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Abstract: Cell polarity is crucial for almost every cell in our body to establish distinct structural and
functional domains. Polarized cells have an asymmetrical morphology and therefore their proteins
need to be asymmetrically distributed to support their function. Subcellular protein distribution is
typically achieved by localization peptides within the protein sequence. However, protein delivery
to distinct cellular compartments can rely, not only on the transport of the protein itself but also on
the transport of the mRNA that is then translated at target sites. This phenomenon is known as local
protein synthesis. Local protein synthesis relies on the transport of mRNAs to subcellular domains
and their translation to proteins at target sites by the also localized translation machinery. Neurons
and glia specially depend upon the accurate subcellular distribution of their proteome to fulfil their
polarized functions. In this sense, local protein synthesis has revealed itself as a crucial mechanism
that regulates proper protein homeostasis in subcellular compartments. Thus, deregulation of mRNA
transport and/or of localized translation can lead to neurological and neurodegenerative diseases.
Local translation has been more extensively studied in neurons than in glia. In this review article,
we will summarize the state-of-the art research on local protein synthesis in neuronal function and
dysfunction, and we will discuss the possibility that local translation in glia and deregulation thereof
contributes to neurological and neurodegenerative diseases.

Keywords: mRNA transport and localization; local protein synthesis; neurons; neurites; glia;
processes; neurological and neurodegenerative diseases

1. Introduction: What Is Local Protein Synthesis?

Protein synthesis is an essential process for cellular homeostasis. The classical view is
that most RNAs in eukaryotic cells are translated within the soma, either in cytosolic free
ribosomes or in rough endoplasmic reticulum (RER)-bound ribosomes. Once the proteins
are generated and become mature, many of them are targeted to different subcellular
compartments where they elicit their function [1]. An accurate targeting of the subcellular
proteome is especially relevant in highly polarized, morphologically complex cells where
proteins need to be asymmetrically sorted in order to establish distinct structural and
functional domains. Subcellular protein distribution is typically achieved by localization
signals within the protein sequence (Figure 1A,B). However, protein delivery to distinct
cellular compartments can rely, not only on the transport of the protein itself but also on
the transport of the mRNA that is then translated at target sites (Figure 1C). Although once
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considered heretical, mechanisms of localizing RNAs have proven to be highly prevalent
and conserved in eukaryotes [2]. Additionally, translation of localized mRNAs, also known
as local protein synthesis, is increasingly being recognized as a crucial mechanism that
contributes to the physiology of the nervous system (NS) [3].

Proteins need to fulfil three main criteria in order to be considered as locally synthe-
sized in a particular subcellular domain: (1) the mRNAs that encode them and components
of the translation machinery (ribosomes, regulatory elements) have to co-localize in the
same compartment; (2) de novo protein synthesis should be detected at a subcellular level
by techniques such as protein metabolic labeling, puromycilation of nascent peptides or
translating ribosome affinity purification (TRAP) (Table 1); (3) protein levels after blocking
protein synthesis need to decrease in subcellular domains [4].

mRNAs are delivered to subcellular compartments in association with RNA-binding
proteins (RBPs) in a translationally repressed state. Ribonucleoprotein complexes (RNPs)
are typically packaged into membraneless supramolecular structures, known as RNA
granules, which bind to motor proteins that transport the mRNAs to their final destination
at the periphery of the cell. Once the mRNAs reach their target compartment, they are
released from the RNP complexes and translated locally into protein by the also localized
translation machinery (Figure 1Ci and Cii) [5]. Hence, to accurately synthesize a protein
locally, both RNA transport and translation need to be finely regulated. Malfunctioning
of RBPs, deregulation of the translation machinery, changes in the local mRNA repertoire
or failure of molecular motors to accurately sort mRNAs to their target compartment can
contribute to the disruption of protein homeostasis at a subcellular level. These alterations
on the local proteome lead to cellular dysfunction, which in the case of the NS translate
into neurological and neurodegenerative diseases [3,6].

Cells 2021, 10, x FOR PEER REVIEW  2 of 25 

 

the transport of the mRNA that is then translated at target sites (Figure 1C). Although 
once considered heretical, mechanisms of localizing RNAs have proven to be highly prev-
alent and conserved in eukaryotes [2]. Additionally, translation of localized mRNAs, also 
known as local protein synthesis, is increasingly being recognized as a crucial mechanism 
that contributes to the physiology of the nervous system (NS) [3]. 

Proteins need to fulfil three main criteria in order to be considered as locally synthe-
sized in a particular subcellular domain: (1) the mRNAs that encode them and compo-
nents of the translation machinery (ribosomes, regulatory elements) have to co-localize in 
the same compartment; (2) de novo protein synthesis should be detected at a subcellular 
level by techniques such as protein metabolic labeling, puromycilation of nascent peptides 
or translating ribosome affinity purification (TRAP) (Table 1); (3) protein levels after 
blocking protein synthesis need to decrease in subcellular domains [4]. 

mRNAs are delivered to subcellular compartments in association with RNA-binding 
proteins (RBPs) in a translationally repressed state. Ribonucleoprotein complexes (RNPs) 
are typically packaged into membraneless supramolecular structures, known as RNA 
granules, which bind to motor proteins that transport the mRNAs to their final destination 
at the periphery of the cell. Once the mRNAs reach their target compartment, they are 
released from the RNP complexes and translated locally into protein by the also localized 
translation machinery (Figure 1Ci and Cii) [5]. Hence, to accurately synthesize a protein 
locally, both RNA transport and translation need to be finely regulated. Malfunctioning 
of RBPs, deregulation of the translation machinery, changes in the local mRNA repertoire 
or failure of molecular motors to accurately sort mRNAs to their target compartment can 
contribute to the disruption of protein homeostasis at a subcellular level. These alterations 
on the local proteome lead to cellular dysfunction, which in the case of the NS translate 
into neurological and neurodegenerative diseases [3,6]. 

 
Figure 1. Simplified model of protein and mRNA trafficking in eukaryotic cells. Typically, proteins 
are thought to be synthesized in the soma by free ribosomes (A) or endoplasmic reticulum (ER)-
bound ribosomes (B) and then transported to different destinations in the cells where they elicit 
their function. Some mRNAs associate to RNA-binding proteins (RBPs) and are transported in RNA 
granules (C) by microtubules using motor proteins kinesis and dynein (Ci) or by actin using myosin 
(Cii). Once they reach the target compartment the mRNAs are translated into protein. 

Figure 1. Simplified model of protein and mRNA trafficking in eukaryotic cells. Typically, proteins
are thought to be synthesized in the soma by free ribosomes (A) or endoplasmic reticulum (ER)-
bound ribosomes (B) and then transported to different destinations in the cells where they elicit
their function. Some mRNAs associate to RNA-binding proteins (RBPs) and are transported in RNA
granules (C) by microtubules using motor proteins kinesis and dynein (Ci) or by actin using myosin
(Cii). Once they reach the target compartment the mRNAs are translated into protein.
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Local protein synthesis in the NS has been studied best in neurons, despite neurons not
being the only morphologically and functionally complex cells therein. In neurons, local
translation occurs both in dendrites and axons. Since the first studies that unambiguously
demonstrated the existence of local translation in subneuronal compartments, most interest
in the field has focused on the role of locally synthesized proteins in neuronal physiology.
However, no evidence existed on the contribution of local protein synthesis to neuronal
damage, until almost 20 years ago when activation of intra-axonal protein synthesis in
response to nerve injury was reported [7]. Since then, local translation and its defects
in neurons have also been linked to amyotrophic lateral sclerosis (ALS) [8–10], spinal
muscular atrophy (SMA) [11–13] or Alzheimer’s disease (AD) [14–17] to mention but a few
NS disorders. Surprisingly, almost no work so far has explicitly reported on the impact of
localized translation in glia in neurological or neurodegenerative diseases. In this article we
will review the existing evidence of local protein synthesis in neuronal and glial subcellular
domains in vertebrates.

First, we will summarize the current knowledge on local translation in neurons and
we will refer to existing data that report mainly on the deregulation of RBPs and the
localization or/and localized translation of certain mRNAs in neurological and neurode-
generative diseases. Evidence found in neurons will serve as a canvas to depict the possible
contribution of glial localized translation to CNS dysfunction.

Table 1. Techniques utilized to measure de novo protein synthesis in neurites.

Protein metabolic
labeling

Technique Label Detection References

BONCAT/
FUNCAT

Noncanonical aminoacids
(azide or alkyne)

Covalent cycloaddition
reaction with fluorescently

tagged or biotinylated reactive
group (alkyne or azide)

[18,19]

SILAC/
pSILAC Stable isotope Mass spectrometry [20,21]

Puromycilation of
nascent peptides

SUnSET/
PUNCH-P

tRNA analogue puromycin;
biotinylated puromycin

Puromycin immunodetection;
biotin-streptavidin
conjugation; mass

spectrometry following
purification of tagged peptides

[22–26]

Translatomic approach TRAP/
Ribo-Seq Epitope-tagged ribosome

Epitope immunoprecipitation
followed by mRNA

purification and detection by
RNA-Seq

[27,28]

2. Neuronal RNA Localization, Local Translation and Nervous System Diseases
2.1. Brief Introduction to RNA Localization and Local Translation in Neuronal Processes

Neurons are considered the most morphologically complex cells in the NS. They
consist of a cell body or soma from which several processes (dendrites and axons) emerge.
Vertebrate neuronal processes can extend from a dozen millimeters (in the case of dendrites)
to a meter (in the case of axons) away from the soma [29]. Upon a local signal sensed
by neurites, canonical protein synthesis in the cell body followed by protein transport
would result in a delayed response from dendrites and axons. Conversely, the presence of
localized mRNAs in peripheral neuronal processes allows a rapid reaction of neurites to
local stimuli without fully relying on the cell body [5,30]. Local translation in neurons is
also involved in the maintenance of the local proteome homeostasis in basal conditions
and thus supports basal dendritic and axonal functions [24,31].

Local protein synthesis in neurons was first attributed to dendrites, since for many
years axons were thought to be devoid of RNAs and ribosomes [30]. Among the first
mRNAs detected in dendrites were the ones encoding high molecular weight microtubule-
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associated protein 2a/b (Map2a/b) [32], calcium/calmodulin-dependent protein kinase
2 alpha (Camk2a) and the calcium-binding protein neurogranin (Ng/RC3) [33,34], the in-
ositol 1,4,5-trisphosphate receptor type 1 (InsP3R1) [35], some glutamate receptor and
glycine receptor subunits [36,37], and the activity-regulated cytoskeleton-associated pro-
tein (Arc) [38,39]. mRNAs encoding BDNF, TrkB and ß-Actin are localized to dendrites and
/or dendritic spines upon neuronal stimulation [40,41]. More importantly, intra-dendritic
synthesis, including the one of β-Actin among other proteins mentioned above, is crucial
for nervous system plasticity [42,43].

Actb (ß-actin) was also the first transcript identified in vertebrate axons in culture [44].
In Xenopus embryos, axonal translation of Actb contributes to growth cone turning in
response to attractive cues and to arbor formation during development [45,46]. Other
cytoskeleton- and membrane-associated proteins are locally synthesized upon axon stimu-
lation in rodent neurons: RhoA, Par3, TC10, β catenin and SNAP25 are involved in growth
cone behavior [47,48], membrane expansion [49] and synapse formation [50,51]. Local
translation is not only required for axon dynamics in response to external cues but also for
axon maintenance: axonally synthesized COXIV, LaminB2 and Bcl-W avoid degeneration
by regulating mitochondrial function [31,52,53]. Additionally, transcription factors (TFs)
can also be locally produced in axons. Two examples thereof include CREB1, which is
involved in neuronal survival of dorsal root ganglion neurons [52] and Smad1/5/8, re-
quired for axon specification in trigeminal nuclei [53]. As it will be mentioned later, locally
synthesized TFs can also be involved in regeneration of peripheral injured nerves [54] and
Alzheimer’s-related neurodegeneration [14].

Until recently, local translation in neuronal processes was studied by candidate-based
approaches. The transcripts of interest were frequently identified in subneuronal compart-
ments by in situ hybridization and/or quantitative RT-PCR analyses of axonal or neuritic
(axonal and dendritic) extracts. Interference strategies and protein synthesis inhibitors
were used to determine localized translation and the physiological role of concrete pro-
teins found at subneuronal levels. These studies allowed the characterization of a limited
amount of locally synthesized proteins in dendrites and axons. However, the development
of massive RNA sequencing techniques has provided a much broader view on the local
neuronal transcriptome in different experimental setups. More importantly, recent esti-
mates indicate that ~50% of the local neuronal proteome is generated through translation
of localized transcripts [28]. Thus, local protein synthesis in neurons is more extended than
it was previously thought.

Most work on local translation in neurons has focused on the role of locally produced
proteins in NS physiology. However, much less has been reported on the role of local
protein synthesis in pathologies. In 2001, Zheng and colleagues showed the ability of
injured peripheral axons to synthesize proteins when allowed to regrow in vitro. In ad-
dition, inhibiting local translation induced the collapse of new growth cones generated
in culture [7]. These results strongly suggested that axons could synthesize proteins in
peripheral neuropathies, including nerve injury, and that local translation could be in-
volved in axon regeneration and maintenance of lesioned axons. From then on, other
studies supported the knowledge that local protein synthesis was affected in damaged
peripheral nervous system (PNS) neurons. Finally, as we will review, this knowledge was
more recently extended to the CNS as well [6].

2.2. Neuronal Local Translation in NS Dysfunction
2.2.1. In Traumatic Nerve Injury

Upon nerve dissection, the proximal portion of the axon forms a growth cone-like
structure known as the nerve bulb. Similar to developing axons, severed axons respond to
cues in their environment and attempt to grow. mRNAs and components of the transla-
tion machinery are recruited to nerve bulbs [6]. Among the proteins which are axonally
synthesized after sciatic nerve crush, the TFs STAT3 and PPARγ have been identified.
They are then retrogradely transported to neuronal cell bodies where they trigger specific
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transcriptional programs required for regeneration of injured nerves [54,55]. One of the
complexes necessary for the retrograde transport of locally synthesized proteins is importin
α/β and importin β is synthesized in lesioned axons too [56]. On the other hand, the
master regulator of protein synthesis mTOR is also translated in axons after sciatic nerve
injury. A reduction in local mTOR protein levels leads to an overall decrease in protein
synthesis in axons. As a result, survival of lesioned neurons becomes compromised [25].

In the case of CNS, the redistribution of RBPs to different subneuronal compartments
upon damage has been reported. The RNA-binding protein with multiple splicing (RBPMS),
which in retinal ganglion cells is expressed exclusively in the soma, becomes sorted to
dendrites and axons upon hypoxia and axotomy, respectively [57]. These results indicate
that RNA localization to axons is required to adjust the local proteome to the demands of
damaged axons also in the CNS.

Altogether these data suggest that increasing local translation in axons has an impor-
tant implication in the regeneration of lesioned nerves.

2.2.2. In Motor Neuron Diseases

Whilst changes in the levels of newly synthesized proteins in axons in pathological
conditions was first reported in lesioned peripheral nerves [7], recent studies suggest
that local translation can also be altered in motor neuron diseases (MNDs). Amyotrophic
lateral sclerosis (ALS), also called classical MND, is a disorder whose main feature is
the progressive degeneration of upper and lower motor neurons. Among ALS-linked
proteins, TDP-43 and FUS can be found in subneuronal compartments. TDP-43 is a RBP
that appears aggregated in 97% of ALS patients as well as in many cases of frontotemporal
dementia (FTD) [58]. TDP-43 plays a key role in pre-mRNA splicing, mRNA transport and
translation in neurites. Studies performed both in Drosophila and human samples have
identified Futsch mRNA (Map1b mRNA in mammals) as a TDP-43 target. Interestingly,
TDP-43 overexpression leads to a significant reduction of Futsch at mRNA and protein
levels in neuromuscular junctions while higher levels are observed in the soma of motor
neurons. Similarly, MAP1B increases in motor neuron cell bodies in spinal cords from
ALS patients. These observations suggest defects in TDP-43 impair Futsch/Map1b mRNA
localization to axons and its translation [8]. Regarding FUS, it is detected in axons at
translation sites and ALS-linked FUS mutations inhibit intra-axonal protein synthesis
leading to a stress response with loss of synaptic activity [9]. Interestingly, both TDP-43
and FUS can be found as part of dendritic RNA granules, however the extent to which
dendritic localization of both RBPs regulate intra-dendritic translation and contributes to
ALS still requires characterization [59].

Spinal muscular atrophy (SMA) is a fatal disorder characterized by a progressive
degeneration of spinal motor neurons and skeletal muscle atrophy caused by a reduction of
survival motor neuron protein (SMN) due to mutations in the human SMN1 gene. Lack of
SMN has been related to mRNA mislocalization in SMN-deficient axons. SMN associates
with the RBPs HuD and IMP1 and engages in the assembly of RNP complexes required
for mRNA transport to axons. RNP complexes containing SMN recruit mRNAs such
as Actb, Nrn1 and Gap43, all involved in axon growth and presynaptic function. Thus,
SMN loss impairs the formation of RNP complexes and alters axonal mRNA localization
and translation, leading to the phenotypic features of SMA [13]. Other mRNAs whose
localization is heavily affected by a ~50% loss of SMN are Anxa2 and Cox4i2 [11]. Reduced
SMN levels also causes an increase in microRNA-183 which leads to reduced levels of
axonally synthesized mTOR. As a consequence, mTOR-dependent translation in axons is
affected [12]. Translation via mTOR is also regulated by muscle-secreted factors such as
C1q/TNF-Related Protein 3 (CTRP3) whose levels are reduced by SMN1 mutation [60].

2.2.3. In Alzheimer’s Disease and Dementia

Alzheimer’s disease (AD) is the leading cause of dementia and it is characterized by
the gradual loss of cognitive functions. Despite efforts in developing therapies to stop
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the progression of this disease, there is still no cure. AD spreads through the brain in a
non-random manner indicating propagation along connecting fiber tracts [61], however
the molecular mechanisms leading to this spread are poorly understood. What seems clear
is that aggregates of extracellular amyloid β peptide (Aβ) and of hyperphosphorylated
microtubule associated protein tau (MAPT or Tau) are post-mortem hallmarks of the
disease. Thus, Aβ peptides and Tau are considered the main drivers of AD [62–64].
In 2014, it was reported that in vitro exposure of axons to Aβ peptides induced local
protein synthesis and altered the axonal transcriptome [14]. The mRNAs of 9 out of the
~20 susceptibility genes (ca. 45%) reported in late onset AD were found to be recruited
above defined threshold levels to Aβ-treated axons: App, Clu, ApoE, Sorl1, Bin1, Picalm,
Ptk2, Celf1 and Fermt2 [14,60]. Interestingly, local App and Clu mRNAs were significantly
increased upon challenging isolated axons with Aβ compared to vehicle-treated axons [14].
Additionally, the mRNA encoding activating transcription factor 4 (ATF4, previously
known as CREB2) is locally translated in response to Aβ oligomers. Axonally synthesized
ATF4 is retrogradely transported to the nucleus where it mediates neuronal death by
regulating transcription both in vitro and in vivo. Interestingly, Atf4 mRNA recruitment to
axons is itself regulated by local translation of sentinel mRNAs including the intermediate
filament protein vimentin (Vim) [14,15].

Mapt is (together with Actb) one the earliest examples of an axonally translated mRNA
in hippocampal neurons in vitro. Although the presence of Mapt mRNA has been reported
both in dendrites and axons [17], Tau protein is heavily localized to axons in healthy neu-
rons partially through the localized translation of its transcript [65,66]. In the context of
amyloid pathology, Tau is aberrantly translated in dendrites [17]. Increased dendritic trans-
lation leads to Tau hyperphosphorylation and the formation of neurofibrillary tangles [16].
Thus, local synthesis of Tau in the inappropriate subcellular compartment could lead to
Tau pathology in AD and related disorders.

Besides changes in local mRNA translation, loss of heterogeneous nuclear ribonu-
cleoproteins A/B (hnRNP A/B) has been reported in entorhinal cortices from AD brains.
Interestingly, the authors propose that loss of hnRNP A7B might impact on RNA localiza-
tion in the AD brain based on the observation that hnRNP A2 is part of RNP complexes that
deliver mRNAs to the periphery of oligodendrocytes, as will be mentioned later on [67,68].

Frontotemporal dementia (FTD) is a group of brain disorders characterized by loss of
neurons in the frontal and temporal lobes of the brain. As in AD, FTD patients manifest
cognitive impairment but, in some cases, they also develop motor symptoms. Indeed
15% of ALS patients have FTD. Both ALS and FTD are characterized by the accumulation
of TDP-43 and FUS aggregates. As stated before, both TDP-43 and FUS are involved in
RNA localization and localized translation of dendritic and axonal mRNAs [8,9,65]. Thus,
deregulation of protein synthesis caused by malfunctioning of both RBPs could contribute
to the development of FTD. Interestingly, in 50% of FTD cases an accumulation of Tau
fibrils has also been reported [69]. Since Tau is normally synthesized within axons of
healthy neurons but its local translation becomes aberrant in AD, we cannot discard that
deregulation of local Tau synthesis is involved in some pathological aspects of FTD as well.

All these results indicate that unlike peripheral nerve injury, localized translation
in AD and related disorders leads to degeneration rather than neuronal maintenance,
survival or axon growth. Additionally, evidence mentioned so far suggests that local
protein synthesis is more involved in dementias than was previously acknowledged. Thus,
in order to develop accurate treatments, mRNA transport and localized translation should
not be disregarded.

2.2.4. In Movement Disorders

Huntington’s disease (HD) or Huntington’s chorea is a fatal monogenic neurode-
generative disease characterized by involuntary non-stereotypical movements, as well as
behavioral and cognitive impairment. HD is caused by CAG repeat expansions in the
Huntingtin (HTT) gene resulting in repeated polyQ tracts in the N-terminal region of HTT
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protein. Mutated HTT is associated with selective toxicity in striatal neurons [70]. The
exact role of HTT is not fully understood. Interestingly however, HTT, as well as APP
is transported along axons and has been implicated in dendritic RNA delivery [71–75].
Indeed, dendritic HTT co-localizes with the RBPs Ago2 and Staufen, with P-body proteins
as well as with the 3’UTR of Ip3r1, Actb, and Bdnf mRNAs. HTT knockout reduces the
levels of dendritic Actb mRNA, Ago2 protein, and P-bodies. Additionally, HTT suppresses
translation of a reporter construct in cortical dendrites. Thus, HTT regulates RNA transport
and local translation [73–75]. The toxic effect of mutated HTT seems to be driven by its
ability to sequester RBPs such as MBNL1 and SRSF6, and therefore mRNA localization is
likely impaired in HD. Importantly, aberrant increased protein synthesis is observed in HD
mouse models and human brain samples [76,77].

2.2.5. In Fragile X Syndrome, Autism Spectrum Disorders and Intellectual Disabilities

Fragile X syndrome (FXS) is probably the best example of a disease linked to defects in
intra-dendritic mRNA translation as reviewed by Swanger and Bassell [59]. FXS is the most
frequent monogenic autism spectrum disorder (ASD), accounting for 2% of all cases [78],
and is caused by a mutation in the fragile X mental retardation 1 (FMR1) gene which causes
loss of FMRP protein. FMRP is a RBP that negatively regulates protein synthesis as well as
mRNA stability and transport. FMRP associates to dendritic mRNAs encoding well-known
synaptic proteins, including Arc, Camk2a, Dlg4 or Map1b. Therefore, defects in local protein
synthesis have been suggested as a key feature underlying FXS, including defects in spine
morphology [79]. Interestingly, Fmrp mRNA itself is also localized to and translated within
dendrites [79]. Moreover, FMRP is expressed in developing and mature axons [80–83]
where its loss alters synaptic connectivity in both Drosophila and mouse FXS models [3].

One interesting aspect of the loss of FMRP function is that it impacts mTOR activity,
which is not only a key regulator of intra-axonal protein synthesis but also of intra-dendritic
translation. Furthermore, mTOR-dependent dendritic translation is suspected to contribute
to Rett syndrome, tuberous sclerosis and Down syndrome (DS) [84–86]. Interestingly,
Down syndrome cell adhesion molecule (DSCAM) is locally produced in dendrites and
its localized translation becomes impaired in DS mouse models. Additionally, dendritic
BDNF and BDNF-mediated local translation are also increased in DS [59,86–88]. All in all,
local protein synthesis deregulation has been observed in autistic disorders (including FXS)
and intellectual disabilities.

To sum up, although early work on protein synthesis in subneuronal compartments
was mainly performed in neurons under physiological conditions, an increasing body of
evidence indicates that mRNA localization and local translation are altered in pathological
contexts as summarized in Figure 2. More importantly, locally produced proteins can
actively contribute to the pathophysiology of neurological and neurodegenerative diseases
as discussed.
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3. RNA Localization and Localized Translation in Glia

RNA localization and local translation have been studied far more in neurons than
they have in glia. However, neurons are not the only morphologically complex cells in
the NS. Glial processes can extend from dozens to some hundred microns from the cell
body and can be extremely ramified. It is thus not surprising that in glia too, mRNAs are
delivered to distal processes and locally translated into protein in order to maintain the
local protein homeostasis and support glial functions. Evidence on local translation in
glia was first reported in the early 1980s in oligodendrocytes, in particular in the myelin
fraction [89].

In astrocytes and radial glia, RNA localization to peripheral process was first ad-
dressed over two decades later [90,91]. As in neurons, glial mRNA localization and
localized translation have been reported primarily in the healthy CNS, and evidence on
the contribution of local protein synthesis or its deregulation to CNS pathology is very
sparse. We will, however, review the few existing studies on glial local translation in neuro-
logical and neurodegenerative diseases. We will also discuss the possibility that impaired
localization of both RBPs and mRNAs to glial processes contribute to CNS dysfunction.

3.1. RNA Localization and Local Translation in Oligodendroglia

Oligodendrocytes enwrap the axons of the CNS with multiple layers of myelin mem-
brane, which increase the nerve conduction efficiency and speed. In addition, these cells
provide axons with trophic support, and therefore maintain axonal health and proper
cognitive function. Oligodendrocytes are a very stable cell population with the turnover of
only 1 in 300 annually. Nonetheless, the myelin is highly dynamic with one cell producing
105 myelin protein molecules per minute and making more than 100 myelin sheaths per
cell. This huge biochemical flow is coordinated to ensure the tight temporal and spatial
control of the different components of myelin [92,93].

In oligodendrocytes, many mRNAs have been reported as being translated under
local regulation at the myelin sheath and in distal processes. The myelin basic protein



Cells 2021, 10, 632 9 of 25

mRNA (Mbp) was the first transcript detected in peripheral oligodendroglial processes [89].
Some years later, the mRNAs encoding carbonic anhydrase II (CAII) [94], MAPT/Tau [95],
myelin-associated oligodendrocytic basic protein (MOBP) [96] and amyloid precursor
protein (APP) [97] were also detected in peripheral domains. Interestingly, Mbp and Mobp
mRNAs are also heavily enriched in myelin, as well as transcripts encoding ferritin 1 (FTH1)
and pleckstrin (PLEKHB1) [98]. Oligodendrocytes express an array of RBPs which likely
regulate RNA localization and localized translation in order to meet protein requirements
in each myelin sheath.

From all localized mRNAs in oligodendroglia, Mbp is the most studied due to its
importance in proper formation of CNS myelin. Mbp mRNA is sorted to the periphery
of oligodendrocytes within RNA granules in a translationally inactive state. The sorting
mechanism involves the recognition of cis-acting A2 response element (A2RE) in the Mbp
mRNA by the transacting factor hnRNP A2/B1 [67,68]. Other RBPs including hnRNP
E1, hnRNP H/F, hnRNP K and QKI also take part in this process [99–101]. Interestingly,
the mRNA encoding RBP QKI is one of the most abundant myelin transcripts [98]. Once
packaged in RNA granules Mbp mRNA is transported along microtubules to peripheral
processes and the myelin fraction [102].

Given that many myelin components are transported in specialized RNA granules
where RBPs and the microtubule network play critical roles impaired RNA processing,
transport failure and/or aggregation of RBPs could affect local translation and even lead to
ectopic expression of myelin proteins. Although very little evidence has been published in
this regard, we will list below possible links between impaired RNA localization and/or
local translation in oligodendrocytes and neurological /neurodegenerative disorders.

3.1.1. In Motor Neuron Diseases

As stated before, 97% of all ALS cases are characterized by the aggregation of the
RBP TDP-43 [58]. Interestingly, the vast majority of glial TDP-43 inclusions are found in
oligodendrocytes, which are in fact severely affected in this disease [103]. Individuals
suffering from ALS, also show a reduction of MBP in both the motor cortex and the ventral
spinal cord [104]. Thus, ALS seems not to be a neurodegenerative disease exclusively
affecting motor neurons. hnRNP A2/B1 is a known binding partner of TDP-43, and similar
to TDP-43, hnRNP A2/B1 has intrinsically disordered aggregation-prone domains which
makes it susceptible to fibrillation and incorrect folding. In oligodendrocytes, TDP-43 is
physiologically localized in the nucleus, where it binds hnRNP A2/B1. At the same time,
hnRNP A2/B1 binds Mbp and regulates its distribution towards oligodendroglial processes
and the myelin compartments. Therefore, it is feasible that disrupted interaction between
TDP-43 and hnRNP A2/B1, due to their pathological aggregation, impairs Mbp mRNA
transport and its localized translation leading to defects in sheath formation [105,106]. In
line with this possibility is the fact that oligodendrocyte-specific deletion of TDP-43 results
in defective myelination in mice. While in these mice Mbp mRNA remains unchanged, pro-
tein levels are decreased, suggesting that MBP protein deficits are caused by deregulation
of local translation [107].

About 25–40 % of all familial cases and 8 % of sporadic cases of ALS are caused by a
hexanucleotide repeat in the chromosome 9 open reading frame 72 gene (C9orf72). C9orf72
protein is known to be involved in mRNA metabolism including mRNA translocation
between the nucleus and the cytoplasm. Importantly, C9orf72 also binds hnRNP A2/B1 in
oligodendrocytes. It is still unclear whether the toxic effects of mutated C9orf72 reported
in C9orf72-mediated ALS are elicited by a loss of function of the wildtype protein or a gain
of function of the mutant one. In any case, impaired mRNA metabolism and sequestering
of RBPs have been suggested as pathological mechanisms leading to ALS [105,108].

It is worth noting that in ALS patients, as well as in ALS mouse models, myelin
pathology precedes axonal degeneration, which suggests that oligodendroglial dysfunction
should be targeted earlier than motor neuron pathology [103,104]. From this point of
view, understanding the extent to which deregulation of local Mbp translation contributes
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to functional alterations in oligodendrocytes could be crucial to understanding the early
stages of ALS.

3.1.2. In Demyelination:

Similar to C9orf72, the RBP QKI also regulates the shuffle of Mbp mRNA from the
nucleus to the cytoplasm and its localization to myelin [109,110]. A spontaneous mutation
affecting the promoter region of the QKI gene in quaking viable mice (qkv) heavily reduces the
expression of QKI and decreases the levels of Mbp mRNA levels in myelin fractions [109].
Interestingly, these mice present demyelination in different regions on the CNS which
has been partially attributed to defects in Mbp mRNA localization and the consequent
defects in localized translation [111]. Moreover, recent work by Lavon and colleagues has
reported that QKI is impaired in the brain of a mouse model of experimental autoimmune
encephalomyelitis (EAE) as well as in the blood of patients with neuromyelitis-optica
and multiple sclerosis (MS). These observations open the possibility that a dysregulation
in the Mbp mRNA metabolism due QKI dysfunction could impair local MBP synthesis
contributing to demyelinating diseases.

3.1.3. In Alzheimer’s Disease and Dementias

AD has been traditionally considered as a gray matter disease, but during the last
decade neuroimaging techniques have revealed micro- and macro-structural changes in
white matter (WM), suggesting that, in addition to the neuronal loss, WM degeneration
and demyelination are important pathophysiological features in AD, as reviewed by
Nasrabady and colleagues in 2018 [112]. More recently, Aβ-induced Mbp mRNA local
translation was reported in oligodendrocytic processes, establishing a direct link between
accumulation of Aβ peptides and aberrant local protein synthesis in oligodendroglia. Local
MBP production in distal processes is regulated by Fyn-mediated signaling pathways
promoting oligodendrocyte differentiation [113]. Consistent with these observations, the
AD APP/PS1 mouse model shows an upregulation of MBP in the hippocampus and
increased myelin thickness [114,115]. Taken together, these results suggest that local
translation of Mbp mRNA could be disrupted in AD, altering myelin morphology and
oligodendrocyte development.

Globular glial tauopathy (GGT) is a rare 4R Tau pathology with abnormal accumu-
lation of phospho-Tau in neurons as well as in astrocytes and oligodendrocytes. From a
clinical viewpoint GGT shares features with frontotemporal lobal degeneration including
FTD. However, motor manifestations have also been reported [116]. Because tauopathy
is considered the main driver of the disease we decided to include GGT in this para-
graph. Lately, it has been demonstrated that oligodendrocytes are principal targets and
dysfunctional players in the pathogenesis of GGT. In GGT cases, a decreased expression
of the myelin related proteins MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP has been
described indicating that Tau deposits have consequences in oligodendrocyte function and
transport of myelin components leading to defective myelin synthesis [117]. Interestingly,
the mRNAs encoding all the myelin proteins mentioned are enriched in myelin extracts
compared to cerebellar extracts in adult mice suggesting their localized translation [98].
Tau plays a key role in myelination providing the track for the intracellular translocation of
myelin products and controlling cell morphology. Loss of Tau in oligodendrocytes disturbs
microtubule stability, impairing process outgrowth and intracellular transport [118]. Tau
could thus contribute to mRNA localization in oligodendroglia. Interestingly, Tau hyper-
phosphorylation has been linked to aberrant local translation, at least in neurons [16,17].
Thus, this event could also lead to phospho-Tau accumulation in oligodendrocytes. It is
therefore safe to speculate that deregulation of mRNA transport and localized translation
in oligodendroglia is more widespread in GGT than was previously acknowledged.

Although defects in oligodendroglial local translation in FTD have not been suggested
so far, as in GGT, Tau accumulation has been reported in 50% of FTD cases [69]. Addition-
ally, the hexanucleotide repeat mutation in C9orf72 is the most common genetic cause of
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FTD and is also involved in the development of some AD, HD and PD cases [108]. Overall,
these data strongly support the idea that local protein synthesis in oligodendrocytes plays
a crucial role in the context of neurodegenerative diseases and thereby, should be studied
more in detail.

3.1.4. In Fragile X Syndrome

As previously mentioned, FXS is the most common inheritable form of ASD caused
by loss of FMRP [78]. The RBP FMRP selectively binds 4% of brain mRNAs, including
Mbp, to regulate their transport, translation, and stability [119]. While WM abnormalities
have been established in FXS, the effects of FMRP loss in oligodendrocytes and on myelin
production are still partially unknown. The specific function of FMRP in mRNA regulation
in oligodendroglia is contradictory. Some in vitro and in vivo studies have shown no effect
of FMRP loss on Mbp translation or myelin components [120], whereas another study has
suggested a inhibitory role for FMRP in Mbp translation in vitro [121]. Conversely, delayed
myelination has been observed in a mouse model of FXS which is consistent with the
reported role of FMRP in promoting myelin sheath growth through the local regulation
of MBP synthesis in the CNS of Xenopus embryos [122,123]. The latter in vivo studies
suggest that altered Mbp local translation could contribute to FXS. However, in view of
current published work, further investigations are needed to clarify the role of FMRP in
oligodendroglial local translation in this disease.

Altogether, the data (summarized in Figure 3) strongly suggest that deregulated local
translation in oligodendrocytes plays an important role in neurological and neurodegenera-
tive diseases. Areas of future research must seek to understand the molecular mechanisms
underlying local translation in order to develop drugs that selectively control NS disorders
involving oligodendroglia dysfunction.
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3.2. RNA Localization and Local Translation in Astroglia

Astrocytes are the most abundant type of glia in the mammalian brain. They pro-
vide neurons with metabolic, structural and trophic support, they participate in synapse
and axon formation and function, and they regulate the cerebral flow by maintaining
the blood–brain barrier [124,125]. As neurons, astrocytes are extremely polarized cells
with ramifications extending ca. 50 microns away from the soma in rodents and up to
1 millimeter in humans. Astrocytic processes can be classified into branches, branchlets,
leaflets and endfeet. Leaflets are thin long processes able to regulate synaptic function
and are also known as perisynaptic astrocytic processes (PAPs), whereas endfeet contact
the blood vessels, they control blood–brain barrier (BBB) integrity and are also known as
perivascular astrocytic processes (PvAPs) [125,126]. Astrocytic processes can be as long as
some neurites and it is thus not surprising that they contain RNAs and have the capacity
to produce proteins locally. Indeed, early high-throughput analyses of astroglial protru-
sions revealed that primary mouse astrocytic processes contain ~2200 RNAs at relative
levels similar to somatic RNAs or higher, suggesting their enrichment in the periphery
of cells [127]. More recently, Sakers and colleagues measured de novo protein synthesis
in cortical astrocytes and observed that 73% of translation occurs more than 9 microns
away from the nucleus and does not decay in the periphery [111]. Interestingly, years
before these studies were performed, mRNA isoforms encoding the glutamate transporter
1 (GLT1) were analyzed in the rat brain by in situ hybridization. Glt1a mRNA was detected
in abundant levels in astrocytic processes while Glt1b mRNA was mainly restricted to the
soma [90]. Similarly, Gfap isoform α is mainly detected in astroglial protrusions while Gfapδ
shows mainly somatic localization [128]. Altogether, these results suggest that differen-
tial mRNA distribution and localized translation are relevant for functional asymmetry
in astrocytes.

PAPs can contact up to 2 million synapses in humans and thus play a major role
in synaptic function [129]. Consistent with this function, a variety of ribosome-bound
mRNAs involved in glutamate and GABA metabolism (e.g., Slc1a2, Slc1a3, Glul) as well
as in synaptogenesis and pruning (e.g., Mertk, Sparc, Thbs4) were identified in PAPs by
Sakers and colleagues. Components of the cytoskeleton and proteins involved in fatty acid
metabolism are also locally produced in PAPs according to this same study [111]. A more
recent study additionally detected translating mRNAs that encode ribosomal proteins
and translation regulators as being enriched in PAPs consistent with results obtained in
subneuronal compartments. Interestingly, this study performed by Mazaré and colleagues
also described how the repertoire of PAP-translated transcripts were regulated by fear
conditioning [130].

Similarly, PvAPs or endfeet, which interact with blood vessels and control BBB in-
tegrity and cerebral blood flow, contain mRNAs and are competent for local translation.
mRNAs which encode proteins involved in BBB immune quiescence (e.g., Gja1), BBB
integrity (e.g., Agt) and perivascular homeostasis (e.g., Aqp4, Kir4.1, Hepacam and Mlc1)
are enriched in endfeet [131]. Thus, mRNA localization to PvAPs likely contributes to the
regulation of brain vascular physiology.

PAPs and PvAPs share the vast majority of their actively translating mRNAs according
to work published in 2020 by Mazaré and colleagues [130]. However, some mRNAs are
enriched in PAPs compared to PvAPs including Ezr, Rplp1 and Fth1 [130]. These results
suggest that not only a distinct distribution of transcripts between cell bodies and astrocytic
processes contributes to the functional polarity of astroglia, but that processes that support
different functions in the brain differ in specific mRNA subsets.

Deregulation of the interaction between astrocytes and neurons and astrocytes and
the vascular system leads to the development and progression of many neurological and
neurodegenerative diseases as previously reviewed [132,133]. Additionally, the complex
morphology of astrocytes is altered in brain disorders [126]. Given that astroglial polarity
seemingly relies on mRNA localization and local translation as mentioned, it is expected



Cells 2021, 10, 632 13 of 25

that locally translated transcripts and/or an aberrant local protein synthesis in astroglial
processes are linked to CNS dysfunction as we will review below.

3.2.1. In Motor Neuron Diseases

TDP-43 is a binding protein for the glutamate transporter Glt1 (Eaat2) mRNA and
TDP-43 aggregates are associated with astroglial GLT1/EAAT2 loss in ALS mouse models
and ALS patients [134,135]. Although TDP-43 aggregation occurs in most ALS cases, in
those rare occasions in which its accumulation is absent, patients carry SOD1 and/or FUS
mutations. Interestingly, mouse models with ALS-associated SOD-1 mutations also show
reduced levels of GLT1/EAAT2 in astrocytes. Although there is no evidence that decreased
astrocytic GLT1/EEAT2 levels are causative of ALS, it seems clear that GLT1 is impaired in
this disease [124]. Whether different isoforms of Glt1 mRNA are selectively affected in ALS
suggesting impaired mRNA localization to astrocytic processes and localized translation
still requires investigation.

Additionally, a great number of mRNAs localized to PAPs contain QKI response
elements (QREs) [111]. As mentioned before, QKI dysregulation has been involved in
demyelination but its role in other diseases such as ALS has not been discarded [136].

3.2.2. In Alzheimer’s Disease and Dementia

Glial fibrillary acidic protein (GFAP) is the most abundant protein expressed in as-
trocytes. GFAP plays relevant roles in myelination, white matter vascularization and in
keeping BBB integrity [137]. Interestingly, immunohistochemical analyses have shown in-
creased expression of both GFAPα and GFAPδ in reactive astrocytes near amyloid plaques
in postmortem AD brains, suggesting a role for both proteins in disease progression [138].
Gfapα and δ mRNAs are distinctly localized in rodent astrocytes: Gfapα is restricted to
processes while Gfapδ is found in the soma. However, in the APPswe/PS1dE9 AD mouse
model, the distribution pattern of both mRNAs varies [139]. Moreover, Gfap is regulated by
the RBP QKI which is upregulated in sporadic AD cases [140]. Thus, Gfap mRNA transport
and its localized translation are likely disrupted in AD.

Additionally, some of the ribosome-bound mRNAs known to be enriched in PAPs [111,130]
are also localized to amyloid-treated axons [14]. Intriguingly, 24.59% of common transcripts
(from a total of 130) categorized in significantly represented GO terms (biological process;
false discovery rate (FDR) < 0.05) are involved in translation (Figure 4A). These observa-
tions strengthen the belief that components of the translation machinery and translation
regulators are themselves locally produced. If we narrow down the analysis to those
mRNAs significantly changed in amyloid- vs. non-amyloid-treated axons, 21 mRNAs can
be found in both the axonal transcriptome and the PAP translatomes (Figure 4B), one of
them being Gfap and 7 involved in aging (Lrp1, Timp3, Aldoc, Clu, Eef2, Fads1 and Vim).
Gfap mRNA is also bound to ribosomes in PvAPs [131]. Other transcripts identified in a
PvAP translatome or “endfeetome” are also among the significantly changed transcripts in
amyloid-treated axons (Aqp4, Gpm6b, Gja1 and Mlc1) [14,131]. The coincidence between
these datasets is highly suggestive of the presence of a subset of amyloid-responsive
mRNAs in astrocytic processes that could contribute to AD.

PAPs are also enriched in memory-related mRNAs. It would thus not be surprising
that their dysregulation could contribute to memory impairment and dementia. Although
this point should be confirmed, Fth1 and Ftl1 are linked to superficial siderosis and brain
iron accumulation, both leading to neurodegeneration and dementia [141], and are bound
to PAP ribosomes. Interestingly, both transcripts are reduced upon fear conditioning in
mice [130].
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3.2.3. In Movement Disorders

HTT inclusions are found in striatal astrocytes in a mouse model of HD. Accumulation
of HTT in astrocytes coincides with deficits in the inward-rectifying potassium channel
Kir4.1 leading to extracellular potassium accumulation in the brain and enhanced neuronal
excitability in striatal medium-sized spiny neurons (MSN). Interestingly, overexpression
of Kir4.1 in astrocytes partially recovered the HD phenotype in these mice and rescued a
number of MSN in the onset of neurodegeneration [142]. Whether Kcnj10 mRNA (which
encodes Kir4.1 protein) localization is altered in HD has not been addressed but given its
presence in PvAPs [131], it would be interesting to determine if altered Kir4.1 synthesis in
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astroglial processes contributes to the manifestation of HD symptoms and the progression
of the disease.

3.2.4. In Fragile X Syndrome

Fmr1 knockout mice which model the loss of FMRP function in FXS show a significant
protein synthesis-dependent reduction in the glutamate transporter GLT1/EEAT2 and in
glutamate uptake. The involvement of astroglial GLT1 to this phenotype was reported
by Higashimori and colleagues in 2016. Importantly, loss of astroglial FMRP contributes
to GLT1 dysregulation, impaired glutamate uptake, cortical synaptic deficits and other
FXS phenotypes [143,144]. These results point towards the possibility that Glt1 mRNA
localization and translation are altered in astrocytic processes, however addressing whether
the loss of the process-specific Glt1 mRNA isoform (Glt1a) [90] contributes to FXS would
lead to more conclusive results.

3.2.5. In Other Neurological Disorders

Aqp4 and Gja1 (which encodes the hemichannel protein Cx43) deregulation might not
only be involved in AD as previously mentioned. Both transcripts are locally translated in
PvAPs and these astroglial peripheral structures play relevant roles in BBB maintenance
and immunoregulation. In some neurological conditions the BBB integrity becomes com-
promised and polarized expression of Aqp4 and Cx43 is lost suggesting that their localized
translation in PvAPs might be affected [145]. For example, in the mouse model of middle
cerebral artery occlusion (MCAO), Aqp4 is increased during edema and ischemia and its po-
larization is lost, whereas Cx43 increases in peri-infarct area several days after MCAO. Both
proteins are thus potential therapeutic targets for stroke [146–148]. In MS BBB, dysfunction
is also evident, and astrocytes are considered active participants in the progression of the
disease rather than simple scarring cells [149]. Interestingly, Aqp4 is reduced in endfeet
and Cx43 polarity is lost [145]. Finally, loss of perivascular Aqp4 and its mislocalization
have been associated to epilepsy in the latent phase preceding seizures [150]. Altogether,
these results suggest that mislocalization of mRNAs and defects in localized translation in
PvAPs are associated with loss of BBB integrity in some neurological conditions and might
contribute to disease progression.

The data reviewed in this paragraph (and summarized in Figure 4C and Table 2)
add to a mounting body of evidence indicating the relevance of local protein synthesis in
astrocytic processes in proper NS function.

3.3. RNA Localization and Local Translation in Radial Glia

Radial glia cells (RGCs) are the neural progenitors of the developing cortex. Their
bipolar structure comprises a cell body located close to the ventricular surface (apical) of
the neuroepithelium, a basal process and an endfoot that contacts the pial surface (basal)
(Figure 5). In contrast to neuroepithelial cells, RGCs express astroglial markers but have
both neurogenic and gliogenic potential [151–153]. RGCs receive numerous signals from
cells located at the basal side of the epithelium including Cajal-Retzius cells, meningeal
cells and excitatory upper layer neurons. It is believed that these signals released by the
basal niche reach the endfeet which in turn “transfer” them to the cell bodies located near
the ventricles and 150–450 µm away from the pial surface [154–156].
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Hence, the basal process would work as a communication road between the basal and
the apical sides of the cell [156,157]. Some mRNAs are locally translated into protein in RGC
endfeet as reviewed by Pilaz and Silver in 2017 [158]. Among these transcripts those encod-
ing nuclear proteins such as cyclin D2 (Ccnd2) have been found, suggesting that proteins
translated locally in endfeet could elicit their function in the nucleus as a means of com-
munication between the pial and the ventricular surfaces of the neuroepithelium [91,156].
Indeed, a similar mechanism involving transcription factors has been reported in neurons
in both physiological and pathological contexts [14,52–54]. Transcripts for cytoskeleton
components and signaling molecules are also present in endfeet [156].

The only characterized RBP able to transport mRNAs to RGC endfeet is FMRP [156].
Given that loss of FMRP is associated to FXS among other diseases, we will discuss below
the possibility that dysregulation of endfeet FMRP targets participates in NS dysfunction.

3.3.1. In Fragile X Syndrome, Autism Spectrum Disorders and Intellectual Disabilities

Transcriptome analyses performed so far in RGC endfeet have focused on targets of
the RBP FMRP [156]. Pilaz and colleagues performed RIP-Seq and identified 115 potential
FMRP targets. Interestingly, 31% of the identified transcripts are involved in neurological
diseases, more than 20 of them being encoded by ASD-related genes. Moreover, some
pulled-down transcripts are associated with intellectual disabilities. From all identified
FMRP-bound mRNAs, six were further validated by in situ hybridization: Vash1, Ptpn11,
Apc, Kif26a, Dst and Campsap2. Importantly Kif26a mRNA localization to endfeet and trans-
port are impaired in FMR1 knockout animals. Taken together, these results (summarized in
Figure 5) suggest that mRNA localization to and localized translation within endfeet are
affected in FXS, other ASDs and likely in intellectual disabilities.
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3.3.2. In Other Neurological Disorders

As stated before, Ccnd2 is locally translated in RGC endfeet and is also an FMRP
target [91,156]. Additionally, mutations in the CCND2 gene have been linked to megalencephaly-
polymicrogyria-polydactyly-hydrocephalus syndrome (MPPHS), a rare neurodevelopmen-
tal disorder that leads to severe brain malformations [159]. It would be interesting to
address whether megalencepahly syndromes are accompanied by dysregulation of local
CCND2 production in RGC endfeet during cortical development.

To sum up, although local protein synthesis in RGCs has been by far less studied than
it has in other neural cells, the limited existing evidence on this phenomenon (Figure 5
and Table 2) reveal the intriguing possibility that local translation in processes of neural
progenitors has important implications in brain development. More interestingly, dysregu-
lation of mRNA localization and localized translation in these cell types could contribute
to neurodevelopmental disorders.

4. Concluding Remarks

The information gathered herein (summarized in Table 2) regarding localized transla-
tion in glial processes indicate that despite this phenomenon not being extensively studied,
there is already a decent amount of evidence suggesting that dysregulation of mRNA
localization and local translation in glia might significantly contribute to NS dysfunction.
It is worth mentioning that the fact that microglia have not been mentioned in this review
article relates to the lack of evidence that local protein synthesis occurs in this cell type until
fairly recently [160]. Although it is still too early to venture that RNA localization and/or
local translation in microglia play significant roles in CNS disease progression, it is foreseen
that this cell type will definitely emerge into the picture of localized translation soon and
will deserve future mention. This possibility, together with the evidences reviewed in this
article, open new and exciting avenues for the search for novel (and localized) therapeutic
targets for neurological and neurodegenerative diseases involving RNA localization and
localized translation in glia.

Table 2. List of RNAs and RBPs whose localization and /or local translation is proven or suggested
to be linked to neurological and/or neurodegenerative diseases. AD, Alzheimer’s disease; ALS,
Amyotrophic lateral sclerosis; ASD, Autism spectrum disorder; DS, Down syndrome; FTD, Fron-
totemporal dementia; FXS, Fragile X syndrome; HD, Huntington’s disease; MS, Multiple sclerosis;
SMA; Spinal muscular atrophy. Others include stroke, dementia, intellectual disabilities and neu-
rodevelopmental disorders. N, neurons; A, astrocytes; R, radial glia; O, oligodendrites. N1 refers to
significantly changed transcripts in Aβ-treated axons vs. controls that have not been further referred
to in the literature and are thus not included in Figure 2. MS2 includes MS and demyelination.

List of mRNAs/microRNAs Localized to Subcellular Compartments in Neurons and Glia and
Implicated in Diseases

Transcript Disease Cell Type References

Actb SMA, HTT N [13,73,75]

Aldoc AD N1, A [14,111,130]

Anxa2 SMA N [11]

Apc FXS R [158]

ApoE AD N [6,14]

App AD N [6,14]

Aqp4 AD, MS, other N1, A [14,131,145,150]

Arc FXS N [79,80]

Atf4 AD N [14]

Bdnf HTT, DS, other N [59,86]
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Table 2. Cont.

List of mRNAs/microRNAs Localized to Subcellular Compartments in Neurons and Glia and
Implicated in Diseases

Transcript Disease Cell Type References

Bin1 AD N [6,14]

Camk2a FXS N [79,80]

Campsap2 FXS R [156]

Ccdn2 FXS, other R [156,159]

Celf1 AD N [6,14]

Clu AD N, A [6,14,111,130]

Cnp GGT O [117]

Cox4i2 SMA N [11]

Dlg4 FXS N [79,80]

Dscam DS N [59,87]

Dst FXS R [156]

Eef2 AD N1, A [14,111,130]

Fads1 AD N1, A [14,111,130]

Fermt2 AD N [6,14]

Fmrp (Fmr1) FXS N [79,80]

Fth1 other A [141]

Ftl1 other A [141]

Gap43 SMA N [13]

Gfap AD N1, A [6,14,111,130,131,139]

Gja1 AD, MS N1, A [14,131,145]

Glt1 ALS, FXS A [124,143,144]

Gpm6b AD N1, A [14,131]

Kpnb TNI N [56]

Kcnj10 HTT A [142]

Ki26a FXS R [156]

Lrp1 AD N1, A [14,111,130]

Mag GGT O [117]

Mal GGT O [117]

Mapb1 ALS, FXS N [8,79,80]

Mapt AD, GGT N, O [16,17,117]

Mbp ALS, MS2, AD, GGT, FXS O [107,110,111,113,117,122,123]

miR-183 SMA N [12]

Mlc1 AD N1, A [14,131]

Mobp GGT O [117]

Mog GGT O [117]

mTor TNI, SMA, ASD, DS N [12,25,84–86]

Nrn1 SMA N [13]

Picalm AD N [6,14]
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Table 2. Cont.

List of mRNAs/microRNAs Localized to Subcellular Compartments in Neurons and Glia and
Implicated in Diseases

Transcript Disease Cell Type References

Plp1 GGT O [117]

Pparg TNI N [55]

Ptk2 AD N [6,14]

Ptpn11 FXS R [156]

Sorl1 AD N [6,14]

Stat3 TNI N [54]

Timp3 AD N1, A [14,111,130]

Vash1 FXS R [156]

Vim AD N, A [14,15,111,130]

Ago2 HD N [73–75]

FMRP FXS N, O, A, R [79,80,122,133,143,144,156]

FUS FTD N [8,9,59]

hnRNP A/B AD, ALS N, O [67,68,105–107,161]

HTT HD N [73–75]

QKI MS, ALS, AD O, A [110,111,136,140,162]

RBPMS TNI N [57]

SMN SMA N [13]

TDP-43 ALS, FTD N, A [8,9,59,124]
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