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SUMMARY 

 

Photonic sensors, and especially optical fiber-based ones, have 
reached a maturity in which they have become a realistic alternative 
for certain industrial environments thanks to their higher versatility 
and performance compared to traditional sensors. As a result, the 
demand for highly sensitive and reliable optical sensors for a wide 
and diverse variety of fields such as biomedicine, car industry, 
aeronautics, gas and oil industry, etc. has increased significantly. 

In this work, several optical sensors for industrial applications are 
shown. These sensors are designed especially for aeronautical 
applications but not limited to them, and are based on different 
operating principles depending on the nature of the measurand. The 
process that involves the design, fabrication and testing of each 
device is explained in detail in this work. 

This thesis is presented as a compendium of published articles. Its 
structure consists of a first Section of synthesis that includes an 
introduction to the topic of the research, the description of the 
theoretical framework and the methodological tools used to that end, 
the definition of the hypothesis and the objectives that are pursued 
by it, and lastly, a summary and discussion of the results. 

The research described in this first part is divided in two different 
lines: In the first, the process to develop an optical fiber-based 
displacement sensor for aeronautical turbines is explained. Such 
research and its results are included in Article 1 in the Appendix. 
In the second part, several sensors based on strongly coupled 
multicore fibers and designed for the measurement of diverse 
parameters (such as temperature or vibrations) are described. The 
process to reach up to each device and their respective results are 
included in Articles 2, 3 and 4 in the Appendix. 



In Section 2, the conclusions regarding the research carried out 
during the thesis are summarized, as well as the future lines of 
research that have been opened as a result of it. Additionally, the 
contributions during the thesis, including published papers and 
conferences, are included as well. 

In the Appendix, the published Articles that have allowed this thesis 
to be presented as a compendium of articles are included. 
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Section 1 

 

Synthesis 
 

In this section, an overview of the research is shown. It includes an 
introduction to the frame and motivation of the thesis and the 
detailed description of the two research lines carried out during it: 
The development of an optical fiber-based displacement sensor for 
aeronautical turbines and the development of strongly coupled 
multicore fiber-based sensors for the measurement of parameters of 
interest for the industry. 
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1.1  Introduction 
 

1.1.1 Context of the research 
 
The continuous quest of the industry for designing and producing 
goods with improved performance at lower costs has generated a 
great interest in mechanisms to optimize their productions. To that 
end, every step of the process, starting from prototype testing to 
mass production, is subjected to exhaustive quality control tests. In 
order to carry out such quality tests, the industry demands robust, 
reliable and highly sensitive sensors with the aim of monitoring 
several parameters of interest in real time. Thanks to them, critical 
information about the entire fabrication process can be obtained, as 
it can be monitored and characterized precisely. For instance, they 
can be used to detect and correct design failures in prototypes before 
reaching mass production, to verify that all the items in the 
production chain are subjected to identical conditions during their 
fabrication, or to certify that the rigorous standards that are specific 
for each of the industrial sectors are fulfilled. Thus, the potential 
benefits of the deployment of a reliable and sensitive sensing system 
in terms of quality improvements and economy savings seem evident. 

In the industry, it is common to find sensing solutions based on 
mature technologies to monitor such processes, as they have proven 
to be reliable, long lasting and cost-effective through years. Those 
mature technologies usually have an electric or electronic nature, 
which indicates that their operating mechanism is based on 
measuring a physical input from the environment and convert that 
information into an electrical signal that can be interpreted by either 
a human or a machine, as it is the case of thermocouples and gauges, 
among others [1]. This characteristic may not be an issue in some 
circumstances, but it can represent a major concern if such sensors 
are deployed in certain environments that require strict security 
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measures such as gas and oil facilities, nuclear plants, aeronautical 
structures, etc. in which there may be flammable gases or high 
voltage lines, for instance. Moreover, these sensors may struggle to 
perform in environments with high radiation or electromagnetic fields 
due to interferences, or their reliability may be affected under 
extreme temperatures.  

With the aim of overcoming such limitations, photonic technology 
emerged as appealing alternative to replace or be combined with the 
aforementioned sensors. Photonic sensors are based on the study or 
application of the electromagnetic energy whose basic unit is the 
photon, which is commonly known as light. From a physics point of 
view, photons do not have mass, do not interfere with electrons and 
only interfere with other photons under specific conditions. 
Therefore, their behavior is predictable and controllable according to 
basic physical laws, even within high electromagnetic, magnetic and 
radiation fields, and extreme temperature environments [2]. Photonic 
sensors have proven to be highly sensitive to a wide range of 
parameters such as strain, pressure, temperature, etc. This 
combination of performance makes them have a great potential, as 
these are much-demanded characteristics for harsh environment 
sensing [3]. To guide the light, photonic sensors make use of 
technologies such as optics, lasers and optical fibers, for instance; and 
by studying the perturbation or changes in the characteristics of the 
light, the physical effect applied to it can be detected and measured 
with high precision.  Even though the aforementioned components 
were expensive when they first appeared, their continuous evolution 
and improvement has caused a progressive lowering of their cost up 
to a point in which they are an economically viable alternative. This 
fact has allowed a significant progress in photonics and has permitted 
its expansion to fields of application of different nature apart from 
sensing, as communications, information storage and data processing, 
for instance. As a result, photonic-based devices have gained much 
relevance in the industry, and nowadays it is possible to find 
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commercial sensing systems based on this technology deployed in 
several production processes, as for example precision metrology and 
laser-based calibration systems [4]. 

Among photonic-based sensing solutions, those based on optical fiber 
technology should be highlighted. Historically, this technology has 
been used to enhance the capabilities of communication networks. 
However, as many of the innovations stemming from that industry 
can be directly applied to sensing, a significant increase in the 
interest for developing optical fiber-based sensing solutions has taken 
place. In fact, nowadays, optical fiber sensing technology has reached 
a maturity in which it offers a good compromise between cost-
effectiveness and performance at the same time that overcomes many 
of the aforementioned limitations of traditional sensors to operate in 
harsh environments. As a result, the industry has shown great 
interest in integrating them in their production processes or quality 
control tests, as they allow solutions that without the capability of 
optical fibers would not be possible or would be bulky to realize. 

 

1.1.2 Optical fiber sensors 
 

1.1.1.1 Overview 
 
Briefly, an optical fiber is a flexible circular dielectric waveguide 
whose diameter is slightly thicker than that of a human hair, and 
commonly made of silica or polymer. Commonly, its structure 
consists of a core and a cladding surrounding it, and its operating 
principle is based on total internal reflection, which permits the light 
that is launched into the core from a laser or a LED to propagate 
along its axis (see Fig. 1). To obtain such confinement of the optical 
signal in the core, the refractive index of the latter (ncore) must be 
greater than that of the cladding (ncladding) [5]. 
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Figure 1: Operating principle of an optical fiber. 

Thanks to these properties, optical fibers have been widely used to 
transmit light between their ends in a very efficient manner, as they 
provide higher bandwidth with less losses or interferences than those 
in electrical cables. Additionally, they have proved to be very useful 
as sensing elements as well, as they are very sensitive to diverse 
parameters that affect the characteristics of the light propagating 
through it (such as intensity, phase, etc.) or its transit time.  

In its simplest configuration, apart from the optical fiber itself, a 
sensor based on optical fiber only requires a light source and an 
interrogator to operate. After the light is launched into the core of 
the fiber, its properties are modulated or altered in proportion to the 
physical effect applied to the fiber. Then, this altered light reaches 
the interrogator, which translates the received optical signal or 
signals into electronic quantities in analog or digital form, and acts 
as the interface to the control equipment (see Fig. 2). Starting from 
this point, the setups for optical fiber sensing can become more 
complex to make it possible to multiplex several sensors or to 
measure different parameters simultaneously, for instance. 

 
Figure 2: Schematic of an optical fiber-based sensing system. 
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Hence, for sensing purposes, optical fiber sensors have many 
advantages, such as small size and weight, deployment ease, setup 
simplicity, embedding or surface bonding possibility and 
electromagnetic immunity. Additionally, they can transmit signals 
over long distances without significant losses and without the 
requirement of any power supply, be multiplexed to enable large 
sensor counts and suitable for extreme environments (as 
environments with high voltage lines, radioactivity, high 
temperatures or corrosive substances, for example). 

However, they tend to be more expensive than electronic sensors and 
their interrogation equipment is usually more complex than that for 
electronic sensors, although this characteristic has been significantly 
improved in the last decades. Moreover, depending on the intended 
measurement, they require precise installation methods and 
procedures to avoid the optical fiber getting damaged or broken, and 
the interrogation systems require basic training before the user can 
start using them. 

Thus, when planning a sensing system, selecting the right sensor and 
the right sensor technology is fundamental and has to be studied for 
each case independently. For the frame of the research of this thesis, 
optical fiber sensing provides many powerful advantages, as it will 
be demonstrated in throughout this document. 
 

1.1.2.2 Classifications 
 
Optical fiber-based sensors can be classified in many different 
manners. Some of the most typical classifications are briefly 
summarized below. 

They can be classified according to the nature of the magnitudes that 
are going to be measured:  mechanical, electromagnetic, chemical, 
fluid flows, thermal or biomedical, for instance [6]. 
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Another classification can be done by separating intrinsic and 
extrinsic sensors [7]. On the one hand, in intrinsic sensors, the 
alteration or modulation of the light is caused by an internal effect 
inside the fiber. Commonly, these effects are absorption, dispersion 
or fluorescence [8]. On the other hand, in extrinsic sensors, the 
alteration or modulation of the light is caused by an effect (or effects) 
from outside the fiber. By means of these sensors, parameters such 
as vibration, rotation, displacement, velocity, acceleration, torque, 
and torsion can be measured precisely [9]. 

According to their spatial distribution, optical sensors can be 
classified in three different types. Single point sensors provide the 
measurement in a discrete point of the fiber whereas distributed 
sensors are capable of providing measurements along the entire fiber 
[10]. As an intermediate solution, the quasi-distributed or multi-point 
sensors can be found [11]. These sensors are based on multiplexing 
several sensors so that the measurement of each individual sensor 
can be obtained unequivocally. In some cases, when the requirements 
of the measurement in terms of spatial resolution are not very 
demanding, multi-point sensors provide a better solution than 
distributed sensors, as they are cheaper and easier to operate. 

Regarding the parameter of the light that is being modulated, the 
following classification can be done: 

1. Sensors based on the modulation of the intensity: The changes in 
the intensity of the light in the fiber are caused by different effects 
such as bending or curvature, and are proportional to their 
magnitude. These sensors are commercially appealing as they 
provide a good combination of cost-effectiveness and simplicity 
[12]. 

 

2. Sensors based on the modulation of the wavelength: These sensors 
are based on the study of the shift of the wavelength caused by 
different factors that affect the fiber. The main advantage of these 
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sensors is that they can be multiplexed along a single fiber, and 
easily deployed and/or embedded in large structures such as 
dams, aircrafts, bridges, etc., which makes them appealing  for 
structural health monitoring (SHM) [13]. Probably, the most 
popular solution among these sensors is the one based on fiber 
Bragg gratings (FBGs), which is a very mature technology that 
has been commercially available for years. 

 

3. Sensors based on the modulation of the phase: Interferometric 
techniques are used in order to make two beams of light interfere 
with each other and detect the change in the phase of the light. 
In such sensors, one of the beams is used as reference whereas the 
other beam is exposed to the effect that is intended to be 
measured. In this manner, high sensitivity may be achieved in the 
measurement, although complex setups and exhaustive 
alignments are required in order to perform correctly [14]. The 
most common solutions are based on Mach-Zehnder, Michelson, 
Fabry-Perot and Sagnac interferometers. 

 

4. Sensors based on the modulation of the polarization: These sensors 
are based on measuring the change of the polarization of the light 
within the fiber due to effects such as the Faraday Effect. They 
are commonly used to measure magnitudes as current or pressure 
[15]. 

 

5. Sensors based on the modulation of the spectrum: These sensors 
are based on spectroscopy, and their operating principle is based 
on analyzing the variations in the transmitted spectrum [16]. 

 

6. Sensors based on the modulation of the dispersion of light: The 
detection of the amplitude and position of the measurand is 
carried out by the study of the scattered light due to scattering 
effects such as Raman, Brillouin or Rayleigh [17]. 
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1.1.3 Motivation of the thesis 
 
The aim of the research of this thesis is to design and manufacture 
novel optical fiber-based sensors that are simple, robust, easy to 
operate and capable to offer better performance than actual optical 
or electronic solutions. The devices described in this work can be 
configured to operate as single-point or multi-point sensors with the 
aim of making them as versatile as possible for their deployment in 
industrial environments. 

Such sensors have been conceived according to the exhaustive 
requirements of each specific case, which have determined their 
characteristics. As a result of that, the sensors appearing in this work 
are based on different operating principles and have different 
configurations depending on the magnitude to measure, the context 
in which they are going to be deployed and in order to optimize their 
performance. 

Two different types of sensors were designed, manufactured and 
tested for this thesis. On the one hand, a displacement sensor 
designed to operate in aeronautical turbines. As the measurement 
required a non-contact system, a sensor based on the intensity of the 
reflected light was developed. On the other hand, several sensors 
conceived to measure parameters of interest for the industry such as 
temperature, vibrations, curvature, etc. All the sensors in the second 
part share identical operating principle, but their configuration was 
particularized and optimized for each measurand. 
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1.2 Optical fiber-based displacement sensor 
(OFDS) 
 

In this section, the entire process regarding the development of a 
custom-designed optical fiber-based displacement sensor (OFDS) for 
the measurement of Tip Clearance in real time in aeronautical 
engines is presented: starting from the definition of the requirements 
for this application, to its results when it is installed and tested in a 
real turbine stage in a wind tunnel. Additionally, this section includes 
the mathematical approach of the operating principle of the sensor 
and the comparison of its performance under different working 
conditions and against a commercial solution. 

1.2.1 Introduction and context of the research 
 
The aim of the research exposed in this section is to develop a highly 
sensitive, simple and robust optical sensor capable of measuring 
distance and/or displacement with high resolution. Such 
measurement is very relevant in many industrial sectors in which 
these sensors are commonly deployed for metrology and calibration 
purposes as part of the Industry 4.0 [18, 19]. Examples of their 
application can be found from pre to post production processes in 
which they are used for multiple quality validation procedures. For 
instance, in the car industry or in the machine-tool sector, where 
they are applied to compare the dimensions of manufactured items 
with their respective simulation models. Apart from the significant 
performance provided by OFDSs regarding the quality of the 
measurement itself [20], they offer some other significant advantages 
that are interesting for the industrial environment in which they are 
meant to be deployed, such as high-speed measurements, wide 
temperature operation ranges and adaptability. The combination of 
such characteristics make OFDSs appealing towards the desired 
“zero defects” production [21]. 
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Among the sectors in which metrology plays a major role, the 
aeronautical industry is probably the benchmark as it has the most 
demanding requirements in terms of performance and reliability. 
Such sector tends to be very strict regarding manufacturing and 
validation processes, and as a result, they use mature technologies 
whose reliability and performance have been verified through years, 
as thermocouples or strain gauges, among others. These sensors are 
commonly used to characterize or verify aeronautical components 
and their structural health, as these elements are designed in a 
manner in which they can withstand certain levels of damage without 
affecting their performance [22]. Due to that, meticulous inspections 
are required to keep these possible damages within the safety 
margins. In this context, sensors capable of reaching the quality 
standards of the inspection at the same time that are capable of 
reducing the time to perform those maintenance or inspection 
processes are pursued.  The reason for the latter is the increase of 
the profit of airlines and manufacturers accordingly as the time 
required for the validation of the components and/or the time the 
aircrafts are on the ground is shortened. Hence, developing an OFDS 
capable to fulfill such demanding requirements and become a realistic 
alternative in such a conservative industry as the aeronautical is a 
very challenging objective. 

Among the many of components with which an aircraft is comprised, 
the engines are likely to be the most critical and expensive 
components. As it can be noticed in Fig. 3, they consist of several 
cascaded stages. I if we attend to the direction of the airflow, the 
first stage is the fan, whose purpose is to guide part of the air driven 
by it into the core of the engine through the low-pressure compressor. 
The low-pressure and high-pressure compressors conform the second 
stage, and their function is to increase the pressure of the air through 
it so that the efficiency of the combustion is increased proportionally. 
The third stage is the combustion chamber, where the fuel and 
pressurized incoming air are mixed; and at the exit of it is where the 
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fourth stage is located. It consists of the high and low-pressure 
turbines, which are in charge of extracting the energy from the 
airflow to make the fan and compressors rotate. 

 
Figure 3: Schematic of the stages of a jet engine. Courtesy Jeff Dahl, CC BY-SA 

4.0, via Wikimedia Commons. 

Commonly, turbine and compressor stages consist of blisks, which is 
the name given to a rotor formed by the assembly of a disk and a 
series of blades integrated into it (blades + disk). During the 
operation of an engine of this nature, there are multiple parameters 
that require to be monitored, such as temperature, vibration, 
pressure, rotation speed, etc. [23]. Among them, the characterization 
of the vibrations in the blades of the blisks is of vital importance as 
they are directly linked to the efficiency and safety of the engine, and 
currently, a technology that fully meets the needs of engine 
manufacturers regarding this topic does not exist. 

When a blisk is rotating at high speed, the vibrations suffered by the 
blades can be of three types: radial, tangential and axial (see Fig. 4). 
Radial vibrations will induce changes in the length of each blade, 
which will cause the blades to be closer or further from the engine 
casing. This distance is defined as Tip Clearance (TC), which is a 
very significant parameter for engine safety and efficiency. The 
tangential vibrations of the blades occur in the plane perpendicular 
to the airflow in which the rotor is located, and may be characterized 
by the technique named Tip Timing (TT) [24]. By using this method, 
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it is possible to calculate the amplitude and frequency of the 
vibration of each blade individually. To that end, the differences 
between the real and theoretical times of arrival of each blade at a 
certain point are analyzed. Due to the nature of TC and TT, the 
same sensor could be used for the measurement of both parameters 
[25]. Lastly, axial vibrations take place in the same direction as the 
airflow. Even though these vibrations are relevant for the 
performance of engines, they are out of the scope of this work. 

 
Figure 4: a) Blisk of a compressor with the direction of the airflow and the 

vibrations suffered by the blades indicated in it and b) front and side views of a 
blade from a low-pressure turbine with the direction of the vibrations indicated in 

it. 

 

1.2.2 Theoretical framework and methodological tools 
 

1.2.2.1 Definition of Tip Clearance (TC) and Tip 
Timing (TT) 
 
As it has been mentioned in the previous section, the TC of a blade 
in a blisk is defined as the distance from the blade to the casing of 
the engine. This gap, shown in Fig. 5, generates a leak in the airflow 
that does not contribute to the operation of the engine and therefore, 
reduces its efficiency [26]. The relevance of this parameter is such 
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that if it  decreases by 0.25 mm, it causes a decrease in the fuel 
consumption of 1% and a decrease in the temperature of the exhaust 
gases of 10 ºC, which would increase the life span of its components 
[27]. Even though these figures may seem small at first sight, if we 
attend to the global air traffic prior to the pandemic, it could cause 
savings of up to 167 million dollars per year [28]. Considering the 
delicate economic situation of many airlines as a result of the 
aforementioned pandemic and the progressive but slow coming back 
to pre-pandemic figures, such figures are worth be taken into 
account. Apart from the economic benefits, there would also be 
environmental benefits as gas and acoustic emissions would be 
decreased accordingly. 

 
Figure 5: Detail of the TC of a low-pressure turbine stage once it is assembled in 

the casing. 

Due to the combination of the characteristics mentioned above, it is 
highly interesting for the industry to integrate a system to keep the 
TC as low as possible but always above a minimum safety operation 
gap to avoid a fatal accident caused by a blade break due to 
scratching excessively the casing. Such systems are known as Active 
TC Control Systems, and they allow modifying the value of the TC 
by controlling the thermal expansion of the casing. In order to do 
that, part of the airflow is redirected to the casing by means of valves 
so that the TC can be optimized and therefore, the efficiency of the 
engine increased [29]. 

While TC values from 2 to 8 mm are typical for power generation 
turbines, TC values for aeronautical engines rarely exceed 3 mm [30]. 
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Such TC values depend mainly on the operating regime of the engine 
(takeoff, cruise or landing), and as a general rule, it can be considered 
that the TC values are inversely proportional to the rotational speed 
of the engine: as its speed increases, TC decreases and vice versa. 
However, this is not the only factor affecting TC, as it also depends 
on the aging of its components [31, 32]. 

While TC is more related to the efficiency of the engine, the 
technique known as TT provides information about the structural 
health of the blisks [24]. In order to do that, such technique 
characterizes the tangential vibrations of the blades, which allow 
predicting potential failures in them caused by fatigue [33] and 
provides crucial information for the design and development of more 
reliable and safe engines. TT allows determining the amplitude and 
frequency of the deflections of the blades by means of measuring their 
arrival time to the position of the sensor and comparing such 
measurements with their theoretical time of arrival to that point, 
which is the expected time of arrival if the blades did not suffer any 
vibration (Fig. 6).  

 
Figure 6: Schematic representation of the definition of TT. 

To that end, several sensors must be deployed consecutively in the 
casing following the direction of rotation, in order to track the 
vibration of each blade along a section of their rotation path [34]. 
Once the difference between the measured and theoretical times of 
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arrival is known, as well as the rotational speed and the radius of the 
turbine, the amplitude of the vibration of each blade can be 
calculated. By processing this data, some other relevant parameters 
of the engine can be known as well, such as the frequency of vibration 
of the blades, number of nodal diameters of the blisk, etc. 

 
1.2.2.2 TC and TT sensing technologies 

 
TC and TT measurements have to be carried out in a context in 
which the blades are rotating at high speed. Thus, sensors capable of 
providing non-contact measurements are required in order not to 
affect or condition the natural movement of the blades. To that end, 
aeronautical engine manufacturers have developed several non-
contact measurement solutions based on different technologies. 
Among them, capacitive, inductive, microwave and optical fiber-
based sensors should be highlighted. 

Capacitive sensors are probably the most spread TC sensors thanks 
to their simplicity, robustness and cost-effectiveness. Their main 
drawbacks rely on the facts that they provide low spatial resolution, 
bandwidth and short operating range. Moreover, they require the 
blades to be made of electrically conductive materials in order to 
operate [35]. Inductive sensors are lightweight and cost-effective, and 
are able to operate even if the blade is out their sight. However, their 
measurement setup tends to be complex, as their calibration depends 
on many factors that have to be known in advance such as 
temperature, shape of the blade or rotational speed of the shaft, for 
instance [36]. Discharging probe sensors are a common variant of the 
latter technology. Such sensors require the blades to be electrically 
conductive and they only provide the lowest TC value in the blisk 
[37].  Microwave sensors are capable of operating at high 
temperatures with high precision, and are not affected by the 
combustion residues inside the turbine. The main drawback of this 
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technology is the price, as it requires complex and heavy signal 
processing setups to perform properly [38, 39]. Many of the 
aforementioned drawbacks may be overcome by optical fiber-based 
sensors, which provide wide bandwidth, high resolution and high 
sensitivity [25]. Moreover, they are very versatile and do not require 
complex setups to operate. However, their main drawback is that 
they are very sensitive to combustion residues, as they operate by 
analyzing light. Thus, if the sensor head is contaminated, it may 
affect its performance. This obstacle must be solved so that they can 
be used in turbines for long periods. However, for tests included in 
this work, that have been carried out in a wind tunnel, optical sensors 
are the best fitting sensing solution, as there are no combustion 
residues inside it that may affect the performance. 

 
1.2.2.3 Optical fiber-based TC and TT sensors 

 
Among optical fiber-based sensors, there are three common 
configurations for precise distance measurements: Interferometric 
sensors, sensors based on Doppler Effect and sensors based on the 
modulation of the intensity of the reflected light. Interferometric 
sensors provide high resolution and sensitivity, although they usually 
require a coherent light and a very stable optical setup [40], which 
complicates its implementation in turbines that are subjected to 
vibrations. Sensors based on Doppler Effect consist in analyzing the 
frequency change in the reflected light caused by the movement of 
the target, which can be translated into distance after processing the 
signal [41]. They provide high resolution and sensitivity, although 
the components of such devices, as the highly coherent laser, are 
expensive. Lastly, those based on the modulation of the intensity of 
the reflected light consist of two type of fibers (emitting and receiving 
fibers) or a single fiber that acts as emitter and receiver at the same 
time by means of a circulator or a splitter. Transmitting fiber/s 
send/s light to the target, which is reflected in it and then gathered 
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by the receiving fibers. By analyzing its intensity, the relation 
between the distance from the sensor to the target and intensity can 
be accurately established [42]. These sensors are very simple and 
versatile, as in order to optimize their performance or to obtain a 
specific response curve, they can be easily customized just by 
modifying the arrangement of the transmitting and receiving fibers 
in it. In Fig. 7, a summary of the most common configurations of 
sensors of this type along with their respective typical response 
curves are shown. Except for the case of a single fiber acting as 
transmitter and receiver, two different regions of quasi-linear 
behavior can be acknowledged in the response curves: the first region 
(Region 1) has a positive slope, whereas the second region (Region 
2) has a negative slope. Region 1 shows higher sensitivity and 
linearity compared to those in Region 2, although the range of 
distances in which it works is significantly shorter.  

 
Figure 7: Typical response curves for the different fiber arrangements of intensity-

modulated sensors. Red and blue colours indicate transmitting and receiving 
fibers, respectively. 

Selecting one of the aforementioned optical configurations will 
depend on the measurement requirements. For the case of this work, 
such conditions are explained below. 
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1.2.2 Hypothesis and objectives 
 

1.2.2.1 Performance requirements 
 
The OFDS was designed according to the specifications determined 
by of our partner in this research, Centro de Tecnologías 
Aeronáuticas (CTA). The facilities of CTA are located at the Bizkaia 
Science and Technology Park in Zamudio (Biscay), which is around 
20 km away from those of the Applied Photonics Group APG-FAT. 
This fact facilitated significantly the communication and feedback 
between us. In such facilities, there is a wind tunnel where scaled 
stages of turbines for aeronautical engines are tested. 

Such wind tunnel is a transonic testing bench with continuous 
airflow, where parameters such as pressure, temperature and mass 
flow can be individually controlled. In this manner, Mach and 
Reynolds numbers can be modified independently to simulate as close 
as possible takeoff, cruise and landing conditions of the engine. The 
wind tunnel has a cross-section of one meter and has a single shaft 
capable of rotating up to 7800 rpm (see Fig. 8). In order to supply 
the air in the wind tunnel, two electric power compressors of 3.7 and 
5 MW are used. These compressors are capable to provide a 
maximum mass flow of 18 kg/s and a maximum pressure of 4.5 bar. 
Temperature inside the tunnel can be adjusted as well from room 
temperature to 160 ºC. It is also worth mentioning that the wind 
tunnel is prepared to acquire up to 800 pressure and 200 temperature 
signals, as well as a Once Per Revolution (OPR) signal that allows 
knowing the rotational speed of the shaft [43]. As said before, in the 
wind tunnel in which the sensors were tested there is no combustion. 
Thus, optical sensing technology is the best fitting solution for TC 
measurements in this context, as it provides all the benefits of using 
optical fibers without the critical drawback of the possible 
contamination of the tip of the sensor. It is important to point out 
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that the OFDS has to be made of glass fiber, as 160 ºC is close to 
the thermal limit of the operating range of polymer optical fibers. 
Moreover, an additional reason for choosing glass fibers is the aim is 
to develop an OFDS suitable for this environment but upgradeable 
to environments with higher temperatures. 

 
Figure 8: a) Wind tunnel where the tests were carried out. The position of the 

rotor under test is indicated by the red dotted rectangle. b) Detail of how turbine 
stages are installed in the wind tunnel. 

The turbine of an aeronautical engine consists of several cascaded 
stages, each of them consisting in a couple formed by a rotor and a 
stator. The stator is fixed to the casing and consists of blades whose 
aim is to redirect the airflow to the rotor and increase its speed. The 
rotor is fixed to the shaft and consists of multiple blades that are 
rotating at high speed. Its aim is to extract the energy from the 
incoming airflow from the stator. The turbine stages are installed in 
a casing that has an abradable material in its inner part. The latter 
is a soft protective wear material that is mounted on the wall and 
aligned with the blades. In fact, the turbine blades are designed to 
rotate as close as possible or even scratch it slightly to create a good 
sealing between them to improve combustion efficiency without 
being damaged in the process.  

In the wind tunnel at CTA, one stage of such turbines is tested each 
time. For TC measurements, the sensors are installed radially in the 
casing in a manner in which they are aiming at the center of the 
rotor and aligned with the rotating blades (see Fig. 9). Considering 
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the vibrations suffered by the blades, the small holes in the casing to 
install the sensors have to be made precisely in order to ensure the 
alignment and optimize the performance of the sensor. 

 
Figure 9: a) 3D model of a rotor. The point where the hole in the casing was done 
to insert the probe is indicated by the red circle. The black dotted line indicates 

the direction to which the sensor is pointing. b) Detail of how the probes are 
inserted in the holes and installed in the casing in the wind tunnel. 

The designs of the blade tips are specific for each turbine and are 
even specific for each stage of the turbine. Thus, it is habitual to 
have different blade tips in terms of size and shape at different stages 
within the same turbine. Commonly, their tip consists of a thin flat 
surface sandwiched between two sealing lands. The latter are two 
sharp and thin edges (below 1 mm wide) that are designed to be as 
close as possible to the abradable or even scratching it, whereas the 
flat platform between them contains a datum in it that acts as a 
marker to evaluate the quality of the manufacturing process of the 
blades (see Fig. 10). 

 
Figure 10: 3D model of the generic shape of a blade tip of a turbine. 
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For the measurements provided by the OFDS to be valid and useful 
for CTA, they determined some performance requirements that had 
to be fulfilled in all the tests: 

Provide a non-contact measurement in order not to interfere 
with the mechanical behavior of the blades. 
A precision in the measurement of TC of 25 m at least. 
High resolution. The sensor has to be capable of detecting the 
blades individually in order to make it possible to analyze 
them one by one and identify unequivocally those with 
abnormal values. 
High sensitivity and resolution in the measurement so that 
any imperfection or defect in the blades could be detected. 
A linear region of operation that covers a range of distances 
of 1 mm at least. The definitive range of interest is defined 
by the turbine under test. 
Robustness of the sensor in order to withstand the aggressive 
environment in which the measurements are going to be 
carried out, especially according to vibrations. 
Simplicity and implementation easiness to be deployed in 
real-field testing. Apart from the fiber bundle, the rest of the 
hardware should be as off-the-shelf as possible to make it 
possible to replace it easily and fast in case it gets damaged 
or broken. 
Cost-effectiveness in order to make it economically viable 
towards the development of a commercial product. Apart 
from the fiber bundle, there should not be any other ad-hoc 
hardware, and even the fiber bundle should be made of 
standard fibers. 

Considering all the aforementioned requirements, it was decided that 
the best fitting optical solution for the design of an OFDS for TC 
measurements was the one based on the modulation of the intensity 
of the reflected light. Among the multiple possible configurations 
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within this type of sensors (see Fig. 7), the coaxial fiber distribution 
was selected. Even though this configuration is not the best in terms 
of measurement range [44], thanks to its circular symmetry, it avoids 
major alignment issues with the blades of the rotor. This is a very 
relevant characteristic, as it would facilitate its installation in the 
casing significantly, which was one of the requirements of our partner 
CTA. Moreover, a configuration based on two independent 
concentric receiving fiber rings was chosen (see Fig. 11). In this 
manner, by obtaining a differential signal from both of the rings, it 
is possible to attenuate or minimize the effects of possible variations 
in the reflectivity of the blades, fluctuations in the light source or 
losses of optical power, for instance. Such fact is demonstrated 
mathematically below. 

 
Figure 11: Generic geometry of the developed OFDSs in this work for TC 

measurements. 

In the literature, it is easy to find many sensors of this type for 
distance measurements [45-48]. Most of these sensors have been 
tested in a laboratory using a mirror as a target, and some of them 
have been specifically adapted for turbine simulators that operate in 
controlled environments [49-51]. However, very few have been tested 
in real engine conditions. In those few cases, they operated in Region 
2, which is longer than Region 1 but provides less resolution and 
sensitivity [25]; or in Region 1 in very specific and special situations 
where very low TC variations were expected [52]. Moreover, in such 
cases, the measurements were not made in real time and the signal 
required being post processed offline to obtain results, which limited 
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their potential application as online and real-time preventive 
maintenance system significantly. 

To overcome such limitations, in this work, an OFDS for TC 
measurements designed to operate in Region 1, and capable to 
provide TC values in real time is shown, leaving the use of Region 2 
for exceptional cases as less demanding situations or for comparison 
purposes. The mathematical approach for the design of the optical 
fiber bundle is explained in the section below as well as the hardware 
configuration for the OFDS. The complete information regarding this 
research and the summary of its results can be found in Article 1 
in the Appendix, in section 1.2.3 and in [53], respectively. 

 
1.2.2.2 Mathematical approach 

 
In order to get the most accurate performance prediction of the fiber 
bundle of the OFDS, the key parameter is the beam propagation 
model of the transmitting fiber (TF). For intensity modulated 
OFDSs where the fibers are axially aligned and fully illuminated 
during the measurement, the Gaussian beam propagation model fits 
for an accurate prediction. However, for OFDSs where the 
illumination of the receiving fibers is partial, as it happens in the 
ones in this work, the Gaussian beam does not offer such accuracy 
and a quasi-Gaussian beam model approach is required [44, 54]. The 
latter modifies the Gaussian model to include the so-called 
perturbation parameters [55], which denote the divergence between 
the two beam models.  

The mathematical expression for the beam propagation model defines 
the effective radius of the output optical field as a function of 
distance (q(d)). Considering that both TF and receiving fiber (RF) 
ends are at the same level, it can be assumed, by optic ray geometry, 
that the reflected gathered light for a certain distance d is equivalent 
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to the one gathered by a single fiber located at twice the distance 
(2d) (see Fig. 12). 

  
Figure 12: Schematic of the optic ray geometry. 

Therefore, the effective radius of the output optical field can be 
expressed as: 

2(2 ) 1 tan(arcsin( ))T
T

dq d r NA
r

 (1) 

 
where rT and NA are the core radius and the numerical aperture of 
the TF, respectively, and ,  and  are three regulating parameters 
of light intensity distribution relative to the characteristics of the 
light source and TF [44]. For a case of a single TF and RFs, by 
integrating the received light intensity along the core area of the RF, 
the received power can be  expressed as: 

2 2
0

2 2( ) exp
(2 ) (2 )

RP rP d
q d q d

 (2) 

 
If we call = [  (2 )]exp [  (2 )] the modulation 
characteristic function of a fiber pair, we can express Eq. 2 as: 

0( ) , , , ,T RP d P f r r NA d  (3) 

 
where  stands for the target surface reflectivity, P0 is the power 
exiting the TF, rR is the core radius of the RF and  is the gap 
between the axes of the RF and TF. As it has been explained 
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previously, due to the coaxial distribution that has been chosen to 
design the fiber bundle, each RF ring has a finite number of identical 
fibers (nR) and there is only one TF (see Fig. 11). As a result, a model 
in which a summation of each individual TF-RF interaction within 
the same ring needs to be considered. 

( ) 0 0
1 1

( ) , , , , , , , , ,
R Rn n

i d T R i T R R i
i i

P d P P f r r NA d P F r r n NA d  (4) 

 

where = ( , , , , , ) is defined as the modulation 
characteristic function of a fiber bundle. As it can be deduced from 
Eq. 4, the received power has a strong dependence on the surface 
reflectivity and the emitted power in a configuration of a single TF 
and one RF ring. To minimize or even avoid this dependence, a 
distribution based on two concentric fiber rings was implemented in 
order to obtain the ratio between the gathered light from each RF 
ring. 
 

0 11 1

2 0 2 2

P FP FRatio
P P F F

 (5) 

 
where the terms with subindex 1 and 2 are related to the inner and 
outer rings, respectively. As it can be deduced from Eq. 5, by using 
this configuration, the dependence on the reflectivity and the emitted 
power is avoided. Moreover, considering that the parameters rT, rR, 
nR and NA included in F are fixed by the fibers that comprise the 
fiber bundle, the modulation function will only depend on the 
difference between fiber axes  and the distance to the target d. As 
d is the value intended to be measured in TC, the key parameter of 
the design of the fiber bundle is . Once  is fixed, the ratio of the 
received power will only depend on the distance to the target (d). 

The gathered light power from each of the rings is then amplified 
and converted into voltage by means of a switchable gain (G) 
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photodetector (PD) connected to each of the RF rings. PD1 was 
connected to the inner RF ring and PD2 to the outer RF ring, 
respectively. Each PD has a responsivity value that depends on the 
emitted wavelength (R( )) and a transimpedance value that depends 
on the selected gain (T(G)). 

( )* ( )* ( )PDV R T G P d  (6) 

 
Thus, for a distribution of two concentric rings, the ratio of the 
voltage between the two RF rings can be expressed as: 
 

2 2 2 2 2

1 1 1 1 1

( )* ( )* ( ) ( )* ( ) ( )*
( )* ( )* ( ) ( )* ( ) ( )

R T G F d T G F d F dRatio K
R T G F d T G F d F d

 (7) 

 

where the terms with subindex 1 and 2 are related to the inner and 
outer rings, respectively. The term regarding the responsivity (R( )) 
can be simplified as the emitted wavelength is the same for both 
rings. From Eq. 7, it can be concluded that the ratio will depend on 
the quotient between the gains of the PDs connected to each RF ring 
(K), and on a quotient between two functions (F) that depend only 
on the distance from the fibers to the target (d). This means that the 
output ratio is going to be unaffected by light source fluctuations, 
fiber losses or changes in the reflectivity of the blades [49, 56], as it 
was intended. Thus, a relation between the ratio of the measured 
voltages and distance can be easily determined. 

The aforementioned mathematical approach was implemented in 
Matlab MathWorks to simulate the response curve of OFDSs with 
different fibers, fiber arrangements and PD gains in order to obtain 
a configuration that fulfilled the requirements of our partner CTA 
and that could be manufactured and used in real-life measurements 
in the wind tunnel. To that end, certain OFDS properties were fixed, 
such as using a laser at 660 nm, all the fibers in the bundle to be 
step index (  =1) and the TF to be a SMF (NA=0.12 and rT = 2.15 
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m) at 660 nm. These characteristics were decided for practical 
purposes: using a SMF as TF avoids the appearance of any modal or 
speckle noise that could affect the power distribution [42], and using 
a wavelength in the visible range makes it possible to verify the spot 
at which the sensor is aiming. Moreover, the prize of components 
with such characteristics is lower compared to those for longer 
wavelengths, which makes the sensing system more cost-effective. 

As it will be shown in the following section, such simulation program 
demonstrated to be a very powerful and useful tool to design fiber 
bundles and predict their response curves before manufacturing 
them, as the results provided by it were close to those provided by 
the physical devices manufactured according to the specifications 
provided by it. 

Regarding the rest of the measurement system, it consisted of: a 
fiber-coupled laser source at 660nm (Thorlabs S4FC), one switchable 
gain PD for each RF ring (Thorlabs PDA100A-EC), an acquisition 
board that operates at high speed (National Instruments 6366 USB, 
2 MS/s) that was connected via USB to a laptop (HP Elitebook 840 
g3). To process the data, a custom-made LabVIEW program was 
developed. This program allowed monitoring the TC values in real 
time and storing the raw signal in a hard drive. The latter is a 
relevant characteristic for long lasting tests in which an amount of 
data in the order of terabytes is created. 

 

1.2.3 Summary and results 
 

1.2.3.1 Aiming at the sealing land of the blades 
 
In this point, a summary of the article “Design, Fabrication and 
Testing of a High-Sensitive Fibre Sensor for Tip Clearance 
Measurements” is shown. This article was published in Sensors in 
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August 2018 and it is included in the Appendix section of the thesis 
as Article 1 to be consulted for further details. 
 
The first OFDS operating in Region 1 that was configured according 
to the results and characteristics provided by the simulation program 
was implemented in a turbine consisting of 92 blades which was 
expected to have TC variations below 1 mm and to spin at a 
maximum of 6000 rpm. The design of the holes in the casing forced 
the fiber bundle to be installed in the turbine rig aiming at the sealing 
lands of the blade tips (around 0.7 mm in width and designed to be 
close or even scratch the abradable material), which yielded a very 
low reflected signal, instead of the preferred flat platform (see Fig. 
13). These factors were critical for the design of the fiber bundle, the 
emitted power and gain configuration of the PDs. For instance, to 
guarantee a safe operation without compromising the physical 
integrity of the rotor and the fiber bundle, the latter was designed 
with a Region 1 that started at 2.8 mm, so it could be placed further 
from the blade tips. 

 
Figure 13: Schematic representation of the measurement conditions. 

The best fitting OFDS configuration for these measurements was as 
follows: Regarding the fiber bundle, the inner ring of RFs was located 
at a radius of 200 m from the center of the bundle and consisted of 
5 optical fibers, whereas the outer ring of RFs was located at a radius 
of 930 m and consisted of 17 optical fibers. All the RFs were 
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multimode with a NA of 0.2. The diameters of those from the inner 

and outer RFs were 200 μm and 300 μm, respectively (see Fig. 14). 

According to the emitted power, it was set to 50 mW to guarantee 

that enough light was going to be reflected back to the device. The 

gain configuration of the PDs was set to 10 and 40 dB for the inner 

and outer rings, respectively, to keep them below the saturation 

value and create voltage values spanned over the full voltage scale 

(0–5V) of the acquisition board to optimize its performance. 

 

Figure 14: Photograph of the end face of the probe tip and schematic of the 

manufactured fiber bundle. 

The calibration of the OFDS was carried out in the laboratory aiming 

at the sealing land of a spare blade of the turbine to simulate as close 

as possible the measurement conditions that were going to take place 

in the turbine rig. The reason for carrying the calibration in the 

laboratory was that the fiber bundle and the sealing lands were going 

to be aligned only when the turbine was rotating at high speed. In 

idle state, there was no alignment, which made it impossible to 

calibrate the sensor in-situ once it was installed in the casing. The 

small difference between the experimental calibration curve and the 

one provided by the simulation program in Region 1 is shown in Fig. 

15, where it can be noticed that they never diverge more than 1.5%. 
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Figure 15: Simulated and measured calibration curves for Region 1. 

The linear fit of the experimental response curve shown in Fig. 15 
starts at 2.8 mm and has a Pearson’s correlation of 0.997 in the range 
of interest (from 2.8 mm to 4 mm, larger than the expected 1 mm 
TC variation) with a sensitivity slope of 61.73 mm-1, which are 
characteristics beyond the requirements of our partner. 

To install the fiber bundle in the turbine, it was introduced in a 
micrometer-driven adapter (see Fig. 16) in a manner in which the 
fiber bundle end and that of the micrometer were at the same level. 
Then, the micrometer was inserted and fixed in a radial hole that 
was made in the casing to that purpose (see Fig. 9b). 

 
Figure 16: a) Micropositioner used for the tests. b) Detail of the fiber bundle end 

in the micropositioner. 

By means of this tool and thanks to the fact that Region 1 started 
at 2.8 mm, it was possible to place the sensor within the abradable 
layer at a distance of 3.2 mm from the tip of the blades. This distance 
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was selected for being the center of the Region 1 of the response 
curve of the fiber bundle (see Fig. 15). In this manner, it was 
guaranteed to operate in the linear region all the time during the 
tests, and the possibility of damaging the blades or the sensor head 
was avoided. As TC values are commonly referenced to the end of 
the abradable coating, the TC value was obtained subtracting 2.74 
mm to the sensor measurement (distance from probe tip to reflecting 
surface), as shown in Fig. 17. 

 
Figure 17: Schematic of the optical probe placement within the casing and the TC 

calculation. 

The tests were carried out at different Working Points (WP) of the 
turbine and were repeated during several days. For each WP, 
parameters such as rotational speed, pressure, etc. in the wind tunnel 
were modified by the crew of CTA to simulate specific situations of 
their interest. Each engine revolution was identified with two 
methods for blade identification purposes: with a blade of a particular 
reflection pattern that was taken as reference, and with a stable and 
non-vibrating Once per Revolution (OPR) signal obtained from the 
shaft. During the entire tests, the signal pattern of each of the 92 
blades in the rotor was easily identifiable, and even the spacing 
between them (interlocks) were acknowledged (see Fig. 18). 
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Figure 18: Example of the acquired signal during the tests. The blade highlighted 

in red was used as reference due to its particular reflection pattern. 

To study each blade individually, the TC was defined as the average 
value of the corresponding dataset of each blade at the 50% selection 
level around their central sample. According to this definition, even 
in the worst case, the TC variability was approximately of 20 m 
within the same WP, and the average value over the 92 blades was 
below 5 m. Moreover, it was possible to identify blades with very 
small or abnormal TC values, which could indicate that there was a 
defect in their manufacturing or installation process that could be 
dangerous for the integrity of the turbine. Fig. 19 is an example of 
the latter, as for the WP of 4258 rpm, the TC values of blades 
number 16, 38, 43, 51 and 69 indicated that they were close to the 
abradable surface and they should be monitored carefully. 
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Figure 19: TC values and the corresponding standard deviation of each blade at 

4258 rpm over 1100 turns. 

By means of the high resolution and sensitivity provided by this 
OFDS, it was possible to carry out an individualized analysis of the 
blades, and it was demonstrated that TC and the rotational speed of 
the rotor are inversely proportional: as one increases, the other 
decreases and vice versa. This fact can be attributed to the 
centrifugal and thermal loads acting on static and rotating 
components of the turbine. 

Moreover, the results from this work were useful for our partner CTA 
to characterize the TC of the turbine, and for ourselves to validate 
the simulation program, as the calibration curves of the simulated 
and manufactured devices came together, confirming its accuracy 
and reliability. This fact opened the possibility to design ad-hoc 
highly sensitive OFDSs for specific contexts, as the one shown below. 

1.2.3.2 Aiming at the datum of the blades 
 
In this point, a summary of the article “Performance Comparison of 
Three Fibre-Based Reflective Optical Sensors for Aero Engine 
Monitorization” is shown. This article was published in Sensors in 
May 2019 and it is reference [53] to be consulted for further details. 
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As a step forward from the device described in the previous section 
and to confirm the validity of the simulation program, an upgraded 
OFDS was designed in order to measure the TC of a new turbine for 
CTA. As it is explained in detail in [53], the need for a new OFDS 
was caused by the fact that for this new turbine, that consisted of 
94 blades, the TC range was expected to be larger than that in 
Article 1, which would force the OFDS in Article 1 to operate in 
the less sensitive Region 2. 

Taking advantage of this situation, the upgraded OFDS was designed 
with some characteristic improvements compared to its predecessor: 

Larger Region 1: In this manner, the OFDS will have a longer 
linear region to operate. This feature will make it be more 
versatile to perform in different turbines and with different 
ranges of TCs, avoiding the need of specific OFDS designs for 
each case.  
Region 1 that starts at longer distance: In this manner, the 
sensor head could be placed further from the blade tips and 
even outside the abradable material, avoiding any possible 
deposition of this soft material in the probe tip that could 
affect its performance. 
Region 1 of higher slope and dynamic range, which implies 
higher sensitivity to obtain the highest resolution and 
precision possible. 
The size of the OFDS had to be identical to that in Article 
1 to fit in the holes that were made in the casing for this 
purpose. Such holes were identical in size as those in Article 
1 and were made before knowing that the expected TC values 
for this turbine were larger. Therefore, the size of the fiber 
bundle in terms of diameter was restricted by this fact. In 
this manner, this OFDS would be able to operate in holes of 
standard size and provide enhanced performance at the same 
time. 



Section 1: Synthesis

37 

The same simulation program used in Article 1 was used to design 
this new sensor. According to it, the OFDS that fulfilled all the 
aforementioned requirements was identical to that used for the 
previous tests with the difference of the radius and number of fibers 
in the outer ring of the fiber bundle. In this OFDS, the outer ring 
had a radius of 1800 m and consisted of 30 fibers (see Fig. 20).  

 
Figure 20: Photograph of each of the ends and schematic of the of the upgraded 

manufactured fiber bundle. 

Regarding the rest of the sensing system, the same hardware as for 
previous tests was used (laser source: Thorlabs S4FC, PDs: Thorlabs 
PDA100A-EC, acquisition board: National Instruments 6366 USB 
and laptop: HP Elitebook 840 g3) (see Fig. 21). 

 
Figure 21: Schematic of the OFDS with the real hardware components that 

conform it. 

For comparison purposes, in these tests another two OFDSs were 
installed in the casing of the turbine. The first was a commercial 
sensor (Philtec model RC171) that consisted of several transmitting 
and receiving fibers arranged in an adjacent semi-circular pattern 
where the fibers are distributed randomly. The second sensor was the 
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OFDS from Article 1, but forced to operate in Region 2 for the 
measurement conditions. The schematics of the cross-sections of the 
three OFDSs for these tests are shown in Fig. 22. 

 
Figure 22: Schematic and scaled representation of the cross-sections of the devices 

used in this test.  

The three sensors were inserted in micrometer-driven adapters as the 
one in Fig. 16 and installed in the casing as indicated in Fig. 23. 
Unlike in the operating conditions shown in Article 1, where the 
sensor was aiming at the sealing lands, in these tests, the holes in the 
casing were made so that the sensors could aim at the flat platform 
of the blade (see Fig. 10). This fact increased the reflected light 
significantly and allowed calibrating them in-situ once they were 
installed in the casing. Thanks to the increase of the reflected light, 
it was possible to share the laser source via a 50:50 splitter for both 
of the custom designed OFDSs as the commercial OFDS integrated 
its own source. The acquisition board was shared among the three 
devices. 

 
Figure 23: Schematic representation of the deployment of the sensors along the 

casing. 
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The calibration curves of each sensor are shown in Fig. 24, where it 
can be noticed that the upgraded OFDS operates in the Region 1 for 
the working region of interest whereas the previous OFDS is forced 
to operate in Region 2. Moreover, a larger and steeper Region 1 can 
be acknowledged in the upgraded OFDS. Regarding the commercial 
device, it operates in a less steep Region 1. 

 
Figure 24: Response curves of the sensors and the expected region of the TC in 

this turbine.  

The tests lasted from eight to ten continuous hours per day and were 
repeated for two weeks in consecutive days. As for the previous tests, 
every working point was recorded as well as the OPR signal for 
synchronization and blade identification purposes. 

Results indicate that the custom designed OFDSs made it possible 
to determine the passage of each blade precisely and they were 
capable of detecting specific features such as the datum and inter-
blade spacing. This fact did not happen in the commercial sensor, 
which provided a delayed and smoothed signal that made it hard to 
identify and synchronize events. As an example of this fact, in Fig. 
25 the signal from blade 55 (which could be considered the standard 
signal of a blade) acquired in the three sensors and the comparison 
with the ideal signal are shown.  



Section 1: Synthesis

40 

 
Figure 25: Comparison between the signals from blade 55 with the three sensors 

and the ideal signal. 

Between the two custom designed OFDSs, the upgraded version 
provided higher sensitivity and resolution, and its signal was 
straightforwardly related to the physical shape of the blade and much 
closer to the ideal signal. The steep rising and falling edges in its 
waveform enabled determining precisely the boundaries of the 
datum, and ultimately, the arrival time of each blade, which could 
be an interesting feature for TT measurements (see Fig. 6). 
Moreover, thanks to this sensitivity enhancement, additional 
statistical parameters of the behavior of the turbine were obtained 
apart from TC, such as its instantaneous speed. It also allowed 
identifying unexpected features in blades just by comparing the 
shape of their signal with the one from a standard blade (as the one 
in Fig. 25), which is very relevant in order to prevent failures, 
malfunctions or to detect manufacturing defects (see Fig. 26). 



Section 1: Synthesis

41 

 
Figure 26: Example of waveforms with abnormal behaviors that indicated some 
anomaly in the blades. The inspection of the corresponding blades after the tests 

showed that a) black paint and b) a scratch caused them. 

According to TC, this upgraded OFDS was capable of providing a 
very stable signal. For instance, Fig. 27 shows the TC values for a 
WP at 3627 rpm. The variability of the TC values over time (20000 
engine revolutions), shown as vertical error bars, indicates a worst 
case of 20 m within the same WP, and the average value of it over 
the 94 blades was below 7 m. 

 
Figure 27: TC value and the corresponding standard deviation of each blade at 

3627 rpm over 20000 turns. 

The results from this work definitely confirmed the validity of the 
developed simulation program to design and manufacture highly 
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sensitive OFDSs for TC measurements. Moreover, this OFDS was 
designed to provide more versatility so that it could be used in 
different turbines thanks to its large Region 1 and its high dynamic 
range. These characteristics combined with the fact that Region 1 
starts at longer distances, allows placing the sensor head further from 
the blade tips and even outside the abradable. This feature minimizes 
the risk of collisions between blade tips and sensor head, and 
minimizes the possibility of the probe head to get dirty due to any 
residue that could ruin its performance. To demonstrate the latter, 
both custom designed OFDS were examined in the microscope after 
the tests. The inspection showed that the end face of the upgraded 
OFDS remained without contamination residues, whereas the OFDS 
from Article 1 showed abradable residues in some parts of its end 
face that could have ruined its performance as a result of having to 
place it within the abradable and closer to the blades (see Fig. 28). 

 
Figure 28: Photographs taken with a microscope after the tests of the end face of 

a) the upgraded OFDS and b) the OFDS from Article 1. 
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1.3. Strongly coupled multicore fiber-based 
(MCF) sensors 
 

In this section, several strongly coupled MCF-based optical sensors 
for sensing different parameters such as temperature, bending, 
acceleration, etc. are shown. To that end, the operating principle of 
such fibers is explained and exploited to develop highly sensitive 
devices. 

1.3.1 Introduction and context of the research 
 

1.3.1.1 Parameters of interest for the industry 
 
As it was explained previously, in extrinsic sensors as the ones that 
are going to be described in this section, the alteration or modulation 
of some characteristics of the light are caused by an effect from 
outside the fiber. As a result of that, these types of sensors are used 
for the measurement of parameters such as temperature, bending or 
acceleration, for instance.  The interest in the development of such 
sensors has remained unaltered through years, as all the 
aforementioned parameters are very relevant to monitor industrial 
processes or for SHM [57, 58], where it is common to find sensing 
solutions based on mature technologies that have proven to be 
reliable and cost-effective. Commonly, such solutions are based on 
devices of electronic nature, such as thermocouples, gauges, etc. 
However, considering that these sensors are usually deployed in harsh 
environments or in environments with high levels of radiation or 
radioactivity, they are prone to suffer from corrosion or interferences, 
which may lead to malfunctions or a decrease of their life span. 
Moreover, their electric or electronic nature may not be the best 
option for certain environments with flammable gases or liquids. A 
solution to this issue consists in protecting or shielding the devices, 
which may cause a loss in sensitivity.  
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The search for devices capable of overcoming such drawbacks and 
providing high sensitivity and resolution, deployment ease, cost-
effectiveness, etc. has pushed towards the appearance of new 
technologies or sensing solutions. In this context, optical fiber sensing 
has arisen as an appealing option thanks to the characteristics that 
have been explained in detail in previous sections, and have started 
to gain visibility as a realistic alternative for industrial sensing and 
SHM [59, 60]. 

1.3.1.2 Extrinsic optical sensors 
 
Among extrinsic optical sensors, those based on the alteration or 
modulation of the wavelength or the phase of the emitted light are 
the most spread solutions. In fact, several sensors based on these 
techniques have reached a maturity in which they can be found 
commercially.  

One of the most spread and mature technique is the FBG. Briefly, it 
consists in creating a periodic variation in the refractive index of the 
core of the optical fiber so that it reflects only certain wavelengths 
of the emitted light and transmits the others. When the FBG is 
subjected to any external effect, the period of the grating changes, 
which causes the reflected wavelength to vary. Such wavelength shift 
can be directly and easily linked to the external effect. FBGs have 
been widely developed and have become very popular for 
temperature and strain sensing due to their high sensitivity, and 
nowadays they can be found in multiple configurations as tilted, 
phase-shifted, chirped, apodised, etc. depending on the application 
[61]. A variation of FBG technique, which could be considered as a 
category by itself, is the Long Period Grating (LPG). In LPGs, the 
period of the grating is much larger than the wavelength (on the 
order of 100 micrometers, to a millimeter), which can be used to 
achieve much broader responses. As a result, they are much easier to 
manufacture than FBGs [62]. The main drawbacks of FBG and LPGs 
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rely in the fact that both show intrinsic sensitivity to their 
surrounding medium, which forces proper isolation or compensation 
mechanisms to avoid crosstalk and be sensitive only to the parameter 
of interest, and that their setups require expensive lasers and 
interrogators.  

Fabry-Perot interferometers (FPIs) are also a common solution to 
develop extrinsic sensors for the measurement of humidity, 
temperature, etc. [14]. Its operating principle is based on a small 
optical cavity made of two parallel reflecting surfaces whose length 
can be modified proportionally by the applied effect to it. As a result 
of that, optical waves can pass through the optical cavity only when 
they are in resonance with it, which means that if a broadband light 
source is used, only certain wavelengths of it are going to pass 
through it. Thus, the shift of the wavelengths that exit the cavity 
can be linked easily to the applied effect. FPIs are highly sensitive, 
although their main drawback is the difficulty to reproduce uniform 
cavities. 

Mach Zehnder interferometry (MZI) and Michelson interferometers 
are used as well for sensing several parameters such as refractive 
indexes, temperature, gas, curvature, etc. [63, 64]. MZIs quantify the 
applied effect by measuring the relative phase shift between two 
collimated beams derived by splitting the light coming from a single 
source. One of the beams is used as reference, whereas the other is 
beam is subjected to the effect that is intended to be measured. In 
Michelson interferometers, the emitted light is split into two arms 
and, as in MZIs, one of them is used as reference and the other is 
used for measurements. Each of those light beams is reflected back 
towards the beam splitter, which then combines their amplitudes 
using the superposition principle. By analyzing the fringe pattern of 
the interference, the applied effect can be measured. Michelson 
interferometers have multiple applications, especially for stellar 
measurements, gravitational wave detectors, etc. [65]. Although 
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MZIs and Michelson interferometers are highly sensitive, their main 
drawback is their complex setups, as they require exhaustive 
alignments of the mirrors and very precise configurations in order to 
operate properly, which can represent a problem for their 
implementation in industrial facilities or outdoors. 

In recent years, the development of specialty optical fibers has 
provided new alternatives for optical fiber sensing. This progress has 
been significant especially by the use of MCFs, which consist of 
multiple cores embedded in a common cladding. Depending on their 
geometrical arrangement, two groups can be acknowledged: weakly 
coupled and strongly coupled MCFs [66]. On the one hand, if the 
cores are far enough from each other, there is almost null crosstalk 
among them, and it can be assumed that they are decoupled. Such 
fibers are commonly used for telecommunication purposes, as they 
allow having multiple independent channels on the same physical 
medium [67]. On the other hand, when the cores are close enough to 
interact with each other, they are called strongly coupled MCFs, as 
there is a heavy crosstalk among the cores that results in a periodic 
coupling of light. Such coupling is extremely sensitive to several 
mechanical effects applied to the fiber and the reason why these type 
of fibers are exploited for sensing applications [68]. 

Compared with the optical solutions mentioned above, strongly 
coupled MCFs offer some significant advantages to develop extrinsic 
optical sensors. For instance, they do not require complex setups to 
operate (only a short segment of such fiber, a circulator, a 
spectrometer or a photodetector and a broadband light source), do 
not require exhaustive alignments nor expensive or ad-hoc 
components, and they are easy to handle. These reasons explain why 
this type of fibers has been chosen to develop the devices appearing 
in this thesis. 
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1.3.2 Theoretical framework and methodological tools 
 

1.3.2.1 Operating principle of strongly coupled 
MCFs 
 
The operating principle of strongly coupled MCFs can be described 
by the conventional Coupled Mode Theory (CMT), which has been 
widely developed in the literature [69-73]. According to it, in the 
simplest case, when there are two single mode waveguides (named 1 
and 2) that are far enough to each other to interact (see Fig 29), the 
mode through each waveguide will propagate independently. For 
that case, the amplitude of the propagating mode through each of 
the waveguides can be expressed as: 

 
Figure 29: Schematic of two decoupled waveguides. 

1
1 1

a j a
z

 (8) 

2
2 2

a j a
z

 (9) 

 

where a is the amplitude of the transverse electric field in each 
waveguide,  is the propagation constant of the mode, z is the 
direction of propagation and the subindexes 1 and 2 refer to each of 
the waveguides. 
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However, if the waveguides are close enough to each other so that 
the evanescent field from one guide penetrates into the other, there 
is a coupling between the two propagating modes (see Fig. 30). In 
such case, the amplitude of the modes can be expressed as: 

 
Figure 30: Schematic of two coupled waveguides. 

1
1 11 1 12 2

a j k a jk a
z

 (10) 

2
2 22 2 21 1

a j k a jk a
z (11) 

 

where k parameters are the mutual and self-coupling coefficients 
between the orthogonal propagating modes in the waveguides 1 and 
2, respectively. If we assume that we are in a lossless system and that 
the waveguides are uniform, the propagation constants and the 
coupling coefficients are independent of z [70], and the following 
simplifications can be applied: 

2 2
1 2P z a a  (12) 

*
12 21k k k (13) 

 

Moreover, if a common phase factor is taken from Eq. 10 and Eq. 11, 
they can be expressed as: 
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1
1 2

ˆ ˆ ˆa j a jka
z

 (14) 

2
2 1

ˆ ˆ ˆa j a jka
z

 (15) 

 

where 

´ ´
1 11 2 22 1 2

2 2 2
k k  (16) 

 

As a result, the system formed by Eq. 14 and Eq. 15 can be written 
in matrix form: 

dA jHA
dz

 (17) 

 

where 

1

2

ˆ
ˆ
a

A
a

 (18) 

k
H

k
 (19) 

 

In order to obtain the amplitudes of the modes as a function of the 
propagation axis z, which is the aim in order to be able to calculate 
the amount of coupled power in a certain waveguide at a certain 
distance, Eq. 17 can be arranged and expressed in terms of a transfer 
matrix as: 

0A z T z A  (20) 

 

where the elements of matrix T are given by: 
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*
11 22 cos cos( )sin( )t t Sz j Sz  (21) 

12 21 sin( )sin( )t t j Sz  (22) 

 

where 

tan( ) k  (23) 

2 2S k  (24) 

1 11 2 22
0 2

k k  (25) 

 

From Eq. 20, the normalized power in each of the waveguides can be 
obtained by applying the following expression: 

*( )* ( )i i iP z a z a z  (26) 

 

Thus, for a situation in which only one of the waveguides is excited 
at z=0 (a1(0) = 1 and a2(0) = 0, for instance, according to Fig. 30), 
the normalized coupled power as a function of the propagation axis 
z in each of the waveguides can be expressed as: 

2 2 2
1( ) cos ( ) cos ( )sin ( )P z Sz Sz  (27) 

2 2
2 ( ) sin ( )sin ( )P z Sz  (28) 

 

Let us now expand this model to a structure with a central waveguide 
and an undefined number N (N>1) of identical and circularly 
distributed waveguides around it and close enough to interact. This 
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geometry is identical to that of the strongly coupled MCFs used to 
develop the devices in this document (see Fig. 31), and therefore, its 
conclusions are applicable [74]. 

 
Figure 31: Schematic of a generic structure of the MCFs under study. 

In such MCFs, all the cores are identical in size and physical 
properties, act as individual waveguides that support only the 
fundamental mode LP01 and are close enough to each other to induce 
the modes through each individual core to overlap among them, 
causing a cyclic power coupling among cores [75]. The resulting 
modes, which are called supermodes (SPs), are the linear 
combination of the modes propagating through each individual 
waveguide [76, 77]. When such MCFs are excited in their central core 
by the incoming LP01 mode from a standard SMF, as it has been 
done in this work, the two orthogonal supermodes that have power 
in the central core are coupled according to conventional CMT [73]. 
Such supermodes are named SP01 and SP02, and are specific for each 
MCF geometry.  

The analytical solution of this case is analogous to the one for the 
case of two waveguides shown in Eq. 17 but expanding it to include 
the interaction among all the cores taking part in the power coupling: 

( ) ( )dA z jHA z
dz

 (29) 
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where A(z) = [A1(z) A2(z) … AN(z)]T is a column vector, T denotes 
the transpose and H is a N×N matrix. After developing the system 
in Eq. 29 in analogous manner as the case of two waveguides 
described previously, the amplitudes of the propagating modes for 
the central (a0) and the adjacent cores (ai) can be expressed as: 

0
0

cos ( )sin
2 2( ) j z

Sz SzS j z
a z e

S
 (30) 

0 2( ) sin
2

j
j z z

i
Sza z j e e

S
 (31) 

 

where S can be defined as: 

2 2 1S N N  (32) 

 

where  is defined as: 

2 n  (33) 

 

where  is the difference between the effective refractive indices of 
the propagating coupled and orthogonal SPs and  is the excitation 
wavelength. If this definition of  is applied to Eq. 30 and Eq. 31, 
the generic normalized coupled power (calculated as indicated in Eq. 
26) for the central (P0) and in each of the adjacent cores (Pi) for 
MCFs can be expressed as: 

2 2
0

1( ) cos 1 sin 1
1

n nP z N z N z
N

 (34) 

21( ) sin 1
1i

nP z N z
N

 (35) 
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Figure 32: Evolution of the normalized coupled power in the central and one of the 

adjacent cores as a function of the emitted wavelength for a generic MCF.  

From Eq. 34 and Fig. 32, it can be concluded that the power in the 
central core will vary periodically, with a maximum at certain values 
of z and/or , and minimum at others, but that there will be always 
a certain amount of light power oscillating in the range [1/( +1),1]. 
The latter means that in such MCFs 0. As all the cores are 
identical, and therefore, have identical , it can be assumed that the 
core distribution is responsible for this phenomenon [70]. As 
mentioned before, this fact only takes place for N>1, as for N=1 the 
power is completely transferred from one core to the other, as 
explained in [78]. 

For the case in which there is an undefined number n of MCF 
segments of the same type in series along the same SMF (see Fig. 
33), the normalized coupled power in the central core at the end of 
the chain is the product of the response of each MCF segment. 

 
Figure 33: Schematic of n MCF segments in series along the same SMF. 

1

( ) ( )
n

cascade j
j

P z P z  (36) 
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Thus, a cascaded structure will provide a narrower peak and higher 
visibility than a single segment due to the cos and sin raised to the 
2nth and the lower amount of light in the central core proportional 
to the number n of elements in series, respectively, which facilitate 
tracking any change in the spectrum. However, it will not enhance 
the sensitivity, as the phase remains unaltered. 

Eq. 34 and Eq. 36 were used to design the MCF sensors in this work 
prior to manufacturing them. By adapting these equations to the 
different MCF geometries and configurations, it was possible to 
simulate the spectrum of the devices in order to optimize the value 
of the parameters that allow obtaining a pursued and specific shape 
of it, such as the length of the MCF segment. 

1.3.2.2 Manufacturing equipment and interrogation 
setup 
 
In order to manufacture all the devices shown in following sections, 
a precision fiber cleaver and splicer were used. The first, a Fujikura 
CT-105, allowed cutting MCF segments of specific lengths with 10 
m precision, which is a relevant feature in order to obtain specific 

spectral patterns, as mentioned above. The second, a Fujikura 
100P+, can align the central core of the MCF with the unique of the 
SMF with high precision so that the insertion losses are typically 0,1 
dB or below [79]. Moreover, it has a rotating mechanism and an 
imaging system that allows observing the end face of the fibers, which 
is a useful tool for the cases in which MCF-MCF splices with specific 
orientations are required. 

Regarding the interrogation setup of the devices that are going to be 
described below, they all share the same setup. It is simple and 
carried out with commercial equipment in order to be as cost-
effective as possible. It consists of a superluminescent light emitting 
diode (SLED) as the broadband light source (Safibra, s.r.o.) with its 
peak emission at 1550 nm and a FWHM of around 40 nm, and a 
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conventional fiber optic coupler (or circulator). In order to analyze 
the reflected light, a miniature spectrometer (Ibsen Photonics I-
MON-512 High Speed, with an interrogation window from 1510 to 
1595 nm) and/or an InGaAs PD (Thorlabs PDA30B2) were used 
depending on the device or the measurement requirements. In the 
cases in which wavelength shifts and power variations were required 
to be measured simultaneously, both detectors were connected by 
means of a fiber optic coupler (see Fig. 34). 

 
Figure 34: Schematic of the interrogation setup. 

 

1.3.3 Hypothesis and objectives 
 

The objective was to develop highly sensitive and novel optical MCF-
based sensors for the measurement of different parameters that are 
of interest for the industry by means of exploiting the operating 
principle described above. To that end, each sensor shows a 
particular and unique configuration in order to optimize its 
performance. The result of this research is shown below and in 
Articles 2, 3 and 4. 
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1.3.4 Summary and results 

1.3.4.1 Temperature sensors 
 

1.3.4.1.1 Highly sensitive packaged 7cMCF-
based sensor 

 
In this point, a summary of the article “Packaged multi-core fiber 
interferometer for high temperature sensing” is shown. This article 
was published in Journal of Lightwave Technology in March 2019 
and it is included in the Appendix section of the thesis as Article 2 
to be consulted for further details. 

The first MCF-based device developed during the research period 
was a temperature sensor packaged accordingly to withstand and be 
deployed in harsh environments. The MCF in this device was 
fabricated at the University of Central Florida (Orlando, USA), and 
has a particular structure based on seven identical hexagonal cores 
(7cMCF) in which six of them are concentrically arranged in a ring-
like shape around a central one. The mean diameter and distance 
among adjacent axes is 9.2 m and 11 m, respectively, and the outer 
diameter of the fiber is 126 m (see Fig. 35a). All the cores are made 
of germanium doped silica glass and are inlayed in pure silica 
cladding. The NA of each of them is 0.14 at 1550 nm, which is the 
same NA of a typical SMF at that wavelength. A scheme of the MCF 
device is shown in Fig. 35b. Its structure is very simple, as it only 
consists of a short MCF segment (the temperature sensitive element 
in the device) fusion spliced by its central core to a conventional 
SMF. 
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Figure 35: a) Photograph of the cross-section of the 7cMCF and b) schematic of 

the temperature sensor. 

According to CMT [73], in this 7cMCF, the two orthogonal 
supermodes that are coupled are shown in Fig. 36: 

 
Figure 36: a) SP01 and b) SP02 orthogonal coupled supermodes for the 7cMCF. 

For the particularization of Eq. 34 for this fiber, it has to be 
considered that the device operates in reflection mode, which implies 
that the light travels back and forth though the MCF. Thus, for a 
physical MCF segment of length Lf, the light travels 2Lf. Taking into 
consideration this fact, the normalized coupled power of this device 
in the central core can be expressed as: 

2 2
0

1( 2 ) cos 7 2 sin 7 2
7f f f

n nP z L L L  (37) 

 

The maximum of the spectrum will take place when the phase of the 
cos equals a multiple integer of 2  (m2 ). Thus, the maxima will be 
located at the following wavelengths: 
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7 2m fn L
m

 (38) 

 

In general, in an optical fiber, the thermo-optic effect prevails over 
the thermal expansion effect. Thus, for temperature measurements, 
the simplification of considering only the changes in the refractive 
index of the fiber core (or cores) can be done [80, 81]. In our case, 
such changes induced a variation in the effective indices of the 
supermodes, and hence, a shift in the spectrum. As in this device the 
measurement of temperature is absolute because it is codified in 
wavelength, by monitoring m, the temperature around the MCF can 
be known. 

In order to measure the widest temperature range possible, the 
spectrum of the device had to fulfil two characteristics. On the one 
hand, the displacement of m for this 7cMCF, whose thermal 
sensitivity is around 30 pm/ºC without any packaging [81], must not 
overlap with adjacent maximums (located at m+1 or m-1) in order to 
avoid any ambiguity in the measurement. On the other hand, m 
must be within the interrogation window (from 1510 to 1595 nm) at 
any time. As according to Eq. 37, the length of the MCF is the only 
parameter that can be modified as the rest are fixed by the fiber 
itself, to obtain a length that fulfilled those requirements, Matlab 
MathWorks and PhotonDesign software programs were used. The 
best fitting length fulfilling them was calculated to be 2.545 cm. 
However, in order to make the fabrication faster and easier to 
reproduce, a length of 2.54 cm was decided to be used. The 
comparison between the spectra of the simulated and fabricated 
devices is shown in Fig. 37. 
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Figure 37: Spectra of the manufactured and simulated devices. 

It can be noted that the wavelengths at which the peaks are located 
are very close in both simulated and manufactured spectra. As 
temperature increases, the peaks are expected to shift to longer 
wavelengths [82]. Hence, the peak located at 1520 nm ( m) was 
selected to be monitored and correlated with temperature. The 
difference in the amplitudes between both curves is caused by the 
envelope of the light source, which has different shapes in real-life 
and in the simulator. 

In order to make the MCF sensor sensitive exclusively to 
temperature, it was packaged as follows: The bare SMF-MCF 
structure, whose total length was approximately 15 cm, was 
protected with a double shielding. The first layer was a thin ceramic 
tube (Omega Engineering TRX-005132-6) that had a bore with a 
diameter of 127 m, whose purpose was to keep the bare SMF-MCF 
structure straight. In this manner, bending effects on the MCF were 
eliminated. The second layer was a stainless steel tube (Omega 
Engineering SS-116-6CLOSED) that covered the ceramic layer and 
provided protection against possible impacts or dirt. A photograph 
of the final sensor prototype is shown in Fig. 38. As it can be noticed, 
the sensitive part of the sensor is only 2.54 cm long and located close 
but separated enough from the edge of the shielding to avoid creating 
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a Fabry-Perot cavity. Thus, the sensor could be just about 3 cm long. 
The reason for the extra 12 cm that are protected with the metallic 
tube is the configuration of the furnace that was used for the tests 
(Isotech Pegasus Plus 1200). The latter had a vertical circular hole 
(slightly bigger than the sensor in diameter) of 15 cm in length that 
only in the deepest part reached temperatures of 1000 ºC, which 
forced the packaged sensor to be vertically inserted completely. 

 
Figure 38: Photograph of the manufactured device after the temperature tests. 

The tests were performed at the Aeronautical Technologies Centre 
(CTA) facilities located in the Alava Technology Park (Alava). 
Before running the calibration measurements, a mandatory curing 
process was carried out to eliminate as much as possible the 
hysteresis effect of the sensor [80]. Afterwards, the calibration was 
performed repeatedly in the range from 200 to 1000 ºC, in steps of 
50 ºC that lasted 70 minutes each. Overall, each calibration lasted 
100 hours approximately. During this process, m was correlated with 
temperature, which was measured with a K-type thermocouple used 
for temperature calibration measurements (Herten, K-type, SN 
TCP187). The evolution of the spectrum of the MCF sensor with 
temperature is shown in Fig. 39.  
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Figure 39: Evolution of the spectra as a function of temperature. 

To evaluate the effect of the shielding on the temperature sensitivity, 
a device of 2.54 cm of bare MCF was subjected to an identical 
calibration process. The calibration curves of both MCF devices are 
shown in Fig. 40. 

 
Figure 40: Calibration curves and linear fitting of the packaged MCF sensor and 

the bare 7cMCF. 

For the packaged MCF sensor, the Pearson squared correlation 
coefficient was found to be R2 = 0.9856. The correlation between 
temperature (in ºC) and m (in nm) that was obtained from the 
experiments was: 
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39,929 60525mT  (39) 

 

This indicates that the temperature sensitivity of the packaged MCF 
sensor was 24.8 pm/ºC. From the calibration curve of the 2.54 cm-
long bare MCF shown in Fig. 40, a temperature sensitivity of 31.47 
pm/ºC was obtained. Therefore, it could be assumed that the 
packaging affects but does not compromise significantly the 
temperature sensitivity of the device with the advantage of providing 
the guarantee that this shift is caused exclusively by temperature. 
The latter does not happen for the bare 7cMCF, which is subjected 
to vibrations and bending that cause an additional shift apart from 
that from temperature. 

This work showed a simple, inexpensive and easily reproducible MCF 
sensor that is highly sensitive, compact and robust. This sensor may 
represent an attractive solution in several applications that require 
high temperature sensing, high resolution and sensitivity, small 
dimensions and electromagnetic immunity, such as the ones for 
aeronautical engines, gas and oil facilities, etc. 
 

1.3.4.1.2 Highly sensitive ruggedized 3cMCF-based 
sensor 
 
As a step forward of the work reported in Article 2, an upgraded 
MCF-based thermometer was developed, which was capable of 
operating in even wider thermal ranges with a much more robust 
packaging and with higher sensitivity. 

Two different MCFs were used in this work. Both were fabricated at 
the University of Central Florida. The first one was the 7cMCF used 
for Article 2, which has been described in the section above. The 
second MCF is an asymmetric strongly coupled MCF consisting of 
three cores (3cMCF): one of the cores is located at the geometrical 
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center of the fiber, whereas the other two are surrounding it and 
arranged adjacently in a V-like configuration (see Fig. 41). Each core 
is made of Germanium doped silica, and has a mean diameter of 9 
m and a NA of 0.14 at 1550 nm to match with that of the SMF. 

The cores are separated 11.5 m from each other and embedded in a 
pure silica cladding of 125 m of diameter. 

 
Figure 41: Cross-section of the 3cMCF. 

According to Eq. 34, the particularization of the normalized power 
in the central core for this fiber can be expressed as: 

2 2
0

1( ) cos 3 sin 3
3

n nP z z z  (40) 

 

And the two orthogonal supermodes that are coupled in it according 
to CMT [73] are shown in Fig. 42: 

 
Figure 42: a) SP01 and b) SP02 orthogonal coupled supermodes for the 3cMCF. 

To study the thermal sensitivity of the MCFs, the partial derivative 
with respect to temperature has to be applied to Eq. 34. 
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T m T

 (41) 

 

where = (1 + ), Lf is the length of the MCF segment at 
room temperature (Tr = 25 ºC),  is the thermal expansion 
coefficient and T is the variation of temperature with respect to 
room temperature (T-Tr). From Eq. 41, it is assumed that the most 
significant parameters that have impact on thermal sensitivity are 
n and Lf, as  is related to the physical properties of the material 

of the MCF, which are identical and fixed for both MCFs under test. 
On the one hand, n, and therefore, , are related to the SPs, 
and, therefore, to the geometry and physical properties of the MCF, 
such as the number of cores, their distribution, etc. On the other 
hand, Lf is the length at room temperature of the MCF segment. 
Although it can be noticed from Eq. 41 that the thermal sensitivity 
is proportional to Lf, it can be assumed that its impact on sensitivity 
is negligible, as the ratio  is fixed independently of the initial 
length of the MCF. Therefore, it can be concluded that the initial 
length of the MCF segment in the sensor has negligible impact on 
the thermal sensitivity. 

To verify the fact that the initial length does not have any significant 
effect on thermal sensitivity, three devices consisting of segments of 
different lengths of 7cMCF were manufactured (see Fig. 43), and 
subjected to several temperature cycles from 200 ºC to 500 ºC and 
back to 200 ºC in steps of 100 ºC. The fabricated and tested 
configurations were: 1) a sample with a 7cMCF segment of 12.5 mm 
(Fig. 43a), 2) a 7cMCF segment of 25 mm (Fig. 43b) and 3) a sample 
of twin cascaded 7cMCF segments of 12.5 mm (Fig. 43c).  
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Figure 43: Schematics of the manufactured samples and their corresponding 

spectra at room temperature (T=25 ºC).

Regarding the twin structure in Fig. 43c, it consists of a SMF-MCF-
SMF structure. Due to its reflection mode configuration, the cleaved 
end of the SMF segment acted as a mirror. By means of this 
configuration, the light propagates forward and backward through 
the structure, passing twice though the MCF segment. Thus, with 
only one segment of MCF, a twin structure can be easily 
manufactured. For this operating configuration, Eq. 36 has to be 
particularized. As a result, normalized coupled power in the central 
core at the exit of this structure can be expressed as: 

4 2 2
0

4

2( ) cos 7 cos 7 *sin 7
7

1 sin 7
49

f f f f

f

n n nP z L L L L

n L

 
(42) 

 

To keep the MCF segments straight to be only sensitive to 
temperature, each specimen was introduced in a ceramic tube 
(Omega TRX-005132-6). After the annealing process, the devices 
were subjected to the aforementioned temperature cycles. The results 
of such tests are summarized in Table 1: 
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Table 1 : Summary of the results 

MCF length (Lf) 12.5 mm 25 mm Twin of 12.5 mm 
Sensitivity (pm/ºC) 20.38 22.22 21.16 

 

From Table 1, it can be concluded that the initial length of the MCF 
and/or cascading such elements do have negligible impact on 
sensitivity for temperature measurements. This conclusion could 
have been deduced from the mathematical expressions in Eq. 34 and 
Eq. 36 as well, as the phase in them remains unaltered irrespective 
of the initial length or the configuration of the device (single or 
cascaded segments). However, this does not imply that Lf is a 
disposable parameter for the design of optical MCF-based 
thermometers, as it is still a relevant design factor that defines the 
shape of the spectrum and the position of m, as it has been 
demonstrated in Article 2 and in Fig. 43. 

In order to study the impact of n on the thermal sensitivity, its 
variation with respect to the temperature was simulated by 
PhotonDesign for the two MCFs under study (Fig. 44). To that end, 
the refractive index of the material was defined as =  +  
[83],where nf is the refractive index of the cores at 25 ºC, and  is 
the thermo-optic coefficient [82]. The non-linearity of the latter in 
the range from -25 ºC to 900 ºC was taken into account for the 
simulations [84, 85]. 
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Figure 44: Simulations of n as a function of temperature for the 7cMCF (black 

triangles) and 3cMCF (black circles). 

As demonstrated in Article 2, the expected proportional shift of m 
with temperature (as the temperature increases, m shifts to longer 
wavelengths, and vice versa) implies that the term ( (1 + ) + ) in Eq. 41 is positive. From Fig. 44, it 
can be noticed that n is always positive, but its slope (expressed as 

) is negative in both MCFs under study. This indicates that (1 + ) < , and as a result, it can be assumed that 
the thermal sensitivity increases as the difference between this two 
terms increases. Thus, the conclusion from Fig. 42 is that the thermal 
sensitivity of the 3cMCF is higher than that of the 7cMCF as n is 
lower and its slope is smaller in the 3cMCF for the temperature range 
under study.  

To demonstrate such fact, a device with a packaging identical to that 
in Article 2, but with 25 mm of 3cMCF was manufactured and 
subjected to several stepped temperature cycles from -25 ºC to 900 
ºC. Before running the tests, the device was subjected to an 
annealing process identical to that for the device in Article 2 to 
avoid hysteresis. After that, the device was subjected to the 
aforementioned temperature cycles. The evolution of the spectrum 
as a function of temperature and its calibration are shown in Fig. 45. 
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Figure 45: a) Evolution of the spectrum as a function of temperature and b) 

calibration curve of the packaged device with 25 mm of 3cMCF. 

This device showed higher sensitivity than the one reported in 
Article 2 with the same packaging and operating configuration, 
reaching a sensitivity up to 43.61 pm/ºC for the range from 600 ºC 
to 900 ºC (the device in Article 2 showed a sensitivity of 24.8 
pm/ºC). Hence, it can be concluded that the most significant 
parameter to design highly sensitive MCF thermometers is n, and 
that between the two MCFs under study, the 3cMCF is more thermal 
sensitive and therefore, the one that has to be chosen to manufacture 
this upgraded optical thermometer. 

To manufacture the device, the requirements for the shape of the 
spectrum were identical to those for the device in Article 2. 
However, by using the 3cMCF, the best fitting MCF length fulfilling 
the requirements was found to be 12 mm, which is less than the half 
of the MCF needed in Article 2 (2.54 cm), which is an additional 
advantage as the device as less material is required. 

Regarding the packaging, one of the drawbacks of the device in 
Article 2 is that the thin stainless steel metallic shielding tended to 
bend when it was subjected to extreme temperatures and did not 
return to its original shape. This is a potential problem to operate in 
harsh environments as it may lead to break the fiber inside it. To 
overcome such a critical drawback, a ruggedized packaging was 
developed in order to make it more robust to operate in harsh 
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environments and extreme temperatures. The packaging of this 
device consisted of three layers that covered the optical fiber. The 
first layer was the same as for previous devices and consisted of a 
ceramic tube (Omega TRX-005132-6) to keep the MCF straight and 
therefore, make it only sensitive to temperature. The second layer 
consisted of a thin Inconel tube (INC-116-6-OPEN) whose inner 
diameter is slightly bigger than the outer diameter of the ceramic 
tube. Its aim was to provide rigidity to the ceramic tube and avoid 
any possible fracture of it, as the latter shows high levels of fragility 
against impacts. The third layer consisted of a thick Inconel tube 
(INC-18-6CLOSED) to provide robustness. The reason for using 
Inconel instead of stainless steel as in Article 2 was due to the fact 
that it is capable to withstand higher temperatures with higher 
structural integrity. With this ruggedized packaging, the final 
prototype was about 14 cm long (see Fig. 46). As it happened in 
Article 2, although the sensing part of the device was only 1.2 cm 
long and located at the tip of it but far enough to avoid creating a 
Fabry-Perot cavity, the 14 cm-long ruggedized packaging was caused 
by the configuration of the furnaces in which the device was tested 
(Fluke 9103 and Fluke 9150). The latter had a vertical hole of around 
15 cm that only in their deepest part reach the desired temperature. 

Finally, to make the device as robust as possible to be deployed in 
extremely harsh environments, the SMF from the device to the 
interrogation setup was protected as well with a double layer. The 
first one consisted of a tube (Thorlabs FT030) that contained an 
outer PVC jacket and Kevlar threads to provide protection. The 
second layer consisted of a stainless-steel jacket (Thorlabs FT05SS) 
which provided extra protection and avoided any visible or IR light 
entering through the length of the fiber. 
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Figure 46: Photograph of the upgraded device (up) and the device in Article 2 

(down) after the tests. 

From Fig. 46, the benefits of this ruggedized packaging can be 
acknowledged. It is easily noticeable that the device from Article 2 
is bent significantly after being subjected to several temperature 
cycles, which may compromise its lifetime, whereas the upgraded 
device is still straight. 

For comparison purposes, an identical device was manufactured with 
the same physical characteristics and packaging but with the 
7cMCF. Prior to their calibration, both devices were subjected to an 
annealing process as the device in Article 2 to avoid hysteresis. 
Afterwards, they were subjected to the same stepped temperature 
cycles as the device in Fig. 45. The evolution of their corresponding 
spectra is shown in Fig. 47. 

 
Figure 47: Evolution of the spectrum as a function of temperature of the devices 

with a) the 3cMCF and b) the 7cMCF. 

The calibration curves for the ruggedized sensors are shown in Fig. 
48 and are summarized in Table 2. Results demonstrate that the 
thermal sensitivity of the ruggedized device with 3cMCF is higher 
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than that in the device with 7cMCF in all the temperature ranges, 
obtaining almost twice the sensitivity in the range from 200 ºC to 
900 ºC. 

 
Figure 48: Calibration curves for the ruggedized 3cMCF (black circles) and 

7cMCF devices (black triangles). 

Table 2: Summary of the results 

 -25ºC-140ºC 200ºC-600ºC 600ºC-900ºC 

3cMCF 

Correlation 
T=117.61 m 

+5.74 
T=59.445 
m+67.693 

T=33.83 
m+290.09 

Sensitivity 
(pm/ºC) 

7.302 16.785 29.426 

R2 0.926 0.9989 0.997 

7cMCF 

Correlation T=177.31 m 

-17.193 
T=86.72 m 

+129.17 
T=66.295 m 

+238.47 
Sensitivity 
(pm/ºC) 5.531 9.983 15.081 

R2 0.99 0.992 0.999 

 

The results reported here highlight the significance of understanding 
the fundamentals of strongly coupled MCFs, as exploiting them 
allows having higher sensitivity only by selecting adequately the 
MCF geometry in the device. In this work, this fact has been 
exploited for temperature sensing: It allowed a more robust shielding, 



Section 1: Synthesis

72 

as the loss in sensitivity due to the ruggedized packaging was 
compensated by the increase in sensitivity provided by the MCF. 
Moreover, the fundamentals discussed here open the possibility to 
design and manufacture ad-hoc MCF structures and geometries with 
optimized and/or enhanced sensitivities to measure temperature or 
any other parameter such as strain or bending; or to design filters or 
switches, as the procedure for all those cases is analogous to the one 
exposed here. 

 
1.3.4.2 Omnidirectional vector bending sensor 

 
In this section, a simple and compact vector-bending sensor that is 
able to discern any direction and amplitude of the bending is shown. 
To manufacture this device, a short segment (Lf=8 mm) of the same 
3cMCF shown in the previous work was used (see Fig. 41), which 
was fusion spliced at the distal end of a SMF (see Fig. 49), creating 
a simple SMF-MCF structure that operated in reflection mode. The 
device was interrogated in wavelength shift and light power variation 
simultaneously. In this manner, the amplitude and direction of the 
bending were unmistakably measured when the MCF was bent, as 
the spectrum shrank and shifted accordingly. 

 
Figure 49: Schematic of the structure of the sensor. 

For this structure and 3cMCF, the coupled power can be expressed 
as in Eq. 40 but particularized for z=2Lf: 

2 2
0

1( 2 ) cos 3 2 sin 3 2
3f f f

n nP z L L L  (43) 
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The orthogonal coupled SPs for this device are identical to the ones 
shown in Fig. 42.  

As it has been widely demonstrated, the refractive index of the core 
of an optical fiber changes it is bent [86-89]. For MCFs, certain core 
or cores are going to be more stressed than others when they are 
subjected to the same bending plane and amplitude, resulting in 
changes in the effective refractive indices of the propagating 
supermodes. According to Eq. 43, this effect implies changes in the 
normalized power coupling conditions, and therefore, in the resulting 
spectrum. 

Among strongly coupled MCFs, for symmetric ones, the effect of the 
bending plane will be always the same irrespective of the bending 
direction. This is why such fibers are capable to distinguish the 
applied bending but not its direction [90]. However, for asymmetric 
MCFs, as the 3cMCF, the effect of bending in the spectrum will 
depend on the core orientation and the bending direction as well as 
on the arrangement and geometry of the cores. When these type of 
MCFs are bent, the variation in the refractive index of each core 
depends on the bending plane and its orientation with respect to it 
[91, 92]. As the cores are arranged asymmetrically, each of them 
suffers different levels of stress against the same bending plane and 
radius, causing the refractive index of each to vary independently. 
Such situation affects directly to the propagating supermodes, which 
modifies consequently the output spectrum of the normalized coupled 
power in Eq. 43. This is what makes asymmetric MCFs good 
candidates for direction-sensitive bending sensors, as the variation of 
the normalized coupled power will be specific for each bending case, 
giving rise to detectable changes in the spectrum of a SMF-MCF 
structure in terms of wavelength shift and/or light power variation 
depending on the applied bending direction. 

In order to detect and measure the bending direction causing such 
changes in the spectrum, by monitoring only one of these two 
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variables, in principle, it could be possible to measure the bending 
direction and amplitude without ambiguity in 180°. In that range, 
the sensitivity of the measured variable will be unique for each 
bending plane and therefore, its measurement (shift to longer and 
shorter wavelengths, or increase and decrease of the reflected light 
power) could be linked to the applied bending unequivocally. 
However, for the remaining 180°, such measurements of the variable 
are going to be the same as for the previous 180°, giving as a result 
an ambiguity in which two bending directions provoke the same 
measured change in the monitored variable. 

Such ambiguity can be eliminated by simultaneously measuring both 
variables (the wavelength shift and light power variation) as each of 
them shows unique sensitivity for each bending direction. In this 
manner, the measurement of the first variable will provide two 
possible solutions (two bending directions), whereas the second 
variable will be the key to resolve such ambiguity. For example, let 
us assume a case in which a certain wavelength shift has been 
measured. As it has been explained previously, such shift can be 
caused by two different bending directions. At this point, the 
measurement of light power will be the key to resolve the ambiguity, 
as in one of the possible solutions (one of the bending directions that 
cause such wavelength shift), the measured light power increases, 
whereas in the other bending direction, it decreases. This leads to a 
unique possible bending direction causing such changes in both 
variables at the same time. Identical procedure can be carried out by 
inverting the variables: using the light power measurement to 
provide two possible solutions and the wavelength shift to resolve 
the ambiguity. Therefore, by combining the simultaneous 
measurement of both variables, the ambiguity can be resolved and 
any bending direction can be unmistakably identified in 360°, making 
the device sensitive to any bending direction (omnidirectional). To 
that end, the interrogation setup shown in Fig. 34 was implemented, 
in order to measure both parameters simultaneously. 
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To demonstrate this behavior, a length of MCF segment (Lf) capable 
to provide a spectrum with one centered and well-defined maximum 
in the interrogation window (from 1510 to 1595 nm) of the 
spectrometer, and with no secondary maxima is required. The latter 
is mandatory to minimize any sensitivity loss that is caused by 
adjacent lobes with opposite trends (one increases whereas the other 
decreases) when measuring the reflected light power in the same 
interrogation window, as shown in [91]. To obtain an Lf that fulfilled 
the aforementioned requirements, PhotonDesign simulation software 
was used, and simulation results indicated that the best fitting MCF 
length was 8 mm. The great resemblance between the simulated and 
manufactured devices is shown in Fig. 50. 

 
Figure 50: Spectra of the manufactured and simulated devices of 8 mm of 3cMCF. 

The device was fixed horizontally on a fiber rotator (Thorlabs 
HFR007) in such a way that the MCF segment was set in a cantilever 
configuration (see Fig. 51a). This setup allowed selecting accurately 
the bending plane applied to the MCF. The latter was fixed on one 
end by the clap of the fiber rotator by the SMF-MCF fusion splice 
point and had its other end loose, as shown in Fig. 51a. As the length 
of the MCF in cantilever (Lf) was only 8 mm, it was straight in idle 
position. In that state, to set an initial core orientation that would 
be the reference position from which the fiber would be rotated (the 
0° in Fig. 51b), a high-resolution camera (Dyno-Lite AM4116T) was 
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set in front of the MCF to record the orientation of the cores. The 
initial core orientation that was decided to be used as reference (the 
aforementioned 0° from which the fiber would be rotated) was when 
the cores were in an inverted V-like configuration, as indicated in 
Fig. 51b. 

Once the MCF had its cores in that orientation, a thin ceramic tube 
(Omega Engineering TRX-005132-6), whose bore´s inner diameter 
(127 m) is slightly bigger than the diameter of the MCF (125 m), 
was set in front of it, and by means of a micrometric displacement 
platform (Thorlabs RB13M), the MCF and the tube were aligned. 
This alignment allowed displacing the fiber forward in micrometric 
steps until 0.5 mm of the loose end of the MCF were inserted in the 
ceramic tube. Thanks to the narrow difference between the diameter 
of the MCF and that of the ceramic tube, the MCF fitted tightly in 
it, avoiding any slack of the fiber during measurements. 

Then, the ceramic tube was fixed to a precision travel stage 
(Thorlabs LTS150) in order to displace it vertically upwards and 
downwards with high precision, as this stage has a minimum 
achievable incremental movement of 0.1 m, according to the 
manufacturer. In this manner, when the tube moved up and down, 
the fiber was bent and a triangle created, whose sides were the actual 
position of the fiber, its initial horizontal position (Lf) and the 
vertical displacement d, as indicated in Fig. 51a. This mechanism to 
apply bending to the fiber is similar to that used in [89, 91, 93, 94]. 
According to Fig. 51a, the degrees of the angle of bending were 
calculated as sin =   . According to it, as each step of d 
upwards or downwards was of 100 m, it meant that the applied 
bending was of 0.716° at each step until reaching 3.583°. This process 
was repeated every 30° of rotation of the MCF in the direction 
indicated in Fig. 51b until completing a whole rotation around its 
axis 5 times. 
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Figure 51: Schematics of a) the setup to apply the bending and b) the direction of 
rotation of the 3cMCF, the evaluated points and the applied bending direction. 

The comparison of the gathered spectra and their corresponding 
measurement of wavelength shift and light power variation of the 
two most representative cases in which the 3cMCF has opposite core 
orientations against the same bending plane is shown in Fig. 52 and 
Fig 53.  Note that for the same applied bending direction and angles, 
the changes in the spectra go from mainly light power variations (see 
Fig. 52) to mainly wavelength shift (see Fig. 53) with a very stable 
signal from cycle to cycle. Such evolution took place progressively in 
clockwise direction of rotation. Thus, in each of the intermediate 
positions, a specific linear combination of shift and light power 
change was observed. 
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Figure 52: Spectra and two cycles of the time evolution of the measured 

parameters when the device is bent in the direction indicated by the arrow and the 
3cMCF is rotated a) b) 90° and c) d) 270° with respect to the initial 0° position, 

respectively. 

 
Figure 53: Spectra and two cycles of the time evolution of the measured 

parameters when the device is bent in the direction indicated by the arrow and the 
3cMCF is rotated a) b) 180° and c) d) 360° with respect to the initial 0° position, 

respectively. 
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From the analysis of such spectral behavior, it can be concluded that 
by combining the measurement of both variables (wavelength shift 
and light power variations), this device is able to measure any 
bending direction in 360° and amplitude for bending angles up to 
3.583°, as unique trends and sensitivities at each core orientation of 
the 3cMCF can be acknowledged. Moreover, such results suggest that 
an exhaustive alignment between cores and bending direction is not 
needed to devise such MCF-based vector bending sensor. 

The bending sensitivities in terms of wavelength shift and light power 
variation and their respective standard deviation at the measured 
3cMCF orientations with respect to the applied bending direction are 
summarized in Fig. 54. The maximum sensitivities and their 
respective standard deviations were found to be 506.72 ± 5.5 pm/° 
and 587.5 ± 11.08 nW/°, for wavelength shift and light power 
variation measurements, respectively. These values represent an 
uncertainty in the measurement of 0.01° for wavelength shift and 
0.018° for power variation. The combination of the trend and 
sensitivity of each parameter is unique at each point, which leads to 
an unambiguous detection of the bending direction and amplitude. 
It can be noticed that both curves are 90° out of phase between them 
as well, as expected from the results and the core orientations in Fig. 
52 and Fig. 53. 

 
Figure 54: Wavelength shift and light power variation sensitivities and their 

respective standard deviations at each fiber position. 
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Fig. 55 is the normalized polar representation of the results in Fig. 
54, in absolute value. When the shift in the reflection spectrum is 
maximum, the light power change is minimal, and vice versa, 
whereas in other orientations, a specific combination of power 
variation and wavelength shift can be acknowledged. 

 
Figure 55: Polar representation of the normalized bending sensitivities and 

standard deviations in absolute value. 

By combining simultaneous wavelength shift and light power 
variation measurements, a simple sensor consisting of 8 mm of 
3cMCF capable of discerning bending direction and amplitude 
accurately in 360° was developed. This device does not require any 
specific alignment, and is capable to operate either for small and 
large bending angles, from below 1° up to 3.583°. 
 

1.3.4.3 Accelerometer 
 
In this point, a summary of the article “Highly sensitive multicore 
fiber accelerometer for low frequency vibration sensing” is shown. 
This article was published in Scientific Reports in September 2020 
and it is included in the Appendix section of the thesis as Article 3 
to be consulted for further details. 

In this section, an accelerometer based on cascading two segments of 
the 3cMCF (named MCF1 and MCF2) in Fig. 41 of different lengths 
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(L1 and L2, respectively) and rotated 180° with respect to each other 
is shown. The 3cMCF segments are sandwiched between standard 
single mode fibers, creating a SMF-MCF1-MCF2-SMF structure that 
operates in reflection mode (see Fig. 56).  

 
Figure 56: Schematic of the device. 

For this 3cMCF cascaded configuration, the particularization of Eq. 
36 allows expressing the normalized coupled power in the central core 
as the product of each of the segments, as follows: 

2 2
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2 2 2 2
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2 1
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(44) 

Thus, as it was said before, a cascaded structure operating in 
reflection mode will provide a narrower peak and higher visibility 
than a single segment, which facilitate tracking any change in the 
spectrum. 

Regarding the fiber arrangement, by rotating the two 3cMCF 
segments 180° with respect to each other, each of them will show 
contrary behavior in terms of wavelength shift and amplitude of the 
spectrum when they are bent due to their direction sensitive nature 
that has been explained in the previous section and is also explained 
in [91]. When the position of the cores of each 3cMCF segment and 
the applied bending are aligned as in Fig. 57, where one of the MCF 
segments has its cores oriented in a V-like configuration and the 
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other MCF segment has its cores oriented in an inverted V-like 
configuration (or rotated 180°), only amplitude variations will take 
place in the spectrum. In order the device to perform as shown in 
Fig. 57, MCF segments of different lengths are compulsory to avoid 
any ambiguity in the measurement. If the lengths were identical, the 
spectra of both segments would be overlapped in idle state, being 
that situation the point at which the maximum reflected light power 
would take place. Each spectrum would shift in opposite directions 
when the structure was bent, but only power decreases would be 
recorded, resulting in identical or similar power readings for opposite 
bending directions. Such ambiguity or loss in sensitivity is avoided 
by using segments of different lengths, as for this case, the measured 
power increases and decreases accordingly with the applied bending 
direction compared to the power measurement in idle state. Such 
amplitude variations in the spectrum are proportional to power 
variations, and therefore, only a PD will be necessary to interrogate 
the device. Such simplicity makes this SMF-MCF1-MCF2-SMF 
structure appealing as a very sensitive and cost-effective 
accelerometer, as it does not require high performance or ad-hoc 
equipment to operate. 

 
Figure 57: Simulated spectra of each of the 3cMCF segments and the resulting 
spectra for the cases where the structure is a) straight, b) bent upwards and c) 

bent downwards by its fusion splice point. The arrow indicates the bending 
direction, the wavelength shift or the power variation in each case. The cores of 

MCF1 are in a V-like configuration, whereas the ones in MCF2 are in an inverted 
V-like configuration. 
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To manufacture a device with such characteristics, some design 
constraints were required to be considered: Its spectrum had to be 
confined within the interrogation window (from 1510 to 1595 nm) at 
any time and it must have a unique and well-defined peak with no 
secondary lobes. Such requirements are mandatory to minimize any 
sensitivity loss when measuring the reflected light power that is 
caused by adjacent lobes with opposite trends (one increases whereas 
the other decreases) in the same interrogation window, as shown in 
[91]. The best fitting lengths for the MCF segments that fulfilled the 
requirements were 11.4 mm and 12.2 mm, resulting in a compact 
device of 23.6 mm. The spectra of the simulated and the 
manufactured devices are shown in Fig. 58, along with the simulation 
for each of the MCF segments that comprise the structure. Such 
simulations were carried out with PhotonDesign simulation software. 

 
Figure 58: Normalized spectra of the simulated (black dashed line) and 

manufactured devices (black continuous line). Notice that the maxima of both 
curves is around 1554 nm and there are no secondary lobes. Simulated spectra of 

MCF segments of 11.4 mm (red dashed line) and 12.2 (blue dashed line) are shown 
as well. As indicated in Eq. 44 their product results in the black dashed line. 

To test the device, a horizontally fixed rectangular methacrylate thin 
plate was used. Underneath and at the center of it, an amplified 
piezoelectric actuator (Thorlabs APFH720 combined with Thorlabs 
MDT694B amplifier) was fixed so that the plate could vibrate only 
in the vertical plane. The piezoelectric actuator was connected to a 
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function generator (Keysight Technologies 33220A) to generate 
signals of diverse amplitudes and frequencies. Then, the 
manufactured device was surface bonded with cyanoacrylate 
adhesive to the upper side of the plate, locating the MCF1-MCF2 
splice just above the piezoelectric actuator, as it can be observed in 
the scheme of the experimental setup shown in Fig. 59. It was surface 
bonded with its cores oriented as in Fig. 57 to match the direction 
of vibration. Adjacent to the device, a commercial accelerometer 
(Pico Technology PP877 with Pico Technology TA096) was fixed for 
comparison and calibration purposes, as this electronic accelerometer 
provided the relation between the amplitude of the vibration and the 
acceleration. Its interrogation was carried out with the setup in Fig. 
34. 

 
Figure 59: Schematic lateral and top views of the experimental setup. The close-up 

shows how the manufactured optical accelerometer was surface bonded to the 
plate. Red cores belong to MCF1 whereas blue cores belong to MCF2. The red 
central core indicates MCF1 is in front of MCF2, as they share common central 

core. 

The first test consisted in emitting a sinusoidal signal of 1 Vpp 
amplitude and varying its frequency from 30 Hz down to 1 mHz (the 
lowest frequency provided by the function generator) in several steps 
so that the Limit of Detection (LoD) in terms of frequency of each 
device could be defined. The manufactured device detected every 
vibration clearly down to 1 mHz in wavelength shift and power 
variation (see Fig. 60 and Fig. 61). The small wavelength shift in 
Fig. 61 indicates that the device has been surface bonded with the 
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proper core orientation to the plate, and explains the fact that the 
FFT amplitudes are lower for the wavelength shift measurements 
than those for power variation. Nevertheless, even in this 
configuration aimed at maximizing the power variation, the device 
has detected such low vibrations by its wavelength shift as well, 
which is an indicator of its high sensitivity. According to the 
commercial accelerometer, it only detected vibrations of 2 Hz and 
above and with significantly noisier signal and with high level of 
harmonic components (see Fig. 62). 

 
Figure 60: Results of the power measurements in the manufactured optical device. 
a) Time response of three representative cases. b) FFT amplitudes for frequencies 

from 30 Hz down to 1 mHz for a sinusoidal signal of 1 Vpp. The Measured 
frequency axis is in logarithmic scale. 

 
Figure 61: Results of the wavelength shift measurements in the manufactured 

optical device. a) Time response of three representative cases. b) FFT amplitudes 
for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 Vpp. The 

Measured frequency axis is in logarithmic scale. 
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Figure 62: Results of the acceleration measurements in the electronic 

accelerometer. a) Time response of three representative cases. b) FFT amplitudes 
for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 Vpp. The 

Measured frequency axis is in logarithmic scale. 

The second test consisted in emitting a sinusoidal signal of a fixed 
frequency (6 Hz) and varying its amplitude from 1 Vpp down to 10 
mVpp (the lowest amplitude provided by the function generator) to 
define the LoD of each device in terms of amplitude of vibration, 
which is related to the acceleration of the oscillation movement. The 
time responses and FFT amplitudes of both devices are shown from 
Fig. 63 to Fig. 65. The optical device detected vibrations down to 10 
mVpp above the 3:1 SNR criteria that commonly is taken a rule [95]. 
The noticeable progressive decrease in the amplitude of the signals 
in the time domain (see Fig. 63a and Fig. 64a) and the FFT (see Fig. 
63b and Fig. 64b) is proportional to the diminishment of the 
amplitude of the emitted signal. In both cases (wavelength shift and 
power variations), the emitted signal can be clearly detected and a 
low level of the harmonic components is noticeable. Regarding the 
commercial accelerometer, it detected signals down to 30 mVpp (see 
Fig. 65). 
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Figure 63: Results of the power variation measurements in the manufactured 
optical device. a) Time response of three representative cases, and b) FFT 

amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp down to 10 
mVpp. 

 
Figure 64: Results of the wavelength shift measurements in the manufactured 

optical device. a) Time response of three representative cases, and b) FFT 
amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp down to 10 

mVpp. 

 
Figure 65: Results of the acceleration measurements in the electronic 

accelerometer. a) Time response of three representative cases, and b) FFT 
amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp down to 10 

mVpp. 
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The calibration resulting from these tests is shown in Fig. 66.  

 
Figure 66: Calibration of the manufactured optical accelerometer. 

The linear behavior of wavelength shift and power variations is 
significant, especially for the latter, where a sensitivity of 2.213 
nW/mg with a Pearson squared correlation coefficient of R2 = 0.997 
and with a noise density of 1.083 g/sqrt(Hz) was obtained. As a 
result, the correlation between the power variation ( P) and the 
acceleration (in mg) can be expressed as: 

0.450 0.143a P  (45) 

 

According to wavelength shift measurements, a sensitivity of 1.116 
pm/mg with a Pearson squared correlation coefficient of R2 = 0.976 
was achieved. It should be pointed out that our MCF accelerometer 
was optimized to operate with power variation measurements, which 
implied low sensitivity in terms of wavelength shift. Thus, such result 
indicates that the device was surface bonded as close as possible as 
depicted in Fig. 59 and that it operates as intended. 

In this work, a compact and highly sensitive all-fiber accelerometer 
is shown. Its structure is designed to optimize the change in the 
amplitude of the spectrum, which is related to power variation. This 
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configuration makes its interrogation to be very simple, made by few 
off-the-shelf equipment and cost-effective. The device was capable of 
detecting extremely low frequency vibrations down to 1 mHz with a 
sensitivity of 2.213 nW/mg, which makes it appealing for 
applications in which these characteristics are demanded, such as in 
seismology. 
 

1.3.4.4 Direction sensitive curvature sensor 
 

In this point, a summary of the article “Composed multicore fiber 
structure for direction-sensitive curvature monitoring” is shown. 
This article was published in APL Photonics in July 2020 and it is 
included in the Appendix section of the thesis as Article 4 to be 
consulted for further details. 

In this section, the same sensor architecture and interrogation setup 
as in Article 3 was employed to measure curvature (see Fig. 56). 
However, in this case, the SMF-MCF1-MCF2-SMF structure was 
built with segments of L1 = 17.4 mm and L2 = 18.2 mm in order to 
obtain a sharper and narrower peak in the spectrum than that in 
Article 3 (see Fig. 67). The expression for the coupled power in the 
central core is identical to the previous device (Eq. 44) as well as its 
interrogation setup (see Fig. 34). 
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Figure 67: Spectra of the manufactured device in Article 3 (blue line) and the 

one in Article 4 (black line). 

To subject the device to curvature, the device was held by the SMFs 
by means of two fiber chucks that were mounted on rotators 
(Thorlabs HFR001) and secured on an optical breadboard that was 
placed in a vertical position. Another fiber chuck was attached and 
used as a mass (20 g) in the lower SMF to keep the tension of the 
fiber constant by means of gravity. The measurements of curvature 
were carried out at different orientations of the 3cMCF segments in 
the device, between 0° and 180° in steps of 30° with respect to 
curvature (see Fig. 68) and a translation stage with micrometer 
resolution was used to bend the structure by its MCF1-MCF2 
junction in a controlled manner. The value of curvature (C) on the 
device was calculated with the following equation: =  [96], 
where h is the displacement of the translation stage and d is the 
separation between the two fiber rotators. 
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Figure 68: Schematic diagram of the measuring setup. 

Fig. 69 shows the spectra observed when the curvature at two 
perpendicular directions was applied to the device (0° and 90° 
orientations according to Fig. 68). Note that when the wavelength 
shift is larger, the changes in intensity are minimal and vice versa. 
This behavior was expected due to the architecture of the device and 
the asymmetry of the 3cMCFs in it, as shown in Article 3. 

 
Figure 69: Spectra at different curvatures observed when the position of the device 

was at a) 0° and b) 90°, respectively. 

Fig. 70 shows the averaged curvature sensitivities that were 
measured in the seven different orientations of the device indicated 
in Fig. 68. 



Section 1: Synthesis

92 

 
Figure 70: Polar representation of the averaged curvature sensitivity in terms of a) 

wavelength shift and b) intensity changes. 

Thus, in this work, a highly sensitive device capable to provide the 
amplitude and the direction of curvature has been shown. The 
curvature sensitivity of the sensor reported here was found to be 4.66 
dB/m 1 when intensity changes were correlated with curvature.  
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Conclusions 
 

In this section, the conclusions of the thesis are presented, as well as 
the future lines of investigation that are feasible as a result of it. The 
latter are divided in investigation lines focused on improving the 
performance of the devices described in this work and in new 
investigation lines in which they may be suitable. The scientific 
papers and conferences in which the results of the research have been 
published are included in this section as well. 
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2.1 OFDS 

2.1.1 Conclusions 
 
In the first line of research, two OFDSs designed and manufactured 
for TC measurements were described. Their operating principle was 
based on the modulation of the reflected light as a function of the 
distance to the blades, but their measurement conditions were 
significantly different due to the manner in which they were installed 
in the casings of the turbines. For the first case, the sensor head was 
aiming at the sealing lands of the blades, which decreased the 
reflected light and forced placing the sensor close to the blade tips in 
order to operate in Region 1. For the second case, the sensor head 
was aiming at the flat part of the blade, which was further from the 
casing but offered more surface for the light to be reflected. To 
operate under such conditions, the design of the sensor was upgraded 
so Region 1 could be larger and start at longer distances. In this 
manner, the sensor could be placed further from the blade tips, which 
improved the operation safety significantly. This last version of the 
OFDS enhanced the performance of the previous one significantly 
and fulfilled the requirements set by our partner CTA regarding the 
following aspects: 

Non-contact measurement so that the mechanical behavior of 
the blades is not compromised. 
Precision in the measurement of TC. For instance, for the 
last tests, The TC values over 20000 engine revolutions were 
registered showing a mean variability below 7 m for each 
individual blade turn after turn, which is far below the 
demanded 25 m. 
Use of the more sensitive Region 1. Compared to the first 
fiber bundle, in the second version, Region 1 was longer (3.5 
mm vs 2 mm), started at longer distances (4.5 mm vs 2 mm) 
and showed higher sensitivity due to its steeper slope. 
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Installation ease. This feature was very much appreciated by 
CTA technicians. The sensor head was easy to install in the 
casing, which is a very important feature, as it reduces 
significantly the time required for its installation and does 
not require special holes in the casing to be placed in it.  
Robustness. The sensor has been able to perform during the 
entire tests in real-field conditions without any performance 
issue. 
Cost-effectiveness of the sensing system. The interrogation 
system of the OFDS is made by off-the-shelf equipment. 
Regarding the fiber bundle, it is made of commercial 
multimode and single mode fibers. 
Versatility and safety improvements. The last version of the 
OFDS has been designed to operate in as many turbines as 
possible, avoiding in this manner the need of manufacturing 
ad-hoc fiber bundles for each case. Moreover, thanks to the 
arrangement of the fibers, it allows locating it further from 
the blade tips, which improves the safety. 

 

2.1.2 Improvement/Evolution of the developed 
devices 
 
The following lines of work are suggested in order to continue with 
this investigation line: 

To measure the TC simultaneously in 3 consecutive turbine 
stages (rotor+stator) in the wind tunnel, measuring the TC 
of each rotor in at least 3 different points of it. This 
measurement would be very challenging, as it would imply 
multiplying the hardware used for the tests so far and 
adapting the acquisition system to be able to acquire such 
amount of data simultaneously. The information provided by 
such test is very important for CTA, as it would allow 
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characterizing the TC behavior when several turbine stages 
are operating simultaneously. 
To design a mechanism to avoid the sensor head getting dirty 
because of contamination or residues coming from the 
combustion chamber with the aim of making it viable for 
tests in aeronautical engines in real operating conditions. 
Related with the previous point, in order to use the OFDS 
in real operating conditions, the fiber bundle has to be 
adapted to withstand operating temperatures between 700 
ºC and 1000 ºC, which are common in turbines. 
Miniaturization of the hardware components of the 
measurement system to integrate them in a compact setup 
in order to make it easier to transport and handle. 

 

2.1.3 New lines of investigation 
 
Apart from the lines of work mentioned above, the OFDS could be 
used for the following applications: 

With the OFDS in this work, the radial vibrations of the 
blades (TC) have been measured and analyzed, and as it has 
been mentioned, the same signal could be used for measuring 
the tangential vibrations of the blades (TT). However, it 
would be interesting to develop a sensing system capable of 
measuring axial vibrations of the blades, as there is not an 
effective solution yet for this purpose. 
Use the OFDS for other potential applications that involve 
the characterization of rotating elements as disks, or the 
measurement of eccentricity of shafts or axles. Such 
measurements may be interesting for several sectors such as 
car industry, for instance. 
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2.2 MCF-based sensors  
 

2.2.1 Conclusions 
 

In the second line of the research, several MCF-based sensing 
solutions were developed after describing their operating principle. 
By exploiting it, MCF-based sensors for the measurement of 
temperature, bending, vibrations and curvature were designed and 
manufactured. Such solutions made use of different operating 
configurations (single or cascaded MCF segments of identical or 
different lengths) and MCF geometries (7cMCF or 3cMCF) in order 
to pursue the optimum performance. The MCF-based sensors 
reported in this thesis showed the following characteristics: 

High sensitivity sensors: The sensors showed high sensitivity 
for the measurement of the parameter under test. Moreover, 
in specific cases as those in which an asymmetric MCF was 
used, the devices proved to be direction sensitive as well.  
Easy and fast to manufacture, and easily reproducible: Only 
a precision cleaver and fusion splicer are required to 
manufacture such devices. 
Simple interrogation setup: The setup for the interrogation of 
these devices is very simple and cost-effective, as it only 
requires a broadband light source, a circulator (or optic 
coupler), a spectrometer and a PD. All of these components 
are off-the–shelf equipment. 
Capability to measure multiple parameters: As MCFs are 
sensitive to multiple parameters; a MCF-based sensor for 
each of them can be developed. However, as these fibers are 
sensitive to multiple parameters at the same time, they have 
to be fixed or packaged in a manner that certifies that the 
effect in the spectrum is only due to the parameter of interest.  
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Easily customizable devices: The shape of the spectrum in 
these devices is easily configurable by modifying the length 
and configuration of the MCF (reflection or transmission 
operation, single or cascaded segments…). In this manner, it 
is easy to manufacture multiple devices with easily 
distinguishable spectra in order to multiplex them for 
multipoint measurements. 

 

2.2.2 Improvement/Evolution of the developed 
devices 

As it has been pointed out above, MCFs have appealing 
characteristics for the development of sensing solutions. Thanks to 
that, the following lines of work are suggested in order to continue 
with this investigation line: 

Development of MCF-based sensing solutions for the 
measurement of other parameters that are of interest for the 
industry such as force, strain, dynamic pressure, shape 
sensing… 
To design specific MCF geometries aimed at maximizing their 
sensitivity for the measurement of a specific parameter of 
interest. Analogous to the mathematical approach that in this 
document has been used to predict the most sensitive MCF 
geometry for temperature measurements, by modifying 
certain parameters of the MCF such as the diameter of the 
cores, distance between cores, etc., ad-hoc structures can be 
designed for each parameter. 
To develop a system that allows multiplexing MCFs for 
multipoint sensing: By cascading multiple MCF segments in 
the same SMF and being able to interrogate or identify them 
unequivocally, a significantly high spatial resolution could be 
achieved, especially if the segments are short, which could be 
considered quasi-distributed sensing. 
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Measurement of more than one parameter with the same 
MCF segment: As it has been demonstrated in this thesis, 
MCFs can sense with wavelength shift or power variation. 
With the appropriate configuration, each of these parameters 
could be used for the measurement of different parameters 
simultaneously with the same MCF segment. For instance, 
the same device could use wavelength shift to measure 
temperature and power variations for vibration sensing.  
To embed the MCF in different materials for SHM: In this 
manner, the inside of the piece or structure under test could 
be analyzed in detail in order to detect air bubbles or 
manufacturing defects. 
Cladding shapes: Some of the MCF sensors shown in this 
work, especially those based on asymmetric MCFs, require 
specific alignments in order to operate properly. To make this 
alignment easier, MCFs could be manufactured with shaped 
claddings to indicate the correct alignment. 
Commercial sensors: Some of the sensors presented in this 
work have been packaged to withstand harsh environments 
and real-field working conditions, and their interrogation is 
easy and cost-effective. The latter could be integrated in a 
compact box in order to make it easier to transport and 
handle, and offer the complete system (MCF sensor + 
interrogation setup) commercially. 

2.2.3 New lines of investigation 
 

The following research lines could be developed: 

Design of filters and couplers based on MCF segments: By 
using segments of certain geometries and lengths, MCFs can 
act as ad-hoc band pass or notch filters that allow the coupled 
power to be maximized or cancelled at specific wavelengths. 
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Such characteristics may be appealing for research areas as 
telecommunications. 
Manipulation of the cores: By inscribing FBGs or modifying 
in a controlled manner the refractive index in a certain core 
or cores, the response of each of the modified MCF segments 
could be identified unequivocally and used for multipoint 
sensing. 

 

2.3 Contributions of the thesis 
 
During the thesis, the results of the research have been published in 
international journals and presented in several conferences as follows 
(in chronological order from newest to oldest): 

2.3.1 Publications 
 
Summary of the research articles that have been published in 
international journals: 

1. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Fernández, 
R.; Antonio-Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-
Correa, R.; Villatoro, J. (2020). Highly sensitive multicore 
fiber accelerometer for low frequency vibration sensing. 
Scientific Reports, 10 (1), 1-11 (Q1 in Multidisciplinary 
sciences in 2019 with an Impact Factor of 3.998, statistics of 
2020 not available yet). 
 

2. Villatoro, J.; Amorebieta, J.; Ortega-Gomez, A.; Antonio-
Lopez, E.; Zubia, J.; Schülzgen, A.; Amezcua-Correa, R. 
(2020). Composed multicore fiber structure for direction-
sensitive curvature monitoring. APL Photonics, 5 (7), 070801 
(Q1 in Optics in 2019 with an Impact Factor of 4.864, 
statistics of 2020 not available yet). 
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3. Amorebieta, J.; Durana, G.; Ortega-Gomez, A.; Fernández, 

R.; Velasco, J.; Sáez de Ocáriz, I.; Zubia, J.; Antonio-López, 
E.; Schülzgen, A.; Amezcua-Correa, R.; Villatoro, J. (2019). 
Packaged multi-core fiber interferometer for high-
temperature sensing. Journal of Lightwave Technology, 37 
(10), 2328-2334 (Q1 in Optics in 2019 with an Impact Factor 
of 4.288). 
 

4. Fernández, R.; Amorebieta, J.; Beloki, J.; Aldabaldetreku, 
G.; García, I.; Zubia, J.; Durana, G. (2019). Performance 
Comparison of Three Fibre-Based Reflective Optical Sensors 
for Aero Engine Monitorization. Sensors, 19 (10), 2244 (Q1 
in Instruments & Instrumentation in 2019 with an Impact 
Factor of 3.275). 
 

5. Durana, G.; Amorebieta, J.; Fernandez, R.; Beloki, J.; 
Arrospide, E.; Garcia, I.; Zubia, J. (2018). Design, 
Fabrication and Testing of a High-Sensitive Fibre Sensor for 
Tip Clearance Measurements. Sensors, 18 (8), 2610 (Q1 in 
Instruments & Instrumentation in 2018 with an Impact 
Factor of 3.031). 

2.3.2 Conferences 
 
Summary of the conferences at which the research work has been 
presented: 

 
1. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Antonio-

Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; 
Villatoro, J. ”Highly Sensitive Supermode Interferometer for 
Low Frequency Vibration Monitoring”. 27th International 
Conference on Optical Fiber Sensors OFS2020, Alexandria, 
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Virginia, USA. This conference has been postponed to June 
2021 due to COVID. 
 

2. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Antonio-
Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; 
Villatoro, J. “Highly sensitive orientation and amplitude 
discerning vector bending sensor based on asymmetric 
multicore fiber”. OSA Advanced Photonics, Montreal, 
Canada, July 13, 2020. 
 

3. Garcia, I.; Durana, G.; Amorebieta, J.; Fernández, R.; 
Zubia, J. “Review of a Custom-Designed Optical Sensing 
System for Aero-Engine Applications”. The 9th EVI-GTI 
International Gas Turbine Instrumentation Conference, 
Graz, Austria, November 21, 2019. 
 

4. Amorebieta, J.; Ortega-Gomez, A.; Amezcua-Correa, R.; 
Antonio-López, E.; Schülzgen, A.; Villatoro, J. “Novel twin 
cascaded multicore fiber-based structure for high sensitive 
multipurpose optical sensing”. 11ª Reunión Española de 
Optoelectrónica OPTOEL´19, Zaragoza, Spain, July 4, 2019. 
 

5. Amorebieta, J.; Durana, G.; Ortega-Gomez, A.; Fernández, 
R.; Velasco, J.; Sáez de Ocáriz, I.; Zubia, J.; Antonio-López, 
E.; Schülzgen, A.; Amezcua-Correa, R.; Villatoro, J. 
“Strongly coupled multi-core fiber-based interferometer for 
high temperature sensing”. SPIE Optics+Optoelectronics, 
Prague, Czech Republic, April 15, 2019. 
 

6. Amorebieta, J.; Fernández, R.; Durana, G.; Beloki, J.; 
Zubia, J. “Optical Fibre-Based Reflective Displacement 
Sensing System for High Sensitivity Blade Tip-Clearance 
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Measurements”. OSA Advanced Photonics Congress, Zurich, 
Switzerland, July 2, 2018. 
 

7. Fernández, R.; Amorebieta, J.; Durana, G.; Beloki, J.; 
Zubia, J. “Performance comparison among three optical fibre-
based displacement sensors for Blade Tip Clearance 
measurements”. 5th IEEE International Workshop on 
Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 
June 20, 2018. 
 

8. Amorebieta, J.; Garcia, I.; Durana, G.; Aldabaldetreku, G.; 
Zubia, J.; Sáez-Ocáriz, I. “Optical fibre-based reflective 
displacement sensor: computer modelling and application to 
impact detection in aeronautical structures”. SPIE Optical 
Metrology, Munich, Germany, June 26, 2017. 
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Abstract: A highly sensitive fibre bundle-based reflective optical sensor has been designed and
fabricated for Tip Clearance measurements in a turbine rig. The sensor offers high spatial and
temporal resolution. The sensor probe consists of a single-mode transmitting fibre and two concentric
rings of receiving multimode fibres that collect reflected light in a differential detection gain
configuration, yielding a highly linear calibration curve for distance measurements. The clearance
measurement range is approximately 2 mm around the central point fixed at 3.2 mm from the probe
tip, and the sensitivity of the probe is 61.73 mm−1. The fibre bundle has been designed to ensure
that the distance security specifications required for the experimental program of the turbine are met.
The optical sensor has operated under demanding conditions set by the blade and casing design.
The experimental results obtained so far are promising and lead us to think that the optical sensor
has great potential for online clearance measurements with high precision.

Keywords: tip clearance; optical fibre sensor; aircraft turbine

1. Introduction

In aeronautics, Tip Clearance (TC) refers to the gap existing between the blade tip and its
surrounding case. Since the invention of the gas turbine engine, intense research has been conducted
on reducing TC, as this parameter, of great concern for engine designers, is intimately related to engine
efficiency and represents the driving force of most new architectures and innovative technological
improvements for future aircraft applications. Whereas high TC values allow an amount of air to flow
without generating useful work, a lack of clearance accelerates blade tip and shroud wear over time due
mainly to rubs, and can put engine integrity at risk [1]. The clearance varies with the operation point
of the mission profile (take-off, cruise and landing) as well as with the engine aging [2,3]. TC changes
are caused by two types of loads, namely engine and flight loads. The former encompasses centrifugal,
thermal, internal engine pressure, and thrust loads, whereas the latter comprises inertial (gravitational),
aerodynamic (external pressure) and gyroscopic loads [4]. At cruise, a rule of thumb equates 0.25 mm
of reduced clearance to a reduction of 1% in specific fuel consumption. Therefore, some of the most
relevant benefits of reducing the TC include efficiency increase as well as increased payload and
mission range capabilities [1,5]. In addition, aircraft noise and emissions are reduced, along with the
subsequent environmental benefits involved [6,7]. It seems obvious that an accurate and real-time

Sensors 2018, 18, 2610; doi:10.3390/s18082610 www.mdpi.com/journal/sensors



Sensors 2018, 18, 2610 2 of 13

measurement technology is necessary. In contrast to power-system turbines where common clearance
values range from 2 to 8 mm, in aircraft turbines, TC is typically lower than 3 mm and a resolution
better than 25μm is usually required [8–10].

Currently, there are several traditional methods for TC measurements that include capacitive,
eddy current, microwave, and discharging probe sensors (electromechanical). The former are popular
due to their simplicity, low cost, and robustness, but they suffer from low spatial resolution,
short measurement range, and require calibration [11–13]. Eddy current sensing is also a common
technique for TC measurements, and it has about the same accuracy as capacitive probes [14,15].
It provides non-contact measurements at the expense of requiring magnetic materials for the blades.
Additionally, the magnetic disturbance of the turbine engine may interfere with their output signal,
and they are highly sensitive to temperature and blade tip shape. Microwave sensors are robust and
insensitive to contamination, but the hollow waveguides at submillimeter wavelengths are impractical,
and the corresponding circuitry complex [16,17]. Finally, electromechanical systems belong to the
oldest tip clearance measurement systems [18]. They benefit from their high resolution over the entire
measurement range, but their main drawbacks are that they only measure the clearance of the longest
blade and the slow response time.

Optical sensors may overcome many of the previous drawbacks as they offer high sensitivity and
resolution, immunity to electromagnetic interference, non-contact measurement and information about
every blade [19–22]. However, among the different optical technologies (i.e., triangulation [23,24],
OCT [22], time-of-flight measurements [25], laser Doppler velocimetry [26] and reflective intensity
modulation [27]) employed for TC measurements at turbo machines, many of them do not fully satisfy
the requirements of future closed-loop Active Clearance Control (ACC) systems [5]. For example,
laser Doppler position probes offer high resolution, but the complexity of the probe limits the
application of the system. In the case of the Optical Coherence Tomography (OCT), the measurement
rate is limited by the speed of mechanical scanning, or in the case of triangulation, by the detector
frame rate and minimum exposure time. Finally, the resolution of reflective intensity modulation-based
sensor probes—compared to the rest of optical methods mentioned previously—is low due to the
modal noise at the endface of the transmitting fibre.

In this paper, we report on the design and fabrication of a highly sensitive fibre bundle-based
reflective optical sensor that has been tested in an aircraft turbine rig. The content of the paper has
been structured as follows: first, a brief description of the operation principle is given, explaining
the general sensor design and defining the working region of interest that will allow to maximize
the sensitivity of the sensor. Afterwards the experimental program followed at the Aeronautical
Technologies centre’s (CTA’s) transonic wind tunnel is explicated. Then, the most relevant results are
presented and discussed. Finally, some conclusions are drawn from the previous discussion.

2. Materials and Methods

2.1. Sensor Design and Working Region of Interest

The schematic diagram of the sensor’s operation is shown in Figure 1a. The fibre bundle is the
principal element of the system. To avoid modal noise at the output [28], a central single-mode fibre
is used as transmitting fibre of red laser light (wavelength of light: 660 nm), which after exiting the
fibre bundle and being reflected by the target object located at a distance d from the fibre bundle
tip, is partially gathered by two concentric rings of multimode optical fibres arranged around the
central transmitting fibre; the inner ring consists of 5 optical fibres (fibre bunch 1; core diameters
of 200μm and Numerical Aperture (NA) of 0.2), whereas the outer ring consists of 17 optical fibres
(fibre bunch 2; core diameters of 300 μm and NA of 0.2). The light collected by fibre bunches 1 and 2 is
measured as a voltage level at photodetectors 1 and 2, respectively (V1 and V2). If we plot the ratio
of V2 to V1 as a function of distance d, we get the characteristic calibration curve shown in Figure 1b.
The reason of using two photodetectors is aimed at minimizing the undesirable effects caused by
intensity fluctuations in the light source and reflectivity variations on the target surface. As both
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voltage signals contain the same disturbance, the ratio V2/V1 gets rid of it and therefore becomes a
pure function of the distance to the illuminated target surface d [27,29,30].

(a) (b)

Figure 1. Fibre optic intensity sensor for TC measurements: (a) illustration of the fibre bundle based
sensor; and (b) signal response (V2/V1) as a function of the distance d to a mirror. The drawing included
in the plot shows the cross-section of the fibre bundle, where the single-mode transmitting fibre is in
the centre and the two rings of receiving multimode fibres are arranged concentrically around it.

The signal response presents two regions of interest for distance sensing with a characteristic
linear variation of the signal with distance. Those regions are at both sides of the peak signal and
are designated as “front slope” and “back slope”, respectively. Figure 1b only shows the front slope,
which exhibits clear advantages in terms of sensitivity, protection against noise and temperature
fluctuations, in comparison to the back slope [31]. In practice, however, for distance security reasons
typical TC values found in turbine rigs makes it necessary to operate in the back slope of the sensor,
resulting in a lower signal sensitivity and higher dependency on the type of surface and on the
temperature. Additionally, a post-processing of the raw signal is often necessary to get reliable
results [27]. In the present work, we set out to operate in the front slope through the design of a
new fibre bundle that guarantees a safe operation without compromising the physical integrity of the
sensor head keeping it away from the blades. Indeed, in previous works, we used a fibre bundle with a
measurement range for the front slope that clearly was too short (from 1 mm to 1.6 mm), and therefore
required using the back slope to avoid placing the fibre bundle tip too close to the blades. The new
bundle design (number of fibres, fibre type composition and geometrical fibre arrangement) takes into
account all this, and, as a result, is able to shift the front slope to bigger probing distances (4–8 mm,
see Figure 1b).

Regarding the achievable sensitivity in the front slope, differential gain of the photodetectors
have been considered to increase it as much as possible provided that the gain configuration of the
transimpedance amplifier of each photodetector does not compromise the minimum bandwidth
required by the target application. In our particular case, for a turbine with 92 blades spinning
at a maximum of 6000 revolutions per minute (rpm), even at the highest gain configuration the
bandwidth available is enough to receive a signal with clearly identifiable individual blades. Figure 2
shows simulation results of four different gain configurations G1 − G2 of the photodetectors (G1 for
photodetector 1 (PD1) and G2 for photodetector 2 (PD2), both given in dB units with respect to the
reference gain value of 0.75 × 103 V/A) obtained by a custom designed program for bundle behaviour
simulation. As can be clearly observed, the gain increase of the second photodetector with respect to
the first one yields not only a higher ratio of V2 to V1, but also a steeper calibration curve than in the
case of the symmetric configuration (G1 = G2). Therefore, for maximum sensitivity, we have set the
gain configuration to 10–40.
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Figure 2. Simulated calibration curves of the fibre bundle in region I for different gain configurations
(G1 − G2) of the two photodetectors.

2.2. Calibration Curve

Once the measurement system has been defined, the next step consists in calibrating the optical
sensor using as target object a spare blade from the tested turbine rig. The schematic drawing of the
side view of the experimental set-up is shown in Figure 3a.

It is important to point out that, in the laboratory calibration tests, the transmitting fibre did
not face the flat platform of the blade—as would be desirable to maximize the amount of reflected
light gathered back by the bundle—but the very narrow sealing lands of the blade (around 0.7 mm
in width) to simulate the real turbine configuration that the sensor head met when installed in the
turbine rig. Figure 3b shows a close-up picture of the sensor head during the calibration process.
Please note that even perfectly facing the transmitting fibre to the narrow sealing lands yielded a very
low reflected signal that required setting the optical power to maximum value, in this case 50 mW.
Therefore, the setting of 50 mW laser power and 10–40 gain configuration of the photodetectors always
resulted in light intensity levels at each of the photodetectors below the saturation value, and the
created voltage values spanned over the full voltage scale (0–5 V), ensuring a good use of the 16-bit
resolution of the A/D converter. The large working distance set by the front slope of the fibre bundle
also contributed to the low coupling efficiency of reflected light into the fibre bundle. Both simulated
and measured calibration curves are shown in Figure 3c.

It is worth mentioning the great similarity between both curves in the distance range from 2 to
4 mm with very small differences between them, and with a clear linear increase of the rate of the
voltage quotient with distance. The best linear fit (shown in the inset of Figure 3c) to the experimental
data has a Pearson’s correlation of 0.997 in the distance range from 2.8 mm to 4 mm with a sensitivity
slope of 61.73 mm−1. Within this distance range of interest, Table 1 shows, for different values of V2/V1

ranging between 30 and 100, the difference between the experimentally measured distance value and
the corresponding value obtained from the simulation. The result is given as a percentage of the
corresponding experimental value. The discrepancy between experiment and simulation never exceeds
1.5% (at V2/V1 = 34.1). It is also interesting to draw attention to the shift to lower distance values
occurring in the front slope when moving from an object with specular reflection (target presented in
Figure 1) to another one with diffuse reflection (blade shown in Figure 3). This can be easily understood
with simple geometric and ray tracing models [32].
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Figure 3. Laboratory calibration of a typical blade from the turbine rig: (a) schematic representation
of the optical probe tip relative to the spare blade; (b) close-up picture of fibre bundle and blade; and
(c) simulated and measured calibration curves. The inset shows the linear fit to the experimental data
in the region of interest (2.8 mm < z < 4 mm).

Table 1. Comparison of measured and simulated data in the distance region of interest.

V2/V1 dsim, mm dexp, mm Difference, %

30.329 2.778 2.815 1.31
45.930 3.055 3.090 1.13
59.443 3.289 3.290 0.11
75.959 3.543 3.540 0.83
90.551 3.831 3.790 1.08
99.171 3.992 3.990 0.06

2.3. Experimental Program

The performance of the optical sensor was tested in the transonic wind tunnel at CTA.
The rotating-turbine-test facility is a continuous transonic-flow-test bed with an atmospheric
inlet/outlet. The level of pressure/vacuum, the temperature and the mass flow are individually
regulated, so that the rig is operated to meet realistic Mach and Reynolds numbers allowing to transfer
the results to real gas turbines.

The supply and exit air conditions in the test section are achieved by two centrifugal compressor
and vacuum groups, which are, respectively, run by electrical motors of 3.7 MW and 5.0 MW.
Two vacuum pumps are used to achieve altitude conditions of sub-atmospheric pressure down
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to 12.5 kPa. A two-stage compressor group is used to control the pressure ratio and flow temperature
and thus the Mach number of the flow within the circuit. The top mass flow rate achievable is 18 kg/s,
with a maximum supply pressure up to 450 kPa, and a temperature regulation from atmospheric up to
450 K. Prior to entering the turbine, the air flows through a settling chamber that removes any swirl
and axial velocity non-uniformity. The turbine power is transmitted by a single shaft (up to 7800 rpm)
to a dynamometer. The test section has a section of 1 m. A schematic diagram of the facility is shown
in Figure 4.

Figure 4. Schematic diagram of the rotating-turbine-test facility at CTA.

The rig corresponds to a single stage of a turbine rig with 92 blades. As already commented
previously, the measurement requirements were really demanding because, for the extremely narrow
sealing lands of the blades that defined the reflecting surface, the distance of about 3.2 mm from where
the end of the probe was finally set, to the reflecting surface caused a low reflected signal level at
the receiving rings to happen. An additional challenge that posed the coupling of the optical probe
to the casing of the turbine was that the optical probe was not perfectly faced to the sealing lands
when the turbine was at rest (0 rpm), so that the reflected signal was too low to get reliable calibration
data that would allow building the calibration curve for the actual measurements. For that reason,
the laboratory calibration curve was accepted as valid for the turbine rig measurements since it was
carried out with a spare blade of the same turbine stage under test. As shown in the Results Section,
the good news is that, at different workload conditions of the turbine rig, the optical probe was able to
receive enough reflected signal for reliable tip clearance measurements. This improvement in the level
of reflected signal was a consequence of the several vibrations that tend to suffer rotor blades causing
them not only to deform but also to get a better alignment of the reflecting surface with respect to the
optical probe.

Figure 5 shows a schematic representation of the final arrangement of the bundle embedded in
the casing of the turbine. The optical probe was attached to a micrometer-driven adapter that was
inserted in a radial hole of the casing and fixed to it with four screws. The micrometer allowed to set a
certain distance—3.2 mm in this particular case—between the probe tip and the sealing lands of one of
the blades to set the operation point at the middle of the linear region shown in Figure 3c. For this
particular configuration, the optical probe tip resulted to be within the abradable layer. The abradable
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is a soft protective wear material that is mounted on the casing wall aligned with the blades to create a
good sealing, and avoid gas leakage and improve combustion efficiency. As TC values are commonly
referenced to the abradable coating, below, we consider this case. Therefore, according to turbine
design blueprints, the TC is obtained subtracting 2.74 mm to the actual sensor measurement (distance
from probe tip to reflecting surface):

TC(mm) = sensor measurement (mm) − 2.74 (1)

abradable

fibre bundlereflecting surfacecasing

rotation

Figure 5. Schematic representation of the optical probe (not to scale) installed in the turbine rig at CTA.

Figure 6 shows a schematic illustration of the optical probe configuration within the casing.
The optical signal of each of the two photodetectors is acquired with 16-bit resolution at a sampling
rate of 2 MS/s, which results in a detailed map of all the blades with unambiguous identification
of each of them, extending further the information provided by classical electromechanical systems
that limit the TC information to the longest blade, and with a much lower data refresh frequency.
The data acquisition and processing was done with a custom-made LabVIEW program that allows
online and offline working modes. In online mode, the TC values of the different blades are monitored
live at a configurable refresh rate, whereas, in offline mode, the data are stored in a hard disk for later
processing. The latter mode is particularly interesting for long acquisition times where the amount of
data created is huge and a thorough data analysis is required.

Figure 6. Optical probe placement within the casing.
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3. Results and Discussion

All tests were carried out at CTA’s facilities where different Working Points (WP) of the engine
were repeated during several days. Each engine revolution was identified both with a blade of a
particular reflection pattern and a stable non-vibrating Once per Revolution (OPR) signal obtained
from the shaft. The raw data (V2/V1) from the optical sensor were converted to distance value using
the linear calibration curve f (V2/V1) obtained in the laboratory calibration tests (see Section 2.2).
As an example, Figure 7 shows the sensor response of 13 blades after applying the calibration curve
without any type of data post-processing. The first feature worth observing is the sharp minima that
define the gap between consecutive blades.

Figure 7. Typical signal response V2/V1 after applying the corresponding calibration curve. The blade
highlighted in red refers to the blade with a higher reflection pattern. The dashed vertical lines
correspond to local minima defining the limit between adjacent blades.

It is also worth mentioning that the signal pattern corresponding to each blade was highly
reproducible over time, regardless of the operation point of the engine. The response curve of each
of the 92 blades followed a certain pattern that might be classified according to one of the three
types presented in Figure 8 (curves shown on the left-hand side of Figure 8). To give a consistent
definition of the TC, for each blade, we started selecting a variable percentage (from 0% to 100%) of
the corresponding dataset around the central data sample, and analyzed the evolution followed by
the average value. The curves on the right-hand side of Figure 8 show the variability of the given TC
definition for each of the three blade types. It comes out that, regardless of the type of response curve
considered, the average value variation always was below a tenth of a millimetre. Therefore, it was
decided to define the TC of each blade as the average value of the corresponding dataset at the 50%
selection level around the central sample.

With the given definition of TC in mind, Figure 9 shows the TC map corresponding to a certain
engine WP at 4258 rpm. It is worth noticing that the TC of every blade is different. Of particular
importance are blades number 16, 38, 43, 51 and 69 as their TC values suggest that they are close to the
abradable surface and they should be monitored to keep them under control. Regarding the stability
of the test, the vertical error bars represent the variability of the TC values over time. Even in the
worst case (blade number 85), the TC variability expressed as a single standard deviation value is
approximately of 20μm within the same WP, and the average value over the 92 blades is below 5μm.
All this suggests that we are dealing with stable TC experiments.
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Figure 8. (Left) Types of blade signals found in the 92 blade turbine rig after applying the calibration
curve; and (Right) evolution of TC definition with the selected fraction of blade data for each blade type.

Figure 9. TC values of each blade at 4258 rpm with error bars that account for the TC standard deviation
over 1100 revolutions.

The TC maps of all blades corresponding to three different WPs in ascending order of rpm are
shown in the polar plot of Figure 10. Each TC map is represented as a curve of a particular color. On the
other hand, each blade is expressed as a single point where the polar angle θi defines the blade number
i—θi = 360◦/92 ∗ i for i ∈ [1, 92]—and the corresponding TC value is given by the radial distance.
Observe that TC values of individual blades decrease as engine rotational speed increases, a fact that
can be attributed to the centrifugal and thermal loads acting on static and rotating components of
the turbine. It is also interesting to point out that blades 43 and 51 still continue to be decisive in
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determining the TC values of the turbine, in the same way as in the case of the WP at 4258 rpm shown
in Figure 9. If we define the turbine TC as the minimum blade TC among all blades, as expected,
the TC decreases from 0.002 mm to −0.005 mm when going from WP 1 (5466 rpm) to WP 3 (6005 rpm).

Figure 10. TC values of each of the 92 blades at three different WPs.

Another interesting point to consider is the analysis of the TC evolution when the turbine rpms
ramp up before arriving at the first WP. Blue data points shown in Figure 11 are representative of this
case. Contrary to what is expected for the general case in which the TC diminishes when rotor speed
increases (as already shown in Figure 10), during the warming-up lapse of time, the clearance increases
with rpm values. This might be explained on the basis that, when speed increases, the centrifugal load
of the rotor as well as the rapid heating of the blades cause the rotating elements to grow outwards,
but the case expands at a faster rate during this process.

Figure 11. TC behaviour before (blue data points) and after (red data points) setting the first WP.
The red data points refer to WPs 1, 2 and 3 shown in Figure 10: WP 1 → 5466 rpm; WP 2 → 5750 rpm;
and WP 3 → 6005 rpm.

This observation brings us to conclude that temperature ramping occurring in the wind tunnel
before the first operation point is reached might be associated with the observed TC increase with
rotational speed. In addition, the blade-case rubbing experienced during the whole warming-up
process (negative TC values of blue data points in Figure 11) may be justified if we consider that
the centrifugal load on the blades applies from the first moment before the casing starts to expand.
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However, once the operation temperature has been reached and the casing has expanded to its
equilibrium value (first red data point in Figure 11: WP 1 → 5466 rpm), the clearance starts to decrease
with rotational speed as expected.

4. Conclusions

A highly sensitive optical fibre bundle-based sensor prototype was designed and fabricated based
on a custom simulation program developed within the research group. The manufactured optical
sensor probe allowed measuring TC values in a turbine rig of an aircraft engine at the wind tunnel
of the CTA. The optical measurements rely on collecting reflected light from each of the blades using
two concentrically arranged rings of optical fibres and converting the gathered light intensities into
voltage levels that are eventually divided with respect to each other to get rid of the disturbances
(light intensity fluctuations, reflectivity variations, etc.) and retain a pure function of the distance from
the fibre bundle tip to each blade. This curve has two characteristic working regions of interest with
linear behaviour, the so-called front slope and back slope. The added value of the present work with
respect to previous works resides in shifting the highly sensitive front slope curve to longer distance
values to meet the distance security specifications set for the experimental program of the turbine,
a fact that enables establishing the working point around the central part of this sharply sloped curve
section instead of using the less sensitive back slope section of the response function. Additionally,
the sensitivity has been further improved using differential gain of the two photodetectors associated to
their corresponding receiving fibre rings. Altogether, the sensitivity of the optical sensor is 61.73 mm−1,
in contrast to the value of −0.0733 mm−1 published by other authors [33]. It is also worth mentioning
that the optical sensor has proved to be capable of measuring the TC in very unfavourable conditions
set by the specific blade and casing design that prevented the sensor from receiving an appreciable level
of reflected signal. In such demanding scenario, the calibration curve used for the actual measurements
was obtained in the laboratory using a spare blade of the turbine as it was impossible to get reliable
calibration data from the turbine at rest. The results derived from the experimental program carried
out on a turbine rig at CTA’s facilities show a high resolution and highly sensitive measurement tool
for inspection of individual blades that provides engineers with valuable information on turbine
performance. The results of the optical fibre-based sensor presented in this paper opens up the
possibility of widening its applicability to other fields of interest.
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Packaged Multi-Core Fiber Interferometer for
High-Temperature Sensing
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Ocáriz, Joseba Zubia , Jose Enrique Antonio-López, Axel Schülzgen , Fellow, OSA, Rodrigo Amezcua-Correa,

and Joel Villatoro

Abstract—A small size and compactly packaged optical sensor
for high-temperature measurements is reported. The sensor con-
sists of a short piece of multi-core fiber (MCF) spliced to the distal
end of a single-mode fiber. The packaging consists of an inner ce-
ramic shield that prevents bending, curvature, and vibration effects
on the MCF, and an outer metallic shield that protects the device
against impacts. The interaction between specific supermodes ex-
cited in the MCF creates an interference pattern that shifts linearly
with the temperature. The sensor was calibrated in the range from
200 to 1000 °C and a K-type thermocouple was used as a reference.
The average temperature sensitivity was found to be 24.8 pm/°C
with a response time of 15 s. Our results indicate that our MCF
interferometric thermometer is as accurate as an electronic one
with the advantage that it is passive. Therefore, we believe that the
proposed sensor is suitable for industrial applications.

Index Terms—High temperature measurement, mode interfer-
ometers, multi-core fibers, optical sensors, optical thermometers,
supermodes.

I. INTRODUCTION

IN THE industrial sector, there are several environments and
applications where high temperature is present. For example,

in engine tests, metallurgical processes, in gas and oil facilities,
etc. In such harsh environments, temperature can reach very
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high values (up to 1000 °C, and even higher). Thus, accurate
measurement of temperature is crucial.

Currently, the technology commonly accepted and well es-
tablished for high temperature measurement is based on ther-
mocouples [1]–[5]. However, due to their electronic nature,
thermocouples may not be a viable solution for applications
or environments where electromagnetic or microwave radiation
is present. In such cases, optical fiber thermometers are a good
alternative since they are totally passive.

Optical fibers exhibit an intrinsic sensitivity to tempera-
ture, which makes them ideal for temperature sensing. In fact,
throughout the years, many different optical fiber temperature
sensors have been demonstrated [6]–[10]. Most optical fiber
thermometers operate in a limited temperature range. However,
the use of specialty optical fibers and innovative approaches
and techniques have allowed expanding the temperature range
up to 1000 °C. Thus, optical fiber thermometers may reach the
performance and capabilities of thermocouples and be a real
alternative for high temperature sensing, hence for industrial
applications.

The most common approach for high temperature sensing
consists of using regenerated fiber Bragg gratings (rFBGs), also
called chemical composition gratings [11]–[14]. The operating
principle of such sensors is based on the thermo-optic effect that
modifies the period of the grating. rFBG-based sensors have
temperature sensitivity of around 10 pm/°C, and their response
time is of several seconds [15]–[18]. The disadvantage of rF-
BGs sensors is their high cost, as their fabrication and interroga-
tion require expensive setups, lasers, and picometer-resolution
detectors.

Fabry-Perot interferometry has been widely studied for high
temperature sensing as well. In this technique, the sensitive ele-
ment is a cavity that can be fabricated from temperature-resistant
materials such as pure glass or sapphire [19]–[24]. The ad-
vantages of the Fabry-Perot interferometers (FPI) include high
sensitivity and small size. However, their performance is di-
rectly linked to the uniformity of the cavity, which is not easy
to achieve.

Other alternatives for high temperature sensing are based on
long period gratings (LPGs) [25]–[27] and different types of in-
terferometers [28]–[31]. The drawback of LPGs is their sensitiv-
ity to the surrounding medium, which imposes proper isolation
to measure temperature only. On the other hand, most interfer-
ometers provide relative temperature measurements, as they are

0733-8724 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Picture of the cross-section of the MCF used to build the temperature
sensor. (b) Schematic representation of the sensor architecture. Lf is the length
of the MCF. The cleaved end reflects less than the 4% of the emitted light.

codified in the shift of interference patterns. As a result, LPG
-and interferometer- based high temperature sensors have not
reached the market yet.

As an alternative to the existing optical fiber thermometers
for high temperature, in this work, we propose a sensor that may
overcome the main limitations and drawbacks mentioned above.
Our device consists of a short segment of MCF spliced to the
distal end of a typical SMF. The fabrication of our device is
easy, reproducible, and inexpensive. The temperature sensitive
region of our device is the segment of MCF that can withstand
high temperatures (up to 1000 °C) as demonstrated in [32]–[34].
In our case, the sensor operates in reflection mode. In addition,
we have packaged our device with a double shielding (ceramic
and metallic). The packaging eliminates the effects of strain,
bending, curvature, or vibrations on the MCF interferometer as
it is sensitive to such parameters [35]–[38].

The reflection spectrum of our device is sinusoidal and shifts
when temperature changes. The interference pattern of our MCF
sensor is easily traceable, thus, it is easy to establish a relation-
ship between the absolute maximum of the interference pattern
and temperature. With our packaged MCF sensor, temperatures
up to 1000 °C, response times at different temperature gradi-
ents and its robustness against vibrations were measured. For
comparison, similar experiments were also carried out with a
bare MCF interferometer. The results suggest that the proposed
packaging does not compromise the temperature sensitivity of
our device. In addition, our packaged sensor is as accurate as
a K-type thermocouple, which is widely used and accepted as
reference in the industry.

II. OPERATION PRINCIPLE, DESIGN AND FABRICATION

In the device reported here, the MCF is the key element. The
MCF, fabricated at the University of Central Florida (Orlando,
USA), has a particular structure based on seven identical hexago-
nal cores. Six of them are concentrically arranged in a ring-like
shape around a central one. The mean diameter and distance
among adjacent axes is 9.2 μm and 11 μm, respectively, see
Fig. 1(a). All the cores are made of germanium doped silica glass
and are inlayed in pure silica cladding. The numerical aperture
(NA) of each core is 0.14 at 1550 nm that is the same NA of a
typical SMF. The outer diameter of the fiber is 130 μm.

A scheme of the MCF interferometer is shown in Fig. 1(b).
The device consists of a short MCF segment fusion spliced to a

Fig. 2. Simulations of the 3D and 2D profiles of the two supermodes excited
in the MCF. In (a) the supermode SP01 is shown, and in (b) the supermode SP02.
The inset 2D profiles have an area of 60 × 60 μm2.

conventional SMF. A fiber fusion splicer (Fujikura 100 P+) was
used to fabricate the device. Such a machine aligns precisely the
single core of the SMF with the central core of the MCF. Due to
that, the insertion loss of supermode interferometers is minimal
(typically 0.1 dB or below) as reported in [35].

The MCF described above is called strongly-coupled multi-
core fiber, which means its cores are close enough to each other
to allow interaction among them. The modes supported by such
an MCF are called supermodes [39], [40], which are the linear
combination of individual LP modes of each core of the MCF.
In our device, schematically shown in Fig. 1(b), the excitation of
the MCF is with the LP01 (fundamental) mode of the SMF. This,
combined with the axial symmetry of the SMF-MCF structure,
causes only two specific supermodes to be excited in the MCF.
The profiles of such supermodes are shown in Fig. 2.

The effective refractive index of each supermode is different,
thus, a phase difference between them can be expected as they
propagate through the length of the MCF (Lf). The phase differ-
ence (Δϕ) will be Δϕ = 4πΔnLf /λ, where Δn = n2-n1, with
n1 and n2 being the indices of the supermodes SP01 and SP02,
respectively, and λ the wavelength of the light source. Accord-
ing to our simulations, the value of Δn was 7.8 × 10-4 at λ =
1545 nm. The phase difference will cause a coupling between
both supermodes, which will generate a sequence of maximum
and minimum values in the reflection spectrum of our MCF
interferometer. When the reflection reaches a maximum value
to a given wavelength, the interference is constructive, which
means that the two supermodes are in phase and, therefore, their
coupled power is maximum for that wavelength. The maximum
values appear when the phase difference equals an integer mul-
tiple of 2π (m2π, where m = 1,2,3…). Thus, by considering that
the reflected light travels twice the length of the MCF (2Lf), the
maxima are located at the following wavelengths:

λm = 2LfΔn/m. (1)

In general, in an optical fiber, the thermo-optic effect pre-
vails over the thermal expansion effect. Thus, for temperature
measurements, only the changes in the refractive index of the
fiber core (or cores) are considered [28], [32]. In our case, such
changes induce a variation in the effective indices of the inter-
fering supermodes, and hence, a shift in the interference pattern.
Therefore, by monitoring λm, the temperature around the MCF
can be known. It is important to point out that with our MCF
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Fig. 3. Interference pattern obtained by simulation for a 2.54 cm-long MCF
interferometer (dashed line) and with the fabricated device (solid line).

interferometer the measurement of temperature is absolute, as it
will be codified in wavelength.

In order to measure the widest temperature range possible,
the length of the MCF segment is crucial. On the one hand, the
displacement of λm, which shifts around 30 pm/°C without any
packaging [32], must not overlap with the maximum located at
λm+1 or λm-1. On the other hand, λm must be within the wave-
length range of the sensor interrogator, which in our case was
between 1510 and 1595 nm, at any temperature of the measuring
range. Thus, to achieve the aforementioned requirements, two
different simulation programs (Matlab MathWorks and Photon-
Design) were used in which Eq. (1) was implemented with the
parameters of the MCF and the desired initial position of λm

established to obtain the MCF length. It was calculated to be
2.545 cm. However, due to the difficulty for obtaining an MCF
segment of that precision with a conventional cleaver, we fabri-
cated a device with Lf = 2.54 cm with an error of approximately
200 μm.

Fig. 3 shows the spectra of the designed and fabricated inter-
ferometers at room temperature. For the calculated MCF length,
the difference between the maxima and minima (visibility) is of
0.9. The difference between the simulated and observed pattern
is due to the impossibility of reproducing the ideal conditions
of the simulation in real-life conditions, such as the fact that the
simulation programs use a flat spectrum light source whereas
the manufactured sensor uses a Gaussian-like emission light
source. It can be noted that the peak at which simulated and
manufactured sensor´s patterns match is located at 1520 nm. As
temperature increases, such a peak is expected to shift to longer
wavelengths [32]. Hence, the peak located at 1520 nm (λm) was
selected to be monitored and correlated with temperature.

In order to make the MCF interferometer sensitive exclusively
to temperature, it was packaged as follows: The bare SMF-MCF
structure, whose total length was approximately 15 cm, was pro-
tected with a double shielding. The first layer was a double bore
thin ceramic tube (Omega Engineering TRX-005132-6). Each

Fig. 4. Picture of the manufactured MCF sensor after being exposed to
1000 °C. Notice that the metallic tube has a blackening gradient that indicates
the different temperatures on the tube. The position and length (2.54 cm) of the
MCF segment are indicated. The gap between the tip of the metallic tube and
the stub of MCF is long enough to avoid a Fabry-Perot cavity.

bore had a diameter of 127 μm ± 5%. In this manner, the MCF
and part of the SMF were kept straight. Thus, bending effects
on the interference pattern of the MCF were eliminated. The
second layer was a stainless steel tube (Omega Engineering SS-
116-6CLOSED) that covered the ceramic layer and provided
physical protection against possible impact or shocks. A pho-
tograph of the final sensor prototype is shown in Fig. 4. As it
can be noticed, the sensitive part of the sensor is only 2.54 cm
long and located at the edge of the shielding. Thus, the sensor
could be just about 3 cm long. The reason for the extra 12 cm
is to protect the SMF due to the configuration of the furnace.
The latter had a circular hole (slightly bigger than the sensor in
diameter) that only in the deepest part reached temperatures of
1000 °C. This causes that the packaged sensor has to be verti-
cally inserted completely. As it can be seen in the blackening
gradient in Fig. 4, the area where the MCF is located is the area
that has been exposed to the highest temperatures.

The interrogation of our MCF interferometer consisted of a
broadband light source centered at 1550 nm, with Gaussian-
like emission, a 50:50 coupler and a small spectrum analyser
(I-MON512-USB, Ibsen Photonics). The data processing was
made with an ad hoc program developed in Matlab MathWorks.
The data processing approach was as follows: Raw spectra pro-
vided by the spectrum analyser were collected at different tem-
peratures; then, the spectra were averaged and normalized. After
that, a Savitzky-Golay filter was applied to every spectra in order
to smooth them. Finally, the highest peak (λm), or absolute max-
imum of the interference pattern, was found. The wavelength at
which the maximum was located was correlated with temper-
ature, which was measured with a K-type thermocouple used
for temperature calibration measurements (Herten, K-type, SN
TCP187).

III. RESULTS AND DISCUSSION

The tests were performed at the Aeronautical Technologies
Centre (CTA) facilities located in the Alava Technology Park
(Spain). The heating/cooling processes were carried out with a
programmable high temperature furnace (Isotech Pegasus Plus
1200). Before running the calibration measurements, a curing
process was carried out to eliminate as much as possible the
hysteresis effect of the sensor [28]. The calibration was per-
formed repeatedly in the range from 200 to 1000 °C, in steps of
50 °C that lasted 70 minutes each. Thus, overall, each calibration
lasted 100 hours approximately. The sampling rate was 1 Hz.
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Fig. 5. (a) Spectra observed in the 200-1000 °C temperature range. (b) Time evolution of our packaged MCF sensor compared to that of the thermocouple.
Colored arrows indicate the corresponding vertical axe of each curve.

Fig. 6. Calibration curve of the packaged MCF sensor (solid dots, solid line)
and 2.54 cm of bare MCF (triangles, dashed line). Colored arrows indicate the
corresponding axe of each curve.

Fig. 5(a) shows the reflection spectra of our packaged MCF
interferometer at different temperatures. It can be seen that the
shift for the thermal range under study was around 20 nm. The
position of the maximum peak as a function of time is shown in
Fig. 5(b). For comparison, the time evolution of the temperature
measurement provided by the thermocouple is also shown. From
the monitored λm and temperature data, the calibration curve
of the packaged MCF sensor was obtained, which is shown in
Fig. 6. In order to evaluate the effect of the shielding on the tem-
perature sensitivity of the packaged MCF sensor, the calibration
curve obtained from a 2.54 cm-long bare MCF device that was
subjected to an identical calibration process as the packaged
MCF sensor is also shown in Fig. 6.

For the packaged MCF sensor, the Pearson squared correlation
coefficient was found to be R2 = 0.9856 and the uncertainty of
σ2 = 0.611 nm2 [41]. The correlation between temperature (in
°C) and λm (in nm) that was obtained from the experiments was:

T = 39.929λm − 60525. (2)

This indicates that the temperature sensitivity of the packaged
MCF sensor was 24.8 pm/°C. From the calibration curve of the
2.54 cm-long bare MCF sensor shown in Fig. 6, we obtained a
temperature sensitivity of 31.47 pm/°C. The latter agrees with
that (29 pm/°C) of the MCF thermometer reported in [32] in the
range between 100°C and 300°C, which was fabricated with bare
MCF as well. Therefore, the packaging proposed here does not
compromise the temperature sensitivity of the device. As a mat-
ter of fact, the main purpose of protecting the SMF and the MCF
with a close-fitting ceramic tube was to keep the fibers tightly
in the axial direction so that the measurements were strictly re-
lated to temperature and not affected by undesired effects of
bending or vibrations, something that cannot be achieved when
unprotected MCF is used. This may be the cause of the perfor-
mance differences between the packaged MCF sensor and the
bare MCF shown in in Fig. 6 and the one reported in [32] where
non-linear response to temperature was observed.

The response and recovery times of our packaged MCF tem-
perature sensor and those of the device built with bare MCF were
also evaluated as these are important parameters to be consid-
ered. The rising and falling times were measured several times
at different temperature gradients. The measurements were car-
ried out for 2 different thermal loops: from 25 °C to 550 °C, and
back to 25 °C, and from 25 °C to 900 °C, and back to 25 °C.
In each case, the response time of both optical devices and that
of the K-type thermocouple were recorded. The response time
(τ63%), or time constant, is defined as the time required to reach
63.2% of an instantaneous change in temperature [42].

The results for the 25 °C–550 °C–25 °C loop are shown in
Fig. 7. The results shown in Fig. 7 indicate that the shift of
λm of the bare MCF device was more than expected according
to the sensitivity obtained from its calibration curve shown in
Fig. 6. This means that the shift of λm may not be strictly due to
temperature as the MCF segment was also exposed to bending
and/or vibrations induced by the furnace. The tracked peak of
the packaged MCF sensor shifts 10.1 nm and shows a smoother
and less noisy curve compared to that of the bare MCF. This shift
agrees with the combination of the sensitivity of the sensor in
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Fig. 7. Response times for (a) heating from 25 °C to 550 °C and for (b) cooling from 550 °C to 25 °C of a packaged and bare MCF sensors. For comparison,
the response and recovering times of a commercial thermocouple are shown. Notice the non-uniform shape of the curves of the bare MCF compared to that of the
packaged MCF. Colored arrows indicate the corresponding vertical axe of each curve. The black asterisk (∗) in each curve represents the τ63% of each sensor.

Fig. 8. Heating and cooling response times of a packaged MCF sensor for
the 25 °C-900 °C-25 °C loop. Colored arrows indicate the corresponding axe
of each curve. The black asterisk (∗) in each curve represents the τ63% of each
sensor.

TABLE I
RESPONSE TIMES (IN S) OF THE PACKAGED MCF SENSOR AND

THE THERMOCOUPLE

the 200 °C–1000 °C calibrated range and the lower temperature
sensitivity of the MCF below 100 °C as reported in [32].

For the results of the 25 °C-900 °C-25 °C loop shown in
Fig. 8 only the curves of the packaged MCF sensor and the
thermocouple are presented, since only the performance of these
devices can be compared as their results are strictly related to
temperature.

Fig. 9. Results of the effect of the vibrations in the measurements of λm at
room temperature (25 °C). The biggest deviation (8.49 pm) happened at 650 Hz,
where a resonance due to the 10 cm cantilever configuration took place.

The results shown in Fig. 7 and Fig. 8 are summarised in
Table I. It can be noted that in all the cases, our packaged
MCF temperature sensor responded slower than the thermocou-
ple used as a reference. The results regarding the bare MCF are
not shown in the table due to the fact that they are not related
only to temperature, and therefore, not suitable for comparison.

In order to evaluate the effectiveness of the packaging in terms
of protection against vibrations, the packaged MCF sensor was
placed in a cantilever configuration and attached to a piezoelec-
tric actuator (STr-35, Piezomechanik GmbH) whose maximum
vibration amplitude was 6 μm. The length of the cantilever was
10 cm. The sensor was then subjected to vibrations at different
frequencies. In all the cases, the voltage applied to the actuator
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was the same (10 Vpp), and the measurements were carried out
at room temperature (25 °C). The sensor was interrogated with
the spectrum analyser mentioned above (I-MON512-USB, Ib-
sen Photonics) and the data processing approach was as follows:
in two consecutive days 17000 raw spectra for each frequency
were acquired and then, the maximum of each spectra (λm) was
identified. These values were averaged for each point along with
their standard deviation.

In Fig. 9, it can be seen that vibrations introduce an average
noise of 2.58 pm in the measurement of λm. This turns into an
uncertainty of 0.1 °C according to Eq. (2). Considering that the
noise for the case of 0 Hz is intrinsic to the measurement system
and not caused by vibrations, this means our MCF sensor is
robust and practically immune to vibrations in a wide frequency
range.

IV. CONCLUSIONS

In this work, we have reported on a sensitive and compactly
packaged fiber optic temperature sensor that is robust against vi-
brations. The sensor is based on an MCF with strongly coupled
cores. The sensor consists of a short segment of MCF (2.54 cm)
spliced to a commonly used in telecommunications SMF. The
fabrication of the device is simple, fast, inexpensive, and repro-
ducible. The packaging of the sensor was conceived to make
the MCF exclusively sensitive to temperature, hence indepen-
dent to other parameters that may be present during temperature
measurements, as for example, strain, bending, curvature, or
vibrations.

The sensitive part of our sensor is the section of MCF. Tem-
perature changes the effective indices of two supermodes that
are excited in the MCF, causing a detectable shift in the interfer-
ence pattern. The calibration of our MCF sensor was performed
in the range from 200 to 1000 °C and a K-type thermocouple
widely used and accepted in the conservative aeronautical indus-
try was used as a reference. Results show that the packaged MCF
sensor has a sensitivity of 24.8 pm/°C, high robustness against
vibrations and a response time of 15 s. Thus, it may represent
an attractive solution in several applications that require high
temperature sensing, high resolution and sensitivity, small di-
mensions, and electromagnetic immunity. Some examples may
include sensing in aeronautical engines, gas and oil facilities, etc.

The packaged MCF sensor can be customised for the afore-
mentioned and other applications. In addition, its interrogation
is carried out with commercially available sensor interrogators.
Therefore, we believe that this prototype represents a substan-
tial step forward in the direction of a commercially appealing
optical temperature sensor.
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For a long time, accelerometers have been used to detect and measure vibrations with high sensitivity and preci-
sion. Thus, they have a wide variety of applications. For instance, in the heavy industry, accelerometers are used 
to monitor low-frequency vibrations in large rotating machineries or in oil  pipes1, or in structural health moni-
toring, to supervise the condition of pillars, bridges, etc.2. They are also used in biomedicine and  biomechanics3, 
and even in gravitational wave  detectors4. Accelerometers are one of the key elements in seismology as  well5, 
where they are used for the detection and monitoring of ground motions caused by earthquakes, volcanic erup-
tions, explosions, landslides, tsunamis, avalanches, etc. In these cases, accelerometers with high sensitivity for 
low amplitude vibrations are required.

The detection of vibrations with low frequencies is a very challenging field. For example, the frequency 
range of ground motions caused by natural events or explosions is between 0.1 and 20 Hz6,7. For the case of 
tsunamis, such frequency range is even narrower, from 0.1 to 1 Hz8. Moreover, it is important to identify the 
ground motions accurately from the surrounding noise. Therefore, accelerometers for such applications must 
be highly sensitive and must be capable of measuring acceleration in a wide range. Additional requirements 
for accelerometers include simple operation, compactness, robustness, capability to operate in hostile or harsh 
environments and multi-point  sensing9,10. Finally, as natural events are usually unpredictable and spaced in 
 time11, such accelerometers must be reliable, long-lasting, and should require minimum or no maintenance.

So far, the most spread accelerometers for low frequencies are based on piezoelectric  components12, MEMS 
 membranes13 or  pendulums14 that move with vibrations, or have electrochemical  nature15. Moreover, frequently, 
such operating principles are combined to enhance their overall  performance7. The technology of electronic 
accelerometers is very mature and cost-effective. However, the harsh environments in which these accelerometers 
are commonly deployed, such as seabed or boreholes, may affect the lifetime of their elements. For such applica-
tions, accelerometers based on optical fibers are a good alternative. Fiber-based accelerometers have important 
advantages that include small size, electromagnetic immunity, as they do not require any electric component to 
operate, high resolution, remote and long-distance operation capabilities.
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Among optical fiber accelerometers, those based on interferometry and fiber Bragg gratings (FBGs) are the 
most advanced configurations. Optical fiber interferometric accelerometers feature larger dynamic range, wider 
frequency response band and higher sensitivity compared to some electronic  accelerometers16–18. In fact, optical 
fiber interferometric seismometers capable of detecting vibrations of few mHz have been  reported19,20. However, 
they are bulky and their interrogation tends to be complex. FBG-based optical accelerometers are more compact. 
Moreover, they provide high sensitivity, large dynamic range and multiplexing  ability21; and may operate in 
frequency response bands below 1 Hz22,23. To reach such performance, they require sophisticated interrogation 
systems that entail picometer-resolution interrogators. In addition, they require elaborated packaging. As a 
consequence, FBG accelerometers are expensive.

In recent years, multicore fibers (MCFs) have drawn much attention as multipurpose sensing  elements24. 
As accelerometers, strongly coupled MCFs have proved to have much  potential25. Moreover, their capability to 
withstand and operate under elevated strain and temperature conditions has been reported as  well26,27, which is 
a demanded characteristic for harsh environments or outdoors implementations.

In this work, we report on a highly sensitive all-fiber optical accelerometer suitable for sensing vibrations 
of extremely low frequencies (down to 1 MHz) and low amplitudes. The device is compact and consists of two 
segments of MCF sandwiched between standard single mode fiber. The MCF segments have different lengths 
and are rotated 180° with respect to each other. Due to its architecture, the reflection spectrum of the device 
exhibits a narrow peak that shrinks when it is subjected to vibrations. To test the device, it was subjected to 
vibrations from 1 mHz to 30 Hz and accelerations from 0.76 to 29.64 mg. The performance of our device was 
compared and calibrated with a commercial electronic accelerometer. We believe that the simplicity and high 
performance of the MCF accelerometer reported here are appealing for several applications; particularly those 
where frequencies are low.

The MCF used to build the accelerometer was fabricated at the University of Central Florida (Orlando, USA). 
It is an asymmetric strongly coupled MCF consisting of three cores, where one of the cores is located at the 
geometrical center of the fiber, whereas the other two are surrounding it and arranged adjacently in a V-like 
configuration (Fig. 1a). Each core is made of Germanium doped silica, and has a mean diameter of 9 μm and 
a numerical aperture (NA) of 0.14 at 1550 nm to match with that of the SMF. The cores are separated 11.5 μm 
from each other and embedded in a pure silica cladding of 125 μm of diameter.

The architecture of the device is sketched in Fig. 1b. The sensor consists of two cascaded short segments of 
different lengths of MCF rotated 180° with respect to each other and sandwiched between two SMFs, resulting 
in a SMF-MCF1-MCF2-SMF structure. In this structure, the distal SMF has a cleaved end that acts as a low 
reflectivity mirror in order the device to be interrogated in reflection mode. The benefits of such structure will 
be discussed throughout this section.

The theoretical background of strongly coupled MCFs relies on the coupled mode theory (CMT)28–31. Accord-
ing to it, if at least two waveguides are close enough to interact, a cyclical power transfer between the waveguides 
will take place due to the overlapping between the propagating modes through each of them. For conventional 
CMT, it is assumed that the propagating modes under study are  orthogonal32. In the simplest case, if we assume 
two single mode waveguides named 1 and 2 that are so close to each other that the evanescent field from one 
guide penetrates into the other, there is a coupling between the two propagating modes. For waveguide 1, such 
propagation can be expressed as:

where a is the amplitude of the mode in the waveguide indicated in the subindex, β is its corresponding propa-
gation constant and the k parameters are the mutual and self-coupling coefficients between the orthogonal 
propagating modes in the waveguides 1 and 2, respectively, along the z axis where the propagation is taking 
place. Identical expression is valid for the propagation in waveguide 2 by substituting in Eq. (1) the subindex 1 
for 2 and vice versa.

(1)
∂a1

∂z
= −j

(
β1 + k1,1

)
a1 − jk1,2a2

Figure 1.  (a) Cross section of the asymmetric MCF. (b) Schematic layout of the device drawn with Blender 
v2.82 (https ://www.blend er.org/).
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Now let us assume the boundary condition in which the amplitude of the mode a only exists in one of the 
waveguides at z = 0. Thus, by applying the condition a1(0) = 1 and a2(0) = 0, it is possible to calculate the coupled 
power in any of the waveguides at any distance by calculating P(z) = a(z) ∗ a∗(z) , where a∗ refers to the conjugate 
amplitude of the mode. For such case, the normalized coupled power in the waveguide 1 at a certain propagation 
distance z, can be expressed as:

where S =
√

δ2 + k2 , δ = (β1 − β2)/2 and tan(γ ) = k/δ.
In strongly coupled MCFs, each of the cores acts as a waveguide. In such coupled structures, the propagating 

modes are called  supermodes33,34, which are the linear combination of the propagating modes through each of 
the individual waveguides. When such MCFs are excited in their central core by the incoming  LP01 mode from 
the SMF, the two orthogonal supermodes that have power in the central core are coupled. Such supermodes are 
named  SP01 and  SP02, and are specific for each MCF. Moreover, for strongly coupled MCFs as the one employed 
to manufacture this accelerometer, in which all the cores are identical in terms of size and physical properties, 
and the distance between the central and the neighboring cores remains unaltered, this supermode coupling 
provokes the power distribution among all the adjacent cores to be identical. Therefore, particularizing Eq. (2) 
for a stub of the MCF in Fig. 1a, the normalized coupled power in the central core can be expressed as:

where Δn is the difference between the effective refractive indexes of the two propagating coupled supermodes 
and depends on the physical characteristics of the MCF, λ is the excitation wavelength, and z is the distance at 
which the normalized power is being evaluated along the propagation axis. Therefore, the transmitted power 
will vary periodically, with a maximum at certain values of z and a minimum at others.

Now, if the length of MCF is fixed, let us say L, the transmission of an SMF-MCF-SMF structure can also be 
described by particularizing Eq. (3) for z = L. If such a structure is excited with a broadband source, the transmis-
sion spectrum will be periodic in wavelength according to the phase in Eq. (3).

When an MCF is bent, each core suffers different levels of strain, and their respective refractive indices vary 
 accordingly35–39, modifying the effective refractive indices of the two propagating supermodes and therefore, 
the power coupling conditions, which will be reflected in the spectrum. In our case, this effect, added to the 
asymmetrical arrangement of the cores and their orientation, will cause detectable wavelength shift and coupled 
power variations that will have unique characteristics depending on the applied bending direction and amplitude, 
making the MCF ideal for direction-sensitive bending sensors. As demonstrated  in40, when the position of the 
cores and the applied bending are aligned as in Fig. 2, where the cores are orientated in a V-like configuration 
and the MCF is bent upwards and downwards, only wavelength shifts will be noticed in the spectrum; whereas 
if we rotate the fiber 90°, only coupled power variations will be noticed.

As a step forward of such operating principle, the accelerometer proposed in this work consists of two short 
segments of the aforementioned MCF (MCF1 and MCF2) of similar but different lengths (L1 and L2) that are 
cascaded and rotated 180° with respect to each other. For this configuration, Eq. (1) has to be applied to each 
segment. Hence, the normalized output power of the cascade is the product of the individual normalized power 
outputs of each MCF segment:

(2)P1(z) = cos2(Sz) + cos2(γ )sin2(Sz)

(3)P(z) = cos2

(√
3π�n

�
z

)
+ 1

3
sin2

(√
3π�n

�
z

)

Figure 2.  Simulated spectra for the cases in which a segment of MCF is (a) straight, (b) bent upwards and 
(c) bent downwards when the cores are positioned in a V-like configuration. The arrow indicates the bending 
direction and the wavelength shift in each case.
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where the subindexes MCF1 and MCF2 are referred to each short MCF segment of lengths L1 and L2, respectively. 
Thus, for θ =

√
3π�n

/
� , the normalized output power in the central core after passing through the two MCF 

segments is as follows:

If we compare the predominant terms in Eqs. (3) and (5), in Eq. (3) it is a squared cosine whereas in Eq. (5) it 
can be considered a cosine raised to the fourth. Thus, a spectrum derived from Eq. (5) will have narrower peak 
or peaks than one from Eq. (3) for identical MCF lengths. Moreover, the visibility of a spectrum from Eq. (5) 
will be higher as well, as the contribution of the rest of the terms in the equation is less than the contribution of 
the term in Eq. (3), which makes the difference between adjacent maxima and minima to be lower in the latter. 
Hence, the advantages of cascading two MCF segments compared to a single MCF segment are narrower peaks 
in the spectrum and higher visibility, which facilitate tracking any change in it.

By operating in reflection mode, the normalized output power is the product of Eq. (5) by itself due to the 
back-and-forth path of the light through the SMF-MCF1-MCF2-SMF structure; so it can be assumed that the 
predominant term is a cosine raised to the eighth. Thus, this is an easy manner to improve the narrowness and 
visibility of the spectrum even more and the reason why this device operates in such configuration.

Regarding the fiber arrangement, by rotating the two MCF segments 180° with respect to each other, each 
of them will show contrary behavior in terms of wavelength shift and amplitude of the spectrum when they are 
bent due to their direction sensitive nature that has been explained previously. When the position of the cores 
of each MCF segment and the applied vertical bending are aligned as in Fig. 3, where one of the MCF segments 
has its cores oriented in a V-like configuration and the other MCF segment has its cores oriented in an inverted 
V-like configuration (or rotated 180°), only pronounced amplitude variations will take place in the spectrum. In 
order the device to perform as shown in Fig. 3, MCF segments of different lengths are compulsory to avoid any 
ambiguity in the measurement. If the lengths were identical, the spectra of both segments would be overlapped 
in idle state, being that situation the point at which the maximum reflected light power would take place. Each 
spectrum would shift in opposite directions when the structure was bent, but only power decreases would be 
recorded, resulting in the same or similar power readings for opposite bending directions. Such ambiguity or 
loss in sensitivity is avoided by using segments of different lengths, as for this case, the measured power increases 
and decreases accordingly with the applied bending direction compared to the power measurement in idle state. 
Such amplitude variations in the spectrum are proportional to power variations, and therefore, only a PD will be 
necessary to interrogate the device. Such simplicity makes this SMF-MCF1-MCF2-SMF structure appealing as 
a very sensitive and cost-effective accelerometer, as it does not require high performance or ad-hoc equipment 
to operate.

To manufacture a device with such characteristics, some design constraints were required to be considered: 
Its spectrum had to be confined within the interrogation window (from 1510 to 1595 nm, according to our 
interrogation setup) at any time and it must have a unique and well-defined peak with no secondary lobes. Such 
requirements are mandatory to minimize any sensitivity loss when measuring the reflected light power that is 

(4)P(L1, L2) = PMCF1(L1) ∗ PMCF2(L2)

(5)
P(L1, L2) = cos2(θL1)∗cos2(θL2)+

1

9
sin2(θL1)∗sin2(θL2)+

1

3
cos

2

(θL1)∗sin2(θL2)+
1

3
cos2(θL2)∗sin2(θL1)

Figure 3.  Simulated spectra of each of the MCF segments and the resulting spectra for the cases where the 
structure is (a) straight, (b) bent upwards and (c) bent downwards by its fusion splice point. The arrow indicates 
the bending direction, the wavelength shift or the power variation in each case. The cores of MCF1 are in a 
V-like configuration, whereas the ones in MCF2 are in an inverted V-like configuration.
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caused by adjacent lobes with opposite trends (one increases whereas the other decreases) in the same inter-
rogation window, as shown  in40.

The best fitting lengths for the MCF segments that fulfilled the requirements were 11.4 mm and 12.2 mm, 
resulting in a compact device of 23.6 mm. To manufacture such device (illustrated in Fig. 1b), a precision fiber 
cleaver (Fujikura CT-105) and a specialty fiber fusion splicer (Fujikura 100P +) were used. On the one hand, 
the cleaver allowed us to cut MCF segments of the desired length with 10 μm precision. On the other hand, the 
splicer can align the central core of the MCF with the unique of the SMF with high precision and has a rotating 
mechanism and an imaging system that allows observing the end-face of the MCF. Once the MCF segments were 
rotated 180° with respect to each other, they were spliced, so the central cores of all the segments of the structure 
were aligned. The fabrication process of our device is inexpensive, fast, and reproducible.

The spectra of the simulated and the manufactured devices are shown in Fig. 4, along with the simulation for 
each of the MCF segments that comprise the structure. Such simulations were carried out with PhotonDesign 
simulation software. In such figure, it can be noticed that the curves corresponding to the manufactured and 
simulated devices agree well, and that the design constraints that included one well-defined and centered peak 
with no secondary lobes were achieved.

The interrogation of the device is simple and was carried out with commercial equipment. It consists of a broad-
band light source (Safibra, s.r.o.) centered at 1550 nm and an InGaAs PD (Thorlabs PDA30B2). To interrogate 
the device in reflection mode, a fiber optic circulator was used. As it can be noticed in the simulations in Fig. 3, 
when the structure is bent by the point in which both MCFs are fusion spliced to each other and with that specific 
core orientation, only power variation will take place. However, when the physical device is subjected to the same 
effect, a slight wavelength shift is likely to happen as well apart from the amplitude variation. This is caused by 
two factors: in first place, the impossibility to apply the bending only and exactly at the fusion splice point; and 
in second place, the length difference of 0.8 mm between the MCF segments, which will cause a small variation 
in the shift of each against the same stimulus. Due to that, the device was also interrogated with a spectrometer 
(Ibsen Photonics I-MON-512 High Speed) to monitor the wavelength shift in the spectrum. Such measurement 
was used as an indicator of the relation between the direction of the applied bending and the position of the 
cores, as according to Fig. 3, small wavelength shifts would imply the accelerometer is operating as intended, as 
it is optimized to maximize the power variation.

To test the device, a horizontally fixed rectangular methacrylate thin plate was used. Underneath and at the 
center of it, an amplified piezoelectric actuator (Thorlabs APFH720 combined with Thorlabs MDT694B amplifier) 
was fixed so that the plate could vibrate only in the vertical plane. The piezoelectric actuator was connected to a 
function generator (Keysight Technologies 33220A) to generate signals of diverse amplitudes and frequencies. 
Then, the manufactured device was surface bonded with cyanoacrylate adhesive to the upper side of the plate, 
locating the MCF1-MCF2 splice at the center of it and just above the piezoelectric actuator, as it can be observed 
in the scheme of the experimental setup shown in Fig. 5. It was surface bonded with its cores oriented as in Fig. 3 
to match the direction of vibration. Adjacent to the device, a commercial accelerometer (Pico Technology PP877 
with Pico Technology TA096) was fixed for comparison and calibration purposes, as this electronic accelerometer 
provided the relation between the amplitude of the vibration and the acceleration. All the tests were carried out at 
room temperature (25 °C) and the raw signal of the time response of both devices was monitored and recorded. 

Figure 4.  Normalized spectra of the simulated (black dashed line) and manufactured devices (black continuous 
line). Notice that the maxima of both curves is around 1554 nm and there are no secondary lobes. Simulated 
spectra of MCF segments of 11.4 mm (red dashed line) and 12.2 (blue dashed line) are shown as well. As 
indicated in Eq. (2) their product results in the black dashed line.
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According to the optical accelerometer, the time response signals in terms of wavelength at which the maxima in 
the spectrum takes place (λ) and measured power in the PD (P) were acquired. The value of such parameters with 
the device in idle state were taken as reference (λref,  Pref) to obtain the wavelength shift (Δλ = λ − λref) and power 
variation (ΔP = P − Pref), respectively. Subsequently, the FFT of such signals was done to obtain the amplitude 
of their corresponding frequency components and weights. The criteria to define the limit of detection (LoD) 
was set to be a signal to noise ratio (SNR) of 3 in the FFT amplitude of the most prominent component, which 
is commonly taken as a  rule41.

The first test consisted in emitting a sinusoidal signal of 1 Vpp amplitude and varying its frequency from 30 Hz 
down to 1 MHz (the lowest frequency provided by the function generator) in several steps so that the LoD in 
terms of frequency of each device could be defined. The results are shown from Figs. 6 to 8. The manufactured 
device detected every vibration clearly down to 1 mHz in wavelength shift and power variation (see Figs. 6a 
and 7a). The small wavelength shift in Fig. 7a indicates that the device has been surface bonded with the proper 
core orientation to the plate, and explains the fact that the FFT amplitudes are lower for the wavelength shift 
measurements than those for the power variation. Nevertheless, even in this configuration aimed at maximiz-
ing the power variation, the device has detected such low vibrations by its wavelength shift as well, which is an 
indicator of its high sensitivity.  

Figure 5.  Schematic lateral and top views of the experimental setup drawn with Origin2019b (https ://www.
origi nlab.com/). The close-up shows how the manufactured optical accelerometer was surface bonded to the 
plate. Red cores belong to MCF1 whereas blue cores belong to MCF2. The red central core indicates MCF1 is 
in front of MCF2, as they share common central core. Adjacent to it, the Pico Technology PP877 electronic 
accelerometer was fixed.

Figure 6.  Results of the power measurements in the manufactured optical device. (a) Time response of three 
representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 
Vpp. The Measured frequency axis is in logarithmic scale.
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Some other facts that should be highlighted from these results are the low variability and narrowness in 
amplitude and width, respectively, of the most prominent FFT component in all the cases (see Figs. 6b and 7b), 
with low level of the harmonic components. These characteristics are directly related to the purity of the acquired 
raw signal. This performance is critical for vibration measurements as it indicates that the device is practically 
insensitive to frequency variations if the same vibration amplitude is applied. This characteristic is noticeable if 
we pay attention to the time responses in Figs. 6a and 7a, where the recorded sinusoidal signal has practically the 
same amplitude in all the frequencies. According to the commercial accelerometer, it only detected vibrations 
of 2 Hz and above and with significantly noisier signal and with high level of harmonic components (see Fig. 8).

The second test consisted in emitting a sinusoidal signal of a fixed frequency (6 Hz) and varying its amplitude 
from 1 Vpp down to 10 mVpp (the lowest amplitude provided by the function generator) to define the LoD 
of each device in terms of amplitude of vibration, which is related to the acceleration of the oscillation move-
ment. The time responses and FFT amplitudes of both devices are shown from Figs. 9 to 11. The optical device 
detected vibrations down to 10 mVpp above the established 3:1 SNR criteria. The noticeable progressive decrease 
in the amplitude of the signals in the time domain (see Figs. 9a and 10a) and the FFT (see Figs. 9b and 10b) is 
proportional to the diminishment of the amplitude of the emitted signal. In both cases, wavelength shift and 
power variations, the emitted signal can be clearly detected and the low level of the harmonic components is 
noticeable. Such results should be highlighted for the PD, whose FFT amplitudes are almost the double compared 
with the ones obtained by the spectrometer. In relation to the electronic accelerometer, according to the 3:1 SNR 
criteria, it detected the emitted signals from 1 Vpp down to 30 mVpp, which according to its calibration, covers 
an acceleration range from 29.64 to 0.76 mg. Its time response signals were significantly noisier (see Fig. 11a), 
and as a result of that, their corresponding FFT amplitudes were an order of magnitude below the ones of our 
MCF accelerometer (see Fig. 11b).  

Figure 7.  Results of the wavelength shift measurements in the manufactured optical device. (a) Time response 
of three representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal 
signal of 1 Vpp. The Measured frequency axis is in logarithmic scale.

Figure 8.  Results of the acceleration measurements in the electronic accelerometer. (a) Time response of three 
representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 
Vpp. The Measured frequency axis is in logarithmic scale.
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Figure 9.  Results of the power variation measurements in the manufactured optical device. (a) Time response 
of three representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp 
down to 10 mVpp.

Figure 10.  Results of the wavelength shift measurements in the manufactured optical device. (a) Time response 
of three representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp 
down to 10 mVpp.

Figure 11.  Results of the acceleration measurements in the electronic accelerometer. (a) Time response of three 
representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp down to 
10 mVpp.



Vol.:(0123456789)

SCIENTIFIC REPORTS |        (2020) 10:16180  | 

www.nature.com/scientificreports/

The calibration resulting from these tests is shown in Fig. 12. The linear behavior of wavelength shift and 
power variations is significant, especially for the power variation measurements, where a sensitivity of 2.213 nW/
mg with a Pearson squared correlation coefficient of R2 = 0.997 and with a noise density of 1.083 μg/sqrt(Hz) 
was obtained. As a result, the correlation between the power variation (ΔP) and the acceleration (in mg) is as 
expressed in Eq. (6):

Equation 6 is applicable for accelerations from 29.64 mg down to 0.76 mg, as this was the LoD of the electronic 
accelerometer. However, considering that the MCF accelerometer detected vibrations of amplitudes below 30 
mVpp and its significant linear behavior, we believe that this equation could be extrapolated and be valid for 
vibrations down to the tested limit (10 mVpp) and below. If so, this would indicate our device is capable of detect-
ing accelerations of up to 0.25 mg. For real-field implementation, the robustness of the proposed measurement 
system could be improved by using a reference PD to monitor the stability of the light source in order to avoid 
any unwanted effect due to light power fluctuation.

According to wavelength shift measurements, a sensitivity of 1.116 pm/mg with a Pearson squared correlation 
coefficient of R2 = 0.976 was achieved. It should be pointed out that our MCF accelerometer was optimized to 
operate with power variation measurements, which implied low sensitivity in terms of wavelength shift. Thus, 
such result points out that the device was surface bonded as close as possible as depicted in Fig. 5 and that it 
operates as intended.

Conclusions
In this work, we have reported on a compact and highly sensitive all-fiber accelerometer based on two short 
segments of different lengths of asymmetric MCF. Such segments are rotated 180° with respect to each other and 
sandwiched between SMFs, creating a SMF-MCF1-MCF2-SMF structure. Its fabrication is fast, easily reproduc-
ible and customizable. Such configuration maximizes the change in the amplitude of the spectrum, which is 
related to power variation. Its interrogation is very simple and cost-effective, as it is made by few off-the-shelf 
equipment.

The manufactured device was subjected to vibrations of different amplitudes and frequencies, and its per-
formance compared and calibrated with a commercial electronic accelerometer. It was found that our MCF 
accelerometer outperformed a commercial electronic accelerometer, as it was capable of detecting extremely low 
frequency vibrations down to 1 mHz with a sensitivity of 2.213 nW/mg, which makes it appealing for applications 

(6)a = 0.450�P − 0.143

Figure 12.  Calibration of the manufactured optical accelerometer in terms of power variation. The calibration 
of the device in terms of wavelength shift is shown in the inset.
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in which these characteristics are demanded, such as in seismology. To the authors´ best knowledge, this is the 
simplest optical fiber-based accelerometer that reaches this performance.

The MCF accelerometer proposed here is suitable for parallel multiplexing by means of an optical switch, 
which makes multi-point measurement feasible in order to cover large structures or areas. Thanks to the narrow 
reflection peaks provided by this SMF-MCF1-MCF2-SMF structure, several devices of this kind can be mul-
tiplexed in the same interrogation window. By modifying the length of the MCF segments in each device, the 
shape of the spectra and the location of the maxima can be customized individually, leading to an unambiguous 
identification of each. Moreover, the proposed structure may be embedded or surface bonded in oil pipelines or 
pillars, which facilitates its installation significantly, as it does not require expensive or complex setups. Lastly, we 
would like to highlight the potential of the device reported here to be direction sensitive by combining simultane-
ous analysis of wavelength shift and power variation. In this manner, the vibration as well as its direction could 
be identified accurately thanks to the effects observed in the spectrum.

Therefore, we believe that the MCF vibration sensor reported here may represent an alternative to con-
ventional electronic and optical accelerometers thanks to its compactness, simplicity, high sensitivity, cost-
effectiveness and versatility.
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ABSTRACT
The present work deals with a curvature sensor that consists of two segments of asymmetric multicore fiber (MCF) fusion spliced with
standard single mode fiber (SMF). The MCF comprises three strongly coupled cores; one of such cores is at the geometrical center of the
MCF. The two segments of MCF are short, have different lengths (less than 2 cm each), and are rotated 180○ with respect to each other.
The fabrication of the sensor was carried out with a fusion splicing machine that has the means for rotating optical fibers. It is demonstrated
that the sensor behaves as two SMF–MCF–SMF structures in series, and consequently, it has enhanced sensitivity. The device proposed
here can be used to sense the direction and amplitude of curvature by monitoring either wavelength shifts or intensity changes. In the
latter case, high curvature sensitivity was observed. The device can also be used for the development of other highly sensitive sensors to
monitor, for example, vibrations, force, pressure, or any other parameter that induces periodic or local curvature or bending to the MCF
segments.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5128285., s

INTRODUCTION

Multicore fibers (MCFs) are revolutionary waveguides1,2 that
have multiple individual cores sharing a common cladding. In gen-
eral, MCFs have diameters similar to that of a standard telecommu-
nications optical fiber. The cores of anMCF can be well isolated from
each other to avoid interactions between them. In this manner, each
core behaves as an independent waveguide. Completely the opposite
is also possible; this means that the cores can be in close proximity
to each other to allow coupling between them. In the latter case, the
fiber is called coupled-core MCF and supports supermodes.3

The unique features of MCFs provide new alternatives for the
development of innovative devices whose functionalities cannot be
easily achieved with conventional optical fibers. For example, ultra-
thin lensless endoscopes4 for biomedical applications and mini-
mal intrusive shape sensors have been demonstrated.5,6 MCFs with

coupled cores offer also new possibilities for the development of sim-
ple and compact devices that can be used to monitor vibrations and
bending,7,8 among other parameters.

With regard to fiber optic curvature sensors, so far, a variety of
configurations based on conventional fibers have been proposed and
demonstrated (see Refs. 9–14). However, to the best of the authors’
knowledge, such curvature sensors have not reached high readiness
level. This suggests that it is important to investigate new alternatives
to devise functional fiber optic curvature sensors.

MCFs with isolated cores offer multiple alternatives to build
curvature sensors. For example, curvature sensors based on inter-
ferometers,15–18 twisted MCFs,19 or directional couplers20 have been
demonstrated. Some drawbacks of these sensors are the need of
bulk optics to interrogate them, their insensitivity to the direction
of curvature, their fragility as, in some cases, the MCF must be
tapered, and the high insertion losses. Strongly coupled MCFs with
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quasi-symmetric core distribution have also been demonstrated for
direction-insensitive curvature sensing.21,22

MCFs with a series of Bragg gratings23–25 or long period grat-
ings26–28 in some or in all the cores can also be used to sense curva-
ture. In fact, MCF curvature sensors based on Bragg gratings have
reached a commercial level, but their high cost may limit their use
to high-end applications. Some disadvantages of grating-basedMCF
curvature sensors include complex fabrication and expensive inter-
rogation. Moreover, the curvature on some MCFs with gratings can
induce coupling between cores. Such coupling can induce errors in
the measurements of curvature.

Fiber optic curvature sensors have potential applications in
shape sensing,6,14 that is why they have attracted considerable
research interest in recent years. Ideally, a fiber optic curvature sen-
sor must be cost effective and must provide the amplitude and the
direction of curvature. In addition, the sensormust be sensitive, sim-
ple, reliable, and very small in diameter, so it can be integrated to
devices, instruments, or structures. We believe that the fiber optic
curvature sensors reported to date cannot provide all these desirable
characteristics.

Here, we propose a highly sensitive curvature sensor based on
a strongly coupled MCF. Our device is easy to fabricate and requires
a simple (low cost) interrogation system. In addition, our sensor is
able to provide the amplitude and direction of curvature even by
monitoring intensity changes. To achieve the curvature sensor with
the aforementioned features, we used two short segments of differ-
ent lengths of an MCF that comprises three identical cores. The two
MCF segments are fusion spliced and rotated 180○ with respect to
each other and are inserted in a conventional single mode fiber.

The structure reported here can also be used to devise other
sensors tomonitor any parameter that induces point or periodic cur-
vature to the MCF. Some examples may include force, pressure, and
vibration sensors or accelerometers.

SENSOR FABRICATION AND WORKING MECHANISM

In Fig. 1(a), we show the cross section of the MCF used to
fabricate the sensor. The fiber has three coupled cores made of
germanium-doped silica embedded in a claddingmade of pure silica.
The diameter of each core is approximately 9 μm, and the cores are
separated from each other by 11 μm approximately. It can be noted
that one core is at the geometrical center of the MCF. The numeri-
cal aperture of each core of the MCF is identical to that of an SMF
(0.14). Due to the matching between the numerical apertures of both

FIG. 1. (a) Micrograph of the MCF used to fabricate the samples. (b) Drawing of the
device in which the two segments of MCF are rotated 180○ with respect to each
other. L1 and L2 are the lengths of the segments MCF1 and MCF2, respectively,
and M is the mirror.

fibers, the insertion losses of our devices are low as demonstrated
previously.7,21

The architecture of our curvature sensor is shown in Fig. 1(b).
Such a structure is fabricated by fusion splicing two segments of
different lengths (typically less than 20 mm each) of the aforemen-
tioned MCF with a conventional SMF. The two segments of MCF
are rotated 180○ with respect each other; the reason of this angle
is explained below. A reflector or mirror at the distal end of the
SMF allows the sensor to operate in reflection mode, which has the
advantages described in the following.

The fabrication of the device shown in Fig. 1(b) can be carried
out with a splicing machine that has means of rotating optical fibers.
In our case, we used a specialty fiber splicer (a Fujikura FSM-100P+)
in which an ad hoc splicing program was implemented. With such
a program, the end face of the two segments of MCF was inspected
to orient the cores before the splicing. In all cases, the splices were
carried out with a cladding alignment method. Under such splic-
ing conditions, the cores located in the geometrical center of the
two segments of MCF and the unique core of the SMF were axially
aligned and permanently joined together. The two segments of MCF
were intentionally rotated 180○ to achieve an SMF–MCF1–MCF2–
SMF structure in which the two cores outside the center of theMCFs
were upward in one part of the structure and downward in the other
part. We will see that such a structure behaves as a dual supermode
coupler in series.

To understand the working mechanism of the device shown in
Fig. 1(b), we carried out simulations based on the finite difference
method with commercial software (FimmWave and FimmProp by
Photon Design) and different experiments. In Fig. 2, we show the
propagation of two different wavelengths from the lead-in SMF to
the lead-out SMF in an SMF–MCF1–MCF2–SMF structure with the
dimensions described in the figure. It can be seen that at 1500 nm,
the guided light does not reach the lead-out SMF. On the other
hand, light at 1550 nm propagates with losses. Consequently, in
the referred structure, maximum transmission can be expected at
1550 nm and minimum at 1500 nm.

In addition to the simulations, we analyzed mathematically
our device by considering that it is composed of two parts. Let us

FIG. 2. Simulations of light propagation in an SMF–MCF1–MCF2–SMF structure.
The following values were considered: L1 = 12.20 mm and L2 = 11.40 mm. The
analyzed wavelengths are indicated.
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consider first the case when L2 = 0. In this case, we will have an
SMF–MCF1–SMF structure. To predict the transmission intensity
of such a structure, we have to consider the following situations: (i)
The three cores of the MCF are identical, i.e., they have the same
diameter and the same refractive index; (ii) the distance between the
MCF cores is the same; (iii) the central core of the MCF is excited
with the fundamental SMF mode, and (iv) the MCF is composed
by evanescently coupled single-mode cores. In our case, the latter
assumptions are valid in the 1200 nm–1600 nm wavelength range.
Under these conditions, two supermodes are excited in the MCF.
Such supermodes have non-zero intensity in the central core of the
MCF.8

The transfer function of the SMF–MCF1–SMF structure can
be calculated by means of the coupled mode theory.29 The trans-
fer function is a periodic function of wavelength (λ) and can be
expressed as30–32

I1T(λ,L1) = 1 − (2/3)sin2(
√
3πΔnL1/λ). (1)

In Eq. (1), Δn is the effective refractive index difference between the
two excited supermodes. Δn depends on the wavelength, refractive
index, dimensions, and separation between the cores of the MCF.
For the MCF shown in Fig. 1(a), Δn was found to be 4.66 × 10−4.
Now, if L1 = 0, we will have an SMF–MCF2–SMF structure of length
L2. The transfer function of such a structure can also be expressed by
Eq. (1), but with L2 instead of L1.

Let us now calculate the transfer function of an SMF–MCF–
SMF structure when the SMF at the final extreme has a reflector or
mirror on its face [see Fig. 1(b)]. In this case, the structure can be
considered as two SMF–MCF–SMF structures in series. As demon-
strated by several groups, the transfer function of two periodic fiber
devices placed in series is the product of the individual transfer func-
tions.33–36 Thus, if a single SMF–MCF–SMF structure with L1 (or L2)
is interrogated in reflection, the transfer function is simply I1R = I21T
(or I2R = I22T).

If the device shown in Fig. 1(b) is excited with a broadband
source, the reflection measured with a photodetector or spectrom-
eter will be

R(λ) = Is(λ)[I1T(λ,L1)I2T(λ,L2)]2. (2)

In Eq. (2), Is(λ) is the spectral power distribution of the excitation
light source. In a practical situation, such a light source can be a
narrow-band light emitting diodes (LED) whose spectral distribu-
tion is Gaussian.

RESULTS AND DISCUSSION

The interrogation of the device depicted in Fig. 1(b) is sim-
ple. In our case, we used a superluminescent light emitting diode
(SLED) with peak emission at 1550 nm and a FWHMof 60 nm as the
light source, a conventional fiber optic coupler (or circulator), and
a photodetector or a miniature spectrometer (Ibsen I-MON-512)
connected by a universal serial bus (USB) cable to a personal com-
puter. Unless otherwise stated, in all our experiments, the cleaved
end of the SMF segment after the MCF2 was used as a reflector. The
reflectivity in this case was less than 4%.

In Fig. 3, we show the normalized reflection spectra of SMF–
MCF–SMF structures in three different cases. The plots with dotted

FIG. 3. Reflection spectra observed when the structure is SMF–MCF–SMF in
which the lengths of MCFs are 12.20 mm (dashed line) and 11.4 mm (dotted line).
The shadowed area beneath the solid line is the reflection spectrum observed
when a 12.20 mm-long and an 11.40 mm-long segment of MCF are fusion spliced
and rotated 180○ with respect to each other.

and dashed lines correspond to the spectra of individual structures
with L1 = 12.20 mm and L2 = 11.40 mm. As the lengths of the
MCF segments are short, the periods of the reflection spectra are
long, and thus, it is not possible to observe two consecutive max-
ima in the monitored wavelength range. The shadowed area beneath
the solid line represents the reflection spectrum observed when two
segments of MCF, one with L1 = 12.20 mm and the other with
L2 = 11.40 mm, were spliced together, but one segment of MCF
was rotated 180○ with respect to the other. The reflection spec-
trum of the SMF–MCF1–MCF2–SMF structure coincides with the
spectrum that is obtained when the spectra shown in dotted and
dashed lines are multiplied and then normalized. It can be noted
that the experimental results shown in Fig. 3 agree with the sim-
ulations described in Fig. 2. Therefore, we can conclude that the
reflection of the device depicted in Fig. 1(b) can be calculated with
Eq. (2) as it can be treated as two SMF–MCF–SMF structures in
series.

To assess the performance of our composed MCF device as
a curvature sensor, we carried out simulations, which are summa-
rized in Fig. 4. In the figure, we show the reflection spectra of an
SMF–MCF1–MCF2–SMF structure built with L1 = 17.4 mm and L2
= 18.2 mm at different values of curvature. It was assumed that the
structure was bent in the MCF1–MCF2 junction and that both seg-
ments of MCF experienced the same curvature. The curvature was
assumed to be applied in four different directions with respect to the
orientations of the MCF cores. Any other orientation of the cores
with respect to curvature will be contained between the four cases
shown in Fig. 4. From the simulations, it can be concluded that the
reflection intensity of our device will increase or decrease depend-
ing on the direction of curvature. This means that our device can
distinguish the amplitude and direction of curvature.

To corroborate the above predictions, a simple setup, schemat-
ically shown in Fig. 5, was implemented. The SMF segments were
secured with two fiber chucks that were mounted on respective
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FIG. 4. Simulated reflection spectra of an
SMF–MCF1–MCF2–SMF structure for
different values of curvature when the
orientations of the MCF cores are 90○

(a), 60○ (b), 30○ (c), and 0○ (d) with
respect to the direction of curvature indi-
cated by arrows. For the simulations, it
was considered that L1 = 17.40 mm and
L2 = 18.20 mm.

rotators (HFR001 from Thorlabs). The chuck rotators were sepa-
rated by a fixed distance and were secured on an optical breadboard
that was placed in a vertical position. A fiber chuck was used as a
mass (20 g) to keep the tension of the fibers constant. The measure-
ments of curvature were carried out at different orientations of the
MCFs, between 0 and 180○ in steps of 30○, with respect to curva-
ture [see Fig. 5]. A translation stage with micrometer resolution was
used to bend the structure in a controlled manner. The stage bent
the device close to the MCF1–MCF2 junction. The value of curva-
ture (C) on the device was calculated with the following equation:
C = 12h/d2 (see Ref. 12), where h is the displacement of the transla-
tion stage and d is the separation between the two fiber rotators.

In the setup described in the above paragraph, any displace-
ment of the translation stage (or change of h) causes bending to the
two segments of MCF. However, the effect on them was different

FIG. 5. Schematic diagram of the measuring setup and the sensor interrogation;
h is the deflection of the device and d is the distance between the two supports.
FOC is fiber optic coupler or circulator, SMF is single mode fiber, and SLED is
superluminescent light emitting diode. The MCF core orientation with respect to
the applied curvature is indicated.

as the cores outside the center of the MCF had a different position
with respect to the applied curvature. As demonstrated in Ref. 8, the
asymmetric MCF used here is highly sensitive to bending. In addi-
tion, the direction of the bending can be distinguished when the
MCF cores are oriented properly. Therefore, high sensitivity to cur-
vature and capability to distinguish the direction of curvature were
expected with an SMF–MCF1–MCF2–SMF structure. For this rea-
son, we fabricated the structure as shown in Fig. 1(b) with the cores
of the MCF1 and MCF2 segments rotated 180○ with respect to each
other.

A device fabricated with a segment of 17.4 mm of MCF fusion
spliced to another segment of 18.2 mm was characterized in detail.
As mentioned before, the cores of the MCF segments were in oppo-
site orientation. Wavelength shifts and intensity changes were mon-
itored at each value of curvature. In the former case, a spectrometer
was used, while in the latter case, a low cost InGaAs photodiode
(S154C from Thorlabs) was used. The light source was the same in
all the measurements. The intensity of the reflected light when no
curvature (C = 0 m−1) was applied to the device was considered as
P and the changes caused by curvature as ΔP. At C = 0 m−1, the
wavelength position of the peak reflection was considered to be λm
and IR = 1.

Figures 6(a) and 6(b) show the spectra observed when the cur-
vature at two perpendicular directions was applied to the device
described in the above paragraph. Figures 6(c) and 6(d) show the
averaged curvature sensitivities that were measured in seven differ-
ent orientations of the MCF. The core orientations with respect to
curvature are illustrated in Figs. 4 and 5. Note that when the wave-
length shift is larger, the changes in intensity are minimal and vice
versa. The different values of sensitivities at different orientations of
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FIG. 6. [(a) and (b)] Reflection spectra at different curvatures observed when the position of the MCF was at 0○ and 90○, respectively, according to Figs. 4(c) and 4(d). [(c)
and (d)] Average curvature sensitivity measured by monitoring wavelength shift or intensity changes. In all cases, the MCF device had L1 = 17.40 mm and L2 = 18.20 mm.

the MCF cores with respect to curvature were expected due to the
asymmetry of the device.

The discrepancy between simulations and experimental results
with regard to shifts of the spectra may be due to the strain induced
to the device and curvature of the SMF–MCF junctions, as these
are inevitable in an experiment. In addition, during the measure-
ments, the two segments of MCF may not experience exactly the
same curvature. In the simulations, however, the two stubs of MCF
were supposed to be exclusively subjected to the same curvature.
Nonetheless, regardless of the orientation of the MCFs with respect
to curvature, the wavelength position and height of the reflection
peak (intensity) can be simultaneously tracked. Hence, it is possible
to know the direction and amplitude of the curvature applied to the
device.

The drastic changes in the reflection spectrum of the SMF–
MCF1–MCF2–SMF structure when it is subjected to curvature can
be explained with Eq. (2) and with the simulations shown in Fig. 4.
Note that the structure is composed of two MCF segments that
are highly sensitive to bending. Moreover, the reflection spectrum
results from the multiplication of two spectra that move in oppo-
site directions. This causes the height of the resulting reflection peak
to increase or decrease. Consequently, the total intensity detected
by using the photodetector increases or decreases depending on the
direction of curvature.

In real-world applications, fiber optic curvature sensors are
attached or integrated to structures or devices. Thus, to investigate
the performance of our curvature sensor in more detail, the sample
described in Fig. 3 was glued on a thin rectangular plastic beam that

was secured with two supports separated by a fixed distance. The
orientation of the cores of the segments of MCF with respect to the
plastic beam was approximately as that shown in Fig. 5. This means
that a segment of MCF had two cores up and the other two cores
down with respect to the direction of the curvature. Again, a trans-
lation stage with micrometer resolution was used to bend the beam
upward (convex curvature) and downward (concave curvature) in
a controlled manner. Other curvature orientations were not possible
due to the geometry of the beam. The stage was located in the middle
point of the distance between the two supports. The MCF1–MCF2
junction of the structure was located in the same position than the
translation stage.

Figure 7 summarizes the behavior of our sensor when it was
subjected to concave and convex curvatures. Note that the shift of
the spectrum is to longer wavelengths in the former case and to
shorter wavelengths in the latter case. The figure also shows the cal-
ibration curve for concave and convex curvatures. It can be noted
that the response of our device in both cases is linear. From the
calibration curve, the curvature sensitivities were calculated to be
791 pm/m−1 for concave curvature and 950 pm/m−1 for convex cur-
vature. The discrepancy in the values of sensitivities of our device
can be attributed to imperfections of the same, for example, the
MCFs may not be exactly 180○ with respect to each other. Strain
applied to the MCFs and curvature of the SMF–MCF segments may
also induce shifts to the reflection spectra.

In Fig. 8, we show the observed changes in ΔP/P for different
values of concave and convex curvatures. It can be noted that when
the device was subjected to concave curvature, the value of ΔP/P

APL Photon. 5, 070801 (2020); doi: 10.1063/1.5128285 5, 070801-5

© Author(s) 2020



APL Photonics ARTICLE scitation.org/journal/app

FIG. 7. Top: spectra observed when the
beam shown in Fig. 5 was curved down-
ward (left) and upward (right). The val-
ues of curvature (in m−1) are indicated
in the graphs. Bottom: calibration curves
for concave and convex curvatures.

decreased, and it increased when the curvature on it was convex.
Note also that the value of ΔP/P reached the baseline (ΔP/P = 0)
when the curvature was removed from the sensor. The calibration
curves for concave and convex curvatures are also shown in Fig. 8.
The sensitivities for concave and convex curvature were found to be
almost identical, 4.66 dB/m−1, which is slightly higher than those of

FIG. 8. Top: relative power changes as a function of time when the beam, hence
the MCF segments, was bent downward (concave curvature) and upward (convex
curvature). The step in each case is 0.0266 m−1. Bottom: calibration curve.

the intensity-modulated curvature sensors reported in Refs. 26, 37,
and 38.

The results shown in Fig. 8 suggest that with our device and
an inexpensive intensity-based interrogation system, it is possible to
distinguish concave and convex curvatures as well as the amplitude
of the applied curvature. If maximum sensitivity is needed in a par-
ticular curvature direction, the cores of the MCF can be oriented
properly. We believe that these features cannot be achieved with
other fiber optic curvature sensors reported so far in the literature.

CONCLUSIONS

In this work, we have reported on a simple MCF curvature sen-
sor that comprises two short segments of strongly coupled MCF
fusion spliced and rotated with respect to each other. The fabrica-
tion of the device only involves cleaving and fusion splicing; such
processes are well established in the fiber optics industry. The sensor
can be interrogated with a low power SLED and a miniature spec-
trometer or a simple photodetector. It was found that the sensor
behaves as two SMF–MCF–SMF structures in series and the reflec-
tion spectrum exhibited a single, narrow peak whose height and
position in wavelength can be simultaneously determined with high
accuracy.

The proposed device was assessed as a curvature sensor. It was
found that for this application, it is able to provide the amplitude
and the direction of curvature no matter how the cores of the MCF
are oriented with respect to the direction of curvature. Moreover,
our sensor can be interrogated in two different manners. When the
sensor was subjected to concave curvature, the reflection spectrum
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shifted to red and the intensity decreased. However, when convex
curvature was applied to the device, the shift was to blue and the
intensity decreased.

The curvature sensitivity of the sensor reported here was
found to be 4.66 dB/m−1 when intensity changes were corre-
lated with curvature. Such sensitivity can be sufficient in several
applications.

We believe that the composedMCF structure reported here can
be used for different sensing applications. Vibrations, for example,
can be translated to periodic concave and convex curvatures on the
device and hence to periodic intensity changes. It also seems possi-
ble to sense pressure or lateral force as they can induce curvature to
the MCF segments. Therefore, cost effective, highly sensitive force,
pressure, or vibration (accelerometers) sensors can be devised with
the platform proposed here.
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ESKER ONAK 

 

Nire esker onak eman nahi ditut tesian parte hartu duten pertsona 

eta erakunde guztiek emandako laguntza eta konfiantzagatik. 

Lehenik eta behin, Joseba Zubia irakasleari eskerrak eman nahi 

dizkiot APG/FAT Fotonika Aplikatuko Taldeko kide izateko aukera 

eman didalako eta uneoro transmititu didan baikortasun eta 

animoagatik. Bigarrenik, Gaizka Durana eta Joel Villatoro zuzendari 

eta aholkulariei eskerrak eman nahi nizkieke ikerketan eman didaten 

orientazio eta askatasunaren arteko konbinazioagatik, nire 

ikerketarako gaitasuna hobetzen nabarmen lagundu baitute, nire 

ustez. Azkenik, baina niretzat garrantzi-maila berdinean, eskerrak 

eman nahi dizkiet APG/FAT Fotonika Aplikatuko Taldeko kideei, 

haiekin igaro baititut azken urte hauek. Beti laguntzeko prest egon 

dira, modu desinteresatuan eta norabide egokian aholkuak emanez. 

Beraien familiaren parte sentiarazi naute. 

 

Walter Margulis irakasleari eskerrak eman nahi nizkioke ere RISEn 

lan egiten uzteagatik pandemiak eragindako inguruabar gogorra 

kontuan hartuta. Oso denbora eraikitzailea izan da niretzat, lan 

metodologia eta kultura desberdinen inguruan ikaragarri ikasi eta 

pertsona oso bereziak ezagutu nituen. 

 

Aurrekoaz gain, nire hurbileko familiari eskerrak eman nahi nizkioke 

honaino iristeko aukera emateagatik. Hona iristeko gainditu behar 

izan ditugun arazoak eta oztopoak guk ezagutzen ditugu soilik. 

Bizitzan hainbeste gauza atzeratu edo galdu ditut haien ondorioz, 

eta behin edo bitan baino gehiago amore ematea pentsarazi didaten 

esperientziak bizitzera bultzatu gaituzte. Badirudi azkenean 



tunelaren amaieran argia ikusten ari garela, ez hain aspaldi ezinezkoa 

zirudiena. Eskerrik asko bihotz-bihotzez. 

 

Azkenik, ezin ditut eskerrak bukatu nire lagunak aipatu gabe, beti 

egon direlako niretzat momentu txarrenetan ere, eta ez hondoratzen 

lagundu baitidate. Lan hau eurena ere bada. 

  



LABURPENA 

 

Sentsore fotonikoak, eta batez ere zuntz optikoetan oinarritutakoak, 

heldutasun puntu batera iritsi dira non industria-ingurune 

batzuetarako alternatiba errealista bihurtu diren sentsore 

tradizionalekin alderatuta duten moldakortasun eta errendimendu 

handiagoari esker. Hau dela eta, sentsore optiko sentikor eta 

fidagarrien eskaera nabarmen handitu da alor desberdin ugarietan 

erabiltzeko, hala nola biomedikuntza, automobilgintza, aeronautika, 

gas eta petrolio industrian, adibidez. 

Lan honetan, aplikazio industrialetara  zuzendutako sentsore optiko 

desberdinak erakusten dira. Sentsore hauek aplikazio 

aeronautikoetarako diseinatuta daude bereziki, baina ez daude 

haietara mugatuta; eta neurketaren izaeraren arabera 

funtzionamendu-printzipio desberdinetan oinarritzen dira. Gailu 

bakoitzaren diseinua, fabrikazioa eta euren errendimenduaren 

emaitzak biltzen dituen prozesua zehatz-mehatz azaltzen da lan 

honetan. 

Tesi hau argitaratutako artikuluen laburpen gisa egituratuta dago. 

Dokumentua sintesi atal baten bitartez hasten da. Bertan,  ikerketa 

gaiaren sarrera, marko teorikoaren eta horretarako erabilitako tresna 

metodologikoen deskribapena, hipotesien definizioa eta haien bitartez 

lortu nahi diren helburuak azaltzen dira. Emaitzen laburpena eta 

eztabaida atal honen barne daude ere. 

Lehen zati honetan deskribatutako ikerketa bi lerro desberdinetan 

banatuta dago: lehenengoan, aeronautika-turbinetarako zuntz 

optikoetan oinarritutako desplazamendu-sentsoreak garatzeko 

prozesua deskribatzen da. Ikerketa hori eta haren emaitzak 

eranskineko 1. artikuluan daude. Bigarren zatian, sendoki 

akoplatutako nukleo anitzez osatutako zuntz optikoetan 

oinarritutako hainbat sentsore deskribatzen dira. Azken hauek 



hainbat parametro desberdin neurtzeko diseinatu dira, hala nola 

tenperatura edo bibrazioak. Gailu bakoitzera iristeko prozesua eta 

dagozkien emaitzak eranskineko 2., 3. eta 4. artikuluetan daude.  

2. atalean, tesian zehar egindako ikerketen ondorioak laburbiltzen 

dira, baita horien ondorioz ireki diren etorkizuneko ikerketa-ildoak 

ere. Horrez gain, tesian zehar egindako ekarpenak, argitaratutako 

artikuluak eta kongresuak ere barne daude. 

Eranskinean, tesi hau artikuluen laburpen gisa aurkeztea ahalbidetu 

duten argitaratutako artikuluak biltzen dira. 
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1. atala 

 

Sintesia 

 

Atal honetan ikerketaren ikuspegi orokorra azaltzen da. Tesiaren 

testuinguruari eta motibazioari buruzko sarrera bat egin eta gero, 

tesi-lanean zehar landutako bi ikerketa-lerro nagusien deskribapen 

zehatzak ematen dira. Lehenengo ikerketa-lerroari dagokionez, 

aeronautikaren sektorean turbinen monitorizaziorako zuntz 

optikoetan oinarritutako desplazamendu-sentsore baten diseinu, 

fabrikazio eta aplikazioa sakonki aztertzen da. Bigarren ikerketa-

lerroan, sendoki akoplatutako nukleo anitzez osatutako zuntz 

optikoak abiapuntutzat hartuta, industriarentzat interesgarriak izan 

litezkeen  zenbait sentsore optiko aurkezten eta eztabaidatzen dira. 

Sentsoreok parametro fisiko desberdinak detektatzeko diseinatuak 

izan dira. 
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1.1 Sarrera 

 

1.1.1 Ikerketaren testuingurua 

 

Industriaren helburua kostu txikiagoko eta errendimendu hobetua 

duten produktuak diseinatu eta ekoiztea da. Beraz,  fabrikazioak 

optimizatzeko balio duten mekanismoen bilaketek interes handia 

daukate. Horretarako, produkzio-prozesuaren urrats guztietan, 

prototipoen probetatik hasita produkzio-lerroetara heldu arte, 

kalitate-kontrol proba zehatzak egiten dira. Kalitate-proba horiek 

egiteko, industriak sentsore sendo, fidagarri eta sentikorren 

beharrizana du, berebiziko garrantzia duten hainbat parametro 

denbora errealean kontrolatzeko helburuarekin. Horiei esker, 

fabrikazio-prozesu guztiari buruzko informazio kritikoa lor daiteke, 

zehaztasunez kontrolatzeko eta ezaugarritzeko balioko duena. 

Adibidez, prototipoen diseinuetan egon daitezkeen akatsak detektatu 

eta zuzentzeko produkzio-lerroetara bidali baino lehen, produkzio-

katean dauden elementu guztiek fabrikazioan zehar baldintza 

berdinak dituztela egiaztatzeko, edo industria bakoitzak ezartzen 

dituen estandar zorrotzak betetzen direla ziurtatzeko erabil daitezke. 

Beraz, agerikoak dira sentsore-sistema fidagarri eta sentikorren 

instalazioak ekartzen dituen onurak kalitatearen hobekuntza eta 

ekonomia aurrezteei dagokienez.  

Aipatutako prozesuak kontrolatzeko, industrian ohikoa da teknologia 

helduetan oinarritutako detekzio-sistemak aurkitzea. Izan ere, 

fidagarriak, iraupen luzekoak eta kostu eraginkorrekoak direla 

frogatu izan da denboran zehar. Teknologia horiek normalean izaera 

elektriko edo elektronikoko osagaietan oinarrituta daude. Azken 

horien funtzionamendu-mekanismoa inguruneko sarrera fisiko bat 

neurtzean oinarritzen da, jasotako informazioa gizaki batek edo 

makina batek interpretatu dezakeen seinale elektriko batean 

bihurtzeko. Horien eredu garbia termopareak eta galgak dira, besteak 
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beste [1]. Izaera elektriko horrek kasu askotan arazorik sortzen ez 

badu ere, kezkarako arrazoi bihur daiteke arriskutsuak eta 

segurtasun neurri zorrotzak behar dituzten lan-inguruneetan, 

adibidez gas eta petrolio instalazioetan, zentral nuklearretan, egitura 

aeronautikoetan, eta abar. Interferentzia elektromagnetiko bortitzek 

sentsore horien jardun normalean zailtasunak eragin ditzakete. 

Bestalde, tenperatura altuek ere fidagarritasun-mailan negatiboki 

intziditzen dute. 

Aipatutako mugapen horiek gainditzeko bidean, teknologia 

fotonikoan oinarritutako soluzioak aukera interesgarria bihurtu dira 

sentsore elektrikoen osagarri gisa, bai eta horien ordezkari gisa ere 

zenbait kasutan. Sentsore fotonikoetan oinarrizko partikula fotoia da, 

edo argi-kuantua. Fisikaren ikuspegitik, fotoiek ez dute masarik geldi 

daudenean, ez dute elkarrekintzarik elektroiekin, eta baldintza 

zehatz batzuetan soilik elkarreragiten dute beste fotoi batzuekin. 

Hori dela eta, fotoien portaera aurreikus eta kontrola daiteke 

oinarrizko lege fisiko batzuei jarraituz, nahiz eta eremu 

elektromagnetiko edo magnetiko, erradiazio edo tenperatura altuak 

dituzten inguruneetan egon [2]. Sentsore fotonikoak oso sentikorrak 

dira parametro ugariren neurketan, hala nola tentsioa, presioa, 

tenperatura, eta abar. Ezaugarri hauei esker potentzial handia dute, 

ingurune etsaietan instalatu eta lan egiteko ezinbesteko baldintzak 

baitira [3]. Sentsore fotonikoak, argia gidatzeko elementu desberdinez 

baliatuz (elementu optikoak, laserrak, zuntz optikoak, eta abar), gai 

dira jomugako parametro fisiko edo kimikoren bat zehaztasunez 

neurtzeko argiaren ezaugarriren batean (edo batzuetan) gertatzen 

diren aldaketak aztertuz. Teknologia fotoniko desberdinak lehen 

aldiz agertu zirenean garestiak ziren arren, hauen etengabeko 

garapenak eta hobekuntzak kostua pixkanaka jaistea eragin dute, 

gaur egun ekonomikoki aukera bideragarria bihurtu arte. Horren 

ondorioz, fotonikak aurrerapen handia bizitzen ari da izaera 

desberdineko aplikazio-eremu ugaritan. Adibidez, sentsoreez gain, 

komunikazio, informazio biltegi eta datu-prozesaketa eremuetara ere 
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hedatu da. Beraz, fotonikan oinarritutako gailuek garrantzi handia 

lortzen ari dira industrian, eta gaur egun posible da teknologia 

honetan oinarritutako sentsorizazio-sistema komertzialak aurkitzea 

hainbat produkzio-prozesutan, hala nola, bereizmen handiko 

metrologian eta laser bidezko kalibrazio-sistematan [4]. 

Fotonikan oinarritutako detekzio-soluzio desberdinen artean, zuntz 

optikoa deritzon teknologian oinarritutakoak nabarmendu behar 

dira. Historikoki, teknologia hori komunikazio-sareen gaitasunak 

hobetzeko jaio zen. Hala ere, industria horretatik eratorritako 

berrikuntza asko detekzio-sistematan aplikatzen joan izan dira, eta 

hau gertatu izan den neurrian, zuntz optikoetan oinarritutako 

detekzio-soluzioen gaineko interesak ere goraka egin du. Izan ere, 

gaur egun zuntz optikoaren teknologiak heldutasun puntu 

interesgarria lortu du, eskain dezakeen errentagarritasunaren eta 

errendimenduaren arteko konpromiso-mailari begiratzen badiogu. 

Puntu honetan gogoratu beharra dago sentsore fotonikoek, arestian 

aipatutako sentsore tradizionalen aldean, ingurune etsaietan 

jarduteko duten abantaila. Aipatutako guztiagatik, industriak 

interes handia erakutsi du ekoizpen-prozesuetan edo kalitate-

kontroleko probetan sentsore fotonikoak integratzeko, eta bereziki 

zuntz optikoan oinarritutakoak dira interesgarriak, zuntzaren 

teknologiak eskaintzen dituen abantaila ugariei esker. 

 

1.1.2 Zuntz optikoetan oinarritutako sentsoreak 

 

1.1.1.1 Ikuspegi orokorra 

 

Zuntz optikoa giza ile baten tamainaren pareko uhin-gida dielektriko 

zirkular eta malgu bat da. Zuntzaren materialari dagokionez, 

normalean silizez eginda dagoen arren,  polimeroz egindakoa ere 

interes praktiko handikoa da.  Bere oinarrizko egiturari dagokionez, 

nukleo batez eta hau inguratzen duen estaldura zentrukide batez 
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osatuta dago. Funtzionamendu-printzipioa barne-islapen osoan 

oinarritzen da, argi-iturri batek (laser bat edo diodo argi igorle bat) 

igorritako argia nukleoan zehar eraginkortasun handiz hedatzea 

ahalbidetzen duena hain zuzen ere (ikus 1. irudia). Argiaren 

hedapena nukleora soilik mugatzeko, azken honen errefrakzio-indizea 

(ncore) estaldurak duena baino handiagoa izan behar du (ncladding) [5]. 

 

1. irudia: Zuntz optikoen funtzionamendu-printzipioa. 

Ezaugarri guzti horiei esker, zuntz optikoak sarri erabili dira argia 

modu oso eraginkorrean transmititzeko. Gainera, kable elektrikoekin 

alderatuta, zuntz optikoek banda-zabalera handiagoa eskaintzen 

dute, potentzia-galera txikiagoak eragiten dituzte, eta esparru 

elektrikoan hain arruntak diren interferentzia-arazoei aurre egiten 

diete. Horrezaz gain, elementu-sentsore gisa ere oso baliagarriak 

direla frogatu dute, parametro fisiko eta kimiko ugariren aurrean 

sentikortasun-maila handia dutela erakutsi baitute, argiaren 

propietate bat edo besteri eraginez (argi-intentsitatea, polarizazioa, 

fasea, eta abar). 

Konfigurazio sinpleenean, zuntz optikoetan oinarritutako sentsoreek, 

zuntz optikoaz gain, argi iturri bat eta galdeketa-gailu bat dituzte 

bere oinarrizko osagaien artean. Zuntzari eragiten dion efektu 

fisikoaren intentsitate-mailaren arabera, zuntzean zehar hedatzen 

den argiaren propietate bat edo beste era proportzionalean 

modulatzen da. Argiaren gainean eragindako transformazio hori 

galdeketa-gailura iristen da, eta bertan korronte elektrikotan 

bihurtzen da kontrol-ekipoan bere prozesaketari ekin ahal izateko. 

(ikus 2. irudia). Oinarrizko eskema horretatik abiatuta, neurketa-
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sistemen konfigurazio konplexuagoak eraiki daitezke hainbat 

sentsoreren erantzuna multiplexatu edo anitz parametroren 

aldibereko neurketa egin nahi denean. 

  

2. irudia: Zuntz optikoan oinarritutako detekzio-sistema baten eskema. 

Beraz, zuntz optikoetan oinarritutako sentsoreek abantaila ugari 

dituzte, hala nola tamaina eta pisu txikia, instalatzeko erraztasuna, 

konfigurazio sinpletasuna, materialen barnean integratzeko edo 

gainazaletara itsasteko gaitasuna eta immunitate elektromagnetikoa. 

Horrez gain, distantzia luzetan seinaleak bidaltzeko gaitasuna dute 

galera handirik sortu gabe eta inolako energia hornidurarik behar 

gabe, multiplexazioa onartzen dute aldi berean sentsore kopuru 

handiak erabiltzeko eta ingurune etsaietan (goi tentsioko lineak, 

ingurune erradiaktiboak, tenperatura altuak, substantzia 

korrosiboak, eta abar) erabiltzeko egokiak dira. 

Hala ere, sentsore elektronikoak baino garestiagoak izan ohi dira eta 

galdeketa egiteko ekipamendua sentsore elektronikoena baino 

konplexuagoa izan ohi da, nahiz eta azken ezaugarri hau azken 

hamarkadetan nabarmen hobetu den. Gainera, neurketa-

testuinguruaren arabera, zuntz optikoa kaltetu edo hautsi ez dadin, 

instalazio-metodo eta prozedura zehatzak behar dituzte, eta 

galdeketa-sistemek erabiltzen hasi aurretik oinarrizko trebakuntza 

eskatzen dute. 

Beraz, sentsore sistema bat planifikatzerako orduan, sentsore egokia 

eta sentsore-teknologia egokia hautatzea funtsezkoa da. Horretarako, 

kasu bakoitza modu independentean aztertu behar da. Tesi honen 

ikerketaren esparruan, zuntz optikoaren erabilerak abantaila handiak 

eskaintzen ditu, dokumentu honetan zehar azalduko den moduan. 
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1.1.2.2 Sailkapenak 

 

Zuntz optikoetan oinarritutako sentsoreak modu desberdinetan 

sailka daitezke. Ohikoak diren sailkapen batzuk laburbilduko ditugu 

jarraian. 

Neurtuko diren magnitudeen izaeraren arabera sailkapen hau egin 

daiteke: mekanikoak, elektromagnetikoak, kimikoak, fluidoen 

fluxuak neurtzeko direnak, termikoak eta biomedikoak [6]. 

Beste sailkapen bat sentsore intrintsekoak eta estrintsekoak bereiziz 

egin daiteke [7]. Alde batetik, sentsore intrintsekoetan, argiaren 

aldaketa edo modulazioa zuntz barruko efektu batek eragiten du. 

Normalean, efektu horiek xurgapena, dispertsioa edo fluoreszentzia 

izaten dira [8]. Beste alde batetik, sentsore estrintsekoetan, argiaren 

aldaketa edo modulazioa zuntzetik kanpo dagoen efektu batek (edo 

zenbaitek) eragiten du. Sentsore hauen bidez bibrazioa, biraketa, 

desplazamendua, abiadura, azelerazioa, momentua eta bihurdura 

bezalako parametroak zehaztasun handiz neur daitezke [9]. 

Banaketa espazialaren arabera, sentsore optikoak hiru mota 

desberdinetan sailka daitezke. Puntu bakarreko sentsoreek zuntzaren 

puntu diskretu batean ematen dute neurketa, banatuko sentsoreek 

zuntz osoan zehar neurketak emateko gai diren bitartean [10]. 

Erdibideko irtenbide gisa, kuasibanatutako sentsoreak aurki daitezke 

[11]. Sentsore horiek hainbat sentsoreren erantzuna multiplexatuz 

sortzen dira, sentsore bakoitzaren neurketa lortuz. Zenbait kasutan, 

neurketaren bereizmen espazialaren beharrizanak oso zorrotzak ez 

direnean, puntu anitzeko sentsoreek banatuko sentsoreek baino 

aukera hobea dira, merkeagoak baitira eta funtzionamendu errazagoa 

baitute. 

Argian modulatzen den parametroaren arabera, honako sailkapen 

hau egin daiteke: 
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1. Intentsitatearen modulazioan oinarritutako sentsoreak: zuntzean 

zehar doan argiaren intentsitatearen aldaketan oinarritutakoak 

dira. Sortzen den aldaketa eta zuntzari aplikatutako efektuaren 

intentsitate-maila elkarren proportzionalak dira. Sentsore hauek 

komertzialki erakargarriak dira, errentagarritasunaren eta 

sinpletasunaren arteko konbinazio ona eskaintzen baitute [12]. 

 

2. Uhin-luzeraren modulazioan oinarritutako sentsoreak: sentsore 

hauek zuntzean hedatzen den argiaren uhin-luzeraren 

desplazamenduaren azterketan oinarritzen dira. Azken hori 

zuntzari aplikatutako zenbait faktorek eragiten dute. Sentsore 

hauen abantaila nagusienetakoa zuntz bakar batean 

multiplexatzeko eta egitura handietan erraz instalatzeko edota 

integratzeko gaitasuna da, hala nola urtegietan, hegazkinetan, 

zubietan, eta abar. Ezaugarri horiek erakargarri egiten ditu 

Egitura-Osasunaren Jarraipena (ingelesez Structural Health 

Monitoring edo SHM) egiteko aplikazioetan [13]. Ziur aski 

sentsore horien arteko ezagunenak zuntz optikoan grabatutako 

Bragg sareetan (ingelesez Fibre Bragg Grating edo FBG) 

oinarritutakoak dira. FBGak teknologia heldu batetan oinarrituta 

dago, urtetan zehar komertzialki eskuragarri egon dena. 

 

3. Fasearen modulazioan oinarritutako sentsoreak: teknika 

interferometrikoak erabiltzen dira bi argi-izpi koherenteren arteko 

elkarrekintzan sortzen den fase-aldaketa antzemateko. Era 

honetako sentsoreetan, izpietako bat erreferentzia gisa erabiltzen 

den bitartean, beste izpia neurtu nahi den efektuaren eraginpean 

dago. Eskema horrek neurketari sentikortasun handia ematen dio, 

nahiz eta konfigurazio konplexuak eta lerrokatze zehatzak behar 

izaten diren era egokian funtziona dezaten [14]. Mota honetako 

sentsorerik ohikoenak Mach-Zehnder, Michelson, Fabry-Perot eta 

Sagnac interferometroetan oinarritzen dira. 
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4. Polarizazioaren modulazioan oinarritutako sentsoreak: Efektu 

magneto-optikoa bezalako fenomenoen eraginez, zuntzaren 

barnean hedatzen den argiaren polarizazioaren aldaketa neurtzean 

oinarritzen dira. Ohikoa da korrontea edo presioa bezalako 

magnitudeak neurtzeko erabiltzea [15]. 

 

5. Espektroaren modulazioan oinarritutako sentsoreak: sentsore 

hauek espektroskopian oinarritzen dira, eta beraien 

funtzionamendu-printzipioa transmititutako espektroaren 

aldaketak aztertzean oinarritzen da [16]. 

 

6. Argiaren sakabanaketaren modulazioan oinarritutako sentsoreak: 

Raman, Brillouin edo Rayleigh bezalako efektuak erabiltzen dira 

sakabanatutako argiaren azterketa egiteko. Honen bitartez, 

neurtu nahi den parametroaren anplitude edota posizioa detekta 

daitezke [17]. 

 

1.1.3 Tesiaren motibazioa 

 

Tesi honen ikerketaren helburu orokorra zuntz optikoetan 

oinarritutako sentsore berriak diseinatzea eta fabrikatzea da; 

sinpleak, sendoak, funtzionatzeko errazak eta gaur egunean 

indarrean dauden soluzio optikoak edo elektronikoak baino 

errendimendu hobea eskaintzeko gai direnak. Lan honetan 

deskribatutako gailuak puntu bakarreko edo puntu anitzeko sentsore 

gisa funtzionatzeko garatu dira, industriaren testuinguru ugaritan 

ahalik eta malgutasun handienarekin inplementatzeko. 

Lan honetan aurkezten diren sentsoreak aplikazio konkretu 

bakoitzaren neurketa-eskakizun espezifikoetara moldatu dira. Hori 

dela eta, lan honetan agertzen diren sentsoreak funtzionamendu-

printzipio desberdinetan oinarritzen dira eta konfigurazio 

desberdinak dituzte neurtuko den magnitudearen eta inplementazio-
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testuinguruaren arabera, betiere beraien errendimendua 

optimizatzeko helburu argiarekin. 

Tesi honetan bi sentsore mota desberdin diseinatu, fabrikatu eta 

probatu dira. Alde batetik, turbina eta konpresore aeronautikoetan 

funtzionatzeko diseinatutako desplazamendu-sentsore optikoa dago. 

Kasu honetan neurketak kontakturik gabe gertatu behar direnez, 

islatutako argiaren intentsitatean oinarritutako sentsorea garatu da. 

Beste alde batetik, industriarako interesgarriak diren hainbat 

parametro (tenperatura, bibrazioak, kurbadura, eta abar) neurtzeko 

sentsore optikoak azaltzen dira. Azken sentsore horiek 

funtzionamendu-printzipio bera partekatzen badute ere, kasu 

konkretu bakoitzean sentsorearen konfigurazioa neurketa-baldintza 

bakoitzera moldatu izan da errendimendua optimizatzeko asmoz. 

 

1.2 Zuntz optikoetan oinarritutako 

desplazamendu-sentsore optikoa (OFDS) 

 

Atal honetan, neurrira diseinatutako zuntz optikoetan oinarritutako 

desplazamendu-sentsore optiko (OFDS) bat garatzeko prozesu osoa 

aurkezten da. Sentsore hau motor aeronautikoetan denbora errealean 

Tip Clearance deritzon parametroaren neurketa egiteko erabiliko da. 

Prozesuaren deskribapena aplikazio honetarako eskakizunak 

definituz hasten da. Jarraian sentsorea haize-tunel batetan dagoen 

eskalan egindako turbina batetan probatzen da, eta azkenik 

lortutako datu gordinen prozesamendua eta analisia dator. Horrezaz 

gain, sentsorearen funtzionamendu-printzipioaren ikuspegi 

matematikoa ere azaltzen da, bai eta sentsorearen errendimenduaren 

ebaluazioa ere sentsore komertzial baten ikuspuntutik begiratuta. 
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1.2.1 Sarrera eta ikerketaren testuingurua 

 

Atal honetan azaldutako ikerketaren helburua sentsore optiko oso 

sentikor, sinple eta sendoak garatzea da, distantzia edota 

desplazamendua bereizmen handiarekin neurtzeko gai dena. 

Neurketa horiek oso garrantzitsuak dira sektoreentzat, sentsore 

horiek normalean metrologia eta kalibrazioetarako erabiltzen baitira 

4.0 industriaren barruan [18, 19]. Azken horien adibide anitz 

kalitatearen balioztatze-prozeduretan aurki daitezke, aurreprodukzio 

prozesuetatik hasita, produkzio-osteko prozesuetara arte. Adibidez, 

automobilgintzan edo makina-erremintaren sektorean ugari 

aplikatzen dira, fabrikatutako artikuluen neurriak dagozkien 

simulazio-ereduekin alderatzeko, batik bat. OFDSek ematen duten 

neurketaren kalitate-maila esanguratsuaz gain [20], beste zenbait 

abantaila interesgarri eskaintzen dituzte industria ingurunean 

inplementatzeko, hala nola abiadura handiko neurketak, 

tenperatura-tarte zabaletan funtzionatzeko gaitasuna eta 

moldagarritasuna. Ezaugarri guzti horien konbinazioak OFDSak 

erakargarri bihurtzen ditu  "zero akats" jomugako ekoizpena lortzeko 

[21]. 

Metrologiak zeresan handia duen sektoreen artean, industria 

aeronautikoa da ziurrenik erreferentzia nagusia errendimendu eta 

fidagarritasunari dagokionez, eskakizun zorrotzenak baititu. Sektore 

hori oso zorrotza izan ohi da fabrikazio eta balioztatze-prozesuei 

dagokienez, eta, horren ondorioz, teknologia helduak erabiltzen 

dituzte, hots, fidagarritasun eta errendimendua urtetan zehar 

egiaztatuta dutenak. Horien barne termopareak edo tentsio galgak 

aurki ditzakegu, besteak beste. Sentsore hauek normalean osagai 

aeronautikoak ezaugarritu eta euren egituren osasunaren 

egiaztatzeko erabiltzen dira, elementu horiek kalte batzuk jasan 

ditzaten diseinatu baitira beren errendimenduan eraginik izan gabe 

[22]. Hori dela eta, ikuskapen zorrotzak egin behar dira balizko kalte 

horiek segurtasun-marjinen barruan mantentzeko. Testuinguru 
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horretan, ikuskapenaren kalitate-estandarrak betetzeko eta aldi 

berean ikuskatze-prozesurako behar den denbora murrizteko gai 

diren sentsoreak bilatzen dira. Azken honen arrazoia konpainien eta 

fabrikatzaileen etekinak handitzea da, osagaiak baliozkotzeko behar 

den denbora edota hegazkinak lurrean dauden denbora laburtu 

baitezakete. Horregatik guztiagatik, baldintza zorrotz horiek 

betetzeko eta aeronautika bezalako industria kontserbadore batean 

alternatiba errealista bihurtzeko gai den OFDS bat garatzea erronka 

handia da. 

Hegazkin bat osatzen duten osagai ugarien artean, motorrak osagai 

kritiko eta garestienak dira ziurrenik. 3. irudian ikus daitekeen 

moduan, elkarren jarraian muntatutako hainbat etapaz osatuta 

daude. Aire-fluxuaren norabideari erreparatzen badiogu, lehenengo 

fasea haizagailua da. Bere helburua bultzatzen duen airearen zati bat 

motorraren barrualdera bideratzea da, presio baxuko konpresorera 

bidaliz. Presio baxuko eta presio altuko konpresoreek bigarren etapa 

osatzen dute, eta hauen eginkizuna airearen presioa handitzea da, 

errekuntzaren eraginkortasuna proportzionalki handitu dadin. 

Hirugarren etapa errekuntza-ganbera da, non erregaia eta bigarren 

etapatik datorren presio altuko airea nahasten diren. Azkenik, 

laugarren etapa kokatzen da. Presio altuko eta baxuko turbinek 

osatzen dute, airearen fluxutik energia-zati bat erauzteaz arduratzen 

direnak haizagailua eta konpresoreak biraka iraun dezaten. 
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3. irudia: Jet-motako motor baten etapen eskema. Jeff Dahl, CC BY-SA 4.0, 

Wikimedia Commons-en bitartez. 

Normalean, turbina eta konpresoreen etapak besodun diskoek 

(ingelesez bladed disk edo blisk) osatzen dituzte, hau da, disko batek 

eta bertan ahokatutako beso-serie batek. Izaera honetako motor 

baten funtzionamenduan hainbat parametro kontrolatu behar dira, 

hala nola tenperatura, bibrazioak, presioa, biraketa-abiadura, etab. 

[23]. Horien artean, blisk-etan besoen bibrazioak ezaugarritzea 

berebiziko garrantzia du, motorraren eraginkortasunarekin eta 

segurtasunarekin lotura zuzena baitu. Gainera, oraingoz, motor-

fabrikatzaileak honen inguruan dituzten beharrizan guztiak asetzen 

dituen teknologia bat ez da existitzen. 

Blisk bat abiadura handian biratzen ari denean, besoek jasan 

ditzaketen bibrazioak hiru motakoak izan daitezke: erradialak, 

tangentzialak eta axialak (ikus 4. irudia). Bibrazio erradialek 

besoaren luzeran aldaketak eragiten dituzte eta, beraz, besoak 

motorraren estalkitik gertuago edo urrunago egotea eragiten dute. 

Distantzia horri (besoaren muturraren eta estalkiaren barne-

gainazalaren artekoa) Tip Clearance (TC) deritzo, eta oso parametro 

esanguratsua da motorraren segurtasunerako eta 

eraginkortasunerako. Besoen bibrazio tangentzialak airearen 

fluxuarekiko norabide perpendikularrean gertatzen dira, eta Tip 

Timing (TT) izeneko teknikaren bidez ezaugarritu ahal dira [24]. 

Metodo hori erabiliz, besoen bibrazioen anplitudea eta maiztasuna 
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banan-banan kalkulatzea eta neurtzea ahalbidetzen da. Horretarako, 

ezinbestekoa da beso bakoitzaren iritsiera-denbora neurtzea eta 

konparatzea idealki izan beharko zuenarekin. TCaren eta TTaren 

izaerak direla eta, sentsore berbera erabil liteke parametro biak 

neurtzeko [25]. Azkenik, bibrazio axialak airearen fluxuaren norabide 

berean gertatzen dira. Nahiz eta bibrazio horiek motorren 

errendimendurako garrantzitsuak izan, ikerketa-lan honen eremutik 

kanpo daude. 

  

4. irudia: a) Konpresore baten blisk batean aire-fluxuaren norabidea (gezi beltza), 

eta besoek jasaten dituzten bibrazioen norabideak kolorezko geziez adierazita. b) 

Presio baxuko turbina bateko beso baten gainean eragiten dituzten bibrazio-mota 

desberdinen norabideak kolore desberdineko geziez adierazita. 

 

1.2.2 Esparru teorikoa eta baliabide metodologikoak 

 

1.2.2.1 Tip Clearance (TC) eta Tip Timing (TT) 

terminoen definizioa 

 

Aurreko atalean aipatu den bezala, beso baten TCa, norabide 

erradialean besoaren muturretik motorraren karkasarainoko 

distantziari deritzo (ikus 5. irudia). Lasaiera horrek airearen fluxuan 

ihes bat sortzen du, motorraren funtzionamenduari laguntzen ez 

diona eta, beraz, eraginkortasuna murrizten duena [26]. Parametro 

honen garrantzia hain da handia ezen, 0.25 mm gutxitzen bada, 
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erregai-kontsumoa %1 murriztea eta ihes-gasen tenperatura 10 ºC-

tan jaistea eragiten duen, motorreko osagaien bizitza luzatuko 

lukeena [27]. Zifra horiek lehen begiratuan txikiak direla diruditen 

arren, pandemiaren aurretiko aire-trafikoaren datu globalak hartzen 

baditugu abiapuntutzat, urtean 167 milioi dolar inguru aurreztea 

ekarriko luke [28]. COVID-19 pandemiaren ondorioz, batetik 

hegazkin-konpainia askoren egoera ekonomiko zaila, eta bestetik 

pandemia aurreko hegaldi-kopurura itzultzeko prozesua motela 

izango dela ikusita, datu horiek kontuan hartzeko modukoak 

dirudite. Abantaila ekonomikoez gain, ingurumenarentzako onurak 

ere aipatu beharrekoak dira, gas eta zarata-igorpenek sortutako 

kutsadura murriztuko litzatekeelako. 

  

5. irudia: Presio baxuko turbina-etapa batetan TCaren xehetasuna. 

Arestian aipatutako ezaugarrien konbinazioa dela eta, oso 

interesgarria da industriarentzat TCa ahalik eta txikiena duen 

sistema bat integratzea, beti ere segurtasun distantzia minimo baten 

gainetik funtzionatuz, besoek estalkia gehiegi urratzeagatik gerta 

litekeen beso-hauste baten ondoriozko istripu larria ekiditeko. Halako 

sistemak TC Kontrol Sistema Aktiboak gisa ezagutzen dira, eta 

TCaren balioa aldatzea ahalbidetzen dute karkasaren espantsio 

termikoa kontuan hartuz. Horretarako, aire-fluxuaren zati bat 

karkasara birbideratzen da balbula espezifiko batzuen bitartez, TCa 

uneoro optimizatu ahal izateko eta, beraz, motorraren 

eraginkortasuna handitzeko [29]. 

2 eta 8 mm bitarteko TC balioak energia sortzeko erabiltzen diren 

turbinetan ohikoak diren arren, motor aeronautikoen TC balioak 
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gutxitan dira 3 mm baino handiagoak [30]. TC balio horiek 

motorraren funtzionamendu-erregimenaren araberakoak dira batez 

ere (aireratzea, gurutzaldi-abiadura edo lurreratzea), eta, orokorrean, 

TC balioak motorraren biraketa-abiadurarekin alderantziz 

proportzionalak direla esan daiteke: abiadura handitzen den heinean, 

TCa murriztu egiten da eta alderantziz. Hala ere, hori ez da TCan 

eragina duen faktore bakarra, osagaien zahartzeak ere garrantzia 

baitu [31, 32]. 

TCak motorraren eraginkortasunari buruzko informazioa ematen 

duen bitartean, TT izenarekin ezagutzen den teknikak blisk-en 

osasun-egoerari buruzko informazioa eskaintzen du [24]. Horretarako, 

teknika horrek besoen bibrazio tangentzialak ezaugarritzen ditu, 

nekeak eragindako balizko akatsak aurreikustea ahalbidetzen duena 

[33]. Azken hau informazio erabakigarria da motor fidagarri eta 

seguruagoak diseinatu eta garatzeko. TTak besoen okerduren 

anplitudea eta maiztasuna zehaztea ahalbidetzen du besoek 

sentsorearen posiziora iristeko behar duten denbora neurtuz eta 

puntu horretara iristeko beharko luketen denbora teorikoarekin 

alderatuz. Iritsiera denbora teorikoa besoek inolako bibrazio gabe 

daudeneko kasuan puntu berberera iristeko behar duten denbora da 

(ikus 6. irudia).  

 

6. irudia: TTaren definizioaren irudikapen eskematikoa. 
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TTa neurtzeko, hainbat sentsore instalatu behar dira estalkian 

elkarren segidan biraketa noranzkoari jarraituz, beso bakoitzaren 

bibrazioa bere biraketa bidearen atal zehatz batean zehar jarraitzeko 

[34]. Neurtutako iritsiera denboraren eta dagokion balio teorikoaren 

arteko aldea jakinda, bai eta biraketa-abiadura eta turbinaren 

erradioa ere, besoen bibrazioen anplitudea kalkula daiteke. Datu 

horiek prozesatuz gero, motorraren beste zenbait parametro 

garrantzitsu ere ezagutu daitezke, hala nola besoen bibrazioen 

maiztasuna, diskoaren diametro-noduluen kopurua, etab. 

 

1.2.2.2 TCa eta TTa neurtzeko teknologiak 

 

TC eta TT neurketak besoek abiadura handian biratzen ari diren 

testuinguruan egin behar dira. Beraz, kontakturik gabeko neurketak 

emateko gai diren sentsoreak behar dira besoen mugimendu 

naturalean eraginik ez izateko edo nolabait haien mugimendua ez 

baldintzatzeko. Horretarako, motore aeronautikoen fabrikatzaileek 

kontaktu gabeko neurketa sentsore-mota anitz garatu dituzte, 

teknologia desberdinetan oinarrituta daudenak. Horien artean, 

kapazitiboak, induktiboak eta mikrouhinetan eta zuntz optikoetan 

oinarritutako sentsoreak nabarmendu behar dira. 

Sentsore kapazitiboak TC sentsorerik hedatuenak dira ziur aski, 

eskaintzen duten sinpletasun, sendotasun eta errentagarritasunari 

esker. Haien eragozpen nagusiak bereizmen espazial baxua, banda-

zabalera txikia eta funtzionamendu tarte txikiak dira. Horrez gain, 

ondo funtzionatzeko, besoak material eroalez eginda egon behar dira 

[35]. Sentsore induktiboak arinak eta errentagarriak dira, eta 

bitartean oztoporen bat dagoenean ere neurtzeko gai dira. Hala ere, 

haien konfigurazioa konplexua izan ohi da, kalibrazio-kurba aldez 

aurretik ezagutu beharreko faktore askoren menpe baitago, hala nola 

tenperatura, besoaren forma edo ardatzaren biraketa-abiadura [36]. 

Deskarga-zundetan oinarritutako sentsoreak aurreko teknologiaren 
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moldaketa arrunt bat dira. Horrelako sentsoreek besoak material 

eroalez osatua izatera behartzen dituzte, eta blisk-ean beso guztien 

artean gertatzen den TC baliorik baxuena soilik ematen dute [37].  

Mikrouhin-sentsoreak tenperatura altuetan zehaztasun handiz 

funtzionatzeko gai dira, eta turbinaren errekuntza hondakinek ez 

daukate inolako eraginik haiengan. Teknologia horren eragozpen 

nagusia prezioa da, seinaleak prozesatzeko ekipamendu konplexu eta 

astunak behar baititu behar bezala funtzionatzeko [38, 39]. 

Aipatutako eragozpenetariko asko zuntz optikoetan oinarritutako 

sentsoreek gaindi ditzakete, banda-zabalera, bereizmen eta 

sentikortasun handiak eskaintzen baitituzte [25]. Horrez gain, 

moldakortasun handia dute eta ez dute konfigurazio konplexurik 

behar funtzionatzeko. Hala ere, beraien eragozpen nagusia daukaten 

errekuntza hondakinekiko sentikortasun handia da, argia aztertuz 

funtzionatzen baitute. Beraz, zunda-burua kutsatuta badago, haien 

errendimenduan eragina izan dezake. Oztopo hori konpondu behar 

da mota honetako sentsoreak denbora luzez errekuntza ematen den 

turbinetan erabili ahal izateko. Hala ere, lan honetako testuinguruan, 

non probak errekuntza gabeko haize-tunel batean egin diren, sentsore 

optikoak dira soluziorik onena, ez baitago tunel barruan 

errendimenduan eragina izan dezakeen errekuntza hondakinik. 

 

1.2.2.3 Zuntz optikoetan oinarritutako TC- eta TT- 

sentsoreak 

 

Zuntz optikoetan oinarritutako sentsoreen artean, hiru konfigurazio 

nagusi daude distantzia-neurketa zehatzak egiteko: sentsore 

interferometrikoak, Doppler efektuan oinarritutako sentsoreak eta 

islatutako argiaren intentsitate-modulazioan oinarritutako 

sentsoreak. Sentsore interferometrikoek bereizmen eta sentikortasun 

handia eskaintzen dute, nahiz eta, ondo funtzionatzeko, normalean 

argi-iturri koherentea eta konfigurazio optiko oso egonkorra izan 

behar duten [40]. Baldintza horiek konplikatu egiten dute era 
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horretako sentsoreak bibrazioen eraginpean dauden turbinetan 

instalatzea. Doppler efektuan oinarritutako sentsoreen 

funtzionamendua, besoen biraketazko mugimenduak islatutako 

argiaren maiztasunean eragiten duen aldaketa aztertzean datza, 

seinalea prozesatu ondoren distantzia baloreetara itzul daitekeena 

hain zuzen ere [41]. Bereizmen eta sentikortasun handia eskaintzen 

dute, nahiz eta beharrezkoak diren elementu desberdinak garestiak 

diren. Azkenik, islatutako argiaren intentsitate-modulazioan 

oinarritutakoak bi zuntz mota behar ditu, bata igorlea eta bestea 

hartzailea. Zuntz igorleak igorritako argia besoaren kontra talka egin 

eta gero, argi islatuaren zati bat zuntz hartzaileek biltzen dute. 

Bildutako argiaren intentsitatea aztertuz, sentsoretik beso-

muturrerainoko distantzia era zehatzean determina daiteke [42]. 

Sentsore hauek oso errazak eta moldakorrak dira. Izan ere, haien 

errendimendua optimizatzeko edo erantzun-kurba zehatz bat 

lortzeko, erraz egoki daitezke, bertan dauden zuntz igorle eta 

hartzaileen antolamendua aldatuz. Mota horretako sentsore-

konfigurazio arruntenen laburpena 7. irudian erakusten da, 

dagozkien erantzun-kurbekin batera. Igorle eta hartzaile gisa 

funtzionatzen duen zuntz bakarraren kasuan izan ezik, jokabide ia-

linealeko bi eskualde desberdin antzeman daitezke erantzun-kurban: 

lehenengo eskualdeak (hemendik aurrera 1. eskualdea deituko dena) 

malda positiboa du, eta bigarren eskualdeak (hemendik aurrera 2. 

eskualdea deituko dena) berriz, malda negatiboa. 1. eskualdeak 

sentikortasun eta linealtasun handiagoa erakusten du 2. 

eskualdearekin alderatuta, nahiz eta lehenengoaren kasuan erregimen 

linealean lan egiteko distantzia-tartea nabarmen txikiagoa izan.  
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7. irudia: Intentsitatearen modulazioan oinarritutako sentsoreen erantzun-kurba 

tipikoak zuntz-antolaketa desberdinetarako. Kolore gorriak eta urdinak zuntz 

igorle eta hartzaileak adierazten dituzte, hurrenez hurren. 

Aipatutako konfigurazio optikoetako bat hautatzea neurketa-

eskakizunen araberakoa izango da. Lan honen kasuan, neurketa-

baldintzak jarraian azaltzen dira. 

 

1.2.2 Hipotesia eta helburuak 

 

1.2.2.1 Errendimendu betekizunak 

 

Ikerketa honetan erabilitako OFDSa, gure ikerketa kolaboratzaile 

den Centro de Tecnologías Aeronáuticas (CTA) zentroak 

definitutako zehaztapenen arabera diseinatu zen. CTAren 

instalazioak Zamudion (Bizkaia) dagoen Bizkaiko Zientzia eta 

Teknologia Parkean daude, APG/FAT Fotonika Aplikatuko 

Taldeko laborategitik 20 km ingurura, ikerketa-kideen arteko 

komunikazioa eta berrelikadura nabarmen erraztu zituena. Bertako 

instalazioetan haize-tunel bat  dago, non motor aeronautikoen 

eskalan egindako turbinak fabrikatzen eta probatzen diren. 

Aurreko paragrafoan aipatutako haize-tunela etengabeko aire fluxu 

transonikoa duen proba-bankua da, non presioa, tenperatura eta 

masa-fluxua bezalako parametroak banaka kontrola daitezkeen. 
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Modu horretan, Mach eta Reynolds zenbakiak modu independentean 

alda daitezke motorraren aireratze, gurutzaldi-abiadura eta 

lurreratze baldintzak ahalik eta hoberen simulatzeko. Haize-tunelak 

metro bateko diametroa du eta 7800 rpm-ra biratzeko gai den ardatz 

bakarra du (ikus 8. irudia). Airea hornitzeko, 3.7 eta 5 MW-ko bi 

energia konpresore elektriko erabiltzen dira. Konpresore horiek 

gehienez 18 kg/s-ko masa-emaria eta 4.5 barreko presioa hornitzeko 

gai dira. Horrez gain, tunelaren barruan, tenperatura giro 

tenperaturatik 160 ºC-ra arte doi daiteke. Aipatzekoa da haize-tunela 

800 presio-seinale eta 200 tenperatura-seinale lortzeko ere prestatuta 

dagoela, baita ardatzaren biraketa-abiadura ezagutzeko aukera 

ematen duen Once Per Revolution (OPR) seinalea neurtzeko ere [43]. 

Lehen esan den bezala, sentsoreak probatu diren haize-tunelean ez 

dago errekuntzarik. Horrenbestez, testuinguru honetan, teknologia 

optikoa da TCaren neurketetarako aukerarik egokiena, zuntz 

optikoak erabiltzearen abantaila guztiak aprobetxa baitaitezke 

sentsorearen puntan kutsaduraren eragozpen kritikorik gabe. 

Garrantzitsua da OFDSa beirazko zuntzez egitea, 160 ºC-tan 

polimerozko zuntz optikoen funtzionamendu-eremutik kanpo 

baitago. Horrez gain, beiraz egindako zuntzak aukeratzeko arrazoi 

gehigarria, tenperatura altuagoetan ere erabilgarria izango den 

OFDSa garatzeko asmoa da. 

 

8. irudia: a) Probak egiteko erabili den haize-tunela. Errotorearen kokapena 

puntu-lerro gorriz osatutako laukizuzenak adierazten du. b) Haize-tunelean 

turbina-etapa baten muntaketaren xehetasuna. 
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Motor aeronautiko batetan, errekuntza ganbera eta gero, elkarren 

jarraian muntatuko turbina talde bat aurki daiteke. Horietako 

bakoitza errotore eta estatore batez osatuta dago. Estatorea 

karkasara finkatuta eta besoz osatua dago, eta bere helburua airearen 

fluxuaren abiadura handitzea eta errotorera birbideratzea da. 

Errotorea ardatzera finkatuta dago eta abiadura handian biratzen ari 

diren besoez osatuta dago. Bere helburua estatoretik datorren aire 

fluxutik energia ateratzea da. Turbina-karkasaren barneko gainazala 

material urragarri batez estalita dago. Geruza hori besoen 

biraketaren ondorioz higatu egiten da. Izan ere, turbinaren besoak 

estalkitik ahalik eta hurbilen biratzeko diseinatuta daude, karkasaren 

eta besoen artean ahalik eta estankotasun hoberena lortzeko.  

CTAko haize-tunelean, turbinen etapa desberdinak probatzen dira. 

TC neurketak egiteko, sentsoreak estalkian erradialki instalatuta 

daude errotorearen zentrorantz begira eta biratzen ari diren besoekin 

lerrokatuta (ikus 9. irudia). Besoek jasaten dituzten bibrazioak 

kontuan hartuta, sentsoreak instalatzeko karkasan egin behar diren 

zulo txikiak zehazki egin behar dira lerrokatzea bermatzeko eta 

sentsorearen errendimendua optimizatzeko. 

 

9. irudia: a) Errotore baten 3D eredua. Puntu gorriak estalkian zunda sartzeko 

egin den zuloaren posizioa adierazten du. Puntu-lerro beltzak sentsorea norantz 

zuzenduta dagoen adierazten du. b) Zunda optikoa estalkian egindako zuloan nola 

sartu eta haize-tuneleko karkasan nola instalatu denaren xehetasuna. 

Besoen punten diseinuak turbina bakoitzerako eta turbinaren etapa 

bakoitzerako ere espezifikoak dira. Hortaz, ohikoa da tamaina eta 
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forma aldetik besoen punta desberdinak izatea turbina beraren fase 

desberdinetan. Normalean, besoen puntek punta zigilatzaile biren 

artean kokatutako gainazal lau-mehe batez osatuta daude. Punta 

zigilatzaileak bi ertz zorrotz eta mehe dira (1 mm-tik beherako 

zabalera dute), eta karkasan jarritako urratzeko materialetik ahalik 

eta gertuen egoteko edota marratu ahal izateko diseinatuta daude. 

Punta bien arteko plataforma lauak, berriz, besoen fabrikazio-

prozesuaren kalitatearen ebaluazioa egiteko markatzaile gisa 

jokatzen du (ikus 10. irudia). 

 

10. irudia: Turbinaren beso baten punta generiko baten 3D eredua. 

OFDSak hornitutako neurketak CTArako baliozkoak eta 

baliagarriak izan daitezen, proba guztietan bete beharreko 

errendimendu baldintza batzuk zehaztu zituzten: 

 Ukipenik gabeko neurketa egin besoen portaera mekanikoa ez 

oztopatzeko. 

 Gutxienez 25 μm-tako TC zehaztasuna neurketetan. 

 Bereizmen handia. Sentsorea besoak banan-banan 

detektatzeko gai izan behar da, banan-banan aztertu eta 

ezohiko balioak dituztenak zalantzarik gabe identifikatzeko. 

 Sentikortasun eta bereizmen handia neurketetan, besoetako 

inperfekzio edo akatsak antzeman ahal izateko. 

 Gutxienez 1 mm-ko luzera duen eskualde lineala erantzun-

kurban. Behin betiko interes-tartea probatuko den turbinak 

definituko du. 
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 Sentsorearen sendotasuna neurketak burutuko diren ingurune 

erasokorrari aurre egiteko, batez ere bibrazioei dagokienez. 

 Instalaziorako sinpletasun eta erraztasuna. Zuntz-sortaz ez 

ezik, gainerako hardwareak ahalik eta arruntena izan beharko 

lirateke, erraz eta azkar ordezkatu ahal izateko, hondatu edo 

apurtzen badira. 

 Errentagarritasun ekonomikoa produktu komertziala 

garatzeko asmoarekin. Zuntz-sortaz aparte, ez luke neurrira 

egindako beste hardwarerik egon behar, eta zuntz-sorta ere 

zuntz estandarrez osatua egon beharko litzateke. 

Aipatutako betebehar guztiak kontuan hartuta, TCaren 

neurketarako OFDS bat diseinatzeko orduan, islatutako argiaren 

intentsitate-modulazioan oinarritutako sentsore optikoak 

egokienak zirela erabaki zen. Sentsore mota horiek duten 

konfigurazio anitzen artean (ikus 7. irudia), zuntz ardazkideen 

antolamendua hautatu zen. Nahiz eta konfigurazio hori ez den 

onena erantzun-kurbaren luzerari dagokionez [44], duen simetria 

zirkularra dela eta, errotorearen besoekin lerrokatzearen arazoa 

ekiditen da. Hau oso ezaugarri garrantzitsua da, estalkian 

instalazioa nabarmen errazten duelako, CTAren eskakizunetariko 

bati erantzun egokia emanez. Horrez gain, zuntz hartzailez 

osatutako eraztun zentrokide independenteetan oinarritutako 

konfigurazioa aukeratu zen (ikus 11. irudia). Modu honetan, bi 

eraztunetatik jasotako seinale diferentziala kontuan hartuz, 

besoen islagarritasunean egondako aldaketak, argi iturrian 

izandako gorabeherak edo potentzia optikoaren galerak izan 

ditzaketen efektuak leundu edo gutxi daitezke. 
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11. irudia: Lan honetan TCaren neurketarako garatutako OFDSaren geometria 

generikoa. 

Literatura espezializatuan erraza da distantzia neurtzeko mota 

horretako sentsore asko aurkitzea [45-48]. Sentsore horietako 

gehienak laborategian probatu dira ispilu bat gainazal islatzaile gisa 

hartuta, eta horietako batzuk espezifikoki egokitu dira ingurune 

kontrolatuetan dauden turbina-simulagailuetan funtzionatzeko [49-

51]. Hala ere, oso gutxi probatu dira benetako motor baten 

baldintzapean. Kasu gutxi horietan, erantzun-kurbaren 2. eskualdean 

jardun zuten, hau da, 1. eskualdea baino luzeagoa dena baina 

bereizmen eta sentikortasun gutxiago eskaintzen dituena [25]; edo 1. 

eskualdean jardun zuten egoera oso zehatz eta berezietan, non TC 

aldaketa oso txikiak espero ziren [52]. Horrez gain, kasu horietan, 

neurketak ez ziren denbora errealean egin, baizik eta emaitzak 

lortzeko seinalea postprozesatu behar izan zen, denbora errealeko 

prebentziozko mantentze-sistema gisa aritzeko gaitasuna mugatuz. 

Muga guzti horiek gainditzeko, lan honetan, 1. eskualdean 

funtzionatzeko eta denbora errealean TCa neurtu eta haren balioak 

emateko gai den OFDSaren diseinua deskribatzen da, 2. eskualdearen 

erabilera soilik egoera ez hain zorrotzetarako edo konparazio gisa 

utziz. Zuntz optikoaren sorta diseinatzeko erabili den eredu 

matematikoa beheko atalean azaltzen da, baita OFDS guztiaren 

hardware konfigurazioa ere. Ikerketa honi buruzko informazio osoa 

eta bere emaitzen laburpena eranskineko 1. artikuluan, 1.2.3 

atalean eta [53] erreferentzian agertzen dira, hain zuzen ere. 
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1.2.2.2 Eredu matematikoa 

 

OFDSeko zuntz-sortaren erantzun-iragarpenik zehatzena lortzeko, 

funtsezko parametroa zuntz igorlearentzat (TF) aukeratutako 

hedapen-eredua da. Intentsitate-modulazioan oinarritutako 

OFDStan non zuntzak axialki lerrokatuta eta guztiz argiztatuta 

dauden neurketa guztian zehar, argiaren hedapen gausstarraren 

eredua iragarpen zehatzak egiteko balio du. Hala ere, zuntz 

hartzaileen argiztapena partziala den OFDSetarako, lan honetan 

gertatzen den bezala, argiaren hedapen gausstarraren ereduak ez du 

hainbesteko zehaztasunik eskaintzen eta hedapen kuasi-

gausstarraren ereduak ezarritako hurbiltze matematikoa beharrezkoa 

da [44, 54]. Azken horrek Gaussen eredua moldatu egiten du 

perturbazio-parametro deiturikoak sartzeko [55], bi izpien hedapen-

ereduen arteko desberdintasuna adierazten dutenak.  

Izpien hedapen-ereduaren adierazpen matematikoak zuntzaren 

irteeran definitzen den distantziaren araberako eremu optikoaren 

erradio efektiboa definitzen du (q(d)). TF eta zuntz hartzailearen 

(RF) muturrak plano berean daudela kontuan izanik, optika 

geometrikoaren bidez, d distantzia jakin batean islatutako eta 

ondoren bildutako argia distantzia bikoitzera (2d) kokatutako zuntz 

bakar batek biltzen duenaren baliokidea dela ziurta daiteke (ikus 12. 

irudia). 

  

12. irudia: Argi-izpiek definitutako geometriaren eskema. 

Beraz, zuntzaren irteerako eremu optikoaren erradio efektiboa honela 

adieraz daiteke: 
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(1) 

 

non rT eta NA TFaren nukleoaren erradioa eta zenbakizko irekidura 

diren, hurrenez hurren, eta σ, ζ eta η argi iturriaren eta TFaren 

ezaugarriekin erlazioa duten argiaren intentsitatearen banaketa 

erregulatzen duten hiru parametroak diren [44]. TF eta RF bakar 

baten kasurako, jasotako argi-intentsitate osoaren kalkulua RFaren 

nukleoaren azalera osoan zehar integratuz lortzen da. Integral horren 

emaitza honela idatz daiteke: 

2 2

0

2 2
( ) exp

(2 ) (2 )

RP r
P d

q d q d

  
  

 

 (2) 

 

Bertan, 𝑓 = [𝑟𝑅
2 𝑞2 (2𝑑)⁄ ]exp [−𝜌2 𝑞2 (2𝑑)⁄ ] adierazpenari zuntz 

bikote baten berezko modulazio funtzioa deitzen badiogu, 2. ekuazioa 

honela laburbil daiteke: 

 0( ) , , , ,T RP d P f r r NA d   (3) 

 

non δ ituaren gainazaleko islapen mailaren adierazle, P0 TFtik 

ateratzen den potentzia, rR RFren nukleoaren erradioa eta ρ RF eta 

TF ardatzen arteko distantzia diren. Arestian azaldu den bezala, 

zuntz-sorta diseinatzeko aukeratu den banaketa ardazkidearen 

ondorioz, RFz osatutako eraztun bakoitzak zuntz-mota berdinen 

kopuru finitua du (nR) eta TF bakarra dago (ikus 11. irudia). Honen 

ondorioz, eraztun bakoitzaren TF-RF arteko elkarreragin 

bakoitzaren batuketa-eredua kontuan hartu behar da: 

   ( ) 0 0

1 1

( ) , , , , , , , , ,
R Rn n

i d T R i T R R i

i i

P d P P f r r NA d P F r r n NA d   
 

     (4) 

 

non 𝐹 = ∑ 𝑓(𝑟𝑇, 𝑟𝑅 , 𝑛𝑅 , 𝜌𝑖 , 𝑁𝐴, 𝑑)
𝑛𝑅
𝑖=1  zuntz-sorta baten berezko 

modulazioaren funtzio gisa definitzen den. 4. ekuaziotik ondoriozta 
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daitekeenez, bildutako potentziak gainazaleko islapenarekiko eta 

igorritako potentziarekiko menpekotasun handia du TF bakarraren 

eta RFz osatutako eraztun baten konfigurazioan. Menpekotasun hori 

gutxitzeko edo ekiditeko, zuntzez osatutako bi eraztun zentrokidetan 

oinarritutako banaketa ezarri zen eraztun bakoitzetik bildutako 

argiaren arteko erlazioa lortzeko. 

 

0 11 1

2 0 2 2

P FP F
Ratio

P P F F




    

(5) 

 

non 1 eta 2 azpiindizedun terminoek barneko eta kanpoko 

eraztunekin erlazionatuta dauden, hurrenez hurren. 5. ekuaziotik 

ondoriozta daitekeenez, konfigurazio hau erabiliz, 

islagarritasunarekiko eta igorritako potentziarekiko menpekotasuna 

ekiditen da. Horrez gain, kontuan hartuta Fn agertzen diren rT, rR, 

nR eta NA parametroak zuntz-sorta osatzen duten zuntzek 

determinatzen dituztela, berezko modulazio funtzioa ρ zuntzen 

ardatzen arteko distantzian eta d ituarekiko distantziaren menpe 

egongo dira. TCrako neurtu nahi den balioa d denez, zuntz-sortaren 

diseinuaren funtsezko parametroa ρ dela ondoriozta daiteke. Behin ρ 

finkatuta, bildutako potentziaren ratioa iturako distantziaren 

araberakoa izango da soilik (d). 

Eraztun bakoitzetik bildutako argi-intentsitatea anplifikatu eta 

tentsiora bihurtzeko, RFz osatutako eraztun bakoitza irabazi 

aldakorreko (G) fotodetektore batera (PD) konektatu zen: PD1 

barneko RF eraztunera eta PD2 kanpoko RF eraztunera, hurrenez 

hurren. PD bakoitzak laserrak igorritako uhin-luzeraren  araberako 

sentikortasun-balio zehatz bat du (R (λ)) eta hautatutako 

irabaziaren araberako transinpedantzia-balio espezifiko bat (T(G)). 

( )* ( )* ( )PDV R T G P d  (6) 
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Era honetan, bi eraztun zentrokideren konfiguraziorako, bi eraztunen 

arteko tentsioaren erlazioa honela adieraz daiteke: 

 

2 2 2 2 2

1 1 1 1 1

( )* ( )* ( ) ( )* ( ) ( )
*

( )* ( )* ( ) ( )* ( ) ( )

R T G F d T G F d F d
Ratio K

R T G F d T G F d F d




    

(7) 

 

non 1 eta 2 azpiindizea duten terminoak barneko eta kanpoko 

eraztunekin erlazionatuta dauden, hurrenez hurren. Igorritako uhin-

luzera berdina denez bi eraztunetarako, sentikortasun-balioari 

buruzko terminoa (R (λ)) sinplifika daiteke. 7. ekuaziotik ondoriozta 

daiteke ratioa eraztunetara konektatutako PDen irabazien arteko 

zatiduraren (K) eta bi F funtzioen arteko zatiduraren araberakoa 

izango dela, azken hau zuntzetatik itura dagoen distantziaren (d) 

menpe soilik dagoena. Horrek esan nahi du argi-iturrien gorabeherek, 

zuntzean dauden galerek edota besoen islagarritasunaren aldaketek 

ratioan ez dutela eraginik izango [49, 56]. Era honetan, neurtutako 

tentsioen eta distantziaren arteko erlazioa erraztasunez ezar daiteke. 

Aipatutako hurbiltze matematikoa Matlab MathWorks-en 

inplementatu zen zuntz, geometria eta PDen irabazi desberdinak 

zuten OFDSen erantzun-kurbak simulatzeko, CTA gure bazkidearen 

eskakizunak betetzen zituen, bizitza errealean fabrikatu eta haize-

tunelean neurketak egiteko erabil zitekeen konfigurazioa lortzeko. 

Horretarako, OFDSaren zenbait propietate finkatu ziren, hala nola 

660 nm-tako laserra erabiltzea, zuntz-sorta maila-indizeko zuntz 

optikoez eginda egotea (σ = 1) eta TFa SMF (NA = 0,12 eta rT = 

2,15 μm) izatea 660 nm-tan. Ezaugarri horiek praktikotasunagatik 

erabaki ziren: TF gisa SMF bat erabiliz, potentzia banaketan eragina 

izan dezakeen edozein zarata modal edo pikarda txikiak agertzea 

ekiditen da [42], eta ikusgai den uhin-luzera bat erabiliz, sentsoreak 

nora apuntatzen duen egiazta daiteke. Gainera, ezaugarri horiek 

dituzten osagaien prezioa txikiagoa da uhin-luzera luzeagoentzako 

moldatuta dagoenekin alderatuta, eta horrek sentsorizazio-sistema 

merketu egiten du. 
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Hurrengo atalean erakutsiko den bezala, lan honetan garatutako 

simulazio-programak zuntz-sortak diseinatzeko eta hauen erantzun-

kurbak fabrikatu aurretik aurreikusteko oso tresna indartsua eta 

erabilgarria dela frogatu zuen, azken honek emandako emaitzak 

CTAk emandako zehaztapenen arabera fabrikatu ziren gailu fisikoek 

emandakoengatik gertu egon baitziren. 

Gainontzeko neurketa sistemari dagokionez, honako hauek osatzen 

dute: zuntz bati akoplatuta dagoen 660 nm-tako uhin-luzera duen 

laser iturri bat (Thorlabs S4FC), RFz osaturiko eraztun bakoitzerako 

irabazi aldakorreko PD bat (Thorlabs PDA100A-EC), eta tentsio-

datuak abiadura handian eskuratzeko txartel bat (National 

Instruments 6366 USB, 2 MS/s), USB bidez ordenagailu eramangarri 

batera konektatzen dena (HP Elitebook 840 g3). Datuak 

prozesatzeko, neurrira egindako LabVIEW programa bat garatu zen. 

Programa horri esker, TCaren balioak denbora errealean ikusi eta 

seinale gordina disko zurrunean gorde ahal izan da. Azken hau 

iraupen luzeko probetarako ezaugarri garrantzitsu bat da, datu-

kopuru handiko fitxategiak sortzen baitira, GB tamainakoak. 

 

1.2.3 Laburpena eta emaitzak 

 

1.2.3.1 Besoen zigilatze-puntari zuzenduta 

 

Puntu honetan, “Design, Fabrication and Testing of a High-Sensitive 

Fibre Sensor for Tip Clearance Measurements” artikuluaren 

laburpen bat azaltzen da. Artikulu hau Sensors aldizkarian argitaratu 

zen 2018ko abuztuan eta tesiaren eranskinaren atalean dago 1. 

artikulu gisa xehetasun gehiago kontsultatzeko. 

 

Simulazio-programak emandako emaitzen eta ezaugarrien arabera 

konfiguratu zen eta 1. eskualdean funtzionatzen zuen lehen OFDSa 

92 besoz osatutako turbina batean inplementatu zen. Turbina horrek 
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1 mm-tik beherako TC-aldaketak eta gehienez 6000 rpm-ra biratuko 

zuela espero zen. Karkasan egindako zuloen diseinuak, zuntz-sorta 

besoen zigilatze-puntetara zuzenduta (0,7 mm inguruko zabalera 

dutenak eta urradura-materialetik gertu edota urratzeko diseinatuta 

daudenak) instalatzera behartu zuen. Besoen puntek duten 

plataforma lauarekin alderatuta, zigilatze-puntek islatutako seinale 

oso baxua sortzen dute (ikus 13. irudia). Errealitate hori funtsezkoa 

izan zen zuntz-sortaren diseinuan, igorritako potentzian eta PDen 

irabazien konfigurazioan, batik bat. Adibidez, errotorearen eta zuntz-

sortaren funtzionamendu segurua bermatzeko eta beraien integritate 

fisikoa arriskuan ez jartzeko, azken honen diseinua planteatzerakoan, 

bere erantzun-kurbaren 1. eskualdea 2.8 mm-tako distantzian hastea 

determinatu zen, zeharo balio handiagoa ohiko balioekin konparatuz 

gero. 

 

13. irudia: Neurketarako baldintzen irudikapen eskematikoa. 

Neurketa hauetarako OFDS konfiguraziorik egokiena honako hau 

izan zen: zuntz-sortari dagokionez, RFen barruko eraztuna 5 zuntz 

optikoz osatu eta sortaren erditik 200 μm-tako erradioan kokatu zen, 

RFen kanpoko eraztuna, berriz, 17 zuntz optikoz osatu eta 930 μm-

tako erradioan kokatu zen (ikus 14. irudia). RF guztiak 0.2-ko NA 

zuten zuntz moduanizdunak jarri ziren, barruko eta kanpoko 

eraztunekoak 200 μm-tako eta 300 μm-tako diametrokoak izanik, 

hurrenez hurren. Igorritako potentziari dagokionez, 50 mW-tan 

ezarri zen bere balioa, islatutako argiaren intentsitatea nahikoa izan 

zedin bermatzeko. PDen irabazien konfigurazioari dagokionez, 10 eta 
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40 dB-tan ezarri zen barneko eta kanpoko eraztunetarako, hurrenez 

hurren, PDek duten saturazio-balioaren azpitik mantentzeko eta 

eskuratze-txartelaren tentsio eskala osoan zehar (0-5 V) tentsio-

balioak sortzeko. 

 

14. irudia: Zunda-puntaren amaierako argazkia eta fabrikatutako zuntz-sortaren 

eskema. 

OFDSaren kalibrazioa laborategian egin zen, turbinaren ordezko 

beso baten zigilatze-punta itu gisa hartuta, turbinan egingo ziren 

neurketa-baldintzetatik ahalik eta hurbilen egoteko. Kalibrazioa 

laborategira eramatearen arrazoia zuntz-sorta eta zigilatze-punten 

arteko lerrokatzea turbina abiadura handian biratzen ari zenean 

soilik emango zelako zen. Turbina geldirik zegoenean ez zegoen 

inolako lerrokadurarik, eta horrek ezinezkoa egiten zuen sentsorea 

bertan kalibratzea karkasan instalatu ondoren. 1. eskualderako, 

kalibrazio esperimentalean lortutako kurbaren eta simulazio-

programak emandakoaren arteko alde txikia 15. irudian ageri da, non 

antzeman daitekeen bi kurben arteko aldea ez dela inoiz %1.5 baino 

handiagoa. 
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15. irudia: 1. eskualderako kalibrazio-kurba simulatua eta esperimentala. 

15. irudian agertzen den kurba esperimentalaren egokitzapen lineala 

2.8 mm-tan hasten da, eta 4 mm-taraino hedatzen da, 0.997-ko 

Pearsonen korrelazio koefizientearekin eta 61.73 mm-1-ko 

sentikortasunarekin. 

Zunda optikoa turbinan instalatzeko, mikrometro batez gidatutako 

egokitzaile batean sartu zen (ikus 16. irudia). Horren ondoren, 

egokitzailea estalkian sartu eta finkatu zen  helburu horretarako 

egindako zulo erradiala erabiliz (ikus 9b. irudia). 

 

16. irudia: a) Zunda optikoa turbinan muntatzeko erabilitako egokitzailea. b) 

Zunda optikoaren xehetasuna egokitzailearen babes-hodiaren barruan.. 

Guzti horri (egokitzailea eta 1. eskualdearen funtzionamendu-

tartearen kokapena) esker, sentsorea geruza urragarriaren barruan 

kokatu zen, besoen puntetatik 3.2 mm-tako distantziara. Distantzia 

hori erantzun-kurbaren 1. eskualdeko erdiko puntuarekin bat egiten 

du (ikus 15. irudia). Konfigurazio horri esker, batetik eskualde 

linealean funtzionatzea, eta bestetik bai besoak baita zunda optikoa 
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ere babestea, bermatzen zen. TC balioak estaldurak duen material 

hondagarriaren amaierarekiko ematen direnez, TC balioa 

sentsorearen neurketari 2.74 mm kenduz kalkulatu zen (zundaren 

puntatik gainazal islatzailera arteko distantzia), 17. irudian 

erakusten den moduan. 

  

17. irudia: Karkasan instalatutako zunda optikoaren kokapena eta TCaren 

definizioa. 

Probak turbinaren Lan-Puntu desberdinetarako (WP edo Working 

Point ingelesez) egin ziren eta egun desberdinetan zehar errepikatu 

ziren. WP bakoitzerako, haize-tuneleko biraketa-abiadura, presioa 

eta abar bezalako parametroak aldatu zituzten CTAko teknikariek, 

motorraren intereseko egoera zehatzak simulatzeko. Motorraren bira 

bakoitza bi metodo desberdinekin neurtu zen besoak egokiro 

identifikatzeko helburuarekin: erreferentzia gisa hartu zen islapen-

eredu berezi bateko beso baten bidez, eta ardatzetik lortutako 

bibrazio gabeko seinale egonkor (OPR) baten bidez. Proba osoan 

zehar, errotorean dauden 92 besoen seinale-ereduak banan-banan 

identifikatu ziren, baita haien arteko tartea ere (interlockak) (ikus 

18. irudia). 
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18. irudia: Probetan zehar eskuratutako seinaleen adibidea. Gorriz 

nabarmendutako zatia erreferentzia gisa erabili zen islapen eredu berezia zuen 

besoari dagokio. 

Beso bakoitza banan-banan aztertzeko, TCa beso  bakoitzaren datu-

multzo osoaren erdiko laginetik hasita, inguruko %50-en laginez 

osaturiko datu-multzoaren batez-besteko balioa bezala definitu zen. 

Definizio horren arabera, kasurik okerrenean ere, TCaren 

aldakortasuna 20 μm-takoa zen gutxi-gorabehera WP beraren 

barruan, eta 92 besoen batez-besteko balioa 5 μm-tik beherakoa. 

Horrez gain, TC balio oso txikiak edo ezohiko balioak zituzten besoak 

identifikatzea posible izan zen, besoen fabrikazio edo instalazio-

prozesuan akatsen bat zegoela adieraz zezakeena eta turbinaren 

segurtasunerako arriskutsua izan zitekeena. 19. irudian adierazitakoa  

azken honen adibide bat da, 4258 rpm-ko WPari dagokionez, 16, 38, 

43, 51 eta 69. besoek duten TC balioek gainazal urragarritik gertu 

zeudela adierazten baitzuten eta beraz, arretaz kontrolatu behar 

zirela. 
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19. irudia: Beso bakoitzari dagozkion TC eta desbiderapen estandarraren balioak 

4258 rpm-ko WPan 1100 bira eman ondoren. 

OFDS honek ematen duen bereizmen eta sentsibilitate handiari 

esker, besoen analisi indibidualizatua ahalbidetu zen, bai eta TCaren 

eta errotorearen biraketa-abiadura alderantziz proportzionalak direla 

frogatu ere: bata handitzen den neurrian, bestea txikitzen da, eta 

alderantziz. Gertakari hori turbinaren osagai estatiko eta 

birakarietan eragina duten karga zentrifugo eta termikoei egotz 

dakioke. 

Horrez gain, lan honen emaitzak baliagarriak izan ziren CTArentzat 

turbinaren TCa karakterizatzeko eta guretzako simulazio-programa 

balioztatzeko, simulatutako eta fabrikatutako gailuen kalibrazio-

kurbak antzekotasun handia baitzuten, programaren zehaztasuna eta 

fidagarritasuna berretsiz. Horri esker, testuinguru zehatzetarako oso 

sentikorrak diren neurrira egindako OFDSak diseinatzeko aukera 

ireki zen, behean deskribatzen den moduan. 

1.2.3.2 Besoen datum-ari zuzenduta 

 

Puntu honetan, “Performance Comparison of Three Fibre-Based 

Reflective Optical Sensors for Aero Engine Monitorization” 

artikuluaren laburpen bat azaltzen da. Artikulu hori Sensors 
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aldizkarian argitaratu zen 2019ko maiatzean eta [53]. erreferentzia 

da xehetasun gehiago kontsultatzeko. 

Aurreko atalean deskribatutako gailuaren aurrerapauso gisa eta 

simulazio-programaren baliozkotasuna berresteko, OFDS hobetu bat 

diseinatu zen turbina berri baten TCa neurtzeko CTAn. [53]n 

azaltzen zen bezala, OFDS berri baten beharra 94 besoz osatutako 

turbina berri baten TCaren neurketaren beharrizanei dagokie. 

Turbina honetan, TCa 1. artikulukoa baino handiagoa izango zela 

espero zenez, 1. artikuluko OFDSa sentikortasun baxuagoa duen 2. 

eskualdean funtzionatzera behartuko baitzuen. 

Egoera hau aprobetxatuz, OFDS berria hobekuntza bereizgarri 

batzuekin diseinatu zen aurrekoarekin alderatuta: 

 1. eskualde luzeagoa: modu honetan, OFDSak eremu lineal 

luzeagoa izango du funtzionatzeko. Ezaugarri honi esker, TC 

desberdinak dituzten turbinetan jardun ahalko du, kasu 

bakoitzerako OFDSen diseinu espezifikoen beharra saihestuz.  

 Urrunago hasten den 1. eskualdea: Modu honetan, zunda 

optikoaren muturra besoen puntatik urrunago eta beraz 

karkasa barruan koka liteke, segurtasun-maila handiagoa 

bermatuz. 

 Malda eta anplitude handiko 1. eskualdea, sentsibilitate 

handiagoa eskaintzen duenak, ahalik eta bereizmen eta 

zehaztasun handiena lortzeko asmoarekin. 

 OFDSaren tamainak 1. artikuluko berdina izan behar du 

estalkian egindako zuloetan sar dadin. Zulo horiek 1. 

artikuluko tamaina berdina zuten, turbina honetarako 

espero ziren TC balioak handiagoak zirela jakin aurretik egin 

baitziren. Hori dela eta, zuntz-sortaren diametroari 

dagokionez, tamaina mugatuta zegoen. Beraz, OFDS hau 

tamaina estandarreko zuloetan jarduteko gai eta aldi berean 

errendimendu hobea emateko gai izan behar du. 
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1. artikuluan erabilitako simulazio-programa berbera erabili zen 

sentsore berri hau diseinatzeko. Horren arabera, aipatutako baldintza 

guztiak betetzen zituen OFDSa aurreko probetan erabilitakoaren 

berdina zen, zuntz-sortaren kanpoko eraztuneko erradioaren eta 

bertan dagoen zuntz kopuruaren salbuespenarekin. OFDS hobetu 

honetan, kanpoko eraztunak 1800 μm-tako erradioa zuen eta 30 

zuntzek osatzen zuten (ikus 20. irudia).  

 

20. irudia: Hobetutako zunda optikoaren mutur bakoitzeko argazkia eta eskema. 

Gainerako sistemari dagokionez, aurreko probetako hardware bera 

erabili zen (laser iturria: Thorlabs S4FC, PDak: Thorlabs PDA100A-

EC, eskuratze-txartela: National Instruments 6366 USB eta 

ordenagailu eramangarria: HP Elitebook 840 g3) (ikus 21. irudia). 

 

21. irudia: OFDS guztiaren eskema, hura osatzen duen hardware elementu 

nagusienak adieraziz. 

Errendimenduak konparatzeko, proba hauetan beste bi OFDS 

instalatu ziren turbinaren estalkian. Lehenengoa sentsore komertzial 

bat zen (Philtec RC171 modeloa), zuntzak ausaz bananduta dituen 

eredu erdizirkularrean antolatutako hainbat zuntz igorle eta 

hartzailez osatua. Bigarren sentsorea 1. artikuluko OFDSa zen, 
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baina 2. eskualdean jardutera behartua neurketaren baldintzak zirela 

eta. Proba hauetan erabilitako hiru OFDSen zeharkako sekzioen 

eskemak 22. irudian agertzen dira. 

 

22. irudia: Probetan erabilitako gailuen eskalatutako zeharkako sekzioen 

irudikapen eskematikoa.  

Hiru sentsoreak mikrometroz gidatutako egokitzaileetan sartu ziren 

16. irudian bezala eta karkasan instalatu ziren 23. irudian adierazten 

den moduan. 1. artikuluan agertzen den funtzionamendu 

baldintzetan ez bezala, non sentsoreak zigilatze puntetara zuzenduta 

zeuden, proba hauetan karkasako zuloak sentsoreek besoaren 

plataforma lauera begira egon zitezen egin ziren (ikus 10. irudia). 

Azken honek islatutako argia nabarmen handitu zuen eta kalibrazioa 

bertan egitea ahalbidetu zuen karkasan instalatu ondoren. Islatutako 

argiaren handitzeari esker, laser iturria 50:50 zatitzaile optiko baten 

bidez partekatu zen diseinatutako OFDS bien artean, sentsore 

komertzialak bere argi-iturria integraturik baitzuen. Eskuratze-

txartel berbera hiru gailuen datuak biltzeko erabili zen. 

 

23. irudia: Karkasan zehar sentsoreak nola instalatu zirenaren irudikapen 

eskematikoa. 
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Sentsore guztien kalibrazio-kurbak 24. irudian agertzen dira. Bertan, 

antzeman daiteke intereseko lan-eremurako hobetutako OFDSak 1. 

Eskualdean funtzionatzen duela, lehen OFDSak 2. Eskualdean 

funtzionatzera behartuta dagoen bitartean. Hobetutako OFDSak 1. 

Eskualde aldapatsuagoa duela erraz nabari daiteke. Gailu 

komertzialari dagokionez, duen malda txikiagoko 1. Eskualdean 

funtzionatzen du. 

 

24. irudia: Sentsoreen erantzuna-kurbak. Grisez adierazitako eremuak, sentsoreen 

lan-eremua adierazten dute turbinaren probetan zehar.  

Probek egun bakoitzeko zortzi eta hamar ordu bitartean iraun zuten 

eta bi astetan zehar errepikatu ziren. Aurreko proben antzera, lan-

puntu guztiak eta OPR seinalea grabatu ziren sinkronizazio eta 

besoen identifikaziorako. 

Emaitzek adierazten duten moduan, diseinatutako OFDS 

pertsonalizatuek beso bakoitzaren igarotzea zehatz-mehatz 

identifikatu eta ezaugarri zehatzak antzemateko gai izan ziren, hala 

nola, datumak eta besoen arteko tarteak (interlockak). Azken horiek 

ez ziren sentsore komertzialean antzeman, seinale atzeratu eta leuna 

ematen baitzuen, gertaerak identifikatzea eta sinkronizatzea zailtzen 

zutena. Horren adibide gisa, 25. irudian, hiru sentsoreen bidez 

eskuratutako 55. besoaren seinalea (besoaren seinale estandartzat har 

litekeena) eta seinale ideala erakusten dira. 
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25. irudia. 55. besoaren seinalea hiru sentsoreen arabera. Horiekin batera, seinale 

ideala ere adierazten da. 

Diseinatutako bi OFDS pertsonalizatuen artean, bertsio berritu 

honek sentsibilitate eta bereizmen handiagoa eskaintzen zuen, bere 

seinalea besoaren forma fisikoarekin erraz lotu ahal baitzen eta 

seinale idealetik askoz ere gertuago baitzegoen. Bere uhin-formaren 

goranzko eta beheranzko ertz gogorrek datum-aren mugak zehazki 

zehaztea ahalbidetu zuten eta, beraz, besoaren iritsiera-denbora, TT 

teknikarako ezaugarri interesgarria izan daitekeena (ikus 6. irudia). 

Horrez gain, sentsibilitate hobekuntzari esker, TCaz aparte, 

turbinaren portaeraren parametro estatistiko osagarriak lortu ziren, 

hala nola aldiuneko abiadura. Besoetan ustekabeko ezaugarriak 

identifikatzea ere ahalbidetu zuen, eskuratutako seinalearen forma 

beso estandarrekoarekin alderatuz (25. irudian agertzen dena). 

Gaitasun hau oso garrantzitsua da hutsegite eta funtzionamendu 

okerrak ekiditeko edota fabrikazioko-akatsak hautemateko (ikus 26. 

irudia). 
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26. irudia: Nolabaiteko irregulartasunak dituzten besoen uhin-formen adibidea. 

Proben ondoren egindako besoen ikuskapenean, portaeraren jatorria erakutsi zen. 

a) Beltzez margotutako zati bat duen beso eta b) urradura bat duen beso baten 

kasua. 

TCari dagokionez, OFDS bertsio berritu hau oso seinale egonkorra 

emateko gai izan zen. Adibidez, 27. irudian, 3627 rpm-ko WP baten 

TC balioak erakusten dira. TC balioen aldagarritasuna denboran 

zehar (20000 motor-biren ondoren) eta WP beraren barruan, errore-

barra bertikal gisa agertzen dena, 20 μm-takoa da kasurik 

okerrenean, eta 94 besoetan neurtutako TCaren batez-besteko balioa 

7 μm-tik beherakoa. 

 

27. irudia: Beso bakoitzari dagokion TC balioa eta desbiderapen estandarra 3627 

rpm-ko puntuan 20000 bira eta gero. 

Lan honen emaitzek behin-betiko baieztatu zuten garatutako 

simulazio-programaren baliozkotasuna TCa neurtzeko OFDS oso 
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sentikorrak diseinatu eta fabrikatzeko. Gainera, OFDS hau 

moldakortasun handiagoa eskaintzeko diseinatu zen turbina 

desberdinetan erabili ahal izateko, 1. eskualdeak duen luzera eta hein 

dinamiko handiari esker. Ezaugarri horiek, 1. eskualdea distantzia 

luzeagoetan hastearekin batera, sentsorearen burua besoen 

puntetatik urrunago eta urratzeko materialetik kanpo kokatzea 

ahalbidetzen du, errendimendua honda dezaketen besoen punten eta 

sentsore buruaren arteko talka-arriskua, eta zunda-burua zikintzeko 

arriskua minimizatuz. Azken hori frogatzeko, pertsonalizatutako bi 

OFDSak mikroskopioan aztertu ziren proben ondoren. Ikuskapenean, 

hobetutako OFDSa kutsadura-hondakinik gabe zegoela ikusi zen. 

Era berean, 1. artikuluko OFDSak zenbait zatitan hondakinak 

zituen, bere errendimendua honda zezaketenak hondagarriaren 

barruan eta besoetatik gertuago kokatu behar izatearen ondorioz 

(ikus 28. irudia). 

 

28. irudia. Mikroskopioarekin ateratako argazkiak: a) hobetutako OFDSa eta b) 1. 

artikuluko OFDSa. 
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1.3. Sendoki akoplatutako nukleo anitzez 

osatutako zuntz optikoetan (MCF) 

oinarritutako sentsoreak 

 

Atal honetan, tenperatura, okerdura, azelerazioa eta abar bezalako 

parametro desberdinak hautemateko sendoki akoplatutako MCFtan 

oinarritutako sentsore optiko ugari deskribatzen dira. Horretarako, 

zuntz horien funtzionamendu-printzipioa azaldu eta ustiatzen da 

sentikortasun handiko gailuak garatzeko. 

1.3.1 Sarrera eta ikerketaren testuingurua 

 

1.3.1.1 Industriarentzat interesa duten parametroak 

 

Arestian azaldu den bezala, atal honetan deskribatuko diren sentsore 

estrintsekoetan, argiaren ezaugarri batzuen aldaketa edo modulazioa 

zuntzaz kanpoko efektu batek eragiten du. Horren ondorioz, sentsore-

mota hauek tenperatura, okerdura edo azelerazioa bezalako 

parametroak neurtzeko erabiltzen dira, adibidez. Sentsore hauek 

garatzeko interesa mantendu egin da urteetan zehar, aipatutako 

parametro guztiak oso garrantzitsuak baitira industria prozesuak 

kontrolatzeko edo SHMrako [57, 58], non ohikoa den fidagarriak eta 

errentagarriak frogatu diren teknologia helduetan oinarritutako 

detekzio-sistemak aurkitzea. Normalean, sentsore hauek izaera 

elektronikoko gailuetan oinarritzen dira, hala nola termopareetan, 

galgetan, eta abar. Hala ere, sentsore horiek normalean ingurune 

latzetan edota erradiazio edo erradioaktibitate-maila altuko 

inguruneetan instalatzen direla kontuan hartuta, korrosioa edo 

interferentziak jasan behar dituzte, funtzionamendu okerra edo bizi-

iraupenaren gutxitzea ekar ditzakeena. Gainera, baliteke haien izaera 

elektrikoa edo elektronikoagatik aukerarik onena ez izatea gas edo 

likido sukoiak dituzten ingurunetan inplementatzeko. Arazo 
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honetarako irtenbideetako bat gailuak babestean datza, 

sentsibilitatea galtzea eragin dezakeena.  

Aipatutako desabantailak gainditu, sentsibilitate eta bereizmen 

handia, inplementatze-erraztasuna, errentagarritasuna eta abar 

eskaintzeko gai diren gailuak bilatzeak teknologia berriak bultzatu 

ditu. Testuinguru honetan, zuntz optikoetan oinarritutako detekzio-

sistemak aukera erakargarri bihurtu dira aurreko ataletan zehatz-

mehatz azaldu diren ezaugarriei esker, eta gero eta garrantzi 

handiagoa lortzen hasi dira industria sentsore eta SHMrako 

alternatiba errealista gisa [59, 60]. 

1.3.1.2 Sentsore optiko estrintsekoak 

 

Sentsore optiko estrintsekoen artean, uhin-luzeraren alterazio edo 

modulazioan, edo igorritako argiaren fasean oinarritutakoak dira 

soluziorik hedatuenak. Izan ere, teknika horiek hain dira helduak, 

non haietan oinarritutako hainbat sentsore komertzialki aurki 

daitezkeen.  

Hedatuen eta helduen dagoen tekniketako bat FBGarena da. 

Laburbilduz, zuntz optikoaren nukleoaren errefrakzio-indizearen 

aldizkako aldakuntza sortzean datza, igorritako argiaren uhin-luzera 

batzuk soilik islatu eta besteak transmiti ditzan. FBGek kanpoko 

edozein efektu jasaten dutenean, egindako sarearen periodoa aldatu 

egiten da, islatutako uhin-luzeraren desplazamendua eragiten duena. 

Beraz, uhin-luzeraren desplazamendu hori kanpoko efektuarekin 

erraz lotu daiteke. FBGak asko garatu dira eta oso ezagunak dira, 

tenperatura eta tentsioak neurtzeko batez ere, oso sentikorrak 

direlako. Gaur egun, aplikazioaren arabera, konfigurazio anitzetan 

aurki daitezke, hala nola, okertuak, fasez aldatuak, txiribilduak, 

apodatuak eta abar [61]. FBG teknikaren moldaketa bat, berez 

kategoriatzat har litekeena, aldi luzeko sareena da (LPG). LPGetan, 

sarearen periodoa uhin-luzera baino askoz ere handiagoa da (100 

mikrometroen ordenekoa, milimetro bateraino), erantzun askoz ere 
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zabalagoak lortzeko erabil daitekeena. Honen ondorioz, FBGak baino 

askoz errazago fabrikatzen dira [62]. FBG eta LPGen eragozpen 

nagusiak hauek dira: biek beren ingurunearekiko berezko 

sentsibilitatea daukate, isolamendu edo konpentsazio-mekanismo 

egokiak ezartzera behartzen dituena elkarreragin gurutzatua 

ekiditeko eta soilik intereseko parametroarekiko sentikorrak izateko; 

eta haien instalazioek laser eta galdetzaile garestiak behar dituzte.  

Fabry-Perot interferometroak (FPI) ohiko aukera dira ere 

hezetasuna, tenperatura eta abar neurtzeko sentsore estrintsekoak 

garatzeko [14]. Beren funtzionamendu-printzipioa islapen handiko 

gainazal bien arteko tarte optiko txiki batean oinarritzen da, haren 

luzera proportzionalki aldatzen dena kanpoko efektua aplikatzen 

zaionean. Horren ondorioz, uhin-optikoak tarte optikoarekin 

erresonantzian daudenean bakarrik igaro daitezke, hau da, banda 

zabaleko argi iturria erabiltzen bada, haren uhin-luzera jakin batzuk 

soilik igaroko dira. Era horretan, tartetik irteten diren uhin-luzeren 

desplazamendua erraz lotu daiteke aplikatutako efektuarekin. FPIak 

oso sentikorrak dira, nahiz eta hauen eragozpen nagusia tarte 

uniformeak errepikatzeko zailtasuna den. 

Mach Zehnder (MZI) eta Michelson interferometroak hainbat 

parametro neurtzeko erabiltzen dira, hala nola, errefrakzio-indizeak, 

tenperatura, gasak, kurbatura, etab. [63, 64]. MZIek aplikatutako 

efektua iturri bakarretik datorren argia zatituz eratorritako bi izpi 

kolimatuen arteko desfase erlatiboa neurtuz kuantifikatzen dute. 

Izpietako bat erreferentzia gisa erabiltzen da, eta bestea, berriz, 

neurtu nahi den efektuaren menpe uzten da. Michelson 

interferometroetan, igorritako argia bi besoetan banatzen da eta, 

MZIetan bezala, horietako bat erreferentzia gisa erabiltzen da eta 

bestea neurketetarako. Argi-izpi horietako bakoitza islatu eta izpi-

zatitzailerantz joaten da berriz, izpi bien anplitudeak konbinatzen 

dituena superposizio-printzipioa erabiliz. Interferentziaren patroia 

aztertuz, aplikatutako efektua zehaztasun handiz neur daiteke. 
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Michelson interferometroek hainbat aplikazio dituzte, batez ere 

astronomian, uhin grabitatorioen detektagailuetan, eta abar [65]. 

MZI eta Michelson interferometroak oso sentikorrak diren arren, 

haien eragozpen nagusia behar dituzten sistema konplexuak dira, 

ispiluen lerrokatze eta konfigurazio oso zehatzak behar baitituzte 

behar bezala funtziona dezaten, arazoak sor ditzaketenak 

industrialdeetan edo atari zabalean instalatzeko. 

Azken urteetan, zuntz optiko espezializatuen garapenak zuntz 

optikoen bidez neurtzeko alternatiba berriak eskaini ditu. 

Aurrerapen horiek esanguratsuak izan dira batez ere MCFei esker, 

estalki arrunt batean txertatutako nukleo anitzez osatuta dauden 

zuntzak direnak. Nukleoen antolamendu geometrikoaren arabera, bi 

talde bereiz daitezke: akoplamendu ahul eta sendoko MCFak [66], 

hain zuzen ere. Alde batetik, nukleoak elkarrengandik nahiko urrun 

badaude, elkarketa ia nulua dago eta desakoplatuta daudela onar 

daiteke. Zuntz horiek telekomunikazioetarako erabili ohi dira, 

euskarri fisiko berean kanal independente anitz izatea onartzen 

baitute [67]. Bestalde, nukleoak elkarren artean elkarreragiteko adina 

gertu daudenean, sendoki akoplatutako MCFak deitzen zaie, 

nukleoen artean elkarketa handia baitago, argiaren akoplamendu 

periodikoa gauzatzen duena. Akoplamendu hori oso sentikorra da 

zuntzari aplikatutako efektu mekanikoen aurrean. Beraz, arraio 

honegatik zuntz mota hauek sentsoreetarako ustiatzen dira [68]. 

Arestian aipatutako gainontzeko soluzio optikoekin alderatuta, 

sendoki akoplatutako MCFek abantaila esanguratsuak eskaintzen 

dituzte sentsore optiko estrintsekoak garatzeko. Adibidez, ez dute 

konfigurazio konplexurik behar funtzionatzeko (zuntz horren 

segmentu labur bat, zirkulagailu bat, espektrometro edo 

fotodetektore bat eta banda zabaleko argi iturri bat besterik ez), ez 

dute lerrokatze zehatzik behar, ezta neurrira egindako osagai 

garestirik ere ez, eta maneiatzeko errazak dira. Arrazoi horiengatik, 
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zuntz mota hauek aukeratu dira tesian agertzen diren gailuak 

garatzeko. 

 

1.3.2 Alor teorikoa eta tresna metodologikoak 

 

1.3.2.1 Sendoki akoplatutako MCFen eredu 

matematikoa 

 

Sendoki akoplatutako MCFen eredu matematikoa literaturan asko 

garatu den Modu Akoplatuaren Teoriaren bidez (CMT) deskriba 

daiteke [69-73]. Horren arabera, kasurik errazenean, elkarren artean 

elkarreragiteko adina urrun dauden modu bakarreko uhin-gida bi (1 

eta 2 izenekoak) daudenean (ikus 29. irudia), uhin-gida bakoitzaren 

modua independenteki propagatuko da. Kasu horretan, uhin-gida 

bakoitzean propagatzen den moduaren anplitudea honela adieraz 

daiteke: 

 

29. irudia: Desakoplatuta dauden uhin-gida biren eskema. 

1
1 1

a
j a
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non a uhin-gida bakoitzean zehar propagatzen den zeharkako eremu 

elektrikoaren anplitudea den, β moduaren propagazio-konstantea 
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den, z propagazioaren norabidea eta 1 eta 2 azpiindizeek uhin-gida 

bakoitzari erreferentzia egiten dioten. 

Hala ere, uhin-gidak elkarrengandik nahiko hurbil badaude gida 

baten eremu ebaneszentea bestean barneratzeko, propagatzen ari 

diren bi moduen arteko akoplamendua dago (ikus 30. irudia). Kasu 

horretan, moduen anplitudea honela adieraz daiteke: 

 

30. irudia: Akoplatuta dauden gida biren eskema. 

 1
1 11 1 12 2

a
j k a jk a

z



   


 (10) 

 2
2 22 2 21 1

a
j k a jk a

z



   


 (11) 

 

non k parametroak 1 eta 2 uhin-gidetan propagatzen ari diren 

moduen arteko elkar eta auto-akoplamenduko koefizienteak diren, 

hurrenez hurren. Galerarik gabeko sistema batean gaudela eta uhin-

gidak uniformeak direla suposatzen badugu, propagazio-konstanteak 

eta akoplamendu-koefizienteak z-rekiko independenteak dira [70], eta 

honako sinplifikazioak aplika daitezke: 

 
2 2

1 2P z a a   (12) 

*

12 21k k k   (13) 
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10. eta 11. ekuazioetatik fasea faktore komun gisa hartzen bada, 

honela adieraz daitezke: 

1
1 2

ˆ
ˆ ˆ

a
j a jka

z



  


 (14) 

2
2 1

ˆ
ˆ ˆ

a
j a jka

z



  


 (15) 

 

non 

´ ´

1 11 2 22 1 2

2 2 2

k k    


    
    (16) 

 

Beraz, 14. eta 15. ekuazioek osatzen duten sistema matrize moduan 

idatz daiteke: 

dA
jHA

dz
   (17) 

 

non 

1

2

ˆ

ˆ

a
A

a

 
  
 

 
(18) 

k
H

k





 
  

 

 (19) 

 

Moduen anplitudeak z propagazio-ardatzarekiko kalkulatzeko, hau 

da baita helburua uhin-gida eta distantzia jakin batean akoplatuta 

dagoen potentzia-kopurua kalkulatu ahal izateko, 17. ekuazioa 

transferentzia matrize gisa ordenatu eta adieraz daiteke: 

     0A z T z A  (20) 

 



1. atala: Sintesia 

52 
 

non T matrizearen elementuak hurrengoak diren: 

 *

11 22 cos cos( )sin( )t t Sz j Sz    (21) 

12 21 sin( )sin( )t t j Sz    (22) 

 

non 

tan( )
k




  (23) 

2 2S k   (24) 

1 11 2 22
0

2

k k 


  
  (25) 

 

20. ekuaziotik, uhin-gida bakoitzeko potentzia normalizatua honako 

adierazpen hau aplikatuz lor daiteke: 

  *( )* ( )i i iP z a z a z  (26) 

 

Beraz, uhin-gida bat bakarrik z = 0 puntuan kitzikatuta dagoen 

egoerarako (a1 (0) = 1 eta a2 (0) = 0, adibidez, 30. irudiaren arabera), 

uhin-gida bakoitzean z propagazio-ardatzaren arabera akoplatuta 

dagoen potentzia normalizatua honela adieraz daiteke: 

2 2 2

1( ) cos ( ) cos ( )sin ( )P z Sz Sz   (27) 

2 2

2( ) sin ( )sin ( )P z Sz  (28) 

 

Zabal dezagun eredu hau uhin-gida zentral eta N (N>1) uhin-gida 

berdin eta antolamendu zirkularrean banatuta duen egitura batera, 
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non nukleoak elkarreragiteko adina gertu dauden. Geometria hori 

dokumentu honetako gailuak garatzeko erabilitako sendoki 

akoplatutako MCFen berdina da (ikus 31. irudia) eta, beraz, bere 

ondorioak aplikagarriak dira [74]. 

 

31. irudia: Aztertu diren MCFen egitura generikoaren eskema. 

Horrelako MCFetan, hurrengo onarpenak egiten dira: nukleo guztiak 

tamaina eta propietate fisiko berdinak dituzte, LP01 oinarrizko 

modua soilik onartzen duten uhin-gida indibidualak dira eta 

elkarrengandik nahiko hurbil daude gida bakoitzean propagatzen den 

modua besteetan propagatzen denarekin gainjartzeko, nukleoen 

arteko potentzia-akoplamendu ziklikoa eraginez [75]. Bertan 

lortutako moduak, supermoduak (SP) deiturikoak, uhin-gidetan 

propagatzen diren moduen arteko konbinazio lineala dira [76, 77]. 

Lan honetan egin den bezala, horrelako MCFak bere nukleo 

zentralean SMF estandar batetik datorren LP01 moduaz kitzikatzen 

direnean, CMTaren arabera, nukleo zentralean potentzia duten bi 

supermodu ortogonalak akoplatuta egongo dira [73]. Supermodu 

horiek SP01 eta SP02 izena dute, hurrenez hurren, eta MCF geometria 

bakoitzerako espezifikoak dira.  

Kasu honen soluzio analitikoa 17. ekuazioan agertzen den bi uhin-

gidaren kasukoaren antzekoa da baina potentziaren akoplamenduan 

parte hartzen duten nukleo guztien arteko interakzioa kontuan 

izanik: 
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( )
( )

dA z
jHA z

dz
   (29) 

 

non A(z) = [A1(z) A2(z) … AN(z)]T zutabe-bektorea den, T 

transposizioa adierazten duen eta H N×N matrizea den. 29. 

ekuazioan dagoen sistema arestian deskribatutako bi uhin-giden 

kasuaren moduan garatu ondoren, erdiko (a0) eta ondoko nukleoetan 

(ai) propagatzen diren moduen anplitudeak honela adieraz daitezke: 

0

0

cos ( )sin
2 2( )

j z

Sz Sz
S j z

a z e
S






 

  (30) 

0 2( ) sin
2

j
j z z

i

Sz
a z j e e

S




 
  

   
 

 (31) 

 

non S honela definitu ahal den: 

2 2 1S N N         (32) 

 

non Δβ honela definitzen den: 

2 n





   (33) 

 

non Δ𝑛 propagatzen ari diren SP akoplatu eta ortogonalen 

errefrakzio-indize eraginkorren arteko aldea den eta λ kitzikatzen den 

uhin-luzera den. Δβ-ren definizio hau 30. eta 31. ekuazioei aplikatzen 

bazaie, MCFen nukleo zentral (P0) eta ondoko nukleo bakoitzean (Pi) 

akoplatutako potentzia normalizatu generikoak (26. ekuazioan 

adierazitakoaren arabera kalkulatua) honela adieraz daitezke: 

2 2

0

1
( ) cos 1 sin 1

1

n n
P z N z N z

N

 

 

    
      

   

 (34) 
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21
( ) sin 1

1
i

n
P z N z

N





 
  

  

 (35) 

 

 

32. irudia: MCF generiko baterako nukleo zentral eta ondoko nukleoetan dagoen 

potentzia akoplatu normalizatuaren bilakaera igorritako uhin-luzeraren funtzio 

gisa.  

34. ekuaziotik eta 32. iruditik nukleo zentralean potentzia periodikoki 

aldatuko dela ondoriozta daiteke, maximoa z edota λ balio jakin 

batzuetan lortuz eta minimoa beste batzuetan, baina argi-kopuru 

jakin bat egongo da beti nukleo honetan, [1/(𝑁+1),1] tartean 

oszilatuko duena. Ondoko nukleo bakoitzari dagokionez, 

akoplatutako potentzia zentralean dagoen osagarria izango da. 

Honek esan nahi du honelako MCFetan δ≠0 dela. Nukleo guztiak 

berdinak direnez eta, beraz, β berdina dutenez, fenomeno honen 

eragingarria nukleoaren banaketa dela onar daiteke [70]. Arestian 

aipatu den bezala, gertakari hau N>1 kasurako gertatzen da soilik, 

N=1 kasuarentzat potentzia nukleo batetik bestera guztiz 

transferitzen baita [78]. 

SMF berberean mota bereko n MCF segmentu-kopuru zehaztugabea 

dagoen kasurako (ikus 33. irudia), katearen amaieran, segmentu 

bakoitzaren nukleo zentralean dagoen akoplatutako potentzia 

normalizatuaren arteko produktua izango da. 
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33. irudia: SMF berberean seriean jarritako n MCF segmentuen eskema. 

1

( ) ( )
n

cascade j

j

P z P z


  
(36) 

 

Horrela, 33. irudiko kaskada-egitura batek espektroan segmentu 

bakar batek baino puntu goren estuagoa eta ikuspen handiagoa 

emango du karratura dauden cos eta sin terminoen ondorioz eta 

nukleo zentralean seriean jarritako elementu kopuruarekiko 

proportzionalki dagoen argi-kopuru txikiagoa dela eta, hurrenez 

hurren. Honek, espektroaren edozein aldaketa jarraitzea nabarmen 

errazten du baina ez du sentsibilitatea hobetuko, faseak ez baitu 

aldaketarik. 

34. eta 36. ekuazioak lan honetan erakutsitako MCFtan oinarritutako 

sentsoreak diseinatzeko erabili ziren. Ekuazio horiek MCFen 

geometria eta konfigurazio desberdinetara egokituz, zuntzen 

espektroa simulatu ahal izan zen, haren forma zehatza lortzeko 

aukera ematen duten parametroen balioa optimizatzeko, hala nola 

MCF segmentuen luzera. 

1.3.2.2 Fabrikazio-tresnak eta galdeketa-

konfigurazioa 

 

Ondorengo ataletan agertzen diren gailu guztiak fabrikatzeko, 

zehaztasun handiko zuntz-ebakitzaile bat eta zuntz-fusionatzaile bat 

erabili ziren. Lehenengoak, Fujikura CT-105ak, 10 μm-ko 

zehaztasuna lortzen du  MCF segmentuak ebakitzean, ezaugarri 

garrantzitsua dena espektro zehatzak lortzerako orduan aurreko 

puntuan aipatu  den bezala. Bigarrenak, Fujikura 100P+ak, 

MCFaren nukleo zentrala SMFak duen bakarrarekin lerroka dezake 

zehaztasun handiz, sartze-galera arruntak 0,1 dB edo txikiagoak izan 
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daitezen [79]. Horrez gain, makina honek biraketa-mekanismoa eta 

zuntzen muturreko aurpegia behatzea ahalbidetzen duen irudi-

sistema bat ditu, orientazio zehatzak behar dituzten MCF-MCF 

fusioak behar diren kasuetarako erabilgarriak direnak. 

Jarraian deskribatuko diren gailuen galdeketa-konfigurazioari 

dagokionez, konfigurazio bera partekatzen dute. Ekipamendu 

komertzialarekin osatutako sistema sinplea da, ahalik eta 

errentagarritasun handiena izateko. Banda zabaleko argi iturri gisa 

diodo superluminiszente bat erabili da (Safibra, s.r.o.) 1550 nm-ean 

maximoa duena eta 40 nm inguruko FWHM duena, eta akopladore 

optiko (edo zirkuladore)  arrunt bat. Islatutako argia aztertzeko, 

miniaturazko espektrometro bat (Ibsen Photonics I-MON-512 High 

Speed, 1510-1595 nm bitarteko galdeketa leihoa duena) edota 

InGaAs PD bat (Thorlabs PDA30B2) erabili ziren gailuaren edo 

neurketaren eskakizunen arabera. Aldi berean uhin-luzeraren 

desplazamendua eta potentzia-aldaketak neurtu behar ziren 

kasuetan, bi detektagailuak akopladore optiko baten bidez konektatu 

ziren (ikus 34. irudia). 

 

34. irudia: Galdeketa-konfigurazioaren eskema. 

 

1.3.3 Hipotesia eta helburuak 

 

Helburua MCFtan oinarritutako sentsore optiko berri eta oso 

sentikorrak garatzea da, goian deskribatutako funtzionamendu-

printzipioaz baliatuz eta industrian interesgarriak diren parametro 

desberdinak neurtzeko. Horretarako, sentsore bakoitzak konfigurazio 
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berezia du bere errendimendua optimizatzeko. Ikerketa honen 

emaitzak hurrengo ataletan eta 2., 3. eta 4. artikuluetan agertzen 

dira. 

 

1.3.4 Laburpena eta emaitzak 

1.3.4.1 Tenperatura-sentsoreak 

 

1.3.4.1.1 Sentikortasun handiko 7cMCFan 

oinarritutako sentsorea 

 

Puntu honetan, “Packaged multi-core fiber interferometer for high 

temperature sensing” artikuluaren laburpena azaltzen da. Artikulu 

hau Journal of Lightwave Technology aldizkarian argitaratu zan 

2019ko martxoan eta tesiaren eranskinaren atalean dago 2. artikulu 

gisa xehetasun gehiago kontsultatzeko. 

Ikerketan zehar garatutako MCFtan oinarritutako lehenengo gailua 

tenperatura-sentsore bat izan zen, ingurune latzak jasateko babestua 

haietan instalatzeko prestatua. Gailu honek duen MCFa University 

of Central Floridan (Orlando, AEB) fabrikatu zen, eta zazpi nukleo 

hexagonal berdinak dituen egitura berezi bat du (7cMCF). Horietako 

sei zentrokideki antolatuta daude eraztun itxuran nukleo zentralaren 

inguruan bat. Ondoko ardatzen arteko batez besteko diametroa eta 

distantzia 9.2 μm eta 11 μm dira, hurrenez hurren, eta zuntzaren 

kanpoko diametroa 126 μm-koa da (ikus 35a irudia). Nukleo guztiak 

germanioz dopatutako silizeko beiraz eginak daude eta silizeko 

estaldura hutsean daude txertatuta. Horietako bakoitzaren NA 0.14-

koa da 1550 nm-tan, hau da, uhin-luzera horretako SMF tipiko batek 

duen NA bera. 7cMCFan oinarritutako gailuaren eskema 35b irudian 

ageri da. Bere egitura oso sinplea da: MCF segmentu labur bat 

(tenperaturarekiko sentikortasuna duen elementua) SMF arrunt 

batera bere nukleo zentralaren bitartez fusionatuta. 



1. atala: Sintesia 

59 
 

 

35. irudia: a) 7cMCFaren sekzioaren argazkia eta b) tenperatura-sentsorearen 

eskema. 

CMTaren arabera [73], 7cMCF honetan, akoplaturik dauden bi 

supermodu ortogonalak 36. irudian agertzen dira: 

 

36. irudia: 7cMCFak dituen supermodu ortogonal akoplatuak. a) SP01 eta b) SP02. 

34. ekuazioa zuntz honetara partikularizatzeko, kontuan hartu behar 

da gailuak islapen-moduan funtzionatzen duela, eta horrek esan nahi 

du argiak MCFan joan-etorriko ibilbidea egiten duela. Beraz, Lf 

luzerako MCF segmentu fisiko baterako, argiak 2Lf bidaiatzen du. 

Hau kontuan hartuta, gailu honetan nukleo zentralean dagoen 

akoplatutako potentzia normalizatua honela adieraz daiteke: 

2 2

0

1
( 2 ) cos 7 2 sin 7 2

7
f f f

n n
P z L L L

 

 

    
     

   

 (37) 

 

Espektroaren maximoa cos-en faseak 2π-ren multiplo oso bat (m2π) 

berdintzen duenean gertatuko da. Beraz, maximoak uhin-luzera 

hauetan kokatuko dira: 

7
2m fn L

m
    (38) 
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Oro har, zuntz optikoetan, efektu termo-optikoa espantsio 

termikoaren efektuari gailentzen zaio. Beraz, tenperatura neurtzeko, 

zuntzaren nukleoaren (edo nukleoen) errefrakzio-indizearen 

aldaketak soilik hartu ahal dira kontuan [80, 81]. Gure kasuan, 

aldaketa horiek supermoduen indize eraginkorren aldaketa eragiten 

dute eta, horren ondorioz, espektroaren aldaketa. Gailu honetan, 

tenperatura neurketak absolutuak dira, uhin-luzeran kodifikatuta 

daudelako, beraz, λm monitorizatuz, MCFaren inguruko tenperatura 

erraztasunez jakin daiteke. 

Ahalik eta tenperatura tarterik zabalena neurtzeko, espektroak bi 

ezaugarri bete behar zituen. Alde batetik, λmren desplazamendua 

7cMCF honetarako, 30 pm/ºC inguruko sentsibilitate termikoa 

duena inolako babesik gabe [81], ezin da alboko maximoekin gainjarri 

(λm+1 edo λm-1etan dauden maximoak) neurketan anbiguotasuna 

ekiditeko. Bestalde, λm galdeketa leihoaren barruan egon behar da 

(1510 eta 1595 nm-en artean) uneoro. 37. ekuazioaren arabera, 

MCFaren luzera alda daitekeen parametro bakarra denez, 

gainerakoak zuntzak berak finkatzen baititu, baldintza horiek 

betetzen zituen luzera lortzeko, Matlab MathWorks eta 

PhotonDesign software programak erabili ziren. Simulazioen arabera, 

horiek betetzen zituen luzerarik egokiena 2.545 cm-koa izan zen. Hala 

ere, fabrikazioa azkarrago eta errazagoa izateko, 2.54 cm-ko luzera 

erabiltzea erabaki zen. Simulatutako eta fabrikatutako gailuen 

espektroak 37. irudian ageri dira. 
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37. irudia: Fabrikatutako eta simulatutako gailuen espektroak. 

Maximoak kokatzen diren uhin-luzerak oso hurbil daude 

simulatutako eta fabrikatutako espektroetan. Tenperatura igo ahala, 

maximoak uhin-luzera luzeetara desplazatuko direla espero da [82]. 

Beraz, 1520 nm-tan kokatutako maximoa (λm) monitorizatzeko eta 

tenperaturarekin korrelatzeko hautatu zan. Bi kurben arteko 

anplitudeen aldea argi-iturriagatik gauzatuta dago, errealitatean 

erabilitakoa eta simulazioan inplementatutakoa forma desberdinak 

baitituzte. 

MCF sentsorea soilik tenperaturarekiko sentikorra izan dadin, honela 

paketatu zen: SMF-MCF egitura, 15 cm inguruko luzera zuena, 

geruza bikoitz batekin babestu zen. Lehenengo geruza zeramikako 

hodi mehe bat zen (Omega Engineering TRX-005132-6), 127 μm-ko 

diametroko zuloa zuena, SMF-MCF egitura zuzen mantentzeko eta 

MCFaren okerdurak sortutako efektuak ezabatzeko. Bigarren geruza 

zeramikako hodia estaltzen zuen altzairu herdoilgaitzeko hodi bat zen 

(Omega Engineering SS-116-6CLOSED), inpaktu edo zikinkeriaren 

aurkako babesa emateko. 38. irudian sentsorearen prototipoaren 

argazkia ageri da. Ohar daitekeenez, sentsorearen zati sentikorrak 

2.54 cm-ko luzera besterik ez du, eta babesaren hodiaren puntaren 

ertzetik hurbil baina nahiko bereizita dago Fabry-Perot tarte baten 

sorrera ekiditeko. Beraz, sentsoreak 3 cm inguruko luzera izan 

dezake. Hodi metalikoarekin babestutako 12 cm gehigarrien arrazoia 
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probetarako erabili zen labearen konfigurazioa da (Isotech Pegasus 

Plus 1200). Azken honek zulo zirkular bertikal bat zuen (sentsorearen 

diametroa baino zertxobait handiagoa), 15 cm-ko luzera zuena, 

punturik sakonenean soilik 1000 ºC-ko tenperatura lortzen zuena, 

paketatutako sentsore osoa bertikalki sartzera behartzen zuena. 

 

38. irudia: Proben ondoren egindako fabrikatutako tenperatura-sentsorearen 

argazkia. 

Probak Arabako Teknologia Parkean (Araba) kokatutako Centro de 

Tecnologías Aeronáuticasen (CTA) instalazioetan egin ziren. 

Kalibrazioa egin aurretik, derrigorrezko ontze-prozesua egin zen 

sentsorearen histeresi-efektua ahalik eta gehien ezabatzeko [80]. 

Horren ondoren, kalibrazioa 200 eta 1000 ºC tartean behin eta berriz 

egin zen, 70 minutu iraun zuten 50 ºC-ko urratsetan. Orokorrean, 

kalibrazio-ziklo bakoitzak 100 ordu iraun zituen gutxi-gorabehera. 

Prozesu horretan, λm tenperaturarekin erlazionatu zen tenperatura 

kalibrazioetan erabiltzen den K motako termopare baten bidez 

(Herten, K motakoa, SN TCP187). MCF sentsorearen espektroaren 

tenperaturarekiko bilakaera 39. irudian erakusten da.  
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39. irudia: Espektroaren bilakaera tenperaturaren arabera. 

Babes-geruzek tenperaturaren sentikortasunean duten eragina 

ebaluatzeko, biluzik utzitako 2.54 cm-ko MCF segmentu bat 

kalibrazio-prozesu berdinera ezarri zan. Bi MCF gailuen kalibrazio 

kurbak 40. irudian agertzen dira. 

 

40. irudia: Paketatutako sentsorearen eta 7cMCF biluziaren kalibrazio-kurbak eta 

egokitzapen linealak. 

Paketatutako MCF sentsoreari dagokionez, Pearson koadratuko 

korrelazio koefizientea R2=0.9856-koa zela kalkulatu zen. 

Esperimentuetatik kalkulatutako tenperatura (ºC-tan) eta λmren 

(nm-tan) arteko korrelazioa hurrengoa izan zen: 

39,929 60525mT    (39) 
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Honek paketatutako MCF sentsorearen tenperatura-sentikortasuna 

24,8 pm/ºC-koa zela adierazten du. 40. irudian agertzen den 2.54 cm 

luzerako MCF biluziaren kalibrazio-kurbaren arabera, 31.47 pm/ºC-

ko sentsibilitatea lortu zen. Hori dela eta, pentsa liteke paketatzeak 

gailuaren tenperaturaren sentsibilitatean eragina duela, baina ez 

duela modu nabarmenean jaisten, emaitzak tenperaturak soilik 

eragiten dituztela bermatzen duenaren abantailarekin. Azken hori ez 

da gertatzen 7cMCF biluzian, tenperaturaz gain bibrazio eta 

tolesturak jasaten baititu, maximoaren desplazamenduan eragina 

dutenak. 

Lan honen bitartez MCF sentsore sinple, merke eta errepikatzeko 

erraza dena erakutsi zen, oso sentikor, trinko eta sendoa dena. 

Sentsore hau aukera erakargarria izan daiteke tenperatura altuak 

neurtzeko, dituen bereizmen eta sentsibilitate handiei, dimentsio 

txiki eta immunitate elektromagnetikoari esker, hauek baitira 

eskatzen diren ezaugarriak zenbait aplikaziotan, hala nola, motor 

aeronautikoetarako, gas eta olio instalazioetarako, etab. 

 

1.3.4.1.2 Sentikortasun handiko 3cMCFan 

oinarritutako sentsore iraunkorra 

 

2. artikuluan erakutsitako lanaren aurrerapauso gisa, MCFan 

oinarritutako termometro hobetu bat garatu zen, eremu termiko 

zabalagoetan funtziona zezakeena, paketatze askoz sendoagoa eta 

sentsibilitate handiagoak zituena. 

Lan honetan bi MCF desberdin erabili ziren. Biak University of 

Central Floridan fabrikatu ziren. Lehenengoa 2. artikulurako 

erabilitako 7cMCFa izan zen, goiko atalean jadanik deskribatu dena. 

Bigarrena sendoki akoplatutako hiru nukleoz osatutako MCF 

asimetrikoa da (3cMCF): nukleoetako bat zuntzaren zentro 

geometrikoan kokatzen da, eta beste biak bere inguruan V itxurako 

konfigurazioan antolatuta (ikus 41. irudia). Nukleo bakoitza 



1. atala: Sintesia 

65 
 

germanioz dopatutako silizez egina dago, batez-besteko 9 μm-ko 

diametroarekin eta 0.14-ko NArekin 1550 nm-tan SMFarekin bat 

egiteko. Nukleoak 11.5 μm bereizita daude elkarrengandik eta 125 

μm-ko diametroa duen silize puruko estaldura batean sartuta daude. 

 

41. irudia: 3cMCFaren sekzioa. 

34. ekuazioaren arabera, zuntz honetarako nukleo zentralean dagoen 

akoplatutako potentzia normalizatuaren partikularizazioa honela 

adieraz daiteke: 

2 2

0

1
( ) cos 3 sin 3
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 (40) 

 

Eta CMTaren arabera [73], akoplaturik dauden bi supermodu 

ortogonalak 42. irudian ageri dira: 

 

42. irudia: 3cMCFak dituen supermodu ortogonal akoplatuak. a) SP01 eta b) SP02. 

MCFen tenperaturarekiko sentikortasuna ikertzeko, tenperaturaren 

araberako deribatu partziala aplikatu behar zaio 34. ekuazioari. 
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non 𝐿 = 𝐿𝑓 ∗ (1 + 𝛼∆𝑇), Lf MCFaren luzera giro-tenperaturan da (Tr 

= 25 ºC), α termo-espantsioaren koefizientea da eta ΔT giro 

tenperaturarekiko tenperaturaren aldaketa da (T-Tr). 41. ekuaziotik, 

onar daiteke sentsibilitate termikoan eragina duten parametro 

esanguratsuenak Δn eta Lf direla, α MCFaren materialaren 

propietate fisikoekin lotuta baitago, eta hauek berdinak direnez 

ikertu diren bi MCFetarako, propietate hauek finkatuta daude. Alde 

batetik, Δn eta, beraz, 𝜕∆𝑛 𝜕𝑇⁄ , SPekin erlazionatuta daude eta, 

beraz, MCFaren geometriarekin eta propietate fisikoekin 

erlazionatuta ere bai, hala nola, nukleo kopuruarekin, horien 

banaketarekin, etab. Bestalde, Lf MCF segmentuak giro-

tenperaturan duen luzera da. Nahiz eta 41. ekuazioan, sentsibilitate 

termikoa Lfrekiko proportzionala dela pentsa daitekeen arren, 

sentsibilitatean duen eragina garrantzi gabekotzat jo daiteke, 𝐿𝑓 𝑚⁄  

erlazioa finkoa baita MCFaren hasierako luzera kontuan hartu gabe. 

Beraz, ondoriozta daiteke MCF segmentuaren hasierako luzerak 

eragin txikia duela sentsibilitate termikoan. 

Hasierako luzerak sentsibilitate termikoan eragin nabarmenik ez 

duela egiaztatzeko, luzera desberdinetako 7cMCFz osatutako hiru 

gailu fabrikatu ziren (ikus 43. irudia), eta 200 ºC-tik eta 500 ºC-ra 

arteko tenperatura zikloetara jarri ziren 100 ºC-ko urratsetan. 

Fabrikatutako eta probatutako konfigurazioak honako hauek izan 

ziren: 1) 12.5 mm-ko 7cMCFko segmentua duen lagina (43a irudia), 

2) 25 mm-ko 7cMCFko segmentua duen lagina (43b irudia) eta 3) 

12.5 mm-ko 7cMCFko kaskadan jarritako segmentu bi dituen lagina. 

(ikus 43c irudia).  
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43. irudia: Fabrikatutako laginen eskemak eta giro-tenperaturan (T=25 ºC) 

dagozkien espektroak. 

43c irudiko egiturari dagokionez, SMF-MCF-SMF egitura batek 

osatzen du. Islatze-funtzionamendua dela eta, SMF segmentuaren 

mutur ebakiak ispilu gisa jokatzen zuen. Konfigurazio honen bidez, 

argiak joan-etorriko ibilbidea egiten du egituran, MCF segmentutik 

bi aldiz igaroz. Horrela, MCF segmentu bakarrarekin, egitura bikia 

erraz fabrika daiteke. Funtzionamendu-konfigurazio honetarako, 36. 

ekuazioa partikularizatu behar da. Partikularizazioaren ondorioz, 

egitura honen irteeran nukleo zentralean dagoen potentzia akoplatu 

normalizatua honela adieraz daiteke: 
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(42) 

MCF segmentuak soilik tenperaturarekiko sentikorrak izan daitezen 

eta zuzen egoteko, ale bakoitza zeramikako hodi batean sartu zen 

(Omega TRX-005132-6). Ontze-prozesuaren ondoren, gailuek 

arestian aipatutako tenperatura zikloak jasan zituzten. Proba horien 

emaitzak 1. taulan laburbiltzen dira: 

1. taula: Emaitzen laburpena 

MCF luzera (Lf) 12.5 mm 25 mm 12.5 mm-ko bikia 

Sentikortasuna 

(pm/ºC) 
20.38 22.22 21.16 
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1. taulatik ondoriozta daiteke MCFaren hasierako luzerek edota 

elementu horiek kaskadan jartzeak eragin ia nulua dutela 

tenperaturaren neurketetarako sentikortasunean. Ondorio hau 34. 

eta 36. ekuazioetako adierazpen matematikoetatik ondoriozta 

zitekeen, haietako fasea berdina baitzen hasierako luzera edo 

gailuaren konfigurazioa (segmentu bakunak edo kaskadan 

jarritakoak) kontuan hartu gabe. Hala ere, horrek ez du esan nahi 

Lfk MCFetan oinarritutako termometro optikoen diseinurako 

kanpoan uzteko parametroa denik, espektroaren forma eta λmren 

kokapena definitzen duen diseinu-faktore garrantzitsua baita, 2. 

artikuluan eta 43. irudian frogatu den bezala. 

Δnk sentsibilitate termikoan duen eragina aztertzeko, 

PhotonDesignen bidez tenperaturarekiko duen aldaketa simulatu zen 

erabiltzen ari ziren bi MCFentzako (ikus 44. irudia). Horretarako, 

materialaren errefrakzio-indizea honela definitu zen: 𝑛 =  𝑛𝑓 + 𝛾∆𝑇 

[83], non nf nukleoen errefrakzio-indizea den 25 ºC-tan, eta γ 

koefiziente termo-optikoa den [82]. Hauen ez-linealtasuna kontuan 

hartu zen -25 ºC eta 900 ºC arteko simulazioetarako [84, 85]. 

 

44. irudia: Δnren tenperaturarekiko simulazioak 7cMCFrentzako (triangelu 

beltzak) eta 3cMCFrentzako (zirkulu beltzak). 

2. artikuluan frogatu den moduan, λmk duen tenperaturarekiko 

desplazamendu proportzionalak (tenperatura handitu ahala, λm uhin-
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luzera luzeagoetara desplazatuko da eta alderantziz) esan nahi du 41. 

ekuazioan dagoen (𝜕∆𝑛 𝜕𝑇 ∗ (1 + 𝛼∆𝑇) + ∆𝑛𝛼)⁄  terminoa positiboa 

dela. 44. ekuaziotik, Δn beti positiboa dela antzeman daiteke, baina 

bere malda (𝜕∆𝑛 𝜕𝑇⁄  eran adierazita) negatiboa dela ikertzen ari 

diren bi MCFentzako. Honek esan nahi du 𝜕∆𝑛 𝜕𝑇⁄ ∗ (1 + 𝛼∆𝑇) <

∆𝑛𝛼, eta horren ondorioz, bi termino horien arteko aldea handitzen 

den heinean, sentsibilitate termikoa handitzen dela suposa daiteke. 

Beraz, 42. iruditik atera daitekeen ondorioa 3cMCFak duen 

tenperaturarekiko sentikortasuna 7cMCFak duena baino handiagoa 

dela da, Δn baxuagoa duelako eta baita bere malda txikiagoa delako 

ikertzen ari garen tenperatura-eremuan.  

Aurreko paragrafoan esandakoa demostratzeko asmoz, 2. 

artikuluan agertzen den paketatze berdina duen gailu bat fabrikatu 

zen baina 25 mm-ko 3cMCFko segmentua zuena, eta -25 ºC-tik 900 

ºC-ra doan tenperatura-ziklo mailakatu batzuetarako probatu zena. 

Probak egin aurretik, gailuak 2. artikuluan egindako ontze-

prozesua jasan zuen histeresia ekiditeko. Horren ondoren, aipatutako 

tenperatura-zikloak jasan zituen. 45. irudian espektroaren bilakaera 

tenperaturaren arabera eta haren kalibrazioaren emaitzak agertzen 

dira. 

 

45. irudia: a) Espektroaren bilakaera tenperaturaren arabera eta b) Paketatutako 

25 mm-ko 3cMCFko gailuaren kalibrazio kurba. 

Gailu honek 2. artikuluan adierazitakoa baino sentsibilitate 

handiagoa erakutsi zuen paketatze eta funtzionamendu-konfigurazio 
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berarekin, 43.61 pm/ºC-ko sentikortasuna lortuz 600 ºC eta 900 ºC 

tartean (2. artikuluko gailuak 24.8 pm/ºC-ko sentikortasuna lortu 

zuen). Hori dela eta, ondoriozta daiteke MCFtan oinarritutako 

termometro sentikorrak diseinatzeko parametrorik esanguratsuena 

Δn dela, eta aztertzen ari diren bi MCFen artean, 3cMCFa 

sentikorragoa dela eta, beraz, termometro optiko hobetua 

fabrikatzeko aukeratu behar den zuntza dela. 

Sentsorea fabrikatzeko, espektroaren formaren betebeharreko 

kondizioak 2. artikuluan azaldutako berdinak ziren. Hala ere, 

3cMCFa erabiliz, baldintzak betetzen dituen MCFaren luzerarik 

egokiena 12 mm-koa izan zen, hau da, 2. artikuluan erabili behar 

izan zen MCFaren erdia baino gutxiago (2.54 cm). Hau abantaila 

gehigarria da zeren gailuak material gutxiago behar baitu. 

Paketatzeari dagokienez, 2. artikuluko gailuaren eragozpenetako 

bat hauxe zen: altzairu herdoilgaitzeko estalki metalikoak 

tenperatura altuak jasaten zituenean, okertu egiten zen eta ez zuen 

jatorrizko formara itzultzen. Hau inguru latzetan jarduteko balizko 

arazoa da, barneko zuntza haustea ekar baitezake. Eragozpen kritiko 

hori gainditzeko, paketatzea hobetu zen ingurune latzetan eta 

tenperatura altuetan jarduteko sendoagoa izan dadin. Gailu honen 

paketatzeak zuntz optikoa estaltzen zuten hiru geruzek osatzen zuen. 

Lehenengo geruza aurreko gailuetako berdina zen eta zeramikako 

hodi batek osatzen zuen (Omega TRX-005132-6) MCFa zuzen 

mantentzeko eta, beraz, tenperaturarekiko soilik sentikorra izan 

dadin. Bigarren geruza Inconel hodi mehe batek osatzen zuen (INC-

116-6-OPEN), bere barneko diametroa zeramikako hodiaren kanpoko 

diametroa baino zertxobait handiagoa zena. Honen helburua 

zeramikako hodiari zurruntasuna ematea eta hausturak saihestea 

zen, azken honek inpaktuen aurrean hauskortasun handia erakusten 

baitu. Hirugarren geruza Inconel hodi lodi batez osatuta zegoen 

(INC-18-6 CLOSED), sendotasun gehigarria emateko. 2. artikuluan 

ez bezala, Inconel altzairu herdoilgaitzaren ordez erabiltzearen 
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arrazoia, Inconelek tenperatura altuagoak jasateko duen 

gaitasunagatik izan da. Paketatze honekin, azken prototipoak 14 cm 

inguruko luzera zuen (ikus 46. irudia). 2. artikuluan gertatzen zen 

bezala, gailuaren zati sentikorrak 1.2 cm-ko luzera besterik ez zuen 

eta puntan kokatuta zegoen, baina era berean puntatik urrun Fabry-

Perot tartea sortzea saihesteko. 14 cm-ko paketatzea kalibrazioan 

erabilitako labeengatik izan zen (Fluke 9103 eta Fluke 9150). Azken 

hauek 15 cm inguruko zulo bertikala zuten, eta punturik sakonenean 

soilik lortzen zuten tenperatura altuetara iristea. 

Azkenik, ingurune latzetarako ahalik eta sendoen izan dadin, gailutik 

galdeketa-sistemara doan SMFa geruza bikoitz batekin babestu zen. 

Lehenengoa hodi batek (Thorlabs FT030) osatzen zuen, kanpoko 

PVCko jaka eta Kevlar hariak zituena. Bigarren geruza altzairu 

herdoilgaitzeko jaka batez osatuta zegoen (Thorlabs FT05SS), babes 

gehigarria ematen zuena eta zuntzaren zehar nahi ez den argi 

ikusgaiaren edo IRen sarrera saihesten zuena. 

 

46. irudia: Hobetutako gailuaren (goian) eta 2. artikuluko gailuaren (behean) 

argazkiak probak egin ondoren. 

46. irudian paketatzeren onurak aitor daitezke. Erraz antzematen da 

2. artikuluko gailua nabarmen okertu dela hainbat tenperatura-

ziklo jasan ondoren, eta horrek bizitza-esperantzan eragina izan 

dezake. Bertsio berrituak, berriz, zuzen jarraitzen du. 

Konparatzeko, ezaugarri fisiko eta paketatze berdina duen gailu 

berdin bat fabrikatu zen, baina 7cMCFrekin. Kalibratu aurretik, bi 

gailuek 2. artikuluan deskribatutako ontze-prozesua jasan zuten 

histeresia ekiditeko. Horren ondoren, 45. irudiko gailuaren mailakako 

tenperatura-ziklo berdinak jasan zituzten. Horiei dagozkien 

espektroen bilakaerak 47. irudian agertzen dira. 
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47. irudia: Tenperaturaren araberako espektroen bilakaera a) 3cMCF eta b) 

7cMCFa duten gailuetan. 

Sentsore iraunkor hauen kalibrazio-kurbak 48. irudian agertu eta 2. 

taulan laburbiltzen dira. Emaitzek erakusten dute 3cMCFak duen 

gailuak sentsibilitate termiko handiagoa duela 7cMCFa duen gailuak 

baino tenperatura-tarte guztietan, ia sentikortasun-maila bikoitza 

lortuz 200 ºC eta 900 ºC tartean. 

 

48. irudia: 3cMCFan (zirkulu beltzak) eta 7cMCFan oinarritutako (triangelu 

beltzak) sentsoreen kalibrazio-kurbak. 
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2. taula: Emaitzen laburpena 

 -25 ºC-140 ºC 200 ºC-600 ºC 600 ºC-900 ºC 

3cMCF 

Korrelazioa 
T=117.61 λm 

+5.74 

T=59.445 

λm+67.693 

T=33.83 

λm+290.09 

Sentikortasuna 

(pm/ºC) 
7.302 16.785 29.426 

R2 0.926 0.9989 0.997 

7cMCF 

Korrelazioa 
T=177.31λm 

-17.193 

T=86.72 λm 

+129.17 

T=66.295 λm 

+238.47 

Sentikortasuna 

y (pm/ºC) 
5.531 9.983 15.081 

R2 0.99 0.992 0.999 

 

Hemen azaldutako emaitzek sendoki akoplatutako MCFen oinarriak 

ulertzearen garrantzia azpimarratzen dute, horiek ustiatzeari esker 

MCF geometria egokia hautatuz soilik sentikortasun handiagoa lortu 

ahal baita. Lan honetan, egitate honetaz baliatu gara tenperatura 

neurtzeko: paketatze sendoagoa ahalbidetu du, blindajearen ondorioz 

gauzatutako sentikortasunaren-galera MCFak emandako 

sentsibilitatearen hazkuntzarekin konpentsatu baita. Gainera, hemen 

azaldutako oinarriek aukera ematen dute neurrira egindako 

sentsibilitate optimizatuak edota hobetuak dituzten MCF egiturak 

eta geometriak diseinatu eta fabrikatzeko  tenperatura, tentsioa edo 

okerdura bezalako beste edozein parametro neurtzeko. Baita 

iragazkiak edo etengailuak diseinatzeko, kasu horietako guztientzako 

diseinu-prozedura hemen azaldutakoaren analogoa baita. 

 

1.3.4.2 Noranzko guztietarako tolestura-bektore 

sentsorea 

 

Atal honetan, tolestura-bektore sentsore sinple eta trinkoa erakusten 

da, tolesturaren edozein norabide eta anplitudea antzemateko gai 

dena. Gailu hau fabrikatzeko, aurreko lanean agertzen zen 3cMCF 

beraren segmentu labur bat (Lf=8 mm) erabili zen (ikus 41. irudia), 
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islapen-era funtzionatzen duen SMF-MCF egitura sinplea sortuz. 

Sentsorea uhin-luzeraren aldaketarekin eta argi-potentziaren 

aldaketekin galdekatu zen aldi berean. Modu honetan, tolesturaren 

norabidea eta anplitudea era nahasezinean neurtu ahal ziren, horren 

arabera espektroaren anplitudea aldatu eta desplazatzen baitzen 

MCFa tolesten zenean. 

 

49. irudia: Sentsorearen egituraren eskema. 

Egitura honetarako eta 3cMCFrako, akoplatutako potentzia 4. 

ekuazioan bezala adieraz daiteke, baina z=2Lf kasurako egokituta: 
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 (43) 

Zuntz honetan akoplaturik dauden SP ortogonalak 42. irudian 

agertzen diren berberak dira.  

Askotan frogatu den bezala, zuntz optikoen nukleoen errefrakzio-

indizea aldatu egiten da zuntza okertzen denean [86-89]. MCFetan, 

zenbait nukleo edo nukleok beste batzuek baino tentsio handiagoa 

izango dute okertze-plano eta anplitude berdinak jasaten 

dituztenean, eta, honen ondorioz, supermoduen errefrakzio-indize 

eraginkorrak proportzionalki aldatuko dira. 43. ekuazioaren arabera, 

efektu horiek aldaketak dakarte normalizatutako akoplatutako 

potentzia baldintzetan, eta, beraz, sortzen den espektroan. 

Sendoki akoplatutako MCFen artean, antolamendu simetrikoa 

dutenetan, tolestura-planoaren efektua beti izango da berdina 

okertze-norabidea edozein delarik ere. Hori dela eta, zuntz horiek gai 

dira aplikatutako tolestura bereizteko, baina ez bere norabidea [90]. 

Hala ere, MCF asimetrikoetarako, hots, 3cMCFaren modukoak 
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direnentzako, espektroan ikusgai izango den okertzearen eragina 

nukleoaren orientazioaren, tolesturaren norabidearen, nukleoen 

antolamenduaren eta geometriaren araberakoa izango da. MCF mota 

hauek tolestuta daudenean, nukleo bakoitzaren errefrakzio-

indizearen aldakuntza okertze-planoaren eta berarekiko duen 

orientazioaren araberakoa izango da [91, 92]. Nukleoak asimetrikoki 

antolatuta daudenez, bakoitzak tentsio maila desberdinak ditu 

tolestura-plano eta erradio beraren aurrean, bakoitzaren errefrakzio-

indizea modu independentean aldatzea eragiten duena. Egoera 

horrek supermoduen propagazioari eragiten dio zuzenean, eta, horren 

ondorioz, espektroa aldatzen da. Hau da MCF asimetrikoak 

noranzkoa detektatzen duten tolestura-sentsoreak egiteko hautagai 

onak bihurtzen dituena, potentzia normalizatuaren aldakuntza 

direkzio bakoitzerako espezifikoa izango baita, SMF-MCF egituraren 

espektroan antzeman daitezkeen aldaketak sortuko dituena uhin-

luzeraren desplazamenduan edota argiaren potentziaren aldakuntzan 

aplikatutako okertze-norabidearen arabera. 

Espektroan horrelako aldaketak eragiten dituzten tolestura-

norabideak detektatu eta neurtzeko, bi aldagai horietako bat 

bakarrik monitorizatuz, printzipioz, tolestura-norabidea eta 

anplitudea anbiguotasunik gabe 180º-tan neurtzea posible da. Tarte 

horretan, neurtutako aldagaiaren sentsibilitatea bakarra izango da 

tolestura-plano bakoitzerako eta, beraz, bere neurketa (uhin-luzera 

luzeago eta laburragoetara desplazatzea edo islatutako argi-potentzia 

handitzea eta txikitzea) aplikatutako tolesturarekin inolako 

zalantzarik gabe lotu liteke. Hala ere, gainerako 180º-etarako, 

aldagaiaren neurketa horiek aurreko 180º-ko bezalakoak izango dira, 

eta ondorioz, tolesturaren bi norabidek minitorizatutako aldagaian 

neurtutako aldaketa bera eragingo dute. 

Anbiguotasun hori ezaba daiteke aldagai biak aldi berean neurtuz 

(uhin-luzeraren desplazamendua eta argi-potentziaren aldakuntza), 

bakoitzak sentikortasun berezia erakusten baitu tolestura-norabide 
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bakoitzerako. Modu honetan, lehenengo aldagaiaren neurketak bi 

irtenbide posible emango ditu (tolesturaren bi norabide), eta bigarren 

aldagaia anbiguotasun hori ebazteko gakoa izango da. Adibidez, 

demagun uhin-luzera desplazamendu jakin bat neurtu dela. Arestian 

azaldu den bezala, tolestura norabide desberdin bik eragin dezakete 

aldaketa hori. Une horretan, argi-indarraren neurketa anbiguotasuna 

ezabatzeko gakoa izango da, izan ere, posible den soluzio batean 

(uhin-luzera aldatzea eragiten duten tolestura norabideetako 

batean), neurtutako argi-indarra handituko baita, beste norabidean 

gutxitzen den heinean. Horrek bi aldagaietan aldi berean aldaketa 

horiek eragiten dituen tolestura-norabide posible bakarra uzten du. 

Prozedura berdina aldagaiak alderantzikatuz egin daiteke: argiaren 

potentziaren neurketa erabiliz posible diren bi soluzio emateko eta 

uhin-luzeraren desplazamendua anbiguotasuna ezabatzeko. Hori dela 

eta, bi aldagaien aldibereko neurketa konbinatuz, anbiguotasuna 

ebatz daiteke eta tolestura norabidea 360º-tan neur daiteke, gailua 

okerduraren noranzkoarekiko sentikor bihurtuz (noranzko 

guztietarako). Horretarako, 34. irudian agertzen den galdeketaren 

konfigurazioa ezarri zen, bi parametroak aldi berean neurtzeko. 

Jokabide hori frogatzeko, uneoro espektrometroaren galdeketa 

eremuan (1510 eta 1595 nm tartean) dagoen eta bigarren mailako 

maximorik ez dituen espektro bat emateko gai den MCF 

segmentuaren (Lf) luzera bat behar zen. Azken hau derrigorrezkoa 

da galdeketa-eremu berean islatutako argi indarra neurtzerakoan 

kontrako joerak dituzten aldameneko lobuluek eragiten duten 

sentsibilitate-galera minimizatzeko (bata handitzen da bestea 

gutxitzen denean), [91]-an agertzen den bezala. Aipatutako 

eskakizunak betetzen zituen Lfa lortzeko, PhotonDesign simulazio-

softwarea erabili zen, eta simulazio-emaitzek MCF luzerarik egokiena 

8 mm-koa zela adierazi zuten. Simulatutako eta fabrikatutako 

gailuen espektroen arteko antz handia 50. irudian erakusten da. 
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50. irudia: 3cMCFa duten 8 mm-ko fabrikatutako eta simulatutako gailuen 

espektroak. 

Sentsorea horizontalki finkatu zen zuntz biragailu batean (Thorlabs 

HFR007). Horrela, MCF segmentua kantilera konfigurazioan ezarri 

zen (ikus 51a. irudia). Konfigurazio horri esker, MCFari aplikatutako 

tolestura-planoa zehazki hautatu ahal zen. Zuntza mutur batean 

finkatu zen zuntz biragailuaren txaloarekin SMF-MCF fusio-

puntuan, beste muturra askatuta utziz, 51a irudian erakusten den 

moduan. MCFaren luzera kantilera konfigurazioan (Lf) 8 mm-koa 

zenez, zuzen zegoen tolesturarik aplikatzen ez zenean. Egoera 

horretan, erreferentzia-posizioa izango zen nukleoen orientazioa 

ezartzeko (0° 51b irudian), bereizmen handiko kamera (Dyno-Lite 

AM4116T) jarri zen MCFaren aurrean nukleoen orientazioa 

ikuskatzeko. Erreferentzia gisa erabiltzea erabaki zen hasierako 

nukleoaren orientazioa ,nukleoak alderantzizko V itxurako 

konfigurazioan zeudenean izan zen, 51b irudian adierazten den 

moduan. 

MCFak bere nukleoak orientazio horretan zituenean, zeramikako 

hodi mehe bat ezarri zen bere aurrean (Omega Engineering TRX-

005132-6), zeinaren zuloaren barruko diametroa (127 μm) MCFaren 

diametroa baino zertxobait handiagoa zena (125 μm). 

Desplazamendu mikrometrikoko plataforma baten bidez (Thorlabs 

RB13M), MCFa eta hodia lerrokatu ziren. Lerrokatze horri esker, 
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zuntza aurrerapauso mikrometrikoetan desplazatu zen, MCFaren 

mutur soltearen 0.5 mm zeramikako hodian sartu arte. MCFaren 

diametroaren eta zeramikako hodiaren arteko desberdintasun estuari 

esker, MCFa ondo enkaxatu zen hartan, zuntzaren malgutasuna 

saihestuz. 

Horren ondoren, zeramikako hodia zehaztasun handiko plataforma 

batean finkatu zen (Thorlabs LTS150), bertikalki gorantz eta 

beherantz zehaztasun handiz mugitzeko, plataforma horrek 

gutxieneko 0.1 μm-ko mugimendu lorgarria baitu, fabrikatzailearen 

arabera. Modu honetan, hodia gora eta behera mugitzen zenean, 

zuntza tolestu eta triangelu bat sortzen zen, zeinen aldeak zuntzaren 

benetako posizioa, hasierako posizio horizontala (Lf) eta d 

desplazamendu bertikala ziren, 51a irudian adierazten den moduan. 

Zuntzari tolestura aplikatzeko mekanismo hau ugari erabili denaren 

antzekoa da [89, 91, 93, 94]. 51. irudiaren arabera, tolestura-

angeluaren graduak sin 𝜃 = 𝑑 𝐿𝑓⁄   ekuazioaren bidez kalkulatu ziren. 

Horren arabera, dren goranzko edo beherako pauso bakoitza 100 μm-

koa zenez, urrats bakoitzean aplikatutako tolestura 0.716°-koa zela 

esan nahi zuen 3.583°-ra iritsi arte. Prozesu hau MCFaren 

biraketaren 30° bakoitzeko guztietan errepikatu zen 51b irudian 

adierazitako norabidean, bere ardatzaren inguruan biraketa osoa 5 

aldiz osatu arte. 

 

51. irudia: a) tolestura aplikatzeko konfigurazioaren eskema eta b) 3cMCF-aren 

biraketaren noranzkoa, ebaluatutako puntuak eta aplikatutako tolestura norabidea 

adierazita daudelarik. 

Bildutako espektroen konparazioa eta dagokien uhin-luzeraren 

desplazamenduaren eta argi-potentziaren aldakuntzaren arteko 
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neurketa 3cMCFak flexio-plano beraren aurka kontrako nukleoen 

orientazioak dituen bi kasuak erakusten dira 52. eta 53. irudietan. 

Kontuan izan aplikatutako tolestura-norabide eta angelu 

berdinetarako, espektroen aldaketak batez ere argi-potentziaren 

aldakuntzetatik (ikus 52. irudia) batez ere uhin-luzeraren 

desplazamendura (ikus 53. irudia) doazela ziklo batetik bestera 

seinale oso egonkorrarekin. Bilakaera hori progresiboki gertatu zen 

erlojuaren biraketaren noranzkoan. Beraz, tarteko posizio 

bakoitzean, uhin-luzeraren desplazamendu eta argi-potentziaren 

aldaketaren arteko konbinazio lineal espezifikoa ikusi zen. 

 

52. irudia: Bildutako espektroak eta neurtutako parametroen denboraren 

araberako eboluzioaren bi ziklo sentsorea geziak adierazten duen norabidean 

tolestu zenean eta 3cMCFa a) b) 90° eta c) d) 270° hasierako 0° posizioarekiko 

biratu zenean, hurrenez hurren. 
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53. irudia: Bildutako espektroak eta neurtutako parametroen denboraren 

araberako eboluzioaren bi ziklo sentsorea geziak adierazten duen norabidean 

tolestu zenean eta 3cMCFa a) b) 180° eta c) d) 360° hasierako 0° posizioarekiko 

biratu zenean, hurrenez hurren. 

Jokabide espektral hori aztertuta, ondoriozta daiteke bi aldagaien 

(uhin-luzeraren desplazamendua eta argi-potentziaren aldakuntzak) 

neurketa konbinatuz, gailu hau edozein tolestura-norabide neurtzeko 

gai dela 360°-tan eta tolestura-anplitude angeluak neurtzeko gai dela 

ere bai 3.583°-ra arte, 3cMCFaren oinarrizko orientazio bakoitzean 

joera eta sentsibilitate bakarrak aitortu baitaitezke. Gainera, emaitza 

horiek iradokitzen dute erabili aurretik egin beharreko nukleoaren 

eta tolestura-norabidearen arteko lerrokatze zehatza ez dela 

beharrezkoa MCFan oinarritutako tolestura-bektore sentsore hau 

erabiltzeko. 

Uhin-luzeraren desplazamenduari eta argi-potentziaren aldaketari 

dagokienez, dagozkien tolestura-sentsibilitate eta desbideratze 

estandarrak 54. irudian laburbiltzen dira aplikatutako tolestura eta 

3cMCFaren orientazio guztietarako. Sentikortasun maximoak 506.72 

± 5.5 pm/° eta 587.5 ± 11.08 nW/° izan ziren, uhin-luzera eta argi-
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potentziaren aldaketarako, hurrenez hurren. Balio horiek uhin-

luzeraren desplazamendurako 0.01°-ko ziurgabetasuna adierazten 

dute neurketan eta 0.018°-ko ziurgabetasuna potentzia 

aldakuntzarako. Parametro bakoitzaren joera eta sentsibilitate 

konbinazio bakarra dago puntu bakoitzean, eta horrek 

anbiguotasunik gabeko tolestura-norabidearen eta anplitudearen 

detekzioa ahalbidetzen du. 52. eta 53. irudietako emaitzetatik 

aurreikusi ahal zen moduan, bi kurbak beraien artean 90º desfasatuta 

daudela antzeman daiteke. 

 

54. irudia: Uhin-luzeraren desplazamendua eta argi-potentziaren aldakuntzaren 

sentsibilitatea eta dagokien desbiderapen estandarrak zuntzaren posizio 

bakoitzerako. 

55. irudia 54. irudiko emaitzen irudikapen polar normalizatua da, 

balio absolutuan. Islapen-espektroaren desplazamendua maximoa 

denean, argi-potentziaren aldaketa minimoa da, eta alderantziz. 

Beste orientazioetan, berriz, potentzia-aldakuntzaren eta uhin-

luzeraren desplazamenduaren arteko konbinazio espezifikoa 

antzeman daiteke. 
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55. irudia: Sentsibilitate eta desbideratze estandarren irudikapen polar 

normalizatua balio absolutuan. 

Aldi bereko uhin-luzeraren desplazamendua eta argi-potentziaren 

aldakuntzaren neurketak konbinatuz, 3cMCFz osaturiko 8 mm-ko 

sentsore sinplea garatu zen, tolesturaren norabidea eta anplitudea 

360°-tan zehaztasunez antzemateko gai dena. Gailu honek ez du 

lerrokadura zehatzik behar, eta tolestura-angelu txiki zen handiak 

neurtzeko gai da, 1° azpitik 3.583°-ra arte. 

 

1.3.4.3 Azelerometroa 

 

Puntu honetan, “Highly sensitive multicore fiber accelerometer for 

low frequency vibration sensing” artikuluaren laburpen bat azaltzen 

da. Artikulu hau Scientific Reports aldizkarian argitaratu zan 2020ko 

irailean eta tesiaren eranskinaren atalean dago 3. artikulu gisa 

xehetasun gehiago kontsultatzeko. 

Atal honetan, luzera desberdineko (L1 eta L2, hurrenez hurren) eta 

180° biratuta dauden 3cMCFren bi segmentuz (MCF1 eta MCF2 

izenekoak) osatutako azelerometroa erakusten da. 3cMCFren 

segmentuak modu bakarreko zuntz estandarren artean daude, 

islapen-konfigurazioan funtzionatzen duen SMF-MCF1-MCF2-SMF 

egitura sortuz (ikus 56. irudia).  
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56. irudia: Gailuaren eskema. 

3cMCFz osatutako kaskada-konfigurazio honetarako, 36. 

ekuazioaren arabera, irteeran dagoen potentzia segmentu 

bakoitzaren irteeran dagoen potentzia normalizatuaren arteko 

produktua da: 
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(44) 

Honela, arestian esan bezala, islapen-konfigurazioan funtzionatzen 

duen kaskada-egiturak segmentu bakar batek baino puntu goren 

estuagoa eta ikuspen handiagoak emango ditu, espektroaren edozein 

aldaketa jarraitzeak erraztuko dutenek. 

Zuntzen antolamenduari dagokionez, 3cMCFren bi segmentuak 180° 

biratuz elkarren artean, haietako bakoitzak kontrako portaera 

erakutsiko du uhin-luzeraren desplazamenduari eta espektroaren 

anplitudeari dagokionez, aurreko atalean eta [91]-n azaltzen den 

norabidearekiko izaera sentikorra dela eta zuntz mota hau okertzen 

denean. 3cMCF segmentu bakoitzaren nukleoaren posizioa eta 

aplikatutako tolestura 57. irudian bezala lerrokatuta daudenean, non 

MCF segmentuetako batek nukleoak V bezalako konfigurazioan 

orientatuta dituen eta besteak alderantzizko V moduko 

konfigurazioan orientatuta dituen (edo 180° biratuta), anplitudearen 

aldakuntzak bakarrik gertatuko dira espektroan. Gailuak 57. irudian 
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bezala funtziona dezan, luzera desberdineko MCF segmentuak 

derrigorrezkoak dira neurketan anbiguotasuna ekiditeko. Luzerak 

berdinak izango balira, bi segmentuen espektroak gainjarrita egongo 

lirateke efekturik aplikatzen ez denean, puntu hori islatutako argi-

potentzia maximoa gertatuko den momentua izanik. Espektro 

bakoitza kontrako noranzkoetan aldatuko zen egitura okertzen 

denean, baina potentziaren jaitsierak bakarrik erregistratuko 

lirateke, potentzia-irakurketa berdinak edo antzekoak lortuz 

kontrako noranzko okerdurentzako. Luzera desberdinetako 

segmentuak erabiliz, berriz, anbiguotasun edo sentsibilitate galera 

hori saihesten da, izan ere, kasu honetan, neurtutako potentzia hazi 

eta murriztu egingo da aplikatutako okerduraren norabidearen 

arabera geldirik dagoen neurketarekin alderatuta. Espektroaren 

anplitude-aldaketak potentzia-aldaketekiko proportzionalak dira, 

eta, beraz, PD bat besterik ez da beharrezkoa izango gailuaren 

galdeketa egiteko. Sinpletasun honek SMF-MCF1-MCF2-SMF 

egitura hau erakargarri bihurtzen du azelerometro oso sentikor eta 

errentagarriak egiteko, funtzionatzeko ez baitu neurrira egindako 

ekipamendu berezirik behar. 

 

57. irudia: 3cMCFko segmentu bakoitzaren espektro simulatuak eta haien arteko 

emaitza egitura elkarketatik a) zuzen, b) gorantz eta c) beherantz okertzen 

denean. Geziek kasu bakoitzaren okerduraren norabidea, uhin-luzeraren 

desplazamendua edo potentzia-aldaketa adierazten dute. MCF1en nukleoak V 

moduko konfigurazioan daude, eta MCF2koak alderantzizko V itxurako 

konfigurazioan daude. 
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Ezaugarri horiek dituen gailua fabrikatzeko, diseinuaren betebehar 

batzuk kontuan hartu behar ziren: bere espektroa galdeketa-leihoan 

egon behar zen (1510 eta 1595 nm tartean) edozein unetan eta puntu 

goren bakarra eta ondo zehaztuta eduki behar du, bigarren mailako 

lobulu gabe. Eskakizun hauek derrigorrezkoak dira kontrako joerak 

dituzten bigarren mailako lobuluek eragiten duten sentsibilitate-

galera minimizatzeko argi-potentzia islatua neurtzerakoan (bata 

handitzen da eta bestea gutxitzen da), [91]-n erakusten den moduan. 

Eskakizun hauek betetzen zituzten MCF segmentuen luzera 

egokienak 11.4 mm eta 12.2 mm izan ziren, 23.6 mm-ko gailu trinkoa 

lortuz. Simulatutako eta fabrikatutako gailuen espektroak 58. irudian 

agertzen dira, egitura osatzen duten MCF segmentu bakoitzaren 

simulazioekin batera. Simulazio hauek PhotonDesign softwarearekin 

egin ziren. 

 

58. irudia: Simulatutako (marradun lerro beltza) eta fabrikatutako gailuen (lerro 

beltza) espektro normalizatuak. Bi kurben maximoa 1554 nm inguruan dago eta ez 

dago bigarren mailako lobulurik. 11.4 mm-ko (marradun lerro gorria) eta 12.2 mm-

ko (marradun lerro urdina) segmentuen espektro simulatuak ere agertzen dira. 44. 

ekuazioan adierazten den moduan, euren arteko produktuaren emaitza marradun 

lerro beltza da. 

Gailua probatzeko, horizontalki finkatutako laukizuzeneko formako 

metakrilatoko plaka mehe bat erabili zen. Haren azpi eta erdian, 

eragingailu piezoelektriko bat (Thorlabs APFH720 Thorlabs 
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MDT694B anplifikadorearekin konbinatuta) finkatu zen, plakak 

plano bertikalean soilik bibratu ahal izateko. Eragingailu 

piezoelektrikoa funtzio-sorgailu batera konektatu zen (Keysight 

Technologies 33220A) anplitude eta maiztasun anitzeko seinaleak 

sortzeko. Horren ondoren, fabrikatutako gailua plakaren goiko 

gainazalera itsatsi zen zianoakrilatozko itsasgarri batekin, MCF1-

MCF2-en arteko elkartze-puntua eragingailu piezoelektrikoaren 

gainean kokatuz, 59. irudian agertzen den konfigurazio 

esperimentalaren eskeman ikus daitekeen bezala. 57. irudian bezala 

orientaturik itsatsi zen gailua gainazalera, nukleoen orientazioa 

bibrazioaren norabidearekin bat etortzeko. Gailuaren ondoan, 

azelerometro komertzial bat itsatsi zen (Pico Technology PP877 Pico 

Technology TA096rekin batera), azelerometro elektroniko honek 

bibrazioaren anplitudearen eta azelerazioaren arteko erlazioa ematen 

baitzuen. Galdeketa-sistema 34. irudiko konfigurazioarekin egin zen. 

 

59. irudia: Esperimentuaren alboko eta goiko bista eskematikoak. Lehen planoan, 

fabrikatutako azelerometro optikoa plakaren gainazalera nola itsatsi zen erakusten 

da. Nukleo gorriak MCF1renak dira eta urdinak MCF2koak. Nukleo zentral 

gorriak MCF1 MCF2ren aurrean dagoela adierazten du, nukleo zentral komuna 

partekatzen baitute. 

Lehenengo proba 1 Vpp anplitudeko seinale sinusoidalak igortzean 

eta beren maiztasuna 30 Hz-tik 1 mHz-ra (funtzio sorgailuak ematen 

duen maiztasunik baxuena) hainbat urratsetan aldatzean zitzan, 

gailuen detekzio-muga (LoD) maiztasunari dagokionez definitzeko. 

Fabrikatutako gailuak 1 mHz-ra arteko bibrazio guztiak hauteman 
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zituen argi eta garbi bai uhin-luzeraren desplazamendu bai argi-

potentziaren aldaketan (ikus 60. eta 61. irudiak). 61. irudiko uhin-

luzeraren desplazamendu txikiak gailua nukleoen orientazio 

egokiarekin plakara itsatsi zela adierazten du, eta bere FFT 

anplitudeak potentzia aldaketarenak baino txikiagoak direnaren 

zergatia azaltzen du. Hala ere, potentziaren aldaketa maximizatzea 

helburu duen konfigurazio honetan ere, gailuak halako maiztasun 

txikiak antzeman ditu uhin-luzeraren desplazamenduaren bitartez 

ere, duen sentsibilitate handiaren erakusle dena. Azelerometro 

komertzialari dagokionez, 2 Hz-tik gorako bibrazioak soilik hauteman 

zituen, seinale nabarmen zaratatsuagoak eta harmonikoen maila 

altuak zituztenak (ikus 62. irudia). 

 

60. irudia: Potentzia neurketen emaitzak fabrikatutako gailu optikoan. a) Hiru 

kasu adierazgarrienen erantzuna denboraren arabera. b) FFT anplitudeak 30 Hz-

tik 1 mHz-ra bitarteko frekuentzientzat 1 Vpp-ko seinale sinusoidalerako. 

Neurtutako maiztasunaren ardatza eskala logaritmikoan dago. 

 

61. irudia: Uhin-luzeraren desplazamenduaren emaitzak fabrikatutako gailu 

optikoan. a) Hiru kasu adierazgarrienen erantzuna denboraren arabera. b) FFT 
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anplitudeak 30 Hz-tik 1 mHz-ra bitarteko frekuentzientzat 1 Vpp-ko seinale 

sinusoidalerako. Neurtutako maiztasunaren ardatza eskala logaritmikoan dago. 

 

62. irudia: Azelerazioaren emaitzak azelerometro elektronikoan. a) Hiru kasu 

adierazgarrienen erantzuna denboraren arabera. b) FFT anplitudeak 30 Hz-tik 1 

mHz-ra bitarteko frekuentzientzat 1 Vpp-ko seinale sinusoidalerako. Neurtutako 

maiztasunaren ardatza eskala logaritmikoan dago. 

Bigarren proba maiztasun finkodun (6 Hz) seinale sinusoidal bat 

igortzean eta honen anplitudea 1 Vpp-tik 10 mVpp-ra (funtzio-

sorgailuak ematen duen anplituderik txikiena) aldatzean zitzan, gailu 

bakoitzaren LoDa bibrazioen anplitudearen arabera definitzeko, 

oszilazio mugimenduaren azelerazioarekin lotura duena. Bi gailuen 

denbora-erantzunak eta FFT anplitudeak 63. iruditik 65. irudira 

agertzen dira. Gailu optikoak 10 mVpp-ra arteko bibrazioak 

antzeman zituen 3:1 SNR irizpideen gainetik, normalean arau gisa 

hartzen dena [95]. Ikus daitekeen denboraren domeinuko (ikus 63a 

eta 64a. irudiak) eta FFTaren (ikus 63b eta 64b. irudiak) seinaleen 

anplitudearen jaitsiera progresiboa igorritako seinalearen 

anplitudearen txikitzearekiko proportzionala da. Bi kasuetan (uhin-

luzeraren desplazamendua eta potentzia aldaketak), igorritako 

seinalea argi antzeman daiteke eta harmonikoen maila baxua nabaria 

da. Azelerometro komertzialari dagokionez, 30 mVpp-rainoko 

seinaleak soilik hauteman zituen (ikus 65. irudia). 
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63. irudia: Potentzia neurketen emaitzak fabrikatutako gailu optikoan. a) Hiru 

kasu adierazgarrienen erantzuna denboraren arabera, eta b) FFT anplitudeak 6 

Hz-eko eta 1 Vpp-tik 10 mVpp-ra doan anplitudea duen igorritako seinale 

sinusoidal batentzat.  

 

64: irudia: Uhin-luzeraren desplazamenduaren emaitzak fabrikatutako gailu 

optikoan. a) Hiru kasu adierazgarrienen erantzuna denboraren arabera, eta b) FFT 

anplitudeak 6 Hz-eko eta 1 Vpp-tik 10 mVpp-ra doan anplitudea duen igorritako 

seinale sinusoidal batentzat. 

 

65. irudia: : Azelerazioaren emaitzak azelerometro elektronikoan. a) Hiru kasu 

adierazgarrienen erantzuna denboraren arabera, eta b) FFT anplitudeak 6 Hz-eko 

eta 1 Vpp-tik 10 mVpp-ra doan anplitudea duen igorritako seinale sinusoidal 

batentzat. 

Proba hauen ondorioz lortutako kalibrazioa 66. irudian ageri da.  
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66: irudia: Fabrikatutako azelerometro optikoaren kalibrazioa. 

Uhin-luzeraren desplazamenduaren eta potentziaren aldaketaren 

portaera lineala adierazgarria da, batez ere azken honetan, non 2.213 

nW/mg-ko sentsibilitatea lortu zen 0.997-ko Pearsonen korrelazio 

koefiziente karratuarekin (R2=0.997) eta 1.083 μg/sqrt(Hz)-ko 

zarata-dentsitatearekin. Beraz, potentziaren aldaketa (ΔP) eta 

azelerazioaren (mg-tan) arteko korrelazioa honela adieraz daiteke: 

0.450 0.143a P    (45) 

 

Uhin-luzeraren desplazamendu-neurketen arabera, 1.116 pm/mg-ko 

sentsibilitatea lortu zen 0.976-ko Pearsonen korrelazio koefiziente 

karratuarekin (R2=0.976). Azpimarratu behar da MCFan 

oinarritutako azelerometro hau potentziaren aldaketaren neurketekin 

funtzionatzeko optimizatu dela, uhin-luzeraren desplazamenduari 

dagokionez sentsibilitate txikia suposatzen duena. Beraz, emaitza 

hauek gailua 59. irudian irudikatutako modutik oso gertu jarri zela 

adierazten dute,  eta gailua nahi den bezala funtzionatzen duela 

adierazten du. 

Lan honetan, zuntzez osatutako azelerometro trinko eta oso 

sentikorra erakusten da. Bere egitura espektroaren anplitudearen 
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aldaketa optimizatzeko diseinatuta dago, potentziaren aldaketarekin 

lotuta dagoena. Konfigurazio honi esker, bere galdeketa-sistema oso 

erraza da, ekipamendu gutxi eta sinplez egina eta errentagarritasun 

altua duena. Gailua 1 mHz-rainoko maiztasun baxuko bibrazioak 

hautemateko gai izan zen 2.213 nW/mg-ko sentsibilitatearekin, 

erakargarria izan daitekeena ezaugarri horiek eskatzen dituzten 

aplikazioetan, hala nola sismologian. 

 

1.3.4.4 Noranzko sentikortasuna duen kurbatura-

sentsorea 

 

Puntu honetan, “Composed multicore fiber structure for direction-

sensitive curvature monitoring” artikuluaren laburpena azaltzen da. 

Artikulu hau APL Photonics aldizkarian argitaratu zan 2020ko 

uztailean eta tesiaren eranskinaren atalean dago 4. artikulu gisa 

xehetasun gehiago kontsultatzeko. 

Atal honetan, 3. artikuluko sentsorearen arkitektura eta galdeketa-

konfigurazio bera erabili ziren kurbatura neurtzeko (ikus 56. irudia). 

Hala ere, kasu honetan, SMF-MCF1-MCF2-SMF egitura L1 = 17.4 

mm-ko eta L2 = 18.2 mm-ko segmentuekin egin zen, 3. artikuluan 

baino puntu goren zorrotz eta estuagoa lortzeko espektroan (ikus 67. 

irudia). Nukleo zentralean akoplatutako potentziaren adierazpena 

aurreko gailuaren berbera da (44. ekuazioa), baita galdeketaren 

konfigurazioa ere (ikus 34. irudia). 
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67. irudia: 3. artikulu (lerro urdina) eta 4. artikuluko (lerro beltza) 

fabrikatutako gailuen espektroak. 

Gailua kurbatzeko, muturretako SMFetatik eutsi zen lehenik eta 

behin. Horren ondoren, SMFak biragailuetan (Thorlabs HFR001) 

muntatutako bi zuntz-euskarrien bidez tinkatu ziren eta posizio 

bertikalean kokatutako taula optiko batean finkatu zen gailu osoa. 

Beste zuntz-euskarri bat erantsi zen beherago zegoen SMFaren 

amaieran masa gisa aritzeko (20 g) eta grabitatearen bidez zuntzaren 

tentsioa konstante mantentzeko. Kurbaduraren neurketak gailuko 

3cMCF segmentuen orientazio desberdinetarako egin ziren, 0° eta 

180° artean 30°-ko urratsetan (ikus 68. irudia) eta mikrometroko 

bereizmena duen translazio-etapa bat erabili zen egitura bere MCF1-

MCF2 elkartze-puntutik okertzeko. Gailuaren kurbaduraren balioa 

(C) ondoko ekuazioarekin kalkulatu zen: 𝐶 = 12ℎ 𝑑2⁄  [96], non h 

translazio-etaparen desplazamendua den eta d bi zuntz-biratzaileen 

arteko distantzia den. 
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68. irudia: Neurketen konfigurazioaren diagrama eskematikoa. 

69. irudian, gailuari bi norabide perpendikularreko kurbadura 

aplikatu zitzaizkionean ikusitako espektroak erakusten dira (0° eta 

90° orientazioak 68. irudiaren arabera). Kontuan izan behar da uhin-

luzeraren desplazamendua handiagoa denean intentsitate aldaketak 

minimoak direla eta alderantziz. Jokabide hau gailuaren 

arkitekturarengatik eta bertan zeuden 3cMCFen asimetriagatik 

espero zen, 3. artikuluan erakutsi den moduan. 

 

69: irudia: Kurbatura desberdinetarako espektroak gailuaren posizioa a) 0° eta b) 

90° zirenean, hurrenez hurren. 

70. irudian 68. irudian adierazitako gailuaren zazpi orientazio 

desberdinetan neurtutako batez-besteko kurbadura-sentsibilitateak 

erakusten dira. 
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70. irudia: Batez-besteko kurbaduraren sentikortasunaren irudikapen polarra a) 

uhin-luzeraren desplazamenduari eta b) intentsitate-aldaketei dagokienez. 

Beraz, lan honetan, kurbaduraren anplitudea eta norabidea emateko 

gai den gailu oso sentikor bat erakutsi da. Hemen deskribatutako 

sentsorearen kurbaduraren sentsibilitatea 4.66 dB/m-1-koa izan da 

intentsitate-aldaketak kurbadurarekin erlazionatu direnean. 
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2. atala 

 

Ondorioak 

 

Atal honetan tesiaren ondorioak aurkezten dira, baita horren 

ondorioz bideragarriak diren etorkizuneko ikerketa-ildoak ere. Azken 

hauek lan honetan azaldutako gailuen errendimendua hobetzera 

bideratutako ikerketa-lerroetan eta egokiak izan daitezkeen ikerketa-

lerro berrietan banatuta daude. Ikerketaren emaitzak biltzen 

dituzten argitaratutako artikulu zientifikoak eta kongresuak atal 

honetan daude ere. 
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2.1 OFDS 

2.1.1 Ondorioak 

 

Lehen ikerketa-lerroan, TCaren neurketarako diseinatu eta 

fabrikatutako bi OFDS deskribatu dira. Haien funtzionamendu-

printzipioa besoen distantziaren araberako islatutako argiaren 

modulazioan oinarritzen zen. Hala ere, neurketa-baldintzak 

nabarmen desberdinak ziren sentsoreak turbinen karkasetan 

instalatzeko orduan. Lehenengo kasuan, sentsorearen buruak besoen 

zigilatze-puntetara zuzenduta zeuden, islatutako argia murriztu, 

sentsorea besoen puntetatik gertu jartzera eta 1. Eskualdean 

funtzionatzera behartzen zuena. Bigarren kasuan, besoaren zati 

lauari begira zeuden sentsoreak. Plataforma hau karkasatik urrunago 

zegoen baina argia islatzeko azalera gehiago eskaintzen zuen. 

Baldintza horietan funtzionatzeko, sentsorearen diseinua berritu egin 

zen, 1. Eskualdea handituz eta distantzia luzeagoetan hasteko. Modu 

honetan, sentsorea besoen puntetatik urrunago jar zitekeen, 

segurtasuna nabarmen hobetu zezakeena. OFDSaren azken bertsio 

honek aurrekoaren errendimendua nabarmen hobetu zuen eta CTA 

gure bazkideak ezarritako hurrengo baldintzak bete zituen: 

 Kontakturik gabeko neurketa, besoen portaera mekanikoa 

arriskuan egon ez dadin. 

 Zehaztasuna TCaren neurketan. Adibidez, azken probetan, 

20000 motor biren ondoren lortutako TC balioak 7 μm-tik 

beherako batez-besteko aldakortasuna zuten beso bakoitzeko, 

eskatutako 25 μm-ak baino nabarmen beherakoa den balioa. 

 1. Eskualde sentikorragoaren erabilera. Lehen zuntz-

sortarekin alderatuta, bigarren bertsioan, 1. Eskualdea 

luzeagoa zen (3.5 mm vs 2 mm), distantzia luzeagoetan 

hasten zen (4.5 mm vs 2 mm) eta sentsibilitate handiagoa 

erakusten zuen bere malda handiagoari esker. 
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 Instalatzeko erraztasuna. Ezaugarri hau asko estimatu zuten 

CTAko teknikariek sentsore-burua erraz instala zitekeelako 

karkasan. Azken hau ezaugarri oso garrantzitsua da, izan ere, 

instalatzeko behar den denbora nabarmen murrizten duelako 

eta karkasan instalatzeko ez duelako zulo berezien beharrik.  

 Sendotasuna. Sentsoreak gai izan dira proba osoetan zehar 

baldintza errealetan funtzionatzeko errendimendu arazorik 

izan gabe. 

 Sistemaren errentagarritasuna. OFDSaren galdeketa-sistema 

ekipamendu arruntez osatuta dago. Zuntz-sortari dagokionez, 

zuntz komertzialez egina dago. 

 Moldakortasun eta segurtasunaren hobekuntza. OFDSaren 

azken bertsioa ahalik eta turbina gehienetan funtzionatzeko 

diseinatu da, kasu bakoitzerako neurrira egindako zuntz-

sortak fabrikatzearen beharra saihestuz. Gainera, zuntzen 

antolaketari esker, besoen puntetatik urrunago kokatu ahal 

da, segurtasuna hobetzen duena. 

 

2.1.2 Aurkeztutako gailuen hobekuntza/garapena 

 

Ondorengo lan-ildoak iradokitzen dira ikerketa-lerro honekin 

jarraitzeko: 

 Haizearen tunelean jarraian jarritako 3 turbina etapatan 

(errotorea+estatorea) TCa aldi berean neurtzea, errotore 

bakoitzaren TCa gutxienez 3 puntu desberdinetan neurtuz. 

Neurketa hau erronka oso handia izango litzateke, orain arte 

probetan erabilitako hardwarea biderkatzea eta eskuraketa-

sistema egokitzera behartuko lukeelako datu kopuru hori aldi 

berean eskuratu ahal izateko. Proba horiek ematen duten 

informazioa oso garrantzitsua da CTArentzat, TCaren 

portaera hainbat turbina-etapa aldi berean funtzionatzen 

dutenean karakterizatzeko aukera emango lukeelako. 
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 Sentsore-burua kutsadura edo errekuntza-ganberatik 

datozen hondakinetatik babesteko mekanismo bat 

diseinatzea, errekuntza dagoen motor aeronautikoek 

dauzkaten funtzionamendu-baldintzetan probak egiteko 

bideragarria izan dadin. 

 Aurreko puntuarekin lotuta, OFDSa funtzionamendu-

baldintza errealetan erabiltzeko, zuntz-sorta egokitu egin 

behar da turbinetan ohikoak diren 700 ºC eta 1000 ºC arteko 

tenperaturak jasateko. 

 Neurketa sistemako hardware osagaiak miniaturizatzea 

konfigurazio trinko batean integratzeko, bere garraiatzea eta 

maneiatzea errazteko. 

 

2.1.3 Ikerketa-lerro berriak 

 

Arestian aipatutako lan-ildoak ez ezik, OFDSa aplikazio hauetarako 

erabil liteke: 

 Lan honetan garatutako OFDSarekin, besoen bibrazio 

erradialak (TC) neurtu eta aztertu dira, eta aipatu den 

bezala, seinale bera erabil liteke besoen bibrazio tangentzialak 

(TT) neurtzeko. Hala ere, interesgarria litzateke besoen 

bibrazio axialak neurtzeko gai den sentsore-sistema bat 

garatzea, oraindik ez baitago horretarako irtenbide 

eraginkorrik. 

 OFDSa erabili diskoak bezalako biraketa-elementuen 

karakterizazioa, edo ardatzen eszentrikotasuna neurtzea 

eskatzen duten beste aplikazio batzuetarako. Neurketa horiek 

interesgarriak izan daitezke sektore askotan, hala nola 

automobilgintzarako. 
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2.2 MCFtan oinarritutako sentsoreak 

 

2.2.1 Ondorioak 

 

Bigarren ikerketa-lerroan, MCFtan oinarritutako sentsore ugari 

garatu ziren haien funtzionamendu-printzipioa deskribatu ondoren. 

Hortaz baliatuz, tenperatura, tolestura, bibrazioak eta kurbatura 

neurtzeko MCFtan oinarritutako sentsoreak diseinatu eta fabrikatu 

ziren. Soluzio horiek konfigurazio desberdinak (luzera berdinak edo 

desberdinak, MCF segmentu bat edo bi jarraian, eta abar) eta MCF 

geometria desberdinak (7cMCF edo 3cMCF) erabili zituzten ahalik 

eta errendimendurik onena lortzeko. Tesi honetan zehar erakutsitako 

MCFtan oinarritutako sentsoreek ezaugarri hauek zituzten: 

 Sentsibilitate handiko sentsoreak: sentsoreek sentsibilitate 

handia erakutsi zuten probatutako parametroa neurtzeko. 

Gainera, MCF asimetrikoa erabiltzen zen kasu zehatzetan 

gailuak norabidearekiko sentikortasuna frogatu zuten ere.  

 Fabrikatzeko erraztasuna eta azkartasuna, eta errepikatzeko 

erraztasuna: zehaztasun handiko zuntz-ebakitzaile bat eta 

fusionatzaile bat soilik behar dira soilik horrelako gailuak 

fabrikatzeko. 

 Galdeketa-konfigurazio sinplea: gailu hauen galdeketarako 

konfigurazioa oso erraza eta errentagarria da, banda zabaleko 

argi iturri bat, zirkulagailu bat (edo akopladore optiko bat), 

espektrometro bat eta PD bat besterik ez baititu eskatzen. 

Osagai horiek guztiak ekipamendu arruntak dira. 

 Parametro anitz neurtzeko gaitasuna: MCFak parametro 

anitzekiko sentikorrak direnez; horietako bakoitzerako 

MCFtan oinarritutako sentsore espezifikoa gara daiteke. Hala 

ere, zuntz horiek parametro anitzekiko sentikorrak direnez, 

finkatu edo paketatu behar dira, espektroan ikusitako eragina 

intereseko parametroagatik soilik dela ziurtatzeko.  
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 Pertsonalizatzeko erraztasuna duten gailuak: espektroaren 

forma erraz moldatu ahal da MCFaren luzera eta 

konfigurazioa aldatuz (islapen edo transmisioan funtzionatuz, 

segmentu bakarreko edo kaskadan jarritako segmentuak 

erabiliz, eta abar). Modu honetan, erraz bereizten diren 

espektroak dituzten gailu ugari fabrikatzea erraza da, 

interesgarria dena puntu anitzeko neurketen 

multiplexaziorako. 

 

2.2.2 Aurkeztutako gailuen hobekuntza/garapena 

Gorago adierazi den moduan, MCFek ezaugarri erakargarriak dituzte 

sentsoreak garatzeko. Horri esker, ikerketa-lan honekin jarraitzeko 

honako lan-ildoak iradokitzen dira: 

 Industriarako interesgarriak diren beste parametro batzuk 

neurtzeko MCFtan oinarritutako detekzio-sistemak garatzea, 

hala nola, indarra, tentsioa, presio dinamikoa, forma, eta 

abar. 

 Intereseko parametro zehatz bat neurtzeko sentsibilitatea 

maximizatzera bideratutako MCF geometria zehatzak 

diseinatzea. Dokumentu honetan tenperatura neurtzeko 

MCFen geometriarik sentikorrena iragartzeko erabili den 

ikuspegi matematiko berbera erabiliz, MCFen zenbait 

parametro aldatuta, hala nola, nukleoen diametroa, nukleoen 

arteko distantzia, etab. parametro bakoitzerako neurrira 

egindako diseinuak egin daitezke. 

 Puntu anitzeko detekziorako MCFen multiplexazioa 

ahalbidetzen duen sistema garatu SMF berean MCF 

segmentu ugari kaskadan jarri eta zalantzarik gabe 

identifikatu ahal izateko. Honela, bereizmen espazial handia 

lortuko litzateke, batez ere segmentuak laburrak badira, ia 

banatutako sentsore sistema bat lez jo daitekeena. 
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 MCF segmentu berarekin parametro bat baino gehiago 

neurtzea: Tesi honetan frogatu den bezala, MCFek uhin-

luzeraren desplazamenduarekin edo potentziaren 

aldaketarekin neur dezakete. Konfigurazio egokiarekin, MCF 

segmentu berarekin parametro horietako bakoitza parametro 

desberdinak neurtzeko erabil liteke aldi berean. Adibidez, 

gailu berak uhin-luzeraren desplazamendua erabil lezake 

tenperatura neurtzeko eta potentziaren aldakuntzak 

bibrazioak hautemateko. 

 MCFak SHMrako material desberdinetan txertatu: modu 

horretan, aztertzen ari den piezaren edo egituraren 

barrualdea zehatz-mehatz aztertu ahal izango da, aire 

burbuilak edo fabrikazio-akatsak hautemateko. 

 Estalkien formak: Lan honetan agertzen diren MCF sentsore 

batzuek, batez ere MCF asimetrikoetan oinarritutakoek, 

lerrokatze zehatzak behar dituzte behar bezala 

funtzionatzeko. Lerrokatze hori errazteko, MCFak forma 

zehatzeko estaldurekin fabrika litezke lerrokatze zuzena 

errazteko. 

 Sentsore komertzialak: lan honetan aurkeztutako sentsore 

batzuk ingurune eta lan-baldintza latzei aurre egiteko 

paketatu dira, eta haien galdeketa erraza eta errentagarria 

da. Beraz, sentsoreak kutxa trinko batean sar litezke, 

errazago garraiatzeko eta maneiatzeko, sistema osoa (MCF 

sentsorea+galdeketa-ekipamendua) komertzialki eskaintzeko. 

2.2.3 Ikerketa-lerro berriak 

 

Ondorengo ikerketa lerroak gara litezke: 

 MCF segmentuetan oinarritutako iragazkien eta 

akopladoreen diseinua: geometria eta luzera jakin batzuetako 

segmentuak erabilita, MCFek neurrira egindako banda-

iragazkiak edo notch iragazkiak izan daitezke, uztartutako 
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potentzia uhin-luzera zehatzetan maximizatu edo bertan 

behera uztea ahalbidetzen dutenak. Ezaugarri horiek 

erakargarriak izan daitezke telekomunikazioak bezalako 

ikerketa-arloetarako. 

 Nukleoen manipulazioa: FBGak inskribatuz edo errefrakzio-

indizea zenbait nukleotan modu kontrolatuan aldatuz, 

modifikatutako MCF segmentu bakoitzaren erantzuna 

zalantzarik gabe identifika daiteke eta puntu anitzeko 

detekziorako erabil liteke. 

 

2.3 Tesiaren ekarpenak 

 

Tesian zehar, ikerketaren emaitzak nazioarteko aldizkarietan 

argitaratu eta kongresuetan aurkeztu dira ondoren adierazten den 

bezala (berrienetik zaharrenera ordena kronologikoan): 

2.3.1 Argitalpenak 

 

Nazioarteko aldizkarietan argitaratutako ikerketa-artikuluen 

zerrenda: 

1. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Fernández, 

R.; Antonio-Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-

Correa, R.; Villatoro, J. (2020). Highly sensitive multicore 

fiber accelerometer for low frequency vibration sensing. 

Scientific Reports, 10 (1), 1-11 (Q1 Diziplina anitzeko 

zientziak sailean 2019an 3.998-ko Eragin-Faktorearekin, 

2020-ko estatistikak ez daude eskuragarri oraingoz). 

 

2. Villatoro, J.; Amorebieta, J.; Ortega-Gomez, A.; Antonio-

Lopez, E.; Zubia, J.; Schülzgen, A.; Amezcua-Correa, R. 

(2020). Composed multicore fiber structure for direction-

sensitive curvature monitoring. APL Photonics, 5 (7), 070801 
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(Q1 Optika sailean 2019an 4.864-ko Eragin-Faktorearekin, 

2020ko estatistikak ez daude eskuragarri oraingoz). 

 

3. Amorebieta, J.; Durana, G.; Ortega-Gomez, A.; Fernández, 

R.; Velasco, J.; Sáez de Ocáriz, I.; Zubia, J.; Antonio-López, 

E.; Schülzgen, A.; Amezcua-Correa, R.; Villatoro, J. (2019). 

Packaged multi-core fiber interferometer for high-

temperature sensing. Journal of Lightwave Technology, 37 

(10), 2328-2334 (Q1 Optika sailean 2019an 4.288-ko Eragin-

Faktorearekin). 

 

4. Fernández, R.; Amorebieta, J.; Beloki, J.; Aldabaldetreku, 

G.; García, I.; Zubia, J.; Durana, G. (2019). Performance 

Comparison of Three Fibre-Based Reflective Optical Sensors 

for Aero Engine Monitorization. Sensors, 19 (10), 2244 (Q1 

Instrumentuak & Instrumentazioa sailean 2019an 3.275-ko 

Eragin-Faktorearekin). 

 

5. Durana, G.; Amorebieta, J.; Fernandez, R.; Beloki, J.; 

Arrospide, E.; Garcia, I.; Zubia, J. (2018). Design, 

Fabrication and Testing of a High-Sensitive Fibre Sensor for 

Tip Clearance Measurements. Sensors, 18 (8), 2610 (Q1 

Instrumentuak & Instrumentazioa sailean 2019an 3.031-ko 

Eragin-Faktorearekin). 

2.3.2 Hitzaldiak 

 

Ikerketa-lana aurkeztu den kongresuen zerrenda: 

 

1. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Antonio-

Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; 

Villatoro, J.  ”Highly Sensitive Supermode Interferometer for 

Low Frequency Vibration Monitoring”. 27th International 
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Conference on Optical Fiber Sensors OFS2020, Alexandria, 

Virginia, AEB. Konferentzia hau 2021eko ekainera atzeratu 

da COVID dela eta. 

 

2. Amorebieta, J.; Ortega-Gomez, A.; Durana, G.; Antonio-

Lopez, E.; Schülzgen, A.; Zubia, J.; Amezcua-Correa, R.; 

Villatoro, J. “Highly sensitive orientation and amplitude 

discerning vector bending sensor based on asymmetric 

multicore fiber”. OSA Advanced Photonics, Montreal, 

Kanada, Uztailak 13, 2020. 

 

3. Garcia, I.; Durana, G.; Amorebieta, J.; Fernández, R.; 

Zubia, J. “Review of a Custom-Designed Optical Sensing 

System for Aero-Engine Applications”. The 9th EVI-GTI 

International Gas Turbine Instrumentation Conference, 

Graz, Austria, Azaroak 21, 2019. 

 

4. Amorebieta, J.; Ortega-Gomez, A.; Amezcua-Correa, R.; 

Antonio-López, E.; Schülzgen, A.; Villatoro, J. “Novel twin 

cascaded multicore fiber-based structure for high sensitive 

multipurpose optical sensing”. 11ª Reunión Española de 

Optoelectrónica OPTOEL´19, Zaragoza, Espainia, Uztailak 

4, 2019. 

 

5. Amorebieta, J.; Durana, G.; Ortega-Gomez, A.; Fernández, 

R.; Velasco, J.; Sáez de Ocáriz, I.; Zubia, J.; Antonio-López, 

E.; Schülzgen, A.; Amezcua-Correa, R.; Villatoro, J. 

“Strongly coupled multi-core fiber-based interferometer for 

high temperature sensing”. SPIE Optics+Optoelectronics, 

Praga, Txekiar Errepublika, Apirilak 15, 2019. 
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Abstract: A highly sensitive fibre bundle-based reflective optical sensor has been designed and
fabricated for Tip Clearance measurements in a turbine rig. The sensor offers high spatial and
temporal resolution. The sensor probe consists of a single-mode transmitting fibre and two concentric
rings of receiving multimode fibres that collect reflected light in a differential detection gain
configuration, yielding a highly linear calibration curve for distance measurements. The clearance
measurement range is approximately 2 mm around the central point fixed at 3.2 mm from the probe
tip, and the sensitivity of the probe is 61.73 mm−1. The fibre bundle has been designed to ensure
that the distance security specifications required for the experimental program of the turbine are met.
The optical sensor has operated under demanding conditions set by the blade and casing design.
The experimental results obtained so far are promising and lead us to think that the optical sensor
has great potential for online clearance measurements with high precision.

Keywords: tip clearance; optical fibre sensor; aircraft turbine

1. Introduction

In aeronautics, Tip Clearance (TC) refers to the gap existing between the blade tip and its
surrounding case. Since the invention of the gas turbine engine, intense research has been conducted
on reducing TC, as this parameter, of great concern for engine designers, is intimately related to engine
efficiency and represents the driving force of most new architectures and innovative technological
improvements for future aircraft applications. Whereas high TC values allow an amount of air to flow
without generating useful work, a lack of clearance accelerates blade tip and shroud wear over time due
mainly to rubs, and can put engine integrity at risk [1]. The clearance varies with the operation point
of the mission profile (take-off, cruise and landing) as well as with the engine aging [2,3]. TC changes
are caused by two types of loads, namely engine and flight loads. The former encompasses centrifugal,
thermal, internal engine pressure, and thrust loads, whereas the latter comprises inertial (gravitational),
aerodynamic (external pressure) and gyroscopic loads [4]. At cruise, a rule of thumb equates 0.25 mm
of reduced clearance to a reduction of 1% in specific fuel consumption. Therefore, some of the most
relevant benefits of reducing the TC include efficiency increase as well as increased payload and
mission range capabilities [1,5]. In addition, aircraft noise and emissions are reduced, along with the
subsequent environmental benefits involved [6,7]. It seems obvious that an accurate and real-time
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measurement technology is necessary. In contrast to power-system turbines where common clearance
values range from 2 to 8 mm, in aircraft turbines, TC is typically lower than 3 mm and a resolution
better than 25μm is usually required [8–10].

Currently, there are several traditional methods for TC measurements that include capacitive,
eddy current, microwave, and discharging probe sensors (electromechanical). The former are popular
due to their simplicity, low cost, and robustness, but they suffer from low spatial resolution,
short measurement range, and require calibration [11–13]. Eddy current sensing is also a common
technique for TC measurements, and it has about the same accuracy as capacitive probes [14,15].
It provides non-contact measurements at the expense of requiring magnetic materials for the blades.
Additionally, the magnetic disturbance of the turbine engine may interfere with their output signal,
and they are highly sensitive to temperature and blade tip shape. Microwave sensors are robust and
insensitive to contamination, but the hollow waveguides at submillimeter wavelengths are impractical,
and the corresponding circuitry complex [16,17]. Finally, electromechanical systems belong to the
oldest tip clearance measurement systems [18]. They benefit from their high resolution over the entire
measurement range, but their main drawbacks are that they only measure the clearance of the longest
blade and the slow response time.

Optical sensors may overcome many of the previous drawbacks as they offer high sensitivity and
resolution, immunity to electromagnetic interference, non-contact measurement and information about
every blade [19–22]. However, among the different optical technologies (i.e., triangulation [23,24],
OCT [22], time-of-flight measurements [25], laser Doppler velocimetry [26] and reflective intensity
modulation [27]) employed for TC measurements at turbo machines, many of them do not fully satisfy
the requirements of future closed-loop Active Clearance Control (ACC) systems [5]. For example,
laser Doppler position probes offer high resolution, but the complexity of the probe limits the
application of the system. In the case of the Optical Coherence Tomography (OCT), the measurement
rate is limited by the speed of mechanical scanning, or in the case of triangulation, by the detector
frame rate and minimum exposure time. Finally, the resolution of reflective intensity modulation-based
sensor probes—compared to the rest of optical methods mentioned previously—is low due to the
modal noise at the endface of the transmitting fibre.

In this paper, we report on the design and fabrication of a highly sensitive fibre bundle-based
reflective optical sensor that has been tested in an aircraft turbine rig. The content of the paper has
been structured as follows: first, a brief description of the operation principle is given, explaining
the general sensor design and defining the working region of interest that will allow to maximize
the sensitivity of the sensor. Afterwards the experimental program followed at the Aeronautical
Technologies centre’s (CTA’s) transonic wind tunnel is explicated. Then, the most relevant results are
presented and discussed. Finally, some conclusions are drawn from the previous discussion.

2. Materials and Methods

2.1. Sensor Design and Working Region of Interest

The schematic diagram of the sensor’s operation is shown in Figure 1a. The fibre bundle is the
principal element of the system. To avoid modal noise at the output [28], a central single-mode fibre
is used as transmitting fibre of red laser light (wavelength of light: 660 nm), which after exiting the
fibre bundle and being reflected by the target object located at a distance d from the fibre bundle
tip, is partially gathered by two concentric rings of multimode optical fibres arranged around the
central transmitting fibre; the inner ring consists of 5 optical fibres (fibre bunch 1; core diameters
of 200μm and Numerical Aperture (NA) of 0.2), whereas the outer ring consists of 17 optical fibres
(fibre bunch 2; core diameters of 300 μm and NA of 0.2). The light collected by fibre bunches 1 and 2 is
measured as a voltage level at photodetectors 1 and 2, respectively (V1 and V2). If we plot the ratio
of V2 to V1 as a function of distance d, we get the characteristic calibration curve shown in Figure 1b.
The reason of using two photodetectors is aimed at minimizing the undesirable effects caused by
intensity fluctuations in the light source and reflectivity variations on the target surface. As both
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voltage signals contain the same disturbance, the ratio V2/V1 gets rid of it and therefore becomes a
pure function of the distance to the illuminated target surface d [27,29,30].

(a) (b)

Figure 1. Fibre optic intensity sensor for TC measurements: (a) illustration of the fibre bundle based
sensor; and (b) signal response (V2/V1) as a function of the distance d to a mirror. The drawing included
in the plot shows the cross-section of the fibre bundle, where the single-mode transmitting fibre is in
the centre and the two rings of receiving multimode fibres are arranged concentrically around it.

The signal response presents two regions of interest for distance sensing with a characteristic
linear variation of the signal with distance. Those regions are at both sides of the peak signal and
are designated as “front slope” and “back slope”, respectively. Figure 1b only shows the front slope,
which exhibits clear advantages in terms of sensitivity, protection against noise and temperature
fluctuations, in comparison to the back slope [31]. In practice, however, for distance security reasons
typical TC values found in turbine rigs makes it necessary to operate in the back slope of the sensor,
resulting in a lower signal sensitivity and higher dependency on the type of surface and on the
temperature. Additionally, a post-processing of the raw signal is often necessary to get reliable
results [27]. In the present work, we set out to operate in the front slope through the design of a
new fibre bundle that guarantees a safe operation without compromising the physical integrity of the
sensor head keeping it away from the blades. Indeed, in previous works, we used a fibre bundle with a
measurement range for the front slope that clearly was too short (from 1 mm to 1.6 mm), and therefore
required using the back slope to avoid placing the fibre bundle tip too close to the blades. The new
bundle design (number of fibres, fibre type composition and geometrical fibre arrangement) takes into
account all this, and, as a result, is able to shift the front slope to bigger probing distances (4–8 mm,
see Figure 1b).

Regarding the achievable sensitivity in the front slope, differential gain of the photodetectors
have been considered to increase it as much as possible provided that the gain configuration of the
transimpedance amplifier of each photodetector does not compromise the minimum bandwidth
required by the target application. In our particular case, for a turbine with 92 blades spinning
at a maximum of 6000 revolutions per minute (rpm), even at the highest gain configuration the
bandwidth available is enough to receive a signal with clearly identifiable individual blades. Figure 2
shows simulation results of four different gain configurations G1 − G2 of the photodetectors (G1 for
photodetector 1 (PD1) and G2 for photodetector 2 (PD2), both given in dB units with respect to the
reference gain value of 0.75 × 103 V/A) obtained by a custom designed program for bundle behaviour
simulation. As can be clearly observed, the gain increase of the second photodetector with respect to
the first one yields not only a higher ratio of V2 to V1, but also a steeper calibration curve than in the
case of the symmetric configuration (G1 = G2). Therefore, for maximum sensitivity, we have set the
gain configuration to 10–40.
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Figure 2. Simulated calibration curves of the fibre bundle in region I for different gain configurations
(G1 − G2) of the two photodetectors.

2.2. Calibration Curve

Once the measurement system has been defined, the next step consists in calibrating the optical
sensor using as target object a spare blade from the tested turbine rig. The schematic drawing of the
side view of the experimental set-up is shown in Figure 3a.

It is important to point out that, in the laboratory calibration tests, the transmitting fibre did
not face the flat platform of the blade—as would be desirable to maximize the amount of reflected
light gathered back by the bundle—but the very narrow sealing lands of the blade (around 0.7 mm
in width) to simulate the real turbine configuration that the sensor head met when installed in the
turbine rig. Figure 3b shows a close-up picture of the sensor head during the calibration process.
Please note that even perfectly facing the transmitting fibre to the narrow sealing lands yielded a very
low reflected signal that required setting the optical power to maximum value, in this case 50 mW.
Therefore, the setting of 50 mW laser power and 10–40 gain configuration of the photodetectors always
resulted in light intensity levels at each of the photodetectors below the saturation value, and the
created voltage values spanned over the full voltage scale (0–5 V), ensuring a good use of the 16-bit
resolution of the A/D converter. The large working distance set by the front slope of the fibre bundle
also contributed to the low coupling efficiency of reflected light into the fibre bundle. Both simulated
and measured calibration curves are shown in Figure 3c.

It is worth mentioning the great similarity between both curves in the distance range from 2 to
4 mm with very small differences between them, and with a clear linear increase of the rate of the
voltage quotient with distance. The best linear fit (shown in the inset of Figure 3c) to the experimental
data has a Pearson’s correlation of 0.997 in the distance range from 2.8 mm to 4 mm with a sensitivity
slope of 61.73 mm−1. Within this distance range of interest, Table 1 shows, for different values of V2/V1

ranging between 30 and 100, the difference between the experimentally measured distance value and
the corresponding value obtained from the simulation. The result is given as a percentage of the
corresponding experimental value. The discrepancy between experiment and simulation never exceeds
1.5% (at V2/V1 = 34.1). It is also interesting to draw attention to the shift to lower distance values
occurring in the front slope when moving from an object with specular reflection (target presented in
Figure 1) to another one with diffuse reflection (blade shown in Figure 3). This can be easily understood
with simple geometric and ray tracing models [32].
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transmitting fibre

1st receiving ring

2nd receiving ring

blade

fibre
bundle

(a) (b)

(c)

Figure 3. Laboratory calibration of a typical blade from the turbine rig: (a) schematic representation
of the optical probe tip relative to the spare blade; (b) close-up picture of fibre bundle and blade; and
(c) simulated and measured calibration curves. The inset shows the linear fit to the experimental data
in the region of interest (2.8 mm < z < 4 mm).

Table 1. Comparison of measured and simulated data in the distance region of interest.

V2/V1 dsim, mm dexp, mm Difference, %

30.329 2.778 2.815 1.31
45.930 3.055 3.090 1.13
59.443 3.289 3.290 0.11
75.959 3.543 3.540 0.83
90.551 3.831 3.790 1.08
99.171 3.992 3.990 0.06

2.3. Experimental Program

The performance of the optical sensor was tested in the transonic wind tunnel at CTA.
The rotating-turbine-test facility is a continuous transonic-flow-test bed with an atmospheric
inlet/outlet. The level of pressure/vacuum, the temperature and the mass flow are individually
regulated, so that the rig is operated to meet realistic Mach and Reynolds numbers allowing to transfer
the results to real gas turbines.

The supply and exit air conditions in the test section are achieved by two centrifugal compressor
and vacuum groups, which are, respectively, run by electrical motors of 3.7 MW and 5.0 MW.
Two vacuum pumps are used to achieve altitude conditions of sub-atmospheric pressure down
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to 12.5 kPa. A two-stage compressor group is used to control the pressure ratio and flow temperature
and thus the Mach number of the flow within the circuit. The top mass flow rate achievable is 18 kg/s,
with a maximum supply pressure up to 450 kPa, and a temperature regulation from atmospheric up to
450 K. Prior to entering the turbine, the air flows through a settling chamber that removes any swirl
and axial velocity non-uniformity. The turbine power is transmitted by a single shaft (up to 7800 rpm)
to a dynamometer. The test section has a section of 1 m. A schematic diagram of the facility is shown
in Figure 4.

Figure 4. Schematic diagram of the rotating-turbine-test facility at CTA.

The rig corresponds to a single stage of a turbine rig with 92 blades. As already commented
previously, the measurement requirements were really demanding because, for the extremely narrow
sealing lands of the blades that defined the reflecting surface, the distance of about 3.2 mm from where
the end of the probe was finally set, to the reflecting surface caused a low reflected signal level at
the receiving rings to happen. An additional challenge that posed the coupling of the optical probe
to the casing of the turbine was that the optical probe was not perfectly faced to the sealing lands
when the turbine was at rest (0 rpm), so that the reflected signal was too low to get reliable calibration
data that would allow building the calibration curve for the actual measurements. For that reason,
the laboratory calibration curve was accepted as valid for the turbine rig measurements since it was
carried out with a spare blade of the same turbine stage under test. As shown in the Results Section,
the good news is that, at different workload conditions of the turbine rig, the optical probe was able to
receive enough reflected signal for reliable tip clearance measurements. This improvement in the level
of reflected signal was a consequence of the several vibrations that tend to suffer rotor blades causing
them not only to deform but also to get a better alignment of the reflecting surface with respect to the
optical probe.

Figure 5 shows a schematic representation of the final arrangement of the bundle embedded in
the casing of the turbine. The optical probe was attached to a micrometer-driven adapter that was
inserted in a radial hole of the casing and fixed to it with four screws. The micrometer allowed to set a
certain distance—3.2 mm in this particular case—between the probe tip and the sealing lands of one of
the blades to set the operation point at the middle of the linear region shown in Figure 3c. For this
particular configuration, the optical probe tip resulted to be within the abradable layer. The abradable
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is a soft protective wear material that is mounted on the casing wall aligned with the blades to create a
good sealing, and avoid gas leakage and improve combustion efficiency. As TC values are commonly
referenced to the abradable coating, below, we consider this case. Therefore, according to turbine
design blueprints, the TC is obtained subtracting 2.74 mm to the actual sensor measurement (distance
from probe tip to reflecting surface):

TC(mm) = sensor measurement (mm) − 2.74 (1)

abradable

fibre bundlereflecting surfacecasing

rotation

Figure 5. Schematic representation of the optical probe (not to scale) installed in the turbine rig at CTA.

Figure 6 shows a schematic illustration of the optical probe configuration within the casing.
The optical signal of each of the two photodetectors is acquired with 16-bit resolution at a sampling
rate of 2 MS/s, which results in a detailed map of all the blades with unambiguous identification
of each of them, extending further the information provided by classical electromechanical systems
that limit the TC information to the longest blade, and with a much lower data refresh frequency.
The data acquisition and processing was done with a custom-made LabVIEW program that allows
online and offline working modes. In online mode, the TC values of the different blades are monitored
live at a configurable refresh rate, whereas, in offline mode, the data are stored in a hard disk for later
processing. The latter mode is particularly interesting for long acquisition times where the amount of
data created is huge and a thorough data analysis is required.

Figure 6. Optical probe placement within the casing.
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3. Results and Discussion

All tests were carried out at CTA’s facilities where different Working Points (WP) of the engine
were repeated during several days. Each engine revolution was identified both with a blade of a
particular reflection pattern and a stable non-vibrating Once per Revolution (OPR) signal obtained
from the shaft. The raw data (V2/V1) from the optical sensor were converted to distance value using
the linear calibration curve f (V2/V1) obtained in the laboratory calibration tests (see Section 2.2).
As an example, Figure 7 shows the sensor response of 13 blades after applying the calibration curve
without any type of data post-processing. The first feature worth observing is the sharp minima that
define the gap between consecutive blades.

Figure 7. Typical signal response V2/V1 after applying the corresponding calibration curve. The blade
highlighted in red refers to the blade with a higher reflection pattern. The dashed vertical lines
correspond to local minima defining the limit between adjacent blades.

It is also worth mentioning that the signal pattern corresponding to each blade was highly
reproducible over time, regardless of the operation point of the engine. The response curve of each
of the 92 blades followed a certain pattern that might be classified according to one of the three
types presented in Figure 8 (curves shown on the left-hand side of Figure 8). To give a consistent
definition of the TC, for each blade, we started selecting a variable percentage (from 0% to 100%) of
the corresponding dataset around the central data sample, and analyzed the evolution followed by
the average value. The curves on the right-hand side of Figure 8 show the variability of the given TC
definition for each of the three blade types. It comes out that, regardless of the type of response curve
considered, the average value variation always was below a tenth of a millimetre. Therefore, it was
decided to define the TC of each blade as the average value of the corresponding dataset at the 50%
selection level around the central sample.

With the given definition of TC in mind, Figure 9 shows the TC map corresponding to a certain
engine WP at 4258 rpm. It is worth noticing that the TC of every blade is different. Of particular
importance are blades number 16, 38, 43, 51 and 69 as their TC values suggest that they are close to the
abradable surface and they should be monitored to keep them under control. Regarding the stability
of the test, the vertical error bars represent the variability of the TC values over time. Even in the
worst case (blade number 85), the TC variability expressed as a single standard deviation value is
approximately of 20μm within the same WP, and the average value over the 92 blades is below 5μm.
All this suggests that we are dealing with stable TC experiments.
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Figure 8. (Left) Types of blade signals found in the 92 blade turbine rig after applying the calibration
curve; and (Right) evolution of TC definition with the selected fraction of blade data for each blade type.

Figure 9. TC values of each blade at 4258 rpm with error bars that account for the TC standard deviation
over 1100 revolutions.

The TC maps of all blades corresponding to three different WPs in ascending order of rpm are
shown in the polar plot of Figure 10. Each TC map is represented as a curve of a particular color. On the
other hand, each blade is expressed as a single point where the polar angle θi defines the blade number
i—θi = 360◦/92 ∗ i for i ∈ [1, 92]—and the corresponding TC value is given by the radial distance.
Observe that TC values of individual blades decrease as engine rotational speed increases, a fact that
can be attributed to the centrifugal and thermal loads acting on static and rotating components of
the turbine. It is also interesting to point out that blades 43 and 51 still continue to be decisive in
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determining the TC values of the turbine, in the same way as in the case of the WP at 4258 rpm shown
in Figure 9. If we define the turbine TC as the minimum blade TC among all blades, as expected,
the TC decreases from 0.002 mm to −0.005 mm when going from WP 1 (5466 rpm) to WP 3 (6005 rpm).

Figure 10. TC values of each of the 92 blades at three different WPs.

Another interesting point to consider is the analysis of the TC evolution when the turbine rpms
ramp up before arriving at the first WP. Blue data points shown in Figure 11 are representative of this
case. Contrary to what is expected for the general case in which the TC diminishes when rotor speed
increases (as already shown in Figure 10), during the warming-up lapse of time, the clearance increases
with rpm values. This might be explained on the basis that, when speed increases, the centrifugal load
of the rotor as well as the rapid heating of the blades cause the rotating elements to grow outwards,
but the case expands at a faster rate during this process.

Figure 11. TC behaviour before (blue data points) and after (red data points) setting the first WP.
The red data points refer to WPs 1, 2 and 3 shown in Figure 10: WP 1 → 5466 rpm; WP 2 → 5750 rpm;
and WP 3 → 6005 rpm.

This observation brings us to conclude that temperature ramping occurring in the wind tunnel
before the first operation point is reached might be associated with the observed TC increase with
rotational speed. In addition, the blade-case rubbing experienced during the whole warming-up
process (negative TC values of blue data points in Figure 11) may be justified if we consider that
the centrifugal load on the blades applies from the first moment before the casing starts to expand.
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However, once the operation temperature has been reached and the casing has expanded to its
equilibrium value (first red data point in Figure 11: WP 1 → 5466 rpm), the clearance starts to decrease
with rotational speed as expected.

4. Conclusions

A highly sensitive optical fibre bundle-based sensor prototype was designed and fabricated based
on a custom simulation program developed within the research group. The manufactured optical
sensor probe allowed measuring TC values in a turbine rig of an aircraft engine at the wind tunnel
of the CTA. The optical measurements rely on collecting reflected light from each of the blades using
two concentrically arranged rings of optical fibres and converting the gathered light intensities into
voltage levels that are eventually divided with respect to each other to get rid of the disturbances
(light intensity fluctuations, reflectivity variations, etc.) and retain a pure function of the distance from
the fibre bundle tip to each blade. This curve has two characteristic working regions of interest with
linear behaviour, the so-called front slope and back slope. The added value of the present work with
respect to previous works resides in shifting the highly sensitive front slope curve to longer distance
values to meet the distance security specifications set for the experimental program of the turbine,
a fact that enables establishing the working point around the central part of this sharply sloped curve
section instead of using the less sensitive back slope section of the response function. Additionally,
the sensitivity has been further improved using differential gain of the two photodetectors associated to
their corresponding receiving fibre rings. Altogether, the sensitivity of the optical sensor is 61.73 mm−1,
in contrast to the value of −0.0733 mm−1 published by other authors [33]. It is also worth mentioning
that the optical sensor has proved to be capable of measuring the TC in very unfavourable conditions
set by the specific blade and casing design that prevented the sensor from receiving an appreciable level
of reflected signal. In such demanding scenario, the calibration curve used for the actual measurements
was obtained in the laboratory using a spare blade of the turbine as it was impossible to get reliable
calibration data from the turbine at rest. The results derived from the experimental program carried
out on a turbine rig at CTA’s facilities show a high resolution and highly sensitive measurement tool
for inspection of individual blades that provides engineers with valuable information on turbine
performance. The results of the optical fibre-based sensor presented in this paper opens up the
possibility of widening its applicability to other fields of interest.
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Packaged Multi-Core Fiber Interferometer for
High-Temperature Sensing

Josu Amorebieta , Gaizka Durana , Angel Ortega-Gomez , Rubén Fernández, Javier Velasco, Idurre Sáez de
Ocáriz, Joseba Zubia , Jose Enrique Antonio-López, Axel Schülzgen , Fellow, OSA, Rodrigo Amezcua-Correa,

and Joel Villatoro

Abstract—A small size and compactly packaged optical sensor
for high-temperature measurements is reported. The sensor con-
sists of a short piece of multi-core fiber (MCF) spliced to the distal
end of a single-mode fiber. The packaging consists of an inner ce-
ramic shield that prevents bending, curvature, and vibration effects
on the MCF, and an outer metallic shield that protects the device
against impacts. The interaction between specific supermodes ex-
cited in the MCF creates an interference pattern that shifts linearly
with the temperature. The sensor was calibrated in the range from
200 to 1000 °C and a K-type thermocouple was used as a reference.
The average temperature sensitivity was found to be 24.8 pm/°C
with a response time of 15 s. Our results indicate that our MCF
interferometric thermometer is as accurate as an electronic one
with the advantage that it is passive. Therefore, we believe that the
proposed sensor is suitable for industrial applications.

Index Terms—High temperature measurement, mode interfer-
ometers, multi-core fibers, optical sensors, optical thermometers,
supermodes.

I. INTRODUCTION

IN THE industrial sector, there are several environments and
applications where high temperature is present. For example,

in engine tests, metallurgical processes, in gas and oil facilities,
etc. In such harsh environments, temperature can reach very
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high values (up to 1000 °C, and even higher). Thus, accurate
measurement of temperature is crucial.

Currently, the technology commonly accepted and well es-
tablished for high temperature measurement is based on ther-
mocouples [1]–[5]. However, due to their electronic nature,
thermocouples may not be a viable solution for applications
or environments where electromagnetic or microwave radiation
is present. In such cases, optical fiber thermometers are a good
alternative since they are totally passive.

Optical fibers exhibit an intrinsic sensitivity to tempera-
ture, which makes them ideal for temperature sensing. In fact,
throughout the years, many different optical fiber temperature
sensors have been demonstrated [6]–[10]. Most optical fiber
thermometers operate in a limited temperature range. However,
the use of specialty optical fibers and innovative approaches
and techniques have allowed expanding the temperature range
up to 1000 °C. Thus, optical fiber thermometers may reach the
performance and capabilities of thermocouples and be a real
alternative for high temperature sensing, hence for industrial
applications.

The most common approach for high temperature sensing
consists of using regenerated fiber Bragg gratings (rFBGs), also
called chemical composition gratings [11]–[14]. The operating
principle of such sensors is based on the thermo-optic effect that
modifies the period of the grating. rFBG-based sensors have
temperature sensitivity of around 10 pm/°C, and their response
time is of several seconds [15]–[18]. The disadvantage of rF-
BGs sensors is their high cost, as their fabrication and interroga-
tion require expensive setups, lasers, and picometer-resolution
detectors.

Fabry-Perot interferometry has been widely studied for high
temperature sensing as well. In this technique, the sensitive ele-
ment is a cavity that can be fabricated from temperature-resistant
materials such as pure glass or sapphire [19]–[24]. The ad-
vantages of the Fabry-Perot interferometers (FPI) include high
sensitivity and small size. However, their performance is di-
rectly linked to the uniformity of the cavity, which is not easy
to achieve.

Other alternatives for high temperature sensing are based on
long period gratings (LPGs) [25]–[27] and different types of in-
terferometers [28]–[31]. The drawback of LPGs is their sensitiv-
ity to the surrounding medium, which imposes proper isolation
to measure temperature only. On the other hand, most interfer-
ometers provide relative temperature measurements, as they are

0733-8724 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Picture of the cross-section of the MCF used to build the temperature
sensor. (b) Schematic representation of the sensor architecture. Lf is the length
of the MCF. The cleaved end reflects less than the 4% of the emitted light.

codified in the shift of interference patterns. As a result, LPG
-and interferometer- based high temperature sensors have not
reached the market yet.

As an alternative to the existing optical fiber thermometers
for high temperature, in this work, we propose a sensor that may
overcome the main limitations and drawbacks mentioned above.
Our device consists of a short segment of MCF spliced to the
distal end of a typical SMF. The fabrication of our device is
easy, reproducible, and inexpensive. The temperature sensitive
region of our device is the segment of MCF that can withstand
high temperatures (up to 1000 °C) as demonstrated in [32]–[34].
In our case, the sensor operates in reflection mode. In addition,
we have packaged our device with a double shielding (ceramic
and metallic). The packaging eliminates the effects of strain,
bending, curvature, or vibrations on the MCF interferometer as
it is sensitive to such parameters [35]–[38].

The reflection spectrum of our device is sinusoidal and shifts
when temperature changes. The interference pattern of our MCF
sensor is easily traceable, thus, it is easy to establish a relation-
ship between the absolute maximum of the interference pattern
and temperature. With our packaged MCF sensor, temperatures
up to 1000 °C, response times at different temperature gradi-
ents and its robustness against vibrations were measured. For
comparison, similar experiments were also carried out with a
bare MCF interferometer. The results suggest that the proposed
packaging does not compromise the temperature sensitivity of
our device. In addition, our packaged sensor is as accurate as
a K-type thermocouple, which is widely used and accepted as
reference in the industry.

II. OPERATION PRINCIPLE, DESIGN AND FABRICATION

In the device reported here, the MCF is the key element. The
MCF, fabricated at the University of Central Florida (Orlando,
USA), has a particular structure based on seven identical hexago-
nal cores. Six of them are concentrically arranged in a ring-like
shape around a central one. The mean diameter and distance
among adjacent axes is 9.2 μm and 11 μm, respectively, see
Fig. 1(a). All the cores are made of germanium doped silica glass
and are inlayed in pure silica cladding. The numerical aperture
(NA) of each core is 0.14 at 1550 nm that is the same NA of a
typical SMF. The outer diameter of the fiber is 130 μm.

A scheme of the MCF interferometer is shown in Fig. 1(b).
The device consists of a short MCF segment fusion spliced to a

Fig. 2. Simulations of the 3D and 2D profiles of the two supermodes excited
in the MCF. In (a) the supermode SP01 is shown, and in (b) the supermode SP02.
The inset 2D profiles have an area of 60 × 60 μm2.

conventional SMF. A fiber fusion splicer (Fujikura 100 P+) was
used to fabricate the device. Such a machine aligns precisely the
single core of the SMF with the central core of the MCF. Due to
that, the insertion loss of supermode interferometers is minimal
(typically 0.1 dB or below) as reported in [35].

The MCF described above is called strongly-coupled multi-
core fiber, which means its cores are close enough to each other
to allow interaction among them. The modes supported by such
an MCF are called supermodes [39], [40], which are the linear
combination of individual LP modes of each core of the MCF.
In our device, schematically shown in Fig. 1(b), the excitation of
the MCF is with the LP01 (fundamental) mode of the SMF. This,
combined with the axial symmetry of the SMF-MCF structure,
causes only two specific supermodes to be excited in the MCF.
The profiles of such supermodes are shown in Fig. 2.

The effective refractive index of each supermode is different,
thus, a phase difference between them can be expected as they
propagate through the length of the MCF (Lf). The phase differ-
ence (Δϕ) will be Δϕ = 4πΔnLf /λ, where Δn = n2-n1, with
n1 and n2 being the indices of the supermodes SP01 and SP02,
respectively, and λ the wavelength of the light source. Accord-
ing to our simulations, the value of Δn was 7.8 × 10-4 at λ =
1545 nm. The phase difference will cause a coupling between
both supermodes, which will generate a sequence of maximum
and minimum values in the reflection spectrum of our MCF
interferometer. When the reflection reaches a maximum value
to a given wavelength, the interference is constructive, which
means that the two supermodes are in phase and, therefore, their
coupled power is maximum for that wavelength. The maximum
values appear when the phase difference equals an integer mul-
tiple of 2π (m2π, where m = 1,2,3…). Thus, by considering that
the reflected light travels twice the length of the MCF (2Lf), the
maxima are located at the following wavelengths:

λm = 2LfΔn/m. (1)

In general, in an optical fiber, the thermo-optic effect pre-
vails over the thermal expansion effect. Thus, for temperature
measurements, only the changes in the refractive index of the
fiber core (or cores) are considered [28], [32]. In our case, such
changes induce a variation in the effective indices of the inter-
fering supermodes, and hence, a shift in the interference pattern.
Therefore, by monitoring λm, the temperature around the MCF
can be known. It is important to point out that with our MCF
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Fig. 3. Interference pattern obtained by simulation for a 2.54 cm-long MCF
interferometer (dashed line) and with the fabricated device (solid line).

interferometer the measurement of temperature is absolute, as it
will be codified in wavelength.

In order to measure the widest temperature range possible,
the length of the MCF segment is crucial. On the one hand, the
displacement of λm, which shifts around 30 pm/°C without any
packaging [32], must not overlap with the maximum located at
λm+1 or λm-1. On the other hand, λm must be within the wave-
length range of the sensor interrogator, which in our case was
between 1510 and 1595 nm, at any temperature of the measuring
range. Thus, to achieve the aforementioned requirements, two
different simulation programs (Matlab MathWorks and Photon-
Design) were used in which Eq. (1) was implemented with the
parameters of the MCF and the desired initial position of λm

established to obtain the MCF length. It was calculated to be
2.545 cm. However, due to the difficulty for obtaining an MCF
segment of that precision with a conventional cleaver, we fabri-
cated a device with Lf = 2.54 cm with an error of approximately
200 μm.

Fig. 3 shows the spectra of the designed and fabricated inter-
ferometers at room temperature. For the calculated MCF length,
the difference between the maxima and minima (visibility) is of
0.9. The difference between the simulated and observed pattern
is due to the impossibility of reproducing the ideal conditions
of the simulation in real-life conditions, such as the fact that the
simulation programs use a flat spectrum light source whereas
the manufactured sensor uses a Gaussian-like emission light
source. It can be noted that the peak at which simulated and
manufactured sensor´s patterns match is located at 1520 nm. As
temperature increases, such a peak is expected to shift to longer
wavelengths [32]. Hence, the peak located at 1520 nm (λm) was
selected to be monitored and correlated with temperature.

In order to make the MCF interferometer sensitive exclusively
to temperature, it was packaged as follows: The bare SMF-MCF
structure, whose total length was approximately 15 cm, was pro-
tected with a double shielding. The first layer was a double bore
thin ceramic tube (Omega Engineering TRX-005132-6). Each

Fig. 4. Picture of the manufactured MCF sensor after being exposed to
1000 °C. Notice that the metallic tube has a blackening gradient that indicates
the different temperatures on the tube. The position and length (2.54 cm) of the
MCF segment are indicated. The gap between the tip of the metallic tube and
the stub of MCF is long enough to avoid a Fabry-Perot cavity.

bore had a diameter of 127 μm ± 5%. In this manner, the MCF
and part of the SMF were kept straight. Thus, bending effects
on the interference pattern of the MCF were eliminated. The
second layer was a stainless steel tube (Omega Engineering SS-
116-6CLOSED) that covered the ceramic layer and provided
physical protection against possible impact or shocks. A pho-
tograph of the final sensor prototype is shown in Fig. 4. As it
can be noticed, the sensitive part of the sensor is only 2.54 cm
long and located at the edge of the shielding. Thus, the sensor
could be just about 3 cm long. The reason for the extra 12 cm
is to protect the SMF due to the configuration of the furnace.
The latter had a circular hole (slightly bigger than the sensor in
diameter) that only in the deepest part reached temperatures of
1000 °C. This causes that the packaged sensor has to be verti-
cally inserted completely. As it can be seen in the blackening
gradient in Fig. 4, the area where the MCF is located is the area
that has been exposed to the highest temperatures.

The interrogation of our MCF interferometer consisted of a
broadband light source centered at 1550 nm, with Gaussian-
like emission, a 50:50 coupler and a small spectrum analyser
(I-MON512-USB, Ibsen Photonics). The data processing was
made with an ad hoc program developed in Matlab MathWorks.
The data processing approach was as follows: Raw spectra pro-
vided by the spectrum analyser were collected at different tem-
peratures; then, the spectra were averaged and normalized. After
that, a Savitzky-Golay filter was applied to every spectra in order
to smooth them. Finally, the highest peak (λm), or absolute max-
imum of the interference pattern, was found. The wavelength at
which the maximum was located was correlated with temper-
ature, which was measured with a K-type thermocouple used
for temperature calibration measurements (Herten, K-type, SN
TCP187).

III. RESULTS AND DISCUSSION

The tests were performed at the Aeronautical Technologies
Centre (CTA) facilities located in the Alava Technology Park
(Spain). The heating/cooling processes were carried out with a
programmable high temperature furnace (Isotech Pegasus Plus
1200). Before running the calibration measurements, a curing
process was carried out to eliminate as much as possible the
hysteresis effect of the sensor [28]. The calibration was per-
formed repeatedly in the range from 200 to 1000 °C, in steps of
50 °C that lasted 70 minutes each. Thus, overall, each calibration
lasted 100 hours approximately. The sampling rate was 1 Hz.

Authorized licensed use limited to: Universidad Pais Vasco. Downloaded on December 29,2020 at 14:24:58 UTC from IEEE Xplore.  Restrictions apply. 



AMOREBIETA et al.: PACKAGED MULTI-CORE FIBER INTERFEROMETER FOR HIGH-TEMPERATURE SENSING 2331

Fig. 5. (a) Spectra observed in the 200-1000 °C temperature range. (b) Time evolution of our packaged MCF sensor compared to that of the thermocouple.
Colored arrows indicate the corresponding vertical axe of each curve.

Fig. 6. Calibration curve of the packaged MCF sensor (solid dots, solid line)
and 2.54 cm of bare MCF (triangles, dashed line). Colored arrows indicate the
corresponding axe of each curve.

Fig. 5(a) shows the reflection spectra of our packaged MCF
interferometer at different temperatures. It can be seen that the
shift for the thermal range under study was around 20 nm. The
position of the maximum peak as a function of time is shown in
Fig. 5(b). For comparison, the time evolution of the temperature
measurement provided by the thermocouple is also shown. From
the monitored λm and temperature data, the calibration curve
of the packaged MCF sensor was obtained, which is shown in
Fig. 6. In order to evaluate the effect of the shielding on the tem-
perature sensitivity of the packaged MCF sensor, the calibration
curve obtained from a 2.54 cm-long bare MCF device that was
subjected to an identical calibration process as the packaged
MCF sensor is also shown in Fig. 6.

For the packaged MCF sensor, the Pearson squared correlation
coefficient was found to be R2 = 0.9856 and the uncertainty of
σ2 = 0.611 nm2 [41]. The correlation between temperature (in
°C) and λm (in nm) that was obtained from the experiments was:

T = 39.929λm − 60525. (2)

This indicates that the temperature sensitivity of the packaged
MCF sensor was 24.8 pm/°C. From the calibration curve of the
2.54 cm-long bare MCF sensor shown in Fig. 6, we obtained a
temperature sensitivity of 31.47 pm/°C. The latter agrees with
that (29 pm/°C) of the MCF thermometer reported in [32] in the
range between 100°C and 300°C, which was fabricated with bare
MCF as well. Therefore, the packaging proposed here does not
compromise the temperature sensitivity of the device. As a mat-
ter of fact, the main purpose of protecting the SMF and the MCF
with a close-fitting ceramic tube was to keep the fibers tightly
in the axial direction so that the measurements were strictly re-
lated to temperature and not affected by undesired effects of
bending or vibrations, something that cannot be achieved when
unprotected MCF is used. This may be the cause of the perfor-
mance differences between the packaged MCF sensor and the
bare MCF shown in in Fig. 6 and the one reported in [32] where
non-linear response to temperature was observed.

The response and recovery times of our packaged MCF tem-
perature sensor and those of the device built with bare MCF were
also evaluated as these are important parameters to be consid-
ered. The rising and falling times were measured several times
at different temperature gradients. The measurements were car-
ried out for 2 different thermal loops: from 25 °C to 550 °C, and
back to 25 °C, and from 25 °C to 900 °C, and back to 25 °C.
In each case, the response time of both optical devices and that
of the K-type thermocouple were recorded. The response time
(τ63%), or time constant, is defined as the time required to reach
63.2% of an instantaneous change in temperature [42].

The results for the 25 °C–550 °C–25 °C loop are shown in
Fig. 7. The results shown in Fig. 7 indicate that the shift of
λm of the bare MCF device was more than expected according
to the sensitivity obtained from its calibration curve shown in
Fig. 6. This means that the shift of λm may not be strictly due to
temperature as the MCF segment was also exposed to bending
and/or vibrations induced by the furnace. The tracked peak of
the packaged MCF sensor shifts 10.1 nm and shows a smoother
and less noisy curve compared to that of the bare MCF. This shift
agrees with the combination of the sensitivity of the sensor in
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Fig. 7. Response times for (a) heating from 25 °C to 550 °C and for (b) cooling from 550 °C to 25 °C of a packaged and bare MCF sensors. For comparison,
the response and recovering times of a commercial thermocouple are shown. Notice the non-uniform shape of the curves of the bare MCF compared to that of the
packaged MCF. Colored arrows indicate the corresponding vertical axe of each curve. The black asterisk (∗) in each curve represents the τ63% of each sensor.

Fig. 8. Heating and cooling response times of a packaged MCF sensor for
the 25 °C-900 °C-25 °C loop. Colored arrows indicate the corresponding axe
of each curve. The black asterisk (∗) in each curve represents the τ63% of each
sensor.

TABLE I
RESPONSE TIMES (IN S) OF THE PACKAGED MCF SENSOR AND

THE THERMOCOUPLE

the 200 °C–1000 °C calibrated range and the lower temperature
sensitivity of the MCF below 100 °C as reported in [32].

For the results of the 25 °C-900 °C-25 °C loop shown in
Fig. 8 only the curves of the packaged MCF sensor and the
thermocouple are presented, since only the performance of these
devices can be compared as their results are strictly related to
temperature.

Fig. 9. Results of the effect of the vibrations in the measurements of λm at
room temperature (25 °C). The biggest deviation (8.49 pm) happened at 650 Hz,
where a resonance due to the 10 cm cantilever configuration took place.

The results shown in Fig. 7 and Fig. 8 are summarised in
Table I. It can be noted that in all the cases, our packaged
MCF temperature sensor responded slower than the thermocou-
ple used as a reference. The results regarding the bare MCF are
not shown in the table due to the fact that they are not related
only to temperature, and therefore, not suitable for comparison.

In order to evaluate the effectiveness of the packaging in terms
of protection against vibrations, the packaged MCF sensor was
placed in a cantilever configuration and attached to a piezoelec-
tric actuator (STr-35, Piezomechanik GmbH) whose maximum
vibration amplitude was 6 μm. The length of the cantilever was
10 cm. The sensor was then subjected to vibrations at different
frequencies. In all the cases, the voltage applied to the actuator
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was the same (10 Vpp), and the measurements were carried out
at room temperature (25 °C). The sensor was interrogated with
the spectrum analyser mentioned above (I-MON512-USB, Ib-
sen Photonics) and the data processing approach was as follows:
in two consecutive days 17000 raw spectra for each frequency
were acquired and then, the maximum of each spectra (λm) was
identified. These values were averaged for each point along with
their standard deviation.

In Fig. 9, it can be seen that vibrations introduce an average
noise of 2.58 pm in the measurement of λm. This turns into an
uncertainty of 0.1 °C according to Eq. (2). Considering that the
noise for the case of 0 Hz is intrinsic to the measurement system
and not caused by vibrations, this means our MCF sensor is
robust and practically immune to vibrations in a wide frequency
range.

IV. CONCLUSIONS

In this work, we have reported on a sensitive and compactly
packaged fiber optic temperature sensor that is robust against vi-
brations. The sensor is based on an MCF with strongly coupled
cores. The sensor consists of a short segment of MCF (2.54 cm)
spliced to a commonly used in telecommunications SMF. The
fabrication of the device is simple, fast, inexpensive, and repro-
ducible. The packaging of the sensor was conceived to make
the MCF exclusively sensitive to temperature, hence indepen-
dent to other parameters that may be present during temperature
measurements, as for example, strain, bending, curvature, or
vibrations.

The sensitive part of our sensor is the section of MCF. Tem-
perature changes the effective indices of two supermodes that
are excited in the MCF, causing a detectable shift in the interfer-
ence pattern. The calibration of our MCF sensor was performed
in the range from 200 to 1000 °C and a K-type thermocouple
widely used and accepted in the conservative aeronautical indus-
try was used as a reference. Results show that the packaged MCF
sensor has a sensitivity of 24.8 pm/°C, high robustness against
vibrations and a response time of 15 s. Thus, it may represent
an attractive solution in several applications that require high
temperature sensing, high resolution and sensitivity, small di-
mensions, and electromagnetic immunity. Some examples may
include sensing in aeronautical engines, gas and oil facilities, etc.

The packaged MCF sensor can be customised for the afore-
mentioned and other applications. In addition, its interrogation
is carried out with commercially available sensor interrogators.
Therefore, we believe that this prototype represents a substan-
tial step forward in the direction of a commercially appealing
optical temperature sensor.
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For a long time, accelerometers have been used to detect and measure vibrations with high sensitivity and preci-
sion. Thus, they have a wide variety of applications. For instance, in the heavy industry, accelerometers are used 
to monitor low-frequency vibrations in large rotating machineries or in oil  pipes1, or in structural health moni-
toring, to supervise the condition of pillars, bridges, etc.2. They are also used in biomedicine and  biomechanics3, 
and even in gravitational wave  detectors4. Accelerometers are one of the key elements in seismology as  well5, 
where they are used for the detection and monitoring of ground motions caused by earthquakes, volcanic erup-
tions, explosions, landslides, tsunamis, avalanches, etc. In these cases, accelerometers with high sensitivity for 
low amplitude vibrations are required.

The detection of vibrations with low frequencies is a very challenging field. For example, the frequency 
range of ground motions caused by natural events or explosions is between 0.1 and 20 Hz6,7. For the case of 
tsunamis, such frequency range is even narrower, from 0.1 to 1 Hz8. Moreover, it is important to identify the 
ground motions accurately from the surrounding noise. Therefore, accelerometers for such applications must 
be highly sensitive and must be capable of measuring acceleration in a wide range. Additional requirements 
for accelerometers include simple operation, compactness, robustness, capability to operate in hostile or harsh 
environments and multi-point  sensing9,10. Finally, as natural events are usually unpredictable and spaced in 
 time11, such accelerometers must be reliable, long-lasting, and should require minimum or no maintenance.

So far, the most spread accelerometers for low frequencies are based on piezoelectric  components12, MEMS 
 membranes13 or  pendulums14 that move with vibrations, or have electrochemical  nature15. Moreover, frequently, 
such operating principles are combined to enhance their overall  performance7. The technology of electronic 
accelerometers is very mature and cost-effective. However, the harsh environments in which these accelerometers 
are commonly deployed, such as seabed or boreholes, may affect the lifetime of their elements. For such applica-
tions, accelerometers based on optical fibers are a good alternative. Fiber-based accelerometers have important 
advantages that include small size, electromagnetic immunity, as they do not require any electric component to 
operate, high resolution, remote and long-distance operation capabilities.
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Among optical fiber accelerometers, those based on interferometry and fiber Bragg gratings (FBGs) are the 
most advanced configurations. Optical fiber interferometric accelerometers feature larger dynamic range, wider 
frequency response band and higher sensitivity compared to some electronic  accelerometers16–18. In fact, optical 
fiber interferometric seismometers capable of detecting vibrations of few mHz have been  reported19,20. However, 
they are bulky and their interrogation tends to be complex. FBG-based optical accelerometers are more compact. 
Moreover, they provide high sensitivity, large dynamic range and multiplexing  ability21; and may operate in 
frequency response bands below 1 Hz22,23. To reach such performance, they require sophisticated interrogation 
systems that entail picometer-resolution interrogators. In addition, they require elaborated packaging. As a 
consequence, FBG accelerometers are expensive.

In recent years, multicore fibers (MCFs) have drawn much attention as multipurpose sensing  elements24. 
As accelerometers, strongly coupled MCFs have proved to have much  potential25. Moreover, their capability to 
withstand and operate under elevated strain and temperature conditions has been reported as  well26,27, which is 
a demanded characteristic for harsh environments or outdoors implementations.

In this work, we report on a highly sensitive all-fiber optical accelerometer suitable for sensing vibrations 
of extremely low frequencies (down to 1 MHz) and low amplitudes. The device is compact and consists of two 
segments of MCF sandwiched between standard single mode fiber. The MCF segments have different lengths 
and are rotated 180° with respect to each other. Due to its architecture, the reflection spectrum of the device 
exhibits a narrow peak that shrinks when it is subjected to vibrations. To test the device, it was subjected to 
vibrations from 1 mHz to 30 Hz and accelerations from 0.76 to 29.64 mg. The performance of our device was 
compared and calibrated with a commercial electronic accelerometer. We believe that the simplicity and high 
performance of the MCF accelerometer reported here are appealing for several applications; particularly those 
where frequencies are low.

The MCF used to build the accelerometer was fabricated at the University of Central Florida (Orlando, USA). 
It is an asymmetric strongly coupled MCF consisting of three cores, where one of the cores is located at the 
geometrical center of the fiber, whereas the other two are surrounding it and arranged adjacently in a V-like 
configuration (Fig. 1a). Each core is made of Germanium doped silica, and has a mean diameter of 9 μm and 
a numerical aperture (NA) of 0.14 at 1550 nm to match with that of the SMF. The cores are separated 11.5 μm 
from each other and embedded in a pure silica cladding of 125 μm of diameter.

The architecture of the device is sketched in Fig. 1b. The sensor consists of two cascaded short segments of 
different lengths of MCF rotated 180° with respect to each other and sandwiched between two SMFs, resulting 
in a SMF-MCF1-MCF2-SMF structure. In this structure, the distal SMF has a cleaved end that acts as a low 
reflectivity mirror in order the device to be interrogated in reflection mode. The benefits of such structure will 
be discussed throughout this section.

The theoretical background of strongly coupled MCFs relies on the coupled mode theory (CMT)28–31. Accord-
ing to it, if at least two waveguides are close enough to interact, a cyclical power transfer between the waveguides 
will take place due to the overlapping between the propagating modes through each of them. For conventional 
CMT, it is assumed that the propagating modes under study are  orthogonal32. In the simplest case, if we assume 
two single mode waveguides named 1 and 2 that are so close to each other that the evanescent field from one 
guide penetrates into the other, there is a coupling between the two propagating modes. For waveguide 1, such 
propagation can be expressed as:

where a is the amplitude of the mode in the waveguide indicated in the subindex, β is its corresponding propa-
gation constant and the k parameters are the mutual and self-coupling coefficients between the orthogonal 
propagating modes in the waveguides 1 and 2, respectively, along the z axis where the propagation is taking 
place. Identical expression is valid for the propagation in waveguide 2 by substituting in Eq. (1) the subindex 1 
for 2 and vice versa.

(1)
∂a1

∂z
= −j

(
β1 + k1,1

)
a1 − jk1,2a2

Figure 1.  (a) Cross section of the asymmetric MCF. (b) Schematic layout of the device drawn with Blender 
v2.82 (https ://www.blend er.org/).
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Now let us assume the boundary condition in which the amplitude of the mode a only exists in one of the 
waveguides at z = 0. Thus, by applying the condition a1(0) = 1 and a2(0) = 0, it is possible to calculate the coupled 
power in any of the waveguides at any distance by calculating P(z) = a(z) ∗ a∗(z) , where a∗ refers to the conjugate 
amplitude of the mode. For such case, the normalized coupled power in the waveguide 1 at a certain propagation 
distance z, can be expressed as:

where S =
√

δ2 + k2 , δ = (β1 − β2)/2 and tan(γ ) = k/δ.
In strongly coupled MCFs, each of the cores acts as a waveguide. In such coupled structures, the propagating 

modes are called  supermodes33,34, which are the linear combination of the propagating modes through each of 
the individual waveguides. When such MCFs are excited in their central core by the incoming  LP01 mode from 
the SMF, the two orthogonal supermodes that have power in the central core are coupled. Such supermodes are 
named  SP01 and  SP02, and are specific for each MCF. Moreover, for strongly coupled MCFs as the one employed 
to manufacture this accelerometer, in which all the cores are identical in terms of size and physical properties, 
and the distance between the central and the neighboring cores remains unaltered, this supermode coupling 
provokes the power distribution among all the adjacent cores to be identical. Therefore, particularizing Eq. (2) 
for a stub of the MCF in Fig. 1a, the normalized coupled power in the central core can be expressed as:

where Δn is the difference between the effective refractive indexes of the two propagating coupled supermodes 
and depends on the physical characteristics of the MCF, λ is the excitation wavelength, and z is the distance at 
which the normalized power is being evaluated along the propagation axis. Therefore, the transmitted power 
will vary periodically, with a maximum at certain values of z and a minimum at others.

Now, if the length of MCF is fixed, let us say L, the transmission of an SMF-MCF-SMF structure can also be 
described by particularizing Eq. (3) for z = L. If such a structure is excited with a broadband source, the transmis-
sion spectrum will be periodic in wavelength according to the phase in Eq. (3).

When an MCF is bent, each core suffers different levels of strain, and their respective refractive indices vary 
 accordingly35–39, modifying the effective refractive indices of the two propagating supermodes and therefore, 
the power coupling conditions, which will be reflected in the spectrum. In our case, this effect, added to the 
asymmetrical arrangement of the cores and their orientation, will cause detectable wavelength shift and coupled 
power variations that will have unique characteristics depending on the applied bending direction and amplitude, 
making the MCF ideal for direction-sensitive bending sensors. As demonstrated  in40, when the position of the 
cores and the applied bending are aligned as in Fig. 2, where the cores are orientated in a V-like configuration 
and the MCF is bent upwards and downwards, only wavelength shifts will be noticed in the spectrum; whereas 
if we rotate the fiber 90°, only coupled power variations will be noticed.

As a step forward of such operating principle, the accelerometer proposed in this work consists of two short 
segments of the aforementioned MCF (MCF1 and MCF2) of similar but different lengths (L1 and L2) that are 
cascaded and rotated 180° with respect to each other. For this configuration, Eq. (1) has to be applied to each 
segment. Hence, the normalized output power of the cascade is the product of the individual normalized power 
outputs of each MCF segment:

(2)P1(z) = cos2(Sz) + cos2(γ )sin2(Sz)

(3)P(z) = cos2

(√
3π�n

�
z

)
+ 1

3
sin2

(√
3π�n

�
z

)

Figure 2.  Simulated spectra for the cases in which a segment of MCF is (a) straight, (b) bent upwards and 
(c) bent downwards when the cores are positioned in a V-like configuration. The arrow indicates the bending 
direction and the wavelength shift in each case.
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where the subindexes MCF1 and MCF2 are referred to each short MCF segment of lengths L1 and L2, respectively. 
Thus, for θ =

√
3π�n

/
� , the normalized output power in the central core after passing through the two MCF 

segments is as follows:

If we compare the predominant terms in Eqs. (3) and (5), in Eq. (3) it is a squared cosine whereas in Eq. (5) it 
can be considered a cosine raised to the fourth. Thus, a spectrum derived from Eq. (5) will have narrower peak 
or peaks than one from Eq. (3) for identical MCF lengths. Moreover, the visibility of a spectrum from Eq. (5) 
will be higher as well, as the contribution of the rest of the terms in the equation is less than the contribution of 
the term in Eq. (3), which makes the difference between adjacent maxima and minima to be lower in the latter. 
Hence, the advantages of cascading two MCF segments compared to a single MCF segment are narrower peaks 
in the spectrum and higher visibility, which facilitate tracking any change in it.

By operating in reflection mode, the normalized output power is the product of Eq. (5) by itself due to the 
back-and-forth path of the light through the SMF-MCF1-MCF2-SMF structure; so it can be assumed that the 
predominant term is a cosine raised to the eighth. Thus, this is an easy manner to improve the narrowness and 
visibility of the spectrum even more and the reason why this device operates in such configuration.

Regarding the fiber arrangement, by rotating the two MCF segments 180° with respect to each other, each 
of them will show contrary behavior in terms of wavelength shift and amplitude of the spectrum when they are 
bent due to their direction sensitive nature that has been explained previously. When the position of the cores 
of each MCF segment and the applied vertical bending are aligned as in Fig. 3, where one of the MCF segments 
has its cores oriented in a V-like configuration and the other MCF segment has its cores oriented in an inverted 
V-like configuration (or rotated 180°), only pronounced amplitude variations will take place in the spectrum. In 
order the device to perform as shown in Fig. 3, MCF segments of different lengths are compulsory to avoid any 
ambiguity in the measurement. If the lengths were identical, the spectra of both segments would be overlapped 
in idle state, being that situation the point at which the maximum reflected light power would take place. Each 
spectrum would shift in opposite directions when the structure was bent, but only power decreases would be 
recorded, resulting in the same or similar power readings for opposite bending directions. Such ambiguity or 
loss in sensitivity is avoided by using segments of different lengths, as for this case, the measured power increases 
and decreases accordingly with the applied bending direction compared to the power measurement in idle state. 
Such amplitude variations in the spectrum are proportional to power variations, and therefore, only a PD will be 
necessary to interrogate the device. Such simplicity makes this SMF-MCF1-MCF2-SMF structure appealing as 
a very sensitive and cost-effective accelerometer, as it does not require high performance or ad-hoc equipment 
to operate.

To manufacture a device with such characteristics, some design constraints were required to be considered: 
Its spectrum had to be confined within the interrogation window (from 1510 to 1595 nm, according to our 
interrogation setup) at any time and it must have a unique and well-defined peak with no secondary lobes. Such 
requirements are mandatory to minimize any sensitivity loss when measuring the reflected light power that is 

(4)P(L1, L2) = PMCF1(L1) ∗ PMCF2(L2)

(5)
P(L1, L2) = cos2(θL1)∗cos2(θL2)+

1

9
sin2(θL1)∗sin2(θL2)+

1

3
cos

2

(θL1)∗sin2(θL2)+
1

3
cos2(θL2)∗sin2(θL1)

Figure 3.  Simulated spectra of each of the MCF segments and the resulting spectra for the cases where the 
structure is (a) straight, (b) bent upwards and (c) bent downwards by its fusion splice point. The arrow indicates 
the bending direction, the wavelength shift or the power variation in each case. The cores of MCF1 are in a 
V-like configuration, whereas the ones in MCF2 are in an inverted V-like configuration.
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caused by adjacent lobes with opposite trends (one increases whereas the other decreases) in the same inter-
rogation window, as shown  in40.

The best fitting lengths for the MCF segments that fulfilled the requirements were 11.4 mm and 12.2 mm, 
resulting in a compact device of 23.6 mm. To manufacture such device (illustrated in Fig. 1b), a precision fiber 
cleaver (Fujikura CT-105) and a specialty fiber fusion splicer (Fujikura 100P +) were used. On the one hand, 
the cleaver allowed us to cut MCF segments of the desired length with 10 μm precision. On the other hand, the 
splicer can align the central core of the MCF with the unique of the SMF with high precision and has a rotating 
mechanism and an imaging system that allows observing the end-face of the MCF. Once the MCF segments were 
rotated 180° with respect to each other, they were spliced, so the central cores of all the segments of the structure 
were aligned. The fabrication process of our device is inexpensive, fast, and reproducible.

The spectra of the simulated and the manufactured devices are shown in Fig. 4, along with the simulation for 
each of the MCF segments that comprise the structure. Such simulations were carried out with PhotonDesign 
simulation software. In such figure, it can be noticed that the curves corresponding to the manufactured and 
simulated devices agree well, and that the design constraints that included one well-defined and centered peak 
with no secondary lobes were achieved.

The interrogation of the device is simple and was carried out with commercial equipment. It consists of a broad-
band light source (Safibra, s.r.o.) centered at 1550 nm and an InGaAs PD (Thorlabs PDA30B2). To interrogate 
the device in reflection mode, a fiber optic circulator was used. As it can be noticed in the simulations in Fig. 3, 
when the structure is bent by the point in which both MCFs are fusion spliced to each other and with that specific 
core orientation, only power variation will take place. However, when the physical device is subjected to the same 
effect, a slight wavelength shift is likely to happen as well apart from the amplitude variation. This is caused by 
two factors: in first place, the impossibility to apply the bending only and exactly at the fusion splice point; and 
in second place, the length difference of 0.8 mm between the MCF segments, which will cause a small variation 
in the shift of each against the same stimulus. Due to that, the device was also interrogated with a spectrometer 
(Ibsen Photonics I-MON-512 High Speed) to monitor the wavelength shift in the spectrum. Such measurement 
was used as an indicator of the relation between the direction of the applied bending and the position of the 
cores, as according to Fig. 3, small wavelength shifts would imply the accelerometer is operating as intended, as 
it is optimized to maximize the power variation.

To test the device, a horizontally fixed rectangular methacrylate thin plate was used. Underneath and at the 
center of it, an amplified piezoelectric actuator (Thorlabs APFH720 combined with Thorlabs MDT694B amplifier) 
was fixed so that the plate could vibrate only in the vertical plane. The piezoelectric actuator was connected to a 
function generator (Keysight Technologies 33220A) to generate signals of diverse amplitudes and frequencies. 
Then, the manufactured device was surface bonded with cyanoacrylate adhesive to the upper side of the plate, 
locating the MCF1-MCF2 splice at the center of it and just above the piezoelectric actuator, as it can be observed 
in the scheme of the experimental setup shown in Fig. 5. It was surface bonded with its cores oriented as in Fig. 3 
to match the direction of vibration. Adjacent to the device, a commercial accelerometer (Pico Technology PP877 
with Pico Technology TA096) was fixed for comparison and calibration purposes, as this electronic accelerometer 
provided the relation between the amplitude of the vibration and the acceleration. All the tests were carried out at 
room temperature (25 °C) and the raw signal of the time response of both devices was monitored and recorded. 

Figure 4.  Normalized spectra of the simulated (black dashed line) and manufactured devices (black continuous 
line). Notice that the maxima of both curves is around 1554 nm and there are no secondary lobes. Simulated 
spectra of MCF segments of 11.4 mm (red dashed line) and 12.2 (blue dashed line) are shown as well. As 
indicated in Eq. (2) their product results in the black dashed line.
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According to the optical accelerometer, the time response signals in terms of wavelength at which the maxima in 
the spectrum takes place (λ) and measured power in the PD (P) were acquired. The value of such parameters with 
the device in idle state were taken as reference (λref,  Pref) to obtain the wavelength shift (Δλ = λ − λref) and power 
variation (ΔP = P − Pref), respectively. Subsequently, the FFT of such signals was done to obtain the amplitude 
of their corresponding frequency components and weights. The criteria to define the limit of detection (LoD) 
was set to be a signal to noise ratio (SNR) of 3 in the FFT amplitude of the most prominent component, which 
is commonly taken as a  rule41.

The first test consisted in emitting a sinusoidal signal of 1 Vpp amplitude and varying its frequency from 30 Hz 
down to 1 MHz (the lowest frequency provided by the function generator) in several steps so that the LoD in 
terms of frequency of each device could be defined. The results are shown from Figs. 6 to 8. The manufactured 
device detected every vibration clearly down to 1 mHz in wavelength shift and power variation (see Figs. 6a 
and 7a). The small wavelength shift in Fig. 7a indicates that the device has been surface bonded with the proper 
core orientation to the plate, and explains the fact that the FFT amplitudes are lower for the wavelength shift 
measurements than those for the power variation. Nevertheless, even in this configuration aimed at maximiz-
ing the power variation, the device has detected such low vibrations by its wavelength shift as well, which is an 
indicator of its high sensitivity.  

Figure 5.  Schematic lateral and top views of the experimental setup drawn with Origin2019b (https ://www.
origi nlab.com/). The close-up shows how the manufactured optical accelerometer was surface bonded to the 
plate. Red cores belong to MCF1 whereas blue cores belong to MCF2. The red central core indicates MCF1 is 
in front of MCF2, as they share common central core. Adjacent to it, the Pico Technology PP877 electronic 
accelerometer was fixed.

Figure 6.  Results of the power measurements in the manufactured optical device. (a) Time response of three 
representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 
Vpp. The Measured frequency axis is in logarithmic scale.
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Some other facts that should be highlighted from these results are the low variability and narrowness in 
amplitude and width, respectively, of the most prominent FFT component in all the cases (see Figs. 6b and 7b), 
with low level of the harmonic components. These characteristics are directly related to the purity of the acquired 
raw signal. This performance is critical for vibration measurements as it indicates that the device is practically 
insensitive to frequency variations if the same vibration amplitude is applied. This characteristic is noticeable if 
we pay attention to the time responses in Figs. 6a and 7a, where the recorded sinusoidal signal has practically the 
same amplitude in all the frequencies. According to the commercial accelerometer, it only detected vibrations 
of 2 Hz and above and with significantly noisier signal and with high level of harmonic components (see Fig. 8).

The second test consisted in emitting a sinusoidal signal of a fixed frequency (6 Hz) and varying its amplitude 
from 1 Vpp down to 10 mVpp (the lowest amplitude provided by the function generator) to define the LoD 
of each device in terms of amplitude of vibration, which is related to the acceleration of the oscillation move-
ment. The time responses and FFT amplitudes of both devices are shown from Figs. 9 to 11. The optical device 
detected vibrations down to 10 mVpp above the established 3:1 SNR criteria. The noticeable progressive decrease 
in the amplitude of the signals in the time domain (see Figs. 9a and 10a) and the FFT (see Figs. 9b and 10b) is 
proportional to the diminishment of the amplitude of the emitted signal. In both cases, wavelength shift and 
power variations, the emitted signal can be clearly detected and the low level of the harmonic components is 
noticeable. Such results should be highlighted for the PD, whose FFT amplitudes are almost the double compared 
with the ones obtained by the spectrometer. In relation to the electronic accelerometer, according to the 3:1 SNR 
criteria, it detected the emitted signals from 1 Vpp down to 30 mVpp, which according to its calibration, covers 
an acceleration range from 29.64 to 0.76 mg. Its time response signals were significantly noisier (see Fig. 11a), 
and as a result of that, their corresponding FFT amplitudes were an order of magnitude below the ones of our 
MCF accelerometer (see Fig. 11b).  

Figure 7.  Results of the wavelength shift measurements in the manufactured optical device. (a) Time response 
of three representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal 
signal of 1 Vpp. The Measured frequency axis is in logarithmic scale.

Figure 8.  Results of the acceleration measurements in the electronic accelerometer. (a) Time response of three 
representative cases. (b) FFT amplitudes for frequencies from 30 Hz down to 1 mHz for a sinusoidal signal of 1 
Vpp. The Measured frequency axis is in logarithmic scale.
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Figure 9.  Results of the power variation measurements in the manufactured optical device. (a) Time response 
of three representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp 
down to 10 mVpp.

Figure 10.  Results of the wavelength shift measurements in the manufactured optical device. (a) Time response 
of three representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp 
down to 10 mVpp.

Figure 11.  Results of the acceleration measurements in the electronic accelerometer. (a) Time response of three 
representative cases, and (b) FFT amplitudes for sinusoidal signals of 6 Hz and amplitudes from 1 Vpp down to 
10 mVpp.
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The calibration resulting from these tests is shown in Fig. 12. The linear behavior of wavelength shift and 
power variations is significant, especially for the power variation measurements, where a sensitivity of 2.213 nW/
mg with a Pearson squared correlation coefficient of R2 = 0.997 and with a noise density of 1.083 μg/sqrt(Hz) 
was obtained. As a result, the correlation between the power variation (ΔP) and the acceleration (in mg) is as 
expressed in Eq. (6):

Equation 6 is applicable for accelerations from 29.64 mg down to 0.76 mg, as this was the LoD of the electronic 
accelerometer. However, considering that the MCF accelerometer detected vibrations of amplitudes below 30 
mVpp and its significant linear behavior, we believe that this equation could be extrapolated and be valid for 
vibrations down to the tested limit (10 mVpp) and below. If so, this would indicate our device is capable of detect-
ing accelerations of up to 0.25 mg. For real-field implementation, the robustness of the proposed measurement 
system could be improved by using a reference PD to monitor the stability of the light source in order to avoid 
any unwanted effect due to light power fluctuation.

According to wavelength shift measurements, a sensitivity of 1.116 pm/mg with a Pearson squared correlation 
coefficient of R2 = 0.976 was achieved. It should be pointed out that our MCF accelerometer was optimized to 
operate with power variation measurements, which implied low sensitivity in terms of wavelength shift. Thus, 
such result points out that the device was surface bonded as close as possible as depicted in Fig. 5 and that it 
operates as intended.

Conclusions
In this work, we have reported on a compact and highly sensitive all-fiber accelerometer based on two short 
segments of different lengths of asymmetric MCF. Such segments are rotated 180° with respect to each other and 
sandwiched between SMFs, creating a SMF-MCF1-MCF2-SMF structure. Its fabrication is fast, easily reproduc-
ible and customizable. Such configuration maximizes the change in the amplitude of the spectrum, which is 
related to power variation. Its interrogation is very simple and cost-effective, as it is made by few off-the-shelf 
equipment.

The manufactured device was subjected to vibrations of different amplitudes and frequencies, and its per-
formance compared and calibrated with a commercial electronic accelerometer. It was found that our MCF 
accelerometer outperformed a commercial electronic accelerometer, as it was capable of detecting extremely low 
frequency vibrations down to 1 mHz with a sensitivity of 2.213 nW/mg, which makes it appealing for applications 

(6)a = 0.450�P − 0.143

Figure 12.  Calibration of the manufactured optical accelerometer in terms of power variation. The calibration 
of the device in terms of wavelength shift is shown in the inset.
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in which these characteristics are demanded, such as in seismology. To the authors´ best knowledge, this is the 
simplest optical fiber-based accelerometer that reaches this performance.

The MCF accelerometer proposed here is suitable for parallel multiplexing by means of an optical switch, 
which makes multi-point measurement feasible in order to cover large structures or areas. Thanks to the narrow 
reflection peaks provided by this SMF-MCF1-MCF2-SMF structure, several devices of this kind can be mul-
tiplexed in the same interrogation window. By modifying the length of the MCF segments in each device, the 
shape of the spectra and the location of the maxima can be customized individually, leading to an unambiguous 
identification of each. Moreover, the proposed structure may be embedded or surface bonded in oil pipelines or 
pillars, which facilitates its installation significantly, as it does not require expensive or complex setups. Lastly, we 
would like to highlight the potential of the device reported here to be direction sensitive by combining simultane-
ous analysis of wavelength shift and power variation. In this manner, the vibration as well as its direction could 
be identified accurately thanks to the effects observed in the spectrum.

Therefore, we believe that the MCF vibration sensor reported here may represent an alternative to con-
ventional electronic and optical accelerometers thanks to its compactness, simplicity, high sensitivity, cost-
effectiveness and versatility.
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ABSTRACT
The present work deals with a curvature sensor that consists of two segments of asymmetric multicore fiber (MCF) fusion spliced with
standard single mode fiber (SMF). The MCF comprises three strongly coupled cores; one of such cores is at the geometrical center of the
MCF. The two segments of MCF are short, have different lengths (less than 2 cm each), and are rotated 180○ with respect to each other.
The fabrication of the sensor was carried out with a fusion splicing machine that has the means for rotating optical fibers. It is demonstrated
that the sensor behaves as two SMF–MCF–SMF structures in series, and consequently, it has enhanced sensitivity. The device proposed
here can be used to sense the direction and amplitude of curvature by monitoring either wavelength shifts or intensity changes. In the
latter case, high curvature sensitivity was observed. The device can also be used for the development of other highly sensitive sensors to
monitor, for example, vibrations, force, pressure, or any other parameter that induces periodic or local curvature or bending to the MCF
segments.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5128285., s

INTRODUCTION

Multicore fibers (MCFs) are revolutionary waveguides1,2 that
have multiple individual cores sharing a common cladding. In gen-
eral, MCFs have diameters similar to that of a standard telecommu-
nications optical fiber. The cores of anMCF can be well isolated from
each other to avoid interactions between them. In this manner, each
core behaves as an independent waveguide. Completely the opposite
is also possible; this means that the cores can be in close proximity
to each other to allow coupling between them. In the latter case, the
fiber is called coupled-core MCF and supports supermodes.3

The unique features of MCFs provide new alternatives for the
development of innovative devices whose functionalities cannot be
easily achieved with conventional optical fibers. For example, ultra-
thin lensless endoscopes4 for biomedical applications and mini-
mal intrusive shape sensors have been demonstrated.5,6 MCFs with

coupled cores offer also new possibilities for the development of sim-
ple and compact devices that can be used to monitor vibrations and
bending,7,8 among other parameters.

With regard to fiber optic curvature sensors, so far, a variety of
configurations based on conventional fibers have been proposed and
demonstrated (see Refs. 9–14). However, to the best of the authors’
knowledge, such curvature sensors have not reached high readiness
level. This suggests that it is important to investigate new alternatives
to devise functional fiber optic curvature sensors.

MCFs with isolated cores offer multiple alternatives to build
curvature sensors. For example, curvature sensors based on inter-
ferometers,15–18 twisted MCFs,19 or directional couplers20 have been
demonstrated. Some drawbacks of these sensors are the need of
bulk optics to interrogate them, their insensitivity to the direction
of curvature, their fragility as, in some cases, the MCF must be
tapered, and the high insertion losses. Strongly coupled MCFs with
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quasi-symmetric core distribution have also been demonstrated for
direction-insensitive curvature sensing.21,22

MCFs with a series of Bragg gratings23–25 or long period grat-
ings26–28 in some or in all the cores can also be used to sense curva-
ture. In fact, MCF curvature sensors based on Bragg gratings have
reached a commercial level, but their high cost may limit their use
to high-end applications. Some disadvantages of grating-basedMCF
curvature sensors include complex fabrication and expensive inter-
rogation. Moreover, the curvature on some MCFs with gratings can
induce coupling between cores. Such coupling can induce errors in
the measurements of curvature.

Fiber optic curvature sensors have potential applications in
shape sensing,6,14 that is why they have attracted considerable
research interest in recent years. Ideally, a fiber optic curvature sen-
sor must be cost effective and must provide the amplitude and the
direction of curvature. In addition, the sensormust be sensitive, sim-
ple, reliable, and very small in diameter, so it can be integrated to
devices, instruments, or structures. We believe that the fiber optic
curvature sensors reported to date cannot provide all these desirable
characteristics.

Here, we propose a highly sensitive curvature sensor based on
a strongly coupled MCF. Our device is easy to fabricate and requires
a simple (low cost) interrogation system. In addition, our sensor is
able to provide the amplitude and direction of curvature even by
monitoring intensity changes. To achieve the curvature sensor with
the aforementioned features, we used two short segments of differ-
ent lengths of an MCF that comprises three identical cores. The two
MCF segments are fusion spliced and rotated 180○ with respect to
each other and are inserted in a conventional single mode fiber.

The structure reported here can also be used to devise other
sensors tomonitor any parameter that induces point or periodic cur-
vature to the MCF. Some examples may include force, pressure, and
vibration sensors or accelerometers.

SENSOR FABRICATION AND WORKING MECHANISM

In Fig. 1(a), we show the cross section of the MCF used to
fabricate the sensor. The fiber has three coupled cores made of
germanium-doped silica embedded in a claddingmade of pure silica.
The diameter of each core is approximately 9 μm, and the cores are
separated from each other by 11 μm approximately. It can be noted
that one core is at the geometrical center of the MCF. The numeri-
cal aperture of each core of the MCF is identical to that of an SMF
(0.14). Due to the matching between the numerical apertures of both

FIG. 1. (a) Micrograph of the MCF used to fabricate the samples. (b) Drawing of the
device in which the two segments of MCF are rotated 180○ with respect to each
other. L1 and L2 are the lengths of the segments MCF1 and MCF2, respectively,
and M is the mirror.

fibers, the insertion losses of our devices are low as demonstrated
previously.7,21

The architecture of our curvature sensor is shown in Fig. 1(b).
Such a structure is fabricated by fusion splicing two segments of
different lengths (typically less than 20 mm each) of the aforemen-
tioned MCF with a conventional SMF. The two segments of MCF
are rotated 180○ with respect each other; the reason of this angle
is explained below. A reflector or mirror at the distal end of the
SMF allows the sensor to operate in reflection mode, which has the
advantages described in the following.

The fabrication of the device shown in Fig. 1(b) can be carried
out with a splicing machine that has means of rotating optical fibers.
In our case, we used a specialty fiber splicer (a Fujikura FSM-100P+)
in which an ad hoc splicing program was implemented. With such
a program, the end face of the two segments of MCF was inspected
to orient the cores before the splicing. In all cases, the splices were
carried out with a cladding alignment method. Under such splic-
ing conditions, the cores located in the geometrical center of the
two segments of MCF and the unique core of the SMF were axially
aligned and permanently joined together. The two segments of MCF
were intentionally rotated 180○ to achieve an SMF–MCF1–MCF2–
SMF structure in which the two cores outside the center of theMCFs
were upward in one part of the structure and downward in the other
part. We will see that such a structure behaves as a dual supermode
coupler in series.

To understand the working mechanism of the device shown in
Fig. 1(b), we carried out simulations based on the finite difference
method with commercial software (FimmWave and FimmProp by
Photon Design) and different experiments. In Fig. 2, we show the
propagation of two different wavelengths from the lead-in SMF to
the lead-out SMF in an SMF–MCF1–MCF2–SMF structure with the
dimensions described in the figure. It can be seen that at 1500 nm,
the guided light does not reach the lead-out SMF. On the other
hand, light at 1550 nm propagates with losses. Consequently, in
the referred structure, maximum transmission can be expected at
1550 nm and minimum at 1500 nm.

In addition to the simulations, we analyzed mathematically
our device by considering that it is composed of two parts. Let us

FIG. 2. Simulations of light propagation in an SMF–MCF1–MCF2–SMF structure.
The following values were considered: L1 = 12.20 mm and L2 = 11.40 mm. The
analyzed wavelengths are indicated.
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consider first the case when L2 = 0. In this case, we will have an
SMF–MCF1–SMF structure. To predict the transmission intensity
of such a structure, we have to consider the following situations: (i)
The three cores of the MCF are identical, i.e., they have the same
diameter and the same refractive index; (ii) the distance between the
MCF cores is the same; (iii) the central core of the MCF is excited
with the fundamental SMF mode, and (iv) the MCF is composed
by evanescently coupled single-mode cores. In our case, the latter
assumptions are valid in the 1200 nm–1600 nm wavelength range.
Under these conditions, two supermodes are excited in the MCF.
Such supermodes have non-zero intensity in the central core of the
MCF.8

The transfer function of the SMF–MCF1–SMF structure can
be calculated by means of the coupled mode theory.29 The trans-
fer function is a periodic function of wavelength (λ) and can be
expressed as30–32

I1T(λ,L1) = 1 − (2/3)sin2(
√
3πΔnL1/λ). (1)

In Eq. (1), Δn is the effective refractive index difference between the
two excited supermodes. Δn depends on the wavelength, refractive
index, dimensions, and separation between the cores of the MCF.
For the MCF shown in Fig. 1(a), Δn was found to be 4.66 × 10−4.
Now, if L1 = 0, we will have an SMF–MCF2–SMF structure of length
L2. The transfer function of such a structure can also be expressed by
Eq. (1), but with L2 instead of L1.

Let us now calculate the transfer function of an SMF–MCF–
SMF structure when the SMF at the final extreme has a reflector or
mirror on its face [see Fig. 1(b)]. In this case, the structure can be
considered as two SMF–MCF–SMF structures in series. As demon-
strated by several groups, the transfer function of two periodic fiber
devices placed in series is the product of the individual transfer func-
tions.33–36 Thus, if a single SMF–MCF–SMF structure with L1 (or L2)
is interrogated in reflection, the transfer function is simply I1R = I21T
(or I2R = I22T).

If the device shown in Fig. 1(b) is excited with a broadband
source, the reflection measured with a photodetector or spectrom-
eter will be

R(λ) = Is(λ)[I1T(λ,L1)I2T(λ,L2)]2. (2)

In Eq. (2), Is(λ) is the spectral power distribution of the excitation
light source. In a practical situation, such a light source can be a
narrow-band light emitting diodes (LED) whose spectral distribu-
tion is Gaussian.

RESULTS AND DISCUSSION

The interrogation of the device depicted in Fig. 1(b) is sim-
ple. In our case, we used a superluminescent light emitting diode
(SLED) with peak emission at 1550 nm and a FWHMof 60 nm as the
light source, a conventional fiber optic coupler (or circulator), and
a photodetector or a miniature spectrometer (Ibsen I-MON-512)
connected by a universal serial bus (USB) cable to a personal com-
puter. Unless otherwise stated, in all our experiments, the cleaved
end of the SMF segment after the MCF2 was used as a reflector. The
reflectivity in this case was less than 4%.

In Fig. 3, we show the normalized reflection spectra of SMF–
MCF–SMF structures in three different cases. The plots with dotted

FIG. 3. Reflection spectra observed when the structure is SMF–MCF–SMF in
which the lengths of MCFs are 12.20 mm (dashed line) and 11.4 mm (dotted line).
The shadowed area beneath the solid line is the reflection spectrum observed
when a 12.20 mm-long and an 11.40 mm-long segment of MCF are fusion spliced
and rotated 180○ with respect to each other.

and dashed lines correspond to the spectra of individual structures
with L1 = 12.20 mm and L2 = 11.40 mm. As the lengths of the
MCF segments are short, the periods of the reflection spectra are
long, and thus, it is not possible to observe two consecutive max-
ima in the monitored wavelength range. The shadowed area beneath
the solid line represents the reflection spectrum observed when two
segments of MCF, one with L1 = 12.20 mm and the other with
L2 = 11.40 mm, were spliced together, but one segment of MCF
was rotated 180○ with respect to the other. The reflection spec-
trum of the SMF–MCF1–MCF2–SMF structure coincides with the
spectrum that is obtained when the spectra shown in dotted and
dashed lines are multiplied and then normalized. It can be noted
that the experimental results shown in Fig. 3 agree with the sim-
ulations described in Fig. 2. Therefore, we can conclude that the
reflection of the device depicted in Fig. 1(b) can be calculated with
Eq. (2) as it can be treated as two SMF–MCF–SMF structures in
series.

To assess the performance of our composed MCF device as
a curvature sensor, we carried out simulations, which are summa-
rized in Fig. 4. In the figure, we show the reflection spectra of an
SMF–MCF1–MCF2–SMF structure built with L1 = 17.4 mm and L2
= 18.2 mm at different values of curvature. It was assumed that the
structure was bent in the MCF1–MCF2 junction and that both seg-
ments of MCF experienced the same curvature. The curvature was
assumed to be applied in four different directions with respect to the
orientations of the MCF cores. Any other orientation of the cores
with respect to curvature will be contained between the four cases
shown in Fig. 4. From the simulations, it can be concluded that the
reflection intensity of our device will increase or decrease depend-
ing on the direction of curvature. This means that our device can
distinguish the amplitude and direction of curvature.

To corroborate the above predictions, a simple setup, schemat-
ically shown in Fig. 5, was implemented. The SMF segments were
secured with two fiber chucks that were mounted on respective
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FIG. 4. Simulated reflection spectra of an
SMF–MCF1–MCF2–SMF structure for
different values of curvature when the
orientations of the MCF cores are 90○

(a), 60○ (b), 30○ (c), and 0○ (d) with
respect to the direction of curvature indi-
cated by arrows. For the simulations, it
was considered that L1 = 17.40 mm and
L2 = 18.20 mm.

rotators (HFR001 from Thorlabs). The chuck rotators were sepa-
rated by a fixed distance and were secured on an optical breadboard
that was placed in a vertical position. A fiber chuck was used as a
mass (20 g) to keep the tension of the fibers constant. The measure-
ments of curvature were carried out at different orientations of the
MCFs, between 0 and 180○ in steps of 30○, with respect to curva-
ture [see Fig. 5]. A translation stage with micrometer resolution was
used to bend the structure in a controlled manner. The stage bent
the device close to the MCF1–MCF2 junction. The value of curva-
ture (C) on the device was calculated with the following equation:
C = 12h/d2 (see Ref. 12), where h is the displacement of the transla-
tion stage and d is the separation between the two fiber rotators.

In the setup described in the above paragraph, any displace-
ment of the translation stage (or change of h) causes bending to the
two segments of MCF. However, the effect on them was different

FIG. 5. Schematic diagram of the measuring setup and the sensor interrogation;
h is the deflection of the device and d is the distance between the two supports.
FOC is fiber optic coupler or circulator, SMF is single mode fiber, and SLED is
superluminescent light emitting diode. The MCF core orientation with respect to
the applied curvature is indicated.

as the cores outside the center of the MCF had a different position
with respect to the applied curvature. As demonstrated in Ref. 8, the
asymmetric MCF used here is highly sensitive to bending. In addi-
tion, the direction of the bending can be distinguished when the
MCF cores are oriented properly. Therefore, high sensitivity to cur-
vature and capability to distinguish the direction of curvature were
expected with an SMF–MCF1–MCF2–SMF structure. For this rea-
son, we fabricated the structure as shown in Fig. 1(b) with the cores
of the MCF1 and MCF2 segments rotated 180○ with respect to each
other.

A device fabricated with a segment of 17.4 mm of MCF fusion
spliced to another segment of 18.2 mm was characterized in detail.
As mentioned before, the cores of the MCF segments were in oppo-
site orientation. Wavelength shifts and intensity changes were mon-
itored at each value of curvature. In the former case, a spectrometer
was used, while in the latter case, a low cost InGaAs photodiode
(S154C from Thorlabs) was used. The light source was the same in
all the measurements. The intensity of the reflected light when no
curvature (C = 0 m−1) was applied to the device was considered as
P and the changes caused by curvature as ΔP. At C = 0 m−1, the
wavelength position of the peak reflection was considered to be λm
and IR = 1.

Figures 6(a) and 6(b) show the spectra observed when the cur-
vature at two perpendicular directions was applied to the device
described in the above paragraph. Figures 6(c) and 6(d) show the
averaged curvature sensitivities that were measured in seven differ-
ent orientations of the MCF. The core orientations with respect to
curvature are illustrated in Figs. 4 and 5. Note that when the wave-
length shift is larger, the changes in intensity are minimal and vice
versa. The different values of sensitivities at different orientations of
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FIG. 6. [(a) and (b)] Reflection spectra at different curvatures observed when the position of the MCF was at 0○ and 90○, respectively, according to Figs. 4(c) and 4(d). [(c)
and (d)] Average curvature sensitivity measured by monitoring wavelength shift or intensity changes. In all cases, the MCF device had L1 = 17.40 mm and L2 = 18.20 mm.

the MCF cores with respect to curvature were expected due to the
asymmetry of the device.

The discrepancy between simulations and experimental results
with regard to shifts of the spectra may be due to the strain induced
to the device and curvature of the SMF–MCF junctions, as these
are inevitable in an experiment. In addition, during the measure-
ments, the two segments of MCF may not experience exactly the
same curvature. In the simulations, however, the two stubs of MCF
were supposed to be exclusively subjected to the same curvature.
Nonetheless, regardless of the orientation of the MCFs with respect
to curvature, the wavelength position and height of the reflection
peak (intensity) can be simultaneously tracked. Hence, it is possible
to know the direction and amplitude of the curvature applied to the
device.

The drastic changes in the reflection spectrum of the SMF–
MCF1–MCF2–SMF structure when it is subjected to curvature can
be explained with Eq. (2) and with the simulations shown in Fig. 4.
Note that the structure is composed of two MCF segments that
are highly sensitive to bending. Moreover, the reflection spectrum
results from the multiplication of two spectra that move in oppo-
site directions. This causes the height of the resulting reflection peak
to increase or decrease. Consequently, the total intensity detected
by using the photodetector increases or decreases depending on the
direction of curvature.

In real-world applications, fiber optic curvature sensors are
attached or integrated to structures or devices. Thus, to investigate
the performance of our curvature sensor in more detail, the sample
described in Fig. 3 was glued on a thin rectangular plastic beam that

was secured with two supports separated by a fixed distance. The
orientation of the cores of the segments of MCF with respect to the
plastic beam was approximately as that shown in Fig. 5. This means
that a segment of MCF had two cores up and the other two cores
down with respect to the direction of the curvature. Again, a trans-
lation stage with micrometer resolution was used to bend the beam
upward (convex curvature) and downward (concave curvature) in
a controlled manner. Other curvature orientations were not possible
due to the geometry of the beam. The stage was located in the middle
point of the distance between the two supports. The MCF1–MCF2
junction of the structure was located in the same position than the
translation stage.

Figure 7 summarizes the behavior of our sensor when it was
subjected to concave and convex curvatures. Note that the shift of
the spectrum is to longer wavelengths in the former case and to
shorter wavelengths in the latter case. The figure also shows the cal-
ibration curve for concave and convex curvatures. It can be noted
that the response of our device in both cases is linear. From the
calibration curve, the curvature sensitivities were calculated to be
791 pm/m−1 for concave curvature and 950 pm/m−1 for convex cur-
vature. The discrepancy in the values of sensitivities of our device
can be attributed to imperfections of the same, for example, the
MCFs may not be exactly 180○ with respect to each other. Strain
applied to the MCFs and curvature of the SMF–MCF segments may
also induce shifts to the reflection spectra.

In Fig. 8, we show the observed changes in ΔP/P for different
values of concave and convex curvatures. It can be noted that when
the device was subjected to concave curvature, the value of ΔP/P
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FIG. 7. Top: spectra observed when the
beam shown in Fig. 5 was curved down-
ward (left) and upward (right). The val-
ues of curvature (in m−1) are indicated
in the graphs. Bottom: calibration curves
for concave and convex curvatures.

decreased, and it increased when the curvature on it was convex.
Note also that the value of ΔP/P reached the baseline (ΔP/P = 0)
when the curvature was removed from the sensor. The calibration
curves for concave and convex curvatures are also shown in Fig. 8.
The sensitivities for concave and convex curvature were found to be
almost identical, 4.66 dB/m−1, which is slightly higher than those of

FIG. 8. Top: relative power changes as a function of time when the beam, hence
the MCF segments, was bent downward (concave curvature) and upward (convex
curvature). The step in each case is 0.0266 m−1. Bottom: calibration curve.

the intensity-modulated curvature sensors reported in Refs. 26, 37,
and 38.

The results shown in Fig. 8 suggest that with our device and
an inexpensive intensity-based interrogation system, it is possible to
distinguish concave and convex curvatures as well as the amplitude
of the applied curvature. If maximum sensitivity is needed in a par-
ticular curvature direction, the cores of the MCF can be oriented
properly. We believe that these features cannot be achieved with
other fiber optic curvature sensors reported so far in the literature.

CONCLUSIONS

In this work, we have reported on a simple MCF curvature sen-
sor that comprises two short segments of strongly coupled MCF
fusion spliced and rotated with respect to each other. The fabrica-
tion of the device only involves cleaving and fusion splicing; such
processes are well established in the fiber optics industry. The sensor
can be interrogated with a low power SLED and a miniature spec-
trometer or a simple photodetector. It was found that the sensor
behaves as two SMF–MCF–SMF structures in series and the reflec-
tion spectrum exhibited a single, narrow peak whose height and
position in wavelength can be simultaneously determined with high
accuracy.

The proposed device was assessed as a curvature sensor. It was
found that for this application, it is able to provide the amplitude
and the direction of curvature no matter how the cores of the MCF
are oriented with respect to the direction of curvature. Moreover,
our sensor can be interrogated in two different manners. When the
sensor was subjected to concave curvature, the reflection spectrum
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shifted to red and the intensity decreased. However, when convex
curvature was applied to the device, the shift was to blue and the
intensity decreased.

The curvature sensitivity of the sensor reported here was
found to be 4.66 dB/m−1 when intensity changes were corre-
lated with curvature. Such sensitivity can be sufficient in several
applications.

We believe that the composedMCF structure reported here can
be used for different sensing applications. Vibrations, for example,
can be translated to periodic concave and convex curvatures on the
device and hence to periodic intensity changes. It also seems possi-
ble to sense pressure or lateral force as they can induce curvature to
the MCF segments. Therefore, cost effective, highly sensitive force,
pressure, or vibration (accelerometers) sensors can be devised with
the platform proposed here.
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