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Resumen

Desde los primeros estudios sobre el uso de Supernovas Tipo Ia a modo de candelas

estándar, sabemos que el universo se expande aceleradamente. La descripción f́ısico-

matemática de este fenómeno puede abordarse desde perspectivas muy diferentes.

Por un lado, si se quiere mantener un universo descrito por la teoŕıa de la Relatividad

General de Einstein, es necesario acudir a la idea de que un tipo de fluido diferente

de la materia bariónica debe estar presente. Dentro de este escenario, una posibilidad

es incluir la denominada constante cosmológica, que puede interpretarse como un

fluido con ecuación de estado constante. De hecho, este modelo es el que actualmente

está más aceptado y es considerado el modelo estándar de la Cosmoloǵıa. Otra

opción bastante más general es considerar un fluido dinámico, lo que normalmente se

conoce como enerǵıa oscura. Por último, una tercera perspectiva que puede adoptarse,

conlleva dejar de lado el contexto de la Relatividad General y establecer otro marco

teórico partiendo de una definición diferente de la acción. Dentro de este grupo se

encuentran las teoŕıas de gravedad modificada.

Un ingrediente crucial a la hora de describir de qué manera ocurren las inter-

acciones en el universo y cómo se forman las estructuras es la densidad de enerǵıa

presente en él. Por un lado, tenemos la materia bariónica, la radiación y los neutrinos

(cuya naturaleza es conocida hoy d́ıa). Por otro lado, hemos de tener en cuenta que las

observaciones cosmológicas y astrof́ısicas del entramado que forma la estructura del

universo señalan la presencia de otro componente más, generalmente conocido como

materia oscura. Por último, el fenómeno de la expansión del universo, al menos desde

una perspectiva conservadora, exige la presencia de otro componente de naturaleza

desconocida, la enerǵıa oscura. No obstante, en el marco de la gravedad modificada,

donde la descripción de las interacciones cambia completamente, esta enerǵıa oscura

es completamente prescindible y de hecho, es una de las motivaciones para estudiar

alternativas a la Relatividad General de Einstein.

Otra alternativa ampliamente estudiada dentro del marco de la Relatividad Gen-

eral es la denominada enerǵıa oscura unificada. Dado que la presencia de enerǵıa

oscura y de materia oscura en el universo es aproximadamente del mismo orden, y te-

niendo en cuenta que desconocemos la naturaleza de ambas, parece lógico considerar

un fluido capaz de describir el comportamiendo de ambos componentes.



En esta tesis analizamos cada una de las perspectivas expuestas en lo anterior.

En el primer Caṕıtulo 1, hacemos una breve introducción a la cosmoloǵıa moderna

desde un punto de vista histórico y explicamos los pilares fundamentales sobre los que

se sustenta. Presentamos un esquema general sobre la enerǵıa oscura y la gravedad

modificada y, finalmente, describimos en detalle los datos observacionales que hemos

usado, aśı como la base de la estad́ıstica Bayesiana, haciendo énfasis en los métodos

de Monte Carlo Markov Chain, una pieza fundamental en nuestro trabajo.

En el Caṕıtulo 2, estudiamos las teoŕıas f(R) desde un enfoque “observational

tester friendly”, y para ello utilizamos el redshift. Los resultados de este estudio han

sido publicados en:

• “f(R) modifications: from the action to the data”, R. Lazkoz, M. O-B, V.

Salzano, Eur. Phys. J. C (2018) 78: 213.

En el Caṕıtulo 3, aplicamos el procedimiento anterior a una clase diferente de

teoŕıas de gravedad modificada menos explotadas. En concreto, trabajamos con

la “no-metricidad”, Q, explorando un método similar al aplicado para las teoŕıas

f(R) (que consiste en una generalización del Lagrangiano), pero incluyendo objetos

geométricos completamente diferentes, dando lugar a las teoŕıas f(Q). Este tipo de

teoŕıas ofrece una nueva perspectiva por investigar que servirá para estudiar diferentes

fenómenos cosmológicos para los que aún no existe una explicación consensuada. El

análisis realizado en torno a este tema ha ido publicado en:

• “Observational constraints on f(Q) gravity”, R. Lazkoz, F. S. N.Lobo, M. O-B,

V. Salzano, Phys. Rev. D 100, 104027 (2019).

En el Caṕıtulo 4, siguiendo con el tema de las teoŕıas de gravedad modificada,

analizamos una alternativa que forma parte de las teoŕıas f(R) que incluyen un acoplo

no-mı́nimo entre la geometŕıa y la materia. Este tipo de teoŕıas permite sustituir el

componente de enerǵıa oscura por un acoplo cuyo valor puede modular el efecto de

un componente repulsivo que produce la presente expansión acelerada del universo.

Este trabajo ha sido enviado como:

• “ΛCDM suitably embedded in f(R) with a non-minimal coupling to matter, M.

O-B, V. Salzano, M. Bouhmadi-López, R. Lazkoz, Submitted to Phys. Rev. D.

Finalmente, en el Caṕıtulo 5, estudiamos un ”fluido oscuro“ dentro del contexto

de la Relatividad General descrito por las ecuaciones de Einstein-Hilbert usuales, pero

exhibiendo una ecuación de estado dinámica no-lineal y cuyo parámetro caracteŕıstico
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no es fácilmente reducible a una simple expresión anaĺıtica. Este modelo puede ser

adscrito a la familia de los Chaplygin generalizados, y de ah́ı el nombre umami Chap-

lygin: tiene más parámetros libres que el Chaplygin original pero organizados de una

manera que hace posible la unificación entre materia oscura y enerǵıa oscura. Este

estudio ha sido publicado en:

• “The umami Chaplygin model”, R. Lazkoz, M. O-B, V. Salzano, Phys.Dark

Univ. 24 (2019) 100279.
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Abstract

Since the late 90’s, when it was discovered that Type Ia Supernovae could be used

as standard candles and their first batch-mode surveys were planned and completed,

we know that our universe is expanding in an accelerated way.

This observational evidence can be addressed from many different perspectives. In

the context of Einstein’s General Relativity, it was soon realized that some “exotic”

extra fluid, other than the usual baryonic matter, was needed to counterbalance the

pull of gravity and eventually overcome it, in order to account for this phenomenon.

One possibility in this sense is to include the so-called cosmological constant. This

is, in fact, the most accepted approach and it establishes the basis of what is nowa-

days better known as the “standard consensus model of cosmology”. However, as an

alternative, one could also consider a more general fluid, generally called dark en-

ergy, characterized by a dynamical behaviour that would make it responsible of this

expansion.

As a drastically different approach one could instead even abandon the framework

of General Relativity and try to consider and develop a totally new theory of gravity,

starting from a proper re-definition of the action. Theories of modified gravity lie

within this kind of description.

The energy-density components which are present in the universe have a crucial

role in the way interactions occur and structures get formed. Among these elements,

firstly we have to mention those whose nature is well-known nowadays: radiation,

neutrinos and baryonic matter (which is the matter we are made of). In addition to

them, we also know that astrophysical and cosmological observations related to the

internal dynamics of all the gravitational structure which make the cosmic web, their

formation and evolution, make unavoidable to include in this cosmic inventory a new

kind of non-baryonic matter of unknown nature, the dark matter. As a plus which

we have already anticipated, to explain the accelerated expansion of the universe

we need, at least, conservatively speaking, the presence of another “dark” energy-

density ingredient; unless one decides to take a completely different path and change

the theoretical scheme which defines interactions at the gravitational level, in which

case we would be talking about modified gravity approaches, as we have mentioned.



Each of these two options of course provides a very distinct theoretical panorama;

whether phenomenological or fully backed up by a theoretical idea, observations are

the main and only tool we have to discriminate between them. Given the present

knowledge we have about the energy-matter content of our universe, dark matter and

dark energy account for most of the energy-density of the universe. However, their

origin is still unknown. On the one hand, dark matter neither emits nor absorbs light

so, although several proposals have been studied (WIMPS, axions, etc. . .) we still do

not know what it is. On the other hand, the extensive list of dark energy and modified

gravity candidates gets larger without arriving at a consensus on which mechanism

should be driving such late speed up of the universe. Thus, the uncertain nature of

dark matter and dark energy and the fact that nowadays they are present in similar

proportions, make it interesting to consider the possibility that these two components

could be, indeed, the same and unique fluid whose behavior gets modified with time.

This is an intriguing framework which also can be considered.

In this thesis we address the three approaches we have mentioned, i.e. dark energy,

modified gravity and unified dark fluids, to study the phenomenon of the accelerated

expansion of the universe. On the one hand, we explore some cosmological setups

belonging to the f(R) and f(Q) scenarios, and on the other hand, we study a unified

dark energy model within the Chaplygin-type theories. We perform a theoretical

and phenomenological analysis of each model and end up implementing an observa-

tional analysis examining the physical quantities which concern what happens at the

background level of the universe. We show the power of prediction of the statistical

methods we have developed by using a quite complete combination of observational

data sets to test our theories and compare them with the standard model of cosmol-

ogy. We have divided this thesis into different chapters and we will detail below the

content of each one.

In Chapter 1, we start by introducing modern cosmology both from a historical

point of view and explaining the fundamental mathematical pillars on which it rests.

We provide a general overview on dark energy and modified gravity and finally, we

explain in detail the observational probes we have used as well as the basis of Bayesian

statistics, focusing on Monte Carlo Markov Chain methods, a fundamental point in

our work.

In Chapter 2, we study the widely-known f(R) theories but implementing an

observational tester friendly approach using the redshift in order to facilitate obser-

vational tests. The results of this work have been published in:
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• “f(R) modifications: from the action to the data”, R. Lazkoz, M. O-B, V.

Salzano, Eur. Phys. J. C (2018) 78: 213.

In Chapter 3, we apply this same approach to a more drastic modification of

gravity. More specifically, we work with the non-metricity, Q, exploring an approach

which is similar to f(R) for what concerns the methodology (a generalization of the

Lagrangian), but involves completely different geometrical objects in it, thus leading

to f(Q) theories. This approach offers a brand new perspective which may open

many possibilities to study unexplained cosmological phenomena. The analysis done

has been published in:

• “Observational constraints on f(Q) gravity”, R. Lazkoz, F. S. N. Lobo, M. O-B,

V. Salzano, Phys. Rev. D 100, 104027 (2019).

In Chapter 4, always within the topic of modified theories of gravity, we analyze

an alternative belonging to the f(R) class of theories which includes a non-minimal

coupling between geometry and matter. This kind of theories allows to replace the

dark energy component by a coupling whose strength can modulate the effect of a

“repulsive” component which is driving the present accelerated expansion. This work

has been submitted as:

• “ΛCDM suitably embedded in f(R) with a non-minimal coupling to matter, M.

O-B, V. Salzano, M. Bouhmadi-López, R. Lazkoz, Submitted to Phys. Rev. D.

Finally, in Chapter 5, we study a dark fluid which lies within the General Rel-

ativity framework described by the usual Einstein-Hilbert action but exhibiting a

dynamical equation of state highly non-linear and whose characteristic parameter is

not easily reducible to any simple and standard analytical expression. The model can

be ascribed to the generalized Chaplygin-like family, which is the reason for its name,

umami Chaplygin model: it has more free parameters than the original Chaplygin

model but arranged in such a way to allow and model a possible unification of dark

matter and dark energy. This study has been published in:

• “The umami Chaplygin model”, R. Lazkoz, M. O-B, V. Salzano, Phys.Dark

Univ. 24 (2019) 100279.
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Chapter 1

Introduction

1.1 Modern cosmology

The term “cosmology” comes from the ancient Greek and literally means “study of the

cosmos”, where the term “cosmos” actually had for the ancient Greeks connotations

slightly different with respect to the present days. In fact, it was used to indicate the

world (or Universe) as an orderly, harmonious system [1].

Nowadays “cosmology” is a well established branch of the natural sciences which

deals with the study of the evolution of the Universe and its components all the way

from the past to the future. It is interesting to notice how the question ancient people

asked, “what is happening around me?”, has now lost locality and has become: “how

does the Universe work?”. This is closely related to the core point of cosmology: it

does not focus on every single particle which surrounds us but on the Universe as a

whole. This ambitious and broad perspective shows the strength that this branch of

science has, as well as the potent tools it requires in order to be brought forward.

Modern cosmology is considered to have begun in the early twentieth century, an

incredibly fruitful period for research in both observational and theoretical aspects of

the study of the Universe. It was during this period that Einstein gave birth to his

best known theory, the General Relativity (GR) [2], an essential building block for

the development of modern cosmology, a revolutionary re-definition of gravity as the

manifestation of a (more or less complicated) interplay between space and time (the

geometry of the Universe) with any kind of matter and energy which can be found

in the Universe. In the same years, in parallel to theoretical advances, important

discoveries were taking place in the observational field, although theoretical work

has been for a very long time ahead of observational results, the latter one being

constrained mainly by technological limits. One remarkable result was obtained in

1908, when the astronomer Henrietta Swan Leavitt discovered a relation between the
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period of variability and the luminosity of a class of pulsating stars, the Cepheids

[3]. Among the many important astrophysical contributions that have been based on

this relation, one should mention the work by Helen Sawyer Hogg, who used it to

enhance the understanding of our galaxy, the Milky Way, by studying its size, age

and structure [4]. But Leavitt’s discovery has been also crucial for cosmology itself,

because it has provided astronomers with the first standard candle which might be

used to measure distances of very distant objects. It was a decisive tool to address

a problem that was in the spotlight of the scientific community at that time: while

Einstein was developing GR, the vast majority of astronomers was still thinking that

the Milky Way really contained all the stars present in the Universe and that beyond

its limits there was just a great cosmic void. In 1916, some years after Leavitt’s

discovery, Vesto Slipher helped to throw some light onto this issue: he measured

galactic spectral shifts and computed the velocities of the (then) so-called “nebulas”

(i.e., nowadays, galaxies) finding that the majority of them were moving away from

us [5]. Later on, in 1926, the ground sown with Leavitt’s and Slipher’s measurements

gave Edwin Hubble the perfect impulse to unravel the extragalactic nature of the

Cepheids he had observed in one of these “nebulas”, which later turned out to be the

Andromeda galaxy [6].

Some years after the discovery of extragalactic stars, in 1929, Hubble discovered

another astonishing phenomenon: the Universe was expanding [7, 8]. More exactly,

he found that the faster a galaxy was moving, the fainter it was (or, equivalently,

the faster it was moving, the farther it was). From the theoretical point of view, it

has to be said that such observational discovery could be well accommodated into a

theoretical model which Alexander Friedmann had already formulated in 1922, when

he had found an expanding Universe solution to Einstein’s field equations [9].

Five years later Georges Lemâıtre also found independently the same kind of

solutions [10] and was also the first to propose a cosmological model for the early-

time Universe, which some years later started to be known as the Big Bang theory

[11]. In the Big Bang scenario the entire known Universe was concentrated in a very-

initial singularity from whose expansion everything we know today has derived. The

model states that, at the beginning, all the matter in the Universe was compressed

in a primordial state of extremely high density and temperature. Later on, its rapid

expansion would have resulted in a significant decrease in density and temperature.

While a detailed description of this model is out of the goals of this thesis, we will

remind here only some of its main points. The huge amount of radiation in the early

Universe environment ensured that any atom or nucleus formed would be immediately
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destroyed by a high energy photon. At that time the Universe was very close to

being homogeneous and was certainly strongly radiation dominated. As the Universe

was cooling down, the light elements such as hydrogen, helium and lithium isotopes

began to form, starting a process known as “nucleosynthesis”. The history of Big

Bang nucleosynthesis began with the calculations of Ralph Alpher in the 1940s, and

was finally stated in its definitive version by a joint work among Alpher, Hans Bethe

and George Gamow, who published the famous αβγ paper that outlined the theory of

light-element production in the early Universe [12]. While studying the process of the

nucleosynthesis of light elements at very early times in the Universe, Gamow, Alpher

and Herman realized that, in order to have the nuclei of these elements synthesized,

the early Universe needed to have been not only extremely hot and much smaller,

but also, the leftover radiation from that epoch should still be present in the Universe

and be detectable, nowadays, as a cosmic microwave background (CMB) radiation

[13, 14, 15, 16]. After the nucleosynthesis period, the Universe continued cooling,

till reaching energy levels low enough for photons, electrons and nuclei to be able

to combine into atoms (mostly hydrogen). This epoch is known as recombination

(we will describe it in more detail in subsequent sections). The drop in density and

energy also made light no longer interacting and being scattered off by free electrons,

and instead it started to travel freely through the Universe in the form of that relic

radiation which is CMB. As time passed, some marginally denser regions (whose origin

we will describe later in this chapter) of the almost uniformly distributed matter grew

gravitationally and became denser and denser, forming stars, galaxies and the rest of

the astronomical structures that are currently observed.

The expansion of the Universe is considered as one of the main discoveries within

modern cosmology. However, before the discovery of Hubble, the possibility of a

dynamical Universe was widely rejected. More interestingly, in the early days of GR,

Einstein thought about a possible solution to his equations by introducing a constant

term - nowadays called Λ - of geometric nature. In his ideas it should have contrasted

the action of gravity eventually leading to a static Universe, as it was clear that

something more, and very different from standard matter, was needed to get this

type of Universe. This was the mainstream idea about its dynamics, at that time, to

which Einstein himself adhered to, in absence of any confuting observational probe.

But, contrarily to his thoughts, he soon realized that such a Λ-term could give rise to

an accelerated Universe. That is why he initially rejected this possibility. However,

he came back to it when Hubble made his crucial discovery about the accelerated
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Universe (leading him to spell his famous sentence about “his greated blunder”, when

referring to his initial doubts concerning the dynamical Universe).

It would be in 1998 when, using Type Ia Supernovae as standard candles, it was

found that, indeed, the Universe was expanding in a very specific way: it was ac-

celerating. This measurement was made independently by two different teams, the

Supernova Cosmology Project (headed by Saul Perlmutter) and the High-Z Super-

nova Search Team (headed by Brian Schmidt and Adam Riess) [17, 18] who were both

awarded the Nobel Prize in Physics in 2011 for such a discovery, which constitutes

one of the main pillars on which modern cosmology is based. Due to it, the possible

existence of a “dark” (unknown) energy component which should drive the accelera-

tion of the Universe entered the scene, initially in its simple form of a constant (the

cosmological constant) originally introduced by Einstein.

We have to remark that the idea of an accelerated expansion of the Universe has

also an important role in the early stages of its evolution. Motivated by trying to find a

solution to the problems of the standard Big Bang model (as the flatness problem, the

monopoles, or the origin of the gravitational structures which we see today), Willem

de Sitter, Alan Guth, Alexei Starobinsky, Andrei Linde and Paul Steinhardt tackled

them starting from the context of field theory, by predicting a possible accelerated

expansion phase of the early Universe, which was soon called “cosmological inflation”,

and which should have taken place right after the initial singularity of the Big Bang

[19, 20, 21, 22, 23, 24, 25, 26]. However, it is important to stress that such early-time

acceleration is deeply different from the late-time one, for what concerns its origin,

duration and velocity, as we will explain in the following pages.

Besides, in the sixties of the past century, the existence of another dark component

started to be considered. The astronomer Vera Rubin, together with Kent Ford,

measured and analyzed the rotation velocities of stars in spiral galaxies in terms

of their distances from the center [27] and how the gas in the disks was moving.

Until that moment it was thought that the mass distribution in spiral galaxies should

follow the light distribution emitted by its stars: given that the brightness decreases

as moving far from the center, the center should contains more mass and, thus, the

rotation velocity of the stars was expected to be higher in the center and decreasing for

large distances. However, by analyzing different objects, they found that the velocity

curve tended to flatten as the distance from the center increased. To interpret this,

they retrieved the work by Fritz Zwicky in 1930, who proposed that some non-visible

“missing” mass (what he would call “dark” matter) was needed in order to explain

the dynamics of hot gas in the Coma galaxy cluster [28, 29]. Actually, the gas was too
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hot for being gravitationally bounded in a limited region by the only visible mass,

and a quite larger amount of additional mass was needed in order to fit it within

clusters’ scales.

Another decisive discovery which drastically affected the paradigm of modern

cosmology was, in fact, accidentally done by Arno Allan Penzias and Robert Woodrow

Wilson in 1965 [30]. While working on the calibration of a satellite communications

antenna, they found the Earth submerged in a highly uniform bath of microwave

radiation. As we have mentioned, the existence of such cosmic microwave background

(CMB) had been postulated on theoretical grounds some years before, in the late

1940s. When Penzias and Wilson (who were awarded the Nobel Prize in 1978 for

it) detected this signal, they approached Peebles and his team asking for advice, and

they realized they had detected the theorised relic background radiation. After that,

Peebles’ team would give a deeper physical interpretation to these results [31, 32], for

which he obtained the Nobel Prize of Physics in 2019. Indeed, Peebles recognised that

the CMB was a rich source of information concerning the formation of large structures

as galaxies and the primordial conditions of the Universe. This is the reason why the

CMB is much more used in cosmology nowadays. While we will describe it in more

detail in the next sections, we will just state here briefly that this discovery was the

key evidence in support of the Big Bang model. And it was crucial not only for

this reason: the extreme large-scale uniformity of CMB was a clear evidence against

any centrality of our “local environment” (in a cosmological sense) in our Universe.

Already in 1952, Baade had already discovered spiral galaxies as the Milky Way were

“typical” galaxies, very numerous in our Universe, thus stepping aside from the idea

that we are in a privileged position, leading to an experimental confirmation of the

Copernican principle on very large scales. Isotropy and homogeneity are nowadays

the mainstream pillars of the most used cosmological models and these two features

together precisely constitute the so-called Cosmological principle, the main principle

of modern cosmology.

Closing this fast and far-from-exhaustive summary of the main historical steps and

achievements in modern cosmology, we cannot forget to mention one of the main keys

for its advancement. In fact, while theoretical ideas have been for a long time forward

observations, in the latest 30 years we have seen a fast rise in the technological progress

employed in observational cosmology. At the beginning, astronomers could just rely

on the visible part of the spectrum to study the Universe but one of the great successes

of the 20thcentury has been the full exploitation of the whole electromagnetic spectrum

through both ground and satellite based telescopes. Among all the experiments which
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have been performed with (also) a cosmological purpose, we want to remind here some

of them, for their crucial achievements. We can begin by mentioning the Hubble Space

Telescope (HST), which was launched in the 90’s and has helped to walk through

many problems in cosmology, from showing that black holes are probably common

to the centers of all galaxies [33, 34] to measuring the Hubble constant [35], finding

a value of H0 = 72± 8 km s−1 Mpc−1. A decade after, the Sloan Digital Sky Survey

(SDSS) took place, detected for the first time Baryon Acoustic Oscillations (BAO) in

galaxy clustering [36] and mapped the Large Scale Structure (LSS) of the Universe

[37] (we will discuss them in next sections). For what concerns the study of the CMB,

the very first results were obtained by the COBE satellite, launched in 1989, which

observed the almost perfect black-body spectrum of CMB radiation, and gave the first

hints for its fainter anisotropies which are now so crucial for cosmology [38]. Such

anisotropies were the main goal of the following more advanced spacecrafts: both the

Wilkinson Microwave Anisotropy Probe (WMAP) [39], launched in 2001, and Planck

[40, 41], in 2009, centered their activity on measuring the temperature differences

across the sky in the CMB. On one side, WMAP’s measurements played a key role

in establishing the current standard model of Cosmology, providing a more precise

value of H0 = 70.0 ± 2.2 km s−1 Mpc−1, and finding also, for the first time in 2008,

indirect evidence for the existence of a cosmic neutrino background with an effective

number of neutrino species of 3.26±0.35. On the other side, Planck, although being a

shorter mission, was more precise and confirmed the Universe having approximately

26% content of dark matter, 68% of dark energy, as well as validating the simplest

models of inflation.

We must mention here the latest exceptional experiment which has recently opened

a new window within observational cosmology: the Laser Interferometer Gravitational

Wave Observatory (LIGO). Born in 2002, it was designed to confirm the existence of

the gravitational waves (GW) predicted in GR and to explore their properties [42].

GWs are produced in cosmic massive phenomena, as galaxy impacts, supernovae

explosions, black holes and neutron stars formation from binary systems. The first

direct observation of GW was in september of 2015 [43], and from that time until

today, many more detections have been found, the most recent one being [44] and the

Nobel Prize in Physics 2017 has been awarded for such results.

Last but not least, we have to remind the exceptional times which are ahead of us,

with a lot of future missions which are going to take place in the following years, and

will drive us directly in the fully-exploited precision cosmology era: Euclid1, planned

1https://www.euclid-ec.org/
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to be launched in 2022 to investigate dark matter and dark energy [45]; the Wide

Field Infrared Survey Telescope (WFIRST), recently renamed Nancy Grace Roman

Space Telescope2, scheduled for mid-2020s and designed to settle essential questions

in the areas of dark energy, exoplanets, and infrared astrophysics [46] or the Square

Kilometre Array (SKA), a project to build a radio telescope whose construction is

likely to begin in 2021. This will become the world’s largest scientific instrument and

its wide scientific goals spread from studying the formation and evolution of the first

stars and galaxies to unveil the nature of the “dark” components of the Universe 3.

1.2 Accelerated expansion of the Universe

One of the main problems in Cosmology today is to understand the nature of accel-

erated expansion of our Universe, and this will be the main topic to be tackled in

the present work. In the previous section, we have carried out an historical journey

through the different theoretical and experimental achievements which have let us

arrive at the current setting of Cosmology. In the present section, we will explicitly

describe the theoretical framework that encompasses the evolution of the Universe,

which also serves as a quantitative and qualitative tool to make predictions and weigh

the constraining power of the available observational data.

1.2.1 General Relativity

As we have already mentioned, the mainstream theory which is used in Cosmology

is GR. This theory is based on two main principles: the equivalence principle, which

states that the laws of physics in a curved spacetime must reduce to those ones corre-

sponding to special relativity in a flat space-time; the principle of general covariance,

which asserts that the form of the laws of physics must have to be the same in ev-

ery inertial and accelerating frame. This is achieved by using a tensorial description

through the introduction of covariant derivatives (which replace the usual partial

derivatives) [47].

This theory is eventually fully expressed as a set of second order differential equa-

tions, the Einstein’s field equations, which describe how the geometry of the space-

time and the energy content of the Universe are related. In other words, the energy

content affects the curvature, and the geometry influences the way particles move (in

a wide sense). Such equations are obtained by applying the variational principle to

2https://roman.gsfc.nasa.gov/
3https://www.skatelescope.org/
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the Einstein-Hilbert action [48]. Considering a cosmological constant and minimally

coupled matter fields, the action reads

S =
1

2κ2

∫ √
−g(R− 2Λ + Lm(gµν ,Ψ))d4x, (1.1)

where: κ2 = 8πG with G the gravitational constant; gµν is the metric tensor (the

mathematical object which captures the geometric and causal structure of spacetime);

g is the determinant of the metric; Λ is the cosmological constant; Lm is the matter

Lagrangian, describing the matter/energy content of the Universe (by the matter

fields Ψ); and R is the Ricci scalar defined by R = gµνRµν , where the Ricci tensor

Rµν is the contraction of the Riemann tensor and can be written as

Rµν = Rρ
µρν = ∂ρΓ

ρ
νµ − ∂νΓρρµ + ΓρρλΓ

λ
νµ − ΓρνλΓ

λ
ρµ . (1.2)

Here Γαβγ is a geometrical object with indexes technically called a connection, which

in spite of its non-tensorial nature makes the covariant derivative a true tensor. In

the simplest case, i.e. the torsionless metric formalism, the connection corresponds

to the Levi-Civita one, described by the usual Christoffel symbols defined in terms of

the metric tensor gµν ,

Γραβ =
1

2
gργ
(
∂gγα
∂xβ

+
∂gγβ
∂xα

− ∂gαβ
∂xγ

)
=

1

2
gργ(gγα,β + gγβ,α − gαβ,γ), (1.3)

which follows from the metricity relation ∇λgµν = 0. If this quantity happens to be

different from zero, one defines the non-metricity tensor, given by Qαµν = ∇λgµν .

Then, if torsion or non-metricity are present in the theory, consequences are highly

non trivial. Although we will discuss them in more details in Sec. 1.4.2, let us keep

in mind what they mean qualitatively. On the one hand, if there is torsion, when

two vectors are transported along each other, the parallelogram formed does not get

closed. On the other hand, if there is non-metricity, the length of a vector varies

when it is transported.

Finally, the variation of Eq. (1.1) with respect to the metric brings as a result the

Einstein’s field equations (EFE), which are usually written as

Gµν + gµνΛ =
8πG

c4
Tµν . (1.4)

As both sides of the equation are symmetric two-index tensors, we would have a set

of ten equations. Nevertheless, Bianchi identities, i.e. ∇µGµν = 0, represent four

constrains on Rµν , letting us with just six equations which are truly independent.
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Bianchi identities are very important, as they represent the local conservation of the

energy-momentum tensor. Here we have defined

Gµν ≡ Rµν −
1

2
gµνR, (1.5)

Tµν ≡ − 2√
−g

δ
√
−gLm
δgµν

, (1.6)

where Gµν is the Einstein’s tensor and Tµν is the energy-momentum tensor, which

must account covariantly for all the species that contribute to the budget of matter

and energy. Actually, we must point out that, in contrast with the first attempts,

nowadays in cosmology it is usual to consider the cosmological constant as another

component in the energy-density budget, and not as a geometric term, so that it is

included in Tµν .

1.2.2 Geometric ingredients

Coming back to what has been said in the introduction, and keeping in mind the

importance of the mathematical corpus of the theory driving the gravitational inter-

actions, we can now be more explicit about the family of exact solutions of Einstein’s

field equations which was found independently by Alexander Friedmann, Georges

Lemâıtre, Howard P. Robertson and Arthur Geoffrey Walker in the decades of the

1920’s and 1930’s. The constraints set by the cosmological principle translate into

a description of the Universe given by the Friedmann Lemâıtre Robertson Walker

(FLRW) line element,

ds2 = −c2dt2 + a(t)2
[
dr2 + S2

k(dθ
2 + sin2 θdφ2)

]
, (1.7)

with c, the speed of light in vacuum; r, θ and φ, the three spatial coordinates; a(t),

the scale factor and Sk(r), a function depending on the spatial curvature, k,

Sk(r) =


sin r/

√
k k > 0 (closed Universe)

r k = 0 (flat Universe)

sinh r/
√
|k| k < 0 (open Universe)

(1.8)

Special attention must be paid to the scale factor. This quantity is introduced to take

into account the effects of the expansion of the Universe and it sets the scale of the

geometry of space, i.e. it tells us about the relative size of the Universe at a specific

time with respect to its size today, when it is usually assumed to be a(t = t0) = 1.

It is also crucial for the measurement of distances in an expanding Universe. While

in the next pages we will provide a more rigorous definition of all the distances used
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in cosmology, here we just want to introduce the two basic notions which will help

us to understand the role of the scale factor. On one hand, we have the physical

distance, the only real and not measurable distance, which gets larger and larger as

the Universe expands. On the other hand, we have the comoving distance, which

factors out the expansion of the Universe and provides the relative distance on a grid

which does not change with time due to the expansion. In Fig. 1.1 we try to provide

a more clear visual realization of the meaning of a(t). A priori, no prediction about

the explicit time evolution of the scale factor is possible if no assumption is made

about the matter-energy content in the Universe. In fact, even if one specifies the

matter content, one still has to be able to solve the dynamical equations, which in

most of the cases is not possible analytically. But this is not a problem to understand

the meaning and difference between physical and comoving coordinates.

Figure 1.1: Assuming that the points in the vertices are galaxies, we note that as
long as the Universe expands, the physical distance among them (the side length of
the squares) gets larger because of the Universe expansion, and this corresponds to a
larger scale factor. However, the comoving distance namely, the distance between grid
points (the numbers in the vertices) is by definition constant no matter the rate of
expansion of the Universe. Thus, the scale factor drives the relation of proportionality
between the physical and the comoving distances.

One of the main fundamental quantities in observational cosmology which can be

related directly to the scale factor is the Hubble parameter, defined as

H(t) =
ȧ(t)

a(t)
. (1.9)

Clearly this quantity measures the rate of expansion of the Universe and, as we will

see, it is somehow related to many other properties of the Universe.

The most important information about the expansion of the Universe, i.e. a(t),

comes from the measurements of the shifts in the wavelength of the light emitted by
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distant sources. By considering Eq. (1.7) for an electromagnetic wave one arrives to

the following relation [49]
λ0

λ1

=
a(t0)

a(t1)
, (1.10)

with λ0 being the wavelength measured today by us and λ1 the wavelength as emit-

ted by the distant source. The previous relation is usually written in terms of the

cosmological redshift, defined as

z =
λ0 − λ1

λ1

, (1.11)

which, in terms of the scale factor, and generalizing for any instant of time t, gives

z(t) =
a(t0)

a(t)
− 1. (1.12)

Cosmological distances in an expanding Universe

Some definitions of cosmological distances are now needed for a better understanding

of how we can describe our Universe. When studying objects in an expanding Uni-

verse, one has to be specially careful at measuring distances. As we have previously

introduced, on the one side, one has the physical distance, which grows with expan-

sion and on the other, the comoving one, which remains fixed. The fundamental

distance measurement, from which all the others may be calculated, is the distance in

the comoving frame. We can then compute the total comoving distance which light

could have traveled since t = 0 in the absence of interactions. Starting from Eq.

(1.7), one can find that in a time dt, light travels a comoving distance dr = c dt/a,

so that the total comoving distance the light could have traveled is

η =

∫ t

0

c dt′

a(t′)
, (1.13)

Regions separated by a distance greater than η are not causally connected because it

is not possible for information to propagate further than η. This is why this quantity

is commonly named as the comoving horizon. We can generalize this definition to any

time interval, so that the comoving distance can correspond to the distance between

an emitter located at a scale factor a and us, which are generally located at scale

factor a(t0) = 1, and is given by [50]

DC =

∫ t0

t(a)

c dt′

a(t′)
= DH

∫ z

0

dz′

E(z′)
, (1.14)
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where DH ≡ c/H0. We have used the definition of H given Eq. (1.9) and have

rearranged it as H(z) = H0E(z), where H0 is Hubble constant (i.e. expansion rate

at the present time) and E(z) is the dimensionless Hubble parameter, carrying the

cosmological dynamical behaviour of our Universe (as we will see in Eq. (1.32)) .

Even if we have now operational definitions for the cosmological distances, we

must point out that we cannot measure neither the comoving nor the physical one.

Actually, in astronomy, we use to define different types of measurable distances which

are then connected to those former ones.

One possible measure is the comoving distance between two events at the same

redshift but separated on the sky by some angle θ, which is DM θ, where DM is called

the transverse comoving distance. It is related to the comoving distance DC as

DM =


1√
k

sinh(
√
k DC) k > 0 ( closed Universe)

DC k = 0 ( flat Universe)
1√
|k|

sin(
√
|k| DC) k < 0 ( open Universe)

(1.15)

Another method consists on determining the angular size θ subtended by an object

of known transverse physical size l. With this quantities one can compute the angular

diameter distance

dA =
l

θ
. (1.16)

As the comoving size of the object is l/a, the angle subtended is θ = (l/a)/DC . Then,

in a spatially-flat expanding Universe one gets

dA =
DC

1 + z
. (1.17)

For any spatial curvature, one can write the angular diameter distance in terms of

the transverse comoving distance:

dA =
DM

1 + z
. (1.18)

It is also possible to infer distances measuring the flux F from an object of known

luminosity L. The flux we observe in an expanding Universe is given by

F =
La2

4πD2
C

=
L

4πD2
L

, (1.19)

where we have defined DL ≡ DC/a as the luminosity distance. If we want to generalize

this expression to any spatial curvature we can write it in terms of transverse comoving

distance as

DL = (1 + z)DM . (1.20)
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From the luminosity distance one generally defines and works with the distance

modulus, which is a way to express distance on a logarithmic scale because we actually

do not measure directly the luminosity of objects but magnitudes. It is defined as

µ ≡ m−M = 5 log

(
DL

10 pc

)
, (1.21)

because it is the magnitude difference between an object’s observed total flux and

what it would be if it were at 10 pc (this was once thought to be the distance to

Vega). Here m is the apparent magnitude 4, being related to the observed flux of the

object, and M is the absolute magnitude, which depends on the intrinsic luminosity

of the object.

1.2.3 Energy-density content and Friedmann equations

The energy-momentum tensor, given by the definition in Eq. (1.6), provides covariant

information about the density and flux of energy and momentum within the space-

time. As matter produces curvature, it is a source of gravitational field in Einstein’s

field equations. For theoretical completeness, we want to note that having a non-

vanishing Tµν is not the only way to guarantee a gravitational field. In empty space,

Eq. (1.4) reduces to Rµν = 0. But it can be shown that while in two or three

dimensions the field equations in empty space effectively ensure that the curvature

tensor vanishes [49], in the case of four dimensions, instead, it is possible to satisfy the

field equations in empty space with a non-vanishing curvature tensor, which implies

the existence of gravitational fields in empty space.

Generally, in an isotropic and homogeneous Universe 5 (as it is the case that

concerns this work), the energy density content is described in the form of a perfect

fluid, whose behaviour is given by

T µν =
(
ρ+

p

c2

)
uµuν + pgµν , (1.22)

where ρ is the density of every fluid which may be present in the Universe, p is its

pressure and uµ is its four velocity.

At this point, we can find the dynamics of the Universe and study its evolution

with time solving the EFE for the FLRW line element. We end up with the Friedmann

4The apparent magnitude of an astronomical source in a photometric bandpass is defined as the
ratio of the apparent flux of that source to the apparent flux of the bright star Vega, through that
bandpass.

5In fact, here we can interpret that the Universe can be foliated into spacelike slices so that each
of the slices is homogeneous and isotropic [47].
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and Raychaudhury equations, i.e.

H2 =
8πG

3
ρ+

Λc2

3
− kc2

a2
, (1.23)

H2 + Ḣ = −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (1.24)

In addition to this set of equations we consider the so called conservation equation,

which can be obtained by replacing Eq. (1.23) and its derivative into Eq. (1.24). If

we assume that all the fluids are not interacting among each other, we can separate

each of them and every component will have to satisfy this equation independently,

eventually leading to

ρ̇+ 3H
(
ρ+

p

c2

)
= 0. (1.25)

We also introduce the equation of state (EoS) parameter of a barotropic fluid, w =

p/(ρ c2), which is dimensionless. As long as w is constant, the integration of Eq. (1.25)

gives ρ ∝ a−3(1+w), from which one can compute the evolution of each energy-density

component ρi with respect to the scale factor. For cold matter (dark and baryonic),

with w = 0, one finds ρm ∝ a−3; for radiation, with w = 1/3, one finds ρr ∝
a−4. Moreover, the quantity H allows to redescribe the density components into

dimensionless parameters called as reduced density parameters,

Ωi(a) =
8πGρi(a)

3H2
, (1.26)

where the subindex i corresponds to each energy-density content considered.

Then, one can write the first Friedmann equation as∑
i

Ωi(a) +
kc2

(aH)2
= 1, (1.27)

where one can define

Ωk(a) =
kc2

(aH)2
, (1.28)

which accounts for an effective density content associated to the spatial curvature.

By assuming some matter-energy content in the Universe one can introduce the

solution of Eq. (1.25) in Eq. (1.27) in order to compute an explicit function of a(t).

For example, for a matter dominated era one obtains a ∝ t2/3 and for a radiation

dominated one, a ∝ t1/2. We can notice that in Eq. (1.27), the energy content and

the geometry are related. Let us note that the parameter k is decisive on describing

the spatial geometry of the Universe, as we have seen in the definition of the distances

in the previous subsection. In fact, a very recent and controversial result concerning
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the value of Ωk has been published in [51]. Although its value has been strongly

constrained by Planck to a value very close to zero (which indicates a spatially-flat

Universe) [41], in [51] the authors claim about a possible statistical evidence for a

closed Universe, showing that a positive curvature could provide an explanation for

the enhancement in the lensing amplitude in the CMB power spectra detected by

Planck with respect to the predicted signal within a standard ΛCDM model.

1.2.4 Standard Model: ΛCDM

A cosmological model based on a Universe with radiation and matter dominated

epochs can be well described within the framework of GR. However, we now know

that the Universe has undergone two phases of cosmic acceleration, which cannot be

explained by the presence of only radiation and standard matter.

The first one is inflation. The theoretical motivation of this phase has to do

with several problems related with the Big Bang theory, among them the well known

flatness and the horizon problem. The flatness problem arises from realizing that

some of the initial conditions which are supposed to be applied to the very first

stages of the Universe history, appear to be fine-tuned to very special values, and

that any small deviations from them would have extreme effects on the appearance of

the Universe at the current time and would be in conflict with current observations, in

particular, with the CMB-based nearly flat spatial curvature. The horizon problem,

instead, arises from the difficulty to explain the observed homogeneity detected by

CMB among regions of the space which should be instead, in the standard Big Bang

scenario, causally disconnected. Without going into the details, which can be found

in dedicated reviews like [52, 53], the most accepted inflation theories are thought to

have taken place prior to the radiation domination epoch, and are driven by some

scalar field φ, generally named inflaton, whose potential is sufficiently flat for sufficient

time, i.e. there is an inflationary phase when the field rolls very slowly down its related

potential if compared to the rate of expansion of the Universe. This is a period of

very fast expansion, where the temperature drops very quickly to a very low value

which is maintained during the whole phase. When it ends, temperature returns to

the pre-inflationary phase temperature, a mechanism which is known as reheating.

It is at this moment that the potential energy of the inflating scalar field decays

into particles, the Standard Model ones, and standard radiation epoch begins. The

main artifact in inflation which allows to solve these two problems has to do with the

comoving Hubble radius, c/(a H), which appears in the definition of the comoving
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horizon (Eq. (1.13)), which we recast here in terms of the scale factor as

η =

∫ a

0

(
c

a′ H(a′)

)
d log a′. (1.29)

The comoving horizon is the maximum distance a light ray can travel between t =

0 and a time t (corresponding to the scale factor a). In the standard Big Bang

cosmology, i.e. starting directly with a radiation-dominated era and then moving

to matter-domination, the comoving Hubble radius is strictly increasing. Inverting

this behaviour is a possible solution to the above mentioned issues and it is what

inflation precisely triggers: if the comoving horizon would have been always growing

with time, then the comoving scales entering the horizon today should have been

completely outside of the horizon at earliest epochs, and thus these scales should be

casually disconnected. However, we observe an “almost complete” homogeneity in

the CMB; then, to solve this, an accelerated expansion is needed, during which the

comoving horizon shrinks. If this happens, then, regions which now would seem to be

causally disconnected, were actually inside the horizon during the very early stages

of Universe expansion.

We should remark here anyway, that more than the previous questions, one of

the most important successes of inflation is to explain how the present large scale

structure, the number and variety of gravitational structures we can observe today,

are originated. See [52, 53, 54] for a quite complete lecture on this approach and, in

general on the early Universe topic.

The second phase of acceleration which our Universe should have undergone (and

it is supposedly still undergoing) is the one which we will study in the present work.

This period started at relatively later times, approximately at z ∼ 1, posing end to

the matter domination era, and it requires some component of negative pressure, i.e.

with EoS w < 0, but also being able to give rise to a cosmic acceleration, i.e. ä > 0.

Applying this condition into Friedmann equations we get a more restrictive condition

for acceleration, w < −1/3 6. This kind of component is what we generally denote

as dark energy. The simplest candidate to drive this late-time accelerated phase

is the cosmological constant. Although Einstein included it as a purely geometric

term, it has acquired nowadays the role of an energy-density component with an

EoS parameter w = −1. This interpretation has opened new options to find an

explanation to the late-time expansion of the Universe, giving rise to a wide class of

dark energy models that act as generalizations of the cosmological constant.

6Although this is the most usual case, in the literature cases as w = 1, known as stiff fluids, are
studied in different stages of the Universe [55, 56, 57].
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Its reduced density parameter is given by

ΩΛ(a) =
8πGΛ

3H2
. (1.30)

Considering this specific kind of dark energy, it is straightforward to compute when

this accelerated phase should start by using the condition ρm = ρΛ, where ρm is the

matter energy-density and ρΛ is the energy-density component driving the accelerated

expansion,

ρm,0(1 + z)3 = ρΛ, or, using Eq. (1.26): zacc =

(
ΩΛ

Ωm,0

)1/3

− 1. (1.31)

Choosing the present values [41] Ωm = 0.317 and Ωr = 8 · 10−5, assuming spatial flat-

ness and taking into account that Eq. (1.27) evaluated at the present time translates

into ΩΛ = 1 − Ωm − Ωr, we get zacc ∼ 0.3. At this redshift, matter domination era

ends and gives way to the accelerated expansion era. This phase has been confirmed

by a big number of observations as SNeIa [58, 59], LSS [60, 61, 62, 63, 64, 65, 66],

CMB [41] and more recently, gravitational waves [67, 68].

The model which most successfully fits the majority of the present observational

data [41] and therefore has become the consensus scenario is the so called ΛCDM

model, supplemented by some inflationary scenario, whose main ingredients are: a

flat FLRW Universe governed by the EFE and characterized by a positive cosmolog-

ical constant; a contribution from photons as detected from CMB radiation; cosmic

neutrinos; baryonic (visible) matter; and some non-baryonic matter content, the dark

matter. Dark matter has the clustering properties of ordinary matter and does not

interact with standard model particles so that its existence can only be probed by

gravitational effects on visible matter. More specifically, the type of dark matter

which was non-relativistic at the time it decoupled from photons is called Cold Dark

Matter (CDM), and it turns out to be the most data compliant choice. Eventually,

observations tell us that about the 95% of the overall matter-energy density must be

dark. The 68% in the form of dark energy and the rest, in the form of dark matter

[41].

The background evolution of the ΛCDM model is given by its Friedmann equation,

which can be written as

H = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ , (1.32)

7We will follow the standard convention for which Ωi(a), as a function, is the dimensionless density
parameter at any scale factor a, while Ωi, with no argument specified, will be the dimensionless
density parameter at the present time, i.e. Ωi(a = 1) = Ωi
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Figure 1.2: Evolution of the principal energy-density contents of the Universe showing
the succession of the different epochs. We have chosen the present values given by
[41] Ωm = 0.315, Ωr = 9 · 10−5 and ΩΛ = 1− Ωm − Ωr.

where we are considering radiation, matter, the cosmological constant and the spatial

curvature density parameter. The different epochs in the evolution of a Universe

filled with the components in Eq. (1.32) are visually shown in Fig. (1.2). Using the

same steps followed in Eq. (1.31), we can approximately define the end of radiation

domination, z ' 3 · 103 (corresponding to a ' 2 · 10−4 in the plot); then matter

domination, lasting till z ' 0.3 (corresponding to a ' 0.8 in the plot), when dark

energy in the form of a cosmological constant starts to dominate.

However, it has to be remarked that the ΛCDM model is not fully satisfactory

in all its aspects and when compared to all the observational probes we have [69].

Besides not explaining the nature of the dark matter and of the dark energy, this

model is burdened with very well-known problems. The cosmological constant can be

interpreted as the energy-density of empty space, however, particle physics theories

predict a value of Λ which is much larger than the observed one. This fact is called

the “cosmological constant problem”. Another issue that is usually discussed is the

“coincidence problem”, related to the fact that the fraction of matter and the frac-

tion of dark energy today are of the same order and, besides, are the contents that

dominate in the Universe nowadays.

Moreover, despite the favorable experimental results which support the standard

paradigm and not forgetting the theoretical issues already mentioned, there are some
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important tensions arising when comparing estimations of the cosmological parame-

ters from data obtained within different surveys. One of the tensions that arises is

related to matter perturbations. These were originated in the early times of the Uni-

verse and then evolved and clustered forming the galaxies and large structures we see

today. Before introducing mathematically the corresponding observable, let us recall

the basics of linear perturbation theory. As we will not go through the details, we

refer the reader to the following reviews [70, 71]. If we first assume matter as a perfect

fluid (which is licit as we are working on large scales), then, at the background level,

it is completely described by its energy density ρ, the 3-velocity v, the pressure p and

a gravitational potential φ. Considering now small deviations with respect to these

background values and computing the usual linear set of hydrodynamic equations,

after some algebra we come up with [72]

δ̈ + 2Hδ̇ − 4πGρδ = 0, (1.33)

where we have assumed pressureless matter and we have defined the fractional am-

plitude of density perturbations δ = δρ/ρ. This is the equation which describes

gravitational instabilities in an expanding Universe. In order to express this physical

quantity in a more observational cosmologist friendly way, we define what is called

the growth rate [73],

f =
d log δ

d log a
. (1.34)

This quantity expresses how matter fluctuations, i.e. δ, grow with time. The ob-

servable which is commonly used is the normalized growth rate, fσ8, where σ8 is the

present linear-theory mass dispersion on a scale of 8h−1 Mpc [74]. One can see in

[41] that the range allowed by Planck leaves substantially below some of the data

points. Nevertheless, the errors on these measurements are large so they provide no

compelling evidence for discrepancy or accordance [75, 76, 77, 78, 79, 80].

Another important tension has to do with the present expansion rate, i. e. the

Hubble constant H0 [81]. The measurement of the Hubble constant is an intriguing

task and can be carried out in two main ways. On the one hand we have indirect

model-inferred values, which can be predicted from a specific cosmological model

using multiple cosmological measurements. At the present stage, the most precise and

updated constraints of this kind are derived from combining CMB data from Planck

with other low redshift probes (SNeIa, BAO), using the standard cosmological model,

ΛCDM. From this approach, we find H0 = (67.4 ± 0.5) km s−1 Mpc−1 [41]. On the

other hand, we have direct local measurements. The best established method of this
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sort consists on building a distance ladder to calibrate luminosities of very concrete

objects, like Cepheids and SNeIa [82, 83].

In the latest work following this approach [84], the best estimate of the local

measured value derived is H0 = (74.03 ± 1.42) km s−1 Mpc−1. Different methods

have been employed for these local measurements, i.e. upgrades in the analysis of

water masers in NGC4258 [85], gravitationally-lensed timedelays from quasars [86,

87] analyzed within the H0 Lenses in COSMOGRAILs Wellspring (H0LiCOW) [88].

However, all the values exceed considerably the early Universe prediction, from 4σ to

6σ.

This list of problems seems to point to ΛCDM more as a phenomenological model

to improve the fit to the data than a theoretically well and fully-motivated model.

As a consequence, there have been several attempts to propose different alternatives.

Many authors do not leave the realm of GR, and explore dynamical alternatives to

the cosmological constant, the so-called dark energy models. Many others try to give

up with GR itself and propose entirely new alternative theories of gravity, also known

as modified gravity theories. In the following sections different models to explain the

late-time acceleration (which may ease those inconveniences) are presented.

1.3 Dark energy

We will review here only some of the most-known dark energy models, because a full

review of all the possibilities which are now on the market is out of the goal of this

thesis. Not all the models which we will describe have been used in our works, but

it is interesting to present this selection to show the many and different perspectives

which can be adopted when dealing with this topic.

The easiest and more natural generalization of the cosmological constant consists

on modeling dark energy (DE) in such a way that its EoS parameter is no more a

constant (with the w = −1 case corresponding to the cosmological constant). This

can be accomplished in the most varied ways, from the theoretical side [89, 90] to the

phenomenological one [91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,

106]. One can see [107] for a review on this topic.

Among the most common dark energy models studied in the literature where DE

is described by a phenomenological equation of state, we can mention the Chevallier-

Polarski-Linder (CPL) model [95, 96]. In this model the dark energy fluid has a

dynamical equation of state which is linear in the scale factor:

w(a) = w0 + wa(1− a) , (1.35)
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where w0 is the value of DE EoS today, while w0 + wa is the asymptotic value at

early times (i.e. when a = 0). The most updated constraints on this model come

from latest Planck results [41], which provides for example, w0 = −0.96+0.16
−0.15 and

wa = −0.28+0.57
−0.59, obtained by combining Planck TT, TE, EE polarization signal with

SNeIa and BAO 8. We notice that for this combined data both the values of w0 and

wa are fully consistent with ΛCDM.

More recently the Hubble tension debate has given new attention to the early

dark energy (EDE) models [108, 109, 110], in which a large (w.r.t to the ΛCDM case)

component of DE is present at early times. In one of the many ways in which this can

be realized, we have one phenomenological scenario where the EDE term behaves as

a constant at early times (adding up to the cosmological constant) and then decays

rapidly at late times (where the cosmological constant becomes dominant):

E(a) =

√
Ωma−3 + Ωra−4 + (1− Ωm − Ωr − Ωee) + Ωee

1 + a6
c

a6 + a6
c

, (1.36)

where Ωee is the fractional energy density of the early dark energy today, and ac =

1/(1 + zc) is the critical value of the scale at which it shifts from the early-time be-

haviour to the late-time behaviour. In [110], Planck measurements of the temperature

power spectrum are used to constrain the magnitude of the EDE density and it is

shown that its contribution at the time of recombination can never exceed the 2% of

the radiation/matter density in the limits 10 ≤ zc ≤ 105.

Then, we have the so-called quintessence models [111, 112, 113], which are de-

scribed by a scalar field φ with a slowly varying potential V (φ) responsible for the

late-time cosmic acceleration. Assuming that the scalar field interacts with other mat-

ter only gravitationally, the energy-density and the pressure are respectively given by

ρφ =
1

2
φ̇+ V (φ), (1.37)

pφ =
1

2
φ̇− V (φ). (1.38)

Thus, its equation of state can be written as

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.39)

which is clearly a time varying EoS, depending on the evolution of the field φ.

These models are characterized by an EoS satisfying the condition −1 < w < 1.

8Data from Planck Legacy Archive; model base w wa plikHM TTTEEE lowl lowE BAO Pantheon

18 post lensing zre6p5 in the PDF tables with 95% limits.
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A nice review on quintessence which includes observational constraints on differ-

ent quintessence models is presented in [114]. In [115] the EoS parameter of the

quintessence field in general shows a tendency to the value −1, not excluding, then,

the cosmological constant case. In [116], motivated by the last GW results and by the

H0 tension, the authors observe that larger values of H0 correspond to more negative

EoS parameters of the scalar field. But they conclude that quintessence dark energy

models are unlikely to relax the tension between local and CMB measurements.

Going one step forward we have the k-essence models [117], where, unlike in

quintessence models, scalar fields with non-canonical kinetic terms appear [118],

S =

∫
d4x
√
−g
[

1

2κ2
R + P (φ,X)

]
, (1.40)

where P (φ,X) is a generic function of the scalar field φ and of its kinetic energy

X = −1
2
gµν∂µφ∂νφ. In these models the cosmic acceleration should be realized by

the kinetic energy of the field. For more details about these models, including some

observational constraints, see [119, 120, 121, 122, 123, 124, 125, 126].

Another kind of models that have been widely studied are the phantom ones,

characterized by having an EoS with w < −1. In this models we have

ρφ = −1

2
φ̇+ V (φ), (1.41)

pφ = −1

2
φ̇− V (φ). (1.42)

Although they generally present pathologies that made them inviable, as instabili-

ties against small perturbations, in more recent works it has been shown that some

particular class of them is consistent with observational data and can yield interest-

ing features [127, 128]. In a more recent study [129], confronting phantom models

against data from SNeIa, CMB and BAO, they obtain that the cosmological constant

is, statistically, the most preferred dark energy model. However, the results also in-

dicate that w < −1 may be preferred over w > −1. They finally state that, due to

the similar values they obtain, it is not actually possible to distinguish between the

cosmological constant and a dynamical dark energy which slightly deviates from it,

only at 1σ deviation, so further studies are needed.

Finally, relating the two previous models we have the quintom models, which are

dynamical scalar fields which are able to move from quintessence to phantom, i.e.

they include the crossing point w = −1. The easiest Lagrangian which can realize

that transition is given by [130]

L =
1

2
∂µφ∂

µφ− 1

2
∂µσ∂

µσ + V (φ, σ), (1.43)
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where the quintom fluid consists of a usual scalar field φ plus a negative kinetic

energy scalar field σ, with V (φ, σ) being the quintom potential. There are some

works which show that SNeIa alone seem to favor a quintom-like model [131, 132].

The quintom model is also mildly favored in the combined analysis of CMB, LSS and

SNeIa [133, 134]; but in others, the preference is weak [132, 135]. The high interest this

kind of scenario attracted has translated into many phenomenological studies that can

be found in the literature [136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147].

All the approaches listed above share the same characteristic: they introduce an

extra energy-matter content, either as a parameterized equation of state, or as a

scalar field. Nevertheless, there are also approaches which take a perspective which is

radically different from this, as we will see below. We can start mentioning the Ricci

dark energy model [148]. It belongs to the so-called holographic dark energy models

[149]. The basic idea behind this class of models is that our Universe is in a sense finite

and can be described by a two dimensional spherical holographic screen, thus there

must be finite size effects. On a theoretical background, there is a big conceptual

difference with respect to a simple cosmological constant, however its background

evolution can be written as

E(a) =

√
2Ωm

2− γ
(1 + z)3 + Ωr(1 + z)4 +

(
1− Ωr −

2Ωm

2− γ

)
(1 + z)4− 2

γ . (1.44)

where γ is a constant parameter of the theory. Then, it can be seen that the evolution

is completely equivalent to a dark energy model with constant equation of state but

with different parameters, if we define Ω̃m ≡
2Ωm

2− γ
and w̃ ≡ 4 − 2/γ we clearly see

this equivalence. This similarity has been studied in some works as [150]. For a

quite complete cosmological study on this kind of models see [151]. Besides, some

observational studies have been done within this topic, throwing some hints about

their validity. In [152], they analyze the X-ray gas mass fraction observation, SNeIa,

BAO and CMB data and also the observational Hubble data, obtaining a slight

prefference of ΛCDM model with respect to the Ricci dark energy model. In [153],

the authors introduce an extension of the holographic Ricci dark energy model by

including an interaction between dark energy and matter. Using SNeIa, CMB and

BAO observations they find that a nonvanishing interaction rate is favored by the

observations. In a more recent work [154], letting the spatial curvature parameter free,

it is shown that a flat Universe is observationally disfavoured without the presence of

interactions.
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Another possible candidate is the coupled dark energy [118], which is motivated

by the fact that the energy density of dark energy is of the same order as that of

dark matter in the present Universe, thus pointing to a possible relation between the

two dark components. One interesting example is based on a scalar field (i.e. dark

energy) coupled to non-relativistic matter described by the following modified energy

conservation equations

ρ̇m + 3Hρm = δ, (1.45)

ρ̇φ + 3H(ρm + pφ) = −δ, (1.46)

where the subindex m denotes dark matter, φ stands for dark energy and δ is an

energy exchange term in the dark sector. Some observational studies have shown

that coupled dark energy models may relax the Hubble tension [155], on the other

side, in a more recent work [156] the obtained results show that there is no evidence

of interaction between dark energy and dark matter at 2σ level.

Finally, we want to pay special attention to the unified models of dark energy

and dark matter, where the two dark components are supposed to be different ex-

pressions of the same cosmological fluid. Although these two energy contents are

quite different in terms of clustering properties and their EoS, the idea of unifying

the whole dark content into a single fluid is very tempting. The kind of models we

want to emphasize here are the Chaplygin-like models. The Chaplygin gas model

was proposed originally by Kamenshchik [157]. These scenarios arose originally as

an alternative to quintessence and they are characterized by describing the transition

from a Universe filled with dust to an exponentially expanding de Sitter Universe by

a single perfect fluid with an exotic equation of state. The background evolution of

the original Chaplygin model is given by an EoS where the pressure is related to its

energy-density via

p = −A/ρ. (1.47)

Later, many generalizations of this EoS have been proposed, adding more free pa-

rameters to the model, as the generalized Chaplygin gas,

p = −Aρ−α. (1.48)

We recommend [158] for a brief review on these models. Many works based on

comparing these models to observational data have been performed, showing their

degree of feasibility to explain observations [159, 160, 161, 162, 163, 164]. Concretely,

it can be seen that a relaxation in the H0 tension is obtained [165]. In Chapter V we

will study a specific EoS within this kind of approach.
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Apart from the Chaplygin-like models, non-linear barotropic equations of state

also appear in other works, some of the most recent ones being [166, 167, 168, 169,

170, 171, 172]. They focus on different descriptions as quadratic models to represent

dark energy and unified dark matter [171], non-linear EoS for phantom fluids [172] or

the Born-Infeld type fluid model [169]. Among the works which have been performed

in order to constrain some models of this kind, in [173], for example, the authors

analyse a model described by one of the most known functional classes,

p = p0 + wρ+ βρ2, (1.49)

where p0, w and β are constants.

We also want to refer to a very recent model with non-linear EoS parameter that

has been proposed in [174], the generalized emergent dark energy, for which the DE

is negligible at early times but it emerges at late times. Its EoS parameter can be

written as [175]

w = − ∆

3 ln 10

[
1 + tanh

(
∆ log10

(1 + z)

(1 + zt)

)]
, (1.50)

where ∆ is a dimensionless non-negative free parameter and zt is the transition red-

shift from the early times behaviour of the fluid, to the late time behaviour. It has

been found that, although the dynamics i not very different from that of the standard

model, the stability analysis indicates an accelerated phase at early times.

1.4 Modified gravity

Soon after Einstein formulated GR in 1915, the scientific community started to ex-

amine it and look for extensions. Hermann Weyl and Arthur S. Eddington, in the

20’s, were the first who started considering modifications of GR. While Weyl devel-

oped his scale independent theory of gravity [176], Eddington proposed a theory of

gravity based solely on a connection (as defined in the previous sections), without in-

troducing a metric [177]. In fact, Eddington performed the earliest parameterization

of the post-Newtonian formalism, a calculus tool which expresses Einstein’s (non-

linear) equations of gravity in terms of the lowest-order deviations from Newton’s law

of gravitation. This allows approximations to Einstein’s equations to be made in the

case of weak fields. The parameterized post-Newtonian formalism (PPN) is a version

of this formulation where the parameters in which a general theory of gravity can

differ from Newtonian gravity are explicitly detailed (for a review on this topic, see

[178]).
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During the following years, a huge variety of candidate theories of gravity were

proposed and the quantity has continued increasing until today. We will review some

of the most analyzed ones, emphasizing those ones more relevant for our works.

In the late 50’s, a new approach to modify gravity theories was proposed by

Pascual Jordan [179, 180], the so-called scalar-tensor theories [181, 182]. The general

form of the Lagrangian density is generally written as

L =
1

16π

√
−g
[
φR− ω(φ)

φ
∂µφ∂

µφ− 2Λ(φ)

]
+ Lm(Ψ, gµν), (1.51)

where φ is the scalar field which mediates the gravitational interaction, the metric gµν

is the tensorial contribution, ω(φ) is an arbitrary function which can be interpreted

as the coupling, Λ(φ) is a generalisation of the cosmological constant and Lm is the

lagrangian density of the matter fields Ψ. It can be noticed that this theory reduces

to GR in the limit Λ→ const, ω →∞ and ω′/ω2 → 0.

In the early 60’s, Carl H. Brans and Robert H. Dicke would take over Jordan’s

work to develop their famous scalar-tensor theory of gravity [183], which can be

obtained by choosing a constant ω and Λ = 0 in Eq. (1.51),

L =
1

16π

[
φR− ω

φ
∂µφ∂

µφ

]
+ Lm(Ψ, gµν), (1.52)

where ω is the dimensionless Dicke coupling constant. Brans-Dicke theory has been

constrained at the background and perturbation level using different sources as CMB

[184, 185, 186] or primordial nucleosynthesis [187, 188, 189, 190], where the typical

limits achieved are about ω & 300 or ω . −30. This model belongs to a most general

class of theories which would be developed a decade later, Horndeski’s theory [191].

This is the most general theory of gravity in four dimensions whose Lagrangian is

constructed out of the metric tensor and a scalar field and leading to second order

equations of motion. The reader may refer to [192], where some aspects of this

theory in FLRW backgrounds are studied, and also to [193, 194], more centered on

the cosmological perturbations.

At this point we find it convenient to mention a mechanism that was introduced

by Justin Khoury and Amanda Weltman [195, 196] and which acts as a powerful tool

to make a gravitational theory satisfy certain constraints: the chameleon mechanism.

If we have a theory which includes a non-minimally coupled scalar field, this scalar

can acquire an effective mass parameter, in the presence of other matter fields, that

is environmentally dependent. Essentially, one can satisfy the constraints on non-

minimally coupled scalar fields that are imposed in dense environments, while having

an interesting behaviour in less dense environments, as the existing ones in cosmology.
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Following with the alternative theories of gravity including extra fields, a natural

extension comes with the vector-tensor theories, first proposed in the 70’s [197, 198],

which are nowadays studied in the modern form of Einstein-æther theories [199]. The

particularity of these models is that they single out a preferred reference frame, where

the presence of a Lorentz-violating vector field, i.e. æther, arises. It has been shown

that this field can leave imprints on perturbations in the early Universe [200, 201] as

well as affect the growth rate of structures [202, 203, 204].

When considering extra fields, another possibility is to consider bimetric theories.

The essential idea behind these theories is the introduction of a second metric tensor,

more specifically a rank-2 tensor, in the theory. For this reason they are also known

as tensor-tensor theories. The idea behind the introduction of a second metric is

that one of them describes the geometry of the spacetime and controls the speed

of gravity and the other may be the one coupled to some other fields and controls

their propagation. This could have implication as having a variable speed of light

[205, 206]. The first proposals were done in [207] and conformed the basis of other

theories. In order to have some names in mind, but without entering into detail, we

can mention the following ones: Drummond’s theory, which in fact claimed to mimic

dark matter in spiral galaxies [208]; massive gravity, where a single massive spin-2 is

included [209, 210, 211, 212] and bigravity, where the two metrics involved are used

to build Einstein-Hilbert actions even though just one of them couples to the matter

[213, 214, 215, 216]. See [217] for a quite recent review.

We end up with the alternatives with extra fields by noting that there also exists

the possibility of adding a scalar field and a vector field, arriving to what is known

as the tensor-vector-scalar theories (see [218] for more details on this topic).

Another route one can follow when thinking about modifications of gravity is to

consider derivatives higher than second order [219, 220]. In the late 60’s and 70’s

an approach was born to generalize GR consisting on adding higher power curvature

corrections to Einstein’s theory, which would later lead to the so-called f(R) class

of theories [221, 222, 223, 48, 224, 225]. These theories are generalizations of the

Einstein-Hilbert action which consider higher order terms in R as, for example, R2 or

scalar curvature invariants as RµνR
µν in the Lagrangian. In this thesis we will center

on the first option, [223]

S =

∫
d4x
√
−g[f(R) + Lm]. (1.53)

Although we will dedicate the next subsection to explaining f(R) in detail due to

its important role in our work, we want to remark that these models became incredibly
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interesting in the 80’s due to their ability to give rise to a period of accelerated

expansion in the early Universe (i.e. inflation) as well as thanks to their improved

renormalization properties [24]. More recently these models have also generated an

interest which is mainly related to the gravitational phenomenology at low energies,

i.e. the late Universe and, thus, are mostly related to solution of the dark energy

problem. It must be said that f(R) theories have a scalar-tensor representation which

is analogous but seem to exhibit different behavior in the study of perturbations [226].

From the observational point of view, and taking into account that there will be

another entire subsection for this topic, we will just mention some works that have

been done about primordial nucleosynthesis in f(R) [227, 228, 229, 230] and also the

fact that, despite observations of the CMB and the BAO have allowed to constrain

a(t), it has been shown that the arbitrariness when choosing f(R) makes it not

possible to falsify a general form of these theories [231, 232, 233, 234, 235, 236, 237].

The consequences on large scale structure due to the modified growth have also been

studied [238, 239, 240, 241, 242]. These works encompass a very short overview of

some of the topics tackled from the f(R) approach. Let us just add that in analogy

with f(R) theories, other approaches will adopt the form of the f(T ) and f(Q), where

the gravitational force is driven by the torsion, T , or by the non-metricity, Q. We will

dedicate more words on the global panorama of these theories in future subsections.

To put an end to this non-exhaustive review of this class of modifications let us say

a few words about two sound models which contain non-trivial derivative interaction

terms, although they are not higher order derivatives: Galileons [243] and ghost

condensates [244]. The first one is inspired in the Dvali-Gabadadze-Poratti (DGP)

theory [245], which belongs to the higher dimensional modified gravity theories which

will be commented below. Among the variety of galileon extensions we can mention

the conformal galileon [243, 246] or the covariant galileon [247, 246]. The late time

cosmology of the covariant galileon has been widely studied [248, 249, 250, 251, 252,

253, 254], showing that density perturbations, for example, are a feature that allows

to distinguish this model from ΛCDM. The second model is a new kind of fluid whose

EoS is the same as the cosmological constant, i.e. p = −ρ, but with one difference:

it is a physical fluid with a physical scalar excitation around its background. The

action for ghost condensate theories can be expressed as [255]

S =

∫
d4x
√
−g
(

R

16πG
+M4P (X)

)
, (1.54)

whereM is a mass scale and P (X) is a function ofX = −1
2
gµν∂µφ∂νφ which must have

a non-zero minimum at the vacuum expectation value of X. See [244] for more details.
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From the observational point of view some works have been done, as [256, 257]. In

fact, the growth structure of a theory where these two models merge, i.e. the galileon

ghost condensate, has been recently investigated [258].

In the 70’s and 80’s, the idea of constructing a quantum field theory of gravity

[259] stimulated proposals as super-gravity and super-strings, which rely on the in-

troduction of super-symmetry and mean a resurgence in the work by Kaluza and

Klein involving higher dimensional spaces. The particularity of Kaluza-Klein theory

is that extra dimensions considered are small and compacts [260, 261, 262]. On the

other side there is the braneworld paradigm, which is motivated by string theory and

the extra dimensions can be much larger [263, 264, 265, 266, 267, 245]. This idea

of building a quantum field theory of gravity has attracted a lot of attention, giving

rise to different branches of studies which try to develop these ideas, being [268, 269]

some of the principal works settling the initial steps.

Although modified gravity and dark energy are intrinsically different, it has to

be taken into account that the limits between the dark energy and the modified

gravity formulation are not always clearly drawn, i.e. sometimes their phenomenology

is similar and make them indistinguishable [270, 271, 272, 273, 274]. In fact, an

effective field theory (EFT) of dark energy approach has been recently developed.

This framework is a type of approximation which consists on capturing into one single

and general formulation a wide class of dark energy and MG models [275, 276]. It is a

model independent approach encompassing all single field DE and MG models (once a

mapping procedure is provided to write any specific model in the EFT language) and

describes both the evolution of the cosmological background and linear perturbations,

thus providing an appropriate framework to classify different aspects of MG according

to their signatures [277]. A whole and detailed description of this formalism can be

found in [278].

As we have said, the number of ways in which GR has been and can be extended

is extremely large; for a quite updated non-exhaustive list see, for example, [279, 280,

225].

Formalisms to derive the field equations

There are three main formalisms to derive field equations from the action in gravity

theories [280]. The first one is the standard metric formalism (which is the one

we adopt in our works, unless something else is clearly specified) in which the field

equations are derived by the variation of the action with respect to the metric tensor
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gµν . In the case of GR one starts from Eq. (1.1), with the affine connection Γαβγ
depending on gµν as given in Eq. (1.3).

The second formalism is the Palatini one in which gµν and Γαβγ are treated as

independent variables when varying the action.

S =
1

2κ

∫ √
−g
(
gµν ΓRµν

)
d4x+

∫
Lm (gµν ,Ψ) d4x. (1.55)

Although for Lagrangians linear in R both variational principles lead to the same

field equations, this is not true for a more general action.

Moreover, there is a third version, the metric-affine f(R) formalism, which consists

on using the Palatini variation but abandoning the assumption that the matter action

is independent of the connection [281]

S =
1

2κ

∫ √
−g
(
gµν ΓRµν

)
d4x+

∫
Lm
(
gµν ,Γ

µ
αβ,Ψ

)
d4x. (1.56)

1.4.1 f(R) theories

Among the plethora of alternative models proposed, we now focus on the so-called

f(R) framework, also referred to as fourth-order theories or extended theories of

gravity [221, 282, 223, 225, 283].

The easiest and most basic approach to this kind of theories consists in replacing

the Ricci scalar, R, appearing in the Hilbert-Einstein action of GR, with a general

function f(R). The reason to choose this type of modification of gravity is, firstly,

because f(R) actions are the most logical (even though not the simplest) modification

one can consider and secondly, they are also sufficiently general to encapsulate some

basic features of higher order gravity. The action is given by [223]

S =

∫
d4x
√
−g[f(R) + Lm], (1.57)

where f(R) is an undetermined function of R. Although the f(R) proposals are in

principle unspecified, they cannot be arbitrary, but, as any modified gravity theory,

they have to be able to satisfy some theoretical and observational requirements:

• To be stable at the classical and semiclassical level; not to contain ghosts; to

admit a well-posed Cauchy problem and to have the correct weak-field limit

at both the Newtonian and post-Newtonian levels, i.e. they must satisfy Solar

System constraints, given that on such scales GR has been experimentally tested

and confirmed (see [223] for a detailed analysis on this criteria);
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• To fit the cosmological data reproducing the correct cosmological dynamics,

the correct behaviour of gravitational perturbations, and to generate cosmolog-

ical perturbations compatible with the cosmological constraints from Cosmic

Microwave Background, Large Scale Structure, Big Bang Nucleosynthesis and

gravitational waves.

Some examples of such viable models are in [284, 285, 286, 287, 288, 289]. It is

instructive to note that the first model of inflation [284],

f(R) = R + αR2 (α > 0), (1.58)

was an f(R) theory. Proposed by Starobinsky, unlike the models such as “old in-

flation”, this scenario was not plagued by the graceful exit problem, i.e. the period

of cosmic acceleration is naturally followed by a radiation-domination epoch with a

transient matter-dominated phase. So far, this model seems to be consistent with

data for inflation [290].

In [285], another very specific model of f(R) is proposed, this time in order to

explain the accelerated expansion without a cosmological constant and it is given by

f(R) = R−m2 c1(R/m2)2

c2(R/m2)n + 1
, (1.59)

where m is a mass scale, n > 0 and c1 and c2 are dimensionless parameters. This

expression comes from setting the following requirements,

lim
R→∞

f(R) = const., (1.60)

lim
R→0

f(R) = 0. (1.61)

On the one side, this model mimics ΛCDM in the high redshift regime, well tested

with CMB. On the other, it appears to behave as a constant term which which might

lead the accelerated expansion at low redshifts, as can be seen if we expand f(R)

lim
m2/R→0

f(R) ' −c1

c2

m2 +
c1

c2
2

m2

(
m2

R

)n
; (1.62)

the first term in Eq. (1.62) would play the role of the cosmological constant, being

the leading term at low redshifts.

f(R) theories have been intensively analyzed, by comparing them with cosmologi-

cal probes [291, 292, 293, 294, 295, 296, 297, 298], with the internal dynamics of many

different-scale gravitational structures [299, 300, 301, 302, 303, 304, 305], and with

cosmological simulations [306, 307, 308, 309, 310, 311, 312], eventually putting either
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too weak or too severe (i.e. very consistent with the ΛCDM limits) constraints on their

viability. Among the various applications of f(R) theories to cosmology and gravity

such as inflation, dark energy, local gravity constraints, cosmological perturbations,

and spherically symmetric solutions in weak and strong gravitational backgrounds,

we can sum up here the state of the art of f(R) theories giving the principal results

and challenges within these models.

We know that the transition from one era to another must be smooth and it has

been found in some studies that the exit from radiation era may present problems in

many models [313, 314, 315], but more recently it has been proved that the exit of

any era can be achieved [316, 313, 317]. It has been also analyzed that instabilities

may be a problem for some of these theories due to the order of the field equations

[318, 319, 320]. However, the Palatini approach, described by second order field equa-

tions, results in avoiding this instability [321]. On the one side, let us notice that f(R)

gravity theories are free of ghosts, but generalizations containing higher order terms

generally contain ghost. On the other side, exceptions can be found under some con-

ditions [322, 323, 324, 325, 326]. Among the successes of f(R) models we have to

underline that some of them exhibit the chameleon mechanism, which allows them

to pass observational tests, i.e. model in Eq. (4.2.1) from [327]. Besides, one of the

challenges for metric f(R) is related with some instabilities that appear beyond the

linear approximation [328, 329]. It pays off to make some numbers in order to un-

derstand how f(R) meets the data. In [330], the authors obtain constraints for some

cosmological parameters using CMB data and galaxy power spectra. We find it inter-

esting how they use linear theory predictions for the matter spectra finding that the

combined data sets give a tight constraint on the f(R) gravity Compton wavelength

parameter 9, i.e. log10B0 < −4.07. In a more recent work, they analyze the bounds

on maximum structure sizes of the observed Universe, providing a criterion to enable

large scale structures to be stable in f(R) theories. They obtain that the existence

of stable structures is allowed if the criterion f ′(RdS) ≤ 1.37 is satisfied, being RdS

the Ricci scalar [331]. The galactic clustering of an expanding Universe by assuming

the gravitational interaction given by f(R) gravity is discussed in [332], where they

conclude that the distribution function from the quasi-equilibrium approach could be

useful to constrain some classes of f(R) models.

9This dimensionless parameter is defined in terms of the first and second derivative of f(R) and
can characterize the deviation from GR. A small value of B(a) indicates a small deviation and
quasistatic approximation holds, while in the case B(a) ∼ 1, this approximation breaks down [330].
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Apart from all the given references we recommend to see [327, 333, 334, 273] for

more details on the theoretical and experimental challenges faced by f(R) in order

to satisfy minimal criteria for viability.

One interesting extension of metric f(R) gravity that have been analyzed in this

thesis is what are known as f(R) non-minimally coupled theories, first proposed in

[335]

S =

∫ [
f1(R)

2κ2
+ (1 + λf2(R))Lm

]√
−g d4x, (1.63)

where fi(R) (i = 1, 2) are arbitrary functions of the Ricci scalar R, g is the determi-

nant of the metric gµν , κ
2 = 8πG, λ is a coupling constant with length square units

and Lm is the matter Lagrangian density. Here a small potential coupling appears

between the gravitational sector and the matter fields. Those theories have been

gathering quite some attention since some years ago to describe different cosmolog-

ical events. For a non-exhaustive but representative variety of publications on the

topic please see [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348]. More

precisely, in [336], gravitational baryogenesis is analysed finding compatible results

with observations, whereas in [337] some inflationary scenarios are studied and exam-

ples of observational predictions are given for some of the most common potentials

in order to set limits on the scale of the non-minimal coupling. In [338], the degen-

eracy of Lagrangian densities for a perfect fluid is discussed. On the one hand, one

of the motivations of analysing this kind of models is their ability to answer for the

dark matter effects which are observed in our Universe. In [339], it is shown that

with non-minimally coupled f(R) theories it is possible to mimic known dark matter

density profiles through a specific power-law coupling. In [340] it is shown how these

theories can give rise to an additional contribution to the field equations, as compared

with GR, that can play the role of dark matter. More recently in [341], analytical

solutions to the modified field equations are derived and, besides, constraints on the

parameters of the model are obtained by comparing their predicted profiles for visible

and dark matter with known ones. In [348], the authors discuss an effective model

of f(R) gravity containing a non-minimal coupling to the axion scalar field. On the

other hand, it is still unanswered the question of which theory could be behind the

late-time acceleration of the Universe, then, f(R) non-minimally coupled theories

have been also studied as possible candidates for this accelerated behaviour observed

nowadays [342, 343, 344]. In [345] the authors studied the evolution of cosmolog-

ical perturbations within this kind of theories as well as analysing the large-scale

structures that are formed. Matter density perturbations are also studied in [346],
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where some constraints on a specific model are setted using age of the oldest star

clusters and the primordial nucleosynthesis bounds. Finally, in [347] a gravitational

waves analysis has been performed within these models. f(R) non-minimally coupled

theories will be studied in detail in Chapter 4

1.4.2 f(Q) theories

In GR, the equations of motion impose a torsion and nonmetricity free geometry,

where the connection is given by the Christoffel symbols, i.e. Eq. (1.3). Nevertheless,

in modified theories of gravity, this will not be the case and two new quantities that

we will define now, torsion and non-metricity, can appear.

A basic result in differential geometry states that the general affine connection

may be decomposed into the following three independent components [349, 350]:

Γλµν =
{
λ
µν

}
+Kλ

µν + Lλµν , (1.64)

where
{
λ
µν

}
≡ 1

2
gλβ (∂µgβν + ∂νgβµ − ∂βgµν) is the Levi-Civita connection of the met-

ric gµν ; the term Kλ
µν ≡ 1

2
T λµν + T(µ

λ
ν) is the contortion, with the torsion tensor

defined as T λµν ≡ 2Γλ[µν]; and finally the disformation Lλµν is given by

Lλµν ≡
1

2
gλβ (−Qµβν −Qνβµ +Qβµν) , (1.65)

which is defined in terms of the nonmetricity tensor, Qαµν ≡ ∇αgµν . To complete our

inventory of the relevant geometric objects which characterize the spacetime, let us

keep in mind that the Riemann tensor is given in terms of the connection by

Rα
µρν = ∂ρΓ

α
νµ − ∂νΓαρµ + ΓαρλΓ

λ
νµ − ΓανλΓ

λ
ρµ. (1.66)

Moreover, it will be useful to know that under a shift of the connection, Γ̂αµν =

Γαµν + Ωα
µν (with Ωα

µν an arbitrary tensor), the Riemann tensor transforms as

R̂α
βµν = Rα

βµν + T λµνΩ
α
λβ + 2∇[µΩα

ν]β + 2Ωα
[µ|λ|Ω

λ
ν]β. (1.67)

In order to understand the physical meaning of each quantity, we present an illus-

tration of their effects in Fig. (1.3): the curvature describes the rotation of a vector

transported along a closed curve; the torsion gives the non-closure of parallelograms

formed when two vectors are transported along each other; the nonmetricity gives the

variation of the length of a vector when it is transported [351].
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Figure 1.3: (1) Curvature. (2) Torsion. (3) Nonmetricity.

Starting from the usual formulation of GR, where gravity is attributed to the cur-

vature of spacetime, the constraints on the connection being symmetric and torsion-

free can be incorporated by adding Lagrange multipliers enforcing those constraints:

S =

∫
d4x

(√
−g

16πG
gµνRµν(Γ) + λµνα T

α
µν + λ̂αµνQ

µν
α

)
. (1.68)

As an alternative, if we identify gravity with the torsion and want to construct an

action in this framework, we may consider the most general even-parity second order

quadratic form which can be built with the torsion [351],

T = −c1

4
TαµνT

αµν − c2

2
TαµνT

µαν + c3TαT
α, (1.69)

where c1, c2, c3 are free parameters and Tµ = Tαµα is the trace of the torsion. Again,

introducing appropriate Lagrange multipliers, we have

S = −
∫
d4x

(√
−g

16πG
T + λβµνα Rα

βµν + λ̂αµν∇αg
µν

)
. (1.70)

Now, we want to know if one can recover GR carefully choosing the parameters. In

order to do that one has to take into account that, if nonmetricity vanishes, by using

Eq. (1.67) it is possible to arrive to

R = R(g) + T̊ + 2DαTα, (1.71)
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where R(g) is the Ricci scalar of the Levi-Civita connection, Dα is the covariant

derivative and T̊ is T for the choice c1 = c2 = c3 = 1. Thus, Eq. (1.71) and the

flatness condition (R = 0) implies that GR is recovered by

S = − 1

16πG

∫
d4x
√
−gT̊. (1.72)

This theory is known as Teleparallel Equivalent of GR [352].

Going another step forward one can wonder what happens when considering that

gravity is fully represented by the nonmetricity, i.e. a flat and torsion free geome-

try. Proceeding as before, we can write the most general even-parity second order

quadratic form of the non-metricity,

Q =
c1

4
QαµνQ

αµν − c2

2
QαµνQ

µαν − c3

4
QαQ

α + (c4 − 1)Q̃αQ̃
α +

c5

2
QαQ̃

α, (1.73)

where Qµ = Qα
µα and Q̃µ = Qα

αµ are the two independent traces of the nonmetricity.

The action considering the corresponding Lagrange multipliers reads

S = −
∫
d4x

(√
−g

16πG
Q + λβµνα Rα

βµν + λµνα T
α
µν

)
. (1.74)

Now, considering a torsion-free connection, Eq. (1.67) throws

R = R(g) + Q̊ +Dα(Qα − Q̃α), (1.75)

where Q̊ is Q for the choice c1 = c2 = c3 = 1. In a flat spacetime with R = 0, the

action becomes

S = − 1

16πG

∫
d4x
√
−gQ̊. (1.76)

This theory is called Symmetric Teleparallel Equivalent of GR.

In our work we are going to focus on this last description, where gravity is identified

with the nonmetricity. Within the scenario of modified gravity alternatives, a natural

extension in this formalism is given by f(Q̊), which from now on we will denote simply

as f(Q):

S = − 1

16πG

∫
d4x
√
−gf(Q). (1.77)

Here let us remark that, although L = Q̊ is equivalent to L = R because their

only difference is a total derivative, this term is precisely what makes the difference

between f(R) and f(Q). Some works have been already performed in this framework

[353, 354, 355, 356, 357, 358, 359, 360, 361]. Anyway, as this is a novel approach, it still

has to be deeply explored, offering hopefully some insight on different cosmological

problems as the late accelerated expansion of the Universe. We will explain more

about this field in Chapter 3.
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1.5 Observational data

Type Ia Supernovae Type Ia (SNeIa), Baryon Acoustic Oscillations (BAO) and the

Cosmic Microwave Background radiation (CMB) are among the most fundamentally

important observations which are nowadays used in modern cosmology to infer any

insight in the underlying cosmological model background. They constitute the main

core around which most of the cosmological analysis is performed, but also additional

probes, like early-type galaxies (ETG), quasars (QSO) and gamma ray bursts (GRB)

are ongoing further investigations and developments because, although at the present

stage they do not achieve the same precision as the mentioned ones at the beginning,

they can provide complementary and independent information on the topic. In the

next sections, we will provide a general but far-from-exhaustive introduction to the

main properties of most of these observational quantities, with a specific highlight on

the technological progress which have been at the basis of the achievement of modern

cosmology.

1.5.1 Type Ia Supernovae

In cosmology a variety of celestial objects are used, directly or indirectly, in order to

extract information about our Universe. The most popular are for sure supernovae

(SNe), because they help us to measure distances of very far objects, till z ∼ 2. How-

ever, historically speaking, they are not the first standard candles at all. Actually,

they are more properly defined as secondary candles because they can be calibrated

only after using other objects which are, on purpose, defined as primary. The most

famous primary standard candles are the Cepheids, which we mentioned in the intro-

duction. They are variable stars whose luminosity follows radial pulsations [362, 363]

and, although there are different kinds of variable stars [364], classical Cepheids are

more distinguishable due to their characteristic pulsations [365, 366, 367, 368]. As

we will see below, these objects are crucial for the calibration of supernovae, and the

period-luminosity relation will be a fundamental element. Although this relation was

first proposed by Leavitt, it has been continuously improved taking into consideration

more features of the cepheids, as the color or the metallicity [369, 370]. For example,

the period-luminosity-color relation can be written as [371]

M = α logP + β log(B − V )0 + γ, (1.78)

where M is the absolute magnitude, P is the period, B − V refers to the instrinsic

color and α, β, γ are constants.
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Coming back to SNe, let us say that they are, basically, violently exploding stars

whose luminosities after eruption suddenly increase many millions of times over their

normal levels, being among the brightest events in the sky, so that they are able to

briefly outshine all the stars in the host galaxy. Depending on their origin and their

emission and absorption spectral lines they can be classified in different types. Su-

pernovae with no hydrogen features in their spectra had previously all been classified

simply as “Type I”, but in the early 1980s, a new classification emerged. This class

was subdivided into types Ia and Ib, depending on the presence or absence of a silicon

absorption feature at 6150Å in the supernova’s spectrum (see [372] for more details

concerning SNe classification).

In cosmology, we practically deal only with Type Ia Supernovae (SNeIa), because

they are “standardizable”, as we will explain later, which means that they provide

an almost absolute method to measure cosmological distances [373], i.e. they are

standard candles. SNeIa are defined by a lack of hydrogen and helium lines and

the presence of strong silicon lines in their spectra, and they are thought to occur

in a binary system of stars which are orbiting around the same point. There is not

much knowledge about the sources of this kind of explosions but the key point is that

the supposed mechanism underlying SNeIa always happens in the same way, involves

approximately the same masses, and produces the same intrinsic luminosity; this is

what makes SNeIa standardizable.

Usually two broad classes of progenitor models are considered. On the one hand,

there is the single degenerate model, in which a white dwarf accreting from a binary

companion is pushed over the Chandrasekhar mass limit (about one and a half solar

masses) [374]. At this point a nuclear chain reaction occurs, causing the white dwarf

to explode. On the other hand, there is the double degenerate model, in which

gravitational radiation causes an orbiting pair of white dwarfs to merge and exceed

the Chandrasekhar mass. As it has been said, one of the stars composing the system

must be always a white dwarf star, which is the densest type of self-gravitating stellar-

size object, after neutron stars and black holes. White dwarfs are the remnant of a

star that was about the size of our Sun. The other star forming the system could

be a giant star or even a smaller white dwarf. In the nucleus of white dwarf stars

thermonuclear reactions are not happening anymore, so their intense gravity is the

feature which unchains the process [375, 376].

The path for SNeIa to become the reference distance measurement for farther

celestial objects can be considered to start in 1916, when Vesto Slipher measured

velocities of nearby galaxies and found that the vast majority of them was moving
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away from us. In Edwin Hubble’s first steps about the cosmic expansion in the 1920s,

he used entire galaxies as standard candles. But galaxies, coming in many shapes and

sizes, are difficult to match against a standard brightness. They can grow fainter with

time, or brighter (by merging with other galaxies). In the 70’s, it was suggested that

the brightest member of a galaxy cluster might serve as a reliable standard candle, but

in the end, all proposed distant galactic candidates were too susceptible to change.

In 1938, Baade and Zwicky proposed SNeIa to measure the cosmic expansion. Many

years later, in 1990, The Calan-Tololo SN search in Chile (led by Mario Hamuy) tested

the “goodness” of the SNeIa. They found that the fainter a SNeIa is, the sharper is

the peak of its brightness [377, 378, 379]. The supernovae that faded faster than the

norm were fainter at their peak, and the slower ones were brighter. In fact, one could

use the light curve’s time scale to predict peak brightness and thus slightly recalibrate

each supernova. But the great majority of SNeIa passed the screening tests and were,

in fact, excellent standard candles that needed no such recalibration. In particular,

it was found an empiric correlation between the peak luminosity of SNeIa and the

shape of their curves [378, 380] described by the linear relation

Mmax = a+ b∆m15(B). (1.79)

where a, b are fit parameters common for every SNeIa and ∆m15(B) is the measured

apparent magnitude decay in the B-band after 15 days from its maximum, identified

by the absolute magnitude Mmax. Of course, the crucial point in the assessment of

this relation, was the use of SNeIa whose distance could be estimated by alternative

methods [378]. Starting from these initial bunch of SNeIa, extended by later observa-

tions, it was possible to calibrate, i.e. to fix the parameters a and b, with higher and

higher precision, thus allowing to estimate absolute magnitudes of any newly discov-

ered SNeIa which, combined with the apparent magnitudes measurements, allowed to

calculate the luminosity distance of these objects. As for Cepheids, during the years

this relation has been constantly updated with new ingredients and insights reaching

the present standards. In particular, we remind here two parameters which are crucial

in the process of standardization of SNeIa: the stretch, which literally describes the

time stretching of the light curve [381, 382, 383], and the SNeIa color at maximum

brightness [384, 385]. We will specify more about them in the following sections.

Despite the great theoretical improvements, the main obstacle toward the full ex-

ploitation of SNeIa for cosmological uses still was the paucity of data. As reported in

[386], in the early 90’s the discovery of a single SNeIa event was thought to be quite

hard due to the unpredictability of such events. The turning point was the “SNe on
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demand” technique devised by Saul Permutter: by performing repeated imaging of

selected areas of the sky at regular intervals (the ideal timing being after any new

moon), the teams could identify (many) possible candidates at once and thus plan

follow-up observations which would provide both magnitudes, peak brightnesses and

spectral features of confirmed SNeIa events. Once the number of observed SNeIa

started to grow, the same standardization process based on the relations and pa-

rameters described above got improved, leading to the discovery of dark energy, and

reaching the high standards we have nowadays.

Even though light curve fitting and calibration have been constantly improving,

we do have a limit: SNeIa are very good to estimate distances at relatively large

redshifts, but we do not have SNeIa at very low ones. Thus, in order to have it done

in the best way possible, one has to rely on some other standard candles, different from

SNeIa, and which are abundant at very low redshift; then, in the overlapping regimes,

one can use such low redshift probes to calibrate (at higher level) SNeIa [387]. The

stellar objects which are used to improve calibration of SNeIa are Cepheids; with the

closest Cepheids calibrated using parallax distances measurements [388, 389]. When

performing these techniques one must not forget to take into account phenomena

that may affect the measurements as the extinction from dust or the shift of the

SNeIa spectrum due to the redshift. Thus, to properly determine a precise distance,

it requires a well-observed SNeIa light curve in multiple pass bands [390, 391, 392].

After the full standardization procedures are applied, any remaining difference in

the peak brightnesses of two SNeIa should be due to a difference in distance to the

observer. In 1998, both SCP and High-Z team, had the same key finding: SNeIa

looked to be farther (i.e. less luminous) than expected with respect to the common,

at that time, cosmological model. If the Universe’s expansion had been expanding

at a decelerating rate, the SNeIa should have appeared brighter than what they

were found to be. As reported in the historical review of [386], in the context of

the then standard cosmological model, with no cosmological constant nor any dark

energy component, this could have been achieved only by Ωm < 0, which was clearly

thought unphysical. Relaxing the model, and allowing for a cosmological constant,

they found that SNeIa results supported a Universe with Ωm ∼ 0.2 − 0.4, and a

negative deceleration parameter, q = 1
2
Ωm − ΩΛ, giving important hints supporting

the presence of a dark energy causing the well confirmed accelerated expansion of the

Universe that we know today.

As a fact of scientific interest we will say that nowadays the largest combined

sample of SNeIa is the Pantheon [393], a compilation of 1048 SNeIa which covers the
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redshift range 0.01 < z < 2.26. This compilation has been used in this thesis as it

is a quite powerful probe that allows us to constrain the background evolution of the

cosmological parameters.

1.5.2 Cosmic Microwave Background radiation

In order to understand properly the origin and the physics behind CMB, we have to

look back into the history of our Universe, and focus on the crucial moment which

constitutes the before and after crossroad: the recombination epoch, namely, the

first moment in the life of our Universe in which baryons and (free) electrons can

combine to form neutral hydrogen, due to the lowering density and temperature of

the early time cosmic soup after Universe expansion. Recombination is approximately

set at z ≈ 1100, i.e. 380000 years since the beginning. Before recombination, we

cannot separate these two components, but we can only recognize a photon-baryon

plasma, with photons strongly interacting with the free electrons through Thompson

scattering and the free electrons interacting with the baryons through electromagnetic

interaction. As for the other components we do have: neutrinos (which have already

decoupled from other particles because the weak interaction decouples earlier than

the electromagnetic one) and dark matter particles which, whichever they are, only

interact with other components by gravitational interactions.

The key point to understand how the CMB was originated, is that this photon-

baryon plasma was not homogeneous, but full of over-dense and under-dense regions.

The origin of such fluctuations, as they are more commonly defined, is intrinsic to

the inflationary era and is, in some sense, the biggest element brought to cosmology

by the inflationary scenario. In fact, what inflation basically does is to expand to

cosmological scales regions which were many order of magnitudes smaller. Smaller

enough in order to have quantum fluctuations [52] which, at the end of inflation,

are found to be stretched on scales which have nothing more of quantum origin, but

instead constitute the seeds of the large structure of gravitational structures we can

see nowadays.

As soon as inflation ends, these quantum fluctuations are translated into perturba-

tions in the density of the plasma. Over-dense regions tend to attract gravitationally

plasma and dark matter from the surroundings, thus, the density of these regions

therefore tends to grow. This gravitational compression is at some point counter-

acted by the radiation pressure from the plasma, which grows gradually, eventually

stops the compression and starts to dilute matter. The consequent dilution implies

cooling down of the matter, a lower radiation pressure until gravity becomes dominant
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again, and then a new phase of compression begins. This fight between gravity and

pressure induces compressions and rarefactions in the plasma that propagate through

the medium as waves with a specific speed (generally called “sound” because these

waves of matter propagate in the medium, and not in the vacuum, like sound waves

do).

As we have said, perturbations are usually described as temperature fluctuations,

by translating compression into higher temperatures and rarefaction into colder ones.

We define the temperature fluctuation mathematically as

Θ ≡ ∆T

T
. (1.80)

It is interesting to note that even without including gravity, by just considering the

case of a perfect fluid consisting on photons and dark matter one can show that Θ

behaves as an oscillator in Fourier space [394, 395],

Θ̈(k) + c2
sk

2Θ(k) = 0, (1.81)

where cs stands for the speed of these sound waves and k is the wavenumber. The

oscillation pattern which is produced sets a characteristic length, the so-called sound

horizon, rs, which represents the length traveled by the photon-baryon plasma from

the beginning to the recombination epoch. Although all the main ingredients of CMB

are already defined, we need to refine the model by including, in first instance, the

effects of gravity into Eq. (1.81). The principal consequence of introducing gravity is

that maxima and minima will increase in the oscillation. Starting from the perturbed

flat FLRW metric

ds2 = − (1 + 2Ψ) dt2 + a2 (1 + 2Φ)
(
dr2 + r2(dθ2 + sin2 θdφ2

)
), (1.82)

where we have considered c = 1 and we have introduced the spatial curvature per-

turbation Φ and the metric potential, Ψ, after some algebra, and combining the

continuity and Euler equations, one arrives to [395]

Θ̈(k) + c2
sk

2Θ(k) = −k
2

3
Ψ− Φ̈, (1.83)

where c2
s ≡ ρ̇γ/Ṗγ and for a photon (γ) dominated regime it reads c2

s = 1/3 (at first

approximation). Introducing now the contribution of baryons one gets [395]:[
(1 +R)Θ̇

]·
(k) +

1

3
k2Θ(k) = −k

2

3
(1 +R)Ψ−

[
(1 +R)Φ̇

]·
, (1.84)
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where we have defined the quantity R ≡ (ρb+pb)/(ργ +pγ), i.e. the baryon-to-photon

ratio parameter. In Eq. (1.84) the sound speed reads c2
s = (ρ̇γ + ρ̇b)/(ṗγ + ṗb) =

1/(3(1 + R)). Now, assuming the matter dominated approximation and considering

Ṙ/R << ω = k cs (change in R slow when compared with the frequency of oscillation)

we obtain the solution

[Θ + (1 +R)Ψ] = [Θ + (1 +R)Ψ] (0) cos(krs(z∗)), (1.85)

where rs(z∗) is the sound horizon evaluated at the recombination epoch. We see

here that adding baryons changes the overall amplitude of temperature oscillations

as well as suppress minima while enhance maxima. Although we will not mention it

here, many other effect must be considered when studying this era of the Universe

[396, 397, 398, 399, 400, 401].

Let us notice that the signal we are able to notice appears as anisotropies in the

temperature fluctuations of the CMB. Besides, the CMB behaves as a black body and

for statistically isotropic Gaussian random temperature fluctuations one can adopt

a harmonic desciption, here more especifically, spherical harmonics. The ensemble

average of these fluctuations is given by the power spectrum -described by Cl- as

[395]

〈Θ∗lmΘl′m′〉 = δll′δmm′Cl. (1.86)

This is the variance of Θ integrated over all the Fourier modes. On the other hand, for

a statistically homogeneous spatial distribution, the two point function is expressed

in terms of the power spectrum

〈Θ(k)∗Θ(k′)〉 = (2π)3δ(k − k′)P (k). (1.87)

Combining these two relations we get [395]

Cl '
2π

l(l + 1)
∆T

2(l/rs(z∗)), (1.88)

with ∆2
T = k3P (k)/(2π)2. It is usual to plot instead the quantity

l(l + 1)

2π
Cl ' ∆2

T . (1.89)

The physical processes which have been described above take place before recom-

bination, with larger scales perturbations which will need more time to compress

and expand again (if they can), while smaller scales fluctuation will be able to do the

same process more times. As the Universe expands and cools, reaching a temperature
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of around 3000 K, recombination epoch starts: atoms start forming (with electrons

bounded to nuclei) and photons cease to be scattered and start propagating freely

(but still suffering the cosmological redshift due to the expansion). At this moment

all the oscillations get frozen, and the information on the temperature of the inho-

mogeneities will be imprinted in the energy of the photons now free to move: we will

have photons caught at the maximum compression at the moment of recombination;

others at the point of maximum expansion; others will have completed two or more

oscillations, and so on. All these frozen oscillations are reflected today in the famous

power spectrum observed by Planck (see Fig. 1.4) in the microwaves band, to which

the radiation has been redshifted by the Universe expansion.

We must note here that if one were interested in using CMB data to study cos-

mological perturbations, the full power spectrum should be used. Instead, as in our

case, if one focused only on the cosmological background evolution, some new quan-

tities, the shift parameters, can be defined, which have been shown to be sufficient to

describe a large variety of dark energy models [402], with few cautionary cases [403].

A useful concept is that of the “last scattered surface” (that, in fact, is receding

from us): this is the sphere around the observer such that its radius is the distance

each photon has travelled since it was last scattered. The redshift z∗ corresponding

to the last scattering surface allows us to define the shift parameters, which we have

used in our analysis when we wanted to include CMB data. A fitting formula can be

derived for computing this redshift is derived in [404] ,

z∗ = 1048
[
1 + 0.00124(Ωbh

2)−0.738
]
×
(
1 + g1(Ωmh

2)g2
)
, (1.90)

where the factors g1 and g2 are given by

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)−0.763
, (1.91)

g2 =
0.560

1 + 21.1(Ωbh2)1.81
. (1.92)

Now one can compute the distance the light have traveled until recombination epoch,

rs(z∗) =
c

H0

∫ ∞
z′∗

dz′

E(z′)
=

c

H0

∫ a′∗

0

da′√
3(1 +Ra′)a′4E2(a′)

, (1.93)

with R = 31500Ωbh
2(TCMB/2.7)−4, given that TCMB = 2.725K [405]. This is called

the sound horizon and characterizes the scale of CMB physics: the modes correspond-

ing to the acoustic peaks before recombination have an harmonic relation with the
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length scale kn = nπ/rs(z∗). A mode following this relation has a spatial inhomogene-

ity of wavelenght λn which appears in the sky with an angular scale θ ' λn/DM(z∗)

[395]. Decomposing this in harmonic space, with multipoles defined as l = 2π/θ, we

get the angular scale of the sound horizon at recombination (and first shift parameter)

la ≡ π
DM(z∗)

rs(z∗)
, (1.94)

where ln = nla are the multipoles at which the peaks are. At first approximation this

angular scale coincides with the position of the first peak in the temperature power

spectrum. We must take into account that the baryons Ωb shift the positions of the

acoustic peak and enhance the compression peaks leaving unmodified the rarefaction

ones. Thus, the ratio between the first and second peak amplitudes in CMB power

spectrum is a tracer of Ωb (actually, it is related to Ωbh
2). Among the other effects in

the CMB spectrum which can be used to extract geometric data, there is one related

to non-relativistic matter, Ωm, thus including dark matter. The presence of non-

relativistic matter changes the height of the lower multipole peaks compared with the

higher ones as well as shifts the position of the peaks. This leads us to the second

shift parameter (do not confuse with R in Eq. (1.84)),

R ≡
√

ΩmH2
0

DM(z∗)

c
, (1.95)

which describes the scaled distance to the last scattering surface.

Once we have reached this point we may have the question: what else happens

between the recombination epoch and today? From that moment on, atoms begin to

form and matter start clustering and evolving forming larger structures but not in a

random way. We will see in the next section more details about this process.

1.5.3 Baryon Acoustic Oscillations

As we can imagine, the physics behind BAO [406] is intimately related to what

we have described for the CMB. Once we understand the CMB as the “photon”

part of recombination era physics, BAO can be seen as the “matter” counterpart in

that same process. Summing up, as soon as recombination starts, photons are free

to move, leaving their imprint in what is now detected as CMB, while the sound

waves which were taking place in the plasma stopped at a specific time/radius. After

that, the baryons which are left behind are no longer relativistic and start to feel

gravitational interaction produced by the dark matter located at the center of the
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Figure 1.4: Planck 2018 temperature power spectrum. We acknowledge ESA and the
Planck Collaboration for this picture. Figure extracted from [41].

over-dense regions, and center of the spherical waves propagation too. In [407] the

reader can find a nicely illustrated view of the full process.

Primordial perturbations of the adiabatic form predicted by standard inflation

models consist of equal fractional density contrasts in all species. Dark matter pertur-

bations grow in place, slowly at first in the radiation dominated epoch, then faster as

the Universe becomes matter dominated. The baryon-photon plasma perturbations,

on the other hand, travel away from its origin as a sound wave. At recombination,

the baryon part of the wave is left in a spherical shell centered on the original per-

turbation. Both the dark matter at the center and the baryons on the shell seed

gravitational instability, which grows to form the halos in which galaxies form. We

therefore expect the distribution of separations of pairs of galaxies (i.e. the two-point

correlation function generated by such perturbations) to show a small enhancement at

the radius of the shell, with galaxy concentrations in the central dark matter clumps

and in the shells induced by the baryons. Thus, the sound horizon mentioned in

the past section was also imprinted in the matter perturbations and it is hidden in

the correlation function between galaxies as a preferable clustering distance. More

specifically, the two-point correlation function describes the probability distribution

of two galaxies depending on their separation. We have to take into account that
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at the photon decoupling epoch, i.e. last scattering surface, photons stopped feeling

the effects of baryons at around rs(z∗) = 144.43Mpc [41], but baryons had inertia

and stopped feeling the effect of photons a bit later, at the so-called drag epoch. The

redshift which corresponds to this epoch is well approximated by [408]

zd =
1291(Ωm h

2)0.251

1 + 0.659(Ωm h2)0.828

[
1 + b1(Ωb h

2)b2
]
, (1.96)

b1 = 0.313(Ωm h
2)−0.419

[
1 + 0.607(Ωm h

2)0.6748
]
,

b2 = 0.238(Ωm h
2)0.223. (1.97)

Thus, evaluating the comoving sound horizon at this epoch we find a slightly different

value, i.e. rs(zd) = 147.09 Mpc [41]. Thus, over-densities are statistically more likely

to be separated by a comoving distance rs(zd) than by a bit larger or smaller dis-

tances; due to this, a peak should then appear in the correlation function at rs(zd), as

illustrated in [409]. This converts BAO into a standard ruler, in analogy to SNeIa act-

ing as standard candles: we do have an object (the sound horizon at dragging epoch)

of known length (measured by CMB data and fully inferred by theory), imprinted in

the BAO, and whose distance can be calculated from the angle it subtends.

However, in this case this ruler is hidden in the sky, because the spherical shells

with higher density centered around the original perturbations are randomly super-

imposed. Moreover, the low proportion of baryons compared to dark matter make

this density excess at the BAO scale small compared to the central over density. Nev-

ertheless, through statistical analyses using the two-point correlation function ξ(r) it

is possible to detect the BAO signal with big catalogs of galaxies [409].

It has to be said that the computation of the correlation function to get the BAO

scale is a challenging work that requires overcoming several difficulties (for further

details, see the reviews in [406, 410]). For example, non-linearities due to the evolution

of matter which keeps on clustering at smaller scales [411] and peculiar velocities of

galaxies which introduce a redshift space distortion [412]. Once all the uncertainties

and complications above mentioned have been taken into account, the information of

the BAO scale can be extracted from the galaxy surveys, usually with the two-point

correlation function, but also computing directly the power spectrum [413].

This increased difficulty for statistical analysis alongside the previous challenges,

requires a proper estimator for computing the two-point correlation function [414].

Moreover, the theoretical correlation function must be expanded in spherical harmon-

ics [415] so that the information of the BAO scale longitudinal to the line of sight and
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Figure 1.5: Distances measured at the line of sight (1) and at the perpendicular
direction (2).

perpendicular to it can be detached (see Fig. 1.5). In this way, the observed redshift

depth ∆z along the line of sight gives the Hubble function when it is compared to

the BAO scale rs,

H(z) =
c∆z

rs
(1.98)

while the angle ∆θ subtended in the sky by the BAO scale perpendicular to the line

of sight measures its angular diameter distance, and therefore

DA(z) =
rs

∆θ(1 + z)
. (1.99)

When these two measures cannot be done separately, the spherically averaged correla-

tion function is achieved instead, which blends together the information coming from

transverse and longitudinal observations. Nevertheless, in these cases it is still possi-

ble to extract BAO information, where the baryon acoustic oscillation scale parameter

A(z) is best used, a quantity which does not depend on H0 [409],

A(z) = 100
√

Ωm h2
DV (z)

c z
, (1.100)

and depends on the volume averaged distance,

DV (z) =

[
(1 + z)2D2

A(z)
c z

H(z)

]1/3

. (1.101)
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a distance which is approximately the radius of the spherical volume filled by the BAO

shell. If one wants to extract the information of the BAO scale along and perpendic-

ular to the line of sight, an anisotropic analysis of the survey must be done so that

the two-dimensional two-point correlation function is computed [416]. In this way,

the measurement of the Hubble function H(z) and of the angular diameter distance

DA(z), separately, is possible. However, these quantities are quite correlated and are

not robust enough with respect to systematics, therefore the following dimensionless

quantities are recommended instead [416],

Hrs(zD)

c
= ∆z,

DA

rs(zd)
=

1

∆θ(1 + z)
(1.102)

These new quantities measure the redshift depth and observed angle of the BAO

feature, respectively. We have used the comoving sound horizon rs as a standard

ruler because its size could be given by CMB measurements. If this were unknown,

we could still extract information through the fact that we are observing a spherical

structure. In this way, the Alcock-Paczynski test can be used [417], which gives the

product DA(z)H(z) from measuring ∆z/∆θ, and its distortion parameter has the

following form

F = (1 + z)DAH/c (1.103)

When there are not enough data to achieve separate analyses along and transverse to

the line of sight, one simply relies on to an isotropic analysis, providing a measurement

of DV (z)/rs.

The challenge of the BAO method is primarily statistical: because this is a weak

signal at a large scale, one needs to map enormous volumes of the Universe to detect

the BAO and obtain a precise distance measurement. Galaxy redshift surveys allow us

to make these large three-dimensional maps of the Universe. At low redshift (z ≤ 0.5),

the BAO method strongly complements SNeIa measurements because BAO provides

an absolute distance scale and a strong connection to the CMB acoustic peaks from

z = 1000, while SNeIa allow more precise measurements of relative distances and thus

offer a more fine-grained view of the distance-redshift relation. At higher redshift

(z ≥ 0.5), the large cosmic volume and the direct access to H(z) make the BAO

method an exceptionally powerful probe of dark energy and cosmic geometry.

The idea of using BAO as standard rulers to learn about cosmological parameters

appears to date from 2001. The real foundations, however, of the modern ideas

on BAO, their detection and use, were laid by Eisenstein, Blake and Glazebrook

[418, 419] and a slew of later papers which developed where they analize real data.
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Among the relevant surveys which have measured the BAO signal, we have to

mention the Sloan Digital Sky Survey (SDSS), which is a 2.5-metre wide-angle optical

telescope at Apache Point Observatory in New Mexico. The goal of this five-year

survey was to take images and spectra of millions of celestial objects. The result of

compiling the SDSS data is a three-dimensional map of objects in the nearby Universe:

the SDSS catalog. The SDSS catalog provides a picture of the distribution of matter

in a large enough portion of the Universe that one can search for a BAO signal by

noting whether there is a statistically significant overabundance of galaxies separated

by the predicted sound horizon distance.

The SDSS team analyzed the clustering of these galaxies by calculating a two-

point correlation function on the data. The BAO signal would show up as a bump

in the correlation function at a comoving separation equal to the sound horizon.

This signal was detected by the SDSS team in 2005 [420] throwing a value for the

sound horizon of approximately 150 Mpc in today’s Universe. The Two-degree-Field

Galaxy Redshift Survey (2dFGRS) collaboration, previous to the SDSS collaboration,

and the SDSS itslef reported a detection of the BAO signal in the power spectrum

at around the same time in 2005 [421]. Both teams are credited and recognized for

the discovery by the community as evidenced by the 2014 Shaw Prize in Astronomy

which was awarded to both groups.

The BAO imprint in the Lyman-α forest of quasars was first detected in 2013

[422]. As the light from distant quasars travels through multiple gas clouds with dif-

ferent redshifts, multiple absorption lines are formed (corresponding to Lyman-alpha

electron transition of the neutral hydrogen atom). Patches of greater density absorb

more light and the absorption lines of neutral hydrogen in the spectrum pinpoint each

dense patch by how much they are redshifted. With enough good quasar spectra, close

enough together, the position of the gas clouds can be mapped in three dimensions,

both along the line of sight for each quasar and transversely among dense patches

revealed by other quasar spectra. From these maps the BAO signal is extracted.

These measurements allowed the expansion rate to be measured for the first time

in the very past of the Universe, showing that at that time the expansion was still

decelerating. Since then, the BAO peak in the Lyman-α forest was measured with

greater accuracy and separate measurements of H(z) and DA(z) were obtained.

Another completed and/or ongoing BAO survey which should be mentioned are:

the WiggleZ Dark Energy Survey, a large-scale astronomical redshift survey working

between 2006 and 2011 [423] and the Extended Baryon Oscillation Spectroscopic

Survey (eBOSS) [424], working between 2014 and 2019, which concentrated its efforts
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on the observation of galaxies and in particular quasars, in a range of distances

(redshifts) currently left completely unexplored by other three-dimensional maps of

large-scale structure in the Universe.

1.5.4 Hubble data

An alternative method to constrain the expansion history of the Universe is based on

the study of the redshift evolution of “cosmic chronometers”, as suggested by Raul

Jimenez and Abraham Loeb [425].

In [426] the authors explain a complementary approach to measure the cosmic

expansion which consits on the study of the change in the age of the Universe in terms

of the redshift. This method, unlike other techniques, does not depend on integrated

quantities, but one needs to find a population of standard clocks in order to obtain

the evolution of the relative age of the Universe. In many works [427, 428, 429] it

has been shown that the most massive galaxies contain the oldest stellar populations

up to z ∼ 1 − 2. Studying the mass function of these early type galaxies (ETG) it

has been found that their massive ends are almost not changing between 0 < z < 0.7

[430].

It has been shown that the 4000 Å break which appears in the continuum spectrum

of different galaxy populations is a feature linearly correlated with the age of these

galaxies [426]. Then, it can serve as a good age indicator, i.e. the differential evolution

of this break can be considered as a tracer for the differential evolution of the age

of these galaxies. The linear relation between this feature (D4000 hereafter) and the

age which has been found in the mentioned paper reads

D4000 = A · age +B, (1.104)

where A and B are parameters which depend on the metallicity.

On the other hand, the cosmological expansion history is given by

H = − 1

(1 + z)

dz

dt
. (1.105)

Considering this two equations it is straight forward to get

H = − A

1 + z

dz

dD4000
, (1.106)

where the quantity dz/dD4000, or, equivalently, the D4000-z relation for the selected

ETGs acts as a standard clock wich allows us to measure H0.
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The differential ages of these objects, then, can be a good indicator for the rate

of change of the age of the Universe in terms of z (up to z ∼ 2), as the majority of

their stars formed at z > 2− 3. The problem of this technique is that it relies on the

determination of a non-observable parameter using spectra (age of stellar population)

and this presents high degeneracies with other parameters as metallicity or dust

content [426]. In [431] the authors follow this formalism and present constraints

on the cosmological parameters based on the direct determination of H(z) and the

combination of CMB, BAO and SNeIa data. Using data from [431, 432, 433] they

build a sample of 19 observational H(z) measurements, which they use to study the

constraints on the cosmological parameters.

In our work we use a compilation of Hubble parameter measurements estimated

by the differential evolution of ETGs used as cosmic chronometers, in the redshift

range 0 < z < 1.97, and recently updated in [434].

1.5.5 Quasars

The word quasar stands for quasi-stellar objects (QSO). They look like stars but

they are actually very different, with broad emission lines and they are believed to

be galaxies that emit large amounts of X-rays, ultraviolet light and even radio waves.

Quasars are believed to be caused by matter falling into a black hole at the centre of

the galaxies, causing jets of matter to shoot off at high speed. They are observable

up to redshift z ∼ 7 [435] thus being among the oldest objects that we know about.

In the 50’s scientists detected them by radio telescopes but were unable to detect a

visible object associated with them until the 60’s [436, 437].

They are known to be extremely variable and, unlike supernovae, a clear connec-

tion between a spectral feature and the luminosity is not available. In short, the use

of quasars as standard candles is not straight forward. The fundamental requirement

needed to employ these sources for a cosmological purpose is being able to measure

a “standard luminosity” from which infer the distance. A possible candidate for that

is the existing relation between the luminosities in the X-rays and ultra violet bands

[438, 439, 440, 441].

The data [442, 441] we use in this thesis are derived from a method based on the

non-linear relation usually employed in many works on quasars [438, 439, 440, 443,

444, 445, 446]. The relation between the UV and X luminosities is given by

logLX = β + γ logLUV . (1.107)

52



From here we can write

logFX = β′ + γ logFUV + 2(γ − 1) logDL, (1.108)

where β′ = β+(γ−1) log(4π), FX and FUV are the fluxes measured at fixed rest frame

wavelengths and DL is the luminosity distance. An additional assumption behind this

formula is also that the LX − LUV relation does not evolve or, at least, its evolution

is very weak, as it seems to have been validated in [442]. Then, taking into account

that the observed magnitude is given by

µ = 5 log(DL/10pc), (1.109)

one finds the magnitude in terms of the fluxes arriving to an expression that reads

µ =
5

2(γ − 1)
[log(FX)− γ log(FUV )− β′], (1.110)

where γ = 0.6 is the average value of the free parameter which relates both fluxes

and β′ is an arbitrary scaling factor.

1.5.6 Gamma Ray Bursts

When talking about distance indicators we must not forget gamma ray bursts (GRBs).

They are used in a similar way to SNeIa but they are valid for measuring distances

in a different redshift range, within the gap left between SNeIa and CMB.

GRBs are the most luminous electromagnetic explosions in the Universe. The

strong luminosity makes them detectable as far as z ∼ 8. Their electromagnetic

curve is characterized by an initial burst of gamma rays, followed by an afterglow of

X-rays, ultraviolet, optical, infrared or radio emissions [447, 448, 449, 450].

The history of the Universe from the CMB at z ∼ 1100 to the epoch when first

stars were formed, z ∼ 10 is still poorly known and GRBs would be the perfect tool

to allow us to unveil the dark Universe. GRBs provide good probes of the formation

rate and environmental impact of stars in the high redshift Universe, as the metal

enrichment of the intergalactic medium [451].

GRBs are usually classified into two classes: long GRBs and short GRBs. Besides,

the nature of their progenitors is uncertain [452]. Some observations show that the

progenitors of long GRBs are massive stars, so it is expected that long GRBs are

tracers of star formation rate. The progenitors of short GRBs, instead, are mergers

of eather a double neutron star or a black hole and a neutron star [453]. Among these

two kinds of GRBs, the longtype can be turned into “relative standard candles”, using
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luminosity correlations that have been found in prompt and afterglow phases [451]. In

fact, their infrared and near infrarred afterglows are expected to be detectable at very

high redshifts [454]. We call them relative standard candles because they are not really

standard candles. There are not GRBs at z < 0.1 which are cosmology independent,

then, GRBs have to be calibrated for each cosmological model and at the same time

are used to fit data. See [455, 456] for GRBs calibration issues. However, in [457]

an idea about of the distance ladder to calibrate GRBs in a completely cosmology

independent way has been proposed. In the same way to the calibration of SNeIa by

using Cepheid variables which are primary standard candles, one can calibrate GRBs

with a sufficiently large amount of SNeIa.

Many empirical formulas with the peak energy-peak luminosity correlation have

been proposed in order to calibrate GRBs. For example, in [457], the correlation

between peak energy of the spectrum E and the peak luminosity L satisfy the relation

[458]

L ∝ E2. (1.111)

This way, the GRBs sample at low redshift can be calibrated without assuming any

cosmological model, using an empirical formula for the luminosity distance estimated

from the one of SNeIa in the same redshift range. Once one has calibrated GRB data,

they can be used to constrain parameters of a cosmological model [459].

One important difference between GRBs and SNeIa is that gamma-ray photons

suffer from no extinction when they propagate towards us, while the optical photons

from supernovae will suffer extinction from the interstellar medium. Thus, GRBs

contain a lot of information about high redshift properties of the Universe which

cannot be derived from SNeIa. So their combined use with other cosmological probes

can bring important and complementary information about the Universe.

1.6 Statistical Analysis

All the mentioned observational probes provide us with the tools to statistically infer

the dynamical characteristics of our Universe. There are two main approaches to this

problem: frequentist and Bayesian. The former is also known as the classical one,

where the notion of probability is tied to the frequency of outcomes over a series of

trials. In this approach repeatability of an experiment is the main concept, which

clearly fails when dealing with cosmology. The latter, instead, considers that proba-

bility expresses a degree of belief in a proposition, based on the available knowledge

of the experimenter [460]. Let us keep in mind that, when doing a measurement, we
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want to determine the “true” value of a physical quantity, understanding “true” as

immune to errors. However this is not possible in practice, and what we measure is

the best estimate of the true value and the corresponding uncertainties. The various

contributions to the overall uncertainty are classified in terms of statistical uncertain-

ties, which arise from variations in the results of repeated observations under the same

conditions, and systematic uncertainties, related to the sources of the experimental

errors [461]. On the one hand, statistical uncertainties have the characteristic of van-

ishing when the number of observations is very large. On the other hand, systematic

uncertainties are not possible to treat coherently in a frequentist scenario as there is

not a justified consensus on how to consider them [462]. The only way to deal with

these and related problems in a consistent way is to abandon the frequentist interpre-

tation of probability introduced at the beginning of this century, and to recover the

intuitive concept of probability as degree of belief. Besides, the Bayesian framework

can be applied to any thinkable event, independently of the feasibility of making an

inventory of all (equally) possible and favorable cases, or of repeating the experiment

under conditions of equal probability, what makes it very appropriate for cosmology,

where we just have one realisation of our Universe. For more details on this debate

please refer to the previous references. Throughout our work we have adhered to the

Bayesian approach, and we will just refer to it in the following definitions.

The main goal of any statistical inference approach is to find out the most likely

values of the parameters of a theoretical model, given a set of data. In Bayesian Infer-

ence this is equivalent to find out the posterior probability function which, following

Bayes’ theorem, is given by

p(θ,M|d) =
L(d|θ,M)π(θ|M)∫
dθL(d|θ,M)π(θ|M)

, (1.112)

where d is the data, M is the theoretical cosmological model taken into account

and characterized by the vector of parameters θ. On the left hand side we have

the posterior function which we aim to reconstruct, p(θ,M|d). On the right hand

side, instead, we have: L(d|θ,M), the likelihood distribution function [463], which

is the probability to have the data we have collected, expressed as a function of the

model parameters; π(θ,M), the most crucial ingredient in the Bayesian analysis, the

prior distribution function of the parameters under investigation, namely, the function

which quantifies and qualifies any kind of a priori (physically sounding, in our case)

probabilistic information we have about the parameters we are concerned with. The

denominator, which is basically p(d|M), is known as evidence and while it appears

only as a normalization factor, thus being irrelevant for what concerns fixing the best

55



fit parameters value, it is crucial in “model selection”, i.e. when we need to state the

degree of statistical reliability of one model with respect to another.

While in the frequentist approach the best fit parameters are found by maximizing

the likelihood function, in the Bayesian one what we really need to focus on is the

posterior, which is an intrinsically different procedure. The two are equivalent only

if the priors are flat; in that case the function π is just a normalization factor, and

the posterior and the likelihood coincide.

Moreover, if one considers that the measurements are normally distributed around

their real value, the likelihood function reads

L(d|θ,M) ∝ e−
χ2(θ)

2 , (1.113)

where χ2(θ) is the so-called chi-squared function. In the most general case, thus,

maximizing L(d|θ,M) corresponds to minimizing χ2(θ), defined as

χ2(θ) = ∆d · C−1 · ∆dT , (1.114)

with ∆d ≡ dobs − d(θ), where dobs is the observed data vector and C−1 the inverse

of the covariant matrix, which contains the information of the experimental errors. If

data points are not correlated, one can write

χ2(θ) =
N∑
i=1

(
∆d

σobs
i

)2

, (1.115)

where we have used that Cij = δijσ
2
i .

If we are working with multiple data sets, we have to minimize the total χ2. If

the case where all the observational data mentioned before is used to perform some

analysis, the quantity we have to minimize would be

χ2 =
∑
i

χ2
i , (1.116)

where the subindex i stands for each of the data sets considered. We will describe

in the following the expression of the χ2
i for the different observational data we have

used.

Marginalization

Sometimes one has to minimize over nuisance parameters that are not of interest for

our model or that the observations cannot properly measure. For example, for SNeIa
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there are parameters that take into account the light-curve shape, the stretch of the

luminosity relation, etc.

The general procedure to perform a marginalization is to integrate out of the

probability distribution the unwanted parameters [464, 465]. For the specific case of

the magnitude of SNeIa,

µ = 5 log(dL) + µ0, (1.117)

we would have to marginalize over µ0, which encodes information related to the

absolute magnitude and H0.

The calculation of the χ2 for the magnitude -where it is included the dependence

on the nuisance paramter µ0- is given by Eq. (1.114)

χ2 = (µtheo − µobs)T · C−1
SN · (µtheo − µobs). (1.118)

Now, following [465], in order to marginalize over µ0 we have to compute the integral

χ̃2 = −2 log

(∫ +∞

−∞
e−χ

2/2Π(µ0)dµ0

)
, (1.119)

where Π(µ0) is the prior distribution. Assuming this prior to be uniform one obtains

the marginalized χ̃2

χ̃2 = a+ log
e

2π
− b2

e
, (1.120)

where

a = (µtheo − µobs) · C−1
SN · (µtheo − µobs)

T , (1.121)

b = (µtheo − µobs) · C−1
SN · 1

T , (1.122)

e = 1 · C−1
SN · 1

T . (1.123)

Type Ia Supernovae

We define

χ2
SN = ∆FSN · C−1

SN · ∆FSN . (1.124)

Here ∆F = Ftheo − Fobs represents the difference between the theoretical and the

observed value of the observable quantity for each SNeIa, which is the distance mod-

ulus,

∆FSN = µ(z,θ)− µobs(z). (1.125)

The term CSN gives the total covariance matrix and θ, as defined before, stands for

the vector of parameters.
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In our work we use two SNeIa compilations. The first one is the Joint-Light-

curve Analysis compilation [466], made of 740 SNeIa obtained by the SDSS-II (Sloan

Digital SkySurvey) and SNLS (Supenovae Legacy Survey) collabo-rations, covering

the redshift range 0.01 < z < 1.39. In this case we have computed the distance

modulus as

µ(z,θ) = 5 log10[DL(z,θ)]− αX1 + βC +MB, (1.126)

where DL is given by

DL(z,θ) =
c

H0

(1 + z)

∫ z

0

dz′

E(z′,θ)
, (1.127)

with E(z,θ) = H(z,θ)/H0 - following [466], only for SNeIa analysis we assume

H0 = 70 km/s Mpc−1 - and c the speed of light measured here and now. In this case

the vector θ will include cosmologically-related parameters and three other fitting

parameters: α and β, which characterize the stretch-luminosity and color-luminosity

relationships; and the nuisance parameter MB, expressed as a step function of two

more parameters, M1
B and ∆m:

MB =

{
M1

B if Mstellar < 1010M�,

M1
B + ∆m otherwise ,

(1.128)

where Mstellar is the mass of the host galaxy. Further details are given in [466].

The second data set we have used is the Pantheon compilation [393]. This set is

made of 1048 SNeIa covering the redshift range 0.01 < z < 2.26. We compute the

distance modulus as

µ(z,θ) = 5 log10[dL(z,θ)] + µ0 , (1.129)

where dL is the dimensionless luminosity distance given by

dL(z,θ) = (1 + z)

∫ z

0

dz′

E(z′, )
(1.130)

Notwithstandingly, our χ2
SN above would contain the nuisance parameter µ0, which in

turn is a function of the Hubble constant, the speed of light c and the SNeIa absolute

magnitude. This inconvenient degeneracy intrinsic to the definition of the parameters

can be dealt with if we marginalize analytically over µ0. We refer the reader to [465]

for details on this procedure.

The χ2 estimator for this latter compilation thus reads

χ2
SN = a+ log

(
d

2π

)
− b2

d
, (1.131)

where a ≡ (∆FSN)T · C−1
SN · ∆FSN , b ≡

(
∆FSN

)T · C−1
SN · 1 and d ≡ 1 · C−1

SN · 1,

with 1 being the identity matrix.
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Baryon Acoustic Oscillations

The χ2
BAO estimator for Baryon Acoustic Oscillations (BAO) is defined in the follow-

ing way:

χ2
BAO = ∆FBAO · C−1

BAO · ∆FBAO , (1.132)

where the quantity involved in FBAO actually depends on the survey which is con-

sidered.

We used data from the WiggleZ Dark Energy Survey, evaluated at redshifts z =

0.44, 0.6, 0.73, and given in Table 1 of [60]. In this case we identify

FBAO = {A(z,θ), F (z,θ)}, (1.133)

with A(z) and F (z) given by Eqs. (1.100)-(1.103).

We have also considered the data from the SDSS-III Baryon Oscillation Spectro-

scopic Survey (BOSS) DR12, described in [467]. Here, the quantities to be taken into

account are DM and H(z). More concretely,

FBAO = {DM(z,θ)
rfids (zd,θ)

rs(zd,θ)
, H(z,θ)

rs(zd,θ)

rfids (zd,θ)
} , (1.134)

where all quantities are given by Eqs. (1.15), (1.96) and where rs(zd) is the sound

horizon evaluated at the dragging redshift and rfids (zd) is the same sound horizon but

calculated for a given fiducial cosmological model used. The sound horizon is defined

as:

rs(z,θ) =

∫ ∞
z

cs(z
′)

H(z′,θ)
dz′ (1.135)

with the sound speed

cs(z) =
c√

3(1 +Rb (1 + z)−1)
, (1.136)

and

Rb = 31500Ωb h
2 (TCMB/2.7)−4 (1.137)

with TCMB = 2.726 K.

We have taken into account the point DV (z = 1.52) = 3843± 147 rs(zd)

rfids (zd)
Mpc ob-

tained by using the clustering of quasars [468] 10 from the extended Baryon Oscillation

Spectroscopic Survey (eBOSS), with DV given by Eq. (1.101).

10The data is DV in units of rs(zd)

rfid
s (zd)

. Then, the quantity we have considered is DV
rfid
s (zd)
rs(zd)

.
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Finally, we have also added data points from Quasar-Lyman α Forest from SDSS-

III BOSS DR11 [469]. Here we have

FBAO = {dA(z,θ)/rs(zd,θ), H(z,θ)/rs(zd,θ)}, (1.138)

with dA and rs(zD) defined in Eqs. (1.18),(1.96) and (1.135).

Cosmic Microwave Background

The χ2
CMB estimator for the Cosmic Microwave Background (CMB) is defined as

χ2
CMB = ∆FCMB · C−1

CMB · ∆FCMB , (1.139)

where , following [470], we define

FCMB = {l(θ), R(θ),Ωbh
2}. (1.140)

Hubble data

For these measurements one can construct a χ2
H estimator as follows:

χ2
H =

24∑
i=1

(H(zi,θ)−Hobs(zi))
2

σ2
H(zi)

, (1.141)

where σH(zi) stand for the observational errors on the measured values Hobs(zi), and

θ is the vector of the cosmological background parameters.

Quasars

In our work we use the quasar data from [442] consisting on 808 objects covering

the redshift range 0.06 < z < 6.28. As before we compute the theoretical distance

modulus using Eq. (1.129) and marginalize over the additive constant terms so that

the the final χ2 is given by Eq. (1.131) where now we have: a ≡
(
∆FQ

)T ·C−1
Q ·∆FQ,

b ≡
(
∆FQ

)T · C−1
Q · 1 and d ≡ 1 · C−1

Q · 1.

Gamma Ray Bursts

In our work we have considered the so-called Mayflower sample, consisting on 79

Gamma Ray Bursts (GRBs) covering the redshift range 1.44 < z < 8.1 [471]. As be-

fore, we compute the theoretical distance modulus using Eq. (1.129) and marginalize

over the constant additive term so that the the final χ2 is given by Eq. (1.131) with

a ≡
(
∆FG

)T · C−1
G · ∆FG, b ≡

(
∆FG

)T · C−1
G · 1 and d ≡ 1 · C−1

G · 1.
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1.6.1 Monte Carlo Markov Chain (MCMC)

In order to find the value of the parameters which minimize the χ2 of a specific

model, the simplest and usual approach is the grid method. This process consists on

constructing a grid by dividing the physical range of each parameter in fine intervals,

so that the value of χ2 will be defined by a point in the parameter space. But if one

has to deal with models with a large number of parameters and data (as it happens

in cosmology), the grid approach is not the most convenient both in terms of time

and hardware budget. To address these multi-dimensional problems, the Monte Carlo

Markov Chain (MCMC) method is more useful [472].

More concretely, the purpose of a Markov Chain Monte Carlo algorithm is to

construct a sequence (or chain) of points (“samples”) in parameter space. The crucial

property of the chain is that the density of samples is proportional to the posterior

pdf thus allowing to reconstruct a map of the posterior distribution [460, 472, 473].

The Markov nature of such chains is reached when the sequence of random variables

is such that the probability of the (t + 1)–th element in the chain only depends on

the value of the t–th element. The crucial property of Markov chains is that they can

be shown to converge to a stationary state (i.e., which does not change with t) where

successive elements of the chain are samples from the target distribution, in our case

the posterior p(θ|d).

One of the most used algorithm for the acceptance-rejection sampling is the

Metropolis-Hastings [474], where we want to remark the important role of the pro-

posal density function, q(θ′|θ), which is defined in order to pick the subsequent trial

points and represents the conditional probability to have θ′ given θ. The steps are

the following:

• We start from an initial point for the vector parameters θ;

• A new point θ′ is taken employing a proposal density function q(θ′|θ);

• The transition kernel T (θ,θ′), i.e. the conditional probability to move from one

state to another, must satisfy the condition

p(θ′|d)T (θ′,θ) = p(θ|d)T (θ,θ′). (1.142)

In this way we guarantee that the Markov chain recovers the posterior distri-

bution p(θ|d);
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• The previous condition corresponds to setting the probability to accept a point

at

g(θ,θ′) = min

{
1,
p(θ′|d)q(θ′,θ)

p(θ|d)q(θ,θ′)

}
, (1.143)

where T (θ,θ′) = g(θ,θ′)q(θ,θ′);

• To decide whether to accept the new state or not, a random number u from the

range [0, 1] is generated and compared with g(θ,θ′). Then, only if g ≥ u the

new state will be accepted. Otherwise, it is rejected and the next step will start

with the same previous step θ. In fact, if the numerator in Eq. (1.143) is bigger

than the denominator, one already ensures that new state will be automatically

accepted.

Burn-in period and chain convergence

When doing an MCMC chain one usually observes that there is an initial burn-in

region where the chain has not arrived to the equilibrium distribution. This occurs

due to the lack of information at choosing the initial θ, which make it to be far

from the true value. This is why initial samples in the chain must be discarded.

The length of the burn–in period can be assessed by looking at the evolution of the

posterior density as a function of the number of steps in the chain. When the chain is

started at a random point in parameter space, the posterior probability will typically

be small and becomes larger at every step as the chain approaches the region where

the fit to the data is better [460]. Thus, as we go through each step of the chain, we

observe how the χ2 stabilizes. This can be seen in Fig. (1.6).

Another issue is presented by the assessment of chain convergence, which aims

at establishing when the MCMC process has gathered enough samples so that the

Monte Carlo estimate is sufficiently accurate . We recommend to see [475, 476] for

diagnostic tools and criteria. To avoid running multiple chains, we have followed the

method developed in [477], where the spectral analysis of a single chain is performed,

and some test diagnostics can be evaluated to establish convergence.

1.6.2 Model selection

Finally, in order to set up the reliability of one model with respect to others, the

Bayesian Evidence is generally recognized as the most reliable statistical comparison

tool even if it is not completely immune to problems, like its dependence on the choice

of priors [478]. The Evidence, E , is defined as the probability of the data D given
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Figure 1.6: Burn-in and stabilization of the MCMC chain.

the model M with a set of parameters θ, E(M) =
∫

dθ L(D|θ,M) π(θ|M). We

calculate it using the algorithm described in [479], whose main steps we will detail

below. The main idea within this method is that it breaks up the prior volume into

a large number of equal smaller volumes and orders them by the maximum value of

the likelihood inside them. Denoting X as the fraction of total prior mass such that

dX = P (θ|M) and the likelihood P (D|θ,M) = L(X), the equation for the evidence

reads,

E =

∫ 1

0

L dX. (1.144)

Then, we have now a one-dimensional integral in which the integrand is positive and

decreasing. If we assume that it is possible to evaluate the likelihood as Lj = L(Xj),

where the Xj are a sequence of decreasing values between 0 and 1, then the evidence

can be computed as

E =
∑
j

Ej, with E =
Lj
2

(Xj−1 −Xj+1). (1.145)

The above summation is achieved following these steps:

• We sample N points randomly from within the prior and compute their likeli-

hoods. At the beginning we have the full prior range available, 0 ≤ X0 ≤ 1.
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• We select the point with the lowest likelihood and the prior volume correspond-

ing to this point, Xj, can be estimated probabilistically. We can compute the

average volume decrease as Xj/Xj−1 = t, where t is the expectation value of

the largest of N random numbers from (0, 1), which is N/(N + 1).

• Now we increment the evidence by Ej = Lj(Xj−1 −Xj+1)/2.

• We will discard the lowest likelihood point and replace it with a new point, uni-

formly distributed within the remaining prior volume (0, Xj). The new point

must satisfy the constraint on likelihood of L > Lj.

• Finally, we will repeat second to fourth steps until the evidence has been esti-

mated to some desired accuracy.

This algorithm is stochastic thus, in order to take into account possible statistical

variance, we have run it ∼ 100 times obtaining a distribution of values from which

we extract the best value of the evidence as the median of the distribution with the

corresponding error.

Once the Bayesian Evidence is calculated, one can obtain the Bayes Factor, defined

as the ratio of evidences of two models, Mi and Mj, Bij = Ei/Ej. If Bij > 1, model

Mi is preferred over Mj, given the data. Although, even if the Bayes Factor Bij > 1,

one is not able yet to state how much better is model Mi with respect to model

Mj. For this, we followed the widely-used Jeffreys’ Scale [480]. In general, Jeffreys’

Scale states that: if lnBij < 1, the evidence in favor of model Mi is not significant; if

1 < lnBij < 2.5, the evidence is substantial; if 2.5 < lnBij < 5, is strong; if lnBij > 5,

is decisive. Negative values of lnBij can be easily interpreted as evidence against

model Mi (or in favor of model Mj). In [478], it is shown that the Jeffreys’ scale is

not a fully-reliable tool for model comparison, but at the same time the statistical

validity of the Bayes factor as an efficient model-comparison tool is not questioned: a

Bayes factor Bij > 1 unequivocally states that the model i is more likely than model

j.
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Chapter 2

f (R) gravity

It is a very well established matter nowadays that many modified gravity models can

offer a sound alternative to GR for the description of the accelerated expansion of

the universe. But it is also equally well known that no clear and sharp discrimination

between any alternative theory and the classical one has been found so far. In this

chapter, we attempt at formulating a different approach starting from the general

class of f(R) theories – introduced in Sec. 1 – as test probes: we try to reformulate

f(R) Lagrangian terms as explicit functions of the redshift, i.e., as f(z).

The most common approach when one tries to accomplish this task is to first pro-

pose an f(R) expression at the level of the Lagrangian, with the requirement that it

satisfies some priors (e.g. Solar System constraints), then to solve the corresponding

dynamical equations, and finally to test them against the data. The main obstacle in

this procedure is that the fourth order differential equations which come out from a

very general f(R) Lagrangian are not analytically solvable. For cosmological applica-

tions, consider that the Friedmann equations can result to be quite complicated third

order differential equation in H [481], the expansion rate function which is generally

needed in order to calculate cosmological distances, and we might miss an easy ana-

lytical expression for it (see [482] for an application to the famous model from [285]).

In order to overcome such difficulties, thus, either one needs to fix a functional form

for the f(R) function so as to obtain analytically manageable equations [291], or

some phenomenological ansätze for an H compatible with the given f(R) have to be

proposed [483]. Alternatively, one can go the other way around, that is, to recover

analytically a specific f(R) model from any requested standard cosmology [484] or

given any H(t) proposal [485, 481], or to reconstruct numerically the f(R) from the

data [231]. It has not to be forgotten, on the other hand, that for f(R) theories a

scalar-tensor equivalence holds [486], meaning that a scalar field can be introduced,

65



coupled to gravity (geometrically described by a standard f(R) = R) and following

a given potential, which is completely equivalent to the given f(R) model.

In all the previous cases, anyway, there are some flaws, or limitations: in one way

or another, we need to make assumptions at some step, so that the results will be

always somewhat biased by these choices and will not be as general as they should or

as we would like; in some cases, the relation between f(R) and H is generally approx-

imate and some information might be lost (especially if advocating the scalar-tensor

equivalence). One usual approach is to take into account that the f(R) cosmology

should mimic the ΛCDM model as much as possible given that, at the end of the

day, this model gives the best description to most of the cosmological data available

nowadays. Thus, the f(R) cosmology should recover a matter dominated stage at

high redshift, and should show accelerated expansion at low redshift, ideally, without

a true cosmological constant, but through purely geometrical terms. Apart from set-

ting some general limits based on these considerations, there really is not much more

information one can provide a priori in order to yield sensible f(R) theories.

Our present study is precisely related to this topic. We want to explore this prob-

lem but using a different approach, a sort of practical poor cosmologist approach. The

vast amount of probes in cosmology provides us with a big variety of measurements

usually corresponding to specific values of the redshift; thus, we think it would be

interesting to have gravity models which are described in terms of this observable, so

that we are provided with a more straightforward way to test the models against the

observations. Studies exist in the literature where the redshift formulation appears

[483], however they are not focused on constructing a sensible f(z) model but rather

on proposing ansätze both for the Hubble function H and for the f(R) function, and

then fitting the parameters in order to do a cosmographic reconstruction. Our present

analysis will seek a way to provide reasonable f(z) models since the beginning, i.e.,

from the action, so that at a later stage one can numerically solve the dynamics of the

Universe, to test their validity and study their deviation with respect to the ΛCDM

scenario.

We begin by introducing briefly how we build f(R) as a function of the redshift

z. The expression of the derivatives of f(R) with respect to R, and of R with respect

to time are provided in terms of derivatives with respect to the redshift z. We then

consider various different dark energy and modified gravity scenarios and calculate

the corresponding high and low redshift limits to validate the choice of our proposals.

We will also describe the observational data used in our analysis and we will end up

with a discussion of the obtained results and some conclusions.
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2.1 From f (R) to f (z)

We consider the most general f(R)-type modification to the Einstein-Hilbert action

described by the action [223]

S =

∫
d4x
√
−g[f(R) + Lm], (2.1)

where g is the determinant of the metric gµν and Lm is the Lagrangian of any con-

sidered energy-matter component. In order to obtain the field equations one has to

vary the action with respect to the metric field, gµν , ending up with

RµνfR −
1

2
gµνf + (gµν�−∇µ∇ν)fR = Tmµν , (2.2)

where Rµν is the Ricci tensor, � and ∇ are respectively the d’Alembertian and Lapla-

cian operators, Tmµν is the stress energy tensor, and we define fR ≡ df/dR. We assume

a background Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric in spherical co-

ordinates

ds2 = −c2dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.3)

with c, the speed of light in vacuum and a(t), the scale factor, and we restrict our

considerations to spatially flat spaces (k = 0), with matter and radiation as the only

contribution to the stress-energy tensor. Thus we will consider f(R) as a purely

geometrical contribution even if, as stated before, we can always find a scalar field,

entering the stress-energy tensor, and completely equivalent to the original proposed

f(R). Finally, we obtain the generalized Friedmann equations which govern the

dynamics of the universe at large scales, namely [481]

H2 =
1

3fR

(
ρm + ρr +

RfR − f
2

− 3HṘf2R

)
, (2.4)

−3H2 − 2Ḣ =
1

fR

[
Ṙ2f3R +

(
2HṘ + R̈

)
f2R +

1

2
(f −RfR)

]
,

where · ≡ d/dt and we have defined f2R ≡ d2f/dR2, f3R ≡ d3f/dR3, together with

the energy conservation equation for standard energy-matter perfect fluids:

˙ρX(t) + 3H(t)

[
ρX(t) + 3

pX(t)

c2

]
= 0 , (2.5)

where the suffix X stands for matter, radiation or any fluid in the stress-energy tensor.

For our goals, the next step is to perform a change of variables in order to have

all the derivatives appearing in Eq. (2.4) in terms of the redshift. First, we note that

by combining the generalized Friedmann equations we obtain

R = −3(H2)z(1 + z) + 12H2 , (2.6)
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which is the usual definition for the Ricci scalar for homogeneous and isotropic flat

FLRW spacetimes. From this, we calculate

Rz = 9(H2)z − 3(1 + z)(H2)2z, (2.7)

R2z = 6(H2)2z − 3(1 + z)(H2)3z.

where the subindex z means derivative w.r.t. the redshift. Finally, one gets:

fR = R−1
z fz,

f2R = (f2zRz − fzR2z)R
−3
z ,

f3R =
f3z

R3
z

− fzR3z + 3f2zR2z

R4
z

+
3fzR

2
2z

R5
z

, (2.8)

Ṙ = −(1 + z)HRz,

R̈ = (1 + z)H[HRz + (1 + z)(HzRz +HR2z)].

Here we will provide f(R) as f(z), we will solve Eq. (2.4) numerically for H, and we

will compare it to observational data. In terms of the redshift, the first Friedmann

equation Eq. (2.4) now reads:

H2 =
ρf
3

+
Rz [(1 + z)4Ωr + Ωm(1 + z)3]

fz
, (2.9)

with

ρf =
Rz

fz

[
1

2

(
Rfz
Rz

− f
)

+
3(1 + z)H2(Rzf2z −R2zfz)

R2
z

]
. (2.10)

Clearly, here we have a third order differential equation, for which we need to set

initial conditions for H, Hz and H2z; we will discuss in the next section how we

choose such initial conditions.

2.1.1 Requirements for f(z) proposals

Once we have the equation for H, the next step is to provide a “good” f(z) model to

test against data. We know that a spatially flat ΛCDM universe can be expressed as

the f(R) theory:

fΛ(R) = R− 2Λ. (2.11)

If we assume the universe filled wth matter and radiation, then the first Friedmann

equation can be cast into the following form:

H2(z) = Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr) , (2.12)
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where we have defined the dimensionless density parameters as

Ωi =
8πGρi
3H2

0

, (2.13)

with i = m, r indicating, respectively, matter and radiation, and 1− Ωm − Ωr corre-

sponding to the cosmological constant. To get fΛ in terms of the redshift we can use

Eqs. (2.6), thus obtaining

R(z) = 12(1− Ωm − Ωr) + 3Ωm(1 + z)3, (2.14)

fΛ(z) = 6(1− Ωm − Ωr) + 3Ωm(1 + z)3. (2.15)

Here we have normalized by H2
0 , the Hubble constant H0 ≡ H(z = 0), just to simplify

notation, and we will keep this notation for the whole analysis.

Taking this into account we would like to choose an f(z) which is somehow the

simplest generalization of the latter expression, that is, a polynomial with more terms

and not only a constant and a third-degree one. In order to set some restrictions when

choosing a specific model, a useful analysis is to study the high and low redshift limit

of R and f(R) for the case of ΛCDM and other different models of dark energy or

modified gravity theories. At the end of the day, even if ΛCDM may not be the

model which really underlies our universe, it is the one which, so far, best describes

it. Thus, any generalization, should have a behaviour which should follow its same

trends. If we were able to detect some special feature, we could propose a reasonable

f(z) according to this.

Actually, Eqs. (2.14) - (2.15) exactly provide us with such information; it is

straightforward and somehow trivial to verify that the high and low redshift lim-

its of ΛCDM for both the Ricci scalar and the fΛ(R) function (which in this case are

identical, because of GR) read

lim
z→∞

R(z) = lim
z→∞

fΛ(z) = 3Ωm(1 + z)3, (2.16)

lim
z→0

R(z) = lim
z→0

fΛ(z) = const. (2.17)

Let us generalize a little bit such scenario, considering the most popular and

common dark energy model used in the usual references, the CPL model,

w(a) = w0 + wa(1− a) . (2.18)

The well-known expression for the first Friedmann equation in this case is:

H2 = Ωma
−3 + Ωra

−4 + (1− Ωm − Ωr)e
3wa(a−1)a−3(1+w0+wa) , (2.19)
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from this, we can compute the Ricci scalar:

R(a) = 3Ωma
−3 + 3 (1− Ωm − Ωr) [1− 3w(a)] exp (3wa(a− 1)) a−3(1+w0+wa) . (2.20)

As we are still working in the context of General Relativity, fCPL = R and the CPL

dark energy fluid is included in the stress-energy tensor. Let us notice that w(a = 1) =

w0 has to be negative today, in order to lead to the observed accelerated expansion of

the universe; and we can further assume the strong prior w0 + wa < 0, as confirmed

by observations [487], which implies that the universe was matter dominated at early

times. Accordingly,

lim
z→∞

R(z) = 3Ωm(1 + z)3 , (2.21)

while for the low redshift limit one finds:

lim
z→0

R(z) = 3(1− Ωm − Ωr)(1− 3w0) + 3Ωm = const. (2.22)

Setting w0 = −1 we would get the limit for the ΛCDM model.

Another possibility is given by the “early dark energy” models [108, 109]. We will

focus on the model discussed in [110],

H(a)2 = Ωma
−3 + Ωra

−4 + (1− Ωm − Ωr − Ωee) + Ωee
(1 + ac)

2

a6 + a6
c

, (2.23)

where Ωee is the fractional energy density of the early dark energy today, and ac =

1/(1 + zc) is the critical value of the scale at which it shifts from the early-time

behaviour to the late-time behaviour. Computing the Ricci scalar in terms of the

redshift, one gets

R(z) = 12(1− Ωee − Ωm − Ωr) + 3Ωm(1 + z)3 + (2.24)

6Ωee(1 + ac)
2

a6
c + 1

(1+z)6

(
2− 3

1 + (1 + z)6a6
c

)
.

Taking the limits one finds:

lim
z→∞

R(z) = 3Ωm(1 + z)3 , (2.25)

lim
z→0

R(z) = 12(1− Ωee − Ωr)− 9Ωm + 6Ωee
(1 + ac)

2

1 + a6
c

(
2− 3

1 + a6
c

)
= const.

Thus, in these two cases, we qualitatively recover the same limits as ΛCDM. While

this is somehow expected, because both the CPL parametrization and the early dark

energy models are generalizations of the cosmological constant and contain it as a

70



special case, we are also interested in exploring the limits of more radically different

approaches. For example, we will consider the Ricci dark energy model [148]. An

interesting feature here is that ΛCDM is not explicitly included in this model. This

difference, anyway, as it happens in many cases, does not necessarily translate into a

difference in the quantitative description of the observational data. In this model the

cosmological evolution is governed by

H2 =
2Ωm

2− γ
(1 + z)3 + Ωr(1 + z)4 +

(
1− Ωr −

2Ωm

2− γ

)
(1 + z)4− 2

γ , (2.26)

from which the Ricci scalar reads

R(z) =
6Ωm(1 + z)3

2− γ
+ 6(1 + z)4Aγ(z)

(
1− Ωr −

2Ωm

2− γ

)
, (2.27)

with

Aγ(z) ≡ (1 + z)−2/γ

γ
. (2.28)

One can notice that the first term in R will dominate as far as γ < 2. And,

actually, this parameter has been constrained with observational data [488] to be

γ = 0.325+0.009
−0.010, so that one can write

lim
z→∞

R(z) =
6Ωm(1 + z)3

2− γ
. (2.29)

The low redshift limit exhibits, like in the previous cases, a constant behaviour:

lim
z→0

R(z) =
6

γ

(
1− 2Ωm

2− γ
− Ωr

)
+

6Ωm

2− γ
= const. (2.30)

We also consider another well-known example of modified gravity, the Dvali-

Gabadadze-Porrati (DGP) model [489], in which gravity leaks off the four dimensional

Minkowski brane into the five dimensional bulk Minkowski space-time and such set-

ting should yield a self-acceleration of the universe without introducing dark energy.

The dynamics for this model is given by the modified Friedmann equation [490]

H(z) =
√

Ωm(1 + z)3 + Ωr(1 + z)4 + Ωrc +
√

Ωrc . (2.31)

As in the previous case, the ΛCDM model is not a sub-case within this theory. Plug-

ging Eq. (2.31) into Eq. (2.6) we get:

R(z) = 3Ωm(1 + z)3 + 12
√

Ωrch(z) + 24Ωrc +
3
√

Ωrc

h(z)

(
4Ωrc + Ωm(1 + z)3

)
, (2.32)
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with

H(z) ≡ Ωrc + Ωm(1 + z)3 + Ωr(1 + z)4 , (2.33)

and

Ωrc =
1

4r2
cH

2
0

, (2.34)

where rc is the cross-over scale that governs the transition between four-dimensional

behavior and five-dimensional behavior. One can easily see that as z → ∞, the

biggest contribution corresponds to

lim
z→∞

R(z) = 3Ωm(1 + z)3, (2.35)

while for the low redshift limit we have:

lim
z→0

R(z) = 3Ωm + 12
√

ΩrchΩ + 24Ωrc +
3
√

Ωrc

hΩ

(4Ωrc + Ωm) = const. , (2.36)

with

hΩ ≡
√

Ωrc + Ωm + Ωr. (2.37)

It is important to note that the four-dimensional part of the total DGP action has

fDGP (R) = R. A generalization of this model can be found in [491].

2.1.2 Final proposals

Given the previous examples and reminding that for all of them we have f(R) = R,

we can see that in many relevant cases in the literature these hold:

lim
z→∞

R(z) ∝ (1 + z)3 , (2.38)

lim
z→∞

f(z) ∝ (1 + z)3 , (2.39)

lim
z→0

R(z) ∝ const. , (2.40)

lim
z→0

f(z) ∝ const ; (2.41)

then, we can conclude that it is a reasonable choice to propose polynomial expressions

with a maximum third-degree term as extensions of the fΛ(R). Anyway, one could

ask what would happen with more general f(R) models alternative to those described

above. For example, in [292], the authors consider the model

f(R) = β Rn . (2.42)

Following [292] it is easy to deduce that

R ∝ (1 + z)3/n , (2.43)
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from which we have

f(R) ∝ (1 + z)3 . (2.44)

This result is not in contrast with previous high redshift limits. Again, in [292],

another f(R) model is considered which is given by

f(R) = α lnR . (2.45)

Again, we obtain

R ∝ − 1

2 (9A(1 + z)3 + 4)2

{
3(9A+ 4) exp

3
2
A[(1+z)3−1]

×
[
9A(1 + z)3

(
9A(1 + z)3 − 10

)
− 32

]}
, (2.46)

with A = ΩmH
2
0α
−1. In this case,

lim
z→∞

R(z) ∝ exp(1+z)3−1 , (2.47)

which implies that

lim
z→∞

f(R) ∝ (1 + z)3 . (2.48)

Thus, again, we have the same high redshift limit. Note also that in both the f(R)

models we have just considered, the low redshift limit is not a constant, which means,

they do not include a cosmological constant. Of course, we cannot check here all

possible models, as this would be out of the purpose of the present analysis, and

would be a gigantic, yet useless, exercise, also because even the more commonly used,

as the one in [285], can not have an analytical solution for H [482].

But it is clear, that the limits we have described so far, clearly depict a possible

trend which we use as guideline for our proposals. Thus, we are going to choose

different models to see how much each model deviates with respect to ΛCDM. Let us

notice that some of the models will contain a constant term (so they might resemble

a ΛCDM model) and others will not. The latter may have more interest if we want

to provide fully alternative theories to the standard model of cosmology. Finally and

all in all, the models we have decided to focus on are:

1. f0 + f3(1 + z)3

2. f0 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3

3. f0 + f2(1 + z)2 + f3(1 + z)3

4. f0 + f1(1 + z) + f3(1 + z)3
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5. f12(1 + z)1/2 + f3(1 + z)3

6. f12(1 + z)1/2 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3

7. f14(1 + z)1/4 + f3(1 + z)3

8. f14(1 + z)1/4 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3

2.2 Observational test

We have used the combination of various current observational data to constrain

the f(R) = f(z) models described previously. We have only considered the obser-

vational data related to the expansion history of the universe, i.e., those describing

the distance-redshift relations. Specifically, we use the Type Ia Supernovae data

from the JLA (Joint-Light-curve Analysis) compilation [492]; the cosmic microwave

background distance priors from [470]; the Baryon Acoustic Oscillations data from

WiggleZ Dark Energy Survey [60], the data from the SDSS-III Baryon Oscillation

Spectroscopic Survey (BOSS) DR12, described in [467], data points from Quasar-

Lyman α Forest from SDSS-III BOSS DR11 [469]; the expansion rate data from

early-type galaxies (ETG) [434] and a gaussian prior on H0 derived from the Hubble

constant value given in [39], H0 = 69.6± 0.7.

The complete set of free parameters in our analysis is Ωm,Ωb, h, fi, α, β,MB,∆m,

where fi are the parameters corresponding to the various polynomial degrees we have

considered for each of the proposed parametrizations of f(z). We will focus in our

comments only on the matter density parameter Ωm and on the fi parameters, given

that the other parameters are fully limited by imposed priors (e.g., Ωb and h), or are

independent of the cosmological background (e.g., SNeIa parameters, α, β,MB,∆m).

In Tables 2.1 and 2.2 we report the results obtained for such parameters in terms of

the corresponding confidence levels, for the two different choices of the pivot redshift

we have described in the previous section, i.e., zpiv = 10 and zpiv = 100. We also

show the values of the Bayesian Evidence ratios, as defined in the previous section.

2.2.1 Model 1: ΛCDM

First, let us concentrate on the results for ΛCDM. As we have shown in previous

sections, for ΛCDM, not only f(z) depends only on f0 and f3, but we also have the

further conditions f0 = 6(1−Ωm−Ωr) and f3 = 3Ωm. Note that we have always left
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Table 2.1: Results for zpiv = 10.

model Ωm f0 f1/4 f1/2 f1 (10−2) f2 (10−2) f3 BiΛ lnBiΛ
1 0.310+0.015

−0.011 4.60+0.63
−0.85 - - - - 0.93+0.05

−0.03 1 0

2 0.314+0.012
−0.012 5.06+1.75

−1.74 - - 0.5+1.6
−1.0 −1.1+2.3

−1.8 0.94+0.03
−0.04 0.95 -0.05

3 0.314+0.015
−0.011 4.04+0.87

−0.99 - - - 0.6+0.4
−1.1 0.94+0.04

−0.03 1.05 0.05

4 0.313+0.015
−0.012 4.43+0.62

−0.95 - - 0.02+0.14
−0.05 - 0.94+0.04

−0.04 1.23 0.21

5 0.312+0.013
−0.009 - - 1.00+0.15

−0.19 - - 0.94+0.04
−0.03 1.11 0.10

6 0.313+0.012
−0.013 - - 0.99+0.17

−0.17 0.05+0.04
−0.05 0.001+0.002

−0.001 0.94+0.04
−0.04 0.91 -0.10

7 0.314+0.015
−0.013 - 1.91+0.34

−0.39 - - - 0.94+0.05
−0.04 1.07 0.06

8 0.313+0.015
−0.012 - 1.91+0.31

−0.38 - 0.09+0.09
−0.07

(
−0.09+0.19

−0.19

)
· 10−3 0.94+0.04

−0.04 1.06 0.06

f0 and f3 free in our MCMC analysis, so that it is interesting to check if the previous

conditions are “automatically” verified by the ΛCDM case.

A straightforward check shows that the model (1), corresponding to ΛCDM, really

satisfies Eq. (2.15): from Ωm, we can calculate 3Ωm = 0.93+0.05
−0.03 for zpiv = 10 and

3Ωm = 0.89+0.02
−0.02 for zpiv = 100, which perfectly agrees with the corresponding free

estimations of f3. We can also calculate 6(1−Ωm−Ωr) = 4.14+0.06
−0.09 for zpiv = 10 and

6(1−Ωm −Ωr) = 4.21+0.04
−0.04 for zpiv = 100, which also agree with our free estimations

of f0, mainly because of the larger errors on this parameter than on Ωm.

Before discussing generalizations and/or deviations from ΛCDM, let us note that

the value of Ωm does not really change from one case to another; there is a small

trend toward smaller values for zpiv = 100 than for zpiv = 10, but all the values are

perfectly consistent at 1σ level.

Table 2.2: Results for zpiv = 100.

model Ωm f0 f1/4 f1/2 f1 (10−2) f2 (10−2) f3 BiΛ lnBiΛ
1 0.298+0.006

−0.006 4.44+2.37
−2.40 - - - - 0.89+0.02

−0.02 1 0

2 0.313+0.012
−0.015 6.00+2.72

−3.14 - - −4.5+16.8
−30.5 −2.6+2.0

−2.9 0.94+0.04
−0.04 0.86 −0.15

3 0.303+0.010
−0.008 4.46+2.00

−2.95 - - - 0.07+0.76
−0.84 0.91+0.03

−0.02 1.09 0.09

4 0.298+0.007
−0.007 4.06+2.64

−3.01 - - −0.002+0.002
−0.001 - 0.89+0.02

−0.02 0.90 -0.10

5 0.301+0.006
−0.006 - - 1.51+0.75

−0.69 - - 0.90+0.02
−0.02 1.24 0.22

6 0.300+0.007
−0.007 - - 1.45+0.81

−0.94 −3.5+2.9
−1.4 −0.03+0.03

−0.01 0.90+0.02
−0.02 1.01 0.008

7 0.299+0.006
−0.006 - 2.70+0.97

−1.07 - - - 0.90+0.02
−0.02 1.12 0.11

8 0.298+0.006
−0.006 - 2.07+0.66

−0.65 - −0.007+0.004
−0.008

(
−0.013+0.008

−0.011

)
· 10−3 0.90+0.02

−0.02 1.08 0.07
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2.2.2 Models 2-4

Now, considering case by case, let us consider model (2), which generalizes ΛCDM

by adding intermediate powers corresponding to the f1 and f2 parameters. Given the

very good agreement of ΛCDM with cosmological background data, we expect small

deviations from it, if any. Actually, we can see how f1 and f2 are O(10−2) − (10−3)

at 1σ confidence level. What is even more important, is that they are also consistent

with zero, at 1σ for zpiv = 10 and maximum at 2σ for zpiv = 100. Thus, we can

conclude that any f(z) with this form is basically indistinguishable from ΛCDM at

the present stage of observational data.

We also note that the simultaneous presence of both f1 and f2 seems to be tied

to some degeneracy between the two parameters. In fact, for the models (3) and (4),

where only one of the two parameters is present, the corresponding likelihoods are

much more regular and far less noisy than in the case of model (2).

Anyway, we also stress that models (2), (3) and (4) have in common the presence

of a constant term f0 which, in some way, can bias the possible detection of any

departure from ΛCDM because it can always be considered as representing a cosmo-

logical constant (on the limit z → 0). Actually, note that also for models (2) (3) and

(4) the same relations we have described for the ΛCDM case still hold. Eventually,

a departure or agreement for them could tell us about the effective reliability and

weight of the terms f1 and f2. In particular, we find that the relation 3Ωm = f3

is always perfectly satisfied by all models for both the pivot redshift values we have

considered. The same holds true for the condition 6(1 − Ωm − Ωr) = f0, except for

model (2), which exhibits a value of f0 clearly different from all the other cases, even

if with larger errors.

Thus, we are not in the position to establish if the role of f1 and f2 is really

effective and/or needed, or not: such relations should not hold in models (2) (3) and

(4), because for them f(z) 6= fΛ(z), but we find a good agreement, so that one might

be led to think we are not actually detecting any deviation from the ΛCDM model.

Moreover, the new parameters f1 and f2 are very small so that their role is really less

significant than those of f0 and f3. But we cannot avoid to comment that these results

strongly depend on the present observational status; in the future, more precise data

could help to discriminate between one model or another.
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2.2.3 Models 5-8

More interesting are, from some point of view, models from (5) to (8), which explic-

itly avoid the introduction of the constant term f0 so that they are not reducible to

ΛCDM in any way. On the one hand, the first point to note is that, even in these

cases, the parameters f1 and f2, when included, must be very small in the light of

observations, ranging from O(10−2) to O(10−7). On the other, we see that the param-

eters corresponding to the lowest degree powers 1/2 and 1/4 are very well constrained

and the likelihood profiles have a very regular Gaussian shape. Furthermore, they

seem to provide an equally good fit for the data with respect to ΛCDM with the same

number of theoretical parameters.

Thus, the point to be understood here is: are these low degree terms a real possible

alternative to the cosmological constant, or should we consider them as a “smeared”

version of the standard case only due to the low (for such type of discrimination)

accuracy of the data? In fact, we have to consider that the power of the redshift we

are considering might be low enough so that, due to the observational constraints we

are using, they are actually mimicking the effective behaviour of a constant.

A possibly obvious trend is that the higher the degree, the smaller the value of the

corresponding parameter fi is (seen by comparing f0 to f1/4 and f1/2); but this trend

might be expected, given that f1/2 and f1/4 are by construction coupled to redshift

dependent terms which could compensate the magnitude value with time dependence.

2.2.4 Bayesian Evidence

As we have mentioned before, apart from the information one can extract from the

values of the parameters which best agree with the data, we have also computed

the Bayes factor for each one of our proposed models against ΛCDM, the reference

model. This statistical tool should provide us information about the reliability of

each model. In general, we can see how | lnBiΛ| < 1 so that there is no statistical

significant preference for one model with respect to another.

2.3 Lessons from f (R) vs. f (z)

In this chapter we have introduced a different approach to convert general f(R)

theories in f(z) models, which should be more easily connected to observational data

and thus could shed some light on the explanation of the accelerated expansion of
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the universe and provide a more straightforward formulation to perform tests against

observations.

The most attractive scenario would be to be able to solve the Friedmann equations

analytically to find H(z) solutions by proposing some f(z) or viceversa. However, as

we have mentioned in the introduction, this formulation is not possible in general,

neither when studying the problem in terms of the Ricci scalar nor in terms of the

redshift.

Then, what we have done has been to start from some f(z) ansätze and perform

the analysis numerically. By studying some of the most known dark energy models

we have been able to find some general potentially interesting features in order to

shed some light on the expression of our proposals and restrict their arbitrariness by

imposing some physically well-sounded and expected trends. In particular, we have

found that a simple algebraic expression of a polynomial including just a constant

and a third-degree term can describe the general behaviour whatever f(R) = f(z)

model is expected to have in order to mimic ΛCDM at both high and low redshift.

We need to stress that this polynomial does not need to include powers higher than

degree three, as we have seen by analysing different dark energy models. Even if such

analysis cannot be exhaustive, we know that ΛCDM works fine with most of the data

we have and we expect that, if any, deviations from it might be small.

Thus, we have selected eight proposals varying the number of free parameters in

order to analyze their viability according to the data. In particular, we have included

middle-degree terms in between the constant and the third-degree one, checking for

their compatibility with observations and their statistical soundness. And we have

also proposed models with no constant term at all, so that they cannot be reduced

at a ΛCDM scenario in any way.

A general conclusion we can extract is that there are some f(z) polynomial models

which are competitive with ΛCDM at the background level. We were especially

interested in models (5) and (7) because they explicitly do not include a Λ-like term

and, in fact, we have evidence indicating that these models are as reliable as ΛCDM

when it comes to analyse observational data. Even though the Bayesian Evidence

does not claim any significant difference with respect to ΛCDM, we still think this is

an interesting result, which could be a useful guide when formulating and studying

manageable alternative models of gravity. Moreover, we want to stress and keep in

mind that f(z) theories will probably not be the definitive answer to explain why the

universe is expanding at an accelerated rate; but that was not really our objective

here. Our goal was rather to provide a different perspective on how to relate the
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theoretical proposal of a modified gravity with observationally related quantities,

and how to extract any kind of useulf information which might contribute to the

development of observationally reliable theories of gravity.
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Chapter 3

f (Q) gravity

As anticipated in the Sec. 1, GR is traditionally described in terms of the Levi-Civita

connection, which conforms the basis of Riemannian geometry. This choice relies on

the assumption of a torsion and nonmetricity free geometry. Within this framework,

the Ricci curvature scalar R acts as the building block of the spacetime. Although

this is usually done for historical reasons, it is important to keep in mind that the

connection has a more general expression [349, 350] and GR can be described in

terms of different geometries from the Riemannian one. One of the alternatives is

what is called teleparallel gravity [352], where the gravitational force is driven by

the torsion, T . Although this formalism was formally proposed in [352], Einstein

himself already used such a framework in one of his unified field theory attempts

[493]. Another possible alternative is symmetric teleparallel gravity [353], where

one considers a vanishing curvature and torsion, and it is the nonmetricity, Q, that

mediates the gravitational interaction. Some other interesting cases can be thought

as, for example, a geometry where torsion carries part of the gravitational force and

nonmetricity carries the rest. Along with the increasing interest on extended theories

of gravity, all these alternative geometries have been explored due to the fact that the

intrinsic implications and features of the gravitational theories could be different to

the ones corresponding to Riemannian geometry [354, 355, 356, 357, 358, 359, 360].

Indeed, by making assumptions on the affine connection, one is essentially specify-

ing a metric-affine geometry [361]. Recall that the metric tensor gµν can be considered

as a generalization of the gravitational potential, and it is essentially used to define

notions such as angles, distances and volumes, while the affine connection Γµαβ defines

parallel transport and covariant derivatives. In this context, as mentioned in a previ-

ous section, general affine connection may be written as the following decomposition

[349, 350]:

Γλµν =
{
λ
µν

}
+Kλ

µν + Lλµν , (3.1)
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where
{
λ
µν

}
≡ 1

2
gλβ (∂µgβν + ∂νgβµ − ∂βgµν) is the Levi-Civita connection of the met-

ric gµν ; the term Kλ
µν ≡ 1

2
T λµν + T(µ

λ
ν) is the contortion, with the torsion tensor

defined as T λµν ≡ 2Γλ[µν]; and the disformation Lλµν is given by

Lλµν ≡
1

2
gλβ (−Qµβν −Qνβµ +Qβµν) , (3.2)

which is defined in terms of the nonmetricity tensor, Qαµν ≡ ∇αgµν .

In this work we will focus on a torsion and curvature free geometry, which is

exclusively defined by the nonmetricity Qαµν . As this is a novel approach, no cos-

mological tests have been carried out so far, and its exploration will hopefully offer

some insight on the late accelerated expansion of the universe. Within the scenario of

modified gravity alternatives, we will take as an initial point the idea of generalizing

Q-gravity in an analogous manner to what has been done with f(R) theories. We will

start from the f(Q)-type of theories presented in [359] and rewrite some proposals

in the redshift approach [494] analyzed in the previous Sec. 2 in order to explore the

cosmological background evolution within this kind of geometry.

The analysis is organized as follows. We set the stage in Sec. 3.1, by briefly

outlining the general formalism of f(Q) gravity. In Sec. 3.2, we reformulate the f(R)

Lagrangian as an explicit function of the redshift, and provide reasonable f(z) models

from the outset, which are to be tested at a later stage, by numerically solving the

gravitational field equations, in order to test their validity and study their deviation

with respect to the ΛCDM scenario. In Sec. 2.2, we discuss our results and finally

conclude in Sec. 2.3.

3.1 Setting the stage: f (Q) gravity

Consider the proposal of f(Q) gravity given by the following action [359]:

S =

∫ [
1

2
f(Q) + Lm

]√
−g d4x, (3.3)

where f(Q) is an arbitrary function of the nonmetricity Q, g is the determinant of

the metric gµν and Lm is the matter Lagrangian density.

The nonmetricity tensor is defined as

Qαµν = ∇αgµν , (3.4)

and its two traces as follows:

Qα = Qα
µ
µ , Q̃α = Qµ

αµ . (3.5)
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It is also useful to introduce the superpotential

4Pα
µν = −Qα

µν + 2Q α
(µ ν) −Q

αgµν (3.6)

−Q̃αgµν − δα(µQν) . (3.7)

One can readily check that Q = −QαµνP
αµν (with our sign conventions that are the

same as in Ref. [359]).

The energy-momentum tensor is given by

Tµν = − 2√
−g

δ
√
−gLm
δgµν

, (3.8)

and for notational simplicity, we introduce the following definition

fQ = f ′(Q) . (3.9)

Varying the action (3.3) with respect to the metric, one obtains the gravitational

field equation given by

2√
−g
∇α

(√
−gfQPα

µν

)
+

1

2
gµνf (3.10)

+fQ
(
PµαβQν

αβ − 2QαβµP
αβ

ν

)
= −Tµν , (3.11)

and varying (3.3) with respect to the connection, one obtains

∇µ∇ν

(√
−gfQP µν

α

)
= 0 . (3.12)

With the formalism of f(Q) gravity specified, we will next consider cosmological

applications, by reformulating the f(Q) Lagrangian as an explicit function of the

redshift, namely, as f(z). We will provide reasonable f(z) models from the outset,

i.e. at the level of the action, so that at a later stage one can numerically solve the

dynamics of the universe, to test their validity and study their deviation with respect

to the ΛCDM scenario.

3.2 The f (z) approach

3.2.1 Cosmology

Considering a FLRW universe represented by the following isotropic, homogeneous

and spatially flat line element

ds2 = −dt2 + a2(t)δijdx
idxj , (3.13)
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and taking into account the energy-momentum tensor of a perfect fluid, given by

Tµν = (ρ+ p)uµuν + pgµν , where ρ and p are the thermodynamic energy density and

isotropic pressure, we obtain the Friedmann and Raychadhuri equations, given by

[495]

3H2 =
1

2fQ

(
−ρ+

f

2

)
, (3.14)

Ḣ + 3H2 +
ḟQ
fQ
H =

1

2fQ

(
p+

f

2

)
, (3.15)

respectively, where the overdot is defined as · ≡ d/dt. In addition to this, consider

the energy conservation equation for standard energy-matter perfect fluids:

ρ̇i + 3H (ρi + 3pi) = 0, (3.16)

where the suffix i stands for matter, radiation or any other fluid in the stress-energy

tensor.

As our goal is to propose f(z) models and find the evolution of the background

we will manipulate Eq. (3.14) and write it in terms of the redshift. We perform thus

a change of variable taking into account that in a FLRW geometry, Q = 6H2 holds

and then fQ = fz/6H
2
z getting

H2 =
(H2)z
fz

(
−ρ+

f

2

)
. (3.17)

where the subindex z denotes the derivative with respect to the redshift.

Here we will follow an analogous approach to the one outlined in the previous

section and published in [494]: we will reformulate an f(Q) model as an explicit

function of redshift, f(z), solve Eq. (3.17) numerically, and then we will apply the

obtained H(z) to observational data.

3.2.2 Specific f(z) proposals

In order to select some f(z) models that could be interesting to study we first take

a look at an f(Q) model that mimics a ΛCDM background expansion, which is

fΛ(Q) = −Q. This can be clearly seen by replacing this expression in Eq. (3.17).

Assuming a universe filled with matter, radiation and a cosmological constant, the

Friedmann equation reads

H2(z) = Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr) , (3.18)
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where Ωi = 8πρi/(3H
2
0 ) is the dimensionless density parameter, and i = m, r refers

to matter and radiation, respectively.

Then, fΛ(Q) in terms of z gives

fΛ(z) = −6(1− Ωm − Ωr)− 6Ωm(1 + z)3 − 6Ωr(1 + z)4. (3.19)

Here we can notice that a ΛCDM background in the redshift formalism would be

described by a constant term, a third degree term and a fourth degree one. Now, we

would like to choose f(z) models which are somehow generalizations of Eq. (3.19).

To do that we have found useful to make use of the tendencies we observe in fΛ.

Even if ΛCDM is not the definitive model to explain the late-time expansion of the

universe, it does describe this late phase quite satisfactorily. Then, it is reasonable

to propose models which satisfy the trends it shows at low and high redshift, that is,

lim
z→0

f(Q(z)) ∝ const , (3.20)

lim
z→∞

f(Q(z)) ∝ (1 + z)4 . (3.21)

In fact, due to the relation between Q and H this will be satisfied at least for all the

dark energy models studied in [494].

3.2.3 Models considered

As in [494], we will propose simple but well-motivated polynomical generalizations

of the most fundamental model fΛ(z). As the high and low redshift limits lie within

a constant term and a fourth degree polynomial, we have constructed our proposals

by adding some terms consisting on powers of (1 + z) which are within these two

limits. Moreover, we have selected small powers as this allows us to introduce small

modifications that may induce changes in the background evolution but preserving

the desired behaviour.

In the following analysis, we consider the following models:

1. f0 + f3(1 + z)3 + f4(1 + z)4,

2. f12(1 + z)1/2 + f3(1 + z)3 + f4(1 + z)4,

3. f12(1 + z)1/2 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3 + f4(1 + z)4,

4. f14(1 + z)1/4 + f3(1 + z)3 + f4(1 + z)4,

5. f14 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3 + f4(1 + z)4,
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6. f16(1 + z)1/6 + f3(1 + z)3 + f4(1 + z)4,

7. f16(1 + z)1/6 + f1(1 + z) + f2(1 + z)2 + f3(1 + z)3 + f4(1 + z)4,

where the factors fi are free parameters corresponding to each model.

3.3 Results of the observational tests

In order to test our models, we use the expansion rate data from early-type galaxies,

Type Ia Supernovae, Quasars, Gamma Ray Bursts, Baryon Acoustic Oscillations data

and Cosmic Microwave Background distance priors. After implementing the MCMC

code, we have obtained the values for the background parameters that appear in

Table 3.1. There are some general results that can be summarized before analyzing

in detail model by model. It can be noticed that the parameters Ωm and Ωb do not

present a relevant variation from one model to another, being in perfect agreement

with Planck ’s predictions [41] in every case. Some more interesting feature can be

observed in the value of the Hubble constant, defined as H0 = 100 h. With respect to

the existing tension between the value obtained by local measurements [84] and the

one predicted by Planck, our result for H0 are perfectly consistent with the Planck

value.

3.3.1 Model 1: ΛCDM

The first model we have considered consists on a constant term plus a third and a

fourth degree term. These are exactly the terms which correspond to a f(z) theory

mimicking a ΛCDM background in the Q-formalism, i.e., Eq. (3.19). According to

this equation, one may expect that the values of f0, f3 and f4 are somehow related

with Ωm and Ωr (an analog computation was done in [494]). In fact, we could identity

the quantities

f0 = −6(1− Ωm − Ωr), (3.22)

f3 = −6Ωm, (3.23)

f4 = −6Ωr. (3.24)

If we substitute here the values of Ωm, Ωr for ΛCDM according to Table 3.1 we obtain

the following numerical values for Eqs. (3.22)-(3.24):

f0 = −4.1, f3 = −1.88, f4 = −0.00053. (3.25)
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Comparing with the values of f0, f3, f4 in the table for this model, we see that for

the parameters f3 anf f4 there is an agreement at 1σ level. Nevertheless, we can also

see that the parameter f0 agrees in the order of magnitude but presents a discrepancy

with respect to the one in the table.

Table 3.1: Results
model Ωm Ωb h f0 f16 f14 f12 f1 f2 f3 f4 BiΛ lnBiΛ

1 0.313+0.007
−0.007 0.0460.002

−0.002 0.69+0.02
−0.02 −9.6+0.7

−0.8 - - - - - −1.95+0.04
−0.04 −0.00046+0.00004

−0.00004 1 0

3 0.317+0.006
−0.007 0.047+0.003

−0.002 0.69+0.02
−0.02 - - - −22.1+1.7

−2.2 8.2+2.2
−3.3 −0.5+0.3

−0.5 −2.06+0.09
−0.10 −0.00039+0.00004

−0.00005 0.394 −0.931

4 0.317+0.007
−0.007 0.047+0.002

−0.002 0.69+0.02
−0.02 - - −14.3+1.3

−1.4 - - - −2.06+0.05
−0.04 −0.00040+0.00004

−0.00004 0.712 −0.339

5 0.315+0.007
−0.006 0.047+0.003

−0.003 0.69+0.02
−0.02 - - −13.0+1.6

−2.1 - 2.2+0.9
−1.0 −0.280.46

−0.27 −1.99+0.06
−0.05 −0.00045+0.00005

−0.00004 0.791 −0.234

6 0.314+0.009
−0.008 0.046+0.003

−0.002 0.69+0.02
−0.02 - −12.5+1.2

−1.4 - - - - −2.06+0.05
−0.04 −0.00042+0.00004

−0.00004 0.917 −0.087

7 0.315+0.008
−0.007 0.047+0.003

−0.002 0.69+0.02
−0.02 - −12.2+1.2

−1.0 - - 0.05+0.14
−0.07 0.004+0.037

−0.053 −2.01+0.04
−0.04 −0.00042+0.00003

−0.00004 1.011 0.011

3.3.2 Models 2-3

These two models do not include a constant term which could play the role of an

effective cosmological constant. Instead, they are characterized by including a 1/2

power in the polynomial; and model 3 also presents a term of degree one and a second

degree term, corresponding to the parameteres f1 and f2. It must be noticed that

model 2 does not appear in the table as it does not reach a χ2 which stabilizes and,

moreover, it is higher than all other cases, which means it is clearly discarded by data.

For model 3 it is not possible to make a concrete interpretation of the values of f1

and f2, because the corresponding histograms are highly irregular and far from being

Gaussian, so that the error bars are just an approximate and indicative estimation of

their parameter space width. However, there is one interesting manner we can extract

information from these two quantities: when looking at the parameters f3 and f4, we

see their values are not very far (and statistically consistent) with those from model

1. Thus, we can infer that the role played by f1 and f2 is marginal. Moreover, the

Bayes Factor of model 3 is the highest in the sample; which means that it is the most

disfavoured by data.

3.3.3 Models 4-7

As well as models 2 and 3, models 4-7 do not include a constant term, but they

perform much better. Model 4 consists on a 1/4 polynomial term plus a third and

a fourth degree term. Model 5 includes the same free parameters plus the f1 and

f2 terms. The value of f14 does not vary significantly between these two models,

presenting an agreement at 1σ level. On the one hand, it is interesting to notice
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that the parameter f1 is consistent with zero at approximately 2σ, while f2 contains

zero at 1σ. Thinking about results for model 3, these results could confirm that the

presence of any effect of such order on cosmological scales can be quite confidently

discarded. Finally, for f3 and f4, the obtained values are quite in concordance with

those of model 1.

Model 6 and 7 have been constructed in a similar way. Model 6 is described by

a 1/6 polynomial term plus the usual third and fourth degree ones, while model 7

contains, in addition, f1 and f2 parameters. Again, the quantity corresponding to the

smallest power, f16 in this case, does not vary a lot between model 6 and 7. Moreover,

in this case we have found more significant results for f1 and f2, as they are both

consistent with zero at 1σ level. Again, f3 and f4 seem not to depend much on the

model, having similar values in every model. Thus, we can infer from these results

that cosmological data shows a statistical preference for small-degree terms, i.e. for

a lower-degree dependence of the additional terms with redshift. In other words,

even in the f(Q) approach, data seem to confirm that any alternative solution must

behave closely as a cosmological constant, at least for what concerns the cosmological

background.

With respect to the reliability of the models in comparison with the ΛCDM model,

the differences in the Bayes factor and Jeffrey’s scale are so small that we cannot

extract much information from them. Although one cannot set decisive conclusions

about the preference of one model with respect to the standard ΛCDM, this new

formalism seems to be a viable alternative within the study of the late-time expansion

of the universe.

3.4 Lessons from f (Q) vs. f (z)

Within the context of modified gravity we have chosen a novel geometrical scenario

based on the nonmetricity, Q, to obtain observational constraints for the background

quantities of the late-time universe. We have selected the f(Q) type of theories and

followed the f(z) approach to give some phenomenologically motivated models to test

against observational data. We have used a wide variety of observational data sets

to check the validity of our proposals. As an interesting result we have seen that

degree one and second degree terms, i.e., f1 and f2, are, in general, compatible with

zero. Moreover, the values we obtain for the rest of parameters are very similar for a

model with and without these two parameters, not showing a significant dependence
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on their presence. This result coincides with the one obtained in the Sec. 2, whose

approach we are following.

We have also found that some of the modified parameters that we introduce, f3

and f4 more specifically, could be related in some way with the background parameters

Ωm and Ωr. Finally, an interesting result we want to remark is that the value obtained

for the Hubble parameter, H0, lies close to the Planck estimation.

From the statistical point of view we cannot have a clear interpretation from the

Bayes factor and Jeffrey’s scale. In general, we obtain values that are not conclusive so

we cannot extract information about the preferability of our polynomial models with

respect to the ΛCDM. Nevertheless, the consistency of the value of the background

parameters can be considered as a hint pointing to continue the study of alternative

theories of gravity within this kind of approach. This analysis can be understood as a

first step in the observational study of a new class of modified gravity theories which

lay in a geometry described by the nonmetricity. By going deeper in the cosmological

and observational studies of these yet unexplored theories we may find interesting

information which may contribute to our understanding of the evolution of the late-

time universe.
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Chapter 4

Non-minimal f (R) gravity

One of the most straightforward approaches to modify GR is within the framework

of f(R) metric gravity, explained in detail in Sec. 1. If we also consider a coupling

between the gravitational and the matter sector, we arrive to what are known as f(R)

non-minimally coupled theories, introduced in Sec. 1.

In our work, we further analyse f(R) non-minimally coupled theories as a mean to

successfully describe the late-time acceleration of the universe. We firstly construct

two setups within the framework of [335] which mimic a ΛCDM universe. The action

describing this theory is described by two functions, f1(R) and f2(R), the first one

would take the role of a typical f(R) metric theory and the second one is non-

minimally coupled to matter through a small coupling constant, λ.

In the first setup that we consider, we fix f2(R) = R and compute f1(R) analyt-

ically, in the second one, we fix f1(R) = R − 2κ2Λ and find an analytical solution

for f2(R). Besides, we analyse each setup for two different energy-density contents

in the universe, ρ, so that we obtain different physical solutions analytically for each

one. Secondly, in order to get an order of magnitude of the parameters of the model

for the two setups considered, we perform a cosmographic study and we map it to

the current observational values fitting ΛCDM. Moreover, we analyse in detail the

physical meaning of the coupling parameter, λ, which, as we will see later, can be

interpreted as a parameter intimately related to the late speed up of the universe.

We begin reviewing f(R) non-minimally coupled theories, providing some more

details about them; then we calculate the analytical solutions for our theory in the two

selected setups; in a subsequent section we perform a cosmographic analysis including

a study of the effects of the coupling constant on the value of the cosmographic

quantities and as a final point, we sum up the obtained results.
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4.1 Non-minimally coupled f (R)

We consider a model which includes a non-minimal coupling between geometry and

matter. The action is the one described in the introduction, i.e.

S =

∫ [
f1(R)

2κ2
+ (1 + λf2(R))L

]√
−g d4x. (4.1)

4.1.1 Field equations

From the variation of the action 4.1 with respect to the metric one gets the modified

Einstein’s equations [335]:

F1Rµν −
1

2
f1gµν − (∇µ∇ν − gµν�)F1 = 2λκ2 (∇µ∇ν − gµν�)LF2 +

(1 + λf2)κ2Tµν − 2λκ2F2LRµν , (4.2)

where Fi(R) ≡ dfi(R)
dR

(i = 1, 2), � = gµν∇µ∇ν , T
µν is the energy momentum tensor

and Rµν is the Ricci tensor. Taking the covariant derivative of Eq. (4.2) one can

deduce the following modified conservation equation for the energy momentum tensor

[335]:

∇µTµν =
λF2

1 + λf2

[gµνL − Tµν ]∇µR. (4.3)

4.1.2 Dynamics of a homogeneous and isotropic Universe

Now, considering a perfect fluid in a flat FLRW scenario

ds2 = −dt2 + a(t)2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (4.4)

one can compute the “conservation” or “no conservation” equation of the energy

momentum tensor [342] by taking the µ = 0 component of Eq. (4.3)

ρ̇+ 3H(p+ ρ) =
λF2

1 + λf2

[−L− ρ]Ṙ, (4.5)

where · ≡ d/dt, ρ is the matter density, p is the pressure and H = ȧ/a. From here,

we note that if L = −ρ, ρ̇ is conserved. We will assume this is the case from now on.

As we are interested in computing the dynamics of our model, we take the 00

component of Eq. (4.2) in order to obtain the Friedmann equation [342]

3H2 = κ̃2(ρ+ ρf1 + ρf2), (4.6)
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where

κ̃2 ≡ κ2(1 + λf2)

F1 + 2λκ2LF2

, (4.7)

ρf1 ≡
−6H∂tF1 + F1R− f1

2κ2(1 + λf2)
, (4.8)

ρf2 ≡
−6Hλ∂t(LF2) + λLF2R

1 + λf2

. (4.9)

The theory reduces to GR for f1 = R−2Λκ2 and a vanishing f2, while for a vanishing

f2 we recover the standard metric f(R) theory. Here we have a second order differ-

ential equation on f1 and f2. We want to solve this equation analytically, if possible.

Our procedure will consist on fixing a simple f1 (f2) and solving for f2 (f1).

4.2 A ΛCDM geometry within non-minimally cou-

pled f (R) gravity

We are interested in solving Eq. (4.6) analytically. In order to do this we consider

reasonable to assume a ΛCDM expansion, as in [496], i.e.

H2 =
κ2

3

(ρ0

a3
+ Λ

)
. (4.10)

Therefore, the scalar curvature reads

R = κ2
(ρ0

a3
+ 4Λ

)
. (4.11)

Consequently,

a =

(
ρ0

R/κ2 − 4Λ

)1/3

, (4.12)

and

3H2 = R− 3κ2Λ. (4.13)

As we have two undetermined functions the way we are going to proceed is to specify

one of them and solve for the other one. We are going to study the two simplest cases

which seem interesting to us:

• Set f2 = R and find f1.

• Set f1 = R− 2Λκ2 and find f2.

We also take L = −ρ, so the energy-momentum tensor is conserved in Eq. (4.3), as

already stated above. In the present study, we will study two different cases of fluids:

dust and a perfect fluid.
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4.2.1 An arbitrary f1 with f2 = R

Inserting Eqs. (4.11) - (4.13) in Eq. (4.6) and letting f1 as an undetermined function

of R and f2 = R one obtains

a2(R)f ′′1 + a1(R)f ′1 + a0f1 =
κ2

3
(ρ+ ρλ) , (4.14)

where the prime stands for the derivative with respect to R and

a2(R) ≡ −
(
R− 3κ2Λ

) (
R− 4κ2Λ

)
, (4.15)

a1(R) ≡
(
R

6
− κ2Λ

)
, (4.16)

a0 ≡
1

6
, (4.17)

ρλ ≡ 2λ(R− 3κ2Λ)

(
3
dρ

dR
(R− 4κ2Λ) + ρ

)
. (4.18)

The first step is to find the homogeneous solution. We can see that the homogeneous

part fo Eq.(4.14) is an hypergeometric differential equation and, in fact, it coincides

with the differential equation obtained in minimal f(R) gravity, which has been al-

ready computed in the literature. In [496] it was wrongly stated that there cannot

be any real valued function of Ricci scalar that can mimic a ΛCDM expansion for

a vacuum universe but one can take a look at [497], where an exhaustive analysis

of the solutions is performed. Just notice that these solutions are given in terms

of hypergeometric functions, so the convergence and integral representation of these

functions in the physically possible regions must be adecuatelly studied. In our case

we are interested in the late-universe Cosmology, and the solution can be writen as

[498]

f1 = c0

(
Λ

R− 4Λ

)p+−1

2F1

(
q+, p+ − 1; r+;− −Λ

R− 4Λ

)
, (4.19)

where c0, p+, q+ and r+ are real constants and c0 ≡ −ω̄1, according to the notation in

[497]. The fact of having just one independent solution with the integration constant

c0 is due to the divergence that appears in the other linearly independent solution

when R→∞. To avoid this we set to zero the other integration constant. See [497]

for more details. As we can notice, the terms including ρ are found exclusively on

the right hand side of the differential equation 4.14, so the homogeneous solution is

the same regardless of the content but the particular solution will change. We have

calculated the particular solution for the two different cases stated above: dust and

perfect fluid.
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4.2.1.1 Dust: ρ = ρm

The first scenario we consider is a universe which contains just dust. In this case the

matter density can be writen as

ρ =
R

k2
− 4Λ. (4.20)

Inserting this into Eq. (4.14) one gets

a2(R)f ′′1 + a1(R)f ′1 + a0f1 =
4

3
λa2(R) +

1

3

(
R− 4κ2Λ

)
. (4.21)

One can compute a particular solution proposing a second order polynomial on

R. Then one finds

f1 = 2Λκ2
(
4κ2Λλ− 1

)
+
(
1− 4κ2Λλ

)
R +

8

9
λR2. (4.22)

If λ = 0, we recover GR: f1 = R − 2Λκ2. We see that by considering a vanishing

cosmological constant Λ and a constant coupling the matter and the curvature term

induces in this case a particular solution f1 which is similar to Starobinsky inflationary

model [499], even though this latter scenario refers to the early universe. In this

particular case λ is proportional to the square of the scalaron mass.

4.2.1.2 Perfect fluid with constant EoS parameter: ρ = ρw

Now we consider that the geometry still corresponds to a ΛCDM universe but filled

with a perfect fluid with constant equation of state (EoS) parameter w; i.e. its energy

density reads:

ρ =
ρ0

a3(1+w)
. (4.23)

Therefore, by recalling Eq. (4.12), we obtain

ρ = ρ0

 ρ0

R

κ2
− 4Λ


−(1+w)

. (4.24)

Then, the Friedmann equation reads

a2(R)f ′′1 + a1(R)f ′1 + a0f1 = −1

3
ρ−w0 a2(R)(R/κ2 − 4Λ)w × (4.25)(

1

R− 3κ2Λ
+ 2λ− 6(1 + w)λ

)
.

If w = 0, we recover Eq. (4.21). We have not been able to find a particular solution

for a general w so we will consider w = −1/3. This case is interesting as it lies at the
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boundary of the set of matter fields that obey the strong energy condition. In GR

such fluids give rise to a Milne Universe [500] which is a coasting universe, and the

Ricci scalar is proportional to the square of the Hubble parameter. For this specific

EoS one gets

f1 = a
(
R/κ2 − 4Λ

)2/3
+ b
(
R− 3κ2Λ

) (
R/κ2 − 4Λ

)2/3
, (4.26)

where

a ≡
κ2 3
√
ρ0

3

(
3κ2λΛ + 2

)
,

b ≡ κ2λ 3
√
ρ0.

Here we can check that by making λ = 0 one recovers the perfect fluid solution in

minimally coupled f(R) theories given in [496].

Finally, due to the linearity of the differential equation 4.25, as the coefficients ai

do not depend on the fluid, it is easy to see that the particular solution for a universe

containing both dust and a perfect fluid with EoS parameter w = −1/3 is the sum of

the previous particular solutions, i.e. Eq. (4.22) and Eq. (4.26).

4.2.2 An arbitrary f2 with f1 = R− 2κ2Λ

In this case we fix f1 and let f2 as an undetermined function. We have to solve the

following differential equation

6λ
[
ρa2(R)f ′′2 −

(
ρa1(R)− a2(R)

dρ

dR

)
f ′2 − a0ρf2

]
= ρ+ Λ− R− 3κ2Λ

κ2
. (4.27)

Let us notice that if λ = 0, one obtains that the content of the universe can just be

dust

ρ =
R

κ2
− 4Λ. (4.28)

This is consistent with Eq. (4.10), as we are assuming a ΛCDM background. Let

us note that in this case ρ cannot be collected as a simple inhomogeneous term in

the differential equation Eq. (4.27). Then, in this case, both the homogeneous and

particular solution will be affected by the choice of ρ. We will solve this equation for

dust and for a perfect fluid.
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4.2.2.1 Dust: ρ = ρm

The equation in a universe filled with dust reads

6λ
(
R− 4κ2Λ

) (
a2(R)f ′′2 +

(
5

6
R− 2κ2Λ

)
f ′2 − a0f2

)
= 0. (4.29)

As we can notice, the right hand side will be always zero no matter the coupling con-

stant one chooses. Assuming λ 6= 0 we note that we have an homogeneous differential

equation with the following analytical solutions:

f2 =
c1

3
√
R− 4κ2Λ

+
6

5
c2

√
R− 3κ2Λ+

9

5
c2

√
R− 3κ2Λ 2F1

(
5

6
, 1;

4

3
; 4− R

κ2Λ

)
, (4.30)

where c1 and c2 are integration constants and can be fixed by setting initial conditions

on f2 and f ′2. The integral representation of the hypergometric function is well defined

in the range 4κ2Λ ≤ R < ∞ [498], and as we are interested in the physical range,

that is, R ≥ 4κ2Λ, this term is perfectly defined. One shoud have special care with

the c1 term, as in the limit R → 4κ2Λ one would have zero at the denominator.

However, taking a look at how this term appears in the action -that is, multiplied by

the Lagrangian- one can see that there are no problems at this point. Our solution

is perfectly defined.

4.2.2.2 Perfect fluid with constant EoS parameter: ρ = ρw

Now the equation which has to be solved is

6λ
[ (
R− 4κ2Λ

)w
a2(R)f ′′2 −

[
a1(R)− (w + 1)

(
R− 3κ2Λ

)]
f ′2 − a0f2

]
=

1−

 ρ0

R

κ2
− 4Λ


w

. (4.31)

If w = 0, one recovers the differential equation for a dust dominated universe, Eq.

(4.29). If λ = 0, one gets ρ0 = R/κ2 − 4Λ, so this would be the only solution fixing

f1 = R− 2Λκ2. Firstly, let us take a look at the homogeneous equation

λ
[
a2(R)f ′′2 −

(
a1(R)− (w + 1)

(
R− 3κ2Λ

) )
f ′2 − a0f2

]
= 0. (4.32)

As the RHS does not depend on the coupling constant, the specific election of λ will

not affect the homogeneous solution. Assuming λ 6= 0 and performing the change of

variable

x =
R

k2Λ
− 3,
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we can rewrite the previous equation as follows:

(1− x)xf ′′2 +

[
1

6
(x− 3)− (w + 1)x

]
f ′2 +

f2

6
= 0. (4.33)

We have found a solution which is valid for any value of w which is given by:

f2,h = C1 2F1

(
a1, b1, c1;

R

κ2Λ
− 3

)
+ (4.34)

C2

(
R

κ2Λ
− 3

)7/6

2F1

(
a2, b2, c2;

R

κ2Λ
− 3

)
with

a1 = w1 − w̃, (4.35)

b1 = w1 + w̃, (4.36)

c1 = −1

6
, (4.37)

a2 = w2 − w̃, (4.38)

b2 = w2 + w̃, (4.39)

c2 =
13

6
. (4.40)

where we have defined w1 ≡ − 1
12

+w
2
, w2 ≡ 13

12
+w

2
and w̃ ≡ 1

12

√
25− 12w + 36w2. Here

we are giving the solution around the point R = 3k2Λ. As we said, we are interested in

the physical region, that is, R ≥ 4κ2Λ, and in this region the variable of our function,

x, goes from 1 to ∞. The condition for a well-defined integral representation in our

case would apply to the region (−∞, 1) [498]. In order to have our solution defined

within those limits, we change the variable to 1−x. This transformation also appears

in the previous reference. Rewriting the solution Eq. (4.34), we have:

f2,h = C1 2F1

(
a1, b1, 1 + a1 + b1 − c1; 4− R

κ2Λ

)
+ C2

(
4− R

κ2Λ

)−w
2F1

(
c2 − a2, c2 − b2, 1 + c2 − a2 − b2; 4− R

κ2Λ

)
.(4.41)

The following step would be to find an analytical particular solution. In order to find

a particular solution one would have to solve Eq. (4.31). The problem is that it is not

straight forward to find an analytical solution for this equation, not even for a specific

w, however one can find it be solving it numerically. Finally, the total solution will

be the sum of the homogeneous solution and the particular one.
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4.3 Cosmography within non-minimally coupled

f (R) gravity

In this section, we apply the cosmographic approach described in [501, 293, 502, 503,

294, 504, 505, 506] and adapt it to non-minimally coupled f(R) gravity. In order

to reduce the arbitrariness and complete our study we have considered the same two

scenarios discussed before. In the first one, we set f2(R) = R so we can rename f ≡ f1

for simplicity. In the second one, we will consider f1(R) = R−2κ2Λ renaming f ≡ f2

when doing the computations. We will consider that the universe is filled by dust.

The procedure we will follow is the one described, for example, in [506], where firstly

one has to write the scalar curvature and derivatives in terms of the cosmographic

parameters.

R = 6H2(1− q), (4.42)

Ṙ = 6H3(j − q − 2), (4.43)

R̈ = 6H4(s+ q2 + 8q + 6), (4.44)
...
R = 6H5(l − s− 2(q + 4)j − 6(3q + 8)q − 24). (4.45)

4.3.1 An arbitrary f1 with f2 = R

The first step is to use the modified Friedman Eq. (4.6) and Raychaudhuri equations

to obtain expressions for f and fRRR. We obtain the Raychaudhuri equation taking

the derivative of the Friedmann equation, Eq. (4.6). We then get:

f = κ22ρ+ (R− 6H2)fR − 6HṘfRR − 24H2λκ2ρ, (4.46)

fRRR = −κ
2ρ+ 2ḢfR + (R̈−HṘ)fRR + λκ2ρ(8Ḣ − 12H2)

(Ṙ)2
. (4.47)

Differentiating the Raychaudhuri equation with respect to the cosmic time, we obtain

the third equation that we need:

Ḧ =
κ2

2

[
3H + Ṙ

fRR
fR

]
ρ

fR
− 1

2

(...
R − ḢṘ−HR̈

) fRR
fR

+

(
R̈Ṙ−HṘ2

)
2

(
fRR
fR

)2

− 1

2

(
3R̈Ṙ−HṘ2

) fRRR
fR

+
Ṙ3

2

fRRRfRR
f 2
R

− Ṙ3

2

fRRRR
fR

− λκ2ρ

2fR

(
g1(t) +

fRR
fR

g2(t)

)
, (4.48)

97



where

g1(t) = 36H3 − 48HḢ + 8Ḧ, (4.49)

g2(t) = 12H2Ṙ− 8ḢṘ. (4.50)

Since at the present time f(R) should not deviate too much from GR, we can ap-

proximate our theory by its Taylor expansion around R0 up to second order1, being

R0 the present value of the scalar curvature:

f(R) ' f(R0) + fR(R0)(R−R0) +
fRR(R0)

2
(R−R0)2 +O(R−R0)3. (4.51)

Then, we can ignore the terms containing fRRR and fRRRR in Eq. (4.48).

Now we have three equations and we can express f , fR and fRR in terms of the

cosmographic parameters using Eqs. (4.42)-(4.45) and

Ḣ = −H2(1 + q), (4.52)

Ḧ = H3(j + 3q + 2), (4.53)

which come from the basic formulas of cosmography. Please note that from now on,

Ωm and all the cosmographic parameters refers to quantities evaluated today. The

cosmographic dimensionless quantities we compute are given by

f(R0)

6H2
0

=
A0Ωm + λH2

0 ΩmC0

D
, (4.54)

fR(R0) =
A1Ωm + λH2

0 ΩmC1

D
, (4.55)

fRR(R0)

(6H2
0 )−1

=
A2Ωm + λH2

0 ΩmC2

D
, (4.56)

where the explicit expression of the coefficients Ai, Ci with i = 1, 2, 3 and D are shown

in the Appendix.

We can get an order of magnitude of the cosmographic parameters by computing

them for a given dark energy phenomenological parameterisation. The best and

simplest one is the ΛCDM model.

j = 1, (4.57)

q =
3Ωm

2
− 1, (4.58)

s = 1− 9Ωm

2
. (4.59)

1Although in reference [506], the authors expand up to third order we will carry the expansion
only up to o(R−R0)3. This way we do not need to fix fR = 1.
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Afterwards, we take the latest Planck results [40] to compute the cosmographic pa-

rameters choosing a specific value for2 λ :

Ωm = 0.315, q = −0.54025, j = 1, s = −0.37925, λH2
0 =

1

1015
. (4.60)

One obtains:

f(R0)

6H2
0

= 0.84675, fR(R0) = 1,
fRR(R0)

(6H2
0 )−1

= 3.98651 · 10−15. (4.61)

It can be shown that if the model is close enough to ΛCDM, then f and fR are

decreasing functions of λ. We have assumed the lastest Planck data. Likewise, it

can be shown that fRR is an increasing function of λ. Consequently, and under the

assumption f2(R) = R, this result can be interpreted as follows: the larger the non-

minimal coupling in the action Eq. (4.1), the smaller the pure gravitational part; i.e.

f1(R).

4.3.2 An arbitrary f2 with f1 = R− 2κ2Λ

Following a procedure similar to the one used previously:

κ2λρ f = κ2λρ(12H2 +R)fR − 6κλρHṘfRR + 3H2 − κ2Λ− κ2ρ,(4.62)

2κ2λρṘ2fRRR = κ2ρ(1 + fλ) + κ2λρ
(

2Ḣ − 24H2
)
fR

+κ2λρ(14HR̈− 2R̈)fRR + 2Ḣ. (4.63)

One can note that if one sets λ = 0, one gets 3H2 = κ2(ρ + Λ) in the Friedmann

equation and 2Ḣ = −κ2ρ in the Raychadhuri equation. This is completely consistent

with the background we are fixing in Eq. (4.10).

We obtain a third equation deriving the Raychaudhuri equation with respect to

the cosmic time,

−6
(
HḦ + Ḣ2

)
= 3κ2ρ(Ḣ − 3H2) + κ2λρ

[ (
−9H2 + 3Ḣ

)
f

+
(

216H4 − 162H2Ḣ + 24HḦ + 6Ḣ2
)
fR

+
(
−198H3Ṙ + 60H2R̈ + 66HḢṘ− 6H

...
R − 6ḢR̈

+ Ṙ(Ṙ− 6Ḧ)
)
fRR

+
(

60H2Ṙ2 − 18HṘR̈− 6ḢṘ2
)
fRRR − 6Ṙ3HfRRRR

]
.(4.64)

2Despite not having quantitative information about the order of magnitud of the coupling pa-
rameter, we estimate it to be sufficiently small so that it does not produce a drastical deviation from
Einstein-Hilbert action.
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As before, we can ignore the terms containing fRRRR and fRRR. Using an ap-

proach analogous to the one in Subsec. 4.3.1, we can express f , fR and fRR in terms

of the cosmographic parameters considering dust as the only matter content. Again,

note that from now on, Ωm and all the cosmographic parameters refers to quanti-

ties evaluated at present. Similarly to the previous case, we compute the following

dimensionless quantities:

λΩmf(R0) =
A0Ωm +B0 + C0

κ2Λ
H2

0

3D
, (4.65)

λΩm
fR(R0)

(6H2
0 )−1

=
A1Ωm +B1 + C1

κ2Λ
H2

0

D
, (4.66)

λΩm
fRR(R0)

(6H2
0 )−2

=
A2Ωm +B2 + C2

κ2Λ
H2

0

D
, (4.67)

where the values of the coefficients appear explicitly in the Appendix.

Computing the parameters for a ΛCDM model, one gets

λΩmf(R0) = 0, λΩm
fR(R0)

(6H2
0 )−1

= 0, λΩm
fRR(R0)

(6H2
0 )−2

= 0. (4.68)

This is a result that is completely consistent with our model. Taking a look at Eq.

(4.62) one can see that the only way to have a ΛCDM background is when λ is exactly

zero. Nevertheless, we are interested in having a non-null coupling constant. This

means that we have to relax the condition ΩΛ = 1 − Ωm and leave ΩΛ unfixed. The

value of the coupling constant would affect the value of the density of the cosmological

constant. In order to see it qualitatively one can see Fig. (4.1). It is straight forward

to notice that in the limit λ→ 0, the value of ΩΛ tends to exactly 1−Ωm. Something

interesting that one can observe is that the higher the coupling constant λ is, the

lower is the dark energy density ΩΛ. This is a very desirable feature, as one of the

motivations of introducing a coupling to matter is that it could play, in some way,

the role of dark energy.

4.4 Lessons from non-minimally coupled f (R) grav-

ity

In the present chapter, we have considered an f(R) modified gravity model character-

ized by having a non-minimal coupling to matter. A good representative of this kind

of models was first proposed in [335] and it corresponds to a metric gravity extension

of the well known f(R) gravity. Within this framework, we have two functions: f1(R),
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Figure 4.1: Here the dimensionless quantities given in Eqs. (4.65)-(4.67) are repre-
sented as a function of ΩΛ.

uncoupled to matter, and f2(R), which takes into account the coupling of gravity to

matter (see Eq. (4.1)). Our main interest resides on getting exact analytical solutions

for this theory in the context of the late-time cosmology. For this purpose, we have

selected two simple and physically meaningful scenarios; i. e. we have obtained two

f(R) non-minimally coupled models that mimic a ΛCDM setup.

For the first case, we have chosen f2(R) = R, i.e. a small coupling of gravity

to matter. Then f1(R) has to satisfy Eq. (4.14). Solving this equation, we have

obtained a physically meaningful solution which exactly mimics a ΛCDM expansion

for a vacuum universe, which is in contrast with what it is affirmed in [496]. Then,

we have considered that the universe is filled up with some energy-density content

and we have analysed two different scenarios. For a dust-dominated universe, the

solution is described by the usual R − 2κ2Λ plus a polynomical correction on R

driven by the coupling constant, λ. It is interesting to notice how in this solution

a term naturally appears which acts as an effective cosmological constant. For a

perfect fluid-dominated universe, we have been able to find an analytical solution

once we have chosen the specific equation of state parameter w = −1/3, which can be

interpreted as an energy-density mimicking an open universe. The obtained solution

is also characterised by a polynomical behaviour on R.

For the second case, we have chosen f1(R) = R−2κ2Λ. Then f2(R) has to satisfy

Eq. (4.27). We have considered the two scenarios previously considered. In the dust-
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dominated universe, the solution we have found is also given by polynomical terms

but also including R in a denominator, then we have studied it carefully in order to

ensure that there was no divergence in the range which is physically interesting for

us. For the perfect fluid-dominated universe, taking into account that the differential

equation we are solving is inhomogeneous, we want to emphasise that we have been

able to find the homogeneous solution which is valid for every constant equation of

state parameter, w. However, we have not been able to find an analytical particular

solution for this case in order to have a complete analytical solution. Though, it is

possible to get it numerically.

Finally, to complete our study and get a qualitative idea of the information these

two models can bring to us, we have performed a cosmographic analysis. In the first

case we want to mention that the quantities f and fR are decreasing functions of λ

and this can be interpreted as “the stronger the coupling to matter, the weaker the

weight of the pure gravitational part of the action”, that is, f . On the other side,

for the second case, we have obtained that the only case which allows for an exact

ΛCDM background corresponds to λ = 0. Then, to allow non-zero values of λ, we

let the parameter ΩΛ free. The way λ affects the value of ΩΛ shows us a desireable

result because the higher is λ, the lower is ΩΛ. This satisfies the main motivation of

our research, as the non-minimally coupled term may be understood as playing the

role of the cosmological constant, that is, of being the responsible of the late-time

acceleration of the universe.
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Chapter 5

Umami Chaplygin model

Chaplygin-like models arose originally as an alternative to quintessence, the latter

describing a new type of matter which is represented by a scalar field, and whose

behaviour describes the transition from a universe filled with dust to an exponen-

tially expanding universe. Chaplygin-like models are characterized by describing this

transition in terms of a single perfect fluid with an exotic equation of state. This

means that we have dark matter and dark energy unified in a single fluid [157]. Many

generalizations of this scenario have been proposed since then, the most studied in

the literature are modified Chaplygin, extended Chaplygin and generalized Chaplygin

proposals; see [158] for a brief review. The interesting feature of the specific model we

present here is that our non-linear equation of state at late times does not have a de

Sitter universe as a limit case but a fluid with a constant equation of state parameter

w. Apart from the Chaplygin-like models, non-linear barotropic equations of state

also appear in other works, one of the most recent ones being [167]. They focus on

different descriptions, such as quadratic models to represent dark energy and unified

dark matter [171], non-linear EoS for phantom fluids [172] or the Born-Infeld type

fluid model [169].

In the present study we analyze a phenomenological generalization of the Chap-

lygin cosmological model, which we call umami Chaplygin model. We will treat our

fluid in a polyvalent way in order to extract as much information as we can. We con-

sider three different cosmological background scenarios in which our fluid can play

three different roles: only as a dark energy component, as a dark matter and dark

energy component and as a dark plus baryonic matter and dark energy component.

The two last cases are the most intriguing ones because in that case we realize the

idea of having all the “dark” behaviour unified into a single fluid. With such analysis

we explore the possibility of unifying the dark fluids into one single component within

the context of GR.
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We will test this hypothesis against the main available data related to the cos-

mological background described in Sec. 1. Final results point to a positive (albeit

not strong) evidence in favor of a possible unification of dark energy and dark matter

with the umami fluid.

5.1 Model

We study what we have named the umami Chaplygin model described by the following

equation of state:

p = − ρ

1

|w|
+

ρ2

|A|

(5.1)

where p and ρ are the pressure and the energy density of our fluid and w and A are

real constants. Let us note that, on one hand, at high energy density the pressure of

the fluid behaves as

p→ −|A|
ρ
, (5.2)

which is the equation of state of the original form of the Chaplygin fluid. On the

other hand, the low energy density limit gives

p→ −|w|ρ, (5.3)

which is the equation of state of a perfect fluid with negative effective EoS parameter;

thus, the fluid will be playing the role of some dark energy component.

We assume the fluid independently fulfills the usual conservation equation,

ρ̇+ 3H (ρ+ p) = 0, (5.4)

where · ≡ d/dt and, once again, H = ȧ/a is the Hubble parameter. This can be

solved analytically thus obtaining the following implicit expression for ρ:

ρ
1

1−|w|

∣∣∣|A| − |A| |w|+ |w| ρ2
∣∣∣ |w|
2(|w|−1)

= ρ
1

1−|w|
0

∣∣∣|A| − |A| |w|+ |w| ρ2
0

∣∣∣ |w|
2(|w|−1)

a−3, (5.5)

where the subindex 0 means that the quantity is evaluated at the present time.

To set up the background cosmological evolution we have solved Eq. (5.5) nu-

merically in order to find ρ. Given the non-linearity of the solution and for practical

reasons, instead of working with the variable ρ, we switch to the dimensionless matter

parameter,

Ωf ≡
ρ

ρc,0
, (5.6)
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where ρc,0 = 3H2
0/8πG is the critical density of the Universe at the present time. Note

that the defined Ωf parameter is not fully equivalent to the standard dimensionless

density parameter Ωf , which should have been defined as ρ/ρc. The two versions are

equivalent only in the present-time limit, i.e. Ωf,0 = Ωf,0, which is the case we are

mostly interested in, if we want to compare our results with the literature. Thus,

Eq. (5.5) will become:

Ω
1

1−|w|
f

∣∣∣|A| − |A| |w|+ |w|Ω2

f

∣∣∣ |w|
2(|w|−1)

= (5.7)

Ω
1

1−|w|
f,0

∣∣∣|A| − |A| |w|+ |w|Ω2

f,0

∣∣∣ |w|
2(|w|−1)

a−3 ,

where also the parameter A has been redefined as

A ≡ A/ρ2
c,0. (5.8)

The solution to Eq. (5.7) allows us to add the umami fluid in a more direct obser-

vationally related form into the expression of the Friedmann equation obtained after

the standard assumption of a FLRW metric background.

In particular, we have studied three different scenarios, where the umami fluid

plays different roles:

E1(z) =

√
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωf (z) + Ωk(1 + z)2 (5.9)

E2(z) =

√
Ωb(1 + z)3 + Ωr(1 + z)4 + Ωf (z) + Ωk(1 + z)2 (5.10)

E3(z) =

√
Ωr(1 + z)4 + Ωf (z) + Ωk(1 + z)2 (5.11)

where E(z) ≡ H(z)/H0 is the dimensionless Hubble parameter, and Ωm,Ωb,Ωr are

the normalized densities of total matter (baryons and dark matter), baryons-only and

radiation today, while Ωk ≡ k/H2
0 corresponds to the spatial curvature. In the first

scenario our fluid Ωf represents only a dark energy component; in the second one, we

unify the dark matter and dark energy content into Ωf ; finally, in the third scenario,

Ωf would include the total matter content and the dark energy.

We have to pay special attention to the two latter models: in principle, we have no

clue about which fraction of our umami fluid should behave as dark energy and/or

dark matter. We are giving here a phenomenological proposal, with no physical

insight about its possible physical origin. For that, in case 2, we define the parameter

fΩDM which is the fraction of Ωf that corresponds to dark matter. In this way we

have that the total matter content is Ωm = Ωb + fΩDM · Ωf . In model 3, something

similar happens. We need to know which part of our fluid accounts for dark matter
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Table 5.1: Background primary parameters for the the three umami Chaplygin models
considered and for the standard ΛCDM dark energy model, plus Bayesian Evidence
ratios.

model fΩDM
fΩb

Ωk h w Ã Ωm Ωb BiΛ lnBiΛ
ΛCDM - - −0.002+0.002

−0.002 0.669+0.006
−0.006 −1 - 0.320+0.007

−0.006 0.050+0.001
−0.001 1 0

1 - - −0.001+0.002
−0.002 0.665+0.007

−0.007 −0.98+0.02
−0.01 3.4+1.4

−1.3 0.323+0.007
−0.007 0.050+0.001

−0.001 0.40 −0.91

2 0.285+0.008
−0.007 - −0.004+0.006

−0.007 0.69+0.01
−0.01 −0.85+0.07

−0.06 0.50+0.08
−0.07 0.320+0.008

−0.007 0.047+0.001
−0.002 1.31 0.27

3 0.271+0.008
−0.007 0.046+0.001

−0.001 −0.003−0.007
+0.006 0.69+0.01

−0.01 −0.81+0.08
−0.07 0.52+0.08

−0.08 0.319+0.008
−0.007 0.046+0.002

−0.002 1.14 0.13

and baryonic matter, respectively. In this case we have Ωm = (fΩb +fΩDM ) ·Ωf , where

fΩb is the fraction of baryons in Ωf .

In order to describe numerically the general function Ωf (a) (where a is the scale

factor) and save time when performing the statistical data analysis, we have built a

grid on the parameters {a,Ωf,0, w,A} and defined the final umami density function

as an interpolating function on this grid. The chosen grid is:

1 · 10−11 < a < 1 (5.12)

0.3 < Ωf,0 < 1.5 (5.13)

−1 < w < −0.015 (5.14)

−500000 < A < −0.025 (5.15)

We want to stress that we keep w > −1 in order to avoid phantom fields and the

“singular” value w = −1. The range of A is large enough to cover all the possible

physically meaningful values for our model; but we need to specify also that the grid

is not globally uniform. That is because as well as for w ≤ −1 and for some combina-

tion of w > −1 values with some ranges of the A parameter, the numerical solution

of Eq. (5.5) may not be physical or not univocal. In fact, for some combinations we

might have negative densities or two positive solutions with one branch leading to

increasing density in time. While this could be considered meaningful in some singu-

larity scenarios [507], we have avoided them and stuck to a more standard evolution

of the cosmological background.

5.1.1 Results

In Table 5.1 we summarize the mean values of the background parameters

{fΩDM , fΩb ,Ωk, h, w, Ã,Ωm,Ωb},
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obtained for each of the scenarios considered. It can be seen that the results for all

our models are in agreement with the values obtained in Planck 2018 [41].

We are mostly interested in the parameters directly related with baryonic and

dark matter, as they change from one model to other when considered as part of the

umami fluid. In order to make the comparison more direct, we show in Table 5.2 the

value of Ωbh
2 and ΩDMh

2 obtained by Planck 2018 for the full data combination with

varying Ωk
1, and by us from the MCMCs run for each one of the three scenarios we

have considered. We also show the value of H0, which has also a special importance

due to the existing tension between the values given by local measurements [508] and

indirect measurements by Planck [509]. To compute the statistics for ΩDMh
2 we take

into account that ΩDM = fΩDMΩf,0, with Ωf,0 = 1 − Ωb − Ωr − Ωk for model 2 and

Ωf,0 = 1−Ωr −Ωk for model 3. Also, for the statistics of Ωbh
2, we take into account

that in model 3 Ωb = fΩbΩf,0.

As a general tendency we can see how the umami fluid is generally disfavored with

respect to a cosmological constant when considered as dark energy fluid only. Instead,

when we consider the possibility to describe both dark matter and dark energy by

one single fluid, the Bayesian Evidence becomes positive, indicating a general trend

in favor of the alternative model. But it is also true that the value of the evidence

is too low to set any strong preference toward it against ΛCDM. At least, it works

equally good.

Another interesting point is that the value of H0 increases slightly in models 2 and

3, tending to solve the H0 tension. It is also true, however, that the corresponding

error also increases. If we focus now on Ωb and Ωm we notice that they decrease in

models 2 and 3. With respect to Ωk, in models 2 and 3 this parameter gets bigger

but so the error does, and it is always consistent with zero.

We also want to pay attention to another interesting result of our analysis: the

columns of Table 5.1 corresponding to the umami parameters, Ã and w. In order to

analyze in detail these results and to be able to compare the models, we focus on the

pressure and the effective equation of state parameter, respectively defined as

p ≡ c2weffΩf , (5.16)

where

weff ≡
−1

1

|w|
+

Ω
2

f

|A|

. (5.17)

1https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Cosmological_

Parameters
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Table 5.2: Comparison of the secondary baryonic and dark matter background pa-
rameters and of the Hubble parameter H0 from our analysis with those derived from
Planck 2018 data.

Ωbh
2 ΩDMh

2 H0

Planck18 (68%) 0.02240+0.00015
−0.00015 0.1196+0.0014

−0.0014 67.95+0.64
−0.64

Planck18 (95%) 0.02240+0.00030
−0.00030 0.1196+0.0027

−0.0027 67.9+1.3
−1.2

model 1 0.02231+0.00016
−0.00016 0.12042+0.0014

−0.0014 66.50+0.68
−0.67

model 2 0.02227+0.00016
−0.00017 0.1286+0.0046

−0.0049 68.73+1.13
−1.27

model 3 0.02227+0.00015
−0.00016 0.1308+0.0045

−0.0046 69.27+1.21
−1.23

So, as we did with the energy density, we redefine the pressure normalizing over ρc,0

so that we have p ≡ p

ρc,0
.

Looking at the plot of p in Fig. 5.1 one can notice how the pressure of the umami

is negative during the whole expansion history of the universe, but exhibiting different

limiting behaviours at early times depending on the scenario we consider. For model

1 we see an almost constant evolution with a quite abrupt and faster decrease at early

times, but still leading to a finite negative pressure. This is not really surprising, as

in model 1 the umami fluid has been considered as a dark energy-only fluid.

For models 2 and 3, the results are very similar between them, as expected, because

at the level of the background the role of the baryonic matter is somehow minor with

respect to that one played by dark matter. But differently from model 1 we now see

a smooth transition from a region with negative pressure at late times, where dark

energy dominates, to a region with pressure close (tending) to zero at early times,

when we know that matter should be dominating the expansion of the Universe. Note

that our data probe the cosmological expansions for a > 0.138.

These different trends are related to the quantity Ã, which drives this transition

between a matter domination epoch and a dark energy domination epoch. We notice

that the obtained value is much bigger for model 1 than for models 2 and 3. To

understand its role it must always be taken into account the comparison of its value

with respect to Ωf . The bump that appears in Fig. 5.1 for model 1 occurs where the

density starts to be comparable with Ã. For models 2 and 3 its mean value is much

lower, so that its effects appear at smaller scale factor.

All these considerations are confirmed by the effective equation of state parameter,

weff . In Fig. 5.1 we see that in the case where the umami fluid behaves only like

dark energy we do not have a clear statistical difference between the umami and a
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standard ΛCDM scenario. We have some more evident changes in the cases 2 and 3,

where the equation of state parameter shows a clear transition on its tendency.
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Figure 5.1: (Left panel.) Evolution of the pressure with the scale factor for each of the
models considered. The blue line corresponds to model 1, where the umami is just
dark energy (DE), the black one corresponds to model 2, where the umami is dark
energy plus dark matter (DE+DM) and the red one corresponds to model 3, where
the umami is dark energy plus the total matter (DE+TM). (Right panel.) Same as
before, but for the effective equation of state parameter.

The leading fact we want to remark here is that the mean values we obtain for

weff and Ã are significantly different from what it is obtained in a model where dark

energy is considered independently from the matter content, as for example ΛCDM.

This means that we have a model which is drastically different from ΛCDM and that

is well-fitting the data in a statistical satisfactory way.

Finally, an interesting point to explore is to study which energy conditions are

satisfied (and when) for each of the proposed umami fluids. Energy conditions can

be understood as requirements that can be applied to the energy-density content

of a theory when one does not specify this content explicitly. These are imposed

boundary conditions that attempt to encapsulate the statement that pressure must

be positive. In cases as ours, where dark energy is considered, one can expect some of

these conditions not to be accomplished. We have considered the energy conditions

as summarized in [510], and described in terms of our quantities:

• Null energy condition (NEC): c2Ωf + p ≥ 0

• Weak energy condition (WEC): c2Ωf + p ≥ 0 and Ωf ≥ 0

• Strong energy condition (SEC): c2Ωf + p ≥ 0 and c2Ωf + 3p ≥ 0
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We have studied these conditions for every scenario, including the cosmological con-

stant scenario, and we have found some interesting results. First of all, NEC and

WEC conditions are perfectly satisfied by every model. As expected, ΛCDM violates

the SEC condition and a similar behaviour is found in model 1, in which our umami

plays the role of a fully dark energy component. On the other hand, models 2 and 3

exhibit a much more interesting evolution of the quantity corresponding to the strong

energy condition. In Fig. 5.2 we have plotted the energy density, the pressure and

the WEC and SEC conditions for these two models. In both plots we see that there

is cusp in the SEC condition, related to a change from negative (at large scale factor)

to positive (at small scale factors) values, which means that SEC is violated when the

umami behaves as a dark energy fluid (at large scale factor), but is satisfied when its

behaviours resemble that of a pressureless matter component (at low scale factor).
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Figure 5.2: (Left panel.) Absolute values of the energy density, pressure and energy
conditions for model 2. The black line corresponds to the energy density, the dashed
red one corresponds to the pressure, the blue one corresponds to the WEC and the
dashed green one to the SEC. (Right panel.) Same as before, but for model 3.

5.2 Lessons from the umami Chaplygin fluid

In this section we have introduced a new phenomenological cosmological fluid with a

non-linear equation of state such that could be able to unify a dark matter cosmolog-

ical behaviour with a dark energy one. We have considered three different possible

contributions of such a fluid to the cosmic pie, namely: replacing only a dark en-

ergy fluid; replacing both a dark energy and a dark matter fluid; replacing both a

dark energy and the total matter contribution, i.e., dark and baryonic matter. After

having compared these three scenarios with a large set of cosmological data available
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nowadays (geometrical probes), we have obtained some remarkable results we want

to emphasize here. First of all we have found that our results are in agreement with

the constraints given by Planck 2018. Secondly, for models 2 and 3, which contain

a unified dark fluid and a unified baryonic-dark matter-dark energy fluid, the results

obtained for the parameters Ã and w are completely beyond the values expected for

a model with a non-unified equation of state. All this shows that this kind of unified

models can properly mimic the background phenomenology even though being dif-

ferent from the standard cosmological ΛCDM model. Bayesian Evidence comparison

shows a small but positive preference for such models. Thirdly, and not less impor-

tant, although having a higher error, the mean values obtained for H0 in models 2

and 3 are slightly higher than the one obtained from Planck, and, as a consequence,

closer to its local measurements. Even if this result can not be taken as conclusive,

we find interesting the observed tendency to solve the H0 tension plaguing observa-

tional cosmology today. All the observed features give us information about attractive

directions to follow in the search of alternative models to ΛCDM.
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Chapter 6

Conclusions

We could describe the goal of this thesis as the analysis of viable descriptions of the

late time universe through the study of its evolution from very different perspectives.

Taking the cosmological constant as the reference model in a GR setting, we have

investigated various alternatives. On the one hand, we have tackled the question of

the late time expansion of the universe from the dark energy approach, where the main

ingredient is a fluid which usually is understood as a generalization of the cosmological

constant term. This dark fluid can adopt an innumerable quantity of descriptions and

we have focused on a specific approach consisting on a parameterization that has been

constructed phenomenologically. It does not only involve the effects dark energy may

have (i.e. late acceleration) but also the effects which would correspond to dark matter

(concretely in the form of dust). On the other hand, we have studied the possibility

of the late time universe being described by extended theories of gravity. The huge

variety of theories within this field may take completely different approaches, however,

all of them must touch at some point GR, at least as a limit, in order for these theories

to be able to reproduce the phenomenology which is well described by GR (e.g. solar

system constraints). Within the modified gravity zoo we have centered our work on

the so-called f(R) theories. One part of the work consists on proposing and analyzing

an observational cosmologist friendly approach where we translate the functions of

the Ricci scalar into functions of the redshift. In another part of the work we study a

natural alternative analog to f(R) theories in which the Ricci scalar is replaced by the

non-metricity giving rise to a new kind of models, i.e. f(Q) theories. Finally, and also

within the field of f(R), we study another extension which includes a non-minimal

coupling and try to find solutions assuming different cosmological scenarios.

Despite the differences between the theoretical approaches we have mentioned, we

have used a common tool/ingredient to study the validity of our models: observational

tests. We want to emphasize that a needed (but not sufficient) feature for a model to
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be considered as a possible scenario is that it has to be able to reproduce the actual

observational constraints. In this thesis, concretely, we have performed background

observational analyses in order to constrain the different background cosmological

parameters. We have used a variety of observational probes which we have been

updated in each of the works. We will now describe in more detail the results obtained

in each chapter.

We dedicate chapter 2 to f(z) gravity. Here, after introducing different ways

to study f(R) theories we explain the approach we have followed, i.e. the redshift

representation f(z). The interest of this description relies on the manner cosmological

probes provide the data. As our final aim is to check if a model’s predictions satisfy

current observations, we have found useful to provide this z−formalism to study f(R)

theories. In order to do that we propose some models within this approach ensuring

that their phenomenology satisfies some basic limits settled by a significant class of

dark energy models, i.e. matter domination at high redshift and constant behaviour

at low redshift. At the end we have provided eight polynomial models on z which

include different powers of (1 + z). Once we have performed the observational test

using different probes we have found that the models which contain smaller powers of

(1 + z) (but no constant term) perform in a similar way to the model corresponding

to ΛCDM. Although no significant preferability has been observed, it has been shown

that this approach may offer a new way of analyzing theories in an observer friendly

way.

In chapter 3 we investigate f(Q) theories of gravity using the approach described

in the previous chapter. As we are starting from a different action we obtain different

equations as well as different trends on f(z) when looking at the low and high redshift

limits. Here we have proposed seven polynomial models and, in the observational test,

we have included Quasars and Gamma Ray Bursts data arriving to a conclussion

which is similar to the previous one: small-order terms are preferred (in absence of

constant term) and are compatible with current observations.

In chapter 4 we analyze an natural extension of f(R) which includes a non-minimal

coupling between R and the matter lagrangian. We find this proposal specially in-

teresting “as well as tricky” due to the two f(R) functions that appear in the action.

After computing the background dynamics and assuming a ΛCDM expansion we have

solved the Friedmann equation for various different scenarios, obtaining solutions that

mimic a ΛCDM expansion but which do not include a cosmological constant. The

inclusion of a coupling term allows to afford this and, as we have obtained in the
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cosmographic analysis, it can be interpreted as playing the role of dark energy due

to how it variated when we variate the value of ΩΛ.

Finally, in chapter 5 we explore a dark fluid model which belongs to the family

of the unified dark energy models, more specifically, the Chaplygin models. We

construct a quite exotic equation of state which corresponds to a fluid whose behaviour

evolves from a dust behaviour to a dark energy one. In fact we explore this fluid to

adopt different roles and study three different scenarios described by three different

Friedmann equations. We end up with an observational analysis where we obtain the

values of the cosmological parameters for each case resulting in to a high preference

of two of the scenarios: one where the fluid acts as dark matter and dark energy and

other where the fluid acts as total matter and dark energy. Moreover, an important

result of this work is that the mean values that have been obtained for H0 lie between

Planck’s prediction and local measurements, relaxing the existing tension around this

quantity.

To sum up this general overview and to conclude, we can say that with this thesis

we have paved a bit the way within the study of the late time universe adding some

new techniques and information about extended theories of gravity and dark energy

models. These results, although not providing a definitive answer to any of the hot

questions in Cosmology, could serve as building blocks to continue learning about the

universe.
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