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I.1. The liver 

I.1.1. Physiology 

The liver is the largest internal organ of the human body and one of the most important 

for the maintenance of physiological homeostasis.1 The liver performs several and 

complex metabolic functions including carbohydrate, lipid and amino acid metabolism.2
 

Additionally, this organ serves as nutrient storage for glucose, lipids, iron and vitamins.2 

The broad spectrum of functions accomplished by the liver also includes the synthesis 

and secretion of albumin, transferrin, fibrinogen, apolipoproteins, and other plasma 

proteins into blood.2 Bile production and secretion is a major function of the liver and is 

crucial for nutrient absorption and biliary clearance of organic and inorganic solutes.3 

Furthermore, the liver receives a dual blood supply (i.e., the hepatic portal vein and the 

hepatic artery), becoming exposed to a variety of toxic compounds. In this regard, the 

liver has the ability to metabolize and secrete potentially harmful biochemical products 

that are produced by the body (i.e., bilirubin or ammonia), to detoxify and eliminate 

pathogenic and xenobiotic agents, as well as to regulate the immune response.2,4 Of 

note, hepatic functions are maintained even after massive liver damage or partial 

resection, due to its unique regenerative capacity.5  

I.1.2. Macroscopic and microscopic anatomy 

Anatomically, the liver is divided into two large lobes (i.e., right and left) and two small 

central ones (i.e., quadrate and caudate), which are mostly covered by a fibrous layer, 

known as the Glisson’s capsule.2,6 The liver parenchyma is arranged in thousands of 

hexagonal units named hepatic lobules (Figure I.1).2 Each hepatic lobule represents 

the functional and structural entity of the liver, consisting of a central vein from which 

hepatocytes radiate forming linear cords towards a portal triad, formed by connective 

tissue enclosing branches of the hepatic artery, portal vein and bile duct (Figure I.1).6 

Oxygen, nutrients, bile acids and hormones delivered by venous and arterial blood are 

drained from the terminal branches of the portal vein and hepatic artery to the lobule’s 

central vein through the hepatic sinusoids (Figure I.1).2 Similarly, hepatocyte-secreted 

bile reaches the bile duct branches at the portal triad through a network of canaliculi.2 

The sinusoidal capillaries lie in between the cords of hepatocytes separated by a 

narrow perisinusoidal space (also known as the space of Disse), which comprises 

reticular fibers and nutrient-rich blood plasma. The direct contact between sinusoidal 

capillaries and hepatocytes improves metabolic exchange.2 
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Figure I.1. Microscopic structure of the liver. The liver is structured in hexagonal 

hepatic lobules composed of cords of hepatocytes radiating from the central vein 

outwards to the portal triads. (Adapted from Mescher AL, 2013)
7  

Multiple cell populations (i.e., parenchymal and non-parenchymal) coexist within the 

liver and coordinately govern the hepatic function at multiple levels.1,2 Hepatocytes and 

cholangiocytes are the two main epithelial cell types of this organ. Roughly, 70-80% of 

the liver volume consists of parenchymal hepatocytes, which are responsible for the 

majority of the metabolic functions in the liver, whereas cholangiocytes, the epithelial 

cells lining the bile ducts, only represent 3-5% of the total liver cells, even though they 

carry out crucial functions in the modification and transport of the bile.1,2 Other non-

parenchymal cells of the liver include the liver resident macrophages or Kupffer cells, 

hepatic stellate cells and sinusoidal endothelial cells that are involved in immunological, 

fibrogenic and substance exchange processes, respectively.1,2 
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I.2. The biliary tract 

I.2.1. Anatomy 

The biliary tract is comprised of several ducts lined by cholangiocytes that regulate the 

production, composition and transport of the bile from the liver to the duodenum. As 

aforementioned, primary bile is secreted from the hepatocytes into the canaliculi (i.e. a 

narrow tubular space between the apical membranes of two adjacent hepatocytes) and 

is subsequently collected by the canals of Hering, leading to the ductule-canalicular 

junction.8 These specialized channels serve as the anatomical and physiological 

transition from the hepatocyte-lined canaliculi to cholangiocyte-lined ductules (<15 µm), 

which ultimately form the biliary tree (Figure I.2).8,9 These small structures serially 

converge at the portal space to form the interlobular ducts (15-100 µm), which 

progressively enlarge to form septal ducts (100-300 µm), area ducts (300-400 µm) and 

segmental ducts (400-800 µm) (Figure I.2).8,9 The bile collected from the right and left 

lobes is then drained to the corresponding hepatic ducts (>800 µm), which are 

considered the limit of the intrahepatic biliary tree (Figure I.2).8,9 Finally, the bile flows 

through the extrahepatic biliary tree (i.e., common hepatic duct, cystic duct, gallbladder, 

and common bile duct) ultimately reaching the duodenum (Figure I.2), where it enables 

lipid digestion and absorption.8,9 

 

Figure I.2. Biliary tree architecture. The biliary tree consists of a network of intrahepatic 

and extrahepatic tubular ducts where the hepatocyte-secreted bile is modified and 

transported to the duodenum.
10
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I.2.2. Cholangiocytes 

Cholangiocytes constitute a small proportion of all liver cells but are very important in 

health and disease. Biologically, these epithelial cells play essential roles for normal 

liver function and are key in the regulation of hepatocyte-derived bile composition, 

facilitating biliary salt reabsorption and contributing to its fluidization and alkalinization. 

Cholangiocytes express primary cilia that arise from their apical membrane.11–13 This 

microtubule-based organelle possesses mechano-, chemo- and osmo-sensor 

properties that allow the detection of changes in bile flow and composition, and is able 

to transduce such stimuli into intracellular signaling ultimately modulating bile 

formation.14,15 Furthermore, cholangiocytes display multiple transmembrane carriers 

(i.e., aquaporins, transporters and exchangers) at the apical and/or basolateral sides 

that are involved in bile composition regulation and biliary bicarbonate secretion,3,16–18
 

protecting cholangiocytes from damaging or toxic agents.19,20
  

I.2.3. Cholangiopathies 

Biliary diseases, also termed as cholangiopathies, refer to a large group of chronic liver 

diseases that share cholangiocytes as their central target.16 Cholestasis, chronic 

inflammation, ductular reaction and fibrosis seem to be common events among biliary 

disorders. However, cholangiopathies are generally classified in different categories 

attending to their etiology in: a) immune-mediated [such as primary biliary cholangitis 

(PBC)16 or primary sclerosing cholangitis (PSC)],21 b) infectious (caused by 

opportunistic infections with Cryptosporidium parvum),22 c) genetic [e.g., polycystic liver 

disease (PLD),23 cystic fibrosis24 or Alagille’s syndrome],25 d) vascular (post-ischemic 

cholangiopathies),26 e) neoplastic [e.g., biliary tract cancer or cholangiocarcinoma 

(CCA)], f) drug-induced [e.g., amoxicillin/clavulanic acid, carbamazepine, 5- fluorouracil 

(5-FU), among others],27,28 or g) idiopathic (e.g., biliary atresia, idiopathic 

childhood/adulthood ductopenia).16 Although being considered rare diseases, 

cholangiopathies account for substantial morbidity and mortality, being a major 

indication for liver transplantation as curative therapy.29–31 Therefore, elucidating the 

molecular mechanisms underlying the development and progression of these diseases 

is of utmost importance to find potential targets for therapy. 
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Figure I.3. Classification of cholangiopathies according to their etiology. Cholangiopathies 

are chronic liver diseases that affect cholangiocytes and are categorized as (1) Immune-

mediated, (2) Infectious, (3) Genetic, (4) Ischemic, (5) Malignant, (6) Drug-induced and (7) 

Idiopathic.  
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I.3. Cholangiocarcinoma 

I.3.1. General features 

CCA comprises a heterogeneous group of malignancies arising along the biliary tree. 

These tumors emerge from the malignant transformation of the epithelial cells lining the 

bile ducts (i.e. cholangiocytes), although it can derive from peribiliary glands, hepatic 

stem cells or even hepatocytes under transdifferentiation.32 CCA is the second most 

frequent primary liver tumor (~15%), after hepatocellular carcinoma (HCC), and 

represents ~3% of all gastrointestinal cancers. The global trend of CCA over the past 

decades indicates an increase in both incidence (0.3-6 per 100,000 inhabitants per 

year)33–35 and mortality (1-6 per 100,000 inhabitants per year).36–39 Despite being a rare 

tumor in most Western countries (<6 cases per 100,000 people), the global 

geographical distribution of CCA is asymmetrical and Southeast Asian countries, such 

as China, South Korea, Thailand and Japan, present significantly higher 

incidence.37,39,40 Such discrepancy is likely due to differences in exposure to specific 

risk factors, particularly to endemic liver fluke parasites, and because of a high hepatitis 

B virus (HBV) and hepatitis C virus (HCV) prevalence in Asia.35,41–43  

I.3.2. Classification 

Considering the heterogeneity and diversity of CCAs, several classifications have been 

proposed.38,44,45 The most widely used CCA classification is based on the anatomical 

location of the tumor. However, other parameters, such as tumor growth pattern or the 

cell of origin may be better predictors of CCA behavior.32,46,47  

Anatomically, CCAs are classified into intrahepatic (iCCA), perihilar (pCCA) and 

distal (dCCA). iCCAs can emerge from any portion of the intrahepatic biliary tree, from 

segmental bile ducts to smaller branches (Figure I.4). pCCAs arise in the right and/or 

left hepatic duct and/or surrounding their junction, while dCCAs affect the common bile 

duct. iCCAs can be further divided attending to their growth pattern into mass-forming 

(MF-iCCA), periductal infiltrating (PI-iCCA) and intraductal growing (IG-iCCA), although 

mixed growth patterns have been described (Figure I.4).48 MF-iCCA encompasses a 

mass of tumor cells affecting the biliary duct and the liver parenchyma.49 In contrast, 

PI-iCCAs grow longitudinally along the wall of large bile ducts leading to progressive 

wall thickening and stricture development,37,50,51 whereas IG-iCCAs present a papillary 

growth pattern towards the duct lumen.51,52 On the other hand, pCCAs and dCCAs 

generally present as poorly defined sclerosing tumors and, less frequently, as papillary 

tumors, and exhibit similar growth patterns to PI- and IG-type of iCCAs.53–55 
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Figure I.4. CCA classification. Depending on their anatomical site of origin, CCAs are 

classified as intrahepatic (iCCA), perihilar (pCCA) or distal (dCCA). iCCAs are also 

classified into mass-forming, periductal infiltrating or intraductal growing according to their 

growth pattern.
37  

Histologically, pCCA and dCCA are predominantly mucinous adenocarcinomas or 

papillary tumors,50,56 while iCCAs are more heterogeneous and show several 

histological variants. In this regard, two main histological subtypes of iCCA are usually 

distinguished according to the level or size of the affected bile duct. Thus, small bile 

duct (mixed) type iCCA arises as a small-sized tubular or acinar adenocarcinoma with 

nodular growth invading the liver parenchyma, and with minimal or no mucin 

production.57–61 Alternatively, large bile duct (mucinous) type iCCA affects large 

intrahepatic bile ducts and is constituted by mucin-producing columnar tumor cells 

arranged in a large-duct or papillary architecture.61–64 The distinction between small 

and large bile duct types does not only have histopathological implications but also 

distinguishes iCCA subtypes with different clinicopathological and molecular 

features.58,61  
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I.3.3. Risk factors 

The etiologies of most CCAs are unknown; however, several risk factors with different 

degree of predisposition to CCA development have been established.39,65 The 

presence of certain biliary pathologies such as choledochal cysts, stones within the bile 

ducts, cirrhosis, chronic biliary diseases (such as Caroli Disease or PSC) are strongly 

associated with CCA. In fact, among PSC patients (global incidence ~1/100,000) there 

is a 10-15% risk of developing CCA,66–68 while in the case of Caroli Disease the risk 

reaches 6-30%.69,70 Moreover, viral infections due to HBV and HCV, as well as liver 

fluke parasites, such as Opisthorchis viverrini and Clonorchis sinensis, have been 

reported to augment the risk of CCA development. Exposure to certain toxins 

(asbestos, dioxins or nitrosamines) has also been associated with CCA. On the other 

hand, alcoholic liver disease, cirrhosis, diabetes, tobacco and non-alcoholic fatty liver 

disease (NAFLD) is a less strong but highly prevalent risk factor.37  

I.3.4. Molecular mechanisms of pathogenesis 

The process of biliary tumorigenesis involves multiple complex mechanisms to drive 

the malignant transformation of cholangiocytes. Among them, sustained proliferation, 

death evasion, neo-angiogenesis as well as the development of invasive and 

colonizing capacities are some of the main hallmarks of CCA cells.71 Underlying these 

hallmarks are genetic, epigenetic and molecular alterations affecting the target cells.37  

I.3.4.1 Genetic and epigenetic alterations 

Several studies, using whole and targeted DNA sequencing approaches, have 

emphasized the genomic complexity of CCA tumors, identifying the most prevalent 

gene mutations affecting crucial genes in cell growth promotion (KRAS, BRAF, 

SMAD4, FGFR1-3, EGFR, NOTCH, WNT), DNA rearrangements and genomic 

instability (TP53, CDK1NA, CCND1, ATM, ROBO2, BRCA1 and BRCA2), de-

ubiquitination (BAP1) and chromatin remodeling (ARID1A, ARID1B, ARID2A, 

SMARCA4, PBRM1, MLL2, MLL3, KMT2C).37 Furthermore, mutations deregulating 

Wnt/β-catenin, Notch or PI3K signaling networks have been described. Of note, the 

discovery of hotspot IDH1 and IDH2 mutations, as well as the constitutive FGFR2 

fusions are driving mutational profile-based clinical trials testing specific compounds 

targeting these alterations.37,39  

Despite displaying shared mutations, CCA subtypes present different genomic 

profiles. Thus, FGFR-fusions together with TP53, KRAS, IDH1/2 and BAP1 mutations 

are the most common events in iCCA, whereas PRKACA and PRKACB fusions, as 

well as mutations in ELF3 preferentially occur in p/dCCA.72,73 Integrative genomic 
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studies have aimed to stratify CCA patients based on prognosis.74,75 In this regard, 

mutations in TP53 or KRAS have been associated with higher tumor recurrence and 

lower overall survival in CCA patients after surgical resection,72 compared to patients 

with IDH mutations or patients without mutations in any of those 3 genes. Although 

most CCA tumor mutations are somatic, a proportion of patients (5-10%) harbor 

germline mutations in BRCA1/2, ATM or BAP1, which may predispose to CCA 

development.76,77 

Deregulated DNA methylation, histone modifications and aberrant non-coding 

RNA (ncRNA) expression can also trigger unbalanced transcription of a plethora of 

target genes that sustain malignant cell transformation without modifying the DNA 

sequence.78,79 In this regard, CpG hypermethylation has been reported in CCA, 

supporting the relevance of epigenetic modifications in these tumors. However, the 

epigenetic modifications in CCAs are still poorly studied and a better understanding of 

these processes may hold promising translational potential, serving as diagnostic and 

prognostic tools, but also as targets for new therapeutic strategies.  

I.3.4.2 Signaling and molecular networks 

CCAs often arise in the context of prolonged biliary inflammation and cholestasis, 

which provide a rich milieu of pro-inflammatory cytokines, growth factors and toxic bile 

acids that might contribute to cholangiocarcinogenesis.37,80,81 This setting presumably 

triggers aberrant signaling leading to uncontrolled cellular proliferation, survival, 

angiogenesis and invasion, overall promoting CCA development and sustaining tumor 

progression (Figure I.5). Transcriptomic profiling identified the presence of two 

subclasses of iCCA: the “inflammation” (38%) and “proliferative” (62%) subtypes, 

characterized by the activation of immune-mediated and oncogenic pathways, 

respectively.75 Among the pro-inflammatory cytokines sustaining CCA growth and 

progression, interleukin 6 (IL-6) is a major player, being involved in the activation of the 

JAK/STAT3, ERK1/2 or the mitogenic p38 signaling pathways promoting tumor 

proliferation and growth.82–85 On the other hand, multiple signals [e.g., inducible nitric 

oxide synthase (iNOS) activation, bile acids, oxysterol, among others) can induce the 

expression of the inflammatory mediator cyclooxygenase-2 (COX-2), triggering 

proliferation and preventing apoptosis through prostaglandin E2-mediated AKT or 

epidermal growth factor (EGF) pathway activation.86,87  

Multiple signaling networks involved in biliary development, including Notch, 

Wnt/β-catenin, Hedgehog (Hh) or Hippo/YAP, are re-activated during liver repair or in 

an inflammatory setting.88 Regarding CCA, a prominent activation of Notch, Wnt/β-

catenin and transforming growth factor-β (TGF-β) was observed in comparison to 
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HCC.89 The Notch pathway mediates biliary repair, growth and hepatocyte 

transdifferentiation into cholangiocytes during carcinogenesis.90 Indeed, iCCA 

development in mouse models has been observed after experimental overexpression 

of Notch intracellular domain 1 (NICD1) in hepatocytes.91,92 Moreover, the majority of 

CCAs present augmented Wnt/β-catenin signaling, in part as a consequence of the 

activated macrophage-mediated release of Wnt ligands93,94 but also as a result of 

mutations95 or DNA methylation alterations affecting components of this pathway,96 

altogether regulating cell growth and survival.95 Likewise, most CCAs display activated 

Hh signaling,97,98 which could be induced by myofibroblasts99 or hepatic stellate cells 

(HSC)-secreted platelet-derived growth factor BB (PDGF-BB),100 enhancing cell 

proliferation, migration and invasion. On the other hand, the Hippo/YAP signaling 

pathway is known to modulate organ size, cell proliferation and apoptosis.101 In CCA, 

upregulation of YAP has been reported and correlates with worse prognosis.102–104 

Despite genetic alterations of the YAP pathway being infrequent,105 up to 14% of CCAs 

present mutations in ARID1A, which encodes for a subunit of the chromatin remodeling 

complex SWI/SNF that reduces YAP transcriptional activity.106  

Receptor tyrosine kinase (RTK) signaling activation is a common event in all 

CCA subtypes. Overactivation of EGFR1, ERBB2 and MET RTK signaling has been 

reported in CCA and is associated with worse prognosis.74,75 RAS-MAPK and PI3K-

AKT-mTOR pathways are triggered by RTK signaling, resulting in augmented 

proliferation, apoptosis evasion and enhanced tumor growth.74,75,107–109 In addition, 

chromosomal fusion rearrangements in FGFR2 occur in CCA. Noteworthy, molecular 

alterations in RTK signaling pathways constitute amenable targets for therapy.  
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Figure I.5. Signaling pathways driving cholangiocarcinogenesis. CCA development, 

growth and progression involve complex molecular processes that include the interplay 

between extracellular ligands and the increased expression of aberrant activation of cell 

surface receptors that lead to deregulation of signaling pathways, ultimately enhancing 

cell proliferation, survival, migration or invasion. The most commonly mutated genes that 

might result in the overactivation of some of these pathways are KRAS, BRAF, ARID1, 

PBRM1, BAP1, IDH1 and IDH2. Abbreviations: 2-HG, 2-hydroxyglutarate; ECM, 

extracellular matrix; RTK, receptor tyrosine kinase.
37
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I.3.5. Tumor microenvironment 

CCAs present an extensive desmoplastic tumor microenvironment (TME) and, even 

though epithelial cells are generally considered as the coordinators of tumor growth, 

the crosstalk between the tumor and its stroma cannot be understated. In fact, TME 

can drive the neoplastic transformation of epithelial cells and regulate numerous cancer 

hallmarks.110–115 The CCA stroma consists of a complex network of extracellular matrix 

proteins116,117 and diverse cell types, including infiltrating immune cells (e.g., 

macrophages, neutrophils, natural killer or T cells), endothelial cells and cancer-

associated fibroblasts (CAFs),118 that interact with the tumor epithelium to support and 

sustain cancer progression (Figure I.6).  

 CAFs are a heterogeneous spindle-shaped cell population with mesenchymal 

origin that contributes to tumor progression.119 In CCA, tumor growth and reduced 

survival positively correlate with the abundance of CAFs.120 Although their origin 

remains uncertain, CAFs most likely derive from quiescent HSCs, tissue-resident portal 

fibroblasts, pericytes, bone marrow-derived mesenchymal stem cells and monocyte 

precursor-derived fibrocytes through transdifferentiation and activation.121–123 CAFs can 

stimulate CCA growth through the release of short-ranged and direct morphogenetic 

signals such as Notch124 or Hh98. Additionally, CAFs can express several matrix 

metalloproteases (MMPs) themselves125,126 or communicate with other TME cells to 

release them, promoting a malignant CCA phenotype.127 In turn, CCA cells can secrete 

PDGF-D and TGF-β that stimulate the recruitment and activation of fibroblasts.128,129 

Moreover, malignant cholangiocyte-derived PDGF-D induces CAFs secretion of 

vascular growth factors (e.g., VEGF-A, VEGF-C) which attract lymphatic endothelial 

cells, favoring CCA cell intravasation and metastasis.130  

 Among the immune cells residing within the TME, tumor-associated 

macrophages (TAMs) are the most relevant population.113 These are mainly 

alternatively activated M2 macrophages, with anti-inflammatory and 

immunosuppressive characteristics that contribute to cancer progression.131 As 

aforementioned, activated macrophages can secrete Wnt ligands activating the Wnt/β-

catenin signaling in CCA cells, promoting their proliferation.93,94 Tumor-infiltrating 

neutrophils (TINs) and lymphocytes (TILs) are also present in CCA TME. TINs seem to 

inversely correlate with CD8+ T cells and positively correlate with regulatory T cells 

(Tregs).132 In this regard, the abundance of TINs and Tregs together with reduced 

CD8+ T cell infiltrates are associated with poor prognosis in patients with CCA.132 In 

contrast, improved prognosis was described in CCA patients with enhanced CD4+ and 

CD8+ T cell infiltrates.133–135 For this reason, a decrease in adaptive immune response 
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components and an increase of immunosuppressive Tregs has been suggested to 

permit immune scape of the tumor and has been related to CCA progression.133,136  

 

 

Figure I.6. Tumor microenvironment and the pathogenesis of cholangiocarcinoma. 

The crosstalk between cancer cells and their stroma triggers the activation of several 

signaling pathways in tumor tissue that results in cancer cell survival, proliferation and 

migration, immune cell recruitment and infiltration, immunosuppression, microsatellite 

instability, extracellular matrix remodeling and lymphangiogenesis, thus supporting tumor 

growth and progression. Abbreviations: CAF, cancer-associated fibroblast; COX-2, 

cyclooxygenase; CTLA-4, cytotoxic T lymphocyte antigen 4; DC, dendritic cell; ECM, 

extracellular matrix; iNOS, inducible nitrogen oxide synthase; MSI, microsatellite instability; 

PDGF, platelet-derived growth factor; PD-1, programmed death protein 1; PD-L1, 

programmed death ligand 1; PGE, prostaglandin E; TAM, tumor-associated macrophage, 

TAN, tumor-associated neutrophil; TILs, tumor-infiltrating lymphocytes. (Adapted from 

Rodrigues PM et al., 2020)
137
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I.3.6. Diagnosis 

CCAs are generally asymptomatic in early stages thus, most patients are diagnosed at 

advanced phases (~70%) when the disease is already widespread. Late diagnosis, 

together with the highly chemoresistant nature of these tumors, compromise the 

possible therapeutic options and contribute to their dismal prognosis. Although there 

are no specific symptoms, abdominal pain, malaise, fatigue, pruritus, weight loss 

and/or jaundice, among others, might appear during tumor progression.  

 Diagnosis is usually conducted by combining imaging methods [i.e., computed 

tomography (CT), magnetic resonance imaging (MRI) or endoscopic retrograde 

cholangiopancreatography (ERCP)], analysis of non-specific serum tumor markers [i.e., 

carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9)] and 

histological analysis of tumor biopsies.37,39,138,139 Nonetheless, the current non-invasive 

diagnostic tools (i.e., imaging methods and tumor markers in serum) display low 

sensibility and specificity, and always require histological confirmation. The lack of 

accurate non-invasive markers and prognosis predictors in CCA claims for an urgent 

need to combine efforts and search for precise and valid diagnostic biomarkers to 

improve patient welfare and outcome. 

I.3.7. Therapeutic strategies 

Currently, surgical resection of the tumor or liver transplantation are the only potentially 

curative options for CCA. The eligibility of CCA patients for surgical resection is 

conditioned to their clinical status, tumor extension as well as the presence or absence 

of metastasis or locally-advanced disease.140 However, most CCA patients present with 

advanced unresectable tumors, and thus, less than one third undergo complete 

resection.140 Besides, relapse after surgical resection is frequent and patients present a 

short 5-year survival (22-44% for iCCA, 11-41% for pCCA and 27-37% for dCCA),141 

prompting studies aiming to identify patients at risk of recurrence and focused on 

adjuvant therapy research. In this regard, the BILCAP study, a chemotherapy-based 

phase III clinical trial, reported benefits in terms of overall survival and relapse-free 

survival when employing capecitabine as adjuvant therapy in biliary tract cancers.142 

Based on the favorable results obtained, international guidelines recommend 

capecitabine as adjuvant therapy after curative resection of CCA.142 Liver 

transplantation for CCA is controversial, and even though different multicenter studies 

have accomplished promising results in terms of disease-free or overall survival 

rates,143–146 liver allograft supply and life-long immunosuppression are important 

limitations of this strategy.  
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 In unresectable cases, palliative treatment remains the only possible option. 

Robust data derived from the phase III ABC-02 and the phase II BT22 trials support the 

use of first-line gemcitabine and cisplatin combination (GemCis) chemotherapy in 

patients with advanced CCA.147,148 Once resistance to first-line therapy is developed, 

FOLFOX (folinic acid, 5-FU and oxaliplatin) has shown potential benefit as second-line 

therapy for CCA.149 Additionally, more intensive approaches using triple chemotherapy 

are currently being assessed as first-line chemotherapeutic strategies.150,151 

Locoregional therapies such as transarterial chemoembolization (TACE), transarterial 

radioembolization (TARE) and liver chemosaturation constitute promising therapeutic 

options152–154 but evidence supporting their efficacy is modest and further studies 

confirming their value are needed.154  

 Aiming to set the basis for precision medicine, the currently explored treatment 

options are based on the mutational signatures driving CCA. Several ongoing clinical 

trials are evaluating multiple molecules targeting specific genetic alterations such as 

IDH1/2 mutations, FGFR alterations, RTK fusions or EGFR, MET and ERBB2 

mutations. Based on their promising achievements, molecular profiling in cancer, 

identifying mutations/amplifications/fusions amenable for targeted therapy, could 

represent a significant improvement in patient management.137 Finally, in spite of 

emerging as an attractive anti-cancer therapeutic option, clinical data on 

immunotherapy for CCA is limited. 

 

 

I.4. Posttranslational modifications 

I.4.1. General concepts 

Posttranslational modifications (PTMs) refer to the covalent attachment or proteolytic 

cleavage of functional groups or proteins to or from substrate proteins. These chemical 

changes alter the structure and properties of individual proteins, affecting their stability, 

activity, turnover, localization and/or interaction with other molecules. To date, more 

than 450 PTMs have been identified and such wide variety includes phosphorylation, 

methylation, acetylation, ubiquitination, SUMOylation, NEDDylation, glycosylation and 

lipidation, among others. These proteome modifications constitute a pivotal mechanism 

that regulates protein levels and function, allowing cells to rapidly respond to diverse 

stimuli.155,156
 Indeed PTMs can activate or inhibits multiple signaling networks, being 

determinant in numerous biological processes such as gene expression, signal 

transduction, proliferation, survival, protein-protein and cell-cell interactions, as well as 

in mediating communication between cells and their environment. 155,156
 Given their 

relevance in physiological processes, perturbation of PTMs commonly lead to cell 
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disturbances.156 Moreover, altered cellular states including differentiation or malignant 

transformation of cells could be accompanied by the acquisition of unique PTM 

hallmarks.156 

I.4.2. The NEDDylation pathway 

Protein NEDDylation results from the covalent and reversible binding of neural 

precursor cell expressed developmentally down-regulated protein 8 (NEDD8) to a 

lysine residue in the substrate protein.157 NEDD8 attachment to proteins is catalyzed by 

a three-step enzymatic cascade that involves the heterodimer NEDD8-activating 

enzyme E1 (NAE), NEDD8-conjugating E2 enzymes [ubiquitin-conjugating enzyme 

E2F (UBE2F) and ubiquitin-conjugating enzyme E2M (UBE2M)] and substrate-specific 

E3 ligases (Figure I.7). Briefly, NEDD8-specific protease (NEDP1) first processes the 

Gly76 residue at the C-terminal tail of the NEDD8 precursor form. The next step in 

NEDD8 activation requires the binding of Mg2+, ATP and NEDD8 to NAE [constituted 

by the heterodimer of NEDD8 activating enzyme E1 regulatory subunit (NAE1) and the 

NEDD8 activating enzyme E1 catalytic subunit also known as ubiquitin-activating 

enzyme 3 (UBA3)] that leads to the formation of an acyl adenylate intermediate, 

NEDD8-AMP, and the release of inorganic pyrophosphate.158,159 The NEDD8-AMP 

subsequently reacts with an active thiol site of the NAE E1 enzyme leading to the 

formation of NEDD8-NAE thioester and the release of AMP.159–161 The binding of a 

second NEDD8-AMP, resulting from a second round of NEDD8, ATP and Mg2+ 

reaction, yields an open conformation of the NEDD8-charged NAE structure allowing 

the transfer of NEDD8 to one of the E2 NEDD8-conjugating enzymes (UBE2F and 

UBE2M) through a transthiolation reaction.160–164 Finally, a substrate-specific E3 ligase 

transfers NEDD8 to a lysine residue in its target protein.165–167 Most NEDD8 E3 ligases 

reported to date belong to the RING family of E3s [e.g., cullin-associated RING-box 

proteins 1 and 2 (RBX1/2), murine double minute 2 (MDM2), Von Hippel–Lindau (VHL), 

among others]. Other NEDD8 E3 ligases include Parkin or SMAD-specific E3 ubiquitin-

protein ligase 1 (SMURF1).161 Protein NEDDylation is a reversible process in which 

deNEDDylases [e.g., NEDP1 or COP9 signalosome (CSN)] are able to cleave the 

peptide bond between the substrate and NEDD8, freeing NEDD8 and facilitating the 

restart of the NEDDylation conjugation cycle.168 Curiously, while NEDP1 is able to 

process the precursor form of NEDD8, CSN complexes do not present a high affinity 

for free NEDD8 and are very inefficient in processing its precursor form.161 In contrast, 

NEDP1 exhibits an insignificant activity when it comes to removing a single NEDD8 

from cullins. Nevertheless, NEDP1 mediates deNEDDylation of hyperNEDDylated 

cullins, resulting in mono-NEDDylated substrates.161 Moreover, NEDP1 can 

deconjugate NEDD8 from multiple non-cullin substrates.161 
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Figure I.7. The NEDDylation pathway. Schematic representation of each step of the 

NEDD8 conjugation pathway, including NEDD8 precursor processing, NEDD8 activation 

by NAE, E2 loading, conjugation to a substrate by an E3 and recycling of NEDD8 by a 

deNEDDylating isopeptidase. The involving enzymes in each step are listed. 

Abbreviations: c-CBL, casitas B-lineage lymphoma; CSN, COP9 signalosome; DCN1, 

defective in cullin neddylation protein 1; DCNL 1-3, DCN1-like protein 1-3; IAP, inhibitor of 

apoptosis; MDM2, murine double minute 2; N8, NEDD8; NAE, NEDD8-activating 

enzyme; NEDP1, NEDD specific protease 1; RBX1/2, RING-box protein 1/2; RNF111, 

ring finger protein 111; SCF
FBXO11

, Skp1-Cul1-F-box; subs, substrate; Tfb3; RNA 

polymerase II transcription factor B subunit 3; TRIM40, tripartite motif-containing protein 

40; UBE2F, ubiquitin-conjugating enzyme 2F; UBE2M, ubiquitin-conjugating enzyme 2M; 

USP21, ubiquitin carboxyl-terminal hydrolase 21. (Adapted from Zhao Y et al., 2014)
169 

NEDD8 is a ubiquitin-like protein (UBL), and these, including ubiquitin and 

SUMO1, are able to form chains of consecutive SUMO or ubiquitin residues on their 

substrates. Nevertheless, NEDD8 substrates are thought to be mainly mono-

NEDDylated on a single or several conserved lysine residues, and NEDD8 chains have 

only been reported in vitro.170
  

Even though NEDD8 is a UBL that shares 59% amino acid identity and 80% 

homology with ubiquitin;171 protein NEDDylation is specific. In this regard, NEDP1 is 

specific for the NEDD8 precursor form and does not process other UBL precursors.161 

Additionally, a single amino acid difference in the C-terminal of the two UBLs, Ala72 in 

NEDD8 and Arg72 in ubiquitin, which is recognized by their respective E1 enzymes, 

represents an important specificity mark.162 Furthermore, the binding of NEDD8 to the 

E2 enzymes occurs in a UBA3-specific site that is not present in other E1s, preventing 

cross-reactivity with other UBL pathways such as ubiquitination or SUMOylation.162 

Finally, NAE can recognize and distinguish both NEDD8 E2 conjugating enzymes, 

incorporating additional specificity when it comes to cullin modification since UBE2M 

and UBE2F specifically NEDDylate different cullins (cullin 1-4 and cullin 5, 

respectively).161  
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I.4.3. NEDDylation substrates 

The best characterized substrate of NEDD8 is the cullin family of proteins.172 In 

humans, 8 cullin family members have been identified and these include cullins 1-3, 

4A, 4B, 5, 7 and 9.172 Cullins act as a molecular scaffold together with an adaptor 

protein, a substrate receptor and a RING protein to form the cullin-RING ligases 

(CRLs), well-known E3 ubiquitin ligases. NEDDylation of cullins activates CRLs, and 

therefore, promotes ubiquitination and proteasomal degradation of multiple CRL 

substrates modulating important biological processes such as cell cycle progression, 

survival, DNA repair and signal transduction, among others (Figure I.8).159,173 The 

plethora of proteins that can be targeted by CRLs include DNA licensing proteins (e.g., 

CDT1, ORC1), cell cycle mediators (e.g., p21, p27) or kinases (e.g., WEE1, RhoA).  

In addition to CRLs, several non-cullin proteins have been identified to become 

NEDDylated (Figure I.8). These include transcription factors (e.g., p53, p73, E2F, IκBα, 

HIF1α), receptors (e.g., EGFR, TGF-βR2), kinases (e.g., PINK1, CK1α), E3 ligases 

(e.g., MDM2, Parkin) and others such as Histone 4 or ribosomal proteins.161,174–180 

NEDDylation of transcription factors, generally suppresses their activity by altering their 

stability, subcellular localization or interaction with DNA. For instance, MDM2-mediated 

p53 NEDDylation, unlike MDM2-mediated ubiquitination, does not lead to proteasomal 

degradation but inhibits its transcriptional activity.174 The p53 family member, p73 can 

also become NEDDylated by MDM2, impeding its nuclear translocation and therefore, 

downregulating its transcriptional activity.181 Similarly, the transcriptional activity of E2F 

transcription factors is reduced upon E2F NEDDylation.182 Protein NEDDylation can 

potentially regulate RTK signaling. EGFR is a RTK that is activated by binding to 

extracellular growth factors, which in turn trigger several signaling networks. However, 

hyper-activation of the downstream signaling cascades can be detrimental, thus EGFR 

is rapidly phosphorylated or ubiquitinated to mediate its internalization through 

endocytosis and degradation.161 Moreover, the E3 ligase c-CBL has been reported to 

NEDDylate EGFR, resulting in increased ubiquitination and degradation.161 

On the other hand, protein NEDDylation can result in protein stabilization. In this 

regard, MDM2 mediates its auto-NEDDylation to enhance its stability and promotes 

NEDDylation of ribosomal proteins (i.e., L11 and S4) modulating their stability and 

subcellular location.161 Likewise, NEDDylation of the oncoprotein HuR leads to its 

stabilization and nuclear localization, protecting this protein from degradation and 

hence stimulating cell proliferation and survival.175 Taken together, these data highlight 

the relevance of protein NEDDylation, and its fine-tuning, in numerous physiological 

processes (Figure I.8). 
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Figure I.8. Molecular mechanisms modulated by the NEDDylation pathway. The 

NEDD8 conjugation pathway is involved in several physiological processes including cell 

cycle progression, proliferation, survival, migration, invasion, angiogenesis, among others. 

Abbreviations: CRL, cullin RING ligase; EMT, epithelial-mesenchymal transition; N8, 

NEDD8; subs, substrate; Ub, ubiquitin. 
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I.4.4. NEDDylation and disease 

Deregulation in NEDDylation conjugation has been reported in several human diseases 

such as different types of cancers,183–187
 inflammatory and autoimmune disorders188,189 

as well as neurodegenerative190,191 and cardiac conditions.192 Regarding cancer, 

aberrant protein NEDDylation has been found in distinct types of tumors and multiple 

NEDD8 target proteins have been identified. As aforementioned, these include cell 

cycle regulators, tumor suppressors and oncoproteins. Therefore, disruption of normal 

NEDDylation adversely affects normal cell cycle progression, cell proliferation and 

survival, ultimately promoting tumor growth.  

Considering hepatic disorders, liver fibrosis, early stages of NAFLD (i.e., hepatic 

steatosis), HCC and iCCA have been shown to exhibit aberrant protein 

NEDDylation.193–197 In fact, upregulated protein NEDDylation was observed in patients 

with liver fibrosis as well as in two animal models mimicking liver fibrosis 

progression.193 Similarly, NEDD8 mRNA levels were increased in patients with hepatic 

steatosis compared to healthy controls,195 and both NEDD8 and NAE1 mRNA levels 

were found augmented in a large cohort of HCC patients.198 Furthermore, the 

expression of the NEDDylation pathway components (i.e., NAE1, UBA3, UBE2M), as 

well as NEDD8-conjugation, were determined by immunohistochemistry (IHC) in a 

cohort of iCCA patients, of which two-thirds displayed upregulation of the NEDDylation 

pathway.197 Besides, global levels of NEDDylation and NAE1 protein expression 

significantly correlated with poor disease outcome in HCC194 and NAE1 expression was 

shown to be an independent prognostic factor for postoperative recurrence in iCCA.197 

Furthermore, knockdown of UBE2M reduced cell proliferation and survival in iCCA 

cells.199 Overall, these findings indicate that upregulated NEDDylation pathway is 

involved in liver disease and interference in this pathway could be a promising 

therapeutic target. 
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I.4.5. Pevonedistat – A first-in-class NEDDylation inhibitor 

Pevonedistat (Takeda Oncology) was developed as a result of perseverant medicinal 

chemical efforts on N6-benzyl adenosine, which had been previously identified as an 

inhibitor of NAE through high throughput screening methods.173 Pevonedistat is an 

adenosine sulfamate analog and a small highly selective first-in-class inhibitor of NAE 

and, therefore, of the NEDDylation pathway (Figure I.9).173 Since Pevonedistat is 

structurally related to AMP, a tight binding product of the first step of the NEDDylation 

cascade, Pevonedistat is able to form a covalent adduct with NEDD8, impeding further 

steps in the NEDDylation cascade by a novel mechanism termed substrate-assisted 

inhibition. This Pevonedistat-NEDD8 adduct resembles the NEDD8-AMP intermediate, 

but cannot be further transferred to E2s, stopping the subsequent reactions and 

blocking NEDD8 conjugation.200 By doing so, Pevonedistat effectively inhibits cullin 

NEDDylation, inactivating CRLs, which leads to the accumulation of CRL substrates 

and, thus, triggers cell cycle arrest, apoptosis, senescence and multiple other cellular 

responses. Likewise, inhibition of NEDD8 conjugation to certain oncoproteins also halts 

disturbed cell growth. Preclinical studies have proven its potent antitumor activity and 

well-tolerated toxicity.159,173 In addition, phase I trials have ensured the safety of 

Pevonedistat and demonstrated promising clinical effects in terms of disease 

stabilization and partial or complete responses to treatment.200,201 Thus, Pevonedistat is 

currently being investigated in several clinical trials for the treatment of patients 

suffering from solid and hematological tumors, alone or in combination with other 

chemotherapeutic compounds. 

 

Figure I.9. Chemical structure of Pevonedistat. Pevonedistat (((1S,2S,4R)-4-{4-[(S)-

2,3-Dihydro-1H-inden-1-ylamino]-7H-pyrrolo[2,3-d]pyrimidin-7-yl}-2-

hydroxycyclopentyl)methyl sulfamate hydrochloride) is an adenosine sulfamate analog 

that forms with NEDD8 and adduct, which impedes NEDD8 conjugation and blocks the 

NEDDylation pathway.
173

 

 



Introduction    

24 

Furthermore, increasing evidence is highlighting the role of NEDDylation in the 

regulation of TME.202 Importantly, CAFs derived from Pevonedistat-treated HCC 

tissues presented downregulation of genes involved in cell cycle and DNA replication 

pathways, suggesting that Pevonedistat could inhibit CAFs proliferation.203 Moreover, 

Pevonedistat was found to reduce endothelial cell migration and capillary tube 

formation, overall suppressing angiogenesis.202,204 By contrast, T cell and dendritic cell 

activation, which contributes to antitumor immune response, seems to be impaired 

upon NEDDylation inhibition.205,206 It is, therefore, important to determine the relevance 

of protein NEDDylation in tumor-promoting TME and to assess the effect of 

NEDDylation inhibition on the different populations of TME in vivo, providing further 

foundation for the use of Pevonedistat as an anticancer therapeutic strategy.  
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PTMs are essential mechanisms to modulate cellular responses to diverse stimuli. The 

relevance of protein NEDDylation, in particular, has been demonstrated in different 

diseases including cancer. Upregulation of the NEDDylation pathway in CCA pointed 

out the relevance of this PTM in cholangiocarcinogenesis. Therefore, this dissertation 

aims to further depict the potential role of NEDDylation in the pathogenesis of CCA as 

well as its regulatory value using Pevonedistat.  

Hence, the following objectives were proposed to be assessed: 

 

I. Analysis of the expression levels of the NEDDylation activation components 

in human CCA tissue compared to controls. 

 

II. Analysis of the expression levels of the NEDDylation activation components 

in CCA cell lines compared to normal controls. 

 

III. Evaluation of the impact of pharmacological or genetic NEDDylation 

inhibition in the pathogenesis of CCA in vitro. 

 

IV. Evaluation of the impact of pharmacological or genetic NEDDylation 

inhibition in the pathogenesis of CCA in vivo. 

 

V. Identification of the NEDDylation targets involved in 

cholangiocarcinogenesis. 

 

VI. Ascertain of the role of NEDDylation in the crosstalk between CCA cells 

and the TME. 
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