51, Proposition 5.2].
One constructs the subgroup H ďc Z as H “ xH0YH1Y¨ ¨ ¨ y, where 1 “ H0 ď H1 ď ¨ ¨ ¨

is a suitable ascending sequence of subgroups Hi ďc Z each of which is the normal
closure in G of finitely many elements. To see that the argument in op. cit. can be used,
it suffices to observe that, for each i P N, the pro-p group G{Zi acts nilpotently on the
finite p-group Z{Zi (and its quotients by G-invariant subgroups).

Lemma 7.4. Let G be a countably based profinite group with an infinite abelian normal
subgroup Z Ĳc G and x P G such that G “ xxyCGpZq. Let S : Z “ Z0 ě Z1 ě ¨ ¨ ¨ be
a filtration series of Z consisting of G-invariant subgroups Zi Ĳo Z; for i ě 0, let pei

be the exponent of Z{Zi. Suppose that, for every i ě 0, there exist ni P N and Ni ďc Z
such that

γni`1pGq X Z ď Zi ď Ni and lim inf
iÑ8

eini
logp|Z : Ni|

“ 0.

Then every finite collection of elements z1, . . . , zm P Z satisfies

hdimS
Zpxz1, . . . , zmy

Gq “ 0.

Proof. Consider first a single element z P Z. Since G “ xxyCGpZq, we have

xzyG “ xz, rz, xs, rz, x, xs, . . .y,

and since γni`1pGq X Z ď Zi for i P N, we deduce that

xzyGZi “ xz, rz, xs, . . . , rz, x, ni´1. . . , xsyZi;
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in particular, since Z is abelian, this yields

logp|xzyGZi : Zi| ď eini.

Now consider finitely many elements z1, . . . , zm P Z. Since Z is abelian, we have
xz1, . . . , zmy

G “ xz1y
G ¨ ¨ ¨ xzmy

G. From this we deduce

hdimS
Zpxz1, . . . , zmy

Gq ď lim inf
iÑ8

řm
j“1 logp|xzjyGZi : Zi|

logp|Z : Zi|
ď lim inf

iÑ8

meini
logp|Z : Ni|

“ 0,

and the result follows.

For an infinite countably based pro-p group G, equipped with a filtration series
S : G “ G0 ě G1 ě ¨ ¨ ¨ , and a closed subgroup H ďc G we adopt the following
terminology from [50].

Definition 7.5. We say that H has strong Hausdorff dimension in G with respect to a
filtration series S if its Hausdorff dimension is given by a proper limit, i.e., if

hdimS
GpHq “ lim

iÑ8

logp|HGi : Gi|
logp|G : Gi|

.

Using the previous two lemmas, we follow the proof of [51, Theorem 5.4] to obtain
our main tool.

Proposition 7.6. Let G be a countably based pro-p group with an infinite abelian normal
subgroup Z Ĳc G such that G{CGpZq is procyclic. Let S : G “ G0 ě G1 ě ¨ ¨ ¨ be
a filtration series of G and consider the induced filtration series S|Z : Z “ G0 X Z ě

G1 X Z ě ¨ ¨ ¨ of Z; for i ě 0, let pei be the exponent of Z{pGi X Zq. Suppose that, for
every i ě 0, there exist ni P N and Mi ďc G such that

γni`1pGq X Z ď Gi X Z ďMi and lim inf
iÑ8

eini
logp|Z : Mi X Z|

“ 0.

If Z has strong Hausdorff dimension ξ “ hdimS
GpZq P r0, 1s then we have

r0, ξs Ď hspecSĲpGq.

7.2 Construction of a pro-p group with full normal Haus-
dorff spectra

Our construction proceeds as follows. Throughout the section, let p denote an odd
prime. For an integer k ě 1, consider the finite wreath product

Wk “ Bk ¸ x 9xky – x 9yky o x 9xky,

with cyclic top group x 9xky – Cpk and elementary abelian base group

Bk “

pk´1
ź

j“0

x 9y
9x jk
k y – C pk

p .
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Basic structural properties of the finite wreath products Wk transfer naturally to
the inverse limit W – lim

ÐÝk
Wk with connection homomorphisms given by

φij : Wi ÝÑWj

9xi ÞÝÑ 9xj

9yi ÞÝÑ 9yj

for all i ě j, i.e., the pro-p wreath product

W “ x 9x, 9yy “ B ¸ x 9xy – Cp ô Zp

with procyclic top group x 9xy – Zp and elementary abelian base group

B “ x 9y 9xj | j P Zy – C ℵ0
p .

Let F “ F2 “ xx̃, ỹy be the free pro-p group on two generators, and let η : F Ñ W ,
resp. ηk : F Ñ Wk, for k ě 1, denote the continuous epimorphisms induced by x̃ ÞÑ 9x
and ỹ ÞÑ 9y, resp. x̃ ÞÑ 9xk and ỹ ÞÑ 9yk. Set R “ kerpηq Ĳc F and Rk “ kerpηkq Ĳo F ; set
also Y “ η´1pBq Ĳc F and Yk “ η´1

k pBkq Ĳo F . We define

G “ F {N, where N “ rR, Y sY p Ĳc F ,

Gk “ F {Nk, where Nk “ rRk, YksY
p
k xx̃

pkyF .
(7.1)

Furthermore, we write

H “ Y {N Ĳc G and Z “ R{N Ĳc G,

Hk “ Yk{Nk Ĳ Gk and Zk “ Rk{Nk Ĳ Gk.

We denote the images of x̃, ỹ in G, resp. in Gk, by x, y, resp. xk, yk, so that G “ xx, yy
and Gk “ xxk, yky.

We observe that the finite groups Gk, k ě 1, naturally form an inverse system and
that G – lim

ÐÝk
Gk. Indeed, it can be checked from the definition that Rk “ xx̃

pkyFR, and

from this that Nk “ xx̃
pkyFN . Hence, since xx̃yF XN “ 1, it follows that Xkě1Nk “ N .

Furthermore, we have rH,Zs “ 1, and rHk, Zks “ 1 for all k ě 1. Our aim in Sections
7.2.1 and 7.2.2 will be proving the following.

Theorem 7.7 ([33, Theorem 1.1]). For p ą 2, the 2-generator pro-p group G con-
structed above has full normal Hausdorff spectra with respect to the five standard filtra-
tion series, that is,

hspecSĲpGq “ r0, 1s

for every S P tL,D,P,P˚,Fu.

As said, this resolves (ii) and (iii) of Problem 7.2 and also Problem 6.10 for all five
standard filtration series.

We introduce the following notation for Sections 7.2.1 and 7.2.2. We write c1 “ y
and ci “ ry, x, i´1. . ., xs for i ě 2; furthermore, we set ci,1 “ rci, ys and ci,j “ rci, y, x,

j´1. . . , xs
for j ě 2. To keep the notation manageable, we denote, for k P N, the corresponding
elements in the finite group Gk by the same symbols (suppressing the parameter k):
c1 “ yk and ci “ ryk, xk, i´1. . ., xks for i ě 2, and similarly ci,1 “ rci, yks and ci,j “
rci, yk, xk,

j´1. . . , xks for j ě 2. From the context it will be clear whether our considerations
apply to G or one of the groups Gk.
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7.2.1 The structure of the finite groups Gk

In this section we collect some structural results for the finite p-groups Gk defined in
Section 7.2. We begin with some results for the groups Wk.

Proposition 7.8 ([50, Proposition 2.6]). For k P N, the wreath product Wk – Cp o Cpk
is nilpotent of class pk. Moreover:

(i) The lower central series of Wk satisfies

Wk “ γ1pWkq “ x 9xk, 9ykyγ2pWkq with Wk{γ2pWkq – Cpk ˆ Cp,

and

γipWkq “ xr 9yk, 9xk, i´1. . ., 9xksyγi`1pWkq with γipWkq{γi`1pWkq – Cp

for 2 ď i ď pk. In particular, the base group satisfies

Bk “ x 9ykyγ2pWkq “ x 9yk, r 9yk, 9xks, . . . , r 9yk, 9xk,
pk´1. . . , 9xksy.

(ii) The lower p-series of Wk has length pk and it satisfies

PipWkq “ x 9xp
i´1
, r 9y, 9x, i´1. . ., 9xsyPi`1pWkq with PipWkq{Pi`1pWkq – Cp ˆ Cp

for 1 ď i ď k, and

PipWkq “ xr 9y, 9x, i´1. . ., 9xsyPi`1pWkq with PipWkq{Pi`1pWkq – Cp

for k ă i ď pk.

(iii) The dimension subgroup series of Wk has length pk. In particular, for pk´1 ` 1 ď
i ď pk, it satisfies DipWkq “ γipWkq.

(iv) The Frattini series of Wk has length k ` 1 and, for 0 ď i ď k it satisfies

ΦipWkq “ x 9xp
i
yγ pi´1

p´1
`1
pWkq with ΦipWkq{Φi`1pWkq – Cp ˆ

pi`1. . . ˆ Cp

and

ΦkpWkq “ γ pk´1
p´1

`1
pWkq with ΦkpWkq{Φk`1pWkq – Cp ˆ

pk`1´2pk`1
p´1. . . ˆ Cp.

Proposition 7.9. For k P N, we have Gk “ xxky ˙ Hk, where xxky – Cpk and Hk is
freely generated in the variety of class-2 nilpotent groups of exponent p by the conjugates

y
x jk
k , 0 ď j ă pk. In particular, the logarithmic order of Gk is

logp|Gk| “ k ` pk `

ˆ

pk

2

˙

.

Proof. The proof is very similar to that of [50, Lemma 5.1]. From Gk{Zk – Wk we
obtain

logp|Gk| “ logp|Gk{Zk|` logp|Zk| “ k ` pk ` logp|Zk|.
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By construction, Zk is elementary abelian, and from [50, Eq. (3.1)] we get

Zk “
A

“

y
xik
k , y

xjk
k

‰

| 0 ď i ă j ď pk ´ 1
E

.

This yields logp|Gk| ď k ` pk `
`

pk

2

˘

.

Consider the finite p-group

M “ xb0, . . . , bpk´1y “ E{γ3pEqE
p, (7.2)

where E is the free group on pk generators. Then, the images of b0, . . . , bpk´1 generate
independently the elementary abelian quotient M{M 1, and the commutators rbi, bjs with
0 ď i ă j ď pk ´ 1 generate independently the elementary abelian subgroup M 1. The
latter can be checked, for instance, by considering homomorphisms from M onto the
group HeispFpq of upper unitriangular 3ˆ 3 matrices over the prime field Fp. This is a
group of order p3, nilpotency class 2 and of exponent p generated by two elements, say
r and s (observe that being the exponent p comes from the fact that p is odd). For any
pair of generators bi, bj of M , consider the map from M to HeispFpq sending bi to r, bj to
s and bn to 1 for every 1 ď n ď pk´1, n ‰ i, j. This is clearly an epimorphism, and since
the derived subgroup of HeispFpq is generated by rr, ss, it follows that the commutator
rbi, bjs is independent from the other commutators that arise from the generating set
tb0, . . . , bpk´1u. Next consider the faithful action of the cyclic group A – xay – Cpk
on M induced by

b ai “

#

bi`1 if 0 ď i ď pk ´ 2,

b0 if i “ pk ´ 1.

We define Ĝk “ A˙M and note that logp|Gk| ď k`pk`
`

pk

2

˘

“ logp|Ĝk|. Furthermore,

it is easy to see that Ĝk{M
1 – Wk. Now, let F xx̃, ỹy be the free pro-p group on 2

generators and consider the epimorphism from F to Ĝ sending x̃ and ỹ to a and b0
respectively. Then it follows that Nk lies in the kernel of this map, and so |Gk| ě |Ĝk|.
From |Gk| ď |Ĝk| we conclude that Gk – Ĝk.

Remark 7.10. The proof of Proposition 7.9 shows that rHk, Hks “ Zk for k P N, and
thus rH,Hs “ Z.

Understanding the lower central series of the groups Gk will be the key in order to
use Proposition 7.6. Furthermore, it will allow us to easily compute the lower p-series
and the dimension subgroup series of Gk.

Proposition 7.11. For k P N, the nilpotency class of Gk is 2pk ´ 1. The terms of the
lower central series of Gk are as follows:

γ1pGkq “ Gk “ xxk, yky γ2pGkq with Gk{γ2pGkq – Cpk ˆ Cp

and, with the notation

I1 “ ti | 2 ď i ď pk with i ”2 0u, I2 “ ti | 2 ď i ď pk with i ”2 1u,

I3 “ ti | p
k ` 1 ď i ď 2pk ´ 1 with i ”2 0u, I4 “ ti | p

k ` 1 ď i ď 2pk ´ 1 with i ”2 1u,
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the series continues as

γipGkq “

$

’

’

’

’

&

’

’

’

’

%

xci, c2,i´2, c4,i´4, . . . , ci´2,2yγi`1pGkq for i P I1,

xci, c2,i´2, c4,i´4, . . . , ci´1,1yγi`1pGkq for i P I2,

xci´pk`1,pk´1, ci´pk`3,pk´3, . . . , cpk´1,i´pk`1yγi`1pGkq for i P I3,

xci´pk,pk , ci´pk`2,pk´2, . . . , cpk´1,i´pk`1yγi`1pGkq for i P I4

with

γipGkq{γi`1pGkq –

$

’

’

’

’

&

’

’

’

’

%

C
i{2
p for i P I1,

C
pi`1q{2
p for i P I2,

C
p2pk´iq{2
p for i P I3,

C
p2pk´i`1q{2
p for i P I4.

Proof. The description of γ1pGkq modulo γ2pGkq is clear. Now consider i P I1, that is
2 ď i ď pk and i ”2 0. Our first aim is to show, by induction on i, that

γipGkq “ xci, c2,i´2, c4,i´4, . . . , ci´2,2yγi`1pGkq,

γi`1pGkq “ xci`1, c2,i´1, c4,i´3, . . . , ci,1yγi`2pGkq.
(7.3)

The induction base, i.e., the case i “ 2, is clear: γ2pGkq “ xrxk, yksyγ3pGkq “ xc2yγ3pGkq
and γ3pGkq “ xrc2, xks, rc2, yksyγ4pGkq “ xc3, c2,1yγ4pGkq. Next suppose that i ě 4. The
induction hypothesis yields

γi´2pGkq “ xci´2, c2,i´4, c4,i´6, . . . , ci´4,2yγi´1pGkq,

γi´1pGkq “ xci´1, c2,i´3, c4,i´5, . . . , ci´2,1yγipGkq.

From cm,n P rHk, Hks “ Zk we deduce rcm,n, yks “ 1 for all m,n ě 1. This gives

γipGkq “ xci, ci´1,1, c2,i´2, c4,i´4, . . . , ci´2,2yγi`1pGkq.

We put
M “ xci, c2,i´2, c4,i´4, . . . , ci´2,2yγi`1pGkq

and aim to show that ci´1,1 P M . This will establish the first equation in (7.3); the
second equation then follows immediately, again from rcn,m, yks “ 1 for m,n ě 1.

As ci´1,1 “ rci´2, xk, yks, the Hall–Witt identity yields

ci´1,1rxk, yk, ci´2sryk, ci´2, xks ” 1 pmod Mq.

Furthermore, ryk, ci´2, xks ” c´1
i´2,2 ” 1 modulo M , and this gives

ci´1,1 ” rci´2, c2s
´1 pmod Mq.

Thus it suffices to prove that

rcm, cns ” 1 pmod Mq for all m,n P N with m ě n ě 2 and m` n “ i.

We argue by induction on m´n. If m´n “ 0 then m “ n and rcm, cns “ 1. Now suppose
thatm´n ą 0, which, since i is even, implies thatm´n ě 2. As rcm, cns “ rcm´1, xk, cns,
the Hall–Witt identity yields

rcm, cnsrxk, cn, cm´1srcn, cm´1, xks ” 1 pmod Mq,
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where rxk, cn, cm´1s ” rcm´1, cn`1s ” 1 pmod Mq by induction. This yields

rcm, cns ” rcn, cm´1, xks
´1 ” rrcn, cm´1s

´1, xks pmod Mq.

From rcn, cm´1s
´1 P γi´1pGkq we deduce that

rcn, cm´1s
´1 ” c r0i´1c

r2
2,i´3c

r4
4,i´5 ¨ ¨ ¨ c

ri´2

i´2,1 pmod γipGkqq

for suitable r0, r2, . . . , ri´2 P Z. It follows that

rcm, cns ” rrcn, cm´1s
´1, xks ” c r0i c

r2
2,i´2c

r4
4,i´4 ¨ ¨ ¨ c

ri´2

i´2,2 ” 1 pmod Mq.

This finishes the proof of (7.3). Finally, we observe from (7.3) that

γipGkq{γi`1pGkq – C lpiq
p and γi`1pGkq{γi`2pGkq – C lpi`1q

p ,

where lpiq ď i{2 and lpi` 1q ď i{2` 1; below we will see that, in fact, all the generators
appearing in (7.3) are necessary.

Now consider i P I3, that is pk ` 1 ď i ď 2pk ´ 2 and i ”2 0. Since the exponent of
H is p, Lemma 2.6 yields

cpk`1 ” ryk, x
pk

k s “ ryk, 1s “ 1 pmod γpk`2pGkqq,

thus cpk`1 P γpk`2pGkq and cpk`1,n P γpk`n`2pGkq for n ě 1. For similar reasons, we
have cn,pk`1 P γpk`n`2pGkq for all n ě 1. This yields, by induction on i,

γipGkq “ xci´pk`1,pk´1, ci´pk`3,pk´3, . . . , cpk´1,i´pk`1yγi`1pGkq,

γi`1pGkq “ xci´pk`1,pk , ci´pk`3,pk´2, . . . , cpk´1,i´pk`2yγi`2pGkq.
(7.4)

Similarly as before, we observe that

γipGkq{γi`1pGkq – C lpiq
p and γi`1pGkq{γi`2pGkq – C lpi`1q

p ,

where lpiq, lpi ` 1q ď p2pk ´ iq{2. Extending the argument one step further, we obtain
γ2pkpGkq “ 1: the group Gk has nilpotency class at most 2pk ´ 1.

Finally, it suffices to check that the upper bounds that we derived from (7.3) and
(7.4) for the logarithmic orders logp|γipGkq : γi`1pGkq|, 1 ď i ď 2pk ´ 1, sum to the
logarithmic order of Gk. Indeed, based on Proposition 7.9, we confirm that

pk ` 1q `

pk
ÿ

i“2

ri{2s`

2pk´1
ÿ

i“pk`1

rp2pk ´ iq{2s

“ k ` 4

pk´1
2
ÿ

i“1

i`
pk ` 1

2
“ k ` 4

ˆpk`1
2

2

˙

`
pk ` 1

2
“ k ` pk `

ˆ

pk

2

˙

“ logp|Gk|,

as desired.

Corollary 7.12. For i P N we have

logp|Z : γipGq X Z| “

#

2
řpi´3q{2
j“1 j “ pi2 ´ 4i` 3q{4 if i ”2 1,

2
řpi´4q{2
j“1 j ` i´2

2 “ pi2 ´ 4i` 4q{4 if i ”2 0.
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Proof. The claim follows from the standard identity

|γ2pGq : γipGq| “ |γ2pGq : γipGqZ||γipGqZ : γipGq| “ |γ2pW q : γipW q||Z : γipGq X Z|

and Propositions 7.8 and 7.11.

For a better understanding of the previous theorem see the concrete example in
Figure 7.1.

γ2pG2q

γ3pG2q

γ4pG2q

γ5pG2q

γ6pG2q

γ7pG2q

γ8pG2q

γ9pG2q

γ10pG2q

γ11pG2q

γ12pG2q

γ13pG2q

γ14pG2q

γ15pG2q

γ16pG2q

γ17pG2q

c2

c3 c2,1

c4 c2,2

c5 c4,1 c2,3

c6 c4,2 c2,4

c7 c6,1 c4,3 c2,5

c8 c6,2 c4,4 c2,6

c9 c8,1 c6,3 c4,5 c2,7

c8,2 c6,4 c4,6 c2,8

c8,3 c6,5 c4,7 c2,9

c8,4 c6,6 c4,8

c8,5 c6,7 c4,9

c8,6 c6,8

c8,7 c6,9

c8,8

c8,9

x y

x x

x y x

x x x

x y x x

x x x x

x y x x x

x x x x

x x x x

x x x x

x x x

x x x

x x

x x

x

x

Figure 7.1: The generator structure of the lower central series of G2 for p “ 3. The label
x (or y) in the arrows indicates commutation with x (or y).

As said, from the lower central series of Gk, it is easy to compute the lower p-series
and the dimension subgroup series of Gk.

Proposition 7.13. For k P N, the p-central series of Gk has length 2pk ´ 1 and its
terms satisfy, for 1 ď i ď 2pk ´ 1,

PipGkq “ xx
pi´1

k yγipGkq.

Proof. The description of P1pGkq “ γ1pGkq is correct. Now suppose that i ě 2. By
induction, we have

Pi´1pGkq “ xx
pi´2

k yγi´1pGkq.

Recall that PipGkq “ rPi´1pGkq, GksPi´1pGkq
p and consider the two factors one after

the other. The first factor satisfies

rPi´1pGkq, Gks “ rxx
pi´2

k yγi´1pGkq, Gks “ rxx
pi´2

k y, GksγipGkq,

and since the exponent of H is p, Lemma 2.6 yields

rxx p
i´2

k y, Gks ď rG
pi´2

k , Gks ď γpi´2`1pGkq.
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From pi´2 ` 1 ě i we deduce that rPi´1pGkq, Gks “ γipGkq.
The second factor satisfies

Pi´1pGkq
p ” xx p

i´2

k yp γi´1pGkq
p ” xx p

i´1

k y pmod γipGkqq.

We conclude that PipGkq “ xx
pi´1

k yγipGkq.

Proposition 7.14. For k P N, the dimension subgroup series of Gk has length 2pk ´ 1
and its terms satisfy, for 1 ď i ď 2pk ´ 1,

DipGkq “ xx
plpiq

k yγipGkq, where lpiq “ rlogppiqs.

Proof. Let i P N. Since γ2pGkq has exponent p, Lazard’s formula (see [13, Theorem 11.2])
shows that

DipGkq “
ź

npměi

γnpGkq
pm “ G plpiq

k γipGkq, where lpiq “ rlogppiqs.

Lemma 2.6 yields ap
lpiq
bp
lpiq
” pabqp

lpiq
modulo γplpiqpGq for all a, b P Gk and, as plpiq ě i,

we deduce that
DipGkq “ xx

plpiq

k yγipGkq,

as asserted.

7.2.2 The normal Hausdorff spectra of G

In this section we establish Theorem 7.7; we split the proof into three parts and formulate
three separate results, in dependence on the filtration series. The first result is directed
to the filtration series L and D (Theorem 7.15), the second one to the filtration series
P and P˚ (Theorem 7.16) and the third one to the filtration series F (Theorem 7.19).

Theorem 7.15. The pro-p group G has full normal Hausdorff spectra

hspecLĲpGq “ r0, 1s and hspecDĲpGq “ r0, 1s

with respect to the lower p-series L and the dimension subgroup series D.

Proof. Let S be L, resp. D. Write S : G “ S0 “ S1 ě S2 ě . . ., where Si “ PipGq, resp.
Si “ DipGq, for i ě 1, and observe that Z ď γ2pGq; compare Remark 7.10. Thus, since
xxky X γ2pGkq “ 1, Proposition 7.13, resp. Proposition 7.14, yields

Si X Z “ γipGq X Z for i ě 1.

From Corollary 7.12 we see that

lim
iÑ8

i

logp|Z : γipGq X Z|
“ 0. (7.5)

This allows us to pin down the Hausdorff dimension of Z ďc G:

hdimS
GpZq “ lim inf

iÑ8

ˆ

logp|G : Si|
logp|SiZ : Si|

˙´1

“ lim inf
iÑ8

ˆ

logp|G : SiZ|` logp|SiZ : Si|
logp|SiZ : Si|

˙´1

“ lim inf
iÑ8

ˆ

logp|G : SiZ|
logp|Z : Si X Z|

` 1

˙´1

“ lim inf
iÑ8

ˆ

logp|G : SiZ|
logp|Z : γipGq X Z|

` 1

˙´1

“ 1,
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where the last equality follows from (7.5) and the fact that logp|G : SiZ| ď 2i, by
Proposition 7.8 and Proposition 7.14. In particular, Z has strong Hausdorff dimension.

Thus Proposition 7.6, with ei “ 1, ni “ i and Mi “ γipGq, yields

r0, 1s “ r0,hdimS
GpZqs Ď hspecSĲpGq,

as we wanted.

Theorem 7.16. The pro-p group G has full normal Hausdorff spectra

hspecPĲpGq “ r0, 1s and hspecP
˚

Ĳ pGq “ r0, 1s

with respect to the p-power series P and the iterated p-power series P˚.

Proof. Recall our notation πipGq “ Gp
i

and π˚i pGq for the terms of the series P and P˚.
Our first aim is to show that

γ2pipGq ď Gp
i
ď π˚i pGq ď xx

piyγpipGq for all i ě 0. (7.6)

Let i ě 0. From the construction ofG andGk, since as saidNk “ xx̃
pk

k y
FN , it is easily

seen that G{Gp
k
– Gk{G

pk

k for k P N. Hence Proposition 7.11 yields γ2pipG{G
pkq “ 1,

so that γ2pipGq ď Gp
i
. Clearly, we have Gp

i
ď π˚i pGq. It remains to justify the last

inclusion in (7.6). We proceed by induction on i. For i “ 0 even equality holds, trivially.
Now suppose that i ě 1. The induction hypothesis yields

π˚i´1pGq ď xx
pi´1

yγpi´1pGq.

Let g P π˚i´1pGq, and write g “ xmp
i´1
h with m P Zp and h P γpi´1pGq X H (here the

intersection with H is relevant only when i “ 1). Since Hp “ 1, Lemma 2.6 yields
gp “ xmp

i
z with xmp

i
P xxp

i
y and z P γppxx

pi´1
, hyq. Thus it suffices to show that

γppxx
pi´1

, hyq ď γpipGq.

Suppose that c is an arbitrary commutator of weight n ě 2 in txp
i´1
, hu; we show

by induction on n that c P γnpi´1pGq. For n “ 2, it suffices to consider c “ rh, xp
i´1
s,

and Lemma 2.6 shows that c P γ2pi´1pGq. For n ě 3, we see by induction that it suffices

to consider c “ rd, hs and rd, xp
i´1
s with d P γpn´1qpi´1pGq; if c “ rd, hs, the result

follows immediately, and, if c “ rd, xp
i´1
s, the result follows again by Lemma 2.6. This

concludes the proof of (7.6).

Let S “ P, resp. S “ P˚, and write Si “ πipGq “ Gp
i
, resp. Si “ π˚i pGq, for i ě 0.

Recall that Z ď γ2pGq; compare Remark 7.10. Thus (7.6) yields

γ2pipGq X Z ď Si X Z ď
`

xxp
i
yγpipGq

˘

X Z “ γpipGq X Z. (7.7)

From Corollary 7.12 we see that

lim
iÑ8

2pi

logp|Z : γpipGq X Z|
“ 0. (7.8)

As in the proof of Theorem 7.15 we want to apply Proposition 7.6, here with ei “ 1,
ni “ 2pi and Mi “ γpipGq, to conclude that G has full normal Hausdorff spectrum.
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It remains to check that hdimS
GpZq “ 1. We observe that, for i ě 0,

logp|G : SiZ| ď logp|Gi : G pi

i Zi| ď logp|Wi| “ i` pi ď 2pi,

and thus, by (7.7) and (7.8),

lim
iÑ8

logp|G : SiZ|
logp|Z : Si X Z|

ď lim
iÑ8

logp|G : SiZ|
logp|Z : γpipGq X Z|

“ 0.

As in the proof of Theorem 7.15 we conclude that hdimS
GpZq “ 1.

A little extra work is required to determine the normal Hausdorff spectrum of G
with respect to the Frattini series. We define

zi,j “

#

rci, cjs P γi`jpGq for i, j ě 1,

1 otherwise.
(7.9)

Proposition 7.8 and Remark 7.10 show that

H “ xci | i ě 1y and Z “ xzi,j | 1 ď j ă iy.

Moreover, since for every k the number of pairs pi, jq with 1 ď i ă j such that i` j ă k
is precisely the number obtained in Corollary 7.12, it can be seen that, for k ě 2 we
have

γkpGq X Z “ xzi,j | 1 ď j ă i and i` j ě ky. (7.10)

Lemma 7.17. For i, j P N and r ě 0, we have

rzi,j , x, r. . ., xs “
r
ź

s“0

s
ź

t“0

z
prsqp

s
tq

i`r´t,j`r´s`t.

Proof. We argue by induction on r. For r “ 0 both sides are equal to zi,j . Now suppose
that r ě 1. We observe that, for m,n ě 1,

rzm,n, xs “ z´1
m,nrc

x
m, c

x
n s “ z´1

m,nrcmcm`1, cncn`1s “ zm`1,n zm,n`1 zm`1,n`1. (7.11)

Thus the induction hypothesis yields

rzi,j , x, r. . ., xs “ rrzi,j , x, r´1. . . , xs, xs “
r
ź

s“0

s
ź

t“0

rzi`r´1´t,j`r´1´s`t, xs
pr´1
s qp

s
tq,

and, in view of (7.11), the result follows from the identity

ˆ

r ´ 1

s´ 1

˙ˆ

s´ 1

t

˙

`

ˆ

r ´ 1

s´ 1

˙ˆ

s´ 1

t´ 1

˙

`

ˆ

r ´ 1

s

˙ˆ

s

t

˙

“

ˆ

r ´ 1

s´ 1

˙ˆ

s

t

˙

`

ˆ

r ´ 1

s

˙ˆ

s

t

˙

“

ˆ

r

s

˙ˆ

s

t

˙

for 0 ď s ď r and 0 ď t ď s.

Lemma 2.6 and Lemma 7.17 lead directly to a useful corollary.
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Corollary 7.18. For i, j P N and k ě 0, we have

rzi,j , x
pks “ zi`pk,jzi,j`pkzi`pk,j`pk .

Proof. By Lemma 2.6 we have rzi,j , x
pks “ rzi,j , x,

pk. . ., xs since the exponent of Z is p,

and since p divides
`

pk

n

˘

for all n ‰ 0, pk, the result follows.

Theorem 7.19. The pro-p group G has full normal Hausdorff spectrum

hspecFĲpGq “ r0, 1s

with respect to the Frattini series F .

Proof. For i ě 0, we write risp “ pp
i´1q{pp´1q and note, for i ě 1, that ri´1sp`p

i´1 “

risp. We consider

Ci “ xx
piy ˙ xcj | j ě 1` rispy ďc G

and claim, for i ě 1, that
Ψ´i pGq ď ΦipGq ď Ψ`i pGq, (7.12)

where

Ψ´i pGq “ Ci
`

γ1`2ri´1sp`pi´1pGq X Z
˘

and Ψ`i pGq “ Ci
`

γ2`2ri´1sppGq X Z
˘

.

For i “ 1 the assertion is that ΦpGq “ C1pγ2pGq X Zq “ xxp, c2, c3, . . .ypγ2pGq X Zq,
which follows since ΦpGq “ xxpyγ2pGq. Now suppose that i ě 2. Lemma 2.6 and the
observation that pi´1 ě 2pi´2 yield

rγ2`2ri´2sppGq X Z, x
pi´1

s ď γ2`2ri´2sp`pi´1pGq X Z ď γ2`2ri´1sppGq X Z;

since rZ,Hs “ 1, we have rγ2`2ri´2sppGq X Z, cns “ 1 for all n ě 1. Furthermore,
Lemma 2.6 gives

rcn, x
pi´1

s ” cn`pi´1 pmod γ2n`pi´1pGq X Zq for all n ě 1, (7.13)

and hence
rCi´1, x

pi´1
s ď Ci

`

γ2`2ri´1sp`pi´1pGq X Z
˘

.

By induction, Φi´1pGq ď Ψ`i´1pGq “ Ci´1

`

γ2`2ri´2sppGq X Z
˘

, and this implies

ΦipGq “ ΦpΦi´1pGqq ď xx
piyrCi´1, Ci´1s

`

γ2`2ri´1sppGq X Z
˘

ď Ci
`

γ2`2ri´1sppGq X Z
˘

“ Ψ`i pGq.

It remains to check the first inclusion in (7.12); by induction, it suffices to show that

Ψ´i pGq ď K, where K “ Φ
`

Ψ´i´1pGq
˘

.

First we show that γ1`2ri´1sp`pi´1pGqXZ ď K implies Ci ď K. Clearly, xp
i
P C p

i´1 ď K,
and (7.13) shows that, for j ě 1 ` risp, there exists dj P γ2pj´pi´1q`pi´1pGq X Z ď

γ1`2ri´1sp`pi´1pGq X Z such that

cj “ rcj´pi´1 , xp
i´1
sdj P rCi´1, Ci´1s ď K.
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Thus it suffices to prove that γ1`2ri´1sp`pi´1pGq X Z ď K.

From (7.10) we recall that

γ1`2ri´1sp`pi´1pGq X Z “ xzj,k | 1 ď k ă j and j ` k ě 1` 2ri´ 1sp ` p
i´1y.

From rCi´1, Ci´1s ď K we deduce that

zm,n P K for m ą n ě 1` ri´ 1sp. (7.14)

Thus, it remains to see that zj,k P K for j, k P N satisfying

1 ď k ă j, j ` k ě 1` 2ri´ 1sp ` p
i´1 and k ď ri´ 1sp.

Given such j, k P N, we observe that

k ă 1` ri´ 1sp ď j ´ pi´1 and pj ´ pi´1q ` k ě 1` 2ri´ 1sp;

hence (7.10) implies

zj´pi´1,k P γ1`2ri´1sppGq X Z ď γ1`2ri´2sp`pi´2pGq X Z ď Ψ´i´1pGq.

We apply Corollary 7.18 to deduce that

zj,k zj´pi´1,k`pi´1 zj,k`pi´1 “ rzj´pi´1,k, x
pi´1

s P rΨ´i´1pGq, Ci´1s ď K. (7.15)

As j ą k ` pi´1 ě 1` ri´ 1sp, we see from (7.14), for m “ j and n “ k ` pi´1 that
zj,k`pi´1 P K. Similarly, we deduce that zj´pi´1,k`pi´1 P K, if j ´ pi´1 ą k ` pi´1, and,

finally, zj´pi´1,k`pi´1 “ z´1
k`pi´1,j´pi´1 P K, if j ´ pi´1 ď k ` pi´1 and thus j ´ pi´1 ě

1 ` ri ´ 1sp. Feeding this information into (7.15), we obtain zj,k P K which concludes
the proof of (7.12).

From (7.12) we deduce that

γ1`2ri´1sp`pi´1pGq X Z ď ΦipGq X Z ď γ2`2ri´1sppGq X Z,

and from Corollary 7.12 we see that

lim
iÑ8

2ri´ 1sp ` p
i´1

logp |Z : γ2`2ri´1sppGq X Z|
“ 0.

As in the proof of Theorem 7.15 we want to apply Proposition 7.6, here with ei “ 1,
ni “ 2ri ´ 1sp ` pi´1 and Mi “ γ2`2ri´1sppGq, to conclude that G has full normal
Hausdorff spectrum.

It remains to check that hdimF
GpZq “ 1. From Proposition 7.8 we see that logp|G :

ΦipGqZ| “ i` risp, and hence Corollary 7.12 implies

lim
iÑ8

logp|G : ΦipGqZ|
logp|Z : ΦipGq X Z|

“ 0.

As in the proof of Theorem 7.15 we see that hdimF
GpZq “ 1.

Theorem 7.7 summarises the results in Theorems 7.15, 7.16 and 7.19.
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7.3 A pro-2 group with full normal Hausdorff spectra

To end with Chapter 7 we will modify the construction in Section 7.2 to produce a pro-2
group with full normal Hausdorff spectra with respect to the five standard filtration
series.

The unique difference in the construction of the pro-p group when p “ 2 is that we
slightly change the definitions of N and Nk in (7.1), so that in this case we set

G “ F {N, where N “ rR, Y sR2 Ĳc F ,

Gk “ F {Nk, where Nk “ rRk, YksR
2
k xx̃

2kyF .

We denote again byH and Z the closed normal subgroups ofG corresponding to Y {N
and R{N , and we denote by Hk and Zk the normal subgroups of Gk corresponding to
Yk{Nk and Rk{Nk. We also set G “ xx, yy and Gk “ xxk, yky and we adapt the notation
introduced before Section 7.2.1 to the pro-2 group G.

Our goal will be proving the following.

Theorem 7.20 ([35]). The 2-generator pro-2 group G constructed above has full normal
Hausdorff spectra with respect to all the standard filtration series, that is,

hspecSĲpGq “ r0, 1s

for every S P tL,D,P,Fu.

Remark 7.21. Note that for pro-2 groups the iterated 2-power series P˚ and the Frattini
series F coincide. Indeed since groups of exponent 2 are always abelian, we have ΦpHq “
H2H 1 “ H2 for every pro-2 group H.

7.3.1 Adapting structural results for p “ 2

We proceed now in close analogy to Section 7.2. We start computing the orders of the
Gk.

Proposition 7.22. For k P N, the logarithmic order of Gk is

log2 |Gk| “ k ` 2k`1 `

ˆ

2k

2

˙

“ k ` 22k´1 ` 2k`1 ´ 2k´1.

Proof. The proof is almost the same as that of Proposition 7.9. Just note that in this
case, by construction, the subgroup Zk is elementary abelian and

Zk “ xtpy
xik
k q

2 | 0 ď i ď 2k ´ 1u Y try
xik
k , y

xjk
k s | 0 ď i ă j ď 2k ´ 1uy,

so that

log2 |Gk| “ k ` 2k ` log2 |Zk| ď k ` 2k`1 `

ˆ

2k

2

˙

.

Thus, the result follows as in Proposition 7.9 just changing the definition of M in
(7.2) to

M “ E{rΦpEq, EsΦpEq2,

where E is the free group on 2k generators. In this case, the elementary abelian sub-
group ΦpMq is generated independently by the elements b20, . . . , b

2
2k´1

together with the

commutators rbi, bjs for 0 ď i ă j ď 2k ´ 1, which can be verified by considering

homomorphisms from M onto groups of the form C 2k´1
2 ˆC4 and C 2k´2

2 ˆHeispF2q.
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Our next goal is computing the lower central series of the Gk. In order to do so, we
need the following lemmas.

Lemma 7.23. Let k P N and let Gk be as above. Then:

(i) For 2k´1 ` 1 ď i ď 2k, we have c 4
i “ 1 and c 2

i P γi`1pGkq.

(ii) For i ě 2k ` 1, we have c 2
i “ 1.

(iii) For i ě 2k ` 2k´1 ` 1, we have ci P γi`1pGkq.

Proof. (i) As Hk has exponent 4 it is clear that c4
i “ 1. In addition, since rHk, Hks ď Zk

has exponent 2, it follows from Lemma 2.6 that

1 “ ryk, x
2k´1

k s ” ryk, xk, 2k´2
. . . , xks

2ryk, xk, 2k´1
. . . , xks pmod γ2k´1`2pGkqq. (7.16)

Therefore c 2
2k´2`1

” c2k´1`1 pmod γ2k´1`2pGkqq, and hence

c2
2k´1`1 ” 1 pmod γ2k´1`2pGkqq.

Now, for 2k´1 ` 2 ď i ď 2k, notice from Lemma 2.21 that

ci ” rc2k´1`1, xk,
i´2k´1´1. . . , xks ” rc

2
2k´2`1, xk,

i´2k´1´1. . . , xks

” ryk, xk, i´2k´1`2k´2´1. . . , xks
2 pmod γi`1pGkqq,

hence the result.
(ii) This follows immediately from the fact that by Proposition 7.8 we have ci P Zk

for i ě 2k ` 1.
(iii) It suffices to prove the result for i “ 2k ` 2k´1 ` 1. From (7.16), we obtain

ci “ rc2k`1, xk,
2k´1
. . . , xks ” rc

2
2k´1`1, xk,

2k´1
. . . , xks pmod γi`1pGkqq.

As
rc 2

2k´1`1, xk,
2k´1
. . . , xks ” c 2

2k`1 pmod γi`1pGkqq

we have ci ” c 2
2k`1

pmod γi`1pGkqq, and by (ii), it follows that ci P γi`1pGq, as required.

We adjust the notation introduced in (7.9) to the pro-2 group G. It follows immedi-
ately that the result in Lemma 7.17 works also for the p “ 2 case, even if the groups in
consideration are not exactly the same. So, abusing notation, we will keep using Lemma
7.17 also for the pro-2 group G.

Lemma 7.24. Let k P N. In the group Gk, for m P N even, we have

cm,2k P γ2k`m`1pGkq.

Proof. Note that
cm,2k “ rzm,1, xk,

2k´1. . . , xks,

and since zi,j P γi`jpGkq for every i, j P N, we have by Lemma 7.17 that

rzm,1, xk, 2k´1. . . , xks “
2k´1
ź

n“0

z
p2
k´1
n q

m`2k´1´n,1`n
pmod γ2k`m`1pGkqq.



7.3. A pro-2 group with full normal Hausdorff spectra 87

In addition, the exponent of Zk is 2 by construction. Hence, since by Theorem 2.7 all

the binomial numbers
`

2k´1
n

˘

are odd, we get

rzm,1, xk, 2k´1. . . , xks “
2k´1
ź

n“0

zm`2k´1´n,1`n pmod γ2k`m`1pGkqq.

Recall that ci P Zk for every i ě 2k ` 1 by Proposition 7.8, so zm`2k´1´n,1`n “ 1 for all
n ď m´ 2. Thus,

rzm,1, xk, 2k´1. . . , xks “
2k´1
ź

n“m´1

zm`2k´1´n,1`n pmod γ2k`m`1pGkqq

“

2k´m
ź

n“0

z2k´n,m`n pmod γ2k`m`1pGkqq

“

2k´m{2
ź

n“0

z2k´n,m`n

2k´m
ź

n“m{2`1

z2k´n,m`n pmod γ2k`m`1pGkqq.

As zi,j “ z´1
j,i for all i, j P N and since m is even, we finally obtain

rzm,1, xk, 2k´1. . . , xks ” 1 pmod γ2k`m`1pGkqq,

as required.

We are now able to describe explicitly the terms of the lower central series of the
groups Gk. We will omit the proof of Proposition 7.25 since it is the same as the proof
of Proposition 7.11 in nature. One only needs to adapt it to the pro-2 group G taking
into account the results in Proposition 7.22 and Lemmas 7.23 and 7.24.

Proposition 7.25. For k P N, the nilpotency class of Gk is 2k`1 ´ 1 and the lower
central series of Gk satisfies:

• γ1pGkq “ Gk “ xxk, ykyγ2pGkq with

γ1pGkq{γ2pGkq – C2k ˆ C2.

• If 2 ď i ď 2k, then

γipGkq “

#

xci, c2,i´2, c4,i´4, . . . , ci´2,2yγi`1pGkq if i ”2 0,

xci, c2,i´2, c4,i´4, . . . , ci´1,1yγi`1pGkq if i ”2 1,

with

γipGkq{γi`1pGkq –

$

’

’

’

’

&

’

’

’

’

%

C4 ˆ C2 ˆ
pi´2q{2. . . ˆ C2 if 2 ď i ď 2k´1 and i ”2 0,

C4 ˆ C2 ˆ
pi´1q{2. . . ˆ C2 if 2 ď i ď 2k´1 and i ”2 1,

C2 ˆ
i{2. . .ˆ C2 if 2k´1 ` 1 ď i ď 2k and i ”2 0,

C2 ˆ
pi`1q{2. . . ˆ C2 if 2k´1 ` 1 ď i ď 2k and i ”2 1.

(7.17)
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• If 2k ` 1 ď i ď 2k ` 2k´1, then

γipGkq “
#

xci, ci´2k`2,2k´2, ci´2k`4,2k´4, . . . , c2k´2,i´2k`2, c2k,i´2kyγi`1pGkq if i ”2 0,

xci, , ci´2k`1,2k´1, ci´2k`3,2k´3, . . . , c2k´2,i´2k`2, c2k,i´2kyγi`1pGkq if i ”2 1,

with

γipGkq{γi`1pGkq –

#

C2 ˆ
p2k`1´i`2q{2. . . ˆ C2 if i ”2 0,

C2 ˆ
p2k`1´i`3q{2. . . ˆ C2 if i ”2 1.

(7.18)

• If 2k ` 2k´1 ` 1 ď i ď 2k`1, then

γipGkq “
#

xci´2k`2,2k´2, ci´2k`4,2k´4, . . . , c2k´2,i´2k`2, c2k,i´2kyγi`1pGkq if i ”2 0,

xci´2k`1,2k´1, ci´2k`3,2k´3, . . . , c2k´2,i´2k`2, c2k,i´2kyγi`1pGkq if i ”2 1,

with

γipGkq{γi`1pGkq –

#

C2 ˆ
p2k`1´iq{2. . . ˆ C2, if i ”2 0,

C2 ˆ
p2k`1´i`1q{2. . . ˆ C2 if i ”2 1.

(7.19)

Remark 7.26. From Proposition 7.25 we deduce that the logarithmic order of Z{pγnpGqX
Zq is

2
´

1` 2` . . .`
n´ 1

2

¯

“ 2

ˆ

pn` 1q{2

2

˙

“
n2 ´ 1

4

if n is odd or

2
´

1` 2` . . .`
n´ 2

2

¯

`
n

2
“ 2

ˆ

n{2

2

˙

`
n

2
“
n2

4

if n is even.

With Proposition 7.25 the lower 2-series and the dimension subgroup series of Gk
can be deduced easily.

Proposition 7.27. For k P N, the length of the lower 2-series of Gk is 2k`1 ´ 1 and it
satisfies

P1pGkq “ Gk

and

PipGkq “

#

xx2i´1

k , c 2
i´1yγipGkq for 2 ď i ď 2k´1 ` 1,

xx2i´1

k yγipGkq for 2k´1 ` 2 ď i ď 2k`1.

Proof. If i “ 1 or 2, the results are obvious, so consider i “ 3. As

rxx2
k, y

2
ky, Gks ď γ2pGkq

2γ3pGkq,

it suffices to show that xx2
k, y

2
ky

2 ď xx4
kyγ3pGkq and γ2pGkq

2 ď xc 2
2 yγ3pGkq. Note that

ry2
k, x

2
ks ” ryk, xks

4 “ 1 pmod γ3pGkqq,
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and since x4
k, y

4
k P xx

4
kyγ3pGkq, the first inclusion holds. The second inclusion follows

from Proposition 7.25, as ryk, xks is the only generator of γ2pGkq modulo γ3pGq.

Now let 4 ď i ď 2k´1 and assume by induction that

Pi´1pGkq “ xx
2i´2

k , c 2
i´2yγi´1pGkq.

On the one hand,

rPi´1pGkq, Gks “ rxx
2i´2

k , c 2
i´2yγi´1pGkq, Gks “ rxx

2i´2

k , c 2
i´2y, GksγipGkq

and Proposition 7.25 and Lemma 2.6 yield

rxx2i´2

k , c 2
i´2y, GksγipGkq “ rxc

2
i´2y, GksγipGkq.

Then by similar arguments as above, one deduces that

rc 2
i´2, GksγipGkq “ xc

2
i´1yγipGkq.

On the other hand,

Pi´1pGkq
2 ” xx2i´2

k y2γi´1pGkq
2 ” xx2i´1

k , c 2
i´1y pmod γipGkqq,

so we conclude that

PipGkq “ xx
2i´1

k , c 2
i´1yγipGkq,

as asserted. The case 2k´1 ` 2 ď i ď 2k`1 follows from (ii) of Lemma 7.23.

Proposition 7.28. For k P N, the length of the dimension subgroup series of Gk is
2k`1 and

DipGkq “ xx
2lpiq

k yγri{2spGkq
2γipGkq for 1 ď i ď 2k`1,

where lpiq “ rlog2 is.

Proof. By [13, Theorem 11.2], we have

DipGkq “
ź

n¨2měi

γnpGkq
2m

for every i P N, and since exppγ2pGkqq “ 4, we obtain

DipGkq “ G2lpiq

k γri{2spGkq
2γipGkq.

The result is clear for i “ 1, 2, so we assume i ě 3. By Lemma 2.6, since the exponent
of H is 4, for every a, b P Gk it follows that

pabq2
lpiq
“ a2lpiqb2

lpiq
rb, a, 2lpiq´1´1. . . , asp

2lpiq

2lpiq´1qc

with c P γ2lpiqpGkq. Since rb, a, 2lpiq´1´1. . . , asp
2lpiq

2lpiq´1q P γri{2spGkq
2 and γ2lpiqpGkq ď γipGkq,

we get

DipGkq “ xx
2lpiq

k yγri{2spGkq
2γipGkq,

as required.
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7.3.2 The normal Hausdorff spectra for p “ 2

In this section we compute the normal Hausdorff spectra of G with respect to the
standard filtration series L, D, P, and F .

Again, we will split the proof of Theorem 7.20 into three parts. We start with the
filtration series L and D.

Theorem 7.29. The pro-2 group G has full normal Hausdorff spectra

hspecLĲpGq “ r0, 1s and hspecDĲpGq “ r0, 1s

with respect to the lower p-series L and the dimension subgroup series D.

Proof. By Remark 7.26 we have

lim inf
iÑ8

i

log2 |Z : PipGq X Z|
“ 0 and lim inf

iÑ8

i

log2 |Z : DipGq X Z|
“ 0,

and they are furthermore given by proper limits. The proof now follows as in Theorem
7.15.

For the filtration series P, we define for all n P N the subgroups

Γn “ xx
2nyγ2n´1pGq2γ2npGq Ĳ G.

Lemma 7.30. For each n P N, we have Γ 2
n ď Γn`1.

Proof. We only have to check that Γ1n ď Γn`1. Clearly

rγ2n´1pGq2, γ2n´1pGq2γ2npGqs “ 1

and rγ2npGq, γ2npGqs ď γ2n`1pGq ď Γn`1, so it suffices to prove that

rxx2ny, γ2n´1pGq2γ2npGqs ď Γn`1.

On the one hand, since the exponent of H is 4, Lemma 2.6 yields

rγ2npGq, x
2ns ď γ2n`2n´1pGq2γ2n`1pGq ď Γn`1.

On the other hand, for 2n´1 ď i ď 2n ´ 1, again by Lemma 2.6 we have

rci, x
2ns P γ2npGq

2γ2n`2n´1pGq,

so

rc2
i , x

2ns “ rci, x
2ns2rci, x

2n , cis P Γn`1,

as required.

Theorem 7.31. The pro-2 group G has full normal Hausdorff spectrum

hspecPĲpGq “ r0, 1s

with respect to the 2-power series P.
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Proof. An arbitrary element of G can be written as xnh with h P H and n P Z2,
and by Lemma 2.6, it follows that pxnhq2

k
P Γk. Then G2k ď Γk and, in particular,

G2k X Z ď Γk X Z. It is easy to see that

Γk X Z “ pγ2k´1pGq2γ2kpGqq X Z “ γ2k´1pGq2pγ2kpGq X Zq,

and since rγ2k´1pGq, γ2k´1pGqs ď γ2kpGq X Z, it follows that

γ2k´1pGq2 ď xc2
2k´1 , c

2
2k´1`1, . . . , c

2
2k´1ypγ2kpGq X Zq.

Thus, by Remark 7.26, we have

log2 |Z : Γk X Z| “ log2 |Z : γ2k´1pGq2pγ2kpGq X Zq| “ 2

ˆ

2k´1

2

˙

.

On the other hand, as in the proof of Theorem 7.16 we deduce that γ2k`1pGq ď G2k .
Thus,

lim
kÑ8

2k`1

log2 |Z : Γk X Z|
“ 0,

and we conclude as in Theorem 7.16.

We are now concerned with the Frattini series F . As in the p odd case, the result
for this filtration is more technical than for the other filtrations. Even though the proof
of Theorem 7.32 is very similar to the proof of Theorem 7.19, we will give all the main
computations, as there are slight differences in many of the steps.

Since clearly zi,j P γi`jpGq, we deduce from Proposition 7.22 and Remark 7.26 that

γnpGq X Z “ xc
2
l , zi,j | 1 ď j ă i, i` j ě n, l ě ny

for every n ě 2.

Theorem 7.32. The pro-2 group G has full normal Hausdorff spectrum

hspecFĲpGq “ r0, 1s

with respect to the Frattini series F .

Proof. We claim that

Tkpγ2k`2k´1´1pGq X Zq ď ΦkpGq ď Γk

where
Tk “ xx

2k , c 2
i , cj | i ě 2k´1, j ě 2ky

for all k P N. We will proceed by induction on k. If k “ 1 the result is clear, so assume
k ě 2. On the one hand, it follows from Lemma 7.30 that

ΦkpGq “ Φk´1pGq
2 ď Γ2

k´1 ď Γk.

Hence, it suffices to check that

Tkpγ2k`2k´1´1pGq X Zq ď ∆,
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where
∆ “ Φ

`

Tk´1pγ2k´1`2k´2´1pGq X Zq
˘

.

Of course we have x2k , c2
i P ∆ for all i ě 2k´1. We also have T 1k´1 ď ∆, so xzi,j | i ą

j ě 2k´1y ď ∆. Let us see that zi,j P ∆ whenever i ą j, i ` j ě 2k ` 2k´1 ´ 1 and
j ď 2k´1 ´ 1. Consider the element zi´2k´1,j and observe that

zi´2k´1,j P γ2k´1pGq X Z

as
i´ 2k´1 ` j ě 2k ´ 1.

Therefore rzi´2k´1,j , x
2k´1

s P ∆. By Corollary 7.18, it follows then that

zi,jzi´2k´1,j`2k´1zi,j`2k´1 P ∆.

On the one hand, we have i ą j ` 2k´1 and j ` 2k´1 ě 2k´1, so zi,j`2k´1 P ∆. On the

other hand, if i´ 2k´1 ą j ` 2k´1, then zi´2k´1,j`2k´1 P ∆, and if i´ 2k´1 ď j ` 2k´1,

then as i´ 2k´1 ě 2k´1, we have

zi´2k´1,j`2k´1 “ z´1
j`2k´1,i´2k´1 P ∆.

Therefore, zi,j P ∆ and γ2k`2k´1´1pGq X Z ď ∆.
Finally, for j ě 2k´1, observe that

rcj , x
2k´1

s ” c 2
j`2k´2cj`2k´1 pmod γ2j`2k´1pGq X Zq,

and since γ2j`2k´1pGqXZ ď ∆ and c 2
i P ∆ for all i ě 2k´1, it follows that cj P ∆ for all

j ě 2k. We conclude that

Tk
`

γ2k`2k´1´1pGq X Z
˘

ď ∆ ď ΦkpGq,

as claimed. In particular, we get

γ2k`2k´1´1pGq X Z ď ΦkpGq X Z ď Γk X Z.

Now, from Remark 7.26 we deduce that

lim inf
kÑ8

2k ` 2k´1 ´ 1

log2 |Z : Γk X Z|
“ lim

kÑ8

2k ` 2k´1 ´ 1

log2 |Z : Γk X Z|
“ 0. (7.20)

We conclude as in the proof of Theorem 7.19.

Again, Theorem 7 summarises the results in Theorems 7.29, 7.31 and 7.32.
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Chapter 8

A brief introduction to powerfully
nilpotent and powerfully solvable
groups

Powerful groups have been, without any doubt, one of the main protagonists of Part I
of the thesis. Indeed, they have been a good “platform” in which commutator calculus
behaves particularly well. In this last part of the thesis we will make a further study of
the theory of such groups, deepening in this way the knowledge on this topic.

For the purpose of bringing some order to the huge category of finite groups, one
uses to classify them into some (not necessarily disjoint) subfamilies of groups. For
instance, we can consider the families of finite simple groups, finite nilpotent groups,
finite p-groups, finite solvable groups (or equivalently finite polycyclic groups), finite
metabelian groups, finite supersolvable groups, etc.

When we focus, though, in the (still huge) family of finite p-groups, it does not make
sense to consider the subfamily of finite nilpotent p-groups (which would coincide with
the whole family of finite p-groups) or the subfamily of finite simple p-groups (which
would consist only of the group Cp). The subclasses that one considers for these groups
are thus more specific and must be tailored to the particular group structure of the finite
p-groups.

However, we will see that in the family of powerful groups, there is a way in which
one can consider subfamilies in an analogous way as for general finite groups. The way
to do this is somehow assigning the role that the subgroups and the normal subgroups
have in the context of general finite groups, to the powerful subgroups and the powerfully
embedded subgroups of powerful groups, respectively.

This idea started with the notion of powerfully nilpotent group, which can be seen
as the “powerful version” of the notion of finite nilpotent groups.

Definition 8.1. Let G be a finite p-group. If K ď H ď G, then a chain of subgroups

H “ H0 ě H1 ě ¨ ¨ ¨ ě Hn “ K

is powerfully central in G if rHi, Gs ď Hp
i`1 for all i “ 0, . . . , n´ 1.

95
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Definition 8.2. A finite p-group G is said to be powerfully nilpotent if it has a powerfully
central series

G “ G0 ě G1 ě ¨ ¨ ¨ ě Gn “ 1.

The smallest possible length of such a series is called the powerful nilpotency class of G.

This concept was introduced by Traustason and Williams in [75], where some general
theory of powerfully nilpotent groups is developed. A remarkable result is that powerful
nilpotence leads naturally to a classification in terms of what the authors call powerful
coclass (the powerful coclass of a powerfully nilpotent group G of order pn and powerful
nilpotency class c is the number n ´ c). Thus, they show that for every prime p there
are finitely many powerfully nilpotent p-groups for each given powerful coclass. They
also determine the growth of powerfully nilpotent groups of exponent p2 with respect
to the order pn: they show that the growth of such groups is fpnq “ pαn

3`opn3q where
α “ p9` 4

?
2q{394.

The study of these groups continued in [76], where the powerfully nilpotent groups
of maximal powerful class are introduced. These groups can be seen as the analogous
of finite p-groups of maximal class. Thus, it is shown that for any given positive integer
r and prime p ą r, there exists a powerfully nilpotent group of maximal powerful class,
and their structure is analysed.

More about these groups can be found in [79] and [80], where, among other things,
it is reflected that powerfully nilpotent groups arise naturally in the theory of finite p-
groups; and in [77], where a full classification of, on the one hand, all powerfully nilpotent
p-groups of rank 2, and on the other hand, all the powerfully nilpotent p-groups of order
up to p6, is given.

In the first half of Part III we will consider a natural larger class of powerful groups,
namely, the powerfully solvable groups.

Definition 8.3. Let G be a finite p-group and K ď H ď G. We say that a chain

H “ H0 ě H1 ě ¨ ¨ ¨ ě Hn “ K

is powerfully abelian if rHi, His ď Hp
i`1 for all i “ 0, . . . , n´ 1.

Definition 8.4. A finite p-group G is powerfully solvable if there exists a powerfully
abelian chain

G “ G0 ě G1 ě ¨ ¨ ¨ ě Gn “ 1.

The smallest possible length n is called the powerful derived length of G.

It is natural to think that we could define powerfully simple groups as the powerful
groups with no proper non-trivial powerfully embedded subgroups. Nevertheless, this
notion is not as satisfactory as one could expect, as the unique powerfully simple p-
group would be Cp. Hence, we will be forced to define powerfully simple groups in a
more restrictive family than that of powerful groups. In order to define it, we recall from
Proposition 2.10 that all powerful groups have a basis. We will refer to it as a powerful
basis of G, where G is a powerful group.

Definition 8.5. Let G be a powerful group and let ta1, . . . , aru be a powerful basis of
G, so that |G| “ opa1q ¨ ¨ ¨ oparq. We say that G is of type

p1, r1. . ., 1, 2, r2. . ., 2, . . .q

if there are ri generators of order pi for every i ě 1.
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Note by (iii) of Proposition 2.8 that the number of generators of a powerful basis of
order greater than or equal to pn, where n ě 1, is precisely logp |G

pn´1
: Gp

n
|, so the

number of generators of any given order of a basis of G is an invariant of the group. This
means that the type of G is well defined. The family of groups in which the notion of
powerfully simple groups will be defined is the rich family P of groups of type p2, r. . ., 2q
with r ě 1. This will be discussed in Chapter 10.

All the results and ideas in Chapters 9 and 10 are collected in [36].





Chapter 9

Powerfully solvable groups

We focus now on some general aspects of the theory of powerfully solvable groups. In
the remainder let p denote an odd prime.

We start in Section 9.1 by studying powerful groups of rank 2. On the one hand, we
will show that all powerful p-groups of rank 2 are powerfully solvable, and on the other
hand, based on the work in [77], we provide a classification of all these groups as well
as a closed formula for the number of such groups of order pk.

The notion of powerfully nilpotent presentation introduced in [75] is one of the most
important characteristics of powerfully nilpotent groups, as it allows to describe them
in a very explicit way. In Section 9.2 we extend this to powerfully solvable groups,
introducing the notion of a powerfully solvable presentation. This will be useful later on
when going through some classification and calculating growth.

With this, we classify in Section 9.3 all powerful groups of order up to p5. As we
will see, it turns out that these are all powerfully solvable.

Finally, based on [75], we discuss in Section 9.4 the growth of powerfully solvable
groups of exponent p2 and various other classes of powerful groups, like the powerful
groups of type p2, . . . , 2q, which will be the central issue of Chapter 10.

9.1 Powerful groups of rank 2

We start with a basic criterion for the powerful solvability.

Proposition 9.1. Let G be a powerful p-group. If rG,Gs is cyclic then G is powerfully
solvable of powerful derived length at most 2.

Proof. As G is powerful we have that rG,Gs “ xgpy for some g P G. Therefore

G ě xgy ě 1

is a powerfully abelian chain.

Let G be a powerful group generated by 2 elements, say x, y P G. Then, G1 “
xrx, ysyγ3pGq, but since γ3pGq “ rG

1, Gs ď pG1qp “ ΦpG1q, it follows that G1 “ xra, bsy,

99
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so that G1 is cyclic. Therefore, according to Proposition 9.1, powerful groups of rank 2
are all powerfully solvable.

Furthermore, suppose rx, ys “ gp
k

for some g P GzGp and k ě 1. Then there exists
h P G such that G “ xg, hy, and since G1 ď xgy, it follows that xgy is normal in G.
In addition, G{xgy is clearly cyclic, so it follows that powerful groups of rank 2 all are
metacyclic.

In [41, Chapter 11] a classification of all finite metacyclic p-groups is given, and in
particular, if one singles out the powerful groups of rank 2, a full classification for them
can be obtained. Alternatively, in [77] the powerfully nilpotent groups of rank 2 are
classified and a closed formula is found for the number of powerfully nilpotent groups of
order pk. In fact, there is implicitly the following classification of all powerful p-groups
of rank 2.

Theorem 9.2. The powerful groups of rank 2 are divided in the following two families
of groups:

(i) Semidirect products:

G “ xa, b | ap
n
“ bp

m
“ 1, ra, bs “ ap

r
y

with n´ r ď m and 1 ď r ď n´ 1.

(ii) Non-semidirect products:

G “ xa, b | ap
n
“ 1, bp

m
“ ap

l
, ra, bs “ ap

r
y

with 1 ď r ă l ď n´ 1 and n´ r ď l ă m.

Moreover, all these groups are pairwise non-isomorphic.

From [77] we also know that a group above is powerfully nilpotent if and only if
r ě 2. Thus, it is easy to determine that there are tk´1

2 u semidirect products and tk´4
2 u

non-semidirect products of order pk that are not powerfully nilpotent. From this, the
discussion above and [77, Proposition 2.2] we also get the following enumeration.

Theorem 9.3. For k ě 3, the number of powerful p-groups of rank 2 and order pk is

k3 ` 12k2 ` 12k

72
if k ”6 0,

k3 ` 12k2 ` 3k ´ 16

72
if k ”6 1,

k3 ` 12k2 ` 12k ´ 8

72
if k ”6 2,

k3 ` 12k2 ` 3k

72
if k ”6 3,

k3 ` 12k2 ` 12k ´ 16

72
if k ”6 4,

k3 ` 12k2 ` 3k ´ 8

72
if k ”6 5.

Proof. This can be verified by routine computations just noting that the semidirect
products in Theorem 9.2 have order pn`m, while the non-semidirect products have order
pn`m´l.
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9.2 Powerful presentations

Our aim in this section is to find suitable generators that not only form a powerful
basis of G, but also satisfy special relations that will yield what we will call a powerfully
solvable presentation of G. The next lemma is essential for this purpose.

Lemma 9.4. Let G be a finite p-group and let K ă H ď G where rH,Hs ď Kp. If
for some positive integer n we have Kpn “ Hpn, then there exists x P HzK such that
xp

n
“ 1.

Proof. Observe that
rK,Ks ď rH,Hs ď Kp ď Hp,

so both H and K are powerful. By Lemma 2.13 they are power abelian, so in particular,
|H : Hpn | “ |ΩnpHq| and |K : Kpn | “ |ΩnpKq|. Now, since K ă H and Hpn “ Kpn , we
must have ΩnpKq ă ΩnpHq, so take x P ΩnpHqzΩnpKq. Thus, the order of x is pn and
x P HzK, as desired.

Note that the property of being powerfully solvable is preserved under taking quo-
tients. In particular, if G is powerfully solvable, then so is G{Gp

2
. As next theorem

shows, the converse is also true. Furthermore, there exists a special generating set of G
that, arranged in a specific way, gives a suitable powerfully abelian chain.

Theorem 9.5. Let G be a finite p-group of rank r and exponent pe where G{Gp
2

is
powerfully solvable. Then G is powerfully solvable. Furthermore, we can choose our
generators a1, a2, . . . , ar such that |G| “ opa1q ¨ ¨ ¨ oparq and such that the chain

G “ xa1, a2, . . . , ary ě xap1, a2, . . . , ary ě ¨ ¨ ¨ ě Gp

Gp “ xap1, a
p
2, . . . , a

p
ry ě xap

2

1 , a
p
2, . . . , a

p
ry ě ¨ ¨ ¨ ě Gp

2

...

Gp
e´1
“ xap

e´1

1 , ap
e´1

2 , . . . , ap
e´1

r y ě xap
e

1 , a
pe´1

2 , . . . , ap
e´1

r y ě ¨ ¨ ¨ ě Gp
e
“ 1

is powerfully abelian.

Proof. Suppose, using the fact that G{Gp
2

is powerfully solvable, that

G “ K0 ą K1 ą ¨ ¨ ¨ ą Km “ Gp
2

is a chain that is powerfully abelian modulo Gp
2
. Notice that rG,Gs ď Kp

1G
p2 ď Gp

and the group is hence powerful. In particular, we have rGp, Gs ď Gp
2

and pGpqp “ Gp
2
.

Therefore, the chain

G “ K0G
p ě K1G

p ě ¨ ¨ ¨ ě KmG
p “ Gp

is also powerfully abelian. Removing redundant terms and refining if necessary, we get
a powerfully abelian chain

G “ H0 ą H1 ą ¨ ¨ ¨ ą Hr “ Gp

where the factors are of size p. Now notice that for 0 ď i ď r´ 1 and 0 ď j ď e we have

rHpj

i , H
pj

i s “ rHi, His
p2j ď Hpj`1

i`1 . This gives us the powerfully abelian chain we wanted.
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It remains to see that we can furthermore pick our generators such that a1, . . . , ar is a
powerful basis for G. Let us pick our generators of G such that for every 1 ď i ď r ´ 1
we have Hi “ xai`1, . . . , aryG

p. If

Hp
i “ Hp

i`1 (9.1)

for some 1 ď i ď r ´ 1 then we know from Lemma 9.4 that we can pick ai`1 such that
api`1 “ 1. In addition, note that in general, if a P G has order p, then

rHi, His ď xHj , ay
p implies rHi, His ď Hp

j (9.2)

for every 0 ď i ă j ď r ´ 1.
On the other hand, observe from Lemma 2.14 that |Hp

i : Hp
i`1| ď p for all 1 ď i ď

r ´ 1, so the number of times that equality (9.1) happens is exactly r ´ logp |G
p : Gp

2
|.

We write r1 “ logp |G
p : Gp

2
|, and observe that r1 coincides with the rank of Gp.

Thus, we can reorder the generators and assume that the generators of order p are the
a1, . . . , ar´r1 (we also relabel the other generators keeping the initial order), so that

Gp “ Hp
0 “ ¨ ¨ ¨ “ Hp

r´r1 ą ¨ ¨ ¨ ą Hp
r “ Gp

2
.

Indeed, in such a case, it follows from (9.2) that

G “ H0 ě ¨ ¨ ¨ ě Hr “ Gp

is still a powerfully abelian chain. Now consider the chain

Gp
2
“ Hp2

r´r1 ě ¨ ¨ ¨ ě Hp2

r “ Gp
3
.

Again if Hp2

i “ Hp2

i`1, then we know by Lemma 9.4 that we can pick ai`1 such that

ap
2

i`1 “ 1. Continuing in this manner we see that we can choose our generators such
that for 1 ď i ď r we have opaiq “ pj where j is the smallest positive integer such that

Hpj

i´1 “ Hpj

i . Also, we have that the rank of Gp
i

is then the number of 1 ď i ď r such

that ap
j

i ‰ 1. Let rj be the rank of Gp
j
. Then, since re “ 0, we obtain

|G| “ pr0`r1`¨¨¨`re´1 “ pr0´r1 ¨ pp2qr1´r2 ¨ ¨ ¨ ppe´1qre´1´re “ opa1q ¨ ¨ ¨ oparq.

This finishes the proof.

It follows, in particular, from Theorem 9.5 that a powerfully solvable group of order
pn and rank r always have generators a1, . . . , ar satisfying the relations

ap
n1

1 “ 1, . . . , ap
nr

r “ 1 (9.3)

and
raj , ais “ a

m1pi,jq
1 ¨ ¨ ¨ amrpi,jqr , 1 ď i ă j ď r, (9.4)

where all the power indices mkpi, jq are divisible by p and where furthermore p2|mkpi, jq
whenever k ď i.

Moreover, G is the largest finite p-group satisfying these relations. To see this let H
be the largest finite p-group satisfying these relations. The group H{Hp2 is powerfully
solvable and thus H is powerfully solvable by Theorem 9.5. In particular H is powerful
and therefore |H| ď opa1q ¨ ¨ ¨ oparq. However, G is a homomorphic image of H and thus
|H| “ opa1q ¨ ¨ ¨ oparq. Hence H is isomorphic to G.

A presentation with generators a1, . . . , ar and relations of the form (9.3) and (9.4) is
called a powerfully solvable presentation. We say that such a presentation is consistent
if the presentation determines a group of order pn1 ¨ ¨ ¨ pnr .
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9.3 Classification of powerful groups of order up to p5

In this section we fully classify all powerful p-groups of order up to and including p5. It
turns out that these are all powerfully solvable. As we will see in Section 10.2, the same
cannot be said for powerful groups of order p6, as there many powerful groups of order
p6 that are not powerfully solvable. Though, we will show that non powerfully solvable
groups of order p6 are all of a special kind.

Let us start with our task in this section. There are 2 non-abelian groups of order p3.
The Heisenberg group cannot be powerful, as it is a non-abelian p-group of exponent p.
The other group is a semidirect product of a cyclic group of order p2 by a cyclic group
of order p:

G1 “ xa, b | a
p2 “ bp “ 1, ra, bs “ apy.

Notice that this group is powerfully solvable with a powerfully abelian chainG ą xay ą 1.
It is, however, not powerfully nilpotent. This comes from the fact that if

G “ G0 ě G1 ě ¨ ¨ ¨ ě Gn´2 ě Gn´1 ě Gn “ 1

is a powerfully central chain of minimal length, then Gn´1 ď ZpGq and so rGn´2, Gs ď
Gpn´1 ď ZpGqp, which contradicts the assumption of minimality since ZpGqp “ 1 and so
Gn´2 ď ZpGq. Adding to this the 3 abelian groups of order p3, we see that there are in
total 4 powerful (and also powerfully solvable) groups of order p3.

Before moving on we consider a general setting like in [77] that includes a number
of groups that will occur, namely the non-abelian groups of type p1, t. . ., 1, nq where n is
an integer greater than 1. Suppose

G “ xa1, . . . , at, by

is a powerful group of this type where ai is of order p and b of order pn. Notice
that Gp “ xbpy is cyclic and it follows from [75, Corollary 3.3] that Gp ď ZpGq. In
particular G is nilpotent of class at most 2 and rG,Gsp “ rGp, Gs “ 1. Observe also
that Ω1pGq “ xa1, . . . , at, b

pn´1
y, so rG,Gs “ xbp

n´1
y. Now, consider the vector space

V “ Ω1pGqG
p{Gp over Fp. The commutator operation naturally induces an alternating

form on V through
pxGp, yGpq “ λ if rx, ys “ bλp

n´1
.

Without loss of generality we can suppose by [40, Proposition 1] that our generators
have been chosen such that we get the following orthogonal decomposition

V “ xa1G
p, a2G

py k ¨ ¨ ¨ k xa2s´1G
p, a2sG

py k V K

where V K “ xa2s`1G
p, . . . , atG

py and pa2i´1G
p, a2iG

pq “ 0 for i “ 1, . . . , s. There are
now two cases to consider, depending on whether or not ZpGq ď Ωn´1pGq.

Suppose first that ZpGq ę Ωn´1pGq. This means that ZpGq contains some element
blu with u P xa1, . . . , aty and 0 ă l ă p. Thus without loss of generality we can assume
that b P ZpGq. We thus get a powerful group G “ Apn, t, sq with relations

ap1 “ ¨ ¨ ¨ “ apt “ bp
n
“ 1,

ra2i´1, a2is “ bp
n´1

for i “ 1, . . . , s,
rai, ajs “ 1 otherwise for 1 ď i ă j ď t,
rai, bs “ 1 for 1 ď i ď t.
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The groups Apn, t, sq are pairwise non-isomorphic since t and n are clearly invariants
of the group and since |ZpApn, t, sqq| “ pn`t´2s. Notice also that all of them satisfy
xby ď ZpGq and rG,Gs ď xbpy and thus these groups are all powerfully nilpotent, as was
observed in [77]. Notice that for a fixed n ě 2 and t ě 2 we get tt{2u such groups.

We then consider the case when ZpGq ď Ωn´1pGq. Notice first that replacing b by a
suitable baα1

1 ¨ ¨ ¨ aα2s
2s , we can assume that b commutes with a1, . . . , a2s. As b R ZpGq we

then must have t ą 2s and similarly, replacing ai by a suitable a
α2s`1

2s`1 ¨ ¨ ¨ a
αt
t , we can pick

our generators a2s`1, . . . , at such that ra2s`1, bs “ bp
n´1

and ra2s`2, bs “ ¨ ¨ ¨ “ rat, bs “ 1.
We thus arrive at a group G “ Bpn, t, sq satisfying the relations

ap1 “ ¨ ¨ ¨ “ apt “ bp
n
“ 1,

ra2i´1, a2is “ bp
n´1

for i “ 1, . . . , s,
rai, ajs “ 1 otherwise for 1 ď i ă j ď t,
ra1, bs “ ¨ ¨ ¨ “ ra2s, bs “ ra2s`2, bs “ ¨ ¨ ¨ “ rat, bs “ 1 for 1 ď i ď t,

ra2s`1, bs “ bp
n´1

.

Again, the groups Bpn, t, sq are pairwise non-isomorphic since |ZpBpn, t, sq| “ pn`t´2s´1.
Notice that for a fixed n ě 2 and t ě 1 there are tpt´1q{2u such groups. Notice also that
when n ě 3 then the group is powerfully nilpotent as xbpy ď ZpGq and rG,Gs ď xbp

2
y.

For n “ 2 this is not the case but the group is still powerfully solvable as we have a
powerfully abelian chain G ą xby ą 1 with rG,Gs ď xbpy.

We are now ready for groups of order p4. In the following we will omit writing
relations of the form rx, ys “ 1. From our analysis of non-abelian groups of rank 2 we
get two such groups:

G2 “ xa, b | a
p2 “ bp

2
“ 1, ra, bs “ apy and G3 “ xa, b | a

p3 “ bp “ 1, ra, bs “ ap
2
y.

Here G3 is furthermore powerfully nilpotent. The only non-abelian groups apart from
these are of type p1, 1, 2q and from the analysis of such groups above we know there are
two groups:

G4 “ Ap2, 2, 1q “ xa, b, c | ap “ bp “ cp
2
“ 1, ra, bs “ cpy,

and
G5 “ Bp2, 2, 0q “ xa, b, c | ap “ bp “ cp

2
“ 1, ra, cs “ cpy.

Apart from these there are 5 abelian groups and we thus get in total 9 groups.

Finally we are concern with powerful groups of order p5. Again our analysis of
groups of rank 2 and those of type p1, 1, 3q and p1, 1, 1, 2q gives us the following non-
abelian powerfully solvable groups:

G6 “ xa, b | a
p2 “ bp

3
“ 1, ra, bs “ apy,

G7 “ xa, b | a
p3 “ bp

2
“ 1, ra, bs “ apy,

G8 “ xa, b | a
p3 “ bp

2
“ 1, ra, bs “ ap

2
y,

G9 “ xa, b | a
p4 “ bp “ 1, ra, bs “ ap

3
y,

and

G10 “ Ap3, 2, 1q “ xa, b, c | ap “ bp “ cp
3
“ 1, ra, bs “ cp

2
y,

G11 “ Bp3, 2, 0q “ xa, b, c | ap “ bp “ cp
3
“ 1, ra, cs “ cp

2
y,

G12 “ Ap2, 3, 1q “ xa, b, c, d | ap “ bp “ cp “ dp
2
“ 1, ra, bs “ dpy,

G13 “ Bp2, 3, 0q “ xa, b, c, d | ap “ bb “ cp “ cp
2
“ 1, ra, bs “ dp, rc, ds “ dpy,

G14 “ Bp2, 3, 1q “ xa, b, c, d | ap “ bp “ cp “ dp
2
“ 1, ra, bs “ dp, rc, ds “ dpy.
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Here G8, G9, G10, G11, G12 are furthermore powerfully nilpotent. Apart from these 9
groups, there are 7 abelian groups. We are now only left with the non-abelian groups
of type p1, 2, 2q that will contain a number of different groups, so we need to deal with
a number of subcases.

Suppose that we have generators a, b, c of orders p, p2, p2.

Case 1: ZpGqp ‰ 1.

Notice that in this case we must have |ZpGqp| “ p as otherwise G{ZpGq is cyclic
and thus G abelian. We can assume that c P ZpGq and that ZpGqp “ xcpy. Notice
also that rG,Gs “ xra, bsy is cyclic. There are two possibilities. On the one hand, if
rG,Gs ď ZpGqp, then we can choose our generators so that we get a group with the
following presentation:

G15 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ cpy.

On the other hand if rG,Gs ę ZpGqp, then we can choose b such that ra, bs “ bpi for
some 0 ă i ď p´ 1, and if j is the inverse of i modulo p, then replacing a by aj we get
a group with presentation

G16 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ bpy.

Notice that both these groups are powerfully solvable and that G15 is furthermore pow-
erfully nilpotent.

Case 2: ZpGqp “ 1 and G{ZpGq has rank 2.

In this case we have ZpGq ď Ω1pGq “ xa, b
p, cpy. If ZpGq ď xbp, cpy, then ZpGq ď Gp

so G{ZpGq has rank 3, which is a contradiction. Hence we must have a P ZpGq. It is
not difficult to see that, as we have done before, we can choose b, c such that rb, cs “ cp

and we get the powerfully solvable group

G17 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, rb, cs “ cpy.

Before considering further cases, we first show that if ZpGqp “ 1 and G{ZpGq has rank
3, then we must have rG,Gs “ Gp. Note that |Gp| “ p2, so suppose by contradiction,
that |G1| “ p. Observe that Gp ď ZpGq, so G{ZpGq is a vector space over Fp. Then,
the commutator map in G induces a non-degenerate alternating form on G{ZpGq, and
so dimFppG{ZpGqq is even. This is a contradiction since G{ZpGq has rank 3. We have
thus rG,Gs “ Gp. In order to distinguish further between different cases, we next turn
our attention to rΩ1pGq, Gs. Notice that Ω1pGq “ xayG

p, and since a R ZpGq, it follows
that either |rΩ1pGq, Gs| is of size p or p2.

Case 3: ZpGqp “ 1, G{ZpGq of rank 3 and |rΩ1pGq, Gs| “ p.

Without loss of generality we can assume that rΩ1pGq, Gs “ xcpy. There are two
possibilities: either c P CG pΩ1 pGqq “ CGpaq or not. Suppose first that c P CG pΩ1pGqq.
Then we have ra, cs “ 1, and we can pick b such that ra, bs “ cp. Replacing b by bcl does
not change these relations and thus we can assume that rb, cs “ bpα for some 0 ă α ă p.
If we let β be the inverse of α modulo p and we replace a, c by aβ, cβ, then we arrive at
a group with presentation

G18 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ cp, rb, cs “ bpy.
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Notice that this is a powerfully solvable group with a powerfully abelian chain G ą

xb, cy ą xby ą 1. Suppose now c R CG pΩ1pGqq. Since |rΩ1pGq, Gs| “ |ra,Gs| “ p, it
follows that the conjugacy class of a has order p, and so |G : CGpaq| “ p. Thus, we can
pick b such that b P CGpaq and ra, bs “ 1. Replacing a by a suitable power of a we can
suppose that ra, cs “ cp. As before, replacing b by bcl does not change these relations,
so we can also assume rb, cs “ bαp for some 0 ă α ă p. Finally, if we let β be the inverse
of α modulo p and we replace c by cβ, we arrive at a group with presentation

G19 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, cs “ cp, rb, cs “ bpy.

This group is powerfully solvable with powerfully abelian chain G ą xb, cy ą xby ą 1.

Case 4: ZpGqp “ 1, G{ZpGq of rank 3 and |rΩ1pGq, Gs| “ p2.

In this case, commutation with a induces a bijective linear map

Fa : G{Ω1pGq ÝÑ Gp

xΩ1pGq ÞÝÑ ra, xs.

Identifying xΩ1pGq with xp, we can think of Fa as a linear operator on a 2-dimensional
vector space over Fp. Also replacing b, c by a suitable bar, cas we can assume throughout
that rb, cs “ 1. All these groups are going to be powerfully solvable with powerfully
abelian chain G ą xb, cy ą 1.

Case 4.1. (Fa is a scalar multiplication). Notice that this property still holds if we
replace a by any power of a and thus it is independent of what a we pick in Ω1pGqzG

p.
This is thus a characteristic property of G. Replacing a with a power of itself we can
assume that Fa is the identity map. This gives us the group

G20 “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ bp, ra, cs “ cpy.

Case 4.2. (Fa is not a scalar multiplication). Again we see that this is a characteristic
property of G. We can now pick b and c such that

ra, bs “ cp, ra, cs “ bpαcpβ.

Notice that the matrix for Fa is
„

0 α
1 β



with determinant ´α. It is easy to see that this is an invariant for the given a that does
not depend on our choice of b and c. Now, if we replace a by ar (and also c by cr, which
does not change the value of the determinant), then we get

ra, bs “ cp, ra, cs “ bpαr
2
cpβr,

and the new determinant becomes ´αr2. Pick some fixed τ such that ´τ is a non-
square in Fp. With appropriate choice of r we can then assume that the determinant
of Fa is ´α where either α “ ´1 or α “ τ . We thus have a group with one of the two
presentations

G21pβq “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ cp, ra, cs “ b´pcpβ, rb, cs “ 1y,
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and

G22pβq “ xa, b, c | a
p “ bp

2
“ cp

2
“ 1, ra, bs “ cp, ra, cs “ bpτ cpβ, rb, cs “ 1y.

Suppose we pick a different b̄ “ brcs. Then for α P t´1, τu we have

ra, b̄s “ ra, bsrra, css “ cprpbpαcpβqs “ bpsαcppr`sβq “ c̄p

where c̄ “ bsαcr`sβ. Then

ra, c̄s “ ra, bssαra, csr`sβ

“ cpsαpbpαcpβqr`sβ

“ pbrcsqpα ¨ pbsαcr`sβqpβ

“ b̄pαc̄pβ.

This shows that for the given α P t´1, τu, the constant β P Fp is an invariant, and so
we get p distinct groups G21pβq and p distinct groups G22pβq.

Adding up we have 7 abelian groups and the groups G6, . . . , G20, G21pβq, G22pβq, giving
us in total 22` 2p groups of order p5.

Notice that all powerful groups of order up to and including p5 are powerfully solv-
able. Now take a powerful group G of order p6, and suppose it has a generator a of
order p. Hence there exists H ă G such that G “ xa,Hy, and consequently, since
H 1 ď G1 ď Gp “ Hp, it follows that H is powerful of order p5. In particular it is also
powerfully solvable, so let

H “ H0 ě H1 ě ¨ ¨ ¨ ě Hn “ 1

be a powerfully abelian chain of H. As G1 ď Hp it then follows that the chain

G ě H0 ě H1 ě ¨ ¨ ¨ ě Hn “ 1

is also powerfully abelian, so G is powerfully solvable. As a consequence, all powerful
groups of order p6 are powerfully solvable with the possible exceptions of some groups
of type p2, 2, 2q. However, we will see in Section 10.2 that there are a number of groups
of type p2, 2, 2q that are not powerfully solvable.

9.4 Growth

To end this chapter, following the method introduced in [75], we compute the growth of
the powerfully solvable groups of exponent p2 with respect to the order pn. So, let G be
a powerfully solvable group of exponent p2 and order pn. From Theorem 9.5 and the dis-
cussion in Section 9.2, we know that we may assume thatG “ xa1, . . . , ay, ay`1, . . . , ay`xy
where opa1q “ ¨ ¨ ¨ “ opayq “ p and opay`1q “ ¨ ¨ ¨ “ opay`xq “ p2. Furthermore the
generators can be chosen such that |G| “ py`2x and

raj , ais “ a
pαi`1pi,jq
i`1 ¨ ¨ ¨ a

pαy`xpi,jq
y`x ,

for 1 ď i ă j ď y ` x, where 0 ď αkpi, jq ď p ´ 1 for k “ i ` 1, . . . , y ` x. For each
such pair pi, jq with 1 ď i ď y there are px possible relations for raj , ais, and there are
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yx `
`

y
2

˘

such pairs. On the other hand, for a pair pi, jq where y ` 1 ď i ď y ` x, for
each given i there are y` x´ i such pairs and py`x´i possible relations raj , ais. Adding
up we see that the number of solvable presentations is phpxq where

hpxq “

ˆ

yx`

ˆ

y

2

˙˙

x` 12 ` 22 ` ¨ ¨ ¨ px´ 1q2

“

ˆ

pn´ 2xqx`

ˆ

n´ 2x

2

˙˙

x`
xp2x´ 1qpx´ 1q

6

“
1

3
x3 ´

p2n´ 1q

2
x2 `

3npn´ 1q ` 1

6
x.

Thus

h1pxq “ x2 ´ p2n´ 1qx`
3npn´ 1q ` 1

6
,

whose roots are 2n´1
2 ´

b

1
2n

2 ´ n
2 `

1
12 and 2n´1

2 `

b

1
2n

2 ´ n
2 `

1
12 . For large values of

n we have that the first root is between 0 and n{2 whereas the latter is greater than n.
Thus, for large n, the largest value of h in the interval between 0 and n{2 is hpxpnqq

where xpnq “ 2n´1
2 ´

b

1
2n

2 ´ n
2 `

1
12 . Now limnÑ8 xpnq{n “ 1´ 1?

2
. Therefore

lim
nÑ8

hpxpnqq

n3
“ lim

nÑ8

1

3
pxpnq{nq3 ´ pxpnq{nq2 `

1

2
pxpnq{nqq “

´1`
?

2

6
.

Now, let us fix n. For any integer x where 0 ď x ď n{2, let Ppn, xq be the collection
of all powerfully solvable presentations as above. It is not difficult to see that those
presentations are consistent and thus the resulting group is of order pn and rank n´ x.

Furthermore ap1 “ ¨ ¨ ¨ “ apn´2x “ 1 and ap
2

n´2x`1 “ ¨ ¨ ¨ “ ap
2

n´x “ 1. We have just seen
that, for large values of n, if we pick xpnq such that the number of presentations is
maximal then

|Ppn, xpnqq| “ pαn
3`opn3q

where α “ ´1`
?

2
6 . Let Pn be the total number of the powerfully solvable presentations

where 0 ď x ď n{2. Then

Pn “ Ppn, 0q Y Ppn, 1q Y ¨ ¨ ¨ Y Ppn, tn{2uq,

and thus

pαn
3`opn3q “|Ppn, xpnqq| ď |Pn|

“ |Ppn, 0q| ` ¨ ¨ ¨ ` |Ppn, tn{2uq| ď n|Ppn, xpnqq| “ pαn
3`opn3q.

This shows that |Pn| “ pαn
3`opn3q. Let us see that this is also the growth of powerfully

solvable groups of exponent p2 with respect to the order pn. Clearly pαn
3`opn3q gives us

an upper bound. We want to show that this is also a lower bound. Let x “ xpnq be as
above and let a1, . . . , an´x be a set of generators for a powerfully solvable group G where

ap1 “ ¨ ¨ ¨ “ apn´2x “ 1 and ap
2

n´2x`1 “ ¨ ¨ ¨ “ ap
2

n´x “ 1. Notice that xa1, . . . , an´2xyG
p “

Ω1pGq, which is a characteristic subgroup of G. It will be useful to consider a larger
class of presentations for powerfully solvable groups of order pn where we still require
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ap1 “ ¨ ¨ ¨ “ apn´2x “ 1 and ap
2

n´2x`1 “ ¨ ¨ ¨ “ ap
2

n´x “ 1. We let Qpn, xq “ Qpn, xpnqq be
the collection of all presentations with additional commutator relations

rai, ajs “ a
pα1pi,jq
1 ¨ ¨ ¨ a

pαn´xpi,jq
n´x “ a

pαn´2x`1pi,jq
n´2x`1 ¨ ¨ ¨ a

pαn´xpi,jq
n´x .

The presentation is included in Ppn, xq provided the resulting group is powerfully solv-
able of order pn. Notice that Gp ď ZpGq and as a result the commutator relations
above only depend on the cosets a1 “ a1G

p, . . . , an´x “ an´xG
p and not on the

exact values of a1, . . . , an´x. Consider the vector space V “ G{Gp over Fp and let
W “ Fpa1 ` ¨ ¨ ¨ ` Fpan´2x. Then let

H “ tφ P GLpn´ x, pq | φpW q “W u.

There is now a natural action of H on Qpn, xq. Suppose we have some presentation with
generators a1, . . . , an´x as above. Let φ P H and suppose

ai
φ “ β1piqa1 ` ¨ ¨ ¨ ` βn´xpiqan´x.

We then get a new presentation in Qpn, xq for G with respect to the generators b1, . . .,

bn´x where bi “ a
β1piq
1 ¨ ¨ ¨ a

βn´xpiq
n´x .

Suppose there are l powerfully solvable groups of exponent p2 and order pn where
furthermore |Gp| “ px. Pick powerfully solvable presentations p1, . . . , pl P Ppn, xq for
these. Let q be a powerfully solvable presentation in Ppn, xq of a groupK with generators
b1, . . . , bn´x. Then q is also a presentation for an isomorphic group G with presentation
pi and generators a1, . . . , an´x. Let φ : K Ñ G be an isomorphism and let ψ : K{Kp Ñ

G{Gp be the corresponding linear isomorphism. This gives us a linear automorphism
τ P H induced by τpaiq “ ψpbiq. Thus q “ pτi , and therefore

Ppn, xq Ď pH1 Y p
H
2 Y ¨ ¨ ¨ Y p

H
l .

Observe that |H| ď ppn´xq
2
ď pn

2
. From this we get

pαn
3`opn3q “ |Ppn, xq| ď |pH1 | ` ¨ ¨ ¨ ` |pHl | ď lpn

2
,

and it follows that l ě pαn
3`opn3q. We thus get the following result.

Theorem 9.6. The number of powerfully solvable groups of exponent p2 and order pn

is pαn
3`opn3q, where α “ ´1`

?
2

6 .

As mentioned in [75], the growth of all powerful p-groups of exponent p2 and order
pn is pβn

3`opn3q where β “ 2
27 , so it actually coincides with the growth of all finite p-

groups (see [70]). In other words, the growth of the powerful p-groups is the same as
the growth of all finite p-groups. This claim was though not proved and we will fill in
the details here.

As before we consider a group G of order pn “ py`2x with generators a1, . . . , ay`x
where opa1q “ ¨ ¨ ¨ “ opayq “ p and opay`1q “ ¨ ¨ ¨ “ opay`xq “ p2. This time we can
though include all powerful relations

raj , ais “ a
pαy`1pi,jq
1 ¨ ¨ ¨ a

pαy`xpi,jq
y`x
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for 1 ď i ă j ď y ` x, where 0 ď αkpi, jq ď p ´ 1 for k “ y ` 1, . . . , y ` x. For each
such pair pi, jq there are px possible relations for raj , ais. We thus see that the number
of presentations is phpxq where

hpxq “

ˆ

y ` x

2

˙

x “

ˆ

n´ x

2

˙

x “
x3

2
´
p2n´ 1q

2
x2 `

npn´ 1q

2
x.

Thus

h1pxq “
3

2

ˆ

x2 ´
2p2n´ 1q

3
x`

npn´ 1q

3

˙

and using the same kind of analysis as before we see that for a large n, h takes its maximal

value for xpnq “ 2n´1
3 ´

b

n2

9 ´
n
9 `

1
9 . Notice that limnÑ8

xpnq
n “ 1{3. Therefore

lim
nÑ8

hpxpnqq

n3
“ lim

nÑ8

1

2

ˆ

n´ xpnq

n

˙ˆ

n´ 1´ xpnq

n

˙

xpnq

n
“ 2{27.

The same argument as above shows then that the growth of all powerful groups of
exponent p2 with respect to order pn is p

2
27
n3`opn3q.

In Chapter 10 we will be working with a special subclass P of powerful p-groups,
namely those that are of type p2, r. . ., 2q with r ě 1. In this case the number of presen-

tations for groups of order pn, n even, is phpnq where hpnq “ n
2

`

n{2
2

˘

and

lim
nÑ8

hpnq

n3
“ lim

nÑ8

n{2pn{2´ 1qn{2

2n3
“ 1{16.

Thus the growth here is p
1
16
n3`opn3q.



Chapter 10

Groups of type p2, . . . , 2q and
powerfully simple groups

In this last chapter of the thesis we will consider the rich class P of all powerful p-groups
of type p2, . . . , 2q. As in the previous chapter, p stands for an odd prime.

In Section 10.1 we will see that powerful nilpotence and powerful solvability play a
similar role here as nilpotence and solvability do in the class of all groups. In this way, the
notion of a powerfully simple group arises naturally, which are the “powerful analogous”
to finite simple groups. Actually, we will be able to prove a Jordan-Hölder-like result
that reaffirms this. The main tool to prove it will be a convenient correspondence
between the category of all groups in P with the category of the alternating algebras
over Fp.

Finally in Section 10.2 we will fully classify all the powerful groups of type p2, 2, 2q.
This will be done by identifying such groups with 3ˆ3 matrices over Fp and by consider-
ing a suitable equivalence relation on them. In this equivalent relation two matrices will
be equivalent if and only if one is congruent to a scalar multiple of the other. Therefore,
identifying these matrices with the bilinear form they define will be really helpful. The
number of powerful groups of type p2, 2, 2q turns out to depend on the prime p.

10.1 Groups of type p2, . . . , 2q

We have seen that powerful nilpotence and powerful solvability is preserved under taking
quotients. These properties, however, work badly under taking subgroups. Our next
result underscores this.

Proposition 10.1. Let G be any finite p-group of nilpotency class 2. Then there ex-
ists a powerfully nilpotent group H of powerful class 2 that contains G as a subgroup.
Moreover, if G is powerful, then exppHq “ exppGq.

Proof. Suppose rG,Gs has a basis a1, . . . , am as an abelian group, where opaiq “ pji with
ji ě 1 for all i “ 1, . . . ,m. Let N “ xx1yˆ¨ ¨ ¨ˆxxmy be a direct product of cyclic groups
where opxiq “ pji`1. Now define H “ pGˆNq{M where M “ xa1x

´p
1 , . . . , amx

´p
m y. Then

111
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G clearly embeds as a subgroup of H. Notice also that

1 ď xx1, . . . , xmy ď H

is powerfully central and thus H is powerfully nilpotent of powerful class 2. Moreover,
if G is powerful, then we have

logp exppNq “ logp exppG1q ` 1 ď logp exppGq,

and so the exponent of H equals the exponent of G.

This shows that the subgroup structure of a powerfully nilpotent group of powerful
class 2 is quite arbitrary. As powerful groups of exponent p2 are nilpotent of class 2, we
immediately deduce the following corollary.

Corollary 10.2. Let G be any powerful p-group of exponent p2. Then there exists
a powerfully nilpotent group H of exponent p2 and powerful class 2 such that G is
powerfully embedded in H.

Remark 10.3. (i) There exist powerful p-groups of exponent p2 that are not power-
fully solvable (see Section 10.2), and thus a powerfully embedded subgroup of a
powerfully nilpotent group of powerful class 2 does not even need to be powerfully
solvable.

(ii) There exist powerfully nilpotent groups of exponent p2 that are of arbitrary large
powerful class, and so, the proposition above shows that a powerfully nilpotent
group of powerful class 2 could have a powerfully embedded powerfully nilpotent
subgroup of arbitrary large powerful class.

Thus powerful nilpotence and powerful solvability are in general not as satisfactory
as notions for powerful groups as nilpotence and solvability for the class of all groups.
For a rich subclass of powerful groups things, however, turn out much better. This is
the class P of all powerful groups of type p2, . . . , 2q that we considered in Section 9.4.
The good behaviour or the groups in P relies essentially on the following lemma.

Lemma 10.4. Let G P P and H,K ď G where Gp ď K. Then Hp XKp “ pH XKqp.
In particular, H XGp “ Hp.

Proof. Since G is powerful of exponent p2, we have Gp ď ZpGq, so it follows that the
map

f : G{Gp Ñ Gp

aGp ÞÑ ap

is a bijection. Therefore,

Hp XKp “ fpHGp{Gpq X fpK{Gpq

“ fpHGp XK{Gpq “ fppH XKqGp{Gpq

“ pH XKqp

where the equality in the second line follows since K ě Gp. As pH XKqp ď Hp XKp

we conclude that Hp XKp “ pH XKqp.
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Theorem 10.5. Let G be a powerfully nilpotent group in P and let H be a powerful
subgroup of G. Then H is powerfully nilpotent of powerful class less than or equal to
the powerful class of G.

Proof. Suppose G has powerful nilpotency class c and that we have a powerfully central
chain G “ G0 ą G1 ą ¨ ¨ ¨ ą Gc “ 1. As Gp ď ZpGq and pGpqp “ 1, multiplying
a term by Gp makes no difference. Also as the powerful class is c we get a strictly
decreasing powerfully central chain G “ G0 ą G1G

p ą ¨ ¨ ¨ ą Gc´1G
p ą 1. Without loss

of generality we can thus assume that G1, . . . , Gc´1 contain Gp as a subgroup. We claim
that

H “ H XG0 ě H XG1 ě ¨ ¨ ¨ ě H XGc´1 ě 1

is powerfully central. Using Lemma 10.4 we have

rH XGi, Hs ď rH,Hs X rGi, Gs ď Hp XGpi`1 “ pH XGi`1q
p,

for 0 ď i ď c´ 1. Hence H is powerfully nilpotent of powerful class at most c.

Theorem 10.6. Let G be a powerfully solvable group in P and let H be a powerful
subgroup of G. Then H is powerfully solvable of powerful derived length less than or
equal to the powerful derived length of G.

Proof. Suppose the powerful derived length of G is d and that we have a powerfully
abelian chain G “ G0 ą G1 ą ¨ ¨ ¨ ą Gd “ 1. Arguing like in the proof of the previous
theorem, we can assume that Gd´1 contains Gp. We show that

H “ H XG0 ě H XG1 ě ¨ ¨ ¨ ě H XGc´1 ě H XGc “ 1

is a powerfully abelian chain. Using Lemma 10.4, we have

rH XGi, H XGis ď rH,Hs X rGi, Gis ď Hp XGpi`1 “ pH XGi`1q
p.

This shows that H is powerfully solvable of powerful derived length at most d.

In view of Theorems 10.5 and 10.6, we introduce some useful notation. Let G P P.
We say that H is a P-subgroup of G and we write H ďP G, if H is a subgroup of G
such that H P P. We use H ĲP G for H P P and H powerfully embedded in G. The
notations H ăP G and H ŸP G are defined naturally in a similar way.

In this way we can work in the well-behaved category of powerful groups of type
p2, . . . , 2q, where the notions of nilpotence and solvability behave particularly well. In
this setting, is then natural to consider the notion of powerfully simple group, which we
define next.

Definition 10.7. We say that a group G P P is powerfully simple if G ‰ 1 and if
H ŸP G implies that H “ 1.

The notion of powerfully simple is thus the “powerful version” of finite simple groups,
and in the same way as finite simple groups, maximality of normal subgroups can be
characterised in terms of simplicity, as shown in Lemma 10.9 below.

Definition 10.8. Let H,G P P with H ŸP G. We say that H is a maximal powerfully
embedded P-subgroup of G if there is no H ă K ă G such that K ĲP G.
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Observe that if G P P and H ĲP G, then the quotient G{H has naturally the
structure of powerful group of type p2, . . . , 2q. Otherwise, there exists an element g R H
such that gH P Ω1pG{Hq but gH R pG{Hqp. Therefore, since Gp “ Ω1pGq, we have
gp ‰ 1 but gp P H. This is a contradiction since g R H.

Lemma 10.9. Let G P P. Then H is a maximal powerfully embedded P-subgroup of G
if and only if G{H is powerfully simple.

Proof. Let H ă K ă G. Now as H is powerful of type p2, . . . , 2q we have H XGp “ Hp.
Therefore rK,Gs ď KpH if and only if

rK,Gs ď pKpHq XGp “ KppH XGpq “ KpHp “ Kp.

The result follows from this.

Our next aim is proving a Jordan-Hölder type theorem for the category of groups
of P. For this purpose, we will show that this category is isomorphic to the category of
alternating algebras over Fp.

Definition 10.10. An alternating algebra V over Fp is an Fp-vector space equipped
with an alternating bilinear form, i.e., a map p , q : V ˆ V Ñ V satisfying the following
conditions:

(i) It is linear in each argument separately.

(ii) pv, vq “ 0 for all v P V .

A subset U Ď V is an alternating subalgebra of V and we write U ď V if U is a subspace
of V such that pU,Uq ď U . Similarly, U is an ideal of V and we write U Ĳ V if U is a
subspace of V such that pU, V q ď U .

Remark 10.11. Since we are only considering odd primes, property (ii) is equivalent to
skew-symmetry, that is, pv, wq “ ´pw, vq for all v, w P V .

The notions of alternating algebra homomorphism, nilpotent alternating algebra,
solvable alternating algebra and simple alternating algebra can be deduced naturally.

Now, let G be a powerful p-group of rank r in P and let V “ G{Gp be the associated
vector space of dimension r over Fp. The structure of G is determined by the commutator
relations

ra, bs “ cp, (10.1)

where there exists such c P G for each pair a, b in G. Notice that ra, bs and cp only
depend on the cosets aGp, bGp and cGp. Identifying the two vector spaces G{Gp and Gp

under the map xGp ÞÑ xp, we get a natural alternating product on V with the relations
(10.1) translating to

paGp, bGpq “ cGp.

Conversely, let V be an alternating algebra of dimension r over Fp. Let tv1, . . . , vru
be a basis of V and for every 1 ď i ă j ď r write

pvi, vjq “ α1pi, jqv1 ` ¨ ¨ ¨ ` αrpi, jqvr,

where α1pi, jq, . . . , αrpi, jq P Fp. Then the group

G “ xg1, . . . , gr | g
p2

k “ 1, rgi, gjs “ g
α1pi,jqp
1 ¨ ¨ ¨ gαrpi,jqpr , k “ 1, . . . , r, 1 ď i ă j ď ry
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is a powerful group of type p2, r. . ., 2q.
Moreover, it is easy to see that a homomorphism φ : G Ñ H, where G,H P P,

corresponds naturally to an alternating algebra homomorphism from the alternating
algebra associated to G to the alternating algebra associated to H. The converse of this
is also easy to prove.

We have shown the following.

Theorem 10.12. The category of powerful groups of type p2, . . . , 2q and the category of
alternating algebras are isomorphic.

Moreover, if V is the alternating algebra corresponding to a group G P P, then its
subalgebra structure is essentially the same as the subgroup structure of G.

Theorem 10.13. Let G P P and let V be its associated alternating algebra defined
above. Let G be the collection of all P-subgroups of G and let V be the collection of
all the alternating subalgebras of V . Then there is an inclusion preserving one-to-one
correspondence between G and V, where powerfully embedded subgroups of G correspond
to ideals in V.

Proof. Let U P V. Then there exist u1, . . . , ut P G such that U “ xu1, . . . , utyG
p{Gp.

Define H “ xu1, . . . , uty so that U “ HGp{Gp. For U to be in V it needs to be a
subspace of V where pU,Uq ď U , which, by the definition of the alternating product,
translates to rHGp, HGps “ rH,Hs ď Hp. Hence H is powerful of type p2, . . . , 2q, so
H P G. Moreover, if U ĲP V , then this translates to rH,Gs ď Hp, so that H ĲP G.

Conversely, for a subgroup H in G, we have rHGp, HGps “ rH,Hs ď Hp, which,
if U “ HGp{Gp, translates to pU,Uq ď U . In addition, if H ĲP G, then we have
pU,Gq ď U , so that U Ĳ V .

Remark 10.14. The same argument of the proof of the previous theorem also shows that
G is powerfully nilpotent, resp. powerfully solvable, if and only if V is nilpotent, resp.
solvable. Moreover, let H,K P G and let U and W be the associated alternating algebras
in V. Suppose that H is powerfully embedded in K. Then K{H is powerfully simple if
and only if W {U is a simple alternating algebra, and the latter happens if and only if
U is a maximal ideal of W .

With this correspondence, we can now prove a Jordan-Hölder type theorem. Suppose
A,B, a, b P V where A Ĳ B and a Ĳ b. Let IBA “ tZ | A ď Z ď Bu and Iba “ tz | a ď
z ď bu. We get natural projections P : Iba Ñ IBA and Q : IBA Ñ Iba given by

P pzq “ A`B X z and QpZq “ a` bX Z.

The following is a version of the Zassenhaus lemma for alternating algebras.

Lemma 10.15. We have P paq Ĳ P pbq and QpAq Ĳ QpBq. Furthermore P pbq{P paq is
isomorphic to QpBq{QpAq.

Proof. Notice that P paq “ A ` B X a, P pbq “ A ` B X b, QpAq “ a ` b X A and
QpBq “ a` bXB. As A Ĳ B, we have

pP paq, P pbqq “ pA`B X a,A`B X bq ď A` pB X a,B X bq.

Now as B is a subalgebra and a Ĳ b we have that this is contained in P paq “ A`BXa,
so that P paq Ĳ P pbq. The second claim follows from this by symmetry.
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Now for P pbq{P paq, notice first that we have

B X bX P paq “ B X bX pA`B X aq “ B X bXA`B X a “ AX b`B X a,

and consequently

P pbq{P paq “ pB X b` P paqq{P paq

– pB X bq{pB X bX P paqq “ pB X bq{pAX b`B X aq,

where the isomorphism is a vector space isomorphism. By symmetry, it follows that
P pbq{P paq – QpBq{QpAq as vector spaces.

Now, for u, v, w P B X b it follows that

pu, vq ` P paq “ w ` P paq ô pu, vq `AX b`B X a “ w `AX b`B X a,

and by symmetry

pu, vq `QpAq “ w `QpAq ô pu, vq ` aXB ` bXA “ w `AX b`B X a.

The algebra isomorphism of P pbq{P paq and P pBq{BpAq follows from this.

The Jordan-Hölder theorem for alternating algebras is proved from this in the stan-
dard way.

Definition 10.16. Let V be an alternating algebra. A chain 0 “ U0ŸU1Ÿ¨ ¨ ¨ŸUn “ V
is a composition series for V if all the factors U1{U0, . . . , Un{Un´1 are simple alternating
algebras.

Theorem 10.17. Let V be an alternating algebra. Then all composition series have the
same length and same simple factors up to order.

With this and the correspondence in Theorem 10.13, the Jordan-Hölder theorem for
powerful groups of type p2, . . . , 2q follows easily.

Definition 10.18. Let G P P. A chain 1 “ H0 ŸP H1 ŸP ¨ ¨ ¨ ŸP Hn “ G is a powerful
composition series for G if all the factors H1{H0, . . . ,Hn{Hn´1 are powerfully simple.

Theorem 10.19. Let G be a group in P with two powerful composition series, say

1 “ H0 ŸP H1 ŸP ¨ ¨ ¨ ŸP Hn “ G

and
1 “ K0 ŸP K1 ŸP ¨ ¨ ¨ ŸP Km “ G.

Then m “ n and the powerfully simple factors H1{H0, H2{H1, . . . ,Hn{Hn´1 are iso-
morphic to K1{K0, K2{K1, . . . ,Kn{Kn´1 (in some order).

Proof. Replace the terms Hi,Kj by their associated alternating algebras Ui, Vj . The
result now follows from the Jordan-Hölder theorem for alternating algebras.

Definition 10.20. We refer to the unique factors of a powerful composition series of a
group G P P as the powerful composition factors of G.

Finally, we see that as for finite groups, powerful solvability and powerful simplicity
are somehow opposite concepts.

Corollary 10.21. A group G P P is powerfully solvable if and only if the powerful
composition factors are cyclic of order p2.

Proof. Any powerful abelian chain of G consisting of subgroups in P can be refined to
a chain with factors that are cyclic of order p2.
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10.2 The classification of powerful groups of type p2, 2, 2q

We devote this last section to the classification of all powerful groups of type p2, 2, 2q.
From Theorem 10.13 we know that this task is equivalent to classifying all simple alter-
nating algebras of dimension 3.

Following [74], any given alternating algebra of dimension 3 over Fp can be repre-
sented by a 3ˆ 3 matrix over Fp. This is done by identifying the matrix

A “

»

–

α11 α12 α13

α21 α22 α23

α31 α32 α33

fi

fl

with the 3-dimensional alternating algebra V “ Fpx1 ` Fpx2 ` Fpx3 with relations

px2, x3q “ α11x1 ` α21x2 ` α31x3,

px3, x1q “ α12x1 ` α22x2 ` α32x3,

px1, x2q “ α13x1 ` α23x2 ` α33x3.

This algebra would correspond to a powerful p-group of order p6 with generators a1, a2, a3

of order p2 satisfying the relations

ra2, a3s “ apα11
1 apα21

2 apα31
3

ra3, a1s “ apα12
1 apα22

2 apα32
3

ra1, a2s “ apα13
1 apα23

2 apα33
3 .

Note that different choices of the basis of V give rise to different matrices that
represent it. Indeed, if we choose another basis for V , say

y1 “ g11x1 ` g21x2 ` g31x3,

y2 “ g12x1 ` g22x2 ` g32x3,

y3 “ g13x1 ` g23x2 ` g33x3,

then we get

py2, y3q “

„

g22 g23

g32 g33



px2, x3q ´

„

g12 g13

g32 g33



px3, x1q `

„

g12 g13

g22 g23



px1, x2q,

py3, y1q “ ´

„

g21 g23

g31 g33



px2, x3q `

„

g11 g13

g31 g33



px3, x1q ´

„

g11 g13

g21 g23



px1, x2q,

py1, y2q “

„

g21 g22

g31 g32



px2, x3q ´

„

g11 g12

g31 g32



px3, x1q `

„

g11 g12

g21 g22



px1, x2q.

Therefore, if

P “

»

–

g11 g12 g13

g21 g22 g23

g31 g32 g33

fi

fl ,

then the matrix B representing V with respect to the basis ty1, y2, y2u is

P´1 ¨A ¨ adjpP qt “ detpP qP´1 ¨A ¨ pP´1qt.
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Thus, we define the action of the general linear group of degree 3 over Fp, namely
GLp3,Fpq, on the set of 3ˆ 3 matrices M3pFpq by

AP “ detpP q´1P t ¨A ¨ P.

In this way, two matrices A and B represent the same alternating algebra if and only
if they lie in the same orbit with respect to this action, that is, if there exists P P

GLp3,Fpq such that AP “ B. In this case, we write A » B. Our goal will be finding a
representative for each of these orbits.

This equivalence turns out to be slightly more general than being congruent (that is
B “ P tAP ).

Lemma 10.22. Let λ P F˚p . Then λA » A.

Proof. Let P “ 1
λI. Then detpP q´1P tAP “ λ3 ¨ 1

λ2
A “ λA.

From this we easily get the following corollary.

Proposition 10.23. We have A » B if and only if there exists λ P Fp such that A is
congruent to λB.

In particular two matrices that are congruent are equivalent in the sense above.
Now, each matrix A in M3pFpq can be written in a unique way as a sum of a

symmetric and an anti-symmetric matrix, namely A “ As `Aa where

As “
A`At

2
and Aa “

A´At

2
.

We will consider all the possible combinations of the bilinear forms induced by the
matrices As and Aa and with that we will be able to determine all the equivalence
classes of M3pFpq and therefore all powerful p-groups of type p2, 2, 2q. We will start with
the easiest cases when A “ As and A “ Aa.

10.2.1 The orbits of the symmetric and anti-symmetric matrices

Note that

pAtqP “ detpP q´1P t ¨At ¨ P “ pdetpP q´1P t ¨A ¨ P qt “ pAP qt,

so if A is symmetric, resp. anti-symmetric, then AP is also symmetric, resp. anti-
symmetric. In this section we determine the orbits of the symmetric and the anti-
symmetric matrices.

Let us start with the symmetric matrices. Denote by Dpα, β, γq the 3 ˆ 3 matrix
with α, β, γ P Fp on the diagonal entries.

Theorem 10.24 ([11, Chapter 6, Theorem 2.7]). Two non-singular n ˆ n symmetric
matrices are congruent if and only if they have the same determinant modulo pF˚pq

2.

This implies that every symmetric matrix is congruent to a diagonal matrix of
the following form: Dp1, 1, 1q, Dpτ, 1, 1q, Dp1, 1, 0q, Dpτ, 1, 0q, Dp1, 0, 0q, Dpτ, 0, 0q and
Dp0, 0, 0q, where τ is a fixed non-square in F˚p .

Now, by Proposition 10.23, Dp1, 1, 1q is equivalent to τDp1, 1, 1q where the latter
has determinant τ modulo pF˚pq

2. Hence Dp1, 1, 1q and Dpτ, 1, 1q are equivalent. Also
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Dpτ, 0, 0q “ τDp1, 0, 0q is equivalent to Dp1, 0, 0q. When the rank is 2 then multiplying
the matrix by a constant λ P F˚p doesn’t change the value of the determinant modulo
pF˚pq

2. Hence Dp1, 1, 0q and Dpτ, 1, 0q are not equivalent. Up to equivalence we thus get
only 5 matrices:

Dp1, 1, 1q, Dp1, 1, 0q, Dpτ, 1, 0q, Dp1, 0, 0q and Dp0, 0, 0q.

The situation regarding the anti-symmetric matrices is simpler as there is only one
non-trivial equivalence class. To see this, note that the rank of a 3ˆ 3 non trivial anti-
symmetric matrix must be 0 or 2 (see [40, Proposition 1]). If V is a 3 dimensional vector
space equipped with the alternating bilinear form x , ya induced from an anti-symmetric
matrix of rank 2, then dimpV Kaq “ 1, and so there exists a basis tv1, v2, v3u such that
v3 P V

Ka . Hence we can assume that the anti-symmetric matrix is of the form

»

–

0 a 0
´a 0 0

0 0 0

fi

fl

with a P F˚p , and according to Lemma 10.22, there is only one such matrix up to
equivalence (in fact, it is easy to see that this matrix is also unique up to congruence).

10.2.2 Classification of the alternating algebras

Let now A be a general 3ˆ 3 matrix over Fp and let V be a 3 dimensional vector space.
The symmetric part of A equips V with a corresponding symmetric bilinear form x , ys
and the anti-symmetric part of A equips V with a corresponding alternating form x , ya.
Now there are two possibilities for x , ya. If it is zero then A is symmetric and we get
5 alternating algebras corresponding to the 5 diagonal matrices listed above. Hence we
assume from now on that x , ya is non-zero. Thus V Ka is of dimension 1, say

V Ka “ Fpv3,

so that

V “ pFpv1 ` Fpv2q ka Fpv3

for some v1, v2 P V . For our classification we will divide first into 3 cases. For Case 1,
we have xv3, v3ys ‰ 0. For Case 2, we have xv3, v3ys “ 0 and pV KaqKs “ pFpv3q

Ks “ V .
Finally for Case 3, we have xv3, v3ys “ 0 and pV KaqKs “ pFpv3q

Ks ă V .

Case 1: xv3, v3ys ‰ 0.

By [11, Theorem 2.2], we can here find a basis v1, v2, v3 for V where

V “ Fpv1 ks Fpv2 ks Fpv3.

Case 1.1. Suppose first that the rank of x , ys is 1. In this case it is easy to see that we
can pick our basis further so that

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ 0, xv2, v2ys “ 0, xv3, v3ys “ 1.
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Indeed, notice that by Lemma 10.22 we can always multiply the relevant matrix A by
a constant to get xv3, v3ys “ 1. Then, by [11, Lemma 2.1] we can pick v1 and v2 in
pFpv3q

Ks , and since the rank of As is 1 we must have xv1, v1ys “ 0 and xv2, v2ys “ 0.
Finally, we can replace, if necessary vi by a multiple of vi so that xv1, v2ya “ 1. In this
case we thus have only 1 algebra.

Case 1.2. Suppose next that the rank of x , ys is 2. Here again by multiplying by a
constant we can assume that xv3, v3ys “ 1, and also that v1, v2 P pFpv3q

Ks . Moreover, by
Theorem 10.24, and since the rank of x , ys is 2, we can further assume that xv2, v2ys “ 0.
Now xv1, v1ys “ λ2 or xv1, v1ys “ τλ2 for some λ P F˚p . By replacing v1 by 1

λv1 we have
that xv1, v1ys is either 1 or τ . Notice that we have also seen above that these cases are
genuinely distinct. Now that v1 has been chosen we can replace v2 by a suitable multiple
to ensure that xv1, v2ya “ 1. We thus get 2 algebras

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ 1, xv2, v2ys “ 0, xv3, v3ys “ 1.

and
xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ τ, xv2, v2ys “ 0, xv3, v3ys “ 1.

Case 1.3. We are only left with the case where the rank of x , ys is 3. By Theorem 10.24
and by taking a suitable multiple of v1 to ensure that xv1, v2ya “ 1, we can assume that

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ α, xv2, v2ys “ 1, xv3, v3ys “ 1,

where α P F˚p . We want to see when we get an equivalent algebra by changing α to β.
If we multiply the presentation by a constant it must be by a square if we still want
xv3, v3ys “ 1. Say we multiply by λ2 and then replace v3 by 1

λv3. Notice that we now
have

xv1, v2ya “ λ2, xv1, v1ys “ αλ2, xv2, v2ys “ λ2.

We are now looking for all possible v̄1 “ av1`bv2 and v̄2 “ cv1`dv2 where xv̄1, v̄2ya “ 1,
xv̄1, v̄2ys “ 0 and xv̄2, v̄2ys “ 1. This gives us the following system of equations:

λ2pad´ bcq “ 1

λ2pαac` bdq “ 0

λ2pαc2 ` d2q “ 1.

We look first for all the solutions where c “ 0. Notice that in this case we must have
λ2ad “ 1, λ2d2 “ 1 and b “ 0. Thus xv̄1, v̄1ys “ λ2pαa2 ` b2q “ λ2 α

d2λ4
“ α

λ2d2
“ α.

Next we look for solutions where c ‰ 0 but d “ 0. Then we must have λ2bc “ ´1,
λ2αc2 “ 1 and a “ 0. Here xv̄1, v̄1ys “ λ2pαa2 ` b2q “ λ2

c2λ4
“ α

αc2λ2
“ α.

Finally we are left with finding all solutions where cd ‰ 0. Then a “ ´ bd
αc , and the

first equation above gives us

1 “ ´λ2

ˆ

bd2

αc
` bc

˙

“ ´
b

αc
¨ λ2pd2 ` αc2q “ ´

b

αc
.

Thus b “ ´αc and a “ ´ bd
αc “ d. Therefore
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xv̄1, v̄1y “ λ2pαa2 ` b2q

“ λ2pαd2 ` α2c2q

“ αλ2pαc2 ` d2q

“ α.

We have thus seen that the value of α doesn’t change and we have p´1 different algebras
here.

Case 2: xv3, v3ys “ 0 and pV KaqKs “ pFpv3q
Ks “ V .

Again we consider several subcases.

Case 2.1. Suppose that the rank of x , ys is zero. Then, as seen before, we have only 1
algebra.

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ 0, xv2, v2ys “ 0, xv3, v3ys “ 0.

Case 2.2. Suppose next that the rank of x , ys is 1. By multiplying by a suitable
constant we can assume that xv1, v1ys “ 1 and xv2, v2ys “ 0. Finally replacing v2 by an
appropriate multiple we can also assume that xv1, v2ya “ 1. We thus also get here only
1 algebra

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ 1, xv2, v2ys “ 0, xv3, v3ys “ 0.

Case 2.3. Finally we are left with the case when the rank of x , ys is 2. Here, as done in
Case 1.3, it is easy to see that we can pick our basis further so that

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ α, xv2, v2ys “ 1, xv3, v3ys “ 0.

Similar calculations as for Case 1.3 show that we get distinct algebras for different values
of α. Thus here we have p´ 1 algebras.

Case 3: xv3, v3ys “ 0 and pV KaqKs “ pFpv3q
Ks ă V .

Since v3 is not orthogonal to everything in V with respect to x , ys, it follows that
pFpv3q

Ks has dimension 2. Suppose

pFpv3q
Ks “ Fpv2 ` Fpv3

and take v1 P V zpFpv3q
Ks so that xv1, v3ys ‰ 0. Replacing if necessary v1 by αv1 ` βv3

with 0 ă α, β ď p ´ 1, we can assume xv1, v1ys “ 0. Similarly, taking if necessary a
linear combination of v2 and v3 instead of v2 we have xv1, v2ys “ 0. Hence we can pick
our basis such that

xv1, v2ya “ 1, xv1, v3ya “ 0, xv2, v3ya “ 0,
xv1, v1ys “ 0, xv1, v2ys “ 0, xv1, v3ys “ 1, xv2, v3ys “ 0.

Now there are two subcases.



122 Chapter 10. Groups of type p2, . . . , 2q and powerfully simple groups

Case 3.1. If the rank of x , ys is 2 then we must have xv2, v2ys “ 0 and this gives us 1
algebra.

Case 3.2. If the rank of x , ys is 3 then xv2, v2ys ‰ 0 and after multiplying by a suitable
constant we can assume that this value is 1 (and then afterwards adjust things so that
the other assumptions hold again). Thus we get again 1 algebra.

We have thus determined all the 3ˆ 3 presentation matrices up to equivalence, and
adding up we got in total 12` 2pp´ 1q such matrices. As we described at the beginning
of the section this gives us a classification of all the alternating algebras of dimension 3
over Fp that in turn gives us a classification of all the powerful p-groups of type p2, 2, 2q.

Before listing these we state and prove a proposition that shows how we can see
which of these are powerfully simple.

Proposition 10.25. An alternating algebra V over Fp of dimension 3 is simple if and
only if V ¨ V “ V .

Proof. This condition is clearly necessary as V ¨ V is an ideal of V . To see that it is
sufficient, suppose V ¨ V “ V and let I be a proper ideal. We want to show that I “ 0.
We argue by contradiction and suppose I is an ideal of dimension either 1 or 2. If I
is of dimension 2, then V {I is 1 dimensional and thus we get the contradiction that
V ¨ V ď I ă V . Now suppose I is of dimension 1, say V “ I ` Fpv1 ` Fpv2. Then
V ¨ V ď I ` Fpv1v2. But the dimension of I ` Fv1v2 is at most 2 and we get the
contradiction that V ¨ V ă V .

Then the following corollary follows immediately.

Corollary 10.26. Let V be an alternating algebra and let A be an associated matrix of
V . Then V is simple if and only if detpAq ‰ 1.

This corollary tells us how we read from the presentation whether a given alternat-
ing algebra is simple and thus whether the corresponding powerful group is powerfully
simple. Moreover, according to the following proposition, it turns out that all non-
powerfully simple groups of type p2, 2, 2q are powerfully solvable.

Proposition 10.27. Let G P P be of type p2, 2, 2q. If G is not powerfully simple, then
it is powerfully solvable.

Proof. Note that Gp – Cp ˆ Cp ˆ Cp, and if G1 “ Gp, then G is powerfully simple by
Corollary 10.26. Hence G1 ă Gp. If G1 is cyclic then we are done by Proposition 9.1, so
suppose that G1 “ xap, bpy – Cp ˆ Cp for some a, b P G. Now by Theorem 9.2 we may
assume that ra, bs P xapy, and it follows that

G ą xa, by ą xay ą 1

is a powerfully abelian chain.

The work above gives us the following list of powerful p-groups of type p2, 2, 2q. As

the power relations for all of these are ap
2

1 “ ap
2

2 “ ap
2

3 “ 1 we omit them below. Here
τ is a fixed non-square in Fp.
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A1 “ xa1, a2, a3 | ra2, a3s “ ap1, ra3, a1s “ ap2, ra1, a2s “ ap3y;

A2 “ xa1, a2, a3 | ra2, a3s “ a´p2 , ra3, a1s “ ap1, ra1, a2s “ ap3y;

A3 “ xa1, a2, a3 | ra2, a3s “ ap1a
´p
2 , ra3, a1s “ ap1, ra1, a2s “ ap3y;

A4 “ xa1, a2, a3 | ra2, a3s “ apτ1 a
´p
2 , ra3, a1s “ ap1, ra1, a2s “ ap3y;

A5 “ xa1, a2, a3 | ra2, a3s “ a´p2 ap3, ra3, a1s “ ap1a
p
2, ra1, a2s “ ap1y;

A6pαq “ xa1, a2, a3 | ra2, a3s “ apα1 a´p2 , ra3, a1s “ ap1a
p
2, ra1, a2s “ ap3y, 1 ď α ď p´ 2;

B1 “ xa1, a2, a3 | ra2, a3s “ a´p1 a´p2 , ra3, a1s “ ap1a
p
2, ra1, a2s “ ap3y;

B2 “ xa1, a2, a3 | ra2, a3s “ ap1, ra3, a1s “ ap2, ra1, a2s “ 1y;
B3 “ xa1, a2, a3 | ra2, a3s “ apτ1 , ra3, a1s “ ap2, ra1, a2s “ 1y;

B4 “ xa1, a2, a3 | ra2, a3s “ a´p2 , ra3, a1s “ ap1, ra1, a2s “ 1y;

B5 “ xa1, a2, a3 | ra2, a3s “ ap1a
´p
2 , ra3, a1s “ ap1, ra1, a2s “ 1y;

B6 “ xa1, a2, a3 | ra2, a3s “ a´p2 ap3, ra3, a1s “ ap1, ra1, a2s “ ap1y

B7pαq “ xa1, a2, a3 | ra2, a3s “ apα1 a´p2 , ra3, a1s “ ap1a
p
2, ra1, a2s “ 1y, 1 ď α ď p´ 2;

C1 “ xa1, a2, a3 | ra2, a3s “ a´p1 a´p2 , ra3, a1s “ ap1a
p
2, ra1, a2s “ 1y;

C2 “ xa1, a2, a3 | ra2, a3s “ ap1, ra3, a1s “ 1, ra1, a2s “ 1y;
D “ xa1, a2, a3 | ra2, a3s “ 1, ra3, a1s “ 1, ra1, a2s “ 1y.

Of these 12` 2pp´ 1q groups, the A1, . . . A5, A6pαq are the powerfully simple ones.
There are 5` pp´ 2q of these.
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géométrique élémentaire, Ark. Mat. 1 (1904), 681–704.

[53] E. Kummer, Uber die Ergänzungssätze zu den allgemeinen Reziprozitäts-gesetzen,
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