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Abstract
Chua’s circuit is an electronic circuit that exhibits nonlinear dynamics. In this paper, a
new model for Chua’s circuit is obtained by transforming the classical model of Chua’s
circuit into novel forms of various fractional derivatives. The new obtained system is
then named fractional Chua’s circuit model. The modified system is then analyzed by
the optimal perturbation iteration method. Illustrations are given to show the
applicability of the algorithms, and effective graphics are sketched for comparison
purposes of the newly introduced fractional operators.

Keywords: Optimal perturbation iteration method; Fractional Chua’s circuit model;
Caputo; Caputo–Fabrizio; Atangana–Baleanu

1 Introduction
Over the last two decades, the interest in fractional derivatives and their implementa-
tions has been intensified. Various physical phenomena in technological developments
have been determined in terms of fractional derivatives or differential equations. More-
over, the modeling of many engineering problems relies on fractional operators. There
are many reasons for the need for fractional calculus, but the most important ones can
be stated as the singular kernel with locality and also the nonsingular kernel with non-
locality. In order to overcome these problems, Baleanu and Atangana came up with new
fractional operators, namely Atangana–Baleanu (AB) derivative operators, with fractional
order based upon the recognized Mittag-Leffler function [1]. Those noninteger deriva-
tives have all the usefulness of those of past provisions. These trend ideas on operators
have got the attention of many mathematicians and scientists. AB derivatives have been
used for analyzing engine oil based generalized Brinkman-type nano-liquid with molybde-
num disulfide nanoparticles of spherical shape [2]. Modeling and analysis of the fractional
HBV model with the Atangana–Baleanu derivative have been studied in [3]. These oper-
ators have been also applied to nanofluids to enhance the performance of solar collectors,
and the same researchers have also compared Atangana–Baleanu and Caputo–Fabrizio
fractional models [4]. The logarithmic-KdV equation involving Mittag-Leffler type kernel
with AB derivative has been investigated in [5]. AB derivatives have been used for numer-
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ical patterns in the reaction-diffusion system [6]. Adams–Bashforth scheme has been for-
mulated with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems
[7]. Three different fractional derivatives including ABC have been considered to solve the
Korteweg–de Vries and Korteweg–de Vries–Burger equations [8]. ABC-fractional masks
have been designed in image processing [9]. In addition to ABC derivatives, Caputo–
Fabrizio fractional operators have been also used by many authors. Transient response
of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative has been
analyzed by Rezapour et al. in [10]. Other works can also be counted as in [11–15]. In
addition to all these articles, readers are advised to read the works in [16–35].

Most of the dynamical systems have long-range temporal memory. Modeling of these
systems with fractional-order derivatives has more advantages than classical models such
as in [36–38]. The main reason for using fractional derivatives in these models is the mem-
ory concept. Generally, when the output of a system at each time t depends only on the
input at time t, such systems are called memoryless systems. On the other hand, when
the system has to remember previous values of the input in order to determine the cur-
rent value of the output, such systems are said to be non-memoryless systems or memory
systems. One of the well-known memoryless systems is the Markov chain phenomena.
Human decision making or shape memory alloy are non-memoryless systems [39]. For
instance, in [36], a biological model a fractional-order model for Ebola virus infection with
delayed immune response on heterogeneous complex networks has been investigated. It
has been demonstrated that Chua’s model with fractional derivative with a lower order 2.7
has been able to replicate a chaotic attractor [37]. The model of the Wien bridge oscillator
has been also analyzed within the scope of fractional calculus, and the results obtained
therein showed that a limit cycle can be replicated for any fractional order, with an ad-
equate value of the amplifier gain [38]. The jerk model has been investigated using the
concept of fractional derivative, and a chaotic attractor has been obtained with the system
order as low as 2.1 [40].

One of the basic mathematical systems is Chua’s circuit system as shown in Fig. 1. This
typical nonlinear electronic circuit and modified models have been investigated by many
authors. Hartley et al. analyzed chaos in fractional-order Chua’s system [37]. Controlling
spiral waves in a model of two-dimensional arrays of Chua’s circuits have been investi-
gated in [41]. Some analytical and numerical methods for hidden attractors’ localization
have been proposed in [42]. This system has been solved also for comparison purposes
of the Atangana–Baleanu and Caputo–Fabrizio derivatives [40]. Analyzing the circuit us-
ing Kirchhoff’s circuit laws, the dynamics of Chua’s circuit can be accurately modeled by
means of a system of three nonlinear ordinary differential equations in the variables x(t),

Figure 1 Classical Chua’s system
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y(t), and z(t), which represent the voltages across the capacitors C1 and C2 and the electric
current in the inductor L respectively. As in the papers [37, 40, 41], a mathematical model
of Chua’s circuit model can be displayed as follows:

x(τ )
dτ

= θ
[
y(τ ) – x(τ ) – f

(
x(τ )

)]
,

RC2
y(τ )
dτ

= x(τ ) – y(τ ) + Rz(τ ),

z(τ )
dτ

= –φy(τ ),

(1.1)

where f (x(τ )) = mx(τ )+ 1
2 (n–m)(|x(τ )+1|– |x(τ )–1|) demonstrates the electrical response

of the nonlinear resistor. θ and φ are parameters determined by the particular values of the
circuit components. The shape of f (x(τ )) relies on the rigorous model on its components.

In this paper we try to solve the above system by using the optimal perturbation iteration
algorithms (OPIAs) and different fractional operators. This technique has been applied to
many types of ODEs and PDEs such as Bratu-type [43], Riccati differential equation [44],
heat transfer equations [45], nonlinear systems [46], Lane–Emden types [47], generalized
regularized long wave equations [48]. More studies can also be found in [49–57]. The
rest of the current paper is planned as follows. In Sect. 2, we give some basic concepts of
the optimal perturbation iteration algorithms, and we apply this technique to systems of
ordinary differential equations. In Sect. 3, we propose some modifications to the classical
Chua circuit by using trend fractional derivatives. In Sect. 4, two illustrations of some well-
known problems are carried out to validate the proposed method. Finally, a conclusion
part is given in the last section.

2 Formulation of OPIAs for systems of ordinary differential equations
Deniz and Bildik presented the optimal perturbation iteration algorithms (OPIA) in 2016
[43]. It has been proven that these algorithms can be safely applied to many types of differ-
ential equations [44–52]. In this section, we give a short description of OPIA for systems
of ordinary differential equation. Then we will be able to generate OPIA for the modified
fractional Chua’s circuit model (MFCCM) in the next section. The modified fractional
Chua’s circuit model can be converted into a standard model by replacing the fractional
numbers with integer ones.

Let us consider the following system of ODEs:

Ak(ẋk , xj, ε, τ ) = 0; k = 1, 2, . . . , K ; j = 1, 2, . . . , K . (2.1)

Here, k represents the number of ODEs in Eq. (2.1). Clearly, this system can be rewritten
as

A1 = A1(ẋ1, x1, x2, x3, . . . , xK , ε, τ ) = 0,

A2 = A2(ẋ2, x1, x2, x3, . . . , xK , ε, τ ) = 0,

...

Ak = Ak(ẋk , x1, x2, x3, . . . , xK , ε, τ ) = 0.

(2.2)
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By taking first correction term in the classical perturbation series, an approximate solution
of the system will be considered as

xk,n+1 = xk,n + εxc
k,n, (2.3)

where n denotes the nth-order approximate solution to be obtained and xc
k,ns are the cor-

rection terms. By using Taylor series expansions in the neighborhood of ε = 0, we can
approximate this system as follows:

Ak =
M∑

m=0

1
m!

[(
d

dε

)m

Ak

]

ε=0
εm; k = 1, 2, . . . , K , (2.4)

where

d
dε

=
∂ ẋk,n+1

∂ε

∂

∂ ẋk,n+1
+

K∑

j=1

(
∂ ẋk,n+1

∂ε

∂

∂ ẋk,n+1

)
+

∂

∂ε
(2.5)

is given for the (n + 1)th iteration

Ak(ẋk,n+1, xj,n+1, ε, τ ) = 0. (2.6)

Furnishing Eq. (2.5) into (2.4), an iteration algorithm will be established as follows:

Ak =
M∑

m=0

1
m!

[(

ẋc
k,n

∂

∂ ẋk,n+1
+

K∑

j=1

(
ẋc

j,n
∂

∂ ẋj,n+1

)
+

∂

∂ε

)m

Hk

]

ε=0

εm = 0. (2.7)

Equation (2.7) is a first-order ordinary differential equation. Therefore, the solution can
be found for the correction terms xc

k,n. After that, by using Eq. (2.3), the (n + 1)th approx-
imation can be reached. Iterations can be stopped when an adequate approximation is
achieved.

In this work, we give a novel technique for PIAs to ameliorate the approximations. First
of all, we insert convergence-control parameters pi, (i = 0, 1, . . .) into Eq. (2.3) to get the
following functions:

xk,1(t; p) = xk,0 + p0xc
k,0,

xk,2(t; p) = xk,1 + p1xc
k,1,

...

xk,m+1(t; p) = xk,n + pmxc
k,m.

(2.8)

It is obvious that Eq. (2.8) will reduce to ordinary PIM when all of the parameters pm are
one. In order to find an optimal value of p, we substitute the approximate solution xm into
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Eq. (2.1). Thus, the following residual will be obtained:

ResA1 = A1(ẋ1,m, x1,m, x2,m, . . . , xK ,m, p0, ε, t) = 0,

ResA2 = A2(ẋ2, x1,m, x2,m, . . . , xK ,m, p1, ε, t) = 0,

...

ResAk = Ak(ẋk , x1,m, x2,m, . . . , xK ,m, pm, ε, t) = 0.

(2.9)

One can easily say that when Res(t; pm) = 0, xm(t; p) is the wanted solution of the given
problem. Otherwise, we can compute the following functional:

JResA1 (p1) =
∫

�

(ResA1 )2(t; p0) dt,

JResA2 (p2) =
∫

�

(ResA2 )2(t; p1) dt,

...

JResAk (pK ) =
∫

�

(ResAk )2(t; pK–1) dt,

(2.10)

where � is the physical domain of the considered equations. By doing so, the optimal
values for parameters p can be reached by solving

dJResA1

dp1
= 0,

dJResA2

dp2
= 0, . . . ,

dJResAK

dpK
= 0. (2.11)

3 OPIA for MCCM with different fractional derivatives
In this part, we give a brief formulation of OPIA for modified Chua’s circuit model
(MCCM). For this reason, we use Caputo (C), Caputo–Fabrizio (CF), and Atangana–
Baleanu (ABC) fractional operators, respectively.

3.1 Algorithm with Caputo fractional operator
The standard systems can be turned into the fractional differential forms. Equivalent sys-
tems for classical form of Chua’s circuit model by Caputo derivatives can be reached by
changing the derivatives Dβ

τ x, Dβ
τ y, Dβ

τ z by C
0 Dβ

τ x, C
0 Dβ

τ y, and C
0 Dβ

τ z, respectively. Note here
that 0 < β ≤ 1. With these changes, we have the following new forms:

C
0 Dβ

τ x(τ ) – θ
[
y(τ ) – x(τ ) – f

(
x(τ )

)]
= 0, (3.1)

RC2
C
0 Dβ

τ y(τ ) – x(t) + y(t) – Rz(t) = 0, (3.2)

C
0 Dβ

τ z(τ ) + φy(τ ) = 0, (3.3)

where

C
0 Dβ

τ x =
1


(1 – β)

∫ τ

0
(τ – t)–βx′(t) dt,
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C
0 Dβ

τ y =
1


(1 – β)

∫ τ

0
(τ – t)–βy′(t) dt,

C
0 Dβ

τ z =
1


(1 – β)

∫ τ

0
(τ – t)–βz′(t) dt.

We can represent the above equations in a closed form as follows:

F1
(C

0 Dβ
τ x, x, y, z, ε

)
= 0,

F2
(C

0 Dβ
τ y, x, y, z, ε

)
= 0,

F3
(C

0 Dβ
τ z, y, ε

)
= 0,

(3.4)

where ε = 1 is the artificial perturbation parameter which can be inserted into Eqs. (3.1)–
(3.3) as follows:

C
0 Dβ

τ x(τ ) – θ
[
y(τ ) – x(τ ) – εf

(
x(τ )

)]
= 0,

RC2
C
0 Dβ

τ y(τ ) – x(t) + y(t) – εRz(t) = 0,
C
0 Dβ

τ z(τ ) + φεy(τ ) = 0.

(3.5)

Processing as in Sect. 2, the first approximate solution in the perturbation series can be
taken as

xn+1 = xn + ε(xc)n,

yn+1 = yn + ε(yc)n,

zn+1 = zn + ε(zc)n

(3.6)

with only one correction term. Here, n ∈ N ∪ {0} and (xc)n, (yc)n, (zc)n are nth correction
terms. Then, by replacing Eq. (3.6) into (3.4) and using the Taylor series, we get

F1 + F1C
0 Dβ

τ x

(
(xc)n

)
ε + F1x

(
(xc)n

)
ε + F1y(yc)nε + F1z(zc)nε + F1εε = 0,

F2 + F2C
0 Dβ

τ y

(
(yc)n

)
ε + F2x

(
(xc)n

)
ε + F2y(yc)nε + F2z(zc)nε + F2εε = 0,

F3 + F3C
0 Dβ

τ z

(
(zc)n

)
ε + F3y(yc)nε + F3εε = 0,

(3.7)

where

F1x =
∂F1

∂x
, F1y =

∂F1

∂y
, F2z =

∂F2

∂z
, F1ε =

∂F1

∂ε
, . . . .

3.2 Algorithm with Caputo–Fabrizio fractional operator
By performing the same changes as in the previous subsection, we obtain the new frac-
tional case for the new modified system via changing Dβ

τ x, Dβ
τ y, Dβ

τ z by CF
0 Dβ

τ x, CF
0 Dβ

τ y, and
CF
0 Dβ

τ z, respectively. Therefore, new Caputo–Fabrizio (C–F) fractional forms will be

CF
0 Dβ

τ x(τ ) – θ
[
y(τ ) – x(τ ) – f

(
x(τ )

)]
= 0, (3.8)

RC2
CF
0 Dβ

τ y(τ ) – x(t) + y(t) – Rz(t) = 0, (3.9)
CF
0 Dβ

τ z(τ ) + φy(τ ) = 0. (3.10)
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CF
0 Dβ

ρ represents C–F fractional derivatives of order β , and it is given by

CF
0 Dβ

τ x(t) =
M(β)
1 – β

∫ τ

0
exp

(
–β(τ – t)

1 – β

)
Dx(t) dt,

CF
0 Dβ

τ y(τ ) =
M(β)
1 – β

∫ τ

0
exp

(
–β(τ – t)

1 – β

)
Dy(t) dt,

CF
0 Dβ

τ z(τ ) =
M(β)
1 – β

∫ τ

0
exp

(
–β(τ – t)

1 – β

)
Dz(t) dt,

where M(β) is a normalization function such that M(0) = M(1) = 1.
Applying similar procedures, one can get the following:

F1 + F1CF
0 Dβ

τ x

(
(xc)n

)
ε + F1x

(
(xc)n

)
ε + F1y(yc)nε + F1z(zc)nε + F1εε = 0,

F2 + F2CF
0 Dβ

τ y

(
(yc)n

)
ε + F2x

(
(xc)n

)
ε + F2y(yc)nε + F2z(zc)nε + F2εε = 0,

F3 + F3CF
0 Dβ

τ z

(
(zc)n

)
ε + F3y(yc)nε + F3εε = 0.

(3.11)

3.3 Algorithm with Atangana–Baleanu fractional operator
As a final work, we consider the ABC derivatives [1] form of the MCCM with the similar
changes Dβ

τ x, Dβ
τ y, Dβ

τ z by ABC
0 Dβ

τ x, ABC
0 Dβ

τ y, and ABC
0 Dβ

τ z. Thus, the new modified system
can be obtained as follows:

ABC
0 Dβ

τ x(τ ) – θ
[
y(τ ) – x(τ ) – f

(
x(τ )

)]
= 0, (3.12)

RC2
ABC
0 Dβ

τ y(τ ) – x(t) + y(t) – Rz(t) = 0, (3.13)

ABC
0 Dβ

τ z(τ ) + φy(τ ) = 0. (3.14)

Here, ABC
0 Dβ

τ (·) stands for an ABC fractional derivative in the Liouville–Caputo sense of
order β and can be given as

ABC
0 Dβ

τ x(t) =
M(β)
1 – β

∫ τ

0
Eβ

(
–β(τ – t)

1 – β

)
Dx(τ ) dt,

ABC
0 Dβ

τ y(t) =
M(β)
1 – β

∫ τ

0
Eβ

(
–β(τ – t)

1 – β

)
Dy(τ ) dt,

ABC
0 Dβ

τ z(t) =
M(β)
1 – β

∫ τ

0
Eβ

(
–β(τ – t)

1 – β

)
Dz(τ ) dt,

where

Eβ (z) =
∞∑

k=0

zk


(βk + 1)
(3.15)
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is the famous Mittag-Leffler function. Likewise, using the Taylor series with perturbation
theorem, one can get

F1 + F1ABC
0 Dβ

τ x

(
(xc)n

)
ε + F1x

(
(xc)n

)
ε + F1y(yc)nε + F1z(zc)nε + F1εε = 0,

F2 + F2ABC
0 Dβ

τ y

(
(yc)n

)
ε + F2x

(
(xc)n

)
ε + F2y(yc)nε + F2z(zc)nε + F2εε = 0,

F3 + F3ABC
0 Dβ

τ z

(
(zc)n

)
ε + F3y(yc)nε + F3εε = 0.

(3.16)

We will call all of Eqs. (3.7), (3.11), and (3.16) OPIAs for the corresponding systems with
interested derivatives. By making the necessary computations at ε = 0 for Eqs. (3.1)–(3.3),
we can reach any order of OPIAs. Guess functions u0, v0 should be chosen fittingly accord-
ing to the given conditions to begin the iteration procedures. Accordingly, first correction
functions (uc)0, (vc)0 are evaluated using the OPIAs with x0, y0, z0 and the initial condi-
tions. After that, the first approximations u1, v1 can be established by knowing x0, y0, z0

with (xc)0, (yc)0, (zc)0 and so on. To advance the correctness of the solutions and capability
of the proposed method, the concept of optimal parameters may be used. Subsequently,
using the optimal parameters, we can evaluate the errors with the aid of residuals (2.10).

4 Illustration
In this section, we deal with MCCM (3.1)–(3.3) based on the aforementioned fractional
operators.

Example 4.1 Consider the following modified nonlinear Chua’s circuit system [37]:

�
0 Dβ

τ x(τ ) = θ

[
y +

x – 2x3

7

]
,

�
0 Dβ

τ y(τ ) = x – y + z, (4.1)
�
0 Dβ

τ z(τ ) = φy,

where � is the corresponding fractional operator.

Closed and perturbed form of the above system can be written as follows:

�
0 Dβ

τ x(τ ) – θ

[
y + ε

x – 2x3

7

]
= 0,

�
0 Dβ

τ y(τ ) – x + y – z = 0, (4.2)
�
0 Dβ

τ z(τ ) – φy = 0.

By taking the one correction term from the classical perturbation expansion, the approx-
imate solution can be taken as follows:

xn+1 = xn + ε(xc)n,

yn+1 = yn + ε(yc)n,

zn+1 = zn + ε(zc)n.

(4.3)
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Figure 2 OPIM – C solutions of the modified Chua’s circuit in Example 4.1

By inserting (4.3) into the closed form of the system and by using algorithms (3.7), (3.11),
and (3.16), one can construct the related functional equations for the system with the
aid of residual (2.9), optimal parameters p1, p2, p3 can be computed as mentioned in
Sect. 2.

One can see the results of third-order OPIA solutions from Figs. 2–4. Figure 2 displays
the semi-analytical solutions and attractors for x(0) = 9.95, y(0) = 9.88, z(0) = 9.79, β =
0.95, θ = 14, φ = 10 for derivatives in the Caputo sense.

By using algorithm (3.11) with x(0) = 9.81, y(0) = 9.84, z(0) = 9.99, β = 0.95, θ = 11, φ =
20, OPIA solutions in the Caputo–Fabrizio (C–F) sense can be sketched as in Fig. 3.

From Fig. 4, one can see the semi-analytical solutions and attractors for x(0) = 9.93,
y(0) = 10.012, z(0) = 9.94, β = 0.95, θ = 13, φ = 21 for derivatives in the ABC sense.
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Figure 3 OPIM – CF solutions of the modified Chua’s circuit in Example 4.1

Example 4.2 As a second example, we consider the modified Chua’s circuit in [40]. In
order to compare our results, we will benefit from the solution of numerical techniques
such as the Adams–Bashforth rule as in [7].

To start the iterations, we can use the same initial conditions as x(0) = 0.6, y(0) = 0.3,
z(0) = –0.5 as in [40].

Absolute residual errors, or briefly ARE, of x(τ ) for all of three fractional forms are given
in Table 1 at β = 0.9 and for some specific values of τ . Tables 2 and 3 show the AREs
obtained by using the fractional operators for y(τ ) and z(τ ), respectively.

From Figs. 5–7, we can detect all of the AREs obtained by sixth-order approxima-
tion and various operators plotted by (•), (�), and (–) for Caputo, Caputo–Fabrizio
and Atangana–Baleanu derivatives at β = 0.7. Figures 8–10 show the same draws for
β = 0.8.
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Figure 4 OPIM – ABC solutions of the modified Chua’s circuit in Example 4.1

Table 1 AREs of x(τ ) obtained by fourth-order OPIA solutions using different fractional operators at
β = 0.9

τ Error for C Error for CF Error for ABC

0.1 0.000218839 0.000164539 0.000142742
0.2 0.000478919 0.000360979 0.000313472
0.3 0.000786097 0.000593972 0.000516311
0.4 0.00114697 0.000868771 0.000755924
0.5 0.00156897 0.00119131 0.00103758
0.6 0.00206044 0.00156828 0.00136724
0.7 0.0026308 0.00200722 0.00175161
0.8 0.0032906 0.00251663 0.00219827
0.9 0.0040517 0.00310609 0.00271577

5 Conclusion
In this research paper, we have applied the optimal perturbation iteration method to ana-
lyze the modified fractional Chua’s circuit model (MFCCM) semi-analytically. We change
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Table 2 AREs of y(τ ) obtained by fourth-order OPIA solutions using different fractional operators at
β = 0.9

τ Error for C Error for CF Error for ABC

0.1 0.000186291 0.000131828 0.000120903
0.2 0.000408297 0.000289647 0.000265774
0.3 0.000671168 0.000477306 0.000438184
0.4 0.000980718 0.000699162 0.000642171
0.5 0.00134351 0.000960141 0.000882311
0.6 0.00176692 0.00126581 0.00116377
0.7 0.00225927 0.00162246 0.0014924
0.8 0.00282994 0.00203717 0.00187478
0.9 0.00348945 0.00251795 0.00231836

Table 3 AREs of x(τ ) obtained by fourth-order OPIA solutions using different fractional operators at
β = 0.9

τ Error for C Error for CF Error for ABC

0.1 0.000088061 0.0000770918 0.0000661117
0.2 0.000193869 0.000169805 0.000145692
0.3 0.000320109 0.000280515 0.000240801
0.4 0.000469827 0.000411917 0.000353776
0.5 0.000646473 0.000567071 0.000487271
0.6 0.000853958 0.000749441 0.000644296
0.7 0.00109671 0.000962954 0.000828261
0.8 0.00137972 0.00121205 0.00104303
0.9 0.00170866 0.00150175 0.00129296

Figure 5 ARES by sixth-order approximations at β = 0.7, C (•), CF (�), and ABC (–) for x(τ )

the classical forms of MFCCM with fractional ones with the help of three different frac-
tional operators. Two specific examples of modified fractional Chua’s circuit model are
solved by the presented technique. Figure 2 shows the OPIM solutions and attractors for
x(0) = 9.95, y(0) = 9.88, z(0) = 9.79 and different values of parameters. Figures 3 and 4 dis-
play the semi-analytical solutions when the same algorithm is applied with x(0) = 9.81,
y(0) = 9.84, z(0) = 9.99 in the (C–F) sense and x(0) = 9.93, y(0) = 10.012, z(0) = 9.94 in the
ABC sense, respectively. Also, absolute residual errors are sketched in Figs. 5–7 by using
three operators and various values of parameters. One can say that there is no big differ-
ence in using different operators for solving this system. The results are nearly the same for
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Figure 6 ARES by sixth-order approximations at β = 0.7, C (•), CF (�), and ABC (–) for y(τ )

Figure 7 ARES by sixth-order approximations at β = 0.7, C (•), CF (�), and ABC (–) for z(τ )

Figure 8 ARES by tenth-order approximations at β = 0.8, C (•), CF (�), and ABC (–) for x(τ )
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Figure 9 ARES by tenth-order approximations at β = 0.8, C (•), CF (�), and ABC (–) for y(τ )

Figure 10 ARES by tenth-order approximations at β = 0.8, C (•), CF (�), and ABC (–) for z(τ )

all three derivatives, and they are indistinguishable on graphics. In addition, illustrations
show the availability and usefulness of the OPIAs for the system of differential equations.
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