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a b s t r a c t 

Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust 
method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused 
by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, 
and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we 
evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi- 
echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific 
CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, 
i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined 
data, to more complex models including regressors obtained from multi-echo independent component analysis 
with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare 
these models in terms of their ability to make signal intensity changes independent from motion, as well as the 
reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our 
results reveal that a conservative independent component analysis model applied on the optimally-combined 
multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable 
CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined 
data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions 
and independent component analysis denoising for precision mapping of CVR in single subjects based on BH 

paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves 
that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward 
due to their complex interaction with the BH-induced BOLD response. 
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. Introduction 

Cerebrovascular reactivity (CVR) is a physiological response of the
erebral vessels to vasodilatory or vasoconstrictive stimuli. Mapping of
he CVR response provides an important indicator of cerebrovascular
ealth. In recent years, functional magnetic resonance imaging (fMRI),
ither based on the blood oxygenation level-dependant (BOLD) con-
rast, arterial spin labelling, or a mixture of both, has demonstrated
ts effectiveness to assess CVR. As a result, its use is spreading into
linical practice, where its potential as a diagnostic measure is be-
ng ascertained in different diseases, spanning from vascular diseases
 Hartkamp et al., 2017 ; Markus and Cullinane, 2001 ; Webster et al.,
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995 ; Ziyeh et al., 2005 ), to stroke and aphasia ( Krainik et al.,
005 ; Van Oers et al., 2018 ), brain tumors ( Fierstra et al., 2018 ;
acà et al., 2014 ), neurodegenerative diseases ( Camargo et al., 2015 ;
lodzik et al., 2013 ; Marshall et al., 2014 ), hypertension ( Iadecola and
avisson, 2008 ; Leoni et al., 2011 ; Tchistiakova et al., 2014 ), lifestyle
abits ( Friedman et al., 2008 ; Gonzales et al., 2014 ), sleep apnoea
 Buterbaugh et al., 2015 ; Prilipko et al., 2014 ), and traumatic brain in-
ury or concussions ( Churchill et al., 2020 ; Markus and Cullinane, 2001 ).

CVR measurements are obtained by evoking a vasodilatory response
uring imaging. This is typically done by injecting intravenous acetazo-
amide, or by exposing the subject to gas challenges with computerised
ynamic deployment of CO and O ( Liu et al., 2018 ) . However, aceta-
udes). 
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olamide is an invasive technique not indicated for vulnerable subjects
e.g. elderly or children), while gas challenges require dedicated setups
nd can also cause discomfort in some subjects, which might poten-
ially bias CVR measurement ( Urback et al., 2017 ). Alternatively, CO 2 
hanges in the blood due to breathing tasks, such as paced deep breath-
ng or breath-hold (BH) tasks ( Bright et al., 2009 ; Kastrup et al., 1998 ;
into et al., 2021 ) , can elicit a CVR response that is equivalent to that of
nhaled CO 2 ( Kastrup et al., 2001 ; Tancredi and Hoge, 2013 ). A BH task
an be successfully implemented in young children and elderly subjects
 Handwerker et al., 2007 ; Thomason et al., 2005 ), and it is a robust mea-
urement even if subjects are not able to hold their breath for as long as
nstructed ( Bright and Murphy, 2013a ). Moreover, BH-induced CVR is
eliable across different sessions, both in the short (same day) and long
erm ( Peng et al., 2019 ), in terms of spatial reliability (i.e. comparing
ariability of voxels across multiple sessions in one subject) and general
eliability (i.e. average CVR value across sessions and within subjects)
 Lipp et al., 2015 ; Magon et al., 2009 ). Both short and long term reliabil-
ty of BH-induced CVR were found to be comparable to that of other non-
nvasive means of estimating CVR, such as resting state fMRI ( Liu et al.,
017 ), inhaled gas challenges ( Dengel et al., 2017 ; Evanoff et al., 2020 ;
eung et al., 2016 ), Fourier modelling of a BH task ( Pinto et al., 2016 ),
nd a paced deep breathing task ( Sousa et al., 2014 ). 

However, BOLD fMRI data exhibit signal variation arising from dif-
erent sources, most of which corresponds to hardware-related artefacts
nd drifts, head motion, confounding physiological fluctuations, and
ther sources of noise ( Bianciardi et al., 2009 ; Jorge et al., 2013 ). It
s important that the signal variance associated with these confound-
ng signals is accounted for and minimized during preprocessing or data
nalyses ( Caballero-Gaudes and Reynolds, 2017 ; Liu, 2016 ). Head mo-
ion is a particularly problematic source of noise for task-based fMRI
xperiments, mainly in block designs ( Johnstone et al., 2006 ) and in
articular experimental paradigms, such as in overt speech production
 Barch et al., 1999 ; Soltysik and Hyde, 2006 ; Xu et al., 2014 ). This
oncern with task-induced movement artefacts extends to respiration
asks: the experimental design is similar to that of block designs, but
he amount of motion associated with paced breathing, deep breaths,
r “recovery ” breaths following a BH task can be very prominent and
oncur with the pattern of the task. Moreover, respiration can per-
urb the B0 field due to the change of air in the lungs ( Raj et al.,
001 ) and introduce aliasing artefacts or pseudo-movement effects in
he signal ( Gratton et al., 2020 ; Pais-Roldán et al., 2018 ; Power et al.,
019 ). 

There are different ways to account for motion effects on task-based
MRI data analysis. For instance, such effects can be reduced during ac-
uisition by implementing an event-related task paradigm ( Birn et al.,
999 , 2004 ). However, in a BH task the periods of apnoea are typi-
ally between 10 and 20 s in duration to achieve a robust and repro-
ucible vasodilatory response ( Bright and Murphy, 2013a ; Magon et al.,
009 ), and are not readily adapted to a brief event-related design. The
ost straight-forward approach is then to include the realignment pa-

ameters, as well as their derivatives and non-linear expansions, in the
nalysis model to account for part of the motion-related variance of the
ignal ( Friston et al., 1996 ). In addition, fMRI data decomposition, for
xample with Principal Component Analysis or Independent Component
nalysis (ICA), can be used to identify and remove components that are
ostly related to motion or other sources of noise ( Behzadi et al., 2007 ;
riffanti et al., 2014 ; Muschelli et al., 2014 ; Pruim et al., 2015a, 2015b ;
alimi-Khorshidi et al., 2011 ). 

Alternatively, noise in fMRI can be reduced by using multi-echo (ME)
cquisitions that sample the data at multiple successive echo times (TE).
 weighted combination of the multiple echoes ( Poser et al., 2006 ;
osse et al., 1999 ) can smear out random noise and enhance the sen-
itivity to the BOLD contrast. Compared with single-echo data, this op-
imal combination can improve the mapping of neuronal activity at 3T
 Fernandez et al., 2017 ) and 7T ( Puckett et al., 2018 ). Optimal com-
ination of multiple echo volumes can also improve BH-induced CVR
2 
apping sensitivity, specificity, repeatability and reliability ( Cohen and
ang, 2019 ). 
Furthermore, assuming a monoexponential decay model, the vox-

lwise fMRI signal (in terms of signal percentage change) can be dis-
ntangled into BOLD-related fluctuations that depend linearly on the
cho time (TE), and non-BOLD fluctuations related to changes in the
et magnetization ( Kundu et al., 2012 ). This can be used for denois-
ng purposes. For example, in a dual-echo acquisition with a sufficiently
hort first TE, the first echo signal mainly captures changes in the net
agnetization. It is then possible to perform nuisance regression from

he second echo signal acquired at a longer TE with appropriate BOLD
ontrast ( Bright and Murphy, 2013b ). Collecting more echoes opens up
he possibility of applying ICA and classifying independent components
nto BOLD-related or noise, an approach known as multi-echo indepen-
ent component analysis (ME-ICA) ( Kundu et al., 2013 , 2012 , 2017 ).
ompared to single-echo data denoising, ME-ICA can improve the map-
ing of task-induced activation ( Amemiya et al., 2019 ; DuPre et al.,
016 ; Evans et al., 2015 ; Gonzalez-Castillo et al., 2016 ; Lombardo et al.,
016 ). It also outperforms single-echo ICA-based denoising of resting-
tate fMRI data ( Dipasquale et al., 2017 ), which is particularly beneficial
o obtain more reliable functional connectivity mapping in individual
ubjects ( Lynch et al., 2020 ) and in brain regions with reduced signal-
o-noise ratio, such as the basal forebrain ( Markello et al., 2018 ). Fur-
hermore, ME-ICA also enhances the deconvolution of neuronal-related
ignal changes ( Caballero-Gaudes et al., 2019 ). 

However, up to now, the operation of ME-ICA has not been evaluated
horoughly in experimental paradigms with unavoidable task-correlated
rtefacts. Under such scenarios, one open question is how to obtain the
ight trade-off between removing as much noise as possible while saving
he signal of interest ( Bright and Murphy, 2015 ; Griffanti et al., 2014 ).
n this study, we acquire ME-fMRI data during a BH task in 10 sub-
ects acquired weekly, i.e. adopting a similar framework to precision
unctional mapping experiments ( Gordon et al., 2017 ; Greene et al.,
020 ; Laumann et al., 2015 ; Lynch et al., 2020 ; Lynch and Liston, 2020 ;
arek et al., 2018 ), and assess the efficiency of different nuisance re-

ression models to remove artefacts that are highly correlated with the
ffect of interest, i.e. the CVR response. In particular, we compare tradi-
ional nuisance regression approaches, applied to single- or multi-echo
ata, and three different ME-ICA denoising approaches ranging from
ggressive to conservative. For each denoising strategy, we assess the
orrelation of the cleaned signal with measures of motion, and evalu-
te the amplitude and lag of the CVR signal response in terms of their
hysiological interpretability and inter-session reliability. 

. Material and methods 

.1. Participants 

Ten healthy subjects with no record of psychiatric or neurological
isorders (5F, age range 24–40 y at the start of the study) underwent
en MRI sessions in a 3T Siemens PrismaFit scanner with a 64-channel
ead coil. Each session took place one week apart, on the same day of
he week and at the same time of the day. 

All participants had to meet several further requirements, i.e. being
on-smokers and refrain from smoking for the whole duration of the
xperiment, and not suffering from respiratory or cardiac health issues.
hey were also instructed to refrain from consuming caffeinated drinks
or two hours before the session. Informed consent was obtained before
ach session, and the study was approved by the local ethics committee.

.2. Data acquisition and MRI session 

Within the MRI session, subjects performed a BH task while T2 ∗ -
eighted ME-fMRI data was acquired with the simultaneous multislice

a.k.a. multiband, MB) gradient-echo planar imaging sequence provided
y the Centre for Magnetic Resonance Research (CMRR, Minnesota)
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Fig. 1. Schematic of Breath-Hold trial. Apnoea was preceded and followed by exhalations. 
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 Moeller et al., 2010 ; Setsompop et al., 2012 ) with the following param-
ters: 340 scans, TR = 1.5 s, TEs = 10.6/28.69/46.78/64.87/82.96 ms,
ip angle = 70°, MB acceleration factor = 4, GRAPPA = 2 with gradient-
cho reference scan, 52 slices with interleaved acquisition, Partial
ourier = 6/8, FoV = 211 × 211 mm 

2 , voxel size = 2.4 × 2.4 × 3
m 

3 , Phase Encoding = AP, bandwidth = 2470 Hz/px, LeakBlock ker-
el reconstruction ( Cauley et al., 2014 ) and SENSE coil combination
 Sotiropoulos et al., 2013 ). Single-band reference (SBRef) images were
lso acquired for each TE. The BH task was preceded by 64 min of ME-
MRI scanning, consisting of three task-based and four 10-minute resting
tate acquisitions, which are not part of the current study. The BH task
lways followed a resting state run. A pair of spin echo echo planar
mages (EPI) with opposite phase-encoding (AP or PA) directions and
dentical volume layout (TR = 2920 ms, TE = 28.6 ms, flip angle = 70°)
ere also acquired before each functional run in order to estimate
eld distortions, similarly to the Human Connectome Project protocol
 Glasser et al., 2016 ) . A T1-weighted MP2RAGE image ( Marques et al.,
009 ) (TR = 5 s, TE = 2.98 ms, TI1 = 700 ms, TI2 = 2.5 s, flip angle
 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices, FoV read = 256 mm,
oxel size = 1 × 1 × 1 mm 

3 , TA = 662 s) and a T2-weighted Turbo
pin Echo image ( Hennig et al., 1986 ) (TR = 3.39 s, TE = 389 ms,
RAPPA = 2, 176 slices, FoV read = 256 mm, voxel size = 1 × 1 × 1
m 

3 , TA = 300 s) were also collected at the end and at the beginning
f each MRI session, respectively. 

During the fMRI acquisition runs exhaled CO 2 and O 2 levels were
onitored and recorded using a nasal cannula (Intersurgical) with an
DInstruments ML206 gas analyser unit and transferred to a BIOPAC
P150 physiological monitoring system where scan triggers were simul-

aneously recorded. Photoplethismography and respiration effort data
ere also measured via the BIOPAC system, but these physiological sig-
als were not used in the current study. All signals were sampled at
0 kHz. The physiological recordings started before and lasted longer
han the ME-fMRI data recording to enable the shifting of physiological
egressors. 

.3. Breath-hold task 

Following Bright and Murphy (2013a) , the BH paradigm consisted of
ight repetitions of a BH trial composed of four paced breathing cycles
f 6 s each, an apnoea (BH) of 20 s, an exhalation of 3 s, and 11 s of
recovery ” breathing (unpaced) (i.e. total trial duration of 58 s) ( Fig. 1 ).
he BH paradigm was padded with a 15 s resting period to ensure that
hifted physiological regressors would always match the BH paradigm
eriod. Subjects were instructed prior to scanning about the importance
f the exhalations preceding and following the apnoea ( Pinto et al.,
021 ) . Without these exhalations providing CO 2 measurements, the
hange in systemic CO 2 levels achieved by each BH cannot be robustly
stimated; as a result, CVR (%BOLD/mmHg CO 2 change) cannot be esti-
ated quantitatively. Participants were instructed textually throughout

he task through a mirror screen located in the head coil. 

.4. MRI data preprocessing 

The DICOM files of the MRI data were transformed into nifti files
ith dcm2nii ( Li et al., 2016 ) and formatted into Brain Imaging Data
3 
tructure ( Gorgolewski et al., 2016 ) with heudiconv ( Halchenko et al.,
019 ). 

MRI data were minimally preprocessed with custom scripts based
ainly in FSL ( Jenkinson et al., 2012 ), AFNI ( Cox, 1996 ), and ANTs

 Tustison et al., 2014 ). In brief, the T2-weighted image was skull-
tripped and co-registered to the MP2RAGE image along with the brain
ask. The latter was applied to the MP2RAGE image, that was then seg-
ented into grey matter (GM), white matter (WM) and cerebrospinal
uid tissues ( Avants et al., 2011 ). The MP2RAGE image was normalised
o an asymmetric version of the MNI152 6th generation template at
 mm resolution ( Grabner et al., 2006 ), while the T2-weighted vol-
me was co-registered to the skull-stripped single-band reference image
SBRef) of the first echo. The first 10 volumes of the functional data
ere discarded to allow the signal to achieve a steady state of magneti-

ation. Image realignment to the SBRef was computed on the first echo,
nd the estimated rigid-body spatial transformation was then applied to
ll other echoes ( Jenkinson et al., 2002 ; Jenkinson and Smith, 2001 ).
 brain mask obtained from the SBRef volume was applied to all the
choes. The different echo timeseries were optimally combined (OC)
oxelwise by weighting each timeseries contribution by its 𝑇 ∗ 2 value
 Posse et al., 1999 ). Next, ME-ICA decomposition was performed on
ach run independently with tedana ( DuPre et al., 2019 ) using the min-
mum description length criterion for estimation of the number of com-
onents ( Harris, 1978 ; Li et al., 2016 ). The independent components
ICs) were then manually classified by SM and CCG into two categories
rejected or accepted components) based on temporal, spatial, spec-
ral and TE-dependence features of each component ( Griffanti et al.,
017 ). The manual classifications are available in the data repository.
 distortion field correction was performed on the OC volume with
opup ( Andersson et al., 2003 ), using the pair of spin-echo EPI images
ith reversed phase encoding acquired before the ME-EPI acquisition
 Glasser et al., 2016 ) . Finally, the BOLD timeseries was converted in
ignal percentage change. For comparison, the dataset acquired at the
econd echo time (TE 2 = 28.6 ms) was used as a surrogate for standard
ingle-echo (SE) acquisitions. This volume followed the same prepro-
essing steps as the OC volume, except for the optimal combination and
he ICA decomposition. 

.5. CO 2 trace processing and CVR estimation 

The files exported from the AcqKnowledge software were trans-
ormed and formatted into BIDS with phys2bids ( The phys2bids devel-
pers et al., 2019 ). 

The CO 2 timecourse was processed using custom scripts in Python
.6.7. Briefly, the CO 2 timecourse was downsampled to 40 Hz to reduce
omputational costs. The end-tidal peaks were automatically and manu-
lly individuated. The amplitude envelope was obtained by linearly in-
erpolating between the end-tidal peaks and it was then demeaned and
onvolved with a canonical HRF to obtain the P ET CO 2 hrf trace. In order
o account for measurement delay, the P ET CO 2 hrf trace was shifted to
aximise the cross-correlation with the average timecourse of an eroded

ersion of the GM mask (bulk shift) ( Yezhuvath et al., 2009 ). This step
as performed on both OC and the SE data (see Supplementary figure
). 
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1 https://www.adinstruments.com/support/knowledge-base/it-possible- 
measure-expired-gasses-partial-pressure-mmhg-rather-percentage . The adopted 
formula was 𝐶 𝑂 2 [ 𝑚𝑚𝐻𝑔 ] = ( 𝑃 𝑎𝑡𝑚 − 𝑃 𝑣𝑎𝑝 )[ 𝑚𝑚𝐻𝑔 ] ⋅ 10 ⋅ 𝐶 𝑂 2 [ 𝑉 ]∕100[ 𝑉 ] , where 
𝐶 𝑂 2 [ 𝑉 ] is the original CO 2 timeseries, 𝑃 𝑎𝑡𝑚 is the atmospheric pressure in the 
laboratory at the moment of acquisition, and 𝑃 𝑣𝑎𝑝 is the water vapour pressure 
associated with expired air. The values of 𝑃 𝑎𝑡𝑚 = 759 and 𝑃 𝑣𝑎𝑝 = 47 were used 
for all the sessions. 
A lagged general linear model (GLM) approach was adopted in this
tudy for CVR estimation ( Moia, Stickland, et al., 2020 ) in order to
odel temporal offsets between the P ET CO 2 recording and the CVR re-

ponse across voxels that occur due to measurement and physiological
elays ( Donahue et al., 2016 ; Geranmayeh et al., 2015 ; Murphy et al.,
011 ; Sousa et al., 2014 ; Tong et al., 2011 ) . Sixty shifted versions of
he P ET CO 2 hrf trace were created, ranging between ± 9 s from the bulk
hift, with a shift increment of 0.3 s (fine shift). This temporal range
as based on previous literature, which rarely reports haemodynamic

ags over ± 8 s in healthy individuals ( Bright et al., 2009 ; Donahue et al.,
016 ; Sousa et al., 2014 ). For each shift, a lagged GLM was defined with
 design matrix comprised of the shifted P ET CO 2 hrf timecourse as the
egressor of interest, and different combinations of nuisance regressors
see below) in order to examine their efficiency in modelling artefac-
ual signals of the voxel timeseries that might degrade CVR estimates.
he simultaneous fitting of the nuisance regressors and the regressor
f interest (i.e. the shifted P ET CO 2 hrf trace) is preferable, rather than
enoising via nuisance regression prior to the analysis ( Jo et al., 2013 ;
indquist et al., 2019 ; Moia et al., 2020 ). 

Five different modelling strategies were evaluated, varying which
uisance regressors were included in the design matrix or how they were
erived from ME-ICA: 

1 A lagged GLM model on the SE data where the design matrix includes
the motion parameters and their temporal derivatives (denoted as
Mot ), Legendre polynomials of up to the fourth order (denoted as
Poly ), together with the P ET CO 2 hrf trace (SE-MPR): 

𝑌 SE = 𝑃 ET 𝐶𝑂 2 hrf + Mot + Poly + 𝑛 (1) 

2 The same model applied on the OC data (OC-MPR): 

𝑌 OC = 𝑃 ET 𝐶𝑂 2 hrf + Mot + Poly + 𝑛 (2) 

3 An aggressive model applied on the OC data (ME-AGG) in which
the design matrix also includes the timecourses of the ME-ICA re-
jected components (denoted as 𝐼 𝐶 𝑟𝑒𝑗 ) added to the design matrix
of the lagged GLM, orthogonalised with respect to the motion pa-
rameters, their temporal derivatives, and Legendre polynomials of
up to the fourth order. This orthogonalisation step was performed
to maintain a low Variance Inflation Factor in this model, and thus
not bias the CVR estimation, without altering the relative variance
explained by the original nuisance regressors and the regressor of
interest ( Mumford et al., 2015 ): 

𝑌 𝑂𝐶 = 𝑃 𝐸𝑇 𝐶 𝑂 2 ℎ𝑟𝑓 + 𝑀𝑜𝑡 + 𝑃 𝑜𝑙𝑦 + 

[
𝐼 𝐶 𝑟𝑒𝑗 ⊥( 𝑀𝑜𝑡, 𝑃 𝑜𝑙𝑦 ) 

]
+ 𝑛 (3)

4 A moderate model applied on the OC data (ME-MOD) in which the
timecourses of the ME-ICA rejected components are also orthogo-
nalised with respect to the P ET CO 2 hrf trace (i.e. the regressor of in-
terest describing the CVR response): 

 𝑂𝐶 = 𝑃 𝐸𝑇 𝐶 𝑂 2 ℎ𝑟𝑓 + 𝑀𝑜𝑡 + 𝑃 𝑜𝑙𝑦 + 

[
𝐼 𝐶 𝑟𝑒𝑗 ⊥

(
𝑃 𝐸𝑇 𝐶 𝑂 2 ℎ𝑟𝑓 , 𝑀𝑜𝑡, 𝑃 𝑜𝑙𝑦 

)]
+ 

(4) 

5 A conservative model applied on the OC data (ME-CON) in which the
timeseries of the ME-ICA rejected components are orthogonalised
with respect to the P ET CO 2 hrf trace and the ME-ICA accepted com-
ponents (denoted as 𝐼 𝐶 𝑎𝑐𝑐 ): 

𝑌 𝑂𝐶 = 𝑃 𝐸𝑇 𝐶 𝑂 2 ℎ𝑟𝑓 + 𝑀𝑜𝑡 + 𝑃 𝑜𝑙𝑦 

+ 

[
𝐼 𝐶 𝑟𝑒𝑗 ⊥

(
𝑃 𝐸𝑇 𝐶 𝑂 2 ℎ𝑟𝑓 , 𝐼 𝐶 𝑎𝑐𝑐 , 𝑀𝑜𝑡, 𝑃 𝑜𝑙𝑦 

)]
+ 𝑛 (5) 

In the models above, 𝑌 𝑆𝐸 and 𝑌 𝑂𝐶 are the SE and OC voxel timeseries
espectively and 𝑛 denotes the random noise. 

For each modelling strategy and each of the sixty shifted P ET CO 2 hrf

races, the corresponding lagged GLM was fitted via orthogonal least
quares using AFNI. Then, for each voxel, the beta coefficient (i.e.
eight) of the best fine-shifted P ET CO 2 hrf trace, corresponding to the

agged GLM model with maximum coefficient of determination (R 

2 ),
4 
as selected. Finally, the beta coefficients expressed in BOLD signal per-
entage change over Volts (BOLD SPC /V) were rescaled to be expressed
n BOLD percentage over millimetres of mercury (%BOLD/mmHg) as
ndicated by the gas analyser manufacturer. 1 

In this way, a lag-optimised CVR map and a t-value map were ob-
ained, together with the associated lag map representing the voxelwise
elay from the bulk shift, for each analysis pipeline. To account for sixty
omparisons computed in the lagged GLM approach (one per regressor),
he CVR and lag maps were thresholded at p < 0.05 adjusted with the
 idák correction ( Bright et al., 2017 ; Š idák, 1967 ), and the voxels that
ere not statistically significant were excluded. The maps were further

hresholded on the basis of the lag: those voxels in which the optimal
ag was at or adjacent to the boundary (i.e. |𝑙𝑎𝑔 | ≥ 8 . 7 𝑠 ) were considered
ot truly optimised and not readily physiologically plausible in healthy
ubjects and therefore masked in all maps ( Moia et al., 2020 ). 

.6. Evaluation of motion removal across denoising strategies 

For each type of lagged GLM analysis, 4-D volumes representing the
odelled noise variance were reconstructed by multiplying the opti-
ised beta coefficient maps of the nuisance regressors by their time-

eries using 3dSynthesize in AFNI. Then, they were subtracted from the
C or the SE data to obtain five different denoised datasets. DVARS,

he root of the spatial mean square of the first derivative of the signal
 Smyser et al., 2010 ), was computed on each denoised dataset as: 

𝑉 𝐴𝑅 𝑆 𝑡 = 

√ 

⟨[𝐼 𝑡 ( 𝑥 ) − 𝐼 𝑡 −1 ( 𝑥 ) 
]2 ⟩, (6)

here 𝐼 𝑡 ( 𝑥 ) is the image intensity of voxel 𝑥 and at time 𝑡 and ⟨⟩ indi-
ates the spatial average over the whole brain. These DVARS timeseries
ere compared with the Framewise Displacement (FD) time courses
 Power et al., 2012 ), computed using the realignment parameters es-
imated during preprocessing using the fsl_motion_outliers tool as: 

 𝐷 𝑡 = 

||Δ𝑑 𝑥 || + 

|||Δ𝑑 𝑦 ||| + 

||Δ𝑑 𝑧 || + |Δ𝛼| + |Δ𝛽| + |Δ𝛾|, (7)

here 𝑡 denotes the time, 𝑑 𝑥 , 𝑑 𝑦 , 𝑑 𝑧 are the translational displacements
long the three axes, 𝛼, 𝛽, 𝛾 are the rotational displacements of pitch,
aw, and roll, and Δ𝑑 𝑥 = 𝑑 𝑥,𝑡 −1 − 𝑑 𝑥,𝑡 (and similarly for the other param-
ters). DVARS was also computed on the SE volume before preprocess-
ng (SE-PRE) to serve as a reference, as its relationship with FD should
e at its maximum prior to the effects of motion being removed. 

In order to test the moderating effect of each analysis on the rela-
ionship between DVARS and FD, a Linear Mixed Effects (LME) model
as set up using the lme4 and lmer packages ( Bates et al., 2015 ;
uznetsova et al., 2017 ) in R ( R Core Team, 2020 ) , computing the p
alue with Satterthwaite’s method ( Satterthwaite, 1946 ) , and account-
ng for the random effect of subject and session. The model was formu-
ated as following in R equation notation: 

𝑉 𝐴𝑅𝑆 ∼ 𝐹 𝐷 ∗ 𝑚𝑜𝑑 𝑒𝑙 + ( 1 |𝑠𝑢𝑏𝑗 𝑒𝑐𝑡 ) + ( 1 |𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ) (8)

Then, the same model was also used to assess differences in motion
emoval between pairs of denoising strategies. The results were thresh-
lded at p = 0.05 corrected with the Š idák correction ( Š idák, 1967 ). 

In order to visualise the CVR responses to a BH trial, the average
imeseries within GM was extracted from each denoised dataset from
ach model SE-MPR, OC-MPR, ME-AGG, ME-MOD, ME-CON, as well as
rom SE-PRE. These timeseries were transformed to BOLD percentage
ignal change, then the response to individual BH trials from each ses-
ion were extracted using the timing of the third paced breathing cycle

https://www.adinstruments.com/support/knowledge-base/it-possible-measure-expired-gasses-partial-pressure-mmhg-rather-percentage
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Fig. 2. P ET CO 2 hrf trace for all subjects and all sessions. Rejected sessions are plotted in red. Rejection was based on having less than three proper P ET CO 2 increases 
after breathholds or having more P ET CO 2 decreases than increases after breathholds. Note that the first session of subject 10 was lost due to a software malfunction 
during acquisition. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.) 
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s a reference onset, and averaged together for each subject. The DVARS
nd FD timeseries followed the same process, except that the FD time-
eries were not expressed in percentage. 

Finally, the amount of BH trials necessary to achieve a robust esti-
ation of the BH response was computed for each denoising approach.
he Manhattan distance from a pool of a gradually increasing number
f trials to the average BOLD response over all BH trials (across the ten
essions, 80 trials in total) was also computed for each analysis model
nd subject. 

.7. Comparison of CVR and lag estimation and reliability across denoising

trategies 

For each denoising strategy, the average CVR and lag values across
he significant voxels in GM and WM was computed for all subjects and
ll sessions, in addition to the amount of statistically significant voxels
n the thresholded CVR maps. 

In order to compare the results of the different denoising strate-
ies, the thresholded CVR and lag maps of each session were nor-
alised with a nearest neighbour interpolation to the MNI152 template

 Grabner et al., 2006 ) . Then, a LME model was computed voxelwise us-
ng 3dLMEr ( Chen et al., 2013 ) , considering the effect of subjects and
essions as random effects. The model was formulated as following in R
quation notation: 

 ∼ 𝑚𝑜𝑑 𝑒𝑙 + ( 1 |𝑠𝑢𝑏𝑗 𝑒𝑐𝑡 ) + ( 1 |𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ) (9)

here 𝑋 represents either the CVR or the lag value of each voxel. The
ame model was used to perform pairwise comparisons between the dif-
erent strategies. 

After normalising the t-value maps, the normalised CVR and lag
aps were used to compute the intraclass correlation coefficient (ICC).

CC was computed voxelwise using a regularized multilevel mixed effect
odel in 3dICC (AFNI) in order to take into account the standard error of
VR and lag for each session in the ICC estimation ( Chen et al., 2018 ).

CC assesses the reliability of a metric by comparing the intersubject,
ntrasubject, and total variability of that metric, which is equivalent to:

𝐶 𝐶 ( 2 , 1 ) ≃ 𝜌2 = 

𝑀 𝑆 𝑠𝑢𝑏𝑗 − 𝑀 𝑆 𝑛 
𝑘 

𝑛 

(
𝑀 𝑆 𝑠𝑒𝑠𝑠 − 𝑀 𝑆 𝑛 

)
+ 𝑀 𝑆 𝑠𝑢𝑏𝑗 + ( 𝑘 − 1 ) 𝑀 𝑆 𝑛 

(10)

here 𝑀 𝑆 𝑠𝑢𝑏𝑗 , 𝑀 𝑆 𝑠𝑒𝑠𝑠 , and 𝑀 𝑆 𝑛 are the mean squares of the effects of
ubjects, sessions, and residuals respectively, 𝑘 = 10 is the number of ses-
5 
ions, and 𝑛 = 7 the number of subjects ( Chen et al., 2018 ; Mcgraw and
ong, 1996 ; Shrout and Fleiss, 1979 ). ICC(2,1) was chosen since both

ubjects and sessions were considered random effects. High ICC scores
ndicate high reliability, where the intrasubject variability is lower than
he intersubject variability. Note that, since 3dICC uses the t-statistic
ap associated with the estimation of the CVR, CVR and lag maps used

n this computation were thresholded only on the basis of the lag and
ot on the basis of the t-statistic. 

. Results 

Three subjects were excluded due poor performance of the BH task
n part of the sessions, mainly due to inadequate execution of the ex-
alations preceding and following the apnoea that prevented accurate
etermination of the P ET CO 2 hrf traces. These traces are shown in red in
ig. 2 that plots the PetCO2hrf trace for all subjects and sessions. Hence,
nly the seven subjects that had all ten session were used for subsequent
nalyses (4F, age 25–40y). 

.1. Evaluation of motion removal across denoising strategies 

Fig. 3 a illustrates the relationship between FD and DVARS in the
aw data (SE-PRE) and after removing the reconstructed noise of each
nalysis model from the SE or OC volume for a representative subject;
ach point represents a timepoint and each line represents the linear
egression between both timeseries in one session. The corresponding
gures for the remaining subjects are available as Supplementary Mate-
ial (Supplementary figure 2). Fig. 3 b shows the same plot considering
ll the subjects and sessions. The modulating effect of the denoising ap-
roaches on the relation between DVARS and FD was tested with a LME
odel that was found to be significant (F(6,161,181) = 34,597, p < 0.001).
o further investigate the significant differences between analysis strate-
ies, Table 1 reports the results of the same LME model considering
airwise combinations of all of the denoising approaches. From both
ig. 3 and Table 1 , it can be seen that the optimal combination (OC-
PR) of ME data reduces DVARS compared to single-echo (SE-MPR). Al-

hough a similar relationship is observed between DVARS and FD in both
pproaches, OC-MPR significantly reduces the impact of FD compared
o SE-MPR ( 𝛽= 715.10, CI 95 [710.17, 720.04], p < 0.001). This relation-
hip is even more mitigated in the moderate (ME-MOD) ( 𝛽= 145.40, CI 95 
141.92, 148.88], p < 0.001) and conservative (ME-CON) ( 𝛽= 146.69,
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Fig. 3. (A) Relation between the DVARS of the denoised data following different analysis pipelines and FD for a representative subject. Each point represents a 
timepoint, each line the linear regression between both timeseries in a session. In general, OC-MPR shows lower DVARS than SE-MPR, but similar modulation of 
the DVARS-FD relationship. All ICA denoising solutions perform better in reducing motion-related effects described by FD on DVARS. Between the ICA solutions, 
ME-AGG performs the best in reducing this relationship, while ME-MOD and ME-CON seem to be equivalent. (B) DVARS vs. FD for all the subjects. Each transparent 
line represents a session, the solid line represents the estimation across subjects and sessions. Similar patterns to the representative subject are shown. SE-PRE: raw 

data; SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The relation between DVARS and FD 

of the other subjects can be found in the Supplementary Material (Supplementary figure 2). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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I 95 [143.05, 150.33], p < 0.001) denoising approaches, which show
imilar modulatory effects on it. Note that this similarity is common,
ut not the same for all the subjects; for instance, ME-MOD showed
arger reduction of motion related effects than ME-CON for two sub-
ects (subject 003 and 007), while the opposite pattern was clearly ob-
erved in two other subjects (subject 004 and 009), and there was no
pparent difference in the remaining subjects (see Supplementary fig-
re 2). Considering all subjects and all sessions together, the difference
etween the ME-MOD and ME-CON approaches is statistically not signif-
cant ( 𝛽= 1.29, CI 95 [ − 0.70, 3.27], p > 0.5). Compared to OC-MPR, both
E-MOD and ME-CON reduce the impact of FD on DVARS ( 𝛽= 130.84,
6 
I 95 [127.89, 133.79], p < 0.001 and 𝛽= 132.13, CI 95 [128.99, 135.27],
 < 0.001 respectively). The aggressive strategy (ME-AGG) is the most
uccessful in reducing motion-related effects described by FD on DVARS
f all approaches. 

Fig. 4 a plots the average percentage DVARS (left column) and aver-
ge GM percentage BOLD response (central column) of all the BH trials
cross all of the sessions of a representative subject. The FD trace fea-
ures a clear peak right after the end of the apnoea (highlighted in grey),
ikely associated with large head movement caused by the recovery
reaths following the apnoea period. The percentage DVARS curves of
he SE-PRE, SE-MPR and OC-MPR denoised timeseries reflect this peak
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Table 1 

Comparisons of motion dependance in image intensity and general noise between different denoising approaches. 

SE-MPR OC-MPR ME-CON ME-MOD ME-AGG 

𝛽= 512.65 ∗ , 

CI 95 [506.88, 

518.42] 

𝛽= 527.21 ∗ , 

CI 95 [521.74, 

532.68] 

𝛽= 659.34 ∗ , 

CI 95 [654.27, 

664.41] 

𝛽= 658.05 ∗ , 

CI 95 [653.09, 

663.01] 

𝛽= 715.10 ∗ , 

CI 95 [710.17, 

720.04] 

SE-PRE 

𝛽= 715.10 ∗ , 

CI 95 [710.17, 

720.04] 

𝛽= 146.69 ∗ , 

CI 95 [143.05, 

150.33] 

𝛽= 145.40 ∗ , 

CI 95 [141.92, 

148.88] 

𝛽= 202.45 ∗ , 

CI 95 [199.02, 

205.88] 

SE-MPR 

𝛽= 132.13 ∗ , 

CI 95 [128.99, 

135.27] 

𝛽= 130.84 ∗ , 

CI 95 [127.89, 

133.79] 

𝛽= 187.90 ∗ , 

CI 95 [185.01, 

190.78] 

OC-MPR 

𝛽= 1.29, 

CI 95 [ − 0.70, 3.27] 

𝛽= 55.77 ∗ , 

CI 95 [53.91, 57.63] 

ME-CON 

𝛽= 57.05 ∗ , 

CI 95 [55.59, 58.52] 

ME-MOD 

∗ significant for p < 0.001; all p values are computed with Satterthwaite’s method, and they are the equivalent of the p value 
after Š idák correction for multiple comparisons. SE-PRE: raw data; SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: 
aggressive; ME-MOD: moderate; ME-CON: conservative. 

Table 2 

Subject average CVR, lag, and percentage of statistical voxels in the grey matter across strate- 
gies. The last three lines are the group average. SE-PRE: raw data; SE-MPR: single-echo; OC- 
MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. 
The same table for the white matter is reported in the Supplementary Material. 

Subject Average value SE-MPR OC-MPR ME-AGG ME-MOD ME-CON 

001 CVR [%BOLD/mmHg] 0.54 0.5 0.37 0.43 0.49 

Lag [s] − 0.54 − 0.49 0.4 − 0.11 − 0.4 

% significant voxels 9.79 10.44 3.33 8.1 10.75 

002 CVR [%BOLD/mmHg] 0.38 0.35 0.24 0.3 0.35 

Lag [s] − 0.38 − 0.43 0.58 0 − 0.42 

% significant voxels 10.67 11.65 3.29 8.61 11.92 

003 CVR [%BOLD/mmHg] 0.4 0.34 0.18 0.31 0.33 

Lag [s] − 0.4 − 0.28 − 0.73 − 0.74 − 0.26 

% significant voxels 7.42 8.04 3.62 6.55 8.28 

004 CVR [%BOLD/mmHg] 0.44 0.38 0.08 0.32 0.37 

Lag [s] − 1 − 1.12 − 0.57 − 0.87 − 1.1 

% significant voxels 8.46 9.27 2.87 6.57 9.56 

007 CVR [%BOLD/mmHg] 0.33 0.29 0.17 0.28 0.29 

Lag [s] − 0.7 − 0.61 0.95 − 0.1 − 0.53 

% significant voxels 7.98 9.19 2.6 6.31 9.44 

008 CVR [%BOLD/mmHg] 0.34 0.14 − 0.03 0.26 0.14 

Lag [s] − 0.98 − 1.19 − 0.28 − 0.6 − 1.18 

% significant voxels 6.34 6.89 1.5 4.9 7.19 

009 CVR [%BOLD/mmHg] 0.44 0.38 − 0.18 0.31 0.37 

Lag [s] − 1.75 − 1.75 0.91 − 0.11 − 1.69 

% significant voxels 7.52 9.16 2.25 6.42 9.55 

Total CVR [%BOLD/mmHg] 0.41 0.34 0.12 0.32 0.33 

Lag [s] − 0.82 − 0.84 0.18 − 0.36 − 0.80 

% significant voxels 8.31 9.23 2.78 6.78 9.53 
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n FD, which is absent in the ME-ICA based denoising timeseries, indi-
ating a strong influence of movement on the signal intensity changes.
ll DVARS curves present a peak at a later time (between timepoints 25
nd 30) that, as DVARS is akin to the first derivative of the BOLD signal
hanges, may agree with the return to the baseline seen in the BOLD
esponse. The percentage BOLD signal change curves feature a delayed
eak compared to the FD trace, reflecting a delayed CVR response com-
ared to instantaneous head movements associated with respiration.
owever, they also feature a modulation in the BOLD signal change in
orrespondence with the peak in the FD trace, with the exception of ME-
OD and ME-AGG. The flattened DVARS and BOLD responses seen for
E-AGG indicate that the inclusion of the ME-ICA rejected components

ubstantially removes part of the true CVR response, compared with the
C-MPR time courses. The average percentage DVARS and percentage
OLD response of the other subjects can be found in the Supplementary
aterial (Supplementary figure 3). 

Fig. 4 b plots the Manhattan distance between the average of N trials
nd the average of all 80 BH trials as N increases from 1 to 80. ME-AGG
ends to be more similar to the total average compared to all the other
 t  

7 
imeseries. For most of the subjects, SE-MPR, OC-MPR and ME-MOD
ave a similar behaviour and need more trials than SE-PRE, ME-CON
nd ME-AGG to converge to the total average. Note that the convergence
o the analysis-specific ‘ground truth’ BH response is not monotonic and
uctuates across trials of the same session and across sessions, indicating
hat the convergence does not depend only on the number of BH trials,
ut also on their quality and possible physiological variability in the
VR response across trials and sessions. 

.2. Cerebrovascular reactivity and lag maps 

Fig. 5 and 6 show CVR and lag maps respectively, for all analysis
trategies and all sessions of a representative subject (subject 002). The
VR and lag maps of other subjects are available in the Supplementary
aterial (Supplementary figure 4 and 5). The CVR maps were masked

o exclude the voxels that were not statistically significant or whose lag
s at the boundary of the explored range and might not have been truly
ptimised or physiologically plausible. Across all subjects, SE-MPR fea-
ures more spatial variation and speckled noise in CVR and lag estimates
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Fig. 4. (A) Average GM %DVARS and %BOLD response of all BH trials across ten sessions for the same representative subject. The apnoea period is highlighted in 
grey. Each transparent line is a trial, the solid line is the average across all the trials. (B) Manhattan distance between the average of N trials and the average of all 
80 BH trials as N increases from 1 to 80 for each subject. Each vertical line divides the number of trials in each session. SE-PRE: raw data; SE-MPR: single-echo; 
OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The average %DVARS and %BOLD response of the other subjects 
can be found in the Supplementary Material (Supplementary figure 2). 

Fig. 5. Thresholded CVR map obtained with the different lagged-GLM analysis for all the sessions of a representative subject (subject 002). Note the low CVR 
response in ME-AGG, depicting numerous voxels with a negative values, as well as the increased amount of masked voxels in SE-MPR, ME-AGG and ME-MOD. 
SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The CVR maps of other subjects are available 
in the Supplementary Material. 

8 
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Fig. 6. Unthresholded lag map obtained with the different lagged-GLM analysis, for all the sessions of a representative subject (same as Fig. 5 ). These lag maps 
represent the delay between the best shifted version of the P ET CO 2 hrf trace and the bulk shift (i.e. the best match between average grey matter signal and P ET CO 2 hrf 

trace). The scale from − 5 to + 5 represents earlier to later haemodynamic responses. Note the lack of anatomically informative patterns in ME-MOD and ME-AGG. 
SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The lag maps of other subjects are available 
in the Supplementary Material. 
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f voxels within the same brain region compared to ME approaches like
C-MPR or ME-CON. In general, the ME-AGG and ME-MOD approaches
o not yield CVR maps with as much clear distinction between brain
issues or delineation of the cortical folding and subcortical structures
e.g. see putamen and caudate nucleus) as obtained with the OC-MPR
nd ME-CON models. Amongst the ICA-based approaches, the adoption
f an aggressive (ME-AGG) or moderate (ME-MOD) modelling strategy
esults in lag maps without anatomically defined patterns, as well as a
igher rate of voxels with a lag estimation that is not within physiologi-
ally plausible range, and in CVR maps with lower responses and fewer
ignificant voxels. ME-AGG also produces CVR maps with a higher per-
entage of negative values than any other analysis model, and a reduced
VR response in voxels near the posterior part of the superior sagittal
nd transverse sinuses. 

Fig. 7 shows the distribution of the average values of CVR, lag, and
he percentage of significant voxels for all subjects and sessions, and
cross all denoising strategies after thresholding. Considering the sum-
aries within GM, although SE-MPR shows higher average CVR com-
ared to the other approaches, it also features lower percentage of sig-
ificant voxels compared to OC-MPR, ME-MOD and ME-CON. ME-AGG
hows the lowest CVR value of all strategies, the most variable aver-
ge of lag values, as well as the lowest percentage of significant voxels.
E-MOD features a lower percentage of significant voxels than SE-MPR,
C-MPR, and ME-CON. The same considerations can be extended to the
M. Table 2 reports the subject average CVR, lag, and the percentage

f significant voxels across all denoising strategies after thresholding
or GM only. The same table for WM can be found in the Supplementary
aterial (Supplementary table 1). For all models, the average CVR in
M

9 
he GM in the group and in each subject are comparable or higher than
he BH-induced CVR (in%BOLD/mmHg) reported in previous literature
cfr. Bright et al., 2011 ; Bright and Murphy, 2013a ; Lipp et al., 2015 ;
into et al., 2016 ). 

.3. Comparison of CVR and lag estimation and reliability across denoising

trategies 

Fig. 8 shows the results of comparing the CVR and lag maps across
ll of the denoising strategies. The top row shows the thresholded 𝜒
core of the contrast between SE-MPR and all other denoising strategies,
hile the other maps depict the pairwise comparison between all of the
enoising strategies. Amongst the most interesting comparisons, all of
he strategies based on ME have lower CVR and an anticipated response
n areas vascularised by big vessels (indicated by an arrow in the figure),
here the blood transit time is usually faster compared to the rest of

he brain. This could indicate that the response shown in SE-MPR could
e overestimated due to the misestimation of its lag. Compared to SE-
PR, ME-MOD shows lower CVR and a delayed response in subcortical

reas, while OC-MPR and ME-CON show higher CVR and an anticipated
esponse in the insula, frontal, and parietal areas. OC-MPR shows no
tatistically significant differences with ME-CON, but a general higher
VR and an anticipated response compared to ME-MOD and ME-AGG,
ith the exception of the cerebellum, where it shows a delayed response.
his difference could be related to the different local impact of motion
rtefacts, especially on the cerebellum. Between the three approaches
ased on ME-ICA, ME-AGG features generally lower CVR compared to
he other two, and a generally anticipated response compared to ME-
OD and a delayed response to ME-CON. 
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Fig. 7. Average values of CVR, lag, and percentage of significant voxels, for voxels in the grey and white matter tissues separately, for all denoising strategies. The 
dots correspond to a singular session of a singular subject considered an outlier in the distribution. Note that all maps were thresholded before plotting. SE-MPR: 
single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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In order to assess the reliability of each model, we also computed
oxelwise ICC(2,1) maps for both CVR and haemodynamic lag. Fig. 9
epicts the ICC(2,1) maps for all analysis strategies for both CVR and
ag maps, as well as their distributions. High ICC scores indicate that
he intra-subject variability is lower than the inter-subject variability,
ence the estimations of CVR or haemodynamic lag can be considered
onsistent across sessions. Conversely, low ICC scores indicate that the
nter-subject variability is low compared to the intra-subject variability,
ence the estimations of CVR and haemodynamic lag cannot be con-
idered consistent across sessions. Following the classification given by
 Cicchetti, 2001 ) , an ICC score lower than 0.4 is considered poor, lower
han 0.6 fair, lower than 0.75 good, and equal or higher than 0.75 ex-
ellent. 

In terms of whole brain CVR reliability, the ME-CON demon-
trated excellent reliability (spatial average across the whole brain of
.86 ± 0.16) as well as the highest ICC values amongst all methods
ested, closely followed by the OC-MPR (excellent, 0.85 ± 0.16), SE-
PR (excellent, 0.81 ± 0.19), and ME-MOD (excellent, 0.79 ± 0.19),
hile ME-AGG had a fair reliability (0.46 ± 0.22). If only voxels in GM
re considered, the ICC of all approaches increases slightly (0.88 ± 0.14,
.87 ± 0.15, 0.85 ± 0.17, 0.82 ± 0.17, and 0.49 ± 0.22 for ME-CON, OC-
PR, SE-MPR, ME-MOD, and ME-AGG respectively). Despite the aver-

ge fair reliability observed for ME-AGG, it can be observed that this
pproach exhibits a considerable number of voxels with poor reliabil-
ty (ICC below 0.4). These voxels are mostly located in white matter,
hich also exhibit lower ICC values in the other analyses. In terms
f whole-brain lag reliability, OC-MPR performed the best (good re-
iability, 0.67 ± 0.21), closely followed by ME-CON (good reliability,
.66 ± 0.21). SE-MPR, ME-MOD, and ME-AGG demonstrated fair lag re-
iability (0.6 ± 0.22 and 0.42 ± 0.19, 0.41 ± 0.20, respectively). Consid-
ring only GM voxels, the reliability of all the approaches increases min-
mally (0.68 ± 0.21, 0.67 ± 0.21, 0.61 ± 0.21, 0.43 ± 0.19, 0.42 ± 0.20,
or OC-MPR, ME-CON, SE-MPR, ME-MOD, and ME-AGG respectively).
he reliability of CVR lag estimates was lower than that of CVR ampli-
ude estimates, even though certain cortical regions, such as the visual
10 
nd motor cortices, also show excellent ICC values for the OC-MPR and
E-CON denoising approaches. Interestingly, it can be observed that
E-MOD offers excellent ICC values for the CVR response amplitude in

rey matter voxels, whereas they are poor for the lag estimates. 

. Discussion 

In this study, we compared five different analysis strategies based on
 lagged GLM model ( Moia, Stickland, et al., 2020 ) to simultaneously re-
ove motion-related effects and non-BOLD artefacts in the BOLD fMRI

ignal while estimating CVR and haemodynamic lag in order to iden-
ify the best modelling approach for BH paradigms in which prominent
ask-correlated artefacts coexist with the effect of interest. The lagged
LM model adopted in this study is similar to other models for CVR esti-
ation that take into account local variations in the haemodynamic lag

 Donahue et al., 2016 ; Geranmayeh et al., 2015 ; Murphy et al., 2011 ;
ousa et al., 2014 ; Tong et al., 2011 ) . The main difference with such
odels is that, in this lagged GLM approach, after a first bulk shift that
atches the average GM response with the P ET CO 2 hrf regressor, the
enoising and the voxelwise optimised response estimation take place
imultaneously. This ensures that the interaction between regressors is
roperly taken into account and that the degrees of freedom of the model
re properly estimated in the computation of the statistics. Amongst
ll possible modelling strategies, the five presented here were included
n our analysis for different reasons. The optimal combination of ME
MRI data, with subsequent motion and Legendre polynomial regres-
ion (MPR), was expected to remove more noise and improve reliability
f the CVR estimation due to its increased BOLD sensitivity compared to
PR on single-echo data, which is the standard approach for BH CVR

stimation ( Cohen and Wang, 2019 ). However, while optimal combi-
ation of ME volumes alone can partially reduce the noise present in
he data, it still cannot remove motion artefacts, as illustrated in Fig. 3 ,
n which SE-MPR and OC-MPR exhibit the same dependence of signal
hanges (DVARS) with motion (FD). For this reason, we further adopted
hree different ME-ICA based approaches, ranging from a conservative
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Fig. 8. Top row: Thresholded 𝝌 value of the LME model used for the comparison of CVR and lag maps across all denoising strategies. Other rows: pairwise comparison 
between denoising strategies. Arrows indicate areas vascularised by big vessels. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: 
moderate; ME-CON: conservative. 

11 
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Fig. 9. ICC(2,1) maps of CVR (left) and haemodynamic lag (right) for each analysis pipeline. The maps are thresholded at 0.4 since scores lower than it indicate poor 
reliability. A high ICC score indicates that the inter-subject variability is higher than the intra-session variability, while a low ICC score suggest that the variability 
across sessions is the same as the one across subjects. Following the classification given by Cicchetti (2001) , an ICC score lower than 0.4 is considered poor, lower 
than 0.6 fair, lower than 0.75 good, and equal or higher than 0.75 excellent. The bottom rows depict the whole brain distribution of ICC scores across voxels. Note 
how OC-MPR and ME-CON have generally higher ICC scores than the other approaches, and are very similar to each other, while ME-AGG has the lowest ICC scores 
for both CVR and lag maps. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. The distribution 
of ICC scores across grey matter voxels only is available in the Supplementary Material (Supplementary figure 6). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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o an aggressive motion removal. ICA-based approaches are known to
utperform traditional MPR in typical denoising fMRI data, possibly
ecause they can identify and separate artefactual sources in the data
n a data-driven and non-linear manner ( Griffanti et al., 2014 ; Pruim
t al., 2015a, 2015b ; Salimi-Khorshidi et al., 2014 ). We did not apply
CA to single-echo data because it has already been demonstrated that
CA-based denoising applied to OC data outperforms ICA denoising ap-
lied to single-echo data ( Dipasquale et al., 2017 ) and the ICs estimated
rom OC data might not have matched the ICs obtained from single-echo
ata, making such comparison less straightforward than the one based
n MPR. 
12 
Spatial ICA decomposition is applied to fMRI data more often than
emporal ICA decomposition, as the latter requires many more samples
n time than normally available. Having many sessions for each subject,
emporal ICA could have been leveraged in this study. In fact, temporal
CA could be more appropriate than spatial ICA to estimate a proper
ecomposition of timeseries sources ( Smith et al., 2012 ), improving the
odelling of temporal noise ( Glasser et al., 2018 ), and potentially lead-

ng to better disentanglement of noise from CVR effects. However, we
ecided to apply spatial ICA in order to maintain the independence of
ach session, both to simulate a more common denoising approach to
MRI data, and to be able to capture session-specific noise contributions
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2  
hat could have been missed otherwise. Further studies could compare
emporal and spatial ICA denoising for CVR mapping when many tem-
oral samples have been collected in the same session, for instance re-
ucing the TR by acquiring fewer echoes. Here, our decision to acquire
ve echoes, instead of conventional multi-echo protocols with three or

our echoes, was made to facilitate and improve the classification of the
Cs based on their TE-dependence ( Kundu et al., 2013 ) . 

The choice of comparing different levels of orthogonalisation of only
he ICA-based nuisance regressors compared to regressors of interest
ight seem in contrast with previous literature, that suggests that or-

hogonalisation of collinear confounding factors could lead to misinter-
reted results ( Mumford et al., 2015 ). Our results clearly demonstrated
hat using the original (e.g., non orthogonalised) rejected ICs as nui-
ance regressors in the analysis (ME-AGG) removes the CVR effect of
nterest (see Figs. 4 , 5 , 6 and 9 ). To decide which regressors should be
rthogonalised, and with respect to what, we considered the different
rigin of the nuisance regressors. While Legendre polynomials and mo-
ion parameters can be considered adequate models of noise sources
n the data, intrinsic data-driven regressors may well contain variance
elated to the effect of interest, especially as spatial ICA was adopted
nd because of the high collinearity between the P ET CO 2 hrf , motion,
hysiological adaptations to vascular dilation (e.g. cerebrospinal fluid
ows), or changes in the magnetisation related to breathing ( Raj et al.,
001 ) . In these scenarios, it becomes more important to understand
ow to properly implement ICA denoising in order to preserve the ef-
ect of interest. For these reasons, three different ICA-based approaches
ere selected, from an aggressive strategy to a conservative approach,

o assess if they preserved the BOLD effects related to the CVR response
appening at different lags. 

As hypothesized, all of the ME-based solutions outperformed the SE-
PR model in their ability to account for the effect of motion, summa-

ized in terms of FD, on the fMRI signal intensity changes, described in
erms of DVARS (see Fig. 3 ). Furthermore, all of the ICA-based strate-
ies outperformed traditional MPR, and within ICA-based strategies, the
ggressive one (ME-AGG) showed the best performance to remove these
otion-related effects in the signal. However, observing the average
VARS and BOLD response timecourses ( Fig. 4 ) and the CVR and lag
aps ( Figs. 5 and 6 ) it becomes evident how the aggressive and mod-

rate approaches result in lower estimates of CVR responses, even com-
ared to the SE-MPR approach. Similarly, these two approaches result
n the estimated haemodynamic lag hitting the boundaries of a physio-
ogically plausible lag range in healthy adults. The substantial reduction
n the CVR estimates in the aggressive approach ( Figs. 4 and 5 ) occurs
ecause the effect of interest can also be explained as a linear combina-
ion of the timecourses of rejected ICs related to motion, vascular effects
r large susceptibility changes due to chest expansions and contractions
hile performing the BH task ( Caballero-Gaudes and Reynolds, 2017 ;
riffanti et al., 2017 ). As for the moderate approach, the lower esti-
ates of CVR could be due to the fact that orthogonalising data-driven
uisance regressors with respect to the P ET CO 2 hrf trace per sé is not suf-
cient to save all the variance associated to real CVR. The P ET CO 2 trace
an only be estimated during exhalations, hence it is unable to capture
ocal dynamic signal changes that are captured by ICs timeseries. Fur-
hermore, CVR has a sigmoidal non-linear relation with the P ET CO 2 hrf

race ( Bhogal et al., 2014 ), and the local BH-induced BOLD response has
 complex shape, in terms of response amplitude and temporal delays,
ue to multiple physiological factors ( Magon et al., 2009 ) that must be
ccounted for in order to improve its estimation. Our results illustrate
hat these local complexities might be adequately captured by the linear
ombination of the accepted ICs timecourses, and not removing this vari-
nce from the rejected ICs when they are included as nuisance regressors
n the model is detrimental (as observed with the ME-MOD and ME-AGG
pproaches). In other words, only a conservative approach (ME-CON)
hat preserves the BOLD variance associated with local CVR responses
erforms well, while also reducing motion-related effects more than con-
entional MPR models. 
13 
To further explore the benefit of different modelling strategies, we
ssessed the reliability of the resulting CVR and haemodynamic lag maps
ver the course of two and a half months (ten sessions) using ICC(2,1).
o our knowledge, this was the first time that CVR reliability was tested
ver the course of ten sessions in individual subjects, and the first time
hat intersession haemodynamic lag reliability was tested. The ME-CON
nd OC-MPR strategies featured the greatest reliability for CVR and
ag estimation, while the ME-AGG and ME-MOD approaches produced
ower reliability values than even the simple SE-MPR model. 

The lag maps are computed as the temporal offset related to the bulk
hift, which is obtained by aligning the average GM BOLD response with
he P ET CO 2 hrf trace. If the bulk shift computation is misestimated this
ould create a systematic bias in the estimated lag maps, potentially

educing the apparent intersession reliability. While the CVR reliability
hould not be affected by this issue, due to the use of a lagged GLM
pproach that can overcome bulk shift misestimation (see session 4 of
ubject 007 in Supplementary figure 4 and 5), the true lag map reliability
ight be higher than reported here. 

Regarding CVR reliability, the whole-brain average reliability of SE-
PR was comparable to long - term reliability (days or weeks apart)

ound in previous studies of CVR induced by BH ( Peng et al., 2019 ),
y paced deep breathing ( Sousa et al., 2014 ), or by gas challenges
 Leung et al., 2016 ), and higher than that reported in other studies
n BH induced CVR estimated with a non-lagged optimized P ET CO 2 hrf

race ( Lipp et al., 2015 ) or with Fourier modelling ( Pinto et al., 2016 ),
nd by gas challenges ( Dengel et al., 2017 ; Evanoff et al., 2020 ). Conse-
uently, the reliability of CVR estimates obtained with the optimal com-
ination dataset and conservative ME-ICA modelling approaches were
ound higher than those previously reported in the literature. However,
ll strategies produced a reliability that was lower than the short - term
within-session) reliability reported in BH induced CVR ( Peng et al.,
019 ), resting state based CVR (P. Liu et al., 2017 ), and gas challenge
nduced CVR ( Leung et al., 2016 ), although lower intersession relia-
ility in gas challenges has also been reported ( Dengel et al., 2017 ;
vanoff et al., 2020 ). Note that the reliability observed in this study
eems to be globally higher and spatially less variable than that reported
n previous studies ( Lipp et al., 2015 ; Sousa et al., 2014 ). However, dis-
repancies in the reliability measurements might be related to the dif-
erent methods used to compute the CVR maps and the ICC score itself.

Using ICC to test reliability has the drawback that higher scores
ight be related to the presence of residual task-correlated motion

ffects that artificially stabilise the CVR estimation and reduce intra-
ubject variability compared to intersubject variability. In fact, recent
tudies have shown that individuals have particular movement patterns
uring fMRI sessions that may be a stable characteristic of a person
 Bolton et al., 2020 ) related to stable physical characteristics, such as
ody mass index ( Ekhtiari et al., 2019 ) and could even be a heritable
haracteristic ( Couvy-Duchesne et al., 2014 ; Hodgson et al., 2017 ). If
ubjects have similar motion patterns across the 10 repeated sessions,
MRI responses might appear more similar than they truly are, and the
CC might be inflated by such effects. Moreover, higher spatial relia-
ility does not necessarily mean higher accuracy: a denoising strategy
ight be systematically misestimating CVR or haemodynamic lag. The

act that both optimal combination with traditional nuisance regression
nd the conservative ME-ICA denoising approaches resulted in similar
VR and lag spatial patterns and exhibited higher reliability than the
ingle-echo model, while at the same time reduced the apparent effect
f motion on the data variance, suggests that such drawbacks are mit-
gated in our data. However, further studies could compare different
H analysis strategies with a CVR estimation based on an independent
omputerised gas delivery protocol. 

Another possibility would be to assess CVR in resting state
MRI, either measuring resting fluctuations in exhaled CO 2 levels
 Golestani et al., 2016 ; Lipp et al., 2015 ), or by using a band of the
ower spectrum of the global signal as a regressor of interest ( Liu et al.,
017 , 2020 ) . Such method might be more robust to motion collinear-



S. Moia, M. Termenon, E. Uruñuela et al. NeuroImage 233 (2021) 117914 

i  

n  

l  

m  

f  

t  

s  

s  

c  

.  

b  

p  

i  

d  

c  

p  

a  

d  

u
 

t  

a  

i  

r  

c  

t  

2  

i  

(  

e  

s
 

m  

a  

t  

t  

m  

w  

r  

s  

n  

c  

p  

B
 

T  

t  

f  

b  

a  

r
 

g  

n  

t  

b  

p  

(
 

a  

f  

b  

a  

c  

t  

t  

i  

s

C

 

b  

m  

a  

w  

m  

s  

s  

I  

b  

l  

m  

a  

p

D

 

c  

a  

h  

a  

o  

i

C

 

A  

s  

p  

R  

o  

p  

a  

(

A

 

d  

t
 

2  

a  

1  

M  

R  

O  

m  

S  

a  

t  

o

S

 

t

ty, as the amount of movement in each breath is less pronounced and
ot consistently time-locked to the paradigm cues. At the same time, the
ower amplitude of intrinsic CO 2 fluctuations relative to BH CO 2 change
ight also make this approach more susceptible to general motion ef-

ects and other sources of variance (e.g. neural or artefactual) unrelated
o CO 2 . Moreover, previous work has shown that the optimal temporal
hift between BOLD and P ET CO 2 is hard to reliably identify in resting
tate data alone, in contrast to BH datasets where the temporal shift
an be reliably identified ( Bright et al., 2017 ; Stickland et al., 2021 )
 Current resting state fMRI methods for CVR mapping may therefore
e inappropriate to use with the lagged GLM approach that we have ap-
lied here. Either way, the analyses presented in this study can be easily
mplemented in other CVR assessment pipelines to mitigate the depen-
ence of the response on motion. Beyond BH-based CVR studies, similar
onclusions might be applicable to other experimental paradigms that
resent high collinearity between the expected task induced activity and
rtefactual sources, such as in overt speech production with long trial
urations ( Birn et al., 1999 , 2004 ; Gracco et al., 2005 ), and that aim to
se (ME-) ICA-based nuisance regressors as part of the model. 

Note that MPR and ICA denoising are not the only viable options
o reduce motion effects on fMRI and BH-induced CVR in particular:
dvanced setups can be used to reduce motion during the acquisition
tself. For instance, subject specific moulded head casts can be used to
educe head motion ( Power et al., 2019 ). Mounting an MRI compatible
amera or tracker in the scanner enables prospective motion correction
echniques ( Faraji-Dana et al., 2016 ; Maziero et al., 2020 ; Parkes et al.,
018 ; Schulz et al., 2014 ; Zaitsev et al., 2017 ) or concurrent field mon-
toring enables the dynamic correction of field distortions dynamically
 Vannesjo et al., 2015 ; Wilm et al., 2015 ) in order to effectively reduce
ffects of motion and magnetic field susceptibility changes. However,
uch advanced setups are not always available. 

A limitation of this study is that the results are influenced by the
anual classification of the ICA components performed by two of the

uthors. Despite being based on the automatic classification made by
edana ( DuPre et al., 2019 ), we adopted a manual approach because of-
en multiple ICs clearly exhibiting CVR-related timeseries and spatial
aps were misclassified as noise. This manual classification was made
ith a cautious approach: if an IC seemed to be temporally and spatially

elated to the CVR response, it was accepted. Manual classification is
till considered the gold standard for the classification of ICA compo-
ents when performed by experts, despite the introduction of automatic
lassification algorithms ( Griffanti et al., 2017 ), calling for further im-
rovements in the automatic classification of (ME-)ICA components for
H tasks. 

Another limitation is the lack of a CO 2 automated delivery protocol.
he choice not to include one was driven by the necessity to reduce
he discomfort of the participants during the imaging sessions, however
urther studies should compare denoised CVR maps to a CVR estimation
ased on independent computerised gas delivery protocols. This would
lso help estimating the accuracy of the denoised results on top of the
eliability analysis featured in the present study. 

Moreover, despite the fact that a BH task can be a valid alternative to
as delivery protocols for CVR estimation and its easy implementation,
ot all the subjects in this study could perform the task during all of
he sessions. In total, 86% of the sessions were completed successfully
y the subjects, although three subjects had to be excluded due to poor
erformance or non-compliance to the task in a subset of the sessions
four in two subjects and six in the third, see Fig. 2 ). 

Finally, it is worth noticing that the adoption of ME imaging requires
n increase in TR or a decrease in the spatial resolution. A way to cope
or this issue is the adoption of simultaneous multislice (a.k.a. multi-
and) acquisition, and despite the fact that this choice might introduce
dditional slice-leaking artefacts, a ME-ICA based denoising approach
an successfully deal with their removal ( Olafsson et al., 2015 ) . Note
hat in this study we adopted one of the echo volumes as an approxima-
ion of a SE acquisition. Further studies could evaluate if this solution
14 
mproves the estimation of CVR compared to SE imaging with higher
patial or temporal resolution. 

onclusion 

Breath Holding (BH) is a non-invasive, robust way to estimate cere-
rovascular reactivity (CVR). However, due to the task-correlated move-
ent introduced by the BH task, attention has to be paid when choosing

n appropriate modelling strategy to remove movement-related effects
hile preserving the effect of interest (P ET CO 2 ). We compared different
ulti-echo (ME) independent component analysis (ICA) based denoising

trategies to the standard data acquisition and analysis procedure, i.e.
ingle-echo motion parameters regression. We found that a conservative
CA-based approach, but not an aggressive or moderate ICA approach,
est removes motion-related effects while obtaining reliable CVR and
ag responses, although a simple optimal combination of ME data with
otion parameters regression provides similar CVR and lag estimations,

nd both ME-based approaches offer improvements in reliability com-
ared with single-echo data acquisition. 
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